]> git.ipfire.org Git - people/arne_f/kernel.git/blame - ipc/sem.c
ipc/sem.c: optimize update_queue() for bulk wakeup calls
[people/arne_f/kernel.git] / ipc / sem.c
CommitLineData
1da177e4
LT
1/*
2 * linux/ipc/sem.c
3 * Copyright (C) 1992 Krishna Balasubramanian
4 * Copyright (C) 1995 Eric Schenk, Bruno Haible
5 *
6 * IMPLEMENTATION NOTES ON CODE REWRITE (Eric Schenk, January 1995):
7 * This code underwent a massive rewrite in order to solve some problems
8 * with the original code. In particular the original code failed to
9 * wake up processes that were waiting for semval to go to 0 if the
10 * value went to 0 and was then incremented rapidly enough. In solving
11 * this problem I have also modified the implementation so that it
12 * processes pending operations in a FIFO manner, thus give a guarantee
13 * that processes waiting for a lock on the semaphore won't starve
14 * unless another locking process fails to unlock.
15 * In addition the following two changes in behavior have been introduced:
16 * - The original implementation of semop returned the value
17 * last semaphore element examined on success. This does not
18 * match the manual page specifications, and effectively
19 * allows the user to read the semaphore even if they do not
20 * have read permissions. The implementation now returns 0
21 * on success as stated in the manual page.
22 * - There is some confusion over whether the set of undo adjustments
23 * to be performed at exit should be done in an atomic manner.
24 * That is, if we are attempting to decrement the semval should we queue
25 * up and wait until we can do so legally?
26 * The original implementation attempted to do this.
27 * The current implementation does not do so. This is because I don't
28 * think it is the right thing (TM) to do, and because I couldn't
29 * see a clean way to get the old behavior with the new design.
30 * The POSIX standard and SVID should be consulted to determine
31 * what behavior is mandated.
32 *
33 * Further notes on refinement (Christoph Rohland, December 1998):
34 * - The POSIX standard says, that the undo adjustments simply should
35 * redo. So the current implementation is o.K.
36 * - The previous code had two flaws:
37 * 1) It actively gave the semaphore to the next waiting process
38 * sleeping on the semaphore. Since this process did not have the
39 * cpu this led to many unnecessary context switches and bad
40 * performance. Now we only check which process should be able to
41 * get the semaphore and if this process wants to reduce some
42 * semaphore value we simply wake it up without doing the
43 * operation. So it has to try to get it later. Thus e.g. the
44 * running process may reacquire the semaphore during the current
45 * time slice. If it only waits for zero or increases the semaphore,
46 * we do the operation in advance and wake it up.
47 * 2) It did not wake up all zero waiting processes. We try to do
48 * better but only get the semops right which only wait for zero or
49 * increase. If there are decrement operations in the operations
50 * array we do the same as before.
51 *
52 * With the incarnation of O(1) scheduler, it becomes unnecessary to perform
53 * check/retry algorithm for waking up blocked processes as the new scheduler
54 * is better at handling thread switch than the old one.
55 *
56 * /proc/sysvipc/sem support (c) 1999 Dragos Acostachioaie <dragos@iname.com>
57 *
58 * SMP-threaded, sysctl's added
624dffcb 59 * (c) 1999 Manfred Spraul <manfred@colorfullife.com>
1da177e4 60 * Enforced range limit on SEM_UNDO
046c6884 61 * (c) 2001 Red Hat Inc
1da177e4
LT
62 * Lockless wakeup
63 * (c) 2003 Manfred Spraul <manfred@colorfullife.com>
073115d6
SG
64 *
65 * support for audit of ipc object properties and permission changes
66 * Dustin Kirkland <dustin.kirkland@us.ibm.com>
e3893534
KK
67 *
68 * namespaces support
69 * OpenVZ, SWsoft Inc.
70 * Pavel Emelianov <xemul@openvz.org>
1da177e4
LT
71 */
72
1da177e4
LT
73#include <linux/slab.h>
74#include <linux/spinlock.h>
75#include <linux/init.h>
76#include <linux/proc_fs.h>
77#include <linux/time.h>
1da177e4
LT
78#include <linux/security.h>
79#include <linux/syscalls.h>
80#include <linux/audit.h>
c59ede7b 81#include <linux/capability.h>
19b4946c 82#include <linux/seq_file.h>
3e148c79 83#include <linux/rwsem.h>
e3893534 84#include <linux/nsproxy.h>
ae5e1b22 85#include <linux/ipc_namespace.h>
5f921ae9 86
1da177e4
LT
87#include <asm/uaccess.h>
88#include "util.h"
89
ed2ddbf8 90#define sem_ids(ns) ((ns)->ids[IPC_SEM_IDS])
e3893534 91
e3893534 92#define sem_unlock(sma) ipc_unlock(&(sma)->sem_perm)
1b531f21 93#define sem_checkid(sma, semid) ipc_checkid(&sma->sem_perm, semid)
1da177e4 94
7748dbfa 95static int newary(struct ipc_namespace *, struct ipc_params *);
01b8b07a 96static void freeary(struct ipc_namespace *, struct kern_ipc_perm *);
1da177e4 97#ifdef CONFIG_PROC_FS
19b4946c 98static int sysvipc_sem_proc_show(struct seq_file *s, void *it);
1da177e4
LT
99#endif
100
101#define SEMMSL_FAST 256 /* 512 bytes on stack */
102#define SEMOPM_FAST 64 /* ~ 372 bytes on stack */
103
104/*
105 * linked list protection:
106 * sem_undo.id_next,
107 * sem_array.sem_pending{,last},
108 * sem_array.sem_undo: sem_lock() for read/write
109 * sem_undo.proc_next: only "current" is allowed to read/write that field.
110 *
111 */
112
e3893534
KK
113#define sc_semmsl sem_ctls[0]
114#define sc_semmns sem_ctls[1]
115#define sc_semopm sem_ctls[2]
116#define sc_semmni sem_ctls[3]
117
ed2ddbf8 118void sem_init_ns(struct ipc_namespace *ns)
e3893534 119{
e3893534
KK
120 ns->sc_semmsl = SEMMSL;
121 ns->sc_semmns = SEMMNS;
122 ns->sc_semopm = SEMOPM;
123 ns->sc_semmni = SEMMNI;
124 ns->used_sems = 0;
ed2ddbf8 125 ipc_init_ids(&ns->ids[IPC_SEM_IDS]);
e3893534
KK
126}
127
ae5e1b22 128#ifdef CONFIG_IPC_NS
e3893534
KK
129void sem_exit_ns(struct ipc_namespace *ns)
130{
01b8b07a 131 free_ipcs(ns, &sem_ids(ns), freeary);
7d6feeb2 132 idr_destroy(&ns->ids[IPC_SEM_IDS].ipcs_idr);
e3893534 133}
ae5e1b22 134#endif
1da177e4
LT
135
136void __init sem_init (void)
137{
ed2ddbf8 138 sem_init_ns(&init_ipc_ns);
19b4946c
MW
139 ipc_init_proc_interface("sysvipc/sem",
140 " key semid perms nsems uid gid cuid cgid otime ctime\n",
e3893534 141 IPC_SEM_IDS, sysvipc_sem_proc_show);
1da177e4
LT
142}
143
3e148c79
ND
144/*
145 * sem_lock_(check_) routines are called in the paths where the rw_mutex
146 * is not held.
147 */
023a5355
ND
148static inline struct sem_array *sem_lock(struct ipc_namespace *ns, int id)
149{
03f02c76
ND
150 struct kern_ipc_perm *ipcp = ipc_lock(&sem_ids(ns), id);
151
b1ed88b4
PP
152 if (IS_ERR(ipcp))
153 return (struct sem_array *)ipcp;
154
03f02c76 155 return container_of(ipcp, struct sem_array, sem_perm);
023a5355
ND
156}
157
158static inline struct sem_array *sem_lock_check(struct ipc_namespace *ns,
159 int id)
160{
03f02c76
ND
161 struct kern_ipc_perm *ipcp = ipc_lock_check(&sem_ids(ns), id);
162
b1ed88b4
PP
163 if (IS_ERR(ipcp))
164 return (struct sem_array *)ipcp;
165
03f02c76 166 return container_of(ipcp, struct sem_array, sem_perm);
023a5355
ND
167}
168
6ff37972
PP
169static inline void sem_lock_and_putref(struct sem_array *sma)
170{
171 ipc_lock_by_ptr(&sma->sem_perm);
172 ipc_rcu_putref(sma);
173}
174
175static inline void sem_getref_and_unlock(struct sem_array *sma)
176{
177 ipc_rcu_getref(sma);
178 ipc_unlock(&(sma)->sem_perm);
179}
180
181static inline void sem_putref(struct sem_array *sma)
182{
183 ipc_lock_by_ptr(&sma->sem_perm);
184 ipc_rcu_putref(sma);
185 ipc_unlock(&(sma)->sem_perm);
186}
187
7ca7e564
ND
188static inline void sem_rmid(struct ipc_namespace *ns, struct sem_array *s)
189{
190 ipc_rmid(&sem_ids(ns), &s->sem_perm);
191}
192
1da177e4
LT
193/*
194 * Lockless wakeup algorithm:
195 * Without the check/retry algorithm a lockless wakeup is possible:
196 * - queue.status is initialized to -EINTR before blocking.
197 * - wakeup is performed by
198 * * unlinking the queue entry from sma->sem_pending
199 * * setting queue.status to IN_WAKEUP
200 * This is the notification for the blocked thread that a
201 * result value is imminent.
202 * * call wake_up_process
203 * * set queue.status to the final value.
204 * - the previously blocked thread checks queue.status:
205 * * if it's IN_WAKEUP, then it must wait until the value changes
206 * * if it's not -EINTR, then the operation was completed by
207 * update_queue. semtimedop can return queue.status without
5f921ae9 208 * performing any operation on the sem array.
1da177e4
LT
209 * * otherwise it must acquire the spinlock and check what's up.
210 *
211 * The two-stage algorithm is necessary to protect against the following
212 * races:
213 * - if queue.status is set after wake_up_process, then the woken up idle
214 * thread could race forward and try (and fail) to acquire sma->lock
215 * before update_queue had a chance to set queue.status
216 * - if queue.status is written before wake_up_process and if the
217 * blocked process is woken up by a signal between writing
218 * queue.status and the wake_up_process, then the woken up
219 * process could return from semtimedop and die by calling
220 * sys_exit before wake_up_process is called. Then wake_up_process
221 * will oops, because the task structure is already invalid.
222 * (yes, this happened on s390 with sysv msg).
223 *
224 */
225#define IN_WAKEUP 1
226
f4566f04
ND
227/**
228 * newary - Create a new semaphore set
229 * @ns: namespace
230 * @params: ptr to the structure that contains key, semflg and nsems
231 *
3e148c79 232 * Called with sem_ids.rw_mutex held (as a writer)
f4566f04
ND
233 */
234
7748dbfa 235static int newary(struct ipc_namespace *ns, struct ipc_params *params)
1da177e4
LT
236{
237 int id;
238 int retval;
239 struct sem_array *sma;
240 int size;
7748dbfa
ND
241 key_t key = params->key;
242 int nsems = params->u.nsems;
243 int semflg = params->flg;
b97e820f 244 int i;
1da177e4
LT
245
246 if (!nsems)
247 return -EINVAL;
e3893534 248 if (ns->used_sems + nsems > ns->sc_semmns)
1da177e4
LT
249 return -ENOSPC;
250
251 size = sizeof (*sma) + nsems * sizeof (struct sem);
252 sma = ipc_rcu_alloc(size);
253 if (!sma) {
254 return -ENOMEM;
255 }
256 memset (sma, 0, size);
257
258 sma->sem_perm.mode = (semflg & S_IRWXUGO);
259 sma->sem_perm.key = key;
260
261 sma->sem_perm.security = NULL;
262 retval = security_sem_alloc(sma);
263 if (retval) {
264 ipc_rcu_putref(sma);
265 return retval;
266 }
267
e3893534 268 id = ipc_addid(&sem_ids(ns), &sma->sem_perm, ns->sc_semmni);
283bb7fa 269 if (id < 0) {
1da177e4
LT
270 security_sem_free(sma);
271 ipc_rcu_putref(sma);
283bb7fa 272 return id;
1da177e4 273 }
e3893534 274 ns->used_sems += nsems;
1da177e4
LT
275
276 sma->sem_base = (struct sem *) &sma[1];
b97e820f
MS
277
278 for (i = 0; i < nsems; i++)
279 INIT_LIST_HEAD(&sma->sem_base[i].sem_pending);
280
281 sma->complex_count = 0;
a1193f8e 282 INIT_LIST_HEAD(&sma->sem_pending);
4daa28f6 283 INIT_LIST_HEAD(&sma->list_id);
1da177e4
LT
284 sma->sem_nsems = nsems;
285 sma->sem_ctime = get_seconds();
286 sem_unlock(sma);
287
7ca7e564 288 return sma->sem_perm.id;
1da177e4
LT
289}
290
7748dbfa 291
f4566f04 292/*
3e148c79 293 * Called with sem_ids.rw_mutex and ipcp locked.
f4566f04 294 */
03f02c76 295static inline int sem_security(struct kern_ipc_perm *ipcp, int semflg)
7748dbfa 296{
03f02c76
ND
297 struct sem_array *sma;
298
299 sma = container_of(ipcp, struct sem_array, sem_perm);
300 return security_sem_associate(sma, semflg);
7748dbfa
ND
301}
302
f4566f04 303/*
3e148c79 304 * Called with sem_ids.rw_mutex and ipcp locked.
f4566f04 305 */
03f02c76
ND
306static inline int sem_more_checks(struct kern_ipc_perm *ipcp,
307 struct ipc_params *params)
7748dbfa 308{
03f02c76
ND
309 struct sem_array *sma;
310
311 sma = container_of(ipcp, struct sem_array, sem_perm);
312 if (params->u.nsems > sma->sem_nsems)
7748dbfa
ND
313 return -EINVAL;
314
315 return 0;
316}
317
d5460c99 318SYSCALL_DEFINE3(semget, key_t, key, int, nsems, int, semflg)
1da177e4 319{
e3893534 320 struct ipc_namespace *ns;
7748dbfa
ND
321 struct ipc_ops sem_ops;
322 struct ipc_params sem_params;
e3893534
KK
323
324 ns = current->nsproxy->ipc_ns;
1da177e4 325
e3893534 326 if (nsems < 0 || nsems > ns->sc_semmsl)
1da177e4 327 return -EINVAL;
7ca7e564 328
7748dbfa
ND
329 sem_ops.getnew = newary;
330 sem_ops.associate = sem_security;
331 sem_ops.more_checks = sem_more_checks;
332
333 sem_params.key = key;
334 sem_params.flg = semflg;
335 sem_params.u.nsems = nsems;
1da177e4 336
7748dbfa 337 return ipcget(ns, &sem_ids(ns), &sem_ops, &sem_params);
1da177e4
LT
338}
339
1da177e4
LT
340/*
341 * Determine whether a sequence of semaphore operations would succeed
342 * all at once. Return 0 if yes, 1 if need to sleep, else return error code.
343 */
344
345static int try_atomic_semop (struct sem_array * sma, struct sembuf * sops,
346 int nsops, struct sem_undo *un, int pid)
347{
348 int result, sem_op;
349 struct sembuf *sop;
350 struct sem * curr;
351
352 for (sop = sops; sop < sops + nsops; sop++) {
353 curr = sma->sem_base + sop->sem_num;
354 sem_op = sop->sem_op;
355 result = curr->semval;
356
357 if (!sem_op && result)
358 goto would_block;
359
360 result += sem_op;
361 if (result < 0)
362 goto would_block;
363 if (result > SEMVMX)
364 goto out_of_range;
365 if (sop->sem_flg & SEM_UNDO) {
366 int undo = un->semadj[sop->sem_num] - sem_op;
367 /*
368 * Exceeding the undo range is an error.
369 */
370 if (undo < (-SEMAEM - 1) || undo > SEMAEM)
371 goto out_of_range;
372 }
373 curr->semval = result;
374 }
375
376 sop--;
377 while (sop >= sops) {
378 sma->sem_base[sop->sem_num].sempid = pid;
379 if (sop->sem_flg & SEM_UNDO)
380 un->semadj[sop->sem_num] -= sop->sem_op;
381 sop--;
382 }
383
384 sma->sem_otime = get_seconds();
385 return 0;
386
387out_of_range:
388 result = -ERANGE;
389 goto undo;
390
391would_block:
392 if (sop->sem_flg & IPC_NOWAIT)
393 result = -EAGAIN;
394 else
395 result = 1;
396
397undo:
398 sop--;
399 while (sop >= sops) {
400 sma->sem_base[sop->sem_num].semval -= sop->sem_op;
401 sop--;
402 }
403
404 return result;
405}
406
d4212093
NP
407/*
408 * Wake up a process waiting on the sem queue with a given error.
409 * The queue is invalid (may not be accessed) after the function returns.
410 */
411static void wake_up_sem_queue(struct sem_queue *q, int error)
412{
413 /*
414 * Hold preempt off so that we don't get preempted and have the
415 * wakee busy-wait until we're scheduled back on. We're holding
416 * locks here so it may not strictly be needed, however if the
417 * locks become preemptible then this prevents such a problem.
418 */
419 preempt_disable();
420 q->status = IN_WAKEUP;
421 wake_up_process(q->sleeper);
422 /* hands-off: q can disappear immediately after writing q->status. */
423 smp_wmb();
424 q->status = error;
425 preempt_enable();
426}
427
b97e820f
MS
428static void unlink_queue(struct sem_array *sma, struct sem_queue *q)
429{
430 list_del(&q->list);
431 if (q->nsops == 1)
432 list_del(&q->simple_list);
433 else
434 sma->complex_count--;
435}
436
fd5db422
MS
437/** check_restart(sma, q)
438 * @sma: semaphore array
439 * @q: the operation that just completed
440 *
441 * update_queue is O(N^2) when it restarts scanning the whole queue of
442 * waiting operations. Therefore this function checks if the restart is
443 * really necessary. It is called after a previously waiting operation
444 * was completed.
445 */
446static int check_restart(struct sem_array *sma, struct sem_queue *q)
447{
448 struct sem *curr;
449 struct sem_queue *h;
450
451 /* if the operation didn't modify the array, then no restart */
452 if (q->alter == 0)
453 return 0;
454
455 /* pending complex operations are too difficult to analyse */
456 if (sma->complex_count)
457 return 1;
458
459 /* we were a sleeping complex operation. Too difficult */
460 if (q->nsops > 1)
461 return 1;
462
463 curr = sma->sem_base + q->sops[0].sem_num;
464
465 /* No-one waits on this queue */
466 if (list_empty(&curr->sem_pending))
467 return 0;
468
469 /* the new semaphore value */
470 if (curr->semval) {
471 /* It is impossible that someone waits for the new value:
472 * - q is a previously sleeping simple operation that
473 * altered the array. It must be a decrement, because
474 * simple increments never sleep.
475 * - The value is not 0, thus wait-for-zero won't proceed.
476 * - If there are older (higher priority) decrements
477 * in the queue, then they have observed the original
478 * semval value and couldn't proceed. The operation
479 * decremented to value - thus they won't proceed either.
480 */
481 BUG_ON(q->sops[0].sem_op >= 0);
482 return 0;
483 }
484 /*
485 * semval is 0. Check if there are wait-for-zero semops.
486 * They must be the first entries in the per-semaphore simple queue
487 */
488 h = list_first_entry(&curr->sem_pending, struct sem_queue, simple_list);
489 BUG_ON(h->nsops != 1);
490 BUG_ON(h->sops[0].sem_num != q->sops[0].sem_num);
491
492 /* Yes, there is a wait-for-zero semop. Restart */
493 if (h->sops[0].sem_op == 0)
494 return 1;
495
496 /* Again - no-one is waiting for the new value. */
497 return 0;
498}
499
636c6be8
MS
500
501/**
502 * update_queue(sma, semnum): Look for tasks that can be completed.
503 * @sma: semaphore array.
504 * @semnum: semaphore that was modified.
505 *
506 * update_queue must be called after a semaphore in a semaphore array
507 * was modified. If multiple semaphore were modified, then @semnum
508 * must be set to -1.
1da177e4 509 */
636c6be8 510static void update_queue(struct sem_array *sma, int semnum)
1da177e4 511{
636c6be8
MS
512 struct sem_queue *q;
513 struct list_head *walk;
514 struct list_head *pending_list;
515 int offset;
516
517 /* if there are complex operations around, then knowing the semaphore
518 * that was modified doesn't help us. Assume that multiple semaphores
519 * were modified.
520 */
521 if (sma->complex_count)
522 semnum = -1;
523
524 if (semnum == -1) {
525 pending_list = &sma->sem_pending;
526 offset = offsetof(struct sem_queue, list);
527 } else {
528 pending_list = &sma->sem_base[semnum].sem_pending;
529 offset = offsetof(struct sem_queue, simple_list);
530 }
9cad200c
NP
531
532again:
636c6be8
MS
533 walk = pending_list->next;
534 while (walk != pending_list) {
fd5db422 535 int error, restart;
636c6be8
MS
536
537 q = (struct sem_queue *)((char *)walk - offset);
538 walk = walk->next;
1da177e4 539
d987f8b2
MS
540 /* If we are scanning the single sop, per-semaphore list of
541 * one semaphore and that semaphore is 0, then it is not
542 * necessary to scan the "alter" entries: simple increments
543 * that affect only one entry succeed immediately and cannot
544 * be in the per semaphore pending queue, and decrements
545 * cannot be successful if the value is already 0.
546 */
547 if (semnum != -1 && sma->sem_base[semnum].semval == 0 &&
548 q->alter)
549 break;
550
1da177e4
LT
551 error = try_atomic_semop(sma, q->sops, q->nsops,
552 q->undo, q->pid);
553
554 /* Does q->sleeper still need to sleep? */
9cad200c
NP
555 if (error > 0)
556 continue;
557
b97e820f 558 unlink_queue(sma, q);
9cad200c 559
fd5db422
MS
560 if (error)
561 restart = 0;
562 else
563 restart = check_restart(sma, q);
564
d4212093 565 wake_up_sem_queue(q, error);
fd5db422 566 if (restart)
9cad200c 567 goto again;
1da177e4
LT
568 }
569}
570
fd5db422
MS
571/** do_smart_update(sma, sops, nsops): Optimized update_queue
572 * @sma: semaphore array
573 * @sops: operations that were performed
574 * @nsops: number of operations
575 *
576 * do_smart_update() does the required called to update_queue, based on the
577 * actual changes that were performed on the semaphore array.
578 */
579static void do_smart_update(struct sem_array *sma, struct sembuf *sops, int nsops)
580{
581 int i;
582
583 if (sma->complex_count || sops == NULL) {
584 update_queue(sma, -1);
585 return;
586 }
587
588 for (i = 0; i < nsops; i++) {
589 if (sops[i].sem_op > 0 ||
590 (sops[i].sem_op < 0 &&
591 sma->sem_base[sops[i].sem_num].semval == 0))
592 update_queue(sma, sops[i].sem_num);
593 }
594}
595
596
1da177e4
LT
597/* The following counts are associated to each semaphore:
598 * semncnt number of tasks waiting on semval being nonzero
599 * semzcnt number of tasks waiting on semval being zero
600 * This model assumes that a task waits on exactly one semaphore.
601 * Since semaphore operations are to be performed atomically, tasks actually
602 * wait on a whole sequence of semaphores simultaneously.
603 * The counts we return here are a rough approximation, but still
604 * warrant that semncnt+semzcnt>0 if the task is on the pending queue.
605 */
606static int count_semncnt (struct sem_array * sma, ushort semnum)
607{
608 int semncnt;
609 struct sem_queue * q;
610
611 semncnt = 0;
a1193f8e 612 list_for_each_entry(q, &sma->sem_pending, list) {
1da177e4
LT
613 struct sembuf * sops = q->sops;
614 int nsops = q->nsops;
615 int i;
616 for (i = 0; i < nsops; i++)
617 if (sops[i].sem_num == semnum
618 && (sops[i].sem_op < 0)
619 && !(sops[i].sem_flg & IPC_NOWAIT))
620 semncnt++;
621 }
622 return semncnt;
623}
a1193f8e 624
1da177e4
LT
625static int count_semzcnt (struct sem_array * sma, ushort semnum)
626{
627 int semzcnt;
628 struct sem_queue * q;
629
630 semzcnt = 0;
a1193f8e 631 list_for_each_entry(q, &sma->sem_pending, list) {
1da177e4
LT
632 struct sembuf * sops = q->sops;
633 int nsops = q->nsops;
634 int i;
635 for (i = 0; i < nsops; i++)
636 if (sops[i].sem_num == semnum
637 && (sops[i].sem_op == 0)
638 && !(sops[i].sem_flg & IPC_NOWAIT))
639 semzcnt++;
640 }
641 return semzcnt;
642}
643
6d97e234 644static void free_un(struct rcu_head *head)
380af1b3
MS
645{
646 struct sem_undo *un = container_of(head, struct sem_undo, rcu);
647 kfree(un);
648}
649
3e148c79
ND
650/* Free a semaphore set. freeary() is called with sem_ids.rw_mutex locked
651 * as a writer and the spinlock for this semaphore set hold. sem_ids.rw_mutex
652 * remains locked on exit.
1da177e4 653 */
01b8b07a 654static void freeary(struct ipc_namespace *ns, struct kern_ipc_perm *ipcp)
1da177e4 655{
380af1b3
MS
656 struct sem_undo *un, *tu;
657 struct sem_queue *q, *tq;
01b8b07a 658 struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm);
1da177e4 659
380af1b3 660 /* Free the existing undo structures for this semaphore set. */
4daa28f6 661 assert_spin_locked(&sma->sem_perm.lock);
380af1b3
MS
662 list_for_each_entry_safe(un, tu, &sma->list_id, list_id) {
663 list_del(&un->list_id);
664 spin_lock(&un->ulp->lock);
1da177e4 665 un->semid = -1;
380af1b3
MS
666 list_del_rcu(&un->list_proc);
667 spin_unlock(&un->ulp->lock);
668 call_rcu(&un->rcu, free_un);
669 }
1da177e4
LT
670
671 /* Wake up all pending processes and let them fail with EIDRM. */
380af1b3 672 list_for_each_entry_safe(q, tq, &sma->sem_pending, list) {
b97e820f 673 unlink_queue(sma, q);
d4212093 674 wake_up_sem_queue(q, -EIDRM);
1da177e4
LT
675 }
676
7ca7e564
ND
677 /* Remove the semaphore set from the IDR */
678 sem_rmid(ns, sma);
1da177e4
LT
679 sem_unlock(sma);
680
e3893534 681 ns->used_sems -= sma->sem_nsems;
1da177e4
LT
682 security_sem_free(sma);
683 ipc_rcu_putref(sma);
684}
685
686static unsigned long copy_semid_to_user(void __user *buf, struct semid64_ds *in, int version)
687{
688 switch(version) {
689 case IPC_64:
690 return copy_to_user(buf, in, sizeof(*in));
691 case IPC_OLD:
692 {
693 struct semid_ds out;
694
695 ipc64_perm_to_ipc_perm(&in->sem_perm, &out.sem_perm);
696
697 out.sem_otime = in->sem_otime;
698 out.sem_ctime = in->sem_ctime;
699 out.sem_nsems = in->sem_nsems;
700
701 return copy_to_user(buf, &out, sizeof(out));
702 }
703 default:
704 return -EINVAL;
705 }
706}
707
4b9fcb0e
PP
708static int semctl_nolock(struct ipc_namespace *ns, int semid,
709 int cmd, int version, union semun arg)
1da177e4 710{
e5cc9c7b 711 int err;
1da177e4
LT
712 struct sem_array *sma;
713
714 switch(cmd) {
715 case IPC_INFO:
716 case SEM_INFO:
717 {
718 struct seminfo seminfo;
719 int max_id;
720
721 err = security_sem_semctl(NULL, cmd);
722 if (err)
723 return err;
724
725 memset(&seminfo,0,sizeof(seminfo));
e3893534
KK
726 seminfo.semmni = ns->sc_semmni;
727 seminfo.semmns = ns->sc_semmns;
728 seminfo.semmsl = ns->sc_semmsl;
729 seminfo.semopm = ns->sc_semopm;
1da177e4
LT
730 seminfo.semvmx = SEMVMX;
731 seminfo.semmnu = SEMMNU;
732 seminfo.semmap = SEMMAP;
733 seminfo.semume = SEMUME;
3e148c79 734 down_read(&sem_ids(ns).rw_mutex);
1da177e4 735 if (cmd == SEM_INFO) {
e3893534
KK
736 seminfo.semusz = sem_ids(ns).in_use;
737 seminfo.semaem = ns->used_sems;
1da177e4
LT
738 } else {
739 seminfo.semusz = SEMUSZ;
740 seminfo.semaem = SEMAEM;
741 }
7ca7e564 742 max_id = ipc_get_maxid(&sem_ids(ns));
3e148c79 743 up_read(&sem_ids(ns).rw_mutex);
1da177e4
LT
744 if (copy_to_user (arg.__buf, &seminfo, sizeof(struct seminfo)))
745 return -EFAULT;
746 return (max_id < 0) ? 0: max_id;
747 }
4b9fcb0e 748 case IPC_STAT:
1da177e4
LT
749 case SEM_STAT:
750 {
751 struct semid64_ds tbuf;
752 int id;
753
4b9fcb0e
PP
754 if (cmd == SEM_STAT) {
755 sma = sem_lock(ns, semid);
756 if (IS_ERR(sma))
757 return PTR_ERR(sma);
758 id = sma->sem_perm.id;
759 } else {
760 sma = sem_lock_check(ns, semid);
761 if (IS_ERR(sma))
762 return PTR_ERR(sma);
763 id = 0;
764 }
1da177e4
LT
765
766 err = -EACCES;
767 if (ipcperms (&sma->sem_perm, S_IRUGO))
768 goto out_unlock;
769
770 err = security_sem_semctl(sma, cmd);
771 if (err)
772 goto out_unlock;
773
023a5355
ND
774 memset(&tbuf, 0, sizeof(tbuf));
775
1da177e4
LT
776 kernel_to_ipc64_perm(&sma->sem_perm, &tbuf.sem_perm);
777 tbuf.sem_otime = sma->sem_otime;
778 tbuf.sem_ctime = sma->sem_ctime;
779 tbuf.sem_nsems = sma->sem_nsems;
780 sem_unlock(sma);
781 if (copy_semid_to_user (arg.buf, &tbuf, version))
782 return -EFAULT;
783 return id;
784 }
785 default:
786 return -EINVAL;
787 }
1da177e4
LT
788out_unlock:
789 sem_unlock(sma);
790 return err;
791}
792
e3893534
KK
793static int semctl_main(struct ipc_namespace *ns, int semid, int semnum,
794 int cmd, int version, union semun arg)
1da177e4
LT
795{
796 struct sem_array *sma;
797 struct sem* curr;
798 int err;
799 ushort fast_sem_io[SEMMSL_FAST];
800 ushort* sem_io = fast_sem_io;
801 int nsems;
802
023a5355
ND
803 sma = sem_lock_check(ns, semid);
804 if (IS_ERR(sma))
805 return PTR_ERR(sma);
1da177e4
LT
806
807 nsems = sma->sem_nsems;
808
1da177e4
LT
809 err = -EACCES;
810 if (ipcperms (&sma->sem_perm, (cmd==SETVAL||cmd==SETALL)?S_IWUGO:S_IRUGO))
811 goto out_unlock;
812
813 err = security_sem_semctl(sma, cmd);
814 if (err)
815 goto out_unlock;
816
817 err = -EACCES;
818 switch (cmd) {
819 case GETALL:
820 {
821 ushort __user *array = arg.array;
822 int i;
823
824 if(nsems > SEMMSL_FAST) {
6ff37972 825 sem_getref_and_unlock(sma);
1da177e4
LT
826
827 sem_io = ipc_alloc(sizeof(ushort)*nsems);
828 if(sem_io == NULL) {
6ff37972 829 sem_putref(sma);
1da177e4
LT
830 return -ENOMEM;
831 }
832
6ff37972 833 sem_lock_and_putref(sma);
1da177e4
LT
834 if (sma->sem_perm.deleted) {
835 sem_unlock(sma);
836 err = -EIDRM;
837 goto out_free;
838 }
839 }
840
841 for (i = 0; i < sma->sem_nsems; i++)
842 sem_io[i] = sma->sem_base[i].semval;
843 sem_unlock(sma);
844 err = 0;
845 if(copy_to_user(array, sem_io, nsems*sizeof(ushort)))
846 err = -EFAULT;
847 goto out_free;
848 }
849 case SETALL:
850 {
851 int i;
852 struct sem_undo *un;
853
6ff37972 854 sem_getref_and_unlock(sma);
1da177e4
LT
855
856 if(nsems > SEMMSL_FAST) {
857 sem_io = ipc_alloc(sizeof(ushort)*nsems);
858 if(sem_io == NULL) {
6ff37972 859 sem_putref(sma);
1da177e4
LT
860 return -ENOMEM;
861 }
862 }
863
864 if (copy_from_user (sem_io, arg.array, nsems*sizeof(ushort))) {
6ff37972 865 sem_putref(sma);
1da177e4
LT
866 err = -EFAULT;
867 goto out_free;
868 }
869
870 for (i = 0; i < nsems; i++) {
871 if (sem_io[i] > SEMVMX) {
6ff37972 872 sem_putref(sma);
1da177e4
LT
873 err = -ERANGE;
874 goto out_free;
875 }
876 }
6ff37972 877 sem_lock_and_putref(sma);
1da177e4
LT
878 if (sma->sem_perm.deleted) {
879 sem_unlock(sma);
880 err = -EIDRM;
881 goto out_free;
882 }
883
884 for (i = 0; i < nsems; i++)
885 sma->sem_base[i].semval = sem_io[i];
4daa28f6
MS
886
887 assert_spin_locked(&sma->sem_perm.lock);
888 list_for_each_entry(un, &sma->list_id, list_id) {
1da177e4
LT
889 for (i = 0; i < nsems; i++)
890 un->semadj[i] = 0;
4daa28f6 891 }
1da177e4
LT
892 sma->sem_ctime = get_seconds();
893 /* maybe some queued-up processes were waiting for this */
636c6be8 894 update_queue(sma, -1);
1da177e4
LT
895 err = 0;
896 goto out_unlock;
897 }
1da177e4
LT
898 /* GETVAL, GETPID, GETNCTN, GETZCNT, SETVAL: fall-through */
899 }
900 err = -EINVAL;
901 if(semnum < 0 || semnum >= nsems)
902 goto out_unlock;
903
904 curr = &sma->sem_base[semnum];
905
906 switch (cmd) {
907 case GETVAL:
908 err = curr->semval;
909 goto out_unlock;
910 case GETPID:
911 err = curr->sempid;
912 goto out_unlock;
913 case GETNCNT:
914 err = count_semncnt(sma,semnum);
915 goto out_unlock;
916 case GETZCNT:
917 err = count_semzcnt(sma,semnum);
918 goto out_unlock;
919 case SETVAL:
920 {
921 int val = arg.val;
922 struct sem_undo *un;
4daa28f6 923
1da177e4
LT
924 err = -ERANGE;
925 if (val > SEMVMX || val < 0)
926 goto out_unlock;
927
4daa28f6
MS
928 assert_spin_locked(&sma->sem_perm.lock);
929 list_for_each_entry(un, &sma->list_id, list_id)
1da177e4 930 un->semadj[semnum] = 0;
4daa28f6 931
1da177e4 932 curr->semval = val;
b488893a 933 curr->sempid = task_tgid_vnr(current);
1da177e4
LT
934 sma->sem_ctime = get_seconds();
935 /* maybe some queued-up processes were waiting for this */
636c6be8 936 update_queue(sma, semnum);
1da177e4
LT
937 err = 0;
938 goto out_unlock;
939 }
940 }
941out_unlock:
942 sem_unlock(sma);
943out_free:
944 if(sem_io != fast_sem_io)
945 ipc_free(sem_io, sizeof(ushort)*nsems);
946 return err;
947}
948
016d7132
PP
949static inline unsigned long
950copy_semid_from_user(struct semid64_ds *out, void __user *buf, int version)
1da177e4
LT
951{
952 switch(version) {
953 case IPC_64:
016d7132 954 if (copy_from_user(out, buf, sizeof(*out)))
1da177e4 955 return -EFAULT;
1da177e4 956 return 0;
1da177e4
LT
957 case IPC_OLD:
958 {
959 struct semid_ds tbuf_old;
960
961 if(copy_from_user(&tbuf_old, buf, sizeof(tbuf_old)))
962 return -EFAULT;
963
016d7132
PP
964 out->sem_perm.uid = tbuf_old.sem_perm.uid;
965 out->sem_perm.gid = tbuf_old.sem_perm.gid;
966 out->sem_perm.mode = tbuf_old.sem_perm.mode;
1da177e4
LT
967
968 return 0;
969 }
970 default:
971 return -EINVAL;
972 }
973}
974
522bb2a2
PP
975/*
976 * This function handles some semctl commands which require the rw_mutex
977 * to be held in write mode.
978 * NOTE: no locks must be held, the rw_mutex is taken inside this function.
979 */
21a4826a
PP
980static int semctl_down(struct ipc_namespace *ns, int semid,
981 int cmd, int version, union semun arg)
1da177e4
LT
982{
983 struct sem_array *sma;
984 int err;
016d7132 985 struct semid64_ds semid64;
1da177e4
LT
986 struct kern_ipc_perm *ipcp;
987
988 if(cmd == IPC_SET) {
016d7132 989 if (copy_semid_from_user(&semid64, arg.buf, version))
1da177e4 990 return -EFAULT;
1da177e4 991 }
073115d6 992
a5f75e7f
PP
993 ipcp = ipcctl_pre_down(&sem_ids(ns), semid, cmd, &semid64.sem_perm, 0);
994 if (IS_ERR(ipcp))
995 return PTR_ERR(ipcp);
073115d6 996
a5f75e7f 997 sma = container_of(ipcp, struct sem_array, sem_perm);
1da177e4
LT
998
999 err = security_sem_semctl(sma, cmd);
1000 if (err)
1001 goto out_unlock;
1002
1003 switch(cmd){
1004 case IPC_RMID:
01b8b07a 1005 freeary(ns, ipcp);
522bb2a2 1006 goto out_up;
1da177e4 1007 case IPC_SET:
8f4a3809 1008 ipc_update_perm(&semid64.sem_perm, ipcp);
1da177e4 1009 sma->sem_ctime = get_seconds();
1da177e4
LT
1010 break;
1011 default:
1da177e4 1012 err = -EINVAL;
1da177e4 1013 }
1da177e4
LT
1014
1015out_unlock:
1016 sem_unlock(sma);
522bb2a2
PP
1017out_up:
1018 up_write(&sem_ids(ns).rw_mutex);
1da177e4
LT
1019 return err;
1020}
1021
6673e0c3 1022SYSCALL_DEFINE(semctl)(int semid, int semnum, int cmd, union semun arg)
1da177e4
LT
1023{
1024 int err = -EINVAL;
1025 int version;
e3893534 1026 struct ipc_namespace *ns;
1da177e4
LT
1027
1028 if (semid < 0)
1029 return -EINVAL;
1030
1031 version = ipc_parse_version(&cmd);
e3893534 1032 ns = current->nsproxy->ipc_ns;
1da177e4
LT
1033
1034 switch(cmd) {
1035 case IPC_INFO:
1036 case SEM_INFO:
4b9fcb0e 1037 case IPC_STAT:
1da177e4 1038 case SEM_STAT:
4b9fcb0e 1039 err = semctl_nolock(ns, semid, cmd, version, arg);
1da177e4
LT
1040 return err;
1041 case GETALL:
1042 case GETVAL:
1043 case GETPID:
1044 case GETNCNT:
1045 case GETZCNT:
1da177e4
LT
1046 case SETVAL:
1047 case SETALL:
e3893534 1048 err = semctl_main(ns,semid,semnum,cmd,version,arg);
1da177e4
LT
1049 return err;
1050 case IPC_RMID:
1051 case IPC_SET:
21a4826a 1052 err = semctl_down(ns, semid, cmd, version, arg);
1da177e4
LT
1053 return err;
1054 default:
1055 return -EINVAL;
1056 }
1057}
6673e0c3
HC
1058#ifdef CONFIG_HAVE_SYSCALL_WRAPPERS
1059asmlinkage long SyS_semctl(int semid, int semnum, int cmd, union semun arg)
1060{
1061 return SYSC_semctl((int) semid, (int) semnum, (int) cmd, arg);
1062}
1063SYSCALL_ALIAS(sys_semctl, SyS_semctl);
1064#endif
1da177e4 1065
1da177e4
LT
1066/* If the task doesn't already have a undo_list, then allocate one
1067 * here. We guarantee there is only one thread using this undo list,
1068 * and current is THE ONE
1069 *
1070 * If this allocation and assignment succeeds, but later
1071 * portions of this code fail, there is no need to free the sem_undo_list.
1072 * Just let it stay associated with the task, and it'll be freed later
1073 * at exit time.
1074 *
1075 * This can block, so callers must hold no locks.
1076 */
1077static inline int get_undo_list(struct sem_undo_list **undo_listp)
1078{
1079 struct sem_undo_list *undo_list;
1da177e4
LT
1080
1081 undo_list = current->sysvsem.undo_list;
1082 if (!undo_list) {
2453a306 1083 undo_list = kzalloc(sizeof(*undo_list), GFP_KERNEL);
1da177e4
LT
1084 if (undo_list == NULL)
1085 return -ENOMEM;
00a5dfdb 1086 spin_lock_init(&undo_list->lock);
1da177e4 1087 atomic_set(&undo_list->refcnt, 1);
4daa28f6
MS
1088 INIT_LIST_HEAD(&undo_list->list_proc);
1089
1da177e4
LT
1090 current->sysvsem.undo_list = undo_list;
1091 }
1092 *undo_listp = undo_list;
1093 return 0;
1094}
1095
bf17bb71 1096static struct sem_undo *__lookup_undo(struct sem_undo_list *ulp, int semid)
1da177e4 1097{
bf17bb71 1098 struct sem_undo *un;
4daa28f6 1099
bf17bb71
NP
1100 list_for_each_entry_rcu(un, &ulp->list_proc, list_proc) {
1101 if (un->semid == semid)
1102 return un;
1da177e4 1103 }
4daa28f6 1104 return NULL;
1da177e4
LT
1105}
1106
bf17bb71
NP
1107static struct sem_undo *lookup_undo(struct sem_undo_list *ulp, int semid)
1108{
1109 struct sem_undo *un;
1110
1111 assert_spin_locked(&ulp->lock);
1112
1113 un = __lookup_undo(ulp, semid);
1114 if (un) {
1115 list_del_rcu(&un->list_proc);
1116 list_add_rcu(&un->list_proc, &ulp->list_proc);
1117 }
1118 return un;
1119}
1120
4daa28f6
MS
1121/**
1122 * find_alloc_undo - Lookup (and if not present create) undo array
1123 * @ns: namespace
1124 * @semid: semaphore array id
1125 *
1126 * The function looks up (and if not present creates) the undo structure.
1127 * The size of the undo structure depends on the size of the semaphore
1128 * array, thus the alloc path is not that straightforward.
380af1b3
MS
1129 * Lifetime-rules: sem_undo is rcu-protected, on success, the function
1130 * performs a rcu_read_lock().
4daa28f6
MS
1131 */
1132static struct sem_undo *find_alloc_undo(struct ipc_namespace *ns, int semid)
1da177e4
LT
1133{
1134 struct sem_array *sma;
1135 struct sem_undo_list *ulp;
1136 struct sem_undo *un, *new;
1137 int nsems;
1138 int error;
1139
1140 error = get_undo_list(&ulp);
1141 if (error)
1142 return ERR_PTR(error);
1143
380af1b3 1144 rcu_read_lock();
c530c6ac 1145 spin_lock(&ulp->lock);
1da177e4 1146 un = lookup_undo(ulp, semid);
c530c6ac 1147 spin_unlock(&ulp->lock);
1da177e4
LT
1148 if (likely(un!=NULL))
1149 goto out;
380af1b3 1150 rcu_read_unlock();
1da177e4
LT
1151
1152 /* no undo structure around - allocate one. */
4daa28f6 1153 /* step 1: figure out the size of the semaphore array */
023a5355
ND
1154 sma = sem_lock_check(ns, semid);
1155 if (IS_ERR(sma))
1156 return ERR_PTR(PTR_ERR(sma));
1157
1da177e4 1158 nsems = sma->sem_nsems;
6ff37972 1159 sem_getref_and_unlock(sma);
1da177e4 1160
4daa28f6 1161 /* step 2: allocate new undo structure */
4668edc3 1162 new = kzalloc(sizeof(struct sem_undo) + sizeof(short)*nsems, GFP_KERNEL);
1da177e4 1163 if (!new) {
6ff37972 1164 sem_putref(sma);
1da177e4
LT
1165 return ERR_PTR(-ENOMEM);
1166 }
1da177e4 1167
380af1b3 1168 /* step 3: Acquire the lock on semaphore array */
6ff37972 1169 sem_lock_and_putref(sma);
1da177e4
LT
1170 if (sma->sem_perm.deleted) {
1171 sem_unlock(sma);
1da177e4
LT
1172 kfree(new);
1173 un = ERR_PTR(-EIDRM);
1174 goto out;
1175 }
380af1b3
MS
1176 spin_lock(&ulp->lock);
1177
1178 /*
1179 * step 4: check for races: did someone else allocate the undo struct?
1180 */
1181 un = lookup_undo(ulp, semid);
1182 if (un) {
1183 kfree(new);
1184 goto success;
1185 }
4daa28f6
MS
1186 /* step 5: initialize & link new undo structure */
1187 new->semadj = (short *) &new[1];
380af1b3 1188 new->ulp = ulp;
4daa28f6
MS
1189 new->semid = semid;
1190 assert_spin_locked(&ulp->lock);
380af1b3 1191 list_add_rcu(&new->list_proc, &ulp->list_proc);
4daa28f6
MS
1192 assert_spin_locked(&sma->sem_perm.lock);
1193 list_add(&new->list_id, &sma->list_id);
380af1b3 1194 un = new;
4daa28f6 1195
380af1b3 1196success:
c530c6ac 1197 spin_unlock(&ulp->lock);
380af1b3
MS
1198 rcu_read_lock();
1199 sem_unlock(sma);
1da177e4
LT
1200out:
1201 return un;
1202}
1203
d5460c99
HC
1204SYSCALL_DEFINE4(semtimedop, int, semid, struct sembuf __user *, tsops,
1205 unsigned, nsops, const struct timespec __user *, timeout)
1da177e4
LT
1206{
1207 int error = -EINVAL;
1208 struct sem_array *sma;
1209 struct sembuf fast_sops[SEMOPM_FAST];
1210 struct sembuf* sops = fast_sops, *sop;
1211 struct sem_undo *un;
b78755ab 1212 int undos = 0, alter = 0, max;
1da177e4
LT
1213 struct sem_queue queue;
1214 unsigned long jiffies_left = 0;
e3893534
KK
1215 struct ipc_namespace *ns;
1216
1217 ns = current->nsproxy->ipc_ns;
1da177e4
LT
1218
1219 if (nsops < 1 || semid < 0)
1220 return -EINVAL;
e3893534 1221 if (nsops > ns->sc_semopm)
1da177e4
LT
1222 return -E2BIG;
1223 if(nsops > SEMOPM_FAST) {
1224 sops = kmalloc(sizeof(*sops)*nsops,GFP_KERNEL);
1225 if(sops==NULL)
1226 return -ENOMEM;
1227 }
1228 if (copy_from_user (sops, tsops, nsops * sizeof(*tsops))) {
1229 error=-EFAULT;
1230 goto out_free;
1231 }
1232 if (timeout) {
1233 struct timespec _timeout;
1234 if (copy_from_user(&_timeout, timeout, sizeof(*timeout))) {
1235 error = -EFAULT;
1236 goto out_free;
1237 }
1238 if (_timeout.tv_sec < 0 || _timeout.tv_nsec < 0 ||
1239 _timeout.tv_nsec >= 1000000000L) {
1240 error = -EINVAL;
1241 goto out_free;
1242 }
1243 jiffies_left = timespec_to_jiffies(&_timeout);
1244 }
1245 max = 0;
1246 for (sop = sops; sop < sops + nsops; sop++) {
1247 if (sop->sem_num >= max)
1248 max = sop->sem_num;
1249 if (sop->sem_flg & SEM_UNDO)
b78755ab
MS
1250 undos = 1;
1251 if (sop->sem_op != 0)
1da177e4
LT
1252 alter = 1;
1253 }
1da177e4 1254
1da177e4 1255 if (undos) {
4daa28f6 1256 un = find_alloc_undo(ns, semid);
1da177e4
LT
1257 if (IS_ERR(un)) {
1258 error = PTR_ERR(un);
1259 goto out_free;
1260 }
1261 } else
1262 un = NULL;
1263
023a5355
ND
1264 sma = sem_lock_check(ns, semid);
1265 if (IS_ERR(sma)) {
380af1b3
MS
1266 if (un)
1267 rcu_read_unlock();
023a5355 1268 error = PTR_ERR(sma);
1da177e4 1269 goto out_free;
023a5355
ND
1270 }
1271
1da177e4 1272 /*
4daa28f6 1273 * semid identifiers are not unique - find_alloc_undo may have
1da177e4 1274 * allocated an undo structure, it was invalidated by an RMID
4daa28f6 1275 * and now a new array with received the same id. Check and fail.
380af1b3
MS
1276 * This case can be detected checking un->semid. The existance of
1277 * "un" itself is guaranteed by rcu.
1da177e4 1278 */
4daa28f6 1279 error = -EIDRM;
380af1b3
MS
1280 if (un) {
1281 if (un->semid == -1) {
1282 rcu_read_unlock();
1283 goto out_unlock_free;
1284 } else {
1285 /*
1286 * rcu lock can be released, "un" cannot disappear:
1287 * - sem_lock is acquired, thus IPC_RMID is
1288 * impossible.
1289 * - exit_sem is impossible, it always operates on
1290 * current (or a dead task).
1291 */
1292
1293 rcu_read_unlock();
1294 }
1295 }
4daa28f6 1296
1da177e4
LT
1297 error = -EFBIG;
1298 if (max >= sma->sem_nsems)
1299 goto out_unlock_free;
1300
1301 error = -EACCES;
1302 if (ipcperms(&sma->sem_perm, alter ? S_IWUGO : S_IRUGO))
1303 goto out_unlock_free;
1304
1305 error = security_sem_semop(sma, sops, nsops, alter);
1306 if (error)
1307 goto out_unlock_free;
1308
b488893a 1309 error = try_atomic_semop (sma, sops, nsops, un, task_tgid_vnr(current));
1da177e4
LT
1310 if (error <= 0) {
1311 if (alter && error == 0)
fd5db422 1312 do_smart_update(sma, sops, nsops);
636c6be8 1313
1da177e4
LT
1314 goto out_unlock_free;
1315 }
1316
1317 /* We need to sleep on this operation, so we put the current
1318 * task into the pending queue and go to sleep.
1319 */
1320
1da177e4
LT
1321 queue.sops = sops;
1322 queue.nsops = nsops;
1323 queue.undo = un;
b488893a 1324 queue.pid = task_tgid_vnr(current);
1da177e4
LT
1325 queue.alter = alter;
1326 if (alter)
a1193f8e 1327 list_add_tail(&queue.list, &sma->sem_pending);
1da177e4 1328 else
a1193f8e 1329 list_add(&queue.list, &sma->sem_pending);
1da177e4 1330
b97e820f
MS
1331 if (nsops == 1) {
1332 struct sem *curr;
1333 curr = &sma->sem_base[sops->sem_num];
1334
1335 if (alter)
1336 list_add_tail(&queue.simple_list, &curr->sem_pending);
1337 else
1338 list_add(&queue.simple_list, &curr->sem_pending);
1339 } else {
1340 INIT_LIST_HEAD(&queue.simple_list);
1341 sma->complex_count++;
1342 }
1343
1da177e4
LT
1344 queue.status = -EINTR;
1345 queue.sleeper = current;
1346 current->state = TASK_INTERRUPTIBLE;
1347 sem_unlock(sma);
1348
1349 if (timeout)
1350 jiffies_left = schedule_timeout(jiffies_left);
1351 else
1352 schedule();
1353
1354 error = queue.status;
1355 while(unlikely(error == IN_WAKEUP)) {
1356 cpu_relax();
1357 error = queue.status;
1358 }
1359
1360 if (error != -EINTR) {
1361 /* fast path: update_queue already obtained all requested
1362 * resources */
1363 goto out_free;
1364 }
1365
e3893534 1366 sma = sem_lock(ns, semid);
023a5355 1367 if (IS_ERR(sma)) {
1da177e4
LT
1368 error = -EIDRM;
1369 goto out_free;
1370 }
1371
1372 /*
1373 * If queue.status != -EINTR we are woken up by another process
1374 */
1375 error = queue.status;
1376 if (error != -EINTR) {
1377 goto out_unlock_free;
1378 }
1379
1380 /*
1381 * If an interrupt occurred we have to clean up the queue
1382 */
1383 if (timeout && jiffies_left == 0)
1384 error = -EAGAIN;
b97e820f 1385 unlink_queue(sma, &queue);
1da177e4
LT
1386
1387out_unlock_free:
1388 sem_unlock(sma);
1389out_free:
1390 if(sops != fast_sops)
1391 kfree(sops);
1392 return error;
1393}
1394
d5460c99
HC
1395SYSCALL_DEFINE3(semop, int, semid, struct sembuf __user *, tsops,
1396 unsigned, nsops)
1da177e4
LT
1397{
1398 return sys_semtimedop(semid, tsops, nsops, NULL);
1399}
1400
1401/* If CLONE_SYSVSEM is set, establish sharing of SEM_UNDO state between
1402 * parent and child tasks.
1da177e4
LT
1403 */
1404
1405int copy_semundo(unsigned long clone_flags, struct task_struct *tsk)
1406{
1407 struct sem_undo_list *undo_list;
1408 int error;
1409
1410 if (clone_flags & CLONE_SYSVSEM) {
1411 error = get_undo_list(&undo_list);
1412 if (error)
1413 return error;
1da177e4
LT
1414 atomic_inc(&undo_list->refcnt);
1415 tsk->sysvsem.undo_list = undo_list;
1416 } else
1417 tsk->sysvsem.undo_list = NULL;
1418
1419 return 0;
1420}
1421
1422/*
1423 * add semadj values to semaphores, free undo structures.
1424 * undo structures are not freed when semaphore arrays are destroyed
1425 * so some of them may be out of date.
1426 * IMPLEMENTATION NOTE: There is some confusion over whether the
1427 * set of adjustments that needs to be done should be done in an atomic
1428 * manner or not. That is, if we are attempting to decrement the semval
1429 * should we queue up and wait until we can do so legally?
1430 * The original implementation attempted to do this (queue and wait).
1431 * The current implementation does not do so. The POSIX standard
1432 * and SVID should be consulted to determine what behavior is mandated.
1433 */
1434void exit_sem(struct task_struct *tsk)
1435{
4daa28f6 1436 struct sem_undo_list *ulp;
1da177e4 1437
4daa28f6
MS
1438 ulp = tsk->sysvsem.undo_list;
1439 if (!ulp)
1da177e4 1440 return;
9edff4ab 1441 tsk->sysvsem.undo_list = NULL;
1da177e4 1442
4daa28f6 1443 if (!atomic_dec_and_test(&ulp->refcnt))
1da177e4
LT
1444 return;
1445
380af1b3 1446 for (;;) {
1da177e4 1447 struct sem_array *sma;
380af1b3
MS
1448 struct sem_undo *un;
1449 int semid;
4daa28f6
MS
1450 int i;
1451
380af1b3 1452 rcu_read_lock();
05725f7e
JP
1453 un = list_entry_rcu(ulp->list_proc.next,
1454 struct sem_undo, list_proc);
380af1b3
MS
1455 if (&un->list_proc == &ulp->list_proc)
1456 semid = -1;
1457 else
1458 semid = un->semid;
1459 rcu_read_unlock();
4daa28f6 1460
380af1b3
MS
1461 if (semid == -1)
1462 break;
1da177e4 1463
380af1b3 1464 sma = sem_lock_check(tsk->nsproxy->ipc_ns, un->semid);
1da177e4 1465
380af1b3
MS
1466 /* exit_sem raced with IPC_RMID, nothing to do */
1467 if (IS_ERR(sma))
1468 continue;
1da177e4 1469
bf17bb71 1470 un = __lookup_undo(ulp, semid);
380af1b3
MS
1471 if (un == NULL) {
1472 /* exit_sem raced with IPC_RMID+semget() that created
1473 * exactly the same semid. Nothing to do.
1474 */
1475 sem_unlock(sma);
1476 continue;
1477 }
1478
1479 /* remove un from the linked lists */
4daa28f6
MS
1480 assert_spin_locked(&sma->sem_perm.lock);
1481 list_del(&un->list_id);
1482
380af1b3
MS
1483 spin_lock(&ulp->lock);
1484 list_del_rcu(&un->list_proc);
1485 spin_unlock(&ulp->lock);
1486
4daa28f6
MS
1487 /* perform adjustments registered in un */
1488 for (i = 0; i < sma->sem_nsems; i++) {
5f921ae9 1489 struct sem * semaphore = &sma->sem_base[i];
4daa28f6
MS
1490 if (un->semadj[i]) {
1491 semaphore->semval += un->semadj[i];
1da177e4
LT
1492 /*
1493 * Range checks of the new semaphore value,
1494 * not defined by sus:
1495 * - Some unices ignore the undo entirely
1496 * (e.g. HP UX 11i 11.22, Tru64 V5.1)
1497 * - some cap the value (e.g. FreeBSD caps
1498 * at 0, but doesn't enforce SEMVMX)
1499 *
1500 * Linux caps the semaphore value, both at 0
1501 * and at SEMVMX.
1502 *
1503 * Manfred <manfred@colorfullife.com>
1504 */
5f921ae9
IM
1505 if (semaphore->semval < 0)
1506 semaphore->semval = 0;
1507 if (semaphore->semval > SEMVMX)
1508 semaphore->semval = SEMVMX;
b488893a 1509 semaphore->sempid = task_tgid_vnr(current);
1da177e4
LT
1510 }
1511 }
1512 sma->sem_otime = get_seconds();
1513 /* maybe some queued-up processes were waiting for this */
636c6be8 1514 update_queue(sma, -1);
1da177e4 1515 sem_unlock(sma);
380af1b3
MS
1516
1517 call_rcu(&un->rcu, free_un);
1da177e4 1518 }
4daa28f6 1519 kfree(ulp);
1da177e4
LT
1520}
1521
1522#ifdef CONFIG_PROC_FS
19b4946c 1523static int sysvipc_sem_proc_show(struct seq_file *s, void *it)
1da177e4 1524{
19b4946c
MW
1525 struct sem_array *sma = it;
1526
1527 return seq_printf(s,
b97e820f 1528 "%10d %10d %4o %10u %5u %5u %5u %5u %10lu %10lu\n",
19b4946c 1529 sma->sem_perm.key,
7ca7e564 1530 sma->sem_perm.id,
19b4946c
MW
1531 sma->sem_perm.mode,
1532 sma->sem_nsems,
1533 sma->sem_perm.uid,
1534 sma->sem_perm.gid,
1535 sma->sem_perm.cuid,
1536 sma->sem_perm.cgid,
1537 sma->sem_otime,
1538 sma->sem_ctime);
1da177e4
LT
1539}
1540#endif