]> git.ipfire.org Git - thirdparty/linux.git/blame - kernel/events/core.c
perf/core: Fix perf_event_read()
[thirdparty/linux.git] / kernel / events / core.c
CommitLineData
0793a61d 1/*
57c0c15b 2 * Performance events core code:
0793a61d 3 *
98144511 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
e7e7ee2e 5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
90eec103 6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
d36b6910 7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
7b732a75 8 *
57c0c15b 9 * For licensing details see kernel-base/COPYING
0793a61d
TG
10 */
11
12#include <linux/fs.h>
b9cacc7b 13#include <linux/mm.h>
0793a61d
TG
14#include <linux/cpu.h>
15#include <linux/smp.h>
2e80a82a 16#include <linux/idr.h>
04289bb9 17#include <linux/file.h>
0793a61d 18#include <linux/poll.h>
5a0e3ad6 19#include <linux/slab.h>
76e1d904 20#include <linux/hash.h>
12351ef8 21#include <linux/tick.h>
0793a61d 22#include <linux/sysfs.h>
22a4f650 23#include <linux/dcache.h>
0793a61d 24#include <linux/percpu.h>
22a4f650 25#include <linux/ptrace.h>
c277443c 26#include <linux/reboot.h>
b9cacc7b 27#include <linux/vmstat.h>
abe43400 28#include <linux/device.h>
6e5fdeed 29#include <linux/export.h>
906010b2 30#include <linux/vmalloc.h>
b9cacc7b
PZ
31#include <linux/hardirq.h>
32#include <linux/rculist.h>
0793a61d
TG
33#include <linux/uaccess.h>
34#include <linux/syscalls.h>
35#include <linux/anon_inodes.h>
aa9c4c0f 36#include <linux/kernel_stat.h>
39bed6cb 37#include <linux/cgroup.h>
cdd6c482 38#include <linux/perf_event.h>
af658dca 39#include <linux/trace_events.h>
3c502e7a 40#include <linux/hw_breakpoint.h>
c5ebcedb 41#include <linux/mm_types.h>
c464c76e 42#include <linux/module.h>
f972eb63 43#include <linux/mman.h>
b3f20785 44#include <linux/compat.h>
2541517c
AS
45#include <linux/bpf.h>
46#include <linux/filter.h>
375637bc
AS
47#include <linux/namei.h>
48#include <linux/parser.h>
e6017571 49#include <linux/sched/clock.h>
6e84f315 50#include <linux/sched/mm.h>
e4222673
HB
51#include <linux/proc_ns.h>
52#include <linux/mount.h>
0793a61d 53
76369139
FW
54#include "internal.h"
55
4e193bd4
TB
56#include <asm/irq_regs.h>
57
272325c4
PZ
58typedef int (*remote_function_f)(void *);
59
fe4b04fa 60struct remote_function_call {
e7e7ee2e 61 struct task_struct *p;
272325c4 62 remote_function_f func;
e7e7ee2e
IM
63 void *info;
64 int ret;
fe4b04fa
PZ
65};
66
67static void remote_function(void *data)
68{
69 struct remote_function_call *tfc = data;
70 struct task_struct *p = tfc->p;
71
72 if (p) {
0da4cf3e
PZ
73 /* -EAGAIN */
74 if (task_cpu(p) != smp_processor_id())
75 return;
76
77 /*
78 * Now that we're on right CPU with IRQs disabled, we can test
79 * if we hit the right task without races.
80 */
81
82 tfc->ret = -ESRCH; /* No such (running) process */
83 if (p != current)
fe4b04fa
PZ
84 return;
85 }
86
87 tfc->ret = tfc->func(tfc->info);
88}
89
90/**
91 * task_function_call - call a function on the cpu on which a task runs
92 * @p: the task to evaluate
93 * @func: the function to be called
94 * @info: the function call argument
95 *
96 * Calls the function @func when the task is currently running. This might
97 * be on the current CPU, which just calls the function directly
98 *
99 * returns: @func return value, or
100 * -ESRCH - when the process isn't running
101 * -EAGAIN - when the process moved away
102 */
103static int
272325c4 104task_function_call(struct task_struct *p, remote_function_f func, void *info)
fe4b04fa
PZ
105{
106 struct remote_function_call data = {
e7e7ee2e
IM
107 .p = p,
108 .func = func,
109 .info = info,
0da4cf3e 110 .ret = -EAGAIN,
fe4b04fa 111 };
0da4cf3e 112 int ret;
fe4b04fa 113
0da4cf3e
PZ
114 do {
115 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
116 if (!ret)
117 ret = data.ret;
118 } while (ret == -EAGAIN);
fe4b04fa 119
0da4cf3e 120 return ret;
fe4b04fa
PZ
121}
122
123/**
124 * cpu_function_call - call a function on the cpu
125 * @func: the function to be called
126 * @info: the function call argument
127 *
128 * Calls the function @func on the remote cpu.
129 *
130 * returns: @func return value or -ENXIO when the cpu is offline
131 */
272325c4 132static int cpu_function_call(int cpu, remote_function_f func, void *info)
fe4b04fa
PZ
133{
134 struct remote_function_call data = {
e7e7ee2e
IM
135 .p = NULL,
136 .func = func,
137 .info = info,
138 .ret = -ENXIO, /* No such CPU */
fe4b04fa
PZ
139 };
140
141 smp_call_function_single(cpu, remote_function, &data, 1);
142
143 return data.ret;
144}
145
fae3fde6
PZ
146static inline struct perf_cpu_context *
147__get_cpu_context(struct perf_event_context *ctx)
148{
149 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
150}
151
152static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
153 struct perf_event_context *ctx)
0017960f 154{
fae3fde6
PZ
155 raw_spin_lock(&cpuctx->ctx.lock);
156 if (ctx)
157 raw_spin_lock(&ctx->lock);
158}
159
160static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
161 struct perf_event_context *ctx)
162{
163 if (ctx)
164 raw_spin_unlock(&ctx->lock);
165 raw_spin_unlock(&cpuctx->ctx.lock);
166}
167
63b6da39
PZ
168#define TASK_TOMBSTONE ((void *)-1L)
169
170static bool is_kernel_event(struct perf_event *event)
171{
f47c02c0 172 return READ_ONCE(event->owner) == TASK_TOMBSTONE;
63b6da39
PZ
173}
174
39a43640
PZ
175/*
176 * On task ctx scheduling...
177 *
178 * When !ctx->nr_events a task context will not be scheduled. This means
179 * we can disable the scheduler hooks (for performance) without leaving
180 * pending task ctx state.
181 *
182 * This however results in two special cases:
183 *
184 * - removing the last event from a task ctx; this is relatively straight
185 * forward and is done in __perf_remove_from_context.
186 *
187 * - adding the first event to a task ctx; this is tricky because we cannot
188 * rely on ctx->is_active and therefore cannot use event_function_call().
189 * See perf_install_in_context().
190 *
39a43640
PZ
191 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
192 */
193
fae3fde6
PZ
194typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
195 struct perf_event_context *, void *);
196
197struct event_function_struct {
198 struct perf_event *event;
199 event_f func;
200 void *data;
201};
202
203static int event_function(void *info)
204{
205 struct event_function_struct *efs = info;
206 struct perf_event *event = efs->event;
0017960f 207 struct perf_event_context *ctx = event->ctx;
fae3fde6
PZ
208 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
209 struct perf_event_context *task_ctx = cpuctx->task_ctx;
63b6da39 210 int ret = 0;
fae3fde6
PZ
211
212 WARN_ON_ONCE(!irqs_disabled());
213
63b6da39 214 perf_ctx_lock(cpuctx, task_ctx);
fae3fde6
PZ
215 /*
216 * Since we do the IPI call without holding ctx->lock things can have
217 * changed, double check we hit the task we set out to hit.
fae3fde6
PZ
218 */
219 if (ctx->task) {
63b6da39 220 if (ctx->task != current) {
0da4cf3e 221 ret = -ESRCH;
63b6da39
PZ
222 goto unlock;
223 }
fae3fde6 224
fae3fde6
PZ
225 /*
226 * We only use event_function_call() on established contexts,
227 * and event_function() is only ever called when active (or
228 * rather, we'll have bailed in task_function_call() or the
229 * above ctx->task != current test), therefore we must have
230 * ctx->is_active here.
231 */
232 WARN_ON_ONCE(!ctx->is_active);
233 /*
234 * And since we have ctx->is_active, cpuctx->task_ctx must
235 * match.
236 */
63b6da39
PZ
237 WARN_ON_ONCE(task_ctx != ctx);
238 } else {
239 WARN_ON_ONCE(&cpuctx->ctx != ctx);
fae3fde6 240 }
63b6da39 241
fae3fde6 242 efs->func(event, cpuctx, ctx, efs->data);
63b6da39 243unlock:
fae3fde6
PZ
244 perf_ctx_unlock(cpuctx, task_ctx);
245
63b6da39 246 return ret;
fae3fde6
PZ
247}
248
fae3fde6 249static void event_function_call(struct perf_event *event, event_f func, void *data)
0017960f
PZ
250{
251 struct perf_event_context *ctx = event->ctx;
63b6da39 252 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
fae3fde6
PZ
253 struct event_function_struct efs = {
254 .event = event,
255 .func = func,
256 .data = data,
257 };
0017960f 258
c97f4736
PZ
259 if (!event->parent) {
260 /*
261 * If this is a !child event, we must hold ctx::mutex to
262 * stabilize the the event->ctx relation. See
263 * perf_event_ctx_lock().
264 */
265 lockdep_assert_held(&ctx->mutex);
266 }
0017960f
PZ
267
268 if (!task) {
fae3fde6 269 cpu_function_call(event->cpu, event_function, &efs);
0017960f
PZ
270 return;
271 }
272
63b6da39
PZ
273 if (task == TASK_TOMBSTONE)
274 return;
275
a096309b 276again:
fae3fde6 277 if (!task_function_call(task, event_function, &efs))
0017960f
PZ
278 return;
279
280 raw_spin_lock_irq(&ctx->lock);
63b6da39
PZ
281 /*
282 * Reload the task pointer, it might have been changed by
283 * a concurrent perf_event_context_sched_out().
284 */
285 task = ctx->task;
a096309b
PZ
286 if (task == TASK_TOMBSTONE) {
287 raw_spin_unlock_irq(&ctx->lock);
288 return;
0017960f 289 }
a096309b
PZ
290 if (ctx->is_active) {
291 raw_spin_unlock_irq(&ctx->lock);
292 goto again;
293 }
294 func(event, NULL, ctx, data);
0017960f
PZ
295 raw_spin_unlock_irq(&ctx->lock);
296}
297
cca20946
PZ
298/*
299 * Similar to event_function_call() + event_function(), but hard assumes IRQs
300 * are already disabled and we're on the right CPU.
301 */
302static void event_function_local(struct perf_event *event, event_f func, void *data)
303{
304 struct perf_event_context *ctx = event->ctx;
305 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
306 struct task_struct *task = READ_ONCE(ctx->task);
307 struct perf_event_context *task_ctx = NULL;
308
309 WARN_ON_ONCE(!irqs_disabled());
310
311 if (task) {
312 if (task == TASK_TOMBSTONE)
313 return;
314
315 task_ctx = ctx;
316 }
317
318 perf_ctx_lock(cpuctx, task_ctx);
319
320 task = ctx->task;
321 if (task == TASK_TOMBSTONE)
322 goto unlock;
323
324 if (task) {
325 /*
326 * We must be either inactive or active and the right task,
327 * otherwise we're screwed, since we cannot IPI to somewhere
328 * else.
329 */
330 if (ctx->is_active) {
331 if (WARN_ON_ONCE(task != current))
332 goto unlock;
333
334 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
335 goto unlock;
336 }
337 } else {
338 WARN_ON_ONCE(&cpuctx->ctx != ctx);
339 }
340
341 func(event, cpuctx, ctx, data);
342unlock:
343 perf_ctx_unlock(cpuctx, task_ctx);
344}
345
e5d1367f
SE
346#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
347 PERF_FLAG_FD_OUTPUT |\
a21b0b35
YD
348 PERF_FLAG_PID_CGROUP |\
349 PERF_FLAG_FD_CLOEXEC)
e5d1367f 350
bce38cd5
SE
351/*
352 * branch priv levels that need permission checks
353 */
354#define PERF_SAMPLE_BRANCH_PERM_PLM \
355 (PERF_SAMPLE_BRANCH_KERNEL |\
356 PERF_SAMPLE_BRANCH_HV)
357
0b3fcf17
SE
358enum event_type_t {
359 EVENT_FLEXIBLE = 0x1,
360 EVENT_PINNED = 0x2,
3cbaa590 361 EVENT_TIME = 0x4,
487f05e1
AS
362 /* see ctx_resched() for details */
363 EVENT_CPU = 0x8,
0b3fcf17
SE
364 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
365};
366
e5d1367f
SE
367/*
368 * perf_sched_events : >0 events exist
369 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
370 */
9107c89e
PZ
371
372static void perf_sched_delayed(struct work_struct *work);
373DEFINE_STATIC_KEY_FALSE(perf_sched_events);
374static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
375static DEFINE_MUTEX(perf_sched_mutex);
376static atomic_t perf_sched_count;
377
e5d1367f 378static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
ba532500 379static DEFINE_PER_CPU(int, perf_sched_cb_usages);
f2fb6bef 380static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
e5d1367f 381
cdd6c482
IM
382static atomic_t nr_mmap_events __read_mostly;
383static atomic_t nr_comm_events __read_mostly;
e4222673 384static atomic_t nr_namespaces_events __read_mostly;
cdd6c482 385static atomic_t nr_task_events __read_mostly;
948b26b6 386static atomic_t nr_freq_events __read_mostly;
45ac1403 387static atomic_t nr_switch_events __read_mostly;
9ee318a7 388
108b02cf
PZ
389static LIST_HEAD(pmus);
390static DEFINE_MUTEX(pmus_lock);
391static struct srcu_struct pmus_srcu;
a63fbed7 392static cpumask_var_t perf_online_mask;
108b02cf 393
0764771d 394/*
cdd6c482 395 * perf event paranoia level:
0fbdea19
IM
396 * -1 - not paranoid at all
397 * 0 - disallow raw tracepoint access for unpriv
cdd6c482 398 * 1 - disallow cpu events for unpriv
0fbdea19 399 * 2 - disallow kernel profiling for unpriv
0764771d 400 */
0161028b 401int sysctl_perf_event_paranoid __read_mostly = 2;
0764771d 402
20443384
FW
403/* Minimum for 512 kiB + 1 user control page */
404int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
df58ab24
PZ
405
406/*
cdd6c482 407 * max perf event sample rate
df58ab24 408 */
14c63f17
DH
409#define DEFAULT_MAX_SAMPLE_RATE 100000
410#define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
411#define DEFAULT_CPU_TIME_MAX_PERCENT 25
412
413int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
414
415static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
416static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
417
d9494cb4
PZ
418static int perf_sample_allowed_ns __read_mostly =
419 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
14c63f17 420
18ab2cd3 421static void update_perf_cpu_limits(void)
14c63f17
DH
422{
423 u64 tmp = perf_sample_period_ns;
424
425 tmp *= sysctl_perf_cpu_time_max_percent;
91a612ee
PZ
426 tmp = div_u64(tmp, 100);
427 if (!tmp)
428 tmp = 1;
429
430 WRITE_ONCE(perf_sample_allowed_ns, tmp);
14c63f17 431}
163ec435 432
9e630205
SE
433static int perf_rotate_context(struct perf_cpu_context *cpuctx);
434
163ec435
PZ
435int perf_proc_update_handler(struct ctl_table *table, int write,
436 void __user *buffer, size_t *lenp,
437 loff_t *ppos)
438{
723478c8 439 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
163ec435
PZ
440
441 if (ret || !write)
442 return ret;
443
ab7fdefb
KL
444 /*
445 * If throttling is disabled don't allow the write:
446 */
447 if (sysctl_perf_cpu_time_max_percent == 100 ||
448 sysctl_perf_cpu_time_max_percent == 0)
449 return -EINVAL;
450
163ec435 451 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
14c63f17
DH
452 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
453 update_perf_cpu_limits();
454
455 return 0;
456}
457
458int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
459
460int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
461 void __user *buffer, size_t *lenp,
462 loff_t *ppos)
463{
1572e45a 464 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
14c63f17
DH
465
466 if (ret || !write)
467 return ret;
468
b303e7c1
PZ
469 if (sysctl_perf_cpu_time_max_percent == 100 ||
470 sysctl_perf_cpu_time_max_percent == 0) {
91a612ee
PZ
471 printk(KERN_WARNING
472 "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
473 WRITE_ONCE(perf_sample_allowed_ns, 0);
474 } else {
475 update_perf_cpu_limits();
476 }
163ec435
PZ
477
478 return 0;
479}
1ccd1549 480
14c63f17
DH
481/*
482 * perf samples are done in some very critical code paths (NMIs).
483 * If they take too much CPU time, the system can lock up and not
484 * get any real work done. This will drop the sample rate when
485 * we detect that events are taking too long.
486 */
487#define NR_ACCUMULATED_SAMPLES 128
d9494cb4 488static DEFINE_PER_CPU(u64, running_sample_length);
14c63f17 489
91a612ee
PZ
490static u64 __report_avg;
491static u64 __report_allowed;
492
6a02ad66 493static void perf_duration_warn(struct irq_work *w)
14c63f17 494{
0d87d7ec 495 printk_ratelimited(KERN_INFO
91a612ee
PZ
496 "perf: interrupt took too long (%lld > %lld), lowering "
497 "kernel.perf_event_max_sample_rate to %d\n",
498 __report_avg, __report_allowed,
499 sysctl_perf_event_sample_rate);
6a02ad66
PZ
500}
501
502static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
503
504void perf_sample_event_took(u64 sample_len_ns)
505{
91a612ee
PZ
506 u64 max_len = READ_ONCE(perf_sample_allowed_ns);
507 u64 running_len;
508 u64 avg_len;
509 u32 max;
14c63f17 510
91a612ee 511 if (max_len == 0)
14c63f17
DH
512 return;
513
91a612ee
PZ
514 /* Decay the counter by 1 average sample. */
515 running_len = __this_cpu_read(running_sample_length);
516 running_len -= running_len/NR_ACCUMULATED_SAMPLES;
517 running_len += sample_len_ns;
518 __this_cpu_write(running_sample_length, running_len);
14c63f17
DH
519
520 /*
91a612ee
PZ
521 * Note: this will be biased artifically low until we have
522 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
14c63f17
DH
523 * from having to maintain a count.
524 */
91a612ee
PZ
525 avg_len = running_len/NR_ACCUMULATED_SAMPLES;
526 if (avg_len <= max_len)
14c63f17
DH
527 return;
528
91a612ee
PZ
529 __report_avg = avg_len;
530 __report_allowed = max_len;
14c63f17 531
91a612ee
PZ
532 /*
533 * Compute a throttle threshold 25% below the current duration.
534 */
535 avg_len += avg_len / 4;
536 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
537 if (avg_len < max)
538 max /= (u32)avg_len;
539 else
540 max = 1;
14c63f17 541
91a612ee
PZ
542 WRITE_ONCE(perf_sample_allowed_ns, avg_len);
543 WRITE_ONCE(max_samples_per_tick, max);
544
545 sysctl_perf_event_sample_rate = max * HZ;
546 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
6a02ad66 547
cd578abb 548 if (!irq_work_queue(&perf_duration_work)) {
91a612ee 549 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
cd578abb 550 "kernel.perf_event_max_sample_rate to %d\n",
91a612ee 551 __report_avg, __report_allowed,
cd578abb
PZ
552 sysctl_perf_event_sample_rate);
553 }
14c63f17
DH
554}
555
cdd6c482 556static atomic64_t perf_event_id;
a96bbc16 557
0b3fcf17
SE
558static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
559 enum event_type_t event_type);
560
561static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
562 enum event_type_t event_type,
563 struct task_struct *task);
564
565static void update_context_time(struct perf_event_context *ctx);
566static u64 perf_event_time(struct perf_event *event);
0b3fcf17 567
cdd6c482 568void __weak perf_event_print_debug(void) { }
0793a61d 569
84c79910 570extern __weak const char *perf_pmu_name(void)
0793a61d 571{
84c79910 572 return "pmu";
0793a61d
TG
573}
574
0b3fcf17
SE
575static inline u64 perf_clock(void)
576{
577 return local_clock();
578}
579
34f43927
PZ
580static inline u64 perf_event_clock(struct perf_event *event)
581{
582 return event->clock();
583}
584
e5d1367f
SE
585#ifdef CONFIG_CGROUP_PERF
586
e5d1367f
SE
587static inline bool
588perf_cgroup_match(struct perf_event *event)
589{
590 struct perf_event_context *ctx = event->ctx;
591 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
592
ef824fa1
TH
593 /* @event doesn't care about cgroup */
594 if (!event->cgrp)
595 return true;
596
597 /* wants specific cgroup scope but @cpuctx isn't associated with any */
598 if (!cpuctx->cgrp)
599 return false;
600
601 /*
602 * Cgroup scoping is recursive. An event enabled for a cgroup is
603 * also enabled for all its descendant cgroups. If @cpuctx's
604 * cgroup is a descendant of @event's (the test covers identity
605 * case), it's a match.
606 */
607 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
608 event->cgrp->css.cgroup);
e5d1367f
SE
609}
610
e5d1367f
SE
611static inline void perf_detach_cgroup(struct perf_event *event)
612{
4e2ba650 613 css_put(&event->cgrp->css);
e5d1367f
SE
614 event->cgrp = NULL;
615}
616
617static inline int is_cgroup_event(struct perf_event *event)
618{
619 return event->cgrp != NULL;
620}
621
622static inline u64 perf_cgroup_event_time(struct perf_event *event)
623{
624 struct perf_cgroup_info *t;
625
626 t = per_cpu_ptr(event->cgrp->info, event->cpu);
627 return t->time;
628}
629
630static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
631{
632 struct perf_cgroup_info *info;
633 u64 now;
634
635 now = perf_clock();
636
637 info = this_cpu_ptr(cgrp->info);
638
639 info->time += now - info->timestamp;
640 info->timestamp = now;
641}
642
643static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
644{
645 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
646 if (cgrp_out)
647 __update_cgrp_time(cgrp_out);
648}
649
650static inline void update_cgrp_time_from_event(struct perf_event *event)
651{
3f7cce3c
SE
652 struct perf_cgroup *cgrp;
653
e5d1367f 654 /*
3f7cce3c
SE
655 * ensure we access cgroup data only when needed and
656 * when we know the cgroup is pinned (css_get)
e5d1367f 657 */
3f7cce3c 658 if (!is_cgroup_event(event))
e5d1367f
SE
659 return;
660
614e4c4e 661 cgrp = perf_cgroup_from_task(current, event->ctx);
3f7cce3c
SE
662 /*
663 * Do not update time when cgroup is not active
664 */
e6a52033 665 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
3f7cce3c 666 __update_cgrp_time(event->cgrp);
e5d1367f
SE
667}
668
669static inline void
3f7cce3c
SE
670perf_cgroup_set_timestamp(struct task_struct *task,
671 struct perf_event_context *ctx)
e5d1367f
SE
672{
673 struct perf_cgroup *cgrp;
674 struct perf_cgroup_info *info;
675
3f7cce3c
SE
676 /*
677 * ctx->lock held by caller
678 * ensure we do not access cgroup data
679 * unless we have the cgroup pinned (css_get)
680 */
681 if (!task || !ctx->nr_cgroups)
e5d1367f
SE
682 return;
683
614e4c4e 684 cgrp = perf_cgroup_from_task(task, ctx);
e5d1367f 685 info = this_cpu_ptr(cgrp->info);
3f7cce3c 686 info->timestamp = ctx->timestamp;
e5d1367f
SE
687}
688
058fe1c0
DCC
689static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
690
e5d1367f
SE
691#define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
692#define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
693
694/*
695 * reschedule events based on the cgroup constraint of task.
696 *
697 * mode SWOUT : schedule out everything
698 * mode SWIN : schedule in based on cgroup for next
699 */
18ab2cd3 700static void perf_cgroup_switch(struct task_struct *task, int mode)
e5d1367f
SE
701{
702 struct perf_cpu_context *cpuctx;
058fe1c0 703 struct list_head *list;
e5d1367f
SE
704 unsigned long flags;
705
706 /*
058fe1c0
DCC
707 * Disable interrupts and preemption to avoid this CPU's
708 * cgrp_cpuctx_entry to change under us.
e5d1367f
SE
709 */
710 local_irq_save(flags);
711
058fe1c0
DCC
712 list = this_cpu_ptr(&cgrp_cpuctx_list);
713 list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
714 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
e5d1367f 715
058fe1c0
DCC
716 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
717 perf_pmu_disable(cpuctx->ctx.pmu);
e5d1367f 718
058fe1c0
DCC
719 if (mode & PERF_CGROUP_SWOUT) {
720 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
721 /*
722 * must not be done before ctxswout due
723 * to event_filter_match() in event_sched_out()
724 */
725 cpuctx->cgrp = NULL;
726 }
e5d1367f 727
058fe1c0
DCC
728 if (mode & PERF_CGROUP_SWIN) {
729 WARN_ON_ONCE(cpuctx->cgrp);
730 /*
731 * set cgrp before ctxsw in to allow
732 * event_filter_match() to not have to pass
733 * task around
734 * we pass the cpuctx->ctx to perf_cgroup_from_task()
735 * because cgorup events are only per-cpu
736 */
737 cpuctx->cgrp = perf_cgroup_from_task(task,
738 &cpuctx->ctx);
739 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
e5d1367f 740 }
058fe1c0
DCC
741 perf_pmu_enable(cpuctx->ctx.pmu);
742 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
e5d1367f
SE
743 }
744
e5d1367f
SE
745 local_irq_restore(flags);
746}
747
a8d757ef
SE
748static inline void perf_cgroup_sched_out(struct task_struct *task,
749 struct task_struct *next)
e5d1367f 750{
a8d757ef
SE
751 struct perf_cgroup *cgrp1;
752 struct perf_cgroup *cgrp2 = NULL;
753
ddaaf4e2 754 rcu_read_lock();
a8d757ef
SE
755 /*
756 * we come here when we know perf_cgroup_events > 0
614e4c4e
SE
757 * we do not need to pass the ctx here because we know
758 * we are holding the rcu lock
a8d757ef 759 */
614e4c4e 760 cgrp1 = perf_cgroup_from_task(task, NULL);
70a01657 761 cgrp2 = perf_cgroup_from_task(next, NULL);
a8d757ef
SE
762
763 /*
764 * only schedule out current cgroup events if we know
765 * that we are switching to a different cgroup. Otherwise,
766 * do no touch the cgroup events.
767 */
768 if (cgrp1 != cgrp2)
769 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
ddaaf4e2
SE
770
771 rcu_read_unlock();
e5d1367f
SE
772}
773
a8d757ef
SE
774static inline void perf_cgroup_sched_in(struct task_struct *prev,
775 struct task_struct *task)
e5d1367f 776{
a8d757ef
SE
777 struct perf_cgroup *cgrp1;
778 struct perf_cgroup *cgrp2 = NULL;
779
ddaaf4e2 780 rcu_read_lock();
a8d757ef
SE
781 /*
782 * we come here when we know perf_cgroup_events > 0
614e4c4e
SE
783 * we do not need to pass the ctx here because we know
784 * we are holding the rcu lock
a8d757ef 785 */
614e4c4e 786 cgrp1 = perf_cgroup_from_task(task, NULL);
614e4c4e 787 cgrp2 = perf_cgroup_from_task(prev, NULL);
a8d757ef
SE
788
789 /*
790 * only need to schedule in cgroup events if we are changing
791 * cgroup during ctxsw. Cgroup events were not scheduled
792 * out of ctxsw out if that was not the case.
793 */
794 if (cgrp1 != cgrp2)
795 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
ddaaf4e2
SE
796
797 rcu_read_unlock();
e5d1367f
SE
798}
799
800static inline int perf_cgroup_connect(int fd, struct perf_event *event,
801 struct perf_event_attr *attr,
802 struct perf_event *group_leader)
803{
804 struct perf_cgroup *cgrp;
805 struct cgroup_subsys_state *css;
2903ff01
AV
806 struct fd f = fdget(fd);
807 int ret = 0;
e5d1367f 808
2903ff01 809 if (!f.file)
e5d1367f
SE
810 return -EBADF;
811
b583043e 812 css = css_tryget_online_from_dir(f.file->f_path.dentry,
ec903c0c 813 &perf_event_cgrp_subsys);
3db272c0
LZ
814 if (IS_ERR(css)) {
815 ret = PTR_ERR(css);
816 goto out;
817 }
e5d1367f
SE
818
819 cgrp = container_of(css, struct perf_cgroup, css);
820 event->cgrp = cgrp;
821
822 /*
823 * all events in a group must monitor
824 * the same cgroup because a task belongs
825 * to only one perf cgroup at a time
826 */
827 if (group_leader && group_leader->cgrp != cgrp) {
828 perf_detach_cgroup(event);
829 ret = -EINVAL;
e5d1367f 830 }
3db272c0 831out:
2903ff01 832 fdput(f);
e5d1367f
SE
833 return ret;
834}
835
836static inline void
837perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
838{
839 struct perf_cgroup_info *t;
840 t = per_cpu_ptr(event->cgrp->info, event->cpu);
841 event->shadow_ctx_time = now - t->timestamp;
842}
843
844static inline void
845perf_cgroup_defer_enabled(struct perf_event *event)
846{
847 /*
848 * when the current task's perf cgroup does not match
849 * the event's, we need to remember to call the
850 * perf_mark_enable() function the first time a task with
851 * a matching perf cgroup is scheduled in.
852 */
853 if (is_cgroup_event(event) && !perf_cgroup_match(event))
854 event->cgrp_defer_enabled = 1;
855}
856
857static inline void
858perf_cgroup_mark_enabled(struct perf_event *event,
859 struct perf_event_context *ctx)
860{
861 struct perf_event *sub;
862 u64 tstamp = perf_event_time(event);
863
864 if (!event->cgrp_defer_enabled)
865 return;
866
867 event->cgrp_defer_enabled = 0;
868
869 event->tstamp_enabled = tstamp - event->total_time_enabled;
870 list_for_each_entry(sub, &event->sibling_list, group_entry) {
871 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
872 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
873 sub->cgrp_defer_enabled = 0;
874 }
875 }
876}
db4a8356
DCC
877
878/*
879 * Update cpuctx->cgrp so that it is set when first cgroup event is added and
880 * cleared when last cgroup event is removed.
881 */
882static inline void
883list_update_cgroup_event(struct perf_event *event,
884 struct perf_event_context *ctx, bool add)
885{
886 struct perf_cpu_context *cpuctx;
058fe1c0 887 struct list_head *cpuctx_entry;
db4a8356
DCC
888
889 if (!is_cgroup_event(event))
890 return;
891
892 if (add && ctx->nr_cgroups++)
893 return;
894 else if (!add && --ctx->nr_cgroups)
895 return;
896 /*
897 * Because cgroup events are always per-cpu events,
898 * this will always be called from the right CPU.
899 */
900 cpuctx = __get_cpu_context(ctx);
058fe1c0
DCC
901 cpuctx_entry = &cpuctx->cgrp_cpuctx_entry;
902 /* cpuctx->cgrp is NULL unless a cgroup event is active in this CPU .*/
903 if (add) {
904 list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list));
905 if (perf_cgroup_from_task(current, ctx) == event->cgrp)
906 cpuctx->cgrp = event->cgrp;
907 } else {
908 list_del(cpuctx_entry);
8fc31ce8 909 cpuctx->cgrp = NULL;
058fe1c0 910 }
db4a8356
DCC
911}
912
e5d1367f
SE
913#else /* !CONFIG_CGROUP_PERF */
914
915static inline bool
916perf_cgroup_match(struct perf_event *event)
917{
918 return true;
919}
920
921static inline void perf_detach_cgroup(struct perf_event *event)
922{}
923
924static inline int is_cgroup_event(struct perf_event *event)
925{
926 return 0;
927}
928
e5d1367f
SE
929static inline void update_cgrp_time_from_event(struct perf_event *event)
930{
931}
932
933static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
934{
935}
936
a8d757ef
SE
937static inline void perf_cgroup_sched_out(struct task_struct *task,
938 struct task_struct *next)
e5d1367f
SE
939{
940}
941
a8d757ef
SE
942static inline void perf_cgroup_sched_in(struct task_struct *prev,
943 struct task_struct *task)
e5d1367f
SE
944{
945}
946
947static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
948 struct perf_event_attr *attr,
949 struct perf_event *group_leader)
950{
951 return -EINVAL;
952}
953
954static inline void
3f7cce3c
SE
955perf_cgroup_set_timestamp(struct task_struct *task,
956 struct perf_event_context *ctx)
e5d1367f
SE
957{
958}
959
960void
961perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
962{
963}
964
965static inline void
966perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
967{
968}
969
970static inline u64 perf_cgroup_event_time(struct perf_event *event)
971{
972 return 0;
973}
974
975static inline void
976perf_cgroup_defer_enabled(struct perf_event *event)
977{
978}
979
980static inline void
981perf_cgroup_mark_enabled(struct perf_event *event,
982 struct perf_event_context *ctx)
983{
984}
db4a8356
DCC
985
986static inline void
987list_update_cgroup_event(struct perf_event *event,
988 struct perf_event_context *ctx, bool add)
989{
990}
991
e5d1367f
SE
992#endif
993
9e630205
SE
994/*
995 * set default to be dependent on timer tick just
996 * like original code
997 */
998#define PERF_CPU_HRTIMER (1000 / HZ)
999/*
8a1115ff 1000 * function must be called with interrupts disabled
9e630205 1001 */
272325c4 1002static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
9e630205
SE
1003{
1004 struct perf_cpu_context *cpuctx;
9e630205
SE
1005 int rotations = 0;
1006
1007 WARN_ON(!irqs_disabled());
1008
1009 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
9e630205
SE
1010 rotations = perf_rotate_context(cpuctx);
1011
4cfafd30
PZ
1012 raw_spin_lock(&cpuctx->hrtimer_lock);
1013 if (rotations)
9e630205 1014 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
4cfafd30
PZ
1015 else
1016 cpuctx->hrtimer_active = 0;
1017 raw_spin_unlock(&cpuctx->hrtimer_lock);
9e630205 1018
4cfafd30 1019 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
9e630205
SE
1020}
1021
272325c4 1022static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
9e630205 1023{
272325c4 1024 struct hrtimer *timer = &cpuctx->hrtimer;
9e630205 1025 struct pmu *pmu = cpuctx->ctx.pmu;
272325c4 1026 u64 interval;
9e630205
SE
1027
1028 /* no multiplexing needed for SW PMU */
1029 if (pmu->task_ctx_nr == perf_sw_context)
1030 return;
1031
62b85639
SE
1032 /*
1033 * check default is sane, if not set then force to
1034 * default interval (1/tick)
1035 */
272325c4
PZ
1036 interval = pmu->hrtimer_interval_ms;
1037 if (interval < 1)
1038 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
62b85639 1039
272325c4 1040 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
9e630205 1041
4cfafd30
PZ
1042 raw_spin_lock_init(&cpuctx->hrtimer_lock);
1043 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
272325c4 1044 timer->function = perf_mux_hrtimer_handler;
9e630205
SE
1045}
1046
272325c4 1047static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
9e630205 1048{
272325c4 1049 struct hrtimer *timer = &cpuctx->hrtimer;
9e630205 1050 struct pmu *pmu = cpuctx->ctx.pmu;
4cfafd30 1051 unsigned long flags;
9e630205
SE
1052
1053 /* not for SW PMU */
1054 if (pmu->task_ctx_nr == perf_sw_context)
272325c4 1055 return 0;
9e630205 1056
4cfafd30
PZ
1057 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1058 if (!cpuctx->hrtimer_active) {
1059 cpuctx->hrtimer_active = 1;
1060 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1061 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
1062 }
1063 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
9e630205 1064
272325c4 1065 return 0;
9e630205
SE
1066}
1067
33696fc0 1068void perf_pmu_disable(struct pmu *pmu)
9e35ad38 1069{
33696fc0
PZ
1070 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1071 if (!(*count)++)
1072 pmu->pmu_disable(pmu);
9e35ad38 1073}
9e35ad38 1074
33696fc0 1075void perf_pmu_enable(struct pmu *pmu)
9e35ad38 1076{
33696fc0
PZ
1077 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1078 if (!--(*count))
1079 pmu->pmu_enable(pmu);
9e35ad38 1080}
9e35ad38 1081
2fde4f94 1082static DEFINE_PER_CPU(struct list_head, active_ctx_list);
e9d2b064
PZ
1083
1084/*
2fde4f94
MR
1085 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1086 * perf_event_task_tick() are fully serialized because they're strictly cpu
1087 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1088 * disabled, while perf_event_task_tick is called from IRQ context.
e9d2b064 1089 */
2fde4f94 1090static void perf_event_ctx_activate(struct perf_event_context *ctx)
9e35ad38 1091{
2fde4f94 1092 struct list_head *head = this_cpu_ptr(&active_ctx_list);
b5ab4cd5 1093
e9d2b064 1094 WARN_ON(!irqs_disabled());
b5ab4cd5 1095
2fde4f94
MR
1096 WARN_ON(!list_empty(&ctx->active_ctx_list));
1097
1098 list_add(&ctx->active_ctx_list, head);
1099}
1100
1101static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1102{
1103 WARN_ON(!irqs_disabled());
1104
1105 WARN_ON(list_empty(&ctx->active_ctx_list));
1106
1107 list_del_init(&ctx->active_ctx_list);
9e35ad38 1108}
9e35ad38 1109
cdd6c482 1110static void get_ctx(struct perf_event_context *ctx)
a63eaf34 1111{
e5289d4a 1112 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
a63eaf34
PM
1113}
1114
4af57ef2
YZ
1115static void free_ctx(struct rcu_head *head)
1116{
1117 struct perf_event_context *ctx;
1118
1119 ctx = container_of(head, struct perf_event_context, rcu_head);
1120 kfree(ctx->task_ctx_data);
1121 kfree(ctx);
1122}
1123
cdd6c482 1124static void put_ctx(struct perf_event_context *ctx)
a63eaf34 1125{
564c2b21
PM
1126 if (atomic_dec_and_test(&ctx->refcount)) {
1127 if (ctx->parent_ctx)
1128 put_ctx(ctx->parent_ctx);
63b6da39 1129 if (ctx->task && ctx->task != TASK_TOMBSTONE)
c93f7669 1130 put_task_struct(ctx->task);
4af57ef2 1131 call_rcu(&ctx->rcu_head, free_ctx);
564c2b21 1132 }
a63eaf34
PM
1133}
1134
f63a8daa
PZ
1135/*
1136 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1137 * perf_pmu_migrate_context() we need some magic.
1138 *
1139 * Those places that change perf_event::ctx will hold both
1140 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1141 *
8b10c5e2
PZ
1142 * Lock ordering is by mutex address. There are two other sites where
1143 * perf_event_context::mutex nests and those are:
1144 *
1145 * - perf_event_exit_task_context() [ child , 0 ]
8ba289b8
PZ
1146 * perf_event_exit_event()
1147 * put_event() [ parent, 1 ]
8b10c5e2
PZ
1148 *
1149 * - perf_event_init_context() [ parent, 0 ]
1150 * inherit_task_group()
1151 * inherit_group()
1152 * inherit_event()
1153 * perf_event_alloc()
1154 * perf_init_event()
1155 * perf_try_init_event() [ child , 1 ]
1156 *
1157 * While it appears there is an obvious deadlock here -- the parent and child
1158 * nesting levels are inverted between the two. This is in fact safe because
1159 * life-time rules separate them. That is an exiting task cannot fork, and a
1160 * spawning task cannot (yet) exit.
1161 *
1162 * But remember that that these are parent<->child context relations, and
1163 * migration does not affect children, therefore these two orderings should not
1164 * interact.
f63a8daa
PZ
1165 *
1166 * The change in perf_event::ctx does not affect children (as claimed above)
1167 * because the sys_perf_event_open() case will install a new event and break
1168 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1169 * concerned with cpuctx and that doesn't have children.
1170 *
1171 * The places that change perf_event::ctx will issue:
1172 *
1173 * perf_remove_from_context();
1174 * synchronize_rcu();
1175 * perf_install_in_context();
1176 *
1177 * to affect the change. The remove_from_context() + synchronize_rcu() should
1178 * quiesce the event, after which we can install it in the new location. This
1179 * means that only external vectors (perf_fops, prctl) can perturb the event
1180 * while in transit. Therefore all such accessors should also acquire
1181 * perf_event_context::mutex to serialize against this.
1182 *
1183 * However; because event->ctx can change while we're waiting to acquire
1184 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1185 * function.
1186 *
1187 * Lock order:
79c9ce57 1188 * cred_guard_mutex
f63a8daa
PZ
1189 * task_struct::perf_event_mutex
1190 * perf_event_context::mutex
f63a8daa 1191 * perf_event::child_mutex;
07c4a776 1192 * perf_event_context::lock
f63a8daa
PZ
1193 * perf_event::mmap_mutex
1194 * mmap_sem
1195 */
a83fe28e
PZ
1196static struct perf_event_context *
1197perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
f63a8daa
PZ
1198{
1199 struct perf_event_context *ctx;
1200
1201again:
1202 rcu_read_lock();
1203 ctx = ACCESS_ONCE(event->ctx);
1204 if (!atomic_inc_not_zero(&ctx->refcount)) {
1205 rcu_read_unlock();
1206 goto again;
1207 }
1208 rcu_read_unlock();
1209
a83fe28e 1210 mutex_lock_nested(&ctx->mutex, nesting);
f63a8daa
PZ
1211 if (event->ctx != ctx) {
1212 mutex_unlock(&ctx->mutex);
1213 put_ctx(ctx);
1214 goto again;
1215 }
1216
1217 return ctx;
1218}
1219
a83fe28e
PZ
1220static inline struct perf_event_context *
1221perf_event_ctx_lock(struct perf_event *event)
1222{
1223 return perf_event_ctx_lock_nested(event, 0);
1224}
1225
f63a8daa
PZ
1226static void perf_event_ctx_unlock(struct perf_event *event,
1227 struct perf_event_context *ctx)
1228{
1229 mutex_unlock(&ctx->mutex);
1230 put_ctx(ctx);
1231}
1232
211de6eb
PZ
1233/*
1234 * This must be done under the ctx->lock, such as to serialize against
1235 * context_equiv(), therefore we cannot call put_ctx() since that might end up
1236 * calling scheduler related locks and ctx->lock nests inside those.
1237 */
1238static __must_check struct perf_event_context *
1239unclone_ctx(struct perf_event_context *ctx)
71a851b4 1240{
211de6eb
PZ
1241 struct perf_event_context *parent_ctx = ctx->parent_ctx;
1242
1243 lockdep_assert_held(&ctx->lock);
1244
1245 if (parent_ctx)
71a851b4 1246 ctx->parent_ctx = NULL;
5a3126d4 1247 ctx->generation++;
211de6eb
PZ
1248
1249 return parent_ctx;
71a851b4
PZ
1250}
1251
1d953111
ON
1252static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1253 enum pid_type type)
6844c09d 1254{
1d953111 1255 u32 nr;
6844c09d
ACM
1256 /*
1257 * only top level events have the pid namespace they were created in
1258 */
1259 if (event->parent)
1260 event = event->parent;
1261
1d953111
ON
1262 nr = __task_pid_nr_ns(p, type, event->ns);
1263 /* avoid -1 if it is idle thread or runs in another ns */
1264 if (!nr && !pid_alive(p))
1265 nr = -1;
1266 return nr;
6844c09d
ACM
1267}
1268
1d953111 1269static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
6844c09d 1270{
1d953111
ON
1271 return perf_event_pid_type(event, p, __PIDTYPE_TGID);
1272}
6844c09d 1273
1d953111
ON
1274static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1275{
1276 return perf_event_pid_type(event, p, PIDTYPE_PID);
6844c09d
ACM
1277}
1278
7f453c24 1279/*
cdd6c482 1280 * If we inherit events we want to return the parent event id
7f453c24
PZ
1281 * to userspace.
1282 */
cdd6c482 1283static u64 primary_event_id(struct perf_event *event)
7f453c24 1284{
cdd6c482 1285 u64 id = event->id;
7f453c24 1286
cdd6c482
IM
1287 if (event->parent)
1288 id = event->parent->id;
7f453c24
PZ
1289
1290 return id;
1291}
1292
25346b93 1293/*
cdd6c482 1294 * Get the perf_event_context for a task and lock it.
63b6da39 1295 *
25346b93
PM
1296 * This has to cope with with the fact that until it is locked,
1297 * the context could get moved to another task.
1298 */
cdd6c482 1299static struct perf_event_context *
8dc85d54 1300perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
25346b93 1301{
cdd6c482 1302 struct perf_event_context *ctx;
25346b93 1303
9ed6060d 1304retry:
058ebd0e
PZ
1305 /*
1306 * One of the few rules of preemptible RCU is that one cannot do
1307 * rcu_read_unlock() while holding a scheduler (or nested) lock when
2fd59077 1308 * part of the read side critical section was irqs-enabled -- see
058ebd0e
PZ
1309 * rcu_read_unlock_special().
1310 *
1311 * Since ctx->lock nests under rq->lock we must ensure the entire read
2fd59077 1312 * side critical section has interrupts disabled.
058ebd0e 1313 */
2fd59077 1314 local_irq_save(*flags);
058ebd0e 1315 rcu_read_lock();
8dc85d54 1316 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
25346b93
PM
1317 if (ctx) {
1318 /*
1319 * If this context is a clone of another, it might
1320 * get swapped for another underneath us by
cdd6c482 1321 * perf_event_task_sched_out, though the
25346b93
PM
1322 * rcu_read_lock() protects us from any context
1323 * getting freed. Lock the context and check if it
1324 * got swapped before we could get the lock, and retry
1325 * if so. If we locked the right context, then it
1326 * can't get swapped on us any more.
1327 */
2fd59077 1328 raw_spin_lock(&ctx->lock);
8dc85d54 1329 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
2fd59077 1330 raw_spin_unlock(&ctx->lock);
058ebd0e 1331 rcu_read_unlock();
2fd59077 1332 local_irq_restore(*flags);
25346b93
PM
1333 goto retry;
1334 }
b49a9e7e 1335
63b6da39
PZ
1336 if (ctx->task == TASK_TOMBSTONE ||
1337 !atomic_inc_not_zero(&ctx->refcount)) {
2fd59077 1338 raw_spin_unlock(&ctx->lock);
b49a9e7e 1339 ctx = NULL;
828b6f0e
PZ
1340 } else {
1341 WARN_ON_ONCE(ctx->task != task);
b49a9e7e 1342 }
25346b93
PM
1343 }
1344 rcu_read_unlock();
2fd59077
PM
1345 if (!ctx)
1346 local_irq_restore(*flags);
25346b93
PM
1347 return ctx;
1348}
1349
1350/*
1351 * Get the context for a task and increment its pin_count so it
1352 * can't get swapped to another task. This also increments its
1353 * reference count so that the context can't get freed.
1354 */
8dc85d54
PZ
1355static struct perf_event_context *
1356perf_pin_task_context(struct task_struct *task, int ctxn)
25346b93 1357{
cdd6c482 1358 struct perf_event_context *ctx;
25346b93
PM
1359 unsigned long flags;
1360
8dc85d54 1361 ctx = perf_lock_task_context(task, ctxn, &flags);
25346b93
PM
1362 if (ctx) {
1363 ++ctx->pin_count;
e625cce1 1364 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1365 }
1366 return ctx;
1367}
1368
cdd6c482 1369static void perf_unpin_context(struct perf_event_context *ctx)
25346b93
PM
1370{
1371 unsigned long flags;
1372
e625cce1 1373 raw_spin_lock_irqsave(&ctx->lock, flags);
25346b93 1374 --ctx->pin_count;
e625cce1 1375 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1376}
1377
f67218c3
PZ
1378/*
1379 * Update the record of the current time in a context.
1380 */
1381static void update_context_time(struct perf_event_context *ctx)
1382{
1383 u64 now = perf_clock();
1384
1385 ctx->time += now - ctx->timestamp;
1386 ctx->timestamp = now;
1387}
1388
4158755d
SE
1389static u64 perf_event_time(struct perf_event *event)
1390{
1391 struct perf_event_context *ctx = event->ctx;
e5d1367f
SE
1392
1393 if (is_cgroup_event(event))
1394 return perf_cgroup_event_time(event);
1395
4158755d
SE
1396 return ctx ? ctx->time : 0;
1397}
1398
f67218c3
PZ
1399/*
1400 * Update the total_time_enabled and total_time_running fields for a event.
1401 */
1402static void update_event_times(struct perf_event *event)
1403{
1404 struct perf_event_context *ctx = event->ctx;
1405 u64 run_end;
1406
3cbaa590
PZ
1407 lockdep_assert_held(&ctx->lock);
1408
f67218c3
PZ
1409 if (event->state < PERF_EVENT_STATE_INACTIVE ||
1410 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1411 return;
3cbaa590 1412
e5d1367f
SE
1413 /*
1414 * in cgroup mode, time_enabled represents
1415 * the time the event was enabled AND active
1416 * tasks were in the monitored cgroup. This is
1417 * independent of the activity of the context as
1418 * there may be a mix of cgroup and non-cgroup events.
1419 *
1420 * That is why we treat cgroup events differently
1421 * here.
1422 */
1423 if (is_cgroup_event(event))
46cd6a7f 1424 run_end = perf_cgroup_event_time(event);
e5d1367f
SE
1425 else if (ctx->is_active)
1426 run_end = ctx->time;
acd1d7c1
PZ
1427 else
1428 run_end = event->tstamp_stopped;
1429
1430 event->total_time_enabled = run_end - event->tstamp_enabled;
f67218c3
PZ
1431
1432 if (event->state == PERF_EVENT_STATE_INACTIVE)
1433 run_end = event->tstamp_stopped;
1434 else
4158755d 1435 run_end = perf_event_time(event);
f67218c3
PZ
1436
1437 event->total_time_running = run_end - event->tstamp_running;
e5d1367f 1438
f67218c3
PZ
1439}
1440
96c21a46
PZ
1441/*
1442 * Update total_time_enabled and total_time_running for all events in a group.
1443 */
1444static void update_group_times(struct perf_event *leader)
1445{
1446 struct perf_event *event;
1447
1448 update_event_times(leader);
1449 list_for_each_entry(event, &leader->sibling_list, group_entry)
1450 update_event_times(event);
1451}
1452
487f05e1
AS
1453static enum event_type_t get_event_type(struct perf_event *event)
1454{
1455 struct perf_event_context *ctx = event->ctx;
1456 enum event_type_t event_type;
1457
1458 lockdep_assert_held(&ctx->lock);
1459
3bda69c1
AS
1460 /*
1461 * It's 'group type', really, because if our group leader is
1462 * pinned, so are we.
1463 */
1464 if (event->group_leader != event)
1465 event = event->group_leader;
1466
487f05e1
AS
1467 event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1468 if (!ctx->task)
1469 event_type |= EVENT_CPU;
1470
1471 return event_type;
1472}
1473
889ff015
FW
1474static struct list_head *
1475ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1476{
1477 if (event->attr.pinned)
1478 return &ctx->pinned_groups;
1479 else
1480 return &ctx->flexible_groups;
1481}
1482
fccc714b 1483/*
cdd6c482 1484 * Add a event from the lists for its context.
fccc714b
PZ
1485 * Must be called with ctx->mutex and ctx->lock held.
1486 */
04289bb9 1487static void
cdd6c482 1488list_add_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1489{
c994d613
PZ
1490 lockdep_assert_held(&ctx->lock);
1491
8a49542c
PZ
1492 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1493 event->attach_state |= PERF_ATTACH_CONTEXT;
04289bb9
IM
1494
1495 /*
8a49542c
PZ
1496 * If we're a stand alone event or group leader, we go to the context
1497 * list, group events are kept attached to the group so that
1498 * perf_group_detach can, at all times, locate all siblings.
04289bb9 1499 */
8a49542c 1500 if (event->group_leader == event) {
889ff015
FW
1501 struct list_head *list;
1502
4ff6a8de 1503 event->group_caps = event->event_caps;
d6f962b5 1504
889ff015
FW
1505 list = ctx_group_list(event, ctx);
1506 list_add_tail(&event->group_entry, list);
5c148194 1507 }
592903cd 1508
db4a8356 1509 list_update_cgroup_event(event, ctx, true);
e5d1367f 1510
cdd6c482
IM
1511 list_add_rcu(&event->event_entry, &ctx->event_list);
1512 ctx->nr_events++;
1513 if (event->attr.inherit_stat)
bfbd3381 1514 ctx->nr_stat++;
5a3126d4
PZ
1515
1516 ctx->generation++;
04289bb9
IM
1517}
1518
0231bb53
JO
1519/*
1520 * Initialize event state based on the perf_event_attr::disabled.
1521 */
1522static inline void perf_event__state_init(struct perf_event *event)
1523{
1524 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1525 PERF_EVENT_STATE_INACTIVE;
1526}
1527
a723968c 1528static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
c320c7b7
ACM
1529{
1530 int entry = sizeof(u64); /* value */
1531 int size = 0;
1532 int nr = 1;
1533
1534 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1535 size += sizeof(u64);
1536
1537 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1538 size += sizeof(u64);
1539
1540 if (event->attr.read_format & PERF_FORMAT_ID)
1541 entry += sizeof(u64);
1542
1543 if (event->attr.read_format & PERF_FORMAT_GROUP) {
a723968c 1544 nr += nr_siblings;
c320c7b7
ACM
1545 size += sizeof(u64);
1546 }
1547
1548 size += entry * nr;
1549 event->read_size = size;
1550}
1551
a723968c 1552static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
c320c7b7
ACM
1553{
1554 struct perf_sample_data *data;
c320c7b7
ACM
1555 u16 size = 0;
1556
c320c7b7
ACM
1557 if (sample_type & PERF_SAMPLE_IP)
1558 size += sizeof(data->ip);
1559
6844c09d
ACM
1560 if (sample_type & PERF_SAMPLE_ADDR)
1561 size += sizeof(data->addr);
1562
1563 if (sample_type & PERF_SAMPLE_PERIOD)
1564 size += sizeof(data->period);
1565
c3feedf2
AK
1566 if (sample_type & PERF_SAMPLE_WEIGHT)
1567 size += sizeof(data->weight);
1568
6844c09d
ACM
1569 if (sample_type & PERF_SAMPLE_READ)
1570 size += event->read_size;
1571
d6be9ad6
SE
1572 if (sample_type & PERF_SAMPLE_DATA_SRC)
1573 size += sizeof(data->data_src.val);
1574
fdfbbd07
AK
1575 if (sample_type & PERF_SAMPLE_TRANSACTION)
1576 size += sizeof(data->txn);
1577
fc7ce9c7
KL
1578 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1579 size += sizeof(data->phys_addr);
1580
6844c09d
ACM
1581 event->header_size = size;
1582}
1583
a723968c
PZ
1584/*
1585 * Called at perf_event creation and when events are attached/detached from a
1586 * group.
1587 */
1588static void perf_event__header_size(struct perf_event *event)
1589{
1590 __perf_event_read_size(event,
1591 event->group_leader->nr_siblings);
1592 __perf_event_header_size(event, event->attr.sample_type);
1593}
1594
6844c09d
ACM
1595static void perf_event__id_header_size(struct perf_event *event)
1596{
1597 struct perf_sample_data *data;
1598 u64 sample_type = event->attr.sample_type;
1599 u16 size = 0;
1600
c320c7b7
ACM
1601 if (sample_type & PERF_SAMPLE_TID)
1602 size += sizeof(data->tid_entry);
1603
1604 if (sample_type & PERF_SAMPLE_TIME)
1605 size += sizeof(data->time);
1606
ff3d527c
AH
1607 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1608 size += sizeof(data->id);
1609
c320c7b7
ACM
1610 if (sample_type & PERF_SAMPLE_ID)
1611 size += sizeof(data->id);
1612
1613 if (sample_type & PERF_SAMPLE_STREAM_ID)
1614 size += sizeof(data->stream_id);
1615
1616 if (sample_type & PERF_SAMPLE_CPU)
1617 size += sizeof(data->cpu_entry);
1618
6844c09d 1619 event->id_header_size = size;
c320c7b7
ACM
1620}
1621
a723968c
PZ
1622static bool perf_event_validate_size(struct perf_event *event)
1623{
1624 /*
1625 * The values computed here will be over-written when we actually
1626 * attach the event.
1627 */
1628 __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1629 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1630 perf_event__id_header_size(event);
1631
1632 /*
1633 * Sum the lot; should not exceed the 64k limit we have on records.
1634 * Conservative limit to allow for callchains and other variable fields.
1635 */
1636 if (event->read_size + event->header_size +
1637 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1638 return false;
1639
1640 return true;
1641}
1642
8a49542c
PZ
1643static void perf_group_attach(struct perf_event *event)
1644{
c320c7b7 1645 struct perf_event *group_leader = event->group_leader, *pos;
8a49542c 1646
a76a82a3
PZ
1647 lockdep_assert_held(&event->ctx->lock);
1648
74c3337c
PZ
1649 /*
1650 * We can have double attach due to group movement in perf_event_open.
1651 */
1652 if (event->attach_state & PERF_ATTACH_GROUP)
1653 return;
1654
8a49542c
PZ
1655 event->attach_state |= PERF_ATTACH_GROUP;
1656
1657 if (group_leader == event)
1658 return;
1659
652884fe
PZ
1660 WARN_ON_ONCE(group_leader->ctx != event->ctx);
1661
4ff6a8de 1662 group_leader->group_caps &= event->event_caps;
8a49542c
PZ
1663
1664 list_add_tail(&event->group_entry, &group_leader->sibling_list);
1665 group_leader->nr_siblings++;
c320c7b7
ACM
1666
1667 perf_event__header_size(group_leader);
1668
1669 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1670 perf_event__header_size(pos);
8a49542c
PZ
1671}
1672
a63eaf34 1673/*
cdd6c482 1674 * Remove a event from the lists for its context.
fccc714b 1675 * Must be called with ctx->mutex and ctx->lock held.
a63eaf34 1676 */
04289bb9 1677static void
cdd6c482 1678list_del_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1679{
652884fe
PZ
1680 WARN_ON_ONCE(event->ctx != ctx);
1681 lockdep_assert_held(&ctx->lock);
1682
8a49542c
PZ
1683 /*
1684 * We can have double detach due to exit/hot-unplug + close.
1685 */
1686 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
a63eaf34 1687 return;
8a49542c
PZ
1688
1689 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1690
db4a8356 1691 list_update_cgroup_event(event, ctx, false);
e5d1367f 1692
cdd6c482
IM
1693 ctx->nr_events--;
1694 if (event->attr.inherit_stat)
bfbd3381 1695 ctx->nr_stat--;
8bc20959 1696
cdd6c482 1697 list_del_rcu(&event->event_entry);
04289bb9 1698
8a49542c
PZ
1699 if (event->group_leader == event)
1700 list_del_init(&event->group_entry);
5c148194 1701
96c21a46 1702 update_group_times(event);
b2e74a26
SE
1703
1704 /*
1705 * If event was in error state, then keep it
1706 * that way, otherwise bogus counts will be
1707 * returned on read(). The only way to get out
1708 * of error state is by explicit re-enabling
1709 * of the event
1710 */
1711 if (event->state > PERF_EVENT_STATE_OFF)
1712 event->state = PERF_EVENT_STATE_OFF;
5a3126d4
PZ
1713
1714 ctx->generation++;
050735b0
PZ
1715}
1716
8a49542c 1717static void perf_group_detach(struct perf_event *event)
050735b0
PZ
1718{
1719 struct perf_event *sibling, *tmp;
8a49542c
PZ
1720 struct list_head *list = NULL;
1721
a76a82a3
PZ
1722 lockdep_assert_held(&event->ctx->lock);
1723
8a49542c
PZ
1724 /*
1725 * We can have double detach due to exit/hot-unplug + close.
1726 */
1727 if (!(event->attach_state & PERF_ATTACH_GROUP))
1728 return;
1729
1730 event->attach_state &= ~PERF_ATTACH_GROUP;
1731
1732 /*
1733 * If this is a sibling, remove it from its group.
1734 */
1735 if (event->group_leader != event) {
1736 list_del_init(&event->group_entry);
1737 event->group_leader->nr_siblings--;
c320c7b7 1738 goto out;
8a49542c
PZ
1739 }
1740
1741 if (!list_empty(&event->group_entry))
1742 list = &event->group_entry;
2e2af50b 1743
04289bb9 1744 /*
cdd6c482
IM
1745 * If this was a group event with sibling events then
1746 * upgrade the siblings to singleton events by adding them
8a49542c 1747 * to whatever list we are on.
04289bb9 1748 */
cdd6c482 1749 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
8a49542c
PZ
1750 if (list)
1751 list_move_tail(&sibling->group_entry, list);
04289bb9 1752 sibling->group_leader = sibling;
d6f962b5
FW
1753
1754 /* Inherit group flags from the previous leader */
4ff6a8de 1755 sibling->group_caps = event->group_caps;
652884fe
PZ
1756
1757 WARN_ON_ONCE(sibling->ctx != event->ctx);
04289bb9 1758 }
c320c7b7
ACM
1759
1760out:
1761 perf_event__header_size(event->group_leader);
1762
1763 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1764 perf_event__header_size(tmp);
04289bb9
IM
1765}
1766
fadfe7be
JO
1767static bool is_orphaned_event(struct perf_event *event)
1768{
a69b0ca4 1769 return event->state == PERF_EVENT_STATE_DEAD;
fadfe7be
JO
1770}
1771
2c81a647 1772static inline int __pmu_filter_match(struct perf_event *event)
66eb579e
MR
1773{
1774 struct pmu *pmu = event->pmu;
1775 return pmu->filter_match ? pmu->filter_match(event) : 1;
1776}
1777
2c81a647
MR
1778/*
1779 * Check whether we should attempt to schedule an event group based on
1780 * PMU-specific filtering. An event group can consist of HW and SW events,
1781 * potentially with a SW leader, so we must check all the filters, to
1782 * determine whether a group is schedulable:
1783 */
1784static inline int pmu_filter_match(struct perf_event *event)
1785{
1786 struct perf_event *child;
1787
1788 if (!__pmu_filter_match(event))
1789 return 0;
1790
1791 list_for_each_entry(child, &event->sibling_list, group_entry) {
1792 if (!__pmu_filter_match(child))
1793 return 0;
1794 }
1795
1796 return 1;
1797}
1798
fa66f07a
SE
1799static inline int
1800event_filter_match(struct perf_event *event)
1801{
0b8f1e2e
PZ
1802 return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
1803 perf_cgroup_match(event) && pmu_filter_match(event);
fa66f07a
SE
1804}
1805
9ffcfa6f
SE
1806static void
1807event_sched_out(struct perf_event *event,
3b6f9e5c 1808 struct perf_cpu_context *cpuctx,
cdd6c482 1809 struct perf_event_context *ctx)
3b6f9e5c 1810{
4158755d 1811 u64 tstamp = perf_event_time(event);
fa66f07a 1812 u64 delta;
652884fe
PZ
1813
1814 WARN_ON_ONCE(event->ctx != ctx);
1815 lockdep_assert_held(&ctx->lock);
1816
fa66f07a
SE
1817 /*
1818 * An event which could not be activated because of
1819 * filter mismatch still needs to have its timings
1820 * maintained, otherwise bogus information is return
1821 * via read() for time_enabled, time_running:
1822 */
0b8f1e2e
PZ
1823 if (event->state == PERF_EVENT_STATE_INACTIVE &&
1824 !event_filter_match(event)) {
e5d1367f 1825 delta = tstamp - event->tstamp_stopped;
fa66f07a 1826 event->tstamp_running += delta;
4158755d 1827 event->tstamp_stopped = tstamp;
fa66f07a
SE
1828 }
1829
cdd6c482 1830 if (event->state != PERF_EVENT_STATE_ACTIVE)
9ffcfa6f 1831 return;
3b6f9e5c 1832
44377277
AS
1833 perf_pmu_disable(event->pmu);
1834
28a967c3
PZ
1835 event->tstamp_stopped = tstamp;
1836 event->pmu->del(event, 0);
1837 event->oncpu = -1;
cdd6c482
IM
1838 event->state = PERF_EVENT_STATE_INACTIVE;
1839 if (event->pending_disable) {
1840 event->pending_disable = 0;
1841 event->state = PERF_EVENT_STATE_OFF;
970892a9 1842 }
3b6f9e5c 1843
cdd6c482 1844 if (!is_software_event(event))
3b6f9e5c 1845 cpuctx->active_oncpu--;
2fde4f94
MR
1846 if (!--ctx->nr_active)
1847 perf_event_ctx_deactivate(ctx);
0f5a2601
PZ
1848 if (event->attr.freq && event->attr.sample_freq)
1849 ctx->nr_freq--;
cdd6c482 1850 if (event->attr.exclusive || !cpuctx->active_oncpu)
3b6f9e5c 1851 cpuctx->exclusive = 0;
44377277
AS
1852
1853 perf_pmu_enable(event->pmu);
3b6f9e5c
PM
1854}
1855
d859e29f 1856static void
cdd6c482 1857group_sched_out(struct perf_event *group_event,
d859e29f 1858 struct perf_cpu_context *cpuctx,
cdd6c482 1859 struct perf_event_context *ctx)
d859e29f 1860{
cdd6c482 1861 struct perf_event *event;
fa66f07a 1862 int state = group_event->state;
d859e29f 1863
3f005e7d
MR
1864 perf_pmu_disable(ctx->pmu);
1865
cdd6c482 1866 event_sched_out(group_event, cpuctx, ctx);
d859e29f
PM
1867
1868 /*
1869 * Schedule out siblings (if any):
1870 */
cdd6c482
IM
1871 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1872 event_sched_out(event, cpuctx, ctx);
d859e29f 1873
3f005e7d
MR
1874 perf_pmu_enable(ctx->pmu);
1875
fa66f07a 1876 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
d859e29f
PM
1877 cpuctx->exclusive = 0;
1878}
1879
45a0e07a 1880#define DETACH_GROUP 0x01UL
0017960f 1881
0793a61d 1882/*
cdd6c482 1883 * Cross CPU call to remove a performance event
0793a61d 1884 *
cdd6c482 1885 * We disable the event on the hardware level first. After that we
0793a61d
TG
1886 * remove it from the context list.
1887 */
fae3fde6
PZ
1888static void
1889__perf_remove_from_context(struct perf_event *event,
1890 struct perf_cpu_context *cpuctx,
1891 struct perf_event_context *ctx,
1892 void *info)
0793a61d 1893{
45a0e07a 1894 unsigned long flags = (unsigned long)info;
0793a61d 1895
3c5c8711
PZ
1896 if (ctx->is_active & EVENT_TIME) {
1897 update_context_time(ctx);
1898 update_cgrp_time_from_cpuctx(cpuctx);
1899 }
1900
cdd6c482 1901 event_sched_out(event, cpuctx, ctx);
45a0e07a 1902 if (flags & DETACH_GROUP)
46ce0fe9 1903 perf_group_detach(event);
cdd6c482 1904 list_del_event(event, ctx);
39a43640
PZ
1905
1906 if (!ctx->nr_events && ctx->is_active) {
64ce3126 1907 ctx->is_active = 0;
39a43640
PZ
1908 if (ctx->task) {
1909 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
1910 cpuctx->task_ctx = NULL;
1911 }
64ce3126 1912 }
0793a61d
TG
1913}
1914
0793a61d 1915/*
cdd6c482 1916 * Remove the event from a task's (or a CPU's) list of events.
0793a61d 1917 *
cdd6c482
IM
1918 * If event->ctx is a cloned context, callers must make sure that
1919 * every task struct that event->ctx->task could possibly point to
c93f7669
PM
1920 * remains valid. This is OK when called from perf_release since
1921 * that only calls us on the top-level context, which can't be a clone.
cdd6c482 1922 * When called from perf_event_exit_task, it's OK because the
c93f7669 1923 * context has been detached from its task.
0793a61d 1924 */
45a0e07a 1925static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
0793a61d 1926{
a76a82a3
PZ
1927 struct perf_event_context *ctx = event->ctx;
1928
1929 lockdep_assert_held(&ctx->mutex);
0793a61d 1930
45a0e07a 1931 event_function_call(event, __perf_remove_from_context, (void *)flags);
a76a82a3
PZ
1932
1933 /*
1934 * The above event_function_call() can NO-OP when it hits
1935 * TASK_TOMBSTONE. In that case we must already have been detached
1936 * from the context (by perf_event_exit_event()) but the grouping
1937 * might still be in-tact.
1938 */
1939 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1940 if ((flags & DETACH_GROUP) &&
1941 (event->attach_state & PERF_ATTACH_GROUP)) {
1942 /*
1943 * Since in that case we cannot possibly be scheduled, simply
1944 * detach now.
1945 */
1946 raw_spin_lock_irq(&ctx->lock);
1947 perf_group_detach(event);
1948 raw_spin_unlock_irq(&ctx->lock);
1949 }
0793a61d
TG
1950}
1951
d859e29f 1952/*
cdd6c482 1953 * Cross CPU call to disable a performance event
d859e29f 1954 */
fae3fde6
PZ
1955static void __perf_event_disable(struct perf_event *event,
1956 struct perf_cpu_context *cpuctx,
1957 struct perf_event_context *ctx,
1958 void *info)
7b648018 1959{
fae3fde6
PZ
1960 if (event->state < PERF_EVENT_STATE_INACTIVE)
1961 return;
7b648018 1962
3c5c8711
PZ
1963 if (ctx->is_active & EVENT_TIME) {
1964 update_context_time(ctx);
1965 update_cgrp_time_from_event(event);
1966 }
1967
fae3fde6
PZ
1968 update_group_times(event);
1969 if (event == event->group_leader)
1970 group_sched_out(event, cpuctx, ctx);
1971 else
1972 event_sched_out(event, cpuctx, ctx);
1973 event->state = PERF_EVENT_STATE_OFF;
7b648018
PZ
1974}
1975
d859e29f 1976/*
cdd6c482 1977 * Disable a event.
c93f7669 1978 *
cdd6c482
IM
1979 * If event->ctx is a cloned context, callers must make sure that
1980 * every task struct that event->ctx->task could possibly point to
c93f7669 1981 * remains valid. This condition is satisifed when called through
cdd6c482
IM
1982 * perf_event_for_each_child or perf_event_for_each because they
1983 * hold the top-level event's child_mutex, so any descendant that
8ba289b8
PZ
1984 * goes to exit will block in perf_event_exit_event().
1985 *
cdd6c482 1986 * When called from perf_pending_event it's OK because event->ctx
c93f7669 1987 * is the current context on this CPU and preemption is disabled,
cdd6c482 1988 * hence we can't get into perf_event_task_sched_out for this context.
d859e29f 1989 */
f63a8daa 1990static void _perf_event_disable(struct perf_event *event)
d859e29f 1991{
cdd6c482 1992 struct perf_event_context *ctx = event->ctx;
d859e29f 1993
e625cce1 1994 raw_spin_lock_irq(&ctx->lock);
7b648018 1995 if (event->state <= PERF_EVENT_STATE_OFF) {
e625cce1 1996 raw_spin_unlock_irq(&ctx->lock);
7b648018 1997 return;
53cfbf59 1998 }
e625cce1 1999 raw_spin_unlock_irq(&ctx->lock);
7b648018 2000
fae3fde6
PZ
2001 event_function_call(event, __perf_event_disable, NULL);
2002}
2003
2004void perf_event_disable_local(struct perf_event *event)
2005{
2006 event_function_local(event, __perf_event_disable, NULL);
d859e29f 2007}
f63a8daa
PZ
2008
2009/*
2010 * Strictly speaking kernel users cannot create groups and therefore this
2011 * interface does not need the perf_event_ctx_lock() magic.
2012 */
2013void perf_event_disable(struct perf_event *event)
2014{
2015 struct perf_event_context *ctx;
2016
2017 ctx = perf_event_ctx_lock(event);
2018 _perf_event_disable(event);
2019 perf_event_ctx_unlock(event, ctx);
2020}
dcfce4a0 2021EXPORT_SYMBOL_GPL(perf_event_disable);
d859e29f 2022
5aab90ce
JO
2023void perf_event_disable_inatomic(struct perf_event *event)
2024{
2025 event->pending_disable = 1;
2026 irq_work_queue(&event->pending);
2027}
2028
e5d1367f
SE
2029static void perf_set_shadow_time(struct perf_event *event,
2030 struct perf_event_context *ctx,
2031 u64 tstamp)
2032{
2033 /*
2034 * use the correct time source for the time snapshot
2035 *
2036 * We could get by without this by leveraging the
2037 * fact that to get to this function, the caller
2038 * has most likely already called update_context_time()
2039 * and update_cgrp_time_xx() and thus both timestamp
2040 * are identical (or very close). Given that tstamp is,
2041 * already adjusted for cgroup, we could say that:
2042 * tstamp - ctx->timestamp
2043 * is equivalent to
2044 * tstamp - cgrp->timestamp.
2045 *
2046 * Then, in perf_output_read(), the calculation would
2047 * work with no changes because:
2048 * - event is guaranteed scheduled in
2049 * - no scheduled out in between
2050 * - thus the timestamp would be the same
2051 *
2052 * But this is a bit hairy.
2053 *
2054 * So instead, we have an explicit cgroup call to remain
2055 * within the time time source all along. We believe it
2056 * is cleaner and simpler to understand.
2057 */
2058 if (is_cgroup_event(event))
2059 perf_cgroup_set_shadow_time(event, tstamp);
2060 else
2061 event->shadow_ctx_time = tstamp - ctx->timestamp;
2062}
2063
4fe757dd
PZ
2064#define MAX_INTERRUPTS (~0ULL)
2065
2066static void perf_log_throttle(struct perf_event *event, int enable);
ec0d7729 2067static void perf_log_itrace_start(struct perf_event *event);
4fe757dd 2068
235c7fc7 2069static int
9ffcfa6f 2070event_sched_in(struct perf_event *event,
235c7fc7 2071 struct perf_cpu_context *cpuctx,
6e37738a 2072 struct perf_event_context *ctx)
235c7fc7 2073{
4158755d 2074 u64 tstamp = perf_event_time(event);
44377277 2075 int ret = 0;
4158755d 2076
63342411
PZ
2077 lockdep_assert_held(&ctx->lock);
2078
cdd6c482 2079 if (event->state <= PERF_EVENT_STATE_OFF)
235c7fc7
IM
2080 return 0;
2081
95ff4ca2
AS
2082 WRITE_ONCE(event->oncpu, smp_processor_id());
2083 /*
0c1cbc18
PZ
2084 * Order event::oncpu write to happen before the ACTIVE state is
2085 * visible. This allows perf_event_{stop,read}() to observe the correct
2086 * ->oncpu if it sees ACTIVE.
95ff4ca2
AS
2087 */
2088 smp_wmb();
2089 WRITE_ONCE(event->state, PERF_EVENT_STATE_ACTIVE);
4fe757dd
PZ
2090
2091 /*
2092 * Unthrottle events, since we scheduled we might have missed several
2093 * ticks already, also for a heavily scheduling task there is little
2094 * guarantee it'll get a tick in a timely manner.
2095 */
2096 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2097 perf_log_throttle(event, 1);
2098 event->hw.interrupts = 0;
2099 }
2100
44377277
AS
2101 perf_pmu_disable(event->pmu);
2102
72f669c0
SL
2103 perf_set_shadow_time(event, ctx, tstamp);
2104
ec0d7729
AS
2105 perf_log_itrace_start(event);
2106
a4eaf7f1 2107 if (event->pmu->add(event, PERF_EF_START)) {
cdd6c482
IM
2108 event->state = PERF_EVENT_STATE_INACTIVE;
2109 event->oncpu = -1;
44377277
AS
2110 ret = -EAGAIN;
2111 goto out;
235c7fc7
IM
2112 }
2113
00a2916f
PZ
2114 event->tstamp_running += tstamp - event->tstamp_stopped;
2115
cdd6c482 2116 if (!is_software_event(event))
3b6f9e5c 2117 cpuctx->active_oncpu++;
2fde4f94
MR
2118 if (!ctx->nr_active++)
2119 perf_event_ctx_activate(ctx);
0f5a2601
PZ
2120 if (event->attr.freq && event->attr.sample_freq)
2121 ctx->nr_freq++;
235c7fc7 2122
cdd6c482 2123 if (event->attr.exclusive)
3b6f9e5c
PM
2124 cpuctx->exclusive = 1;
2125
44377277
AS
2126out:
2127 perf_pmu_enable(event->pmu);
2128
2129 return ret;
235c7fc7
IM
2130}
2131
6751b71e 2132static int
cdd6c482 2133group_sched_in(struct perf_event *group_event,
6751b71e 2134 struct perf_cpu_context *cpuctx,
6e37738a 2135 struct perf_event_context *ctx)
6751b71e 2136{
6bde9b6c 2137 struct perf_event *event, *partial_group = NULL;
4a234593 2138 struct pmu *pmu = ctx->pmu;
d7842da4
SE
2139 u64 now = ctx->time;
2140 bool simulate = false;
6751b71e 2141
cdd6c482 2142 if (group_event->state == PERF_EVENT_STATE_OFF)
6751b71e
PM
2143 return 0;
2144
fbbe0701 2145 pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
6bde9b6c 2146
9ffcfa6f 2147 if (event_sched_in(group_event, cpuctx, ctx)) {
ad5133b7 2148 pmu->cancel_txn(pmu);
272325c4 2149 perf_mux_hrtimer_restart(cpuctx);
6751b71e 2150 return -EAGAIN;
90151c35 2151 }
6751b71e
PM
2152
2153 /*
2154 * Schedule in siblings as one group (if any):
2155 */
cdd6c482 2156 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
9ffcfa6f 2157 if (event_sched_in(event, cpuctx, ctx)) {
cdd6c482 2158 partial_group = event;
6751b71e
PM
2159 goto group_error;
2160 }
2161 }
2162
9ffcfa6f 2163 if (!pmu->commit_txn(pmu))
6e85158c 2164 return 0;
9ffcfa6f 2165
6751b71e
PM
2166group_error:
2167 /*
2168 * Groups can be scheduled in as one unit only, so undo any
2169 * partial group before returning:
d7842da4
SE
2170 * The events up to the failed event are scheduled out normally,
2171 * tstamp_stopped will be updated.
2172 *
2173 * The failed events and the remaining siblings need to have
2174 * their timings updated as if they had gone thru event_sched_in()
2175 * and event_sched_out(). This is required to get consistent timings
2176 * across the group. This also takes care of the case where the group
2177 * could never be scheduled by ensuring tstamp_stopped is set to mark
2178 * the time the event was actually stopped, such that time delta
2179 * calculation in update_event_times() is correct.
6751b71e 2180 */
cdd6c482
IM
2181 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2182 if (event == partial_group)
d7842da4
SE
2183 simulate = true;
2184
2185 if (simulate) {
2186 event->tstamp_running += now - event->tstamp_stopped;
2187 event->tstamp_stopped = now;
2188 } else {
2189 event_sched_out(event, cpuctx, ctx);
2190 }
6751b71e 2191 }
9ffcfa6f 2192 event_sched_out(group_event, cpuctx, ctx);
6751b71e 2193
ad5133b7 2194 pmu->cancel_txn(pmu);
90151c35 2195
272325c4 2196 perf_mux_hrtimer_restart(cpuctx);
9e630205 2197
6751b71e
PM
2198 return -EAGAIN;
2199}
2200
3b6f9e5c 2201/*
cdd6c482 2202 * Work out whether we can put this event group on the CPU now.
3b6f9e5c 2203 */
cdd6c482 2204static int group_can_go_on(struct perf_event *event,
3b6f9e5c
PM
2205 struct perf_cpu_context *cpuctx,
2206 int can_add_hw)
2207{
2208 /*
cdd6c482 2209 * Groups consisting entirely of software events can always go on.
3b6f9e5c 2210 */
4ff6a8de 2211 if (event->group_caps & PERF_EV_CAP_SOFTWARE)
3b6f9e5c
PM
2212 return 1;
2213 /*
2214 * If an exclusive group is already on, no other hardware
cdd6c482 2215 * events can go on.
3b6f9e5c
PM
2216 */
2217 if (cpuctx->exclusive)
2218 return 0;
2219 /*
2220 * If this group is exclusive and there are already
cdd6c482 2221 * events on the CPU, it can't go on.
3b6f9e5c 2222 */
cdd6c482 2223 if (event->attr.exclusive && cpuctx->active_oncpu)
3b6f9e5c
PM
2224 return 0;
2225 /*
2226 * Otherwise, try to add it if all previous groups were able
2227 * to go on.
2228 */
2229 return can_add_hw;
2230}
2231
9b231d9f
PZ
2232/*
2233 * Complement to update_event_times(). This computes the tstamp_* values to
2234 * continue 'enabled' state from @now, and effectively discards the time
2235 * between the prior tstamp_stopped and now (as we were in the OFF state, or
2236 * just switched (context) time base).
2237 *
2238 * This further assumes '@event->state == INACTIVE' (we just came from OFF) and
2239 * cannot have been scheduled in yet. And going into INACTIVE state means
2240 * '@event->tstamp_stopped = @now'.
2241 *
2242 * Thus given the rules of update_event_times():
2243 *
2244 * total_time_enabled = tstamp_stopped - tstamp_enabled
2245 * total_time_running = tstamp_stopped - tstamp_running
2246 *
2247 * We can insert 'tstamp_stopped == now' and reverse them to compute new
2248 * tstamp_* values.
2249 */
2250static void __perf_event_enable_time(struct perf_event *event, u64 now)
2251{
2252 WARN_ON_ONCE(event->state != PERF_EVENT_STATE_INACTIVE);
2253
2254 event->tstamp_stopped = now;
2255 event->tstamp_enabled = now - event->total_time_enabled;
2256 event->tstamp_running = now - event->total_time_running;
2257}
2258
cdd6c482
IM
2259static void add_event_to_ctx(struct perf_event *event,
2260 struct perf_event_context *ctx)
53cfbf59 2261{
4158755d
SE
2262 u64 tstamp = perf_event_time(event);
2263
cdd6c482 2264 list_add_event(event, ctx);
8a49542c 2265 perf_group_attach(event);
9b231d9f
PZ
2266 /*
2267 * We can be called with event->state == STATE_OFF when we create with
2268 * .disabled = 1. In that case the IOC_ENABLE will call this function.
2269 */
2270 if (event->state == PERF_EVENT_STATE_INACTIVE)
2271 __perf_event_enable_time(event, tstamp);
53cfbf59
PM
2272}
2273
bd2afa49
PZ
2274static void ctx_sched_out(struct perf_event_context *ctx,
2275 struct perf_cpu_context *cpuctx,
2276 enum event_type_t event_type);
2c29ef0f
PZ
2277static void
2278ctx_sched_in(struct perf_event_context *ctx,
2279 struct perf_cpu_context *cpuctx,
2280 enum event_type_t event_type,
2281 struct task_struct *task);
fe4b04fa 2282
bd2afa49 2283static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
487f05e1
AS
2284 struct perf_event_context *ctx,
2285 enum event_type_t event_type)
bd2afa49
PZ
2286{
2287 if (!cpuctx->task_ctx)
2288 return;
2289
2290 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2291 return;
2292
487f05e1 2293 ctx_sched_out(ctx, cpuctx, event_type);
bd2afa49
PZ
2294}
2295
dce5855b
PZ
2296static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2297 struct perf_event_context *ctx,
2298 struct task_struct *task)
2299{
2300 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2301 if (ctx)
2302 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2303 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2304 if (ctx)
2305 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2306}
2307
487f05e1
AS
2308/*
2309 * We want to maintain the following priority of scheduling:
2310 * - CPU pinned (EVENT_CPU | EVENT_PINNED)
2311 * - task pinned (EVENT_PINNED)
2312 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2313 * - task flexible (EVENT_FLEXIBLE).
2314 *
2315 * In order to avoid unscheduling and scheduling back in everything every
2316 * time an event is added, only do it for the groups of equal priority and
2317 * below.
2318 *
2319 * This can be called after a batch operation on task events, in which case
2320 * event_type is a bit mask of the types of events involved. For CPU events,
2321 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2322 */
3e349507 2323static void ctx_resched(struct perf_cpu_context *cpuctx,
487f05e1
AS
2324 struct perf_event_context *task_ctx,
2325 enum event_type_t event_type)
0017960f 2326{
487f05e1
AS
2327 enum event_type_t ctx_event_type = event_type & EVENT_ALL;
2328 bool cpu_event = !!(event_type & EVENT_CPU);
2329
2330 /*
2331 * If pinned groups are involved, flexible groups also need to be
2332 * scheduled out.
2333 */
2334 if (event_type & EVENT_PINNED)
2335 event_type |= EVENT_FLEXIBLE;
2336
3e349507
PZ
2337 perf_pmu_disable(cpuctx->ctx.pmu);
2338 if (task_ctx)
487f05e1
AS
2339 task_ctx_sched_out(cpuctx, task_ctx, event_type);
2340
2341 /*
2342 * Decide which cpu ctx groups to schedule out based on the types
2343 * of events that caused rescheduling:
2344 * - EVENT_CPU: schedule out corresponding groups;
2345 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2346 * - otherwise, do nothing more.
2347 */
2348 if (cpu_event)
2349 cpu_ctx_sched_out(cpuctx, ctx_event_type);
2350 else if (ctx_event_type & EVENT_PINNED)
2351 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2352
3e349507
PZ
2353 perf_event_sched_in(cpuctx, task_ctx, current);
2354 perf_pmu_enable(cpuctx->ctx.pmu);
0017960f
PZ
2355}
2356
0793a61d 2357/*
cdd6c482 2358 * Cross CPU call to install and enable a performance event
682076ae 2359 *
a096309b
PZ
2360 * Very similar to remote_function() + event_function() but cannot assume that
2361 * things like ctx->is_active and cpuctx->task_ctx are set.
0793a61d 2362 */
fe4b04fa 2363static int __perf_install_in_context(void *info)
0793a61d 2364{
a096309b
PZ
2365 struct perf_event *event = info;
2366 struct perf_event_context *ctx = event->ctx;
108b02cf 2367 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2c29ef0f 2368 struct perf_event_context *task_ctx = cpuctx->task_ctx;
63cae12b 2369 bool reprogram = true;
a096309b 2370 int ret = 0;
0793a61d 2371
63b6da39 2372 raw_spin_lock(&cpuctx->ctx.lock);
39a43640 2373 if (ctx->task) {
b58f6b0d
PZ
2374 raw_spin_lock(&ctx->lock);
2375 task_ctx = ctx;
a096309b 2376
63cae12b 2377 reprogram = (ctx->task == current);
b58f6b0d 2378
39a43640 2379 /*
63cae12b
PZ
2380 * If the task is running, it must be running on this CPU,
2381 * otherwise we cannot reprogram things.
2382 *
2383 * If its not running, we don't care, ctx->lock will
2384 * serialize against it becoming runnable.
39a43640 2385 */
63cae12b
PZ
2386 if (task_curr(ctx->task) && !reprogram) {
2387 ret = -ESRCH;
2388 goto unlock;
2389 }
a096309b 2390
63cae12b 2391 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
63b6da39
PZ
2392 } else if (task_ctx) {
2393 raw_spin_lock(&task_ctx->lock);
2c29ef0f 2394 }
b58f6b0d 2395
63cae12b 2396 if (reprogram) {
a096309b
PZ
2397 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2398 add_event_to_ctx(event, ctx);
487f05e1 2399 ctx_resched(cpuctx, task_ctx, get_event_type(event));
a096309b
PZ
2400 } else {
2401 add_event_to_ctx(event, ctx);
2402 }
2403
63b6da39 2404unlock:
2c29ef0f 2405 perf_ctx_unlock(cpuctx, task_ctx);
fe4b04fa 2406
a096309b 2407 return ret;
0793a61d
TG
2408}
2409
2410/*
a096309b
PZ
2411 * Attach a performance event to a context.
2412 *
2413 * Very similar to event_function_call, see comment there.
0793a61d
TG
2414 */
2415static void
cdd6c482
IM
2416perf_install_in_context(struct perf_event_context *ctx,
2417 struct perf_event *event,
0793a61d
TG
2418 int cpu)
2419{
a096309b 2420 struct task_struct *task = READ_ONCE(ctx->task);
39a43640 2421
fe4b04fa
PZ
2422 lockdep_assert_held(&ctx->mutex);
2423
0cda4c02
YZ
2424 if (event->cpu != -1)
2425 event->cpu = cpu;
c3f00c70 2426
0b8f1e2e
PZ
2427 /*
2428 * Ensures that if we can observe event->ctx, both the event and ctx
2429 * will be 'complete'. See perf_iterate_sb_cpu().
2430 */
2431 smp_store_release(&event->ctx, ctx);
2432
a096309b
PZ
2433 if (!task) {
2434 cpu_function_call(cpu, __perf_install_in_context, event);
2435 return;
2436 }
2437
2438 /*
2439 * Should not happen, we validate the ctx is still alive before calling.
2440 */
2441 if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2442 return;
2443
39a43640
PZ
2444 /*
2445 * Installing events is tricky because we cannot rely on ctx->is_active
2446 * to be set in case this is the nr_events 0 -> 1 transition.
63cae12b
PZ
2447 *
2448 * Instead we use task_curr(), which tells us if the task is running.
2449 * However, since we use task_curr() outside of rq::lock, we can race
2450 * against the actual state. This means the result can be wrong.
2451 *
2452 * If we get a false positive, we retry, this is harmless.
2453 *
2454 * If we get a false negative, things are complicated. If we are after
2455 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2456 * value must be correct. If we're before, it doesn't matter since
2457 * perf_event_context_sched_in() will program the counter.
2458 *
2459 * However, this hinges on the remote context switch having observed
2460 * our task->perf_event_ctxp[] store, such that it will in fact take
2461 * ctx::lock in perf_event_context_sched_in().
2462 *
2463 * We do this by task_function_call(), if the IPI fails to hit the task
2464 * we know any future context switch of task must see the
2465 * perf_event_ctpx[] store.
39a43640 2466 */
63cae12b 2467
63b6da39 2468 /*
63cae12b
PZ
2469 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2470 * task_cpu() load, such that if the IPI then does not find the task
2471 * running, a future context switch of that task must observe the
2472 * store.
63b6da39 2473 */
63cae12b
PZ
2474 smp_mb();
2475again:
2476 if (!task_function_call(task, __perf_install_in_context, event))
a096309b
PZ
2477 return;
2478
2479 raw_spin_lock_irq(&ctx->lock);
2480 task = ctx->task;
84c4e620 2481 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
a096309b
PZ
2482 /*
2483 * Cannot happen because we already checked above (which also
2484 * cannot happen), and we hold ctx->mutex, which serializes us
2485 * against perf_event_exit_task_context().
2486 */
63b6da39
PZ
2487 raw_spin_unlock_irq(&ctx->lock);
2488 return;
2489 }
39a43640 2490 /*
63cae12b
PZ
2491 * If the task is not running, ctx->lock will avoid it becoming so,
2492 * thus we can safely install the event.
39a43640 2493 */
63cae12b
PZ
2494 if (task_curr(task)) {
2495 raw_spin_unlock_irq(&ctx->lock);
2496 goto again;
2497 }
2498 add_event_to_ctx(event, ctx);
2499 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
2500}
2501
fa289bec 2502/*
cdd6c482 2503 * Put a event into inactive state and update time fields.
fa289bec
PM
2504 * Enabling the leader of a group effectively enables all
2505 * the group members that aren't explicitly disabled, so we
2506 * have to update their ->tstamp_enabled also.
2507 * Note: this works for group members as well as group leaders
2508 * since the non-leader members' sibling_lists will be empty.
2509 */
1d9b482e 2510static void __perf_event_mark_enabled(struct perf_event *event)
fa289bec 2511{
cdd6c482 2512 struct perf_event *sub;
4158755d 2513 u64 tstamp = perf_event_time(event);
fa289bec 2514
cdd6c482 2515 event->state = PERF_EVENT_STATE_INACTIVE;
9b231d9f 2516 __perf_event_enable_time(event, tstamp);
9ed6060d 2517 list_for_each_entry(sub, &event->sibling_list, group_entry) {
9b231d9f 2518 /* XXX should not be > INACTIVE if event isn't */
4158755d 2519 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
9b231d9f 2520 __perf_event_enable_time(sub, tstamp);
9ed6060d 2521 }
fa289bec
PM
2522}
2523
d859e29f 2524/*
cdd6c482 2525 * Cross CPU call to enable a performance event
d859e29f 2526 */
fae3fde6
PZ
2527static void __perf_event_enable(struct perf_event *event,
2528 struct perf_cpu_context *cpuctx,
2529 struct perf_event_context *ctx,
2530 void *info)
04289bb9 2531{
cdd6c482 2532 struct perf_event *leader = event->group_leader;
fae3fde6 2533 struct perf_event_context *task_ctx;
04289bb9 2534
6e801e01
PZ
2535 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2536 event->state <= PERF_EVENT_STATE_ERROR)
fae3fde6 2537 return;
3cbed429 2538
bd2afa49
PZ
2539 if (ctx->is_active)
2540 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2541
1d9b482e 2542 __perf_event_mark_enabled(event);
04289bb9 2543
fae3fde6
PZ
2544 if (!ctx->is_active)
2545 return;
2546
e5d1367f 2547 if (!event_filter_match(event)) {
bd2afa49 2548 if (is_cgroup_event(event))
e5d1367f 2549 perf_cgroup_defer_enabled(event);
bd2afa49 2550 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
fae3fde6 2551 return;
e5d1367f 2552 }
f4c4176f 2553
04289bb9 2554 /*
cdd6c482 2555 * If the event is in a group and isn't the group leader,
d859e29f 2556 * then don't put it on unless the group is on.
04289bb9 2557 */
bd2afa49
PZ
2558 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2559 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
fae3fde6 2560 return;
bd2afa49 2561 }
fe4b04fa 2562
fae3fde6
PZ
2563 task_ctx = cpuctx->task_ctx;
2564 if (ctx->task)
2565 WARN_ON_ONCE(task_ctx != ctx);
d859e29f 2566
487f05e1 2567 ctx_resched(cpuctx, task_ctx, get_event_type(event));
7b648018
PZ
2568}
2569
d859e29f 2570/*
cdd6c482 2571 * Enable a event.
c93f7669 2572 *
cdd6c482
IM
2573 * If event->ctx is a cloned context, callers must make sure that
2574 * every task struct that event->ctx->task could possibly point to
c93f7669 2575 * remains valid. This condition is satisfied when called through
cdd6c482
IM
2576 * perf_event_for_each_child or perf_event_for_each as described
2577 * for perf_event_disable.
d859e29f 2578 */
f63a8daa 2579static void _perf_event_enable(struct perf_event *event)
d859e29f 2580{
cdd6c482 2581 struct perf_event_context *ctx = event->ctx;
d859e29f 2582
7b648018 2583 raw_spin_lock_irq(&ctx->lock);
6e801e01
PZ
2584 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2585 event->state < PERF_EVENT_STATE_ERROR) {
7b648018 2586 raw_spin_unlock_irq(&ctx->lock);
d859e29f
PM
2587 return;
2588 }
2589
d859e29f 2590 /*
cdd6c482 2591 * If the event is in error state, clear that first.
7b648018
PZ
2592 *
2593 * That way, if we see the event in error state below, we know that it
2594 * has gone back into error state, as distinct from the task having
2595 * been scheduled away before the cross-call arrived.
d859e29f 2596 */
cdd6c482
IM
2597 if (event->state == PERF_EVENT_STATE_ERROR)
2598 event->state = PERF_EVENT_STATE_OFF;
e625cce1 2599 raw_spin_unlock_irq(&ctx->lock);
fe4b04fa 2600
fae3fde6 2601 event_function_call(event, __perf_event_enable, NULL);
d859e29f 2602}
f63a8daa
PZ
2603
2604/*
2605 * See perf_event_disable();
2606 */
2607void perf_event_enable(struct perf_event *event)
2608{
2609 struct perf_event_context *ctx;
2610
2611 ctx = perf_event_ctx_lock(event);
2612 _perf_event_enable(event);
2613 perf_event_ctx_unlock(event, ctx);
2614}
dcfce4a0 2615EXPORT_SYMBOL_GPL(perf_event_enable);
d859e29f 2616
375637bc
AS
2617struct stop_event_data {
2618 struct perf_event *event;
2619 unsigned int restart;
2620};
2621
95ff4ca2
AS
2622static int __perf_event_stop(void *info)
2623{
375637bc
AS
2624 struct stop_event_data *sd = info;
2625 struct perf_event *event = sd->event;
95ff4ca2 2626
375637bc 2627 /* if it's already INACTIVE, do nothing */
95ff4ca2
AS
2628 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2629 return 0;
2630
2631 /* matches smp_wmb() in event_sched_in() */
2632 smp_rmb();
2633
2634 /*
2635 * There is a window with interrupts enabled before we get here,
2636 * so we need to check again lest we try to stop another CPU's event.
2637 */
2638 if (READ_ONCE(event->oncpu) != smp_processor_id())
2639 return -EAGAIN;
2640
2641 event->pmu->stop(event, PERF_EF_UPDATE);
2642
375637bc
AS
2643 /*
2644 * May race with the actual stop (through perf_pmu_output_stop()),
2645 * but it is only used for events with AUX ring buffer, and such
2646 * events will refuse to restart because of rb::aux_mmap_count==0,
2647 * see comments in perf_aux_output_begin().
2648 *
2649 * Since this is happening on a event-local CPU, no trace is lost
2650 * while restarting.
2651 */
2652 if (sd->restart)
c9bbdd48 2653 event->pmu->start(event, 0);
375637bc 2654
95ff4ca2
AS
2655 return 0;
2656}
2657
767ae086 2658static int perf_event_stop(struct perf_event *event, int restart)
375637bc
AS
2659{
2660 struct stop_event_data sd = {
2661 .event = event,
767ae086 2662 .restart = restart,
375637bc
AS
2663 };
2664 int ret = 0;
2665
2666 do {
2667 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2668 return 0;
2669
2670 /* matches smp_wmb() in event_sched_in() */
2671 smp_rmb();
2672
2673 /*
2674 * We only want to restart ACTIVE events, so if the event goes
2675 * inactive here (event->oncpu==-1), there's nothing more to do;
2676 * fall through with ret==-ENXIO.
2677 */
2678 ret = cpu_function_call(READ_ONCE(event->oncpu),
2679 __perf_event_stop, &sd);
2680 } while (ret == -EAGAIN);
2681
2682 return ret;
2683}
2684
2685/*
2686 * In order to contain the amount of racy and tricky in the address filter
2687 * configuration management, it is a two part process:
2688 *
2689 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2690 * we update the addresses of corresponding vmas in
2691 * event::addr_filters_offs array and bump the event::addr_filters_gen;
2692 * (p2) when an event is scheduled in (pmu::add), it calls
2693 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2694 * if the generation has changed since the previous call.
2695 *
2696 * If (p1) happens while the event is active, we restart it to force (p2).
2697 *
2698 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2699 * pre-existing mappings, called once when new filters arrive via SET_FILTER
2700 * ioctl;
2701 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2702 * registered mapping, called for every new mmap(), with mm::mmap_sem down
2703 * for reading;
2704 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2705 * of exec.
2706 */
2707void perf_event_addr_filters_sync(struct perf_event *event)
2708{
2709 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2710
2711 if (!has_addr_filter(event))
2712 return;
2713
2714 raw_spin_lock(&ifh->lock);
2715 if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2716 event->pmu->addr_filters_sync(event);
2717 event->hw.addr_filters_gen = event->addr_filters_gen;
2718 }
2719 raw_spin_unlock(&ifh->lock);
2720}
2721EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2722
f63a8daa 2723static int _perf_event_refresh(struct perf_event *event, int refresh)
79f14641 2724{
2023b359 2725 /*
cdd6c482 2726 * not supported on inherited events
2023b359 2727 */
2e939d1d 2728 if (event->attr.inherit || !is_sampling_event(event))
2023b359
PZ
2729 return -EINVAL;
2730
cdd6c482 2731 atomic_add(refresh, &event->event_limit);
f63a8daa 2732 _perf_event_enable(event);
2023b359
PZ
2733
2734 return 0;
79f14641 2735}
f63a8daa
PZ
2736
2737/*
2738 * See perf_event_disable()
2739 */
2740int perf_event_refresh(struct perf_event *event, int refresh)
2741{
2742 struct perf_event_context *ctx;
2743 int ret;
2744
2745 ctx = perf_event_ctx_lock(event);
2746 ret = _perf_event_refresh(event, refresh);
2747 perf_event_ctx_unlock(event, ctx);
2748
2749 return ret;
2750}
26ca5c11 2751EXPORT_SYMBOL_GPL(perf_event_refresh);
79f14641 2752
5b0311e1
FW
2753static void ctx_sched_out(struct perf_event_context *ctx,
2754 struct perf_cpu_context *cpuctx,
2755 enum event_type_t event_type)
235c7fc7 2756{
db24d33e 2757 int is_active = ctx->is_active;
c994d613 2758 struct perf_event *event;
235c7fc7 2759
c994d613 2760 lockdep_assert_held(&ctx->lock);
235c7fc7 2761
39a43640
PZ
2762 if (likely(!ctx->nr_events)) {
2763 /*
2764 * See __perf_remove_from_context().
2765 */
2766 WARN_ON_ONCE(ctx->is_active);
2767 if (ctx->task)
2768 WARN_ON_ONCE(cpuctx->task_ctx);
facc4307 2769 return;
39a43640
PZ
2770 }
2771
db24d33e 2772 ctx->is_active &= ~event_type;
3cbaa590
PZ
2773 if (!(ctx->is_active & EVENT_ALL))
2774 ctx->is_active = 0;
2775
63e30d3e
PZ
2776 if (ctx->task) {
2777 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2778 if (!ctx->is_active)
2779 cpuctx->task_ctx = NULL;
2780 }
facc4307 2781
8fdc6539
PZ
2782 /*
2783 * Always update time if it was set; not only when it changes.
2784 * Otherwise we can 'forget' to update time for any but the last
2785 * context we sched out. For example:
2786 *
2787 * ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2788 * ctx_sched_out(.event_type = EVENT_PINNED)
2789 *
2790 * would only update time for the pinned events.
2791 */
3cbaa590
PZ
2792 if (is_active & EVENT_TIME) {
2793 /* update (and stop) ctx time */
2794 update_context_time(ctx);
2795 update_cgrp_time_from_cpuctx(cpuctx);
2796 }
2797
8fdc6539
PZ
2798 is_active ^= ctx->is_active; /* changed bits */
2799
3cbaa590 2800 if (!ctx->nr_active || !(is_active & EVENT_ALL))
facc4307 2801 return;
5b0311e1 2802
075e0b00 2803 perf_pmu_disable(ctx->pmu);
3cbaa590 2804 if (is_active & EVENT_PINNED) {
889ff015
FW
2805 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2806 group_sched_out(event, cpuctx, ctx);
9ed6060d 2807 }
889ff015 2808
3cbaa590 2809 if (is_active & EVENT_FLEXIBLE) {
889ff015 2810 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
8c9ed8e1 2811 group_sched_out(event, cpuctx, ctx);
9ed6060d 2812 }
1b9a644f 2813 perf_pmu_enable(ctx->pmu);
235c7fc7
IM
2814}
2815
564c2b21 2816/*
5a3126d4
PZ
2817 * Test whether two contexts are equivalent, i.e. whether they have both been
2818 * cloned from the same version of the same context.
2819 *
2820 * Equivalence is measured using a generation number in the context that is
2821 * incremented on each modification to it; see unclone_ctx(), list_add_event()
2822 * and list_del_event().
564c2b21 2823 */
cdd6c482
IM
2824static int context_equiv(struct perf_event_context *ctx1,
2825 struct perf_event_context *ctx2)
564c2b21 2826{
211de6eb
PZ
2827 lockdep_assert_held(&ctx1->lock);
2828 lockdep_assert_held(&ctx2->lock);
2829
5a3126d4
PZ
2830 /* Pinning disables the swap optimization */
2831 if (ctx1->pin_count || ctx2->pin_count)
2832 return 0;
2833
2834 /* If ctx1 is the parent of ctx2 */
2835 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2836 return 1;
2837
2838 /* If ctx2 is the parent of ctx1 */
2839 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2840 return 1;
2841
2842 /*
2843 * If ctx1 and ctx2 have the same parent; we flatten the parent
2844 * hierarchy, see perf_event_init_context().
2845 */
2846 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2847 ctx1->parent_gen == ctx2->parent_gen)
2848 return 1;
2849
2850 /* Unmatched */
2851 return 0;
564c2b21
PM
2852}
2853
cdd6c482
IM
2854static void __perf_event_sync_stat(struct perf_event *event,
2855 struct perf_event *next_event)
bfbd3381
PZ
2856{
2857 u64 value;
2858
cdd6c482 2859 if (!event->attr.inherit_stat)
bfbd3381
PZ
2860 return;
2861
2862 /*
cdd6c482 2863 * Update the event value, we cannot use perf_event_read()
bfbd3381
PZ
2864 * because we're in the middle of a context switch and have IRQs
2865 * disabled, which upsets smp_call_function_single(), however
cdd6c482 2866 * we know the event must be on the current CPU, therefore we
bfbd3381
PZ
2867 * don't need to use it.
2868 */
cdd6c482
IM
2869 switch (event->state) {
2870 case PERF_EVENT_STATE_ACTIVE:
3dbebf15
PZ
2871 event->pmu->read(event);
2872 /* fall-through */
bfbd3381 2873
cdd6c482
IM
2874 case PERF_EVENT_STATE_INACTIVE:
2875 update_event_times(event);
bfbd3381
PZ
2876 break;
2877
2878 default:
2879 break;
2880 }
2881
2882 /*
cdd6c482 2883 * In order to keep per-task stats reliable we need to flip the event
bfbd3381
PZ
2884 * values when we flip the contexts.
2885 */
e7850595
PZ
2886 value = local64_read(&next_event->count);
2887 value = local64_xchg(&event->count, value);
2888 local64_set(&next_event->count, value);
bfbd3381 2889
cdd6c482
IM
2890 swap(event->total_time_enabled, next_event->total_time_enabled);
2891 swap(event->total_time_running, next_event->total_time_running);
19d2e755 2892
bfbd3381 2893 /*
19d2e755 2894 * Since we swizzled the values, update the user visible data too.
bfbd3381 2895 */
cdd6c482
IM
2896 perf_event_update_userpage(event);
2897 perf_event_update_userpage(next_event);
bfbd3381
PZ
2898}
2899
cdd6c482
IM
2900static void perf_event_sync_stat(struct perf_event_context *ctx,
2901 struct perf_event_context *next_ctx)
bfbd3381 2902{
cdd6c482 2903 struct perf_event *event, *next_event;
bfbd3381
PZ
2904
2905 if (!ctx->nr_stat)
2906 return;
2907
02ffdbc8
PZ
2908 update_context_time(ctx);
2909
cdd6c482
IM
2910 event = list_first_entry(&ctx->event_list,
2911 struct perf_event, event_entry);
bfbd3381 2912
cdd6c482
IM
2913 next_event = list_first_entry(&next_ctx->event_list,
2914 struct perf_event, event_entry);
bfbd3381 2915
cdd6c482
IM
2916 while (&event->event_entry != &ctx->event_list &&
2917 &next_event->event_entry != &next_ctx->event_list) {
bfbd3381 2918
cdd6c482 2919 __perf_event_sync_stat(event, next_event);
bfbd3381 2920
cdd6c482
IM
2921 event = list_next_entry(event, event_entry);
2922 next_event = list_next_entry(next_event, event_entry);
bfbd3381
PZ
2923 }
2924}
2925
fe4b04fa
PZ
2926static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2927 struct task_struct *next)
0793a61d 2928{
8dc85d54 2929 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
cdd6c482 2930 struct perf_event_context *next_ctx;
5a3126d4 2931 struct perf_event_context *parent, *next_parent;
108b02cf 2932 struct perf_cpu_context *cpuctx;
c93f7669 2933 int do_switch = 1;
0793a61d 2934
108b02cf
PZ
2935 if (likely(!ctx))
2936 return;
10989fb2 2937
108b02cf
PZ
2938 cpuctx = __get_cpu_context(ctx);
2939 if (!cpuctx->task_ctx)
0793a61d
TG
2940 return;
2941
c93f7669 2942 rcu_read_lock();
8dc85d54 2943 next_ctx = next->perf_event_ctxp[ctxn];
5a3126d4
PZ
2944 if (!next_ctx)
2945 goto unlock;
2946
2947 parent = rcu_dereference(ctx->parent_ctx);
2948 next_parent = rcu_dereference(next_ctx->parent_ctx);
2949
2950 /* If neither context have a parent context; they cannot be clones. */
802c8a61 2951 if (!parent && !next_parent)
5a3126d4
PZ
2952 goto unlock;
2953
2954 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
c93f7669
PM
2955 /*
2956 * Looks like the two contexts are clones, so we might be
2957 * able to optimize the context switch. We lock both
2958 * contexts and check that they are clones under the
2959 * lock (including re-checking that neither has been
2960 * uncloned in the meantime). It doesn't matter which
2961 * order we take the locks because no other cpu could
2962 * be trying to lock both of these tasks.
2963 */
e625cce1
TG
2964 raw_spin_lock(&ctx->lock);
2965 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
c93f7669 2966 if (context_equiv(ctx, next_ctx)) {
63b6da39
PZ
2967 WRITE_ONCE(ctx->task, next);
2968 WRITE_ONCE(next_ctx->task, task);
5a158c3c
YZ
2969
2970 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2971
63b6da39
PZ
2972 /*
2973 * RCU_INIT_POINTER here is safe because we've not
2974 * modified the ctx and the above modification of
2975 * ctx->task and ctx->task_ctx_data are immaterial
2976 * since those values are always verified under
2977 * ctx->lock which we're now holding.
2978 */
2979 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
2980 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
2981
c93f7669 2982 do_switch = 0;
bfbd3381 2983
cdd6c482 2984 perf_event_sync_stat(ctx, next_ctx);
c93f7669 2985 }
e625cce1
TG
2986 raw_spin_unlock(&next_ctx->lock);
2987 raw_spin_unlock(&ctx->lock);
564c2b21 2988 }
5a3126d4 2989unlock:
c93f7669 2990 rcu_read_unlock();
564c2b21 2991
c93f7669 2992 if (do_switch) {
facc4307 2993 raw_spin_lock(&ctx->lock);
487f05e1 2994 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
facc4307 2995 raw_spin_unlock(&ctx->lock);
c93f7669 2996 }
0793a61d
TG
2997}
2998
e48c1788
PZ
2999static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3000
ba532500
YZ
3001void perf_sched_cb_dec(struct pmu *pmu)
3002{
e48c1788
PZ
3003 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3004
ba532500 3005 this_cpu_dec(perf_sched_cb_usages);
e48c1788
PZ
3006
3007 if (!--cpuctx->sched_cb_usage)
3008 list_del(&cpuctx->sched_cb_entry);
ba532500
YZ
3009}
3010
e48c1788 3011
ba532500
YZ
3012void perf_sched_cb_inc(struct pmu *pmu)
3013{
e48c1788
PZ
3014 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3015
3016 if (!cpuctx->sched_cb_usage++)
3017 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3018
ba532500
YZ
3019 this_cpu_inc(perf_sched_cb_usages);
3020}
3021
3022/*
3023 * This function provides the context switch callback to the lower code
3024 * layer. It is invoked ONLY when the context switch callback is enabled.
09e61b4f
PZ
3025 *
3026 * This callback is relevant even to per-cpu events; for example multi event
3027 * PEBS requires this to provide PID/TID information. This requires we flush
3028 * all queued PEBS records before we context switch to a new task.
ba532500
YZ
3029 */
3030static void perf_pmu_sched_task(struct task_struct *prev,
3031 struct task_struct *next,
3032 bool sched_in)
3033{
3034 struct perf_cpu_context *cpuctx;
3035 struct pmu *pmu;
ba532500
YZ
3036
3037 if (prev == next)
3038 return;
3039
e48c1788 3040 list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
1fd7e416 3041 pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
ba532500 3042
e48c1788
PZ
3043 if (WARN_ON_ONCE(!pmu->sched_task))
3044 continue;
ba532500 3045
e48c1788
PZ
3046 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3047 perf_pmu_disable(pmu);
ba532500 3048
e48c1788 3049 pmu->sched_task(cpuctx->task_ctx, sched_in);
ba532500 3050
e48c1788
PZ
3051 perf_pmu_enable(pmu);
3052 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
ba532500 3053 }
ba532500
YZ
3054}
3055
45ac1403
AH
3056static void perf_event_switch(struct task_struct *task,
3057 struct task_struct *next_prev, bool sched_in);
3058
8dc85d54
PZ
3059#define for_each_task_context_nr(ctxn) \
3060 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3061
3062/*
3063 * Called from scheduler to remove the events of the current task,
3064 * with interrupts disabled.
3065 *
3066 * We stop each event and update the event value in event->count.
3067 *
3068 * This does not protect us against NMI, but disable()
3069 * sets the disabled bit in the control field of event _before_
3070 * accessing the event control register. If a NMI hits, then it will
3071 * not restart the event.
3072 */
ab0cce56
JO
3073void __perf_event_task_sched_out(struct task_struct *task,
3074 struct task_struct *next)
8dc85d54
PZ
3075{
3076 int ctxn;
3077
ba532500
YZ
3078 if (__this_cpu_read(perf_sched_cb_usages))
3079 perf_pmu_sched_task(task, next, false);
3080
45ac1403
AH
3081 if (atomic_read(&nr_switch_events))
3082 perf_event_switch(task, next, false);
3083
8dc85d54
PZ
3084 for_each_task_context_nr(ctxn)
3085 perf_event_context_sched_out(task, ctxn, next);
e5d1367f
SE
3086
3087 /*
3088 * if cgroup events exist on this CPU, then we need
3089 * to check if we have to switch out PMU state.
3090 * cgroup event are system-wide mode only
3091 */
4a32fea9 3092 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
a8d757ef 3093 perf_cgroup_sched_out(task, next);
8dc85d54
PZ
3094}
3095
5b0311e1
FW
3096/*
3097 * Called with IRQs disabled
3098 */
3099static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3100 enum event_type_t event_type)
3101{
3102 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
04289bb9
IM
3103}
3104
235c7fc7 3105static void
5b0311e1 3106ctx_pinned_sched_in(struct perf_event_context *ctx,
6e37738a 3107 struct perf_cpu_context *cpuctx)
0793a61d 3108{
cdd6c482 3109 struct perf_event *event;
0793a61d 3110
889ff015
FW
3111 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
3112 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 3113 continue;
5632ab12 3114 if (!event_filter_match(event))
3b6f9e5c
PM
3115 continue;
3116
e5d1367f
SE
3117 /* may need to reset tstamp_enabled */
3118 if (is_cgroup_event(event))
3119 perf_cgroup_mark_enabled(event, ctx);
3120
8c9ed8e1 3121 if (group_can_go_on(event, cpuctx, 1))
6e37738a 3122 group_sched_in(event, cpuctx, ctx);
3b6f9e5c
PM
3123
3124 /*
3125 * If this pinned group hasn't been scheduled,
3126 * put it in error state.
3127 */
cdd6c482
IM
3128 if (event->state == PERF_EVENT_STATE_INACTIVE) {
3129 update_group_times(event);
3130 event->state = PERF_EVENT_STATE_ERROR;
53cfbf59 3131 }
3b6f9e5c 3132 }
5b0311e1
FW
3133}
3134
3135static void
3136ctx_flexible_sched_in(struct perf_event_context *ctx,
6e37738a 3137 struct perf_cpu_context *cpuctx)
5b0311e1
FW
3138{
3139 struct perf_event *event;
3140 int can_add_hw = 1;
3b6f9e5c 3141
889ff015
FW
3142 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
3143 /* Ignore events in OFF or ERROR state */
3144 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 3145 continue;
04289bb9
IM
3146 /*
3147 * Listen to the 'cpu' scheduling filter constraint
cdd6c482 3148 * of events:
04289bb9 3149 */
5632ab12 3150 if (!event_filter_match(event))
0793a61d
TG
3151 continue;
3152
e5d1367f
SE
3153 /* may need to reset tstamp_enabled */
3154 if (is_cgroup_event(event))
3155 perf_cgroup_mark_enabled(event, ctx);
3156
9ed6060d 3157 if (group_can_go_on(event, cpuctx, can_add_hw)) {
6e37738a 3158 if (group_sched_in(event, cpuctx, ctx))
dd0e6ba2 3159 can_add_hw = 0;
9ed6060d 3160 }
0793a61d 3161 }
5b0311e1
FW
3162}
3163
3164static void
3165ctx_sched_in(struct perf_event_context *ctx,
3166 struct perf_cpu_context *cpuctx,
e5d1367f
SE
3167 enum event_type_t event_type,
3168 struct task_struct *task)
5b0311e1 3169{
db24d33e 3170 int is_active = ctx->is_active;
c994d613
PZ
3171 u64 now;
3172
3173 lockdep_assert_held(&ctx->lock);
e5d1367f 3174
5b0311e1 3175 if (likely(!ctx->nr_events))
facc4307 3176 return;
5b0311e1 3177
3cbaa590 3178 ctx->is_active |= (event_type | EVENT_TIME);
63e30d3e
PZ
3179 if (ctx->task) {
3180 if (!is_active)
3181 cpuctx->task_ctx = ctx;
3182 else
3183 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3184 }
3185
3cbaa590
PZ
3186 is_active ^= ctx->is_active; /* changed bits */
3187
3188 if (is_active & EVENT_TIME) {
3189 /* start ctx time */
3190 now = perf_clock();
3191 ctx->timestamp = now;
3192 perf_cgroup_set_timestamp(task, ctx);
3193 }
3194
5b0311e1
FW
3195 /*
3196 * First go through the list and put on any pinned groups
3197 * in order to give them the best chance of going on.
3198 */
3cbaa590 3199 if (is_active & EVENT_PINNED)
6e37738a 3200 ctx_pinned_sched_in(ctx, cpuctx);
5b0311e1
FW
3201
3202 /* Then walk through the lower prio flexible groups */
3cbaa590 3203 if (is_active & EVENT_FLEXIBLE)
6e37738a 3204 ctx_flexible_sched_in(ctx, cpuctx);
235c7fc7
IM
3205}
3206
329c0e01 3207static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
3208 enum event_type_t event_type,
3209 struct task_struct *task)
329c0e01
FW
3210{
3211 struct perf_event_context *ctx = &cpuctx->ctx;
3212
e5d1367f 3213 ctx_sched_in(ctx, cpuctx, event_type, task);
329c0e01
FW
3214}
3215
e5d1367f
SE
3216static void perf_event_context_sched_in(struct perf_event_context *ctx,
3217 struct task_struct *task)
235c7fc7 3218{
108b02cf 3219 struct perf_cpu_context *cpuctx;
235c7fc7 3220
108b02cf 3221 cpuctx = __get_cpu_context(ctx);
329c0e01
FW
3222 if (cpuctx->task_ctx == ctx)
3223 return;
3224
facc4307 3225 perf_ctx_lock(cpuctx, ctx);
fdccc3fb 3226 /*
3227 * We must check ctx->nr_events while holding ctx->lock, such
3228 * that we serialize against perf_install_in_context().
3229 */
3230 if (!ctx->nr_events)
3231 goto unlock;
3232
1b9a644f 3233 perf_pmu_disable(ctx->pmu);
329c0e01
FW
3234 /*
3235 * We want to keep the following priority order:
3236 * cpu pinned (that don't need to move), task pinned,
3237 * cpu flexible, task flexible.
fe45bafb
AS
3238 *
3239 * However, if task's ctx is not carrying any pinned
3240 * events, no need to flip the cpuctx's events around.
329c0e01 3241 */
fe45bafb
AS
3242 if (!list_empty(&ctx->pinned_groups))
3243 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
63e30d3e 3244 perf_event_sched_in(cpuctx, ctx, task);
facc4307 3245 perf_pmu_enable(ctx->pmu);
fdccc3fb 3246
3247unlock:
facc4307 3248 perf_ctx_unlock(cpuctx, ctx);
235c7fc7
IM
3249}
3250
8dc85d54
PZ
3251/*
3252 * Called from scheduler to add the events of the current task
3253 * with interrupts disabled.
3254 *
3255 * We restore the event value and then enable it.
3256 *
3257 * This does not protect us against NMI, but enable()
3258 * sets the enabled bit in the control field of event _before_
3259 * accessing the event control register. If a NMI hits, then it will
3260 * keep the event running.
3261 */
ab0cce56
JO
3262void __perf_event_task_sched_in(struct task_struct *prev,
3263 struct task_struct *task)
8dc85d54
PZ
3264{
3265 struct perf_event_context *ctx;
3266 int ctxn;
3267
7e41d177
PZ
3268 /*
3269 * If cgroup events exist on this CPU, then we need to check if we have
3270 * to switch in PMU state; cgroup event are system-wide mode only.
3271 *
3272 * Since cgroup events are CPU events, we must schedule these in before
3273 * we schedule in the task events.
3274 */
3275 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3276 perf_cgroup_sched_in(prev, task);
3277
8dc85d54
PZ
3278 for_each_task_context_nr(ctxn) {
3279 ctx = task->perf_event_ctxp[ctxn];
3280 if (likely(!ctx))
3281 continue;
3282
e5d1367f 3283 perf_event_context_sched_in(ctx, task);
8dc85d54 3284 }
d010b332 3285
45ac1403
AH
3286 if (atomic_read(&nr_switch_events))
3287 perf_event_switch(task, prev, true);
3288
ba532500
YZ
3289 if (__this_cpu_read(perf_sched_cb_usages))
3290 perf_pmu_sched_task(prev, task, true);
235c7fc7
IM
3291}
3292
abd50713
PZ
3293static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3294{
3295 u64 frequency = event->attr.sample_freq;
3296 u64 sec = NSEC_PER_SEC;
3297 u64 divisor, dividend;
3298
3299 int count_fls, nsec_fls, frequency_fls, sec_fls;
3300
3301 count_fls = fls64(count);
3302 nsec_fls = fls64(nsec);
3303 frequency_fls = fls64(frequency);
3304 sec_fls = 30;
3305
3306 /*
3307 * We got @count in @nsec, with a target of sample_freq HZ
3308 * the target period becomes:
3309 *
3310 * @count * 10^9
3311 * period = -------------------
3312 * @nsec * sample_freq
3313 *
3314 */
3315
3316 /*
3317 * Reduce accuracy by one bit such that @a and @b converge
3318 * to a similar magnitude.
3319 */
fe4b04fa 3320#define REDUCE_FLS(a, b) \
abd50713
PZ
3321do { \
3322 if (a##_fls > b##_fls) { \
3323 a >>= 1; \
3324 a##_fls--; \
3325 } else { \
3326 b >>= 1; \
3327 b##_fls--; \
3328 } \
3329} while (0)
3330
3331 /*
3332 * Reduce accuracy until either term fits in a u64, then proceed with
3333 * the other, so that finally we can do a u64/u64 division.
3334 */
3335 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3336 REDUCE_FLS(nsec, frequency);
3337 REDUCE_FLS(sec, count);
3338 }
3339
3340 if (count_fls + sec_fls > 64) {
3341 divisor = nsec * frequency;
3342
3343 while (count_fls + sec_fls > 64) {
3344 REDUCE_FLS(count, sec);
3345 divisor >>= 1;
3346 }
3347
3348 dividend = count * sec;
3349 } else {
3350 dividend = count * sec;
3351
3352 while (nsec_fls + frequency_fls > 64) {
3353 REDUCE_FLS(nsec, frequency);
3354 dividend >>= 1;
3355 }
3356
3357 divisor = nsec * frequency;
3358 }
3359
f6ab91ad
PZ
3360 if (!divisor)
3361 return dividend;
3362
abd50713
PZ
3363 return div64_u64(dividend, divisor);
3364}
3365
e050e3f0
SE
3366static DEFINE_PER_CPU(int, perf_throttled_count);
3367static DEFINE_PER_CPU(u64, perf_throttled_seq);
3368
f39d47ff 3369static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
bd2b5b12 3370{
cdd6c482 3371 struct hw_perf_event *hwc = &event->hw;
f6ab91ad 3372 s64 period, sample_period;
bd2b5b12
PZ
3373 s64 delta;
3374
abd50713 3375 period = perf_calculate_period(event, nsec, count);
bd2b5b12
PZ
3376
3377 delta = (s64)(period - hwc->sample_period);
3378 delta = (delta + 7) / 8; /* low pass filter */
3379
3380 sample_period = hwc->sample_period + delta;
3381
3382 if (!sample_period)
3383 sample_period = 1;
3384
bd2b5b12 3385 hwc->sample_period = sample_period;
abd50713 3386
e7850595 3387 if (local64_read(&hwc->period_left) > 8*sample_period) {
f39d47ff
SE
3388 if (disable)
3389 event->pmu->stop(event, PERF_EF_UPDATE);
3390
e7850595 3391 local64_set(&hwc->period_left, 0);
f39d47ff
SE
3392
3393 if (disable)
3394 event->pmu->start(event, PERF_EF_RELOAD);
abd50713 3395 }
bd2b5b12
PZ
3396}
3397
e050e3f0
SE
3398/*
3399 * combine freq adjustment with unthrottling to avoid two passes over the
3400 * events. At the same time, make sure, having freq events does not change
3401 * the rate of unthrottling as that would introduce bias.
3402 */
3403static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3404 int needs_unthr)
60db5e09 3405{
cdd6c482
IM
3406 struct perf_event *event;
3407 struct hw_perf_event *hwc;
e050e3f0 3408 u64 now, period = TICK_NSEC;
abd50713 3409 s64 delta;
60db5e09 3410
e050e3f0
SE
3411 /*
3412 * only need to iterate over all events iff:
3413 * - context have events in frequency mode (needs freq adjust)
3414 * - there are events to unthrottle on this cpu
3415 */
3416 if (!(ctx->nr_freq || needs_unthr))
0f5a2601
PZ
3417 return;
3418
e050e3f0 3419 raw_spin_lock(&ctx->lock);
f39d47ff 3420 perf_pmu_disable(ctx->pmu);
e050e3f0 3421
03541f8b 3422 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
cdd6c482 3423 if (event->state != PERF_EVENT_STATE_ACTIVE)
60db5e09
PZ
3424 continue;
3425
5632ab12 3426 if (!event_filter_match(event))
5d27c23d
PZ
3427 continue;
3428
44377277
AS
3429 perf_pmu_disable(event->pmu);
3430
cdd6c482 3431 hwc = &event->hw;
6a24ed6c 3432
ae23bff1 3433 if (hwc->interrupts == MAX_INTERRUPTS) {
e050e3f0 3434 hwc->interrupts = 0;
cdd6c482 3435 perf_log_throttle(event, 1);
a4eaf7f1 3436 event->pmu->start(event, 0);
a78ac325
PZ
3437 }
3438
cdd6c482 3439 if (!event->attr.freq || !event->attr.sample_freq)
44377277 3440 goto next;
60db5e09 3441
e050e3f0
SE
3442 /*
3443 * stop the event and update event->count
3444 */
3445 event->pmu->stop(event, PERF_EF_UPDATE);
3446
e7850595 3447 now = local64_read(&event->count);
abd50713
PZ
3448 delta = now - hwc->freq_count_stamp;
3449 hwc->freq_count_stamp = now;
60db5e09 3450
e050e3f0
SE
3451 /*
3452 * restart the event
3453 * reload only if value has changed
f39d47ff
SE
3454 * we have stopped the event so tell that
3455 * to perf_adjust_period() to avoid stopping it
3456 * twice.
e050e3f0 3457 */
abd50713 3458 if (delta > 0)
f39d47ff 3459 perf_adjust_period(event, period, delta, false);
e050e3f0
SE
3460
3461 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
44377277
AS
3462 next:
3463 perf_pmu_enable(event->pmu);
60db5e09 3464 }
e050e3f0 3465
f39d47ff 3466 perf_pmu_enable(ctx->pmu);
e050e3f0 3467 raw_spin_unlock(&ctx->lock);
60db5e09
PZ
3468}
3469
235c7fc7 3470/*
cdd6c482 3471 * Round-robin a context's events:
235c7fc7 3472 */
cdd6c482 3473static void rotate_ctx(struct perf_event_context *ctx)
0793a61d 3474{
dddd3379
TG
3475 /*
3476 * Rotate the first entry last of non-pinned groups. Rotation might be
3477 * disabled by the inheritance code.
3478 */
3479 if (!ctx->rotate_disable)
3480 list_rotate_left(&ctx->flexible_groups);
235c7fc7
IM
3481}
3482
9e630205 3483static int perf_rotate_context(struct perf_cpu_context *cpuctx)
235c7fc7 3484{
8dc85d54 3485 struct perf_event_context *ctx = NULL;
2fde4f94 3486 int rotate = 0;
7fc23a53 3487
b5ab4cd5 3488 if (cpuctx->ctx.nr_events) {
b5ab4cd5
PZ
3489 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3490 rotate = 1;
3491 }
235c7fc7 3492
8dc85d54 3493 ctx = cpuctx->task_ctx;
b5ab4cd5 3494 if (ctx && ctx->nr_events) {
b5ab4cd5
PZ
3495 if (ctx->nr_events != ctx->nr_active)
3496 rotate = 1;
3497 }
9717e6cd 3498
e050e3f0 3499 if (!rotate)
0f5a2601
PZ
3500 goto done;
3501
facc4307 3502 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
1b9a644f 3503 perf_pmu_disable(cpuctx->ctx.pmu);
60db5e09 3504
e050e3f0
SE
3505 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3506 if (ctx)
3507 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
0793a61d 3508
e050e3f0
SE
3509 rotate_ctx(&cpuctx->ctx);
3510 if (ctx)
3511 rotate_ctx(ctx);
235c7fc7 3512
e050e3f0 3513 perf_event_sched_in(cpuctx, ctx, current);
235c7fc7 3514
0f5a2601
PZ
3515 perf_pmu_enable(cpuctx->ctx.pmu);
3516 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
b5ab4cd5 3517done:
9e630205
SE
3518
3519 return rotate;
e9d2b064
PZ
3520}
3521
3522void perf_event_task_tick(void)
3523{
2fde4f94
MR
3524 struct list_head *head = this_cpu_ptr(&active_ctx_list);
3525 struct perf_event_context *ctx, *tmp;
e050e3f0 3526 int throttled;
b5ab4cd5 3527
e9d2b064
PZ
3528 WARN_ON(!irqs_disabled());
3529
e050e3f0
SE
3530 __this_cpu_inc(perf_throttled_seq);
3531 throttled = __this_cpu_xchg(perf_throttled_count, 0);
555e0c1e 3532 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
e050e3f0 3533
2fde4f94 3534 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
e050e3f0 3535 perf_adjust_freq_unthr_context(ctx, throttled);
0793a61d
TG
3536}
3537
889ff015
FW
3538static int event_enable_on_exec(struct perf_event *event,
3539 struct perf_event_context *ctx)
3540{
3541 if (!event->attr.enable_on_exec)
3542 return 0;
3543
3544 event->attr.enable_on_exec = 0;
3545 if (event->state >= PERF_EVENT_STATE_INACTIVE)
3546 return 0;
3547
1d9b482e 3548 __perf_event_mark_enabled(event);
889ff015
FW
3549
3550 return 1;
3551}
3552
57e7986e 3553/*
cdd6c482 3554 * Enable all of a task's events that have been marked enable-on-exec.
57e7986e
PM
3555 * This expects task == current.
3556 */
c1274499 3557static void perf_event_enable_on_exec(int ctxn)
57e7986e 3558{
c1274499 3559 struct perf_event_context *ctx, *clone_ctx = NULL;
487f05e1 3560 enum event_type_t event_type = 0;
3e349507 3561 struct perf_cpu_context *cpuctx;
cdd6c482 3562 struct perf_event *event;
57e7986e
PM
3563 unsigned long flags;
3564 int enabled = 0;
3565
3566 local_irq_save(flags);
c1274499 3567 ctx = current->perf_event_ctxp[ctxn];
cdd6c482 3568 if (!ctx || !ctx->nr_events)
57e7986e
PM
3569 goto out;
3570
3e349507
PZ
3571 cpuctx = __get_cpu_context(ctx);
3572 perf_ctx_lock(cpuctx, ctx);
7fce2509 3573 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
487f05e1 3574 list_for_each_entry(event, &ctx->event_list, event_entry) {
3e349507 3575 enabled |= event_enable_on_exec(event, ctx);
487f05e1
AS
3576 event_type |= get_event_type(event);
3577 }
57e7986e
PM
3578
3579 /*
3e349507 3580 * Unclone and reschedule this context if we enabled any event.
57e7986e 3581 */
3e349507 3582 if (enabled) {
211de6eb 3583 clone_ctx = unclone_ctx(ctx);
487f05e1 3584 ctx_resched(cpuctx, ctx, event_type);
7bbba0eb
PZ
3585 } else {
3586 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
3e349507
PZ
3587 }
3588 perf_ctx_unlock(cpuctx, ctx);
57e7986e 3589
9ed6060d 3590out:
57e7986e 3591 local_irq_restore(flags);
211de6eb
PZ
3592
3593 if (clone_ctx)
3594 put_ctx(clone_ctx);
57e7986e
PM
3595}
3596
0492d4c5
PZ
3597struct perf_read_data {
3598 struct perf_event *event;
3599 bool group;
7d88962e 3600 int ret;
0492d4c5
PZ
3601};
3602
451d24d1 3603static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
d6a2f903 3604{
d6a2f903
DCC
3605 u16 local_pkg, event_pkg;
3606
3607 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
451d24d1
PZ
3608 int local_cpu = smp_processor_id();
3609
3610 event_pkg = topology_physical_package_id(event_cpu);
3611 local_pkg = topology_physical_package_id(local_cpu);
d6a2f903
DCC
3612
3613 if (event_pkg == local_pkg)
3614 return local_cpu;
3615 }
3616
3617 return event_cpu;
3618}
3619
0793a61d 3620/*
cdd6c482 3621 * Cross CPU call to read the hardware event
0793a61d 3622 */
cdd6c482 3623static void __perf_event_read(void *info)
0793a61d 3624{
0492d4c5
PZ
3625 struct perf_read_data *data = info;
3626 struct perf_event *sub, *event = data->event;
cdd6c482 3627 struct perf_event_context *ctx = event->ctx;
108b02cf 3628 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
4a00c16e 3629 struct pmu *pmu = event->pmu;
621a01ea 3630
e1ac3614
PM
3631 /*
3632 * If this is a task context, we need to check whether it is
3633 * the current task context of this cpu. If not it has been
3634 * scheduled out before the smp call arrived. In that case
cdd6c482
IM
3635 * event->count would have been updated to a recent sample
3636 * when the event was scheduled out.
e1ac3614
PM
3637 */
3638 if (ctx->task && cpuctx->task_ctx != ctx)
3639 return;
3640
e625cce1 3641 raw_spin_lock(&ctx->lock);
0c1cbc18 3642 if (ctx->is_active & EVENT_TIME) {
542e72fc 3643 update_context_time(ctx);
e5d1367f
SE
3644 update_cgrp_time_from_event(event);
3645 }
0492d4c5 3646
0c1cbc18
PZ
3647 if (!data->group)
3648 update_event_times(event);
3649 else
3650 update_group_times(event);
3651
4a00c16e
SB
3652 if (event->state != PERF_EVENT_STATE_ACTIVE)
3653 goto unlock;
0492d4c5 3654
4a00c16e
SB
3655 if (!data->group) {
3656 pmu->read(event);
3657 data->ret = 0;
0492d4c5 3658 goto unlock;
4a00c16e
SB
3659 }
3660
3661 pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3662
3663 pmu->read(event);
0492d4c5
PZ
3664
3665 list_for_each_entry(sub, &event->sibling_list, group_entry) {
4a00c16e
SB
3666 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3667 /*
3668 * Use sibling's PMU rather than @event's since
3669 * sibling could be on different (eg: software) PMU.
3670 */
0492d4c5 3671 sub->pmu->read(sub);
4a00c16e 3672 }
0492d4c5 3673 }
4a00c16e
SB
3674
3675 data->ret = pmu->commit_txn(pmu);
0492d4c5
PZ
3676
3677unlock:
e625cce1 3678 raw_spin_unlock(&ctx->lock);
0793a61d
TG
3679}
3680
b5e58793
PZ
3681static inline u64 perf_event_count(struct perf_event *event)
3682{
c39a0e2c 3683 return local64_read(&event->count) + atomic64_read(&event->child_count);
b5e58793
PZ
3684}
3685
ffe8690c
KX
3686/*
3687 * NMI-safe method to read a local event, that is an event that
3688 * is:
3689 * - either for the current task, or for this CPU
3690 * - does not have inherit set, for inherited task events
3691 * will not be local and we cannot read them atomically
3692 * - must not have a pmu::count method
3693 */
7d9285e8
YS
3694int perf_event_read_local(struct perf_event *event, u64 *value,
3695 u64 *enabled, u64 *running)
ffe8690c
KX
3696{
3697 unsigned long flags;
f91840a3 3698 int ret = 0;
7d9285e8 3699 u64 now;
ffe8690c
KX
3700
3701 /*
3702 * Disabling interrupts avoids all counter scheduling (context
3703 * switches, timer based rotation and IPIs).
3704 */
3705 local_irq_save(flags);
3706
ffe8690c
KX
3707 /*
3708 * It must not be an event with inherit set, we cannot read
3709 * all child counters from atomic context.
3710 */
f91840a3
AS
3711 if (event->attr.inherit) {
3712 ret = -EOPNOTSUPP;
3713 goto out;
3714 }
ffe8690c 3715
f91840a3
AS
3716 /* If this is a per-task event, it must be for current */
3717 if ((event->attach_state & PERF_ATTACH_TASK) &&
3718 event->hw.target != current) {
3719 ret = -EINVAL;
3720 goto out;
3721 }
3722
3723 /* If this is a per-CPU event, it must be for this CPU */
3724 if (!(event->attach_state & PERF_ATTACH_TASK) &&
3725 event->cpu != smp_processor_id()) {
3726 ret = -EINVAL;
3727 goto out;
3728 }
ffe8690c 3729
7d9285e8
YS
3730 now = event->shadow_ctx_time + perf_clock();
3731 if (enabled)
3732 *enabled = now - event->tstamp_enabled;
ffe8690c
KX
3733 /*
3734 * If the event is currently on this CPU, its either a per-task event,
3735 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3736 * oncpu == -1).
3737 */
7d9285e8 3738 if (event->oncpu == smp_processor_id()) {
ffe8690c 3739 event->pmu->read(event);
7d9285e8
YS
3740 if (running)
3741 *running = now - event->tstamp_running;
3742 } else if (running) {
3743 *running = event->total_time_running;
3744 }
ffe8690c 3745
f91840a3
AS
3746 *value = local64_read(&event->count);
3747out:
ffe8690c
KX
3748 local_irq_restore(flags);
3749
f91840a3 3750 return ret;
ffe8690c
KX
3751}
3752
7d88962e 3753static int perf_event_read(struct perf_event *event, bool group)
0793a61d 3754{
0c1cbc18 3755 enum perf_event_state state = READ_ONCE(event->state);
451d24d1 3756 int event_cpu, ret = 0;
7d88962e 3757
0793a61d 3758 /*
cdd6c482
IM
3759 * If event is enabled and currently active on a CPU, update the
3760 * value in the event structure:
0793a61d 3761 */
0c1cbc18
PZ
3762again:
3763 if (state == PERF_EVENT_STATE_ACTIVE) {
3764 struct perf_read_data data;
3765
3766 /*
3767 * Orders the ->state and ->oncpu loads such that if we see
3768 * ACTIVE we must also see the right ->oncpu.
3769 *
3770 * Matches the smp_wmb() from event_sched_in().
3771 */
3772 smp_rmb();
d6a2f903 3773
451d24d1
PZ
3774 event_cpu = READ_ONCE(event->oncpu);
3775 if ((unsigned)event_cpu >= nr_cpu_ids)
3776 return 0;
3777
0c1cbc18
PZ
3778 data = (struct perf_read_data){
3779 .event = event,
3780 .group = group,
3781 .ret = 0,
3782 };
3783
451d24d1
PZ
3784 preempt_disable();
3785 event_cpu = __perf_event_read_cpu(event, event_cpu);
d6a2f903 3786
58763148
PZ
3787 /*
3788 * Purposely ignore the smp_call_function_single() return
3789 * value.
3790 *
451d24d1 3791 * If event_cpu isn't a valid CPU it means the event got
58763148
PZ
3792 * scheduled out and that will have updated the event count.
3793 *
3794 * Therefore, either way, we'll have an up-to-date event count
3795 * after this.
3796 */
451d24d1
PZ
3797 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
3798 preempt_enable();
58763148 3799 ret = data.ret;
0c1cbc18
PZ
3800
3801 } else if (state == PERF_EVENT_STATE_INACTIVE) {
2b8988c9
PZ
3802 struct perf_event_context *ctx = event->ctx;
3803 unsigned long flags;
3804
e625cce1 3805 raw_spin_lock_irqsave(&ctx->lock, flags);
0c1cbc18
PZ
3806 state = event->state;
3807 if (state != PERF_EVENT_STATE_INACTIVE) {
3808 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3809 goto again;
3810 }
3811
c530ccd9 3812 /*
0c1cbc18
PZ
3813 * May read while context is not active (e.g., thread is
3814 * blocked), in that case we cannot update context time
c530ccd9 3815 */
0c1cbc18 3816 if (ctx->is_active & EVENT_TIME) {
c530ccd9 3817 update_context_time(ctx);
e5d1367f
SE
3818 update_cgrp_time_from_event(event);
3819 }
0c1cbc18 3820
0492d4c5
PZ
3821 if (group)
3822 update_group_times(event);
3823 else
3824 update_event_times(event);
e625cce1 3825 raw_spin_unlock_irqrestore(&ctx->lock, flags);
0793a61d 3826 }
7d88962e
SB
3827
3828 return ret;
0793a61d
TG
3829}
3830
a63eaf34 3831/*
cdd6c482 3832 * Initialize the perf_event context in a task_struct:
a63eaf34 3833 */
eb184479 3834static void __perf_event_init_context(struct perf_event_context *ctx)
a63eaf34 3835{
e625cce1 3836 raw_spin_lock_init(&ctx->lock);
a63eaf34 3837 mutex_init(&ctx->mutex);
2fde4f94 3838 INIT_LIST_HEAD(&ctx->active_ctx_list);
889ff015
FW
3839 INIT_LIST_HEAD(&ctx->pinned_groups);
3840 INIT_LIST_HEAD(&ctx->flexible_groups);
a63eaf34
PM
3841 INIT_LIST_HEAD(&ctx->event_list);
3842 atomic_set(&ctx->refcount, 1);
eb184479
PZ
3843}
3844
3845static struct perf_event_context *
3846alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3847{
3848 struct perf_event_context *ctx;
3849
3850 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3851 if (!ctx)
3852 return NULL;
3853
3854 __perf_event_init_context(ctx);
3855 if (task) {
3856 ctx->task = task;
3857 get_task_struct(task);
0793a61d 3858 }
eb184479
PZ
3859 ctx->pmu = pmu;
3860
3861 return ctx;
a63eaf34
PM
3862}
3863
2ebd4ffb
MH
3864static struct task_struct *
3865find_lively_task_by_vpid(pid_t vpid)
3866{
3867 struct task_struct *task;
0793a61d
TG
3868
3869 rcu_read_lock();
2ebd4ffb 3870 if (!vpid)
0793a61d
TG
3871 task = current;
3872 else
2ebd4ffb 3873 task = find_task_by_vpid(vpid);
0793a61d
TG
3874 if (task)
3875 get_task_struct(task);
3876 rcu_read_unlock();
3877
3878 if (!task)
3879 return ERR_PTR(-ESRCH);
3880
2ebd4ffb 3881 return task;
2ebd4ffb
MH
3882}
3883
fe4b04fa
PZ
3884/*
3885 * Returns a matching context with refcount and pincount.
3886 */
108b02cf 3887static struct perf_event_context *
4af57ef2
YZ
3888find_get_context(struct pmu *pmu, struct task_struct *task,
3889 struct perf_event *event)
0793a61d 3890{
211de6eb 3891 struct perf_event_context *ctx, *clone_ctx = NULL;
22a4f650 3892 struct perf_cpu_context *cpuctx;
4af57ef2 3893 void *task_ctx_data = NULL;
25346b93 3894 unsigned long flags;
8dc85d54 3895 int ctxn, err;
4af57ef2 3896 int cpu = event->cpu;
0793a61d 3897
22a4ec72 3898 if (!task) {
cdd6c482 3899 /* Must be root to operate on a CPU event: */
0764771d 3900 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
0793a61d
TG
3901 return ERR_PTR(-EACCES);
3902
108b02cf 3903 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
0793a61d 3904 ctx = &cpuctx->ctx;
c93f7669 3905 get_ctx(ctx);
fe4b04fa 3906 ++ctx->pin_count;
0793a61d 3907
0793a61d
TG
3908 return ctx;
3909 }
3910
8dc85d54
PZ
3911 err = -EINVAL;
3912 ctxn = pmu->task_ctx_nr;
3913 if (ctxn < 0)
3914 goto errout;
3915
4af57ef2
YZ
3916 if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3917 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3918 if (!task_ctx_data) {
3919 err = -ENOMEM;
3920 goto errout;
3921 }
3922 }
3923
9ed6060d 3924retry:
8dc85d54 3925 ctx = perf_lock_task_context(task, ctxn, &flags);
c93f7669 3926 if (ctx) {
211de6eb 3927 clone_ctx = unclone_ctx(ctx);
fe4b04fa 3928 ++ctx->pin_count;
4af57ef2
YZ
3929
3930 if (task_ctx_data && !ctx->task_ctx_data) {
3931 ctx->task_ctx_data = task_ctx_data;
3932 task_ctx_data = NULL;
3933 }
e625cce1 3934 raw_spin_unlock_irqrestore(&ctx->lock, flags);
211de6eb
PZ
3935
3936 if (clone_ctx)
3937 put_ctx(clone_ctx);
9137fb28 3938 } else {
eb184479 3939 ctx = alloc_perf_context(pmu, task);
c93f7669
PM
3940 err = -ENOMEM;
3941 if (!ctx)
3942 goto errout;
eb184479 3943
4af57ef2
YZ
3944 if (task_ctx_data) {
3945 ctx->task_ctx_data = task_ctx_data;
3946 task_ctx_data = NULL;
3947 }
3948
dbe08d82
ON
3949 err = 0;
3950 mutex_lock(&task->perf_event_mutex);
3951 /*
3952 * If it has already passed perf_event_exit_task().
3953 * we must see PF_EXITING, it takes this mutex too.
3954 */
3955 if (task->flags & PF_EXITING)
3956 err = -ESRCH;
3957 else if (task->perf_event_ctxp[ctxn])
3958 err = -EAGAIN;
fe4b04fa 3959 else {
9137fb28 3960 get_ctx(ctx);
fe4b04fa 3961 ++ctx->pin_count;
dbe08d82 3962 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
fe4b04fa 3963 }
dbe08d82
ON
3964 mutex_unlock(&task->perf_event_mutex);
3965
3966 if (unlikely(err)) {
9137fb28 3967 put_ctx(ctx);
dbe08d82
ON
3968
3969 if (err == -EAGAIN)
3970 goto retry;
3971 goto errout;
a63eaf34
PM
3972 }
3973 }
3974
4af57ef2 3975 kfree(task_ctx_data);
0793a61d 3976 return ctx;
c93f7669 3977
9ed6060d 3978errout:
4af57ef2 3979 kfree(task_ctx_data);
c93f7669 3980 return ERR_PTR(err);
0793a61d
TG
3981}
3982
6fb2915d 3983static void perf_event_free_filter(struct perf_event *event);
2541517c 3984static void perf_event_free_bpf_prog(struct perf_event *event);
6fb2915d 3985
cdd6c482 3986static void free_event_rcu(struct rcu_head *head)
592903cd 3987{
cdd6c482 3988 struct perf_event *event;
592903cd 3989
cdd6c482
IM
3990 event = container_of(head, struct perf_event, rcu_head);
3991 if (event->ns)
3992 put_pid_ns(event->ns);
6fb2915d 3993 perf_event_free_filter(event);
cdd6c482 3994 kfree(event);
592903cd
PZ
3995}
3996
b69cf536
PZ
3997static void ring_buffer_attach(struct perf_event *event,
3998 struct ring_buffer *rb);
925d519a 3999
f2fb6bef
KL
4000static void detach_sb_event(struct perf_event *event)
4001{
4002 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
4003
4004 raw_spin_lock(&pel->lock);
4005 list_del_rcu(&event->sb_list);
4006 raw_spin_unlock(&pel->lock);
4007}
4008
a4f144eb 4009static bool is_sb_event(struct perf_event *event)
f2fb6bef 4010{
a4f144eb
DCC
4011 struct perf_event_attr *attr = &event->attr;
4012
f2fb6bef 4013 if (event->parent)
a4f144eb 4014 return false;
f2fb6bef
KL
4015
4016 if (event->attach_state & PERF_ATTACH_TASK)
a4f144eb 4017 return false;
f2fb6bef 4018
a4f144eb
DCC
4019 if (attr->mmap || attr->mmap_data || attr->mmap2 ||
4020 attr->comm || attr->comm_exec ||
4021 attr->task ||
4022 attr->context_switch)
4023 return true;
4024 return false;
4025}
4026
4027static void unaccount_pmu_sb_event(struct perf_event *event)
4028{
4029 if (is_sb_event(event))
4030 detach_sb_event(event);
f2fb6bef
KL
4031}
4032
4beb31f3 4033static void unaccount_event_cpu(struct perf_event *event, int cpu)
f1600952 4034{
4beb31f3
FW
4035 if (event->parent)
4036 return;
4037
4beb31f3
FW
4038 if (is_cgroup_event(event))
4039 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
4040}
925d519a 4041
555e0c1e
FW
4042#ifdef CONFIG_NO_HZ_FULL
4043static DEFINE_SPINLOCK(nr_freq_lock);
4044#endif
4045
4046static void unaccount_freq_event_nohz(void)
4047{
4048#ifdef CONFIG_NO_HZ_FULL
4049 spin_lock(&nr_freq_lock);
4050 if (atomic_dec_and_test(&nr_freq_events))
4051 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
4052 spin_unlock(&nr_freq_lock);
4053#endif
4054}
4055
4056static void unaccount_freq_event(void)
4057{
4058 if (tick_nohz_full_enabled())
4059 unaccount_freq_event_nohz();
4060 else
4061 atomic_dec(&nr_freq_events);
4062}
4063
4beb31f3
FW
4064static void unaccount_event(struct perf_event *event)
4065{
25432ae9
PZ
4066 bool dec = false;
4067
4beb31f3
FW
4068 if (event->parent)
4069 return;
4070
4071 if (event->attach_state & PERF_ATTACH_TASK)
25432ae9 4072 dec = true;
4beb31f3
FW
4073 if (event->attr.mmap || event->attr.mmap_data)
4074 atomic_dec(&nr_mmap_events);
4075 if (event->attr.comm)
4076 atomic_dec(&nr_comm_events);
e4222673
HB
4077 if (event->attr.namespaces)
4078 atomic_dec(&nr_namespaces_events);
4beb31f3
FW
4079 if (event->attr.task)
4080 atomic_dec(&nr_task_events);
948b26b6 4081 if (event->attr.freq)
555e0c1e 4082 unaccount_freq_event();
45ac1403 4083 if (event->attr.context_switch) {
25432ae9 4084 dec = true;
45ac1403
AH
4085 atomic_dec(&nr_switch_events);
4086 }
4beb31f3 4087 if (is_cgroup_event(event))
25432ae9 4088 dec = true;
4beb31f3 4089 if (has_branch_stack(event))
25432ae9
PZ
4090 dec = true;
4091
9107c89e
PZ
4092 if (dec) {
4093 if (!atomic_add_unless(&perf_sched_count, -1, 1))
4094 schedule_delayed_work(&perf_sched_work, HZ);
4095 }
4beb31f3
FW
4096
4097 unaccount_event_cpu(event, event->cpu);
f2fb6bef
KL
4098
4099 unaccount_pmu_sb_event(event);
4beb31f3 4100}
925d519a 4101
9107c89e
PZ
4102static void perf_sched_delayed(struct work_struct *work)
4103{
4104 mutex_lock(&perf_sched_mutex);
4105 if (atomic_dec_and_test(&perf_sched_count))
4106 static_branch_disable(&perf_sched_events);
4107 mutex_unlock(&perf_sched_mutex);
4108}
4109
bed5b25a
AS
4110/*
4111 * The following implement mutual exclusion of events on "exclusive" pmus
4112 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4113 * at a time, so we disallow creating events that might conflict, namely:
4114 *
4115 * 1) cpu-wide events in the presence of per-task events,
4116 * 2) per-task events in the presence of cpu-wide events,
4117 * 3) two matching events on the same context.
4118 *
4119 * The former two cases are handled in the allocation path (perf_event_alloc(),
a0733e69 4120 * _free_event()), the latter -- before the first perf_install_in_context().
bed5b25a
AS
4121 */
4122static int exclusive_event_init(struct perf_event *event)
4123{
4124 struct pmu *pmu = event->pmu;
4125
4126 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4127 return 0;
4128
4129 /*
4130 * Prevent co-existence of per-task and cpu-wide events on the
4131 * same exclusive pmu.
4132 *
4133 * Negative pmu::exclusive_cnt means there are cpu-wide
4134 * events on this "exclusive" pmu, positive means there are
4135 * per-task events.
4136 *
4137 * Since this is called in perf_event_alloc() path, event::ctx
4138 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4139 * to mean "per-task event", because unlike other attach states it
4140 * never gets cleared.
4141 */
4142 if (event->attach_state & PERF_ATTACH_TASK) {
4143 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4144 return -EBUSY;
4145 } else {
4146 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4147 return -EBUSY;
4148 }
4149
4150 return 0;
4151}
4152
4153static void exclusive_event_destroy(struct perf_event *event)
4154{
4155 struct pmu *pmu = event->pmu;
4156
4157 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4158 return;
4159
4160 /* see comment in exclusive_event_init() */
4161 if (event->attach_state & PERF_ATTACH_TASK)
4162 atomic_dec(&pmu->exclusive_cnt);
4163 else
4164 atomic_inc(&pmu->exclusive_cnt);
4165}
4166
4167static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4168{
3bf6215a 4169 if ((e1->pmu == e2->pmu) &&
bed5b25a
AS
4170 (e1->cpu == e2->cpu ||
4171 e1->cpu == -1 ||
4172 e2->cpu == -1))
4173 return true;
4174 return false;
4175}
4176
4177/* Called under the same ctx::mutex as perf_install_in_context() */
4178static bool exclusive_event_installable(struct perf_event *event,
4179 struct perf_event_context *ctx)
4180{
4181 struct perf_event *iter_event;
4182 struct pmu *pmu = event->pmu;
4183
4184 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4185 return true;
4186
4187 list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4188 if (exclusive_event_match(iter_event, event))
4189 return false;
4190 }
4191
4192 return true;
4193}
4194
375637bc
AS
4195static void perf_addr_filters_splice(struct perf_event *event,
4196 struct list_head *head);
4197
683ede43 4198static void _free_event(struct perf_event *event)
f1600952 4199{
e360adbe 4200 irq_work_sync(&event->pending);
925d519a 4201
4beb31f3 4202 unaccount_event(event);
9ee318a7 4203
76369139 4204 if (event->rb) {
9bb5d40c
PZ
4205 /*
4206 * Can happen when we close an event with re-directed output.
4207 *
4208 * Since we have a 0 refcount, perf_mmap_close() will skip
4209 * over us; possibly making our ring_buffer_put() the last.
4210 */
4211 mutex_lock(&event->mmap_mutex);
b69cf536 4212 ring_buffer_attach(event, NULL);
9bb5d40c 4213 mutex_unlock(&event->mmap_mutex);
a4be7c27
PZ
4214 }
4215
e5d1367f
SE
4216 if (is_cgroup_event(event))
4217 perf_detach_cgroup(event);
4218
a0733e69
PZ
4219 if (!event->parent) {
4220 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4221 put_callchain_buffers();
4222 }
4223
4224 perf_event_free_bpf_prog(event);
375637bc
AS
4225 perf_addr_filters_splice(event, NULL);
4226 kfree(event->addr_filters_offs);
a0733e69
PZ
4227
4228 if (event->destroy)
4229 event->destroy(event);
4230
4231 if (event->ctx)
4232 put_ctx(event->ctx);
4233
62a92c8f
AS
4234 exclusive_event_destroy(event);
4235 module_put(event->pmu->module);
a0733e69
PZ
4236
4237 call_rcu(&event->rcu_head, free_event_rcu);
f1600952
PZ
4238}
4239
683ede43
PZ
4240/*
4241 * Used to free events which have a known refcount of 1, such as in error paths
4242 * where the event isn't exposed yet and inherited events.
4243 */
4244static void free_event(struct perf_event *event)
0793a61d 4245{
683ede43
PZ
4246 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4247 "unexpected event refcount: %ld; ptr=%p\n",
4248 atomic_long_read(&event->refcount), event)) {
4249 /* leak to avoid use-after-free */
4250 return;
4251 }
0793a61d 4252
683ede43 4253 _free_event(event);
0793a61d
TG
4254}
4255
a66a3052 4256/*
f8697762 4257 * Remove user event from the owner task.
a66a3052 4258 */
f8697762 4259static void perf_remove_from_owner(struct perf_event *event)
fb0459d7 4260{
8882135b 4261 struct task_struct *owner;
fb0459d7 4262
8882135b 4263 rcu_read_lock();
8882135b 4264 /*
f47c02c0
PZ
4265 * Matches the smp_store_release() in perf_event_exit_task(). If we
4266 * observe !owner it means the list deletion is complete and we can
4267 * indeed free this event, otherwise we need to serialize on
8882135b
PZ
4268 * owner->perf_event_mutex.
4269 */
f47c02c0 4270 owner = lockless_dereference(event->owner);
8882135b
PZ
4271 if (owner) {
4272 /*
4273 * Since delayed_put_task_struct() also drops the last
4274 * task reference we can safely take a new reference
4275 * while holding the rcu_read_lock().
4276 */
4277 get_task_struct(owner);
4278 }
4279 rcu_read_unlock();
4280
4281 if (owner) {
f63a8daa
PZ
4282 /*
4283 * If we're here through perf_event_exit_task() we're already
4284 * holding ctx->mutex which would be an inversion wrt. the
4285 * normal lock order.
4286 *
4287 * However we can safely take this lock because its the child
4288 * ctx->mutex.
4289 */
4290 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4291
8882135b
PZ
4292 /*
4293 * We have to re-check the event->owner field, if it is cleared
4294 * we raced with perf_event_exit_task(), acquiring the mutex
4295 * ensured they're done, and we can proceed with freeing the
4296 * event.
4297 */
f47c02c0 4298 if (event->owner) {
8882135b 4299 list_del_init(&event->owner_entry);
f47c02c0
PZ
4300 smp_store_release(&event->owner, NULL);
4301 }
8882135b
PZ
4302 mutex_unlock(&owner->perf_event_mutex);
4303 put_task_struct(owner);
4304 }
f8697762
JO
4305}
4306
f8697762
JO
4307static void put_event(struct perf_event *event)
4308{
f8697762
JO
4309 if (!atomic_long_dec_and_test(&event->refcount))
4310 return;
4311
c6e5b732
PZ
4312 _free_event(event);
4313}
4314
4315/*
4316 * Kill an event dead; while event:refcount will preserve the event
4317 * object, it will not preserve its functionality. Once the last 'user'
4318 * gives up the object, we'll destroy the thing.
4319 */
4320int perf_event_release_kernel(struct perf_event *event)
4321{
a4f4bb6d 4322 struct perf_event_context *ctx = event->ctx;
c6e5b732
PZ
4323 struct perf_event *child, *tmp;
4324
a4f4bb6d
PZ
4325 /*
4326 * If we got here through err_file: fput(event_file); we will not have
4327 * attached to a context yet.
4328 */
4329 if (!ctx) {
4330 WARN_ON_ONCE(event->attach_state &
4331 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4332 goto no_ctx;
4333 }
4334
f8697762
JO
4335 if (!is_kernel_event(event))
4336 perf_remove_from_owner(event);
8882135b 4337
5fa7c8ec 4338 ctx = perf_event_ctx_lock(event);
a83fe28e 4339 WARN_ON_ONCE(ctx->parent_ctx);
a69b0ca4 4340 perf_remove_from_context(event, DETACH_GROUP);
683ede43 4341
a69b0ca4 4342 raw_spin_lock_irq(&ctx->lock);
683ede43 4343 /*
d8a8cfc7 4344 * Mark this event as STATE_DEAD, there is no external reference to it
a69b0ca4 4345 * anymore.
683ede43 4346 *
a69b0ca4
PZ
4347 * Anybody acquiring event->child_mutex after the below loop _must_
4348 * also see this, most importantly inherit_event() which will avoid
4349 * placing more children on the list.
683ede43 4350 *
c6e5b732
PZ
4351 * Thus this guarantees that we will in fact observe and kill _ALL_
4352 * child events.
683ede43 4353 */
a69b0ca4
PZ
4354 event->state = PERF_EVENT_STATE_DEAD;
4355 raw_spin_unlock_irq(&ctx->lock);
4356
4357 perf_event_ctx_unlock(event, ctx);
683ede43 4358
c6e5b732
PZ
4359again:
4360 mutex_lock(&event->child_mutex);
4361 list_for_each_entry(child, &event->child_list, child_list) {
a6fa941d 4362
c6e5b732
PZ
4363 /*
4364 * Cannot change, child events are not migrated, see the
4365 * comment with perf_event_ctx_lock_nested().
4366 */
4367 ctx = lockless_dereference(child->ctx);
4368 /*
4369 * Since child_mutex nests inside ctx::mutex, we must jump
4370 * through hoops. We start by grabbing a reference on the ctx.
4371 *
4372 * Since the event cannot get freed while we hold the
4373 * child_mutex, the context must also exist and have a !0
4374 * reference count.
4375 */
4376 get_ctx(ctx);
4377
4378 /*
4379 * Now that we have a ctx ref, we can drop child_mutex, and
4380 * acquire ctx::mutex without fear of it going away. Then we
4381 * can re-acquire child_mutex.
4382 */
4383 mutex_unlock(&event->child_mutex);
4384 mutex_lock(&ctx->mutex);
4385 mutex_lock(&event->child_mutex);
4386
4387 /*
4388 * Now that we hold ctx::mutex and child_mutex, revalidate our
4389 * state, if child is still the first entry, it didn't get freed
4390 * and we can continue doing so.
4391 */
4392 tmp = list_first_entry_or_null(&event->child_list,
4393 struct perf_event, child_list);
4394 if (tmp == child) {
4395 perf_remove_from_context(child, DETACH_GROUP);
4396 list_del(&child->child_list);
4397 free_event(child);
4398 /*
4399 * This matches the refcount bump in inherit_event();
4400 * this can't be the last reference.
4401 */
4402 put_event(event);
4403 }
4404
4405 mutex_unlock(&event->child_mutex);
4406 mutex_unlock(&ctx->mutex);
4407 put_ctx(ctx);
4408 goto again;
4409 }
4410 mutex_unlock(&event->child_mutex);
4411
a4f4bb6d
PZ
4412no_ctx:
4413 put_event(event); /* Must be the 'last' reference */
683ede43
PZ
4414 return 0;
4415}
4416EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4417
8b10c5e2
PZ
4418/*
4419 * Called when the last reference to the file is gone.
4420 */
a6fa941d
AV
4421static int perf_release(struct inode *inode, struct file *file)
4422{
c6e5b732 4423 perf_event_release_kernel(file->private_data);
a6fa941d 4424 return 0;
fb0459d7 4425}
fb0459d7 4426
ca0dd44c 4427static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
e53c0994 4428{
cdd6c482 4429 struct perf_event *child;
e53c0994
PZ
4430 u64 total = 0;
4431
59ed446f
PZ
4432 *enabled = 0;
4433 *running = 0;
4434
6f10581a 4435 mutex_lock(&event->child_mutex);
01add3ea 4436
7d88962e 4437 (void)perf_event_read(event, false);
01add3ea
SB
4438 total += perf_event_count(event);
4439
59ed446f
PZ
4440 *enabled += event->total_time_enabled +
4441 atomic64_read(&event->child_total_time_enabled);
4442 *running += event->total_time_running +
4443 atomic64_read(&event->child_total_time_running);
4444
4445 list_for_each_entry(child, &event->child_list, child_list) {
7d88962e 4446 (void)perf_event_read(child, false);
01add3ea 4447 total += perf_event_count(child);
59ed446f
PZ
4448 *enabled += child->total_time_enabled;
4449 *running += child->total_time_running;
4450 }
6f10581a 4451 mutex_unlock(&event->child_mutex);
e53c0994
PZ
4452
4453 return total;
4454}
ca0dd44c
PZ
4455
4456u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4457{
4458 struct perf_event_context *ctx;
4459 u64 count;
4460
4461 ctx = perf_event_ctx_lock(event);
4462 count = __perf_event_read_value(event, enabled, running);
4463 perf_event_ctx_unlock(event, ctx);
4464
4465 return count;
4466}
fb0459d7 4467EXPORT_SYMBOL_GPL(perf_event_read_value);
e53c0994 4468
7d88962e 4469static int __perf_read_group_add(struct perf_event *leader,
fa8c2693 4470 u64 read_format, u64 *values)
3dab77fb 4471{
2aeb1883 4472 struct perf_event_context *ctx = leader->ctx;
fa8c2693 4473 struct perf_event *sub;
2aeb1883 4474 unsigned long flags;
fa8c2693 4475 int n = 1; /* skip @nr */
7d88962e 4476 int ret;
f63a8daa 4477
7d88962e
SB
4478 ret = perf_event_read(leader, true);
4479 if (ret)
4480 return ret;
abf4868b 4481
a9cd8194
PZ
4482 raw_spin_lock_irqsave(&ctx->lock, flags);
4483
fa8c2693
PZ
4484 /*
4485 * Since we co-schedule groups, {enabled,running} times of siblings
4486 * will be identical to those of the leader, so we only publish one
4487 * set.
4488 */
4489 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4490 values[n++] += leader->total_time_enabled +
4491 atomic64_read(&leader->child_total_time_enabled);
4492 }
3dab77fb 4493
fa8c2693
PZ
4494 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4495 values[n++] += leader->total_time_running +
4496 atomic64_read(&leader->child_total_time_running);
4497 }
4498
4499 /*
4500 * Write {count,id} tuples for every sibling.
4501 */
4502 values[n++] += perf_event_count(leader);
abf4868b
PZ
4503 if (read_format & PERF_FORMAT_ID)
4504 values[n++] = primary_event_id(leader);
3dab77fb 4505
fa8c2693
PZ
4506 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4507 values[n++] += perf_event_count(sub);
4508 if (read_format & PERF_FORMAT_ID)
4509 values[n++] = primary_event_id(sub);
4510 }
7d88962e 4511
2aeb1883 4512 raw_spin_unlock_irqrestore(&ctx->lock, flags);
7d88962e 4513 return 0;
fa8c2693 4514}
3dab77fb 4515
fa8c2693
PZ
4516static int perf_read_group(struct perf_event *event,
4517 u64 read_format, char __user *buf)
4518{
4519 struct perf_event *leader = event->group_leader, *child;
4520 struct perf_event_context *ctx = leader->ctx;
7d88962e 4521 int ret;
fa8c2693 4522 u64 *values;
3dab77fb 4523
fa8c2693 4524 lockdep_assert_held(&ctx->mutex);
3dab77fb 4525
fa8c2693
PZ
4526 values = kzalloc(event->read_size, GFP_KERNEL);
4527 if (!values)
4528 return -ENOMEM;
3dab77fb 4529
fa8c2693
PZ
4530 values[0] = 1 + leader->nr_siblings;
4531
4532 /*
4533 * By locking the child_mutex of the leader we effectively
4534 * lock the child list of all siblings.. XXX explain how.
4535 */
4536 mutex_lock(&leader->child_mutex);
abf4868b 4537
7d88962e
SB
4538 ret = __perf_read_group_add(leader, read_format, values);
4539 if (ret)
4540 goto unlock;
4541
4542 list_for_each_entry(child, &leader->child_list, child_list) {
4543 ret = __perf_read_group_add(child, read_format, values);
4544 if (ret)
4545 goto unlock;
4546 }
abf4868b 4547
fa8c2693 4548 mutex_unlock(&leader->child_mutex);
abf4868b 4549
7d88962e 4550 ret = event->read_size;
fa8c2693
PZ
4551 if (copy_to_user(buf, values, event->read_size))
4552 ret = -EFAULT;
7d88962e 4553 goto out;
fa8c2693 4554
7d88962e
SB
4555unlock:
4556 mutex_unlock(&leader->child_mutex);
4557out:
fa8c2693 4558 kfree(values);
abf4868b 4559 return ret;
3dab77fb
PZ
4560}
4561
b15f495b 4562static int perf_read_one(struct perf_event *event,
3dab77fb
PZ
4563 u64 read_format, char __user *buf)
4564{
59ed446f 4565 u64 enabled, running;
3dab77fb
PZ
4566 u64 values[4];
4567 int n = 0;
4568
ca0dd44c 4569 values[n++] = __perf_event_read_value(event, &enabled, &running);
59ed446f
PZ
4570 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4571 values[n++] = enabled;
4572 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4573 values[n++] = running;
3dab77fb 4574 if (read_format & PERF_FORMAT_ID)
cdd6c482 4575 values[n++] = primary_event_id(event);
3dab77fb
PZ
4576
4577 if (copy_to_user(buf, values, n * sizeof(u64)))
4578 return -EFAULT;
4579
4580 return n * sizeof(u64);
4581}
4582
dc633982
JO
4583static bool is_event_hup(struct perf_event *event)
4584{
4585 bool no_children;
4586
a69b0ca4 4587 if (event->state > PERF_EVENT_STATE_EXIT)
dc633982
JO
4588 return false;
4589
4590 mutex_lock(&event->child_mutex);
4591 no_children = list_empty(&event->child_list);
4592 mutex_unlock(&event->child_mutex);
4593 return no_children;
4594}
4595
0793a61d 4596/*
cdd6c482 4597 * Read the performance event - simple non blocking version for now
0793a61d
TG
4598 */
4599static ssize_t
b15f495b 4600__perf_read(struct perf_event *event, char __user *buf, size_t count)
0793a61d 4601{
cdd6c482 4602 u64 read_format = event->attr.read_format;
3dab77fb 4603 int ret;
0793a61d 4604
3b6f9e5c 4605 /*
cdd6c482 4606 * Return end-of-file for a read on a event that is in
3b6f9e5c
PM
4607 * error state (i.e. because it was pinned but it couldn't be
4608 * scheduled on to the CPU at some point).
4609 */
cdd6c482 4610 if (event->state == PERF_EVENT_STATE_ERROR)
3b6f9e5c
PM
4611 return 0;
4612
c320c7b7 4613 if (count < event->read_size)
3dab77fb
PZ
4614 return -ENOSPC;
4615
cdd6c482 4616 WARN_ON_ONCE(event->ctx->parent_ctx);
3dab77fb 4617 if (read_format & PERF_FORMAT_GROUP)
b15f495b 4618 ret = perf_read_group(event, read_format, buf);
3dab77fb 4619 else
b15f495b 4620 ret = perf_read_one(event, read_format, buf);
0793a61d 4621
3dab77fb 4622 return ret;
0793a61d
TG
4623}
4624
0793a61d
TG
4625static ssize_t
4626perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4627{
cdd6c482 4628 struct perf_event *event = file->private_data;
f63a8daa
PZ
4629 struct perf_event_context *ctx;
4630 int ret;
0793a61d 4631
f63a8daa 4632 ctx = perf_event_ctx_lock(event);
b15f495b 4633 ret = __perf_read(event, buf, count);
f63a8daa
PZ
4634 perf_event_ctx_unlock(event, ctx);
4635
4636 return ret;
0793a61d
TG
4637}
4638
4639static unsigned int perf_poll(struct file *file, poll_table *wait)
4640{
cdd6c482 4641 struct perf_event *event = file->private_data;
76369139 4642 struct ring_buffer *rb;
61b67684 4643 unsigned int events = POLLHUP;
c7138f37 4644
e708d7ad 4645 poll_wait(file, &event->waitq, wait);
179033b3 4646
dc633982 4647 if (is_event_hup(event))
179033b3 4648 return events;
c7138f37 4649
10c6db11 4650 /*
9bb5d40c
PZ
4651 * Pin the event->rb by taking event->mmap_mutex; otherwise
4652 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
10c6db11
PZ
4653 */
4654 mutex_lock(&event->mmap_mutex);
9bb5d40c
PZ
4655 rb = event->rb;
4656 if (rb)
76369139 4657 events = atomic_xchg(&rb->poll, 0);
10c6db11 4658 mutex_unlock(&event->mmap_mutex);
0793a61d
TG
4659 return events;
4660}
4661
f63a8daa 4662static void _perf_event_reset(struct perf_event *event)
6de6a7b9 4663{
7d88962e 4664 (void)perf_event_read(event, false);
e7850595 4665 local64_set(&event->count, 0);
cdd6c482 4666 perf_event_update_userpage(event);
3df5edad
PZ
4667}
4668
c93f7669 4669/*
cdd6c482
IM
4670 * Holding the top-level event's child_mutex means that any
4671 * descendant process that has inherited this event will block
8ba289b8 4672 * in perf_event_exit_event() if it goes to exit, thus satisfying the
cdd6c482 4673 * task existence requirements of perf_event_enable/disable.
c93f7669 4674 */
cdd6c482
IM
4675static void perf_event_for_each_child(struct perf_event *event,
4676 void (*func)(struct perf_event *))
3df5edad 4677{
cdd6c482 4678 struct perf_event *child;
3df5edad 4679
cdd6c482 4680 WARN_ON_ONCE(event->ctx->parent_ctx);
f63a8daa 4681
cdd6c482
IM
4682 mutex_lock(&event->child_mutex);
4683 func(event);
4684 list_for_each_entry(child, &event->child_list, child_list)
3df5edad 4685 func(child);
cdd6c482 4686 mutex_unlock(&event->child_mutex);
3df5edad
PZ
4687}
4688
cdd6c482
IM
4689static void perf_event_for_each(struct perf_event *event,
4690 void (*func)(struct perf_event *))
3df5edad 4691{
cdd6c482
IM
4692 struct perf_event_context *ctx = event->ctx;
4693 struct perf_event *sibling;
3df5edad 4694
f63a8daa
PZ
4695 lockdep_assert_held(&ctx->mutex);
4696
cdd6c482 4697 event = event->group_leader;
75f937f2 4698
cdd6c482 4699 perf_event_for_each_child(event, func);
cdd6c482 4700 list_for_each_entry(sibling, &event->sibling_list, group_entry)
724b6daa 4701 perf_event_for_each_child(sibling, func);
6de6a7b9
PZ
4702}
4703
fae3fde6
PZ
4704static void __perf_event_period(struct perf_event *event,
4705 struct perf_cpu_context *cpuctx,
4706 struct perf_event_context *ctx,
4707 void *info)
c7999c6f 4708{
fae3fde6 4709 u64 value = *((u64 *)info);
c7999c6f 4710 bool active;
08247e31 4711
cdd6c482 4712 if (event->attr.freq) {
cdd6c482 4713 event->attr.sample_freq = value;
08247e31 4714 } else {
cdd6c482
IM
4715 event->attr.sample_period = value;
4716 event->hw.sample_period = value;
08247e31 4717 }
bad7192b
PZ
4718
4719 active = (event->state == PERF_EVENT_STATE_ACTIVE);
4720 if (active) {
4721 perf_pmu_disable(ctx->pmu);
1e02cd40
PZ
4722 /*
4723 * We could be throttled; unthrottle now to avoid the tick
4724 * trying to unthrottle while we already re-started the event.
4725 */
4726 if (event->hw.interrupts == MAX_INTERRUPTS) {
4727 event->hw.interrupts = 0;
4728 perf_log_throttle(event, 1);
4729 }
bad7192b
PZ
4730 event->pmu->stop(event, PERF_EF_UPDATE);
4731 }
4732
4733 local64_set(&event->hw.period_left, 0);
4734
4735 if (active) {
4736 event->pmu->start(event, PERF_EF_RELOAD);
4737 perf_pmu_enable(ctx->pmu);
4738 }
c7999c6f
PZ
4739}
4740
4741static int perf_event_period(struct perf_event *event, u64 __user *arg)
4742{
c7999c6f
PZ
4743 u64 value;
4744
4745 if (!is_sampling_event(event))
4746 return -EINVAL;
4747
4748 if (copy_from_user(&value, arg, sizeof(value)))
4749 return -EFAULT;
4750
4751 if (!value)
4752 return -EINVAL;
4753
4754 if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4755 return -EINVAL;
4756
fae3fde6 4757 event_function_call(event, __perf_event_period, &value);
08247e31 4758
c7999c6f 4759 return 0;
08247e31
PZ
4760}
4761
ac9721f3
PZ
4762static const struct file_operations perf_fops;
4763
2903ff01 4764static inline int perf_fget_light(int fd, struct fd *p)
ac9721f3 4765{
2903ff01
AV
4766 struct fd f = fdget(fd);
4767 if (!f.file)
4768 return -EBADF;
ac9721f3 4769
2903ff01
AV
4770 if (f.file->f_op != &perf_fops) {
4771 fdput(f);
4772 return -EBADF;
ac9721f3 4773 }
2903ff01
AV
4774 *p = f;
4775 return 0;
ac9721f3
PZ
4776}
4777
4778static int perf_event_set_output(struct perf_event *event,
4779 struct perf_event *output_event);
6fb2915d 4780static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2541517c 4781static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
a4be7c27 4782
f63a8daa 4783static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
d859e29f 4784{
cdd6c482 4785 void (*func)(struct perf_event *);
3df5edad 4786 u32 flags = arg;
d859e29f
PM
4787
4788 switch (cmd) {
cdd6c482 4789 case PERF_EVENT_IOC_ENABLE:
f63a8daa 4790 func = _perf_event_enable;
d859e29f 4791 break;
cdd6c482 4792 case PERF_EVENT_IOC_DISABLE:
f63a8daa 4793 func = _perf_event_disable;
79f14641 4794 break;
cdd6c482 4795 case PERF_EVENT_IOC_RESET:
f63a8daa 4796 func = _perf_event_reset;
6de6a7b9 4797 break;
3df5edad 4798
cdd6c482 4799 case PERF_EVENT_IOC_REFRESH:
f63a8daa 4800 return _perf_event_refresh(event, arg);
08247e31 4801
cdd6c482
IM
4802 case PERF_EVENT_IOC_PERIOD:
4803 return perf_event_period(event, (u64 __user *)arg);
08247e31 4804
cf4957f1
JO
4805 case PERF_EVENT_IOC_ID:
4806 {
4807 u64 id = primary_event_id(event);
4808
4809 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4810 return -EFAULT;
4811 return 0;
4812 }
4813
cdd6c482 4814 case PERF_EVENT_IOC_SET_OUTPUT:
ac9721f3 4815 {
ac9721f3 4816 int ret;
ac9721f3 4817 if (arg != -1) {
2903ff01
AV
4818 struct perf_event *output_event;
4819 struct fd output;
4820 ret = perf_fget_light(arg, &output);
4821 if (ret)
4822 return ret;
4823 output_event = output.file->private_data;
4824 ret = perf_event_set_output(event, output_event);
4825 fdput(output);
4826 } else {
4827 ret = perf_event_set_output(event, NULL);
ac9721f3 4828 }
ac9721f3
PZ
4829 return ret;
4830 }
a4be7c27 4831
6fb2915d
LZ
4832 case PERF_EVENT_IOC_SET_FILTER:
4833 return perf_event_set_filter(event, (void __user *)arg);
4834
2541517c
AS
4835 case PERF_EVENT_IOC_SET_BPF:
4836 return perf_event_set_bpf_prog(event, arg);
4837
86e7972f
WN
4838 case PERF_EVENT_IOC_PAUSE_OUTPUT: {
4839 struct ring_buffer *rb;
4840
4841 rcu_read_lock();
4842 rb = rcu_dereference(event->rb);
4843 if (!rb || !rb->nr_pages) {
4844 rcu_read_unlock();
4845 return -EINVAL;
4846 }
4847 rb_toggle_paused(rb, !!arg);
4848 rcu_read_unlock();
4849 return 0;
4850 }
d859e29f 4851 default:
3df5edad 4852 return -ENOTTY;
d859e29f 4853 }
3df5edad
PZ
4854
4855 if (flags & PERF_IOC_FLAG_GROUP)
cdd6c482 4856 perf_event_for_each(event, func);
3df5edad 4857 else
cdd6c482 4858 perf_event_for_each_child(event, func);
3df5edad
PZ
4859
4860 return 0;
d859e29f
PM
4861}
4862
f63a8daa
PZ
4863static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4864{
4865 struct perf_event *event = file->private_data;
4866 struct perf_event_context *ctx;
4867 long ret;
4868
4869 ctx = perf_event_ctx_lock(event);
4870 ret = _perf_ioctl(event, cmd, arg);
4871 perf_event_ctx_unlock(event, ctx);
4872
4873 return ret;
4874}
4875
b3f20785
PM
4876#ifdef CONFIG_COMPAT
4877static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4878 unsigned long arg)
4879{
4880 switch (_IOC_NR(cmd)) {
4881 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4882 case _IOC_NR(PERF_EVENT_IOC_ID):
4883 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4884 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4885 cmd &= ~IOCSIZE_MASK;
4886 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4887 }
4888 break;
4889 }
4890 return perf_ioctl(file, cmd, arg);
4891}
4892#else
4893# define perf_compat_ioctl NULL
4894#endif
4895
cdd6c482 4896int perf_event_task_enable(void)
771d7cde 4897{
f63a8daa 4898 struct perf_event_context *ctx;
cdd6c482 4899 struct perf_event *event;
771d7cde 4900
cdd6c482 4901 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
4902 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4903 ctx = perf_event_ctx_lock(event);
4904 perf_event_for_each_child(event, _perf_event_enable);
4905 perf_event_ctx_unlock(event, ctx);
4906 }
cdd6c482 4907 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
4908
4909 return 0;
4910}
4911
cdd6c482 4912int perf_event_task_disable(void)
771d7cde 4913{
f63a8daa 4914 struct perf_event_context *ctx;
cdd6c482 4915 struct perf_event *event;
771d7cde 4916
cdd6c482 4917 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
4918 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4919 ctx = perf_event_ctx_lock(event);
4920 perf_event_for_each_child(event, _perf_event_disable);
4921 perf_event_ctx_unlock(event, ctx);
4922 }
cdd6c482 4923 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
4924
4925 return 0;
4926}
4927
cdd6c482 4928static int perf_event_index(struct perf_event *event)
194002b2 4929{
a4eaf7f1
PZ
4930 if (event->hw.state & PERF_HES_STOPPED)
4931 return 0;
4932
cdd6c482 4933 if (event->state != PERF_EVENT_STATE_ACTIVE)
194002b2
PZ
4934 return 0;
4935
35edc2a5 4936 return event->pmu->event_idx(event);
194002b2
PZ
4937}
4938
c4794295 4939static void calc_timer_values(struct perf_event *event,
e3f3541c 4940 u64 *now,
7f310a5d
EM
4941 u64 *enabled,
4942 u64 *running)
c4794295 4943{
e3f3541c 4944 u64 ctx_time;
c4794295 4945
e3f3541c
PZ
4946 *now = perf_clock();
4947 ctx_time = event->shadow_ctx_time + *now;
c4794295
EM
4948 *enabled = ctx_time - event->tstamp_enabled;
4949 *running = ctx_time - event->tstamp_running;
4950}
4951
fa731587
PZ
4952static void perf_event_init_userpage(struct perf_event *event)
4953{
4954 struct perf_event_mmap_page *userpg;
4955 struct ring_buffer *rb;
4956
4957 rcu_read_lock();
4958 rb = rcu_dereference(event->rb);
4959 if (!rb)
4960 goto unlock;
4961
4962 userpg = rb->user_page;
4963
4964 /* Allow new userspace to detect that bit 0 is deprecated */
4965 userpg->cap_bit0_is_deprecated = 1;
4966 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
e8c6deac
AS
4967 userpg->data_offset = PAGE_SIZE;
4968 userpg->data_size = perf_data_size(rb);
fa731587
PZ
4969
4970unlock:
4971 rcu_read_unlock();
4972}
4973
c1317ec2
AL
4974void __weak arch_perf_update_userpage(
4975 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
e3f3541c
PZ
4976{
4977}
4978
38ff667b
PZ
4979/*
4980 * Callers need to ensure there can be no nesting of this function, otherwise
4981 * the seqlock logic goes bad. We can not serialize this because the arch
4982 * code calls this from NMI context.
4983 */
cdd6c482 4984void perf_event_update_userpage(struct perf_event *event)
37d81828 4985{
cdd6c482 4986 struct perf_event_mmap_page *userpg;
76369139 4987 struct ring_buffer *rb;
e3f3541c 4988 u64 enabled, running, now;
38ff667b
PZ
4989
4990 rcu_read_lock();
5ec4c599
PZ
4991 rb = rcu_dereference(event->rb);
4992 if (!rb)
4993 goto unlock;
4994
0d641208
EM
4995 /*
4996 * compute total_time_enabled, total_time_running
4997 * based on snapshot values taken when the event
4998 * was last scheduled in.
4999 *
5000 * we cannot simply called update_context_time()
5001 * because of locking issue as we can be called in
5002 * NMI context
5003 */
e3f3541c 5004 calc_timer_values(event, &now, &enabled, &running);
38ff667b 5005
76369139 5006 userpg = rb->user_page;
7b732a75
PZ
5007 /*
5008 * Disable preemption so as to not let the corresponding user-space
5009 * spin too long if we get preempted.
5010 */
5011 preempt_disable();
37d81828 5012 ++userpg->lock;
92f22a38 5013 barrier();
cdd6c482 5014 userpg->index = perf_event_index(event);
b5e58793 5015 userpg->offset = perf_event_count(event);
365a4038 5016 if (userpg->index)
e7850595 5017 userpg->offset -= local64_read(&event->hw.prev_count);
7b732a75 5018
0d641208 5019 userpg->time_enabled = enabled +
cdd6c482 5020 atomic64_read(&event->child_total_time_enabled);
7f8b4e4e 5021
0d641208 5022 userpg->time_running = running +
cdd6c482 5023 atomic64_read(&event->child_total_time_running);
7f8b4e4e 5024
c1317ec2 5025 arch_perf_update_userpage(event, userpg, now);
e3f3541c 5026
92f22a38 5027 barrier();
37d81828 5028 ++userpg->lock;
7b732a75 5029 preempt_enable();
38ff667b 5030unlock:
7b732a75 5031 rcu_read_unlock();
37d81828
PM
5032}
5033
11bac800 5034static int perf_mmap_fault(struct vm_fault *vmf)
906010b2 5035{
11bac800 5036 struct perf_event *event = vmf->vma->vm_file->private_data;
76369139 5037 struct ring_buffer *rb;
906010b2
PZ
5038 int ret = VM_FAULT_SIGBUS;
5039
5040 if (vmf->flags & FAULT_FLAG_MKWRITE) {
5041 if (vmf->pgoff == 0)
5042 ret = 0;
5043 return ret;
5044 }
5045
5046 rcu_read_lock();
76369139
FW
5047 rb = rcu_dereference(event->rb);
5048 if (!rb)
906010b2
PZ
5049 goto unlock;
5050
5051 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
5052 goto unlock;
5053
76369139 5054 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
906010b2
PZ
5055 if (!vmf->page)
5056 goto unlock;
5057
5058 get_page(vmf->page);
11bac800 5059 vmf->page->mapping = vmf->vma->vm_file->f_mapping;
906010b2
PZ
5060 vmf->page->index = vmf->pgoff;
5061
5062 ret = 0;
5063unlock:
5064 rcu_read_unlock();
5065
5066 return ret;
5067}
5068
10c6db11
PZ
5069static void ring_buffer_attach(struct perf_event *event,
5070 struct ring_buffer *rb)
5071{
b69cf536 5072 struct ring_buffer *old_rb = NULL;
10c6db11
PZ
5073 unsigned long flags;
5074
b69cf536
PZ
5075 if (event->rb) {
5076 /*
5077 * Should be impossible, we set this when removing
5078 * event->rb_entry and wait/clear when adding event->rb_entry.
5079 */
5080 WARN_ON_ONCE(event->rcu_pending);
10c6db11 5081
b69cf536 5082 old_rb = event->rb;
b69cf536
PZ
5083 spin_lock_irqsave(&old_rb->event_lock, flags);
5084 list_del_rcu(&event->rb_entry);
5085 spin_unlock_irqrestore(&old_rb->event_lock, flags);
10c6db11 5086
2f993cf0
ON
5087 event->rcu_batches = get_state_synchronize_rcu();
5088 event->rcu_pending = 1;
b69cf536 5089 }
10c6db11 5090
b69cf536 5091 if (rb) {
2f993cf0
ON
5092 if (event->rcu_pending) {
5093 cond_synchronize_rcu(event->rcu_batches);
5094 event->rcu_pending = 0;
5095 }
5096
b69cf536
PZ
5097 spin_lock_irqsave(&rb->event_lock, flags);
5098 list_add_rcu(&event->rb_entry, &rb->event_list);
5099 spin_unlock_irqrestore(&rb->event_lock, flags);
5100 }
5101
767ae086
AS
5102 /*
5103 * Avoid racing with perf_mmap_close(AUX): stop the event
5104 * before swizzling the event::rb pointer; if it's getting
5105 * unmapped, its aux_mmap_count will be 0 and it won't
5106 * restart. See the comment in __perf_pmu_output_stop().
5107 *
5108 * Data will inevitably be lost when set_output is done in
5109 * mid-air, but then again, whoever does it like this is
5110 * not in for the data anyway.
5111 */
5112 if (has_aux(event))
5113 perf_event_stop(event, 0);
5114
b69cf536
PZ
5115 rcu_assign_pointer(event->rb, rb);
5116
5117 if (old_rb) {
5118 ring_buffer_put(old_rb);
5119 /*
5120 * Since we detached before setting the new rb, so that we
5121 * could attach the new rb, we could have missed a wakeup.
5122 * Provide it now.
5123 */
5124 wake_up_all(&event->waitq);
5125 }
10c6db11
PZ
5126}
5127
5128static void ring_buffer_wakeup(struct perf_event *event)
5129{
5130 struct ring_buffer *rb;
5131
5132 rcu_read_lock();
5133 rb = rcu_dereference(event->rb);
9bb5d40c
PZ
5134 if (rb) {
5135 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5136 wake_up_all(&event->waitq);
5137 }
10c6db11
PZ
5138 rcu_read_unlock();
5139}
5140
fdc26706 5141struct ring_buffer *ring_buffer_get(struct perf_event *event)
7b732a75 5142{
76369139 5143 struct ring_buffer *rb;
7b732a75 5144
ac9721f3 5145 rcu_read_lock();
76369139
FW
5146 rb = rcu_dereference(event->rb);
5147 if (rb) {
5148 if (!atomic_inc_not_zero(&rb->refcount))
5149 rb = NULL;
ac9721f3
PZ
5150 }
5151 rcu_read_unlock();
5152
76369139 5153 return rb;
ac9721f3
PZ
5154}
5155
fdc26706 5156void ring_buffer_put(struct ring_buffer *rb)
ac9721f3 5157{
76369139 5158 if (!atomic_dec_and_test(&rb->refcount))
ac9721f3 5159 return;
7b732a75 5160
9bb5d40c 5161 WARN_ON_ONCE(!list_empty(&rb->event_list));
10c6db11 5162
76369139 5163 call_rcu(&rb->rcu_head, rb_free_rcu);
7b732a75
PZ
5164}
5165
5166static void perf_mmap_open(struct vm_area_struct *vma)
5167{
cdd6c482 5168 struct perf_event *event = vma->vm_file->private_data;
7b732a75 5169
cdd6c482 5170 atomic_inc(&event->mmap_count);
9bb5d40c 5171 atomic_inc(&event->rb->mmap_count);
1e0fb9ec 5172
45bfb2e5
PZ
5173 if (vma->vm_pgoff)
5174 atomic_inc(&event->rb->aux_mmap_count);
5175
1e0fb9ec 5176 if (event->pmu->event_mapped)
bfe33492 5177 event->pmu->event_mapped(event, vma->vm_mm);
7b732a75
PZ
5178}
5179
95ff4ca2
AS
5180static void perf_pmu_output_stop(struct perf_event *event);
5181
9bb5d40c
PZ
5182/*
5183 * A buffer can be mmap()ed multiple times; either directly through the same
5184 * event, or through other events by use of perf_event_set_output().
5185 *
5186 * In order to undo the VM accounting done by perf_mmap() we need to destroy
5187 * the buffer here, where we still have a VM context. This means we need
5188 * to detach all events redirecting to us.
5189 */
7b732a75
PZ
5190static void perf_mmap_close(struct vm_area_struct *vma)
5191{
cdd6c482 5192 struct perf_event *event = vma->vm_file->private_data;
7b732a75 5193
b69cf536 5194 struct ring_buffer *rb = ring_buffer_get(event);
9bb5d40c
PZ
5195 struct user_struct *mmap_user = rb->mmap_user;
5196 int mmap_locked = rb->mmap_locked;
5197 unsigned long size = perf_data_size(rb);
789f90fc 5198
1e0fb9ec 5199 if (event->pmu->event_unmapped)
bfe33492 5200 event->pmu->event_unmapped(event, vma->vm_mm);
1e0fb9ec 5201
45bfb2e5
PZ
5202 /*
5203 * rb->aux_mmap_count will always drop before rb->mmap_count and
5204 * event->mmap_count, so it is ok to use event->mmap_mutex to
5205 * serialize with perf_mmap here.
5206 */
5207 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5208 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
95ff4ca2
AS
5209 /*
5210 * Stop all AUX events that are writing to this buffer,
5211 * so that we can free its AUX pages and corresponding PMU
5212 * data. Note that after rb::aux_mmap_count dropped to zero,
5213 * they won't start any more (see perf_aux_output_begin()).
5214 */
5215 perf_pmu_output_stop(event);
5216
5217 /* now it's safe to free the pages */
45bfb2e5
PZ
5218 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
5219 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
5220
95ff4ca2 5221 /* this has to be the last one */
45bfb2e5 5222 rb_free_aux(rb);
95ff4ca2
AS
5223 WARN_ON_ONCE(atomic_read(&rb->aux_refcount));
5224
45bfb2e5
PZ
5225 mutex_unlock(&event->mmap_mutex);
5226 }
5227
9bb5d40c
PZ
5228 atomic_dec(&rb->mmap_count);
5229
5230 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
b69cf536 5231 goto out_put;
9bb5d40c 5232
b69cf536 5233 ring_buffer_attach(event, NULL);
9bb5d40c
PZ
5234 mutex_unlock(&event->mmap_mutex);
5235
5236 /* If there's still other mmap()s of this buffer, we're done. */
b69cf536
PZ
5237 if (atomic_read(&rb->mmap_count))
5238 goto out_put;
ac9721f3 5239
9bb5d40c
PZ
5240 /*
5241 * No other mmap()s, detach from all other events that might redirect
5242 * into the now unreachable buffer. Somewhat complicated by the
5243 * fact that rb::event_lock otherwise nests inside mmap_mutex.
5244 */
5245again:
5246 rcu_read_lock();
5247 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5248 if (!atomic_long_inc_not_zero(&event->refcount)) {
5249 /*
5250 * This event is en-route to free_event() which will
5251 * detach it and remove it from the list.
5252 */
5253 continue;
5254 }
5255 rcu_read_unlock();
789f90fc 5256
9bb5d40c
PZ
5257 mutex_lock(&event->mmap_mutex);
5258 /*
5259 * Check we didn't race with perf_event_set_output() which can
5260 * swizzle the rb from under us while we were waiting to
5261 * acquire mmap_mutex.
5262 *
5263 * If we find a different rb; ignore this event, a next
5264 * iteration will no longer find it on the list. We have to
5265 * still restart the iteration to make sure we're not now
5266 * iterating the wrong list.
5267 */
b69cf536
PZ
5268 if (event->rb == rb)
5269 ring_buffer_attach(event, NULL);
5270
cdd6c482 5271 mutex_unlock(&event->mmap_mutex);
9bb5d40c 5272 put_event(event);
ac9721f3 5273
9bb5d40c
PZ
5274 /*
5275 * Restart the iteration; either we're on the wrong list or
5276 * destroyed its integrity by doing a deletion.
5277 */
5278 goto again;
7b732a75 5279 }
9bb5d40c
PZ
5280 rcu_read_unlock();
5281
5282 /*
5283 * It could be there's still a few 0-ref events on the list; they'll
5284 * get cleaned up by free_event() -- they'll also still have their
5285 * ref on the rb and will free it whenever they are done with it.
5286 *
5287 * Aside from that, this buffer is 'fully' detached and unmapped,
5288 * undo the VM accounting.
5289 */
5290
5291 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
5292 vma->vm_mm->pinned_vm -= mmap_locked;
5293 free_uid(mmap_user);
5294
b69cf536 5295out_put:
9bb5d40c 5296 ring_buffer_put(rb); /* could be last */
37d81828
PM
5297}
5298
f0f37e2f 5299static const struct vm_operations_struct perf_mmap_vmops = {
43a21ea8 5300 .open = perf_mmap_open,
45bfb2e5 5301 .close = perf_mmap_close, /* non mergable */
43a21ea8
PZ
5302 .fault = perf_mmap_fault,
5303 .page_mkwrite = perf_mmap_fault,
37d81828
PM
5304};
5305
5306static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5307{
cdd6c482 5308 struct perf_event *event = file->private_data;
22a4f650 5309 unsigned long user_locked, user_lock_limit;
789f90fc 5310 struct user_struct *user = current_user();
22a4f650 5311 unsigned long locked, lock_limit;
45bfb2e5 5312 struct ring_buffer *rb = NULL;
7b732a75
PZ
5313 unsigned long vma_size;
5314 unsigned long nr_pages;
45bfb2e5 5315 long user_extra = 0, extra = 0;
d57e34fd 5316 int ret = 0, flags = 0;
37d81828 5317
c7920614
PZ
5318 /*
5319 * Don't allow mmap() of inherited per-task counters. This would
5320 * create a performance issue due to all children writing to the
76369139 5321 * same rb.
c7920614
PZ
5322 */
5323 if (event->cpu == -1 && event->attr.inherit)
5324 return -EINVAL;
5325
43a21ea8 5326 if (!(vma->vm_flags & VM_SHARED))
37d81828 5327 return -EINVAL;
7b732a75
PZ
5328
5329 vma_size = vma->vm_end - vma->vm_start;
45bfb2e5
PZ
5330
5331 if (vma->vm_pgoff == 0) {
5332 nr_pages = (vma_size / PAGE_SIZE) - 1;
5333 } else {
5334 /*
5335 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5336 * mapped, all subsequent mappings should have the same size
5337 * and offset. Must be above the normal perf buffer.
5338 */
5339 u64 aux_offset, aux_size;
5340
5341 if (!event->rb)
5342 return -EINVAL;
5343
5344 nr_pages = vma_size / PAGE_SIZE;
5345
5346 mutex_lock(&event->mmap_mutex);
5347 ret = -EINVAL;
5348
5349 rb = event->rb;
5350 if (!rb)
5351 goto aux_unlock;
5352
5353 aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
5354 aux_size = ACCESS_ONCE(rb->user_page->aux_size);
5355
5356 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5357 goto aux_unlock;
5358
5359 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5360 goto aux_unlock;
5361
5362 /* already mapped with a different offset */
5363 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5364 goto aux_unlock;
5365
5366 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5367 goto aux_unlock;
5368
5369 /* already mapped with a different size */
5370 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5371 goto aux_unlock;
5372
5373 if (!is_power_of_2(nr_pages))
5374 goto aux_unlock;
5375
5376 if (!atomic_inc_not_zero(&rb->mmap_count))
5377 goto aux_unlock;
5378
5379 if (rb_has_aux(rb)) {
5380 atomic_inc(&rb->aux_mmap_count);
5381 ret = 0;
5382 goto unlock;
5383 }
5384
5385 atomic_set(&rb->aux_mmap_count, 1);
5386 user_extra = nr_pages;
5387
5388 goto accounting;
5389 }
7b732a75 5390
7730d865 5391 /*
76369139 5392 * If we have rb pages ensure they're a power-of-two number, so we
7730d865
PZ
5393 * can do bitmasks instead of modulo.
5394 */
2ed11312 5395 if (nr_pages != 0 && !is_power_of_2(nr_pages))
37d81828
PM
5396 return -EINVAL;
5397
7b732a75 5398 if (vma_size != PAGE_SIZE * (1 + nr_pages))
37d81828
PM
5399 return -EINVAL;
5400
cdd6c482 5401 WARN_ON_ONCE(event->ctx->parent_ctx);
9bb5d40c 5402again:
cdd6c482 5403 mutex_lock(&event->mmap_mutex);
76369139 5404 if (event->rb) {
9bb5d40c 5405 if (event->rb->nr_pages != nr_pages) {
ebb3c4c4 5406 ret = -EINVAL;
9bb5d40c
PZ
5407 goto unlock;
5408 }
5409
5410 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5411 /*
5412 * Raced against perf_mmap_close() through
5413 * perf_event_set_output(). Try again, hope for better
5414 * luck.
5415 */
5416 mutex_unlock(&event->mmap_mutex);
5417 goto again;
5418 }
5419
ebb3c4c4
PZ
5420 goto unlock;
5421 }
5422
789f90fc 5423 user_extra = nr_pages + 1;
45bfb2e5
PZ
5424
5425accounting:
cdd6c482 5426 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
a3862d3f
IM
5427
5428 /*
5429 * Increase the limit linearly with more CPUs:
5430 */
5431 user_lock_limit *= num_online_cpus();
5432
789f90fc 5433 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
c5078f78 5434
789f90fc
PZ
5435 if (user_locked > user_lock_limit)
5436 extra = user_locked - user_lock_limit;
7b732a75 5437
78d7d407 5438 lock_limit = rlimit(RLIMIT_MEMLOCK);
7b732a75 5439 lock_limit >>= PAGE_SHIFT;
bc3e53f6 5440 locked = vma->vm_mm->pinned_vm + extra;
7b732a75 5441
459ec28a
IM
5442 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5443 !capable(CAP_IPC_LOCK)) {
ebb3c4c4
PZ
5444 ret = -EPERM;
5445 goto unlock;
5446 }
7b732a75 5447
45bfb2e5 5448 WARN_ON(!rb && event->rb);
906010b2 5449
d57e34fd 5450 if (vma->vm_flags & VM_WRITE)
76369139 5451 flags |= RING_BUFFER_WRITABLE;
d57e34fd 5452
76369139 5453 if (!rb) {
45bfb2e5
PZ
5454 rb = rb_alloc(nr_pages,
5455 event->attr.watermark ? event->attr.wakeup_watermark : 0,
5456 event->cpu, flags);
26cb63ad 5457
45bfb2e5
PZ
5458 if (!rb) {
5459 ret = -ENOMEM;
5460 goto unlock;
5461 }
43a21ea8 5462
45bfb2e5
PZ
5463 atomic_set(&rb->mmap_count, 1);
5464 rb->mmap_user = get_current_user();
5465 rb->mmap_locked = extra;
26cb63ad 5466
45bfb2e5 5467 ring_buffer_attach(event, rb);
ac9721f3 5468
45bfb2e5
PZ
5469 perf_event_init_userpage(event);
5470 perf_event_update_userpage(event);
5471 } else {
1a594131
AS
5472 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5473 event->attr.aux_watermark, flags);
45bfb2e5
PZ
5474 if (!ret)
5475 rb->aux_mmap_locked = extra;
5476 }
9a0f05cb 5477
ebb3c4c4 5478unlock:
45bfb2e5
PZ
5479 if (!ret) {
5480 atomic_long_add(user_extra, &user->locked_vm);
5481 vma->vm_mm->pinned_vm += extra;
5482
ac9721f3 5483 atomic_inc(&event->mmap_count);
45bfb2e5
PZ
5484 } else if (rb) {
5485 atomic_dec(&rb->mmap_count);
5486 }
5487aux_unlock:
cdd6c482 5488 mutex_unlock(&event->mmap_mutex);
37d81828 5489
9bb5d40c
PZ
5490 /*
5491 * Since pinned accounting is per vm we cannot allow fork() to copy our
5492 * vma.
5493 */
26cb63ad 5494 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
37d81828 5495 vma->vm_ops = &perf_mmap_vmops;
7b732a75 5496
1e0fb9ec 5497 if (event->pmu->event_mapped)
bfe33492 5498 event->pmu->event_mapped(event, vma->vm_mm);
1e0fb9ec 5499
7b732a75 5500 return ret;
37d81828
PM
5501}
5502
3c446b3d
PZ
5503static int perf_fasync(int fd, struct file *filp, int on)
5504{
496ad9aa 5505 struct inode *inode = file_inode(filp);
cdd6c482 5506 struct perf_event *event = filp->private_data;
3c446b3d
PZ
5507 int retval;
5508
5955102c 5509 inode_lock(inode);
cdd6c482 5510 retval = fasync_helper(fd, filp, on, &event->fasync);
5955102c 5511 inode_unlock(inode);
3c446b3d
PZ
5512
5513 if (retval < 0)
5514 return retval;
5515
5516 return 0;
5517}
5518
0793a61d 5519static const struct file_operations perf_fops = {
3326c1ce 5520 .llseek = no_llseek,
0793a61d
TG
5521 .release = perf_release,
5522 .read = perf_read,
5523 .poll = perf_poll,
d859e29f 5524 .unlocked_ioctl = perf_ioctl,
b3f20785 5525 .compat_ioctl = perf_compat_ioctl,
37d81828 5526 .mmap = perf_mmap,
3c446b3d 5527 .fasync = perf_fasync,
0793a61d
TG
5528};
5529
925d519a 5530/*
cdd6c482 5531 * Perf event wakeup
925d519a
PZ
5532 *
5533 * If there's data, ensure we set the poll() state and publish everything
5534 * to user-space before waking everybody up.
5535 */
5536
fed66e2c
PZ
5537static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5538{
5539 /* only the parent has fasync state */
5540 if (event->parent)
5541 event = event->parent;
5542 return &event->fasync;
5543}
5544
cdd6c482 5545void perf_event_wakeup(struct perf_event *event)
925d519a 5546{
10c6db11 5547 ring_buffer_wakeup(event);
4c9e2542 5548
cdd6c482 5549 if (event->pending_kill) {
fed66e2c 5550 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
cdd6c482 5551 event->pending_kill = 0;
4c9e2542 5552 }
925d519a
PZ
5553}
5554
e360adbe 5555static void perf_pending_event(struct irq_work *entry)
79f14641 5556{
cdd6c482
IM
5557 struct perf_event *event = container_of(entry,
5558 struct perf_event, pending);
d525211f
PZ
5559 int rctx;
5560
5561 rctx = perf_swevent_get_recursion_context();
5562 /*
5563 * If we 'fail' here, that's OK, it means recursion is already disabled
5564 * and we won't recurse 'further'.
5565 */
79f14641 5566
cdd6c482
IM
5567 if (event->pending_disable) {
5568 event->pending_disable = 0;
fae3fde6 5569 perf_event_disable_local(event);
79f14641
PZ
5570 }
5571
cdd6c482
IM
5572 if (event->pending_wakeup) {
5573 event->pending_wakeup = 0;
5574 perf_event_wakeup(event);
79f14641 5575 }
d525211f
PZ
5576
5577 if (rctx >= 0)
5578 perf_swevent_put_recursion_context(rctx);
79f14641
PZ
5579}
5580
39447b38
ZY
5581/*
5582 * We assume there is only KVM supporting the callbacks.
5583 * Later on, we might change it to a list if there is
5584 * another virtualization implementation supporting the callbacks.
5585 */
5586struct perf_guest_info_callbacks *perf_guest_cbs;
5587
5588int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5589{
5590 perf_guest_cbs = cbs;
5591 return 0;
5592}
5593EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5594
5595int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5596{
5597 perf_guest_cbs = NULL;
5598 return 0;
5599}
5600EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5601
4018994f
JO
5602static void
5603perf_output_sample_regs(struct perf_output_handle *handle,
5604 struct pt_regs *regs, u64 mask)
5605{
5606 int bit;
29dd3288 5607 DECLARE_BITMAP(_mask, 64);
4018994f 5608
29dd3288
MS
5609 bitmap_from_u64(_mask, mask);
5610 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
4018994f
JO
5611 u64 val;
5612
5613 val = perf_reg_value(regs, bit);
5614 perf_output_put(handle, val);
5615 }
5616}
5617
60e2364e 5618static void perf_sample_regs_user(struct perf_regs *regs_user,
88a7c26a
AL
5619 struct pt_regs *regs,
5620 struct pt_regs *regs_user_copy)
4018994f 5621{
88a7c26a
AL
5622 if (user_mode(regs)) {
5623 regs_user->abi = perf_reg_abi(current);
2565711f 5624 regs_user->regs = regs;
88a7c26a
AL
5625 } else if (current->mm) {
5626 perf_get_regs_user(regs_user, regs, regs_user_copy);
2565711f
PZ
5627 } else {
5628 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5629 regs_user->regs = NULL;
4018994f
JO
5630 }
5631}
5632
60e2364e
SE
5633static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5634 struct pt_regs *regs)
5635{
5636 regs_intr->regs = regs;
5637 regs_intr->abi = perf_reg_abi(current);
5638}
5639
5640
c5ebcedb
JO
5641/*
5642 * Get remaining task size from user stack pointer.
5643 *
5644 * It'd be better to take stack vma map and limit this more
5645 * precisly, but there's no way to get it safely under interrupt,
5646 * so using TASK_SIZE as limit.
5647 */
5648static u64 perf_ustack_task_size(struct pt_regs *regs)
5649{
5650 unsigned long addr = perf_user_stack_pointer(regs);
5651
5652 if (!addr || addr >= TASK_SIZE)
5653 return 0;
5654
5655 return TASK_SIZE - addr;
5656}
5657
5658static u16
5659perf_sample_ustack_size(u16 stack_size, u16 header_size,
5660 struct pt_regs *regs)
5661{
5662 u64 task_size;
5663
5664 /* No regs, no stack pointer, no dump. */
5665 if (!regs)
5666 return 0;
5667
5668 /*
5669 * Check if we fit in with the requested stack size into the:
5670 * - TASK_SIZE
5671 * If we don't, we limit the size to the TASK_SIZE.
5672 *
5673 * - remaining sample size
5674 * If we don't, we customize the stack size to
5675 * fit in to the remaining sample size.
5676 */
5677
5678 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5679 stack_size = min(stack_size, (u16) task_size);
5680
5681 /* Current header size plus static size and dynamic size. */
5682 header_size += 2 * sizeof(u64);
5683
5684 /* Do we fit in with the current stack dump size? */
5685 if ((u16) (header_size + stack_size) < header_size) {
5686 /*
5687 * If we overflow the maximum size for the sample,
5688 * we customize the stack dump size to fit in.
5689 */
5690 stack_size = USHRT_MAX - header_size - sizeof(u64);
5691 stack_size = round_up(stack_size, sizeof(u64));
5692 }
5693
5694 return stack_size;
5695}
5696
5697static void
5698perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5699 struct pt_regs *regs)
5700{
5701 /* Case of a kernel thread, nothing to dump */
5702 if (!regs) {
5703 u64 size = 0;
5704 perf_output_put(handle, size);
5705 } else {
5706 unsigned long sp;
5707 unsigned int rem;
5708 u64 dyn_size;
5709
5710 /*
5711 * We dump:
5712 * static size
5713 * - the size requested by user or the best one we can fit
5714 * in to the sample max size
5715 * data
5716 * - user stack dump data
5717 * dynamic size
5718 * - the actual dumped size
5719 */
5720
5721 /* Static size. */
5722 perf_output_put(handle, dump_size);
5723
5724 /* Data. */
5725 sp = perf_user_stack_pointer(regs);
5726 rem = __output_copy_user(handle, (void *) sp, dump_size);
5727 dyn_size = dump_size - rem;
5728
5729 perf_output_skip(handle, rem);
5730
5731 /* Dynamic size. */
5732 perf_output_put(handle, dyn_size);
5733 }
5734}
5735
c980d109
ACM
5736static void __perf_event_header__init_id(struct perf_event_header *header,
5737 struct perf_sample_data *data,
5738 struct perf_event *event)
6844c09d
ACM
5739{
5740 u64 sample_type = event->attr.sample_type;
5741
5742 data->type = sample_type;
5743 header->size += event->id_header_size;
5744
5745 if (sample_type & PERF_SAMPLE_TID) {
5746 /* namespace issues */
5747 data->tid_entry.pid = perf_event_pid(event, current);
5748 data->tid_entry.tid = perf_event_tid(event, current);
5749 }
5750
5751 if (sample_type & PERF_SAMPLE_TIME)
34f43927 5752 data->time = perf_event_clock(event);
6844c09d 5753
ff3d527c 5754 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6844c09d
ACM
5755 data->id = primary_event_id(event);
5756
5757 if (sample_type & PERF_SAMPLE_STREAM_ID)
5758 data->stream_id = event->id;
5759
5760 if (sample_type & PERF_SAMPLE_CPU) {
5761 data->cpu_entry.cpu = raw_smp_processor_id();
5762 data->cpu_entry.reserved = 0;
5763 }
5764}
5765
76369139
FW
5766void perf_event_header__init_id(struct perf_event_header *header,
5767 struct perf_sample_data *data,
5768 struct perf_event *event)
c980d109
ACM
5769{
5770 if (event->attr.sample_id_all)
5771 __perf_event_header__init_id(header, data, event);
5772}
5773
5774static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5775 struct perf_sample_data *data)
5776{
5777 u64 sample_type = data->type;
5778
5779 if (sample_type & PERF_SAMPLE_TID)
5780 perf_output_put(handle, data->tid_entry);
5781
5782 if (sample_type & PERF_SAMPLE_TIME)
5783 perf_output_put(handle, data->time);
5784
5785 if (sample_type & PERF_SAMPLE_ID)
5786 perf_output_put(handle, data->id);
5787
5788 if (sample_type & PERF_SAMPLE_STREAM_ID)
5789 perf_output_put(handle, data->stream_id);
5790
5791 if (sample_type & PERF_SAMPLE_CPU)
5792 perf_output_put(handle, data->cpu_entry);
ff3d527c
AH
5793
5794 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5795 perf_output_put(handle, data->id);
c980d109
ACM
5796}
5797
76369139
FW
5798void perf_event__output_id_sample(struct perf_event *event,
5799 struct perf_output_handle *handle,
5800 struct perf_sample_data *sample)
c980d109
ACM
5801{
5802 if (event->attr.sample_id_all)
5803 __perf_event__output_id_sample(handle, sample);
5804}
5805
3dab77fb 5806static void perf_output_read_one(struct perf_output_handle *handle,
eed01528
SE
5807 struct perf_event *event,
5808 u64 enabled, u64 running)
3dab77fb 5809{
cdd6c482 5810 u64 read_format = event->attr.read_format;
3dab77fb
PZ
5811 u64 values[4];
5812 int n = 0;
5813
b5e58793 5814 values[n++] = perf_event_count(event);
3dab77fb 5815 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
eed01528 5816 values[n++] = enabled +
cdd6c482 5817 atomic64_read(&event->child_total_time_enabled);
3dab77fb
PZ
5818 }
5819 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
eed01528 5820 values[n++] = running +
cdd6c482 5821 atomic64_read(&event->child_total_time_running);
3dab77fb
PZ
5822 }
5823 if (read_format & PERF_FORMAT_ID)
cdd6c482 5824 values[n++] = primary_event_id(event);
3dab77fb 5825
76369139 5826 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
5827}
5828
3dab77fb 5829static void perf_output_read_group(struct perf_output_handle *handle,
eed01528
SE
5830 struct perf_event *event,
5831 u64 enabled, u64 running)
3dab77fb 5832{
cdd6c482
IM
5833 struct perf_event *leader = event->group_leader, *sub;
5834 u64 read_format = event->attr.read_format;
3dab77fb
PZ
5835 u64 values[5];
5836 int n = 0;
5837
5838 values[n++] = 1 + leader->nr_siblings;
5839
5840 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
eed01528 5841 values[n++] = enabled;
3dab77fb
PZ
5842
5843 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
eed01528 5844 values[n++] = running;
3dab77fb 5845
cdd6c482 5846 if (leader != event)
3dab77fb
PZ
5847 leader->pmu->read(leader);
5848
b5e58793 5849 values[n++] = perf_event_count(leader);
3dab77fb 5850 if (read_format & PERF_FORMAT_ID)
cdd6c482 5851 values[n++] = primary_event_id(leader);
3dab77fb 5852
76369139 5853 __output_copy(handle, values, n * sizeof(u64));
3dab77fb 5854
65abc865 5855 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3dab77fb
PZ
5856 n = 0;
5857
6f5ab001
JO
5858 if ((sub != event) &&
5859 (sub->state == PERF_EVENT_STATE_ACTIVE))
3dab77fb
PZ
5860 sub->pmu->read(sub);
5861
b5e58793 5862 values[n++] = perf_event_count(sub);
3dab77fb 5863 if (read_format & PERF_FORMAT_ID)
cdd6c482 5864 values[n++] = primary_event_id(sub);
3dab77fb 5865
76369139 5866 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
5867 }
5868}
5869
eed01528
SE
5870#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5871 PERF_FORMAT_TOTAL_TIME_RUNNING)
5872
ba5213ae
PZ
5873/*
5874 * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
5875 *
5876 * The problem is that its both hard and excessively expensive to iterate the
5877 * child list, not to mention that its impossible to IPI the children running
5878 * on another CPU, from interrupt/NMI context.
5879 */
3dab77fb 5880static void perf_output_read(struct perf_output_handle *handle,
cdd6c482 5881 struct perf_event *event)
3dab77fb 5882{
e3f3541c 5883 u64 enabled = 0, running = 0, now;
eed01528
SE
5884 u64 read_format = event->attr.read_format;
5885
5886 /*
5887 * compute total_time_enabled, total_time_running
5888 * based on snapshot values taken when the event
5889 * was last scheduled in.
5890 *
5891 * we cannot simply called update_context_time()
5892 * because of locking issue as we are called in
5893 * NMI context
5894 */
c4794295 5895 if (read_format & PERF_FORMAT_TOTAL_TIMES)
e3f3541c 5896 calc_timer_values(event, &now, &enabled, &running);
eed01528 5897
cdd6c482 5898 if (event->attr.read_format & PERF_FORMAT_GROUP)
eed01528 5899 perf_output_read_group(handle, event, enabled, running);
3dab77fb 5900 else
eed01528 5901 perf_output_read_one(handle, event, enabled, running);
3dab77fb
PZ
5902}
5903
5622f295
MM
5904void perf_output_sample(struct perf_output_handle *handle,
5905 struct perf_event_header *header,
5906 struct perf_sample_data *data,
cdd6c482 5907 struct perf_event *event)
5622f295
MM
5908{
5909 u64 sample_type = data->type;
5910
5911 perf_output_put(handle, *header);
5912
ff3d527c
AH
5913 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5914 perf_output_put(handle, data->id);
5915
5622f295
MM
5916 if (sample_type & PERF_SAMPLE_IP)
5917 perf_output_put(handle, data->ip);
5918
5919 if (sample_type & PERF_SAMPLE_TID)
5920 perf_output_put(handle, data->tid_entry);
5921
5922 if (sample_type & PERF_SAMPLE_TIME)
5923 perf_output_put(handle, data->time);
5924
5925 if (sample_type & PERF_SAMPLE_ADDR)
5926 perf_output_put(handle, data->addr);
5927
5928 if (sample_type & PERF_SAMPLE_ID)
5929 perf_output_put(handle, data->id);
5930
5931 if (sample_type & PERF_SAMPLE_STREAM_ID)
5932 perf_output_put(handle, data->stream_id);
5933
5934 if (sample_type & PERF_SAMPLE_CPU)
5935 perf_output_put(handle, data->cpu_entry);
5936
5937 if (sample_type & PERF_SAMPLE_PERIOD)
5938 perf_output_put(handle, data->period);
5939
5940 if (sample_type & PERF_SAMPLE_READ)
cdd6c482 5941 perf_output_read(handle, event);
5622f295
MM
5942
5943 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5944 if (data->callchain) {
5945 int size = 1;
5946
5947 if (data->callchain)
5948 size += data->callchain->nr;
5949
5950 size *= sizeof(u64);
5951
76369139 5952 __output_copy(handle, data->callchain, size);
5622f295
MM
5953 } else {
5954 u64 nr = 0;
5955 perf_output_put(handle, nr);
5956 }
5957 }
5958
5959 if (sample_type & PERF_SAMPLE_RAW) {
7e3f977e
DB
5960 struct perf_raw_record *raw = data->raw;
5961
5962 if (raw) {
5963 struct perf_raw_frag *frag = &raw->frag;
5964
5965 perf_output_put(handle, raw->size);
5966 do {
5967 if (frag->copy) {
5968 __output_custom(handle, frag->copy,
5969 frag->data, frag->size);
5970 } else {
5971 __output_copy(handle, frag->data,
5972 frag->size);
5973 }
5974 if (perf_raw_frag_last(frag))
5975 break;
5976 frag = frag->next;
5977 } while (1);
5978 if (frag->pad)
5979 __output_skip(handle, NULL, frag->pad);
5622f295
MM
5980 } else {
5981 struct {
5982 u32 size;
5983 u32 data;
5984 } raw = {
5985 .size = sizeof(u32),
5986 .data = 0,
5987 };
5988 perf_output_put(handle, raw);
5989 }
5990 }
a7ac67ea 5991
bce38cd5
SE
5992 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5993 if (data->br_stack) {
5994 size_t size;
5995
5996 size = data->br_stack->nr
5997 * sizeof(struct perf_branch_entry);
5998
5999 perf_output_put(handle, data->br_stack->nr);
6000 perf_output_copy(handle, data->br_stack->entries, size);
6001 } else {
6002 /*
6003 * we always store at least the value of nr
6004 */
6005 u64 nr = 0;
6006 perf_output_put(handle, nr);
6007 }
6008 }
4018994f
JO
6009
6010 if (sample_type & PERF_SAMPLE_REGS_USER) {
6011 u64 abi = data->regs_user.abi;
6012
6013 /*
6014 * If there are no regs to dump, notice it through
6015 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6016 */
6017 perf_output_put(handle, abi);
6018
6019 if (abi) {
6020 u64 mask = event->attr.sample_regs_user;
6021 perf_output_sample_regs(handle,
6022 data->regs_user.regs,
6023 mask);
6024 }
6025 }
c5ebcedb 6026
a5cdd40c 6027 if (sample_type & PERF_SAMPLE_STACK_USER) {
c5ebcedb
JO
6028 perf_output_sample_ustack(handle,
6029 data->stack_user_size,
6030 data->regs_user.regs);
a5cdd40c 6031 }
c3feedf2
AK
6032
6033 if (sample_type & PERF_SAMPLE_WEIGHT)
6034 perf_output_put(handle, data->weight);
d6be9ad6
SE
6035
6036 if (sample_type & PERF_SAMPLE_DATA_SRC)
6037 perf_output_put(handle, data->data_src.val);
a5cdd40c 6038
fdfbbd07
AK
6039 if (sample_type & PERF_SAMPLE_TRANSACTION)
6040 perf_output_put(handle, data->txn);
6041
60e2364e
SE
6042 if (sample_type & PERF_SAMPLE_REGS_INTR) {
6043 u64 abi = data->regs_intr.abi;
6044 /*
6045 * If there are no regs to dump, notice it through
6046 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6047 */
6048 perf_output_put(handle, abi);
6049
6050 if (abi) {
6051 u64 mask = event->attr.sample_regs_intr;
6052
6053 perf_output_sample_regs(handle,
6054 data->regs_intr.regs,
6055 mask);
6056 }
6057 }
6058
fc7ce9c7
KL
6059 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6060 perf_output_put(handle, data->phys_addr);
6061
a5cdd40c
PZ
6062 if (!event->attr.watermark) {
6063 int wakeup_events = event->attr.wakeup_events;
6064
6065 if (wakeup_events) {
6066 struct ring_buffer *rb = handle->rb;
6067 int events = local_inc_return(&rb->events);
6068
6069 if (events >= wakeup_events) {
6070 local_sub(wakeup_events, &rb->events);
6071 local_inc(&rb->wakeup);
6072 }
6073 }
6074 }
5622f295
MM
6075}
6076
fc7ce9c7
KL
6077static u64 perf_virt_to_phys(u64 virt)
6078{
6079 u64 phys_addr = 0;
6080 struct page *p = NULL;
6081
6082 if (!virt)
6083 return 0;
6084
6085 if (virt >= TASK_SIZE) {
6086 /* If it's vmalloc()d memory, leave phys_addr as 0 */
6087 if (virt_addr_valid((void *)(uintptr_t)virt) &&
6088 !(virt >= VMALLOC_START && virt < VMALLOC_END))
6089 phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
6090 } else {
6091 /*
6092 * Walking the pages tables for user address.
6093 * Interrupts are disabled, so it prevents any tear down
6094 * of the page tables.
6095 * Try IRQ-safe __get_user_pages_fast first.
6096 * If failed, leave phys_addr as 0.
6097 */
6098 if ((current->mm != NULL) &&
6099 (__get_user_pages_fast(virt, 1, 0, &p) == 1))
6100 phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
6101
6102 if (p)
6103 put_page(p);
6104 }
6105
6106 return phys_addr;
6107}
6108
5622f295
MM
6109void perf_prepare_sample(struct perf_event_header *header,
6110 struct perf_sample_data *data,
cdd6c482 6111 struct perf_event *event,
5622f295 6112 struct pt_regs *regs)
7b732a75 6113{
cdd6c482 6114 u64 sample_type = event->attr.sample_type;
7b732a75 6115
cdd6c482 6116 header->type = PERF_RECORD_SAMPLE;
c320c7b7 6117 header->size = sizeof(*header) + event->header_size;
5622f295
MM
6118
6119 header->misc = 0;
6120 header->misc |= perf_misc_flags(regs);
6fab0192 6121
c980d109 6122 __perf_event_header__init_id(header, data, event);
6844c09d 6123
c320c7b7 6124 if (sample_type & PERF_SAMPLE_IP)
5622f295
MM
6125 data->ip = perf_instruction_pointer(regs);
6126
b23f3325 6127 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5622f295 6128 int size = 1;
394ee076 6129
e6dab5ff 6130 data->callchain = perf_callchain(event, regs);
5622f295
MM
6131
6132 if (data->callchain)
6133 size += data->callchain->nr;
6134
6135 header->size += size * sizeof(u64);
394ee076
PZ
6136 }
6137
3a43ce68 6138 if (sample_type & PERF_SAMPLE_RAW) {
7e3f977e
DB
6139 struct perf_raw_record *raw = data->raw;
6140 int size;
6141
6142 if (raw) {
6143 struct perf_raw_frag *frag = &raw->frag;
6144 u32 sum = 0;
6145
6146 do {
6147 sum += frag->size;
6148 if (perf_raw_frag_last(frag))
6149 break;
6150 frag = frag->next;
6151 } while (1);
6152
6153 size = round_up(sum + sizeof(u32), sizeof(u64));
6154 raw->size = size - sizeof(u32);
6155 frag->pad = raw->size - sum;
6156 } else {
6157 size = sizeof(u64);
6158 }
a044560c 6159
7e3f977e 6160 header->size += size;
7f453c24 6161 }
bce38cd5
SE
6162
6163 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6164 int size = sizeof(u64); /* nr */
6165 if (data->br_stack) {
6166 size += data->br_stack->nr
6167 * sizeof(struct perf_branch_entry);
6168 }
6169 header->size += size;
6170 }
4018994f 6171
2565711f 6172 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
88a7c26a
AL
6173 perf_sample_regs_user(&data->regs_user, regs,
6174 &data->regs_user_copy);
2565711f 6175
4018994f
JO
6176 if (sample_type & PERF_SAMPLE_REGS_USER) {
6177 /* regs dump ABI info */
6178 int size = sizeof(u64);
6179
4018994f
JO
6180 if (data->regs_user.regs) {
6181 u64 mask = event->attr.sample_regs_user;
6182 size += hweight64(mask) * sizeof(u64);
6183 }
6184
6185 header->size += size;
6186 }
c5ebcedb
JO
6187
6188 if (sample_type & PERF_SAMPLE_STACK_USER) {
6189 /*
6190 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
6191 * processed as the last one or have additional check added
6192 * in case new sample type is added, because we could eat
6193 * up the rest of the sample size.
6194 */
c5ebcedb
JO
6195 u16 stack_size = event->attr.sample_stack_user;
6196 u16 size = sizeof(u64);
6197
c5ebcedb 6198 stack_size = perf_sample_ustack_size(stack_size, header->size,
2565711f 6199 data->regs_user.regs);
c5ebcedb
JO
6200
6201 /*
6202 * If there is something to dump, add space for the dump
6203 * itself and for the field that tells the dynamic size,
6204 * which is how many have been actually dumped.
6205 */
6206 if (stack_size)
6207 size += sizeof(u64) + stack_size;
6208
6209 data->stack_user_size = stack_size;
6210 header->size += size;
6211 }
60e2364e
SE
6212
6213 if (sample_type & PERF_SAMPLE_REGS_INTR) {
6214 /* regs dump ABI info */
6215 int size = sizeof(u64);
6216
6217 perf_sample_regs_intr(&data->regs_intr, regs);
6218
6219 if (data->regs_intr.regs) {
6220 u64 mask = event->attr.sample_regs_intr;
6221
6222 size += hweight64(mask) * sizeof(u64);
6223 }
6224
6225 header->size += size;
6226 }
fc7ce9c7
KL
6227
6228 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6229 data->phys_addr = perf_virt_to_phys(data->addr);
5622f295 6230}
7f453c24 6231
9ecda41a
WN
6232static void __always_inline
6233__perf_event_output(struct perf_event *event,
6234 struct perf_sample_data *data,
6235 struct pt_regs *regs,
6236 int (*output_begin)(struct perf_output_handle *,
6237 struct perf_event *,
6238 unsigned int))
5622f295
MM
6239{
6240 struct perf_output_handle handle;
6241 struct perf_event_header header;
689802b2 6242
927c7a9e
FW
6243 /* protect the callchain buffers */
6244 rcu_read_lock();
6245
cdd6c482 6246 perf_prepare_sample(&header, data, event, regs);
5c148194 6247
9ecda41a 6248 if (output_begin(&handle, event, header.size))
927c7a9e 6249 goto exit;
0322cd6e 6250
cdd6c482 6251 perf_output_sample(&handle, &header, data, event);
f413cdb8 6252
8a057d84 6253 perf_output_end(&handle);
927c7a9e
FW
6254
6255exit:
6256 rcu_read_unlock();
0322cd6e
PZ
6257}
6258
9ecda41a
WN
6259void
6260perf_event_output_forward(struct perf_event *event,
6261 struct perf_sample_data *data,
6262 struct pt_regs *regs)
6263{
6264 __perf_event_output(event, data, regs, perf_output_begin_forward);
6265}
6266
6267void
6268perf_event_output_backward(struct perf_event *event,
6269 struct perf_sample_data *data,
6270 struct pt_regs *regs)
6271{
6272 __perf_event_output(event, data, regs, perf_output_begin_backward);
6273}
6274
6275void
6276perf_event_output(struct perf_event *event,
6277 struct perf_sample_data *data,
6278 struct pt_regs *regs)
6279{
6280 __perf_event_output(event, data, regs, perf_output_begin);
6281}
6282
38b200d6 6283/*
cdd6c482 6284 * read event_id
38b200d6
PZ
6285 */
6286
6287struct perf_read_event {
6288 struct perf_event_header header;
6289
6290 u32 pid;
6291 u32 tid;
38b200d6
PZ
6292};
6293
6294static void
cdd6c482 6295perf_event_read_event(struct perf_event *event,
38b200d6
PZ
6296 struct task_struct *task)
6297{
6298 struct perf_output_handle handle;
c980d109 6299 struct perf_sample_data sample;
dfc65094 6300 struct perf_read_event read_event = {
38b200d6 6301 .header = {
cdd6c482 6302 .type = PERF_RECORD_READ,
38b200d6 6303 .misc = 0,
c320c7b7 6304 .size = sizeof(read_event) + event->read_size,
38b200d6 6305 },
cdd6c482
IM
6306 .pid = perf_event_pid(event, task),
6307 .tid = perf_event_tid(event, task),
38b200d6 6308 };
3dab77fb 6309 int ret;
38b200d6 6310
c980d109 6311 perf_event_header__init_id(&read_event.header, &sample, event);
a7ac67ea 6312 ret = perf_output_begin(&handle, event, read_event.header.size);
38b200d6
PZ
6313 if (ret)
6314 return;
6315
dfc65094 6316 perf_output_put(&handle, read_event);
cdd6c482 6317 perf_output_read(&handle, event);
c980d109 6318 perf_event__output_id_sample(event, &handle, &sample);
3dab77fb 6319
38b200d6
PZ
6320 perf_output_end(&handle);
6321}
6322
aab5b71e 6323typedef void (perf_iterate_f)(struct perf_event *event, void *data);
52d857a8
JO
6324
6325static void
aab5b71e
PZ
6326perf_iterate_ctx(struct perf_event_context *ctx,
6327 perf_iterate_f output,
b73e4fef 6328 void *data, bool all)
52d857a8
JO
6329{
6330 struct perf_event *event;
6331
6332 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
b73e4fef
AS
6333 if (!all) {
6334 if (event->state < PERF_EVENT_STATE_INACTIVE)
6335 continue;
6336 if (!event_filter_match(event))
6337 continue;
6338 }
6339
67516844 6340 output(event, data);
52d857a8
JO
6341 }
6342}
6343
aab5b71e 6344static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
f2fb6bef
KL
6345{
6346 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
6347 struct perf_event *event;
6348
6349 list_for_each_entry_rcu(event, &pel->list, sb_list) {
0b8f1e2e
PZ
6350 /*
6351 * Skip events that are not fully formed yet; ensure that
6352 * if we observe event->ctx, both event and ctx will be
6353 * complete enough. See perf_install_in_context().
6354 */
6355 if (!smp_load_acquire(&event->ctx))
6356 continue;
6357
f2fb6bef
KL
6358 if (event->state < PERF_EVENT_STATE_INACTIVE)
6359 continue;
6360 if (!event_filter_match(event))
6361 continue;
6362 output(event, data);
6363 }
6364}
6365
aab5b71e
PZ
6366/*
6367 * Iterate all events that need to receive side-band events.
6368 *
6369 * For new callers; ensure that account_pmu_sb_event() includes
6370 * your event, otherwise it might not get delivered.
6371 */
52d857a8 6372static void
aab5b71e 6373perf_iterate_sb(perf_iterate_f output, void *data,
52d857a8
JO
6374 struct perf_event_context *task_ctx)
6375{
52d857a8 6376 struct perf_event_context *ctx;
52d857a8
JO
6377 int ctxn;
6378
aab5b71e
PZ
6379 rcu_read_lock();
6380 preempt_disable();
6381
4e93ad60 6382 /*
aab5b71e
PZ
6383 * If we have task_ctx != NULL we only notify the task context itself.
6384 * The task_ctx is set only for EXIT events before releasing task
4e93ad60
JO
6385 * context.
6386 */
6387 if (task_ctx) {
aab5b71e
PZ
6388 perf_iterate_ctx(task_ctx, output, data, false);
6389 goto done;
4e93ad60
JO
6390 }
6391
aab5b71e 6392 perf_iterate_sb_cpu(output, data);
f2fb6bef
KL
6393
6394 for_each_task_context_nr(ctxn) {
52d857a8
JO
6395 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6396 if (ctx)
aab5b71e 6397 perf_iterate_ctx(ctx, output, data, false);
52d857a8 6398 }
aab5b71e 6399done:
f2fb6bef 6400 preempt_enable();
52d857a8 6401 rcu_read_unlock();
95ff4ca2
AS
6402}
6403
375637bc
AS
6404/*
6405 * Clear all file-based filters at exec, they'll have to be
6406 * re-instated when/if these objects are mmapped again.
6407 */
6408static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
6409{
6410 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6411 struct perf_addr_filter *filter;
6412 unsigned int restart = 0, count = 0;
6413 unsigned long flags;
6414
6415 if (!has_addr_filter(event))
6416 return;
6417
6418 raw_spin_lock_irqsave(&ifh->lock, flags);
6419 list_for_each_entry(filter, &ifh->list, entry) {
6420 if (filter->inode) {
6421 event->addr_filters_offs[count] = 0;
6422 restart++;
6423 }
6424
6425 count++;
6426 }
6427
6428 if (restart)
6429 event->addr_filters_gen++;
6430 raw_spin_unlock_irqrestore(&ifh->lock, flags);
6431
6432 if (restart)
767ae086 6433 perf_event_stop(event, 1);
375637bc
AS
6434}
6435
6436void perf_event_exec(void)
6437{
6438 struct perf_event_context *ctx;
6439 int ctxn;
6440
6441 rcu_read_lock();
6442 for_each_task_context_nr(ctxn) {
6443 ctx = current->perf_event_ctxp[ctxn];
6444 if (!ctx)
6445 continue;
6446
6447 perf_event_enable_on_exec(ctxn);
6448
aab5b71e 6449 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
375637bc
AS
6450 true);
6451 }
6452 rcu_read_unlock();
6453}
6454
95ff4ca2
AS
6455struct remote_output {
6456 struct ring_buffer *rb;
6457 int err;
6458};
6459
6460static void __perf_event_output_stop(struct perf_event *event, void *data)
6461{
6462 struct perf_event *parent = event->parent;
6463 struct remote_output *ro = data;
6464 struct ring_buffer *rb = ro->rb;
375637bc
AS
6465 struct stop_event_data sd = {
6466 .event = event,
6467 };
95ff4ca2
AS
6468
6469 if (!has_aux(event))
6470 return;
6471
6472 if (!parent)
6473 parent = event;
6474
6475 /*
6476 * In case of inheritance, it will be the parent that links to the
767ae086
AS
6477 * ring-buffer, but it will be the child that's actually using it.
6478 *
6479 * We are using event::rb to determine if the event should be stopped,
6480 * however this may race with ring_buffer_attach() (through set_output),
6481 * which will make us skip the event that actually needs to be stopped.
6482 * So ring_buffer_attach() has to stop an aux event before re-assigning
6483 * its rb pointer.
95ff4ca2
AS
6484 */
6485 if (rcu_dereference(parent->rb) == rb)
375637bc 6486 ro->err = __perf_event_stop(&sd);
95ff4ca2
AS
6487}
6488
6489static int __perf_pmu_output_stop(void *info)
6490{
6491 struct perf_event *event = info;
6492 struct pmu *pmu = event->pmu;
8b6a3fe8 6493 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
95ff4ca2
AS
6494 struct remote_output ro = {
6495 .rb = event->rb,
6496 };
6497
6498 rcu_read_lock();
aab5b71e 6499 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
95ff4ca2 6500 if (cpuctx->task_ctx)
aab5b71e 6501 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
b73e4fef 6502 &ro, false);
95ff4ca2
AS
6503 rcu_read_unlock();
6504
6505 return ro.err;
6506}
6507
6508static void perf_pmu_output_stop(struct perf_event *event)
6509{
6510 struct perf_event *iter;
6511 int err, cpu;
6512
6513restart:
6514 rcu_read_lock();
6515 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6516 /*
6517 * For per-CPU events, we need to make sure that neither they
6518 * nor their children are running; for cpu==-1 events it's
6519 * sufficient to stop the event itself if it's active, since
6520 * it can't have children.
6521 */
6522 cpu = iter->cpu;
6523 if (cpu == -1)
6524 cpu = READ_ONCE(iter->oncpu);
6525
6526 if (cpu == -1)
6527 continue;
6528
6529 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6530 if (err == -EAGAIN) {
6531 rcu_read_unlock();
6532 goto restart;
6533 }
6534 }
6535 rcu_read_unlock();
52d857a8
JO
6536}
6537
60313ebe 6538/*
9f498cc5
PZ
6539 * task tracking -- fork/exit
6540 *
13d7a241 6541 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
60313ebe
PZ
6542 */
6543
9f498cc5 6544struct perf_task_event {
3a80b4a3 6545 struct task_struct *task;
cdd6c482 6546 struct perf_event_context *task_ctx;
60313ebe
PZ
6547
6548 struct {
6549 struct perf_event_header header;
6550
6551 u32 pid;
6552 u32 ppid;
9f498cc5
PZ
6553 u32 tid;
6554 u32 ptid;
393b2ad8 6555 u64 time;
cdd6c482 6556 } event_id;
60313ebe
PZ
6557};
6558
67516844
JO
6559static int perf_event_task_match(struct perf_event *event)
6560{
13d7a241
SE
6561 return event->attr.comm || event->attr.mmap ||
6562 event->attr.mmap2 || event->attr.mmap_data ||
6563 event->attr.task;
67516844
JO
6564}
6565
cdd6c482 6566static void perf_event_task_output(struct perf_event *event,
52d857a8 6567 void *data)
60313ebe 6568{
52d857a8 6569 struct perf_task_event *task_event = data;
60313ebe 6570 struct perf_output_handle handle;
c980d109 6571 struct perf_sample_data sample;
9f498cc5 6572 struct task_struct *task = task_event->task;
c980d109 6573 int ret, size = task_event->event_id.header.size;
8bb39f9a 6574
67516844
JO
6575 if (!perf_event_task_match(event))
6576 return;
6577
c980d109 6578 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
60313ebe 6579
c980d109 6580 ret = perf_output_begin(&handle, event,
a7ac67ea 6581 task_event->event_id.header.size);
ef60777c 6582 if (ret)
c980d109 6583 goto out;
60313ebe 6584
cdd6c482
IM
6585 task_event->event_id.pid = perf_event_pid(event, task);
6586 task_event->event_id.ppid = perf_event_pid(event, current);
60313ebe 6587
cdd6c482
IM
6588 task_event->event_id.tid = perf_event_tid(event, task);
6589 task_event->event_id.ptid = perf_event_tid(event, current);
9f498cc5 6590
34f43927
PZ
6591 task_event->event_id.time = perf_event_clock(event);
6592
cdd6c482 6593 perf_output_put(&handle, task_event->event_id);
393b2ad8 6594
c980d109
ACM
6595 perf_event__output_id_sample(event, &handle, &sample);
6596
60313ebe 6597 perf_output_end(&handle);
c980d109
ACM
6598out:
6599 task_event->event_id.header.size = size;
60313ebe
PZ
6600}
6601
cdd6c482
IM
6602static void perf_event_task(struct task_struct *task,
6603 struct perf_event_context *task_ctx,
3a80b4a3 6604 int new)
60313ebe 6605{
9f498cc5 6606 struct perf_task_event task_event;
60313ebe 6607
cdd6c482
IM
6608 if (!atomic_read(&nr_comm_events) &&
6609 !atomic_read(&nr_mmap_events) &&
6610 !atomic_read(&nr_task_events))
60313ebe
PZ
6611 return;
6612
9f498cc5 6613 task_event = (struct perf_task_event){
3a80b4a3
PZ
6614 .task = task,
6615 .task_ctx = task_ctx,
cdd6c482 6616 .event_id = {
60313ebe 6617 .header = {
cdd6c482 6618 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
573402db 6619 .misc = 0,
cdd6c482 6620 .size = sizeof(task_event.event_id),
60313ebe 6621 },
573402db
PZ
6622 /* .pid */
6623 /* .ppid */
9f498cc5
PZ
6624 /* .tid */
6625 /* .ptid */
34f43927 6626 /* .time */
60313ebe
PZ
6627 },
6628 };
6629
aab5b71e 6630 perf_iterate_sb(perf_event_task_output,
52d857a8
JO
6631 &task_event,
6632 task_ctx);
9f498cc5
PZ
6633}
6634
cdd6c482 6635void perf_event_fork(struct task_struct *task)
9f498cc5 6636{
cdd6c482 6637 perf_event_task(task, NULL, 1);
e4222673 6638 perf_event_namespaces(task);
60313ebe
PZ
6639}
6640
8d1b2d93
PZ
6641/*
6642 * comm tracking
6643 */
6644
6645struct perf_comm_event {
22a4f650
IM
6646 struct task_struct *task;
6647 char *comm;
8d1b2d93
PZ
6648 int comm_size;
6649
6650 struct {
6651 struct perf_event_header header;
6652
6653 u32 pid;
6654 u32 tid;
cdd6c482 6655 } event_id;
8d1b2d93
PZ
6656};
6657
67516844
JO
6658static int perf_event_comm_match(struct perf_event *event)
6659{
6660 return event->attr.comm;
6661}
6662
cdd6c482 6663static void perf_event_comm_output(struct perf_event *event,
52d857a8 6664 void *data)
8d1b2d93 6665{
52d857a8 6666 struct perf_comm_event *comm_event = data;
8d1b2d93 6667 struct perf_output_handle handle;
c980d109 6668 struct perf_sample_data sample;
cdd6c482 6669 int size = comm_event->event_id.header.size;
c980d109
ACM
6670 int ret;
6671
67516844
JO
6672 if (!perf_event_comm_match(event))
6673 return;
6674
c980d109
ACM
6675 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
6676 ret = perf_output_begin(&handle, event,
a7ac67ea 6677 comm_event->event_id.header.size);
8d1b2d93
PZ
6678
6679 if (ret)
c980d109 6680 goto out;
8d1b2d93 6681
cdd6c482
IM
6682 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
6683 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
709e50cf 6684
cdd6c482 6685 perf_output_put(&handle, comm_event->event_id);
76369139 6686 __output_copy(&handle, comm_event->comm,
8d1b2d93 6687 comm_event->comm_size);
c980d109
ACM
6688
6689 perf_event__output_id_sample(event, &handle, &sample);
6690
8d1b2d93 6691 perf_output_end(&handle);
c980d109
ACM
6692out:
6693 comm_event->event_id.header.size = size;
8d1b2d93
PZ
6694}
6695
cdd6c482 6696static void perf_event_comm_event(struct perf_comm_event *comm_event)
8d1b2d93 6697{
413ee3b4 6698 char comm[TASK_COMM_LEN];
8d1b2d93 6699 unsigned int size;
8d1b2d93 6700
413ee3b4 6701 memset(comm, 0, sizeof(comm));
96b02d78 6702 strlcpy(comm, comm_event->task->comm, sizeof(comm));
888fcee0 6703 size = ALIGN(strlen(comm)+1, sizeof(u64));
8d1b2d93
PZ
6704
6705 comm_event->comm = comm;
6706 comm_event->comm_size = size;
6707
cdd6c482 6708 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
8dc85d54 6709
aab5b71e 6710 perf_iterate_sb(perf_event_comm_output,
52d857a8
JO
6711 comm_event,
6712 NULL);
8d1b2d93
PZ
6713}
6714
82b89778 6715void perf_event_comm(struct task_struct *task, bool exec)
8d1b2d93 6716{
9ee318a7
PZ
6717 struct perf_comm_event comm_event;
6718
cdd6c482 6719 if (!atomic_read(&nr_comm_events))
9ee318a7 6720 return;
a63eaf34 6721
9ee318a7 6722 comm_event = (struct perf_comm_event){
8d1b2d93 6723 .task = task,
573402db
PZ
6724 /* .comm */
6725 /* .comm_size */
cdd6c482 6726 .event_id = {
573402db 6727 .header = {
cdd6c482 6728 .type = PERF_RECORD_COMM,
82b89778 6729 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
573402db
PZ
6730 /* .size */
6731 },
6732 /* .pid */
6733 /* .tid */
8d1b2d93
PZ
6734 },
6735 };
6736
cdd6c482 6737 perf_event_comm_event(&comm_event);
8d1b2d93
PZ
6738}
6739
e4222673
HB
6740/*
6741 * namespaces tracking
6742 */
6743
6744struct perf_namespaces_event {
6745 struct task_struct *task;
6746
6747 struct {
6748 struct perf_event_header header;
6749
6750 u32 pid;
6751 u32 tid;
6752 u64 nr_namespaces;
6753 struct perf_ns_link_info link_info[NR_NAMESPACES];
6754 } event_id;
6755};
6756
6757static int perf_event_namespaces_match(struct perf_event *event)
6758{
6759 return event->attr.namespaces;
6760}
6761
6762static void perf_event_namespaces_output(struct perf_event *event,
6763 void *data)
6764{
6765 struct perf_namespaces_event *namespaces_event = data;
6766 struct perf_output_handle handle;
6767 struct perf_sample_data sample;
6768 int ret;
6769
6770 if (!perf_event_namespaces_match(event))
6771 return;
6772
6773 perf_event_header__init_id(&namespaces_event->event_id.header,
6774 &sample, event);
6775 ret = perf_output_begin(&handle, event,
6776 namespaces_event->event_id.header.size);
6777 if (ret)
6778 return;
6779
6780 namespaces_event->event_id.pid = perf_event_pid(event,
6781 namespaces_event->task);
6782 namespaces_event->event_id.tid = perf_event_tid(event,
6783 namespaces_event->task);
6784
6785 perf_output_put(&handle, namespaces_event->event_id);
6786
6787 perf_event__output_id_sample(event, &handle, &sample);
6788
6789 perf_output_end(&handle);
6790}
6791
6792static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
6793 struct task_struct *task,
6794 const struct proc_ns_operations *ns_ops)
6795{
6796 struct path ns_path;
6797 struct inode *ns_inode;
6798 void *error;
6799
6800 error = ns_get_path(&ns_path, task, ns_ops);
6801 if (!error) {
6802 ns_inode = ns_path.dentry->d_inode;
6803 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
6804 ns_link_info->ino = ns_inode->i_ino;
6805 }
6806}
6807
6808void perf_event_namespaces(struct task_struct *task)
6809{
6810 struct perf_namespaces_event namespaces_event;
6811 struct perf_ns_link_info *ns_link_info;
6812
6813 if (!atomic_read(&nr_namespaces_events))
6814 return;
6815
6816 namespaces_event = (struct perf_namespaces_event){
6817 .task = task,
6818 .event_id = {
6819 .header = {
6820 .type = PERF_RECORD_NAMESPACES,
6821 .misc = 0,
6822 .size = sizeof(namespaces_event.event_id),
6823 },
6824 /* .pid */
6825 /* .tid */
6826 .nr_namespaces = NR_NAMESPACES,
6827 /* .link_info[NR_NAMESPACES] */
6828 },
6829 };
6830
6831 ns_link_info = namespaces_event.event_id.link_info;
6832
6833 perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
6834 task, &mntns_operations);
6835
6836#ifdef CONFIG_USER_NS
6837 perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
6838 task, &userns_operations);
6839#endif
6840#ifdef CONFIG_NET_NS
6841 perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
6842 task, &netns_operations);
6843#endif
6844#ifdef CONFIG_UTS_NS
6845 perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
6846 task, &utsns_operations);
6847#endif
6848#ifdef CONFIG_IPC_NS
6849 perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
6850 task, &ipcns_operations);
6851#endif
6852#ifdef CONFIG_PID_NS
6853 perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
6854 task, &pidns_operations);
6855#endif
6856#ifdef CONFIG_CGROUPS
6857 perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
6858 task, &cgroupns_operations);
6859#endif
6860
6861 perf_iterate_sb(perf_event_namespaces_output,
6862 &namespaces_event,
6863 NULL);
6864}
6865
0a4a9391
PZ
6866/*
6867 * mmap tracking
6868 */
6869
6870struct perf_mmap_event {
089dd79d
PZ
6871 struct vm_area_struct *vma;
6872
6873 const char *file_name;
6874 int file_size;
13d7a241
SE
6875 int maj, min;
6876 u64 ino;
6877 u64 ino_generation;
f972eb63 6878 u32 prot, flags;
0a4a9391
PZ
6879
6880 struct {
6881 struct perf_event_header header;
6882
6883 u32 pid;
6884 u32 tid;
6885 u64 start;
6886 u64 len;
6887 u64 pgoff;
cdd6c482 6888 } event_id;
0a4a9391
PZ
6889};
6890
67516844
JO
6891static int perf_event_mmap_match(struct perf_event *event,
6892 void *data)
6893{
6894 struct perf_mmap_event *mmap_event = data;
6895 struct vm_area_struct *vma = mmap_event->vma;
6896 int executable = vma->vm_flags & VM_EXEC;
6897
6898 return (!executable && event->attr.mmap_data) ||
13d7a241 6899 (executable && (event->attr.mmap || event->attr.mmap2));
67516844
JO
6900}
6901
cdd6c482 6902static void perf_event_mmap_output(struct perf_event *event,
52d857a8 6903 void *data)
0a4a9391 6904{
52d857a8 6905 struct perf_mmap_event *mmap_event = data;
0a4a9391 6906 struct perf_output_handle handle;
c980d109 6907 struct perf_sample_data sample;
cdd6c482 6908 int size = mmap_event->event_id.header.size;
c980d109 6909 int ret;
0a4a9391 6910
67516844
JO
6911 if (!perf_event_mmap_match(event, data))
6912 return;
6913
13d7a241
SE
6914 if (event->attr.mmap2) {
6915 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
6916 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
6917 mmap_event->event_id.header.size += sizeof(mmap_event->min);
6918 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
d008d525 6919 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
f972eb63
PZ
6920 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
6921 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
13d7a241
SE
6922 }
6923
c980d109
ACM
6924 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
6925 ret = perf_output_begin(&handle, event,
a7ac67ea 6926 mmap_event->event_id.header.size);
0a4a9391 6927 if (ret)
c980d109 6928 goto out;
0a4a9391 6929
cdd6c482
IM
6930 mmap_event->event_id.pid = perf_event_pid(event, current);
6931 mmap_event->event_id.tid = perf_event_tid(event, current);
709e50cf 6932
cdd6c482 6933 perf_output_put(&handle, mmap_event->event_id);
13d7a241
SE
6934
6935 if (event->attr.mmap2) {
6936 perf_output_put(&handle, mmap_event->maj);
6937 perf_output_put(&handle, mmap_event->min);
6938 perf_output_put(&handle, mmap_event->ino);
6939 perf_output_put(&handle, mmap_event->ino_generation);
f972eb63
PZ
6940 perf_output_put(&handle, mmap_event->prot);
6941 perf_output_put(&handle, mmap_event->flags);
13d7a241
SE
6942 }
6943
76369139 6944 __output_copy(&handle, mmap_event->file_name,
0a4a9391 6945 mmap_event->file_size);
c980d109
ACM
6946
6947 perf_event__output_id_sample(event, &handle, &sample);
6948
78d613eb 6949 perf_output_end(&handle);
c980d109
ACM
6950out:
6951 mmap_event->event_id.header.size = size;
0a4a9391
PZ
6952}
6953
cdd6c482 6954static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
0a4a9391 6955{
089dd79d
PZ
6956 struct vm_area_struct *vma = mmap_event->vma;
6957 struct file *file = vma->vm_file;
13d7a241
SE
6958 int maj = 0, min = 0;
6959 u64 ino = 0, gen = 0;
f972eb63 6960 u32 prot = 0, flags = 0;
0a4a9391
PZ
6961 unsigned int size;
6962 char tmp[16];
6963 char *buf = NULL;
2c42cfbf 6964 char *name;
413ee3b4 6965
0b3589be
PZ
6966 if (vma->vm_flags & VM_READ)
6967 prot |= PROT_READ;
6968 if (vma->vm_flags & VM_WRITE)
6969 prot |= PROT_WRITE;
6970 if (vma->vm_flags & VM_EXEC)
6971 prot |= PROT_EXEC;
6972
6973 if (vma->vm_flags & VM_MAYSHARE)
6974 flags = MAP_SHARED;
6975 else
6976 flags = MAP_PRIVATE;
6977
6978 if (vma->vm_flags & VM_DENYWRITE)
6979 flags |= MAP_DENYWRITE;
6980 if (vma->vm_flags & VM_MAYEXEC)
6981 flags |= MAP_EXECUTABLE;
6982 if (vma->vm_flags & VM_LOCKED)
6983 flags |= MAP_LOCKED;
6984 if (vma->vm_flags & VM_HUGETLB)
6985 flags |= MAP_HUGETLB;
6986
0a4a9391 6987 if (file) {
13d7a241
SE
6988 struct inode *inode;
6989 dev_t dev;
3ea2f2b9 6990
2c42cfbf 6991 buf = kmalloc(PATH_MAX, GFP_KERNEL);
0a4a9391 6992 if (!buf) {
c7e548b4
ON
6993 name = "//enomem";
6994 goto cpy_name;
0a4a9391 6995 }
413ee3b4 6996 /*
3ea2f2b9 6997 * d_path() works from the end of the rb backwards, so we
413ee3b4
AB
6998 * need to add enough zero bytes after the string to handle
6999 * the 64bit alignment we do later.
7000 */
9bf39ab2 7001 name = file_path(file, buf, PATH_MAX - sizeof(u64));
0a4a9391 7002 if (IS_ERR(name)) {
c7e548b4
ON
7003 name = "//toolong";
7004 goto cpy_name;
0a4a9391 7005 }
13d7a241
SE
7006 inode = file_inode(vma->vm_file);
7007 dev = inode->i_sb->s_dev;
7008 ino = inode->i_ino;
7009 gen = inode->i_generation;
7010 maj = MAJOR(dev);
7011 min = MINOR(dev);
f972eb63 7012
c7e548b4 7013 goto got_name;
0a4a9391 7014 } else {
fbe26abe
JO
7015 if (vma->vm_ops && vma->vm_ops->name) {
7016 name = (char *) vma->vm_ops->name(vma);
7017 if (name)
7018 goto cpy_name;
7019 }
7020
2c42cfbf 7021 name = (char *)arch_vma_name(vma);
c7e548b4
ON
7022 if (name)
7023 goto cpy_name;
089dd79d 7024
32c5fb7e 7025 if (vma->vm_start <= vma->vm_mm->start_brk &&
3af9e859 7026 vma->vm_end >= vma->vm_mm->brk) {
c7e548b4
ON
7027 name = "[heap]";
7028 goto cpy_name;
32c5fb7e
ON
7029 }
7030 if (vma->vm_start <= vma->vm_mm->start_stack &&
3af9e859 7031 vma->vm_end >= vma->vm_mm->start_stack) {
c7e548b4
ON
7032 name = "[stack]";
7033 goto cpy_name;
089dd79d
PZ
7034 }
7035
c7e548b4
ON
7036 name = "//anon";
7037 goto cpy_name;
0a4a9391
PZ
7038 }
7039
c7e548b4
ON
7040cpy_name:
7041 strlcpy(tmp, name, sizeof(tmp));
7042 name = tmp;
0a4a9391 7043got_name:
2c42cfbf
PZ
7044 /*
7045 * Since our buffer works in 8 byte units we need to align our string
7046 * size to a multiple of 8. However, we must guarantee the tail end is
7047 * zero'd out to avoid leaking random bits to userspace.
7048 */
7049 size = strlen(name)+1;
7050 while (!IS_ALIGNED(size, sizeof(u64)))
7051 name[size++] = '\0';
0a4a9391
PZ
7052
7053 mmap_event->file_name = name;
7054 mmap_event->file_size = size;
13d7a241
SE
7055 mmap_event->maj = maj;
7056 mmap_event->min = min;
7057 mmap_event->ino = ino;
7058 mmap_event->ino_generation = gen;
f972eb63
PZ
7059 mmap_event->prot = prot;
7060 mmap_event->flags = flags;
0a4a9391 7061
2fe85427
SE
7062 if (!(vma->vm_flags & VM_EXEC))
7063 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
7064
cdd6c482 7065 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
0a4a9391 7066
aab5b71e 7067 perf_iterate_sb(perf_event_mmap_output,
52d857a8
JO
7068 mmap_event,
7069 NULL);
665c2142 7070
0a4a9391
PZ
7071 kfree(buf);
7072}
7073
375637bc
AS
7074/*
7075 * Check whether inode and address range match filter criteria.
7076 */
7077static bool perf_addr_filter_match(struct perf_addr_filter *filter,
7078 struct file *file, unsigned long offset,
7079 unsigned long size)
7080{
45063097 7081 if (filter->inode != file_inode(file))
375637bc
AS
7082 return false;
7083
7084 if (filter->offset > offset + size)
7085 return false;
7086
7087 if (filter->offset + filter->size < offset)
7088 return false;
7089
7090 return true;
7091}
7092
7093static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
7094{
7095 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7096 struct vm_area_struct *vma = data;
7097 unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags;
7098 struct file *file = vma->vm_file;
7099 struct perf_addr_filter *filter;
7100 unsigned int restart = 0, count = 0;
7101
7102 if (!has_addr_filter(event))
7103 return;
7104
7105 if (!file)
7106 return;
7107
7108 raw_spin_lock_irqsave(&ifh->lock, flags);
7109 list_for_each_entry(filter, &ifh->list, entry) {
7110 if (perf_addr_filter_match(filter, file, off,
7111 vma->vm_end - vma->vm_start)) {
7112 event->addr_filters_offs[count] = vma->vm_start;
7113 restart++;
7114 }
7115
7116 count++;
7117 }
7118
7119 if (restart)
7120 event->addr_filters_gen++;
7121 raw_spin_unlock_irqrestore(&ifh->lock, flags);
7122
7123 if (restart)
767ae086 7124 perf_event_stop(event, 1);
375637bc
AS
7125}
7126
7127/*
7128 * Adjust all task's events' filters to the new vma
7129 */
7130static void perf_addr_filters_adjust(struct vm_area_struct *vma)
7131{
7132 struct perf_event_context *ctx;
7133 int ctxn;
7134
12b40a23
MP
7135 /*
7136 * Data tracing isn't supported yet and as such there is no need
7137 * to keep track of anything that isn't related to executable code:
7138 */
7139 if (!(vma->vm_flags & VM_EXEC))
7140 return;
7141
375637bc
AS
7142 rcu_read_lock();
7143 for_each_task_context_nr(ctxn) {
7144 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7145 if (!ctx)
7146 continue;
7147
aab5b71e 7148 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
375637bc
AS
7149 }
7150 rcu_read_unlock();
7151}
7152
3af9e859 7153void perf_event_mmap(struct vm_area_struct *vma)
0a4a9391 7154{
9ee318a7
PZ
7155 struct perf_mmap_event mmap_event;
7156
cdd6c482 7157 if (!atomic_read(&nr_mmap_events))
9ee318a7
PZ
7158 return;
7159
7160 mmap_event = (struct perf_mmap_event){
089dd79d 7161 .vma = vma,
573402db
PZ
7162 /* .file_name */
7163 /* .file_size */
cdd6c482 7164 .event_id = {
573402db 7165 .header = {
cdd6c482 7166 .type = PERF_RECORD_MMAP,
39447b38 7167 .misc = PERF_RECORD_MISC_USER,
573402db
PZ
7168 /* .size */
7169 },
7170 /* .pid */
7171 /* .tid */
089dd79d
PZ
7172 .start = vma->vm_start,
7173 .len = vma->vm_end - vma->vm_start,
3a0304e9 7174 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
0a4a9391 7175 },
13d7a241
SE
7176 /* .maj (attr_mmap2 only) */
7177 /* .min (attr_mmap2 only) */
7178 /* .ino (attr_mmap2 only) */
7179 /* .ino_generation (attr_mmap2 only) */
f972eb63
PZ
7180 /* .prot (attr_mmap2 only) */
7181 /* .flags (attr_mmap2 only) */
0a4a9391
PZ
7182 };
7183
375637bc 7184 perf_addr_filters_adjust(vma);
cdd6c482 7185 perf_event_mmap_event(&mmap_event);
0a4a9391
PZ
7186}
7187
68db7e98
AS
7188void perf_event_aux_event(struct perf_event *event, unsigned long head,
7189 unsigned long size, u64 flags)
7190{
7191 struct perf_output_handle handle;
7192 struct perf_sample_data sample;
7193 struct perf_aux_event {
7194 struct perf_event_header header;
7195 u64 offset;
7196 u64 size;
7197 u64 flags;
7198 } rec = {
7199 .header = {
7200 .type = PERF_RECORD_AUX,
7201 .misc = 0,
7202 .size = sizeof(rec),
7203 },
7204 .offset = head,
7205 .size = size,
7206 .flags = flags,
7207 };
7208 int ret;
7209
7210 perf_event_header__init_id(&rec.header, &sample, event);
7211 ret = perf_output_begin(&handle, event, rec.header.size);
7212
7213 if (ret)
7214 return;
7215
7216 perf_output_put(&handle, rec);
7217 perf_event__output_id_sample(event, &handle, &sample);
7218
7219 perf_output_end(&handle);
7220}
7221
f38b0dbb
KL
7222/*
7223 * Lost/dropped samples logging
7224 */
7225void perf_log_lost_samples(struct perf_event *event, u64 lost)
7226{
7227 struct perf_output_handle handle;
7228 struct perf_sample_data sample;
7229 int ret;
7230
7231 struct {
7232 struct perf_event_header header;
7233 u64 lost;
7234 } lost_samples_event = {
7235 .header = {
7236 .type = PERF_RECORD_LOST_SAMPLES,
7237 .misc = 0,
7238 .size = sizeof(lost_samples_event),
7239 },
7240 .lost = lost,
7241 };
7242
7243 perf_event_header__init_id(&lost_samples_event.header, &sample, event);
7244
7245 ret = perf_output_begin(&handle, event,
7246 lost_samples_event.header.size);
7247 if (ret)
7248 return;
7249
7250 perf_output_put(&handle, lost_samples_event);
7251 perf_event__output_id_sample(event, &handle, &sample);
7252 perf_output_end(&handle);
7253}
7254
45ac1403
AH
7255/*
7256 * context_switch tracking
7257 */
7258
7259struct perf_switch_event {
7260 struct task_struct *task;
7261 struct task_struct *next_prev;
7262
7263 struct {
7264 struct perf_event_header header;
7265 u32 next_prev_pid;
7266 u32 next_prev_tid;
7267 } event_id;
7268};
7269
7270static int perf_event_switch_match(struct perf_event *event)
7271{
7272 return event->attr.context_switch;
7273}
7274
7275static void perf_event_switch_output(struct perf_event *event, void *data)
7276{
7277 struct perf_switch_event *se = data;
7278 struct perf_output_handle handle;
7279 struct perf_sample_data sample;
7280 int ret;
7281
7282 if (!perf_event_switch_match(event))
7283 return;
7284
7285 /* Only CPU-wide events are allowed to see next/prev pid/tid */
7286 if (event->ctx->task) {
7287 se->event_id.header.type = PERF_RECORD_SWITCH;
7288 se->event_id.header.size = sizeof(se->event_id.header);
7289 } else {
7290 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
7291 se->event_id.header.size = sizeof(se->event_id);
7292 se->event_id.next_prev_pid =
7293 perf_event_pid(event, se->next_prev);
7294 se->event_id.next_prev_tid =
7295 perf_event_tid(event, se->next_prev);
7296 }
7297
7298 perf_event_header__init_id(&se->event_id.header, &sample, event);
7299
7300 ret = perf_output_begin(&handle, event, se->event_id.header.size);
7301 if (ret)
7302 return;
7303
7304 if (event->ctx->task)
7305 perf_output_put(&handle, se->event_id.header);
7306 else
7307 perf_output_put(&handle, se->event_id);
7308
7309 perf_event__output_id_sample(event, &handle, &sample);
7310
7311 perf_output_end(&handle);
7312}
7313
7314static void perf_event_switch(struct task_struct *task,
7315 struct task_struct *next_prev, bool sched_in)
7316{
7317 struct perf_switch_event switch_event;
7318
7319 /* N.B. caller checks nr_switch_events != 0 */
7320
7321 switch_event = (struct perf_switch_event){
7322 .task = task,
7323 .next_prev = next_prev,
7324 .event_id = {
7325 .header = {
7326 /* .type */
7327 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
7328 /* .size */
7329 },
7330 /* .next_prev_pid */
7331 /* .next_prev_tid */
7332 },
7333 };
7334
aab5b71e 7335 perf_iterate_sb(perf_event_switch_output,
45ac1403
AH
7336 &switch_event,
7337 NULL);
7338}
7339
a78ac325
PZ
7340/*
7341 * IRQ throttle logging
7342 */
7343
cdd6c482 7344static void perf_log_throttle(struct perf_event *event, int enable)
a78ac325
PZ
7345{
7346 struct perf_output_handle handle;
c980d109 7347 struct perf_sample_data sample;
a78ac325
PZ
7348 int ret;
7349
7350 struct {
7351 struct perf_event_header header;
7352 u64 time;
cca3f454 7353 u64 id;
7f453c24 7354 u64 stream_id;
a78ac325
PZ
7355 } throttle_event = {
7356 .header = {
cdd6c482 7357 .type = PERF_RECORD_THROTTLE,
a78ac325
PZ
7358 .misc = 0,
7359 .size = sizeof(throttle_event),
7360 },
34f43927 7361 .time = perf_event_clock(event),
cdd6c482
IM
7362 .id = primary_event_id(event),
7363 .stream_id = event->id,
a78ac325
PZ
7364 };
7365
966ee4d6 7366 if (enable)
cdd6c482 7367 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
966ee4d6 7368
c980d109
ACM
7369 perf_event_header__init_id(&throttle_event.header, &sample, event);
7370
7371 ret = perf_output_begin(&handle, event,
a7ac67ea 7372 throttle_event.header.size);
a78ac325
PZ
7373 if (ret)
7374 return;
7375
7376 perf_output_put(&handle, throttle_event);
c980d109 7377 perf_event__output_id_sample(event, &handle, &sample);
a78ac325
PZ
7378 perf_output_end(&handle);
7379}
7380
8d4e6c4c
AS
7381void perf_event_itrace_started(struct perf_event *event)
7382{
7383 event->attach_state |= PERF_ATTACH_ITRACE;
7384}
7385
ec0d7729
AS
7386static void perf_log_itrace_start(struct perf_event *event)
7387{
7388 struct perf_output_handle handle;
7389 struct perf_sample_data sample;
7390 struct perf_aux_event {
7391 struct perf_event_header header;
7392 u32 pid;
7393 u32 tid;
7394 } rec;
7395 int ret;
7396
7397 if (event->parent)
7398 event = event->parent;
7399
7400 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
8d4e6c4c 7401 event->attach_state & PERF_ATTACH_ITRACE)
ec0d7729
AS
7402 return;
7403
ec0d7729
AS
7404 rec.header.type = PERF_RECORD_ITRACE_START;
7405 rec.header.misc = 0;
7406 rec.header.size = sizeof(rec);
7407 rec.pid = perf_event_pid(event, current);
7408 rec.tid = perf_event_tid(event, current);
7409
7410 perf_event_header__init_id(&rec.header, &sample, event);
7411 ret = perf_output_begin(&handle, event, rec.header.size);
7412
7413 if (ret)
7414 return;
7415
7416 perf_output_put(&handle, rec);
7417 perf_event__output_id_sample(event, &handle, &sample);
7418
7419 perf_output_end(&handle);
7420}
7421
475113d9
JO
7422static int
7423__perf_event_account_interrupt(struct perf_event *event, int throttle)
f6c7d5fe 7424{
cdd6c482 7425 struct hw_perf_event *hwc = &event->hw;
79f14641 7426 int ret = 0;
475113d9 7427 u64 seq;
96398826 7428
e050e3f0
SE
7429 seq = __this_cpu_read(perf_throttled_seq);
7430 if (seq != hwc->interrupts_seq) {
7431 hwc->interrupts_seq = seq;
7432 hwc->interrupts = 1;
7433 } else {
7434 hwc->interrupts++;
7435 if (unlikely(throttle
7436 && hwc->interrupts >= max_samples_per_tick)) {
7437 __this_cpu_inc(perf_throttled_count);
555e0c1e 7438 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
163ec435
PZ
7439 hwc->interrupts = MAX_INTERRUPTS;
7440 perf_log_throttle(event, 0);
a78ac325
PZ
7441 ret = 1;
7442 }
e050e3f0 7443 }
60db5e09 7444
cdd6c482 7445 if (event->attr.freq) {
def0a9b2 7446 u64 now = perf_clock();
abd50713 7447 s64 delta = now - hwc->freq_time_stamp;
bd2b5b12 7448
abd50713 7449 hwc->freq_time_stamp = now;
bd2b5b12 7450
abd50713 7451 if (delta > 0 && delta < 2*TICK_NSEC)
f39d47ff 7452 perf_adjust_period(event, delta, hwc->last_period, true);
bd2b5b12
PZ
7453 }
7454
475113d9
JO
7455 return ret;
7456}
7457
7458int perf_event_account_interrupt(struct perf_event *event)
7459{
7460 return __perf_event_account_interrupt(event, 1);
7461}
7462
7463/*
7464 * Generic event overflow handling, sampling.
7465 */
7466
7467static int __perf_event_overflow(struct perf_event *event,
7468 int throttle, struct perf_sample_data *data,
7469 struct pt_regs *regs)
7470{
7471 int events = atomic_read(&event->event_limit);
7472 int ret = 0;
7473
7474 /*
7475 * Non-sampling counters might still use the PMI to fold short
7476 * hardware counters, ignore those.
7477 */
7478 if (unlikely(!is_sampling_event(event)))
7479 return 0;
7480
7481 ret = __perf_event_account_interrupt(event, throttle);
cc1582c2 7482
2023b359
PZ
7483 /*
7484 * XXX event_limit might not quite work as expected on inherited
cdd6c482 7485 * events
2023b359
PZ
7486 */
7487
cdd6c482
IM
7488 event->pending_kill = POLL_IN;
7489 if (events && atomic_dec_and_test(&event->event_limit)) {
79f14641 7490 ret = 1;
cdd6c482 7491 event->pending_kill = POLL_HUP;
5aab90ce
JO
7492
7493 perf_event_disable_inatomic(event);
79f14641
PZ
7494 }
7495
aa6a5f3c 7496 READ_ONCE(event->overflow_handler)(event, data, regs);
453f19ee 7497
fed66e2c 7498 if (*perf_event_fasync(event) && event->pending_kill) {
a8b0ca17
PZ
7499 event->pending_wakeup = 1;
7500 irq_work_queue(&event->pending);
f506b3dc
PZ
7501 }
7502
79f14641 7503 return ret;
f6c7d5fe
PZ
7504}
7505
a8b0ca17 7506int perf_event_overflow(struct perf_event *event,
5622f295
MM
7507 struct perf_sample_data *data,
7508 struct pt_regs *regs)
850bc73f 7509{
a8b0ca17 7510 return __perf_event_overflow(event, 1, data, regs);
850bc73f
PZ
7511}
7512
15dbf27c 7513/*
cdd6c482 7514 * Generic software event infrastructure
15dbf27c
PZ
7515 */
7516
b28ab83c
PZ
7517struct swevent_htable {
7518 struct swevent_hlist *swevent_hlist;
7519 struct mutex hlist_mutex;
7520 int hlist_refcount;
7521
7522 /* Recursion avoidance in each contexts */
7523 int recursion[PERF_NR_CONTEXTS];
7524};
7525
7526static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
7527
7b4b6658 7528/*
cdd6c482
IM
7529 * We directly increment event->count and keep a second value in
7530 * event->hw.period_left to count intervals. This period event
7b4b6658
PZ
7531 * is kept in the range [-sample_period, 0] so that we can use the
7532 * sign as trigger.
7533 */
7534
ab573844 7535u64 perf_swevent_set_period(struct perf_event *event)
15dbf27c 7536{
cdd6c482 7537 struct hw_perf_event *hwc = &event->hw;
7b4b6658
PZ
7538 u64 period = hwc->last_period;
7539 u64 nr, offset;
7540 s64 old, val;
7541
7542 hwc->last_period = hwc->sample_period;
15dbf27c
PZ
7543
7544again:
e7850595 7545 old = val = local64_read(&hwc->period_left);
7b4b6658
PZ
7546 if (val < 0)
7547 return 0;
15dbf27c 7548
7b4b6658
PZ
7549 nr = div64_u64(period + val, period);
7550 offset = nr * period;
7551 val -= offset;
e7850595 7552 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7b4b6658 7553 goto again;
15dbf27c 7554
7b4b6658 7555 return nr;
15dbf27c
PZ
7556}
7557
0cff784a 7558static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
a8b0ca17 7559 struct perf_sample_data *data,
5622f295 7560 struct pt_regs *regs)
15dbf27c 7561{
cdd6c482 7562 struct hw_perf_event *hwc = &event->hw;
850bc73f 7563 int throttle = 0;
15dbf27c 7564
0cff784a
PZ
7565 if (!overflow)
7566 overflow = perf_swevent_set_period(event);
15dbf27c 7567
7b4b6658
PZ
7568 if (hwc->interrupts == MAX_INTERRUPTS)
7569 return;
15dbf27c 7570
7b4b6658 7571 for (; overflow; overflow--) {
a8b0ca17 7572 if (__perf_event_overflow(event, throttle,
5622f295 7573 data, regs)) {
7b4b6658
PZ
7574 /*
7575 * We inhibit the overflow from happening when
7576 * hwc->interrupts == MAX_INTERRUPTS.
7577 */
7578 break;
7579 }
cf450a73 7580 throttle = 1;
7b4b6658 7581 }
15dbf27c
PZ
7582}
7583
a4eaf7f1 7584static void perf_swevent_event(struct perf_event *event, u64 nr,
a8b0ca17 7585 struct perf_sample_data *data,
5622f295 7586 struct pt_regs *regs)
7b4b6658 7587{
cdd6c482 7588 struct hw_perf_event *hwc = &event->hw;
d6d020e9 7589
e7850595 7590 local64_add(nr, &event->count);
d6d020e9 7591
0cff784a
PZ
7592 if (!regs)
7593 return;
7594
6c7e550f 7595 if (!is_sampling_event(event))
7b4b6658 7596 return;
d6d020e9 7597
5d81e5cf
AV
7598 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
7599 data->period = nr;
7600 return perf_swevent_overflow(event, 1, data, regs);
7601 } else
7602 data->period = event->hw.last_period;
7603
0cff784a 7604 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
a8b0ca17 7605 return perf_swevent_overflow(event, 1, data, regs);
0cff784a 7606
e7850595 7607 if (local64_add_negative(nr, &hwc->period_left))
7b4b6658 7608 return;
df1a132b 7609
a8b0ca17 7610 perf_swevent_overflow(event, 0, data, regs);
d6d020e9
PZ
7611}
7612
f5ffe02e
FW
7613static int perf_exclude_event(struct perf_event *event,
7614 struct pt_regs *regs)
7615{
a4eaf7f1 7616 if (event->hw.state & PERF_HES_STOPPED)
91b2f482 7617 return 1;
a4eaf7f1 7618
f5ffe02e
FW
7619 if (regs) {
7620 if (event->attr.exclude_user && user_mode(regs))
7621 return 1;
7622
7623 if (event->attr.exclude_kernel && !user_mode(regs))
7624 return 1;
7625 }
7626
7627 return 0;
7628}
7629
cdd6c482 7630static int perf_swevent_match(struct perf_event *event,
1c432d89 7631 enum perf_type_id type,
6fb2915d
LZ
7632 u32 event_id,
7633 struct perf_sample_data *data,
7634 struct pt_regs *regs)
15dbf27c 7635{
cdd6c482 7636 if (event->attr.type != type)
a21ca2ca 7637 return 0;
f5ffe02e 7638
cdd6c482 7639 if (event->attr.config != event_id)
15dbf27c
PZ
7640 return 0;
7641
f5ffe02e
FW
7642 if (perf_exclude_event(event, regs))
7643 return 0;
15dbf27c
PZ
7644
7645 return 1;
7646}
7647
76e1d904
FW
7648static inline u64 swevent_hash(u64 type, u32 event_id)
7649{
7650 u64 val = event_id | (type << 32);
7651
7652 return hash_64(val, SWEVENT_HLIST_BITS);
7653}
7654
49f135ed
FW
7655static inline struct hlist_head *
7656__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
76e1d904 7657{
49f135ed
FW
7658 u64 hash = swevent_hash(type, event_id);
7659
7660 return &hlist->heads[hash];
7661}
76e1d904 7662
49f135ed
FW
7663/* For the read side: events when they trigger */
7664static inline struct hlist_head *
b28ab83c 7665find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
49f135ed
FW
7666{
7667 struct swevent_hlist *hlist;
76e1d904 7668
b28ab83c 7669 hlist = rcu_dereference(swhash->swevent_hlist);
76e1d904
FW
7670 if (!hlist)
7671 return NULL;
7672
49f135ed
FW
7673 return __find_swevent_head(hlist, type, event_id);
7674}
7675
7676/* For the event head insertion and removal in the hlist */
7677static inline struct hlist_head *
b28ab83c 7678find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
49f135ed
FW
7679{
7680 struct swevent_hlist *hlist;
7681 u32 event_id = event->attr.config;
7682 u64 type = event->attr.type;
7683
7684 /*
7685 * Event scheduling is always serialized against hlist allocation
7686 * and release. Which makes the protected version suitable here.
7687 * The context lock guarantees that.
7688 */
b28ab83c 7689 hlist = rcu_dereference_protected(swhash->swevent_hlist,
49f135ed
FW
7690 lockdep_is_held(&event->ctx->lock));
7691 if (!hlist)
7692 return NULL;
7693
7694 return __find_swevent_head(hlist, type, event_id);
76e1d904
FW
7695}
7696
7697static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
a8b0ca17 7698 u64 nr,
76e1d904
FW
7699 struct perf_sample_data *data,
7700 struct pt_regs *regs)
15dbf27c 7701{
4a32fea9 7702 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 7703 struct perf_event *event;
76e1d904 7704 struct hlist_head *head;
15dbf27c 7705
76e1d904 7706 rcu_read_lock();
b28ab83c 7707 head = find_swevent_head_rcu(swhash, type, event_id);
76e1d904
FW
7708 if (!head)
7709 goto end;
7710
b67bfe0d 7711 hlist_for_each_entry_rcu(event, head, hlist_entry) {
6fb2915d 7712 if (perf_swevent_match(event, type, event_id, data, regs))
a8b0ca17 7713 perf_swevent_event(event, nr, data, regs);
15dbf27c 7714 }
76e1d904
FW
7715end:
7716 rcu_read_unlock();
15dbf27c
PZ
7717}
7718
86038c5e
PZI
7719DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
7720
4ed7c92d 7721int perf_swevent_get_recursion_context(void)
96f6d444 7722{
4a32fea9 7723 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
96f6d444 7724
b28ab83c 7725 return get_recursion_context(swhash->recursion);
96f6d444 7726}
645e8cc0 7727EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
96f6d444 7728
98b5c2c6 7729void perf_swevent_put_recursion_context(int rctx)
15dbf27c 7730{
4a32fea9 7731 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
927c7a9e 7732
b28ab83c 7733 put_recursion_context(swhash->recursion, rctx);
ce71b9df 7734}
15dbf27c 7735
86038c5e 7736void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
b8e83514 7737{
a4234bfc 7738 struct perf_sample_data data;
4ed7c92d 7739
86038c5e 7740 if (WARN_ON_ONCE(!regs))
4ed7c92d 7741 return;
a4234bfc 7742
fd0d000b 7743 perf_sample_data_init(&data, addr, 0);
a8b0ca17 7744 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
86038c5e
PZI
7745}
7746
7747void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7748{
7749 int rctx;
7750
7751 preempt_disable_notrace();
7752 rctx = perf_swevent_get_recursion_context();
7753 if (unlikely(rctx < 0))
7754 goto fail;
7755
7756 ___perf_sw_event(event_id, nr, regs, addr);
4ed7c92d
PZ
7757
7758 perf_swevent_put_recursion_context(rctx);
86038c5e 7759fail:
1c024eca 7760 preempt_enable_notrace();
b8e83514
PZ
7761}
7762
cdd6c482 7763static void perf_swevent_read(struct perf_event *event)
15dbf27c 7764{
15dbf27c
PZ
7765}
7766
a4eaf7f1 7767static int perf_swevent_add(struct perf_event *event, int flags)
15dbf27c 7768{
4a32fea9 7769 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 7770 struct hw_perf_event *hwc = &event->hw;
76e1d904
FW
7771 struct hlist_head *head;
7772
6c7e550f 7773 if (is_sampling_event(event)) {
7b4b6658 7774 hwc->last_period = hwc->sample_period;
cdd6c482 7775 perf_swevent_set_period(event);
7b4b6658 7776 }
76e1d904 7777
a4eaf7f1
PZ
7778 hwc->state = !(flags & PERF_EF_START);
7779
b28ab83c 7780 head = find_swevent_head(swhash, event);
12ca6ad2 7781 if (WARN_ON_ONCE(!head))
76e1d904
FW
7782 return -EINVAL;
7783
7784 hlist_add_head_rcu(&event->hlist_entry, head);
6a694a60 7785 perf_event_update_userpage(event);
76e1d904 7786
15dbf27c
PZ
7787 return 0;
7788}
7789
a4eaf7f1 7790static void perf_swevent_del(struct perf_event *event, int flags)
15dbf27c 7791{
76e1d904 7792 hlist_del_rcu(&event->hlist_entry);
15dbf27c
PZ
7793}
7794
a4eaf7f1 7795static void perf_swevent_start(struct perf_event *event, int flags)
5c92d124 7796{
a4eaf7f1 7797 event->hw.state = 0;
d6d020e9 7798}
aa9c4c0f 7799
a4eaf7f1 7800static void perf_swevent_stop(struct perf_event *event, int flags)
d6d020e9 7801{
a4eaf7f1 7802 event->hw.state = PERF_HES_STOPPED;
bae43c99
IM
7803}
7804
49f135ed
FW
7805/* Deref the hlist from the update side */
7806static inline struct swevent_hlist *
b28ab83c 7807swevent_hlist_deref(struct swevent_htable *swhash)
49f135ed 7808{
b28ab83c
PZ
7809 return rcu_dereference_protected(swhash->swevent_hlist,
7810 lockdep_is_held(&swhash->hlist_mutex));
49f135ed
FW
7811}
7812
b28ab83c 7813static void swevent_hlist_release(struct swevent_htable *swhash)
76e1d904 7814{
b28ab83c 7815 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
76e1d904 7816
49f135ed 7817 if (!hlist)
76e1d904
FW
7818 return;
7819
70691d4a 7820 RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
fa4bbc4c 7821 kfree_rcu(hlist, rcu_head);
76e1d904
FW
7822}
7823
3b364d7b 7824static void swevent_hlist_put_cpu(int cpu)
76e1d904 7825{
b28ab83c 7826 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904 7827
b28ab83c 7828 mutex_lock(&swhash->hlist_mutex);
76e1d904 7829
b28ab83c
PZ
7830 if (!--swhash->hlist_refcount)
7831 swevent_hlist_release(swhash);
76e1d904 7832
b28ab83c 7833 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
7834}
7835
3b364d7b 7836static void swevent_hlist_put(void)
76e1d904
FW
7837{
7838 int cpu;
7839
76e1d904 7840 for_each_possible_cpu(cpu)
3b364d7b 7841 swevent_hlist_put_cpu(cpu);
76e1d904
FW
7842}
7843
3b364d7b 7844static int swevent_hlist_get_cpu(int cpu)
76e1d904 7845{
b28ab83c 7846 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904
FW
7847 int err = 0;
7848
b28ab83c 7849 mutex_lock(&swhash->hlist_mutex);
a63fbed7
TG
7850 if (!swevent_hlist_deref(swhash) &&
7851 cpumask_test_cpu(cpu, perf_online_mask)) {
76e1d904
FW
7852 struct swevent_hlist *hlist;
7853
7854 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
7855 if (!hlist) {
7856 err = -ENOMEM;
7857 goto exit;
7858 }
b28ab83c 7859 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 7860 }
b28ab83c 7861 swhash->hlist_refcount++;
9ed6060d 7862exit:
b28ab83c 7863 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
7864
7865 return err;
7866}
7867
3b364d7b 7868static int swevent_hlist_get(void)
76e1d904 7869{
3b364d7b 7870 int err, cpu, failed_cpu;
76e1d904 7871
a63fbed7 7872 mutex_lock(&pmus_lock);
76e1d904 7873 for_each_possible_cpu(cpu) {
3b364d7b 7874 err = swevent_hlist_get_cpu(cpu);
76e1d904
FW
7875 if (err) {
7876 failed_cpu = cpu;
7877 goto fail;
7878 }
7879 }
a63fbed7 7880 mutex_unlock(&pmus_lock);
76e1d904 7881 return 0;
9ed6060d 7882fail:
76e1d904
FW
7883 for_each_possible_cpu(cpu) {
7884 if (cpu == failed_cpu)
7885 break;
3b364d7b 7886 swevent_hlist_put_cpu(cpu);
76e1d904 7887 }
a63fbed7 7888 mutex_unlock(&pmus_lock);
76e1d904
FW
7889 return err;
7890}
7891
c5905afb 7892struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
95476b64 7893
b0a873eb
PZ
7894static void sw_perf_event_destroy(struct perf_event *event)
7895{
7896 u64 event_id = event->attr.config;
95476b64 7897
b0a873eb
PZ
7898 WARN_ON(event->parent);
7899
c5905afb 7900 static_key_slow_dec(&perf_swevent_enabled[event_id]);
3b364d7b 7901 swevent_hlist_put();
b0a873eb
PZ
7902}
7903
7904static int perf_swevent_init(struct perf_event *event)
7905{
8176cced 7906 u64 event_id = event->attr.config;
b0a873eb
PZ
7907
7908 if (event->attr.type != PERF_TYPE_SOFTWARE)
7909 return -ENOENT;
7910
2481c5fa
SE
7911 /*
7912 * no branch sampling for software events
7913 */
7914 if (has_branch_stack(event))
7915 return -EOPNOTSUPP;
7916
b0a873eb
PZ
7917 switch (event_id) {
7918 case PERF_COUNT_SW_CPU_CLOCK:
7919 case PERF_COUNT_SW_TASK_CLOCK:
7920 return -ENOENT;
7921
7922 default:
7923 break;
7924 }
7925
ce677831 7926 if (event_id >= PERF_COUNT_SW_MAX)
b0a873eb
PZ
7927 return -ENOENT;
7928
7929 if (!event->parent) {
7930 int err;
7931
3b364d7b 7932 err = swevent_hlist_get();
b0a873eb
PZ
7933 if (err)
7934 return err;
7935
c5905afb 7936 static_key_slow_inc(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
7937 event->destroy = sw_perf_event_destroy;
7938 }
7939
7940 return 0;
7941}
7942
7943static struct pmu perf_swevent = {
89a1e187 7944 .task_ctx_nr = perf_sw_context,
95476b64 7945
34f43927
PZ
7946 .capabilities = PERF_PMU_CAP_NO_NMI,
7947
b0a873eb 7948 .event_init = perf_swevent_init,
a4eaf7f1
PZ
7949 .add = perf_swevent_add,
7950 .del = perf_swevent_del,
7951 .start = perf_swevent_start,
7952 .stop = perf_swevent_stop,
1c024eca 7953 .read = perf_swevent_read,
1c024eca
PZ
7954};
7955
b0a873eb
PZ
7956#ifdef CONFIG_EVENT_TRACING
7957
1c024eca
PZ
7958static int perf_tp_filter_match(struct perf_event *event,
7959 struct perf_sample_data *data)
7960{
7e3f977e 7961 void *record = data->raw->frag.data;
1c024eca 7962
b71b437e
PZ
7963 /* only top level events have filters set */
7964 if (event->parent)
7965 event = event->parent;
7966
1c024eca
PZ
7967 if (likely(!event->filter) || filter_match_preds(event->filter, record))
7968 return 1;
7969 return 0;
7970}
7971
7972static int perf_tp_event_match(struct perf_event *event,
7973 struct perf_sample_data *data,
7974 struct pt_regs *regs)
7975{
a0f7d0f7
FW
7976 if (event->hw.state & PERF_HES_STOPPED)
7977 return 0;
580d607c
PZ
7978 /*
7979 * All tracepoints are from kernel-space.
7980 */
7981 if (event->attr.exclude_kernel)
1c024eca
PZ
7982 return 0;
7983
7984 if (!perf_tp_filter_match(event, data))
7985 return 0;
7986
7987 return 1;
7988}
7989
85b67bcb
AS
7990void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
7991 struct trace_event_call *call, u64 count,
7992 struct pt_regs *regs, struct hlist_head *head,
7993 struct task_struct *task)
7994{
7995 struct bpf_prog *prog = call->prog;
7996
7997 if (prog) {
7998 *(struct pt_regs **)raw_data = regs;
7999 if (!trace_call_bpf(prog, raw_data) || hlist_empty(head)) {
8000 perf_swevent_put_recursion_context(rctx);
8001 return;
8002 }
8003 }
8004 perf_tp_event(call->event.type, count, raw_data, size, regs, head,
75e83876 8005 rctx, task, NULL);
85b67bcb
AS
8006}
8007EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
8008
1e1dcd93 8009void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
e6dab5ff 8010 struct pt_regs *regs, struct hlist_head *head, int rctx,
75e83876 8011 struct task_struct *task, struct perf_event *event)
95476b64
FW
8012{
8013 struct perf_sample_data data;
1c024eca 8014
95476b64 8015 struct perf_raw_record raw = {
7e3f977e
DB
8016 .frag = {
8017 .size = entry_size,
8018 .data = record,
8019 },
95476b64
FW
8020 };
8021
1e1dcd93 8022 perf_sample_data_init(&data, 0, 0);
95476b64
FW
8023 data.raw = &raw;
8024
1e1dcd93
AS
8025 perf_trace_buf_update(record, event_type);
8026
75e83876
ZC
8027 /* Use the given event instead of the hlist */
8028 if (event) {
1c024eca 8029 if (perf_tp_event_match(event, &data, regs))
a8b0ca17 8030 perf_swevent_event(event, count, &data, regs);
75e83876
ZC
8031 } else {
8032 hlist_for_each_entry_rcu(event, head, hlist_entry) {
8033 if (perf_tp_event_match(event, &data, regs))
8034 perf_swevent_event(event, count, &data, regs);
8035 }
4f41c013 8036 }
ecc55f84 8037
e6dab5ff
AV
8038 /*
8039 * If we got specified a target task, also iterate its context and
8040 * deliver this event there too.
8041 */
8042 if (task && task != current) {
8043 struct perf_event_context *ctx;
8044 struct trace_entry *entry = record;
8045
8046 rcu_read_lock();
8047 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
8048 if (!ctx)
8049 goto unlock;
8050
8051 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
8052 if (event->attr.type != PERF_TYPE_TRACEPOINT)
8053 continue;
8054 if (event->attr.config != entry->type)
8055 continue;
8056 if (perf_tp_event_match(event, &data, regs))
8057 perf_swevent_event(event, count, &data, regs);
8058 }
8059unlock:
8060 rcu_read_unlock();
8061 }
8062
ecc55f84 8063 perf_swevent_put_recursion_context(rctx);
95476b64
FW
8064}
8065EXPORT_SYMBOL_GPL(perf_tp_event);
8066
cdd6c482 8067static void tp_perf_event_destroy(struct perf_event *event)
e077df4f 8068{
1c024eca 8069 perf_trace_destroy(event);
e077df4f
PZ
8070}
8071
b0a873eb 8072static int perf_tp_event_init(struct perf_event *event)
e077df4f 8073{
76e1d904
FW
8074 int err;
8075
b0a873eb
PZ
8076 if (event->attr.type != PERF_TYPE_TRACEPOINT)
8077 return -ENOENT;
8078
2481c5fa
SE
8079 /*
8080 * no branch sampling for tracepoint events
8081 */
8082 if (has_branch_stack(event))
8083 return -EOPNOTSUPP;
8084
1c024eca
PZ
8085 err = perf_trace_init(event);
8086 if (err)
b0a873eb 8087 return err;
e077df4f 8088
cdd6c482 8089 event->destroy = tp_perf_event_destroy;
e077df4f 8090
b0a873eb
PZ
8091 return 0;
8092}
8093
8094static struct pmu perf_tracepoint = {
89a1e187
PZ
8095 .task_ctx_nr = perf_sw_context,
8096
b0a873eb 8097 .event_init = perf_tp_event_init,
a4eaf7f1
PZ
8098 .add = perf_trace_add,
8099 .del = perf_trace_del,
8100 .start = perf_swevent_start,
8101 .stop = perf_swevent_stop,
b0a873eb 8102 .read = perf_swevent_read,
b0a873eb
PZ
8103};
8104
8105static inline void perf_tp_register(void)
8106{
2e80a82a 8107 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
e077df4f 8108}
6fb2915d 8109
6fb2915d
LZ
8110static void perf_event_free_filter(struct perf_event *event)
8111{
8112 ftrace_profile_free_filter(event);
8113}
8114
aa6a5f3c
AS
8115#ifdef CONFIG_BPF_SYSCALL
8116static void bpf_overflow_handler(struct perf_event *event,
8117 struct perf_sample_data *data,
8118 struct pt_regs *regs)
8119{
8120 struct bpf_perf_event_data_kern ctx = {
8121 .data = data,
8122 .regs = regs,
7d9285e8 8123 .event = event,
aa6a5f3c
AS
8124 };
8125 int ret = 0;
8126
8127 preempt_disable();
8128 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
8129 goto out;
8130 rcu_read_lock();
88575199 8131 ret = BPF_PROG_RUN(event->prog, &ctx);
aa6a5f3c
AS
8132 rcu_read_unlock();
8133out:
8134 __this_cpu_dec(bpf_prog_active);
8135 preempt_enable();
8136 if (!ret)
8137 return;
8138
8139 event->orig_overflow_handler(event, data, regs);
8140}
8141
8142static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8143{
8144 struct bpf_prog *prog;
8145
8146 if (event->overflow_handler_context)
8147 /* hw breakpoint or kernel counter */
8148 return -EINVAL;
8149
8150 if (event->prog)
8151 return -EEXIST;
8152
8153 prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
8154 if (IS_ERR(prog))
8155 return PTR_ERR(prog);
8156
8157 event->prog = prog;
8158 event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
8159 WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
8160 return 0;
8161}
8162
8163static void perf_event_free_bpf_handler(struct perf_event *event)
8164{
8165 struct bpf_prog *prog = event->prog;
8166
8167 if (!prog)
8168 return;
8169
8170 WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
8171 event->prog = NULL;
8172 bpf_prog_put(prog);
8173}
8174#else
8175static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8176{
8177 return -EOPNOTSUPP;
8178}
8179static void perf_event_free_bpf_handler(struct perf_event *event)
8180{
8181}
8182#endif
8183
2541517c
AS
8184static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8185{
cf5f5cea 8186 bool is_kprobe, is_tracepoint, is_syscall_tp;
2541517c
AS
8187 struct bpf_prog *prog;
8188
8189 if (event->attr.type != PERF_TYPE_TRACEPOINT)
f91840a3 8190 return perf_event_set_bpf_handler(event, prog_fd);
2541517c
AS
8191
8192 if (event->tp_event->prog)
8193 return -EEXIST;
8194
98b5c2c6
AS
8195 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
8196 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
cf5f5cea
YS
8197 is_syscall_tp = is_syscall_trace_event(event->tp_event);
8198 if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
98b5c2c6 8199 /* bpf programs can only be attached to u/kprobe or tracepoint */
2541517c
AS
8200 return -EINVAL;
8201
8202 prog = bpf_prog_get(prog_fd);
8203 if (IS_ERR(prog))
8204 return PTR_ERR(prog);
8205
98b5c2c6 8206 if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
cf5f5cea
YS
8207 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
8208 (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
2541517c
AS
8209 /* valid fd, but invalid bpf program type */
8210 bpf_prog_put(prog);
8211 return -EINVAL;
8212 }
8213
cf5f5cea 8214 if (is_tracepoint || is_syscall_tp) {
32bbe007
AS
8215 int off = trace_event_get_offsets(event->tp_event);
8216
8217 if (prog->aux->max_ctx_offset > off) {
8218 bpf_prog_put(prog);
8219 return -EACCES;
8220 }
8221 }
2541517c 8222 event->tp_event->prog = prog;
ec9dd352 8223 event->tp_event->bpf_prog_owner = event;
2541517c
AS
8224
8225 return 0;
8226}
8227
8228static void perf_event_free_bpf_prog(struct perf_event *event)
8229{
8230 struct bpf_prog *prog;
8231
aa6a5f3c
AS
8232 perf_event_free_bpf_handler(event);
8233
2541517c
AS
8234 if (!event->tp_event)
8235 return;
8236
8237 prog = event->tp_event->prog;
ec9dd352 8238 if (prog && event->tp_event->bpf_prog_owner == event) {
2541517c 8239 event->tp_event->prog = NULL;
1aacde3d 8240 bpf_prog_put(prog);
2541517c
AS
8241 }
8242}
8243
e077df4f 8244#else
6fb2915d 8245
b0a873eb 8246static inline void perf_tp_register(void)
e077df4f 8247{
e077df4f 8248}
6fb2915d 8249
6fb2915d
LZ
8250static void perf_event_free_filter(struct perf_event *event)
8251{
8252}
8253
2541517c
AS
8254static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8255{
8256 return -ENOENT;
8257}
8258
8259static void perf_event_free_bpf_prog(struct perf_event *event)
8260{
8261}
07b139c8 8262#endif /* CONFIG_EVENT_TRACING */
e077df4f 8263
24f1e32c 8264#ifdef CONFIG_HAVE_HW_BREAKPOINT
f5ffe02e 8265void perf_bp_event(struct perf_event *bp, void *data)
24f1e32c 8266{
f5ffe02e
FW
8267 struct perf_sample_data sample;
8268 struct pt_regs *regs = data;
8269
fd0d000b 8270 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
f5ffe02e 8271
a4eaf7f1 8272 if (!bp->hw.state && !perf_exclude_event(bp, regs))
a8b0ca17 8273 perf_swevent_event(bp, 1, &sample, regs);
24f1e32c
FW
8274}
8275#endif
8276
375637bc
AS
8277/*
8278 * Allocate a new address filter
8279 */
8280static struct perf_addr_filter *
8281perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
8282{
8283 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
8284 struct perf_addr_filter *filter;
8285
8286 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
8287 if (!filter)
8288 return NULL;
8289
8290 INIT_LIST_HEAD(&filter->entry);
8291 list_add_tail(&filter->entry, filters);
8292
8293 return filter;
8294}
8295
8296static void free_filters_list(struct list_head *filters)
8297{
8298 struct perf_addr_filter *filter, *iter;
8299
8300 list_for_each_entry_safe(filter, iter, filters, entry) {
8301 if (filter->inode)
8302 iput(filter->inode);
8303 list_del(&filter->entry);
8304 kfree(filter);
8305 }
8306}
8307
8308/*
8309 * Free existing address filters and optionally install new ones
8310 */
8311static void perf_addr_filters_splice(struct perf_event *event,
8312 struct list_head *head)
8313{
8314 unsigned long flags;
8315 LIST_HEAD(list);
8316
8317 if (!has_addr_filter(event))
8318 return;
8319
8320 /* don't bother with children, they don't have their own filters */
8321 if (event->parent)
8322 return;
8323
8324 raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
8325
8326 list_splice_init(&event->addr_filters.list, &list);
8327 if (head)
8328 list_splice(head, &event->addr_filters.list);
8329
8330 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
8331
8332 free_filters_list(&list);
8333}
8334
8335/*
8336 * Scan through mm's vmas and see if one of them matches the
8337 * @filter; if so, adjust filter's address range.
8338 * Called with mm::mmap_sem down for reading.
8339 */
8340static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter,
8341 struct mm_struct *mm)
8342{
8343 struct vm_area_struct *vma;
8344
8345 for (vma = mm->mmap; vma; vma = vma->vm_next) {
8346 struct file *file = vma->vm_file;
8347 unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8348 unsigned long vma_size = vma->vm_end - vma->vm_start;
8349
8350 if (!file)
8351 continue;
8352
8353 if (!perf_addr_filter_match(filter, file, off, vma_size))
8354 continue;
8355
8356 return vma->vm_start;
8357 }
8358
8359 return 0;
8360}
8361
8362/*
8363 * Update event's address range filters based on the
8364 * task's existing mappings, if any.
8365 */
8366static void perf_event_addr_filters_apply(struct perf_event *event)
8367{
8368 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8369 struct task_struct *task = READ_ONCE(event->ctx->task);
8370 struct perf_addr_filter *filter;
8371 struct mm_struct *mm = NULL;
8372 unsigned int count = 0;
8373 unsigned long flags;
8374
8375 /*
8376 * We may observe TASK_TOMBSTONE, which means that the event tear-down
8377 * will stop on the parent's child_mutex that our caller is also holding
8378 */
8379 if (task == TASK_TOMBSTONE)
8380 return;
8381
6ce77bfd
AS
8382 if (!ifh->nr_file_filters)
8383 return;
8384
375637bc
AS
8385 mm = get_task_mm(event->ctx->task);
8386 if (!mm)
8387 goto restart;
8388
8389 down_read(&mm->mmap_sem);
8390
8391 raw_spin_lock_irqsave(&ifh->lock, flags);
8392 list_for_each_entry(filter, &ifh->list, entry) {
8393 event->addr_filters_offs[count] = 0;
8394
99f5bc9b
MP
8395 /*
8396 * Adjust base offset if the filter is associated to a binary
8397 * that needs to be mapped:
8398 */
8399 if (filter->inode)
375637bc
AS
8400 event->addr_filters_offs[count] =
8401 perf_addr_filter_apply(filter, mm);
8402
8403 count++;
8404 }
8405
8406 event->addr_filters_gen++;
8407 raw_spin_unlock_irqrestore(&ifh->lock, flags);
8408
8409 up_read(&mm->mmap_sem);
8410
8411 mmput(mm);
8412
8413restart:
767ae086 8414 perf_event_stop(event, 1);
375637bc
AS
8415}
8416
8417/*
8418 * Address range filtering: limiting the data to certain
8419 * instruction address ranges. Filters are ioctl()ed to us from
8420 * userspace as ascii strings.
8421 *
8422 * Filter string format:
8423 *
8424 * ACTION RANGE_SPEC
8425 * where ACTION is one of the
8426 * * "filter": limit the trace to this region
8427 * * "start": start tracing from this address
8428 * * "stop": stop tracing at this address/region;
8429 * RANGE_SPEC is
8430 * * for kernel addresses: <start address>[/<size>]
8431 * * for object files: <start address>[/<size>]@</path/to/object/file>
8432 *
8433 * if <size> is not specified, the range is treated as a single address.
8434 */
8435enum {
e96271f3 8436 IF_ACT_NONE = -1,
375637bc
AS
8437 IF_ACT_FILTER,
8438 IF_ACT_START,
8439 IF_ACT_STOP,
8440 IF_SRC_FILE,
8441 IF_SRC_KERNEL,
8442 IF_SRC_FILEADDR,
8443 IF_SRC_KERNELADDR,
8444};
8445
8446enum {
8447 IF_STATE_ACTION = 0,
8448 IF_STATE_SOURCE,
8449 IF_STATE_END,
8450};
8451
8452static const match_table_t if_tokens = {
8453 { IF_ACT_FILTER, "filter" },
8454 { IF_ACT_START, "start" },
8455 { IF_ACT_STOP, "stop" },
8456 { IF_SRC_FILE, "%u/%u@%s" },
8457 { IF_SRC_KERNEL, "%u/%u" },
8458 { IF_SRC_FILEADDR, "%u@%s" },
8459 { IF_SRC_KERNELADDR, "%u" },
e96271f3 8460 { IF_ACT_NONE, NULL },
375637bc
AS
8461};
8462
8463/*
8464 * Address filter string parser
8465 */
8466static int
8467perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
8468 struct list_head *filters)
8469{
8470 struct perf_addr_filter *filter = NULL;
8471 char *start, *orig, *filename = NULL;
8472 struct path path;
8473 substring_t args[MAX_OPT_ARGS];
8474 int state = IF_STATE_ACTION, token;
8475 unsigned int kernel = 0;
8476 int ret = -EINVAL;
8477
8478 orig = fstr = kstrdup(fstr, GFP_KERNEL);
8479 if (!fstr)
8480 return -ENOMEM;
8481
8482 while ((start = strsep(&fstr, " ,\n")) != NULL) {
8483 ret = -EINVAL;
8484
8485 if (!*start)
8486 continue;
8487
8488 /* filter definition begins */
8489 if (state == IF_STATE_ACTION) {
8490 filter = perf_addr_filter_new(event, filters);
8491 if (!filter)
8492 goto fail;
8493 }
8494
8495 token = match_token(start, if_tokens, args);
8496 switch (token) {
8497 case IF_ACT_FILTER:
8498 case IF_ACT_START:
8499 filter->filter = 1;
8500
8501 case IF_ACT_STOP:
8502 if (state != IF_STATE_ACTION)
8503 goto fail;
8504
8505 state = IF_STATE_SOURCE;
8506 break;
8507
8508 case IF_SRC_KERNELADDR:
8509 case IF_SRC_KERNEL:
8510 kernel = 1;
8511
8512 case IF_SRC_FILEADDR:
8513 case IF_SRC_FILE:
8514 if (state != IF_STATE_SOURCE)
8515 goto fail;
8516
8517 if (token == IF_SRC_FILE || token == IF_SRC_KERNEL)
8518 filter->range = 1;
8519
8520 *args[0].to = 0;
8521 ret = kstrtoul(args[0].from, 0, &filter->offset);
8522 if (ret)
8523 goto fail;
8524
8525 if (filter->range) {
8526 *args[1].to = 0;
8527 ret = kstrtoul(args[1].from, 0, &filter->size);
8528 if (ret)
8529 goto fail;
8530 }
8531
4059ffd0
MP
8532 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
8533 int fpos = filter->range ? 2 : 1;
8534
8535 filename = match_strdup(&args[fpos]);
375637bc
AS
8536 if (!filename) {
8537 ret = -ENOMEM;
8538 goto fail;
8539 }
8540 }
8541
8542 state = IF_STATE_END;
8543 break;
8544
8545 default:
8546 goto fail;
8547 }
8548
8549 /*
8550 * Filter definition is fully parsed, validate and install it.
8551 * Make sure that it doesn't contradict itself or the event's
8552 * attribute.
8553 */
8554 if (state == IF_STATE_END) {
9ccbfbb1 8555 ret = -EINVAL;
375637bc
AS
8556 if (kernel && event->attr.exclude_kernel)
8557 goto fail;
8558
8559 if (!kernel) {
8560 if (!filename)
8561 goto fail;
8562
6ce77bfd
AS
8563 /*
8564 * For now, we only support file-based filters
8565 * in per-task events; doing so for CPU-wide
8566 * events requires additional context switching
8567 * trickery, since same object code will be
8568 * mapped at different virtual addresses in
8569 * different processes.
8570 */
8571 ret = -EOPNOTSUPP;
8572 if (!event->ctx->task)
8573 goto fail_free_name;
8574
375637bc
AS
8575 /* look up the path and grab its inode */
8576 ret = kern_path(filename, LOOKUP_FOLLOW, &path);
8577 if (ret)
8578 goto fail_free_name;
8579
8580 filter->inode = igrab(d_inode(path.dentry));
8581 path_put(&path);
8582 kfree(filename);
8583 filename = NULL;
8584
8585 ret = -EINVAL;
8586 if (!filter->inode ||
8587 !S_ISREG(filter->inode->i_mode))
8588 /* free_filters_list() will iput() */
8589 goto fail;
6ce77bfd
AS
8590
8591 event->addr_filters.nr_file_filters++;
375637bc
AS
8592 }
8593
8594 /* ready to consume more filters */
8595 state = IF_STATE_ACTION;
8596 filter = NULL;
8597 }
8598 }
8599
8600 if (state != IF_STATE_ACTION)
8601 goto fail;
8602
8603 kfree(orig);
8604
8605 return 0;
8606
8607fail_free_name:
8608 kfree(filename);
8609fail:
8610 free_filters_list(filters);
8611 kfree(orig);
8612
8613 return ret;
8614}
8615
8616static int
8617perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
8618{
8619 LIST_HEAD(filters);
8620 int ret;
8621
8622 /*
8623 * Since this is called in perf_ioctl() path, we're already holding
8624 * ctx::mutex.
8625 */
8626 lockdep_assert_held(&event->ctx->mutex);
8627
8628 if (WARN_ON_ONCE(event->parent))
8629 return -EINVAL;
8630
375637bc
AS
8631 ret = perf_event_parse_addr_filter(event, filter_str, &filters);
8632 if (ret)
6ce77bfd 8633 goto fail_clear_files;
375637bc
AS
8634
8635 ret = event->pmu->addr_filters_validate(&filters);
6ce77bfd
AS
8636 if (ret)
8637 goto fail_free_filters;
375637bc
AS
8638
8639 /* remove existing filters, if any */
8640 perf_addr_filters_splice(event, &filters);
8641
8642 /* install new filters */
8643 perf_event_for_each_child(event, perf_event_addr_filters_apply);
8644
6ce77bfd
AS
8645 return ret;
8646
8647fail_free_filters:
8648 free_filters_list(&filters);
8649
8650fail_clear_files:
8651 event->addr_filters.nr_file_filters = 0;
8652
375637bc
AS
8653 return ret;
8654}
8655
c796bbbe
AS
8656static int perf_event_set_filter(struct perf_event *event, void __user *arg)
8657{
8658 char *filter_str;
8659 int ret = -EINVAL;
8660
375637bc
AS
8661 if ((event->attr.type != PERF_TYPE_TRACEPOINT ||
8662 !IS_ENABLED(CONFIG_EVENT_TRACING)) &&
8663 !has_addr_filter(event))
c796bbbe
AS
8664 return -EINVAL;
8665
8666 filter_str = strndup_user(arg, PAGE_SIZE);
8667 if (IS_ERR(filter_str))
8668 return PTR_ERR(filter_str);
8669
8670 if (IS_ENABLED(CONFIG_EVENT_TRACING) &&
8671 event->attr.type == PERF_TYPE_TRACEPOINT)
8672 ret = ftrace_profile_set_filter(event, event->attr.config,
8673 filter_str);
375637bc
AS
8674 else if (has_addr_filter(event))
8675 ret = perf_event_set_addr_filter(event, filter_str);
c796bbbe
AS
8676
8677 kfree(filter_str);
8678 return ret;
8679}
8680
b0a873eb
PZ
8681/*
8682 * hrtimer based swevent callback
8683 */
f29ac756 8684
b0a873eb 8685static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
f29ac756 8686{
b0a873eb
PZ
8687 enum hrtimer_restart ret = HRTIMER_RESTART;
8688 struct perf_sample_data data;
8689 struct pt_regs *regs;
8690 struct perf_event *event;
8691 u64 period;
f29ac756 8692
b0a873eb 8693 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
ba3dd36c
PZ
8694
8695 if (event->state != PERF_EVENT_STATE_ACTIVE)
8696 return HRTIMER_NORESTART;
8697
b0a873eb 8698 event->pmu->read(event);
f344011c 8699
fd0d000b 8700 perf_sample_data_init(&data, 0, event->hw.last_period);
b0a873eb
PZ
8701 regs = get_irq_regs();
8702
8703 if (regs && !perf_exclude_event(event, regs)) {
77aeeebd 8704 if (!(event->attr.exclude_idle && is_idle_task(current)))
33b07b8b 8705 if (__perf_event_overflow(event, 1, &data, regs))
b0a873eb
PZ
8706 ret = HRTIMER_NORESTART;
8707 }
24f1e32c 8708
b0a873eb
PZ
8709 period = max_t(u64, 10000, event->hw.sample_period);
8710 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
24f1e32c 8711
b0a873eb 8712 return ret;
f29ac756
PZ
8713}
8714
b0a873eb 8715static void perf_swevent_start_hrtimer(struct perf_event *event)
5c92d124 8716{
b0a873eb 8717 struct hw_perf_event *hwc = &event->hw;
5d508e82
FBH
8718 s64 period;
8719
8720 if (!is_sampling_event(event))
8721 return;
f5ffe02e 8722
5d508e82
FBH
8723 period = local64_read(&hwc->period_left);
8724 if (period) {
8725 if (period < 0)
8726 period = 10000;
fa407f35 8727
5d508e82
FBH
8728 local64_set(&hwc->period_left, 0);
8729 } else {
8730 period = max_t(u64, 10000, hwc->sample_period);
8731 }
3497d206
TG
8732 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
8733 HRTIMER_MODE_REL_PINNED);
24f1e32c 8734}
b0a873eb
PZ
8735
8736static void perf_swevent_cancel_hrtimer(struct perf_event *event)
24f1e32c 8737{
b0a873eb
PZ
8738 struct hw_perf_event *hwc = &event->hw;
8739
6c7e550f 8740 if (is_sampling_event(event)) {
b0a873eb 8741 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
fa407f35 8742 local64_set(&hwc->period_left, ktime_to_ns(remaining));
b0a873eb
PZ
8743
8744 hrtimer_cancel(&hwc->hrtimer);
8745 }
24f1e32c
FW
8746}
8747
ba3dd36c
PZ
8748static void perf_swevent_init_hrtimer(struct perf_event *event)
8749{
8750 struct hw_perf_event *hwc = &event->hw;
8751
8752 if (!is_sampling_event(event))
8753 return;
8754
8755 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
8756 hwc->hrtimer.function = perf_swevent_hrtimer;
8757
8758 /*
8759 * Since hrtimers have a fixed rate, we can do a static freq->period
8760 * mapping and avoid the whole period adjust feedback stuff.
8761 */
8762 if (event->attr.freq) {
8763 long freq = event->attr.sample_freq;
8764
8765 event->attr.sample_period = NSEC_PER_SEC / freq;
8766 hwc->sample_period = event->attr.sample_period;
8767 local64_set(&hwc->period_left, hwc->sample_period);
778141e3 8768 hwc->last_period = hwc->sample_period;
ba3dd36c
PZ
8769 event->attr.freq = 0;
8770 }
8771}
8772
b0a873eb
PZ
8773/*
8774 * Software event: cpu wall time clock
8775 */
8776
8777static void cpu_clock_event_update(struct perf_event *event)
24f1e32c 8778{
b0a873eb
PZ
8779 s64 prev;
8780 u64 now;
8781
a4eaf7f1 8782 now = local_clock();
b0a873eb
PZ
8783 prev = local64_xchg(&event->hw.prev_count, now);
8784 local64_add(now - prev, &event->count);
24f1e32c 8785}
24f1e32c 8786
a4eaf7f1 8787static void cpu_clock_event_start(struct perf_event *event, int flags)
b0a873eb 8788{
a4eaf7f1 8789 local64_set(&event->hw.prev_count, local_clock());
b0a873eb 8790 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
8791}
8792
a4eaf7f1 8793static void cpu_clock_event_stop(struct perf_event *event, int flags)
f29ac756 8794{
b0a873eb
PZ
8795 perf_swevent_cancel_hrtimer(event);
8796 cpu_clock_event_update(event);
8797}
f29ac756 8798
a4eaf7f1
PZ
8799static int cpu_clock_event_add(struct perf_event *event, int flags)
8800{
8801 if (flags & PERF_EF_START)
8802 cpu_clock_event_start(event, flags);
6a694a60 8803 perf_event_update_userpage(event);
a4eaf7f1
PZ
8804
8805 return 0;
8806}
8807
8808static void cpu_clock_event_del(struct perf_event *event, int flags)
8809{
8810 cpu_clock_event_stop(event, flags);
8811}
8812
b0a873eb
PZ
8813static void cpu_clock_event_read(struct perf_event *event)
8814{
8815 cpu_clock_event_update(event);
8816}
f344011c 8817
b0a873eb
PZ
8818static int cpu_clock_event_init(struct perf_event *event)
8819{
8820 if (event->attr.type != PERF_TYPE_SOFTWARE)
8821 return -ENOENT;
8822
8823 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
8824 return -ENOENT;
8825
2481c5fa
SE
8826 /*
8827 * no branch sampling for software events
8828 */
8829 if (has_branch_stack(event))
8830 return -EOPNOTSUPP;
8831
ba3dd36c
PZ
8832 perf_swevent_init_hrtimer(event);
8833
b0a873eb 8834 return 0;
f29ac756
PZ
8835}
8836
b0a873eb 8837static struct pmu perf_cpu_clock = {
89a1e187
PZ
8838 .task_ctx_nr = perf_sw_context,
8839
34f43927
PZ
8840 .capabilities = PERF_PMU_CAP_NO_NMI,
8841
b0a873eb 8842 .event_init = cpu_clock_event_init,
a4eaf7f1
PZ
8843 .add = cpu_clock_event_add,
8844 .del = cpu_clock_event_del,
8845 .start = cpu_clock_event_start,
8846 .stop = cpu_clock_event_stop,
b0a873eb
PZ
8847 .read = cpu_clock_event_read,
8848};
8849
8850/*
8851 * Software event: task time clock
8852 */
8853
8854static void task_clock_event_update(struct perf_event *event, u64 now)
5c92d124 8855{
b0a873eb
PZ
8856 u64 prev;
8857 s64 delta;
5c92d124 8858
b0a873eb
PZ
8859 prev = local64_xchg(&event->hw.prev_count, now);
8860 delta = now - prev;
8861 local64_add(delta, &event->count);
8862}
5c92d124 8863
a4eaf7f1 8864static void task_clock_event_start(struct perf_event *event, int flags)
b0a873eb 8865{
a4eaf7f1 8866 local64_set(&event->hw.prev_count, event->ctx->time);
b0a873eb 8867 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
8868}
8869
a4eaf7f1 8870static void task_clock_event_stop(struct perf_event *event, int flags)
b0a873eb
PZ
8871{
8872 perf_swevent_cancel_hrtimer(event);
8873 task_clock_event_update(event, event->ctx->time);
a4eaf7f1
PZ
8874}
8875
8876static int task_clock_event_add(struct perf_event *event, int flags)
8877{
8878 if (flags & PERF_EF_START)
8879 task_clock_event_start(event, flags);
6a694a60 8880 perf_event_update_userpage(event);
b0a873eb 8881
a4eaf7f1
PZ
8882 return 0;
8883}
8884
8885static void task_clock_event_del(struct perf_event *event, int flags)
8886{
8887 task_clock_event_stop(event, PERF_EF_UPDATE);
b0a873eb
PZ
8888}
8889
8890static void task_clock_event_read(struct perf_event *event)
8891{
768a06e2
PZ
8892 u64 now = perf_clock();
8893 u64 delta = now - event->ctx->timestamp;
8894 u64 time = event->ctx->time + delta;
b0a873eb
PZ
8895
8896 task_clock_event_update(event, time);
8897}
8898
8899static int task_clock_event_init(struct perf_event *event)
6fb2915d 8900{
b0a873eb
PZ
8901 if (event->attr.type != PERF_TYPE_SOFTWARE)
8902 return -ENOENT;
8903
8904 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
8905 return -ENOENT;
8906
2481c5fa
SE
8907 /*
8908 * no branch sampling for software events
8909 */
8910 if (has_branch_stack(event))
8911 return -EOPNOTSUPP;
8912
ba3dd36c
PZ
8913 perf_swevent_init_hrtimer(event);
8914
b0a873eb 8915 return 0;
6fb2915d
LZ
8916}
8917
b0a873eb 8918static struct pmu perf_task_clock = {
89a1e187
PZ
8919 .task_ctx_nr = perf_sw_context,
8920
34f43927
PZ
8921 .capabilities = PERF_PMU_CAP_NO_NMI,
8922
b0a873eb 8923 .event_init = task_clock_event_init,
a4eaf7f1
PZ
8924 .add = task_clock_event_add,
8925 .del = task_clock_event_del,
8926 .start = task_clock_event_start,
8927 .stop = task_clock_event_stop,
b0a873eb
PZ
8928 .read = task_clock_event_read,
8929};
6fb2915d 8930
ad5133b7 8931static void perf_pmu_nop_void(struct pmu *pmu)
e077df4f 8932{
e077df4f 8933}
6fb2915d 8934
fbbe0701
SB
8935static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
8936{
8937}
8938
ad5133b7 8939static int perf_pmu_nop_int(struct pmu *pmu)
6fb2915d 8940{
ad5133b7 8941 return 0;
6fb2915d
LZ
8942}
8943
18ab2cd3 8944static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
fbbe0701
SB
8945
8946static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
6fb2915d 8947{
fbbe0701
SB
8948 __this_cpu_write(nop_txn_flags, flags);
8949
8950 if (flags & ~PERF_PMU_TXN_ADD)
8951 return;
8952
ad5133b7 8953 perf_pmu_disable(pmu);
6fb2915d
LZ
8954}
8955
ad5133b7
PZ
8956static int perf_pmu_commit_txn(struct pmu *pmu)
8957{
fbbe0701
SB
8958 unsigned int flags = __this_cpu_read(nop_txn_flags);
8959
8960 __this_cpu_write(nop_txn_flags, 0);
8961
8962 if (flags & ~PERF_PMU_TXN_ADD)
8963 return 0;
8964
ad5133b7
PZ
8965 perf_pmu_enable(pmu);
8966 return 0;
8967}
e077df4f 8968
ad5133b7 8969static void perf_pmu_cancel_txn(struct pmu *pmu)
24f1e32c 8970{
fbbe0701
SB
8971 unsigned int flags = __this_cpu_read(nop_txn_flags);
8972
8973 __this_cpu_write(nop_txn_flags, 0);
8974
8975 if (flags & ~PERF_PMU_TXN_ADD)
8976 return;
8977
ad5133b7 8978 perf_pmu_enable(pmu);
24f1e32c
FW
8979}
8980
35edc2a5
PZ
8981static int perf_event_idx_default(struct perf_event *event)
8982{
c719f560 8983 return 0;
35edc2a5
PZ
8984}
8985
8dc85d54
PZ
8986/*
8987 * Ensures all contexts with the same task_ctx_nr have the same
8988 * pmu_cpu_context too.
8989 */
9e317041 8990static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
24f1e32c 8991{
8dc85d54 8992 struct pmu *pmu;
b326e956 8993
8dc85d54
PZ
8994 if (ctxn < 0)
8995 return NULL;
24f1e32c 8996
8dc85d54
PZ
8997 list_for_each_entry(pmu, &pmus, entry) {
8998 if (pmu->task_ctx_nr == ctxn)
8999 return pmu->pmu_cpu_context;
9000 }
24f1e32c 9001
8dc85d54 9002 return NULL;
24f1e32c
FW
9003}
9004
51676957
PZ
9005static void free_pmu_context(struct pmu *pmu)
9006{
df0062b2
WD
9007 /*
9008 * Static contexts such as perf_sw_context have a global lifetime
9009 * and may be shared between different PMUs. Avoid freeing them
9010 * when a single PMU is going away.
9011 */
9012 if (pmu->task_ctx_nr > perf_invalid_context)
9013 return;
9014
8dc85d54 9015 mutex_lock(&pmus_lock);
51676957 9016 free_percpu(pmu->pmu_cpu_context);
8dc85d54 9017 mutex_unlock(&pmus_lock);
24f1e32c 9018}
6e855cd4
AS
9019
9020/*
9021 * Let userspace know that this PMU supports address range filtering:
9022 */
9023static ssize_t nr_addr_filters_show(struct device *dev,
9024 struct device_attribute *attr,
9025 char *page)
9026{
9027 struct pmu *pmu = dev_get_drvdata(dev);
9028
9029 return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
9030}
9031DEVICE_ATTR_RO(nr_addr_filters);
9032
2e80a82a 9033static struct idr pmu_idr;
d6d020e9 9034
abe43400
PZ
9035static ssize_t
9036type_show(struct device *dev, struct device_attribute *attr, char *page)
9037{
9038 struct pmu *pmu = dev_get_drvdata(dev);
9039
9040 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
9041}
90826ca7 9042static DEVICE_ATTR_RO(type);
abe43400 9043
62b85639
SE
9044static ssize_t
9045perf_event_mux_interval_ms_show(struct device *dev,
9046 struct device_attribute *attr,
9047 char *page)
9048{
9049 struct pmu *pmu = dev_get_drvdata(dev);
9050
9051 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
9052}
9053
272325c4
PZ
9054static DEFINE_MUTEX(mux_interval_mutex);
9055
62b85639
SE
9056static ssize_t
9057perf_event_mux_interval_ms_store(struct device *dev,
9058 struct device_attribute *attr,
9059 const char *buf, size_t count)
9060{
9061 struct pmu *pmu = dev_get_drvdata(dev);
9062 int timer, cpu, ret;
9063
9064 ret = kstrtoint(buf, 0, &timer);
9065 if (ret)
9066 return ret;
9067
9068 if (timer < 1)
9069 return -EINVAL;
9070
9071 /* same value, noting to do */
9072 if (timer == pmu->hrtimer_interval_ms)
9073 return count;
9074
272325c4 9075 mutex_lock(&mux_interval_mutex);
62b85639
SE
9076 pmu->hrtimer_interval_ms = timer;
9077
9078 /* update all cpuctx for this PMU */
a63fbed7 9079 cpus_read_lock();
272325c4 9080 for_each_online_cpu(cpu) {
62b85639
SE
9081 struct perf_cpu_context *cpuctx;
9082 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
9083 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
9084
272325c4
PZ
9085 cpu_function_call(cpu,
9086 (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
62b85639 9087 }
a63fbed7 9088 cpus_read_unlock();
272325c4 9089 mutex_unlock(&mux_interval_mutex);
62b85639
SE
9090
9091 return count;
9092}
90826ca7 9093static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
62b85639 9094
90826ca7
GKH
9095static struct attribute *pmu_dev_attrs[] = {
9096 &dev_attr_type.attr,
9097 &dev_attr_perf_event_mux_interval_ms.attr,
9098 NULL,
abe43400 9099};
90826ca7 9100ATTRIBUTE_GROUPS(pmu_dev);
abe43400
PZ
9101
9102static int pmu_bus_running;
9103static struct bus_type pmu_bus = {
9104 .name = "event_source",
90826ca7 9105 .dev_groups = pmu_dev_groups,
abe43400
PZ
9106};
9107
9108static void pmu_dev_release(struct device *dev)
9109{
9110 kfree(dev);
9111}
9112
9113static int pmu_dev_alloc(struct pmu *pmu)
9114{
9115 int ret = -ENOMEM;
9116
9117 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
9118 if (!pmu->dev)
9119 goto out;
9120
0c9d42ed 9121 pmu->dev->groups = pmu->attr_groups;
abe43400
PZ
9122 device_initialize(pmu->dev);
9123 ret = dev_set_name(pmu->dev, "%s", pmu->name);
9124 if (ret)
9125 goto free_dev;
9126
9127 dev_set_drvdata(pmu->dev, pmu);
9128 pmu->dev->bus = &pmu_bus;
9129 pmu->dev->release = pmu_dev_release;
9130 ret = device_add(pmu->dev);
9131 if (ret)
9132 goto free_dev;
9133
6e855cd4
AS
9134 /* For PMUs with address filters, throw in an extra attribute: */
9135 if (pmu->nr_addr_filters)
9136 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
9137
9138 if (ret)
9139 goto del_dev;
9140
abe43400
PZ
9141out:
9142 return ret;
9143
6e855cd4
AS
9144del_dev:
9145 device_del(pmu->dev);
9146
abe43400
PZ
9147free_dev:
9148 put_device(pmu->dev);
9149 goto out;
9150}
9151
547e9fd7 9152static struct lock_class_key cpuctx_mutex;
facc4307 9153static struct lock_class_key cpuctx_lock;
547e9fd7 9154
03d8e80b 9155int perf_pmu_register(struct pmu *pmu, const char *name, int type)
24f1e32c 9156{
108b02cf 9157 int cpu, ret;
24f1e32c 9158
b0a873eb 9159 mutex_lock(&pmus_lock);
33696fc0
PZ
9160 ret = -ENOMEM;
9161 pmu->pmu_disable_count = alloc_percpu(int);
9162 if (!pmu->pmu_disable_count)
9163 goto unlock;
f29ac756 9164
2e80a82a
PZ
9165 pmu->type = -1;
9166 if (!name)
9167 goto skip_type;
9168 pmu->name = name;
9169
9170 if (type < 0) {
0e9c3be2
TH
9171 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
9172 if (type < 0) {
9173 ret = type;
2e80a82a
PZ
9174 goto free_pdc;
9175 }
9176 }
9177 pmu->type = type;
9178
abe43400
PZ
9179 if (pmu_bus_running) {
9180 ret = pmu_dev_alloc(pmu);
9181 if (ret)
9182 goto free_idr;
9183 }
9184
2e80a82a 9185skip_type:
26657848
PZ
9186 if (pmu->task_ctx_nr == perf_hw_context) {
9187 static int hw_context_taken = 0;
9188
5101ef20
MR
9189 /*
9190 * Other than systems with heterogeneous CPUs, it never makes
9191 * sense for two PMUs to share perf_hw_context. PMUs which are
9192 * uncore must use perf_invalid_context.
9193 */
9194 if (WARN_ON_ONCE(hw_context_taken &&
9195 !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
26657848
PZ
9196 pmu->task_ctx_nr = perf_invalid_context;
9197
9198 hw_context_taken = 1;
9199 }
9200
8dc85d54
PZ
9201 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
9202 if (pmu->pmu_cpu_context)
9203 goto got_cpu_context;
f29ac756 9204
c4814202 9205 ret = -ENOMEM;
108b02cf
PZ
9206 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
9207 if (!pmu->pmu_cpu_context)
abe43400 9208 goto free_dev;
f344011c 9209
108b02cf
PZ
9210 for_each_possible_cpu(cpu) {
9211 struct perf_cpu_context *cpuctx;
9212
9213 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
eb184479 9214 __perf_event_init_context(&cpuctx->ctx);
547e9fd7 9215 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
facc4307 9216 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
108b02cf 9217 cpuctx->ctx.pmu = pmu;
a63fbed7 9218 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
9e630205 9219
272325c4 9220 __perf_mux_hrtimer_init(cpuctx, cpu);
108b02cf 9221 }
76e1d904 9222
8dc85d54 9223got_cpu_context:
ad5133b7
PZ
9224 if (!pmu->start_txn) {
9225 if (pmu->pmu_enable) {
9226 /*
9227 * If we have pmu_enable/pmu_disable calls, install
9228 * transaction stubs that use that to try and batch
9229 * hardware accesses.
9230 */
9231 pmu->start_txn = perf_pmu_start_txn;
9232 pmu->commit_txn = perf_pmu_commit_txn;
9233 pmu->cancel_txn = perf_pmu_cancel_txn;
9234 } else {
fbbe0701 9235 pmu->start_txn = perf_pmu_nop_txn;
ad5133b7
PZ
9236 pmu->commit_txn = perf_pmu_nop_int;
9237 pmu->cancel_txn = perf_pmu_nop_void;
f344011c 9238 }
5c92d124 9239 }
15dbf27c 9240
ad5133b7
PZ
9241 if (!pmu->pmu_enable) {
9242 pmu->pmu_enable = perf_pmu_nop_void;
9243 pmu->pmu_disable = perf_pmu_nop_void;
9244 }
9245
35edc2a5
PZ
9246 if (!pmu->event_idx)
9247 pmu->event_idx = perf_event_idx_default;
9248
b0a873eb 9249 list_add_rcu(&pmu->entry, &pmus);
bed5b25a 9250 atomic_set(&pmu->exclusive_cnt, 0);
33696fc0
PZ
9251 ret = 0;
9252unlock:
b0a873eb
PZ
9253 mutex_unlock(&pmus_lock);
9254
33696fc0 9255 return ret;
108b02cf 9256
abe43400
PZ
9257free_dev:
9258 device_del(pmu->dev);
9259 put_device(pmu->dev);
9260
2e80a82a
PZ
9261free_idr:
9262 if (pmu->type >= PERF_TYPE_MAX)
9263 idr_remove(&pmu_idr, pmu->type);
9264
108b02cf
PZ
9265free_pdc:
9266 free_percpu(pmu->pmu_disable_count);
9267 goto unlock;
f29ac756 9268}
c464c76e 9269EXPORT_SYMBOL_GPL(perf_pmu_register);
f29ac756 9270
b0a873eb 9271void perf_pmu_unregister(struct pmu *pmu)
5c92d124 9272{
0933840a
JO
9273 int remove_device;
9274
b0a873eb 9275 mutex_lock(&pmus_lock);
0933840a 9276 remove_device = pmu_bus_running;
b0a873eb
PZ
9277 list_del_rcu(&pmu->entry);
9278 mutex_unlock(&pmus_lock);
5c92d124 9279
0475f9ea 9280 /*
cde8e884
PZ
9281 * We dereference the pmu list under both SRCU and regular RCU, so
9282 * synchronize against both of those.
0475f9ea 9283 */
b0a873eb 9284 synchronize_srcu(&pmus_srcu);
cde8e884 9285 synchronize_rcu();
d6d020e9 9286
33696fc0 9287 free_percpu(pmu->pmu_disable_count);
2e80a82a
PZ
9288 if (pmu->type >= PERF_TYPE_MAX)
9289 idr_remove(&pmu_idr, pmu->type);
0933840a
JO
9290 if (remove_device) {
9291 if (pmu->nr_addr_filters)
9292 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
9293 device_del(pmu->dev);
9294 put_device(pmu->dev);
9295 }
51676957 9296 free_pmu_context(pmu);
b0a873eb 9297}
c464c76e 9298EXPORT_SYMBOL_GPL(perf_pmu_unregister);
d6d020e9 9299
cc34b98b
MR
9300static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
9301{
ccd41c86 9302 struct perf_event_context *ctx = NULL;
cc34b98b
MR
9303 int ret;
9304
9305 if (!try_module_get(pmu->module))
9306 return -ENODEV;
ccd41c86
PZ
9307
9308 if (event->group_leader != event) {
8b10c5e2
PZ
9309 /*
9310 * This ctx->mutex can nest when we're called through
9311 * inheritance. See the perf_event_ctx_lock_nested() comment.
9312 */
9313 ctx = perf_event_ctx_lock_nested(event->group_leader,
9314 SINGLE_DEPTH_NESTING);
ccd41c86
PZ
9315 BUG_ON(!ctx);
9316 }
9317
cc34b98b
MR
9318 event->pmu = pmu;
9319 ret = pmu->event_init(event);
ccd41c86
PZ
9320
9321 if (ctx)
9322 perf_event_ctx_unlock(event->group_leader, ctx);
9323
cc34b98b
MR
9324 if (ret)
9325 module_put(pmu->module);
9326
9327 return ret;
9328}
9329
18ab2cd3 9330static struct pmu *perf_init_event(struct perf_event *event)
b0a873eb 9331{
85c617ab 9332 struct pmu *pmu;
b0a873eb 9333 int idx;
940c5b29 9334 int ret;
b0a873eb
PZ
9335
9336 idx = srcu_read_lock(&pmus_srcu);
2e80a82a 9337
40999312
KL
9338 /* Try parent's PMU first: */
9339 if (event->parent && event->parent->pmu) {
9340 pmu = event->parent->pmu;
9341 ret = perf_try_init_event(pmu, event);
9342 if (!ret)
9343 goto unlock;
9344 }
9345
2e80a82a
PZ
9346 rcu_read_lock();
9347 pmu = idr_find(&pmu_idr, event->attr.type);
9348 rcu_read_unlock();
940c5b29 9349 if (pmu) {
cc34b98b 9350 ret = perf_try_init_event(pmu, event);
940c5b29
LM
9351 if (ret)
9352 pmu = ERR_PTR(ret);
2e80a82a 9353 goto unlock;
940c5b29 9354 }
2e80a82a 9355
b0a873eb 9356 list_for_each_entry_rcu(pmu, &pmus, entry) {
cc34b98b 9357 ret = perf_try_init_event(pmu, event);
b0a873eb 9358 if (!ret)
e5f4d339 9359 goto unlock;
76e1d904 9360
b0a873eb
PZ
9361 if (ret != -ENOENT) {
9362 pmu = ERR_PTR(ret);
e5f4d339 9363 goto unlock;
f344011c 9364 }
5c92d124 9365 }
e5f4d339
PZ
9366 pmu = ERR_PTR(-ENOENT);
9367unlock:
b0a873eb 9368 srcu_read_unlock(&pmus_srcu, idx);
15dbf27c 9369
4aeb0b42 9370 return pmu;
5c92d124
IM
9371}
9372
f2fb6bef
KL
9373static void attach_sb_event(struct perf_event *event)
9374{
9375 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
9376
9377 raw_spin_lock(&pel->lock);
9378 list_add_rcu(&event->sb_list, &pel->list);
9379 raw_spin_unlock(&pel->lock);
9380}
9381
aab5b71e
PZ
9382/*
9383 * We keep a list of all !task (and therefore per-cpu) events
9384 * that need to receive side-band records.
9385 *
9386 * This avoids having to scan all the various PMU per-cpu contexts
9387 * looking for them.
9388 */
f2fb6bef
KL
9389static void account_pmu_sb_event(struct perf_event *event)
9390{
a4f144eb 9391 if (is_sb_event(event))
f2fb6bef
KL
9392 attach_sb_event(event);
9393}
9394
4beb31f3
FW
9395static void account_event_cpu(struct perf_event *event, int cpu)
9396{
9397 if (event->parent)
9398 return;
9399
4beb31f3
FW
9400 if (is_cgroup_event(event))
9401 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
9402}
9403
555e0c1e
FW
9404/* Freq events need the tick to stay alive (see perf_event_task_tick). */
9405static void account_freq_event_nohz(void)
9406{
9407#ifdef CONFIG_NO_HZ_FULL
9408 /* Lock so we don't race with concurrent unaccount */
9409 spin_lock(&nr_freq_lock);
9410 if (atomic_inc_return(&nr_freq_events) == 1)
9411 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
9412 spin_unlock(&nr_freq_lock);
9413#endif
9414}
9415
9416static void account_freq_event(void)
9417{
9418 if (tick_nohz_full_enabled())
9419 account_freq_event_nohz();
9420 else
9421 atomic_inc(&nr_freq_events);
9422}
9423
9424
766d6c07
FW
9425static void account_event(struct perf_event *event)
9426{
25432ae9
PZ
9427 bool inc = false;
9428
4beb31f3
FW
9429 if (event->parent)
9430 return;
9431
766d6c07 9432 if (event->attach_state & PERF_ATTACH_TASK)
25432ae9 9433 inc = true;
766d6c07
FW
9434 if (event->attr.mmap || event->attr.mmap_data)
9435 atomic_inc(&nr_mmap_events);
9436 if (event->attr.comm)
9437 atomic_inc(&nr_comm_events);
e4222673
HB
9438 if (event->attr.namespaces)
9439 atomic_inc(&nr_namespaces_events);
766d6c07
FW
9440 if (event->attr.task)
9441 atomic_inc(&nr_task_events);
555e0c1e
FW
9442 if (event->attr.freq)
9443 account_freq_event();
45ac1403
AH
9444 if (event->attr.context_switch) {
9445 atomic_inc(&nr_switch_events);
25432ae9 9446 inc = true;
45ac1403 9447 }
4beb31f3 9448 if (has_branch_stack(event))
25432ae9 9449 inc = true;
4beb31f3 9450 if (is_cgroup_event(event))
25432ae9
PZ
9451 inc = true;
9452
9107c89e 9453 if (inc) {
5bce9db1
AS
9454 /*
9455 * We need the mutex here because static_branch_enable()
9456 * must complete *before* the perf_sched_count increment
9457 * becomes visible.
9458 */
9107c89e
PZ
9459 if (atomic_inc_not_zero(&perf_sched_count))
9460 goto enabled;
9461
9462 mutex_lock(&perf_sched_mutex);
9463 if (!atomic_read(&perf_sched_count)) {
9464 static_branch_enable(&perf_sched_events);
9465 /*
9466 * Guarantee that all CPUs observe they key change and
9467 * call the perf scheduling hooks before proceeding to
9468 * install events that need them.
9469 */
9470 synchronize_sched();
9471 }
9472 /*
9473 * Now that we have waited for the sync_sched(), allow further
9474 * increments to by-pass the mutex.
9475 */
9476 atomic_inc(&perf_sched_count);
9477 mutex_unlock(&perf_sched_mutex);
9478 }
9479enabled:
4beb31f3
FW
9480
9481 account_event_cpu(event, event->cpu);
f2fb6bef
KL
9482
9483 account_pmu_sb_event(event);
766d6c07
FW
9484}
9485
0793a61d 9486/*
cdd6c482 9487 * Allocate and initialize a event structure
0793a61d 9488 */
cdd6c482 9489static struct perf_event *
c3f00c70 9490perf_event_alloc(struct perf_event_attr *attr, int cpu,
d580ff86
PZ
9491 struct task_struct *task,
9492 struct perf_event *group_leader,
9493 struct perf_event *parent_event,
4dc0da86 9494 perf_overflow_handler_t overflow_handler,
79dff51e 9495 void *context, int cgroup_fd)
0793a61d 9496{
51b0fe39 9497 struct pmu *pmu;
cdd6c482
IM
9498 struct perf_event *event;
9499 struct hw_perf_event *hwc;
90983b16 9500 long err = -EINVAL;
0793a61d 9501
66832eb4
ON
9502 if ((unsigned)cpu >= nr_cpu_ids) {
9503 if (!task || cpu != -1)
9504 return ERR_PTR(-EINVAL);
9505 }
9506
c3f00c70 9507 event = kzalloc(sizeof(*event), GFP_KERNEL);
cdd6c482 9508 if (!event)
d5d2bc0d 9509 return ERR_PTR(-ENOMEM);
0793a61d 9510
04289bb9 9511 /*
cdd6c482 9512 * Single events are their own group leaders, with an
04289bb9
IM
9513 * empty sibling list:
9514 */
9515 if (!group_leader)
cdd6c482 9516 group_leader = event;
04289bb9 9517
cdd6c482
IM
9518 mutex_init(&event->child_mutex);
9519 INIT_LIST_HEAD(&event->child_list);
fccc714b 9520
cdd6c482
IM
9521 INIT_LIST_HEAD(&event->group_entry);
9522 INIT_LIST_HEAD(&event->event_entry);
9523 INIT_LIST_HEAD(&event->sibling_list);
10c6db11 9524 INIT_LIST_HEAD(&event->rb_entry);
71ad88ef 9525 INIT_LIST_HEAD(&event->active_entry);
375637bc 9526 INIT_LIST_HEAD(&event->addr_filters.list);
f3ae75de
SE
9527 INIT_HLIST_NODE(&event->hlist_entry);
9528
10c6db11 9529
cdd6c482 9530 init_waitqueue_head(&event->waitq);
e360adbe 9531 init_irq_work(&event->pending, perf_pending_event);
0793a61d 9532
cdd6c482 9533 mutex_init(&event->mmap_mutex);
375637bc 9534 raw_spin_lock_init(&event->addr_filters.lock);
7b732a75 9535
a6fa941d 9536 atomic_long_set(&event->refcount, 1);
cdd6c482
IM
9537 event->cpu = cpu;
9538 event->attr = *attr;
9539 event->group_leader = group_leader;
9540 event->pmu = NULL;
cdd6c482 9541 event->oncpu = -1;
a96bbc16 9542
cdd6c482 9543 event->parent = parent_event;
b84fbc9f 9544
17cf22c3 9545 event->ns = get_pid_ns(task_active_pid_ns(current));
cdd6c482 9546 event->id = atomic64_inc_return(&perf_event_id);
a96bbc16 9547
cdd6c482 9548 event->state = PERF_EVENT_STATE_INACTIVE;
329d876d 9549
d580ff86
PZ
9550 if (task) {
9551 event->attach_state = PERF_ATTACH_TASK;
d580ff86 9552 /*
50f16a8b
PZ
9553 * XXX pmu::event_init needs to know what task to account to
9554 * and we cannot use the ctx information because we need the
9555 * pmu before we get a ctx.
d580ff86 9556 */
50f16a8b 9557 event->hw.target = task;
d580ff86
PZ
9558 }
9559
34f43927
PZ
9560 event->clock = &local_clock;
9561 if (parent_event)
9562 event->clock = parent_event->clock;
9563
4dc0da86 9564 if (!overflow_handler && parent_event) {
b326e956 9565 overflow_handler = parent_event->overflow_handler;
4dc0da86 9566 context = parent_event->overflow_handler_context;
f1e4ba5b 9567#if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
aa6a5f3c
AS
9568 if (overflow_handler == bpf_overflow_handler) {
9569 struct bpf_prog *prog = bpf_prog_inc(parent_event->prog);
9570
9571 if (IS_ERR(prog)) {
9572 err = PTR_ERR(prog);
9573 goto err_ns;
9574 }
9575 event->prog = prog;
9576 event->orig_overflow_handler =
9577 parent_event->orig_overflow_handler;
9578 }
9579#endif
4dc0da86 9580 }
66832eb4 9581
1879445d
WN
9582 if (overflow_handler) {
9583 event->overflow_handler = overflow_handler;
9584 event->overflow_handler_context = context;
9ecda41a
WN
9585 } else if (is_write_backward(event)){
9586 event->overflow_handler = perf_event_output_backward;
9587 event->overflow_handler_context = NULL;
1879445d 9588 } else {
9ecda41a 9589 event->overflow_handler = perf_event_output_forward;
1879445d
WN
9590 event->overflow_handler_context = NULL;
9591 }
97eaf530 9592
0231bb53 9593 perf_event__state_init(event);
a86ed508 9594
4aeb0b42 9595 pmu = NULL;
b8e83514 9596
cdd6c482 9597 hwc = &event->hw;
bd2b5b12 9598 hwc->sample_period = attr->sample_period;
0d48696f 9599 if (attr->freq && attr->sample_freq)
bd2b5b12 9600 hwc->sample_period = 1;
eced1dfc 9601 hwc->last_period = hwc->sample_period;
bd2b5b12 9602
e7850595 9603 local64_set(&hwc->period_left, hwc->sample_period);
60db5e09 9604
2023b359 9605 /*
ba5213ae
PZ
9606 * We currently do not support PERF_SAMPLE_READ on inherited events.
9607 * See perf_output_read().
2023b359 9608 */
ba5213ae 9609 if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
90983b16 9610 goto err_ns;
a46a2300
YZ
9611
9612 if (!has_branch_stack(event))
9613 event->attr.branch_sample_type = 0;
2023b359 9614
79dff51e
MF
9615 if (cgroup_fd != -1) {
9616 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
9617 if (err)
9618 goto err_ns;
9619 }
9620
b0a873eb 9621 pmu = perf_init_event(event);
85c617ab 9622 if (IS_ERR(pmu)) {
4aeb0b42 9623 err = PTR_ERR(pmu);
90983b16 9624 goto err_ns;
621a01ea 9625 }
d5d2bc0d 9626
bed5b25a
AS
9627 err = exclusive_event_init(event);
9628 if (err)
9629 goto err_pmu;
9630
375637bc
AS
9631 if (has_addr_filter(event)) {
9632 event->addr_filters_offs = kcalloc(pmu->nr_addr_filters,
9633 sizeof(unsigned long),
9634 GFP_KERNEL);
36cc2b92
DC
9635 if (!event->addr_filters_offs) {
9636 err = -ENOMEM;
375637bc 9637 goto err_per_task;
36cc2b92 9638 }
375637bc
AS
9639
9640 /* force hw sync on the address filters */
9641 event->addr_filters_gen = 1;
9642 }
9643
cdd6c482 9644 if (!event->parent) {
927c7a9e 9645 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
97c79a38 9646 err = get_callchain_buffers(attr->sample_max_stack);
90983b16 9647 if (err)
375637bc 9648 goto err_addr_filters;
d010b332 9649 }
f344011c 9650 }
9ee318a7 9651
927a5570
AS
9652 /* symmetric to unaccount_event() in _free_event() */
9653 account_event(event);
9654
cdd6c482 9655 return event;
90983b16 9656
375637bc
AS
9657err_addr_filters:
9658 kfree(event->addr_filters_offs);
9659
bed5b25a
AS
9660err_per_task:
9661 exclusive_event_destroy(event);
9662
90983b16
FW
9663err_pmu:
9664 if (event->destroy)
9665 event->destroy(event);
c464c76e 9666 module_put(pmu->module);
90983b16 9667err_ns:
79dff51e
MF
9668 if (is_cgroup_event(event))
9669 perf_detach_cgroup(event);
90983b16
FW
9670 if (event->ns)
9671 put_pid_ns(event->ns);
9672 kfree(event);
9673
9674 return ERR_PTR(err);
0793a61d
TG
9675}
9676
cdd6c482
IM
9677static int perf_copy_attr(struct perf_event_attr __user *uattr,
9678 struct perf_event_attr *attr)
974802ea 9679{
974802ea 9680 u32 size;
cdf8073d 9681 int ret;
974802ea
PZ
9682
9683 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
9684 return -EFAULT;
9685
9686 /*
9687 * zero the full structure, so that a short copy will be nice.
9688 */
9689 memset(attr, 0, sizeof(*attr));
9690
9691 ret = get_user(size, &uattr->size);
9692 if (ret)
9693 return ret;
9694
9695 if (size > PAGE_SIZE) /* silly large */
9696 goto err_size;
9697
9698 if (!size) /* abi compat */
9699 size = PERF_ATTR_SIZE_VER0;
9700
9701 if (size < PERF_ATTR_SIZE_VER0)
9702 goto err_size;
9703
9704 /*
9705 * If we're handed a bigger struct than we know of,
cdf8073d
IS
9706 * ensure all the unknown bits are 0 - i.e. new
9707 * user-space does not rely on any kernel feature
9708 * extensions we dont know about yet.
974802ea
PZ
9709 */
9710 if (size > sizeof(*attr)) {
cdf8073d
IS
9711 unsigned char __user *addr;
9712 unsigned char __user *end;
9713 unsigned char val;
974802ea 9714
cdf8073d
IS
9715 addr = (void __user *)uattr + sizeof(*attr);
9716 end = (void __user *)uattr + size;
974802ea 9717
cdf8073d 9718 for (; addr < end; addr++) {
974802ea
PZ
9719 ret = get_user(val, addr);
9720 if (ret)
9721 return ret;
9722 if (val)
9723 goto err_size;
9724 }
b3e62e35 9725 size = sizeof(*attr);
974802ea
PZ
9726 }
9727
9728 ret = copy_from_user(attr, uattr, size);
9729 if (ret)
9730 return -EFAULT;
9731
f12f42ac
MX
9732 attr->size = size;
9733
cd757645 9734 if (attr->__reserved_1)
974802ea
PZ
9735 return -EINVAL;
9736
9737 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
9738 return -EINVAL;
9739
9740 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
9741 return -EINVAL;
9742
bce38cd5
SE
9743 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
9744 u64 mask = attr->branch_sample_type;
9745
9746 /* only using defined bits */
9747 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
9748 return -EINVAL;
9749
9750 /* at least one branch bit must be set */
9751 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
9752 return -EINVAL;
9753
bce38cd5
SE
9754 /* propagate priv level, when not set for branch */
9755 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
9756
9757 /* exclude_kernel checked on syscall entry */
9758 if (!attr->exclude_kernel)
9759 mask |= PERF_SAMPLE_BRANCH_KERNEL;
9760
9761 if (!attr->exclude_user)
9762 mask |= PERF_SAMPLE_BRANCH_USER;
9763
9764 if (!attr->exclude_hv)
9765 mask |= PERF_SAMPLE_BRANCH_HV;
9766 /*
9767 * adjust user setting (for HW filter setup)
9768 */
9769 attr->branch_sample_type = mask;
9770 }
e712209a
SE
9771 /* privileged levels capture (kernel, hv): check permissions */
9772 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
2b923c8f
SE
9773 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9774 return -EACCES;
bce38cd5 9775 }
4018994f 9776
c5ebcedb 9777 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
4018994f 9778 ret = perf_reg_validate(attr->sample_regs_user);
c5ebcedb
JO
9779 if (ret)
9780 return ret;
9781 }
9782
9783 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
9784 if (!arch_perf_have_user_stack_dump())
9785 return -ENOSYS;
9786
9787 /*
9788 * We have __u32 type for the size, but so far
9789 * we can only use __u16 as maximum due to the
9790 * __u16 sample size limit.
9791 */
9792 if (attr->sample_stack_user >= USHRT_MAX)
9793 ret = -EINVAL;
9794 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
9795 ret = -EINVAL;
9796 }
4018994f 9797
60e2364e
SE
9798 if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
9799 ret = perf_reg_validate(attr->sample_regs_intr);
974802ea
PZ
9800out:
9801 return ret;
9802
9803err_size:
9804 put_user(sizeof(*attr), &uattr->size);
9805 ret = -E2BIG;
9806 goto out;
9807}
9808
ac9721f3
PZ
9809static int
9810perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
a4be7c27 9811{
b69cf536 9812 struct ring_buffer *rb = NULL;
a4be7c27
PZ
9813 int ret = -EINVAL;
9814
ac9721f3 9815 if (!output_event)
a4be7c27
PZ
9816 goto set;
9817
ac9721f3
PZ
9818 /* don't allow circular references */
9819 if (event == output_event)
a4be7c27
PZ
9820 goto out;
9821
0f139300
PZ
9822 /*
9823 * Don't allow cross-cpu buffers
9824 */
9825 if (output_event->cpu != event->cpu)
9826 goto out;
9827
9828 /*
76369139 9829 * If its not a per-cpu rb, it must be the same task.
0f139300
PZ
9830 */
9831 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
9832 goto out;
9833
34f43927
PZ
9834 /*
9835 * Mixing clocks in the same buffer is trouble you don't need.
9836 */
9837 if (output_event->clock != event->clock)
9838 goto out;
9839
9ecda41a
WN
9840 /*
9841 * Either writing ring buffer from beginning or from end.
9842 * Mixing is not allowed.
9843 */
9844 if (is_write_backward(output_event) != is_write_backward(event))
9845 goto out;
9846
45bfb2e5
PZ
9847 /*
9848 * If both events generate aux data, they must be on the same PMU
9849 */
9850 if (has_aux(event) && has_aux(output_event) &&
9851 event->pmu != output_event->pmu)
9852 goto out;
9853
a4be7c27 9854set:
cdd6c482 9855 mutex_lock(&event->mmap_mutex);
ac9721f3
PZ
9856 /* Can't redirect output if we've got an active mmap() */
9857 if (atomic_read(&event->mmap_count))
9858 goto unlock;
a4be7c27 9859
ac9721f3 9860 if (output_event) {
76369139
FW
9861 /* get the rb we want to redirect to */
9862 rb = ring_buffer_get(output_event);
9863 if (!rb)
ac9721f3 9864 goto unlock;
a4be7c27
PZ
9865 }
9866
b69cf536 9867 ring_buffer_attach(event, rb);
9bb5d40c 9868
a4be7c27 9869 ret = 0;
ac9721f3
PZ
9870unlock:
9871 mutex_unlock(&event->mmap_mutex);
9872
a4be7c27 9873out:
a4be7c27
PZ
9874 return ret;
9875}
9876
f63a8daa
PZ
9877static void mutex_lock_double(struct mutex *a, struct mutex *b)
9878{
9879 if (b < a)
9880 swap(a, b);
9881
9882 mutex_lock(a);
9883 mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
9884}
9885
34f43927
PZ
9886static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
9887{
9888 bool nmi_safe = false;
9889
9890 switch (clk_id) {
9891 case CLOCK_MONOTONIC:
9892 event->clock = &ktime_get_mono_fast_ns;
9893 nmi_safe = true;
9894 break;
9895
9896 case CLOCK_MONOTONIC_RAW:
9897 event->clock = &ktime_get_raw_fast_ns;
9898 nmi_safe = true;
9899 break;
9900
9901 case CLOCK_REALTIME:
9902 event->clock = &ktime_get_real_ns;
9903 break;
9904
9905 case CLOCK_BOOTTIME:
9906 event->clock = &ktime_get_boot_ns;
9907 break;
9908
9909 case CLOCK_TAI:
9910 event->clock = &ktime_get_tai_ns;
9911 break;
9912
9913 default:
9914 return -EINVAL;
9915 }
9916
9917 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
9918 return -EINVAL;
9919
9920 return 0;
9921}
9922
321027c1
PZ
9923/*
9924 * Variation on perf_event_ctx_lock_nested(), except we take two context
9925 * mutexes.
9926 */
9927static struct perf_event_context *
9928__perf_event_ctx_lock_double(struct perf_event *group_leader,
9929 struct perf_event_context *ctx)
9930{
9931 struct perf_event_context *gctx;
9932
9933again:
9934 rcu_read_lock();
9935 gctx = READ_ONCE(group_leader->ctx);
9936 if (!atomic_inc_not_zero(&gctx->refcount)) {
9937 rcu_read_unlock();
9938 goto again;
9939 }
9940 rcu_read_unlock();
9941
9942 mutex_lock_double(&gctx->mutex, &ctx->mutex);
9943
9944 if (group_leader->ctx != gctx) {
9945 mutex_unlock(&ctx->mutex);
9946 mutex_unlock(&gctx->mutex);
9947 put_ctx(gctx);
9948 goto again;
9949 }
9950
9951 return gctx;
9952}
9953
0793a61d 9954/**
cdd6c482 9955 * sys_perf_event_open - open a performance event, associate it to a task/cpu
9f66a381 9956 *
cdd6c482 9957 * @attr_uptr: event_id type attributes for monitoring/sampling
0793a61d 9958 * @pid: target pid
9f66a381 9959 * @cpu: target cpu
cdd6c482 9960 * @group_fd: group leader event fd
0793a61d 9961 */
cdd6c482
IM
9962SYSCALL_DEFINE5(perf_event_open,
9963 struct perf_event_attr __user *, attr_uptr,
2743a5b0 9964 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
0793a61d 9965{
b04243ef
PZ
9966 struct perf_event *group_leader = NULL, *output_event = NULL;
9967 struct perf_event *event, *sibling;
cdd6c482 9968 struct perf_event_attr attr;
f63a8daa 9969 struct perf_event_context *ctx, *uninitialized_var(gctx);
cdd6c482 9970 struct file *event_file = NULL;
2903ff01 9971 struct fd group = {NULL, 0};
38a81da2 9972 struct task_struct *task = NULL;
89a1e187 9973 struct pmu *pmu;
ea635c64 9974 int event_fd;
b04243ef 9975 int move_group = 0;
dc86cabe 9976 int err;
a21b0b35 9977 int f_flags = O_RDWR;
79dff51e 9978 int cgroup_fd = -1;
0793a61d 9979
2743a5b0 9980 /* for future expandability... */
e5d1367f 9981 if (flags & ~PERF_FLAG_ALL)
2743a5b0
PM
9982 return -EINVAL;
9983
dc86cabe
IM
9984 err = perf_copy_attr(attr_uptr, &attr);
9985 if (err)
9986 return err;
eab656ae 9987
0764771d
PZ
9988 if (!attr.exclude_kernel) {
9989 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9990 return -EACCES;
9991 }
9992
e4222673
HB
9993 if (attr.namespaces) {
9994 if (!capable(CAP_SYS_ADMIN))
9995 return -EACCES;
9996 }
9997
df58ab24 9998 if (attr.freq) {
cdd6c482 9999 if (attr.sample_freq > sysctl_perf_event_sample_rate)
df58ab24 10000 return -EINVAL;
0819b2e3
PZ
10001 } else {
10002 if (attr.sample_period & (1ULL << 63))
10003 return -EINVAL;
df58ab24
PZ
10004 }
10005
fc7ce9c7
KL
10006 /* Only privileged users can get physical addresses */
10007 if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR) &&
10008 perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10009 return -EACCES;
10010
97c79a38
ACM
10011 if (!attr.sample_max_stack)
10012 attr.sample_max_stack = sysctl_perf_event_max_stack;
10013
e5d1367f
SE
10014 /*
10015 * In cgroup mode, the pid argument is used to pass the fd
10016 * opened to the cgroup directory in cgroupfs. The cpu argument
10017 * designates the cpu on which to monitor threads from that
10018 * cgroup.
10019 */
10020 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
10021 return -EINVAL;
10022
a21b0b35
YD
10023 if (flags & PERF_FLAG_FD_CLOEXEC)
10024 f_flags |= O_CLOEXEC;
10025
10026 event_fd = get_unused_fd_flags(f_flags);
ea635c64
AV
10027 if (event_fd < 0)
10028 return event_fd;
10029
ac9721f3 10030 if (group_fd != -1) {
2903ff01
AV
10031 err = perf_fget_light(group_fd, &group);
10032 if (err)
d14b12d7 10033 goto err_fd;
2903ff01 10034 group_leader = group.file->private_data;
ac9721f3
PZ
10035 if (flags & PERF_FLAG_FD_OUTPUT)
10036 output_event = group_leader;
10037 if (flags & PERF_FLAG_FD_NO_GROUP)
10038 group_leader = NULL;
10039 }
10040
e5d1367f 10041 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
c6be5a5c
PZ
10042 task = find_lively_task_by_vpid(pid);
10043 if (IS_ERR(task)) {
10044 err = PTR_ERR(task);
10045 goto err_group_fd;
10046 }
10047 }
10048
1f4ee503
PZ
10049 if (task && group_leader &&
10050 group_leader->attr.inherit != attr.inherit) {
10051 err = -EINVAL;
10052 goto err_task;
10053 }
10054
79c9ce57
PZ
10055 if (task) {
10056 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
10057 if (err)
e5aeee51 10058 goto err_task;
79c9ce57
PZ
10059
10060 /*
10061 * Reuse ptrace permission checks for now.
10062 *
10063 * We must hold cred_guard_mutex across this and any potential
10064 * perf_install_in_context() call for this new event to
10065 * serialize against exec() altering our credentials (and the
10066 * perf_event_exit_task() that could imply).
10067 */
10068 err = -EACCES;
10069 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
10070 goto err_cred;
10071 }
10072
79dff51e
MF
10073 if (flags & PERF_FLAG_PID_CGROUP)
10074 cgroup_fd = pid;
10075
4dc0da86 10076 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
79dff51e 10077 NULL, NULL, cgroup_fd);
d14b12d7
SE
10078 if (IS_ERR(event)) {
10079 err = PTR_ERR(event);
79c9ce57 10080 goto err_cred;
d14b12d7
SE
10081 }
10082
53b25335
VW
10083 if (is_sampling_event(event)) {
10084 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
a1396555 10085 err = -EOPNOTSUPP;
53b25335
VW
10086 goto err_alloc;
10087 }
10088 }
10089
89a1e187
PZ
10090 /*
10091 * Special case software events and allow them to be part of
10092 * any hardware group.
10093 */
10094 pmu = event->pmu;
b04243ef 10095
34f43927
PZ
10096 if (attr.use_clockid) {
10097 err = perf_event_set_clock(event, attr.clockid);
10098 if (err)
10099 goto err_alloc;
10100 }
10101
4ff6a8de
DCC
10102 if (pmu->task_ctx_nr == perf_sw_context)
10103 event->event_caps |= PERF_EV_CAP_SOFTWARE;
10104
b04243ef
PZ
10105 if (group_leader &&
10106 (is_software_event(event) != is_software_event(group_leader))) {
10107 if (is_software_event(event)) {
10108 /*
10109 * If event and group_leader are not both a software
10110 * event, and event is, then group leader is not.
10111 *
10112 * Allow the addition of software events to !software
10113 * groups, this is safe because software events never
10114 * fail to schedule.
10115 */
10116 pmu = group_leader->pmu;
10117 } else if (is_software_event(group_leader) &&
4ff6a8de 10118 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
b04243ef
PZ
10119 /*
10120 * In case the group is a pure software group, and we
10121 * try to add a hardware event, move the whole group to
10122 * the hardware context.
10123 */
10124 move_group = 1;
10125 }
10126 }
89a1e187
PZ
10127
10128 /*
10129 * Get the target context (task or percpu):
10130 */
4af57ef2 10131 ctx = find_get_context(pmu, task, event);
89a1e187
PZ
10132 if (IS_ERR(ctx)) {
10133 err = PTR_ERR(ctx);
c6be5a5c 10134 goto err_alloc;
89a1e187
PZ
10135 }
10136
bed5b25a
AS
10137 if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
10138 err = -EBUSY;
10139 goto err_context;
10140 }
10141
ccff286d 10142 /*
cdd6c482 10143 * Look up the group leader (we will attach this event to it):
04289bb9 10144 */
ac9721f3 10145 if (group_leader) {
dc86cabe 10146 err = -EINVAL;
04289bb9 10147
04289bb9 10148 /*
ccff286d
IM
10149 * Do not allow a recursive hierarchy (this new sibling
10150 * becoming part of another group-sibling):
10151 */
10152 if (group_leader->group_leader != group_leader)
c3f00c70 10153 goto err_context;
34f43927
PZ
10154
10155 /* All events in a group should have the same clock */
10156 if (group_leader->clock != event->clock)
10157 goto err_context;
10158
ccff286d 10159 /*
64aee2a9
MR
10160 * Make sure we're both events for the same CPU;
10161 * grouping events for different CPUs is broken; since
10162 * you can never concurrently schedule them anyhow.
04289bb9 10163 */
64aee2a9
MR
10164 if (group_leader->cpu != event->cpu)
10165 goto err_context;
c3c87e77 10166
64aee2a9
MR
10167 /*
10168 * Make sure we're both on the same task, or both
10169 * per-CPU events.
10170 */
10171 if (group_leader->ctx->task != ctx->task)
10172 goto err_context;
10173
10174 /*
10175 * Do not allow to attach to a group in a different task
10176 * or CPU context. If we're moving SW events, we'll fix
10177 * this up later, so allow that.
10178 */
10179 if (!move_group && group_leader->ctx != ctx)
10180 goto err_context;
b04243ef 10181
3b6f9e5c
PM
10182 /*
10183 * Only a group leader can be exclusive or pinned
10184 */
0d48696f 10185 if (attr.exclusive || attr.pinned)
c3f00c70 10186 goto err_context;
ac9721f3
PZ
10187 }
10188
10189 if (output_event) {
10190 err = perf_event_set_output(event, output_event);
10191 if (err)
c3f00c70 10192 goto err_context;
ac9721f3 10193 }
0793a61d 10194
a21b0b35
YD
10195 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
10196 f_flags);
ea635c64
AV
10197 if (IS_ERR(event_file)) {
10198 err = PTR_ERR(event_file);
201c2f85 10199 event_file = NULL;
c3f00c70 10200 goto err_context;
ea635c64 10201 }
9b51f66d 10202
b04243ef 10203 if (move_group) {
321027c1
PZ
10204 gctx = __perf_event_ctx_lock_double(group_leader, ctx);
10205
84c4e620
PZ
10206 if (gctx->task == TASK_TOMBSTONE) {
10207 err = -ESRCH;
10208 goto err_locked;
10209 }
321027c1
PZ
10210
10211 /*
10212 * Check if we raced against another sys_perf_event_open() call
10213 * moving the software group underneath us.
10214 */
10215 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
10216 /*
10217 * If someone moved the group out from under us, check
10218 * if this new event wound up on the same ctx, if so
10219 * its the regular !move_group case, otherwise fail.
10220 */
10221 if (gctx != ctx) {
10222 err = -EINVAL;
10223 goto err_locked;
10224 } else {
10225 perf_event_ctx_unlock(group_leader, gctx);
10226 move_group = 0;
10227 }
10228 }
f55fc2a5
PZ
10229 } else {
10230 mutex_lock(&ctx->mutex);
10231 }
10232
84c4e620
PZ
10233 if (ctx->task == TASK_TOMBSTONE) {
10234 err = -ESRCH;
10235 goto err_locked;
10236 }
10237
a723968c
PZ
10238 if (!perf_event_validate_size(event)) {
10239 err = -E2BIG;
10240 goto err_locked;
10241 }
10242
a63fbed7
TG
10243 if (!task) {
10244 /*
10245 * Check if the @cpu we're creating an event for is online.
10246 *
10247 * We use the perf_cpu_context::ctx::mutex to serialize against
10248 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
10249 */
10250 struct perf_cpu_context *cpuctx =
10251 container_of(ctx, struct perf_cpu_context, ctx);
10252
10253 if (!cpuctx->online) {
10254 err = -ENODEV;
10255 goto err_locked;
10256 }
10257 }
10258
10259
f55fc2a5
PZ
10260 /*
10261 * Must be under the same ctx::mutex as perf_install_in_context(),
10262 * because we need to serialize with concurrent event creation.
10263 */
10264 if (!exclusive_event_installable(event, ctx)) {
10265 /* exclusive and group stuff are assumed mutually exclusive */
10266 WARN_ON_ONCE(move_group);
f63a8daa 10267
f55fc2a5
PZ
10268 err = -EBUSY;
10269 goto err_locked;
10270 }
f63a8daa 10271
f55fc2a5
PZ
10272 WARN_ON_ONCE(ctx->parent_ctx);
10273
79c9ce57
PZ
10274 /*
10275 * This is the point on no return; we cannot fail hereafter. This is
10276 * where we start modifying current state.
10277 */
10278
f55fc2a5 10279 if (move_group) {
f63a8daa
PZ
10280 /*
10281 * See perf_event_ctx_lock() for comments on the details
10282 * of swizzling perf_event::ctx.
10283 */
45a0e07a 10284 perf_remove_from_context(group_leader, 0);
279b5165 10285 put_ctx(gctx);
0231bb53 10286
b04243ef
PZ
10287 list_for_each_entry(sibling, &group_leader->sibling_list,
10288 group_entry) {
45a0e07a 10289 perf_remove_from_context(sibling, 0);
b04243ef
PZ
10290 put_ctx(gctx);
10291 }
b04243ef 10292
f63a8daa
PZ
10293 /*
10294 * Wait for everybody to stop referencing the events through
10295 * the old lists, before installing it on new lists.
10296 */
0cda4c02 10297 synchronize_rcu();
f63a8daa 10298
8f95b435
PZI
10299 /*
10300 * Install the group siblings before the group leader.
10301 *
10302 * Because a group leader will try and install the entire group
10303 * (through the sibling list, which is still in-tact), we can
10304 * end up with siblings installed in the wrong context.
10305 *
10306 * By installing siblings first we NO-OP because they're not
10307 * reachable through the group lists.
10308 */
b04243ef
PZ
10309 list_for_each_entry(sibling, &group_leader->sibling_list,
10310 group_entry) {
8f95b435 10311 perf_event__state_init(sibling);
9fc81d87 10312 perf_install_in_context(ctx, sibling, sibling->cpu);
b04243ef
PZ
10313 get_ctx(ctx);
10314 }
8f95b435
PZI
10315
10316 /*
10317 * Removing from the context ends up with disabled
10318 * event. What we want here is event in the initial
10319 * startup state, ready to be add into new context.
10320 */
10321 perf_event__state_init(group_leader);
10322 perf_install_in_context(ctx, group_leader, group_leader->cpu);
10323 get_ctx(ctx);
bed5b25a
AS
10324 }
10325
f73e22ab
PZ
10326 /*
10327 * Precalculate sample_data sizes; do while holding ctx::mutex such
10328 * that we're serialized against further additions and before
10329 * perf_install_in_context() which is the point the event is active and
10330 * can use these values.
10331 */
10332 perf_event__header_size(event);
10333 perf_event__id_header_size(event);
10334
78cd2c74
PZ
10335 event->owner = current;
10336
e2d37cd2 10337 perf_install_in_context(ctx, event, event->cpu);
fe4b04fa 10338 perf_unpin_context(ctx);
f63a8daa 10339
f55fc2a5 10340 if (move_group)
321027c1 10341 perf_event_ctx_unlock(group_leader, gctx);
d859e29f 10342 mutex_unlock(&ctx->mutex);
9b51f66d 10343
79c9ce57
PZ
10344 if (task) {
10345 mutex_unlock(&task->signal->cred_guard_mutex);
10346 put_task_struct(task);
10347 }
10348
cdd6c482
IM
10349 mutex_lock(&current->perf_event_mutex);
10350 list_add_tail(&event->owner_entry, &current->perf_event_list);
10351 mutex_unlock(&current->perf_event_mutex);
082ff5a2 10352
8a49542c
PZ
10353 /*
10354 * Drop the reference on the group_event after placing the
10355 * new event on the sibling_list. This ensures destruction
10356 * of the group leader will find the pointer to itself in
10357 * perf_group_detach().
10358 */
2903ff01 10359 fdput(group);
ea635c64
AV
10360 fd_install(event_fd, event_file);
10361 return event_fd;
0793a61d 10362
f55fc2a5
PZ
10363err_locked:
10364 if (move_group)
321027c1 10365 perf_event_ctx_unlock(group_leader, gctx);
f55fc2a5
PZ
10366 mutex_unlock(&ctx->mutex);
10367/* err_file: */
10368 fput(event_file);
c3f00c70 10369err_context:
fe4b04fa 10370 perf_unpin_context(ctx);
ea635c64 10371 put_ctx(ctx);
c6be5a5c 10372err_alloc:
13005627
PZ
10373 /*
10374 * If event_file is set, the fput() above will have called ->release()
10375 * and that will take care of freeing the event.
10376 */
10377 if (!event_file)
10378 free_event(event);
79c9ce57
PZ
10379err_cred:
10380 if (task)
10381 mutex_unlock(&task->signal->cred_guard_mutex);
1f4ee503 10382err_task:
e7d0bc04
PZ
10383 if (task)
10384 put_task_struct(task);
89a1e187 10385err_group_fd:
2903ff01 10386 fdput(group);
ea635c64
AV
10387err_fd:
10388 put_unused_fd(event_fd);
dc86cabe 10389 return err;
0793a61d
TG
10390}
10391
fb0459d7
AV
10392/**
10393 * perf_event_create_kernel_counter
10394 *
10395 * @attr: attributes of the counter to create
10396 * @cpu: cpu in which the counter is bound
38a81da2 10397 * @task: task to profile (NULL for percpu)
fb0459d7
AV
10398 */
10399struct perf_event *
10400perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
38a81da2 10401 struct task_struct *task,
4dc0da86
AK
10402 perf_overflow_handler_t overflow_handler,
10403 void *context)
fb0459d7 10404{
fb0459d7 10405 struct perf_event_context *ctx;
c3f00c70 10406 struct perf_event *event;
fb0459d7 10407 int err;
d859e29f 10408
fb0459d7
AV
10409 /*
10410 * Get the target context (task or percpu):
10411 */
d859e29f 10412
4dc0da86 10413 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
79dff51e 10414 overflow_handler, context, -1);
c3f00c70
PZ
10415 if (IS_ERR(event)) {
10416 err = PTR_ERR(event);
10417 goto err;
10418 }
d859e29f 10419
f8697762 10420 /* Mark owner so we could distinguish it from user events. */
63b6da39 10421 event->owner = TASK_TOMBSTONE;
f8697762 10422
4af57ef2 10423 ctx = find_get_context(event->pmu, task, event);
c6567f64
FW
10424 if (IS_ERR(ctx)) {
10425 err = PTR_ERR(ctx);
c3f00c70 10426 goto err_free;
d859e29f 10427 }
fb0459d7 10428
fb0459d7
AV
10429 WARN_ON_ONCE(ctx->parent_ctx);
10430 mutex_lock(&ctx->mutex);
84c4e620
PZ
10431 if (ctx->task == TASK_TOMBSTONE) {
10432 err = -ESRCH;
10433 goto err_unlock;
10434 }
10435
a63fbed7
TG
10436 if (!task) {
10437 /*
10438 * Check if the @cpu we're creating an event for is online.
10439 *
10440 * We use the perf_cpu_context::ctx::mutex to serialize against
10441 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
10442 */
10443 struct perf_cpu_context *cpuctx =
10444 container_of(ctx, struct perf_cpu_context, ctx);
10445 if (!cpuctx->online) {
10446 err = -ENODEV;
10447 goto err_unlock;
10448 }
10449 }
10450
bed5b25a 10451 if (!exclusive_event_installable(event, ctx)) {
bed5b25a 10452 err = -EBUSY;
84c4e620 10453 goto err_unlock;
bed5b25a
AS
10454 }
10455
fb0459d7 10456 perf_install_in_context(ctx, event, cpu);
fe4b04fa 10457 perf_unpin_context(ctx);
fb0459d7
AV
10458 mutex_unlock(&ctx->mutex);
10459
fb0459d7
AV
10460 return event;
10461
84c4e620
PZ
10462err_unlock:
10463 mutex_unlock(&ctx->mutex);
10464 perf_unpin_context(ctx);
10465 put_ctx(ctx);
c3f00c70
PZ
10466err_free:
10467 free_event(event);
10468err:
c6567f64 10469 return ERR_PTR(err);
9b51f66d 10470}
fb0459d7 10471EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
9b51f66d 10472
0cda4c02
YZ
10473void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
10474{
10475 struct perf_event_context *src_ctx;
10476 struct perf_event_context *dst_ctx;
10477 struct perf_event *event, *tmp;
10478 LIST_HEAD(events);
10479
10480 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
10481 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
10482
f63a8daa
PZ
10483 /*
10484 * See perf_event_ctx_lock() for comments on the details
10485 * of swizzling perf_event::ctx.
10486 */
10487 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
0cda4c02
YZ
10488 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
10489 event_entry) {
45a0e07a 10490 perf_remove_from_context(event, 0);
9a545de0 10491 unaccount_event_cpu(event, src_cpu);
0cda4c02 10492 put_ctx(src_ctx);
9886167d 10493 list_add(&event->migrate_entry, &events);
0cda4c02 10494 }
0cda4c02 10495
8f95b435
PZI
10496 /*
10497 * Wait for the events to quiesce before re-instating them.
10498 */
0cda4c02
YZ
10499 synchronize_rcu();
10500
8f95b435
PZI
10501 /*
10502 * Re-instate events in 2 passes.
10503 *
10504 * Skip over group leaders and only install siblings on this first
10505 * pass, siblings will not get enabled without a leader, however a
10506 * leader will enable its siblings, even if those are still on the old
10507 * context.
10508 */
10509 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10510 if (event->group_leader == event)
10511 continue;
10512
10513 list_del(&event->migrate_entry);
10514 if (event->state >= PERF_EVENT_STATE_OFF)
10515 event->state = PERF_EVENT_STATE_INACTIVE;
10516 account_event_cpu(event, dst_cpu);
10517 perf_install_in_context(dst_ctx, event, dst_cpu);
10518 get_ctx(dst_ctx);
10519 }
10520
10521 /*
10522 * Once all the siblings are setup properly, install the group leaders
10523 * to make it go.
10524 */
9886167d
PZ
10525 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10526 list_del(&event->migrate_entry);
0cda4c02
YZ
10527 if (event->state >= PERF_EVENT_STATE_OFF)
10528 event->state = PERF_EVENT_STATE_INACTIVE;
9a545de0 10529 account_event_cpu(event, dst_cpu);
0cda4c02
YZ
10530 perf_install_in_context(dst_ctx, event, dst_cpu);
10531 get_ctx(dst_ctx);
10532 }
10533 mutex_unlock(&dst_ctx->mutex);
f63a8daa 10534 mutex_unlock(&src_ctx->mutex);
0cda4c02
YZ
10535}
10536EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
10537
cdd6c482 10538static void sync_child_event(struct perf_event *child_event,
38b200d6 10539 struct task_struct *child)
d859e29f 10540{
cdd6c482 10541 struct perf_event *parent_event = child_event->parent;
8bc20959 10542 u64 child_val;
d859e29f 10543
cdd6c482
IM
10544 if (child_event->attr.inherit_stat)
10545 perf_event_read_event(child_event, child);
38b200d6 10546
b5e58793 10547 child_val = perf_event_count(child_event);
d859e29f
PM
10548
10549 /*
10550 * Add back the child's count to the parent's count:
10551 */
a6e6dea6 10552 atomic64_add(child_val, &parent_event->child_count);
cdd6c482
IM
10553 atomic64_add(child_event->total_time_enabled,
10554 &parent_event->child_total_time_enabled);
10555 atomic64_add(child_event->total_time_running,
10556 &parent_event->child_total_time_running);
d859e29f
PM
10557}
10558
9b51f66d 10559static void
8ba289b8
PZ
10560perf_event_exit_event(struct perf_event *child_event,
10561 struct perf_event_context *child_ctx,
10562 struct task_struct *child)
9b51f66d 10563{
8ba289b8
PZ
10564 struct perf_event *parent_event = child_event->parent;
10565
1903d50c
PZ
10566 /*
10567 * Do not destroy the 'original' grouping; because of the context
10568 * switch optimization the original events could've ended up in a
10569 * random child task.
10570 *
10571 * If we were to destroy the original group, all group related
10572 * operations would cease to function properly after this random
10573 * child dies.
10574 *
10575 * Do destroy all inherited groups, we don't care about those
10576 * and being thorough is better.
10577 */
32132a3d
PZ
10578 raw_spin_lock_irq(&child_ctx->lock);
10579 WARN_ON_ONCE(child_ctx->is_active);
10580
8ba289b8 10581 if (parent_event)
32132a3d
PZ
10582 perf_group_detach(child_event);
10583 list_del_event(child_event, child_ctx);
a69b0ca4 10584 child_event->state = PERF_EVENT_STATE_EXIT; /* is_event_hup() */
32132a3d 10585 raw_spin_unlock_irq(&child_ctx->lock);
0cc0c027 10586
9b51f66d 10587 /*
8ba289b8 10588 * Parent events are governed by their filedesc, retain them.
9b51f66d 10589 */
8ba289b8 10590 if (!parent_event) {
179033b3 10591 perf_event_wakeup(child_event);
8ba289b8 10592 return;
4bcf349a 10593 }
8ba289b8
PZ
10594 /*
10595 * Child events can be cleaned up.
10596 */
10597
10598 sync_child_event(child_event, child);
10599
10600 /*
10601 * Remove this event from the parent's list
10602 */
10603 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
10604 mutex_lock(&parent_event->child_mutex);
10605 list_del_init(&child_event->child_list);
10606 mutex_unlock(&parent_event->child_mutex);
10607
10608 /*
10609 * Kick perf_poll() for is_event_hup().
10610 */
10611 perf_event_wakeup(parent_event);
10612 free_event(child_event);
10613 put_event(parent_event);
9b51f66d
IM
10614}
10615
8dc85d54 10616static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
9b51f66d 10617{
211de6eb 10618 struct perf_event_context *child_ctx, *clone_ctx = NULL;
63b6da39 10619 struct perf_event *child_event, *next;
63b6da39
PZ
10620
10621 WARN_ON_ONCE(child != current);
9b51f66d 10622
6a3351b6 10623 child_ctx = perf_pin_task_context(child, ctxn);
63b6da39 10624 if (!child_ctx)
9b51f66d
IM
10625 return;
10626
ad3a37de 10627 /*
6a3351b6
PZ
10628 * In order to reduce the amount of tricky in ctx tear-down, we hold
10629 * ctx::mutex over the entire thing. This serializes against almost
10630 * everything that wants to access the ctx.
10631 *
10632 * The exception is sys_perf_event_open() /
10633 * perf_event_create_kernel_count() which does find_get_context()
10634 * without ctx::mutex (it cannot because of the move_group double mutex
10635 * lock thing). See the comments in perf_install_in_context().
ad3a37de 10636 */
6a3351b6 10637 mutex_lock(&child_ctx->mutex);
c93f7669
PM
10638
10639 /*
6a3351b6
PZ
10640 * In a single ctx::lock section, de-schedule the events and detach the
10641 * context from the task such that we cannot ever get it scheduled back
10642 * in.
c93f7669 10643 */
6a3351b6 10644 raw_spin_lock_irq(&child_ctx->lock);
487f05e1 10645 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
4a1c0f26 10646
71a851b4 10647 /*
63b6da39
PZ
10648 * Now that the context is inactive, destroy the task <-> ctx relation
10649 * and mark the context dead.
71a851b4 10650 */
63b6da39
PZ
10651 RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
10652 put_ctx(child_ctx); /* cannot be last */
10653 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
10654 put_task_struct(current); /* cannot be last */
4a1c0f26 10655
211de6eb 10656 clone_ctx = unclone_ctx(child_ctx);
6a3351b6 10657 raw_spin_unlock_irq(&child_ctx->lock);
9f498cc5 10658
211de6eb
PZ
10659 if (clone_ctx)
10660 put_ctx(clone_ctx);
4a1c0f26 10661
9f498cc5 10662 /*
cdd6c482
IM
10663 * Report the task dead after unscheduling the events so that we
10664 * won't get any samples after PERF_RECORD_EXIT. We can however still
10665 * get a few PERF_RECORD_READ events.
9f498cc5 10666 */
cdd6c482 10667 perf_event_task(child, child_ctx, 0);
a63eaf34 10668
ebf905fc 10669 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
8ba289b8 10670 perf_event_exit_event(child_event, child_ctx, child);
8bc20959 10671
a63eaf34
PM
10672 mutex_unlock(&child_ctx->mutex);
10673
10674 put_ctx(child_ctx);
9b51f66d
IM
10675}
10676
8dc85d54
PZ
10677/*
10678 * When a child task exits, feed back event values to parent events.
79c9ce57
PZ
10679 *
10680 * Can be called with cred_guard_mutex held when called from
10681 * install_exec_creds().
8dc85d54
PZ
10682 */
10683void perf_event_exit_task(struct task_struct *child)
10684{
8882135b 10685 struct perf_event *event, *tmp;
8dc85d54
PZ
10686 int ctxn;
10687
8882135b
PZ
10688 mutex_lock(&child->perf_event_mutex);
10689 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
10690 owner_entry) {
10691 list_del_init(&event->owner_entry);
10692
10693 /*
10694 * Ensure the list deletion is visible before we clear
10695 * the owner, closes a race against perf_release() where
10696 * we need to serialize on the owner->perf_event_mutex.
10697 */
f47c02c0 10698 smp_store_release(&event->owner, NULL);
8882135b
PZ
10699 }
10700 mutex_unlock(&child->perf_event_mutex);
10701
8dc85d54
PZ
10702 for_each_task_context_nr(ctxn)
10703 perf_event_exit_task_context(child, ctxn);
4e93ad60
JO
10704
10705 /*
10706 * The perf_event_exit_task_context calls perf_event_task
10707 * with child's task_ctx, which generates EXIT events for
10708 * child contexts and sets child->perf_event_ctxp[] to NULL.
10709 * At this point we need to send EXIT events to cpu contexts.
10710 */
10711 perf_event_task(child, NULL, 0);
8dc85d54
PZ
10712}
10713
889ff015
FW
10714static void perf_free_event(struct perf_event *event,
10715 struct perf_event_context *ctx)
10716{
10717 struct perf_event *parent = event->parent;
10718
10719 if (WARN_ON_ONCE(!parent))
10720 return;
10721
10722 mutex_lock(&parent->child_mutex);
10723 list_del_init(&event->child_list);
10724 mutex_unlock(&parent->child_mutex);
10725
a6fa941d 10726 put_event(parent);
889ff015 10727
652884fe 10728 raw_spin_lock_irq(&ctx->lock);
8a49542c 10729 perf_group_detach(event);
889ff015 10730 list_del_event(event, ctx);
652884fe 10731 raw_spin_unlock_irq(&ctx->lock);
889ff015
FW
10732 free_event(event);
10733}
10734
bbbee908 10735/*
652884fe 10736 * Free an unexposed, unused context as created by inheritance by
8dc85d54 10737 * perf_event_init_task below, used by fork() in case of fail.
652884fe
PZ
10738 *
10739 * Not all locks are strictly required, but take them anyway to be nice and
10740 * help out with the lockdep assertions.
bbbee908 10741 */
cdd6c482 10742void perf_event_free_task(struct task_struct *task)
bbbee908 10743{
8dc85d54 10744 struct perf_event_context *ctx;
cdd6c482 10745 struct perf_event *event, *tmp;
8dc85d54 10746 int ctxn;
bbbee908 10747
8dc85d54
PZ
10748 for_each_task_context_nr(ctxn) {
10749 ctx = task->perf_event_ctxp[ctxn];
10750 if (!ctx)
10751 continue;
bbbee908 10752
8dc85d54 10753 mutex_lock(&ctx->mutex);
e552a838
PZ
10754 raw_spin_lock_irq(&ctx->lock);
10755 /*
10756 * Destroy the task <-> ctx relation and mark the context dead.
10757 *
10758 * This is important because even though the task hasn't been
10759 * exposed yet the context has been (through child_list).
10760 */
10761 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
10762 WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
10763 put_task_struct(task); /* cannot be last */
10764 raw_spin_unlock_irq(&ctx->lock);
bbbee908 10765
15121c78 10766 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
8dc85d54 10767 perf_free_event(event, ctx);
bbbee908 10768
8dc85d54 10769 mutex_unlock(&ctx->mutex);
8dc85d54
PZ
10770 put_ctx(ctx);
10771 }
889ff015
FW
10772}
10773
4e231c79
PZ
10774void perf_event_delayed_put(struct task_struct *task)
10775{
10776 int ctxn;
10777
10778 for_each_task_context_nr(ctxn)
10779 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
10780}
10781
e03e7ee3 10782struct file *perf_event_get(unsigned int fd)
ffe8690c 10783{
e03e7ee3 10784 struct file *file;
ffe8690c 10785
e03e7ee3
AS
10786 file = fget_raw(fd);
10787 if (!file)
10788 return ERR_PTR(-EBADF);
ffe8690c 10789
e03e7ee3
AS
10790 if (file->f_op != &perf_fops) {
10791 fput(file);
10792 return ERR_PTR(-EBADF);
10793 }
ffe8690c 10794
e03e7ee3 10795 return file;
ffe8690c
KX
10796}
10797
10798const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
10799{
10800 if (!event)
10801 return ERR_PTR(-EINVAL);
10802
10803 return &event->attr;
10804}
10805
97dee4f3 10806/*
d8a8cfc7
PZ
10807 * Inherit a event from parent task to child task.
10808 *
10809 * Returns:
10810 * - valid pointer on success
10811 * - NULL for orphaned events
10812 * - IS_ERR() on error
97dee4f3
PZ
10813 */
10814static struct perf_event *
10815inherit_event(struct perf_event *parent_event,
10816 struct task_struct *parent,
10817 struct perf_event_context *parent_ctx,
10818 struct task_struct *child,
10819 struct perf_event *group_leader,
10820 struct perf_event_context *child_ctx)
10821{
8ca2bd41 10822 enum perf_event_state parent_state = parent_event->state;
97dee4f3 10823 struct perf_event *child_event;
cee010ec 10824 unsigned long flags;
97dee4f3
PZ
10825
10826 /*
10827 * Instead of creating recursive hierarchies of events,
10828 * we link inherited events back to the original parent,
10829 * which has a filp for sure, which we use as the reference
10830 * count:
10831 */
10832 if (parent_event->parent)
10833 parent_event = parent_event->parent;
10834
10835 child_event = perf_event_alloc(&parent_event->attr,
10836 parent_event->cpu,
d580ff86 10837 child,
97dee4f3 10838 group_leader, parent_event,
79dff51e 10839 NULL, NULL, -1);
97dee4f3
PZ
10840 if (IS_ERR(child_event))
10841 return child_event;
a6fa941d 10842
c6e5b732
PZ
10843 /*
10844 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
10845 * must be under the same lock in order to serialize against
10846 * perf_event_release_kernel(), such that either we must observe
10847 * is_orphaned_event() or they will observe us on the child_list.
10848 */
10849 mutex_lock(&parent_event->child_mutex);
fadfe7be
JO
10850 if (is_orphaned_event(parent_event) ||
10851 !atomic_long_inc_not_zero(&parent_event->refcount)) {
c6e5b732 10852 mutex_unlock(&parent_event->child_mutex);
a6fa941d
AV
10853 free_event(child_event);
10854 return NULL;
10855 }
10856
97dee4f3
PZ
10857 get_ctx(child_ctx);
10858
10859 /*
10860 * Make the child state follow the state of the parent event,
10861 * not its attr.disabled bit. We hold the parent's mutex,
10862 * so we won't race with perf_event_{en, dis}able_family.
10863 */
1929def9 10864 if (parent_state >= PERF_EVENT_STATE_INACTIVE)
97dee4f3
PZ
10865 child_event->state = PERF_EVENT_STATE_INACTIVE;
10866 else
10867 child_event->state = PERF_EVENT_STATE_OFF;
10868
10869 if (parent_event->attr.freq) {
10870 u64 sample_period = parent_event->hw.sample_period;
10871 struct hw_perf_event *hwc = &child_event->hw;
10872
10873 hwc->sample_period = sample_period;
10874 hwc->last_period = sample_period;
10875
10876 local64_set(&hwc->period_left, sample_period);
10877 }
10878
10879 child_event->ctx = child_ctx;
10880 child_event->overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
10881 child_event->overflow_handler_context
10882 = parent_event->overflow_handler_context;
97dee4f3 10883
614b6780
TG
10884 /*
10885 * Precalculate sample_data sizes
10886 */
10887 perf_event__header_size(child_event);
6844c09d 10888 perf_event__id_header_size(child_event);
614b6780 10889
97dee4f3
PZ
10890 /*
10891 * Link it up in the child's context:
10892 */
cee010ec 10893 raw_spin_lock_irqsave(&child_ctx->lock, flags);
97dee4f3 10894 add_event_to_ctx(child_event, child_ctx);
cee010ec 10895 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
97dee4f3 10896
97dee4f3
PZ
10897 /*
10898 * Link this into the parent event's child list
10899 */
97dee4f3
PZ
10900 list_add_tail(&child_event->child_list, &parent_event->child_list);
10901 mutex_unlock(&parent_event->child_mutex);
10902
10903 return child_event;
10904}
10905
d8a8cfc7
PZ
10906/*
10907 * Inherits an event group.
10908 *
10909 * This will quietly suppress orphaned events; !inherit_event() is not an error.
10910 * This matches with perf_event_release_kernel() removing all child events.
10911 *
10912 * Returns:
10913 * - 0 on success
10914 * - <0 on error
10915 */
97dee4f3
PZ
10916static int inherit_group(struct perf_event *parent_event,
10917 struct task_struct *parent,
10918 struct perf_event_context *parent_ctx,
10919 struct task_struct *child,
10920 struct perf_event_context *child_ctx)
10921{
10922 struct perf_event *leader;
10923 struct perf_event *sub;
10924 struct perf_event *child_ctr;
10925
10926 leader = inherit_event(parent_event, parent, parent_ctx,
10927 child, NULL, child_ctx);
10928 if (IS_ERR(leader))
10929 return PTR_ERR(leader);
d8a8cfc7
PZ
10930 /*
10931 * @leader can be NULL here because of is_orphaned_event(). In this
10932 * case inherit_event() will create individual events, similar to what
10933 * perf_group_detach() would do anyway.
10934 */
97dee4f3
PZ
10935 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
10936 child_ctr = inherit_event(sub, parent, parent_ctx,
10937 child, leader, child_ctx);
10938 if (IS_ERR(child_ctr))
10939 return PTR_ERR(child_ctr);
10940 }
10941 return 0;
889ff015
FW
10942}
10943
d8a8cfc7
PZ
10944/*
10945 * Creates the child task context and tries to inherit the event-group.
10946 *
10947 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
10948 * inherited_all set when we 'fail' to inherit an orphaned event; this is
10949 * consistent with perf_event_release_kernel() removing all child events.
10950 *
10951 * Returns:
10952 * - 0 on success
10953 * - <0 on error
10954 */
889ff015
FW
10955static int
10956inherit_task_group(struct perf_event *event, struct task_struct *parent,
10957 struct perf_event_context *parent_ctx,
8dc85d54 10958 struct task_struct *child, int ctxn,
889ff015
FW
10959 int *inherited_all)
10960{
10961 int ret;
8dc85d54 10962 struct perf_event_context *child_ctx;
889ff015
FW
10963
10964 if (!event->attr.inherit) {
10965 *inherited_all = 0;
10966 return 0;
bbbee908
PZ
10967 }
10968
fe4b04fa 10969 child_ctx = child->perf_event_ctxp[ctxn];
889ff015
FW
10970 if (!child_ctx) {
10971 /*
10972 * This is executed from the parent task context, so
10973 * inherit events that have been marked for cloning.
10974 * First allocate and initialize a context for the
10975 * child.
10976 */
734df5ab 10977 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
889ff015
FW
10978 if (!child_ctx)
10979 return -ENOMEM;
bbbee908 10980
8dc85d54 10981 child->perf_event_ctxp[ctxn] = child_ctx;
889ff015
FW
10982 }
10983
10984 ret = inherit_group(event, parent, parent_ctx,
10985 child, child_ctx);
10986
10987 if (ret)
10988 *inherited_all = 0;
10989
10990 return ret;
bbbee908
PZ
10991}
10992
9b51f66d 10993/*
cdd6c482 10994 * Initialize the perf_event context in task_struct
9b51f66d 10995 */
985c8dcb 10996static int perf_event_init_context(struct task_struct *child, int ctxn)
9b51f66d 10997{
889ff015 10998 struct perf_event_context *child_ctx, *parent_ctx;
cdd6c482
IM
10999 struct perf_event_context *cloned_ctx;
11000 struct perf_event *event;
9b51f66d 11001 struct task_struct *parent = current;
564c2b21 11002 int inherited_all = 1;
dddd3379 11003 unsigned long flags;
6ab423e0 11004 int ret = 0;
9b51f66d 11005
8dc85d54 11006 if (likely(!parent->perf_event_ctxp[ctxn]))
6ab423e0
PZ
11007 return 0;
11008
ad3a37de 11009 /*
25346b93
PM
11010 * If the parent's context is a clone, pin it so it won't get
11011 * swapped under us.
ad3a37de 11012 */
8dc85d54 11013 parent_ctx = perf_pin_task_context(parent, ctxn);
ffb4ef21
PZ
11014 if (!parent_ctx)
11015 return 0;
25346b93 11016
ad3a37de
PM
11017 /*
11018 * No need to check if parent_ctx != NULL here; since we saw
11019 * it non-NULL earlier, the only reason for it to become NULL
11020 * is if we exit, and since we're currently in the middle of
11021 * a fork we can't be exiting at the same time.
11022 */
ad3a37de 11023
9b51f66d
IM
11024 /*
11025 * Lock the parent list. No need to lock the child - not PID
11026 * hashed yet and not running, so nobody can access it.
11027 */
d859e29f 11028 mutex_lock(&parent_ctx->mutex);
9b51f66d
IM
11029
11030 /*
11031 * We dont have to disable NMIs - we are only looking at
11032 * the list, not manipulating it:
11033 */
889ff015 11034 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
8dc85d54
PZ
11035 ret = inherit_task_group(event, parent, parent_ctx,
11036 child, ctxn, &inherited_all);
889ff015 11037 if (ret)
e7cc4865 11038 goto out_unlock;
889ff015 11039 }
b93f7978 11040
dddd3379
TG
11041 /*
11042 * We can't hold ctx->lock when iterating the ->flexible_group list due
11043 * to allocations, but we need to prevent rotation because
11044 * rotate_ctx() will change the list from interrupt context.
11045 */
11046 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
11047 parent_ctx->rotate_disable = 1;
11048 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
11049
889ff015 11050 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
8dc85d54
PZ
11051 ret = inherit_task_group(event, parent, parent_ctx,
11052 child, ctxn, &inherited_all);
889ff015 11053 if (ret)
e7cc4865 11054 goto out_unlock;
564c2b21
PM
11055 }
11056
dddd3379
TG
11057 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
11058 parent_ctx->rotate_disable = 0;
dddd3379 11059
8dc85d54 11060 child_ctx = child->perf_event_ctxp[ctxn];
889ff015 11061
05cbaa28 11062 if (child_ctx && inherited_all) {
564c2b21
PM
11063 /*
11064 * Mark the child context as a clone of the parent
11065 * context, or of whatever the parent is a clone of.
c5ed5145
PZ
11066 *
11067 * Note that if the parent is a clone, the holding of
11068 * parent_ctx->lock avoids it from being uncloned.
564c2b21 11069 */
c5ed5145 11070 cloned_ctx = parent_ctx->parent_ctx;
ad3a37de
PM
11071 if (cloned_ctx) {
11072 child_ctx->parent_ctx = cloned_ctx;
25346b93 11073 child_ctx->parent_gen = parent_ctx->parent_gen;
564c2b21
PM
11074 } else {
11075 child_ctx->parent_ctx = parent_ctx;
11076 child_ctx->parent_gen = parent_ctx->generation;
11077 }
11078 get_ctx(child_ctx->parent_ctx);
9b51f66d
IM
11079 }
11080
c5ed5145 11081 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
e7cc4865 11082out_unlock:
d859e29f 11083 mutex_unlock(&parent_ctx->mutex);
6ab423e0 11084
25346b93 11085 perf_unpin_context(parent_ctx);
fe4b04fa 11086 put_ctx(parent_ctx);
ad3a37de 11087
6ab423e0 11088 return ret;
9b51f66d
IM
11089}
11090
8dc85d54
PZ
11091/*
11092 * Initialize the perf_event context in task_struct
11093 */
11094int perf_event_init_task(struct task_struct *child)
11095{
11096 int ctxn, ret;
11097
8550d7cb
ON
11098 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
11099 mutex_init(&child->perf_event_mutex);
11100 INIT_LIST_HEAD(&child->perf_event_list);
11101
8dc85d54
PZ
11102 for_each_task_context_nr(ctxn) {
11103 ret = perf_event_init_context(child, ctxn);
6c72e350
PZ
11104 if (ret) {
11105 perf_event_free_task(child);
8dc85d54 11106 return ret;
6c72e350 11107 }
8dc85d54
PZ
11108 }
11109
11110 return 0;
11111}
11112
220b140b
PM
11113static void __init perf_event_init_all_cpus(void)
11114{
b28ab83c 11115 struct swevent_htable *swhash;
220b140b 11116 int cpu;
220b140b 11117
a63fbed7
TG
11118 zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
11119
220b140b 11120 for_each_possible_cpu(cpu) {
b28ab83c
PZ
11121 swhash = &per_cpu(swevent_htable, cpu);
11122 mutex_init(&swhash->hlist_mutex);
2fde4f94 11123 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
f2fb6bef
KL
11124
11125 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
11126 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
e48c1788 11127
058fe1c0
DCC
11128#ifdef CONFIG_CGROUP_PERF
11129 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
11130#endif
e48c1788 11131 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
220b140b
PM
11132 }
11133}
11134
a63fbed7 11135void perf_swevent_init_cpu(unsigned int cpu)
0793a61d 11136{
108b02cf 11137 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
0793a61d 11138
b28ab83c 11139 mutex_lock(&swhash->hlist_mutex);
059fcd8c 11140 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
76e1d904
FW
11141 struct swevent_hlist *hlist;
11142
b28ab83c
PZ
11143 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
11144 WARN_ON(!hlist);
11145 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 11146 }
b28ab83c 11147 mutex_unlock(&swhash->hlist_mutex);
0793a61d
TG
11148}
11149
2965faa5 11150#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
108b02cf 11151static void __perf_event_exit_context(void *__info)
0793a61d 11152{
108b02cf 11153 struct perf_event_context *ctx = __info;
fae3fde6
PZ
11154 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
11155 struct perf_event *event;
0793a61d 11156
fae3fde6 11157 raw_spin_lock(&ctx->lock);
0ee098c9 11158 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
fae3fde6 11159 list_for_each_entry(event, &ctx->event_list, event_entry)
45a0e07a 11160 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
fae3fde6 11161 raw_spin_unlock(&ctx->lock);
0793a61d 11162}
108b02cf
PZ
11163
11164static void perf_event_exit_cpu_context(int cpu)
11165{
a63fbed7 11166 struct perf_cpu_context *cpuctx;
108b02cf
PZ
11167 struct perf_event_context *ctx;
11168 struct pmu *pmu;
108b02cf 11169
a63fbed7
TG
11170 mutex_lock(&pmus_lock);
11171 list_for_each_entry(pmu, &pmus, entry) {
11172 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11173 ctx = &cpuctx->ctx;
108b02cf
PZ
11174
11175 mutex_lock(&ctx->mutex);
11176 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
a63fbed7 11177 cpuctx->online = 0;
108b02cf
PZ
11178 mutex_unlock(&ctx->mutex);
11179 }
a63fbed7
TG
11180 cpumask_clear_cpu(cpu, perf_online_mask);
11181 mutex_unlock(&pmus_lock);
108b02cf 11182}
00e16c3d
TG
11183#else
11184
11185static void perf_event_exit_cpu_context(int cpu) { }
11186
11187#endif
108b02cf 11188
a63fbed7
TG
11189int perf_event_init_cpu(unsigned int cpu)
11190{
11191 struct perf_cpu_context *cpuctx;
11192 struct perf_event_context *ctx;
11193 struct pmu *pmu;
11194
11195 perf_swevent_init_cpu(cpu);
11196
11197 mutex_lock(&pmus_lock);
11198 cpumask_set_cpu(cpu, perf_online_mask);
11199 list_for_each_entry(pmu, &pmus, entry) {
11200 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11201 ctx = &cpuctx->ctx;
11202
11203 mutex_lock(&ctx->mutex);
11204 cpuctx->online = 1;
11205 mutex_unlock(&ctx->mutex);
11206 }
11207 mutex_unlock(&pmus_lock);
11208
11209 return 0;
11210}
11211
00e16c3d 11212int perf_event_exit_cpu(unsigned int cpu)
0793a61d 11213{
e3703f8c 11214 perf_event_exit_cpu_context(cpu);
00e16c3d 11215 return 0;
0793a61d 11216}
0793a61d 11217
c277443c
PZ
11218static int
11219perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
11220{
11221 int cpu;
11222
11223 for_each_online_cpu(cpu)
11224 perf_event_exit_cpu(cpu);
11225
11226 return NOTIFY_OK;
11227}
11228
11229/*
11230 * Run the perf reboot notifier at the very last possible moment so that
11231 * the generic watchdog code runs as long as possible.
11232 */
11233static struct notifier_block perf_reboot_notifier = {
11234 .notifier_call = perf_reboot,
11235 .priority = INT_MIN,
11236};
11237
cdd6c482 11238void __init perf_event_init(void)
0793a61d 11239{
3c502e7a
JW
11240 int ret;
11241
2e80a82a
PZ
11242 idr_init(&pmu_idr);
11243
220b140b 11244 perf_event_init_all_cpus();
b0a873eb 11245 init_srcu_struct(&pmus_srcu);
2e80a82a
PZ
11246 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
11247 perf_pmu_register(&perf_cpu_clock, NULL, -1);
11248 perf_pmu_register(&perf_task_clock, NULL, -1);
b0a873eb 11249 perf_tp_register();
00e16c3d 11250 perf_event_init_cpu(smp_processor_id());
c277443c 11251 register_reboot_notifier(&perf_reboot_notifier);
3c502e7a
JW
11252
11253 ret = init_hw_breakpoint();
11254 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
b2029520 11255
b01c3a00
JO
11256 /*
11257 * Build time assertion that we keep the data_head at the intended
11258 * location. IOW, validation we got the __reserved[] size right.
11259 */
11260 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
11261 != 1024);
0793a61d 11262}
abe43400 11263
fd979c01
CS
11264ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
11265 char *page)
11266{
11267 struct perf_pmu_events_attr *pmu_attr =
11268 container_of(attr, struct perf_pmu_events_attr, attr);
11269
11270 if (pmu_attr->event_str)
11271 return sprintf(page, "%s\n", pmu_attr->event_str);
11272
11273 return 0;
11274}
675965b0 11275EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
fd979c01 11276
abe43400
PZ
11277static int __init perf_event_sysfs_init(void)
11278{
11279 struct pmu *pmu;
11280 int ret;
11281
11282 mutex_lock(&pmus_lock);
11283
11284 ret = bus_register(&pmu_bus);
11285 if (ret)
11286 goto unlock;
11287
11288 list_for_each_entry(pmu, &pmus, entry) {
11289 if (!pmu->name || pmu->type < 0)
11290 continue;
11291
11292 ret = pmu_dev_alloc(pmu);
11293 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
11294 }
11295 pmu_bus_running = 1;
11296 ret = 0;
11297
11298unlock:
11299 mutex_unlock(&pmus_lock);
11300
11301 return ret;
11302}
11303device_initcall(perf_event_sysfs_init);
e5d1367f
SE
11304
11305#ifdef CONFIG_CGROUP_PERF
eb95419b
TH
11306static struct cgroup_subsys_state *
11307perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
e5d1367f
SE
11308{
11309 struct perf_cgroup *jc;
e5d1367f 11310
1b15d055 11311 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
e5d1367f
SE
11312 if (!jc)
11313 return ERR_PTR(-ENOMEM);
11314
e5d1367f
SE
11315 jc->info = alloc_percpu(struct perf_cgroup_info);
11316 if (!jc->info) {
11317 kfree(jc);
11318 return ERR_PTR(-ENOMEM);
11319 }
11320
e5d1367f
SE
11321 return &jc->css;
11322}
11323
eb95419b 11324static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
e5d1367f 11325{
eb95419b
TH
11326 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
11327
e5d1367f
SE
11328 free_percpu(jc->info);
11329 kfree(jc);
11330}
11331
11332static int __perf_cgroup_move(void *info)
11333{
11334 struct task_struct *task = info;
ddaaf4e2 11335 rcu_read_lock();
e5d1367f 11336 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
ddaaf4e2 11337 rcu_read_unlock();
e5d1367f
SE
11338 return 0;
11339}
11340
1f7dd3e5 11341static void perf_cgroup_attach(struct cgroup_taskset *tset)
e5d1367f 11342{
bb9d97b6 11343 struct task_struct *task;
1f7dd3e5 11344 struct cgroup_subsys_state *css;
bb9d97b6 11345
1f7dd3e5 11346 cgroup_taskset_for_each(task, css, tset)
bb9d97b6 11347 task_function_call(task, __perf_cgroup_move, task);
e5d1367f
SE
11348}
11349
073219e9 11350struct cgroup_subsys perf_event_cgrp_subsys = {
92fb9748
TH
11351 .css_alloc = perf_cgroup_css_alloc,
11352 .css_free = perf_cgroup_css_free,
bb9d97b6 11353 .attach = perf_cgroup_attach,
968ebff1
TH
11354 /*
11355 * Implicitly enable on dfl hierarchy so that perf events can
11356 * always be filtered by cgroup2 path as long as perf_event
11357 * controller is not mounted on a legacy hierarchy.
11358 */
11359 .implicit_on_dfl = true,
8cfd8147 11360 .threaded = true,
e5d1367f
SE
11361};
11362#endif /* CONFIG_CGROUP_PERF */