]> git.ipfire.org Git - thirdparty/linux.git/blame - kernel/events/core.c
timekeeping: Use proper ktime_add when adding nsecs in coarse offset
[thirdparty/linux.git] / kernel / events / core.c
CommitLineData
8e86e015 1// SPDX-License-Identifier: GPL-2.0
0793a61d 2/*
57c0c15b 3 * Performance events core code:
0793a61d 4 *
98144511 5 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
e7e7ee2e 6 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
90eec103 7 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
d36b6910 8 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
0793a61d
TG
9 */
10
11#include <linux/fs.h>
b9cacc7b 12#include <linux/mm.h>
0793a61d
TG
13#include <linux/cpu.h>
14#include <linux/smp.h>
2e80a82a 15#include <linux/idr.h>
04289bb9 16#include <linux/file.h>
0793a61d 17#include <linux/poll.h>
5a0e3ad6 18#include <linux/slab.h>
76e1d904 19#include <linux/hash.h>
12351ef8 20#include <linux/tick.h>
0793a61d 21#include <linux/sysfs.h>
22a4f650 22#include <linux/dcache.h>
0793a61d 23#include <linux/percpu.h>
22a4f650 24#include <linux/ptrace.h>
c277443c 25#include <linux/reboot.h>
b9cacc7b 26#include <linux/vmstat.h>
abe43400 27#include <linux/device.h>
6e5fdeed 28#include <linux/export.h>
906010b2 29#include <linux/vmalloc.h>
b9cacc7b
PZ
30#include <linux/hardirq.h>
31#include <linux/rculist.h>
0793a61d
TG
32#include <linux/uaccess.h>
33#include <linux/syscalls.h>
34#include <linux/anon_inodes.h>
aa9c4c0f 35#include <linux/kernel_stat.h>
39bed6cb 36#include <linux/cgroup.h>
cdd6c482 37#include <linux/perf_event.h>
af658dca 38#include <linux/trace_events.h>
3c502e7a 39#include <linux/hw_breakpoint.h>
c5ebcedb 40#include <linux/mm_types.h>
c464c76e 41#include <linux/module.h>
f972eb63 42#include <linux/mman.h>
b3f20785 43#include <linux/compat.h>
2541517c
AS
44#include <linux/bpf.h>
45#include <linux/filter.h>
375637bc
AS
46#include <linux/namei.h>
47#include <linux/parser.h>
e6017571 48#include <linux/sched/clock.h>
6e84f315 49#include <linux/sched/mm.h>
e4222673
HB
50#include <linux/proc_ns.h>
51#include <linux/mount.h>
0793a61d 52
76369139
FW
53#include "internal.h"
54
4e193bd4
TB
55#include <asm/irq_regs.h>
56
272325c4
PZ
57typedef int (*remote_function_f)(void *);
58
fe4b04fa 59struct remote_function_call {
e7e7ee2e 60 struct task_struct *p;
272325c4 61 remote_function_f func;
e7e7ee2e
IM
62 void *info;
63 int ret;
fe4b04fa
PZ
64};
65
66static void remote_function(void *data)
67{
68 struct remote_function_call *tfc = data;
69 struct task_struct *p = tfc->p;
70
71 if (p) {
0da4cf3e
PZ
72 /* -EAGAIN */
73 if (task_cpu(p) != smp_processor_id())
74 return;
75
76 /*
77 * Now that we're on right CPU with IRQs disabled, we can test
78 * if we hit the right task without races.
79 */
80
81 tfc->ret = -ESRCH; /* No such (running) process */
82 if (p != current)
fe4b04fa
PZ
83 return;
84 }
85
86 tfc->ret = tfc->func(tfc->info);
87}
88
89/**
90 * task_function_call - call a function on the cpu on which a task runs
91 * @p: the task to evaluate
92 * @func: the function to be called
93 * @info: the function call argument
94 *
95 * Calls the function @func when the task is currently running. This might
96 * be on the current CPU, which just calls the function directly
97 *
98 * returns: @func return value, or
99 * -ESRCH - when the process isn't running
100 * -EAGAIN - when the process moved away
101 */
102static int
272325c4 103task_function_call(struct task_struct *p, remote_function_f func, void *info)
fe4b04fa
PZ
104{
105 struct remote_function_call data = {
e7e7ee2e
IM
106 .p = p,
107 .func = func,
108 .info = info,
0da4cf3e 109 .ret = -EAGAIN,
fe4b04fa 110 };
0da4cf3e 111 int ret;
fe4b04fa 112
0da4cf3e
PZ
113 do {
114 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
115 if (!ret)
116 ret = data.ret;
117 } while (ret == -EAGAIN);
fe4b04fa 118
0da4cf3e 119 return ret;
fe4b04fa
PZ
120}
121
122/**
123 * cpu_function_call - call a function on the cpu
124 * @func: the function to be called
125 * @info: the function call argument
126 *
127 * Calls the function @func on the remote cpu.
128 *
129 * returns: @func return value or -ENXIO when the cpu is offline
130 */
272325c4 131static int cpu_function_call(int cpu, remote_function_f func, void *info)
fe4b04fa
PZ
132{
133 struct remote_function_call data = {
e7e7ee2e
IM
134 .p = NULL,
135 .func = func,
136 .info = info,
137 .ret = -ENXIO, /* No such CPU */
fe4b04fa
PZ
138 };
139
140 smp_call_function_single(cpu, remote_function, &data, 1);
141
142 return data.ret;
143}
144
fae3fde6
PZ
145static inline struct perf_cpu_context *
146__get_cpu_context(struct perf_event_context *ctx)
147{
148 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
149}
150
151static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
152 struct perf_event_context *ctx)
0017960f 153{
fae3fde6
PZ
154 raw_spin_lock(&cpuctx->ctx.lock);
155 if (ctx)
156 raw_spin_lock(&ctx->lock);
157}
158
159static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
160 struct perf_event_context *ctx)
161{
162 if (ctx)
163 raw_spin_unlock(&ctx->lock);
164 raw_spin_unlock(&cpuctx->ctx.lock);
165}
166
63b6da39
PZ
167#define TASK_TOMBSTONE ((void *)-1L)
168
169static bool is_kernel_event(struct perf_event *event)
170{
f47c02c0 171 return READ_ONCE(event->owner) == TASK_TOMBSTONE;
63b6da39
PZ
172}
173
39a43640
PZ
174/*
175 * On task ctx scheduling...
176 *
177 * When !ctx->nr_events a task context will not be scheduled. This means
178 * we can disable the scheduler hooks (for performance) without leaving
179 * pending task ctx state.
180 *
181 * This however results in two special cases:
182 *
183 * - removing the last event from a task ctx; this is relatively straight
184 * forward and is done in __perf_remove_from_context.
185 *
186 * - adding the first event to a task ctx; this is tricky because we cannot
187 * rely on ctx->is_active and therefore cannot use event_function_call().
188 * See perf_install_in_context().
189 *
39a43640
PZ
190 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
191 */
192
fae3fde6
PZ
193typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
194 struct perf_event_context *, void *);
195
196struct event_function_struct {
197 struct perf_event *event;
198 event_f func;
199 void *data;
200};
201
202static int event_function(void *info)
203{
204 struct event_function_struct *efs = info;
205 struct perf_event *event = efs->event;
0017960f 206 struct perf_event_context *ctx = event->ctx;
fae3fde6
PZ
207 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
208 struct perf_event_context *task_ctx = cpuctx->task_ctx;
63b6da39 209 int ret = 0;
fae3fde6 210
16444645 211 lockdep_assert_irqs_disabled();
fae3fde6 212
63b6da39 213 perf_ctx_lock(cpuctx, task_ctx);
fae3fde6
PZ
214 /*
215 * Since we do the IPI call without holding ctx->lock things can have
216 * changed, double check we hit the task we set out to hit.
fae3fde6
PZ
217 */
218 if (ctx->task) {
63b6da39 219 if (ctx->task != current) {
0da4cf3e 220 ret = -ESRCH;
63b6da39
PZ
221 goto unlock;
222 }
fae3fde6 223
fae3fde6
PZ
224 /*
225 * We only use event_function_call() on established contexts,
226 * and event_function() is only ever called when active (or
227 * rather, we'll have bailed in task_function_call() or the
228 * above ctx->task != current test), therefore we must have
229 * ctx->is_active here.
230 */
231 WARN_ON_ONCE(!ctx->is_active);
232 /*
233 * And since we have ctx->is_active, cpuctx->task_ctx must
234 * match.
235 */
63b6da39
PZ
236 WARN_ON_ONCE(task_ctx != ctx);
237 } else {
238 WARN_ON_ONCE(&cpuctx->ctx != ctx);
fae3fde6 239 }
63b6da39 240
fae3fde6 241 efs->func(event, cpuctx, ctx, efs->data);
63b6da39 242unlock:
fae3fde6
PZ
243 perf_ctx_unlock(cpuctx, task_ctx);
244
63b6da39 245 return ret;
fae3fde6
PZ
246}
247
fae3fde6 248static void event_function_call(struct perf_event *event, event_f func, void *data)
0017960f
PZ
249{
250 struct perf_event_context *ctx = event->ctx;
63b6da39 251 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
fae3fde6
PZ
252 struct event_function_struct efs = {
253 .event = event,
254 .func = func,
255 .data = data,
256 };
0017960f 257
c97f4736
PZ
258 if (!event->parent) {
259 /*
260 * If this is a !child event, we must hold ctx::mutex to
261 * stabilize the the event->ctx relation. See
262 * perf_event_ctx_lock().
263 */
264 lockdep_assert_held(&ctx->mutex);
265 }
0017960f
PZ
266
267 if (!task) {
fae3fde6 268 cpu_function_call(event->cpu, event_function, &efs);
0017960f
PZ
269 return;
270 }
271
63b6da39
PZ
272 if (task == TASK_TOMBSTONE)
273 return;
274
a096309b 275again:
fae3fde6 276 if (!task_function_call(task, event_function, &efs))
0017960f
PZ
277 return;
278
279 raw_spin_lock_irq(&ctx->lock);
63b6da39
PZ
280 /*
281 * Reload the task pointer, it might have been changed by
282 * a concurrent perf_event_context_sched_out().
283 */
284 task = ctx->task;
a096309b
PZ
285 if (task == TASK_TOMBSTONE) {
286 raw_spin_unlock_irq(&ctx->lock);
287 return;
0017960f 288 }
a096309b
PZ
289 if (ctx->is_active) {
290 raw_spin_unlock_irq(&ctx->lock);
291 goto again;
292 }
293 func(event, NULL, ctx, data);
0017960f
PZ
294 raw_spin_unlock_irq(&ctx->lock);
295}
296
cca20946
PZ
297/*
298 * Similar to event_function_call() + event_function(), but hard assumes IRQs
299 * are already disabled and we're on the right CPU.
300 */
301static void event_function_local(struct perf_event *event, event_f func, void *data)
302{
303 struct perf_event_context *ctx = event->ctx;
304 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
305 struct task_struct *task = READ_ONCE(ctx->task);
306 struct perf_event_context *task_ctx = NULL;
307
16444645 308 lockdep_assert_irqs_disabled();
cca20946
PZ
309
310 if (task) {
311 if (task == TASK_TOMBSTONE)
312 return;
313
314 task_ctx = ctx;
315 }
316
317 perf_ctx_lock(cpuctx, task_ctx);
318
319 task = ctx->task;
320 if (task == TASK_TOMBSTONE)
321 goto unlock;
322
323 if (task) {
324 /*
325 * We must be either inactive or active and the right task,
326 * otherwise we're screwed, since we cannot IPI to somewhere
327 * else.
328 */
329 if (ctx->is_active) {
330 if (WARN_ON_ONCE(task != current))
331 goto unlock;
332
333 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
334 goto unlock;
335 }
336 } else {
337 WARN_ON_ONCE(&cpuctx->ctx != ctx);
338 }
339
340 func(event, cpuctx, ctx, data);
341unlock:
342 perf_ctx_unlock(cpuctx, task_ctx);
343}
344
e5d1367f
SE
345#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
346 PERF_FLAG_FD_OUTPUT |\
a21b0b35
YD
347 PERF_FLAG_PID_CGROUP |\
348 PERF_FLAG_FD_CLOEXEC)
e5d1367f 349
bce38cd5
SE
350/*
351 * branch priv levels that need permission checks
352 */
353#define PERF_SAMPLE_BRANCH_PERM_PLM \
354 (PERF_SAMPLE_BRANCH_KERNEL |\
355 PERF_SAMPLE_BRANCH_HV)
356
0b3fcf17
SE
357enum event_type_t {
358 EVENT_FLEXIBLE = 0x1,
359 EVENT_PINNED = 0x2,
3cbaa590 360 EVENT_TIME = 0x4,
487f05e1
AS
361 /* see ctx_resched() for details */
362 EVENT_CPU = 0x8,
0b3fcf17
SE
363 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
364};
365
e5d1367f
SE
366/*
367 * perf_sched_events : >0 events exist
368 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
369 */
9107c89e
PZ
370
371static void perf_sched_delayed(struct work_struct *work);
372DEFINE_STATIC_KEY_FALSE(perf_sched_events);
373static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
374static DEFINE_MUTEX(perf_sched_mutex);
375static atomic_t perf_sched_count;
376
e5d1367f 377static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
ba532500 378static DEFINE_PER_CPU(int, perf_sched_cb_usages);
f2fb6bef 379static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
e5d1367f 380
cdd6c482
IM
381static atomic_t nr_mmap_events __read_mostly;
382static atomic_t nr_comm_events __read_mostly;
e4222673 383static atomic_t nr_namespaces_events __read_mostly;
cdd6c482 384static atomic_t nr_task_events __read_mostly;
948b26b6 385static atomic_t nr_freq_events __read_mostly;
45ac1403 386static atomic_t nr_switch_events __read_mostly;
76193a94 387static atomic_t nr_ksymbol_events __read_mostly;
6ee52e2a 388static atomic_t nr_bpf_events __read_mostly;
9ee318a7 389
108b02cf
PZ
390static LIST_HEAD(pmus);
391static DEFINE_MUTEX(pmus_lock);
392static struct srcu_struct pmus_srcu;
a63fbed7 393static cpumask_var_t perf_online_mask;
108b02cf 394
0764771d 395/*
cdd6c482 396 * perf event paranoia level:
0fbdea19
IM
397 * -1 - not paranoid at all
398 * 0 - disallow raw tracepoint access for unpriv
cdd6c482 399 * 1 - disallow cpu events for unpriv
0fbdea19 400 * 2 - disallow kernel profiling for unpriv
0764771d 401 */
0161028b 402int sysctl_perf_event_paranoid __read_mostly = 2;
0764771d 403
20443384
FW
404/* Minimum for 512 kiB + 1 user control page */
405int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
df58ab24
PZ
406
407/*
cdd6c482 408 * max perf event sample rate
df58ab24 409 */
14c63f17
DH
410#define DEFAULT_MAX_SAMPLE_RATE 100000
411#define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
412#define DEFAULT_CPU_TIME_MAX_PERCENT 25
413
414int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
415
416static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
417static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
418
d9494cb4
PZ
419static int perf_sample_allowed_ns __read_mostly =
420 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
14c63f17 421
18ab2cd3 422static void update_perf_cpu_limits(void)
14c63f17
DH
423{
424 u64 tmp = perf_sample_period_ns;
425
426 tmp *= sysctl_perf_cpu_time_max_percent;
91a612ee
PZ
427 tmp = div_u64(tmp, 100);
428 if (!tmp)
429 tmp = 1;
430
431 WRITE_ONCE(perf_sample_allowed_ns, tmp);
14c63f17 432}
163ec435 433
8d5bce0c 434static bool perf_rotate_context(struct perf_cpu_context *cpuctx);
9e630205 435
163ec435
PZ
436int perf_proc_update_handler(struct ctl_table *table, int write,
437 void __user *buffer, size_t *lenp,
438 loff_t *ppos)
439{
1a51c5da
SE
440 int ret;
441 int perf_cpu = sysctl_perf_cpu_time_max_percent;
ab7fdefb
KL
442 /*
443 * If throttling is disabled don't allow the write:
444 */
1a51c5da 445 if (write && (perf_cpu == 100 || perf_cpu == 0))
ab7fdefb
KL
446 return -EINVAL;
447
1a51c5da
SE
448 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
449 if (ret || !write)
450 return ret;
451
163ec435 452 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
14c63f17
DH
453 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
454 update_perf_cpu_limits();
455
456 return 0;
457}
458
459int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
460
461int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
462 void __user *buffer, size_t *lenp,
463 loff_t *ppos)
464{
1572e45a 465 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
14c63f17
DH
466
467 if (ret || !write)
468 return ret;
469
b303e7c1
PZ
470 if (sysctl_perf_cpu_time_max_percent == 100 ||
471 sysctl_perf_cpu_time_max_percent == 0) {
91a612ee
PZ
472 printk(KERN_WARNING
473 "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
474 WRITE_ONCE(perf_sample_allowed_ns, 0);
475 } else {
476 update_perf_cpu_limits();
477 }
163ec435
PZ
478
479 return 0;
480}
1ccd1549 481
14c63f17
DH
482/*
483 * perf samples are done in some very critical code paths (NMIs).
484 * If they take too much CPU time, the system can lock up and not
485 * get any real work done. This will drop the sample rate when
486 * we detect that events are taking too long.
487 */
488#define NR_ACCUMULATED_SAMPLES 128
d9494cb4 489static DEFINE_PER_CPU(u64, running_sample_length);
14c63f17 490
91a612ee
PZ
491static u64 __report_avg;
492static u64 __report_allowed;
493
6a02ad66 494static void perf_duration_warn(struct irq_work *w)
14c63f17 495{
0d87d7ec 496 printk_ratelimited(KERN_INFO
91a612ee
PZ
497 "perf: interrupt took too long (%lld > %lld), lowering "
498 "kernel.perf_event_max_sample_rate to %d\n",
499 __report_avg, __report_allowed,
500 sysctl_perf_event_sample_rate);
6a02ad66
PZ
501}
502
503static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
504
505void perf_sample_event_took(u64 sample_len_ns)
506{
91a612ee
PZ
507 u64 max_len = READ_ONCE(perf_sample_allowed_ns);
508 u64 running_len;
509 u64 avg_len;
510 u32 max;
14c63f17 511
91a612ee 512 if (max_len == 0)
14c63f17
DH
513 return;
514
91a612ee
PZ
515 /* Decay the counter by 1 average sample. */
516 running_len = __this_cpu_read(running_sample_length);
517 running_len -= running_len/NR_ACCUMULATED_SAMPLES;
518 running_len += sample_len_ns;
519 __this_cpu_write(running_sample_length, running_len);
14c63f17
DH
520
521 /*
91a612ee
PZ
522 * Note: this will be biased artifically low until we have
523 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
14c63f17
DH
524 * from having to maintain a count.
525 */
91a612ee
PZ
526 avg_len = running_len/NR_ACCUMULATED_SAMPLES;
527 if (avg_len <= max_len)
14c63f17
DH
528 return;
529
91a612ee
PZ
530 __report_avg = avg_len;
531 __report_allowed = max_len;
14c63f17 532
91a612ee
PZ
533 /*
534 * Compute a throttle threshold 25% below the current duration.
535 */
536 avg_len += avg_len / 4;
537 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
538 if (avg_len < max)
539 max /= (u32)avg_len;
540 else
541 max = 1;
14c63f17 542
91a612ee
PZ
543 WRITE_ONCE(perf_sample_allowed_ns, avg_len);
544 WRITE_ONCE(max_samples_per_tick, max);
545
546 sysctl_perf_event_sample_rate = max * HZ;
547 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
6a02ad66 548
cd578abb 549 if (!irq_work_queue(&perf_duration_work)) {
91a612ee 550 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
cd578abb 551 "kernel.perf_event_max_sample_rate to %d\n",
91a612ee 552 __report_avg, __report_allowed,
cd578abb
PZ
553 sysctl_perf_event_sample_rate);
554 }
14c63f17
DH
555}
556
cdd6c482 557static atomic64_t perf_event_id;
a96bbc16 558
0b3fcf17
SE
559static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
560 enum event_type_t event_type);
561
562static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
563 enum event_type_t event_type,
564 struct task_struct *task);
565
566static void update_context_time(struct perf_event_context *ctx);
567static u64 perf_event_time(struct perf_event *event);
0b3fcf17 568
cdd6c482 569void __weak perf_event_print_debug(void) { }
0793a61d 570
84c79910 571extern __weak const char *perf_pmu_name(void)
0793a61d 572{
84c79910 573 return "pmu";
0793a61d
TG
574}
575
0b3fcf17
SE
576static inline u64 perf_clock(void)
577{
578 return local_clock();
579}
580
34f43927
PZ
581static inline u64 perf_event_clock(struct perf_event *event)
582{
583 return event->clock();
584}
585
0d3d73aa
PZ
586/*
587 * State based event timekeeping...
588 *
589 * The basic idea is to use event->state to determine which (if any) time
590 * fields to increment with the current delta. This means we only need to
591 * update timestamps when we change state or when they are explicitly requested
592 * (read).
593 *
594 * Event groups make things a little more complicated, but not terribly so. The
595 * rules for a group are that if the group leader is OFF the entire group is
596 * OFF, irrespecive of what the group member states are. This results in
597 * __perf_effective_state().
598 *
599 * A futher ramification is that when a group leader flips between OFF and
600 * !OFF, we need to update all group member times.
601 *
602 *
603 * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
604 * need to make sure the relevant context time is updated before we try and
605 * update our timestamps.
606 */
607
608static __always_inline enum perf_event_state
609__perf_effective_state(struct perf_event *event)
610{
611 struct perf_event *leader = event->group_leader;
612
613 if (leader->state <= PERF_EVENT_STATE_OFF)
614 return leader->state;
615
616 return event->state;
617}
618
619static __always_inline void
620__perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
621{
622 enum perf_event_state state = __perf_effective_state(event);
623 u64 delta = now - event->tstamp;
624
625 *enabled = event->total_time_enabled;
626 if (state >= PERF_EVENT_STATE_INACTIVE)
627 *enabled += delta;
628
629 *running = event->total_time_running;
630 if (state >= PERF_EVENT_STATE_ACTIVE)
631 *running += delta;
632}
633
634static void perf_event_update_time(struct perf_event *event)
635{
636 u64 now = perf_event_time(event);
637
638 __perf_update_times(event, now, &event->total_time_enabled,
639 &event->total_time_running);
640 event->tstamp = now;
641}
642
643static void perf_event_update_sibling_time(struct perf_event *leader)
644{
645 struct perf_event *sibling;
646
edb39592 647 for_each_sibling_event(sibling, leader)
0d3d73aa
PZ
648 perf_event_update_time(sibling);
649}
650
651static void
652perf_event_set_state(struct perf_event *event, enum perf_event_state state)
653{
654 if (event->state == state)
655 return;
656
657 perf_event_update_time(event);
658 /*
659 * If a group leader gets enabled/disabled all its siblings
660 * are affected too.
661 */
662 if ((event->state < 0) ^ (state < 0))
663 perf_event_update_sibling_time(event);
664
665 WRITE_ONCE(event->state, state);
666}
667
e5d1367f
SE
668#ifdef CONFIG_CGROUP_PERF
669
e5d1367f
SE
670static inline bool
671perf_cgroup_match(struct perf_event *event)
672{
673 struct perf_event_context *ctx = event->ctx;
674 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
675
ef824fa1
TH
676 /* @event doesn't care about cgroup */
677 if (!event->cgrp)
678 return true;
679
680 /* wants specific cgroup scope but @cpuctx isn't associated with any */
681 if (!cpuctx->cgrp)
682 return false;
683
684 /*
685 * Cgroup scoping is recursive. An event enabled for a cgroup is
686 * also enabled for all its descendant cgroups. If @cpuctx's
687 * cgroup is a descendant of @event's (the test covers identity
688 * case), it's a match.
689 */
690 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
691 event->cgrp->css.cgroup);
e5d1367f
SE
692}
693
e5d1367f
SE
694static inline void perf_detach_cgroup(struct perf_event *event)
695{
4e2ba650 696 css_put(&event->cgrp->css);
e5d1367f
SE
697 event->cgrp = NULL;
698}
699
700static inline int is_cgroup_event(struct perf_event *event)
701{
702 return event->cgrp != NULL;
703}
704
705static inline u64 perf_cgroup_event_time(struct perf_event *event)
706{
707 struct perf_cgroup_info *t;
708
709 t = per_cpu_ptr(event->cgrp->info, event->cpu);
710 return t->time;
711}
712
713static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
714{
715 struct perf_cgroup_info *info;
716 u64 now;
717
718 now = perf_clock();
719
720 info = this_cpu_ptr(cgrp->info);
721
722 info->time += now - info->timestamp;
723 info->timestamp = now;
724}
725
726static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
727{
c917e0f2
SL
728 struct perf_cgroup *cgrp = cpuctx->cgrp;
729 struct cgroup_subsys_state *css;
730
731 if (cgrp) {
732 for (css = &cgrp->css; css; css = css->parent) {
733 cgrp = container_of(css, struct perf_cgroup, css);
734 __update_cgrp_time(cgrp);
735 }
736 }
e5d1367f
SE
737}
738
739static inline void update_cgrp_time_from_event(struct perf_event *event)
740{
3f7cce3c
SE
741 struct perf_cgroup *cgrp;
742
e5d1367f 743 /*
3f7cce3c
SE
744 * ensure we access cgroup data only when needed and
745 * when we know the cgroup is pinned (css_get)
e5d1367f 746 */
3f7cce3c 747 if (!is_cgroup_event(event))
e5d1367f
SE
748 return;
749
614e4c4e 750 cgrp = perf_cgroup_from_task(current, event->ctx);
3f7cce3c
SE
751 /*
752 * Do not update time when cgroup is not active
753 */
28fa741c 754 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
3f7cce3c 755 __update_cgrp_time(event->cgrp);
e5d1367f
SE
756}
757
758static inline void
3f7cce3c
SE
759perf_cgroup_set_timestamp(struct task_struct *task,
760 struct perf_event_context *ctx)
e5d1367f
SE
761{
762 struct perf_cgroup *cgrp;
763 struct perf_cgroup_info *info;
c917e0f2 764 struct cgroup_subsys_state *css;
e5d1367f 765
3f7cce3c
SE
766 /*
767 * ctx->lock held by caller
768 * ensure we do not access cgroup data
769 * unless we have the cgroup pinned (css_get)
770 */
771 if (!task || !ctx->nr_cgroups)
e5d1367f
SE
772 return;
773
614e4c4e 774 cgrp = perf_cgroup_from_task(task, ctx);
c917e0f2
SL
775
776 for (css = &cgrp->css; css; css = css->parent) {
777 cgrp = container_of(css, struct perf_cgroup, css);
778 info = this_cpu_ptr(cgrp->info);
779 info->timestamp = ctx->timestamp;
780 }
e5d1367f
SE
781}
782
058fe1c0
DCC
783static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
784
e5d1367f
SE
785#define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
786#define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
787
788/*
789 * reschedule events based on the cgroup constraint of task.
790 *
791 * mode SWOUT : schedule out everything
792 * mode SWIN : schedule in based on cgroup for next
793 */
18ab2cd3 794static void perf_cgroup_switch(struct task_struct *task, int mode)
e5d1367f
SE
795{
796 struct perf_cpu_context *cpuctx;
058fe1c0 797 struct list_head *list;
e5d1367f
SE
798 unsigned long flags;
799
800 /*
058fe1c0
DCC
801 * Disable interrupts and preemption to avoid this CPU's
802 * cgrp_cpuctx_entry to change under us.
e5d1367f
SE
803 */
804 local_irq_save(flags);
805
058fe1c0
DCC
806 list = this_cpu_ptr(&cgrp_cpuctx_list);
807 list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
808 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
e5d1367f 809
058fe1c0
DCC
810 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
811 perf_pmu_disable(cpuctx->ctx.pmu);
e5d1367f 812
058fe1c0
DCC
813 if (mode & PERF_CGROUP_SWOUT) {
814 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
815 /*
816 * must not be done before ctxswout due
817 * to event_filter_match() in event_sched_out()
818 */
819 cpuctx->cgrp = NULL;
820 }
e5d1367f 821
058fe1c0
DCC
822 if (mode & PERF_CGROUP_SWIN) {
823 WARN_ON_ONCE(cpuctx->cgrp);
824 /*
825 * set cgrp before ctxsw in to allow
826 * event_filter_match() to not have to pass
827 * task around
828 * we pass the cpuctx->ctx to perf_cgroup_from_task()
829 * because cgorup events are only per-cpu
830 */
831 cpuctx->cgrp = perf_cgroup_from_task(task,
832 &cpuctx->ctx);
833 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
e5d1367f 834 }
058fe1c0
DCC
835 perf_pmu_enable(cpuctx->ctx.pmu);
836 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
e5d1367f
SE
837 }
838
e5d1367f
SE
839 local_irq_restore(flags);
840}
841
a8d757ef
SE
842static inline void perf_cgroup_sched_out(struct task_struct *task,
843 struct task_struct *next)
e5d1367f 844{
a8d757ef
SE
845 struct perf_cgroup *cgrp1;
846 struct perf_cgroup *cgrp2 = NULL;
847
ddaaf4e2 848 rcu_read_lock();
a8d757ef
SE
849 /*
850 * we come here when we know perf_cgroup_events > 0
614e4c4e
SE
851 * we do not need to pass the ctx here because we know
852 * we are holding the rcu lock
a8d757ef 853 */
614e4c4e 854 cgrp1 = perf_cgroup_from_task(task, NULL);
70a01657 855 cgrp2 = perf_cgroup_from_task(next, NULL);
a8d757ef
SE
856
857 /*
858 * only schedule out current cgroup events if we know
859 * that we are switching to a different cgroup. Otherwise,
860 * do no touch the cgroup events.
861 */
862 if (cgrp1 != cgrp2)
863 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
ddaaf4e2
SE
864
865 rcu_read_unlock();
e5d1367f
SE
866}
867
a8d757ef
SE
868static inline void perf_cgroup_sched_in(struct task_struct *prev,
869 struct task_struct *task)
e5d1367f 870{
a8d757ef
SE
871 struct perf_cgroup *cgrp1;
872 struct perf_cgroup *cgrp2 = NULL;
873
ddaaf4e2 874 rcu_read_lock();
a8d757ef
SE
875 /*
876 * we come here when we know perf_cgroup_events > 0
614e4c4e
SE
877 * we do not need to pass the ctx here because we know
878 * we are holding the rcu lock
a8d757ef 879 */
614e4c4e 880 cgrp1 = perf_cgroup_from_task(task, NULL);
614e4c4e 881 cgrp2 = perf_cgroup_from_task(prev, NULL);
a8d757ef
SE
882
883 /*
884 * only need to schedule in cgroup events if we are changing
885 * cgroup during ctxsw. Cgroup events were not scheduled
886 * out of ctxsw out if that was not the case.
887 */
888 if (cgrp1 != cgrp2)
889 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
ddaaf4e2
SE
890
891 rcu_read_unlock();
e5d1367f
SE
892}
893
894static inline int perf_cgroup_connect(int fd, struct perf_event *event,
895 struct perf_event_attr *attr,
896 struct perf_event *group_leader)
897{
898 struct perf_cgroup *cgrp;
899 struct cgroup_subsys_state *css;
2903ff01
AV
900 struct fd f = fdget(fd);
901 int ret = 0;
e5d1367f 902
2903ff01 903 if (!f.file)
e5d1367f
SE
904 return -EBADF;
905
b583043e 906 css = css_tryget_online_from_dir(f.file->f_path.dentry,
ec903c0c 907 &perf_event_cgrp_subsys);
3db272c0
LZ
908 if (IS_ERR(css)) {
909 ret = PTR_ERR(css);
910 goto out;
911 }
e5d1367f
SE
912
913 cgrp = container_of(css, struct perf_cgroup, css);
914 event->cgrp = cgrp;
915
916 /*
917 * all events in a group must monitor
918 * the same cgroup because a task belongs
919 * to only one perf cgroup at a time
920 */
921 if (group_leader && group_leader->cgrp != cgrp) {
922 perf_detach_cgroup(event);
923 ret = -EINVAL;
e5d1367f 924 }
3db272c0 925out:
2903ff01 926 fdput(f);
e5d1367f
SE
927 return ret;
928}
929
930static inline void
931perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
932{
933 struct perf_cgroup_info *t;
934 t = per_cpu_ptr(event->cgrp->info, event->cpu);
935 event->shadow_ctx_time = now - t->timestamp;
936}
937
db4a8356
DCC
938/*
939 * Update cpuctx->cgrp so that it is set when first cgroup event is added and
940 * cleared when last cgroup event is removed.
941 */
942static inline void
943list_update_cgroup_event(struct perf_event *event,
944 struct perf_event_context *ctx, bool add)
945{
946 struct perf_cpu_context *cpuctx;
058fe1c0 947 struct list_head *cpuctx_entry;
db4a8356
DCC
948
949 if (!is_cgroup_event(event))
950 return;
951
db4a8356
DCC
952 /*
953 * Because cgroup events are always per-cpu events,
954 * this will always be called from the right CPU.
955 */
956 cpuctx = __get_cpu_context(ctx);
33801b94 957
958 /*
959 * Since setting cpuctx->cgrp is conditional on the current @cgrp
960 * matching the event's cgroup, we must do this for every new event,
961 * because if the first would mismatch, the second would not try again
962 * and we would leave cpuctx->cgrp unset.
963 */
964 if (add && !cpuctx->cgrp) {
be96b316
TH
965 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
966
be96b316
TH
967 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
968 cpuctx->cgrp = cgrp;
058fe1c0 969 }
33801b94 970
971 if (add && ctx->nr_cgroups++)
972 return;
973 else if (!add && --ctx->nr_cgroups)
974 return;
975
976 /* no cgroup running */
977 if (!add)
978 cpuctx->cgrp = NULL;
979
980 cpuctx_entry = &cpuctx->cgrp_cpuctx_entry;
981 if (add)
982 list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list));
983 else
984 list_del(cpuctx_entry);
db4a8356
DCC
985}
986
e5d1367f
SE
987#else /* !CONFIG_CGROUP_PERF */
988
989static inline bool
990perf_cgroup_match(struct perf_event *event)
991{
992 return true;
993}
994
995static inline void perf_detach_cgroup(struct perf_event *event)
996{}
997
998static inline int is_cgroup_event(struct perf_event *event)
999{
1000 return 0;
1001}
1002
e5d1367f
SE
1003static inline void update_cgrp_time_from_event(struct perf_event *event)
1004{
1005}
1006
1007static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
1008{
1009}
1010
a8d757ef
SE
1011static inline void perf_cgroup_sched_out(struct task_struct *task,
1012 struct task_struct *next)
e5d1367f
SE
1013{
1014}
1015
a8d757ef
SE
1016static inline void perf_cgroup_sched_in(struct task_struct *prev,
1017 struct task_struct *task)
e5d1367f
SE
1018{
1019}
1020
1021static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1022 struct perf_event_attr *attr,
1023 struct perf_event *group_leader)
1024{
1025 return -EINVAL;
1026}
1027
1028static inline void
3f7cce3c
SE
1029perf_cgroup_set_timestamp(struct task_struct *task,
1030 struct perf_event_context *ctx)
e5d1367f
SE
1031{
1032}
1033
1034void
1035perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
1036{
1037}
1038
1039static inline void
1040perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
1041{
1042}
1043
1044static inline u64 perf_cgroup_event_time(struct perf_event *event)
1045{
1046 return 0;
1047}
1048
db4a8356
DCC
1049static inline void
1050list_update_cgroup_event(struct perf_event *event,
1051 struct perf_event_context *ctx, bool add)
1052{
1053}
1054
e5d1367f
SE
1055#endif
1056
9e630205
SE
1057/*
1058 * set default to be dependent on timer tick just
1059 * like original code
1060 */
1061#define PERF_CPU_HRTIMER (1000 / HZ)
1062/*
8a1115ff 1063 * function must be called with interrupts disabled
9e630205 1064 */
272325c4 1065static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
9e630205
SE
1066{
1067 struct perf_cpu_context *cpuctx;
8d5bce0c 1068 bool rotations;
9e630205 1069
16444645 1070 lockdep_assert_irqs_disabled();
9e630205
SE
1071
1072 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
9e630205
SE
1073 rotations = perf_rotate_context(cpuctx);
1074
4cfafd30
PZ
1075 raw_spin_lock(&cpuctx->hrtimer_lock);
1076 if (rotations)
9e630205 1077 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
4cfafd30
PZ
1078 else
1079 cpuctx->hrtimer_active = 0;
1080 raw_spin_unlock(&cpuctx->hrtimer_lock);
9e630205 1081
4cfafd30 1082 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
9e630205
SE
1083}
1084
272325c4 1085static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
9e630205 1086{
272325c4 1087 struct hrtimer *timer = &cpuctx->hrtimer;
9e630205 1088 struct pmu *pmu = cpuctx->ctx.pmu;
272325c4 1089 u64 interval;
9e630205
SE
1090
1091 /* no multiplexing needed for SW PMU */
1092 if (pmu->task_ctx_nr == perf_sw_context)
1093 return;
1094
62b85639
SE
1095 /*
1096 * check default is sane, if not set then force to
1097 * default interval (1/tick)
1098 */
272325c4
PZ
1099 interval = pmu->hrtimer_interval_ms;
1100 if (interval < 1)
1101 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
62b85639 1102
272325c4 1103 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
9e630205 1104
4cfafd30
PZ
1105 raw_spin_lock_init(&cpuctx->hrtimer_lock);
1106 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
272325c4 1107 timer->function = perf_mux_hrtimer_handler;
9e630205
SE
1108}
1109
272325c4 1110static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
9e630205 1111{
272325c4 1112 struct hrtimer *timer = &cpuctx->hrtimer;
9e630205 1113 struct pmu *pmu = cpuctx->ctx.pmu;
4cfafd30 1114 unsigned long flags;
9e630205
SE
1115
1116 /* not for SW PMU */
1117 if (pmu->task_ctx_nr == perf_sw_context)
272325c4 1118 return 0;
9e630205 1119
4cfafd30
PZ
1120 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1121 if (!cpuctx->hrtimer_active) {
1122 cpuctx->hrtimer_active = 1;
1123 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1124 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
1125 }
1126 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
9e630205 1127
272325c4 1128 return 0;
9e630205
SE
1129}
1130
33696fc0 1131void perf_pmu_disable(struct pmu *pmu)
9e35ad38 1132{
33696fc0
PZ
1133 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1134 if (!(*count)++)
1135 pmu->pmu_disable(pmu);
9e35ad38 1136}
9e35ad38 1137
33696fc0 1138void perf_pmu_enable(struct pmu *pmu)
9e35ad38 1139{
33696fc0
PZ
1140 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1141 if (!--(*count))
1142 pmu->pmu_enable(pmu);
9e35ad38 1143}
9e35ad38 1144
2fde4f94 1145static DEFINE_PER_CPU(struct list_head, active_ctx_list);
e9d2b064
PZ
1146
1147/*
2fde4f94
MR
1148 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1149 * perf_event_task_tick() are fully serialized because they're strictly cpu
1150 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1151 * disabled, while perf_event_task_tick is called from IRQ context.
e9d2b064 1152 */
2fde4f94 1153static void perf_event_ctx_activate(struct perf_event_context *ctx)
9e35ad38 1154{
2fde4f94 1155 struct list_head *head = this_cpu_ptr(&active_ctx_list);
b5ab4cd5 1156
16444645 1157 lockdep_assert_irqs_disabled();
b5ab4cd5 1158
2fde4f94
MR
1159 WARN_ON(!list_empty(&ctx->active_ctx_list));
1160
1161 list_add(&ctx->active_ctx_list, head);
1162}
1163
1164static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1165{
16444645 1166 lockdep_assert_irqs_disabled();
2fde4f94
MR
1167
1168 WARN_ON(list_empty(&ctx->active_ctx_list));
1169
1170 list_del_init(&ctx->active_ctx_list);
9e35ad38 1171}
9e35ad38 1172
cdd6c482 1173static void get_ctx(struct perf_event_context *ctx)
a63eaf34 1174{
8c94abbb 1175 refcount_inc(&ctx->refcount);
a63eaf34
PM
1176}
1177
4af57ef2
YZ
1178static void free_ctx(struct rcu_head *head)
1179{
1180 struct perf_event_context *ctx;
1181
1182 ctx = container_of(head, struct perf_event_context, rcu_head);
1183 kfree(ctx->task_ctx_data);
1184 kfree(ctx);
1185}
1186
cdd6c482 1187static void put_ctx(struct perf_event_context *ctx)
a63eaf34 1188{
8c94abbb 1189 if (refcount_dec_and_test(&ctx->refcount)) {
564c2b21
PM
1190 if (ctx->parent_ctx)
1191 put_ctx(ctx->parent_ctx);
63b6da39 1192 if (ctx->task && ctx->task != TASK_TOMBSTONE)
c93f7669 1193 put_task_struct(ctx->task);
4af57ef2 1194 call_rcu(&ctx->rcu_head, free_ctx);
564c2b21 1195 }
a63eaf34
PM
1196}
1197
f63a8daa
PZ
1198/*
1199 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1200 * perf_pmu_migrate_context() we need some magic.
1201 *
1202 * Those places that change perf_event::ctx will hold both
1203 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1204 *
8b10c5e2
PZ
1205 * Lock ordering is by mutex address. There are two other sites where
1206 * perf_event_context::mutex nests and those are:
1207 *
1208 * - perf_event_exit_task_context() [ child , 0 ]
8ba289b8
PZ
1209 * perf_event_exit_event()
1210 * put_event() [ parent, 1 ]
8b10c5e2
PZ
1211 *
1212 * - perf_event_init_context() [ parent, 0 ]
1213 * inherit_task_group()
1214 * inherit_group()
1215 * inherit_event()
1216 * perf_event_alloc()
1217 * perf_init_event()
1218 * perf_try_init_event() [ child , 1 ]
1219 *
1220 * While it appears there is an obvious deadlock here -- the parent and child
1221 * nesting levels are inverted between the two. This is in fact safe because
1222 * life-time rules separate them. That is an exiting task cannot fork, and a
1223 * spawning task cannot (yet) exit.
1224 *
1225 * But remember that that these are parent<->child context relations, and
1226 * migration does not affect children, therefore these two orderings should not
1227 * interact.
f63a8daa
PZ
1228 *
1229 * The change in perf_event::ctx does not affect children (as claimed above)
1230 * because the sys_perf_event_open() case will install a new event and break
1231 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1232 * concerned with cpuctx and that doesn't have children.
1233 *
1234 * The places that change perf_event::ctx will issue:
1235 *
1236 * perf_remove_from_context();
1237 * synchronize_rcu();
1238 * perf_install_in_context();
1239 *
1240 * to affect the change. The remove_from_context() + synchronize_rcu() should
1241 * quiesce the event, after which we can install it in the new location. This
1242 * means that only external vectors (perf_fops, prctl) can perturb the event
1243 * while in transit. Therefore all such accessors should also acquire
1244 * perf_event_context::mutex to serialize against this.
1245 *
1246 * However; because event->ctx can change while we're waiting to acquire
1247 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1248 * function.
1249 *
1250 * Lock order:
79c9ce57 1251 * cred_guard_mutex
f63a8daa
PZ
1252 * task_struct::perf_event_mutex
1253 * perf_event_context::mutex
f63a8daa 1254 * perf_event::child_mutex;
07c4a776 1255 * perf_event_context::lock
f63a8daa
PZ
1256 * perf_event::mmap_mutex
1257 * mmap_sem
18736eef 1258 * perf_addr_filters_head::lock
82d94856
PZ
1259 *
1260 * cpu_hotplug_lock
1261 * pmus_lock
1262 * cpuctx->mutex / perf_event_context::mutex
f63a8daa 1263 */
a83fe28e
PZ
1264static struct perf_event_context *
1265perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
f63a8daa
PZ
1266{
1267 struct perf_event_context *ctx;
1268
1269again:
1270 rcu_read_lock();
6aa7de05 1271 ctx = READ_ONCE(event->ctx);
8c94abbb 1272 if (!refcount_inc_not_zero(&ctx->refcount)) {
f63a8daa
PZ
1273 rcu_read_unlock();
1274 goto again;
1275 }
1276 rcu_read_unlock();
1277
a83fe28e 1278 mutex_lock_nested(&ctx->mutex, nesting);
f63a8daa
PZ
1279 if (event->ctx != ctx) {
1280 mutex_unlock(&ctx->mutex);
1281 put_ctx(ctx);
1282 goto again;
1283 }
1284
1285 return ctx;
1286}
1287
a83fe28e
PZ
1288static inline struct perf_event_context *
1289perf_event_ctx_lock(struct perf_event *event)
1290{
1291 return perf_event_ctx_lock_nested(event, 0);
1292}
1293
f63a8daa
PZ
1294static void perf_event_ctx_unlock(struct perf_event *event,
1295 struct perf_event_context *ctx)
1296{
1297 mutex_unlock(&ctx->mutex);
1298 put_ctx(ctx);
1299}
1300
211de6eb
PZ
1301/*
1302 * This must be done under the ctx->lock, such as to serialize against
1303 * context_equiv(), therefore we cannot call put_ctx() since that might end up
1304 * calling scheduler related locks and ctx->lock nests inside those.
1305 */
1306static __must_check struct perf_event_context *
1307unclone_ctx(struct perf_event_context *ctx)
71a851b4 1308{
211de6eb
PZ
1309 struct perf_event_context *parent_ctx = ctx->parent_ctx;
1310
1311 lockdep_assert_held(&ctx->lock);
1312
1313 if (parent_ctx)
71a851b4 1314 ctx->parent_ctx = NULL;
5a3126d4 1315 ctx->generation++;
211de6eb
PZ
1316
1317 return parent_ctx;
71a851b4
PZ
1318}
1319
1d953111
ON
1320static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1321 enum pid_type type)
6844c09d 1322{
1d953111 1323 u32 nr;
6844c09d
ACM
1324 /*
1325 * only top level events have the pid namespace they were created in
1326 */
1327 if (event->parent)
1328 event = event->parent;
1329
1d953111
ON
1330 nr = __task_pid_nr_ns(p, type, event->ns);
1331 /* avoid -1 if it is idle thread or runs in another ns */
1332 if (!nr && !pid_alive(p))
1333 nr = -1;
1334 return nr;
6844c09d
ACM
1335}
1336
1d953111 1337static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
6844c09d 1338{
6883f81a 1339 return perf_event_pid_type(event, p, PIDTYPE_TGID);
1d953111 1340}
6844c09d 1341
1d953111
ON
1342static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1343{
1344 return perf_event_pid_type(event, p, PIDTYPE_PID);
6844c09d
ACM
1345}
1346
7f453c24 1347/*
cdd6c482 1348 * If we inherit events we want to return the parent event id
7f453c24
PZ
1349 * to userspace.
1350 */
cdd6c482 1351static u64 primary_event_id(struct perf_event *event)
7f453c24 1352{
cdd6c482 1353 u64 id = event->id;
7f453c24 1354
cdd6c482
IM
1355 if (event->parent)
1356 id = event->parent->id;
7f453c24
PZ
1357
1358 return id;
1359}
1360
25346b93 1361/*
cdd6c482 1362 * Get the perf_event_context for a task and lock it.
63b6da39 1363 *
25346b93
PM
1364 * This has to cope with with the fact that until it is locked,
1365 * the context could get moved to another task.
1366 */
cdd6c482 1367static struct perf_event_context *
8dc85d54 1368perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
25346b93 1369{
cdd6c482 1370 struct perf_event_context *ctx;
25346b93 1371
9ed6060d 1372retry:
058ebd0e
PZ
1373 /*
1374 * One of the few rules of preemptible RCU is that one cannot do
1375 * rcu_read_unlock() while holding a scheduler (or nested) lock when
2fd59077 1376 * part of the read side critical section was irqs-enabled -- see
058ebd0e
PZ
1377 * rcu_read_unlock_special().
1378 *
1379 * Since ctx->lock nests under rq->lock we must ensure the entire read
2fd59077 1380 * side critical section has interrupts disabled.
058ebd0e 1381 */
2fd59077 1382 local_irq_save(*flags);
058ebd0e 1383 rcu_read_lock();
8dc85d54 1384 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
25346b93
PM
1385 if (ctx) {
1386 /*
1387 * If this context is a clone of another, it might
1388 * get swapped for another underneath us by
cdd6c482 1389 * perf_event_task_sched_out, though the
25346b93
PM
1390 * rcu_read_lock() protects us from any context
1391 * getting freed. Lock the context and check if it
1392 * got swapped before we could get the lock, and retry
1393 * if so. If we locked the right context, then it
1394 * can't get swapped on us any more.
1395 */
2fd59077 1396 raw_spin_lock(&ctx->lock);
8dc85d54 1397 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
2fd59077 1398 raw_spin_unlock(&ctx->lock);
058ebd0e 1399 rcu_read_unlock();
2fd59077 1400 local_irq_restore(*flags);
25346b93
PM
1401 goto retry;
1402 }
b49a9e7e 1403
63b6da39 1404 if (ctx->task == TASK_TOMBSTONE ||
8c94abbb 1405 !refcount_inc_not_zero(&ctx->refcount)) {
2fd59077 1406 raw_spin_unlock(&ctx->lock);
b49a9e7e 1407 ctx = NULL;
828b6f0e
PZ
1408 } else {
1409 WARN_ON_ONCE(ctx->task != task);
b49a9e7e 1410 }
25346b93
PM
1411 }
1412 rcu_read_unlock();
2fd59077
PM
1413 if (!ctx)
1414 local_irq_restore(*flags);
25346b93
PM
1415 return ctx;
1416}
1417
1418/*
1419 * Get the context for a task and increment its pin_count so it
1420 * can't get swapped to another task. This also increments its
1421 * reference count so that the context can't get freed.
1422 */
8dc85d54
PZ
1423static struct perf_event_context *
1424perf_pin_task_context(struct task_struct *task, int ctxn)
25346b93 1425{
cdd6c482 1426 struct perf_event_context *ctx;
25346b93
PM
1427 unsigned long flags;
1428
8dc85d54 1429 ctx = perf_lock_task_context(task, ctxn, &flags);
25346b93
PM
1430 if (ctx) {
1431 ++ctx->pin_count;
e625cce1 1432 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1433 }
1434 return ctx;
1435}
1436
cdd6c482 1437static void perf_unpin_context(struct perf_event_context *ctx)
25346b93
PM
1438{
1439 unsigned long flags;
1440
e625cce1 1441 raw_spin_lock_irqsave(&ctx->lock, flags);
25346b93 1442 --ctx->pin_count;
e625cce1 1443 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1444}
1445
f67218c3
PZ
1446/*
1447 * Update the record of the current time in a context.
1448 */
1449static void update_context_time(struct perf_event_context *ctx)
1450{
1451 u64 now = perf_clock();
1452
1453 ctx->time += now - ctx->timestamp;
1454 ctx->timestamp = now;
1455}
1456
4158755d
SE
1457static u64 perf_event_time(struct perf_event *event)
1458{
1459 struct perf_event_context *ctx = event->ctx;
e5d1367f
SE
1460
1461 if (is_cgroup_event(event))
1462 return perf_cgroup_event_time(event);
1463
4158755d
SE
1464 return ctx ? ctx->time : 0;
1465}
1466
487f05e1
AS
1467static enum event_type_t get_event_type(struct perf_event *event)
1468{
1469 struct perf_event_context *ctx = event->ctx;
1470 enum event_type_t event_type;
1471
1472 lockdep_assert_held(&ctx->lock);
1473
3bda69c1
AS
1474 /*
1475 * It's 'group type', really, because if our group leader is
1476 * pinned, so are we.
1477 */
1478 if (event->group_leader != event)
1479 event = event->group_leader;
1480
487f05e1
AS
1481 event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1482 if (!ctx->task)
1483 event_type |= EVENT_CPU;
1484
1485 return event_type;
1486}
1487
8e1a2031 1488/*
161c85fa 1489 * Helper function to initialize event group nodes.
8e1a2031 1490 */
161c85fa 1491static void init_event_group(struct perf_event *event)
8e1a2031
AB
1492{
1493 RB_CLEAR_NODE(&event->group_node);
1494 event->group_index = 0;
1495}
1496
1497/*
1498 * Extract pinned or flexible groups from the context
161c85fa 1499 * based on event attrs bits.
8e1a2031
AB
1500 */
1501static struct perf_event_groups *
1502get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
889ff015
FW
1503{
1504 if (event->attr.pinned)
1505 return &ctx->pinned_groups;
1506 else
1507 return &ctx->flexible_groups;
1508}
1509
8e1a2031 1510/*
161c85fa 1511 * Helper function to initializes perf_event_group trees.
8e1a2031 1512 */
161c85fa 1513static void perf_event_groups_init(struct perf_event_groups *groups)
8e1a2031
AB
1514{
1515 groups->tree = RB_ROOT;
1516 groups->index = 0;
1517}
1518
1519/*
1520 * Compare function for event groups;
161c85fa
PZ
1521 *
1522 * Implements complex key that first sorts by CPU and then by virtual index
1523 * which provides ordering when rotating groups for the same CPU.
8e1a2031 1524 */
161c85fa
PZ
1525static bool
1526perf_event_groups_less(struct perf_event *left, struct perf_event *right)
8e1a2031 1527{
161c85fa
PZ
1528 if (left->cpu < right->cpu)
1529 return true;
1530 if (left->cpu > right->cpu)
1531 return false;
1532
1533 if (left->group_index < right->group_index)
1534 return true;
1535 if (left->group_index > right->group_index)
1536 return false;
1537
1538 return false;
8e1a2031
AB
1539}
1540
1541/*
161c85fa
PZ
1542 * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for
1543 * key (see perf_event_groups_less). This places it last inside the CPU
1544 * subtree.
8e1a2031
AB
1545 */
1546static void
1547perf_event_groups_insert(struct perf_event_groups *groups,
161c85fa 1548 struct perf_event *event)
8e1a2031
AB
1549{
1550 struct perf_event *node_event;
1551 struct rb_node *parent;
1552 struct rb_node **node;
1553
1554 event->group_index = ++groups->index;
1555
1556 node = &groups->tree.rb_node;
1557 parent = *node;
1558
1559 while (*node) {
1560 parent = *node;
161c85fa 1561 node_event = container_of(*node, struct perf_event, group_node);
8e1a2031
AB
1562
1563 if (perf_event_groups_less(event, node_event))
1564 node = &parent->rb_left;
1565 else
1566 node = &parent->rb_right;
1567 }
1568
1569 rb_link_node(&event->group_node, parent, node);
1570 rb_insert_color(&event->group_node, &groups->tree);
1571}
1572
1573/*
161c85fa 1574 * Helper function to insert event into the pinned or flexible groups.
8e1a2031
AB
1575 */
1576static void
1577add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1578{
1579 struct perf_event_groups *groups;
1580
1581 groups = get_event_groups(event, ctx);
1582 perf_event_groups_insert(groups, event);
1583}
1584
1585/*
161c85fa 1586 * Delete a group from a tree.
8e1a2031
AB
1587 */
1588static void
1589perf_event_groups_delete(struct perf_event_groups *groups,
161c85fa 1590 struct perf_event *event)
8e1a2031 1591{
161c85fa
PZ
1592 WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1593 RB_EMPTY_ROOT(&groups->tree));
8e1a2031 1594
161c85fa 1595 rb_erase(&event->group_node, &groups->tree);
8e1a2031
AB
1596 init_event_group(event);
1597}
1598
1599/*
161c85fa 1600 * Helper function to delete event from its groups.
8e1a2031
AB
1601 */
1602static void
1603del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1604{
1605 struct perf_event_groups *groups;
1606
1607 groups = get_event_groups(event, ctx);
1608 perf_event_groups_delete(groups, event);
1609}
1610
1611/*
161c85fa 1612 * Get the leftmost event in the @cpu subtree.
8e1a2031
AB
1613 */
1614static struct perf_event *
1615perf_event_groups_first(struct perf_event_groups *groups, int cpu)
1616{
1617 struct perf_event *node_event = NULL, *match = NULL;
1618 struct rb_node *node = groups->tree.rb_node;
1619
1620 while (node) {
161c85fa 1621 node_event = container_of(node, struct perf_event, group_node);
8e1a2031
AB
1622
1623 if (cpu < node_event->cpu) {
1624 node = node->rb_left;
1625 } else if (cpu > node_event->cpu) {
1626 node = node->rb_right;
1627 } else {
1628 match = node_event;
1629 node = node->rb_left;
1630 }
1631 }
1632
1633 return match;
1634}
1635
1cac7b1a
PZ
1636/*
1637 * Like rb_entry_next_safe() for the @cpu subtree.
1638 */
1639static struct perf_event *
1640perf_event_groups_next(struct perf_event *event)
1641{
1642 struct perf_event *next;
1643
1644 next = rb_entry_safe(rb_next(&event->group_node), typeof(*event), group_node);
1645 if (next && next->cpu == event->cpu)
1646 return next;
1647
1648 return NULL;
1649}
1650
8e1a2031 1651/*
161c85fa 1652 * Iterate through the whole groups tree.
8e1a2031 1653 */
6e6804d2
PZ
1654#define perf_event_groups_for_each(event, groups) \
1655 for (event = rb_entry_safe(rb_first(&((groups)->tree)), \
1656 typeof(*event), group_node); event; \
1657 event = rb_entry_safe(rb_next(&event->group_node), \
1658 typeof(*event), group_node))
8e1a2031 1659
fccc714b 1660/*
788faab7 1661 * Add an event from the lists for its context.
fccc714b
PZ
1662 * Must be called with ctx->mutex and ctx->lock held.
1663 */
04289bb9 1664static void
cdd6c482 1665list_add_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1666{
c994d613
PZ
1667 lockdep_assert_held(&ctx->lock);
1668
8a49542c
PZ
1669 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1670 event->attach_state |= PERF_ATTACH_CONTEXT;
04289bb9 1671
0d3d73aa
PZ
1672 event->tstamp = perf_event_time(event);
1673
04289bb9 1674 /*
8a49542c
PZ
1675 * If we're a stand alone event or group leader, we go to the context
1676 * list, group events are kept attached to the group so that
1677 * perf_group_detach can, at all times, locate all siblings.
04289bb9 1678 */
8a49542c 1679 if (event->group_leader == event) {
4ff6a8de 1680 event->group_caps = event->event_caps;
8e1a2031 1681 add_event_to_groups(event, ctx);
5c148194 1682 }
592903cd 1683
db4a8356 1684 list_update_cgroup_event(event, ctx, true);
e5d1367f 1685
cdd6c482
IM
1686 list_add_rcu(&event->event_entry, &ctx->event_list);
1687 ctx->nr_events++;
1688 if (event->attr.inherit_stat)
bfbd3381 1689 ctx->nr_stat++;
5a3126d4
PZ
1690
1691 ctx->generation++;
04289bb9
IM
1692}
1693
0231bb53
JO
1694/*
1695 * Initialize event state based on the perf_event_attr::disabled.
1696 */
1697static inline void perf_event__state_init(struct perf_event *event)
1698{
1699 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1700 PERF_EVENT_STATE_INACTIVE;
1701}
1702
a723968c 1703static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
c320c7b7
ACM
1704{
1705 int entry = sizeof(u64); /* value */
1706 int size = 0;
1707 int nr = 1;
1708
1709 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1710 size += sizeof(u64);
1711
1712 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1713 size += sizeof(u64);
1714
1715 if (event->attr.read_format & PERF_FORMAT_ID)
1716 entry += sizeof(u64);
1717
1718 if (event->attr.read_format & PERF_FORMAT_GROUP) {
a723968c 1719 nr += nr_siblings;
c320c7b7
ACM
1720 size += sizeof(u64);
1721 }
1722
1723 size += entry * nr;
1724 event->read_size = size;
1725}
1726
a723968c 1727static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
c320c7b7
ACM
1728{
1729 struct perf_sample_data *data;
c320c7b7
ACM
1730 u16 size = 0;
1731
c320c7b7
ACM
1732 if (sample_type & PERF_SAMPLE_IP)
1733 size += sizeof(data->ip);
1734
6844c09d
ACM
1735 if (sample_type & PERF_SAMPLE_ADDR)
1736 size += sizeof(data->addr);
1737
1738 if (sample_type & PERF_SAMPLE_PERIOD)
1739 size += sizeof(data->period);
1740
c3feedf2
AK
1741 if (sample_type & PERF_SAMPLE_WEIGHT)
1742 size += sizeof(data->weight);
1743
6844c09d
ACM
1744 if (sample_type & PERF_SAMPLE_READ)
1745 size += event->read_size;
1746
d6be9ad6
SE
1747 if (sample_type & PERF_SAMPLE_DATA_SRC)
1748 size += sizeof(data->data_src.val);
1749
fdfbbd07
AK
1750 if (sample_type & PERF_SAMPLE_TRANSACTION)
1751 size += sizeof(data->txn);
1752
fc7ce9c7
KL
1753 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1754 size += sizeof(data->phys_addr);
1755
6844c09d
ACM
1756 event->header_size = size;
1757}
1758
a723968c
PZ
1759/*
1760 * Called at perf_event creation and when events are attached/detached from a
1761 * group.
1762 */
1763static void perf_event__header_size(struct perf_event *event)
1764{
1765 __perf_event_read_size(event,
1766 event->group_leader->nr_siblings);
1767 __perf_event_header_size(event, event->attr.sample_type);
1768}
1769
6844c09d
ACM
1770static void perf_event__id_header_size(struct perf_event *event)
1771{
1772 struct perf_sample_data *data;
1773 u64 sample_type = event->attr.sample_type;
1774 u16 size = 0;
1775
c320c7b7
ACM
1776 if (sample_type & PERF_SAMPLE_TID)
1777 size += sizeof(data->tid_entry);
1778
1779 if (sample_type & PERF_SAMPLE_TIME)
1780 size += sizeof(data->time);
1781
ff3d527c
AH
1782 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1783 size += sizeof(data->id);
1784
c320c7b7
ACM
1785 if (sample_type & PERF_SAMPLE_ID)
1786 size += sizeof(data->id);
1787
1788 if (sample_type & PERF_SAMPLE_STREAM_ID)
1789 size += sizeof(data->stream_id);
1790
1791 if (sample_type & PERF_SAMPLE_CPU)
1792 size += sizeof(data->cpu_entry);
1793
6844c09d 1794 event->id_header_size = size;
c320c7b7
ACM
1795}
1796
a723968c
PZ
1797static bool perf_event_validate_size(struct perf_event *event)
1798{
1799 /*
1800 * The values computed here will be over-written when we actually
1801 * attach the event.
1802 */
1803 __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1804 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1805 perf_event__id_header_size(event);
1806
1807 /*
1808 * Sum the lot; should not exceed the 64k limit we have on records.
1809 * Conservative limit to allow for callchains and other variable fields.
1810 */
1811 if (event->read_size + event->header_size +
1812 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1813 return false;
1814
1815 return true;
1816}
1817
8a49542c
PZ
1818static void perf_group_attach(struct perf_event *event)
1819{
c320c7b7 1820 struct perf_event *group_leader = event->group_leader, *pos;
8a49542c 1821
a76a82a3
PZ
1822 lockdep_assert_held(&event->ctx->lock);
1823
74c3337c
PZ
1824 /*
1825 * We can have double attach due to group movement in perf_event_open.
1826 */
1827 if (event->attach_state & PERF_ATTACH_GROUP)
1828 return;
1829
8a49542c
PZ
1830 event->attach_state |= PERF_ATTACH_GROUP;
1831
1832 if (group_leader == event)
1833 return;
1834
652884fe
PZ
1835 WARN_ON_ONCE(group_leader->ctx != event->ctx);
1836
4ff6a8de 1837 group_leader->group_caps &= event->event_caps;
8a49542c 1838
8343aae6 1839 list_add_tail(&event->sibling_list, &group_leader->sibling_list);
8a49542c 1840 group_leader->nr_siblings++;
c320c7b7
ACM
1841
1842 perf_event__header_size(group_leader);
1843
edb39592 1844 for_each_sibling_event(pos, group_leader)
c320c7b7 1845 perf_event__header_size(pos);
8a49542c
PZ
1846}
1847
a63eaf34 1848/*
788faab7 1849 * Remove an event from the lists for its context.
fccc714b 1850 * Must be called with ctx->mutex and ctx->lock held.
a63eaf34 1851 */
04289bb9 1852static void
cdd6c482 1853list_del_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1854{
652884fe
PZ
1855 WARN_ON_ONCE(event->ctx != ctx);
1856 lockdep_assert_held(&ctx->lock);
1857
8a49542c
PZ
1858 /*
1859 * We can have double detach due to exit/hot-unplug + close.
1860 */
1861 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
a63eaf34 1862 return;
8a49542c
PZ
1863
1864 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1865
db4a8356 1866 list_update_cgroup_event(event, ctx, false);
e5d1367f 1867
cdd6c482
IM
1868 ctx->nr_events--;
1869 if (event->attr.inherit_stat)
bfbd3381 1870 ctx->nr_stat--;
8bc20959 1871
cdd6c482 1872 list_del_rcu(&event->event_entry);
04289bb9 1873
8a49542c 1874 if (event->group_leader == event)
8e1a2031 1875 del_event_from_groups(event, ctx);
5c148194 1876
b2e74a26
SE
1877 /*
1878 * If event was in error state, then keep it
1879 * that way, otherwise bogus counts will be
1880 * returned on read(). The only way to get out
1881 * of error state is by explicit re-enabling
1882 * of the event
1883 */
1884 if (event->state > PERF_EVENT_STATE_OFF)
0d3d73aa 1885 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
5a3126d4
PZ
1886
1887 ctx->generation++;
050735b0
PZ
1888}
1889
8a49542c 1890static void perf_group_detach(struct perf_event *event)
050735b0
PZ
1891{
1892 struct perf_event *sibling, *tmp;
6668128a 1893 struct perf_event_context *ctx = event->ctx;
8a49542c 1894
6668128a 1895 lockdep_assert_held(&ctx->lock);
a76a82a3 1896
8a49542c
PZ
1897 /*
1898 * We can have double detach due to exit/hot-unplug + close.
1899 */
1900 if (!(event->attach_state & PERF_ATTACH_GROUP))
1901 return;
1902
1903 event->attach_state &= ~PERF_ATTACH_GROUP;
1904
1905 /*
1906 * If this is a sibling, remove it from its group.
1907 */
1908 if (event->group_leader != event) {
8343aae6 1909 list_del_init(&event->sibling_list);
8a49542c 1910 event->group_leader->nr_siblings--;
c320c7b7 1911 goto out;
8a49542c
PZ
1912 }
1913
04289bb9 1914 /*
cdd6c482
IM
1915 * If this was a group event with sibling events then
1916 * upgrade the siblings to singleton events by adding them
8a49542c 1917 * to whatever list we are on.
04289bb9 1918 */
8343aae6 1919 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
8e1a2031 1920
04289bb9 1921 sibling->group_leader = sibling;
24868367 1922 list_del_init(&sibling->sibling_list);
d6f962b5
FW
1923
1924 /* Inherit group flags from the previous leader */
4ff6a8de 1925 sibling->group_caps = event->group_caps;
652884fe 1926
8e1a2031 1927 if (!RB_EMPTY_NODE(&event->group_node)) {
8e1a2031 1928 add_event_to_groups(sibling, event->ctx);
6668128a
PZ
1929
1930 if (sibling->state == PERF_EVENT_STATE_ACTIVE) {
1931 struct list_head *list = sibling->attr.pinned ?
1932 &ctx->pinned_active : &ctx->flexible_active;
1933
1934 list_add_tail(&sibling->active_list, list);
1935 }
8e1a2031
AB
1936 }
1937
652884fe 1938 WARN_ON_ONCE(sibling->ctx != event->ctx);
04289bb9 1939 }
c320c7b7
ACM
1940
1941out:
1942 perf_event__header_size(event->group_leader);
1943
edb39592 1944 for_each_sibling_event(tmp, event->group_leader)
c320c7b7 1945 perf_event__header_size(tmp);
04289bb9
IM
1946}
1947
fadfe7be
JO
1948static bool is_orphaned_event(struct perf_event *event)
1949{
a69b0ca4 1950 return event->state == PERF_EVENT_STATE_DEAD;
fadfe7be
JO
1951}
1952
2c81a647 1953static inline int __pmu_filter_match(struct perf_event *event)
66eb579e
MR
1954{
1955 struct pmu *pmu = event->pmu;
1956 return pmu->filter_match ? pmu->filter_match(event) : 1;
1957}
1958
2c81a647
MR
1959/*
1960 * Check whether we should attempt to schedule an event group based on
1961 * PMU-specific filtering. An event group can consist of HW and SW events,
1962 * potentially with a SW leader, so we must check all the filters, to
1963 * determine whether a group is schedulable:
1964 */
1965static inline int pmu_filter_match(struct perf_event *event)
1966{
edb39592 1967 struct perf_event *sibling;
2c81a647
MR
1968
1969 if (!__pmu_filter_match(event))
1970 return 0;
1971
edb39592
PZ
1972 for_each_sibling_event(sibling, event) {
1973 if (!__pmu_filter_match(sibling))
2c81a647
MR
1974 return 0;
1975 }
1976
1977 return 1;
1978}
1979
fa66f07a
SE
1980static inline int
1981event_filter_match(struct perf_event *event)
1982{
0b8f1e2e
PZ
1983 return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
1984 perf_cgroup_match(event) && pmu_filter_match(event);
fa66f07a
SE
1985}
1986
9ffcfa6f
SE
1987static void
1988event_sched_out(struct perf_event *event,
3b6f9e5c 1989 struct perf_cpu_context *cpuctx,
cdd6c482 1990 struct perf_event_context *ctx)
3b6f9e5c 1991{
0d3d73aa 1992 enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
652884fe
PZ
1993
1994 WARN_ON_ONCE(event->ctx != ctx);
1995 lockdep_assert_held(&ctx->lock);
1996
cdd6c482 1997 if (event->state != PERF_EVENT_STATE_ACTIVE)
9ffcfa6f 1998 return;
3b6f9e5c 1999
6668128a
PZ
2000 /*
2001 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2002 * we can schedule events _OUT_ individually through things like
2003 * __perf_remove_from_context().
2004 */
2005 list_del_init(&event->active_list);
2006
44377277
AS
2007 perf_pmu_disable(event->pmu);
2008
28a967c3
PZ
2009 event->pmu->del(event, 0);
2010 event->oncpu = -1;
0d3d73aa 2011
1d54ad94
PZ
2012 if (READ_ONCE(event->pending_disable) >= 0) {
2013 WRITE_ONCE(event->pending_disable, -1);
0d3d73aa 2014 state = PERF_EVENT_STATE_OFF;
970892a9 2015 }
0d3d73aa 2016 perf_event_set_state(event, state);
3b6f9e5c 2017
cdd6c482 2018 if (!is_software_event(event))
3b6f9e5c 2019 cpuctx->active_oncpu--;
2fde4f94
MR
2020 if (!--ctx->nr_active)
2021 perf_event_ctx_deactivate(ctx);
0f5a2601
PZ
2022 if (event->attr.freq && event->attr.sample_freq)
2023 ctx->nr_freq--;
cdd6c482 2024 if (event->attr.exclusive || !cpuctx->active_oncpu)
3b6f9e5c 2025 cpuctx->exclusive = 0;
44377277
AS
2026
2027 perf_pmu_enable(event->pmu);
3b6f9e5c
PM
2028}
2029
d859e29f 2030static void
cdd6c482 2031group_sched_out(struct perf_event *group_event,
d859e29f 2032 struct perf_cpu_context *cpuctx,
cdd6c482 2033 struct perf_event_context *ctx)
d859e29f 2034{
cdd6c482 2035 struct perf_event *event;
0d3d73aa
PZ
2036
2037 if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2038 return;
d859e29f 2039
3f005e7d
MR
2040 perf_pmu_disable(ctx->pmu);
2041
cdd6c482 2042 event_sched_out(group_event, cpuctx, ctx);
d859e29f
PM
2043
2044 /*
2045 * Schedule out siblings (if any):
2046 */
edb39592 2047 for_each_sibling_event(event, group_event)
cdd6c482 2048 event_sched_out(event, cpuctx, ctx);
d859e29f 2049
3f005e7d
MR
2050 perf_pmu_enable(ctx->pmu);
2051
0d3d73aa 2052 if (group_event->attr.exclusive)
d859e29f
PM
2053 cpuctx->exclusive = 0;
2054}
2055
45a0e07a 2056#define DETACH_GROUP 0x01UL
0017960f 2057
0793a61d 2058/*
cdd6c482 2059 * Cross CPU call to remove a performance event
0793a61d 2060 *
cdd6c482 2061 * We disable the event on the hardware level first. After that we
0793a61d
TG
2062 * remove it from the context list.
2063 */
fae3fde6
PZ
2064static void
2065__perf_remove_from_context(struct perf_event *event,
2066 struct perf_cpu_context *cpuctx,
2067 struct perf_event_context *ctx,
2068 void *info)
0793a61d 2069{
45a0e07a 2070 unsigned long flags = (unsigned long)info;
0793a61d 2071
3c5c8711
PZ
2072 if (ctx->is_active & EVENT_TIME) {
2073 update_context_time(ctx);
2074 update_cgrp_time_from_cpuctx(cpuctx);
2075 }
2076
cdd6c482 2077 event_sched_out(event, cpuctx, ctx);
45a0e07a 2078 if (flags & DETACH_GROUP)
46ce0fe9 2079 perf_group_detach(event);
cdd6c482 2080 list_del_event(event, ctx);
39a43640
PZ
2081
2082 if (!ctx->nr_events && ctx->is_active) {
64ce3126 2083 ctx->is_active = 0;
39a43640
PZ
2084 if (ctx->task) {
2085 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2086 cpuctx->task_ctx = NULL;
2087 }
64ce3126 2088 }
0793a61d
TG
2089}
2090
0793a61d 2091/*
cdd6c482 2092 * Remove the event from a task's (or a CPU's) list of events.
0793a61d 2093 *
cdd6c482
IM
2094 * If event->ctx is a cloned context, callers must make sure that
2095 * every task struct that event->ctx->task could possibly point to
c93f7669
PM
2096 * remains valid. This is OK when called from perf_release since
2097 * that only calls us on the top-level context, which can't be a clone.
cdd6c482 2098 * When called from perf_event_exit_task, it's OK because the
c93f7669 2099 * context has been detached from its task.
0793a61d 2100 */
45a0e07a 2101static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
0793a61d 2102{
a76a82a3
PZ
2103 struct perf_event_context *ctx = event->ctx;
2104
2105 lockdep_assert_held(&ctx->mutex);
0793a61d 2106
45a0e07a 2107 event_function_call(event, __perf_remove_from_context, (void *)flags);
a76a82a3
PZ
2108
2109 /*
2110 * The above event_function_call() can NO-OP when it hits
2111 * TASK_TOMBSTONE. In that case we must already have been detached
2112 * from the context (by perf_event_exit_event()) but the grouping
2113 * might still be in-tact.
2114 */
2115 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
2116 if ((flags & DETACH_GROUP) &&
2117 (event->attach_state & PERF_ATTACH_GROUP)) {
2118 /*
2119 * Since in that case we cannot possibly be scheduled, simply
2120 * detach now.
2121 */
2122 raw_spin_lock_irq(&ctx->lock);
2123 perf_group_detach(event);
2124 raw_spin_unlock_irq(&ctx->lock);
2125 }
0793a61d
TG
2126}
2127
d859e29f 2128/*
cdd6c482 2129 * Cross CPU call to disable a performance event
d859e29f 2130 */
fae3fde6
PZ
2131static void __perf_event_disable(struct perf_event *event,
2132 struct perf_cpu_context *cpuctx,
2133 struct perf_event_context *ctx,
2134 void *info)
7b648018 2135{
fae3fde6
PZ
2136 if (event->state < PERF_EVENT_STATE_INACTIVE)
2137 return;
7b648018 2138
3c5c8711
PZ
2139 if (ctx->is_active & EVENT_TIME) {
2140 update_context_time(ctx);
2141 update_cgrp_time_from_event(event);
2142 }
2143
fae3fde6
PZ
2144 if (event == event->group_leader)
2145 group_sched_out(event, cpuctx, ctx);
2146 else
2147 event_sched_out(event, cpuctx, ctx);
0d3d73aa
PZ
2148
2149 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
7b648018
PZ
2150}
2151
d859e29f 2152/*
788faab7 2153 * Disable an event.
c93f7669 2154 *
cdd6c482
IM
2155 * If event->ctx is a cloned context, callers must make sure that
2156 * every task struct that event->ctx->task could possibly point to
c93f7669 2157 * remains valid. This condition is satisifed when called through
cdd6c482
IM
2158 * perf_event_for_each_child or perf_event_for_each because they
2159 * hold the top-level event's child_mutex, so any descendant that
8ba289b8
PZ
2160 * goes to exit will block in perf_event_exit_event().
2161 *
cdd6c482 2162 * When called from perf_pending_event it's OK because event->ctx
c93f7669 2163 * is the current context on this CPU and preemption is disabled,
cdd6c482 2164 * hence we can't get into perf_event_task_sched_out for this context.
d859e29f 2165 */
f63a8daa 2166static void _perf_event_disable(struct perf_event *event)
d859e29f 2167{
cdd6c482 2168 struct perf_event_context *ctx = event->ctx;
d859e29f 2169
e625cce1 2170 raw_spin_lock_irq(&ctx->lock);
7b648018 2171 if (event->state <= PERF_EVENT_STATE_OFF) {
e625cce1 2172 raw_spin_unlock_irq(&ctx->lock);
7b648018 2173 return;
53cfbf59 2174 }
e625cce1 2175 raw_spin_unlock_irq(&ctx->lock);
7b648018 2176
fae3fde6
PZ
2177 event_function_call(event, __perf_event_disable, NULL);
2178}
2179
2180void perf_event_disable_local(struct perf_event *event)
2181{
2182 event_function_local(event, __perf_event_disable, NULL);
d859e29f 2183}
f63a8daa
PZ
2184
2185/*
2186 * Strictly speaking kernel users cannot create groups and therefore this
2187 * interface does not need the perf_event_ctx_lock() magic.
2188 */
2189void perf_event_disable(struct perf_event *event)
2190{
2191 struct perf_event_context *ctx;
2192
2193 ctx = perf_event_ctx_lock(event);
2194 _perf_event_disable(event);
2195 perf_event_ctx_unlock(event, ctx);
2196}
dcfce4a0 2197EXPORT_SYMBOL_GPL(perf_event_disable);
d859e29f 2198
5aab90ce
JO
2199void perf_event_disable_inatomic(struct perf_event *event)
2200{
1d54ad94
PZ
2201 WRITE_ONCE(event->pending_disable, smp_processor_id());
2202 /* can fail, see perf_pending_event_disable() */
5aab90ce
JO
2203 irq_work_queue(&event->pending);
2204}
2205
e5d1367f 2206static void perf_set_shadow_time(struct perf_event *event,
0d3d73aa 2207 struct perf_event_context *ctx)
e5d1367f
SE
2208{
2209 /*
2210 * use the correct time source for the time snapshot
2211 *
2212 * We could get by without this by leveraging the
2213 * fact that to get to this function, the caller
2214 * has most likely already called update_context_time()
2215 * and update_cgrp_time_xx() and thus both timestamp
2216 * are identical (or very close). Given that tstamp is,
2217 * already adjusted for cgroup, we could say that:
2218 * tstamp - ctx->timestamp
2219 * is equivalent to
2220 * tstamp - cgrp->timestamp.
2221 *
2222 * Then, in perf_output_read(), the calculation would
2223 * work with no changes because:
2224 * - event is guaranteed scheduled in
2225 * - no scheduled out in between
2226 * - thus the timestamp would be the same
2227 *
2228 * But this is a bit hairy.
2229 *
2230 * So instead, we have an explicit cgroup call to remain
2231 * within the time time source all along. We believe it
2232 * is cleaner and simpler to understand.
2233 */
2234 if (is_cgroup_event(event))
0d3d73aa 2235 perf_cgroup_set_shadow_time(event, event->tstamp);
e5d1367f 2236 else
0d3d73aa 2237 event->shadow_ctx_time = event->tstamp - ctx->timestamp;
e5d1367f
SE
2238}
2239
4fe757dd
PZ
2240#define MAX_INTERRUPTS (~0ULL)
2241
2242static void perf_log_throttle(struct perf_event *event, int enable);
ec0d7729 2243static void perf_log_itrace_start(struct perf_event *event);
4fe757dd 2244
235c7fc7 2245static int
9ffcfa6f 2246event_sched_in(struct perf_event *event,
235c7fc7 2247 struct perf_cpu_context *cpuctx,
6e37738a 2248 struct perf_event_context *ctx)
235c7fc7 2249{
44377277 2250 int ret = 0;
4158755d 2251
63342411
PZ
2252 lockdep_assert_held(&ctx->lock);
2253
cdd6c482 2254 if (event->state <= PERF_EVENT_STATE_OFF)
235c7fc7
IM
2255 return 0;
2256
95ff4ca2
AS
2257 WRITE_ONCE(event->oncpu, smp_processor_id());
2258 /*
0c1cbc18
PZ
2259 * Order event::oncpu write to happen before the ACTIVE state is
2260 * visible. This allows perf_event_{stop,read}() to observe the correct
2261 * ->oncpu if it sees ACTIVE.
95ff4ca2
AS
2262 */
2263 smp_wmb();
0d3d73aa 2264 perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
4fe757dd
PZ
2265
2266 /*
2267 * Unthrottle events, since we scheduled we might have missed several
2268 * ticks already, also for a heavily scheduling task there is little
2269 * guarantee it'll get a tick in a timely manner.
2270 */
2271 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2272 perf_log_throttle(event, 1);
2273 event->hw.interrupts = 0;
2274 }
2275
44377277
AS
2276 perf_pmu_disable(event->pmu);
2277
0d3d73aa 2278 perf_set_shadow_time(event, ctx);
72f669c0 2279
ec0d7729
AS
2280 perf_log_itrace_start(event);
2281
a4eaf7f1 2282 if (event->pmu->add(event, PERF_EF_START)) {
0d3d73aa 2283 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
cdd6c482 2284 event->oncpu = -1;
44377277
AS
2285 ret = -EAGAIN;
2286 goto out;
235c7fc7
IM
2287 }
2288
cdd6c482 2289 if (!is_software_event(event))
3b6f9e5c 2290 cpuctx->active_oncpu++;
2fde4f94
MR
2291 if (!ctx->nr_active++)
2292 perf_event_ctx_activate(ctx);
0f5a2601
PZ
2293 if (event->attr.freq && event->attr.sample_freq)
2294 ctx->nr_freq++;
235c7fc7 2295
cdd6c482 2296 if (event->attr.exclusive)
3b6f9e5c
PM
2297 cpuctx->exclusive = 1;
2298
44377277
AS
2299out:
2300 perf_pmu_enable(event->pmu);
2301
2302 return ret;
235c7fc7
IM
2303}
2304
6751b71e 2305static int
cdd6c482 2306group_sched_in(struct perf_event *group_event,
6751b71e 2307 struct perf_cpu_context *cpuctx,
6e37738a 2308 struct perf_event_context *ctx)
6751b71e 2309{
6bde9b6c 2310 struct perf_event *event, *partial_group = NULL;
4a234593 2311 struct pmu *pmu = ctx->pmu;
6751b71e 2312
cdd6c482 2313 if (group_event->state == PERF_EVENT_STATE_OFF)
6751b71e
PM
2314 return 0;
2315
fbbe0701 2316 pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
6bde9b6c 2317
9ffcfa6f 2318 if (event_sched_in(group_event, cpuctx, ctx)) {
ad5133b7 2319 pmu->cancel_txn(pmu);
272325c4 2320 perf_mux_hrtimer_restart(cpuctx);
6751b71e 2321 return -EAGAIN;
90151c35 2322 }
6751b71e
PM
2323
2324 /*
2325 * Schedule in siblings as one group (if any):
2326 */
edb39592 2327 for_each_sibling_event(event, group_event) {
9ffcfa6f 2328 if (event_sched_in(event, cpuctx, ctx)) {
cdd6c482 2329 partial_group = event;
6751b71e
PM
2330 goto group_error;
2331 }
2332 }
2333
9ffcfa6f 2334 if (!pmu->commit_txn(pmu))
6e85158c 2335 return 0;
9ffcfa6f 2336
6751b71e
PM
2337group_error:
2338 /*
2339 * Groups can be scheduled in as one unit only, so undo any
2340 * partial group before returning:
0d3d73aa 2341 * The events up to the failed event are scheduled out normally.
6751b71e 2342 */
edb39592 2343 for_each_sibling_event(event, group_event) {
cdd6c482 2344 if (event == partial_group)
0d3d73aa 2345 break;
d7842da4 2346
0d3d73aa 2347 event_sched_out(event, cpuctx, ctx);
6751b71e 2348 }
9ffcfa6f 2349 event_sched_out(group_event, cpuctx, ctx);
6751b71e 2350
ad5133b7 2351 pmu->cancel_txn(pmu);
90151c35 2352
272325c4 2353 perf_mux_hrtimer_restart(cpuctx);
9e630205 2354
6751b71e
PM
2355 return -EAGAIN;
2356}
2357
3b6f9e5c 2358/*
cdd6c482 2359 * Work out whether we can put this event group on the CPU now.
3b6f9e5c 2360 */
cdd6c482 2361static int group_can_go_on(struct perf_event *event,
3b6f9e5c
PM
2362 struct perf_cpu_context *cpuctx,
2363 int can_add_hw)
2364{
2365 /*
cdd6c482 2366 * Groups consisting entirely of software events can always go on.
3b6f9e5c 2367 */
4ff6a8de 2368 if (event->group_caps & PERF_EV_CAP_SOFTWARE)
3b6f9e5c
PM
2369 return 1;
2370 /*
2371 * If an exclusive group is already on, no other hardware
cdd6c482 2372 * events can go on.
3b6f9e5c
PM
2373 */
2374 if (cpuctx->exclusive)
2375 return 0;
2376 /*
2377 * If this group is exclusive and there are already
cdd6c482 2378 * events on the CPU, it can't go on.
3b6f9e5c 2379 */
cdd6c482 2380 if (event->attr.exclusive && cpuctx->active_oncpu)
3b6f9e5c
PM
2381 return 0;
2382 /*
2383 * Otherwise, try to add it if all previous groups were able
2384 * to go on.
2385 */
2386 return can_add_hw;
2387}
2388
cdd6c482
IM
2389static void add_event_to_ctx(struct perf_event *event,
2390 struct perf_event_context *ctx)
53cfbf59 2391{
cdd6c482 2392 list_add_event(event, ctx);
8a49542c 2393 perf_group_attach(event);
53cfbf59
PM
2394}
2395
bd2afa49
PZ
2396static void ctx_sched_out(struct perf_event_context *ctx,
2397 struct perf_cpu_context *cpuctx,
2398 enum event_type_t event_type);
2c29ef0f
PZ
2399static void
2400ctx_sched_in(struct perf_event_context *ctx,
2401 struct perf_cpu_context *cpuctx,
2402 enum event_type_t event_type,
2403 struct task_struct *task);
fe4b04fa 2404
bd2afa49 2405static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
487f05e1
AS
2406 struct perf_event_context *ctx,
2407 enum event_type_t event_type)
bd2afa49
PZ
2408{
2409 if (!cpuctx->task_ctx)
2410 return;
2411
2412 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2413 return;
2414
487f05e1 2415 ctx_sched_out(ctx, cpuctx, event_type);
bd2afa49
PZ
2416}
2417
dce5855b
PZ
2418static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2419 struct perf_event_context *ctx,
2420 struct task_struct *task)
2421{
2422 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2423 if (ctx)
2424 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2425 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2426 if (ctx)
2427 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2428}
2429
487f05e1
AS
2430/*
2431 * We want to maintain the following priority of scheduling:
2432 * - CPU pinned (EVENT_CPU | EVENT_PINNED)
2433 * - task pinned (EVENT_PINNED)
2434 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2435 * - task flexible (EVENT_FLEXIBLE).
2436 *
2437 * In order to avoid unscheduling and scheduling back in everything every
2438 * time an event is added, only do it for the groups of equal priority and
2439 * below.
2440 *
2441 * This can be called after a batch operation on task events, in which case
2442 * event_type is a bit mask of the types of events involved. For CPU events,
2443 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2444 */
3e349507 2445static void ctx_resched(struct perf_cpu_context *cpuctx,
487f05e1
AS
2446 struct perf_event_context *task_ctx,
2447 enum event_type_t event_type)
0017960f 2448{
bd903afe 2449 enum event_type_t ctx_event_type;
487f05e1
AS
2450 bool cpu_event = !!(event_type & EVENT_CPU);
2451
2452 /*
2453 * If pinned groups are involved, flexible groups also need to be
2454 * scheduled out.
2455 */
2456 if (event_type & EVENT_PINNED)
2457 event_type |= EVENT_FLEXIBLE;
2458
bd903afe
SL
2459 ctx_event_type = event_type & EVENT_ALL;
2460
3e349507
PZ
2461 perf_pmu_disable(cpuctx->ctx.pmu);
2462 if (task_ctx)
487f05e1
AS
2463 task_ctx_sched_out(cpuctx, task_ctx, event_type);
2464
2465 /*
2466 * Decide which cpu ctx groups to schedule out based on the types
2467 * of events that caused rescheduling:
2468 * - EVENT_CPU: schedule out corresponding groups;
2469 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2470 * - otherwise, do nothing more.
2471 */
2472 if (cpu_event)
2473 cpu_ctx_sched_out(cpuctx, ctx_event_type);
2474 else if (ctx_event_type & EVENT_PINNED)
2475 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2476
3e349507
PZ
2477 perf_event_sched_in(cpuctx, task_ctx, current);
2478 perf_pmu_enable(cpuctx->ctx.pmu);
0017960f
PZ
2479}
2480
c68d224e
SE
2481void perf_pmu_resched(struct pmu *pmu)
2482{
2483 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2484 struct perf_event_context *task_ctx = cpuctx->task_ctx;
2485
2486 perf_ctx_lock(cpuctx, task_ctx);
2487 ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU);
2488 perf_ctx_unlock(cpuctx, task_ctx);
2489}
2490
0793a61d 2491/*
cdd6c482 2492 * Cross CPU call to install and enable a performance event
682076ae 2493 *
a096309b
PZ
2494 * Very similar to remote_function() + event_function() but cannot assume that
2495 * things like ctx->is_active and cpuctx->task_ctx are set.
0793a61d 2496 */
fe4b04fa 2497static int __perf_install_in_context(void *info)
0793a61d 2498{
a096309b
PZ
2499 struct perf_event *event = info;
2500 struct perf_event_context *ctx = event->ctx;
108b02cf 2501 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2c29ef0f 2502 struct perf_event_context *task_ctx = cpuctx->task_ctx;
63cae12b 2503 bool reprogram = true;
a096309b 2504 int ret = 0;
0793a61d 2505
63b6da39 2506 raw_spin_lock(&cpuctx->ctx.lock);
39a43640 2507 if (ctx->task) {
b58f6b0d
PZ
2508 raw_spin_lock(&ctx->lock);
2509 task_ctx = ctx;
a096309b 2510
63cae12b 2511 reprogram = (ctx->task == current);
b58f6b0d 2512
39a43640 2513 /*
63cae12b
PZ
2514 * If the task is running, it must be running on this CPU,
2515 * otherwise we cannot reprogram things.
2516 *
2517 * If its not running, we don't care, ctx->lock will
2518 * serialize against it becoming runnable.
39a43640 2519 */
63cae12b
PZ
2520 if (task_curr(ctx->task) && !reprogram) {
2521 ret = -ESRCH;
2522 goto unlock;
2523 }
a096309b 2524
63cae12b 2525 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
63b6da39
PZ
2526 } else if (task_ctx) {
2527 raw_spin_lock(&task_ctx->lock);
2c29ef0f 2528 }
b58f6b0d 2529
33801b94 2530#ifdef CONFIG_CGROUP_PERF
2531 if (is_cgroup_event(event)) {
2532 /*
2533 * If the current cgroup doesn't match the event's
2534 * cgroup, we should not try to schedule it.
2535 */
2536 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2537 reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2538 event->cgrp->css.cgroup);
2539 }
2540#endif
2541
63cae12b 2542 if (reprogram) {
a096309b
PZ
2543 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2544 add_event_to_ctx(event, ctx);
487f05e1 2545 ctx_resched(cpuctx, task_ctx, get_event_type(event));
a096309b
PZ
2546 } else {
2547 add_event_to_ctx(event, ctx);
2548 }
2549
63b6da39 2550unlock:
2c29ef0f 2551 perf_ctx_unlock(cpuctx, task_ctx);
fe4b04fa 2552
a096309b 2553 return ret;
0793a61d
TG
2554}
2555
2556/*
a096309b
PZ
2557 * Attach a performance event to a context.
2558 *
2559 * Very similar to event_function_call, see comment there.
0793a61d
TG
2560 */
2561static void
cdd6c482
IM
2562perf_install_in_context(struct perf_event_context *ctx,
2563 struct perf_event *event,
0793a61d
TG
2564 int cpu)
2565{
a096309b 2566 struct task_struct *task = READ_ONCE(ctx->task);
39a43640 2567
fe4b04fa
PZ
2568 lockdep_assert_held(&ctx->mutex);
2569
0cda4c02
YZ
2570 if (event->cpu != -1)
2571 event->cpu = cpu;
c3f00c70 2572
0b8f1e2e
PZ
2573 /*
2574 * Ensures that if we can observe event->ctx, both the event and ctx
2575 * will be 'complete'. See perf_iterate_sb_cpu().
2576 */
2577 smp_store_release(&event->ctx, ctx);
2578
a096309b
PZ
2579 if (!task) {
2580 cpu_function_call(cpu, __perf_install_in_context, event);
2581 return;
2582 }
2583
2584 /*
2585 * Should not happen, we validate the ctx is still alive before calling.
2586 */
2587 if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2588 return;
2589
39a43640
PZ
2590 /*
2591 * Installing events is tricky because we cannot rely on ctx->is_active
2592 * to be set in case this is the nr_events 0 -> 1 transition.
63cae12b
PZ
2593 *
2594 * Instead we use task_curr(), which tells us if the task is running.
2595 * However, since we use task_curr() outside of rq::lock, we can race
2596 * against the actual state. This means the result can be wrong.
2597 *
2598 * If we get a false positive, we retry, this is harmless.
2599 *
2600 * If we get a false negative, things are complicated. If we are after
2601 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2602 * value must be correct. If we're before, it doesn't matter since
2603 * perf_event_context_sched_in() will program the counter.
2604 *
2605 * However, this hinges on the remote context switch having observed
2606 * our task->perf_event_ctxp[] store, such that it will in fact take
2607 * ctx::lock in perf_event_context_sched_in().
2608 *
2609 * We do this by task_function_call(), if the IPI fails to hit the task
2610 * we know any future context switch of task must see the
2611 * perf_event_ctpx[] store.
39a43640 2612 */
63cae12b 2613
63b6da39 2614 /*
63cae12b
PZ
2615 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2616 * task_cpu() load, such that if the IPI then does not find the task
2617 * running, a future context switch of that task must observe the
2618 * store.
63b6da39 2619 */
63cae12b
PZ
2620 smp_mb();
2621again:
2622 if (!task_function_call(task, __perf_install_in_context, event))
a096309b
PZ
2623 return;
2624
2625 raw_spin_lock_irq(&ctx->lock);
2626 task = ctx->task;
84c4e620 2627 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
a096309b
PZ
2628 /*
2629 * Cannot happen because we already checked above (which also
2630 * cannot happen), and we hold ctx->mutex, which serializes us
2631 * against perf_event_exit_task_context().
2632 */
63b6da39
PZ
2633 raw_spin_unlock_irq(&ctx->lock);
2634 return;
2635 }
39a43640 2636 /*
63cae12b
PZ
2637 * If the task is not running, ctx->lock will avoid it becoming so,
2638 * thus we can safely install the event.
39a43640 2639 */
63cae12b
PZ
2640 if (task_curr(task)) {
2641 raw_spin_unlock_irq(&ctx->lock);
2642 goto again;
2643 }
2644 add_event_to_ctx(event, ctx);
2645 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
2646}
2647
d859e29f 2648/*
cdd6c482 2649 * Cross CPU call to enable a performance event
d859e29f 2650 */
fae3fde6
PZ
2651static void __perf_event_enable(struct perf_event *event,
2652 struct perf_cpu_context *cpuctx,
2653 struct perf_event_context *ctx,
2654 void *info)
04289bb9 2655{
cdd6c482 2656 struct perf_event *leader = event->group_leader;
fae3fde6 2657 struct perf_event_context *task_ctx;
04289bb9 2658
6e801e01
PZ
2659 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2660 event->state <= PERF_EVENT_STATE_ERROR)
fae3fde6 2661 return;
3cbed429 2662
bd2afa49
PZ
2663 if (ctx->is_active)
2664 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2665
0d3d73aa 2666 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
04289bb9 2667
fae3fde6
PZ
2668 if (!ctx->is_active)
2669 return;
2670
e5d1367f 2671 if (!event_filter_match(event)) {
bd2afa49 2672 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
fae3fde6 2673 return;
e5d1367f 2674 }
f4c4176f 2675
04289bb9 2676 /*
cdd6c482 2677 * If the event is in a group and isn't the group leader,
d859e29f 2678 * then don't put it on unless the group is on.
04289bb9 2679 */
bd2afa49
PZ
2680 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2681 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
fae3fde6 2682 return;
bd2afa49 2683 }
fe4b04fa 2684
fae3fde6
PZ
2685 task_ctx = cpuctx->task_ctx;
2686 if (ctx->task)
2687 WARN_ON_ONCE(task_ctx != ctx);
d859e29f 2688
487f05e1 2689 ctx_resched(cpuctx, task_ctx, get_event_type(event));
7b648018
PZ
2690}
2691
d859e29f 2692/*
788faab7 2693 * Enable an event.
c93f7669 2694 *
cdd6c482
IM
2695 * If event->ctx is a cloned context, callers must make sure that
2696 * every task struct that event->ctx->task could possibly point to
c93f7669 2697 * remains valid. This condition is satisfied when called through
cdd6c482
IM
2698 * perf_event_for_each_child or perf_event_for_each as described
2699 * for perf_event_disable.
d859e29f 2700 */
f63a8daa 2701static void _perf_event_enable(struct perf_event *event)
d859e29f 2702{
cdd6c482 2703 struct perf_event_context *ctx = event->ctx;
d859e29f 2704
7b648018 2705 raw_spin_lock_irq(&ctx->lock);
6e801e01
PZ
2706 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2707 event->state < PERF_EVENT_STATE_ERROR) {
7b648018 2708 raw_spin_unlock_irq(&ctx->lock);
d859e29f
PM
2709 return;
2710 }
2711
d859e29f 2712 /*
cdd6c482 2713 * If the event is in error state, clear that first.
7b648018
PZ
2714 *
2715 * That way, if we see the event in error state below, we know that it
2716 * has gone back into error state, as distinct from the task having
2717 * been scheduled away before the cross-call arrived.
d859e29f 2718 */
cdd6c482
IM
2719 if (event->state == PERF_EVENT_STATE_ERROR)
2720 event->state = PERF_EVENT_STATE_OFF;
e625cce1 2721 raw_spin_unlock_irq(&ctx->lock);
fe4b04fa 2722
fae3fde6 2723 event_function_call(event, __perf_event_enable, NULL);
d859e29f 2724}
f63a8daa
PZ
2725
2726/*
2727 * See perf_event_disable();
2728 */
2729void perf_event_enable(struct perf_event *event)
2730{
2731 struct perf_event_context *ctx;
2732
2733 ctx = perf_event_ctx_lock(event);
2734 _perf_event_enable(event);
2735 perf_event_ctx_unlock(event, ctx);
2736}
dcfce4a0 2737EXPORT_SYMBOL_GPL(perf_event_enable);
d859e29f 2738
375637bc
AS
2739struct stop_event_data {
2740 struct perf_event *event;
2741 unsigned int restart;
2742};
2743
95ff4ca2
AS
2744static int __perf_event_stop(void *info)
2745{
375637bc
AS
2746 struct stop_event_data *sd = info;
2747 struct perf_event *event = sd->event;
95ff4ca2 2748
375637bc 2749 /* if it's already INACTIVE, do nothing */
95ff4ca2
AS
2750 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2751 return 0;
2752
2753 /* matches smp_wmb() in event_sched_in() */
2754 smp_rmb();
2755
2756 /*
2757 * There is a window with interrupts enabled before we get here,
2758 * so we need to check again lest we try to stop another CPU's event.
2759 */
2760 if (READ_ONCE(event->oncpu) != smp_processor_id())
2761 return -EAGAIN;
2762
2763 event->pmu->stop(event, PERF_EF_UPDATE);
2764
375637bc
AS
2765 /*
2766 * May race with the actual stop (through perf_pmu_output_stop()),
2767 * but it is only used for events with AUX ring buffer, and such
2768 * events will refuse to restart because of rb::aux_mmap_count==0,
2769 * see comments in perf_aux_output_begin().
2770 *
788faab7 2771 * Since this is happening on an event-local CPU, no trace is lost
375637bc
AS
2772 * while restarting.
2773 */
2774 if (sd->restart)
c9bbdd48 2775 event->pmu->start(event, 0);
375637bc 2776
95ff4ca2
AS
2777 return 0;
2778}
2779
767ae086 2780static int perf_event_stop(struct perf_event *event, int restart)
375637bc
AS
2781{
2782 struct stop_event_data sd = {
2783 .event = event,
767ae086 2784 .restart = restart,
375637bc
AS
2785 };
2786 int ret = 0;
2787
2788 do {
2789 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2790 return 0;
2791
2792 /* matches smp_wmb() in event_sched_in() */
2793 smp_rmb();
2794
2795 /*
2796 * We only want to restart ACTIVE events, so if the event goes
2797 * inactive here (event->oncpu==-1), there's nothing more to do;
2798 * fall through with ret==-ENXIO.
2799 */
2800 ret = cpu_function_call(READ_ONCE(event->oncpu),
2801 __perf_event_stop, &sd);
2802 } while (ret == -EAGAIN);
2803
2804 return ret;
2805}
2806
2807/*
2808 * In order to contain the amount of racy and tricky in the address filter
2809 * configuration management, it is a two part process:
2810 *
2811 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2812 * we update the addresses of corresponding vmas in
c60f83b8 2813 * event::addr_filter_ranges array and bump the event::addr_filters_gen;
375637bc
AS
2814 * (p2) when an event is scheduled in (pmu::add), it calls
2815 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2816 * if the generation has changed since the previous call.
2817 *
2818 * If (p1) happens while the event is active, we restart it to force (p2).
2819 *
2820 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2821 * pre-existing mappings, called once when new filters arrive via SET_FILTER
2822 * ioctl;
2823 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2824 * registered mapping, called for every new mmap(), with mm::mmap_sem down
2825 * for reading;
2826 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2827 * of exec.
2828 */
2829void perf_event_addr_filters_sync(struct perf_event *event)
2830{
2831 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2832
2833 if (!has_addr_filter(event))
2834 return;
2835
2836 raw_spin_lock(&ifh->lock);
2837 if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2838 event->pmu->addr_filters_sync(event);
2839 event->hw.addr_filters_gen = event->addr_filters_gen;
2840 }
2841 raw_spin_unlock(&ifh->lock);
2842}
2843EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2844
f63a8daa 2845static int _perf_event_refresh(struct perf_event *event, int refresh)
79f14641 2846{
2023b359 2847 /*
cdd6c482 2848 * not supported on inherited events
2023b359 2849 */
2e939d1d 2850 if (event->attr.inherit || !is_sampling_event(event))
2023b359
PZ
2851 return -EINVAL;
2852
cdd6c482 2853 atomic_add(refresh, &event->event_limit);
f63a8daa 2854 _perf_event_enable(event);
2023b359
PZ
2855
2856 return 0;
79f14641 2857}
f63a8daa
PZ
2858
2859/*
2860 * See perf_event_disable()
2861 */
2862int perf_event_refresh(struct perf_event *event, int refresh)
2863{
2864 struct perf_event_context *ctx;
2865 int ret;
2866
2867 ctx = perf_event_ctx_lock(event);
2868 ret = _perf_event_refresh(event, refresh);
2869 perf_event_ctx_unlock(event, ctx);
2870
2871 return ret;
2872}
26ca5c11 2873EXPORT_SYMBOL_GPL(perf_event_refresh);
79f14641 2874
32ff77e8
MC
2875static int perf_event_modify_breakpoint(struct perf_event *bp,
2876 struct perf_event_attr *attr)
2877{
2878 int err;
2879
2880 _perf_event_disable(bp);
2881
2882 err = modify_user_hw_breakpoint_check(bp, attr, true);
32ff77e8 2883
bf06278c 2884 if (!bp->attr.disabled)
32ff77e8 2885 _perf_event_enable(bp);
bf06278c
JO
2886
2887 return err;
32ff77e8
MC
2888}
2889
2890static int perf_event_modify_attr(struct perf_event *event,
2891 struct perf_event_attr *attr)
2892{
2893 if (event->attr.type != attr->type)
2894 return -EINVAL;
2895
2896 switch (event->attr.type) {
2897 case PERF_TYPE_BREAKPOINT:
2898 return perf_event_modify_breakpoint(event, attr);
2899 default:
2900 /* Place holder for future additions. */
2901 return -EOPNOTSUPP;
2902 }
2903}
2904
5b0311e1
FW
2905static void ctx_sched_out(struct perf_event_context *ctx,
2906 struct perf_cpu_context *cpuctx,
2907 enum event_type_t event_type)
235c7fc7 2908{
6668128a 2909 struct perf_event *event, *tmp;
db24d33e 2910 int is_active = ctx->is_active;
235c7fc7 2911
c994d613 2912 lockdep_assert_held(&ctx->lock);
235c7fc7 2913
39a43640
PZ
2914 if (likely(!ctx->nr_events)) {
2915 /*
2916 * See __perf_remove_from_context().
2917 */
2918 WARN_ON_ONCE(ctx->is_active);
2919 if (ctx->task)
2920 WARN_ON_ONCE(cpuctx->task_ctx);
facc4307 2921 return;
39a43640
PZ
2922 }
2923
db24d33e 2924 ctx->is_active &= ~event_type;
3cbaa590
PZ
2925 if (!(ctx->is_active & EVENT_ALL))
2926 ctx->is_active = 0;
2927
63e30d3e
PZ
2928 if (ctx->task) {
2929 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2930 if (!ctx->is_active)
2931 cpuctx->task_ctx = NULL;
2932 }
facc4307 2933
8fdc6539
PZ
2934 /*
2935 * Always update time if it was set; not only when it changes.
2936 * Otherwise we can 'forget' to update time for any but the last
2937 * context we sched out. For example:
2938 *
2939 * ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2940 * ctx_sched_out(.event_type = EVENT_PINNED)
2941 *
2942 * would only update time for the pinned events.
2943 */
3cbaa590
PZ
2944 if (is_active & EVENT_TIME) {
2945 /* update (and stop) ctx time */
2946 update_context_time(ctx);
2947 update_cgrp_time_from_cpuctx(cpuctx);
2948 }
2949
8fdc6539
PZ
2950 is_active ^= ctx->is_active; /* changed bits */
2951
3cbaa590 2952 if (!ctx->nr_active || !(is_active & EVENT_ALL))
facc4307 2953 return;
5b0311e1 2954
075e0b00 2955 perf_pmu_disable(ctx->pmu);
3cbaa590 2956 if (is_active & EVENT_PINNED) {
6668128a 2957 list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list)
889ff015 2958 group_sched_out(event, cpuctx, ctx);
9ed6060d 2959 }
889ff015 2960
3cbaa590 2961 if (is_active & EVENT_FLEXIBLE) {
6668128a 2962 list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list)
8c9ed8e1 2963 group_sched_out(event, cpuctx, ctx);
9ed6060d 2964 }
1b9a644f 2965 perf_pmu_enable(ctx->pmu);
235c7fc7
IM
2966}
2967
564c2b21 2968/*
5a3126d4
PZ
2969 * Test whether two contexts are equivalent, i.e. whether they have both been
2970 * cloned from the same version of the same context.
2971 *
2972 * Equivalence is measured using a generation number in the context that is
2973 * incremented on each modification to it; see unclone_ctx(), list_add_event()
2974 * and list_del_event().
564c2b21 2975 */
cdd6c482
IM
2976static int context_equiv(struct perf_event_context *ctx1,
2977 struct perf_event_context *ctx2)
564c2b21 2978{
211de6eb
PZ
2979 lockdep_assert_held(&ctx1->lock);
2980 lockdep_assert_held(&ctx2->lock);
2981
5a3126d4
PZ
2982 /* Pinning disables the swap optimization */
2983 if (ctx1->pin_count || ctx2->pin_count)
2984 return 0;
2985
2986 /* If ctx1 is the parent of ctx2 */
2987 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2988 return 1;
2989
2990 /* If ctx2 is the parent of ctx1 */
2991 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2992 return 1;
2993
2994 /*
2995 * If ctx1 and ctx2 have the same parent; we flatten the parent
2996 * hierarchy, see perf_event_init_context().
2997 */
2998 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2999 ctx1->parent_gen == ctx2->parent_gen)
3000 return 1;
3001
3002 /* Unmatched */
3003 return 0;
564c2b21
PM
3004}
3005
cdd6c482
IM
3006static void __perf_event_sync_stat(struct perf_event *event,
3007 struct perf_event *next_event)
bfbd3381
PZ
3008{
3009 u64 value;
3010
cdd6c482 3011 if (!event->attr.inherit_stat)
bfbd3381
PZ
3012 return;
3013
3014 /*
cdd6c482 3015 * Update the event value, we cannot use perf_event_read()
bfbd3381
PZ
3016 * because we're in the middle of a context switch and have IRQs
3017 * disabled, which upsets smp_call_function_single(), however
cdd6c482 3018 * we know the event must be on the current CPU, therefore we
bfbd3381
PZ
3019 * don't need to use it.
3020 */
0d3d73aa 3021 if (event->state == PERF_EVENT_STATE_ACTIVE)
3dbebf15 3022 event->pmu->read(event);
bfbd3381 3023
0d3d73aa 3024 perf_event_update_time(event);
bfbd3381
PZ
3025
3026 /*
cdd6c482 3027 * In order to keep per-task stats reliable we need to flip the event
bfbd3381
PZ
3028 * values when we flip the contexts.
3029 */
e7850595
PZ
3030 value = local64_read(&next_event->count);
3031 value = local64_xchg(&event->count, value);
3032 local64_set(&next_event->count, value);
bfbd3381 3033
cdd6c482
IM
3034 swap(event->total_time_enabled, next_event->total_time_enabled);
3035 swap(event->total_time_running, next_event->total_time_running);
19d2e755 3036
bfbd3381 3037 /*
19d2e755 3038 * Since we swizzled the values, update the user visible data too.
bfbd3381 3039 */
cdd6c482
IM
3040 perf_event_update_userpage(event);
3041 perf_event_update_userpage(next_event);
bfbd3381
PZ
3042}
3043
cdd6c482
IM
3044static void perf_event_sync_stat(struct perf_event_context *ctx,
3045 struct perf_event_context *next_ctx)
bfbd3381 3046{
cdd6c482 3047 struct perf_event *event, *next_event;
bfbd3381
PZ
3048
3049 if (!ctx->nr_stat)
3050 return;
3051
02ffdbc8
PZ
3052 update_context_time(ctx);
3053
cdd6c482
IM
3054 event = list_first_entry(&ctx->event_list,
3055 struct perf_event, event_entry);
bfbd3381 3056
cdd6c482
IM
3057 next_event = list_first_entry(&next_ctx->event_list,
3058 struct perf_event, event_entry);
bfbd3381 3059
cdd6c482
IM
3060 while (&event->event_entry != &ctx->event_list &&
3061 &next_event->event_entry != &next_ctx->event_list) {
bfbd3381 3062
cdd6c482 3063 __perf_event_sync_stat(event, next_event);
bfbd3381 3064
cdd6c482
IM
3065 event = list_next_entry(event, event_entry);
3066 next_event = list_next_entry(next_event, event_entry);
bfbd3381
PZ
3067 }
3068}
3069
fe4b04fa
PZ
3070static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
3071 struct task_struct *next)
0793a61d 3072{
8dc85d54 3073 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
cdd6c482 3074 struct perf_event_context *next_ctx;
5a3126d4 3075 struct perf_event_context *parent, *next_parent;
108b02cf 3076 struct perf_cpu_context *cpuctx;
c93f7669 3077 int do_switch = 1;
0793a61d 3078
108b02cf
PZ
3079 if (likely(!ctx))
3080 return;
10989fb2 3081
108b02cf
PZ
3082 cpuctx = __get_cpu_context(ctx);
3083 if (!cpuctx->task_ctx)
0793a61d
TG
3084 return;
3085
c93f7669 3086 rcu_read_lock();
8dc85d54 3087 next_ctx = next->perf_event_ctxp[ctxn];
5a3126d4
PZ
3088 if (!next_ctx)
3089 goto unlock;
3090
3091 parent = rcu_dereference(ctx->parent_ctx);
3092 next_parent = rcu_dereference(next_ctx->parent_ctx);
3093
3094 /* If neither context have a parent context; they cannot be clones. */
802c8a61 3095 if (!parent && !next_parent)
5a3126d4
PZ
3096 goto unlock;
3097
3098 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
c93f7669
PM
3099 /*
3100 * Looks like the two contexts are clones, so we might be
3101 * able to optimize the context switch. We lock both
3102 * contexts and check that they are clones under the
3103 * lock (including re-checking that neither has been
3104 * uncloned in the meantime). It doesn't matter which
3105 * order we take the locks because no other cpu could
3106 * be trying to lock both of these tasks.
3107 */
e625cce1
TG
3108 raw_spin_lock(&ctx->lock);
3109 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
c93f7669 3110 if (context_equiv(ctx, next_ctx)) {
63b6da39
PZ
3111 WRITE_ONCE(ctx->task, next);
3112 WRITE_ONCE(next_ctx->task, task);
5a158c3c
YZ
3113
3114 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
3115
63b6da39
PZ
3116 /*
3117 * RCU_INIT_POINTER here is safe because we've not
3118 * modified the ctx and the above modification of
3119 * ctx->task and ctx->task_ctx_data are immaterial
3120 * since those values are always verified under
3121 * ctx->lock which we're now holding.
3122 */
3123 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
3124 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
3125
c93f7669 3126 do_switch = 0;
bfbd3381 3127
cdd6c482 3128 perf_event_sync_stat(ctx, next_ctx);
c93f7669 3129 }
e625cce1
TG
3130 raw_spin_unlock(&next_ctx->lock);
3131 raw_spin_unlock(&ctx->lock);
564c2b21 3132 }
5a3126d4 3133unlock:
c93f7669 3134 rcu_read_unlock();
564c2b21 3135
c93f7669 3136 if (do_switch) {
facc4307 3137 raw_spin_lock(&ctx->lock);
487f05e1 3138 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
facc4307 3139 raw_spin_unlock(&ctx->lock);
c93f7669 3140 }
0793a61d
TG
3141}
3142
e48c1788
PZ
3143static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3144
ba532500
YZ
3145void perf_sched_cb_dec(struct pmu *pmu)
3146{
e48c1788
PZ
3147 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3148
ba532500 3149 this_cpu_dec(perf_sched_cb_usages);
e48c1788
PZ
3150
3151 if (!--cpuctx->sched_cb_usage)
3152 list_del(&cpuctx->sched_cb_entry);
ba532500
YZ
3153}
3154
e48c1788 3155
ba532500
YZ
3156void perf_sched_cb_inc(struct pmu *pmu)
3157{
e48c1788
PZ
3158 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3159
3160 if (!cpuctx->sched_cb_usage++)
3161 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3162
ba532500
YZ
3163 this_cpu_inc(perf_sched_cb_usages);
3164}
3165
3166/*
3167 * This function provides the context switch callback to the lower code
3168 * layer. It is invoked ONLY when the context switch callback is enabled.
09e61b4f
PZ
3169 *
3170 * This callback is relevant even to per-cpu events; for example multi event
3171 * PEBS requires this to provide PID/TID information. This requires we flush
3172 * all queued PEBS records before we context switch to a new task.
ba532500
YZ
3173 */
3174static void perf_pmu_sched_task(struct task_struct *prev,
3175 struct task_struct *next,
3176 bool sched_in)
3177{
3178 struct perf_cpu_context *cpuctx;
3179 struct pmu *pmu;
ba532500
YZ
3180
3181 if (prev == next)
3182 return;
3183
e48c1788 3184 list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
1fd7e416 3185 pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
ba532500 3186
e48c1788
PZ
3187 if (WARN_ON_ONCE(!pmu->sched_task))
3188 continue;
ba532500 3189
e48c1788
PZ
3190 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3191 perf_pmu_disable(pmu);
ba532500 3192
e48c1788 3193 pmu->sched_task(cpuctx->task_ctx, sched_in);
ba532500 3194
e48c1788
PZ
3195 perf_pmu_enable(pmu);
3196 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
ba532500 3197 }
ba532500
YZ
3198}
3199
45ac1403
AH
3200static void perf_event_switch(struct task_struct *task,
3201 struct task_struct *next_prev, bool sched_in);
3202
8dc85d54
PZ
3203#define for_each_task_context_nr(ctxn) \
3204 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3205
3206/*
3207 * Called from scheduler to remove the events of the current task,
3208 * with interrupts disabled.
3209 *
3210 * We stop each event and update the event value in event->count.
3211 *
3212 * This does not protect us against NMI, but disable()
3213 * sets the disabled bit in the control field of event _before_
3214 * accessing the event control register. If a NMI hits, then it will
3215 * not restart the event.
3216 */
ab0cce56
JO
3217void __perf_event_task_sched_out(struct task_struct *task,
3218 struct task_struct *next)
8dc85d54
PZ
3219{
3220 int ctxn;
3221
ba532500
YZ
3222 if (__this_cpu_read(perf_sched_cb_usages))
3223 perf_pmu_sched_task(task, next, false);
3224
45ac1403
AH
3225 if (atomic_read(&nr_switch_events))
3226 perf_event_switch(task, next, false);
3227
8dc85d54
PZ
3228 for_each_task_context_nr(ctxn)
3229 perf_event_context_sched_out(task, ctxn, next);
e5d1367f
SE
3230
3231 /*
3232 * if cgroup events exist on this CPU, then we need
3233 * to check if we have to switch out PMU state.
3234 * cgroup event are system-wide mode only
3235 */
4a32fea9 3236 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
a8d757ef 3237 perf_cgroup_sched_out(task, next);
8dc85d54
PZ
3238}
3239
5b0311e1
FW
3240/*
3241 * Called with IRQs disabled
3242 */
3243static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3244 enum event_type_t event_type)
3245{
3246 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
04289bb9
IM
3247}
3248
1cac7b1a
PZ
3249static int visit_groups_merge(struct perf_event_groups *groups, int cpu,
3250 int (*func)(struct perf_event *, void *), void *data)
0793a61d 3251{
1cac7b1a
PZ
3252 struct perf_event **evt, *evt1, *evt2;
3253 int ret;
8e1a2031 3254
1cac7b1a
PZ
3255 evt1 = perf_event_groups_first(groups, -1);
3256 evt2 = perf_event_groups_first(groups, cpu);
3257
3258 while (evt1 || evt2) {
3259 if (evt1 && evt2) {
3260 if (evt1->group_index < evt2->group_index)
3261 evt = &evt1;
3262 else
3263 evt = &evt2;
3264 } else if (evt1) {
3265 evt = &evt1;
3266 } else {
3267 evt = &evt2;
8e1a2031 3268 }
1cac7b1a
PZ
3269
3270 ret = func(*evt, data);
3271 if (ret)
3272 return ret;
3273
3274 *evt = perf_event_groups_next(*evt);
8e1a2031 3275 }
0793a61d 3276
1cac7b1a
PZ
3277 return 0;
3278}
3279
3280struct sched_in_data {
3281 struct perf_event_context *ctx;
3282 struct perf_cpu_context *cpuctx;
3283 int can_add_hw;
3284};
3285
3286static int pinned_sched_in(struct perf_event *event, void *data)
3287{
3288 struct sched_in_data *sid = data;
3289
3290 if (event->state <= PERF_EVENT_STATE_OFF)
3291 return 0;
3292
3293 if (!event_filter_match(event))
3294 return 0;
3295
6668128a
PZ
3296 if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) {
3297 if (!group_sched_in(event, sid->cpuctx, sid->ctx))
3298 list_add_tail(&event->active_list, &sid->ctx->pinned_active);
3299 }
1cac7b1a
PZ
3300
3301 /*
3302 * If this pinned group hasn't been scheduled,
3303 * put it in error state.
3304 */
3305 if (event->state == PERF_EVENT_STATE_INACTIVE)
3306 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3307
3308 return 0;
3309}
3310
3311static int flexible_sched_in(struct perf_event *event, void *data)
3312{
3313 struct sched_in_data *sid = data;
3314
3315 if (event->state <= PERF_EVENT_STATE_OFF)
3316 return 0;
3317
3318 if (!event_filter_match(event))
3319 return 0;
3320
3321 if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) {
6668128a
PZ
3322 if (!group_sched_in(event, sid->cpuctx, sid->ctx))
3323 list_add_tail(&event->active_list, &sid->ctx->flexible_active);
3324 else
1cac7b1a 3325 sid->can_add_hw = 0;
3b6f9e5c 3326 }
1cac7b1a
PZ
3327
3328 return 0;
5b0311e1
FW
3329}
3330
3331static void
1cac7b1a
PZ
3332ctx_pinned_sched_in(struct perf_event_context *ctx,
3333 struct perf_cpu_context *cpuctx)
5b0311e1 3334{
1cac7b1a
PZ
3335 struct sched_in_data sid = {
3336 .ctx = ctx,
3337 .cpuctx = cpuctx,
3338 .can_add_hw = 1,
3339 };
3b6f9e5c 3340
1cac7b1a
PZ
3341 visit_groups_merge(&ctx->pinned_groups,
3342 smp_processor_id(),
3343 pinned_sched_in, &sid);
3344}
8e1a2031 3345
1cac7b1a
PZ
3346static void
3347ctx_flexible_sched_in(struct perf_event_context *ctx,
3348 struct perf_cpu_context *cpuctx)
3349{
3350 struct sched_in_data sid = {
3351 .ctx = ctx,
3352 .cpuctx = cpuctx,
3353 .can_add_hw = 1,
3354 };
0793a61d 3355
1cac7b1a
PZ
3356 visit_groups_merge(&ctx->flexible_groups,
3357 smp_processor_id(),
3358 flexible_sched_in, &sid);
5b0311e1
FW
3359}
3360
3361static void
3362ctx_sched_in(struct perf_event_context *ctx,
3363 struct perf_cpu_context *cpuctx,
e5d1367f
SE
3364 enum event_type_t event_type,
3365 struct task_struct *task)
5b0311e1 3366{
db24d33e 3367 int is_active = ctx->is_active;
c994d613
PZ
3368 u64 now;
3369
3370 lockdep_assert_held(&ctx->lock);
e5d1367f 3371
5b0311e1 3372 if (likely(!ctx->nr_events))
facc4307 3373 return;
5b0311e1 3374
3cbaa590 3375 ctx->is_active |= (event_type | EVENT_TIME);
63e30d3e
PZ
3376 if (ctx->task) {
3377 if (!is_active)
3378 cpuctx->task_ctx = ctx;
3379 else
3380 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3381 }
3382
3cbaa590
PZ
3383 is_active ^= ctx->is_active; /* changed bits */
3384
3385 if (is_active & EVENT_TIME) {
3386 /* start ctx time */
3387 now = perf_clock();
3388 ctx->timestamp = now;
3389 perf_cgroup_set_timestamp(task, ctx);
3390 }
3391
5b0311e1
FW
3392 /*
3393 * First go through the list and put on any pinned groups
3394 * in order to give them the best chance of going on.
3395 */
3cbaa590 3396 if (is_active & EVENT_PINNED)
6e37738a 3397 ctx_pinned_sched_in(ctx, cpuctx);
5b0311e1
FW
3398
3399 /* Then walk through the lower prio flexible groups */
3cbaa590 3400 if (is_active & EVENT_FLEXIBLE)
6e37738a 3401 ctx_flexible_sched_in(ctx, cpuctx);
235c7fc7
IM
3402}
3403
329c0e01 3404static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
3405 enum event_type_t event_type,
3406 struct task_struct *task)
329c0e01
FW
3407{
3408 struct perf_event_context *ctx = &cpuctx->ctx;
3409
e5d1367f 3410 ctx_sched_in(ctx, cpuctx, event_type, task);
329c0e01
FW
3411}
3412
e5d1367f
SE
3413static void perf_event_context_sched_in(struct perf_event_context *ctx,
3414 struct task_struct *task)
235c7fc7 3415{
108b02cf 3416 struct perf_cpu_context *cpuctx;
235c7fc7 3417
108b02cf 3418 cpuctx = __get_cpu_context(ctx);
329c0e01
FW
3419 if (cpuctx->task_ctx == ctx)
3420 return;
3421
facc4307 3422 perf_ctx_lock(cpuctx, ctx);
fdccc3fb 3423 /*
3424 * We must check ctx->nr_events while holding ctx->lock, such
3425 * that we serialize against perf_install_in_context().
3426 */
3427 if (!ctx->nr_events)
3428 goto unlock;
3429
1b9a644f 3430 perf_pmu_disable(ctx->pmu);
329c0e01
FW
3431 /*
3432 * We want to keep the following priority order:
3433 * cpu pinned (that don't need to move), task pinned,
3434 * cpu flexible, task flexible.
fe45bafb
AS
3435 *
3436 * However, if task's ctx is not carrying any pinned
3437 * events, no need to flip the cpuctx's events around.
329c0e01 3438 */
8e1a2031 3439 if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
fe45bafb 3440 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
63e30d3e 3441 perf_event_sched_in(cpuctx, ctx, task);
facc4307 3442 perf_pmu_enable(ctx->pmu);
fdccc3fb 3443
3444unlock:
facc4307 3445 perf_ctx_unlock(cpuctx, ctx);
235c7fc7
IM
3446}
3447
8dc85d54
PZ
3448/*
3449 * Called from scheduler to add the events of the current task
3450 * with interrupts disabled.
3451 *
3452 * We restore the event value and then enable it.
3453 *
3454 * This does not protect us against NMI, but enable()
3455 * sets the enabled bit in the control field of event _before_
3456 * accessing the event control register. If a NMI hits, then it will
3457 * keep the event running.
3458 */
ab0cce56
JO
3459void __perf_event_task_sched_in(struct task_struct *prev,
3460 struct task_struct *task)
8dc85d54
PZ
3461{
3462 struct perf_event_context *ctx;
3463 int ctxn;
3464
7e41d177
PZ
3465 /*
3466 * If cgroup events exist on this CPU, then we need to check if we have
3467 * to switch in PMU state; cgroup event are system-wide mode only.
3468 *
3469 * Since cgroup events are CPU events, we must schedule these in before
3470 * we schedule in the task events.
3471 */
3472 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3473 perf_cgroup_sched_in(prev, task);
3474
8dc85d54
PZ
3475 for_each_task_context_nr(ctxn) {
3476 ctx = task->perf_event_ctxp[ctxn];
3477 if (likely(!ctx))
3478 continue;
3479
e5d1367f 3480 perf_event_context_sched_in(ctx, task);
8dc85d54 3481 }
d010b332 3482
45ac1403
AH
3483 if (atomic_read(&nr_switch_events))
3484 perf_event_switch(task, prev, true);
3485
ba532500
YZ
3486 if (__this_cpu_read(perf_sched_cb_usages))
3487 perf_pmu_sched_task(prev, task, true);
235c7fc7
IM
3488}
3489
abd50713
PZ
3490static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3491{
3492 u64 frequency = event->attr.sample_freq;
3493 u64 sec = NSEC_PER_SEC;
3494 u64 divisor, dividend;
3495
3496 int count_fls, nsec_fls, frequency_fls, sec_fls;
3497
3498 count_fls = fls64(count);
3499 nsec_fls = fls64(nsec);
3500 frequency_fls = fls64(frequency);
3501 sec_fls = 30;
3502
3503 /*
3504 * We got @count in @nsec, with a target of sample_freq HZ
3505 * the target period becomes:
3506 *
3507 * @count * 10^9
3508 * period = -------------------
3509 * @nsec * sample_freq
3510 *
3511 */
3512
3513 /*
3514 * Reduce accuracy by one bit such that @a and @b converge
3515 * to a similar magnitude.
3516 */
fe4b04fa 3517#define REDUCE_FLS(a, b) \
abd50713
PZ
3518do { \
3519 if (a##_fls > b##_fls) { \
3520 a >>= 1; \
3521 a##_fls--; \
3522 } else { \
3523 b >>= 1; \
3524 b##_fls--; \
3525 } \
3526} while (0)
3527
3528 /*
3529 * Reduce accuracy until either term fits in a u64, then proceed with
3530 * the other, so that finally we can do a u64/u64 division.
3531 */
3532 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3533 REDUCE_FLS(nsec, frequency);
3534 REDUCE_FLS(sec, count);
3535 }
3536
3537 if (count_fls + sec_fls > 64) {
3538 divisor = nsec * frequency;
3539
3540 while (count_fls + sec_fls > 64) {
3541 REDUCE_FLS(count, sec);
3542 divisor >>= 1;
3543 }
3544
3545 dividend = count * sec;
3546 } else {
3547 dividend = count * sec;
3548
3549 while (nsec_fls + frequency_fls > 64) {
3550 REDUCE_FLS(nsec, frequency);
3551 dividend >>= 1;
3552 }
3553
3554 divisor = nsec * frequency;
3555 }
3556
f6ab91ad
PZ
3557 if (!divisor)
3558 return dividend;
3559
abd50713
PZ
3560 return div64_u64(dividend, divisor);
3561}
3562
e050e3f0
SE
3563static DEFINE_PER_CPU(int, perf_throttled_count);
3564static DEFINE_PER_CPU(u64, perf_throttled_seq);
3565
f39d47ff 3566static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
bd2b5b12 3567{
cdd6c482 3568 struct hw_perf_event *hwc = &event->hw;
f6ab91ad 3569 s64 period, sample_period;
bd2b5b12
PZ
3570 s64 delta;
3571
abd50713 3572 period = perf_calculate_period(event, nsec, count);
bd2b5b12
PZ
3573
3574 delta = (s64)(period - hwc->sample_period);
3575 delta = (delta + 7) / 8; /* low pass filter */
3576
3577 sample_period = hwc->sample_period + delta;
3578
3579 if (!sample_period)
3580 sample_period = 1;
3581
bd2b5b12 3582 hwc->sample_period = sample_period;
abd50713 3583
e7850595 3584 if (local64_read(&hwc->period_left) > 8*sample_period) {
f39d47ff
SE
3585 if (disable)
3586 event->pmu->stop(event, PERF_EF_UPDATE);
3587
e7850595 3588 local64_set(&hwc->period_left, 0);
f39d47ff
SE
3589
3590 if (disable)
3591 event->pmu->start(event, PERF_EF_RELOAD);
abd50713 3592 }
bd2b5b12
PZ
3593}
3594
e050e3f0
SE
3595/*
3596 * combine freq adjustment with unthrottling to avoid two passes over the
3597 * events. At the same time, make sure, having freq events does not change
3598 * the rate of unthrottling as that would introduce bias.
3599 */
3600static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3601 int needs_unthr)
60db5e09 3602{
cdd6c482
IM
3603 struct perf_event *event;
3604 struct hw_perf_event *hwc;
e050e3f0 3605 u64 now, period = TICK_NSEC;
abd50713 3606 s64 delta;
60db5e09 3607
e050e3f0
SE
3608 /*
3609 * only need to iterate over all events iff:
3610 * - context have events in frequency mode (needs freq adjust)
3611 * - there are events to unthrottle on this cpu
3612 */
3613 if (!(ctx->nr_freq || needs_unthr))
0f5a2601
PZ
3614 return;
3615
e050e3f0 3616 raw_spin_lock(&ctx->lock);
f39d47ff 3617 perf_pmu_disable(ctx->pmu);
e050e3f0 3618
03541f8b 3619 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
cdd6c482 3620 if (event->state != PERF_EVENT_STATE_ACTIVE)
60db5e09
PZ
3621 continue;
3622
5632ab12 3623 if (!event_filter_match(event))
5d27c23d
PZ
3624 continue;
3625
44377277
AS
3626 perf_pmu_disable(event->pmu);
3627
cdd6c482 3628 hwc = &event->hw;
6a24ed6c 3629
ae23bff1 3630 if (hwc->interrupts == MAX_INTERRUPTS) {
e050e3f0 3631 hwc->interrupts = 0;
cdd6c482 3632 perf_log_throttle(event, 1);
a4eaf7f1 3633 event->pmu->start(event, 0);
a78ac325
PZ
3634 }
3635
cdd6c482 3636 if (!event->attr.freq || !event->attr.sample_freq)
44377277 3637 goto next;
60db5e09 3638
e050e3f0
SE
3639 /*
3640 * stop the event and update event->count
3641 */
3642 event->pmu->stop(event, PERF_EF_UPDATE);
3643
e7850595 3644 now = local64_read(&event->count);
abd50713
PZ
3645 delta = now - hwc->freq_count_stamp;
3646 hwc->freq_count_stamp = now;
60db5e09 3647
e050e3f0
SE
3648 /*
3649 * restart the event
3650 * reload only if value has changed
f39d47ff
SE
3651 * we have stopped the event so tell that
3652 * to perf_adjust_period() to avoid stopping it
3653 * twice.
e050e3f0 3654 */
abd50713 3655 if (delta > 0)
f39d47ff 3656 perf_adjust_period(event, period, delta, false);
e050e3f0
SE
3657
3658 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
44377277
AS
3659 next:
3660 perf_pmu_enable(event->pmu);
60db5e09 3661 }
e050e3f0 3662
f39d47ff 3663 perf_pmu_enable(ctx->pmu);
e050e3f0 3664 raw_spin_unlock(&ctx->lock);
60db5e09
PZ
3665}
3666
235c7fc7 3667/*
8703a7cf 3668 * Move @event to the tail of the @ctx's elegible events.
235c7fc7 3669 */
8703a7cf 3670static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
0793a61d 3671{
dddd3379
TG
3672 /*
3673 * Rotate the first entry last of non-pinned groups. Rotation might be
3674 * disabled by the inheritance code.
3675 */
8703a7cf
PZ
3676 if (ctx->rotate_disable)
3677 return;
8e1a2031 3678
8703a7cf
PZ
3679 perf_event_groups_delete(&ctx->flexible_groups, event);
3680 perf_event_groups_insert(&ctx->flexible_groups, event);
235c7fc7
IM
3681}
3682
8d5bce0c
PZ
3683static inline struct perf_event *
3684ctx_first_active(struct perf_event_context *ctx)
235c7fc7 3685{
8d5bce0c
PZ
3686 return list_first_entry_or_null(&ctx->flexible_active,
3687 struct perf_event, active_list);
3688}
3689
3690static bool perf_rotate_context(struct perf_cpu_context *cpuctx)
3691{
3692 struct perf_event *cpu_event = NULL, *task_event = NULL;
3693 bool cpu_rotate = false, task_rotate = false;
8dc85d54 3694 struct perf_event_context *ctx = NULL;
8d5bce0c
PZ
3695
3696 /*
3697 * Since we run this from IRQ context, nobody can install new
3698 * events, thus the event count values are stable.
3699 */
7fc23a53 3700
b5ab4cd5 3701 if (cpuctx->ctx.nr_events) {
b5ab4cd5 3702 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
8d5bce0c 3703 cpu_rotate = true;
b5ab4cd5 3704 }
235c7fc7 3705
8dc85d54 3706 ctx = cpuctx->task_ctx;
b5ab4cd5 3707 if (ctx && ctx->nr_events) {
b5ab4cd5 3708 if (ctx->nr_events != ctx->nr_active)
8d5bce0c 3709 task_rotate = true;
b5ab4cd5 3710 }
9717e6cd 3711
8d5bce0c
PZ
3712 if (!(cpu_rotate || task_rotate))
3713 return false;
0f5a2601 3714
facc4307 3715 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
1b9a644f 3716 perf_pmu_disable(cpuctx->ctx.pmu);
60db5e09 3717
8d5bce0c
PZ
3718 if (task_rotate)
3719 task_event = ctx_first_active(ctx);
3720 if (cpu_rotate)
3721 cpu_event = ctx_first_active(&cpuctx->ctx);
8703a7cf 3722
8d5bce0c
PZ
3723 /*
3724 * As per the order given at ctx_resched() first 'pop' task flexible
3725 * and then, if needed CPU flexible.
3726 */
3727 if (task_event || (ctx && cpu_event))
e050e3f0 3728 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
8d5bce0c
PZ
3729 if (cpu_event)
3730 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
0793a61d 3731
8d5bce0c
PZ
3732 if (task_event)
3733 rotate_ctx(ctx, task_event);
3734 if (cpu_event)
3735 rotate_ctx(&cpuctx->ctx, cpu_event);
235c7fc7 3736
e050e3f0 3737 perf_event_sched_in(cpuctx, ctx, current);
235c7fc7 3738
0f5a2601
PZ
3739 perf_pmu_enable(cpuctx->ctx.pmu);
3740 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
9e630205 3741
8d5bce0c 3742 return true;
e9d2b064
PZ
3743}
3744
3745void perf_event_task_tick(void)
3746{
2fde4f94
MR
3747 struct list_head *head = this_cpu_ptr(&active_ctx_list);
3748 struct perf_event_context *ctx, *tmp;
e050e3f0 3749 int throttled;
b5ab4cd5 3750
16444645 3751 lockdep_assert_irqs_disabled();
e9d2b064 3752
e050e3f0
SE
3753 __this_cpu_inc(perf_throttled_seq);
3754 throttled = __this_cpu_xchg(perf_throttled_count, 0);
555e0c1e 3755 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
e050e3f0 3756
2fde4f94 3757 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
e050e3f0 3758 perf_adjust_freq_unthr_context(ctx, throttled);
0793a61d
TG
3759}
3760
889ff015
FW
3761static int event_enable_on_exec(struct perf_event *event,
3762 struct perf_event_context *ctx)
3763{
3764 if (!event->attr.enable_on_exec)
3765 return 0;
3766
3767 event->attr.enable_on_exec = 0;
3768 if (event->state >= PERF_EVENT_STATE_INACTIVE)
3769 return 0;
3770
0d3d73aa 3771 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
889ff015
FW
3772
3773 return 1;
3774}
3775
57e7986e 3776/*
cdd6c482 3777 * Enable all of a task's events that have been marked enable-on-exec.
57e7986e
PM
3778 * This expects task == current.
3779 */
c1274499 3780static void perf_event_enable_on_exec(int ctxn)
57e7986e 3781{
c1274499 3782 struct perf_event_context *ctx, *clone_ctx = NULL;
487f05e1 3783 enum event_type_t event_type = 0;
3e349507 3784 struct perf_cpu_context *cpuctx;
cdd6c482 3785 struct perf_event *event;
57e7986e
PM
3786 unsigned long flags;
3787 int enabled = 0;
3788
3789 local_irq_save(flags);
c1274499 3790 ctx = current->perf_event_ctxp[ctxn];
cdd6c482 3791 if (!ctx || !ctx->nr_events)
57e7986e
PM
3792 goto out;
3793
3e349507
PZ
3794 cpuctx = __get_cpu_context(ctx);
3795 perf_ctx_lock(cpuctx, ctx);
7fce2509 3796 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
487f05e1 3797 list_for_each_entry(event, &ctx->event_list, event_entry) {
3e349507 3798 enabled |= event_enable_on_exec(event, ctx);
487f05e1
AS
3799 event_type |= get_event_type(event);
3800 }
57e7986e
PM
3801
3802 /*
3e349507 3803 * Unclone and reschedule this context if we enabled any event.
57e7986e 3804 */
3e349507 3805 if (enabled) {
211de6eb 3806 clone_ctx = unclone_ctx(ctx);
487f05e1 3807 ctx_resched(cpuctx, ctx, event_type);
7bbba0eb
PZ
3808 } else {
3809 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
3e349507
PZ
3810 }
3811 perf_ctx_unlock(cpuctx, ctx);
57e7986e 3812
9ed6060d 3813out:
57e7986e 3814 local_irq_restore(flags);
211de6eb
PZ
3815
3816 if (clone_ctx)
3817 put_ctx(clone_ctx);
57e7986e
PM
3818}
3819
0492d4c5
PZ
3820struct perf_read_data {
3821 struct perf_event *event;
3822 bool group;
7d88962e 3823 int ret;
0492d4c5
PZ
3824};
3825
451d24d1 3826static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
d6a2f903 3827{
d6a2f903
DCC
3828 u16 local_pkg, event_pkg;
3829
3830 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
451d24d1
PZ
3831 int local_cpu = smp_processor_id();
3832
3833 event_pkg = topology_physical_package_id(event_cpu);
3834 local_pkg = topology_physical_package_id(local_cpu);
d6a2f903
DCC
3835
3836 if (event_pkg == local_pkg)
3837 return local_cpu;
3838 }
3839
3840 return event_cpu;
3841}
3842
0793a61d 3843/*
cdd6c482 3844 * Cross CPU call to read the hardware event
0793a61d 3845 */
cdd6c482 3846static void __perf_event_read(void *info)
0793a61d 3847{
0492d4c5
PZ
3848 struct perf_read_data *data = info;
3849 struct perf_event *sub, *event = data->event;
cdd6c482 3850 struct perf_event_context *ctx = event->ctx;
108b02cf 3851 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
4a00c16e 3852 struct pmu *pmu = event->pmu;
621a01ea 3853
e1ac3614
PM
3854 /*
3855 * If this is a task context, we need to check whether it is
3856 * the current task context of this cpu. If not it has been
3857 * scheduled out before the smp call arrived. In that case
cdd6c482
IM
3858 * event->count would have been updated to a recent sample
3859 * when the event was scheduled out.
e1ac3614
PM
3860 */
3861 if (ctx->task && cpuctx->task_ctx != ctx)
3862 return;
3863
e625cce1 3864 raw_spin_lock(&ctx->lock);
0c1cbc18 3865 if (ctx->is_active & EVENT_TIME) {
542e72fc 3866 update_context_time(ctx);
e5d1367f
SE
3867 update_cgrp_time_from_event(event);
3868 }
0492d4c5 3869
0d3d73aa
PZ
3870 perf_event_update_time(event);
3871 if (data->group)
3872 perf_event_update_sibling_time(event);
0c1cbc18 3873
4a00c16e
SB
3874 if (event->state != PERF_EVENT_STATE_ACTIVE)
3875 goto unlock;
0492d4c5 3876
4a00c16e
SB
3877 if (!data->group) {
3878 pmu->read(event);
3879 data->ret = 0;
0492d4c5 3880 goto unlock;
4a00c16e
SB
3881 }
3882
3883 pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3884
3885 pmu->read(event);
0492d4c5 3886
edb39592 3887 for_each_sibling_event(sub, event) {
4a00c16e
SB
3888 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3889 /*
3890 * Use sibling's PMU rather than @event's since
3891 * sibling could be on different (eg: software) PMU.
3892 */
0492d4c5 3893 sub->pmu->read(sub);
4a00c16e 3894 }
0492d4c5 3895 }
4a00c16e
SB
3896
3897 data->ret = pmu->commit_txn(pmu);
0492d4c5
PZ
3898
3899unlock:
e625cce1 3900 raw_spin_unlock(&ctx->lock);
0793a61d
TG
3901}
3902
b5e58793
PZ
3903static inline u64 perf_event_count(struct perf_event *event)
3904{
c39a0e2c 3905 return local64_read(&event->count) + atomic64_read(&event->child_count);
b5e58793
PZ
3906}
3907
ffe8690c
KX
3908/*
3909 * NMI-safe method to read a local event, that is an event that
3910 * is:
3911 * - either for the current task, or for this CPU
3912 * - does not have inherit set, for inherited task events
3913 * will not be local and we cannot read them atomically
3914 * - must not have a pmu::count method
3915 */
7d9285e8
YS
3916int perf_event_read_local(struct perf_event *event, u64 *value,
3917 u64 *enabled, u64 *running)
ffe8690c
KX
3918{
3919 unsigned long flags;
f91840a3 3920 int ret = 0;
ffe8690c
KX
3921
3922 /*
3923 * Disabling interrupts avoids all counter scheduling (context
3924 * switches, timer based rotation and IPIs).
3925 */
3926 local_irq_save(flags);
3927
ffe8690c
KX
3928 /*
3929 * It must not be an event with inherit set, we cannot read
3930 * all child counters from atomic context.
3931 */
f91840a3
AS
3932 if (event->attr.inherit) {
3933 ret = -EOPNOTSUPP;
3934 goto out;
3935 }
ffe8690c 3936
f91840a3
AS
3937 /* If this is a per-task event, it must be for current */
3938 if ((event->attach_state & PERF_ATTACH_TASK) &&
3939 event->hw.target != current) {
3940 ret = -EINVAL;
3941 goto out;
3942 }
3943
3944 /* If this is a per-CPU event, it must be for this CPU */
3945 if (!(event->attach_state & PERF_ATTACH_TASK) &&
3946 event->cpu != smp_processor_id()) {
3947 ret = -EINVAL;
3948 goto out;
3949 }
ffe8690c 3950
befb1b3c
RC
3951 /* If this is a pinned event it must be running on this CPU */
3952 if (event->attr.pinned && event->oncpu != smp_processor_id()) {
3953 ret = -EBUSY;
3954 goto out;
3955 }
3956
ffe8690c
KX
3957 /*
3958 * If the event is currently on this CPU, its either a per-task event,
3959 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3960 * oncpu == -1).
3961 */
3962 if (event->oncpu == smp_processor_id())
3963 event->pmu->read(event);
3964
f91840a3 3965 *value = local64_read(&event->count);
0d3d73aa
PZ
3966 if (enabled || running) {
3967 u64 now = event->shadow_ctx_time + perf_clock();
3968 u64 __enabled, __running;
3969
3970 __perf_update_times(event, now, &__enabled, &__running);
3971 if (enabled)
3972 *enabled = __enabled;
3973 if (running)
3974 *running = __running;
3975 }
f91840a3 3976out:
ffe8690c
KX
3977 local_irq_restore(flags);
3978
f91840a3 3979 return ret;
ffe8690c
KX
3980}
3981
7d88962e 3982static int perf_event_read(struct perf_event *event, bool group)
0793a61d 3983{
0c1cbc18 3984 enum perf_event_state state = READ_ONCE(event->state);
451d24d1 3985 int event_cpu, ret = 0;
7d88962e 3986
0793a61d 3987 /*
cdd6c482
IM
3988 * If event is enabled and currently active on a CPU, update the
3989 * value in the event structure:
0793a61d 3990 */
0c1cbc18
PZ
3991again:
3992 if (state == PERF_EVENT_STATE_ACTIVE) {
3993 struct perf_read_data data;
3994
3995 /*
3996 * Orders the ->state and ->oncpu loads such that if we see
3997 * ACTIVE we must also see the right ->oncpu.
3998 *
3999 * Matches the smp_wmb() from event_sched_in().
4000 */
4001 smp_rmb();
d6a2f903 4002
451d24d1
PZ
4003 event_cpu = READ_ONCE(event->oncpu);
4004 if ((unsigned)event_cpu >= nr_cpu_ids)
4005 return 0;
4006
0c1cbc18
PZ
4007 data = (struct perf_read_data){
4008 .event = event,
4009 .group = group,
4010 .ret = 0,
4011 };
4012
451d24d1
PZ
4013 preempt_disable();
4014 event_cpu = __perf_event_read_cpu(event, event_cpu);
d6a2f903 4015
58763148
PZ
4016 /*
4017 * Purposely ignore the smp_call_function_single() return
4018 * value.
4019 *
451d24d1 4020 * If event_cpu isn't a valid CPU it means the event got
58763148
PZ
4021 * scheduled out and that will have updated the event count.
4022 *
4023 * Therefore, either way, we'll have an up-to-date event count
4024 * after this.
4025 */
451d24d1
PZ
4026 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4027 preempt_enable();
58763148 4028 ret = data.ret;
0c1cbc18
PZ
4029
4030 } else if (state == PERF_EVENT_STATE_INACTIVE) {
2b8988c9
PZ
4031 struct perf_event_context *ctx = event->ctx;
4032 unsigned long flags;
4033
e625cce1 4034 raw_spin_lock_irqsave(&ctx->lock, flags);
0c1cbc18
PZ
4035 state = event->state;
4036 if (state != PERF_EVENT_STATE_INACTIVE) {
4037 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4038 goto again;
4039 }
4040
c530ccd9 4041 /*
0c1cbc18
PZ
4042 * May read while context is not active (e.g., thread is
4043 * blocked), in that case we cannot update context time
c530ccd9 4044 */
0c1cbc18 4045 if (ctx->is_active & EVENT_TIME) {
c530ccd9 4046 update_context_time(ctx);
e5d1367f
SE
4047 update_cgrp_time_from_event(event);
4048 }
0c1cbc18 4049
0d3d73aa 4050 perf_event_update_time(event);
0492d4c5 4051 if (group)
0d3d73aa 4052 perf_event_update_sibling_time(event);
e625cce1 4053 raw_spin_unlock_irqrestore(&ctx->lock, flags);
0793a61d 4054 }
7d88962e
SB
4055
4056 return ret;
0793a61d
TG
4057}
4058
a63eaf34 4059/*
cdd6c482 4060 * Initialize the perf_event context in a task_struct:
a63eaf34 4061 */
eb184479 4062static void __perf_event_init_context(struct perf_event_context *ctx)
a63eaf34 4063{
e625cce1 4064 raw_spin_lock_init(&ctx->lock);
a63eaf34 4065 mutex_init(&ctx->mutex);
2fde4f94 4066 INIT_LIST_HEAD(&ctx->active_ctx_list);
8e1a2031
AB
4067 perf_event_groups_init(&ctx->pinned_groups);
4068 perf_event_groups_init(&ctx->flexible_groups);
a63eaf34 4069 INIT_LIST_HEAD(&ctx->event_list);
6668128a
PZ
4070 INIT_LIST_HEAD(&ctx->pinned_active);
4071 INIT_LIST_HEAD(&ctx->flexible_active);
8c94abbb 4072 refcount_set(&ctx->refcount, 1);
eb184479
PZ
4073}
4074
4075static struct perf_event_context *
4076alloc_perf_context(struct pmu *pmu, struct task_struct *task)
4077{
4078 struct perf_event_context *ctx;
4079
4080 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4081 if (!ctx)
4082 return NULL;
4083
4084 __perf_event_init_context(ctx);
4085 if (task) {
4086 ctx->task = task;
4087 get_task_struct(task);
0793a61d 4088 }
eb184479
PZ
4089 ctx->pmu = pmu;
4090
4091 return ctx;
a63eaf34
PM
4092}
4093
2ebd4ffb
MH
4094static struct task_struct *
4095find_lively_task_by_vpid(pid_t vpid)
4096{
4097 struct task_struct *task;
0793a61d
TG
4098
4099 rcu_read_lock();
2ebd4ffb 4100 if (!vpid)
0793a61d
TG
4101 task = current;
4102 else
2ebd4ffb 4103 task = find_task_by_vpid(vpid);
0793a61d
TG
4104 if (task)
4105 get_task_struct(task);
4106 rcu_read_unlock();
4107
4108 if (!task)
4109 return ERR_PTR(-ESRCH);
4110
2ebd4ffb 4111 return task;
2ebd4ffb
MH
4112}
4113
fe4b04fa
PZ
4114/*
4115 * Returns a matching context with refcount and pincount.
4116 */
108b02cf 4117static struct perf_event_context *
4af57ef2
YZ
4118find_get_context(struct pmu *pmu, struct task_struct *task,
4119 struct perf_event *event)
0793a61d 4120{
211de6eb 4121 struct perf_event_context *ctx, *clone_ctx = NULL;
22a4f650 4122 struct perf_cpu_context *cpuctx;
4af57ef2 4123 void *task_ctx_data = NULL;
25346b93 4124 unsigned long flags;
8dc85d54 4125 int ctxn, err;
4af57ef2 4126 int cpu = event->cpu;
0793a61d 4127
22a4ec72 4128 if (!task) {
cdd6c482 4129 /* Must be root to operate on a CPU event: */
0764771d 4130 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
0793a61d
TG
4131 return ERR_PTR(-EACCES);
4132
108b02cf 4133 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
0793a61d 4134 ctx = &cpuctx->ctx;
c93f7669 4135 get_ctx(ctx);
fe4b04fa 4136 ++ctx->pin_count;
0793a61d 4137
0793a61d
TG
4138 return ctx;
4139 }
4140
8dc85d54
PZ
4141 err = -EINVAL;
4142 ctxn = pmu->task_ctx_nr;
4143 if (ctxn < 0)
4144 goto errout;
4145
4af57ef2
YZ
4146 if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4147 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
4148 if (!task_ctx_data) {
4149 err = -ENOMEM;
4150 goto errout;
4151 }
4152 }
4153
9ed6060d 4154retry:
8dc85d54 4155 ctx = perf_lock_task_context(task, ctxn, &flags);
c93f7669 4156 if (ctx) {
211de6eb 4157 clone_ctx = unclone_ctx(ctx);
fe4b04fa 4158 ++ctx->pin_count;
4af57ef2
YZ
4159
4160 if (task_ctx_data && !ctx->task_ctx_data) {
4161 ctx->task_ctx_data = task_ctx_data;
4162 task_ctx_data = NULL;
4163 }
e625cce1 4164 raw_spin_unlock_irqrestore(&ctx->lock, flags);
211de6eb
PZ
4165
4166 if (clone_ctx)
4167 put_ctx(clone_ctx);
9137fb28 4168 } else {
eb184479 4169 ctx = alloc_perf_context(pmu, task);
c93f7669
PM
4170 err = -ENOMEM;
4171 if (!ctx)
4172 goto errout;
eb184479 4173
4af57ef2
YZ
4174 if (task_ctx_data) {
4175 ctx->task_ctx_data = task_ctx_data;
4176 task_ctx_data = NULL;
4177 }
4178
dbe08d82
ON
4179 err = 0;
4180 mutex_lock(&task->perf_event_mutex);
4181 /*
4182 * If it has already passed perf_event_exit_task().
4183 * we must see PF_EXITING, it takes this mutex too.
4184 */
4185 if (task->flags & PF_EXITING)
4186 err = -ESRCH;
4187 else if (task->perf_event_ctxp[ctxn])
4188 err = -EAGAIN;
fe4b04fa 4189 else {
9137fb28 4190 get_ctx(ctx);
fe4b04fa 4191 ++ctx->pin_count;
dbe08d82 4192 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
fe4b04fa 4193 }
dbe08d82
ON
4194 mutex_unlock(&task->perf_event_mutex);
4195
4196 if (unlikely(err)) {
9137fb28 4197 put_ctx(ctx);
dbe08d82
ON
4198
4199 if (err == -EAGAIN)
4200 goto retry;
4201 goto errout;
a63eaf34
PM
4202 }
4203 }
4204
4af57ef2 4205 kfree(task_ctx_data);
0793a61d 4206 return ctx;
c93f7669 4207
9ed6060d 4208errout:
4af57ef2 4209 kfree(task_ctx_data);
c93f7669 4210 return ERR_PTR(err);
0793a61d
TG
4211}
4212
6fb2915d 4213static void perf_event_free_filter(struct perf_event *event);
2541517c 4214static void perf_event_free_bpf_prog(struct perf_event *event);
6fb2915d 4215
cdd6c482 4216static void free_event_rcu(struct rcu_head *head)
592903cd 4217{
cdd6c482 4218 struct perf_event *event;
592903cd 4219
cdd6c482
IM
4220 event = container_of(head, struct perf_event, rcu_head);
4221 if (event->ns)
4222 put_pid_ns(event->ns);
6fb2915d 4223 perf_event_free_filter(event);
cdd6c482 4224 kfree(event);
592903cd
PZ
4225}
4226
b69cf536
PZ
4227static void ring_buffer_attach(struct perf_event *event,
4228 struct ring_buffer *rb);
925d519a 4229
f2fb6bef
KL
4230static void detach_sb_event(struct perf_event *event)
4231{
4232 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
4233
4234 raw_spin_lock(&pel->lock);
4235 list_del_rcu(&event->sb_list);
4236 raw_spin_unlock(&pel->lock);
4237}
4238
a4f144eb 4239static bool is_sb_event(struct perf_event *event)
f2fb6bef 4240{
a4f144eb
DCC
4241 struct perf_event_attr *attr = &event->attr;
4242
f2fb6bef 4243 if (event->parent)
a4f144eb 4244 return false;
f2fb6bef
KL
4245
4246 if (event->attach_state & PERF_ATTACH_TASK)
a4f144eb 4247 return false;
f2fb6bef 4248
a4f144eb
DCC
4249 if (attr->mmap || attr->mmap_data || attr->mmap2 ||
4250 attr->comm || attr->comm_exec ||
76193a94 4251 attr->task || attr->ksymbol ||
21038f2b
SL
4252 attr->context_switch ||
4253 attr->bpf_event)
a4f144eb
DCC
4254 return true;
4255 return false;
4256}
4257
4258static void unaccount_pmu_sb_event(struct perf_event *event)
4259{
4260 if (is_sb_event(event))
4261 detach_sb_event(event);
f2fb6bef
KL
4262}
4263
4beb31f3 4264static void unaccount_event_cpu(struct perf_event *event, int cpu)
f1600952 4265{
4beb31f3
FW
4266 if (event->parent)
4267 return;
4268
4beb31f3
FW
4269 if (is_cgroup_event(event))
4270 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
4271}
925d519a 4272
555e0c1e
FW
4273#ifdef CONFIG_NO_HZ_FULL
4274static DEFINE_SPINLOCK(nr_freq_lock);
4275#endif
4276
4277static void unaccount_freq_event_nohz(void)
4278{
4279#ifdef CONFIG_NO_HZ_FULL
4280 spin_lock(&nr_freq_lock);
4281 if (atomic_dec_and_test(&nr_freq_events))
4282 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
4283 spin_unlock(&nr_freq_lock);
4284#endif
4285}
4286
4287static void unaccount_freq_event(void)
4288{
4289 if (tick_nohz_full_enabled())
4290 unaccount_freq_event_nohz();
4291 else
4292 atomic_dec(&nr_freq_events);
4293}
4294
4beb31f3
FW
4295static void unaccount_event(struct perf_event *event)
4296{
25432ae9
PZ
4297 bool dec = false;
4298
4beb31f3
FW
4299 if (event->parent)
4300 return;
4301
4302 if (event->attach_state & PERF_ATTACH_TASK)
25432ae9 4303 dec = true;
4beb31f3
FW
4304 if (event->attr.mmap || event->attr.mmap_data)
4305 atomic_dec(&nr_mmap_events);
4306 if (event->attr.comm)
4307 atomic_dec(&nr_comm_events);
e4222673
HB
4308 if (event->attr.namespaces)
4309 atomic_dec(&nr_namespaces_events);
4beb31f3
FW
4310 if (event->attr.task)
4311 atomic_dec(&nr_task_events);
948b26b6 4312 if (event->attr.freq)
555e0c1e 4313 unaccount_freq_event();
45ac1403 4314 if (event->attr.context_switch) {
25432ae9 4315 dec = true;
45ac1403
AH
4316 atomic_dec(&nr_switch_events);
4317 }
4beb31f3 4318 if (is_cgroup_event(event))
25432ae9 4319 dec = true;
4beb31f3 4320 if (has_branch_stack(event))
25432ae9 4321 dec = true;
76193a94
SL
4322 if (event->attr.ksymbol)
4323 atomic_dec(&nr_ksymbol_events);
6ee52e2a
SL
4324 if (event->attr.bpf_event)
4325 atomic_dec(&nr_bpf_events);
25432ae9 4326
9107c89e
PZ
4327 if (dec) {
4328 if (!atomic_add_unless(&perf_sched_count, -1, 1))
4329 schedule_delayed_work(&perf_sched_work, HZ);
4330 }
4beb31f3
FW
4331
4332 unaccount_event_cpu(event, event->cpu);
f2fb6bef
KL
4333
4334 unaccount_pmu_sb_event(event);
4beb31f3 4335}
925d519a 4336
9107c89e
PZ
4337static void perf_sched_delayed(struct work_struct *work)
4338{
4339 mutex_lock(&perf_sched_mutex);
4340 if (atomic_dec_and_test(&perf_sched_count))
4341 static_branch_disable(&perf_sched_events);
4342 mutex_unlock(&perf_sched_mutex);
4343}
4344
bed5b25a
AS
4345/*
4346 * The following implement mutual exclusion of events on "exclusive" pmus
4347 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4348 * at a time, so we disallow creating events that might conflict, namely:
4349 *
4350 * 1) cpu-wide events in the presence of per-task events,
4351 * 2) per-task events in the presence of cpu-wide events,
4352 * 3) two matching events on the same context.
4353 *
4354 * The former two cases are handled in the allocation path (perf_event_alloc(),
a0733e69 4355 * _free_event()), the latter -- before the first perf_install_in_context().
bed5b25a
AS
4356 */
4357static int exclusive_event_init(struct perf_event *event)
4358{
4359 struct pmu *pmu = event->pmu;
4360
4361 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4362 return 0;
4363
4364 /*
4365 * Prevent co-existence of per-task and cpu-wide events on the
4366 * same exclusive pmu.
4367 *
4368 * Negative pmu::exclusive_cnt means there are cpu-wide
4369 * events on this "exclusive" pmu, positive means there are
4370 * per-task events.
4371 *
4372 * Since this is called in perf_event_alloc() path, event::ctx
4373 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4374 * to mean "per-task event", because unlike other attach states it
4375 * never gets cleared.
4376 */
4377 if (event->attach_state & PERF_ATTACH_TASK) {
4378 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4379 return -EBUSY;
4380 } else {
4381 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4382 return -EBUSY;
4383 }
4384
4385 return 0;
4386}
4387
4388static void exclusive_event_destroy(struct perf_event *event)
4389{
4390 struct pmu *pmu = event->pmu;
4391
4392 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4393 return;
4394
4395 /* see comment in exclusive_event_init() */
4396 if (event->attach_state & PERF_ATTACH_TASK)
4397 atomic_dec(&pmu->exclusive_cnt);
4398 else
4399 atomic_inc(&pmu->exclusive_cnt);
4400}
4401
4402static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4403{
3bf6215a 4404 if ((e1->pmu == e2->pmu) &&
bed5b25a
AS
4405 (e1->cpu == e2->cpu ||
4406 e1->cpu == -1 ||
4407 e2->cpu == -1))
4408 return true;
4409 return false;
4410}
4411
4412/* Called under the same ctx::mutex as perf_install_in_context() */
4413static bool exclusive_event_installable(struct perf_event *event,
4414 struct perf_event_context *ctx)
4415{
4416 struct perf_event *iter_event;
4417 struct pmu *pmu = event->pmu;
4418
4419 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4420 return true;
4421
4422 list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4423 if (exclusive_event_match(iter_event, event))
4424 return false;
4425 }
4426
4427 return true;
4428}
4429
375637bc
AS
4430static void perf_addr_filters_splice(struct perf_event *event,
4431 struct list_head *head);
4432
683ede43 4433static void _free_event(struct perf_event *event)
f1600952 4434{
e360adbe 4435 irq_work_sync(&event->pending);
925d519a 4436
4beb31f3 4437 unaccount_event(event);
9ee318a7 4438
76369139 4439 if (event->rb) {
9bb5d40c
PZ
4440 /*
4441 * Can happen when we close an event with re-directed output.
4442 *
4443 * Since we have a 0 refcount, perf_mmap_close() will skip
4444 * over us; possibly making our ring_buffer_put() the last.
4445 */
4446 mutex_lock(&event->mmap_mutex);
b69cf536 4447 ring_buffer_attach(event, NULL);
9bb5d40c 4448 mutex_unlock(&event->mmap_mutex);
a4be7c27
PZ
4449 }
4450
e5d1367f
SE
4451 if (is_cgroup_event(event))
4452 perf_detach_cgroup(event);
4453
a0733e69
PZ
4454 if (!event->parent) {
4455 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4456 put_callchain_buffers();
4457 }
4458
4459 perf_event_free_bpf_prog(event);
375637bc 4460 perf_addr_filters_splice(event, NULL);
c60f83b8 4461 kfree(event->addr_filter_ranges);
a0733e69
PZ
4462
4463 if (event->destroy)
4464 event->destroy(event);
4465
4466 if (event->ctx)
4467 put_ctx(event->ctx);
4468
621b6d2e
PB
4469 if (event->hw.target)
4470 put_task_struct(event->hw.target);
4471
62a92c8f
AS
4472 exclusive_event_destroy(event);
4473 module_put(event->pmu->module);
a0733e69
PZ
4474
4475 call_rcu(&event->rcu_head, free_event_rcu);
f1600952
PZ
4476}
4477
683ede43
PZ
4478/*
4479 * Used to free events which have a known refcount of 1, such as in error paths
4480 * where the event isn't exposed yet and inherited events.
4481 */
4482static void free_event(struct perf_event *event)
0793a61d 4483{
683ede43
PZ
4484 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4485 "unexpected event refcount: %ld; ptr=%p\n",
4486 atomic_long_read(&event->refcount), event)) {
4487 /* leak to avoid use-after-free */
4488 return;
4489 }
0793a61d 4490
683ede43 4491 _free_event(event);
0793a61d
TG
4492}
4493
a66a3052 4494/*
f8697762 4495 * Remove user event from the owner task.
a66a3052 4496 */
f8697762 4497static void perf_remove_from_owner(struct perf_event *event)
fb0459d7 4498{
8882135b 4499 struct task_struct *owner;
fb0459d7 4500
8882135b 4501 rcu_read_lock();
8882135b 4502 /*
f47c02c0
PZ
4503 * Matches the smp_store_release() in perf_event_exit_task(). If we
4504 * observe !owner it means the list deletion is complete and we can
4505 * indeed free this event, otherwise we need to serialize on
8882135b
PZ
4506 * owner->perf_event_mutex.
4507 */
506458ef 4508 owner = READ_ONCE(event->owner);
8882135b
PZ
4509 if (owner) {
4510 /*
4511 * Since delayed_put_task_struct() also drops the last
4512 * task reference we can safely take a new reference
4513 * while holding the rcu_read_lock().
4514 */
4515 get_task_struct(owner);
4516 }
4517 rcu_read_unlock();
4518
4519 if (owner) {
f63a8daa
PZ
4520 /*
4521 * If we're here through perf_event_exit_task() we're already
4522 * holding ctx->mutex which would be an inversion wrt. the
4523 * normal lock order.
4524 *
4525 * However we can safely take this lock because its the child
4526 * ctx->mutex.
4527 */
4528 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4529
8882135b
PZ
4530 /*
4531 * We have to re-check the event->owner field, if it is cleared
4532 * we raced with perf_event_exit_task(), acquiring the mutex
4533 * ensured they're done, and we can proceed with freeing the
4534 * event.
4535 */
f47c02c0 4536 if (event->owner) {
8882135b 4537 list_del_init(&event->owner_entry);
f47c02c0
PZ
4538 smp_store_release(&event->owner, NULL);
4539 }
8882135b
PZ
4540 mutex_unlock(&owner->perf_event_mutex);
4541 put_task_struct(owner);
4542 }
f8697762
JO
4543}
4544
f8697762
JO
4545static void put_event(struct perf_event *event)
4546{
f8697762
JO
4547 if (!atomic_long_dec_and_test(&event->refcount))
4548 return;
4549
c6e5b732
PZ
4550 _free_event(event);
4551}
4552
4553/*
4554 * Kill an event dead; while event:refcount will preserve the event
4555 * object, it will not preserve its functionality. Once the last 'user'
4556 * gives up the object, we'll destroy the thing.
4557 */
4558int perf_event_release_kernel(struct perf_event *event)
4559{
a4f4bb6d 4560 struct perf_event_context *ctx = event->ctx;
c6e5b732 4561 struct perf_event *child, *tmp;
82d94856 4562 LIST_HEAD(free_list);
c6e5b732 4563
a4f4bb6d
PZ
4564 /*
4565 * If we got here through err_file: fput(event_file); we will not have
4566 * attached to a context yet.
4567 */
4568 if (!ctx) {
4569 WARN_ON_ONCE(event->attach_state &
4570 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4571 goto no_ctx;
4572 }
4573
f8697762
JO
4574 if (!is_kernel_event(event))
4575 perf_remove_from_owner(event);
8882135b 4576
5fa7c8ec 4577 ctx = perf_event_ctx_lock(event);
a83fe28e 4578 WARN_ON_ONCE(ctx->parent_ctx);
a69b0ca4 4579 perf_remove_from_context(event, DETACH_GROUP);
683ede43 4580
a69b0ca4 4581 raw_spin_lock_irq(&ctx->lock);
683ede43 4582 /*
d8a8cfc7 4583 * Mark this event as STATE_DEAD, there is no external reference to it
a69b0ca4 4584 * anymore.
683ede43 4585 *
a69b0ca4
PZ
4586 * Anybody acquiring event->child_mutex after the below loop _must_
4587 * also see this, most importantly inherit_event() which will avoid
4588 * placing more children on the list.
683ede43 4589 *
c6e5b732
PZ
4590 * Thus this guarantees that we will in fact observe and kill _ALL_
4591 * child events.
683ede43 4592 */
a69b0ca4
PZ
4593 event->state = PERF_EVENT_STATE_DEAD;
4594 raw_spin_unlock_irq(&ctx->lock);
4595
4596 perf_event_ctx_unlock(event, ctx);
683ede43 4597
c6e5b732
PZ
4598again:
4599 mutex_lock(&event->child_mutex);
4600 list_for_each_entry(child, &event->child_list, child_list) {
a6fa941d 4601
c6e5b732
PZ
4602 /*
4603 * Cannot change, child events are not migrated, see the
4604 * comment with perf_event_ctx_lock_nested().
4605 */
506458ef 4606 ctx = READ_ONCE(child->ctx);
c6e5b732
PZ
4607 /*
4608 * Since child_mutex nests inside ctx::mutex, we must jump
4609 * through hoops. We start by grabbing a reference on the ctx.
4610 *
4611 * Since the event cannot get freed while we hold the
4612 * child_mutex, the context must also exist and have a !0
4613 * reference count.
4614 */
4615 get_ctx(ctx);
4616
4617 /*
4618 * Now that we have a ctx ref, we can drop child_mutex, and
4619 * acquire ctx::mutex without fear of it going away. Then we
4620 * can re-acquire child_mutex.
4621 */
4622 mutex_unlock(&event->child_mutex);
4623 mutex_lock(&ctx->mutex);
4624 mutex_lock(&event->child_mutex);
4625
4626 /*
4627 * Now that we hold ctx::mutex and child_mutex, revalidate our
4628 * state, if child is still the first entry, it didn't get freed
4629 * and we can continue doing so.
4630 */
4631 tmp = list_first_entry_or_null(&event->child_list,
4632 struct perf_event, child_list);
4633 if (tmp == child) {
4634 perf_remove_from_context(child, DETACH_GROUP);
82d94856 4635 list_move(&child->child_list, &free_list);
c6e5b732
PZ
4636 /*
4637 * This matches the refcount bump in inherit_event();
4638 * this can't be the last reference.
4639 */
4640 put_event(event);
4641 }
4642
4643 mutex_unlock(&event->child_mutex);
4644 mutex_unlock(&ctx->mutex);
4645 put_ctx(ctx);
4646 goto again;
4647 }
4648 mutex_unlock(&event->child_mutex);
4649
82d94856
PZ
4650 list_for_each_entry_safe(child, tmp, &free_list, child_list) {
4651 list_del(&child->child_list);
4652 free_event(child);
4653 }
4654
a4f4bb6d
PZ
4655no_ctx:
4656 put_event(event); /* Must be the 'last' reference */
683ede43
PZ
4657 return 0;
4658}
4659EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4660
8b10c5e2
PZ
4661/*
4662 * Called when the last reference to the file is gone.
4663 */
a6fa941d
AV
4664static int perf_release(struct inode *inode, struct file *file)
4665{
c6e5b732 4666 perf_event_release_kernel(file->private_data);
a6fa941d 4667 return 0;
fb0459d7 4668}
fb0459d7 4669
ca0dd44c 4670static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
e53c0994 4671{
cdd6c482 4672 struct perf_event *child;
e53c0994
PZ
4673 u64 total = 0;
4674
59ed446f
PZ
4675 *enabled = 0;
4676 *running = 0;
4677
6f10581a 4678 mutex_lock(&event->child_mutex);
01add3ea 4679
7d88962e 4680 (void)perf_event_read(event, false);
01add3ea
SB
4681 total += perf_event_count(event);
4682
59ed446f
PZ
4683 *enabled += event->total_time_enabled +
4684 atomic64_read(&event->child_total_time_enabled);
4685 *running += event->total_time_running +
4686 atomic64_read(&event->child_total_time_running);
4687
4688 list_for_each_entry(child, &event->child_list, child_list) {
7d88962e 4689 (void)perf_event_read(child, false);
01add3ea 4690 total += perf_event_count(child);
59ed446f
PZ
4691 *enabled += child->total_time_enabled;
4692 *running += child->total_time_running;
4693 }
6f10581a 4694 mutex_unlock(&event->child_mutex);
e53c0994
PZ
4695
4696 return total;
4697}
ca0dd44c
PZ
4698
4699u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4700{
4701 struct perf_event_context *ctx;
4702 u64 count;
4703
4704 ctx = perf_event_ctx_lock(event);
4705 count = __perf_event_read_value(event, enabled, running);
4706 perf_event_ctx_unlock(event, ctx);
4707
4708 return count;
4709}
fb0459d7 4710EXPORT_SYMBOL_GPL(perf_event_read_value);
e53c0994 4711
7d88962e 4712static int __perf_read_group_add(struct perf_event *leader,
fa8c2693 4713 u64 read_format, u64 *values)
3dab77fb 4714{
2aeb1883 4715 struct perf_event_context *ctx = leader->ctx;
fa8c2693 4716 struct perf_event *sub;
2aeb1883 4717 unsigned long flags;
fa8c2693 4718 int n = 1; /* skip @nr */
7d88962e 4719 int ret;
f63a8daa 4720
7d88962e
SB
4721 ret = perf_event_read(leader, true);
4722 if (ret)
4723 return ret;
abf4868b 4724
a9cd8194
PZ
4725 raw_spin_lock_irqsave(&ctx->lock, flags);
4726
fa8c2693
PZ
4727 /*
4728 * Since we co-schedule groups, {enabled,running} times of siblings
4729 * will be identical to those of the leader, so we only publish one
4730 * set.
4731 */
4732 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4733 values[n++] += leader->total_time_enabled +
4734 atomic64_read(&leader->child_total_time_enabled);
4735 }
3dab77fb 4736
fa8c2693
PZ
4737 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4738 values[n++] += leader->total_time_running +
4739 atomic64_read(&leader->child_total_time_running);
4740 }
4741
4742 /*
4743 * Write {count,id} tuples for every sibling.
4744 */
4745 values[n++] += perf_event_count(leader);
abf4868b
PZ
4746 if (read_format & PERF_FORMAT_ID)
4747 values[n++] = primary_event_id(leader);
3dab77fb 4748
edb39592 4749 for_each_sibling_event(sub, leader) {
fa8c2693
PZ
4750 values[n++] += perf_event_count(sub);
4751 if (read_format & PERF_FORMAT_ID)
4752 values[n++] = primary_event_id(sub);
4753 }
7d88962e 4754
2aeb1883 4755 raw_spin_unlock_irqrestore(&ctx->lock, flags);
7d88962e 4756 return 0;
fa8c2693 4757}
3dab77fb 4758
fa8c2693
PZ
4759static int perf_read_group(struct perf_event *event,
4760 u64 read_format, char __user *buf)
4761{
4762 struct perf_event *leader = event->group_leader, *child;
4763 struct perf_event_context *ctx = leader->ctx;
7d88962e 4764 int ret;
fa8c2693 4765 u64 *values;
3dab77fb 4766
fa8c2693 4767 lockdep_assert_held(&ctx->mutex);
3dab77fb 4768
fa8c2693
PZ
4769 values = kzalloc(event->read_size, GFP_KERNEL);
4770 if (!values)
4771 return -ENOMEM;
3dab77fb 4772
fa8c2693
PZ
4773 values[0] = 1 + leader->nr_siblings;
4774
4775 /*
4776 * By locking the child_mutex of the leader we effectively
4777 * lock the child list of all siblings.. XXX explain how.
4778 */
4779 mutex_lock(&leader->child_mutex);
abf4868b 4780
7d88962e
SB
4781 ret = __perf_read_group_add(leader, read_format, values);
4782 if (ret)
4783 goto unlock;
4784
4785 list_for_each_entry(child, &leader->child_list, child_list) {
4786 ret = __perf_read_group_add(child, read_format, values);
4787 if (ret)
4788 goto unlock;
4789 }
abf4868b 4790
fa8c2693 4791 mutex_unlock(&leader->child_mutex);
abf4868b 4792
7d88962e 4793 ret = event->read_size;
fa8c2693
PZ
4794 if (copy_to_user(buf, values, event->read_size))
4795 ret = -EFAULT;
7d88962e 4796 goto out;
fa8c2693 4797
7d88962e
SB
4798unlock:
4799 mutex_unlock(&leader->child_mutex);
4800out:
fa8c2693 4801 kfree(values);
abf4868b 4802 return ret;
3dab77fb
PZ
4803}
4804
b15f495b 4805static int perf_read_one(struct perf_event *event,
3dab77fb
PZ
4806 u64 read_format, char __user *buf)
4807{
59ed446f 4808 u64 enabled, running;
3dab77fb
PZ
4809 u64 values[4];
4810 int n = 0;
4811
ca0dd44c 4812 values[n++] = __perf_event_read_value(event, &enabled, &running);
59ed446f
PZ
4813 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4814 values[n++] = enabled;
4815 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4816 values[n++] = running;
3dab77fb 4817 if (read_format & PERF_FORMAT_ID)
cdd6c482 4818 values[n++] = primary_event_id(event);
3dab77fb
PZ
4819
4820 if (copy_to_user(buf, values, n * sizeof(u64)))
4821 return -EFAULT;
4822
4823 return n * sizeof(u64);
4824}
4825
dc633982
JO
4826static bool is_event_hup(struct perf_event *event)
4827{
4828 bool no_children;
4829
a69b0ca4 4830 if (event->state > PERF_EVENT_STATE_EXIT)
dc633982
JO
4831 return false;
4832
4833 mutex_lock(&event->child_mutex);
4834 no_children = list_empty(&event->child_list);
4835 mutex_unlock(&event->child_mutex);
4836 return no_children;
4837}
4838
0793a61d 4839/*
cdd6c482 4840 * Read the performance event - simple non blocking version for now
0793a61d
TG
4841 */
4842static ssize_t
b15f495b 4843__perf_read(struct perf_event *event, char __user *buf, size_t count)
0793a61d 4844{
cdd6c482 4845 u64 read_format = event->attr.read_format;
3dab77fb 4846 int ret;
0793a61d 4847
3b6f9e5c 4848 /*
788faab7 4849 * Return end-of-file for a read on an event that is in
3b6f9e5c
PM
4850 * error state (i.e. because it was pinned but it couldn't be
4851 * scheduled on to the CPU at some point).
4852 */
cdd6c482 4853 if (event->state == PERF_EVENT_STATE_ERROR)
3b6f9e5c
PM
4854 return 0;
4855
c320c7b7 4856 if (count < event->read_size)
3dab77fb
PZ
4857 return -ENOSPC;
4858
cdd6c482 4859 WARN_ON_ONCE(event->ctx->parent_ctx);
3dab77fb 4860 if (read_format & PERF_FORMAT_GROUP)
b15f495b 4861 ret = perf_read_group(event, read_format, buf);
3dab77fb 4862 else
b15f495b 4863 ret = perf_read_one(event, read_format, buf);
0793a61d 4864
3dab77fb 4865 return ret;
0793a61d
TG
4866}
4867
0793a61d
TG
4868static ssize_t
4869perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4870{
cdd6c482 4871 struct perf_event *event = file->private_data;
f63a8daa
PZ
4872 struct perf_event_context *ctx;
4873 int ret;
0793a61d 4874
f63a8daa 4875 ctx = perf_event_ctx_lock(event);
b15f495b 4876 ret = __perf_read(event, buf, count);
f63a8daa
PZ
4877 perf_event_ctx_unlock(event, ctx);
4878
4879 return ret;
0793a61d
TG
4880}
4881
9dd95748 4882static __poll_t perf_poll(struct file *file, poll_table *wait)
0793a61d 4883{
cdd6c482 4884 struct perf_event *event = file->private_data;
76369139 4885 struct ring_buffer *rb;
a9a08845 4886 __poll_t events = EPOLLHUP;
c7138f37 4887
e708d7ad 4888 poll_wait(file, &event->waitq, wait);
179033b3 4889
dc633982 4890 if (is_event_hup(event))
179033b3 4891 return events;
c7138f37 4892
10c6db11 4893 /*
9bb5d40c
PZ
4894 * Pin the event->rb by taking event->mmap_mutex; otherwise
4895 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
10c6db11
PZ
4896 */
4897 mutex_lock(&event->mmap_mutex);
9bb5d40c
PZ
4898 rb = event->rb;
4899 if (rb)
76369139 4900 events = atomic_xchg(&rb->poll, 0);
10c6db11 4901 mutex_unlock(&event->mmap_mutex);
0793a61d
TG
4902 return events;
4903}
4904
f63a8daa 4905static void _perf_event_reset(struct perf_event *event)
6de6a7b9 4906{
7d88962e 4907 (void)perf_event_read(event, false);
e7850595 4908 local64_set(&event->count, 0);
cdd6c482 4909 perf_event_update_userpage(event);
3df5edad
PZ
4910}
4911
c93f7669 4912/*
cdd6c482
IM
4913 * Holding the top-level event's child_mutex means that any
4914 * descendant process that has inherited this event will block
8ba289b8 4915 * in perf_event_exit_event() if it goes to exit, thus satisfying the
cdd6c482 4916 * task existence requirements of perf_event_enable/disable.
c93f7669 4917 */
cdd6c482
IM
4918static void perf_event_for_each_child(struct perf_event *event,
4919 void (*func)(struct perf_event *))
3df5edad 4920{
cdd6c482 4921 struct perf_event *child;
3df5edad 4922
cdd6c482 4923 WARN_ON_ONCE(event->ctx->parent_ctx);
f63a8daa 4924
cdd6c482
IM
4925 mutex_lock(&event->child_mutex);
4926 func(event);
4927 list_for_each_entry(child, &event->child_list, child_list)
3df5edad 4928 func(child);
cdd6c482 4929 mutex_unlock(&event->child_mutex);
3df5edad
PZ
4930}
4931
cdd6c482
IM
4932static void perf_event_for_each(struct perf_event *event,
4933 void (*func)(struct perf_event *))
3df5edad 4934{
cdd6c482
IM
4935 struct perf_event_context *ctx = event->ctx;
4936 struct perf_event *sibling;
3df5edad 4937
f63a8daa
PZ
4938 lockdep_assert_held(&ctx->mutex);
4939
cdd6c482 4940 event = event->group_leader;
75f937f2 4941
cdd6c482 4942 perf_event_for_each_child(event, func);
edb39592 4943 for_each_sibling_event(sibling, event)
724b6daa 4944 perf_event_for_each_child(sibling, func);
6de6a7b9
PZ
4945}
4946
fae3fde6
PZ
4947static void __perf_event_period(struct perf_event *event,
4948 struct perf_cpu_context *cpuctx,
4949 struct perf_event_context *ctx,
4950 void *info)
c7999c6f 4951{
fae3fde6 4952 u64 value = *((u64 *)info);
c7999c6f 4953 bool active;
08247e31 4954
cdd6c482 4955 if (event->attr.freq) {
cdd6c482 4956 event->attr.sample_freq = value;
08247e31 4957 } else {
cdd6c482
IM
4958 event->attr.sample_period = value;
4959 event->hw.sample_period = value;
08247e31 4960 }
bad7192b
PZ
4961
4962 active = (event->state == PERF_EVENT_STATE_ACTIVE);
4963 if (active) {
4964 perf_pmu_disable(ctx->pmu);
1e02cd40
PZ
4965 /*
4966 * We could be throttled; unthrottle now to avoid the tick
4967 * trying to unthrottle while we already re-started the event.
4968 */
4969 if (event->hw.interrupts == MAX_INTERRUPTS) {
4970 event->hw.interrupts = 0;
4971 perf_log_throttle(event, 1);
4972 }
bad7192b
PZ
4973 event->pmu->stop(event, PERF_EF_UPDATE);
4974 }
4975
4976 local64_set(&event->hw.period_left, 0);
4977
4978 if (active) {
4979 event->pmu->start(event, PERF_EF_RELOAD);
4980 perf_pmu_enable(ctx->pmu);
4981 }
c7999c6f
PZ
4982}
4983
81ec3f3c
JO
4984static int perf_event_check_period(struct perf_event *event, u64 value)
4985{
4986 return event->pmu->check_period(event, value);
4987}
4988
c7999c6f
PZ
4989static int perf_event_period(struct perf_event *event, u64 __user *arg)
4990{
c7999c6f
PZ
4991 u64 value;
4992
4993 if (!is_sampling_event(event))
4994 return -EINVAL;
4995
4996 if (copy_from_user(&value, arg, sizeof(value)))
4997 return -EFAULT;
4998
4999 if (!value)
5000 return -EINVAL;
5001
5002 if (event->attr.freq && value > sysctl_perf_event_sample_rate)
5003 return -EINVAL;
5004
81ec3f3c
JO
5005 if (perf_event_check_period(event, value))
5006 return -EINVAL;
5007
fae3fde6 5008 event_function_call(event, __perf_event_period, &value);
08247e31 5009
c7999c6f 5010 return 0;
08247e31
PZ
5011}
5012
ac9721f3
PZ
5013static const struct file_operations perf_fops;
5014
2903ff01 5015static inline int perf_fget_light(int fd, struct fd *p)
ac9721f3 5016{
2903ff01
AV
5017 struct fd f = fdget(fd);
5018 if (!f.file)
5019 return -EBADF;
ac9721f3 5020
2903ff01
AV
5021 if (f.file->f_op != &perf_fops) {
5022 fdput(f);
5023 return -EBADF;
ac9721f3 5024 }
2903ff01
AV
5025 *p = f;
5026 return 0;
ac9721f3
PZ
5027}
5028
5029static int perf_event_set_output(struct perf_event *event,
5030 struct perf_event *output_event);
6fb2915d 5031static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2541517c 5032static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
32ff77e8
MC
5033static int perf_copy_attr(struct perf_event_attr __user *uattr,
5034 struct perf_event_attr *attr);
a4be7c27 5035
f63a8daa 5036static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
d859e29f 5037{
cdd6c482 5038 void (*func)(struct perf_event *);
3df5edad 5039 u32 flags = arg;
d859e29f
PM
5040
5041 switch (cmd) {
cdd6c482 5042 case PERF_EVENT_IOC_ENABLE:
f63a8daa 5043 func = _perf_event_enable;
d859e29f 5044 break;
cdd6c482 5045 case PERF_EVENT_IOC_DISABLE:
f63a8daa 5046 func = _perf_event_disable;
79f14641 5047 break;
cdd6c482 5048 case PERF_EVENT_IOC_RESET:
f63a8daa 5049 func = _perf_event_reset;
6de6a7b9 5050 break;
3df5edad 5051
cdd6c482 5052 case PERF_EVENT_IOC_REFRESH:
f63a8daa 5053 return _perf_event_refresh(event, arg);
08247e31 5054
cdd6c482
IM
5055 case PERF_EVENT_IOC_PERIOD:
5056 return perf_event_period(event, (u64 __user *)arg);
08247e31 5057
cf4957f1
JO
5058 case PERF_EVENT_IOC_ID:
5059 {
5060 u64 id = primary_event_id(event);
5061
5062 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
5063 return -EFAULT;
5064 return 0;
5065 }
5066
cdd6c482 5067 case PERF_EVENT_IOC_SET_OUTPUT:
ac9721f3 5068 {
ac9721f3 5069 int ret;
ac9721f3 5070 if (arg != -1) {
2903ff01
AV
5071 struct perf_event *output_event;
5072 struct fd output;
5073 ret = perf_fget_light(arg, &output);
5074 if (ret)
5075 return ret;
5076 output_event = output.file->private_data;
5077 ret = perf_event_set_output(event, output_event);
5078 fdput(output);
5079 } else {
5080 ret = perf_event_set_output(event, NULL);
ac9721f3 5081 }
ac9721f3
PZ
5082 return ret;
5083 }
a4be7c27 5084
6fb2915d
LZ
5085 case PERF_EVENT_IOC_SET_FILTER:
5086 return perf_event_set_filter(event, (void __user *)arg);
5087
2541517c
AS
5088 case PERF_EVENT_IOC_SET_BPF:
5089 return perf_event_set_bpf_prog(event, arg);
5090
86e7972f
WN
5091 case PERF_EVENT_IOC_PAUSE_OUTPUT: {
5092 struct ring_buffer *rb;
5093
5094 rcu_read_lock();
5095 rb = rcu_dereference(event->rb);
5096 if (!rb || !rb->nr_pages) {
5097 rcu_read_unlock();
5098 return -EINVAL;
5099 }
5100 rb_toggle_paused(rb, !!arg);
5101 rcu_read_unlock();
5102 return 0;
5103 }
f371b304
YS
5104
5105 case PERF_EVENT_IOC_QUERY_BPF:
f4e2298e 5106 return perf_event_query_prog_array(event, (void __user *)arg);
32ff77e8
MC
5107
5108 case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
5109 struct perf_event_attr new_attr;
5110 int err = perf_copy_attr((struct perf_event_attr __user *)arg,
5111 &new_attr);
5112
5113 if (err)
5114 return err;
5115
5116 return perf_event_modify_attr(event, &new_attr);
5117 }
d859e29f 5118 default:
3df5edad 5119 return -ENOTTY;
d859e29f 5120 }
3df5edad
PZ
5121
5122 if (flags & PERF_IOC_FLAG_GROUP)
cdd6c482 5123 perf_event_for_each(event, func);
3df5edad 5124 else
cdd6c482 5125 perf_event_for_each_child(event, func);
3df5edad
PZ
5126
5127 return 0;
d859e29f
PM
5128}
5129
f63a8daa
PZ
5130static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5131{
5132 struct perf_event *event = file->private_data;
5133 struct perf_event_context *ctx;
5134 long ret;
5135
5136 ctx = perf_event_ctx_lock(event);
5137 ret = _perf_ioctl(event, cmd, arg);
5138 perf_event_ctx_unlock(event, ctx);
5139
5140 return ret;
5141}
5142
b3f20785
PM
5143#ifdef CONFIG_COMPAT
5144static long perf_compat_ioctl(struct file *file, unsigned int cmd,
5145 unsigned long arg)
5146{
5147 switch (_IOC_NR(cmd)) {
5148 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
5149 case _IOC_NR(PERF_EVENT_IOC_ID):
82489c5f
ES
5150 case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
5151 case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
b3f20785
PM
5152 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
5153 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
5154 cmd &= ~IOCSIZE_MASK;
5155 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
5156 }
5157 break;
5158 }
5159 return perf_ioctl(file, cmd, arg);
5160}
5161#else
5162# define perf_compat_ioctl NULL
5163#endif
5164
cdd6c482 5165int perf_event_task_enable(void)
771d7cde 5166{
f63a8daa 5167 struct perf_event_context *ctx;
cdd6c482 5168 struct perf_event *event;
771d7cde 5169
cdd6c482 5170 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
5171 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5172 ctx = perf_event_ctx_lock(event);
5173 perf_event_for_each_child(event, _perf_event_enable);
5174 perf_event_ctx_unlock(event, ctx);
5175 }
cdd6c482 5176 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
5177
5178 return 0;
5179}
5180
cdd6c482 5181int perf_event_task_disable(void)
771d7cde 5182{
f63a8daa 5183 struct perf_event_context *ctx;
cdd6c482 5184 struct perf_event *event;
771d7cde 5185
cdd6c482 5186 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
5187 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5188 ctx = perf_event_ctx_lock(event);
5189 perf_event_for_each_child(event, _perf_event_disable);
5190 perf_event_ctx_unlock(event, ctx);
5191 }
cdd6c482 5192 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
5193
5194 return 0;
5195}
5196
cdd6c482 5197static int perf_event_index(struct perf_event *event)
194002b2 5198{
a4eaf7f1
PZ
5199 if (event->hw.state & PERF_HES_STOPPED)
5200 return 0;
5201
cdd6c482 5202 if (event->state != PERF_EVENT_STATE_ACTIVE)
194002b2
PZ
5203 return 0;
5204
35edc2a5 5205 return event->pmu->event_idx(event);
194002b2
PZ
5206}
5207
c4794295 5208static void calc_timer_values(struct perf_event *event,
e3f3541c 5209 u64 *now,
7f310a5d
EM
5210 u64 *enabled,
5211 u64 *running)
c4794295 5212{
e3f3541c 5213 u64 ctx_time;
c4794295 5214
e3f3541c
PZ
5215 *now = perf_clock();
5216 ctx_time = event->shadow_ctx_time + *now;
0d3d73aa 5217 __perf_update_times(event, ctx_time, enabled, running);
c4794295
EM
5218}
5219
fa731587
PZ
5220static void perf_event_init_userpage(struct perf_event *event)
5221{
5222 struct perf_event_mmap_page *userpg;
5223 struct ring_buffer *rb;
5224
5225 rcu_read_lock();
5226 rb = rcu_dereference(event->rb);
5227 if (!rb)
5228 goto unlock;
5229
5230 userpg = rb->user_page;
5231
5232 /* Allow new userspace to detect that bit 0 is deprecated */
5233 userpg->cap_bit0_is_deprecated = 1;
5234 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
e8c6deac
AS
5235 userpg->data_offset = PAGE_SIZE;
5236 userpg->data_size = perf_data_size(rb);
fa731587
PZ
5237
5238unlock:
5239 rcu_read_unlock();
5240}
5241
c1317ec2
AL
5242void __weak arch_perf_update_userpage(
5243 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
e3f3541c
PZ
5244{
5245}
5246
38ff667b
PZ
5247/*
5248 * Callers need to ensure there can be no nesting of this function, otherwise
5249 * the seqlock logic goes bad. We can not serialize this because the arch
5250 * code calls this from NMI context.
5251 */
cdd6c482 5252void perf_event_update_userpage(struct perf_event *event)
37d81828 5253{
cdd6c482 5254 struct perf_event_mmap_page *userpg;
76369139 5255 struct ring_buffer *rb;
e3f3541c 5256 u64 enabled, running, now;
38ff667b
PZ
5257
5258 rcu_read_lock();
5ec4c599
PZ
5259 rb = rcu_dereference(event->rb);
5260 if (!rb)
5261 goto unlock;
5262
0d641208
EM
5263 /*
5264 * compute total_time_enabled, total_time_running
5265 * based on snapshot values taken when the event
5266 * was last scheduled in.
5267 *
5268 * we cannot simply called update_context_time()
5269 * because of locking issue as we can be called in
5270 * NMI context
5271 */
e3f3541c 5272 calc_timer_values(event, &now, &enabled, &running);
38ff667b 5273
76369139 5274 userpg = rb->user_page;
7b732a75 5275 /*
9d2dcc8f
MF
5276 * Disable preemption to guarantee consistent time stamps are stored to
5277 * the user page.
7b732a75
PZ
5278 */
5279 preempt_disable();
37d81828 5280 ++userpg->lock;
92f22a38 5281 barrier();
cdd6c482 5282 userpg->index = perf_event_index(event);
b5e58793 5283 userpg->offset = perf_event_count(event);
365a4038 5284 if (userpg->index)
e7850595 5285 userpg->offset -= local64_read(&event->hw.prev_count);
7b732a75 5286
0d641208 5287 userpg->time_enabled = enabled +
cdd6c482 5288 atomic64_read(&event->child_total_time_enabled);
7f8b4e4e 5289
0d641208 5290 userpg->time_running = running +
cdd6c482 5291 atomic64_read(&event->child_total_time_running);
7f8b4e4e 5292
c1317ec2 5293 arch_perf_update_userpage(event, userpg, now);
e3f3541c 5294
92f22a38 5295 barrier();
37d81828 5296 ++userpg->lock;
7b732a75 5297 preempt_enable();
38ff667b 5298unlock:
7b732a75 5299 rcu_read_unlock();
37d81828 5300}
82975c46 5301EXPORT_SYMBOL_GPL(perf_event_update_userpage);
37d81828 5302
9e3ed2d7 5303static vm_fault_t perf_mmap_fault(struct vm_fault *vmf)
906010b2 5304{
11bac800 5305 struct perf_event *event = vmf->vma->vm_file->private_data;
76369139 5306 struct ring_buffer *rb;
9e3ed2d7 5307 vm_fault_t ret = VM_FAULT_SIGBUS;
906010b2
PZ
5308
5309 if (vmf->flags & FAULT_FLAG_MKWRITE) {
5310 if (vmf->pgoff == 0)
5311 ret = 0;
5312 return ret;
5313 }
5314
5315 rcu_read_lock();
76369139
FW
5316 rb = rcu_dereference(event->rb);
5317 if (!rb)
906010b2
PZ
5318 goto unlock;
5319
5320 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
5321 goto unlock;
5322
76369139 5323 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
906010b2
PZ
5324 if (!vmf->page)
5325 goto unlock;
5326
5327 get_page(vmf->page);
11bac800 5328 vmf->page->mapping = vmf->vma->vm_file->f_mapping;
906010b2
PZ
5329 vmf->page->index = vmf->pgoff;
5330
5331 ret = 0;
5332unlock:
5333 rcu_read_unlock();
5334
5335 return ret;
5336}
5337
10c6db11
PZ
5338static void ring_buffer_attach(struct perf_event *event,
5339 struct ring_buffer *rb)
5340{
b69cf536 5341 struct ring_buffer *old_rb = NULL;
10c6db11
PZ
5342 unsigned long flags;
5343
b69cf536
PZ
5344 if (event->rb) {
5345 /*
5346 * Should be impossible, we set this when removing
5347 * event->rb_entry and wait/clear when adding event->rb_entry.
5348 */
5349 WARN_ON_ONCE(event->rcu_pending);
10c6db11 5350
b69cf536 5351 old_rb = event->rb;
b69cf536
PZ
5352 spin_lock_irqsave(&old_rb->event_lock, flags);
5353 list_del_rcu(&event->rb_entry);
5354 spin_unlock_irqrestore(&old_rb->event_lock, flags);
10c6db11 5355
2f993cf0
ON
5356 event->rcu_batches = get_state_synchronize_rcu();
5357 event->rcu_pending = 1;
b69cf536 5358 }
10c6db11 5359
b69cf536 5360 if (rb) {
2f993cf0
ON
5361 if (event->rcu_pending) {
5362 cond_synchronize_rcu(event->rcu_batches);
5363 event->rcu_pending = 0;
5364 }
5365
b69cf536
PZ
5366 spin_lock_irqsave(&rb->event_lock, flags);
5367 list_add_rcu(&event->rb_entry, &rb->event_list);
5368 spin_unlock_irqrestore(&rb->event_lock, flags);
5369 }
5370
767ae086
AS
5371 /*
5372 * Avoid racing with perf_mmap_close(AUX): stop the event
5373 * before swizzling the event::rb pointer; if it's getting
5374 * unmapped, its aux_mmap_count will be 0 and it won't
5375 * restart. See the comment in __perf_pmu_output_stop().
5376 *
5377 * Data will inevitably be lost when set_output is done in
5378 * mid-air, but then again, whoever does it like this is
5379 * not in for the data anyway.
5380 */
5381 if (has_aux(event))
5382 perf_event_stop(event, 0);
5383
b69cf536
PZ
5384 rcu_assign_pointer(event->rb, rb);
5385
5386 if (old_rb) {
5387 ring_buffer_put(old_rb);
5388 /*
5389 * Since we detached before setting the new rb, so that we
5390 * could attach the new rb, we could have missed a wakeup.
5391 * Provide it now.
5392 */
5393 wake_up_all(&event->waitq);
5394 }
10c6db11
PZ
5395}
5396
5397static void ring_buffer_wakeup(struct perf_event *event)
5398{
5399 struct ring_buffer *rb;
5400
5401 rcu_read_lock();
5402 rb = rcu_dereference(event->rb);
9bb5d40c
PZ
5403 if (rb) {
5404 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5405 wake_up_all(&event->waitq);
5406 }
10c6db11
PZ
5407 rcu_read_unlock();
5408}
5409
fdc26706 5410struct ring_buffer *ring_buffer_get(struct perf_event *event)
7b732a75 5411{
76369139 5412 struct ring_buffer *rb;
7b732a75 5413
ac9721f3 5414 rcu_read_lock();
76369139
FW
5415 rb = rcu_dereference(event->rb);
5416 if (rb) {
fecb8ed2 5417 if (!refcount_inc_not_zero(&rb->refcount))
76369139 5418 rb = NULL;
ac9721f3
PZ
5419 }
5420 rcu_read_unlock();
5421
76369139 5422 return rb;
ac9721f3
PZ
5423}
5424
fdc26706 5425void ring_buffer_put(struct ring_buffer *rb)
ac9721f3 5426{
fecb8ed2 5427 if (!refcount_dec_and_test(&rb->refcount))
ac9721f3 5428 return;
7b732a75 5429
9bb5d40c 5430 WARN_ON_ONCE(!list_empty(&rb->event_list));
10c6db11 5431
76369139 5432 call_rcu(&rb->rcu_head, rb_free_rcu);
7b732a75
PZ
5433}
5434
5435static void perf_mmap_open(struct vm_area_struct *vma)
5436{
cdd6c482 5437 struct perf_event *event = vma->vm_file->private_data;
7b732a75 5438
cdd6c482 5439 atomic_inc(&event->mmap_count);
9bb5d40c 5440 atomic_inc(&event->rb->mmap_count);
1e0fb9ec 5441
45bfb2e5
PZ
5442 if (vma->vm_pgoff)
5443 atomic_inc(&event->rb->aux_mmap_count);
5444
1e0fb9ec 5445 if (event->pmu->event_mapped)
bfe33492 5446 event->pmu->event_mapped(event, vma->vm_mm);
7b732a75
PZ
5447}
5448
95ff4ca2
AS
5449static void perf_pmu_output_stop(struct perf_event *event);
5450
9bb5d40c
PZ
5451/*
5452 * A buffer can be mmap()ed multiple times; either directly through the same
5453 * event, or through other events by use of perf_event_set_output().
5454 *
5455 * In order to undo the VM accounting done by perf_mmap() we need to destroy
5456 * the buffer here, where we still have a VM context. This means we need
5457 * to detach all events redirecting to us.
5458 */
7b732a75
PZ
5459static void perf_mmap_close(struct vm_area_struct *vma)
5460{
cdd6c482 5461 struct perf_event *event = vma->vm_file->private_data;
7b732a75 5462
b69cf536 5463 struct ring_buffer *rb = ring_buffer_get(event);
9bb5d40c
PZ
5464 struct user_struct *mmap_user = rb->mmap_user;
5465 int mmap_locked = rb->mmap_locked;
5466 unsigned long size = perf_data_size(rb);
789f90fc 5467
1e0fb9ec 5468 if (event->pmu->event_unmapped)
bfe33492 5469 event->pmu->event_unmapped(event, vma->vm_mm);
1e0fb9ec 5470
45bfb2e5
PZ
5471 /*
5472 * rb->aux_mmap_count will always drop before rb->mmap_count and
5473 * event->mmap_count, so it is ok to use event->mmap_mutex to
5474 * serialize with perf_mmap here.
5475 */
5476 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5477 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
95ff4ca2
AS
5478 /*
5479 * Stop all AUX events that are writing to this buffer,
5480 * so that we can free its AUX pages and corresponding PMU
5481 * data. Note that after rb::aux_mmap_count dropped to zero,
5482 * they won't start any more (see perf_aux_output_begin()).
5483 */
5484 perf_pmu_output_stop(event);
5485
5486 /* now it's safe to free the pages */
45bfb2e5 5487 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
70f8a3ca 5488 atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm);
45bfb2e5 5489
95ff4ca2 5490 /* this has to be the last one */
45bfb2e5 5491 rb_free_aux(rb);
ca3bb3d0 5492 WARN_ON_ONCE(refcount_read(&rb->aux_refcount));
95ff4ca2 5493
45bfb2e5
PZ
5494 mutex_unlock(&event->mmap_mutex);
5495 }
5496
9bb5d40c
PZ
5497 atomic_dec(&rb->mmap_count);
5498
5499 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
b69cf536 5500 goto out_put;
9bb5d40c 5501
b69cf536 5502 ring_buffer_attach(event, NULL);
9bb5d40c
PZ
5503 mutex_unlock(&event->mmap_mutex);
5504
5505 /* If there's still other mmap()s of this buffer, we're done. */
b69cf536
PZ
5506 if (atomic_read(&rb->mmap_count))
5507 goto out_put;
ac9721f3 5508
9bb5d40c
PZ
5509 /*
5510 * No other mmap()s, detach from all other events that might redirect
5511 * into the now unreachable buffer. Somewhat complicated by the
5512 * fact that rb::event_lock otherwise nests inside mmap_mutex.
5513 */
5514again:
5515 rcu_read_lock();
5516 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5517 if (!atomic_long_inc_not_zero(&event->refcount)) {
5518 /*
5519 * This event is en-route to free_event() which will
5520 * detach it and remove it from the list.
5521 */
5522 continue;
5523 }
5524 rcu_read_unlock();
789f90fc 5525
9bb5d40c
PZ
5526 mutex_lock(&event->mmap_mutex);
5527 /*
5528 * Check we didn't race with perf_event_set_output() which can
5529 * swizzle the rb from under us while we were waiting to
5530 * acquire mmap_mutex.
5531 *
5532 * If we find a different rb; ignore this event, a next
5533 * iteration will no longer find it on the list. We have to
5534 * still restart the iteration to make sure we're not now
5535 * iterating the wrong list.
5536 */
b69cf536
PZ
5537 if (event->rb == rb)
5538 ring_buffer_attach(event, NULL);
5539
cdd6c482 5540 mutex_unlock(&event->mmap_mutex);
9bb5d40c 5541 put_event(event);
ac9721f3 5542
9bb5d40c
PZ
5543 /*
5544 * Restart the iteration; either we're on the wrong list or
5545 * destroyed its integrity by doing a deletion.
5546 */
5547 goto again;
7b732a75 5548 }
9bb5d40c
PZ
5549 rcu_read_unlock();
5550
5551 /*
5552 * It could be there's still a few 0-ref events on the list; they'll
5553 * get cleaned up by free_event() -- they'll also still have their
5554 * ref on the rb and will free it whenever they are done with it.
5555 *
5556 * Aside from that, this buffer is 'fully' detached and unmapped,
5557 * undo the VM accounting.
5558 */
5559
5560 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
70f8a3ca 5561 atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm);
9bb5d40c
PZ
5562 free_uid(mmap_user);
5563
b69cf536 5564out_put:
9bb5d40c 5565 ring_buffer_put(rb); /* could be last */
37d81828
PM
5566}
5567
f0f37e2f 5568static const struct vm_operations_struct perf_mmap_vmops = {
43a21ea8 5569 .open = perf_mmap_open,
fca0c116 5570 .close = perf_mmap_close, /* non mergeable */
43a21ea8
PZ
5571 .fault = perf_mmap_fault,
5572 .page_mkwrite = perf_mmap_fault,
37d81828
PM
5573};
5574
5575static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5576{
cdd6c482 5577 struct perf_event *event = file->private_data;
22a4f650 5578 unsigned long user_locked, user_lock_limit;
789f90fc 5579 struct user_struct *user = current_user();
22a4f650 5580 unsigned long locked, lock_limit;
45bfb2e5 5581 struct ring_buffer *rb = NULL;
7b732a75
PZ
5582 unsigned long vma_size;
5583 unsigned long nr_pages;
45bfb2e5 5584 long user_extra = 0, extra = 0;
d57e34fd 5585 int ret = 0, flags = 0;
37d81828 5586
c7920614
PZ
5587 /*
5588 * Don't allow mmap() of inherited per-task counters. This would
5589 * create a performance issue due to all children writing to the
76369139 5590 * same rb.
c7920614
PZ
5591 */
5592 if (event->cpu == -1 && event->attr.inherit)
5593 return -EINVAL;
5594
43a21ea8 5595 if (!(vma->vm_flags & VM_SHARED))
37d81828 5596 return -EINVAL;
7b732a75
PZ
5597
5598 vma_size = vma->vm_end - vma->vm_start;
45bfb2e5
PZ
5599
5600 if (vma->vm_pgoff == 0) {
5601 nr_pages = (vma_size / PAGE_SIZE) - 1;
5602 } else {
5603 /*
5604 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5605 * mapped, all subsequent mappings should have the same size
5606 * and offset. Must be above the normal perf buffer.
5607 */
5608 u64 aux_offset, aux_size;
5609
5610 if (!event->rb)
5611 return -EINVAL;
5612
5613 nr_pages = vma_size / PAGE_SIZE;
5614
5615 mutex_lock(&event->mmap_mutex);
5616 ret = -EINVAL;
5617
5618 rb = event->rb;
5619 if (!rb)
5620 goto aux_unlock;
5621
6aa7de05
MR
5622 aux_offset = READ_ONCE(rb->user_page->aux_offset);
5623 aux_size = READ_ONCE(rb->user_page->aux_size);
45bfb2e5
PZ
5624
5625 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5626 goto aux_unlock;
5627
5628 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5629 goto aux_unlock;
5630
5631 /* already mapped with a different offset */
5632 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5633 goto aux_unlock;
5634
5635 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5636 goto aux_unlock;
5637
5638 /* already mapped with a different size */
5639 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5640 goto aux_unlock;
5641
5642 if (!is_power_of_2(nr_pages))
5643 goto aux_unlock;
5644
5645 if (!atomic_inc_not_zero(&rb->mmap_count))
5646 goto aux_unlock;
5647
5648 if (rb_has_aux(rb)) {
5649 atomic_inc(&rb->aux_mmap_count);
5650 ret = 0;
5651 goto unlock;
5652 }
5653
5654 atomic_set(&rb->aux_mmap_count, 1);
5655 user_extra = nr_pages;
5656
5657 goto accounting;
5658 }
7b732a75 5659
7730d865 5660 /*
76369139 5661 * If we have rb pages ensure they're a power-of-two number, so we
7730d865
PZ
5662 * can do bitmasks instead of modulo.
5663 */
2ed11312 5664 if (nr_pages != 0 && !is_power_of_2(nr_pages))
37d81828
PM
5665 return -EINVAL;
5666
7b732a75 5667 if (vma_size != PAGE_SIZE * (1 + nr_pages))
37d81828
PM
5668 return -EINVAL;
5669
cdd6c482 5670 WARN_ON_ONCE(event->ctx->parent_ctx);
9bb5d40c 5671again:
cdd6c482 5672 mutex_lock(&event->mmap_mutex);
76369139 5673 if (event->rb) {
9bb5d40c 5674 if (event->rb->nr_pages != nr_pages) {
ebb3c4c4 5675 ret = -EINVAL;
9bb5d40c
PZ
5676 goto unlock;
5677 }
5678
5679 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5680 /*
5681 * Raced against perf_mmap_close() through
5682 * perf_event_set_output(). Try again, hope for better
5683 * luck.
5684 */
5685 mutex_unlock(&event->mmap_mutex);
5686 goto again;
5687 }
5688
ebb3c4c4
PZ
5689 goto unlock;
5690 }
5691
789f90fc 5692 user_extra = nr_pages + 1;
45bfb2e5
PZ
5693
5694accounting:
cdd6c482 5695 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
a3862d3f
IM
5696
5697 /*
5698 * Increase the limit linearly with more CPUs:
5699 */
5700 user_lock_limit *= num_online_cpus();
5701
789f90fc 5702 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
c5078f78 5703
789f90fc
PZ
5704 if (user_locked > user_lock_limit)
5705 extra = user_locked - user_lock_limit;
7b732a75 5706
78d7d407 5707 lock_limit = rlimit(RLIMIT_MEMLOCK);
7b732a75 5708 lock_limit >>= PAGE_SHIFT;
70f8a3ca 5709 locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra;
7b732a75 5710
459ec28a
IM
5711 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5712 !capable(CAP_IPC_LOCK)) {
ebb3c4c4
PZ
5713 ret = -EPERM;
5714 goto unlock;
5715 }
7b732a75 5716
45bfb2e5 5717 WARN_ON(!rb && event->rb);
906010b2 5718
d57e34fd 5719 if (vma->vm_flags & VM_WRITE)
76369139 5720 flags |= RING_BUFFER_WRITABLE;
d57e34fd 5721
76369139 5722 if (!rb) {
45bfb2e5
PZ
5723 rb = rb_alloc(nr_pages,
5724 event->attr.watermark ? event->attr.wakeup_watermark : 0,
5725 event->cpu, flags);
26cb63ad 5726
45bfb2e5
PZ
5727 if (!rb) {
5728 ret = -ENOMEM;
5729 goto unlock;
5730 }
43a21ea8 5731
45bfb2e5
PZ
5732 atomic_set(&rb->mmap_count, 1);
5733 rb->mmap_user = get_current_user();
5734 rb->mmap_locked = extra;
26cb63ad 5735
45bfb2e5 5736 ring_buffer_attach(event, rb);
ac9721f3 5737
45bfb2e5
PZ
5738 perf_event_init_userpage(event);
5739 perf_event_update_userpage(event);
5740 } else {
1a594131
AS
5741 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5742 event->attr.aux_watermark, flags);
45bfb2e5
PZ
5743 if (!ret)
5744 rb->aux_mmap_locked = extra;
5745 }
9a0f05cb 5746
ebb3c4c4 5747unlock:
45bfb2e5
PZ
5748 if (!ret) {
5749 atomic_long_add(user_extra, &user->locked_vm);
70f8a3ca 5750 atomic64_add(extra, &vma->vm_mm->pinned_vm);
45bfb2e5 5751
ac9721f3 5752 atomic_inc(&event->mmap_count);
45bfb2e5
PZ
5753 } else if (rb) {
5754 atomic_dec(&rb->mmap_count);
5755 }
5756aux_unlock:
cdd6c482 5757 mutex_unlock(&event->mmap_mutex);
37d81828 5758
9bb5d40c
PZ
5759 /*
5760 * Since pinned accounting is per vm we cannot allow fork() to copy our
5761 * vma.
5762 */
26cb63ad 5763 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
37d81828 5764 vma->vm_ops = &perf_mmap_vmops;
7b732a75 5765
1e0fb9ec 5766 if (event->pmu->event_mapped)
bfe33492 5767 event->pmu->event_mapped(event, vma->vm_mm);
1e0fb9ec 5768
7b732a75 5769 return ret;
37d81828
PM
5770}
5771
3c446b3d
PZ
5772static int perf_fasync(int fd, struct file *filp, int on)
5773{
496ad9aa 5774 struct inode *inode = file_inode(filp);
cdd6c482 5775 struct perf_event *event = filp->private_data;
3c446b3d
PZ
5776 int retval;
5777
5955102c 5778 inode_lock(inode);
cdd6c482 5779 retval = fasync_helper(fd, filp, on, &event->fasync);
5955102c 5780 inode_unlock(inode);
3c446b3d
PZ
5781
5782 if (retval < 0)
5783 return retval;
5784
5785 return 0;
5786}
5787
0793a61d 5788static const struct file_operations perf_fops = {
3326c1ce 5789 .llseek = no_llseek,
0793a61d
TG
5790 .release = perf_release,
5791 .read = perf_read,
5792 .poll = perf_poll,
d859e29f 5793 .unlocked_ioctl = perf_ioctl,
b3f20785 5794 .compat_ioctl = perf_compat_ioctl,
37d81828 5795 .mmap = perf_mmap,
3c446b3d 5796 .fasync = perf_fasync,
0793a61d
TG
5797};
5798
925d519a 5799/*
cdd6c482 5800 * Perf event wakeup
925d519a
PZ
5801 *
5802 * If there's data, ensure we set the poll() state and publish everything
5803 * to user-space before waking everybody up.
5804 */
5805
fed66e2c
PZ
5806static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5807{
5808 /* only the parent has fasync state */
5809 if (event->parent)
5810 event = event->parent;
5811 return &event->fasync;
5812}
5813
cdd6c482 5814void perf_event_wakeup(struct perf_event *event)
925d519a 5815{
10c6db11 5816 ring_buffer_wakeup(event);
4c9e2542 5817
cdd6c482 5818 if (event->pending_kill) {
fed66e2c 5819 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
cdd6c482 5820 event->pending_kill = 0;
4c9e2542 5821 }
925d519a
PZ
5822}
5823
1d54ad94
PZ
5824static void perf_pending_event_disable(struct perf_event *event)
5825{
5826 int cpu = READ_ONCE(event->pending_disable);
5827
5828 if (cpu < 0)
5829 return;
5830
5831 if (cpu == smp_processor_id()) {
5832 WRITE_ONCE(event->pending_disable, -1);
5833 perf_event_disable_local(event);
5834 return;
5835 }
5836
5837 /*
5838 * CPU-A CPU-B
5839 *
5840 * perf_event_disable_inatomic()
5841 * @pending_disable = CPU-A;
5842 * irq_work_queue();
5843 *
5844 * sched-out
5845 * @pending_disable = -1;
5846 *
5847 * sched-in
5848 * perf_event_disable_inatomic()
5849 * @pending_disable = CPU-B;
5850 * irq_work_queue(); // FAILS
5851 *
5852 * irq_work_run()
5853 * perf_pending_event()
5854 *
5855 * But the event runs on CPU-B and wants disabling there.
5856 */
5857 irq_work_queue_on(&event->pending, cpu);
5858}
5859
e360adbe 5860static void perf_pending_event(struct irq_work *entry)
79f14641 5861{
1d54ad94 5862 struct perf_event *event = container_of(entry, struct perf_event, pending);
d525211f
PZ
5863 int rctx;
5864
5865 rctx = perf_swevent_get_recursion_context();
5866 /*
5867 * If we 'fail' here, that's OK, it means recursion is already disabled
5868 * and we won't recurse 'further'.
5869 */
79f14641 5870
1d54ad94 5871 perf_pending_event_disable(event);
79f14641 5872
cdd6c482
IM
5873 if (event->pending_wakeup) {
5874 event->pending_wakeup = 0;
5875 perf_event_wakeup(event);
79f14641 5876 }
d525211f
PZ
5877
5878 if (rctx >= 0)
5879 perf_swevent_put_recursion_context(rctx);
79f14641
PZ
5880}
5881
39447b38
ZY
5882/*
5883 * We assume there is only KVM supporting the callbacks.
5884 * Later on, we might change it to a list if there is
5885 * another virtualization implementation supporting the callbacks.
5886 */
5887struct perf_guest_info_callbacks *perf_guest_cbs;
5888
5889int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5890{
5891 perf_guest_cbs = cbs;
5892 return 0;
5893}
5894EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5895
5896int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5897{
5898 perf_guest_cbs = NULL;
5899 return 0;
5900}
5901EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5902
4018994f
JO
5903static void
5904perf_output_sample_regs(struct perf_output_handle *handle,
5905 struct pt_regs *regs, u64 mask)
5906{
5907 int bit;
29dd3288 5908 DECLARE_BITMAP(_mask, 64);
4018994f 5909
29dd3288
MS
5910 bitmap_from_u64(_mask, mask);
5911 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
4018994f
JO
5912 u64 val;
5913
5914 val = perf_reg_value(regs, bit);
5915 perf_output_put(handle, val);
5916 }
5917}
5918
60e2364e 5919static void perf_sample_regs_user(struct perf_regs *regs_user,
88a7c26a
AL
5920 struct pt_regs *regs,
5921 struct pt_regs *regs_user_copy)
4018994f 5922{
88a7c26a
AL
5923 if (user_mode(regs)) {
5924 regs_user->abi = perf_reg_abi(current);
2565711f 5925 regs_user->regs = regs;
88a7c26a
AL
5926 } else if (current->mm) {
5927 perf_get_regs_user(regs_user, regs, regs_user_copy);
2565711f
PZ
5928 } else {
5929 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5930 regs_user->regs = NULL;
4018994f
JO
5931 }
5932}
5933
60e2364e
SE
5934static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5935 struct pt_regs *regs)
5936{
5937 regs_intr->regs = regs;
5938 regs_intr->abi = perf_reg_abi(current);
5939}
5940
5941
c5ebcedb
JO
5942/*
5943 * Get remaining task size from user stack pointer.
5944 *
5945 * It'd be better to take stack vma map and limit this more
5946 * precisly, but there's no way to get it safely under interrupt,
5947 * so using TASK_SIZE as limit.
5948 */
5949static u64 perf_ustack_task_size(struct pt_regs *regs)
5950{
5951 unsigned long addr = perf_user_stack_pointer(regs);
5952
5953 if (!addr || addr >= TASK_SIZE)
5954 return 0;
5955
5956 return TASK_SIZE - addr;
5957}
5958
5959static u16
5960perf_sample_ustack_size(u16 stack_size, u16 header_size,
5961 struct pt_regs *regs)
5962{
5963 u64 task_size;
5964
5965 /* No regs, no stack pointer, no dump. */
5966 if (!regs)
5967 return 0;
5968
5969 /*
5970 * Check if we fit in with the requested stack size into the:
5971 * - TASK_SIZE
5972 * If we don't, we limit the size to the TASK_SIZE.
5973 *
5974 * - remaining sample size
5975 * If we don't, we customize the stack size to
5976 * fit in to the remaining sample size.
5977 */
5978
5979 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5980 stack_size = min(stack_size, (u16) task_size);
5981
5982 /* Current header size plus static size and dynamic size. */
5983 header_size += 2 * sizeof(u64);
5984
5985 /* Do we fit in with the current stack dump size? */
5986 if ((u16) (header_size + stack_size) < header_size) {
5987 /*
5988 * If we overflow the maximum size for the sample,
5989 * we customize the stack dump size to fit in.
5990 */
5991 stack_size = USHRT_MAX - header_size - sizeof(u64);
5992 stack_size = round_up(stack_size, sizeof(u64));
5993 }
5994
5995 return stack_size;
5996}
5997
5998static void
5999perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
6000 struct pt_regs *regs)
6001{
6002 /* Case of a kernel thread, nothing to dump */
6003 if (!regs) {
6004 u64 size = 0;
6005 perf_output_put(handle, size);
6006 } else {
6007 unsigned long sp;
6008 unsigned int rem;
6009 u64 dyn_size;
02e18447 6010 mm_segment_t fs;
c5ebcedb
JO
6011
6012 /*
6013 * We dump:
6014 * static size
6015 * - the size requested by user or the best one we can fit
6016 * in to the sample max size
6017 * data
6018 * - user stack dump data
6019 * dynamic size
6020 * - the actual dumped size
6021 */
6022
6023 /* Static size. */
6024 perf_output_put(handle, dump_size);
6025
6026 /* Data. */
6027 sp = perf_user_stack_pointer(regs);
02e18447
YC
6028 fs = get_fs();
6029 set_fs(USER_DS);
c5ebcedb 6030 rem = __output_copy_user(handle, (void *) sp, dump_size);
02e18447 6031 set_fs(fs);
c5ebcedb
JO
6032 dyn_size = dump_size - rem;
6033
6034 perf_output_skip(handle, rem);
6035
6036 /* Dynamic size. */
6037 perf_output_put(handle, dyn_size);
6038 }
6039}
6040
c980d109
ACM
6041static void __perf_event_header__init_id(struct perf_event_header *header,
6042 struct perf_sample_data *data,
6043 struct perf_event *event)
6844c09d
ACM
6044{
6045 u64 sample_type = event->attr.sample_type;
6046
6047 data->type = sample_type;
6048 header->size += event->id_header_size;
6049
6050 if (sample_type & PERF_SAMPLE_TID) {
6051 /* namespace issues */
6052 data->tid_entry.pid = perf_event_pid(event, current);
6053 data->tid_entry.tid = perf_event_tid(event, current);
6054 }
6055
6056 if (sample_type & PERF_SAMPLE_TIME)
34f43927 6057 data->time = perf_event_clock(event);
6844c09d 6058
ff3d527c 6059 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6844c09d
ACM
6060 data->id = primary_event_id(event);
6061
6062 if (sample_type & PERF_SAMPLE_STREAM_ID)
6063 data->stream_id = event->id;
6064
6065 if (sample_type & PERF_SAMPLE_CPU) {
6066 data->cpu_entry.cpu = raw_smp_processor_id();
6067 data->cpu_entry.reserved = 0;
6068 }
6069}
6070
76369139
FW
6071void perf_event_header__init_id(struct perf_event_header *header,
6072 struct perf_sample_data *data,
6073 struct perf_event *event)
c980d109
ACM
6074{
6075 if (event->attr.sample_id_all)
6076 __perf_event_header__init_id(header, data, event);
6077}
6078
6079static void __perf_event__output_id_sample(struct perf_output_handle *handle,
6080 struct perf_sample_data *data)
6081{
6082 u64 sample_type = data->type;
6083
6084 if (sample_type & PERF_SAMPLE_TID)
6085 perf_output_put(handle, data->tid_entry);
6086
6087 if (sample_type & PERF_SAMPLE_TIME)
6088 perf_output_put(handle, data->time);
6089
6090 if (sample_type & PERF_SAMPLE_ID)
6091 perf_output_put(handle, data->id);
6092
6093 if (sample_type & PERF_SAMPLE_STREAM_ID)
6094 perf_output_put(handle, data->stream_id);
6095
6096 if (sample_type & PERF_SAMPLE_CPU)
6097 perf_output_put(handle, data->cpu_entry);
ff3d527c
AH
6098
6099 if (sample_type & PERF_SAMPLE_IDENTIFIER)
6100 perf_output_put(handle, data->id);
c980d109
ACM
6101}
6102
76369139
FW
6103void perf_event__output_id_sample(struct perf_event *event,
6104 struct perf_output_handle *handle,
6105 struct perf_sample_data *sample)
c980d109
ACM
6106{
6107 if (event->attr.sample_id_all)
6108 __perf_event__output_id_sample(handle, sample);
6109}
6110
3dab77fb 6111static void perf_output_read_one(struct perf_output_handle *handle,
eed01528
SE
6112 struct perf_event *event,
6113 u64 enabled, u64 running)
3dab77fb 6114{
cdd6c482 6115 u64 read_format = event->attr.read_format;
3dab77fb
PZ
6116 u64 values[4];
6117 int n = 0;
6118
b5e58793 6119 values[n++] = perf_event_count(event);
3dab77fb 6120 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
eed01528 6121 values[n++] = enabled +
cdd6c482 6122 atomic64_read(&event->child_total_time_enabled);
3dab77fb
PZ
6123 }
6124 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
eed01528 6125 values[n++] = running +
cdd6c482 6126 atomic64_read(&event->child_total_time_running);
3dab77fb
PZ
6127 }
6128 if (read_format & PERF_FORMAT_ID)
cdd6c482 6129 values[n++] = primary_event_id(event);
3dab77fb 6130
76369139 6131 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
6132}
6133
3dab77fb 6134static void perf_output_read_group(struct perf_output_handle *handle,
eed01528
SE
6135 struct perf_event *event,
6136 u64 enabled, u64 running)
3dab77fb 6137{
cdd6c482
IM
6138 struct perf_event *leader = event->group_leader, *sub;
6139 u64 read_format = event->attr.read_format;
3dab77fb
PZ
6140 u64 values[5];
6141 int n = 0;
6142
6143 values[n++] = 1 + leader->nr_siblings;
6144
6145 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
eed01528 6146 values[n++] = enabled;
3dab77fb
PZ
6147
6148 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
eed01528 6149 values[n++] = running;
3dab77fb 6150
9e5b127d
PZ
6151 if ((leader != event) &&
6152 (leader->state == PERF_EVENT_STATE_ACTIVE))
3dab77fb
PZ
6153 leader->pmu->read(leader);
6154
b5e58793 6155 values[n++] = perf_event_count(leader);
3dab77fb 6156 if (read_format & PERF_FORMAT_ID)
cdd6c482 6157 values[n++] = primary_event_id(leader);
3dab77fb 6158
76369139 6159 __output_copy(handle, values, n * sizeof(u64));
3dab77fb 6160
edb39592 6161 for_each_sibling_event(sub, leader) {
3dab77fb
PZ
6162 n = 0;
6163
6f5ab001
JO
6164 if ((sub != event) &&
6165 (sub->state == PERF_EVENT_STATE_ACTIVE))
3dab77fb
PZ
6166 sub->pmu->read(sub);
6167
b5e58793 6168 values[n++] = perf_event_count(sub);
3dab77fb 6169 if (read_format & PERF_FORMAT_ID)
cdd6c482 6170 values[n++] = primary_event_id(sub);
3dab77fb 6171
76369139 6172 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
6173 }
6174}
6175
eed01528
SE
6176#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
6177 PERF_FORMAT_TOTAL_TIME_RUNNING)
6178
ba5213ae
PZ
6179/*
6180 * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
6181 *
6182 * The problem is that its both hard and excessively expensive to iterate the
6183 * child list, not to mention that its impossible to IPI the children running
6184 * on another CPU, from interrupt/NMI context.
6185 */
3dab77fb 6186static void perf_output_read(struct perf_output_handle *handle,
cdd6c482 6187 struct perf_event *event)
3dab77fb 6188{
e3f3541c 6189 u64 enabled = 0, running = 0, now;
eed01528
SE
6190 u64 read_format = event->attr.read_format;
6191
6192 /*
6193 * compute total_time_enabled, total_time_running
6194 * based on snapshot values taken when the event
6195 * was last scheduled in.
6196 *
6197 * we cannot simply called update_context_time()
6198 * because of locking issue as we are called in
6199 * NMI context
6200 */
c4794295 6201 if (read_format & PERF_FORMAT_TOTAL_TIMES)
e3f3541c 6202 calc_timer_values(event, &now, &enabled, &running);
eed01528 6203
cdd6c482 6204 if (event->attr.read_format & PERF_FORMAT_GROUP)
eed01528 6205 perf_output_read_group(handle, event, enabled, running);
3dab77fb 6206 else
eed01528 6207 perf_output_read_one(handle, event, enabled, running);
3dab77fb
PZ
6208}
6209
5622f295
MM
6210void perf_output_sample(struct perf_output_handle *handle,
6211 struct perf_event_header *header,
6212 struct perf_sample_data *data,
cdd6c482 6213 struct perf_event *event)
5622f295
MM
6214{
6215 u64 sample_type = data->type;
6216
6217 perf_output_put(handle, *header);
6218
ff3d527c
AH
6219 if (sample_type & PERF_SAMPLE_IDENTIFIER)
6220 perf_output_put(handle, data->id);
6221
5622f295
MM
6222 if (sample_type & PERF_SAMPLE_IP)
6223 perf_output_put(handle, data->ip);
6224
6225 if (sample_type & PERF_SAMPLE_TID)
6226 perf_output_put(handle, data->tid_entry);
6227
6228 if (sample_type & PERF_SAMPLE_TIME)
6229 perf_output_put(handle, data->time);
6230
6231 if (sample_type & PERF_SAMPLE_ADDR)
6232 perf_output_put(handle, data->addr);
6233
6234 if (sample_type & PERF_SAMPLE_ID)
6235 perf_output_put(handle, data->id);
6236
6237 if (sample_type & PERF_SAMPLE_STREAM_ID)
6238 perf_output_put(handle, data->stream_id);
6239
6240 if (sample_type & PERF_SAMPLE_CPU)
6241 perf_output_put(handle, data->cpu_entry);
6242
6243 if (sample_type & PERF_SAMPLE_PERIOD)
6244 perf_output_put(handle, data->period);
6245
6246 if (sample_type & PERF_SAMPLE_READ)
cdd6c482 6247 perf_output_read(handle, event);
5622f295
MM
6248
6249 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
99e818cc 6250 int size = 1;
5622f295 6251
99e818cc
JO
6252 size += data->callchain->nr;
6253 size *= sizeof(u64);
6254 __output_copy(handle, data->callchain, size);
5622f295
MM
6255 }
6256
6257 if (sample_type & PERF_SAMPLE_RAW) {
7e3f977e
DB
6258 struct perf_raw_record *raw = data->raw;
6259
6260 if (raw) {
6261 struct perf_raw_frag *frag = &raw->frag;
6262
6263 perf_output_put(handle, raw->size);
6264 do {
6265 if (frag->copy) {
6266 __output_custom(handle, frag->copy,
6267 frag->data, frag->size);
6268 } else {
6269 __output_copy(handle, frag->data,
6270 frag->size);
6271 }
6272 if (perf_raw_frag_last(frag))
6273 break;
6274 frag = frag->next;
6275 } while (1);
6276 if (frag->pad)
6277 __output_skip(handle, NULL, frag->pad);
5622f295
MM
6278 } else {
6279 struct {
6280 u32 size;
6281 u32 data;
6282 } raw = {
6283 .size = sizeof(u32),
6284 .data = 0,
6285 };
6286 perf_output_put(handle, raw);
6287 }
6288 }
a7ac67ea 6289
bce38cd5
SE
6290 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6291 if (data->br_stack) {
6292 size_t size;
6293
6294 size = data->br_stack->nr
6295 * sizeof(struct perf_branch_entry);
6296
6297 perf_output_put(handle, data->br_stack->nr);
6298 perf_output_copy(handle, data->br_stack->entries, size);
6299 } else {
6300 /*
6301 * we always store at least the value of nr
6302 */
6303 u64 nr = 0;
6304 perf_output_put(handle, nr);
6305 }
6306 }
4018994f
JO
6307
6308 if (sample_type & PERF_SAMPLE_REGS_USER) {
6309 u64 abi = data->regs_user.abi;
6310
6311 /*
6312 * If there are no regs to dump, notice it through
6313 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6314 */
6315 perf_output_put(handle, abi);
6316
6317 if (abi) {
6318 u64 mask = event->attr.sample_regs_user;
6319 perf_output_sample_regs(handle,
6320 data->regs_user.regs,
6321 mask);
6322 }
6323 }
c5ebcedb 6324
a5cdd40c 6325 if (sample_type & PERF_SAMPLE_STACK_USER) {
c5ebcedb
JO
6326 perf_output_sample_ustack(handle,
6327 data->stack_user_size,
6328 data->regs_user.regs);
a5cdd40c 6329 }
c3feedf2
AK
6330
6331 if (sample_type & PERF_SAMPLE_WEIGHT)
6332 perf_output_put(handle, data->weight);
d6be9ad6
SE
6333
6334 if (sample_type & PERF_SAMPLE_DATA_SRC)
6335 perf_output_put(handle, data->data_src.val);
a5cdd40c 6336
fdfbbd07
AK
6337 if (sample_type & PERF_SAMPLE_TRANSACTION)
6338 perf_output_put(handle, data->txn);
6339
60e2364e
SE
6340 if (sample_type & PERF_SAMPLE_REGS_INTR) {
6341 u64 abi = data->regs_intr.abi;
6342 /*
6343 * If there are no regs to dump, notice it through
6344 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6345 */
6346 perf_output_put(handle, abi);
6347
6348 if (abi) {
6349 u64 mask = event->attr.sample_regs_intr;
6350
6351 perf_output_sample_regs(handle,
6352 data->regs_intr.regs,
6353 mask);
6354 }
6355 }
6356
fc7ce9c7
KL
6357 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6358 perf_output_put(handle, data->phys_addr);
6359
a5cdd40c
PZ
6360 if (!event->attr.watermark) {
6361 int wakeup_events = event->attr.wakeup_events;
6362
6363 if (wakeup_events) {
6364 struct ring_buffer *rb = handle->rb;
6365 int events = local_inc_return(&rb->events);
6366
6367 if (events >= wakeup_events) {
6368 local_sub(wakeup_events, &rb->events);
6369 local_inc(&rb->wakeup);
6370 }
6371 }
6372 }
5622f295
MM
6373}
6374
fc7ce9c7
KL
6375static u64 perf_virt_to_phys(u64 virt)
6376{
6377 u64 phys_addr = 0;
6378 struct page *p = NULL;
6379
6380 if (!virt)
6381 return 0;
6382
6383 if (virt >= TASK_SIZE) {
6384 /* If it's vmalloc()d memory, leave phys_addr as 0 */
6385 if (virt_addr_valid((void *)(uintptr_t)virt) &&
6386 !(virt >= VMALLOC_START && virt < VMALLOC_END))
6387 phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
6388 } else {
6389 /*
6390 * Walking the pages tables for user address.
6391 * Interrupts are disabled, so it prevents any tear down
6392 * of the page tables.
6393 * Try IRQ-safe __get_user_pages_fast first.
6394 * If failed, leave phys_addr as 0.
6395 */
6396 if ((current->mm != NULL) &&
6397 (__get_user_pages_fast(virt, 1, 0, &p) == 1))
6398 phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
6399
6400 if (p)
6401 put_page(p);
6402 }
6403
6404 return phys_addr;
6405}
6406
99e818cc
JO
6407static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
6408
6cbc304f 6409struct perf_callchain_entry *
8cf7e0e2
JO
6410perf_callchain(struct perf_event *event, struct pt_regs *regs)
6411{
6412 bool kernel = !event->attr.exclude_callchain_kernel;
6413 bool user = !event->attr.exclude_callchain_user;
6414 /* Disallow cross-task user callchains. */
6415 bool crosstask = event->ctx->task && event->ctx->task != current;
6416 const u32 max_stack = event->attr.sample_max_stack;
99e818cc 6417 struct perf_callchain_entry *callchain;
8cf7e0e2
JO
6418
6419 if (!kernel && !user)
99e818cc 6420 return &__empty_callchain;
8cf7e0e2 6421
99e818cc
JO
6422 callchain = get_perf_callchain(regs, 0, kernel, user,
6423 max_stack, crosstask, true);
6424 return callchain ?: &__empty_callchain;
8cf7e0e2
JO
6425}
6426
5622f295
MM
6427void perf_prepare_sample(struct perf_event_header *header,
6428 struct perf_sample_data *data,
cdd6c482 6429 struct perf_event *event,
5622f295 6430 struct pt_regs *regs)
7b732a75 6431{
cdd6c482 6432 u64 sample_type = event->attr.sample_type;
7b732a75 6433
cdd6c482 6434 header->type = PERF_RECORD_SAMPLE;
c320c7b7 6435 header->size = sizeof(*header) + event->header_size;
5622f295
MM
6436
6437 header->misc = 0;
6438 header->misc |= perf_misc_flags(regs);
6fab0192 6439
c980d109 6440 __perf_event_header__init_id(header, data, event);
6844c09d 6441
c320c7b7 6442 if (sample_type & PERF_SAMPLE_IP)
5622f295
MM
6443 data->ip = perf_instruction_pointer(regs);
6444
b23f3325 6445 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5622f295 6446 int size = 1;
394ee076 6447
6cbc304f
PZ
6448 if (!(sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY))
6449 data->callchain = perf_callchain(event, regs);
6450
99e818cc 6451 size += data->callchain->nr;
5622f295
MM
6452
6453 header->size += size * sizeof(u64);
394ee076
PZ
6454 }
6455
3a43ce68 6456 if (sample_type & PERF_SAMPLE_RAW) {
7e3f977e
DB
6457 struct perf_raw_record *raw = data->raw;
6458 int size;
6459
6460 if (raw) {
6461 struct perf_raw_frag *frag = &raw->frag;
6462 u32 sum = 0;
6463
6464 do {
6465 sum += frag->size;
6466 if (perf_raw_frag_last(frag))
6467 break;
6468 frag = frag->next;
6469 } while (1);
6470
6471 size = round_up(sum + sizeof(u32), sizeof(u64));
6472 raw->size = size - sizeof(u32);
6473 frag->pad = raw->size - sum;
6474 } else {
6475 size = sizeof(u64);
6476 }
a044560c 6477
7e3f977e 6478 header->size += size;
7f453c24 6479 }
bce38cd5
SE
6480
6481 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6482 int size = sizeof(u64); /* nr */
6483 if (data->br_stack) {
6484 size += data->br_stack->nr
6485 * sizeof(struct perf_branch_entry);
6486 }
6487 header->size += size;
6488 }
4018994f 6489
2565711f 6490 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
88a7c26a
AL
6491 perf_sample_regs_user(&data->regs_user, regs,
6492 &data->regs_user_copy);
2565711f 6493
4018994f
JO
6494 if (sample_type & PERF_SAMPLE_REGS_USER) {
6495 /* regs dump ABI info */
6496 int size = sizeof(u64);
6497
4018994f
JO
6498 if (data->regs_user.regs) {
6499 u64 mask = event->attr.sample_regs_user;
6500 size += hweight64(mask) * sizeof(u64);
6501 }
6502
6503 header->size += size;
6504 }
c5ebcedb
JO
6505
6506 if (sample_type & PERF_SAMPLE_STACK_USER) {
6507 /*
6508 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
6509 * processed as the last one or have additional check added
6510 * in case new sample type is added, because we could eat
6511 * up the rest of the sample size.
6512 */
c5ebcedb
JO
6513 u16 stack_size = event->attr.sample_stack_user;
6514 u16 size = sizeof(u64);
6515
c5ebcedb 6516 stack_size = perf_sample_ustack_size(stack_size, header->size,
2565711f 6517 data->regs_user.regs);
c5ebcedb
JO
6518
6519 /*
6520 * If there is something to dump, add space for the dump
6521 * itself and for the field that tells the dynamic size,
6522 * which is how many have been actually dumped.
6523 */
6524 if (stack_size)
6525 size += sizeof(u64) + stack_size;
6526
6527 data->stack_user_size = stack_size;
6528 header->size += size;
6529 }
60e2364e
SE
6530
6531 if (sample_type & PERF_SAMPLE_REGS_INTR) {
6532 /* regs dump ABI info */
6533 int size = sizeof(u64);
6534
6535 perf_sample_regs_intr(&data->regs_intr, regs);
6536
6537 if (data->regs_intr.regs) {
6538 u64 mask = event->attr.sample_regs_intr;
6539
6540 size += hweight64(mask) * sizeof(u64);
6541 }
6542
6543 header->size += size;
6544 }
fc7ce9c7
KL
6545
6546 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6547 data->phys_addr = perf_virt_to_phys(data->addr);
5622f295 6548}
7f453c24 6549
56201969 6550static __always_inline int
9ecda41a
WN
6551__perf_event_output(struct perf_event *event,
6552 struct perf_sample_data *data,
6553 struct pt_regs *regs,
6554 int (*output_begin)(struct perf_output_handle *,
6555 struct perf_event *,
6556 unsigned int))
5622f295
MM
6557{
6558 struct perf_output_handle handle;
6559 struct perf_event_header header;
56201969 6560 int err;
689802b2 6561
927c7a9e
FW
6562 /* protect the callchain buffers */
6563 rcu_read_lock();
6564
cdd6c482 6565 perf_prepare_sample(&header, data, event, regs);
5c148194 6566
56201969
ACM
6567 err = output_begin(&handle, event, header.size);
6568 if (err)
927c7a9e 6569 goto exit;
0322cd6e 6570
cdd6c482 6571 perf_output_sample(&handle, &header, data, event);
f413cdb8 6572
8a057d84 6573 perf_output_end(&handle);
927c7a9e
FW
6574
6575exit:
6576 rcu_read_unlock();
56201969 6577 return err;
0322cd6e
PZ
6578}
6579
9ecda41a
WN
6580void
6581perf_event_output_forward(struct perf_event *event,
6582 struct perf_sample_data *data,
6583 struct pt_regs *regs)
6584{
6585 __perf_event_output(event, data, regs, perf_output_begin_forward);
6586}
6587
6588void
6589perf_event_output_backward(struct perf_event *event,
6590 struct perf_sample_data *data,
6591 struct pt_regs *regs)
6592{
6593 __perf_event_output(event, data, regs, perf_output_begin_backward);
6594}
6595
56201969 6596int
9ecda41a
WN
6597perf_event_output(struct perf_event *event,
6598 struct perf_sample_data *data,
6599 struct pt_regs *regs)
6600{
56201969 6601 return __perf_event_output(event, data, regs, perf_output_begin);
9ecda41a
WN
6602}
6603
38b200d6 6604/*
cdd6c482 6605 * read event_id
38b200d6
PZ
6606 */
6607
6608struct perf_read_event {
6609 struct perf_event_header header;
6610
6611 u32 pid;
6612 u32 tid;
38b200d6
PZ
6613};
6614
6615static void
cdd6c482 6616perf_event_read_event(struct perf_event *event,
38b200d6
PZ
6617 struct task_struct *task)
6618{
6619 struct perf_output_handle handle;
c980d109 6620 struct perf_sample_data sample;
dfc65094 6621 struct perf_read_event read_event = {
38b200d6 6622 .header = {
cdd6c482 6623 .type = PERF_RECORD_READ,
38b200d6 6624 .misc = 0,
c320c7b7 6625 .size = sizeof(read_event) + event->read_size,
38b200d6 6626 },
cdd6c482
IM
6627 .pid = perf_event_pid(event, task),
6628 .tid = perf_event_tid(event, task),
38b200d6 6629 };
3dab77fb 6630 int ret;
38b200d6 6631
c980d109 6632 perf_event_header__init_id(&read_event.header, &sample, event);
a7ac67ea 6633 ret = perf_output_begin(&handle, event, read_event.header.size);
38b200d6
PZ
6634 if (ret)
6635 return;
6636
dfc65094 6637 perf_output_put(&handle, read_event);
cdd6c482 6638 perf_output_read(&handle, event);
c980d109 6639 perf_event__output_id_sample(event, &handle, &sample);
3dab77fb 6640
38b200d6
PZ
6641 perf_output_end(&handle);
6642}
6643
aab5b71e 6644typedef void (perf_iterate_f)(struct perf_event *event, void *data);
52d857a8
JO
6645
6646static void
aab5b71e
PZ
6647perf_iterate_ctx(struct perf_event_context *ctx,
6648 perf_iterate_f output,
b73e4fef 6649 void *data, bool all)
52d857a8
JO
6650{
6651 struct perf_event *event;
6652
6653 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
b73e4fef
AS
6654 if (!all) {
6655 if (event->state < PERF_EVENT_STATE_INACTIVE)
6656 continue;
6657 if (!event_filter_match(event))
6658 continue;
6659 }
6660
67516844 6661 output(event, data);
52d857a8
JO
6662 }
6663}
6664
aab5b71e 6665static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
f2fb6bef
KL
6666{
6667 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
6668 struct perf_event *event;
6669
6670 list_for_each_entry_rcu(event, &pel->list, sb_list) {
0b8f1e2e
PZ
6671 /*
6672 * Skip events that are not fully formed yet; ensure that
6673 * if we observe event->ctx, both event and ctx will be
6674 * complete enough. See perf_install_in_context().
6675 */
6676 if (!smp_load_acquire(&event->ctx))
6677 continue;
6678
f2fb6bef
KL
6679 if (event->state < PERF_EVENT_STATE_INACTIVE)
6680 continue;
6681 if (!event_filter_match(event))
6682 continue;
6683 output(event, data);
6684 }
6685}
6686
aab5b71e
PZ
6687/*
6688 * Iterate all events that need to receive side-band events.
6689 *
6690 * For new callers; ensure that account_pmu_sb_event() includes
6691 * your event, otherwise it might not get delivered.
6692 */
52d857a8 6693static void
aab5b71e 6694perf_iterate_sb(perf_iterate_f output, void *data,
52d857a8
JO
6695 struct perf_event_context *task_ctx)
6696{
52d857a8 6697 struct perf_event_context *ctx;
52d857a8
JO
6698 int ctxn;
6699
aab5b71e
PZ
6700 rcu_read_lock();
6701 preempt_disable();
6702
4e93ad60 6703 /*
aab5b71e
PZ
6704 * If we have task_ctx != NULL we only notify the task context itself.
6705 * The task_ctx is set only for EXIT events before releasing task
4e93ad60
JO
6706 * context.
6707 */
6708 if (task_ctx) {
aab5b71e
PZ
6709 perf_iterate_ctx(task_ctx, output, data, false);
6710 goto done;
4e93ad60
JO
6711 }
6712
aab5b71e 6713 perf_iterate_sb_cpu(output, data);
f2fb6bef
KL
6714
6715 for_each_task_context_nr(ctxn) {
52d857a8
JO
6716 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6717 if (ctx)
aab5b71e 6718 perf_iterate_ctx(ctx, output, data, false);
52d857a8 6719 }
aab5b71e 6720done:
f2fb6bef 6721 preempt_enable();
52d857a8 6722 rcu_read_unlock();
95ff4ca2
AS
6723}
6724
375637bc
AS
6725/*
6726 * Clear all file-based filters at exec, they'll have to be
6727 * re-instated when/if these objects are mmapped again.
6728 */
6729static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
6730{
6731 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6732 struct perf_addr_filter *filter;
6733 unsigned int restart = 0, count = 0;
6734 unsigned long flags;
6735
6736 if (!has_addr_filter(event))
6737 return;
6738
6739 raw_spin_lock_irqsave(&ifh->lock, flags);
6740 list_for_each_entry(filter, &ifh->list, entry) {
9511bce9 6741 if (filter->path.dentry) {
c60f83b8
AS
6742 event->addr_filter_ranges[count].start = 0;
6743 event->addr_filter_ranges[count].size = 0;
375637bc
AS
6744 restart++;
6745 }
6746
6747 count++;
6748 }
6749
6750 if (restart)
6751 event->addr_filters_gen++;
6752 raw_spin_unlock_irqrestore(&ifh->lock, flags);
6753
6754 if (restart)
767ae086 6755 perf_event_stop(event, 1);
375637bc
AS
6756}
6757
6758void perf_event_exec(void)
6759{
6760 struct perf_event_context *ctx;
6761 int ctxn;
6762
6763 rcu_read_lock();
6764 for_each_task_context_nr(ctxn) {
6765 ctx = current->perf_event_ctxp[ctxn];
6766 if (!ctx)
6767 continue;
6768
6769 perf_event_enable_on_exec(ctxn);
6770
aab5b71e 6771 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
375637bc
AS
6772 true);
6773 }
6774 rcu_read_unlock();
6775}
6776
95ff4ca2
AS
6777struct remote_output {
6778 struct ring_buffer *rb;
6779 int err;
6780};
6781
6782static void __perf_event_output_stop(struct perf_event *event, void *data)
6783{
6784 struct perf_event *parent = event->parent;
6785 struct remote_output *ro = data;
6786 struct ring_buffer *rb = ro->rb;
375637bc
AS
6787 struct stop_event_data sd = {
6788 .event = event,
6789 };
95ff4ca2
AS
6790
6791 if (!has_aux(event))
6792 return;
6793
6794 if (!parent)
6795 parent = event;
6796
6797 /*
6798 * In case of inheritance, it will be the parent that links to the
767ae086
AS
6799 * ring-buffer, but it will be the child that's actually using it.
6800 *
6801 * We are using event::rb to determine if the event should be stopped,
6802 * however this may race with ring_buffer_attach() (through set_output),
6803 * which will make us skip the event that actually needs to be stopped.
6804 * So ring_buffer_attach() has to stop an aux event before re-assigning
6805 * its rb pointer.
95ff4ca2
AS
6806 */
6807 if (rcu_dereference(parent->rb) == rb)
375637bc 6808 ro->err = __perf_event_stop(&sd);
95ff4ca2
AS
6809}
6810
6811static int __perf_pmu_output_stop(void *info)
6812{
6813 struct perf_event *event = info;
6814 struct pmu *pmu = event->pmu;
8b6a3fe8 6815 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
95ff4ca2
AS
6816 struct remote_output ro = {
6817 .rb = event->rb,
6818 };
6819
6820 rcu_read_lock();
aab5b71e 6821 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
95ff4ca2 6822 if (cpuctx->task_ctx)
aab5b71e 6823 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
b73e4fef 6824 &ro, false);
95ff4ca2
AS
6825 rcu_read_unlock();
6826
6827 return ro.err;
6828}
6829
6830static void perf_pmu_output_stop(struct perf_event *event)
6831{
6832 struct perf_event *iter;
6833 int err, cpu;
6834
6835restart:
6836 rcu_read_lock();
6837 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6838 /*
6839 * For per-CPU events, we need to make sure that neither they
6840 * nor their children are running; for cpu==-1 events it's
6841 * sufficient to stop the event itself if it's active, since
6842 * it can't have children.
6843 */
6844 cpu = iter->cpu;
6845 if (cpu == -1)
6846 cpu = READ_ONCE(iter->oncpu);
6847
6848 if (cpu == -1)
6849 continue;
6850
6851 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6852 if (err == -EAGAIN) {
6853 rcu_read_unlock();
6854 goto restart;
6855 }
6856 }
6857 rcu_read_unlock();
52d857a8
JO
6858}
6859
60313ebe 6860/*
9f498cc5
PZ
6861 * task tracking -- fork/exit
6862 *
13d7a241 6863 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
60313ebe
PZ
6864 */
6865
9f498cc5 6866struct perf_task_event {
3a80b4a3 6867 struct task_struct *task;
cdd6c482 6868 struct perf_event_context *task_ctx;
60313ebe
PZ
6869
6870 struct {
6871 struct perf_event_header header;
6872
6873 u32 pid;
6874 u32 ppid;
9f498cc5
PZ
6875 u32 tid;
6876 u32 ptid;
393b2ad8 6877 u64 time;
cdd6c482 6878 } event_id;
60313ebe
PZ
6879};
6880
67516844
JO
6881static int perf_event_task_match(struct perf_event *event)
6882{
13d7a241
SE
6883 return event->attr.comm || event->attr.mmap ||
6884 event->attr.mmap2 || event->attr.mmap_data ||
6885 event->attr.task;
67516844
JO
6886}
6887
cdd6c482 6888static void perf_event_task_output(struct perf_event *event,
52d857a8 6889 void *data)
60313ebe 6890{
52d857a8 6891 struct perf_task_event *task_event = data;
60313ebe 6892 struct perf_output_handle handle;
c980d109 6893 struct perf_sample_data sample;
9f498cc5 6894 struct task_struct *task = task_event->task;
c980d109 6895 int ret, size = task_event->event_id.header.size;
8bb39f9a 6896
67516844
JO
6897 if (!perf_event_task_match(event))
6898 return;
6899
c980d109 6900 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
60313ebe 6901
c980d109 6902 ret = perf_output_begin(&handle, event,
a7ac67ea 6903 task_event->event_id.header.size);
ef60777c 6904 if (ret)
c980d109 6905 goto out;
60313ebe 6906
cdd6c482
IM
6907 task_event->event_id.pid = perf_event_pid(event, task);
6908 task_event->event_id.ppid = perf_event_pid(event, current);
60313ebe 6909
cdd6c482
IM
6910 task_event->event_id.tid = perf_event_tid(event, task);
6911 task_event->event_id.ptid = perf_event_tid(event, current);
9f498cc5 6912
34f43927
PZ
6913 task_event->event_id.time = perf_event_clock(event);
6914
cdd6c482 6915 perf_output_put(&handle, task_event->event_id);
393b2ad8 6916
c980d109
ACM
6917 perf_event__output_id_sample(event, &handle, &sample);
6918
60313ebe 6919 perf_output_end(&handle);
c980d109
ACM
6920out:
6921 task_event->event_id.header.size = size;
60313ebe
PZ
6922}
6923
cdd6c482
IM
6924static void perf_event_task(struct task_struct *task,
6925 struct perf_event_context *task_ctx,
3a80b4a3 6926 int new)
60313ebe 6927{
9f498cc5 6928 struct perf_task_event task_event;
60313ebe 6929
cdd6c482
IM
6930 if (!atomic_read(&nr_comm_events) &&
6931 !atomic_read(&nr_mmap_events) &&
6932 !atomic_read(&nr_task_events))
60313ebe
PZ
6933 return;
6934
9f498cc5 6935 task_event = (struct perf_task_event){
3a80b4a3
PZ
6936 .task = task,
6937 .task_ctx = task_ctx,
cdd6c482 6938 .event_id = {
60313ebe 6939 .header = {
cdd6c482 6940 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
573402db 6941 .misc = 0,
cdd6c482 6942 .size = sizeof(task_event.event_id),
60313ebe 6943 },
573402db
PZ
6944 /* .pid */
6945 /* .ppid */
9f498cc5
PZ
6946 /* .tid */
6947 /* .ptid */
34f43927 6948 /* .time */
60313ebe
PZ
6949 },
6950 };
6951
aab5b71e 6952 perf_iterate_sb(perf_event_task_output,
52d857a8
JO
6953 &task_event,
6954 task_ctx);
9f498cc5
PZ
6955}
6956
cdd6c482 6957void perf_event_fork(struct task_struct *task)
9f498cc5 6958{
cdd6c482 6959 perf_event_task(task, NULL, 1);
e4222673 6960 perf_event_namespaces(task);
60313ebe
PZ
6961}
6962
8d1b2d93
PZ
6963/*
6964 * comm tracking
6965 */
6966
6967struct perf_comm_event {
22a4f650
IM
6968 struct task_struct *task;
6969 char *comm;
8d1b2d93
PZ
6970 int comm_size;
6971
6972 struct {
6973 struct perf_event_header header;
6974
6975 u32 pid;
6976 u32 tid;
cdd6c482 6977 } event_id;
8d1b2d93
PZ
6978};
6979
67516844
JO
6980static int perf_event_comm_match(struct perf_event *event)
6981{
6982 return event->attr.comm;
6983}
6984
cdd6c482 6985static void perf_event_comm_output(struct perf_event *event,
52d857a8 6986 void *data)
8d1b2d93 6987{
52d857a8 6988 struct perf_comm_event *comm_event = data;
8d1b2d93 6989 struct perf_output_handle handle;
c980d109 6990 struct perf_sample_data sample;
cdd6c482 6991 int size = comm_event->event_id.header.size;
c980d109
ACM
6992 int ret;
6993
67516844
JO
6994 if (!perf_event_comm_match(event))
6995 return;
6996
c980d109
ACM
6997 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
6998 ret = perf_output_begin(&handle, event,
a7ac67ea 6999 comm_event->event_id.header.size);
8d1b2d93
PZ
7000
7001 if (ret)
c980d109 7002 goto out;
8d1b2d93 7003
cdd6c482
IM
7004 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
7005 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
709e50cf 7006
cdd6c482 7007 perf_output_put(&handle, comm_event->event_id);
76369139 7008 __output_copy(&handle, comm_event->comm,
8d1b2d93 7009 comm_event->comm_size);
c980d109
ACM
7010
7011 perf_event__output_id_sample(event, &handle, &sample);
7012
8d1b2d93 7013 perf_output_end(&handle);
c980d109
ACM
7014out:
7015 comm_event->event_id.header.size = size;
8d1b2d93
PZ
7016}
7017
cdd6c482 7018static void perf_event_comm_event(struct perf_comm_event *comm_event)
8d1b2d93 7019{
413ee3b4 7020 char comm[TASK_COMM_LEN];
8d1b2d93 7021 unsigned int size;
8d1b2d93 7022
413ee3b4 7023 memset(comm, 0, sizeof(comm));
96b02d78 7024 strlcpy(comm, comm_event->task->comm, sizeof(comm));
888fcee0 7025 size = ALIGN(strlen(comm)+1, sizeof(u64));
8d1b2d93
PZ
7026
7027 comm_event->comm = comm;
7028 comm_event->comm_size = size;
7029
cdd6c482 7030 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
8dc85d54 7031
aab5b71e 7032 perf_iterate_sb(perf_event_comm_output,
52d857a8
JO
7033 comm_event,
7034 NULL);
8d1b2d93
PZ
7035}
7036
82b89778 7037void perf_event_comm(struct task_struct *task, bool exec)
8d1b2d93 7038{
9ee318a7
PZ
7039 struct perf_comm_event comm_event;
7040
cdd6c482 7041 if (!atomic_read(&nr_comm_events))
9ee318a7 7042 return;
a63eaf34 7043
9ee318a7 7044 comm_event = (struct perf_comm_event){
8d1b2d93 7045 .task = task,
573402db
PZ
7046 /* .comm */
7047 /* .comm_size */
cdd6c482 7048 .event_id = {
573402db 7049 .header = {
cdd6c482 7050 .type = PERF_RECORD_COMM,
82b89778 7051 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
573402db
PZ
7052 /* .size */
7053 },
7054 /* .pid */
7055 /* .tid */
8d1b2d93
PZ
7056 },
7057 };
7058
cdd6c482 7059 perf_event_comm_event(&comm_event);
8d1b2d93
PZ
7060}
7061
e4222673
HB
7062/*
7063 * namespaces tracking
7064 */
7065
7066struct perf_namespaces_event {
7067 struct task_struct *task;
7068
7069 struct {
7070 struct perf_event_header header;
7071
7072 u32 pid;
7073 u32 tid;
7074 u64 nr_namespaces;
7075 struct perf_ns_link_info link_info[NR_NAMESPACES];
7076 } event_id;
7077};
7078
7079static int perf_event_namespaces_match(struct perf_event *event)
7080{
7081 return event->attr.namespaces;
7082}
7083
7084static void perf_event_namespaces_output(struct perf_event *event,
7085 void *data)
7086{
7087 struct perf_namespaces_event *namespaces_event = data;
7088 struct perf_output_handle handle;
7089 struct perf_sample_data sample;
34900ec5 7090 u16 header_size = namespaces_event->event_id.header.size;
e4222673
HB
7091 int ret;
7092
7093 if (!perf_event_namespaces_match(event))
7094 return;
7095
7096 perf_event_header__init_id(&namespaces_event->event_id.header,
7097 &sample, event);
7098 ret = perf_output_begin(&handle, event,
7099 namespaces_event->event_id.header.size);
7100 if (ret)
34900ec5 7101 goto out;
e4222673
HB
7102
7103 namespaces_event->event_id.pid = perf_event_pid(event,
7104 namespaces_event->task);
7105 namespaces_event->event_id.tid = perf_event_tid(event,
7106 namespaces_event->task);
7107
7108 perf_output_put(&handle, namespaces_event->event_id);
7109
7110 perf_event__output_id_sample(event, &handle, &sample);
7111
7112 perf_output_end(&handle);
34900ec5
JO
7113out:
7114 namespaces_event->event_id.header.size = header_size;
e4222673
HB
7115}
7116
7117static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
7118 struct task_struct *task,
7119 const struct proc_ns_operations *ns_ops)
7120{
7121 struct path ns_path;
7122 struct inode *ns_inode;
7123 void *error;
7124
7125 error = ns_get_path(&ns_path, task, ns_ops);
7126 if (!error) {
7127 ns_inode = ns_path.dentry->d_inode;
7128 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
7129 ns_link_info->ino = ns_inode->i_ino;
0e18dd12 7130 path_put(&ns_path);
e4222673
HB
7131 }
7132}
7133
7134void perf_event_namespaces(struct task_struct *task)
7135{
7136 struct perf_namespaces_event namespaces_event;
7137 struct perf_ns_link_info *ns_link_info;
7138
7139 if (!atomic_read(&nr_namespaces_events))
7140 return;
7141
7142 namespaces_event = (struct perf_namespaces_event){
7143 .task = task,
7144 .event_id = {
7145 .header = {
7146 .type = PERF_RECORD_NAMESPACES,
7147 .misc = 0,
7148 .size = sizeof(namespaces_event.event_id),
7149 },
7150 /* .pid */
7151 /* .tid */
7152 .nr_namespaces = NR_NAMESPACES,
7153 /* .link_info[NR_NAMESPACES] */
7154 },
7155 };
7156
7157 ns_link_info = namespaces_event.event_id.link_info;
7158
7159 perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
7160 task, &mntns_operations);
7161
7162#ifdef CONFIG_USER_NS
7163 perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
7164 task, &userns_operations);
7165#endif
7166#ifdef CONFIG_NET_NS
7167 perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
7168 task, &netns_operations);
7169#endif
7170#ifdef CONFIG_UTS_NS
7171 perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
7172 task, &utsns_operations);
7173#endif
7174#ifdef CONFIG_IPC_NS
7175 perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
7176 task, &ipcns_operations);
7177#endif
7178#ifdef CONFIG_PID_NS
7179 perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
7180 task, &pidns_operations);
7181#endif
7182#ifdef CONFIG_CGROUPS
7183 perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
7184 task, &cgroupns_operations);
7185#endif
7186
7187 perf_iterate_sb(perf_event_namespaces_output,
7188 &namespaces_event,
7189 NULL);
7190}
7191
0a4a9391
PZ
7192/*
7193 * mmap tracking
7194 */
7195
7196struct perf_mmap_event {
089dd79d
PZ
7197 struct vm_area_struct *vma;
7198
7199 const char *file_name;
7200 int file_size;
13d7a241
SE
7201 int maj, min;
7202 u64 ino;
7203 u64 ino_generation;
f972eb63 7204 u32 prot, flags;
0a4a9391
PZ
7205
7206 struct {
7207 struct perf_event_header header;
7208
7209 u32 pid;
7210 u32 tid;
7211 u64 start;
7212 u64 len;
7213 u64 pgoff;
cdd6c482 7214 } event_id;
0a4a9391
PZ
7215};
7216
67516844
JO
7217static int perf_event_mmap_match(struct perf_event *event,
7218 void *data)
7219{
7220 struct perf_mmap_event *mmap_event = data;
7221 struct vm_area_struct *vma = mmap_event->vma;
7222 int executable = vma->vm_flags & VM_EXEC;
7223
7224 return (!executable && event->attr.mmap_data) ||
13d7a241 7225 (executable && (event->attr.mmap || event->attr.mmap2));
67516844
JO
7226}
7227
cdd6c482 7228static void perf_event_mmap_output(struct perf_event *event,
52d857a8 7229 void *data)
0a4a9391 7230{
52d857a8 7231 struct perf_mmap_event *mmap_event = data;
0a4a9391 7232 struct perf_output_handle handle;
c980d109 7233 struct perf_sample_data sample;
cdd6c482 7234 int size = mmap_event->event_id.header.size;
d9c1bb2f 7235 u32 type = mmap_event->event_id.header.type;
c980d109 7236 int ret;
0a4a9391 7237
67516844
JO
7238 if (!perf_event_mmap_match(event, data))
7239 return;
7240
13d7a241
SE
7241 if (event->attr.mmap2) {
7242 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
7243 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
7244 mmap_event->event_id.header.size += sizeof(mmap_event->min);
7245 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
d008d525 7246 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
f972eb63
PZ
7247 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
7248 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
13d7a241
SE
7249 }
7250
c980d109
ACM
7251 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
7252 ret = perf_output_begin(&handle, event,
a7ac67ea 7253 mmap_event->event_id.header.size);
0a4a9391 7254 if (ret)
c980d109 7255 goto out;
0a4a9391 7256
cdd6c482
IM
7257 mmap_event->event_id.pid = perf_event_pid(event, current);
7258 mmap_event->event_id.tid = perf_event_tid(event, current);
709e50cf 7259
cdd6c482 7260 perf_output_put(&handle, mmap_event->event_id);
13d7a241
SE
7261
7262 if (event->attr.mmap2) {
7263 perf_output_put(&handle, mmap_event->maj);
7264 perf_output_put(&handle, mmap_event->min);
7265 perf_output_put(&handle, mmap_event->ino);
7266 perf_output_put(&handle, mmap_event->ino_generation);
f972eb63
PZ
7267 perf_output_put(&handle, mmap_event->prot);
7268 perf_output_put(&handle, mmap_event->flags);
13d7a241
SE
7269 }
7270
76369139 7271 __output_copy(&handle, mmap_event->file_name,
0a4a9391 7272 mmap_event->file_size);
c980d109
ACM
7273
7274 perf_event__output_id_sample(event, &handle, &sample);
7275
78d613eb 7276 perf_output_end(&handle);
c980d109
ACM
7277out:
7278 mmap_event->event_id.header.size = size;
d9c1bb2f 7279 mmap_event->event_id.header.type = type;
0a4a9391
PZ
7280}
7281
cdd6c482 7282static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
0a4a9391 7283{
089dd79d
PZ
7284 struct vm_area_struct *vma = mmap_event->vma;
7285 struct file *file = vma->vm_file;
13d7a241
SE
7286 int maj = 0, min = 0;
7287 u64 ino = 0, gen = 0;
f972eb63 7288 u32 prot = 0, flags = 0;
0a4a9391
PZ
7289 unsigned int size;
7290 char tmp[16];
7291 char *buf = NULL;
2c42cfbf 7292 char *name;
413ee3b4 7293
0b3589be
PZ
7294 if (vma->vm_flags & VM_READ)
7295 prot |= PROT_READ;
7296 if (vma->vm_flags & VM_WRITE)
7297 prot |= PROT_WRITE;
7298 if (vma->vm_flags & VM_EXEC)
7299 prot |= PROT_EXEC;
7300
7301 if (vma->vm_flags & VM_MAYSHARE)
7302 flags = MAP_SHARED;
7303 else
7304 flags = MAP_PRIVATE;
7305
7306 if (vma->vm_flags & VM_DENYWRITE)
7307 flags |= MAP_DENYWRITE;
7308 if (vma->vm_flags & VM_MAYEXEC)
7309 flags |= MAP_EXECUTABLE;
7310 if (vma->vm_flags & VM_LOCKED)
7311 flags |= MAP_LOCKED;
7312 if (vma->vm_flags & VM_HUGETLB)
7313 flags |= MAP_HUGETLB;
7314
0a4a9391 7315 if (file) {
13d7a241
SE
7316 struct inode *inode;
7317 dev_t dev;
3ea2f2b9 7318
2c42cfbf 7319 buf = kmalloc(PATH_MAX, GFP_KERNEL);
0a4a9391 7320 if (!buf) {
c7e548b4
ON
7321 name = "//enomem";
7322 goto cpy_name;
0a4a9391 7323 }
413ee3b4 7324 /*
3ea2f2b9 7325 * d_path() works from the end of the rb backwards, so we
413ee3b4
AB
7326 * need to add enough zero bytes after the string to handle
7327 * the 64bit alignment we do later.
7328 */
9bf39ab2 7329 name = file_path(file, buf, PATH_MAX - sizeof(u64));
0a4a9391 7330 if (IS_ERR(name)) {
c7e548b4
ON
7331 name = "//toolong";
7332 goto cpy_name;
0a4a9391 7333 }
13d7a241
SE
7334 inode = file_inode(vma->vm_file);
7335 dev = inode->i_sb->s_dev;
7336 ino = inode->i_ino;
7337 gen = inode->i_generation;
7338 maj = MAJOR(dev);
7339 min = MINOR(dev);
f972eb63 7340
c7e548b4 7341 goto got_name;
0a4a9391 7342 } else {
fbe26abe
JO
7343 if (vma->vm_ops && vma->vm_ops->name) {
7344 name = (char *) vma->vm_ops->name(vma);
7345 if (name)
7346 goto cpy_name;
7347 }
7348
2c42cfbf 7349 name = (char *)arch_vma_name(vma);
c7e548b4
ON
7350 if (name)
7351 goto cpy_name;
089dd79d 7352
32c5fb7e 7353 if (vma->vm_start <= vma->vm_mm->start_brk &&
3af9e859 7354 vma->vm_end >= vma->vm_mm->brk) {
c7e548b4
ON
7355 name = "[heap]";
7356 goto cpy_name;
32c5fb7e
ON
7357 }
7358 if (vma->vm_start <= vma->vm_mm->start_stack &&
3af9e859 7359 vma->vm_end >= vma->vm_mm->start_stack) {
c7e548b4
ON
7360 name = "[stack]";
7361 goto cpy_name;
089dd79d
PZ
7362 }
7363
c7e548b4
ON
7364 name = "//anon";
7365 goto cpy_name;
0a4a9391
PZ
7366 }
7367
c7e548b4
ON
7368cpy_name:
7369 strlcpy(tmp, name, sizeof(tmp));
7370 name = tmp;
0a4a9391 7371got_name:
2c42cfbf
PZ
7372 /*
7373 * Since our buffer works in 8 byte units we need to align our string
7374 * size to a multiple of 8. However, we must guarantee the tail end is
7375 * zero'd out to avoid leaking random bits to userspace.
7376 */
7377 size = strlen(name)+1;
7378 while (!IS_ALIGNED(size, sizeof(u64)))
7379 name[size++] = '\0';
0a4a9391
PZ
7380
7381 mmap_event->file_name = name;
7382 mmap_event->file_size = size;
13d7a241
SE
7383 mmap_event->maj = maj;
7384 mmap_event->min = min;
7385 mmap_event->ino = ino;
7386 mmap_event->ino_generation = gen;
f972eb63
PZ
7387 mmap_event->prot = prot;
7388 mmap_event->flags = flags;
0a4a9391 7389
2fe85427
SE
7390 if (!(vma->vm_flags & VM_EXEC))
7391 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
7392
cdd6c482 7393 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
0a4a9391 7394
aab5b71e 7395 perf_iterate_sb(perf_event_mmap_output,
52d857a8
JO
7396 mmap_event,
7397 NULL);
665c2142 7398
0a4a9391
PZ
7399 kfree(buf);
7400}
7401
375637bc
AS
7402/*
7403 * Check whether inode and address range match filter criteria.
7404 */
7405static bool perf_addr_filter_match(struct perf_addr_filter *filter,
7406 struct file *file, unsigned long offset,
7407 unsigned long size)
7408{
7f635ff1
MP
7409 /* d_inode(NULL) won't be equal to any mapped user-space file */
7410 if (!filter->path.dentry)
7411 return false;
7412
9511bce9 7413 if (d_inode(filter->path.dentry) != file_inode(file))
375637bc
AS
7414 return false;
7415
7416 if (filter->offset > offset + size)
7417 return false;
7418
7419 if (filter->offset + filter->size < offset)
7420 return false;
7421
7422 return true;
7423}
7424
c60f83b8
AS
7425static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter,
7426 struct vm_area_struct *vma,
7427 struct perf_addr_filter_range *fr)
7428{
7429 unsigned long vma_size = vma->vm_end - vma->vm_start;
7430 unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
7431 struct file *file = vma->vm_file;
7432
7433 if (!perf_addr_filter_match(filter, file, off, vma_size))
7434 return false;
7435
7436 if (filter->offset < off) {
7437 fr->start = vma->vm_start;
7438 fr->size = min(vma_size, filter->size - (off - filter->offset));
7439 } else {
7440 fr->start = vma->vm_start + filter->offset - off;
7441 fr->size = min(vma->vm_end - fr->start, filter->size);
7442 }
7443
7444 return true;
7445}
7446
375637bc
AS
7447static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
7448{
7449 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7450 struct vm_area_struct *vma = data;
375637bc
AS
7451 struct perf_addr_filter *filter;
7452 unsigned int restart = 0, count = 0;
c60f83b8 7453 unsigned long flags;
375637bc
AS
7454
7455 if (!has_addr_filter(event))
7456 return;
7457
c60f83b8 7458 if (!vma->vm_file)
375637bc
AS
7459 return;
7460
7461 raw_spin_lock_irqsave(&ifh->lock, flags);
7462 list_for_each_entry(filter, &ifh->list, entry) {
c60f83b8
AS
7463 if (perf_addr_filter_vma_adjust(filter, vma,
7464 &event->addr_filter_ranges[count]))
375637bc 7465 restart++;
375637bc
AS
7466
7467 count++;
7468 }
7469
7470 if (restart)
7471 event->addr_filters_gen++;
7472 raw_spin_unlock_irqrestore(&ifh->lock, flags);
7473
7474 if (restart)
767ae086 7475 perf_event_stop(event, 1);
375637bc
AS
7476}
7477
7478/*
7479 * Adjust all task's events' filters to the new vma
7480 */
7481static void perf_addr_filters_adjust(struct vm_area_struct *vma)
7482{
7483 struct perf_event_context *ctx;
7484 int ctxn;
7485
12b40a23
MP
7486 /*
7487 * Data tracing isn't supported yet and as such there is no need
7488 * to keep track of anything that isn't related to executable code:
7489 */
7490 if (!(vma->vm_flags & VM_EXEC))
7491 return;
7492
375637bc
AS
7493 rcu_read_lock();
7494 for_each_task_context_nr(ctxn) {
7495 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7496 if (!ctx)
7497 continue;
7498
aab5b71e 7499 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
375637bc
AS
7500 }
7501 rcu_read_unlock();
7502}
7503
3af9e859 7504void perf_event_mmap(struct vm_area_struct *vma)
0a4a9391 7505{
9ee318a7
PZ
7506 struct perf_mmap_event mmap_event;
7507
cdd6c482 7508 if (!atomic_read(&nr_mmap_events))
9ee318a7
PZ
7509 return;
7510
7511 mmap_event = (struct perf_mmap_event){
089dd79d 7512 .vma = vma,
573402db
PZ
7513 /* .file_name */
7514 /* .file_size */
cdd6c482 7515 .event_id = {
573402db 7516 .header = {
cdd6c482 7517 .type = PERF_RECORD_MMAP,
39447b38 7518 .misc = PERF_RECORD_MISC_USER,
573402db
PZ
7519 /* .size */
7520 },
7521 /* .pid */
7522 /* .tid */
089dd79d
PZ
7523 .start = vma->vm_start,
7524 .len = vma->vm_end - vma->vm_start,
3a0304e9 7525 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
0a4a9391 7526 },
13d7a241
SE
7527 /* .maj (attr_mmap2 only) */
7528 /* .min (attr_mmap2 only) */
7529 /* .ino (attr_mmap2 only) */
7530 /* .ino_generation (attr_mmap2 only) */
f972eb63
PZ
7531 /* .prot (attr_mmap2 only) */
7532 /* .flags (attr_mmap2 only) */
0a4a9391
PZ
7533 };
7534
375637bc 7535 perf_addr_filters_adjust(vma);
cdd6c482 7536 perf_event_mmap_event(&mmap_event);
0a4a9391
PZ
7537}
7538
68db7e98
AS
7539void perf_event_aux_event(struct perf_event *event, unsigned long head,
7540 unsigned long size, u64 flags)
7541{
7542 struct perf_output_handle handle;
7543 struct perf_sample_data sample;
7544 struct perf_aux_event {
7545 struct perf_event_header header;
7546 u64 offset;
7547 u64 size;
7548 u64 flags;
7549 } rec = {
7550 .header = {
7551 .type = PERF_RECORD_AUX,
7552 .misc = 0,
7553 .size = sizeof(rec),
7554 },
7555 .offset = head,
7556 .size = size,
7557 .flags = flags,
7558 };
7559 int ret;
7560
7561 perf_event_header__init_id(&rec.header, &sample, event);
7562 ret = perf_output_begin(&handle, event, rec.header.size);
7563
7564 if (ret)
7565 return;
7566
7567 perf_output_put(&handle, rec);
7568 perf_event__output_id_sample(event, &handle, &sample);
7569
7570 perf_output_end(&handle);
7571}
7572
f38b0dbb
KL
7573/*
7574 * Lost/dropped samples logging
7575 */
7576void perf_log_lost_samples(struct perf_event *event, u64 lost)
7577{
7578 struct perf_output_handle handle;
7579 struct perf_sample_data sample;
7580 int ret;
7581
7582 struct {
7583 struct perf_event_header header;
7584 u64 lost;
7585 } lost_samples_event = {
7586 .header = {
7587 .type = PERF_RECORD_LOST_SAMPLES,
7588 .misc = 0,
7589 .size = sizeof(lost_samples_event),
7590 },
7591 .lost = lost,
7592 };
7593
7594 perf_event_header__init_id(&lost_samples_event.header, &sample, event);
7595
7596 ret = perf_output_begin(&handle, event,
7597 lost_samples_event.header.size);
7598 if (ret)
7599 return;
7600
7601 perf_output_put(&handle, lost_samples_event);
7602 perf_event__output_id_sample(event, &handle, &sample);
7603 perf_output_end(&handle);
7604}
7605
45ac1403
AH
7606/*
7607 * context_switch tracking
7608 */
7609
7610struct perf_switch_event {
7611 struct task_struct *task;
7612 struct task_struct *next_prev;
7613
7614 struct {
7615 struct perf_event_header header;
7616 u32 next_prev_pid;
7617 u32 next_prev_tid;
7618 } event_id;
7619};
7620
7621static int perf_event_switch_match(struct perf_event *event)
7622{
7623 return event->attr.context_switch;
7624}
7625
7626static void perf_event_switch_output(struct perf_event *event, void *data)
7627{
7628 struct perf_switch_event *se = data;
7629 struct perf_output_handle handle;
7630 struct perf_sample_data sample;
7631 int ret;
7632
7633 if (!perf_event_switch_match(event))
7634 return;
7635
7636 /* Only CPU-wide events are allowed to see next/prev pid/tid */
7637 if (event->ctx->task) {
7638 se->event_id.header.type = PERF_RECORD_SWITCH;
7639 se->event_id.header.size = sizeof(se->event_id.header);
7640 } else {
7641 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
7642 se->event_id.header.size = sizeof(se->event_id);
7643 se->event_id.next_prev_pid =
7644 perf_event_pid(event, se->next_prev);
7645 se->event_id.next_prev_tid =
7646 perf_event_tid(event, se->next_prev);
7647 }
7648
7649 perf_event_header__init_id(&se->event_id.header, &sample, event);
7650
7651 ret = perf_output_begin(&handle, event, se->event_id.header.size);
7652 if (ret)
7653 return;
7654
7655 if (event->ctx->task)
7656 perf_output_put(&handle, se->event_id.header);
7657 else
7658 perf_output_put(&handle, se->event_id);
7659
7660 perf_event__output_id_sample(event, &handle, &sample);
7661
7662 perf_output_end(&handle);
7663}
7664
7665static void perf_event_switch(struct task_struct *task,
7666 struct task_struct *next_prev, bool sched_in)
7667{
7668 struct perf_switch_event switch_event;
7669
7670 /* N.B. caller checks nr_switch_events != 0 */
7671
7672 switch_event = (struct perf_switch_event){
7673 .task = task,
7674 .next_prev = next_prev,
7675 .event_id = {
7676 .header = {
7677 /* .type */
7678 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
7679 /* .size */
7680 },
7681 /* .next_prev_pid */
7682 /* .next_prev_tid */
7683 },
7684 };
7685
101592b4
AB
7686 if (!sched_in && task->state == TASK_RUNNING)
7687 switch_event.event_id.header.misc |=
7688 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
7689
aab5b71e 7690 perf_iterate_sb(perf_event_switch_output,
45ac1403
AH
7691 &switch_event,
7692 NULL);
7693}
7694
a78ac325
PZ
7695/*
7696 * IRQ throttle logging
7697 */
7698
cdd6c482 7699static void perf_log_throttle(struct perf_event *event, int enable)
a78ac325
PZ
7700{
7701 struct perf_output_handle handle;
c980d109 7702 struct perf_sample_data sample;
a78ac325
PZ
7703 int ret;
7704
7705 struct {
7706 struct perf_event_header header;
7707 u64 time;
cca3f454 7708 u64 id;
7f453c24 7709 u64 stream_id;
a78ac325
PZ
7710 } throttle_event = {
7711 .header = {
cdd6c482 7712 .type = PERF_RECORD_THROTTLE,
a78ac325
PZ
7713 .misc = 0,
7714 .size = sizeof(throttle_event),
7715 },
34f43927 7716 .time = perf_event_clock(event),
cdd6c482
IM
7717 .id = primary_event_id(event),
7718 .stream_id = event->id,
a78ac325
PZ
7719 };
7720
966ee4d6 7721 if (enable)
cdd6c482 7722 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
966ee4d6 7723
c980d109
ACM
7724 perf_event_header__init_id(&throttle_event.header, &sample, event);
7725
7726 ret = perf_output_begin(&handle, event,
a7ac67ea 7727 throttle_event.header.size);
a78ac325
PZ
7728 if (ret)
7729 return;
7730
7731 perf_output_put(&handle, throttle_event);
c980d109 7732 perf_event__output_id_sample(event, &handle, &sample);
a78ac325
PZ
7733 perf_output_end(&handle);
7734}
7735
76193a94
SL
7736/*
7737 * ksymbol register/unregister tracking
7738 */
7739
7740struct perf_ksymbol_event {
7741 const char *name;
7742 int name_len;
7743 struct {
7744 struct perf_event_header header;
7745 u64 addr;
7746 u32 len;
7747 u16 ksym_type;
7748 u16 flags;
7749 } event_id;
7750};
7751
7752static int perf_event_ksymbol_match(struct perf_event *event)
7753{
7754 return event->attr.ksymbol;
7755}
7756
7757static void perf_event_ksymbol_output(struct perf_event *event, void *data)
7758{
7759 struct perf_ksymbol_event *ksymbol_event = data;
7760 struct perf_output_handle handle;
7761 struct perf_sample_data sample;
7762 int ret;
7763
7764 if (!perf_event_ksymbol_match(event))
7765 return;
7766
7767 perf_event_header__init_id(&ksymbol_event->event_id.header,
7768 &sample, event);
7769 ret = perf_output_begin(&handle, event,
7770 ksymbol_event->event_id.header.size);
7771 if (ret)
7772 return;
7773
7774 perf_output_put(&handle, ksymbol_event->event_id);
7775 __output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len);
7776 perf_event__output_id_sample(event, &handle, &sample);
7777
7778 perf_output_end(&handle);
7779}
7780
7781void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister,
7782 const char *sym)
7783{
7784 struct perf_ksymbol_event ksymbol_event;
7785 char name[KSYM_NAME_LEN];
7786 u16 flags = 0;
7787 int name_len;
7788
7789 if (!atomic_read(&nr_ksymbol_events))
7790 return;
7791
7792 if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX ||
7793 ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN)
7794 goto err;
7795
7796 strlcpy(name, sym, KSYM_NAME_LEN);
7797 name_len = strlen(name) + 1;
7798 while (!IS_ALIGNED(name_len, sizeof(u64)))
7799 name[name_len++] = '\0';
7800 BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64));
7801
7802 if (unregister)
7803 flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER;
7804
7805 ksymbol_event = (struct perf_ksymbol_event){
7806 .name = name,
7807 .name_len = name_len,
7808 .event_id = {
7809 .header = {
7810 .type = PERF_RECORD_KSYMBOL,
7811 .size = sizeof(ksymbol_event.event_id) +
7812 name_len,
7813 },
7814 .addr = addr,
7815 .len = len,
7816 .ksym_type = ksym_type,
7817 .flags = flags,
7818 },
7819 };
7820
7821 perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL);
7822 return;
7823err:
7824 WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type);
7825}
7826
6ee52e2a
SL
7827/*
7828 * bpf program load/unload tracking
7829 */
7830
7831struct perf_bpf_event {
7832 struct bpf_prog *prog;
7833 struct {
7834 struct perf_event_header header;
7835 u16 type;
7836 u16 flags;
7837 u32 id;
7838 u8 tag[BPF_TAG_SIZE];
7839 } event_id;
7840};
7841
7842static int perf_event_bpf_match(struct perf_event *event)
7843{
7844 return event->attr.bpf_event;
7845}
7846
7847static void perf_event_bpf_output(struct perf_event *event, void *data)
7848{
7849 struct perf_bpf_event *bpf_event = data;
7850 struct perf_output_handle handle;
7851 struct perf_sample_data sample;
7852 int ret;
7853
7854 if (!perf_event_bpf_match(event))
7855 return;
7856
7857 perf_event_header__init_id(&bpf_event->event_id.header,
7858 &sample, event);
7859 ret = perf_output_begin(&handle, event,
7860 bpf_event->event_id.header.size);
7861 if (ret)
7862 return;
7863
7864 perf_output_put(&handle, bpf_event->event_id);
7865 perf_event__output_id_sample(event, &handle, &sample);
7866
7867 perf_output_end(&handle);
7868}
7869
7870static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog,
7871 enum perf_bpf_event_type type)
7872{
7873 bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD;
7874 char sym[KSYM_NAME_LEN];
7875 int i;
7876
7877 if (prog->aux->func_cnt == 0) {
7878 bpf_get_prog_name(prog, sym);
7879 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF,
7880 (u64)(unsigned long)prog->bpf_func,
7881 prog->jited_len, unregister, sym);
7882 } else {
7883 for (i = 0; i < prog->aux->func_cnt; i++) {
7884 struct bpf_prog *subprog = prog->aux->func[i];
7885
7886 bpf_get_prog_name(subprog, sym);
7887 perf_event_ksymbol(
7888 PERF_RECORD_KSYMBOL_TYPE_BPF,
7889 (u64)(unsigned long)subprog->bpf_func,
7890 subprog->jited_len, unregister, sym);
7891 }
7892 }
7893}
7894
7895void perf_event_bpf_event(struct bpf_prog *prog,
7896 enum perf_bpf_event_type type,
7897 u16 flags)
7898{
7899 struct perf_bpf_event bpf_event;
7900
7901 if (type <= PERF_BPF_EVENT_UNKNOWN ||
7902 type >= PERF_BPF_EVENT_MAX)
7903 return;
7904
7905 switch (type) {
7906 case PERF_BPF_EVENT_PROG_LOAD:
7907 case PERF_BPF_EVENT_PROG_UNLOAD:
7908 if (atomic_read(&nr_ksymbol_events))
7909 perf_event_bpf_emit_ksymbols(prog, type);
7910 break;
7911 default:
7912 break;
7913 }
7914
7915 if (!atomic_read(&nr_bpf_events))
7916 return;
7917
7918 bpf_event = (struct perf_bpf_event){
7919 .prog = prog,
7920 .event_id = {
7921 .header = {
7922 .type = PERF_RECORD_BPF_EVENT,
7923 .size = sizeof(bpf_event.event_id),
7924 },
7925 .type = type,
7926 .flags = flags,
7927 .id = prog->aux->id,
7928 },
7929 };
7930
7931 BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64));
7932
7933 memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE);
7934 perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL);
7935}
7936
8d4e6c4c
AS
7937void perf_event_itrace_started(struct perf_event *event)
7938{
7939 event->attach_state |= PERF_ATTACH_ITRACE;
7940}
7941
ec0d7729
AS
7942static void perf_log_itrace_start(struct perf_event *event)
7943{
7944 struct perf_output_handle handle;
7945 struct perf_sample_data sample;
7946 struct perf_aux_event {
7947 struct perf_event_header header;
7948 u32 pid;
7949 u32 tid;
7950 } rec;
7951 int ret;
7952
7953 if (event->parent)
7954 event = event->parent;
7955
7956 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
8d4e6c4c 7957 event->attach_state & PERF_ATTACH_ITRACE)
ec0d7729
AS
7958 return;
7959
ec0d7729
AS
7960 rec.header.type = PERF_RECORD_ITRACE_START;
7961 rec.header.misc = 0;
7962 rec.header.size = sizeof(rec);
7963 rec.pid = perf_event_pid(event, current);
7964 rec.tid = perf_event_tid(event, current);
7965
7966 perf_event_header__init_id(&rec.header, &sample, event);
7967 ret = perf_output_begin(&handle, event, rec.header.size);
7968
7969 if (ret)
7970 return;
7971
7972 perf_output_put(&handle, rec);
7973 perf_event__output_id_sample(event, &handle, &sample);
7974
7975 perf_output_end(&handle);
7976}
7977
475113d9
JO
7978static int
7979__perf_event_account_interrupt(struct perf_event *event, int throttle)
f6c7d5fe 7980{
cdd6c482 7981 struct hw_perf_event *hwc = &event->hw;
79f14641 7982 int ret = 0;
475113d9 7983 u64 seq;
96398826 7984
e050e3f0
SE
7985 seq = __this_cpu_read(perf_throttled_seq);
7986 if (seq != hwc->interrupts_seq) {
7987 hwc->interrupts_seq = seq;
7988 hwc->interrupts = 1;
7989 } else {
7990 hwc->interrupts++;
7991 if (unlikely(throttle
7992 && hwc->interrupts >= max_samples_per_tick)) {
7993 __this_cpu_inc(perf_throttled_count);
555e0c1e 7994 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
163ec435
PZ
7995 hwc->interrupts = MAX_INTERRUPTS;
7996 perf_log_throttle(event, 0);
a78ac325
PZ
7997 ret = 1;
7998 }
e050e3f0 7999 }
60db5e09 8000
cdd6c482 8001 if (event->attr.freq) {
def0a9b2 8002 u64 now = perf_clock();
abd50713 8003 s64 delta = now - hwc->freq_time_stamp;
bd2b5b12 8004
abd50713 8005 hwc->freq_time_stamp = now;
bd2b5b12 8006
abd50713 8007 if (delta > 0 && delta < 2*TICK_NSEC)
f39d47ff 8008 perf_adjust_period(event, delta, hwc->last_period, true);
bd2b5b12
PZ
8009 }
8010
475113d9
JO
8011 return ret;
8012}
8013
8014int perf_event_account_interrupt(struct perf_event *event)
8015{
8016 return __perf_event_account_interrupt(event, 1);
8017}
8018
8019/*
8020 * Generic event overflow handling, sampling.
8021 */
8022
8023static int __perf_event_overflow(struct perf_event *event,
8024 int throttle, struct perf_sample_data *data,
8025 struct pt_regs *regs)
8026{
8027 int events = atomic_read(&event->event_limit);
8028 int ret = 0;
8029
8030 /*
8031 * Non-sampling counters might still use the PMI to fold short
8032 * hardware counters, ignore those.
8033 */
8034 if (unlikely(!is_sampling_event(event)))
8035 return 0;
8036
8037 ret = __perf_event_account_interrupt(event, throttle);
cc1582c2 8038
2023b359
PZ
8039 /*
8040 * XXX event_limit might not quite work as expected on inherited
cdd6c482 8041 * events
2023b359
PZ
8042 */
8043
cdd6c482
IM
8044 event->pending_kill = POLL_IN;
8045 if (events && atomic_dec_and_test(&event->event_limit)) {
79f14641 8046 ret = 1;
cdd6c482 8047 event->pending_kill = POLL_HUP;
5aab90ce
JO
8048
8049 perf_event_disable_inatomic(event);
79f14641
PZ
8050 }
8051
aa6a5f3c 8052 READ_ONCE(event->overflow_handler)(event, data, regs);
453f19ee 8053
fed66e2c 8054 if (*perf_event_fasync(event) && event->pending_kill) {
a8b0ca17
PZ
8055 event->pending_wakeup = 1;
8056 irq_work_queue(&event->pending);
f506b3dc
PZ
8057 }
8058
79f14641 8059 return ret;
f6c7d5fe
PZ
8060}
8061
a8b0ca17 8062int perf_event_overflow(struct perf_event *event,
5622f295
MM
8063 struct perf_sample_data *data,
8064 struct pt_regs *regs)
850bc73f 8065{
a8b0ca17 8066 return __perf_event_overflow(event, 1, data, regs);
850bc73f
PZ
8067}
8068
15dbf27c 8069/*
cdd6c482 8070 * Generic software event infrastructure
15dbf27c
PZ
8071 */
8072
b28ab83c
PZ
8073struct swevent_htable {
8074 struct swevent_hlist *swevent_hlist;
8075 struct mutex hlist_mutex;
8076 int hlist_refcount;
8077
8078 /* Recursion avoidance in each contexts */
8079 int recursion[PERF_NR_CONTEXTS];
8080};
8081
8082static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
8083
7b4b6658 8084/*
cdd6c482
IM
8085 * We directly increment event->count and keep a second value in
8086 * event->hw.period_left to count intervals. This period event
7b4b6658
PZ
8087 * is kept in the range [-sample_period, 0] so that we can use the
8088 * sign as trigger.
8089 */
8090
ab573844 8091u64 perf_swevent_set_period(struct perf_event *event)
15dbf27c 8092{
cdd6c482 8093 struct hw_perf_event *hwc = &event->hw;
7b4b6658
PZ
8094 u64 period = hwc->last_period;
8095 u64 nr, offset;
8096 s64 old, val;
8097
8098 hwc->last_period = hwc->sample_period;
15dbf27c
PZ
8099
8100again:
e7850595 8101 old = val = local64_read(&hwc->period_left);
7b4b6658
PZ
8102 if (val < 0)
8103 return 0;
15dbf27c 8104
7b4b6658
PZ
8105 nr = div64_u64(period + val, period);
8106 offset = nr * period;
8107 val -= offset;
e7850595 8108 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7b4b6658 8109 goto again;
15dbf27c 8110
7b4b6658 8111 return nr;
15dbf27c
PZ
8112}
8113
0cff784a 8114static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
a8b0ca17 8115 struct perf_sample_data *data,
5622f295 8116 struct pt_regs *regs)
15dbf27c 8117{
cdd6c482 8118 struct hw_perf_event *hwc = &event->hw;
850bc73f 8119 int throttle = 0;
15dbf27c 8120
0cff784a
PZ
8121 if (!overflow)
8122 overflow = perf_swevent_set_period(event);
15dbf27c 8123
7b4b6658
PZ
8124 if (hwc->interrupts == MAX_INTERRUPTS)
8125 return;
15dbf27c 8126
7b4b6658 8127 for (; overflow; overflow--) {
a8b0ca17 8128 if (__perf_event_overflow(event, throttle,
5622f295 8129 data, regs)) {
7b4b6658
PZ
8130 /*
8131 * We inhibit the overflow from happening when
8132 * hwc->interrupts == MAX_INTERRUPTS.
8133 */
8134 break;
8135 }
cf450a73 8136 throttle = 1;
7b4b6658 8137 }
15dbf27c
PZ
8138}
8139
a4eaf7f1 8140static void perf_swevent_event(struct perf_event *event, u64 nr,
a8b0ca17 8141 struct perf_sample_data *data,
5622f295 8142 struct pt_regs *regs)
7b4b6658 8143{
cdd6c482 8144 struct hw_perf_event *hwc = &event->hw;
d6d020e9 8145
e7850595 8146 local64_add(nr, &event->count);
d6d020e9 8147
0cff784a
PZ
8148 if (!regs)
8149 return;
8150
6c7e550f 8151 if (!is_sampling_event(event))
7b4b6658 8152 return;
d6d020e9 8153
5d81e5cf
AV
8154 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
8155 data->period = nr;
8156 return perf_swevent_overflow(event, 1, data, regs);
8157 } else
8158 data->period = event->hw.last_period;
8159
0cff784a 8160 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
a8b0ca17 8161 return perf_swevent_overflow(event, 1, data, regs);
0cff784a 8162
e7850595 8163 if (local64_add_negative(nr, &hwc->period_left))
7b4b6658 8164 return;
df1a132b 8165
a8b0ca17 8166 perf_swevent_overflow(event, 0, data, regs);
d6d020e9
PZ
8167}
8168
f5ffe02e
FW
8169static int perf_exclude_event(struct perf_event *event,
8170 struct pt_regs *regs)
8171{
a4eaf7f1 8172 if (event->hw.state & PERF_HES_STOPPED)
91b2f482 8173 return 1;
a4eaf7f1 8174
f5ffe02e
FW
8175 if (regs) {
8176 if (event->attr.exclude_user && user_mode(regs))
8177 return 1;
8178
8179 if (event->attr.exclude_kernel && !user_mode(regs))
8180 return 1;
8181 }
8182
8183 return 0;
8184}
8185
cdd6c482 8186static int perf_swevent_match(struct perf_event *event,
1c432d89 8187 enum perf_type_id type,
6fb2915d
LZ
8188 u32 event_id,
8189 struct perf_sample_data *data,
8190 struct pt_regs *regs)
15dbf27c 8191{
cdd6c482 8192 if (event->attr.type != type)
a21ca2ca 8193 return 0;
f5ffe02e 8194
cdd6c482 8195 if (event->attr.config != event_id)
15dbf27c
PZ
8196 return 0;
8197
f5ffe02e
FW
8198 if (perf_exclude_event(event, regs))
8199 return 0;
15dbf27c
PZ
8200
8201 return 1;
8202}
8203
76e1d904
FW
8204static inline u64 swevent_hash(u64 type, u32 event_id)
8205{
8206 u64 val = event_id | (type << 32);
8207
8208 return hash_64(val, SWEVENT_HLIST_BITS);
8209}
8210
49f135ed
FW
8211static inline struct hlist_head *
8212__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
76e1d904 8213{
49f135ed
FW
8214 u64 hash = swevent_hash(type, event_id);
8215
8216 return &hlist->heads[hash];
8217}
76e1d904 8218
49f135ed
FW
8219/* For the read side: events when they trigger */
8220static inline struct hlist_head *
b28ab83c 8221find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
49f135ed
FW
8222{
8223 struct swevent_hlist *hlist;
76e1d904 8224
b28ab83c 8225 hlist = rcu_dereference(swhash->swevent_hlist);
76e1d904
FW
8226 if (!hlist)
8227 return NULL;
8228
49f135ed
FW
8229 return __find_swevent_head(hlist, type, event_id);
8230}
8231
8232/* For the event head insertion and removal in the hlist */
8233static inline struct hlist_head *
b28ab83c 8234find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
49f135ed
FW
8235{
8236 struct swevent_hlist *hlist;
8237 u32 event_id = event->attr.config;
8238 u64 type = event->attr.type;
8239
8240 /*
8241 * Event scheduling is always serialized against hlist allocation
8242 * and release. Which makes the protected version suitable here.
8243 * The context lock guarantees that.
8244 */
b28ab83c 8245 hlist = rcu_dereference_protected(swhash->swevent_hlist,
49f135ed
FW
8246 lockdep_is_held(&event->ctx->lock));
8247 if (!hlist)
8248 return NULL;
8249
8250 return __find_swevent_head(hlist, type, event_id);
76e1d904
FW
8251}
8252
8253static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
a8b0ca17 8254 u64 nr,
76e1d904
FW
8255 struct perf_sample_data *data,
8256 struct pt_regs *regs)
15dbf27c 8257{
4a32fea9 8258 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 8259 struct perf_event *event;
76e1d904 8260 struct hlist_head *head;
15dbf27c 8261
76e1d904 8262 rcu_read_lock();
b28ab83c 8263 head = find_swevent_head_rcu(swhash, type, event_id);
76e1d904
FW
8264 if (!head)
8265 goto end;
8266
b67bfe0d 8267 hlist_for_each_entry_rcu(event, head, hlist_entry) {
6fb2915d 8268 if (perf_swevent_match(event, type, event_id, data, regs))
a8b0ca17 8269 perf_swevent_event(event, nr, data, regs);
15dbf27c 8270 }
76e1d904
FW
8271end:
8272 rcu_read_unlock();
15dbf27c
PZ
8273}
8274
86038c5e
PZI
8275DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
8276
4ed7c92d 8277int perf_swevent_get_recursion_context(void)
96f6d444 8278{
4a32fea9 8279 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
96f6d444 8280
b28ab83c 8281 return get_recursion_context(swhash->recursion);
96f6d444 8282}
645e8cc0 8283EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
96f6d444 8284
98b5c2c6 8285void perf_swevent_put_recursion_context(int rctx)
15dbf27c 8286{
4a32fea9 8287 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
927c7a9e 8288
b28ab83c 8289 put_recursion_context(swhash->recursion, rctx);
ce71b9df 8290}
15dbf27c 8291
86038c5e 8292void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
b8e83514 8293{
a4234bfc 8294 struct perf_sample_data data;
4ed7c92d 8295
86038c5e 8296 if (WARN_ON_ONCE(!regs))
4ed7c92d 8297 return;
a4234bfc 8298
fd0d000b 8299 perf_sample_data_init(&data, addr, 0);
a8b0ca17 8300 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
86038c5e
PZI
8301}
8302
8303void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
8304{
8305 int rctx;
8306
8307 preempt_disable_notrace();
8308 rctx = perf_swevent_get_recursion_context();
8309 if (unlikely(rctx < 0))
8310 goto fail;
8311
8312 ___perf_sw_event(event_id, nr, regs, addr);
4ed7c92d
PZ
8313
8314 perf_swevent_put_recursion_context(rctx);
86038c5e 8315fail:
1c024eca 8316 preempt_enable_notrace();
b8e83514
PZ
8317}
8318
cdd6c482 8319static void perf_swevent_read(struct perf_event *event)
15dbf27c 8320{
15dbf27c
PZ
8321}
8322
a4eaf7f1 8323static int perf_swevent_add(struct perf_event *event, int flags)
15dbf27c 8324{
4a32fea9 8325 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 8326 struct hw_perf_event *hwc = &event->hw;
76e1d904
FW
8327 struct hlist_head *head;
8328
6c7e550f 8329 if (is_sampling_event(event)) {
7b4b6658 8330 hwc->last_period = hwc->sample_period;
cdd6c482 8331 perf_swevent_set_period(event);
7b4b6658 8332 }
76e1d904 8333
a4eaf7f1
PZ
8334 hwc->state = !(flags & PERF_EF_START);
8335
b28ab83c 8336 head = find_swevent_head(swhash, event);
12ca6ad2 8337 if (WARN_ON_ONCE(!head))
76e1d904
FW
8338 return -EINVAL;
8339
8340 hlist_add_head_rcu(&event->hlist_entry, head);
6a694a60 8341 perf_event_update_userpage(event);
76e1d904 8342
15dbf27c
PZ
8343 return 0;
8344}
8345
a4eaf7f1 8346static void perf_swevent_del(struct perf_event *event, int flags)
15dbf27c 8347{
76e1d904 8348 hlist_del_rcu(&event->hlist_entry);
15dbf27c
PZ
8349}
8350
a4eaf7f1 8351static void perf_swevent_start(struct perf_event *event, int flags)
5c92d124 8352{
a4eaf7f1 8353 event->hw.state = 0;
d6d020e9 8354}
aa9c4c0f 8355
a4eaf7f1 8356static void perf_swevent_stop(struct perf_event *event, int flags)
d6d020e9 8357{
a4eaf7f1 8358 event->hw.state = PERF_HES_STOPPED;
bae43c99
IM
8359}
8360
49f135ed
FW
8361/* Deref the hlist from the update side */
8362static inline struct swevent_hlist *
b28ab83c 8363swevent_hlist_deref(struct swevent_htable *swhash)
49f135ed 8364{
b28ab83c
PZ
8365 return rcu_dereference_protected(swhash->swevent_hlist,
8366 lockdep_is_held(&swhash->hlist_mutex));
49f135ed
FW
8367}
8368
b28ab83c 8369static void swevent_hlist_release(struct swevent_htable *swhash)
76e1d904 8370{
b28ab83c 8371 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
76e1d904 8372
49f135ed 8373 if (!hlist)
76e1d904
FW
8374 return;
8375
70691d4a 8376 RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
fa4bbc4c 8377 kfree_rcu(hlist, rcu_head);
76e1d904
FW
8378}
8379
3b364d7b 8380static void swevent_hlist_put_cpu(int cpu)
76e1d904 8381{
b28ab83c 8382 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904 8383
b28ab83c 8384 mutex_lock(&swhash->hlist_mutex);
76e1d904 8385
b28ab83c
PZ
8386 if (!--swhash->hlist_refcount)
8387 swevent_hlist_release(swhash);
76e1d904 8388
b28ab83c 8389 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
8390}
8391
3b364d7b 8392static void swevent_hlist_put(void)
76e1d904
FW
8393{
8394 int cpu;
8395
76e1d904 8396 for_each_possible_cpu(cpu)
3b364d7b 8397 swevent_hlist_put_cpu(cpu);
76e1d904
FW
8398}
8399
3b364d7b 8400static int swevent_hlist_get_cpu(int cpu)
76e1d904 8401{
b28ab83c 8402 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904
FW
8403 int err = 0;
8404
b28ab83c 8405 mutex_lock(&swhash->hlist_mutex);
a63fbed7
TG
8406 if (!swevent_hlist_deref(swhash) &&
8407 cpumask_test_cpu(cpu, perf_online_mask)) {
76e1d904
FW
8408 struct swevent_hlist *hlist;
8409
8410 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
8411 if (!hlist) {
8412 err = -ENOMEM;
8413 goto exit;
8414 }
b28ab83c 8415 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 8416 }
b28ab83c 8417 swhash->hlist_refcount++;
9ed6060d 8418exit:
b28ab83c 8419 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
8420
8421 return err;
8422}
8423
3b364d7b 8424static int swevent_hlist_get(void)
76e1d904 8425{
3b364d7b 8426 int err, cpu, failed_cpu;
76e1d904 8427
a63fbed7 8428 mutex_lock(&pmus_lock);
76e1d904 8429 for_each_possible_cpu(cpu) {
3b364d7b 8430 err = swevent_hlist_get_cpu(cpu);
76e1d904
FW
8431 if (err) {
8432 failed_cpu = cpu;
8433 goto fail;
8434 }
8435 }
a63fbed7 8436 mutex_unlock(&pmus_lock);
76e1d904 8437 return 0;
9ed6060d 8438fail:
76e1d904
FW
8439 for_each_possible_cpu(cpu) {
8440 if (cpu == failed_cpu)
8441 break;
3b364d7b 8442 swevent_hlist_put_cpu(cpu);
76e1d904 8443 }
a63fbed7 8444 mutex_unlock(&pmus_lock);
76e1d904
FW
8445 return err;
8446}
8447
c5905afb 8448struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
95476b64 8449
b0a873eb
PZ
8450static void sw_perf_event_destroy(struct perf_event *event)
8451{
8452 u64 event_id = event->attr.config;
95476b64 8453
b0a873eb
PZ
8454 WARN_ON(event->parent);
8455
c5905afb 8456 static_key_slow_dec(&perf_swevent_enabled[event_id]);
3b364d7b 8457 swevent_hlist_put();
b0a873eb
PZ
8458}
8459
8460static int perf_swevent_init(struct perf_event *event)
8461{
8176cced 8462 u64 event_id = event->attr.config;
b0a873eb
PZ
8463
8464 if (event->attr.type != PERF_TYPE_SOFTWARE)
8465 return -ENOENT;
8466
2481c5fa
SE
8467 /*
8468 * no branch sampling for software events
8469 */
8470 if (has_branch_stack(event))
8471 return -EOPNOTSUPP;
8472
b0a873eb
PZ
8473 switch (event_id) {
8474 case PERF_COUNT_SW_CPU_CLOCK:
8475 case PERF_COUNT_SW_TASK_CLOCK:
8476 return -ENOENT;
8477
8478 default:
8479 break;
8480 }
8481
ce677831 8482 if (event_id >= PERF_COUNT_SW_MAX)
b0a873eb
PZ
8483 return -ENOENT;
8484
8485 if (!event->parent) {
8486 int err;
8487
3b364d7b 8488 err = swevent_hlist_get();
b0a873eb
PZ
8489 if (err)
8490 return err;
8491
c5905afb 8492 static_key_slow_inc(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
8493 event->destroy = sw_perf_event_destroy;
8494 }
8495
8496 return 0;
8497}
8498
8499static struct pmu perf_swevent = {
89a1e187 8500 .task_ctx_nr = perf_sw_context,
95476b64 8501
34f43927
PZ
8502 .capabilities = PERF_PMU_CAP_NO_NMI,
8503
b0a873eb 8504 .event_init = perf_swevent_init,
a4eaf7f1
PZ
8505 .add = perf_swevent_add,
8506 .del = perf_swevent_del,
8507 .start = perf_swevent_start,
8508 .stop = perf_swevent_stop,
1c024eca 8509 .read = perf_swevent_read,
1c024eca
PZ
8510};
8511
b0a873eb
PZ
8512#ifdef CONFIG_EVENT_TRACING
8513
1c024eca
PZ
8514static int perf_tp_filter_match(struct perf_event *event,
8515 struct perf_sample_data *data)
8516{
7e3f977e 8517 void *record = data->raw->frag.data;
1c024eca 8518
b71b437e
PZ
8519 /* only top level events have filters set */
8520 if (event->parent)
8521 event = event->parent;
8522
1c024eca
PZ
8523 if (likely(!event->filter) || filter_match_preds(event->filter, record))
8524 return 1;
8525 return 0;
8526}
8527
8528static int perf_tp_event_match(struct perf_event *event,
8529 struct perf_sample_data *data,
8530 struct pt_regs *regs)
8531{
a0f7d0f7
FW
8532 if (event->hw.state & PERF_HES_STOPPED)
8533 return 0;
580d607c
PZ
8534 /*
8535 * All tracepoints are from kernel-space.
8536 */
8537 if (event->attr.exclude_kernel)
1c024eca
PZ
8538 return 0;
8539
8540 if (!perf_tp_filter_match(event, data))
8541 return 0;
8542
8543 return 1;
8544}
8545
85b67bcb
AS
8546void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
8547 struct trace_event_call *call, u64 count,
8548 struct pt_regs *regs, struct hlist_head *head,
8549 struct task_struct *task)
8550{
e87c6bc3 8551 if (bpf_prog_array_valid(call)) {
85b67bcb 8552 *(struct pt_regs **)raw_data = regs;
e87c6bc3 8553 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
85b67bcb
AS
8554 perf_swevent_put_recursion_context(rctx);
8555 return;
8556 }
8557 }
8558 perf_tp_event(call->event.type, count, raw_data, size, regs, head,
8fd0fbbe 8559 rctx, task);
85b67bcb
AS
8560}
8561EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
8562
1e1dcd93 8563void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
e6dab5ff 8564 struct pt_regs *regs, struct hlist_head *head, int rctx,
8fd0fbbe 8565 struct task_struct *task)
95476b64
FW
8566{
8567 struct perf_sample_data data;
8fd0fbbe 8568 struct perf_event *event;
1c024eca 8569
95476b64 8570 struct perf_raw_record raw = {
7e3f977e
DB
8571 .frag = {
8572 .size = entry_size,
8573 .data = record,
8574 },
95476b64
FW
8575 };
8576
1e1dcd93 8577 perf_sample_data_init(&data, 0, 0);
95476b64
FW
8578 data.raw = &raw;
8579
1e1dcd93
AS
8580 perf_trace_buf_update(record, event_type);
8581
8fd0fbbe 8582 hlist_for_each_entry_rcu(event, head, hlist_entry) {
1c024eca 8583 if (perf_tp_event_match(event, &data, regs))
a8b0ca17 8584 perf_swevent_event(event, count, &data, regs);
4f41c013 8585 }
ecc55f84 8586
e6dab5ff
AV
8587 /*
8588 * If we got specified a target task, also iterate its context and
8589 * deliver this event there too.
8590 */
8591 if (task && task != current) {
8592 struct perf_event_context *ctx;
8593 struct trace_entry *entry = record;
8594
8595 rcu_read_lock();
8596 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
8597 if (!ctx)
8598 goto unlock;
8599
8600 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
cd6fb677
JO
8601 if (event->cpu != smp_processor_id())
8602 continue;
e6dab5ff
AV
8603 if (event->attr.type != PERF_TYPE_TRACEPOINT)
8604 continue;
8605 if (event->attr.config != entry->type)
8606 continue;
8607 if (perf_tp_event_match(event, &data, regs))
8608 perf_swevent_event(event, count, &data, regs);
8609 }
8610unlock:
8611 rcu_read_unlock();
8612 }
8613
ecc55f84 8614 perf_swevent_put_recursion_context(rctx);
95476b64
FW
8615}
8616EXPORT_SYMBOL_GPL(perf_tp_event);
8617
cdd6c482 8618static void tp_perf_event_destroy(struct perf_event *event)
e077df4f 8619{
1c024eca 8620 perf_trace_destroy(event);
e077df4f
PZ
8621}
8622
b0a873eb 8623static int perf_tp_event_init(struct perf_event *event)
e077df4f 8624{
76e1d904
FW
8625 int err;
8626
b0a873eb
PZ
8627 if (event->attr.type != PERF_TYPE_TRACEPOINT)
8628 return -ENOENT;
8629
2481c5fa
SE
8630 /*
8631 * no branch sampling for tracepoint events
8632 */
8633 if (has_branch_stack(event))
8634 return -EOPNOTSUPP;
8635
1c024eca
PZ
8636 err = perf_trace_init(event);
8637 if (err)
b0a873eb 8638 return err;
e077df4f 8639
cdd6c482 8640 event->destroy = tp_perf_event_destroy;
e077df4f 8641
b0a873eb
PZ
8642 return 0;
8643}
8644
8645static struct pmu perf_tracepoint = {
89a1e187
PZ
8646 .task_ctx_nr = perf_sw_context,
8647
b0a873eb 8648 .event_init = perf_tp_event_init,
a4eaf7f1
PZ
8649 .add = perf_trace_add,
8650 .del = perf_trace_del,
8651 .start = perf_swevent_start,
8652 .stop = perf_swevent_stop,
b0a873eb 8653 .read = perf_swevent_read,
b0a873eb
PZ
8654};
8655
33ea4b24 8656#if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
e12f03d7
SL
8657/*
8658 * Flags in config, used by dynamic PMU kprobe and uprobe
8659 * The flags should match following PMU_FORMAT_ATTR().
8660 *
8661 * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
8662 * if not set, create kprobe/uprobe
a6ca88b2
SL
8663 *
8664 * The following values specify a reference counter (or semaphore in the
8665 * terminology of tools like dtrace, systemtap, etc.) Userspace Statically
8666 * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset.
8667 *
8668 * PERF_UPROBE_REF_CTR_OFFSET_BITS # of bits in config as th offset
8669 * PERF_UPROBE_REF_CTR_OFFSET_SHIFT # of bits to shift left
e12f03d7
SL
8670 */
8671enum perf_probe_config {
8672 PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0, /* [k,u]retprobe */
a6ca88b2
SL
8673 PERF_UPROBE_REF_CTR_OFFSET_BITS = 32,
8674 PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS,
e12f03d7
SL
8675};
8676
8677PMU_FORMAT_ATTR(retprobe, "config:0");
a6ca88b2 8678#endif
e12f03d7 8679
a6ca88b2
SL
8680#ifdef CONFIG_KPROBE_EVENTS
8681static struct attribute *kprobe_attrs[] = {
e12f03d7
SL
8682 &format_attr_retprobe.attr,
8683 NULL,
8684};
8685
a6ca88b2 8686static struct attribute_group kprobe_format_group = {
e12f03d7 8687 .name = "format",
a6ca88b2 8688 .attrs = kprobe_attrs,
e12f03d7
SL
8689};
8690
a6ca88b2
SL
8691static const struct attribute_group *kprobe_attr_groups[] = {
8692 &kprobe_format_group,
e12f03d7
SL
8693 NULL,
8694};
8695
8696static int perf_kprobe_event_init(struct perf_event *event);
8697static struct pmu perf_kprobe = {
8698 .task_ctx_nr = perf_sw_context,
8699 .event_init = perf_kprobe_event_init,
8700 .add = perf_trace_add,
8701 .del = perf_trace_del,
8702 .start = perf_swevent_start,
8703 .stop = perf_swevent_stop,
8704 .read = perf_swevent_read,
a6ca88b2 8705 .attr_groups = kprobe_attr_groups,
e12f03d7
SL
8706};
8707
8708static int perf_kprobe_event_init(struct perf_event *event)
8709{
8710 int err;
8711 bool is_retprobe;
8712
8713 if (event->attr.type != perf_kprobe.type)
8714 return -ENOENT;
32e6e967
SL
8715
8716 if (!capable(CAP_SYS_ADMIN))
8717 return -EACCES;
8718
e12f03d7
SL
8719 /*
8720 * no branch sampling for probe events
8721 */
8722 if (has_branch_stack(event))
8723 return -EOPNOTSUPP;
8724
8725 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
8726 err = perf_kprobe_init(event, is_retprobe);
8727 if (err)
8728 return err;
8729
8730 event->destroy = perf_kprobe_destroy;
8731
8732 return 0;
8733}
8734#endif /* CONFIG_KPROBE_EVENTS */
8735
33ea4b24 8736#ifdef CONFIG_UPROBE_EVENTS
a6ca88b2
SL
8737PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63");
8738
8739static struct attribute *uprobe_attrs[] = {
8740 &format_attr_retprobe.attr,
8741 &format_attr_ref_ctr_offset.attr,
8742 NULL,
8743};
8744
8745static struct attribute_group uprobe_format_group = {
8746 .name = "format",
8747 .attrs = uprobe_attrs,
8748};
8749
8750static const struct attribute_group *uprobe_attr_groups[] = {
8751 &uprobe_format_group,
8752 NULL,
8753};
8754
33ea4b24
SL
8755static int perf_uprobe_event_init(struct perf_event *event);
8756static struct pmu perf_uprobe = {
8757 .task_ctx_nr = perf_sw_context,
8758 .event_init = perf_uprobe_event_init,
8759 .add = perf_trace_add,
8760 .del = perf_trace_del,
8761 .start = perf_swevent_start,
8762 .stop = perf_swevent_stop,
8763 .read = perf_swevent_read,
a6ca88b2 8764 .attr_groups = uprobe_attr_groups,
33ea4b24
SL
8765};
8766
8767static int perf_uprobe_event_init(struct perf_event *event)
8768{
8769 int err;
a6ca88b2 8770 unsigned long ref_ctr_offset;
33ea4b24
SL
8771 bool is_retprobe;
8772
8773 if (event->attr.type != perf_uprobe.type)
8774 return -ENOENT;
32e6e967
SL
8775
8776 if (!capable(CAP_SYS_ADMIN))
8777 return -EACCES;
8778
33ea4b24
SL
8779 /*
8780 * no branch sampling for probe events
8781 */
8782 if (has_branch_stack(event))
8783 return -EOPNOTSUPP;
8784
8785 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
a6ca88b2
SL
8786 ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
8787 err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe);
33ea4b24
SL
8788 if (err)
8789 return err;
8790
8791 event->destroy = perf_uprobe_destroy;
8792
8793 return 0;
8794}
8795#endif /* CONFIG_UPROBE_EVENTS */
8796
b0a873eb
PZ
8797static inline void perf_tp_register(void)
8798{
2e80a82a 8799 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
e12f03d7
SL
8800#ifdef CONFIG_KPROBE_EVENTS
8801 perf_pmu_register(&perf_kprobe, "kprobe", -1);
8802#endif
33ea4b24
SL
8803#ifdef CONFIG_UPROBE_EVENTS
8804 perf_pmu_register(&perf_uprobe, "uprobe", -1);
8805#endif
e077df4f 8806}
6fb2915d 8807
6fb2915d
LZ
8808static void perf_event_free_filter(struct perf_event *event)
8809{
8810 ftrace_profile_free_filter(event);
8811}
8812
aa6a5f3c
AS
8813#ifdef CONFIG_BPF_SYSCALL
8814static void bpf_overflow_handler(struct perf_event *event,
8815 struct perf_sample_data *data,
8816 struct pt_regs *regs)
8817{
8818 struct bpf_perf_event_data_kern ctx = {
8819 .data = data,
7d9285e8 8820 .event = event,
aa6a5f3c
AS
8821 };
8822 int ret = 0;
8823
c895f6f7 8824 ctx.regs = perf_arch_bpf_user_pt_regs(regs);
aa6a5f3c
AS
8825 preempt_disable();
8826 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
8827 goto out;
8828 rcu_read_lock();
88575199 8829 ret = BPF_PROG_RUN(event->prog, &ctx);
aa6a5f3c
AS
8830 rcu_read_unlock();
8831out:
8832 __this_cpu_dec(bpf_prog_active);
8833 preempt_enable();
8834 if (!ret)
8835 return;
8836
8837 event->orig_overflow_handler(event, data, regs);
8838}
8839
8840static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8841{
8842 struct bpf_prog *prog;
8843
8844 if (event->overflow_handler_context)
8845 /* hw breakpoint or kernel counter */
8846 return -EINVAL;
8847
8848 if (event->prog)
8849 return -EEXIST;
8850
8851 prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
8852 if (IS_ERR(prog))
8853 return PTR_ERR(prog);
8854
8855 event->prog = prog;
8856 event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
8857 WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
8858 return 0;
8859}
8860
8861static void perf_event_free_bpf_handler(struct perf_event *event)
8862{
8863 struct bpf_prog *prog = event->prog;
8864
8865 if (!prog)
8866 return;
8867
8868 WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
8869 event->prog = NULL;
8870 bpf_prog_put(prog);
8871}
8872#else
8873static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8874{
8875 return -EOPNOTSUPP;
8876}
8877static void perf_event_free_bpf_handler(struct perf_event *event)
8878{
8879}
8880#endif
8881
e12f03d7
SL
8882/*
8883 * returns true if the event is a tracepoint, or a kprobe/upprobe created
8884 * with perf_event_open()
8885 */
8886static inline bool perf_event_is_tracing(struct perf_event *event)
8887{
8888 if (event->pmu == &perf_tracepoint)
8889 return true;
8890#ifdef CONFIG_KPROBE_EVENTS
8891 if (event->pmu == &perf_kprobe)
8892 return true;
33ea4b24
SL
8893#endif
8894#ifdef CONFIG_UPROBE_EVENTS
8895 if (event->pmu == &perf_uprobe)
8896 return true;
e12f03d7
SL
8897#endif
8898 return false;
8899}
8900
2541517c
AS
8901static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8902{
cf5f5cea 8903 bool is_kprobe, is_tracepoint, is_syscall_tp;
2541517c 8904 struct bpf_prog *prog;
e87c6bc3 8905 int ret;
2541517c 8906
e12f03d7 8907 if (!perf_event_is_tracing(event))
f91840a3 8908 return perf_event_set_bpf_handler(event, prog_fd);
2541517c 8909
98b5c2c6
AS
8910 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
8911 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
cf5f5cea
YS
8912 is_syscall_tp = is_syscall_trace_event(event->tp_event);
8913 if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
98b5c2c6 8914 /* bpf programs can only be attached to u/kprobe or tracepoint */
2541517c
AS
8915 return -EINVAL;
8916
8917 prog = bpf_prog_get(prog_fd);
8918 if (IS_ERR(prog))
8919 return PTR_ERR(prog);
8920
98b5c2c6 8921 if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
cf5f5cea
YS
8922 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
8923 (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
2541517c
AS
8924 /* valid fd, but invalid bpf program type */
8925 bpf_prog_put(prog);
8926 return -EINVAL;
8927 }
8928
9802d865
JB
8929 /* Kprobe override only works for kprobes, not uprobes. */
8930 if (prog->kprobe_override &&
8931 !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE)) {
8932 bpf_prog_put(prog);
8933 return -EINVAL;
8934 }
8935
cf5f5cea 8936 if (is_tracepoint || is_syscall_tp) {
32bbe007
AS
8937 int off = trace_event_get_offsets(event->tp_event);
8938
8939 if (prog->aux->max_ctx_offset > off) {
8940 bpf_prog_put(prog);
8941 return -EACCES;
8942 }
8943 }
2541517c 8944
e87c6bc3
YS
8945 ret = perf_event_attach_bpf_prog(event, prog);
8946 if (ret)
8947 bpf_prog_put(prog);
8948 return ret;
2541517c
AS
8949}
8950
8951static void perf_event_free_bpf_prog(struct perf_event *event)
8952{
e12f03d7 8953 if (!perf_event_is_tracing(event)) {
0b4c6841 8954 perf_event_free_bpf_handler(event);
2541517c 8955 return;
2541517c 8956 }
e87c6bc3 8957 perf_event_detach_bpf_prog(event);
2541517c
AS
8958}
8959
e077df4f 8960#else
6fb2915d 8961
b0a873eb 8962static inline void perf_tp_register(void)
e077df4f 8963{
e077df4f 8964}
6fb2915d 8965
6fb2915d
LZ
8966static void perf_event_free_filter(struct perf_event *event)
8967{
8968}
8969
2541517c
AS
8970static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8971{
8972 return -ENOENT;
8973}
8974
8975static void perf_event_free_bpf_prog(struct perf_event *event)
8976{
8977}
07b139c8 8978#endif /* CONFIG_EVENT_TRACING */
e077df4f 8979
24f1e32c 8980#ifdef CONFIG_HAVE_HW_BREAKPOINT
f5ffe02e 8981void perf_bp_event(struct perf_event *bp, void *data)
24f1e32c 8982{
f5ffe02e
FW
8983 struct perf_sample_data sample;
8984 struct pt_regs *regs = data;
8985
fd0d000b 8986 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
f5ffe02e 8987
a4eaf7f1 8988 if (!bp->hw.state && !perf_exclude_event(bp, regs))
a8b0ca17 8989 perf_swevent_event(bp, 1, &sample, regs);
24f1e32c
FW
8990}
8991#endif
8992
375637bc
AS
8993/*
8994 * Allocate a new address filter
8995 */
8996static struct perf_addr_filter *
8997perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
8998{
8999 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
9000 struct perf_addr_filter *filter;
9001
9002 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
9003 if (!filter)
9004 return NULL;
9005
9006 INIT_LIST_HEAD(&filter->entry);
9007 list_add_tail(&filter->entry, filters);
9008
9009 return filter;
9010}
9011
9012static void free_filters_list(struct list_head *filters)
9013{
9014 struct perf_addr_filter *filter, *iter;
9015
9016 list_for_each_entry_safe(filter, iter, filters, entry) {
9511bce9 9017 path_put(&filter->path);
375637bc
AS
9018 list_del(&filter->entry);
9019 kfree(filter);
9020 }
9021}
9022
9023/*
9024 * Free existing address filters and optionally install new ones
9025 */
9026static void perf_addr_filters_splice(struct perf_event *event,
9027 struct list_head *head)
9028{
9029 unsigned long flags;
9030 LIST_HEAD(list);
9031
9032 if (!has_addr_filter(event))
9033 return;
9034
9035 /* don't bother with children, they don't have their own filters */
9036 if (event->parent)
9037 return;
9038
9039 raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
9040
9041 list_splice_init(&event->addr_filters.list, &list);
9042 if (head)
9043 list_splice(head, &event->addr_filters.list);
9044
9045 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
9046
9047 free_filters_list(&list);
9048}
9049
9050/*
9051 * Scan through mm's vmas and see if one of them matches the
9052 * @filter; if so, adjust filter's address range.
9053 * Called with mm::mmap_sem down for reading.
9054 */
c60f83b8
AS
9055static void perf_addr_filter_apply(struct perf_addr_filter *filter,
9056 struct mm_struct *mm,
9057 struct perf_addr_filter_range *fr)
375637bc
AS
9058{
9059 struct vm_area_struct *vma;
9060
9061 for (vma = mm->mmap; vma; vma = vma->vm_next) {
c60f83b8 9062 if (!vma->vm_file)
375637bc
AS
9063 continue;
9064
c60f83b8
AS
9065 if (perf_addr_filter_vma_adjust(filter, vma, fr))
9066 return;
375637bc 9067 }
375637bc
AS
9068}
9069
9070/*
9071 * Update event's address range filters based on the
9072 * task's existing mappings, if any.
9073 */
9074static void perf_event_addr_filters_apply(struct perf_event *event)
9075{
9076 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
9077 struct task_struct *task = READ_ONCE(event->ctx->task);
9078 struct perf_addr_filter *filter;
9079 struct mm_struct *mm = NULL;
9080 unsigned int count = 0;
9081 unsigned long flags;
9082
9083 /*
9084 * We may observe TASK_TOMBSTONE, which means that the event tear-down
9085 * will stop on the parent's child_mutex that our caller is also holding
9086 */
9087 if (task == TASK_TOMBSTONE)
9088 return;
9089
52a44f83
AS
9090 if (ifh->nr_file_filters) {
9091 mm = get_task_mm(event->ctx->task);
9092 if (!mm)
9093 goto restart;
375637bc 9094
52a44f83
AS
9095 down_read(&mm->mmap_sem);
9096 }
375637bc
AS
9097
9098 raw_spin_lock_irqsave(&ifh->lock, flags);
9099 list_for_each_entry(filter, &ifh->list, entry) {
52a44f83
AS
9100 if (filter->path.dentry) {
9101 /*
9102 * Adjust base offset if the filter is associated to a
9103 * binary that needs to be mapped:
9104 */
9105 event->addr_filter_ranges[count].start = 0;
9106 event->addr_filter_ranges[count].size = 0;
375637bc 9107
c60f83b8 9108 perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]);
52a44f83
AS
9109 } else {
9110 event->addr_filter_ranges[count].start = filter->offset;
9111 event->addr_filter_ranges[count].size = filter->size;
9112 }
375637bc
AS
9113
9114 count++;
9115 }
9116
9117 event->addr_filters_gen++;
9118 raw_spin_unlock_irqrestore(&ifh->lock, flags);
9119
52a44f83
AS
9120 if (ifh->nr_file_filters) {
9121 up_read(&mm->mmap_sem);
375637bc 9122
52a44f83
AS
9123 mmput(mm);
9124 }
375637bc
AS
9125
9126restart:
767ae086 9127 perf_event_stop(event, 1);
375637bc
AS
9128}
9129
9130/*
9131 * Address range filtering: limiting the data to certain
9132 * instruction address ranges. Filters are ioctl()ed to us from
9133 * userspace as ascii strings.
9134 *
9135 * Filter string format:
9136 *
9137 * ACTION RANGE_SPEC
9138 * where ACTION is one of the
9139 * * "filter": limit the trace to this region
9140 * * "start": start tracing from this address
9141 * * "stop": stop tracing at this address/region;
9142 * RANGE_SPEC is
9143 * * for kernel addresses: <start address>[/<size>]
9144 * * for object files: <start address>[/<size>]@</path/to/object/file>
9145 *
6ed70cf3
AS
9146 * if <size> is not specified or is zero, the range is treated as a single
9147 * address; not valid for ACTION=="filter".
375637bc
AS
9148 */
9149enum {
e96271f3 9150 IF_ACT_NONE = -1,
375637bc
AS
9151 IF_ACT_FILTER,
9152 IF_ACT_START,
9153 IF_ACT_STOP,
9154 IF_SRC_FILE,
9155 IF_SRC_KERNEL,
9156 IF_SRC_FILEADDR,
9157 IF_SRC_KERNELADDR,
9158};
9159
9160enum {
9161 IF_STATE_ACTION = 0,
9162 IF_STATE_SOURCE,
9163 IF_STATE_END,
9164};
9165
9166static const match_table_t if_tokens = {
9167 { IF_ACT_FILTER, "filter" },
9168 { IF_ACT_START, "start" },
9169 { IF_ACT_STOP, "stop" },
9170 { IF_SRC_FILE, "%u/%u@%s" },
9171 { IF_SRC_KERNEL, "%u/%u" },
9172 { IF_SRC_FILEADDR, "%u@%s" },
9173 { IF_SRC_KERNELADDR, "%u" },
e96271f3 9174 { IF_ACT_NONE, NULL },
375637bc
AS
9175};
9176
9177/*
9178 * Address filter string parser
9179 */
9180static int
9181perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
9182 struct list_head *filters)
9183{
9184 struct perf_addr_filter *filter = NULL;
9185 char *start, *orig, *filename = NULL;
375637bc
AS
9186 substring_t args[MAX_OPT_ARGS];
9187 int state = IF_STATE_ACTION, token;
9188 unsigned int kernel = 0;
9189 int ret = -EINVAL;
9190
9191 orig = fstr = kstrdup(fstr, GFP_KERNEL);
9192 if (!fstr)
9193 return -ENOMEM;
9194
9195 while ((start = strsep(&fstr, " ,\n")) != NULL) {
6ed70cf3
AS
9196 static const enum perf_addr_filter_action_t actions[] = {
9197 [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER,
9198 [IF_ACT_START] = PERF_ADDR_FILTER_ACTION_START,
9199 [IF_ACT_STOP] = PERF_ADDR_FILTER_ACTION_STOP,
9200 };
375637bc
AS
9201 ret = -EINVAL;
9202
9203 if (!*start)
9204 continue;
9205
9206 /* filter definition begins */
9207 if (state == IF_STATE_ACTION) {
9208 filter = perf_addr_filter_new(event, filters);
9209 if (!filter)
9210 goto fail;
9211 }
9212
9213 token = match_token(start, if_tokens, args);
9214 switch (token) {
9215 case IF_ACT_FILTER:
9216 case IF_ACT_START:
375637bc
AS
9217 case IF_ACT_STOP:
9218 if (state != IF_STATE_ACTION)
9219 goto fail;
9220
6ed70cf3 9221 filter->action = actions[token];
375637bc
AS
9222 state = IF_STATE_SOURCE;
9223 break;
9224
9225 case IF_SRC_KERNELADDR:
9226 case IF_SRC_KERNEL:
9227 kernel = 1;
10c3405f 9228 /* fall through */
375637bc
AS
9229
9230 case IF_SRC_FILEADDR:
9231 case IF_SRC_FILE:
9232 if (state != IF_STATE_SOURCE)
9233 goto fail;
9234
375637bc
AS
9235 *args[0].to = 0;
9236 ret = kstrtoul(args[0].from, 0, &filter->offset);
9237 if (ret)
9238 goto fail;
9239
6ed70cf3 9240 if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
375637bc
AS
9241 *args[1].to = 0;
9242 ret = kstrtoul(args[1].from, 0, &filter->size);
9243 if (ret)
9244 goto fail;
9245 }
9246
4059ffd0 9247 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
6ed70cf3 9248 int fpos = token == IF_SRC_FILE ? 2 : 1;
4059ffd0
MP
9249
9250 filename = match_strdup(&args[fpos]);
375637bc
AS
9251 if (!filename) {
9252 ret = -ENOMEM;
9253 goto fail;
9254 }
9255 }
9256
9257 state = IF_STATE_END;
9258 break;
9259
9260 default:
9261 goto fail;
9262 }
9263
9264 /*
9265 * Filter definition is fully parsed, validate and install it.
9266 * Make sure that it doesn't contradict itself or the event's
9267 * attribute.
9268 */
9269 if (state == IF_STATE_END) {
9ccbfbb1 9270 ret = -EINVAL;
375637bc
AS
9271 if (kernel && event->attr.exclude_kernel)
9272 goto fail;
9273
6ed70cf3
AS
9274 /*
9275 * ACTION "filter" must have a non-zero length region
9276 * specified.
9277 */
9278 if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
9279 !filter->size)
9280 goto fail;
9281
375637bc
AS
9282 if (!kernel) {
9283 if (!filename)
9284 goto fail;
9285
6ce77bfd
AS
9286 /*
9287 * For now, we only support file-based filters
9288 * in per-task events; doing so for CPU-wide
9289 * events requires additional context switching
9290 * trickery, since same object code will be
9291 * mapped at different virtual addresses in
9292 * different processes.
9293 */
9294 ret = -EOPNOTSUPP;
9295 if (!event->ctx->task)
9296 goto fail_free_name;
9297
375637bc 9298 /* look up the path and grab its inode */
9511bce9
SL
9299 ret = kern_path(filename, LOOKUP_FOLLOW,
9300 &filter->path);
375637bc
AS
9301 if (ret)
9302 goto fail_free_name;
9303
375637bc
AS
9304 kfree(filename);
9305 filename = NULL;
9306
9307 ret = -EINVAL;
9511bce9
SL
9308 if (!filter->path.dentry ||
9309 !S_ISREG(d_inode(filter->path.dentry)
9310 ->i_mode))
375637bc 9311 goto fail;
6ce77bfd
AS
9312
9313 event->addr_filters.nr_file_filters++;
375637bc
AS
9314 }
9315
9316 /* ready to consume more filters */
9317 state = IF_STATE_ACTION;
9318 filter = NULL;
9319 }
9320 }
9321
9322 if (state != IF_STATE_ACTION)
9323 goto fail;
9324
9325 kfree(orig);
9326
9327 return 0;
9328
9329fail_free_name:
9330 kfree(filename);
9331fail:
9332 free_filters_list(filters);
9333 kfree(orig);
9334
9335 return ret;
9336}
9337
9338static int
9339perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
9340{
9341 LIST_HEAD(filters);
9342 int ret;
9343
9344 /*
9345 * Since this is called in perf_ioctl() path, we're already holding
9346 * ctx::mutex.
9347 */
9348 lockdep_assert_held(&event->ctx->mutex);
9349
9350 if (WARN_ON_ONCE(event->parent))
9351 return -EINVAL;
9352
375637bc
AS
9353 ret = perf_event_parse_addr_filter(event, filter_str, &filters);
9354 if (ret)
6ce77bfd 9355 goto fail_clear_files;
375637bc
AS
9356
9357 ret = event->pmu->addr_filters_validate(&filters);
6ce77bfd
AS
9358 if (ret)
9359 goto fail_free_filters;
375637bc
AS
9360
9361 /* remove existing filters, if any */
9362 perf_addr_filters_splice(event, &filters);
9363
9364 /* install new filters */
9365 perf_event_for_each_child(event, perf_event_addr_filters_apply);
9366
6ce77bfd
AS
9367 return ret;
9368
9369fail_free_filters:
9370 free_filters_list(&filters);
9371
9372fail_clear_files:
9373 event->addr_filters.nr_file_filters = 0;
9374
375637bc
AS
9375 return ret;
9376}
9377
c796bbbe
AS
9378static int perf_event_set_filter(struct perf_event *event, void __user *arg)
9379{
c796bbbe 9380 int ret = -EINVAL;
e12f03d7 9381 char *filter_str;
c796bbbe
AS
9382
9383 filter_str = strndup_user(arg, PAGE_SIZE);
9384 if (IS_ERR(filter_str))
9385 return PTR_ERR(filter_str);
9386
e12f03d7
SL
9387#ifdef CONFIG_EVENT_TRACING
9388 if (perf_event_is_tracing(event)) {
9389 struct perf_event_context *ctx = event->ctx;
9390
9391 /*
9392 * Beware, here be dragons!!
9393 *
9394 * the tracepoint muck will deadlock against ctx->mutex, but
9395 * the tracepoint stuff does not actually need it. So
9396 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
9397 * already have a reference on ctx.
9398 *
9399 * This can result in event getting moved to a different ctx,
9400 * but that does not affect the tracepoint state.
9401 */
9402 mutex_unlock(&ctx->mutex);
9403 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
9404 mutex_lock(&ctx->mutex);
9405 } else
9406#endif
9407 if (has_addr_filter(event))
375637bc 9408 ret = perf_event_set_addr_filter(event, filter_str);
c796bbbe
AS
9409
9410 kfree(filter_str);
9411 return ret;
9412}
9413
b0a873eb
PZ
9414/*
9415 * hrtimer based swevent callback
9416 */
f29ac756 9417
b0a873eb 9418static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
f29ac756 9419{
b0a873eb
PZ
9420 enum hrtimer_restart ret = HRTIMER_RESTART;
9421 struct perf_sample_data data;
9422 struct pt_regs *regs;
9423 struct perf_event *event;
9424 u64 period;
f29ac756 9425
b0a873eb 9426 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
ba3dd36c
PZ
9427
9428 if (event->state != PERF_EVENT_STATE_ACTIVE)
9429 return HRTIMER_NORESTART;
9430
b0a873eb 9431 event->pmu->read(event);
f344011c 9432
fd0d000b 9433 perf_sample_data_init(&data, 0, event->hw.last_period);
b0a873eb
PZ
9434 regs = get_irq_regs();
9435
9436 if (regs && !perf_exclude_event(event, regs)) {
77aeeebd 9437 if (!(event->attr.exclude_idle && is_idle_task(current)))
33b07b8b 9438 if (__perf_event_overflow(event, 1, &data, regs))
b0a873eb
PZ
9439 ret = HRTIMER_NORESTART;
9440 }
24f1e32c 9441
b0a873eb
PZ
9442 period = max_t(u64, 10000, event->hw.sample_period);
9443 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
24f1e32c 9444
b0a873eb 9445 return ret;
f29ac756
PZ
9446}
9447
b0a873eb 9448static void perf_swevent_start_hrtimer(struct perf_event *event)
5c92d124 9449{
b0a873eb 9450 struct hw_perf_event *hwc = &event->hw;
5d508e82
FBH
9451 s64 period;
9452
9453 if (!is_sampling_event(event))
9454 return;
f5ffe02e 9455
5d508e82
FBH
9456 period = local64_read(&hwc->period_left);
9457 if (period) {
9458 if (period < 0)
9459 period = 10000;
fa407f35 9460
5d508e82
FBH
9461 local64_set(&hwc->period_left, 0);
9462 } else {
9463 period = max_t(u64, 10000, hwc->sample_period);
9464 }
3497d206
TG
9465 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
9466 HRTIMER_MODE_REL_PINNED);
24f1e32c 9467}
b0a873eb
PZ
9468
9469static void perf_swevent_cancel_hrtimer(struct perf_event *event)
24f1e32c 9470{
b0a873eb
PZ
9471 struct hw_perf_event *hwc = &event->hw;
9472
6c7e550f 9473 if (is_sampling_event(event)) {
b0a873eb 9474 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
fa407f35 9475 local64_set(&hwc->period_left, ktime_to_ns(remaining));
b0a873eb
PZ
9476
9477 hrtimer_cancel(&hwc->hrtimer);
9478 }
24f1e32c
FW
9479}
9480
ba3dd36c
PZ
9481static void perf_swevent_init_hrtimer(struct perf_event *event)
9482{
9483 struct hw_perf_event *hwc = &event->hw;
9484
9485 if (!is_sampling_event(event))
9486 return;
9487
9488 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
9489 hwc->hrtimer.function = perf_swevent_hrtimer;
9490
9491 /*
9492 * Since hrtimers have a fixed rate, we can do a static freq->period
9493 * mapping and avoid the whole period adjust feedback stuff.
9494 */
9495 if (event->attr.freq) {
9496 long freq = event->attr.sample_freq;
9497
9498 event->attr.sample_period = NSEC_PER_SEC / freq;
9499 hwc->sample_period = event->attr.sample_period;
9500 local64_set(&hwc->period_left, hwc->sample_period);
778141e3 9501 hwc->last_period = hwc->sample_period;
ba3dd36c
PZ
9502 event->attr.freq = 0;
9503 }
9504}
9505
b0a873eb
PZ
9506/*
9507 * Software event: cpu wall time clock
9508 */
9509
9510static void cpu_clock_event_update(struct perf_event *event)
24f1e32c 9511{
b0a873eb
PZ
9512 s64 prev;
9513 u64 now;
9514
a4eaf7f1 9515 now = local_clock();
b0a873eb
PZ
9516 prev = local64_xchg(&event->hw.prev_count, now);
9517 local64_add(now - prev, &event->count);
24f1e32c 9518}
24f1e32c 9519
a4eaf7f1 9520static void cpu_clock_event_start(struct perf_event *event, int flags)
b0a873eb 9521{
a4eaf7f1 9522 local64_set(&event->hw.prev_count, local_clock());
b0a873eb 9523 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
9524}
9525
a4eaf7f1 9526static void cpu_clock_event_stop(struct perf_event *event, int flags)
f29ac756 9527{
b0a873eb
PZ
9528 perf_swevent_cancel_hrtimer(event);
9529 cpu_clock_event_update(event);
9530}
f29ac756 9531
a4eaf7f1
PZ
9532static int cpu_clock_event_add(struct perf_event *event, int flags)
9533{
9534 if (flags & PERF_EF_START)
9535 cpu_clock_event_start(event, flags);
6a694a60 9536 perf_event_update_userpage(event);
a4eaf7f1
PZ
9537
9538 return 0;
9539}
9540
9541static void cpu_clock_event_del(struct perf_event *event, int flags)
9542{
9543 cpu_clock_event_stop(event, flags);
9544}
9545
b0a873eb
PZ
9546static void cpu_clock_event_read(struct perf_event *event)
9547{
9548 cpu_clock_event_update(event);
9549}
f344011c 9550
b0a873eb
PZ
9551static int cpu_clock_event_init(struct perf_event *event)
9552{
9553 if (event->attr.type != PERF_TYPE_SOFTWARE)
9554 return -ENOENT;
9555
9556 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
9557 return -ENOENT;
9558
2481c5fa
SE
9559 /*
9560 * no branch sampling for software events
9561 */
9562 if (has_branch_stack(event))
9563 return -EOPNOTSUPP;
9564
ba3dd36c
PZ
9565 perf_swevent_init_hrtimer(event);
9566
b0a873eb 9567 return 0;
f29ac756
PZ
9568}
9569
b0a873eb 9570static struct pmu perf_cpu_clock = {
89a1e187
PZ
9571 .task_ctx_nr = perf_sw_context,
9572
34f43927
PZ
9573 .capabilities = PERF_PMU_CAP_NO_NMI,
9574
b0a873eb 9575 .event_init = cpu_clock_event_init,
a4eaf7f1
PZ
9576 .add = cpu_clock_event_add,
9577 .del = cpu_clock_event_del,
9578 .start = cpu_clock_event_start,
9579 .stop = cpu_clock_event_stop,
b0a873eb
PZ
9580 .read = cpu_clock_event_read,
9581};
9582
9583/*
9584 * Software event: task time clock
9585 */
9586
9587static void task_clock_event_update(struct perf_event *event, u64 now)
5c92d124 9588{
b0a873eb
PZ
9589 u64 prev;
9590 s64 delta;
5c92d124 9591
b0a873eb
PZ
9592 prev = local64_xchg(&event->hw.prev_count, now);
9593 delta = now - prev;
9594 local64_add(delta, &event->count);
9595}
5c92d124 9596
a4eaf7f1 9597static void task_clock_event_start(struct perf_event *event, int flags)
b0a873eb 9598{
a4eaf7f1 9599 local64_set(&event->hw.prev_count, event->ctx->time);
b0a873eb 9600 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
9601}
9602
a4eaf7f1 9603static void task_clock_event_stop(struct perf_event *event, int flags)
b0a873eb
PZ
9604{
9605 perf_swevent_cancel_hrtimer(event);
9606 task_clock_event_update(event, event->ctx->time);
a4eaf7f1
PZ
9607}
9608
9609static int task_clock_event_add(struct perf_event *event, int flags)
9610{
9611 if (flags & PERF_EF_START)
9612 task_clock_event_start(event, flags);
6a694a60 9613 perf_event_update_userpage(event);
b0a873eb 9614
a4eaf7f1
PZ
9615 return 0;
9616}
9617
9618static void task_clock_event_del(struct perf_event *event, int flags)
9619{
9620 task_clock_event_stop(event, PERF_EF_UPDATE);
b0a873eb
PZ
9621}
9622
9623static void task_clock_event_read(struct perf_event *event)
9624{
768a06e2
PZ
9625 u64 now = perf_clock();
9626 u64 delta = now - event->ctx->timestamp;
9627 u64 time = event->ctx->time + delta;
b0a873eb
PZ
9628
9629 task_clock_event_update(event, time);
9630}
9631
9632static int task_clock_event_init(struct perf_event *event)
6fb2915d 9633{
b0a873eb
PZ
9634 if (event->attr.type != PERF_TYPE_SOFTWARE)
9635 return -ENOENT;
9636
9637 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
9638 return -ENOENT;
9639
2481c5fa
SE
9640 /*
9641 * no branch sampling for software events
9642 */
9643 if (has_branch_stack(event))
9644 return -EOPNOTSUPP;
9645
ba3dd36c
PZ
9646 perf_swevent_init_hrtimer(event);
9647
b0a873eb 9648 return 0;
6fb2915d
LZ
9649}
9650
b0a873eb 9651static struct pmu perf_task_clock = {
89a1e187
PZ
9652 .task_ctx_nr = perf_sw_context,
9653
34f43927
PZ
9654 .capabilities = PERF_PMU_CAP_NO_NMI,
9655
b0a873eb 9656 .event_init = task_clock_event_init,
a4eaf7f1
PZ
9657 .add = task_clock_event_add,
9658 .del = task_clock_event_del,
9659 .start = task_clock_event_start,
9660 .stop = task_clock_event_stop,
b0a873eb
PZ
9661 .read = task_clock_event_read,
9662};
6fb2915d 9663
ad5133b7 9664static void perf_pmu_nop_void(struct pmu *pmu)
e077df4f 9665{
e077df4f 9666}
6fb2915d 9667
fbbe0701
SB
9668static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
9669{
9670}
9671
ad5133b7 9672static int perf_pmu_nop_int(struct pmu *pmu)
6fb2915d 9673{
ad5133b7 9674 return 0;
6fb2915d
LZ
9675}
9676
81ec3f3c
JO
9677static int perf_event_nop_int(struct perf_event *event, u64 value)
9678{
9679 return 0;
9680}
9681
18ab2cd3 9682static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
fbbe0701
SB
9683
9684static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
6fb2915d 9685{
fbbe0701
SB
9686 __this_cpu_write(nop_txn_flags, flags);
9687
9688 if (flags & ~PERF_PMU_TXN_ADD)
9689 return;
9690
ad5133b7 9691 perf_pmu_disable(pmu);
6fb2915d
LZ
9692}
9693
ad5133b7
PZ
9694static int perf_pmu_commit_txn(struct pmu *pmu)
9695{
fbbe0701
SB
9696 unsigned int flags = __this_cpu_read(nop_txn_flags);
9697
9698 __this_cpu_write(nop_txn_flags, 0);
9699
9700 if (flags & ~PERF_PMU_TXN_ADD)
9701 return 0;
9702
ad5133b7
PZ
9703 perf_pmu_enable(pmu);
9704 return 0;
9705}
e077df4f 9706
ad5133b7 9707static void perf_pmu_cancel_txn(struct pmu *pmu)
24f1e32c 9708{
fbbe0701
SB
9709 unsigned int flags = __this_cpu_read(nop_txn_flags);
9710
9711 __this_cpu_write(nop_txn_flags, 0);
9712
9713 if (flags & ~PERF_PMU_TXN_ADD)
9714 return;
9715
ad5133b7 9716 perf_pmu_enable(pmu);
24f1e32c
FW
9717}
9718
35edc2a5
PZ
9719static int perf_event_idx_default(struct perf_event *event)
9720{
c719f560 9721 return 0;
35edc2a5
PZ
9722}
9723
8dc85d54
PZ
9724/*
9725 * Ensures all contexts with the same task_ctx_nr have the same
9726 * pmu_cpu_context too.
9727 */
9e317041 9728static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
24f1e32c 9729{
8dc85d54 9730 struct pmu *pmu;
b326e956 9731
8dc85d54
PZ
9732 if (ctxn < 0)
9733 return NULL;
24f1e32c 9734
8dc85d54
PZ
9735 list_for_each_entry(pmu, &pmus, entry) {
9736 if (pmu->task_ctx_nr == ctxn)
9737 return pmu->pmu_cpu_context;
9738 }
24f1e32c 9739
8dc85d54 9740 return NULL;
24f1e32c
FW
9741}
9742
51676957
PZ
9743static void free_pmu_context(struct pmu *pmu)
9744{
df0062b2
WD
9745 /*
9746 * Static contexts such as perf_sw_context have a global lifetime
9747 * and may be shared between different PMUs. Avoid freeing them
9748 * when a single PMU is going away.
9749 */
9750 if (pmu->task_ctx_nr > perf_invalid_context)
9751 return;
9752
51676957 9753 free_percpu(pmu->pmu_cpu_context);
24f1e32c 9754}
6e855cd4
AS
9755
9756/*
9757 * Let userspace know that this PMU supports address range filtering:
9758 */
9759static ssize_t nr_addr_filters_show(struct device *dev,
9760 struct device_attribute *attr,
9761 char *page)
9762{
9763 struct pmu *pmu = dev_get_drvdata(dev);
9764
9765 return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
9766}
9767DEVICE_ATTR_RO(nr_addr_filters);
9768
2e80a82a 9769static struct idr pmu_idr;
d6d020e9 9770
abe43400
PZ
9771static ssize_t
9772type_show(struct device *dev, struct device_attribute *attr, char *page)
9773{
9774 struct pmu *pmu = dev_get_drvdata(dev);
9775
9776 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
9777}
90826ca7 9778static DEVICE_ATTR_RO(type);
abe43400 9779
62b85639
SE
9780static ssize_t
9781perf_event_mux_interval_ms_show(struct device *dev,
9782 struct device_attribute *attr,
9783 char *page)
9784{
9785 struct pmu *pmu = dev_get_drvdata(dev);
9786
9787 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
9788}
9789
272325c4
PZ
9790static DEFINE_MUTEX(mux_interval_mutex);
9791
62b85639
SE
9792static ssize_t
9793perf_event_mux_interval_ms_store(struct device *dev,
9794 struct device_attribute *attr,
9795 const char *buf, size_t count)
9796{
9797 struct pmu *pmu = dev_get_drvdata(dev);
9798 int timer, cpu, ret;
9799
9800 ret = kstrtoint(buf, 0, &timer);
9801 if (ret)
9802 return ret;
9803
9804 if (timer < 1)
9805 return -EINVAL;
9806
9807 /* same value, noting to do */
9808 if (timer == pmu->hrtimer_interval_ms)
9809 return count;
9810
272325c4 9811 mutex_lock(&mux_interval_mutex);
62b85639
SE
9812 pmu->hrtimer_interval_ms = timer;
9813
9814 /* update all cpuctx for this PMU */
a63fbed7 9815 cpus_read_lock();
272325c4 9816 for_each_online_cpu(cpu) {
62b85639
SE
9817 struct perf_cpu_context *cpuctx;
9818 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
9819 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
9820
272325c4
PZ
9821 cpu_function_call(cpu,
9822 (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
62b85639 9823 }
a63fbed7 9824 cpus_read_unlock();
272325c4 9825 mutex_unlock(&mux_interval_mutex);
62b85639
SE
9826
9827 return count;
9828}
90826ca7 9829static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
62b85639 9830
90826ca7
GKH
9831static struct attribute *pmu_dev_attrs[] = {
9832 &dev_attr_type.attr,
9833 &dev_attr_perf_event_mux_interval_ms.attr,
9834 NULL,
abe43400 9835};
90826ca7 9836ATTRIBUTE_GROUPS(pmu_dev);
abe43400
PZ
9837
9838static int pmu_bus_running;
9839static struct bus_type pmu_bus = {
9840 .name = "event_source",
90826ca7 9841 .dev_groups = pmu_dev_groups,
abe43400
PZ
9842};
9843
9844static void pmu_dev_release(struct device *dev)
9845{
9846 kfree(dev);
9847}
9848
9849static int pmu_dev_alloc(struct pmu *pmu)
9850{
9851 int ret = -ENOMEM;
9852
9853 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
9854 if (!pmu->dev)
9855 goto out;
9856
0c9d42ed 9857 pmu->dev->groups = pmu->attr_groups;
abe43400
PZ
9858 device_initialize(pmu->dev);
9859 ret = dev_set_name(pmu->dev, "%s", pmu->name);
9860 if (ret)
9861 goto free_dev;
9862
9863 dev_set_drvdata(pmu->dev, pmu);
9864 pmu->dev->bus = &pmu_bus;
9865 pmu->dev->release = pmu_dev_release;
9866 ret = device_add(pmu->dev);
9867 if (ret)
9868 goto free_dev;
9869
6e855cd4
AS
9870 /* For PMUs with address filters, throw in an extra attribute: */
9871 if (pmu->nr_addr_filters)
9872 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
9873
9874 if (ret)
9875 goto del_dev;
9876
abe43400
PZ
9877out:
9878 return ret;
9879
6e855cd4
AS
9880del_dev:
9881 device_del(pmu->dev);
9882
abe43400
PZ
9883free_dev:
9884 put_device(pmu->dev);
9885 goto out;
9886}
9887
547e9fd7 9888static struct lock_class_key cpuctx_mutex;
facc4307 9889static struct lock_class_key cpuctx_lock;
547e9fd7 9890
03d8e80b 9891int perf_pmu_register(struct pmu *pmu, const char *name, int type)
24f1e32c 9892{
108b02cf 9893 int cpu, ret;
24f1e32c 9894
b0a873eb 9895 mutex_lock(&pmus_lock);
33696fc0
PZ
9896 ret = -ENOMEM;
9897 pmu->pmu_disable_count = alloc_percpu(int);
9898 if (!pmu->pmu_disable_count)
9899 goto unlock;
f29ac756 9900
2e80a82a
PZ
9901 pmu->type = -1;
9902 if (!name)
9903 goto skip_type;
9904 pmu->name = name;
9905
9906 if (type < 0) {
0e9c3be2
TH
9907 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
9908 if (type < 0) {
9909 ret = type;
2e80a82a
PZ
9910 goto free_pdc;
9911 }
9912 }
9913 pmu->type = type;
9914
abe43400
PZ
9915 if (pmu_bus_running) {
9916 ret = pmu_dev_alloc(pmu);
9917 if (ret)
9918 goto free_idr;
9919 }
9920
2e80a82a 9921skip_type:
26657848
PZ
9922 if (pmu->task_ctx_nr == perf_hw_context) {
9923 static int hw_context_taken = 0;
9924
5101ef20
MR
9925 /*
9926 * Other than systems with heterogeneous CPUs, it never makes
9927 * sense for two PMUs to share perf_hw_context. PMUs which are
9928 * uncore must use perf_invalid_context.
9929 */
9930 if (WARN_ON_ONCE(hw_context_taken &&
9931 !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
26657848
PZ
9932 pmu->task_ctx_nr = perf_invalid_context;
9933
9934 hw_context_taken = 1;
9935 }
9936
8dc85d54
PZ
9937 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
9938 if (pmu->pmu_cpu_context)
9939 goto got_cpu_context;
f29ac756 9940
c4814202 9941 ret = -ENOMEM;
108b02cf
PZ
9942 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
9943 if (!pmu->pmu_cpu_context)
abe43400 9944 goto free_dev;
f344011c 9945
108b02cf
PZ
9946 for_each_possible_cpu(cpu) {
9947 struct perf_cpu_context *cpuctx;
9948
9949 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
eb184479 9950 __perf_event_init_context(&cpuctx->ctx);
547e9fd7 9951 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
facc4307 9952 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
108b02cf 9953 cpuctx->ctx.pmu = pmu;
a63fbed7 9954 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
9e630205 9955
272325c4 9956 __perf_mux_hrtimer_init(cpuctx, cpu);
108b02cf 9957 }
76e1d904 9958
8dc85d54 9959got_cpu_context:
ad5133b7
PZ
9960 if (!pmu->start_txn) {
9961 if (pmu->pmu_enable) {
9962 /*
9963 * If we have pmu_enable/pmu_disable calls, install
9964 * transaction stubs that use that to try and batch
9965 * hardware accesses.
9966 */
9967 pmu->start_txn = perf_pmu_start_txn;
9968 pmu->commit_txn = perf_pmu_commit_txn;
9969 pmu->cancel_txn = perf_pmu_cancel_txn;
9970 } else {
fbbe0701 9971 pmu->start_txn = perf_pmu_nop_txn;
ad5133b7
PZ
9972 pmu->commit_txn = perf_pmu_nop_int;
9973 pmu->cancel_txn = perf_pmu_nop_void;
f344011c 9974 }
5c92d124 9975 }
15dbf27c 9976
ad5133b7
PZ
9977 if (!pmu->pmu_enable) {
9978 pmu->pmu_enable = perf_pmu_nop_void;
9979 pmu->pmu_disable = perf_pmu_nop_void;
9980 }
9981
81ec3f3c
JO
9982 if (!pmu->check_period)
9983 pmu->check_period = perf_event_nop_int;
9984
35edc2a5
PZ
9985 if (!pmu->event_idx)
9986 pmu->event_idx = perf_event_idx_default;
9987
b0a873eb 9988 list_add_rcu(&pmu->entry, &pmus);
bed5b25a 9989 atomic_set(&pmu->exclusive_cnt, 0);
33696fc0
PZ
9990 ret = 0;
9991unlock:
b0a873eb
PZ
9992 mutex_unlock(&pmus_lock);
9993
33696fc0 9994 return ret;
108b02cf 9995
abe43400
PZ
9996free_dev:
9997 device_del(pmu->dev);
9998 put_device(pmu->dev);
9999
2e80a82a
PZ
10000free_idr:
10001 if (pmu->type >= PERF_TYPE_MAX)
10002 idr_remove(&pmu_idr, pmu->type);
10003
108b02cf
PZ
10004free_pdc:
10005 free_percpu(pmu->pmu_disable_count);
10006 goto unlock;
f29ac756 10007}
c464c76e 10008EXPORT_SYMBOL_GPL(perf_pmu_register);
f29ac756 10009
b0a873eb 10010void perf_pmu_unregister(struct pmu *pmu)
5c92d124 10011{
b0a873eb
PZ
10012 mutex_lock(&pmus_lock);
10013 list_del_rcu(&pmu->entry);
5c92d124 10014
0475f9ea 10015 /*
cde8e884
PZ
10016 * We dereference the pmu list under both SRCU and regular RCU, so
10017 * synchronize against both of those.
0475f9ea 10018 */
b0a873eb 10019 synchronize_srcu(&pmus_srcu);
cde8e884 10020 synchronize_rcu();
d6d020e9 10021
33696fc0 10022 free_percpu(pmu->pmu_disable_count);
2e80a82a
PZ
10023 if (pmu->type >= PERF_TYPE_MAX)
10024 idr_remove(&pmu_idr, pmu->type);
a9f97721 10025 if (pmu_bus_running) {
0933840a
JO
10026 if (pmu->nr_addr_filters)
10027 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
10028 device_del(pmu->dev);
10029 put_device(pmu->dev);
10030 }
51676957 10031 free_pmu_context(pmu);
a9f97721 10032 mutex_unlock(&pmus_lock);
b0a873eb 10033}
c464c76e 10034EXPORT_SYMBOL_GPL(perf_pmu_unregister);
d6d020e9 10035
cc34b98b
MR
10036static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
10037{
ccd41c86 10038 struct perf_event_context *ctx = NULL;
cc34b98b
MR
10039 int ret;
10040
10041 if (!try_module_get(pmu->module))
10042 return -ENODEV;
ccd41c86 10043
0c7296ca
PZ
10044 /*
10045 * A number of pmu->event_init() methods iterate the sibling_list to,
10046 * for example, validate if the group fits on the PMU. Therefore,
10047 * if this is a sibling event, acquire the ctx->mutex to protect
10048 * the sibling_list.
10049 */
10050 if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
8b10c5e2
PZ
10051 /*
10052 * This ctx->mutex can nest when we're called through
10053 * inheritance. See the perf_event_ctx_lock_nested() comment.
10054 */
10055 ctx = perf_event_ctx_lock_nested(event->group_leader,
10056 SINGLE_DEPTH_NESTING);
ccd41c86
PZ
10057 BUG_ON(!ctx);
10058 }
10059
cc34b98b
MR
10060 event->pmu = pmu;
10061 ret = pmu->event_init(event);
ccd41c86
PZ
10062
10063 if (ctx)
10064 perf_event_ctx_unlock(event->group_leader, ctx);
10065
cc6795ae
AM
10066 if (!ret) {
10067 if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE &&
10068 event_has_any_exclude_flag(event)) {
10069 if (event->destroy)
10070 event->destroy(event);
10071 ret = -EINVAL;
10072 }
10073 }
10074
cc34b98b
MR
10075 if (ret)
10076 module_put(pmu->module);
10077
10078 return ret;
10079}
10080
18ab2cd3 10081static struct pmu *perf_init_event(struct perf_event *event)
b0a873eb 10082{
85c617ab 10083 struct pmu *pmu;
b0a873eb 10084 int idx;
940c5b29 10085 int ret;
b0a873eb
PZ
10086
10087 idx = srcu_read_lock(&pmus_srcu);
2e80a82a 10088
40999312
KL
10089 /* Try parent's PMU first: */
10090 if (event->parent && event->parent->pmu) {
10091 pmu = event->parent->pmu;
10092 ret = perf_try_init_event(pmu, event);
10093 if (!ret)
10094 goto unlock;
10095 }
10096
2e80a82a
PZ
10097 rcu_read_lock();
10098 pmu = idr_find(&pmu_idr, event->attr.type);
10099 rcu_read_unlock();
940c5b29 10100 if (pmu) {
cc34b98b 10101 ret = perf_try_init_event(pmu, event);
940c5b29
LM
10102 if (ret)
10103 pmu = ERR_PTR(ret);
2e80a82a 10104 goto unlock;
940c5b29 10105 }
2e80a82a 10106
b0a873eb 10107 list_for_each_entry_rcu(pmu, &pmus, entry) {
cc34b98b 10108 ret = perf_try_init_event(pmu, event);
b0a873eb 10109 if (!ret)
e5f4d339 10110 goto unlock;
76e1d904 10111
b0a873eb
PZ
10112 if (ret != -ENOENT) {
10113 pmu = ERR_PTR(ret);
e5f4d339 10114 goto unlock;
f344011c 10115 }
5c92d124 10116 }
e5f4d339
PZ
10117 pmu = ERR_PTR(-ENOENT);
10118unlock:
b0a873eb 10119 srcu_read_unlock(&pmus_srcu, idx);
15dbf27c 10120
4aeb0b42 10121 return pmu;
5c92d124
IM
10122}
10123
f2fb6bef
KL
10124static void attach_sb_event(struct perf_event *event)
10125{
10126 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
10127
10128 raw_spin_lock(&pel->lock);
10129 list_add_rcu(&event->sb_list, &pel->list);
10130 raw_spin_unlock(&pel->lock);
10131}
10132
aab5b71e
PZ
10133/*
10134 * We keep a list of all !task (and therefore per-cpu) events
10135 * that need to receive side-band records.
10136 *
10137 * This avoids having to scan all the various PMU per-cpu contexts
10138 * looking for them.
10139 */
f2fb6bef
KL
10140static void account_pmu_sb_event(struct perf_event *event)
10141{
a4f144eb 10142 if (is_sb_event(event))
f2fb6bef
KL
10143 attach_sb_event(event);
10144}
10145
4beb31f3
FW
10146static void account_event_cpu(struct perf_event *event, int cpu)
10147{
10148 if (event->parent)
10149 return;
10150
4beb31f3
FW
10151 if (is_cgroup_event(event))
10152 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
10153}
10154
555e0c1e
FW
10155/* Freq events need the tick to stay alive (see perf_event_task_tick). */
10156static void account_freq_event_nohz(void)
10157{
10158#ifdef CONFIG_NO_HZ_FULL
10159 /* Lock so we don't race with concurrent unaccount */
10160 spin_lock(&nr_freq_lock);
10161 if (atomic_inc_return(&nr_freq_events) == 1)
10162 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
10163 spin_unlock(&nr_freq_lock);
10164#endif
10165}
10166
10167static void account_freq_event(void)
10168{
10169 if (tick_nohz_full_enabled())
10170 account_freq_event_nohz();
10171 else
10172 atomic_inc(&nr_freq_events);
10173}
10174
10175
766d6c07
FW
10176static void account_event(struct perf_event *event)
10177{
25432ae9
PZ
10178 bool inc = false;
10179
4beb31f3
FW
10180 if (event->parent)
10181 return;
10182
766d6c07 10183 if (event->attach_state & PERF_ATTACH_TASK)
25432ae9 10184 inc = true;
766d6c07
FW
10185 if (event->attr.mmap || event->attr.mmap_data)
10186 atomic_inc(&nr_mmap_events);
10187 if (event->attr.comm)
10188 atomic_inc(&nr_comm_events);
e4222673
HB
10189 if (event->attr.namespaces)
10190 atomic_inc(&nr_namespaces_events);
766d6c07
FW
10191 if (event->attr.task)
10192 atomic_inc(&nr_task_events);
555e0c1e
FW
10193 if (event->attr.freq)
10194 account_freq_event();
45ac1403
AH
10195 if (event->attr.context_switch) {
10196 atomic_inc(&nr_switch_events);
25432ae9 10197 inc = true;
45ac1403 10198 }
4beb31f3 10199 if (has_branch_stack(event))
25432ae9 10200 inc = true;
4beb31f3 10201 if (is_cgroup_event(event))
25432ae9 10202 inc = true;
76193a94
SL
10203 if (event->attr.ksymbol)
10204 atomic_inc(&nr_ksymbol_events);
6ee52e2a
SL
10205 if (event->attr.bpf_event)
10206 atomic_inc(&nr_bpf_events);
25432ae9 10207
9107c89e 10208 if (inc) {
5bce9db1
AS
10209 /*
10210 * We need the mutex here because static_branch_enable()
10211 * must complete *before* the perf_sched_count increment
10212 * becomes visible.
10213 */
9107c89e
PZ
10214 if (atomic_inc_not_zero(&perf_sched_count))
10215 goto enabled;
10216
10217 mutex_lock(&perf_sched_mutex);
10218 if (!atomic_read(&perf_sched_count)) {
10219 static_branch_enable(&perf_sched_events);
10220 /*
10221 * Guarantee that all CPUs observe they key change and
10222 * call the perf scheduling hooks before proceeding to
10223 * install events that need them.
10224 */
0809d954 10225 synchronize_rcu();
9107c89e
PZ
10226 }
10227 /*
10228 * Now that we have waited for the sync_sched(), allow further
10229 * increments to by-pass the mutex.
10230 */
10231 atomic_inc(&perf_sched_count);
10232 mutex_unlock(&perf_sched_mutex);
10233 }
10234enabled:
4beb31f3
FW
10235
10236 account_event_cpu(event, event->cpu);
f2fb6bef
KL
10237
10238 account_pmu_sb_event(event);
766d6c07
FW
10239}
10240
0793a61d 10241/*
788faab7 10242 * Allocate and initialize an event structure
0793a61d 10243 */
cdd6c482 10244static struct perf_event *
c3f00c70 10245perf_event_alloc(struct perf_event_attr *attr, int cpu,
d580ff86
PZ
10246 struct task_struct *task,
10247 struct perf_event *group_leader,
10248 struct perf_event *parent_event,
4dc0da86 10249 perf_overflow_handler_t overflow_handler,
79dff51e 10250 void *context, int cgroup_fd)
0793a61d 10251{
51b0fe39 10252 struct pmu *pmu;
cdd6c482
IM
10253 struct perf_event *event;
10254 struct hw_perf_event *hwc;
90983b16 10255 long err = -EINVAL;
0793a61d 10256
66832eb4
ON
10257 if ((unsigned)cpu >= nr_cpu_ids) {
10258 if (!task || cpu != -1)
10259 return ERR_PTR(-EINVAL);
10260 }
10261
c3f00c70 10262 event = kzalloc(sizeof(*event), GFP_KERNEL);
cdd6c482 10263 if (!event)
d5d2bc0d 10264 return ERR_PTR(-ENOMEM);
0793a61d 10265
04289bb9 10266 /*
cdd6c482 10267 * Single events are their own group leaders, with an
04289bb9
IM
10268 * empty sibling list:
10269 */
10270 if (!group_leader)
cdd6c482 10271 group_leader = event;
04289bb9 10272
cdd6c482
IM
10273 mutex_init(&event->child_mutex);
10274 INIT_LIST_HEAD(&event->child_list);
fccc714b 10275
cdd6c482
IM
10276 INIT_LIST_HEAD(&event->event_entry);
10277 INIT_LIST_HEAD(&event->sibling_list);
6668128a 10278 INIT_LIST_HEAD(&event->active_list);
8e1a2031 10279 init_event_group(event);
10c6db11 10280 INIT_LIST_HEAD(&event->rb_entry);
71ad88ef 10281 INIT_LIST_HEAD(&event->active_entry);
375637bc 10282 INIT_LIST_HEAD(&event->addr_filters.list);
f3ae75de
SE
10283 INIT_HLIST_NODE(&event->hlist_entry);
10284
10c6db11 10285
cdd6c482 10286 init_waitqueue_head(&event->waitq);
1d54ad94 10287 event->pending_disable = -1;
e360adbe 10288 init_irq_work(&event->pending, perf_pending_event);
0793a61d 10289
cdd6c482 10290 mutex_init(&event->mmap_mutex);
375637bc 10291 raw_spin_lock_init(&event->addr_filters.lock);
7b732a75 10292
a6fa941d 10293 atomic_long_set(&event->refcount, 1);
cdd6c482
IM
10294 event->cpu = cpu;
10295 event->attr = *attr;
10296 event->group_leader = group_leader;
10297 event->pmu = NULL;
cdd6c482 10298 event->oncpu = -1;
a96bbc16 10299
cdd6c482 10300 event->parent = parent_event;
b84fbc9f 10301
17cf22c3 10302 event->ns = get_pid_ns(task_active_pid_ns(current));
cdd6c482 10303 event->id = atomic64_inc_return(&perf_event_id);
a96bbc16 10304
cdd6c482 10305 event->state = PERF_EVENT_STATE_INACTIVE;
329d876d 10306
d580ff86
PZ
10307 if (task) {
10308 event->attach_state = PERF_ATTACH_TASK;
d580ff86 10309 /*
50f16a8b
PZ
10310 * XXX pmu::event_init needs to know what task to account to
10311 * and we cannot use the ctx information because we need the
10312 * pmu before we get a ctx.
d580ff86 10313 */
621b6d2e 10314 get_task_struct(task);
50f16a8b 10315 event->hw.target = task;
d580ff86
PZ
10316 }
10317
34f43927
PZ
10318 event->clock = &local_clock;
10319 if (parent_event)
10320 event->clock = parent_event->clock;
10321
4dc0da86 10322 if (!overflow_handler && parent_event) {
b326e956 10323 overflow_handler = parent_event->overflow_handler;
4dc0da86 10324 context = parent_event->overflow_handler_context;
f1e4ba5b 10325#if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
aa6a5f3c
AS
10326 if (overflow_handler == bpf_overflow_handler) {
10327 struct bpf_prog *prog = bpf_prog_inc(parent_event->prog);
10328
10329 if (IS_ERR(prog)) {
10330 err = PTR_ERR(prog);
10331 goto err_ns;
10332 }
10333 event->prog = prog;
10334 event->orig_overflow_handler =
10335 parent_event->orig_overflow_handler;
10336 }
10337#endif
4dc0da86 10338 }
66832eb4 10339
1879445d
WN
10340 if (overflow_handler) {
10341 event->overflow_handler = overflow_handler;
10342 event->overflow_handler_context = context;
9ecda41a
WN
10343 } else if (is_write_backward(event)){
10344 event->overflow_handler = perf_event_output_backward;
10345 event->overflow_handler_context = NULL;
1879445d 10346 } else {
9ecda41a 10347 event->overflow_handler = perf_event_output_forward;
1879445d
WN
10348 event->overflow_handler_context = NULL;
10349 }
97eaf530 10350
0231bb53 10351 perf_event__state_init(event);
a86ed508 10352
4aeb0b42 10353 pmu = NULL;
b8e83514 10354
cdd6c482 10355 hwc = &event->hw;
bd2b5b12 10356 hwc->sample_period = attr->sample_period;
0d48696f 10357 if (attr->freq && attr->sample_freq)
bd2b5b12 10358 hwc->sample_period = 1;
eced1dfc 10359 hwc->last_period = hwc->sample_period;
bd2b5b12 10360
e7850595 10361 local64_set(&hwc->period_left, hwc->sample_period);
60db5e09 10362
2023b359 10363 /*
ba5213ae
PZ
10364 * We currently do not support PERF_SAMPLE_READ on inherited events.
10365 * See perf_output_read().
2023b359 10366 */
ba5213ae 10367 if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
90983b16 10368 goto err_ns;
a46a2300
YZ
10369
10370 if (!has_branch_stack(event))
10371 event->attr.branch_sample_type = 0;
2023b359 10372
79dff51e
MF
10373 if (cgroup_fd != -1) {
10374 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
10375 if (err)
10376 goto err_ns;
10377 }
10378
b0a873eb 10379 pmu = perf_init_event(event);
85c617ab 10380 if (IS_ERR(pmu)) {
4aeb0b42 10381 err = PTR_ERR(pmu);
90983b16 10382 goto err_ns;
621a01ea 10383 }
d5d2bc0d 10384
bed5b25a
AS
10385 err = exclusive_event_init(event);
10386 if (err)
10387 goto err_pmu;
10388
375637bc 10389 if (has_addr_filter(event)) {
c60f83b8
AS
10390 event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters,
10391 sizeof(struct perf_addr_filter_range),
10392 GFP_KERNEL);
10393 if (!event->addr_filter_ranges) {
36cc2b92 10394 err = -ENOMEM;
375637bc 10395 goto err_per_task;
36cc2b92 10396 }
375637bc 10397
18736eef
AS
10398 /*
10399 * Clone the parent's vma offsets: they are valid until exec()
10400 * even if the mm is not shared with the parent.
10401 */
10402 if (event->parent) {
10403 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
10404
10405 raw_spin_lock_irq(&ifh->lock);
c60f83b8
AS
10406 memcpy(event->addr_filter_ranges,
10407 event->parent->addr_filter_ranges,
10408 pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range));
18736eef
AS
10409 raw_spin_unlock_irq(&ifh->lock);
10410 }
10411
375637bc
AS
10412 /* force hw sync on the address filters */
10413 event->addr_filters_gen = 1;
10414 }
10415
cdd6c482 10416 if (!event->parent) {
927c7a9e 10417 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
97c79a38 10418 err = get_callchain_buffers(attr->sample_max_stack);
90983b16 10419 if (err)
375637bc 10420 goto err_addr_filters;
d010b332 10421 }
f344011c 10422 }
9ee318a7 10423
927a5570
AS
10424 /* symmetric to unaccount_event() in _free_event() */
10425 account_event(event);
10426
cdd6c482 10427 return event;
90983b16 10428
375637bc 10429err_addr_filters:
c60f83b8 10430 kfree(event->addr_filter_ranges);
375637bc 10431
bed5b25a
AS
10432err_per_task:
10433 exclusive_event_destroy(event);
10434
90983b16
FW
10435err_pmu:
10436 if (event->destroy)
10437 event->destroy(event);
c464c76e 10438 module_put(pmu->module);
90983b16 10439err_ns:
79dff51e
MF
10440 if (is_cgroup_event(event))
10441 perf_detach_cgroup(event);
90983b16
FW
10442 if (event->ns)
10443 put_pid_ns(event->ns);
621b6d2e
PB
10444 if (event->hw.target)
10445 put_task_struct(event->hw.target);
90983b16
FW
10446 kfree(event);
10447
10448 return ERR_PTR(err);
0793a61d
TG
10449}
10450
cdd6c482
IM
10451static int perf_copy_attr(struct perf_event_attr __user *uattr,
10452 struct perf_event_attr *attr)
974802ea 10453{
974802ea 10454 u32 size;
cdf8073d 10455 int ret;
974802ea 10456
96d4f267 10457 if (!access_ok(uattr, PERF_ATTR_SIZE_VER0))
974802ea
PZ
10458 return -EFAULT;
10459
10460 /*
10461 * zero the full structure, so that a short copy will be nice.
10462 */
10463 memset(attr, 0, sizeof(*attr));
10464
10465 ret = get_user(size, &uattr->size);
10466 if (ret)
10467 return ret;
10468
10469 if (size > PAGE_SIZE) /* silly large */
10470 goto err_size;
10471
10472 if (!size) /* abi compat */
10473 size = PERF_ATTR_SIZE_VER0;
10474
10475 if (size < PERF_ATTR_SIZE_VER0)
10476 goto err_size;
10477
10478 /*
10479 * If we're handed a bigger struct than we know of,
cdf8073d
IS
10480 * ensure all the unknown bits are 0 - i.e. new
10481 * user-space does not rely on any kernel feature
10482 * extensions we dont know about yet.
974802ea
PZ
10483 */
10484 if (size > sizeof(*attr)) {
cdf8073d
IS
10485 unsigned char __user *addr;
10486 unsigned char __user *end;
10487 unsigned char val;
974802ea 10488
cdf8073d
IS
10489 addr = (void __user *)uattr + sizeof(*attr);
10490 end = (void __user *)uattr + size;
974802ea 10491
cdf8073d 10492 for (; addr < end; addr++) {
974802ea
PZ
10493 ret = get_user(val, addr);
10494 if (ret)
10495 return ret;
10496 if (val)
10497 goto err_size;
10498 }
b3e62e35 10499 size = sizeof(*attr);
974802ea
PZ
10500 }
10501
10502 ret = copy_from_user(attr, uattr, size);
10503 if (ret)
10504 return -EFAULT;
10505
f12f42ac
MX
10506 attr->size = size;
10507
cd757645 10508 if (attr->__reserved_1)
974802ea
PZ
10509 return -EINVAL;
10510
10511 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
10512 return -EINVAL;
10513
10514 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
10515 return -EINVAL;
10516
bce38cd5
SE
10517 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
10518 u64 mask = attr->branch_sample_type;
10519
10520 /* only using defined bits */
10521 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
10522 return -EINVAL;
10523
10524 /* at least one branch bit must be set */
10525 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
10526 return -EINVAL;
10527
bce38cd5
SE
10528 /* propagate priv level, when not set for branch */
10529 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
10530
10531 /* exclude_kernel checked on syscall entry */
10532 if (!attr->exclude_kernel)
10533 mask |= PERF_SAMPLE_BRANCH_KERNEL;
10534
10535 if (!attr->exclude_user)
10536 mask |= PERF_SAMPLE_BRANCH_USER;
10537
10538 if (!attr->exclude_hv)
10539 mask |= PERF_SAMPLE_BRANCH_HV;
10540 /*
10541 * adjust user setting (for HW filter setup)
10542 */
10543 attr->branch_sample_type = mask;
10544 }
e712209a
SE
10545 /* privileged levels capture (kernel, hv): check permissions */
10546 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
2b923c8f
SE
10547 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10548 return -EACCES;
bce38cd5 10549 }
4018994f 10550
c5ebcedb 10551 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
4018994f 10552 ret = perf_reg_validate(attr->sample_regs_user);
c5ebcedb
JO
10553 if (ret)
10554 return ret;
10555 }
10556
10557 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
10558 if (!arch_perf_have_user_stack_dump())
10559 return -ENOSYS;
10560
10561 /*
10562 * We have __u32 type for the size, but so far
10563 * we can only use __u16 as maximum due to the
10564 * __u16 sample size limit.
10565 */
10566 if (attr->sample_stack_user >= USHRT_MAX)
78b562fb 10567 return -EINVAL;
c5ebcedb 10568 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
78b562fb 10569 return -EINVAL;
c5ebcedb 10570 }
4018994f 10571
5f970521
JO
10572 if (!attr->sample_max_stack)
10573 attr->sample_max_stack = sysctl_perf_event_max_stack;
10574
60e2364e
SE
10575 if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
10576 ret = perf_reg_validate(attr->sample_regs_intr);
974802ea
PZ
10577out:
10578 return ret;
10579
10580err_size:
10581 put_user(sizeof(*attr), &uattr->size);
10582 ret = -E2BIG;
10583 goto out;
10584}
10585
ac9721f3
PZ
10586static int
10587perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
a4be7c27 10588{
b69cf536 10589 struct ring_buffer *rb = NULL;
a4be7c27
PZ
10590 int ret = -EINVAL;
10591
ac9721f3 10592 if (!output_event)
a4be7c27
PZ
10593 goto set;
10594
ac9721f3
PZ
10595 /* don't allow circular references */
10596 if (event == output_event)
a4be7c27
PZ
10597 goto out;
10598
0f139300
PZ
10599 /*
10600 * Don't allow cross-cpu buffers
10601 */
10602 if (output_event->cpu != event->cpu)
10603 goto out;
10604
10605 /*
76369139 10606 * If its not a per-cpu rb, it must be the same task.
0f139300
PZ
10607 */
10608 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
10609 goto out;
10610
34f43927
PZ
10611 /*
10612 * Mixing clocks in the same buffer is trouble you don't need.
10613 */
10614 if (output_event->clock != event->clock)
10615 goto out;
10616
9ecda41a
WN
10617 /*
10618 * Either writing ring buffer from beginning or from end.
10619 * Mixing is not allowed.
10620 */
10621 if (is_write_backward(output_event) != is_write_backward(event))
10622 goto out;
10623
45bfb2e5
PZ
10624 /*
10625 * If both events generate aux data, they must be on the same PMU
10626 */
10627 if (has_aux(event) && has_aux(output_event) &&
10628 event->pmu != output_event->pmu)
10629 goto out;
10630
a4be7c27 10631set:
cdd6c482 10632 mutex_lock(&event->mmap_mutex);
ac9721f3
PZ
10633 /* Can't redirect output if we've got an active mmap() */
10634 if (atomic_read(&event->mmap_count))
10635 goto unlock;
a4be7c27 10636
ac9721f3 10637 if (output_event) {
76369139
FW
10638 /* get the rb we want to redirect to */
10639 rb = ring_buffer_get(output_event);
10640 if (!rb)
ac9721f3 10641 goto unlock;
a4be7c27
PZ
10642 }
10643
b69cf536 10644 ring_buffer_attach(event, rb);
9bb5d40c 10645
a4be7c27 10646 ret = 0;
ac9721f3
PZ
10647unlock:
10648 mutex_unlock(&event->mmap_mutex);
10649
a4be7c27 10650out:
a4be7c27
PZ
10651 return ret;
10652}
10653
f63a8daa
PZ
10654static void mutex_lock_double(struct mutex *a, struct mutex *b)
10655{
10656 if (b < a)
10657 swap(a, b);
10658
10659 mutex_lock(a);
10660 mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
10661}
10662
34f43927
PZ
10663static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
10664{
10665 bool nmi_safe = false;
10666
10667 switch (clk_id) {
10668 case CLOCK_MONOTONIC:
10669 event->clock = &ktime_get_mono_fast_ns;
10670 nmi_safe = true;
10671 break;
10672
10673 case CLOCK_MONOTONIC_RAW:
10674 event->clock = &ktime_get_raw_fast_ns;
10675 nmi_safe = true;
10676 break;
10677
10678 case CLOCK_REALTIME:
10679 event->clock = &ktime_get_real_ns;
10680 break;
10681
10682 case CLOCK_BOOTTIME:
10683 event->clock = &ktime_get_boot_ns;
10684 break;
10685
10686 case CLOCK_TAI:
10687 event->clock = &ktime_get_tai_ns;
10688 break;
10689
10690 default:
10691 return -EINVAL;
10692 }
10693
10694 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
10695 return -EINVAL;
10696
10697 return 0;
10698}
10699
321027c1
PZ
10700/*
10701 * Variation on perf_event_ctx_lock_nested(), except we take two context
10702 * mutexes.
10703 */
10704static struct perf_event_context *
10705__perf_event_ctx_lock_double(struct perf_event *group_leader,
10706 struct perf_event_context *ctx)
10707{
10708 struct perf_event_context *gctx;
10709
10710again:
10711 rcu_read_lock();
10712 gctx = READ_ONCE(group_leader->ctx);
8c94abbb 10713 if (!refcount_inc_not_zero(&gctx->refcount)) {
321027c1
PZ
10714 rcu_read_unlock();
10715 goto again;
10716 }
10717 rcu_read_unlock();
10718
10719 mutex_lock_double(&gctx->mutex, &ctx->mutex);
10720
10721 if (group_leader->ctx != gctx) {
10722 mutex_unlock(&ctx->mutex);
10723 mutex_unlock(&gctx->mutex);
10724 put_ctx(gctx);
10725 goto again;
10726 }
10727
10728 return gctx;
10729}
10730
0793a61d 10731/**
cdd6c482 10732 * sys_perf_event_open - open a performance event, associate it to a task/cpu
9f66a381 10733 *
cdd6c482 10734 * @attr_uptr: event_id type attributes for monitoring/sampling
0793a61d 10735 * @pid: target pid
9f66a381 10736 * @cpu: target cpu
cdd6c482 10737 * @group_fd: group leader event fd
0793a61d 10738 */
cdd6c482
IM
10739SYSCALL_DEFINE5(perf_event_open,
10740 struct perf_event_attr __user *, attr_uptr,
2743a5b0 10741 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
0793a61d 10742{
b04243ef
PZ
10743 struct perf_event *group_leader = NULL, *output_event = NULL;
10744 struct perf_event *event, *sibling;
cdd6c482 10745 struct perf_event_attr attr;
f63a8daa 10746 struct perf_event_context *ctx, *uninitialized_var(gctx);
cdd6c482 10747 struct file *event_file = NULL;
2903ff01 10748 struct fd group = {NULL, 0};
38a81da2 10749 struct task_struct *task = NULL;
89a1e187 10750 struct pmu *pmu;
ea635c64 10751 int event_fd;
b04243ef 10752 int move_group = 0;
dc86cabe 10753 int err;
a21b0b35 10754 int f_flags = O_RDWR;
79dff51e 10755 int cgroup_fd = -1;
0793a61d 10756
2743a5b0 10757 /* for future expandability... */
e5d1367f 10758 if (flags & ~PERF_FLAG_ALL)
2743a5b0
PM
10759 return -EINVAL;
10760
dc86cabe
IM
10761 err = perf_copy_attr(attr_uptr, &attr);
10762 if (err)
10763 return err;
eab656ae 10764
0764771d
PZ
10765 if (!attr.exclude_kernel) {
10766 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10767 return -EACCES;
10768 }
10769
e4222673
HB
10770 if (attr.namespaces) {
10771 if (!capable(CAP_SYS_ADMIN))
10772 return -EACCES;
10773 }
10774
df58ab24 10775 if (attr.freq) {
cdd6c482 10776 if (attr.sample_freq > sysctl_perf_event_sample_rate)
df58ab24 10777 return -EINVAL;
0819b2e3
PZ
10778 } else {
10779 if (attr.sample_period & (1ULL << 63))
10780 return -EINVAL;
df58ab24
PZ
10781 }
10782
fc7ce9c7
KL
10783 /* Only privileged users can get physical addresses */
10784 if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR) &&
10785 perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10786 return -EACCES;
10787
e5d1367f
SE
10788 /*
10789 * In cgroup mode, the pid argument is used to pass the fd
10790 * opened to the cgroup directory in cgroupfs. The cpu argument
10791 * designates the cpu on which to monitor threads from that
10792 * cgroup.
10793 */
10794 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
10795 return -EINVAL;
10796
a21b0b35
YD
10797 if (flags & PERF_FLAG_FD_CLOEXEC)
10798 f_flags |= O_CLOEXEC;
10799
10800 event_fd = get_unused_fd_flags(f_flags);
ea635c64
AV
10801 if (event_fd < 0)
10802 return event_fd;
10803
ac9721f3 10804 if (group_fd != -1) {
2903ff01
AV
10805 err = perf_fget_light(group_fd, &group);
10806 if (err)
d14b12d7 10807 goto err_fd;
2903ff01 10808 group_leader = group.file->private_data;
ac9721f3
PZ
10809 if (flags & PERF_FLAG_FD_OUTPUT)
10810 output_event = group_leader;
10811 if (flags & PERF_FLAG_FD_NO_GROUP)
10812 group_leader = NULL;
10813 }
10814
e5d1367f 10815 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
c6be5a5c
PZ
10816 task = find_lively_task_by_vpid(pid);
10817 if (IS_ERR(task)) {
10818 err = PTR_ERR(task);
10819 goto err_group_fd;
10820 }
10821 }
10822
1f4ee503
PZ
10823 if (task && group_leader &&
10824 group_leader->attr.inherit != attr.inherit) {
10825 err = -EINVAL;
10826 goto err_task;
10827 }
10828
79c9ce57
PZ
10829 if (task) {
10830 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
10831 if (err)
e5aeee51 10832 goto err_task;
79c9ce57
PZ
10833
10834 /*
10835 * Reuse ptrace permission checks for now.
10836 *
10837 * We must hold cred_guard_mutex across this and any potential
10838 * perf_install_in_context() call for this new event to
10839 * serialize against exec() altering our credentials (and the
10840 * perf_event_exit_task() that could imply).
10841 */
10842 err = -EACCES;
10843 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
10844 goto err_cred;
10845 }
10846
79dff51e
MF
10847 if (flags & PERF_FLAG_PID_CGROUP)
10848 cgroup_fd = pid;
10849
4dc0da86 10850 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
79dff51e 10851 NULL, NULL, cgroup_fd);
d14b12d7
SE
10852 if (IS_ERR(event)) {
10853 err = PTR_ERR(event);
79c9ce57 10854 goto err_cred;
d14b12d7
SE
10855 }
10856
53b25335
VW
10857 if (is_sampling_event(event)) {
10858 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
a1396555 10859 err = -EOPNOTSUPP;
53b25335
VW
10860 goto err_alloc;
10861 }
10862 }
10863
89a1e187
PZ
10864 /*
10865 * Special case software events and allow them to be part of
10866 * any hardware group.
10867 */
10868 pmu = event->pmu;
b04243ef 10869
34f43927
PZ
10870 if (attr.use_clockid) {
10871 err = perf_event_set_clock(event, attr.clockid);
10872 if (err)
10873 goto err_alloc;
10874 }
10875
4ff6a8de
DCC
10876 if (pmu->task_ctx_nr == perf_sw_context)
10877 event->event_caps |= PERF_EV_CAP_SOFTWARE;
10878
a1150c20
SL
10879 if (group_leader) {
10880 if (is_software_event(event) &&
10881 !in_software_context(group_leader)) {
b04243ef 10882 /*
a1150c20
SL
10883 * If the event is a sw event, but the group_leader
10884 * is on hw context.
b04243ef 10885 *
a1150c20
SL
10886 * Allow the addition of software events to hw
10887 * groups, this is safe because software events
10888 * never fail to schedule.
b04243ef 10889 */
a1150c20
SL
10890 pmu = group_leader->ctx->pmu;
10891 } else if (!is_software_event(event) &&
10892 is_software_event(group_leader) &&
4ff6a8de 10893 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
b04243ef
PZ
10894 /*
10895 * In case the group is a pure software group, and we
10896 * try to add a hardware event, move the whole group to
10897 * the hardware context.
10898 */
10899 move_group = 1;
10900 }
10901 }
89a1e187
PZ
10902
10903 /*
10904 * Get the target context (task or percpu):
10905 */
4af57ef2 10906 ctx = find_get_context(pmu, task, event);
89a1e187
PZ
10907 if (IS_ERR(ctx)) {
10908 err = PTR_ERR(ctx);
c6be5a5c 10909 goto err_alloc;
89a1e187
PZ
10910 }
10911
bed5b25a
AS
10912 if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
10913 err = -EBUSY;
10914 goto err_context;
10915 }
10916
ccff286d 10917 /*
cdd6c482 10918 * Look up the group leader (we will attach this event to it):
04289bb9 10919 */
ac9721f3 10920 if (group_leader) {
dc86cabe 10921 err = -EINVAL;
04289bb9 10922
04289bb9 10923 /*
ccff286d
IM
10924 * Do not allow a recursive hierarchy (this new sibling
10925 * becoming part of another group-sibling):
10926 */
10927 if (group_leader->group_leader != group_leader)
c3f00c70 10928 goto err_context;
34f43927
PZ
10929
10930 /* All events in a group should have the same clock */
10931 if (group_leader->clock != event->clock)
10932 goto err_context;
10933
ccff286d 10934 /*
64aee2a9
MR
10935 * Make sure we're both events for the same CPU;
10936 * grouping events for different CPUs is broken; since
10937 * you can never concurrently schedule them anyhow.
04289bb9 10938 */
64aee2a9
MR
10939 if (group_leader->cpu != event->cpu)
10940 goto err_context;
c3c87e77 10941
64aee2a9
MR
10942 /*
10943 * Make sure we're both on the same task, or both
10944 * per-CPU events.
10945 */
10946 if (group_leader->ctx->task != ctx->task)
10947 goto err_context;
10948
10949 /*
10950 * Do not allow to attach to a group in a different task
10951 * or CPU context. If we're moving SW events, we'll fix
10952 * this up later, so allow that.
10953 */
10954 if (!move_group && group_leader->ctx != ctx)
10955 goto err_context;
b04243ef 10956
3b6f9e5c
PM
10957 /*
10958 * Only a group leader can be exclusive or pinned
10959 */
0d48696f 10960 if (attr.exclusive || attr.pinned)
c3f00c70 10961 goto err_context;
ac9721f3
PZ
10962 }
10963
10964 if (output_event) {
10965 err = perf_event_set_output(event, output_event);
10966 if (err)
c3f00c70 10967 goto err_context;
ac9721f3 10968 }
0793a61d 10969
a21b0b35
YD
10970 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
10971 f_flags);
ea635c64
AV
10972 if (IS_ERR(event_file)) {
10973 err = PTR_ERR(event_file);
201c2f85 10974 event_file = NULL;
c3f00c70 10975 goto err_context;
ea635c64 10976 }
9b51f66d 10977
b04243ef 10978 if (move_group) {
321027c1
PZ
10979 gctx = __perf_event_ctx_lock_double(group_leader, ctx);
10980
84c4e620
PZ
10981 if (gctx->task == TASK_TOMBSTONE) {
10982 err = -ESRCH;
10983 goto err_locked;
10984 }
321027c1
PZ
10985
10986 /*
10987 * Check if we raced against another sys_perf_event_open() call
10988 * moving the software group underneath us.
10989 */
10990 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
10991 /*
10992 * If someone moved the group out from under us, check
10993 * if this new event wound up on the same ctx, if so
10994 * its the regular !move_group case, otherwise fail.
10995 */
10996 if (gctx != ctx) {
10997 err = -EINVAL;
10998 goto err_locked;
10999 } else {
11000 perf_event_ctx_unlock(group_leader, gctx);
11001 move_group = 0;
11002 }
11003 }
f55fc2a5
PZ
11004 } else {
11005 mutex_lock(&ctx->mutex);
11006 }
11007
84c4e620
PZ
11008 if (ctx->task == TASK_TOMBSTONE) {
11009 err = -ESRCH;
11010 goto err_locked;
11011 }
11012
a723968c
PZ
11013 if (!perf_event_validate_size(event)) {
11014 err = -E2BIG;
11015 goto err_locked;
11016 }
11017
a63fbed7
TG
11018 if (!task) {
11019 /*
11020 * Check if the @cpu we're creating an event for is online.
11021 *
11022 * We use the perf_cpu_context::ctx::mutex to serialize against
11023 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
11024 */
11025 struct perf_cpu_context *cpuctx =
11026 container_of(ctx, struct perf_cpu_context, ctx);
11027
11028 if (!cpuctx->online) {
11029 err = -ENODEV;
11030 goto err_locked;
11031 }
11032 }
11033
11034
f55fc2a5
PZ
11035 /*
11036 * Must be under the same ctx::mutex as perf_install_in_context(),
11037 * because we need to serialize with concurrent event creation.
11038 */
11039 if (!exclusive_event_installable(event, ctx)) {
11040 /* exclusive and group stuff are assumed mutually exclusive */
11041 WARN_ON_ONCE(move_group);
f63a8daa 11042
f55fc2a5
PZ
11043 err = -EBUSY;
11044 goto err_locked;
11045 }
f63a8daa 11046
f55fc2a5
PZ
11047 WARN_ON_ONCE(ctx->parent_ctx);
11048
79c9ce57
PZ
11049 /*
11050 * This is the point on no return; we cannot fail hereafter. This is
11051 * where we start modifying current state.
11052 */
11053
f55fc2a5 11054 if (move_group) {
f63a8daa
PZ
11055 /*
11056 * See perf_event_ctx_lock() for comments on the details
11057 * of swizzling perf_event::ctx.
11058 */
45a0e07a 11059 perf_remove_from_context(group_leader, 0);
279b5165 11060 put_ctx(gctx);
0231bb53 11061
edb39592 11062 for_each_sibling_event(sibling, group_leader) {
45a0e07a 11063 perf_remove_from_context(sibling, 0);
b04243ef
PZ
11064 put_ctx(gctx);
11065 }
b04243ef 11066
f63a8daa
PZ
11067 /*
11068 * Wait for everybody to stop referencing the events through
11069 * the old lists, before installing it on new lists.
11070 */
0cda4c02 11071 synchronize_rcu();
f63a8daa 11072
8f95b435
PZI
11073 /*
11074 * Install the group siblings before the group leader.
11075 *
11076 * Because a group leader will try and install the entire group
11077 * (through the sibling list, which is still in-tact), we can
11078 * end up with siblings installed in the wrong context.
11079 *
11080 * By installing siblings first we NO-OP because they're not
11081 * reachable through the group lists.
11082 */
edb39592 11083 for_each_sibling_event(sibling, group_leader) {
8f95b435 11084 perf_event__state_init(sibling);
9fc81d87 11085 perf_install_in_context(ctx, sibling, sibling->cpu);
b04243ef
PZ
11086 get_ctx(ctx);
11087 }
8f95b435
PZI
11088
11089 /*
11090 * Removing from the context ends up with disabled
11091 * event. What we want here is event in the initial
11092 * startup state, ready to be add into new context.
11093 */
11094 perf_event__state_init(group_leader);
11095 perf_install_in_context(ctx, group_leader, group_leader->cpu);
11096 get_ctx(ctx);
bed5b25a
AS
11097 }
11098
f73e22ab
PZ
11099 /*
11100 * Precalculate sample_data sizes; do while holding ctx::mutex such
11101 * that we're serialized against further additions and before
11102 * perf_install_in_context() which is the point the event is active and
11103 * can use these values.
11104 */
11105 perf_event__header_size(event);
11106 perf_event__id_header_size(event);
11107
78cd2c74
PZ
11108 event->owner = current;
11109
e2d37cd2 11110 perf_install_in_context(ctx, event, event->cpu);
fe4b04fa 11111 perf_unpin_context(ctx);
f63a8daa 11112
f55fc2a5 11113 if (move_group)
321027c1 11114 perf_event_ctx_unlock(group_leader, gctx);
d859e29f 11115 mutex_unlock(&ctx->mutex);
9b51f66d 11116
79c9ce57
PZ
11117 if (task) {
11118 mutex_unlock(&task->signal->cred_guard_mutex);
11119 put_task_struct(task);
11120 }
11121
cdd6c482
IM
11122 mutex_lock(&current->perf_event_mutex);
11123 list_add_tail(&event->owner_entry, &current->perf_event_list);
11124 mutex_unlock(&current->perf_event_mutex);
082ff5a2 11125
8a49542c
PZ
11126 /*
11127 * Drop the reference on the group_event after placing the
11128 * new event on the sibling_list. This ensures destruction
11129 * of the group leader will find the pointer to itself in
11130 * perf_group_detach().
11131 */
2903ff01 11132 fdput(group);
ea635c64
AV
11133 fd_install(event_fd, event_file);
11134 return event_fd;
0793a61d 11135
f55fc2a5
PZ
11136err_locked:
11137 if (move_group)
321027c1 11138 perf_event_ctx_unlock(group_leader, gctx);
f55fc2a5
PZ
11139 mutex_unlock(&ctx->mutex);
11140/* err_file: */
11141 fput(event_file);
c3f00c70 11142err_context:
fe4b04fa 11143 perf_unpin_context(ctx);
ea635c64 11144 put_ctx(ctx);
c6be5a5c 11145err_alloc:
13005627
PZ
11146 /*
11147 * If event_file is set, the fput() above will have called ->release()
11148 * and that will take care of freeing the event.
11149 */
11150 if (!event_file)
11151 free_event(event);
79c9ce57
PZ
11152err_cred:
11153 if (task)
11154 mutex_unlock(&task->signal->cred_guard_mutex);
1f4ee503 11155err_task:
e7d0bc04
PZ
11156 if (task)
11157 put_task_struct(task);
89a1e187 11158err_group_fd:
2903ff01 11159 fdput(group);
ea635c64
AV
11160err_fd:
11161 put_unused_fd(event_fd);
dc86cabe 11162 return err;
0793a61d
TG
11163}
11164
fb0459d7
AV
11165/**
11166 * perf_event_create_kernel_counter
11167 *
11168 * @attr: attributes of the counter to create
11169 * @cpu: cpu in which the counter is bound
38a81da2 11170 * @task: task to profile (NULL for percpu)
fb0459d7
AV
11171 */
11172struct perf_event *
11173perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
38a81da2 11174 struct task_struct *task,
4dc0da86
AK
11175 perf_overflow_handler_t overflow_handler,
11176 void *context)
fb0459d7 11177{
fb0459d7 11178 struct perf_event_context *ctx;
c3f00c70 11179 struct perf_event *event;
fb0459d7 11180 int err;
d859e29f 11181
fb0459d7
AV
11182 /*
11183 * Get the target context (task or percpu):
11184 */
d859e29f 11185
4dc0da86 11186 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
79dff51e 11187 overflow_handler, context, -1);
c3f00c70
PZ
11188 if (IS_ERR(event)) {
11189 err = PTR_ERR(event);
11190 goto err;
11191 }
d859e29f 11192
f8697762 11193 /* Mark owner so we could distinguish it from user events. */
63b6da39 11194 event->owner = TASK_TOMBSTONE;
f8697762 11195
4af57ef2 11196 ctx = find_get_context(event->pmu, task, event);
c6567f64
FW
11197 if (IS_ERR(ctx)) {
11198 err = PTR_ERR(ctx);
c3f00c70 11199 goto err_free;
d859e29f 11200 }
fb0459d7 11201
fb0459d7
AV
11202 WARN_ON_ONCE(ctx->parent_ctx);
11203 mutex_lock(&ctx->mutex);
84c4e620
PZ
11204 if (ctx->task == TASK_TOMBSTONE) {
11205 err = -ESRCH;
11206 goto err_unlock;
11207 }
11208
a63fbed7
TG
11209 if (!task) {
11210 /*
11211 * Check if the @cpu we're creating an event for is online.
11212 *
11213 * We use the perf_cpu_context::ctx::mutex to serialize against
11214 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
11215 */
11216 struct perf_cpu_context *cpuctx =
11217 container_of(ctx, struct perf_cpu_context, ctx);
11218 if (!cpuctx->online) {
11219 err = -ENODEV;
11220 goto err_unlock;
11221 }
11222 }
11223
bed5b25a 11224 if (!exclusive_event_installable(event, ctx)) {
bed5b25a 11225 err = -EBUSY;
84c4e620 11226 goto err_unlock;
bed5b25a
AS
11227 }
11228
fb0459d7 11229 perf_install_in_context(ctx, event, cpu);
fe4b04fa 11230 perf_unpin_context(ctx);
fb0459d7
AV
11231 mutex_unlock(&ctx->mutex);
11232
fb0459d7
AV
11233 return event;
11234
84c4e620
PZ
11235err_unlock:
11236 mutex_unlock(&ctx->mutex);
11237 perf_unpin_context(ctx);
11238 put_ctx(ctx);
c3f00c70
PZ
11239err_free:
11240 free_event(event);
11241err:
c6567f64 11242 return ERR_PTR(err);
9b51f66d 11243}
fb0459d7 11244EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
9b51f66d 11245
0cda4c02
YZ
11246void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
11247{
11248 struct perf_event_context *src_ctx;
11249 struct perf_event_context *dst_ctx;
11250 struct perf_event *event, *tmp;
11251 LIST_HEAD(events);
11252
11253 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
11254 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
11255
f63a8daa
PZ
11256 /*
11257 * See perf_event_ctx_lock() for comments on the details
11258 * of swizzling perf_event::ctx.
11259 */
11260 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
0cda4c02
YZ
11261 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
11262 event_entry) {
45a0e07a 11263 perf_remove_from_context(event, 0);
9a545de0 11264 unaccount_event_cpu(event, src_cpu);
0cda4c02 11265 put_ctx(src_ctx);
9886167d 11266 list_add(&event->migrate_entry, &events);
0cda4c02 11267 }
0cda4c02 11268
8f95b435
PZI
11269 /*
11270 * Wait for the events to quiesce before re-instating them.
11271 */
0cda4c02
YZ
11272 synchronize_rcu();
11273
8f95b435
PZI
11274 /*
11275 * Re-instate events in 2 passes.
11276 *
11277 * Skip over group leaders and only install siblings on this first
11278 * pass, siblings will not get enabled without a leader, however a
11279 * leader will enable its siblings, even if those are still on the old
11280 * context.
11281 */
11282 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
11283 if (event->group_leader == event)
11284 continue;
11285
11286 list_del(&event->migrate_entry);
11287 if (event->state >= PERF_EVENT_STATE_OFF)
11288 event->state = PERF_EVENT_STATE_INACTIVE;
11289 account_event_cpu(event, dst_cpu);
11290 perf_install_in_context(dst_ctx, event, dst_cpu);
11291 get_ctx(dst_ctx);
11292 }
11293
11294 /*
11295 * Once all the siblings are setup properly, install the group leaders
11296 * to make it go.
11297 */
9886167d
PZ
11298 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
11299 list_del(&event->migrate_entry);
0cda4c02
YZ
11300 if (event->state >= PERF_EVENT_STATE_OFF)
11301 event->state = PERF_EVENT_STATE_INACTIVE;
9a545de0 11302 account_event_cpu(event, dst_cpu);
0cda4c02
YZ
11303 perf_install_in_context(dst_ctx, event, dst_cpu);
11304 get_ctx(dst_ctx);
11305 }
11306 mutex_unlock(&dst_ctx->mutex);
f63a8daa 11307 mutex_unlock(&src_ctx->mutex);
0cda4c02
YZ
11308}
11309EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
11310
cdd6c482 11311static void sync_child_event(struct perf_event *child_event,
38b200d6 11312 struct task_struct *child)
d859e29f 11313{
cdd6c482 11314 struct perf_event *parent_event = child_event->parent;
8bc20959 11315 u64 child_val;
d859e29f 11316
cdd6c482
IM
11317 if (child_event->attr.inherit_stat)
11318 perf_event_read_event(child_event, child);
38b200d6 11319
b5e58793 11320 child_val = perf_event_count(child_event);
d859e29f
PM
11321
11322 /*
11323 * Add back the child's count to the parent's count:
11324 */
a6e6dea6 11325 atomic64_add(child_val, &parent_event->child_count);
cdd6c482
IM
11326 atomic64_add(child_event->total_time_enabled,
11327 &parent_event->child_total_time_enabled);
11328 atomic64_add(child_event->total_time_running,
11329 &parent_event->child_total_time_running);
d859e29f
PM
11330}
11331
9b51f66d 11332static void
8ba289b8
PZ
11333perf_event_exit_event(struct perf_event *child_event,
11334 struct perf_event_context *child_ctx,
11335 struct task_struct *child)
9b51f66d 11336{
8ba289b8
PZ
11337 struct perf_event *parent_event = child_event->parent;
11338
1903d50c
PZ
11339 /*
11340 * Do not destroy the 'original' grouping; because of the context
11341 * switch optimization the original events could've ended up in a
11342 * random child task.
11343 *
11344 * If we were to destroy the original group, all group related
11345 * operations would cease to function properly after this random
11346 * child dies.
11347 *
11348 * Do destroy all inherited groups, we don't care about those
11349 * and being thorough is better.
11350 */
32132a3d
PZ
11351 raw_spin_lock_irq(&child_ctx->lock);
11352 WARN_ON_ONCE(child_ctx->is_active);
11353
8ba289b8 11354 if (parent_event)
32132a3d
PZ
11355 perf_group_detach(child_event);
11356 list_del_event(child_event, child_ctx);
0d3d73aa 11357 perf_event_set_state(child_event, PERF_EVENT_STATE_EXIT); /* is_event_hup() */
32132a3d 11358 raw_spin_unlock_irq(&child_ctx->lock);
0cc0c027 11359
9b51f66d 11360 /*
8ba289b8 11361 * Parent events are governed by their filedesc, retain them.
9b51f66d 11362 */
8ba289b8 11363 if (!parent_event) {
179033b3 11364 perf_event_wakeup(child_event);
8ba289b8 11365 return;
4bcf349a 11366 }
8ba289b8
PZ
11367 /*
11368 * Child events can be cleaned up.
11369 */
11370
11371 sync_child_event(child_event, child);
11372
11373 /*
11374 * Remove this event from the parent's list
11375 */
11376 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
11377 mutex_lock(&parent_event->child_mutex);
11378 list_del_init(&child_event->child_list);
11379 mutex_unlock(&parent_event->child_mutex);
11380
11381 /*
11382 * Kick perf_poll() for is_event_hup().
11383 */
11384 perf_event_wakeup(parent_event);
11385 free_event(child_event);
11386 put_event(parent_event);
9b51f66d
IM
11387}
11388
8dc85d54 11389static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
9b51f66d 11390{
211de6eb 11391 struct perf_event_context *child_ctx, *clone_ctx = NULL;
63b6da39 11392 struct perf_event *child_event, *next;
63b6da39
PZ
11393
11394 WARN_ON_ONCE(child != current);
9b51f66d 11395
6a3351b6 11396 child_ctx = perf_pin_task_context(child, ctxn);
63b6da39 11397 if (!child_ctx)
9b51f66d
IM
11398 return;
11399
ad3a37de 11400 /*
6a3351b6
PZ
11401 * In order to reduce the amount of tricky in ctx tear-down, we hold
11402 * ctx::mutex over the entire thing. This serializes against almost
11403 * everything that wants to access the ctx.
11404 *
11405 * The exception is sys_perf_event_open() /
11406 * perf_event_create_kernel_count() which does find_get_context()
11407 * without ctx::mutex (it cannot because of the move_group double mutex
11408 * lock thing). See the comments in perf_install_in_context().
ad3a37de 11409 */
6a3351b6 11410 mutex_lock(&child_ctx->mutex);
c93f7669
PM
11411
11412 /*
6a3351b6
PZ
11413 * In a single ctx::lock section, de-schedule the events and detach the
11414 * context from the task such that we cannot ever get it scheduled back
11415 * in.
c93f7669 11416 */
6a3351b6 11417 raw_spin_lock_irq(&child_ctx->lock);
487f05e1 11418 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
4a1c0f26 11419
71a851b4 11420 /*
63b6da39
PZ
11421 * Now that the context is inactive, destroy the task <-> ctx relation
11422 * and mark the context dead.
71a851b4 11423 */
63b6da39
PZ
11424 RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
11425 put_ctx(child_ctx); /* cannot be last */
11426 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
11427 put_task_struct(current); /* cannot be last */
4a1c0f26 11428
211de6eb 11429 clone_ctx = unclone_ctx(child_ctx);
6a3351b6 11430 raw_spin_unlock_irq(&child_ctx->lock);
9f498cc5 11431
211de6eb
PZ
11432 if (clone_ctx)
11433 put_ctx(clone_ctx);
4a1c0f26 11434
9f498cc5 11435 /*
cdd6c482
IM
11436 * Report the task dead after unscheduling the events so that we
11437 * won't get any samples after PERF_RECORD_EXIT. We can however still
11438 * get a few PERF_RECORD_READ events.
9f498cc5 11439 */
cdd6c482 11440 perf_event_task(child, child_ctx, 0);
a63eaf34 11441
ebf905fc 11442 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
8ba289b8 11443 perf_event_exit_event(child_event, child_ctx, child);
8bc20959 11444
a63eaf34
PM
11445 mutex_unlock(&child_ctx->mutex);
11446
11447 put_ctx(child_ctx);
9b51f66d
IM
11448}
11449
8dc85d54
PZ
11450/*
11451 * When a child task exits, feed back event values to parent events.
79c9ce57
PZ
11452 *
11453 * Can be called with cred_guard_mutex held when called from
11454 * install_exec_creds().
8dc85d54
PZ
11455 */
11456void perf_event_exit_task(struct task_struct *child)
11457{
8882135b 11458 struct perf_event *event, *tmp;
8dc85d54
PZ
11459 int ctxn;
11460
8882135b
PZ
11461 mutex_lock(&child->perf_event_mutex);
11462 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
11463 owner_entry) {
11464 list_del_init(&event->owner_entry);
11465
11466 /*
11467 * Ensure the list deletion is visible before we clear
11468 * the owner, closes a race against perf_release() where
11469 * we need to serialize on the owner->perf_event_mutex.
11470 */
f47c02c0 11471 smp_store_release(&event->owner, NULL);
8882135b
PZ
11472 }
11473 mutex_unlock(&child->perf_event_mutex);
11474
8dc85d54
PZ
11475 for_each_task_context_nr(ctxn)
11476 perf_event_exit_task_context(child, ctxn);
4e93ad60
JO
11477
11478 /*
11479 * The perf_event_exit_task_context calls perf_event_task
11480 * with child's task_ctx, which generates EXIT events for
11481 * child contexts and sets child->perf_event_ctxp[] to NULL.
11482 * At this point we need to send EXIT events to cpu contexts.
11483 */
11484 perf_event_task(child, NULL, 0);
8dc85d54
PZ
11485}
11486
889ff015
FW
11487static void perf_free_event(struct perf_event *event,
11488 struct perf_event_context *ctx)
11489{
11490 struct perf_event *parent = event->parent;
11491
11492 if (WARN_ON_ONCE(!parent))
11493 return;
11494
11495 mutex_lock(&parent->child_mutex);
11496 list_del_init(&event->child_list);
11497 mutex_unlock(&parent->child_mutex);
11498
a6fa941d 11499 put_event(parent);
889ff015 11500
652884fe 11501 raw_spin_lock_irq(&ctx->lock);
8a49542c 11502 perf_group_detach(event);
889ff015 11503 list_del_event(event, ctx);
652884fe 11504 raw_spin_unlock_irq(&ctx->lock);
889ff015
FW
11505 free_event(event);
11506}
11507
bbbee908 11508/*
652884fe 11509 * Free an unexposed, unused context as created by inheritance by
8dc85d54 11510 * perf_event_init_task below, used by fork() in case of fail.
652884fe
PZ
11511 *
11512 * Not all locks are strictly required, but take them anyway to be nice and
11513 * help out with the lockdep assertions.
bbbee908 11514 */
cdd6c482 11515void perf_event_free_task(struct task_struct *task)
bbbee908 11516{
8dc85d54 11517 struct perf_event_context *ctx;
cdd6c482 11518 struct perf_event *event, *tmp;
8dc85d54 11519 int ctxn;
bbbee908 11520
8dc85d54
PZ
11521 for_each_task_context_nr(ctxn) {
11522 ctx = task->perf_event_ctxp[ctxn];
11523 if (!ctx)
11524 continue;
bbbee908 11525
8dc85d54 11526 mutex_lock(&ctx->mutex);
e552a838
PZ
11527 raw_spin_lock_irq(&ctx->lock);
11528 /*
11529 * Destroy the task <-> ctx relation and mark the context dead.
11530 *
11531 * This is important because even though the task hasn't been
11532 * exposed yet the context has been (through child_list).
11533 */
11534 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
11535 WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
11536 put_task_struct(task); /* cannot be last */
11537 raw_spin_unlock_irq(&ctx->lock);
bbbee908 11538
15121c78 11539 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
8dc85d54 11540 perf_free_event(event, ctx);
bbbee908 11541
8dc85d54 11542 mutex_unlock(&ctx->mutex);
8dc85d54
PZ
11543 put_ctx(ctx);
11544 }
889ff015
FW
11545}
11546
4e231c79
PZ
11547void perf_event_delayed_put(struct task_struct *task)
11548{
11549 int ctxn;
11550
11551 for_each_task_context_nr(ctxn)
11552 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
11553}
11554
e03e7ee3 11555struct file *perf_event_get(unsigned int fd)
ffe8690c 11556{
e03e7ee3 11557 struct file *file;
ffe8690c 11558
e03e7ee3
AS
11559 file = fget_raw(fd);
11560 if (!file)
11561 return ERR_PTR(-EBADF);
ffe8690c 11562
e03e7ee3
AS
11563 if (file->f_op != &perf_fops) {
11564 fput(file);
11565 return ERR_PTR(-EBADF);
11566 }
ffe8690c 11567
e03e7ee3 11568 return file;
ffe8690c
KX
11569}
11570
f8d959a5
YS
11571const struct perf_event *perf_get_event(struct file *file)
11572{
11573 if (file->f_op != &perf_fops)
11574 return ERR_PTR(-EINVAL);
11575
11576 return file->private_data;
11577}
11578
ffe8690c
KX
11579const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
11580{
11581 if (!event)
11582 return ERR_PTR(-EINVAL);
11583
11584 return &event->attr;
11585}
11586
97dee4f3 11587/*
788faab7 11588 * Inherit an event from parent task to child task.
d8a8cfc7
PZ
11589 *
11590 * Returns:
11591 * - valid pointer on success
11592 * - NULL for orphaned events
11593 * - IS_ERR() on error
97dee4f3
PZ
11594 */
11595static struct perf_event *
11596inherit_event(struct perf_event *parent_event,
11597 struct task_struct *parent,
11598 struct perf_event_context *parent_ctx,
11599 struct task_struct *child,
11600 struct perf_event *group_leader,
11601 struct perf_event_context *child_ctx)
11602{
8ca2bd41 11603 enum perf_event_state parent_state = parent_event->state;
97dee4f3 11604 struct perf_event *child_event;
cee010ec 11605 unsigned long flags;
97dee4f3
PZ
11606
11607 /*
11608 * Instead of creating recursive hierarchies of events,
11609 * we link inherited events back to the original parent,
11610 * which has a filp for sure, which we use as the reference
11611 * count:
11612 */
11613 if (parent_event->parent)
11614 parent_event = parent_event->parent;
11615
11616 child_event = perf_event_alloc(&parent_event->attr,
11617 parent_event->cpu,
d580ff86 11618 child,
97dee4f3 11619 group_leader, parent_event,
79dff51e 11620 NULL, NULL, -1);
97dee4f3
PZ
11621 if (IS_ERR(child_event))
11622 return child_event;
a6fa941d 11623
313ccb96
JO
11624
11625 if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) &&
11626 !child_ctx->task_ctx_data) {
11627 struct pmu *pmu = child_event->pmu;
11628
11629 child_ctx->task_ctx_data = kzalloc(pmu->task_ctx_size,
11630 GFP_KERNEL);
11631 if (!child_ctx->task_ctx_data) {
11632 free_event(child_event);
11633 return NULL;
11634 }
11635 }
11636
c6e5b732
PZ
11637 /*
11638 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
11639 * must be under the same lock in order to serialize against
11640 * perf_event_release_kernel(), such that either we must observe
11641 * is_orphaned_event() or they will observe us on the child_list.
11642 */
11643 mutex_lock(&parent_event->child_mutex);
fadfe7be
JO
11644 if (is_orphaned_event(parent_event) ||
11645 !atomic_long_inc_not_zero(&parent_event->refcount)) {
c6e5b732 11646 mutex_unlock(&parent_event->child_mutex);
313ccb96 11647 /* task_ctx_data is freed with child_ctx */
a6fa941d
AV
11648 free_event(child_event);
11649 return NULL;
11650 }
11651
97dee4f3
PZ
11652 get_ctx(child_ctx);
11653
11654 /*
11655 * Make the child state follow the state of the parent event,
11656 * not its attr.disabled bit. We hold the parent's mutex,
11657 * so we won't race with perf_event_{en, dis}able_family.
11658 */
1929def9 11659 if (parent_state >= PERF_EVENT_STATE_INACTIVE)
97dee4f3
PZ
11660 child_event->state = PERF_EVENT_STATE_INACTIVE;
11661 else
11662 child_event->state = PERF_EVENT_STATE_OFF;
11663
11664 if (parent_event->attr.freq) {
11665 u64 sample_period = parent_event->hw.sample_period;
11666 struct hw_perf_event *hwc = &child_event->hw;
11667
11668 hwc->sample_period = sample_period;
11669 hwc->last_period = sample_period;
11670
11671 local64_set(&hwc->period_left, sample_period);
11672 }
11673
11674 child_event->ctx = child_ctx;
11675 child_event->overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
11676 child_event->overflow_handler_context
11677 = parent_event->overflow_handler_context;
97dee4f3 11678
614b6780
TG
11679 /*
11680 * Precalculate sample_data sizes
11681 */
11682 perf_event__header_size(child_event);
6844c09d 11683 perf_event__id_header_size(child_event);
614b6780 11684
97dee4f3
PZ
11685 /*
11686 * Link it up in the child's context:
11687 */
cee010ec 11688 raw_spin_lock_irqsave(&child_ctx->lock, flags);
97dee4f3 11689 add_event_to_ctx(child_event, child_ctx);
cee010ec 11690 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
97dee4f3 11691
97dee4f3
PZ
11692 /*
11693 * Link this into the parent event's child list
11694 */
97dee4f3
PZ
11695 list_add_tail(&child_event->child_list, &parent_event->child_list);
11696 mutex_unlock(&parent_event->child_mutex);
11697
11698 return child_event;
11699}
11700
d8a8cfc7
PZ
11701/*
11702 * Inherits an event group.
11703 *
11704 * This will quietly suppress orphaned events; !inherit_event() is not an error.
11705 * This matches with perf_event_release_kernel() removing all child events.
11706 *
11707 * Returns:
11708 * - 0 on success
11709 * - <0 on error
11710 */
97dee4f3
PZ
11711static int inherit_group(struct perf_event *parent_event,
11712 struct task_struct *parent,
11713 struct perf_event_context *parent_ctx,
11714 struct task_struct *child,
11715 struct perf_event_context *child_ctx)
11716{
11717 struct perf_event *leader;
11718 struct perf_event *sub;
11719 struct perf_event *child_ctr;
11720
11721 leader = inherit_event(parent_event, parent, parent_ctx,
11722 child, NULL, child_ctx);
11723 if (IS_ERR(leader))
11724 return PTR_ERR(leader);
d8a8cfc7
PZ
11725 /*
11726 * @leader can be NULL here because of is_orphaned_event(). In this
11727 * case inherit_event() will create individual events, similar to what
11728 * perf_group_detach() would do anyway.
11729 */
edb39592 11730 for_each_sibling_event(sub, parent_event) {
97dee4f3
PZ
11731 child_ctr = inherit_event(sub, parent, parent_ctx,
11732 child, leader, child_ctx);
11733 if (IS_ERR(child_ctr))
11734 return PTR_ERR(child_ctr);
11735 }
11736 return 0;
889ff015
FW
11737}
11738
d8a8cfc7
PZ
11739/*
11740 * Creates the child task context and tries to inherit the event-group.
11741 *
11742 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
11743 * inherited_all set when we 'fail' to inherit an orphaned event; this is
11744 * consistent with perf_event_release_kernel() removing all child events.
11745 *
11746 * Returns:
11747 * - 0 on success
11748 * - <0 on error
11749 */
889ff015
FW
11750static int
11751inherit_task_group(struct perf_event *event, struct task_struct *parent,
11752 struct perf_event_context *parent_ctx,
8dc85d54 11753 struct task_struct *child, int ctxn,
889ff015
FW
11754 int *inherited_all)
11755{
11756 int ret;
8dc85d54 11757 struct perf_event_context *child_ctx;
889ff015
FW
11758
11759 if (!event->attr.inherit) {
11760 *inherited_all = 0;
11761 return 0;
bbbee908
PZ
11762 }
11763
fe4b04fa 11764 child_ctx = child->perf_event_ctxp[ctxn];
889ff015
FW
11765 if (!child_ctx) {
11766 /*
11767 * This is executed from the parent task context, so
11768 * inherit events that have been marked for cloning.
11769 * First allocate and initialize a context for the
11770 * child.
11771 */
734df5ab 11772 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
889ff015
FW
11773 if (!child_ctx)
11774 return -ENOMEM;
bbbee908 11775
8dc85d54 11776 child->perf_event_ctxp[ctxn] = child_ctx;
889ff015
FW
11777 }
11778
11779 ret = inherit_group(event, parent, parent_ctx,
11780 child, child_ctx);
11781
11782 if (ret)
11783 *inherited_all = 0;
11784
11785 return ret;
bbbee908
PZ
11786}
11787
9b51f66d 11788/*
cdd6c482 11789 * Initialize the perf_event context in task_struct
9b51f66d 11790 */
985c8dcb 11791static int perf_event_init_context(struct task_struct *child, int ctxn)
9b51f66d 11792{
889ff015 11793 struct perf_event_context *child_ctx, *parent_ctx;
cdd6c482
IM
11794 struct perf_event_context *cloned_ctx;
11795 struct perf_event *event;
9b51f66d 11796 struct task_struct *parent = current;
564c2b21 11797 int inherited_all = 1;
dddd3379 11798 unsigned long flags;
6ab423e0 11799 int ret = 0;
9b51f66d 11800
8dc85d54 11801 if (likely(!parent->perf_event_ctxp[ctxn]))
6ab423e0
PZ
11802 return 0;
11803
ad3a37de 11804 /*
25346b93
PM
11805 * If the parent's context is a clone, pin it so it won't get
11806 * swapped under us.
ad3a37de 11807 */
8dc85d54 11808 parent_ctx = perf_pin_task_context(parent, ctxn);
ffb4ef21
PZ
11809 if (!parent_ctx)
11810 return 0;
25346b93 11811
ad3a37de
PM
11812 /*
11813 * No need to check if parent_ctx != NULL here; since we saw
11814 * it non-NULL earlier, the only reason for it to become NULL
11815 * is if we exit, and since we're currently in the middle of
11816 * a fork we can't be exiting at the same time.
11817 */
ad3a37de 11818
9b51f66d
IM
11819 /*
11820 * Lock the parent list. No need to lock the child - not PID
11821 * hashed yet and not running, so nobody can access it.
11822 */
d859e29f 11823 mutex_lock(&parent_ctx->mutex);
9b51f66d
IM
11824
11825 /*
11826 * We dont have to disable NMIs - we are only looking at
11827 * the list, not manipulating it:
11828 */
6e6804d2 11829 perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
8dc85d54
PZ
11830 ret = inherit_task_group(event, parent, parent_ctx,
11831 child, ctxn, &inherited_all);
889ff015 11832 if (ret)
e7cc4865 11833 goto out_unlock;
889ff015 11834 }
b93f7978 11835
dddd3379
TG
11836 /*
11837 * We can't hold ctx->lock when iterating the ->flexible_group list due
11838 * to allocations, but we need to prevent rotation because
11839 * rotate_ctx() will change the list from interrupt context.
11840 */
11841 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
11842 parent_ctx->rotate_disable = 1;
11843 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
11844
6e6804d2 11845 perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
8dc85d54
PZ
11846 ret = inherit_task_group(event, parent, parent_ctx,
11847 child, ctxn, &inherited_all);
889ff015 11848 if (ret)
e7cc4865 11849 goto out_unlock;
564c2b21
PM
11850 }
11851
dddd3379
TG
11852 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
11853 parent_ctx->rotate_disable = 0;
dddd3379 11854
8dc85d54 11855 child_ctx = child->perf_event_ctxp[ctxn];
889ff015 11856
05cbaa28 11857 if (child_ctx && inherited_all) {
564c2b21
PM
11858 /*
11859 * Mark the child context as a clone of the parent
11860 * context, or of whatever the parent is a clone of.
c5ed5145
PZ
11861 *
11862 * Note that if the parent is a clone, the holding of
11863 * parent_ctx->lock avoids it from being uncloned.
564c2b21 11864 */
c5ed5145 11865 cloned_ctx = parent_ctx->parent_ctx;
ad3a37de
PM
11866 if (cloned_ctx) {
11867 child_ctx->parent_ctx = cloned_ctx;
25346b93 11868 child_ctx->parent_gen = parent_ctx->parent_gen;
564c2b21
PM
11869 } else {
11870 child_ctx->parent_ctx = parent_ctx;
11871 child_ctx->parent_gen = parent_ctx->generation;
11872 }
11873 get_ctx(child_ctx->parent_ctx);
9b51f66d
IM
11874 }
11875
c5ed5145 11876 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
e7cc4865 11877out_unlock:
d859e29f 11878 mutex_unlock(&parent_ctx->mutex);
6ab423e0 11879
25346b93 11880 perf_unpin_context(parent_ctx);
fe4b04fa 11881 put_ctx(parent_ctx);
ad3a37de 11882
6ab423e0 11883 return ret;
9b51f66d
IM
11884}
11885
8dc85d54
PZ
11886/*
11887 * Initialize the perf_event context in task_struct
11888 */
11889int perf_event_init_task(struct task_struct *child)
11890{
11891 int ctxn, ret;
11892
8550d7cb
ON
11893 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
11894 mutex_init(&child->perf_event_mutex);
11895 INIT_LIST_HEAD(&child->perf_event_list);
11896
8dc85d54
PZ
11897 for_each_task_context_nr(ctxn) {
11898 ret = perf_event_init_context(child, ctxn);
6c72e350
PZ
11899 if (ret) {
11900 perf_event_free_task(child);
8dc85d54 11901 return ret;
6c72e350 11902 }
8dc85d54
PZ
11903 }
11904
11905 return 0;
11906}
11907
220b140b
PM
11908static void __init perf_event_init_all_cpus(void)
11909{
b28ab83c 11910 struct swevent_htable *swhash;
220b140b 11911 int cpu;
220b140b 11912
a63fbed7
TG
11913 zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
11914
220b140b 11915 for_each_possible_cpu(cpu) {
b28ab83c
PZ
11916 swhash = &per_cpu(swevent_htable, cpu);
11917 mutex_init(&swhash->hlist_mutex);
2fde4f94 11918 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
f2fb6bef
KL
11919
11920 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
11921 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
e48c1788 11922
058fe1c0
DCC
11923#ifdef CONFIG_CGROUP_PERF
11924 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
11925#endif
e48c1788 11926 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
220b140b
PM
11927 }
11928}
11929
d18bf422 11930static void perf_swevent_init_cpu(unsigned int cpu)
0793a61d 11931{
108b02cf 11932 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
0793a61d 11933
b28ab83c 11934 mutex_lock(&swhash->hlist_mutex);
059fcd8c 11935 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
76e1d904
FW
11936 struct swevent_hlist *hlist;
11937
b28ab83c
PZ
11938 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
11939 WARN_ON(!hlist);
11940 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 11941 }
b28ab83c 11942 mutex_unlock(&swhash->hlist_mutex);
0793a61d
TG
11943}
11944
2965faa5 11945#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
108b02cf 11946static void __perf_event_exit_context(void *__info)
0793a61d 11947{
108b02cf 11948 struct perf_event_context *ctx = __info;
fae3fde6
PZ
11949 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
11950 struct perf_event *event;
0793a61d 11951
fae3fde6 11952 raw_spin_lock(&ctx->lock);
0ee098c9 11953 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
fae3fde6 11954 list_for_each_entry(event, &ctx->event_list, event_entry)
45a0e07a 11955 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
fae3fde6 11956 raw_spin_unlock(&ctx->lock);
0793a61d 11957}
108b02cf
PZ
11958
11959static void perf_event_exit_cpu_context(int cpu)
11960{
a63fbed7 11961 struct perf_cpu_context *cpuctx;
108b02cf
PZ
11962 struct perf_event_context *ctx;
11963 struct pmu *pmu;
108b02cf 11964
a63fbed7
TG
11965 mutex_lock(&pmus_lock);
11966 list_for_each_entry(pmu, &pmus, entry) {
11967 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11968 ctx = &cpuctx->ctx;
108b02cf
PZ
11969
11970 mutex_lock(&ctx->mutex);
11971 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
a63fbed7 11972 cpuctx->online = 0;
108b02cf
PZ
11973 mutex_unlock(&ctx->mutex);
11974 }
a63fbed7
TG
11975 cpumask_clear_cpu(cpu, perf_online_mask);
11976 mutex_unlock(&pmus_lock);
108b02cf 11977}
00e16c3d
TG
11978#else
11979
11980static void perf_event_exit_cpu_context(int cpu) { }
11981
11982#endif
108b02cf 11983
a63fbed7
TG
11984int perf_event_init_cpu(unsigned int cpu)
11985{
11986 struct perf_cpu_context *cpuctx;
11987 struct perf_event_context *ctx;
11988 struct pmu *pmu;
11989
11990 perf_swevent_init_cpu(cpu);
11991
11992 mutex_lock(&pmus_lock);
11993 cpumask_set_cpu(cpu, perf_online_mask);
11994 list_for_each_entry(pmu, &pmus, entry) {
11995 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11996 ctx = &cpuctx->ctx;
11997
11998 mutex_lock(&ctx->mutex);
11999 cpuctx->online = 1;
12000 mutex_unlock(&ctx->mutex);
12001 }
12002 mutex_unlock(&pmus_lock);
12003
12004 return 0;
12005}
12006
00e16c3d 12007int perf_event_exit_cpu(unsigned int cpu)
0793a61d 12008{
e3703f8c 12009 perf_event_exit_cpu_context(cpu);
00e16c3d 12010 return 0;
0793a61d 12011}
0793a61d 12012
c277443c
PZ
12013static int
12014perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
12015{
12016 int cpu;
12017
12018 for_each_online_cpu(cpu)
12019 perf_event_exit_cpu(cpu);
12020
12021 return NOTIFY_OK;
12022}
12023
12024/*
12025 * Run the perf reboot notifier at the very last possible moment so that
12026 * the generic watchdog code runs as long as possible.
12027 */
12028static struct notifier_block perf_reboot_notifier = {
12029 .notifier_call = perf_reboot,
12030 .priority = INT_MIN,
12031};
12032
cdd6c482 12033void __init perf_event_init(void)
0793a61d 12034{
3c502e7a
JW
12035 int ret;
12036
2e80a82a
PZ
12037 idr_init(&pmu_idr);
12038
220b140b 12039 perf_event_init_all_cpus();
b0a873eb 12040 init_srcu_struct(&pmus_srcu);
2e80a82a
PZ
12041 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
12042 perf_pmu_register(&perf_cpu_clock, NULL, -1);
12043 perf_pmu_register(&perf_task_clock, NULL, -1);
b0a873eb 12044 perf_tp_register();
00e16c3d 12045 perf_event_init_cpu(smp_processor_id());
c277443c 12046 register_reboot_notifier(&perf_reboot_notifier);
3c502e7a
JW
12047
12048 ret = init_hw_breakpoint();
12049 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
b2029520 12050
b01c3a00
JO
12051 /*
12052 * Build time assertion that we keep the data_head at the intended
12053 * location. IOW, validation we got the __reserved[] size right.
12054 */
12055 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
12056 != 1024);
0793a61d 12057}
abe43400 12058
fd979c01
CS
12059ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
12060 char *page)
12061{
12062 struct perf_pmu_events_attr *pmu_attr =
12063 container_of(attr, struct perf_pmu_events_attr, attr);
12064
12065 if (pmu_attr->event_str)
12066 return sprintf(page, "%s\n", pmu_attr->event_str);
12067
12068 return 0;
12069}
675965b0 12070EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
fd979c01 12071
abe43400
PZ
12072static int __init perf_event_sysfs_init(void)
12073{
12074 struct pmu *pmu;
12075 int ret;
12076
12077 mutex_lock(&pmus_lock);
12078
12079 ret = bus_register(&pmu_bus);
12080 if (ret)
12081 goto unlock;
12082
12083 list_for_each_entry(pmu, &pmus, entry) {
12084 if (!pmu->name || pmu->type < 0)
12085 continue;
12086
12087 ret = pmu_dev_alloc(pmu);
12088 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
12089 }
12090 pmu_bus_running = 1;
12091 ret = 0;
12092
12093unlock:
12094 mutex_unlock(&pmus_lock);
12095
12096 return ret;
12097}
12098device_initcall(perf_event_sysfs_init);
e5d1367f
SE
12099
12100#ifdef CONFIG_CGROUP_PERF
eb95419b
TH
12101static struct cgroup_subsys_state *
12102perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
e5d1367f
SE
12103{
12104 struct perf_cgroup *jc;
e5d1367f 12105
1b15d055 12106 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
e5d1367f
SE
12107 if (!jc)
12108 return ERR_PTR(-ENOMEM);
12109
e5d1367f
SE
12110 jc->info = alloc_percpu(struct perf_cgroup_info);
12111 if (!jc->info) {
12112 kfree(jc);
12113 return ERR_PTR(-ENOMEM);
12114 }
12115
e5d1367f
SE
12116 return &jc->css;
12117}
12118
eb95419b 12119static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
e5d1367f 12120{
eb95419b
TH
12121 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
12122
e5d1367f
SE
12123 free_percpu(jc->info);
12124 kfree(jc);
12125}
12126
12127static int __perf_cgroup_move(void *info)
12128{
12129 struct task_struct *task = info;
ddaaf4e2 12130 rcu_read_lock();
e5d1367f 12131 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
ddaaf4e2 12132 rcu_read_unlock();
e5d1367f
SE
12133 return 0;
12134}
12135
1f7dd3e5 12136static void perf_cgroup_attach(struct cgroup_taskset *tset)
e5d1367f 12137{
bb9d97b6 12138 struct task_struct *task;
1f7dd3e5 12139 struct cgroup_subsys_state *css;
bb9d97b6 12140
1f7dd3e5 12141 cgroup_taskset_for_each(task, css, tset)
bb9d97b6 12142 task_function_call(task, __perf_cgroup_move, task);
e5d1367f
SE
12143}
12144
073219e9 12145struct cgroup_subsys perf_event_cgrp_subsys = {
92fb9748
TH
12146 .css_alloc = perf_cgroup_css_alloc,
12147 .css_free = perf_cgroup_css_free,
bb9d97b6 12148 .attach = perf_cgroup_attach,
968ebff1
TH
12149 /*
12150 * Implicitly enable on dfl hierarchy so that perf events can
12151 * always be filtered by cgroup2 path as long as perf_event
12152 * controller is not mounted on a legacy hierarchy.
12153 */
12154 .implicit_on_dfl = true,
8cfd8147 12155 .threaded = true,
e5d1367f
SE
12156};
12157#endif /* CONFIG_CGROUP_PERF */