]> git.ipfire.org Git - thirdparty/linux.git/blame - kernel/events/core.c
bpf: use the same condition in perf event set/free bpf handler
[thirdparty/linux.git] / kernel / events / core.c
CommitLineData
0793a61d 1/*
57c0c15b 2 * Performance events core code:
0793a61d 3 *
98144511 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
e7e7ee2e 5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
90eec103 6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
d36b6910 7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
7b732a75 8 *
57c0c15b 9 * For licensing details see kernel-base/COPYING
0793a61d
TG
10 */
11
12#include <linux/fs.h>
b9cacc7b 13#include <linux/mm.h>
0793a61d
TG
14#include <linux/cpu.h>
15#include <linux/smp.h>
2e80a82a 16#include <linux/idr.h>
04289bb9 17#include <linux/file.h>
0793a61d 18#include <linux/poll.h>
5a0e3ad6 19#include <linux/slab.h>
76e1d904 20#include <linux/hash.h>
12351ef8 21#include <linux/tick.h>
0793a61d 22#include <linux/sysfs.h>
22a4f650 23#include <linux/dcache.h>
0793a61d 24#include <linux/percpu.h>
22a4f650 25#include <linux/ptrace.h>
c277443c 26#include <linux/reboot.h>
b9cacc7b 27#include <linux/vmstat.h>
abe43400 28#include <linux/device.h>
6e5fdeed 29#include <linux/export.h>
906010b2 30#include <linux/vmalloc.h>
b9cacc7b
PZ
31#include <linux/hardirq.h>
32#include <linux/rculist.h>
0793a61d
TG
33#include <linux/uaccess.h>
34#include <linux/syscalls.h>
35#include <linux/anon_inodes.h>
aa9c4c0f 36#include <linux/kernel_stat.h>
39bed6cb 37#include <linux/cgroup.h>
cdd6c482 38#include <linux/perf_event.h>
af658dca 39#include <linux/trace_events.h>
3c502e7a 40#include <linux/hw_breakpoint.h>
c5ebcedb 41#include <linux/mm_types.h>
c464c76e 42#include <linux/module.h>
f972eb63 43#include <linux/mman.h>
b3f20785 44#include <linux/compat.h>
2541517c
AS
45#include <linux/bpf.h>
46#include <linux/filter.h>
375637bc
AS
47#include <linux/namei.h>
48#include <linux/parser.h>
e6017571 49#include <linux/sched/clock.h>
6e84f315 50#include <linux/sched/mm.h>
e4222673
HB
51#include <linux/proc_ns.h>
52#include <linux/mount.h>
0793a61d 53
76369139
FW
54#include "internal.h"
55
4e193bd4
TB
56#include <asm/irq_regs.h>
57
272325c4
PZ
58typedef int (*remote_function_f)(void *);
59
fe4b04fa 60struct remote_function_call {
e7e7ee2e 61 struct task_struct *p;
272325c4 62 remote_function_f func;
e7e7ee2e
IM
63 void *info;
64 int ret;
fe4b04fa
PZ
65};
66
67static void remote_function(void *data)
68{
69 struct remote_function_call *tfc = data;
70 struct task_struct *p = tfc->p;
71
72 if (p) {
0da4cf3e
PZ
73 /* -EAGAIN */
74 if (task_cpu(p) != smp_processor_id())
75 return;
76
77 /*
78 * Now that we're on right CPU with IRQs disabled, we can test
79 * if we hit the right task without races.
80 */
81
82 tfc->ret = -ESRCH; /* No such (running) process */
83 if (p != current)
fe4b04fa
PZ
84 return;
85 }
86
87 tfc->ret = tfc->func(tfc->info);
88}
89
90/**
91 * task_function_call - call a function on the cpu on which a task runs
92 * @p: the task to evaluate
93 * @func: the function to be called
94 * @info: the function call argument
95 *
96 * Calls the function @func when the task is currently running. This might
97 * be on the current CPU, which just calls the function directly
98 *
99 * returns: @func return value, or
100 * -ESRCH - when the process isn't running
101 * -EAGAIN - when the process moved away
102 */
103static int
272325c4 104task_function_call(struct task_struct *p, remote_function_f func, void *info)
fe4b04fa
PZ
105{
106 struct remote_function_call data = {
e7e7ee2e
IM
107 .p = p,
108 .func = func,
109 .info = info,
0da4cf3e 110 .ret = -EAGAIN,
fe4b04fa 111 };
0da4cf3e 112 int ret;
fe4b04fa 113
0da4cf3e
PZ
114 do {
115 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
116 if (!ret)
117 ret = data.ret;
118 } while (ret == -EAGAIN);
fe4b04fa 119
0da4cf3e 120 return ret;
fe4b04fa
PZ
121}
122
123/**
124 * cpu_function_call - call a function on the cpu
125 * @func: the function to be called
126 * @info: the function call argument
127 *
128 * Calls the function @func on the remote cpu.
129 *
130 * returns: @func return value or -ENXIO when the cpu is offline
131 */
272325c4 132static int cpu_function_call(int cpu, remote_function_f func, void *info)
fe4b04fa
PZ
133{
134 struct remote_function_call data = {
e7e7ee2e
IM
135 .p = NULL,
136 .func = func,
137 .info = info,
138 .ret = -ENXIO, /* No such CPU */
fe4b04fa
PZ
139 };
140
141 smp_call_function_single(cpu, remote_function, &data, 1);
142
143 return data.ret;
144}
145
fae3fde6
PZ
146static inline struct perf_cpu_context *
147__get_cpu_context(struct perf_event_context *ctx)
148{
149 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
150}
151
152static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
153 struct perf_event_context *ctx)
0017960f 154{
fae3fde6
PZ
155 raw_spin_lock(&cpuctx->ctx.lock);
156 if (ctx)
157 raw_spin_lock(&ctx->lock);
158}
159
160static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
161 struct perf_event_context *ctx)
162{
163 if (ctx)
164 raw_spin_unlock(&ctx->lock);
165 raw_spin_unlock(&cpuctx->ctx.lock);
166}
167
63b6da39
PZ
168#define TASK_TOMBSTONE ((void *)-1L)
169
170static bool is_kernel_event(struct perf_event *event)
171{
f47c02c0 172 return READ_ONCE(event->owner) == TASK_TOMBSTONE;
63b6da39
PZ
173}
174
39a43640
PZ
175/*
176 * On task ctx scheduling...
177 *
178 * When !ctx->nr_events a task context will not be scheduled. This means
179 * we can disable the scheduler hooks (for performance) without leaving
180 * pending task ctx state.
181 *
182 * This however results in two special cases:
183 *
184 * - removing the last event from a task ctx; this is relatively straight
185 * forward and is done in __perf_remove_from_context.
186 *
187 * - adding the first event to a task ctx; this is tricky because we cannot
188 * rely on ctx->is_active and therefore cannot use event_function_call().
189 * See perf_install_in_context().
190 *
39a43640
PZ
191 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
192 */
193
fae3fde6
PZ
194typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
195 struct perf_event_context *, void *);
196
197struct event_function_struct {
198 struct perf_event *event;
199 event_f func;
200 void *data;
201};
202
203static int event_function(void *info)
204{
205 struct event_function_struct *efs = info;
206 struct perf_event *event = efs->event;
0017960f 207 struct perf_event_context *ctx = event->ctx;
fae3fde6
PZ
208 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
209 struct perf_event_context *task_ctx = cpuctx->task_ctx;
63b6da39 210 int ret = 0;
fae3fde6
PZ
211
212 WARN_ON_ONCE(!irqs_disabled());
213
63b6da39 214 perf_ctx_lock(cpuctx, task_ctx);
fae3fde6
PZ
215 /*
216 * Since we do the IPI call without holding ctx->lock things can have
217 * changed, double check we hit the task we set out to hit.
fae3fde6
PZ
218 */
219 if (ctx->task) {
63b6da39 220 if (ctx->task != current) {
0da4cf3e 221 ret = -ESRCH;
63b6da39
PZ
222 goto unlock;
223 }
fae3fde6 224
fae3fde6
PZ
225 /*
226 * We only use event_function_call() on established contexts,
227 * and event_function() is only ever called when active (or
228 * rather, we'll have bailed in task_function_call() or the
229 * above ctx->task != current test), therefore we must have
230 * ctx->is_active here.
231 */
232 WARN_ON_ONCE(!ctx->is_active);
233 /*
234 * And since we have ctx->is_active, cpuctx->task_ctx must
235 * match.
236 */
63b6da39
PZ
237 WARN_ON_ONCE(task_ctx != ctx);
238 } else {
239 WARN_ON_ONCE(&cpuctx->ctx != ctx);
fae3fde6 240 }
63b6da39 241
fae3fde6 242 efs->func(event, cpuctx, ctx, efs->data);
63b6da39 243unlock:
fae3fde6
PZ
244 perf_ctx_unlock(cpuctx, task_ctx);
245
63b6da39 246 return ret;
fae3fde6
PZ
247}
248
fae3fde6 249static void event_function_call(struct perf_event *event, event_f func, void *data)
0017960f
PZ
250{
251 struct perf_event_context *ctx = event->ctx;
63b6da39 252 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
fae3fde6
PZ
253 struct event_function_struct efs = {
254 .event = event,
255 .func = func,
256 .data = data,
257 };
0017960f 258
c97f4736
PZ
259 if (!event->parent) {
260 /*
261 * If this is a !child event, we must hold ctx::mutex to
262 * stabilize the the event->ctx relation. See
263 * perf_event_ctx_lock().
264 */
265 lockdep_assert_held(&ctx->mutex);
266 }
0017960f
PZ
267
268 if (!task) {
fae3fde6 269 cpu_function_call(event->cpu, event_function, &efs);
0017960f
PZ
270 return;
271 }
272
63b6da39
PZ
273 if (task == TASK_TOMBSTONE)
274 return;
275
a096309b 276again:
fae3fde6 277 if (!task_function_call(task, event_function, &efs))
0017960f
PZ
278 return;
279
280 raw_spin_lock_irq(&ctx->lock);
63b6da39
PZ
281 /*
282 * Reload the task pointer, it might have been changed by
283 * a concurrent perf_event_context_sched_out().
284 */
285 task = ctx->task;
a096309b
PZ
286 if (task == TASK_TOMBSTONE) {
287 raw_spin_unlock_irq(&ctx->lock);
288 return;
0017960f 289 }
a096309b
PZ
290 if (ctx->is_active) {
291 raw_spin_unlock_irq(&ctx->lock);
292 goto again;
293 }
294 func(event, NULL, ctx, data);
0017960f
PZ
295 raw_spin_unlock_irq(&ctx->lock);
296}
297
cca20946
PZ
298/*
299 * Similar to event_function_call() + event_function(), but hard assumes IRQs
300 * are already disabled and we're on the right CPU.
301 */
302static void event_function_local(struct perf_event *event, event_f func, void *data)
303{
304 struct perf_event_context *ctx = event->ctx;
305 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
306 struct task_struct *task = READ_ONCE(ctx->task);
307 struct perf_event_context *task_ctx = NULL;
308
309 WARN_ON_ONCE(!irqs_disabled());
310
311 if (task) {
312 if (task == TASK_TOMBSTONE)
313 return;
314
315 task_ctx = ctx;
316 }
317
318 perf_ctx_lock(cpuctx, task_ctx);
319
320 task = ctx->task;
321 if (task == TASK_TOMBSTONE)
322 goto unlock;
323
324 if (task) {
325 /*
326 * We must be either inactive or active and the right task,
327 * otherwise we're screwed, since we cannot IPI to somewhere
328 * else.
329 */
330 if (ctx->is_active) {
331 if (WARN_ON_ONCE(task != current))
332 goto unlock;
333
334 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
335 goto unlock;
336 }
337 } else {
338 WARN_ON_ONCE(&cpuctx->ctx != ctx);
339 }
340
341 func(event, cpuctx, ctx, data);
342unlock:
343 perf_ctx_unlock(cpuctx, task_ctx);
344}
345
e5d1367f
SE
346#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
347 PERF_FLAG_FD_OUTPUT |\
a21b0b35
YD
348 PERF_FLAG_PID_CGROUP |\
349 PERF_FLAG_FD_CLOEXEC)
e5d1367f 350
bce38cd5
SE
351/*
352 * branch priv levels that need permission checks
353 */
354#define PERF_SAMPLE_BRANCH_PERM_PLM \
355 (PERF_SAMPLE_BRANCH_KERNEL |\
356 PERF_SAMPLE_BRANCH_HV)
357
0b3fcf17
SE
358enum event_type_t {
359 EVENT_FLEXIBLE = 0x1,
360 EVENT_PINNED = 0x2,
3cbaa590 361 EVENT_TIME = 0x4,
487f05e1
AS
362 /* see ctx_resched() for details */
363 EVENT_CPU = 0x8,
0b3fcf17
SE
364 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
365};
366
e5d1367f
SE
367/*
368 * perf_sched_events : >0 events exist
369 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
370 */
9107c89e
PZ
371
372static void perf_sched_delayed(struct work_struct *work);
373DEFINE_STATIC_KEY_FALSE(perf_sched_events);
374static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
375static DEFINE_MUTEX(perf_sched_mutex);
376static atomic_t perf_sched_count;
377
e5d1367f 378static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
ba532500 379static DEFINE_PER_CPU(int, perf_sched_cb_usages);
f2fb6bef 380static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
e5d1367f 381
cdd6c482
IM
382static atomic_t nr_mmap_events __read_mostly;
383static atomic_t nr_comm_events __read_mostly;
e4222673 384static atomic_t nr_namespaces_events __read_mostly;
cdd6c482 385static atomic_t nr_task_events __read_mostly;
948b26b6 386static atomic_t nr_freq_events __read_mostly;
45ac1403 387static atomic_t nr_switch_events __read_mostly;
9ee318a7 388
108b02cf
PZ
389static LIST_HEAD(pmus);
390static DEFINE_MUTEX(pmus_lock);
391static struct srcu_struct pmus_srcu;
a63fbed7 392static cpumask_var_t perf_online_mask;
108b02cf 393
0764771d 394/*
cdd6c482 395 * perf event paranoia level:
0fbdea19
IM
396 * -1 - not paranoid at all
397 * 0 - disallow raw tracepoint access for unpriv
cdd6c482 398 * 1 - disallow cpu events for unpriv
0fbdea19 399 * 2 - disallow kernel profiling for unpriv
0764771d 400 */
0161028b 401int sysctl_perf_event_paranoid __read_mostly = 2;
0764771d 402
20443384
FW
403/* Minimum for 512 kiB + 1 user control page */
404int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
df58ab24
PZ
405
406/*
cdd6c482 407 * max perf event sample rate
df58ab24 408 */
14c63f17
DH
409#define DEFAULT_MAX_SAMPLE_RATE 100000
410#define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
411#define DEFAULT_CPU_TIME_MAX_PERCENT 25
412
413int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
414
415static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
416static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
417
d9494cb4
PZ
418static int perf_sample_allowed_ns __read_mostly =
419 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
14c63f17 420
18ab2cd3 421static void update_perf_cpu_limits(void)
14c63f17
DH
422{
423 u64 tmp = perf_sample_period_ns;
424
425 tmp *= sysctl_perf_cpu_time_max_percent;
91a612ee
PZ
426 tmp = div_u64(tmp, 100);
427 if (!tmp)
428 tmp = 1;
429
430 WRITE_ONCE(perf_sample_allowed_ns, tmp);
14c63f17 431}
163ec435 432
9e630205
SE
433static int perf_rotate_context(struct perf_cpu_context *cpuctx);
434
163ec435
PZ
435int perf_proc_update_handler(struct ctl_table *table, int write,
436 void __user *buffer, size_t *lenp,
437 loff_t *ppos)
438{
723478c8 439 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
163ec435
PZ
440
441 if (ret || !write)
442 return ret;
443
ab7fdefb
KL
444 /*
445 * If throttling is disabled don't allow the write:
446 */
447 if (sysctl_perf_cpu_time_max_percent == 100 ||
448 sysctl_perf_cpu_time_max_percent == 0)
449 return -EINVAL;
450
163ec435 451 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
14c63f17
DH
452 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
453 update_perf_cpu_limits();
454
455 return 0;
456}
457
458int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
459
460int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
461 void __user *buffer, size_t *lenp,
462 loff_t *ppos)
463{
1572e45a 464 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
14c63f17
DH
465
466 if (ret || !write)
467 return ret;
468
b303e7c1
PZ
469 if (sysctl_perf_cpu_time_max_percent == 100 ||
470 sysctl_perf_cpu_time_max_percent == 0) {
91a612ee
PZ
471 printk(KERN_WARNING
472 "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
473 WRITE_ONCE(perf_sample_allowed_ns, 0);
474 } else {
475 update_perf_cpu_limits();
476 }
163ec435
PZ
477
478 return 0;
479}
1ccd1549 480
14c63f17
DH
481/*
482 * perf samples are done in some very critical code paths (NMIs).
483 * If they take too much CPU time, the system can lock up and not
484 * get any real work done. This will drop the sample rate when
485 * we detect that events are taking too long.
486 */
487#define NR_ACCUMULATED_SAMPLES 128
d9494cb4 488static DEFINE_PER_CPU(u64, running_sample_length);
14c63f17 489
91a612ee
PZ
490static u64 __report_avg;
491static u64 __report_allowed;
492
6a02ad66 493static void perf_duration_warn(struct irq_work *w)
14c63f17 494{
0d87d7ec 495 printk_ratelimited(KERN_INFO
91a612ee
PZ
496 "perf: interrupt took too long (%lld > %lld), lowering "
497 "kernel.perf_event_max_sample_rate to %d\n",
498 __report_avg, __report_allowed,
499 sysctl_perf_event_sample_rate);
6a02ad66
PZ
500}
501
502static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
503
504void perf_sample_event_took(u64 sample_len_ns)
505{
91a612ee
PZ
506 u64 max_len = READ_ONCE(perf_sample_allowed_ns);
507 u64 running_len;
508 u64 avg_len;
509 u32 max;
14c63f17 510
91a612ee 511 if (max_len == 0)
14c63f17
DH
512 return;
513
91a612ee
PZ
514 /* Decay the counter by 1 average sample. */
515 running_len = __this_cpu_read(running_sample_length);
516 running_len -= running_len/NR_ACCUMULATED_SAMPLES;
517 running_len += sample_len_ns;
518 __this_cpu_write(running_sample_length, running_len);
14c63f17
DH
519
520 /*
91a612ee
PZ
521 * Note: this will be biased artifically low until we have
522 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
14c63f17
DH
523 * from having to maintain a count.
524 */
91a612ee
PZ
525 avg_len = running_len/NR_ACCUMULATED_SAMPLES;
526 if (avg_len <= max_len)
14c63f17
DH
527 return;
528
91a612ee
PZ
529 __report_avg = avg_len;
530 __report_allowed = max_len;
14c63f17 531
91a612ee
PZ
532 /*
533 * Compute a throttle threshold 25% below the current duration.
534 */
535 avg_len += avg_len / 4;
536 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
537 if (avg_len < max)
538 max /= (u32)avg_len;
539 else
540 max = 1;
14c63f17 541
91a612ee
PZ
542 WRITE_ONCE(perf_sample_allowed_ns, avg_len);
543 WRITE_ONCE(max_samples_per_tick, max);
544
545 sysctl_perf_event_sample_rate = max * HZ;
546 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
6a02ad66 547
cd578abb 548 if (!irq_work_queue(&perf_duration_work)) {
91a612ee 549 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
cd578abb 550 "kernel.perf_event_max_sample_rate to %d\n",
91a612ee 551 __report_avg, __report_allowed,
cd578abb
PZ
552 sysctl_perf_event_sample_rate);
553 }
14c63f17
DH
554}
555
cdd6c482 556static atomic64_t perf_event_id;
a96bbc16 557
0b3fcf17
SE
558static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
559 enum event_type_t event_type);
560
561static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
562 enum event_type_t event_type,
563 struct task_struct *task);
564
565static void update_context_time(struct perf_event_context *ctx);
566static u64 perf_event_time(struct perf_event *event);
0b3fcf17 567
cdd6c482 568void __weak perf_event_print_debug(void) { }
0793a61d 569
84c79910 570extern __weak const char *perf_pmu_name(void)
0793a61d 571{
84c79910 572 return "pmu";
0793a61d
TG
573}
574
0b3fcf17
SE
575static inline u64 perf_clock(void)
576{
577 return local_clock();
578}
579
34f43927
PZ
580static inline u64 perf_event_clock(struct perf_event *event)
581{
582 return event->clock();
583}
584
e5d1367f
SE
585#ifdef CONFIG_CGROUP_PERF
586
e5d1367f
SE
587static inline bool
588perf_cgroup_match(struct perf_event *event)
589{
590 struct perf_event_context *ctx = event->ctx;
591 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
592
ef824fa1
TH
593 /* @event doesn't care about cgroup */
594 if (!event->cgrp)
595 return true;
596
597 /* wants specific cgroup scope but @cpuctx isn't associated with any */
598 if (!cpuctx->cgrp)
599 return false;
600
601 /*
602 * Cgroup scoping is recursive. An event enabled for a cgroup is
603 * also enabled for all its descendant cgroups. If @cpuctx's
604 * cgroup is a descendant of @event's (the test covers identity
605 * case), it's a match.
606 */
607 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
608 event->cgrp->css.cgroup);
e5d1367f
SE
609}
610
e5d1367f
SE
611static inline void perf_detach_cgroup(struct perf_event *event)
612{
4e2ba650 613 css_put(&event->cgrp->css);
e5d1367f
SE
614 event->cgrp = NULL;
615}
616
617static inline int is_cgroup_event(struct perf_event *event)
618{
619 return event->cgrp != NULL;
620}
621
622static inline u64 perf_cgroup_event_time(struct perf_event *event)
623{
624 struct perf_cgroup_info *t;
625
626 t = per_cpu_ptr(event->cgrp->info, event->cpu);
627 return t->time;
628}
629
630static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
631{
632 struct perf_cgroup_info *info;
633 u64 now;
634
635 now = perf_clock();
636
637 info = this_cpu_ptr(cgrp->info);
638
639 info->time += now - info->timestamp;
640 info->timestamp = now;
641}
642
643static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
644{
645 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
646 if (cgrp_out)
647 __update_cgrp_time(cgrp_out);
648}
649
650static inline void update_cgrp_time_from_event(struct perf_event *event)
651{
3f7cce3c
SE
652 struct perf_cgroup *cgrp;
653
e5d1367f 654 /*
3f7cce3c
SE
655 * ensure we access cgroup data only when needed and
656 * when we know the cgroup is pinned (css_get)
e5d1367f 657 */
3f7cce3c 658 if (!is_cgroup_event(event))
e5d1367f
SE
659 return;
660
614e4c4e 661 cgrp = perf_cgroup_from_task(current, event->ctx);
3f7cce3c
SE
662 /*
663 * Do not update time when cgroup is not active
664 */
e6a52033 665 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
3f7cce3c 666 __update_cgrp_time(event->cgrp);
e5d1367f
SE
667}
668
669static inline void
3f7cce3c
SE
670perf_cgroup_set_timestamp(struct task_struct *task,
671 struct perf_event_context *ctx)
e5d1367f
SE
672{
673 struct perf_cgroup *cgrp;
674 struct perf_cgroup_info *info;
675
3f7cce3c
SE
676 /*
677 * ctx->lock held by caller
678 * ensure we do not access cgroup data
679 * unless we have the cgroup pinned (css_get)
680 */
681 if (!task || !ctx->nr_cgroups)
e5d1367f
SE
682 return;
683
614e4c4e 684 cgrp = perf_cgroup_from_task(task, ctx);
e5d1367f 685 info = this_cpu_ptr(cgrp->info);
3f7cce3c 686 info->timestamp = ctx->timestamp;
e5d1367f
SE
687}
688
058fe1c0
DCC
689static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
690
e5d1367f
SE
691#define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
692#define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
693
694/*
695 * reschedule events based on the cgroup constraint of task.
696 *
697 * mode SWOUT : schedule out everything
698 * mode SWIN : schedule in based on cgroup for next
699 */
18ab2cd3 700static void perf_cgroup_switch(struct task_struct *task, int mode)
e5d1367f
SE
701{
702 struct perf_cpu_context *cpuctx;
058fe1c0 703 struct list_head *list;
e5d1367f
SE
704 unsigned long flags;
705
706 /*
058fe1c0
DCC
707 * Disable interrupts and preemption to avoid this CPU's
708 * cgrp_cpuctx_entry to change under us.
e5d1367f
SE
709 */
710 local_irq_save(flags);
711
058fe1c0
DCC
712 list = this_cpu_ptr(&cgrp_cpuctx_list);
713 list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
714 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
e5d1367f 715
058fe1c0
DCC
716 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
717 perf_pmu_disable(cpuctx->ctx.pmu);
e5d1367f 718
058fe1c0
DCC
719 if (mode & PERF_CGROUP_SWOUT) {
720 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
721 /*
722 * must not be done before ctxswout due
723 * to event_filter_match() in event_sched_out()
724 */
725 cpuctx->cgrp = NULL;
726 }
e5d1367f 727
058fe1c0
DCC
728 if (mode & PERF_CGROUP_SWIN) {
729 WARN_ON_ONCE(cpuctx->cgrp);
730 /*
731 * set cgrp before ctxsw in to allow
732 * event_filter_match() to not have to pass
733 * task around
734 * we pass the cpuctx->ctx to perf_cgroup_from_task()
735 * because cgorup events are only per-cpu
736 */
737 cpuctx->cgrp = perf_cgroup_from_task(task,
738 &cpuctx->ctx);
739 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
e5d1367f 740 }
058fe1c0
DCC
741 perf_pmu_enable(cpuctx->ctx.pmu);
742 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
e5d1367f
SE
743 }
744
e5d1367f
SE
745 local_irq_restore(flags);
746}
747
a8d757ef
SE
748static inline void perf_cgroup_sched_out(struct task_struct *task,
749 struct task_struct *next)
e5d1367f 750{
a8d757ef
SE
751 struct perf_cgroup *cgrp1;
752 struct perf_cgroup *cgrp2 = NULL;
753
ddaaf4e2 754 rcu_read_lock();
a8d757ef
SE
755 /*
756 * we come here when we know perf_cgroup_events > 0
614e4c4e
SE
757 * we do not need to pass the ctx here because we know
758 * we are holding the rcu lock
a8d757ef 759 */
614e4c4e 760 cgrp1 = perf_cgroup_from_task(task, NULL);
70a01657 761 cgrp2 = perf_cgroup_from_task(next, NULL);
a8d757ef
SE
762
763 /*
764 * only schedule out current cgroup events if we know
765 * that we are switching to a different cgroup. Otherwise,
766 * do no touch the cgroup events.
767 */
768 if (cgrp1 != cgrp2)
769 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
ddaaf4e2
SE
770
771 rcu_read_unlock();
e5d1367f
SE
772}
773
a8d757ef
SE
774static inline void perf_cgroup_sched_in(struct task_struct *prev,
775 struct task_struct *task)
e5d1367f 776{
a8d757ef
SE
777 struct perf_cgroup *cgrp1;
778 struct perf_cgroup *cgrp2 = NULL;
779
ddaaf4e2 780 rcu_read_lock();
a8d757ef
SE
781 /*
782 * we come here when we know perf_cgroup_events > 0
614e4c4e
SE
783 * we do not need to pass the ctx here because we know
784 * we are holding the rcu lock
a8d757ef 785 */
614e4c4e 786 cgrp1 = perf_cgroup_from_task(task, NULL);
614e4c4e 787 cgrp2 = perf_cgroup_from_task(prev, NULL);
a8d757ef
SE
788
789 /*
790 * only need to schedule in cgroup events if we are changing
791 * cgroup during ctxsw. Cgroup events were not scheduled
792 * out of ctxsw out if that was not the case.
793 */
794 if (cgrp1 != cgrp2)
795 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
ddaaf4e2
SE
796
797 rcu_read_unlock();
e5d1367f
SE
798}
799
800static inline int perf_cgroup_connect(int fd, struct perf_event *event,
801 struct perf_event_attr *attr,
802 struct perf_event *group_leader)
803{
804 struct perf_cgroup *cgrp;
805 struct cgroup_subsys_state *css;
2903ff01
AV
806 struct fd f = fdget(fd);
807 int ret = 0;
e5d1367f 808
2903ff01 809 if (!f.file)
e5d1367f
SE
810 return -EBADF;
811
b583043e 812 css = css_tryget_online_from_dir(f.file->f_path.dentry,
ec903c0c 813 &perf_event_cgrp_subsys);
3db272c0
LZ
814 if (IS_ERR(css)) {
815 ret = PTR_ERR(css);
816 goto out;
817 }
e5d1367f
SE
818
819 cgrp = container_of(css, struct perf_cgroup, css);
820 event->cgrp = cgrp;
821
822 /*
823 * all events in a group must monitor
824 * the same cgroup because a task belongs
825 * to only one perf cgroup at a time
826 */
827 if (group_leader && group_leader->cgrp != cgrp) {
828 perf_detach_cgroup(event);
829 ret = -EINVAL;
e5d1367f 830 }
3db272c0 831out:
2903ff01 832 fdput(f);
e5d1367f
SE
833 return ret;
834}
835
836static inline void
837perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
838{
839 struct perf_cgroup_info *t;
840 t = per_cpu_ptr(event->cgrp->info, event->cpu);
841 event->shadow_ctx_time = now - t->timestamp;
842}
843
844static inline void
845perf_cgroup_defer_enabled(struct perf_event *event)
846{
847 /*
848 * when the current task's perf cgroup does not match
849 * the event's, we need to remember to call the
850 * perf_mark_enable() function the first time a task with
851 * a matching perf cgroup is scheduled in.
852 */
853 if (is_cgroup_event(event) && !perf_cgroup_match(event))
854 event->cgrp_defer_enabled = 1;
855}
856
857static inline void
858perf_cgroup_mark_enabled(struct perf_event *event,
859 struct perf_event_context *ctx)
860{
861 struct perf_event *sub;
862 u64 tstamp = perf_event_time(event);
863
864 if (!event->cgrp_defer_enabled)
865 return;
866
867 event->cgrp_defer_enabled = 0;
868
869 event->tstamp_enabled = tstamp - event->total_time_enabled;
870 list_for_each_entry(sub, &event->sibling_list, group_entry) {
871 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
872 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
873 sub->cgrp_defer_enabled = 0;
874 }
875 }
876}
db4a8356
DCC
877
878/*
879 * Update cpuctx->cgrp so that it is set when first cgroup event is added and
880 * cleared when last cgroup event is removed.
881 */
882static inline void
883list_update_cgroup_event(struct perf_event *event,
884 struct perf_event_context *ctx, bool add)
885{
886 struct perf_cpu_context *cpuctx;
058fe1c0 887 struct list_head *cpuctx_entry;
db4a8356
DCC
888
889 if (!is_cgroup_event(event))
890 return;
891
892 if (add && ctx->nr_cgroups++)
893 return;
894 else if (!add && --ctx->nr_cgroups)
895 return;
896 /*
897 * Because cgroup events are always per-cpu events,
898 * this will always be called from the right CPU.
899 */
900 cpuctx = __get_cpu_context(ctx);
058fe1c0
DCC
901 cpuctx_entry = &cpuctx->cgrp_cpuctx_entry;
902 /* cpuctx->cgrp is NULL unless a cgroup event is active in this CPU .*/
903 if (add) {
904 list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list));
905 if (perf_cgroup_from_task(current, ctx) == event->cgrp)
906 cpuctx->cgrp = event->cgrp;
907 } else {
908 list_del(cpuctx_entry);
8fc31ce8 909 cpuctx->cgrp = NULL;
058fe1c0 910 }
db4a8356
DCC
911}
912
e5d1367f
SE
913#else /* !CONFIG_CGROUP_PERF */
914
915static inline bool
916perf_cgroup_match(struct perf_event *event)
917{
918 return true;
919}
920
921static inline void perf_detach_cgroup(struct perf_event *event)
922{}
923
924static inline int is_cgroup_event(struct perf_event *event)
925{
926 return 0;
927}
928
e5d1367f
SE
929static inline void update_cgrp_time_from_event(struct perf_event *event)
930{
931}
932
933static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
934{
935}
936
a8d757ef
SE
937static inline void perf_cgroup_sched_out(struct task_struct *task,
938 struct task_struct *next)
e5d1367f
SE
939{
940}
941
a8d757ef
SE
942static inline void perf_cgroup_sched_in(struct task_struct *prev,
943 struct task_struct *task)
e5d1367f
SE
944{
945}
946
947static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
948 struct perf_event_attr *attr,
949 struct perf_event *group_leader)
950{
951 return -EINVAL;
952}
953
954static inline void
3f7cce3c
SE
955perf_cgroup_set_timestamp(struct task_struct *task,
956 struct perf_event_context *ctx)
e5d1367f
SE
957{
958}
959
960void
961perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
962{
963}
964
965static inline void
966perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
967{
968}
969
970static inline u64 perf_cgroup_event_time(struct perf_event *event)
971{
972 return 0;
973}
974
975static inline void
976perf_cgroup_defer_enabled(struct perf_event *event)
977{
978}
979
980static inline void
981perf_cgroup_mark_enabled(struct perf_event *event,
982 struct perf_event_context *ctx)
983{
984}
db4a8356
DCC
985
986static inline void
987list_update_cgroup_event(struct perf_event *event,
988 struct perf_event_context *ctx, bool add)
989{
990}
991
e5d1367f
SE
992#endif
993
9e630205
SE
994/*
995 * set default to be dependent on timer tick just
996 * like original code
997 */
998#define PERF_CPU_HRTIMER (1000 / HZ)
999/*
8a1115ff 1000 * function must be called with interrupts disabled
9e630205 1001 */
272325c4 1002static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
9e630205
SE
1003{
1004 struct perf_cpu_context *cpuctx;
9e630205
SE
1005 int rotations = 0;
1006
1007 WARN_ON(!irqs_disabled());
1008
1009 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
9e630205
SE
1010 rotations = perf_rotate_context(cpuctx);
1011
4cfafd30
PZ
1012 raw_spin_lock(&cpuctx->hrtimer_lock);
1013 if (rotations)
9e630205 1014 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
4cfafd30
PZ
1015 else
1016 cpuctx->hrtimer_active = 0;
1017 raw_spin_unlock(&cpuctx->hrtimer_lock);
9e630205 1018
4cfafd30 1019 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
9e630205
SE
1020}
1021
272325c4 1022static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
9e630205 1023{
272325c4 1024 struct hrtimer *timer = &cpuctx->hrtimer;
9e630205 1025 struct pmu *pmu = cpuctx->ctx.pmu;
272325c4 1026 u64 interval;
9e630205
SE
1027
1028 /* no multiplexing needed for SW PMU */
1029 if (pmu->task_ctx_nr == perf_sw_context)
1030 return;
1031
62b85639
SE
1032 /*
1033 * check default is sane, if not set then force to
1034 * default interval (1/tick)
1035 */
272325c4
PZ
1036 interval = pmu->hrtimer_interval_ms;
1037 if (interval < 1)
1038 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
62b85639 1039
272325c4 1040 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
9e630205 1041
4cfafd30
PZ
1042 raw_spin_lock_init(&cpuctx->hrtimer_lock);
1043 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
272325c4 1044 timer->function = perf_mux_hrtimer_handler;
9e630205
SE
1045}
1046
272325c4 1047static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
9e630205 1048{
272325c4 1049 struct hrtimer *timer = &cpuctx->hrtimer;
9e630205 1050 struct pmu *pmu = cpuctx->ctx.pmu;
4cfafd30 1051 unsigned long flags;
9e630205
SE
1052
1053 /* not for SW PMU */
1054 if (pmu->task_ctx_nr == perf_sw_context)
272325c4 1055 return 0;
9e630205 1056
4cfafd30
PZ
1057 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1058 if (!cpuctx->hrtimer_active) {
1059 cpuctx->hrtimer_active = 1;
1060 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1061 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
1062 }
1063 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
9e630205 1064
272325c4 1065 return 0;
9e630205
SE
1066}
1067
33696fc0 1068void perf_pmu_disable(struct pmu *pmu)
9e35ad38 1069{
33696fc0
PZ
1070 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1071 if (!(*count)++)
1072 pmu->pmu_disable(pmu);
9e35ad38 1073}
9e35ad38 1074
33696fc0 1075void perf_pmu_enable(struct pmu *pmu)
9e35ad38 1076{
33696fc0
PZ
1077 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1078 if (!--(*count))
1079 pmu->pmu_enable(pmu);
9e35ad38 1080}
9e35ad38 1081
2fde4f94 1082static DEFINE_PER_CPU(struct list_head, active_ctx_list);
e9d2b064
PZ
1083
1084/*
2fde4f94
MR
1085 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1086 * perf_event_task_tick() are fully serialized because they're strictly cpu
1087 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1088 * disabled, while perf_event_task_tick is called from IRQ context.
e9d2b064 1089 */
2fde4f94 1090static void perf_event_ctx_activate(struct perf_event_context *ctx)
9e35ad38 1091{
2fde4f94 1092 struct list_head *head = this_cpu_ptr(&active_ctx_list);
b5ab4cd5 1093
e9d2b064 1094 WARN_ON(!irqs_disabled());
b5ab4cd5 1095
2fde4f94
MR
1096 WARN_ON(!list_empty(&ctx->active_ctx_list));
1097
1098 list_add(&ctx->active_ctx_list, head);
1099}
1100
1101static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1102{
1103 WARN_ON(!irqs_disabled());
1104
1105 WARN_ON(list_empty(&ctx->active_ctx_list));
1106
1107 list_del_init(&ctx->active_ctx_list);
9e35ad38 1108}
9e35ad38 1109
cdd6c482 1110static void get_ctx(struct perf_event_context *ctx)
a63eaf34 1111{
e5289d4a 1112 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
a63eaf34
PM
1113}
1114
4af57ef2
YZ
1115static void free_ctx(struct rcu_head *head)
1116{
1117 struct perf_event_context *ctx;
1118
1119 ctx = container_of(head, struct perf_event_context, rcu_head);
1120 kfree(ctx->task_ctx_data);
1121 kfree(ctx);
1122}
1123
cdd6c482 1124static void put_ctx(struct perf_event_context *ctx)
a63eaf34 1125{
564c2b21
PM
1126 if (atomic_dec_and_test(&ctx->refcount)) {
1127 if (ctx->parent_ctx)
1128 put_ctx(ctx->parent_ctx);
63b6da39 1129 if (ctx->task && ctx->task != TASK_TOMBSTONE)
c93f7669 1130 put_task_struct(ctx->task);
4af57ef2 1131 call_rcu(&ctx->rcu_head, free_ctx);
564c2b21 1132 }
a63eaf34
PM
1133}
1134
f63a8daa
PZ
1135/*
1136 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1137 * perf_pmu_migrate_context() we need some magic.
1138 *
1139 * Those places that change perf_event::ctx will hold both
1140 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1141 *
8b10c5e2
PZ
1142 * Lock ordering is by mutex address. There are two other sites where
1143 * perf_event_context::mutex nests and those are:
1144 *
1145 * - perf_event_exit_task_context() [ child , 0 ]
8ba289b8
PZ
1146 * perf_event_exit_event()
1147 * put_event() [ parent, 1 ]
8b10c5e2
PZ
1148 *
1149 * - perf_event_init_context() [ parent, 0 ]
1150 * inherit_task_group()
1151 * inherit_group()
1152 * inherit_event()
1153 * perf_event_alloc()
1154 * perf_init_event()
1155 * perf_try_init_event() [ child , 1 ]
1156 *
1157 * While it appears there is an obvious deadlock here -- the parent and child
1158 * nesting levels are inverted between the two. This is in fact safe because
1159 * life-time rules separate them. That is an exiting task cannot fork, and a
1160 * spawning task cannot (yet) exit.
1161 *
1162 * But remember that that these are parent<->child context relations, and
1163 * migration does not affect children, therefore these two orderings should not
1164 * interact.
f63a8daa
PZ
1165 *
1166 * The change in perf_event::ctx does not affect children (as claimed above)
1167 * because the sys_perf_event_open() case will install a new event and break
1168 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1169 * concerned with cpuctx and that doesn't have children.
1170 *
1171 * The places that change perf_event::ctx will issue:
1172 *
1173 * perf_remove_from_context();
1174 * synchronize_rcu();
1175 * perf_install_in_context();
1176 *
1177 * to affect the change. The remove_from_context() + synchronize_rcu() should
1178 * quiesce the event, after which we can install it in the new location. This
1179 * means that only external vectors (perf_fops, prctl) can perturb the event
1180 * while in transit. Therefore all such accessors should also acquire
1181 * perf_event_context::mutex to serialize against this.
1182 *
1183 * However; because event->ctx can change while we're waiting to acquire
1184 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1185 * function.
1186 *
1187 * Lock order:
79c9ce57 1188 * cred_guard_mutex
f63a8daa
PZ
1189 * task_struct::perf_event_mutex
1190 * perf_event_context::mutex
f63a8daa 1191 * perf_event::child_mutex;
07c4a776 1192 * perf_event_context::lock
f63a8daa
PZ
1193 * perf_event::mmap_mutex
1194 * mmap_sem
1195 */
a83fe28e
PZ
1196static struct perf_event_context *
1197perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
f63a8daa
PZ
1198{
1199 struct perf_event_context *ctx;
1200
1201again:
1202 rcu_read_lock();
1203 ctx = ACCESS_ONCE(event->ctx);
1204 if (!atomic_inc_not_zero(&ctx->refcount)) {
1205 rcu_read_unlock();
1206 goto again;
1207 }
1208 rcu_read_unlock();
1209
a83fe28e 1210 mutex_lock_nested(&ctx->mutex, nesting);
f63a8daa
PZ
1211 if (event->ctx != ctx) {
1212 mutex_unlock(&ctx->mutex);
1213 put_ctx(ctx);
1214 goto again;
1215 }
1216
1217 return ctx;
1218}
1219
a83fe28e
PZ
1220static inline struct perf_event_context *
1221perf_event_ctx_lock(struct perf_event *event)
1222{
1223 return perf_event_ctx_lock_nested(event, 0);
1224}
1225
f63a8daa
PZ
1226static void perf_event_ctx_unlock(struct perf_event *event,
1227 struct perf_event_context *ctx)
1228{
1229 mutex_unlock(&ctx->mutex);
1230 put_ctx(ctx);
1231}
1232
211de6eb
PZ
1233/*
1234 * This must be done under the ctx->lock, such as to serialize against
1235 * context_equiv(), therefore we cannot call put_ctx() since that might end up
1236 * calling scheduler related locks and ctx->lock nests inside those.
1237 */
1238static __must_check struct perf_event_context *
1239unclone_ctx(struct perf_event_context *ctx)
71a851b4 1240{
211de6eb
PZ
1241 struct perf_event_context *parent_ctx = ctx->parent_ctx;
1242
1243 lockdep_assert_held(&ctx->lock);
1244
1245 if (parent_ctx)
71a851b4 1246 ctx->parent_ctx = NULL;
5a3126d4 1247 ctx->generation++;
211de6eb
PZ
1248
1249 return parent_ctx;
71a851b4
PZ
1250}
1251
1d953111
ON
1252static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1253 enum pid_type type)
6844c09d 1254{
1d953111 1255 u32 nr;
6844c09d
ACM
1256 /*
1257 * only top level events have the pid namespace they were created in
1258 */
1259 if (event->parent)
1260 event = event->parent;
1261
1d953111
ON
1262 nr = __task_pid_nr_ns(p, type, event->ns);
1263 /* avoid -1 if it is idle thread or runs in another ns */
1264 if (!nr && !pid_alive(p))
1265 nr = -1;
1266 return nr;
6844c09d
ACM
1267}
1268
1d953111 1269static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
6844c09d 1270{
1d953111
ON
1271 return perf_event_pid_type(event, p, __PIDTYPE_TGID);
1272}
6844c09d 1273
1d953111
ON
1274static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1275{
1276 return perf_event_pid_type(event, p, PIDTYPE_PID);
6844c09d
ACM
1277}
1278
7f453c24 1279/*
cdd6c482 1280 * If we inherit events we want to return the parent event id
7f453c24
PZ
1281 * to userspace.
1282 */
cdd6c482 1283static u64 primary_event_id(struct perf_event *event)
7f453c24 1284{
cdd6c482 1285 u64 id = event->id;
7f453c24 1286
cdd6c482
IM
1287 if (event->parent)
1288 id = event->parent->id;
7f453c24
PZ
1289
1290 return id;
1291}
1292
25346b93 1293/*
cdd6c482 1294 * Get the perf_event_context for a task and lock it.
63b6da39 1295 *
25346b93
PM
1296 * This has to cope with with the fact that until it is locked,
1297 * the context could get moved to another task.
1298 */
cdd6c482 1299static struct perf_event_context *
8dc85d54 1300perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
25346b93 1301{
cdd6c482 1302 struct perf_event_context *ctx;
25346b93 1303
9ed6060d 1304retry:
058ebd0e
PZ
1305 /*
1306 * One of the few rules of preemptible RCU is that one cannot do
1307 * rcu_read_unlock() while holding a scheduler (or nested) lock when
2fd59077 1308 * part of the read side critical section was irqs-enabled -- see
058ebd0e
PZ
1309 * rcu_read_unlock_special().
1310 *
1311 * Since ctx->lock nests under rq->lock we must ensure the entire read
2fd59077 1312 * side critical section has interrupts disabled.
058ebd0e 1313 */
2fd59077 1314 local_irq_save(*flags);
058ebd0e 1315 rcu_read_lock();
8dc85d54 1316 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
25346b93
PM
1317 if (ctx) {
1318 /*
1319 * If this context is a clone of another, it might
1320 * get swapped for another underneath us by
cdd6c482 1321 * perf_event_task_sched_out, though the
25346b93
PM
1322 * rcu_read_lock() protects us from any context
1323 * getting freed. Lock the context and check if it
1324 * got swapped before we could get the lock, and retry
1325 * if so. If we locked the right context, then it
1326 * can't get swapped on us any more.
1327 */
2fd59077 1328 raw_spin_lock(&ctx->lock);
8dc85d54 1329 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
2fd59077 1330 raw_spin_unlock(&ctx->lock);
058ebd0e 1331 rcu_read_unlock();
2fd59077 1332 local_irq_restore(*flags);
25346b93
PM
1333 goto retry;
1334 }
b49a9e7e 1335
63b6da39
PZ
1336 if (ctx->task == TASK_TOMBSTONE ||
1337 !atomic_inc_not_zero(&ctx->refcount)) {
2fd59077 1338 raw_spin_unlock(&ctx->lock);
b49a9e7e 1339 ctx = NULL;
828b6f0e
PZ
1340 } else {
1341 WARN_ON_ONCE(ctx->task != task);
b49a9e7e 1342 }
25346b93
PM
1343 }
1344 rcu_read_unlock();
2fd59077
PM
1345 if (!ctx)
1346 local_irq_restore(*flags);
25346b93
PM
1347 return ctx;
1348}
1349
1350/*
1351 * Get the context for a task and increment its pin_count so it
1352 * can't get swapped to another task. This also increments its
1353 * reference count so that the context can't get freed.
1354 */
8dc85d54
PZ
1355static struct perf_event_context *
1356perf_pin_task_context(struct task_struct *task, int ctxn)
25346b93 1357{
cdd6c482 1358 struct perf_event_context *ctx;
25346b93
PM
1359 unsigned long flags;
1360
8dc85d54 1361 ctx = perf_lock_task_context(task, ctxn, &flags);
25346b93
PM
1362 if (ctx) {
1363 ++ctx->pin_count;
e625cce1 1364 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1365 }
1366 return ctx;
1367}
1368
cdd6c482 1369static void perf_unpin_context(struct perf_event_context *ctx)
25346b93
PM
1370{
1371 unsigned long flags;
1372
e625cce1 1373 raw_spin_lock_irqsave(&ctx->lock, flags);
25346b93 1374 --ctx->pin_count;
e625cce1 1375 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1376}
1377
f67218c3
PZ
1378/*
1379 * Update the record of the current time in a context.
1380 */
1381static void update_context_time(struct perf_event_context *ctx)
1382{
1383 u64 now = perf_clock();
1384
1385 ctx->time += now - ctx->timestamp;
1386 ctx->timestamp = now;
1387}
1388
4158755d
SE
1389static u64 perf_event_time(struct perf_event *event)
1390{
1391 struct perf_event_context *ctx = event->ctx;
e5d1367f
SE
1392
1393 if (is_cgroup_event(event))
1394 return perf_cgroup_event_time(event);
1395
4158755d
SE
1396 return ctx ? ctx->time : 0;
1397}
1398
f67218c3
PZ
1399/*
1400 * Update the total_time_enabled and total_time_running fields for a event.
1401 */
1402static void update_event_times(struct perf_event *event)
1403{
1404 struct perf_event_context *ctx = event->ctx;
1405 u64 run_end;
1406
3cbaa590
PZ
1407 lockdep_assert_held(&ctx->lock);
1408
f67218c3
PZ
1409 if (event->state < PERF_EVENT_STATE_INACTIVE ||
1410 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1411 return;
3cbaa590 1412
e5d1367f
SE
1413 /*
1414 * in cgroup mode, time_enabled represents
1415 * the time the event was enabled AND active
1416 * tasks were in the monitored cgroup. This is
1417 * independent of the activity of the context as
1418 * there may be a mix of cgroup and non-cgroup events.
1419 *
1420 * That is why we treat cgroup events differently
1421 * here.
1422 */
1423 if (is_cgroup_event(event))
46cd6a7f 1424 run_end = perf_cgroup_event_time(event);
e5d1367f
SE
1425 else if (ctx->is_active)
1426 run_end = ctx->time;
acd1d7c1
PZ
1427 else
1428 run_end = event->tstamp_stopped;
1429
1430 event->total_time_enabled = run_end - event->tstamp_enabled;
f67218c3
PZ
1431
1432 if (event->state == PERF_EVENT_STATE_INACTIVE)
1433 run_end = event->tstamp_stopped;
1434 else
4158755d 1435 run_end = perf_event_time(event);
f67218c3
PZ
1436
1437 event->total_time_running = run_end - event->tstamp_running;
e5d1367f 1438
f67218c3
PZ
1439}
1440
96c21a46
PZ
1441/*
1442 * Update total_time_enabled and total_time_running for all events in a group.
1443 */
1444static void update_group_times(struct perf_event *leader)
1445{
1446 struct perf_event *event;
1447
1448 update_event_times(leader);
1449 list_for_each_entry(event, &leader->sibling_list, group_entry)
1450 update_event_times(event);
1451}
1452
487f05e1
AS
1453static enum event_type_t get_event_type(struct perf_event *event)
1454{
1455 struct perf_event_context *ctx = event->ctx;
1456 enum event_type_t event_type;
1457
1458 lockdep_assert_held(&ctx->lock);
1459
3bda69c1
AS
1460 /*
1461 * It's 'group type', really, because if our group leader is
1462 * pinned, so are we.
1463 */
1464 if (event->group_leader != event)
1465 event = event->group_leader;
1466
487f05e1
AS
1467 event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1468 if (!ctx->task)
1469 event_type |= EVENT_CPU;
1470
1471 return event_type;
1472}
1473
889ff015
FW
1474static struct list_head *
1475ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1476{
1477 if (event->attr.pinned)
1478 return &ctx->pinned_groups;
1479 else
1480 return &ctx->flexible_groups;
1481}
1482
fccc714b 1483/*
cdd6c482 1484 * Add a event from the lists for its context.
fccc714b
PZ
1485 * Must be called with ctx->mutex and ctx->lock held.
1486 */
04289bb9 1487static void
cdd6c482 1488list_add_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1489{
c994d613
PZ
1490 lockdep_assert_held(&ctx->lock);
1491
8a49542c
PZ
1492 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1493 event->attach_state |= PERF_ATTACH_CONTEXT;
04289bb9
IM
1494
1495 /*
8a49542c
PZ
1496 * If we're a stand alone event or group leader, we go to the context
1497 * list, group events are kept attached to the group so that
1498 * perf_group_detach can, at all times, locate all siblings.
04289bb9 1499 */
8a49542c 1500 if (event->group_leader == event) {
889ff015
FW
1501 struct list_head *list;
1502
4ff6a8de 1503 event->group_caps = event->event_caps;
d6f962b5 1504
889ff015
FW
1505 list = ctx_group_list(event, ctx);
1506 list_add_tail(&event->group_entry, list);
5c148194 1507 }
592903cd 1508
db4a8356 1509 list_update_cgroup_event(event, ctx, true);
e5d1367f 1510
cdd6c482
IM
1511 list_add_rcu(&event->event_entry, &ctx->event_list);
1512 ctx->nr_events++;
1513 if (event->attr.inherit_stat)
bfbd3381 1514 ctx->nr_stat++;
5a3126d4
PZ
1515
1516 ctx->generation++;
04289bb9
IM
1517}
1518
0231bb53
JO
1519/*
1520 * Initialize event state based on the perf_event_attr::disabled.
1521 */
1522static inline void perf_event__state_init(struct perf_event *event)
1523{
1524 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1525 PERF_EVENT_STATE_INACTIVE;
1526}
1527
a723968c 1528static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
c320c7b7
ACM
1529{
1530 int entry = sizeof(u64); /* value */
1531 int size = 0;
1532 int nr = 1;
1533
1534 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1535 size += sizeof(u64);
1536
1537 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1538 size += sizeof(u64);
1539
1540 if (event->attr.read_format & PERF_FORMAT_ID)
1541 entry += sizeof(u64);
1542
1543 if (event->attr.read_format & PERF_FORMAT_GROUP) {
a723968c 1544 nr += nr_siblings;
c320c7b7
ACM
1545 size += sizeof(u64);
1546 }
1547
1548 size += entry * nr;
1549 event->read_size = size;
1550}
1551
a723968c 1552static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
c320c7b7
ACM
1553{
1554 struct perf_sample_data *data;
c320c7b7
ACM
1555 u16 size = 0;
1556
c320c7b7
ACM
1557 if (sample_type & PERF_SAMPLE_IP)
1558 size += sizeof(data->ip);
1559
6844c09d
ACM
1560 if (sample_type & PERF_SAMPLE_ADDR)
1561 size += sizeof(data->addr);
1562
1563 if (sample_type & PERF_SAMPLE_PERIOD)
1564 size += sizeof(data->period);
1565
c3feedf2
AK
1566 if (sample_type & PERF_SAMPLE_WEIGHT)
1567 size += sizeof(data->weight);
1568
6844c09d
ACM
1569 if (sample_type & PERF_SAMPLE_READ)
1570 size += event->read_size;
1571
d6be9ad6
SE
1572 if (sample_type & PERF_SAMPLE_DATA_SRC)
1573 size += sizeof(data->data_src.val);
1574
fdfbbd07
AK
1575 if (sample_type & PERF_SAMPLE_TRANSACTION)
1576 size += sizeof(data->txn);
1577
fc7ce9c7
KL
1578 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1579 size += sizeof(data->phys_addr);
1580
6844c09d
ACM
1581 event->header_size = size;
1582}
1583
a723968c
PZ
1584/*
1585 * Called at perf_event creation and when events are attached/detached from a
1586 * group.
1587 */
1588static void perf_event__header_size(struct perf_event *event)
1589{
1590 __perf_event_read_size(event,
1591 event->group_leader->nr_siblings);
1592 __perf_event_header_size(event, event->attr.sample_type);
1593}
1594
6844c09d
ACM
1595static void perf_event__id_header_size(struct perf_event *event)
1596{
1597 struct perf_sample_data *data;
1598 u64 sample_type = event->attr.sample_type;
1599 u16 size = 0;
1600
c320c7b7
ACM
1601 if (sample_type & PERF_SAMPLE_TID)
1602 size += sizeof(data->tid_entry);
1603
1604 if (sample_type & PERF_SAMPLE_TIME)
1605 size += sizeof(data->time);
1606
ff3d527c
AH
1607 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1608 size += sizeof(data->id);
1609
c320c7b7
ACM
1610 if (sample_type & PERF_SAMPLE_ID)
1611 size += sizeof(data->id);
1612
1613 if (sample_type & PERF_SAMPLE_STREAM_ID)
1614 size += sizeof(data->stream_id);
1615
1616 if (sample_type & PERF_SAMPLE_CPU)
1617 size += sizeof(data->cpu_entry);
1618
6844c09d 1619 event->id_header_size = size;
c320c7b7
ACM
1620}
1621
a723968c
PZ
1622static bool perf_event_validate_size(struct perf_event *event)
1623{
1624 /*
1625 * The values computed here will be over-written when we actually
1626 * attach the event.
1627 */
1628 __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1629 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1630 perf_event__id_header_size(event);
1631
1632 /*
1633 * Sum the lot; should not exceed the 64k limit we have on records.
1634 * Conservative limit to allow for callchains and other variable fields.
1635 */
1636 if (event->read_size + event->header_size +
1637 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1638 return false;
1639
1640 return true;
1641}
1642
8a49542c
PZ
1643static void perf_group_attach(struct perf_event *event)
1644{
c320c7b7 1645 struct perf_event *group_leader = event->group_leader, *pos;
8a49542c 1646
a76a82a3
PZ
1647 lockdep_assert_held(&event->ctx->lock);
1648
74c3337c
PZ
1649 /*
1650 * We can have double attach due to group movement in perf_event_open.
1651 */
1652 if (event->attach_state & PERF_ATTACH_GROUP)
1653 return;
1654
8a49542c
PZ
1655 event->attach_state |= PERF_ATTACH_GROUP;
1656
1657 if (group_leader == event)
1658 return;
1659
652884fe
PZ
1660 WARN_ON_ONCE(group_leader->ctx != event->ctx);
1661
4ff6a8de 1662 group_leader->group_caps &= event->event_caps;
8a49542c
PZ
1663
1664 list_add_tail(&event->group_entry, &group_leader->sibling_list);
1665 group_leader->nr_siblings++;
c320c7b7
ACM
1666
1667 perf_event__header_size(group_leader);
1668
1669 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1670 perf_event__header_size(pos);
8a49542c
PZ
1671}
1672
a63eaf34 1673/*
cdd6c482 1674 * Remove a event from the lists for its context.
fccc714b 1675 * Must be called with ctx->mutex and ctx->lock held.
a63eaf34 1676 */
04289bb9 1677static void
cdd6c482 1678list_del_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1679{
652884fe
PZ
1680 WARN_ON_ONCE(event->ctx != ctx);
1681 lockdep_assert_held(&ctx->lock);
1682
8a49542c
PZ
1683 /*
1684 * We can have double detach due to exit/hot-unplug + close.
1685 */
1686 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
a63eaf34 1687 return;
8a49542c
PZ
1688
1689 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1690
db4a8356 1691 list_update_cgroup_event(event, ctx, false);
e5d1367f 1692
cdd6c482
IM
1693 ctx->nr_events--;
1694 if (event->attr.inherit_stat)
bfbd3381 1695 ctx->nr_stat--;
8bc20959 1696
cdd6c482 1697 list_del_rcu(&event->event_entry);
04289bb9 1698
8a49542c
PZ
1699 if (event->group_leader == event)
1700 list_del_init(&event->group_entry);
5c148194 1701
96c21a46 1702 update_group_times(event);
b2e74a26
SE
1703
1704 /*
1705 * If event was in error state, then keep it
1706 * that way, otherwise bogus counts will be
1707 * returned on read(). The only way to get out
1708 * of error state is by explicit re-enabling
1709 * of the event
1710 */
1711 if (event->state > PERF_EVENT_STATE_OFF)
1712 event->state = PERF_EVENT_STATE_OFF;
5a3126d4
PZ
1713
1714 ctx->generation++;
050735b0
PZ
1715}
1716
8a49542c 1717static void perf_group_detach(struct perf_event *event)
050735b0
PZ
1718{
1719 struct perf_event *sibling, *tmp;
8a49542c
PZ
1720 struct list_head *list = NULL;
1721
a76a82a3
PZ
1722 lockdep_assert_held(&event->ctx->lock);
1723
8a49542c
PZ
1724 /*
1725 * We can have double detach due to exit/hot-unplug + close.
1726 */
1727 if (!(event->attach_state & PERF_ATTACH_GROUP))
1728 return;
1729
1730 event->attach_state &= ~PERF_ATTACH_GROUP;
1731
1732 /*
1733 * If this is a sibling, remove it from its group.
1734 */
1735 if (event->group_leader != event) {
1736 list_del_init(&event->group_entry);
1737 event->group_leader->nr_siblings--;
c320c7b7 1738 goto out;
8a49542c
PZ
1739 }
1740
1741 if (!list_empty(&event->group_entry))
1742 list = &event->group_entry;
2e2af50b 1743
04289bb9 1744 /*
cdd6c482
IM
1745 * If this was a group event with sibling events then
1746 * upgrade the siblings to singleton events by adding them
8a49542c 1747 * to whatever list we are on.
04289bb9 1748 */
cdd6c482 1749 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
8a49542c
PZ
1750 if (list)
1751 list_move_tail(&sibling->group_entry, list);
04289bb9 1752 sibling->group_leader = sibling;
d6f962b5
FW
1753
1754 /* Inherit group flags from the previous leader */
4ff6a8de 1755 sibling->group_caps = event->group_caps;
652884fe
PZ
1756
1757 WARN_ON_ONCE(sibling->ctx != event->ctx);
04289bb9 1758 }
c320c7b7
ACM
1759
1760out:
1761 perf_event__header_size(event->group_leader);
1762
1763 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1764 perf_event__header_size(tmp);
04289bb9
IM
1765}
1766
fadfe7be
JO
1767static bool is_orphaned_event(struct perf_event *event)
1768{
a69b0ca4 1769 return event->state == PERF_EVENT_STATE_DEAD;
fadfe7be
JO
1770}
1771
2c81a647 1772static inline int __pmu_filter_match(struct perf_event *event)
66eb579e
MR
1773{
1774 struct pmu *pmu = event->pmu;
1775 return pmu->filter_match ? pmu->filter_match(event) : 1;
1776}
1777
2c81a647
MR
1778/*
1779 * Check whether we should attempt to schedule an event group based on
1780 * PMU-specific filtering. An event group can consist of HW and SW events,
1781 * potentially with a SW leader, so we must check all the filters, to
1782 * determine whether a group is schedulable:
1783 */
1784static inline int pmu_filter_match(struct perf_event *event)
1785{
1786 struct perf_event *child;
1787
1788 if (!__pmu_filter_match(event))
1789 return 0;
1790
1791 list_for_each_entry(child, &event->sibling_list, group_entry) {
1792 if (!__pmu_filter_match(child))
1793 return 0;
1794 }
1795
1796 return 1;
1797}
1798
fa66f07a
SE
1799static inline int
1800event_filter_match(struct perf_event *event)
1801{
0b8f1e2e
PZ
1802 return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
1803 perf_cgroup_match(event) && pmu_filter_match(event);
fa66f07a
SE
1804}
1805
9ffcfa6f
SE
1806static void
1807event_sched_out(struct perf_event *event,
3b6f9e5c 1808 struct perf_cpu_context *cpuctx,
cdd6c482 1809 struct perf_event_context *ctx)
3b6f9e5c 1810{
4158755d 1811 u64 tstamp = perf_event_time(event);
fa66f07a 1812 u64 delta;
652884fe
PZ
1813
1814 WARN_ON_ONCE(event->ctx != ctx);
1815 lockdep_assert_held(&ctx->lock);
1816
fa66f07a
SE
1817 /*
1818 * An event which could not be activated because of
1819 * filter mismatch still needs to have its timings
1820 * maintained, otherwise bogus information is return
1821 * via read() for time_enabled, time_running:
1822 */
0b8f1e2e
PZ
1823 if (event->state == PERF_EVENT_STATE_INACTIVE &&
1824 !event_filter_match(event)) {
e5d1367f 1825 delta = tstamp - event->tstamp_stopped;
fa66f07a 1826 event->tstamp_running += delta;
4158755d 1827 event->tstamp_stopped = tstamp;
fa66f07a
SE
1828 }
1829
cdd6c482 1830 if (event->state != PERF_EVENT_STATE_ACTIVE)
9ffcfa6f 1831 return;
3b6f9e5c 1832
44377277
AS
1833 perf_pmu_disable(event->pmu);
1834
28a967c3
PZ
1835 event->tstamp_stopped = tstamp;
1836 event->pmu->del(event, 0);
1837 event->oncpu = -1;
cdd6c482
IM
1838 event->state = PERF_EVENT_STATE_INACTIVE;
1839 if (event->pending_disable) {
1840 event->pending_disable = 0;
1841 event->state = PERF_EVENT_STATE_OFF;
970892a9 1842 }
3b6f9e5c 1843
cdd6c482 1844 if (!is_software_event(event))
3b6f9e5c 1845 cpuctx->active_oncpu--;
2fde4f94
MR
1846 if (!--ctx->nr_active)
1847 perf_event_ctx_deactivate(ctx);
0f5a2601
PZ
1848 if (event->attr.freq && event->attr.sample_freq)
1849 ctx->nr_freq--;
cdd6c482 1850 if (event->attr.exclusive || !cpuctx->active_oncpu)
3b6f9e5c 1851 cpuctx->exclusive = 0;
44377277
AS
1852
1853 perf_pmu_enable(event->pmu);
3b6f9e5c
PM
1854}
1855
d859e29f 1856static void
cdd6c482 1857group_sched_out(struct perf_event *group_event,
d859e29f 1858 struct perf_cpu_context *cpuctx,
cdd6c482 1859 struct perf_event_context *ctx)
d859e29f 1860{
cdd6c482 1861 struct perf_event *event;
fa66f07a 1862 int state = group_event->state;
d859e29f 1863
3f005e7d
MR
1864 perf_pmu_disable(ctx->pmu);
1865
cdd6c482 1866 event_sched_out(group_event, cpuctx, ctx);
d859e29f
PM
1867
1868 /*
1869 * Schedule out siblings (if any):
1870 */
cdd6c482
IM
1871 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1872 event_sched_out(event, cpuctx, ctx);
d859e29f 1873
3f005e7d
MR
1874 perf_pmu_enable(ctx->pmu);
1875
fa66f07a 1876 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
d859e29f
PM
1877 cpuctx->exclusive = 0;
1878}
1879
45a0e07a 1880#define DETACH_GROUP 0x01UL
0017960f 1881
0793a61d 1882/*
cdd6c482 1883 * Cross CPU call to remove a performance event
0793a61d 1884 *
cdd6c482 1885 * We disable the event on the hardware level first. After that we
0793a61d
TG
1886 * remove it from the context list.
1887 */
fae3fde6
PZ
1888static void
1889__perf_remove_from_context(struct perf_event *event,
1890 struct perf_cpu_context *cpuctx,
1891 struct perf_event_context *ctx,
1892 void *info)
0793a61d 1893{
45a0e07a 1894 unsigned long flags = (unsigned long)info;
0793a61d 1895
cdd6c482 1896 event_sched_out(event, cpuctx, ctx);
45a0e07a 1897 if (flags & DETACH_GROUP)
46ce0fe9 1898 perf_group_detach(event);
cdd6c482 1899 list_del_event(event, ctx);
39a43640
PZ
1900
1901 if (!ctx->nr_events && ctx->is_active) {
64ce3126 1902 ctx->is_active = 0;
39a43640
PZ
1903 if (ctx->task) {
1904 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
1905 cpuctx->task_ctx = NULL;
1906 }
64ce3126 1907 }
0793a61d
TG
1908}
1909
0793a61d 1910/*
cdd6c482 1911 * Remove the event from a task's (or a CPU's) list of events.
0793a61d 1912 *
cdd6c482
IM
1913 * If event->ctx is a cloned context, callers must make sure that
1914 * every task struct that event->ctx->task could possibly point to
c93f7669
PM
1915 * remains valid. This is OK when called from perf_release since
1916 * that only calls us on the top-level context, which can't be a clone.
cdd6c482 1917 * When called from perf_event_exit_task, it's OK because the
c93f7669 1918 * context has been detached from its task.
0793a61d 1919 */
45a0e07a 1920static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
0793a61d 1921{
a76a82a3
PZ
1922 struct perf_event_context *ctx = event->ctx;
1923
1924 lockdep_assert_held(&ctx->mutex);
0793a61d 1925
45a0e07a 1926 event_function_call(event, __perf_remove_from_context, (void *)flags);
a76a82a3
PZ
1927
1928 /*
1929 * The above event_function_call() can NO-OP when it hits
1930 * TASK_TOMBSTONE. In that case we must already have been detached
1931 * from the context (by perf_event_exit_event()) but the grouping
1932 * might still be in-tact.
1933 */
1934 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1935 if ((flags & DETACH_GROUP) &&
1936 (event->attach_state & PERF_ATTACH_GROUP)) {
1937 /*
1938 * Since in that case we cannot possibly be scheduled, simply
1939 * detach now.
1940 */
1941 raw_spin_lock_irq(&ctx->lock);
1942 perf_group_detach(event);
1943 raw_spin_unlock_irq(&ctx->lock);
1944 }
0793a61d
TG
1945}
1946
d859e29f 1947/*
cdd6c482 1948 * Cross CPU call to disable a performance event
d859e29f 1949 */
fae3fde6
PZ
1950static void __perf_event_disable(struct perf_event *event,
1951 struct perf_cpu_context *cpuctx,
1952 struct perf_event_context *ctx,
1953 void *info)
7b648018 1954{
fae3fde6
PZ
1955 if (event->state < PERF_EVENT_STATE_INACTIVE)
1956 return;
7b648018 1957
fae3fde6
PZ
1958 update_context_time(ctx);
1959 update_cgrp_time_from_event(event);
1960 update_group_times(event);
1961 if (event == event->group_leader)
1962 group_sched_out(event, cpuctx, ctx);
1963 else
1964 event_sched_out(event, cpuctx, ctx);
1965 event->state = PERF_EVENT_STATE_OFF;
7b648018
PZ
1966}
1967
d859e29f 1968/*
cdd6c482 1969 * Disable a event.
c93f7669 1970 *
cdd6c482
IM
1971 * If event->ctx is a cloned context, callers must make sure that
1972 * every task struct that event->ctx->task could possibly point to
c93f7669 1973 * remains valid. This condition is satisifed when called through
cdd6c482
IM
1974 * perf_event_for_each_child or perf_event_for_each because they
1975 * hold the top-level event's child_mutex, so any descendant that
8ba289b8
PZ
1976 * goes to exit will block in perf_event_exit_event().
1977 *
cdd6c482 1978 * When called from perf_pending_event it's OK because event->ctx
c93f7669 1979 * is the current context on this CPU and preemption is disabled,
cdd6c482 1980 * hence we can't get into perf_event_task_sched_out for this context.
d859e29f 1981 */
f63a8daa 1982static void _perf_event_disable(struct perf_event *event)
d859e29f 1983{
cdd6c482 1984 struct perf_event_context *ctx = event->ctx;
d859e29f 1985
e625cce1 1986 raw_spin_lock_irq(&ctx->lock);
7b648018 1987 if (event->state <= PERF_EVENT_STATE_OFF) {
e625cce1 1988 raw_spin_unlock_irq(&ctx->lock);
7b648018 1989 return;
53cfbf59 1990 }
e625cce1 1991 raw_spin_unlock_irq(&ctx->lock);
7b648018 1992
fae3fde6
PZ
1993 event_function_call(event, __perf_event_disable, NULL);
1994}
1995
1996void perf_event_disable_local(struct perf_event *event)
1997{
1998 event_function_local(event, __perf_event_disable, NULL);
d859e29f 1999}
f63a8daa
PZ
2000
2001/*
2002 * Strictly speaking kernel users cannot create groups and therefore this
2003 * interface does not need the perf_event_ctx_lock() magic.
2004 */
2005void perf_event_disable(struct perf_event *event)
2006{
2007 struct perf_event_context *ctx;
2008
2009 ctx = perf_event_ctx_lock(event);
2010 _perf_event_disable(event);
2011 perf_event_ctx_unlock(event, ctx);
2012}
dcfce4a0 2013EXPORT_SYMBOL_GPL(perf_event_disable);
d859e29f 2014
5aab90ce
JO
2015void perf_event_disable_inatomic(struct perf_event *event)
2016{
2017 event->pending_disable = 1;
2018 irq_work_queue(&event->pending);
2019}
2020
e5d1367f
SE
2021static void perf_set_shadow_time(struct perf_event *event,
2022 struct perf_event_context *ctx,
2023 u64 tstamp)
2024{
2025 /*
2026 * use the correct time source for the time snapshot
2027 *
2028 * We could get by without this by leveraging the
2029 * fact that to get to this function, the caller
2030 * has most likely already called update_context_time()
2031 * and update_cgrp_time_xx() and thus both timestamp
2032 * are identical (or very close). Given that tstamp is,
2033 * already adjusted for cgroup, we could say that:
2034 * tstamp - ctx->timestamp
2035 * is equivalent to
2036 * tstamp - cgrp->timestamp.
2037 *
2038 * Then, in perf_output_read(), the calculation would
2039 * work with no changes because:
2040 * - event is guaranteed scheduled in
2041 * - no scheduled out in between
2042 * - thus the timestamp would be the same
2043 *
2044 * But this is a bit hairy.
2045 *
2046 * So instead, we have an explicit cgroup call to remain
2047 * within the time time source all along. We believe it
2048 * is cleaner and simpler to understand.
2049 */
2050 if (is_cgroup_event(event))
2051 perf_cgroup_set_shadow_time(event, tstamp);
2052 else
2053 event->shadow_ctx_time = tstamp - ctx->timestamp;
2054}
2055
4fe757dd
PZ
2056#define MAX_INTERRUPTS (~0ULL)
2057
2058static void perf_log_throttle(struct perf_event *event, int enable);
ec0d7729 2059static void perf_log_itrace_start(struct perf_event *event);
4fe757dd 2060
235c7fc7 2061static int
9ffcfa6f 2062event_sched_in(struct perf_event *event,
235c7fc7 2063 struct perf_cpu_context *cpuctx,
6e37738a 2064 struct perf_event_context *ctx)
235c7fc7 2065{
4158755d 2066 u64 tstamp = perf_event_time(event);
44377277 2067 int ret = 0;
4158755d 2068
63342411
PZ
2069 lockdep_assert_held(&ctx->lock);
2070
cdd6c482 2071 if (event->state <= PERF_EVENT_STATE_OFF)
235c7fc7
IM
2072 return 0;
2073
95ff4ca2
AS
2074 WRITE_ONCE(event->oncpu, smp_processor_id());
2075 /*
2076 * Order event::oncpu write to happen before the ACTIVE state
2077 * is visible.
2078 */
2079 smp_wmb();
2080 WRITE_ONCE(event->state, PERF_EVENT_STATE_ACTIVE);
4fe757dd
PZ
2081
2082 /*
2083 * Unthrottle events, since we scheduled we might have missed several
2084 * ticks already, also for a heavily scheduling task there is little
2085 * guarantee it'll get a tick in a timely manner.
2086 */
2087 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2088 perf_log_throttle(event, 1);
2089 event->hw.interrupts = 0;
2090 }
2091
235c7fc7
IM
2092 /*
2093 * The new state must be visible before we turn it on in the hardware:
2094 */
2095 smp_wmb();
2096
44377277
AS
2097 perf_pmu_disable(event->pmu);
2098
72f669c0
SL
2099 perf_set_shadow_time(event, ctx, tstamp);
2100
ec0d7729
AS
2101 perf_log_itrace_start(event);
2102
a4eaf7f1 2103 if (event->pmu->add(event, PERF_EF_START)) {
cdd6c482
IM
2104 event->state = PERF_EVENT_STATE_INACTIVE;
2105 event->oncpu = -1;
44377277
AS
2106 ret = -EAGAIN;
2107 goto out;
235c7fc7
IM
2108 }
2109
00a2916f
PZ
2110 event->tstamp_running += tstamp - event->tstamp_stopped;
2111
cdd6c482 2112 if (!is_software_event(event))
3b6f9e5c 2113 cpuctx->active_oncpu++;
2fde4f94
MR
2114 if (!ctx->nr_active++)
2115 perf_event_ctx_activate(ctx);
0f5a2601
PZ
2116 if (event->attr.freq && event->attr.sample_freq)
2117 ctx->nr_freq++;
235c7fc7 2118
cdd6c482 2119 if (event->attr.exclusive)
3b6f9e5c
PM
2120 cpuctx->exclusive = 1;
2121
44377277
AS
2122out:
2123 perf_pmu_enable(event->pmu);
2124
2125 return ret;
235c7fc7
IM
2126}
2127
6751b71e 2128static int
cdd6c482 2129group_sched_in(struct perf_event *group_event,
6751b71e 2130 struct perf_cpu_context *cpuctx,
6e37738a 2131 struct perf_event_context *ctx)
6751b71e 2132{
6bde9b6c 2133 struct perf_event *event, *partial_group = NULL;
4a234593 2134 struct pmu *pmu = ctx->pmu;
d7842da4
SE
2135 u64 now = ctx->time;
2136 bool simulate = false;
6751b71e 2137
cdd6c482 2138 if (group_event->state == PERF_EVENT_STATE_OFF)
6751b71e
PM
2139 return 0;
2140
fbbe0701 2141 pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
6bde9b6c 2142
9ffcfa6f 2143 if (event_sched_in(group_event, cpuctx, ctx)) {
ad5133b7 2144 pmu->cancel_txn(pmu);
272325c4 2145 perf_mux_hrtimer_restart(cpuctx);
6751b71e 2146 return -EAGAIN;
90151c35 2147 }
6751b71e
PM
2148
2149 /*
2150 * Schedule in siblings as one group (if any):
2151 */
cdd6c482 2152 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
9ffcfa6f 2153 if (event_sched_in(event, cpuctx, ctx)) {
cdd6c482 2154 partial_group = event;
6751b71e
PM
2155 goto group_error;
2156 }
2157 }
2158
9ffcfa6f 2159 if (!pmu->commit_txn(pmu))
6e85158c 2160 return 0;
9ffcfa6f 2161
6751b71e
PM
2162group_error:
2163 /*
2164 * Groups can be scheduled in as one unit only, so undo any
2165 * partial group before returning:
d7842da4
SE
2166 * The events up to the failed event are scheduled out normally,
2167 * tstamp_stopped will be updated.
2168 *
2169 * The failed events and the remaining siblings need to have
2170 * their timings updated as if they had gone thru event_sched_in()
2171 * and event_sched_out(). This is required to get consistent timings
2172 * across the group. This also takes care of the case where the group
2173 * could never be scheduled by ensuring tstamp_stopped is set to mark
2174 * the time the event was actually stopped, such that time delta
2175 * calculation in update_event_times() is correct.
6751b71e 2176 */
cdd6c482
IM
2177 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2178 if (event == partial_group)
d7842da4
SE
2179 simulate = true;
2180
2181 if (simulate) {
2182 event->tstamp_running += now - event->tstamp_stopped;
2183 event->tstamp_stopped = now;
2184 } else {
2185 event_sched_out(event, cpuctx, ctx);
2186 }
6751b71e 2187 }
9ffcfa6f 2188 event_sched_out(group_event, cpuctx, ctx);
6751b71e 2189
ad5133b7 2190 pmu->cancel_txn(pmu);
90151c35 2191
272325c4 2192 perf_mux_hrtimer_restart(cpuctx);
9e630205 2193
6751b71e
PM
2194 return -EAGAIN;
2195}
2196
3b6f9e5c 2197/*
cdd6c482 2198 * Work out whether we can put this event group on the CPU now.
3b6f9e5c 2199 */
cdd6c482 2200static int group_can_go_on(struct perf_event *event,
3b6f9e5c
PM
2201 struct perf_cpu_context *cpuctx,
2202 int can_add_hw)
2203{
2204 /*
cdd6c482 2205 * Groups consisting entirely of software events can always go on.
3b6f9e5c 2206 */
4ff6a8de 2207 if (event->group_caps & PERF_EV_CAP_SOFTWARE)
3b6f9e5c
PM
2208 return 1;
2209 /*
2210 * If an exclusive group is already on, no other hardware
cdd6c482 2211 * events can go on.
3b6f9e5c
PM
2212 */
2213 if (cpuctx->exclusive)
2214 return 0;
2215 /*
2216 * If this group is exclusive and there are already
cdd6c482 2217 * events on the CPU, it can't go on.
3b6f9e5c 2218 */
cdd6c482 2219 if (event->attr.exclusive && cpuctx->active_oncpu)
3b6f9e5c
PM
2220 return 0;
2221 /*
2222 * Otherwise, try to add it if all previous groups were able
2223 * to go on.
2224 */
2225 return can_add_hw;
2226}
2227
9b231d9f
PZ
2228/*
2229 * Complement to update_event_times(). This computes the tstamp_* values to
2230 * continue 'enabled' state from @now, and effectively discards the time
2231 * between the prior tstamp_stopped and now (as we were in the OFF state, or
2232 * just switched (context) time base).
2233 *
2234 * This further assumes '@event->state == INACTIVE' (we just came from OFF) and
2235 * cannot have been scheduled in yet. And going into INACTIVE state means
2236 * '@event->tstamp_stopped = @now'.
2237 *
2238 * Thus given the rules of update_event_times():
2239 *
2240 * total_time_enabled = tstamp_stopped - tstamp_enabled
2241 * total_time_running = tstamp_stopped - tstamp_running
2242 *
2243 * We can insert 'tstamp_stopped == now' and reverse them to compute new
2244 * tstamp_* values.
2245 */
2246static void __perf_event_enable_time(struct perf_event *event, u64 now)
2247{
2248 WARN_ON_ONCE(event->state != PERF_EVENT_STATE_INACTIVE);
2249
2250 event->tstamp_stopped = now;
2251 event->tstamp_enabled = now - event->total_time_enabled;
2252 event->tstamp_running = now - event->total_time_running;
2253}
2254
cdd6c482
IM
2255static void add_event_to_ctx(struct perf_event *event,
2256 struct perf_event_context *ctx)
53cfbf59 2257{
4158755d
SE
2258 u64 tstamp = perf_event_time(event);
2259
cdd6c482 2260 list_add_event(event, ctx);
8a49542c 2261 perf_group_attach(event);
9b231d9f
PZ
2262 /*
2263 * We can be called with event->state == STATE_OFF when we create with
2264 * .disabled = 1. In that case the IOC_ENABLE will call this function.
2265 */
2266 if (event->state == PERF_EVENT_STATE_INACTIVE)
2267 __perf_event_enable_time(event, tstamp);
53cfbf59
PM
2268}
2269
bd2afa49
PZ
2270static void ctx_sched_out(struct perf_event_context *ctx,
2271 struct perf_cpu_context *cpuctx,
2272 enum event_type_t event_type);
2c29ef0f
PZ
2273static void
2274ctx_sched_in(struct perf_event_context *ctx,
2275 struct perf_cpu_context *cpuctx,
2276 enum event_type_t event_type,
2277 struct task_struct *task);
fe4b04fa 2278
bd2afa49 2279static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
487f05e1
AS
2280 struct perf_event_context *ctx,
2281 enum event_type_t event_type)
bd2afa49
PZ
2282{
2283 if (!cpuctx->task_ctx)
2284 return;
2285
2286 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2287 return;
2288
487f05e1 2289 ctx_sched_out(ctx, cpuctx, event_type);
bd2afa49
PZ
2290}
2291
dce5855b
PZ
2292static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2293 struct perf_event_context *ctx,
2294 struct task_struct *task)
2295{
2296 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2297 if (ctx)
2298 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2299 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2300 if (ctx)
2301 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2302}
2303
487f05e1
AS
2304/*
2305 * We want to maintain the following priority of scheduling:
2306 * - CPU pinned (EVENT_CPU | EVENT_PINNED)
2307 * - task pinned (EVENT_PINNED)
2308 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2309 * - task flexible (EVENT_FLEXIBLE).
2310 *
2311 * In order to avoid unscheduling and scheduling back in everything every
2312 * time an event is added, only do it for the groups of equal priority and
2313 * below.
2314 *
2315 * This can be called after a batch operation on task events, in which case
2316 * event_type is a bit mask of the types of events involved. For CPU events,
2317 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2318 */
3e349507 2319static void ctx_resched(struct perf_cpu_context *cpuctx,
487f05e1
AS
2320 struct perf_event_context *task_ctx,
2321 enum event_type_t event_type)
0017960f 2322{
487f05e1
AS
2323 enum event_type_t ctx_event_type = event_type & EVENT_ALL;
2324 bool cpu_event = !!(event_type & EVENT_CPU);
2325
2326 /*
2327 * If pinned groups are involved, flexible groups also need to be
2328 * scheduled out.
2329 */
2330 if (event_type & EVENT_PINNED)
2331 event_type |= EVENT_FLEXIBLE;
2332
3e349507
PZ
2333 perf_pmu_disable(cpuctx->ctx.pmu);
2334 if (task_ctx)
487f05e1
AS
2335 task_ctx_sched_out(cpuctx, task_ctx, event_type);
2336
2337 /*
2338 * Decide which cpu ctx groups to schedule out based on the types
2339 * of events that caused rescheduling:
2340 * - EVENT_CPU: schedule out corresponding groups;
2341 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2342 * - otherwise, do nothing more.
2343 */
2344 if (cpu_event)
2345 cpu_ctx_sched_out(cpuctx, ctx_event_type);
2346 else if (ctx_event_type & EVENT_PINNED)
2347 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2348
3e349507
PZ
2349 perf_event_sched_in(cpuctx, task_ctx, current);
2350 perf_pmu_enable(cpuctx->ctx.pmu);
0017960f
PZ
2351}
2352
0793a61d 2353/*
cdd6c482 2354 * Cross CPU call to install and enable a performance event
682076ae 2355 *
a096309b
PZ
2356 * Very similar to remote_function() + event_function() but cannot assume that
2357 * things like ctx->is_active and cpuctx->task_ctx are set.
0793a61d 2358 */
fe4b04fa 2359static int __perf_install_in_context(void *info)
0793a61d 2360{
a096309b
PZ
2361 struct perf_event *event = info;
2362 struct perf_event_context *ctx = event->ctx;
108b02cf 2363 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2c29ef0f 2364 struct perf_event_context *task_ctx = cpuctx->task_ctx;
63cae12b 2365 bool reprogram = true;
a096309b 2366 int ret = 0;
0793a61d 2367
63b6da39 2368 raw_spin_lock(&cpuctx->ctx.lock);
39a43640 2369 if (ctx->task) {
b58f6b0d
PZ
2370 raw_spin_lock(&ctx->lock);
2371 task_ctx = ctx;
a096309b 2372
63cae12b 2373 reprogram = (ctx->task == current);
b58f6b0d 2374
39a43640 2375 /*
63cae12b
PZ
2376 * If the task is running, it must be running on this CPU,
2377 * otherwise we cannot reprogram things.
2378 *
2379 * If its not running, we don't care, ctx->lock will
2380 * serialize against it becoming runnable.
39a43640 2381 */
63cae12b
PZ
2382 if (task_curr(ctx->task) && !reprogram) {
2383 ret = -ESRCH;
2384 goto unlock;
2385 }
a096309b 2386
63cae12b 2387 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
63b6da39
PZ
2388 } else if (task_ctx) {
2389 raw_spin_lock(&task_ctx->lock);
2c29ef0f 2390 }
b58f6b0d 2391
63cae12b 2392 if (reprogram) {
a096309b
PZ
2393 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2394 add_event_to_ctx(event, ctx);
487f05e1 2395 ctx_resched(cpuctx, task_ctx, get_event_type(event));
a096309b
PZ
2396 } else {
2397 add_event_to_ctx(event, ctx);
2398 }
2399
63b6da39 2400unlock:
2c29ef0f 2401 perf_ctx_unlock(cpuctx, task_ctx);
fe4b04fa 2402
a096309b 2403 return ret;
0793a61d
TG
2404}
2405
2406/*
a096309b
PZ
2407 * Attach a performance event to a context.
2408 *
2409 * Very similar to event_function_call, see comment there.
0793a61d
TG
2410 */
2411static void
cdd6c482
IM
2412perf_install_in_context(struct perf_event_context *ctx,
2413 struct perf_event *event,
0793a61d
TG
2414 int cpu)
2415{
a096309b 2416 struct task_struct *task = READ_ONCE(ctx->task);
39a43640 2417
fe4b04fa
PZ
2418 lockdep_assert_held(&ctx->mutex);
2419
0cda4c02
YZ
2420 if (event->cpu != -1)
2421 event->cpu = cpu;
c3f00c70 2422
0b8f1e2e
PZ
2423 /*
2424 * Ensures that if we can observe event->ctx, both the event and ctx
2425 * will be 'complete'. See perf_iterate_sb_cpu().
2426 */
2427 smp_store_release(&event->ctx, ctx);
2428
a096309b
PZ
2429 if (!task) {
2430 cpu_function_call(cpu, __perf_install_in_context, event);
2431 return;
2432 }
2433
2434 /*
2435 * Should not happen, we validate the ctx is still alive before calling.
2436 */
2437 if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2438 return;
2439
39a43640
PZ
2440 /*
2441 * Installing events is tricky because we cannot rely on ctx->is_active
2442 * to be set in case this is the nr_events 0 -> 1 transition.
63cae12b
PZ
2443 *
2444 * Instead we use task_curr(), which tells us if the task is running.
2445 * However, since we use task_curr() outside of rq::lock, we can race
2446 * against the actual state. This means the result can be wrong.
2447 *
2448 * If we get a false positive, we retry, this is harmless.
2449 *
2450 * If we get a false negative, things are complicated. If we are after
2451 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2452 * value must be correct. If we're before, it doesn't matter since
2453 * perf_event_context_sched_in() will program the counter.
2454 *
2455 * However, this hinges on the remote context switch having observed
2456 * our task->perf_event_ctxp[] store, such that it will in fact take
2457 * ctx::lock in perf_event_context_sched_in().
2458 *
2459 * We do this by task_function_call(), if the IPI fails to hit the task
2460 * we know any future context switch of task must see the
2461 * perf_event_ctpx[] store.
39a43640 2462 */
63cae12b 2463
63b6da39 2464 /*
63cae12b
PZ
2465 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2466 * task_cpu() load, such that if the IPI then does not find the task
2467 * running, a future context switch of that task must observe the
2468 * store.
63b6da39 2469 */
63cae12b
PZ
2470 smp_mb();
2471again:
2472 if (!task_function_call(task, __perf_install_in_context, event))
a096309b
PZ
2473 return;
2474
2475 raw_spin_lock_irq(&ctx->lock);
2476 task = ctx->task;
84c4e620 2477 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
a096309b
PZ
2478 /*
2479 * Cannot happen because we already checked above (which also
2480 * cannot happen), and we hold ctx->mutex, which serializes us
2481 * against perf_event_exit_task_context().
2482 */
63b6da39
PZ
2483 raw_spin_unlock_irq(&ctx->lock);
2484 return;
2485 }
39a43640 2486 /*
63cae12b
PZ
2487 * If the task is not running, ctx->lock will avoid it becoming so,
2488 * thus we can safely install the event.
39a43640 2489 */
63cae12b
PZ
2490 if (task_curr(task)) {
2491 raw_spin_unlock_irq(&ctx->lock);
2492 goto again;
2493 }
2494 add_event_to_ctx(event, ctx);
2495 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
2496}
2497
fa289bec 2498/*
cdd6c482 2499 * Put a event into inactive state and update time fields.
fa289bec
PM
2500 * Enabling the leader of a group effectively enables all
2501 * the group members that aren't explicitly disabled, so we
2502 * have to update their ->tstamp_enabled also.
2503 * Note: this works for group members as well as group leaders
2504 * since the non-leader members' sibling_lists will be empty.
2505 */
1d9b482e 2506static void __perf_event_mark_enabled(struct perf_event *event)
fa289bec 2507{
cdd6c482 2508 struct perf_event *sub;
4158755d 2509 u64 tstamp = perf_event_time(event);
fa289bec 2510
cdd6c482 2511 event->state = PERF_EVENT_STATE_INACTIVE;
9b231d9f 2512 __perf_event_enable_time(event, tstamp);
9ed6060d 2513 list_for_each_entry(sub, &event->sibling_list, group_entry) {
9b231d9f 2514 /* XXX should not be > INACTIVE if event isn't */
4158755d 2515 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
9b231d9f 2516 __perf_event_enable_time(sub, tstamp);
9ed6060d 2517 }
fa289bec
PM
2518}
2519
d859e29f 2520/*
cdd6c482 2521 * Cross CPU call to enable a performance event
d859e29f 2522 */
fae3fde6
PZ
2523static void __perf_event_enable(struct perf_event *event,
2524 struct perf_cpu_context *cpuctx,
2525 struct perf_event_context *ctx,
2526 void *info)
04289bb9 2527{
cdd6c482 2528 struct perf_event *leader = event->group_leader;
fae3fde6 2529 struct perf_event_context *task_ctx;
04289bb9 2530
6e801e01
PZ
2531 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2532 event->state <= PERF_EVENT_STATE_ERROR)
fae3fde6 2533 return;
3cbed429 2534
bd2afa49
PZ
2535 if (ctx->is_active)
2536 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2537
1d9b482e 2538 __perf_event_mark_enabled(event);
04289bb9 2539
fae3fde6
PZ
2540 if (!ctx->is_active)
2541 return;
2542
e5d1367f 2543 if (!event_filter_match(event)) {
bd2afa49 2544 if (is_cgroup_event(event))
e5d1367f 2545 perf_cgroup_defer_enabled(event);
bd2afa49 2546 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
fae3fde6 2547 return;
e5d1367f 2548 }
f4c4176f 2549
04289bb9 2550 /*
cdd6c482 2551 * If the event is in a group and isn't the group leader,
d859e29f 2552 * then don't put it on unless the group is on.
04289bb9 2553 */
bd2afa49
PZ
2554 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2555 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
fae3fde6 2556 return;
bd2afa49 2557 }
fe4b04fa 2558
fae3fde6
PZ
2559 task_ctx = cpuctx->task_ctx;
2560 if (ctx->task)
2561 WARN_ON_ONCE(task_ctx != ctx);
d859e29f 2562
487f05e1 2563 ctx_resched(cpuctx, task_ctx, get_event_type(event));
7b648018
PZ
2564}
2565
d859e29f 2566/*
cdd6c482 2567 * Enable a event.
c93f7669 2568 *
cdd6c482
IM
2569 * If event->ctx is a cloned context, callers must make sure that
2570 * every task struct that event->ctx->task could possibly point to
c93f7669 2571 * remains valid. This condition is satisfied when called through
cdd6c482
IM
2572 * perf_event_for_each_child or perf_event_for_each as described
2573 * for perf_event_disable.
d859e29f 2574 */
f63a8daa 2575static void _perf_event_enable(struct perf_event *event)
d859e29f 2576{
cdd6c482 2577 struct perf_event_context *ctx = event->ctx;
d859e29f 2578
7b648018 2579 raw_spin_lock_irq(&ctx->lock);
6e801e01
PZ
2580 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2581 event->state < PERF_EVENT_STATE_ERROR) {
7b648018 2582 raw_spin_unlock_irq(&ctx->lock);
d859e29f
PM
2583 return;
2584 }
2585
d859e29f 2586 /*
cdd6c482 2587 * If the event is in error state, clear that first.
7b648018
PZ
2588 *
2589 * That way, if we see the event in error state below, we know that it
2590 * has gone back into error state, as distinct from the task having
2591 * been scheduled away before the cross-call arrived.
d859e29f 2592 */
cdd6c482
IM
2593 if (event->state == PERF_EVENT_STATE_ERROR)
2594 event->state = PERF_EVENT_STATE_OFF;
e625cce1 2595 raw_spin_unlock_irq(&ctx->lock);
fe4b04fa 2596
fae3fde6 2597 event_function_call(event, __perf_event_enable, NULL);
d859e29f 2598}
f63a8daa
PZ
2599
2600/*
2601 * See perf_event_disable();
2602 */
2603void perf_event_enable(struct perf_event *event)
2604{
2605 struct perf_event_context *ctx;
2606
2607 ctx = perf_event_ctx_lock(event);
2608 _perf_event_enable(event);
2609 perf_event_ctx_unlock(event, ctx);
2610}
dcfce4a0 2611EXPORT_SYMBOL_GPL(perf_event_enable);
d859e29f 2612
375637bc
AS
2613struct stop_event_data {
2614 struct perf_event *event;
2615 unsigned int restart;
2616};
2617
95ff4ca2
AS
2618static int __perf_event_stop(void *info)
2619{
375637bc
AS
2620 struct stop_event_data *sd = info;
2621 struct perf_event *event = sd->event;
95ff4ca2 2622
375637bc 2623 /* if it's already INACTIVE, do nothing */
95ff4ca2
AS
2624 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2625 return 0;
2626
2627 /* matches smp_wmb() in event_sched_in() */
2628 smp_rmb();
2629
2630 /*
2631 * There is a window with interrupts enabled before we get here,
2632 * so we need to check again lest we try to stop another CPU's event.
2633 */
2634 if (READ_ONCE(event->oncpu) != smp_processor_id())
2635 return -EAGAIN;
2636
2637 event->pmu->stop(event, PERF_EF_UPDATE);
2638
375637bc
AS
2639 /*
2640 * May race with the actual stop (through perf_pmu_output_stop()),
2641 * but it is only used for events with AUX ring buffer, and such
2642 * events will refuse to restart because of rb::aux_mmap_count==0,
2643 * see comments in perf_aux_output_begin().
2644 *
2645 * Since this is happening on a event-local CPU, no trace is lost
2646 * while restarting.
2647 */
2648 if (sd->restart)
c9bbdd48 2649 event->pmu->start(event, 0);
375637bc 2650
95ff4ca2
AS
2651 return 0;
2652}
2653
767ae086 2654static int perf_event_stop(struct perf_event *event, int restart)
375637bc
AS
2655{
2656 struct stop_event_data sd = {
2657 .event = event,
767ae086 2658 .restart = restart,
375637bc
AS
2659 };
2660 int ret = 0;
2661
2662 do {
2663 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2664 return 0;
2665
2666 /* matches smp_wmb() in event_sched_in() */
2667 smp_rmb();
2668
2669 /*
2670 * We only want to restart ACTIVE events, so if the event goes
2671 * inactive here (event->oncpu==-1), there's nothing more to do;
2672 * fall through with ret==-ENXIO.
2673 */
2674 ret = cpu_function_call(READ_ONCE(event->oncpu),
2675 __perf_event_stop, &sd);
2676 } while (ret == -EAGAIN);
2677
2678 return ret;
2679}
2680
2681/*
2682 * In order to contain the amount of racy and tricky in the address filter
2683 * configuration management, it is a two part process:
2684 *
2685 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2686 * we update the addresses of corresponding vmas in
2687 * event::addr_filters_offs array and bump the event::addr_filters_gen;
2688 * (p2) when an event is scheduled in (pmu::add), it calls
2689 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2690 * if the generation has changed since the previous call.
2691 *
2692 * If (p1) happens while the event is active, we restart it to force (p2).
2693 *
2694 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2695 * pre-existing mappings, called once when new filters arrive via SET_FILTER
2696 * ioctl;
2697 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2698 * registered mapping, called for every new mmap(), with mm::mmap_sem down
2699 * for reading;
2700 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2701 * of exec.
2702 */
2703void perf_event_addr_filters_sync(struct perf_event *event)
2704{
2705 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2706
2707 if (!has_addr_filter(event))
2708 return;
2709
2710 raw_spin_lock(&ifh->lock);
2711 if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2712 event->pmu->addr_filters_sync(event);
2713 event->hw.addr_filters_gen = event->addr_filters_gen;
2714 }
2715 raw_spin_unlock(&ifh->lock);
2716}
2717EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2718
f63a8daa 2719static int _perf_event_refresh(struct perf_event *event, int refresh)
79f14641 2720{
2023b359 2721 /*
cdd6c482 2722 * not supported on inherited events
2023b359 2723 */
2e939d1d 2724 if (event->attr.inherit || !is_sampling_event(event))
2023b359
PZ
2725 return -EINVAL;
2726
cdd6c482 2727 atomic_add(refresh, &event->event_limit);
f63a8daa 2728 _perf_event_enable(event);
2023b359
PZ
2729
2730 return 0;
79f14641 2731}
f63a8daa
PZ
2732
2733/*
2734 * See perf_event_disable()
2735 */
2736int perf_event_refresh(struct perf_event *event, int refresh)
2737{
2738 struct perf_event_context *ctx;
2739 int ret;
2740
2741 ctx = perf_event_ctx_lock(event);
2742 ret = _perf_event_refresh(event, refresh);
2743 perf_event_ctx_unlock(event, ctx);
2744
2745 return ret;
2746}
26ca5c11 2747EXPORT_SYMBOL_GPL(perf_event_refresh);
79f14641 2748
5b0311e1
FW
2749static void ctx_sched_out(struct perf_event_context *ctx,
2750 struct perf_cpu_context *cpuctx,
2751 enum event_type_t event_type)
235c7fc7 2752{
db24d33e 2753 int is_active = ctx->is_active;
c994d613 2754 struct perf_event *event;
235c7fc7 2755
c994d613 2756 lockdep_assert_held(&ctx->lock);
235c7fc7 2757
39a43640
PZ
2758 if (likely(!ctx->nr_events)) {
2759 /*
2760 * See __perf_remove_from_context().
2761 */
2762 WARN_ON_ONCE(ctx->is_active);
2763 if (ctx->task)
2764 WARN_ON_ONCE(cpuctx->task_ctx);
facc4307 2765 return;
39a43640
PZ
2766 }
2767
db24d33e 2768 ctx->is_active &= ~event_type;
3cbaa590
PZ
2769 if (!(ctx->is_active & EVENT_ALL))
2770 ctx->is_active = 0;
2771
63e30d3e
PZ
2772 if (ctx->task) {
2773 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2774 if (!ctx->is_active)
2775 cpuctx->task_ctx = NULL;
2776 }
facc4307 2777
8fdc6539
PZ
2778 /*
2779 * Always update time if it was set; not only when it changes.
2780 * Otherwise we can 'forget' to update time for any but the last
2781 * context we sched out. For example:
2782 *
2783 * ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2784 * ctx_sched_out(.event_type = EVENT_PINNED)
2785 *
2786 * would only update time for the pinned events.
2787 */
3cbaa590
PZ
2788 if (is_active & EVENT_TIME) {
2789 /* update (and stop) ctx time */
2790 update_context_time(ctx);
2791 update_cgrp_time_from_cpuctx(cpuctx);
2792 }
2793
8fdc6539
PZ
2794 is_active ^= ctx->is_active; /* changed bits */
2795
3cbaa590 2796 if (!ctx->nr_active || !(is_active & EVENT_ALL))
facc4307 2797 return;
5b0311e1 2798
075e0b00 2799 perf_pmu_disable(ctx->pmu);
3cbaa590 2800 if (is_active & EVENT_PINNED) {
889ff015
FW
2801 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2802 group_sched_out(event, cpuctx, ctx);
9ed6060d 2803 }
889ff015 2804
3cbaa590 2805 if (is_active & EVENT_FLEXIBLE) {
889ff015 2806 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
8c9ed8e1 2807 group_sched_out(event, cpuctx, ctx);
9ed6060d 2808 }
1b9a644f 2809 perf_pmu_enable(ctx->pmu);
235c7fc7
IM
2810}
2811
564c2b21 2812/*
5a3126d4
PZ
2813 * Test whether two contexts are equivalent, i.e. whether they have both been
2814 * cloned from the same version of the same context.
2815 *
2816 * Equivalence is measured using a generation number in the context that is
2817 * incremented on each modification to it; see unclone_ctx(), list_add_event()
2818 * and list_del_event().
564c2b21 2819 */
cdd6c482
IM
2820static int context_equiv(struct perf_event_context *ctx1,
2821 struct perf_event_context *ctx2)
564c2b21 2822{
211de6eb
PZ
2823 lockdep_assert_held(&ctx1->lock);
2824 lockdep_assert_held(&ctx2->lock);
2825
5a3126d4
PZ
2826 /* Pinning disables the swap optimization */
2827 if (ctx1->pin_count || ctx2->pin_count)
2828 return 0;
2829
2830 /* If ctx1 is the parent of ctx2 */
2831 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2832 return 1;
2833
2834 /* If ctx2 is the parent of ctx1 */
2835 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2836 return 1;
2837
2838 /*
2839 * If ctx1 and ctx2 have the same parent; we flatten the parent
2840 * hierarchy, see perf_event_init_context().
2841 */
2842 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2843 ctx1->parent_gen == ctx2->parent_gen)
2844 return 1;
2845
2846 /* Unmatched */
2847 return 0;
564c2b21
PM
2848}
2849
cdd6c482
IM
2850static void __perf_event_sync_stat(struct perf_event *event,
2851 struct perf_event *next_event)
bfbd3381
PZ
2852{
2853 u64 value;
2854
cdd6c482 2855 if (!event->attr.inherit_stat)
bfbd3381
PZ
2856 return;
2857
2858 /*
cdd6c482 2859 * Update the event value, we cannot use perf_event_read()
bfbd3381
PZ
2860 * because we're in the middle of a context switch and have IRQs
2861 * disabled, which upsets smp_call_function_single(), however
cdd6c482 2862 * we know the event must be on the current CPU, therefore we
bfbd3381
PZ
2863 * don't need to use it.
2864 */
cdd6c482
IM
2865 switch (event->state) {
2866 case PERF_EVENT_STATE_ACTIVE:
3dbebf15
PZ
2867 event->pmu->read(event);
2868 /* fall-through */
bfbd3381 2869
cdd6c482
IM
2870 case PERF_EVENT_STATE_INACTIVE:
2871 update_event_times(event);
bfbd3381
PZ
2872 break;
2873
2874 default:
2875 break;
2876 }
2877
2878 /*
cdd6c482 2879 * In order to keep per-task stats reliable we need to flip the event
bfbd3381
PZ
2880 * values when we flip the contexts.
2881 */
e7850595
PZ
2882 value = local64_read(&next_event->count);
2883 value = local64_xchg(&event->count, value);
2884 local64_set(&next_event->count, value);
bfbd3381 2885
cdd6c482
IM
2886 swap(event->total_time_enabled, next_event->total_time_enabled);
2887 swap(event->total_time_running, next_event->total_time_running);
19d2e755 2888
bfbd3381 2889 /*
19d2e755 2890 * Since we swizzled the values, update the user visible data too.
bfbd3381 2891 */
cdd6c482
IM
2892 perf_event_update_userpage(event);
2893 perf_event_update_userpage(next_event);
bfbd3381
PZ
2894}
2895
cdd6c482
IM
2896static void perf_event_sync_stat(struct perf_event_context *ctx,
2897 struct perf_event_context *next_ctx)
bfbd3381 2898{
cdd6c482 2899 struct perf_event *event, *next_event;
bfbd3381
PZ
2900
2901 if (!ctx->nr_stat)
2902 return;
2903
02ffdbc8
PZ
2904 update_context_time(ctx);
2905
cdd6c482
IM
2906 event = list_first_entry(&ctx->event_list,
2907 struct perf_event, event_entry);
bfbd3381 2908
cdd6c482
IM
2909 next_event = list_first_entry(&next_ctx->event_list,
2910 struct perf_event, event_entry);
bfbd3381 2911
cdd6c482
IM
2912 while (&event->event_entry != &ctx->event_list &&
2913 &next_event->event_entry != &next_ctx->event_list) {
bfbd3381 2914
cdd6c482 2915 __perf_event_sync_stat(event, next_event);
bfbd3381 2916
cdd6c482
IM
2917 event = list_next_entry(event, event_entry);
2918 next_event = list_next_entry(next_event, event_entry);
bfbd3381
PZ
2919 }
2920}
2921
fe4b04fa
PZ
2922static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2923 struct task_struct *next)
0793a61d 2924{
8dc85d54 2925 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
cdd6c482 2926 struct perf_event_context *next_ctx;
5a3126d4 2927 struct perf_event_context *parent, *next_parent;
108b02cf 2928 struct perf_cpu_context *cpuctx;
c93f7669 2929 int do_switch = 1;
0793a61d 2930
108b02cf
PZ
2931 if (likely(!ctx))
2932 return;
10989fb2 2933
108b02cf
PZ
2934 cpuctx = __get_cpu_context(ctx);
2935 if (!cpuctx->task_ctx)
0793a61d
TG
2936 return;
2937
c93f7669 2938 rcu_read_lock();
8dc85d54 2939 next_ctx = next->perf_event_ctxp[ctxn];
5a3126d4
PZ
2940 if (!next_ctx)
2941 goto unlock;
2942
2943 parent = rcu_dereference(ctx->parent_ctx);
2944 next_parent = rcu_dereference(next_ctx->parent_ctx);
2945
2946 /* If neither context have a parent context; they cannot be clones. */
802c8a61 2947 if (!parent && !next_parent)
5a3126d4
PZ
2948 goto unlock;
2949
2950 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
c93f7669
PM
2951 /*
2952 * Looks like the two contexts are clones, so we might be
2953 * able to optimize the context switch. We lock both
2954 * contexts and check that they are clones under the
2955 * lock (including re-checking that neither has been
2956 * uncloned in the meantime). It doesn't matter which
2957 * order we take the locks because no other cpu could
2958 * be trying to lock both of these tasks.
2959 */
e625cce1
TG
2960 raw_spin_lock(&ctx->lock);
2961 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
c93f7669 2962 if (context_equiv(ctx, next_ctx)) {
63b6da39
PZ
2963 WRITE_ONCE(ctx->task, next);
2964 WRITE_ONCE(next_ctx->task, task);
5a158c3c
YZ
2965
2966 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2967
63b6da39
PZ
2968 /*
2969 * RCU_INIT_POINTER here is safe because we've not
2970 * modified the ctx and the above modification of
2971 * ctx->task and ctx->task_ctx_data are immaterial
2972 * since those values are always verified under
2973 * ctx->lock which we're now holding.
2974 */
2975 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
2976 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
2977
c93f7669 2978 do_switch = 0;
bfbd3381 2979
cdd6c482 2980 perf_event_sync_stat(ctx, next_ctx);
c93f7669 2981 }
e625cce1
TG
2982 raw_spin_unlock(&next_ctx->lock);
2983 raw_spin_unlock(&ctx->lock);
564c2b21 2984 }
5a3126d4 2985unlock:
c93f7669 2986 rcu_read_unlock();
564c2b21 2987
c93f7669 2988 if (do_switch) {
facc4307 2989 raw_spin_lock(&ctx->lock);
487f05e1 2990 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
facc4307 2991 raw_spin_unlock(&ctx->lock);
c93f7669 2992 }
0793a61d
TG
2993}
2994
e48c1788
PZ
2995static DEFINE_PER_CPU(struct list_head, sched_cb_list);
2996
ba532500
YZ
2997void perf_sched_cb_dec(struct pmu *pmu)
2998{
e48c1788
PZ
2999 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3000
ba532500 3001 this_cpu_dec(perf_sched_cb_usages);
e48c1788
PZ
3002
3003 if (!--cpuctx->sched_cb_usage)
3004 list_del(&cpuctx->sched_cb_entry);
ba532500
YZ
3005}
3006
e48c1788 3007
ba532500
YZ
3008void perf_sched_cb_inc(struct pmu *pmu)
3009{
e48c1788
PZ
3010 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3011
3012 if (!cpuctx->sched_cb_usage++)
3013 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3014
ba532500
YZ
3015 this_cpu_inc(perf_sched_cb_usages);
3016}
3017
3018/*
3019 * This function provides the context switch callback to the lower code
3020 * layer. It is invoked ONLY when the context switch callback is enabled.
09e61b4f
PZ
3021 *
3022 * This callback is relevant even to per-cpu events; for example multi event
3023 * PEBS requires this to provide PID/TID information. This requires we flush
3024 * all queued PEBS records before we context switch to a new task.
ba532500
YZ
3025 */
3026static void perf_pmu_sched_task(struct task_struct *prev,
3027 struct task_struct *next,
3028 bool sched_in)
3029{
3030 struct perf_cpu_context *cpuctx;
3031 struct pmu *pmu;
ba532500
YZ
3032
3033 if (prev == next)
3034 return;
3035
e48c1788 3036 list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
1fd7e416 3037 pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
ba532500 3038
e48c1788
PZ
3039 if (WARN_ON_ONCE(!pmu->sched_task))
3040 continue;
ba532500 3041
e48c1788
PZ
3042 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3043 perf_pmu_disable(pmu);
ba532500 3044
e48c1788 3045 pmu->sched_task(cpuctx->task_ctx, sched_in);
ba532500 3046
e48c1788
PZ
3047 perf_pmu_enable(pmu);
3048 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
ba532500 3049 }
ba532500
YZ
3050}
3051
45ac1403
AH
3052static void perf_event_switch(struct task_struct *task,
3053 struct task_struct *next_prev, bool sched_in);
3054
8dc85d54
PZ
3055#define for_each_task_context_nr(ctxn) \
3056 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3057
3058/*
3059 * Called from scheduler to remove the events of the current task,
3060 * with interrupts disabled.
3061 *
3062 * We stop each event and update the event value in event->count.
3063 *
3064 * This does not protect us against NMI, but disable()
3065 * sets the disabled bit in the control field of event _before_
3066 * accessing the event control register. If a NMI hits, then it will
3067 * not restart the event.
3068 */
ab0cce56
JO
3069void __perf_event_task_sched_out(struct task_struct *task,
3070 struct task_struct *next)
8dc85d54
PZ
3071{
3072 int ctxn;
3073
ba532500
YZ
3074 if (__this_cpu_read(perf_sched_cb_usages))
3075 perf_pmu_sched_task(task, next, false);
3076
45ac1403
AH
3077 if (atomic_read(&nr_switch_events))
3078 perf_event_switch(task, next, false);
3079
8dc85d54
PZ
3080 for_each_task_context_nr(ctxn)
3081 perf_event_context_sched_out(task, ctxn, next);
e5d1367f
SE
3082
3083 /*
3084 * if cgroup events exist on this CPU, then we need
3085 * to check if we have to switch out PMU state.
3086 * cgroup event are system-wide mode only
3087 */
4a32fea9 3088 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
a8d757ef 3089 perf_cgroup_sched_out(task, next);
8dc85d54
PZ
3090}
3091
5b0311e1
FW
3092/*
3093 * Called with IRQs disabled
3094 */
3095static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3096 enum event_type_t event_type)
3097{
3098 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
04289bb9
IM
3099}
3100
235c7fc7 3101static void
5b0311e1 3102ctx_pinned_sched_in(struct perf_event_context *ctx,
6e37738a 3103 struct perf_cpu_context *cpuctx)
0793a61d 3104{
cdd6c482 3105 struct perf_event *event;
0793a61d 3106
889ff015
FW
3107 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
3108 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 3109 continue;
5632ab12 3110 if (!event_filter_match(event))
3b6f9e5c
PM
3111 continue;
3112
e5d1367f
SE
3113 /* may need to reset tstamp_enabled */
3114 if (is_cgroup_event(event))
3115 perf_cgroup_mark_enabled(event, ctx);
3116
8c9ed8e1 3117 if (group_can_go_on(event, cpuctx, 1))
6e37738a 3118 group_sched_in(event, cpuctx, ctx);
3b6f9e5c
PM
3119
3120 /*
3121 * If this pinned group hasn't been scheduled,
3122 * put it in error state.
3123 */
cdd6c482
IM
3124 if (event->state == PERF_EVENT_STATE_INACTIVE) {
3125 update_group_times(event);
3126 event->state = PERF_EVENT_STATE_ERROR;
53cfbf59 3127 }
3b6f9e5c 3128 }
5b0311e1
FW
3129}
3130
3131static void
3132ctx_flexible_sched_in(struct perf_event_context *ctx,
6e37738a 3133 struct perf_cpu_context *cpuctx)
5b0311e1
FW
3134{
3135 struct perf_event *event;
3136 int can_add_hw = 1;
3b6f9e5c 3137
889ff015
FW
3138 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
3139 /* Ignore events in OFF or ERROR state */
3140 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 3141 continue;
04289bb9
IM
3142 /*
3143 * Listen to the 'cpu' scheduling filter constraint
cdd6c482 3144 * of events:
04289bb9 3145 */
5632ab12 3146 if (!event_filter_match(event))
0793a61d
TG
3147 continue;
3148
e5d1367f
SE
3149 /* may need to reset tstamp_enabled */
3150 if (is_cgroup_event(event))
3151 perf_cgroup_mark_enabled(event, ctx);
3152
9ed6060d 3153 if (group_can_go_on(event, cpuctx, can_add_hw)) {
6e37738a 3154 if (group_sched_in(event, cpuctx, ctx))
dd0e6ba2 3155 can_add_hw = 0;
9ed6060d 3156 }
0793a61d 3157 }
5b0311e1
FW
3158}
3159
3160static void
3161ctx_sched_in(struct perf_event_context *ctx,
3162 struct perf_cpu_context *cpuctx,
e5d1367f
SE
3163 enum event_type_t event_type,
3164 struct task_struct *task)
5b0311e1 3165{
db24d33e 3166 int is_active = ctx->is_active;
c994d613
PZ
3167 u64 now;
3168
3169 lockdep_assert_held(&ctx->lock);
e5d1367f 3170
5b0311e1 3171 if (likely(!ctx->nr_events))
facc4307 3172 return;
5b0311e1 3173
3cbaa590 3174 ctx->is_active |= (event_type | EVENT_TIME);
63e30d3e
PZ
3175 if (ctx->task) {
3176 if (!is_active)
3177 cpuctx->task_ctx = ctx;
3178 else
3179 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3180 }
3181
3cbaa590
PZ
3182 is_active ^= ctx->is_active; /* changed bits */
3183
3184 if (is_active & EVENT_TIME) {
3185 /* start ctx time */
3186 now = perf_clock();
3187 ctx->timestamp = now;
3188 perf_cgroup_set_timestamp(task, ctx);
3189 }
3190
5b0311e1
FW
3191 /*
3192 * First go through the list and put on any pinned groups
3193 * in order to give them the best chance of going on.
3194 */
3cbaa590 3195 if (is_active & EVENT_PINNED)
6e37738a 3196 ctx_pinned_sched_in(ctx, cpuctx);
5b0311e1
FW
3197
3198 /* Then walk through the lower prio flexible groups */
3cbaa590 3199 if (is_active & EVENT_FLEXIBLE)
6e37738a 3200 ctx_flexible_sched_in(ctx, cpuctx);
235c7fc7
IM
3201}
3202
329c0e01 3203static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
3204 enum event_type_t event_type,
3205 struct task_struct *task)
329c0e01
FW
3206{
3207 struct perf_event_context *ctx = &cpuctx->ctx;
3208
e5d1367f 3209 ctx_sched_in(ctx, cpuctx, event_type, task);
329c0e01
FW
3210}
3211
e5d1367f
SE
3212static void perf_event_context_sched_in(struct perf_event_context *ctx,
3213 struct task_struct *task)
235c7fc7 3214{
108b02cf 3215 struct perf_cpu_context *cpuctx;
235c7fc7 3216
108b02cf 3217 cpuctx = __get_cpu_context(ctx);
329c0e01
FW
3218 if (cpuctx->task_ctx == ctx)
3219 return;
3220
facc4307 3221 perf_ctx_lock(cpuctx, ctx);
fdccc3fb 3222 /*
3223 * We must check ctx->nr_events while holding ctx->lock, such
3224 * that we serialize against perf_install_in_context().
3225 */
3226 if (!ctx->nr_events)
3227 goto unlock;
3228
1b9a644f 3229 perf_pmu_disable(ctx->pmu);
329c0e01
FW
3230 /*
3231 * We want to keep the following priority order:
3232 * cpu pinned (that don't need to move), task pinned,
3233 * cpu flexible, task flexible.
fe45bafb
AS
3234 *
3235 * However, if task's ctx is not carrying any pinned
3236 * events, no need to flip the cpuctx's events around.
329c0e01 3237 */
fe45bafb
AS
3238 if (!list_empty(&ctx->pinned_groups))
3239 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
63e30d3e 3240 perf_event_sched_in(cpuctx, ctx, task);
facc4307 3241 perf_pmu_enable(ctx->pmu);
fdccc3fb 3242
3243unlock:
facc4307 3244 perf_ctx_unlock(cpuctx, ctx);
235c7fc7
IM
3245}
3246
8dc85d54
PZ
3247/*
3248 * Called from scheduler to add the events of the current task
3249 * with interrupts disabled.
3250 *
3251 * We restore the event value and then enable it.
3252 *
3253 * This does not protect us against NMI, but enable()
3254 * sets the enabled bit in the control field of event _before_
3255 * accessing the event control register. If a NMI hits, then it will
3256 * keep the event running.
3257 */
ab0cce56
JO
3258void __perf_event_task_sched_in(struct task_struct *prev,
3259 struct task_struct *task)
8dc85d54
PZ
3260{
3261 struct perf_event_context *ctx;
3262 int ctxn;
3263
7e41d177
PZ
3264 /*
3265 * If cgroup events exist on this CPU, then we need to check if we have
3266 * to switch in PMU state; cgroup event are system-wide mode only.
3267 *
3268 * Since cgroup events are CPU events, we must schedule these in before
3269 * we schedule in the task events.
3270 */
3271 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3272 perf_cgroup_sched_in(prev, task);
3273
8dc85d54
PZ
3274 for_each_task_context_nr(ctxn) {
3275 ctx = task->perf_event_ctxp[ctxn];
3276 if (likely(!ctx))
3277 continue;
3278
e5d1367f 3279 perf_event_context_sched_in(ctx, task);
8dc85d54 3280 }
d010b332 3281
45ac1403
AH
3282 if (atomic_read(&nr_switch_events))
3283 perf_event_switch(task, prev, true);
3284
ba532500
YZ
3285 if (__this_cpu_read(perf_sched_cb_usages))
3286 perf_pmu_sched_task(prev, task, true);
235c7fc7
IM
3287}
3288
abd50713
PZ
3289static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3290{
3291 u64 frequency = event->attr.sample_freq;
3292 u64 sec = NSEC_PER_SEC;
3293 u64 divisor, dividend;
3294
3295 int count_fls, nsec_fls, frequency_fls, sec_fls;
3296
3297 count_fls = fls64(count);
3298 nsec_fls = fls64(nsec);
3299 frequency_fls = fls64(frequency);
3300 sec_fls = 30;
3301
3302 /*
3303 * We got @count in @nsec, with a target of sample_freq HZ
3304 * the target period becomes:
3305 *
3306 * @count * 10^9
3307 * period = -------------------
3308 * @nsec * sample_freq
3309 *
3310 */
3311
3312 /*
3313 * Reduce accuracy by one bit such that @a and @b converge
3314 * to a similar magnitude.
3315 */
fe4b04fa 3316#define REDUCE_FLS(a, b) \
abd50713
PZ
3317do { \
3318 if (a##_fls > b##_fls) { \
3319 a >>= 1; \
3320 a##_fls--; \
3321 } else { \
3322 b >>= 1; \
3323 b##_fls--; \
3324 } \
3325} while (0)
3326
3327 /*
3328 * Reduce accuracy until either term fits in a u64, then proceed with
3329 * the other, so that finally we can do a u64/u64 division.
3330 */
3331 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3332 REDUCE_FLS(nsec, frequency);
3333 REDUCE_FLS(sec, count);
3334 }
3335
3336 if (count_fls + sec_fls > 64) {
3337 divisor = nsec * frequency;
3338
3339 while (count_fls + sec_fls > 64) {
3340 REDUCE_FLS(count, sec);
3341 divisor >>= 1;
3342 }
3343
3344 dividend = count * sec;
3345 } else {
3346 dividend = count * sec;
3347
3348 while (nsec_fls + frequency_fls > 64) {
3349 REDUCE_FLS(nsec, frequency);
3350 dividend >>= 1;
3351 }
3352
3353 divisor = nsec * frequency;
3354 }
3355
f6ab91ad
PZ
3356 if (!divisor)
3357 return dividend;
3358
abd50713
PZ
3359 return div64_u64(dividend, divisor);
3360}
3361
e050e3f0
SE
3362static DEFINE_PER_CPU(int, perf_throttled_count);
3363static DEFINE_PER_CPU(u64, perf_throttled_seq);
3364
f39d47ff 3365static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
bd2b5b12 3366{
cdd6c482 3367 struct hw_perf_event *hwc = &event->hw;
f6ab91ad 3368 s64 period, sample_period;
bd2b5b12
PZ
3369 s64 delta;
3370
abd50713 3371 period = perf_calculate_period(event, nsec, count);
bd2b5b12
PZ
3372
3373 delta = (s64)(period - hwc->sample_period);
3374 delta = (delta + 7) / 8; /* low pass filter */
3375
3376 sample_period = hwc->sample_period + delta;
3377
3378 if (!sample_period)
3379 sample_period = 1;
3380
bd2b5b12 3381 hwc->sample_period = sample_period;
abd50713 3382
e7850595 3383 if (local64_read(&hwc->period_left) > 8*sample_period) {
f39d47ff
SE
3384 if (disable)
3385 event->pmu->stop(event, PERF_EF_UPDATE);
3386
e7850595 3387 local64_set(&hwc->period_left, 0);
f39d47ff
SE
3388
3389 if (disable)
3390 event->pmu->start(event, PERF_EF_RELOAD);
abd50713 3391 }
bd2b5b12
PZ
3392}
3393
e050e3f0
SE
3394/*
3395 * combine freq adjustment with unthrottling to avoid two passes over the
3396 * events. At the same time, make sure, having freq events does not change
3397 * the rate of unthrottling as that would introduce bias.
3398 */
3399static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3400 int needs_unthr)
60db5e09 3401{
cdd6c482
IM
3402 struct perf_event *event;
3403 struct hw_perf_event *hwc;
e050e3f0 3404 u64 now, period = TICK_NSEC;
abd50713 3405 s64 delta;
60db5e09 3406
e050e3f0
SE
3407 /*
3408 * only need to iterate over all events iff:
3409 * - context have events in frequency mode (needs freq adjust)
3410 * - there are events to unthrottle on this cpu
3411 */
3412 if (!(ctx->nr_freq || needs_unthr))
0f5a2601
PZ
3413 return;
3414
e050e3f0 3415 raw_spin_lock(&ctx->lock);
f39d47ff 3416 perf_pmu_disable(ctx->pmu);
e050e3f0 3417
03541f8b 3418 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
cdd6c482 3419 if (event->state != PERF_EVENT_STATE_ACTIVE)
60db5e09
PZ
3420 continue;
3421
5632ab12 3422 if (!event_filter_match(event))
5d27c23d
PZ
3423 continue;
3424
44377277
AS
3425 perf_pmu_disable(event->pmu);
3426
cdd6c482 3427 hwc = &event->hw;
6a24ed6c 3428
ae23bff1 3429 if (hwc->interrupts == MAX_INTERRUPTS) {
e050e3f0 3430 hwc->interrupts = 0;
cdd6c482 3431 perf_log_throttle(event, 1);
a4eaf7f1 3432 event->pmu->start(event, 0);
a78ac325
PZ
3433 }
3434
cdd6c482 3435 if (!event->attr.freq || !event->attr.sample_freq)
44377277 3436 goto next;
60db5e09 3437
e050e3f0
SE
3438 /*
3439 * stop the event and update event->count
3440 */
3441 event->pmu->stop(event, PERF_EF_UPDATE);
3442
e7850595 3443 now = local64_read(&event->count);
abd50713
PZ
3444 delta = now - hwc->freq_count_stamp;
3445 hwc->freq_count_stamp = now;
60db5e09 3446
e050e3f0
SE
3447 /*
3448 * restart the event
3449 * reload only if value has changed
f39d47ff
SE
3450 * we have stopped the event so tell that
3451 * to perf_adjust_period() to avoid stopping it
3452 * twice.
e050e3f0 3453 */
abd50713 3454 if (delta > 0)
f39d47ff 3455 perf_adjust_period(event, period, delta, false);
e050e3f0
SE
3456
3457 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
44377277
AS
3458 next:
3459 perf_pmu_enable(event->pmu);
60db5e09 3460 }
e050e3f0 3461
f39d47ff 3462 perf_pmu_enable(ctx->pmu);
e050e3f0 3463 raw_spin_unlock(&ctx->lock);
60db5e09
PZ
3464}
3465
235c7fc7 3466/*
cdd6c482 3467 * Round-robin a context's events:
235c7fc7 3468 */
cdd6c482 3469static void rotate_ctx(struct perf_event_context *ctx)
0793a61d 3470{
dddd3379
TG
3471 /*
3472 * Rotate the first entry last of non-pinned groups. Rotation might be
3473 * disabled by the inheritance code.
3474 */
3475 if (!ctx->rotate_disable)
3476 list_rotate_left(&ctx->flexible_groups);
235c7fc7
IM
3477}
3478
9e630205 3479static int perf_rotate_context(struct perf_cpu_context *cpuctx)
235c7fc7 3480{
8dc85d54 3481 struct perf_event_context *ctx = NULL;
2fde4f94 3482 int rotate = 0;
7fc23a53 3483
b5ab4cd5 3484 if (cpuctx->ctx.nr_events) {
b5ab4cd5
PZ
3485 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3486 rotate = 1;
3487 }
235c7fc7 3488
8dc85d54 3489 ctx = cpuctx->task_ctx;
b5ab4cd5 3490 if (ctx && ctx->nr_events) {
b5ab4cd5
PZ
3491 if (ctx->nr_events != ctx->nr_active)
3492 rotate = 1;
3493 }
9717e6cd 3494
e050e3f0 3495 if (!rotate)
0f5a2601
PZ
3496 goto done;
3497
facc4307 3498 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
1b9a644f 3499 perf_pmu_disable(cpuctx->ctx.pmu);
60db5e09 3500
e050e3f0
SE
3501 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3502 if (ctx)
3503 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
0793a61d 3504
e050e3f0
SE
3505 rotate_ctx(&cpuctx->ctx);
3506 if (ctx)
3507 rotate_ctx(ctx);
235c7fc7 3508
e050e3f0 3509 perf_event_sched_in(cpuctx, ctx, current);
235c7fc7 3510
0f5a2601
PZ
3511 perf_pmu_enable(cpuctx->ctx.pmu);
3512 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
b5ab4cd5 3513done:
9e630205
SE
3514
3515 return rotate;
e9d2b064
PZ
3516}
3517
3518void perf_event_task_tick(void)
3519{
2fde4f94
MR
3520 struct list_head *head = this_cpu_ptr(&active_ctx_list);
3521 struct perf_event_context *ctx, *tmp;
e050e3f0 3522 int throttled;
b5ab4cd5 3523
e9d2b064
PZ
3524 WARN_ON(!irqs_disabled());
3525
e050e3f0
SE
3526 __this_cpu_inc(perf_throttled_seq);
3527 throttled = __this_cpu_xchg(perf_throttled_count, 0);
555e0c1e 3528 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
e050e3f0 3529
2fde4f94 3530 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
e050e3f0 3531 perf_adjust_freq_unthr_context(ctx, throttled);
0793a61d
TG
3532}
3533
889ff015
FW
3534static int event_enable_on_exec(struct perf_event *event,
3535 struct perf_event_context *ctx)
3536{
3537 if (!event->attr.enable_on_exec)
3538 return 0;
3539
3540 event->attr.enable_on_exec = 0;
3541 if (event->state >= PERF_EVENT_STATE_INACTIVE)
3542 return 0;
3543
1d9b482e 3544 __perf_event_mark_enabled(event);
889ff015
FW
3545
3546 return 1;
3547}
3548
57e7986e 3549/*
cdd6c482 3550 * Enable all of a task's events that have been marked enable-on-exec.
57e7986e
PM
3551 * This expects task == current.
3552 */
c1274499 3553static void perf_event_enable_on_exec(int ctxn)
57e7986e 3554{
c1274499 3555 struct perf_event_context *ctx, *clone_ctx = NULL;
487f05e1 3556 enum event_type_t event_type = 0;
3e349507 3557 struct perf_cpu_context *cpuctx;
cdd6c482 3558 struct perf_event *event;
57e7986e
PM
3559 unsigned long flags;
3560 int enabled = 0;
3561
3562 local_irq_save(flags);
c1274499 3563 ctx = current->perf_event_ctxp[ctxn];
cdd6c482 3564 if (!ctx || !ctx->nr_events)
57e7986e
PM
3565 goto out;
3566
3e349507
PZ
3567 cpuctx = __get_cpu_context(ctx);
3568 perf_ctx_lock(cpuctx, ctx);
7fce2509 3569 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
487f05e1 3570 list_for_each_entry(event, &ctx->event_list, event_entry) {
3e349507 3571 enabled |= event_enable_on_exec(event, ctx);
487f05e1
AS
3572 event_type |= get_event_type(event);
3573 }
57e7986e
PM
3574
3575 /*
3e349507 3576 * Unclone and reschedule this context if we enabled any event.
57e7986e 3577 */
3e349507 3578 if (enabled) {
211de6eb 3579 clone_ctx = unclone_ctx(ctx);
487f05e1 3580 ctx_resched(cpuctx, ctx, event_type);
7bbba0eb
PZ
3581 } else {
3582 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
3e349507
PZ
3583 }
3584 perf_ctx_unlock(cpuctx, ctx);
57e7986e 3585
9ed6060d 3586out:
57e7986e 3587 local_irq_restore(flags);
211de6eb
PZ
3588
3589 if (clone_ctx)
3590 put_ctx(clone_ctx);
57e7986e
PM
3591}
3592
0492d4c5
PZ
3593struct perf_read_data {
3594 struct perf_event *event;
3595 bool group;
7d88962e 3596 int ret;
0492d4c5
PZ
3597};
3598
451d24d1 3599static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
d6a2f903 3600{
d6a2f903
DCC
3601 u16 local_pkg, event_pkg;
3602
3603 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
451d24d1
PZ
3604 int local_cpu = smp_processor_id();
3605
3606 event_pkg = topology_physical_package_id(event_cpu);
3607 local_pkg = topology_physical_package_id(local_cpu);
d6a2f903
DCC
3608
3609 if (event_pkg == local_pkg)
3610 return local_cpu;
3611 }
3612
3613 return event_cpu;
3614}
3615
0793a61d 3616/*
cdd6c482 3617 * Cross CPU call to read the hardware event
0793a61d 3618 */
cdd6c482 3619static void __perf_event_read(void *info)
0793a61d 3620{
0492d4c5
PZ
3621 struct perf_read_data *data = info;
3622 struct perf_event *sub, *event = data->event;
cdd6c482 3623 struct perf_event_context *ctx = event->ctx;
108b02cf 3624 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
4a00c16e 3625 struct pmu *pmu = event->pmu;
621a01ea 3626
e1ac3614
PM
3627 /*
3628 * If this is a task context, we need to check whether it is
3629 * the current task context of this cpu. If not it has been
3630 * scheduled out before the smp call arrived. In that case
cdd6c482
IM
3631 * event->count would have been updated to a recent sample
3632 * when the event was scheduled out.
e1ac3614
PM
3633 */
3634 if (ctx->task && cpuctx->task_ctx != ctx)
3635 return;
3636
e625cce1 3637 raw_spin_lock(&ctx->lock);
e5d1367f 3638 if (ctx->is_active) {
542e72fc 3639 update_context_time(ctx);
e5d1367f
SE
3640 update_cgrp_time_from_event(event);
3641 }
0492d4c5 3642
cdd6c482 3643 update_event_times(event);
4a00c16e
SB
3644 if (event->state != PERF_EVENT_STATE_ACTIVE)
3645 goto unlock;
0492d4c5 3646
4a00c16e
SB
3647 if (!data->group) {
3648 pmu->read(event);
3649 data->ret = 0;
0492d4c5 3650 goto unlock;
4a00c16e
SB
3651 }
3652
3653 pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3654
3655 pmu->read(event);
0492d4c5
PZ
3656
3657 list_for_each_entry(sub, &event->sibling_list, group_entry) {
3658 update_event_times(sub);
4a00c16e
SB
3659 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3660 /*
3661 * Use sibling's PMU rather than @event's since
3662 * sibling could be on different (eg: software) PMU.
3663 */
0492d4c5 3664 sub->pmu->read(sub);
4a00c16e 3665 }
0492d4c5 3666 }
4a00c16e
SB
3667
3668 data->ret = pmu->commit_txn(pmu);
0492d4c5
PZ
3669
3670unlock:
e625cce1 3671 raw_spin_unlock(&ctx->lock);
0793a61d
TG
3672}
3673
b5e58793
PZ
3674static inline u64 perf_event_count(struct perf_event *event)
3675{
c39a0e2c 3676 return local64_read(&event->count) + atomic64_read(&event->child_count);
b5e58793
PZ
3677}
3678
ffe8690c
KX
3679/*
3680 * NMI-safe method to read a local event, that is an event that
3681 * is:
3682 * - either for the current task, or for this CPU
3683 * - does not have inherit set, for inherited task events
3684 * will not be local and we cannot read them atomically
3685 * - must not have a pmu::count method
3686 */
97562633
YS
3687int perf_event_read_local(struct perf_event *event, u64 *value,
3688 u64 *enabled, u64 *running)
ffe8690c
KX
3689{
3690 unsigned long flags;
f91840a3 3691 int ret = 0;
97562633 3692 u64 now;
ffe8690c
KX
3693
3694 /*
3695 * Disabling interrupts avoids all counter scheduling (context
3696 * switches, timer based rotation and IPIs).
3697 */
3698 local_irq_save(flags);
3699
ffe8690c
KX
3700 /*
3701 * It must not be an event with inherit set, we cannot read
3702 * all child counters from atomic context.
3703 */
f91840a3
AS
3704 if (event->attr.inherit) {
3705 ret = -EOPNOTSUPP;
3706 goto out;
3707 }
ffe8690c 3708
f91840a3
AS
3709 /* If this is a per-task event, it must be for current */
3710 if ((event->attach_state & PERF_ATTACH_TASK) &&
3711 event->hw.target != current) {
3712 ret = -EINVAL;
3713 goto out;
3714 }
3715
3716 /* If this is a per-CPU event, it must be for this CPU */
3717 if (!(event->attach_state & PERF_ATTACH_TASK) &&
3718 event->cpu != smp_processor_id()) {
3719 ret = -EINVAL;
3720 goto out;
3721 }
ffe8690c 3722
97562633
YS
3723 now = event->shadow_ctx_time + perf_clock();
3724 if (enabled)
3725 *enabled = now - event->tstamp_enabled;
ffe8690c
KX
3726 /*
3727 * If the event is currently on this CPU, its either a per-task event,
3728 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3729 * oncpu == -1).
3730 */
97562633 3731 if (event->oncpu == smp_processor_id()) {
ffe8690c 3732 event->pmu->read(event);
97562633
YS
3733 if (running)
3734 *running = now - event->tstamp_running;
3735 } else if (running) {
3736 *running = event->total_time_running;
3737 }
ffe8690c 3738
f91840a3
AS
3739 *value = local64_read(&event->count);
3740out:
ffe8690c
KX
3741 local_irq_restore(flags);
3742
f91840a3 3743 return ret;
ffe8690c
KX
3744}
3745
7d88962e 3746static int perf_event_read(struct perf_event *event, bool group)
0793a61d 3747{
451d24d1 3748 int event_cpu, ret = 0;
7d88962e 3749
0793a61d 3750 /*
cdd6c482
IM
3751 * If event is enabled and currently active on a CPU, update the
3752 * value in the event structure:
0793a61d 3753 */
cdd6c482 3754 if (event->state == PERF_EVENT_STATE_ACTIVE) {
0492d4c5
PZ
3755 struct perf_read_data data = {
3756 .event = event,
3757 .group = group,
7d88962e 3758 .ret = 0,
0492d4c5 3759 };
d6a2f903 3760
451d24d1
PZ
3761 event_cpu = READ_ONCE(event->oncpu);
3762 if ((unsigned)event_cpu >= nr_cpu_ids)
3763 return 0;
3764
3765 preempt_disable();
3766 event_cpu = __perf_event_read_cpu(event, event_cpu);
d6a2f903 3767
58763148
PZ
3768 /*
3769 * Purposely ignore the smp_call_function_single() return
3770 * value.
3771 *
451d24d1 3772 * If event_cpu isn't a valid CPU it means the event got
58763148
PZ
3773 * scheduled out and that will have updated the event count.
3774 *
3775 * Therefore, either way, we'll have an up-to-date event count
3776 * after this.
3777 */
451d24d1
PZ
3778 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
3779 preempt_enable();
58763148 3780 ret = data.ret;
cdd6c482 3781 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
2b8988c9
PZ
3782 struct perf_event_context *ctx = event->ctx;
3783 unsigned long flags;
3784
e625cce1 3785 raw_spin_lock_irqsave(&ctx->lock, flags);
c530ccd9
SE
3786 /*
3787 * may read while context is not active
3788 * (e.g., thread is blocked), in that case
3789 * we cannot update context time
3790 */
e5d1367f 3791 if (ctx->is_active) {
c530ccd9 3792 update_context_time(ctx);
e5d1367f
SE
3793 update_cgrp_time_from_event(event);
3794 }
0492d4c5
PZ
3795 if (group)
3796 update_group_times(event);
3797 else
3798 update_event_times(event);
e625cce1 3799 raw_spin_unlock_irqrestore(&ctx->lock, flags);
0793a61d 3800 }
7d88962e
SB
3801
3802 return ret;
0793a61d
TG
3803}
3804
a63eaf34 3805/*
cdd6c482 3806 * Initialize the perf_event context in a task_struct:
a63eaf34 3807 */
eb184479 3808static void __perf_event_init_context(struct perf_event_context *ctx)
a63eaf34 3809{
e625cce1 3810 raw_spin_lock_init(&ctx->lock);
a63eaf34 3811 mutex_init(&ctx->mutex);
2fde4f94 3812 INIT_LIST_HEAD(&ctx->active_ctx_list);
889ff015
FW
3813 INIT_LIST_HEAD(&ctx->pinned_groups);
3814 INIT_LIST_HEAD(&ctx->flexible_groups);
a63eaf34
PM
3815 INIT_LIST_HEAD(&ctx->event_list);
3816 atomic_set(&ctx->refcount, 1);
eb184479
PZ
3817}
3818
3819static struct perf_event_context *
3820alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3821{
3822 struct perf_event_context *ctx;
3823
3824 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3825 if (!ctx)
3826 return NULL;
3827
3828 __perf_event_init_context(ctx);
3829 if (task) {
3830 ctx->task = task;
3831 get_task_struct(task);
0793a61d 3832 }
eb184479
PZ
3833 ctx->pmu = pmu;
3834
3835 return ctx;
a63eaf34
PM
3836}
3837
2ebd4ffb
MH
3838static struct task_struct *
3839find_lively_task_by_vpid(pid_t vpid)
3840{
3841 struct task_struct *task;
0793a61d
TG
3842
3843 rcu_read_lock();
2ebd4ffb 3844 if (!vpid)
0793a61d
TG
3845 task = current;
3846 else
2ebd4ffb 3847 task = find_task_by_vpid(vpid);
0793a61d
TG
3848 if (task)
3849 get_task_struct(task);
3850 rcu_read_unlock();
3851
3852 if (!task)
3853 return ERR_PTR(-ESRCH);
3854
2ebd4ffb 3855 return task;
2ebd4ffb
MH
3856}
3857
fe4b04fa
PZ
3858/*
3859 * Returns a matching context with refcount and pincount.
3860 */
108b02cf 3861static struct perf_event_context *
4af57ef2
YZ
3862find_get_context(struct pmu *pmu, struct task_struct *task,
3863 struct perf_event *event)
0793a61d 3864{
211de6eb 3865 struct perf_event_context *ctx, *clone_ctx = NULL;
22a4f650 3866 struct perf_cpu_context *cpuctx;
4af57ef2 3867 void *task_ctx_data = NULL;
25346b93 3868 unsigned long flags;
8dc85d54 3869 int ctxn, err;
4af57ef2 3870 int cpu = event->cpu;
0793a61d 3871
22a4ec72 3872 if (!task) {
cdd6c482 3873 /* Must be root to operate on a CPU event: */
0764771d 3874 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
0793a61d
TG
3875 return ERR_PTR(-EACCES);
3876
108b02cf 3877 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
0793a61d 3878 ctx = &cpuctx->ctx;
c93f7669 3879 get_ctx(ctx);
fe4b04fa 3880 ++ctx->pin_count;
0793a61d 3881
0793a61d
TG
3882 return ctx;
3883 }
3884
8dc85d54
PZ
3885 err = -EINVAL;
3886 ctxn = pmu->task_ctx_nr;
3887 if (ctxn < 0)
3888 goto errout;
3889
4af57ef2
YZ
3890 if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3891 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3892 if (!task_ctx_data) {
3893 err = -ENOMEM;
3894 goto errout;
3895 }
3896 }
3897
9ed6060d 3898retry:
8dc85d54 3899 ctx = perf_lock_task_context(task, ctxn, &flags);
c93f7669 3900 if (ctx) {
211de6eb 3901 clone_ctx = unclone_ctx(ctx);
fe4b04fa 3902 ++ctx->pin_count;
4af57ef2
YZ
3903
3904 if (task_ctx_data && !ctx->task_ctx_data) {
3905 ctx->task_ctx_data = task_ctx_data;
3906 task_ctx_data = NULL;
3907 }
e625cce1 3908 raw_spin_unlock_irqrestore(&ctx->lock, flags);
211de6eb
PZ
3909
3910 if (clone_ctx)
3911 put_ctx(clone_ctx);
9137fb28 3912 } else {
eb184479 3913 ctx = alloc_perf_context(pmu, task);
c93f7669
PM
3914 err = -ENOMEM;
3915 if (!ctx)
3916 goto errout;
eb184479 3917
4af57ef2
YZ
3918 if (task_ctx_data) {
3919 ctx->task_ctx_data = task_ctx_data;
3920 task_ctx_data = NULL;
3921 }
3922
dbe08d82
ON
3923 err = 0;
3924 mutex_lock(&task->perf_event_mutex);
3925 /*
3926 * If it has already passed perf_event_exit_task().
3927 * we must see PF_EXITING, it takes this mutex too.
3928 */
3929 if (task->flags & PF_EXITING)
3930 err = -ESRCH;
3931 else if (task->perf_event_ctxp[ctxn])
3932 err = -EAGAIN;
fe4b04fa 3933 else {
9137fb28 3934 get_ctx(ctx);
fe4b04fa 3935 ++ctx->pin_count;
dbe08d82 3936 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
fe4b04fa 3937 }
dbe08d82
ON
3938 mutex_unlock(&task->perf_event_mutex);
3939
3940 if (unlikely(err)) {
9137fb28 3941 put_ctx(ctx);
dbe08d82
ON
3942
3943 if (err == -EAGAIN)
3944 goto retry;
3945 goto errout;
a63eaf34
PM
3946 }
3947 }
3948
4af57ef2 3949 kfree(task_ctx_data);
0793a61d 3950 return ctx;
c93f7669 3951
9ed6060d 3952errout:
4af57ef2 3953 kfree(task_ctx_data);
c93f7669 3954 return ERR_PTR(err);
0793a61d
TG
3955}
3956
6fb2915d 3957static void perf_event_free_filter(struct perf_event *event);
2541517c 3958static void perf_event_free_bpf_prog(struct perf_event *event);
6fb2915d 3959
cdd6c482 3960static void free_event_rcu(struct rcu_head *head)
592903cd 3961{
cdd6c482 3962 struct perf_event *event;
592903cd 3963
cdd6c482
IM
3964 event = container_of(head, struct perf_event, rcu_head);
3965 if (event->ns)
3966 put_pid_ns(event->ns);
6fb2915d 3967 perf_event_free_filter(event);
cdd6c482 3968 kfree(event);
592903cd
PZ
3969}
3970
b69cf536
PZ
3971static void ring_buffer_attach(struct perf_event *event,
3972 struct ring_buffer *rb);
925d519a 3973
f2fb6bef
KL
3974static void detach_sb_event(struct perf_event *event)
3975{
3976 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
3977
3978 raw_spin_lock(&pel->lock);
3979 list_del_rcu(&event->sb_list);
3980 raw_spin_unlock(&pel->lock);
3981}
3982
a4f144eb 3983static bool is_sb_event(struct perf_event *event)
f2fb6bef 3984{
a4f144eb
DCC
3985 struct perf_event_attr *attr = &event->attr;
3986
f2fb6bef 3987 if (event->parent)
a4f144eb 3988 return false;
f2fb6bef
KL
3989
3990 if (event->attach_state & PERF_ATTACH_TASK)
a4f144eb 3991 return false;
f2fb6bef 3992
a4f144eb
DCC
3993 if (attr->mmap || attr->mmap_data || attr->mmap2 ||
3994 attr->comm || attr->comm_exec ||
3995 attr->task ||
3996 attr->context_switch)
3997 return true;
3998 return false;
3999}
4000
4001static void unaccount_pmu_sb_event(struct perf_event *event)
4002{
4003 if (is_sb_event(event))
4004 detach_sb_event(event);
f2fb6bef
KL
4005}
4006
4beb31f3 4007static void unaccount_event_cpu(struct perf_event *event, int cpu)
f1600952 4008{
4beb31f3
FW
4009 if (event->parent)
4010 return;
4011
4beb31f3
FW
4012 if (is_cgroup_event(event))
4013 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
4014}
925d519a 4015
555e0c1e
FW
4016#ifdef CONFIG_NO_HZ_FULL
4017static DEFINE_SPINLOCK(nr_freq_lock);
4018#endif
4019
4020static void unaccount_freq_event_nohz(void)
4021{
4022#ifdef CONFIG_NO_HZ_FULL
4023 spin_lock(&nr_freq_lock);
4024 if (atomic_dec_and_test(&nr_freq_events))
4025 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
4026 spin_unlock(&nr_freq_lock);
4027#endif
4028}
4029
4030static void unaccount_freq_event(void)
4031{
4032 if (tick_nohz_full_enabled())
4033 unaccount_freq_event_nohz();
4034 else
4035 atomic_dec(&nr_freq_events);
4036}
4037
4beb31f3
FW
4038static void unaccount_event(struct perf_event *event)
4039{
25432ae9
PZ
4040 bool dec = false;
4041
4beb31f3
FW
4042 if (event->parent)
4043 return;
4044
4045 if (event->attach_state & PERF_ATTACH_TASK)
25432ae9 4046 dec = true;
4beb31f3
FW
4047 if (event->attr.mmap || event->attr.mmap_data)
4048 atomic_dec(&nr_mmap_events);
4049 if (event->attr.comm)
4050 atomic_dec(&nr_comm_events);
e4222673
HB
4051 if (event->attr.namespaces)
4052 atomic_dec(&nr_namespaces_events);
4beb31f3
FW
4053 if (event->attr.task)
4054 atomic_dec(&nr_task_events);
948b26b6 4055 if (event->attr.freq)
555e0c1e 4056 unaccount_freq_event();
45ac1403 4057 if (event->attr.context_switch) {
25432ae9 4058 dec = true;
45ac1403
AH
4059 atomic_dec(&nr_switch_events);
4060 }
4beb31f3 4061 if (is_cgroup_event(event))
25432ae9 4062 dec = true;
4beb31f3 4063 if (has_branch_stack(event))
25432ae9
PZ
4064 dec = true;
4065
9107c89e
PZ
4066 if (dec) {
4067 if (!atomic_add_unless(&perf_sched_count, -1, 1))
4068 schedule_delayed_work(&perf_sched_work, HZ);
4069 }
4beb31f3
FW
4070
4071 unaccount_event_cpu(event, event->cpu);
f2fb6bef
KL
4072
4073 unaccount_pmu_sb_event(event);
4beb31f3 4074}
925d519a 4075
9107c89e
PZ
4076static void perf_sched_delayed(struct work_struct *work)
4077{
4078 mutex_lock(&perf_sched_mutex);
4079 if (atomic_dec_and_test(&perf_sched_count))
4080 static_branch_disable(&perf_sched_events);
4081 mutex_unlock(&perf_sched_mutex);
4082}
4083
bed5b25a
AS
4084/*
4085 * The following implement mutual exclusion of events on "exclusive" pmus
4086 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4087 * at a time, so we disallow creating events that might conflict, namely:
4088 *
4089 * 1) cpu-wide events in the presence of per-task events,
4090 * 2) per-task events in the presence of cpu-wide events,
4091 * 3) two matching events on the same context.
4092 *
4093 * The former two cases are handled in the allocation path (perf_event_alloc(),
a0733e69 4094 * _free_event()), the latter -- before the first perf_install_in_context().
bed5b25a
AS
4095 */
4096static int exclusive_event_init(struct perf_event *event)
4097{
4098 struct pmu *pmu = event->pmu;
4099
4100 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4101 return 0;
4102
4103 /*
4104 * Prevent co-existence of per-task and cpu-wide events on the
4105 * same exclusive pmu.
4106 *
4107 * Negative pmu::exclusive_cnt means there are cpu-wide
4108 * events on this "exclusive" pmu, positive means there are
4109 * per-task events.
4110 *
4111 * Since this is called in perf_event_alloc() path, event::ctx
4112 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4113 * to mean "per-task event", because unlike other attach states it
4114 * never gets cleared.
4115 */
4116 if (event->attach_state & PERF_ATTACH_TASK) {
4117 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4118 return -EBUSY;
4119 } else {
4120 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4121 return -EBUSY;
4122 }
4123
4124 return 0;
4125}
4126
4127static void exclusive_event_destroy(struct perf_event *event)
4128{
4129 struct pmu *pmu = event->pmu;
4130
4131 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4132 return;
4133
4134 /* see comment in exclusive_event_init() */
4135 if (event->attach_state & PERF_ATTACH_TASK)
4136 atomic_dec(&pmu->exclusive_cnt);
4137 else
4138 atomic_inc(&pmu->exclusive_cnt);
4139}
4140
4141static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4142{
3bf6215a 4143 if ((e1->pmu == e2->pmu) &&
bed5b25a
AS
4144 (e1->cpu == e2->cpu ||
4145 e1->cpu == -1 ||
4146 e2->cpu == -1))
4147 return true;
4148 return false;
4149}
4150
4151/* Called under the same ctx::mutex as perf_install_in_context() */
4152static bool exclusive_event_installable(struct perf_event *event,
4153 struct perf_event_context *ctx)
4154{
4155 struct perf_event *iter_event;
4156 struct pmu *pmu = event->pmu;
4157
4158 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4159 return true;
4160
4161 list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4162 if (exclusive_event_match(iter_event, event))
4163 return false;
4164 }
4165
4166 return true;
4167}
4168
375637bc
AS
4169static void perf_addr_filters_splice(struct perf_event *event,
4170 struct list_head *head);
4171
683ede43 4172static void _free_event(struct perf_event *event)
f1600952 4173{
e360adbe 4174 irq_work_sync(&event->pending);
925d519a 4175
4beb31f3 4176 unaccount_event(event);
9ee318a7 4177
76369139 4178 if (event->rb) {
9bb5d40c
PZ
4179 /*
4180 * Can happen when we close an event with re-directed output.
4181 *
4182 * Since we have a 0 refcount, perf_mmap_close() will skip
4183 * over us; possibly making our ring_buffer_put() the last.
4184 */
4185 mutex_lock(&event->mmap_mutex);
b69cf536 4186 ring_buffer_attach(event, NULL);
9bb5d40c 4187 mutex_unlock(&event->mmap_mutex);
a4be7c27
PZ
4188 }
4189
e5d1367f
SE
4190 if (is_cgroup_event(event))
4191 perf_detach_cgroup(event);
4192
a0733e69
PZ
4193 if (!event->parent) {
4194 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4195 put_callchain_buffers();
4196 }
4197
4198 perf_event_free_bpf_prog(event);
375637bc
AS
4199 perf_addr_filters_splice(event, NULL);
4200 kfree(event->addr_filters_offs);
a0733e69
PZ
4201
4202 if (event->destroy)
4203 event->destroy(event);
4204
4205 if (event->ctx)
4206 put_ctx(event->ctx);
4207
62a92c8f
AS
4208 exclusive_event_destroy(event);
4209 module_put(event->pmu->module);
a0733e69
PZ
4210
4211 call_rcu(&event->rcu_head, free_event_rcu);
f1600952
PZ
4212}
4213
683ede43
PZ
4214/*
4215 * Used to free events which have a known refcount of 1, such as in error paths
4216 * where the event isn't exposed yet and inherited events.
4217 */
4218static void free_event(struct perf_event *event)
0793a61d 4219{
683ede43
PZ
4220 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4221 "unexpected event refcount: %ld; ptr=%p\n",
4222 atomic_long_read(&event->refcount), event)) {
4223 /* leak to avoid use-after-free */
4224 return;
4225 }
0793a61d 4226
683ede43 4227 _free_event(event);
0793a61d
TG
4228}
4229
a66a3052 4230/*
f8697762 4231 * Remove user event from the owner task.
a66a3052 4232 */
f8697762 4233static void perf_remove_from_owner(struct perf_event *event)
fb0459d7 4234{
8882135b 4235 struct task_struct *owner;
fb0459d7 4236
8882135b 4237 rcu_read_lock();
8882135b 4238 /*
f47c02c0
PZ
4239 * Matches the smp_store_release() in perf_event_exit_task(). If we
4240 * observe !owner it means the list deletion is complete and we can
4241 * indeed free this event, otherwise we need to serialize on
8882135b
PZ
4242 * owner->perf_event_mutex.
4243 */
f47c02c0 4244 owner = lockless_dereference(event->owner);
8882135b
PZ
4245 if (owner) {
4246 /*
4247 * Since delayed_put_task_struct() also drops the last
4248 * task reference we can safely take a new reference
4249 * while holding the rcu_read_lock().
4250 */
4251 get_task_struct(owner);
4252 }
4253 rcu_read_unlock();
4254
4255 if (owner) {
f63a8daa
PZ
4256 /*
4257 * If we're here through perf_event_exit_task() we're already
4258 * holding ctx->mutex which would be an inversion wrt. the
4259 * normal lock order.
4260 *
4261 * However we can safely take this lock because its the child
4262 * ctx->mutex.
4263 */
4264 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4265
8882135b
PZ
4266 /*
4267 * We have to re-check the event->owner field, if it is cleared
4268 * we raced with perf_event_exit_task(), acquiring the mutex
4269 * ensured they're done, and we can proceed with freeing the
4270 * event.
4271 */
f47c02c0 4272 if (event->owner) {
8882135b 4273 list_del_init(&event->owner_entry);
f47c02c0
PZ
4274 smp_store_release(&event->owner, NULL);
4275 }
8882135b
PZ
4276 mutex_unlock(&owner->perf_event_mutex);
4277 put_task_struct(owner);
4278 }
f8697762
JO
4279}
4280
f8697762
JO
4281static void put_event(struct perf_event *event)
4282{
f8697762
JO
4283 if (!atomic_long_dec_and_test(&event->refcount))
4284 return;
4285
c6e5b732
PZ
4286 _free_event(event);
4287}
4288
4289/*
4290 * Kill an event dead; while event:refcount will preserve the event
4291 * object, it will not preserve its functionality. Once the last 'user'
4292 * gives up the object, we'll destroy the thing.
4293 */
4294int perf_event_release_kernel(struct perf_event *event)
4295{
a4f4bb6d 4296 struct perf_event_context *ctx = event->ctx;
c6e5b732
PZ
4297 struct perf_event *child, *tmp;
4298
a4f4bb6d
PZ
4299 /*
4300 * If we got here through err_file: fput(event_file); we will not have
4301 * attached to a context yet.
4302 */
4303 if (!ctx) {
4304 WARN_ON_ONCE(event->attach_state &
4305 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4306 goto no_ctx;
4307 }
4308
f8697762
JO
4309 if (!is_kernel_event(event))
4310 perf_remove_from_owner(event);
8882135b 4311
5fa7c8ec 4312 ctx = perf_event_ctx_lock(event);
a83fe28e 4313 WARN_ON_ONCE(ctx->parent_ctx);
a69b0ca4 4314 perf_remove_from_context(event, DETACH_GROUP);
683ede43 4315
a69b0ca4 4316 raw_spin_lock_irq(&ctx->lock);
683ede43 4317 /*
d8a8cfc7 4318 * Mark this event as STATE_DEAD, there is no external reference to it
a69b0ca4 4319 * anymore.
683ede43 4320 *
a69b0ca4
PZ
4321 * Anybody acquiring event->child_mutex after the below loop _must_
4322 * also see this, most importantly inherit_event() which will avoid
4323 * placing more children on the list.
683ede43 4324 *
c6e5b732
PZ
4325 * Thus this guarantees that we will in fact observe and kill _ALL_
4326 * child events.
683ede43 4327 */
a69b0ca4
PZ
4328 event->state = PERF_EVENT_STATE_DEAD;
4329 raw_spin_unlock_irq(&ctx->lock);
4330
4331 perf_event_ctx_unlock(event, ctx);
683ede43 4332
c6e5b732
PZ
4333again:
4334 mutex_lock(&event->child_mutex);
4335 list_for_each_entry(child, &event->child_list, child_list) {
a6fa941d 4336
c6e5b732
PZ
4337 /*
4338 * Cannot change, child events are not migrated, see the
4339 * comment with perf_event_ctx_lock_nested().
4340 */
4341 ctx = lockless_dereference(child->ctx);
4342 /*
4343 * Since child_mutex nests inside ctx::mutex, we must jump
4344 * through hoops. We start by grabbing a reference on the ctx.
4345 *
4346 * Since the event cannot get freed while we hold the
4347 * child_mutex, the context must also exist and have a !0
4348 * reference count.
4349 */
4350 get_ctx(ctx);
4351
4352 /*
4353 * Now that we have a ctx ref, we can drop child_mutex, and
4354 * acquire ctx::mutex without fear of it going away. Then we
4355 * can re-acquire child_mutex.
4356 */
4357 mutex_unlock(&event->child_mutex);
4358 mutex_lock(&ctx->mutex);
4359 mutex_lock(&event->child_mutex);
4360
4361 /*
4362 * Now that we hold ctx::mutex and child_mutex, revalidate our
4363 * state, if child is still the first entry, it didn't get freed
4364 * and we can continue doing so.
4365 */
4366 tmp = list_first_entry_or_null(&event->child_list,
4367 struct perf_event, child_list);
4368 if (tmp == child) {
4369 perf_remove_from_context(child, DETACH_GROUP);
4370 list_del(&child->child_list);
4371 free_event(child);
4372 /*
4373 * This matches the refcount bump in inherit_event();
4374 * this can't be the last reference.
4375 */
4376 put_event(event);
4377 }
4378
4379 mutex_unlock(&event->child_mutex);
4380 mutex_unlock(&ctx->mutex);
4381 put_ctx(ctx);
4382 goto again;
4383 }
4384 mutex_unlock(&event->child_mutex);
4385
a4f4bb6d
PZ
4386no_ctx:
4387 put_event(event); /* Must be the 'last' reference */
683ede43
PZ
4388 return 0;
4389}
4390EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4391
8b10c5e2
PZ
4392/*
4393 * Called when the last reference to the file is gone.
4394 */
a6fa941d
AV
4395static int perf_release(struct inode *inode, struct file *file)
4396{
c6e5b732 4397 perf_event_release_kernel(file->private_data);
a6fa941d 4398 return 0;
fb0459d7 4399}
fb0459d7 4400
59ed446f 4401u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
e53c0994 4402{
cdd6c482 4403 struct perf_event *child;
e53c0994
PZ
4404 u64 total = 0;
4405
59ed446f
PZ
4406 *enabled = 0;
4407 *running = 0;
4408
6f10581a 4409 mutex_lock(&event->child_mutex);
01add3ea 4410
7d88962e 4411 (void)perf_event_read(event, false);
01add3ea
SB
4412 total += perf_event_count(event);
4413
59ed446f
PZ
4414 *enabled += event->total_time_enabled +
4415 atomic64_read(&event->child_total_time_enabled);
4416 *running += event->total_time_running +
4417 atomic64_read(&event->child_total_time_running);
4418
4419 list_for_each_entry(child, &event->child_list, child_list) {
7d88962e 4420 (void)perf_event_read(child, false);
01add3ea 4421 total += perf_event_count(child);
59ed446f
PZ
4422 *enabled += child->total_time_enabled;
4423 *running += child->total_time_running;
4424 }
6f10581a 4425 mutex_unlock(&event->child_mutex);
e53c0994
PZ
4426
4427 return total;
4428}
fb0459d7 4429EXPORT_SYMBOL_GPL(perf_event_read_value);
e53c0994 4430
7d88962e 4431static int __perf_read_group_add(struct perf_event *leader,
fa8c2693 4432 u64 read_format, u64 *values)
3dab77fb 4433{
2aeb1883 4434 struct perf_event_context *ctx = leader->ctx;
fa8c2693 4435 struct perf_event *sub;
2aeb1883 4436 unsigned long flags;
fa8c2693 4437 int n = 1; /* skip @nr */
7d88962e 4438 int ret;
f63a8daa 4439
7d88962e
SB
4440 ret = perf_event_read(leader, true);
4441 if (ret)
4442 return ret;
abf4868b 4443
fa8c2693
PZ
4444 /*
4445 * Since we co-schedule groups, {enabled,running} times of siblings
4446 * will be identical to those of the leader, so we only publish one
4447 * set.
4448 */
4449 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4450 values[n++] += leader->total_time_enabled +
4451 atomic64_read(&leader->child_total_time_enabled);
4452 }
3dab77fb 4453
fa8c2693
PZ
4454 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4455 values[n++] += leader->total_time_running +
4456 atomic64_read(&leader->child_total_time_running);
4457 }
4458
4459 /*
4460 * Write {count,id} tuples for every sibling.
4461 */
4462 values[n++] += perf_event_count(leader);
abf4868b
PZ
4463 if (read_format & PERF_FORMAT_ID)
4464 values[n++] = primary_event_id(leader);
3dab77fb 4465
2aeb1883
JO
4466 raw_spin_lock_irqsave(&ctx->lock, flags);
4467
fa8c2693
PZ
4468 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4469 values[n++] += perf_event_count(sub);
4470 if (read_format & PERF_FORMAT_ID)
4471 values[n++] = primary_event_id(sub);
4472 }
7d88962e 4473
2aeb1883 4474 raw_spin_unlock_irqrestore(&ctx->lock, flags);
7d88962e 4475 return 0;
fa8c2693 4476}
3dab77fb 4477
fa8c2693
PZ
4478static int perf_read_group(struct perf_event *event,
4479 u64 read_format, char __user *buf)
4480{
4481 struct perf_event *leader = event->group_leader, *child;
4482 struct perf_event_context *ctx = leader->ctx;
7d88962e 4483 int ret;
fa8c2693 4484 u64 *values;
3dab77fb 4485
fa8c2693 4486 lockdep_assert_held(&ctx->mutex);
3dab77fb 4487
fa8c2693
PZ
4488 values = kzalloc(event->read_size, GFP_KERNEL);
4489 if (!values)
4490 return -ENOMEM;
3dab77fb 4491
fa8c2693
PZ
4492 values[0] = 1 + leader->nr_siblings;
4493
4494 /*
4495 * By locking the child_mutex of the leader we effectively
4496 * lock the child list of all siblings.. XXX explain how.
4497 */
4498 mutex_lock(&leader->child_mutex);
abf4868b 4499
7d88962e
SB
4500 ret = __perf_read_group_add(leader, read_format, values);
4501 if (ret)
4502 goto unlock;
4503
4504 list_for_each_entry(child, &leader->child_list, child_list) {
4505 ret = __perf_read_group_add(child, read_format, values);
4506 if (ret)
4507 goto unlock;
4508 }
abf4868b 4509
fa8c2693 4510 mutex_unlock(&leader->child_mutex);
abf4868b 4511
7d88962e 4512 ret = event->read_size;
fa8c2693
PZ
4513 if (copy_to_user(buf, values, event->read_size))
4514 ret = -EFAULT;
7d88962e 4515 goto out;
fa8c2693 4516
7d88962e
SB
4517unlock:
4518 mutex_unlock(&leader->child_mutex);
4519out:
fa8c2693 4520 kfree(values);
abf4868b 4521 return ret;
3dab77fb
PZ
4522}
4523
b15f495b 4524static int perf_read_one(struct perf_event *event,
3dab77fb
PZ
4525 u64 read_format, char __user *buf)
4526{
59ed446f 4527 u64 enabled, running;
3dab77fb
PZ
4528 u64 values[4];
4529 int n = 0;
4530
59ed446f
PZ
4531 values[n++] = perf_event_read_value(event, &enabled, &running);
4532 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4533 values[n++] = enabled;
4534 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4535 values[n++] = running;
3dab77fb 4536 if (read_format & PERF_FORMAT_ID)
cdd6c482 4537 values[n++] = primary_event_id(event);
3dab77fb
PZ
4538
4539 if (copy_to_user(buf, values, n * sizeof(u64)))
4540 return -EFAULT;
4541
4542 return n * sizeof(u64);
4543}
4544
dc633982
JO
4545static bool is_event_hup(struct perf_event *event)
4546{
4547 bool no_children;
4548
a69b0ca4 4549 if (event->state > PERF_EVENT_STATE_EXIT)
dc633982
JO
4550 return false;
4551
4552 mutex_lock(&event->child_mutex);
4553 no_children = list_empty(&event->child_list);
4554 mutex_unlock(&event->child_mutex);
4555 return no_children;
4556}
4557
0793a61d 4558/*
cdd6c482 4559 * Read the performance event - simple non blocking version for now
0793a61d
TG
4560 */
4561static ssize_t
b15f495b 4562__perf_read(struct perf_event *event, char __user *buf, size_t count)
0793a61d 4563{
cdd6c482 4564 u64 read_format = event->attr.read_format;
3dab77fb 4565 int ret;
0793a61d 4566
3b6f9e5c 4567 /*
cdd6c482 4568 * Return end-of-file for a read on a event that is in
3b6f9e5c
PM
4569 * error state (i.e. because it was pinned but it couldn't be
4570 * scheduled on to the CPU at some point).
4571 */
cdd6c482 4572 if (event->state == PERF_EVENT_STATE_ERROR)
3b6f9e5c
PM
4573 return 0;
4574
c320c7b7 4575 if (count < event->read_size)
3dab77fb
PZ
4576 return -ENOSPC;
4577
cdd6c482 4578 WARN_ON_ONCE(event->ctx->parent_ctx);
3dab77fb 4579 if (read_format & PERF_FORMAT_GROUP)
b15f495b 4580 ret = perf_read_group(event, read_format, buf);
3dab77fb 4581 else
b15f495b 4582 ret = perf_read_one(event, read_format, buf);
0793a61d 4583
3dab77fb 4584 return ret;
0793a61d
TG
4585}
4586
0793a61d
TG
4587static ssize_t
4588perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4589{
cdd6c482 4590 struct perf_event *event = file->private_data;
f63a8daa
PZ
4591 struct perf_event_context *ctx;
4592 int ret;
0793a61d 4593
f63a8daa 4594 ctx = perf_event_ctx_lock(event);
b15f495b 4595 ret = __perf_read(event, buf, count);
f63a8daa
PZ
4596 perf_event_ctx_unlock(event, ctx);
4597
4598 return ret;
0793a61d
TG
4599}
4600
4601static unsigned int perf_poll(struct file *file, poll_table *wait)
4602{
cdd6c482 4603 struct perf_event *event = file->private_data;
76369139 4604 struct ring_buffer *rb;
61b67684 4605 unsigned int events = POLLHUP;
c7138f37 4606
e708d7ad 4607 poll_wait(file, &event->waitq, wait);
179033b3 4608
dc633982 4609 if (is_event_hup(event))
179033b3 4610 return events;
c7138f37 4611
10c6db11 4612 /*
9bb5d40c
PZ
4613 * Pin the event->rb by taking event->mmap_mutex; otherwise
4614 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
10c6db11
PZ
4615 */
4616 mutex_lock(&event->mmap_mutex);
9bb5d40c
PZ
4617 rb = event->rb;
4618 if (rb)
76369139 4619 events = atomic_xchg(&rb->poll, 0);
10c6db11 4620 mutex_unlock(&event->mmap_mutex);
0793a61d
TG
4621 return events;
4622}
4623
f63a8daa 4624static void _perf_event_reset(struct perf_event *event)
6de6a7b9 4625{
7d88962e 4626 (void)perf_event_read(event, false);
e7850595 4627 local64_set(&event->count, 0);
cdd6c482 4628 perf_event_update_userpage(event);
3df5edad
PZ
4629}
4630
c93f7669 4631/*
cdd6c482
IM
4632 * Holding the top-level event's child_mutex means that any
4633 * descendant process that has inherited this event will block
8ba289b8 4634 * in perf_event_exit_event() if it goes to exit, thus satisfying the
cdd6c482 4635 * task existence requirements of perf_event_enable/disable.
c93f7669 4636 */
cdd6c482
IM
4637static void perf_event_for_each_child(struct perf_event *event,
4638 void (*func)(struct perf_event *))
3df5edad 4639{
cdd6c482 4640 struct perf_event *child;
3df5edad 4641
cdd6c482 4642 WARN_ON_ONCE(event->ctx->parent_ctx);
f63a8daa 4643
cdd6c482
IM
4644 mutex_lock(&event->child_mutex);
4645 func(event);
4646 list_for_each_entry(child, &event->child_list, child_list)
3df5edad 4647 func(child);
cdd6c482 4648 mutex_unlock(&event->child_mutex);
3df5edad
PZ
4649}
4650
cdd6c482
IM
4651static void perf_event_for_each(struct perf_event *event,
4652 void (*func)(struct perf_event *))
3df5edad 4653{
cdd6c482
IM
4654 struct perf_event_context *ctx = event->ctx;
4655 struct perf_event *sibling;
3df5edad 4656
f63a8daa
PZ
4657 lockdep_assert_held(&ctx->mutex);
4658
cdd6c482 4659 event = event->group_leader;
75f937f2 4660
cdd6c482 4661 perf_event_for_each_child(event, func);
cdd6c482 4662 list_for_each_entry(sibling, &event->sibling_list, group_entry)
724b6daa 4663 perf_event_for_each_child(sibling, func);
6de6a7b9
PZ
4664}
4665
fae3fde6
PZ
4666static void __perf_event_period(struct perf_event *event,
4667 struct perf_cpu_context *cpuctx,
4668 struct perf_event_context *ctx,
4669 void *info)
c7999c6f 4670{
fae3fde6 4671 u64 value = *((u64 *)info);
c7999c6f 4672 bool active;
08247e31 4673
cdd6c482 4674 if (event->attr.freq) {
cdd6c482 4675 event->attr.sample_freq = value;
08247e31 4676 } else {
cdd6c482
IM
4677 event->attr.sample_period = value;
4678 event->hw.sample_period = value;
08247e31 4679 }
bad7192b
PZ
4680
4681 active = (event->state == PERF_EVENT_STATE_ACTIVE);
4682 if (active) {
4683 perf_pmu_disable(ctx->pmu);
1e02cd40
PZ
4684 /*
4685 * We could be throttled; unthrottle now to avoid the tick
4686 * trying to unthrottle while we already re-started the event.
4687 */
4688 if (event->hw.interrupts == MAX_INTERRUPTS) {
4689 event->hw.interrupts = 0;
4690 perf_log_throttle(event, 1);
4691 }
bad7192b
PZ
4692 event->pmu->stop(event, PERF_EF_UPDATE);
4693 }
4694
4695 local64_set(&event->hw.period_left, 0);
4696
4697 if (active) {
4698 event->pmu->start(event, PERF_EF_RELOAD);
4699 perf_pmu_enable(ctx->pmu);
4700 }
c7999c6f
PZ
4701}
4702
4703static int perf_event_period(struct perf_event *event, u64 __user *arg)
4704{
c7999c6f
PZ
4705 u64 value;
4706
4707 if (!is_sampling_event(event))
4708 return -EINVAL;
4709
4710 if (copy_from_user(&value, arg, sizeof(value)))
4711 return -EFAULT;
4712
4713 if (!value)
4714 return -EINVAL;
4715
4716 if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4717 return -EINVAL;
4718
fae3fde6 4719 event_function_call(event, __perf_event_period, &value);
08247e31 4720
c7999c6f 4721 return 0;
08247e31
PZ
4722}
4723
ac9721f3
PZ
4724static const struct file_operations perf_fops;
4725
2903ff01 4726static inline int perf_fget_light(int fd, struct fd *p)
ac9721f3 4727{
2903ff01
AV
4728 struct fd f = fdget(fd);
4729 if (!f.file)
4730 return -EBADF;
ac9721f3 4731
2903ff01
AV
4732 if (f.file->f_op != &perf_fops) {
4733 fdput(f);
4734 return -EBADF;
ac9721f3 4735 }
2903ff01
AV
4736 *p = f;
4737 return 0;
ac9721f3
PZ
4738}
4739
4740static int perf_event_set_output(struct perf_event *event,
4741 struct perf_event *output_event);
6fb2915d 4742static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2541517c 4743static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
a4be7c27 4744
f63a8daa 4745static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
d859e29f 4746{
cdd6c482 4747 void (*func)(struct perf_event *);
3df5edad 4748 u32 flags = arg;
d859e29f
PM
4749
4750 switch (cmd) {
cdd6c482 4751 case PERF_EVENT_IOC_ENABLE:
f63a8daa 4752 func = _perf_event_enable;
d859e29f 4753 break;
cdd6c482 4754 case PERF_EVENT_IOC_DISABLE:
f63a8daa 4755 func = _perf_event_disable;
79f14641 4756 break;
cdd6c482 4757 case PERF_EVENT_IOC_RESET:
f63a8daa 4758 func = _perf_event_reset;
6de6a7b9 4759 break;
3df5edad 4760
cdd6c482 4761 case PERF_EVENT_IOC_REFRESH:
f63a8daa 4762 return _perf_event_refresh(event, arg);
08247e31 4763
cdd6c482
IM
4764 case PERF_EVENT_IOC_PERIOD:
4765 return perf_event_period(event, (u64 __user *)arg);
08247e31 4766
cf4957f1
JO
4767 case PERF_EVENT_IOC_ID:
4768 {
4769 u64 id = primary_event_id(event);
4770
4771 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4772 return -EFAULT;
4773 return 0;
4774 }
4775
cdd6c482 4776 case PERF_EVENT_IOC_SET_OUTPUT:
ac9721f3 4777 {
ac9721f3 4778 int ret;
ac9721f3 4779 if (arg != -1) {
2903ff01
AV
4780 struct perf_event *output_event;
4781 struct fd output;
4782 ret = perf_fget_light(arg, &output);
4783 if (ret)
4784 return ret;
4785 output_event = output.file->private_data;
4786 ret = perf_event_set_output(event, output_event);
4787 fdput(output);
4788 } else {
4789 ret = perf_event_set_output(event, NULL);
ac9721f3 4790 }
ac9721f3
PZ
4791 return ret;
4792 }
a4be7c27 4793
6fb2915d
LZ
4794 case PERF_EVENT_IOC_SET_FILTER:
4795 return perf_event_set_filter(event, (void __user *)arg);
4796
2541517c
AS
4797 case PERF_EVENT_IOC_SET_BPF:
4798 return perf_event_set_bpf_prog(event, arg);
4799
86e7972f
WN
4800 case PERF_EVENT_IOC_PAUSE_OUTPUT: {
4801 struct ring_buffer *rb;
4802
4803 rcu_read_lock();
4804 rb = rcu_dereference(event->rb);
4805 if (!rb || !rb->nr_pages) {
4806 rcu_read_unlock();
4807 return -EINVAL;
4808 }
4809 rb_toggle_paused(rb, !!arg);
4810 rcu_read_unlock();
4811 return 0;
4812 }
d859e29f 4813 default:
3df5edad 4814 return -ENOTTY;
d859e29f 4815 }
3df5edad
PZ
4816
4817 if (flags & PERF_IOC_FLAG_GROUP)
cdd6c482 4818 perf_event_for_each(event, func);
3df5edad 4819 else
cdd6c482 4820 perf_event_for_each_child(event, func);
3df5edad
PZ
4821
4822 return 0;
d859e29f
PM
4823}
4824
f63a8daa
PZ
4825static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4826{
4827 struct perf_event *event = file->private_data;
4828 struct perf_event_context *ctx;
4829 long ret;
4830
4831 ctx = perf_event_ctx_lock(event);
4832 ret = _perf_ioctl(event, cmd, arg);
4833 perf_event_ctx_unlock(event, ctx);
4834
4835 return ret;
4836}
4837
b3f20785
PM
4838#ifdef CONFIG_COMPAT
4839static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4840 unsigned long arg)
4841{
4842 switch (_IOC_NR(cmd)) {
4843 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4844 case _IOC_NR(PERF_EVENT_IOC_ID):
4845 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4846 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4847 cmd &= ~IOCSIZE_MASK;
4848 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4849 }
4850 break;
4851 }
4852 return perf_ioctl(file, cmd, arg);
4853}
4854#else
4855# define perf_compat_ioctl NULL
4856#endif
4857
cdd6c482 4858int perf_event_task_enable(void)
771d7cde 4859{
f63a8daa 4860 struct perf_event_context *ctx;
cdd6c482 4861 struct perf_event *event;
771d7cde 4862
cdd6c482 4863 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
4864 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4865 ctx = perf_event_ctx_lock(event);
4866 perf_event_for_each_child(event, _perf_event_enable);
4867 perf_event_ctx_unlock(event, ctx);
4868 }
cdd6c482 4869 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
4870
4871 return 0;
4872}
4873
cdd6c482 4874int perf_event_task_disable(void)
771d7cde 4875{
f63a8daa 4876 struct perf_event_context *ctx;
cdd6c482 4877 struct perf_event *event;
771d7cde 4878
cdd6c482 4879 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
4880 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4881 ctx = perf_event_ctx_lock(event);
4882 perf_event_for_each_child(event, _perf_event_disable);
4883 perf_event_ctx_unlock(event, ctx);
4884 }
cdd6c482 4885 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
4886
4887 return 0;
4888}
4889
cdd6c482 4890static int perf_event_index(struct perf_event *event)
194002b2 4891{
a4eaf7f1
PZ
4892 if (event->hw.state & PERF_HES_STOPPED)
4893 return 0;
4894
cdd6c482 4895 if (event->state != PERF_EVENT_STATE_ACTIVE)
194002b2
PZ
4896 return 0;
4897
35edc2a5 4898 return event->pmu->event_idx(event);
194002b2
PZ
4899}
4900
c4794295 4901static void calc_timer_values(struct perf_event *event,
e3f3541c 4902 u64 *now,
7f310a5d
EM
4903 u64 *enabled,
4904 u64 *running)
c4794295 4905{
e3f3541c 4906 u64 ctx_time;
c4794295 4907
e3f3541c
PZ
4908 *now = perf_clock();
4909 ctx_time = event->shadow_ctx_time + *now;
c4794295
EM
4910 *enabled = ctx_time - event->tstamp_enabled;
4911 *running = ctx_time - event->tstamp_running;
4912}
4913
fa731587
PZ
4914static void perf_event_init_userpage(struct perf_event *event)
4915{
4916 struct perf_event_mmap_page *userpg;
4917 struct ring_buffer *rb;
4918
4919 rcu_read_lock();
4920 rb = rcu_dereference(event->rb);
4921 if (!rb)
4922 goto unlock;
4923
4924 userpg = rb->user_page;
4925
4926 /* Allow new userspace to detect that bit 0 is deprecated */
4927 userpg->cap_bit0_is_deprecated = 1;
4928 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
e8c6deac
AS
4929 userpg->data_offset = PAGE_SIZE;
4930 userpg->data_size = perf_data_size(rb);
fa731587
PZ
4931
4932unlock:
4933 rcu_read_unlock();
4934}
4935
c1317ec2
AL
4936void __weak arch_perf_update_userpage(
4937 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
e3f3541c
PZ
4938{
4939}
4940
38ff667b
PZ
4941/*
4942 * Callers need to ensure there can be no nesting of this function, otherwise
4943 * the seqlock logic goes bad. We can not serialize this because the arch
4944 * code calls this from NMI context.
4945 */
cdd6c482 4946void perf_event_update_userpage(struct perf_event *event)
37d81828 4947{
cdd6c482 4948 struct perf_event_mmap_page *userpg;
76369139 4949 struct ring_buffer *rb;
e3f3541c 4950 u64 enabled, running, now;
38ff667b
PZ
4951
4952 rcu_read_lock();
5ec4c599
PZ
4953 rb = rcu_dereference(event->rb);
4954 if (!rb)
4955 goto unlock;
4956
0d641208
EM
4957 /*
4958 * compute total_time_enabled, total_time_running
4959 * based on snapshot values taken when the event
4960 * was last scheduled in.
4961 *
4962 * we cannot simply called update_context_time()
4963 * because of locking issue as we can be called in
4964 * NMI context
4965 */
e3f3541c 4966 calc_timer_values(event, &now, &enabled, &running);
38ff667b 4967
76369139 4968 userpg = rb->user_page;
7b732a75
PZ
4969 /*
4970 * Disable preemption so as to not let the corresponding user-space
4971 * spin too long if we get preempted.
4972 */
4973 preempt_disable();
37d81828 4974 ++userpg->lock;
92f22a38 4975 barrier();
cdd6c482 4976 userpg->index = perf_event_index(event);
b5e58793 4977 userpg->offset = perf_event_count(event);
365a4038 4978 if (userpg->index)
e7850595 4979 userpg->offset -= local64_read(&event->hw.prev_count);
7b732a75 4980
0d641208 4981 userpg->time_enabled = enabled +
cdd6c482 4982 atomic64_read(&event->child_total_time_enabled);
7f8b4e4e 4983
0d641208 4984 userpg->time_running = running +
cdd6c482 4985 atomic64_read(&event->child_total_time_running);
7f8b4e4e 4986
c1317ec2 4987 arch_perf_update_userpage(event, userpg, now);
e3f3541c 4988
92f22a38 4989 barrier();
37d81828 4990 ++userpg->lock;
7b732a75 4991 preempt_enable();
38ff667b 4992unlock:
7b732a75 4993 rcu_read_unlock();
37d81828
PM
4994}
4995
11bac800 4996static int perf_mmap_fault(struct vm_fault *vmf)
906010b2 4997{
11bac800 4998 struct perf_event *event = vmf->vma->vm_file->private_data;
76369139 4999 struct ring_buffer *rb;
906010b2
PZ
5000 int ret = VM_FAULT_SIGBUS;
5001
5002 if (vmf->flags & FAULT_FLAG_MKWRITE) {
5003 if (vmf->pgoff == 0)
5004 ret = 0;
5005 return ret;
5006 }
5007
5008 rcu_read_lock();
76369139
FW
5009 rb = rcu_dereference(event->rb);
5010 if (!rb)
906010b2
PZ
5011 goto unlock;
5012
5013 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
5014 goto unlock;
5015
76369139 5016 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
906010b2
PZ
5017 if (!vmf->page)
5018 goto unlock;
5019
5020 get_page(vmf->page);
11bac800 5021 vmf->page->mapping = vmf->vma->vm_file->f_mapping;
906010b2
PZ
5022 vmf->page->index = vmf->pgoff;
5023
5024 ret = 0;
5025unlock:
5026 rcu_read_unlock();
5027
5028 return ret;
5029}
5030
10c6db11
PZ
5031static void ring_buffer_attach(struct perf_event *event,
5032 struct ring_buffer *rb)
5033{
b69cf536 5034 struct ring_buffer *old_rb = NULL;
10c6db11
PZ
5035 unsigned long flags;
5036
b69cf536
PZ
5037 if (event->rb) {
5038 /*
5039 * Should be impossible, we set this when removing
5040 * event->rb_entry and wait/clear when adding event->rb_entry.
5041 */
5042 WARN_ON_ONCE(event->rcu_pending);
10c6db11 5043
b69cf536 5044 old_rb = event->rb;
b69cf536
PZ
5045 spin_lock_irqsave(&old_rb->event_lock, flags);
5046 list_del_rcu(&event->rb_entry);
5047 spin_unlock_irqrestore(&old_rb->event_lock, flags);
10c6db11 5048
2f993cf0
ON
5049 event->rcu_batches = get_state_synchronize_rcu();
5050 event->rcu_pending = 1;
b69cf536 5051 }
10c6db11 5052
b69cf536 5053 if (rb) {
2f993cf0
ON
5054 if (event->rcu_pending) {
5055 cond_synchronize_rcu(event->rcu_batches);
5056 event->rcu_pending = 0;
5057 }
5058
b69cf536
PZ
5059 spin_lock_irqsave(&rb->event_lock, flags);
5060 list_add_rcu(&event->rb_entry, &rb->event_list);
5061 spin_unlock_irqrestore(&rb->event_lock, flags);
5062 }
5063
767ae086
AS
5064 /*
5065 * Avoid racing with perf_mmap_close(AUX): stop the event
5066 * before swizzling the event::rb pointer; if it's getting
5067 * unmapped, its aux_mmap_count will be 0 and it won't
5068 * restart. See the comment in __perf_pmu_output_stop().
5069 *
5070 * Data will inevitably be lost when set_output is done in
5071 * mid-air, but then again, whoever does it like this is
5072 * not in for the data anyway.
5073 */
5074 if (has_aux(event))
5075 perf_event_stop(event, 0);
5076
b69cf536
PZ
5077 rcu_assign_pointer(event->rb, rb);
5078
5079 if (old_rb) {
5080 ring_buffer_put(old_rb);
5081 /*
5082 * Since we detached before setting the new rb, so that we
5083 * could attach the new rb, we could have missed a wakeup.
5084 * Provide it now.
5085 */
5086 wake_up_all(&event->waitq);
5087 }
10c6db11
PZ
5088}
5089
5090static void ring_buffer_wakeup(struct perf_event *event)
5091{
5092 struct ring_buffer *rb;
5093
5094 rcu_read_lock();
5095 rb = rcu_dereference(event->rb);
9bb5d40c
PZ
5096 if (rb) {
5097 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5098 wake_up_all(&event->waitq);
5099 }
10c6db11
PZ
5100 rcu_read_unlock();
5101}
5102
fdc26706 5103struct ring_buffer *ring_buffer_get(struct perf_event *event)
7b732a75 5104{
76369139 5105 struct ring_buffer *rb;
7b732a75 5106
ac9721f3 5107 rcu_read_lock();
76369139
FW
5108 rb = rcu_dereference(event->rb);
5109 if (rb) {
5110 if (!atomic_inc_not_zero(&rb->refcount))
5111 rb = NULL;
ac9721f3
PZ
5112 }
5113 rcu_read_unlock();
5114
76369139 5115 return rb;
ac9721f3
PZ
5116}
5117
fdc26706 5118void ring_buffer_put(struct ring_buffer *rb)
ac9721f3 5119{
76369139 5120 if (!atomic_dec_and_test(&rb->refcount))
ac9721f3 5121 return;
7b732a75 5122
9bb5d40c 5123 WARN_ON_ONCE(!list_empty(&rb->event_list));
10c6db11 5124
76369139 5125 call_rcu(&rb->rcu_head, rb_free_rcu);
7b732a75
PZ
5126}
5127
5128static void perf_mmap_open(struct vm_area_struct *vma)
5129{
cdd6c482 5130 struct perf_event *event = vma->vm_file->private_data;
7b732a75 5131
cdd6c482 5132 atomic_inc(&event->mmap_count);
9bb5d40c 5133 atomic_inc(&event->rb->mmap_count);
1e0fb9ec 5134
45bfb2e5
PZ
5135 if (vma->vm_pgoff)
5136 atomic_inc(&event->rb->aux_mmap_count);
5137
1e0fb9ec 5138 if (event->pmu->event_mapped)
bfe33492 5139 event->pmu->event_mapped(event, vma->vm_mm);
7b732a75
PZ
5140}
5141
95ff4ca2
AS
5142static void perf_pmu_output_stop(struct perf_event *event);
5143
9bb5d40c
PZ
5144/*
5145 * A buffer can be mmap()ed multiple times; either directly through the same
5146 * event, or through other events by use of perf_event_set_output().
5147 *
5148 * In order to undo the VM accounting done by perf_mmap() we need to destroy
5149 * the buffer here, where we still have a VM context. This means we need
5150 * to detach all events redirecting to us.
5151 */
7b732a75
PZ
5152static void perf_mmap_close(struct vm_area_struct *vma)
5153{
cdd6c482 5154 struct perf_event *event = vma->vm_file->private_data;
7b732a75 5155
b69cf536 5156 struct ring_buffer *rb = ring_buffer_get(event);
9bb5d40c
PZ
5157 struct user_struct *mmap_user = rb->mmap_user;
5158 int mmap_locked = rb->mmap_locked;
5159 unsigned long size = perf_data_size(rb);
789f90fc 5160
1e0fb9ec 5161 if (event->pmu->event_unmapped)
bfe33492 5162 event->pmu->event_unmapped(event, vma->vm_mm);
1e0fb9ec 5163
45bfb2e5
PZ
5164 /*
5165 * rb->aux_mmap_count will always drop before rb->mmap_count and
5166 * event->mmap_count, so it is ok to use event->mmap_mutex to
5167 * serialize with perf_mmap here.
5168 */
5169 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5170 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
95ff4ca2
AS
5171 /*
5172 * Stop all AUX events that are writing to this buffer,
5173 * so that we can free its AUX pages and corresponding PMU
5174 * data. Note that after rb::aux_mmap_count dropped to zero,
5175 * they won't start any more (see perf_aux_output_begin()).
5176 */
5177 perf_pmu_output_stop(event);
5178
5179 /* now it's safe to free the pages */
45bfb2e5
PZ
5180 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
5181 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
5182
95ff4ca2 5183 /* this has to be the last one */
45bfb2e5 5184 rb_free_aux(rb);
95ff4ca2
AS
5185 WARN_ON_ONCE(atomic_read(&rb->aux_refcount));
5186
45bfb2e5
PZ
5187 mutex_unlock(&event->mmap_mutex);
5188 }
5189
9bb5d40c
PZ
5190 atomic_dec(&rb->mmap_count);
5191
5192 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
b69cf536 5193 goto out_put;
9bb5d40c 5194
b69cf536 5195 ring_buffer_attach(event, NULL);
9bb5d40c
PZ
5196 mutex_unlock(&event->mmap_mutex);
5197
5198 /* If there's still other mmap()s of this buffer, we're done. */
b69cf536
PZ
5199 if (atomic_read(&rb->mmap_count))
5200 goto out_put;
ac9721f3 5201
9bb5d40c
PZ
5202 /*
5203 * No other mmap()s, detach from all other events that might redirect
5204 * into the now unreachable buffer. Somewhat complicated by the
5205 * fact that rb::event_lock otherwise nests inside mmap_mutex.
5206 */
5207again:
5208 rcu_read_lock();
5209 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5210 if (!atomic_long_inc_not_zero(&event->refcount)) {
5211 /*
5212 * This event is en-route to free_event() which will
5213 * detach it and remove it from the list.
5214 */
5215 continue;
5216 }
5217 rcu_read_unlock();
789f90fc 5218
9bb5d40c
PZ
5219 mutex_lock(&event->mmap_mutex);
5220 /*
5221 * Check we didn't race with perf_event_set_output() which can
5222 * swizzle the rb from under us while we were waiting to
5223 * acquire mmap_mutex.
5224 *
5225 * If we find a different rb; ignore this event, a next
5226 * iteration will no longer find it on the list. We have to
5227 * still restart the iteration to make sure we're not now
5228 * iterating the wrong list.
5229 */
b69cf536
PZ
5230 if (event->rb == rb)
5231 ring_buffer_attach(event, NULL);
5232
cdd6c482 5233 mutex_unlock(&event->mmap_mutex);
9bb5d40c 5234 put_event(event);
ac9721f3 5235
9bb5d40c
PZ
5236 /*
5237 * Restart the iteration; either we're on the wrong list or
5238 * destroyed its integrity by doing a deletion.
5239 */
5240 goto again;
7b732a75 5241 }
9bb5d40c
PZ
5242 rcu_read_unlock();
5243
5244 /*
5245 * It could be there's still a few 0-ref events on the list; they'll
5246 * get cleaned up by free_event() -- they'll also still have their
5247 * ref on the rb and will free it whenever they are done with it.
5248 *
5249 * Aside from that, this buffer is 'fully' detached and unmapped,
5250 * undo the VM accounting.
5251 */
5252
5253 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
5254 vma->vm_mm->pinned_vm -= mmap_locked;
5255 free_uid(mmap_user);
5256
b69cf536 5257out_put:
9bb5d40c 5258 ring_buffer_put(rb); /* could be last */
37d81828
PM
5259}
5260
f0f37e2f 5261static const struct vm_operations_struct perf_mmap_vmops = {
43a21ea8 5262 .open = perf_mmap_open,
45bfb2e5 5263 .close = perf_mmap_close, /* non mergable */
43a21ea8
PZ
5264 .fault = perf_mmap_fault,
5265 .page_mkwrite = perf_mmap_fault,
37d81828
PM
5266};
5267
5268static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5269{
cdd6c482 5270 struct perf_event *event = file->private_data;
22a4f650 5271 unsigned long user_locked, user_lock_limit;
789f90fc 5272 struct user_struct *user = current_user();
22a4f650 5273 unsigned long locked, lock_limit;
45bfb2e5 5274 struct ring_buffer *rb = NULL;
7b732a75
PZ
5275 unsigned long vma_size;
5276 unsigned long nr_pages;
45bfb2e5 5277 long user_extra = 0, extra = 0;
d57e34fd 5278 int ret = 0, flags = 0;
37d81828 5279
c7920614
PZ
5280 /*
5281 * Don't allow mmap() of inherited per-task counters. This would
5282 * create a performance issue due to all children writing to the
76369139 5283 * same rb.
c7920614
PZ
5284 */
5285 if (event->cpu == -1 && event->attr.inherit)
5286 return -EINVAL;
5287
43a21ea8 5288 if (!(vma->vm_flags & VM_SHARED))
37d81828 5289 return -EINVAL;
7b732a75
PZ
5290
5291 vma_size = vma->vm_end - vma->vm_start;
45bfb2e5
PZ
5292
5293 if (vma->vm_pgoff == 0) {
5294 nr_pages = (vma_size / PAGE_SIZE) - 1;
5295 } else {
5296 /*
5297 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5298 * mapped, all subsequent mappings should have the same size
5299 * and offset. Must be above the normal perf buffer.
5300 */
5301 u64 aux_offset, aux_size;
5302
5303 if (!event->rb)
5304 return -EINVAL;
5305
5306 nr_pages = vma_size / PAGE_SIZE;
5307
5308 mutex_lock(&event->mmap_mutex);
5309 ret = -EINVAL;
5310
5311 rb = event->rb;
5312 if (!rb)
5313 goto aux_unlock;
5314
5315 aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
5316 aux_size = ACCESS_ONCE(rb->user_page->aux_size);
5317
5318 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5319 goto aux_unlock;
5320
5321 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5322 goto aux_unlock;
5323
5324 /* already mapped with a different offset */
5325 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5326 goto aux_unlock;
5327
5328 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5329 goto aux_unlock;
5330
5331 /* already mapped with a different size */
5332 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5333 goto aux_unlock;
5334
5335 if (!is_power_of_2(nr_pages))
5336 goto aux_unlock;
5337
5338 if (!atomic_inc_not_zero(&rb->mmap_count))
5339 goto aux_unlock;
5340
5341 if (rb_has_aux(rb)) {
5342 atomic_inc(&rb->aux_mmap_count);
5343 ret = 0;
5344 goto unlock;
5345 }
5346
5347 atomic_set(&rb->aux_mmap_count, 1);
5348 user_extra = nr_pages;
5349
5350 goto accounting;
5351 }
7b732a75 5352
7730d865 5353 /*
76369139 5354 * If we have rb pages ensure they're a power-of-two number, so we
7730d865
PZ
5355 * can do bitmasks instead of modulo.
5356 */
2ed11312 5357 if (nr_pages != 0 && !is_power_of_2(nr_pages))
37d81828
PM
5358 return -EINVAL;
5359
7b732a75 5360 if (vma_size != PAGE_SIZE * (1 + nr_pages))
37d81828
PM
5361 return -EINVAL;
5362
cdd6c482 5363 WARN_ON_ONCE(event->ctx->parent_ctx);
9bb5d40c 5364again:
cdd6c482 5365 mutex_lock(&event->mmap_mutex);
76369139 5366 if (event->rb) {
9bb5d40c 5367 if (event->rb->nr_pages != nr_pages) {
ebb3c4c4 5368 ret = -EINVAL;
9bb5d40c
PZ
5369 goto unlock;
5370 }
5371
5372 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5373 /*
5374 * Raced against perf_mmap_close() through
5375 * perf_event_set_output(). Try again, hope for better
5376 * luck.
5377 */
5378 mutex_unlock(&event->mmap_mutex);
5379 goto again;
5380 }
5381
ebb3c4c4
PZ
5382 goto unlock;
5383 }
5384
789f90fc 5385 user_extra = nr_pages + 1;
45bfb2e5
PZ
5386
5387accounting:
cdd6c482 5388 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
a3862d3f
IM
5389
5390 /*
5391 * Increase the limit linearly with more CPUs:
5392 */
5393 user_lock_limit *= num_online_cpus();
5394
789f90fc 5395 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
c5078f78 5396
789f90fc
PZ
5397 if (user_locked > user_lock_limit)
5398 extra = user_locked - user_lock_limit;
7b732a75 5399
78d7d407 5400 lock_limit = rlimit(RLIMIT_MEMLOCK);
7b732a75 5401 lock_limit >>= PAGE_SHIFT;
bc3e53f6 5402 locked = vma->vm_mm->pinned_vm + extra;
7b732a75 5403
459ec28a
IM
5404 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5405 !capable(CAP_IPC_LOCK)) {
ebb3c4c4
PZ
5406 ret = -EPERM;
5407 goto unlock;
5408 }
7b732a75 5409
45bfb2e5 5410 WARN_ON(!rb && event->rb);
906010b2 5411
d57e34fd 5412 if (vma->vm_flags & VM_WRITE)
76369139 5413 flags |= RING_BUFFER_WRITABLE;
d57e34fd 5414
76369139 5415 if (!rb) {
45bfb2e5
PZ
5416 rb = rb_alloc(nr_pages,
5417 event->attr.watermark ? event->attr.wakeup_watermark : 0,
5418 event->cpu, flags);
26cb63ad 5419
45bfb2e5
PZ
5420 if (!rb) {
5421 ret = -ENOMEM;
5422 goto unlock;
5423 }
43a21ea8 5424
45bfb2e5
PZ
5425 atomic_set(&rb->mmap_count, 1);
5426 rb->mmap_user = get_current_user();
5427 rb->mmap_locked = extra;
26cb63ad 5428
45bfb2e5 5429 ring_buffer_attach(event, rb);
ac9721f3 5430
45bfb2e5
PZ
5431 perf_event_init_userpage(event);
5432 perf_event_update_userpage(event);
5433 } else {
1a594131
AS
5434 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5435 event->attr.aux_watermark, flags);
45bfb2e5
PZ
5436 if (!ret)
5437 rb->aux_mmap_locked = extra;
5438 }
9a0f05cb 5439
ebb3c4c4 5440unlock:
45bfb2e5
PZ
5441 if (!ret) {
5442 atomic_long_add(user_extra, &user->locked_vm);
5443 vma->vm_mm->pinned_vm += extra;
5444
ac9721f3 5445 atomic_inc(&event->mmap_count);
45bfb2e5
PZ
5446 } else if (rb) {
5447 atomic_dec(&rb->mmap_count);
5448 }
5449aux_unlock:
cdd6c482 5450 mutex_unlock(&event->mmap_mutex);
37d81828 5451
9bb5d40c
PZ
5452 /*
5453 * Since pinned accounting is per vm we cannot allow fork() to copy our
5454 * vma.
5455 */
26cb63ad 5456 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
37d81828 5457 vma->vm_ops = &perf_mmap_vmops;
7b732a75 5458
1e0fb9ec 5459 if (event->pmu->event_mapped)
bfe33492 5460 event->pmu->event_mapped(event, vma->vm_mm);
1e0fb9ec 5461
7b732a75 5462 return ret;
37d81828
PM
5463}
5464
3c446b3d
PZ
5465static int perf_fasync(int fd, struct file *filp, int on)
5466{
496ad9aa 5467 struct inode *inode = file_inode(filp);
cdd6c482 5468 struct perf_event *event = filp->private_data;
3c446b3d
PZ
5469 int retval;
5470
5955102c 5471 inode_lock(inode);
cdd6c482 5472 retval = fasync_helper(fd, filp, on, &event->fasync);
5955102c 5473 inode_unlock(inode);
3c446b3d
PZ
5474
5475 if (retval < 0)
5476 return retval;
5477
5478 return 0;
5479}
5480
0793a61d 5481static const struct file_operations perf_fops = {
3326c1ce 5482 .llseek = no_llseek,
0793a61d
TG
5483 .release = perf_release,
5484 .read = perf_read,
5485 .poll = perf_poll,
d859e29f 5486 .unlocked_ioctl = perf_ioctl,
b3f20785 5487 .compat_ioctl = perf_compat_ioctl,
37d81828 5488 .mmap = perf_mmap,
3c446b3d 5489 .fasync = perf_fasync,
0793a61d
TG
5490};
5491
925d519a 5492/*
cdd6c482 5493 * Perf event wakeup
925d519a
PZ
5494 *
5495 * If there's data, ensure we set the poll() state and publish everything
5496 * to user-space before waking everybody up.
5497 */
5498
fed66e2c
PZ
5499static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5500{
5501 /* only the parent has fasync state */
5502 if (event->parent)
5503 event = event->parent;
5504 return &event->fasync;
5505}
5506
cdd6c482 5507void perf_event_wakeup(struct perf_event *event)
925d519a 5508{
10c6db11 5509 ring_buffer_wakeup(event);
4c9e2542 5510
cdd6c482 5511 if (event->pending_kill) {
fed66e2c 5512 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
cdd6c482 5513 event->pending_kill = 0;
4c9e2542 5514 }
925d519a
PZ
5515}
5516
e360adbe 5517static void perf_pending_event(struct irq_work *entry)
79f14641 5518{
cdd6c482
IM
5519 struct perf_event *event = container_of(entry,
5520 struct perf_event, pending);
d525211f
PZ
5521 int rctx;
5522
5523 rctx = perf_swevent_get_recursion_context();
5524 /*
5525 * If we 'fail' here, that's OK, it means recursion is already disabled
5526 * and we won't recurse 'further'.
5527 */
79f14641 5528
cdd6c482
IM
5529 if (event->pending_disable) {
5530 event->pending_disable = 0;
fae3fde6 5531 perf_event_disable_local(event);
79f14641
PZ
5532 }
5533
cdd6c482
IM
5534 if (event->pending_wakeup) {
5535 event->pending_wakeup = 0;
5536 perf_event_wakeup(event);
79f14641 5537 }
d525211f
PZ
5538
5539 if (rctx >= 0)
5540 perf_swevent_put_recursion_context(rctx);
79f14641
PZ
5541}
5542
39447b38
ZY
5543/*
5544 * We assume there is only KVM supporting the callbacks.
5545 * Later on, we might change it to a list if there is
5546 * another virtualization implementation supporting the callbacks.
5547 */
5548struct perf_guest_info_callbacks *perf_guest_cbs;
5549
5550int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5551{
5552 perf_guest_cbs = cbs;
5553 return 0;
5554}
5555EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5556
5557int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5558{
5559 perf_guest_cbs = NULL;
5560 return 0;
5561}
5562EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5563
4018994f
JO
5564static void
5565perf_output_sample_regs(struct perf_output_handle *handle,
5566 struct pt_regs *regs, u64 mask)
5567{
5568 int bit;
29dd3288 5569 DECLARE_BITMAP(_mask, 64);
4018994f 5570
29dd3288
MS
5571 bitmap_from_u64(_mask, mask);
5572 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
4018994f
JO
5573 u64 val;
5574
5575 val = perf_reg_value(regs, bit);
5576 perf_output_put(handle, val);
5577 }
5578}
5579
60e2364e 5580static void perf_sample_regs_user(struct perf_regs *regs_user,
88a7c26a
AL
5581 struct pt_regs *regs,
5582 struct pt_regs *regs_user_copy)
4018994f 5583{
88a7c26a
AL
5584 if (user_mode(regs)) {
5585 regs_user->abi = perf_reg_abi(current);
2565711f 5586 regs_user->regs = regs;
88a7c26a
AL
5587 } else if (current->mm) {
5588 perf_get_regs_user(regs_user, regs, regs_user_copy);
2565711f
PZ
5589 } else {
5590 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5591 regs_user->regs = NULL;
4018994f
JO
5592 }
5593}
5594
60e2364e
SE
5595static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5596 struct pt_regs *regs)
5597{
5598 regs_intr->regs = regs;
5599 regs_intr->abi = perf_reg_abi(current);
5600}
5601
5602
c5ebcedb
JO
5603/*
5604 * Get remaining task size from user stack pointer.
5605 *
5606 * It'd be better to take stack vma map and limit this more
5607 * precisly, but there's no way to get it safely under interrupt,
5608 * so using TASK_SIZE as limit.
5609 */
5610static u64 perf_ustack_task_size(struct pt_regs *regs)
5611{
5612 unsigned long addr = perf_user_stack_pointer(regs);
5613
5614 if (!addr || addr >= TASK_SIZE)
5615 return 0;
5616
5617 return TASK_SIZE - addr;
5618}
5619
5620static u16
5621perf_sample_ustack_size(u16 stack_size, u16 header_size,
5622 struct pt_regs *regs)
5623{
5624 u64 task_size;
5625
5626 /* No regs, no stack pointer, no dump. */
5627 if (!regs)
5628 return 0;
5629
5630 /*
5631 * Check if we fit in with the requested stack size into the:
5632 * - TASK_SIZE
5633 * If we don't, we limit the size to the TASK_SIZE.
5634 *
5635 * - remaining sample size
5636 * If we don't, we customize the stack size to
5637 * fit in to the remaining sample size.
5638 */
5639
5640 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5641 stack_size = min(stack_size, (u16) task_size);
5642
5643 /* Current header size plus static size and dynamic size. */
5644 header_size += 2 * sizeof(u64);
5645
5646 /* Do we fit in with the current stack dump size? */
5647 if ((u16) (header_size + stack_size) < header_size) {
5648 /*
5649 * If we overflow the maximum size for the sample,
5650 * we customize the stack dump size to fit in.
5651 */
5652 stack_size = USHRT_MAX - header_size - sizeof(u64);
5653 stack_size = round_up(stack_size, sizeof(u64));
5654 }
5655
5656 return stack_size;
5657}
5658
5659static void
5660perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5661 struct pt_regs *regs)
5662{
5663 /* Case of a kernel thread, nothing to dump */
5664 if (!regs) {
5665 u64 size = 0;
5666 perf_output_put(handle, size);
5667 } else {
5668 unsigned long sp;
5669 unsigned int rem;
5670 u64 dyn_size;
5671
5672 /*
5673 * We dump:
5674 * static size
5675 * - the size requested by user or the best one we can fit
5676 * in to the sample max size
5677 * data
5678 * - user stack dump data
5679 * dynamic size
5680 * - the actual dumped size
5681 */
5682
5683 /* Static size. */
5684 perf_output_put(handle, dump_size);
5685
5686 /* Data. */
5687 sp = perf_user_stack_pointer(regs);
5688 rem = __output_copy_user(handle, (void *) sp, dump_size);
5689 dyn_size = dump_size - rem;
5690
5691 perf_output_skip(handle, rem);
5692
5693 /* Dynamic size. */
5694 perf_output_put(handle, dyn_size);
5695 }
5696}
5697
c980d109
ACM
5698static void __perf_event_header__init_id(struct perf_event_header *header,
5699 struct perf_sample_data *data,
5700 struct perf_event *event)
6844c09d
ACM
5701{
5702 u64 sample_type = event->attr.sample_type;
5703
5704 data->type = sample_type;
5705 header->size += event->id_header_size;
5706
5707 if (sample_type & PERF_SAMPLE_TID) {
5708 /* namespace issues */
5709 data->tid_entry.pid = perf_event_pid(event, current);
5710 data->tid_entry.tid = perf_event_tid(event, current);
5711 }
5712
5713 if (sample_type & PERF_SAMPLE_TIME)
34f43927 5714 data->time = perf_event_clock(event);
6844c09d 5715
ff3d527c 5716 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6844c09d
ACM
5717 data->id = primary_event_id(event);
5718
5719 if (sample_type & PERF_SAMPLE_STREAM_ID)
5720 data->stream_id = event->id;
5721
5722 if (sample_type & PERF_SAMPLE_CPU) {
5723 data->cpu_entry.cpu = raw_smp_processor_id();
5724 data->cpu_entry.reserved = 0;
5725 }
5726}
5727
76369139
FW
5728void perf_event_header__init_id(struct perf_event_header *header,
5729 struct perf_sample_data *data,
5730 struct perf_event *event)
c980d109
ACM
5731{
5732 if (event->attr.sample_id_all)
5733 __perf_event_header__init_id(header, data, event);
5734}
5735
5736static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5737 struct perf_sample_data *data)
5738{
5739 u64 sample_type = data->type;
5740
5741 if (sample_type & PERF_SAMPLE_TID)
5742 perf_output_put(handle, data->tid_entry);
5743
5744 if (sample_type & PERF_SAMPLE_TIME)
5745 perf_output_put(handle, data->time);
5746
5747 if (sample_type & PERF_SAMPLE_ID)
5748 perf_output_put(handle, data->id);
5749
5750 if (sample_type & PERF_SAMPLE_STREAM_ID)
5751 perf_output_put(handle, data->stream_id);
5752
5753 if (sample_type & PERF_SAMPLE_CPU)
5754 perf_output_put(handle, data->cpu_entry);
ff3d527c
AH
5755
5756 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5757 perf_output_put(handle, data->id);
c980d109
ACM
5758}
5759
76369139
FW
5760void perf_event__output_id_sample(struct perf_event *event,
5761 struct perf_output_handle *handle,
5762 struct perf_sample_data *sample)
c980d109
ACM
5763{
5764 if (event->attr.sample_id_all)
5765 __perf_event__output_id_sample(handle, sample);
5766}
5767
3dab77fb 5768static void perf_output_read_one(struct perf_output_handle *handle,
eed01528
SE
5769 struct perf_event *event,
5770 u64 enabled, u64 running)
3dab77fb 5771{
cdd6c482 5772 u64 read_format = event->attr.read_format;
3dab77fb
PZ
5773 u64 values[4];
5774 int n = 0;
5775
b5e58793 5776 values[n++] = perf_event_count(event);
3dab77fb 5777 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
eed01528 5778 values[n++] = enabled +
cdd6c482 5779 atomic64_read(&event->child_total_time_enabled);
3dab77fb
PZ
5780 }
5781 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
eed01528 5782 values[n++] = running +
cdd6c482 5783 atomic64_read(&event->child_total_time_running);
3dab77fb
PZ
5784 }
5785 if (read_format & PERF_FORMAT_ID)
cdd6c482 5786 values[n++] = primary_event_id(event);
3dab77fb 5787
76369139 5788 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
5789}
5790
3dab77fb 5791static void perf_output_read_group(struct perf_output_handle *handle,
eed01528
SE
5792 struct perf_event *event,
5793 u64 enabled, u64 running)
3dab77fb 5794{
cdd6c482
IM
5795 struct perf_event *leader = event->group_leader, *sub;
5796 u64 read_format = event->attr.read_format;
3dab77fb
PZ
5797 u64 values[5];
5798 int n = 0;
5799
5800 values[n++] = 1 + leader->nr_siblings;
5801
5802 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
eed01528 5803 values[n++] = enabled;
3dab77fb
PZ
5804
5805 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
eed01528 5806 values[n++] = running;
3dab77fb 5807
cdd6c482 5808 if (leader != event)
3dab77fb
PZ
5809 leader->pmu->read(leader);
5810
b5e58793 5811 values[n++] = perf_event_count(leader);
3dab77fb 5812 if (read_format & PERF_FORMAT_ID)
cdd6c482 5813 values[n++] = primary_event_id(leader);
3dab77fb 5814
76369139 5815 __output_copy(handle, values, n * sizeof(u64));
3dab77fb 5816
65abc865 5817 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3dab77fb
PZ
5818 n = 0;
5819
6f5ab001
JO
5820 if ((sub != event) &&
5821 (sub->state == PERF_EVENT_STATE_ACTIVE))
3dab77fb
PZ
5822 sub->pmu->read(sub);
5823
b5e58793 5824 values[n++] = perf_event_count(sub);
3dab77fb 5825 if (read_format & PERF_FORMAT_ID)
cdd6c482 5826 values[n++] = primary_event_id(sub);
3dab77fb 5827
76369139 5828 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
5829 }
5830}
5831
eed01528
SE
5832#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5833 PERF_FORMAT_TOTAL_TIME_RUNNING)
5834
ba5213ae
PZ
5835/*
5836 * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
5837 *
5838 * The problem is that its both hard and excessively expensive to iterate the
5839 * child list, not to mention that its impossible to IPI the children running
5840 * on another CPU, from interrupt/NMI context.
5841 */
3dab77fb 5842static void perf_output_read(struct perf_output_handle *handle,
cdd6c482 5843 struct perf_event *event)
3dab77fb 5844{
e3f3541c 5845 u64 enabled = 0, running = 0, now;
eed01528
SE
5846 u64 read_format = event->attr.read_format;
5847
5848 /*
5849 * compute total_time_enabled, total_time_running
5850 * based on snapshot values taken when the event
5851 * was last scheduled in.
5852 *
5853 * we cannot simply called update_context_time()
5854 * because of locking issue as we are called in
5855 * NMI context
5856 */
c4794295 5857 if (read_format & PERF_FORMAT_TOTAL_TIMES)
e3f3541c 5858 calc_timer_values(event, &now, &enabled, &running);
eed01528 5859
cdd6c482 5860 if (event->attr.read_format & PERF_FORMAT_GROUP)
eed01528 5861 perf_output_read_group(handle, event, enabled, running);
3dab77fb 5862 else
eed01528 5863 perf_output_read_one(handle, event, enabled, running);
3dab77fb
PZ
5864}
5865
5622f295
MM
5866void perf_output_sample(struct perf_output_handle *handle,
5867 struct perf_event_header *header,
5868 struct perf_sample_data *data,
cdd6c482 5869 struct perf_event *event)
5622f295
MM
5870{
5871 u64 sample_type = data->type;
5872
5873 perf_output_put(handle, *header);
5874
ff3d527c
AH
5875 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5876 perf_output_put(handle, data->id);
5877
5622f295
MM
5878 if (sample_type & PERF_SAMPLE_IP)
5879 perf_output_put(handle, data->ip);
5880
5881 if (sample_type & PERF_SAMPLE_TID)
5882 perf_output_put(handle, data->tid_entry);
5883
5884 if (sample_type & PERF_SAMPLE_TIME)
5885 perf_output_put(handle, data->time);
5886
5887 if (sample_type & PERF_SAMPLE_ADDR)
5888 perf_output_put(handle, data->addr);
5889
5890 if (sample_type & PERF_SAMPLE_ID)
5891 perf_output_put(handle, data->id);
5892
5893 if (sample_type & PERF_SAMPLE_STREAM_ID)
5894 perf_output_put(handle, data->stream_id);
5895
5896 if (sample_type & PERF_SAMPLE_CPU)
5897 perf_output_put(handle, data->cpu_entry);
5898
5899 if (sample_type & PERF_SAMPLE_PERIOD)
5900 perf_output_put(handle, data->period);
5901
5902 if (sample_type & PERF_SAMPLE_READ)
cdd6c482 5903 perf_output_read(handle, event);
5622f295
MM
5904
5905 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5906 if (data->callchain) {
5907 int size = 1;
5908
5909 if (data->callchain)
5910 size += data->callchain->nr;
5911
5912 size *= sizeof(u64);
5913
76369139 5914 __output_copy(handle, data->callchain, size);
5622f295
MM
5915 } else {
5916 u64 nr = 0;
5917 perf_output_put(handle, nr);
5918 }
5919 }
5920
5921 if (sample_type & PERF_SAMPLE_RAW) {
7e3f977e
DB
5922 struct perf_raw_record *raw = data->raw;
5923
5924 if (raw) {
5925 struct perf_raw_frag *frag = &raw->frag;
5926
5927 perf_output_put(handle, raw->size);
5928 do {
5929 if (frag->copy) {
5930 __output_custom(handle, frag->copy,
5931 frag->data, frag->size);
5932 } else {
5933 __output_copy(handle, frag->data,
5934 frag->size);
5935 }
5936 if (perf_raw_frag_last(frag))
5937 break;
5938 frag = frag->next;
5939 } while (1);
5940 if (frag->pad)
5941 __output_skip(handle, NULL, frag->pad);
5622f295
MM
5942 } else {
5943 struct {
5944 u32 size;
5945 u32 data;
5946 } raw = {
5947 .size = sizeof(u32),
5948 .data = 0,
5949 };
5950 perf_output_put(handle, raw);
5951 }
5952 }
a7ac67ea 5953
bce38cd5
SE
5954 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5955 if (data->br_stack) {
5956 size_t size;
5957
5958 size = data->br_stack->nr
5959 * sizeof(struct perf_branch_entry);
5960
5961 perf_output_put(handle, data->br_stack->nr);
5962 perf_output_copy(handle, data->br_stack->entries, size);
5963 } else {
5964 /*
5965 * we always store at least the value of nr
5966 */
5967 u64 nr = 0;
5968 perf_output_put(handle, nr);
5969 }
5970 }
4018994f
JO
5971
5972 if (sample_type & PERF_SAMPLE_REGS_USER) {
5973 u64 abi = data->regs_user.abi;
5974
5975 /*
5976 * If there are no regs to dump, notice it through
5977 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5978 */
5979 perf_output_put(handle, abi);
5980
5981 if (abi) {
5982 u64 mask = event->attr.sample_regs_user;
5983 perf_output_sample_regs(handle,
5984 data->regs_user.regs,
5985 mask);
5986 }
5987 }
c5ebcedb 5988
a5cdd40c 5989 if (sample_type & PERF_SAMPLE_STACK_USER) {
c5ebcedb
JO
5990 perf_output_sample_ustack(handle,
5991 data->stack_user_size,
5992 data->regs_user.regs);
a5cdd40c 5993 }
c3feedf2
AK
5994
5995 if (sample_type & PERF_SAMPLE_WEIGHT)
5996 perf_output_put(handle, data->weight);
d6be9ad6
SE
5997
5998 if (sample_type & PERF_SAMPLE_DATA_SRC)
5999 perf_output_put(handle, data->data_src.val);
a5cdd40c 6000
fdfbbd07
AK
6001 if (sample_type & PERF_SAMPLE_TRANSACTION)
6002 perf_output_put(handle, data->txn);
6003
60e2364e
SE
6004 if (sample_type & PERF_SAMPLE_REGS_INTR) {
6005 u64 abi = data->regs_intr.abi;
6006 /*
6007 * If there are no regs to dump, notice it through
6008 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6009 */
6010 perf_output_put(handle, abi);
6011
6012 if (abi) {
6013 u64 mask = event->attr.sample_regs_intr;
6014
6015 perf_output_sample_regs(handle,
6016 data->regs_intr.regs,
6017 mask);
6018 }
6019 }
6020
fc7ce9c7
KL
6021 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6022 perf_output_put(handle, data->phys_addr);
6023
a5cdd40c
PZ
6024 if (!event->attr.watermark) {
6025 int wakeup_events = event->attr.wakeup_events;
6026
6027 if (wakeup_events) {
6028 struct ring_buffer *rb = handle->rb;
6029 int events = local_inc_return(&rb->events);
6030
6031 if (events >= wakeup_events) {
6032 local_sub(wakeup_events, &rb->events);
6033 local_inc(&rb->wakeup);
6034 }
6035 }
6036 }
5622f295
MM
6037}
6038
fc7ce9c7
KL
6039static u64 perf_virt_to_phys(u64 virt)
6040{
6041 u64 phys_addr = 0;
6042 struct page *p = NULL;
6043
6044 if (!virt)
6045 return 0;
6046
6047 if (virt >= TASK_SIZE) {
6048 /* If it's vmalloc()d memory, leave phys_addr as 0 */
6049 if (virt_addr_valid((void *)(uintptr_t)virt) &&
6050 !(virt >= VMALLOC_START && virt < VMALLOC_END))
6051 phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
6052 } else {
6053 /*
6054 * Walking the pages tables for user address.
6055 * Interrupts are disabled, so it prevents any tear down
6056 * of the page tables.
6057 * Try IRQ-safe __get_user_pages_fast first.
6058 * If failed, leave phys_addr as 0.
6059 */
6060 if ((current->mm != NULL) &&
6061 (__get_user_pages_fast(virt, 1, 0, &p) == 1))
6062 phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
6063
6064 if (p)
6065 put_page(p);
6066 }
6067
6068 return phys_addr;
6069}
6070
5622f295
MM
6071void perf_prepare_sample(struct perf_event_header *header,
6072 struct perf_sample_data *data,
cdd6c482 6073 struct perf_event *event,
5622f295 6074 struct pt_regs *regs)
7b732a75 6075{
cdd6c482 6076 u64 sample_type = event->attr.sample_type;
7b732a75 6077
cdd6c482 6078 header->type = PERF_RECORD_SAMPLE;
c320c7b7 6079 header->size = sizeof(*header) + event->header_size;
5622f295
MM
6080
6081 header->misc = 0;
6082 header->misc |= perf_misc_flags(regs);
6fab0192 6083
c980d109 6084 __perf_event_header__init_id(header, data, event);
6844c09d 6085
c320c7b7 6086 if (sample_type & PERF_SAMPLE_IP)
5622f295
MM
6087 data->ip = perf_instruction_pointer(regs);
6088
b23f3325 6089 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5622f295 6090 int size = 1;
394ee076 6091
e6dab5ff 6092 data->callchain = perf_callchain(event, regs);
5622f295
MM
6093
6094 if (data->callchain)
6095 size += data->callchain->nr;
6096
6097 header->size += size * sizeof(u64);
394ee076
PZ
6098 }
6099
3a43ce68 6100 if (sample_type & PERF_SAMPLE_RAW) {
7e3f977e
DB
6101 struct perf_raw_record *raw = data->raw;
6102 int size;
6103
6104 if (raw) {
6105 struct perf_raw_frag *frag = &raw->frag;
6106 u32 sum = 0;
6107
6108 do {
6109 sum += frag->size;
6110 if (perf_raw_frag_last(frag))
6111 break;
6112 frag = frag->next;
6113 } while (1);
6114
6115 size = round_up(sum + sizeof(u32), sizeof(u64));
6116 raw->size = size - sizeof(u32);
6117 frag->pad = raw->size - sum;
6118 } else {
6119 size = sizeof(u64);
6120 }
a044560c 6121
7e3f977e 6122 header->size += size;
7f453c24 6123 }
bce38cd5
SE
6124
6125 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6126 int size = sizeof(u64); /* nr */
6127 if (data->br_stack) {
6128 size += data->br_stack->nr
6129 * sizeof(struct perf_branch_entry);
6130 }
6131 header->size += size;
6132 }
4018994f 6133
2565711f 6134 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
88a7c26a
AL
6135 perf_sample_regs_user(&data->regs_user, regs,
6136 &data->regs_user_copy);
2565711f 6137
4018994f
JO
6138 if (sample_type & PERF_SAMPLE_REGS_USER) {
6139 /* regs dump ABI info */
6140 int size = sizeof(u64);
6141
4018994f
JO
6142 if (data->regs_user.regs) {
6143 u64 mask = event->attr.sample_regs_user;
6144 size += hweight64(mask) * sizeof(u64);
6145 }
6146
6147 header->size += size;
6148 }
c5ebcedb
JO
6149
6150 if (sample_type & PERF_SAMPLE_STACK_USER) {
6151 /*
6152 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
6153 * processed as the last one or have additional check added
6154 * in case new sample type is added, because we could eat
6155 * up the rest of the sample size.
6156 */
c5ebcedb
JO
6157 u16 stack_size = event->attr.sample_stack_user;
6158 u16 size = sizeof(u64);
6159
c5ebcedb 6160 stack_size = perf_sample_ustack_size(stack_size, header->size,
2565711f 6161 data->regs_user.regs);
c5ebcedb
JO
6162
6163 /*
6164 * If there is something to dump, add space for the dump
6165 * itself and for the field that tells the dynamic size,
6166 * which is how many have been actually dumped.
6167 */
6168 if (stack_size)
6169 size += sizeof(u64) + stack_size;
6170
6171 data->stack_user_size = stack_size;
6172 header->size += size;
6173 }
60e2364e
SE
6174
6175 if (sample_type & PERF_SAMPLE_REGS_INTR) {
6176 /* regs dump ABI info */
6177 int size = sizeof(u64);
6178
6179 perf_sample_regs_intr(&data->regs_intr, regs);
6180
6181 if (data->regs_intr.regs) {
6182 u64 mask = event->attr.sample_regs_intr;
6183
6184 size += hweight64(mask) * sizeof(u64);
6185 }
6186
6187 header->size += size;
6188 }
fc7ce9c7
KL
6189
6190 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6191 data->phys_addr = perf_virt_to_phys(data->addr);
5622f295 6192}
7f453c24 6193
9ecda41a
WN
6194static void __always_inline
6195__perf_event_output(struct perf_event *event,
6196 struct perf_sample_data *data,
6197 struct pt_regs *regs,
6198 int (*output_begin)(struct perf_output_handle *,
6199 struct perf_event *,
6200 unsigned int))
5622f295
MM
6201{
6202 struct perf_output_handle handle;
6203 struct perf_event_header header;
689802b2 6204
927c7a9e
FW
6205 /* protect the callchain buffers */
6206 rcu_read_lock();
6207
cdd6c482 6208 perf_prepare_sample(&header, data, event, regs);
5c148194 6209
9ecda41a 6210 if (output_begin(&handle, event, header.size))
927c7a9e 6211 goto exit;
0322cd6e 6212
cdd6c482 6213 perf_output_sample(&handle, &header, data, event);
f413cdb8 6214
8a057d84 6215 perf_output_end(&handle);
927c7a9e
FW
6216
6217exit:
6218 rcu_read_unlock();
0322cd6e
PZ
6219}
6220
9ecda41a
WN
6221void
6222perf_event_output_forward(struct perf_event *event,
6223 struct perf_sample_data *data,
6224 struct pt_regs *regs)
6225{
6226 __perf_event_output(event, data, regs, perf_output_begin_forward);
6227}
6228
6229void
6230perf_event_output_backward(struct perf_event *event,
6231 struct perf_sample_data *data,
6232 struct pt_regs *regs)
6233{
6234 __perf_event_output(event, data, regs, perf_output_begin_backward);
6235}
6236
6237void
6238perf_event_output(struct perf_event *event,
6239 struct perf_sample_data *data,
6240 struct pt_regs *regs)
6241{
6242 __perf_event_output(event, data, regs, perf_output_begin);
6243}
6244
38b200d6 6245/*
cdd6c482 6246 * read event_id
38b200d6
PZ
6247 */
6248
6249struct perf_read_event {
6250 struct perf_event_header header;
6251
6252 u32 pid;
6253 u32 tid;
38b200d6
PZ
6254};
6255
6256static void
cdd6c482 6257perf_event_read_event(struct perf_event *event,
38b200d6
PZ
6258 struct task_struct *task)
6259{
6260 struct perf_output_handle handle;
c980d109 6261 struct perf_sample_data sample;
dfc65094 6262 struct perf_read_event read_event = {
38b200d6 6263 .header = {
cdd6c482 6264 .type = PERF_RECORD_READ,
38b200d6 6265 .misc = 0,
c320c7b7 6266 .size = sizeof(read_event) + event->read_size,
38b200d6 6267 },
cdd6c482
IM
6268 .pid = perf_event_pid(event, task),
6269 .tid = perf_event_tid(event, task),
38b200d6 6270 };
3dab77fb 6271 int ret;
38b200d6 6272
c980d109 6273 perf_event_header__init_id(&read_event.header, &sample, event);
a7ac67ea 6274 ret = perf_output_begin(&handle, event, read_event.header.size);
38b200d6
PZ
6275 if (ret)
6276 return;
6277
dfc65094 6278 perf_output_put(&handle, read_event);
cdd6c482 6279 perf_output_read(&handle, event);
c980d109 6280 perf_event__output_id_sample(event, &handle, &sample);
3dab77fb 6281
38b200d6
PZ
6282 perf_output_end(&handle);
6283}
6284
aab5b71e 6285typedef void (perf_iterate_f)(struct perf_event *event, void *data);
52d857a8
JO
6286
6287static void
aab5b71e
PZ
6288perf_iterate_ctx(struct perf_event_context *ctx,
6289 perf_iterate_f output,
b73e4fef 6290 void *data, bool all)
52d857a8
JO
6291{
6292 struct perf_event *event;
6293
6294 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
b73e4fef
AS
6295 if (!all) {
6296 if (event->state < PERF_EVENT_STATE_INACTIVE)
6297 continue;
6298 if (!event_filter_match(event))
6299 continue;
6300 }
6301
67516844 6302 output(event, data);
52d857a8
JO
6303 }
6304}
6305
aab5b71e 6306static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
f2fb6bef
KL
6307{
6308 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
6309 struct perf_event *event;
6310
6311 list_for_each_entry_rcu(event, &pel->list, sb_list) {
0b8f1e2e
PZ
6312 /*
6313 * Skip events that are not fully formed yet; ensure that
6314 * if we observe event->ctx, both event and ctx will be
6315 * complete enough. See perf_install_in_context().
6316 */
6317 if (!smp_load_acquire(&event->ctx))
6318 continue;
6319
f2fb6bef
KL
6320 if (event->state < PERF_EVENT_STATE_INACTIVE)
6321 continue;
6322 if (!event_filter_match(event))
6323 continue;
6324 output(event, data);
6325 }
6326}
6327
aab5b71e
PZ
6328/*
6329 * Iterate all events that need to receive side-band events.
6330 *
6331 * For new callers; ensure that account_pmu_sb_event() includes
6332 * your event, otherwise it might not get delivered.
6333 */
52d857a8 6334static void
aab5b71e 6335perf_iterate_sb(perf_iterate_f output, void *data,
52d857a8
JO
6336 struct perf_event_context *task_ctx)
6337{
52d857a8 6338 struct perf_event_context *ctx;
52d857a8
JO
6339 int ctxn;
6340
aab5b71e
PZ
6341 rcu_read_lock();
6342 preempt_disable();
6343
4e93ad60 6344 /*
aab5b71e
PZ
6345 * If we have task_ctx != NULL we only notify the task context itself.
6346 * The task_ctx is set only for EXIT events before releasing task
4e93ad60
JO
6347 * context.
6348 */
6349 if (task_ctx) {
aab5b71e
PZ
6350 perf_iterate_ctx(task_ctx, output, data, false);
6351 goto done;
4e93ad60
JO
6352 }
6353
aab5b71e 6354 perf_iterate_sb_cpu(output, data);
f2fb6bef
KL
6355
6356 for_each_task_context_nr(ctxn) {
52d857a8
JO
6357 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6358 if (ctx)
aab5b71e 6359 perf_iterate_ctx(ctx, output, data, false);
52d857a8 6360 }
aab5b71e 6361done:
f2fb6bef 6362 preempt_enable();
52d857a8 6363 rcu_read_unlock();
95ff4ca2
AS
6364}
6365
375637bc
AS
6366/*
6367 * Clear all file-based filters at exec, they'll have to be
6368 * re-instated when/if these objects are mmapped again.
6369 */
6370static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
6371{
6372 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6373 struct perf_addr_filter *filter;
6374 unsigned int restart = 0, count = 0;
6375 unsigned long flags;
6376
6377 if (!has_addr_filter(event))
6378 return;
6379
6380 raw_spin_lock_irqsave(&ifh->lock, flags);
6381 list_for_each_entry(filter, &ifh->list, entry) {
6382 if (filter->inode) {
6383 event->addr_filters_offs[count] = 0;
6384 restart++;
6385 }
6386
6387 count++;
6388 }
6389
6390 if (restart)
6391 event->addr_filters_gen++;
6392 raw_spin_unlock_irqrestore(&ifh->lock, flags);
6393
6394 if (restart)
767ae086 6395 perf_event_stop(event, 1);
375637bc
AS
6396}
6397
6398void perf_event_exec(void)
6399{
6400 struct perf_event_context *ctx;
6401 int ctxn;
6402
6403 rcu_read_lock();
6404 for_each_task_context_nr(ctxn) {
6405 ctx = current->perf_event_ctxp[ctxn];
6406 if (!ctx)
6407 continue;
6408
6409 perf_event_enable_on_exec(ctxn);
6410
aab5b71e 6411 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
375637bc
AS
6412 true);
6413 }
6414 rcu_read_unlock();
6415}
6416
95ff4ca2
AS
6417struct remote_output {
6418 struct ring_buffer *rb;
6419 int err;
6420};
6421
6422static void __perf_event_output_stop(struct perf_event *event, void *data)
6423{
6424 struct perf_event *parent = event->parent;
6425 struct remote_output *ro = data;
6426 struct ring_buffer *rb = ro->rb;
375637bc
AS
6427 struct stop_event_data sd = {
6428 .event = event,
6429 };
95ff4ca2
AS
6430
6431 if (!has_aux(event))
6432 return;
6433
6434 if (!parent)
6435 parent = event;
6436
6437 /*
6438 * In case of inheritance, it will be the parent that links to the
767ae086
AS
6439 * ring-buffer, but it will be the child that's actually using it.
6440 *
6441 * We are using event::rb to determine if the event should be stopped,
6442 * however this may race with ring_buffer_attach() (through set_output),
6443 * which will make us skip the event that actually needs to be stopped.
6444 * So ring_buffer_attach() has to stop an aux event before re-assigning
6445 * its rb pointer.
95ff4ca2
AS
6446 */
6447 if (rcu_dereference(parent->rb) == rb)
375637bc 6448 ro->err = __perf_event_stop(&sd);
95ff4ca2
AS
6449}
6450
6451static int __perf_pmu_output_stop(void *info)
6452{
6453 struct perf_event *event = info;
6454 struct pmu *pmu = event->pmu;
8b6a3fe8 6455 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
95ff4ca2
AS
6456 struct remote_output ro = {
6457 .rb = event->rb,
6458 };
6459
6460 rcu_read_lock();
aab5b71e 6461 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
95ff4ca2 6462 if (cpuctx->task_ctx)
aab5b71e 6463 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
b73e4fef 6464 &ro, false);
95ff4ca2
AS
6465 rcu_read_unlock();
6466
6467 return ro.err;
6468}
6469
6470static void perf_pmu_output_stop(struct perf_event *event)
6471{
6472 struct perf_event *iter;
6473 int err, cpu;
6474
6475restart:
6476 rcu_read_lock();
6477 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6478 /*
6479 * For per-CPU events, we need to make sure that neither they
6480 * nor their children are running; for cpu==-1 events it's
6481 * sufficient to stop the event itself if it's active, since
6482 * it can't have children.
6483 */
6484 cpu = iter->cpu;
6485 if (cpu == -1)
6486 cpu = READ_ONCE(iter->oncpu);
6487
6488 if (cpu == -1)
6489 continue;
6490
6491 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6492 if (err == -EAGAIN) {
6493 rcu_read_unlock();
6494 goto restart;
6495 }
6496 }
6497 rcu_read_unlock();
52d857a8
JO
6498}
6499
60313ebe 6500/*
9f498cc5
PZ
6501 * task tracking -- fork/exit
6502 *
13d7a241 6503 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
60313ebe
PZ
6504 */
6505
9f498cc5 6506struct perf_task_event {
3a80b4a3 6507 struct task_struct *task;
cdd6c482 6508 struct perf_event_context *task_ctx;
60313ebe
PZ
6509
6510 struct {
6511 struct perf_event_header header;
6512
6513 u32 pid;
6514 u32 ppid;
9f498cc5
PZ
6515 u32 tid;
6516 u32 ptid;
393b2ad8 6517 u64 time;
cdd6c482 6518 } event_id;
60313ebe
PZ
6519};
6520
67516844
JO
6521static int perf_event_task_match(struct perf_event *event)
6522{
13d7a241
SE
6523 return event->attr.comm || event->attr.mmap ||
6524 event->attr.mmap2 || event->attr.mmap_data ||
6525 event->attr.task;
67516844
JO
6526}
6527
cdd6c482 6528static void perf_event_task_output(struct perf_event *event,
52d857a8 6529 void *data)
60313ebe 6530{
52d857a8 6531 struct perf_task_event *task_event = data;
60313ebe 6532 struct perf_output_handle handle;
c980d109 6533 struct perf_sample_data sample;
9f498cc5 6534 struct task_struct *task = task_event->task;
c980d109 6535 int ret, size = task_event->event_id.header.size;
8bb39f9a 6536
67516844
JO
6537 if (!perf_event_task_match(event))
6538 return;
6539
c980d109 6540 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
60313ebe 6541
c980d109 6542 ret = perf_output_begin(&handle, event,
a7ac67ea 6543 task_event->event_id.header.size);
ef60777c 6544 if (ret)
c980d109 6545 goto out;
60313ebe 6546
cdd6c482
IM
6547 task_event->event_id.pid = perf_event_pid(event, task);
6548 task_event->event_id.ppid = perf_event_pid(event, current);
60313ebe 6549
cdd6c482
IM
6550 task_event->event_id.tid = perf_event_tid(event, task);
6551 task_event->event_id.ptid = perf_event_tid(event, current);
9f498cc5 6552
34f43927
PZ
6553 task_event->event_id.time = perf_event_clock(event);
6554
cdd6c482 6555 perf_output_put(&handle, task_event->event_id);
393b2ad8 6556
c980d109
ACM
6557 perf_event__output_id_sample(event, &handle, &sample);
6558
60313ebe 6559 perf_output_end(&handle);
c980d109
ACM
6560out:
6561 task_event->event_id.header.size = size;
60313ebe
PZ
6562}
6563
cdd6c482
IM
6564static void perf_event_task(struct task_struct *task,
6565 struct perf_event_context *task_ctx,
3a80b4a3 6566 int new)
60313ebe 6567{
9f498cc5 6568 struct perf_task_event task_event;
60313ebe 6569
cdd6c482
IM
6570 if (!atomic_read(&nr_comm_events) &&
6571 !atomic_read(&nr_mmap_events) &&
6572 !atomic_read(&nr_task_events))
60313ebe
PZ
6573 return;
6574
9f498cc5 6575 task_event = (struct perf_task_event){
3a80b4a3
PZ
6576 .task = task,
6577 .task_ctx = task_ctx,
cdd6c482 6578 .event_id = {
60313ebe 6579 .header = {
cdd6c482 6580 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
573402db 6581 .misc = 0,
cdd6c482 6582 .size = sizeof(task_event.event_id),
60313ebe 6583 },
573402db
PZ
6584 /* .pid */
6585 /* .ppid */
9f498cc5
PZ
6586 /* .tid */
6587 /* .ptid */
34f43927 6588 /* .time */
60313ebe
PZ
6589 },
6590 };
6591
aab5b71e 6592 perf_iterate_sb(perf_event_task_output,
52d857a8
JO
6593 &task_event,
6594 task_ctx);
9f498cc5
PZ
6595}
6596
cdd6c482 6597void perf_event_fork(struct task_struct *task)
9f498cc5 6598{
cdd6c482 6599 perf_event_task(task, NULL, 1);
e4222673 6600 perf_event_namespaces(task);
60313ebe
PZ
6601}
6602
8d1b2d93
PZ
6603/*
6604 * comm tracking
6605 */
6606
6607struct perf_comm_event {
22a4f650
IM
6608 struct task_struct *task;
6609 char *comm;
8d1b2d93
PZ
6610 int comm_size;
6611
6612 struct {
6613 struct perf_event_header header;
6614
6615 u32 pid;
6616 u32 tid;
cdd6c482 6617 } event_id;
8d1b2d93
PZ
6618};
6619
67516844
JO
6620static int perf_event_comm_match(struct perf_event *event)
6621{
6622 return event->attr.comm;
6623}
6624
cdd6c482 6625static void perf_event_comm_output(struct perf_event *event,
52d857a8 6626 void *data)
8d1b2d93 6627{
52d857a8 6628 struct perf_comm_event *comm_event = data;
8d1b2d93 6629 struct perf_output_handle handle;
c980d109 6630 struct perf_sample_data sample;
cdd6c482 6631 int size = comm_event->event_id.header.size;
c980d109
ACM
6632 int ret;
6633
67516844
JO
6634 if (!perf_event_comm_match(event))
6635 return;
6636
c980d109
ACM
6637 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
6638 ret = perf_output_begin(&handle, event,
a7ac67ea 6639 comm_event->event_id.header.size);
8d1b2d93
PZ
6640
6641 if (ret)
c980d109 6642 goto out;
8d1b2d93 6643
cdd6c482
IM
6644 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
6645 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
709e50cf 6646
cdd6c482 6647 perf_output_put(&handle, comm_event->event_id);
76369139 6648 __output_copy(&handle, comm_event->comm,
8d1b2d93 6649 comm_event->comm_size);
c980d109
ACM
6650
6651 perf_event__output_id_sample(event, &handle, &sample);
6652
8d1b2d93 6653 perf_output_end(&handle);
c980d109
ACM
6654out:
6655 comm_event->event_id.header.size = size;
8d1b2d93
PZ
6656}
6657
cdd6c482 6658static void perf_event_comm_event(struct perf_comm_event *comm_event)
8d1b2d93 6659{
413ee3b4 6660 char comm[TASK_COMM_LEN];
8d1b2d93 6661 unsigned int size;
8d1b2d93 6662
413ee3b4 6663 memset(comm, 0, sizeof(comm));
96b02d78 6664 strlcpy(comm, comm_event->task->comm, sizeof(comm));
888fcee0 6665 size = ALIGN(strlen(comm)+1, sizeof(u64));
8d1b2d93
PZ
6666
6667 comm_event->comm = comm;
6668 comm_event->comm_size = size;
6669
cdd6c482 6670 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
8dc85d54 6671
aab5b71e 6672 perf_iterate_sb(perf_event_comm_output,
52d857a8
JO
6673 comm_event,
6674 NULL);
8d1b2d93
PZ
6675}
6676
82b89778 6677void perf_event_comm(struct task_struct *task, bool exec)
8d1b2d93 6678{
9ee318a7
PZ
6679 struct perf_comm_event comm_event;
6680
cdd6c482 6681 if (!atomic_read(&nr_comm_events))
9ee318a7 6682 return;
a63eaf34 6683
9ee318a7 6684 comm_event = (struct perf_comm_event){
8d1b2d93 6685 .task = task,
573402db
PZ
6686 /* .comm */
6687 /* .comm_size */
cdd6c482 6688 .event_id = {
573402db 6689 .header = {
cdd6c482 6690 .type = PERF_RECORD_COMM,
82b89778 6691 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
573402db
PZ
6692 /* .size */
6693 },
6694 /* .pid */
6695 /* .tid */
8d1b2d93
PZ
6696 },
6697 };
6698
cdd6c482 6699 perf_event_comm_event(&comm_event);
8d1b2d93
PZ
6700}
6701
e4222673
HB
6702/*
6703 * namespaces tracking
6704 */
6705
6706struct perf_namespaces_event {
6707 struct task_struct *task;
6708
6709 struct {
6710 struct perf_event_header header;
6711
6712 u32 pid;
6713 u32 tid;
6714 u64 nr_namespaces;
6715 struct perf_ns_link_info link_info[NR_NAMESPACES];
6716 } event_id;
6717};
6718
6719static int perf_event_namespaces_match(struct perf_event *event)
6720{
6721 return event->attr.namespaces;
6722}
6723
6724static void perf_event_namespaces_output(struct perf_event *event,
6725 void *data)
6726{
6727 struct perf_namespaces_event *namespaces_event = data;
6728 struct perf_output_handle handle;
6729 struct perf_sample_data sample;
6730 int ret;
6731
6732 if (!perf_event_namespaces_match(event))
6733 return;
6734
6735 perf_event_header__init_id(&namespaces_event->event_id.header,
6736 &sample, event);
6737 ret = perf_output_begin(&handle, event,
6738 namespaces_event->event_id.header.size);
6739 if (ret)
6740 return;
6741
6742 namespaces_event->event_id.pid = perf_event_pid(event,
6743 namespaces_event->task);
6744 namespaces_event->event_id.tid = perf_event_tid(event,
6745 namespaces_event->task);
6746
6747 perf_output_put(&handle, namespaces_event->event_id);
6748
6749 perf_event__output_id_sample(event, &handle, &sample);
6750
6751 perf_output_end(&handle);
6752}
6753
6754static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
6755 struct task_struct *task,
6756 const struct proc_ns_operations *ns_ops)
6757{
6758 struct path ns_path;
6759 struct inode *ns_inode;
6760 void *error;
6761
6762 error = ns_get_path(&ns_path, task, ns_ops);
6763 if (!error) {
6764 ns_inode = ns_path.dentry->d_inode;
6765 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
6766 ns_link_info->ino = ns_inode->i_ino;
6767 }
6768}
6769
6770void perf_event_namespaces(struct task_struct *task)
6771{
6772 struct perf_namespaces_event namespaces_event;
6773 struct perf_ns_link_info *ns_link_info;
6774
6775 if (!atomic_read(&nr_namespaces_events))
6776 return;
6777
6778 namespaces_event = (struct perf_namespaces_event){
6779 .task = task,
6780 .event_id = {
6781 .header = {
6782 .type = PERF_RECORD_NAMESPACES,
6783 .misc = 0,
6784 .size = sizeof(namespaces_event.event_id),
6785 },
6786 /* .pid */
6787 /* .tid */
6788 .nr_namespaces = NR_NAMESPACES,
6789 /* .link_info[NR_NAMESPACES] */
6790 },
6791 };
6792
6793 ns_link_info = namespaces_event.event_id.link_info;
6794
6795 perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
6796 task, &mntns_operations);
6797
6798#ifdef CONFIG_USER_NS
6799 perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
6800 task, &userns_operations);
6801#endif
6802#ifdef CONFIG_NET_NS
6803 perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
6804 task, &netns_operations);
6805#endif
6806#ifdef CONFIG_UTS_NS
6807 perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
6808 task, &utsns_operations);
6809#endif
6810#ifdef CONFIG_IPC_NS
6811 perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
6812 task, &ipcns_operations);
6813#endif
6814#ifdef CONFIG_PID_NS
6815 perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
6816 task, &pidns_operations);
6817#endif
6818#ifdef CONFIG_CGROUPS
6819 perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
6820 task, &cgroupns_operations);
6821#endif
6822
6823 perf_iterate_sb(perf_event_namespaces_output,
6824 &namespaces_event,
6825 NULL);
6826}
6827
0a4a9391
PZ
6828/*
6829 * mmap tracking
6830 */
6831
6832struct perf_mmap_event {
089dd79d
PZ
6833 struct vm_area_struct *vma;
6834
6835 const char *file_name;
6836 int file_size;
13d7a241
SE
6837 int maj, min;
6838 u64 ino;
6839 u64 ino_generation;
f972eb63 6840 u32 prot, flags;
0a4a9391
PZ
6841
6842 struct {
6843 struct perf_event_header header;
6844
6845 u32 pid;
6846 u32 tid;
6847 u64 start;
6848 u64 len;
6849 u64 pgoff;
cdd6c482 6850 } event_id;
0a4a9391
PZ
6851};
6852
67516844
JO
6853static int perf_event_mmap_match(struct perf_event *event,
6854 void *data)
6855{
6856 struct perf_mmap_event *mmap_event = data;
6857 struct vm_area_struct *vma = mmap_event->vma;
6858 int executable = vma->vm_flags & VM_EXEC;
6859
6860 return (!executable && event->attr.mmap_data) ||
13d7a241 6861 (executable && (event->attr.mmap || event->attr.mmap2));
67516844
JO
6862}
6863
cdd6c482 6864static void perf_event_mmap_output(struct perf_event *event,
52d857a8 6865 void *data)
0a4a9391 6866{
52d857a8 6867 struct perf_mmap_event *mmap_event = data;
0a4a9391 6868 struct perf_output_handle handle;
c980d109 6869 struct perf_sample_data sample;
cdd6c482 6870 int size = mmap_event->event_id.header.size;
c980d109 6871 int ret;
0a4a9391 6872
67516844
JO
6873 if (!perf_event_mmap_match(event, data))
6874 return;
6875
13d7a241
SE
6876 if (event->attr.mmap2) {
6877 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
6878 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
6879 mmap_event->event_id.header.size += sizeof(mmap_event->min);
6880 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
d008d525 6881 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
f972eb63
PZ
6882 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
6883 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
13d7a241
SE
6884 }
6885
c980d109
ACM
6886 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
6887 ret = perf_output_begin(&handle, event,
a7ac67ea 6888 mmap_event->event_id.header.size);
0a4a9391 6889 if (ret)
c980d109 6890 goto out;
0a4a9391 6891
cdd6c482
IM
6892 mmap_event->event_id.pid = perf_event_pid(event, current);
6893 mmap_event->event_id.tid = perf_event_tid(event, current);
709e50cf 6894
cdd6c482 6895 perf_output_put(&handle, mmap_event->event_id);
13d7a241
SE
6896
6897 if (event->attr.mmap2) {
6898 perf_output_put(&handle, mmap_event->maj);
6899 perf_output_put(&handle, mmap_event->min);
6900 perf_output_put(&handle, mmap_event->ino);
6901 perf_output_put(&handle, mmap_event->ino_generation);
f972eb63
PZ
6902 perf_output_put(&handle, mmap_event->prot);
6903 perf_output_put(&handle, mmap_event->flags);
13d7a241
SE
6904 }
6905
76369139 6906 __output_copy(&handle, mmap_event->file_name,
0a4a9391 6907 mmap_event->file_size);
c980d109
ACM
6908
6909 perf_event__output_id_sample(event, &handle, &sample);
6910
78d613eb 6911 perf_output_end(&handle);
c980d109
ACM
6912out:
6913 mmap_event->event_id.header.size = size;
0a4a9391
PZ
6914}
6915
cdd6c482 6916static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
0a4a9391 6917{
089dd79d
PZ
6918 struct vm_area_struct *vma = mmap_event->vma;
6919 struct file *file = vma->vm_file;
13d7a241
SE
6920 int maj = 0, min = 0;
6921 u64 ino = 0, gen = 0;
f972eb63 6922 u32 prot = 0, flags = 0;
0a4a9391
PZ
6923 unsigned int size;
6924 char tmp[16];
6925 char *buf = NULL;
2c42cfbf 6926 char *name;
413ee3b4 6927
0b3589be
PZ
6928 if (vma->vm_flags & VM_READ)
6929 prot |= PROT_READ;
6930 if (vma->vm_flags & VM_WRITE)
6931 prot |= PROT_WRITE;
6932 if (vma->vm_flags & VM_EXEC)
6933 prot |= PROT_EXEC;
6934
6935 if (vma->vm_flags & VM_MAYSHARE)
6936 flags = MAP_SHARED;
6937 else
6938 flags = MAP_PRIVATE;
6939
6940 if (vma->vm_flags & VM_DENYWRITE)
6941 flags |= MAP_DENYWRITE;
6942 if (vma->vm_flags & VM_MAYEXEC)
6943 flags |= MAP_EXECUTABLE;
6944 if (vma->vm_flags & VM_LOCKED)
6945 flags |= MAP_LOCKED;
6946 if (vma->vm_flags & VM_HUGETLB)
6947 flags |= MAP_HUGETLB;
6948
0a4a9391 6949 if (file) {
13d7a241
SE
6950 struct inode *inode;
6951 dev_t dev;
3ea2f2b9 6952
2c42cfbf 6953 buf = kmalloc(PATH_MAX, GFP_KERNEL);
0a4a9391 6954 if (!buf) {
c7e548b4
ON
6955 name = "//enomem";
6956 goto cpy_name;
0a4a9391 6957 }
413ee3b4 6958 /*
3ea2f2b9 6959 * d_path() works from the end of the rb backwards, so we
413ee3b4
AB
6960 * need to add enough zero bytes after the string to handle
6961 * the 64bit alignment we do later.
6962 */
9bf39ab2 6963 name = file_path(file, buf, PATH_MAX - sizeof(u64));
0a4a9391 6964 if (IS_ERR(name)) {
c7e548b4
ON
6965 name = "//toolong";
6966 goto cpy_name;
0a4a9391 6967 }
13d7a241
SE
6968 inode = file_inode(vma->vm_file);
6969 dev = inode->i_sb->s_dev;
6970 ino = inode->i_ino;
6971 gen = inode->i_generation;
6972 maj = MAJOR(dev);
6973 min = MINOR(dev);
f972eb63 6974
c7e548b4 6975 goto got_name;
0a4a9391 6976 } else {
fbe26abe
JO
6977 if (vma->vm_ops && vma->vm_ops->name) {
6978 name = (char *) vma->vm_ops->name(vma);
6979 if (name)
6980 goto cpy_name;
6981 }
6982
2c42cfbf 6983 name = (char *)arch_vma_name(vma);
c7e548b4
ON
6984 if (name)
6985 goto cpy_name;
089dd79d 6986
32c5fb7e 6987 if (vma->vm_start <= vma->vm_mm->start_brk &&
3af9e859 6988 vma->vm_end >= vma->vm_mm->brk) {
c7e548b4
ON
6989 name = "[heap]";
6990 goto cpy_name;
32c5fb7e
ON
6991 }
6992 if (vma->vm_start <= vma->vm_mm->start_stack &&
3af9e859 6993 vma->vm_end >= vma->vm_mm->start_stack) {
c7e548b4
ON
6994 name = "[stack]";
6995 goto cpy_name;
089dd79d
PZ
6996 }
6997
c7e548b4
ON
6998 name = "//anon";
6999 goto cpy_name;
0a4a9391
PZ
7000 }
7001
c7e548b4
ON
7002cpy_name:
7003 strlcpy(tmp, name, sizeof(tmp));
7004 name = tmp;
0a4a9391 7005got_name:
2c42cfbf
PZ
7006 /*
7007 * Since our buffer works in 8 byte units we need to align our string
7008 * size to a multiple of 8. However, we must guarantee the tail end is
7009 * zero'd out to avoid leaking random bits to userspace.
7010 */
7011 size = strlen(name)+1;
7012 while (!IS_ALIGNED(size, sizeof(u64)))
7013 name[size++] = '\0';
0a4a9391
PZ
7014
7015 mmap_event->file_name = name;
7016 mmap_event->file_size = size;
13d7a241
SE
7017 mmap_event->maj = maj;
7018 mmap_event->min = min;
7019 mmap_event->ino = ino;
7020 mmap_event->ino_generation = gen;
f972eb63
PZ
7021 mmap_event->prot = prot;
7022 mmap_event->flags = flags;
0a4a9391 7023
2fe85427
SE
7024 if (!(vma->vm_flags & VM_EXEC))
7025 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
7026
cdd6c482 7027 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
0a4a9391 7028
aab5b71e 7029 perf_iterate_sb(perf_event_mmap_output,
52d857a8
JO
7030 mmap_event,
7031 NULL);
665c2142 7032
0a4a9391
PZ
7033 kfree(buf);
7034}
7035
375637bc
AS
7036/*
7037 * Check whether inode and address range match filter criteria.
7038 */
7039static bool perf_addr_filter_match(struct perf_addr_filter *filter,
7040 struct file *file, unsigned long offset,
7041 unsigned long size)
7042{
45063097 7043 if (filter->inode != file_inode(file))
375637bc
AS
7044 return false;
7045
7046 if (filter->offset > offset + size)
7047 return false;
7048
7049 if (filter->offset + filter->size < offset)
7050 return false;
7051
7052 return true;
7053}
7054
7055static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
7056{
7057 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7058 struct vm_area_struct *vma = data;
7059 unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags;
7060 struct file *file = vma->vm_file;
7061 struct perf_addr_filter *filter;
7062 unsigned int restart = 0, count = 0;
7063
7064 if (!has_addr_filter(event))
7065 return;
7066
7067 if (!file)
7068 return;
7069
7070 raw_spin_lock_irqsave(&ifh->lock, flags);
7071 list_for_each_entry(filter, &ifh->list, entry) {
7072 if (perf_addr_filter_match(filter, file, off,
7073 vma->vm_end - vma->vm_start)) {
7074 event->addr_filters_offs[count] = vma->vm_start;
7075 restart++;
7076 }
7077
7078 count++;
7079 }
7080
7081 if (restart)
7082 event->addr_filters_gen++;
7083 raw_spin_unlock_irqrestore(&ifh->lock, flags);
7084
7085 if (restart)
767ae086 7086 perf_event_stop(event, 1);
375637bc
AS
7087}
7088
7089/*
7090 * Adjust all task's events' filters to the new vma
7091 */
7092static void perf_addr_filters_adjust(struct vm_area_struct *vma)
7093{
7094 struct perf_event_context *ctx;
7095 int ctxn;
7096
12b40a23
MP
7097 /*
7098 * Data tracing isn't supported yet and as such there is no need
7099 * to keep track of anything that isn't related to executable code:
7100 */
7101 if (!(vma->vm_flags & VM_EXEC))
7102 return;
7103
375637bc
AS
7104 rcu_read_lock();
7105 for_each_task_context_nr(ctxn) {
7106 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7107 if (!ctx)
7108 continue;
7109
aab5b71e 7110 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
375637bc
AS
7111 }
7112 rcu_read_unlock();
7113}
7114
3af9e859 7115void perf_event_mmap(struct vm_area_struct *vma)
0a4a9391 7116{
9ee318a7
PZ
7117 struct perf_mmap_event mmap_event;
7118
cdd6c482 7119 if (!atomic_read(&nr_mmap_events))
9ee318a7
PZ
7120 return;
7121
7122 mmap_event = (struct perf_mmap_event){
089dd79d 7123 .vma = vma,
573402db
PZ
7124 /* .file_name */
7125 /* .file_size */
cdd6c482 7126 .event_id = {
573402db 7127 .header = {
cdd6c482 7128 .type = PERF_RECORD_MMAP,
39447b38 7129 .misc = PERF_RECORD_MISC_USER,
573402db
PZ
7130 /* .size */
7131 },
7132 /* .pid */
7133 /* .tid */
089dd79d
PZ
7134 .start = vma->vm_start,
7135 .len = vma->vm_end - vma->vm_start,
3a0304e9 7136 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
0a4a9391 7137 },
13d7a241
SE
7138 /* .maj (attr_mmap2 only) */
7139 /* .min (attr_mmap2 only) */
7140 /* .ino (attr_mmap2 only) */
7141 /* .ino_generation (attr_mmap2 only) */
f972eb63
PZ
7142 /* .prot (attr_mmap2 only) */
7143 /* .flags (attr_mmap2 only) */
0a4a9391
PZ
7144 };
7145
375637bc 7146 perf_addr_filters_adjust(vma);
cdd6c482 7147 perf_event_mmap_event(&mmap_event);
0a4a9391
PZ
7148}
7149
68db7e98
AS
7150void perf_event_aux_event(struct perf_event *event, unsigned long head,
7151 unsigned long size, u64 flags)
7152{
7153 struct perf_output_handle handle;
7154 struct perf_sample_data sample;
7155 struct perf_aux_event {
7156 struct perf_event_header header;
7157 u64 offset;
7158 u64 size;
7159 u64 flags;
7160 } rec = {
7161 .header = {
7162 .type = PERF_RECORD_AUX,
7163 .misc = 0,
7164 .size = sizeof(rec),
7165 },
7166 .offset = head,
7167 .size = size,
7168 .flags = flags,
7169 };
7170 int ret;
7171
7172 perf_event_header__init_id(&rec.header, &sample, event);
7173 ret = perf_output_begin(&handle, event, rec.header.size);
7174
7175 if (ret)
7176 return;
7177
7178 perf_output_put(&handle, rec);
7179 perf_event__output_id_sample(event, &handle, &sample);
7180
7181 perf_output_end(&handle);
7182}
7183
f38b0dbb
KL
7184/*
7185 * Lost/dropped samples logging
7186 */
7187void perf_log_lost_samples(struct perf_event *event, u64 lost)
7188{
7189 struct perf_output_handle handle;
7190 struct perf_sample_data sample;
7191 int ret;
7192
7193 struct {
7194 struct perf_event_header header;
7195 u64 lost;
7196 } lost_samples_event = {
7197 .header = {
7198 .type = PERF_RECORD_LOST_SAMPLES,
7199 .misc = 0,
7200 .size = sizeof(lost_samples_event),
7201 },
7202 .lost = lost,
7203 };
7204
7205 perf_event_header__init_id(&lost_samples_event.header, &sample, event);
7206
7207 ret = perf_output_begin(&handle, event,
7208 lost_samples_event.header.size);
7209 if (ret)
7210 return;
7211
7212 perf_output_put(&handle, lost_samples_event);
7213 perf_event__output_id_sample(event, &handle, &sample);
7214 perf_output_end(&handle);
7215}
7216
45ac1403
AH
7217/*
7218 * context_switch tracking
7219 */
7220
7221struct perf_switch_event {
7222 struct task_struct *task;
7223 struct task_struct *next_prev;
7224
7225 struct {
7226 struct perf_event_header header;
7227 u32 next_prev_pid;
7228 u32 next_prev_tid;
7229 } event_id;
7230};
7231
7232static int perf_event_switch_match(struct perf_event *event)
7233{
7234 return event->attr.context_switch;
7235}
7236
7237static void perf_event_switch_output(struct perf_event *event, void *data)
7238{
7239 struct perf_switch_event *se = data;
7240 struct perf_output_handle handle;
7241 struct perf_sample_data sample;
7242 int ret;
7243
7244 if (!perf_event_switch_match(event))
7245 return;
7246
7247 /* Only CPU-wide events are allowed to see next/prev pid/tid */
7248 if (event->ctx->task) {
7249 se->event_id.header.type = PERF_RECORD_SWITCH;
7250 se->event_id.header.size = sizeof(se->event_id.header);
7251 } else {
7252 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
7253 se->event_id.header.size = sizeof(se->event_id);
7254 se->event_id.next_prev_pid =
7255 perf_event_pid(event, se->next_prev);
7256 se->event_id.next_prev_tid =
7257 perf_event_tid(event, se->next_prev);
7258 }
7259
7260 perf_event_header__init_id(&se->event_id.header, &sample, event);
7261
7262 ret = perf_output_begin(&handle, event, se->event_id.header.size);
7263 if (ret)
7264 return;
7265
7266 if (event->ctx->task)
7267 perf_output_put(&handle, se->event_id.header);
7268 else
7269 perf_output_put(&handle, se->event_id);
7270
7271 perf_event__output_id_sample(event, &handle, &sample);
7272
7273 perf_output_end(&handle);
7274}
7275
7276static void perf_event_switch(struct task_struct *task,
7277 struct task_struct *next_prev, bool sched_in)
7278{
7279 struct perf_switch_event switch_event;
7280
7281 /* N.B. caller checks nr_switch_events != 0 */
7282
7283 switch_event = (struct perf_switch_event){
7284 .task = task,
7285 .next_prev = next_prev,
7286 .event_id = {
7287 .header = {
7288 /* .type */
7289 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
7290 /* .size */
7291 },
7292 /* .next_prev_pid */
7293 /* .next_prev_tid */
7294 },
7295 };
7296
aab5b71e 7297 perf_iterate_sb(perf_event_switch_output,
45ac1403
AH
7298 &switch_event,
7299 NULL);
7300}
7301
a78ac325
PZ
7302/*
7303 * IRQ throttle logging
7304 */
7305
cdd6c482 7306static void perf_log_throttle(struct perf_event *event, int enable)
a78ac325
PZ
7307{
7308 struct perf_output_handle handle;
c980d109 7309 struct perf_sample_data sample;
a78ac325
PZ
7310 int ret;
7311
7312 struct {
7313 struct perf_event_header header;
7314 u64 time;
cca3f454 7315 u64 id;
7f453c24 7316 u64 stream_id;
a78ac325
PZ
7317 } throttle_event = {
7318 .header = {
cdd6c482 7319 .type = PERF_RECORD_THROTTLE,
a78ac325
PZ
7320 .misc = 0,
7321 .size = sizeof(throttle_event),
7322 },
34f43927 7323 .time = perf_event_clock(event),
cdd6c482
IM
7324 .id = primary_event_id(event),
7325 .stream_id = event->id,
a78ac325
PZ
7326 };
7327
966ee4d6 7328 if (enable)
cdd6c482 7329 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
966ee4d6 7330
c980d109
ACM
7331 perf_event_header__init_id(&throttle_event.header, &sample, event);
7332
7333 ret = perf_output_begin(&handle, event,
a7ac67ea 7334 throttle_event.header.size);
a78ac325
PZ
7335 if (ret)
7336 return;
7337
7338 perf_output_put(&handle, throttle_event);
c980d109 7339 perf_event__output_id_sample(event, &handle, &sample);
a78ac325
PZ
7340 perf_output_end(&handle);
7341}
7342
8d4e6c4c
AS
7343void perf_event_itrace_started(struct perf_event *event)
7344{
7345 event->attach_state |= PERF_ATTACH_ITRACE;
7346}
7347
ec0d7729
AS
7348static void perf_log_itrace_start(struct perf_event *event)
7349{
7350 struct perf_output_handle handle;
7351 struct perf_sample_data sample;
7352 struct perf_aux_event {
7353 struct perf_event_header header;
7354 u32 pid;
7355 u32 tid;
7356 } rec;
7357 int ret;
7358
7359 if (event->parent)
7360 event = event->parent;
7361
7362 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
8d4e6c4c 7363 event->attach_state & PERF_ATTACH_ITRACE)
ec0d7729
AS
7364 return;
7365
ec0d7729
AS
7366 rec.header.type = PERF_RECORD_ITRACE_START;
7367 rec.header.misc = 0;
7368 rec.header.size = sizeof(rec);
7369 rec.pid = perf_event_pid(event, current);
7370 rec.tid = perf_event_tid(event, current);
7371
7372 perf_event_header__init_id(&rec.header, &sample, event);
7373 ret = perf_output_begin(&handle, event, rec.header.size);
7374
7375 if (ret)
7376 return;
7377
7378 perf_output_put(&handle, rec);
7379 perf_event__output_id_sample(event, &handle, &sample);
7380
7381 perf_output_end(&handle);
7382}
7383
475113d9
JO
7384static int
7385__perf_event_account_interrupt(struct perf_event *event, int throttle)
f6c7d5fe 7386{
cdd6c482 7387 struct hw_perf_event *hwc = &event->hw;
79f14641 7388 int ret = 0;
475113d9 7389 u64 seq;
96398826 7390
e050e3f0
SE
7391 seq = __this_cpu_read(perf_throttled_seq);
7392 if (seq != hwc->interrupts_seq) {
7393 hwc->interrupts_seq = seq;
7394 hwc->interrupts = 1;
7395 } else {
7396 hwc->interrupts++;
7397 if (unlikely(throttle
7398 && hwc->interrupts >= max_samples_per_tick)) {
7399 __this_cpu_inc(perf_throttled_count);
555e0c1e 7400 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
163ec435
PZ
7401 hwc->interrupts = MAX_INTERRUPTS;
7402 perf_log_throttle(event, 0);
a78ac325
PZ
7403 ret = 1;
7404 }
e050e3f0 7405 }
60db5e09 7406
cdd6c482 7407 if (event->attr.freq) {
def0a9b2 7408 u64 now = perf_clock();
abd50713 7409 s64 delta = now - hwc->freq_time_stamp;
bd2b5b12 7410
abd50713 7411 hwc->freq_time_stamp = now;
bd2b5b12 7412
abd50713 7413 if (delta > 0 && delta < 2*TICK_NSEC)
f39d47ff 7414 perf_adjust_period(event, delta, hwc->last_period, true);
bd2b5b12
PZ
7415 }
7416
475113d9
JO
7417 return ret;
7418}
7419
7420int perf_event_account_interrupt(struct perf_event *event)
7421{
7422 return __perf_event_account_interrupt(event, 1);
7423}
7424
7425/*
7426 * Generic event overflow handling, sampling.
7427 */
7428
7429static int __perf_event_overflow(struct perf_event *event,
7430 int throttle, struct perf_sample_data *data,
7431 struct pt_regs *regs)
7432{
7433 int events = atomic_read(&event->event_limit);
7434 int ret = 0;
7435
7436 /*
7437 * Non-sampling counters might still use the PMI to fold short
7438 * hardware counters, ignore those.
7439 */
7440 if (unlikely(!is_sampling_event(event)))
7441 return 0;
7442
7443 ret = __perf_event_account_interrupt(event, throttle);
cc1582c2 7444
2023b359
PZ
7445 /*
7446 * XXX event_limit might not quite work as expected on inherited
cdd6c482 7447 * events
2023b359
PZ
7448 */
7449
cdd6c482
IM
7450 event->pending_kill = POLL_IN;
7451 if (events && atomic_dec_and_test(&event->event_limit)) {
79f14641 7452 ret = 1;
cdd6c482 7453 event->pending_kill = POLL_HUP;
5aab90ce
JO
7454
7455 perf_event_disable_inatomic(event);
79f14641
PZ
7456 }
7457
aa6a5f3c 7458 READ_ONCE(event->overflow_handler)(event, data, regs);
453f19ee 7459
fed66e2c 7460 if (*perf_event_fasync(event) && event->pending_kill) {
a8b0ca17
PZ
7461 event->pending_wakeup = 1;
7462 irq_work_queue(&event->pending);
f506b3dc
PZ
7463 }
7464
79f14641 7465 return ret;
f6c7d5fe
PZ
7466}
7467
a8b0ca17 7468int perf_event_overflow(struct perf_event *event,
5622f295
MM
7469 struct perf_sample_data *data,
7470 struct pt_regs *regs)
850bc73f 7471{
a8b0ca17 7472 return __perf_event_overflow(event, 1, data, regs);
850bc73f
PZ
7473}
7474
15dbf27c 7475/*
cdd6c482 7476 * Generic software event infrastructure
15dbf27c
PZ
7477 */
7478
b28ab83c
PZ
7479struct swevent_htable {
7480 struct swevent_hlist *swevent_hlist;
7481 struct mutex hlist_mutex;
7482 int hlist_refcount;
7483
7484 /* Recursion avoidance in each contexts */
7485 int recursion[PERF_NR_CONTEXTS];
7486};
7487
7488static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
7489
7b4b6658 7490/*
cdd6c482
IM
7491 * We directly increment event->count and keep a second value in
7492 * event->hw.period_left to count intervals. This period event
7b4b6658
PZ
7493 * is kept in the range [-sample_period, 0] so that we can use the
7494 * sign as trigger.
7495 */
7496
ab573844 7497u64 perf_swevent_set_period(struct perf_event *event)
15dbf27c 7498{
cdd6c482 7499 struct hw_perf_event *hwc = &event->hw;
7b4b6658
PZ
7500 u64 period = hwc->last_period;
7501 u64 nr, offset;
7502 s64 old, val;
7503
7504 hwc->last_period = hwc->sample_period;
15dbf27c
PZ
7505
7506again:
e7850595 7507 old = val = local64_read(&hwc->period_left);
7b4b6658
PZ
7508 if (val < 0)
7509 return 0;
15dbf27c 7510
7b4b6658
PZ
7511 nr = div64_u64(period + val, period);
7512 offset = nr * period;
7513 val -= offset;
e7850595 7514 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7b4b6658 7515 goto again;
15dbf27c 7516
7b4b6658 7517 return nr;
15dbf27c
PZ
7518}
7519
0cff784a 7520static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
a8b0ca17 7521 struct perf_sample_data *data,
5622f295 7522 struct pt_regs *regs)
15dbf27c 7523{
cdd6c482 7524 struct hw_perf_event *hwc = &event->hw;
850bc73f 7525 int throttle = 0;
15dbf27c 7526
0cff784a
PZ
7527 if (!overflow)
7528 overflow = perf_swevent_set_period(event);
15dbf27c 7529
7b4b6658
PZ
7530 if (hwc->interrupts == MAX_INTERRUPTS)
7531 return;
15dbf27c 7532
7b4b6658 7533 for (; overflow; overflow--) {
a8b0ca17 7534 if (__perf_event_overflow(event, throttle,
5622f295 7535 data, regs)) {
7b4b6658
PZ
7536 /*
7537 * We inhibit the overflow from happening when
7538 * hwc->interrupts == MAX_INTERRUPTS.
7539 */
7540 break;
7541 }
cf450a73 7542 throttle = 1;
7b4b6658 7543 }
15dbf27c
PZ
7544}
7545
a4eaf7f1 7546static void perf_swevent_event(struct perf_event *event, u64 nr,
a8b0ca17 7547 struct perf_sample_data *data,
5622f295 7548 struct pt_regs *regs)
7b4b6658 7549{
cdd6c482 7550 struct hw_perf_event *hwc = &event->hw;
d6d020e9 7551
e7850595 7552 local64_add(nr, &event->count);
d6d020e9 7553
0cff784a
PZ
7554 if (!regs)
7555 return;
7556
6c7e550f 7557 if (!is_sampling_event(event))
7b4b6658 7558 return;
d6d020e9 7559
5d81e5cf
AV
7560 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
7561 data->period = nr;
7562 return perf_swevent_overflow(event, 1, data, regs);
7563 } else
7564 data->period = event->hw.last_period;
7565
0cff784a 7566 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
a8b0ca17 7567 return perf_swevent_overflow(event, 1, data, regs);
0cff784a 7568
e7850595 7569 if (local64_add_negative(nr, &hwc->period_left))
7b4b6658 7570 return;
df1a132b 7571
a8b0ca17 7572 perf_swevent_overflow(event, 0, data, regs);
d6d020e9
PZ
7573}
7574
f5ffe02e
FW
7575static int perf_exclude_event(struct perf_event *event,
7576 struct pt_regs *regs)
7577{
a4eaf7f1 7578 if (event->hw.state & PERF_HES_STOPPED)
91b2f482 7579 return 1;
a4eaf7f1 7580
f5ffe02e
FW
7581 if (regs) {
7582 if (event->attr.exclude_user && user_mode(regs))
7583 return 1;
7584
7585 if (event->attr.exclude_kernel && !user_mode(regs))
7586 return 1;
7587 }
7588
7589 return 0;
7590}
7591
cdd6c482 7592static int perf_swevent_match(struct perf_event *event,
1c432d89 7593 enum perf_type_id type,
6fb2915d
LZ
7594 u32 event_id,
7595 struct perf_sample_data *data,
7596 struct pt_regs *regs)
15dbf27c 7597{
cdd6c482 7598 if (event->attr.type != type)
a21ca2ca 7599 return 0;
f5ffe02e 7600
cdd6c482 7601 if (event->attr.config != event_id)
15dbf27c
PZ
7602 return 0;
7603
f5ffe02e
FW
7604 if (perf_exclude_event(event, regs))
7605 return 0;
15dbf27c
PZ
7606
7607 return 1;
7608}
7609
76e1d904
FW
7610static inline u64 swevent_hash(u64 type, u32 event_id)
7611{
7612 u64 val = event_id | (type << 32);
7613
7614 return hash_64(val, SWEVENT_HLIST_BITS);
7615}
7616
49f135ed
FW
7617static inline struct hlist_head *
7618__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
76e1d904 7619{
49f135ed
FW
7620 u64 hash = swevent_hash(type, event_id);
7621
7622 return &hlist->heads[hash];
7623}
76e1d904 7624
49f135ed
FW
7625/* For the read side: events when they trigger */
7626static inline struct hlist_head *
b28ab83c 7627find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
49f135ed
FW
7628{
7629 struct swevent_hlist *hlist;
76e1d904 7630
b28ab83c 7631 hlist = rcu_dereference(swhash->swevent_hlist);
76e1d904
FW
7632 if (!hlist)
7633 return NULL;
7634
49f135ed
FW
7635 return __find_swevent_head(hlist, type, event_id);
7636}
7637
7638/* For the event head insertion and removal in the hlist */
7639static inline struct hlist_head *
b28ab83c 7640find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
49f135ed
FW
7641{
7642 struct swevent_hlist *hlist;
7643 u32 event_id = event->attr.config;
7644 u64 type = event->attr.type;
7645
7646 /*
7647 * Event scheduling is always serialized against hlist allocation
7648 * and release. Which makes the protected version suitable here.
7649 * The context lock guarantees that.
7650 */
b28ab83c 7651 hlist = rcu_dereference_protected(swhash->swevent_hlist,
49f135ed
FW
7652 lockdep_is_held(&event->ctx->lock));
7653 if (!hlist)
7654 return NULL;
7655
7656 return __find_swevent_head(hlist, type, event_id);
76e1d904
FW
7657}
7658
7659static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
a8b0ca17 7660 u64 nr,
76e1d904
FW
7661 struct perf_sample_data *data,
7662 struct pt_regs *regs)
15dbf27c 7663{
4a32fea9 7664 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 7665 struct perf_event *event;
76e1d904 7666 struct hlist_head *head;
15dbf27c 7667
76e1d904 7668 rcu_read_lock();
b28ab83c 7669 head = find_swevent_head_rcu(swhash, type, event_id);
76e1d904
FW
7670 if (!head)
7671 goto end;
7672
b67bfe0d 7673 hlist_for_each_entry_rcu(event, head, hlist_entry) {
6fb2915d 7674 if (perf_swevent_match(event, type, event_id, data, regs))
a8b0ca17 7675 perf_swevent_event(event, nr, data, regs);
15dbf27c 7676 }
76e1d904
FW
7677end:
7678 rcu_read_unlock();
15dbf27c
PZ
7679}
7680
86038c5e
PZI
7681DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
7682
4ed7c92d 7683int perf_swevent_get_recursion_context(void)
96f6d444 7684{
4a32fea9 7685 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
96f6d444 7686
b28ab83c 7687 return get_recursion_context(swhash->recursion);
96f6d444 7688}
645e8cc0 7689EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
96f6d444 7690
98b5c2c6 7691void perf_swevent_put_recursion_context(int rctx)
15dbf27c 7692{
4a32fea9 7693 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
927c7a9e 7694
b28ab83c 7695 put_recursion_context(swhash->recursion, rctx);
ce71b9df 7696}
15dbf27c 7697
86038c5e 7698void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
b8e83514 7699{
a4234bfc 7700 struct perf_sample_data data;
4ed7c92d 7701
86038c5e 7702 if (WARN_ON_ONCE(!regs))
4ed7c92d 7703 return;
a4234bfc 7704
fd0d000b 7705 perf_sample_data_init(&data, addr, 0);
a8b0ca17 7706 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
86038c5e
PZI
7707}
7708
7709void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7710{
7711 int rctx;
7712
7713 preempt_disable_notrace();
7714 rctx = perf_swevent_get_recursion_context();
7715 if (unlikely(rctx < 0))
7716 goto fail;
7717
7718 ___perf_sw_event(event_id, nr, regs, addr);
4ed7c92d
PZ
7719
7720 perf_swevent_put_recursion_context(rctx);
86038c5e 7721fail:
1c024eca 7722 preempt_enable_notrace();
b8e83514
PZ
7723}
7724
cdd6c482 7725static void perf_swevent_read(struct perf_event *event)
15dbf27c 7726{
15dbf27c
PZ
7727}
7728
a4eaf7f1 7729static int perf_swevent_add(struct perf_event *event, int flags)
15dbf27c 7730{
4a32fea9 7731 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 7732 struct hw_perf_event *hwc = &event->hw;
76e1d904
FW
7733 struct hlist_head *head;
7734
6c7e550f 7735 if (is_sampling_event(event)) {
7b4b6658 7736 hwc->last_period = hwc->sample_period;
cdd6c482 7737 perf_swevent_set_period(event);
7b4b6658 7738 }
76e1d904 7739
a4eaf7f1
PZ
7740 hwc->state = !(flags & PERF_EF_START);
7741
b28ab83c 7742 head = find_swevent_head(swhash, event);
12ca6ad2 7743 if (WARN_ON_ONCE(!head))
76e1d904
FW
7744 return -EINVAL;
7745
7746 hlist_add_head_rcu(&event->hlist_entry, head);
6a694a60 7747 perf_event_update_userpage(event);
76e1d904 7748
15dbf27c
PZ
7749 return 0;
7750}
7751
a4eaf7f1 7752static void perf_swevent_del(struct perf_event *event, int flags)
15dbf27c 7753{
76e1d904 7754 hlist_del_rcu(&event->hlist_entry);
15dbf27c
PZ
7755}
7756
a4eaf7f1 7757static void perf_swevent_start(struct perf_event *event, int flags)
5c92d124 7758{
a4eaf7f1 7759 event->hw.state = 0;
d6d020e9 7760}
aa9c4c0f 7761
a4eaf7f1 7762static void perf_swevent_stop(struct perf_event *event, int flags)
d6d020e9 7763{
a4eaf7f1 7764 event->hw.state = PERF_HES_STOPPED;
bae43c99
IM
7765}
7766
49f135ed
FW
7767/* Deref the hlist from the update side */
7768static inline struct swevent_hlist *
b28ab83c 7769swevent_hlist_deref(struct swevent_htable *swhash)
49f135ed 7770{
b28ab83c
PZ
7771 return rcu_dereference_protected(swhash->swevent_hlist,
7772 lockdep_is_held(&swhash->hlist_mutex));
49f135ed
FW
7773}
7774
b28ab83c 7775static void swevent_hlist_release(struct swevent_htable *swhash)
76e1d904 7776{
b28ab83c 7777 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
76e1d904 7778
49f135ed 7779 if (!hlist)
76e1d904
FW
7780 return;
7781
70691d4a 7782 RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
fa4bbc4c 7783 kfree_rcu(hlist, rcu_head);
76e1d904
FW
7784}
7785
3b364d7b 7786static void swevent_hlist_put_cpu(int cpu)
76e1d904 7787{
b28ab83c 7788 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904 7789
b28ab83c 7790 mutex_lock(&swhash->hlist_mutex);
76e1d904 7791
b28ab83c
PZ
7792 if (!--swhash->hlist_refcount)
7793 swevent_hlist_release(swhash);
76e1d904 7794
b28ab83c 7795 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
7796}
7797
3b364d7b 7798static void swevent_hlist_put(void)
76e1d904
FW
7799{
7800 int cpu;
7801
76e1d904 7802 for_each_possible_cpu(cpu)
3b364d7b 7803 swevent_hlist_put_cpu(cpu);
76e1d904
FW
7804}
7805
3b364d7b 7806static int swevent_hlist_get_cpu(int cpu)
76e1d904 7807{
b28ab83c 7808 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904
FW
7809 int err = 0;
7810
b28ab83c 7811 mutex_lock(&swhash->hlist_mutex);
a63fbed7
TG
7812 if (!swevent_hlist_deref(swhash) &&
7813 cpumask_test_cpu(cpu, perf_online_mask)) {
76e1d904
FW
7814 struct swevent_hlist *hlist;
7815
7816 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
7817 if (!hlist) {
7818 err = -ENOMEM;
7819 goto exit;
7820 }
b28ab83c 7821 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 7822 }
b28ab83c 7823 swhash->hlist_refcount++;
9ed6060d 7824exit:
b28ab83c 7825 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
7826
7827 return err;
7828}
7829
3b364d7b 7830static int swevent_hlist_get(void)
76e1d904 7831{
3b364d7b 7832 int err, cpu, failed_cpu;
76e1d904 7833
a63fbed7 7834 mutex_lock(&pmus_lock);
76e1d904 7835 for_each_possible_cpu(cpu) {
3b364d7b 7836 err = swevent_hlist_get_cpu(cpu);
76e1d904
FW
7837 if (err) {
7838 failed_cpu = cpu;
7839 goto fail;
7840 }
7841 }
a63fbed7 7842 mutex_unlock(&pmus_lock);
76e1d904 7843 return 0;
9ed6060d 7844fail:
76e1d904
FW
7845 for_each_possible_cpu(cpu) {
7846 if (cpu == failed_cpu)
7847 break;
3b364d7b 7848 swevent_hlist_put_cpu(cpu);
76e1d904 7849 }
a63fbed7 7850 mutex_unlock(&pmus_lock);
76e1d904
FW
7851 return err;
7852}
7853
c5905afb 7854struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
95476b64 7855
b0a873eb
PZ
7856static void sw_perf_event_destroy(struct perf_event *event)
7857{
7858 u64 event_id = event->attr.config;
95476b64 7859
b0a873eb
PZ
7860 WARN_ON(event->parent);
7861
c5905afb 7862 static_key_slow_dec(&perf_swevent_enabled[event_id]);
3b364d7b 7863 swevent_hlist_put();
b0a873eb
PZ
7864}
7865
7866static int perf_swevent_init(struct perf_event *event)
7867{
8176cced 7868 u64 event_id = event->attr.config;
b0a873eb
PZ
7869
7870 if (event->attr.type != PERF_TYPE_SOFTWARE)
7871 return -ENOENT;
7872
2481c5fa
SE
7873 /*
7874 * no branch sampling for software events
7875 */
7876 if (has_branch_stack(event))
7877 return -EOPNOTSUPP;
7878
b0a873eb
PZ
7879 switch (event_id) {
7880 case PERF_COUNT_SW_CPU_CLOCK:
7881 case PERF_COUNT_SW_TASK_CLOCK:
7882 return -ENOENT;
7883
7884 default:
7885 break;
7886 }
7887
ce677831 7888 if (event_id >= PERF_COUNT_SW_MAX)
b0a873eb
PZ
7889 return -ENOENT;
7890
7891 if (!event->parent) {
7892 int err;
7893
3b364d7b 7894 err = swevent_hlist_get();
b0a873eb
PZ
7895 if (err)
7896 return err;
7897
c5905afb 7898 static_key_slow_inc(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
7899 event->destroy = sw_perf_event_destroy;
7900 }
7901
7902 return 0;
7903}
7904
7905static struct pmu perf_swevent = {
89a1e187 7906 .task_ctx_nr = perf_sw_context,
95476b64 7907
34f43927
PZ
7908 .capabilities = PERF_PMU_CAP_NO_NMI,
7909
b0a873eb 7910 .event_init = perf_swevent_init,
a4eaf7f1
PZ
7911 .add = perf_swevent_add,
7912 .del = perf_swevent_del,
7913 .start = perf_swevent_start,
7914 .stop = perf_swevent_stop,
1c024eca 7915 .read = perf_swevent_read,
1c024eca
PZ
7916};
7917
b0a873eb
PZ
7918#ifdef CONFIG_EVENT_TRACING
7919
1c024eca
PZ
7920static int perf_tp_filter_match(struct perf_event *event,
7921 struct perf_sample_data *data)
7922{
7e3f977e 7923 void *record = data->raw->frag.data;
1c024eca 7924
b71b437e
PZ
7925 /* only top level events have filters set */
7926 if (event->parent)
7927 event = event->parent;
7928
1c024eca
PZ
7929 if (likely(!event->filter) || filter_match_preds(event->filter, record))
7930 return 1;
7931 return 0;
7932}
7933
7934static int perf_tp_event_match(struct perf_event *event,
7935 struct perf_sample_data *data,
7936 struct pt_regs *regs)
7937{
a0f7d0f7
FW
7938 if (event->hw.state & PERF_HES_STOPPED)
7939 return 0;
580d607c
PZ
7940 /*
7941 * All tracepoints are from kernel-space.
7942 */
7943 if (event->attr.exclude_kernel)
1c024eca
PZ
7944 return 0;
7945
7946 if (!perf_tp_filter_match(event, data))
7947 return 0;
7948
7949 return 1;
7950}
7951
85b67bcb
AS
7952void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
7953 struct trace_event_call *call, u64 count,
7954 struct pt_regs *regs, struct hlist_head *head,
7955 struct task_struct *task)
7956{
7957 struct bpf_prog *prog = call->prog;
7958
7959 if (prog) {
7960 *(struct pt_regs **)raw_data = regs;
7961 if (!trace_call_bpf(prog, raw_data) || hlist_empty(head)) {
7962 perf_swevent_put_recursion_context(rctx);
7963 return;
7964 }
7965 }
7966 perf_tp_event(call->event.type, count, raw_data, size, regs, head,
75e83876 7967 rctx, task, NULL);
85b67bcb
AS
7968}
7969EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
7970
1e1dcd93 7971void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
e6dab5ff 7972 struct pt_regs *regs, struct hlist_head *head, int rctx,
75e83876 7973 struct task_struct *task, struct perf_event *event)
95476b64
FW
7974{
7975 struct perf_sample_data data;
1c024eca 7976
95476b64 7977 struct perf_raw_record raw = {
7e3f977e
DB
7978 .frag = {
7979 .size = entry_size,
7980 .data = record,
7981 },
95476b64
FW
7982 };
7983
1e1dcd93 7984 perf_sample_data_init(&data, 0, 0);
95476b64
FW
7985 data.raw = &raw;
7986
1e1dcd93
AS
7987 perf_trace_buf_update(record, event_type);
7988
75e83876
ZC
7989 /* Use the given event instead of the hlist */
7990 if (event) {
1c024eca 7991 if (perf_tp_event_match(event, &data, regs))
a8b0ca17 7992 perf_swevent_event(event, count, &data, regs);
75e83876
ZC
7993 } else {
7994 hlist_for_each_entry_rcu(event, head, hlist_entry) {
7995 if (perf_tp_event_match(event, &data, regs))
7996 perf_swevent_event(event, count, &data, regs);
7997 }
4f41c013 7998 }
ecc55f84 7999
e6dab5ff
AV
8000 /*
8001 * If we got specified a target task, also iterate its context and
8002 * deliver this event there too.
8003 */
8004 if (task && task != current) {
8005 struct perf_event_context *ctx;
8006 struct trace_entry *entry = record;
8007
8008 rcu_read_lock();
8009 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
8010 if (!ctx)
8011 goto unlock;
8012
8013 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
8014 if (event->attr.type != PERF_TYPE_TRACEPOINT)
8015 continue;
8016 if (event->attr.config != entry->type)
8017 continue;
8018 if (perf_tp_event_match(event, &data, regs))
8019 perf_swevent_event(event, count, &data, regs);
8020 }
8021unlock:
8022 rcu_read_unlock();
8023 }
8024
ecc55f84 8025 perf_swevent_put_recursion_context(rctx);
95476b64
FW
8026}
8027EXPORT_SYMBOL_GPL(perf_tp_event);
8028
cdd6c482 8029static void tp_perf_event_destroy(struct perf_event *event)
e077df4f 8030{
1c024eca 8031 perf_trace_destroy(event);
e077df4f
PZ
8032}
8033
b0a873eb 8034static int perf_tp_event_init(struct perf_event *event)
e077df4f 8035{
76e1d904
FW
8036 int err;
8037
b0a873eb
PZ
8038 if (event->attr.type != PERF_TYPE_TRACEPOINT)
8039 return -ENOENT;
8040
2481c5fa
SE
8041 /*
8042 * no branch sampling for tracepoint events
8043 */
8044 if (has_branch_stack(event))
8045 return -EOPNOTSUPP;
8046
1c024eca
PZ
8047 err = perf_trace_init(event);
8048 if (err)
b0a873eb 8049 return err;
e077df4f 8050
cdd6c482 8051 event->destroy = tp_perf_event_destroy;
e077df4f 8052
b0a873eb
PZ
8053 return 0;
8054}
8055
8056static struct pmu perf_tracepoint = {
89a1e187
PZ
8057 .task_ctx_nr = perf_sw_context,
8058
b0a873eb 8059 .event_init = perf_tp_event_init,
a4eaf7f1
PZ
8060 .add = perf_trace_add,
8061 .del = perf_trace_del,
8062 .start = perf_swevent_start,
8063 .stop = perf_swevent_stop,
b0a873eb 8064 .read = perf_swevent_read,
b0a873eb
PZ
8065};
8066
8067static inline void perf_tp_register(void)
8068{
2e80a82a 8069 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
e077df4f 8070}
6fb2915d 8071
6fb2915d
LZ
8072static void perf_event_free_filter(struct perf_event *event)
8073{
8074 ftrace_profile_free_filter(event);
8075}
8076
aa6a5f3c
AS
8077#ifdef CONFIG_BPF_SYSCALL
8078static void bpf_overflow_handler(struct perf_event *event,
8079 struct perf_sample_data *data,
8080 struct pt_regs *regs)
8081{
8082 struct bpf_perf_event_data_kern ctx = {
8083 .data = data,
8084 .regs = regs,
97562633 8085 .event = event,
aa6a5f3c
AS
8086 };
8087 int ret = 0;
8088
8089 preempt_disable();
8090 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
8091 goto out;
8092 rcu_read_lock();
88575199 8093 ret = BPF_PROG_RUN(event->prog, &ctx);
aa6a5f3c
AS
8094 rcu_read_unlock();
8095out:
8096 __this_cpu_dec(bpf_prog_active);
8097 preempt_enable();
8098 if (!ret)
8099 return;
8100
8101 event->orig_overflow_handler(event, data, regs);
8102}
8103
8104static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8105{
8106 struct bpf_prog *prog;
8107
8108 if (event->overflow_handler_context)
8109 /* hw breakpoint or kernel counter */
8110 return -EINVAL;
8111
8112 if (event->prog)
8113 return -EEXIST;
8114
8115 prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
8116 if (IS_ERR(prog))
8117 return PTR_ERR(prog);
8118
8119 event->prog = prog;
8120 event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
8121 WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
8122 return 0;
8123}
8124
8125static void perf_event_free_bpf_handler(struct perf_event *event)
8126{
8127 struct bpf_prog *prog = event->prog;
8128
8129 if (!prog)
8130 return;
8131
8132 WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
8133 event->prog = NULL;
8134 bpf_prog_put(prog);
8135}
8136#else
8137static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8138{
8139 return -EOPNOTSUPP;
8140}
8141static void perf_event_free_bpf_handler(struct perf_event *event)
8142{
8143}
8144#endif
8145
2541517c
AS
8146static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8147{
cf5f5cea 8148 bool is_kprobe, is_tracepoint, is_syscall_tp;
2541517c
AS
8149 struct bpf_prog *prog;
8150
8151 if (event->attr.type != PERF_TYPE_TRACEPOINT)
f91840a3 8152 return perf_event_set_bpf_handler(event, prog_fd);
2541517c
AS
8153
8154 if (event->tp_event->prog)
8155 return -EEXIST;
8156
98b5c2c6
AS
8157 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
8158 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
cf5f5cea
YS
8159 is_syscall_tp = is_syscall_trace_event(event->tp_event);
8160 if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
98b5c2c6 8161 /* bpf programs can only be attached to u/kprobe or tracepoint */
2541517c
AS
8162 return -EINVAL;
8163
8164 prog = bpf_prog_get(prog_fd);
8165 if (IS_ERR(prog))
8166 return PTR_ERR(prog);
8167
98b5c2c6 8168 if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
cf5f5cea
YS
8169 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
8170 (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
2541517c
AS
8171 /* valid fd, but invalid bpf program type */
8172 bpf_prog_put(prog);
8173 return -EINVAL;
8174 }
8175
cf5f5cea 8176 if (is_tracepoint || is_syscall_tp) {
32bbe007
AS
8177 int off = trace_event_get_offsets(event->tp_event);
8178
8179 if (prog->aux->max_ctx_offset > off) {
8180 bpf_prog_put(prog);
8181 return -EACCES;
8182 }
8183 }
2541517c 8184 event->tp_event->prog = prog;
ec9dd352 8185 event->tp_event->bpf_prog_owner = event;
2541517c
AS
8186
8187 return 0;
8188}
8189
8190static void perf_event_free_bpf_prog(struct perf_event *event)
8191{
8192 struct bpf_prog *prog;
8193
0b4c6841
YS
8194 if (event->attr.type != PERF_TYPE_TRACEPOINT) {
8195 perf_event_free_bpf_handler(event);
2541517c 8196 return;
0b4c6841 8197 }
2541517c
AS
8198
8199 prog = event->tp_event->prog;
ec9dd352 8200 if (prog && event->tp_event->bpf_prog_owner == event) {
2541517c 8201 event->tp_event->prog = NULL;
1aacde3d 8202 bpf_prog_put(prog);
2541517c
AS
8203 }
8204}
8205
e077df4f 8206#else
6fb2915d 8207
b0a873eb 8208static inline void perf_tp_register(void)
e077df4f 8209{
e077df4f 8210}
6fb2915d 8211
6fb2915d
LZ
8212static void perf_event_free_filter(struct perf_event *event)
8213{
8214}
8215
2541517c
AS
8216static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8217{
8218 return -ENOENT;
8219}
8220
8221static void perf_event_free_bpf_prog(struct perf_event *event)
8222{
8223}
07b139c8 8224#endif /* CONFIG_EVENT_TRACING */
e077df4f 8225
24f1e32c 8226#ifdef CONFIG_HAVE_HW_BREAKPOINT
f5ffe02e 8227void perf_bp_event(struct perf_event *bp, void *data)
24f1e32c 8228{
f5ffe02e
FW
8229 struct perf_sample_data sample;
8230 struct pt_regs *regs = data;
8231
fd0d000b 8232 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
f5ffe02e 8233
a4eaf7f1 8234 if (!bp->hw.state && !perf_exclude_event(bp, regs))
a8b0ca17 8235 perf_swevent_event(bp, 1, &sample, regs);
24f1e32c
FW
8236}
8237#endif
8238
375637bc
AS
8239/*
8240 * Allocate a new address filter
8241 */
8242static struct perf_addr_filter *
8243perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
8244{
8245 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
8246 struct perf_addr_filter *filter;
8247
8248 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
8249 if (!filter)
8250 return NULL;
8251
8252 INIT_LIST_HEAD(&filter->entry);
8253 list_add_tail(&filter->entry, filters);
8254
8255 return filter;
8256}
8257
8258static void free_filters_list(struct list_head *filters)
8259{
8260 struct perf_addr_filter *filter, *iter;
8261
8262 list_for_each_entry_safe(filter, iter, filters, entry) {
8263 if (filter->inode)
8264 iput(filter->inode);
8265 list_del(&filter->entry);
8266 kfree(filter);
8267 }
8268}
8269
8270/*
8271 * Free existing address filters and optionally install new ones
8272 */
8273static void perf_addr_filters_splice(struct perf_event *event,
8274 struct list_head *head)
8275{
8276 unsigned long flags;
8277 LIST_HEAD(list);
8278
8279 if (!has_addr_filter(event))
8280 return;
8281
8282 /* don't bother with children, they don't have their own filters */
8283 if (event->parent)
8284 return;
8285
8286 raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
8287
8288 list_splice_init(&event->addr_filters.list, &list);
8289 if (head)
8290 list_splice(head, &event->addr_filters.list);
8291
8292 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
8293
8294 free_filters_list(&list);
8295}
8296
8297/*
8298 * Scan through mm's vmas and see if one of them matches the
8299 * @filter; if so, adjust filter's address range.
8300 * Called with mm::mmap_sem down for reading.
8301 */
8302static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter,
8303 struct mm_struct *mm)
8304{
8305 struct vm_area_struct *vma;
8306
8307 for (vma = mm->mmap; vma; vma = vma->vm_next) {
8308 struct file *file = vma->vm_file;
8309 unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8310 unsigned long vma_size = vma->vm_end - vma->vm_start;
8311
8312 if (!file)
8313 continue;
8314
8315 if (!perf_addr_filter_match(filter, file, off, vma_size))
8316 continue;
8317
8318 return vma->vm_start;
8319 }
8320
8321 return 0;
8322}
8323
8324/*
8325 * Update event's address range filters based on the
8326 * task's existing mappings, if any.
8327 */
8328static void perf_event_addr_filters_apply(struct perf_event *event)
8329{
8330 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8331 struct task_struct *task = READ_ONCE(event->ctx->task);
8332 struct perf_addr_filter *filter;
8333 struct mm_struct *mm = NULL;
8334 unsigned int count = 0;
8335 unsigned long flags;
8336
8337 /*
8338 * We may observe TASK_TOMBSTONE, which means that the event tear-down
8339 * will stop on the parent's child_mutex that our caller is also holding
8340 */
8341 if (task == TASK_TOMBSTONE)
8342 return;
8343
6ce77bfd
AS
8344 if (!ifh->nr_file_filters)
8345 return;
8346
375637bc
AS
8347 mm = get_task_mm(event->ctx->task);
8348 if (!mm)
8349 goto restart;
8350
8351 down_read(&mm->mmap_sem);
8352
8353 raw_spin_lock_irqsave(&ifh->lock, flags);
8354 list_for_each_entry(filter, &ifh->list, entry) {
8355 event->addr_filters_offs[count] = 0;
8356
99f5bc9b
MP
8357 /*
8358 * Adjust base offset if the filter is associated to a binary
8359 * that needs to be mapped:
8360 */
8361 if (filter->inode)
375637bc
AS
8362 event->addr_filters_offs[count] =
8363 perf_addr_filter_apply(filter, mm);
8364
8365 count++;
8366 }
8367
8368 event->addr_filters_gen++;
8369 raw_spin_unlock_irqrestore(&ifh->lock, flags);
8370
8371 up_read(&mm->mmap_sem);
8372
8373 mmput(mm);
8374
8375restart:
767ae086 8376 perf_event_stop(event, 1);
375637bc
AS
8377}
8378
8379/*
8380 * Address range filtering: limiting the data to certain
8381 * instruction address ranges. Filters are ioctl()ed to us from
8382 * userspace as ascii strings.
8383 *
8384 * Filter string format:
8385 *
8386 * ACTION RANGE_SPEC
8387 * where ACTION is one of the
8388 * * "filter": limit the trace to this region
8389 * * "start": start tracing from this address
8390 * * "stop": stop tracing at this address/region;
8391 * RANGE_SPEC is
8392 * * for kernel addresses: <start address>[/<size>]
8393 * * for object files: <start address>[/<size>]@</path/to/object/file>
8394 *
8395 * if <size> is not specified, the range is treated as a single address.
8396 */
8397enum {
e96271f3 8398 IF_ACT_NONE = -1,
375637bc
AS
8399 IF_ACT_FILTER,
8400 IF_ACT_START,
8401 IF_ACT_STOP,
8402 IF_SRC_FILE,
8403 IF_SRC_KERNEL,
8404 IF_SRC_FILEADDR,
8405 IF_SRC_KERNELADDR,
8406};
8407
8408enum {
8409 IF_STATE_ACTION = 0,
8410 IF_STATE_SOURCE,
8411 IF_STATE_END,
8412};
8413
8414static const match_table_t if_tokens = {
8415 { IF_ACT_FILTER, "filter" },
8416 { IF_ACT_START, "start" },
8417 { IF_ACT_STOP, "stop" },
8418 { IF_SRC_FILE, "%u/%u@%s" },
8419 { IF_SRC_KERNEL, "%u/%u" },
8420 { IF_SRC_FILEADDR, "%u@%s" },
8421 { IF_SRC_KERNELADDR, "%u" },
e96271f3 8422 { IF_ACT_NONE, NULL },
375637bc
AS
8423};
8424
8425/*
8426 * Address filter string parser
8427 */
8428static int
8429perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
8430 struct list_head *filters)
8431{
8432 struct perf_addr_filter *filter = NULL;
8433 char *start, *orig, *filename = NULL;
8434 struct path path;
8435 substring_t args[MAX_OPT_ARGS];
8436 int state = IF_STATE_ACTION, token;
8437 unsigned int kernel = 0;
8438 int ret = -EINVAL;
8439
8440 orig = fstr = kstrdup(fstr, GFP_KERNEL);
8441 if (!fstr)
8442 return -ENOMEM;
8443
8444 while ((start = strsep(&fstr, " ,\n")) != NULL) {
8445 ret = -EINVAL;
8446
8447 if (!*start)
8448 continue;
8449
8450 /* filter definition begins */
8451 if (state == IF_STATE_ACTION) {
8452 filter = perf_addr_filter_new(event, filters);
8453 if (!filter)
8454 goto fail;
8455 }
8456
8457 token = match_token(start, if_tokens, args);
8458 switch (token) {
8459 case IF_ACT_FILTER:
8460 case IF_ACT_START:
8461 filter->filter = 1;
8462
8463 case IF_ACT_STOP:
8464 if (state != IF_STATE_ACTION)
8465 goto fail;
8466
8467 state = IF_STATE_SOURCE;
8468 break;
8469
8470 case IF_SRC_KERNELADDR:
8471 case IF_SRC_KERNEL:
8472 kernel = 1;
8473
8474 case IF_SRC_FILEADDR:
8475 case IF_SRC_FILE:
8476 if (state != IF_STATE_SOURCE)
8477 goto fail;
8478
8479 if (token == IF_SRC_FILE || token == IF_SRC_KERNEL)
8480 filter->range = 1;
8481
8482 *args[0].to = 0;
8483 ret = kstrtoul(args[0].from, 0, &filter->offset);
8484 if (ret)
8485 goto fail;
8486
8487 if (filter->range) {
8488 *args[1].to = 0;
8489 ret = kstrtoul(args[1].from, 0, &filter->size);
8490 if (ret)
8491 goto fail;
8492 }
8493
4059ffd0
MP
8494 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
8495 int fpos = filter->range ? 2 : 1;
8496
8497 filename = match_strdup(&args[fpos]);
375637bc
AS
8498 if (!filename) {
8499 ret = -ENOMEM;
8500 goto fail;
8501 }
8502 }
8503
8504 state = IF_STATE_END;
8505 break;
8506
8507 default:
8508 goto fail;
8509 }
8510
8511 /*
8512 * Filter definition is fully parsed, validate and install it.
8513 * Make sure that it doesn't contradict itself or the event's
8514 * attribute.
8515 */
8516 if (state == IF_STATE_END) {
9ccbfbb1 8517 ret = -EINVAL;
375637bc
AS
8518 if (kernel && event->attr.exclude_kernel)
8519 goto fail;
8520
8521 if (!kernel) {
8522 if (!filename)
8523 goto fail;
8524
6ce77bfd
AS
8525 /*
8526 * For now, we only support file-based filters
8527 * in per-task events; doing so for CPU-wide
8528 * events requires additional context switching
8529 * trickery, since same object code will be
8530 * mapped at different virtual addresses in
8531 * different processes.
8532 */
8533 ret = -EOPNOTSUPP;
8534 if (!event->ctx->task)
8535 goto fail_free_name;
8536
375637bc
AS
8537 /* look up the path and grab its inode */
8538 ret = kern_path(filename, LOOKUP_FOLLOW, &path);
8539 if (ret)
8540 goto fail_free_name;
8541
8542 filter->inode = igrab(d_inode(path.dentry));
8543 path_put(&path);
8544 kfree(filename);
8545 filename = NULL;
8546
8547 ret = -EINVAL;
8548 if (!filter->inode ||
8549 !S_ISREG(filter->inode->i_mode))
8550 /* free_filters_list() will iput() */
8551 goto fail;
6ce77bfd
AS
8552
8553 event->addr_filters.nr_file_filters++;
375637bc
AS
8554 }
8555
8556 /* ready to consume more filters */
8557 state = IF_STATE_ACTION;
8558 filter = NULL;
8559 }
8560 }
8561
8562 if (state != IF_STATE_ACTION)
8563 goto fail;
8564
8565 kfree(orig);
8566
8567 return 0;
8568
8569fail_free_name:
8570 kfree(filename);
8571fail:
8572 free_filters_list(filters);
8573 kfree(orig);
8574
8575 return ret;
8576}
8577
8578static int
8579perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
8580{
8581 LIST_HEAD(filters);
8582 int ret;
8583
8584 /*
8585 * Since this is called in perf_ioctl() path, we're already holding
8586 * ctx::mutex.
8587 */
8588 lockdep_assert_held(&event->ctx->mutex);
8589
8590 if (WARN_ON_ONCE(event->parent))
8591 return -EINVAL;
8592
375637bc
AS
8593 ret = perf_event_parse_addr_filter(event, filter_str, &filters);
8594 if (ret)
6ce77bfd 8595 goto fail_clear_files;
375637bc
AS
8596
8597 ret = event->pmu->addr_filters_validate(&filters);
6ce77bfd
AS
8598 if (ret)
8599 goto fail_free_filters;
375637bc
AS
8600
8601 /* remove existing filters, if any */
8602 perf_addr_filters_splice(event, &filters);
8603
8604 /* install new filters */
8605 perf_event_for_each_child(event, perf_event_addr_filters_apply);
8606
6ce77bfd
AS
8607 return ret;
8608
8609fail_free_filters:
8610 free_filters_list(&filters);
8611
8612fail_clear_files:
8613 event->addr_filters.nr_file_filters = 0;
8614
375637bc
AS
8615 return ret;
8616}
8617
c796bbbe
AS
8618static int perf_event_set_filter(struct perf_event *event, void __user *arg)
8619{
8620 char *filter_str;
8621 int ret = -EINVAL;
8622
375637bc
AS
8623 if ((event->attr.type != PERF_TYPE_TRACEPOINT ||
8624 !IS_ENABLED(CONFIG_EVENT_TRACING)) &&
8625 !has_addr_filter(event))
c796bbbe
AS
8626 return -EINVAL;
8627
8628 filter_str = strndup_user(arg, PAGE_SIZE);
8629 if (IS_ERR(filter_str))
8630 return PTR_ERR(filter_str);
8631
8632 if (IS_ENABLED(CONFIG_EVENT_TRACING) &&
8633 event->attr.type == PERF_TYPE_TRACEPOINT)
8634 ret = ftrace_profile_set_filter(event, event->attr.config,
8635 filter_str);
375637bc
AS
8636 else if (has_addr_filter(event))
8637 ret = perf_event_set_addr_filter(event, filter_str);
c796bbbe
AS
8638
8639 kfree(filter_str);
8640 return ret;
8641}
8642
b0a873eb
PZ
8643/*
8644 * hrtimer based swevent callback
8645 */
f29ac756 8646
b0a873eb 8647static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
f29ac756 8648{
b0a873eb
PZ
8649 enum hrtimer_restart ret = HRTIMER_RESTART;
8650 struct perf_sample_data data;
8651 struct pt_regs *regs;
8652 struct perf_event *event;
8653 u64 period;
f29ac756 8654
b0a873eb 8655 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
ba3dd36c
PZ
8656
8657 if (event->state != PERF_EVENT_STATE_ACTIVE)
8658 return HRTIMER_NORESTART;
8659
b0a873eb 8660 event->pmu->read(event);
f344011c 8661
fd0d000b 8662 perf_sample_data_init(&data, 0, event->hw.last_period);
b0a873eb
PZ
8663 regs = get_irq_regs();
8664
8665 if (regs && !perf_exclude_event(event, regs)) {
77aeeebd 8666 if (!(event->attr.exclude_idle && is_idle_task(current)))
33b07b8b 8667 if (__perf_event_overflow(event, 1, &data, regs))
b0a873eb
PZ
8668 ret = HRTIMER_NORESTART;
8669 }
24f1e32c 8670
b0a873eb
PZ
8671 period = max_t(u64, 10000, event->hw.sample_period);
8672 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
24f1e32c 8673
b0a873eb 8674 return ret;
f29ac756
PZ
8675}
8676
b0a873eb 8677static void perf_swevent_start_hrtimer(struct perf_event *event)
5c92d124 8678{
b0a873eb 8679 struct hw_perf_event *hwc = &event->hw;
5d508e82
FBH
8680 s64 period;
8681
8682 if (!is_sampling_event(event))
8683 return;
f5ffe02e 8684
5d508e82
FBH
8685 period = local64_read(&hwc->period_left);
8686 if (period) {
8687 if (period < 0)
8688 period = 10000;
fa407f35 8689
5d508e82
FBH
8690 local64_set(&hwc->period_left, 0);
8691 } else {
8692 period = max_t(u64, 10000, hwc->sample_period);
8693 }
3497d206
TG
8694 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
8695 HRTIMER_MODE_REL_PINNED);
24f1e32c 8696}
b0a873eb
PZ
8697
8698static void perf_swevent_cancel_hrtimer(struct perf_event *event)
24f1e32c 8699{
b0a873eb
PZ
8700 struct hw_perf_event *hwc = &event->hw;
8701
6c7e550f 8702 if (is_sampling_event(event)) {
b0a873eb 8703 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
fa407f35 8704 local64_set(&hwc->period_left, ktime_to_ns(remaining));
b0a873eb
PZ
8705
8706 hrtimer_cancel(&hwc->hrtimer);
8707 }
24f1e32c
FW
8708}
8709
ba3dd36c
PZ
8710static void perf_swevent_init_hrtimer(struct perf_event *event)
8711{
8712 struct hw_perf_event *hwc = &event->hw;
8713
8714 if (!is_sampling_event(event))
8715 return;
8716
8717 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
8718 hwc->hrtimer.function = perf_swevent_hrtimer;
8719
8720 /*
8721 * Since hrtimers have a fixed rate, we can do a static freq->period
8722 * mapping and avoid the whole period adjust feedback stuff.
8723 */
8724 if (event->attr.freq) {
8725 long freq = event->attr.sample_freq;
8726
8727 event->attr.sample_period = NSEC_PER_SEC / freq;
8728 hwc->sample_period = event->attr.sample_period;
8729 local64_set(&hwc->period_left, hwc->sample_period);
778141e3 8730 hwc->last_period = hwc->sample_period;
ba3dd36c
PZ
8731 event->attr.freq = 0;
8732 }
8733}
8734
b0a873eb
PZ
8735/*
8736 * Software event: cpu wall time clock
8737 */
8738
8739static void cpu_clock_event_update(struct perf_event *event)
24f1e32c 8740{
b0a873eb
PZ
8741 s64 prev;
8742 u64 now;
8743
a4eaf7f1 8744 now = local_clock();
b0a873eb
PZ
8745 prev = local64_xchg(&event->hw.prev_count, now);
8746 local64_add(now - prev, &event->count);
24f1e32c 8747}
24f1e32c 8748
a4eaf7f1 8749static void cpu_clock_event_start(struct perf_event *event, int flags)
b0a873eb 8750{
a4eaf7f1 8751 local64_set(&event->hw.prev_count, local_clock());
b0a873eb 8752 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
8753}
8754
a4eaf7f1 8755static void cpu_clock_event_stop(struct perf_event *event, int flags)
f29ac756 8756{
b0a873eb
PZ
8757 perf_swevent_cancel_hrtimer(event);
8758 cpu_clock_event_update(event);
8759}
f29ac756 8760
a4eaf7f1
PZ
8761static int cpu_clock_event_add(struct perf_event *event, int flags)
8762{
8763 if (flags & PERF_EF_START)
8764 cpu_clock_event_start(event, flags);
6a694a60 8765 perf_event_update_userpage(event);
a4eaf7f1
PZ
8766
8767 return 0;
8768}
8769
8770static void cpu_clock_event_del(struct perf_event *event, int flags)
8771{
8772 cpu_clock_event_stop(event, flags);
8773}
8774
b0a873eb
PZ
8775static void cpu_clock_event_read(struct perf_event *event)
8776{
8777 cpu_clock_event_update(event);
8778}
f344011c 8779
b0a873eb
PZ
8780static int cpu_clock_event_init(struct perf_event *event)
8781{
8782 if (event->attr.type != PERF_TYPE_SOFTWARE)
8783 return -ENOENT;
8784
8785 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
8786 return -ENOENT;
8787
2481c5fa
SE
8788 /*
8789 * no branch sampling for software events
8790 */
8791 if (has_branch_stack(event))
8792 return -EOPNOTSUPP;
8793
ba3dd36c
PZ
8794 perf_swevent_init_hrtimer(event);
8795
b0a873eb 8796 return 0;
f29ac756
PZ
8797}
8798
b0a873eb 8799static struct pmu perf_cpu_clock = {
89a1e187
PZ
8800 .task_ctx_nr = perf_sw_context,
8801
34f43927
PZ
8802 .capabilities = PERF_PMU_CAP_NO_NMI,
8803
b0a873eb 8804 .event_init = cpu_clock_event_init,
a4eaf7f1
PZ
8805 .add = cpu_clock_event_add,
8806 .del = cpu_clock_event_del,
8807 .start = cpu_clock_event_start,
8808 .stop = cpu_clock_event_stop,
b0a873eb
PZ
8809 .read = cpu_clock_event_read,
8810};
8811
8812/*
8813 * Software event: task time clock
8814 */
8815
8816static void task_clock_event_update(struct perf_event *event, u64 now)
5c92d124 8817{
b0a873eb
PZ
8818 u64 prev;
8819 s64 delta;
5c92d124 8820
b0a873eb
PZ
8821 prev = local64_xchg(&event->hw.prev_count, now);
8822 delta = now - prev;
8823 local64_add(delta, &event->count);
8824}
5c92d124 8825
a4eaf7f1 8826static void task_clock_event_start(struct perf_event *event, int flags)
b0a873eb 8827{
a4eaf7f1 8828 local64_set(&event->hw.prev_count, event->ctx->time);
b0a873eb 8829 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
8830}
8831
a4eaf7f1 8832static void task_clock_event_stop(struct perf_event *event, int flags)
b0a873eb
PZ
8833{
8834 perf_swevent_cancel_hrtimer(event);
8835 task_clock_event_update(event, event->ctx->time);
a4eaf7f1
PZ
8836}
8837
8838static int task_clock_event_add(struct perf_event *event, int flags)
8839{
8840 if (flags & PERF_EF_START)
8841 task_clock_event_start(event, flags);
6a694a60 8842 perf_event_update_userpage(event);
b0a873eb 8843
a4eaf7f1
PZ
8844 return 0;
8845}
8846
8847static void task_clock_event_del(struct perf_event *event, int flags)
8848{
8849 task_clock_event_stop(event, PERF_EF_UPDATE);
b0a873eb
PZ
8850}
8851
8852static void task_clock_event_read(struct perf_event *event)
8853{
768a06e2
PZ
8854 u64 now = perf_clock();
8855 u64 delta = now - event->ctx->timestamp;
8856 u64 time = event->ctx->time + delta;
b0a873eb
PZ
8857
8858 task_clock_event_update(event, time);
8859}
8860
8861static int task_clock_event_init(struct perf_event *event)
6fb2915d 8862{
b0a873eb
PZ
8863 if (event->attr.type != PERF_TYPE_SOFTWARE)
8864 return -ENOENT;
8865
8866 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
8867 return -ENOENT;
8868
2481c5fa
SE
8869 /*
8870 * no branch sampling for software events
8871 */
8872 if (has_branch_stack(event))
8873 return -EOPNOTSUPP;
8874
ba3dd36c
PZ
8875 perf_swevent_init_hrtimer(event);
8876
b0a873eb 8877 return 0;
6fb2915d
LZ
8878}
8879
b0a873eb 8880static struct pmu perf_task_clock = {
89a1e187
PZ
8881 .task_ctx_nr = perf_sw_context,
8882
34f43927
PZ
8883 .capabilities = PERF_PMU_CAP_NO_NMI,
8884
b0a873eb 8885 .event_init = task_clock_event_init,
a4eaf7f1
PZ
8886 .add = task_clock_event_add,
8887 .del = task_clock_event_del,
8888 .start = task_clock_event_start,
8889 .stop = task_clock_event_stop,
b0a873eb
PZ
8890 .read = task_clock_event_read,
8891};
6fb2915d 8892
ad5133b7 8893static void perf_pmu_nop_void(struct pmu *pmu)
e077df4f 8894{
e077df4f 8895}
6fb2915d 8896
fbbe0701
SB
8897static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
8898{
8899}
8900
ad5133b7 8901static int perf_pmu_nop_int(struct pmu *pmu)
6fb2915d 8902{
ad5133b7 8903 return 0;
6fb2915d
LZ
8904}
8905
18ab2cd3 8906static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
fbbe0701
SB
8907
8908static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
6fb2915d 8909{
fbbe0701
SB
8910 __this_cpu_write(nop_txn_flags, flags);
8911
8912 if (flags & ~PERF_PMU_TXN_ADD)
8913 return;
8914
ad5133b7 8915 perf_pmu_disable(pmu);
6fb2915d
LZ
8916}
8917
ad5133b7
PZ
8918static int perf_pmu_commit_txn(struct pmu *pmu)
8919{
fbbe0701
SB
8920 unsigned int flags = __this_cpu_read(nop_txn_flags);
8921
8922 __this_cpu_write(nop_txn_flags, 0);
8923
8924 if (flags & ~PERF_PMU_TXN_ADD)
8925 return 0;
8926
ad5133b7
PZ
8927 perf_pmu_enable(pmu);
8928 return 0;
8929}
e077df4f 8930
ad5133b7 8931static void perf_pmu_cancel_txn(struct pmu *pmu)
24f1e32c 8932{
fbbe0701
SB
8933 unsigned int flags = __this_cpu_read(nop_txn_flags);
8934
8935 __this_cpu_write(nop_txn_flags, 0);
8936
8937 if (flags & ~PERF_PMU_TXN_ADD)
8938 return;
8939
ad5133b7 8940 perf_pmu_enable(pmu);
24f1e32c
FW
8941}
8942
35edc2a5
PZ
8943static int perf_event_idx_default(struct perf_event *event)
8944{
c719f560 8945 return 0;
35edc2a5
PZ
8946}
8947
8dc85d54
PZ
8948/*
8949 * Ensures all contexts with the same task_ctx_nr have the same
8950 * pmu_cpu_context too.
8951 */
9e317041 8952static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
24f1e32c 8953{
8dc85d54 8954 struct pmu *pmu;
b326e956 8955
8dc85d54
PZ
8956 if (ctxn < 0)
8957 return NULL;
24f1e32c 8958
8dc85d54
PZ
8959 list_for_each_entry(pmu, &pmus, entry) {
8960 if (pmu->task_ctx_nr == ctxn)
8961 return pmu->pmu_cpu_context;
8962 }
24f1e32c 8963
8dc85d54 8964 return NULL;
24f1e32c
FW
8965}
8966
51676957
PZ
8967static void free_pmu_context(struct pmu *pmu)
8968{
df0062b2
WD
8969 /*
8970 * Static contexts such as perf_sw_context have a global lifetime
8971 * and may be shared between different PMUs. Avoid freeing them
8972 * when a single PMU is going away.
8973 */
8974 if (pmu->task_ctx_nr > perf_invalid_context)
8975 return;
8976
8dc85d54 8977 mutex_lock(&pmus_lock);
51676957 8978 free_percpu(pmu->pmu_cpu_context);
8dc85d54 8979 mutex_unlock(&pmus_lock);
24f1e32c 8980}
6e855cd4
AS
8981
8982/*
8983 * Let userspace know that this PMU supports address range filtering:
8984 */
8985static ssize_t nr_addr_filters_show(struct device *dev,
8986 struct device_attribute *attr,
8987 char *page)
8988{
8989 struct pmu *pmu = dev_get_drvdata(dev);
8990
8991 return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
8992}
8993DEVICE_ATTR_RO(nr_addr_filters);
8994
2e80a82a 8995static struct idr pmu_idr;
d6d020e9 8996
abe43400
PZ
8997static ssize_t
8998type_show(struct device *dev, struct device_attribute *attr, char *page)
8999{
9000 struct pmu *pmu = dev_get_drvdata(dev);
9001
9002 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
9003}
90826ca7 9004static DEVICE_ATTR_RO(type);
abe43400 9005
62b85639
SE
9006static ssize_t
9007perf_event_mux_interval_ms_show(struct device *dev,
9008 struct device_attribute *attr,
9009 char *page)
9010{
9011 struct pmu *pmu = dev_get_drvdata(dev);
9012
9013 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
9014}
9015
272325c4
PZ
9016static DEFINE_MUTEX(mux_interval_mutex);
9017
62b85639
SE
9018static ssize_t
9019perf_event_mux_interval_ms_store(struct device *dev,
9020 struct device_attribute *attr,
9021 const char *buf, size_t count)
9022{
9023 struct pmu *pmu = dev_get_drvdata(dev);
9024 int timer, cpu, ret;
9025
9026 ret = kstrtoint(buf, 0, &timer);
9027 if (ret)
9028 return ret;
9029
9030 if (timer < 1)
9031 return -EINVAL;
9032
9033 /* same value, noting to do */
9034 if (timer == pmu->hrtimer_interval_ms)
9035 return count;
9036
272325c4 9037 mutex_lock(&mux_interval_mutex);
62b85639
SE
9038 pmu->hrtimer_interval_ms = timer;
9039
9040 /* update all cpuctx for this PMU */
a63fbed7 9041 cpus_read_lock();
272325c4 9042 for_each_online_cpu(cpu) {
62b85639
SE
9043 struct perf_cpu_context *cpuctx;
9044 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
9045 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
9046
272325c4
PZ
9047 cpu_function_call(cpu,
9048 (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
62b85639 9049 }
a63fbed7 9050 cpus_read_unlock();
272325c4 9051 mutex_unlock(&mux_interval_mutex);
62b85639
SE
9052
9053 return count;
9054}
90826ca7 9055static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
62b85639 9056
90826ca7
GKH
9057static struct attribute *pmu_dev_attrs[] = {
9058 &dev_attr_type.attr,
9059 &dev_attr_perf_event_mux_interval_ms.attr,
9060 NULL,
abe43400 9061};
90826ca7 9062ATTRIBUTE_GROUPS(pmu_dev);
abe43400
PZ
9063
9064static int pmu_bus_running;
9065static struct bus_type pmu_bus = {
9066 .name = "event_source",
90826ca7 9067 .dev_groups = pmu_dev_groups,
abe43400
PZ
9068};
9069
9070static void pmu_dev_release(struct device *dev)
9071{
9072 kfree(dev);
9073}
9074
9075static int pmu_dev_alloc(struct pmu *pmu)
9076{
9077 int ret = -ENOMEM;
9078
9079 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
9080 if (!pmu->dev)
9081 goto out;
9082
0c9d42ed 9083 pmu->dev->groups = pmu->attr_groups;
abe43400
PZ
9084 device_initialize(pmu->dev);
9085 ret = dev_set_name(pmu->dev, "%s", pmu->name);
9086 if (ret)
9087 goto free_dev;
9088
9089 dev_set_drvdata(pmu->dev, pmu);
9090 pmu->dev->bus = &pmu_bus;
9091 pmu->dev->release = pmu_dev_release;
9092 ret = device_add(pmu->dev);
9093 if (ret)
9094 goto free_dev;
9095
6e855cd4
AS
9096 /* For PMUs with address filters, throw in an extra attribute: */
9097 if (pmu->nr_addr_filters)
9098 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
9099
9100 if (ret)
9101 goto del_dev;
9102
abe43400
PZ
9103out:
9104 return ret;
9105
6e855cd4
AS
9106del_dev:
9107 device_del(pmu->dev);
9108
abe43400
PZ
9109free_dev:
9110 put_device(pmu->dev);
9111 goto out;
9112}
9113
547e9fd7 9114static struct lock_class_key cpuctx_mutex;
facc4307 9115static struct lock_class_key cpuctx_lock;
547e9fd7 9116
03d8e80b 9117int perf_pmu_register(struct pmu *pmu, const char *name, int type)
24f1e32c 9118{
108b02cf 9119 int cpu, ret;
24f1e32c 9120
b0a873eb 9121 mutex_lock(&pmus_lock);
33696fc0
PZ
9122 ret = -ENOMEM;
9123 pmu->pmu_disable_count = alloc_percpu(int);
9124 if (!pmu->pmu_disable_count)
9125 goto unlock;
f29ac756 9126
2e80a82a
PZ
9127 pmu->type = -1;
9128 if (!name)
9129 goto skip_type;
9130 pmu->name = name;
9131
9132 if (type < 0) {
0e9c3be2
TH
9133 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
9134 if (type < 0) {
9135 ret = type;
2e80a82a
PZ
9136 goto free_pdc;
9137 }
9138 }
9139 pmu->type = type;
9140
abe43400
PZ
9141 if (pmu_bus_running) {
9142 ret = pmu_dev_alloc(pmu);
9143 if (ret)
9144 goto free_idr;
9145 }
9146
2e80a82a 9147skip_type:
26657848
PZ
9148 if (pmu->task_ctx_nr == perf_hw_context) {
9149 static int hw_context_taken = 0;
9150
5101ef20
MR
9151 /*
9152 * Other than systems with heterogeneous CPUs, it never makes
9153 * sense for two PMUs to share perf_hw_context. PMUs which are
9154 * uncore must use perf_invalid_context.
9155 */
9156 if (WARN_ON_ONCE(hw_context_taken &&
9157 !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
26657848
PZ
9158 pmu->task_ctx_nr = perf_invalid_context;
9159
9160 hw_context_taken = 1;
9161 }
9162
8dc85d54
PZ
9163 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
9164 if (pmu->pmu_cpu_context)
9165 goto got_cpu_context;
f29ac756 9166
c4814202 9167 ret = -ENOMEM;
108b02cf
PZ
9168 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
9169 if (!pmu->pmu_cpu_context)
abe43400 9170 goto free_dev;
f344011c 9171
108b02cf
PZ
9172 for_each_possible_cpu(cpu) {
9173 struct perf_cpu_context *cpuctx;
9174
9175 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
eb184479 9176 __perf_event_init_context(&cpuctx->ctx);
547e9fd7 9177 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
facc4307 9178 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
108b02cf 9179 cpuctx->ctx.pmu = pmu;
a63fbed7 9180 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
9e630205 9181
272325c4 9182 __perf_mux_hrtimer_init(cpuctx, cpu);
108b02cf 9183 }
76e1d904 9184
8dc85d54 9185got_cpu_context:
ad5133b7
PZ
9186 if (!pmu->start_txn) {
9187 if (pmu->pmu_enable) {
9188 /*
9189 * If we have pmu_enable/pmu_disable calls, install
9190 * transaction stubs that use that to try and batch
9191 * hardware accesses.
9192 */
9193 pmu->start_txn = perf_pmu_start_txn;
9194 pmu->commit_txn = perf_pmu_commit_txn;
9195 pmu->cancel_txn = perf_pmu_cancel_txn;
9196 } else {
fbbe0701 9197 pmu->start_txn = perf_pmu_nop_txn;
ad5133b7
PZ
9198 pmu->commit_txn = perf_pmu_nop_int;
9199 pmu->cancel_txn = perf_pmu_nop_void;
f344011c 9200 }
5c92d124 9201 }
15dbf27c 9202
ad5133b7
PZ
9203 if (!pmu->pmu_enable) {
9204 pmu->pmu_enable = perf_pmu_nop_void;
9205 pmu->pmu_disable = perf_pmu_nop_void;
9206 }
9207
35edc2a5
PZ
9208 if (!pmu->event_idx)
9209 pmu->event_idx = perf_event_idx_default;
9210
b0a873eb 9211 list_add_rcu(&pmu->entry, &pmus);
bed5b25a 9212 atomic_set(&pmu->exclusive_cnt, 0);
33696fc0
PZ
9213 ret = 0;
9214unlock:
b0a873eb
PZ
9215 mutex_unlock(&pmus_lock);
9216
33696fc0 9217 return ret;
108b02cf 9218
abe43400
PZ
9219free_dev:
9220 device_del(pmu->dev);
9221 put_device(pmu->dev);
9222
2e80a82a
PZ
9223free_idr:
9224 if (pmu->type >= PERF_TYPE_MAX)
9225 idr_remove(&pmu_idr, pmu->type);
9226
108b02cf
PZ
9227free_pdc:
9228 free_percpu(pmu->pmu_disable_count);
9229 goto unlock;
f29ac756 9230}
c464c76e 9231EXPORT_SYMBOL_GPL(perf_pmu_register);
f29ac756 9232
b0a873eb 9233void perf_pmu_unregister(struct pmu *pmu)
5c92d124 9234{
0933840a
JO
9235 int remove_device;
9236
b0a873eb 9237 mutex_lock(&pmus_lock);
0933840a 9238 remove_device = pmu_bus_running;
b0a873eb
PZ
9239 list_del_rcu(&pmu->entry);
9240 mutex_unlock(&pmus_lock);
5c92d124 9241
0475f9ea 9242 /*
cde8e884
PZ
9243 * We dereference the pmu list under both SRCU and regular RCU, so
9244 * synchronize against both of those.
0475f9ea 9245 */
b0a873eb 9246 synchronize_srcu(&pmus_srcu);
cde8e884 9247 synchronize_rcu();
d6d020e9 9248
33696fc0 9249 free_percpu(pmu->pmu_disable_count);
2e80a82a
PZ
9250 if (pmu->type >= PERF_TYPE_MAX)
9251 idr_remove(&pmu_idr, pmu->type);
0933840a
JO
9252 if (remove_device) {
9253 if (pmu->nr_addr_filters)
9254 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
9255 device_del(pmu->dev);
9256 put_device(pmu->dev);
9257 }
51676957 9258 free_pmu_context(pmu);
b0a873eb 9259}
c464c76e 9260EXPORT_SYMBOL_GPL(perf_pmu_unregister);
d6d020e9 9261
cc34b98b
MR
9262static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
9263{
ccd41c86 9264 struct perf_event_context *ctx = NULL;
cc34b98b
MR
9265 int ret;
9266
9267 if (!try_module_get(pmu->module))
9268 return -ENODEV;
ccd41c86
PZ
9269
9270 if (event->group_leader != event) {
8b10c5e2
PZ
9271 /*
9272 * This ctx->mutex can nest when we're called through
9273 * inheritance. See the perf_event_ctx_lock_nested() comment.
9274 */
9275 ctx = perf_event_ctx_lock_nested(event->group_leader,
9276 SINGLE_DEPTH_NESTING);
ccd41c86
PZ
9277 BUG_ON(!ctx);
9278 }
9279
cc34b98b
MR
9280 event->pmu = pmu;
9281 ret = pmu->event_init(event);
ccd41c86
PZ
9282
9283 if (ctx)
9284 perf_event_ctx_unlock(event->group_leader, ctx);
9285
cc34b98b
MR
9286 if (ret)
9287 module_put(pmu->module);
9288
9289 return ret;
9290}
9291
18ab2cd3 9292static struct pmu *perf_init_event(struct perf_event *event)
b0a873eb 9293{
85c617ab 9294 struct pmu *pmu;
b0a873eb 9295 int idx;
940c5b29 9296 int ret;
b0a873eb
PZ
9297
9298 idx = srcu_read_lock(&pmus_srcu);
2e80a82a 9299
40999312
KL
9300 /* Try parent's PMU first: */
9301 if (event->parent && event->parent->pmu) {
9302 pmu = event->parent->pmu;
9303 ret = perf_try_init_event(pmu, event);
9304 if (!ret)
9305 goto unlock;
9306 }
9307
2e80a82a
PZ
9308 rcu_read_lock();
9309 pmu = idr_find(&pmu_idr, event->attr.type);
9310 rcu_read_unlock();
940c5b29 9311 if (pmu) {
cc34b98b 9312 ret = perf_try_init_event(pmu, event);
940c5b29
LM
9313 if (ret)
9314 pmu = ERR_PTR(ret);
2e80a82a 9315 goto unlock;
940c5b29 9316 }
2e80a82a 9317
b0a873eb 9318 list_for_each_entry_rcu(pmu, &pmus, entry) {
cc34b98b 9319 ret = perf_try_init_event(pmu, event);
b0a873eb 9320 if (!ret)
e5f4d339 9321 goto unlock;
76e1d904 9322
b0a873eb
PZ
9323 if (ret != -ENOENT) {
9324 pmu = ERR_PTR(ret);
e5f4d339 9325 goto unlock;
f344011c 9326 }
5c92d124 9327 }
e5f4d339
PZ
9328 pmu = ERR_PTR(-ENOENT);
9329unlock:
b0a873eb 9330 srcu_read_unlock(&pmus_srcu, idx);
15dbf27c 9331
4aeb0b42 9332 return pmu;
5c92d124
IM
9333}
9334
f2fb6bef
KL
9335static void attach_sb_event(struct perf_event *event)
9336{
9337 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
9338
9339 raw_spin_lock(&pel->lock);
9340 list_add_rcu(&event->sb_list, &pel->list);
9341 raw_spin_unlock(&pel->lock);
9342}
9343
aab5b71e
PZ
9344/*
9345 * We keep a list of all !task (and therefore per-cpu) events
9346 * that need to receive side-band records.
9347 *
9348 * This avoids having to scan all the various PMU per-cpu contexts
9349 * looking for them.
9350 */
f2fb6bef
KL
9351static void account_pmu_sb_event(struct perf_event *event)
9352{
a4f144eb 9353 if (is_sb_event(event))
f2fb6bef
KL
9354 attach_sb_event(event);
9355}
9356
4beb31f3
FW
9357static void account_event_cpu(struct perf_event *event, int cpu)
9358{
9359 if (event->parent)
9360 return;
9361
4beb31f3
FW
9362 if (is_cgroup_event(event))
9363 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
9364}
9365
555e0c1e
FW
9366/* Freq events need the tick to stay alive (see perf_event_task_tick). */
9367static void account_freq_event_nohz(void)
9368{
9369#ifdef CONFIG_NO_HZ_FULL
9370 /* Lock so we don't race with concurrent unaccount */
9371 spin_lock(&nr_freq_lock);
9372 if (atomic_inc_return(&nr_freq_events) == 1)
9373 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
9374 spin_unlock(&nr_freq_lock);
9375#endif
9376}
9377
9378static void account_freq_event(void)
9379{
9380 if (tick_nohz_full_enabled())
9381 account_freq_event_nohz();
9382 else
9383 atomic_inc(&nr_freq_events);
9384}
9385
9386
766d6c07
FW
9387static void account_event(struct perf_event *event)
9388{
25432ae9
PZ
9389 bool inc = false;
9390
4beb31f3
FW
9391 if (event->parent)
9392 return;
9393
766d6c07 9394 if (event->attach_state & PERF_ATTACH_TASK)
25432ae9 9395 inc = true;
766d6c07
FW
9396 if (event->attr.mmap || event->attr.mmap_data)
9397 atomic_inc(&nr_mmap_events);
9398 if (event->attr.comm)
9399 atomic_inc(&nr_comm_events);
e4222673
HB
9400 if (event->attr.namespaces)
9401 atomic_inc(&nr_namespaces_events);
766d6c07
FW
9402 if (event->attr.task)
9403 atomic_inc(&nr_task_events);
555e0c1e
FW
9404 if (event->attr.freq)
9405 account_freq_event();
45ac1403
AH
9406 if (event->attr.context_switch) {
9407 atomic_inc(&nr_switch_events);
25432ae9 9408 inc = true;
45ac1403 9409 }
4beb31f3 9410 if (has_branch_stack(event))
25432ae9 9411 inc = true;
4beb31f3 9412 if (is_cgroup_event(event))
25432ae9
PZ
9413 inc = true;
9414
9107c89e
PZ
9415 if (inc) {
9416 if (atomic_inc_not_zero(&perf_sched_count))
9417 goto enabled;
9418
9419 mutex_lock(&perf_sched_mutex);
9420 if (!atomic_read(&perf_sched_count)) {
9421 static_branch_enable(&perf_sched_events);
9422 /*
9423 * Guarantee that all CPUs observe they key change and
9424 * call the perf scheduling hooks before proceeding to
9425 * install events that need them.
9426 */
9427 synchronize_sched();
9428 }
9429 /*
9430 * Now that we have waited for the sync_sched(), allow further
9431 * increments to by-pass the mutex.
9432 */
9433 atomic_inc(&perf_sched_count);
9434 mutex_unlock(&perf_sched_mutex);
9435 }
9436enabled:
4beb31f3
FW
9437
9438 account_event_cpu(event, event->cpu);
f2fb6bef
KL
9439
9440 account_pmu_sb_event(event);
766d6c07
FW
9441}
9442
0793a61d 9443/*
cdd6c482 9444 * Allocate and initialize a event structure
0793a61d 9445 */
cdd6c482 9446static struct perf_event *
c3f00c70 9447perf_event_alloc(struct perf_event_attr *attr, int cpu,
d580ff86
PZ
9448 struct task_struct *task,
9449 struct perf_event *group_leader,
9450 struct perf_event *parent_event,
4dc0da86 9451 perf_overflow_handler_t overflow_handler,
79dff51e 9452 void *context, int cgroup_fd)
0793a61d 9453{
51b0fe39 9454 struct pmu *pmu;
cdd6c482
IM
9455 struct perf_event *event;
9456 struct hw_perf_event *hwc;
90983b16 9457 long err = -EINVAL;
0793a61d 9458
66832eb4
ON
9459 if ((unsigned)cpu >= nr_cpu_ids) {
9460 if (!task || cpu != -1)
9461 return ERR_PTR(-EINVAL);
9462 }
9463
c3f00c70 9464 event = kzalloc(sizeof(*event), GFP_KERNEL);
cdd6c482 9465 if (!event)
d5d2bc0d 9466 return ERR_PTR(-ENOMEM);
0793a61d 9467
04289bb9 9468 /*
cdd6c482 9469 * Single events are their own group leaders, with an
04289bb9
IM
9470 * empty sibling list:
9471 */
9472 if (!group_leader)
cdd6c482 9473 group_leader = event;
04289bb9 9474
cdd6c482
IM
9475 mutex_init(&event->child_mutex);
9476 INIT_LIST_HEAD(&event->child_list);
fccc714b 9477
cdd6c482
IM
9478 INIT_LIST_HEAD(&event->group_entry);
9479 INIT_LIST_HEAD(&event->event_entry);
9480 INIT_LIST_HEAD(&event->sibling_list);
10c6db11 9481 INIT_LIST_HEAD(&event->rb_entry);
71ad88ef 9482 INIT_LIST_HEAD(&event->active_entry);
375637bc 9483 INIT_LIST_HEAD(&event->addr_filters.list);
f3ae75de
SE
9484 INIT_HLIST_NODE(&event->hlist_entry);
9485
10c6db11 9486
cdd6c482 9487 init_waitqueue_head(&event->waitq);
e360adbe 9488 init_irq_work(&event->pending, perf_pending_event);
0793a61d 9489
cdd6c482 9490 mutex_init(&event->mmap_mutex);
375637bc 9491 raw_spin_lock_init(&event->addr_filters.lock);
7b732a75 9492
a6fa941d 9493 atomic_long_set(&event->refcount, 1);
cdd6c482
IM
9494 event->cpu = cpu;
9495 event->attr = *attr;
9496 event->group_leader = group_leader;
9497 event->pmu = NULL;
cdd6c482 9498 event->oncpu = -1;
a96bbc16 9499
cdd6c482 9500 event->parent = parent_event;
b84fbc9f 9501
17cf22c3 9502 event->ns = get_pid_ns(task_active_pid_ns(current));
cdd6c482 9503 event->id = atomic64_inc_return(&perf_event_id);
a96bbc16 9504
cdd6c482 9505 event->state = PERF_EVENT_STATE_INACTIVE;
329d876d 9506
d580ff86
PZ
9507 if (task) {
9508 event->attach_state = PERF_ATTACH_TASK;
d580ff86 9509 /*
50f16a8b
PZ
9510 * XXX pmu::event_init needs to know what task to account to
9511 * and we cannot use the ctx information because we need the
9512 * pmu before we get a ctx.
d580ff86 9513 */
50f16a8b 9514 event->hw.target = task;
d580ff86
PZ
9515 }
9516
34f43927
PZ
9517 event->clock = &local_clock;
9518 if (parent_event)
9519 event->clock = parent_event->clock;
9520
4dc0da86 9521 if (!overflow_handler && parent_event) {
b326e956 9522 overflow_handler = parent_event->overflow_handler;
4dc0da86 9523 context = parent_event->overflow_handler_context;
f1e4ba5b 9524#if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
aa6a5f3c
AS
9525 if (overflow_handler == bpf_overflow_handler) {
9526 struct bpf_prog *prog = bpf_prog_inc(parent_event->prog);
9527
9528 if (IS_ERR(prog)) {
9529 err = PTR_ERR(prog);
9530 goto err_ns;
9531 }
9532 event->prog = prog;
9533 event->orig_overflow_handler =
9534 parent_event->orig_overflow_handler;
9535 }
9536#endif
4dc0da86 9537 }
66832eb4 9538
1879445d
WN
9539 if (overflow_handler) {
9540 event->overflow_handler = overflow_handler;
9541 event->overflow_handler_context = context;
9ecda41a
WN
9542 } else if (is_write_backward(event)){
9543 event->overflow_handler = perf_event_output_backward;
9544 event->overflow_handler_context = NULL;
1879445d 9545 } else {
9ecda41a 9546 event->overflow_handler = perf_event_output_forward;
1879445d
WN
9547 event->overflow_handler_context = NULL;
9548 }
97eaf530 9549
0231bb53 9550 perf_event__state_init(event);
a86ed508 9551
4aeb0b42 9552 pmu = NULL;
b8e83514 9553
cdd6c482 9554 hwc = &event->hw;
bd2b5b12 9555 hwc->sample_period = attr->sample_period;
0d48696f 9556 if (attr->freq && attr->sample_freq)
bd2b5b12 9557 hwc->sample_period = 1;
eced1dfc 9558 hwc->last_period = hwc->sample_period;
bd2b5b12 9559
e7850595 9560 local64_set(&hwc->period_left, hwc->sample_period);
60db5e09 9561
2023b359 9562 /*
ba5213ae
PZ
9563 * We currently do not support PERF_SAMPLE_READ on inherited events.
9564 * See perf_output_read().
2023b359 9565 */
ba5213ae 9566 if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
90983b16 9567 goto err_ns;
a46a2300
YZ
9568
9569 if (!has_branch_stack(event))
9570 event->attr.branch_sample_type = 0;
2023b359 9571
79dff51e
MF
9572 if (cgroup_fd != -1) {
9573 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
9574 if (err)
9575 goto err_ns;
9576 }
9577
b0a873eb 9578 pmu = perf_init_event(event);
85c617ab 9579 if (IS_ERR(pmu)) {
4aeb0b42 9580 err = PTR_ERR(pmu);
90983b16 9581 goto err_ns;
621a01ea 9582 }
d5d2bc0d 9583
bed5b25a
AS
9584 err = exclusive_event_init(event);
9585 if (err)
9586 goto err_pmu;
9587
375637bc
AS
9588 if (has_addr_filter(event)) {
9589 event->addr_filters_offs = kcalloc(pmu->nr_addr_filters,
9590 sizeof(unsigned long),
9591 GFP_KERNEL);
36cc2b92
DC
9592 if (!event->addr_filters_offs) {
9593 err = -ENOMEM;
375637bc 9594 goto err_per_task;
36cc2b92 9595 }
375637bc
AS
9596
9597 /* force hw sync on the address filters */
9598 event->addr_filters_gen = 1;
9599 }
9600
cdd6c482 9601 if (!event->parent) {
927c7a9e 9602 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
97c79a38 9603 err = get_callchain_buffers(attr->sample_max_stack);
90983b16 9604 if (err)
375637bc 9605 goto err_addr_filters;
d010b332 9606 }
f344011c 9607 }
9ee318a7 9608
927a5570
AS
9609 /* symmetric to unaccount_event() in _free_event() */
9610 account_event(event);
9611
cdd6c482 9612 return event;
90983b16 9613
375637bc
AS
9614err_addr_filters:
9615 kfree(event->addr_filters_offs);
9616
bed5b25a
AS
9617err_per_task:
9618 exclusive_event_destroy(event);
9619
90983b16
FW
9620err_pmu:
9621 if (event->destroy)
9622 event->destroy(event);
c464c76e 9623 module_put(pmu->module);
90983b16 9624err_ns:
79dff51e
MF
9625 if (is_cgroup_event(event))
9626 perf_detach_cgroup(event);
90983b16
FW
9627 if (event->ns)
9628 put_pid_ns(event->ns);
9629 kfree(event);
9630
9631 return ERR_PTR(err);
0793a61d
TG
9632}
9633
cdd6c482
IM
9634static int perf_copy_attr(struct perf_event_attr __user *uattr,
9635 struct perf_event_attr *attr)
974802ea 9636{
974802ea 9637 u32 size;
cdf8073d 9638 int ret;
974802ea
PZ
9639
9640 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
9641 return -EFAULT;
9642
9643 /*
9644 * zero the full structure, so that a short copy will be nice.
9645 */
9646 memset(attr, 0, sizeof(*attr));
9647
9648 ret = get_user(size, &uattr->size);
9649 if (ret)
9650 return ret;
9651
9652 if (size > PAGE_SIZE) /* silly large */
9653 goto err_size;
9654
9655 if (!size) /* abi compat */
9656 size = PERF_ATTR_SIZE_VER0;
9657
9658 if (size < PERF_ATTR_SIZE_VER0)
9659 goto err_size;
9660
9661 /*
9662 * If we're handed a bigger struct than we know of,
cdf8073d
IS
9663 * ensure all the unknown bits are 0 - i.e. new
9664 * user-space does not rely on any kernel feature
9665 * extensions we dont know about yet.
974802ea
PZ
9666 */
9667 if (size > sizeof(*attr)) {
cdf8073d
IS
9668 unsigned char __user *addr;
9669 unsigned char __user *end;
9670 unsigned char val;
974802ea 9671
cdf8073d
IS
9672 addr = (void __user *)uattr + sizeof(*attr);
9673 end = (void __user *)uattr + size;
974802ea 9674
cdf8073d 9675 for (; addr < end; addr++) {
974802ea
PZ
9676 ret = get_user(val, addr);
9677 if (ret)
9678 return ret;
9679 if (val)
9680 goto err_size;
9681 }
b3e62e35 9682 size = sizeof(*attr);
974802ea
PZ
9683 }
9684
9685 ret = copy_from_user(attr, uattr, size);
9686 if (ret)
9687 return -EFAULT;
9688
f12f42ac
MX
9689 attr->size = size;
9690
cd757645 9691 if (attr->__reserved_1)
974802ea
PZ
9692 return -EINVAL;
9693
9694 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
9695 return -EINVAL;
9696
9697 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
9698 return -EINVAL;
9699
bce38cd5
SE
9700 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
9701 u64 mask = attr->branch_sample_type;
9702
9703 /* only using defined bits */
9704 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
9705 return -EINVAL;
9706
9707 /* at least one branch bit must be set */
9708 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
9709 return -EINVAL;
9710
bce38cd5
SE
9711 /* propagate priv level, when not set for branch */
9712 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
9713
9714 /* exclude_kernel checked on syscall entry */
9715 if (!attr->exclude_kernel)
9716 mask |= PERF_SAMPLE_BRANCH_KERNEL;
9717
9718 if (!attr->exclude_user)
9719 mask |= PERF_SAMPLE_BRANCH_USER;
9720
9721 if (!attr->exclude_hv)
9722 mask |= PERF_SAMPLE_BRANCH_HV;
9723 /*
9724 * adjust user setting (for HW filter setup)
9725 */
9726 attr->branch_sample_type = mask;
9727 }
e712209a
SE
9728 /* privileged levels capture (kernel, hv): check permissions */
9729 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
2b923c8f
SE
9730 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9731 return -EACCES;
bce38cd5 9732 }
4018994f 9733
c5ebcedb 9734 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
4018994f 9735 ret = perf_reg_validate(attr->sample_regs_user);
c5ebcedb
JO
9736 if (ret)
9737 return ret;
9738 }
9739
9740 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
9741 if (!arch_perf_have_user_stack_dump())
9742 return -ENOSYS;
9743
9744 /*
9745 * We have __u32 type for the size, but so far
9746 * we can only use __u16 as maximum due to the
9747 * __u16 sample size limit.
9748 */
9749 if (attr->sample_stack_user >= USHRT_MAX)
9750 ret = -EINVAL;
9751 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
9752 ret = -EINVAL;
9753 }
4018994f 9754
60e2364e
SE
9755 if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
9756 ret = perf_reg_validate(attr->sample_regs_intr);
974802ea
PZ
9757out:
9758 return ret;
9759
9760err_size:
9761 put_user(sizeof(*attr), &uattr->size);
9762 ret = -E2BIG;
9763 goto out;
9764}
9765
ac9721f3
PZ
9766static int
9767perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
a4be7c27 9768{
b69cf536 9769 struct ring_buffer *rb = NULL;
a4be7c27
PZ
9770 int ret = -EINVAL;
9771
ac9721f3 9772 if (!output_event)
a4be7c27
PZ
9773 goto set;
9774
ac9721f3
PZ
9775 /* don't allow circular references */
9776 if (event == output_event)
a4be7c27
PZ
9777 goto out;
9778
0f139300
PZ
9779 /*
9780 * Don't allow cross-cpu buffers
9781 */
9782 if (output_event->cpu != event->cpu)
9783 goto out;
9784
9785 /*
76369139 9786 * If its not a per-cpu rb, it must be the same task.
0f139300
PZ
9787 */
9788 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
9789 goto out;
9790
34f43927
PZ
9791 /*
9792 * Mixing clocks in the same buffer is trouble you don't need.
9793 */
9794 if (output_event->clock != event->clock)
9795 goto out;
9796
9ecda41a
WN
9797 /*
9798 * Either writing ring buffer from beginning or from end.
9799 * Mixing is not allowed.
9800 */
9801 if (is_write_backward(output_event) != is_write_backward(event))
9802 goto out;
9803
45bfb2e5
PZ
9804 /*
9805 * If both events generate aux data, they must be on the same PMU
9806 */
9807 if (has_aux(event) && has_aux(output_event) &&
9808 event->pmu != output_event->pmu)
9809 goto out;
9810
a4be7c27 9811set:
cdd6c482 9812 mutex_lock(&event->mmap_mutex);
ac9721f3
PZ
9813 /* Can't redirect output if we've got an active mmap() */
9814 if (atomic_read(&event->mmap_count))
9815 goto unlock;
a4be7c27 9816
ac9721f3 9817 if (output_event) {
76369139
FW
9818 /* get the rb we want to redirect to */
9819 rb = ring_buffer_get(output_event);
9820 if (!rb)
ac9721f3 9821 goto unlock;
a4be7c27
PZ
9822 }
9823
b69cf536 9824 ring_buffer_attach(event, rb);
9bb5d40c 9825
a4be7c27 9826 ret = 0;
ac9721f3
PZ
9827unlock:
9828 mutex_unlock(&event->mmap_mutex);
9829
a4be7c27 9830out:
a4be7c27
PZ
9831 return ret;
9832}
9833
f63a8daa
PZ
9834static void mutex_lock_double(struct mutex *a, struct mutex *b)
9835{
9836 if (b < a)
9837 swap(a, b);
9838
9839 mutex_lock(a);
9840 mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
9841}
9842
34f43927
PZ
9843static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
9844{
9845 bool nmi_safe = false;
9846
9847 switch (clk_id) {
9848 case CLOCK_MONOTONIC:
9849 event->clock = &ktime_get_mono_fast_ns;
9850 nmi_safe = true;
9851 break;
9852
9853 case CLOCK_MONOTONIC_RAW:
9854 event->clock = &ktime_get_raw_fast_ns;
9855 nmi_safe = true;
9856 break;
9857
9858 case CLOCK_REALTIME:
9859 event->clock = &ktime_get_real_ns;
9860 break;
9861
9862 case CLOCK_BOOTTIME:
9863 event->clock = &ktime_get_boot_ns;
9864 break;
9865
9866 case CLOCK_TAI:
9867 event->clock = &ktime_get_tai_ns;
9868 break;
9869
9870 default:
9871 return -EINVAL;
9872 }
9873
9874 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
9875 return -EINVAL;
9876
9877 return 0;
9878}
9879
321027c1
PZ
9880/*
9881 * Variation on perf_event_ctx_lock_nested(), except we take two context
9882 * mutexes.
9883 */
9884static struct perf_event_context *
9885__perf_event_ctx_lock_double(struct perf_event *group_leader,
9886 struct perf_event_context *ctx)
9887{
9888 struct perf_event_context *gctx;
9889
9890again:
9891 rcu_read_lock();
9892 gctx = READ_ONCE(group_leader->ctx);
9893 if (!atomic_inc_not_zero(&gctx->refcount)) {
9894 rcu_read_unlock();
9895 goto again;
9896 }
9897 rcu_read_unlock();
9898
9899 mutex_lock_double(&gctx->mutex, &ctx->mutex);
9900
9901 if (group_leader->ctx != gctx) {
9902 mutex_unlock(&ctx->mutex);
9903 mutex_unlock(&gctx->mutex);
9904 put_ctx(gctx);
9905 goto again;
9906 }
9907
9908 return gctx;
9909}
9910
0793a61d 9911/**
cdd6c482 9912 * sys_perf_event_open - open a performance event, associate it to a task/cpu
9f66a381 9913 *
cdd6c482 9914 * @attr_uptr: event_id type attributes for monitoring/sampling
0793a61d 9915 * @pid: target pid
9f66a381 9916 * @cpu: target cpu
cdd6c482 9917 * @group_fd: group leader event fd
0793a61d 9918 */
cdd6c482
IM
9919SYSCALL_DEFINE5(perf_event_open,
9920 struct perf_event_attr __user *, attr_uptr,
2743a5b0 9921 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
0793a61d 9922{
b04243ef
PZ
9923 struct perf_event *group_leader = NULL, *output_event = NULL;
9924 struct perf_event *event, *sibling;
cdd6c482 9925 struct perf_event_attr attr;
f63a8daa 9926 struct perf_event_context *ctx, *uninitialized_var(gctx);
cdd6c482 9927 struct file *event_file = NULL;
2903ff01 9928 struct fd group = {NULL, 0};
38a81da2 9929 struct task_struct *task = NULL;
89a1e187 9930 struct pmu *pmu;
ea635c64 9931 int event_fd;
b04243ef 9932 int move_group = 0;
dc86cabe 9933 int err;
a21b0b35 9934 int f_flags = O_RDWR;
79dff51e 9935 int cgroup_fd = -1;
0793a61d 9936
2743a5b0 9937 /* for future expandability... */
e5d1367f 9938 if (flags & ~PERF_FLAG_ALL)
2743a5b0
PM
9939 return -EINVAL;
9940
dc86cabe
IM
9941 err = perf_copy_attr(attr_uptr, &attr);
9942 if (err)
9943 return err;
eab656ae 9944
0764771d
PZ
9945 if (!attr.exclude_kernel) {
9946 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9947 return -EACCES;
9948 }
9949
e4222673
HB
9950 if (attr.namespaces) {
9951 if (!capable(CAP_SYS_ADMIN))
9952 return -EACCES;
9953 }
9954
df58ab24 9955 if (attr.freq) {
cdd6c482 9956 if (attr.sample_freq > sysctl_perf_event_sample_rate)
df58ab24 9957 return -EINVAL;
0819b2e3
PZ
9958 } else {
9959 if (attr.sample_period & (1ULL << 63))
9960 return -EINVAL;
df58ab24
PZ
9961 }
9962
fc7ce9c7
KL
9963 /* Only privileged users can get physical addresses */
9964 if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR) &&
9965 perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9966 return -EACCES;
9967
97c79a38
ACM
9968 if (!attr.sample_max_stack)
9969 attr.sample_max_stack = sysctl_perf_event_max_stack;
9970
e5d1367f
SE
9971 /*
9972 * In cgroup mode, the pid argument is used to pass the fd
9973 * opened to the cgroup directory in cgroupfs. The cpu argument
9974 * designates the cpu on which to monitor threads from that
9975 * cgroup.
9976 */
9977 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
9978 return -EINVAL;
9979
a21b0b35
YD
9980 if (flags & PERF_FLAG_FD_CLOEXEC)
9981 f_flags |= O_CLOEXEC;
9982
9983 event_fd = get_unused_fd_flags(f_flags);
ea635c64
AV
9984 if (event_fd < 0)
9985 return event_fd;
9986
ac9721f3 9987 if (group_fd != -1) {
2903ff01
AV
9988 err = perf_fget_light(group_fd, &group);
9989 if (err)
d14b12d7 9990 goto err_fd;
2903ff01 9991 group_leader = group.file->private_data;
ac9721f3
PZ
9992 if (flags & PERF_FLAG_FD_OUTPUT)
9993 output_event = group_leader;
9994 if (flags & PERF_FLAG_FD_NO_GROUP)
9995 group_leader = NULL;
9996 }
9997
e5d1367f 9998 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
c6be5a5c
PZ
9999 task = find_lively_task_by_vpid(pid);
10000 if (IS_ERR(task)) {
10001 err = PTR_ERR(task);
10002 goto err_group_fd;
10003 }
10004 }
10005
1f4ee503
PZ
10006 if (task && group_leader &&
10007 group_leader->attr.inherit != attr.inherit) {
10008 err = -EINVAL;
10009 goto err_task;
10010 }
10011
79c9ce57
PZ
10012 if (task) {
10013 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
10014 if (err)
e5aeee51 10015 goto err_task;
79c9ce57
PZ
10016
10017 /*
10018 * Reuse ptrace permission checks for now.
10019 *
10020 * We must hold cred_guard_mutex across this and any potential
10021 * perf_install_in_context() call for this new event to
10022 * serialize against exec() altering our credentials (and the
10023 * perf_event_exit_task() that could imply).
10024 */
10025 err = -EACCES;
10026 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
10027 goto err_cred;
10028 }
10029
79dff51e
MF
10030 if (flags & PERF_FLAG_PID_CGROUP)
10031 cgroup_fd = pid;
10032
4dc0da86 10033 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
79dff51e 10034 NULL, NULL, cgroup_fd);
d14b12d7
SE
10035 if (IS_ERR(event)) {
10036 err = PTR_ERR(event);
79c9ce57 10037 goto err_cred;
d14b12d7
SE
10038 }
10039
53b25335
VW
10040 if (is_sampling_event(event)) {
10041 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
a1396555 10042 err = -EOPNOTSUPP;
53b25335
VW
10043 goto err_alloc;
10044 }
10045 }
10046
89a1e187
PZ
10047 /*
10048 * Special case software events and allow them to be part of
10049 * any hardware group.
10050 */
10051 pmu = event->pmu;
b04243ef 10052
34f43927
PZ
10053 if (attr.use_clockid) {
10054 err = perf_event_set_clock(event, attr.clockid);
10055 if (err)
10056 goto err_alloc;
10057 }
10058
4ff6a8de
DCC
10059 if (pmu->task_ctx_nr == perf_sw_context)
10060 event->event_caps |= PERF_EV_CAP_SOFTWARE;
10061
b04243ef
PZ
10062 if (group_leader &&
10063 (is_software_event(event) != is_software_event(group_leader))) {
10064 if (is_software_event(event)) {
10065 /*
10066 * If event and group_leader are not both a software
10067 * event, and event is, then group leader is not.
10068 *
10069 * Allow the addition of software events to !software
10070 * groups, this is safe because software events never
10071 * fail to schedule.
10072 */
10073 pmu = group_leader->pmu;
10074 } else if (is_software_event(group_leader) &&
4ff6a8de 10075 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
b04243ef
PZ
10076 /*
10077 * In case the group is a pure software group, and we
10078 * try to add a hardware event, move the whole group to
10079 * the hardware context.
10080 */
10081 move_group = 1;
10082 }
10083 }
89a1e187
PZ
10084
10085 /*
10086 * Get the target context (task or percpu):
10087 */
4af57ef2 10088 ctx = find_get_context(pmu, task, event);
89a1e187
PZ
10089 if (IS_ERR(ctx)) {
10090 err = PTR_ERR(ctx);
c6be5a5c 10091 goto err_alloc;
89a1e187
PZ
10092 }
10093
bed5b25a
AS
10094 if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
10095 err = -EBUSY;
10096 goto err_context;
10097 }
10098
ccff286d 10099 /*
cdd6c482 10100 * Look up the group leader (we will attach this event to it):
04289bb9 10101 */
ac9721f3 10102 if (group_leader) {
dc86cabe 10103 err = -EINVAL;
04289bb9 10104
04289bb9 10105 /*
ccff286d
IM
10106 * Do not allow a recursive hierarchy (this new sibling
10107 * becoming part of another group-sibling):
10108 */
10109 if (group_leader->group_leader != group_leader)
c3f00c70 10110 goto err_context;
34f43927
PZ
10111
10112 /* All events in a group should have the same clock */
10113 if (group_leader->clock != event->clock)
10114 goto err_context;
10115
ccff286d 10116 /*
64aee2a9
MR
10117 * Make sure we're both events for the same CPU;
10118 * grouping events for different CPUs is broken; since
10119 * you can never concurrently schedule them anyhow.
04289bb9 10120 */
64aee2a9
MR
10121 if (group_leader->cpu != event->cpu)
10122 goto err_context;
c3c87e77 10123
64aee2a9
MR
10124 /*
10125 * Make sure we're both on the same task, or both
10126 * per-CPU events.
10127 */
10128 if (group_leader->ctx->task != ctx->task)
10129 goto err_context;
10130
10131 /*
10132 * Do not allow to attach to a group in a different task
10133 * or CPU context. If we're moving SW events, we'll fix
10134 * this up later, so allow that.
10135 */
10136 if (!move_group && group_leader->ctx != ctx)
10137 goto err_context;
b04243ef 10138
3b6f9e5c
PM
10139 /*
10140 * Only a group leader can be exclusive or pinned
10141 */
0d48696f 10142 if (attr.exclusive || attr.pinned)
c3f00c70 10143 goto err_context;
ac9721f3
PZ
10144 }
10145
10146 if (output_event) {
10147 err = perf_event_set_output(event, output_event);
10148 if (err)
c3f00c70 10149 goto err_context;
ac9721f3 10150 }
0793a61d 10151
a21b0b35
YD
10152 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
10153 f_flags);
ea635c64
AV
10154 if (IS_ERR(event_file)) {
10155 err = PTR_ERR(event_file);
201c2f85 10156 event_file = NULL;
c3f00c70 10157 goto err_context;
ea635c64 10158 }
9b51f66d 10159
b04243ef 10160 if (move_group) {
321027c1
PZ
10161 gctx = __perf_event_ctx_lock_double(group_leader, ctx);
10162
84c4e620
PZ
10163 if (gctx->task == TASK_TOMBSTONE) {
10164 err = -ESRCH;
10165 goto err_locked;
10166 }
321027c1
PZ
10167
10168 /*
10169 * Check if we raced against another sys_perf_event_open() call
10170 * moving the software group underneath us.
10171 */
10172 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
10173 /*
10174 * If someone moved the group out from under us, check
10175 * if this new event wound up on the same ctx, if so
10176 * its the regular !move_group case, otherwise fail.
10177 */
10178 if (gctx != ctx) {
10179 err = -EINVAL;
10180 goto err_locked;
10181 } else {
10182 perf_event_ctx_unlock(group_leader, gctx);
10183 move_group = 0;
10184 }
10185 }
f55fc2a5
PZ
10186 } else {
10187 mutex_lock(&ctx->mutex);
10188 }
10189
84c4e620
PZ
10190 if (ctx->task == TASK_TOMBSTONE) {
10191 err = -ESRCH;
10192 goto err_locked;
10193 }
10194
a723968c
PZ
10195 if (!perf_event_validate_size(event)) {
10196 err = -E2BIG;
10197 goto err_locked;
10198 }
10199
a63fbed7
TG
10200 if (!task) {
10201 /*
10202 * Check if the @cpu we're creating an event for is online.
10203 *
10204 * We use the perf_cpu_context::ctx::mutex to serialize against
10205 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
10206 */
10207 struct perf_cpu_context *cpuctx =
10208 container_of(ctx, struct perf_cpu_context, ctx);
10209
10210 if (!cpuctx->online) {
10211 err = -ENODEV;
10212 goto err_locked;
10213 }
10214 }
10215
10216
f55fc2a5
PZ
10217 /*
10218 * Must be under the same ctx::mutex as perf_install_in_context(),
10219 * because we need to serialize with concurrent event creation.
10220 */
10221 if (!exclusive_event_installable(event, ctx)) {
10222 /* exclusive and group stuff are assumed mutually exclusive */
10223 WARN_ON_ONCE(move_group);
f63a8daa 10224
f55fc2a5
PZ
10225 err = -EBUSY;
10226 goto err_locked;
10227 }
f63a8daa 10228
f55fc2a5
PZ
10229 WARN_ON_ONCE(ctx->parent_ctx);
10230
79c9ce57
PZ
10231 /*
10232 * This is the point on no return; we cannot fail hereafter. This is
10233 * where we start modifying current state.
10234 */
10235
f55fc2a5 10236 if (move_group) {
f63a8daa
PZ
10237 /*
10238 * See perf_event_ctx_lock() for comments on the details
10239 * of swizzling perf_event::ctx.
10240 */
45a0e07a 10241 perf_remove_from_context(group_leader, 0);
279b5165 10242 put_ctx(gctx);
0231bb53 10243
b04243ef
PZ
10244 list_for_each_entry(sibling, &group_leader->sibling_list,
10245 group_entry) {
45a0e07a 10246 perf_remove_from_context(sibling, 0);
b04243ef
PZ
10247 put_ctx(gctx);
10248 }
b04243ef 10249
f63a8daa
PZ
10250 /*
10251 * Wait for everybody to stop referencing the events through
10252 * the old lists, before installing it on new lists.
10253 */
0cda4c02 10254 synchronize_rcu();
f63a8daa 10255
8f95b435
PZI
10256 /*
10257 * Install the group siblings before the group leader.
10258 *
10259 * Because a group leader will try and install the entire group
10260 * (through the sibling list, which is still in-tact), we can
10261 * end up with siblings installed in the wrong context.
10262 *
10263 * By installing siblings first we NO-OP because they're not
10264 * reachable through the group lists.
10265 */
b04243ef
PZ
10266 list_for_each_entry(sibling, &group_leader->sibling_list,
10267 group_entry) {
8f95b435 10268 perf_event__state_init(sibling);
9fc81d87 10269 perf_install_in_context(ctx, sibling, sibling->cpu);
b04243ef
PZ
10270 get_ctx(ctx);
10271 }
8f95b435
PZI
10272
10273 /*
10274 * Removing from the context ends up with disabled
10275 * event. What we want here is event in the initial
10276 * startup state, ready to be add into new context.
10277 */
10278 perf_event__state_init(group_leader);
10279 perf_install_in_context(ctx, group_leader, group_leader->cpu);
10280 get_ctx(ctx);
bed5b25a
AS
10281 }
10282
f73e22ab
PZ
10283 /*
10284 * Precalculate sample_data sizes; do while holding ctx::mutex such
10285 * that we're serialized against further additions and before
10286 * perf_install_in_context() which is the point the event is active and
10287 * can use these values.
10288 */
10289 perf_event__header_size(event);
10290 perf_event__id_header_size(event);
10291
78cd2c74
PZ
10292 event->owner = current;
10293
e2d37cd2 10294 perf_install_in_context(ctx, event, event->cpu);
fe4b04fa 10295 perf_unpin_context(ctx);
f63a8daa 10296
f55fc2a5 10297 if (move_group)
321027c1 10298 perf_event_ctx_unlock(group_leader, gctx);
d859e29f 10299 mutex_unlock(&ctx->mutex);
9b51f66d 10300
79c9ce57
PZ
10301 if (task) {
10302 mutex_unlock(&task->signal->cred_guard_mutex);
10303 put_task_struct(task);
10304 }
10305
cdd6c482
IM
10306 mutex_lock(&current->perf_event_mutex);
10307 list_add_tail(&event->owner_entry, &current->perf_event_list);
10308 mutex_unlock(&current->perf_event_mutex);
082ff5a2 10309
8a49542c
PZ
10310 /*
10311 * Drop the reference on the group_event after placing the
10312 * new event on the sibling_list. This ensures destruction
10313 * of the group leader will find the pointer to itself in
10314 * perf_group_detach().
10315 */
2903ff01 10316 fdput(group);
ea635c64
AV
10317 fd_install(event_fd, event_file);
10318 return event_fd;
0793a61d 10319
f55fc2a5
PZ
10320err_locked:
10321 if (move_group)
321027c1 10322 perf_event_ctx_unlock(group_leader, gctx);
f55fc2a5
PZ
10323 mutex_unlock(&ctx->mutex);
10324/* err_file: */
10325 fput(event_file);
c3f00c70 10326err_context:
fe4b04fa 10327 perf_unpin_context(ctx);
ea635c64 10328 put_ctx(ctx);
c6be5a5c 10329err_alloc:
13005627
PZ
10330 /*
10331 * If event_file is set, the fput() above will have called ->release()
10332 * and that will take care of freeing the event.
10333 */
10334 if (!event_file)
10335 free_event(event);
79c9ce57
PZ
10336err_cred:
10337 if (task)
10338 mutex_unlock(&task->signal->cred_guard_mutex);
1f4ee503 10339err_task:
e7d0bc04
PZ
10340 if (task)
10341 put_task_struct(task);
89a1e187 10342err_group_fd:
2903ff01 10343 fdput(group);
ea635c64
AV
10344err_fd:
10345 put_unused_fd(event_fd);
dc86cabe 10346 return err;
0793a61d
TG
10347}
10348
fb0459d7
AV
10349/**
10350 * perf_event_create_kernel_counter
10351 *
10352 * @attr: attributes of the counter to create
10353 * @cpu: cpu in which the counter is bound
38a81da2 10354 * @task: task to profile (NULL for percpu)
fb0459d7
AV
10355 */
10356struct perf_event *
10357perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
38a81da2 10358 struct task_struct *task,
4dc0da86
AK
10359 perf_overflow_handler_t overflow_handler,
10360 void *context)
fb0459d7 10361{
fb0459d7 10362 struct perf_event_context *ctx;
c3f00c70 10363 struct perf_event *event;
fb0459d7 10364 int err;
d859e29f 10365
fb0459d7
AV
10366 /*
10367 * Get the target context (task or percpu):
10368 */
d859e29f 10369
4dc0da86 10370 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
79dff51e 10371 overflow_handler, context, -1);
c3f00c70
PZ
10372 if (IS_ERR(event)) {
10373 err = PTR_ERR(event);
10374 goto err;
10375 }
d859e29f 10376
f8697762 10377 /* Mark owner so we could distinguish it from user events. */
63b6da39 10378 event->owner = TASK_TOMBSTONE;
f8697762 10379
4af57ef2 10380 ctx = find_get_context(event->pmu, task, event);
c6567f64
FW
10381 if (IS_ERR(ctx)) {
10382 err = PTR_ERR(ctx);
c3f00c70 10383 goto err_free;
d859e29f 10384 }
fb0459d7 10385
fb0459d7
AV
10386 WARN_ON_ONCE(ctx->parent_ctx);
10387 mutex_lock(&ctx->mutex);
84c4e620
PZ
10388 if (ctx->task == TASK_TOMBSTONE) {
10389 err = -ESRCH;
10390 goto err_unlock;
10391 }
10392
a63fbed7
TG
10393 if (!task) {
10394 /*
10395 * Check if the @cpu we're creating an event for is online.
10396 *
10397 * We use the perf_cpu_context::ctx::mutex to serialize against
10398 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
10399 */
10400 struct perf_cpu_context *cpuctx =
10401 container_of(ctx, struct perf_cpu_context, ctx);
10402 if (!cpuctx->online) {
10403 err = -ENODEV;
10404 goto err_unlock;
10405 }
10406 }
10407
bed5b25a 10408 if (!exclusive_event_installable(event, ctx)) {
bed5b25a 10409 err = -EBUSY;
84c4e620 10410 goto err_unlock;
bed5b25a
AS
10411 }
10412
fb0459d7 10413 perf_install_in_context(ctx, event, cpu);
fe4b04fa 10414 perf_unpin_context(ctx);
fb0459d7
AV
10415 mutex_unlock(&ctx->mutex);
10416
fb0459d7
AV
10417 return event;
10418
84c4e620
PZ
10419err_unlock:
10420 mutex_unlock(&ctx->mutex);
10421 perf_unpin_context(ctx);
10422 put_ctx(ctx);
c3f00c70
PZ
10423err_free:
10424 free_event(event);
10425err:
c6567f64 10426 return ERR_PTR(err);
9b51f66d 10427}
fb0459d7 10428EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
9b51f66d 10429
0cda4c02
YZ
10430void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
10431{
10432 struct perf_event_context *src_ctx;
10433 struct perf_event_context *dst_ctx;
10434 struct perf_event *event, *tmp;
10435 LIST_HEAD(events);
10436
10437 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
10438 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
10439
f63a8daa
PZ
10440 /*
10441 * See perf_event_ctx_lock() for comments on the details
10442 * of swizzling perf_event::ctx.
10443 */
10444 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
0cda4c02
YZ
10445 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
10446 event_entry) {
45a0e07a 10447 perf_remove_from_context(event, 0);
9a545de0 10448 unaccount_event_cpu(event, src_cpu);
0cda4c02 10449 put_ctx(src_ctx);
9886167d 10450 list_add(&event->migrate_entry, &events);
0cda4c02 10451 }
0cda4c02 10452
8f95b435
PZI
10453 /*
10454 * Wait for the events to quiesce before re-instating them.
10455 */
0cda4c02
YZ
10456 synchronize_rcu();
10457
8f95b435
PZI
10458 /*
10459 * Re-instate events in 2 passes.
10460 *
10461 * Skip over group leaders and only install siblings on this first
10462 * pass, siblings will not get enabled without a leader, however a
10463 * leader will enable its siblings, even if those are still on the old
10464 * context.
10465 */
10466 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10467 if (event->group_leader == event)
10468 continue;
10469
10470 list_del(&event->migrate_entry);
10471 if (event->state >= PERF_EVENT_STATE_OFF)
10472 event->state = PERF_EVENT_STATE_INACTIVE;
10473 account_event_cpu(event, dst_cpu);
10474 perf_install_in_context(dst_ctx, event, dst_cpu);
10475 get_ctx(dst_ctx);
10476 }
10477
10478 /*
10479 * Once all the siblings are setup properly, install the group leaders
10480 * to make it go.
10481 */
9886167d
PZ
10482 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10483 list_del(&event->migrate_entry);
0cda4c02
YZ
10484 if (event->state >= PERF_EVENT_STATE_OFF)
10485 event->state = PERF_EVENT_STATE_INACTIVE;
9a545de0 10486 account_event_cpu(event, dst_cpu);
0cda4c02
YZ
10487 perf_install_in_context(dst_ctx, event, dst_cpu);
10488 get_ctx(dst_ctx);
10489 }
10490 mutex_unlock(&dst_ctx->mutex);
f63a8daa 10491 mutex_unlock(&src_ctx->mutex);
0cda4c02
YZ
10492}
10493EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
10494
cdd6c482 10495static void sync_child_event(struct perf_event *child_event,
38b200d6 10496 struct task_struct *child)
d859e29f 10497{
cdd6c482 10498 struct perf_event *parent_event = child_event->parent;
8bc20959 10499 u64 child_val;
d859e29f 10500
cdd6c482
IM
10501 if (child_event->attr.inherit_stat)
10502 perf_event_read_event(child_event, child);
38b200d6 10503
b5e58793 10504 child_val = perf_event_count(child_event);
d859e29f
PM
10505
10506 /*
10507 * Add back the child's count to the parent's count:
10508 */
a6e6dea6 10509 atomic64_add(child_val, &parent_event->child_count);
cdd6c482
IM
10510 atomic64_add(child_event->total_time_enabled,
10511 &parent_event->child_total_time_enabled);
10512 atomic64_add(child_event->total_time_running,
10513 &parent_event->child_total_time_running);
d859e29f
PM
10514}
10515
9b51f66d 10516static void
8ba289b8
PZ
10517perf_event_exit_event(struct perf_event *child_event,
10518 struct perf_event_context *child_ctx,
10519 struct task_struct *child)
9b51f66d 10520{
8ba289b8
PZ
10521 struct perf_event *parent_event = child_event->parent;
10522
1903d50c
PZ
10523 /*
10524 * Do not destroy the 'original' grouping; because of the context
10525 * switch optimization the original events could've ended up in a
10526 * random child task.
10527 *
10528 * If we were to destroy the original group, all group related
10529 * operations would cease to function properly after this random
10530 * child dies.
10531 *
10532 * Do destroy all inherited groups, we don't care about those
10533 * and being thorough is better.
10534 */
32132a3d
PZ
10535 raw_spin_lock_irq(&child_ctx->lock);
10536 WARN_ON_ONCE(child_ctx->is_active);
10537
8ba289b8 10538 if (parent_event)
32132a3d
PZ
10539 perf_group_detach(child_event);
10540 list_del_event(child_event, child_ctx);
a69b0ca4 10541 child_event->state = PERF_EVENT_STATE_EXIT; /* is_event_hup() */
32132a3d 10542 raw_spin_unlock_irq(&child_ctx->lock);
0cc0c027 10543
9b51f66d 10544 /*
8ba289b8 10545 * Parent events are governed by their filedesc, retain them.
9b51f66d 10546 */
8ba289b8 10547 if (!parent_event) {
179033b3 10548 perf_event_wakeup(child_event);
8ba289b8 10549 return;
4bcf349a 10550 }
8ba289b8
PZ
10551 /*
10552 * Child events can be cleaned up.
10553 */
10554
10555 sync_child_event(child_event, child);
10556
10557 /*
10558 * Remove this event from the parent's list
10559 */
10560 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
10561 mutex_lock(&parent_event->child_mutex);
10562 list_del_init(&child_event->child_list);
10563 mutex_unlock(&parent_event->child_mutex);
10564
10565 /*
10566 * Kick perf_poll() for is_event_hup().
10567 */
10568 perf_event_wakeup(parent_event);
10569 free_event(child_event);
10570 put_event(parent_event);
9b51f66d
IM
10571}
10572
8dc85d54 10573static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
9b51f66d 10574{
211de6eb 10575 struct perf_event_context *child_ctx, *clone_ctx = NULL;
63b6da39 10576 struct perf_event *child_event, *next;
63b6da39
PZ
10577
10578 WARN_ON_ONCE(child != current);
9b51f66d 10579
6a3351b6 10580 child_ctx = perf_pin_task_context(child, ctxn);
63b6da39 10581 if (!child_ctx)
9b51f66d
IM
10582 return;
10583
ad3a37de 10584 /*
6a3351b6
PZ
10585 * In order to reduce the amount of tricky in ctx tear-down, we hold
10586 * ctx::mutex over the entire thing. This serializes against almost
10587 * everything that wants to access the ctx.
10588 *
10589 * The exception is sys_perf_event_open() /
10590 * perf_event_create_kernel_count() which does find_get_context()
10591 * without ctx::mutex (it cannot because of the move_group double mutex
10592 * lock thing). See the comments in perf_install_in_context().
ad3a37de 10593 */
6a3351b6 10594 mutex_lock(&child_ctx->mutex);
c93f7669
PM
10595
10596 /*
6a3351b6
PZ
10597 * In a single ctx::lock section, de-schedule the events and detach the
10598 * context from the task such that we cannot ever get it scheduled back
10599 * in.
c93f7669 10600 */
6a3351b6 10601 raw_spin_lock_irq(&child_ctx->lock);
487f05e1 10602 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
4a1c0f26 10603
71a851b4 10604 /*
63b6da39
PZ
10605 * Now that the context is inactive, destroy the task <-> ctx relation
10606 * and mark the context dead.
71a851b4 10607 */
63b6da39
PZ
10608 RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
10609 put_ctx(child_ctx); /* cannot be last */
10610 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
10611 put_task_struct(current); /* cannot be last */
4a1c0f26 10612
211de6eb 10613 clone_ctx = unclone_ctx(child_ctx);
6a3351b6 10614 raw_spin_unlock_irq(&child_ctx->lock);
9f498cc5 10615
211de6eb
PZ
10616 if (clone_ctx)
10617 put_ctx(clone_ctx);
4a1c0f26 10618
9f498cc5 10619 /*
cdd6c482
IM
10620 * Report the task dead after unscheduling the events so that we
10621 * won't get any samples after PERF_RECORD_EXIT. We can however still
10622 * get a few PERF_RECORD_READ events.
9f498cc5 10623 */
cdd6c482 10624 perf_event_task(child, child_ctx, 0);
a63eaf34 10625
ebf905fc 10626 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
8ba289b8 10627 perf_event_exit_event(child_event, child_ctx, child);
8bc20959 10628
a63eaf34
PM
10629 mutex_unlock(&child_ctx->mutex);
10630
10631 put_ctx(child_ctx);
9b51f66d
IM
10632}
10633
8dc85d54
PZ
10634/*
10635 * When a child task exits, feed back event values to parent events.
79c9ce57
PZ
10636 *
10637 * Can be called with cred_guard_mutex held when called from
10638 * install_exec_creds().
8dc85d54
PZ
10639 */
10640void perf_event_exit_task(struct task_struct *child)
10641{
8882135b 10642 struct perf_event *event, *tmp;
8dc85d54
PZ
10643 int ctxn;
10644
8882135b
PZ
10645 mutex_lock(&child->perf_event_mutex);
10646 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
10647 owner_entry) {
10648 list_del_init(&event->owner_entry);
10649
10650 /*
10651 * Ensure the list deletion is visible before we clear
10652 * the owner, closes a race against perf_release() where
10653 * we need to serialize on the owner->perf_event_mutex.
10654 */
f47c02c0 10655 smp_store_release(&event->owner, NULL);
8882135b
PZ
10656 }
10657 mutex_unlock(&child->perf_event_mutex);
10658
8dc85d54
PZ
10659 for_each_task_context_nr(ctxn)
10660 perf_event_exit_task_context(child, ctxn);
4e93ad60
JO
10661
10662 /*
10663 * The perf_event_exit_task_context calls perf_event_task
10664 * with child's task_ctx, which generates EXIT events for
10665 * child contexts and sets child->perf_event_ctxp[] to NULL.
10666 * At this point we need to send EXIT events to cpu contexts.
10667 */
10668 perf_event_task(child, NULL, 0);
8dc85d54
PZ
10669}
10670
889ff015
FW
10671static void perf_free_event(struct perf_event *event,
10672 struct perf_event_context *ctx)
10673{
10674 struct perf_event *parent = event->parent;
10675
10676 if (WARN_ON_ONCE(!parent))
10677 return;
10678
10679 mutex_lock(&parent->child_mutex);
10680 list_del_init(&event->child_list);
10681 mutex_unlock(&parent->child_mutex);
10682
a6fa941d 10683 put_event(parent);
889ff015 10684
652884fe 10685 raw_spin_lock_irq(&ctx->lock);
8a49542c 10686 perf_group_detach(event);
889ff015 10687 list_del_event(event, ctx);
652884fe 10688 raw_spin_unlock_irq(&ctx->lock);
889ff015
FW
10689 free_event(event);
10690}
10691
bbbee908 10692/*
652884fe 10693 * Free an unexposed, unused context as created by inheritance by
8dc85d54 10694 * perf_event_init_task below, used by fork() in case of fail.
652884fe
PZ
10695 *
10696 * Not all locks are strictly required, but take them anyway to be nice and
10697 * help out with the lockdep assertions.
bbbee908 10698 */
cdd6c482 10699void perf_event_free_task(struct task_struct *task)
bbbee908 10700{
8dc85d54 10701 struct perf_event_context *ctx;
cdd6c482 10702 struct perf_event *event, *tmp;
8dc85d54 10703 int ctxn;
bbbee908 10704
8dc85d54
PZ
10705 for_each_task_context_nr(ctxn) {
10706 ctx = task->perf_event_ctxp[ctxn];
10707 if (!ctx)
10708 continue;
bbbee908 10709
8dc85d54 10710 mutex_lock(&ctx->mutex);
e552a838
PZ
10711 raw_spin_lock_irq(&ctx->lock);
10712 /*
10713 * Destroy the task <-> ctx relation and mark the context dead.
10714 *
10715 * This is important because even though the task hasn't been
10716 * exposed yet the context has been (through child_list).
10717 */
10718 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
10719 WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
10720 put_task_struct(task); /* cannot be last */
10721 raw_spin_unlock_irq(&ctx->lock);
bbbee908 10722
15121c78 10723 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
8dc85d54 10724 perf_free_event(event, ctx);
bbbee908 10725
8dc85d54 10726 mutex_unlock(&ctx->mutex);
8dc85d54
PZ
10727 put_ctx(ctx);
10728 }
889ff015
FW
10729}
10730
4e231c79
PZ
10731void perf_event_delayed_put(struct task_struct *task)
10732{
10733 int ctxn;
10734
10735 for_each_task_context_nr(ctxn)
10736 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
10737}
10738
e03e7ee3 10739struct file *perf_event_get(unsigned int fd)
ffe8690c 10740{
e03e7ee3 10741 struct file *file;
ffe8690c 10742
e03e7ee3
AS
10743 file = fget_raw(fd);
10744 if (!file)
10745 return ERR_PTR(-EBADF);
ffe8690c 10746
e03e7ee3
AS
10747 if (file->f_op != &perf_fops) {
10748 fput(file);
10749 return ERR_PTR(-EBADF);
10750 }
ffe8690c 10751
e03e7ee3 10752 return file;
ffe8690c
KX
10753}
10754
10755const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
10756{
10757 if (!event)
10758 return ERR_PTR(-EINVAL);
10759
10760 return &event->attr;
10761}
10762
97dee4f3 10763/*
d8a8cfc7
PZ
10764 * Inherit a event from parent task to child task.
10765 *
10766 * Returns:
10767 * - valid pointer on success
10768 * - NULL for orphaned events
10769 * - IS_ERR() on error
97dee4f3
PZ
10770 */
10771static struct perf_event *
10772inherit_event(struct perf_event *parent_event,
10773 struct task_struct *parent,
10774 struct perf_event_context *parent_ctx,
10775 struct task_struct *child,
10776 struct perf_event *group_leader,
10777 struct perf_event_context *child_ctx)
10778{
1929def9 10779 enum perf_event_active_state parent_state = parent_event->state;
97dee4f3 10780 struct perf_event *child_event;
cee010ec 10781 unsigned long flags;
97dee4f3
PZ
10782
10783 /*
10784 * Instead of creating recursive hierarchies of events,
10785 * we link inherited events back to the original parent,
10786 * which has a filp for sure, which we use as the reference
10787 * count:
10788 */
10789 if (parent_event->parent)
10790 parent_event = parent_event->parent;
10791
10792 child_event = perf_event_alloc(&parent_event->attr,
10793 parent_event->cpu,
d580ff86 10794 child,
97dee4f3 10795 group_leader, parent_event,
79dff51e 10796 NULL, NULL, -1);
97dee4f3
PZ
10797 if (IS_ERR(child_event))
10798 return child_event;
a6fa941d 10799
c6e5b732
PZ
10800 /*
10801 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
10802 * must be under the same lock in order to serialize against
10803 * perf_event_release_kernel(), such that either we must observe
10804 * is_orphaned_event() or they will observe us on the child_list.
10805 */
10806 mutex_lock(&parent_event->child_mutex);
fadfe7be
JO
10807 if (is_orphaned_event(parent_event) ||
10808 !atomic_long_inc_not_zero(&parent_event->refcount)) {
c6e5b732 10809 mutex_unlock(&parent_event->child_mutex);
a6fa941d
AV
10810 free_event(child_event);
10811 return NULL;
10812 }
10813
97dee4f3
PZ
10814 get_ctx(child_ctx);
10815
10816 /*
10817 * Make the child state follow the state of the parent event,
10818 * not its attr.disabled bit. We hold the parent's mutex,
10819 * so we won't race with perf_event_{en, dis}able_family.
10820 */
1929def9 10821 if (parent_state >= PERF_EVENT_STATE_INACTIVE)
97dee4f3
PZ
10822 child_event->state = PERF_EVENT_STATE_INACTIVE;
10823 else
10824 child_event->state = PERF_EVENT_STATE_OFF;
10825
10826 if (parent_event->attr.freq) {
10827 u64 sample_period = parent_event->hw.sample_period;
10828 struct hw_perf_event *hwc = &child_event->hw;
10829
10830 hwc->sample_period = sample_period;
10831 hwc->last_period = sample_period;
10832
10833 local64_set(&hwc->period_left, sample_period);
10834 }
10835
10836 child_event->ctx = child_ctx;
10837 child_event->overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
10838 child_event->overflow_handler_context
10839 = parent_event->overflow_handler_context;
97dee4f3 10840
614b6780
TG
10841 /*
10842 * Precalculate sample_data sizes
10843 */
10844 perf_event__header_size(child_event);
6844c09d 10845 perf_event__id_header_size(child_event);
614b6780 10846
97dee4f3
PZ
10847 /*
10848 * Link it up in the child's context:
10849 */
cee010ec 10850 raw_spin_lock_irqsave(&child_ctx->lock, flags);
97dee4f3 10851 add_event_to_ctx(child_event, child_ctx);
cee010ec 10852 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
97dee4f3 10853
97dee4f3
PZ
10854 /*
10855 * Link this into the parent event's child list
10856 */
97dee4f3
PZ
10857 list_add_tail(&child_event->child_list, &parent_event->child_list);
10858 mutex_unlock(&parent_event->child_mutex);
10859
10860 return child_event;
10861}
10862
d8a8cfc7
PZ
10863/*
10864 * Inherits an event group.
10865 *
10866 * This will quietly suppress orphaned events; !inherit_event() is not an error.
10867 * This matches with perf_event_release_kernel() removing all child events.
10868 *
10869 * Returns:
10870 * - 0 on success
10871 * - <0 on error
10872 */
97dee4f3
PZ
10873static int inherit_group(struct perf_event *parent_event,
10874 struct task_struct *parent,
10875 struct perf_event_context *parent_ctx,
10876 struct task_struct *child,
10877 struct perf_event_context *child_ctx)
10878{
10879 struct perf_event *leader;
10880 struct perf_event *sub;
10881 struct perf_event *child_ctr;
10882
10883 leader = inherit_event(parent_event, parent, parent_ctx,
10884 child, NULL, child_ctx);
10885 if (IS_ERR(leader))
10886 return PTR_ERR(leader);
d8a8cfc7
PZ
10887 /*
10888 * @leader can be NULL here because of is_orphaned_event(). In this
10889 * case inherit_event() will create individual events, similar to what
10890 * perf_group_detach() would do anyway.
10891 */
97dee4f3
PZ
10892 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
10893 child_ctr = inherit_event(sub, parent, parent_ctx,
10894 child, leader, child_ctx);
10895 if (IS_ERR(child_ctr))
10896 return PTR_ERR(child_ctr);
10897 }
10898 return 0;
889ff015
FW
10899}
10900
d8a8cfc7
PZ
10901/*
10902 * Creates the child task context and tries to inherit the event-group.
10903 *
10904 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
10905 * inherited_all set when we 'fail' to inherit an orphaned event; this is
10906 * consistent with perf_event_release_kernel() removing all child events.
10907 *
10908 * Returns:
10909 * - 0 on success
10910 * - <0 on error
10911 */
889ff015
FW
10912static int
10913inherit_task_group(struct perf_event *event, struct task_struct *parent,
10914 struct perf_event_context *parent_ctx,
8dc85d54 10915 struct task_struct *child, int ctxn,
889ff015
FW
10916 int *inherited_all)
10917{
10918 int ret;
8dc85d54 10919 struct perf_event_context *child_ctx;
889ff015
FW
10920
10921 if (!event->attr.inherit) {
10922 *inherited_all = 0;
10923 return 0;
bbbee908
PZ
10924 }
10925
fe4b04fa 10926 child_ctx = child->perf_event_ctxp[ctxn];
889ff015
FW
10927 if (!child_ctx) {
10928 /*
10929 * This is executed from the parent task context, so
10930 * inherit events that have been marked for cloning.
10931 * First allocate and initialize a context for the
10932 * child.
10933 */
734df5ab 10934 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
889ff015
FW
10935 if (!child_ctx)
10936 return -ENOMEM;
bbbee908 10937
8dc85d54 10938 child->perf_event_ctxp[ctxn] = child_ctx;
889ff015
FW
10939 }
10940
10941 ret = inherit_group(event, parent, parent_ctx,
10942 child, child_ctx);
10943
10944 if (ret)
10945 *inherited_all = 0;
10946
10947 return ret;
bbbee908
PZ
10948}
10949
9b51f66d 10950/*
cdd6c482 10951 * Initialize the perf_event context in task_struct
9b51f66d 10952 */
985c8dcb 10953static int perf_event_init_context(struct task_struct *child, int ctxn)
9b51f66d 10954{
889ff015 10955 struct perf_event_context *child_ctx, *parent_ctx;
cdd6c482
IM
10956 struct perf_event_context *cloned_ctx;
10957 struct perf_event *event;
9b51f66d 10958 struct task_struct *parent = current;
564c2b21 10959 int inherited_all = 1;
dddd3379 10960 unsigned long flags;
6ab423e0 10961 int ret = 0;
9b51f66d 10962
8dc85d54 10963 if (likely(!parent->perf_event_ctxp[ctxn]))
6ab423e0
PZ
10964 return 0;
10965
ad3a37de 10966 /*
25346b93
PM
10967 * If the parent's context is a clone, pin it so it won't get
10968 * swapped under us.
ad3a37de 10969 */
8dc85d54 10970 parent_ctx = perf_pin_task_context(parent, ctxn);
ffb4ef21
PZ
10971 if (!parent_ctx)
10972 return 0;
25346b93 10973
ad3a37de
PM
10974 /*
10975 * No need to check if parent_ctx != NULL here; since we saw
10976 * it non-NULL earlier, the only reason for it to become NULL
10977 * is if we exit, and since we're currently in the middle of
10978 * a fork we can't be exiting at the same time.
10979 */
ad3a37de 10980
9b51f66d
IM
10981 /*
10982 * Lock the parent list. No need to lock the child - not PID
10983 * hashed yet and not running, so nobody can access it.
10984 */
d859e29f 10985 mutex_lock(&parent_ctx->mutex);
9b51f66d
IM
10986
10987 /*
10988 * We dont have to disable NMIs - we are only looking at
10989 * the list, not manipulating it:
10990 */
889ff015 10991 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
8dc85d54
PZ
10992 ret = inherit_task_group(event, parent, parent_ctx,
10993 child, ctxn, &inherited_all);
889ff015 10994 if (ret)
e7cc4865 10995 goto out_unlock;
889ff015 10996 }
b93f7978 10997
dddd3379
TG
10998 /*
10999 * We can't hold ctx->lock when iterating the ->flexible_group list due
11000 * to allocations, but we need to prevent rotation because
11001 * rotate_ctx() will change the list from interrupt context.
11002 */
11003 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
11004 parent_ctx->rotate_disable = 1;
11005 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
11006
889ff015 11007 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
8dc85d54
PZ
11008 ret = inherit_task_group(event, parent, parent_ctx,
11009 child, ctxn, &inherited_all);
889ff015 11010 if (ret)
e7cc4865 11011 goto out_unlock;
564c2b21
PM
11012 }
11013
dddd3379
TG
11014 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
11015 parent_ctx->rotate_disable = 0;
dddd3379 11016
8dc85d54 11017 child_ctx = child->perf_event_ctxp[ctxn];
889ff015 11018
05cbaa28 11019 if (child_ctx && inherited_all) {
564c2b21
PM
11020 /*
11021 * Mark the child context as a clone of the parent
11022 * context, or of whatever the parent is a clone of.
c5ed5145
PZ
11023 *
11024 * Note that if the parent is a clone, the holding of
11025 * parent_ctx->lock avoids it from being uncloned.
564c2b21 11026 */
c5ed5145 11027 cloned_ctx = parent_ctx->parent_ctx;
ad3a37de
PM
11028 if (cloned_ctx) {
11029 child_ctx->parent_ctx = cloned_ctx;
25346b93 11030 child_ctx->parent_gen = parent_ctx->parent_gen;
564c2b21
PM
11031 } else {
11032 child_ctx->parent_ctx = parent_ctx;
11033 child_ctx->parent_gen = parent_ctx->generation;
11034 }
11035 get_ctx(child_ctx->parent_ctx);
9b51f66d
IM
11036 }
11037
c5ed5145 11038 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
e7cc4865 11039out_unlock:
d859e29f 11040 mutex_unlock(&parent_ctx->mutex);
6ab423e0 11041
25346b93 11042 perf_unpin_context(parent_ctx);
fe4b04fa 11043 put_ctx(parent_ctx);
ad3a37de 11044
6ab423e0 11045 return ret;
9b51f66d
IM
11046}
11047
8dc85d54
PZ
11048/*
11049 * Initialize the perf_event context in task_struct
11050 */
11051int perf_event_init_task(struct task_struct *child)
11052{
11053 int ctxn, ret;
11054
8550d7cb
ON
11055 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
11056 mutex_init(&child->perf_event_mutex);
11057 INIT_LIST_HEAD(&child->perf_event_list);
11058
8dc85d54
PZ
11059 for_each_task_context_nr(ctxn) {
11060 ret = perf_event_init_context(child, ctxn);
6c72e350
PZ
11061 if (ret) {
11062 perf_event_free_task(child);
8dc85d54 11063 return ret;
6c72e350 11064 }
8dc85d54
PZ
11065 }
11066
11067 return 0;
11068}
11069
220b140b
PM
11070static void __init perf_event_init_all_cpus(void)
11071{
b28ab83c 11072 struct swevent_htable *swhash;
220b140b 11073 int cpu;
220b140b 11074
a63fbed7
TG
11075 zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
11076
220b140b 11077 for_each_possible_cpu(cpu) {
b28ab83c
PZ
11078 swhash = &per_cpu(swevent_htable, cpu);
11079 mutex_init(&swhash->hlist_mutex);
2fde4f94 11080 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
f2fb6bef
KL
11081
11082 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
11083 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
e48c1788 11084
058fe1c0
DCC
11085#ifdef CONFIG_CGROUP_PERF
11086 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
11087#endif
e48c1788 11088 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
220b140b
PM
11089 }
11090}
11091
a63fbed7 11092void perf_swevent_init_cpu(unsigned int cpu)
0793a61d 11093{
108b02cf 11094 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
0793a61d 11095
b28ab83c 11096 mutex_lock(&swhash->hlist_mutex);
059fcd8c 11097 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
76e1d904
FW
11098 struct swevent_hlist *hlist;
11099
b28ab83c
PZ
11100 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
11101 WARN_ON(!hlist);
11102 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 11103 }
b28ab83c 11104 mutex_unlock(&swhash->hlist_mutex);
0793a61d
TG
11105}
11106
2965faa5 11107#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
108b02cf 11108static void __perf_event_exit_context(void *__info)
0793a61d 11109{
108b02cf 11110 struct perf_event_context *ctx = __info;
fae3fde6
PZ
11111 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
11112 struct perf_event *event;
0793a61d 11113
fae3fde6
PZ
11114 raw_spin_lock(&ctx->lock);
11115 list_for_each_entry(event, &ctx->event_list, event_entry)
45a0e07a 11116 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
fae3fde6 11117 raw_spin_unlock(&ctx->lock);
0793a61d 11118}
108b02cf
PZ
11119
11120static void perf_event_exit_cpu_context(int cpu)
11121{
a63fbed7 11122 struct perf_cpu_context *cpuctx;
108b02cf
PZ
11123 struct perf_event_context *ctx;
11124 struct pmu *pmu;
108b02cf 11125
a63fbed7
TG
11126 mutex_lock(&pmus_lock);
11127 list_for_each_entry(pmu, &pmus, entry) {
11128 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11129 ctx = &cpuctx->ctx;
108b02cf
PZ
11130
11131 mutex_lock(&ctx->mutex);
11132 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
a63fbed7 11133 cpuctx->online = 0;
108b02cf
PZ
11134 mutex_unlock(&ctx->mutex);
11135 }
a63fbed7
TG
11136 cpumask_clear_cpu(cpu, perf_online_mask);
11137 mutex_unlock(&pmus_lock);
108b02cf 11138}
00e16c3d
TG
11139#else
11140
11141static void perf_event_exit_cpu_context(int cpu) { }
11142
11143#endif
108b02cf 11144
a63fbed7
TG
11145int perf_event_init_cpu(unsigned int cpu)
11146{
11147 struct perf_cpu_context *cpuctx;
11148 struct perf_event_context *ctx;
11149 struct pmu *pmu;
11150
11151 perf_swevent_init_cpu(cpu);
11152
11153 mutex_lock(&pmus_lock);
11154 cpumask_set_cpu(cpu, perf_online_mask);
11155 list_for_each_entry(pmu, &pmus, entry) {
11156 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11157 ctx = &cpuctx->ctx;
11158
11159 mutex_lock(&ctx->mutex);
11160 cpuctx->online = 1;
11161 mutex_unlock(&ctx->mutex);
11162 }
11163 mutex_unlock(&pmus_lock);
11164
11165 return 0;
11166}
11167
00e16c3d 11168int perf_event_exit_cpu(unsigned int cpu)
0793a61d 11169{
e3703f8c 11170 perf_event_exit_cpu_context(cpu);
00e16c3d 11171 return 0;
0793a61d 11172}
0793a61d 11173
c277443c
PZ
11174static int
11175perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
11176{
11177 int cpu;
11178
11179 for_each_online_cpu(cpu)
11180 perf_event_exit_cpu(cpu);
11181
11182 return NOTIFY_OK;
11183}
11184
11185/*
11186 * Run the perf reboot notifier at the very last possible moment so that
11187 * the generic watchdog code runs as long as possible.
11188 */
11189static struct notifier_block perf_reboot_notifier = {
11190 .notifier_call = perf_reboot,
11191 .priority = INT_MIN,
11192};
11193
cdd6c482 11194void __init perf_event_init(void)
0793a61d 11195{
3c502e7a
JW
11196 int ret;
11197
2e80a82a
PZ
11198 idr_init(&pmu_idr);
11199
220b140b 11200 perf_event_init_all_cpus();
b0a873eb 11201 init_srcu_struct(&pmus_srcu);
2e80a82a
PZ
11202 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
11203 perf_pmu_register(&perf_cpu_clock, NULL, -1);
11204 perf_pmu_register(&perf_task_clock, NULL, -1);
b0a873eb 11205 perf_tp_register();
00e16c3d 11206 perf_event_init_cpu(smp_processor_id());
c277443c 11207 register_reboot_notifier(&perf_reboot_notifier);
3c502e7a
JW
11208
11209 ret = init_hw_breakpoint();
11210 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
b2029520 11211
b01c3a00
JO
11212 /*
11213 * Build time assertion that we keep the data_head at the intended
11214 * location. IOW, validation we got the __reserved[] size right.
11215 */
11216 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
11217 != 1024);
0793a61d 11218}
abe43400 11219
fd979c01
CS
11220ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
11221 char *page)
11222{
11223 struct perf_pmu_events_attr *pmu_attr =
11224 container_of(attr, struct perf_pmu_events_attr, attr);
11225
11226 if (pmu_attr->event_str)
11227 return sprintf(page, "%s\n", pmu_attr->event_str);
11228
11229 return 0;
11230}
675965b0 11231EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
fd979c01 11232
abe43400
PZ
11233static int __init perf_event_sysfs_init(void)
11234{
11235 struct pmu *pmu;
11236 int ret;
11237
11238 mutex_lock(&pmus_lock);
11239
11240 ret = bus_register(&pmu_bus);
11241 if (ret)
11242 goto unlock;
11243
11244 list_for_each_entry(pmu, &pmus, entry) {
11245 if (!pmu->name || pmu->type < 0)
11246 continue;
11247
11248 ret = pmu_dev_alloc(pmu);
11249 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
11250 }
11251 pmu_bus_running = 1;
11252 ret = 0;
11253
11254unlock:
11255 mutex_unlock(&pmus_lock);
11256
11257 return ret;
11258}
11259device_initcall(perf_event_sysfs_init);
e5d1367f
SE
11260
11261#ifdef CONFIG_CGROUP_PERF
eb95419b
TH
11262static struct cgroup_subsys_state *
11263perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
e5d1367f
SE
11264{
11265 struct perf_cgroup *jc;
e5d1367f 11266
1b15d055 11267 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
e5d1367f
SE
11268 if (!jc)
11269 return ERR_PTR(-ENOMEM);
11270
e5d1367f
SE
11271 jc->info = alloc_percpu(struct perf_cgroup_info);
11272 if (!jc->info) {
11273 kfree(jc);
11274 return ERR_PTR(-ENOMEM);
11275 }
11276
e5d1367f
SE
11277 return &jc->css;
11278}
11279
eb95419b 11280static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
e5d1367f 11281{
eb95419b
TH
11282 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
11283
e5d1367f
SE
11284 free_percpu(jc->info);
11285 kfree(jc);
11286}
11287
11288static int __perf_cgroup_move(void *info)
11289{
11290 struct task_struct *task = info;
ddaaf4e2 11291 rcu_read_lock();
e5d1367f 11292 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
ddaaf4e2 11293 rcu_read_unlock();
e5d1367f
SE
11294 return 0;
11295}
11296
1f7dd3e5 11297static void perf_cgroup_attach(struct cgroup_taskset *tset)
e5d1367f 11298{
bb9d97b6 11299 struct task_struct *task;
1f7dd3e5 11300 struct cgroup_subsys_state *css;
bb9d97b6 11301
1f7dd3e5 11302 cgroup_taskset_for_each(task, css, tset)
bb9d97b6 11303 task_function_call(task, __perf_cgroup_move, task);
e5d1367f
SE
11304}
11305
073219e9 11306struct cgroup_subsys perf_event_cgrp_subsys = {
92fb9748
TH
11307 .css_alloc = perf_cgroup_css_alloc,
11308 .css_free = perf_cgroup_css_free,
bb9d97b6 11309 .attach = perf_cgroup_attach,
968ebff1
TH
11310 /*
11311 * Implicitly enable on dfl hierarchy so that perf events can
11312 * always be filtered by cgroup2 path as long as perf_event
11313 * controller is not mounted on a legacy hierarchy.
11314 */
11315 .implicit_on_dfl = true,
8cfd8147 11316 .threaded = true,
e5d1367f
SE
11317};
11318#endif /* CONFIG_CGROUP_PERF */