]> git.ipfire.org Git - thirdparty/kernel/stable.git/blame - kernel/bpf/core.c
Merge tag 'loongarch-kvm-6.8' of git://git.kernel.org/pub/scm/linux/kernel/git/chenhu...
[thirdparty/kernel/stable.git] / kernel / bpf / core.c
CommitLineData
2874c5fd 1// SPDX-License-Identifier: GPL-2.0-or-later
f5bffecd
AS
2/*
3 * Linux Socket Filter - Kernel level socket filtering
4 *
5 * Based on the design of the Berkeley Packet Filter. The new
6 * internal format has been designed by PLUMgrid:
7 *
8 * Copyright (c) 2011 - 2014 PLUMgrid, http://plumgrid.com
9 *
10 * Authors:
11 *
12 * Jay Schulist <jschlst@samba.org>
13 * Alexei Starovoitov <ast@plumgrid.com>
14 * Daniel Borkmann <dborkman@redhat.com>
15 *
f5bffecd 16 * Andi Kleen - Fix a few bad bugs and races.
4df95ff4 17 * Kris Katterjohn - Added many additional checks in bpf_check_classic()
f5bffecd 18 */
738cbe72 19
838e9690 20#include <uapi/linux/btf.h>
f5bffecd
AS
21#include <linux/filter.h>
22#include <linux/skbuff.h>
60a3b225 23#include <linux/vmalloc.h>
738cbe72
DB
24#include <linux/random.h>
25#include <linux/moduleloader.h>
09756af4 26#include <linux/bpf.h>
838e9690 27#include <linux/btf.h>
00089c04 28#include <linux/objtool.h>
74451e66
DB
29#include <linux/rbtree_latch.h>
30#include <linux/kallsyms.h>
31#include <linux/rcupdate.h>
c195651e 32#include <linux/perf_event.h>
3dec541b 33#include <linux/extable.h>
b7b3fc8d 34#include <linux/log2.h>
2357672c 35#include <linux/bpf_verifier.h>
ef078600 36#include <linux/nodemask.h>
f3dd0c53 37#include <linux/nospec.h>
958cf2e2 38#include <linux/bpf_mem_alloc.h>
bf396508 39#include <linux/memcontrol.h>
f5e81d11
DB
40
41#include <asm/barrier.h>
3324b584
DB
42#include <asm/unaligned.h>
43
f5bffecd
AS
44/* Registers */
45#define BPF_R0 regs[BPF_REG_0]
46#define BPF_R1 regs[BPF_REG_1]
47#define BPF_R2 regs[BPF_REG_2]
48#define BPF_R3 regs[BPF_REG_3]
49#define BPF_R4 regs[BPF_REG_4]
50#define BPF_R5 regs[BPF_REG_5]
51#define BPF_R6 regs[BPF_REG_6]
52#define BPF_R7 regs[BPF_REG_7]
53#define BPF_R8 regs[BPF_REG_8]
54#define BPF_R9 regs[BPF_REG_9]
55#define BPF_R10 regs[BPF_REG_10]
56
57/* Named registers */
58#define DST regs[insn->dst_reg]
59#define SRC regs[insn->src_reg]
60#define FP regs[BPF_REG_FP]
144cd91c 61#define AX regs[BPF_REG_AX]
f5bffecd
AS
62#define ARG1 regs[BPF_REG_ARG1]
63#define CTX regs[BPF_REG_CTX]
8100928c 64#define OFF insn->off
f5bffecd
AS
65#define IMM insn->imm
66
1fda5bb6
YS
67struct bpf_mem_alloc bpf_global_ma;
68bool bpf_global_ma_set;
958cf2e2 69
f5bffecd
AS
70/* No hurry in this branch
71 *
72 * Exported for the bpf jit load helper.
73 */
74void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb, int k, unsigned int size)
75{
76 u8 *ptr = NULL;
77
0326195f 78 if (k >= SKF_NET_OFF) {
f5bffecd 79 ptr = skb_network_header(skb) + k - SKF_NET_OFF;
0326195f
ED
80 } else if (k >= SKF_LL_OFF) {
81 if (unlikely(!skb_mac_header_was_set(skb)))
82 return NULL;
f5bffecd 83 ptr = skb_mac_header(skb) + k - SKF_LL_OFF;
0326195f 84 }
f5bffecd
AS
85 if (ptr >= skb->head && ptr + size <= skb_tail_pointer(skb))
86 return ptr;
87
88 return NULL;
89}
90
492ecee8 91struct bpf_prog *bpf_prog_alloc_no_stats(unsigned int size, gfp_t gfp_extra_flags)
60a3b225 92{
bf396508 93 gfp_t gfp_flags = bpf_memcg_flags(GFP_KERNEL | __GFP_ZERO | gfp_extra_flags);
09756af4 94 struct bpf_prog_aux *aux;
60a3b225
DB
95 struct bpf_prog *fp;
96
97 size = round_up(size, PAGE_SIZE);
88dca4ca 98 fp = __vmalloc(size, gfp_flags);
60a3b225
DB
99 if (fp == NULL)
100 return NULL;
101
bf396508 102 aux = kzalloc(sizeof(*aux), bpf_memcg_flags(GFP_KERNEL | gfp_extra_flags));
09756af4 103 if (aux == NULL) {
60a3b225
DB
104 vfree(fp);
105 return NULL;
106 }
bf396508 107 fp->active = alloc_percpu_gfp(int, bpf_memcg_flags(GFP_KERNEL | gfp_extra_flags));
ca06f55b
AS
108 if (!fp->active) {
109 vfree(fp);
110 kfree(aux);
111 return NULL;
112 }
60a3b225
DB
113
114 fp->pages = size / PAGE_SIZE;
09756af4 115 fp->aux = aux;
e9d8afa9 116 fp->aux->prog = fp;
60b58afc 117 fp->jit_requested = ebpf_jit_enabled();
d2a3b7c5 118 fp->blinding_requested = bpf_jit_blinding_enabled(fp);
c0e19f2c
SF
119#ifdef CONFIG_CGROUP_BPF
120 aux->cgroup_atype = CGROUP_BPF_ATTACH_TYPE_INVALID;
121#endif
60a3b225 122
ecb60d1c 123 INIT_LIST_HEAD_RCU(&fp->aux->ksym.lnode);
984fe94f 124 mutex_init(&fp->aux->used_maps_mutex);
3aac1ead 125 mutex_init(&fp->aux->dst_mutex);
74451e66 126
60a3b225
DB
127 return fp;
128}
492ecee8
AS
129
130struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags)
131{
bf396508 132 gfp_t gfp_flags = bpf_memcg_flags(GFP_KERNEL | __GFP_ZERO | gfp_extra_flags);
492ecee8 133 struct bpf_prog *prog;
4b911304 134 int cpu;
492ecee8
AS
135
136 prog = bpf_prog_alloc_no_stats(size, gfp_extra_flags);
137 if (!prog)
138 return NULL;
139
700d4796
AS
140 prog->stats = alloc_percpu_gfp(struct bpf_prog_stats, gfp_flags);
141 if (!prog->stats) {
ca06f55b 142 free_percpu(prog->active);
492ecee8
AS
143 kfree(prog->aux);
144 vfree(prog);
145 return NULL;
146 }
147
4b911304
ED
148 for_each_possible_cpu(cpu) {
149 struct bpf_prog_stats *pstats;
150
700d4796 151 pstats = per_cpu_ptr(prog->stats, cpu);
4b911304
ED
152 u64_stats_init(&pstats->syncp);
153 }
492ecee8
AS
154 return prog;
155}
60a3b225
DB
156EXPORT_SYMBOL_GPL(bpf_prog_alloc);
157
c454a46b
MKL
158int bpf_prog_alloc_jited_linfo(struct bpf_prog *prog)
159{
160 if (!prog->aux->nr_linfo || !prog->jit_requested)
161 return 0;
162
e16301fb
MKL
163 prog->aux->jited_linfo = kvcalloc(prog->aux->nr_linfo,
164 sizeof(*prog->aux->jited_linfo),
bf396508 165 bpf_memcg_flags(GFP_KERNEL | __GFP_NOWARN));
c454a46b
MKL
166 if (!prog->aux->jited_linfo)
167 return -ENOMEM;
168
169 return 0;
170}
171
e16301fb 172void bpf_prog_jit_attempt_done(struct bpf_prog *prog)
c454a46b 173{
e16301fb
MKL
174 if (prog->aux->jited_linfo &&
175 (!prog->jited || !prog->aux->jited_linfo[0])) {
176 kvfree(prog->aux->jited_linfo);
177 prog->aux->jited_linfo = NULL;
178 }
e6ac2450
MKL
179
180 kfree(prog->aux->kfunc_tab);
181 prog->aux->kfunc_tab = NULL;
c454a46b
MKL
182}
183
184/* The jit engine is responsible to provide an array
185 * for insn_off to the jited_off mapping (insn_to_jit_off).
186 *
187 * The idx to this array is the insn_off. Hence, the insn_off
188 * here is relative to the prog itself instead of the main prog.
189 * This array has one entry for each xlated bpf insn.
190 *
cc168554 191 * jited_off is the byte off to the end of the jited insn.
c454a46b
MKL
192 *
193 * Hence, with
194 * insn_start:
195 * The first bpf insn off of the prog. The insn off
196 * here is relative to the main prog.
197 * e.g. if prog is a subprog, insn_start > 0
198 * linfo_idx:
199 * The prog's idx to prog->aux->linfo and jited_linfo
200 *
201 * jited_linfo[linfo_idx] = prog->bpf_func
202 *
203 * For i > linfo_idx,
204 *
205 * jited_linfo[i] = prog->bpf_func +
206 * insn_to_jit_off[linfo[i].insn_off - insn_start - 1]
207 */
208void bpf_prog_fill_jited_linfo(struct bpf_prog *prog,
209 const u32 *insn_to_jit_off)
210{
211 u32 linfo_idx, insn_start, insn_end, nr_linfo, i;
212 const struct bpf_line_info *linfo;
213 void **jited_linfo;
214
335d1c5b 215 if (!prog->aux->jited_linfo || prog->aux->func_idx > prog->aux->func_cnt)
c454a46b
MKL
216 /* Userspace did not provide linfo */
217 return;
218
219 linfo_idx = prog->aux->linfo_idx;
220 linfo = &prog->aux->linfo[linfo_idx];
221 insn_start = linfo[0].insn_off;
222 insn_end = insn_start + prog->len;
223
224 jited_linfo = &prog->aux->jited_linfo[linfo_idx];
225 jited_linfo[0] = prog->bpf_func;
226
227 nr_linfo = prog->aux->nr_linfo - linfo_idx;
228
229 for (i = 1; i < nr_linfo && linfo[i].insn_off < insn_end; i++)
230 /* The verifier ensures that linfo[i].insn_off is
231 * strictly increasing
232 */
233 jited_linfo[i] = prog->bpf_func +
234 insn_to_jit_off[linfo[i].insn_off - insn_start - 1];
235}
236
60a3b225
DB
237struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
238 gfp_t gfp_extra_flags)
239{
bf396508 240 gfp_t gfp_flags = bpf_memcg_flags(GFP_KERNEL | __GFP_ZERO | gfp_extra_flags);
60a3b225 241 struct bpf_prog *fp;
3ac1f01b 242 u32 pages;
60a3b225 243
60a3b225 244 size = round_up(size, PAGE_SIZE);
5ccb071e
DB
245 pages = size / PAGE_SIZE;
246 if (pages <= fp_old->pages)
60a3b225
DB
247 return fp_old;
248
88dca4ca 249 fp = __vmalloc(size, gfp_flags);
3ac1f01b 250 if (fp) {
60a3b225 251 memcpy(fp, fp_old, fp_old->pages * PAGE_SIZE);
5ccb071e 252 fp->pages = pages;
e9d8afa9 253 fp->aux->prog = fp;
60a3b225 254
09756af4 255 /* We keep fp->aux from fp_old around in the new
60a3b225
DB
256 * reallocated structure.
257 */
09756af4 258 fp_old->aux = NULL;
1336c662
AS
259 fp_old->stats = NULL;
260 fp_old->active = NULL;
60a3b225
DB
261 __bpf_prog_free(fp_old);
262 }
263
264 return fp;
265}
60a3b225
DB
266
267void __bpf_prog_free(struct bpf_prog *fp)
268{
492ecee8 269 if (fp->aux) {
984fe94f 270 mutex_destroy(&fp->aux->used_maps_mutex);
3aac1ead 271 mutex_destroy(&fp->aux->dst_mutex);
a66886fe 272 kfree(fp->aux->poke_tab);
492ecee8
AS
273 kfree(fp->aux);
274 }
700d4796 275 free_percpu(fp->stats);
ca06f55b 276 free_percpu(fp->active);
60a3b225
DB
277 vfree(fp);
278}
60a3b225 279
f1f7714e 280int bpf_prog_calc_tag(struct bpf_prog *fp)
7bd509e3 281{
6b0b0fa2 282 const u32 bits_offset = SHA1_BLOCK_SIZE - sizeof(__be64);
f1f7714e 283 u32 raw_size = bpf_prog_tag_scratch_size(fp);
6b0b0fa2
EB
284 u32 digest[SHA1_DIGEST_WORDS];
285 u32 ws[SHA1_WORKSPACE_WORDS];
7bd509e3 286 u32 i, bsize, psize, blocks;
aafe6ae9 287 struct bpf_insn *dst;
7bd509e3 288 bool was_ld_map;
aafe6ae9 289 u8 *raw, *todo;
7bd509e3
DB
290 __be32 *result;
291 __be64 *bits;
292
aafe6ae9
DB
293 raw = vmalloc(raw_size);
294 if (!raw)
295 return -ENOMEM;
296
6b0b0fa2 297 sha1_init(digest);
7bd509e3
DB
298 memset(ws, 0, sizeof(ws));
299
300 /* We need to take out the map fd for the digest calculation
301 * since they are unstable from user space side.
302 */
aafe6ae9 303 dst = (void *)raw;
7bd509e3
DB
304 for (i = 0, was_ld_map = false; i < fp->len; i++) {
305 dst[i] = fp->insnsi[i];
306 if (!was_ld_map &&
307 dst[i].code == (BPF_LD | BPF_IMM | BPF_DW) &&
d8eca5bb
DB
308 (dst[i].src_reg == BPF_PSEUDO_MAP_FD ||
309 dst[i].src_reg == BPF_PSEUDO_MAP_VALUE)) {
7bd509e3
DB
310 was_ld_map = true;
311 dst[i].imm = 0;
312 } else if (was_ld_map &&
313 dst[i].code == 0 &&
314 dst[i].dst_reg == 0 &&
315 dst[i].src_reg == 0 &&
316 dst[i].off == 0) {
317 was_ld_map = false;
318 dst[i].imm = 0;
319 } else {
320 was_ld_map = false;
321 }
322 }
323
aafe6ae9
DB
324 psize = bpf_prog_insn_size(fp);
325 memset(&raw[psize], 0, raw_size - psize);
7bd509e3
DB
326 raw[psize++] = 0x80;
327
6b0b0fa2
EB
328 bsize = round_up(psize, SHA1_BLOCK_SIZE);
329 blocks = bsize / SHA1_BLOCK_SIZE;
aafe6ae9 330 todo = raw;
7bd509e3
DB
331 if (bsize - psize >= sizeof(__be64)) {
332 bits = (__be64 *)(todo + bsize - sizeof(__be64));
333 } else {
334 bits = (__be64 *)(todo + bsize + bits_offset);
335 blocks++;
336 }
337 *bits = cpu_to_be64((psize - 1) << 3);
338
339 while (blocks--) {
6b0b0fa2
EB
340 sha1_transform(digest, todo, ws);
341 todo += SHA1_BLOCK_SIZE;
7bd509e3
DB
342 }
343
f1f7714e 344 result = (__force __be32 *)digest;
6b0b0fa2 345 for (i = 0; i < SHA1_DIGEST_WORDS; i++)
f1f7714e
DB
346 result[i] = cpu_to_be32(digest[i]);
347 memcpy(fp->tag, result, sizeof(fp->tag));
aafe6ae9
DB
348
349 vfree(raw);
350 return 0;
7bd509e3
DB
351}
352
2cbd95a5 353static int bpf_adj_delta_to_imm(struct bpf_insn *insn, u32 pos, s32 end_old,
af959b18 354 s32 end_new, s32 curr, const bool probe_pass)
c237ee5e 355{
050fad7c 356 const s64 imm_min = S32_MIN, imm_max = S32_MAX;
2cbd95a5 357 s32 delta = end_new - end_old;
050fad7c
DB
358 s64 imm = insn->imm;
359
2cbd95a5 360 if (curr < pos && curr + imm + 1 >= end_old)
050fad7c 361 imm += delta;
2cbd95a5 362 else if (curr >= end_new && curr + imm + 1 < end_new)
050fad7c
DB
363 imm -= delta;
364 if (imm < imm_min || imm > imm_max)
365 return -ERANGE;
366 if (!probe_pass)
367 insn->imm = imm;
368 return 0;
369}
370
2cbd95a5 371static int bpf_adj_delta_to_off(struct bpf_insn *insn, u32 pos, s32 end_old,
af959b18 372 s32 end_new, s32 curr, const bool probe_pass)
050fad7c 373{
dfce9cb3 374 s64 off_min, off_max, off;
2cbd95a5 375 s32 delta = end_new - end_old;
4cd58e9a 376
dfce9cb3 377 if (insn->code == (BPF_JMP32 | BPF_JA)) {
4cd58e9a 378 off = insn->imm;
dfce9cb3
YS
379 off_min = S32_MIN;
380 off_max = S32_MAX;
381 } else {
4cd58e9a 382 off = insn->off;
dfce9cb3
YS
383 off_min = S16_MIN;
384 off_max = S16_MAX;
385 }
050fad7c 386
2cbd95a5 387 if (curr < pos && curr + off + 1 >= end_old)
050fad7c 388 off += delta;
2cbd95a5 389 else if (curr >= end_new && curr + off + 1 < end_new)
050fad7c
DB
390 off -= delta;
391 if (off < off_min || off > off_max)
392 return -ERANGE;
4cd58e9a
YS
393 if (!probe_pass) {
394 if (insn->code == (BPF_JMP32 | BPF_JA))
395 insn->imm = off;
396 else
397 insn->off = off;
398 }
050fad7c
DB
399 return 0;
400}
401
2cbd95a5
JK
402static int bpf_adj_branches(struct bpf_prog *prog, u32 pos, s32 end_old,
403 s32 end_new, const bool probe_pass)
050fad7c 404{
2cbd95a5 405 u32 i, insn_cnt = prog->len + (probe_pass ? end_new - end_old : 0);
c237ee5e 406 struct bpf_insn *insn = prog->insnsi;
050fad7c 407 int ret = 0;
c237ee5e
DB
408
409 for (i = 0; i < insn_cnt; i++, insn++) {
050fad7c
DB
410 u8 code;
411
412 /* In the probing pass we still operate on the original,
413 * unpatched image in order to check overflows before we
414 * do any other adjustments. Therefore skip the patchlet.
415 */
416 if (probe_pass && i == pos) {
2cbd95a5
JK
417 i = end_new;
418 insn = prog->insnsi + end_old;
050fad7c 419 }
3990ed4c
MKL
420 if (bpf_pseudo_func(insn)) {
421 ret = bpf_adj_delta_to_imm(insn, pos, end_old,
422 end_new, i, probe_pass);
423 if (ret)
424 return ret;
425 continue;
426 }
1ea47e01 427 code = insn->code;
092ed096
JW
428 if ((BPF_CLASS(code) != BPF_JMP &&
429 BPF_CLASS(code) != BPF_JMP32) ||
050fad7c 430 BPF_OP(code) == BPF_EXIT)
1ea47e01 431 continue;
050fad7c 432 /* Adjust offset of jmps if we cross patch boundaries. */
1ea47e01 433 if (BPF_OP(code) == BPF_CALL) {
050fad7c 434 if (insn->src_reg != BPF_PSEUDO_CALL)
1ea47e01 435 continue;
2cbd95a5
JK
436 ret = bpf_adj_delta_to_imm(insn, pos, end_old,
437 end_new, i, probe_pass);
1ea47e01 438 } else {
2cbd95a5
JK
439 ret = bpf_adj_delta_to_off(insn, pos, end_old,
440 end_new, i, probe_pass);
1ea47e01 441 }
050fad7c
DB
442 if (ret)
443 break;
c237ee5e 444 }
050fad7c
DB
445
446 return ret;
c237ee5e
DB
447}
448
c454a46b
MKL
449static void bpf_adj_linfo(struct bpf_prog *prog, u32 off, u32 delta)
450{
451 struct bpf_line_info *linfo;
452 u32 i, nr_linfo;
453
454 nr_linfo = prog->aux->nr_linfo;
455 if (!nr_linfo || !delta)
456 return;
457
458 linfo = prog->aux->linfo;
459
460 for (i = 0; i < nr_linfo; i++)
461 if (off < linfo[i].insn_off)
462 break;
463
464 /* Push all off < linfo[i].insn_off by delta */
465 for (; i < nr_linfo; i++)
466 linfo[i].insn_off += delta;
467}
468
c237ee5e
DB
469struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off,
470 const struct bpf_insn *patch, u32 len)
471{
472 u32 insn_adj_cnt, insn_rest, insn_delta = len - 1;
050fad7c 473 const u32 cnt_max = S16_MAX;
c237ee5e 474 struct bpf_prog *prog_adj;
4f73379e 475 int err;
c237ee5e
DB
476
477 /* Since our patchlet doesn't expand the image, we're done. */
478 if (insn_delta == 0) {
479 memcpy(prog->insnsi + off, patch, sizeof(*patch));
480 return prog;
481 }
482
483 insn_adj_cnt = prog->len + insn_delta;
484
050fad7c
DB
485 /* Reject anything that would potentially let the insn->off
486 * target overflow when we have excessive program expansions.
487 * We need to probe here before we do any reallocation where
488 * we afterwards may not fail anymore.
489 */
490 if (insn_adj_cnt > cnt_max &&
4f73379e
AS
491 (err = bpf_adj_branches(prog, off, off + 1, off + len, true)))
492 return ERR_PTR(err);
050fad7c 493
c237ee5e
DB
494 /* Several new instructions need to be inserted. Make room
495 * for them. Likely, there's no need for a new allocation as
496 * last page could have large enough tailroom.
497 */
498 prog_adj = bpf_prog_realloc(prog, bpf_prog_size(insn_adj_cnt),
499 GFP_USER);
500 if (!prog_adj)
4f73379e 501 return ERR_PTR(-ENOMEM);
c237ee5e
DB
502
503 prog_adj->len = insn_adj_cnt;
504
505 /* Patching happens in 3 steps:
506 *
507 * 1) Move over tail of insnsi from next instruction onwards,
508 * so we can patch the single target insn with one or more
509 * new ones (patching is always from 1 to n insns, n > 0).
510 * 2) Inject new instructions at the target location.
511 * 3) Adjust branch offsets if necessary.
512 */
513 insn_rest = insn_adj_cnt - off - len;
514
515 memmove(prog_adj->insnsi + off + len, prog_adj->insnsi + off + 1,
516 sizeof(*patch) * insn_rest);
517 memcpy(prog_adj->insnsi + off, patch, sizeof(*patch) * len);
518
050fad7c
DB
519 /* We are guaranteed to not fail at this point, otherwise
520 * the ship has sailed to reverse to the original state. An
521 * overflow cannot happen at this point.
522 */
2cbd95a5 523 BUG_ON(bpf_adj_branches(prog_adj, off, off + 1, off + len, false));
c237ee5e 524
c454a46b
MKL
525 bpf_adj_linfo(prog_adj, off, insn_delta);
526
c237ee5e
DB
527 return prog_adj;
528}
529
52875a04
JK
530int bpf_remove_insns(struct bpf_prog *prog, u32 off, u32 cnt)
531{
532 /* Branch offsets can't overflow when program is shrinking, no need
533 * to call bpf_adj_branches(..., true) here
534 */
535 memmove(prog->insnsi + off, prog->insnsi + off + cnt,
536 sizeof(struct bpf_insn) * (prog->len - off - cnt));
537 prog->len -= cnt;
538
539 return WARN_ON_ONCE(bpf_adj_branches(prog, off, off + cnt, off, false));
540}
541
cd7455f1 542static void bpf_prog_kallsyms_del_subprogs(struct bpf_prog *fp)
7d1982b4
DB
543{
544 int i;
545
335d1c5b 546 for (i = 0; i < fp->aux->real_func_cnt; i++)
7d1982b4
DB
547 bpf_prog_kallsyms_del(fp->aux->func[i]);
548}
549
550void bpf_prog_kallsyms_del_all(struct bpf_prog *fp)
551{
552 bpf_prog_kallsyms_del_subprogs(fp);
553 bpf_prog_kallsyms_del(fp);
554}
555
b954d834 556#ifdef CONFIG_BPF_JIT
fa9dd599 557/* All BPF JIT sysctl knobs here. */
81c22041
DB
558int bpf_jit_enable __read_mostly = IS_BUILTIN(CONFIG_BPF_JIT_DEFAULT_ON);
559int bpf_jit_kallsyms __read_mostly = IS_BUILTIN(CONFIG_BPF_JIT_DEFAULT_ON);
fa9dd599 560int bpf_jit_harden __read_mostly;
fdadd049 561long bpf_jit_limit __read_mostly;
fadb7ff1 562long bpf_jit_limit_max __read_mostly;
fa9dd599 563
535911c8
JO
564static void
565bpf_prog_ksym_set_addr(struct bpf_prog *prog)
74451e66 566{
74451e66
DB
567 WARN_ON_ONCE(!bpf_prog_ebpf_jited(prog));
568
535911c8 569 prog->aux->ksym.start = (unsigned long) prog->bpf_func;
d00c6473 570 prog->aux->ksym.end = prog->aux->ksym.start + prog->jited_len;
74451e66
DB
571}
572
bfea9a85
JO
573static void
574bpf_prog_ksym_set_name(struct bpf_prog *prog)
74451e66 575{
bfea9a85 576 char *sym = prog->aux->ksym.name;
368211fb 577 const char *end = sym + KSYM_NAME_LEN;
838e9690
YS
578 const struct btf_type *type;
579 const char *func_name;
368211fb 580
74451e66 581 BUILD_BUG_ON(sizeof("bpf_prog_") +
368211fb
MKL
582 sizeof(prog->tag) * 2 +
583 /* name has been null terminated.
584 * We should need +1 for the '_' preceding
585 * the name. However, the null character
586 * is double counted between the name and the
587 * sizeof("bpf_prog_") above, so we omit
588 * the +1 here.
589 */
590 sizeof(prog->aux->name) > KSYM_NAME_LEN);
74451e66
DB
591
592 sym += snprintf(sym, KSYM_NAME_LEN, "bpf_prog_");
593 sym = bin2hex(sym, prog->tag, sizeof(prog->tag));
838e9690
YS
594
595 /* prog->aux->name will be ignored if full btf name is available */
335d1c5b 596 if (prog->aux->func_info_cnt && prog->aux->func_idx < prog->aux->func_info_cnt) {
ba64e7d8
YS
597 type = btf_type_by_id(prog->aux->btf,
598 prog->aux->func_info[prog->aux->func_idx].type_id);
838e9690
YS
599 func_name = btf_name_by_offset(prog->aux->btf, type->name_off);
600 snprintf(sym, (size_t)(end - sym), "_%s", func_name);
601 return;
602 }
603
368211fb
MKL
604 if (prog->aux->name[0])
605 snprintf(sym, (size_t)(end - sym), "_%s", prog->aux->name);
606 else
607 *sym = 0;
74451e66
DB
608}
609
ca4424c9 610static unsigned long bpf_get_ksym_start(struct latch_tree_node *n)
74451e66 611{
ca4424c9 612 return container_of(n, struct bpf_ksym, tnode)->start;
74451e66
DB
613}
614
615static __always_inline bool bpf_tree_less(struct latch_tree_node *a,
616 struct latch_tree_node *b)
617{
ca4424c9 618 return bpf_get_ksym_start(a) < bpf_get_ksym_start(b);
74451e66
DB
619}
620
621static __always_inline int bpf_tree_comp(void *key, struct latch_tree_node *n)
622{
623 unsigned long val = (unsigned long)key;
ca4424c9 624 const struct bpf_ksym *ksym;
74451e66 625
ca4424c9 626 ksym = container_of(n, struct bpf_ksym, tnode);
74451e66 627
ca4424c9 628 if (val < ksym->start)
74451e66 629 return -1;
66d9111f
KKD
630 /* Ensure that we detect return addresses as part of the program, when
631 * the final instruction is a call for a program part of the stack
632 * trace. Therefore, do val > ksym->end instead of val >= ksym->end.
633 */
634 if (val > ksym->end)
74451e66
DB
635 return 1;
636
637 return 0;
638}
639
640static const struct latch_tree_ops bpf_tree_ops = {
641 .less = bpf_tree_less,
642 .comp = bpf_tree_comp,
643};
644
645static DEFINE_SPINLOCK(bpf_lock);
646static LIST_HEAD(bpf_kallsyms);
647static struct latch_tree_root bpf_tree __cacheline_aligned;
648
dba122fb 649void bpf_ksym_add(struct bpf_ksym *ksym)
74451e66 650{
dba122fb
JO
651 spin_lock_bh(&bpf_lock);
652 WARN_ON_ONCE(!list_empty(&ksym->lnode));
653 list_add_tail_rcu(&ksym->lnode, &bpf_kallsyms);
654 latch_tree_insert(&ksym->tnode, &bpf_tree, &bpf_tree_ops);
655 spin_unlock_bh(&bpf_lock);
74451e66
DB
656}
657
dba122fb 658static void __bpf_ksym_del(struct bpf_ksym *ksym)
74451e66 659{
dba122fb 660 if (list_empty(&ksym->lnode))
74451e66
DB
661 return;
662
dba122fb
JO
663 latch_tree_erase(&ksym->tnode, &bpf_tree, &bpf_tree_ops);
664 list_del_rcu(&ksym->lnode);
665}
666
667void bpf_ksym_del(struct bpf_ksym *ksym)
668{
669 spin_lock_bh(&bpf_lock);
670 __bpf_ksym_del(ksym);
671 spin_unlock_bh(&bpf_lock);
74451e66
DB
672}
673
674static bool bpf_prog_kallsyms_candidate(const struct bpf_prog *fp)
675{
676 return fp->jited && !bpf_prog_was_classic(fp);
677}
678
74451e66
DB
679void bpf_prog_kallsyms_add(struct bpf_prog *fp)
680{
74451e66 681 if (!bpf_prog_kallsyms_candidate(fp) ||
2c78ee89 682 !bpf_capable())
74451e66
DB
683 return;
684
535911c8 685 bpf_prog_ksym_set_addr(fp);
bfea9a85 686 bpf_prog_ksym_set_name(fp);
cbd76f8d 687 fp->aux->ksym.prog = true;
535911c8 688
dba122fb 689 bpf_ksym_add(&fp->aux->ksym);
74451e66
DB
690}
691
692void bpf_prog_kallsyms_del(struct bpf_prog *fp)
693{
74451e66
DB
694 if (!bpf_prog_kallsyms_candidate(fp))
695 return;
696
dba122fb 697 bpf_ksym_del(&fp->aux->ksym);
74451e66
DB
698}
699
eda0c929
JO
700static struct bpf_ksym *bpf_ksym_find(unsigned long addr)
701{
702 struct latch_tree_node *n;
703
704 n = latch_tree_find((void *)addr, &bpf_tree, &bpf_tree_ops);
705 return n ? container_of(n, struct bpf_ksym, tnode) : NULL;
706}
707
74451e66
DB
708const char *__bpf_address_lookup(unsigned long addr, unsigned long *size,
709 unsigned long *off, char *sym)
710{
eda0c929 711 struct bpf_ksym *ksym;
74451e66
DB
712 char *ret = NULL;
713
714 rcu_read_lock();
eda0c929
JO
715 ksym = bpf_ksym_find(addr);
716 if (ksym) {
717 unsigned long symbol_start = ksym->start;
718 unsigned long symbol_end = ksym->end;
535911c8 719
eda0c929 720 strncpy(sym, ksym->name, KSYM_NAME_LEN);
74451e66
DB
721
722 ret = sym;
723 if (size)
724 *size = symbol_end - symbol_start;
725 if (off)
726 *off = addr - symbol_start;
727 }
728 rcu_read_unlock();
729
730 return ret;
731}
732
733bool is_bpf_text_address(unsigned long addr)
734{
735 bool ret;
736
737 rcu_read_lock();
eda0c929 738 ret = bpf_ksym_find(addr) != NULL;
74451e66
DB
739 rcu_read_unlock();
740
741 return ret;
742}
743
f18b03fa 744struct bpf_prog *bpf_prog_ksym_find(unsigned long addr)
cbd76f8d
JO
745{
746 struct bpf_ksym *ksym = bpf_ksym_find(addr);
747
748 return ksym && ksym->prog ?
749 container_of(ksym, struct bpf_prog_aux, ksym)->prog :
750 NULL;
751}
752
3dec541b
AS
753const struct exception_table_entry *search_bpf_extables(unsigned long addr)
754{
755 const struct exception_table_entry *e = NULL;
756 struct bpf_prog *prog;
757
758 rcu_read_lock();
cbd76f8d 759 prog = bpf_prog_ksym_find(addr);
3dec541b
AS
760 if (!prog)
761 goto out;
762 if (!prog->aux->num_exentries)
763 goto out;
764
765 e = search_extable(prog->aux->extable, prog->aux->num_exentries, addr);
766out:
767 rcu_read_unlock();
768 return e;
769}
770
74451e66
DB
771int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
772 char *sym)
773{
ecb60d1c 774 struct bpf_ksym *ksym;
74451e66
DB
775 unsigned int it = 0;
776 int ret = -ERANGE;
777
778 if (!bpf_jit_kallsyms_enabled())
779 return ret;
780
781 rcu_read_lock();
ecb60d1c 782 list_for_each_entry_rcu(ksym, &bpf_kallsyms, lnode) {
74451e66
DB
783 if (it++ != symnum)
784 continue;
785
ecb60d1c 786 strncpy(sym, ksym->name, KSYM_NAME_LEN);
74451e66 787
ecb60d1c 788 *value = ksym->start;
74451e66
DB
789 *type = BPF_SYM_ELF_TYPE;
790
791 ret = 0;
792 break;
793 }
794 rcu_read_unlock();
795
796 return ret;
797}
798
a66886fe
DB
799int bpf_jit_add_poke_descriptor(struct bpf_prog *prog,
800 struct bpf_jit_poke_descriptor *poke)
801{
802 struct bpf_jit_poke_descriptor *tab = prog->aux->poke_tab;
803 static const u32 poke_tab_max = 1024;
804 u32 slot = prog->aux->size_poke_tab;
805 u32 size = slot + 1;
806
807 if (size > poke_tab_max)
808 return -ENOSPC;
cf71b174 809 if (poke->tailcall_target || poke->tailcall_target_stable ||
ebf7d1f5 810 poke->tailcall_bypass || poke->adj_off || poke->bypass_addr)
a66886fe
DB
811 return -EINVAL;
812
813 switch (poke->reason) {
814 case BPF_POKE_REASON_TAIL_CALL:
815 if (!poke->tail_call.map)
816 return -EINVAL;
817 break;
818 default:
819 return -EINVAL;
820 }
821
822 tab = krealloc(tab, size * sizeof(*poke), GFP_KERNEL);
823 if (!tab)
824 return -ENOMEM;
825
826 memcpy(&tab[slot], poke, sizeof(*poke));
827 prog->aux->size_poke_tab = size;
828 prog->aux->poke_tab = tab;
829
830 return slot;
831}
832
57631054
SL
833/*
834 * BPF program pack allocator.
835 *
836 * Most BPF programs are pretty small. Allocating a hole page for each
837 * program is sometime a waste. Many small bpf program also adds pressure
838 * to instruction TLB. To solve this issue, we introduce a BPF program pack
839 * allocator. The prog_pack allocator uses HPAGE_PMD_SIZE page (2MB on x86)
840 * to host BPF programs.
841 */
57631054
SL
842#define BPF_PROG_CHUNK_SHIFT 6
843#define BPF_PROG_CHUNK_SIZE (1 << BPF_PROG_CHUNK_SHIFT)
844#define BPF_PROG_CHUNK_MASK (~(BPF_PROG_CHUNK_SIZE - 1))
57631054
SL
845
846struct bpf_prog_pack {
847 struct list_head list;
848 void *ptr;
4cc0991a 849 unsigned long bitmap[];
57631054
SL
850};
851
19c02415
SL
852void bpf_jit_fill_hole_with_zero(void *area, unsigned int size)
853{
854 memset(area, 0, size);
855}
856
57631054
SL
857#define BPF_PROG_SIZE_TO_NBITS(size) (round_up(size, BPF_PROG_CHUNK_SIZE) / BPF_PROG_CHUNK_SIZE)
858
859static DEFINE_MUTEX(pack_mutex);
860static LIST_HEAD(pack_list);
861
e5810941
SL
862/* PMD_SIZE is not available in some special config, e.g. ARCH=arm with
863 * CONFIG_MMU=n. Use PAGE_SIZE in these cases.
864 */
865#ifdef PMD_SIZE
ea2babac 866#define BPF_PROG_PACK_SIZE (PMD_SIZE * num_possible_nodes())
e5810941 867#else
ea2babac 868#define BPF_PROG_PACK_SIZE PAGE_SIZE
e5810941
SL
869#endif
870
ea2babac 871#define BPF_PROG_CHUNK_COUNT (BPF_PROG_PACK_SIZE / BPF_PROG_CHUNK_SIZE)
ef078600 872
d88bb5ee 873static struct bpf_prog_pack *alloc_new_pack(bpf_jit_fill_hole_t bpf_fill_ill_insns)
57631054
SL
874{
875 struct bpf_prog_pack *pack;
876
ea2babac 877 pack = kzalloc(struct_size(pack, bitmap, BITS_TO_LONGS(BPF_PROG_CHUNK_COUNT)),
ef078600 878 GFP_KERNEL);
57631054
SL
879 if (!pack)
880 return NULL;
20e490ad 881 pack->ptr = bpf_jit_alloc_exec(BPF_PROG_PACK_SIZE);
57631054
SL
882 if (!pack->ptr) {
883 kfree(pack);
884 return NULL;
885 }
ea2babac
SL
886 bpf_fill_ill_insns(pack->ptr, BPF_PROG_PACK_SIZE);
887 bitmap_zero(pack->bitmap, BPF_PROG_PACK_SIZE / BPF_PROG_CHUNK_SIZE);
57631054
SL
888 list_add_tail(&pack->list, &pack_list);
889
890 set_vm_flush_reset_perms(pack->ptr);
d48567c9 891 set_memory_rox((unsigned long)pack->ptr, BPF_PROG_PACK_SIZE / PAGE_SIZE);
57631054
SL
892 return pack;
893}
894
19c02415 895void *bpf_prog_pack_alloc(u32 size, bpf_jit_fill_hole_t bpf_fill_ill_insns)
57631054
SL
896{
897 unsigned int nbits = BPF_PROG_SIZE_TO_NBITS(size);
898 struct bpf_prog_pack *pack;
899 unsigned long pos;
900 void *ptr = NULL;
901
ef078600 902 mutex_lock(&pack_mutex);
ea2babac 903 if (size > BPF_PROG_PACK_SIZE) {
57631054 904 size = round_up(size, PAGE_SIZE);
20e490ad 905 ptr = bpf_jit_alloc_exec(size);
57631054 906 if (ptr) {
d88bb5ee 907 bpf_fill_ill_insns(ptr, size);
57631054 908 set_vm_flush_reset_perms(ptr);
d48567c9 909 set_memory_rox((unsigned long)ptr, size / PAGE_SIZE);
57631054 910 }
ef078600 911 goto out;
57631054 912 }
57631054 913 list_for_each_entry(pack, &pack_list, list) {
ea2babac 914 pos = bitmap_find_next_zero_area(pack->bitmap, BPF_PROG_CHUNK_COUNT, 0,
57631054 915 nbits, 0);
ea2babac 916 if (pos < BPF_PROG_CHUNK_COUNT)
57631054
SL
917 goto found_free_area;
918 }
919
d88bb5ee 920 pack = alloc_new_pack(bpf_fill_ill_insns);
57631054
SL
921 if (!pack)
922 goto out;
923
924 pos = 0;
925
926found_free_area:
927 bitmap_set(pack->bitmap, pos, nbits);
928 ptr = (void *)(pack->ptr) + (pos << BPF_PROG_CHUNK_SHIFT);
929
930out:
931 mutex_unlock(&pack_mutex);
932 return ptr;
933}
934
19c02415 935void bpf_prog_pack_free(struct bpf_binary_header *hdr)
57631054
SL
936{
937 struct bpf_prog_pack *pack = NULL, *tmp;
938 unsigned int nbits;
939 unsigned long pos;
57631054 940
ef078600 941 mutex_lock(&pack_mutex);
ea2babac 942 if (hdr->size > BPF_PROG_PACK_SIZE) {
20e490ad 943 bpf_jit_free_exec(hdr);
ef078600 944 goto out;
57631054
SL
945 }
946
57631054 947 list_for_each_entry(tmp, &pack_list, list) {
ea2babac 948 if ((void *)hdr >= tmp->ptr && (tmp->ptr + BPF_PROG_PACK_SIZE) > (void *)hdr) {
57631054
SL
949 pack = tmp;
950 break;
951 }
952 }
953
954 if (WARN_ONCE(!pack, "bpf_prog_pack bug\n"))
955 goto out;
956
957 nbits = BPF_PROG_SIZE_TO_NBITS(hdr->size);
ea2babac 958 pos = ((unsigned long)hdr - (unsigned long)pack->ptr) >> BPF_PROG_CHUNK_SHIFT;
57631054 959
fe736565
SL
960 WARN_ONCE(bpf_arch_text_invalidate(hdr, hdr->size),
961 "bpf_prog_pack bug: missing bpf_arch_text_invalidate?\n");
962
57631054 963 bitmap_clear(pack->bitmap, pos, nbits);
ea2babac
SL
964 if (bitmap_find_next_zero_area(pack->bitmap, BPF_PROG_CHUNK_COUNT, 0,
965 BPF_PROG_CHUNK_COUNT, 0) == 0) {
57631054 966 list_del(&pack->list);
20e490ad 967 bpf_jit_free_exec(pack->ptr);
57631054
SL
968 kfree(pack);
969 }
970out:
971 mutex_unlock(&pack_mutex);
972}
973
ede95a63
DB
974static atomic_long_t bpf_jit_current;
975
fdadd049
DB
976/* Can be overridden by an arch's JIT compiler if it has a custom,
977 * dedicated BPF backend memory area, or if neither of the two
978 * below apply.
979 */
980u64 __weak bpf_jit_alloc_exec_limit(void)
981{
ede95a63 982#if defined(MODULES_VADDR)
fdadd049
DB
983 return MODULES_END - MODULES_VADDR;
984#else
985 return VMALLOC_END - VMALLOC_START;
986#endif
987}
988
ede95a63
DB
989static int __init bpf_jit_charge_init(void)
990{
991 /* Only used as heuristic here to derive limit. */
fadb7ff1 992 bpf_jit_limit_max = bpf_jit_alloc_exec_limit();
10ec8ca8 993 bpf_jit_limit = min_t(u64, round_up(bpf_jit_limit_max >> 1,
fdadd049 994 PAGE_SIZE), LONG_MAX);
ede95a63
DB
995 return 0;
996}
997pure_initcall(bpf_jit_charge_init);
ede95a63 998
3486bedd 999int bpf_jit_charge_modmem(u32 size)
ede95a63 1000{
0947ae11 1001 if (atomic_long_add_return(size, &bpf_jit_current) > READ_ONCE(bpf_jit_limit)) {
8a98ae12 1002 if (!bpf_capable()) {
3486bedd 1003 atomic_long_sub(size, &bpf_jit_current);
ede95a63
DB
1004 return -EPERM;
1005 }
1006 }
1007
1008 return 0;
1009}
1010
3486bedd 1011void bpf_jit_uncharge_modmem(u32 size)
ede95a63 1012{
3486bedd 1013 atomic_long_sub(size, &bpf_jit_current);
ede95a63
DB
1014}
1015
dc002bb6
AB
1016void *__weak bpf_jit_alloc_exec(unsigned long size)
1017{
1018 return module_alloc(size);
1019}
1020
1021void __weak bpf_jit_free_exec(void *addr)
1022{
1023 module_memfree(addr);
1024}
1025
738cbe72
DB
1026struct bpf_binary_header *
1027bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
1028 unsigned int alignment,
1029 bpf_jit_fill_hole_t bpf_fill_ill_insns)
1030{
1031 struct bpf_binary_header *hdr;
ed2d9e1a 1032 u32 size, hole, start;
738cbe72 1033
b7b3fc8d
IL
1034 WARN_ON_ONCE(!is_power_of_2(alignment) ||
1035 alignment > BPF_IMAGE_ALIGNMENT);
1036
738cbe72
DB
1037 /* Most of BPF filters are really small, but if some of them
1038 * fill a page, allow at least 128 extra bytes to insert a
1039 * random section of illegal instructions.
1040 */
1041 size = round_up(proglen + sizeof(*hdr) + 128, PAGE_SIZE);
ede95a63 1042
3486bedd 1043 if (bpf_jit_charge_modmem(size))
ede95a63 1044 return NULL;
dc002bb6 1045 hdr = bpf_jit_alloc_exec(size);
ede95a63 1046 if (!hdr) {
3486bedd 1047 bpf_jit_uncharge_modmem(size);
738cbe72 1048 return NULL;
ede95a63 1049 }
738cbe72
DB
1050
1051 /* Fill space with illegal/arch-dep instructions. */
1052 bpf_fill_ill_insns(hdr, size);
1053
ed2d9e1a 1054 hdr->size = size;
738cbe72
DB
1055 hole = min_t(unsigned int, size - (proglen + sizeof(*hdr)),
1056 PAGE_SIZE - sizeof(*hdr));
8032bf12 1057 start = get_random_u32_below(hole) & ~(alignment - 1);
738cbe72
DB
1058
1059 /* Leave a random number of instructions before BPF code. */
1060 *image_ptr = &hdr->image[start];
1061
1062 return hdr;
1063}
1064
1065void bpf_jit_binary_free(struct bpf_binary_header *hdr)
1066{
ed2d9e1a 1067 u32 size = hdr->size;
ede95a63 1068
dc002bb6 1069 bpf_jit_free_exec(hdr);
ed2d9e1a 1070 bpf_jit_uncharge_modmem(size);
738cbe72 1071}
4f3446bb 1072
33c98058
SL
1073/* Allocate jit binary from bpf_prog_pack allocator.
1074 * Since the allocated memory is RO+X, the JIT engine cannot write directly
1075 * to the memory. To solve this problem, a RW buffer is also allocated at
1076 * as the same time. The JIT engine should calculate offsets based on the
1077 * RO memory address, but write JITed program to the RW buffer. Once the
1078 * JIT engine finishes, it calls bpf_jit_binary_pack_finalize, which copies
1079 * the JITed program to the RO memory.
1080 */
1081struct bpf_binary_header *
1082bpf_jit_binary_pack_alloc(unsigned int proglen, u8 **image_ptr,
1083 unsigned int alignment,
1084 struct bpf_binary_header **rw_header,
1085 u8 **rw_image,
1086 bpf_jit_fill_hole_t bpf_fill_ill_insns)
1087{
1088 struct bpf_binary_header *ro_header;
1089 u32 size, hole, start;
1090
1091 WARN_ON_ONCE(!is_power_of_2(alignment) ||
1092 alignment > BPF_IMAGE_ALIGNMENT);
1093
1094 /* add 16 bytes for a random section of illegal instructions */
1095 size = round_up(proglen + sizeof(*ro_header) + 16, BPF_PROG_CHUNK_SIZE);
1096
1097 if (bpf_jit_charge_modmem(size))
1098 return NULL;
d88bb5ee 1099 ro_header = bpf_prog_pack_alloc(size, bpf_fill_ill_insns);
33c98058
SL
1100 if (!ro_header) {
1101 bpf_jit_uncharge_modmem(size);
1102 return NULL;
1103 }
1104
1105 *rw_header = kvmalloc(size, GFP_KERNEL);
1106 if (!*rw_header) {
d24d2a2b 1107 bpf_arch_text_copy(&ro_header->size, &size, sizeof(size));
33c98058
SL
1108 bpf_prog_pack_free(ro_header);
1109 bpf_jit_uncharge_modmem(size);
1110 return NULL;
1111 }
1112
1113 /* Fill space with illegal/arch-dep instructions. */
1114 bpf_fill_ill_insns(*rw_header, size);
1115 (*rw_header)->size = size;
1116
1117 hole = min_t(unsigned int, size - (proglen + sizeof(*ro_header)),
1118 BPF_PROG_CHUNK_SIZE - sizeof(*ro_header));
8032bf12 1119 start = get_random_u32_below(hole) & ~(alignment - 1);
33c98058
SL
1120
1121 *image_ptr = &ro_header->image[start];
1122 *rw_image = &(*rw_header)->image[start];
1123
1124 return ro_header;
1125}
1126
1127/* Copy JITed text from rw_header to its final location, the ro_header. */
1128int bpf_jit_binary_pack_finalize(struct bpf_prog *prog,
1129 struct bpf_binary_header *ro_header,
1130 struct bpf_binary_header *rw_header)
1131{
1132 void *ptr;
1133
1134 ptr = bpf_arch_text_copy(ro_header, rw_header, rw_header->size);
1135
1136 kvfree(rw_header);
1137
1138 if (IS_ERR(ptr)) {
1139 bpf_prog_pack_free(ro_header);
1140 return PTR_ERR(ptr);
1141 }
33c98058
SL
1142 return 0;
1143}
1144
1145/* bpf_jit_binary_pack_free is called in two different scenarios:
1146 * 1) when the program is freed after;
1147 * 2) when the JIT engine fails (before bpf_jit_binary_pack_finalize).
1148 * For case 2), we need to free both the RO memory and the RW buffer.
676b2daa
SL
1149 *
1150 * bpf_jit_binary_pack_free requires proper ro_header->size. However,
1151 * bpf_jit_binary_pack_alloc does not set it. Therefore, ro_header->size
1152 * must be set with either bpf_jit_binary_pack_finalize (normal path) or
1153 * bpf_arch_text_copy (when jit fails).
33c98058
SL
1154 */
1155void bpf_jit_binary_pack_free(struct bpf_binary_header *ro_header,
1156 struct bpf_binary_header *rw_header)
1157{
676b2daa 1158 u32 size = ro_header->size;
33c98058
SL
1159
1160 bpf_prog_pack_free(ro_header);
1161 kvfree(rw_header);
1162 bpf_jit_uncharge_modmem(size);
1163}
1164
1d5f82d9
SL
1165struct bpf_binary_header *
1166bpf_jit_binary_pack_hdr(const struct bpf_prog *fp)
1167{
1168 unsigned long real_start = (unsigned long)fp->bpf_func;
1169 unsigned long addr;
1170
1171 addr = real_start & BPF_PROG_CHUNK_MASK;
1172 return (void *)addr;
1173}
1174
33c98058
SL
1175static inline struct bpf_binary_header *
1176bpf_jit_binary_hdr(const struct bpf_prog *fp)
1177{
1178 unsigned long real_start = (unsigned long)fp->bpf_func;
1179 unsigned long addr;
1180
1d5f82d9 1181 addr = real_start & PAGE_MASK;
33c98058
SL
1182 return (void *)addr;
1183}
1184
74451e66
DB
1185/* This symbol is only overridden by archs that have different
1186 * requirements than the usual eBPF JITs, f.e. when they only
1187 * implement cBPF JIT, do not set images read-only, etc.
1188 */
1189void __weak bpf_jit_free(struct bpf_prog *fp)
1190{
1191 if (fp->jited) {
1192 struct bpf_binary_header *hdr = bpf_jit_binary_hdr(fp);
1193
1d5f82d9 1194 bpf_jit_binary_free(hdr);
74451e66
DB
1195 WARN_ON_ONCE(!bpf_prog_kallsyms_verify_off(fp));
1196 }
1197
1198 bpf_prog_unlock_free(fp);
1199}
1200
e2c95a61
DB
1201int bpf_jit_get_func_addr(const struct bpf_prog *prog,
1202 const struct bpf_insn *insn, bool extra_pass,
1203 u64 *func_addr, bool *func_addr_fixed)
1204{
1205 s16 off = insn->off;
1206 s32 imm = insn->imm;
1207 u8 *addr;
1cf3bfc6 1208 int err;
e2c95a61
DB
1209
1210 *func_addr_fixed = insn->src_reg != BPF_PSEUDO_CALL;
1211 if (!*func_addr_fixed) {
1212 /* Place-holder address till the last pass has collected
1213 * all addresses for JITed subprograms in which case we
1214 * can pick them up from prog->aux.
1215 */
1216 if (!extra_pass)
1217 addr = NULL;
1218 else if (prog->aux->func &&
335d1c5b 1219 off >= 0 && off < prog->aux->real_func_cnt)
e2c95a61
DB
1220 addr = (u8 *)prog->aux->func[off]->bpf_func;
1221 else
1222 return -EINVAL;
1cf3bfc6
IL
1223 } else if (insn->src_reg == BPF_PSEUDO_KFUNC_CALL &&
1224 bpf_jit_supports_far_kfunc_call()) {
1225 err = bpf_get_kfunc_addr(prog, insn->imm, insn->off, &addr);
1226 if (err)
1227 return err;
e2c95a61
DB
1228 } else {
1229 /* Address of a BPF helper call. Since part of the core
1230 * kernel, it's always at a fixed location. __bpf_call_base
1231 * and the helper with imm relative to it are both in core
1232 * kernel.
1233 */
1234 addr = (u8 *)__bpf_call_base + imm;
1235 }
1236
1237 *func_addr = (unsigned long)addr;
1238 return 0;
1239}
1240
4f3446bb
DB
1241static int bpf_jit_blind_insn(const struct bpf_insn *from,
1242 const struct bpf_insn *aux,
ede7c460
NR
1243 struct bpf_insn *to_buff,
1244 bool emit_zext)
4f3446bb
DB
1245{
1246 struct bpf_insn *to = to_buff;
a251c17a 1247 u32 imm_rnd = get_random_u32();
4f3446bb
DB
1248 s16 off;
1249
1250 BUILD_BUG_ON(BPF_REG_AX + 1 != MAX_BPF_JIT_REG);
1251 BUILD_BUG_ON(MAX_BPF_REG + 1 != MAX_BPF_JIT_REG);
1252
9b73bfdd
DB
1253 /* Constraints on AX register:
1254 *
1255 * AX register is inaccessible from user space. It is mapped in
1256 * all JITs, and used here for constant blinding rewrites. It is
1257 * typically "stateless" meaning its contents are only valid within
1258 * the executed instruction, but not across several instructions.
1259 * There are a few exceptions however which are further detailed
1260 * below.
1261 *
1262 * Constant blinding is only used by JITs, not in the interpreter.
1263 * The interpreter uses AX in some occasions as a local temporary
1264 * register e.g. in DIV or MOD instructions.
1265 *
1266 * In restricted circumstances, the verifier can also use the AX
1267 * register for rewrites as long as they do not interfere with
1268 * the above cases!
1269 */
1270 if (from->dst_reg == BPF_REG_AX || from->src_reg == BPF_REG_AX)
1271 goto out;
1272
4f3446bb
DB
1273 if (from->imm == 0 &&
1274 (from->code == (BPF_ALU | BPF_MOV | BPF_K) ||
1275 from->code == (BPF_ALU64 | BPF_MOV | BPF_K))) {
1276 *to++ = BPF_ALU64_REG(BPF_XOR, from->dst_reg, from->dst_reg);
1277 goto out;
1278 }
1279
1280 switch (from->code) {
1281 case BPF_ALU | BPF_ADD | BPF_K:
1282 case BPF_ALU | BPF_SUB | BPF_K:
1283 case BPF_ALU | BPF_AND | BPF_K:
1284 case BPF_ALU | BPF_OR | BPF_K:
1285 case BPF_ALU | BPF_XOR | BPF_K:
1286 case BPF_ALU | BPF_MUL | BPF_K:
1287 case BPF_ALU | BPF_MOV | BPF_K:
1288 case BPF_ALU | BPF_DIV | BPF_K:
1289 case BPF_ALU | BPF_MOD | BPF_K:
1290 *to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1291 *to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
7058e3a3 1292 *to++ = BPF_ALU32_REG_OFF(from->code, from->dst_reg, BPF_REG_AX, from->off);
4f3446bb
DB
1293 break;
1294
1295 case BPF_ALU64 | BPF_ADD | BPF_K:
1296 case BPF_ALU64 | BPF_SUB | BPF_K:
1297 case BPF_ALU64 | BPF_AND | BPF_K:
1298 case BPF_ALU64 | BPF_OR | BPF_K:
1299 case BPF_ALU64 | BPF_XOR | BPF_K:
1300 case BPF_ALU64 | BPF_MUL | BPF_K:
1301 case BPF_ALU64 | BPF_MOV | BPF_K:
1302 case BPF_ALU64 | BPF_DIV | BPF_K:
1303 case BPF_ALU64 | BPF_MOD | BPF_K:
1304 *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1305 *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
7058e3a3 1306 *to++ = BPF_ALU64_REG_OFF(from->code, from->dst_reg, BPF_REG_AX, from->off);
4f3446bb
DB
1307 break;
1308
1309 case BPF_JMP | BPF_JEQ | BPF_K:
1310 case BPF_JMP | BPF_JNE | BPF_K:
1311 case BPF_JMP | BPF_JGT | BPF_K:
92b31a9a 1312 case BPF_JMP | BPF_JLT | BPF_K:
4f3446bb 1313 case BPF_JMP | BPF_JGE | BPF_K:
92b31a9a 1314 case BPF_JMP | BPF_JLE | BPF_K:
4f3446bb 1315 case BPF_JMP | BPF_JSGT | BPF_K:
92b31a9a 1316 case BPF_JMP | BPF_JSLT | BPF_K:
4f3446bb 1317 case BPF_JMP | BPF_JSGE | BPF_K:
92b31a9a 1318 case BPF_JMP | BPF_JSLE | BPF_K:
4f3446bb
DB
1319 case BPF_JMP | BPF_JSET | BPF_K:
1320 /* Accommodate for extra offset in case of a backjump. */
1321 off = from->off;
1322 if (off < 0)
1323 off -= 2;
1324 *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1325 *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1326 *to++ = BPF_JMP_REG(from->code, from->dst_reg, BPF_REG_AX, off);
1327 break;
1328
a7b76c88
JW
1329 case BPF_JMP32 | BPF_JEQ | BPF_K:
1330 case BPF_JMP32 | BPF_JNE | BPF_K:
1331 case BPF_JMP32 | BPF_JGT | BPF_K:
1332 case BPF_JMP32 | BPF_JLT | BPF_K:
1333 case BPF_JMP32 | BPF_JGE | BPF_K:
1334 case BPF_JMP32 | BPF_JLE | BPF_K:
1335 case BPF_JMP32 | BPF_JSGT | BPF_K:
1336 case BPF_JMP32 | BPF_JSLT | BPF_K:
1337 case BPF_JMP32 | BPF_JSGE | BPF_K:
1338 case BPF_JMP32 | BPF_JSLE | BPF_K:
1339 case BPF_JMP32 | BPF_JSET | BPF_K:
1340 /* Accommodate for extra offset in case of a backjump. */
1341 off = from->off;
1342 if (off < 0)
1343 off -= 2;
1344 *to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1345 *to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1346 *to++ = BPF_JMP32_REG(from->code, from->dst_reg, BPF_REG_AX,
1347 off);
1348 break;
1349
4f3446bb
DB
1350 case BPF_LD | BPF_IMM | BPF_DW:
1351 *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[1].imm);
1352 *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1353 *to++ = BPF_ALU64_IMM(BPF_LSH, BPF_REG_AX, 32);
1354 *to++ = BPF_ALU64_REG(BPF_MOV, aux[0].dst_reg, BPF_REG_AX);
1355 break;
1356 case 0: /* Part 2 of BPF_LD | BPF_IMM | BPF_DW. */
1357 *to++ = BPF_ALU32_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ aux[0].imm);
1358 *to++ = BPF_ALU32_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
ede7c460
NR
1359 if (emit_zext)
1360 *to++ = BPF_ZEXT_REG(BPF_REG_AX);
4f3446bb
DB
1361 *to++ = BPF_ALU64_REG(BPF_OR, aux[0].dst_reg, BPF_REG_AX);
1362 break;
1363
1364 case BPF_ST | BPF_MEM | BPF_DW:
1365 case BPF_ST | BPF_MEM | BPF_W:
1366 case BPF_ST | BPF_MEM | BPF_H:
1367 case BPF_ST | BPF_MEM | BPF_B:
1368 *to++ = BPF_ALU64_IMM(BPF_MOV, BPF_REG_AX, imm_rnd ^ from->imm);
1369 *to++ = BPF_ALU64_IMM(BPF_XOR, BPF_REG_AX, imm_rnd);
1370 *to++ = BPF_STX_MEM(from->code, from->dst_reg, BPF_REG_AX, from->off);
1371 break;
1372 }
1373out:
1374 return to - to_buff;
1375}
1376
1377static struct bpf_prog *bpf_prog_clone_create(struct bpf_prog *fp_other,
1378 gfp_t gfp_extra_flags)
1379{
19809c2d 1380 gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | gfp_extra_flags;
4f3446bb
DB
1381 struct bpf_prog *fp;
1382
88dca4ca 1383 fp = __vmalloc(fp_other->pages * PAGE_SIZE, gfp_flags);
4f3446bb 1384 if (fp != NULL) {
4f3446bb
DB
1385 /* aux->prog still points to the fp_other one, so
1386 * when promoting the clone to the real program,
1387 * this still needs to be adapted.
1388 */
1389 memcpy(fp, fp_other, fp_other->pages * PAGE_SIZE);
1390 }
1391
1392 return fp;
1393}
1394
1395static void bpf_prog_clone_free(struct bpf_prog *fp)
1396{
1397 /* aux was stolen by the other clone, so we cannot free
1398 * it from this path! It will be freed eventually by the
1399 * other program on release.
1400 *
1401 * At this point, we don't need a deferred release since
1402 * clone is guaranteed to not be locked.
1403 */
1404 fp->aux = NULL;
53f523f3
CW
1405 fp->stats = NULL;
1406 fp->active = NULL;
4f3446bb
DB
1407 __bpf_prog_free(fp);
1408}
1409
1410void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other)
1411{
1412 /* We have to repoint aux->prog to self, as we don't
1413 * know whether fp here is the clone or the original.
1414 */
1415 fp->aux->prog = fp;
1416 bpf_prog_clone_free(fp_other);
1417}
1418
1419struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *prog)
1420{
1421 struct bpf_insn insn_buff[16], aux[2];
1422 struct bpf_prog *clone, *tmp;
1423 int insn_delta, insn_cnt;
1424 struct bpf_insn *insn;
1425 int i, rewritten;
1426
d2a3b7c5 1427 if (!prog->blinding_requested || prog->blinded)
4f3446bb
DB
1428 return prog;
1429
1430 clone = bpf_prog_clone_create(prog, GFP_USER);
1431 if (!clone)
1432 return ERR_PTR(-ENOMEM);
1433
1434 insn_cnt = clone->len;
1435 insn = clone->insnsi;
1436
1437 for (i = 0; i < insn_cnt; i++, insn++) {
4b6313cf
AS
1438 if (bpf_pseudo_func(insn)) {
1439 /* ld_imm64 with an address of bpf subprog is not
1440 * a user controlled constant. Don't randomize it,
1441 * since it will conflict with jit_subprogs() logic.
1442 */
1443 insn++;
1444 i++;
1445 continue;
1446 }
1447
4f3446bb
DB
1448 /* We temporarily need to hold the original ld64 insn
1449 * so that we can still access the first part in the
1450 * second blinding run.
1451 */
1452 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW) &&
1453 insn[1].code == 0)
1454 memcpy(aux, insn, sizeof(aux));
1455
ede7c460
NR
1456 rewritten = bpf_jit_blind_insn(insn, aux, insn_buff,
1457 clone->aux->verifier_zext);
4f3446bb
DB
1458 if (!rewritten)
1459 continue;
1460
1461 tmp = bpf_patch_insn_single(clone, i, insn_buff, rewritten);
4f73379e 1462 if (IS_ERR(tmp)) {
4f3446bb
DB
1463 /* Patching may have repointed aux->prog during
1464 * realloc from the original one, so we need to
1465 * fix it up here on error.
1466 */
1467 bpf_jit_prog_release_other(prog, clone);
4f73379e 1468 return tmp;
4f3446bb
DB
1469 }
1470
1471 clone = tmp;
1472 insn_delta = rewritten - 1;
1473
1474 /* Walk new program and skip insns we just inserted. */
1475 insn = clone->insnsi + i + insn_delta;
1476 insn_cnt += insn_delta;
1477 i += insn_delta;
1478 }
1479
1c2a088a 1480 clone->blinded = 1;
4f3446bb
DB
1481 return clone;
1482}
b954d834 1483#endif /* CONFIG_BPF_JIT */
738cbe72 1484
f5bffecd
AS
1485/* Base function for offset calculation. Needs to go into .text section,
1486 * therefore keeping it non-static as well; will also be used by JITs
7105e828
DB
1487 * anyway later on, so do not let the compiler omit it. This also needs
1488 * to go into kallsyms for correlation from e.g. bpftool, so naming
1489 * must not change.
f5bffecd
AS
1490 */
1491noinline u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
1492{
1493 return 0;
1494}
4d9c5c53 1495EXPORT_SYMBOL_GPL(__bpf_call_base);
f5bffecd 1496
5e581dad
DB
1497/* All UAPI available opcodes. */
1498#define BPF_INSN_MAP(INSN_2, INSN_3) \
1499 /* 32 bit ALU operations. */ \
1500 /* Register based. */ \
2dc6b100
JW
1501 INSN_3(ALU, ADD, X), \
1502 INSN_3(ALU, SUB, X), \
1503 INSN_3(ALU, AND, X), \
1504 INSN_3(ALU, OR, X), \
1505 INSN_3(ALU, LSH, X), \
1506 INSN_3(ALU, RSH, X), \
1507 INSN_3(ALU, XOR, X), \
1508 INSN_3(ALU, MUL, X), \
1509 INSN_3(ALU, MOV, X), \
1510 INSN_3(ALU, ARSH, X), \
1511 INSN_3(ALU, DIV, X), \
1512 INSN_3(ALU, MOD, X), \
5e581dad
DB
1513 INSN_2(ALU, NEG), \
1514 INSN_3(ALU, END, TO_BE), \
1515 INSN_3(ALU, END, TO_LE), \
1516 /* Immediate based. */ \
2dc6b100
JW
1517 INSN_3(ALU, ADD, K), \
1518 INSN_3(ALU, SUB, K), \
1519 INSN_3(ALU, AND, K), \
1520 INSN_3(ALU, OR, K), \
1521 INSN_3(ALU, LSH, K), \
1522 INSN_3(ALU, RSH, K), \
1523 INSN_3(ALU, XOR, K), \
1524 INSN_3(ALU, MUL, K), \
1525 INSN_3(ALU, MOV, K), \
1526 INSN_3(ALU, ARSH, K), \
1527 INSN_3(ALU, DIV, K), \
1528 INSN_3(ALU, MOD, K), \
5e581dad
DB
1529 /* 64 bit ALU operations. */ \
1530 /* Register based. */ \
1531 INSN_3(ALU64, ADD, X), \
1532 INSN_3(ALU64, SUB, X), \
1533 INSN_3(ALU64, AND, X), \
1534 INSN_3(ALU64, OR, X), \
1535 INSN_3(ALU64, LSH, X), \
1536 INSN_3(ALU64, RSH, X), \
1537 INSN_3(ALU64, XOR, X), \
1538 INSN_3(ALU64, MUL, X), \
1539 INSN_3(ALU64, MOV, X), \
1540 INSN_3(ALU64, ARSH, X), \
1541 INSN_3(ALU64, DIV, X), \
1542 INSN_3(ALU64, MOD, X), \
1543 INSN_2(ALU64, NEG), \
0845c3db 1544 INSN_3(ALU64, END, TO_LE), \
5e581dad
DB
1545 /* Immediate based. */ \
1546 INSN_3(ALU64, ADD, K), \
1547 INSN_3(ALU64, SUB, K), \
1548 INSN_3(ALU64, AND, K), \
1549 INSN_3(ALU64, OR, K), \
1550 INSN_3(ALU64, LSH, K), \
1551 INSN_3(ALU64, RSH, K), \
1552 INSN_3(ALU64, XOR, K), \
1553 INSN_3(ALU64, MUL, K), \
1554 INSN_3(ALU64, MOV, K), \
1555 INSN_3(ALU64, ARSH, K), \
1556 INSN_3(ALU64, DIV, K), \
1557 INSN_3(ALU64, MOD, K), \
1558 /* Call instruction. */ \
1559 INSN_2(JMP, CALL), \
1560 /* Exit instruction. */ \
1561 INSN_2(JMP, EXIT), \
503a8865
JW
1562 /* 32-bit Jump instructions. */ \
1563 /* Register based. */ \
1564 INSN_3(JMP32, JEQ, X), \
1565 INSN_3(JMP32, JNE, X), \
1566 INSN_3(JMP32, JGT, X), \
1567 INSN_3(JMP32, JLT, X), \
1568 INSN_3(JMP32, JGE, X), \
1569 INSN_3(JMP32, JLE, X), \
1570 INSN_3(JMP32, JSGT, X), \
1571 INSN_3(JMP32, JSLT, X), \
1572 INSN_3(JMP32, JSGE, X), \
1573 INSN_3(JMP32, JSLE, X), \
1574 INSN_3(JMP32, JSET, X), \
1575 /* Immediate based. */ \
1576 INSN_3(JMP32, JEQ, K), \
1577 INSN_3(JMP32, JNE, K), \
1578 INSN_3(JMP32, JGT, K), \
1579 INSN_3(JMP32, JLT, K), \
1580 INSN_3(JMP32, JGE, K), \
1581 INSN_3(JMP32, JLE, K), \
1582 INSN_3(JMP32, JSGT, K), \
1583 INSN_3(JMP32, JSLT, K), \
1584 INSN_3(JMP32, JSGE, K), \
1585 INSN_3(JMP32, JSLE, K), \
1586 INSN_3(JMP32, JSET, K), \
5e581dad
DB
1587 /* Jump instructions. */ \
1588 /* Register based. */ \
1589 INSN_3(JMP, JEQ, X), \
1590 INSN_3(JMP, JNE, X), \
1591 INSN_3(JMP, JGT, X), \
1592 INSN_3(JMP, JLT, X), \
1593 INSN_3(JMP, JGE, X), \
1594 INSN_3(JMP, JLE, X), \
1595 INSN_3(JMP, JSGT, X), \
1596 INSN_3(JMP, JSLT, X), \
1597 INSN_3(JMP, JSGE, X), \
1598 INSN_3(JMP, JSLE, X), \
1599 INSN_3(JMP, JSET, X), \
1600 /* Immediate based. */ \
1601 INSN_3(JMP, JEQ, K), \
1602 INSN_3(JMP, JNE, K), \
1603 INSN_3(JMP, JGT, K), \
1604 INSN_3(JMP, JLT, K), \
1605 INSN_3(JMP, JGE, K), \
1606 INSN_3(JMP, JLE, K), \
1607 INSN_3(JMP, JSGT, K), \
1608 INSN_3(JMP, JSLT, K), \
1609 INSN_3(JMP, JSGE, K), \
1610 INSN_3(JMP, JSLE, K), \
1611 INSN_3(JMP, JSET, K), \
1612 INSN_2(JMP, JA), \
4cd58e9a 1613 INSN_2(JMP32, JA), \
5e581dad
DB
1614 /* Store instructions. */ \
1615 /* Register based. */ \
1616 INSN_3(STX, MEM, B), \
1617 INSN_3(STX, MEM, H), \
1618 INSN_3(STX, MEM, W), \
1619 INSN_3(STX, MEM, DW), \
91c960b0
BJ
1620 INSN_3(STX, ATOMIC, W), \
1621 INSN_3(STX, ATOMIC, DW), \
5e581dad
DB
1622 /* Immediate based. */ \
1623 INSN_3(ST, MEM, B), \
1624 INSN_3(ST, MEM, H), \
1625 INSN_3(ST, MEM, W), \
1626 INSN_3(ST, MEM, DW), \
1627 /* Load instructions. */ \
1628 /* Register based. */ \
1629 INSN_3(LDX, MEM, B), \
1630 INSN_3(LDX, MEM, H), \
1631 INSN_3(LDX, MEM, W), \
1632 INSN_3(LDX, MEM, DW), \
1f9a1ea8
YS
1633 INSN_3(LDX, MEMSX, B), \
1634 INSN_3(LDX, MEMSX, H), \
1635 INSN_3(LDX, MEMSX, W), \
5e581dad 1636 /* Immediate based. */ \
e0cea7ce 1637 INSN_3(LD, IMM, DW)
5e581dad
DB
1638
1639bool bpf_opcode_in_insntable(u8 code)
1640{
1641#define BPF_INSN_2_TBL(x, y) [BPF_##x | BPF_##y] = true
1642#define BPF_INSN_3_TBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = true
1643 static const bool public_insntable[256] = {
1644 [0 ... 255] = false,
1645 /* Now overwrite non-defaults ... */
1646 BPF_INSN_MAP(BPF_INSN_2_TBL, BPF_INSN_3_TBL),
e0cea7ce
DB
1647 /* UAPI exposed, but rewritten opcodes. cBPF carry-over. */
1648 [BPF_LD | BPF_ABS | BPF_B] = true,
1649 [BPF_LD | BPF_ABS | BPF_H] = true,
1650 [BPF_LD | BPF_ABS | BPF_W] = true,
1651 [BPF_LD | BPF_IND | BPF_B] = true,
1652 [BPF_LD | BPF_IND | BPF_H] = true,
1653 [BPF_LD | BPF_IND | BPF_W] = true,
5e581dad
DB
1654 };
1655#undef BPF_INSN_3_TBL
1656#undef BPF_INSN_2_TBL
1657 return public_insntable[code];
1658}
1659
290af866 1660#ifndef CONFIG_BPF_JIT_ALWAYS_ON
f5bffecd 1661/**
019d0454 1662 * ___bpf_prog_run - run eBPF program on a given context
de1da68d 1663 * @regs: is the array of MAX_BPF_EXT_REG eBPF pseudo-registers
7ae457c1 1664 * @insn: is the array of eBPF instructions
f5bffecd 1665 *
7ae457c1 1666 * Decode and execute eBPF instructions.
019d0454
RD
1667 *
1668 * Return: whatever value is in %BPF_R0 at program exit
f5bffecd 1669 */
2ec9898e 1670static u64 ___bpf_prog_run(u64 *regs, const struct bpf_insn *insn)
f5bffecd 1671{
5e581dad
DB
1672#define BPF_INSN_2_LBL(x, y) [BPF_##x | BPF_##y] = &&x##_##y
1673#define BPF_INSN_3_LBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = &&x##_##y##_##z
e55a7325 1674 static const void * const jumptable[256] __annotate_jump_table = {
f5bffecd
AS
1675 [0 ... 255] = &&default_label,
1676 /* Now overwrite non-defaults ... */
5e581dad
DB
1677 BPF_INSN_MAP(BPF_INSN_2_LBL, BPF_INSN_3_LBL),
1678 /* Non-UAPI available opcodes. */
1ea47e01 1679 [BPF_JMP | BPF_CALL_ARGS] = &&JMP_CALL_ARGS,
71189fa9 1680 [BPF_JMP | BPF_TAIL_CALL] = &&JMP_TAIL_CALL,
f5e81d11 1681 [BPF_ST | BPF_NOSPEC] = &&ST_NOSPEC,
2a02759e
AS
1682 [BPF_LDX | BPF_PROBE_MEM | BPF_B] = &&LDX_PROBE_MEM_B,
1683 [BPF_LDX | BPF_PROBE_MEM | BPF_H] = &&LDX_PROBE_MEM_H,
1684 [BPF_LDX | BPF_PROBE_MEM | BPF_W] = &&LDX_PROBE_MEM_W,
1685 [BPF_LDX | BPF_PROBE_MEM | BPF_DW] = &&LDX_PROBE_MEM_DW,
1f9a1ea8
YS
1686 [BPF_LDX | BPF_PROBE_MEMSX | BPF_B] = &&LDX_PROBE_MEMSX_B,
1687 [BPF_LDX | BPF_PROBE_MEMSX | BPF_H] = &&LDX_PROBE_MEMSX_H,
1688 [BPF_LDX | BPF_PROBE_MEMSX | BPF_W] = &&LDX_PROBE_MEMSX_W,
f5bffecd 1689 };
5e581dad
DB
1690#undef BPF_INSN_3_LBL
1691#undef BPF_INSN_2_LBL
04fd61ab 1692 u32 tail_call_cnt = 0;
f5bffecd
AS
1693
1694#define CONT ({ insn++; goto select_insn; })
1695#define CONT_JMP ({ insn++; goto select_insn; })
1696
f5bffecd
AS
1697select_insn:
1698 goto *jumptable[insn->code];
1699
28131e9d
DB
1700 /* Explicitly mask the register-based shift amounts with 63 or 31
1701 * to avoid undefined behavior. Normally this won't affect the
1702 * generated code, for example, in case of native 64 bit archs such
1703 * as x86-64 or arm64, the compiler is optimizing the AND away for
1704 * the interpreter. In case of JITs, each of the JIT backends compiles
1705 * the BPF shift operations to machine instructions which produce
1706 * implementation-defined results in such a case; the resulting
1707 * contents of the register may be arbitrary, but program behaviour
1708 * as a whole remains defined. In other words, in case of JIT backends,
1709 * the AND must /not/ be added to the emitted LSH/RSH/ARSH translation.
1710 */
1711 /* ALU (shifts) */
1712#define SHT(OPCODE, OP) \
1713 ALU64_##OPCODE##_X: \
1714 DST = DST OP (SRC & 63); \
1715 CONT; \
1716 ALU_##OPCODE##_X: \
1717 DST = (u32) DST OP ((u32) SRC & 31); \
1718 CONT; \
1719 ALU64_##OPCODE##_K: \
1720 DST = DST OP IMM; \
1721 CONT; \
1722 ALU_##OPCODE##_K: \
1723 DST = (u32) DST OP (u32) IMM; \
1724 CONT;
1725 /* ALU (rest) */
1726#define ALU(OPCODE, OP) \
1727 ALU64_##OPCODE##_X: \
1728 DST = DST OP SRC; \
1729 CONT; \
1730 ALU_##OPCODE##_X: \
1731 DST = (u32) DST OP (u32) SRC; \
1732 CONT; \
1733 ALU64_##OPCODE##_K: \
1734 DST = DST OP IMM; \
1735 CONT; \
1736 ALU_##OPCODE##_K: \
1737 DST = (u32) DST OP (u32) IMM; \
f5bffecd 1738 CONT;
f5bffecd
AS
1739 ALU(ADD, +)
1740 ALU(SUB, -)
1741 ALU(AND, &)
1742 ALU(OR, |)
f5bffecd
AS
1743 ALU(XOR, ^)
1744 ALU(MUL, *)
28131e9d
DB
1745 SHT(LSH, <<)
1746 SHT(RSH, >>)
1747#undef SHT
f5bffecd
AS
1748#undef ALU
1749 ALU_NEG:
1750 DST = (u32) -DST;
1751 CONT;
1752 ALU64_NEG:
1753 DST = -DST;
1754 CONT;
1755 ALU_MOV_X:
8100928c
YS
1756 switch (OFF) {
1757 case 0:
1758 DST = (u32) SRC;
1759 break;
1760 case 8:
1761 DST = (u32)(s8) SRC;
1762 break;
1763 case 16:
1764 DST = (u32)(s16) SRC;
1765 break;
1766 }
f5bffecd
AS
1767 CONT;
1768 ALU_MOV_K:
1769 DST = (u32) IMM;
1770 CONT;
1771 ALU64_MOV_X:
8100928c
YS
1772 switch (OFF) {
1773 case 0:
1774 DST = SRC;
1775 break;
1776 case 8:
1777 DST = (s8) SRC;
1778 break;
1779 case 16:
1780 DST = (s16) SRC;
1781 break;
1782 case 32:
1783 DST = (s32) SRC;
1784 break;
1785 }
f5bffecd
AS
1786 CONT;
1787 ALU64_MOV_K:
1788 DST = IMM;
1789 CONT;
02ab695b
AS
1790 LD_IMM_DW:
1791 DST = (u64) (u32) insn[0].imm | ((u64) (u32) insn[1].imm) << 32;
1792 insn++;
1793 CONT;
2dc6b100 1794 ALU_ARSH_X:
28131e9d 1795 DST = (u64) (u32) (((s32) DST) >> (SRC & 31));
2dc6b100
JW
1796 CONT;
1797 ALU_ARSH_K:
75672dda 1798 DST = (u64) (u32) (((s32) DST) >> IMM);
2dc6b100 1799 CONT;
f5bffecd 1800 ALU64_ARSH_X:
28131e9d 1801 (*(s64 *) &DST) >>= (SRC & 63);
f5bffecd
AS
1802 CONT;
1803 ALU64_ARSH_K:
1804 (*(s64 *) &DST) >>= IMM;
1805 CONT;
1806 ALU64_MOD_X:
ec0e2da9
YS
1807 switch (OFF) {
1808 case 0:
1809 div64_u64_rem(DST, SRC, &AX);
1810 DST = AX;
1811 break;
1812 case 1:
1813 AX = div64_s64(DST, SRC);
1814 DST = DST - AX * SRC;
1815 break;
1816 }
f5bffecd
AS
1817 CONT;
1818 ALU_MOD_X:
ec0e2da9
YS
1819 switch (OFF) {
1820 case 0:
1821 AX = (u32) DST;
1822 DST = do_div(AX, (u32) SRC);
1823 break;
1824 case 1:
1825 AX = abs((s32)DST);
1826 AX = do_div(AX, abs((s32)SRC));
1827 if ((s32)DST < 0)
1828 DST = (u32)-AX;
1829 else
1830 DST = (u32)AX;
1831 break;
1832 }
f5bffecd
AS
1833 CONT;
1834 ALU64_MOD_K:
ec0e2da9
YS
1835 switch (OFF) {
1836 case 0:
1837 div64_u64_rem(DST, IMM, &AX);
1838 DST = AX;
1839 break;
1840 case 1:
1841 AX = div64_s64(DST, IMM);
1842 DST = DST - AX * IMM;
1843 break;
1844 }
f5bffecd
AS
1845 CONT;
1846 ALU_MOD_K:
ec0e2da9
YS
1847 switch (OFF) {
1848 case 0:
1849 AX = (u32) DST;
1850 DST = do_div(AX, (u32) IMM);
1851 break;
1852 case 1:
1853 AX = abs((s32)DST);
1854 AX = do_div(AX, abs((s32)IMM));
1855 if ((s32)DST < 0)
1856 DST = (u32)-AX;
1857 else
1858 DST = (u32)AX;
1859 break;
1860 }
f5bffecd
AS
1861 CONT;
1862 ALU64_DIV_X:
ec0e2da9
YS
1863 switch (OFF) {
1864 case 0:
1865 DST = div64_u64(DST, SRC);
1866 break;
1867 case 1:
1868 DST = div64_s64(DST, SRC);
1869 break;
1870 }
f5bffecd
AS
1871 CONT;
1872 ALU_DIV_X:
ec0e2da9
YS
1873 switch (OFF) {
1874 case 0:
1875 AX = (u32) DST;
1876 do_div(AX, (u32) SRC);
1877 DST = (u32) AX;
1878 break;
1879 case 1:
1880 AX = abs((s32)DST);
1881 do_div(AX, abs((s32)SRC));
09fedc73 1882 if (((s32)DST < 0) == ((s32)SRC < 0))
ec0e2da9
YS
1883 DST = (u32)AX;
1884 else
1885 DST = (u32)-AX;
1886 break;
1887 }
f5bffecd
AS
1888 CONT;
1889 ALU64_DIV_K:
ec0e2da9
YS
1890 switch (OFF) {
1891 case 0:
1892 DST = div64_u64(DST, IMM);
1893 break;
1894 case 1:
1895 DST = div64_s64(DST, IMM);
1896 break;
1897 }
f5bffecd
AS
1898 CONT;
1899 ALU_DIV_K:
ec0e2da9
YS
1900 switch (OFF) {
1901 case 0:
1902 AX = (u32) DST;
1903 do_div(AX, (u32) IMM);
1904 DST = (u32) AX;
1905 break;
1906 case 1:
1907 AX = abs((s32)DST);
1908 do_div(AX, abs((s32)IMM));
09fedc73 1909 if (((s32)DST < 0) == ((s32)IMM < 0))
ec0e2da9
YS
1910 DST = (u32)AX;
1911 else
1912 DST = (u32)-AX;
1913 break;
1914 }
f5bffecd
AS
1915 CONT;
1916 ALU_END_TO_BE:
1917 switch (IMM) {
1918 case 16:
1919 DST = (__force u16) cpu_to_be16(DST);
1920 break;
1921 case 32:
1922 DST = (__force u32) cpu_to_be32(DST);
1923 break;
1924 case 64:
1925 DST = (__force u64) cpu_to_be64(DST);
1926 break;
1927 }
1928 CONT;
1929 ALU_END_TO_LE:
1930 switch (IMM) {
1931 case 16:
1932 DST = (__force u16) cpu_to_le16(DST);
1933 break;
1934 case 32:
1935 DST = (__force u32) cpu_to_le32(DST);
1936 break;
1937 case 64:
1938 DST = (__force u64) cpu_to_le64(DST);
1939 break;
1940 }
1941 CONT;
0845c3db
YS
1942 ALU64_END_TO_LE:
1943 switch (IMM) {
1944 case 16:
1945 DST = (__force u16) __swab16(DST);
1946 break;
1947 case 32:
1948 DST = (__force u32) __swab32(DST);
1949 break;
1950 case 64:
1951 DST = (__force u64) __swab64(DST);
1952 break;
1953 }
1954 CONT;
f5bffecd
AS
1955
1956 /* CALL */
1957 JMP_CALL:
1958 /* Function call scratches BPF_R1-BPF_R5 registers,
1959 * preserves BPF_R6-BPF_R9, and stores return value
1960 * into BPF_R0.
1961 */
1962 BPF_R0 = (__bpf_call_base + insn->imm)(BPF_R1, BPF_R2, BPF_R3,
1963 BPF_R4, BPF_R5);
1964 CONT;
1965
1ea47e01
AS
1966 JMP_CALL_ARGS:
1967 BPF_R0 = (__bpf_call_base_args + insn->imm)(BPF_R1, BPF_R2,
1968 BPF_R3, BPF_R4,
1969 BPF_R5,
1970 insn + insn->off + 1);
1971 CONT;
1972
04fd61ab
AS
1973 JMP_TAIL_CALL: {
1974 struct bpf_map *map = (struct bpf_map *) (unsigned long) BPF_R2;
1975 struct bpf_array *array = container_of(map, struct bpf_array, map);
1976 struct bpf_prog *prog;
90caccdd 1977 u32 index = BPF_R3;
04fd61ab
AS
1978
1979 if (unlikely(index >= array->map.max_entries))
1980 goto out;
ebf7f6f0
TY
1981
1982 if (unlikely(tail_call_cnt >= MAX_TAIL_CALL_CNT))
04fd61ab
AS
1983 goto out;
1984
1985 tail_call_cnt++;
1986
2a36f0b9 1987 prog = READ_ONCE(array->ptrs[index]);
1ca1cc98 1988 if (!prog)
04fd61ab
AS
1989 goto out;
1990
c4675f93
DB
1991 /* ARG1 at this point is guaranteed to point to CTX from
1992 * the verifier side due to the fact that the tail call is
0142dddc 1993 * handled like a helper, that is, bpf_tail_call_proto,
c4675f93
DB
1994 * where arg1_type is ARG_PTR_TO_CTX.
1995 */
04fd61ab
AS
1996 insn = prog->insnsi;
1997 goto select_insn;
1998out:
1999 CONT;
2000 }
f5bffecd
AS
2001 JMP_JA:
2002 insn += insn->off;
2003 CONT;
4cd58e9a
YS
2004 JMP32_JA:
2005 insn += insn->imm;
2006 CONT;
f5bffecd
AS
2007 JMP_EXIT:
2008 return BPF_R0;
503a8865
JW
2009 /* JMP */
2010#define COND_JMP(SIGN, OPCODE, CMP_OP) \
2011 JMP_##OPCODE##_X: \
2012 if ((SIGN##64) DST CMP_OP (SIGN##64) SRC) { \
2013 insn += insn->off; \
2014 CONT_JMP; \
2015 } \
2016 CONT; \
2017 JMP32_##OPCODE##_X: \
2018 if ((SIGN##32) DST CMP_OP (SIGN##32) SRC) { \
2019 insn += insn->off; \
2020 CONT_JMP; \
2021 } \
2022 CONT; \
2023 JMP_##OPCODE##_K: \
2024 if ((SIGN##64) DST CMP_OP (SIGN##64) IMM) { \
2025 insn += insn->off; \
2026 CONT_JMP; \
2027 } \
2028 CONT; \
2029 JMP32_##OPCODE##_K: \
2030 if ((SIGN##32) DST CMP_OP (SIGN##32) IMM) { \
2031 insn += insn->off; \
2032 CONT_JMP; \
2033 } \
2034 CONT;
2035 COND_JMP(u, JEQ, ==)
2036 COND_JMP(u, JNE, !=)
2037 COND_JMP(u, JGT, >)
2038 COND_JMP(u, JLT, <)
2039 COND_JMP(u, JGE, >=)
2040 COND_JMP(u, JLE, <=)
2041 COND_JMP(u, JSET, &)
2042 COND_JMP(s, JSGT, >)
2043 COND_JMP(s, JSLT, <)
2044 COND_JMP(s, JSGE, >=)
2045 COND_JMP(s, JSLE, <=)
2046#undef COND_JMP
f5e81d11
DB
2047 /* ST, STX and LDX*/
2048 ST_NOSPEC:
2049 /* Speculation barrier for mitigating Speculative Store Bypass.
2050 * In case of arm64, we rely on the firmware mitigation as
2051 * controlled via the ssbd kernel parameter. Whenever the
2052 * mitigation is enabled, it works for all of the kernel code
2053 * with no need to provide any additional instructions here.
2054 * In case of x86, we use 'lfence' insn for mitigation. We
2055 * reuse preexisting logic from Spectre v1 mitigation that
2056 * happens to produce the required code on x86 for v4 as well.
2057 */
f5e81d11 2058 barrier_nospec();
f5e81d11 2059 CONT;
f5bffecd
AS
2060#define LDST(SIZEOP, SIZE) \
2061 STX_MEM_##SIZEOP: \
2062 *(SIZE *)(unsigned long) (DST + insn->off) = SRC; \
2063 CONT; \
2064 ST_MEM_##SIZEOP: \
2065 *(SIZE *)(unsigned long) (DST + insn->off) = IMM; \
2066 CONT; \
2067 LDX_MEM_##SIZEOP: \
2068 DST = *(SIZE *)(unsigned long) (SRC + insn->off); \
caff1fa4
MD
2069 CONT; \
2070 LDX_PROBE_MEM_##SIZEOP: \
6a5a148a
AB
2071 bpf_probe_read_kernel_common(&DST, sizeof(SIZE), \
2072 (const void *)(long) (SRC + insn->off)); \
caff1fa4 2073 DST = *((SIZE *)&DST); \
f5bffecd
AS
2074 CONT;
2075
2076 LDST(B, u8)
2077 LDST(H, u16)
2078 LDST(W, u32)
2079 LDST(DW, u64)
2080#undef LDST
2a02759e 2081
1f9a1ea8
YS
2082#define LDSX(SIZEOP, SIZE) \
2083 LDX_MEMSX_##SIZEOP: \
2084 DST = *(SIZE *)(unsigned long) (SRC + insn->off); \
2085 CONT; \
2086 LDX_PROBE_MEMSX_##SIZEOP: \
6a5a148a 2087 bpf_probe_read_kernel_common(&DST, sizeof(SIZE), \
1f9a1ea8
YS
2088 (const void *)(long) (SRC + insn->off)); \
2089 DST = *((SIZE *)&DST); \
2090 CONT;
2091
2092 LDSX(B, s8)
2093 LDSX(H, s16)
2094 LDSX(W, s32)
2095#undef LDSX
2096
46291067
BJ
2097#define ATOMIC_ALU_OP(BOP, KOP) \
2098 case BOP: \
2099 if (BPF_SIZE(insn->code) == BPF_W) \
2100 atomic_##KOP((u32) SRC, (atomic_t *)(unsigned long) \
2101 (DST + insn->off)); \
2102 else \
2103 atomic64_##KOP((u64) SRC, (atomic64_t *)(unsigned long) \
2104 (DST + insn->off)); \
2105 break; \
2106 case BOP | BPF_FETCH: \
2107 if (BPF_SIZE(insn->code) == BPF_W) \
2108 SRC = (u32) atomic_fetch_##KOP( \
2109 (u32) SRC, \
2110 (atomic_t *)(unsigned long) (DST + insn->off)); \
2111 else \
2112 SRC = (u64) atomic64_fetch_##KOP( \
2113 (u64) SRC, \
2114 (atomic64_t *)(unsigned long) (DST + insn->off)); \
5ffa2550 2115 break;
5ca419f2 2116
91c960b0 2117 STX_ATOMIC_DW:
46291067 2118 STX_ATOMIC_W:
91c960b0 2119 switch (IMM) {
46291067 2120 ATOMIC_ALU_OP(BPF_ADD, add)
981f94c3
BJ
2121 ATOMIC_ALU_OP(BPF_AND, and)
2122 ATOMIC_ALU_OP(BPF_OR, or)
2123 ATOMIC_ALU_OP(BPF_XOR, xor)
46291067
BJ
2124#undef ATOMIC_ALU_OP
2125
5ffa2550 2126 case BPF_XCHG:
46291067
BJ
2127 if (BPF_SIZE(insn->code) == BPF_W)
2128 SRC = (u32) atomic_xchg(
2129 (atomic_t *)(unsigned long) (DST + insn->off),
2130 (u32) SRC);
2131 else
2132 SRC = (u64) atomic64_xchg(
2133 (atomic64_t *)(unsigned long) (DST + insn->off),
2134 (u64) SRC);
5ffa2550
BJ
2135 break;
2136 case BPF_CMPXCHG:
46291067
BJ
2137 if (BPF_SIZE(insn->code) == BPF_W)
2138 BPF_R0 = (u32) atomic_cmpxchg(
2139 (atomic_t *)(unsigned long) (DST + insn->off),
2140 (u32) BPF_R0, (u32) SRC);
2141 else
2142 BPF_R0 = (u64) atomic64_cmpxchg(
2143 (atomic64_t *)(unsigned long) (DST + insn->off),
2144 (u64) BPF_R0, (u64) SRC);
5ffa2550 2145 break;
46291067 2146
91c960b0
BJ
2147 default:
2148 goto default_label;
2149 }
f5bffecd 2150 CONT;
f5bffecd
AS
2151
2152 default_label:
5e581dad
DB
2153 /* If we ever reach this, we have a bug somewhere. Die hard here
2154 * instead of just returning 0; we could be somewhere in a subprog,
2155 * so execution could continue otherwise which we do /not/ want.
2156 *
2157 * Note, verifier whitelists all opcodes in bpf_opcode_in_insntable().
2158 */
91c960b0
BJ
2159 pr_warn("BPF interpreter: unknown opcode %02x (imm: 0x%x)\n",
2160 insn->code, insn->imm);
5e581dad 2161 BUG_ON(1);
f5bffecd
AS
2162 return 0;
2163}
f696b8f4 2164
b870aa90
AS
2165#define PROG_NAME(stack_size) __bpf_prog_run##stack_size
2166#define DEFINE_BPF_PROG_RUN(stack_size) \
2167static unsigned int PROG_NAME(stack_size)(const void *ctx, const struct bpf_insn *insn) \
2168{ \
2169 u64 stack[stack_size / sizeof(u64)]; \
a6a7aaba 2170 u64 regs[MAX_BPF_EXT_REG] = {}; \
b870aa90
AS
2171\
2172 FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
2173 ARG1 = (u64) (unsigned long) ctx; \
2ec9898e 2174 return ___bpf_prog_run(regs, insn); \
f696b8f4 2175}
f5bffecd 2176
1ea47e01
AS
2177#define PROG_NAME_ARGS(stack_size) __bpf_prog_run_args##stack_size
2178#define DEFINE_BPF_PROG_RUN_ARGS(stack_size) \
2179static u64 PROG_NAME_ARGS(stack_size)(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5, \
2180 const struct bpf_insn *insn) \
2181{ \
2182 u64 stack[stack_size / sizeof(u64)]; \
144cd91c 2183 u64 regs[MAX_BPF_EXT_REG]; \
1ea47e01
AS
2184\
2185 FP = (u64) (unsigned long) &stack[ARRAY_SIZE(stack)]; \
2186 BPF_R1 = r1; \
2187 BPF_R2 = r2; \
2188 BPF_R3 = r3; \
2189 BPF_R4 = r4; \
2190 BPF_R5 = r5; \
2ec9898e 2191 return ___bpf_prog_run(regs, insn); \
1ea47e01
AS
2192}
2193
b870aa90
AS
2194#define EVAL1(FN, X) FN(X)
2195#define EVAL2(FN, X, Y...) FN(X) EVAL1(FN, Y)
2196#define EVAL3(FN, X, Y...) FN(X) EVAL2(FN, Y)
2197#define EVAL4(FN, X, Y...) FN(X) EVAL3(FN, Y)
2198#define EVAL5(FN, X, Y...) FN(X) EVAL4(FN, Y)
2199#define EVAL6(FN, X, Y...) FN(X) EVAL5(FN, Y)
2200
2201EVAL6(DEFINE_BPF_PROG_RUN, 32, 64, 96, 128, 160, 192);
2202EVAL6(DEFINE_BPF_PROG_RUN, 224, 256, 288, 320, 352, 384);
2203EVAL4(DEFINE_BPF_PROG_RUN, 416, 448, 480, 512);
2204
1ea47e01
AS
2205EVAL6(DEFINE_BPF_PROG_RUN_ARGS, 32, 64, 96, 128, 160, 192);
2206EVAL6(DEFINE_BPF_PROG_RUN_ARGS, 224, 256, 288, 320, 352, 384);
2207EVAL4(DEFINE_BPF_PROG_RUN_ARGS, 416, 448, 480, 512);
2208
b870aa90
AS
2209#define PROG_NAME_LIST(stack_size) PROG_NAME(stack_size),
2210
2211static unsigned int (*interpreters[])(const void *ctx,
2212 const struct bpf_insn *insn) = {
2213EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192)
2214EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384)
2215EVAL4(PROG_NAME_LIST, 416, 448, 480, 512)
2216};
1ea47e01
AS
2217#undef PROG_NAME_LIST
2218#define PROG_NAME_LIST(stack_size) PROG_NAME_ARGS(stack_size),
ba49f976
AB
2219static __maybe_unused
2220u64 (*interpreters_args[])(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5,
2221 const struct bpf_insn *insn) = {
1ea47e01
AS
2222EVAL6(PROG_NAME_LIST, 32, 64, 96, 128, 160, 192)
2223EVAL6(PROG_NAME_LIST, 224, 256, 288, 320, 352, 384)
2224EVAL4(PROG_NAME_LIST, 416, 448, 480, 512)
2225};
2226#undef PROG_NAME_LIST
2227
ba49f976 2228#ifdef CONFIG_BPF_SYSCALL
1ea47e01
AS
2229void bpf_patch_call_args(struct bpf_insn *insn, u32 stack_depth)
2230{
2231 stack_depth = max_t(u32, stack_depth, 1);
2232 insn->off = (s16) insn->imm;
2233 insn->imm = interpreters_args[(round_up(stack_depth, 32) / 32) - 1] -
2234 __bpf_call_base_args;
2235 insn->code = BPF_JMP | BPF_CALL_ARGS;
2236}
ba49f976 2237#endif
290af866 2238#else
fa9dd599
DB
2239static unsigned int __bpf_prog_ret0_warn(const void *ctx,
2240 const struct bpf_insn *insn)
290af866 2241{
fa9dd599
DB
2242 /* If this handler ever gets executed, then BPF_JIT_ALWAYS_ON
2243 * is not working properly, so warn about it!
2244 */
2245 WARN_ON_ONCE(1);
290af866
AS
2246 return 0;
2247}
2248#endif
2249
f45d5b6c
THJ
2250bool bpf_prog_map_compatible(struct bpf_map *map,
2251 const struct bpf_prog *fp)
04fd61ab 2252{
1c123c56 2253 enum bpf_prog_type prog_type = resolve_prog_type(fp);
54713c85
THJ
2254 bool ret;
2255
9802d865
JB
2256 if (fp->kprobe_override)
2257 return false;
2258
3d76a4d3
SF
2259 /* XDP programs inserted into maps are not guaranteed to run on
2260 * a particular netdev (and can run outside driver context entirely
2261 * in the case of devmap and cpumap). Until device checks
2262 * are implemented, prohibit adding dev-bound programs to program maps.
2263 */
2264 if (bpf_prog_is_dev_bound(fp->aux))
2265 return false;
2266
f45d5b6c
THJ
2267 spin_lock(&map->owner.lock);
2268 if (!map->owner.type) {
3324b584
DB
2269 /* There's no owner yet where we could check for
2270 * compatibility.
2271 */
1c123c56 2272 map->owner.type = prog_type;
f45d5b6c
THJ
2273 map->owner.jited = fp->jited;
2274 map->owner.xdp_has_frags = fp->aux->xdp_has_frags;
54713c85
THJ
2275 ret = true;
2276 } else {
1c123c56 2277 ret = map->owner.type == prog_type &&
f45d5b6c
THJ
2278 map->owner.jited == fp->jited &&
2279 map->owner.xdp_has_frags == fp->aux->xdp_has_frags;
04fd61ab 2280 }
f45d5b6c
THJ
2281 spin_unlock(&map->owner.lock);
2282
54713c85 2283 return ret;
04fd61ab
AS
2284}
2285
3324b584 2286static int bpf_check_tail_call(const struct bpf_prog *fp)
04fd61ab
AS
2287{
2288 struct bpf_prog_aux *aux = fp->aux;
984fe94f 2289 int i, ret = 0;
04fd61ab 2290
984fe94f 2291 mutex_lock(&aux->used_maps_mutex);
04fd61ab 2292 for (i = 0; i < aux->used_map_cnt; i++) {
3324b584 2293 struct bpf_map *map = aux->used_maps[i];
04fd61ab 2294
f45d5b6c 2295 if (!map_type_contains_progs(map))
04fd61ab 2296 continue;
3324b584 2297
f45d5b6c 2298 if (!bpf_prog_map_compatible(map, fp)) {
984fe94f
YZ
2299 ret = -EINVAL;
2300 goto out;
2301 }
04fd61ab
AS
2302 }
2303
984fe94f
YZ
2304out:
2305 mutex_unlock(&aux->used_maps_mutex);
2306 return ret;
04fd61ab
AS
2307}
2308
9facc336
DB
2309static void bpf_prog_select_func(struct bpf_prog *fp)
2310{
2311#ifndef CONFIG_BPF_JIT_ALWAYS_ON
2312 u32 stack_depth = max_t(u32, fp->aux->stack_depth, 1);
2313
2314 fp->bpf_func = interpreters[(round_up(stack_depth, 32) / 32) - 1];
2315#else
2316 fp->bpf_func = __bpf_prog_ret0_warn;
2317#endif
2318}
2319
f5bffecd 2320/**
3324b584 2321 * bpf_prog_select_runtime - select exec runtime for BPF program
06edc59c 2322 * @fp: bpf_prog populated with BPF program
d1c55ab5 2323 * @err: pointer to error variable
f5bffecd 2324 *
3324b584 2325 * Try to JIT eBPF program, if JIT is not available, use interpreter.
fb7dd8bc 2326 * The BPF program will be executed via bpf_prog_run() function.
019d0454
RD
2327 *
2328 * Return: the &fp argument along with &err set to 0 for success or
2329 * a negative errno code on failure
f5bffecd 2330 */
d1c55ab5 2331struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err)
f5bffecd 2332{
9facc336
DB
2333 /* In case of BPF to BPF calls, verifier did all the prep
2334 * work with regards to JITing, etc.
2335 */
e6ac2450
MKL
2336 bool jit_needed = false;
2337
9facc336
DB
2338 if (fp->bpf_func)
2339 goto finalize;
8007e40a 2340
e6ac2450
MKL
2341 if (IS_ENABLED(CONFIG_BPF_JIT_ALWAYS_ON) ||
2342 bpf_prog_has_kfunc_call(fp))
2343 jit_needed = true;
2344
9facc336 2345 bpf_prog_select_func(fp);
f5bffecd 2346
d1c55ab5
DB
2347 /* eBPF JITs can rewrite the program in case constant
2348 * blinding is active. However, in case of error during
2349 * blinding, bpf_int_jit_compile() must always return a
2350 * valid program, which in this case would simply not
2351 * be JITed, but falls back to the interpreter.
2352 */
9d03ebc7 2353 if (!bpf_prog_is_offloaded(fp->aux)) {
c454a46b
MKL
2354 *err = bpf_prog_alloc_jited_linfo(fp);
2355 if (*err)
2356 return fp;
2357
ab3f0063 2358 fp = bpf_int_jit_compile(fp);
e16301fb 2359 bpf_prog_jit_attempt_done(fp);
e6ac2450 2360 if (!fp->jited && jit_needed) {
290af866
AS
2361 *err = -ENOTSUPP;
2362 return fp;
c454a46b 2363 }
ab3f0063
JK
2364 } else {
2365 *err = bpf_prog_offload_compile(fp);
2366 if (*err)
2367 return fp;
2368 }
9facc336
DB
2369
2370finalize:
60a3b225 2371 bpf_prog_lock_ro(fp);
04fd61ab 2372
3324b584
DB
2373 /* The tail call compatibility check can only be done at
2374 * this late stage as we need to determine, if we deal
2375 * with JITed or non JITed program concatenations and not
2376 * all eBPF JITs might immediately support all features.
2377 */
d1c55ab5 2378 *err = bpf_check_tail_call(fp);
85782e03 2379
d1c55ab5 2380 return fp;
f5bffecd 2381}
7ae457c1 2382EXPORT_SYMBOL_GPL(bpf_prog_select_runtime);
f5bffecd 2383
e87c6bc3
YS
2384static unsigned int __bpf_prog_ret1(const void *ctx,
2385 const struct bpf_insn *insn)
2386{
2387 return 1;
2388}
2389
2390static struct bpf_prog_dummy {
2391 struct bpf_prog prog;
2392} dummy_bpf_prog = {
2393 .prog = {
2394 .bpf_func = __bpf_prog_ret1,
2395 },
2396};
2397
46531a30 2398struct bpf_empty_prog_array bpf_empty_prog_array = {
324bda9e
AS
2399 .null_prog = NULL,
2400};
46531a30 2401EXPORT_SYMBOL(bpf_empty_prog_array);
324bda9e 2402
d29ab6e1 2403struct bpf_prog_array *bpf_prog_array_alloc(u32 prog_cnt, gfp_t flags)
324bda9e
AS
2404{
2405 if (prog_cnt)
2406 return kzalloc(sizeof(struct bpf_prog_array) +
394e40a2
RG
2407 sizeof(struct bpf_prog_array_item) *
2408 (prog_cnt + 1),
324bda9e
AS
2409 flags);
2410
46531a30 2411 return &bpf_empty_prog_array.hdr;
324bda9e
AS
2412}
2413
54e9c9d4 2414void bpf_prog_array_free(struct bpf_prog_array *progs)
324bda9e 2415{
46531a30 2416 if (!progs || progs == &bpf_empty_prog_array.hdr)
324bda9e
AS
2417 return;
2418 kfree_rcu(progs, rcu);
2419}
2420
8c7dcb84
DK
2421static void __bpf_prog_array_free_sleepable_cb(struct rcu_head *rcu)
2422{
2423 struct bpf_prog_array *progs;
2424
4835f9ee
HT
2425 /* If RCU Tasks Trace grace period implies RCU grace period, there is
2426 * no need to call kfree_rcu(), just call kfree() directly.
2427 */
8c7dcb84 2428 progs = container_of(rcu, struct bpf_prog_array, rcu);
4835f9ee
HT
2429 if (rcu_trace_implies_rcu_gp())
2430 kfree(progs);
2431 else
2432 kfree_rcu(progs, rcu);
8c7dcb84
DK
2433}
2434
2435void bpf_prog_array_free_sleepable(struct bpf_prog_array *progs)
2436{
2437 if (!progs || progs == &bpf_empty_prog_array.hdr)
2438 return;
2439 call_rcu_tasks_trace(&progs->rcu, __bpf_prog_array_free_sleepable_cb);
2440}
2441
54e9c9d4 2442int bpf_prog_array_length(struct bpf_prog_array *array)
468e2f64 2443{
394e40a2 2444 struct bpf_prog_array_item *item;
468e2f64
AS
2445 u32 cnt = 0;
2446
54e9c9d4 2447 for (item = array->items; item->prog; item++)
394e40a2 2448 if (item->prog != &dummy_bpf_prog.prog)
c8c088ba 2449 cnt++;
468e2f64
AS
2450 return cnt;
2451}
2452
0d01da6a
SF
2453bool bpf_prog_array_is_empty(struct bpf_prog_array *array)
2454{
2455 struct bpf_prog_array_item *item;
2456
2457 for (item = array->items; item->prog; item++)
2458 if (item->prog != &dummy_bpf_prog.prog)
2459 return false;
2460 return true;
2461}
394e40a2 2462
54e9c9d4 2463static bool bpf_prog_array_copy_core(struct bpf_prog_array *array,
3a38bb98
YS
2464 u32 *prog_ids,
2465 u32 request_cnt)
2466{
394e40a2 2467 struct bpf_prog_array_item *item;
3a38bb98
YS
2468 int i = 0;
2469
54e9c9d4 2470 for (item = array->items; item->prog; item++) {
394e40a2 2471 if (item->prog == &dummy_bpf_prog.prog)
3a38bb98 2472 continue;
394e40a2 2473 prog_ids[i] = item->prog->aux->id;
3a38bb98 2474 if (++i == request_cnt) {
394e40a2 2475 item++;
3a38bb98
YS
2476 break;
2477 }
2478 }
2479
394e40a2 2480 return !!(item->prog);
3a38bb98
YS
2481}
2482
54e9c9d4 2483int bpf_prog_array_copy_to_user(struct bpf_prog_array *array,
468e2f64
AS
2484 __u32 __user *prog_ids, u32 cnt)
2485{
0911287c 2486 unsigned long err = 0;
0911287c 2487 bool nospc;
3a38bb98 2488 u32 *ids;
0911287c
AS
2489
2490 /* users of this function are doing:
2491 * cnt = bpf_prog_array_length();
2492 * if (cnt > 0)
2493 * bpf_prog_array_copy_to_user(..., cnt);
54e9c9d4 2494 * so below kcalloc doesn't need extra cnt > 0 check.
0911287c 2495 */
9c481b90 2496 ids = kcalloc(cnt, sizeof(u32), GFP_USER | __GFP_NOWARN);
0911287c
AS
2497 if (!ids)
2498 return -ENOMEM;
394e40a2 2499 nospc = bpf_prog_array_copy_core(array, ids, cnt);
0911287c
AS
2500 err = copy_to_user(prog_ids, ids, cnt * sizeof(u32));
2501 kfree(ids);
2502 if (err)
2503 return -EFAULT;
2504 if (nospc)
468e2f64
AS
2505 return -ENOSPC;
2506 return 0;
2507}
2508
54e9c9d4 2509void bpf_prog_array_delete_safe(struct bpf_prog_array *array,
e87c6bc3
YS
2510 struct bpf_prog *old_prog)
2511{
54e9c9d4 2512 struct bpf_prog_array_item *item;
e87c6bc3 2513
54e9c9d4 2514 for (item = array->items; item->prog; item++)
394e40a2
RG
2515 if (item->prog == old_prog) {
2516 WRITE_ONCE(item->prog, &dummy_bpf_prog.prog);
e87c6bc3
YS
2517 break;
2518 }
2519}
2520
ce3aa9cc
JS
2521/**
2522 * bpf_prog_array_delete_safe_at() - Replaces the program at the given
2523 * index into the program array with
2524 * a dummy no-op program.
2525 * @array: a bpf_prog_array
2526 * @index: the index of the program to replace
2527 *
2528 * Skips over dummy programs, by not counting them, when calculating
b8c1a309 2529 * the position of the program to replace.
ce3aa9cc
JS
2530 *
2531 * Return:
2532 * * 0 - Success
2533 * * -EINVAL - Invalid index value. Must be a non-negative integer.
2534 * * -ENOENT - Index out of range
2535 */
2536int bpf_prog_array_delete_safe_at(struct bpf_prog_array *array, int index)
2537{
2538 return bpf_prog_array_update_at(array, index, &dummy_bpf_prog.prog);
2539}
2540
2541/**
2542 * bpf_prog_array_update_at() - Updates the program at the given index
2543 * into the program array.
2544 * @array: a bpf_prog_array
2545 * @index: the index of the program to update
2546 * @prog: the program to insert into the array
2547 *
2548 * Skips over dummy programs, by not counting them, when calculating
2549 * the position of the program to update.
2550 *
2551 * Return:
2552 * * 0 - Success
2553 * * -EINVAL - Invalid index value. Must be a non-negative integer.
2554 * * -ENOENT - Index out of range
2555 */
2556int bpf_prog_array_update_at(struct bpf_prog_array *array, int index,
2557 struct bpf_prog *prog)
2558{
2559 struct bpf_prog_array_item *item;
2560
2561 if (unlikely(index < 0))
2562 return -EINVAL;
2563
2564 for (item = array->items; item->prog; item++) {
2565 if (item->prog == &dummy_bpf_prog.prog)
2566 continue;
2567 if (!index) {
2568 WRITE_ONCE(item->prog, prog);
2569 return 0;
2570 }
2571 index--;
2572 }
2573 return -ENOENT;
2574}
2575
54e9c9d4 2576int bpf_prog_array_copy(struct bpf_prog_array *old_array,
e87c6bc3
YS
2577 struct bpf_prog *exclude_prog,
2578 struct bpf_prog *include_prog,
82e6b1ee 2579 u64 bpf_cookie,
e87c6bc3
YS
2580 struct bpf_prog_array **new_array)
2581{
2582 int new_prog_cnt, carry_prog_cnt = 0;
82e6b1ee 2583 struct bpf_prog_array_item *existing, *new;
e87c6bc3 2584 struct bpf_prog_array *array;
170a7e3e 2585 bool found_exclude = false;
e87c6bc3
YS
2586
2587 /* Figure out how many existing progs we need to carry over to
2588 * the new array.
2589 */
2590 if (old_array) {
394e40a2
RG
2591 existing = old_array->items;
2592 for (; existing->prog; existing++) {
2593 if (existing->prog == exclude_prog) {
170a7e3e
SY
2594 found_exclude = true;
2595 continue;
2596 }
394e40a2 2597 if (existing->prog != &dummy_bpf_prog.prog)
e87c6bc3 2598 carry_prog_cnt++;
394e40a2 2599 if (existing->prog == include_prog)
e87c6bc3
YS
2600 return -EEXIST;
2601 }
2602 }
2603
170a7e3e
SY
2604 if (exclude_prog && !found_exclude)
2605 return -ENOENT;
2606
e87c6bc3
YS
2607 /* How many progs (not NULL) will be in the new array? */
2608 new_prog_cnt = carry_prog_cnt;
2609 if (include_prog)
2610 new_prog_cnt += 1;
2611
2612 /* Do we have any prog (not NULL) in the new array? */
2613 if (!new_prog_cnt) {
2614 *new_array = NULL;
2615 return 0;
2616 }
2617
2618 /* +1 as the end of prog_array is marked with NULL */
2619 array = bpf_prog_array_alloc(new_prog_cnt + 1, GFP_KERNEL);
2620 if (!array)
2621 return -ENOMEM;
82e6b1ee 2622 new = array->items;
e87c6bc3
YS
2623
2624 /* Fill in the new prog array */
2625 if (carry_prog_cnt) {
394e40a2 2626 existing = old_array->items;
82e6b1ee
AN
2627 for (; existing->prog; existing++) {
2628 if (existing->prog == exclude_prog ||
2629 existing->prog == &dummy_bpf_prog.prog)
2630 continue;
2631
2632 new->prog = existing->prog;
2633 new->bpf_cookie = existing->bpf_cookie;
2634 new++;
2635 }
e87c6bc3 2636 }
82e6b1ee
AN
2637 if (include_prog) {
2638 new->prog = include_prog;
2639 new->bpf_cookie = bpf_cookie;
2640 new++;
2641 }
2642 new->prog = NULL;
e87c6bc3
YS
2643 *new_array = array;
2644 return 0;
2645}
2646
54e9c9d4 2647int bpf_prog_array_copy_info(struct bpf_prog_array *array,
3a38bb98
YS
2648 u32 *prog_ids, u32 request_cnt,
2649 u32 *prog_cnt)
f371b304
YS
2650{
2651 u32 cnt = 0;
2652
2653 if (array)
2654 cnt = bpf_prog_array_length(array);
2655
3a38bb98 2656 *prog_cnt = cnt;
f371b304
YS
2657
2658 /* return early if user requested only program count or nothing to copy */
2659 if (!request_cnt || !cnt)
2660 return 0;
2661
3a38bb98 2662 /* this function is called under trace/bpf_trace.c: bpf_event_mutex */
394e40a2 2663 return bpf_prog_array_copy_core(array, prog_ids, request_cnt) ? -ENOSPC
3a38bb98 2664 : 0;
f371b304
YS
2665}
2666
a2ea0746
DB
2667void __bpf_free_used_maps(struct bpf_prog_aux *aux,
2668 struct bpf_map **used_maps, u32 len)
6332be04 2669{
da765a2f 2670 struct bpf_map *map;
a2ea0746 2671 u32 i;
6332be04 2672
a2ea0746
DB
2673 for (i = 0; i < len; i++) {
2674 map = used_maps[i];
da765a2f
DB
2675 if (map->ops->map_poke_untrack)
2676 map->ops->map_poke_untrack(map, aux);
2677 bpf_map_put(map);
2678 }
a2ea0746
DB
2679}
2680
2681static void bpf_free_used_maps(struct bpf_prog_aux *aux)
2682{
2683 __bpf_free_used_maps(aux, aux->used_maps, aux->used_map_cnt);
6332be04
DB
2684 kfree(aux->used_maps);
2685}
2686
541c3bad
AN
2687void __bpf_free_used_btfs(struct bpf_prog_aux *aux,
2688 struct btf_mod_pair *used_btfs, u32 len)
2689{
2690#ifdef CONFIG_BPF_SYSCALL
2691 struct btf_mod_pair *btf_mod;
2692 u32 i;
2693
2694 for (i = 0; i < len; i++) {
2695 btf_mod = &used_btfs[i];
2696 if (btf_mod->module)
2697 module_put(btf_mod->module);
2698 btf_put(btf_mod->btf);
2699 }
2700#endif
2701}
2702
2703static void bpf_free_used_btfs(struct bpf_prog_aux *aux)
2704{
2705 __bpf_free_used_btfs(aux, aux->used_btfs, aux->used_btf_cnt);
2706 kfree(aux->used_btfs);
2707}
2708
60a3b225
DB
2709static void bpf_prog_free_deferred(struct work_struct *work)
2710{
09756af4 2711 struct bpf_prog_aux *aux;
1c2a088a 2712 int i;
60a3b225 2713
09756af4 2714 aux = container_of(work, struct bpf_prog_aux, work);
2357672c
KKD
2715#ifdef CONFIG_BPF_SYSCALL
2716 bpf_free_kfunc_btf_tab(aux->kfunc_btf_tab);
c0e19f2c
SF
2717#endif
2718#ifdef CONFIG_CGROUP_BPF
2719 if (aux->cgroup_atype != CGROUP_BPF_ATTACH_TYPE_INVALID)
2720 bpf_cgroup_atype_put(aux->cgroup_atype);
2357672c 2721#endif
6332be04 2722 bpf_free_used_maps(aux);
541c3bad 2723 bpf_free_used_btfs(aux);
ab3f0063 2724 if (bpf_prog_is_dev_bound(aux))
2b3486bc 2725 bpf_prog_dev_bound_destroy(aux->prog);
c195651e
YS
2726#ifdef CONFIG_PERF_EVENTS
2727 if (aux->prog->has_callchain_buf)
2728 put_callchain_buffers();
2729#endif
3aac1ead
THJ
2730 if (aux->dst_trampoline)
2731 bpf_trampoline_put(aux->dst_trampoline);
335d1c5b 2732 for (i = 0; i < aux->real_func_cnt; i++) {
f263a814
JF
2733 /* We can just unlink the subprog poke descriptor table as
2734 * it was originally linked to the main program and is also
2735 * released along with it.
2736 */
2737 aux->func[i]->aux->poke_tab = NULL;
1c2a088a 2738 bpf_jit_free(aux->func[i]);
f263a814 2739 }
335d1c5b 2740 if (aux->real_func_cnt) {
1c2a088a
AS
2741 kfree(aux->func);
2742 bpf_prog_unlock_free(aux->prog);
2743 } else {
2744 bpf_jit_free(aux->prog);
2745 }
60a3b225
DB
2746}
2747
7ae457c1 2748void bpf_prog_free(struct bpf_prog *fp)
f5bffecd 2749{
09756af4 2750 struct bpf_prog_aux *aux = fp->aux;
60a3b225 2751
3aac1ead
THJ
2752 if (aux->dst_prog)
2753 bpf_prog_put(aux->dst_prog);
09756af4 2754 INIT_WORK(&aux->work, bpf_prog_free_deferred);
09756af4 2755 schedule_work(&aux->work);
f5bffecd 2756}
7ae457c1 2757EXPORT_SYMBOL_GPL(bpf_prog_free);
f89b7755 2758
3ad00405
DB
2759/* RNG for unpriviledged user space with separated state from prandom_u32(). */
2760static DEFINE_PER_CPU(struct rnd_state, bpf_user_rnd_state);
2761
2762void bpf_user_rnd_init_once(void)
2763{
2764 prandom_init_once(&bpf_user_rnd_state);
2765}
2766
f3694e00 2767BPF_CALL_0(bpf_user_rnd_u32)
3ad00405
DB
2768{
2769 /* Should someone ever have the rather unwise idea to use some
2770 * of the registers passed into this function, then note that
2771 * this function is called from native eBPF and classic-to-eBPF
2772 * transformations. Register assignments from both sides are
2773 * different, f.e. classic always sets fn(ctx, A, X) here.
2774 */
2775 struct rnd_state *state;
2776 u32 res;
2777
2778 state = &get_cpu_var(bpf_user_rnd_state);
2779 res = prandom_u32_state(state);
b761fe22 2780 put_cpu_var(bpf_user_rnd_state);
3ad00405
DB
2781
2782 return res;
2783}
2784
6890896b
SF
2785BPF_CALL_0(bpf_get_raw_cpu_id)
2786{
2787 return raw_smp_processor_id();
2788}
2789
3ba67dab
DB
2790/* Weak definitions of helper functions in case we don't have bpf syscall. */
2791const struct bpf_func_proto bpf_map_lookup_elem_proto __weak;
2792const struct bpf_func_proto bpf_map_update_elem_proto __weak;
2793const struct bpf_func_proto bpf_map_delete_elem_proto __weak;
f1a2e44a
MV
2794const struct bpf_func_proto bpf_map_push_elem_proto __weak;
2795const struct bpf_func_proto bpf_map_pop_elem_proto __weak;
2796const struct bpf_func_proto bpf_map_peek_elem_proto __weak;
07343110 2797const struct bpf_func_proto bpf_map_lookup_percpu_elem_proto __weak;
d83525ca
AS
2798const struct bpf_func_proto bpf_spin_lock_proto __weak;
2799const struct bpf_func_proto bpf_spin_unlock_proto __weak;
5576b991 2800const struct bpf_func_proto bpf_jiffies64_proto __weak;
3ba67dab 2801
03e69b50 2802const struct bpf_func_proto bpf_get_prandom_u32_proto __weak;
c04167ce 2803const struct bpf_func_proto bpf_get_smp_processor_id_proto __weak;
2d0e30c3 2804const struct bpf_func_proto bpf_get_numa_node_id_proto __weak;
17ca8cbf 2805const struct bpf_func_proto bpf_ktime_get_ns_proto __weak;
71d19214 2806const struct bpf_func_proto bpf_ktime_get_boot_ns_proto __weak;
d0551261 2807const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto __weak;
c8996c98 2808const struct bpf_func_proto bpf_ktime_get_tai_ns_proto __weak;
bd570ff9 2809
ffeedafb
AS
2810const struct bpf_func_proto bpf_get_current_pid_tgid_proto __weak;
2811const struct bpf_func_proto bpf_get_current_uid_gid_proto __weak;
2812const struct bpf_func_proto bpf_get_current_comm_proto __weak;
bf6fa2c8 2813const struct bpf_func_proto bpf_get_current_cgroup_id_proto __weak;
0f09abd1 2814const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto __weak;
cd339431 2815const struct bpf_func_proto bpf_get_local_storage_proto __weak;
b4490c5c 2816const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto __weak;
c4d0bfb4 2817const struct bpf_func_proto bpf_snprintf_btf_proto __weak;
eb411377 2818const struct bpf_func_proto bpf_seq_printf_btf_proto __weak;
69fd337a
SF
2819const struct bpf_func_proto bpf_set_retval_proto __weak;
2820const struct bpf_func_proto bpf_get_retval_proto __weak;
bd570ff9 2821
0756ea3e
AS
2822const struct bpf_func_proto * __weak bpf_get_trace_printk_proto(void)
2823{
2824 return NULL;
2825}
03e69b50 2826
10aceb62
DM
2827const struct bpf_func_proto * __weak bpf_get_trace_vprintk_proto(void)
2828{
2829 return NULL;
2830}
2831
555c8a86
DB
2832u64 __weak
2833bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
2834 void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy)
bd570ff9 2835{
555c8a86 2836 return -ENOTSUPP;
bd570ff9 2837}
6cb5fb38 2838EXPORT_SYMBOL_GPL(bpf_event_output);
bd570ff9 2839
3324b584
DB
2840/* Always built-in helper functions. */
2841const struct bpf_func_proto bpf_tail_call_proto = {
2842 .func = NULL,
2843 .gpl_only = false,
2844 .ret_type = RET_VOID,
2845 .arg1_type = ARG_PTR_TO_CTX,
2846 .arg2_type = ARG_CONST_MAP_PTR,
2847 .arg3_type = ARG_ANYTHING,
2848};
2849
9383191d
DB
2850/* Stub for JITs that only support cBPF. eBPF programs are interpreted.
2851 * It is encouraged to implement bpf_int_jit_compile() instead, so that
2852 * eBPF and implicitly also cBPF can get JITed!
2853 */
d1c55ab5 2854struct bpf_prog * __weak bpf_int_jit_compile(struct bpf_prog *prog)
3324b584 2855{
d1c55ab5 2856 return prog;
3324b584
DB
2857}
2858
9383191d
DB
2859/* Stub for JITs that support eBPF. All cBPF code gets transformed into
2860 * eBPF by the kernel and is later compiled by bpf_int_jit_compile().
2861 */
2862void __weak bpf_jit_compile(struct bpf_prog *prog)
2863{
2864}
2865
17bedab2 2866bool __weak bpf_helper_changes_pkt_data(void *func)
969bf05e
AS
2867{
2868 return false;
2869}
2870
a4b1d3c1
JW
2871/* Return TRUE if the JIT backend wants verifier to enable sub-register usage
2872 * analysis code and wants explicit zero extension inserted by verifier.
2873 * Otherwise, return FALSE.
39491867
BJ
2874 *
2875 * The verifier inserts an explicit zero extension after BPF_CMPXCHGs even if
2876 * you don't override this. JITs that don't want these extra insns can detect
2877 * them using insn_is_zext.
a4b1d3c1
JW
2878 */
2879bool __weak bpf_jit_needs_zext(void)
2880{
2881 return false;
2882}
2883
95acd881
TA
2884/* Return TRUE if the JIT backend supports mixing bpf2bpf and tailcalls. */
2885bool __weak bpf_jit_supports_subprog_tailcalls(void)
2886{
2887 return false;
2888}
2889
e6ac2450
MKL
2890bool __weak bpf_jit_supports_kfunc_call(void)
2891{
2892 return false;
2893}
2894
1cf3bfc6
IL
2895bool __weak bpf_jit_supports_far_kfunc_call(void)
2896{
2897 return false;
2898}
2899
f89b7755
AS
2900/* To execute LD_ABS/LD_IND instructions __bpf_prog_run() may call
2901 * skb_copy_bits(), so provide a weak definition of it for NET-less config.
2902 */
2903int __weak skb_copy_bits(const struct sk_buff *skb, int offset, void *to,
2904 int len)
2905{
2906 return -EFAULT;
2907}
a67edbf4 2908
5964b200
AS
2909int __weak bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
2910 void *addr1, void *addr2)
2911{
2912 return -ENOTSUPP;
2913}
2914
ebc1415d
SL
2915void * __weak bpf_arch_text_copy(void *dst, void *src, size_t len)
2916{
2917 return ERR_PTR(-ENOTSUPP);
2918}
2919
fe736565
SL
2920int __weak bpf_arch_text_invalidate(void *dst, size_t len)
2921{
2922 return -ENOTSUPP;
2923}
2924
fd5d27b7
KKD
2925bool __weak bpf_jit_supports_exceptions(void)
2926{
2927 return false;
2928}
2929
2930void __weak arch_bpf_stack_walk(bool (*consume_fn)(void *cookie, u64 ip, u64 sp, u64 bp), void *cookie)
2931{
2932}
2933
958cf2e2
KKD
2934#ifdef CONFIG_BPF_SYSCALL
2935static int __init bpf_global_ma_init(void)
2936{
2937 int ret;
2938
2939 ret = bpf_mem_alloc_init(&bpf_global_ma, 0, false);
2940 bpf_global_ma_set = !ret;
1fda5bb6 2941 return ret;
958cf2e2
KKD
2942}
2943late_initcall(bpf_global_ma_init);
2944#endif
2945
492ecee8
AS
2946DEFINE_STATIC_KEY_FALSE(bpf_stats_enabled_key);
2947EXPORT_SYMBOL(bpf_stats_enabled_key);
492ecee8 2948
a67edbf4
DB
2949/* All definitions of tracepoints related to BPF. */
2950#define CREATE_TRACE_POINTS
2951#include <linux/bpf_trace.h>
2952
2953EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_exception);
e7d47989 2954EXPORT_TRACEPOINT_SYMBOL_GPL(xdp_bulk_tx);