]> git.ipfire.org Git - thirdparty/linux.git/blame - ipc/sem.c
modules: add CONFIG_MODPROBE_PATH
[thirdparty/linux.git] / ipc / sem.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
1da177e4
LT
2/*
3 * linux/ipc/sem.c
4 * Copyright (C) 1992 Krishna Balasubramanian
5 * Copyright (C) 1995 Eric Schenk, Bruno Haible
6 *
1da177e4
LT
7 * /proc/sysvipc/sem support (c) 1999 Dragos Acostachioaie <dragos@iname.com>
8 *
9 * SMP-threaded, sysctl's added
624dffcb 10 * (c) 1999 Manfred Spraul <manfred@colorfullife.com>
1da177e4 11 * Enforced range limit on SEM_UNDO
046c6884 12 * (c) 2001 Red Hat Inc
1da177e4
LT
13 * Lockless wakeup
14 * (c) 2003 Manfred Spraul <manfred@colorfullife.com>
9ae949fa 15 * (c) 2016 Davidlohr Bueso <dave@stgolabs.net>
c5cf6359
MS
16 * Further wakeup optimizations, documentation
17 * (c) 2010 Manfred Spraul <manfred@colorfullife.com>
073115d6
SG
18 *
19 * support for audit of ipc object properties and permission changes
20 * Dustin Kirkland <dustin.kirkland@us.ibm.com>
e3893534
KK
21 *
22 * namespaces support
23 * OpenVZ, SWsoft Inc.
24 * Pavel Emelianov <xemul@openvz.org>
c5cf6359
MS
25 *
26 * Implementation notes: (May 2010)
27 * This file implements System V semaphores.
28 *
29 * User space visible behavior:
30 * - FIFO ordering for semop() operations (just FIFO, not starvation
31 * protection)
32 * - multiple semaphore operations that alter the same semaphore in
33 * one semop() are handled.
34 * - sem_ctime (time of last semctl()) is updated in the IPC_SET, SETVAL and
35 * SETALL calls.
36 * - two Linux specific semctl() commands: SEM_STAT, SEM_INFO.
37 * - undo adjustments at process exit are limited to 0..SEMVMX.
38 * - namespace are supported.
39 * - SEMMSL, SEMMNS, SEMOPM and SEMMNI can be configured at runtine by writing
40 * to /proc/sys/kernel/sem.
41 * - statistics about the usage are reported in /proc/sysvipc/sem.
42 *
43 * Internals:
44 * - scalability:
45 * - all global variables are read-mostly.
46 * - semop() calls and semctl(RMID) are synchronized by RCU.
47 * - most operations do write operations (actually: spin_lock calls) to
48 * the per-semaphore array structure.
49 * Thus: Perfect SMP scaling between independent semaphore arrays.
50 * If multiple semaphores in one array are used, then cache line
51 * trashing on the semaphore array spinlock will limit the scaling.
2f2ed41d 52 * - semncnt and semzcnt are calculated on demand in count_semcnt()
c5cf6359
MS
53 * - the task that performs a successful semop() scans the list of all
54 * sleeping tasks and completes any pending operations that can be fulfilled.
55 * Semaphores are actively given to waiting tasks (necessary for FIFO).
56 * (see update_queue())
57 * - To improve the scalability, the actual wake-up calls are performed after
9ae949fa 58 * dropping all locks. (see wake_up_sem_queue_prepare())
c5cf6359
MS
59 * - All work is done by the waker, the woken up task does not have to do
60 * anything - not even acquiring a lock or dropping a refcount.
61 * - A woken up task may not even touch the semaphore array anymore, it may
62 * have been destroyed already by a semctl(RMID).
c5cf6359
MS
63 * - UNDO values are stored in an array (one per process and per
64 * semaphore array, lazily allocated). For backwards compatibility, multiple
65 * modes for the UNDO variables are supported (per process, per thread)
66 * (see copy_semundo, CLONE_SYSVSEM)
67 * - There are two lists of the pending operations: a per-array list
68 * and per-semaphore list (stored in the array). This allows to achieve FIFO
69 * ordering without always scanning all pending operations.
70 * The worst-case behavior is nevertheless O(N^2) for N wakeups.
1da177e4
LT
71 */
72
b0d17578 73#include <linux/compat.h>
1da177e4
LT
74#include <linux/slab.h>
75#include <linux/spinlock.h>
76#include <linux/init.h>
77#include <linux/proc_fs.h>
78#include <linux/time.h>
1da177e4
LT
79#include <linux/security.h>
80#include <linux/syscalls.h>
81#include <linux/audit.h>
c59ede7b 82#include <linux/capability.h>
19b4946c 83#include <linux/seq_file.h>
3e148c79 84#include <linux/rwsem.h>
e3893534 85#include <linux/nsproxy.h>
ae5e1b22 86#include <linux/ipc_namespace.h>
84f001e1 87#include <linux/sched/wake_q.h>
ec67aaa4 88#include <linux/nospec.h>
0eb71a9d 89#include <linux/rhashtable.h>
5f921ae9 90
7153e402 91#include <linux/uaccess.h>
1da177e4
LT
92#include "util.h"
93
1a5c1349
EB
94/* One semaphore structure for each semaphore in the system. */
95struct sem {
96 int semval; /* current value */
97 /*
98 * PID of the process that last modified the semaphore. For
99 * Linux, specifically these are:
100 * - semop
101 * - semctl, via SETVAL and SETALL.
102 * - at task exit when performing undo adjustments (see exit_sem).
103 */
51d6f263 104 struct pid *sempid;
1a5c1349
EB
105 spinlock_t lock; /* spinlock for fine-grained semtimedop */
106 struct list_head pending_alter; /* pending single-sop operations */
107 /* that alter the semaphore */
108 struct list_head pending_const; /* pending single-sop operations */
109 /* that do not alter the semaphore*/
2a70b787 110 time64_t sem_otime; /* candidate for sem_otime */
1a5c1349
EB
111} ____cacheline_aligned_in_smp;
112
113/* One sem_array data structure for each set of semaphores in the system. */
114struct sem_array {
115 struct kern_ipc_perm sem_perm; /* permissions .. see ipc.h */
116 time64_t sem_ctime; /* create/last semctl() time */
117 struct list_head pending_alter; /* pending operations */
118 /* that alter the array */
119 struct list_head pending_const; /* pending complex operations */
120 /* that do not alter semvals */
121 struct list_head list_id; /* undo requests on this array */
122 int sem_nsems; /* no. of semaphores in array */
123 int complex_count; /* pending complex operations */
124 unsigned int use_global_lock;/* >0: global lock required */
125
126 struct sem sems[];
127} __randomize_layout;
e57940d7
MS
128
129/* One queue for each sleeping process in the system. */
130struct sem_queue {
e57940d7
MS
131 struct list_head list; /* queue of pending operations */
132 struct task_struct *sleeper; /* this process */
133 struct sem_undo *undo; /* undo structure */
51d6f263 134 struct pid *pid; /* process id of requesting process */
e57940d7
MS
135 int status; /* completion status of operation */
136 struct sembuf *sops; /* array of pending operations */
ed247b7c 137 struct sembuf *blocking; /* the operation that blocked */
e57940d7 138 int nsops; /* number of operations */
4ce33ec2
DB
139 bool alter; /* does *sops alter the array? */
140 bool dupsop; /* sops on more than one sem_num */
e57940d7
MS
141};
142
143/* Each task has a list of undo requests. They are executed automatically
144 * when the process exits.
145 */
146struct sem_undo {
147 struct list_head list_proc; /* per-process list: *
148 * all undos from one process
149 * rcu protected */
150 struct rcu_head rcu; /* rcu struct for sem_undo */
151 struct sem_undo_list *ulp; /* back ptr to sem_undo_list */
152 struct list_head list_id; /* per semaphore array list:
153 * all undos for one array */
154 int semid; /* semaphore set identifier */
155 short *semadj; /* array of adjustments */
156 /* one per semaphore */
157};
158
159/* sem_undo_list controls shared access to the list of sem_undo structures
160 * that may be shared among all a CLONE_SYSVSEM task group.
161 */
162struct sem_undo_list {
f74370b8 163 refcount_t refcnt;
e57940d7
MS
164 spinlock_t lock;
165 struct list_head list_proc;
166};
167
168
ed2ddbf8 169#define sem_ids(ns) ((ns)->ids[IPC_SEM_IDS])
e3893534 170
7748dbfa 171static int newary(struct ipc_namespace *, struct ipc_params *);
01b8b07a 172static void freeary(struct ipc_namespace *, struct kern_ipc_perm *);
1da177e4 173#ifdef CONFIG_PROC_FS
19b4946c 174static int sysvipc_sem_proc_show(struct seq_file *s, void *it);
1da177e4
LT
175#endif
176
177#define SEMMSL_FAST 256 /* 512 bytes on stack */
178#define SEMOPM_FAST 64 /* ~ 372 bytes on stack */
179
9de5ab8a
MS
180/*
181 * Switching from the mode suitable for simple ops
182 * to the mode for complex ops is costly. Therefore:
183 * use some hysteresis
184 */
185#define USE_GLOBAL_LOCK_HYSTERESIS 10
186
1da177e4 187/*
758a6ba3 188 * Locking:
5864a2fd 189 * a) global sem_lock() for read/write
1da177e4 190 * sem_undo.id_next,
758a6ba3 191 * sem_array.complex_count,
5864a2fd
MS
192 * sem_array.pending{_alter,_const},
193 * sem_array.sem_undo
46c0a8ca 194 *
5864a2fd 195 * b) global or semaphore sem_lock() for read/write:
1a233956 196 * sem_array.sems[i].pending_{const,alter}:
5864a2fd
MS
197 *
198 * c) special:
199 * sem_undo_list.list_proc:
200 * * undo_list->lock for write
201 * * rcu for read
9de5ab8a
MS
202 * use_global_lock:
203 * * global sem_lock() for write
204 * * either local or global sem_lock() for read.
205 *
206 * Memory ordering:
207 * Most ordering is enforced by using spin_lock() and spin_unlock().
8116b54e
MS
208 *
209 * Exceptions:
210 * 1) use_global_lock: (SEM_BARRIER_1)
9de5ab8a 211 * Setting it from non-zero to 0 is a RELEASE, this is ensured by
8116b54e
MS
212 * using smp_store_release(): Immediately after setting it to 0,
213 * a simple op can start.
9de5ab8a
MS
214 * Testing if it is non-zero is an ACQUIRE, this is ensured by using
215 * smp_load_acquire().
216 * Setting it from 0 to non-zero must be ordered with regards to
217 * this smp_load_acquire(), this is guaranteed because the smp_load_acquire()
218 * is inside a spin_lock() and after a write from 0 to non-zero a
219 * spin_lock()+spin_unlock() is done.
8116b54e
MS
220 *
221 * 2) queue.status: (SEM_BARRIER_2)
222 * Initialization is done while holding sem_lock(), so no further barrier is
223 * required.
224 * Setting it to a result code is a RELEASE, this is ensured by both a
225 * smp_store_release() (for case a) and while holding sem_lock()
226 * (for case b).
227 * The AQUIRE when reading the result code without holding sem_lock() is
228 * achieved by using READ_ONCE() + smp_acquire__after_ctrl_dep().
229 * (case a above).
230 * Reading the result code while holding sem_lock() needs no further barriers,
231 * the locks inside sem_lock() enforce ordering (case b above)
232 *
233 * 3) current->state:
234 * current->state is set to TASK_INTERRUPTIBLE while holding sem_lock().
235 * The wakeup is handled using the wake_q infrastructure. wake_q wakeups may
236 * happen immediately after calling wake_q_add. As wake_q_add_safe() is called
237 * when holding sem_lock(), no further barriers are required.
238 *
239 * See also ipc/mqueue.c for more details on the covered races.
1da177e4
LT
240 */
241
e3893534
KK
242#define sc_semmsl sem_ctls[0]
243#define sc_semmns sem_ctls[1]
244#define sc_semopm sem_ctls[2]
245#define sc_semmni sem_ctls[3]
246
eae04d25 247void sem_init_ns(struct ipc_namespace *ns)
e3893534 248{
e3893534
KK
249 ns->sc_semmsl = SEMMSL;
250 ns->sc_semmns = SEMMNS;
251 ns->sc_semopm = SEMOPM;
252 ns->sc_semmni = SEMMNI;
253 ns->used_sems = 0;
eae04d25 254 ipc_init_ids(&ns->ids[IPC_SEM_IDS]);
e3893534
KK
255}
256
ae5e1b22 257#ifdef CONFIG_IPC_NS
e3893534
KK
258void sem_exit_ns(struct ipc_namespace *ns)
259{
01b8b07a 260 free_ipcs(ns, &sem_ids(ns), freeary);
7d6feeb2 261 idr_destroy(&ns->ids[IPC_SEM_IDS].ipcs_idr);
0cfb6aee 262 rhashtable_destroy(&ns->ids[IPC_SEM_IDS].key_ht);
e3893534 263}
ae5e1b22 264#endif
1da177e4 265
eae04d25 266void __init sem_init(void)
1da177e4 267{
eae04d25 268 sem_init_ns(&init_ipc_ns);
19b4946c
MW
269 ipc_init_proc_interface("sysvipc/sem",
270 " key semid perms nsems uid gid cuid cgid otime ctime\n",
e3893534 271 IPC_SEM_IDS, sysvipc_sem_proc_show);
1da177e4
LT
272}
273
f269f40a
MS
274/**
275 * unmerge_queues - unmerge queues, if possible.
276 * @sma: semaphore array
277 *
278 * The function unmerges the wait queues if complex_count is 0.
279 * It must be called prior to dropping the global semaphore array lock.
280 */
281static void unmerge_queues(struct sem_array *sma)
282{
283 struct sem_queue *q, *tq;
284
285 /* complex operations still around? */
286 if (sma->complex_count)
287 return;
288 /*
289 * We will switch back to simple mode.
290 * Move all pending operation back into the per-semaphore
291 * queues.
292 */
293 list_for_each_entry_safe(q, tq, &sma->pending_alter, list) {
294 struct sem *curr;
1a233956 295 curr = &sma->sems[q->sops[0].sem_num];
f269f40a
MS
296
297 list_add_tail(&q->list, &curr->pending_alter);
298 }
299 INIT_LIST_HEAD(&sma->pending_alter);
300}
301
302/**
8001c858 303 * merge_queues - merge single semop queues into global queue
f269f40a
MS
304 * @sma: semaphore array
305 *
306 * This function merges all per-semaphore queues into the global queue.
307 * It is necessary to achieve FIFO ordering for the pending single-sop
308 * operations when a multi-semop operation must sleep.
309 * Only the alter operations must be moved, the const operations can stay.
310 */
311static void merge_queues(struct sem_array *sma)
312{
313 int i;
314 for (i = 0; i < sma->sem_nsems; i++) {
1a233956 315 struct sem *sem = &sma->sems[i];
f269f40a
MS
316
317 list_splice_init(&sem->pending_alter, &sma->pending_alter);
318 }
319}
320
53dad6d3
DB
321static void sem_rcu_free(struct rcu_head *head)
322{
dba4cdd3
MS
323 struct kern_ipc_perm *p = container_of(head, struct kern_ipc_perm, rcu);
324 struct sem_array *sma = container_of(p, struct sem_array, sem_perm);
53dad6d3 325
aefad959 326 security_sem_free(&sma->sem_perm);
e2029dfe 327 kvfree(sma);
53dad6d3
DB
328}
329
5e9d5275 330/*
5864a2fd 331 * Enter the mode suitable for non-simple operations:
5e9d5275 332 * Caller must own sem_perm.lock.
5e9d5275 333 */
5864a2fd 334static void complexmode_enter(struct sem_array *sma)
5e9d5275
MS
335{
336 int i;
337 struct sem *sem;
338
9de5ab8a
MS
339 if (sma->use_global_lock > 0) {
340 /*
341 * We are already in global lock mode.
342 * Nothing to do, just reset the
343 * counter until we return to simple mode.
344 */
345 sma->use_global_lock = USE_GLOBAL_LOCK_HYSTERESIS;
6d07b68c
MS
346 return;
347 }
9de5ab8a 348 sma->use_global_lock = USE_GLOBAL_LOCK_HYSTERESIS;
5864a2fd 349
5e9d5275 350 for (i = 0; i < sma->sem_nsems; i++) {
1a233956 351 sem = &sma->sems[i];
27d7be18
MS
352 spin_lock(&sem->lock);
353 spin_unlock(&sem->lock);
5e9d5275 354 }
5864a2fd
MS
355}
356
357/*
358 * Try to leave the mode that disallows simple operations:
359 * Caller must own sem_perm.lock.
360 */
361static void complexmode_tryleave(struct sem_array *sma)
362{
363 if (sma->complex_count) {
364 /* Complex ops are sleeping.
365 * We must stay in complex mode
366 */
367 return;
368 }
9de5ab8a 369 if (sma->use_global_lock == 1) {
8116b54e
MS
370
371 /* See SEM_BARRIER_1 for purpose/pairing */
9de5ab8a
MS
372 smp_store_release(&sma->use_global_lock, 0);
373 } else {
374 sma->use_global_lock--;
375 }
5e9d5275
MS
376}
377
5864a2fd 378#define SEM_GLOBAL_LOCK (-1)
6062a8dc
RR
379/*
380 * If the request contains only one semaphore operation, and there are
381 * no complex transactions pending, lock only the semaphore involved.
382 * Otherwise, lock the entire semaphore array, since we either have
383 * multiple semaphores in our own semops, or we need to look at
384 * semaphores from other pending complex operations.
6062a8dc
RR
385 */
386static inline int sem_lock(struct sem_array *sma, struct sembuf *sops,
387 int nsops)
388{
5e9d5275 389 struct sem *sem;
ec67aaa4 390 int idx;
6062a8dc 391
5e9d5275
MS
392 if (nsops != 1) {
393 /* Complex operation - acquire a full lock */
394 ipc_lock_object(&sma->sem_perm);
6062a8dc 395
5864a2fd
MS
396 /* Prevent parallel simple ops */
397 complexmode_enter(sma);
398 return SEM_GLOBAL_LOCK;
5e9d5275
MS
399 }
400
401 /*
402 * Only one semaphore affected - try to optimize locking.
5864a2fd
MS
403 * Optimized locking is possible if no complex operation
404 * is either enqueued or processed right now.
405 *
9de5ab8a 406 * Both facts are tracked by use_global_mode.
5e9d5275 407 */
ec67aaa4
DB
408 idx = array_index_nospec(sops->sem_num, sma->sem_nsems);
409 sem = &sma->sems[idx];
6062a8dc 410
5864a2fd 411 /*
9de5ab8a 412 * Initial check for use_global_lock. Just an optimization,
5864a2fd
MS
413 * no locking, no memory barrier.
414 */
9de5ab8a 415 if (!sma->use_global_lock) {
6062a8dc 416 /*
5e9d5275
MS
417 * It appears that no complex operation is around.
418 * Acquire the per-semaphore lock.
6062a8dc 419 */
5e9d5275
MS
420 spin_lock(&sem->lock);
421
8116b54e 422 /* see SEM_BARRIER_1 for purpose/pairing */
9de5ab8a 423 if (!smp_load_acquire(&sma->use_global_lock)) {
5864a2fd
MS
424 /* fast path successful! */
425 return sops->sem_num;
6062a8dc 426 }
5e9d5275
MS
427 spin_unlock(&sem->lock);
428 }
429
430 /* slow path: acquire the full lock */
431 ipc_lock_object(&sma->sem_perm);
6062a8dc 432
9de5ab8a
MS
433 if (sma->use_global_lock == 0) {
434 /*
435 * The use_global_lock mode ended while we waited for
436 * sma->sem_perm.lock. Thus we must switch to locking
437 * with sem->lock.
438 * Unlike in the fast path, there is no need to recheck
439 * sma->use_global_lock after we have acquired sem->lock:
440 * We own sma->sem_perm.lock, thus use_global_lock cannot
441 * change.
5e9d5275
MS
442 */
443 spin_lock(&sem->lock);
9de5ab8a 444
5e9d5275
MS
445 ipc_unlock_object(&sma->sem_perm);
446 return sops->sem_num;
6062a8dc 447 } else {
9de5ab8a
MS
448 /*
449 * Not a false alarm, thus continue to use the global lock
450 * mode. No need for complexmode_enter(), this was done by
451 * the caller that has set use_global_mode to non-zero.
6062a8dc 452 */
5864a2fd 453 return SEM_GLOBAL_LOCK;
6062a8dc 454 }
6062a8dc
RR
455}
456
457static inline void sem_unlock(struct sem_array *sma, int locknum)
458{
5864a2fd 459 if (locknum == SEM_GLOBAL_LOCK) {
f269f40a 460 unmerge_queues(sma);
5864a2fd 461 complexmode_tryleave(sma);
cf9d5d78 462 ipc_unlock_object(&sma->sem_perm);
6062a8dc 463 } else {
1a233956 464 struct sem *sem = &sma->sems[locknum];
6062a8dc
RR
465 spin_unlock(&sem->lock);
466 }
6062a8dc
RR
467}
468
3e148c79 469/*
d9a605e4 470 * sem_lock_(check_) routines are called in the paths where the rwsem
3e148c79 471 * is not held.
321310ce
LT
472 *
473 * The caller holds the RCU read lock.
3e148c79 474 */
16df3674
DB
475static inline struct sem_array *sem_obtain_object(struct ipc_namespace *ns, int id)
476{
55b7ae50 477 struct kern_ipc_perm *ipcp = ipc_obtain_object_idr(&sem_ids(ns), id);
16df3674
DB
478
479 if (IS_ERR(ipcp))
480 return ERR_CAST(ipcp);
481
482 return container_of(ipcp, struct sem_array, sem_perm);
483}
484
16df3674
DB
485static inline struct sem_array *sem_obtain_object_check(struct ipc_namespace *ns,
486 int id)
487{
488 struct kern_ipc_perm *ipcp = ipc_obtain_object_check(&sem_ids(ns), id);
489
490 if (IS_ERR(ipcp))
491 return ERR_CAST(ipcp);
b1ed88b4 492
03f02c76 493 return container_of(ipcp, struct sem_array, sem_perm);
023a5355
ND
494}
495
6ff37972
PP
496static inline void sem_lock_and_putref(struct sem_array *sma)
497{
6062a8dc 498 sem_lock(sma, NULL, -1);
dba4cdd3 499 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
6ff37972
PP
500}
501
7ca7e564
ND
502static inline void sem_rmid(struct ipc_namespace *ns, struct sem_array *s)
503{
504 ipc_rmid(&sem_ids(ns), &s->sem_perm);
505}
506
101ede01
KC
507static struct sem_array *sem_alloc(size_t nsems)
508{
509 struct sem_array *sma;
101ede01
KC
510
511 if (nsems > (INT_MAX - sizeof(*sma)) / sizeof(sma->sems[0]))
512 return NULL;
513
4a2ae929 514 sma = kvzalloc(struct_size(sma, sems, nsems), GFP_KERNEL);
101ede01
KC
515 if (unlikely(!sma))
516 return NULL;
517
101ede01
KC
518 return sma;
519}
520
f4566f04
ND
521/**
522 * newary - Create a new semaphore set
523 * @ns: namespace
524 * @params: ptr to the structure that contains key, semflg and nsems
525 *
d9a605e4 526 * Called with sem_ids.rwsem held (as a writer)
f4566f04 527 */
7748dbfa 528static int newary(struct ipc_namespace *ns, struct ipc_params *params)
1da177e4 529{
1da177e4
LT
530 int retval;
531 struct sem_array *sma;
7748dbfa
ND
532 key_t key = params->key;
533 int nsems = params->u.nsems;
534 int semflg = params->flg;
b97e820f 535 int i;
1da177e4
LT
536
537 if (!nsems)
538 return -EINVAL;
e3893534 539 if (ns->used_sems + nsems > ns->sc_semmns)
1da177e4
LT
540 return -ENOSPC;
541
101ede01 542 sma = sem_alloc(nsems);
3ab08fe2 543 if (!sma)
1da177e4 544 return -ENOMEM;
3ab08fe2 545
1da177e4
LT
546 sma->sem_perm.mode = (semflg & S_IRWXUGO);
547 sma->sem_perm.key = key;
548
549 sma->sem_perm.security = NULL;
aefad959 550 retval = security_sem_alloc(&sma->sem_perm);
1da177e4 551 if (retval) {
e2029dfe 552 kvfree(sma);
1da177e4
LT
553 return retval;
554 }
555
6062a8dc 556 for (i = 0; i < nsems; i++) {
1a233956
MS
557 INIT_LIST_HEAD(&sma->sems[i].pending_alter);
558 INIT_LIST_HEAD(&sma->sems[i].pending_const);
559 spin_lock_init(&sma->sems[i].lock);
6062a8dc 560 }
b97e820f
MS
561
562 sma->complex_count = 0;
9de5ab8a 563 sma->use_global_lock = USE_GLOBAL_LOCK_HYSTERESIS;
1a82e9e1
MS
564 INIT_LIST_HEAD(&sma->pending_alter);
565 INIT_LIST_HEAD(&sma->pending_const);
4daa28f6 566 INIT_LIST_HEAD(&sma->list_id);
1da177e4 567 sma->sem_nsems = nsems;
e54d02b2 568 sma->sem_ctime = ktime_get_real_seconds();
e8577d1f 569
39c96a1b 570 /* ipc_addid() locks sma upon success. */
2ec55f80
MS
571 retval = ipc_addid(&sem_ids(ns), &sma->sem_perm, ns->sc_semmni);
572 if (retval < 0) {
39cfffd7 573 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
2ec55f80 574 return retval;
e8577d1f
MS
575 }
576 ns->used_sems += nsems;
577
6062a8dc 578 sem_unlock(sma, -1);
6d49dab8 579 rcu_read_unlock();
1da177e4 580
7ca7e564 581 return sma->sem_perm.id;
1da177e4
LT
582}
583
7748dbfa 584
f4566f04 585/*
d9a605e4 586 * Called with sem_ids.rwsem and ipcp locked.
f4566f04 587 */
00898e85 588static int sem_more_checks(struct kern_ipc_perm *ipcp, struct ipc_params *params)
7748dbfa 589{
03f02c76
ND
590 struct sem_array *sma;
591
592 sma = container_of(ipcp, struct sem_array, sem_perm);
593 if (params->u.nsems > sma->sem_nsems)
7748dbfa
ND
594 return -EINVAL;
595
596 return 0;
597}
598
69894718 599long ksys_semget(key_t key, int nsems, int semflg)
1da177e4 600{
e3893534 601 struct ipc_namespace *ns;
eb66ec44
MK
602 static const struct ipc_ops sem_ops = {
603 .getnew = newary,
50ab44b1 604 .associate = security_sem_associate,
eb66ec44
MK
605 .more_checks = sem_more_checks,
606 };
7748dbfa 607 struct ipc_params sem_params;
e3893534
KK
608
609 ns = current->nsproxy->ipc_ns;
1da177e4 610
e3893534 611 if (nsems < 0 || nsems > ns->sc_semmsl)
1da177e4 612 return -EINVAL;
7ca7e564 613
7748dbfa
ND
614 sem_params.key = key;
615 sem_params.flg = semflg;
616 sem_params.u.nsems = nsems;
1da177e4 617
7748dbfa 618 return ipcget(ns, &sem_ids(ns), &sem_ops, &sem_params);
1da177e4
LT
619}
620
69894718
DB
621SYSCALL_DEFINE3(semget, key_t, key, int, nsems, int, semflg)
622{
623 return ksys_semget(key, nsems, semflg);
624}
625
78f5009c 626/**
4ce33ec2
DB
627 * perform_atomic_semop[_slow] - Attempt to perform semaphore
628 * operations on a given array.
758a6ba3 629 * @sma: semaphore array
d198cd6d 630 * @q: struct sem_queue that describes the operation
758a6ba3 631 *
4ce33ec2
DB
632 * Caller blocking are as follows, based the value
633 * indicated by the semaphore operation (sem_op):
634 *
635 * (1) >0 never blocks.
636 * (2) 0 (wait-for-zero operation): semval is non-zero.
637 * (3) <0 attempting to decrement semval to a value smaller than zero.
638 *
758a6ba3
MS
639 * Returns 0 if the operation was possible.
640 * Returns 1 if the operation is impossible, the caller must sleep.
4ce33ec2 641 * Returns <0 for error codes.
1da177e4 642 */
4ce33ec2 643static int perform_atomic_semop_slow(struct sem_array *sma, struct sem_queue *q)
1da177e4 644{
51d6f263
EB
645 int result, sem_op, nsops;
646 struct pid *pid;
1da177e4 647 struct sembuf *sop;
239521f3 648 struct sem *curr;
d198cd6d
MS
649 struct sembuf *sops;
650 struct sem_undo *un;
651
652 sops = q->sops;
653 nsops = q->nsops;
654 un = q->undo;
1da177e4
LT
655
656 for (sop = sops; sop < sops + nsops; sop++) {
ec67aaa4
DB
657 int idx = array_index_nospec(sop->sem_num, sma->sem_nsems);
658 curr = &sma->sems[idx];
1da177e4
LT
659 sem_op = sop->sem_op;
660 result = curr->semval;
78f5009c 661
1da177e4
LT
662 if (!sem_op && result)
663 goto would_block;
664
665 result += sem_op;
666 if (result < 0)
667 goto would_block;
668 if (result > SEMVMX)
669 goto out_of_range;
78f5009c 670
1da177e4
LT
671 if (sop->sem_flg & SEM_UNDO) {
672 int undo = un->semadj[sop->sem_num] - sem_op;
78f5009c 673 /* Exceeding the undo range is an error. */
1da177e4
LT
674 if (undo < (-SEMAEM - 1) || undo > SEMAEM)
675 goto out_of_range;
78f5009c 676 un->semadj[sop->sem_num] = undo;
1da177e4 677 }
78f5009c 678
1da177e4
LT
679 curr->semval = result;
680 }
681
682 sop--;
d198cd6d 683 pid = q->pid;
1da177e4 684 while (sop >= sops) {
51d6f263 685 ipc_update_pid(&sma->sems[sop->sem_num].sempid, pid);
1da177e4
LT
686 sop--;
687 }
78f5009c 688
1da177e4
LT
689 return 0;
690
691out_of_range:
692 result = -ERANGE;
693 goto undo;
694
695would_block:
ed247b7c
MS
696 q->blocking = sop;
697
1da177e4
LT
698 if (sop->sem_flg & IPC_NOWAIT)
699 result = -EAGAIN;
700 else
701 result = 1;
702
703undo:
704 sop--;
705 while (sop >= sops) {
78f5009c 706 sem_op = sop->sem_op;
1a233956 707 sma->sems[sop->sem_num].semval -= sem_op;
78f5009c
PM
708 if (sop->sem_flg & SEM_UNDO)
709 un->semadj[sop->sem_num] += sem_op;
1da177e4
LT
710 sop--;
711 }
712
713 return result;
714}
715
4ce33ec2
DB
716static int perform_atomic_semop(struct sem_array *sma, struct sem_queue *q)
717{
718 int result, sem_op, nsops;
719 struct sembuf *sop;
720 struct sem *curr;
721 struct sembuf *sops;
722 struct sem_undo *un;
723
724 sops = q->sops;
725 nsops = q->nsops;
726 un = q->undo;
727
728 if (unlikely(q->dupsop))
729 return perform_atomic_semop_slow(sma, q);
730
731 /*
732 * We scan the semaphore set twice, first to ensure that the entire
733 * operation can succeed, therefore avoiding any pointless writes
734 * to shared memory and having to undo such changes in order to block
735 * until the operations can go through.
736 */
737 for (sop = sops; sop < sops + nsops; sop++) {
ec67aaa4
DB
738 int idx = array_index_nospec(sop->sem_num, sma->sem_nsems);
739
740 curr = &sma->sems[idx];
4ce33ec2
DB
741 sem_op = sop->sem_op;
742 result = curr->semval;
743
744 if (!sem_op && result)
745 goto would_block; /* wait-for-zero */
746
747 result += sem_op;
748 if (result < 0)
749 goto would_block;
750
751 if (result > SEMVMX)
752 return -ERANGE;
753
754 if (sop->sem_flg & SEM_UNDO) {
755 int undo = un->semadj[sop->sem_num] - sem_op;
756
757 /* Exceeding the undo range is an error. */
758 if (undo < (-SEMAEM - 1) || undo > SEMAEM)
759 return -ERANGE;
760 }
761 }
762
763 for (sop = sops; sop < sops + nsops; sop++) {
1a233956 764 curr = &sma->sems[sop->sem_num];
4ce33ec2
DB
765 sem_op = sop->sem_op;
766 result = curr->semval;
767
768 if (sop->sem_flg & SEM_UNDO) {
769 int undo = un->semadj[sop->sem_num] - sem_op;
770
771 un->semadj[sop->sem_num] = undo;
772 }
773 curr->semval += sem_op;
51d6f263 774 ipc_update_pid(&curr->sempid, q->pid);
4ce33ec2
DB
775 }
776
777 return 0;
778
779would_block:
780 q->blocking = sop;
781 return sop->sem_flg & IPC_NOWAIT ? -EAGAIN : 1;
782}
783
9ae949fa
DB
784static inline void wake_up_sem_queue_prepare(struct sem_queue *q, int error,
785 struct wake_q_head *wake_q)
0a2b9d4c 786{
8116b54e
MS
787 get_task_struct(q->sleeper);
788
789 /* see SEM_BARRIER_2 for purpuse/pairing */
790 smp_store_release(&q->status, error);
791
792 wake_q_add_safe(wake_q, q->sleeper);
d4212093
NP
793}
794
b97e820f
MS
795static void unlink_queue(struct sem_array *sma, struct sem_queue *q)
796{
797 list_del(&q->list);
9f1bc2c9 798 if (q->nsops > 1)
b97e820f
MS
799 sma->complex_count--;
800}
801
fd5db422
MS
802/** check_restart(sma, q)
803 * @sma: semaphore array
804 * @q: the operation that just completed
805 *
806 * update_queue is O(N^2) when it restarts scanning the whole queue of
807 * waiting operations. Therefore this function checks if the restart is
808 * really necessary. It is called after a previously waiting operation
1a82e9e1
MS
809 * modified the array.
810 * Note that wait-for-zero operations are handled without restart.
fd5db422 811 */
4663d3e8 812static inline int check_restart(struct sem_array *sma, struct sem_queue *q)
fd5db422 813{
1a82e9e1
MS
814 /* pending complex alter operations are too difficult to analyse */
815 if (!list_empty(&sma->pending_alter))
fd5db422
MS
816 return 1;
817
818 /* we were a sleeping complex operation. Too difficult */
819 if (q->nsops > 1)
820 return 1;
821
1a82e9e1
MS
822 /* It is impossible that someone waits for the new value:
823 * - complex operations always restart.
824 * - wait-for-zero are handled seperately.
825 * - q is a previously sleeping simple operation that
826 * altered the array. It must be a decrement, because
827 * simple increments never sleep.
828 * - If there are older (higher priority) decrements
829 * in the queue, then they have observed the original
830 * semval value and couldn't proceed. The operation
831 * decremented to value - thus they won't proceed either.
832 */
833 return 0;
834}
fd5db422 835
1a82e9e1 836/**
8001c858 837 * wake_const_ops - wake up non-alter tasks
1a82e9e1
MS
838 * @sma: semaphore array.
839 * @semnum: semaphore that was modified.
9ae949fa 840 * @wake_q: lockless wake-queue head.
1a82e9e1
MS
841 *
842 * wake_const_ops must be called after a semaphore in a semaphore array
843 * was set to 0. If complex const operations are pending, wake_const_ops must
844 * be called with semnum = -1, as well as with the number of each modified
845 * semaphore.
9ae949fa 846 * The tasks that must be woken up are added to @wake_q. The return code
1a82e9e1
MS
847 * is stored in q->pid.
848 * The function returns 1 if at least one operation was completed successfully.
849 */
850static int wake_const_ops(struct sem_array *sma, int semnum,
9ae949fa 851 struct wake_q_head *wake_q)
1a82e9e1 852{
f150f02c 853 struct sem_queue *q, *tmp;
1a82e9e1
MS
854 struct list_head *pending_list;
855 int semop_completed = 0;
856
857 if (semnum == -1)
858 pending_list = &sma->pending_const;
859 else
1a233956 860 pending_list = &sma->sems[semnum].pending_const;
fd5db422 861
f150f02c
DB
862 list_for_each_entry_safe(q, tmp, pending_list, list) {
863 int error = perform_atomic_semop(sma, q);
1a82e9e1 864
f150f02c
DB
865 if (error > 0)
866 continue;
867 /* operation completed, remove from queue & wakeup */
868 unlink_queue(sma, q);
1a82e9e1 869
f150f02c
DB
870 wake_up_sem_queue_prepare(q, error, wake_q);
871 if (error == 0)
872 semop_completed = 1;
1a82e9e1 873 }
f150f02c 874
1a82e9e1
MS
875 return semop_completed;
876}
877
878/**
8001c858 879 * do_smart_wakeup_zero - wakeup all wait for zero tasks
1a82e9e1
MS
880 * @sma: semaphore array
881 * @sops: operations that were performed
882 * @nsops: number of operations
9ae949fa 883 * @wake_q: lockless wake-queue head
1a82e9e1 884 *
8001c858
DB
885 * Checks all required queue for wait-for-zero operations, based
886 * on the actual changes that were performed on the semaphore array.
1a82e9e1
MS
887 * The function returns 1 if at least one operation was completed successfully.
888 */
889static int do_smart_wakeup_zero(struct sem_array *sma, struct sembuf *sops,
9ae949fa 890 int nsops, struct wake_q_head *wake_q)
1a82e9e1
MS
891{
892 int i;
893 int semop_completed = 0;
894 int got_zero = 0;
895
896 /* first: the per-semaphore queues, if known */
897 if (sops) {
898 for (i = 0; i < nsops; i++) {
899 int num = sops[i].sem_num;
900
1a233956 901 if (sma->sems[num].semval == 0) {
1a82e9e1 902 got_zero = 1;
9ae949fa 903 semop_completed |= wake_const_ops(sma, num, wake_q);
1a82e9e1
MS
904 }
905 }
906 } else {
907 /*
908 * No sops means modified semaphores not known.
909 * Assume all were changed.
fd5db422 910 */
1a82e9e1 911 for (i = 0; i < sma->sem_nsems; i++) {
1a233956 912 if (sma->sems[i].semval == 0) {
1a82e9e1 913 got_zero = 1;
9ae949fa 914 semop_completed |= wake_const_ops(sma, i, wake_q);
1a82e9e1
MS
915 }
916 }
fd5db422
MS
917 }
918 /*
1a82e9e1
MS
919 * If one of the modified semaphores got 0,
920 * then check the global queue, too.
fd5db422 921 */
1a82e9e1 922 if (got_zero)
9ae949fa 923 semop_completed |= wake_const_ops(sma, -1, wake_q);
fd5db422 924
1a82e9e1 925 return semop_completed;
fd5db422
MS
926}
927
636c6be8
MS
928
929/**
8001c858 930 * update_queue - look for tasks that can be completed.
636c6be8
MS
931 * @sma: semaphore array.
932 * @semnum: semaphore that was modified.
9ae949fa 933 * @wake_q: lockless wake-queue head.
636c6be8
MS
934 *
935 * update_queue must be called after a semaphore in a semaphore array
9f1bc2c9
RR
936 * was modified. If multiple semaphores were modified, update_queue must
937 * be called with semnum = -1, as well as with the number of each modified
938 * semaphore.
9ae949fa 939 * The tasks that must be woken up are added to @wake_q. The return code
0a2b9d4c 940 * is stored in q->pid.
1a82e9e1
MS
941 * The function internally checks if const operations can now succeed.
942 *
0a2b9d4c 943 * The function return 1 if at least one semop was completed successfully.
1da177e4 944 */
9ae949fa 945static int update_queue(struct sem_array *sma, int semnum, struct wake_q_head *wake_q)
1da177e4 946{
f150f02c 947 struct sem_queue *q, *tmp;
636c6be8 948 struct list_head *pending_list;
0a2b9d4c 949 int semop_completed = 0;
636c6be8 950
9f1bc2c9 951 if (semnum == -1)
1a82e9e1 952 pending_list = &sma->pending_alter;
9f1bc2c9 953 else
1a233956 954 pending_list = &sma->sems[semnum].pending_alter;
9cad200c
NP
955
956again:
f150f02c 957 list_for_each_entry_safe(q, tmp, pending_list, list) {
fd5db422 958 int error, restart;
636c6be8 959
d987f8b2
MS
960 /* If we are scanning the single sop, per-semaphore list of
961 * one semaphore and that semaphore is 0, then it is not
1a82e9e1 962 * necessary to scan further: simple increments
d987f8b2
MS
963 * that affect only one entry succeed immediately and cannot
964 * be in the per semaphore pending queue, and decrements
965 * cannot be successful if the value is already 0.
966 */
1a233956 967 if (semnum != -1 && sma->sems[semnum].semval == 0)
d987f8b2
MS
968 break;
969
d198cd6d 970 error = perform_atomic_semop(sma, q);
1da177e4
LT
971
972 /* Does q->sleeper still need to sleep? */
9cad200c
NP
973 if (error > 0)
974 continue;
975
b97e820f 976 unlink_queue(sma, q);
9cad200c 977
0a2b9d4c 978 if (error) {
fd5db422 979 restart = 0;
0a2b9d4c
MS
980 } else {
981 semop_completed = 1;
9ae949fa 982 do_smart_wakeup_zero(sma, q->sops, q->nsops, wake_q);
fd5db422 983 restart = check_restart(sma, q);
0a2b9d4c 984 }
fd5db422 985
9ae949fa 986 wake_up_sem_queue_prepare(q, error, wake_q);
fd5db422 987 if (restart)
9cad200c 988 goto again;
1da177e4 989 }
0a2b9d4c 990 return semop_completed;
1da177e4
LT
991}
992
0e8c6656 993/**
8001c858 994 * set_semotime - set sem_otime
0e8c6656
MS
995 * @sma: semaphore array
996 * @sops: operations that modified the array, may be NULL
997 *
998 * sem_otime is replicated to avoid cache line trashing.
999 * This function sets one instance to the current time.
1000 */
1001static void set_semotime(struct sem_array *sma, struct sembuf *sops)
1002{
1003 if (sops == NULL) {
2a70b787 1004 sma->sems[0].sem_otime = ktime_get_real_seconds();
0e8c6656 1005 } else {
1a233956 1006 sma->sems[sops[0].sem_num].sem_otime =
2a70b787 1007 ktime_get_real_seconds();
0e8c6656
MS
1008 }
1009}
1010
0a2b9d4c 1011/**
8001c858 1012 * do_smart_update - optimized update_queue
fd5db422
MS
1013 * @sma: semaphore array
1014 * @sops: operations that were performed
1015 * @nsops: number of operations
0a2b9d4c 1016 * @otime: force setting otime
9ae949fa 1017 * @wake_q: lockless wake-queue head
fd5db422 1018 *
1a82e9e1
MS
1019 * do_smart_update() does the required calls to update_queue and wakeup_zero,
1020 * based on the actual changes that were performed on the semaphore array.
0a2b9d4c 1021 * Note that the function does not do the actual wake-up: the caller is
9ae949fa 1022 * responsible for calling wake_up_q().
0a2b9d4c 1023 * It is safe to perform this call after dropping all locks.
fd5db422 1024 */
0a2b9d4c 1025static void do_smart_update(struct sem_array *sma, struct sembuf *sops, int nsops,
9ae949fa 1026 int otime, struct wake_q_head *wake_q)
fd5db422
MS
1027{
1028 int i;
1029
9ae949fa 1030 otime |= do_smart_wakeup_zero(sma, sops, nsops, wake_q);
1a82e9e1 1031
f269f40a
MS
1032 if (!list_empty(&sma->pending_alter)) {
1033 /* semaphore array uses the global queue - just process it. */
9ae949fa 1034 otime |= update_queue(sma, -1, wake_q);
f269f40a
MS
1035 } else {
1036 if (!sops) {
1037 /*
1038 * No sops, thus the modified semaphores are not
1039 * known. Check all.
1040 */
1041 for (i = 0; i < sma->sem_nsems; i++)
9ae949fa 1042 otime |= update_queue(sma, i, wake_q);
f269f40a
MS
1043 } else {
1044 /*
1045 * Check the semaphores that were increased:
1046 * - No complex ops, thus all sleeping ops are
1047 * decrease.
1048 * - if we decreased the value, then any sleeping
1049 * semaphore ops wont be able to run: If the
1050 * previous value was too small, then the new
1051 * value will be too small, too.
1052 */
1053 for (i = 0; i < nsops; i++) {
1054 if (sops[i].sem_op > 0) {
1055 otime |= update_queue(sma,
9ae949fa 1056 sops[i].sem_num, wake_q);
f269f40a 1057 }
ab465df9 1058 }
9f1bc2c9 1059 }
fd5db422 1060 }
0e8c6656
MS
1061 if (otime)
1062 set_semotime(sma, sops);
fd5db422
MS
1063}
1064
2f2ed41d 1065/*
b220c57a 1066 * check_qop: Test if a queued operation sleeps on the semaphore semnum
2f2ed41d
MS
1067 */
1068static int check_qop(struct sem_array *sma, int semnum, struct sem_queue *q,
1069 bool count_zero)
1070{
b220c57a 1071 struct sembuf *sop = q->blocking;
2f2ed41d 1072
9b44ee2e
MS
1073 /*
1074 * Linux always (since 0.99.10) reported a task as sleeping on all
1075 * semaphores. This violates SUS, therefore it was changed to the
1076 * standard compliant behavior.
1077 * Give the administrators a chance to notice that an application
1078 * might misbehave because it relies on the Linux behavior.
1079 */
1080 pr_info_once("semctl(GETNCNT/GETZCNT) is since 3.16 Single Unix Specification compliant.\n"
1081 "The task %s (%d) triggered the difference, watch for misbehavior.\n",
1082 current->comm, task_pid_nr(current));
1083
b220c57a
MS
1084 if (sop->sem_num != semnum)
1085 return 0;
2f2ed41d 1086
b220c57a
MS
1087 if (count_zero && sop->sem_op == 0)
1088 return 1;
1089 if (!count_zero && sop->sem_op < 0)
1090 return 1;
1091
1092 return 0;
2f2ed41d
MS
1093}
1094
1da177e4
LT
1095/* The following counts are associated to each semaphore:
1096 * semncnt number of tasks waiting on semval being nonzero
1097 * semzcnt number of tasks waiting on semval being zero
b220c57a
MS
1098 *
1099 * Per definition, a task waits only on the semaphore of the first semop
1100 * that cannot proceed, even if additional operation would block, too.
1da177e4 1101 */
2f2ed41d
MS
1102static int count_semcnt(struct sem_array *sma, ushort semnum,
1103 bool count_zero)
1da177e4 1104{
2f2ed41d 1105 struct list_head *l;
239521f3 1106 struct sem_queue *q;
2f2ed41d 1107 int semcnt;
1da177e4 1108
2f2ed41d
MS
1109 semcnt = 0;
1110 /* First: check the simple operations. They are easy to evaluate */
1111 if (count_zero)
1a233956 1112 l = &sma->sems[semnum].pending_const;
2f2ed41d 1113 else
1a233956 1114 l = &sma->sems[semnum].pending_alter;
1da177e4 1115
2f2ed41d
MS
1116 list_for_each_entry(q, l, list) {
1117 /* all task on a per-semaphore list sleep on exactly
1118 * that semaphore
1119 */
1120 semcnt++;
ebc2e5e6
RR
1121 }
1122
2f2ed41d 1123 /* Then: check the complex operations. */
1994862d 1124 list_for_each_entry(q, &sma->pending_alter, list) {
2f2ed41d
MS
1125 semcnt += check_qop(sma, semnum, q, count_zero);
1126 }
1127 if (count_zero) {
1128 list_for_each_entry(q, &sma->pending_const, list) {
1129 semcnt += check_qop(sma, semnum, q, count_zero);
1130 }
1994862d 1131 }
2f2ed41d 1132 return semcnt;
1da177e4
LT
1133}
1134
d9a605e4
DB
1135/* Free a semaphore set. freeary() is called with sem_ids.rwsem locked
1136 * as a writer and the spinlock for this semaphore set hold. sem_ids.rwsem
3e148c79 1137 * remains locked on exit.
1da177e4 1138 */
01b8b07a 1139static void freeary(struct ipc_namespace *ns, struct kern_ipc_perm *ipcp)
1da177e4 1140{
380af1b3
MS
1141 struct sem_undo *un, *tu;
1142 struct sem_queue *q, *tq;
01b8b07a 1143 struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm);
9f1bc2c9 1144 int i;
9ae949fa 1145 DEFINE_WAKE_Q(wake_q);
1da177e4 1146
380af1b3 1147 /* Free the existing undo structures for this semaphore set. */
cf9d5d78 1148 ipc_assert_locked_object(&sma->sem_perm);
380af1b3
MS
1149 list_for_each_entry_safe(un, tu, &sma->list_id, list_id) {
1150 list_del(&un->list_id);
1151 spin_lock(&un->ulp->lock);
1da177e4 1152 un->semid = -1;
380af1b3
MS
1153 list_del_rcu(&un->list_proc);
1154 spin_unlock(&un->ulp->lock);
693a8b6e 1155 kfree_rcu(un, rcu);
380af1b3 1156 }
1da177e4
LT
1157
1158 /* Wake up all pending processes and let them fail with EIDRM. */
1a82e9e1
MS
1159 list_for_each_entry_safe(q, tq, &sma->pending_const, list) {
1160 unlink_queue(sma, q);
9ae949fa 1161 wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
1a82e9e1
MS
1162 }
1163
1164 list_for_each_entry_safe(q, tq, &sma->pending_alter, list) {
b97e820f 1165 unlink_queue(sma, q);
9ae949fa 1166 wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
1da177e4 1167 }
9f1bc2c9 1168 for (i = 0; i < sma->sem_nsems; i++) {
1a233956 1169 struct sem *sem = &sma->sems[i];
1a82e9e1
MS
1170 list_for_each_entry_safe(q, tq, &sem->pending_const, list) {
1171 unlink_queue(sma, q);
9ae949fa 1172 wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
1a82e9e1
MS
1173 }
1174 list_for_each_entry_safe(q, tq, &sem->pending_alter, list) {
9f1bc2c9 1175 unlink_queue(sma, q);
9ae949fa 1176 wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
9f1bc2c9 1177 }
51d6f263 1178 ipc_update_pid(&sem->sempid, NULL);
9f1bc2c9 1179 }
1da177e4 1180
7ca7e564
ND
1181 /* Remove the semaphore set from the IDR */
1182 sem_rmid(ns, sma);
6062a8dc 1183 sem_unlock(sma, -1);
6d49dab8 1184 rcu_read_unlock();
1da177e4 1185
9ae949fa 1186 wake_up_q(&wake_q);
e3893534 1187 ns->used_sems -= sma->sem_nsems;
dba4cdd3 1188 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1da177e4
LT
1189}
1190
1191static unsigned long copy_semid_to_user(void __user *buf, struct semid64_ds *in, int version)
1192{
239521f3 1193 switch (version) {
1da177e4
LT
1194 case IPC_64:
1195 return copy_to_user(buf, in, sizeof(*in));
1196 case IPC_OLD:
1197 {
1198 struct semid_ds out;
1199
982f7c2b
DR
1200 memset(&out, 0, sizeof(out));
1201
1da177e4
LT
1202 ipc64_perm_to_ipc_perm(&in->sem_perm, &out.sem_perm);
1203
1204 out.sem_otime = in->sem_otime;
1205 out.sem_ctime = in->sem_ctime;
1206 out.sem_nsems = in->sem_nsems;
1207
1208 return copy_to_user(buf, &out, sizeof(out));
1209 }
1210 default:
1211 return -EINVAL;
1212 }
1213}
1214
e54d02b2 1215static time64_t get_semotime(struct sem_array *sma)
d12e1e50
MS
1216{
1217 int i;
e54d02b2 1218 time64_t res;
d12e1e50 1219
1a233956 1220 res = sma->sems[0].sem_otime;
d12e1e50 1221 for (i = 1; i < sma->sem_nsems; i++) {
e54d02b2 1222 time64_t to = sma->sems[i].sem_otime;
d12e1e50
MS
1223
1224 if (to > res)
1225 res = to;
1226 }
1227 return res;
1228}
1229
45a4a64a
AV
1230static int semctl_stat(struct ipc_namespace *ns, int semid,
1231 int cmd, struct semid64_ds *semid64)
1da177e4 1232{
1da177e4 1233 struct sem_array *sma;
c2ab975c 1234 time64_t semotime;
45a4a64a 1235 int err;
1da177e4 1236
45a4a64a 1237 memset(semid64, 0, sizeof(*semid64));
46c0a8ca 1238
45a4a64a 1239 rcu_read_lock();
a280d6dc 1240 if (cmd == SEM_STAT || cmd == SEM_STAT_ANY) {
45a4a64a
AV
1241 sma = sem_obtain_object(ns, semid);
1242 if (IS_ERR(sma)) {
1243 err = PTR_ERR(sma);
1244 goto out_unlock;
1245 }
a280d6dc 1246 } else { /* IPC_STAT */
45a4a64a
AV
1247 sma = sem_obtain_object_check(ns, semid);
1248 if (IS_ERR(sma)) {
1249 err = PTR_ERR(sma);
1250 goto out_unlock;
1da177e4 1251 }
1da177e4 1252 }
1da177e4 1253
a280d6dc
DB
1254 /* see comment for SHM_STAT_ANY */
1255 if (cmd == SEM_STAT_ANY)
1256 audit_ipc_obj(&sma->sem_perm);
1257 else {
1258 err = -EACCES;
1259 if (ipcperms(ns, &sma->sem_perm, S_IRUGO))
1260 goto out_unlock;
1261 }
1da177e4 1262
aefad959 1263 err = security_sem_semctl(&sma->sem_perm, cmd);
45a4a64a
AV
1264 if (err)
1265 goto out_unlock;
1da177e4 1266
87ad4b0d
PM
1267 ipc_lock_object(&sma->sem_perm);
1268
1269 if (!ipc_valid_object(&sma->sem_perm)) {
1270 ipc_unlock_object(&sma->sem_perm);
1271 err = -EIDRM;
1272 goto out_unlock;
1273 }
1274
45a4a64a 1275 kernel_to_ipc64_perm(&sma->sem_perm, &semid64->sem_perm);
c2ab975c
AB
1276 semotime = get_semotime(sma);
1277 semid64->sem_otime = semotime;
45a4a64a 1278 semid64->sem_ctime = sma->sem_ctime;
c2ab975c
AB
1279#ifndef CONFIG_64BIT
1280 semid64->sem_otime_high = semotime >> 32;
1281 semid64->sem_ctime_high = sma->sem_ctime >> 32;
1282#endif
45a4a64a 1283 semid64->sem_nsems = sma->sem_nsems;
87ad4b0d 1284
615c999c
MS
1285 if (cmd == IPC_STAT) {
1286 /*
1287 * As defined in SUS:
1288 * Return 0 on success
1289 */
1290 err = 0;
1291 } else {
1292 /*
1293 * SEM_STAT and SEM_STAT_ANY (both Linux specific)
1294 * Return the full id, including the sequence number
1295 */
1296 err = sma->sem_perm.id;
1297 }
87ad4b0d 1298 ipc_unlock_object(&sma->sem_perm);
1da177e4 1299out_unlock:
16df3674 1300 rcu_read_unlock();
1da177e4
LT
1301 return err;
1302}
1303
45a4a64a
AV
1304static int semctl_info(struct ipc_namespace *ns, int semid,
1305 int cmd, void __user *p)
1306{
1307 struct seminfo seminfo;
27c331a1 1308 int max_idx;
45a4a64a
AV
1309 int err;
1310
1311 err = security_sem_semctl(NULL, cmd);
1312 if (err)
1313 return err;
1314
1315 memset(&seminfo, 0, sizeof(seminfo));
1316 seminfo.semmni = ns->sc_semmni;
1317 seminfo.semmns = ns->sc_semmns;
1318 seminfo.semmsl = ns->sc_semmsl;
1319 seminfo.semopm = ns->sc_semopm;
1320 seminfo.semvmx = SEMVMX;
1321 seminfo.semmnu = SEMMNU;
1322 seminfo.semmap = SEMMAP;
1323 seminfo.semume = SEMUME;
1324 down_read(&sem_ids(ns).rwsem);
1325 if (cmd == SEM_INFO) {
1326 seminfo.semusz = sem_ids(ns).in_use;
1327 seminfo.semaem = ns->used_sems;
1328 } else {
1329 seminfo.semusz = SEMUSZ;
1330 seminfo.semaem = SEMAEM;
1331 }
27c331a1 1332 max_idx = ipc_get_maxidx(&sem_ids(ns));
45a4a64a
AV
1333 up_read(&sem_ids(ns).rwsem);
1334 if (copy_to_user(p, &seminfo, sizeof(struct seminfo)))
1335 return -EFAULT;
27c331a1 1336 return (max_idx < 0) ? 0 : max_idx;
45a4a64a
AV
1337}
1338
e1fd1f49 1339static int semctl_setval(struct ipc_namespace *ns, int semid, int semnum,
45a4a64a 1340 int val)
e1fd1f49
AV
1341{
1342 struct sem_undo *un;
1343 struct sem_array *sma;
239521f3 1344 struct sem *curr;
45a4a64a 1345 int err;
9ae949fa
DB
1346 DEFINE_WAKE_Q(wake_q);
1347
6062a8dc
RR
1348 if (val > SEMVMX || val < 0)
1349 return -ERANGE;
e1fd1f49 1350
6062a8dc
RR
1351 rcu_read_lock();
1352 sma = sem_obtain_object_check(ns, semid);
1353 if (IS_ERR(sma)) {
1354 rcu_read_unlock();
1355 return PTR_ERR(sma);
1356 }
1357
1358 if (semnum < 0 || semnum >= sma->sem_nsems) {
1359 rcu_read_unlock();
1360 return -EINVAL;
1361 }
1362
1363
1364 if (ipcperms(ns, &sma->sem_perm, S_IWUGO)) {
1365 rcu_read_unlock();
1366 return -EACCES;
1367 }
e1fd1f49 1368
aefad959 1369 err = security_sem_semctl(&sma->sem_perm, SETVAL);
6062a8dc
RR
1370 if (err) {
1371 rcu_read_unlock();
1372 return -EACCES;
1373 }
e1fd1f49 1374
6062a8dc 1375 sem_lock(sma, NULL, -1);
e1fd1f49 1376
0f3d2b01 1377 if (!ipc_valid_object(&sma->sem_perm)) {
6e224f94
MS
1378 sem_unlock(sma, -1);
1379 rcu_read_unlock();
1380 return -EIDRM;
1381 }
1382
ec67aaa4 1383 semnum = array_index_nospec(semnum, sma->sem_nsems);
1a233956 1384 curr = &sma->sems[semnum];
e1fd1f49 1385
cf9d5d78 1386 ipc_assert_locked_object(&sma->sem_perm);
e1fd1f49
AV
1387 list_for_each_entry(un, &sma->list_id, list_id)
1388 un->semadj[semnum] = 0;
1389
1390 curr->semval = val;
51d6f263 1391 ipc_update_pid(&curr->sempid, task_tgid(current));
e54d02b2 1392 sma->sem_ctime = ktime_get_real_seconds();
e1fd1f49 1393 /* maybe some queued-up processes were waiting for this */
9ae949fa 1394 do_smart_update(sma, NULL, 0, 0, &wake_q);
6062a8dc 1395 sem_unlock(sma, -1);
6d49dab8 1396 rcu_read_unlock();
9ae949fa 1397 wake_up_q(&wake_q);
6062a8dc 1398 return 0;
e1fd1f49
AV
1399}
1400
e3893534 1401static int semctl_main(struct ipc_namespace *ns, int semid, int semnum,
e1fd1f49 1402 int cmd, void __user *p)
1da177e4
LT
1403{
1404 struct sem_array *sma;
239521f3 1405 struct sem *curr;
16df3674 1406 int err, nsems;
1da177e4 1407 ushort fast_sem_io[SEMMSL_FAST];
239521f3 1408 ushort *sem_io = fast_sem_io;
9ae949fa 1409 DEFINE_WAKE_Q(wake_q);
16df3674
DB
1410
1411 rcu_read_lock();
1412 sma = sem_obtain_object_check(ns, semid);
1413 if (IS_ERR(sma)) {
1414 rcu_read_unlock();
023a5355 1415 return PTR_ERR(sma);
16df3674 1416 }
1da177e4
LT
1417
1418 nsems = sma->sem_nsems;
1419
1da177e4 1420 err = -EACCES;
c728b9c8
LT
1421 if (ipcperms(ns, &sma->sem_perm, cmd == SETALL ? S_IWUGO : S_IRUGO))
1422 goto out_rcu_wakeup;
1da177e4 1423
aefad959 1424 err = security_sem_semctl(&sma->sem_perm, cmd);
c728b9c8
LT
1425 if (err)
1426 goto out_rcu_wakeup;
1da177e4
LT
1427
1428 err = -EACCES;
1429 switch (cmd) {
1430 case GETALL:
1431 {
e1fd1f49 1432 ushort __user *array = p;
1da177e4
LT
1433 int i;
1434
ce857229 1435 sem_lock(sma, NULL, -1);
0f3d2b01 1436 if (!ipc_valid_object(&sma->sem_perm)) {
6e224f94
MS
1437 err = -EIDRM;
1438 goto out_unlock;
1439 }
239521f3 1440 if (nsems > SEMMSL_FAST) {
dba4cdd3 1441 if (!ipc_rcu_getref(&sma->sem_perm)) {
ce857229 1442 err = -EIDRM;
6e224f94 1443 goto out_unlock;
ce857229
AV
1444 }
1445 sem_unlock(sma, -1);
6d49dab8 1446 rcu_read_unlock();
f8dbe8d2
KC
1447 sem_io = kvmalloc_array(nsems, sizeof(ushort),
1448 GFP_KERNEL);
239521f3 1449 if (sem_io == NULL) {
dba4cdd3 1450 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1da177e4
LT
1451 return -ENOMEM;
1452 }
1453
4091fd94 1454 rcu_read_lock();
6ff37972 1455 sem_lock_and_putref(sma);
0f3d2b01 1456 if (!ipc_valid_object(&sma->sem_perm)) {
1da177e4 1457 err = -EIDRM;
6e224f94 1458 goto out_unlock;
1da177e4 1459 }
ce857229 1460 }
1da177e4 1461 for (i = 0; i < sma->sem_nsems; i++)
1a233956 1462 sem_io[i] = sma->sems[i].semval;
6062a8dc 1463 sem_unlock(sma, -1);
6d49dab8 1464 rcu_read_unlock();
1da177e4 1465 err = 0;
239521f3 1466 if (copy_to_user(array, sem_io, nsems*sizeof(ushort)))
1da177e4
LT
1467 err = -EFAULT;
1468 goto out_free;
1469 }
1470 case SETALL:
1471 {
1472 int i;
1473 struct sem_undo *un;
1474
dba4cdd3 1475 if (!ipc_rcu_getref(&sma->sem_perm)) {
6e224f94
MS
1476 err = -EIDRM;
1477 goto out_rcu_wakeup;
6062a8dc 1478 }
16df3674 1479 rcu_read_unlock();
1da177e4 1480
239521f3 1481 if (nsems > SEMMSL_FAST) {
f8dbe8d2
KC
1482 sem_io = kvmalloc_array(nsems, sizeof(ushort),
1483 GFP_KERNEL);
239521f3 1484 if (sem_io == NULL) {
dba4cdd3 1485 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1da177e4
LT
1486 return -ENOMEM;
1487 }
1488 }
1489
239521f3 1490 if (copy_from_user(sem_io, p, nsems*sizeof(ushort))) {
dba4cdd3 1491 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1da177e4
LT
1492 err = -EFAULT;
1493 goto out_free;
1494 }
1495
1496 for (i = 0; i < nsems; i++) {
1497 if (sem_io[i] > SEMVMX) {
dba4cdd3 1498 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1da177e4
LT
1499 err = -ERANGE;
1500 goto out_free;
1501 }
1502 }
4091fd94 1503 rcu_read_lock();
6ff37972 1504 sem_lock_and_putref(sma);
0f3d2b01 1505 if (!ipc_valid_object(&sma->sem_perm)) {
1da177e4 1506 err = -EIDRM;
6e224f94 1507 goto out_unlock;
1da177e4
LT
1508 }
1509
a5f4db87 1510 for (i = 0; i < nsems; i++) {
1a233956 1511 sma->sems[i].semval = sem_io[i];
51d6f263 1512 ipc_update_pid(&sma->sems[i].sempid, task_tgid(current));
a5f4db87 1513 }
4daa28f6 1514
cf9d5d78 1515 ipc_assert_locked_object(&sma->sem_perm);
4daa28f6 1516 list_for_each_entry(un, &sma->list_id, list_id) {
1da177e4
LT
1517 for (i = 0; i < nsems; i++)
1518 un->semadj[i] = 0;
4daa28f6 1519 }
e54d02b2 1520 sma->sem_ctime = ktime_get_real_seconds();
1da177e4 1521 /* maybe some queued-up processes were waiting for this */
9ae949fa 1522 do_smart_update(sma, NULL, 0, 0, &wake_q);
1da177e4
LT
1523 err = 0;
1524 goto out_unlock;
1525 }
e1fd1f49 1526 /* GETVAL, GETPID, GETNCTN, GETZCNT: fall-through */
1da177e4
LT
1527 }
1528 err = -EINVAL;
c728b9c8
LT
1529 if (semnum < 0 || semnum >= nsems)
1530 goto out_rcu_wakeup;
1da177e4 1531
6062a8dc 1532 sem_lock(sma, NULL, -1);
0f3d2b01 1533 if (!ipc_valid_object(&sma->sem_perm)) {
6e224f94
MS
1534 err = -EIDRM;
1535 goto out_unlock;
1536 }
ec67aaa4
DB
1537
1538 semnum = array_index_nospec(semnum, nsems);
1a233956 1539 curr = &sma->sems[semnum];
1da177e4
LT
1540
1541 switch (cmd) {
1542 case GETVAL:
1543 err = curr->semval;
1544 goto out_unlock;
1545 case GETPID:
51d6f263 1546 err = pid_vnr(curr->sempid);
1da177e4
LT
1547 goto out_unlock;
1548 case GETNCNT:
2f2ed41d 1549 err = count_semcnt(sma, semnum, 0);
1da177e4
LT
1550 goto out_unlock;
1551 case GETZCNT:
2f2ed41d 1552 err = count_semcnt(sma, semnum, 1);
1da177e4 1553 goto out_unlock;
1da177e4 1554 }
16df3674 1555
1da177e4 1556out_unlock:
6062a8dc 1557 sem_unlock(sma, -1);
c728b9c8 1558out_rcu_wakeup:
6d49dab8 1559 rcu_read_unlock();
9ae949fa 1560 wake_up_q(&wake_q);
1da177e4 1561out_free:
239521f3 1562 if (sem_io != fast_sem_io)
f8dbe8d2 1563 kvfree(sem_io);
1da177e4
LT
1564 return err;
1565}
1566
016d7132
PP
1567static inline unsigned long
1568copy_semid_from_user(struct semid64_ds *out, void __user *buf, int version)
1da177e4 1569{
239521f3 1570 switch (version) {
1da177e4 1571 case IPC_64:
016d7132 1572 if (copy_from_user(out, buf, sizeof(*out)))
1da177e4 1573 return -EFAULT;
1da177e4 1574 return 0;
1da177e4
LT
1575 case IPC_OLD:
1576 {
1577 struct semid_ds tbuf_old;
1578
239521f3 1579 if (copy_from_user(&tbuf_old, buf, sizeof(tbuf_old)))
1da177e4
LT
1580 return -EFAULT;
1581
016d7132
PP
1582 out->sem_perm.uid = tbuf_old.sem_perm.uid;
1583 out->sem_perm.gid = tbuf_old.sem_perm.gid;
1584 out->sem_perm.mode = tbuf_old.sem_perm.mode;
1da177e4
LT
1585
1586 return 0;
1587 }
1588 default:
1589 return -EINVAL;
1590 }
1591}
1592
522bb2a2 1593/*
d9a605e4 1594 * This function handles some semctl commands which require the rwsem
522bb2a2 1595 * to be held in write mode.
d9a605e4 1596 * NOTE: no locks must be held, the rwsem is taken inside this function.
522bb2a2 1597 */
21a4826a 1598static int semctl_down(struct ipc_namespace *ns, int semid,
45a4a64a 1599 int cmd, struct semid64_ds *semid64)
1da177e4
LT
1600{
1601 struct sem_array *sma;
1602 int err;
1da177e4
LT
1603 struct kern_ipc_perm *ipcp;
1604
d9a605e4 1605 down_write(&sem_ids(ns).rwsem);
7b4cc5d8
DB
1606 rcu_read_lock();
1607
4241c1a3 1608 ipcp = ipcctl_obtain_check(ns, &sem_ids(ns), semid, cmd,
45a4a64a 1609 &semid64->sem_perm, 0);
7b4cc5d8
DB
1610 if (IS_ERR(ipcp)) {
1611 err = PTR_ERR(ipcp);
7b4cc5d8
DB
1612 goto out_unlock1;
1613 }
073115d6 1614
a5f75e7f 1615 sma = container_of(ipcp, struct sem_array, sem_perm);
1da177e4 1616
aefad959 1617 err = security_sem_semctl(&sma->sem_perm, cmd);
7b4cc5d8
DB
1618 if (err)
1619 goto out_unlock1;
1da177e4 1620
7b4cc5d8 1621 switch (cmd) {
1da177e4 1622 case IPC_RMID:
6062a8dc 1623 sem_lock(sma, NULL, -1);
7b4cc5d8 1624 /* freeary unlocks the ipc object and rcu */
01b8b07a 1625 freeary(ns, ipcp);
522bb2a2 1626 goto out_up;
1da177e4 1627 case IPC_SET:
6062a8dc 1628 sem_lock(sma, NULL, -1);
45a4a64a 1629 err = ipc_update_perm(&semid64->sem_perm, ipcp);
1efdb69b 1630 if (err)
7b4cc5d8 1631 goto out_unlock0;
e54d02b2 1632 sma->sem_ctime = ktime_get_real_seconds();
1da177e4
LT
1633 break;
1634 default:
1da177e4 1635 err = -EINVAL;
7b4cc5d8 1636 goto out_unlock1;
1da177e4 1637 }
1da177e4 1638
7b4cc5d8 1639out_unlock0:
6062a8dc 1640 sem_unlock(sma, -1);
7b4cc5d8 1641out_unlock1:
6d49dab8 1642 rcu_read_unlock();
522bb2a2 1643out_up:
d9a605e4 1644 up_write(&sem_ids(ns).rwsem);
1da177e4
LT
1645 return err;
1646}
1647
275f2214 1648static long ksys_semctl(int semid, int semnum, int cmd, unsigned long arg, int version)
1da177e4 1649{
e3893534 1650 struct ipc_namespace *ns;
e1fd1f49 1651 void __user *p = (void __user *)arg;
45a4a64a
AV
1652 struct semid64_ds semid64;
1653 int err;
1da177e4
LT
1654
1655 if (semid < 0)
1656 return -EINVAL;
1657
e3893534 1658 ns = current->nsproxy->ipc_ns;
1da177e4 1659
239521f3 1660 switch (cmd) {
1da177e4
LT
1661 case IPC_INFO:
1662 case SEM_INFO:
45a4a64a 1663 return semctl_info(ns, semid, cmd, p);
4b9fcb0e 1664 case IPC_STAT:
1da177e4 1665 case SEM_STAT:
a280d6dc 1666 case SEM_STAT_ANY:
45a4a64a
AV
1667 err = semctl_stat(ns, semid, cmd, &semid64);
1668 if (err < 0)
1669 return err;
1670 if (copy_semid_to_user(p, &semid64, version))
1671 err = -EFAULT;
1672 return err;
1da177e4
LT
1673 case GETALL:
1674 case GETVAL:
1675 case GETPID:
1676 case GETNCNT:
1677 case GETZCNT:
1da177e4 1678 case SETALL:
e1fd1f49 1679 return semctl_main(ns, semid, semnum, cmd, p);
45a4a64a
AV
1680 case SETVAL: {
1681 int val;
1682#if defined(CONFIG_64BIT) && defined(__BIG_ENDIAN)
1683 /* big-endian 64bit */
1684 val = arg >> 32;
1685#else
1686 /* 32bit or little-endian 64bit */
1687 val = arg;
1688#endif
1689 return semctl_setval(ns, semid, semnum, val);
1690 }
1da177e4 1691 case IPC_SET:
45a4a64a
AV
1692 if (copy_semid_from_user(&semid64, p, version))
1693 return -EFAULT;
df561f66 1694 fallthrough;
45a4a64a
AV
1695 case IPC_RMID:
1696 return semctl_down(ns, semid, cmd, &semid64);
1da177e4
LT
1697 default:
1698 return -EINVAL;
1699 }
1700}
1701
d969c6fa
DB
1702SYSCALL_DEFINE4(semctl, int, semid, int, semnum, int, cmd, unsigned long, arg)
1703{
275f2214 1704 return ksys_semctl(semid, semnum, cmd, arg, IPC_64);
d969c6fa
DB
1705}
1706
275f2214
AB
1707#ifdef CONFIG_ARCH_WANT_IPC_PARSE_VERSION
1708long ksys_old_semctl(int semid, int semnum, int cmd, unsigned long arg)
1709{
1710 int version = ipc_parse_version(&cmd);
1711
1712 return ksys_semctl(semid, semnum, cmd, arg, version);
1713}
1714
1715SYSCALL_DEFINE4(old_semctl, int, semid, int, semnum, int, cmd, unsigned long, arg)
1716{
1717 return ksys_old_semctl(semid, semnum, cmd, arg);
1718}
1719#endif
1720
c0ebccb6
AV
1721#ifdef CONFIG_COMPAT
1722
1723struct compat_semid_ds {
1724 struct compat_ipc_perm sem_perm;
9afc5eee
AB
1725 old_time32_t sem_otime;
1726 old_time32_t sem_ctime;
c0ebccb6
AV
1727 compat_uptr_t sem_base;
1728 compat_uptr_t sem_pending;
1729 compat_uptr_t sem_pending_last;
1730 compat_uptr_t undo;
1731 unsigned short sem_nsems;
1732};
1733
1734static int copy_compat_semid_from_user(struct semid64_ds *out, void __user *buf,
1735 int version)
1736{
1737 memset(out, 0, sizeof(*out));
1738 if (version == IPC_64) {
6aa211e8 1739 struct compat_semid64_ds __user *p = buf;
c0ebccb6
AV
1740 return get_compat_ipc64_perm(&out->sem_perm, &p->sem_perm);
1741 } else {
6aa211e8 1742 struct compat_semid_ds __user *p = buf;
c0ebccb6
AV
1743 return get_compat_ipc_perm(&out->sem_perm, &p->sem_perm);
1744 }
1745}
1746
1747static int copy_compat_semid_to_user(void __user *buf, struct semid64_ds *in,
1748 int version)
1749{
1750 if (version == IPC_64) {
1751 struct compat_semid64_ds v;
1752 memset(&v, 0, sizeof(v));
1753 to_compat_ipc64_perm(&v.sem_perm, &in->sem_perm);
c2ab975c
AB
1754 v.sem_otime = lower_32_bits(in->sem_otime);
1755 v.sem_otime_high = upper_32_bits(in->sem_otime);
1756 v.sem_ctime = lower_32_bits(in->sem_ctime);
1757 v.sem_ctime_high = upper_32_bits(in->sem_ctime);
c0ebccb6
AV
1758 v.sem_nsems = in->sem_nsems;
1759 return copy_to_user(buf, &v, sizeof(v));
1760 } else {
1761 struct compat_semid_ds v;
1762 memset(&v, 0, sizeof(v));
1763 to_compat_ipc_perm(&v.sem_perm, &in->sem_perm);
1764 v.sem_otime = in->sem_otime;
1765 v.sem_ctime = in->sem_ctime;
1766 v.sem_nsems = in->sem_nsems;
1767 return copy_to_user(buf, &v, sizeof(v));
1768 }
1769}
1770
275f2214 1771static long compat_ksys_semctl(int semid, int semnum, int cmd, int arg, int version)
c0ebccb6
AV
1772{
1773 void __user *p = compat_ptr(arg);
1774 struct ipc_namespace *ns;
1775 struct semid64_ds semid64;
c0ebccb6
AV
1776 int err;
1777
1778 ns = current->nsproxy->ipc_ns;
1779
1780 if (semid < 0)
1781 return -EINVAL;
1782
1783 switch (cmd & (~IPC_64)) {
1784 case IPC_INFO:
1785 case SEM_INFO:
1786 return semctl_info(ns, semid, cmd, p);
1787 case IPC_STAT:
1788 case SEM_STAT:
a280d6dc 1789 case SEM_STAT_ANY:
c0ebccb6
AV
1790 err = semctl_stat(ns, semid, cmd, &semid64);
1791 if (err < 0)
1792 return err;
1793 if (copy_compat_semid_to_user(p, &semid64, version))
1794 err = -EFAULT;
1795 return err;
1796 case GETVAL:
1797 case GETPID:
1798 case GETNCNT:
1799 case GETZCNT:
1800 case GETALL:
1da177e4 1801 case SETALL:
e1fd1f49
AV
1802 return semctl_main(ns, semid, semnum, cmd, p);
1803 case SETVAL:
1804 return semctl_setval(ns, semid, semnum, arg);
1da177e4 1805 case IPC_SET:
c0ebccb6
AV
1806 if (copy_compat_semid_from_user(&semid64, p, version))
1807 return -EFAULT;
df561f66 1808 fallthrough;
c0ebccb6
AV
1809 case IPC_RMID:
1810 return semctl_down(ns, semid, cmd, &semid64);
1da177e4
LT
1811 default:
1812 return -EINVAL;
1813 }
1814}
d969c6fa
DB
1815
1816COMPAT_SYSCALL_DEFINE4(semctl, int, semid, int, semnum, int, cmd, int, arg)
1817{
275f2214 1818 return compat_ksys_semctl(semid, semnum, cmd, arg, IPC_64);
d969c6fa 1819}
275f2214
AB
1820
1821#ifdef CONFIG_ARCH_WANT_COMPAT_IPC_PARSE_VERSION
1822long compat_ksys_old_semctl(int semid, int semnum, int cmd, int arg)
1823{
1824 int version = compat_ipc_parse_version(&cmd);
1825
1826 return compat_ksys_semctl(semid, semnum, cmd, arg, version);
1827}
1828
1829COMPAT_SYSCALL_DEFINE4(old_semctl, int, semid, int, semnum, int, cmd, int, arg)
1830{
1831 return compat_ksys_old_semctl(semid, semnum, cmd, arg);
1832}
1833#endif
c0ebccb6 1834#endif
1da177e4 1835
1da177e4
LT
1836/* If the task doesn't already have a undo_list, then allocate one
1837 * here. We guarantee there is only one thread using this undo list,
1838 * and current is THE ONE
1839 *
1840 * If this allocation and assignment succeeds, but later
1841 * portions of this code fail, there is no need to free the sem_undo_list.
1842 * Just let it stay associated with the task, and it'll be freed later
1843 * at exit time.
1844 *
1845 * This can block, so callers must hold no locks.
1846 */
1847static inline int get_undo_list(struct sem_undo_list **undo_listp)
1848{
1849 struct sem_undo_list *undo_list;
1da177e4
LT
1850
1851 undo_list = current->sysvsem.undo_list;
1852 if (!undo_list) {
2453a306 1853 undo_list = kzalloc(sizeof(*undo_list), GFP_KERNEL);
1da177e4
LT
1854 if (undo_list == NULL)
1855 return -ENOMEM;
00a5dfdb 1856 spin_lock_init(&undo_list->lock);
f74370b8 1857 refcount_set(&undo_list->refcnt, 1);
4daa28f6
MS
1858 INIT_LIST_HEAD(&undo_list->list_proc);
1859
1da177e4
LT
1860 current->sysvsem.undo_list = undo_list;
1861 }
1862 *undo_listp = undo_list;
1863 return 0;
1864}
1865
bf17bb71 1866static struct sem_undo *__lookup_undo(struct sem_undo_list *ulp, int semid)
1da177e4 1867{
bf17bb71 1868 struct sem_undo *un;
4daa28f6 1869
984035ad
JFG
1870 list_for_each_entry_rcu(un, &ulp->list_proc, list_proc,
1871 spin_is_locked(&ulp->lock)) {
bf17bb71
NP
1872 if (un->semid == semid)
1873 return un;
1da177e4 1874 }
4daa28f6 1875 return NULL;
1da177e4
LT
1876}
1877
bf17bb71
NP
1878static struct sem_undo *lookup_undo(struct sem_undo_list *ulp, int semid)
1879{
1880 struct sem_undo *un;
1881
239521f3 1882 assert_spin_locked(&ulp->lock);
bf17bb71
NP
1883
1884 un = __lookup_undo(ulp, semid);
1885 if (un) {
1886 list_del_rcu(&un->list_proc);
1887 list_add_rcu(&un->list_proc, &ulp->list_proc);
1888 }
1889 return un;
1890}
1891
4daa28f6 1892/**
8001c858 1893 * find_alloc_undo - lookup (and if not present create) undo array
4daa28f6
MS
1894 * @ns: namespace
1895 * @semid: semaphore array id
1896 *
1897 * The function looks up (and if not present creates) the undo structure.
1898 * The size of the undo structure depends on the size of the semaphore
1899 * array, thus the alloc path is not that straightforward.
380af1b3
MS
1900 * Lifetime-rules: sem_undo is rcu-protected, on success, the function
1901 * performs a rcu_read_lock().
4daa28f6
MS
1902 */
1903static struct sem_undo *find_alloc_undo(struct ipc_namespace *ns, int semid)
1da177e4
LT
1904{
1905 struct sem_array *sma;
1906 struct sem_undo_list *ulp;
1907 struct sem_undo *un, *new;
6062a8dc 1908 int nsems, error;
1da177e4
LT
1909
1910 error = get_undo_list(&ulp);
1911 if (error)
1912 return ERR_PTR(error);
1913
380af1b3 1914 rcu_read_lock();
c530c6ac 1915 spin_lock(&ulp->lock);
1da177e4 1916 un = lookup_undo(ulp, semid);
c530c6ac 1917 spin_unlock(&ulp->lock);
239521f3 1918 if (likely(un != NULL))
1da177e4
LT
1919 goto out;
1920
1921 /* no undo structure around - allocate one. */
4daa28f6 1922 /* step 1: figure out the size of the semaphore array */
16df3674
DB
1923 sma = sem_obtain_object_check(ns, semid);
1924 if (IS_ERR(sma)) {
1925 rcu_read_unlock();
4de85cd6 1926 return ERR_CAST(sma);
16df3674 1927 }
023a5355 1928
1da177e4 1929 nsems = sma->sem_nsems;
dba4cdd3 1930 if (!ipc_rcu_getref(&sma->sem_perm)) {
6062a8dc
RR
1931 rcu_read_unlock();
1932 un = ERR_PTR(-EIDRM);
1933 goto out;
1934 }
16df3674 1935 rcu_read_unlock();
1da177e4 1936
4daa28f6 1937 /* step 2: allocate new undo structure */
4668edc3 1938 new = kzalloc(sizeof(struct sem_undo) + sizeof(short)*nsems, GFP_KERNEL);
1da177e4 1939 if (!new) {
dba4cdd3 1940 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1da177e4
LT
1941 return ERR_PTR(-ENOMEM);
1942 }
1da177e4 1943
380af1b3 1944 /* step 3: Acquire the lock on semaphore array */
4091fd94 1945 rcu_read_lock();
6ff37972 1946 sem_lock_and_putref(sma);
0f3d2b01 1947 if (!ipc_valid_object(&sma->sem_perm)) {
6062a8dc 1948 sem_unlock(sma, -1);
6d49dab8 1949 rcu_read_unlock();
1da177e4
LT
1950 kfree(new);
1951 un = ERR_PTR(-EIDRM);
1952 goto out;
1953 }
380af1b3
MS
1954 spin_lock(&ulp->lock);
1955
1956 /*
1957 * step 4: check for races: did someone else allocate the undo struct?
1958 */
1959 un = lookup_undo(ulp, semid);
1960 if (un) {
1961 kfree(new);
1962 goto success;
1963 }
4daa28f6
MS
1964 /* step 5: initialize & link new undo structure */
1965 new->semadj = (short *) &new[1];
380af1b3 1966 new->ulp = ulp;
4daa28f6
MS
1967 new->semid = semid;
1968 assert_spin_locked(&ulp->lock);
380af1b3 1969 list_add_rcu(&new->list_proc, &ulp->list_proc);
cf9d5d78 1970 ipc_assert_locked_object(&sma->sem_perm);
4daa28f6 1971 list_add(&new->list_id, &sma->list_id);
380af1b3 1972 un = new;
4daa28f6 1973
380af1b3 1974success:
c530c6ac 1975 spin_unlock(&ulp->lock);
6062a8dc 1976 sem_unlock(sma, -1);
1da177e4
LT
1977out:
1978 return un;
1979}
1980
44ee4546 1981static long do_semtimedop(int semid, struct sembuf __user *tsops,
3ef56dc2 1982 unsigned nsops, const struct timespec64 *timeout)
1da177e4
LT
1983{
1984 int error = -EINVAL;
1985 struct sem_array *sma;
1986 struct sembuf fast_sops[SEMOPM_FAST];
239521f3 1987 struct sembuf *sops = fast_sops, *sop;
1da177e4 1988 struct sem_undo *un;
4ce33ec2
DB
1989 int max, locknum;
1990 bool undos = false, alter = false, dupsop = false;
1da177e4 1991 struct sem_queue queue;
4ce33ec2 1992 unsigned long dup = 0, jiffies_left = 0;
e3893534
KK
1993 struct ipc_namespace *ns;
1994
1995 ns = current->nsproxy->ipc_ns;
1da177e4
LT
1996
1997 if (nsops < 1 || semid < 0)
1998 return -EINVAL;
e3893534 1999 if (nsops > ns->sc_semopm)
1da177e4 2000 return -E2BIG;
239521f3 2001 if (nsops > SEMOPM_FAST) {
344476e1 2002 sops = kvmalloc_array(nsops, sizeof(*sops), GFP_KERNEL);
239521f3 2003 if (sops == NULL)
1da177e4
LT
2004 return -ENOMEM;
2005 }
4ce33ec2 2006
239521f3
MS
2007 if (copy_from_user(sops, tsops, nsops * sizeof(*tsops))) {
2008 error = -EFAULT;
1da177e4
LT
2009 goto out_free;
2010 }
4ce33ec2 2011
1da177e4 2012 if (timeout) {
44ee4546
AV
2013 if (timeout->tv_sec < 0 || timeout->tv_nsec < 0 ||
2014 timeout->tv_nsec >= 1000000000L) {
1da177e4
LT
2015 error = -EINVAL;
2016 goto out_free;
2017 }
3ef56dc2 2018 jiffies_left = timespec64_to_jiffies(timeout);
1da177e4 2019 }
4ce33ec2 2020
1da177e4
LT
2021 max = 0;
2022 for (sop = sops; sop < sops + nsops; sop++) {
4ce33ec2
DB
2023 unsigned long mask = 1ULL << ((sop->sem_num) % BITS_PER_LONG);
2024
1da177e4
LT
2025 if (sop->sem_num >= max)
2026 max = sop->sem_num;
2027 if (sop->sem_flg & SEM_UNDO)
4ce33ec2
DB
2028 undos = true;
2029 if (dup & mask) {
2030 /*
2031 * There was a previous alter access that appears
2032 * to have accessed the same semaphore, thus use
2033 * the dupsop logic. "appears", because the detection
2034 * can only check % BITS_PER_LONG.
2035 */
2036 dupsop = true;
2037 }
2038 if (sop->sem_op != 0) {
2039 alter = true;
2040 dup |= mask;
2041 }
1da177e4 2042 }
1da177e4 2043
1da177e4 2044 if (undos) {
6062a8dc 2045 /* On success, find_alloc_undo takes the rcu_read_lock */
4daa28f6 2046 un = find_alloc_undo(ns, semid);
1da177e4
LT
2047 if (IS_ERR(un)) {
2048 error = PTR_ERR(un);
2049 goto out_free;
2050 }
6062a8dc 2051 } else {
1da177e4 2052 un = NULL;
6062a8dc
RR
2053 rcu_read_lock();
2054 }
1da177e4 2055
16df3674 2056 sma = sem_obtain_object_check(ns, semid);
023a5355 2057 if (IS_ERR(sma)) {
6062a8dc 2058 rcu_read_unlock();
023a5355 2059 error = PTR_ERR(sma);
1da177e4 2060 goto out_free;
023a5355
ND
2061 }
2062
16df3674 2063 error = -EFBIG;
248e7357
DB
2064 if (max >= sma->sem_nsems) {
2065 rcu_read_unlock();
2066 goto out_free;
2067 }
16df3674
DB
2068
2069 error = -EACCES;
248e7357
DB
2070 if (ipcperms(ns, &sma->sem_perm, alter ? S_IWUGO : S_IRUGO)) {
2071 rcu_read_unlock();
2072 goto out_free;
2073 }
16df3674 2074
aefad959 2075 error = security_sem_semop(&sma->sem_perm, sops, nsops, alter);
248e7357
DB
2076 if (error) {
2077 rcu_read_unlock();
2078 goto out_free;
2079 }
16df3674 2080
6e224f94
MS
2081 error = -EIDRM;
2082 locknum = sem_lock(sma, sops, nsops);
0f3d2b01
RA
2083 /*
2084 * We eventually might perform the following check in a lockless
2085 * fashion, considering ipc_valid_object() locking constraints.
2086 * If nsops == 1 and there is no contention for sem_perm.lock, then
2087 * only a per-semaphore lock is held and it's OK to proceed with the
2088 * check below. More details on the fine grained locking scheme
2089 * entangled here and why it's RMID race safe on comments at sem_lock()
2090 */
2091 if (!ipc_valid_object(&sma->sem_perm))
6e224f94 2092 goto out_unlock_free;
1da177e4 2093 /*
4daa28f6 2094 * semid identifiers are not unique - find_alloc_undo may have
1da177e4 2095 * allocated an undo structure, it was invalidated by an RMID
4daa28f6 2096 * and now a new array with received the same id. Check and fail.
25985edc 2097 * This case can be detected checking un->semid. The existence of
380af1b3 2098 * "un" itself is guaranteed by rcu.
1da177e4 2099 */
6062a8dc
RR
2100 if (un && un->semid == -1)
2101 goto out_unlock_free;
4daa28f6 2102
d198cd6d
MS
2103 queue.sops = sops;
2104 queue.nsops = nsops;
2105 queue.undo = un;
51d6f263 2106 queue.pid = task_tgid(current);
d198cd6d 2107 queue.alter = alter;
4ce33ec2 2108 queue.dupsop = dupsop;
d198cd6d
MS
2109
2110 error = perform_atomic_semop(sma, &queue);
9ae949fa
DB
2111 if (error == 0) { /* non-blocking succesfull path */
2112 DEFINE_WAKE_Q(wake_q);
2113
2114 /*
2115 * If the operation was successful, then do
0e8c6656
MS
2116 * the required updates.
2117 */
2118 if (alter)
9ae949fa 2119 do_smart_update(sma, sops, nsops, 1, &wake_q);
0e8c6656
MS
2120 else
2121 set_semotime(sma, sops);
9ae949fa
DB
2122
2123 sem_unlock(sma, locknum);
2124 rcu_read_unlock();
2125 wake_up_q(&wake_q);
2126
2127 goto out_free;
1da177e4 2128 }
9ae949fa 2129 if (error < 0) /* non-blocking error path */
0e8c6656 2130 goto out_unlock_free;
1da177e4 2131
9ae949fa
DB
2132 /*
2133 * We need to sleep on this operation, so we put the current
1da177e4
LT
2134 * task into the pending queue and go to sleep.
2135 */
b97e820f
MS
2136 if (nsops == 1) {
2137 struct sem *curr;
ec67aaa4
DB
2138 int idx = array_index_nospec(sops->sem_num, sma->sem_nsems);
2139 curr = &sma->sems[idx];
b97e820f 2140
f269f40a
MS
2141 if (alter) {
2142 if (sma->complex_count) {
2143 list_add_tail(&queue.list,
2144 &sma->pending_alter);
2145 } else {
2146
2147 list_add_tail(&queue.list,
2148 &curr->pending_alter);
2149 }
2150 } else {
1a82e9e1 2151 list_add_tail(&queue.list, &curr->pending_const);
f269f40a 2152 }
b97e820f 2153 } else {
f269f40a
MS
2154 if (!sma->complex_count)
2155 merge_queues(sma);
2156
9f1bc2c9 2157 if (alter)
1a82e9e1 2158 list_add_tail(&queue.list, &sma->pending_alter);
9f1bc2c9 2159 else
1a82e9e1
MS
2160 list_add_tail(&queue.list, &sma->pending_const);
2161
b97e820f
MS
2162 sma->complex_count++;
2163 }
2164
b5fa01a2 2165 do {
8116b54e 2166 /* memory ordering ensured by the lock in sem_lock() */
f075faa3 2167 WRITE_ONCE(queue.status, -EINTR);
b5fa01a2 2168 queue.sleeper = current;
0b0577f6 2169
8116b54e 2170 /* memory ordering is ensured by the lock in sem_lock() */
b5fa01a2
DB
2171 __set_current_state(TASK_INTERRUPTIBLE);
2172 sem_unlock(sma, locknum);
2173 rcu_read_unlock();
1da177e4 2174
b5fa01a2
DB
2175 if (timeout)
2176 jiffies_left = schedule_timeout(jiffies_left);
2177 else
2178 schedule();
1da177e4 2179
9ae949fa 2180 /*
b5fa01a2
DB
2181 * fastpath: the semop has completed, either successfully or
2182 * not, from the syscall pov, is quite irrelevant to us at this
2183 * point; we're done.
2184 *
2185 * We _do_ care, nonetheless, about being awoken by a signal or
2186 * spuriously. The queue.status is checked again in the
2187 * slowpath (aka after taking sem_lock), such that we can detect
2188 * scenarios where we were awakened externally, during the
2189 * window between wake_q_add() and wake_up_q().
c61284e9 2190 */
b5fa01a2
DB
2191 error = READ_ONCE(queue.status);
2192 if (error != -EINTR) {
8116b54e
MS
2193 /* see SEM_BARRIER_2 for purpose/pairing */
2194 smp_acquire__after_ctrl_dep();
b5fa01a2
DB
2195 goto out_free;
2196 }
d694ad62 2197
b5fa01a2 2198 rcu_read_lock();
c626bc46 2199 locknum = sem_lock(sma, sops, nsops);
1da177e4 2200
370b262c
DB
2201 if (!ipc_valid_object(&sma->sem_perm))
2202 goto out_unlock_free;
2203
8116b54e
MS
2204 /*
2205 * No necessity for any barrier: We are protect by sem_lock()
2206 */
370b262c 2207 error = READ_ONCE(queue.status);
1da177e4 2208
b5fa01a2
DB
2209 /*
2210 * If queue.status != -EINTR we are woken up by another process.
2211 * Leave without unlink_queue(), but with sem_unlock().
2212 */
2213 if (error != -EINTR)
2214 goto out_unlock_free;
0b0577f6 2215
b5fa01a2
DB
2216 /*
2217 * If an interrupt occurred we have to clean up the queue.
2218 */
2219 if (timeout && jiffies_left == 0)
2220 error = -EAGAIN;
2221 } while (error == -EINTR && !signal_pending(current)); /* spurious */
0b0577f6 2222
b97e820f 2223 unlink_queue(sma, &queue);
1da177e4
LT
2224
2225out_unlock_free:
6062a8dc 2226 sem_unlock(sma, locknum);
6d49dab8 2227 rcu_read_unlock();
1da177e4 2228out_free:
239521f3 2229 if (sops != fast_sops)
e4243b80 2230 kvfree(sops);
1da177e4
LT
2231 return error;
2232}
2233
41f4f0e2 2234long ksys_semtimedop(int semid, struct sembuf __user *tsops,
21fc538d 2235 unsigned int nsops, const struct __kernel_timespec __user *timeout)
44ee4546
AV
2236{
2237 if (timeout) {
3ef56dc2
DD
2238 struct timespec64 ts;
2239 if (get_timespec64(&ts, timeout))
44ee4546
AV
2240 return -EFAULT;
2241 return do_semtimedop(semid, tsops, nsops, &ts);
2242 }
2243 return do_semtimedop(semid, tsops, nsops, NULL);
2244}
2245
41f4f0e2 2246SYSCALL_DEFINE4(semtimedop, int, semid, struct sembuf __user *, tsops,
21fc538d 2247 unsigned int, nsops, const struct __kernel_timespec __user *, timeout)
41f4f0e2
DB
2248{
2249 return ksys_semtimedop(semid, tsops, nsops, timeout);
2250}
2251
b0d17578 2252#ifdef CONFIG_COMPAT_32BIT_TIME
41f4f0e2
DB
2253long compat_ksys_semtimedop(int semid, struct sembuf __user *tsems,
2254 unsigned int nsops,
9afc5eee 2255 const struct old_timespec32 __user *timeout)
44ee4546
AV
2256{
2257 if (timeout) {
3ef56dc2 2258 struct timespec64 ts;
9afc5eee 2259 if (get_old_timespec32(&ts, timeout))
44ee4546
AV
2260 return -EFAULT;
2261 return do_semtimedop(semid, tsems, nsops, &ts);
2262 }
2263 return do_semtimedop(semid, tsems, nsops, NULL);
2264}
41f4f0e2 2265
8dabe724 2266SYSCALL_DEFINE4(semtimedop_time32, int, semid, struct sembuf __user *, tsems,
41f4f0e2 2267 unsigned int, nsops,
9afc5eee 2268 const struct old_timespec32 __user *, timeout)
41f4f0e2
DB
2269{
2270 return compat_ksys_semtimedop(semid, tsems, nsops, timeout);
2271}
44ee4546
AV
2272#endif
2273
d5460c99
HC
2274SYSCALL_DEFINE3(semop, int, semid, struct sembuf __user *, tsops,
2275 unsigned, nsops)
1da177e4 2276{
44ee4546 2277 return do_semtimedop(semid, tsops, nsops, NULL);
1da177e4
LT
2278}
2279
2280/* If CLONE_SYSVSEM is set, establish sharing of SEM_UNDO state between
2281 * parent and child tasks.
1da177e4
LT
2282 */
2283
2284int copy_semundo(unsigned long clone_flags, struct task_struct *tsk)
2285{
2286 struct sem_undo_list *undo_list;
2287 int error;
2288
2289 if (clone_flags & CLONE_SYSVSEM) {
2290 error = get_undo_list(&undo_list);
2291 if (error)
2292 return error;
f74370b8 2293 refcount_inc(&undo_list->refcnt);
1da177e4 2294 tsk->sysvsem.undo_list = undo_list;
46c0a8ca 2295 } else
1da177e4
LT
2296 tsk->sysvsem.undo_list = NULL;
2297
2298 return 0;
2299}
2300
2301/*
2302 * add semadj values to semaphores, free undo structures.
2303 * undo structures are not freed when semaphore arrays are destroyed
2304 * so some of them may be out of date.
2305 * IMPLEMENTATION NOTE: There is some confusion over whether the
2306 * set of adjustments that needs to be done should be done in an atomic
2307 * manner or not. That is, if we are attempting to decrement the semval
2308 * should we queue up and wait until we can do so legally?
2309 * The original implementation attempted to do this (queue and wait).
2310 * The current implementation does not do so. The POSIX standard
2311 * and SVID should be consulted to determine what behavior is mandated.
2312 */
2313void exit_sem(struct task_struct *tsk)
2314{
4daa28f6 2315 struct sem_undo_list *ulp;
1da177e4 2316
4daa28f6
MS
2317 ulp = tsk->sysvsem.undo_list;
2318 if (!ulp)
1da177e4 2319 return;
9edff4ab 2320 tsk->sysvsem.undo_list = NULL;
1da177e4 2321
f74370b8 2322 if (!refcount_dec_and_test(&ulp->refcnt))
1da177e4
LT
2323 return;
2324
380af1b3 2325 for (;;) {
1da177e4 2326 struct sem_array *sma;
380af1b3 2327 struct sem_undo *un;
6062a8dc 2328 int semid, i;
9ae949fa 2329 DEFINE_WAKE_Q(wake_q);
4daa28f6 2330
2a1613a5
NB
2331 cond_resched();
2332
380af1b3 2333 rcu_read_lock();
05725f7e
JP
2334 un = list_entry_rcu(ulp->list_proc.next,
2335 struct sem_undo, list_proc);
602b8593
HK
2336 if (&un->list_proc == &ulp->list_proc) {
2337 /*
2338 * We must wait for freeary() before freeing this ulp,
2339 * in case we raced with last sem_undo. There is a small
2340 * possibility where we exit while freeary() didn't
2341 * finish unlocking sem_undo_list.
2342 */
e0892e08
PM
2343 spin_lock(&ulp->lock);
2344 spin_unlock(&ulp->lock);
602b8593
HK
2345 rcu_read_unlock();
2346 break;
2347 }
2348 spin_lock(&ulp->lock);
2349 semid = un->semid;
2350 spin_unlock(&ulp->lock);
4daa28f6 2351
602b8593 2352 /* exit_sem raced with IPC_RMID, nothing to do */
6062a8dc
RR
2353 if (semid == -1) {
2354 rcu_read_unlock();
602b8593 2355 continue;
6062a8dc 2356 }
1da177e4 2357
602b8593 2358 sma = sem_obtain_object_check(tsk->nsproxy->ipc_ns, semid);
380af1b3 2359 /* exit_sem raced with IPC_RMID, nothing to do */
6062a8dc
RR
2360 if (IS_ERR(sma)) {
2361 rcu_read_unlock();
380af1b3 2362 continue;
6062a8dc 2363 }
1da177e4 2364
6062a8dc 2365 sem_lock(sma, NULL, -1);
6e224f94 2366 /* exit_sem raced with IPC_RMID, nothing to do */
0f3d2b01 2367 if (!ipc_valid_object(&sma->sem_perm)) {
6e224f94
MS
2368 sem_unlock(sma, -1);
2369 rcu_read_unlock();
2370 continue;
2371 }
bf17bb71 2372 un = __lookup_undo(ulp, semid);
380af1b3
MS
2373 if (un == NULL) {
2374 /* exit_sem raced with IPC_RMID+semget() that created
2375 * exactly the same semid. Nothing to do.
2376 */
6062a8dc 2377 sem_unlock(sma, -1);
6d49dab8 2378 rcu_read_unlock();
380af1b3
MS
2379 continue;
2380 }
2381
2382 /* remove un from the linked lists */
cf9d5d78 2383 ipc_assert_locked_object(&sma->sem_perm);
4daa28f6
MS
2384 list_del(&un->list_id);
2385
edf28f40 2386 spin_lock(&ulp->lock);
380af1b3 2387 list_del_rcu(&un->list_proc);
edf28f40 2388 spin_unlock(&ulp->lock);
380af1b3 2389
4daa28f6
MS
2390 /* perform adjustments registered in un */
2391 for (i = 0; i < sma->sem_nsems; i++) {
1a233956 2392 struct sem *semaphore = &sma->sems[i];
4daa28f6
MS
2393 if (un->semadj[i]) {
2394 semaphore->semval += un->semadj[i];
1da177e4
LT
2395 /*
2396 * Range checks of the new semaphore value,
2397 * not defined by sus:
2398 * - Some unices ignore the undo entirely
2399 * (e.g. HP UX 11i 11.22, Tru64 V5.1)
2400 * - some cap the value (e.g. FreeBSD caps
2401 * at 0, but doesn't enforce SEMVMX)
2402 *
2403 * Linux caps the semaphore value, both at 0
2404 * and at SEMVMX.
2405 *
239521f3 2406 * Manfred <manfred@colorfullife.com>
1da177e4 2407 */
5f921ae9
IM
2408 if (semaphore->semval < 0)
2409 semaphore->semval = 0;
2410 if (semaphore->semval > SEMVMX)
2411 semaphore->semval = SEMVMX;
51d6f263 2412 ipc_update_pid(&semaphore->sempid, task_tgid(current));
1da177e4
LT
2413 }
2414 }
1da177e4 2415 /* maybe some queued-up processes were waiting for this */
9ae949fa 2416 do_smart_update(sma, NULL, 0, 1, &wake_q);
6062a8dc 2417 sem_unlock(sma, -1);
6d49dab8 2418 rcu_read_unlock();
9ae949fa 2419 wake_up_q(&wake_q);
380af1b3 2420
693a8b6e 2421 kfree_rcu(un, rcu);
1da177e4 2422 }
4daa28f6 2423 kfree(ulp);
1da177e4
LT
2424}
2425
2426#ifdef CONFIG_PROC_FS
19b4946c 2427static int sysvipc_sem_proc_show(struct seq_file *s, void *it)
1da177e4 2428{
1efdb69b 2429 struct user_namespace *user_ns = seq_user_ns(s);
ade9f91b
KC
2430 struct kern_ipc_perm *ipcp = it;
2431 struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm);
e54d02b2 2432 time64_t sem_otime;
d12e1e50 2433
d8c63376
MS
2434 /*
2435 * The proc interface isn't aware of sem_lock(), it calls
2436 * ipc_lock_object() directly (in sysvipc_find_ipc).
5864a2fd
MS
2437 * In order to stay compatible with sem_lock(), we must
2438 * enter / leave complex_mode.
d8c63376 2439 */
5864a2fd 2440 complexmode_enter(sma);
d8c63376 2441
d12e1e50 2442 sem_otime = get_semotime(sma);
19b4946c 2443
7f032d6e 2444 seq_printf(s,
e54d02b2 2445 "%10d %10d %4o %10u %5u %5u %5u %5u %10llu %10llu\n",
7f032d6e
JP
2446 sma->sem_perm.key,
2447 sma->sem_perm.id,
2448 sma->sem_perm.mode,
2449 sma->sem_nsems,
2450 from_kuid_munged(user_ns, sma->sem_perm.uid),
2451 from_kgid_munged(user_ns, sma->sem_perm.gid),
2452 from_kuid_munged(user_ns, sma->sem_perm.cuid),
2453 from_kgid_munged(user_ns, sma->sem_perm.cgid),
2454 sem_otime,
2455 sma->sem_ctime);
2456
5864a2fd
MS
2457 complexmode_tryleave(sma);
2458
7f032d6e 2459 return 0;
1da177e4
LT
2460}
2461#endif