]> git.ipfire.org Git - people/ms/linux.git/blame - kernel/auditsc.c
atomic: use <linux/atomic.h>
[people/ms/linux.git] / kernel / auditsc.c
CommitLineData
85c8721f 1/* auditsc.c -- System-call auditing support
1da177e4
LT
2 * Handles all system-call specific auditing features.
3 *
4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
73241ccc 5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
20ca73bc 6 * Copyright (C) 2005, 2006 IBM Corporation
1da177e4
LT
7 * All Rights Reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22 *
23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
24 *
25 * Many of the ideas implemented here are from Stephen C. Tweedie,
26 * especially the idea of avoiding a copy by using getname.
27 *
28 * The method for actual interception of syscall entry and exit (not in
29 * this file -- see entry.S) is based on a GPL'd patch written by
30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
31 *
20ca73bc
GW
32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
33 * 2006.
34 *
b63862f4
DK
35 * The support of additional filter rules compares (>, <, >=, <=) was
36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
37 *
73241ccc
AG
38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
39 * filesystem information.
8c8570fb
DK
40 *
41 * Subject and object context labeling support added by <danjones@us.ibm.com>
42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
1da177e4
LT
43 */
44
45#include <linux/init.h>
1da177e4 46#include <asm/types.h>
60063497 47#include <linux/atomic.h>
73241ccc
AG
48#include <linux/fs.h>
49#include <linux/namei.h>
1da177e4
LT
50#include <linux/mm.h>
51#include <linux/module.h>
5a0e3ad6 52#include <linux/slab.h>
01116105 53#include <linux/mount.h>
3ec3b2fb 54#include <linux/socket.h>
20ca73bc 55#include <linux/mqueue.h>
1da177e4
LT
56#include <linux/audit.h>
57#include <linux/personality.h>
58#include <linux/time.h>
5bb289b5 59#include <linux/netlink.h>
f5561964 60#include <linux/compiler.h>
1da177e4 61#include <asm/unistd.h>
8c8570fb 62#include <linux/security.h>
fe7752ba 63#include <linux/list.h>
a6c043a8 64#include <linux/tty.h>
473ae30b 65#include <linux/binfmts.h>
a1f8e7f7 66#include <linux/highmem.h>
f46038ff 67#include <linux/syscalls.h>
851f7ff5 68#include <linux/capability.h>
5ad4e53b 69#include <linux/fs_struct.h>
1da177e4 70
fe7752ba 71#include "audit.h"
1da177e4 72
1da177e4
LT
73/* AUDIT_NAMES is the number of slots we reserve in the audit_context
74 * for saving names from getname(). */
75#define AUDIT_NAMES 20
76
9c937dcc
AG
77/* Indicates that audit should log the full pathname. */
78#define AUDIT_NAME_FULL -1
79
de6bbd1d
EP
80/* no execve audit message should be longer than this (userspace limits) */
81#define MAX_EXECVE_AUDIT_LEN 7500
82
471a5c7c
AV
83/* number of audit rules */
84int audit_n_rules;
85
e54dc243
AG
86/* determines whether we collect data for signals sent */
87int audit_signals;
88
851f7ff5
EP
89struct audit_cap_data {
90 kernel_cap_t permitted;
91 kernel_cap_t inheritable;
92 union {
93 unsigned int fE; /* effective bit of a file capability */
94 kernel_cap_t effective; /* effective set of a process */
95 };
96};
97
1da177e4
LT
98/* When fs/namei.c:getname() is called, we store the pointer in name and
99 * we don't let putname() free it (instead we free all of the saved
100 * pointers at syscall exit time).
101 *
102 * Further, in fs/namei.c:path_lookup() we store the inode and device. */
103struct audit_names {
104 const char *name;
9c937dcc
AG
105 int name_len; /* number of name's characters to log */
106 unsigned name_put; /* call __putname() for this name */
1da177e4
LT
107 unsigned long ino;
108 dev_t dev;
109 umode_t mode;
110 uid_t uid;
111 gid_t gid;
112 dev_t rdev;
1b50eed9 113 u32 osid;
851f7ff5
EP
114 struct audit_cap_data fcap;
115 unsigned int fcap_ver;
1da177e4
LT
116};
117
118struct audit_aux_data {
119 struct audit_aux_data *next;
120 int type;
121};
122
123#define AUDIT_AUX_IPCPERM 0
124
e54dc243
AG
125/* Number of target pids per aux struct. */
126#define AUDIT_AUX_PIDS 16
127
473ae30b
AV
128struct audit_aux_data_execve {
129 struct audit_aux_data d;
130 int argc;
131 int envc;
bdf4c48a 132 struct mm_struct *mm;
473ae30b
AV
133};
134
e54dc243
AG
135struct audit_aux_data_pids {
136 struct audit_aux_data d;
137 pid_t target_pid[AUDIT_AUX_PIDS];
c2a7780e
EP
138 uid_t target_auid[AUDIT_AUX_PIDS];
139 uid_t target_uid[AUDIT_AUX_PIDS];
4746ec5b 140 unsigned int target_sessionid[AUDIT_AUX_PIDS];
e54dc243 141 u32 target_sid[AUDIT_AUX_PIDS];
c2a7780e 142 char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
e54dc243
AG
143 int pid_count;
144};
145
3fc689e9
EP
146struct audit_aux_data_bprm_fcaps {
147 struct audit_aux_data d;
148 struct audit_cap_data fcap;
149 unsigned int fcap_ver;
150 struct audit_cap_data old_pcap;
151 struct audit_cap_data new_pcap;
152};
153
e68b75a0
EP
154struct audit_aux_data_capset {
155 struct audit_aux_data d;
156 pid_t pid;
157 struct audit_cap_data cap;
158};
159
74c3cbe3
AV
160struct audit_tree_refs {
161 struct audit_tree_refs *next;
162 struct audit_chunk *c[31];
163};
164
1da177e4
LT
165/* The per-task audit context. */
166struct audit_context {
d51374ad 167 int dummy; /* must be the first element */
1da177e4 168 int in_syscall; /* 1 if task is in a syscall */
0590b933 169 enum audit_state state, current_state;
1da177e4 170 unsigned int serial; /* serial number for record */
1da177e4 171 int major; /* syscall number */
44e51a1b 172 struct timespec ctime; /* time of syscall entry */
1da177e4 173 unsigned long argv[4]; /* syscall arguments */
2fd6f58b 174 long return_code;/* syscall return code */
0590b933 175 u64 prio;
44e51a1b 176 int return_valid; /* return code is valid */
1da177e4
LT
177 int name_count;
178 struct audit_names names[AUDIT_NAMES];
5adc8a6a 179 char * filterkey; /* key for rule that triggered record */
44707fdf 180 struct path pwd;
1da177e4
LT
181 struct audit_context *previous; /* For nested syscalls */
182 struct audit_aux_data *aux;
e54dc243 183 struct audit_aux_data *aux_pids;
4f6b434f
AV
184 struct sockaddr_storage *sockaddr;
185 size_t sockaddr_len;
1da177e4 186 /* Save things to print about task_struct */
f46038ff 187 pid_t pid, ppid;
1da177e4
LT
188 uid_t uid, euid, suid, fsuid;
189 gid_t gid, egid, sgid, fsgid;
190 unsigned long personality;
2fd6f58b 191 int arch;
1da177e4 192
a5cb013d 193 pid_t target_pid;
c2a7780e
EP
194 uid_t target_auid;
195 uid_t target_uid;
4746ec5b 196 unsigned int target_sessionid;
a5cb013d 197 u32 target_sid;
c2a7780e 198 char target_comm[TASK_COMM_LEN];
a5cb013d 199
74c3cbe3 200 struct audit_tree_refs *trees, *first_trees;
916d7576 201 struct list_head killed_trees;
44e51a1b 202 int tree_count;
74c3cbe3 203
f3298dc4
AV
204 int type;
205 union {
206 struct {
207 int nargs;
208 long args[6];
209 } socketcall;
a33e6751
AV
210 struct {
211 uid_t uid;
212 gid_t gid;
213 mode_t mode;
214 u32 osid;
e816f370
AV
215 int has_perm;
216 uid_t perm_uid;
217 gid_t perm_gid;
218 mode_t perm_mode;
219 unsigned long qbytes;
a33e6751 220 } ipc;
7392906e
AV
221 struct {
222 mqd_t mqdes;
223 struct mq_attr mqstat;
224 } mq_getsetattr;
20114f71
AV
225 struct {
226 mqd_t mqdes;
227 int sigev_signo;
228 } mq_notify;
c32c8af4
AV
229 struct {
230 mqd_t mqdes;
231 size_t msg_len;
232 unsigned int msg_prio;
233 struct timespec abs_timeout;
234 } mq_sendrecv;
564f6993
AV
235 struct {
236 int oflag;
237 mode_t mode;
238 struct mq_attr attr;
239 } mq_open;
57f71a0a
AV
240 struct {
241 pid_t pid;
242 struct audit_cap_data cap;
243 } capset;
120a795d
AV
244 struct {
245 int fd;
246 int flags;
247 } mmap;
f3298dc4 248 };
157cf649 249 int fds[2];
f3298dc4 250
1da177e4
LT
251#if AUDIT_DEBUG
252 int put_count;
253 int ino_count;
254#endif
255};
256
55669bfa
AV
257static inline int open_arg(int flags, int mask)
258{
259 int n = ACC_MODE(flags);
260 if (flags & (O_TRUNC | O_CREAT))
261 n |= AUDIT_PERM_WRITE;
262 return n & mask;
263}
264
265static int audit_match_perm(struct audit_context *ctx, int mask)
266{
c4bacefb 267 unsigned n;
1a61c88d 268 if (unlikely(!ctx))
269 return 0;
c4bacefb 270 n = ctx->major;
dbda4c0b 271
55669bfa
AV
272 switch (audit_classify_syscall(ctx->arch, n)) {
273 case 0: /* native */
274 if ((mask & AUDIT_PERM_WRITE) &&
275 audit_match_class(AUDIT_CLASS_WRITE, n))
276 return 1;
277 if ((mask & AUDIT_PERM_READ) &&
278 audit_match_class(AUDIT_CLASS_READ, n))
279 return 1;
280 if ((mask & AUDIT_PERM_ATTR) &&
281 audit_match_class(AUDIT_CLASS_CHATTR, n))
282 return 1;
283 return 0;
284 case 1: /* 32bit on biarch */
285 if ((mask & AUDIT_PERM_WRITE) &&
286 audit_match_class(AUDIT_CLASS_WRITE_32, n))
287 return 1;
288 if ((mask & AUDIT_PERM_READ) &&
289 audit_match_class(AUDIT_CLASS_READ_32, n))
290 return 1;
291 if ((mask & AUDIT_PERM_ATTR) &&
292 audit_match_class(AUDIT_CLASS_CHATTR_32, n))
293 return 1;
294 return 0;
295 case 2: /* open */
296 return mask & ACC_MODE(ctx->argv[1]);
297 case 3: /* openat */
298 return mask & ACC_MODE(ctx->argv[2]);
299 case 4: /* socketcall */
300 return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
301 case 5: /* execve */
302 return mask & AUDIT_PERM_EXEC;
303 default:
304 return 0;
305 }
306}
307
8b67dca9
AV
308static int audit_match_filetype(struct audit_context *ctx, int which)
309{
310 unsigned index = which & ~S_IFMT;
311 mode_t mode = which & S_IFMT;
1a61c88d 312
313 if (unlikely(!ctx))
314 return 0;
315
8b67dca9
AV
316 if (index >= ctx->name_count)
317 return 0;
318 if (ctx->names[index].ino == -1)
319 return 0;
320 if ((ctx->names[index].mode ^ mode) & S_IFMT)
321 return 0;
322 return 1;
323}
324
74c3cbe3
AV
325/*
326 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
327 * ->first_trees points to its beginning, ->trees - to the current end of data.
328 * ->tree_count is the number of free entries in array pointed to by ->trees.
329 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
330 * "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
331 * it's going to remain 1-element for almost any setup) until we free context itself.
332 * References in it _are_ dropped - at the same time we free/drop aux stuff.
333 */
334
335#ifdef CONFIG_AUDIT_TREE
679173b7
EP
336static void audit_set_auditable(struct audit_context *ctx)
337{
338 if (!ctx->prio) {
339 ctx->prio = 1;
340 ctx->current_state = AUDIT_RECORD_CONTEXT;
341 }
342}
343
74c3cbe3
AV
344static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
345{
346 struct audit_tree_refs *p = ctx->trees;
347 int left = ctx->tree_count;
348 if (likely(left)) {
349 p->c[--left] = chunk;
350 ctx->tree_count = left;
351 return 1;
352 }
353 if (!p)
354 return 0;
355 p = p->next;
356 if (p) {
357 p->c[30] = chunk;
358 ctx->trees = p;
359 ctx->tree_count = 30;
360 return 1;
361 }
362 return 0;
363}
364
365static int grow_tree_refs(struct audit_context *ctx)
366{
367 struct audit_tree_refs *p = ctx->trees;
368 ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
369 if (!ctx->trees) {
370 ctx->trees = p;
371 return 0;
372 }
373 if (p)
374 p->next = ctx->trees;
375 else
376 ctx->first_trees = ctx->trees;
377 ctx->tree_count = 31;
378 return 1;
379}
380#endif
381
382static void unroll_tree_refs(struct audit_context *ctx,
383 struct audit_tree_refs *p, int count)
384{
385#ifdef CONFIG_AUDIT_TREE
386 struct audit_tree_refs *q;
387 int n;
388 if (!p) {
389 /* we started with empty chain */
390 p = ctx->first_trees;
391 count = 31;
392 /* if the very first allocation has failed, nothing to do */
393 if (!p)
394 return;
395 }
396 n = count;
397 for (q = p; q != ctx->trees; q = q->next, n = 31) {
398 while (n--) {
399 audit_put_chunk(q->c[n]);
400 q->c[n] = NULL;
401 }
402 }
403 while (n-- > ctx->tree_count) {
404 audit_put_chunk(q->c[n]);
405 q->c[n] = NULL;
406 }
407 ctx->trees = p;
408 ctx->tree_count = count;
409#endif
410}
411
412static void free_tree_refs(struct audit_context *ctx)
413{
414 struct audit_tree_refs *p, *q;
415 for (p = ctx->first_trees; p; p = q) {
416 q = p->next;
417 kfree(p);
418 }
419}
420
421static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
422{
423#ifdef CONFIG_AUDIT_TREE
424 struct audit_tree_refs *p;
425 int n;
426 if (!tree)
427 return 0;
428 /* full ones */
429 for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
430 for (n = 0; n < 31; n++)
431 if (audit_tree_match(p->c[n], tree))
432 return 1;
433 }
434 /* partial */
435 if (p) {
436 for (n = ctx->tree_count; n < 31; n++)
437 if (audit_tree_match(p->c[n], tree))
438 return 1;
439 }
440#endif
441 return 0;
442}
443
f368c07d 444/* Determine if any context name data matches a rule's watch data */
1da177e4 445/* Compare a task_struct with an audit_rule. Return 1 on match, 0
f5629883
TJ
446 * otherwise.
447 *
448 * If task_creation is true, this is an explicit indication that we are
449 * filtering a task rule at task creation time. This and tsk == current are
450 * the only situations where tsk->cred may be accessed without an rcu read lock.
451 */
1da177e4 452static int audit_filter_rules(struct task_struct *tsk,
93315ed6 453 struct audit_krule *rule,
1da177e4 454 struct audit_context *ctx,
f368c07d 455 struct audit_names *name,
f5629883
TJ
456 enum audit_state *state,
457 bool task_creation)
1da177e4 458{
f5629883 459 const struct cred *cred;
2ad312d2 460 int i, j, need_sid = 1;
3dc7e315
DG
461 u32 sid;
462
f5629883
TJ
463 cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
464
1da177e4 465 for (i = 0; i < rule->field_count; i++) {
93315ed6 466 struct audit_field *f = &rule->fields[i];
1da177e4
LT
467 int result = 0;
468
93315ed6 469 switch (f->type) {
1da177e4 470 case AUDIT_PID:
93315ed6 471 result = audit_comparator(tsk->pid, f->op, f->val);
1da177e4 472 break;
3c66251e 473 case AUDIT_PPID:
419c58f1
AV
474 if (ctx) {
475 if (!ctx->ppid)
476 ctx->ppid = sys_getppid();
3c66251e 477 result = audit_comparator(ctx->ppid, f->op, f->val);
419c58f1 478 }
3c66251e 479 break;
1da177e4 480 case AUDIT_UID:
b6dff3ec 481 result = audit_comparator(cred->uid, f->op, f->val);
1da177e4
LT
482 break;
483 case AUDIT_EUID:
b6dff3ec 484 result = audit_comparator(cred->euid, f->op, f->val);
1da177e4
LT
485 break;
486 case AUDIT_SUID:
b6dff3ec 487 result = audit_comparator(cred->suid, f->op, f->val);
1da177e4
LT
488 break;
489 case AUDIT_FSUID:
b6dff3ec 490 result = audit_comparator(cred->fsuid, f->op, f->val);
1da177e4
LT
491 break;
492 case AUDIT_GID:
b6dff3ec 493 result = audit_comparator(cred->gid, f->op, f->val);
1da177e4
LT
494 break;
495 case AUDIT_EGID:
b6dff3ec 496 result = audit_comparator(cred->egid, f->op, f->val);
1da177e4
LT
497 break;
498 case AUDIT_SGID:
b6dff3ec 499 result = audit_comparator(cred->sgid, f->op, f->val);
1da177e4
LT
500 break;
501 case AUDIT_FSGID:
b6dff3ec 502 result = audit_comparator(cred->fsgid, f->op, f->val);
1da177e4
LT
503 break;
504 case AUDIT_PERS:
93315ed6 505 result = audit_comparator(tsk->personality, f->op, f->val);
1da177e4 506 break;
2fd6f58b 507 case AUDIT_ARCH:
9f8dbe9c 508 if (ctx)
93315ed6 509 result = audit_comparator(ctx->arch, f->op, f->val);
2fd6f58b 510 break;
1da177e4
LT
511
512 case AUDIT_EXIT:
513 if (ctx && ctx->return_valid)
93315ed6 514 result = audit_comparator(ctx->return_code, f->op, f->val);
1da177e4
LT
515 break;
516 case AUDIT_SUCCESS:
b01f2cc1 517 if (ctx && ctx->return_valid) {
93315ed6
AG
518 if (f->val)
519 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
b01f2cc1 520 else
93315ed6 521 result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
b01f2cc1 522 }
1da177e4
LT
523 break;
524 case AUDIT_DEVMAJOR:
f368c07d
AG
525 if (name)
526 result = audit_comparator(MAJOR(name->dev),
527 f->op, f->val);
528 else if (ctx) {
1da177e4 529 for (j = 0; j < ctx->name_count; j++) {
93315ed6 530 if (audit_comparator(MAJOR(ctx->names[j].dev), f->op, f->val)) {
1da177e4
LT
531 ++result;
532 break;
533 }
534 }
535 }
536 break;
537 case AUDIT_DEVMINOR:
f368c07d
AG
538 if (name)
539 result = audit_comparator(MINOR(name->dev),
540 f->op, f->val);
541 else if (ctx) {
1da177e4 542 for (j = 0; j < ctx->name_count; j++) {
93315ed6 543 if (audit_comparator(MINOR(ctx->names[j].dev), f->op, f->val)) {
1da177e4
LT
544 ++result;
545 break;
546 }
547 }
548 }
549 break;
550 case AUDIT_INODE:
f368c07d 551 if (name)
9c937dcc 552 result = (name->ino == f->val);
f368c07d 553 else if (ctx) {
1da177e4 554 for (j = 0; j < ctx->name_count; j++) {
9c937dcc 555 if (audit_comparator(ctx->names[j].ino, f->op, f->val)) {
1da177e4
LT
556 ++result;
557 break;
558 }
559 }
560 }
561 break;
f368c07d 562 case AUDIT_WATCH:
ae7b8f41
EP
563 if (name)
564 result = audit_watch_compare(rule->watch, name->ino, name->dev);
f368c07d 565 break;
74c3cbe3
AV
566 case AUDIT_DIR:
567 if (ctx)
568 result = match_tree_refs(ctx, rule->tree);
569 break;
1da177e4
LT
570 case AUDIT_LOGINUID:
571 result = 0;
572 if (ctx)
bfef93a5 573 result = audit_comparator(tsk->loginuid, f->op, f->val);
1da177e4 574 break;
3a6b9f85
DG
575 case AUDIT_SUBJ_USER:
576 case AUDIT_SUBJ_ROLE:
577 case AUDIT_SUBJ_TYPE:
578 case AUDIT_SUBJ_SEN:
579 case AUDIT_SUBJ_CLR:
3dc7e315
DG
580 /* NOTE: this may return negative values indicating
581 a temporary error. We simply treat this as a
582 match for now to avoid losing information that
583 may be wanted. An error message will also be
584 logged upon error */
04305e4a 585 if (f->lsm_rule) {
2ad312d2 586 if (need_sid) {
2a862b32 587 security_task_getsecid(tsk, &sid);
2ad312d2
SG
588 need_sid = 0;
589 }
d7a96f3a 590 result = security_audit_rule_match(sid, f->type,
3dc7e315 591 f->op,
04305e4a 592 f->lsm_rule,
3dc7e315 593 ctx);
2ad312d2 594 }
3dc7e315 595 break;
6e5a2d1d
DG
596 case AUDIT_OBJ_USER:
597 case AUDIT_OBJ_ROLE:
598 case AUDIT_OBJ_TYPE:
599 case AUDIT_OBJ_LEV_LOW:
600 case AUDIT_OBJ_LEV_HIGH:
601 /* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
602 also applies here */
04305e4a 603 if (f->lsm_rule) {
6e5a2d1d
DG
604 /* Find files that match */
605 if (name) {
d7a96f3a 606 result = security_audit_rule_match(
6e5a2d1d 607 name->osid, f->type, f->op,
04305e4a 608 f->lsm_rule, ctx);
6e5a2d1d
DG
609 } else if (ctx) {
610 for (j = 0; j < ctx->name_count; j++) {
d7a96f3a 611 if (security_audit_rule_match(
6e5a2d1d
DG
612 ctx->names[j].osid,
613 f->type, f->op,
04305e4a 614 f->lsm_rule, ctx)) {
6e5a2d1d
DG
615 ++result;
616 break;
617 }
618 }
619 }
620 /* Find ipc objects that match */
a33e6751
AV
621 if (!ctx || ctx->type != AUDIT_IPC)
622 break;
623 if (security_audit_rule_match(ctx->ipc.osid,
624 f->type, f->op,
625 f->lsm_rule, ctx))
626 ++result;
6e5a2d1d
DG
627 }
628 break;
1da177e4
LT
629 case AUDIT_ARG0:
630 case AUDIT_ARG1:
631 case AUDIT_ARG2:
632 case AUDIT_ARG3:
633 if (ctx)
93315ed6 634 result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
1da177e4 635 break;
5adc8a6a
AG
636 case AUDIT_FILTERKEY:
637 /* ignore this field for filtering */
638 result = 1;
639 break;
55669bfa
AV
640 case AUDIT_PERM:
641 result = audit_match_perm(ctx, f->val);
642 break;
8b67dca9
AV
643 case AUDIT_FILETYPE:
644 result = audit_match_filetype(ctx, f->val);
645 break;
1da177e4
LT
646 }
647
f5629883 648 if (!result)
1da177e4
LT
649 return 0;
650 }
0590b933
AV
651
652 if (ctx) {
653 if (rule->prio <= ctx->prio)
654 return 0;
655 if (rule->filterkey) {
656 kfree(ctx->filterkey);
657 ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
658 }
659 ctx->prio = rule->prio;
660 }
1da177e4
LT
661 switch (rule->action) {
662 case AUDIT_NEVER: *state = AUDIT_DISABLED; break;
1da177e4
LT
663 case AUDIT_ALWAYS: *state = AUDIT_RECORD_CONTEXT; break;
664 }
665 return 1;
666}
667
668/* At process creation time, we can determine if system-call auditing is
669 * completely disabled for this task. Since we only have the task
670 * structure at this point, we can only check uid and gid.
671 */
e048e02c 672static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
1da177e4
LT
673{
674 struct audit_entry *e;
675 enum audit_state state;
676
677 rcu_read_lock();
0f45aa18 678 list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
f5629883
TJ
679 if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
680 &state, true)) {
e048e02c
AV
681 if (state == AUDIT_RECORD_CONTEXT)
682 *key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
1da177e4
LT
683 rcu_read_unlock();
684 return state;
685 }
686 }
687 rcu_read_unlock();
688 return AUDIT_BUILD_CONTEXT;
689}
690
691/* At syscall entry and exit time, this filter is called if the
692 * audit_state is not low enough that auditing cannot take place, but is
23f32d18 693 * also not high enough that we already know we have to write an audit
b0dd25a8 694 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
1da177e4
LT
695 */
696static enum audit_state audit_filter_syscall(struct task_struct *tsk,
697 struct audit_context *ctx,
698 struct list_head *list)
699{
700 struct audit_entry *e;
c3896495 701 enum audit_state state;
1da177e4 702
351bb722 703 if (audit_pid && tsk->tgid == audit_pid)
f7056d64
DW
704 return AUDIT_DISABLED;
705
1da177e4 706 rcu_read_lock();
c3896495 707 if (!list_empty(list)) {
b63862f4
DK
708 int word = AUDIT_WORD(ctx->major);
709 int bit = AUDIT_BIT(ctx->major);
710
711 list_for_each_entry_rcu(e, list, list) {
f368c07d
AG
712 if ((e->rule.mask[word] & bit) == bit &&
713 audit_filter_rules(tsk, &e->rule, ctx, NULL,
f5629883 714 &state, false)) {
f368c07d 715 rcu_read_unlock();
0590b933 716 ctx->current_state = state;
f368c07d
AG
717 return state;
718 }
719 }
720 }
721 rcu_read_unlock();
722 return AUDIT_BUILD_CONTEXT;
723}
724
725/* At syscall exit time, this filter is called if any audit_names[] have been
726 * collected during syscall processing. We only check rules in sublists at hash
727 * buckets applicable to the inode numbers in audit_names[].
728 * Regarding audit_state, same rules apply as for audit_filter_syscall().
729 */
0590b933 730void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
f368c07d
AG
731{
732 int i;
733 struct audit_entry *e;
734 enum audit_state state;
735
736 if (audit_pid && tsk->tgid == audit_pid)
0590b933 737 return;
f368c07d
AG
738
739 rcu_read_lock();
740 for (i = 0; i < ctx->name_count; i++) {
741 int word = AUDIT_WORD(ctx->major);
742 int bit = AUDIT_BIT(ctx->major);
743 struct audit_names *n = &ctx->names[i];
744 int h = audit_hash_ino((u32)n->ino);
745 struct list_head *list = &audit_inode_hash[h];
746
747 if (list_empty(list))
748 continue;
749
750 list_for_each_entry_rcu(e, list, list) {
751 if ((e->rule.mask[word] & bit) == bit &&
f5629883
TJ
752 audit_filter_rules(tsk, &e->rule, ctx, n,
753 &state, false)) {
b63862f4 754 rcu_read_unlock();
0590b933
AV
755 ctx->current_state = state;
756 return;
b63862f4 757 }
0f45aa18
DW
758 }
759 }
760 rcu_read_unlock();
0f45aa18
DW
761}
762
1da177e4
LT
763static inline struct audit_context *audit_get_context(struct task_struct *tsk,
764 int return_valid,
6d208da8 765 long return_code)
1da177e4
LT
766{
767 struct audit_context *context = tsk->audit_context;
768
769 if (likely(!context))
770 return NULL;
771 context->return_valid = return_valid;
f701b75e
EP
772
773 /*
774 * we need to fix up the return code in the audit logs if the actual
775 * return codes are later going to be fixed up by the arch specific
776 * signal handlers
777 *
778 * This is actually a test for:
779 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
780 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
781 *
782 * but is faster than a bunch of ||
783 */
784 if (unlikely(return_code <= -ERESTARTSYS) &&
785 (return_code >= -ERESTART_RESTARTBLOCK) &&
786 (return_code != -ENOIOCTLCMD))
787 context->return_code = -EINTR;
788 else
789 context->return_code = return_code;
1da177e4 790
0590b933
AV
791 if (context->in_syscall && !context->dummy) {
792 audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]);
793 audit_filter_inodes(tsk, context);
1da177e4
LT
794 }
795
1da177e4
LT
796 tsk->audit_context = NULL;
797 return context;
798}
799
800static inline void audit_free_names(struct audit_context *context)
801{
802 int i;
803
804#if AUDIT_DEBUG == 2
0590b933 805 if (context->put_count + context->ino_count != context->name_count) {
73241ccc 806 printk(KERN_ERR "%s:%d(:%d): major=%d in_syscall=%d"
1da177e4
LT
807 " name_count=%d put_count=%d"
808 " ino_count=%d [NOT freeing]\n",
73241ccc 809 __FILE__, __LINE__,
1da177e4
LT
810 context->serial, context->major, context->in_syscall,
811 context->name_count, context->put_count,
812 context->ino_count);
8c8570fb 813 for (i = 0; i < context->name_count; i++) {
1da177e4
LT
814 printk(KERN_ERR "names[%d] = %p = %s\n", i,
815 context->names[i].name,
73241ccc 816 context->names[i].name ?: "(null)");
8c8570fb 817 }
1da177e4
LT
818 dump_stack();
819 return;
820 }
821#endif
822#if AUDIT_DEBUG
823 context->put_count = 0;
824 context->ino_count = 0;
825#endif
826
8c8570fb 827 for (i = 0; i < context->name_count; i++) {
9c937dcc 828 if (context->names[i].name && context->names[i].name_put)
1da177e4 829 __putname(context->names[i].name);
8c8570fb 830 }
1da177e4 831 context->name_count = 0;
44707fdf
JB
832 path_put(&context->pwd);
833 context->pwd.dentry = NULL;
834 context->pwd.mnt = NULL;
1da177e4
LT
835}
836
837static inline void audit_free_aux(struct audit_context *context)
838{
839 struct audit_aux_data *aux;
840
841 while ((aux = context->aux)) {
842 context->aux = aux->next;
843 kfree(aux);
844 }
e54dc243
AG
845 while ((aux = context->aux_pids)) {
846 context->aux_pids = aux->next;
847 kfree(aux);
848 }
1da177e4
LT
849}
850
851static inline void audit_zero_context(struct audit_context *context,
852 enum audit_state state)
853{
1da177e4
LT
854 memset(context, 0, sizeof(*context));
855 context->state = state;
0590b933 856 context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
1da177e4
LT
857}
858
859static inline struct audit_context *audit_alloc_context(enum audit_state state)
860{
861 struct audit_context *context;
862
863 if (!(context = kmalloc(sizeof(*context), GFP_KERNEL)))
864 return NULL;
865 audit_zero_context(context, state);
916d7576 866 INIT_LIST_HEAD(&context->killed_trees);
1da177e4
LT
867 return context;
868}
869
b0dd25a8
RD
870/**
871 * audit_alloc - allocate an audit context block for a task
872 * @tsk: task
873 *
874 * Filter on the task information and allocate a per-task audit context
1da177e4
LT
875 * if necessary. Doing so turns on system call auditing for the
876 * specified task. This is called from copy_process, so no lock is
b0dd25a8
RD
877 * needed.
878 */
1da177e4
LT
879int audit_alloc(struct task_struct *tsk)
880{
881 struct audit_context *context;
882 enum audit_state state;
e048e02c 883 char *key = NULL;
1da177e4 884
b593d384 885 if (likely(!audit_ever_enabled))
1da177e4
LT
886 return 0; /* Return if not auditing. */
887
e048e02c 888 state = audit_filter_task(tsk, &key);
1da177e4
LT
889 if (likely(state == AUDIT_DISABLED))
890 return 0;
891
892 if (!(context = audit_alloc_context(state))) {
e048e02c 893 kfree(key);
1da177e4
LT
894 audit_log_lost("out of memory in audit_alloc");
895 return -ENOMEM;
896 }
e048e02c 897 context->filterkey = key;
1da177e4 898
1da177e4
LT
899 tsk->audit_context = context;
900 set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
901 return 0;
902}
903
904static inline void audit_free_context(struct audit_context *context)
905{
906 struct audit_context *previous;
907 int count = 0;
908
909 do {
910 previous = context->previous;
911 if (previous || (count && count < 10)) {
912 ++count;
913 printk(KERN_ERR "audit(:%d): major=%d name_count=%d:"
914 " freeing multiple contexts (%d)\n",
915 context->serial, context->major,
916 context->name_count, count);
917 }
918 audit_free_names(context);
74c3cbe3
AV
919 unroll_tree_refs(context, NULL, 0);
920 free_tree_refs(context);
1da177e4 921 audit_free_aux(context);
5adc8a6a 922 kfree(context->filterkey);
4f6b434f 923 kfree(context->sockaddr);
1da177e4
LT
924 kfree(context);
925 context = previous;
926 } while (context);
927 if (count >= 10)
928 printk(KERN_ERR "audit: freed %d contexts\n", count);
929}
930
161a09e7 931void audit_log_task_context(struct audit_buffer *ab)
8c8570fb
DK
932{
933 char *ctx = NULL;
c4823bce
AV
934 unsigned len;
935 int error;
936 u32 sid;
937
2a862b32 938 security_task_getsecid(current, &sid);
c4823bce
AV
939 if (!sid)
940 return;
8c8570fb 941
2a862b32 942 error = security_secid_to_secctx(sid, &ctx, &len);
c4823bce
AV
943 if (error) {
944 if (error != -EINVAL)
8c8570fb
DK
945 goto error_path;
946 return;
947 }
948
8c8570fb 949 audit_log_format(ab, " subj=%s", ctx);
2a862b32 950 security_release_secctx(ctx, len);
7306a0b9 951 return;
8c8570fb
DK
952
953error_path:
7306a0b9 954 audit_panic("error in audit_log_task_context");
8c8570fb
DK
955 return;
956}
957
161a09e7
JL
958EXPORT_SYMBOL(audit_log_task_context);
959
e495149b 960static void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
219f0817 961{
45d9bb0e
AV
962 char name[sizeof(tsk->comm)];
963 struct mm_struct *mm = tsk->mm;
219f0817
SS
964 struct vm_area_struct *vma;
965
e495149b
AV
966 /* tsk == current */
967
45d9bb0e 968 get_task_comm(name, tsk);
99e45eea
DW
969 audit_log_format(ab, " comm=");
970 audit_log_untrustedstring(ab, name);
219f0817 971
e495149b
AV
972 if (mm) {
973 down_read(&mm->mmap_sem);
974 vma = mm->mmap;
975 while (vma) {
976 if ((vma->vm_flags & VM_EXECUTABLE) &&
977 vma->vm_file) {
978 audit_log_d_path(ab, "exe=",
44707fdf 979 &vma->vm_file->f_path);
e495149b
AV
980 break;
981 }
982 vma = vma->vm_next;
219f0817 983 }
e495149b 984 up_read(&mm->mmap_sem);
219f0817 985 }
e495149b 986 audit_log_task_context(ab);
219f0817
SS
987}
988
e54dc243 989static int audit_log_pid_context(struct audit_context *context, pid_t pid,
4746ec5b
EP
990 uid_t auid, uid_t uid, unsigned int sessionid,
991 u32 sid, char *comm)
e54dc243
AG
992{
993 struct audit_buffer *ab;
2a862b32 994 char *ctx = NULL;
e54dc243
AG
995 u32 len;
996 int rc = 0;
997
998 ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
999 if (!ab)
6246ccab 1000 return rc;
e54dc243 1001
4746ec5b
EP
1002 audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid, auid,
1003 uid, sessionid);
2a862b32 1004 if (security_secid_to_secctx(sid, &ctx, &len)) {
c2a7780e 1005 audit_log_format(ab, " obj=(none)");
e54dc243 1006 rc = 1;
2a862b32
AD
1007 } else {
1008 audit_log_format(ab, " obj=%s", ctx);
1009 security_release_secctx(ctx, len);
1010 }
c2a7780e
EP
1011 audit_log_format(ab, " ocomm=");
1012 audit_log_untrustedstring(ab, comm);
e54dc243 1013 audit_log_end(ab);
e54dc243
AG
1014
1015 return rc;
1016}
1017
de6bbd1d
EP
1018/*
1019 * to_send and len_sent accounting are very loose estimates. We aren't
1020 * really worried about a hard cap to MAX_EXECVE_AUDIT_LEN so much as being
25985edc 1021 * within about 500 bytes (next page boundary)
de6bbd1d
EP
1022 *
1023 * why snprintf? an int is up to 12 digits long. if we just assumed when
1024 * logging that a[%d]= was going to be 16 characters long we would be wasting
1025 * space in every audit message. In one 7500 byte message we can log up to
1026 * about 1000 min size arguments. That comes down to about 50% waste of space
1027 * if we didn't do the snprintf to find out how long arg_num_len was.
1028 */
1029static int audit_log_single_execve_arg(struct audit_context *context,
1030 struct audit_buffer **ab,
1031 int arg_num,
1032 size_t *len_sent,
1033 const char __user *p,
1034 char *buf)
bdf4c48a 1035{
de6bbd1d
EP
1036 char arg_num_len_buf[12];
1037 const char __user *tmp_p = p;
b87ce6e4
EP
1038 /* how many digits are in arg_num? 5 is the length of ' a=""' */
1039 size_t arg_num_len = snprintf(arg_num_len_buf, 12, "%d", arg_num) + 5;
de6bbd1d
EP
1040 size_t len, len_left, to_send;
1041 size_t max_execve_audit_len = MAX_EXECVE_AUDIT_LEN;
1042 unsigned int i, has_cntl = 0, too_long = 0;
1043 int ret;
1044
1045 /* strnlen_user includes the null we don't want to send */
1046 len_left = len = strnlen_user(p, MAX_ARG_STRLEN) - 1;
bdf4c48a 1047
de6bbd1d
EP
1048 /*
1049 * We just created this mm, if we can't find the strings
1050 * we just copied into it something is _very_ wrong. Similar
1051 * for strings that are too long, we should not have created
1052 * any.
1053 */
b0abcfc1 1054 if (unlikely((len == -1) || len > MAX_ARG_STRLEN - 1)) {
de6bbd1d
EP
1055 WARN_ON(1);
1056 send_sig(SIGKILL, current, 0);
b0abcfc1 1057 return -1;
de6bbd1d 1058 }
040b3a2d 1059
de6bbd1d
EP
1060 /* walk the whole argument looking for non-ascii chars */
1061 do {
1062 if (len_left > MAX_EXECVE_AUDIT_LEN)
1063 to_send = MAX_EXECVE_AUDIT_LEN;
1064 else
1065 to_send = len_left;
1066 ret = copy_from_user(buf, tmp_p, to_send);
bdf4c48a 1067 /*
de6bbd1d
EP
1068 * There is no reason for this copy to be short. We just
1069 * copied them here, and the mm hasn't been exposed to user-
1070 * space yet.
bdf4c48a 1071 */
de6bbd1d 1072 if (ret) {
bdf4c48a
PZ
1073 WARN_ON(1);
1074 send_sig(SIGKILL, current, 0);
b0abcfc1 1075 return -1;
bdf4c48a 1076 }
de6bbd1d
EP
1077 buf[to_send] = '\0';
1078 has_cntl = audit_string_contains_control(buf, to_send);
1079 if (has_cntl) {
1080 /*
1081 * hex messages get logged as 2 bytes, so we can only
1082 * send half as much in each message
1083 */
1084 max_execve_audit_len = MAX_EXECVE_AUDIT_LEN / 2;
bdf4c48a
PZ
1085 break;
1086 }
de6bbd1d
EP
1087 len_left -= to_send;
1088 tmp_p += to_send;
1089 } while (len_left > 0);
1090
1091 len_left = len;
1092
1093 if (len > max_execve_audit_len)
1094 too_long = 1;
1095
1096 /* rewalk the argument actually logging the message */
1097 for (i = 0; len_left > 0; i++) {
1098 int room_left;
1099
1100 if (len_left > max_execve_audit_len)
1101 to_send = max_execve_audit_len;
1102 else
1103 to_send = len_left;
1104
1105 /* do we have space left to send this argument in this ab? */
1106 room_left = MAX_EXECVE_AUDIT_LEN - arg_num_len - *len_sent;
1107 if (has_cntl)
1108 room_left -= (to_send * 2);
1109 else
1110 room_left -= to_send;
1111 if (room_left < 0) {
1112 *len_sent = 0;
1113 audit_log_end(*ab);
1114 *ab = audit_log_start(context, GFP_KERNEL, AUDIT_EXECVE);
1115 if (!*ab)
1116 return 0;
1117 }
bdf4c48a 1118
bdf4c48a 1119 /*
de6bbd1d
EP
1120 * first record needs to say how long the original string was
1121 * so we can be sure nothing was lost.
1122 */
1123 if ((i == 0) && (too_long))
ca96a895 1124 audit_log_format(*ab, " a%d_len=%zu", arg_num,
de6bbd1d
EP
1125 has_cntl ? 2*len : len);
1126
1127 /*
1128 * normally arguments are small enough to fit and we already
1129 * filled buf above when we checked for control characters
1130 * so don't bother with another copy_from_user
bdf4c48a 1131 */
de6bbd1d
EP
1132 if (len >= max_execve_audit_len)
1133 ret = copy_from_user(buf, p, to_send);
1134 else
1135 ret = 0;
040b3a2d 1136 if (ret) {
bdf4c48a
PZ
1137 WARN_ON(1);
1138 send_sig(SIGKILL, current, 0);
b0abcfc1 1139 return -1;
bdf4c48a 1140 }
de6bbd1d
EP
1141 buf[to_send] = '\0';
1142
1143 /* actually log it */
ca96a895 1144 audit_log_format(*ab, " a%d", arg_num);
de6bbd1d
EP
1145 if (too_long)
1146 audit_log_format(*ab, "[%d]", i);
1147 audit_log_format(*ab, "=");
1148 if (has_cntl)
b556f8ad 1149 audit_log_n_hex(*ab, buf, to_send);
de6bbd1d 1150 else
9d960985 1151 audit_log_string(*ab, buf);
de6bbd1d
EP
1152
1153 p += to_send;
1154 len_left -= to_send;
1155 *len_sent += arg_num_len;
1156 if (has_cntl)
1157 *len_sent += to_send * 2;
1158 else
1159 *len_sent += to_send;
1160 }
1161 /* include the null we didn't log */
1162 return len + 1;
1163}
1164
1165static void audit_log_execve_info(struct audit_context *context,
1166 struct audit_buffer **ab,
1167 struct audit_aux_data_execve *axi)
1168{
1169 int i;
1170 size_t len, len_sent = 0;
1171 const char __user *p;
1172 char *buf;
bdf4c48a 1173
de6bbd1d
EP
1174 if (axi->mm != current->mm)
1175 return; /* execve failed, no additional info */
1176
1177 p = (const char __user *)axi->mm->arg_start;
bdf4c48a 1178
ca96a895 1179 audit_log_format(*ab, "argc=%d", axi->argc);
de6bbd1d
EP
1180
1181 /*
1182 * we need some kernel buffer to hold the userspace args. Just
1183 * allocate one big one rather than allocating one of the right size
1184 * for every single argument inside audit_log_single_execve_arg()
1185 * should be <8k allocation so should be pretty safe.
1186 */
1187 buf = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1188 if (!buf) {
1189 audit_panic("out of memory for argv string\n");
1190 return;
bdf4c48a 1191 }
de6bbd1d
EP
1192
1193 for (i = 0; i < axi->argc; i++) {
1194 len = audit_log_single_execve_arg(context, ab, i,
1195 &len_sent, p, buf);
1196 if (len <= 0)
1197 break;
1198 p += len;
1199 }
1200 kfree(buf);
bdf4c48a
PZ
1201}
1202
851f7ff5
EP
1203static void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap)
1204{
1205 int i;
1206
1207 audit_log_format(ab, " %s=", prefix);
1208 CAP_FOR_EACH_U32(i) {
1209 audit_log_format(ab, "%08x", cap->cap[(_KERNEL_CAPABILITY_U32S-1) - i]);
1210 }
1211}
1212
1213static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1214{
1215 kernel_cap_t *perm = &name->fcap.permitted;
1216 kernel_cap_t *inh = &name->fcap.inheritable;
1217 int log = 0;
1218
1219 if (!cap_isclear(*perm)) {
1220 audit_log_cap(ab, "cap_fp", perm);
1221 log = 1;
1222 }
1223 if (!cap_isclear(*inh)) {
1224 audit_log_cap(ab, "cap_fi", inh);
1225 log = 1;
1226 }
1227
1228 if (log)
1229 audit_log_format(ab, " cap_fe=%d cap_fver=%x", name->fcap.fE, name->fcap_ver);
1230}
1231
a33e6751 1232static void show_special(struct audit_context *context, int *call_panic)
f3298dc4
AV
1233{
1234 struct audit_buffer *ab;
1235 int i;
1236
1237 ab = audit_log_start(context, GFP_KERNEL, context->type);
1238 if (!ab)
1239 return;
1240
1241 switch (context->type) {
1242 case AUDIT_SOCKETCALL: {
1243 int nargs = context->socketcall.nargs;
1244 audit_log_format(ab, "nargs=%d", nargs);
1245 for (i = 0; i < nargs; i++)
1246 audit_log_format(ab, " a%d=%lx", i,
1247 context->socketcall.args[i]);
1248 break; }
a33e6751
AV
1249 case AUDIT_IPC: {
1250 u32 osid = context->ipc.osid;
1251
1252 audit_log_format(ab, "ouid=%u ogid=%u mode=%#o",
1253 context->ipc.uid, context->ipc.gid, context->ipc.mode);
1254 if (osid) {
1255 char *ctx = NULL;
1256 u32 len;
1257 if (security_secid_to_secctx(osid, &ctx, &len)) {
1258 audit_log_format(ab, " osid=%u", osid);
1259 *call_panic = 1;
1260 } else {
1261 audit_log_format(ab, " obj=%s", ctx);
1262 security_release_secctx(ctx, len);
1263 }
1264 }
e816f370
AV
1265 if (context->ipc.has_perm) {
1266 audit_log_end(ab);
1267 ab = audit_log_start(context, GFP_KERNEL,
1268 AUDIT_IPC_SET_PERM);
1269 audit_log_format(ab,
1270 "qbytes=%lx ouid=%u ogid=%u mode=%#o",
1271 context->ipc.qbytes,
1272 context->ipc.perm_uid,
1273 context->ipc.perm_gid,
1274 context->ipc.perm_mode);
1275 if (!ab)
1276 return;
1277 }
a33e6751 1278 break; }
564f6993
AV
1279 case AUDIT_MQ_OPEN: {
1280 audit_log_format(ab,
1281 "oflag=0x%x mode=%#o mq_flags=0x%lx mq_maxmsg=%ld "
1282 "mq_msgsize=%ld mq_curmsgs=%ld",
1283 context->mq_open.oflag, context->mq_open.mode,
1284 context->mq_open.attr.mq_flags,
1285 context->mq_open.attr.mq_maxmsg,
1286 context->mq_open.attr.mq_msgsize,
1287 context->mq_open.attr.mq_curmsgs);
1288 break; }
c32c8af4
AV
1289 case AUDIT_MQ_SENDRECV: {
1290 audit_log_format(ab,
1291 "mqdes=%d msg_len=%zd msg_prio=%u "
1292 "abs_timeout_sec=%ld abs_timeout_nsec=%ld",
1293 context->mq_sendrecv.mqdes,
1294 context->mq_sendrecv.msg_len,
1295 context->mq_sendrecv.msg_prio,
1296 context->mq_sendrecv.abs_timeout.tv_sec,
1297 context->mq_sendrecv.abs_timeout.tv_nsec);
1298 break; }
20114f71
AV
1299 case AUDIT_MQ_NOTIFY: {
1300 audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1301 context->mq_notify.mqdes,
1302 context->mq_notify.sigev_signo);
1303 break; }
7392906e
AV
1304 case AUDIT_MQ_GETSETATTR: {
1305 struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1306 audit_log_format(ab,
1307 "mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1308 "mq_curmsgs=%ld ",
1309 context->mq_getsetattr.mqdes,
1310 attr->mq_flags, attr->mq_maxmsg,
1311 attr->mq_msgsize, attr->mq_curmsgs);
1312 break; }
57f71a0a
AV
1313 case AUDIT_CAPSET: {
1314 audit_log_format(ab, "pid=%d", context->capset.pid);
1315 audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1316 audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1317 audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1318 break; }
120a795d
AV
1319 case AUDIT_MMAP: {
1320 audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1321 context->mmap.flags);
1322 break; }
f3298dc4
AV
1323 }
1324 audit_log_end(ab);
1325}
1326
e495149b 1327static void audit_log_exit(struct audit_context *context, struct task_struct *tsk)
1da177e4 1328{
c69e8d9c 1329 const struct cred *cred;
9c7aa6aa 1330 int i, call_panic = 0;
1da177e4 1331 struct audit_buffer *ab;
7551ced3 1332 struct audit_aux_data *aux;
a6c043a8 1333 const char *tty;
1da177e4 1334
e495149b 1335 /* tsk == current */
3f2792ff 1336 context->pid = tsk->pid;
419c58f1
AV
1337 if (!context->ppid)
1338 context->ppid = sys_getppid();
c69e8d9c
DH
1339 cred = current_cred();
1340 context->uid = cred->uid;
1341 context->gid = cred->gid;
1342 context->euid = cred->euid;
1343 context->suid = cred->suid;
b6dff3ec 1344 context->fsuid = cred->fsuid;
c69e8d9c
DH
1345 context->egid = cred->egid;
1346 context->sgid = cred->sgid;
b6dff3ec 1347 context->fsgid = cred->fsgid;
3f2792ff 1348 context->personality = tsk->personality;
e495149b
AV
1349
1350 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1da177e4
LT
1351 if (!ab)
1352 return; /* audit_panic has been called */
bccf6ae0
DW
1353 audit_log_format(ab, "arch=%x syscall=%d",
1354 context->arch, context->major);
1da177e4
LT
1355 if (context->personality != PER_LINUX)
1356 audit_log_format(ab, " per=%lx", context->personality);
1357 if (context->return_valid)
9f8dbe9c 1358 audit_log_format(ab, " success=%s exit=%ld",
2fd6f58b
DW
1359 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1360 context->return_code);
eb84a20e 1361
dbda4c0b 1362 spin_lock_irq(&tsk->sighand->siglock);
45d9bb0e
AV
1363 if (tsk->signal && tsk->signal->tty && tsk->signal->tty->name)
1364 tty = tsk->signal->tty->name;
a6c043a8
SG
1365 else
1366 tty = "(none)";
dbda4c0b
AC
1367 spin_unlock_irq(&tsk->sighand->siglock);
1368
1da177e4
LT
1369 audit_log_format(ab,
1370 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d"
f46038ff 1371 " ppid=%d pid=%d auid=%u uid=%u gid=%u"
326e9c8b 1372 " euid=%u suid=%u fsuid=%u"
4746ec5b 1373 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
1da177e4
LT
1374 context->argv[0],
1375 context->argv[1],
1376 context->argv[2],
1377 context->argv[3],
1378 context->name_count,
f46038ff 1379 context->ppid,
1da177e4 1380 context->pid,
bfef93a5 1381 tsk->loginuid,
1da177e4
LT
1382 context->uid,
1383 context->gid,
1384 context->euid, context->suid, context->fsuid,
4746ec5b
EP
1385 context->egid, context->sgid, context->fsgid, tty,
1386 tsk->sessionid);
eb84a20e 1387
eb84a20e 1388
e495149b 1389 audit_log_task_info(ab, tsk);
9d960985 1390 audit_log_key(ab, context->filterkey);
1da177e4 1391 audit_log_end(ab);
1da177e4 1392
7551ced3 1393 for (aux = context->aux; aux; aux = aux->next) {
c0404993 1394
e495149b 1395 ab = audit_log_start(context, GFP_KERNEL, aux->type);
1da177e4
LT
1396 if (!ab)
1397 continue; /* audit_panic has been called */
1398
1da177e4 1399 switch (aux->type) {
20ca73bc 1400
473ae30b
AV
1401 case AUDIT_EXECVE: {
1402 struct audit_aux_data_execve *axi = (void *)aux;
de6bbd1d 1403 audit_log_execve_info(context, &ab, axi);
473ae30b 1404 break; }
073115d6 1405
3fc689e9
EP
1406 case AUDIT_BPRM_FCAPS: {
1407 struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1408 audit_log_format(ab, "fver=%x", axs->fcap_ver);
1409 audit_log_cap(ab, "fp", &axs->fcap.permitted);
1410 audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1411 audit_log_format(ab, " fe=%d", axs->fcap.fE);
1412 audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1413 audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1414 audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1415 audit_log_cap(ab, "new_pp", &axs->new_pcap.permitted);
1416 audit_log_cap(ab, "new_pi", &axs->new_pcap.inheritable);
1417 audit_log_cap(ab, "new_pe", &axs->new_pcap.effective);
1418 break; }
1419
1da177e4
LT
1420 }
1421 audit_log_end(ab);
1da177e4
LT
1422 }
1423
f3298dc4 1424 if (context->type)
a33e6751 1425 show_special(context, &call_panic);
f3298dc4 1426
157cf649
AV
1427 if (context->fds[0] >= 0) {
1428 ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1429 if (ab) {
1430 audit_log_format(ab, "fd0=%d fd1=%d",
1431 context->fds[0], context->fds[1]);
1432 audit_log_end(ab);
1433 }
1434 }
1435
4f6b434f
AV
1436 if (context->sockaddr_len) {
1437 ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1438 if (ab) {
1439 audit_log_format(ab, "saddr=");
1440 audit_log_n_hex(ab, (void *)context->sockaddr,
1441 context->sockaddr_len);
1442 audit_log_end(ab);
1443 }
1444 }
1445
e54dc243
AG
1446 for (aux = context->aux_pids; aux; aux = aux->next) {
1447 struct audit_aux_data_pids *axs = (void *)aux;
e54dc243
AG
1448
1449 for (i = 0; i < axs->pid_count; i++)
1450 if (audit_log_pid_context(context, axs->target_pid[i],
c2a7780e
EP
1451 axs->target_auid[i],
1452 axs->target_uid[i],
4746ec5b 1453 axs->target_sessionid[i],
c2a7780e
EP
1454 axs->target_sid[i],
1455 axs->target_comm[i]))
e54dc243 1456 call_panic = 1;
a5cb013d
AV
1457 }
1458
e54dc243
AG
1459 if (context->target_pid &&
1460 audit_log_pid_context(context, context->target_pid,
c2a7780e 1461 context->target_auid, context->target_uid,
4746ec5b 1462 context->target_sessionid,
c2a7780e 1463 context->target_sid, context->target_comm))
e54dc243
AG
1464 call_panic = 1;
1465
44707fdf 1466 if (context->pwd.dentry && context->pwd.mnt) {
e495149b 1467 ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
8f37d47c 1468 if (ab) {
44707fdf 1469 audit_log_d_path(ab, "cwd=", &context->pwd);
8f37d47c
DW
1470 audit_log_end(ab);
1471 }
1472 }
1da177e4 1473 for (i = 0; i < context->name_count; i++) {
9c937dcc 1474 struct audit_names *n = &context->names[i];
73241ccc 1475
e495149b 1476 ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1da177e4
LT
1477 if (!ab)
1478 continue; /* audit_panic has been called */
8f37d47c 1479
1da177e4 1480 audit_log_format(ab, "item=%d", i);
73241ccc 1481
9c937dcc
AG
1482 if (n->name) {
1483 switch(n->name_len) {
1484 case AUDIT_NAME_FULL:
1485 /* log the full path */
1486 audit_log_format(ab, " name=");
1487 audit_log_untrustedstring(ab, n->name);
1488 break;
1489 case 0:
1490 /* name was specified as a relative path and the
1491 * directory component is the cwd */
def57543 1492 audit_log_d_path(ab, "name=", &context->pwd);
9c937dcc
AG
1493 break;
1494 default:
1495 /* log the name's directory component */
1496 audit_log_format(ab, " name=");
b556f8ad
EP
1497 audit_log_n_untrustedstring(ab, n->name,
1498 n->name_len);
9c937dcc
AG
1499 }
1500 } else
1501 audit_log_format(ab, " name=(null)");
1502
1503 if (n->ino != (unsigned long)-1) {
1504 audit_log_format(ab, " inode=%lu"
1505 " dev=%02x:%02x mode=%#o"
1506 " ouid=%u ogid=%u rdev=%02x:%02x",
1507 n->ino,
1508 MAJOR(n->dev),
1509 MINOR(n->dev),
1510 n->mode,
1511 n->uid,
1512 n->gid,
1513 MAJOR(n->rdev),
1514 MINOR(n->rdev));
1515 }
1516 if (n->osid != 0) {
1b50eed9
SG
1517 char *ctx = NULL;
1518 u32 len;
2a862b32 1519 if (security_secid_to_secctx(
9c937dcc
AG
1520 n->osid, &ctx, &len)) {
1521 audit_log_format(ab, " osid=%u", n->osid);
9c7aa6aa 1522 call_panic = 2;
2a862b32 1523 } else {
1b50eed9 1524 audit_log_format(ab, " obj=%s", ctx);
2a862b32
AD
1525 security_release_secctx(ctx, len);
1526 }
8c8570fb
DK
1527 }
1528
851f7ff5
EP
1529 audit_log_fcaps(ab, n);
1530
1da177e4
LT
1531 audit_log_end(ab);
1532 }
c0641f28
EP
1533
1534 /* Send end of event record to help user space know we are finished */
1535 ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1536 if (ab)
1537 audit_log_end(ab);
9c7aa6aa
SG
1538 if (call_panic)
1539 audit_panic("error converting sid to string");
1da177e4
LT
1540}
1541
b0dd25a8
RD
1542/**
1543 * audit_free - free a per-task audit context
1544 * @tsk: task whose audit context block to free
1545 *
fa84cb93 1546 * Called from copy_process and do_exit
b0dd25a8 1547 */
1da177e4
LT
1548void audit_free(struct task_struct *tsk)
1549{
1550 struct audit_context *context;
1551
1da177e4 1552 context = audit_get_context(tsk, 0, 0);
1da177e4
LT
1553 if (likely(!context))
1554 return;
1555
1556 /* Check for system calls that do not go through the exit
9f8dbe9c
DW
1557 * function (e.g., exit_group), then free context block.
1558 * We use GFP_ATOMIC here because we might be doing this
f5561964 1559 * in the context of the idle thread */
e495149b 1560 /* that can happen only if we are called from do_exit() */
0590b933 1561 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
e495149b 1562 audit_log_exit(context, tsk);
916d7576
AV
1563 if (!list_empty(&context->killed_trees))
1564 audit_kill_trees(&context->killed_trees);
1da177e4
LT
1565
1566 audit_free_context(context);
1567}
1568
b0dd25a8
RD
1569/**
1570 * audit_syscall_entry - fill in an audit record at syscall entry
b0dd25a8
RD
1571 * @arch: architecture type
1572 * @major: major syscall type (function)
1573 * @a1: additional syscall register 1
1574 * @a2: additional syscall register 2
1575 * @a3: additional syscall register 3
1576 * @a4: additional syscall register 4
1577 *
1578 * Fill in audit context at syscall entry. This only happens if the
1da177e4
LT
1579 * audit context was created when the task was created and the state or
1580 * filters demand the audit context be built. If the state from the
1581 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1582 * then the record will be written at syscall exit time (otherwise, it
1583 * will only be written if another part of the kernel requests that it
b0dd25a8
RD
1584 * be written).
1585 */
5411be59 1586void audit_syscall_entry(int arch, int major,
1da177e4
LT
1587 unsigned long a1, unsigned long a2,
1588 unsigned long a3, unsigned long a4)
1589{
5411be59 1590 struct task_struct *tsk = current;
1da177e4
LT
1591 struct audit_context *context = tsk->audit_context;
1592 enum audit_state state;
1593
86a1c34a
RM
1594 if (unlikely(!context))
1595 return;
1da177e4 1596
b0dd25a8
RD
1597 /*
1598 * This happens only on certain architectures that make system
1da177e4
LT
1599 * calls in kernel_thread via the entry.S interface, instead of
1600 * with direct calls. (If you are porting to a new
1601 * architecture, hitting this condition can indicate that you
1602 * got the _exit/_leave calls backward in entry.S.)
1603 *
1604 * i386 no
1605 * x86_64 no
2ef9481e 1606 * ppc64 yes (see arch/powerpc/platforms/iseries/misc.S)
1da177e4
LT
1607 *
1608 * This also happens with vm86 emulation in a non-nested manner
1609 * (entries without exits), so this case must be caught.
1610 */
1611 if (context->in_syscall) {
1612 struct audit_context *newctx;
1613
1da177e4
LT
1614#if AUDIT_DEBUG
1615 printk(KERN_ERR
1616 "audit(:%d) pid=%d in syscall=%d;"
1617 " entering syscall=%d\n",
1618 context->serial, tsk->pid, context->major, major);
1619#endif
1620 newctx = audit_alloc_context(context->state);
1621 if (newctx) {
1622 newctx->previous = context;
1623 context = newctx;
1624 tsk->audit_context = newctx;
1625 } else {
1626 /* If we can't alloc a new context, the best we
1627 * can do is to leak memory (any pending putname
1628 * will be lost). The only other alternative is
1629 * to abandon auditing. */
1630 audit_zero_context(context, context->state);
1631 }
1632 }
1633 BUG_ON(context->in_syscall || context->name_count);
1634
1635 if (!audit_enabled)
1636 return;
1637
2fd6f58b 1638 context->arch = arch;
1da177e4
LT
1639 context->major = major;
1640 context->argv[0] = a1;
1641 context->argv[1] = a2;
1642 context->argv[2] = a3;
1643 context->argv[3] = a4;
1644
1645 state = context->state;
d51374ad 1646 context->dummy = !audit_n_rules;
0590b933
AV
1647 if (!context->dummy && state == AUDIT_BUILD_CONTEXT) {
1648 context->prio = 0;
0f45aa18 1649 state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]);
0590b933 1650 }
1da177e4
LT
1651 if (likely(state == AUDIT_DISABLED))
1652 return;
1653
ce625a80 1654 context->serial = 0;
1da177e4
LT
1655 context->ctime = CURRENT_TIME;
1656 context->in_syscall = 1;
0590b933 1657 context->current_state = state;
419c58f1 1658 context->ppid = 0;
1da177e4
LT
1659}
1660
a64e6494
AV
1661void audit_finish_fork(struct task_struct *child)
1662{
1663 struct audit_context *ctx = current->audit_context;
1664 struct audit_context *p = child->audit_context;
0590b933
AV
1665 if (!p || !ctx)
1666 return;
1667 if (!ctx->in_syscall || ctx->current_state != AUDIT_RECORD_CONTEXT)
a64e6494
AV
1668 return;
1669 p->arch = ctx->arch;
1670 p->major = ctx->major;
1671 memcpy(p->argv, ctx->argv, sizeof(ctx->argv));
1672 p->ctime = ctx->ctime;
1673 p->dummy = ctx->dummy;
a64e6494
AV
1674 p->in_syscall = ctx->in_syscall;
1675 p->filterkey = kstrdup(ctx->filterkey, GFP_KERNEL);
1676 p->ppid = current->pid;
0590b933
AV
1677 p->prio = ctx->prio;
1678 p->current_state = ctx->current_state;
a64e6494
AV
1679}
1680
b0dd25a8
RD
1681/**
1682 * audit_syscall_exit - deallocate audit context after a system call
b0dd25a8
RD
1683 * @valid: success/failure flag
1684 * @return_code: syscall return value
1685 *
1686 * Tear down after system call. If the audit context has been marked as
1da177e4
LT
1687 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1688 * filtering, or because some other part of the kernel write an audit
1689 * message), then write out the syscall information. In call cases,
b0dd25a8
RD
1690 * free the names stored from getname().
1691 */
5411be59 1692void audit_syscall_exit(int valid, long return_code)
1da177e4 1693{
5411be59 1694 struct task_struct *tsk = current;
1da177e4
LT
1695 struct audit_context *context;
1696
2fd6f58b 1697 context = audit_get_context(tsk, valid, return_code);
1da177e4 1698
1da177e4 1699 if (likely(!context))
97e94c45 1700 return;
1da177e4 1701
0590b933 1702 if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
e495149b 1703 audit_log_exit(context, tsk);
1da177e4
LT
1704
1705 context->in_syscall = 0;
0590b933 1706 context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
2fd6f58b 1707
916d7576
AV
1708 if (!list_empty(&context->killed_trees))
1709 audit_kill_trees(&context->killed_trees);
1710
1da177e4
LT
1711 if (context->previous) {
1712 struct audit_context *new_context = context->previous;
1713 context->previous = NULL;
1714 audit_free_context(context);
1715 tsk->audit_context = new_context;
1716 } else {
1717 audit_free_names(context);
74c3cbe3 1718 unroll_tree_refs(context, NULL, 0);
1da177e4 1719 audit_free_aux(context);
e54dc243
AG
1720 context->aux = NULL;
1721 context->aux_pids = NULL;
a5cb013d 1722 context->target_pid = 0;
e54dc243 1723 context->target_sid = 0;
4f6b434f 1724 context->sockaddr_len = 0;
f3298dc4 1725 context->type = 0;
157cf649 1726 context->fds[0] = -1;
e048e02c
AV
1727 if (context->state != AUDIT_RECORD_CONTEXT) {
1728 kfree(context->filterkey);
1729 context->filterkey = NULL;
1730 }
1da177e4
LT
1731 tsk->audit_context = context;
1732 }
1da177e4
LT
1733}
1734
74c3cbe3
AV
1735static inline void handle_one(const struct inode *inode)
1736{
1737#ifdef CONFIG_AUDIT_TREE
1738 struct audit_context *context;
1739 struct audit_tree_refs *p;
1740 struct audit_chunk *chunk;
1741 int count;
e61ce867 1742 if (likely(hlist_empty(&inode->i_fsnotify_marks)))
74c3cbe3
AV
1743 return;
1744 context = current->audit_context;
1745 p = context->trees;
1746 count = context->tree_count;
1747 rcu_read_lock();
1748 chunk = audit_tree_lookup(inode);
1749 rcu_read_unlock();
1750 if (!chunk)
1751 return;
1752 if (likely(put_tree_ref(context, chunk)))
1753 return;
1754 if (unlikely(!grow_tree_refs(context))) {
436c405c 1755 printk(KERN_WARNING "out of memory, audit has lost a tree reference\n");
74c3cbe3
AV
1756 audit_set_auditable(context);
1757 audit_put_chunk(chunk);
1758 unroll_tree_refs(context, p, count);
1759 return;
1760 }
1761 put_tree_ref(context, chunk);
1762#endif
1763}
1764
1765static void handle_path(const struct dentry *dentry)
1766{
1767#ifdef CONFIG_AUDIT_TREE
1768 struct audit_context *context;
1769 struct audit_tree_refs *p;
1770 const struct dentry *d, *parent;
1771 struct audit_chunk *drop;
1772 unsigned long seq;
1773 int count;
1774
1775 context = current->audit_context;
1776 p = context->trees;
1777 count = context->tree_count;
1778retry:
1779 drop = NULL;
1780 d = dentry;
1781 rcu_read_lock();
1782 seq = read_seqbegin(&rename_lock);
1783 for(;;) {
1784 struct inode *inode = d->d_inode;
e61ce867 1785 if (inode && unlikely(!hlist_empty(&inode->i_fsnotify_marks))) {
74c3cbe3
AV
1786 struct audit_chunk *chunk;
1787 chunk = audit_tree_lookup(inode);
1788 if (chunk) {
1789 if (unlikely(!put_tree_ref(context, chunk))) {
1790 drop = chunk;
1791 break;
1792 }
1793 }
1794 }
1795 parent = d->d_parent;
1796 if (parent == d)
1797 break;
1798 d = parent;
1799 }
1800 if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */
1801 rcu_read_unlock();
1802 if (!drop) {
1803 /* just a race with rename */
1804 unroll_tree_refs(context, p, count);
1805 goto retry;
1806 }
1807 audit_put_chunk(drop);
1808 if (grow_tree_refs(context)) {
1809 /* OK, got more space */
1810 unroll_tree_refs(context, p, count);
1811 goto retry;
1812 }
1813 /* too bad */
1814 printk(KERN_WARNING
436c405c 1815 "out of memory, audit has lost a tree reference\n");
74c3cbe3
AV
1816 unroll_tree_refs(context, p, count);
1817 audit_set_auditable(context);
1818 return;
1819 }
1820 rcu_read_unlock();
1821#endif
1822}
1823
b0dd25a8
RD
1824/**
1825 * audit_getname - add a name to the list
1826 * @name: name to add
1827 *
1828 * Add a name to the list of audit names for this context.
1829 * Called from fs/namei.c:getname().
1830 */
d8945bb5 1831void __audit_getname(const char *name)
1da177e4
LT
1832{
1833 struct audit_context *context = current->audit_context;
1834
d8945bb5 1835 if (IS_ERR(name) || !name)
1da177e4
LT
1836 return;
1837
1838 if (!context->in_syscall) {
1839#if AUDIT_DEBUG == 2
1840 printk(KERN_ERR "%s:%d(:%d): ignoring getname(%p)\n",
1841 __FILE__, __LINE__, context->serial, name);
1842 dump_stack();
1843#endif
1844 return;
1845 }
1846 BUG_ON(context->name_count >= AUDIT_NAMES);
1847 context->names[context->name_count].name = name;
9c937dcc
AG
1848 context->names[context->name_count].name_len = AUDIT_NAME_FULL;
1849 context->names[context->name_count].name_put = 1;
1da177e4 1850 context->names[context->name_count].ino = (unsigned long)-1;
e41e8bde 1851 context->names[context->name_count].osid = 0;
1da177e4 1852 ++context->name_count;
f7ad3c6b
MS
1853 if (!context->pwd.dentry)
1854 get_fs_pwd(current->fs, &context->pwd);
1da177e4
LT
1855}
1856
b0dd25a8
RD
1857/* audit_putname - intercept a putname request
1858 * @name: name to intercept and delay for putname
1859 *
1860 * If we have stored the name from getname in the audit context,
1861 * then we delay the putname until syscall exit.
1862 * Called from include/linux/fs.h:putname().
1863 */
1da177e4
LT
1864void audit_putname(const char *name)
1865{
1866 struct audit_context *context = current->audit_context;
1867
1868 BUG_ON(!context);
1869 if (!context->in_syscall) {
1870#if AUDIT_DEBUG == 2
1871 printk(KERN_ERR "%s:%d(:%d): __putname(%p)\n",
1872 __FILE__, __LINE__, context->serial, name);
1873 if (context->name_count) {
1874 int i;
1875 for (i = 0; i < context->name_count; i++)
1876 printk(KERN_ERR "name[%d] = %p = %s\n", i,
1877 context->names[i].name,
73241ccc 1878 context->names[i].name ?: "(null)");
1da177e4
LT
1879 }
1880#endif
1881 __putname(name);
1882 }
1883#if AUDIT_DEBUG
1884 else {
1885 ++context->put_count;
1886 if (context->put_count > context->name_count) {
1887 printk(KERN_ERR "%s:%d(:%d): major=%d"
1888 " in_syscall=%d putname(%p) name_count=%d"
1889 " put_count=%d\n",
1890 __FILE__, __LINE__,
1891 context->serial, context->major,
1892 context->in_syscall, name, context->name_count,
1893 context->put_count);
1894 dump_stack();
1895 }
1896 }
1897#endif
1898}
1899
5712e88f
AG
1900static int audit_inc_name_count(struct audit_context *context,
1901 const struct inode *inode)
1902{
1903 if (context->name_count >= AUDIT_NAMES) {
1904 if (inode)
449cedf0 1905 printk(KERN_DEBUG "audit: name_count maxed, losing inode data: "
436c405c 1906 "dev=%02x:%02x, inode=%lu\n",
5712e88f
AG
1907 MAJOR(inode->i_sb->s_dev),
1908 MINOR(inode->i_sb->s_dev),
1909 inode->i_ino);
1910
1911 else
436c405c 1912 printk(KERN_DEBUG "name_count maxed, losing inode data\n");
5712e88f
AG
1913 return 1;
1914 }
1915 context->name_count++;
1916#if AUDIT_DEBUG
1917 context->ino_count++;
1918#endif
1919 return 0;
1920}
1921
851f7ff5
EP
1922
1923static inline int audit_copy_fcaps(struct audit_names *name, const struct dentry *dentry)
1924{
1925 struct cpu_vfs_cap_data caps;
1926 int rc;
1927
1928 memset(&name->fcap.permitted, 0, sizeof(kernel_cap_t));
1929 memset(&name->fcap.inheritable, 0, sizeof(kernel_cap_t));
1930 name->fcap.fE = 0;
1931 name->fcap_ver = 0;
1932
1933 if (!dentry)
1934 return 0;
1935
1936 rc = get_vfs_caps_from_disk(dentry, &caps);
1937 if (rc)
1938 return rc;
1939
1940 name->fcap.permitted = caps.permitted;
1941 name->fcap.inheritable = caps.inheritable;
1942 name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
1943 name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
1944
1945 return 0;
1946}
1947
1948
3e2efce0 1949/* Copy inode data into an audit_names. */
851f7ff5
EP
1950static void audit_copy_inode(struct audit_names *name, const struct dentry *dentry,
1951 const struct inode *inode)
8c8570fb 1952{
3e2efce0
AG
1953 name->ino = inode->i_ino;
1954 name->dev = inode->i_sb->s_dev;
1955 name->mode = inode->i_mode;
1956 name->uid = inode->i_uid;
1957 name->gid = inode->i_gid;
1958 name->rdev = inode->i_rdev;
2a862b32 1959 security_inode_getsecid(inode, &name->osid);
851f7ff5 1960 audit_copy_fcaps(name, dentry);
8c8570fb
DK
1961}
1962
b0dd25a8
RD
1963/**
1964 * audit_inode - store the inode and device from a lookup
1965 * @name: name being audited
481968f4 1966 * @dentry: dentry being audited
b0dd25a8
RD
1967 *
1968 * Called from fs/namei.c:path_lookup().
1969 */
5a190ae6 1970void __audit_inode(const char *name, const struct dentry *dentry)
1da177e4
LT
1971{
1972 int idx;
1973 struct audit_context *context = current->audit_context;
74c3cbe3 1974 const struct inode *inode = dentry->d_inode;
1da177e4
LT
1975
1976 if (!context->in_syscall)
1977 return;
1978 if (context->name_count
1979 && context->names[context->name_count-1].name
1980 && context->names[context->name_count-1].name == name)
1981 idx = context->name_count - 1;
1982 else if (context->name_count > 1
1983 && context->names[context->name_count-2].name
1984 && context->names[context->name_count-2].name == name)
1985 idx = context->name_count - 2;
1986 else {
1987 /* FIXME: how much do we care about inodes that have no
1988 * associated name? */
5712e88f 1989 if (audit_inc_name_count(context, inode))
1da177e4 1990 return;
5712e88f 1991 idx = context->name_count - 1;
1da177e4 1992 context->names[idx].name = NULL;
1da177e4 1993 }
74c3cbe3 1994 handle_path(dentry);
851f7ff5 1995 audit_copy_inode(&context->names[idx], dentry, inode);
73241ccc
AG
1996}
1997
1998/**
1999 * audit_inode_child - collect inode info for created/removed objects
481968f4 2000 * @dentry: dentry being audited
73d3ec5a 2001 * @parent: inode of dentry parent
73241ccc
AG
2002 *
2003 * For syscalls that create or remove filesystem objects, audit_inode
2004 * can only collect information for the filesystem object's parent.
2005 * This call updates the audit context with the child's information.
2006 * Syscalls that create a new filesystem object must be hooked after
2007 * the object is created. Syscalls that remove a filesystem object
2008 * must be hooked prior, in order to capture the target inode during
2009 * unsuccessful attempts.
2010 */
cccc6bba 2011void __audit_inode_child(const struct dentry *dentry,
73d3ec5a 2012 const struct inode *parent)
73241ccc
AG
2013{
2014 int idx;
2015 struct audit_context *context = current->audit_context;
5712e88f 2016 const char *found_parent = NULL, *found_child = NULL;
5a190ae6 2017 const struct inode *inode = dentry->d_inode;
cccc6bba 2018 const char *dname = dentry->d_name.name;
9c937dcc 2019 int dirlen = 0;
73241ccc
AG
2020
2021 if (!context->in_syscall)
2022 return;
2023
74c3cbe3
AV
2024 if (inode)
2025 handle_one(inode);
73241ccc 2026
5712e88f
AG
2027 /* parent is more likely, look for it first */
2028 for (idx = 0; idx < context->name_count; idx++) {
2029 struct audit_names *n = &context->names[idx];
f368c07d 2030
5712e88f
AG
2031 if (!n->name)
2032 continue;
2033
2034 if (n->ino == parent->i_ino &&
2035 !audit_compare_dname_path(dname, n->name, &dirlen)) {
2036 n->name_len = dirlen; /* update parent data in place */
2037 found_parent = n->name;
2038 goto add_names;
f368c07d 2039 }
5712e88f 2040 }
73241ccc 2041
5712e88f
AG
2042 /* no matching parent, look for matching child */
2043 for (idx = 0; idx < context->name_count; idx++) {
2044 struct audit_names *n = &context->names[idx];
2045
2046 if (!n->name)
2047 continue;
2048
2049 /* strcmp() is the more likely scenario */
2050 if (!strcmp(dname, n->name) ||
2051 !audit_compare_dname_path(dname, n->name, &dirlen)) {
2052 if (inode)
851f7ff5 2053 audit_copy_inode(n, NULL, inode);
5712e88f
AG
2054 else
2055 n->ino = (unsigned long)-1;
2056 found_child = n->name;
2057 goto add_names;
2058 }
ac9910ce 2059 }
5712e88f
AG
2060
2061add_names:
2062 if (!found_parent) {
2063 if (audit_inc_name_count(context, parent))
ac9910ce 2064 return;
5712e88f
AG
2065 idx = context->name_count - 1;
2066 context->names[idx].name = NULL;
851f7ff5 2067 audit_copy_inode(&context->names[idx], NULL, parent);
73d3ec5a 2068 }
5712e88f
AG
2069
2070 if (!found_child) {
2071 if (audit_inc_name_count(context, inode))
2072 return;
2073 idx = context->name_count - 1;
2074
2075 /* Re-use the name belonging to the slot for a matching parent
2076 * directory. All names for this context are relinquished in
2077 * audit_free_names() */
2078 if (found_parent) {
2079 context->names[idx].name = found_parent;
2080 context->names[idx].name_len = AUDIT_NAME_FULL;
2081 /* don't call __putname() */
2082 context->names[idx].name_put = 0;
2083 } else {
2084 context->names[idx].name = NULL;
2085 }
2086
2087 if (inode)
851f7ff5 2088 audit_copy_inode(&context->names[idx], NULL, inode);
5712e88f
AG
2089 else
2090 context->names[idx].ino = (unsigned long)-1;
2091 }
3e2efce0 2092}
50e437d5 2093EXPORT_SYMBOL_GPL(__audit_inode_child);
3e2efce0 2094
b0dd25a8
RD
2095/**
2096 * auditsc_get_stamp - get local copies of audit_context values
2097 * @ctx: audit_context for the task
2098 * @t: timespec to store time recorded in the audit_context
2099 * @serial: serial value that is recorded in the audit_context
2100 *
2101 * Also sets the context as auditable.
2102 */
48887e63 2103int auditsc_get_stamp(struct audit_context *ctx,
bfb4496e 2104 struct timespec *t, unsigned int *serial)
1da177e4 2105{
48887e63
AV
2106 if (!ctx->in_syscall)
2107 return 0;
ce625a80
DW
2108 if (!ctx->serial)
2109 ctx->serial = audit_serial();
bfb4496e
DW
2110 t->tv_sec = ctx->ctime.tv_sec;
2111 t->tv_nsec = ctx->ctime.tv_nsec;
2112 *serial = ctx->serial;
0590b933
AV
2113 if (!ctx->prio) {
2114 ctx->prio = 1;
2115 ctx->current_state = AUDIT_RECORD_CONTEXT;
2116 }
48887e63 2117 return 1;
1da177e4
LT
2118}
2119
4746ec5b
EP
2120/* global counter which is incremented every time something logs in */
2121static atomic_t session_id = ATOMIC_INIT(0);
2122
b0dd25a8
RD
2123/**
2124 * audit_set_loginuid - set a task's audit_context loginuid
2125 * @task: task whose audit context is being modified
2126 * @loginuid: loginuid value
2127 *
2128 * Returns 0.
2129 *
2130 * Called (set) from fs/proc/base.c::proc_loginuid_write().
2131 */
456be6cd 2132int audit_set_loginuid(struct task_struct *task, uid_t loginuid)
1da177e4 2133{
4746ec5b 2134 unsigned int sessionid = atomic_inc_return(&session_id);
41757106
SG
2135 struct audit_context *context = task->audit_context;
2136
bfef93a5
AV
2137 if (context && context->in_syscall) {
2138 struct audit_buffer *ab;
2139
2140 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN);
2141 if (ab) {
2142 audit_log_format(ab, "login pid=%d uid=%u "
4746ec5b
EP
2143 "old auid=%u new auid=%u"
2144 " old ses=%u new ses=%u",
c69e8d9c 2145 task->pid, task_uid(task),
4746ec5b
EP
2146 task->loginuid, loginuid,
2147 task->sessionid, sessionid);
bfef93a5 2148 audit_log_end(ab);
c0404993 2149 }
1da177e4 2150 }
4746ec5b 2151 task->sessionid = sessionid;
bfef93a5 2152 task->loginuid = loginuid;
1da177e4
LT
2153 return 0;
2154}
2155
20ca73bc
GW
2156/**
2157 * __audit_mq_open - record audit data for a POSIX MQ open
2158 * @oflag: open flag
2159 * @mode: mode bits
6b962559 2160 * @attr: queue attributes
20ca73bc 2161 *
20ca73bc 2162 */
564f6993 2163void __audit_mq_open(int oflag, mode_t mode, struct mq_attr *attr)
20ca73bc 2164{
20ca73bc
GW
2165 struct audit_context *context = current->audit_context;
2166
564f6993
AV
2167 if (attr)
2168 memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2169 else
2170 memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
20ca73bc 2171
564f6993
AV
2172 context->mq_open.oflag = oflag;
2173 context->mq_open.mode = mode;
20ca73bc 2174
564f6993 2175 context->type = AUDIT_MQ_OPEN;
20ca73bc
GW
2176}
2177
2178/**
c32c8af4 2179 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
20ca73bc
GW
2180 * @mqdes: MQ descriptor
2181 * @msg_len: Message length
2182 * @msg_prio: Message priority
c32c8af4 2183 * @abs_timeout: Message timeout in absolute time
20ca73bc 2184 *
20ca73bc 2185 */
c32c8af4
AV
2186void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2187 const struct timespec *abs_timeout)
20ca73bc 2188{
20ca73bc 2189 struct audit_context *context = current->audit_context;
c32c8af4 2190 struct timespec *p = &context->mq_sendrecv.abs_timeout;
20ca73bc 2191
c32c8af4
AV
2192 if (abs_timeout)
2193 memcpy(p, abs_timeout, sizeof(struct timespec));
2194 else
2195 memset(p, 0, sizeof(struct timespec));
20ca73bc 2196
c32c8af4
AV
2197 context->mq_sendrecv.mqdes = mqdes;
2198 context->mq_sendrecv.msg_len = msg_len;
2199 context->mq_sendrecv.msg_prio = msg_prio;
20ca73bc 2200
c32c8af4 2201 context->type = AUDIT_MQ_SENDRECV;
20ca73bc
GW
2202}
2203
2204/**
2205 * __audit_mq_notify - record audit data for a POSIX MQ notify
2206 * @mqdes: MQ descriptor
6b962559 2207 * @notification: Notification event
20ca73bc 2208 *
20ca73bc
GW
2209 */
2210
20114f71 2211void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
20ca73bc 2212{
20ca73bc
GW
2213 struct audit_context *context = current->audit_context;
2214
20114f71
AV
2215 if (notification)
2216 context->mq_notify.sigev_signo = notification->sigev_signo;
2217 else
2218 context->mq_notify.sigev_signo = 0;
20ca73bc 2219
20114f71
AV
2220 context->mq_notify.mqdes = mqdes;
2221 context->type = AUDIT_MQ_NOTIFY;
20ca73bc
GW
2222}
2223
2224/**
2225 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2226 * @mqdes: MQ descriptor
2227 * @mqstat: MQ flags
2228 *
20ca73bc 2229 */
7392906e 2230void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
20ca73bc 2231{
20ca73bc 2232 struct audit_context *context = current->audit_context;
7392906e
AV
2233 context->mq_getsetattr.mqdes = mqdes;
2234 context->mq_getsetattr.mqstat = *mqstat;
2235 context->type = AUDIT_MQ_GETSETATTR;
20ca73bc
GW
2236}
2237
b0dd25a8 2238/**
073115d6
SG
2239 * audit_ipc_obj - record audit data for ipc object
2240 * @ipcp: ipc permissions
2241 *
073115d6 2242 */
a33e6751 2243void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
073115d6 2244{
073115d6 2245 struct audit_context *context = current->audit_context;
a33e6751
AV
2246 context->ipc.uid = ipcp->uid;
2247 context->ipc.gid = ipcp->gid;
2248 context->ipc.mode = ipcp->mode;
e816f370 2249 context->ipc.has_perm = 0;
a33e6751
AV
2250 security_ipc_getsecid(ipcp, &context->ipc.osid);
2251 context->type = AUDIT_IPC;
073115d6
SG
2252}
2253
2254/**
2255 * audit_ipc_set_perm - record audit data for new ipc permissions
b0dd25a8
RD
2256 * @qbytes: msgq bytes
2257 * @uid: msgq user id
2258 * @gid: msgq group id
2259 * @mode: msgq mode (permissions)
2260 *
e816f370 2261 * Called only after audit_ipc_obj().
b0dd25a8 2262 */
e816f370 2263void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, mode_t mode)
1da177e4 2264{
1da177e4
LT
2265 struct audit_context *context = current->audit_context;
2266
e816f370
AV
2267 context->ipc.qbytes = qbytes;
2268 context->ipc.perm_uid = uid;
2269 context->ipc.perm_gid = gid;
2270 context->ipc.perm_mode = mode;
2271 context->ipc.has_perm = 1;
1da177e4 2272}
c2f0c7c3 2273
473ae30b
AV
2274int audit_bprm(struct linux_binprm *bprm)
2275{
2276 struct audit_aux_data_execve *ax;
2277 struct audit_context *context = current->audit_context;
473ae30b 2278
5ac3a9c2 2279 if (likely(!audit_enabled || !context || context->dummy))
473ae30b
AV
2280 return 0;
2281
bdf4c48a 2282 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
473ae30b
AV
2283 if (!ax)
2284 return -ENOMEM;
2285
2286 ax->argc = bprm->argc;
2287 ax->envc = bprm->envc;
bdf4c48a 2288 ax->mm = bprm->mm;
473ae30b
AV
2289 ax->d.type = AUDIT_EXECVE;
2290 ax->d.next = context->aux;
2291 context->aux = (void *)ax;
2292 return 0;
2293}
2294
2295
b0dd25a8
RD
2296/**
2297 * audit_socketcall - record audit data for sys_socketcall
2298 * @nargs: number of args
2299 * @args: args array
2300 *
b0dd25a8 2301 */
f3298dc4 2302void audit_socketcall(int nargs, unsigned long *args)
3ec3b2fb 2303{
3ec3b2fb
DW
2304 struct audit_context *context = current->audit_context;
2305
5ac3a9c2 2306 if (likely(!context || context->dummy))
f3298dc4 2307 return;
3ec3b2fb 2308
f3298dc4
AV
2309 context->type = AUDIT_SOCKETCALL;
2310 context->socketcall.nargs = nargs;
2311 memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
3ec3b2fb
DW
2312}
2313
db349509
AV
2314/**
2315 * __audit_fd_pair - record audit data for pipe and socketpair
2316 * @fd1: the first file descriptor
2317 * @fd2: the second file descriptor
2318 *
db349509 2319 */
157cf649 2320void __audit_fd_pair(int fd1, int fd2)
db349509
AV
2321{
2322 struct audit_context *context = current->audit_context;
157cf649
AV
2323 context->fds[0] = fd1;
2324 context->fds[1] = fd2;
db349509
AV
2325}
2326
b0dd25a8
RD
2327/**
2328 * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2329 * @len: data length in user space
2330 * @a: data address in kernel space
2331 *
2332 * Returns 0 for success or NULL context or < 0 on error.
2333 */
3ec3b2fb
DW
2334int audit_sockaddr(int len, void *a)
2335{
3ec3b2fb
DW
2336 struct audit_context *context = current->audit_context;
2337
5ac3a9c2 2338 if (likely(!context || context->dummy))
3ec3b2fb
DW
2339 return 0;
2340
4f6b434f
AV
2341 if (!context->sockaddr) {
2342 void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2343 if (!p)
2344 return -ENOMEM;
2345 context->sockaddr = p;
2346 }
3ec3b2fb 2347
4f6b434f
AV
2348 context->sockaddr_len = len;
2349 memcpy(context->sockaddr, a, len);
3ec3b2fb
DW
2350 return 0;
2351}
2352
a5cb013d
AV
2353void __audit_ptrace(struct task_struct *t)
2354{
2355 struct audit_context *context = current->audit_context;
2356
2357 context->target_pid = t->pid;
c2a7780e 2358 context->target_auid = audit_get_loginuid(t);
c69e8d9c 2359 context->target_uid = task_uid(t);
4746ec5b 2360 context->target_sessionid = audit_get_sessionid(t);
2a862b32 2361 security_task_getsecid(t, &context->target_sid);
c2a7780e 2362 memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
a5cb013d
AV
2363}
2364
b0dd25a8
RD
2365/**
2366 * audit_signal_info - record signal info for shutting down audit subsystem
2367 * @sig: signal value
2368 * @t: task being signaled
2369 *
2370 * If the audit subsystem is being terminated, record the task (pid)
2371 * and uid that is doing that.
2372 */
e54dc243 2373int __audit_signal_info(int sig, struct task_struct *t)
c2f0c7c3 2374{
e54dc243
AG
2375 struct audit_aux_data_pids *axp;
2376 struct task_struct *tsk = current;
2377 struct audit_context *ctx = tsk->audit_context;
c69e8d9c 2378 uid_t uid = current_uid(), t_uid = task_uid(t);
e1396065 2379
175fc484 2380 if (audit_pid && t->tgid == audit_pid) {
ee1d3156 2381 if (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1 || sig == SIGUSR2) {
175fc484 2382 audit_sig_pid = tsk->pid;
bfef93a5
AV
2383 if (tsk->loginuid != -1)
2384 audit_sig_uid = tsk->loginuid;
175fc484 2385 else
c69e8d9c 2386 audit_sig_uid = uid;
2a862b32 2387 security_task_getsecid(tsk, &audit_sig_sid);
175fc484
AV
2388 }
2389 if (!audit_signals || audit_dummy_context())
2390 return 0;
c2f0c7c3 2391 }
e54dc243 2392
e54dc243
AG
2393 /* optimize the common case by putting first signal recipient directly
2394 * in audit_context */
2395 if (!ctx->target_pid) {
2396 ctx->target_pid = t->tgid;
c2a7780e 2397 ctx->target_auid = audit_get_loginuid(t);
c69e8d9c 2398 ctx->target_uid = t_uid;
4746ec5b 2399 ctx->target_sessionid = audit_get_sessionid(t);
2a862b32 2400 security_task_getsecid(t, &ctx->target_sid);
c2a7780e 2401 memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
e54dc243
AG
2402 return 0;
2403 }
2404
2405 axp = (void *)ctx->aux_pids;
2406 if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2407 axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2408 if (!axp)
2409 return -ENOMEM;
2410
2411 axp->d.type = AUDIT_OBJ_PID;
2412 axp->d.next = ctx->aux_pids;
2413 ctx->aux_pids = (void *)axp;
2414 }
88ae704c 2415 BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
e54dc243
AG
2416
2417 axp->target_pid[axp->pid_count] = t->tgid;
c2a7780e 2418 axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
c69e8d9c 2419 axp->target_uid[axp->pid_count] = t_uid;
4746ec5b 2420 axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2a862b32 2421 security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
c2a7780e 2422 memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
e54dc243
AG
2423 axp->pid_count++;
2424
2425 return 0;
c2f0c7c3 2426}
0a4ff8c2 2427
3fc689e9
EP
2428/**
2429 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
d84f4f99
DH
2430 * @bprm: pointer to the bprm being processed
2431 * @new: the proposed new credentials
2432 * @old: the old credentials
3fc689e9
EP
2433 *
2434 * Simply check if the proc already has the caps given by the file and if not
2435 * store the priv escalation info for later auditing at the end of the syscall
2436 *
3fc689e9
EP
2437 * -Eric
2438 */
d84f4f99
DH
2439int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2440 const struct cred *new, const struct cred *old)
3fc689e9
EP
2441{
2442 struct audit_aux_data_bprm_fcaps *ax;
2443 struct audit_context *context = current->audit_context;
2444 struct cpu_vfs_cap_data vcaps;
2445 struct dentry *dentry;
2446
2447 ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2448 if (!ax)
d84f4f99 2449 return -ENOMEM;
3fc689e9
EP
2450
2451 ax->d.type = AUDIT_BPRM_FCAPS;
2452 ax->d.next = context->aux;
2453 context->aux = (void *)ax;
2454
2455 dentry = dget(bprm->file->f_dentry);
2456 get_vfs_caps_from_disk(dentry, &vcaps);
2457 dput(dentry);
2458
2459 ax->fcap.permitted = vcaps.permitted;
2460 ax->fcap.inheritable = vcaps.inheritable;
2461 ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2462 ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2463
d84f4f99
DH
2464 ax->old_pcap.permitted = old->cap_permitted;
2465 ax->old_pcap.inheritable = old->cap_inheritable;
2466 ax->old_pcap.effective = old->cap_effective;
3fc689e9 2467
d84f4f99
DH
2468 ax->new_pcap.permitted = new->cap_permitted;
2469 ax->new_pcap.inheritable = new->cap_inheritable;
2470 ax->new_pcap.effective = new->cap_effective;
2471 return 0;
3fc689e9
EP
2472}
2473
e68b75a0
EP
2474/**
2475 * __audit_log_capset - store information about the arguments to the capset syscall
d84f4f99
DH
2476 * @pid: target pid of the capset call
2477 * @new: the new credentials
2478 * @old: the old (current) credentials
e68b75a0
EP
2479 *
2480 * Record the aguments userspace sent to sys_capset for later printing by the
2481 * audit system if applicable
2482 */
57f71a0a 2483void __audit_log_capset(pid_t pid,
d84f4f99 2484 const struct cred *new, const struct cred *old)
e68b75a0 2485{
e68b75a0 2486 struct audit_context *context = current->audit_context;
57f71a0a
AV
2487 context->capset.pid = pid;
2488 context->capset.cap.effective = new->cap_effective;
2489 context->capset.cap.inheritable = new->cap_effective;
2490 context->capset.cap.permitted = new->cap_permitted;
2491 context->type = AUDIT_CAPSET;
e68b75a0
EP
2492}
2493
120a795d
AV
2494void __audit_mmap_fd(int fd, int flags)
2495{
2496 struct audit_context *context = current->audit_context;
2497 context->mmap.fd = fd;
2498 context->mmap.flags = flags;
2499 context->type = AUDIT_MMAP;
2500}
2501
0a4ff8c2
SG
2502/**
2503 * audit_core_dumps - record information about processes that end abnormally
6d9525b5 2504 * @signr: signal value
0a4ff8c2
SG
2505 *
2506 * If a process ends with a core dump, something fishy is going on and we
2507 * should record the event for investigation.
2508 */
2509void audit_core_dumps(long signr)
2510{
2511 struct audit_buffer *ab;
2512 u32 sid;
76aac0e9
DH
2513 uid_t auid = audit_get_loginuid(current), uid;
2514 gid_t gid;
4746ec5b 2515 unsigned int sessionid = audit_get_sessionid(current);
0a4ff8c2
SG
2516
2517 if (!audit_enabled)
2518 return;
2519
2520 if (signr == SIGQUIT) /* don't care for those */
2521 return;
2522
2523 ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
76aac0e9 2524 current_uid_gid(&uid, &gid);
4746ec5b 2525 audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
76aac0e9 2526 auid, uid, gid, sessionid);
2a862b32 2527 security_task_getsecid(current, &sid);
0a4ff8c2
SG
2528 if (sid) {
2529 char *ctx = NULL;
2530 u32 len;
2531
2a862b32 2532 if (security_secid_to_secctx(sid, &ctx, &len))
0a4ff8c2 2533 audit_log_format(ab, " ssid=%u", sid);
2a862b32 2534 else {
0a4ff8c2 2535 audit_log_format(ab, " subj=%s", ctx);
2a862b32
AD
2536 security_release_secctx(ctx, len);
2537 }
0a4ff8c2
SG
2538 }
2539 audit_log_format(ab, " pid=%d comm=", current->pid);
2540 audit_log_untrustedstring(ab, current->comm);
2541 audit_log_format(ab, " sig=%ld", signr);
2542 audit_log_end(ab);
2543}
916d7576
AV
2544
2545struct list_head *audit_killed_trees(void)
2546{
2547 struct audit_context *ctx = current->audit_context;
2548 if (likely(!ctx || !ctx->in_syscall))
2549 return NULL;
2550 return &ctx->killed_trees;
2551}