]> git.ipfire.org Git - thirdparty/linux.git/blame - kernel/events/core.c
perf/core: Update ctx time before detaching events
[thirdparty/linux.git] / kernel / events / core.c
CommitLineData
0793a61d 1/*
57c0c15b 2 * Performance events core code:
0793a61d 3 *
98144511 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
e7e7ee2e 5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
90eec103 6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
d36b6910 7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
7b732a75 8 *
57c0c15b 9 * For licensing details see kernel-base/COPYING
0793a61d
TG
10 */
11
12#include <linux/fs.h>
b9cacc7b 13#include <linux/mm.h>
0793a61d
TG
14#include <linux/cpu.h>
15#include <linux/smp.h>
2e80a82a 16#include <linux/idr.h>
04289bb9 17#include <linux/file.h>
0793a61d 18#include <linux/poll.h>
5a0e3ad6 19#include <linux/slab.h>
76e1d904 20#include <linux/hash.h>
12351ef8 21#include <linux/tick.h>
0793a61d 22#include <linux/sysfs.h>
22a4f650 23#include <linux/dcache.h>
0793a61d 24#include <linux/percpu.h>
22a4f650 25#include <linux/ptrace.h>
c277443c 26#include <linux/reboot.h>
b9cacc7b 27#include <linux/vmstat.h>
abe43400 28#include <linux/device.h>
6e5fdeed 29#include <linux/export.h>
906010b2 30#include <linux/vmalloc.h>
b9cacc7b
PZ
31#include <linux/hardirq.h>
32#include <linux/rculist.h>
0793a61d
TG
33#include <linux/uaccess.h>
34#include <linux/syscalls.h>
35#include <linux/anon_inodes.h>
aa9c4c0f 36#include <linux/kernel_stat.h>
39bed6cb 37#include <linux/cgroup.h>
cdd6c482 38#include <linux/perf_event.h>
af658dca 39#include <linux/trace_events.h>
3c502e7a 40#include <linux/hw_breakpoint.h>
c5ebcedb 41#include <linux/mm_types.h>
c464c76e 42#include <linux/module.h>
f972eb63 43#include <linux/mman.h>
b3f20785 44#include <linux/compat.h>
2541517c
AS
45#include <linux/bpf.h>
46#include <linux/filter.h>
375637bc
AS
47#include <linux/namei.h>
48#include <linux/parser.h>
e6017571 49#include <linux/sched/clock.h>
6e84f315 50#include <linux/sched/mm.h>
e4222673
HB
51#include <linux/proc_ns.h>
52#include <linux/mount.h>
0793a61d 53
76369139
FW
54#include "internal.h"
55
4e193bd4
TB
56#include <asm/irq_regs.h>
57
272325c4
PZ
58typedef int (*remote_function_f)(void *);
59
fe4b04fa 60struct remote_function_call {
e7e7ee2e 61 struct task_struct *p;
272325c4 62 remote_function_f func;
e7e7ee2e
IM
63 void *info;
64 int ret;
fe4b04fa
PZ
65};
66
67static void remote_function(void *data)
68{
69 struct remote_function_call *tfc = data;
70 struct task_struct *p = tfc->p;
71
72 if (p) {
0da4cf3e
PZ
73 /* -EAGAIN */
74 if (task_cpu(p) != smp_processor_id())
75 return;
76
77 /*
78 * Now that we're on right CPU with IRQs disabled, we can test
79 * if we hit the right task without races.
80 */
81
82 tfc->ret = -ESRCH; /* No such (running) process */
83 if (p != current)
fe4b04fa
PZ
84 return;
85 }
86
87 tfc->ret = tfc->func(tfc->info);
88}
89
90/**
91 * task_function_call - call a function on the cpu on which a task runs
92 * @p: the task to evaluate
93 * @func: the function to be called
94 * @info: the function call argument
95 *
96 * Calls the function @func when the task is currently running. This might
97 * be on the current CPU, which just calls the function directly
98 *
99 * returns: @func return value, or
100 * -ESRCH - when the process isn't running
101 * -EAGAIN - when the process moved away
102 */
103static int
272325c4 104task_function_call(struct task_struct *p, remote_function_f func, void *info)
fe4b04fa
PZ
105{
106 struct remote_function_call data = {
e7e7ee2e
IM
107 .p = p,
108 .func = func,
109 .info = info,
0da4cf3e 110 .ret = -EAGAIN,
fe4b04fa 111 };
0da4cf3e 112 int ret;
fe4b04fa 113
0da4cf3e
PZ
114 do {
115 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
116 if (!ret)
117 ret = data.ret;
118 } while (ret == -EAGAIN);
fe4b04fa 119
0da4cf3e 120 return ret;
fe4b04fa
PZ
121}
122
123/**
124 * cpu_function_call - call a function on the cpu
125 * @func: the function to be called
126 * @info: the function call argument
127 *
128 * Calls the function @func on the remote cpu.
129 *
130 * returns: @func return value or -ENXIO when the cpu is offline
131 */
272325c4 132static int cpu_function_call(int cpu, remote_function_f func, void *info)
fe4b04fa
PZ
133{
134 struct remote_function_call data = {
e7e7ee2e
IM
135 .p = NULL,
136 .func = func,
137 .info = info,
138 .ret = -ENXIO, /* No such CPU */
fe4b04fa
PZ
139 };
140
141 smp_call_function_single(cpu, remote_function, &data, 1);
142
143 return data.ret;
144}
145
fae3fde6
PZ
146static inline struct perf_cpu_context *
147__get_cpu_context(struct perf_event_context *ctx)
148{
149 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
150}
151
152static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
153 struct perf_event_context *ctx)
0017960f 154{
fae3fde6
PZ
155 raw_spin_lock(&cpuctx->ctx.lock);
156 if (ctx)
157 raw_spin_lock(&ctx->lock);
158}
159
160static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
161 struct perf_event_context *ctx)
162{
163 if (ctx)
164 raw_spin_unlock(&ctx->lock);
165 raw_spin_unlock(&cpuctx->ctx.lock);
166}
167
63b6da39
PZ
168#define TASK_TOMBSTONE ((void *)-1L)
169
170static bool is_kernel_event(struct perf_event *event)
171{
f47c02c0 172 return READ_ONCE(event->owner) == TASK_TOMBSTONE;
63b6da39
PZ
173}
174
39a43640
PZ
175/*
176 * On task ctx scheduling...
177 *
178 * When !ctx->nr_events a task context will not be scheduled. This means
179 * we can disable the scheduler hooks (for performance) without leaving
180 * pending task ctx state.
181 *
182 * This however results in two special cases:
183 *
184 * - removing the last event from a task ctx; this is relatively straight
185 * forward and is done in __perf_remove_from_context.
186 *
187 * - adding the first event to a task ctx; this is tricky because we cannot
188 * rely on ctx->is_active and therefore cannot use event_function_call().
189 * See perf_install_in_context().
190 *
39a43640
PZ
191 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
192 */
193
fae3fde6
PZ
194typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
195 struct perf_event_context *, void *);
196
197struct event_function_struct {
198 struct perf_event *event;
199 event_f func;
200 void *data;
201};
202
203static int event_function(void *info)
204{
205 struct event_function_struct *efs = info;
206 struct perf_event *event = efs->event;
0017960f 207 struct perf_event_context *ctx = event->ctx;
fae3fde6
PZ
208 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
209 struct perf_event_context *task_ctx = cpuctx->task_ctx;
63b6da39 210 int ret = 0;
fae3fde6
PZ
211
212 WARN_ON_ONCE(!irqs_disabled());
213
63b6da39 214 perf_ctx_lock(cpuctx, task_ctx);
fae3fde6
PZ
215 /*
216 * Since we do the IPI call without holding ctx->lock things can have
217 * changed, double check we hit the task we set out to hit.
fae3fde6
PZ
218 */
219 if (ctx->task) {
63b6da39 220 if (ctx->task != current) {
0da4cf3e 221 ret = -ESRCH;
63b6da39
PZ
222 goto unlock;
223 }
fae3fde6 224
fae3fde6
PZ
225 /*
226 * We only use event_function_call() on established contexts,
227 * and event_function() is only ever called when active (or
228 * rather, we'll have bailed in task_function_call() or the
229 * above ctx->task != current test), therefore we must have
230 * ctx->is_active here.
231 */
232 WARN_ON_ONCE(!ctx->is_active);
233 /*
234 * And since we have ctx->is_active, cpuctx->task_ctx must
235 * match.
236 */
63b6da39
PZ
237 WARN_ON_ONCE(task_ctx != ctx);
238 } else {
239 WARN_ON_ONCE(&cpuctx->ctx != ctx);
fae3fde6 240 }
63b6da39 241
fae3fde6 242 efs->func(event, cpuctx, ctx, efs->data);
63b6da39 243unlock:
fae3fde6
PZ
244 perf_ctx_unlock(cpuctx, task_ctx);
245
63b6da39 246 return ret;
fae3fde6
PZ
247}
248
fae3fde6 249static void event_function_call(struct perf_event *event, event_f func, void *data)
0017960f
PZ
250{
251 struct perf_event_context *ctx = event->ctx;
63b6da39 252 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
fae3fde6
PZ
253 struct event_function_struct efs = {
254 .event = event,
255 .func = func,
256 .data = data,
257 };
0017960f 258
c97f4736
PZ
259 if (!event->parent) {
260 /*
261 * If this is a !child event, we must hold ctx::mutex to
262 * stabilize the the event->ctx relation. See
263 * perf_event_ctx_lock().
264 */
265 lockdep_assert_held(&ctx->mutex);
266 }
0017960f
PZ
267
268 if (!task) {
fae3fde6 269 cpu_function_call(event->cpu, event_function, &efs);
0017960f
PZ
270 return;
271 }
272
63b6da39
PZ
273 if (task == TASK_TOMBSTONE)
274 return;
275
a096309b 276again:
fae3fde6 277 if (!task_function_call(task, event_function, &efs))
0017960f
PZ
278 return;
279
280 raw_spin_lock_irq(&ctx->lock);
63b6da39
PZ
281 /*
282 * Reload the task pointer, it might have been changed by
283 * a concurrent perf_event_context_sched_out().
284 */
285 task = ctx->task;
a096309b
PZ
286 if (task == TASK_TOMBSTONE) {
287 raw_spin_unlock_irq(&ctx->lock);
288 return;
0017960f 289 }
a096309b
PZ
290 if (ctx->is_active) {
291 raw_spin_unlock_irq(&ctx->lock);
292 goto again;
293 }
294 func(event, NULL, ctx, data);
0017960f
PZ
295 raw_spin_unlock_irq(&ctx->lock);
296}
297
cca20946
PZ
298/*
299 * Similar to event_function_call() + event_function(), but hard assumes IRQs
300 * are already disabled and we're on the right CPU.
301 */
302static void event_function_local(struct perf_event *event, event_f func, void *data)
303{
304 struct perf_event_context *ctx = event->ctx;
305 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
306 struct task_struct *task = READ_ONCE(ctx->task);
307 struct perf_event_context *task_ctx = NULL;
308
309 WARN_ON_ONCE(!irqs_disabled());
310
311 if (task) {
312 if (task == TASK_TOMBSTONE)
313 return;
314
315 task_ctx = ctx;
316 }
317
318 perf_ctx_lock(cpuctx, task_ctx);
319
320 task = ctx->task;
321 if (task == TASK_TOMBSTONE)
322 goto unlock;
323
324 if (task) {
325 /*
326 * We must be either inactive or active and the right task,
327 * otherwise we're screwed, since we cannot IPI to somewhere
328 * else.
329 */
330 if (ctx->is_active) {
331 if (WARN_ON_ONCE(task != current))
332 goto unlock;
333
334 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
335 goto unlock;
336 }
337 } else {
338 WARN_ON_ONCE(&cpuctx->ctx != ctx);
339 }
340
341 func(event, cpuctx, ctx, data);
342unlock:
343 perf_ctx_unlock(cpuctx, task_ctx);
344}
345
e5d1367f
SE
346#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
347 PERF_FLAG_FD_OUTPUT |\
a21b0b35
YD
348 PERF_FLAG_PID_CGROUP |\
349 PERF_FLAG_FD_CLOEXEC)
e5d1367f 350
bce38cd5
SE
351/*
352 * branch priv levels that need permission checks
353 */
354#define PERF_SAMPLE_BRANCH_PERM_PLM \
355 (PERF_SAMPLE_BRANCH_KERNEL |\
356 PERF_SAMPLE_BRANCH_HV)
357
0b3fcf17
SE
358enum event_type_t {
359 EVENT_FLEXIBLE = 0x1,
360 EVENT_PINNED = 0x2,
3cbaa590 361 EVENT_TIME = 0x4,
487f05e1
AS
362 /* see ctx_resched() for details */
363 EVENT_CPU = 0x8,
0b3fcf17
SE
364 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
365};
366
e5d1367f
SE
367/*
368 * perf_sched_events : >0 events exist
369 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
370 */
9107c89e
PZ
371
372static void perf_sched_delayed(struct work_struct *work);
373DEFINE_STATIC_KEY_FALSE(perf_sched_events);
374static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
375static DEFINE_MUTEX(perf_sched_mutex);
376static atomic_t perf_sched_count;
377
e5d1367f 378static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
ba532500 379static DEFINE_PER_CPU(int, perf_sched_cb_usages);
f2fb6bef 380static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
e5d1367f 381
cdd6c482
IM
382static atomic_t nr_mmap_events __read_mostly;
383static atomic_t nr_comm_events __read_mostly;
e4222673 384static atomic_t nr_namespaces_events __read_mostly;
cdd6c482 385static atomic_t nr_task_events __read_mostly;
948b26b6 386static atomic_t nr_freq_events __read_mostly;
45ac1403 387static atomic_t nr_switch_events __read_mostly;
9ee318a7 388
108b02cf
PZ
389static LIST_HEAD(pmus);
390static DEFINE_MUTEX(pmus_lock);
391static struct srcu_struct pmus_srcu;
a63fbed7 392static cpumask_var_t perf_online_mask;
108b02cf 393
0764771d 394/*
cdd6c482 395 * perf event paranoia level:
0fbdea19
IM
396 * -1 - not paranoid at all
397 * 0 - disallow raw tracepoint access for unpriv
cdd6c482 398 * 1 - disallow cpu events for unpriv
0fbdea19 399 * 2 - disallow kernel profiling for unpriv
0764771d 400 */
0161028b 401int sysctl_perf_event_paranoid __read_mostly = 2;
0764771d 402
20443384
FW
403/* Minimum for 512 kiB + 1 user control page */
404int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
df58ab24
PZ
405
406/*
cdd6c482 407 * max perf event sample rate
df58ab24 408 */
14c63f17
DH
409#define DEFAULT_MAX_SAMPLE_RATE 100000
410#define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
411#define DEFAULT_CPU_TIME_MAX_PERCENT 25
412
413int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
414
415static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
416static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
417
d9494cb4
PZ
418static int perf_sample_allowed_ns __read_mostly =
419 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
14c63f17 420
18ab2cd3 421static void update_perf_cpu_limits(void)
14c63f17
DH
422{
423 u64 tmp = perf_sample_period_ns;
424
425 tmp *= sysctl_perf_cpu_time_max_percent;
91a612ee
PZ
426 tmp = div_u64(tmp, 100);
427 if (!tmp)
428 tmp = 1;
429
430 WRITE_ONCE(perf_sample_allowed_ns, tmp);
14c63f17 431}
163ec435 432
9e630205
SE
433static int perf_rotate_context(struct perf_cpu_context *cpuctx);
434
163ec435
PZ
435int perf_proc_update_handler(struct ctl_table *table, int write,
436 void __user *buffer, size_t *lenp,
437 loff_t *ppos)
438{
723478c8 439 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
163ec435
PZ
440
441 if (ret || !write)
442 return ret;
443
ab7fdefb
KL
444 /*
445 * If throttling is disabled don't allow the write:
446 */
447 if (sysctl_perf_cpu_time_max_percent == 100 ||
448 sysctl_perf_cpu_time_max_percent == 0)
449 return -EINVAL;
450
163ec435 451 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
14c63f17
DH
452 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
453 update_perf_cpu_limits();
454
455 return 0;
456}
457
458int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
459
460int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
461 void __user *buffer, size_t *lenp,
462 loff_t *ppos)
463{
1572e45a 464 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
14c63f17
DH
465
466 if (ret || !write)
467 return ret;
468
b303e7c1
PZ
469 if (sysctl_perf_cpu_time_max_percent == 100 ||
470 sysctl_perf_cpu_time_max_percent == 0) {
91a612ee
PZ
471 printk(KERN_WARNING
472 "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
473 WRITE_ONCE(perf_sample_allowed_ns, 0);
474 } else {
475 update_perf_cpu_limits();
476 }
163ec435
PZ
477
478 return 0;
479}
1ccd1549 480
14c63f17
DH
481/*
482 * perf samples are done in some very critical code paths (NMIs).
483 * If they take too much CPU time, the system can lock up and not
484 * get any real work done. This will drop the sample rate when
485 * we detect that events are taking too long.
486 */
487#define NR_ACCUMULATED_SAMPLES 128
d9494cb4 488static DEFINE_PER_CPU(u64, running_sample_length);
14c63f17 489
91a612ee
PZ
490static u64 __report_avg;
491static u64 __report_allowed;
492
6a02ad66 493static void perf_duration_warn(struct irq_work *w)
14c63f17 494{
0d87d7ec 495 printk_ratelimited(KERN_INFO
91a612ee
PZ
496 "perf: interrupt took too long (%lld > %lld), lowering "
497 "kernel.perf_event_max_sample_rate to %d\n",
498 __report_avg, __report_allowed,
499 sysctl_perf_event_sample_rate);
6a02ad66
PZ
500}
501
502static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
503
504void perf_sample_event_took(u64 sample_len_ns)
505{
91a612ee
PZ
506 u64 max_len = READ_ONCE(perf_sample_allowed_ns);
507 u64 running_len;
508 u64 avg_len;
509 u32 max;
14c63f17 510
91a612ee 511 if (max_len == 0)
14c63f17
DH
512 return;
513
91a612ee
PZ
514 /* Decay the counter by 1 average sample. */
515 running_len = __this_cpu_read(running_sample_length);
516 running_len -= running_len/NR_ACCUMULATED_SAMPLES;
517 running_len += sample_len_ns;
518 __this_cpu_write(running_sample_length, running_len);
14c63f17
DH
519
520 /*
91a612ee
PZ
521 * Note: this will be biased artifically low until we have
522 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
14c63f17
DH
523 * from having to maintain a count.
524 */
91a612ee
PZ
525 avg_len = running_len/NR_ACCUMULATED_SAMPLES;
526 if (avg_len <= max_len)
14c63f17
DH
527 return;
528
91a612ee
PZ
529 __report_avg = avg_len;
530 __report_allowed = max_len;
14c63f17 531
91a612ee
PZ
532 /*
533 * Compute a throttle threshold 25% below the current duration.
534 */
535 avg_len += avg_len / 4;
536 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
537 if (avg_len < max)
538 max /= (u32)avg_len;
539 else
540 max = 1;
14c63f17 541
91a612ee
PZ
542 WRITE_ONCE(perf_sample_allowed_ns, avg_len);
543 WRITE_ONCE(max_samples_per_tick, max);
544
545 sysctl_perf_event_sample_rate = max * HZ;
546 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
6a02ad66 547
cd578abb 548 if (!irq_work_queue(&perf_duration_work)) {
91a612ee 549 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
cd578abb 550 "kernel.perf_event_max_sample_rate to %d\n",
91a612ee 551 __report_avg, __report_allowed,
cd578abb
PZ
552 sysctl_perf_event_sample_rate);
553 }
14c63f17
DH
554}
555
cdd6c482 556static atomic64_t perf_event_id;
a96bbc16 557
0b3fcf17
SE
558static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
559 enum event_type_t event_type);
560
561static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
562 enum event_type_t event_type,
563 struct task_struct *task);
564
565static void update_context_time(struct perf_event_context *ctx);
566static u64 perf_event_time(struct perf_event *event);
0b3fcf17 567
cdd6c482 568void __weak perf_event_print_debug(void) { }
0793a61d 569
84c79910 570extern __weak const char *perf_pmu_name(void)
0793a61d 571{
84c79910 572 return "pmu";
0793a61d
TG
573}
574
0b3fcf17
SE
575static inline u64 perf_clock(void)
576{
577 return local_clock();
578}
579
34f43927
PZ
580static inline u64 perf_event_clock(struct perf_event *event)
581{
582 return event->clock();
583}
584
e5d1367f
SE
585#ifdef CONFIG_CGROUP_PERF
586
e5d1367f
SE
587static inline bool
588perf_cgroup_match(struct perf_event *event)
589{
590 struct perf_event_context *ctx = event->ctx;
591 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
592
ef824fa1
TH
593 /* @event doesn't care about cgroup */
594 if (!event->cgrp)
595 return true;
596
597 /* wants specific cgroup scope but @cpuctx isn't associated with any */
598 if (!cpuctx->cgrp)
599 return false;
600
601 /*
602 * Cgroup scoping is recursive. An event enabled for a cgroup is
603 * also enabled for all its descendant cgroups. If @cpuctx's
604 * cgroup is a descendant of @event's (the test covers identity
605 * case), it's a match.
606 */
607 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
608 event->cgrp->css.cgroup);
e5d1367f
SE
609}
610
e5d1367f
SE
611static inline void perf_detach_cgroup(struct perf_event *event)
612{
4e2ba650 613 css_put(&event->cgrp->css);
e5d1367f
SE
614 event->cgrp = NULL;
615}
616
617static inline int is_cgroup_event(struct perf_event *event)
618{
619 return event->cgrp != NULL;
620}
621
622static inline u64 perf_cgroup_event_time(struct perf_event *event)
623{
624 struct perf_cgroup_info *t;
625
626 t = per_cpu_ptr(event->cgrp->info, event->cpu);
627 return t->time;
628}
629
630static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
631{
632 struct perf_cgroup_info *info;
633 u64 now;
634
635 now = perf_clock();
636
637 info = this_cpu_ptr(cgrp->info);
638
639 info->time += now - info->timestamp;
640 info->timestamp = now;
641}
642
643static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
644{
645 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
646 if (cgrp_out)
647 __update_cgrp_time(cgrp_out);
648}
649
650static inline void update_cgrp_time_from_event(struct perf_event *event)
651{
3f7cce3c
SE
652 struct perf_cgroup *cgrp;
653
e5d1367f 654 /*
3f7cce3c
SE
655 * ensure we access cgroup data only when needed and
656 * when we know the cgroup is pinned (css_get)
e5d1367f 657 */
3f7cce3c 658 if (!is_cgroup_event(event))
e5d1367f
SE
659 return;
660
614e4c4e 661 cgrp = perf_cgroup_from_task(current, event->ctx);
3f7cce3c
SE
662 /*
663 * Do not update time when cgroup is not active
664 */
e6a52033 665 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
3f7cce3c 666 __update_cgrp_time(event->cgrp);
e5d1367f
SE
667}
668
669static inline void
3f7cce3c
SE
670perf_cgroup_set_timestamp(struct task_struct *task,
671 struct perf_event_context *ctx)
e5d1367f
SE
672{
673 struct perf_cgroup *cgrp;
674 struct perf_cgroup_info *info;
675
3f7cce3c
SE
676 /*
677 * ctx->lock held by caller
678 * ensure we do not access cgroup data
679 * unless we have the cgroup pinned (css_get)
680 */
681 if (!task || !ctx->nr_cgroups)
e5d1367f
SE
682 return;
683
614e4c4e 684 cgrp = perf_cgroup_from_task(task, ctx);
e5d1367f 685 info = this_cpu_ptr(cgrp->info);
3f7cce3c 686 info->timestamp = ctx->timestamp;
e5d1367f
SE
687}
688
058fe1c0
DCC
689static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
690
e5d1367f
SE
691#define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
692#define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
693
694/*
695 * reschedule events based on the cgroup constraint of task.
696 *
697 * mode SWOUT : schedule out everything
698 * mode SWIN : schedule in based on cgroup for next
699 */
18ab2cd3 700static void perf_cgroup_switch(struct task_struct *task, int mode)
e5d1367f
SE
701{
702 struct perf_cpu_context *cpuctx;
058fe1c0 703 struct list_head *list;
e5d1367f
SE
704 unsigned long flags;
705
706 /*
058fe1c0
DCC
707 * Disable interrupts and preemption to avoid this CPU's
708 * cgrp_cpuctx_entry to change under us.
e5d1367f
SE
709 */
710 local_irq_save(flags);
711
058fe1c0
DCC
712 list = this_cpu_ptr(&cgrp_cpuctx_list);
713 list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
714 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
e5d1367f 715
058fe1c0
DCC
716 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
717 perf_pmu_disable(cpuctx->ctx.pmu);
e5d1367f 718
058fe1c0
DCC
719 if (mode & PERF_CGROUP_SWOUT) {
720 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
721 /*
722 * must not be done before ctxswout due
723 * to event_filter_match() in event_sched_out()
724 */
725 cpuctx->cgrp = NULL;
726 }
e5d1367f 727
058fe1c0
DCC
728 if (mode & PERF_CGROUP_SWIN) {
729 WARN_ON_ONCE(cpuctx->cgrp);
730 /*
731 * set cgrp before ctxsw in to allow
732 * event_filter_match() to not have to pass
733 * task around
734 * we pass the cpuctx->ctx to perf_cgroup_from_task()
735 * because cgorup events are only per-cpu
736 */
737 cpuctx->cgrp = perf_cgroup_from_task(task,
738 &cpuctx->ctx);
739 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
e5d1367f 740 }
058fe1c0
DCC
741 perf_pmu_enable(cpuctx->ctx.pmu);
742 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
e5d1367f
SE
743 }
744
e5d1367f
SE
745 local_irq_restore(flags);
746}
747
a8d757ef
SE
748static inline void perf_cgroup_sched_out(struct task_struct *task,
749 struct task_struct *next)
e5d1367f 750{
a8d757ef
SE
751 struct perf_cgroup *cgrp1;
752 struct perf_cgroup *cgrp2 = NULL;
753
ddaaf4e2 754 rcu_read_lock();
a8d757ef
SE
755 /*
756 * we come here when we know perf_cgroup_events > 0
614e4c4e
SE
757 * we do not need to pass the ctx here because we know
758 * we are holding the rcu lock
a8d757ef 759 */
614e4c4e 760 cgrp1 = perf_cgroup_from_task(task, NULL);
70a01657 761 cgrp2 = perf_cgroup_from_task(next, NULL);
a8d757ef
SE
762
763 /*
764 * only schedule out current cgroup events if we know
765 * that we are switching to a different cgroup. Otherwise,
766 * do no touch the cgroup events.
767 */
768 if (cgrp1 != cgrp2)
769 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
ddaaf4e2
SE
770
771 rcu_read_unlock();
e5d1367f
SE
772}
773
a8d757ef
SE
774static inline void perf_cgroup_sched_in(struct task_struct *prev,
775 struct task_struct *task)
e5d1367f 776{
a8d757ef
SE
777 struct perf_cgroup *cgrp1;
778 struct perf_cgroup *cgrp2 = NULL;
779
ddaaf4e2 780 rcu_read_lock();
a8d757ef
SE
781 /*
782 * we come here when we know perf_cgroup_events > 0
614e4c4e
SE
783 * we do not need to pass the ctx here because we know
784 * we are holding the rcu lock
a8d757ef 785 */
614e4c4e 786 cgrp1 = perf_cgroup_from_task(task, NULL);
614e4c4e 787 cgrp2 = perf_cgroup_from_task(prev, NULL);
a8d757ef
SE
788
789 /*
790 * only need to schedule in cgroup events if we are changing
791 * cgroup during ctxsw. Cgroup events were not scheduled
792 * out of ctxsw out if that was not the case.
793 */
794 if (cgrp1 != cgrp2)
795 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
ddaaf4e2
SE
796
797 rcu_read_unlock();
e5d1367f
SE
798}
799
800static inline int perf_cgroup_connect(int fd, struct perf_event *event,
801 struct perf_event_attr *attr,
802 struct perf_event *group_leader)
803{
804 struct perf_cgroup *cgrp;
805 struct cgroup_subsys_state *css;
2903ff01
AV
806 struct fd f = fdget(fd);
807 int ret = 0;
e5d1367f 808
2903ff01 809 if (!f.file)
e5d1367f
SE
810 return -EBADF;
811
b583043e 812 css = css_tryget_online_from_dir(f.file->f_path.dentry,
ec903c0c 813 &perf_event_cgrp_subsys);
3db272c0
LZ
814 if (IS_ERR(css)) {
815 ret = PTR_ERR(css);
816 goto out;
817 }
e5d1367f
SE
818
819 cgrp = container_of(css, struct perf_cgroup, css);
820 event->cgrp = cgrp;
821
822 /*
823 * all events in a group must monitor
824 * the same cgroup because a task belongs
825 * to only one perf cgroup at a time
826 */
827 if (group_leader && group_leader->cgrp != cgrp) {
828 perf_detach_cgroup(event);
829 ret = -EINVAL;
e5d1367f 830 }
3db272c0 831out:
2903ff01 832 fdput(f);
e5d1367f
SE
833 return ret;
834}
835
836static inline void
837perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
838{
839 struct perf_cgroup_info *t;
840 t = per_cpu_ptr(event->cgrp->info, event->cpu);
841 event->shadow_ctx_time = now - t->timestamp;
842}
843
844static inline void
845perf_cgroup_defer_enabled(struct perf_event *event)
846{
847 /*
848 * when the current task's perf cgroup does not match
849 * the event's, we need to remember to call the
850 * perf_mark_enable() function the first time a task with
851 * a matching perf cgroup is scheduled in.
852 */
853 if (is_cgroup_event(event) && !perf_cgroup_match(event))
854 event->cgrp_defer_enabled = 1;
855}
856
857static inline void
858perf_cgroup_mark_enabled(struct perf_event *event,
859 struct perf_event_context *ctx)
860{
861 struct perf_event *sub;
862 u64 tstamp = perf_event_time(event);
863
864 if (!event->cgrp_defer_enabled)
865 return;
866
867 event->cgrp_defer_enabled = 0;
868
869 event->tstamp_enabled = tstamp - event->total_time_enabled;
870 list_for_each_entry(sub, &event->sibling_list, group_entry) {
871 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
872 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
873 sub->cgrp_defer_enabled = 0;
874 }
875 }
876}
db4a8356
DCC
877
878/*
879 * Update cpuctx->cgrp so that it is set when first cgroup event is added and
880 * cleared when last cgroup event is removed.
881 */
882static inline void
883list_update_cgroup_event(struct perf_event *event,
884 struct perf_event_context *ctx, bool add)
885{
886 struct perf_cpu_context *cpuctx;
058fe1c0 887 struct list_head *cpuctx_entry;
db4a8356
DCC
888
889 if (!is_cgroup_event(event))
890 return;
891
892 if (add && ctx->nr_cgroups++)
893 return;
894 else if (!add && --ctx->nr_cgroups)
895 return;
896 /*
897 * Because cgroup events are always per-cpu events,
898 * this will always be called from the right CPU.
899 */
900 cpuctx = __get_cpu_context(ctx);
058fe1c0
DCC
901 cpuctx_entry = &cpuctx->cgrp_cpuctx_entry;
902 /* cpuctx->cgrp is NULL unless a cgroup event is active in this CPU .*/
903 if (add) {
904 list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list));
905 if (perf_cgroup_from_task(current, ctx) == event->cgrp)
906 cpuctx->cgrp = event->cgrp;
907 } else {
908 list_del(cpuctx_entry);
8fc31ce8 909 cpuctx->cgrp = NULL;
058fe1c0 910 }
db4a8356
DCC
911}
912
e5d1367f
SE
913#else /* !CONFIG_CGROUP_PERF */
914
915static inline bool
916perf_cgroup_match(struct perf_event *event)
917{
918 return true;
919}
920
921static inline void perf_detach_cgroup(struct perf_event *event)
922{}
923
924static inline int is_cgroup_event(struct perf_event *event)
925{
926 return 0;
927}
928
e5d1367f
SE
929static inline void update_cgrp_time_from_event(struct perf_event *event)
930{
931}
932
933static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
934{
935}
936
a8d757ef
SE
937static inline void perf_cgroup_sched_out(struct task_struct *task,
938 struct task_struct *next)
e5d1367f
SE
939{
940}
941
a8d757ef
SE
942static inline void perf_cgroup_sched_in(struct task_struct *prev,
943 struct task_struct *task)
e5d1367f
SE
944{
945}
946
947static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
948 struct perf_event_attr *attr,
949 struct perf_event *group_leader)
950{
951 return -EINVAL;
952}
953
954static inline void
3f7cce3c
SE
955perf_cgroup_set_timestamp(struct task_struct *task,
956 struct perf_event_context *ctx)
e5d1367f
SE
957{
958}
959
960void
961perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
962{
963}
964
965static inline void
966perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
967{
968}
969
970static inline u64 perf_cgroup_event_time(struct perf_event *event)
971{
972 return 0;
973}
974
975static inline void
976perf_cgroup_defer_enabled(struct perf_event *event)
977{
978}
979
980static inline void
981perf_cgroup_mark_enabled(struct perf_event *event,
982 struct perf_event_context *ctx)
983{
984}
db4a8356
DCC
985
986static inline void
987list_update_cgroup_event(struct perf_event *event,
988 struct perf_event_context *ctx, bool add)
989{
990}
991
e5d1367f
SE
992#endif
993
9e630205
SE
994/*
995 * set default to be dependent on timer tick just
996 * like original code
997 */
998#define PERF_CPU_HRTIMER (1000 / HZ)
999/*
8a1115ff 1000 * function must be called with interrupts disabled
9e630205 1001 */
272325c4 1002static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
9e630205
SE
1003{
1004 struct perf_cpu_context *cpuctx;
9e630205
SE
1005 int rotations = 0;
1006
1007 WARN_ON(!irqs_disabled());
1008
1009 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
9e630205
SE
1010 rotations = perf_rotate_context(cpuctx);
1011
4cfafd30
PZ
1012 raw_spin_lock(&cpuctx->hrtimer_lock);
1013 if (rotations)
9e630205 1014 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
4cfafd30
PZ
1015 else
1016 cpuctx->hrtimer_active = 0;
1017 raw_spin_unlock(&cpuctx->hrtimer_lock);
9e630205 1018
4cfafd30 1019 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
9e630205
SE
1020}
1021
272325c4 1022static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
9e630205 1023{
272325c4 1024 struct hrtimer *timer = &cpuctx->hrtimer;
9e630205 1025 struct pmu *pmu = cpuctx->ctx.pmu;
272325c4 1026 u64 interval;
9e630205
SE
1027
1028 /* no multiplexing needed for SW PMU */
1029 if (pmu->task_ctx_nr == perf_sw_context)
1030 return;
1031
62b85639
SE
1032 /*
1033 * check default is sane, if not set then force to
1034 * default interval (1/tick)
1035 */
272325c4
PZ
1036 interval = pmu->hrtimer_interval_ms;
1037 if (interval < 1)
1038 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
62b85639 1039
272325c4 1040 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
9e630205 1041
4cfafd30
PZ
1042 raw_spin_lock_init(&cpuctx->hrtimer_lock);
1043 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
272325c4 1044 timer->function = perf_mux_hrtimer_handler;
9e630205
SE
1045}
1046
272325c4 1047static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
9e630205 1048{
272325c4 1049 struct hrtimer *timer = &cpuctx->hrtimer;
9e630205 1050 struct pmu *pmu = cpuctx->ctx.pmu;
4cfafd30 1051 unsigned long flags;
9e630205
SE
1052
1053 /* not for SW PMU */
1054 if (pmu->task_ctx_nr == perf_sw_context)
272325c4 1055 return 0;
9e630205 1056
4cfafd30
PZ
1057 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1058 if (!cpuctx->hrtimer_active) {
1059 cpuctx->hrtimer_active = 1;
1060 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1061 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
1062 }
1063 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
9e630205 1064
272325c4 1065 return 0;
9e630205
SE
1066}
1067
33696fc0 1068void perf_pmu_disable(struct pmu *pmu)
9e35ad38 1069{
33696fc0
PZ
1070 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1071 if (!(*count)++)
1072 pmu->pmu_disable(pmu);
9e35ad38 1073}
9e35ad38 1074
33696fc0 1075void perf_pmu_enable(struct pmu *pmu)
9e35ad38 1076{
33696fc0
PZ
1077 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1078 if (!--(*count))
1079 pmu->pmu_enable(pmu);
9e35ad38 1080}
9e35ad38 1081
2fde4f94 1082static DEFINE_PER_CPU(struct list_head, active_ctx_list);
e9d2b064
PZ
1083
1084/*
2fde4f94
MR
1085 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1086 * perf_event_task_tick() are fully serialized because they're strictly cpu
1087 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1088 * disabled, while perf_event_task_tick is called from IRQ context.
e9d2b064 1089 */
2fde4f94 1090static void perf_event_ctx_activate(struct perf_event_context *ctx)
9e35ad38 1091{
2fde4f94 1092 struct list_head *head = this_cpu_ptr(&active_ctx_list);
b5ab4cd5 1093
e9d2b064 1094 WARN_ON(!irqs_disabled());
b5ab4cd5 1095
2fde4f94
MR
1096 WARN_ON(!list_empty(&ctx->active_ctx_list));
1097
1098 list_add(&ctx->active_ctx_list, head);
1099}
1100
1101static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1102{
1103 WARN_ON(!irqs_disabled());
1104
1105 WARN_ON(list_empty(&ctx->active_ctx_list));
1106
1107 list_del_init(&ctx->active_ctx_list);
9e35ad38 1108}
9e35ad38 1109
cdd6c482 1110static void get_ctx(struct perf_event_context *ctx)
a63eaf34 1111{
e5289d4a 1112 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
a63eaf34
PM
1113}
1114
4af57ef2
YZ
1115static void free_ctx(struct rcu_head *head)
1116{
1117 struct perf_event_context *ctx;
1118
1119 ctx = container_of(head, struct perf_event_context, rcu_head);
1120 kfree(ctx->task_ctx_data);
1121 kfree(ctx);
1122}
1123
cdd6c482 1124static void put_ctx(struct perf_event_context *ctx)
a63eaf34 1125{
564c2b21
PM
1126 if (atomic_dec_and_test(&ctx->refcount)) {
1127 if (ctx->parent_ctx)
1128 put_ctx(ctx->parent_ctx);
63b6da39 1129 if (ctx->task && ctx->task != TASK_TOMBSTONE)
c93f7669 1130 put_task_struct(ctx->task);
4af57ef2 1131 call_rcu(&ctx->rcu_head, free_ctx);
564c2b21 1132 }
a63eaf34
PM
1133}
1134
f63a8daa
PZ
1135/*
1136 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1137 * perf_pmu_migrate_context() we need some magic.
1138 *
1139 * Those places that change perf_event::ctx will hold both
1140 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1141 *
8b10c5e2
PZ
1142 * Lock ordering is by mutex address. There are two other sites where
1143 * perf_event_context::mutex nests and those are:
1144 *
1145 * - perf_event_exit_task_context() [ child , 0 ]
8ba289b8
PZ
1146 * perf_event_exit_event()
1147 * put_event() [ parent, 1 ]
8b10c5e2
PZ
1148 *
1149 * - perf_event_init_context() [ parent, 0 ]
1150 * inherit_task_group()
1151 * inherit_group()
1152 * inherit_event()
1153 * perf_event_alloc()
1154 * perf_init_event()
1155 * perf_try_init_event() [ child , 1 ]
1156 *
1157 * While it appears there is an obvious deadlock here -- the parent and child
1158 * nesting levels are inverted between the two. This is in fact safe because
1159 * life-time rules separate them. That is an exiting task cannot fork, and a
1160 * spawning task cannot (yet) exit.
1161 *
1162 * But remember that that these are parent<->child context relations, and
1163 * migration does not affect children, therefore these two orderings should not
1164 * interact.
f63a8daa
PZ
1165 *
1166 * The change in perf_event::ctx does not affect children (as claimed above)
1167 * because the sys_perf_event_open() case will install a new event and break
1168 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1169 * concerned with cpuctx and that doesn't have children.
1170 *
1171 * The places that change perf_event::ctx will issue:
1172 *
1173 * perf_remove_from_context();
1174 * synchronize_rcu();
1175 * perf_install_in_context();
1176 *
1177 * to affect the change. The remove_from_context() + synchronize_rcu() should
1178 * quiesce the event, after which we can install it in the new location. This
1179 * means that only external vectors (perf_fops, prctl) can perturb the event
1180 * while in transit. Therefore all such accessors should also acquire
1181 * perf_event_context::mutex to serialize against this.
1182 *
1183 * However; because event->ctx can change while we're waiting to acquire
1184 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1185 * function.
1186 *
1187 * Lock order:
79c9ce57 1188 * cred_guard_mutex
f63a8daa
PZ
1189 * task_struct::perf_event_mutex
1190 * perf_event_context::mutex
f63a8daa 1191 * perf_event::child_mutex;
07c4a776 1192 * perf_event_context::lock
f63a8daa
PZ
1193 * perf_event::mmap_mutex
1194 * mmap_sem
1195 */
a83fe28e
PZ
1196static struct perf_event_context *
1197perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
f63a8daa
PZ
1198{
1199 struct perf_event_context *ctx;
1200
1201again:
1202 rcu_read_lock();
1203 ctx = ACCESS_ONCE(event->ctx);
1204 if (!atomic_inc_not_zero(&ctx->refcount)) {
1205 rcu_read_unlock();
1206 goto again;
1207 }
1208 rcu_read_unlock();
1209
a83fe28e 1210 mutex_lock_nested(&ctx->mutex, nesting);
f63a8daa
PZ
1211 if (event->ctx != ctx) {
1212 mutex_unlock(&ctx->mutex);
1213 put_ctx(ctx);
1214 goto again;
1215 }
1216
1217 return ctx;
1218}
1219
a83fe28e
PZ
1220static inline struct perf_event_context *
1221perf_event_ctx_lock(struct perf_event *event)
1222{
1223 return perf_event_ctx_lock_nested(event, 0);
1224}
1225
f63a8daa
PZ
1226static void perf_event_ctx_unlock(struct perf_event *event,
1227 struct perf_event_context *ctx)
1228{
1229 mutex_unlock(&ctx->mutex);
1230 put_ctx(ctx);
1231}
1232
211de6eb
PZ
1233/*
1234 * This must be done under the ctx->lock, such as to serialize against
1235 * context_equiv(), therefore we cannot call put_ctx() since that might end up
1236 * calling scheduler related locks and ctx->lock nests inside those.
1237 */
1238static __must_check struct perf_event_context *
1239unclone_ctx(struct perf_event_context *ctx)
71a851b4 1240{
211de6eb
PZ
1241 struct perf_event_context *parent_ctx = ctx->parent_ctx;
1242
1243 lockdep_assert_held(&ctx->lock);
1244
1245 if (parent_ctx)
71a851b4 1246 ctx->parent_ctx = NULL;
5a3126d4 1247 ctx->generation++;
211de6eb
PZ
1248
1249 return parent_ctx;
71a851b4
PZ
1250}
1251
1d953111
ON
1252static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1253 enum pid_type type)
6844c09d 1254{
1d953111 1255 u32 nr;
6844c09d
ACM
1256 /*
1257 * only top level events have the pid namespace they were created in
1258 */
1259 if (event->parent)
1260 event = event->parent;
1261
1d953111
ON
1262 nr = __task_pid_nr_ns(p, type, event->ns);
1263 /* avoid -1 if it is idle thread or runs in another ns */
1264 if (!nr && !pid_alive(p))
1265 nr = -1;
1266 return nr;
6844c09d
ACM
1267}
1268
1d953111 1269static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
6844c09d 1270{
1d953111
ON
1271 return perf_event_pid_type(event, p, __PIDTYPE_TGID);
1272}
6844c09d 1273
1d953111
ON
1274static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1275{
1276 return perf_event_pid_type(event, p, PIDTYPE_PID);
6844c09d
ACM
1277}
1278
7f453c24 1279/*
cdd6c482 1280 * If we inherit events we want to return the parent event id
7f453c24
PZ
1281 * to userspace.
1282 */
cdd6c482 1283static u64 primary_event_id(struct perf_event *event)
7f453c24 1284{
cdd6c482 1285 u64 id = event->id;
7f453c24 1286
cdd6c482
IM
1287 if (event->parent)
1288 id = event->parent->id;
7f453c24
PZ
1289
1290 return id;
1291}
1292
25346b93 1293/*
cdd6c482 1294 * Get the perf_event_context for a task and lock it.
63b6da39 1295 *
25346b93
PM
1296 * This has to cope with with the fact that until it is locked,
1297 * the context could get moved to another task.
1298 */
cdd6c482 1299static struct perf_event_context *
8dc85d54 1300perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
25346b93 1301{
cdd6c482 1302 struct perf_event_context *ctx;
25346b93 1303
9ed6060d 1304retry:
058ebd0e
PZ
1305 /*
1306 * One of the few rules of preemptible RCU is that one cannot do
1307 * rcu_read_unlock() while holding a scheduler (or nested) lock when
2fd59077 1308 * part of the read side critical section was irqs-enabled -- see
058ebd0e
PZ
1309 * rcu_read_unlock_special().
1310 *
1311 * Since ctx->lock nests under rq->lock we must ensure the entire read
2fd59077 1312 * side critical section has interrupts disabled.
058ebd0e 1313 */
2fd59077 1314 local_irq_save(*flags);
058ebd0e 1315 rcu_read_lock();
8dc85d54 1316 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
25346b93
PM
1317 if (ctx) {
1318 /*
1319 * If this context is a clone of another, it might
1320 * get swapped for another underneath us by
cdd6c482 1321 * perf_event_task_sched_out, though the
25346b93
PM
1322 * rcu_read_lock() protects us from any context
1323 * getting freed. Lock the context and check if it
1324 * got swapped before we could get the lock, and retry
1325 * if so. If we locked the right context, then it
1326 * can't get swapped on us any more.
1327 */
2fd59077 1328 raw_spin_lock(&ctx->lock);
8dc85d54 1329 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
2fd59077 1330 raw_spin_unlock(&ctx->lock);
058ebd0e 1331 rcu_read_unlock();
2fd59077 1332 local_irq_restore(*flags);
25346b93
PM
1333 goto retry;
1334 }
b49a9e7e 1335
63b6da39
PZ
1336 if (ctx->task == TASK_TOMBSTONE ||
1337 !atomic_inc_not_zero(&ctx->refcount)) {
2fd59077 1338 raw_spin_unlock(&ctx->lock);
b49a9e7e 1339 ctx = NULL;
828b6f0e
PZ
1340 } else {
1341 WARN_ON_ONCE(ctx->task != task);
b49a9e7e 1342 }
25346b93
PM
1343 }
1344 rcu_read_unlock();
2fd59077
PM
1345 if (!ctx)
1346 local_irq_restore(*flags);
25346b93
PM
1347 return ctx;
1348}
1349
1350/*
1351 * Get the context for a task and increment its pin_count so it
1352 * can't get swapped to another task. This also increments its
1353 * reference count so that the context can't get freed.
1354 */
8dc85d54
PZ
1355static struct perf_event_context *
1356perf_pin_task_context(struct task_struct *task, int ctxn)
25346b93 1357{
cdd6c482 1358 struct perf_event_context *ctx;
25346b93
PM
1359 unsigned long flags;
1360
8dc85d54 1361 ctx = perf_lock_task_context(task, ctxn, &flags);
25346b93
PM
1362 if (ctx) {
1363 ++ctx->pin_count;
e625cce1 1364 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1365 }
1366 return ctx;
1367}
1368
cdd6c482 1369static void perf_unpin_context(struct perf_event_context *ctx)
25346b93
PM
1370{
1371 unsigned long flags;
1372
e625cce1 1373 raw_spin_lock_irqsave(&ctx->lock, flags);
25346b93 1374 --ctx->pin_count;
e625cce1 1375 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1376}
1377
f67218c3
PZ
1378/*
1379 * Update the record of the current time in a context.
1380 */
1381static void update_context_time(struct perf_event_context *ctx)
1382{
1383 u64 now = perf_clock();
1384
1385 ctx->time += now - ctx->timestamp;
1386 ctx->timestamp = now;
1387}
1388
4158755d
SE
1389static u64 perf_event_time(struct perf_event *event)
1390{
1391 struct perf_event_context *ctx = event->ctx;
e5d1367f
SE
1392
1393 if (is_cgroup_event(event))
1394 return perf_cgroup_event_time(event);
1395
4158755d
SE
1396 return ctx ? ctx->time : 0;
1397}
1398
f67218c3
PZ
1399/*
1400 * Update the total_time_enabled and total_time_running fields for a event.
1401 */
1402static void update_event_times(struct perf_event *event)
1403{
1404 struct perf_event_context *ctx = event->ctx;
1405 u64 run_end;
1406
3cbaa590
PZ
1407 lockdep_assert_held(&ctx->lock);
1408
f67218c3
PZ
1409 if (event->state < PERF_EVENT_STATE_INACTIVE ||
1410 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1411 return;
3cbaa590 1412
e5d1367f
SE
1413 /*
1414 * in cgroup mode, time_enabled represents
1415 * the time the event was enabled AND active
1416 * tasks were in the monitored cgroup. This is
1417 * independent of the activity of the context as
1418 * there may be a mix of cgroup and non-cgroup events.
1419 *
1420 * That is why we treat cgroup events differently
1421 * here.
1422 */
1423 if (is_cgroup_event(event))
46cd6a7f 1424 run_end = perf_cgroup_event_time(event);
e5d1367f
SE
1425 else if (ctx->is_active)
1426 run_end = ctx->time;
acd1d7c1
PZ
1427 else
1428 run_end = event->tstamp_stopped;
1429
1430 event->total_time_enabled = run_end - event->tstamp_enabled;
f67218c3
PZ
1431
1432 if (event->state == PERF_EVENT_STATE_INACTIVE)
1433 run_end = event->tstamp_stopped;
1434 else
4158755d 1435 run_end = perf_event_time(event);
f67218c3
PZ
1436
1437 event->total_time_running = run_end - event->tstamp_running;
e5d1367f 1438
f67218c3
PZ
1439}
1440
96c21a46
PZ
1441/*
1442 * Update total_time_enabled and total_time_running for all events in a group.
1443 */
1444static void update_group_times(struct perf_event *leader)
1445{
1446 struct perf_event *event;
1447
1448 update_event_times(leader);
1449 list_for_each_entry(event, &leader->sibling_list, group_entry)
1450 update_event_times(event);
1451}
1452
487f05e1
AS
1453static enum event_type_t get_event_type(struct perf_event *event)
1454{
1455 struct perf_event_context *ctx = event->ctx;
1456 enum event_type_t event_type;
1457
1458 lockdep_assert_held(&ctx->lock);
1459
3bda69c1
AS
1460 /*
1461 * It's 'group type', really, because if our group leader is
1462 * pinned, so are we.
1463 */
1464 if (event->group_leader != event)
1465 event = event->group_leader;
1466
487f05e1
AS
1467 event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1468 if (!ctx->task)
1469 event_type |= EVENT_CPU;
1470
1471 return event_type;
1472}
1473
889ff015
FW
1474static struct list_head *
1475ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1476{
1477 if (event->attr.pinned)
1478 return &ctx->pinned_groups;
1479 else
1480 return &ctx->flexible_groups;
1481}
1482
fccc714b 1483/*
cdd6c482 1484 * Add a event from the lists for its context.
fccc714b
PZ
1485 * Must be called with ctx->mutex and ctx->lock held.
1486 */
04289bb9 1487static void
cdd6c482 1488list_add_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1489{
c994d613
PZ
1490 lockdep_assert_held(&ctx->lock);
1491
8a49542c
PZ
1492 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1493 event->attach_state |= PERF_ATTACH_CONTEXT;
04289bb9
IM
1494
1495 /*
8a49542c
PZ
1496 * If we're a stand alone event or group leader, we go to the context
1497 * list, group events are kept attached to the group so that
1498 * perf_group_detach can, at all times, locate all siblings.
04289bb9 1499 */
8a49542c 1500 if (event->group_leader == event) {
889ff015
FW
1501 struct list_head *list;
1502
4ff6a8de 1503 event->group_caps = event->event_caps;
d6f962b5 1504
889ff015
FW
1505 list = ctx_group_list(event, ctx);
1506 list_add_tail(&event->group_entry, list);
5c148194 1507 }
592903cd 1508
db4a8356 1509 list_update_cgroup_event(event, ctx, true);
e5d1367f 1510
cdd6c482
IM
1511 list_add_rcu(&event->event_entry, &ctx->event_list);
1512 ctx->nr_events++;
1513 if (event->attr.inherit_stat)
bfbd3381 1514 ctx->nr_stat++;
5a3126d4
PZ
1515
1516 ctx->generation++;
04289bb9
IM
1517}
1518
0231bb53
JO
1519/*
1520 * Initialize event state based on the perf_event_attr::disabled.
1521 */
1522static inline void perf_event__state_init(struct perf_event *event)
1523{
1524 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1525 PERF_EVENT_STATE_INACTIVE;
1526}
1527
a723968c 1528static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
c320c7b7
ACM
1529{
1530 int entry = sizeof(u64); /* value */
1531 int size = 0;
1532 int nr = 1;
1533
1534 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1535 size += sizeof(u64);
1536
1537 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1538 size += sizeof(u64);
1539
1540 if (event->attr.read_format & PERF_FORMAT_ID)
1541 entry += sizeof(u64);
1542
1543 if (event->attr.read_format & PERF_FORMAT_GROUP) {
a723968c 1544 nr += nr_siblings;
c320c7b7
ACM
1545 size += sizeof(u64);
1546 }
1547
1548 size += entry * nr;
1549 event->read_size = size;
1550}
1551
a723968c 1552static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
c320c7b7
ACM
1553{
1554 struct perf_sample_data *data;
c320c7b7
ACM
1555 u16 size = 0;
1556
c320c7b7
ACM
1557 if (sample_type & PERF_SAMPLE_IP)
1558 size += sizeof(data->ip);
1559
6844c09d
ACM
1560 if (sample_type & PERF_SAMPLE_ADDR)
1561 size += sizeof(data->addr);
1562
1563 if (sample_type & PERF_SAMPLE_PERIOD)
1564 size += sizeof(data->period);
1565
c3feedf2
AK
1566 if (sample_type & PERF_SAMPLE_WEIGHT)
1567 size += sizeof(data->weight);
1568
6844c09d
ACM
1569 if (sample_type & PERF_SAMPLE_READ)
1570 size += event->read_size;
1571
d6be9ad6
SE
1572 if (sample_type & PERF_SAMPLE_DATA_SRC)
1573 size += sizeof(data->data_src.val);
1574
fdfbbd07
AK
1575 if (sample_type & PERF_SAMPLE_TRANSACTION)
1576 size += sizeof(data->txn);
1577
fc7ce9c7
KL
1578 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1579 size += sizeof(data->phys_addr);
1580
6844c09d
ACM
1581 event->header_size = size;
1582}
1583
a723968c
PZ
1584/*
1585 * Called at perf_event creation and when events are attached/detached from a
1586 * group.
1587 */
1588static void perf_event__header_size(struct perf_event *event)
1589{
1590 __perf_event_read_size(event,
1591 event->group_leader->nr_siblings);
1592 __perf_event_header_size(event, event->attr.sample_type);
1593}
1594
6844c09d
ACM
1595static void perf_event__id_header_size(struct perf_event *event)
1596{
1597 struct perf_sample_data *data;
1598 u64 sample_type = event->attr.sample_type;
1599 u16 size = 0;
1600
c320c7b7
ACM
1601 if (sample_type & PERF_SAMPLE_TID)
1602 size += sizeof(data->tid_entry);
1603
1604 if (sample_type & PERF_SAMPLE_TIME)
1605 size += sizeof(data->time);
1606
ff3d527c
AH
1607 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1608 size += sizeof(data->id);
1609
c320c7b7
ACM
1610 if (sample_type & PERF_SAMPLE_ID)
1611 size += sizeof(data->id);
1612
1613 if (sample_type & PERF_SAMPLE_STREAM_ID)
1614 size += sizeof(data->stream_id);
1615
1616 if (sample_type & PERF_SAMPLE_CPU)
1617 size += sizeof(data->cpu_entry);
1618
6844c09d 1619 event->id_header_size = size;
c320c7b7
ACM
1620}
1621
a723968c
PZ
1622static bool perf_event_validate_size(struct perf_event *event)
1623{
1624 /*
1625 * The values computed here will be over-written when we actually
1626 * attach the event.
1627 */
1628 __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1629 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1630 perf_event__id_header_size(event);
1631
1632 /*
1633 * Sum the lot; should not exceed the 64k limit we have on records.
1634 * Conservative limit to allow for callchains and other variable fields.
1635 */
1636 if (event->read_size + event->header_size +
1637 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1638 return false;
1639
1640 return true;
1641}
1642
8a49542c
PZ
1643static void perf_group_attach(struct perf_event *event)
1644{
c320c7b7 1645 struct perf_event *group_leader = event->group_leader, *pos;
8a49542c 1646
a76a82a3
PZ
1647 lockdep_assert_held(&event->ctx->lock);
1648
74c3337c
PZ
1649 /*
1650 * We can have double attach due to group movement in perf_event_open.
1651 */
1652 if (event->attach_state & PERF_ATTACH_GROUP)
1653 return;
1654
8a49542c
PZ
1655 event->attach_state |= PERF_ATTACH_GROUP;
1656
1657 if (group_leader == event)
1658 return;
1659
652884fe
PZ
1660 WARN_ON_ONCE(group_leader->ctx != event->ctx);
1661
4ff6a8de 1662 group_leader->group_caps &= event->event_caps;
8a49542c
PZ
1663
1664 list_add_tail(&event->group_entry, &group_leader->sibling_list);
1665 group_leader->nr_siblings++;
c320c7b7
ACM
1666
1667 perf_event__header_size(group_leader);
1668
1669 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1670 perf_event__header_size(pos);
8a49542c
PZ
1671}
1672
a63eaf34 1673/*
cdd6c482 1674 * Remove a event from the lists for its context.
fccc714b 1675 * Must be called with ctx->mutex and ctx->lock held.
a63eaf34 1676 */
04289bb9 1677static void
cdd6c482 1678list_del_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1679{
652884fe
PZ
1680 WARN_ON_ONCE(event->ctx != ctx);
1681 lockdep_assert_held(&ctx->lock);
1682
8a49542c
PZ
1683 /*
1684 * We can have double detach due to exit/hot-unplug + close.
1685 */
1686 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
a63eaf34 1687 return;
8a49542c
PZ
1688
1689 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1690
db4a8356 1691 list_update_cgroup_event(event, ctx, false);
e5d1367f 1692
cdd6c482
IM
1693 ctx->nr_events--;
1694 if (event->attr.inherit_stat)
bfbd3381 1695 ctx->nr_stat--;
8bc20959 1696
cdd6c482 1697 list_del_rcu(&event->event_entry);
04289bb9 1698
8a49542c
PZ
1699 if (event->group_leader == event)
1700 list_del_init(&event->group_entry);
5c148194 1701
96c21a46 1702 update_group_times(event);
b2e74a26
SE
1703
1704 /*
1705 * If event was in error state, then keep it
1706 * that way, otherwise bogus counts will be
1707 * returned on read(). The only way to get out
1708 * of error state is by explicit re-enabling
1709 * of the event
1710 */
1711 if (event->state > PERF_EVENT_STATE_OFF)
1712 event->state = PERF_EVENT_STATE_OFF;
5a3126d4
PZ
1713
1714 ctx->generation++;
050735b0
PZ
1715}
1716
8a49542c 1717static void perf_group_detach(struct perf_event *event)
050735b0
PZ
1718{
1719 struct perf_event *sibling, *tmp;
8a49542c
PZ
1720 struct list_head *list = NULL;
1721
a76a82a3
PZ
1722 lockdep_assert_held(&event->ctx->lock);
1723
8a49542c
PZ
1724 /*
1725 * We can have double detach due to exit/hot-unplug + close.
1726 */
1727 if (!(event->attach_state & PERF_ATTACH_GROUP))
1728 return;
1729
1730 event->attach_state &= ~PERF_ATTACH_GROUP;
1731
1732 /*
1733 * If this is a sibling, remove it from its group.
1734 */
1735 if (event->group_leader != event) {
1736 list_del_init(&event->group_entry);
1737 event->group_leader->nr_siblings--;
c320c7b7 1738 goto out;
8a49542c
PZ
1739 }
1740
1741 if (!list_empty(&event->group_entry))
1742 list = &event->group_entry;
2e2af50b 1743
04289bb9 1744 /*
cdd6c482
IM
1745 * If this was a group event with sibling events then
1746 * upgrade the siblings to singleton events by adding them
8a49542c 1747 * to whatever list we are on.
04289bb9 1748 */
cdd6c482 1749 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
8a49542c
PZ
1750 if (list)
1751 list_move_tail(&sibling->group_entry, list);
04289bb9 1752 sibling->group_leader = sibling;
d6f962b5
FW
1753
1754 /* Inherit group flags from the previous leader */
4ff6a8de 1755 sibling->group_caps = event->group_caps;
652884fe
PZ
1756
1757 WARN_ON_ONCE(sibling->ctx != event->ctx);
04289bb9 1758 }
c320c7b7
ACM
1759
1760out:
1761 perf_event__header_size(event->group_leader);
1762
1763 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1764 perf_event__header_size(tmp);
04289bb9
IM
1765}
1766
fadfe7be
JO
1767static bool is_orphaned_event(struct perf_event *event)
1768{
a69b0ca4 1769 return event->state == PERF_EVENT_STATE_DEAD;
fadfe7be
JO
1770}
1771
2c81a647 1772static inline int __pmu_filter_match(struct perf_event *event)
66eb579e
MR
1773{
1774 struct pmu *pmu = event->pmu;
1775 return pmu->filter_match ? pmu->filter_match(event) : 1;
1776}
1777
2c81a647
MR
1778/*
1779 * Check whether we should attempt to schedule an event group based on
1780 * PMU-specific filtering. An event group can consist of HW and SW events,
1781 * potentially with a SW leader, so we must check all the filters, to
1782 * determine whether a group is schedulable:
1783 */
1784static inline int pmu_filter_match(struct perf_event *event)
1785{
1786 struct perf_event *child;
1787
1788 if (!__pmu_filter_match(event))
1789 return 0;
1790
1791 list_for_each_entry(child, &event->sibling_list, group_entry) {
1792 if (!__pmu_filter_match(child))
1793 return 0;
1794 }
1795
1796 return 1;
1797}
1798
fa66f07a
SE
1799static inline int
1800event_filter_match(struct perf_event *event)
1801{
0b8f1e2e
PZ
1802 return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
1803 perf_cgroup_match(event) && pmu_filter_match(event);
fa66f07a
SE
1804}
1805
9ffcfa6f
SE
1806static void
1807event_sched_out(struct perf_event *event,
3b6f9e5c 1808 struct perf_cpu_context *cpuctx,
cdd6c482 1809 struct perf_event_context *ctx)
3b6f9e5c 1810{
4158755d 1811 u64 tstamp = perf_event_time(event);
fa66f07a 1812 u64 delta;
652884fe
PZ
1813
1814 WARN_ON_ONCE(event->ctx != ctx);
1815 lockdep_assert_held(&ctx->lock);
1816
fa66f07a
SE
1817 /*
1818 * An event which could not be activated because of
1819 * filter mismatch still needs to have its timings
1820 * maintained, otherwise bogus information is return
1821 * via read() for time_enabled, time_running:
1822 */
0b8f1e2e
PZ
1823 if (event->state == PERF_EVENT_STATE_INACTIVE &&
1824 !event_filter_match(event)) {
e5d1367f 1825 delta = tstamp - event->tstamp_stopped;
fa66f07a 1826 event->tstamp_running += delta;
4158755d 1827 event->tstamp_stopped = tstamp;
fa66f07a
SE
1828 }
1829
cdd6c482 1830 if (event->state != PERF_EVENT_STATE_ACTIVE)
9ffcfa6f 1831 return;
3b6f9e5c 1832
44377277
AS
1833 perf_pmu_disable(event->pmu);
1834
28a967c3
PZ
1835 event->tstamp_stopped = tstamp;
1836 event->pmu->del(event, 0);
1837 event->oncpu = -1;
cdd6c482
IM
1838 event->state = PERF_EVENT_STATE_INACTIVE;
1839 if (event->pending_disable) {
1840 event->pending_disable = 0;
1841 event->state = PERF_EVENT_STATE_OFF;
970892a9 1842 }
3b6f9e5c 1843
cdd6c482 1844 if (!is_software_event(event))
3b6f9e5c 1845 cpuctx->active_oncpu--;
2fde4f94
MR
1846 if (!--ctx->nr_active)
1847 perf_event_ctx_deactivate(ctx);
0f5a2601
PZ
1848 if (event->attr.freq && event->attr.sample_freq)
1849 ctx->nr_freq--;
cdd6c482 1850 if (event->attr.exclusive || !cpuctx->active_oncpu)
3b6f9e5c 1851 cpuctx->exclusive = 0;
44377277
AS
1852
1853 perf_pmu_enable(event->pmu);
3b6f9e5c
PM
1854}
1855
d859e29f 1856static void
cdd6c482 1857group_sched_out(struct perf_event *group_event,
d859e29f 1858 struct perf_cpu_context *cpuctx,
cdd6c482 1859 struct perf_event_context *ctx)
d859e29f 1860{
cdd6c482 1861 struct perf_event *event;
fa66f07a 1862 int state = group_event->state;
d859e29f 1863
3f005e7d
MR
1864 perf_pmu_disable(ctx->pmu);
1865
cdd6c482 1866 event_sched_out(group_event, cpuctx, ctx);
d859e29f
PM
1867
1868 /*
1869 * Schedule out siblings (if any):
1870 */
cdd6c482
IM
1871 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1872 event_sched_out(event, cpuctx, ctx);
d859e29f 1873
3f005e7d
MR
1874 perf_pmu_enable(ctx->pmu);
1875
fa66f07a 1876 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
d859e29f
PM
1877 cpuctx->exclusive = 0;
1878}
1879
45a0e07a 1880#define DETACH_GROUP 0x01UL
0017960f 1881
0793a61d 1882/*
cdd6c482 1883 * Cross CPU call to remove a performance event
0793a61d 1884 *
cdd6c482 1885 * We disable the event on the hardware level first. After that we
0793a61d
TG
1886 * remove it from the context list.
1887 */
fae3fde6
PZ
1888static void
1889__perf_remove_from_context(struct perf_event *event,
1890 struct perf_cpu_context *cpuctx,
1891 struct perf_event_context *ctx,
1892 void *info)
0793a61d 1893{
45a0e07a 1894 unsigned long flags = (unsigned long)info;
0793a61d 1895
cdd6c482 1896 event_sched_out(event, cpuctx, ctx);
45a0e07a 1897 if (flags & DETACH_GROUP)
46ce0fe9 1898 perf_group_detach(event);
cdd6c482 1899 list_del_event(event, ctx);
39a43640
PZ
1900
1901 if (!ctx->nr_events && ctx->is_active) {
64ce3126 1902 ctx->is_active = 0;
39a43640
PZ
1903 if (ctx->task) {
1904 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
1905 cpuctx->task_ctx = NULL;
1906 }
64ce3126 1907 }
0793a61d
TG
1908}
1909
0793a61d 1910/*
cdd6c482 1911 * Remove the event from a task's (or a CPU's) list of events.
0793a61d 1912 *
cdd6c482
IM
1913 * If event->ctx is a cloned context, callers must make sure that
1914 * every task struct that event->ctx->task could possibly point to
c93f7669
PM
1915 * remains valid. This is OK when called from perf_release since
1916 * that only calls us on the top-level context, which can't be a clone.
cdd6c482 1917 * When called from perf_event_exit_task, it's OK because the
c93f7669 1918 * context has been detached from its task.
0793a61d 1919 */
45a0e07a 1920static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
0793a61d 1921{
a76a82a3
PZ
1922 struct perf_event_context *ctx = event->ctx;
1923
1924 lockdep_assert_held(&ctx->mutex);
0793a61d 1925
45a0e07a 1926 event_function_call(event, __perf_remove_from_context, (void *)flags);
a76a82a3
PZ
1927
1928 /*
1929 * The above event_function_call() can NO-OP when it hits
1930 * TASK_TOMBSTONE. In that case we must already have been detached
1931 * from the context (by perf_event_exit_event()) but the grouping
1932 * might still be in-tact.
1933 */
1934 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1935 if ((flags & DETACH_GROUP) &&
1936 (event->attach_state & PERF_ATTACH_GROUP)) {
1937 /*
1938 * Since in that case we cannot possibly be scheduled, simply
1939 * detach now.
1940 */
1941 raw_spin_lock_irq(&ctx->lock);
1942 perf_group_detach(event);
1943 raw_spin_unlock_irq(&ctx->lock);
1944 }
0793a61d
TG
1945}
1946
d859e29f 1947/*
cdd6c482 1948 * Cross CPU call to disable a performance event
d859e29f 1949 */
fae3fde6
PZ
1950static void __perf_event_disable(struct perf_event *event,
1951 struct perf_cpu_context *cpuctx,
1952 struct perf_event_context *ctx,
1953 void *info)
7b648018 1954{
fae3fde6
PZ
1955 if (event->state < PERF_EVENT_STATE_INACTIVE)
1956 return;
7b648018 1957
fae3fde6
PZ
1958 update_context_time(ctx);
1959 update_cgrp_time_from_event(event);
1960 update_group_times(event);
1961 if (event == event->group_leader)
1962 group_sched_out(event, cpuctx, ctx);
1963 else
1964 event_sched_out(event, cpuctx, ctx);
1965 event->state = PERF_EVENT_STATE_OFF;
7b648018
PZ
1966}
1967
d859e29f 1968/*
cdd6c482 1969 * Disable a event.
c93f7669 1970 *
cdd6c482
IM
1971 * If event->ctx is a cloned context, callers must make sure that
1972 * every task struct that event->ctx->task could possibly point to
c93f7669 1973 * remains valid. This condition is satisifed when called through
cdd6c482
IM
1974 * perf_event_for_each_child or perf_event_for_each because they
1975 * hold the top-level event's child_mutex, so any descendant that
8ba289b8
PZ
1976 * goes to exit will block in perf_event_exit_event().
1977 *
cdd6c482 1978 * When called from perf_pending_event it's OK because event->ctx
c93f7669 1979 * is the current context on this CPU and preemption is disabled,
cdd6c482 1980 * hence we can't get into perf_event_task_sched_out for this context.
d859e29f 1981 */
f63a8daa 1982static void _perf_event_disable(struct perf_event *event)
d859e29f 1983{
cdd6c482 1984 struct perf_event_context *ctx = event->ctx;
d859e29f 1985
e625cce1 1986 raw_spin_lock_irq(&ctx->lock);
7b648018 1987 if (event->state <= PERF_EVENT_STATE_OFF) {
e625cce1 1988 raw_spin_unlock_irq(&ctx->lock);
7b648018 1989 return;
53cfbf59 1990 }
e625cce1 1991 raw_spin_unlock_irq(&ctx->lock);
7b648018 1992
fae3fde6
PZ
1993 event_function_call(event, __perf_event_disable, NULL);
1994}
1995
1996void perf_event_disable_local(struct perf_event *event)
1997{
1998 event_function_local(event, __perf_event_disable, NULL);
d859e29f 1999}
f63a8daa
PZ
2000
2001/*
2002 * Strictly speaking kernel users cannot create groups and therefore this
2003 * interface does not need the perf_event_ctx_lock() magic.
2004 */
2005void perf_event_disable(struct perf_event *event)
2006{
2007 struct perf_event_context *ctx;
2008
2009 ctx = perf_event_ctx_lock(event);
2010 _perf_event_disable(event);
2011 perf_event_ctx_unlock(event, ctx);
2012}
dcfce4a0 2013EXPORT_SYMBOL_GPL(perf_event_disable);
d859e29f 2014
5aab90ce
JO
2015void perf_event_disable_inatomic(struct perf_event *event)
2016{
2017 event->pending_disable = 1;
2018 irq_work_queue(&event->pending);
2019}
2020
e5d1367f
SE
2021static void perf_set_shadow_time(struct perf_event *event,
2022 struct perf_event_context *ctx,
2023 u64 tstamp)
2024{
2025 /*
2026 * use the correct time source for the time snapshot
2027 *
2028 * We could get by without this by leveraging the
2029 * fact that to get to this function, the caller
2030 * has most likely already called update_context_time()
2031 * and update_cgrp_time_xx() and thus both timestamp
2032 * are identical (or very close). Given that tstamp is,
2033 * already adjusted for cgroup, we could say that:
2034 * tstamp - ctx->timestamp
2035 * is equivalent to
2036 * tstamp - cgrp->timestamp.
2037 *
2038 * Then, in perf_output_read(), the calculation would
2039 * work with no changes because:
2040 * - event is guaranteed scheduled in
2041 * - no scheduled out in between
2042 * - thus the timestamp would be the same
2043 *
2044 * But this is a bit hairy.
2045 *
2046 * So instead, we have an explicit cgroup call to remain
2047 * within the time time source all along. We believe it
2048 * is cleaner and simpler to understand.
2049 */
2050 if (is_cgroup_event(event))
2051 perf_cgroup_set_shadow_time(event, tstamp);
2052 else
2053 event->shadow_ctx_time = tstamp - ctx->timestamp;
2054}
2055
4fe757dd
PZ
2056#define MAX_INTERRUPTS (~0ULL)
2057
2058static void perf_log_throttle(struct perf_event *event, int enable);
ec0d7729 2059static void perf_log_itrace_start(struct perf_event *event);
4fe757dd 2060
235c7fc7 2061static int
9ffcfa6f 2062event_sched_in(struct perf_event *event,
235c7fc7 2063 struct perf_cpu_context *cpuctx,
6e37738a 2064 struct perf_event_context *ctx)
235c7fc7 2065{
4158755d 2066 u64 tstamp = perf_event_time(event);
44377277 2067 int ret = 0;
4158755d 2068
63342411
PZ
2069 lockdep_assert_held(&ctx->lock);
2070
cdd6c482 2071 if (event->state <= PERF_EVENT_STATE_OFF)
235c7fc7
IM
2072 return 0;
2073
95ff4ca2
AS
2074 WRITE_ONCE(event->oncpu, smp_processor_id());
2075 /*
2076 * Order event::oncpu write to happen before the ACTIVE state
2077 * is visible.
2078 */
2079 smp_wmb();
2080 WRITE_ONCE(event->state, PERF_EVENT_STATE_ACTIVE);
4fe757dd
PZ
2081
2082 /*
2083 * Unthrottle events, since we scheduled we might have missed several
2084 * ticks already, also for a heavily scheduling task there is little
2085 * guarantee it'll get a tick in a timely manner.
2086 */
2087 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2088 perf_log_throttle(event, 1);
2089 event->hw.interrupts = 0;
2090 }
2091
235c7fc7
IM
2092 /*
2093 * The new state must be visible before we turn it on in the hardware:
2094 */
2095 smp_wmb();
2096
44377277
AS
2097 perf_pmu_disable(event->pmu);
2098
72f669c0
SL
2099 perf_set_shadow_time(event, ctx, tstamp);
2100
ec0d7729
AS
2101 perf_log_itrace_start(event);
2102
a4eaf7f1 2103 if (event->pmu->add(event, PERF_EF_START)) {
cdd6c482
IM
2104 event->state = PERF_EVENT_STATE_INACTIVE;
2105 event->oncpu = -1;
44377277
AS
2106 ret = -EAGAIN;
2107 goto out;
235c7fc7
IM
2108 }
2109
00a2916f
PZ
2110 event->tstamp_running += tstamp - event->tstamp_stopped;
2111
cdd6c482 2112 if (!is_software_event(event))
3b6f9e5c 2113 cpuctx->active_oncpu++;
2fde4f94
MR
2114 if (!ctx->nr_active++)
2115 perf_event_ctx_activate(ctx);
0f5a2601
PZ
2116 if (event->attr.freq && event->attr.sample_freq)
2117 ctx->nr_freq++;
235c7fc7 2118
cdd6c482 2119 if (event->attr.exclusive)
3b6f9e5c
PM
2120 cpuctx->exclusive = 1;
2121
44377277
AS
2122out:
2123 perf_pmu_enable(event->pmu);
2124
2125 return ret;
235c7fc7
IM
2126}
2127
6751b71e 2128static int
cdd6c482 2129group_sched_in(struct perf_event *group_event,
6751b71e 2130 struct perf_cpu_context *cpuctx,
6e37738a 2131 struct perf_event_context *ctx)
6751b71e 2132{
6bde9b6c 2133 struct perf_event *event, *partial_group = NULL;
4a234593 2134 struct pmu *pmu = ctx->pmu;
d7842da4
SE
2135 u64 now = ctx->time;
2136 bool simulate = false;
6751b71e 2137
cdd6c482 2138 if (group_event->state == PERF_EVENT_STATE_OFF)
6751b71e
PM
2139 return 0;
2140
fbbe0701 2141 pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
6bde9b6c 2142
9ffcfa6f 2143 if (event_sched_in(group_event, cpuctx, ctx)) {
ad5133b7 2144 pmu->cancel_txn(pmu);
272325c4 2145 perf_mux_hrtimer_restart(cpuctx);
6751b71e 2146 return -EAGAIN;
90151c35 2147 }
6751b71e
PM
2148
2149 /*
2150 * Schedule in siblings as one group (if any):
2151 */
cdd6c482 2152 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
9ffcfa6f 2153 if (event_sched_in(event, cpuctx, ctx)) {
cdd6c482 2154 partial_group = event;
6751b71e
PM
2155 goto group_error;
2156 }
2157 }
2158
9ffcfa6f 2159 if (!pmu->commit_txn(pmu))
6e85158c 2160 return 0;
9ffcfa6f 2161
6751b71e
PM
2162group_error:
2163 /*
2164 * Groups can be scheduled in as one unit only, so undo any
2165 * partial group before returning:
d7842da4
SE
2166 * The events up to the failed event are scheduled out normally,
2167 * tstamp_stopped will be updated.
2168 *
2169 * The failed events and the remaining siblings need to have
2170 * their timings updated as if they had gone thru event_sched_in()
2171 * and event_sched_out(). This is required to get consistent timings
2172 * across the group. This also takes care of the case where the group
2173 * could never be scheduled by ensuring tstamp_stopped is set to mark
2174 * the time the event was actually stopped, such that time delta
2175 * calculation in update_event_times() is correct.
6751b71e 2176 */
cdd6c482
IM
2177 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2178 if (event == partial_group)
d7842da4
SE
2179 simulate = true;
2180
2181 if (simulate) {
2182 event->tstamp_running += now - event->tstamp_stopped;
2183 event->tstamp_stopped = now;
2184 } else {
2185 event_sched_out(event, cpuctx, ctx);
2186 }
6751b71e 2187 }
9ffcfa6f 2188 event_sched_out(group_event, cpuctx, ctx);
6751b71e 2189
ad5133b7 2190 pmu->cancel_txn(pmu);
90151c35 2191
272325c4 2192 perf_mux_hrtimer_restart(cpuctx);
9e630205 2193
6751b71e
PM
2194 return -EAGAIN;
2195}
2196
3b6f9e5c 2197/*
cdd6c482 2198 * Work out whether we can put this event group on the CPU now.
3b6f9e5c 2199 */
cdd6c482 2200static int group_can_go_on(struct perf_event *event,
3b6f9e5c
PM
2201 struct perf_cpu_context *cpuctx,
2202 int can_add_hw)
2203{
2204 /*
cdd6c482 2205 * Groups consisting entirely of software events can always go on.
3b6f9e5c 2206 */
4ff6a8de 2207 if (event->group_caps & PERF_EV_CAP_SOFTWARE)
3b6f9e5c
PM
2208 return 1;
2209 /*
2210 * If an exclusive group is already on, no other hardware
cdd6c482 2211 * events can go on.
3b6f9e5c
PM
2212 */
2213 if (cpuctx->exclusive)
2214 return 0;
2215 /*
2216 * If this group is exclusive and there are already
cdd6c482 2217 * events on the CPU, it can't go on.
3b6f9e5c 2218 */
cdd6c482 2219 if (event->attr.exclusive && cpuctx->active_oncpu)
3b6f9e5c
PM
2220 return 0;
2221 /*
2222 * Otherwise, try to add it if all previous groups were able
2223 * to go on.
2224 */
2225 return can_add_hw;
2226}
2227
9b231d9f
PZ
2228/*
2229 * Complement to update_event_times(). This computes the tstamp_* values to
2230 * continue 'enabled' state from @now, and effectively discards the time
2231 * between the prior tstamp_stopped and now (as we were in the OFF state, or
2232 * just switched (context) time base).
2233 *
2234 * This further assumes '@event->state == INACTIVE' (we just came from OFF) and
2235 * cannot have been scheduled in yet. And going into INACTIVE state means
2236 * '@event->tstamp_stopped = @now'.
2237 *
2238 * Thus given the rules of update_event_times():
2239 *
2240 * total_time_enabled = tstamp_stopped - tstamp_enabled
2241 * total_time_running = tstamp_stopped - tstamp_running
2242 *
2243 * We can insert 'tstamp_stopped == now' and reverse them to compute new
2244 * tstamp_* values.
2245 */
2246static void __perf_event_enable_time(struct perf_event *event, u64 now)
2247{
2248 WARN_ON_ONCE(event->state != PERF_EVENT_STATE_INACTIVE);
2249
2250 event->tstamp_stopped = now;
2251 event->tstamp_enabled = now - event->total_time_enabled;
2252 event->tstamp_running = now - event->total_time_running;
2253}
2254
cdd6c482
IM
2255static void add_event_to_ctx(struct perf_event *event,
2256 struct perf_event_context *ctx)
53cfbf59 2257{
4158755d
SE
2258 u64 tstamp = perf_event_time(event);
2259
cdd6c482 2260 list_add_event(event, ctx);
8a49542c 2261 perf_group_attach(event);
9b231d9f
PZ
2262 /*
2263 * We can be called with event->state == STATE_OFF when we create with
2264 * .disabled = 1. In that case the IOC_ENABLE will call this function.
2265 */
2266 if (event->state == PERF_EVENT_STATE_INACTIVE)
2267 __perf_event_enable_time(event, tstamp);
53cfbf59
PM
2268}
2269
bd2afa49
PZ
2270static void ctx_sched_out(struct perf_event_context *ctx,
2271 struct perf_cpu_context *cpuctx,
2272 enum event_type_t event_type);
2c29ef0f
PZ
2273static void
2274ctx_sched_in(struct perf_event_context *ctx,
2275 struct perf_cpu_context *cpuctx,
2276 enum event_type_t event_type,
2277 struct task_struct *task);
fe4b04fa 2278
bd2afa49 2279static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
487f05e1
AS
2280 struct perf_event_context *ctx,
2281 enum event_type_t event_type)
bd2afa49
PZ
2282{
2283 if (!cpuctx->task_ctx)
2284 return;
2285
2286 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2287 return;
2288
487f05e1 2289 ctx_sched_out(ctx, cpuctx, event_type);
bd2afa49
PZ
2290}
2291
dce5855b
PZ
2292static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2293 struct perf_event_context *ctx,
2294 struct task_struct *task)
2295{
2296 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2297 if (ctx)
2298 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2299 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2300 if (ctx)
2301 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2302}
2303
487f05e1
AS
2304/*
2305 * We want to maintain the following priority of scheduling:
2306 * - CPU pinned (EVENT_CPU | EVENT_PINNED)
2307 * - task pinned (EVENT_PINNED)
2308 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2309 * - task flexible (EVENT_FLEXIBLE).
2310 *
2311 * In order to avoid unscheduling and scheduling back in everything every
2312 * time an event is added, only do it for the groups of equal priority and
2313 * below.
2314 *
2315 * This can be called after a batch operation on task events, in which case
2316 * event_type is a bit mask of the types of events involved. For CPU events,
2317 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2318 */
3e349507 2319static void ctx_resched(struct perf_cpu_context *cpuctx,
487f05e1
AS
2320 struct perf_event_context *task_ctx,
2321 enum event_type_t event_type)
0017960f 2322{
487f05e1
AS
2323 enum event_type_t ctx_event_type = event_type & EVENT_ALL;
2324 bool cpu_event = !!(event_type & EVENT_CPU);
2325
2326 /*
2327 * If pinned groups are involved, flexible groups also need to be
2328 * scheduled out.
2329 */
2330 if (event_type & EVENT_PINNED)
2331 event_type |= EVENT_FLEXIBLE;
2332
3e349507
PZ
2333 perf_pmu_disable(cpuctx->ctx.pmu);
2334 if (task_ctx)
487f05e1
AS
2335 task_ctx_sched_out(cpuctx, task_ctx, event_type);
2336
2337 /*
2338 * Decide which cpu ctx groups to schedule out based on the types
2339 * of events that caused rescheduling:
2340 * - EVENT_CPU: schedule out corresponding groups;
2341 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2342 * - otherwise, do nothing more.
2343 */
2344 if (cpu_event)
2345 cpu_ctx_sched_out(cpuctx, ctx_event_type);
2346 else if (ctx_event_type & EVENT_PINNED)
2347 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2348
3e349507
PZ
2349 perf_event_sched_in(cpuctx, task_ctx, current);
2350 perf_pmu_enable(cpuctx->ctx.pmu);
0017960f
PZ
2351}
2352
0793a61d 2353/*
cdd6c482 2354 * Cross CPU call to install and enable a performance event
682076ae 2355 *
a096309b
PZ
2356 * Very similar to remote_function() + event_function() but cannot assume that
2357 * things like ctx->is_active and cpuctx->task_ctx are set.
0793a61d 2358 */
fe4b04fa 2359static int __perf_install_in_context(void *info)
0793a61d 2360{
a096309b
PZ
2361 struct perf_event *event = info;
2362 struct perf_event_context *ctx = event->ctx;
108b02cf 2363 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2c29ef0f 2364 struct perf_event_context *task_ctx = cpuctx->task_ctx;
63cae12b 2365 bool reprogram = true;
a096309b 2366 int ret = 0;
0793a61d 2367
63b6da39 2368 raw_spin_lock(&cpuctx->ctx.lock);
39a43640 2369 if (ctx->task) {
b58f6b0d
PZ
2370 raw_spin_lock(&ctx->lock);
2371 task_ctx = ctx;
a096309b 2372
63cae12b 2373 reprogram = (ctx->task == current);
b58f6b0d 2374
39a43640 2375 /*
63cae12b
PZ
2376 * If the task is running, it must be running on this CPU,
2377 * otherwise we cannot reprogram things.
2378 *
2379 * If its not running, we don't care, ctx->lock will
2380 * serialize against it becoming runnable.
39a43640 2381 */
63cae12b
PZ
2382 if (task_curr(ctx->task) && !reprogram) {
2383 ret = -ESRCH;
2384 goto unlock;
2385 }
a096309b 2386
63cae12b 2387 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
63b6da39
PZ
2388 } else if (task_ctx) {
2389 raw_spin_lock(&task_ctx->lock);
2c29ef0f 2390 }
b58f6b0d 2391
63cae12b 2392 if (reprogram) {
a096309b
PZ
2393 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2394 add_event_to_ctx(event, ctx);
487f05e1 2395 ctx_resched(cpuctx, task_ctx, get_event_type(event));
a096309b
PZ
2396 } else {
2397 add_event_to_ctx(event, ctx);
2398 }
2399
63b6da39 2400unlock:
2c29ef0f 2401 perf_ctx_unlock(cpuctx, task_ctx);
fe4b04fa 2402
a096309b 2403 return ret;
0793a61d
TG
2404}
2405
2406/*
a096309b
PZ
2407 * Attach a performance event to a context.
2408 *
2409 * Very similar to event_function_call, see comment there.
0793a61d
TG
2410 */
2411static void
cdd6c482
IM
2412perf_install_in_context(struct perf_event_context *ctx,
2413 struct perf_event *event,
0793a61d
TG
2414 int cpu)
2415{
a096309b 2416 struct task_struct *task = READ_ONCE(ctx->task);
39a43640 2417
fe4b04fa
PZ
2418 lockdep_assert_held(&ctx->mutex);
2419
0cda4c02
YZ
2420 if (event->cpu != -1)
2421 event->cpu = cpu;
c3f00c70 2422
0b8f1e2e
PZ
2423 /*
2424 * Ensures that if we can observe event->ctx, both the event and ctx
2425 * will be 'complete'. See perf_iterate_sb_cpu().
2426 */
2427 smp_store_release(&event->ctx, ctx);
2428
a096309b
PZ
2429 if (!task) {
2430 cpu_function_call(cpu, __perf_install_in_context, event);
2431 return;
2432 }
2433
2434 /*
2435 * Should not happen, we validate the ctx is still alive before calling.
2436 */
2437 if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2438 return;
2439
39a43640
PZ
2440 /*
2441 * Installing events is tricky because we cannot rely on ctx->is_active
2442 * to be set in case this is the nr_events 0 -> 1 transition.
63cae12b
PZ
2443 *
2444 * Instead we use task_curr(), which tells us if the task is running.
2445 * However, since we use task_curr() outside of rq::lock, we can race
2446 * against the actual state. This means the result can be wrong.
2447 *
2448 * If we get a false positive, we retry, this is harmless.
2449 *
2450 * If we get a false negative, things are complicated. If we are after
2451 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2452 * value must be correct. If we're before, it doesn't matter since
2453 * perf_event_context_sched_in() will program the counter.
2454 *
2455 * However, this hinges on the remote context switch having observed
2456 * our task->perf_event_ctxp[] store, such that it will in fact take
2457 * ctx::lock in perf_event_context_sched_in().
2458 *
2459 * We do this by task_function_call(), if the IPI fails to hit the task
2460 * we know any future context switch of task must see the
2461 * perf_event_ctpx[] store.
39a43640 2462 */
63cae12b 2463
63b6da39 2464 /*
63cae12b
PZ
2465 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2466 * task_cpu() load, such that if the IPI then does not find the task
2467 * running, a future context switch of that task must observe the
2468 * store.
63b6da39 2469 */
63cae12b
PZ
2470 smp_mb();
2471again:
2472 if (!task_function_call(task, __perf_install_in_context, event))
a096309b
PZ
2473 return;
2474
2475 raw_spin_lock_irq(&ctx->lock);
2476 task = ctx->task;
84c4e620 2477 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
a096309b
PZ
2478 /*
2479 * Cannot happen because we already checked above (which also
2480 * cannot happen), and we hold ctx->mutex, which serializes us
2481 * against perf_event_exit_task_context().
2482 */
63b6da39
PZ
2483 raw_spin_unlock_irq(&ctx->lock);
2484 return;
2485 }
39a43640 2486 /*
63cae12b
PZ
2487 * If the task is not running, ctx->lock will avoid it becoming so,
2488 * thus we can safely install the event.
39a43640 2489 */
63cae12b
PZ
2490 if (task_curr(task)) {
2491 raw_spin_unlock_irq(&ctx->lock);
2492 goto again;
2493 }
2494 add_event_to_ctx(event, ctx);
2495 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
2496}
2497
fa289bec 2498/*
cdd6c482 2499 * Put a event into inactive state and update time fields.
fa289bec
PM
2500 * Enabling the leader of a group effectively enables all
2501 * the group members that aren't explicitly disabled, so we
2502 * have to update their ->tstamp_enabled also.
2503 * Note: this works for group members as well as group leaders
2504 * since the non-leader members' sibling_lists will be empty.
2505 */
1d9b482e 2506static void __perf_event_mark_enabled(struct perf_event *event)
fa289bec 2507{
cdd6c482 2508 struct perf_event *sub;
4158755d 2509 u64 tstamp = perf_event_time(event);
fa289bec 2510
cdd6c482 2511 event->state = PERF_EVENT_STATE_INACTIVE;
9b231d9f 2512 __perf_event_enable_time(event, tstamp);
9ed6060d 2513 list_for_each_entry(sub, &event->sibling_list, group_entry) {
9b231d9f 2514 /* XXX should not be > INACTIVE if event isn't */
4158755d 2515 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
9b231d9f 2516 __perf_event_enable_time(sub, tstamp);
9ed6060d 2517 }
fa289bec
PM
2518}
2519
d859e29f 2520/*
cdd6c482 2521 * Cross CPU call to enable a performance event
d859e29f 2522 */
fae3fde6
PZ
2523static void __perf_event_enable(struct perf_event *event,
2524 struct perf_cpu_context *cpuctx,
2525 struct perf_event_context *ctx,
2526 void *info)
04289bb9 2527{
cdd6c482 2528 struct perf_event *leader = event->group_leader;
fae3fde6 2529 struct perf_event_context *task_ctx;
04289bb9 2530
6e801e01
PZ
2531 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2532 event->state <= PERF_EVENT_STATE_ERROR)
fae3fde6 2533 return;
3cbed429 2534
bd2afa49
PZ
2535 if (ctx->is_active)
2536 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2537
1d9b482e 2538 __perf_event_mark_enabled(event);
04289bb9 2539
fae3fde6
PZ
2540 if (!ctx->is_active)
2541 return;
2542
e5d1367f 2543 if (!event_filter_match(event)) {
bd2afa49 2544 if (is_cgroup_event(event))
e5d1367f 2545 perf_cgroup_defer_enabled(event);
bd2afa49 2546 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
fae3fde6 2547 return;
e5d1367f 2548 }
f4c4176f 2549
04289bb9 2550 /*
cdd6c482 2551 * If the event is in a group and isn't the group leader,
d859e29f 2552 * then don't put it on unless the group is on.
04289bb9 2553 */
bd2afa49
PZ
2554 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2555 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
fae3fde6 2556 return;
bd2afa49 2557 }
fe4b04fa 2558
fae3fde6
PZ
2559 task_ctx = cpuctx->task_ctx;
2560 if (ctx->task)
2561 WARN_ON_ONCE(task_ctx != ctx);
d859e29f 2562
487f05e1 2563 ctx_resched(cpuctx, task_ctx, get_event_type(event));
7b648018
PZ
2564}
2565
d859e29f 2566/*
cdd6c482 2567 * Enable a event.
c93f7669 2568 *
cdd6c482
IM
2569 * If event->ctx is a cloned context, callers must make sure that
2570 * every task struct that event->ctx->task could possibly point to
c93f7669 2571 * remains valid. This condition is satisfied when called through
cdd6c482
IM
2572 * perf_event_for_each_child or perf_event_for_each as described
2573 * for perf_event_disable.
d859e29f 2574 */
f63a8daa 2575static void _perf_event_enable(struct perf_event *event)
d859e29f 2576{
cdd6c482 2577 struct perf_event_context *ctx = event->ctx;
d859e29f 2578
7b648018 2579 raw_spin_lock_irq(&ctx->lock);
6e801e01
PZ
2580 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2581 event->state < PERF_EVENT_STATE_ERROR) {
7b648018 2582 raw_spin_unlock_irq(&ctx->lock);
d859e29f
PM
2583 return;
2584 }
2585
d859e29f 2586 /*
cdd6c482 2587 * If the event is in error state, clear that first.
7b648018
PZ
2588 *
2589 * That way, if we see the event in error state below, we know that it
2590 * has gone back into error state, as distinct from the task having
2591 * been scheduled away before the cross-call arrived.
d859e29f 2592 */
cdd6c482
IM
2593 if (event->state == PERF_EVENT_STATE_ERROR)
2594 event->state = PERF_EVENT_STATE_OFF;
e625cce1 2595 raw_spin_unlock_irq(&ctx->lock);
fe4b04fa 2596
fae3fde6 2597 event_function_call(event, __perf_event_enable, NULL);
d859e29f 2598}
f63a8daa
PZ
2599
2600/*
2601 * See perf_event_disable();
2602 */
2603void perf_event_enable(struct perf_event *event)
2604{
2605 struct perf_event_context *ctx;
2606
2607 ctx = perf_event_ctx_lock(event);
2608 _perf_event_enable(event);
2609 perf_event_ctx_unlock(event, ctx);
2610}
dcfce4a0 2611EXPORT_SYMBOL_GPL(perf_event_enable);
d859e29f 2612
375637bc
AS
2613struct stop_event_data {
2614 struct perf_event *event;
2615 unsigned int restart;
2616};
2617
95ff4ca2
AS
2618static int __perf_event_stop(void *info)
2619{
375637bc
AS
2620 struct stop_event_data *sd = info;
2621 struct perf_event *event = sd->event;
95ff4ca2 2622
375637bc 2623 /* if it's already INACTIVE, do nothing */
95ff4ca2
AS
2624 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2625 return 0;
2626
2627 /* matches smp_wmb() in event_sched_in() */
2628 smp_rmb();
2629
2630 /*
2631 * There is a window with interrupts enabled before we get here,
2632 * so we need to check again lest we try to stop another CPU's event.
2633 */
2634 if (READ_ONCE(event->oncpu) != smp_processor_id())
2635 return -EAGAIN;
2636
2637 event->pmu->stop(event, PERF_EF_UPDATE);
2638
375637bc
AS
2639 /*
2640 * May race with the actual stop (through perf_pmu_output_stop()),
2641 * but it is only used for events with AUX ring buffer, and such
2642 * events will refuse to restart because of rb::aux_mmap_count==0,
2643 * see comments in perf_aux_output_begin().
2644 *
2645 * Since this is happening on a event-local CPU, no trace is lost
2646 * while restarting.
2647 */
2648 if (sd->restart)
c9bbdd48 2649 event->pmu->start(event, 0);
375637bc 2650
95ff4ca2
AS
2651 return 0;
2652}
2653
767ae086 2654static int perf_event_stop(struct perf_event *event, int restart)
375637bc
AS
2655{
2656 struct stop_event_data sd = {
2657 .event = event,
767ae086 2658 .restart = restart,
375637bc
AS
2659 };
2660 int ret = 0;
2661
2662 do {
2663 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2664 return 0;
2665
2666 /* matches smp_wmb() in event_sched_in() */
2667 smp_rmb();
2668
2669 /*
2670 * We only want to restart ACTIVE events, so if the event goes
2671 * inactive here (event->oncpu==-1), there's nothing more to do;
2672 * fall through with ret==-ENXIO.
2673 */
2674 ret = cpu_function_call(READ_ONCE(event->oncpu),
2675 __perf_event_stop, &sd);
2676 } while (ret == -EAGAIN);
2677
2678 return ret;
2679}
2680
2681/*
2682 * In order to contain the amount of racy and tricky in the address filter
2683 * configuration management, it is a two part process:
2684 *
2685 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2686 * we update the addresses of corresponding vmas in
2687 * event::addr_filters_offs array and bump the event::addr_filters_gen;
2688 * (p2) when an event is scheduled in (pmu::add), it calls
2689 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2690 * if the generation has changed since the previous call.
2691 *
2692 * If (p1) happens while the event is active, we restart it to force (p2).
2693 *
2694 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2695 * pre-existing mappings, called once when new filters arrive via SET_FILTER
2696 * ioctl;
2697 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2698 * registered mapping, called for every new mmap(), with mm::mmap_sem down
2699 * for reading;
2700 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2701 * of exec.
2702 */
2703void perf_event_addr_filters_sync(struct perf_event *event)
2704{
2705 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2706
2707 if (!has_addr_filter(event))
2708 return;
2709
2710 raw_spin_lock(&ifh->lock);
2711 if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2712 event->pmu->addr_filters_sync(event);
2713 event->hw.addr_filters_gen = event->addr_filters_gen;
2714 }
2715 raw_spin_unlock(&ifh->lock);
2716}
2717EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2718
f63a8daa 2719static int _perf_event_refresh(struct perf_event *event, int refresh)
79f14641 2720{
2023b359 2721 /*
cdd6c482 2722 * not supported on inherited events
2023b359 2723 */
2e939d1d 2724 if (event->attr.inherit || !is_sampling_event(event))
2023b359
PZ
2725 return -EINVAL;
2726
cdd6c482 2727 atomic_add(refresh, &event->event_limit);
f63a8daa 2728 _perf_event_enable(event);
2023b359
PZ
2729
2730 return 0;
79f14641 2731}
f63a8daa
PZ
2732
2733/*
2734 * See perf_event_disable()
2735 */
2736int perf_event_refresh(struct perf_event *event, int refresh)
2737{
2738 struct perf_event_context *ctx;
2739 int ret;
2740
2741 ctx = perf_event_ctx_lock(event);
2742 ret = _perf_event_refresh(event, refresh);
2743 perf_event_ctx_unlock(event, ctx);
2744
2745 return ret;
2746}
26ca5c11 2747EXPORT_SYMBOL_GPL(perf_event_refresh);
79f14641 2748
5b0311e1
FW
2749static void ctx_sched_out(struct perf_event_context *ctx,
2750 struct perf_cpu_context *cpuctx,
2751 enum event_type_t event_type)
235c7fc7 2752{
db24d33e 2753 int is_active = ctx->is_active;
c994d613 2754 struct perf_event *event;
235c7fc7 2755
c994d613 2756 lockdep_assert_held(&ctx->lock);
235c7fc7 2757
39a43640
PZ
2758 if (likely(!ctx->nr_events)) {
2759 /*
2760 * See __perf_remove_from_context().
2761 */
2762 WARN_ON_ONCE(ctx->is_active);
2763 if (ctx->task)
2764 WARN_ON_ONCE(cpuctx->task_ctx);
facc4307 2765 return;
39a43640
PZ
2766 }
2767
db24d33e 2768 ctx->is_active &= ~event_type;
3cbaa590
PZ
2769 if (!(ctx->is_active & EVENT_ALL))
2770 ctx->is_active = 0;
2771
63e30d3e
PZ
2772 if (ctx->task) {
2773 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2774 if (!ctx->is_active)
2775 cpuctx->task_ctx = NULL;
2776 }
facc4307 2777
8fdc6539
PZ
2778 /*
2779 * Always update time if it was set; not only when it changes.
2780 * Otherwise we can 'forget' to update time for any but the last
2781 * context we sched out. For example:
2782 *
2783 * ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2784 * ctx_sched_out(.event_type = EVENT_PINNED)
2785 *
2786 * would only update time for the pinned events.
2787 */
3cbaa590
PZ
2788 if (is_active & EVENT_TIME) {
2789 /* update (and stop) ctx time */
2790 update_context_time(ctx);
2791 update_cgrp_time_from_cpuctx(cpuctx);
2792 }
2793
8fdc6539
PZ
2794 is_active ^= ctx->is_active; /* changed bits */
2795
3cbaa590 2796 if (!ctx->nr_active || !(is_active & EVENT_ALL))
facc4307 2797 return;
5b0311e1 2798
075e0b00 2799 perf_pmu_disable(ctx->pmu);
3cbaa590 2800 if (is_active & EVENT_PINNED) {
889ff015
FW
2801 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2802 group_sched_out(event, cpuctx, ctx);
9ed6060d 2803 }
889ff015 2804
3cbaa590 2805 if (is_active & EVENT_FLEXIBLE) {
889ff015 2806 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
8c9ed8e1 2807 group_sched_out(event, cpuctx, ctx);
9ed6060d 2808 }
1b9a644f 2809 perf_pmu_enable(ctx->pmu);
235c7fc7
IM
2810}
2811
564c2b21 2812/*
5a3126d4
PZ
2813 * Test whether two contexts are equivalent, i.e. whether they have both been
2814 * cloned from the same version of the same context.
2815 *
2816 * Equivalence is measured using a generation number in the context that is
2817 * incremented on each modification to it; see unclone_ctx(), list_add_event()
2818 * and list_del_event().
564c2b21 2819 */
cdd6c482
IM
2820static int context_equiv(struct perf_event_context *ctx1,
2821 struct perf_event_context *ctx2)
564c2b21 2822{
211de6eb
PZ
2823 lockdep_assert_held(&ctx1->lock);
2824 lockdep_assert_held(&ctx2->lock);
2825
5a3126d4
PZ
2826 /* Pinning disables the swap optimization */
2827 if (ctx1->pin_count || ctx2->pin_count)
2828 return 0;
2829
2830 /* If ctx1 is the parent of ctx2 */
2831 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2832 return 1;
2833
2834 /* If ctx2 is the parent of ctx1 */
2835 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2836 return 1;
2837
2838 /*
2839 * If ctx1 and ctx2 have the same parent; we flatten the parent
2840 * hierarchy, see perf_event_init_context().
2841 */
2842 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2843 ctx1->parent_gen == ctx2->parent_gen)
2844 return 1;
2845
2846 /* Unmatched */
2847 return 0;
564c2b21
PM
2848}
2849
cdd6c482
IM
2850static void __perf_event_sync_stat(struct perf_event *event,
2851 struct perf_event *next_event)
bfbd3381
PZ
2852{
2853 u64 value;
2854
cdd6c482 2855 if (!event->attr.inherit_stat)
bfbd3381
PZ
2856 return;
2857
2858 /*
cdd6c482 2859 * Update the event value, we cannot use perf_event_read()
bfbd3381
PZ
2860 * because we're in the middle of a context switch and have IRQs
2861 * disabled, which upsets smp_call_function_single(), however
cdd6c482 2862 * we know the event must be on the current CPU, therefore we
bfbd3381
PZ
2863 * don't need to use it.
2864 */
cdd6c482
IM
2865 switch (event->state) {
2866 case PERF_EVENT_STATE_ACTIVE:
3dbebf15
PZ
2867 event->pmu->read(event);
2868 /* fall-through */
bfbd3381 2869
cdd6c482
IM
2870 case PERF_EVENT_STATE_INACTIVE:
2871 update_event_times(event);
bfbd3381
PZ
2872 break;
2873
2874 default:
2875 break;
2876 }
2877
2878 /*
cdd6c482 2879 * In order to keep per-task stats reliable we need to flip the event
bfbd3381
PZ
2880 * values when we flip the contexts.
2881 */
e7850595
PZ
2882 value = local64_read(&next_event->count);
2883 value = local64_xchg(&event->count, value);
2884 local64_set(&next_event->count, value);
bfbd3381 2885
cdd6c482
IM
2886 swap(event->total_time_enabled, next_event->total_time_enabled);
2887 swap(event->total_time_running, next_event->total_time_running);
19d2e755 2888
bfbd3381 2889 /*
19d2e755 2890 * Since we swizzled the values, update the user visible data too.
bfbd3381 2891 */
cdd6c482
IM
2892 perf_event_update_userpage(event);
2893 perf_event_update_userpage(next_event);
bfbd3381
PZ
2894}
2895
cdd6c482
IM
2896static void perf_event_sync_stat(struct perf_event_context *ctx,
2897 struct perf_event_context *next_ctx)
bfbd3381 2898{
cdd6c482 2899 struct perf_event *event, *next_event;
bfbd3381
PZ
2900
2901 if (!ctx->nr_stat)
2902 return;
2903
02ffdbc8
PZ
2904 update_context_time(ctx);
2905
cdd6c482
IM
2906 event = list_first_entry(&ctx->event_list,
2907 struct perf_event, event_entry);
bfbd3381 2908
cdd6c482
IM
2909 next_event = list_first_entry(&next_ctx->event_list,
2910 struct perf_event, event_entry);
bfbd3381 2911
cdd6c482
IM
2912 while (&event->event_entry != &ctx->event_list &&
2913 &next_event->event_entry != &next_ctx->event_list) {
bfbd3381 2914
cdd6c482 2915 __perf_event_sync_stat(event, next_event);
bfbd3381 2916
cdd6c482
IM
2917 event = list_next_entry(event, event_entry);
2918 next_event = list_next_entry(next_event, event_entry);
bfbd3381
PZ
2919 }
2920}
2921
fe4b04fa
PZ
2922static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2923 struct task_struct *next)
0793a61d 2924{
8dc85d54 2925 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
cdd6c482 2926 struct perf_event_context *next_ctx;
5a3126d4 2927 struct perf_event_context *parent, *next_parent;
108b02cf 2928 struct perf_cpu_context *cpuctx;
c93f7669 2929 int do_switch = 1;
0793a61d 2930
108b02cf
PZ
2931 if (likely(!ctx))
2932 return;
10989fb2 2933
108b02cf
PZ
2934 cpuctx = __get_cpu_context(ctx);
2935 if (!cpuctx->task_ctx)
0793a61d
TG
2936 return;
2937
c93f7669 2938 rcu_read_lock();
8dc85d54 2939 next_ctx = next->perf_event_ctxp[ctxn];
5a3126d4
PZ
2940 if (!next_ctx)
2941 goto unlock;
2942
2943 parent = rcu_dereference(ctx->parent_ctx);
2944 next_parent = rcu_dereference(next_ctx->parent_ctx);
2945
2946 /* If neither context have a parent context; they cannot be clones. */
802c8a61 2947 if (!parent && !next_parent)
5a3126d4
PZ
2948 goto unlock;
2949
2950 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
c93f7669
PM
2951 /*
2952 * Looks like the two contexts are clones, so we might be
2953 * able to optimize the context switch. We lock both
2954 * contexts and check that they are clones under the
2955 * lock (including re-checking that neither has been
2956 * uncloned in the meantime). It doesn't matter which
2957 * order we take the locks because no other cpu could
2958 * be trying to lock both of these tasks.
2959 */
e625cce1
TG
2960 raw_spin_lock(&ctx->lock);
2961 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
c93f7669 2962 if (context_equiv(ctx, next_ctx)) {
63b6da39
PZ
2963 WRITE_ONCE(ctx->task, next);
2964 WRITE_ONCE(next_ctx->task, task);
5a158c3c
YZ
2965
2966 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2967
63b6da39
PZ
2968 /*
2969 * RCU_INIT_POINTER here is safe because we've not
2970 * modified the ctx and the above modification of
2971 * ctx->task and ctx->task_ctx_data are immaterial
2972 * since those values are always verified under
2973 * ctx->lock which we're now holding.
2974 */
2975 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
2976 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
2977
c93f7669 2978 do_switch = 0;
bfbd3381 2979
cdd6c482 2980 perf_event_sync_stat(ctx, next_ctx);
c93f7669 2981 }
e625cce1
TG
2982 raw_spin_unlock(&next_ctx->lock);
2983 raw_spin_unlock(&ctx->lock);
564c2b21 2984 }
5a3126d4 2985unlock:
c93f7669 2986 rcu_read_unlock();
564c2b21 2987
c93f7669 2988 if (do_switch) {
facc4307 2989 raw_spin_lock(&ctx->lock);
487f05e1 2990 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
facc4307 2991 raw_spin_unlock(&ctx->lock);
c93f7669 2992 }
0793a61d
TG
2993}
2994
e48c1788
PZ
2995static DEFINE_PER_CPU(struct list_head, sched_cb_list);
2996
ba532500
YZ
2997void perf_sched_cb_dec(struct pmu *pmu)
2998{
e48c1788
PZ
2999 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3000
ba532500 3001 this_cpu_dec(perf_sched_cb_usages);
e48c1788
PZ
3002
3003 if (!--cpuctx->sched_cb_usage)
3004 list_del(&cpuctx->sched_cb_entry);
ba532500
YZ
3005}
3006
e48c1788 3007
ba532500
YZ
3008void perf_sched_cb_inc(struct pmu *pmu)
3009{
e48c1788
PZ
3010 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3011
3012 if (!cpuctx->sched_cb_usage++)
3013 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3014
ba532500
YZ
3015 this_cpu_inc(perf_sched_cb_usages);
3016}
3017
3018/*
3019 * This function provides the context switch callback to the lower code
3020 * layer. It is invoked ONLY when the context switch callback is enabled.
09e61b4f
PZ
3021 *
3022 * This callback is relevant even to per-cpu events; for example multi event
3023 * PEBS requires this to provide PID/TID information. This requires we flush
3024 * all queued PEBS records before we context switch to a new task.
ba532500
YZ
3025 */
3026static void perf_pmu_sched_task(struct task_struct *prev,
3027 struct task_struct *next,
3028 bool sched_in)
3029{
3030 struct perf_cpu_context *cpuctx;
3031 struct pmu *pmu;
ba532500
YZ
3032
3033 if (prev == next)
3034 return;
3035
e48c1788 3036 list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
1fd7e416 3037 pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
ba532500 3038
e48c1788
PZ
3039 if (WARN_ON_ONCE(!pmu->sched_task))
3040 continue;
ba532500 3041
e48c1788
PZ
3042 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3043 perf_pmu_disable(pmu);
ba532500 3044
e48c1788 3045 pmu->sched_task(cpuctx->task_ctx, sched_in);
ba532500 3046
e48c1788
PZ
3047 perf_pmu_enable(pmu);
3048 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
ba532500 3049 }
ba532500
YZ
3050}
3051
45ac1403
AH
3052static void perf_event_switch(struct task_struct *task,
3053 struct task_struct *next_prev, bool sched_in);
3054
8dc85d54
PZ
3055#define for_each_task_context_nr(ctxn) \
3056 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3057
3058/*
3059 * Called from scheduler to remove the events of the current task,
3060 * with interrupts disabled.
3061 *
3062 * We stop each event and update the event value in event->count.
3063 *
3064 * This does not protect us against NMI, but disable()
3065 * sets the disabled bit in the control field of event _before_
3066 * accessing the event control register. If a NMI hits, then it will
3067 * not restart the event.
3068 */
ab0cce56
JO
3069void __perf_event_task_sched_out(struct task_struct *task,
3070 struct task_struct *next)
8dc85d54
PZ
3071{
3072 int ctxn;
3073
ba532500
YZ
3074 if (__this_cpu_read(perf_sched_cb_usages))
3075 perf_pmu_sched_task(task, next, false);
3076
45ac1403
AH
3077 if (atomic_read(&nr_switch_events))
3078 perf_event_switch(task, next, false);
3079
8dc85d54
PZ
3080 for_each_task_context_nr(ctxn)
3081 perf_event_context_sched_out(task, ctxn, next);
e5d1367f
SE
3082
3083 /*
3084 * if cgroup events exist on this CPU, then we need
3085 * to check if we have to switch out PMU state.
3086 * cgroup event are system-wide mode only
3087 */
4a32fea9 3088 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
a8d757ef 3089 perf_cgroup_sched_out(task, next);
8dc85d54
PZ
3090}
3091
5b0311e1
FW
3092/*
3093 * Called with IRQs disabled
3094 */
3095static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3096 enum event_type_t event_type)
3097{
3098 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
04289bb9
IM
3099}
3100
235c7fc7 3101static void
5b0311e1 3102ctx_pinned_sched_in(struct perf_event_context *ctx,
6e37738a 3103 struct perf_cpu_context *cpuctx)
0793a61d 3104{
cdd6c482 3105 struct perf_event *event;
0793a61d 3106
889ff015
FW
3107 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
3108 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 3109 continue;
5632ab12 3110 if (!event_filter_match(event))
3b6f9e5c
PM
3111 continue;
3112
e5d1367f
SE
3113 /* may need to reset tstamp_enabled */
3114 if (is_cgroup_event(event))
3115 perf_cgroup_mark_enabled(event, ctx);
3116
8c9ed8e1 3117 if (group_can_go_on(event, cpuctx, 1))
6e37738a 3118 group_sched_in(event, cpuctx, ctx);
3b6f9e5c
PM
3119
3120 /*
3121 * If this pinned group hasn't been scheduled,
3122 * put it in error state.
3123 */
cdd6c482
IM
3124 if (event->state == PERF_EVENT_STATE_INACTIVE) {
3125 update_group_times(event);
3126 event->state = PERF_EVENT_STATE_ERROR;
53cfbf59 3127 }
3b6f9e5c 3128 }
5b0311e1
FW
3129}
3130
3131static void
3132ctx_flexible_sched_in(struct perf_event_context *ctx,
6e37738a 3133 struct perf_cpu_context *cpuctx)
5b0311e1
FW
3134{
3135 struct perf_event *event;
3136 int can_add_hw = 1;
3b6f9e5c 3137
889ff015
FW
3138 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
3139 /* Ignore events in OFF or ERROR state */
3140 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 3141 continue;
04289bb9
IM
3142 /*
3143 * Listen to the 'cpu' scheduling filter constraint
cdd6c482 3144 * of events:
04289bb9 3145 */
5632ab12 3146 if (!event_filter_match(event))
0793a61d
TG
3147 continue;
3148
e5d1367f
SE
3149 /* may need to reset tstamp_enabled */
3150 if (is_cgroup_event(event))
3151 perf_cgroup_mark_enabled(event, ctx);
3152
9ed6060d 3153 if (group_can_go_on(event, cpuctx, can_add_hw)) {
6e37738a 3154 if (group_sched_in(event, cpuctx, ctx))
dd0e6ba2 3155 can_add_hw = 0;
9ed6060d 3156 }
0793a61d 3157 }
5b0311e1
FW
3158}
3159
3160static void
3161ctx_sched_in(struct perf_event_context *ctx,
3162 struct perf_cpu_context *cpuctx,
e5d1367f
SE
3163 enum event_type_t event_type,
3164 struct task_struct *task)
5b0311e1 3165{
db24d33e 3166 int is_active = ctx->is_active;
c994d613
PZ
3167 u64 now;
3168
3169 lockdep_assert_held(&ctx->lock);
e5d1367f 3170
5b0311e1 3171 if (likely(!ctx->nr_events))
facc4307 3172 return;
5b0311e1 3173
3cbaa590 3174 ctx->is_active |= (event_type | EVENT_TIME);
63e30d3e
PZ
3175 if (ctx->task) {
3176 if (!is_active)
3177 cpuctx->task_ctx = ctx;
3178 else
3179 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3180 }
3181
3cbaa590
PZ
3182 is_active ^= ctx->is_active; /* changed bits */
3183
3184 if (is_active & EVENT_TIME) {
3185 /* start ctx time */
3186 now = perf_clock();
3187 ctx->timestamp = now;
3188 perf_cgroup_set_timestamp(task, ctx);
3189 }
3190
5b0311e1
FW
3191 /*
3192 * First go through the list and put on any pinned groups
3193 * in order to give them the best chance of going on.
3194 */
3cbaa590 3195 if (is_active & EVENT_PINNED)
6e37738a 3196 ctx_pinned_sched_in(ctx, cpuctx);
5b0311e1
FW
3197
3198 /* Then walk through the lower prio flexible groups */
3cbaa590 3199 if (is_active & EVENT_FLEXIBLE)
6e37738a 3200 ctx_flexible_sched_in(ctx, cpuctx);
235c7fc7
IM
3201}
3202
329c0e01 3203static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
3204 enum event_type_t event_type,
3205 struct task_struct *task)
329c0e01
FW
3206{
3207 struct perf_event_context *ctx = &cpuctx->ctx;
3208
e5d1367f 3209 ctx_sched_in(ctx, cpuctx, event_type, task);
329c0e01
FW
3210}
3211
e5d1367f
SE
3212static void perf_event_context_sched_in(struct perf_event_context *ctx,
3213 struct task_struct *task)
235c7fc7 3214{
108b02cf 3215 struct perf_cpu_context *cpuctx;
235c7fc7 3216
108b02cf 3217 cpuctx = __get_cpu_context(ctx);
329c0e01
FW
3218 if (cpuctx->task_ctx == ctx)
3219 return;
3220
facc4307 3221 perf_ctx_lock(cpuctx, ctx);
fdccc3fb 3222 /*
3223 * We must check ctx->nr_events while holding ctx->lock, such
3224 * that we serialize against perf_install_in_context().
3225 */
3226 if (!ctx->nr_events)
3227 goto unlock;
3228
1b9a644f 3229 perf_pmu_disable(ctx->pmu);
329c0e01
FW
3230 /*
3231 * We want to keep the following priority order:
3232 * cpu pinned (that don't need to move), task pinned,
3233 * cpu flexible, task flexible.
fe45bafb
AS
3234 *
3235 * However, if task's ctx is not carrying any pinned
3236 * events, no need to flip the cpuctx's events around.
329c0e01 3237 */
fe45bafb
AS
3238 if (!list_empty(&ctx->pinned_groups))
3239 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
63e30d3e 3240 perf_event_sched_in(cpuctx, ctx, task);
facc4307 3241 perf_pmu_enable(ctx->pmu);
fdccc3fb 3242
3243unlock:
facc4307 3244 perf_ctx_unlock(cpuctx, ctx);
235c7fc7
IM
3245}
3246
8dc85d54
PZ
3247/*
3248 * Called from scheduler to add the events of the current task
3249 * with interrupts disabled.
3250 *
3251 * We restore the event value and then enable it.
3252 *
3253 * This does not protect us against NMI, but enable()
3254 * sets the enabled bit in the control field of event _before_
3255 * accessing the event control register. If a NMI hits, then it will
3256 * keep the event running.
3257 */
ab0cce56
JO
3258void __perf_event_task_sched_in(struct task_struct *prev,
3259 struct task_struct *task)
8dc85d54
PZ
3260{
3261 struct perf_event_context *ctx;
3262 int ctxn;
3263
7e41d177
PZ
3264 /*
3265 * If cgroup events exist on this CPU, then we need to check if we have
3266 * to switch in PMU state; cgroup event are system-wide mode only.
3267 *
3268 * Since cgroup events are CPU events, we must schedule these in before
3269 * we schedule in the task events.
3270 */
3271 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3272 perf_cgroup_sched_in(prev, task);
3273
8dc85d54
PZ
3274 for_each_task_context_nr(ctxn) {
3275 ctx = task->perf_event_ctxp[ctxn];
3276 if (likely(!ctx))
3277 continue;
3278
e5d1367f 3279 perf_event_context_sched_in(ctx, task);
8dc85d54 3280 }
d010b332 3281
45ac1403
AH
3282 if (atomic_read(&nr_switch_events))
3283 perf_event_switch(task, prev, true);
3284
ba532500
YZ
3285 if (__this_cpu_read(perf_sched_cb_usages))
3286 perf_pmu_sched_task(prev, task, true);
235c7fc7
IM
3287}
3288
abd50713
PZ
3289static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3290{
3291 u64 frequency = event->attr.sample_freq;
3292 u64 sec = NSEC_PER_SEC;
3293 u64 divisor, dividend;
3294
3295 int count_fls, nsec_fls, frequency_fls, sec_fls;
3296
3297 count_fls = fls64(count);
3298 nsec_fls = fls64(nsec);
3299 frequency_fls = fls64(frequency);
3300 sec_fls = 30;
3301
3302 /*
3303 * We got @count in @nsec, with a target of sample_freq HZ
3304 * the target period becomes:
3305 *
3306 * @count * 10^9
3307 * period = -------------------
3308 * @nsec * sample_freq
3309 *
3310 */
3311
3312 /*
3313 * Reduce accuracy by one bit such that @a and @b converge
3314 * to a similar magnitude.
3315 */
fe4b04fa 3316#define REDUCE_FLS(a, b) \
abd50713
PZ
3317do { \
3318 if (a##_fls > b##_fls) { \
3319 a >>= 1; \
3320 a##_fls--; \
3321 } else { \
3322 b >>= 1; \
3323 b##_fls--; \
3324 } \
3325} while (0)
3326
3327 /*
3328 * Reduce accuracy until either term fits in a u64, then proceed with
3329 * the other, so that finally we can do a u64/u64 division.
3330 */
3331 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3332 REDUCE_FLS(nsec, frequency);
3333 REDUCE_FLS(sec, count);
3334 }
3335
3336 if (count_fls + sec_fls > 64) {
3337 divisor = nsec * frequency;
3338
3339 while (count_fls + sec_fls > 64) {
3340 REDUCE_FLS(count, sec);
3341 divisor >>= 1;
3342 }
3343
3344 dividend = count * sec;
3345 } else {
3346 dividend = count * sec;
3347
3348 while (nsec_fls + frequency_fls > 64) {
3349 REDUCE_FLS(nsec, frequency);
3350 dividend >>= 1;
3351 }
3352
3353 divisor = nsec * frequency;
3354 }
3355
f6ab91ad
PZ
3356 if (!divisor)
3357 return dividend;
3358
abd50713
PZ
3359 return div64_u64(dividend, divisor);
3360}
3361
e050e3f0
SE
3362static DEFINE_PER_CPU(int, perf_throttled_count);
3363static DEFINE_PER_CPU(u64, perf_throttled_seq);
3364
f39d47ff 3365static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
bd2b5b12 3366{
cdd6c482 3367 struct hw_perf_event *hwc = &event->hw;
f6ab91ad 3368 s64 period, sample_period;
bd2b5b12
PZ
3369 s64 delta;
3370
abd50713 3371 period = perf_calculate_period(event, nsec, count);
bd2b5b12
PZ
3372
3373 delta = (s64)(period - hwc->sample_period);
3374 delta = (delta + 7) / 8; /* low pass filter */
3375
3376 sample_period = hwc->sample_period + delta;
3377
3378 if (!sample_period)
3379 sample_period = 1;
3380
bd2b5b12 3381 hwc->sample_period = sample_period;
abd50713 3382
e7850595 3383 if (local64_read(&hwc->period_left) > 8*sample_period) {
f39d47ff
SE
3384 if (disable)
3385 event->pmu->stop(event, PERF_EF_UPDATE);
3386
e7850595 3387 local64_set(&hwc->period_left, 0);
f39d47ff
SE
3388
3389 if (disable)
3390 event->pmu->start(event, PERF_EF_RELOAD);
abd50713 3391 }
bd2b5b12
PZ
3392}
3393
e050e3f0
SE
3394/*
3395 * combine freq adjustment with unthrottling to avoid two passes over the
3396 * events. At the same time, make sure, having freq events does not change
3397 * the rate of unthrottling as that would introduce bias.
3398 */
3399static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3400 int needs_unthr)
60db5e09 3401{
cdd6c482
IM
3402 struct perf_event *event;
3403 struct hw_perf_event *hwc;
e050e3f0 3404 u64 now, period = TICK_NSEC;
abd50713 3405 s64 delta;
60db5e09 3406
e050e3f0
SE
3407 /*
3408 * only need to iterate over all events iff:
3409 * - context have events in frequency mode (needs freq adjust)
3410 * - there are events to unthrottle on this cpu
3411 */
3412 if (!(ctx->nr_freq || needs_unthr))
0f5a2601
PZ
3413 return;
3414
e050e3f0 3415 raw_spin_lock(&ctx->lock);
f39d47ff 3416 perf_pmu_disable(ctx->pmu);
e050e3f0 3417
03541f8b 3418 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
cdd6c482 3419 if (event->state != PERF_EVENT_STATE_ACTIVE)
60db5e09
PZ
3420 continue;
3421
5632ab12 3422 if (!event_filter_match(event))
5d27c23d
PZ
3423 continue;
3424
44377277
AS
3425 perf_pmu_disable(event->pmu);
3426
cdd6c482 3427 hwc = &event->hw;
6a24ed6c 3428
ae23bff1 3429 if (hwc->interrupts == MAX_INTERRUPTS) {
e050e3f0 3430 hwc->interrupts = 0;
cdd6c482 3431 perf_log_throttle(event, 1);
a4eaf7f1 3432 event->pmu->start(event, 0);
a78ac325
PZ
3433 }
3434
cdd6c482 3435 if (!event->attr.freq || !event->attr.sample_freq)
44377277 3436 goto next;
60db5e09 3437
e050e3f0
SE
3438 /*
3439 * stop the event and update event->count
3440 */
3441 event->pmu->stop(event, PERF_EF_UPDATE);
3442
e7850595 3443 now = local64_read(&event->count);
abd50713
PZ
3444 delta = now - hwc->freq_count_stamp;
3445 hwc->freq_count_stamp = now;
60db5e09 3446
e050e3f0
SE
3447 /*
3448 * restart the event
3449 * reload only if value has changed
f39d47ff
SE
3450 * we have stopped the event so tell that
3451 * to perf_adjust_period() to avoid stopping it
3452 * twice.
e050e3f0 3453 */
abd50713 3454 if (delta > 0)
f39d47ff 3455 perf_adjust_period(event, period, delta, false);
e050e3f0
SE
3456
3457 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
44377277
AS
3458 next:
3459 perf_pmu_enable(event->pmu);
60db5e09 3460 }
e050e3f0 3461
f39d47ff 3462 perf_pmu_enable(ctx->pmu);
e050e3f0 3463 raw_spin_unlock(&ctx->lock);
60db5e09
PZ
3464}
3465
235c7fc7 3466/*
cdd6c482 3467 * Round-robin a context's events:
235c7fc7 3468 */
cdd6c482 3469static void rotate_ctx(struct perf_event_context *ctx)
0793a61d 3470{
dddd3379
TG
3471 /*
3472 * Rotate the first entry last of non-pinned groups. Rotation might be
3473 * disabled by the inheritance code.
3474 */
3475 if (!ctx->rotate_disable)
3476 list_rotate_left(&ctx->flexible_groups);
235c7fc7
IM
3477}
3478
9e630205 3479static int perf_rotate_context(struct perf_cpu_context *cpuctx)
235c7fc7 3480{
8dc85d54 3481 struct perf_event_context *ctx = NULL;
2fde4f94 3482 int rotate = 0;
7fc23a53 3483
b5ab4cd5 3484 if (cpuctx->ctx.nr_events) {
b5ab4cd5
PZ
3485 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3486 rotate = 1;
3487 }
235c7fc7 3488
8dc85d54 3489 ctx = cpuctx->task_ctx;
b5ab4cd5 3490 if (ctx && ctx->nr_events) {
b5ab4cd5
PZ
3491 if (ctx->nr_events != ctx->nr_active)
3492 rotate = 1;
3493 }
9717e6cd 3494
e050e3f0 3495 if (!rotate)
0f5a2601
PZ
3496 goto done;
3497
facc4307 3498 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
1b9a644f 3499 perf_pmu_disable(cpuctx->ctx.pmu);
60db5e09 3500
e050e3f0
SE
3501 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3502 if (ctx)
3503 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
0793a61d 3504
e050e3f0
SE
3505 rotate_ctx(&cpuctx->ctx);
3506 if (ctx)
3507 rotate_ctx(ctx);
235c7fc7 3508
e050e3f0 3509 perf_event_sched_in(cpuctx, ctx, current);
235c7fc7 3510
0f5a2601
PZ
3511 perf_pmu_enable(cpuctx->ctx.pmu);
3512 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
b5ab4cd5 3513done:
9e630205
SE
3514
3515 return rotate;
e9d2b064
PZ
3516}
3517
3518void perf_event_task_tick(void)
3519{
2fde4f94
MR
3520 struct list_head *head = this_cpu_ptr(&active_ctx_list);
3521 struct perf_event_context *ctx, *tmp;
e050e3f0 3522 int throttled;
b5ab4cd5 3523
e9d2b064
PZ
3524 WARN_ON(!irqs_disabled());
3525
e050e3f0
SE
3526 __this_cpu_inc(perf_throttled_seq);
3527 throttled = __this_cpu_xchg(perf_throttled_count, 0);
555e0c1e 3528 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
e050e3f0 3529
2fde4f94 3530 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
e050e3f0 3531 perf_adjust_freq_unthr_context(ctx, throttled);
0793a61d
TG
3532}
3533
889ff015
FW
3534static int event_enable_on_exec(struct perf_event *event,
3535 struct perf_event_context *ctx)
3536{
3537 if (!event->attr.enable_on_exec)
3538 return 0;
3539
3540 event->attr.enable_on_exec = 0;
3541 if (event->state >= PERF_EVENT_STATE_INACTIVE)
3542 return 0;
3543
1d9b482e 3544 __perf_event_mark_enabled(event);
889ff015
FW
3545
3546 return 1;
3547}
3548
57e7986e 3549/*
cdd6c482 3550 * Enable all of a task's events that have been marked enable-on-exec.
57e7986e
PM
3551 * This expects task == current.
3552 */
c1274499 3553static void perf_event_enable_on_exec(int ctxn)
57e7986e 3554{
c1274499 3555 struct perf_event_context *ctx, *clone_ctx = NULL;
487f05e1 3556 enum event_type_t event_type = 0;
3e349507 3557 struct perf_cpu_context *cpuctx;
cdd6c482 3558 struct perf_event *event;
57e7986e
PM
3559 unsigned long flags;
3560 int enabled = 0;
3561
3562 local_irq_save(flags);
c1274499 3563 ctx = current->perf_event_ctxp[ctxn];
cdd6c482 3564 if (!ctx || !ctx->nr_events)
57e7986e
PM
3565 goto out;
3566
3e349507
PZ
3567 cpuctx = __get_cpu_context(ctx);
3568 perf_ctx_lock(cpuctx, ctx);
7fce2509 3569 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
487f05e1 3570 list_for_each_entry(event, &ctx->event_list, event_entry) {
3e349507 3571 enabled |= event_enable_on_exec(event, ctx);
487f05e1
AS
3572 event_type |= get_event_type(event);
3573 }
57e7986e
PM
3574
3575 /*
3e349507 3576 * Unclone and reschedule this context if we enabled any event.
57e7986e 3577 */
3e349507 3578 if (enabled) {
211de6eb 3579 clone_ctx = unclone_ctx(ctx);
487f05e1 3580 ctx_resched(cpuctx, ctx, event_type);
7bbba0eb
PZ
3581 } else {
3582 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
3e349507
PZ
3583 }
3584 perf_ctx_unlock(cpuctx, ctx);
57e7986e 3585
9ed6060d 3586out:
57e7986e 3587 local_irq_restore(flags);
211de6eb
PZ
3588
3589 if (clone_ctx)
3590 put_ctx(clone_ctx);
57e7986e
PM
3591}
3592
0492d4c5
PZ
3593struct perf_read_data {
3594 struct perf_event *event;
3595 bool group;
7d88962e 3596 int ret;
0492d4c5
PZ
3597};
3598
451d24d1 3599static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
d6a2f903 3600{
d6a2f903
DCC
3601 u16 local_pkg, event_pkg;
3602
3603 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
451d24d1
PZ
3604 int local_cpu = smp_processor_id();
3605
3606 event_pkg = topology_physical_package_id(event_cpu);
3607 local_pkg = topology_physical_package_id(local_cpu);
d6a2f903
DCC
3608
3609 if (event_pkg == local_pkg)
3610 return local_cpu;
3611 }
3612
3613 return event_cpu;
3614}
3615
0793a61d 3616/*
cdd6c482 3617 * Cross CPU call to read the hardware event
0793a61d 3618 */
cdd6c482 3619static void __perf_event_read(void *info)
0793a61d 3620{
0492d4c5
PZ
3621 struct perf_read_data *data = info;
3622 struct perf_event *sub, *event = data->event;
cdd6c482 3623 struct perf_event_context *ctx = event->ctx;
108b02cf 3624 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
4a00c16e 3625 struct pmu *pmu = event->pmu;
621a01ea 3626
e1ac3614
PM
3627 /*
3628 * If this is a task context, we need to check whether it is
3629 * the current task context of this cpu. If not it has been
3630 * scheduled out before the smp call arrived. In that case
cdd6c482
IM
3631 * event->count would have been updated to a recent sample
3632 * when the event was scheduled out.
e1ac3614
PM
3633 */
3634 if (ctx->task && cpuctx->task_ctx != ctx)
3635 return;
3636
e625cce1 3637 raw_spin_lock(&ctx->lock);
e5d1367f 3638 if (ctx->is_active) {
542e72fc 3639 update_context_time(ctx);
e5d1367f
SE
3640 update_cgrp_time_from_event(event);
3641 }
0492d4c5 3642
cdd6c482 3643 update_event_times(event);
4a00c16e
SB
3644 if (event->state != PERF_EVENT_STATE_ACTIVE)
3645 goto unlock;
0492d4c5 3646
4a00c16e
SB
3647 if (!data->group) {
3648 pmu->read(event);
3649 data->ret = 0;
0492d4c5 3650 goto unlock;
4a00c16e
SB
3651 }
3652
3653 pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3654
3655 pmu->read(event);
0492d4c5
PZ
3656
3657 list_for_each_entry(sub, &event->sibling_list, group_entry) {
3658 update_event_times(sub);
4a00c16e
SB
3659 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3660 /*
3661 * Use sibling's PMU rather than @event's since
3662 * sibling could be on different (eg: software) PMU.
3663 */
0492d4c5 3664 sub->pmu->read(sub);
4a00c16e 3665 }
0492d4c5 3666 }
4a00c16e
SB
3667
3668 data->ret = pmu->commit_txn(pmu);
0492d4c5
PZ
3669
3670unlock:
e625cce1 3671 raw_spin_unlock(&ctx->lock);
0793a61d
TG
3672}
3673
b5e58793
PZ
3674static inline u64 perf_event_count(struct perf_event *event)
3675{
c39a0e2c 3676 return local64_read(&event->count) + atomic64_read(&event->child_count);
b5e58793
PZ
3677}
3678
ffe8690c
KX
3679/*
3680 * NMI-safe method to read a local event, that is an event that
3681 * is:
3682 * - either for the current task, or for this CPU
3683 * - does not have inherit set, for inherited task events
3684 * will not be local and we cannot read them atomically
3685 * - must not have a pmu::count method
3686 */
7d9285e8
YS
3687int perf_event_read_local(struct perf_event *event, u64 *value,
3688 u64 *enabled, u64 *running)
ffe8690c
KX
3689{
3690 unsigned long flags;
f91840a3 3691 int ret = 0;
7d9285e8 3692 u64 now;
ffe8690c
KX
3693
3694 /*
3695 * Disabling interrupts avoids all counter scheduling (context
3696 * switches, timer based rotation and IPIs).
3697 */
3698 local_irq_save(flags);
3699
ffe8690c
KX
3700 /*
3701 * It must not be an event with inherit set, we cannot read
3702 * all child counters from atomic context.
3703 */
f91840a3
AS
3704 if (event->attr.inherit) {
3705 ret = -EOPNOTSUPP;
3706 goto out;
3707 }
ffe8690c 3708
f91840a3
AS
3709 /* If this is a per-task event, it must be for current */
3710 if ((event->attach_state & PERF_ATTACH_TASK) &&
3711 event->hw.target != current) {
3712 ret = -EINVAL;
3713 goto out;
3714 }
3715
3716 /* If this is a per-CPU event, it must be for this CPU */
3717 if (!(event->attach_state & PERF_ATTACH_TASK) &&
3718 event->cpu != smp_processor_id()) {
3719 ret = -EINVAL;
3720 goto out;
3721 }
ffe8690c 3722
7d9285e8
YS
3723 now = event->shadow_ctx_time + perf_clock();
3724 if (enabled)
3725 *enabled = now - event->tstamp_enabled;
ffe8690c
KX
3726 /*
3727 * If the event is currently on this CPU, its either a per-task event,
3728 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3729 * oncpu == -1).
3730 */
7d9285e8 3731 if (event->oncpu == smp_processor_id()) {
ffe8690c 3732 event->pmu->read(event);
7d9285e8
YS
3733 if (running)
3734 *running = now - event->tstamp_running;
3735 } else if (running) {
3736 *running = event->total_time_running;
3737 }
ffe8690c 3738
f91840a3
AS
3739 *value = local64_read(&event->count);
3740out:
ffe8690c
KX
3741 local_irq_restore(flags);
3742
f91840a3 3743 return ret;
ffe8690c
KX
3744}
3745
7d88962e 3746static int perf_event_read(struct perf_event *event, bool group)
0793a61d 3747{
451d24d1 3748 int event_cpu, ret = 0;
7d88962e 3749
0793a61d 3750 /*
cdd6c482
IM
3751 * If event is enabled and currently active on a CPU, update the
3752 * value in the event structure:
0793a61d 3753 */
cdd6c482 3754 if (event->state == PERF_EVENT_STATE_ACTIVE) {
0492d4c5
PZ
3755 struct perf_read_data data = {
3756 .event = event,
3757 .group = group,
7d88962e 3758 .ret = 0,
0492d4c5 3759 };
d6a2f903 3760
451d24d1
PZ
3761 event_cpu = READ_ONCE(event->oncpu);
3762 if ((unsigned)event_cpu >= nr_cpu_ids)
3763 return 0;
3764
3765 preempt_disable();
3766 event_cpu = __perf_event_read_cpu(event, event_cpu);
d6a2f903 3767
58763148
PZ
3768 /*
3769 * Purposely ignore the smp_call_function_single() return
3770 * value.
3771 *
451d24d1 3772 * If event_cpu isn't a valid CPU it means the event got
58763148
PZ
3773 * scheduled out and that will have updated the event count.
3774 *
3775 * Therefore, either way, we'll have an up-to-date event count
3776 * after this.
3777 */
451d24d1
PZ
3778 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
3779 preempt_enable();
58763148 3780 ret = data.ret;
cdd6c482 3781 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
2b8988c9
PZ
3782 struct perf_event_context *ctx = event->ctx;
3783 unsigned long flags;
3784
e625cce1 3785 raw_spin_lock_irqsave(&ctx->lock, flags);
c530ccd9
SE
3786 /*
3787 * may read while context is not active
3788 * (e.g., thread is blocked), in that case
3789 * we cannot update context time
3790 */
e5d1367f 3791 if (ctx->is_active) {
c530ccd9 3792 update_context_time(ctx);
e5d1367f
SE
3793 update_cgrp_time_from_event(event);
3794 }
0492d4c5
PZ
3795 if (group)
3796 update_group_times(event);
3797 else
3798 update_event_times(event);
e625cce1 3799 raw_spin_unlock_irqrestore(&ctx->lock, flags);
0793a61d 3800 }
7d88962e
SB
3801
3802 return ret;
0793a61d
TG
3803}
3804
a63eaf34 3805/*
cdd6c482 3806 * Initialize the perf_event context in a task_struct:
a63eaf34 3807 */
eb184479 3808static void __perf_event_init_context(struct perf_event_context *ctx)
a63eaf34 3809{
e625cce1 3810 raw_spin_lock_init(&ctx->lock);
a63eaf34 3811 mutex_init(&ctx->mutex);
2fde4f94 3812 INIT_LIST_HEAD(&ctx->active_ctx_list);
889ff015
FW
3813 INIT_LIST_HEAD(&ctx->pinned_groups);
3814 INIT_LIST_HEAD(&ctx->flexible_groups);
a63eaf34
PM
3815 INIT_LIST_HEAD(&ctx->event_list);
3816 atomic_set(&ctx->refcount, 1);
eb184479
PZ
3817}
3818
3819static struct perf_event_context *
3820alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3821{
3822 struct perf_event_context *ctx;
3823
3824 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3825 if (!ctx)
3826 return NULL;
3827
3828 __perf_event_init_context(ctx);
3829 if (task) {
3830 ctx->task = task;
3831 get_task_struct(task);
0793a61d 3832 }
eb184479
PZ
3833 ctx->pmu = pmu;
3834
3835 return ctx;
a63eaf34
PM
3836}
3837
2ebd4ffb
MH
3838static struct task_struct *
3839find_lively_task_by_vpid(pid_t vpid)
3840{
3841 struct task_struct *task;
0793a61d
TG
3842
3843 rcu_read_lock();
2ebd4ffb 3844 if (!vpid)
0793a61d
TG
3845 task = current;
3846 else
2ebd4ffb 3847 task = find_task_by_vpid(vpid);
0793a61d
TG
3848 if (task)
3849 get_task_struct(task);
3850 rcu_read_unlock();
3851
3852 if (!task)
3853 return ERR_PTR(-ESRCH);
3854
2ebd4ffb 3855 return task;
2ebd4ffb
MH
3856}
3857
fe4b04fa
PZ
3858/*
3859 * Returns a matching context with refcount and pincount.
3860 */
108b02cf 3861static struct perf_event_context *
4af57ef2
YZ
3862find_get_context(struct pmu *pmu, struct task_struct *task,
3863 struct perf_event *event)
0793a61d 3864{
211de6eb 3865 struct perf_event_context *ctx, *clone_ctx = NULL;
22a4f650 3866 struct perf_cpu_context *cpuctx;
4af57ef2 3867 void *task_ctx_data = NULL;
25346b93 3868 unsigned long flags;
8dc85d54 3869 int ctxn, err;
4af57ef2 3870 int cpu = event->cpu;
0793a61d 3871
22a4ec72 3872 if (!task) {
cdd6c482 3873 /* Must be root to operate on a CPU event: */
0764771d 3874 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
0793a61d
TG
3875 return ERR_PTR(-EACCES);
3876
108b02cf 3877 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
0793a61d 3878 ctx = &cpuctx->ctx;
c93f7669 3879 get_ctx(ctx);
fe4b04fa 3880 ++ctx->pin_count;
0793a61d 3881
0793a61d
TG
3882 return ctx;
3883 }
3884
8dc85d54
PZ
3885 err = -EINVAL;
3886 ctxn = pmu->task_ctx_nr;
3887 if (ctxn < 0)
3888 goto errout;
3889
4af57ef2
YZ
3890 if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3891 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3892 if (!task_ctx_data) {
3893 err = -ENOMEM;
3894 goto errout;
3895 }
3896 }
3897
9ed6060d 3898retry:
8dc85d54 3899 ctx = perf_lock_task_context(task, ctxn, &flags);
c93f7669 3900 if (ctx) {
211de6eb 3901 clone_ctx = unclone_ctx(ctx);
fe4b04fa 3902 ++ctx->pin_count;
4af57ef2
YZ
3903
3904 if (task_ctx_data && !ctx->task_ctx_data) {
3905 ctx->task_ctx_data = task_ctx_data;
3906 task_ctx_data = NULL;
3907 }
e625cce1 3908 raw_spin_unlock_irqrestore(&ctx->lock, flags);
211de6eb
PZ
3909
3910 if (clone_ctx)
3911 put_ctx(clone_ctx);
9137fb28 3912 } else {
eb184479 3913 ctx = alloc_perf_context(pmu, task);
c93f7669
PM
3914 err = -ENOMEM;
3915 if (!ctx)
3916 goto errout;
eb184479 3917
4af57ef2
YZ
3918 if (task_ctx_data) {
3919 ctx->task_ctx_data = task_ctx_data;
3920 task_ctx_data = NULL;
3921 }
3922
dbe08d82
ON
3923 err = 0;
3924 mutex_lock(&task->perf_event_mutex);
3925 /*
3926 * If it has already passed perf_event_exit_task().
3927 * we must see PF_EXITING, it takes this mutex too.
3928 */
3929 if (task->flags & PF_EXITING)
3930 err = -ESRCH;
3931 else if (task->perf_event_ctxp[ctxn])
3932 err = -EAGAIN;
fe4b04fa 3933 else {
9137fb28 3934 get_ctx(ctx);
fe4b04fa 3935 ++ctx->pin_count;
dbe08d82 3936 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
fe4b04fa 3937 }
dbe08d82
ON
3938 mutex_unlock(&task->perf_event_mutex);
3939
3940 if (unlikely(err)) {
9137fb28 3941 put_ctx(ctx);
dbe08d82
ON
3942
3943 if (err == -EAGAIN)
3944 goto retry;
3945 goto errout;
a63eaf34
PM
3946 }
3947 }
3948
4af57ef2 3949 kfree(task_ctx_data);
0793a61d 3950 return ctx;
c93f7669 3951
9ed6060d 3952errout:
4af57ef2 3953 kfree(task_ctx_data);
c93f7669 3954 return ERR_PTR(err);
0793a61d
TG
3955}
3956
6fb2915d 3957static void perf_event_free_filter(struct perf_event *event);
2541517c 3958static void perf_event_free_bpf_prog(struct perf_event *event);
6fb2915d 3959
cdd6c482 3960static void free_event_rcu(struct rcu_head *head)
592903cd 3961{
cdd6c482 3962 struct perf_event *event;
592903cd 3963
cdd6c482
IM
3964 event = container_of(head, struct perf_event, rcu_head);
3965 if (event->ns)
3966 put_pid_ns(event->ns);
6fb2915d 3967 perf_event_free_filter(event);
cdd6c482 3968 kfree(event);
592903cd
PZ
3969}
3970
b69cf536
PZ
3971static void ring_buffer_attach(struct perf_event *event,
3972 struct ring_buffer *rb);
925d519a 3973
f2fb6bef
KL
3974static void detach_sb_event(struct perf_event *event)
3975{
3976 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
3977
3978 raw_spin_lock(&pel->lock);
3979 list_del_rcu(&event->sb_list);
3980 raw_spin_unlock(&pel->lock);
3981}
3982
a4f144eb 3983static bool is_sb_event(struct perf_event *event)
f2fb6bef 3984{
a4f144eb
DCC
3985 struct perf_event_attr *attr = &event->attr;
3986
f2fb6bef 3987 if (event->parent)
a4f144eb 3988 return false;
f2fb6bef
KL
3989
3990 if (event->attach_state & PERF_ATTACH_TASK)
a4f144eb 3991 return false;
f2fb6bef 3992
a4f144eb
DCC
3993 if (attr->mmap || attr->mmap_data || attr->mmap2 ||
3994 attr->comm || attr->comm_exec ||
3995 attr->task ||
3996 attr->context_switch)
3997 return true;
3998 return false;
3999}
4000
4001static void unaccount_pmu_sb_event(struct perf_event *event)
4002{
4003 if (is_sb_event(event))
4004 detach_sb_event(event);
f2fb6bef
KL
4005}
4006
4beb31f3 4007static void unaccount_event_cpu(struct perf_event *event, int cpu)
f1600952 4008{
4beb31f3
FW
4009 if (event->parent)
4010 return;
4011
4beb31f3
FW
4012 if (is_cgroup_event(event))
4013 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
4014}
925d519a 4015
555e0c1e
FW
4016#ifdef CONFIG_NO_HZ_FULL
4017static DEFINE_SPINLOCK(nr_freq_lock);
4018#endif
4019
4020static void unaccount_freq_event_nohz(void)
4021{
4022#ifdef CONFIG_NO_HZ_FULL
4023 spin_lock(&nr_freq_lock);
4024 if (atomic_dec_and_test(&nr_freq_events))
4025 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
4026 spin_unlock(&nr_freq_lock);
4027#endif
4028}
4029
4030static void unaccount_freq_event(void)
4031{
4032 if (tick_nohz_full_enabled())
4033 unaccount_freq_event_nohz();
4034 else
4035 atomic_dec(&nr_freq_events);
4036}
4037
4beb31f3
FW
4038static void unaccount_event(struct perf_event *event)
4039{
25432ae9
PZ
4040 bool dec = false;
4041
4beb31f3
FW
4042 if (event->parent)
4043 return;
4044
4045 if (event->attach_state & PERF_ATTACH_TASK)
25432ae9 4046 dec = true;
4beb31f3
FW
4047 if (event->attr.mmap || event->attr.mmap_data)
4048 atomic_dec(&nr_mmap_events);
4049 if (event->attr.comm)
4050 atomic_dec(&nr_comm_events);
e4222673
HB
4051 if (event->attr.namespaces)
4052 atomic_dec(&nr_namespaces_events);
4beb31f3
FW
4053 if (event->attr.task)
4054 atomic_dec(&nr_task_events);
948b26b6 4055 if (event->attr.freq)
555e0c1e 4056 unaccount_freq_event();
45ac1403 4057 if (event->attr.context_switch) {
25432ae9 4058 dec = true;
45ac1403
AH
4059 atomic_dec(&nr_switch_events);
4060 }
4beb31f3 4061 if (is_cgroup_event(event))
25432ae9 4062 dec = true;
4beb31f3 4063 if (has_branch_stack(event))
25432ae9
PZ
4064 dec = true;
4065
9107c89e
PZ
4066 if (dec) {
4067 if (!atomic_add_unless(&perf_sched_count, -1, 1))
4068 schedule_delayed_work(&perf_sched_work, HZ);
4069 }
4beb31f3
FW
4070
4071 unaccount_event_cpu(event, event->cpu);
f2fb6bef
KL
4072
4073 unaccount_pmu_sb_event(event);
4beb31f3 4074}
925d519a 4075
9107c89e
PZ
4076static void perf_sched_delayed(struct work_struct *work)
4077{
4078 mutex_lock(&perf_sched_mutex);
4079 if (atomic_dec_and_test(&perf_sched_count))
4080 static_branch_disable(&perf_sched_events);
4081 mutex_unlock(&perf_sched_mutex);
4082}
4083
bed5b25a
AS
4084/*
4085 * The following implement mutual exclusion of events on "exclusive" pmus
4086 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4087 * at a time, so we disallow creating events that might conflict, namely:
4088 *
4089 * 1) cpu-wide events in the presence of per-task events,
4090 * 2) per-task events in the presence of cpu-wide events,
4091 * 3) two matching events on the same context.
4092 *
4093 * The former two cases are handled in the allocation path (perf_event_alloc(),
a0733e69 4094 * _free_event()), the latter -- before the first perf_install_in_context().
bed5b25a
AS
4095 */
4096static int exclusive_event_init(struct perf_event *event)
4097{
4098 struct pmu *pmu = event->pmu;
4099
4100 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4101 return 0;
4102
4103 /*
4104 * Prevent co-existence of per-task and cpu-wide events on the
4105 * same exclusive pmu.
4106 *
4107 * Negative pmu::exclusive_cnt means there are cpu-wide
4108 * events on this "exclusive" pmu, positive means there are
4109 * per-task events.
4110 *
4111 * Since this is called in perf_event_alloc() path, event::ctx
4112 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4113 * to mean "per-task event", because unlike other attach states it
4114 * never gets cleared.
4115 */
4116 if (event->attach_state & PERF_ATTACH_TASK) {
4117 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4118 return -EBUSY;
4119 } else {
4120 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4121 return -EBUSY;
4122 }
4123
4124 return 0;
4125}
4126
4127static void exclusive_event_destroy(struct perf_event *event)
4128{
4129 struct pmu *pmu = event->pmu;
4130
4131 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4132 return;
4133
4134 /* see comment in exclusive_event_init() */
4135 if (event->attach_state & PERF_ATTACH_TASK)
4136 atomic_dec(&pmu->exclusive_cnt);
4137 else
4138 atomic_inc(&pmu->exclusive_cnt);
4139}
4140
4141static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4142{
3bf6215a 4143 if ((e1->pmu == e2->pmu) &&
bed5b25a
AS
4144 (e1->cpu == e2->cpu ||
4145 e1->cpu == -1 ||
4146 e2->cpu == -1))
4147 return true;
4148 return false;
4149}
4150
4151/* Called under the same ctx::mutex as perf_install_in_context() */
4152static bool exclusive_event_installable(struct perf_event *event,
4153 struct perf_event_context *ctx)
4154{
4155 struct perf_event *iter_event;
4156 struct pmu *pmu = event->pmu;
4157
4158 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4159 return true;
4160
4161 list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4162 if (exclusive_event_match(iter_event, event))
4163 return false;
4164 }
4165
4166 return true;
4167}
4168
375637bc
AS
4169static void perf_addr_filters_splice(struct perf_event *event,
4170 struct list_head *head);
4171
683ede43 4172static void _free_event(struct perf_event *event)
f1600952 4173{
e360adbe 4174 irq_work_sync(&event->pending);
925d519a 4175
4beb31f3 4176 unaccount_event(event);
9ee318a7 4177
76369139 4178 if (event->rb) {
9bb5d40c
PZ
4179 /*
4180 * Can happen when we close an event with re-directed output.
4181 *
4182 * Since we have a 0 refcount, perf_mmap_close() will skip
4183 * over us; possibly making our ring_buffer_put() the last.
4184 */
4185 mutex_lock(&event->mmap_mutex);
b69cf536 4186 ring_buffer_attach(event, NULL);
9bb5d40c 4187 mutex_unlock(&event->mmap_mutex);
a4be7c27
PZ
4188 }
4189
e5d1367f
SE
4190 if (is_cgroup_event(event))
4191 perf_detach_cgroup(event);
4192
a0733e69
PZ
4193 if (!event->parent) {
4194 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4195 put_callchain_buffers();
4196 }
4197
4198 perf_event_free_bpf_prog(event);
375637bc
AS
4199 perf_addr_filters_splice(event, NULL);
4200 kfree(event->addr_filters_offs);
a0733e69
PZ
4201
4202 if (event->destroy)
4203 event->destroy(event);
4204
4205 if (event->ctx)
4206 put_ctx(event->ctx);
4207
62a92c8f
AS
4208 exclusive_event_destroy(event);
4209 module_put(event->pmu->module);
a0733e69
PZ
4210
4211 call_rcu(&event->rcu_head, free_event_rcu);
f1600952
PZ
4212}
4213
683ede43
PZ
4214/*
4215 * Used to free events which have a known refcount of 1, such as in error paths
4216 * where the event isn't exposed yet and inherited events.
4217 */
4218static void free_event(struct perf_event *event)
0793a61d 4219{
683ede43
PZ
4220 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4221 "unexpected event refcount: %ld; ptr=%p\n",
4222 atomic_long_read(&event->refcount), event)) {
4223 /* leak to avoid use-after-free */
4224 return;
4225 }
0793a61d 4226
683ede43 4227 _free_event(event);
0793a61d
TG
4228}
4229
a66a3052 4230/*
f8697762 4231 * Remove user event from the owner task.
a66a3052 4232 */
f8697762 4233static void perf_remove_from_owner(struct perf_event *event)
fb0459d7 4234{
8882135b 4235 struct task_struct *owner;
fb0459d7 4236
8882135b 4237 rcu_read_lock();
8882135b 4238 /*
f47c02c0
PZ
4239 * Matches the smp_store_release() in perf_event_exit_task(). If we
4240 * observe !owner it means the list deletion is complete and we can
4241 * indeed free this event, otherwise we need to serialize on
8882135b
PZ
4242 * owner->perf_event_mutex.
4243 */
f47c02c0 4244 owner = lockless_dereference(event->owner);
8882135b
PZ
4245 if (owner) {
4246 /*
4247 * Since delayed_put_task_struct() also drops the last
4248 * task reference we can safely take a new reference
4249 * while holding the rcu_read_lock().
4250 */
4251 get_task_struct(owner);
4252 }
4253 rcu_read_unlock();
4254
4255 if (owner) {
f63a8daa
PZ
4256 /*
4257 * If we're here through perf_event_exit_task() we're already
4258 * holding ctx->mutex which would be an inversion wrt. the
4259 * normal lock order.
4260 *
4261 * However we can safely take this lock because its the child
4262 * ctx->mutex.
4263 */
4264 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4265
8882135b
PZ
4266 /*
4267 * We have to re-check the event->owner field, if it is cleared
4268 * we raced with perf_event_exit_task(), acquiring the mutex
4269 * ensured they're done, and we can proceed with freeing the
4270 * event.
4271 */
f47c02c0 4272 if (event->owner) {
8882135b 4273 list_del_init(&event->owner_entry);
f47c02c0
PZ
4274 smp_store_release(&event->owner, NULL);
4275 }
8882135b
PZ
4276 mutex_unlock(&owner->perf_event_mutex);
4277 put_task_struct(owner);
4278 }
f8697762
JO
4279}
4280
f8697762
JO
4281static void put_event(struct perf_event *event)
4282{
f8697762
JO
4283 if (!atomic_long_dec_and_test(&event->refcount))
4284 return;
4285
c6e5b732
PZ
4286 _free_event(event);
4287}
4288
4289/*
4290 * Kill an event dead; while event:refcount will preserve the event
4291 * object, it will not preserve its functionality. Once the last 'user'
4292 * gives up the object, we'll destroy the thing.
4293 */
4294int perf_event_release_kernel(struct perf_event *event)
4295{
a4f4bb6d 4296 struct perf_event_context *ctx = event->ctx;
c6e5b732
PZ
4297 struct perf_event *child, *tmp;
4298
a4f4bb6d
PZ
4299 /*
4300 * If we got here through err_file: fput(event_file); we will not have
4301 * attached to a context yet.
4302 */
4303 if (!ctx) {
4304 WARN_ON_ONCE(event->attach_state &
4305 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4306 goto no_ctx;
4307 }
4308
f8697762
JO
4309 if (!is_kernel_event(event))
4310 perf_remove_from_owner(event);
8882135b 4311
5fa7c8ec 4312 ctx = perf_event_ctx_lock(event);
a83fe28e 4313 WARN_ON_ONCE(ctx->parent_ctx);
a69b0ca4 4314 perf_remove_from_context(event, DETACH_GROUP);
683ede43 4315
a69b0ca4 4316 raw_spin_lock_irq(&ctx->lock);
683ede43 4317 /*
d8a8cfc7 4318 * Mark this event as STATE_DEAD, there is no external reference to it
a69b0ca4 4319 * anymore.
683ede43 4320 *
a69b0ca4
PZ
4321 * Anybody acquiring event->child_mutex after the below loop _must_
4322 * also see this, most importantly inherit_event() which will avoid
4323 * placing more children on the list.
683ede43 4324 *
c6e5b732
PZ
4325 * Thus this guarantees that we will in fact observe and kill _ALL_
4326 * child events.
683ede43 4327 */
a69b0ca4
PZ
4328 event->state = PERF_EVENT_STATE_DEAD;
4329 raw_spin_unlock_irq(&ctx->lock);
4330
4331 perf_event_ctx_unlock(event, ctx);
683ede43 4332
c6e5b732
PZ
4333again:
4334 mutex_lock(&event->child_mutex);
4335 list_for_each_entry(child, &event->child_list, child_list) {
a6fa941d 4336
c6e5b732
PZ
4337 /*
4338 * Cannot change, child events are not migrated, see the
4339 * comment with perf_event_ctx_lock_nested().
4340 */
4341 ctx = lockless_dereference(child->ctx);
4342 /*
4343 * Since child_mutex nests inside ctx::mutex, we must jump
4344 * through hoops. We start by grabbing a reference on the ctx.
4345 *
4346 * Since the event cannot get freed while we hold the
4347 * child_mutex, the context must also exist and have a !0
4348 * reference count.
4349 */
4350 get_ctx(ctx);
4351
4352 /*
4353 * Now that we have a ctx ref, we can drop child_mutex, and
4354 * acquire ctx::mutex without fear of it going away. Then we
4355 * can re-acquire child_mutex.
4356 */
4357 mutex_unlock(&event->child_mutex);
4358 mutex_lock(&ctx->mutex);
4359 mutex_lock(&event->child_mutex);
4360
4361 /*
4362 * Now that we hold ctx::mutex and child_mutex, revalidate our
4363 * state, if child is still the first entry, it didn't get freed
4364 * and we can continue doing so.
4365 */
4366 tmp = list_first_entry_or_null(&event->child_list,
4367 struct perf_event, child_list);
4368 if (tmp == child) {
4369 perf_remove_from_context(child, DETACH_GROUP);
4370 list_del(&child->child_list);
4371 free_event(child);
4372 /*
4373 * This matches the refcount bump in inherit_event();
4374 * this can't be the last reference.
4375 */
4376 put_event(event);
4377 }
4378
4379 mutex_unlock(&event->child_mutex);
4380 mutex_unlock(&ctx->mutex);
4381 put_ctx(ctx);
4382 goto again;
4383 }
4384 mutex_unlock(&event->child_mutex);
4385
a4f4bb6d
PZ
4386no_ctx:
4387 put_event(event); /* Must be the 'last' reference */
683ede43
PZ
4388 return 0;
4389}
4390EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4391
8b10c5e2
PZ
4392/*
4393 * Called when the last reference to the file is gone.
4394 */
a6fa941d
AV
4395static int perf_release(struct inode *inode, struct file *file)
4396{
c6e5b732 4397 perf_event_release_kernel(file->private_data);
a6fa941d 4398 return 0;
fb0459d7 4399}
fb0459d7 4400
ca0dd44c 4401static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
e53c0994 4402{
cdd6c482 4403 struct perf_event *child;
e53c0994
PZ
4404 u64 total = 0;
4405
59ed446f
PZ
4406 *enabled = 0;
4407 *running = 0;
4408
6f10581a 4409 mutex_lock(&event->child_mutex);
01add3ea 4410
7d88962e 4411 (void)perf_event_read(event, false);
01add3ea
SB
4412 total += perf_event_count(event);
4413
59ed446f
PZ
4414 *enabled += event->total_time_enabled +
4415 atomic64_read(&event->child_total_time_enabled);
4416 *running += event->total_time_running +
4417 atomic64_read(&event->child_total_time_running);
4418
4419 list_for_each_entry(child, &event->child_list, child_list) {
7d88962e 4420 (void)perf_event_read(child, false);
01add3ea 4421 total += perf_event_count(child);
59ed446f
PZ
4422 *enabled += child->total_time_enabled;
4423 *running += child->total_time_running;
4424 }
6f10581a 4425 mutex_unlock(&event->child_mutex);
e53c0994
PZ
4426
4427 return total;
4428}
ca0dd44c
PZ
4429
4430u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4431{
4432 struct perf_event_context *ctx;
4433 u64 count;
4434
4435 ctx = perf_event_ctx_lock(event);
4436 count = __perf_event_read_value(event, enabled, running);
4437 perf_event_ctx_unlock(event, ctx);
4438
4439 return count;
4440}
fb0459d7 4441EXPORT_SYMBOL_GPL(perf_event_read_value);
e53c0994 4442
7d88962e 4443static int __perf_read_group_add(struct perf_event *leader,
fa8c2693 4444 u64 read_format, u64 *values)
3dab77fb 4445{
2aeb1883 4446 struct perf_event_context *ctx = leader->ctx;
fa8c2693 4447 struct perf_event *sub;
2aeb1883 4448 unsigned long flags;
fa8c2693 4449 int n = 1; /* skip @nr */
7d88962e 4450 int ret;
f63a8daa 4451
7d88962e
SB
4452 ret = perf_event_read(leader, true);
4453 if (ret)
4454 return ret;
abf4868b 4455
fa8c2693
PZ
4456 /*
4457 * Since we co-schedule groups, {enabled,running} times of siblings
4458 * will be identical to those of the leader, so we only publish one
4459 * set.
4460 */
4461 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4462 values[n++] += leader->total_time_enabled +
4463 atomic64_read(&leader->child_total_time_enabled);
4464 }
3dab77fb 4465
fa8c2693
PZ
4466 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4467 values[n++] += leader->total_time_running +
4468 atomic64_read(&leader->child_total_time_running);
4469 }
4470
4471 /*
4472 * Write {count,id} tuples for every sibling.
4473 */
4474 values[n++] += perf_event_count(leader);
abf4868b
PZ
4475 if (read_format & PERF_FORMAT_ID)
4476 values[n++] = primary_event_id(leader);
3dab77fb 4477
2aeb1883
JO
4478 raw_spin_lock_irqsave(&ctx->lock, flags);
4479
fa8c2693
PZ
4480 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4481 values[n++] += perf_event_count(sub);
4482 if (read_format & PERF_FORMAT_ID)
4483 values[n++] = primary_event_id(sub);
4484 }
7d88962e 4485
2aeb1883 4486 raw_spin_unlock_irqrestore(&ctx->lock, flags);
7d88962e 4487 return 0;
fa8c2693 4488}
3dab77fb 4489
fa8c2693
PZ
4490static int perf_read_group(struct perf_event *event,
4491 u64 read_format, char __user *buf)
4492{
4493 struct perf_event *leader = event->group_leader, *child;
4494 struct perf_event_context *ctx = leader->ctx;
7d88962e 4495 int ret;
fa8c2693 4496 u64 *values;
3dab77fb 4497
fa8c2693 4498 lockdep_assert_held(&ctx->mutex);
3dab77fb 4499
fa8c2693
PZ
4500 values = kzalloc(event->read_size, GFP_KERNEL);
4501 if (!values)
4502 return -ENOMEM;
3dab77fb 4503
fa8c2693
PZ
4504 values[0] = 1 + leader->nr_siblings;
4505
4506 /*
4507 * By locking the child_mutex of the leader we effectively
4508 * lock the child list of all siblings.. XXX explain how.
4509 */
4510 mutex_lock(&leader->child_mutex);
abf4868b 4511
7d88962e
SB
4512 ret = __perf_read_group_add(leader, read_format, values);
4513 if (ret)
4514 goto unlock;
4515
4516 list_for_each_entry(child, &leader->child_list, child_list) {
4517 ret = __perf_read_group_add(child, read_format, values);
4518 if (ret)
4519 goto unlock;
4520 }
abf4868b 4521
fa8c2693 4522 mutex_unlock(&leader->child_mutex);
abf4868b 4523
7d88962e 4524 ret = event->read_size;
fa8c2693
PZ
4525 if (copy_to_user(buf, values, event->read_size))
4526 ret = -EFAULT;
7d88962e 4527 goto out;
fa8c2693 4528
7d88962e
SB
4529unlock:
4530 mutex_unlock(&leader->child_mutex);
4531out:
fa8c2693 4532 kfree(values);
abf4868b 4533 return ret;
3dab77fb
PZ
4534}
4535
b15f495b 4536static int perf_read_one(struct perf_event *event,
3dab77fb
PZ
4537 u64 read_format, char __user *buf)
4538{
59ed446f 4539 u64 enabled, running;
3dab77fb
PZ
4540 u64 values[4];
4541 int n = 0;
4542
ca0dd44c 4543 values[n++] = __perf_event_read_value(event, &enabled, &running);
59ed446f
PZ
4544 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4545 values[n++] = enabled;
4546 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4547 values[n++] = running;
3dab77fb 4548 if (read_format & PERF_FORMAT_ID)
cdd6c482 4549 values[n++] = primary_event_id(event);
3dab77fb
PZ
4550
4551 if (copy_to_user(buf, values, n * sizeof(u64)))
4552 return -EFAULT;
4553
4554 return n * sizeof(u64);
4555}
4556
dc633982
JO
4557static bool is_event_hup(struct perf_event *event)
4558{
4559 bool no_children;
4560
a69b0ca4 4561 if (event->state > PERF_EVENT_STATE_EXIT)
dc633982
JO
4562 return false;
4563
4564 mutex_lock(&event->child_mutex);
4565 no_children = list_empty(&event->child_list);
4566 mutex_unlock(&event->child_mutex);
4567 return no_children;
4568}
4569
0793a61d 4570/*
cdd6c482 4571 * Read the performance event - simple non blocking version for now
0793a61d
TG
4572 */
4573static ssize_t
b15f495b 4574__perf_read(struct perf_event *event, char __user *buf, size_t count)
0793a61d 4575{
cdd6c482 4576 u64 read_format = event->attr.read_format;
3dab77fb 4577 int ret;
0793a61d 4578
3b6f9e5c 4579 /*
cdd6c482 4580 * Return end-of-file for a read on a event that is in
3b6f9e5c
PM
4581 * error state (i.e. because it was pinned but it couldn't be
4582 * scheduled on to the CPU at some point).
4583 */
cdd6c482 4584 if (event->state == PERF_EVENT_STATE_ERROR)
3b6f9e5c
PM
4585 return 0;
4586
c320c7b7 4587 if (count < event->read_size)
3dab77fb
PZ
4588 return -ENOSPC;
4589
cdd6c482 4590 WARN_ON_ONCE(event->ctx->parent_ctx);
3dab77fb 4591 if (read_format & PERF_FORMAT_GROUP)
b15f495b 4592 ret = perf_read_group(event, read_format, buf);
3dab77fb 4593 else
b15f495b 4594 ret = perf_read_one(event, read_format, buf);
0793a61d 4595
3dab77fb 4596 return ret;
0793a61d
TG
4597}
4598
0793a61d
TG
4599static ssize_t
4600perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4601{
cdd6c482 4602 struct perf_event *event = file->private_data;
f63a8daa
PZ
4603 struct perf_event_context *ctx;
4604 int ret;
0793a61d 4605
f63a8daa 4606 ctx = perf_event_ctx_lock(event);
b15f495b 4607 ret = __perf_read(event, buf, count);
f63a8daa
PZ
4608 perf_event_ctx_unlock(event, ctx);
4609
4610 return ret;
0793a61d
TG
4611}
4612
4613static unsigned int perf_poll(struct file *file, poll_table *wait)
4614{
cdd6c482 4615 struct perf_event *event = file->private_data;
76369139 4616 struct ring_buffer *rb;
61b67684 4617 unsigned int events = POLLHUP;
c7138f37 4618
e708d7ad 4619 poll_wait(file, &event->waitq, wait);
179033b3 4620
dc633982 4621 if (is_event_hup(event))
179033b3 4622 return events;
c7138f37 4623
10c6db11 4624 /*
9bb5d40c
PZ
4625 * Pin the event->rb by taking event->mmap_mutex; otherwise
4626 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
10c6db11
PZ
4627 */
4628 mutex_lock(&event->mmap_mutex);
9bb5d40c
PZ
4629 rb = event->rb;
4630 if (rb)
76369139 4631 events = atomic_xchg(&rb->poll, 0);
10c6db11 4632 mutex_unlock(&event->mmap_mutex);
0793a61d
TG
4633 return events;
4634}
4635
f63a8daa 4636static void _perf_event_reset(struct perf_event *event)
6de6a7b9 4637{
7d88962e 4638 (void)perf_event_read(event, false);
e7850595 4639 local64_set(&event->count, 0);
cdd6c482 4640 perf_event_update_userpage(event);
3df5edad
PZ
4641}
4642
c93f7669 4643/*
cdd6c482
IM
4644 * Holding the top-level event's child_mutex means that any
4645 * descendant process that has inherited this event will block
8ba289b8 4646 * in perf_event_exit_event() if it goes to exit, thus satisfying the
cdd6c482 4647 * task existence requirements of perf_event_enable/disable.
c93f7669 4648 */
cdd6c482
IM
4649static void perf_event_for_each_child(struct perf_event *event,
4650 void (*func)(struct perf_event *))
3df5edad 4651{
cdd6c482 4652 struct perf_event *child;
3df5edad 4653
cdd6c482 4654 WARN_ON_ONCE(event->ctx->parent_ctx);
f63a8daa 4655
cdd6c482
IM
4656 mutex_lock(&event->child_mutex);
4657 func(event);
4658 list_for_each_entry(child, &event->child_list, child_list)
3df5edad 4659 func(child);
cdd6c482 4660 mutex_unlock(&event->child_mutex);
3df5edad
PZ
4661}
4662
cdd6c482
IM
4663static void perf_event_for_each(struct perf_event *event,
4664 void (*func)(struct perf_event *))
3df5edad 4665{
cdd6c482
IM
4666 struct perf_event_context *ctx = event->ctx;
4667 struct perf_event *sibling;
3df5edad 4668
f63a8daa
PZ
4669 lockdep_assert_held(&ctx->mutex);
4670
cdd6c482 4671 event = event->group_leader;
75f937f2 4672
cdd6c482 4673 perf_event_for_each_child(event, func);
cdd6c482 4674 list_for_each_entry(sibling, &event->sibling_list, group_entry)
724b6daa 4675 perf_event_for_each_child(sibling, func);
6de6a7b9
PZ
4676}
4677
fae3fde6
PZ
4678static void __perf_event_period(struct perf_event *event,
4679 struct perf_cpu_context *cpuctx,
4680 struct perf_event_context *ctx,
4681 void *info)
c7999c6f 4682{
fae3fde6 4683 u64 value = *((u64 *)info);
c7999c6f 4684 bool active;
08247e31 4685
cdd6c482 4686 if (event->attr.freq) {
cdd6c482 4687 event->attr.sample_freq = value;
08247e31 4688 } else {
cdd6c482
IM
4689 event->attr.sample_period = value;
4690 event->hw.sample_period = value;
08247e31 4691 }
bad7192b
PZ
4692
4693 active = (event->state == PERF_EVENT_STATE_ACTIVE);
4694 if (active) {
4695 perf_pmu_disable(ctx->pmu);
1e02cd40
PZ
4696 /*
4697 * We could be throttled; unthrottle now to avoid the tick
4698 * trying to unthrottle while we already re-started the event.
4699 */
4700 if (event->hw.interrupts == MAX_INTERRUPTS) {
4701 event->hw.interrupts = 0;
4702 perf_log_throttle(event, 1);
4703 }
bad7192b
PZ
4704 event->pmu->stop(event, PERF_EF_UPDATE);
4705 }
4706
4707 local64_set(&event->hw.period_left, 0);
4708
4709 if (active) {
4710 event->pmu->start(event, PERF_EF_RELOAD);
4711 perf_pmu_enable(ctx->pmu);
4712 }
c7999c6f
PZ
4713}
4714
4715static int perf_event_period(struct perf_event *event, u64 __user *arg)
4716{
c7999c6f
PZ
4717 u64 value;
4718
4719 if (!is_sampling_event(event))
4720 return -EINVAL;
4721
4722 if (copy_from_user(&value, arg, sizeof(value)))
4723 return -EFAULT;
4724
4725 if (!value)
4726 return -EINVAL;
4727
4728 if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4729 return -EINVAL;
4730
fae3fde6 4731 event_function_call(event, __perf_event_period, &value);
08247e31 4732
c7999c6f 4733 return 0;
08247e31
PZ
4734}
4735
ac9721f3
PZ
4736static const struct file_operations perf_fops;
4737
2903ff01 4738static inline int perf_fget_light(int fd, struct fd *p)
ac9721f3 4739{
2903ff01
AV
4740 struct fd f = fdget(fd);
4741 if (!f.file)
4742 return -EBADF;
ac9721f3 4743
2903ff01
AV
4744 if (f.file->f_op != &perf_fops) {
4745 fdput(f);
4746 return -EBADF;
ac9721f3 4747 }
2903ff01
AV
4748 *p = f;
4749 return 0;
ac9721f3
PZ
4750}
4751
4752static int perf_event_set_output(struct perf_event *event,
4753 struct perf_event *output_event);
6fb2915d 4754static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2541517c 4755static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
a4be7c27 4756
f63a8daa 4757static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
d859e29f 4758{
cdd6c482 4759 void (*func)(struct perf_event *);
3df5edad 4760 u32 flags = arg;
d859e29f
PM
4761
4762 switch (cmd) {
cdd6c482 4763 case PERF_EVENT_IOC_ENABLE:
f63a8daa 4764 func = _perf_event_enable;
d859e29f 4765 break;
cdd6c482 4766 case PERF_EVENT_IOC_DISABLE:
f63a8daa 4767 func = _perf_event_disable;
79f14641 4768 break;
cdd6c482 4769 case PERF_EVENT_IOC_RESET:
f63a8daa 4770 func = _perf_event_reset;
6de6a7b9 4771 break;
3df5edad 4772
cdd6c482 4773 case PERF_EVENT_IOC_REFRESH:
f63a8daa 4774 return _perf_event_refresh(event, arg);
08247e31 4775
cdd6c482
IM
4776 case PERF_EVENT_IOC_PERIOD:
4777 return perf_event_period(event, (u64 __user *)arg);
08247e31 4778
cf4957f1
JO
4779 case PERF_EVENT_IOC_ID:
4780 {
4781 u64 id = primary_event_id(event);
4782
4783 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4784 return -EFAULT;
4785 return 0;
4786 }
4787
cdd6c482 4788 case PERF_EVENT_IOC_SET_OUTPUT:
ac9721f3 4789 {
ac9721f3 4790 int ret;
ac9721f3 4791 if (arg != -1) {
2903ff01
AV
4792 struct perf_event *output_event;
4793 struct fd output;
4794 ret = perf_fget_light(arg, &output);
4795 if (ret)
4796 return ret;
4797 output_event = output.file->private_data;
4798 ret = perf_event_set_output(event, output_event);
4799 fdput(output);
4800 } else {
4801 ret = perf_event_set_output(event, NULL);
ac9721f3 4802 }
ac9721f3
PZ
4803 return ret;
4804 }
a4be7c27 4805
6fb2915d
LZ
4806 case PERF_EVENT_IOC_SET_FILTER:
4807 return perf_event_set_filter(event, (void __user *)arg);
4808
2541517c
AS
4809 case PERF_EVENT_IOC_SET_BPF:
4810 return perf_event_set_bpf_prog(event, arg);
4811
86e7972f
WN
4812 case PERF_EVENT_IOC_PAUSE_OUTPUT: {
4813 struct ring_buffer *rb;
4814
4815 rcu_read_lock();
4816 rb = rcu_dereference(event->rb);
4817 if (!rb || !rb->nr_pages) {
4818 rcu_read_unlock();
4819 return -EINVAL;
4820 }
4821 rb_toggle_paused(rb, !!arg);
4822 rcu_read_unlock();
4823 return 0;
4824 }
d859e29f 4825 default:
3df5edad 4826 return -ENOTTY;
d859e29f 4827 }
3df5edad
PZ
4828
4829 if (flags & PERF_IOC_FLAG_GROUP)
cdd6c482 4830 perf_event_for_each(event, func);
3df5edad 4831 else
cdd6c482 4832 perf_event_for_each_child(event, func);
3df5edad
PZ
4833
4834 return 0;
d859e29f
PM
4835}
4836
f63a8daa
PZ
4837static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4838{
4839 struct perf_event *event = file->private_data;
4840 struct perf_event_context *ctx;
4841 long ret;
4842
4843 ctx = perf_event_ctx_lock(event);
4844 ret = _perf_ioctl(event, cmd, arg);
4845 perf_event_ctx_unlock(event, ctx);
4846
4847 return ret;
4848}
4849
b3f20785
PM
4850#ifdef CONFIG_COMPAT
4851static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4852 unsigned long arg)
4853{
4854 switch (_IOC_NR(cmd)) {
4855 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4856 case _IOC_NR(PERF_EVENT_IOC_ID):
4857 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4858 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4859 cmd &= ~IOCSIZE_MASK;
4860 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4861 }
4862 break;
4863 }
4864 return perf_ioctl(file, cmd, arg);
4865}
4866#else
4867# define perf_compat_ioctl NULL
4868#endif
4869
cdd6c482 4870int perf_event_task_enable(void)
771d7cde 4871{
f63a8daa 4872 struct perf_event_context *ctx;
cdd6c482 4873 struct perf_event *event;
771d7cde 4874
cdd6c482 4875 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
4876 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4877 ctx = perf_event_ctx_lock(event);
4878 perf_event_for_each_child(event, _perf_event_enable);
4879 perf_event_ctx_unlock(event, ctx);
4880 }
cdd6c482 4881 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
4882
4883 return 0;
4884}
4885
cdd6c482 4886int perf_event_task_disable(void)
771d7cde 4887{
f63a8daa 4888 struct perf_event_context *ctx;
cdd6c482 4889 struct perf_event *event;
771d7cde 4890
cdd6c482 4891 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
4892 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4893 ctx = perf_event_ctx_lock(event);
4894 perf_event_for_each_child(event, _perf_event_disable);
4895 perf_event_ctx_unlock(event, ctx);
4896 }
cdd6c482 4897 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
4898
4899 return 0;
4900}
4901
cdd6c482 4902static int perf_event_index(struct perf_event *event)
194002b2 4903{
a4eaf7f1
PZ
4904 if (event->hw.state & PERF_HES_STOPPED)
4905 return 0;
4906
cdd6c482 4907 if (event->state != PERF_EVENT_STATE_ACTIVE)
194002b2
PZ
4908 return 0;
4909
35edc2a5 4910 return event->pmu->event_idx(event);
194002b2
PZ
4911}
4912
c4794295 4913static void calc_timer_values(struct perf_event *event,
e3f3541c 4914 u64 *now,
7f310a5d
EM
4915 u64 *enabled,
4916 u64 *running)
c4794295 4917{
e3f3541c 4918 u64 ctx_time;
c4794295 4919
e3f3541c
PZ
4920 *now = perf_clock();
4921 ctx_time = event->shadow_ctx_time + *now;
c4794295
EM
4922 *enabled = ctx_time - event->tstamp_enabled;
4923 *running = ctx_time - event->tstamp_running;
4924}
4925
fa731587
PZ
4926static void perf_event_init_userpage(struct perf_event *event)
4927{
4928 struct perf_event_mmap_page *userpg;
4929 struct ring_buffer *rb;
4930
4931 rcu_read_lock();
4932 rb = rcu_dereference(event->rb);
4933 if (!rb)
4934 goto unlock;
4935
4936 userpg = rb->user_page;
4937
4938 /* Allow new userspace to detect that bit 0 is deprecated */
4939 userpg->cap_bit0_is_deprecated = 1;
4940 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
e8c6deac
AS
4941 userpg->data_offset = PAGE_SIZE;
4942 userpg->data_size = perf_data_size(rb);
fa731587
PZ
4943
4944unlock:
4945 rcu_read_unlock();
4946}
4947
c1317ec2
AL
4948void __weak arch_perf_update_userpage(
4949 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
e3f3541c
PZ
4950{
4951}
4952
38ff667b
PZ
4953/*
4954 * Callers need to ensure there can be no nesting of this function, otherwise
4955 * the seqlock logic goes bad. We can not serialize this because the arch
4956 * code calls this from NMI context.
4957 */
cdd6c482 4958void perf_event_update_userpage(struct perf_event *event)
37d81828 4959{
cdd6c482 4960 struct perf_event_mmap_page *userpg;
76369139 4961 struct ring_buffer *rb;
e3f3541c 4962 u64 enabled, running, now;
38ff667b
PZ
4963
4964 rcu_read_lock();
5ec4c599
PZ
4965 rb = rcu_dereference(event->rb);
4966 if (!rb)
4967 goto unlock;
4968
0d641208
EM
4969 /*
4970 * compute total_time_enabled, total_time_running
4971 * based on snapshot values taken when the event
4972 * was last scheduled in.
4973 *
4974 * we cannot simply called update_context_time()
4975 * because of locking issue as we can be called in
4976 * NMI context
4977 */
e3f3541c 4978 calc_timer_values(event, &now, &enabled, &running);
38ff667b 4979
76369139 4980 userpg = rb->user_page;
7b732a75
PZ
4981 /*
4982 * Disable preemption so as to not let the corresponding user-space
4983 * spin too long if we get preempted.
4984 */
4985 preempt_disable();
37d81828 4986 ++userpg->lock;
92f22a38 4987 barrier();
cdd6c482 4988 userpg->index = perf_event_index(event);
b5e58793 4989 userpg->offset = perf_event_count(event);
365a4038 4990 if (userpg->index)
e7850595 4991 userpg->offset -= local64_read(&event->hw.prev_count);
7b732a75 4992
0d641208 4993 userpg->time_enabled = enabled +
cdd6c482 4994 atomic64_read(&event->child_total_time_enabled);
7f8b4e4e 4995
0d641208 4996 userpg->time_running = running +
cdd6c482 4997 atomic64_read(&event->child_total_time_running);
7f8b4e4e 4998
c1317ec2 4999 arch_perf_update_userpage(event, userpg, now);
e3f3541c 5000
92f22a38 5001 barrier();
37d81828 5002 ++userpg->lock;
7b732a75 5003 preempt_enable();
38ff667b 5004unlock:
7b732a75 5005 rcu_read_unlock();
37d81828
PM
5006}
5007
11bac800 5008static int perf_mmap_fault(struct vm_fault *vmf)
906010b2 5009{
11bac800 5010 struct perf_event *event = vmf->vma->vm_file->private_data;
76369139 5011 struct ring_buffer *rb;
906010b2
PZ
5012 int ret = VM_FAULT_SIGBUS;
5013
5014 if (vmf->flags & FAULT_FLAG_MKWRITE) {
5015 if (vmf->pgoff == 0)
5016 ret = 0;
5017 return ret;
5018 }
5019
5020 rcu_read_lock();
76369139
FW
5021 rb = rcu_dereference(event->rb);
5022 if (!rb)
906010b2
PZ
5023 goto unlock;
5024
5025 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
5026 goto unlock;
5027
76369139 5028 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
906010b2
PZ
5029 if (!vmf->page)
5030 goto unlock;
5031
5032 get_page(vmf->page);
11bac800 5033 vmf->page->mapping = vmf->vma->vm_file->f_mapping;
906010b2
PZ
5034 vmf->page->index = vmf->pgoff;
5035
5036 ret = 0;
5037unlock:
5038 rcu_read_unlock();
5039
5040 return ret;
5041}
5042
10c6db11
PZ
5043static void ring_buffer_attach(struct perf_event *event,
5044 struct ring_buffer *rb)
5045{
b69cf536 5046 struct ring_buffer *old_rb = NULL;
10c6db11
PZ
5047 unsigned long flags;
5048
b69cf536
PZ
5049 if (event->rb) {
5050 /*
5051 * Should be impossible, we set this when removing
5052 * event->rb_entry and wait/clear when adding event->rb_entry.
5053 */
5054 WARN_ON_ONCE(event->rcu_pending);
10c6db11 5055
b69cf536 5056 old_rb = event->rb;
b69cf536
PZ
5057 spin_lock_irqsave(&old_rb->event_lock, flags);
5058 list_del_rcu(&event->rb_entry);
5059 spin_unlock_irqrestore(&old_rb->event_lock, flags);
10c6db11 5060
2f993cf0
ON
5061 event->rcu_batches = get_state_synchronize_rcu();
5062 event->rcu_pending = 1;
b69cf536 5063 }
10c6db11 5064
b69cf536 5065 if (rb) {
2f993cf0
ON
5066 if (event->rcu_pending) {
5067 cond_synchronize_rcu(event->rcu_batches);
5068 event->rcu_pending = 0;
5069 }
5070
b69cf536
PZ
5071 spin_lock_irqsave(&rb->event_lock, flags);
5072 list_add_rcu(&event->rb_entry, &rb->event_list);
5073 spin_unlock_irqrestore(&rb->event_lock, flags);
5074 }
5075
767ae086
AS
5076 /*
5077 * Avoid racing with perf_mmap_close(AUX): stop the event
5078 * before swizzling the event::rb pointer; if it's getting
5079 * unmapped, its aux_mmap_count will be 0 and it won't
5080 * restart. See the comment in __perf_pmu_output_stop().
5081 *
5082 * Data will inevitably be lost when set_output is done in
5083 * mid-air, but then again, whoever does it like this is
5084 * not in for the data anyway.
5085 */
5086 if (has_aux(event))
5087 perf_event_stop(event, 0);
5088
b69cf536
PZ
5089 rcu_assign_pointer(event->rb, rb);
5090
5091 if (old_rb) {
5092 ring_buffer_put(old_rb);
5093 /*
5094 * Since we detached before setting the new rb, so that we
5095 * could attach the new rb, we could have missed a wakeup.
5096 * Provide it now.
5097 */
5098 wake_up_all(&event->waitq);
5099 }
10c6db11
PZ
5100}
5101
5102static void ring_buffer_wakeup(struct perf_event *event)
5103{
5104 struct ring_buffer *rb;
5105
5106 rcu_read_lock();
5107 rb = rcu_dereference(event->rb);
9bb5d40c
PZ
5108 if (rb) {
5109 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5110 wake_up_all(&event->waitq);
5111 }
10c6db11
PZ
5112 rcu_read_unlock();
5113}
5114
fdc26706 5115struct ring_buffer *ring_buffer_get(struct perf_event *event)
7b732a75 5116{
76369139 5117 struct ring_buffer *rb;
7b732a75 5118
ac9721f3 5119 rcu_read_lock();
76369139
FW
5120 rb = rcu_dereference(event->rb);
5121 if (rb) {
5122 if (!atomic_inc_not_zero(&rb->refcount))
5123 rb = NULL;
ac9721f3
PZ
5124 }
5125 rcu_read_unlock();
5126
76369139 5127 return rb;
ac9721f3
PZ
5128}
5129
fdc26706 5130void ring_buffer_put(struct ring_buffer *rb)
ac9721f3 5131{
76369139 5132 if (!atomic_dec_and_test(&rb->refcount))
ac9721f3 5133 return;
7b732a75 5134
9bb5d40c 5135 WARN_ON_ONCE(!list_empty(&rb->event_list));
10c6db11 5136
76369139 5137 call_rcu(&rb->rcu_head, rb_free_rcu);
7b732a75
PZ
5138}
5139
5140static void perf_mmap_open(struct vm_area_struct *vma)
5141{
cdd6c482 5142 struct perf_event *event = vma->vm_file->private_data;
7b732a75 5143
cdd6c482 5144 atomic_inc(&event->mmap_count);
9bb5d40c 5145 atomic_inc(&event->rb->mmap_count);
1e0fb9ec 5146
45bfb2e5
PZ
5147 if (vma->vm_pgoff)
5148 atomic_inc(&event->rb->aux_mmap_count);
5149
1e0fb9ec 5150 if (event->pmu->event_mapped)
bfe33492 5151 event->pmu->event_mapped(event, vma->vm_mm);
7b732a75
PZ
5152}
5153
95ff4ca2
AS
5154static void perf_pmu_output_stop(struct perf_event *event);
5155
9bb5d40c
PZ
5156/*
5157 * A buffer can be mmap()ed multiple times; either directly through the same
5158 * event, or through other events by use of perf_event_set_output().
5159 *
5160 * In order to undo the VM accounting done by perf_mmap() we need to destroy
5161 * the buffer here, where we still have a VM context. This means we need
5162 * to detach all events redirecting to us.
5163 */
7b732a75
PZ
5164static void perf_mmap_close(struct vm_area_struct *vma)
5165{
cdd6c482 5166 struct perf_event *event = vma->vm_file->private_data;
7b732a75 5167
b69cf536 5168 struct ring_buffer *rb = ring_buffer_get(event);
9bb5d40c
PZ
5169 struct user_struct *mmap_user = rb->mmap_user;
5170 int mmap_locked = rb->mmap_locked;
5171 unsigned long size = perf_data_size(rb);
789f90fc 5172
1e0fb9ec 5173 if (event->pmu->event_unmapped)
bfe33492 5174 event->pmu->event_unmapped(event, vma->vm_mm);
1e0fb9ec 5175
45bfb2e5
PZ
5176 /*
5177 * rb->aux_mmap_count will always drop before rb->mmap_count and
5178 * event->mmap_count, so it is ok to use event->mmap_mutex to
5179 * serialize with perf_mmap here.
5180 */
5181 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5182 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
95ff4ca2
AS
5183 /*
5184 * Stop all AUX events that are writing to this buffer,
5185 * so that we can free its AUX pages and corresponding PMU
5186 * data. Note that after rb::aux_mmap_count dropped to zero,
5187 * they won't start any more (see perf_aux_output_begin()).
5188 */
5189 perf_pmu_output_stop(event);
5190
5191 /* now it's safe to free the pages */
45bfb2e5
PZ
5192 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
5193 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
5194
95ff4ca2 5195 /* this has to be the last one */
45bfb2e5 5196 rb_free_aux(rb);
95ff4ca2
AS
5197 WARN_ON_ONCE(atomic_read(&rb->aux_refcount));
5198
45bfb2e5
PZ
5199 mutex_unlock(&event->mmap_mutex);
5200 }
5201
9bb5d40c
PZ
5202 atomic_dec(&rb->mmap_count);
5203
5204 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
b69cf536 5205 goto out_put;
9bb5d40c 5206
b69cf536 5207 ring_buffer_attach(event, NULL);
9bb5d40c
PZ
5208 mutex_unlock(&event->mmap_mutex);
5209
5210 /* If there's still other mmap()s of this buffer, we're done. */
b69cf536
PZ
5211 if (atomic_read(&rb->mmap_count))
5212 goto out_put;
ac9721f3 5213
9bb5d40c
PZ
5214 /*
5215 * No other mmap()s, detach from all other events that might redirect
5216 * into the now unreachable buffer. Somewhat complicated by the
5217 * fact that rb::event_lock otherwise nests inside mmap_mutex.
5218 */
5219again:
5220 rcu_read_lock();
5221 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5222 if (!atomic_long_inc_not_zero(&event->refcount)) {
5223 /*
5224 * This event is en-route to free_event() which will
5225 * detach it and remove it from the list.
5226 */
5227 continue;
5228 }
5229 rcu_read_unlock();
789f90fc 5230
9bb5d40c
PZ
5231 mutex_lock(&event->mmap_mutex);
5232 /*
5233 * Check we didn't race with perf_event_set_output() which can
5234 * swizzle the rb from under us while we were waiting to
5235 * acquire mmap_mutex.
5236 *
5237 * If we find a different rb; ignore this event, a next
5238 * iteration will no longer find it on the list. We have to
5239 * still restart the iteration to make sure we're not now
5240 * iterating the wrong list.
5241 */
b69cf536
PZ
5242 if (event->rb == rb)
5243 ring_buffer_attach(event, NULL);
5244
cdd6c482 5245 mutex_unlock(&event->mmap_mutex);
9bb5d40c 5246 put_event(event);
ac9721f3 5247
9bb5d40c
PZ
5248 /*
5249 * Restart the iteration; either we're on the wrong list or
5250 * destroyed its integrity by doing a deletion.
5251 */
5252 goto again;
7b732a75 5253 }
9bb5d40c
PZ
5254 rcu_read_unlock();
5255
5256 /*
5257 * It could be there's still a few 0-ref events on the list; they'll
5258 * get cleaned up by free_event() -- they'll also still have their
5259 * ref on the rb and will free it whenever they are done with it.
5260 *
5261 * Aside from that, this buffer is 'fully' detached and unmapped,
5262 * undo the VM accounting.
5263 */
5264
5265 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
5266 vma->vm_mm->pinned_vm -= mmap_locked;
5267 free_uid(mmap_user);
5268
b69cf536 5269out_put:
9bb5d40c 5270 ring_buffer_put(rb); /* could be last */
37d81828
PM
5271}
5272
f0f37e2f 5273static const struct vm_operations_struct perf_mmap_vmops = {
43a21ea8 5274 .open = perf_mmap_open,
45bfb2e5 5275 .close = perf_mmap_close, /* non mergable */
43a21ea8
PZ
5276 .fault = perf_mmap_fault,
5277 .page_mkwrite = perf_mmap_fault,
37d81828
PM
5278};
5279
5280static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5281{
cdd6c482 5282 struct perf_event *event = file->private_data;
22a4f650 5283 unsigned long user_locked, user_lock_limit;
789f90fc 5284 struct user_struct *user = current_user();
22a4f650 5285 unsigned long locked, lock_limit;
45bfb2e5 5286 struct ring_buffer *rb = NULL;
7b732a75
PZ
5287 unsigned long vma_size;
5288 unsigned long nr_pages;
45bfb2e5 5289 long user_extra = 0, extra = 0;
d57e34fd 5290 int ret = 0, flags = 0;
37d81828 5291
c7920614
PZ
5292 /*
5293 * Don't allow mmap() of inherited per-task counters. This would
5294 * create a performance issue due to all children writing to the
76369139 5295 * same rb.
c7920614
PZ
5296 */
5297 if (event->cpu == -1 && event->attr.inherit)
5298 return -EINVAL;
5299
43a21ea8 5300 if (!(vma->vm_flags & VM_SHARED))
37d81828 5301 return -EINVAL;
7b732a75
PZ
5302
5303 vma_size = vma->vm_end - vma->vm_start;
45bfb2e5
PZ
5304
5305 if (vma->vm_pgoff == 0) {
5306 nr_pages = (vma_size / PAGE_SIZE) - 1;
5307 } else {
5308 /*
5309 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5310 * mapped, all subsequent mappings should have the same size
5311 * and offset. Must be above the normal perf buffer.
5312 */
5313 u64 aux_offset, aux_size;
5314
5315 if (!event->rb)
5316 return -EINVAL;
5317
5318 nr_pages = vma_size / PAGE_SIZE;
5319
5320 mutex_lock(&event->mmap_mutex);
5321 ret = -EINVAL;
5322
5323 rb = event->rb;
5324 if (!rb)
5325 goto aux_unlock;
5326
5327 aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
5328 aux_size = ACCESS_ONCE(rb->user_page->aux_size);
5329
5330 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5331 goto aux_unlock;
5332
5333 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5334 goto aux_unlock;
5335
5336 /* already mapped with a different offset */
5337 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5338 goto aux_unlock;
5339
5340 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5341 goto aux_unlock;
5342
5343 /* already mapped with a different size */
5344 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5345 goto aux_unlock;
5346
5347 if (!is_power_of_2(nr_pages))
5348 goto aux_unlock;
5349
5350 if (!atomic_inc_not_zero(&rb->mmap_count))
5351 goto aux_unlock;
5352
5353 if (rb_has_aux(rb)) {
5354 atomic_inc(&rb->aux_mmap_count);
5355 ret = 0;
5356 goto unlock;
5357 }
5358
5359 atomic_set(&rb->aux_mmap_count, 1);
5360 user_extra = nr_pages;
5361
5362 goto accounting;
5363 }
7b732a75 5364
7730d865 5365 /*
76369139 5366 * If we have rb pages ensure they're a power-of-two number, so we
7730d865
PZ
5367 * can do bitmasks instead of modulo.
5368 */
2ed11312 5369 if (nr_pages != 0 && !is_power_of_2(nr_pages))
37d81828
PM
5370 return -EINVAL;
5371
7b732a75 5372 if (vma_size != PAGE_SIZE * (1 + nr_pages))
37d81828
PM
5373 return -EINVAL;
5374
cdd6c482 5375 WARN_ON_ONCE(event->ctx->parent_ctx);
9bb5d40c 5376again:
cdd6c482 5377 mutex_lock(&event->mmap_mutex);
76369139 5378 if (event->rb) {
9bb5d40c 5379 if (event->rb->nr_pages != nr_pages) {
ebb3c4c4 5380 ret = -EINVAL;
9bb5d40c
PZ
5381 goto unlock;
5382 }
5383
5384 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5385 /*
5386 * Raced against perf_mmap_close() through
5387 * perf_event_set_output(). Try again, hope for better
5388 * luck.
5389 */
5390 mutex_unlock(&event->mmap_mutex);
5391 goto again;
5392 }
5393
ebb3c4c4
PZ
5394 goto unlock;
5395 }
5396
789f90fc 5397 user_extra = nr_pages + 1;
45bfb2e5
PZ
5398
5399accounting:
cdd6c482 5400 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
a3862d3f
IM
5401
5402 /*
5403 * Increase the limit linearly with more CPUs:
5404 */
5405 user_lock_limit *= num_online_cpus();
5406
789f90fc 5407 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
c5078f78 5408
789f90fc
PZ
5409 if (user_locked > user_lock_limit)
5410 extra = user_locked - user_lock_limit;
7b732a75 5411
78d7d407 5412 lock_limit = rlimit(RLIMIT_MEMLOCK);
7b732a75 5413 lock_limit >>= PAGE_SHIFT;
bc3e53f6 5414 locked = vma->vm_mm->pinned_vm + extra;
7b732a75 5415
459ec28a
IM
5416 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5417 !capable(CAP_IPC_LOCK)) {
ebb3c4c4
PZ
5418 ret = -EPERM;
5419 goto unlock;
5420 }
7b732a75 5421
45bfb2e5 5422 WARN_ON(!rb && event->rb);
906010b2 5423
d57e34fd 5424 if (vma->vm_flags & VM_WRITE)
76369139 5425 flags |= RING_BUFFER_WRITABLE;
d57e34fd 5426
76369139 5427 if (!rb) {
45bfb2e5
PZ
5428 rb = rb_alloc(nr_pages,
5429 event->attr.watermark ? event->attr.wakeup_watermark : 0,
5430 event->cpu, flags);
26cb63ad 5431
45bfb2e5
PZ
5432 if (!rb) {
5433 ret = -ENOMEM;
5434 goto unlock;
5435 }
43a21ea8 5436
45bfb2e5
PZ
5437 atomic_set(&rb->mmap_count, 1);
5438 rb->mmap_user = get_current_user();
5439 rb->mmap_locked = extra;
26cb63ad 5440
45bfb2e5 5441 ring_buffer_attach(event, rb);
ac9721f3 5442
45bfb2e5
PZ
5443 perf_event_init_userpage(event);
5444 perf_event_update_userpage(event);
5445 } else {
1a594131
AS
5446 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5447 event->attr.aux_watermark, flags);
45bfb2e5
PZ
5448 if (!ret)
5449 rb->aux_mmap_locked = extra;
5450 }
9a0f05cb 5451
ebb3c4c4 5452unlock:
45bfb2e5
PZ
5453 if (!ret) {
5454 atomic_long_add(user_extra, &user->locked_vm);
5455 vma->vm_mm->pinned_vm += extra;
5456
ac9721f3 5457 atomic_inc(&event->mmap_count);
45bfb2e5
PZ
5458 } else if (rb) {
5459 atomic_dec(&rb->mmap_count);
5460 }
5461aux_unlock:
cdd6c482 5462 mutex_unlock(&event->mmap_mutex);
37d81828 5463
9bb5d40c
PZ
5464 /*
5465 * Since pinned accounting is per vm we cannot allow fork() to copy our
5466 * vma.
5467 */
26cb63ad 5468 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
37d81828 5469 vma->vm_ops = &perf_mmap_vmops;
7b732a75 5470
1e0fb9ec 5471 if (event->pmu->event_mapped)
bfe33492 5472 event->pmu->event_mapped(event, vma->vm_mm);
1e0fb9ec 5473
7b732a75 5474 return ret;
37d81828
PM
5475}
5476
3c446b3d
PZ
5477static int perf_fasync(int fd, struct file *filp, int on)
5478{
496ad9aa 5479 struct inode *inode = file_inode(filp);
cdd6c482 5480 struct perf_event *event = filp->private_data;
3c446b3d
PZ
5481 int retval;
5482
5955102c 5483 inode_lock(inode);
cdd6c482 5484 retval = fasync_helper(fd, filp, on, &event->fasync);
5955102c 5485 inode_unlock(inode);
3c446b3d
PZ
5486
5487 if (retval < 0)
5488 return retval;
5489
5490 return 0;
5491}
5492
0793a61d 5493static const struct file_operations perf_fops = {
3326c1ce 5494 .llseek = no_llseek,
0793a61d
TG
5495 .release = perf_release,
5496 .read = perf_read,
5497 .poll = perf_poll,
d859e29f 5498 .unlocked_ioctl = perf_ioctl,
b3f20785 5499 .compat_ioctl = perf_compat_ioctl,
37d81828 5500 .mmap = perf_mmap,
3c446b3d 5501 .fasync = perf_fasync,
0793a61d
TG
5502};
5503
925d519a 5504/*
cdd6c482 5505 * Perf event wakeup
925d519a
PZ
5506 *
5507 * If there's data, ensure we set the poll() state and publish everything
5508 * to user-space before waking everybody up.
5509 */
5510
fed66e2c
PZ
5511static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5512{
5513 /* only the parent has fasync state */
5514 if (event->parent)
5515 event = event->parent;
5516 return &event->fasync;
5517}
5518
cdd6c482 5519void perf_event_wakeup(struct perf_event *event)
925d519a 5520{
10c6db11 5521 ring_buffer_wakeup(event);
4c9e2542 5522
cdd6c482 5523 if (event->pending_kill) {
fed66e2c 5524 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
cdd6c482 5525 event->pending_kill = 0;
4c9e2542 5526 }
925d519a
PZ
5527}
5528
e360adbe 5529static void perf_pending_event(struct irq_work *entry)
79f14641 5530{
cdd6c482
IM
5531 struct perf_event *event = container_of(entry,
5532 struct perf_event, pending);
d525211f
PZ
5533 int rctx;
5534
5535 rctx = perf_swevent_get_recursion_context();
5536 /*
5537 * If we 'fail' here, that's OK, it means recursion is already disabled
5538 * and we won't recurse 'further'.
5539 */
79f14641 5540
cdd6c482
IM
5541 if (event->pending_disable) {
5542 event->pending_disable = 0;
fae3fde6 5543 perf_event_disable_local(event);
79f14641
PZ
5544 }
5545
cdd6c482
IM
5546 if (event->pending_wakeup) {
5547 event->pending_wakeup = 0;
5548 perf_event_wakeup(event);
79f14641 5549 }
d525211f
PZ
5550
5551 if (rctx >= 0)
5552 perf_swevent_put_recursion_context(rctx);
79f14641
PZ
5553}
5554
39447b38
ZY
5555/*
5556 * We assume there is only KVM supporting the callbacks.
5557 * Later on, we might change it to a list if there is
5558 * another virtualization implementation supporting the callbacks.
5559 */
5560struct perf_guest_info_callbacks *perf_guest_cbs;
5561
5562int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5563{
5564 perf_guest_cbs = cbs;
5565 return 0;
5566}
5567EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5568
5569int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5570{
5571 perf_guest_cbs = NULL;
5572 return 0;
5573}
5574EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5575
4018994f
JO
5576static void
5577perf_output_sample_regs(struct perf_output_handle *handle,
5578 struct pt_regs *regs, u64 mask)
5579{
5580 int bit;
29dd3288 5581 DECLARE_BITMAP(_mask, 64);
4018994f 5582
29dd3288
MS
5583 bitmap_from_u64(_mask, mask);
5584 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
4018994f
JO
5585 u64 val;
5586
5587 val = perf_reg_value(regs, bit);
5588 perf_output_put(handle, val);
5589 }
5590}
5591
60e2364e 5592static void perf_sample_regs_user(struct perf_regs *regs_user,
88a7c26a
AL
5593 struct pt_regs *regs,
5594 struct pt_regs *regs_user_copy)
4018994f 5595{
88a7c26a
AL
5596 if (user_mode(regs)) {
5597 regs_user->abi = perf_reg_abi(current);
2565711f 5598 regs_user->regs = regs;
88a7c26a
AL
5599 } else if (current->mm) {
5600 perf_get_regs_user(regs_user, regs, regs_user_copy);
2565711f
PZ
5601 } else {
5602 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5603 regs_user->regs = NULL;
4018994f
JO
5604 }
5605}
5606
60e2364e
SE
5607static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5608 struct pt_regs *regs)
5609{
5610 regs_intr->regs = regs;
5611 regs_intr->abi = perf_reg_abi(current);
5612}
5613
5614
c5ebcedb
JO
5615/*
5616 * Get remaining task size from user stack pointer.
5617 *
5618 * It'd be better to take stack vma map and limit this more
5619 * precisly, but there's no way to get it safely under interrupt,
5620 * so using TASK_SIZE as limit.
5621 */
5622static u64 perf_ustack_task_size(struct pt_regs *regs)
5623{
5624 unsigned long addr = perf_user_stack_pointer(regs);
5625
5626 if (!addr || addr >= TASK_SIZE)
5627 return 0;
5628
5629 return TASK_SIZE - addr;
5630}
5631
5632static u16
5633perf_sample_ustack_size(u16 stack_size, u16 header_size,
5634 struct pt_regs *regs)
5635{
5636 u64 task_size;
5637
5638 /* No regs, no stack pointer, no dump. */
5639 if (!regs)
5640 return 0;
5641
5642 /*
5643 * Check if we fit in with the requested stack size into the:
5644 * - TASK_SIZE
5645 * If we don't, we limit the size to the TASK_SIZE.
5646 *
5647 * - remaining sample size
5648 * If we don't, we customize the stack size to
5649 * fit in to the remaining sample size.
5650 */
5651
5652 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5653 stack_size = min(stack_size, (u16) task_size);
5654
5655 /* Current header size plus static size and dynamic size. */
5656 header_size += 2 * sizeof(u64);
5657
5658 /* Do we fit in with the current stack dump size? */
5659 if ((u16) (header_size + stack_size) < header_size) {
5660 /*
5661 * If we overflow the maximum size for the sample,
5662 * we customize the stack dump size to fit in.
5663 */
5664 stack_size = USHRT_MAX - header_size - sizeof(u64);
5665 stack_size = round_up(stack_size, sizeof(u64));
5666 }
5667
5668 return stack_size;
5669}
5670
5671static void
5672perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5673 struct pt_regs *regs)
5674{
5675 /* Case of a kernel thread, nothing to dump */
5676 if (!regs) {
5677 u64 size = 0;
5678 perf_output_put(handle, size);
5679 } else {
5680 unsigned long sp;
5681 unsigned int rem;
5682 u64 dyn_size;
5683
5684 /*
5685 * We dump:
5686 * static size
5687 * - the size requested by user or the best one we can fit
5688 * in to the sample max size
5689 * data
5690 * - user stack dump data
5691 * dynamic size
5692 * - the actual dumped size
5693 */
5694
5695 /* Static size. */
5696 perf_output_put(handle, dump_size);
5697
5698 /* Data. */
5699 sp = perf_user_stack_pointer(regs);
5700 rem = __output_copy_user(handle, (void *) sp, dump_size);
5701 dyn_size = dump_size - rem;
5702
5703 perf_output_skip(handle, rem);
5704
5705 /* Dynamic size. */
5706 perf_output_put(handle, dyn_size);
5707 }
5708}
5709
c980d109
ACM
5710static void __perf_event_header__init_id(struct perf_event_header *header,
5711 struct perf_sample_data *data,
5712 struct perf_event *event)
6844c09d
ACM
5713{
5714 u64 sample_type = event->attr.sample_type;
5715
5716 data->type = sample_type;
5717 header->size += event->id_header_size;
5718
5719 if (sample_type & PERF_SAMPLE_TID) {
5720 /* namespace issues */
5721 data->tid_entry.pid = perf_event_pid(event, current);
5722 data->tid_entry.tid = perf_event_tid(event, current);
5723 }
5724
5725 if (sample_type & PERF_SAMPLE_TIME)
34f43927 5726 data->time = perf_event_clock(event);
6844c09d 5727
ff3d527c 5728 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6844c09d
ACM
5729 data->id = primary_event_id(event);
5730
5731 if (sample_type & PERF_SAMPLE_STREAM_ID)
5732 data->stream_id = event->id;
5733
5734 if (sample_type & PERF_SAMPLE_CPU) {
5735 data->cpu_entry.cpu = raw_smp_processor_id();
5736 data->cpu_entry.reserved = 0;
5737 }
5738}
5739
76369139
FW
5740void perf_event_header__init_id(struct perf_event_header *header,
5741 struct perf_sample_data *data,
5742 struct perf_event *event)
c980d109
ACM
5743{
5744 if (event->attr.sample_id_all)
5745 __perf_event_header__init_id(header, data, event);
5746}
5747
5748static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5749 struct perf_sample_data *data)
5750{
5751 u64 sample_type = data->type;
5752
5753 if (sample_type & PERF_SAMPLE_TID)
5754 perf_output_put(handle, data->tid_entry);
5755
5756 if (sample_type & PERF_SAMPLE_TIME)
5757 perf_output_put(handle, data->time);
5758
5759 if (sample_type & PERF_SAMPLE_ID)
5760 perf_output_put(handle, data->id);
5761
5762 if (sample_type & PERF_SAMPLE_STREAM_ID)
5763 perf_output_put(handle, data->stream_id);
5764
5765 if (sample_type & PERF_SAMPLE_CPU)
5766 perf_output_put(handle, data->cpu_entry);
ff3d527c
AH
5767
5768 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5769 perf_output_put(handle, data->id);
c980d109
ACM
5770}
5771
76369139
FW
5772void perf_event__output_id_sample(struct perf_event *event,
5773 struct perf_output_handle *handle,
5774 struct perf_sample_data *sample)
c980d109
ACM
5775{
5776 if (event->attr.sample_id_all)
5777 __perf_event__output_id_sample(handle, sample);
5778}
5779
3dab77fb 5780static void perf_output_read_one(struct perf_output_handle *handle,
eed01528
SE
5781 struct perf_event *event,
5782 u64 enabled, u64 running)
3dab77fb 5783{
cdd6c482 5784 u64 read_format = event->attr.read_format;
3dab77fb
PZ
5785 u64 values[4];
5786 int n = 0;
5787
b5e58793 5788 values[n++] = perf_event_count(event);
3dab77fb 5789 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
eed01528 5790 values[n++] = enabled +
cdd6c482 5791 atomic64_read(&event->child_total_time_enabled);
3dab77fb
PZ
5792 }
5793 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
eed01528 5794 values[n++] = running +
cdd6c482 5795 atomic64_read(&event->child_total_time_running);
3dab77fb
PZ
5796 }
5797 if (read_format & PERF_FORMAT_ID)
cdd6c482 5798 values[n++] = primary_event_id(event);
3dab77fb 5799
76369139 5800 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
5801}
5802
3dab77fb 5803static void perf_output_read_group(struct perf_output_handle *handle,
eed01528
SE
5804 struct perf_event *event,
5805 u64 enabled, u64 running)
3dab77fb 5806{
cdd6c482
IM
5807 struct perf_event *leader = event->group_leader, *sub;
5808 u64 read_format = event->attr.read_format;
3dab77fb
PZ
5809 u64 values[5];
5810 int n = 0;
5811
5812 values[n++] = 1 + leader->nr_siblings;
5813
5814 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
eed01528 5815 values[n++] = enabled;
3dab77fb
PZ
5816
5817 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
eed01528 5818 values[n++] = running;
3dab77fb 5819
cdd6c482 5820 if (leader != event)
3dab77fb
PZ
5821 leader->pmu->read(leader);
5822
b5e58793 5823 values[n++] = perf_event_count(leader);
3dab77fb 5824 if (read_format & PERF_FORMAT_ID)
cdd6c482 5825 values[n++] = primary_event_id(leader);
3dab77fb 5826
76369139 5827 __output_copy(handle, values, n * sizeof(u64));
3dab77fb 5828
65abc865 5829 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3dab77fb
PZ
5830 n = 0;
5831
6f5ab001
JO
5832 if ((sub != event) &&
5833 (sub->state == PERF_EVENT_STATE_ACTIVE))
3dab77fb
PZ
5834 sub->pmu->read(sub);
5835
b5e58793 5836 values[n++] = perf_event_count(sub);
3dab77fb 5837 if (read_format & PERF_FORMAT_ID)
cdd6c482 5838 values[n++] = primary_event_id(sub);
3dab77fb 5839
76369139 5840 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
5841 }
5842}
5843
eed01528
SE
5844#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5845 PERF_FORMAT_TOTAL_TIME_RUNNING)
5846
ba5213ae
PZ
5847/*
5848 * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
5849 *
5850 * The problem is that its both hard and excessively expensive to iterate the
5851 * child list, not to mention that its impossible to IPI the children running
5852 * on another CPU, from interrupt/NMI context.
5853 */
3dab77fb 5854static void perf_output_read(struct perf_output_handle *handle,
cdd6c482 5855 struct perf_event *event)
3dab77fb 5856{
e3f3541c 5857 u64 enabled = 0, running = 0, now;
eed01528
SE
5858 u64 read_format = event->attr.read_format;
5859
5860 /*
5861 * compute total_time_enabled, total_time_running
5862 * based on snapshot values taken when the event
5863 * was last scheduled in.
5864 *
5865 * we cannot simply called update_context_time()
5866 * because of locking issue as we are called in
5867 * NMI context
5868 */
c4794295 5869 if (read_format & PERF_FORMAT_TOTAL_TIMES)
e3f3541c 5870 calc_timer_values(event, &now, &enabled, &running);
eed01528 5871
cdd6c482 5872 if (event->attr.read_format & PERF_FORMAT_GROUP)
eed01528 5873 perf_output_read_group(handle, event, enabled, running);
3dab77fb 5874 else
eed01528 5875 perf_output_read_one(handle, event, enabled, running);
3dab77fb
PZ
5876}
5877
5622f295
MM
5878void perf_output_sample(struct perf_output_handle *handle,
5879 struct perf_event_header *header,
5880 struct perf_sample_data *data,
cdd6c482 5881 struct perf_event *event)
5622f295
MM
5882{
5883 u64 sample_type = data->type;
5884
5885 perf_output_put(handle, *header);
5886
ff3d527c
AH
5887 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5888 perf_output_put(handle, data->id);
5889
5622f295
MM
5890 if (sample_type & PERF_SAMPLE_IP)
5891 perf_output_put(handle, data->ip);
5892
5893 if (sample_type & PERF_SAMPLE_TID)
5894 perf_output_put(handle, data->tid_entry);
5895
5896 if (sample_type & PERF_SAMPLE_TIME)
5897 perf_output_put(handle, data->time);
5898
5899 if (sample_type & PERF_SAMPLE_ADDR)
5900 perf_output_put(handle, data->addr);
5901
5902 if (sample_type & PERF_SAMPLE_ID)
5903 perf_output_put(handle, data->id);
5904
5905 if (sample_type & PERF_SAMPLE_STREAM_ID)
5906 perf_output_put(handle, data->stream_id);
5907
5908 if (sample_type & PERF_SAMPLE_CPU)
5909 perf_output_put(handle, data->cpu_entry);
5910
5911 if (sample_type & PERF_SAMPLE_PERIOD)
5912 perf_output_put(handle, data->period);
5913
5914 if (sample_type & PERF_SAMPLE_READ)
cdd6c482 5915 perf_output_read(handle, event);
5622f295
MM
5916
5917 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5918 if (data->callchain) {
5919 int size = 1;
5920
5921 if (data->callchain)
5922 size += data->callchain->nr;
5923
5924 size *= sizeof(u64);
5925
76369139 5926 __output_copy(handle, data->callchain, size);
5622f295
MM
5927 } else {
5928 u64 nr = 0;
5929 perf_output_put(handle, nr);
5930 }
5931 }
5932
5933 if (sample_type & PERF_SAMPLE_RAW) {
7e3f977e
DB
5934 struct perf_raw_record *raw = data->raw;
5935
5936 if (raw) {
5937 struct perf_raw_frag *frag = &raw->frag;
5938
5939 perf_output_put(handle, raw->size);
5940 do {
5941 if (frag->copy) {
5942 __output_custom(handle, frag->copy,
5943 frag->data, frag->size);
5944 } else {
5945 __output_copy(handle, frag->data,
5946 frag->size);
5947 }
5948 if (perf_raw_frag_last(frag))
5949 break;
5950 frag = frag->next;
5951 } while (1);
5952 if (frag->pad)
5953 __output_skip(handle, NULL, frag->pad);
5622f295
MM
5954 } else {
5955 struct {
5956 u32 size;
5957 u32 data;
5958 } raw = {
5959 .size = sizeof(u32),
5960 .data = 0,
5961 };
5962 perf_output_put(handle, raw);
5963 }
5964 }
a7ac67ea 5965
bce38cd5
SE
5966 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5967 if (data->br_stack) {
5968 size_t size;
5969
5970 size = data->br_stack->nr
5971 * sizeof(struct perf_branch_entry);
5972
5973 perf_output_put(handle, data->br_stack->nr);
5974 perf_output_copy(handle, data->br_stack->entries, size);
5975 } else {
5976 /*
5977 * we always store at least the value of nr
5978 */
5979 u64 nr = 0;
5980 perf_output_put(handle, nr);
5981 }
5982 }
4018994f
JO
5983
5984 if (sample_type & PERF_SAMPLE_REGS_USER) {
5985 u64 abi = data->regs_user.abi;
5986
5987 /*
5988 * If there are no regs to dump, notice it through
5989 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5990 */
5991 perf_output_put(handle, abi);
5992
5993 if (abi) {
5994 u64 mask = event->attr.sample_regs_user;
5995 perf_output_sample_regs(handle,
5996 data->regs_user.regs,
5997 mask);
5998 }
5999 }
c5ebcedb 6000
a5cdd40c 6001 if (sample_type & PERF_SAMPLE_STACK_USER) {
c5ebcedb
JO
6002 perf_output_sample_ustack(handle,
6003 data->stack_user_size,
6004 data->regs_user.regs);
a5cdd40c 6005 }
c3feedf2
AK
6006
6007 if (sample_type & PERF_SAMPLE_WEIGHT)
6008 perf_output_put(handle, data->weight);
d6be9ad6
SE
6009
6010 if (sample_type & PERF_SAMPLE_DATA_SRC)
6011 perf_output_put(handle, data->data_src.val);
a5cdd40c 6012
fdfbbd07
AK
6013 if (sample_type & PERF_SAMPLE_TRANSACTION)
6014 perf_output_put(handle, data->txn);
6015
60e2364e
SE
6016 if (sample_type & PERF_SAMPLE_REGS_INTR) {
6017 u64 abi = data->regs_intr.abi;
6018 /*
6019 * If there are no regs to dump, notice it through
6020 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6021 */
6022 perf_output_put(handle, abi);
6023
6024 if (abi) {
6025 u64 mask = event->attr.sample_regs_intr;
6026
6027 perf_output_sample_regs(handle,
6028 data->regs_intr.regs,
6029 mask);
6030 }
6031 }
6032
fc7ce9c7
KL
6033 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6034 perf_output_put(handle, data->phys_addr);
6035
a5cdd40c
PZ
6036 if (!event->attr.watermark) {
6037 int wakeup_events = event->attr.wakeup_events;
6038
6039 if (wakeup_events) {
6040 struct ring_buffer *rb = handle->rb;
6041 int events = local_inc_return(&rb->events);
6042
6043 if (events >= wakeup_events) {
6044 local_sub(wakeup_events, &rb->events);
6045 local_inc(&rb->wakeup);
6046 }
6047 }
6048 }
5622f295
MM
6049}
6050
fc7ce9c7
KL
6051static u64 perf_virt_to_phys(u64 virt)
6052{
6053 u64 phys_addr = 0;
6054 struct page *p = NULL;
6055
6056 if (!virt)
6057 return 0;
6058
6059 if (virt >= TASK_SIZE) {
6060 /* If it's vmalloc()d memory, leave phys_addr as 0 */
6061 if (virt_addr_valid((void *)(uintptr_t)virt) &&
6062 !(virt >= VMALLOC_START && virt < VMALLOC_END))
6063 phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
6064 } else {
6065 /*
6066 * Walking the pages tables for user address.
6067 * Interrupts are disabled, so it prevents any tear down
6068 * of the page tables.
6069 * Try IRQ-safe __get_user_pages_fast first.
6070 * If failed, leave phys_addr as 0.
6071 */
6072 if ((current->mm != NULL) &&
6073 (__get_user_pages_fast(virt, 1, 0, &p) == 1))
6074 phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
6075
6076 if (p)
6077 put_page(p);
6078 }
6079
6080 return phys_addr;
6081}
6082
5622f295
MM
6083void perf_prepare_sample(struct perf_event_header *header,
6084 struct perf_sample_data *data,
cdd6c482 6085 struct perf_event *event,
5622f295 6086 struct pt_regs *regs)
7b732a75 6087{
cdd6c482 6088 u64 sample_type = event->attr.sample_type;
7b732a75 6089
cdd6c482 6090 header->type = PERF_RECORD_SAMPLE;
c320c7b7 6091 header->size = sizeof(*header) + event->header_size;
5622f295
MM
6092
6093 header->misc = 0;
6094 header->misc |= perf_misc_flags(regs);
6fab0192 6095
c980d109 6096 __perf_event_header__init_id(header, data, event);
6844c09d 6097
c320c7b7 6098 if (sample_type & PERF_SAMPLE_IP)
5622f295
MM
6099 data->ip = perf_instruction_pointer(regs);
6100
b23f3325 6101 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5622f295 6102 int size = 1;
394ee076 6103
e6dab5ff 6104 data->callchain = perf_callchain(event, regs);
5622f295
MM
6105
6106 if (data->callchain)
6107 size += data->callchain->nr;
6108
6109 header->size += size * sizeof(u64);
394ee076
PZ
6110 }
6111
3a43ce68 6112 if (sample_type & PERF_SAMPLE_RAW) {
7e3f977e
DB
6113 struct perf_raw_record *raw = data->raw;
6114 int size;
6115
6116 if (raw) {
6117 struct perf_raw_frag *frag = &raw->frag;
6118 u32 sum = 0;
6119
6120 do {
6121 sum += frag->size;
6122 if (perf_raw_frag_last(frag))
6123 break;
6124 frag = frag->next;
6125 } while (1);
6126
6127 size = round_up(sum + sizeof(u32), sizeof(u64));
6128 raw->size = size - sizeof(u32);
6129 frag->pad = raw->size - sum;
6130 } else {
6131 size = sizeof(u64);
6132 }
a044560c 6133
7e3f977e 6134 header->size += size;
7f453c24 6135 }
bce38cd5
SE
6136
6137 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6138 int size = sizeof(u64); /* nr */
6139 if (data->br_stack) {
6140 size += data->br_stack->nr
6141 * sizeof(struct perf_branch_entry);
6142 }
6143 header->size += size;
6144 }
4018994f 6145
2565711f 6146 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
88a7c26a
AL
6147 perf_sample_regs_user(&data->regs_user, regs,
6148 &data->regs_user_copy);
2565711f 6149
4018994f
JO
6150 if (sample_type & PERF_SAMPLE_REGS_USER) {
6151 /* regs dump ABI info */
6152 int size = sizeof(u64);
6153
4018994f
JO
6154 if (data->regs_user.regs) {
6155 u64 mask = event->attr.sample_regs_user;
6156 size += hweight64(mask) * sizeof(u64);
6157 }
6158
6159 header->size += size;
6160 }
c5ebcedb
JO
6161
6162 if (sample_type & PERF_SAMPLE_STACK_USER) {
6163 /*
6164 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
6165 * processed as the last one or have additional check added
6166 * in case new sample type is added, because we could eat
6167 * up the rest of the sample size.
6168 */
c5ebcedb
JO
6169 u16 stack_size = event->attr.sample_stack_user;
6170 u16 size = sizeof(u64);
6171
c5ebcedb 6172 stack_size = perf_sample_ustack_size(stack_size, header->size,
2565711f 6173 data->regs_user.regs);
c5ebcedb
JO
6174
6175 /*
6176 * If there is something to dump, add space for the dump
6177 * itself and for the field that tells the dynamic size,
6178 * which is how many have been actually dumped.
6179 */
6180 if (stack_size)
6181 size += sizeof(u64) + stack_size;
6182
6183 data->stack_user_size = stack_size;
6184 header->size += size;
6185 }
60e2364e
SE
6186
6187 if (sample_type & PERF_SAMPLE_REGS_INTR) {
6188 /* regs dump ABI info */
6189 int size = sizeof(u64);
6190
6191 perf_sample_regs_intr(&data->regs_intr, regs);
6192
6193 if (data->regs_intr.regs) {
6194 u64 mask = event->attr.sample_regs_intr;
6195
6196 size += hweight64(mask) * sizeof(u64);
6197 }
6198
6199 header->size += size;
6200 }
fc7ce9c7
KL
6201
6202 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6203 data->phys_addr = perf_virt_to_phys(data->addr);
5622f295 6204}
7f453c24 6205
9ecda41a
WN
6206static void __always_inline
6207__perf_event_output(struct perf_event *event,
6208 struct perf_sample_data *data,
6209 struct pt_regs *regs,
6210 int (*output_begin)(struct perf_output_handle *,
6211 struct perf_event *,
6212 unsigned int))
5622f295
MM
6213{
6214 struct perf_output_handle handle;
6215 struct perf_event_header header;
689802b2 6216
927c7a9e
FW
6217 /* protect the callchain buffers */
6218 rcu_read_lock();
6219
cdd6c482 6220 perf_prepare_sample(&header, data, event, regs);
5c148194 6221
9ecda41a 6222 if (output_begin(&handle, event, header.size))
927c7a9e 6223 goto exit;
0322cd6e 6224
cdd6c482 6225 perf_output_sample(&handle, &header, data, event);
f413cdb8 6226
8a057d84 6227 perf_output_end(&handle);
927c7a9e
FW
6228
6229exit:
6230 rcu_read_unlock();
0322cd6e
PZ
6231}
6232
9ecda41a
WN
6233void
6234perf_event_output_forward(struct perf_event *event,
6235 struct perf_sample_data *data,
6236 struct pt_regs *regs)
6237{
6238 __perf_event_output(event, data, regs, perf_output_begin_forward);
6239}
6240
6241void
6242perf_event_output_backward(struct perf_event *event,
6243 struct perf_sample_data *data,
6244 struct pt_regs *regs)
6245{
6246 __perf_event_output(event, data, regs, perf_output_begin_backward);
6247}
6248
6249void
6250perf_event_output(struct perf_event *event,
6251 struct perf_sample_data *data,
6252 struct pt_regs *regs)
6253{
6254 __perf_event_output(event, data, regs, perf_output_begin);
6255}
6256
38b200d6 6257/*
cdd6c482 6258 * read event_id
38b200d6
PZ
6259 */
6260
6261struct perf_read_event {
6262 struct perf_event_header header;
6263
6264 u32 pid;
6265 u32 tid;
38b200d6
PZ
6266};
6267
6268static void
cdd6c482 6269perf_event_read_event(struct perf_event *event,
38b200d6
PZ
6270 struct task_struct *task)
6271{
6272 struct perf_output_handle handle;
c980d109 6273 struct perf_sample_data sample;
dfc65094 6274 struct perf_read_event read_event = {
38b200d6 6275 .header = {
cdd6c482 6276 .type = PERF_RECORD_READ,
38b200d6 6277 .misc = 0,
c320c7b7 6278 .size = sizeof(read_event) + event->read_size,
38b200d6 6279 },
cdd6c482
IM
6280 .pid = perf_event_pid(event, task),
6281 .tid = perf_event_tid(event, task),
38b200d6 6282 };
3dab77fb 6283 int ret;
38b200d6 6284
c980d109 6285 perf_event_header__init_id(&read_event.header, &sample, event);
a7ac67ea 6286 ret = perf_output_begin(&handle, event, read_event.header.size);
38b200d6
PZ
6287 if (ret)
6288 return;
6289
dfc65094 6290 perf_output_put(&handle, read_event);
cdd6c482 6291 perf_output_read(&handle, event);
c980d109 6292 perf_event__output_id_sample(event, &handle, &sample);
3dab77fb 6293
38b200d6
PZ
6294 perf_output_end(&handle);
6295}
6296
aab5b71e 6297typedef void (perf_iterate_f)(struct perf_event *event, void *data);
52d857a8
JO
6298
6299static void
aab5b71e
PZ
6300perf_iterate_ctx(struct perf_event_context *ctx,
6301 perf_iterate_f output,
b73e4fef 6302 void *data, bool all)
52d857a8
JO
6303{
6304 struct perf_event *event;
6305
6306 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
b73e4fef
AS
6307 if (!all) {
6308 if (event->state < PERF_EVENT_STATE_INACTIVE)
6309 continue;
6310 if (!event_filter_match(event))
6311 continue;
6312 }
6313
67516844 6314 output(event, data);
52d857a8
JO
6315 }
6316}
6317
aab5b71e 6318static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
f2fb6bef
KL
6319{
6320 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
6321 struct perf_event *event;
6322
6323 list_for_each_entry_rcu(event, &pel->list, sb_list) {
0b8f1e2e
PZ
6324 /*
6325 * Skip events that are not fully formed yet; ensure that
6326 * if we observe event->ctx, both event and ctx will be
6327 * complete enough. See perf_install_in_context().
6328 */
6329 if (!smp_load_acquire(&event->ctx))
6330 continue;
6331
f2fb6bef
KL
6332 if (event->state < PERF_EVENT_STATE_INACTIVE)
6333 continue;
6334 if (!event_filter_match(event))
6335 continue;
6336 output(event, data);
6337 }
6338}
6339
aab5b71e
PZ
6340/*
6341 * Iterate all events that need to receive side-band events.
6342 *
6343 * For new callers; ensure that account_pmu_sb_event() includes
6344 * your event, otherwise it might not get delivered.
6345 */
52d857a8 6346static void
aab5b71e 6347perf_iterate_sb(perf_iterate_f output, void *data,
52d857a8
JO
6348 struct perf_event_context *task_ctx)
6349{
52d857a8 6350 struct perf_event_context *ctx;
52d857a8
JO
6351 int ctxn;
6352
aab5b71e
PZ
6353 rcu_read_lock();
6354 preempt_disable();
6355
4e93ad60 6356 /*
aab5b71e
PZ
6357 * If we have task_ctx != NULL we only notify the task context itself.
6358 * The task_ctx is set only for EXIT events before releasing task
4e93ad60
JO
6359 * context.
6360 */
6361 if (task_ctx) {
aab5b71e
PZ
6362 perf_iterate_ctx(task_ctx, output, data, false);
6363 goto done;
4e93ad60
JO
6364 }
6365
aab5b71e 6366 perf_iterate_sb_cpu(output, data);
f2fb6bef
KL
6367
6368 for_each_task_context_nr(ctxn) {
52d857a8
JO
6369 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6370 if (ctx)
aab5b71e 6371 perf_iterate_ctx(ctx, output, data, false);
52d857a8 6372 }
aab5b71e 6373done:
f2fb6bef 6374 preempt_enable();
52d857a8 6375 rcu_read_unlock();
95ff4ca2
AS
6376}
6377
375637bc
AS
6378/*
6379 * Clear all file-based filters at exec, they'll have to be
6380 * re-instated when/if these objects are mmapped again.
6381 */
6382static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
6383{
6384 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6385 struct perf_addr_filter *filter;
6386 unsigned int restart = 0, count = 0;
6387 unsigned long flags;
6388
6389 if (!has_addr_filter(event))
6390 return;
6391
6392 raw_spin_lock_irqsave(&ifh->lock, flags);
6393 list_for_each_entry(filter, &ifh->list, entry) {
6394 if (filter->inode) {
6395 event->addr_filters_offs[count] = 0;
6396 restart++;
6397 }
6398
6399 count++;
6400 }
6401
6402 if (restart)
6403 event->addr_filters_gen++;
6404 raw_spin_unlock_irqrestore(&ifh->lock, flags);
6405
6406 if (restart)
767ae086 6407 perf_event_stop(event, 1);
375637bc
AS
6408}
6409
6410void perf_event_exec(void)
6411{
6412 struct perf_event_context *ctx;
6413 int ctxn;
6414
6415 rcu_read_lock();
6416 for_each_task_context_nr(ctxn) {
6417 ctx = current->perf_event_ctxp[ctxn];
6418 if (!ctx)
6419 continue;
6420
6421 perf_event_enable_on_exec(ctxn);
6422
aab5b71e 6423 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
375637bc
AS
6424 true);
6425 }
6426 rcu_read_unlock();
6427}
6428
95ff4ca2
AS
6429struct remote_output {
6430 struct ring_buffer *rb;
6431 int err;
6432};
6433
6434static void __perf_event_output_stop(struct perf_event *event, void *data)
6435{
6436 struct perf_event *parent = event->parent;
6437 struct remote_output *ro = data;
6438 struct ring_buffer *rb = ro->rb;
375637bc
AS
6439 struct stop_event_data sd = {
6440 .event = event,
6441 };
95ff4ca2
AS
6442
6443 if (!has_aux(event))
6444 return;
6445
6446 if (!parent)
6447 parent = event;
6448
6449 /*
6450 * In case of inheritance, it will be the parent that links to the
767ae086
AS
6451 * ring-buffer, but it will be the child that's actually using it.
6452 *
6453 * We are using event::rb to determine if the event should be stopped,
6454 * however this may race with ring_buffer_attach() (through set_output),
6455 * which will make us skip the event that actually needs to be stopped.
6456 * So ring_buffer_attach() has to stop an aux event before re-assigning
6457 * its rb pointer.
95ff4ca2
AS
6458 */
6459 if (rcu_dereference(parent->rb) == rb)
375637bc 6460 ro->err = __perf_event_stop(&sd);
95ff4ca2
AS
6461}
6462
6463static int __perf_pmu_output_stop(void *info)
6464{
6465 struct perf_event *event = info;
6466 struct pmu *pmu = event->pmu;
8b6a3fe8 6467 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
95ff4ca2
AS
6468 struct remote_output ro = {
6469 .rb = event->rb,
6470 };
6471
6472 rcu_read_lock();
aab5b71e 6473 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
95ff4ca2 6474 if (cpuctx->task_ctx)
aab5b71e 6475 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
b73e4fef 6476 &ro, false);
95ff4ca2
AS
6477 rcu_read_unlock();
6478
6479 return ro.err;
6480}
6481
6482static void perf_pmu_output_stop(struct perf_event *event)
6483{
6484 struct perf_event *iter;
6485 int err, cpu;
6486
6487restart:
6488 rcu_read_lock();
6489 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6490 /*
6491 * For per-CPU events, we need to make sure that neither they
6492 * nor their children are running; for cpu==-1 events it's
6493 * sufficient to stop the event itself if it's active, since
6494 * it can't have children.
6495 */
6496 cpu = iter->cpu;
6497 if (cpu == -1)
6498 cpu = READ_ONCE(iter->oncpu);
6499
6500 if (cpu == -1)
6501 continue;
6502
6503 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6504 if (err == -EAGAIN) {
6505 rcu_read_unlock();
6506 goto restart;
6507 }
6508 }
6509 rcu_read_unlock();
52d857a8
JO
6510}
6511
60313ebe 6512/*
9f498cc5
PZ
6513 * task tracking -- fork/exit
6514 *
13d7a241 6515 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
60313ebe
PZ
6516 */
6517
9f498cc5 6518struct perf_task_event {
3a80b4a3 6519 struct task_struct *task;
cdd6c482 6520 struct perf_event_context *task_ctx;
60313ebe
PZ
6521
6522 struct {
6523 struct perf_event_header header;
6524
6525 u32 pid;
6526 u32 ppid;
9f498cc5
PZ
6527 u32 tid;
6528 u32 ptid;
393b2ad8 6529 u64 time;
cdd6c482 6530 } event_id;
60313ebe
PZ
6531};
6532
67516844
JO
6533static int perf_event_task_match(struct perf_event *event)
6534{
13d7a241
SE
6535 return event->attr.comm || event->attr.mmap ||
6536 event->attr.mmap2 || event->attr.mmap_data ||
6537 event->attr.task;
67516844
JO
6538}
6539
cdd6c482 6540static void perf_event_task_output(struct perf_event *event,
52d857a8 6541 void *data)
60313ebe 6542{
52d857a8 6543 struct perf_task_event *task_event = data;
60313ebe 6544 struct perf_output_handle handle;
c980d109 6545 struct perf_sample_data sample;
9f498cc5 6546 struct task_struct *task = task_event->task;
c980d109 6547 int ret, size = task_event->event_id.header.size;
8bb39f9a 6548
67516844
JO
6549 if (!perf_event_task_match(event))
6550 return;
6551
c980d109 6552 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
60313ebe 6553
c980d109 6554 ret = perf_output_begin(&handle, event,
a7ac67ea 6555 task_event->event_id.header.size);
ef60777c 6556 if (ret)
c980d109 6557 goto out;
60313ebe 6558
cdd6c482
IM
6559 task_event->event_id.pid = perf_event_pid(event, task);
6560 task_event->event_id.ppid = perf_event_pid(event, current);
60313ebe 6561
cdd6c482
IM
6562 task_event->event_id.tid = perf_event_tid(event, task);
6563 task_event->event_id.ptid = perf_event_tid(event, current);
9f498cc5 6564
34f43927
PZ
6565 task_event->event_id.time = perf_event_clock(event);
6566
cdd6c482 6567 perf_output_put(&handle, task_event->event_id);
393b2ad8 6568
c980d109
ACM
6569 perf_event__output_id_sample(event, &handle, &sample);
6570
60313ebe 6571 perf_output_end(&handle);
c980d109
ACM
6572out:
6573 task_event->event_id.header.size = size;
60313ebe
PZ
6574}
6575
cdd6c482
IM
6576static void perf_event_task(struct task_struct *task,
6577 struct perf_event_context *task_ctx,
3a80b4a3 6578 int new)
60313ebe 6579{
9f498cc5 6580 struct perf_task_event task_event;
60313ebe 6581
cdd6c482
IM
6582 if (!atomic_read(&nr_comm_events) &&
6583 !atomic_read(&nr_mmap_events) &&
6584 !atomic_read(&nr_task_events))
60313ebe
PZ
6585 return;
6586
9f498cc5 6587 task_event = (struct perf_task_event){
3a80b4a3
PZ
6588 .task = task,
6589 .task_ctx = task_ctx,
cdd6c482 6590 .event_id = {
60313ebe 6591 .header = {
cdd6c482 6592 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
573402db 6593 .misc = 0,
cdd6c482 6594 .size = sizeof(task_event.event_id),
60313ebe 6595 },
573402db
PZ
6596 /* .pid */
6597 /* .ppid */
9f498cc5
PZ
6598 /* .tid */
6599 /* .ptid */
34f43927 6600 /* .time */
60313ebe
PZ
6601 },
6602 };
6603
aab5b71e 6604 perf_iterate_sb(perf_event_task_output,
52d857a8
JO
6605 &task_event,
6606 task_ctx);
9f498cc5
PZ
6607}
6608
cdd6c482 6609void perf_event_fork(struct task_struct *task)
9f498cc5 6610{
cdd6c482 6611 perf_event_task(task, NULL, 1);
e4222673 6612 perf_event_namespaces(task);
60313ebe
PZ
6613}
6614
8d1b2d93
PZ
6615/*
6616 * comm tracking
6617 */
6618
6619struct perf_comm_event {
22a4f650
IM
6620 struct task_struct *task;
6621 char *comm;
8d1b2d93
PZ
6622 int comm_size;
6623
6624 struct {
6625 struct perf_event_header header;
6626
6627 u32 pid;
6628 u32 tid;
cdd6c482 6629 } event_id;
8d1b2d93
PZ
6630};
6631
67516844
JO
6632static int perf_event_comm_match(struct perf_event *event)
6633{
6634 return event->attr.comm;
6635}
6636
cdd6c482 6637static void perf_event_comm_output(struct perf_event *event,
52d857a8 6638 void *data)
8d1b2d93 6639{
52d857a8 6640 struct perf_comm_event *comm_event = data;
8d1b2d93 6641 struct perf_output_handle handle;
c980d109 6642 struct perf_sample_data sample;
cdd6c482 6643 int size = comm_event->event_id.header.size;
c980d109
ACM
6644 int ret;
6645
67516844
JO
6646 if (!perf_event_comm_match(event))
6647 return;
6648
c980d109
ACM
6649 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
6650 ret = perf_output_begin(&handle, event,
a7ac67ea 6651 comm_event->event_id.header.size);
8d1b2d93
PZ
6652
6653 if (ret)
c980d109 6654 goto out;
8d1b2d93 6655
cdd6c482
IM
6656 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
6657 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
709e50cf 6658
cdd6c482 6659 perf_output_put(&handle, comm_event->event_id);
76369139 6660 __output_copy(&handle, comm_event->comm,
8d1b2d93 6661 comm_event->comm_size);
c980d109
ACM
6662
6663 perf_event__output_id_sample(event, &handle, &sample);
6664
8d1b2d93 6665 perf_output_end(&handle);
c980d109
ACM
6666out:
6667 comm_event->event_id.header.size = size;
8d1b2d93
PZ
6668}
6669
cdd6c482 6670static void perf_event_comm_event(struct perf_comm_event *comm_event)
8d1b2d93 6671{
413ee3b4 6672 char comm[TASK_COMM_LEN];
8d1b2d93 6673 unsigned int size;
8d1b2d93 6674
413ee3b4 6675 memset(comm, 0, sizeof(comm));
96b02d78 6676 strlcpy(comm, comm_event->task->comm, sizeof(comm));
888fcee0 6677 size = ALIGN(strlen(comm)+1, sizeof(u64));
8d1b2d93
PZ
6678
6679 comm_event->comm = comm;
6680 comm_event->comm_size = size;
6681
cdd6c482 6682 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
8dc85d54 6683
aab5b71e 6684 perf_iterate_sb(perf_event_comm_output,
52d857a8
JO
6685 comm_event,
6686 NULL);
8d1b2d93
PZ
6687}
6688
82b89778 6689void perf_event_comm(struct task_struct *task, bool exec)
8d1b2d93 6690{
9ee318a7
PZ
6691 struct perf_comm_event comm_event;
6692
cdd6c482 6693 if (!atomic_read(&nr_comm_events))
9ee318a7 6694 return;
a63eaf34 6695
9ee318a7 6696 comm_event = (struct perf_comm_event){
8d1b2d93 6697 .task = task,
573402db
PZ
6698 /* .comm */
6699 /* .comm_size */
cdd6c482 6700 .event_id = {
573402db 6701 .header = {
cdd6c482 6702 .type = PERF_RECORD_COMM,
82b89778 6703 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
573402db
PZ
6704 /* .size */
6705 },
6706 /* .pid */
6707 /* .tid */
8d1b2d93
PZ
6708 },
6709 };
6710
cdd6c482 6711 perf_event_comm_event(&comm_event);
8d1b2d93
PZ
6712}
6713
e4222673
HB
6714/*
6715 * namespaces tracking
6716 */
6717
6718struct perf_namespaces_event {
6719 struct task_struct *task;
6720
6721 struct {
6722 struct perf_event_header header;
6723
6724 u32 pid;
6725 u32 tid;
6726 u64 nr_namespaces;
6727 struct perf_ns_link_info link_info[NR_NAMESPACES];
6728 } event_id;
6729};
6730
6731static int perf_event_namespaces_match(struct perf_event *event)
6732{
6733 return event->attr.namespaces;
6734}
6735
6736static void perf_event_namespaces_output(struct perf_event *event,
6737 void *data)
6738{
6739 struct perf_namespaces_event *namespaces_event = data;
6740 struct perf_output_handle handle;
6741 struct perf_sample_data sample;
6742 int ret;
6743
6744 if (!perf_event_namespaces_match(event))
6745 return;
6746
6747 perf_event_header__init_id(&namespaces_event->event_id.header,
6748 &sample, event);
6749 ret = perf_output_begin(&handle, event,
6750 namespaces_event->event_id.header.size);
6751 if (ret)
6752 return;
6753
6754 namespaces_event->event_id.pid = perf_event_pid(event,
6755 namespaces_event->task);
6756 namespaces_event->event_id.tid = perf_event_tid(event,
6757 namespaces_event->task);
6758
6759 perf_output_put(&handle, namespaces_event->event_id);
6760
6761 perf_event__output_id_sample(event, &handle, &sample);
6762
6763 perf_output_end(&handle);
6764}
6765
6766static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
6767 struct task_struct *task,
6768 const struct proc_ns_operations *ns_ops)
6769{
6770 struct path ns_path;
6771 struct inode *ns_inode;
6772 void *error;
6773
6774 error = ns_get_path(&ns_path, task, ns_ops);
6775 if (!error) {
6776 ns_inode = ns_path.dentry->d_inode;
6777 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
6778 ns_link_info->ino = ns_inode->i_ino;
6779 }
6780}
6781
6782void perf_event_namespaces(struct task_struct *task)
6783{
6784 struct perf_namespaces_event namespaces_event;
6785 struct perf_ns_link_info *ns_link_info;
6786
6787 if (!atomic_read(&nr_namespaces_events))
6788 return;
6789
6790 namespaces_event = (struct perf_namespaces_event){
6791 .task = task,
6792 .event_id = {
6793 .header = {
6794 .type = PERF_RECORD_NAMESPACES,
6795 .misc = 0,
6796 .size = sizeof(namespaces_event.event_id),
6797 },
6798 /* .pid */
6799 /* .tid */
6800 .nr_namespaces = NR_NAMESPACES,
6801 /* .link_info[NR_NAMESPACES] */
6802 },
6803 };
6804
6805 ns_link_info = namespaces_event.event_id.link_info;
6806
6807 perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
6808 task, &mntns_operations);
6809
6810#ifdef CONFIG_USER_NS
6811 perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
6812 task, &userns_operations);
6813#endif
6814#ifdef CONFIG_NET_NS
6815 perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
6816 task, &netns_operations);
6817#endif
6818#ifdef CONFIG_UTS_NS
6819 perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
6820 task, &utsns_operations);
6821#endif
6822#ifdef CONFIG_IPC_NS
6823 perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
6824 task, &ipcns_operations);
6825#endif
6826#ifdef CONFIG_PID_NS
6827 perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
6828 task, &pidns_operations);
6829#endif
6830#ifdef CONFIG_CGROUPS
6831 perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
6832 task, &cgroupns_operations);
6833#endif
6834
6835 perf_iterate_sb(perf_event_namespaces_output,
6836 &namespaces_event,
6837 NULL);
6838}
6839
0a4a9391
PZ
6840/*
6841 * mmap tracking
6842 */
6843
6844struct perf_mmap_event {
089dd79d
PZ
6845 struct vm_area_struct *vma;
6846
6847 const char *file_name;
6848 int file_size;
13d7a241
SE
6849 int maj, min;
6850 u64 ino;
6851 u64 ino_generation;
f972eb63 6852 u32 prot, flags;
0a4a9391
PZ
6853
6854 struct {
6855 struct perf_event_header header;
6856
6857 u32 pid;
6858 u32 tid;
6859 u64 start;
6860 u64 len;
6861 u64 pgoff;
cdd6c482 6862 } event_id;
0a4a9391
PZ
6863};
6864
67516844
JO
6865static int perf_event_mmap_match(struct perf_event *event,
6866 void *data)
6867{
6868 struct perf_mmap_event *mmap_event = data;
6869 struct vm_area_struct *vma = mmap_event->vma;
6870 int executable = vma->vm_flags & VM_EXEC;
6871
6872 return (!executable && event->attr.mmap_data) ||
13d7a241 6873 (executable && (event->attr.mmap || event->attr.mmap2));
67516844
JO
6874}
6875
cdd6c482 6876static void perf_event_mmap_output(struct perf_event *event,
52d857a8 6877 void *data)
0a4a9391 6878{
52d857a8 6879 struct perf_mmap_event *mmap_event = data;
0a4a9391 6880 struct perf_output_handle handle;
c980d109 6881 struct perf_sample_data sample;
cdd6c482 6882 int size = mmap_event->event_id.header.size;
c980d109 6883 int ret;
0a4a9391 6884
67516844
JO
6885 if (!perf_event_mmap_match(event, data))
6886 return;
6887
13d7a241
SE
6888 if (event->attr.mmap2) {
6889 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
6890 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
6891 mmap_event->event_id.header.size += sizeof(mmap_event->min);
6892 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
d008d525 6893 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
f972eb63
PZ
6894 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
6895 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
13d7a241
SE
6896 }
6897
c980d109
ACM
6898 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
6899 ret = perf_output_begin(&handle, event,
a7ac67ea 6900 mmap_event->event_id.header.size);
0a4a9391 6901 if (ret)
c980d109 6902 goto out;
0a4a9391 6903
cdd6c482
IM
6904 mmap_event->event_id.pid = perf_event_pid(event, current);
6905 mmap_event->event_id.tid = perf_event_tid(event, current);
709e50cf 6906
cdd6c482 6907 perf_output_put(&handle, mmap_event->event_id);
13d7a241
SE
6908
6909 if (event->attr.mmap2) {
6910 perf_output_put(&handle, mmap_event->maj);
6911 perf_output_put(&handle, mmap_event->min);
6912 perf_output_put(&handle, mmap_event->ino);
6913 perf_output_put(&handle, mmap_event->ino_generation);
f972eb63
PZ
6914 perf_output_put(&handle, mmap_event->prot);
6915 perf_output_put(&handle, mmap_event->flags);
13d7a241
SE
6916 }
6917
76369139 6918 __output_copy(&handle, mmap_event->file_name,
0a4a9391 6919 mmap_event->file_size);
c980d109
ACM
6920
6921 perf_event__output_id_sample(event, &handle, &sample);
6922
78d613eb 6923 perf_output_end(&handle);
c980d109
ACM
6924out:
6925 mmap_event->event_id.header.size = size;
0a4a9391
PZ
6926}
6927
cdd6c482 6928static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
0a4a9391 6929{
089dd79d
PZ
6930 struct vm_area_struct *vma = mmap_event->vma;
6931 struct file *file = vma->vm_file;
13d7a241
SE
6932 int maj = 0, min = 0;
6933 u64 ino = 0, gen = 0;
f972eb63 6934 u32 prot = 0, flags = 0;
0a4a9391
PZ
6935 unsigned int size;
6936 char tmp[16];
6937 char *buf = NULL;
2c42cfbf 6938 char *name;
413ee3b4 6939
0b3589be
PZ
6940 if (vma->vm_flags & VM_READ)
6941 prot |= PROT_READ;
6942 if (vma->vm_flags & VM_WRITE)
6943 prot |= PROT_WRITE;
6944 if (vma->vm_flags & VM_EXEC)
6945 prot |= PROT_EXEC;
6946
6947 if (vma->vm_flags & VM_MAYSHARE)
6948 flags = MAP_SHARED;
6949 else
6950 flags = MAP_PRIVATE;
6951
6952 if (vma->vm_flags & VM_DENYWRITE)
6953 flags |= MAP_DENYWRITE;
6954 if (vma->vm_flags & VM_MAYEXEC)
6955 flags |= MAP_EXECUTABLE;
6956 if (vma->vm_flags & VM_LOCKED)
6957 flags |= MAP_LOCKED;
6958 if (vma->vm_flags & VM_HUGETLB)
6959 flags |= MAP_HUGETLB;
6960
0a4a9391 6961 if (file) {
13d7a241
SE
6962 struct inode *inode;
6963 dev_t dev;
3ea2f2b9 6964
2c42cfbf 6965 buf = kmalloc(PATH_MAX, GFP_KERNEL);
0a4a9391 6966 if (!buf) {
c7e548b4
ON
6967 name = "//enomem";
6968 goto cpy_name;
0a4a9391 6969 }
413ee3b4 6970 /*
3ea2f2b9 6971 * d_path() works from the end of the rb backwards, so we
413ee3b4
AB
6972 * need to add enough zero bytes after the string to handle
6973 * the 64bit alignment we do later.
6974 */
9bf39ab2 6975 name = file_path(file, buf, PATH_MAX - sizeof(u64));
0a4a9391 6976 if (IS_ERR(name)) {
c7e548b4
ON
6977 name = "//toolong";
6978 goto cpy_name;
0a4a9391 6979 }
13d7a241
SE
6980 inode = file_inode(vma->vm_file);
6981 dev = inode->i_sb->s_dev;
6982 ino = inode->i_ino;
6983 gen = inode->i_generation;
6984 maj = MAJOR(dev);
6985 min = MINOR(dev);
f972eb63 6986
c7e548b4 6987 goto got_name;
0a4a9391 6988 } else {
fbe26abe
JO
6989 if (vma->vm_ops && vma->vm_ops->name) {
6990 name = (char *) vma->vm_ops->name(vma);
6991 if (name)
6992 goto cpy_name;
6993 }
6994
2c42cfbf 6995 name = (char *)arch_vma_name(vma);
c7e548b4
ON
6996 if (name)
6997 goto cpy_name;
089dd79d 6998
32c5fb7e 6999 if (vma->vm_start <= vma->vm_mm->start_brk &&
3af9e859 7000 vma->vm_end >= vma->vm_mm->brk) {
c7e548b4
ON
7001 name = "[heap]";
7002 goto cpy_name;
32c5fb7e
ON
7003 }
7004 if (vma->vm_start <= vma->vm_mm->start_stack &&
3af9e859 7005 vma->vm_end >= vma->vm_mm->start_stack) {
c7e548b4
ON
7006 name = "[stack]";
7007 goto cpy_name;
089dd79d
PZ
7008 }
7009
c7e548b4
ON
7010 name = "//anon";
7011 goto cpy_name;
0a4a9391
PZ
7012 }
7013
c7e548b4
ON
7014cpy_name:
7015 strlcpy(tmp, name, sizeof(tmp));
7016 name = tmp;
0a4a9391 7017got_name:
2c42cfbf
PZ
7018 /*
7019 * Since our buffer works in 8 byte units we need to align our string
7020 * size to a multiple of 8. However, we must guarantee the tail end is
7021 * zero'd out to avoid leaking random bits to userspace.
7022 */
7023 size = strlen(name)+1;
7024 while (!IS_ALIGNED(size, sizeof(u64)))
7025 name[size++] = '\0';
0a4a9391
PZ
7026
7027 mmap_event->file_name = name;
7028 mmap_event->file_size = size;
13d7a241
SE
7029 mmap_event->maj = maj;
7030 mmap_event->min = min;
7031 mmap_event->ino = ino;
7032 mmap_event->ino_generation = gen;
f972eb63
PZ
7033 mmap_event->prot = prot;
7034 mmap_event->flags = flags;
0a4a9391 7035
2fe85427
SE
7036 if (!(vma->vm_flags & VM_EXEC))
7037 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
7038
cdd6c482 7039 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
0a4a9391 7040
aab5b71e 7041 perf_iterate_sb(perf_event_mmap_output,
52d857a8
JO
7042 mmap_event,
7043 NULL);
665c2142 7044
0a4a9391
PZ
7045 kfree(buf);
7046}
7047
375637bc
AS
7048/*
7049 * Check whether inode and address range match filter criteria.
7050 */
7051static bool perf_addr_filter_match(struct perf_addr_filter *filter,
7052 struct file *file, unsigned long offset,
7053 unsigned long size)
7054{
45063097 7055 if (filter->inode != file_inode(file))
375637bc
AS
7056 return false;
7057
7058 if (filter->offset > offset + size)
7059 return false;
7060
7061 if (filter->offset + filter->size < offset)
7062 return false;
7063
7064 return true;
7065}
7066
7067static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
7068{
7069 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7070 struct vm_area_struct *vma = data;
7071 unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags;
7072 struct file *file = vma->vm_file;
7073 struct perf_addr_filter *filter;
7074 unsigned int restart = 0, count = 0;
7075
7076 if (!has_addr_filter(event))
7077 return;
7078
7079 if (!file)
7080 return;
7081
7082 raw_spin_lock_irqsave(&ifh->lock, flags);
7083 list_for_each_entry(filter, &ifh->list, entry) {
7084 if (perf_addr_filter_match(filter, file, off,
7085 vma->vm_end - vma->vm_start)) {
7086 event->addr_filters_offs[count] = vma->vm_start;
7087 restart++;
7088 }
7089
7090 count++;
7091 }
7092
7093 if (restart)
7094 event->addr_filters_gen++;
7095 raw_spin_unlock_irqrestore(&ifh->lock, flags);
7096
7097 if (restart)
767ae086 7098 perf_event_stop(event, 1);
375637bc
AS
7099}
7100
7101/*
7102 * Adjust all task's events' filters to the new vma
7103 */
7104static void perf_addr_filters_adjust(struct vm_area_struct *vma)
7105{
7106 struct perf_event_context *ctx;
7107 int ctxn;
7108
12b40a23
MP
7109 /*
7110 * Data tracing isn't supported yet and as such there is no need
7111 * to keep track of anything that isn't related to executable code:
7112 */
7113 if (!(vma->vm_flags & VM_EXEC))
7114 return;
7115
375637bc
AS
7116 rcu_read_lock();
7117 for_each_task_context_nr(ctxn) {
7118 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7119 if (!ctx)
7120 continue;
7121
aab5b71e 7122 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
375637bc
AS
7123 }
7124 rcu_read_unlock();
7125}
7126
3af9e859 7127void perf_event_mmap(struct vm_area_struct *vma)
0a4a9391 7128{
9ee318a7
PZ
7129 struct perf_mmap_event mmap_event;
7130
cdd6c482 7131 if (!atomic_read(&nr_mmap_events))
9ee318a7
PZ
7132 return;
7133
7134 mmap_event = (struct perf_mmap_event){
089dd79d 7135 .vma = vma,
573402db
PZ
7136 /* .file_name */
7137 /* .file_size */
cdd6c482 7138 .event_id = {
573402db 7139 .header = {
cdd6c482 7140 .type = PERF_RECORD_MMAP,
39447b38 7141 .misc = PERF_RECORD_MISC_USER,
573402db
PZ
7142 /* .size */
7143 },
7144 /* .pid */
7145 /* .tid */
089dd79d
PZ
7146 .start = vma->vm_start,
7147 .len = vma->vm_end - vma->vm_start,
3a0304e9 7148 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
0a4a9391 7149 },
13d7a241
SE
7150 /* .maj (attr_mmap2 only) */
7151 /* .min (attr_mmap2 only) */
7152 /* .ino (attr_mmap2 only) */
7153 /* .ino_generation (attr_mmap2 only) */
f972eb63
PZ
7154 /* .prot (attr_mmap2 only) */
7155 /* .flags (attr_mmap2 only) */
0a4a9391
PZ
7156 };
7157
375637bc 7158 perf_addr_filters_adjust(vma);
cdd6c482 7159 perf_event_mmap_event(&mmap_event);
0a4a9391
PZ
7160}
7161
68db7e98
AS
7162void perf_event_aux_event(struct perf_event *event, unsigned long head,
7163 unsigned long size, u64 flags)
7164{
7165 struct perf_output_handle handle;
7166 struct perf_sample_data sample;
7167 struct perf_aux_event {
7168 struct perf_event_header header;
7169 u64 offset;
7170 u64 size;
7171 u64 flags;
7172 } rec = {
7173 .header = {
7174 .type = PERF_RECORD_AUX,
7175 .misc = 0,
7176 .size = sizeof(rec),
7177 },
7178 .offset = head,
7179 .size = size,
7180 .flags = flags,
7181 };
7182 int ret;
7183
7184 perf_event_header__init_id(&rec.header, &sample, event);
7185 ret = perf_output_begin(&handle, event, rec.header.size);
7186
7187 if (ret)
7188 return;
7189
7190 perf_output_put(&handle, rec);
7191 perf_event__output_id_sample(event, &handle, &sample);
7192
7193 perf_output_end(&handle);
7194}
7195
f38b0dbb
KL
7196/*
7197 * Lost/dropped samples logging
7198 */
7199void perf_log_lost_samples(struct perf_event *event, u64 lost)
7200{
7201 struct perf_output_handle handle;
7202 struct perf_sample_data sample;
7203 int ret;
7204
7205 struct {
7206 struct perf_event_header header;
7207 u64 lost;
7208 } lost_samples_event = {
7209 .header = {
7210 .type = PERF_RECORD_LOST_SAMPLES,
7211 .misc = 0,
7212 .size = sizeof(lost_samples_event),
7213 },
7214 .lost = lost,
7215 };
7216
7217 perf_event_header__init_id(&lost_samples_event.header, &sample, event);
7218
7219 ret = perf_output_begin(&handle, event,
7220 lost_samples_event.header.size);
7221 if (ret)
7222 return;
7223
7224 perf_output_put(&handle, lost_samples_event);
7225 perf_event__output_id_sample(event, &handle, &sample);
7226 perf_output_end(&handle);
7227}
7228
45ac1403
AH
7229/*
7230 * context_switch tracking
7231 */
7232
7233struct perf_switch_event {
7234 struct task_struct *task;
7235 struct task_struct *next_prev;
7236
7237 struct {
7238 struct perf_event_header header;
7239 u32 next_prev_pid;
7240 u32 next_prev_tid;
7241 } event_id;
7242};
7243
7244static int perf_event_switch_match(struct perf_event *event)
7245{
7246 return event->attr.context_switch;
7247}
7248
7249static void perf_event_switch_output(struct perf_event *event, void *data)
7250{
7251 struct perf_switch_event *se = data;
7252 struct perf_output_handle handle;
7253 struct perf_sample_data sample;
7254 int ret;
7255
7256 if (!perf_event_switch_match(event))
7257 return;
7258
7259 /* Only CPU-wide events are allowed to see next/prev pid/tid */
7260 if (event->ctx->task) {
7261 se->event_id.header.type = PERF_RECORD_SWITCH;
7262 se->event_id.header.size = sizeof(se->event_id.header);
7263 } else {
7264 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
7265 se->event_id.header.size = sizeof(se->event_id);
7266 se->event_id.next_prev_pid =
7267 perf_event_pid(event, se->next_prev);
7268 se->event_id.next_prev_tid =
7269 perf_event_tid(event, se->next_prev);
7270 }
7271
7272 perf_event_header__init_id(&se->event_id.header, &sample, event);
7273
7274 ret = perf_output_begin(&handle, event, se->event_id.header.size);
7275 if (ret)
7276 return;
7277
7278 if (event->ctx->task)
7279 perf_output_put(&handle, se->event_id.header);
7280 else
7281 perf_output_put(&handle, se->event_id);
7282
7283 perf_event__output_id_sample(event, &handle, &sample);
7284
7285 perf_output_end(&handle);
7286}
7287
7288static void perf_event_switch(struct task_struct *task,
7289 struct task_struct *next_prev, bool sched_in)
7290{
7291 struct perf_switch_event switch_event;
7292
7293 /* N.B. caller checks nr_switch_events != 0 */
7294
7295 switch_event = (struct perf_switch_event){
7296 .task = task,
7297 .next_prev = next_prev,
7298 .event_id = {
7299 .header = {
7300 /* .type */
7301 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
7302 /* .size */
7303 },
7304 /* .next_prev_pid */
7305 /* .next_prev_tid */
7306 },
7307 };
7308
aab5b71e 7309 perf_iterate_sb(perf_event_switch_output,
45ac1403
AH
7310 &switch_event,
7311 NULL);
7312}
7313
a78ac325
PZ
7314/*
7315 * IRQ throttle logging
7316 */
7317
cdd6c482 7318static void perf_log_throttle(struct perf_event *event, int enable)
a78ac325
PZ
7319{
7320 struct perf_output_handle handle;
c980d109 7321 struct perf_sample_data sample;
a78ac325
PZ
7322 int ret;
7323
7324 struct {
7325 struct perf_event_header header;
7326 u64 time;
cca3f454 7327 u64 id;
7f453c24 7328 u64 stream_id;
a78ac325
PZ
7329 } throttle_event = {
7330 .header = {
cdd6c482 7331 .type = PERF_RECORD_THROTTLE,
a78ac325
PZ
7332 .misc = 0,
7333 .size = sizeof(throttle_event),
7334 },
34f43927 7335 .time = perf_event_clock(event),
cdd6c482
IM
7336 .id = primary_event_id(event),
7337 .stream_id = event->id,
a78ac325
PZ
7338 };
7339
966ee4d6 7340 if (enable)
cdd6c482 7341 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
966ee4d6 7342
c980d109
ACM
7343 perf_event_header__init_id(&throttle_event.header, &sample, event);
7344
7345 ret = perf_output_begin(&handle, event,
a7ac67ea 7346 throttle_event.header.size);
a78ac325
PZ
7347 if (ret)
7348 return;
7349
7350 perf_output_put(&handle, throttle_event);
c980d109 7351 perf_event__output_id_sample(event, &handle, &sample);
a78ac325
PZ
7352 perf_output_end(&handle);
7353}
7354
8d4e6c4c
AS
7355void perf_event_itrace_started(struct perf_event *event)
7356{
7357 event->attach_state |= PERF_ATTACH_ITRACE;
7358}
7359
ec0d7729
AS
7360static void perf_log_itrace_start(struct perf_event *event)
7361{
7362 struct perf_output_handle handle;
7363 struct perf_sample_data sample;
7364 struct perf_aux_event {
7365 struct perf_event_header header;
7366 u32 pid;
7367 u32 tid;
7368 } rec;
7369 int ret;
7370
7371 if (event->parent)
7372 event = event->parent;
7373
7374 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
8d4e6c4c 7375 event->attach_state & PERF_ATTACH_ITRACE)
ec0d7729
AS
7376 return;
7377
ec0d7729
AS
7378 rec.header.type = PERF_RECORD_ITRACE_START;
7379 rec.header.misc = 0;
7380 rec.header.size = sizeof(rec);
7381 rec.pid = perf_event_pid(event, current);
7382 rec.tid = perf_event_tid(event, current);
7383
7384 perf_event_header__init_id(&rec.header, &sample, event);
7385 ret = perf_output_begin(&handle, event, rec.header.size);
7386
7387 if (ret)
7388 return;
7389
7390 perf_output_put(&handle, rec);
7391 perf_event__output_id_sample(event, &handle, &sample);
7392
7393 perf_output_end(&handle);
7394}
7395
475113d9
JO
7396static int
7397__perf_event_account_interrupt(struct perf_event *event, int throttle)
f6c7d5fe 7398{
cdd6c482 7399 struct hw_perf_event *hwc = &event->hw;
79f14641 7400 int ret = 0;
475113d9 7401 u64 seq;
96398826 7402
e050e3f0
SE
7403 seq = __this_cpu_read(perf_throttled_seq);
7404 if (seq != hwc->interrupts_seq) {
7405 hwc->interrupts_seq = seq;
7406 hwc->interrupts = 1;
7407 } else {
7408 hwc->interrupts++;
7409 if (unlikely(throttle
7410 && hwc->interrupts >= max_samples_per_tick)) {
7411 __this_cpu_inc(perf_throttled_count);
555e0c1e 7412 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
163ec435
PZ
7413 hwc->interrupts = MAX_INTERRUPTS;
7414 perf_log_throttle(event, 0);
a78ac325
PZ
7415 ret = 1;
7416 }
e050e3f0 7417 }
60db5e09 7418
cdd6c482 7419 if (event->attr.freq) {
def0a9b2 7420 u64 now = perf_clock();
abd50713 7421 s64 delta = now - hwc->freq_time_stamp;
bd2b5b12 7422
abd50713 7423 hwc->freq_time_stamp = now;
bd2b5b12 7424
abd50713 7425 if (delta > 0 && delta < 2*TICK_NSEC)
f39d47ff 7426 perf_adjust_period(event, delta, hwc->last_period, true);
bd2b5b12
PZ
7427 }
7428
475113d9
JO
7429 return ret;
7430}
7431
7432int perf_event_account_interrupt(struct perf_event *event)
7433{
7434 return __perf_event_account_interrupt(event, 1);
7435}
7436
7437/*
7438 * Generic event overflow handling, sampling.
7439 */
7440
7441static int __perf_event_overflow(struct perf_event *event,
7442 int throttle, struct perf_sample_data *data,
7443 struct pt_regs *regs)
7444{
7445 int events = atomic_read(&event->event_limit);
7446 int ret = 0;
7447
7448 /*
7449 * Non-sampling counters might still use the PMI to fold short
7450 * hardware counters, ignore those.
7451 */
7452 if (unlikely(!is_sampling_event(event)))
7453 return 0;
7454
7455 ret = __perf_event_account_interrupt(event, throttle);
cc1582c2 7456
2023b359
PZ
7457 /*
7458 * XXX event_limit might not quite work as expected on inherited
cdd6c482 7459 * events
2023b359
PZ
7460 */
7461
cdd6c482
IM
7462 event->pending_kill = POLL_IN;
7463 if (events && atomic_dec_and_test(&event->event_limit)) {
79f14641 7464 ret = 1;
cdd6c482 7465 event->pending_kill = POLL_HUP;
5aab90ce
JO
7466
7467 perf_event_disable_inatomic(event);
79f14641
PZ
7468 }
7469
aa6a5f3c 7470 READ_ONCE(event->overflow_handler)(event, data, regs);
453f19ee 7471
fed66e2c 7472 if (*perf_event_fasync(event) && event->pending_kill) {
a8b0ca17
PZ
7473 event->pending_wakeup = 1;
7474 irq_work_queue(&event->pending);
f506b3dc
PZ
7475 }
7476
79f14641 7477 return ret;
f6c7d5fe
PZ
7478}
7479
a8b0ca17 7480int perf_event_overflow(struct perf_event *event,
5622f295
MM
7481 struct perf_sample_data *data,
7482 struct pt_regs *regs)
850bc73f 7483{
a8b0ca17 7484 return __perf_event_overflow(event, 1, data, regs);
850bc73f
PZ
7485}
7486
15dbf27c 7487/*
cdd6c482 7488 * Generic software event infrastructure
15dbf27c
PZ
7489 */
7490
b28ab83c
PZ
7491struct swevent_htable {
7492 struct swevent_hlist *swevent_hlist;
7493 struct mutex hlist_mutex;
7494 int hlist_refcount;
7495
7496 /* Recursion avoidance in each contexts */
7497 int recursion[PERF_NR_CONTEXTS];
7498};
7499
7500static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
7501
7b4b6658 7502/*
cdd6c482
IM
7503 * We directly increment event->count and keep a second value in
7504 * event->hw.period_left to count intervals. This period event
7b4b6658
PZ
7505 * is kept in the range [-sample_period, 0] so that we can use the
7506 * sign as trigger.
7507 */
7508
ab573844 7509u64 perf_swevent_set_period(struct perf_event *event)
15dbf27c 7510{
cdd6c482 7511 struct hw_perf_event *hwc = &event->hw;
7b4b6658
PZ
7512 u64 period = hwc->last_period;
7513 u64 nr, offset;
7514 s64 old, val;
7515
7516 hwc->last_period = hwc->sample_period;
15dbf27c
PZ
7517
7518again:
e7850595 7519 old = val = local64_read(&hwc->period_left);
7b4b6658
PZ
7520 if (val < 0)
7521 return 0;
15dbf27c 7522
7b4b6658
PZ
7523 nr = div64_u64(period + val, period);
7524 offset = nr * period;
7525 val -= offset;
e7850595 7526 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7b4b6658 7527 goto again;
15dbf27c 7528
7b4b6658 7529 return nr;
15dbf27c
PZ
7530}
7531
0cff784a 7532static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
a8b0ca17 7533 struct perf_sample_data *data,
5622f295 7534 struct pt_regs *regs)
15dbf27c 7535{
cdd6c482 7536 struct hw_perf_event *hwc = &event->hw;
850bc73f 7537 int throttle = 0;
15dbf27c 7538
0cff784a
PZ
7539 if (!overflow)
7540 overflow = perf_swevent_set_period(event);
15dbf27c 7541
7b4b6658
PZ
7542 if (hwc->interrupts == MAX_INTERRUPTS)
7543 return;
15dbf27c 7544
7b4b6658 7545 for (; overflow; overflow--) {
a8b0ca17 7546 if (__perf_event_overflow(event, throttle,
5622f295 7547 data, regs)) {
7b4b6658
PZ
7548 /*
7549 * We inhibit the overflow from happening when
7550 * hwc->interrupts == MAX_INTERRUPTS.
7551 */
7552 break;
7553 }
cf450a73 7554 throttle = 1;
7b4b6658 7555 }
15dbf27c
PZ
7556}
7557
a4eaf7f1 7558static void perf_swevent_event(struct perf_event *event, u64 nr,
a8b0ca17 7559 struct perf_sample_data *data,
5622f295 7560 struct pt_regs *regs)
7b4b6658 7561{
cdd6c482 7562 struct hw_perf_event *hwc = &event->hw;
d6d020e9 7563
e7850595 7564 local64_add(nr, &event->count);
d6d020e9 7565
0cff784a
PZ
7566 if (!regs)
7567 return;
7568
6c7e550f 7569 if (!is_sampling_event(event))
7b4b6658 7570 return;
d6d020e9 7571
5d81e5cf
AV
7572 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
7573 data->period = nr;
7574 return perf_swevent_overflow(event, 1, data, regs);
7575 } else
7576 data->period = event->hw.last_period;
7577
0cff784a 7578 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
a8b0ca17 7579 return perf_swevent_overflow(event, 1, data, regs);
0cff784a 7580
e7850595 7581 if (local64_add_negative(nr, &hwc->period_left))
7b4b6658 7582 return;
df1a132b 7583
a8b0ca17 7584 perf_swevent_overflow(event, 0, data, regs);
d6d020e9
PZ
7585}
7586
f5ffe02e
FW
7587static int perf_exclude_event(struct perf_event *event,
7588 struct pt_regs *regs)
7589{
a4eaf7f1 7590 if (event->hw.state & PERF_HES_STOPPED)
91b2f482 7591 return 1;
a4eaf7f1 7592
f5ffe02e
FW
7593 if (regs) {
7594 if (event->attr.exclude_user && user_mode(regs))
7595 return 1;
7596
7597 if (event->attr.exclude_kernel && !user_mode(regs))
7598 return 1;
7599 }
7600
7601 return 0;
7602}
7603
cdd6c482 7604static int perf_swevent_match(struct perf_event *event,
1c432d89 7605 enum perf_type_id type,
6fb2915d
LZ
7606 u32 event_id,
7607 struct perf_sample_data *data,
7608 struct pt_regs *regs)
15dbf27c 7609{
cdd6c482 7610 if (event->attr.type != type)
a21ca2ca 7611 return 0;
f5ffe02e 7612
cdd6c482 7613 if (event->attr.config != event_id)
15dbf27c
PZ
7614 return 0;
7615
f5ffe02e
FW
7616 if (perf_exclude_event(event, regs))
7617 return 0;
15dbf27c
PZ
7618
7619 return 1;
7620}
7621
76e1d904
FW
7622static inline u64 swevent_hash(u64 type, u32 event_id)
7623{
7624 u64 val = event_id | (type << 32);
7625
7626 return hash_64(val, SWEVENT_HLIST_BITS);
7627}
7628
49f135ed
FW
7629static inline struct hlist_head *
7630__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
76e1d904 7631{
49f135ed
FW
7632 u64 hash = swevent_hash(type, event_id);
7633
7634 return &hlist->heads[hash];
7635}
76e1d904 7636
49f135ed
FW
7637/* For the read side: events when they trigger */
7638static inline struct hlist_head *
b28ab83c 7639find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
49f135ed
FW
7640{
7641 struct swevent_hlist *hlist;
76e1d904 7642
b28ab83c 7643 hlist = rcu_dereference(swhash->swevent_hlist);
76e1d904
FW
7644 if (!hlist)
7645 return NULL;
7646
49f135ed
FW
7647 return __find_swevent_head(hlist, type, event_id);
7648}
7649
7650/* For the event head insertion and removal in the hlist */
7651static inline struct hlist_head *
b28ab83c 7652find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
49f135ed
FW
7653{
7654 struct swevent_hlist *hlist;
7655 u32 event_id = event->attr.config;
7656 u64 type = event->attr.type;
7657
7658 /*
7659 * Event scheduling is always serialized against hlist allocation
7660 * and release. Which makes the protected version suitable here.
7661 * The context lock guarantees that.
7662 */
b28ab83c 7663 hlist = rcu_dereference_protected(swhash->swevent_hlist,
49f135ed
FW
7664 lockdep_is_held(&event->ctx->lock));
7665 if (!hlist)
7666 return NULL;
7667
7668 return __find_swevent_head(hlist, type, event_id);
76e1d904
FW
7669}
7670
7671static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
a8b0ca17 7672 u64 nr,
76e1d904
FW
7673 struct perf_sample_data *data,
7674 struct pt_regs *regs)
15dbf27c 7675{
4a32fea9 7676 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 7677 struct perf_event *event;
76e1d904 7678 struct hlist_head *head;
15dbf27c 7679
76e1d904 7680 rcu_read_lock();
b28ab83c 7681 head = find_swevent_head_rcu(swhash, type, event_id);
76e1d904
FW
7682 if (!head)
7683 goto end;
7684
b67bfe0d 7685 hlist_for_each_entry_rcu(event, head, hlist_entry) {
6fb2915d 7686 if (perf_swevent_match(event, type, event_id, data, regs))
a8b0ca17 7687 perf_swevent_event(event, nr, data, regs);
15dbf27c 7688 }
76e1d904
FW
7689end:
7690 rcu_read_unlock();
15dbf27c
PZ
7691}
7692
86038c5e
PZI
7693DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
7694
4ed7c92d 7695int perf_swevent_get_recursion_context(void)
96f6d444 7696{
4a32fea9 7697 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
96f6d444 7698
b28ab83c 7699 return get_recursion_context(swhash->recursion);
96f6d444 7700}
645e8cc0 7701EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
96f6d444 7702
98b5c2c6 7703void perf_swevent_put_recursion_context(int rctx)
15dbf27c 7704{
4a32fea9 7705 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
927c7a9e 7706
b28ab83c 7707 put_recursion_context(swhash->recursion, rctx);
ce71b9df 7708}
15dbf27c 7709
86038c5e 7710void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
b8e83514 7711{
a4234bfc 7712 struct perf_sample_data data;
4ed7c92d 7713
86038c5e 7714 if (WARN_ON_ONCE(!regs))
4ed7c92d 7715 return;
a4234bfc 7716
fd0d000b 7717 perf_sample_data_init(&data, addr, 0);
a8b0ca17 7718 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
86038c5e
PZI
7719}
7720
7721void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7722{
7723 int rctx;
7724
7725 preempt_disable_notrace();
7726 rctx = perf_swevent_get_recursion_context();
7727 if (unlikely(rctx < 0))
7728 goto fail;
7729
7730 ___perf_sw_event(event_id, nr, regs, addr);
4ed7c92d
PZ
7731
7732 perf_swevent_put_recursion_context(rctx);
86038c5e 7733fail:
1c024eca 7734 preempt_enable_notrace();
b8e83514
PZ
7735}
7736
cdd6c482 7737static void perf_swevent_read(struct perf_event *event)
15dbf27c 7738{
15dbf27c
PZ
7739}
7740
a4eaf7f1 7741static int perf_swevent_add(struct perf_event *event, int flags)
15dbf27c 7742{
4a32fea9 7743 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 7744 struct hw_perf_event *hwc = &event->hw;
76e1d904
FW
7745 struct hlist_head *head;
7746
6c7e550f 7747 if (is_sampling_event(event)) {
7b4b6658 7748 hwc->last_period = hwc->sample_period;
cdd6c482 7749 perf_swevent_set_period(event);
7b4b6658 7750 }
76e1d904 7751
a4eaf7f1
PZ
7752 hwc->state = !(flags & PERF_EF_START);
7753
b28ab83c 7754 head = find_swevent_head(swhash, event);
12ca6ad2 7755 if (WARN_ON_ONCE(!head))
76e1d904
FW
7756 return -EINVAL;
7757
7758 hlist_add_head_rcu(&event->hlist_entry, head);
6a694a60 7759 perf_event_update_userpage(event);
76e1d904 7760
15dbf27c
PZ
7761 return 0;
7762}
7763
a4eaf7f1 7764static void perf_swevent_del(struct perf_event *event, int flags)
15dbf27c 7765{
76e1d904 7766 hlist_del_rcu(&event->hlist_entry);
15dbf27c
PZ
7767}
7768
a4eaf7f1 7769static void perf_swevent_start(struct perf_event *event, int flags)
5c92d124 7770{
a4eaf7f1 7771 event->hw.state = 0;
d6d020e9 7772}
aa9c4c0f 7773
a4eaf7f1 7774static void perf_swevent_stop(struct perf_event *event, int flags)
d6d020e9 7775{
a4eaf7f1 7776 event->hw.state = PERF_HES_STOPPED;
bae43c99
IM
7777}
7778
49f135ed
FW
7779/* Deref the hlist from the update side */
7780static inline struct swevent_hlist *
b28ab83c 7781swevent_hlist_deref(struct swevent_htable *swhash)
49f135ed 7782{
b28ab83c
PZ
7783 return rcu_dereference_protected(swhash->swevent_hlist,
7784 lockdep_is_held(&swhash->hlist_mutex));
49f135ed
FW
7785}
7786
b28ab83c 7787static void swevent_hlist_release(struct swevent_htable *swhash)
76e1d904 7788{
b28ab83c 7789 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
76e1d904 7790
49f135ed 7791 if (!hlist)
76e1d904
FW
7792 return;
7793
70691d4a 7794 RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
fa4bbc4c 7795 kfree_rcu(hlist, rcu_head);
76e1d904
FW
7796}
7797
3b364d7b 7798static void swevent_hlist_put_cpu(int cpu)
76e1d904 7799{
b28ab83c 7800 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904 7801
b28ab83c 7802 mutex_lock(&swhash->hlist_mutex);
76e1d904 7803
b28ab83c
PZ
7804 if (!--swhash->hlist_refcount)
7805 swevent_hlist_release(swhash);
76e1d904 7806
b28ab83c 7807 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
7808}
7809
3b364d7b 7810static void swevent_hlist_put(void)
76e1d904
FW
7811{
7812 int cpu;
7813
76e1d904 7814 for_each_possible_cpu(cpu)
3b364d7b 7815 swevent_hlist_put_cpu(cpu);
76e1d904
FW
7816}
7817
3b364d7b 7818static int swevent_hlist_get_cpu(int cpu)
76e1d904 7819{
b28ab83c 7820 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904
FW
7821 int err = 0;
7822
b28ab83c 7823 mutex_lock(&swhash->hlist_mutex);
a63fbed7
TG
7824 if (!swevent_hlist_deref(swhash) &&
7825 cpumask_test_cpu(cpu, perf_online_mask)) {
76e1d904
FW
7826 struct swevent_hlist *hlist;
7827
7828 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
7829 if (!hlist) {
7830 err = -ENOMEM;
7831 goto exit;
7832 }
b28ab83c 7833 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 7834 }
b28ab83c 7835 swhash->hlist_refcount++;
9ed6060d 7836exit:
b28ab83c 7837 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
7838
7839 return err;
7840}
7841
3b364d7b 7842static int swevent_hlist_get(void)
76e1d904 7843{
3b364d7b 7844 int err, cpu, failed_cpu;
76e1d904 7845
a63fbed7 7846 mutex_lock(&pmus_lock);
76e1d904 7847 for_each_possible_cpu(cpu) {
3b364d7b 7848 err = swevent_hlist_get_cpu(cpu);
76e1d904
FW
7849 if (err) {
7850 failed_cpu = cpu;
7851 goto fail;
7852 }
7853 }
a63fbed7 7854 mutex_unlock(&pmus_lock);
76e1d904 7855 return 0;
9ed6060d 7856fail:
76e1d904
FW
7857 for_each_possible_cpu(cpu) {
7858 if (cpu == failed_cpu)
7859 break;
3b364d7b 7860 swevent_hlist_put_cpu(cpu);
76e1d904 7861 }
a63fbed7 7862 mutex_unlock(&pmus_lock);
76e1d904
FW
7863 return err;
7864}
7865
c5905afb 7866struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
95476b64 7867
b0a873eb
PZ
7868static void sw_perf_event_destroy(struct perf_event *event)
7869{
7870 u64 event_id = event->attr.config;
95476b64 7871
b0a873eb
PZ
7872 WARN_ON(event->parent);
7873
c5905afb 7874 static_key_slow_dec(&perf_swevent_enabled[event_id]);
3b364d7b 7875 swevent_hlist_put();
b0a873eb
PZ
7876}
7877
7878static int perf_swevent_init(struct perf_event *event)
7879{
8176cced 7880 u64 event_id = event->attr.config;
b0a873eb
PZ
7881
7882 if (event->attr.type != PERF_TYPE_SOFTWARE)
7883 return -ENOENT;
7884
2481c5fa
SE
7885 /*
7886 * no branch sampling for software events
7887 */
7888 if (has_branch_stack(event))
7889 return -EOPNOTSUPP;
7890
b0a873eb
PZ
7891 switch (event_id) {
7892 case PERF_COUNT_SW_CPU_CLOCK:
7893 case PERF_COUNT_SW_TASK_CLOCK:
7894 return -ENOENT;
7895
7896 default:
7897 break;
7898 }
7899
ce677831 7900 if (event_id >= PERF_COUNT_SW_MAX)
b0a873eb
PZ
7901 return -ENOENT;
7902
7903 if (!event->parent) {
7904 int err;
7905
3b364d7b 7906 err = swevent_hlist_get();
b0a873eb
PZ
7907 if (err)
7908 return err;
7909
c5905afb 7910 static_key_slow_inc(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
7911 event->destroy = sw_perf_event_destroy;
7912 }
7913
7914 return 0;
7915}
7916
7917static struct pmu perf_swevent = {
89a1e187 7918 .task_ctx_nr = perf_sw_context,
95476b64 7919
34f43927
PZ
7920 .capabilities = PERF_PMU_CAP_NO_NMI,
7921
b0a873eb 7922 .event_init = perf_swevent_init,
a4eaf7f1
PZ
7923 .add = perf_swevent_add,
7924 .del = perf_swevent_del,
7925 .start = perf_swevent_start,
7926 .stop = perf_swevent_stop,
1c024eca 7927 .read = perf_swevent_read,
1c024eca
PZ
7928};
7929
b0a873eb
PZ
7930#ifdef CONFIG_EVENT_TRACING
7931
1c024eca
PZ
7932static int perf_tp_filter_match(struct perf_event *event,
7933 struct perf_sample_data *data)
7934{
7e3f977e 7935 void *record = data->raw->frag.data;
1c024eca 7936
b71b437e
PZ
7937 /* only top level events have filters set */
7938 if (event->parent)
7939 event = event->parent;
7940
1c024eca
PZ
7941 if (likely(!event->filter) || filter_match_preds(event->filter, record))
7942 return 1;
7943 return 0;
7944}
7945
7946static int perf_tp_event_match(struct perf_event *event,
7947 struct perf_sample_data *data,
7948 struct pt_regs *regs)
7949{
a0f7d0f7
FW
7950 if (event->hw.state & PERF_HES_STOPPED)
7951 return 0;
580d607c
PZ
7952 /*
7953 * All tracepoints are from kernel-space.
7954 */
7955 if (event->attr.exclude_kernel)
1c024eca
PZ
7956 return 0;
7957
7958 if (!perf_tp_filter_match(event, data))
7959 return 0;
7960
7961 return 1;
7962}
7963
85b67bcb
AS
7964void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
7965 struct trace_event_call *call, u64 count,
7966 struct pt_regs *regs, struct hlist_head *head,
7967 struct task_struct *task)
7968{
7969 struct bpf_prog *prog = call->prog;
7970
7971 if (prog) {
7972 *(struct pt_regs **)raw_data = regs;
7973 if (!trace_call_bpf(prog, raw_data) || hlist_empty(head)) {
7974 perf_swevent_put_recursion_context(rctx);
7975 return;
7976 }
7977 }
7978 perf_tp_event(call->event.type, count, raw_data, size, regs, head,
75e83876 7979 rctx, task, NULL);
85b67bcb
AS
7980}
7981EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
7982
1e1dcd93 7983void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
e6dab5ff 7984 struct pt_regs *regs, struct hlist_head *head, int rctx,
75e83876 7985 struct task_struct *task, struct perf_event *event)
95476b64
FW
7986{
7987 struct perf_sample_data data;
1c024eca 7988
95476b64 7989 struct perf_raw_record raw = {
7e3f977e
DB
7990 .frag = {
7991 .size = entry_size,
7992 .data = record,
7993 },
95476b64
FW
7994 };
7995
1e1dcd93 7996 perf_sample_data_init(&data, 0, 0);
95476b64
FW
7997 data.raw = &raw;
7998
1e1dcd93
AS
7999 perf_trace_buf_update(record, event_type);
8000
75e83876
ZC
8001 /* Use the given event instead of the hlist */
8002 if (event) {
1c024eca 8003 if (perf_tp_event_match(event, &data, regs))
a8b0ca17 8004 perf_swevent_event(event, count, &data, regs);
75e83876
ZC
8005 } else {
8006 hlist_for_each_entry_rcu(event, head, hlist_entry) {
8007 if (perf_tp_event_match(event, &data, regs))
8008 perf_swevent_event(event, count, &data, regs);
8009 }
4f41c013 8010 }
ecc55f84 8011
e6dab5ff
AV
8012 /*
8013 * If we got specified a target task, also iterate its context and
8014 * deliver this event there too.
8015 */
8016 if (task && task != current) {
8017 struct perf_event_context *ctx;
8018 struct trace_entry *entry = record;
8019
8020 rcu_read_lock();
8021 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
8022 if (!ctx)
8023 goto unlock;
8024
8025 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
8026 if (event->attr.type != PERF_TYPE_TRACEPOINT)
8027 continue;
8028 if (event->attr.config != entry->type)
8029 continue;
8030 if (perf_tp_event_match(event, &data, regs))
8031 perf_swevent_event(event, count, &data, regs);
8032 }
8033unlock:
8034 rcu_read_unlock();
8035 }
8036
ecc55f84 8037 perf_swevent_put_recursion_context(rctx);
95476b64
FW
8038}
8039EXPORT_SYMBOL_GPL(perf_tp_event);
8040
cdd6c482 8041static void tp_perf_event_destroy(struct perf_event *event)
e077df4f 8042{
1c024eca 8043 perf_trace_destroy(event);
e077df4f
PZ
8044}
8045
b0a873eb 8046static int perf_tp_event_init(struct perf_event *event)
e077df4f 8047{
76e1d904
FW
8048 int err;
8049
b0a873eb
PZ
8050 if (event->attr.type != PERF_TYPE_TRACEPOINT)
8051 return -ENOENT;
8052
2481c5fa
SE
8053 /*
8054 * no branch sampling for tracepoint events
8055 */
8056 if (has_branch_stack(event))
8057 return -EOPNOTSUPP;
8058
1c024eca
PZ
8059 err = perf_trace_init(event);
8060 if (err)
b0a873eb 8061 return err;
e077df4f 8062
cdd6c482 8063 event->destroy = tp_perf_event_destroy;
e077df4f 8064
b0a873eb
PZ
8065 return 0;
8066}
8067
8068static struct pmu perf_tracepoint = {
89a1e187
PZ
8069 .task_ctx_nr = perf_sw_context,
8070
b0a873eb 8071 .event_init = perf_tp_event_init,
a4eaf7f1
PZ
8072 .add = perf_trace_add,
8073 .del = perf_trace_del,
8074 .start = perf_swevent_start,
8075 .stop = perf_swevent_stop,
b0a873eb 8076 .read = perf_swevent_read,
b0a873eb
PZ
8077};
8078
8079static inline void perf_tp_register(void)
8080{
2e80a82a 8081 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
e077df4f 8082}
6fb2915d 8083
6fb2915d
LZ
8084static void perf_event_free_filter(struct perf_event *event)
8085{
8086 ftrace_profile_free_filter(event);
8087}
8088
aa6a5f3c
AS
8089#ifdef CONFIG_BPF_SYSCALL
8090static void bpf_overflow_handler(struct perf_event *event,
8091 struct perf_sample_data *data,
8092 struct pt_regs *regs)
8093{
8094 struct bpf_perf_event_data_kern ctx = {
8095 .data = data,
8096 .regs = regs,
7d9285e8 8097 .event = event,
aa6a5f3c
AS
8098 };
8099 int ret = 0;
8100
8101 preempt_disable();
8102 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
8103 goto out;
8104 rcu_read_lock();
88575199 8105 ret = BPF_PROG_RUN(event->prog, &ctx);
aa6a5f3c
AS
8106 rcu_read_unlock();
8107out:
8108 __this_cpu_dec(bpf_prog_active);
8109 preempt_enable();
8110 if (!ret)
8111 return;
8112
8113 event->orig_overflow_handler(event, data, regs);
8114}
8115
8116static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8117{
8118 struct bpf_prog *prog;
8119
8120 if (event->overflow_handler_context)
8121 /* hw breakpoint or kernel counter */
8122 return -EINVAL;
8123
8124 if (event->prog)
8125 return -EEXIST;
8126
8127 prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
8128 if (IS_ERR(prog))
8129 return PTR_ERR(prog);
8130
8131 event->prog = prog;
8132 event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
8133 WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
8134 return 0;
8135}
8136
8137static void perf_event_free_bpf_handler(struct perf_event *event)
8138{
8139 struct bpf_prog *prog = event->prog;
8140
8141 if (!prog)
8142 return;
8143
8144 WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
8145 event->prog = NULL;
8146 bpf_prog_put(prog);
8147}
8148#else
8149static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8150{
8151 return -EOPNOTSUPP;
8152}
8153static void perf_event_free_bpf_handler(struct perf_event *event)
8154{
8155}
8156#endif
8157
2541517c
AS
8158static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8159{
cf5f5cea 8160 bool is_kprobe, is_tracepoint, is_syscall_tp;
2541517c
AS
8161 struct bpf_prog *prog;
8162
8163 if (event->attr.type != PERF_TYPE_TRACEPOINT)
f91840a3 8164 return perf_event_set_bpf_handler(event, prog_fd);
2541517c
AS
8165
8166 if (event->tp_event->prog)
8167 return -EEXIST;
8168
98b5c2c6
AS
8169 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
8170 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
cf5f5cea
YS
8171 is_syscall_tp = is_syscall_trace_event(event->tp_event);
8172 if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
98b5c2c6 8173 /* bpf programs can only be attached to u/kprobe or tracepoint */
2541517c
AS
8174 return -EINVAL;
8175
8176 prog = bpf_prog_get(prog_fd);
8177 if (IS_ERR(prog))
8178 return PTR_ERR(prog);
8179
98b5c2c6 8180 if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
cf5f5cea
YS
8181 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
8182 (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
2541517c
AS
8183 /* valid fd, but invalid bpf program type */
8184 bpf_prog_put(prog);
8185 return -EINVAL;
8186 }
8187
cf5f5cea 8188 if (is_tracepoint || is_syscall_tp) {
32bbe007
AS
8189 int off = trace_event_get_offsets(event->tp_event);
8190
8191 if (prog->aux->max_ctx_offset > off) {
8192 bpf_prog_put(prog);
8193 return -EACCES;
8194 }
8195 }
2541517c 8196 event->tp_event->prog = prog;
ec9dd352 8197 event->tp_event->bpf_prog_owner = event;
2541517c
AS
8198
8199 return 0;
8200}
8201
8202static void perf_event_free_bpf_prog(struct perf_event *event)
8203{
8204 struct bpf_prog *prog;
8205
aa6a5f3c
AS
8206 perf_event_free_bpf_handler(event);
8207
2541517c
AS
8208 if (!event->tp_event)
8209 return;
8210
8211 prog = event->tp_event->prog;
ec9dd352 8212 if (prog && event->tp_event->bpf_prog_owner == event) {
2541517c 8213 event->tp_event->prog = NULL;
1aacde3d 8214 bpf_prog_put(prog);
2541517c
AS
8215 }
8216}
8217
e077df4f 8218#else
6fb2915d 8219
b0a873eb 8220static inline void perf_tp_register(void)
e077df4f 8221{
e077df4f 8222}
6fb2915d 8223
6fb2915d
LZ
8224static void perf_event_free_filter(struct perf_event *event)
8225{
8226}
8227
2541517c
AS
8228static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8229{
8230 return -ENOENT;
8231}
8232
8233static void perf_event_free_bpf_prog(struct perf_event *event)
8234{
8235}
07b139c8 8236#endif /* CONFIG_EVENT_TRACING */
e077df4f 8237
24f1e32c 8238#ifdef CONFIG_HAVE_HW_BREAKPOINT
f5ffe02e 8239void perf_bp_event(struct perf_event *bp, void *data)
24f1e32c 8240{
f5ffe02e
FW
8241 struct perf_sample_data sample;
8242 struct pt_regs *regs = data;
8243
fd0d000b 8244 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
f5ffe02e 8245
a4eaf7f1 8246 if (!bp->hw.state && !perf_exclude_event(bp, regs))
a8b0ca17 8247 perf_swevent_event(bp, 1, &sample, regs);
24f1e32c
FW
8248}
8249#endif
8250
375637bc
AS
8251/*
8252 * Allocate a new address filter
8253 */
8254static struct perf_addr_filter *
8255perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
8256{
8257 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
8258 struct perf_addr_filter *filter;
8259
8260 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
8261 if (!filter)
8262 return NULL;
8263
8264 INIT_LIST_HEAD(&filter->entry);
8265 list_add_tail(&filter->entry, filters);
8266
8267 return filter;
8268}
8269
8270static void free_filters_list(struct list_head *filters)
8271{
8272 struct perf_addr_filter *filter, *iter;
8273
8274 list_for_each_entry_safe(filter, iter, filters, entry) {
8275 if (filter->inode)
8276 iput(filter->inode);
8277 list_del(&filter->entry);
8278 kfree(filter);
8279 }
8280}
8281
8282/*
8283 * Free existing address filters and optionally install new ones
8284 */
8285static void perf_addr_filters_splice(struct perf_event *event,
8286 struct list_head *head)
8287{
8288 unsigned long flags;
8289 LIST_HEAD(list);
8290
8291 if (!has_addr_filter(event))
8292 return;
8293
8294 /* don't bother with children, they don't have their own filters */
8295 if (event->parent)
8296 return;
8297
8298 raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
8299
8300 list_splice_init(&event->addr_filters.list, &list);
8301 if (head)
8302 list_splice(head, &event->addr_filters.list);
8303
8304 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
8305
8306 free_filters_list(&list);
8307}
8308
8309/*
8310 * Scan through mm's vmas and see if one of them matches the
8311 * @filter; if so, adjust filter's address range.
8312 * Called with mm::mmap_sem down for reading.
8313 */
8314static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter,
8315 struct mm_struct *mm)
8316{
8317 struct vm_area_struct *vma;
8318
8319 for (vma = mm->mmap; vma; vma = vma->vm_next) {
8320 struct file *file = vma->vm_file;
8321 unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8322 unsigned long vma_size = vma->vm_end - vma->vm_start;
8323
8324 if (!file)
8325 continue;
8326
8327 if (!perf_addr_filter_match(filter, file, off, vma_size))
8328 continue;
8329
8330 return vma->vm_start;
8331 }
8332
8333 return 0;
8334}
8335
8336/*
8337 * Update event's address range filters based on the
8338 * task's existing mappings, if any.
8339 */
8340static void perf_event_addr_filters_apply(struct perf_event *event)
8341{
8342 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8343 struct task_struct *task = READ_ONCE(event->ctx->task);
8344 struct perf_addr_filter *filter;
8345 struct mm_struct *mm = NULL;
8346 unsigned int count = 0;
8347 unsigned long flags;
8348
8349 /*
8350 * We may observe TASK_TOMBSTONE, which means that the event tear-down
8351 * will stop on the parent's child_mutex that our caller is also holding
8352 */
8353 if (task == TASK_TOMBSTONE)
8354 return;
8355
6ce77bfd
AS
8356 if (!ifh->nr_file_filters)
8357 return;
8358
375637bc
AS
8359 mm = get_task_mm(event->ctx->task);
8360 if (!mm)
8361 goto restart;
8362
8363 down_read(&mm->mmap_sem);
8364
8365 raw_spin_lock_irqsave(&ifh->lock, flags);
8366 list_for_each_entry(filter, &ifh->list, entry) {
8367 event->addr_filters_offs[count] = 0;
8368
99f5bc9b
MP
8369 /*
8370 * Adjust base offset if the filter is associated to a binary
8371 * that needs to be mapped:
8372 */
8373 if (filter->inode)
375637bc
AS
8374 event->addr_filters_offs[count] =
8375 perf_addr_filter_apply(filter, mm);
8376
8377 count++;
8378 }
8379
8380 event->addr_filters_gen++;
8381 raw_spin_unlock_irqrestore(&ifh->lock, flags);
8382
8383 up_read(&mm->mmap_sem);
8384
8385 mmput(mm);
8386
8387restart:
767ae086 8388 perf_event_stop(event, 1);
375637bc
AS
8389}
8390
8391/*
8392 * Address range filtering: limiting the data to certain
8393 * instruction address ranges. Filters are ioctl()ed to us from
8394 * userspace as ascii strings.
8395 *
8396 * Filter string format:
8397 *
8398 * ACTION RANGE_SPEC
8399 * where ACTION is one of the
8400 * * "filter": limit the trace to this region
8401 * * "start": start tracing from this address
8402 * * "stop": stop tracing at this address/region;
8403 * RANGE_SPEC is
8404 * * for kernel addresses: <start address>[/<size>]
8405 * * for object files: <start address>[/<size>]@</path/to/object/file>
8406 *
8407 * if <size> is not specified, the range is treated as a single address.
8408 */
8409enum {
e96271f3 8410 IF_ACT_NONE = -1,
375637bc
AS
8411 IF_ACT_FILTER,
8412 IF_ACT_START,
8413 IF_ACT_STOP,
8414 IF_SRC_FILE,
8415 IF_SRC_KERNEL,
8416 IF_SRC_FILEADDR,
8417 IF_SRC_KERNELADDR,
8418};
8419
8420enum {
8421 IF_STATE_ACTION = 0,
8422 IF_STATE_SOURCE,
8423 IF_STATE_END,
8424};
8425
8426static const match_table_t if_tokens = {
8427 { IF_ACT_FILTER, "filter" },
8428 { IF_ACT_START, "start" },
8429 { IF_ACT_STOP, "stop" },
8430 { IF_SRC_FILE, "%u/%u@%s" },
8431 { IF_SRC_KERNEL, "%u/%u" },
8432 { IF_SRC_FILEADDR, "%u@%s" },
8433 { IF_SRC_KERNELADDR, "%u" },
e96271f3 8434 { IF_ACT_NONE, NULL },
375637bc
AS
8435};
8436
8437/*
8438 * Address filter string parser
8439 */
8440static int
8441perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
8442 struct list_head *filters)
8443{
8444 struct perf_addr_filter *filter = NULL;
8445 char *start, *orig, *filename = NULL;
8446 struct path path;
8447 substring_t args[MAX_OPT_ARGS];
8448 int state = IF_STATE_ACTION, token;
8449 unsigned int kernel = 0;
8450 int ret = -EINVAL;
8451
8452 orig = fstr = kstrdup(fstr, GFP_KERNEL);
8453 if (!fstr)
8454 return -ENOMEM;
8455
8456 while ((start = strsep(&fstr, " ,\n")) != NULL) {
8457 ret = -EINVAL;
8458
8459 if (!*start)
8460 continue;
8461
8462 /* filter definition begins */
8463 if (state == IF_STATE_ACTION) {
8464 filter = perf_addr_filter_new(event, filters);
8465 if (!filter)
8466 goto fail;
8467 }
8468
8469 token = match_token(start, if_tokens, args);
8470 switch (token) {
8471 case IF_ACT_FILTER:
8472 case IF_ACT_START:
8473 filter->filter = 1;
8474
8475 case IF_ACT_STOP:
8476 if (state != IF_STATE_ACTION)
8477 goto fail;
8478
8479 state = IF_STATE_SOURCE;
8480 break;
8481
8482 case IF_SRC_KERNELADDR:
8483 case IF_SRC_KERNEL:
8484 kernel = 1;
8485
8486 case IF_SRC_FILEADDR:
8487 case IF_SRC_FILE:
8488 if (state != IF_STATE_SOURCE)
8489 goto fail;
8490
8491 if (token == IF_SRC_FILE || token == IF_SRC_KERNEL)
8492 filter->range = 1;
8493
8494 *args[0].to = 0;
8495 ret = kstrtoul(args[0].from, 0, &filter->offset);
8496 if (ret)
8497 goto fail;
8498
8499 if (filter->range) {
8500 *args[1].to = 0;
8501 ret = kstrtoul(args[1].from, 0, &filter->size);
8502 if (ret)
8503 goto fail;
8504 }
8505
4059ffd0
MP
8506 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
8507 int fpos = filter->range ? 2 : 1;
8508
8509 filename = match_strdup(&args[fpos]);
375637bc
AS
8510 if (!filename) {
8511 ret = -ENOMEM;
8512 goto fail;
8513 }
8514 }
8515
8516 state = IF_STATE_END;
8517 break;
8518
8519 default:
8520 goto fail;
8521 }
8522
8523 /*
8524 * Filter definition is fully parsed, validate and install it.
8525 * Make sure that it doesn't contradict itself or the event's
8526 * attribute.
8527 */
8528 if (state == IF_STATE_END) {
9ccbfbb1 8529 ret = -EINVAL;
375637bc
AS
8530 if (kernel && event->attr.exclude_kernel)
8531 goto fail;
8532
8533 if (!kernel) {
8534 if (!filename)
8535 goto fail;
8536
6ce77bfd
AS
8537 /*
8538 * For now, we only support file-based filters
8539 * in per-task events; doing so for CPU-wide
8540 * events requires additional context switching
8541 * trickery, since same object code will be
8542 * mapped at different virtual addresses in
8543 * different processes.
8544 */
8545 ret = -EOPNOTSUPP;
8546 if (!event->ctx->task)
8547 goto fail_free_name;
8548
375637bc
AS
8549 /* look up the path and grab its inode */
8550 ret = kern_path(filename, LOOKUP_FOLLOW, &path);
8551 if (ret)
8552 goto fail_free_name;
8553
8554 filter->inode = igrab(d_inode(path.dentry));
8555 path_put(&path);
8556 kfree(filename);
8557 filename = NULL;
8558
8559 ret = -EINVAL;
8560 if (!filter->inode ||
8561 !S_ISREG(filter->inode->i_mode))
8562 /* free_filters_list() will iput() */
8563 goto fail;
6ce77bfd
AS
8564
8565 event->addr_filters.nr_file_filters++;
375637bc
AS
8566 }
8567
8568 /* ready to consume more filters */
8569 state = IF_STATE_ACTION;
8570 filter = NULL;
8571 }
8572 }
8573
8574 if (state != IF_STATE_ACTION)
8575 goto fail;
8576
8577 kfree(orig);
8578
8579 return 0;
8580
8581fail_free_name:
8582 kfree(filename);
8583fail:
8584 free_filters_list(filters);
8585 kfree(orig);
8586
8587 return ret;
8588}
8589
8590static int
8591perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
8592{
8593 LIST_HEAD(filters);
8594 int ret;
8595
8596 /*
8597 * Since this is called in perf_ioctl() path, we're already holding
8598 * ctx::mutex.
8599 */
8600 lockdep_assert_held(&event->ctx->mutex);
8601
8602 if (WARN_ON_ONCE(event->parent))
8603 return -EINVAL;
8604
375637bc
AS
8605 ret = perf_event_parse_addr_filter(event, filter_str, &filters);
8606 if (ret)
6ce77bfd 8607 goto fail_clear_files;
375637bc
AS
8608
8609 ret = event->pmu->addr_filters_validate(&filters);
6ce77bfd
AS
8610 if (ret)
8611 goto fail_free_filters;
375637bc
AS
8612
8613 /* remove existing filters, if any */
8614 perf_addr_filters_splice(event, &filters);
8615
8616 /* install new filters */
8617 perf_event_for_each_child(event, perf_event_addr_filters_apply);
8618
6ce77bfd
AS
8619 return ret;
8620
8621fail_free_filters:
8622 free_filters_list(&filters);
8623
8624fail_clear_files:
8625 event->addr_filters.nr_file_filters = 0;
8626
375637bc
AS
8627 return ret;
8628}
8629
c796bbbe
AS
8630static int perf_event_set_filter(struct perf_event *event, void __user *arg)
8631{
8632 char *filter_str;
8633 int ret = -EINVAL;
8634
375637bc
AS
8635 if ((event->attr.type != PERF_TYPE_TRACEPOINT ||
8636 !IS_ENABLED(CONFIG_EVENT_TRACING)) &&
8637 !has_addr_filter(event))
c796bbbe
AS
8638 return -EINVAL;
8639
8640 filter_str = strndup_user(arg, PAGE_SIZE);
8641 if (IS_ERR(filter_str))
8642 return PTR_ERR(filter_str);
8643
8644 if (IS_ENABLED(CONFIG_EVENT_TRACING) &&
8645 event->attr.type == PERF_TYPE_TRACEPOINT)
8646 ret = ftrace_profile_set_filter(event, event->attr.config,
8647 filter_str);
375637bc
AS
8648 else if (has_addr_filter(event))
8649 ret = perf_event_set_addr_filter(event, filter_str);
c796bbbe
AS
8650
8651 kfree(filter_str);
8652 return ret;
8653}
8654
b0a873eb
PZ
8655/*
8656 * hrtimer based swevent callback
8657 */
f29ac756 8658
b0a873eb 8659static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
f29ac756 8660{
b0a873eb
PZ
8661 enum hrtimer_restart ret = HRTIMER_RESTART;
8662 struct perf_sample_data data;
8663 struct pt_regs *regs;
8664 struct perf_event *event;
8665 u64 period;
f29ac756 8666
b0a873eb 8667 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
ba3dd36c
PZ
8668
8669 if (event->state != PERF_EVENT_STATE_ACTIVE)
8670 return HRTIMER_NORESTART;
8671
b0a873eb 8672 event->pmu->read(event);
f344011c 8673
fd0d000b 8674 perf_sample_data_init(&data, 0, event->hw.last_period);
b0a873eb
PZ
8675 regs = get_irq_regs();
8676
8677 if (regs && !perf_exclude_event(event, regs)) {
77aeeebd 8678 if (!(event->attr.exclude_idle && is_idle_task(current)))
33b07b8b 8679 if (__perf_event_overflow(event, 1, &data, regs))
b0a873eb
PZ
8680 ret = HRTIMER_NORESTART;
8681 }
24f1e32c 8682
b0a873eb
PZ
8683 period = max_t(u64, 10000, event->hw.sample_period);
8684 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
24f1e32c 8685
b0a873eb 8686 return ret;
f29ac756
PZ
8687}
8688
b0a873eb 8689static void perf_swevent_start_hrtimer(struct perf_event *event)
5c92d124 8690{
b0a873eb 8691 struct hw_perf_event *hwc = &event->hw;
5d508e82
FBH
8692 s64 period;
8693
8694 if (!is_sampling_event(event))
8695 return;
f5ffe02e 8696
5d508e82
FBH
8697 period = local64_read(&hwc->period_left);
8698 if (period) {
8699 if (period < 0)
8700 period = 10000;
fa407f35 8701
5d508e82
FBH
8702 local64_set(&hwc->period_left, 0);
8703 } else {
8704 period = max_t(u64, 10000, hwc->sample_period);
8705 }
3497d206
TG
8706 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
8707 HRTIMER_MODE_REL_PINNED);
24f1e32c 8708}
b0a873eb
PZ
8709
8710static void perf_swevent_cancel_hrtimer(struct perf_event *event)
24f1e32c 8711{
b0a873eb
PZ
8712 struct hw_perf_event *hwc = &event->hw;
8713
6c7e550f 8714 if (is_sampling_event(event)) {
b0a873eb 8715 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
fa407f35 8716 local64_set(&hwc->period_left, ktime_to_ns(remaining));
b0a873eb
PZ
8717
8718 hrtimer_cancel(&hwc->hrtimer);
8719 }
24f1e32c
FW
8720}
8721
ba3dd36c
PZ
8722static void perf_swevent_init_hrtimer(struct perf_event *event)
8723{
8724 struct hw_perf_event *hwc = &event->hw;
8725
8726 if (!is_sampling_event(event))
8727 return;
8728
8729 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
8730 hwc->hrtimer.function = perf_swevent_hrtimer;
8731
8732 /*
8733 * Since hrtimers have a fixed rate, we can do a static freq->period
8734 * mapping and avoid the whole period adjust feedback stuff.
8735 */
8736 if (event->attr.freq) {
8737 long freq = event->attr.sample_freq;
8738
8739 event->attr.sample_period = NSEC_PER_SEC / freq;
8740 hwc->sample_period = event->attr.sample_period;
8741 local64_set(&hwc->period_left, hwc->sample_period);
778141e3 8742 hwc->last_period = hwc->sample_period;
ba3dd36c
PZ
8743 event->attr.freq = 0;
8744 }
8745}
8746
b0a873eb
PZ
8747/*
8748 * Software event: cpu wall time clock
8749 */
8750
8751static void cpu_clock_event_update(struct perf_event *event)
24f1e32c 8752{
b0a873eb
PZ
8753 s64 prev;
8754 u64 now;
8755
a4eaf7f1 8756 now = local_clock();
b0a873eb
PZ
8757 prev = local64_xchg(&event->hw.prev_count, now);
8758 local64_add(now - prev, &event->count);
24f1e32c 8759}
24f1e32c 8760
a4eaf7f1 8761static void cpu_clock_event_start(struct perf_event *event, int flags)
b0a873eb 8762{
a4eaf7f1 8763 local64_set(&event->hw.prev_count, local_clock());
b0a873eb 8764 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
8765}
8766
a4eaf7f1 8767static void cpu_clock_event_stop(struct perf_event *event, int flags)
f29ac756 8768{
b0a873eb
PZ
8769 perf_swevent_cancel_hrtimer(event);
8770 cpu_clock_event_update(event);
8771}
f29ac756 8772
a4eaf7f1
PZ
8773static int cpu_clock_event_add(struct perf_event *event, int flags)
8774{
8775 if (flags & PERF_EF_START)
8776 cpu_clock_event_start(event, flags);
6a694a60 8777 perf_event_update_userpage(event);
a4eaf7f1
PZ
8778
8779 return 0;
8780}
8781
8782static void cpu_clock_event_del(struct perf_event *event, int flags)
8783{
8784 cpu_clock_event_stop(event, flags);
8785}
8786
b0a873eb
PZ
8787static void cpu_clock_event_read(struct perf_event *event)
8788{
8789 cpu_clock_event_update(event);
8790}
f344011c 8791
b0a873eb
PZ
8792static int cpu_clock_event_init(struct perf_event *event)
8793{
8794 if (event->attr.type != PERF_TYPE_SOFTWARE)
8795 return -ENOENT;
8796
8797 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
8798 return -ENOENT;
8799
2481c5fa
SE
8800 /*
8801 * no branch sampling for software events
8802 */
8803 if (has_branch_stack(event))
8804 return -EOPNOTSUPP;
8805
ba3dd36c
PZ
8806 perf_swevent_init_hrtimer(event);
8807
b0a873eb 8808 return 0;
f29ac756
PZ
8809}
8810
b0a873eb 8811static struct pmu perf_cpu_clock = {
89a1e187
PZ
8812 .task_ctx_nr = perf_sw_context,
8813
34f43927
PZ
8814 .capabilities = PERF_PMU_CAP_NO_NMI,
8815
b0a873eb 8816 .event_init = cpu_clock_event_init,
a4eaf7f1
PZ
8817 .add = cpu_clock_event_add,
8818 .del = cpu_clock_event_del,
8819 .start = cpu_clock_event_start,
8820 .stop = cpu_clock_event_stop,
b0a873eb
PZ
8821 .read = cpu_clock_event_read,
8822};
8823
8824/*
8825 * Software event: task time clock
8826 */
8827
8828static void task_clock_event_update(struct perf_event *event, u64 now)
5c92d124 8829{
b0a873eb
PZ
8830 u64 prev;
8831 s64 delta;
5c92d124 8832
b0a873eb
PZ
8833 prev = local64_xchg(&event->hw.prev_count, now);
8834 delta = now - prev;
8835 local64_add(delta, &event->count);
8836}
5c92d124 8837
a4eaf7f1 8838static void task_clock_event_start(struct perf_event *event, int flags)
b0a873eb 8839{
a4eaf7f1 8840 local64_set(&event->hw.prev_count, event->ctx->time);
b0a873eb 8841 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
8842}
8843
a4eaf7f1 8844static void task_clock_event_stop(struct perf_event *event, int flags)
b0a873eb
PZ
8845{
8846 perf_swevent_cancel_hrtimer(event);
8847 task_clock_event_update(event, event->ctx->time);
a4eaf7f1
PZ
8848}
8849
8850static int task_clock_event_add(struct perf_event *event, int flags)
8851{
8852 if (flags & PERF_EF_START)
8853 task_clock_event_start(event, flags);
6a694a60 8854 perf_event_update_userpage(event);
b0a873eb 8855
a4eaf7f1
PZ
8856 return 0;
8857}
8858
8859static void task_clock_event_del(struct perf_event *event, int flags)
8860{
8861 task_clock_event_stop(event, PERF_EF_UPDATE);
b0a873eb
PZ
8862}
8863
8864static void task_clock_event_read(struct perf_event *event)
8865{
768a06e2
PZ
8866 u64 now = perf_clock();
8867 u64 delta = now - event->ctx->timestamp;
8868 u64 time = event->ctx->time + delta;
b0a873eb
PZ
8869
8870 task_clock_event_update(event, time);
8871}
8872
8873static int task_clock_event_init(struct perf_event *event)
6fb2915d 8874{
b0a873eb
PZ
8875 if (event->attr.type != PERF_TYPE_SOFTWARE)
8876 return -ENOENT;
8877
8878 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
8879 return -ENOENT;
8880
2481c5fa
SE
8881 /*
8882 * no branch sampling for software events
8883 */
8884 if (has_branch_stack(event))
8885 return -EOPNOTSUPP;
8886
ba3dd36c
PZ
8887 perf_swevent_init_hrtimer(event);
8888
b0a873eb 8889 return 0;
6fb2915d
LZ
8890}
8891
b0a873eb 8892static struct pmu perf_task_clock = {
89a1e187
PZ
8893 .task_ctx_nr = perf_sw_context,
8894
34f43927
PZ
8895 .capabilities = PERF_PMU_CAP_NO_NMI,
8896
b0a873eb 8897 .event_init = task_clock_event_init,
a4eaf7f1
PZ
8898 .add = task_clock_event_add,
8899 .del = task_clock_event_del,
8900 .start = task_clock_event_start,
8901 .stop = task_clock_event_stop,
b0a873eb
PZ
8902 .read = task_clock_event_read,
8903};
6fb2915d 8904
ad5133b7 8905static void perf_pmu_nop_void(struct pmu *pmu)
e077df4f 8906{
e077df4f 8907}
6fb2915d 8908
fbbe0701
SB
8909static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
8910{
8911}
8912
ad5133b7 8913static int perf_pmu_nop_int(struct pmu *pmu)
6fb2915d 8914{
ad5133b7 8915 return 0;
6fb2915d
LZ
8916}
8917
18ab2cd3 8918static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
fbbe0701
SB
8919
8920static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
6fb2915d 8921{
fbbe0701
SB
8922 __this_cpu_write(nop_txn_flags, flags);
8923
8924 if (flags & ~PERF_PMU_TXN_ADD)
8925 return;
8926
ad5133b7 8927 perf_pmu_disable(pmu);
6fb2915d
LZ
8928}
8929
ad5133b7
PZ
8930static int perf_pmu_commit_txn(struct pmu *pmu)
8931{
fbbe0701
SB
8932 unsigned int flags = __this_cpu_read(nop_txn_flags);
8933
8934 __this_cpu_write(nop_txn_flags, 0);
8935
8936 if (flags & ~PERF_PMU_TXN_ADD)
8937 return 0;
8938
ad5133b7
PZ
8939 perf_pmu_enable(pmu);
8940 return 0;
8941}
e077df4f 8942
ad5133b7 8943static void perf_pmu_cancel_txn(struct pmu *pmu)
24f1e32c 8944{
fbbe0701
SB
8945 unsigned int flags = __this_cpu_read(nop_txn_flags);
8946
8947 __this_cpu_write(nop_txn_flags, 0);
8948
8949 if (flags & ~PERF_PMU_TXN_ADD)
8950 return;
8951
ad5133b7 8952 perf_pmu_enable(pmu);
24f1e32c
FW
8953}
8954
35edc2a5
PZ
8955static int perf_event_idx_default(struct perf_event *event)
8956{
c719f560 8957 return 0;
35edc2a5
PZ
8958}
8959
8dc85d54
PZ
8960/*
8961 * Ensures all contexts with the same task_ctx_nr have the same
8962 * pmu_cpu_context too.
8963 */
9e317041 8964static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
24f1e32c 8965{
8dc85d54 8966 struct pmu *pmu;
b326e956 8967
8dc85d54
PZ
8968 if (ctxn < 0)
8969 return NULL;
24f1e32c 8970
8dc85d54
PZ
8971 list_for_each_entry(pmu, &pmus, entry) {
8972 if (pmu->task_ctx_nr == ctxn)
8973 return pmu->pmu_cpu_context;
8974 }
24f1e32c 8975
8dc85d54 8976 return NULL;
24f1e32c
FW
8977}
8978
51676957
PZ
8979static void free_pmu_context(struct pmu *pmu)
8980{
df0062b2
WD
8981 /*
8982 * Static contexts such as perf_sw_context have a global lifetime
8983 * and may be shared between different PMUs. Avoid freeing them
8984 * when a single PMU is going away.
8985 */
8986 if (pmu->task_ctx_nr > perf_invalid_context)
8987 return;
8988
8dc85d54 8989 mutex_lock(&pmus_lock);
51676957 8990 free_percpu(pmu->pmu_cpu_context);
8dc85d54 8991 mutex_unlock(&pmus_lock);
24f1e32c 8992}
6e855cd4
AS
8993
8994/*
8995 * Let userspace know that this PMU supports address range filtering:
8996 */
8997static ssize_t nr_addr_filters_show(struct device *dev,
8998 struct device_attribute *attr,
8999 char *page)
9000{
9001 struct pmu *pmu = dev_get_drvdata(dev);
9002
9003 return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
9004}
9005DEVICE_ATTR_RO(nr_addr_filters);
9006
2e80a82a 9007static struct idr pmu_idr;
d6d020e9 9008
abe43400
PZ
9009static ssize_t
9010type_show(struct device *dev, struct device_attribute *attr, char *page)
9011{
9012 struct pmu *pmu = dev_get_drvdata(dev);
9013
9014 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
9015}
90826ca7 9016static DEVICE_ATTR_RO(type);
abe43400 9017
62b85639
SE
9018static ssize_t
9019perf_event_mux_interval_ms_show(struct device *dev,
9020 struct device_attribute *attr,
9021 char *page)
9022{
9023 struct pmu *pmu = dev_get_drvdata(dev);
9024
9025 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
9026}
9027
272325c4
PZ
9028static DEFINE_MUTEX(mux_interval_mutex);
9029
62b85639
SE
9030static ssize_t
9031perf_event_mux_interval_ms_store(struct device *dev,
9032 struct device_attribute *attr,
9033 const char *buf, size_t count)
9034{
9035 struct pmu *pmu = dev_get_drvdata(dev);
9036 int timer, cpu, ret;
9037
9038 ret = kstrtoint(buf, 0, &timer);
9039 if (ret)
9040 return ret;
9041
9042 if (timer < 1)
9043 return -EINVAL;
9044
9045 /* same value, noting to do */
9046 if (timer == pmu->hrtimer_interval_ms)
9047 return count;
9048
272325c4 9049 mutex_lock(&mux_interval_mutex);
62b85639
SE
9050 pmu->hrtimer_interval_ms = timer;
9051
9052 /* update all cpuctx for this PMU */
a63fbed7 9053 cpus_read_lock();
272325c4 9054 for_each_online_cpu(cpu) {
62b85639
SE
9055 struct perf_cpu_context *cpuctx;
9056 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
9057 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
9058
272325c4
PZ
9059 cpu_function_call(cpu,
9060 (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
62b85639 9061 }
a63fbed7 9062 cpus_read_unlock();
272325c4 9063 mutex_unlock(&mux_interval_mutex);
62b85639
SE
9064
9065 return count;
9066}
90826ca7 9067static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
62b85639 9068
90826ca7
GKH
9069static struct attribute *pmu_dev_attrs[] = {
9070 &dev_attr_type.attr,
9071 &dev_attr_perf_event_mux_interval_ms.attr,
9072 NULL,
abe43400 9073};
90826ca7 9074ATTRIBUTE_GROUPS(pmu_dev);
abe43400
PZ
9075
9076static int pmu_bus_running;
9077static struct bus_type pmu_bus = {
9078 .name = "event_source",
90826ca7 9079 .dev_groups = pmu_dev_groups,
abe43400
PZ
9080};
9081
9082static void pmu_dev_release(struct device *dev)
9083{
9084 kfree(dev);
9085}
9086
9087static int pmu_dev_alloc(struct pmu *pmu)
9088{
9089 int ret = -ENOMEM;
9090
9091 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
9092 if (!pmu->dev)
9093 goto out;
9094
0c9d42ed 9095 pmu->dev->groups = pmu->attr_groups;
abe43400
PZ
9096 device_initialize(pmu->dev);
9097 ret = dev_set_name(pmu->dev, "%s", pmu->name);
9098 if (ret)
9099 goto free_dev;
9100
9101 dev_set_drvdata(pmu->dev, pmu);
9102 pmu->dev->bus = &pmu_bus;
9103 pmu->dev->release = pmu_dev_release;
9104 ret = device_add(pmu->dev);
9105 if (ret)
9106 goto free_dev;
9107
6e855cd4
AS
9108 /* For PMUs with address filters, throw in an extra attribute: */
9109 if (pmu->nr_addr_filters)
9110 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
9111
9112 if (ret)
9113 goto del_dev;
9114
abe43400
PZ
9115out:
9116 return ret;
9117
6e855cd4
AS
9118del_dev:
9119 device_del(pmu->dev);
9120
abe43400
PZ
9121free_dev:
9122 put_device(pmu->dev);
9123 goto out;
9124}
9125
547e9fd7 9126static struct lock_class_key cpuctx_mutex;
facc4307 9127static struct lock_class_key cpuctx_lock;
547e9fd7 9128
03d8e80b 9129int perf_pmu_register(struct pmu *pmu, const char *name, int type)
24f1e32c 9130{
108b02cf 9131 int cpu, ret;
24f1e32c 9132
b0a873eb 9133 mutex_lock(&pmus_lock);
33696fc0
PZ
9134 ret = -ENOMEM;
9135 pmu->pmu_disable_count = alloc_percpu(int);
9136 if (!pmu->pmu_disable_count)
9137 goto unlock;
f29ac756 9138
2e80a82a
PZ
9139 pmu->type = -1;
9140 if (!name)
9141 goto skip_type;
9142 pmu->name = name;
9143
9144 if (type < 0) {
0e9c3be2
TH
9145 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
9146 if (type < 0) {
9147 ret = type;
2e80a82a
PZ
9148 goto free_pdc;
9149 }
9150 }
9151 pmu->type = type;
9152
abe43400
PZ
9153 if (pmu_bus_running) {
9154 ret = pmu_dev_alloc(pmu);
9155 if (ret)
9156 goto free_idr;
9157 }
9158
2e80a82a 9159skip_type:
26657848
PZ
9160 if (pmu->task_ctx_nr == perf_hw_context) {
9161 static int hw_context_taken = 0;
9162
5101ef20
MR
9163 /*
9164 * Other than systems with heterogeneous CPUs, it never makes
9165 * sense for two PMUs to share perf_hw_context. PMUs which are
9166 * uncore must use perf_invalid_context.
9167 */
9168 if (WARN_ON_ONCE(hw_context_taken &&
9169 !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
26657848
PZ
9170 pmu->task_ctx_nr = perf_invalid_context;
9171
9172 hw_context_taken = 1;
9173 }
9174
8dc85d54
PZ
9175 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
9176 if (pmu->pmu_cpu_context)
9177 goto got_cpu_context;
f29ac756 9178
c4814202 9179 ret = -ENOMEM;
108b02cf
PZ
9180 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
9181 if (!pmu->pmu_cpu_context)
abe43400 9182 goto free_dev;
f344011c 9183
108b02cf
PZ
9184 for_each_possible_cpu(cpu) {
9185 struct perf_cpu_context *cpuctx;
9186
9187 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
eb184479 9188 __perf_event_init_context(&cpuctx->ctx);
547e9fd7 9189 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
facc4307 9190 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
108b02cf 9191 cpuctx->ctx.pmu = pmu;
a63fbed7 9192 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
9e630205 9193
272325c4 9194 __perf_mux_hrtimer_init(cpuctx, cpu);
108b02cf 9195 }
76e1d904 9196
8dc85d54 9197got_cpu_context:
ad5133b7
PZ
9198 if (!pmu->start_txn) {
9199 if (pmu->pmu_enable) {
9200 /*
9201 * If we have pmu_enable/pmu_disable calls, install
9202 * transaction stubs that use that to try and batch
9203 * hardware accesses.
9204 */
9205 pmu->start_txn = perf_pmu_start_txn;
9206 pmu->commit_txn = perf_pmu_commit_txn;
9207 pmu->cancel_txn = perf_pmu_cancel_txn;
9208 } else {
fbbe0701 9209 pmu->start_txn = perf_pmu_nop_txn;
ad5133b7
PZ
9210 pmu->commit_txn = perf_pmu_nop_int;
9211 pmu->cancel_txn = perf_pmu_nop_void;
f344011c 9212 }
5c92d124 9213 }
15dbf27c 9214
ad5133b7
PZ
9215 if (!pmu->pmu_enable) {
9216 pmu->pmu_enable = perf_pmu_nop_void;
9217 pmu->pmu_disable = perf_pmu_nop_void;
9218 }
9219
35edc2a5
PZ
9220 if (!pmu->event_idx)
9221 pmu->event_idx = perf_event_idx_default;
9222
b0a873eb 9223 list_add_rcu(&pmu->entry, &pmus);
bed5b25a 9224 atomic_set(&pmu->exclusive_cnt, 0);
33696fc0
PZ
9225 ret = 0;
9226unlock:
b0a873eb
PZ
9227 mutex_unlock(&pmus_lock);
9228
33696fc0 9229 return ret;
108b02cf 9230
abe43400
PZ
9231free_dev:
9232 device_del(pmu->dev);
9233 put_device(pmu->dev);
9234
2e80a82a
PZ
9235free_idr:
9236 if (pmu->type >= PERF_TYPE_MAX)
9237 idr_remove(&pmu_idr, pmu->type);
9238
108b02cf
PZ
9239free_pdc:
9240 free_percpu(pmu->pmu_disable_count);
9241 goto unlock;
f29ac756 9242}
c464c76e 9243EXPORT_SYMBOL_GPL(perf_pmu_register);
f29ac756 9244
b0a873eb 9245void perf_pmu_unregister(struct pmu *pmu)
5c92d124 9246{
0933840a
JO
9247 int remove_device;
9248
b0a873eb 9249 mutex_lock(&pmus_lock);
0933840a 9250 remove_device = pmu_bus_running;
b0a873eb
PZ
9251 list_del_rcu(&pmu->entry);
9252 mutex_unlock(&pmus_lock);
5c92d124 9253
0475f9ea 9254 /*
cde8e884
PZ
9255 * We dereference the pmu list under both SRCU and regular RCU, so
9256 * synchronize against both of those.
0475f9ea 9257 */
b0a873eb 9258 synchronize_srcu(&pmus_srcu);
cde8e884 9259 synchronize_rcu();
d6d020e9 9260
33696fc0 9261 free_percpu(pmu->pmu_disable_count);
2e80a82a
PZ
9262 if (pmu->type >= PERF_TYPE_MAX)
9263 idr_remove(&pmu_idr, pmu->type);
0933840a
JO
9264 if (remove_device) {
9265 if (pmu->nr_addr_filters)
9266 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
9267 device_del(pmu->dev);
9268 put_device(pmu->dev);
9269 }
51676957 9270 free_pmu_context(pmu);
b0a873eb 9271}
c464c76e 9272EXPORT_SYMBOL_GPL(perf_pmu_unregister);
d6d020e9 9273
cc34b98b
MR
9274static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
9275{
ccd41c86 9276 struct perf_event_context *ctx = NULL;
cc34b98b
MR
9277 int ret;
9278
9279 if (!try_module_get(pmu->module))
9280 return -ENODEV;
ccd41c86
PZ
9281
9282 if (event->group_leader != event) {
8b10c5e2
PZ
9283 /*
9284 * This ctx->mutex can nest when we're called through
9285 * inheritance. See the perf_event_ctx_lock_nested() comment.
9286 */
9287 ctx = perf_event_ctx_lock_nested(event->group_leader,
9288 SINGLE_DEPTH_NESTING);
ccd41c86
PZ
9289 BUG_ON(!ctx);
9290 }
9291
cc34b98b
MR
9292 event->pmu = pmu;
9293 ret = pmu->event_init(event);
ccd41c86
PZ
9294
9295 if (ctx)
9296 perf_event_ctx_unlock(event->group_leader, ctx);
9297
cc34b98b
MR
9298 if (ret)
9299 module_put(pmu->module);
9300
9301 return ret;
9302}
9303
18ab2cd3 9304static struct pmu *perf_init_event(struct perf_event *event)
b0a873eb 9305{
85c617ab 9306 struct pmu *pmu;
b0a873eb 9307 int idx;
940c5b29 9308 int ret;
b0a873eb
PZ
9309
9310 idx = srcu_read_lock(&pmus_srcu);
2e80a82a 9311
40999312
KL
9312 /* Try parent's PMU first: */
9313 if (event->parent && event->parent->pmu) {
9314 pmu = event->parent->pmu;
9315 ret = perf_try_init_event(pmu, event);
9316 if (!ret)
9317 goto unlock;
9318 }
9319
2e80a82a
PZ
9320 rcu_read_lock();
9321 pmu = idr_find(&pmu_idr, event->attr.type);
9322 rcu_read_unlock();
940c5b29 9323 if (pmu) {
cc34b98b 9324 ret = perf_try_init_event(pmu, event);
940c5b29
LM
9325 if (ret)
9326 pmu = ERR_PTR(ret);
2e80a82a 9327 goto unlock;
940c5b29 9328 }
2e80a82a 9329
b0a873eb 9330 list_for_each_entry_rcu(pmu, &pmus, entry) {
cc34b98b 9331 ret = perf_try_init_event(pmu, event);
b0a873eb 9332 if (!ret)
e5f4d339 9333 goto unlock;
76e1d904 9334
b0a873eb
PZ
9335 if (ret != -ENOENT) {
9336 pmu = ERR_PTR(ret);
e5f4d339 9337 goto unlock;
f344011c 9338 }
5c92d124 9339 }
e5f4d339
PZ
9340 pmu = ERR_PTR(-ENOENT);
9341unlock:
b0a873eb 9342 srcu_read_unlock(&pmus_srcu, idx);
15dbf27c 9343
4aeb0b42 9344 return pmu;
5c92d124
IM
9345}
9346
f2fb6bef
KL
9347static void attach_sb_event(struct perf_event *event)
9348{
9349 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
9350
9351 raw_spin_lock(&pel->lock);
9352 list_add_rcu(&event->sb_list, &pel->list);
9353 raw_spin_unlock(&pel->lock);
9354}
9355
aab5b71e
PZ
9356/*
9357 * We keep a list of all !task (and therefore per-cpu) events
9358 * that need to receive side-band records.
9359 *
9360 * This avoids having to scan all the various PMU per-cpu contexts
9361 * looking for them.
9362 */
f2fb6bef
KL
9363static void account_pmu_sb_event(struct perf_event *event)
9364{
a4f144eb 9365 if (is_sb_event(event))
f2fb6bef
KL
9366 attach_sb_event(event);
9367}
9368
4beb31f3
FW
9369static void account_event_cpu(struct perf_event *event, int cpu)
9370{
9371 if (event->parent)
9372 return;
9373
4beb31f3
FW
9374 if (is_cgroup_event(event))
9375 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
9376}
9377
555e0c1e
FW
9378/* Freq events need the tick to stay alive (see perf_event_task_tick). */
9379static void account_freq_event_nohz(void)
9380{
9381#ifdef CONFIG_NO_HZ_FULL
9382 /* Lock so we don't race with concurrent unaccount */
9383 spin_lock(&nr_freq_lock);
9384 if (atomic_inc_return(&nr_freq_events) == 1)
9385 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
9386 spin_unlock(&nr_freq_lock);
9387#endif
9388}
9389
9390static void account_freq_event(void)
9391{
9392 if (tick_nohz_full_enabled())
9393 account_freq_event_nohz();
9394 else
9395 atomic_inc(&nr_freq_events);
9396}
9397
9398
766d6c07
FW
9399static void account_event(struct perf_event *event)
9400{
25432ae9
PZ
9401 bool inc = false;
9402
4beb31f3
FW
9403 if (event->parent)
9404 return;
9405
766d6c07 9406 if (event->attach_state & PERF_ATTACH_TASK)
25432ae9 9407 inc = true;
766d6c07
FW
9408 if (event->attr.mmap || event->attr.mmap_data)
9409 atomic_inc(&nr_mmap_events);
9410 if (event->attr.comm)
9411 atomic_inc(&nr_comm_events);
e4222673
HB
9412 if (event->attr.namespaces)
9413 atomic_inc(&nr_namespaces_events);
766d6c07
FW
9414 if (event->attr.task)
9415 atomic_inc(&nr_task_events);
555e0c1e
FW
9416 if (event->attr.freq)
9417 account_freq_event();
45ac1403
AH
9418 if (event->attr.context_switch) {
9419 atomic_inc(&nr_switch_events);
25432ae9 9420 inc = true;
45ac1403 9421 }
4beb31f3 9422 if (has_branch_stack(event))
25432ae9 9423 inc = true;
4beb31f3 9424 if (is_cgroup_event(event))
25432ae9
PZ
9425 inc = true;
9426
9107c89e 9427 if (inc) {
5bce9db1
AS
9428 /*
9429 * We need the mutex here because static_branch_enable()
9430 * must complete *before* the perf_sched_count increment
9431 * becomes visible.
9432 */
9107c89e
PZ
9433 if (atomic_inc_not_zero(&perf_sched_count))
9434 goto enabled;
9435
9436 mutex_lock(&perf_sched_mutex);
9437 if (!atomic_read(&perf_sched_count)) {
9438 static_branch_enable(&perf_sched_events);
9439 /*
9440 * Guarantee that all CPUs observe they key change and
9441 * call the perf scheduling hooks before proceeding to
9442 * install events that need them.
9443 */
9444 synchronize_sched();
9445 }
9446 /*
9447 * Now that we have waited for the sync_sched(), allow further
9448 * increments to by-pass the mutex.
9449 */
9450 atomic_inc(&perf_sched_count);
9451 mutex_unlock(&perf_sched_mutex);
9452 }
9453enabled:
4beb31f3
FW
9454
9455 account_event_cpu(event, event->cpu);
f2fb6bef
KL
9456
9457 account_pmu_sb_event(event);
766d6c07
FW
9458}
9459
0793a61d 9460/*
cdd6c482 9461 * Allocate and initialize a event structure
0793a61d 9462 */
cdd6c482 9463static struct perf_event *
c3f00c70 9464perf_event_alloc(struct perf_event_attr *attr, int cpu,
d580ff86
PZ
9465 struct task_struct *task,
9466 struct perf_event *group_leader,
9467 struct perf_event *parent_event,
4dc0da86 9468 perf_overflow_handler_t overflow_handler,
79dff51e 9469 void *context, int cgroup_fd)
0793a61d 9470{
51b0fe39 9471 struct pmu *pmu;
cdd6c482
IM
9472 struct perf_event *event;
9473 struct hw_perf_event *hwc;
90983b16 9474 long err = -EINVAL;
0793a61d 9475
66832eb4
ON
9476 if ((unsigned)cpu >= nr_cpu_ids) {
9477 if (!task || cpu != -1)
9478 return ERR_PTR(-EINVAL);
9479 }
9480
c3f00c70 9481 event = kzalloc(sizeof(*event), GFP_KERNEL);
cdd6c482 9482 if (!event)
d5d2bc0d 9483 return ERR_PTR(-ENOMEM);
0793a61d 9484
04289bb9 9485 /*
cdd6c482 9486 * Single events are their own group leaders, with an
04289bb9
IM
9487 * empty sibling list:
9488 */
9489 if (!group_leader)
cdd6c482 9490 group_leader = event;
04289bb9 9491
cdd6c482
IM
9492 mutex_init(&event->child_mutex);
9493 INIT_LIST_HEAD(&event->child_list);
fccc714b 9494
cdd6c482
IM
9495 INIT_LIST_HEAD(&event->group_entry);
9496 INIT_LIST_HEAD(&event->event_entry);
9497 INIT_LIST_HEAD(&event->sibling_list);
10c6db11 9498 INIT_LIST_HEAD(&event->rb_entry);
71ad88ef 9499 INIT_LIST_HEAD(&event->active_entry);
375637bc 9500 INIT_LIST_HEAD(&event->addr_filters.list);
f3ae75de
SE
9501 INIT_HLIST_NODE(&event->hlist_entry);
9502
10c6db11 9503
cdd6c482 9504 init_waitqueue_head(&event->waitq);
e360adbe 9505 init_irq_work(&event->pending, perf_pending_event);
0793a61d 9506
cdd6c482 9507 mutex_init(&event->mmap_mutex);
375637bc 9508 raw_spin_lock_init(&event->addr_filters.lock);
7b732a75 9509
a6fa941d 9510 atomic_long_set(&event->refcount, 1);
cdd6c482
IM
9511 event->cpu = cpu;
9512 event->attr = *attr;
9513 event->group_leader = group_leader;
9514 event->pmu = NULL;
cdd6c482 9515 event->oncpu = -1;
a96bbc16 9516
cdd6c482 9517 event->parent = parent_event;
b84fbc9f 9518
17cf22c3 9519 event->ns = get_pid_ns(task_active_pid_ns(current));
cdd6c482 9520 event->id = atomic64_inc_return(&perf_event_id);
a96bbc16 9521
cdd6c482 9522 event->state = PERF_EVENT_STATE_INACTIVE;
329d876d 9523
d580ff86
PZ
9524 if (task) {
9525 event->attach_state = PERF_ATTACH_TASK;
d580ff86 9526 /*
50f16a8b
PZ
9527 * XXX pmu::event_init needs to know what task to account to
9528 * and we cannot use the ctx information because we need the
9529 * pmu before we get a ctx.
d580ff86 9530 */
50f16a8b 9531 event->hw.target = task;
d580ff86
PZ
9532 }
9533
34f43927
PZ
9534 event->clock = &local_clock;
9535 if (parent_event)
9536 event->clock = parent_event->clock;
9537
4dc0da86 9538 if (!overflow_handler && parent_event) {
b326e956 9539 overflow_handler = parent_event->overflow_handler;
4dc0da86 9540 context = parent_event->overflow_handler_context;
f1e4ba5b 9541#if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
aa6a5f3c
AS
9542 if (overflow_handler == bpf_overflow_handler) {
9543 struct bpf_prog *prog = bpf_prog_inc(parent_event->prog);
9544
9545 if (IS_ERR(prog)) {
9546 err = PTR_ERR(prog);
9547 goto err_ns;
9548 }
9549 event->prog = prog;
9550 event->orig_overflow_handler =
9551 parent_event->orig_overflow_handler;
9552 }
9553#endif
4dc0da86 9554 }
66832eb4 9555
1879445d
WN
9556 if (overflow_handler) {
9557 event->overflow_handler = overflow_handler;
9558 event->overflow_handler_context = context;
9ecda41a
WN
9559 } else if (is_write_backward(event)){
9560 event->overflow_handler = perf_event_output_backward;
9561 event->overflow_handler_context = NULL;
1879445d 9562 } else {
9ecda41a 9563 event->overflow_handler = perf_event_output_forward;
1879445d
WN
9564 event->overflow_handler_context = NULL;
9565 }
97eaf530 9566
0231bb53 9567 perf_event__state_init(event);
a86ed508 9568
4aeb0b42 9569 pmu = NULL;
b8e83514 9570
cdd6c482 9571 hwc = &event->hw;
bd2b5b12 9572 hwc->sample_period = attr->sample_period;
0d48696f 9573 if (attr->freq && attr->sample_freq)
bd2b5b12 9574 hwc->sample_period = 1;
eced1dfc 9575 hwc->last_period = hwc->sample_period;
bd2b5b12 9576
e7850595 9577 local64_set(&hwc->period_left, hwc->sample_period);
60db5e09 9578
2023b359 9579 /*
ba5213ae
PZ
9580 * We currently do not support PERF_SAMPLE_READ on inherited events.
9581 * See perf_output_read().
2023b359 9582 */
ba5213ae 9583 if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
90983b16 9584 goto err_ns;
a46a2300
YZ
9585
9586 if (!has_branch_stack(event))
9587 event->attr.branch_sample_type = 0;
2023b359 9588
79dff51e
MF
9589 if (cgroup_fd != -1) {
9590 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
9591 if (err)
9592 goto err_ns;
9593 }
9594
b0a873eb 9595 pmu = perf_init_event(event);
85c617ab 9596 if (IS_ERR(pmu)) {
4aeb0b42 9597 err = PTR_ERR(pmu);
90983b16 9598 goto err_ns;
621a01ea 9599 }
d5d2bc0d 9600
bed5b25a
AS
9601 err = exclusive_event_init(event);
9602 if (err)
9603 goto err_pmu;
9604
375637bc
AS
9605 if (has_addr_filter(event)) {
9606 event->addr_filters_offs = kcalloc(pmu->nr_addr_filters,
9607 sizeof(unsigned long),
9608 GFP_KERNEL);
36cc2b92
DC
9609 if (!event->addr_filters_offs) {
9610 err = -ENOMEM;
375637bc 9611 goto err_per_task;
36cc2b92 9612 }
375637bc
AS
9613
9614 /* force hw sync on the address filters */
9615 event->addr_filters_gen = 1;
9616 }
9617
cdd6c482 9618 if (!event->parent) {
927c7a9e 9619 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
97c79a38 9620 err = get_callchain_buffers(attr->sample_max_stack);
90983b16 9621 if (err)
375637bc 9622 goto err_addr_filters;
d010b332 9623 }
f344011c 9624 }
9ee318a7 9625
927a5570
AS
9626 /* symmetric to unaccount_event() in _free_event() */
9627 account_event(event);
9628
cdd6c482 9629 return event;
90983b16 9630
375637bc
AS
9631err_addr_filters:
9632 kfree(event->addr_filters_offs);
9633
bed5b25a
AS
9634err_per_task:
9635 exclusive_event_destroy(event);
9636
90983b16
FW
9637err_pmu:
9638 if (event->destroy)
9639 event->destroy(event);
c464c76e 9640 module_put(pmu->module);
90983b16 9641err_ns:
79dff51e
MF
9642 if (is_cgroup_event(event))
9643 perf_detach_cgroup(event);
90983b16
FW
9644 if (event->ns)
9645 put_pid_ns(event->ns);
9646 kfree(event);
9647
9648 return ERR_PTR(err);
0793a61d
TG
9649}
9650
cdd6c482
IM
9651static int perf_copy_attr(struct perf_event_attr __user *uattr,
9652 struct perf_event_attr *attr)
974802ea 9653{
974802ea 9654 u32 size;
cdf8073d 9655 int ret;
974802ea
PZ
9656
9657 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
9658 return -EFAULT;
9659
9660 /*
9661 * zero the full structure, so that a short copy will be nice.
9662 */
9663 memset(attr, 0, sizeof(*attr));
9664
9665 ret = get_user(size, &uattr->size);
9666 if (ret)
9667 return ret;
9668
9669 if (size > PAGE_SIZE) /* silly large */
9670 goto err_size;
9671
9672 if (!size) /* abi compat */
9673 size = PERF_ATTR_SIZE_VER0;
9674
9675 if (size < PERF_ATTR_SIZE_VER0)
9676 goto err_size;
9677
9678 /*
9679 * If we're handed a bigger struct than we know of,
cdf8073d
IS
9680 * ensure all the unknown bits are 0 - i.e. new
9681 * user-space does not rely on any kernel feature
9682 * extensions we dont know about yet.
974802ea
PZ
9683 */
9684 if (size > sizeof(*attr)) {
cdf8073d
IS
9685 unsigned char __user *addr;
9686 unsigned char __user *end;
9687 unsigned char val;
974802ea 9688
cdf8073d
IS
9689 addr = (void __user *)uattr + sizeof(*attr);
9690 end = (void __user *)uattr + size;
974802ea 9691
cdf8073d 9692 for (; addr < end; addr++) {
974802ea
PZ
9693 ret = get_user(val, addr);
9694 if (ret)
9695 return ret;
9696 if (val)
9697 goto err_size;
9698 }
b3e62e35 9699 size = sizeof(*attr);
974802ea
PZ
9700 }
9701
9702 ret = copy_from_user(attr, uattr, size);
9703 if (ret)
9704 return -EFAULT;
9705
f12f42ac
MX
9706 attr->size = size;
9707
cd757645 9708 if (attr->__reserved_1)
974802ea
PZ
9709 return -EINVAL;
9710
9711 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
9712 return -EINVAL;
9713
9714 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
9715 return -EINVAL;
9716
bce38cd5
SE
9717 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
9718 u64 mask = attr->branch_sample_type;
9719
9720 /* only using defined bits */
9721 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
9722 return -EINVAL;
9723
9724 /* at least one branch bit must be set */
9725 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
9726 return -EINVAL;
9727
bce38cd5
SE
9728 /* propagate priv level, when not set for branch */
9729 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
9730
9731 /* exclude_kernel checked on syscall entry */
9732 if (!attr->exclude_kernel)
9733 mask |= PERF_SAMPLE_BRANCH_KERNEL;
9734
9735 if (!attr->exclude_user)
9736 mask |= PERF_SAMPLE_BRANCH_USER;
9737
9738 if (!attr->exclude_hv)
9739 mask |= PERF_SAMPLE_BRANCH_HV;
9740 /*
9741 * adjust user setting (for HW filter setup)
9742 */
9743 attr->branch_sample_type = mask;
9744 }
e712209a
SE
9745 /* privileged levels capture (kernel, hv): check permissions */
9746 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
2b923c8f
SE
9747 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9748 return -EACCES;
bce38cd5 9749 }
4018994f 9750
c5ebcedb 9751 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
4018994f 9752 ret = perf_reg_validate(attr->sample_regs_user);
c5ebcedb
JO
9753 if (ret)
9754 return ret;
9755 }
9756
9757 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
9758 if (!arch_perf_have_user_stack_dump())
9759 return -ENOSYS;
9760
9761 /*
9762 * We have __u32 type for the size, but so far
9763 * we can only use __u16 as maximum due to the
9764 * __u16 sample size limit.
9765 */
9766 if (attr->sample_stack_user >= USHRT_MAX)
9767 ret = -EINVAL;
9768 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
9769 ret = -EINVAL;
9770 }
4018994f 9771
60e2364e
SE
9772 if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
9773 ret = perf_reg_validate(attr->sample_regs_intr);
974802ea
PZ
9774out:
9775 return ret;
9776
9777err_size:
9778 put_user(sizeof(*attr), &uattr->size);
9779 ret = -E2BIG;
9780 goto out;
9781}
9782
ac9721f3
PZ
9783static int
9784perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
a4be7c27 9785{
b69cf536 9786 struct ring_buffer *rb = NULL;
a4be7c27
PZ
9787 int ret = -EINVAL;
9788
ac9721f3 9789 if (!output_event)
a4be7c27
PZ
9790 goto set;
9791
ac9721f3
PZ
9792 /* don't allow circular references */
9793 if (event == output_event)
a4be7c27
PZ
9794 goto out;
9795
0f139300
PZ
9796 /*
9797 * Don't allow cross-cpu buffers
9798 */
9799 if (output_event->cpu != event->cpu)
9800 goto out;
9801
9802 /*
76369139 9803 * If its not a per-cpu rb, it must be the same task.
0f139300
PZ
9804 */
9805 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
9806 goto out;
9807
34f43927
PZ
9808 /*
9809 * Mixing clocks in the same buffer is trouble you don't need.
9810 */
9811 if (output_event->clock != event->clock)
9812 goto out;
9813
9ecda41a
WN
9814 /*
9815 * Either writing ring buffer from beginning or from end.
9816 * Mixing is not allowed.
9817 */
9818 if (is_write_backward(output_event) != is_write_backward(event))
9819 goto out;
9820
45bfb2e5
PZ
9821 /*
9822 * If both events generate aux data, they must be on the same PMU
9823 */
9824 if (has_aux(event) && has_aux(output_event) &&
9825 event->pmu != output_event->pmu)
9826 goto out;
9827
a4be7c27 9828set:
cdd6c482 9829 mutex_lock(&event->mmap_mutex);
ac9721f3
PZ
9830 /* Can't redirect output if we've got an active mmap() */
9831 if (atomic_read(&event->mmap_count))
9832 goto unlock;
a4be7c27 9833
ac9721f3 9834 if (output_event) {
76369139
FW
9835 /* get the rb we want to redirect to */
9836 rb = ring_buffer_get(output_event);
9837 if (!rb)
ac9721f3 9838 goto unlock;
a4be7c27
PZ
9839 }
9840
b69cf536 9841 ring_buffer_attach(event, rb);
9bb5d40c 9842
a4be7c27 9843 ret = 0;
ac9721f3
PZ
9844unlock:
9845 mutex_unlock(&event->mmap_mutex);
9846
a4be7c27 9847out:
a4be7c27
PZ
9848 return ret;
9849}
9850
f63a8daa
PZ
9851static void mutex_lock_double(struct mutex *a, struct mutex *b)
9852{
9853 if (b < a)
9854 swap(a, b);
9855
9856 mutex_lock(a);
9857 mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
9858}
9859
34f43927
PZ
9860static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
9861{
9862 bool nmi_safe = false;
9863
9864 switch (clk_id) {
9865 case CLOCK_MONOTONIC:
9866 event->clock = &ktime_get_mono_fast_ns;
9867 nmi_safe = true;
9868 break;
9869
9870 case CLOCK_MONOTONIC_RAW:
9871 event->clock = &ktime_get_raw_fast_ns;
9872 nmi_safe = true;
9873 break;
9874
9875 case CLOCK_REALTIME:
9876 event->clock = &ktime_get_real_ns;
9877 break;
9878
9879 case CLOCK_BOOTTIME:
9880 event->clock = &ktime_get_boot_ns;
9881 break;
9882
9883 case CLOCK_TAI:
9884 event->clock = &ktime_get_tai_ns;
9885 break;
9886
9887 default:
9888 return -EINVAL;
9889 }
9890
9891 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
9892 return -EINVAL;
9893
9894 return 0;
9895}
9896
321027c1
PZ
9897/*
9898 * Variation on perf_event_ctx_lock_nested(), except we take two context
9899 * mutexes.
9900 */
9901static struct perf_event_context *
9902__perf_event_ctx_lock_double(struct perf_event *group_leader,
9903 struct perf_event_context *ctx)
9904{
9905 struct perf_event_context *gctx;
9906
9907again:
9908 rcu_read_lock();
9909 gctx = READ_ONCE(group_leader->ctx);
9910 if (!atomic_inc_not_zero(&gctx->refcount)) {
9911 rcu_read_unlock();
9912 goto again;
9913 }
9914 rcu_read_unlock();
9915
9916 mutex_lock_double(&gctx->mutex, &ctx->mutex);
9917
9918 if (group_leader->ctx != gctx) {
9919 mutex_unlock(&ctx->mutex);
9920 mutex_unlock(&gctx->mutex);
9921 put_ctx(gctx);
9922 goto again;
9923 }
9924
9925 return gctx;
9926}
9927
0793a61d 9928/**
cdd6c482 9929 * sys_perf_event_open - open a performance event, associate it to a task/cpu
9f66a381 9930 *
cdd6c482 9931 * @attr_uptr: event_id type attributes for monitoring/sampling
0793a61d 9932 * @pid: target pid
9f66a381 9933 * @cpu: target cpu
cdd6c482 9934 * @group_fd: group leader event fd
0793a61d 9935 */
cdd6c482
IM
9936SYSCALL_DEFINE5(perf_event_open,
9937 struct perf_event_attr __user *, attr_uptr,
2743a5b0 9938 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
0793a61d 9939{
b04243ef
PZ
9940 struct perf_event *group_leader = NULL, *output_event = NULL;
9941 struct perf_event *event, *sibling;
cdd6c482 9942 struct perf_event_attr attr;
f63a8daa 9943 struct perf_event_context *ctx, *uninitialized_var(gctx);
cdd6c482 9944 struct file *event_file = NULL;
2903ff01 9945 struct fd group = {NULL, 0};
38a81da2 9946 struct task_struct *task = NULL;
89a1e187 9947 struct pmu *pmu;
ea635c64 9948 int event_fd;
b04243ef 9949 int move_group = 0;
dc86cabe 9950 int err;
a21b0b35 9951 int f_flags = O_RDWR;
79dff51e 9952 int cgroup_fd = -1;
0793a61d 9953
2743a5b0 9954 /* for future expandability... */
e5d1367f 9955 if (flags & ~PERF_FLAG_ALL)
2743a5b0
PM
9956 return -EINVAL;
9957
dc86cabe
IM
9958 err = perf_copy_attr(attr_uptr, &attr);
9959 if (err)
9960 return err;
eab656ae 9961
0764771d
PZ
9962 if (!attr.exclude_kernel) {
9963 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9964 return -EACCES;
9965 }
9966
e4222673
HB
9967 if (attr.namespaces) {
9968 if (!capable(CAP_SYS_ADMIN))
9969 return -EACCES;
9970 }
9971
df58ab24 9972 if (attr.freq) {
cdd6c482 9973 if (attr.sample_freq > sysctl_perf_event_sample_rate)
df58ab24 9974 return -EINVAL;
0819b2e3
PZ
9975 } else {
9976 if (attr.sample_period & (1ULL << 63))
9977 return -EINVAL;
df58ab24
PZ
9978 }
9979
fc7ce9c7
KL
9980 /* Only privileged users can get physical addresses */
9981 if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR) &&
9982 perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9983 return -EACCES;
9984
97c79a38
ACM
9985 if (!attr.sample_max_stack)
9986 attr.sample_max_stack = sysctl_perf_event_max_stack;
9987
e5d1367f
SE
9988 /*
9989 * In cgroup mode, the pid argument is used to pass the fd
9990 * opened to the cgroup directory in cgroupfs. The cpu argument
9991 * designates the cpu on which to monitor threads from that
9992 * cgroup.
9993 */
9994 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
9995 return -EINVAL;
9996
a21b0b35
YD
9997 if (flags & PERF_FLAG_FD_CLOEXEC)
9998 f_flags |= O_CLOEXEC;
9999
10000 event_fd = get_unused_fd_flags(f_flags);
ea635c64
AV
10001 if (event_fd < 0)
10002 return event_fd;
10003
ac9721f3 10004 if (group_fd != -1) {
2903ff01
AV
10005 err = perf_fget_light(group_fd, &group);
10006 if (err)
d14b12d7 10007 goto err_fd;
2903ff01 10008 group_leader = group.file->private_data;
ac9721f3
PZ
10009 if (flags & PERF_FLAG_FD_OUTPUT)
10010 output_event = group_leader;
10011 if (flags & PERF_FLAG_FD_NO_GROUP)
10012 group_leader = NULL;
10013 }
10014
e5d1367f 10015 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
c6be5a5c
PZ
10016 task = find_lively_task_by_vpid(pid);
10017 if (IS_ERR(task)) {
10018 err = PTR_ERR(task);
10019 goto err_group_fd;
10020 }
10021 }
10022
1f4ee503
PZ
10023 if (task && group_leader &&
10024 group_leader->attr.inherit != attr.inherit) {
10025 err = -EINVAL;
10026 goto err_task;
10027 }
10028
79c9ce57
PZ
10029 if (task) {
10030 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
10031 if (err)
e5aeee51 10032 goto err_task;
79c9ce57
PZ
10033
10034 /*
10035 * Reuse ptrace permission checks for now.
10036 *
10037 * We must hold cred_guard_mutex across this and any potential
10038 * perf_install_in_context() call for this new event to
10039 * serialize against exec() altering our credentials (and the
10040 * perf_event_exit_task() that could imply).
10041 */
10042 err = -EACCES;
10043 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
10044 goto err_cred;
10045 }
10046
79dff51e
MF
10047 if (flags & PERF_FLAG_PID_CGROUP)
10048 cgroup_fd = pid;
10049
4dc0da86 10050 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
79dff51e 10051 NULL, NULL, cgroup_fd);
d14b12d7
SE
10052 if (IS_ERR(event)) {
10053 err = PTR_ERR(event);
79c9ce57 10054 goto err_cred;
d14b12d7
SE
10055 }
10056
53b25335
VW
10057 if (is_sampling_event(event)) {
10058 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
a1396555 10059 err = -EOPNOTSUPP;
53b25335
VW
10060 goto err_alloc;
10061 }
10062 }
10063
89a1e187
PZ
10064 /*
10065 * Special case software events and allow them to be part of
10066 * any hardware group.
10067 */
10068 pmu = event->pmu;
b04243ef 10069
34f43927
PZ
10070 if (attr.use_clockid) {
10071 err = perf_event_set_clock(event, attr.clockid);
10072 if (err)
10073 goto err_alloc;
10074 }
10075
4ff6a8de
DCC
10076 if (pmu->task_ctx_nr == perf_sw_context)
10077 event->event_caps |= PERF_EV_CAP_SOFTWARE;
10078
b04243ef
PZ
10079 if (group_leader &&
10080 (is_software_event(event) != is_software_event(group_leader))) {
10081 if (is_software_event(event)) {
10082 /*
10083 * If event and group_leader are not both a software
10084 * event, and event is, then group leader is not.
10085 *
10086 * Allow the addition of software events to !software
10087 * groups, this is safe because software events never
10088 * fail to schedule.
10089 */
10090 pmu = group_leader->pmu;
10091 } else if (is_software_event(group_leader) &&
4ff6a8de 10092 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
b04243ef
PZ
10093 /*
10094 * In case the group is a pure software group, and we
10095 * try to add a hardware event, move the whole group to
10096 * the hardware context.
10097 */
10098 move_group = 1;
10099 }
10100 }
89a1e187
PZ
10101
10102 /*
10103 * Get the target context (task or percpu):
10104 */
4af57ef2 10105 ctx = find_get_context(pmu, task, event);
89a1e187
PZ
10106 if (IS_ERR(ctx)) {
10107 err = PTR_ERR(ctx);
c6be5a5c 10108 goto err_alloc;
89a1e187
PZ
10109 }
10110
bed5b25a
AS
10111 if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
10112 err = -EBUSY;
10113 goto err_context;
10114 }
10115
ccff286d 10116 /*
cdd6c482 10117 * Look up the group leader (we will attach this event to it):
04289bb9 10118 */
ac9721f3 10119 if (group_leader) {
dc86cabe 10120 err = -EINVAL;
04289bb9 10121
04289bb9 10122 /*
ccff286d
IM
10123 * Do not allow a recursive hierarchy (this new sibling
10124 * becoming part of another group-sibling):
10125 */
10126 if (group_leader->group_leader != group_leader)
c3f00c70 10127 goto err_context;
34f43927
PZ
10128
10129 /* All events in a group should have the same clock */
10130 if (group_leader->clock != event->clock)
10131 goto err_context;
10132
ccff286d 10133 /*
64aee2a9
MR
10134 * Make sure we're both events for the same CPU;
10135 * grouping events for different CPUs is broken; since
10136 * you can never concurrently schedule them anyhow.
04289bb9 10137 */
64aee2a9
MR
10138 if (group_leader->cpu != event->cpu)
10139 goto err_context;
c3c87e77 10140
64aee2a9
MR
10141 /*
10142 * Make sure we're both on the same task, or both
10143 * per-CPU events.
10144 */
10145 if (group_leader->ctx->task != ctx->task)
10146 goto err_context;
10147
10148 /*
10149 * Do not allow to attach to a group in a different task
10150 * or CPU context. If we're moving SW events, we'll fix
10151 * this up later, so allow that.
10152 */
10153 if (!move_group && group_leader->ctx != ctx)
10154 goto err_context;
b04243ef 10155
3b6f9e5c
PM
10156 /*
10157 * Only a group leader can be exclusive or pinned
10158 */
0d48696f 10159 if (attr.exclusive || attr.pinned)
c3f00c70 10160 goto err_context;
ac9721f3
PZ
10161 }
10162
10163 if (output_event) {
10164 err = perf_event_set_output(event, output_event);
10165 if (err)
c3f00c70 10166 goto err_context;
ac9721f3 10167 }
0793a61d 10168
a21b0b35
YD
10169 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
10170 f_flags);
ea635c64
AV
10171 if (IS_ERR(event_file)) {
10172 err = PTR_ERR(event_file);
201c2f85 10173 event_file = NULL;
c3f00c70 10174 goto err_context;
ea635c64 10175 }
9b51f66d 10176
b04243ef 10177 if (move_group) {
321027c1
PZ
10178 gctx = __perf_event_ctx_lock_double(group_leader, ctx);
10179
84c4e620
PZ
10180 if (gctx->task == TASK_TOMBSTONE) {
10181 err = -ESRCH;
10182 goto err_locked;
10183 }
321027c1
PZ
10184
10185 /*
10186 * Check if we raced against another sys_perf_event_open() call
10187 * moving the software group underneath us.
10188 */
10189 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
10190 /*
10191 * If someone moved the group out from under us, check
10192 * if this new event wound up on the same ctx, if so
10193 * its the regular !move_group case, otherwise fail.
10194 */
10195 if (gctx != ctx) {
10196 err = -EINVAL;
10197 goto err_locked;
10198 } else {
10199 perf_event_ctx_unlock(group_leader, gctx);
10200 move_group = 0;
10201 }
10202 }
f55fc2a5
PZ
10203 } else {
10204 mutex_lock(&ctx->mutex);
10205 }
10206
84c4e620
PZ
10207 if (ctx->task == TASK_TOMBSTONE) {
10208 err = -ESRCH;
10209 goto err_locked;
10210 }
10211
a723968c
PZ
10212 if (!perf_event_validate_size(event)) {
10213 err = -E2BIG;
10214 goto err_locked;
10215 }
10216
a63fbed7
TG
10217 if (!task) {
10218 /*
10219 * Check if the @cpu we're creating an event for is online.
10220 *
10221 * We use the perf_cpu_context::ctx::mutex to serialize against
10222 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
10223 */
10224 struct perf_cpu_context *cpuctx =
10225 container_of(ctx, struct perf_cpu_context, ctx);
10226
10227 if (!cpuctx->online) {
10228 err = -ENODEV;
10229 goto err_locked;
10230 }
10231 }
10232
10233
f55fc2a5
PZ
10234 /*
10235 * Must be under the same ctx::mutex as perf_install_in_context(),
10236 * because we need to serialize with concurrent event creation.
10237 */
10238 if (!exclusive_event_installable(event, ctx)) {
10239 /* exclusive and group stuff are assumed mutually exclusive */
10240 WARN_ON_ONCE(move_group);
f63a8daa 10241
f55fc2a5
PZ
10242 err = -EBUSY;
10243 goto err_locked;
10244 }
f63a8daa 10245
f55fc2a5
PZ
10246 WARN_ON_ONCE(ctx->parent_ctx);
10247
79c9ce57
PZ
10248 /*
10249 * This is the point on no return; we cannot fail hereafter. This is
10250 * where we start modifying current state.
10251 */
10252
f55fc2a5 10253 if (move_group) {
f63a8daa
PZ
10254 /*
10255 * See perf_event_ctx_lock() for comments on the details
10256 * of swizzling perf_event::ctx.
10257 */
45a0e07a 10258 perf_remove_from_context(group_leader, 0);
279b5165 10259 put_ctx(gctx);
0231bb53 10260
b04243ef
PZ
10261 list_for_each_entry(sibling, &group_leader->sibling_list,
10262 group_entry) {
45a0e07a 10263 perf_remove_from_context(sibling, 0);
b04243ef
PZ
10264 put_ctx(gctx);
10265 }
b04243ef 10266
f63a8daa
PZ
10267 /*
10268 * Wait for everybody to stop referencing the events through
10269 * the old lists, before installing it on new lists.
10270 */
0cda4c02 10271 synchronize_rcu();
f63a8daa 10272
8f95b435
PZI
10273 /*
10274 * Install the group siblings before the group leader.
10275 *
10276 * Because a group leader will try and install the entire group
10277 * (through the sibling list, which is still in-tact), we can
10278 * end up with siblings installed in the wrong context.
10279 *
10280 * By installing siblings first we NO-OP because they're not
10281 * reachable through the group lists.
10282 */
b04243ef
PZ
10283 list_for_each_entry(sibling, &group_leader->sibling_list,
10284 group_entry) {
8f95b435 10285 perf_event__state_init(sibling);
9fc81d87 10286 perf_install_in_context(ctx, sibling, sibling->cpu);
b04243ef
PZ
10287 get_ctx(ctx);
10288 }
8f95b435
PZI
10289
10290 /*
10291 * Removing from the context ends up with disabled
10292 * event. What we want here is event in the initial
10293 * startup state, ready to be add into new context.
10294 */
10295 perf_event__state_init(group_leader);
10296 perf_install_in_context(ctx, group_leader, group_leader->cpu);
10297 get_ctx(ctx);
bed5b25a
AS
10298 }
10299
f73e22ab
PZ
10300 /*
10301 * Precalculate sample_data sizes; do while holding ctx::mutex such
10302 * that we're serialized against further additions and before
10303 * perf_install_in_context() which is the point the event is active and
10304 * can use these values.
10305 */
10306 perf_event__header_size(event);
10307 perf_event__id_header_size(event);
10308
78cd2c74
PZ
10309 event->owner = current;
10310
e2d37cd2 10311 perf_install_in_context(ctx, event, event->cpu);
fe4b04fa 10312 perf_unpin_context(ctx);
f63a8daa 10313
f55fc2a5 10314 if (move_group)
321027c1 10315 perf_event_ctx_unlock(group_leader, gctx);
d859e29f 10316 mutex_unlock(&ctx->mutex);
9b51f66d 10317
79c9ce57
PZ
10318 if (task) {
10319 mutex_unlock(&task->signal->cred_guard_mutex);
10320 put_task_struct(task);
10321 }
10322
cdd6c482
IM
10323 mutex_lock(&current->perf_event_mutex);
10324 list_add_tail(&event->owner_entry, &current->perf_event_list);
10325 mutex_unlock(&current->perf_event_mutex);
082ff5a2 10326
8a49542c
PZ
10327 /*
10328 * Drop the reference on the group_event after placing the
10329 * new event on the sibling_list. This ensures destruction
10330 * of the group leader will find the pointer to itself in
10331 * perf_group_detach().
10332 */
2903ff01 10333 fdput(group);
ea635c64
AV
10334 fd_install(event_fd, event_file);
10335 return event_fd;
0793a61d 10336
f55fc2a5
PZ
10337err_locked:
10338 if (move_group)
321027c1 10339 perf_event_ctx_unlock(group_leader, gctx);
f55fc2a5
PZ
10340 mutex_unlock(&ctx->mutex);
10341/* err_file: */
10342 fput(event_file);
c3f00c70 10343err_context:
fe4b04fa 10344 perf_unpin_context(ctx);
ea635c64 10345 put_ctx(ctx);
c6be5a5c 10346err_alloc:
13005627
PZ
10347 /*
10348 * If event_file is set, the fput() above will have called ->release()
10349 * and that will take care of freeing the event.
10350 */
10351 if (!event_file)
10352 free_event(event);
79c9ce57
PZ
10353err_cred:
10354 if (task)
10355 mutex_unlock(&task->signal->cred_guard_mutex);
1f4ee503 10356err_task:
e7d0bc04
PZ
10357 if (task)
10358 put_task_struct(task);
89a1e187 10359err_group_fd:
2903ff01 10360 fdput(group);
ea635c64
AV
10361err_fd:
10362 put_unused_fd(event_fd);
dc86cabe 10363 return err;
0793a61d
TG
10364}
10365
fb0459d7
AV
10366/**
10367 * perf_event_create_kernel_counter
10368 *
10369 * @attr: attributes of the counter to create
10370 * @cpu: cpu in which the counter is bound
38a81da2 10371 * @task: task to profile (NULL for percpu)
fb0459d7
AV
10372 */
10373struct perf_event *
10374perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
38a81da2 10375 struct task_struct *task,
4dc0da86
AK
10376 perf_overflow_handler_t overflow_handler,
10377 void *context)
fb0459d7 10378{
fb0459d7 10379 struct perf_event_context *ctx;
c3f00c70 10380 struct perf_event *event;
fb0459d7 10381 int err;
d859e29f 10382
fb0459d7
AV
10383 /*
10384 * Get the target context (task or percpu):
10385 */
d859e29f 10386
4dc0da86 10387 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
79dff51e 10388 overflow_handler, context, -1);
c3f00c70
PZ
10389 if (IS_ERR(event)) {
10390 err = PTR_ERR(event);
10391 goto err;
10392 }
d859e29f 10393
f8697762 10394 /* Mark owner so we could distinguish it from user events. */
63b6da39 10395 event->owner = TASK_TOMBSTONE;
f8697762 10396
4af57ef2 10397 ctx = find_get_context(event->pmu, task, event);
c6567f64
FW
10398 if (IS_ERR(ctx)) {
10399 err = PTR_ERR(ctx);
c3f00c70 10400 goto err_free;
d859e29f 10401 }
fb0459d7 10402
fb0459d7
AV
10403 WARN_ON_ONCE(ctx->parent_ctx);
10404 mutex_lock(&ctx->mutex);
84c4e620
PZ
10405 if (ctx->task == TASK_TOMBSTONE) {
10406 err = -ESRCH;
10407 goto err_unlock;
10408 }
10409
a63fbed7
TG
10410 if (!task) {
10411 /*
10412 * Check if the @cpu we're creating an event for is online.
10413 *
10414 * We use the perf_cpu_context::ctx::mutex to serialize against
10415 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
10416 */
10417 struct perf_cpu_context *cpuctx =
10418 container_of(ctx, struct perf_cpu_context, ctx);
10419 if (!cpuctx->online) {
10420 err = -ENODEV;
10421 goto err_unlock;
10422 }
10423 }
10424
bed5b25a 10425 if (!exclusive_event_installable(event, ctx)) {
bed5b25a 10426 err = -EBUSY;
84c4e620 10427 goto err_unlock;
bed5b25a
AS
10428 }
10429
fb0459d7 10430 perf_install_in_context(ctx, event, cpu);
fe4b04fa 10431 perf_unpin_context(ctx);
fb0459d7
AV
10432 mutex_unlock(&ctx->mutex);
10433
fb0459d7
AV
10434 return event;
10435
84c4e620
PZ
10436err_unlock:
10437 mutex_unlock(&ctx->mutex);
10438 perf_unpin_context(ctx);
10439 put_ctx(ctx);
c3f00c70
PZ
10440err_free:
10441 free_event(event);
10442err:
c6567f64 10443 return ERR_PTR(err);
9b51f66d 10444}
fb0459d7 10445EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
9b51f66d 10446
0cda4c02
YZ
10447void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
10448{
10449 struct perf_event_context *src_ctx;
10450 struct perf_event_context *dst_ctx;
10451 struct perf_event *event, *tmp;
10452 LIST_HEAD(events);
10453
10454 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
10455 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
10456
f63a8daa
PZ
10457 /*
10458 * See perf_event_ctx_lock() for comments on the details
10459 * of swizzling perf_event::ctx.
10460 */
10461 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
0cda4c02
YZ
10462 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
10463 event_entry) {
45a0e07a 10464 perf_remove_from_context(event, 0);
9a545de0 10465 unaccount_event_cpu(event, src_cpu);
0cda4c02 10466 put_ctx(src_ctx);
9886167d 10467 list_add(&event->migrate_entry, &events);
0cda4c02 10468 }
0cda4c02 10469
8f95b435
PZI
10470 /*
10471 * Wait for the events to quiesce before re-instating them.
10472 */
0cda4c02
YZ
10473 synchronize_rcu();
10474
8f95b435
PZI
10475 /*
10476 * Re-instate events in 2 passes.
10477 *
10478 * Skip over group leaders and only install siblings on this first
10479 * pass, siblings will not get enabled without a leader, however a
10480 * leader will enable its siblings, even if those are still on the old
10481 * context.
10482 */
10483 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10484 if (event->group_leader == event)
10485 continue;
10486
10487 list_del(&event->migrate_entry);
10488 if (event->state >= PERF_EVENT_STATE_OFF)
10489 event->state = PERF_EVENT_STATE_INACTIVE;
10490 account_event_cpu(event, dst_cpu);
10491 perf_install_in_context(dst_ctx, event, dst_cpu);
10492 get_ctx(dst_ctx);
10493 }
10494
10495 /*
10496 * Once all the siblings are setup properly, install the group leaders
10497 * to make it go.
10498 */
9886167d
PZ
10499 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10500 list_del(&event->migrate_entry);
0cda4c02
YZ
10501 if (event->state >= PERF_EVENT_STATE_OFF)
10502 event->state = PERF_EVENT_STATE_INACTIVE;
9a545de0 10503 account_event_cpu(event, dst_cpu);
0cda4c02
YZ
10504 perf_install_in_context(dst_ctx, event, dst_cpu);
10505 get_ctx(dst_ctx);
10506 }
10507 mutex_unlock(&dst_ctx->mutex);
f63a8daa 10508 mutex_unlock(&src_ctx->mutex);
0cda4c02
YZ
10509}
10510EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
10511
cdd6c482 10512static void sync_child_event(struct perf_event *child_event,
38b200d6 10513 struct task_struct *child)
d859e29f 10514{
cdd6c482 10515 struct perf_event *parent_event = child_event->parent;
8bc20959 10516 u64 child_val;
d859e29f 10517
cdd6c482
IM
10518 if (child_event->attr.inherit_stat)
10519 perf_event_read_event(child_event, child);
38b200d6 10520
b5e58793 10521 child_val = perf_event_count(child_event);
d859e29f
PM
10522
10523 /*
10524 * Add back the child's count to the parent's count:
10525 */
a6e6dea6 10526 atomic64_add(child_val, &parent_event->child_count);
cdd6c482
IM
10527 atomic64_add(child_event->total_time_enabled,
10528 &parent_event->child_total_time_enabled);
10529 atomic64_add(child_event->total_time_running,
10530 &parent_event->child_total_time_running);
d859e29f
PM
10531}
10532
9b51f66d 10533static void
8ba289b8
PZ
10534perf_event_exit_event(struct perf_event *child_event,
10535 struct perf_event_context *child_ctx,
10536 struct task_struct *child)
9b51f66d 10537{
8ba289b8
PZ
10538 struct perf_event *parent_event = child_event->parent;
10539
1903d50c
PZ
10540 /*
10541 * Do not destroy the 'original' grouping; because of the context
10542 * switch optimization the original events could've ended up in a
10543 * random child task.
10544 *
10545 * If we were to destroy the original group, all group related
10546 * operations would cease to function properly after this random
10547 * child dies.
10548 *
10549 * Do destroy all inherited groups, we don't care about those
10550 * and being thorough is better.
10551 */
32132a3d
PZ
10552 raw_spin_lock_irq(&child_ctx->lock);
10553 WARN_ON_ONCE(child_ctx->is_active);
10554
8ba289b8 10555 if (parent_event)
32132a3d
PZ
10556 perf_group_detach(child_event);
10557 list_del_event(child_event, child_ctx);
a69b0ca4 10558 child_event->state = PERF_EVENT_STATE_EXIT; /* is_event_hup() */
32132a3d 10559 raw_spin_unlock_irq(&child_ctx->lock);
0cc0c027 10560
9b51f66d 10561 /*
8ba289b8 10562 * Parent events are governed by their filedesc, retain them.
9b51f66d 10563 */
8ba289b8 10564 if (!parent_event) {
179033b3 10565 perf_event_wakeup(child_event);
8ba289b8 10566 return;
4bcf349a 10567 }
8ba289b8
PZ
10568 /*
10569 * Child events can be cleaned up.
10570 */
10571
10572 sync_child_event(child_event, child);
10573
10574 /*
10575 * Remove this event from the parent's list
10576 */
10577 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
10578 mutex_lock(&parent_event->child_mutex);
10579 list_del_init(&child_event->child_list);
10580 mutex_unlock(&parent_event->child_mutex);
10581
10582 /*
10583 * Kick perf_poll() for is_event_hup().
10584 */
10585 perf_event_wakeup(parent_event);
10586 free_event(child_event);
10587 put_event(parent_event);
9b51f66d
IM
10588}
10589
8dc85d54 10590static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
9b51f66d 10591{
211de6eb 10592 struct perf_event_context *child_ctx, *clone_ctx = NULL;
63b6da39 10593 struct perf_event *child_event, *next;
63b6da39
PZ
10594
10595 WARN_ON_ONCE(child != current);
9b51f66d 10596
6a3351b6 10597 child_ctx = perf_pin_task_context(child, ctxn);
63b6da39 10598 if (!child_ctx)
9b51f66d
IM
10599 return;
10600
ad3a37de 10601 /*
6a3351b6
PZ
10602 * In order to reduce the amount of tricky in ctx tear-down, we hold
10603 * ctx::mutex over the entire thing. This serializes against almost
10604 * everything that wants to access the ctx.
10605 *
10606 * The exception is sys_perf_event_open() /
10607 * perf_event_create_kernel_count() which does find_get_context()
10608 * without ctx::mutex (it cannot because of the move_group double mutex
10609 * lock thing). See the comments in perf_install_in_context().
ad3a37de 10610 */
6a3351b6 10611 mutex_lock(&child_ctx->mutex);
c93f7669
PM
10612
10613 /*
6a3351b6
PZ
10614 * In a single ctx::lock section, de-schedule the events and detach the
10615 * context from the task such that we cannot ever get it scheduled back
10616 * in.
c93f7669 10617 */
6a3351b6 10618 raw_spin_lock_irq(&child_ctx->lock);
487f05e1 10619 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
4a1c0f26 10620
71a851b4 10621 /*
63b6da39
PZ
10622 * Now that the context is inactive, destroy the task <-> ctx relation
10623 * and mark the context dead.
71a851b4 10624 */
63b6da39
PZ
10625 RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
10626 put_ctx(child_ctx); /* cannot be last */
10627 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
10628 put_task_struct(current); /* cannot be last */
4a1c0f26 10629
211de6eb 10630 clone_ctx = unclone_ctx(child_ctx);
6a3351b6 10631 raw_spin_unlock_irq(&child_ctx->lock);
9f498cc5 10632
211de6eb
PZ
10633 if (clone_ctx)
10634 put_ctx(clone_ctx);
4a1c0f26 10635
9f498cc5 10636 /*
cdd6c482
IM
10637 * Report the task dead after unscheduling the events so that we
10638 * won't get any samples after PERF_RECORD_EXIT. We can however still
10639 * get a few PERF_RECORD_READ events.
9f498cc5 10640 */
cdd6c482 10641 perf_event_task(child, child_ctx, 0);
a63eaf34 10642
ebf905fc 10643 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
8ba289b8 10644 perf_event_exit_event(child_event, child_ctx, child);
8bc20959 10645
a63eaf34
PM
10646 mutex_unlock(&child_ctx->mutex);
10647
10648 put_ctx(child_ctx);
9b51f66d
IM
10649}
10650
8dc85d54
PZ
10651/*
10652 * When a child task exits, feed back event values to parent events.
79c9ce57
PZ
10653 *
10654 * Can be called with cred_guard_mutex held when called from
10655 * install_exec_creds().
8dc85d54
PZ
10656 */
10657void perf_event_exit_task(struct task_struct *child)
10658{
8882135b 10659 struct perf_event *event, *tmp;
8dc85d54
PZ
10660 int ctxn;
10661
8882135b
PZ
10662 mutex_lock(&child->perf_event_mutex);
10663 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
10664 owner_entry) {
10665 list_del_init(&event->owner_entry);
10666
10667 /*
10668 * Ensure the list deletion is visible before we clear
10669 * the owner, closes a race against perf_release() where
10670 * we need to serialize on the owner->perf_event_mutex.
10671 */
f47c02c0 10672 smp_store_release(&event->owner, NULL);
8882135b
PZ
10673 }
10674 mutex_unlock(&child->perf_event_mutex);
10675
8dc85d54
PZ
10676 for_each_task_context_nr(ctxn)
10677 perf_event_exit_task_context(child, ctxn);
4e93ad60
JO
10678
10679 /*
10680 * The perf_event_exit_task_context calls perf_event_task
10681 * with child's task_ctx, which generates EXIT events for
10682 * child contexts and sets child->perf_event_ctxp[] to NULL.
10683 * At this point we need to send EXIT events to cpu contexts.
10684 */
10685 perf_event_task(child, NULL, 0);
8dc85d54
PZ
10686}
10687
889ff015
FW
10688static void perf_free_event(struct perf_event *event,
10689 struct perf_event_context *ctx)
10690{
10691 struct perf_event *parent = event->parent;
10692
10693 if (WARN_ON_ONCE(!parent))
10694 return;
10695
10696 mutex_lock(&parent->child_mutex);
10697 list_del_init(&event->child_list);
10698 mutex_unlock(&parent->child_mutex);
10699
a6fa941d 10700 put_event(parent);
889ff015 10701
652884fe 10702 raw_spin_lock_irq(&ctx->lock);
8a49542c 10703 perf_group_detach(event);
889ff015 10704 list_del_event(event, ctx);
652884fe 10705 raw_spin_unlock_irq(&ctx->lock);
889ff015
FW
10706 free_event(event);
10707}
10708
bbbee908 10709/*
652884fe 10710 * Free an unexposed, unused context as created by inheritance by
8dc85d54 10711 * perf_event_init_task below, used by fork() in case of fail.
652884fe
PZ
10712 *
10713 * Not all locks are strictly required, but take them anyway to be nice and
10714 * help out with the lockdep assertions.
bbbee908 10715 */
cdd6c482 10716void perf_event_free_task(struct task_struct *task)
bbbee908 10717{
8dc85d54 10718 struct perf_event_context *ctx;
cdd6c482 10719 struct perf_event *event, *tmp;
8dc85d54 10720 int ctxn;
bbbee908 10721
8dc85d54
PZ
10722 for_each_task_context_nr(ctxn) {
10723 ctx = task->perf_event_ctxp[ctxn];
10724 if (!ctx)
10725 continue;
bbbee908 10726
8dc85d54 10727 mutex_lock(&ctx->mutex);
e552a838
PZ
10728 raw_spin_lock_irq(&ctx->lock);
10729 /*
10730 * Destroy the task <-> ctx relation and mark the context dead.
10731 *
10732 * This is important because even though the task hasn't been
10733 * exposed yet the context has been (through child_list).
10734 */
10735 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
10736 WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
10737 put_task_struct(task); /* cannot be last */
10738 raw_spin_unlock_irq(&ctx->lock);
bbbee908 10739
15121c78 10740 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
8dc85d54 10741 perf_free_event(event, ctx);
bbbee908 10742
8dc85d54 10743 mutex_unlock(&ctx->mutex);
8dc85d54
PZ
10744 put_ctx(ctx);
10745 }
889ff015
FW
10746}
10747
4e231c79
PZ
10748void perf_event_delayed_put(struct task_struct *task)
10749{
10750 int ctxn;
10751
10752 for_each_task_context_nr(ctxn)
10753 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
10754}
10755
e03e7ee3 10756struct file *perf_event_get(unsigned int fd)
ffe8690c 10757{
e03e7ee3 10758 struct file *file;
ffe8690c 10759
e03e7ee3
AS
10760 file = fget_raw(fd);
10761 if (!file)
10762 return ERR_PTR(-EBADF);
ffe8690c 10763
e03e7ee3
AS
10764 if (file->f_op != &perf_fops) {
10765 fput(file);
10766 return ERR_PTR(-EBADF);
10767 }
ffe8690c 10768
e03e7ee3 10769 return file;
ffe8690c
KX
10770}
10771
10772const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
10773{
10774 if (!event)
10775 return ERR_PTR(-EINVAL);
10776
10777 return &event->attr;
10778}
10779
97dee4f3 10780/*
d8a8cfc7
PZ
10781 * Inherit a event from parent task to child task.
10782 *
10783 * Returns:
10784 * - valid pointer on success
10785 * - NULL for orphaned events
10786 * - IS_ERR() on error
97dee4f3
PZ
10787 */
10788static struct perf_event *
10789inherit_event(struct perf_event *parent_event,
10790 struct task_struct *parent,
10791 struct perf_event_context *parent_ctx,
10792 struct task_struct *child,
10793 struct perf_event *group_leader,
10794 struct perf_event_context *child_ctx)
10795{
1929def9 10796 enum perf_event_active_state parent_state = parent_event->state;
97dee4f3 10797 struct perf_event *child_event;
cee010ec 10798 unsigned long flags;
97dee4f3
PZ
10799
10800 /*
10801 * Instead of creating recursive hierarchies of events,
10802 * we link inherited events back to the original parent,
10803 * which has a filp for sure, which we use as the reference
10804 * count:
10805 */
10806 if (parent_event->parent)
10807 parent_event = parent_event->parent;
10808
10809 child_event = perf_event_alloc(&parent_event->attr,
10810 parent_event->cpu,
d580ff86 10811 child,
97dee4f3 10812 group_leader, parent_event,
79dff51e 10813 NULL, NULL, -1);
97dee4f3
PZ
10814 if (IS_ERR(child_event))
10815 return child_event;
a6fa941d 10816
c6e5b732
PZ
10817 /*
10818 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
10819 * must be under the same lock in order to serialize against
10820 * perf_event_release_kernel(), such that either we must observe
10821 * is_orphaned_event() or they will observe us on the child_list.
10822 */
10823 mutex_lock(&parent_event->child_mutex);
fadfe7be
JO
10824 if (is_orphaned_event(parent_event) ||
10825 !atomic_long_inc_not_zero(&parent_event->refcount)) {
c6e5b732 10826 mutex_unlock(&parent_event->child_mutex);
a6fa941d
AV
10827 free_event(child_event);
10828 return NULL;
10829 }
10830
97dee4f3
PZ
10831 get_ctx(child_ctx);
10832
10833 /*
10834 * Make the child state follow the state of the parent event,
10835 * not its attr.disabled bit. We hold the parent's mutex,
10836 * so we won't race with perf_event_{en, dis}able_family.
10837 */
1929def9 10838 if (parent_state >= PERF_EVENT_STATE_INACTIVE)
97dee4f3
PZ
10839 child_event->state = PERF_EVENT_STATE_INACTIVE;
10840 else
10841 child_event->state = PERF_EVENT_STATE_OFF;
10842
10843 if (parent_event->attr.freq) {
10844 u64 sample_period = parent_event->hw.sample_period;
10845 struct hw_perf_event *hwc = &child_event->hw;
10846
10847 hwc->sample_period = sample_period;
10848 hwc->last_period = sample_period;
10849
10850 local64_set(&hwc->period_left, sample_period);
10851 }
10852
10853 child_event->ctx = child_ctx;
10854 child_event->overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
10855 child_event->overflow_handler_context
10856 = parent_event->overflow_handler_context;
97dee4f3 10857
614b6780
TG
10858 /*
10859 * Precalculate sample_data sizes
10860 */
10861 perf_event__header_size(child_event);
6844c09d 10862 perf_event__id_header_size(child_event);
614b6780 10863
97dee4f3
PZ
10864 /*
10865 * Link it up in the child's context:
10866 */
cee010ec 10867 raw_spin_lock_irqsave(&child_ctx->lock, flags);
97dee4f3 10868 add_event_to_ctx(child_event, child_ctx);
cee010ec 10869 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
97dee4f3 10870
97dee4f3
PZ
10871 /*
10872 * Link this into the parent event's child list
10873 */
97dee4f3
PZ
10874 list_add_tail(&child_event->child_list, &parent_event->child_list);
10875 mutex_unlock(&parent_event->child_mutex);
10876
10877 return child_event;
10878}
10879
d8a8cfc7
PZ
10880/*
10881 * Inherits an event group.
10882 *
10883 * This will quietly suppress orphaned events; !inherit_event() is not an error.
10884 * This matches with perf_event_release_kernel() removing all child events.
10885 *
10886 * Returns:
10887 * - 0 on success
10888 * - <0 on error
10889 */
97dee4f3
PZ
10890static int inherit_group(struct perf_event *parent_event,
10891 struct task_struct *parent,
10892 struct perf_event_context *parent_ctx,
10893 struct task_struct *child,
10894 struct perf_event_context *child_ctx)
10895{
10896 struct perf_event *leader;
10897 struct perf_event *sub;
10898 struct perf_event *child_ctr;
10899
10900 leader = inherit_event(parent_event, parent, parent_ctx,
10901 child, NULL, child_ctx);
10902 if (IS_ERR(leader))
10903 return PTR_ERR(leader);
d8a8cfc7
PZ
10904 /*
10905 * @leader can be NULL here because of is_orphaned_event(). In this
10906 * case inherit_event() will create individual events, similar to what
10907 * perf_group_detach() would do anyway.
10908 */
97dee4f3
PZ
10909 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
10910 child_ctr = inherit_event(sub, parent, parent_ctx,
10911 child, leader, child_ctx);
10912 if (IS_ERR(child_ctr))
10913 return PTR_ERR(child_ctr);
10914 }
10915 return 0;
889ff015
FW
10916}
10917
d8a8cfc7
PZ
10918/*
10919 * Creates the child task context and tries to inherit the event-group.
10920 *
10921 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
10922 * inherited_all set when we 'fail' to inherit an orphaned event; this is
10923 * consistent with perf_event_release_kernel() removing all child events.
10924 *
10925 * Returns:
10926 * - 0 on success
10927 * - <0 on error
10928 */
889ff015
FW
10929static int
10930inherit_task_group(struct perf_event *event, struct task_struct *parent,
10931 struct perf_event_context *parent_ctx,
8dc85d54 10932 struct task_struct *child, int ctxn,
889ff015
FW
10933 int *inherited_all)
10934{
10935 int ret;
8dc85d54 10936 struct perf_event_context *child_ctx;
889ff015
FW
10937
10938 if (!event->attr.inherit) {
10939 *inherited_all = 0;
10940 return 0;
bbbee908
PZ
10941 }
10942
fe4b04fa 10943 child_ctx = child->perf_event_ctxp[ctxn];
889ff015
FW
10944 if (!child_ctx) {
10945 /*
10946 * This is executed from the parent task context, so
10947 * inherit events that have been marked for cloning.
10948 * First allocate and initialize a context for the
10949 * child.
10950 */
734df5ab 10951 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
889ff015
FW
10952 if (!child_ctx)
10953 return -ENOMEM;
bbbee908 10954
8dc85d54 10955 child->perf_event_ctxp[ctxn] = child_ctx;
889ff015
FW
10956 }
10957
10958 ret = inherit_group(event, parent, parent_ctx,
10959 child, child_ctx);
10960
10961 if (ret)
10962 *inherited_all = 0;
10963
10964 return ret;
bbbee908
PZ
10965}
10966
9b51f66d 10967/*
cdd6c482 10968 * Initialize the perf_event context in task_struct
9b51f66d 10969 */
985c8dcb 10970static int perf_event_init_context(struct task_struct *child, int ctxn)
9b51f66d 10971{
889ff015 10972 struct perf_event_context *child_ctx, *parent_ctx;
cdd6c482
IM
10973 struct perf_event_context *cloned_ctx;
10974 struct perf_event *event;
9b51f66d 10975 struct task_struct *parent = current;
564c2b21 10976 int inherited_all = 1;
dddd3379 10977 unsigned long flags;
6ab423e0 10978 int ret = 0;
9b51f66d 10979
8dc85d54 10980 if (likely(!parent->perf_event_ctxp[ctxn]))
6ab423e0
PZ
10981 return 0;
10982
ad3a37de 10983 /*
25346b93
PM
10984 * If the parent's context is a clone, pin it so it won't get
10985 * swapped under us.
ad3a37de 10986 */
8dc85d54 10987 parent_ctx = perf_pin_task_context(parent, ctxn);
ffb4ef21
PZ
10988 if (!parent_ctx)
10989 return 0;
25346b93 10990
ad3a37de
PM
10991 /*
10992 * No need to check if parent_ctx != NULL here; since we saw
10993 * it non-NULL earlier, the only reason for it to become NULL
10994 * is if we exit, and since we're currently in the middle of
10995 * a fork we can't be exiting at the same time.
10996 */
ad3a37de 10997
9b51f66d
IM
10998 /*
10999 * Lock the parent list. No need to lock the child - not PID
11000 * hashed yet and not running, so nobody can access it.
11001 */
d859e29f 11002 mutex_lock(&parent_ctx->mutex);
9b51f66d
IM
11003
11004 /*
11005 * We dont have to disable NMIs - we are only looking at
11006 * the list, not manipulating it:
11007 */
889ff015 11008 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
8dc85d54
PZ
11009 ret = inherit_task_group(event, parent, parent_ctx,
11010 child, ctxn, &inherited_all);
889ff015 11011 if (ret)
e7cc4865 11012 goto out_unlock;
889ff015 11013 }
b93f7978 11014
dddd3379
TG
11015 /*
11016 * We can't hold ctx->lock when iterating the ->flexible_group list due
11017 * to allocations, but we need to prevent rotation because
11018 * rotate_ctx() will change the list from interrupt context.
11019 */
11020 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
11021 parent_ctx->rotate_disable = 1;
11022 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
11023
889ff015 11024 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
8dc85d54
PZ
11025 ret = inherit_task_group(event, parent, parent_ctx,
11026 child, ctxn, &inherited_all);
889ff015 11027 if (ret)
e7cc4865 11028 goto out_unlock;
564c2b21
PM
11029 }
11030
dddd3379
TG
11031 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
11032 parent_ctx->rotate_disable = 0;
dddd3379 11033
8dc85d54 11034 child_ctx = child->perf_event_ctxp[ctxn];
889ff015 11035
05cbaa28 11036 if (child_ctx && inherited_all) {
564c2b21
PM
11037 /*
11038 * Mark the child context as a clone of the parent
11039 * context, or of whatever the parent is a clone of.
c5ed5145
PZ
11040 *
11041 * Note that if the parent is a clone, the holding of
11042 * parent_ctx->lock avoids it from being uncloned.
564c2b21 11043 */
c5ed5145 11044 cloned_ctx = parent_ctx->parent_ctx;
ad3a37de
PM
11045 if (cloned_ctx) {
11046 child_ctx->parent_ctx = cloned_ctx;
25346b93 11047 child_ctx->parent_gen = parent_ctx->parent_gen;
564c2b21
PM
11048 } else {
11049 child_ctx->parent_ctx = parent_ctx;
11050 child_ctx->parent_gen = parent_ctx->generation;
11051 }
11052 get_ctx(child_ctx->parent_ctx);
9b51f66d
IM
11053 }
11054
c5ed5145 11055 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
e7cc4865 11056out_unlock:
d859e29f 11057 mutex_unlock(&parent_ctx->mutex);
6ab423e0 11058
25346b93 11059 perf_unpin_context(parent_ctx);
fe4b04fa 11060 put_ctx(parent_ctx);
ad3a37de 11061
6ab423e0 11062 return ret;
9b51f66d
IM
11063}
11064
8dc85d54
PZ
11065/*
11066 * Initialize the perf_event context in task_struct
11067 */
11068int perf_event_init_task(struct task_struct *child)
11069{
11070 int ctxn, ret;
11071
8550d7cb
ON
11072 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
11073 mutex_init(&child->perf_event_mutex);
11074 INIT_LIST_HEAD(&child->perf_event_list);
11075
8dc85d54
PZ
11076 for_each_task_context_nr(ctxn) {
11077 ret = perf_event_init_context(child, ctxn);
6c72e350
PZ
11078 if (ret) {
11079 perf_event_free_task(child);
8dc85d54 11080 return ret;
6c72e350 11081 }
8dc85d54
PZ
11082 }
11083
11084 return 0;
11085}
11086
220b140b
PM
11087static void __init perf_event_init_all_cpus(void)
11088{
b28ab83c 11089 struct swevent_htable *swhash;
220b140b 11090 int cpu;
220b140b 11091
a63fbed7
TG
11092 zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
11093
220b140b 11094 for_each_possible_cpu(cpu) {
b28ab83c
PZ
11095 swhash = &per_cpu(swevent_htable, cpu);
11096 mutex_init(&swhash->hlist_mutex);
2fde4f94 11097 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
f2fb6bef
KL
11098
11099 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
11100 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
e48c1788 11101
058fe1c0
DCC
11102#ifdef CONFIG_CGROUP_PERF
11103 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
11104#endif
e48c1788 11105 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
220b140b
PM
11106 }
11107}
11108
a63fbed7 11109void perf_swevent_init_cpu(unsigned int cpu)
0793a61d 11110{
108b02cf 11111 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
0793a61d 11112
b28ab83c 11113 mutex_lock(&swhash->hlist_mutex);
059fcd8c 11114 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
76e1d904
FW
11115 struct swevent_hlist *hlist;
11116
b28ab83c
PZ
11117 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
11118 WARN_ON(!hlist);
11119 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 11120 }
b28ab83c 11121 mutex_unlock(&swhash->hlist_mutex);
0793a61d
TG
11122}
11123
2965faa5 11124#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
108b02cf 11125static void __perf_event_exit_context(void *__info)
0793a61d 11126{
108b02cf 11127 struct perf_event_context *ctx = __info;
fae3fde6
PZ
11128 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
11129 struct perf_event *event;
0793a61d 11130
fae3fde6 11131 raw_spin_lock(&ctx->lock);
0ee098c9 11132 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
fae3fde6 11133 list_for_each_entry(event, &ctx->event_list, event_entry)
45a0e07a 11134 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
fae3fde6 11135 raw_spin_unlock(&ctx->lock);
0793a61d 11136}
108b02cf
PZ
11137
11138static void perf_event_exit_cpu_context(int cpu)
11139{
a63fbed7 11140 struct perf_cpu_context *cpuctx;
108b02cf
PZ
11141 struct perf_event_context *ctx;
11142 struct pmu *pmu;
108b02cf 11143
a63fbed7
TG
11144 mutex_lock(&pmus_lock);
11145 list_for_each_entry(pmu, &pmus, entry) {
11146 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11147 ctx = &cpuctx->ctx;
108b02cf
PZ
11148
11149 mutex_lock(&ctx->mutex);
11150 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
a63fbed7 11151 cpuctx->online = 0;
108b02cf
PZ
11152 mutex_unlock(&ctx->mutex);
11153 }
a63fbed7
TG
11154 cpumask_clear_cpu(cpu, perf_online_mask);
11155 mutex_unlock(&pmus_lock);
108b02cf 11156}
00e16c3d
TG
11157#else
11158
11159static void perf_event_exit_cpu_context(int cpu) { }
11160
11161#endif
108b02cf 11162
a63fbed7
TG
11163int perf_event_init_cpu(unsigned int cpu)
11164{
11165 struct perf_cpu_context *cpuctx;
11166 struct perf_event_context *ctx;
11167 struct pmu *pmu;
11168
11169 perf_swevent_init_cpu(cpu);
11170
11171 mutex_lock(&pmus_lock);
11172 cpumask_set_cpu(cpu, perf_online_mask);
11173 list_for_each_entry(pmu, &pmus, entry) {
11174 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11175 ctx = &cpuctx->ctx;
11176
11177 mutex_lock(&ctx->mutex);
11178 cpuctx->online = 1;
11179 mutex_unlock(&ctx->mutex);
11180 }
11181 mutex_unlock(&pmus_lock);
11182
11183 return 0;
11184}
11185
00e16c3d 11186int perf_event_exit_cpu(unsigned int cpu)
0793a61d 11187{
e3703f8c 11188 perf_event_exit_cpu_context(cpu);
00e16c3d 11189 return 0;
0793a61d 11190}
0793a61d 11191
c277443c
PZ
11192static int
11193perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
11194{
11195 int cpu;
11196
11197 for_each_online_cpu(cpu)
11198 perf_event_exit_cpu(cpu);
11199
11200 return NOTIFY_OK;
11201}
11202
11203/*
11204 * Run the perf reboot notifier at the very last possible moment so that
11205 * the generic watchdog code runs as long as possible.
11206 */
11207static struct notifier_block perf_reboot_notifier = {
11208 .notifier_call = perf_reboot,
11209 .priority = INT_MIN,
11210};
11211
cdd6c482 11212void __init perf_event_init(void)
0793a61d 11213{
3c502e7a
JW
11214 int ret;
11215
2e80a82a
PZ
11216 idr_init(&pmu_idr);
11217
220b140b 11218 perf_event_init_all_cpus();
b0a873eb 11219 init_srcu_struct(&pmus_srcu);
2e80a82a
PZ
11220 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
11221 perf_pmu_register(&perf_cpu_clock, NULL, -1);
11222 perf_pmu_register(&perf_task_clock, NULL, -1);
b0a873eb 11223 perf_tp_register();
00e16c3d 11224 perf_event_init_cpu(smp_processor_id());
c277443c 11225 register_reboot_notifier(&perf_reboot_notifier);
3c502e7a
JW
11226
11227 ret = init_hw_breakpoint();
11228 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
b2029520 11229
b01c3a00
JO
11230 /*
11231 * Build time assertion that we keep the data_head at the intended
11232 * location. IOW, validation we got the __reserved[] size right.
11233 */
11234 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
11235 != 1024);
0793a61d 11236}
abe43400 11237
fd979c01
CS
11238ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
11239 char *page)
11240{
11241 struct perf_pmu_events_attr *pmu_attr =
11242 container_of(attr, struct perf_pmu_events_attr, attr);
11243
11244 if (pmu_attr->event_str)
11245 return sprintf(page, "%s\n", pmu_attr->event_str);
11246
11247 return 0;
11248}
675965b0 11249EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
fd979c01 11250
abe43400
PZ
11251static int __init perf_event_sysfs_init(void)
11252{
11253 struct pmu *pmu;
11254 int ret;
11255
11256 mutex_lock(&pmus_lock);
11257
11258 ret = bus_register(&pmu_bus);
11259 if (ret)
11260 goto unlock;
11261
11262 list_for_each_entry(pmu, &pmus, entry) {
11263 if (!pmu->name || pmu->type < 0)
11264 continue;
11265
11266 ret = pmu_dev_alloc(pmu);
11267 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
11268 }
11269 pmu_bus_running = 1;
11270 ret = 0;
11271
11272unlock:
11273 mutex_unlock(&pmus_lock);
11274
11275 return ret;
11276}
11277device_initcall(perf_event_sysfs_init);
e5d1367f
SE
11278
11279#ifdef CONFIG_CGROUP_PERF
eb95419b
TH
11280static struct cgroup_subsys_state *
11281perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
e5d1367f
SE
11282{
11283 struct perf_cgroup *jc;
e5d1367f 11284
1b15d055 11285 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
e5d1367f
SE
11286 if (!jc)
11287 return ERR_PTR(-ENOMEM);
11288
e5d1367f
SE
11289 jc->info = alloc_percpu(struct perf_cgroup_info);
11290 if (!jc->info) {
11291 kfree(jc);
11292 return ERR_PTR(-ENOMEM);
11293 }
11294
e5d1367f
SE
11295 return &jc->css;
11296}
11297
eb95419b 11298static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
e5d1367f 11299{
eb95419b
TH
11300 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
11301
e5d1367f
SE
11302 free_percpu(jc->info);
11303 kfree(jc);
11304}
11305
11306static int __perf_cgroup_move(void *info)
11307{
11308 struct task_struct *task = info;
ddaaf4e2 11309 rcu_read_lock();
e5d1367f 11310 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
ddaaf4e2 11311 rcu_read_unlock();
e5d1367f
SE
11312 return 0;
11313}
11314
1f7dd3e5 11315static void perf_cgroup_attach(struct cgroup_taskset *tset)
e5d1367f 11316{
bb9d97b6 11317 struct task_struct *task;
1f7dd3e5 11318 struct cgroup_subsys_state *css;
bb9d97b6 11319
1f7dd3e5 11320 cgroup_taskset_for_each(task, css, tset)
bb9d97b6 11321 task_function_call(task, __perf_cgroup_move, task);
e5d1367f
SE
11322}
11323
073219e9 11324struct cgroup_subsys perf_event_cgrp_subsys = {
92fb9748
TH
11325 .css_alloc = perf_cgroup_css_alloc,
11326 .css_free = perf_cgroup_css_free,
bb9d97b6 11327 .attach = perf_cgroup_attach,
968ebff1
TH
11328 /*
11329 * Implicitly enable on dfl hierarchy so that perf events can
11330 * always be filtered by cgroup2 path as long as perf_event
11331 * controller is not mounted on a legacy hierarchy.
11332 */
11333 .implicit_on_dfl = true,
8cfd8147 11334 .threaded = true,
e5d1367f
SE
11335};
11336#endif /* CONFIG_CGROUP_PERF */