]> git.ipfire.org Git - people/arne_f/kernel.git/blame - kernel/events/core.c
perf/x86/intel/uncore: Handle non-standard counter offset
[people/arne_f/kernel.git] / kernel / events / core.c
CommitLineData
0793a61d 1/*
57c0c15b 2 * Performance events core code:
0793a61d 3 *
98144511 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
e7e7ee2e 5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
90eec103 6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
d36b6910 7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
7b732a75 8 *
57c0c15b 9 * For licensing details see kernel-base/COPYING
0793a61d
TG
10 */
11
12#include <linux/fs.h>
b9cacc7b 13#include <linux/mm.h>
0793a61d
TG
14#include <linux/cpu.h>
15#include <linux/smp.h>
2e80a82a 16#include <linux/idr.h>
04289bb9 17#include <linux/file.h>
0793a61d 18#include <linux/poll.h>
5a0e3ad6 19#include <linux/slab.h>
76e1d904 20#include <linux/hash.h>
12351ef8 21#include <linux/tick.h>
0793a61d 22#include <linux/sysfs.h>
22a4f650 23#include <linux/dcache.h>
0793a61d 24#include <linux/percpu.h>
22a4f650 25#include <linux/ptrace.h>
c277443c 26#include <linux/reboot.h>
b9cacc7b 27#include <linux/vmstat.h>
abe43400 28#include <linux/device.h>
6e5fdeed 29#include <linux/export.h>
906010b2 30#include <linux/vmalloc.h>
b9cacc7b
PZ
31#include <linux/hardirq.h>
32#include <linux/rculist.h>
0793a61d
TG
33#include <linux/uaccess.h>
34#include <linux/syscalls.h>
35#include <linux/anon_inodes.h>
aa9c4c0f 36#include <linux/kernel_stat.h>
39bed6cb 37#include <linux/cgroup.h>
cdd6c482 38#include <linux/perf_event.h>
af658dca 39#include <linux/trace_events.h>
3c502e7a 40#include <linux/hw_breakpoint.h>
c5ebcedb 41#include <linux/mm_types.h>
c464c76e 42#include <linux/module.h>
f972eb63 43#include <linux/mman.h>
b3f20785 44#include <linux/compat.h>
2541517c
AS
45#include <linux/bpf.h>
46#include <linux/filter.h>
375637bc
AS
47#include <linux/namei.h>
48#include <linux/parser.h>
0793a61d 49
76369139
FW
50#include "internal.h"
51
4e193bd4
TB
52#include <asm/irq_regs.h>
53
272325c4
PZ
54typedef int (*remote_function_f)(void *);
55
fe4b04fa 56struct remote_function_call {
e7e7ee2e 57 struct task_struct *p;
272325c4 58 remote_function_f func;
e7e7ee2e
IM
59 void *info;
60 int ret;
fe4b04fa
PZ
61};
62
63static void remote_function(void *data)
64{
65 struct remote_function_call *tfc = data;
66 struct task_struct *p = tfc->p;
67
68 if (p) {
0da4cf3e
PZ
69 /* -EAGAIN */
70 if (task_cpu(p) != smp_processor_id())
71 return;
72
73 /*
74 * Now that we're on right CPU with IRQs disabled, we can test
75 * if we hit the right task without races.
76 */
77
78 tfc->ret = -ESRCH; /* No such (running) process */
79 if (p != current)
fe4b04fa
PZ
80 return;
81 }
82
83 tfc->ret = tfc->func(tfc->info);
84}
85
86/**
87 * task_function_call - call a function on the cpu on which a task runs
88 * @p: the task to evaluate
89 * @func: the function to be called
90 * @info: the function call argument
91 *
92 * Calls the function @func when the task is currently running. This might
93 * be on the current CPU, which just calls the function directly
94 *
95 * returns: @func return value, or
96 * -ESRCH - when the process isn't running
97 * -EAGAIN - when the process moved away
98 */
99static int
272325c4 100task_function_call(struct task_struct *p, remote_function_f func, void *info)
fe4b04fa
PZ
101{
102 struct remote_function_call data = {
e7e7ee2e
IM
103 .p = p,
104 .func = func,
105 .info = info,
0da4cf3e 106 .ret = -EAGAIN,
fe4b04fa 107 };
0da4cf3e 108 int ret;
fe4b04fa 109
0da4cf3e
PZ
110 do {
111 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
112 if (!ret)
113 ret = data.ret;
114 } while (ret == -EAGAIN);
fe4b04fa 115
0da4cf3e 116 return ret;
fe4b04fa
PZ
117}
118
119/**
120 * cpu_function_call - call a function on the cpu
121 * @func: the function to be called
122 * @info: the function call argument
123 *
124 * Calls the function @func on the remote cpu.
125 *
126 * returns: @func return value or -ENXIO when the cpu is offline
127 */
272325c4 128static int cpu_function_call(int cpu, remote_function_f func, void *info)
fe4b04fa
PZ
129{
130 struct remote_function_call data = {
e7e7ee2e
IM
131 .p = NULL,
132 .func = func,
133 .info = info,
134 .ret = -ENXIO, /* No such CPU */
fe4b04fa
PZ
135 };
136
137 smp_call_function_single(cpu, remote_function, &data, 1);
138
139 return data.ret;
140}
141
fae3fde6
PZ
142static inline struct perf_cpu_context *
143__get_cpu_context(struct perf_event_context *ctx)
144{
145 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
146}
147
148static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
149 struct perf_event_context *ctx)
0017960f 150{
fae3fde6
PZ
151 raw_spin_lock(&cpuctx->ctx.lock);
152 if (ctx)
153 raw_spin_lock(&ctx->lock);
154}
155
156static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
157 struct perf_event_context *ctx)
158{
159 if (ctx)
160 raw_spin_unlock(&ctx->lock);
161 raw_spin_unlock(&cpuctx->ctx.lock);
162}
163
63b6da39
PZ
164#define TASK_TOMBSTONE ((void *)-1L)
165
166static bool is_kernel_event(struct perf_event *event)
167{
f47c02c0 168 return READ_ONCE(event->owner) == TASK_TOMBSTONE;
63b6da39
PZ
169}
170
39a43640
PZ
171/*
172 * On task ctx scheduling...
173 *
174 * When !ctx->nr_events a task context will not be scheduled. This means
175 * we can disable the scheduler hooks (for performance) without leaving
176 * pending task ctx state.
177 *
178 * This however results in two special cases:
179 *
180 * - removing the last event from a task ctx; this is relatively straight
181 * forward and is done in __perf_remove_from_context.
182 *
183 * - adding the first event to a task ctx; this is tricky because we cannot
184 * rely on ctx->is_active and therefore cannot use event_function_call().
185 * See perf_install_in_context().
186 *
39a43640
PZ
187 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
188 */
189
fae3fde6
PZ
190typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
191 struct perf_event_context *, void *);
192
193struct event_function_struct {
194 struct perf_event *event;
195 event_f func;
196 void *data;
197};
198
199static int event_function(void *info)
200{
201 struct event_function_struct *efs = info;
202 struct perf_event *event = efs->event;
0017960f 203 struct perf_event_context *ctx = event->ctx;
fae3fde6
PZ
204 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
205 struct perf_event_context *task_ctx = cpuctx->task_ctx;
63b6da39 206 int ret = 0;
fae3fde6
PZ
207
208 WARN_ON_ONCE(!irqs_disabled());
209
63b6da39 210 perf_ctx_lock(cpuctx, task_ctx);
fae3fde6
PZ
211 /*
212 * Since we do the IPI call without holding ctx->lock things can have
213 * changed, double check we hit the task we set out to hit.
fae3fde6
PZ
214 */
215 if (ctx->task) {
63b6da39 216 if (ctx->task != current) {
0da4cf3e 217 ret = -ESRCH;
63b6da39
PZ
218 goto unlock;
219 }
fae3fde6 220
fae3fde6
PZ
221 /*
222 * We only use event_function_call() on established contexts,
223 * and event_function() is only ever called when active (or
224 * rather, we'll have bailed in task_function_call() or the
225 * above ctx->task != current test), therefore we must have
226 * ctx->is_active here.
227 */
228 WARN_ON_ONCE(!ctx->is_active);
229 /*
230 * And since we have ctx->is_active, cpuctx->task_ctx must
231 * match.
232 */
63b6da39
PZ
233 WARN_ON_ONCE(task_ctx != ctx);
234 } else {
235 WARN_ON_ONCE(&cpuctx->ctx != ctx);
fae3fde6 236 }
63b6da39 237
fae3fde6 238 efs->func(event, cpuctx, ctx, efs->data);
63b6da39 239unlock:
fae3fde6
PZ
240 perf_ctx_unlock(cpuctx, task_ctx);
241
63b6da39 242 return ret;
fae3fde6
PZ
243}
244
fae3fde6 245static void event_function_call(struct perf_event *event, event_f func, void *data)
0017960f
PZ
246{
247 struct perf_event_context *ctx = event->ctx;
63b6da39 248 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
fae3fde6
PZ
249 struct event_function_struct efs = {
250 .event = event,
251 .func = func,
252 .data = data,
253 };
0017960f 254
c97f4736
PZ
255 if (!event->parent) {
256 /*
257 * If this is a !child event, we must hold ctx::mutex to
258 * stabilize the the event->ctx relation. See
259 * perf_event_ctx_lock().
260 */
261 lockdep_assert_held(&ctx->mutex);
262 }
0017960f
PZ
263
264 if (!task) {
fae3fde6 265 cpu_function_call(event->cpu, event_function, &efs);
0017960f
PZ
266 return;
267 }
268
63b6da39
PZ
269 if (task == TASK_TOMBSTONE)
270 return;
271
a096309b 272again:
fae3fde6 273 if (!task_function_call(task, event_function, &efs))
0017960f
PZ
274 return;
275
276 raw_spin_lock_irq(&ctx->lock);
63b6da39
PZ
277 /*
278 * Reload the task pointer, it might have been changed by
279 * a concurrent perf_event_context_sched_out().
280 */
281 task = ctx->task;
a096309b
PZ
282 if (task == TASK_TOMBSTONE) {
283 raw_spin_unlock_irq(&ctx->lock);
284 return;
0017960f 285 }
a096309b
PZ
286 if (ctx->is_active) {
287 raw_spin_unlock_irq(&ctx->lock);
288 goto again;
289 }
290 func(event, NULL, ctx, data);
0017960f
PZ
291 raw_spin_unlock_irq(&ctx->lock);
292}
293
cca20946
PZ
294/*
295 * Similar to event_function_call() + event_function(), but hard assumes IRQs
296 * are already disabled and we're on the right CPU.
297 */
298static void event_function_local(struct perf_event *event, event_f func, void *data)
299{
300 struct perf_event_context *ctx = event->ctx;
301 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
302 struct task_struct *task = READ_ONCE(ctx->task);
303 struct perf_event_context *task_ctx = NULL;
304
305 WARN_ON_ONCE(!irqs_disabled());
306
307 if (task) {
308 if (task == TASK_TOMBSTONE)
309 return;
310
311 task_ctx = ctx;
312 }
313
314 perf_ctx_lock(cpuctx, task_ctx);
315
316 task = ctx->task;
317 if (task == TASK_TOMBSTONE)
318 goto unlock;
319
320 if (task) {
321 /*
322 * We must be either inactive or active and the right task,
323 * otherwise we're screwed, since we cannot IPI to somewhere
324 * else.
325 */
326 if (ctx->is_active) {
327 if (WARN_ON_ONCE(task != current))
328 goto unlock;
329
330 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
331 goto unlock;
332 }
333 } else {
334 WARN_ON_ONCE(&cpuctx->ctx != ctx);
335 }
336
337 func(event, cpuctx, ctx, data);
338unlock:
339 perf_ctx_unlock(cpuctx, task_ctx);
340}
341
e5d1367f
SE
342#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
343 PERF_FLAG_FD_OUTPUT |\
a21b0b35
YD
344 PERF_FLAG_PID_CGROUP |\
345 PERF_FLAG_FD_CLOEXEC)
e5d1367f 346
bce38cd5
SE
347/*
348 * branch priv levels that need permission checks
349 */
350#define PERF_SAMPLE_BRANCH_PERM_PLM \
351 (PERF_SAMPLE_BRANCH_KERNEL |\
352 PERF_SAMPLE_BRANCH_HV)
353
0b3fcf17
SE
354enum event_type_t {
355 EVENT_FLEXIBLE = 0x1,
356 EVENT_PINNED = 0x2,
3cbaa590 357 EVENT_TIME = 0x4,
0b3fcf17
SE
358 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
359};
360
e5d1367f
SE
361/*
362 * perf_sched_events : >0 events exist
363 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
364 */
9107c89e
PZ
365
366static void perf_sched_delayed(struct work_struct *work);
367DEFINE_STATIC_KEY_FALSE(perf_sched_events);
368static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
369static DEFINE_MUTEX(perf_sched_mutex);
370static atomic_t perf_sched_count;
371
e5d1367f 372static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
ba532500 373static DEFINE_PER_CPU(int, perf_sched_cb_usages);
f2fb6bef 374static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
e5d1367f 375
cdd6c482
IM
376static atomic_t nr_mmap_events __read_mostly;
377static atomic_t nr_comm_events __read_mostly;
378static atomic_t nr_task_events __read_mostly;
948b26b6 379static atomic_t nr_freq_events __read_mostly;
45ac1403 380static atomic_t nr_switch_events __read_mostly;
9ee318a7 381
108b02cf
PZ
382static LIST_HEAD(pmus);
383static DEFINE_MUTEX(pmus_lock);
384static struct srcu_struct pmus_srcu;
385
0764771d 386/*
cdd6c482 387 * perf event paranoia level:
0fbdea19
IM
388 * -1 - not paranoid at all
389 * 0 - disallow raw tracepoint access for unpriv
cdd6c482 390 * 1 - disallow cpu events for unpriv
0fbdea19 391 * 2 - disallow kernel profiling for unpriv
0764771d 392 */
0161028b 393int sysctl_perf_event_paranoid __read_mostly = 2;
0764771d 394
20443384
FW
395/* Minimum for 512 kiB + 1 user control page */
396int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
df58ab24
PZ
397
398/*
cdd6c482 399 * max perf event sample rate
df58ab24 400 */
14c63f17
DH
401#define DEFAULT_MAX_SAMPLE_RATE 100000
402#define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
403#define DEFAULT_CPU_TIME_MAX_PERCENT 25
404
405int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
406
407static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
408static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
409
d9494cb4
PZ
410static int perf_sample_allowed_ns __read_mostly =
411 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
14c63f17 412
18ab2cd3 413static void update_perf_cpu_limits(void)
14c63f17
DH
414{
415 u64 tmp = perf_sample_period_ns;
416
417 tmp *= sysctl_perf_cpu_time_max_percent;
91a612ee
PZ
418 tmp = div_u64(tmp, 100);
419 if (!tmp)
420 tmp = 1;
421
422 WRITE_ONCE(perf_sample_allowed_ns, tmp);
14c63f17 423}
163ec435 424
9e630205
SE
425static int perf_rotate_context(struct perf_cpu_context *cpuctx);
426
163ec435
PZ
427int perf_proc_update_handler(struct ctl_table *table, int write,
428 void __user *buffer, size_t *lenp,
429 loff_t *ppos)
430{
723478c8 431 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
163ec435
PZ
432
433 if (ret || !write)
434 return ret;
435
ab7fdefb
KL
436 /*
437 * If throttling is disabled don't allow the write:
438 */
439 if (sysctl_perf_cpu_time_max_percent == 100 ||
440 sysctl_perf_cpu_time_max_percent == 0)
441 return -EINVAL;
442
163ec435 443 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
14c63f17
DH
444 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
445 update_perf_cpu_limits();
446
447 return 0;
448}
449
450int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
451
452int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
453 void __user *buffer, size_t *lenp,
454 loff_t *ppos)
455{
456 int ret = proc_dointvec(table, write, buffer, lenp, ppos);
457
458 if (ret || !write)
459 return ret;
460
b303e7c1
PZ
461 if (sysctl_perf_cpu_time_max_percent == 100 ||
462 sysctl_perf_cpu_time_max_percent == 0) {
91a612ee
PZ
463 printk(KERN_WARNING
464 "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
465 WRITE_ONCE(perf_sample_allowed_ns, 0);
466 } else {
467 update_perf_cpu_limits();
468 }
163ec435
PZ
469
470 return 0;
471}
1ccd1549 472
14c63f17
DH
473/*
474 * perf samples are done in some very critical code paths (NMIs).
475 * If they take too much CPU time, the system can lock up and not
476 * get any real work done. This will drop the sample rate when
477 * we detect that events are taking too long.
478 */
479#define NR_ACCUMULATED_SAMPLES 128
d9494cb4 480static DEFINE_PER_CPU(u64, running_sample_length);
14c63f17 481
91a612ee
PZ
482static u64 __report_avg;
483static u64 __report_allowed;
484
6a02ad66 485static void perf_duration_warn(struct irq_work *w)
14c63f17 486{
0d87d7ec 487 printk_ratelimited(KERN_INFO
91a612ee
PZ
488 "perf: interrupt took too long (%lld > %lld), lowering "
489 "kernel.perf_event_max_sample_rate to %d\n",
490 __report_avg, __report_allowed,
491 sysctl_perf_event_sample_rate);
6a02ad66
PZ
492}
493
494static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
495
496void perf_sample_event_took(u64 sample_len_ns)
497{
91a612ee
PZ
498 u64 max_len = READ_ONCE(perf_sample_allowed_ns);
499 u64 running_len;
500 u64 avg_len;
501 u32 max;
14c63f17 502
91a612ee 503 if (max_len == 0)
14c63f17
DH
504 return;
505
91a612ee
PZ
506 /* Decay the counter by 1 average sample. */
507 running_len = __this_cpu_read(running_sample_length);
508 running_len -= running_len/NR_ACCUMULATED_SAMPLES;
509 running_len += sample_len_ns;
510 __this_cpu_write(running_sample_length, running_len);
14c63f17
DH
511
512 /*
91a612ee
PZ
513 * Note: this will be biased artifically low until we have
514 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
14c63f17
DH
515 * from having to maintain a count.
516 */
91a612ee
PZ
517 avg_len = running_len/NR_ACCUMULATED_SAMPLES;
518 if (avg_len <= max_len)
14c63f17
DH
519 return;
520
91a612ee
PZ
521 __report_avg = avg_len;
522 __report_allowed = max_len;
14c63f17 523
91a612ee
PZ
524 /*
525 * Compute a throttle threshold 25% below the current duration.
526 */
527 avg_len += avg_len / 4;
528 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
529 if (avg_len < max)
530 max /= (u32)avg_len;
531 else
532 max = 1;
14c63f17 533
91a612ee
PZ
534 WRITE_ONCE(perf_sample_allowed_ns, avg_len);
535 WRITE_ONCE(max_samples_per_tick, max);
536
537 sysctl_perf_event_sample_rate = max * HZ;
538 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
6a02ad66 539
cd578abb 540 if (!irq_work_queue(&perf_duration_work)) {
91a612ee 541 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
cd578abb 542 "kernel.perf_event_max_sample_rate to %d\n",
91a612ee 543 __report_avg, __report_allowed,
cd578abb
PZ
544 sysctl_perf_event_sample_rate);
545 }
14c63f17
DH
546}
547
cdd6c482 548static atomic64_t perf_event_id;
a96bbc16 549
0b3fcf17
SE
550static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
551 enum event_type_t event_type);
552
553static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
554 enum event_type_t event_type,
555 struct task_struct *task);
556
557static void update_context_time(struct perf_event_context *ctx);
558static u64 perf_event_time(struct perf_event *event);
0b3fcf17 559
cdd6c482 560void __weak perf_event_print_debug(void) { }
0793a61d 561
84c79910 562extern __weak const char *perf_pmu_name(void)
0793a61d 563{
84c79910 564 return "pmu";
0793a61d
TG
565}
566
0b3fcf17
SE
567static inline u64 perf_clock(void)
568{
569 return local_clock();
570}
571
34f43927
PZ
572static inline u64 perf_event_clock(struct perf_event *event)
573{
574 return event->clock();
575}
576
e5d1367f
SE
577#ifdef CONFIG_CGROUP_PERF
578
e5d1367f
SE
579static inline bool
580perf_cgroup_match(struct perf_event *event)
581{
582 struct perf_event_context *ctx = event->ctx;
583 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
584
ef824fa1
TH
585 /* @event doesn't care about cgroup */
586 if (!event->cgrp)
587 return true;
588
589 /* wants specific cgroup scope but @cpuctx isn't associated with any */
590 if (!cpuctx->cgrp)
591 return false;
592
593 /*
594 * Cgroup scoping is recursive. An event enabled for a cgroup is
595 * also enabled for all its descendant cgroups. If @cpuctx's
596 * cgroup is a descendant of @event's (the test covers identity
597 * case), it's a match.
598 */
599 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
600 event->cgrp->css.cgroup);
e5d1367f
SE
601}
602
e5d1367f
SE
603static inline void perf_detach_cgroup(struct perf_event *event)
604{
4e2ba650 605 css_put(&event->cgrp->css);
e5d1367f
SE
606 event->cgrp = NULL;
607}
608
609static inline int is_cgroup_event(struct perf_event *event)
610{
611 return event->cgrp != NULL;
612}
613
614static inline u64 perf_cgroup_event_time(struct perf_event *event)
615{
616 struct perf_cgroup_info *t;
617
618 t = per_cpu_ptr(event->cgrp->info, event->cpu);
619 return t->time;
620}
621
622static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
623{
624 struct perf_cgroup_info *info;
625 u64 now;
626
627 now = perf_clock();
628
629 info = this_cpu_ptr(cgrp->info);
630
631 info->time += now - info->timestamp;
632 info->timestamp = now;
633}
634
635static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
636{
637 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
638 if (cgrp_out)
639 __update_cgrp_time(cgrp_out);
640}
641
642static inline void update_cgrp_time_from_event(struct perf_event *event)
643{
3f7cce3c
SE
644 struct perf_cgroup *cgrp;
645
e5d1367f 646 /*
3f7cce3c
SE
647 * ensure we access cgroup data only when needed and
648 * when we know the cgroup is pinned (css_get)
e5d1367f 649 */
3f7cce3c 650 if (!is_cgroup_event(event))
e5d1367f
SE
651 return;
652
614e4c4e 653 cgrp = perf_cgroup_from_task(current, event->ctx);
3f7cce3c
SE
654 /*
655 * Do not update time when cgroup is not active
656 */
657 if (cgrp == event->cgrp)
658 __update_cgrp_time(event->cgrp);
e5d1367f
SE
659}
660
661static inline void
3f7cce3c
SE
662perf_cgroup_set_timestamp(struct task_struct *task,
663 struct perf_event_context *ctx)
e5d1367f
SE
664{
665 struct perf_cgroup *cgrp;
666 struct perf_cgroup_info *info;
667
3f7cce3c
SE
668 /*
669 * ctx->lock held by caller
670 * ensure we do not access cgroup data
671 * unless we have the cgroup pinned (css_get)
672 */
673 if (!task || !ctx->nr_cgroups)
e5d1367f
SE
674 return;
675
614e4c4e 676 cgrp = perf_cgroup_from_task(task, ctx);
e5d1367f 677 info = this_cpu_ptr(cgrp->info);
3f7cce3c 678 info->timestamp = ctx->timestamp;
e5d1367f
SE
679}
680
681#define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
682#define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
683
684/*
685 * reschedule events based on the cgroup constraint of task.
686 *
687 * mode SWOUT : schedule out everything
688 * mode SWIN : schedule in based on cgroup for next
689 */
18ab2cd3 690static void perf_cgroup_switch(struct task_struct *task, int mode)
e5d1367f
SE
691{
692 struct perf_cpu_context *cpuctx;
693 struct pmu *pmu;
694 unsigned long flags;
695
696 /*
697 * disable interrupts to avoid geting nr_cgroup
698 * changes via __perf_event_disable(). Also
699 * avoids preemption.
700 */
701 local_irq_save(flags);
702
703 /*
704 * we reschedule only in the presence of cgroup
705 * constrained events.
706 */
e5d1367f
SE
707
708 list_for_each_entry_rcu(pmu, &pmus, entry) {
e5d1367f 709 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
95cf59ea
PZ
710 if (cpuctx->unique_pmu != pmu)
711 continue; /* ensure we process each cpuctx once */
e5d1367f 712
e5d1367f
SE
713 /*
714 * perf_cgroup_events says at least one
715 * context on this CPU has cgroup events.
716 *
717 * ctx->nr_cgroups reports the number of cgroup
718 * events for a context.
719 */
720 if (cpuctx->ctx.nr_cgroups > 0) {
facc4307
PZ
721 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
722 perf_pmu_disable(cpuctx->ctx.pmu);
e5d1367f
SE
723
724 if (mode & PERF_CGROUP_SWOUT) {
725 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
726 /*
727 * must not be done before ctxswout due
728 * to event_filter_match() in event_sched_out()
729 */
730 cpuctx->cgrp = NULL;
731 }
732
733 if (mode & PERF_CGROUP_SWIN) {
e566b76e 734 WARN_ON_ONCE(cpuctx->cgrp);
95cf59ea
PZ
735 /*
736 * set cgrp before ctxsw in to allow
737 * event_filter_match() to not have to pass
738 * task around
614e4c4e
SE
739 * we pass the cpuctx->ctx to perf_cgroup_from_task()
740 * because cgorup events are only per-cpu
e5d1367f 741 */
614e4c4e 742 cpuctx->cgrp = perf_cgroup_from_task(task, &cpuctx->ctx);
e5d1367f
SE
743 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
744 }
facc4307
PZ
745 perf_pmu_enable(cpuctx->ctx.pmu);
746 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
e5d1367f 747 }
e5d1367f
SE
748 }
749
e5d1367f
SE
750 local_irq_restore(flags);
751}
752
a8d757ef
SE
753static inline void perf_cgroup_sched_out(struct task_struct *task,
754 struct task_struct *next)
e5d1367f 755{
a8d757ef
SE
756 struct perf_cgroup *cgrp1;
757 struct perf_cgroup *cgrp2 = NULL;
758
ddaaf4e2 759 rcu_read_lock();
a8d757ef
SE
760 /*
761 * we come here when we know perf_cgroup_events > 0
614e4c4e
SE
762 * we do not need to pass the ctx here because we know
763 * we are holding the rcu lock
a8d757ef 764 */
614e4c4e 765 cgrp1 = perf_cgroup_from_task(task, NULL);
70a01657 766 cgrp2 = perf_cgroup_from_task(next, NULL);
a8d757ef
SE
767
768 /*
769 * only schedule out current cgroup events if we know
770 * that we are switching to a different cgroup. Otherwise,
771 * do no touch the cgroup events.
772 */
773 if (cgrp1 != cgrp2)
774 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
ddaaf4e2
SE
775
776 rcu_read_unlock();
e5d1367f
SE
777}
778
a8d757ef
SE
779static inline void perf_cgroup_sched_in(struct task_struct *prev,
780 struct task_struct *task)
e5d1367f 781{
a8d757ef
SE
782 struct perf_cgroup *cgrp1;
783 struct perf_cgroup *cgrp2 = NULL;
784
ddaaf4e2 785 rcu_read_lock();
a8d757ef
SE
786 /*
787 * we come here when we know perf_cgroup_events > 0
614e4c4e
SE
788 * we do not need to pass the ctx here because we know
789 * we are holding the rcu lock
a8d757ef 790 */
614e4c4e 791 cgrp1 = perf_cgroup_from_task(task, NULL);
614e4c4e 792 cgrp2 = perf_cgroup_from_task(prev, NULL);
a8d757ef
SE
793
794 /*
795 * only need to schedule in cgroup events if we are changing
796 * cgroup during ctxsw. Cgroup events were not scheduled
797 * out of ctxsw out if that was not the case.
798 */
799 if (cgrp1 != cgrp2)
800 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
ddaaf4e2
SE
801
802 rcu_read_unlock();
e5d1367f
SE
803}
804
805static inline int perf_cgroup_connect(int fd, struct perf_event *event,
806 struct perf_event_attr *attr,
807 struct perf_event *group_leader)
808{
809 struct perf_cgroup *cgrp;
810 struct cgroup_subsys_state *css;
2903ff01
AV
811 struct fd f = fdget(fd);
812 int ret = 0;
e5d1367f 813
2903ff01 814 if (!f.file)
e5d1367f
SE
815 return -EBADF;
816
b583043e 817 css = css_tryget_online_from_dir(f.file->f_path.dentry,
ec903c0c 818 &perf_event_cgrp_subsys);
3db272c0
LZ
819 if (IS_ERR(css)) {
820 ret = PTR_ERR(css);
821 goto out;
822 }
e5d1367f
SE
823
824 cgrp = container_of(css, struct perf_cgroup, css);
825 event->cgrp = cgrp;
826
827 /*
828 * all events in a group must monitor
829 * the same cgroup because a task belongs
830 * to only one perf cgroup at a time
831 */
832 if (group_leader && group_leader->cgrp != cgrp) {
833 perf_detach_cgroup(event);
834 ret = -EINVAL;
e5d1367f 835 }
3db272c0 836out:
2903ff01 837 fdput(f);
e5d1367f
SE
838 return ret;
839}
840
841static inline void
842perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
843{
844 struct perf_cgroup_info *t;
845 t = per_cpu_ptr(event->cgrp->info, event->cpu);
846 event->shadow_ctx_time = now - t->timestamp;
847}
848
849static inline void
850perf_cgroup_defer_enabled(struct perf_event *event)
851{
852 /*
853 * when the current task's perf cgroup does not match
854 * the event's, we need to remember to call the
855 * perf_mark_enable() function the first time a task with
856 * a matching perf cgroup is scheduled in.
857 */
858 if (is_cgroup_event(event) && !perf_cgroup_match(event))
859 event->cgrp_defer_enabled = 1;
860}
861
862static inline void
863perf_cgroup_mark_enabled(struct perf_event *event,
864 struct perf_event_context *ctx)
865{
866 struct perf_event *sub;
867 u64 tstamp = perf_event_time(event);
868
869 if (!event->cgrp_defer_enabled)
870 return;
871
872 event->cgrp_defer_enabled = 0;
873
874 event->tstamp_enabled = tstamp - event->total_time_enabled;
875 list_for_each_entry(sub, &event->sibling_list, group_entry) {
876 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
877 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
878 sub->cgrp_defer_enabled = 0;
879 }
880 }
881}
db4a8356
DCC
882
883/*
884 * Update cpuctx->cgrp so that it is set when first cgroup event is added and
885 * cleared when last cgroup event is removed.
886 */
887static inline void
888list_update_cgroup_event(struct perf_event *event,
889 struct perf_event_context *ctx, bool add)
890{
891 struct perf_cpu_context *cpuctx;
892
893 if (!is_cgroup_event(event))
894 return;
895
896 if (add && ctx->nr_cgroups++)
897 return;
898 else if (!add && --ctx->nr_cgroups)
899 return;
900 /*
901 * Because cgroup events are always per-cpu events,
902 * this will always be called from the right CPU.
903 */
904 cpuctx = __get_cpu_context(ctx);
905 cpuctx->cgrp = add ? event->cgrp : NULL;
906}
907
e5d1367f
SE
908#else /* !CONFIG_CGROUP_PERF */
909
910static inline bool
911perf_cgroup_match(struct perf_event *event)
912{
913 return true;
914}
915
916static inline void perf_detach_cgroup(struct perf_event *event)
917{}
918
919static inline int is_cgroup_event(struct perf_event *event)
920{
921 return 0;
922}
923
924static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
925{
926 return 0;
927}
928
929static inline void update_cgrp_time_from_event(struct perf_event *event)
930{
931}
932
933static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
934{
935}
936
a8d757ef
SE
937static inline void perf_cgroup_sched_out(struct task_struct *task,
938 struct task_struct *next)
e5d1367f
SE
939{
940}
941
a8d757ef
SE
942static inline void perf_cgroup_sched_in(struct task_struct *prev,
943 struct task_struct *task)
e5d1367f
SE
944{
945}
946
947static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
948 struct perf_event_attr *attr,
949 struct perf_event *group_leader)
950{
951 return -EINVAL;
952}
953
954static inline void
3f7cce3c
SE
955perf_cgroup_set_timestamp(struct task_struct *task,
956 struct perf_event_context *ctx)
e5d1367f
SE
957{
958}
959
960void
961perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
962{
963}
964
965static inline void
966perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
967{
968}
969
970static inline u64 perf_cgroup_event_time(struct perf_event *event)
971{
972 return 0;
973}
974
975static inline void
976perf_cgroup_defer_enabled(struct perf_event *event)
977{
978}
979
980static inline void
981perf_cgroup_mark_enabled(struct perf_event *event,
982 struct perf_event_context *ctx)
983{
984}
db4a8356
DCC
985
986static inline void
987list_update_cgroup_event(struct perf_event *event,
988 struct perf_event_context *ctx, bool add)
989{
990}
991
e5d1367f
SE
992#endif
993
9e630205
SE
994/*
995 * set default to be dependent on timer tick just
996 * like original code
997 */
998#define PERF_CPU_HRTIMER (1000 / HZ)
999/*
1000 * function must be called with interrupts disbled
1001 */
272325c4 1002static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
9e630205
SE
1003{
1004 struct perf_cpu_context *cpuctx;
9e630205
SE
1005 int rotations = 0;
1006
1007 WARN_ON(!irqs_disabled());
1008
1009 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
9e630205
SE
1010 rotations = perf_rotate_context(cpuctx);
1011
4cfafd30
PZ
1012 raw_spin_lock(&cpuctx->hrtimer_lock);
1013 if (rotations)
9e630205 1014 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
4cfafd30
PZ
1015 else
1016 cpuctx->hrtimer_active = 0;
1017 raw_spin_unlock(&cpuctx->hrtimer_lock);
9e630205 1018
4cfafd30 1019 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
9e630205
SE
1020}
1021
272325c4 1022static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
9e630205 1023{
272325c4 1024 struct hrtimer *timer = &cpuctx->hrtimer;
9e630205 1025 struct pmu *pmu = cpuctx->ctx.pmu;
272325c4 1026 u64 interval;
9e630205
SE
1027
1028 /* no multiplexing needed for SW PMU */
1029 if (pmu->task_ctx_nr == perf_sw_context)
1030 return;
1031
62b85639
SE
1032 /*
1033 * check default is sane, if not set then force to
1034 * default interval (1/tick)
1035 */
272325c4
PZ
1036 interval = pmu->hrtimer_interval_ms;
1037 if (interval < 1)
1038 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
62b85639 1039
272325c4 1040 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
9e630205 1041
4cfafd30
PZ
1042 raw_spin_lock_init(&cpuctx->hrtimer_lock);
1043 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
272325c4 1044 timer->function = perf_mux_hrtimer_handler;
9e630205
SE
1045}
1046
272325c4 1047static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
9e630205 1048{
272325c4 1049 struct hrtimer *timer = &cpuctx->hrtimer;
9e630205 1050 struct pmu *pmu = cpuctx->ctx.pmu;
4cfafd30 1051 unsigned long flags;
9e630205
SE
1052
1053 /* not for SW PMU */
1054 if (pmu->task_ctx_nr == perf_sw_context)
272325c4 1055 return 0;
9e630205 1056
4cfafd30
PZ
1057 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1058 if (!cpuctx->hrtimer_active) {
1059 cpuctx->hrtimer_active = 1;
1060 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1061 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
1062 }
1063 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
9e630205 1064
272325c4 1065 return 0;
9e630205
SE
1066}
1067
33696fc0 1068void perf_pmu_disable(struct pmu *pmu)
9e35ad38 1069{
33696fc0
PZ
1070 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1071 if (!(*count)++)
1072 pmu->pmu_disable(pmu);
9e35ad38 1073}
9e35ad38 1074
33696fc0 1075void perf_pmu_enable(struct pmu *pmu)
9e35ad38 1076{
33696fc0
PZ
1077 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1078 if (!--(*count))
1079 pmu->pmu_enable(pmu);
9e35ad38 1080}
9e35ad38 1081
2fde4f94 1082static DEFINE_PER_CPU(struct list_head, active_ctx_list);
e9d2b064
PZ
1083
1084/*
2fde4f94
MR
1085 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1086 * perf_event_task_tick() are fully serialized because they're strictly cpu
1087 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1088 * disabled, while perf_event_task_tick is called from IRQ context.
e9d2b064 1089 */
2fde4f94 1090static void perf_event_ctx_activate(struct perf_event_context *ctx)
9e35ad38 1091{
2fde4f94 1092 struct list_head *head = this_cpu_ptr(&active_ctx_list);
b5ab4cd5 1093
e9d2b064 1094 WARN_ON(!irqs_disabled());
b5ab4cd5 1095
2fde4f94
MR
1096 WARN_ON(!list_empty(&ctx->active_ctx_list));
1097
1098 list_add(&ctx->active_ctx_list, head);
1099}
1100
1101static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1102{
1103 WARN_ON(!irqs_disabled());
1104
1105 WARN_ON(list_empty(&ctx->active_ctx_list));
1106
1107 list_del_init(&ctx->active_ctx_list);
9e35ad38 1108}
9e35ad38 1109
cdd6c482 1110static void get_ctx(struct perf_event_context *ctx)
a63eaf34 1111{
e5289d4a 1112 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
a63eaf34
PM
1113}
1114
4af57ef2
YZ
1115static void free_ctx(struct rcu_head *head)
1116{
1117 struct perf_event_context *ctx;
1118
1119 ctx = container_of(head, struct perf_event_context, rcu_head);
1120 kfree(ctx->task_ctx_data);
1121 kfree(ctx);
1122}
1123
cdd6c482 1124static void put_ctx(struct perf_event_context *ctx)
a63eaf34 1125{
564c2b21
PM
1126 if (atomic_dec_and_test(&ctx->refcount)) {
1127 if (ctx->parent_ctx)
1128 put_ctx(ctx->parent_ctx);
63b6da39 1129 if (ctx->task && ctx->task != TASK_TOMBSTONE)
c93f7669 1130 put_task_struct(ctx->task);
4af57ef2 1131 call_rcu(&ctx->rcu_head, free_ctx);
564c2b21 1132 }
a63eaf34
PM
1133}
1134
f63a8daa
PZ
1135/*
1136 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1137 * perf_pmu_migrate_context() we need some magic.
1138 *
1139 * Those places that change perf_event::ctx will hold both
1140 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1141 *
8b10c5e2
PZ
1142 * Lock ordering is by mutex address. There are two other sites where
1143 * perf_event_context::mutex nests and those are:
1144 *
1145 * - perf_event_exit_task_context() [ child , 0 ]
8ba289b8
PZ
1146 * perf_event_exit_event()
1147 * put_event() [ parent, 1 ]
8b10c5e2
PZ
1148 *
1149 * - perf_event_init_context() [ parent, 0 ]
1150 * inherit_task_group()
1151 * inherit_group()
1152 * inherit_event()
1153 * perf_event_alloc()
1154 * perf_init_event()
1155 * perf_try_init_event() [ child , 1 ]
1156 *
1157 * While it appears there is an obvious deadlock here -- the parent and child
1158 * nesting levels are inverted between the two. This is in fact safe because
1159 * life-time rules separate them. That is an exiting task cannot fork, and a
1160 * spawning task cannot (yet) exit.
1161 *
1162 * But remember that that these are parent<->child context relations, and
1163 * migration does not affect children, therefore these two orderings should not
1164 * interact.
f63a8daa
PZ
1165 *
1166 * The change in perf_event::ctx does not affect children (as claimed above)
1167 * because the sys_perf_event_open() case will install a new event and break
1168 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1169 * concerned with cpuctx and that doesn't have children.
1170 *
1171 * The places that change perf_event::ctx will issue:
1172 *
1173 * perf_remove_from_context();
1174 * synchronize_rcu();
1175 * perf_install_in_context();
1176 *
1177 * to affect the change. The remove_from_context() + synchronize_rcu() should
1178 * quiesce the event, after which we can install it in the new location. This
1179 * means that only external vectors (perf_fops, prctl) can perturb the event
1180 * while in transit. Therefore all such accessors should also acquire
1181 * perf_event_context::mutex to serialize against this.
1182 *
1183 * However; because event->ctx can change while we're waiting to acquire
1184 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1185 * function.
1186 *
1187 * Lock order:
79c9ce57 1188 * cred_guard_mutex
f63a8daa
PZ
1189 * task_struct::perf_event_mutex
1190 * perf_event_context::mutex
f63a8daa 1191 * perf_event::child_mutex;
07c4a776 1192 * perf_event_context::lock
f63a8daa
PZ
1193 * perf_event::mmap_mutex
1194 * mmap_sem
1195 */
a83fe28e
PZ
1196static struct perf_event_context *
1197perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
f63a8daa
PZ
1198{
1199 struct perf_event_context *ctx;
1200
1201again:
1202 rcu_read_lock();
1203 ctx = ACCESS_ONCE(event->ctx);
1204 if (!atomic_inc_not_zero(&ctx->refcount)) {
1205 rcu_read_unlock();
1206 goto again;
1207 }
1208 rcu_read_unlock();
1209
a83fe28e 1210 mutex_lock_nested(&ctx->mutex, nesting);
f63a8daa
PZ
1211 if (event->ctx != ctx) {
1212 mutex_unlock(&ctx->mutex);
1213 put_ctx(ctx);
1214 goto again;
1215 }
1216
1217 return ctx;
1218}
1219
a83fe28e
PZ
1220static inline struct perf_event_context *
1221perf_event_ctx_lock(struct perf_event *event)
1222{
1223 return perf_event_ctx_lock_nested(event, 0);
1224}
1225
f63a8daa
PZ
1226static void perf_event_ctx_unlock(struct perf_event *event,
1227 struct perf_event_context *ctx)
1228{
1229 mutex_unlock(&ctx->mutex);
1230 put_ctx(ctx);
1231}
1232
211de6eb
PZ
1233/*
1234 * This must be done under the ctx->lock, such as to serialize against
1235 * context_equiv(), therefore we cannot call put_ctx() since that might end up
1236 * calling scheduler related locks and ctx->lock nests inside those.
1237 */
1238static __must_check struct perf_event_context *
1239unclone_ctx(struct perf_event_context *ctx)
71a851b4 1240{
211de6eb
PZ
1241 struct perf_event_context *parent_ctx = ctx->parent_ctx;
1242
1243 lockdep_assert_held(&ctx->lock);
1244
1245 if (parent_ctx)
71a851b4 1246 ctx->parent_ctx = NULL;
5a3126d4 1247 ctx->generation++;
211de6eb
PZ
1248
1249 return parent_ctx;
71a851b4
PZ
1250}
1251
6844c09d
ACM
1252static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1253{
1254 /*
1255 * only top level events have the pid namespace they were created in
1256 */
1257 if (event->parent)
1258 event = event->parent;
1259
1260 return task_tgid_nr_ns(p, event->ns);
1261}
1262
1263static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1264{
1265 /*
1266 * only top level events have the pid namespace they were created in
1267 */
1268 if (event->parent)
1269 event = event->parent;
1270
1271 return task_pid_nr_ns(p, event->ns);
1272}
1273
7f453c24 1274/*
cdd6c482 1275 * If we inherit events we want to return the parent event id
7f453c24
PZ
1276 * to userspace.
1277 */
cdd6c482 1278static u64 primary_event_id(struct perf_event *event)
7f453c24 1279{
cdd6c482 1280 u64 id = event->id;
7f453c24 1281
cdd6c482
IM
1282 if (event->parent)
1283 id = event->parent->id;
7f453c24
PZ
1284
1285 return id;
1286}
1287
25346b93 1288/*
cdd6c482 1289 * Get the perf_event_context for a task and lock it.
63b6da39 1290 *
25346b93
PM
1291 * This has to cope with with the fact that until it is locked,
1292 * the context could get moved to another task.
1293 */
cdd6c482 1294static struct perf_event_context *
8dc85d54 1295perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
25346b93 1296{
cdd6c482 1297 struct perf_event_context *ctx;
25346b93 1298
9ed6060d 1299retry:
058ebd0e
PZ
1300 /*
1301 * One of the few rules of preemptible RCU is that one cannot do
1302 * rcu_read_unlock() while holding a scheduler (or nested) lock when
2fd59077 1303 * part of the read side critical section was irqs-enabled -- see
058ebd0e
PZ
1304 * rcu_read_unlock_special().
1305 *
1306 * Since ctx->lock nests under rq->lock we must ensure the entire read
2fd59077 1307 * side critical section has interrupts disabled.
058ebd0e 1308 */
2fd59077 1309 local_irq_save(*flags);
058ebd0e 1310 rcu_read_lock();
8dc85d54 1311 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
25346b93
PM
1312 if (ctx) {
1313 /*
1314 * If this context is a clone of another, it might
1315 * get swapped for another underneath us by
cdd6c482 1316 * perf_event_task_sched_out, though the
25346b93
PM
1317 * rcu_read_lock() protects us from any context
1318 * getting freed. Lock the context and check if it
1319 * got swapped before we could get the lock, and retry
1320 * if so. If we locked the right context, then it
1321 * can't get swapped on us any more.
1322 */
2fd59077 1323 raw_spin_lock(&ctx->lock);
8dc85d54 1324 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
2fd59077 1325 raw_spin_unlock(&ctx->lock);
058ebd0e 1326 rcu_read_unlock();
2fd59077 1327 local_irq_restore(*flags);
25346b93
PM
1328 goto retry;
1329 }
b49a9e7e 1330
63b6da39
PZ
1331 if (ctx->task == TASK_TOMBSTONE ||
1332 !atomic_inc_not_zero(&ctx->refcount)) {
2fd59077 1333 raw_spin_unlock(&ctx->lock);
b49a9e7e 1334 ctx = NULL;
828b6f0e
PZ
1335 } else {
1336 WARN_ON_ONCE(ctx->task != task);
b49a9e7e 1337 }
25346b93
PM
1338 }
1339 rcu_read_unlock();
2fd59077
PM
1340 if (!ctx)
1341 local_irq_restore(*flags);
25346b93
PM
1342 return ctx;
1343}
1344
1345/*
1346 * Get the context for a task and increment its pin_count so it
1347 * can't get swapped to another task. This also increments its
1348 * reference count so that the context can't get freed.
1349 */
8dc85d54
PZ
1350static struct perf_event_context *
1351perf_pin_task_context(struct task_struct *task, int ctxn)
25346b93 1352{
cdd6c482 1353 struct perf_event_context *ctx;
25346b93
PM
1354 unsigned long flags;
1355
8dc85d54 1356 ctx = perf_lock_task_context(task, ctxn, &flags);
25346b93
PM
1357 if (ctx) {
1358 ++ctx->pin_count;
e625cce1 1359 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1360 }
1361 return ctx;
1362}
1363
cdd6c482 1364static void perf_unpin_context(struct perf_event_context *ctx)
25346b93
PM
1365{
1366 unsigned long flags;
1367
e625cce1 1368 raw_spin_lock_irqsave(&ctx->lock, flags);
25346b93 1369 --ctx->pin_count;
e625cce1 1370 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1371}
1372
f67218c3
PZ
1373/*
1374 * Update the record of the current time in a context.
1375 */
1376static void update_context_time(struct perf_event_context *ctx)
1377{
1378 u64 now = perf_clock();
1379
1380 ctx->time += now - ctx->timestamp;
1381 ctx->timestamp = now;
1382}
1383
4158755d
SE
1384static u64 perf_event_time(struct perf_event *event)
1385{
1386 struct perf_event_context *ctx = event->ctx;
e5d1367f
SE
1387
1388 if (is_cgroup_event(event))
1389 return perf_cgroup_event_time(event);
1390
4158755d
SE
1391 return ctx ? ctx->time : 0;
1392}
1393
f67218c3
PZ
1394/*
1395 * Update the total_time_enabled and total_time_running fields for a event.
1396 */
1397static void update_event_times(struct perf_event *event)
1398{
1399 struct perf_event_context *ctx = event->ctx;
1400 u64 run_end;
1401
3cbaa590
PZ
1402 lockdep_assert_held(&ctx->lock);
1403
f67218c3
PZ
1404 if (event->state < PERF_EVENT_STATE_INACTIVE ||
1405 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1406 return;
3cbaa590 1407
e5d1367f
SE
1408 /*
1409 * in cgroup mode, time_enabled represents
1410 * the time the event was enabled AND active
1411 * tasks were in the monitored cgroup. This is
1412 * independent of the activity of the context as
1413 * there may be a mix of cgroup and non-cgroup events.
1414 *
1415 * That is why we treat cgroup events differently
1416 * here.
1417 */
1418 if (is_cgroup_event(event))
46cd6a7f 1419 run_end = perf_cgroup_event_time(event);
e5d1367f
SE
1420 else if (ctx->is_active)
1421 run_end = ctx->time;
acd1d7c1
PZ
1422 else
1423 run_end = event->tstamp_stopped;
1424
1425 event->total_time_enabled = run_end - event->tstamp_enabled;
f67218c3
PZ
1426
1427 if (event->state == PERF_EVENT_STATE_INACTIVE)
1428 run_end = event->tstamp_stopped;
1429 else
4158755d 1430 run_end = perf_event_time(event);
f67218c3
PZ
1431
1432 event->total_time_running = run_end - event->tstamp_running;
e5d1367f 1433
f67218c3
PZ
1434}
1435
96c21a46
PZ
1436/*
1437 * Update total_time_enabled and total_time_running for all events in a group.
1438 */
1439static void update_group_times(struct perf_event *leader)
1440{
1441 struct perf_event *event;
1442
1443 update_event_times(leader);
1444 list_for_each_entry(event, &leader->sibling_list, group_entry)
1445 update_event_times(event);
1446}
1447
889ff015
FW
1448static struct list_head *
1449ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1450{
1451 if (event->attr.pinned)
1452 return &ctx->pinned_groups;
1453 else
1454 return &ctx->flexible_groups;
1455}
1456
fccc714b 1457/*
cdd6c482 1458 * Add a event from the lists for its context.
fccc714b
PZ
1459 * Must be called with ctx->mutex and ctx->lock held.
1460 */
04289bb9 1461static void
cdd6c482 1462list_add_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1463{
db4a8356 1464
c994d613
PZ
1465 lockdep_assert_held(&ctx->lock);
1466
8a49542c
PZ
1467 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1468 event->attach_state |= PERF_ATTACH_CONTEXT;
04289bb9
IM
1469
1470 /*
8a49542c
PZ
1471 * If we're a stand alone event or group leader, we go to the context
1472 * list, group events are kept attached to the group so that
1473 * perf_group_detach can, at all times, locate all siblings.
04289bb9 1474 */
8a49542c 1475 if (event->group_leader == event) {
889ff015
FW
1476 struct list_head *list;
1477
4ff6a8de 1478 event->group_caps = event->event_caps;
d6f962b5 1479
889ff015
FW
1480 list = ctx_group_list(event, ctx);
1481 list_add_tail(&event->group_entry, list);
5c148194 1482 }
592903cd 1483
db4a8356 1484 list_update_cgroup_event(event, ctx, true);
e5d1367f 1485
cdd6c482
IM
1486 list_add_rcu(&event->event_entry, &ctx->event_list);
1487 ctx->nr_events++;
1488 if (event->attr.inherit_stat)
bfbd3381 1489 ctx->nr_stat++;
5a3126d4
PZ
1490
1491 ctx->generation++;
04289bb9
IM
1492}
1493
0231bb53
JO
1494/*
1495 * Initialize event state based on the perf_event_attr::disabled.
1496 */
1497static inline void perf_event__state_init(struct perf_event *event)
1498{
1499 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1500 PERF_EVENT_STATE_INACTIVE;
1501}
1502
a723968c 1503static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
c320c7b7
ACM
1504{
1505 int entry = sizeof(u64); /* value */
1506 int size = 0;
1507 int nr = 1;
1508
1509 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1510 size += sizeof(u64);
1511
1512 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1513 size += sizeof(u64);
1514
1515 if (event->attr.read_format & PERF_FORMAT_ID)
1516 entry += sizeof(u64);
1517
1518 if (event->attr.read_format & PERF_FORMAT_GROUP) {
a723968c 1519 nr += nr_siblings;
c320c7b7
ACM
1520 size += sizeof(u64);
1521 }
1522
1523 size += entry * nr;
1524 event->read_size = size;
1525}
1526
a723968c 1527static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
c320c7b7
ACM
1528{
1529 struct perf_sample_data *data;
c320c7b7
ACM
1530 u16 size = 0;
1531
c320c7b7
ACM
1532 if (sample_type & PERF_SAMPLE_IP)
1533 size += sizeof(data->ip);
1534
6844c09d
ACM
1535 if (sample_type & PERF_SAMPLE_ADDR)
1536 size += sizeof(data->addr);
1537
1538 if (sample_type & PERF_SAMPLE_PERIOD)
1539 size += sizeof(data->period);
1540
c3feedf2
AK
1541 if (sample_type & PERF_SAMPLE_WEIGHT)
1542 size += sizeof(data->weight);
1543
6844c09d
ACM
1544 if (sample_type & PERF_SAMPLE_READ)
1545 size += event->read_size;
1546
d6be9ad6
SE
1547 if (sample_type & PERF_SAMPLE_DATA_SRC)
1548 size += sizeof(data->data_src.val);
1549
fdfbbd07
AK
1550 if (sample_type & PERF_SAMPLE_TRANSACTION)
1551 size += sizeof(data->txn);
1552
6844c09d
ACM
1553 event->header_size = size;
1554}
1555
a723968c
PZ
1556/*
1557 * Called at perf_event creation and when events are attached/detached from a
1558 * group.
1559 */
1560static void perf_event__header_size(struct perf_event *event)
1561{
1562 __perf_event_read_size(event,
1563 event->group_leader->nr_siblings);
1564 __perf_event_header_size(event, event->attr.sample_type);
1565}
1566
6844c09d
ACM
1567static void perf_event__id_header_size(struct perf_event *event)
1568{
1569 struct perf_sample_data *data;
1570 u64 sample_type = event->attr.sample_type;
1571 u16 size = 0;
1572
c320c7b7
ACM
1573 if (sample_type & PERF_SAMPLE_TID)
1574 size += sizeof(data->tid_entry);
1575
1576 if (sample_type & PERF_SAMPLE_TIME)
1577 size += sizeof(data->time);
1578
ff3d527c
AH
1579 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1580 size += sizeof(data->id);
1581
c320c7b7
ACM
1582 if (sample_type & PERF_SAMPLE_ID)
1583 size += sizeof(data->id);
1584
1585 if (sample_type & PERF_SAMPLE_STREAM_ID)
1586 size += sizeof(data->stream_id);
1587
1588 if (sample_type & PERF_SAMPLE_CPU)
1589 size += sizeof(data->cpu_entry);
1590
6844c09d 1591 event->id_header_size = size;
c320c7b7
ACM
1592}
1593
a723968c
PZ
1594static bool perf_event_validate_size(struct perf_event *event)
1595{
1596 /*
1597 * The values computed here will be over-written when we actually
1598 * attach the event.
1599 */
1600 __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1601 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1602 perf_event__id_header_size(event);
1603
1604 /*
1605 * Sum the lot; should not exceed the 64k limit we have on records.
1606 * Conservative limit to allow for callchains and other variable fields.
1607 */
1608 if (event->read_size + event->header_size +
1609 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1610 return false;
1611
1612 return true;
1613}
1614
8a49542c
PZ
1615static void perf_group_attach(struct perf_event *event)
1616{
c320c7b7 1617 struct perf_event *group_leader = event->group_leader, *pos;
8a49542c 1618
74c3337c
PZ
1619 /*
1620 * We can have double attach due to group movement in perf_event_open.
1621 */
1622 if (event->attach_state & PERF_ATTACH_GROUP)
1623 return;
1624
8a49542c
PZ
1625 event->attach_state |= PERF_ATTACH_GROUP;
1626
1627 if (group_leader == event)
1628 return;
1629
652884fe
PZ
1630 WARN_ON_ONCE(group_leader->ctx != event->ctx);
1631
4ff6a8de 1632 group_leader->group_caps &= event->event_caps;
8a49542c
PZ
1633
1634 list_add_tail(&event->group_entry, &group_leader->sibling_list);
1635 group_leader->nr_siblings++;
c320c7b7
ACM
1636
1637 perf_event__header_size(group_leader);
1638
1639 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1640 perf_event__header_size(pos);
8a49542c
PZ
1641}
1642
a63eaf34 1643/*
cdd6c482 1644 * Remove a event from the lists for its context.
fccc714b 1645 * Must be called with ctx->mutex and ctx->lock held.
a63eaf34 1646 */
04289bb9 1647static void
cdd6c482 1648list_del_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1649{
652884fe
PZ
1650 WARN_ON_ONCE(event->ctx != ctx);
1651 lockdep_assert_held(&ctx->lock);
1652
8a49542c
PZ
1653 /*
1654 * We can have double detach due to exit/hot-unplug + close.
1655 */
1656 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
a63eaf34 1657 return;
8a49542c
PZ
1658
1659 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1660
db4a8356 1661 list_update_cgroup_event(event, ctx, false);
e5d1367f 1662
cdd6c482
IM
1663 ctx->nr_events--;
1664 if (event->attr.inherit_stat)
bfbd3381 1665 ctx->nr_stat--;
8bc20959 1666
cdd6c482 1667 list_del_rcu(&event->event_entry);
04289bb9 1668
8a49542c
PZ
1669 if (event->group_leader == event)
1670 list_del_init(&event->group_entry);
5c148194 1671
96c21a46 1672 update_group_times(event);
b2e74a26
SE
1673
1674 /*
1675 * If event was in error state, then keep it
1676 * that way, otherwise bogus counts will be
1677 * returned on read(). The only way to get out
1678 * of error state is by explicit re-enabling
1679 * of the event
1680 */
1681 if (event->state > PERF_EVENT_STATE_OFF)
1682 event->state = PERF_EVENT_STATE_OFF;
5a3126d4
PZ
1683
1684 ctx->generation++;
050735b0
PZ
1685}
1686
8a49542c 1687static void perf_group_detach(struct perf_event *event)
050735b0
PZ
1688{
1689 struct perf_event *sibling, *tmp;
8a49542c
PZ
1690 struct list_head *list = NULL;
1691
1692 /*
1693 * We can have double detach due to exit/hot-unplug + close.
1694 */
1695 if (!(event->attach_state & PERF_ATTACH_GROUP))
1696 return;
1697
1698 event->attach_state &= ~PERF_ATTACH_GROUP;
1699
1700 /*
1701 * If this is a sibling, remove it from its group.
1702 */
1703 if (event->group_leader != event) {
1704 list_del_init(&event->group_entry);
1705 event->group_leader->nr_siblings--;
c320c7b7 1706 goto out;
8a49542c
PZ
1707 }
1708
1709 if (!list_empty(&event->group_entry))
1710 list = &event->group_entry;
2e2af50b 1711
04289bb9 1712 /*
cdd6c482
IM
1713 * If this was a group event with sibling events then
1714 * upgrade the siblings to singleton events by adding them
8a49542c 1715 * to whatever list we are on.
04289bb9 1716 */
cdd6c482 1717 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
8a49542c
PZ
1718 if (list)
1719 list_move_tail(&sibling->group_entry, list);
04289bb9 1720 sibling->group_leader = sibling;
d6f962b5
FW
1721
1722 /* Inherit group flags from the previous leader */
4ff6a8de 1723 sibling->group_caps = event->group_caps;
652884fe
PZ
1724
1725 WARN_ON_ONCE(sibling->ctx != event->ctx);
04289bb9 1726 }
c320c7b7
ACM
1727
1728out:
1729 perf_event__header_size(event->group_leader);
1730
1731 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1732 perf_event__header_size(tmp);
04289bb9
IM
1733}
1734
fadfe7be
JO
1735static bool is_orphaned_event(struct perf_event *event)
1736{
a69b0ca4 1737 return event->state == PERF_EVENT_STATE_DEAD;
fadfe7be
JO
1738}
1739
2c81a647 1740static inline int __pmu_filter_match(struct perf_event *event)
66eb579e
MR
1741{
1742 struct pmu *pmu = event->pmu;
1743 return pmu->filter_match ? pmu->filter_match(event) : 1;
1744}
1745
2c81a647
MR
1746/*
1747 * Check whether we should attempt to schedule an event group based on
1748 * PMU-specific filtering. An event group can consist of HW and SW events,
1749 * potentially with a SW leader, so we must check all the filters, to
1750 * determine whether a group is schedulable:
1751 */
1752static inline int pmu_filter_match(struct perf_event *event)
1753{
1754 struct perf_event *child;
1755
1756 if (!__pmu_filter_match(event))
1757 return 0;
1758
1759 list_for_each_entry(child, &event->sibling_list, group_entry) {
1760 if (!__pmu_filter_match(child))
1761 return 0;
1762 }
1763
1764 return 1;
1765}
1766
fa66f07a
SE
1767static inline int
1768event_filter_match(struct perf_event *event)
1769{
0b8f1e2e
PZ
1770 return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
1771 perf_cgroup_match(event) && pmu_filter_match(event);
fa66f07a
SE
1772}
1773
9ffcfa6f
SE
1774static void
1775event_sched_out(struct perf_event *event,
3b6f9e5c 1776 struct perf_cpu_context *cpuctx,
cdd6c482 1777 struct perf_event_context *ctx)
3b6f9e5c 1778{
4158755d 1779 u64 tstamp = perf_event_time(event);
fa66f07a 1780 u64 delta;
652884fe
PZ
1781
1782 WARN_ON_ONCE(event->ctx != ctx);
1783 lockdep_assert_held(&ctx->lock);
1784
fa66f07a
SE
1785 /*
1786 * An event which could not be activated because of
1787 * filter mismatch still needs to have its timings
1788 * maintained, otherwise bogus information is return
1789 * via read() for time_enabled, time_running:
1790 */
0b8f1e2e
PZ
1791 if (event->state == PERF_EVENT_STATE_INACTIVE &&
1792 !event_filter_match(event)) {
e5d1367f 1793 delta = tstamp - event->tstamp_stopped;
fa66f07a 1794 event->tstamp_running += delta;
4158755d 1795 event->tstamp_stopped = tstamp;
fa66f07a
SE
1796 }
1797
cdd6c482 1798 if (event->state != PERF_EVENT_STATE_ACTIVE)
9ffcfa6f 1799 return;
3b6f9e5c 1800
44377277
AS
1801 perf_pmu_disable(event->pmu);
1802
28a967c3
PZ
1803 event->tstamp_stopped = tstamp;
1804 event->pmu->del(event, 0);
1805 event->oncpu = -1;
cdd6c482
IM
1806 event->state = PERF_EVENT_STATE_INACTIVE;
1807 if (event->pending_disable) {
1808 event->pending_disable = 0;
1809 event->state = PERF_EVENT_STATE_OFF;
970892a9 1810 }
3b6f9e5c 1811
cdd6c482 1812 if (!is_software_event(event))
3b6f9e5c 1813 cpuctx->active_oncpu--;
2fde4f94
MR
1814 if (!--ctx->nr_active)
1815 perf_event_ctx_deactivate(ctx);
0f5a2601
PZ
1816 if (event->attr.freq && event->attr.sample_freq)
1817 ctx->nr_freq--;
cdd6c482 1818 if (event->attr.exclusive || !cpuctx->active_oncpu)
3b6f9e5c 1819 cpuctx->exclusive = 0;
44377277
AS
1820
1821 perf_pmu_enable(event->pmu);
3b6f9e5c
PM
1822}
1823
d859e29f 1824static void
cdd6c482 1825group_sched_out(struct perf_event *group_event,
d859e29f 1826 struct perf_cpu_context *cpuctx,
cdd6c482 1827 struct perf_event_context *ctx)
d859e29f 1828{
cdd6c482 1829 struct perf_event *event;
fa66f07a 1830 int state = group_event->state;
d859e29f 1831
3f005e7d
MR
1832 perf_pmu_disable(ctx->pmu);
1833
cdd6c482 1834 event_sched_out(group_event, cpuctx, ctx);
d859e29f
PM
1835
1836 /*
1837 * Schedule out siblings (if any):
1838 */
cdd6c482
IM
1839 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1840 event_sched_out(event, cpuctx, ctx);
d859e29f 1841
3f005e7d
MR
1842 perf_pmu_enable(ctx->pmu);
1843
fa66f07a 1844 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
d859e29f
PM
1845 cpuctx->exclusive = 0;
1846}
1847
45a0e07a 1848#define DETACH_GROUP 0x01UL
0017960f 1849
0793a61d 1850/*
cdd6c482 1851 * Cross CPU call to remove a performance event
0793a61d 1852 *
cdd6c482 1853 * We disable the event on the hardware level first. After that we
0793a61d
TG
1854 * remove it from the context list.
1855 */
fae3fde6
PZ
1856static void
1857__perf_remove_from_context(struct perf_event *event,
1858 struct perf_cpu_context *cpuctx,
1859 struct perf_event_context *ctx,
1860 void *info)
0793a61d 1861{
45a0e07a 1862 unsigned long flags = (unsigned long)info;
0793a61d 1863
cdd6c482 1864 event_sched_out(event, cpuctx, ctx);
45a0e07a 1865 if (flags & DETACH_GROUP)
46ce0fe9 1866 perf_group_detach(event);
cdd6c482 1867 list_del_event(event, ctx);
39a43640
PZ
1868
1869 if (!ctx->nr_events && ctx->is_active) {
64ce3126 1870 ctx->is_active = 0;
39a43640
PZ
1871 if (ctx->task) {
1872 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
1873 cpuctx->task_ctx = NULL;
1874 }
64ce3126 1875 }
0793a61d
TG
1876}
1877
0793a61d 1878/*
cdd6c482 1879 * Remove the event from a task's (or a CPU's) list of events.
0793a61d 1880 *
cdd6c482
IM
1881 * If event->ctx is a cloned context, callers must make sure that
1882 * every task struct that event->ctx->task could possibly point to
c93f7669
PM
1883 * remains valid. This is OK when called from perf_release since
1884 * that only calls us on the top-level context, which can't be a clone.
cdd6c482 1885 * When called from perf_event_exit_task, it's OK because the
c93f7669 1886 * context has been detached from its task.
0793a61d 1887 */
45a0e07a 1888static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
0793a61d 1889{
fae3fde6 1890 lockdep_assert_held(&event->ctx->mutex);
0793a61d 1891
45a0e07a 1892 event_function_call(event, __perf_remove_from_context, (void *)flags);
0793a61d
TG
1893}
1894
d859e29f 1895/*
cdd6c482 1896 * Cross CPU call to disable a performance event
d859e29f 1897 */
fae3fde6
PZ
1898static void __perf_event_disable(struct perf_event *event,
1899 struct perf_cpu_context *cpuctx,
1900 struct perf_event_context *ctx,
1901 void *info)
7b648018 1902{
fae3fde6
PZ
1903 if (event->state < PERF_EVENT_STATE_INACTIVE)
1904 return;
7b648018 1905
fae3fde6
PZ
1906 update_context_time(ctx);
1907 update_cgrp_time_from_event(event);
1908 update_group_times(event);
1909 if (event == event->group_leader)
1910 group_sched_out(event, cpuctx, ctx);
1911 else
1912 event_sched_out(event, cpuctx, ctx);
1913 event->state = PERF_EVENT_STATE_OFF;
7b648018
PZ
1914}
1915
d859e29f 1916/*
cdd6c482 1917 * Disable a event.
c93f7669 1918 *
cdd6c482
IM
1919 * If event->ctx is a cloned context, callers must make sure that
1920 * every task struct that event->ctx->task could possibly point to
c93f7669 1921 * remains valid. This condition is satisifed when called through
cdd6c482
IM
1922 * perf_event_for_each_child or perf_event_for_each because they
1923 * hold the top-level event's child_mutex, so any descendant that
8ba289b8
PZ
1924 * goes to exit will block in perf_event_exit_event().
1925 *
cdd6c482 1926 * When called from perf_pending_event it's OK because event->ctx
c93f7669 1927 * is the current context on this CPU and preemption is disabled,
cdd6c482 1928 * hence we can't get into perf_event_task_sched_out for this context.
d859e29f 1929 */
f63a8daa 1930static void _perf_event_disable(struct perf_event *event)
d859e29f 1931{
cdd6c482 1932 struct perf_event_context *ctx = event->ctx;
d859e29f 1933
e625cce1 1934 raw_spin_lock_irq(&ctx->lock);
7b648018 1935 if (event->state <= PERF_EVENT_STATE_OFF) {
e625cce1 1936 raw_spin_unlock_irq(&ctx->lock);
7b648018 1937 return;
53cfbf59 1938 }
e625cce1 1939 raw_spin_unlock_irq(&ctx->lock);
7b648018 1940
fae3fde6
PZ
1941 event_function_call(event, __perf_event_disable, NULL);
1942}
1943
1944void perf_event_disable_local(struct perf_event *event)
1945{
1946 event_function_local(event, __perf_event_disable, NULL);
d859e29f 1947}
f63a8daa
PZ
1948
1949/*
1950 * Strictly speaking kernel users cannot create groups and therefore this
1951 * interface does not need the perf_event_ctx_lock() magic.
1952 */
1953void perf_event_disable(struct perf_event *event)
1954{
1955 struct perf_event_context *ctx;
1956
1957 ctx = perf_event_ctx_lock(event);
1958 _perf_event_disable(event);
1959 perf_event_ctx_unlock(event, ctx);
1960}
dcfce4a0 1961EXPORT_SYMBOL_GPL(perf_event_disable);
d859e29f 1962
e5d1367f
SE
1963static void perf_set_shadow_time(struct perf_event *event,
1964 struct perf_event_context *ctx,
1965 u64 tstamp)
1966{
1967 /*
1968 * use the correct time source for the time snapshot
1969 *
1970 * We could get by without this by leveraging the
1971 * fact that to get to this function, the caller
1972 * has most likely already called update_context_time()
1973 * and update_cgrp_time_xx() and thus both timestamp
1974 * are identical (or very close). Given that tstamp is,
1975 * already adjusted for cgroup, we could say that:
1976 * tstamp - ctx->timestamp
1977 * is equivalent to
1978 * tstamp - cgrp->timestamp.
1979 *
1980 * Then, in perf_output_read(), the calculation would
1981 * work with no changes because:
1982 * - event is guaranteed scheduled in
1983 * - no scheduled out in between
1984 * - thus the timestamp would be the same
1985 *
1986 * But this is a bit hairy.
1987 *
1988 * So instead, we have an explicit cgroup call to remain
1989 * within the time time source all along. We believe it
1990 * is cleaner and simpler to understand.
1991 */
1992 if (is_cgroup_event(event))
1993 perf_cgroup_set_shadow_time(event, tstamp);
1994 else
1995 event->shadow_ctx_time = tstamp - ctx->timestamp;
1996}
1997
4fe757dd
PZ
1998#define MAX_INTERRUPTS (~0ULL)
1999
2000static void perf_log_throttle(struct perf_event *event, int enable);
ec0d7729 2001static void perf_log_itrace_start(struct perf_event *event);
4fe757dd 2002
235c7fc7 2003static int
9ffcfa6f 2004event_sched_in(struct perf_event *event,
235c7fc7 2005 struct perf_cpu_context *cpuctx,
6e37738a 2006 struct perf_event_context *ctx)
235c7fc7 2007{
4158755d 2008 u64 tstamp = perf_event_time(event);
44377277 2009 int ret = 0;
4158755d 2010
63342411
PZ
2011 lockdep_assert_held(&ctx->lock);
2012
cdd6c482 2013 if (event->state <= PERF_EVENT_STATE_OFF)
235c7fc7
IM
2014 return 0;
2015
95ff4ca2
AS
2016 WRITE_ONCE(event->oncpu, smp_processor_id());
2017 /*
2018 * Order event::oncpu write to happen before the ACTIVE state
2019 * is visible.
2020 */
2021 smp_wmb();
2022 WRITE_ONCE(event->state, PERF_EVENT_STATE_ACTIVE);
4fe757dd
PZ
2023
2024 /*
2025 * Unthrottle events, since we scheduled we might have missed several
2026 * ticks already, also for a heavily scheduling task there is little
2027 * guarantee it'll get a tick in a timely manner.
2028 */
2029 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2030 perf_log_throttle(event, 1);
2031 event->hw.interrupts = 0;
2032 }
2033
235c7fc7
IM
2034 /*
2035 * The new state must be visible before we turn it on in the hardware:
2036 */
2037 smp_wmb();
2038
44377277
AS
2039 perf_pmu_disable(event->pmu);
2040
72f669c0
SL
2041 perf_set_shadow_time(event, ctx, tstamp);
2042
ec0d7729
AS
2043 perf_log_itrace_start(event);
2044
a4eaf7f1 2045 if (event->pmu->add(event, PERF_EF_START)) {
cdd6c482
IM
2046 event->state = PERF_EVENT_STATE_INACTIVE;
2047 event->oncpu = -1;
44377277
AS
2048 ret = -EAGAIN;
2049 goto out;
235c7fc7
IM
2050 }
2051
00a2916f
PZ
2052 event->tstamp_running += tstamp - event->tstamp_stopped;
2053
cdd6c482 2054 if (!is_software_event(event))
3b6f9e5c 2055 cpuctx->active_oncpu++;
2fde4f94
MR
2056 if (!ctx->nr_active++)
2057 perf_event_ctx_activate(ctx);
0f5a2601
PZ
2058 if (event->attr.freq && event->attr.sample_freq)
2059 ctx->nr_freq++;
235c7fc7 2060
cdd6c482 2061 if (event->attr.exclusive)
3b6f9e5c
PM
2062 cpuctx->exclusive = 1;
2063
44377277
AS
2064out:
2065 perf_pmu_enable(event->pmu);
2066
2067 return ret;
235c7fc7
IM
2068}
2069
6751b71e 2070static int
cdd6c482 2071group_sched_in(struct perf_event *group_event,
6751b71e 2072 struct perf_cpu_context *cpuctx,
6e37738a 2073 struct perf_event_context *ctx)
6751b71e 2074{
6bde9b6c 2075 struct perf_event *event, *partial_group = NULL;
4a234593 2076 struct pmu *pmu = ctx->pmu;
d7842da4
SE
2077 u64 now = ctx->time;
2078 bool simulate = false;
6751b71e 2079
cdd6c482 2080 if (group_event->state == PERF_EVENT_STATE_OFF)
6751b71e
PM
2081 return 0;
2082
fbbe0701 2083 pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
6bde9b6c 2084
9ffcfa6f 2085 if (event_sched_in(group_event, cpuctx, ctx)) {
ad5133b7 2086 pmu->cancel_txn(pmu);
272325c4 2087 perf_mux_hrtimer_restart(cpuctx);
6751b71e 2088 return -EAGAIN;
90151c35 2089 }
6751b71e
PM
2090
2091 /*
2092 * Schedule in siblings as one group (if any):
2093 */
cdd6c482 2094 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
9ffcfa6f 2095 if (event_sched_in(event, cpuctx, ctx)) {
cdd6c482 2096 partial_group = event;
6751b71e
PM
2097 goto group_error;
2098 }
2099 }
2100
9ffcfa6f 2101 if (!pmu->commit_txn(pmu))
6e85158c 2102 return 0;
9ffcfa6f 2103
6751b71e
PM
2104group_error:
2105 /*
2106 * Groups can be scheduled in as one unit only, so undo any
2107 * partial group before returning:
d7842da4
SE
2108 * The events up to the failed event are scheduled out normally,
2109 * tstamp_stopped will be updated.
2110 *
2111 * The failed events and the remaining siblings need to have
2112 * their timings updated as if they had gone thru event_sched_in()
2113 * and event_sched_out(). This is required to get consistent timings
2114 * across the group. This also takes care of the case where the group
2115 * could never be scheduled by ensuring tstamp_stopped is set to mark
2116 * the time the event was actually stopped, such that time delta
2117 * calculation in update_event_times() is correct.
6751b71e 2118 */
cdd6c482
IM
2119 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2120 if (event == partial_group)
d7842da4
SE
2121 simulate = true;
2122
2123 if (simulate) {
2124 event->tstamp_running += now - event->tstamp_stopped;
2125 event->tstamp_stopped = now;
2126 } else {
2127 event_sched_out(event, cpuctx, ctx);
2128 }
6751b71e 2129 }
9ffcfa6f 2130 event_sched_out(group_event, cpuctx, ctx);
6751b71e 2131
ad5133b7 2132 pmu->cancel_txn(pmu);
90151c35 2133
272325c4 2134 perf_mux_hrtimer_restart(cpuctx);
9e630205 2135
6751b71e
PM
2136 return -EAGAIN;
2137}
2138
3b6f9e5c 2139/*
cdd6c482 2140 * Work out whether we can put this event group on the CPU now.
3b6f9e5c 2141 */
cdd6c482 2142static int group_can_go_on(struct perf_event *event,
3b6f9e5c
PM
2143 struct perf_cpu_context *cpuctx,
2144 int can_add_hw)
2145{
2146 /*
cdd6c482 2147 * Groups consisting entirely of software events can always go on.
3b6f9e5c 2148 */
4ff6a8de 2149 if (event->group_caps & PERF_EV_CAP_SOFTWARE)
3b6f9e5c
PM
2150 return 1;
2151 /*
2152 * If an exclusive group is already on, no other hardware
cdd6c482 2153 * events can go on.
3b6f9e5c
PM
2154 */
2155 if (cpuctx->exclusive)
2156 return 0;
2157 /*
2158 * If this group is exclusive and there are already
cdd6c482 2159 * events on the CPU, it can't go on.
3b6f9e5c 2160 */
cdd6c482 2161 if (event->attr.exclusive && cpuctx->active_oncpu)
3b6f9e5c
PM
2162 return 0;
2163 /*
2164 * Otherwise, try to add it if all previous groups were able
2165 * to go on.
2166 */
2167 return can_add_hw;
2168}
2169
cdd6c482
IM
2170static void add_event_to_ctx(struct perf_event *event,
2171 struct perf_event_context *ctx)
53cfbf59 2172{
4158755d
SE
2173 u64 tstamp = perf_event_time(event);
2174
cdd6c482 2175 list_add_event(event, ctx);
8a49542c 2176 perf_group_attach(event);
4158755d
SE
2177 event->tstamp_enabled = tstamp;
2178 event->tstamp_running = tstamp;
2179 event->tstamp_stopped = tstamp;
53cfbf59
PM
2180}
2181
bd2afa49
PZ
2182static void ctx_sched_out(struct perf_event_context *ctx,
2183 struct perf_cpu_context *cpuctx,
2184 enum event_type_t event_type);
2c29ef0f
PZ
2185static void
2186ctx_sched_in(struct perf_event_context *ctx,
2187 struct perf_cpu_context *cpuctx,
2188 enum event_type_t event_type,
2189 struct task_struct *task);
fe4b04fa 2190
bd2afa49
PZ
2191static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2192 struct perf_event_context *ctx)
2193{
2194 if (!cpuctx->task_ctx)
2195 return;
2196
2197 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2198 return;
2199
2200 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2201}
2202
dce5855b
PZ
2203static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2204 struct perf_event_context *ctx,
2205 struct task_struct *task)
2206{
2207 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2208 if (ctx)
2209 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2210 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2211 if (ctx)
2212 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2213}
2214
3e349507
PZ
2215static void ctx_resched(struct perf_cpu_context *cpuctx,
2216 struct perf_event_context *task_ctx)
0017960f 2217{
3e349507
PZ
2218 perf_pmu_disable(cpuctx->ctx.pmu);
2219 if (task_ctx)
2220 task_ctx_sched_out(cpuctx, task_ctx);
2221 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
2222 perf_event_sched_in(cpuctx, task_ctx, current);
2223 perf_pmu_enable(cpuctx->ctx.pmu);
0017960f
PZ
2224}
2225
0793a61d 2226/*
cdd6c482 2227 * Cross CPU call to install and enable a performance event
682076ae 2228 *
a096309b
PZ
2229 * Very similar to remote_function() + event_function() but cannot assume that
2230 * things like ctx->is_active and cpuctx->task_ctx are set.
0793a61d 2231 */
fe4b04fa 2232static int __perf_install_in_context(void *info)
0793a61d 2233{
a096309b
PZ
2234 struct perf_event *event = info;
2235 struct perf_event_context *ctx = event->ctx;
108b02cf 2236 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2c29ef0f 2237 struct perf_event_context *task_ctx = cpuctx->task_ctx;
a096309b
PZ
2238 bool activate = true;
2239 int ret = 0;
0793a61d 2240
63b6da39 2241 raw_spin_lock(&cpuctx->ctx.lock);
39a43640 2242 if (ctx->task) {
b58f6b0d
PZ
2243 raw_spin_lock(&ctx->lock);
2244 task_ctx = ctx;
a096309b
PZ
2245
2246 /* If we're on the wrong CPU, try again */
2247 if (task_cpu(ctx->task) != smp_processor_id()) {
2248 ret = -ESRCH;
63b6da39 2249 goto unlock;
a096309b 2250 }
b58f6b0d 2251
39a43640 2252 /*
a096309b
PZ
2253 * If we're on the right CPU, see if the task we target is
2254 * current, if not we don't have to activate the ctx, a future
2255 * context switch will do that for us.
39a43640 2256 */
a096309b
PZ
2257 if (ctx->task != current)
2258 activate = false;
2259 else
2260 WARN_ON_ONCE(cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2261
63b6da39
PZ
2262 } else if (task_ctx) {
2263 raw_spin_lock(&task_ctx->lock);
2c29ef0f 2264 }
b58f6b0d 2265
a096309b
PZ
2266 if (activate) {
2267 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2268 add_event_to_ctx(event, ctx);
2269 ctx_resched(cpuctx, task_ctx);
2270 } else {
2271 add_event_to_ctx(event, ctx);
2272 }
2273
63b6da39 2274unlock:
2c29ef0f 2275 perf_ctx_unlock(cpuctx, task_ctx);
fe4b04fa 2276
a096309b 2277 return ret;
0793a61d
TG
2278}
2279
2280/*
a096309b
PZ
2281 * Attach a performance event to a context.
2282 *
2283 * Very similar to event_function_call, see comment there.
0793a61d
TG
2284 */
2285static void
cdd6c482
IM
2286perf_install_in_context(struct perf_event_context *ctx,
2287 struct perf_event *event,
0793a61d
TG
2288 int cpu)
2289{
a096309b 2290 struct task_struct *task = READ_ONCE(ctx->task);
39a43640 2291
fe4b04fa
PZ
2292 lockdep_assert_held(&ctx->mutex);
2293
0cda4c02
YZ
2294 if (event->cpu != -1)
2295 event->cpu = cpu;
c3f00c70 2296
0b8f1e2e
PZ
2297 /*
2298 * Ensures that if we can observe event->ctx, both the event and ctx
2299 * will be 'complete'. See perf_iterate_sb_cpu().
2300 */
2301 smp_store_release(&event->ctx, ctx);
2302
a096309b
PZ
2303 if (!task) {
2304 cpu_function_call(cpu, __perf_install_in_context, event);
2305 return;
2306 }
2307
2308 /*
2309 * Should not happen, we validate the ctx is still alive before calling.
2310 */
2311 if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2312 return;
2313
39a43640
PZ
2314 /*
2315 * Installing events is tricky because we cannot rely on ctx->is_active
2316 * to be set in case this is the nr_events 0 -> 1 transition.
39a43640 2317 */
a096309b 2318again:
63b6da39 2319 /*
a096309b
PZ
2320 * Cannot use task_function_call() because we need to run on the task's
2321 * CPU regardless of whether its current or not.
63b6da39 2322 */
a096309b
PZ
2323 if (!cpu_function_call(task_cpu(task), __perf_install_in_context, event))
2324 return;
2325
2326 raw_spin_lock_irq(&ctx->lock);
2327 task = ctx->task;
84c4e620 2328 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
a096309b
PZ
2329 /*
2330 * Cannot happen because we already checked above (which also
2331 * cannot happen), and we hold ctx->mutex, which serializes us
2332 * against perf_event_exit_task_context().
2333 */
63b6da39
PZ
2334 raw_spin_unlock_irq(&ctx->lock);
2335 return;
2336 }
39a43640 2337 raw_spin_unlock_irq(&ctx->lock);
39a43640 2338 /*
a096309b
PZ
2339 * Since !ctx->is_active doesn't mean anything, we must IPI
2340 * unconditionally.
39a43640 2341 */
a096309b 2342 goto again;
0793a61d
TG
2343}
2344
fa289bec 2345/*
cdd6c482 2346 * Put a event into inactive state and update time fields.
fa289bec
PM
2347 * Enabling the leader of a group effectively enables all
2348 * the group members that aren't explicitly disabled, so we
2349 * have to update their ->tstamp_enabled also.
2350 * Note: this works for group members as well as group leaders
2351 * since the non-leader members' sibling_lists will be empty.
2352 */
1d9b482e 2353static void __perf_event_mark_enabled(struct perf_event *event)
fa289bec 2354{
cdd6c482 2355 struct perf_event *sub;
4158755d 2356 u64 tstamp = perf_event_time(event);
fa289bec 2357
cdd6c482 2358 event->state = PERF_EVENT_STATE_INACTIVE;
4158755d 2359 event->tstamp_enabled = tstamp - event->total_time_enabled;
9ed6060d 2360 list_for_each_entry(sub, &event->sibling_list, group_entry) {
4158755d
SE
2361 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2362 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
9ed6060d 2363 }
fa289bec
PM
2364}
2365
d859e29f 2366/*
cdd6c482 2367 * Cross CPU call to enable a performance event
d859e29f 2368 */
fae3fde6
PZ
2369static void __perf_event_enable(struct perf_event *event,
2370 struct perf_cpu_context *cpuctx,
2371 struct perf_event_context *ctx,
2372 void *info)
04289bb9 2373{
cdd6c482 2374 struct perf_event *leader = event->group_leader;
fae3fde6 2375 struct perf_event_context *task_ctx;
04289bb9 2376
6e801e01
PZ
2377 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2378 event->state <= PERF_EVENT_STATE_ERROR)
fae3fde6 2379 return;
3cbed429 2380
bd2afa49
PZ
2381 if (ctx->is_active)
2382 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2383
1d9b482e 2384 __perf_event_mark_enabled(event);
04289bb9 2385
fae3fde6
PZ
2386 if (!ctx->is_active)
2387 return;
2388
e5d1367f 2389 if (!event_filter_match(event)) {
bd2afa49 2390 if (is_cgroup_event(event))
e5d1367f 2391 perf_cgroup_defer_enabled(event);
bd2afa49 2392 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
fae3fde6 2393 return;
e5d1367f 2394 }
f4c4176f 2395
04289bb9 2396 /*
cdd6c482 2397 * If the event is in a group and isn't the group leader,
d859e29f 2398 * then don't put it on unless the group is on.
04289bb9 2399 */
bd2afa49
PZ
2400 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2401 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
fae3fde6 2402 return;
bd2afa49 2403 }
fe4b04fa 2404
fae3fde6
PZ
2405 task_ctx = cpuctx->task_ctx;
2406 if (ctx->task)
2407 WARN_ON_ONCE(task_ctx != ctx);
d859e29f 2408
fae3fde6 2409 ctx_resched(cpuctx, task_ctx);
7b648018
PZ
2410}
2411
d859e29f 2412/*
cdd6c482 2413 * Enable a event.
c93f7669 2414 *
cdd6c482
IM
2415 * If event->ctx is a cloned context, callers must make sure that
2416 * every task struct that event->ctx->task could possibly point to
c93f7669 2417 * remains valid. This condition is satisfied when called through
cdd6c482
IM
2418 * perf_event_for_each_child or perf_event_for_each as described
2419 * for perf_event_disable.
d859e29f 2420 */
f63a8daa 2421static void _perf_event_enable(struct perf_event *event)
d859e29f 2422{
cdd6c482 2423 struct perf_event_context *ctx = event->ctx;
d859e29f 2424
7b648018 2425 raw_spin_lock_irq(&ctx->lock);
6e801e01
PZ
2426 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2427 event->state < PERF_EVENT_STATE_ERROR) {
7b648018 2428 raw_spin_unlock_irq(&ctx->lock);
d859e29f
PM
2429 return;
2430 }
2431
d859e29f 2432 /*
cdd6c482 2433 * If the event is in error state, clear that first.
7b648018
PZ
2434 *
2435 * That way, if we see the event in error state below, we know that it
2436 * has gone back into error state, as distinct from the task having
2437 * been scheduled away before the cross-call arrived.
d859e29f 2438 */
cdd6c482
IM
2439 if (event->state == PERF_EVENT_STATE_ERROR)
2440 event->state = PERF_EVENT_STATE_OFF;
e625cce1 2441 raw_spin_unlock_irq(&ctx->lock);
fe4b04fa 2442
fae3fde6 2443 event_function_call(event, __perf_event_enable, NULL);
d859e29f 2444}
f63a8daa
PZ
2445
2446/*
2447 * See perf_event_disable();
2448 */
2449void perf_event_enable(struct perf_event *event)
2450{
2451 struct perf_event_context *ctx;
2452
2453 ctx = perf_event_ctx_lock(event);
2454 _perf_event_enable(event);
2455 perf_event_ctx_unlock(event, ctx);
2456}
dcfce4a0 2457EXPORT_SYMBOL_GPL(perf_event_enable);
d859e29f 2458
375637bc
AS
2459struct stop_event_data {
2460 struct perf_event *event;
2461 unsigned int restart;
2462};
2463
95ff4ca2
AS
2464static int __perf_event_stop(void *info)
2465{
375637bc
AS
2466 struct stop_event_data *sd = info;
2467 struct perf_event *event = sd->event;
95ff4ca2 2468
375637bc 2469 /* if it's already INACTIVE, do nothing */
95ff4ca2
AS
2470 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2471 return 0;
2472
2473 /* matches smp_wmb() in event_sched_in() */
2474 smp_rmb();
2475
2476 /*
2477 * There is a window with interrupts enabled before we get here,
2478 * so we need to check again lest we try to stop another CPU's event.
2479 */
2480 if (READ_ONCE(event->oncpu) != smp_processor_id())
2481 return -EAGAIN;
2482
2483 event->pmu->stop(event, PERF_EF_UPDATE);
2484
375637bc
AS
2485 /*
2486 * May race with the actual stop (through perf_pmu_output_stop()),
2487 * but it is only used for events with AUX ring buffer, and such
2488 * events will refuse to restart because of rb::aux_mmap_count==0,
2489 * see comments in perf_aux_output_begin().
2490 *
2491 * Since this is happening on a event-local CPU, no trace is lost
2492 * while restarting.
2493 */
2494 if (sd->restart)
2495 event->pmu->start(event, PERF_EF_START);
2496
95ff4ca2
AS
2497 return 0;
2498}
2499
375637bc
AS
2500static int perf_event_restart(struct perf_event *event)
2501{
2502 struct stop_event_data sd = {
2503 .event = event,
2504 .restart = 1,
2505 };
2506 int ret = 0;
2507
2508 do {
2509 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2510 return 0;
2511
2512 /* matches smp_wmb() in event_sched_in() */
2513 smp_rmb();
2514
2515 /*
2516 * We only want to restart ACTIVE events, so if the event goes
2517 * inactive here (event->oncpu==-1), there's nothing more to do;
2518 * fall through with ret==-ENXIO.
2519 */
2520 ret = cpu_function_call(READ_ONCE(event->oncpu),
2521 __perf_event_stop, &sd);
2522 } while (ret == -EAGAIN);
2523
2524 return ret;
2525}
2526
2527/*
2528 * In order to contain the amount of racy and tricky in the address filter
2529 * configuration management, it is a two part process:
2530 *
2531 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2532 * we update the addresses of corresponding vmas in
2533 * event::addr_filters_offs array and bump the event::addr_filters_gen;
2534 * (p2) when an event is scheduled in (pmu::add), it calls
2535 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2536 * if the generation has changed since the previous call.
2537 *
2538 * If (p1) happens while the event is active, we restart it to force (p2).
2539 *
2540 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2541 * pre-existing mappings, called once when new filters arrive via SET_FILTER
2542 * ioctl;
2543 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2544 * registered mapping, called for every new mmap(), with mm::mmap_sem down
2545 * for reading;
2546 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2547 * of exec.
2548 */
2549void perf_event_addr_filters_sync(struct perf_event *event)
2550{
2551 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2552
2553 if (!has_addr_filter(event))
2554 return;
2555
2556 raw_spin_lock(&ifh->lock);
2557 if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2558 event->pmu->addr_filters_sync(event);
2559 event->hw.addr_filters_gen = event->addr_filters_gen;
2560 }
2561 raw_spin_unlock(&ifh->lock);
2562}
2563EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2564
f63a8daa 2565static int _perf_event_refresh(struct perf_event *event, int refresh)
79f14641 2566{
2023b359 2567 /*
cdd6c482 2568 * not supported on inherited events
2023b359 2569 */
2e939d1d 2570 if (event->attr.inherit || !is_sampling_event(event))
2023b359
PZ
2571 return -EINVAL;
2572
cdd6c482 2573 atomic_add(refresh, &event->event_limit);
f63a8daa 2574 _perf_event_enable(event);
2023b359
PZ
2575
2576 return 0;
79f14641 2577}
f63a8daa
PZ
2578
2579/*
2580 * See perf_event_disable()
2581 */
2582int perf_event_refresh(struct perf_event *event, int refresh)
2583{
2584 struct perf_event_context *ctx;
2585 int ret;
2586
2587 ctx = perf_event_ctx_lock(event);
2588 ret = _perf_event_refresh(event, refresh);
2589 perf_event_ctx_unlock(event, ctx);
2590
2591 return ret;
2592}
26ca5c11 2593EXPORT_SYMBOL_GPL(perf_event_refresh);
79f14641 2594
5b0311e1
FW
2595static void ctx_sched_out(struct perf_event_context *ctx,
2596 struct perf_cpu_context *cpuctx,
2597 enum event_type_t event_type)
235c7fc7 2598{
db24d33e 2599 int is_active = ctx->is_active;
c994d613 2600 struct perf_event *event;
235c7fc7 2601
c994d613 2602 lockdep_assert_held(&ctx->lock);
235c7fc7 2603
39a43640
PZ
2604 if (likely(!ctx->nr_events)) {
2605 /*
2606 * See __perf_remove_from_context().
2607 */
2608 WARN_ON_ONCE(ctx->is_active);
2609 if (ctx->task)
2610 WARN_ON_ONCE(cpuctx->task_ctx);
facc4307 2611 return;
39a43640
PZ
2612 }
2613
db24d33e 2614 ctx->is_active &= ~event_type;
3cbaa590
PZ
2615 if (!(ctx->is_active & EVENT_ALL))
2616 ctx->is_active = 0;
2617
63e30d3e
PZ
2618 if (ctx->task) {
2619 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2620 if (!ctx->is_active)
2621 cpuctx->task_ctx = NULL;
2622 }
facc4307 2623
8fdc6539
PZ
2624 /*
2625 * Always update time if it was set; not only when it changes.
2626 * Otherwise we can 'forget' to update time for any but the last
2627 * context we sched out. For example:
2628 *
2629 * ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2630 * ctx_sched_out(.event_type = EVENT_PINNED)
2631 *
2632 * would only update time for the pinned events.
2633 */
3cbaa590
PZ
2634 if (is_active & EVENT_TIME) {
2635 /* update (and stop) ctx time */
2636 update_context_time(ctx);
2637 update_cgrp_time_from_cpuctx(cpuctx);
2638 }
2639
8fdc6539
PZ
2640 is_active ^= ctx->is_active; /* changed bits */
2641
3cbaa590 2642 if (!ctx->nr_active || !(is_active & EVENT_ALL))
facc4307 2643 return;
5b0311e1 2644
075e0b00 2645 perf_pmu_disable(ctx->pmu);
3cbaa590 2646 if (is_active & EVENT_PINNED) {
889ff015
FW
2647 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2648 group_sched_out(event, cpuctx, ctx);
9ed6060d 2649 }
889ff015 2650
3cbaa590 2651 if (is_active & EVENT_FLEXIBLE) {
889ff015 2652 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
8c9ed8e1 2653 group_sched_out(event, cpuctx, ctx);
9ed6060d 2654 }
1b9a644f 2655 perf_pmu_enable(ctx->pmu);
235c7fc7
IM
2656}
2657
564c2b21 2658/*
5a3126d4
PZ
2659 * Test whether two contexts are equivalent, i.e. whether they have both been
2660 * cloned from the same version of the same context.
2661 *
2662 * Equivalence is measured using a generation number in the context that is
2663 * incremented on each modification to it; see unclone_ctx(), list_add_event()
2664 * and list_del_event().
564c2b21 2665 */
cdd6c482
IM
2666static int context_equiv(struct perf_event_context *ctx1,
2667 struct perf_event_context *ctx2)
564c2b21 2668{
211de6eb
PZ
2669 lockdep_assert_held(&ctx1->lock);
2670 lockdep_assert_held(&ctx2->lock);
2671
5a3126d4
PZ
2672 /* Pinning disables the swap optimization */
2673 if (ctx1->pin_count || ctx2->pin_count)
2674 return 0;
2675
2676 /* If ctx1 is the parent of ctx2 */
2677 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2678 return 1;
2679
2680 /* If ctx2 is the parent of ctx1 */
2681 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2682 return 1;
2683
2684 /*
2685 * If ctx1 and ctx2 have the same parent; we flatten the parent
2686 * hierarchy, see perf_event_init_context().
2687 */
2688 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2689 ctx1->parent_gen == ctx2->parent_gen)
2690 return 1;
2691
2692 /* Unmatched */
2693 return 0;
564c2b21
PM
2694}
2695
cdd6c482
IM
2696static void __perf_event_sync_stat(struct perf_event *event,
2697 struct perf_event *next_event)
bfbd3381
PZ
2698{
2699 u64 value;
2700
cdd6c482 2701 if (!event->attr.inherit_stat)
bfbd3381
PZ
2702 return;
2703
2704 /*
cdd6c482 2705 * Update the event value, we cannot use perf_event_read()
bfbd3381
PZ
2706 * because we're in the middle of a context switch and have IRQs
2707 * disabled, which upsets smp_call_function_single(), however
cdd6c482 2708 * we know the event must be on the current CPU, therefore we
bfbd3381
PZ
2709 * don't need to use it.
2710 */
cdd6c482
IM
2711 switch (event->state) {
2712 case PERF_EVENT_STATE_ACTIVE:
3dbebf15
PZ
2713 event->pmu->read(event);
2714 /* fall-through */
bfbd3381 2715
cdd6c482
IM
2716 case PERF_EVENT_STATE_INACTIVE:
2717 update_event_times(event);
bfbd3381
PZ
2718 break;
2719
2720 default:
2721 break;
2722 }
2723
2724 /*
cdd6c482 2725 * In order to keep per-task stats reliable we need to flip the event
bfbd3381
PZ
2726 * values when we flip the contexts.
2727 */
e7850595
PZ
2728 value = local64_read(&next_event->count);
2729 value = local64_xchg(&event->count, value);
2730 local64_set(&next_event->count, value);
bfbd3381 2731
cdd6c482
IM
2732 swap(event->total_time_enabled, next_event->total_time_enabled);
2733 swap(event->total_time_running, next_event->total_time_running);
19d2e755 2734
bfbd3381 2735 /*
19d2e755 2736 * Since we swizzled the values, update the user visible data too.
bfbd3381 2737 */
cdd6c482
IM
2738 perf_event_update_userpage(event);
2739 perf_event_update_userpage(next_event);
bfbd3381
PZ
2740}
2741
cdd6c482
IM
2742static void perf_event_sync_stat(struct perf_event_context *ctx,
2743 struct perf_event_context *next_ctx)
bfbd3381 2744{
cdd6c482 2745 struct perf_event *event, *next_event;
bfbd3381
PZ
2746
2747 if (!ctx->nr_stat)
2748 return;
2749
02ffdbc8
PZ
2750 update_context_time(ctx);
2751
cdd6c482
IM
2752 event = list_first_entry(&ctx->event_list,
2753 struct perf_event, event_entry);
bfbd3381 2754
cdd6c482
IM
2755 next_event = list_first_entry(&next_ctx->event_list,
2756 struct perf_event, event_entry);
bfbd3381 2757
cdd6c482
IM
2758 while (&event->event_entry != &ctx->event_list &&
2759 &next_event->event_entry != &next_ctx->event_list) {
bfbd3381 2760
cdd6c482 2761 __perf_event_sync_stat(event, next_event);
bfbd3381 2762
cdd6c482
IM
2763 event = list_next_entry(event, event_entry);
2764 next_event = list_next_entry(next_event, event_entry);
bfbd3381
PZ
2765 }
2766}
2767
fe4b04fa
PZ
2768static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2769 struct task_struct *next)
0793a61d 2770{
8dc85d54 2771 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
cdd6c482 2772 struct perf_event_context *next_ctx;
5a3126d4 2773 struct perf_event_context *parent, *next_parent;
108b02cf 2774 struct perf_cpu_context *cpuctx;
c93f7669 2775 int do_switch = 1;
0793a61d 2776
108b02cf
PZ
2777 if (likely(!ctx))
2778 return;
10989fb2 2779
108b02cf
PZ
2780 cpuctx = __get_cpu_context(ctx);
2781 if (!cpuctx->task_ctx)
0793a61d
TG
2782 return;
2783
c93f7669 2784 rcu_read_lock();
8dc85d54 2785 next_ctx = next->perf_event_ctxp[ctxn];
5a3126d4
PZ
2786 if (!next_ctx)
2787 goto unlock;
2788
2789 parent = rcu_dereference(ctx->parent_ctx);
2790 next_parent = rcu_dereference(next_ctx->parent_ctx);
2791
2792 /* If neither context have a parent context; they cannot be clones. */
802c8a61 2793 if (!parent && !next_parent)
5a3126d4
PZ
2794 goto unlock;
2795
2796 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
c93f7669
PM
2797 /*
2798 * Looks like the two contexts are clones, so we might be
2799 * able to optimize the context switch. We lock both
2800 * contexts and check that they are clones under the
2801 * lock (including re-checking that neither has been
2802 * uncloned in the meantime). It doesn't matter which
2803 * order we take the locks because no other cpu could
2804 * be trying to lock both of these tasks.
2805 */
e625cce1
TG
2806 raw_spin_lock(&ctx->lock);
2807 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
c93f7669 2808 if (context_equiv(ctx, next_ctx)) {
63b6da39
PZ
2809 WRITE_ONCE(ctx->task, next);
2810 WRITE_ONCE(next_ctx->task, task);
5a158c3c
YZ
2811
2812 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2813
63b6da39
PZ
2814 /*
2815 * RCU_INIT_POINTER here is safe because we've not
2816 * modified the ctx and the above modification of
2817 * ctx->task and ctx->task_ctx_data are immaterial
2818 * since those values are always verified under
2819 * ctx->lock which we're now holding.
2820 */
2821 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
2822 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
2823
c93f7669 2824 do_switch = 0;
bfbd3381 2825
cdd6c482 2826 perf_event_sync_stat(ctx, next_ctx);
c93f7669 2827 }
e625cce1
TG
2828 raw_spin_unlock(&next_ctx->lock);
2829 raw_spin_unlock(&ctx->lock);
564c2b21 2830 }
5a3126d4 2831unlock:
c93f7669 2832 rcu_read_unlock();
564c2b21 2833
c93f7669 2834 if (do_switch) {
facc4307 2835 raw_spin_lock(&ctx->lock);
8833d0e2 2836 task_ctx_sched_out(cpuctx, ctx);
facc4307 2837 raw_spin_unlock(&ctx->lock);
c93f7669 2838 }
0793a61d
TG
2839}
2840
e48c1788
PZ
2841static DEFINE_PER_CPU(struct list_head, sched_cb_list);
2842
ba532500
YZ
2843void perf_sched_cb_dec(struct pmu *pmu)
2844{
e48c1788
PZ
2845 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2846
ba532500 2847 this_cpu_dec(perf_sched_cb_usages);
e48c1788
PZ
2848
2849 if (!--cpuctx->sched_cb_usage)
2850 list_del(&cpuctx->sched_cb_entry);
ba532500
YZ
2851}
2852
e48c1788 2853
ba532500
YZ
2854void perf_sched_cb_inc(struct pmu *pmu)
2855{
e48c1788
PZ
2856 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2857
2858 if (!cpuctx->sched_cb_usage++)
2859 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
2860
ba532500
YZ
2861 this_cpu_inc(perf_sched_cb_usages);
2862}
2863
2864/*
2865 * This function provides the context switch callback to the lower code
2866 * layer. It is invoked ONLY when the context switch callback is enabled.
09e61b4f
PZ
2867 *
2868 * This callback is relevant even to per-cpu events; for example multi event
2869 * PEBS requires this to provide PID/TID information. This requires we flush
2870 * all queued PEBS records before we context switch to a new task.
ba532500
YZ
2871 */
2872static void perf_pmu_sched_task(struct task_struct *prev,
2873 struct task_struct *next,
2874 bool sched_in)
2875{
2876 struct perf_cpu_context *cpuctx;
2877 struct pmu *pmu;
ba532500
YZ
2878
2879 if (prev == next)
2880 return;
2881
e48c1788
PZ
2882 list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
2883 pmu = cpuctx->unique_pmu; /* software PMUs will not have sched_task */
ba532500 2884
e48c1788
PZ
2885 if (WARN_ON_ONCE(!pmu->sched_task))
2886 continue;
ba532500 2887
e48c1788
PZ
2888 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2889 perf_pmu_disable(pmu);
ba532500 2890
e48c1788 2891 pmu->sched_task(cpuctx->task_ctx, sched_in);
ba532500 2892
e48c1788
PZ
2893 perf_pmu_enable(pmu);
2894 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
ba532500 2895 }
ba532500
YZ
2896}
2897
45ac1403
AH
2898static void perf_event_switch(struct task_struct *task,
2899 struct task_struct *next_prev, bool sched_in);
2900
8dc85d54
PZ
2901#define for_each_task_context_nr(ctxn) \
2902 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2903
2904/*
2905 * Called from scheduler to remove the events of the current task,
2906 * with interrupts disabled.
2907 *
2908 * We stop each event and update the event value in event->count.
2909 *
2910 * This does not protect us against NMI, but disable()
2911 * sets the disabled bit in the control field of event _before_
2912 * accessing the event control register. If a NMI hits, then it will
2913 * not restart the event.
2914 */
ab0cce56
JO
2915void __perf_event_task_sched_out(struct task_struct *task,
2916 struct task_struct *next)
8dc85d54
PZ
2917{
2918 int ctxn;
2919
ba532500
YZ
2920 if (__this_cpu_read(perf_sched_cb_usages))
2921 perf_pmu_sched_task(task, next, false);
2922
45ac1403
AH
2923 if (atomic_read(&nr_switch_events))
2924 perf_event_switch(task, next, false);
2925
8dc85d54
PZ
2926 for_each_task_context_nr(ctxn)
2927 perf_event_context_sched_out(task, ctxn, next);
e5d1367f
SE
2928
2929 /*
2930 * if cgroup events exist on this CPU, then we need
2931 * to check if we have to switch out PMU state.
2932 * cgroup event are system-wide mode only
2933 */
4a32fea9 2934 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
a8d757ef 2935 perf_cgroup_sched_out(task, next);
8dc85d54
PZ
2936}
2937
5b0311e1
FW
2938/*
2939 * Called with IRQs disabled
2940 */
2941static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2942 enum event_type_t event_type)
2943{
2944 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
04289bb9
IM
2945}
2946
235c7fc7 2947static void
5b0311e1 2948ctx_pinned_sched_in(struct perf_event_context *ctx,
6e37738a 2949 struct perf_cpu_context *cpuctx)
0793a61d 2950{
cdd6c482 2951 struct perf_event *event;
0793a61d 2952
889ff015
FW
2953 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2954 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 2955 continue;
5632ab12 2956 if (!event_filter_match(event))
3b6f9e5c
PM
2957 continue;
2958
e5d1367f
SE
2959 /* may need to reset tstamp_enabled */
2960 if (is_cgroup_event(event))
2961 perf_cgroup_mark_enabled(event, ctx);
2962
8c9ed8e1 2963 if (group_can_go_on(event, cpuctx, 1))
6e37738a 2964 group_sched_in(event, cpuctx, ctx);
3b6f9e5c
PM
2965
2966 /*
2967 * If this pinned group hasn't been scheduled,
2968 * put it in error state.
2969 */
cdd6c482
IM
2970 if (event->state == PERF_EVENT_STATE_INACTIVE) {
2971 update_group_times(event);
2972 event->state = PERF_EVENT_STATE_ERROR;
53cfbf59 2973 }
3b6f9e5c 2974 }
5b0311e1
FW
2975}
2976
2977static void
2978ctx_flexible_sched_in(struct perf_event_context *ctx,
6e37738a 2979 struct perf_cpu_context *cpuctx)
5b0311e1
FW
2980{
2981 struct perf_event *event;
2982 int can_add_hw = 1;
3b6f9e5c 2983
889ff015
FW
2984 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2985 /* Ignore events in OFF or ERROR state */
2986 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 2987 continue;
04289bb9
IM
2988 /*
2989 * Listen to the 'cpu' scheduling filter constraint
cdd6c482 2990 * of events:
04289bb9 2991 */
5632ab12 2992 if (!event_filter_match(event))
0793a61d
TG
2993 continue;
2994
e5d1367f
SE
2995 /* may need to reset tstamp_enabled */
2996 if (is_cgroup_event(event))
2997 perf_cgroup_mark_enabled(event, ctx);
2998
9ed6060d 2999 if (group_can_go_on(event, cpuctx, can_add_hw)) {
6e37738a 3000 if (group_sched_in(event, cpuctx, ctx))
dd0e6ba2 3001 can_add_hw = 0;
9ed6060d 3002 }
0793a61d 3003 }
5b0311e1
FW
3004}
3005
3006static void
3007ctx_sched_in(struct perf_event_context *ctx,
3008 struct perf_cpu_context *cpuctx,
e5d1367f
SE
3009 enum event_type_t event_type,
3010 struct task_struct *task)
5b0311e1 3011{
db24d33e 3012 int is_active = ctx->is_active;
c994d613
PZ
3013 u64 now;
3014
3015 lockdep_assert_held(&ctx->lock);
e5d1367f 3016
5b0311e1 3017 if (likely(!ctx->nr_events))
facc4307 3018 return;
5b0311e1 3019
3cbaa590 3020 ctx->is_active |= (event_type | EVENT_TIME);
63e30d3e
PZ
3021 if (ctx->task) {
3022 if (!is_active)
3023 cpuctx->task_ctx = ctx;
3024 else
3025 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3026 }
3027
3cbaa590
PZ
3028 is_active ^= ctx->is_active; /* changed bits */
3029
3030 if (is_active & EVENT_TIME) {
3031 /* start ctx time */
3032 now = perf_clock();
3033 ctx->timestamp = now;
3034 perf_cgroup_set_timestamp(task, ctx);
3035 }
3036
5b0311e1
FW
3037 /*
3038 * First go through the list and put on any pinned groups
3039 * in order to give them the best chance of going on.
3040 */
3cbaa590 3041 if (is_active & EVENT_PINNED)
6e37738a 3042 ctx_pinned_sched_in(ctx, cpuctx);
5b0311e1
FW
3043
3044 /* Then walk through the lower prio flexible groups */
3cbaa590 3045 if (is_active & EVENT_FLEXIBLE)
6e37738a 3046 ctx_flexible_sched_in(ctx, cpuctx);
235c7fc7
IM
3047}
3048
329c0e01 3049static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
3050 enum event_type_t event_type,
3051 struct task_struct *task)
329c0e01
FW
3052{
3053 struct perf_event_context *ctx = &cpuctx->ctx;
3054
e5d1367f 3055 ctx_sched_in(ctx, cpuctx, event_type, task);
329c0e01
FW
3056}
3057
e5d1367f
SE
3058static void perf_event_context_sched_in(struct perf_event_context *ctx,
3059 struct task_struct *task)
235c7fc7 3060{
108b02cf 3061 struct perf_cpu_context *cpuctx;
235c7fc7 3062
108b02cf 3063 cpuctx = __get_cpu_context(ctx);
329c0e01
FW
3064 if (cpuctx->task_ctx == ctx)
3065 return;
3066
facc4307 3067 perf_ctx_lock(cpuctx, ctx);
1b9a644f 3068 perf_pmu_disable(ctx->pmu);
329c0e01
FW
3069 /*
3070 * We want to keep the following priority order:
3071 * cpu pinned (that don't need to move), task pinned,
3072 * cpu flexible, task flexible.
3073 */
3074 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
63e30d3e 3075 perf_event_sched_in(cpuctx, ctx, task);
facc4307
PZ
3076 perf_pmu_enable(ctx->pmu);
3077 perf_ctx_unlock(cpuctx, ctx);
235c7fc7
IM
3078}
3079
8dc85d54
PZ
3080/*
3081 * Called from scheduler to add the events of the current task
3082 * with interrupts disabled.
3083 *
3084 * We restore the event value and then enable it.
3085 *
3086 * This does not protect us against NMI, but enable()
3087 * sets the enabled bit in the control field of event _before_
3088 * accessing the event control register. If a NMI hits, then it will
3089 * keep the event running.
3090 */
ab0cce56
JO
3091void __perf_event_task_sched_in(struct task_struct *prev,
3092 struct task_struct *task)
8dc85d54
PZ
3093{
3094 struct perf_event_context *ctx;
3095 int ctxn;
3096
7e41d177
PZ
3097 /*
3098 * If cgroup events exist on this CPU, then we need to check if we have
3099 * to switch in PMU state; cgroup event are system-wide mode only.
3100 *
3101 * Since cgroup events are CPU events, we must schedule these in before
3102 * we schedule in the task events.
3103 */
3104 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3105 perf_cgroup_sched_in(prev, task);
3106
8dc85d54
PZ
3107 for_each_task_context_nr(ctxn) {
3108 ctx = task->perf_event_ctxp[ctxn];
3109 if (likely(!ctx))
3110 continue;
3111
e5d1367f 3112 perf_event_context_sched_in(ctx, task);
8dc85d54 3113 }
d010b332 3114
45ac1403
AH
3115 if (atomic_read(&nr_switch_events))
3116 perf_event_switch(task, prev, true);
3117
ba532500
YZ
3118 if (__this_cpu_read(perf_sched_cb_usages))
3119 perf_pmu_sched_task(prev, task, true);
235c7fc7
IM
3120}
3121
abd50713
PZ
3122static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3123{
3124 u64 frequency = event->attr.sample_freq;
3125 u64 sec = NSEC_PER_SEC;
3126 u64 divisor, dividend;
3127
3128 int count_fls, nsec_fls, frequency_fls, sec_fls;
3129
3130 count_fls = fls64(count);
3131 nsec_fls = fls64(nsec);
3132 frequency_fls = fls64(frequency);
3133 sec_fls = 30;
3134
3135 /*
3136 * We got @count in @nsec, with a target of sample_freq HZ
3137 * the target period becomes:
3138 *
3139 * @count * 10^9
3140 * period = -------------------
3141 * @nsec * sample_freq
3142 *
3143 */
3144
3145 /*
3146 * Reduce accuracy by one bit such that @a and @b converge
3147 * to a similar magnitude.
3148 */
fe4b04fa 3149#define REDUCE_FLS(a, b) \
abd50713
PZ
3150do { \
3151 if (a##_fls > b##_fls) { \
3152 a >>= 1; \
3153 a##_fls--; \
3154 } else { \
3155 b >>= 1; \
3156 b##_fls--; \
3157 } \
3158} while (0)
3159
3160 /*
3161 * Reduce accuracy until either term fits in a u64, then proceed with
3162 * the other, so that finally we can do a u64/u64 division.
3163 */
3164 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3165 REDUCE_FLS(nsec, frequency);
3166 REDUCE_FLS(sec, count);
3167 }
3168
3169 if (count_fls + sec_fls > 64) {
3170 divisor = nsec * frequency;
3171
3172 while (count_fls + sec_fls > 64) {
3173 REDUCE_FLS(count, sec);
3174 divisor >>= 1;
3175 }
3176
3177 dividend = count * sec;
3178 } else {
3179 dividend = count * sec;
3180
3181 while (nsec_fls + frequency_fls > 64) {
3182 REDUCE_FLS(nsec, frequency);
3183 dividend >>= 1;
3184 }
3185
3186 divisor = nsec * frequency;
3187 }
3188
f6ab91ad
PZ
3189 if (!divisor)
3190 return dividend;
3191
abd50713
PZ
3192 return div64_u64(dividend, divisor);
3193}
3194
e050e3f0
SE
3195static DEFINE_PER_CPU(int, perf_throttled_count);
3196static DEFINE_PER_CPU(u64, perf_throttled_seq);
3197
f39d47ff 3198static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
bd2b5b12 3199{
cdd6c482 3200 struct hw_perf_event *hwc = &event->hw;
f6ab91ad 3201 s64 period, sample_period;
bd2b5b12
PZ
3202 s64 delta;
3203
abd50713 3204 period = perf_calculate_period(event, nsec, count);
bd2b5b12
PZ
3205
3206 delta = (s64)(period - hwc->sample_period);
3207 delta = (delta + 7) / 8; /* low pass filter */
3208
3209 sample_period = hwc->sample_period + delta;
3210
3211 if (!sample_period)
3212 sample_period = 1;
3213
bd2b5b12 3214 hwc->sample_period = sample_period;
abd50713 3215
e7850595 3216 if (local64_read(&hwc->period_left) > 8*sample_period) {
f39d47ff
SE
3217 if (disable)
3218 event->pmu->stop(event, PERF_EF_UPDATE);
3219
e7850595 3220 local64_set(&hwc->period_left, 0);
f39d47ff
SE
3221
3222 if (disable)
3223 event->pmu->start(event, PERF_EF_RELOAD);
abd50713 3224 }
bd2b5b12
PZ
3225}
3226
e050e3f0
SE
3227/*
3228 * combine freq adjustment with unthrottling to avoid two passes over the
3229 * events. At the same time, make sure, having freq events does not change
3230 * the rate of unthrottling as that would introduce bias.
3231 */
3232static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3233 int needs_unthr)
60db5e09 3234{
cdd6c482
IM
3235 struct perf_event *event;
3236 struct hw_perf_event *hwc;
e050e3f0 3237 u64 now, period = TICK_NSEC;
abd50713 3238 s64 delta;
60db5e09 3239
e050e3f0
SE
3240 /*
3241 * only need to iterate over all events iff:
3242 * - context have events in frequency mode (needs freq adjust)
3243 * - there are events to unthrottle on this cpu
3244 */
3245 if (!(ctx->nr_freq || needs_unthr))
0f5a2601
PZ
3246 return;
3247
e050e3f0 3248 raw_spin_lock(&ctx->lock);
f39d47ff 3249 perf_pmu_disable(ctx->pmu);
e050e3f0 3250
03541f8b 3251 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
cdd6c482 3252 if (event->state != PERF_EVENT_STATE_ACTIVE)
60db5e09
PZ
3253 continue;
3254
5632ab12 3255 if (!event_filter_match(event))
5d27c23d
PZ
3256 continue;
3257
44377277
AS
3258 perf_pmu_disable(event->pmu);
3259
cdd6c482 3260 hwc = &event->hw;
6a24ed6c 3261
ae23bff1 3262 if (hwc->interrupts == MAX_INTERRUPTS) {
e050e3f0 3263 hwc->interrupts = 0;
cdd6c482 3264 perf_log_throttle(event, 1);
a4eaf7f1 3265 event->pmu->start(event, 0);
a78ac325
PZ
3266 }
3267
cdd6c482 3268 if (!event->attr.freq || !event->attr.sample_freq)
44377277 3269 goto next;
60db5e09 3270
e050e3f0
SE
3271 /*
3272 * stop the event and update event->count
3273 */
3274 event->pmu->stop(event, PERF_EF_UPDATE);
3275
e7850595 3276 now = local64_read(&event->count);
abd50713
PZ
3277 delta = now - hwc->freq_count_stamp;
3278 hwc->freq_count_stamp = now;
60db5e09 3279
e050e3f0
SE
3280 /*
3281 * restart the event
3282 * reload only if value has changed
f39d47ff
SE
3283 * we have stopped the event so tell that
3284 * to perf_adjust_period() to avoid stopping it
3285 * twice.
e050e3f0 3286 */
abd50713 3287 if (delta > 0)
f39d47ff 3288 perf_adjust_period(event, period, delta, false);
e050e3f0
SE
3289
3290 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
44377277
AS
3291 next:
3292 perf_pmu_enable(event->pmu);
60db5e09 3293 }
e050e3f0 3294
f39d47ff 3295 perf_pmu_enable(ctx->pmu);
e050e3f0 3296 raw_spin_unlock(&ctx->lock);
60db5e09
PZ
3297}
3298
235c7fc7 3299/*
cdd6c482 3300 * Round-robin a context's events:
235c7fc7 3301 */
cdd6c482 3302static void rotate_ctx(struct perf_event_context *ctx)
0793a61d 3303{
dddd3379
TG
3304 /*
3305 * Rotate the first entry last of non-pinned groups. Rotation might be
3306 * disabled by the inheritance code.
3307 */
3308 if (!ctx->rotate_disable)
3309 list_rotate_left(&ctx->flexible_groups);
235c7fc7
IM
3310}
3311
9e630205 3312static int perf_rotate_context(struct perf_cpu_context *cpuctx)
235c7fc7 3313{
8dc85d54 3314 struct perf_event_context *ctx = NULL;
2fde4f94 3315 int rotate = 0;
7fc23a53 3316
b5ab4cd5 3317 if (cpuctx->ctx.nr_events) {
b5ab4cd5
PZ
3318 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3319 rotate = 1;
3320 }
235c7fc7 3321
8dc85d54 3322 ctx = cpuctx->task_ctx;
b5ab4cd5 3323 if (ctx && ctx->nr_events) {
b5ab4cd5
PZ
3324 if (ctx->nr_events != ctx->nr_active)
3325 rotate = 1;
3326 }
9717e6cd 3327
e050e3f0 3328 if (!rotate)
0f5a2601
PZ
3329 goto done;
3330
facc4307 3331 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
1b9a644f 3332 perf_pmu_disable(cpuctx->ctx.pmu);
60db5e09 3333
e050e3f0
SE
3334 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3335 if (ctx)
3336 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
0793a61d 3337
e050e3f0
SE
3338 rotate_ctx(&cpuctx->ctx);
3339 if (ctx)
3340 rotate_ctx(ctx);
235c7fc7 3341
e050e3f0 3342 perf_event_sched_in(cpuctx, ctx, current);
235c7fc7 3343
0f5a2601
PZ
3344 perf_pmu_enable(cpuctx->ctx.pmu);
3345 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
b5ab4cd5 3346done:
9e630205
SE
3347
3348 return rotate;
e9d2b064
PZ
3349}
3350
3351void perf_event_task_tick(void)
3352{
2fde4f94
MR
3353 struct list_head *head = this_cpu_ptr(&active_ctx_list);
3354 struct perf_event_context *ctx, *tmp;
e050e3f0 3355 int throttled;
b5ab4cd5 3356
e9d2b064
PZ
3357 WARN_ON(!irqs_disabled());
3358
e050e3f0
SE
3359 __this_cpu_inc(perf_throttled_seq);
3360 throttled = __this_cpu_xchg(perf_throttled_count, 0);
555e0c1e 3361 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
e050e3f0 3362
2fde4f94 3363 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
e050e3f0 3364 perf_adjust_freq_unthr_context(ctx, throttled);
0793a61d
TG
3365}
3366
889ff015
FW
3367static int event_enable_on_exec(struct perf_event *event,
3368 struct perf_event_context *ctx)
3369{
3370 if (!event->attr.enable_on_exec)
3371 return 0;
3372
3373 event->attr.enable_on_exec = 0;
3374 if (event->state >= PERF_EVENT_STATE_INACTIVE)
3375 return 0;
3376
1d9b482e 3377 __perf_event_mark_enabled(event);
889ff015
FW
3378
3379 return 1;
3380}
3381
57e7986e 3382/*
cdd6c482 3383 * Enable all of a task's events that have been marked enable-on-exec.
57e7986e
PM
3384 * This expects task == current.
3385 */
c1274499 3386static void perf_event_enable_on_exec(int ctxn)
57e7986e 3387{
c1274499 3388 struct perf_event_context *ctx, *clone_ctx = NULL;
3e349507 3389 struct perf_cpu_context *cpuctx;
cdd6c482 3390 struct perf_event *event;
57e7986e
PM
3391 unsigned long flags;
3392 int enabled = 0;
3393
3394 local_irq_save(flags);
c1274499 3395 ctx = current->perf_event_ctxp[ctxn];
cdd6c482 3396 if (!ctx || !ctx->nr_events)
57e7986e
PM
3397 goto out;
3398
3e349507
PZ
3399 cpuctx = __get_cpu_context(ctx);
3400 perf_ctx_lock(cpuctx, ctx);
7fce2509 3401 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3e349507
PZ
3402 list_for_each_entry(event, &ctx->event_list, event_entry)
3403 enabled |= event_enable_on_exec(event, ctx);
57e7986e
PM
3404
3405 /*
3e349507 3406 * Unclone and reschedule this context if we enabled any event.
57e7986e 3407 */
3e349507 3408 if (enabled) {
211de6eb 3409 clone_ctx = unclone_ctx(ctx);
3e349507
PZ
3410 ctx_resched(cpuctx, ctx);
3411 }
3412 perf_ctx_unlock(cpuctx, ctx);
57e7986e 3413
9ed6060d 3414out:
57e7986e 3415 local_irq_restore(flags);
211de6eb
PZ
3416
3417 if (clone_ctx)
3418 put_ctx(clone_ctx);
57e7986e
PM
3419}
3420
0492d4c5
PZ
3421struct perf_read_data {
3422 struct perf_event *event;
3423 bool group;
7d88962e 3424 int ret;
0492d4c5
PZ
3425};
3426
d6a2f903
DCC
3427static int find_cpu_to_read(struct perf_event *event, int local_cpu)
3428{
3429 int event_cpu = event->oncpu;
3430 u16 local_pkg, event_pkg;
3431
3432 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
3433 event_pkg = topology_physical_package_id(event_cpu);
3434 local_pkg = topology_physical_package_id(local_cpu);
3435
3436 if (event_pkg == local_pkg)
3437 return local_cpu;
3438 }
3439
3440 return event_cpu;
3441}
3442
0793a61d 3443/*
cdd6c482 3444 * Cross CPU call to read the hardware event
0793a61d 3445 */
cdd6c482 3446static void __perf_event_read(void *info)
0793a61d 3447{
0492d4c5
PZ
3448 struct perf_read_data *data = info;
3449 struct perf_event *sub, *event = data->event;
cdd6c482 3450 struct perf_event_context *ctx = event->ctx;
108b02cf 3451 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
4a00c16e 3452 struct pmu *pmu = event->pmu;
621a01ea 3453
e1ac3614
PM
3454 /*
3455 * If this is a task context, we need to check whether it is
3456 * the current task context of this cpu. If not it has been
3457 * scheduled out before the smp call arrived. In that case
cdd6c482
IM
3458 * event->count would have been updated to a recent sample
3459 * when the event was scheduled out.
e1ac3614
PM
3460 */
3461 if (ctx->task && cpuctx->task_ctx != ctx)
3462 return;
3463
e625cce1 3464 raw_spin_lock(&ctx->lock);
e5d1367f 3465 if (ctx->is_active) {
542e72fc 3466 update_context_time(ctx);
e5d1367f
SE
3467 update_cgrp_time_from_event(event);
3468 }
0492d4c5 3469
cdd6c482 3470 update_event_times(event);
4a00c16e
SB
3471 if (event->state != PERF_EVENT_STATE_ACTIVE)
3472 goto unlock;
0492d4c5 3473
4a00c16e
SB
3474 if (!data->group) {
3475 pmu->read(event);
3476 data->ret = 0;
0492d4c5 3477 goto unlock;
4a00c16e
SB
3478 }
3479
3480 pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3481
3482 pmu->read(event);
0492d4c5
PZ
3483
3484 list_for_each_entry(sub, &event->sibling_list, group_entry) {
3485 update_event_times(sub);
4a00c16e
SB
3486 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3487 /*
3488 * Use sibling's PMU rather than @event's since
3489 * sibling could be on different (eg: software) PMU.
3490 */
0492d4c5 3491 sub->pmu->read(sub);
4a00c16e 3492 }
0492d4c5 3493 }
4a00c16e
SB
3494
3495 data->ret = pmu->commit_txn(pmu);
0492d4c5
PZ
3496
3497unlock:
e625cce1 3498 raw_spin_unlock(&ctx->lock);
0793a61d
TG
3499}
3500
b5e58793
PZ
3501static inline u64 perf_event_count(struct perf_event *event)
3502{
eacd3ecc
MF
3503 if (event->pmu->count)
3504 return event->pmu->count(event);
3505
3506 return __perf_event_count(event);
b5e58793
PZ
3507}
3508
ffe8690c
KX
3509/*
3510 * NMI-safe method to read a local event, that is an event that
3511 * is:
3512 * - either for the current task, or for this CPU
3513 * - does not have inherit set, for inherited task events
3514 * will not be local and we cannot read them atomically
3515 * - must not have a pmu::count method
3516 */
3517u64 perf_event_read_local(struct perf_event *event)
3518{
3519 unsigned long flags;
3520 u64 val;
3521
3522 /*
3523 * Disabling interrupts avoids all counter scheduling (context
3524 * switches, timer based rotation and IPIs).
3525 */
3526 local_irq_save(flags);
3527
3528 /* If this is a per-task event, it must be for current */
3529 WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) &&
3530 event->hw.target != current);
3531
3532 /* If this is a per-CPU event, it must be for this CPU */
3533 WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) &&
3534 event->cpu != smp_processor_id());
3535
3536 /*
3537 * It must not be an event with inherit set, we cannot read
3538 * all child counters from atomic context.
3539 */
3540 WARN_ON_ONCE(event->attr.inherit);
3541
3542 /*
3543 * It must not have a pmu::count method, those are not
3544 * NMI safe.
3545 */
3546 WARN_ON_ONCE(event->pmu->count);
3547
3548 /*
3549 * If the event is currently on this CPU, its either a per-task event,
3550 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3551 * oncpu == -1).
3552 */
3553 if (event->oncpu == smp_processor_id())
3554 event->pmu->read(event);
3555
3556 val = local64_read(&event->count);
3557 local_irq_restore(flags);
3558
3559 return val;
3560}
3561
7d88962e 3562static int perf_event_read(struct perf_event *event, bool group)
0793a61d 3563{
d6a2f903 3564 int ret = 0, cpu_to_read, local_cpu;
7d88962e 3565
0793a61d 3566 /*
cdd6c482
IM
3567 * If event is enabled and currently active on a CPU, update the
3568 * value in the event structure:
0793a61d 3569 */
cdd6c482 3570 if (event->state == PERF_EVENT_STATE_ACTIVE) {
0492d4c5
PZ
3571 struct perf_read_data data = {
3572 .event = event,
3573 .group = group,
7d88962e 3574 .ret = 0,
0492d4c5 3575 };
d6a2f903
DCC
3576
3577 local_cpu = get_cpu();
3578 cpu_to_read = find_cpu_to_read(event, local_cpu);
3579 put_cpu();
3580
58763148
PZ
3581 /*
3582 * Purposely ignore the smp_call_function_single() return
3583 * value.
3584 *
3585 * If event->oncpu isn't a valid CPU it means the event got
3586 * scheduled out and that will have updated the event count.
3587 *
3588 * Therefore, either way, we'll have an up-to-date event count
3589 * after this.
3590 */
2cc53841 3591 (void)smp_call_function_single(cpu_to_read, __perf_event_read, &data, 1);
58763148 3592 ret = data.ret;
cdd6c482 3593 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
2b8988c9
PZ
3594 struct perf_event_context *ctx = event->ctx;
3595 unsigned long flags;
3596
e625cce1 3597 raw_spin_lock_irqsave(&ctx->lock, flags);
c530ccd9
SE
3598 /*
3599 * may read while context is not active
3600 * (e.g., thread is blocked), in that case
3601 * we cannot update context time
3602 */
e5d1367f 3603 if (ctx->is_active) {
c530ccd9 3604 update_context_time(ctx);
e5d1367f
SE
3605 update_cgrp_time_from_event(event);
3606 }
0492d4c5
PZ
3607 if (group)
3608 update_group_times(event);
3609 else
3610 update_event_times(event);
e625cce1 3611 raw_spin_unlock_irqrestore(&ctx->lock, flags);
0793a61d 3612 }
7d88962e
SB
3613
3614 return ret;
0793a61d
TG
3615}
3616
a63eaf34 3617/*
cdd6c482 3618 * Initialize the perf_event context in a task_struct:
a63eaf34 3619 */
eb184479 3620static void __perf_event_init_context(struct perf_event_context *ctx)
a63eaf34 3621{
e625cce1 3622 raw_spin_lock_init(&ctx->lock);
a63eaf34 3623 mutex_init(&ctx->mutex);
2fde4f94 3624 INIT_LIST_HEAD(&ctx->active_ctx_list);
889ff015
FW
3625 INIT_LIST_HEAD(&ctx->pinned_groups);
3626 INIT_LIST_HEAD(&ctx->flexible_groups);
a63eaf34
PM
3627 INIT_LIST_HEAD(&ctx->event_list);
3628 atomic_set(&ctx->refcount, 1);
eb184479
PZ
3629}
3630
3631static struct perf_event_context *
3632alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3633{
3634 struct perf_event_context *ctx;
3635
3636 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3637 if (!ctx)
3638 return NULL;
3639
3640 __perf_event_init_context(ctx);
3641 if (task) {
3642 ctx->task = task;
3643 get_task_struct(task);
0793a61d 3644 }
eb184479
PZ
3645 ctx->pmu = pmu;
3646
3647 return ctx;
a63eaf34
PM
3648}
3649
2ebd4ffb
MH
3650static struct task_struct *
3651find_lively_task_by_vpid(pid_t vpid)
3652{
3653 struct task_struct *task;
0793a61d
TG
3654
3655 rcu_read_lock();
2ebd4ffb 3656 if (!vpid)
0793a61d
TG
3657 task = current;
3658 else
2ebd4ffb 3659 task = find_task_by_vpid(vpid);
0793a61d
TG
3660 if (task)
3661 get_task_struct(task);
3662 rcu_read_unlock();
3663
3664 if (!task)
3665 return ERR_PTR(-ESRCH);
3666
2ebd4ffb 3667 return task;
2ebd4ffb
MH
3668}
3669
fe4b04fa
PZ
3670/*
3671 * Returns a matching context with refcount and pincount.
3672 */
108b02cf 3673static struct perf_event_context *
4af57ef2
YZ
3674find_get_context(struct pmu *pmu, struct task_struct *task,
3675 struct perf_event *event)
0793a61d 3676{
211de6eb 3677 struct perf_event_context *ctx, *clone_ctx = NULL;
22a4f650 3678 struct perf_cpu_context *cpuctx;
4af57ef2 3679 void *task_ctx_data = NULL;
25346b93 3680 unsigned long flags;
8dc85d54 3681 int ctxn, err;
4af57ef2 3682 int cpu = event->cpu;
0793a61d 3683
22a4ec72 3684 if (!task) {
cdd6c482 3685 /* Must be root to operate on a CPU event: */
0764771d 3686 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
0793a61d
TG
3687 return ERR_PTR(-EACCES);
3688
0793a61d 3689 /*
cdd6c482 3690 * We could be clever and allow to attach a event to an
0793a61d
TG
3691 * offline CPU and activate it when the CPU comes up, but
3692 * that's for later.
3693 */
f6325e30 3694 if (!cpu_online(cpu))
0793a61d
TG
3695 return ERR_PTR(-ENODEV);
3696
108b02cf 3697 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
0793a61d 3698 ctx = &cpuctx->ctx;
c93f7669 3699 get_ctx(ctx);
fe4b04fa 3700 ++ctx->pin_count;
0793a61d 3701
0793a61d
TG
3702 return ctx;
3703 }
3704
8dc85d54
PZ
3705 err = -EINVAL;
3706 ctxn = pmu->task_ctx_nr;
3707 if (ctxn < 0)
3708 goto errout;
3709
4af57ef2
YZ
3710 if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3711 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3712 if (!task_ctx_data) {
3713 err = -ENOMEM;
3714 goto errout;
3715 }
3716 }
3717
9ed6060d 3718retry:
8dc85d54 3719 ctx = perf_lock_task_context(task, ctxn, &flags);
c93f7669 3720 if (ctx) {
211de6eb 3721 clone_ctx = unclone_ctx(ctx);
fe4b04fa 3722 ++ctx->pin_count;
4af57ef2
YZ
3723
3724 if (task_ctx_data && !ctx->task_ctx_data) {
3725 ctx->task_ctx_data = task_ctx_data;
3726 task_ctx_data = NULL;
3727 }
e625cce1 3728 raw_spin_unlock_irqrestore(&ctx->lock, flags);
211de6eb
PZ
3729
3730 if (clone_ctx)
3731 put_ctx(clone_ctx);
9137fb28 3732 } else {
eb184479 3733 ctx = alloc_perf_context(pmu, task);
c93f7669
PM
3734 err = -ENOMEM;
3735 if (!ctx)
3736 goto errout;
eb184479 3737
4af57ef2
YZ
3738 if (task_ctx_data) {
3739 ctx->task_ctx_data = task_ctx_data;
3740 task_ctx_data = NULL;
3741 }
3742
dbe08d82
ON
3743 err = 0;
3744 mutex_lock(&task->perf_event_mutex);
3745 /*
3746 * If it has already passed perf_event_exit_task().
3747 * we must see PF_EXITING, it takes this mutex too.
3748 */
3749 if (task->flags & PF_EXITING)
3750 err = -ESRCH;
3751 else if (task->perf_event_ctxp[ctxn])
3752 err = -EAGAIN;
fe4b04fa 3753 else {
9137fb28 3754 get_ctx(ctx);
fe4b04fa 3755 ++ctx->pin_count;
dbe08d82 3756 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
fe4b04fa 3757 }
dbe08d82
ON
3758 mutex_unlock(&task->perf_event_mutex);
3759
3760 if (unlikely(err)) {
9137fb28 3761 put_ctx(ctx);
dbe08d82
ON
3762
3763 if (err == -EAGAIN)
3764 goto retry;
3765 goto errout;
a63eaf34
PM
3766 }
3767 }
3768
4af57ef2 3769 kfree(task_ctx_data);
0793a61d 3770 return ctx;
c93f7669 3771
9ed6060d 3772errout:
4af57ef2 3773 kfree(task_ctx_data);
c93f7669 3774 return ERR_PTR(err);
0793a61d
TG
3775}
3776
6fb2915d 3777static void perf_event_free_filter(struct perf_event *event);
2541517c 3778static void perf_event_free_bpf_prog(struct perf_event *event);
6fb2915d 3779
cdd6c482 3780static void free_event_rcu(struct rcu_head *head)
592903cd 3781{
cdd6c482 3782 struct perf_event *event;
592903cd 3783
cdd6c482
IM
3784 event = container_of(head, struct perf_event, rcu_head);
3785 if (event->ns)
3786 put_pid_ns(event->ns);
6fb2915d 3787 perf_event_free_filter(event);
cdd6c482 3788 kfree(event);
592903cd
PZ
3789}
3790
b69cf536
PZ
3791static void ring_buffer_attach(struct perf_event *event,
3792 struct ring_buffer *rb);
925d519a 3793
f2fb6bef
KL
3794static void detach_sb_event(struct perf_event *event)
3795{
3796 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
3797
3798 raw_spin_lock(&pel->lock);
3799 list_del_rcu(&event->sb_list);
3800 raw_spin_unlock(&pel->lock);
3801}
3802
a4f144eb 3803static bool is_sb_event(struct perf_event *event)
f2fb6bef 3804{
a4f144eb
DCC
3805 struct perf_event_attr *attr = &event->attr;
3806
f2fb6bef 3807 if (event->parent)
a4f144eb 3808 return false;
f2fb6bef
KL
3809
3810 if (event->attach_state & PERF_ATTACH_TASK)
a4f144eb 3811 return false;
f2fb6bef 3812
a4f144eb
DCC
3813 if (attr->mmap || attr->mmap_data || attr->mmap2 ||
3814 attr->comm || attr->comm_exec ||
3815 attr->task ||
3816 attr->context_switch)
3817 return true;
3818 return false;
3819}
3820
3821static void unaccount_pmu_sb_event(struct perf_event *event)
3822{
3823 if (is_sb_event(event))
3824 detach_sb_event(event);
f2fb6bef
KL
3825}
3826
4beb31f3 3827static void unaccount_event_cpu(struct perf_event *event, int cpu)
f1600952 3828{
4beb31f3
FW
3829 if (event->parent)
3830 return;
3831
4beb31f3
FW
3832 if (is_cgroup_event(event))
3833 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3834}
925d519a 3835
555e0c1e
FW
3836#ifdef CONFIG_NO_HZ_FULL
3837static DEFINE_SPINLOCK(nr_freq_lock);
3838#endif
3839
3840static void unaccount_freq_event_nohz(void)
3841{
3842#ifdef CONFIG_NO_HZ_FULL
3843 spin_lock(&nr_freq_lock);
3844 if (atomic_dec_and_test(&nr_freq_events))
3845 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
3846 spin_unlock(&nr_freq_lock);
3847#endif
3848}
3849
3850static void unaccount_freq_event(void)
3851{
3852 if (tick_nohz_full_enabled())
3853 unaccount_freq_event_nohz();
3854 else
3855 atomic_dec(&nr_freq_events);
3856}
3857
4beb31f3
FW
3858static void unaccount_event(struct perf_event *event)
3859{
25432ae9
PZ
3860 bool dec = false;
3861
4beb31f3
FW
3862 if (event->parent)
3863 return;
3864
3865 if (event->attach_state & PERF_ATTACH_TASK)
25432ae9 3866 dec = true;
4beb31f3
FW
3867 if (event->attr.mmap || event->attr.mmap_data)
3868 atomic_dec(&nr_mmap_events);
3869 if (event->attr.comm)
3870 atomic_dec(&nr_comm_events);
3871 if (event->attr.task)
3872 atomic_dec(&nr_task_events);
948b26b6 3873 if (event->attr.freq)
555e0c1e 3874 unaccount_freq_event();
45ac1403 3875 if (event->attr.context_switch) {
25432ae9 3876 dec = true;
45ac1403
AH
3877 atomic_dec(&nr_switch_events);
3878 }
4beb31f3 3879 if (is_cgroup_event(event))
25432ae9 3880 dec = true;
4beb31f3 3881 if (has_branch_stack(event))
25432ae9
PZ
3882 dec = true;
3883
9107c89e
PZ
3884 if (dec) {
3885 if (!atomic_add_unless(&perf_sched_count, -1, 1))
3886 schedule_delayed_work(&perf_sched_work, HZ);
3887 }
4beb31f3
FW
3888
3889 unaccount_event_cpu(event, event->cpu);
f2fb6bef
KL
3890
3891 unaccount_pmu_sb_event(event);
4beb31f3 3892}
925d519a 3893
9107c89e
PZ
3894static void perf_sched_delayed(struct work_struct *work)
3895{
3896 mutex_lock(&perf_sched_mutex);
3897 if (atomic_dec_and_test(&perf_sched_count))
3898 static_branch_disable(&perf_sched_events);
3899 mutex_unlock(&perf_sched_mutex);
3900}
3901
bed5b25a
AS
3902/*
3903 * The following implement mutual exclusion of events on "exclusive" pmus
3904 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
3905 * at a time, so we disallow creating events that might conflict, namely:
3906 *
3907 * 1) cpu-wide events in the presence of per-task events,
3908 * 2) per-task events in the presence of cpu-wide events,
3909 * 3) two matching events on the same context.
3910 *
3911 * The former two cases are handled in the allocation path (perf_event_alloc(),
a0733e69 3912 * _free_event()), the latter -- before the first perf_install_in_context().
bed5b25a
AS
3913 */
3914static int exclusive_event_init(struct perf_event *event)
3915{
3916 struct pmu *pmu = event->pmu;
3917
3918 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3919 return 0;
3920
3921 /*
3922 * Prevent co-existence of per-task and cpu-wide events on the
3923 * same exclusive pmu.
3924 *
3925 * Negative pmu::exclusive_cnt means there are cpu-wide
3926 * events on this "exclusive" pmu, positive means there are
3927 * per-task events.
3928 *
3929 * Since this is called in perf_event_alloc() path, event::ctx
3930 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
3931 * to mean "per-task event", because unlike other attach states it
3932 * never gets cleared.
3933 */
3934 if (event->attach_state & PERF_ATTACH_TASK) {
3935 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
3936 return -EBUSY;
3937 } else {
3938 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
3939 return -EBUSY;
3940 }
3941
3942 return 0;
3943}
3944
3945static void exclusive_event_destroy(struct perf_event *event)
3946{
3947 struct pmu *pmu = event->pmu;
3948
3949 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3950 return;
3951
3952 /* see comment in exclusive_event_init() */
3953 if (event->attach_state & PERF_ATTACH_TASK)
3954 atomic_dec(&pmu->exclusive_cnt);
3955 else
3956 atomic_inc(&pmu->exclusive_cnt);
3957}
3958
3959static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
3960{
3961 if ((e1->pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) &&
3962 (e1->cpu == e2->cpu ||
3963 e1->cpu == -1 ||
3964 e2->cpu == -1))
3965 return true;
3966 return false;
3967}
3968
3969/* Called under the same ctx::mutex as perf_install_in_context() */
3970static bool exclusive_event_installable(struct perf_event *event,
3971 struct perf_event_context *ctx)
3972{
3973 struct perf_event *iter_event;
3974 struct pmu *pmu = event->pmu;
3975
3976 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3977 return true;
3978
3979 list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
3980 if (exclusive_event_match(iter_event, event))
3981 return false;
3982 }
3983
3984 return true;
3985}
3986
375637bc
AS
3987static void perf_addr_filters_splice(struct perf_event *event,
3988 struct list_head *head);
3989
683ede43 3990static void _free_event(struct perf_event *event)
f1600952 3991{
e360adbe 3992 irq_work_sync(&event->pending);
925d519a 3993
4beb31f3 3994 unaccount_event(event);
9ee318a7 3995
76369139 3996 if (event->rb) {
9bb5d40c
PZ
3997 /*
3998 * Can happen when we close an event with re-directed output.
3999 *
4000 * Since we have a 0 refcount, perf_mmap_close() will skip
4001 * over us; possibly making our ring_buffer_put() the last.
4002 */
4003 mutex_lock(&event->mmap_mutex);
b69cf536 4004 ring_buffer_attach(event, NULL);
9bb5d40c 4005 mutex_unlock(&event->mmap_mutex);
a4be7c27
PZ
4006 }
4007
e5d1367f
SE
4008 if (is_cgroup_event(event))
4009 perf_detach_cgroup(event);
4010
a0733e69
PZ
4011 if (!event->parent) {
4012 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4013 put_callchain_buffers();
4014 }
4015
4016 perf_event_free_bpf_prog(event);
375637bc
AS
4017 perf_addr_filters_splice(event, NULL);
4018 kfree(event->addr_filters_offs);
a0733e69
PZ
4019
4020 if (event->destroy)
4021 event->destroy(event);
4022
4023 if (event->ctx)
4024 put_ctx(event->ctx);
4025
62a92c8f
AS
4026 exclusive_event_destroy(event);
4027 module_put(event->pmu->module);
a0733e69
PZ
4028
4029 call_rcu(&event->rcu_head, free_event_rcu);
f1600952
PZ
4030}
4031
683ede43
PZ
4032/*
4033 * Used to free events which have a known refcount of 1, such as in error paths
4034 * where the event isn't exposed yet and inherited events.
4035 */
4036static void free_event(struct perf_event *event)
0793a61d 4037{
683ede43
PZ
4038 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4039 "unexpected event refcount: %ld; ptr=%p\n",
4040 atomic_long_read(&event->refcount), event)) {
4041 /* leak to avoid use-after-free */
4042 return;
4043 }
0793a61d 4044
683ede43 4045 _free_event(event);
0793a61d
TG
4046}
4047
a66a3052 4048/*
f8697762 4049 * Remove user event from the owner task.
a66a3052 4050 */
f8697762 4051static void perf_remove_from_owner(struct perf_event *event)
fb0459d7 4052{
8882135b 4053 struct task_struct *owner;
fb0459d7 4054
8882135b 4055 rcu_read_lock();
8882135b 4056 /*
f47c02c0
PZ
4057 * Matches the smp_store_release() in perf_event_exit_task(). If we
4058 * observe !owner it means the list deletion is complete and we can
4059 * indeed free this event, otherwise we need to serialize on
8882135b
PZ
4060 * owner->perf_event_mutex.
4061 */
f47c02c0 4062 owner = lockless_dereference(event->owner);
8882135b
PZ
4063 if (owner) {
4064 /*
4065 * Since delayed_put_task_struct() also drops the last
4066 * task reference we can safely take a new reference
4067 * while holding the rcu_read_lock().
4068 */
4069 get_task_struct(owner);
4070 }
4071 rcu_read_unlock();
4072
4073 if (owner) {
f63a8daa
PZ
4074 /*
4075 * If we're here through perf_event_exit_task() we're already
4076 * holding ctx->mutex which would be an inversion wrt. the
4077 * normal lock order.
4078 *
4079 * However we can safely take this lock because its the child
4080 * ctx->mutex.
4081 */
4082 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4083
8882135b
PZ
4084 /*
4085 * We have to re-check the event->owner field, if it is cleared
4086 * we raced with perf_event_exit_task(), acquiring the mutex
4087 * ensured they're done, and we can proceed with freeing the
4088 * event.
4089 */
f47c02c0 4090 if (event->owner) {
8882135b 4091 list_del_init(&event->owner_entry);
f47c02c0
PZ
4092 smp_store_release(&event->owner, NULL);
4093 }
8882135b
PZ
4094 mutex_unlock(&owner->perf_event_mutex);
4095 put_task_struct(owner);
4096 }
f8697762
JO
4097}
4098
f8697762
JO
4099static void put_event(struct perf_event *event)
4100{
f8697762
JO
4101 if (!atomic_long_dec_and_test(&event->refcount))
4102 return;
4103
c6e5b732
PZ
4104 _free_event(event);
4105}
4106
4107/*
4108 * Kill an event dead; while event:refcount will preserve the event
4109 * object, it will not preserve its functionality. Once the last 'user'
4110 * gives up the object, we'll destroy the thing.
4111 */
4112int perf_event_release_kernel(struct perf_event *event)
4113{
a4f4bb6d 4114 struct perf_event_context *ctx = event->ctx;
c6e5b732
PZ
4115 struct perf_event *child, *tmp;
4116
a4f4bb6d
PZ
4117 /*
4118 * If we got here through err_file: fput(event_file); we will not have
4119 * attached to a context yet.
4120 */
4121 if (!ctx) {
4122 WARN_ON_ONCE(event->attach_state &
4123 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4124 goto no_ctx;
4125 }
4126
f8697762
JO
4127 if (!is_kernel_event(event))
4128 perf_remove_from_owner(event);
8882135b 4129
5fa7c8ec 4130 ctx = perf_event_ctx_lock(event);
a83fe28e 4131 WARN_ON_ONCE(ctx->parent_ctx);
a69b0ca4 4132 perf_remove_from_context(event, DETACH_GROUP);
683ede43 4133
a69b0ca4 4134 raw_spin_lock_irq(&ctx->lock);
683ede43 4135 /*
a69b0ca4
PZ
4136 * Mark this even as STATE_DEAD, there is no external reference to it
4137 * anymore.
683ede43 4138 *
a69b0ca4
PZ
4139 * Anybody acquiring event->child_mutex after the below loop _must_
4140 * also see this, most importantly inherit_event() which will avoid
4141 * placing more children on the list.
683ede43 4142 *
c6e5b732
PZ
4143 * Thus this guarantees that we will in fact observe and kill _ALL_
4144 * child events.
683ede43 4145 */
a69b0ca4
PZ
4146 event->state = PERF_EVENT_STATE_DEAD;
4147 raw_spin_unlock_irq(&ctx->lock);
4148
4149 perf_event_ctx_unlock(event, ctx);
683ede43 4150
c6e5b732
PZ
4151again:
4152 mutex_lock(&event->child_mutex);
4153 list_for_each_entry(child, &event->child_list, child_list) {
a6fa941d 4154
c6e5b732
PZ
4155 /*
4156 * Cannot change, child events are not migrated, see the
4157 * comment with perf_event_ctx_lock_nested().
4158 */
4159 ctx = lockless_dereference(child->ctx);
4160 /*
4161 * Since child_mutex nests inside ctx::mutex, we must jump
4162 * through hoops. We start by grabbing a reference on the ctx.
4163 *
4164 * Since the event cannot get freed while we hold the
4165 * child_mutex, the context must also exist and have a !0
4166 * reference count.
4167 */
4168 get_ctx(ctx);
4169
4170 /*
4171 * Now that we have a ctx ref, we can drop child_mutex, and
4172 * acquire ctx::mutex without fear of it going away. Then we
4173 * can re-acquire child_mutex.
4174 */
4175 mutex_unlock(&event->child_mutex);
4176 mutex_lock(&ctx->mutex);
4177 mutex_lock(&event->child_mutex);
4178
4179 /*
4180 * Now that we hold ctx::mutex and child_mutex, revalidate our
4181 * state, if child is still the first entry, it didn't get freed
4182 * and we can continue doing so.
4183 */
4184 tmp = list_first_entry_or_null(&event->child_list,
4185 struct perf_event, child_list);
4186 if (tmp == child) {
4187 perf_remove_from_context(child, DETACH_GROUP);
4188 list_del(&child->child_list);
4189 free_event(child);
4190 /*
4191 * This matches the refcount bump in inherit_event();
4192 * this can't be the last reference.
4193 */
4194 put_event(event);
4195 }
4196
4197 mutex_unlock(&event->child_mutex);
4198 mutex_unlock(&ctx->mutex);
4199 put_ctx(ctx);
4200 goto again;
4201 }
4202 mutex_unlock(&event->child_mutex);
4203
a4f4bb6d
PZ
4204no_ctx:
4205 put_event(event); /* Must be the 'last' reference */
683ede43
PZ
4206 return 0;
4207}
4208EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4209
8b10c5e2
PZ
4210/*
4211 * Called when the last reference to the file is gone.
4212 */
a6fa941d
AV
4213static int perf_release(struct inode *inode, struct file *file)
4214{
c6e5b732 4215 perf_event_release_kernel(file->private_data);
a6fa941d 4216 return 0;
fb0459d7 4217}
fb0459d7 4218
59ed446f 4219u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
e53c0994 4220{
cdd6c482 4221 struct perf_event *child;
e53c0994
PZ
4222 u64 total = 0;
4223
59ed446f
PZ
4224 *enabled = 0;
4225 *running = 0;
4226
6f10581a 4227 mutex_lock(&event->child_mutex);
01add3ea 4228
7d88962e 4229 (void)perf_event_read(event, false);
01add3ea
SB
4230 total += perf_event_count(event);
4231
59ed446f
PZ
4232 *enabled += event->total_time_enabled +
4233 atomic64_read(&event->child_total_time_enabled);
4234 *running += event->total_time_running +
4235 atomic64_read(&event->child_total_time_running);
4236
4237 list_for_each_entry(child, &event->child_list, child_list) {
7d88962e 4238 (void)perf_event_read(child, false);
01add3ea 4239 total += perf_event_count(child);
59ed446f
PZ
4240 *enabled += child->total_time_enabled;
4241 *running += child->total_time_running;
4242 }
6f10581a 4243 mutex_unlock(&event->child_mutex);
e53c0994
PZ
4244
4245 return total;
4246}
fb0459d7 4247EXPORT_SYMBOL_GPL(perf_event_read_value);
e53c0994 4248
7d88962e 4249static int __perf_read_group_add(struct perf_event *leader,
fa8c2693 4250 u64 read_format, u64 *values)
3dab77fb 4251{
fa8c2693
PZ
4252 struct perf_event *sub;
4253 int n = 1; /* skip @nr */
7d88962e 4254 int ret;
f63a8daa 4255
7d88962e
SB
4256 ret = perf_event_read(leader, true);
4257 if (ret)
4258 return ret;
abf4868b 4259
fa8c2693
PZ
4260 /*
4261 * Since we co-schedule groups, {enabled,running} times of siblings
4262 * will be identical to those of the leader, so we only publish one
4263 * set.
4264 */
4265 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4266 values[n++] += leader->total_time_enabled +
4267 atomic64_read(&leader->child_total_time_enabled);
4268 }
3dab77fb 4269
fa8c2693
PZ
4270 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4271 values[n++] += leader->total_time_running +
4272 atomic64_read(&leader->child_total_time_running);
4273 }
4274
4275 /*
4276 * Write {count,id} tuples for every sibling.
4277 */
4278 values[n++] += perf_event_count(leader);
abf4868b
PZ
4279 if (read_format & PERF_FORMAT_ID)
4280 values[n++] = primary_event_id(leader);
3dab77fb 4281
fa8c2693
PZ
4282 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4283 values[n++] += perf_event_count(sub);
4284 if (read_format & PERF_FORMAT_ID)
4285 values[n++] = primary_event_id(sub);
4286 }
7d88962e
SB
4287
4288 return 0;
fa8c2693 4289}
3dab77fb 4290
fa8c2693
PZ
4291static int perf_read_group(struct perf_event *event,
4292 u64 read_format, char __user *buf)
4293{
4294 struct perf_event *leader = event->group_leader, *child;
4295 struct perf_event_context *ctx = leader->ctx;
7d88962e 4296 int ret;
fa8c2693 4297 u64 *values;
3dab77fb 4298
fa8c2693 4299 lockdep_assert_held(&ctx->mutex);
3dab77fb 4300
fa8c2693
PZ
4301 values = kzalloc(event->read_size, GFP_KERNEL);
4302 if (!values)
4303 return -ENOMEM;
3dab77fb 4304
fa8c2693
PZ
4305 values[0] = 1 + leader->nr_siblings;
4306
4307 /*
4308 * By locking the child_mutex of the leader we effectively
4309 * lock the child list of all siblings.. XXX explain how.
4310 */
4311 mutex_lock(&leader->child_mutex);
abf4868b 4312
7d88962e
SB
4313 ret = __perf_read_group_add(leader, read_format, values);
4314 if (ret)
4315 goto unlock;
4316
4317 list_for_each_entry(child, &leader->child_list, child_list) {
4318 ret = __perf_read_group_add(child, read_format, values);
4319 if (ret)
4320 goto unlock;
4321 }
abf4868b 4322
fa8c2693 4323 mutex_unlock(&leader->child_mutex);
abf4868b 4324
7d88962e 4325 ret = event->read_size;
fa8c2693
PZ
4326 if (copy_to_user(buf, values, event->read_size))
4327 ret = -EFAULT;
7d88962e 4328 goto out;
fa8c2693 4329
7d88962e
SB
4330unlock:
4331 mutex_unlock(&leader->child_mutex);
4332out:
fa8c2693 4333 kfree(values);
abf4868b 4334 return ret;
3dab77fb
PZ
4335}
4336
b15f495b 4337static int perf_read_one(struct perf_event *event,
3dab77fb
PZ
4338 u64 read_format, char __user *buf)
4339{
59ed446f 4340 u64 enabled, running;
3dab77fb
PZ
4341 u64 values[4];
4342 int n = 0;
4343
59ed446f
PZ
4344 values[n++] = perf_event_read_value(event, &enabled, &running);
4345 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4346 values[n++] = enabled;
4347 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4348 values[n++] = running;
3dab77fb 4349 if (read_format & PERF_FORMAT_ID)
cdd6c482 4350 values[n++] = primary_event_id(event);
3dab77fb
PZ
4351
4352 if (copy_to_user(buf, values, n * sizeof(u64)))
4353 return -EFAULT;
4354
4355 return n * sizeof(u64);
4356}
4357
dc633982
JO
4358static bool is_event_hup(struct perf_event *event)
4359{
4360 bool no_children;
4361
a69b0ca4 4362 if (event->state > PERF_EVENT_STATE_EXIT)
dc633982
JO
4363 return false;
4364
4365 mutex_lock(&event->child_mutex);
4366 no_children = list_empty(&event->child_list);
4367 mutex_unlock(&event->child_mutex);
4368 return no_children;
4369}
4370
0793a61d 4371/*
cdd6c482 4372 * Read the performance event - simple non blocking version for now
0793a61d
TG
4373 */
4374static ssize_t
b15f495b 4375__perf_read(struct perf_event *event, char __user *buf, size_t count)
0793a61d 4376{
cdd6c482 4377 u64 read_format = event->attr.read_format;
3dab77fb 4378 int ret;
0793a61d 4379
3b6f9e5c 4380 /*
cdd6c482 4381 * Return end-of-file for a read on a event that is in
3b6f9e5c
PM
4382 * error state (i.e. because it was pinned but it couldn't be
4383 * scheduled on to the CPU at some point).
4384 */
cdd6c482 4385 if (event->state == PERF_EVENT_STATE_ERROR)
3b6f9e5c
PM
4386 return 0;
4387
c320c7b7 4388 if (count < event->read_size)
3dab77fb
PZ
4389 return -ENOSPC;
4390
cdd6c482 4391 WARN_ON_ONCE(event->ctx->parent_ctx);
3dab77fb 4392 if (read_format & PERF_FORMAT_GROUP)
b15f495b 4393 ret = perf_read_group(event, read_format, buf);
3dab77fb 4394 else
b15f495b 4395 ret = perf_read_one(event, read_format, buf);
0793a61d 4396
3dab77fb 4397 return ret;
0793a61d
TG
4398}
4399
0793a61d
TG
4400static ssize_t
4401perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4402{
cdd6c482 4403 struct perf_event *event = file->private_data;
f63a8daa
PZ
4404 struct perf_event_context *ctx;
4405 int ret;
0793a61d 4406
f63a8daa 4407 ctx = perf_event_ctx_lock(event);
b15f495b 4408 ret = __perf_read(event, buf, count);
f63a8daa
PZ
4409 perf_event_ctx_unlock(event, ctx);
4410
4411 return ret;
0793a61d
TG
4412}
4413
4414static unsigned int perf_poll(struct file *file, poll_table *wait)
4415{
cdd6c482 4416 struct perf_event *event = file->private_data;
76369139 4417 struct ring_buffer *rb;
61b67684 4418 unsigned int events = POLLHUP;
c7138f37 4419
e708d7ad 4420 poll_wait(file, &event->waitq, wait);
179033b3 4421
dc633982 4422 if (is_event_hup(event))
179033b3 4423 return events;
c7138f37 4424
10c6db11 4425 /*
9bb5d40c
PZ
4426 * Pin the event->rb by taking event->mmap_mutex; otherwise
4427 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
10c6db11
PZ
4428 */
4429 mutex_lock(&event->mmap_mutex);
9bb5d40c
PZ
4430 rb = event->rb;
4431 if (rb)
76369139 4432 events = atomic_xchg(&rb->poll, 0);
10c6db11 4433 mutex_unlock(&event->mmap_mutex);
0793a61d
TG
4434 return events;
4435}
4436
f63a8daa 4437static void _perf_event_reset(struct perf_event *event)
6de6a7b9 4438{
7d88962e 4439 (void)perf_event_read(event, false);
e7850595 4440 local64_set(&event->count, 0);
cdd6c482 4441 perf_event_update_userpage(event);
3df5edad
PZ
4442}
4443
c93f7669 4444/*
cdd6c482
IM
4445 * Holding the top-level event's child_mutex means that any
4446 * descendant process that has inherited this event will block
8ba289b8 4447 * in perf_event_exit_event() if it goes to exit, thus satisfying the
cdd6c482 4448 * task existence requirements of perf_event_enable/disable.
c93f7669 4449 */
cdd6c482
IM
4450static void perf_event_for_each_child(struct perf_event *event,
4451 void (*func)(struct perf_event *))
3df5edad 4452{
cdd6c482 4453 struct perf_event *child;
3df5edad 4454
cdd6c482 4455 WARN_ON_ONCE(event->ctx->parent_ctx);
f63a8daa 4456
cdd6c482
IM
4457 mutex_lock(&event->child_mutex);
4458 func(event);
4459 list_for_each_entry(child, &event->child_list, child_list)
3df5edad 4460 func(child);
cdd6c482 4461 mutex_unlock(&event->child_mutex);
3df5edad
PZ
4462}
4463
cdd6c482
IM
4464static void perf_event_for_each(struct perf_event *event,
4465 void (*func)(struct perf_event *))
3df5edad 4466{
cdd6c482
IM
4467 struct perf_event_context *ctx = event->ctx;
4468 struct perf_event *sibling;
3df5edad 4469
f63a8daa
PZ
4470 lockdep_assert_held(&ctx->mutex);
4471
cdd6c482 4472 event = event->group_leader;
75f937f2 4473
cdd6c482 4474 perf_event_for_each_child(event, func);
cdd6c482 4475 list_for_each_entry(sibling, &event->sibling_list, group_entry)
724b6daa 4476 perf_event_for_each_child(sibling, func);
6de6a7b9
PZ
4477}
4478
fae3fde6
PZ
4479static void __perf_event_period(struct perf_event *event,
4480 struct perf_cpu_context *cpuctx,
4481 struct perf_event_context *ctx,
4482 void *info)
c7999c6f 4483{
fae3fde6 4484 u64 value = *((u64 *)info);
c7999c6f 4485 bool active;
08247e31 4486
cdd6c482 4487 if (event->attr.freq) {
cdd6c482 4488 event->attr.sample_freq = value;
08247e31 4489 } else {
cdd6c482
IM
4490 event->attr.sample_period = value;
4491 event->hw.sample_period = value;
08247e31 4492 }
bad7192b
PZ
4493
4494 active = (event->state == PERF_EVENT_STATE_ACTIVE);
4495 if (active) {
4496 perf_pmu_disable(ctx->pmu);
1e02cd40
PZ
4497 /*
4498 * We could be throttled; unthrottle now to avoid the tick
4499 * trying to unthrottle while we already re-started the event.
4500 */
4501 if (event->hw.interrupts == MAX_INTERRUPTS) {
4502 event->hw.interrupts = 0;
4503 perf_log_throttle(event, 1);
4504 }
bad7192b
PZ
4505 event->pmu->stop(event, PERF_EF_UPDATE);
4506 }
4507
4508 local64_set(&event->hw.period_left, 0);
4509
4510 if (active) {
4511 event->pmu->start(event, PERF_EF_RELOAD);
4512 perf_pmu_enable(ctx->pmu);
4513 }
c7999c6f
PZ
4514}
4515
4516static int perf_event_period(struct perf_event *event, u64 __user *arg)
4517{
c7999c6f
PZ
4518 u64 value;
4519
4520 if (!is_sampling_event(event))
4521 return -EINVAL;
4522
4523 if (copy_from_user(&value, arg, sizeof(value)))
4524 return -EFAULT;
4525
4526 if (!value)
4527 return -EINVAL;
4528
4529 if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4530 return -EINVAL;
4531
fae3fde6 4532 event_function_call(event, __perf_event_period, &value);
08247e31 4533
c7999c6f 4534 return 0;
08247e31
PZ
4535}
4536
ac9721f3
PZ
4537static const struct file_operations perf_fops;
4538
2903ff01 4539static inline int perf_fget_light(int fd, struct fd *p)
ac9721f3 4540{
2903ff01
AV
4541 struct fd f = fdget(fd);
4542 if (!f.file)
4543 return -EBADF;
ac9721f3 4544
2903ff01
AV
4545 if (f.file->f_op != &perf_fops) {
4546 fdput(f);
4547 return -EBADF;
ac9721f3 4548 }
2903ff01
AV
4549 *p = f;
4550 return 0;
ac9721f3
PZ
4551}
4552
4553static int perf_event_set_output(struct perf_event *event,
4554 struct perf_event *output_event);
6fb2915d 4555static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2541517c 4556static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
a4be7c27 4557
f63a8daa 4558static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
d859e29f 4559{
cdd6c482 4560 void (*func)(struct perf_event *);
3df5edad 4561 u32 flags = arg;
d859e29f
PM
4562
4563 switch (cmd) {
cdd6c482 4564 case PERF_EVENT_IOC_ENABLE:
f63a8daa 4565 func = _perf_event_enable;
d859e29f 4566 break;
cdd6c482 4567 case PERF_EVENT_IOC_DISABLE:
f63a8daa 4568 func = _perf_event_disable;
79f14641 4569 break;
cdd6c482 4570 case PERF_EVENT_IOC_RESET:
f63a8daa 4571 func = _perf_event_reset;
6de6a7b9 4572 break;
3df5edad 4573
cdd6c482 4574 case PERF_EVENT_IOC_REFRESH:
f63a8daa 4575 return _perf_event_refresh(event, arg);
08247e31 4576
cdd6c482
IM
4577 case PERF_EVENT_IOC_PERIOD:
4578 return perf_event_period(event, (u64 __user *)arg);
08247e31 4579
cf4957f1
JO
4580 case PERF_EVENT_IOC_ID:
4581 {
4582 u64 id = primary_event_id(event);
4583
4584 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4585 return -EFAULT;
4586 return 0;
4587 }
4588
cdd6c482 4589 case PERF_EVENT_IOC_SET_OUTPUT:
ac9721f3 4590 {
ac9721f3 4591 int ret;
ac9721f3 4592 if (arg != -1) {
2903ff01
AV
4593 struct perf_event *output_event;
4594 struct fd output;
4595 ret = perf_fget_light(arg, &output);
4596 if (ret)
4597 return ret;
4598 output_event = output.file->private_data;
4599 ret = perf_event_set_output(event, output_event);
4600 fdput(output);
4601 } else {
4602 ret = perf_event_set_output(event, NULL);
ac9721f3 4603 }
ac9721f3
PZ
4604 return ret;
4605 }
a4be7c27 4606
6fb2915d
LZ
4607 case PERF_EVENT_IOC_SET_FILTER:
4608 return perf_event_set_filter(event, (void __user *)arg);
4609
2541517c
AS
4610 case PERF_EVENT_IOC_SET_BPF:
4611 return perf_event_set_bpf_prog(event, arg);
4612
86e7972f
WN
4613 case PERF_EVENT_IOC_PAUSE_OUTPUT: {
4614 struct ring_buffer *rb;
4615
4616 rcu_read_lock();
4617 rb = rcu_dereference(event->rb);
4618 if (!rb || !rb->nr_pages) {
4619 rcu_read_unlock();
4620 return -EINVAL;
4621 }
4622 rb_toggle_paused(rb, !!arg);
4623 rcu_read_unlock();
4624 return 0;
4625 }
d859e29f 4626 default:
3df5edad 4627 return -ENOTTY;
d859e29f 4628 }
3df5edad
PZ
4629
4630 if (flags & PERF_IOC_FLAG_GROUP)
cdd6c482 4631 perf_event_for_each(event, func);
3df5edad 4632 else
cdd6c482 4633 perf_event_for_each_child(event, func);
3df5edad
PZ
4634
4635 return 0;
d859e29f
PM
4636}
4637
f63a8daa
PZ
4638static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4639{
4640 struct perf_event *event = file->private_data;
4641 struct perf_event_context *ctx;
4642 long ret;
4643
4644 ctx = perf_event_ctx_lock(event);
4645 ret = _perf_ioctl(event, cmd, arg);
4646 perf_event_ctx_unlock(event, ctx);
4647
4648 return ret;
4649}
4650
b3f20785
PM
4651#ifdef CONFIG_COMPAT
4652static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4653 unsigned long arg)
4654{
4655 switch (_IOC_NR(cmd)) {
4656 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4657 case _IOC_NR(PERF_EVENT_IOC_ID):
4658 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4659 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4660 cmd &= ~IOCSIZE_MASK;
4661 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4662 }
4663 break;
4664 }
4665 return perf_ioctl(file, cmd, arg);
4666}
4667#else
4668# define perf_compat_ioctl NULL
4669#endif
4670
cdd6c482 4671int perf_event_task_enable(void)
771d7cde 4672{
f63a8daa 4673 struct perf_event_context *ctx;
cdd6c482 4674 struct perf_event *event;
771d7cde 4675
cdd6c482 4676 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
4677 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4678 ctx = perf_event_ctx_lock(event);
4679 perf_event_for_each_child(event, _perf_event_enable);
4680 perf_event_ctx_unlock(event, ctx);
4681 }
cdd6c482 4682 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
4683
4684 return 0;
4685}
4686
cdd6c482 4687int perf_event_task_disable(void)
771d7cde 4688{
f63a8daa 4689 struct perf_event_context *ctx;
cdd6c482 4690 struct perf_event *event;
771d7cde 4691
cdd6c482 4692 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
4693 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4694 ctx = perf_event_ctx_lock(event);
4695 perf_event_for_each_child(event, _perf_event_disable);
4696 perf_event_ctx_unlock(event, ctx);
4697 }
cdd6c482 4698 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
4699
4700 return 0;
4701}
4702
cdd6c482 4703static int perf_event_index(struct perf_event *event)
194002b2 4704{
a4eaf7f1
PZ
4705 if (event->hw.state & PERF_HES_STOPPED)
4706 return 0;
4707
cdd6c482 4708 if (event->state != PERF_EVENT_STATE_ACTIVE)
194002b2
PZ
4709 return 0;
4710
35edc2a5 4711 return event->pmu->event_idx(event);
194002b2
PZ
4712}
4713
c4794295 4714static void calc_timer_values(struct perf_event *event,
e3f3541c 4715 u64 *now,
7f310a5d
EM
4716 u64 *enabled,
4717 u64 *running)
c4794295 4718{
e3f3541c 4719 u64 ctx_time;
c4794295 4720
e3f3541c
PZ
4721 *now = perf_clock();
4722 ctx_time = event->shadow_ctx_time + *now;
c4794295
EM
4723 *enabled = ctx_time - event->tstamp_enabled;
4724 *running = ctx_time - event->tstamp_running;
4725}
4726
fa731587
PZ
4727static void perf_event_init_userpage(struct perf_event *event)
4728{
4729 struct perf_event_mmap_page *userpg;
4730 struct ring_buffer *rb;
4731
4732 rcu_read_lock();
4733 rb = rcu_dereference(event->rb);
4734 if (!rb)
4735 goto unlock;
4736
4737 userpg = rb->user_page;
4738
4739 /* Allow new userspace to detect that bit 0 is deprecated */
4740 userpg->cap_bit0_is_deprecated = 1;
4741 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
e8c6deac
AS
4742 userpg->data_offset = PAGE_SIZE;
4743 userpg->data_size = perf_data_size(rb);
fa731587
PZ
4744
4745unlock:
4746 rcu_read_unlock();
4747}
4748
c1317ec2
AL
4749void __weak arch_perf_update_userpage(
4750 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
e3f3541c
PZ
4751{
4752}
4753
38ff667b
PZ
4754/*
4755 * Callers need to ensure there can be no nesting of this function, otherwise
4756 * the seqlock logic goes bad. We can not serialize this because the arch
4757 * code calls this from NMI context.
4758 */
cdd6c482 4759void perf_event_update_userpage(struct perf_event *event)
37d81828 4760{
cdd6c482 4761 struct perf_event_mmap_page *userpg;
76369139 4762 struct ring_buffer *rb;
e3f3541c 4763 u64 enabled, running, now;
38ff667b
PZ
4764
4765 rcu_read_lock();
5ec4c599
PZ
4766 rb = rcu_dereference(event->rb);
4767 if (!rb)
4768 goto unlock;
4769
0d641208
EM
4770 /*
4771 * compute total_time_enabled, total_time_running
4772 * based on snapshot values taken when the event
4773 * was last scheduled in.
4774 *
4775 * we cannot simply called update_context_time()
4776 * because of locking issue as we can be called in
4777 * NMI context
4778 */
e3f3541c 4779 calc_timer_values(event, &now, &enabled, &running);
38ff667b 4780
76369139 4781 userpg = rb->user_page;
7b732a75
PZ
4782 /*
4783 * Disable preemption so as to not let the corresponding user-space
4784 * spin too long if we get preempted.
4785 */
4786 preempt_disable();
37d81828 4787 ++userpg->lock;
92f22a38 4788 barrier();
cdd6c482 4789 userpg->index = perf_event_index(event);
b5e58793 4790 userpg->offset = perf_event_count(event);
365a4038 4791 if (userpg->index)
e7850595 4792 userpg->offset -= local64_read(&event->hw.prev_count);
7b732a75 4793
0d641208 4794 userpg->time_enabled = enabled +
cdd6c482 4795 atomic64_read(&event->child_total_time_enabled);
7f8b4e4e 4796
0d641208 4797 userpg->time_running = running +
cdd6c482 4798 atomic64_read(&event->child_total_time_running);
7f8b4e4e 4799
c1317ec2 4800 arch_perf_update_userpage(event, userpg, now);
e3f3541c 4801
92f22a38 4802 barrier();
37d81828 4803 ++userpg->lock;
7b732a75 4804 preempt_enable();
38ff667b 4805unlock:
7b732a75 4806 rcu_read_unlock();
37d81828
PM
4807}
4808
906010b2
PZ
4809static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
4810{
4811 struct perf_event *event = vma->vm_file->private_data;
76369139 4812 struct ring_buffer *rb;
906010b2
PZ
4813 int ret = VM_FAULT_SIGBUS;
4814
4815 if (vmf->flags & FAULT_FLAG_MKWRITE) {
4816 if (vmf->pgoff == 0)
4817 ret = 0;
4818 return ret;
4819 }
4820
4821 rcu_read_lock();
76369139
FW
4822 rb = rcu_dereference(event->rb);
4823 if (!rb)
906010b2
PZ
4824 goto unlock;
4825
4826 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4827 goto unlock;
4828
76369139 4829 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
906010b2
PZ
4830 if (!vmf->page)
4831 goto unlock;
4832
4833 get_page(vmf->page);
4834 vmf->page->mapping = vma->vm_file->f_mapping;
4835 vmf->page->index = vmf->pgoff;
4836
4837 ret = 0;
4838unlock:
4839 rcu_read_unlock();
4840
4841 return ret;
4842}
4843
10c6db11
PZ
4844static void ring_buffer_attach(struct perf_event *event,
4845 struct ring_buffer *rb)
4846{
b69cf536 4847 struct ring_buffer *old_rb = NULL;
10c6db11
PZ
4848 unsigned long flags;
4849
b69cf536
PZ
4850 if (event->rb) {
4851 /*
4852 * Should be impossible, we set this when removing
4853 * event->rb_entry and wait/clear when adding event->rb_entry.
4854 */
4855 WARN_ON_ONCE(event->rcu_pending);
10c6db11 4856
b69cf536 4857 old_rb = event->rb;
b69cf536
PZ
4858 spin_lock_irqsave(&old_rb->event_lock, flags);
4859 list_del_rcu(&event->rb_entry);
4860 spin_unlock_irqrestore(&old_rb->event_lock, flags);
10c6db11 4861
2f993cf0
ON
4862 event->rcu_batches = get_state_synchronize_rcu();
4863 event->rcu_pending = 1;
b69cf536 4864 }
10c6db11 4865
b69cf536 4866 if (rb) {
2f993cf0
ON
4867 if (event->rcu_pending) {
4868 cond_synchronize_rcu(event->rcu_batches);
4869 event->rcu_pending = 0;
4870 }
4871
b69cf536
PZ
4872 spin_lock_irqsave(&rb->event_lock, flags);
4873 list_add_rcu(&event->rb_entry, &rb->event_list);
4874 spin_unlock_irqrestore(&rb->event_lock, flags);
4875 }
4876
4877 rcu_assign_pointer(event->rb, rb);
4878
4879 if (old_rb) {
4880 ring_buffer_put(old_rb);
4881 /*
4882 * Since we detached before setting the new rb, so that we
4883 * could attach the new rb, we could have missed a wakeup.
4884 * Provide it now.
4885 */
4886 wake_up_all(&event->waitq);
4887 }
10c6db11
PZ
4888}
4889
4890static void ring_buffer_wakeup(struct perf_event *event)
4891{
4892 struct ring_buffer *rb;
4893
4894 rcu_read_lock();
4895 rb = rcu_dereference(event->rb);
9bb5d40c
PZ
4896 if (rb) {
4897 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
4898 wake_up_all(&event->waitq);
4899 }
10c6db11
PZ
4900 rcu_read_unlock();
4901}
4902
fdc26706 4903struct ring_buffer *ring_buffer_get(struct perf_event *event)
7b732a75 4904{
76369139 4905 struct ring_buffer *rb;
7b732a75 4906
ac9721f3 4907 rcu_read_lock();
76369139
FW
4908 rb = rcu_dereference(event->rb);
4909 if (rb) {
4910 if (!atomic_inc_not_zero(&rb->refcount))
4911 rb = NULL;
ac9721f3
PZ
4912 }
4913 rcu_read_unlock();
4914
76369139 4915 return rb;
ac9721f3
PZ
4916}
4917
fdc26706 4918void ring_buffer_put(struct ring_buffer *rb)
ac9721f3 4919{
76369139 4920 if (!atomic_dec_and_test(&rb->refcount))
ac9721f3 4921 return;
7b732a75 4922
9bb5d40c 4923 WARN_ON_ONCE(!list_empty(&rb->event_list));
10c6db11 4924
76369139 4925 call_rcu(&rb->rcu_head, rb_free_rcu);
7b732a75
PZ
4926}
4927
4928static void perf_mmap_open(struct vm_area_struct *vma)
4929{
cdd6c482 4930 struct perf_event *event = vma->vm_file->private_data;
7b732a75 4931
cdd6c482 4932 atomic_inc(&event->mmap_count);
9bb5d40c 4933 atomic_inc(&event->rb->mmap_count);
1e0fb9ec 4934
45bfb2e5
PZ
4935 if (vma->vm_pgoff)
4936 atomic_inc(&event->rb->aux_mmap_count);
4937
1e0fb9ec
AL
4938 if (event->pmu->event_mapped)
4939 event->pmu->event_mapped(event);
7b732a75
PZ
4940}
4941
95ff4ca2
AS
4942static void perf_pmu_output_stop(struct perf_event *event);
4943
9bb5d40c
PZ
4944/*
4945 * A buffer can be mmap()ed multiple times; either directly through the same
4946 * event, or through other events by use of perf_event_set_output().
4947 *
4948 * In order to undo the VM accounting done by perf_mmap() we need to destroy
4949 * the buffer here, where we still have a VM context. This means we need
4950 * to detach all events redirecting to us.
4951 */
7b732a75
PZ
4952static void perf_mmap_close(struct vm_area_struct *vma)
4953{
cdd6c482 4954 struct perf_event *event = vma->vm_file->private_data;
7b732a75 4955
b69cf536 4956 struct ring_buffer *rb = ring_buffer_get(event);
9bb5d40c
PZ
4957 struct user_struct *mmap_user = rb->mmap_user;
4958 int mmap_locked = rb->mmap_locked;
4959 unsigned long size = perf_data_size(rb);
789f90fc 4960
1e0fb9ec
AL
4961 if (event->pmu->event_unmapped)
4962 event->pmu->event_unmapped(event);
4963
45bfb2e5
PZ
4964 /*
4965 * rb->aux_mmap_count will always drop before rb->mmap_count and
4966 * event->mmap_count, so it is ok to use event->mmap_mutex to
4967 * serialize with perf_mmap here.
4968 */
4969 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
4970 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
95ff4ca2
AS
4971 /*
4972 * Stop all AUX events that are writing to this buffer,
4973 * so that we can free its AUX pages and corresponding PMU
4974 * data. Note that after rb::aux_mmap_count dropped to zero,
4975 * they won't start any more (see perf_aux_output_begin()).
4976 */
4977 perf_pmu_output_stop(event);
4978
4979 /* now it's safe to free the pages */
45bfb2e5
PZ
4980 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
4981 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
4982
95ff4ca2 4983 /* this has to be the last one */
45bfb2e5 4984 rb_free_aux(rb);
95ff4ca2
AS
4985 WARN_ON_ONCE(atomic_read(&rb->aux_refcount));
4986
45bfb2e5
PZ
4987 mutex_unlock(&event->mmap_mutex);
4988 }
4989
9bb5d40c
PZ
4990 atomic_dec(&rb->mmap_count);
4991
4992 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
b69cf536 4993 goto out_put;
9bb5d40c 4994
b69cf536 4995 ring_buffer_attach(event, NULL);
9bb5d40c
PZ
4996 mutex_unlock(&event->mmap_mutex);
4997
4998 /* If there's still other mmap()s of this buffer, we're done. */
b69cf536
PZ
4999 if (atomic_read(&rb->mmap_count))
5000 goto out_put;
ac9721f3 5001
9bb5d40c
PZ
5002 /*
5003 * No other mmap()s, detach from all other events that might redirect
5004 * into the now unreachable buffer. Somewhat complicated by the
5005 * fact that rb::event_lock otherwise nests inside mmap_mutex.
5006 */
5007again:
5008 rcu_read_lock();
5009 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5010 if (!atomic_long_inc_not_zero(&event->refcount)) {
5011 /*
5012 * This event is en-route to free_event() which will
5013 * detach it and remove it from the list.
5014 */
5015 continue;
5016 }
5017 rcu_read_unlock();
789f90fc 5018
9bb5d40c
PZ
5019 mutex_lock(&event->mmap_mutex);
5020 /*
5021 * Check we didn't race with perf_event_set_output() which can
5022 * swizzle the rb from under us while we were waiting to
5023 * acquire mmap_mutex.
5024 *
5025 * If we find a different rb; ignore this event, a next
5026 * iteration will no longer find it on the list. We have to
5027 * still restart the iteration to make sure we're not now
5028 * iterating the wrong list.
5029 */
b69cf536
PZ
5030 if (event->rb == rb)
5031 ring_buffer_attach(event, NULL);
5032
cdd6c482 5033 mutex_unlock(&event->mmap_mutex);
9bb5d40c 5034 put_event(event);
ac9721f3 5035
9bb5d40c
PZ
5036 /*
5037 * Restart the iteration; either we're on the wrong list or
5038 * destroyed its integrity by doing a deletion.
5039 */
5040 goto again;
7b732a75 5041 }
9bb5d40c
PZ
5042 rcu_read_unlock();
5043
5044 /*
5045 * It could be there's still a few 0-ref events on the list; they'll
5046 * get cleaned up by free_event() -- they'll also still have their
5047 * ref on the rb and will free it whenever they are done with it.
5048 *
5049 * Aside from that, this buffer is 'fully' detached and unmapped,
5050 * undo the VM accounting.
5051 */
5052
5053 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
5054 vma->vm_mm->pinned_vm -= mmap_locked;
5055 free_uid(mmap_user);
5056
b69cf536 5057out_put:
9bb5d40c 5058 ring_buffer_put(rb); /* could be last */
37d81828
PM
5059}
5060
f0f37e2f 5061static const struct vm_operations_struct perf_mmap_vmops = {
43a21ea8 5062 .open = perf_mmap_open,
45bfb2e5 5063 .close = perf_mmap_close, /* non mergable */
43a21ea8
PZ
5064 .fault = perf_mmap_fault,
5065 .page_mkwrite = perf_mmap_fault,
37d81828
PM
5066};
5067
5068static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5069{
cdd6c482 5070 struct perf_event *event = file->private_data;
22a4f650 5071 unsigned long user_locked, user_lock_limit;
789f90fc 5072 struct user_struct *user = current_user();
22a4f650 5073 unsigned long locked, lock_limit;
45bfb2e5 5074 struct ring_buffer *rb = NULL;
7b732a75
PZ
5075 unsigned long vma_size;
5076 unsigned long nr_pages;
45bfb2e5 5077 long user_extra = 0, extra = 0;
d57e34fd 5078 int ret = 0, flags = 0;
37d81828 5079
c7920614
PZ
5080 /*
5081 * Don't allow mmap() of inherited per-task counters. This would
5082 * create a performance issue due to all children writing to the
76369139 5083 * same rb.
c7920614
PZ
5084 */
5085 if (event->cpu == -1 && event->attr.inherit)
5086 return -EINVAL;
5087
43a21ea8 5088 if (!(vma->vm_flags & VM_SHARED))
37d81828 5089 return -EINVAL;
7b732a75
PZ
5090
5091 vma_size = vma->vm_end - vma->vm_start;
45bfb2e5
PZ
5092
5093 if (vma->vm_pgoff == 0) {
5094 nr_pages = (vma_size / PAGE_SIZE) - 1;
5095 } else {
5096 /*
5097 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5098 * mapped, all subsequent mappings should have the same size
5099 * and offset. Must be above the normal perf buffer.
5100 */
5101 u64 aux_offset, aux_size;
5102
5103 if (!event->rb)
5104 return -EINVAL;
5105
5106 nr_pages = vma_size / PAGE_SIZE;
5107
5108 mutex_lock(&event->mmap_mutex);
5109 ret = -EINVAL;
5110
5111 rb = event->rb;
5112 if (!rb)
5113 goto aux_unlock;
5114
5115 aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
5116 aux_size = ACCESS_ONCE(rb->user_page->aux_size);
5117
5118 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5119 goto aux_unlock;
5120
5121 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5122 goto aux_unlock;
5123
5124 /* already mapped with a different offset */
5125 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5126 goto aux_unlock;
5127
5128 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5129 goto aux_unlock;
5130
5131 /* already mapped with a different size */
5132 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5133 goto aux_unlock;
5134
5135 if (!is_power_of_2(nr_pages))
5136 goto aux_unlock;
5137
5138 if (!atomic_inc_not_zero(&rb->mmap_count))
5139 goto aux_unlock;
5140
5141 if (rb_has_aux(rb)) {
5142 atomic_inc(&rb->aux_mmap_count);
5143 ret = 0;
5144 goto unlock;
5145 }
5146
5147 atomic_set(&rb->aux_mmap_count, 1);
5148 user_extra = nr_pages;
5149
5150 goto accounting;
5151 }
7b732a75 5152
7730d865 5153 /*
76369139 5154 * If we have rb pages ensure they're a power-of-two number, so we
7730d865
PZ
5155 * can do bitmasks instead of modulo.
5156 */
2ed11312 5157 if (nr_pages != 0 && !is_power_of_2(nr_pages))
37d81828
PM
5158 return -EINVAL;
5159
7b732a75 5160 if (vma_size != PAGE_SIZE * (1 + nr_pages))
37d81828
PM
5161 return -EINVAL;
5162
cdd6c482 5163 WARN_ON_ONCE(event->ctx->parent_ctx);
9bb5d40c 5164again:
cdd6c482 5165 mutex_lock(&event->mmap_mutex);
76369139 5166 if (event->rb) {
9bb5d40c 5167 if (event->rb->nr_pages != nr_pages) {
ebb3c4c4 5168 ret = -EINVAL;
9bb5d40c
PZ
5169 goto unlock;
5170 }
5171
5172 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5173 /*
5174 * Raced against perf_mmap_close() through
5175 * perf_event_set_output(). Try again, hope for better
5176 * luck.
5177 */
5178 mutex_unlock(&event->mmap_mutex);
5179 goto again;
5180 }
5181
ebb3c4c4
PZ
5182 goto unlock;
5183 }
5184
789f90fc 5185 user_extra = nr_pages + 1;
45bfb2e5
PZ
5186
5187accounting:
cdd6c482 5188 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
a3862d3f
IM
5189
5190 /*
5191 * Increase the limit linearly with more CPUs:
5192 */
5193 user_lock_limit *= num_online_cpus();
5194
789f90fc 5195 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
c5078f78 5196
789f90fc
PZ
5197 if (user_locked > user_lock_limit)
5198 extra = user_locked - user_lock_limit;
7b732a75 5199
78d7d407 5200 lock_limit = rlimit(RLIMIT_MEMLOCK);
7b732a75 5201 lock_limit >>= PAGE_SHIFT;
bc3e53f6 5202 locked = vma->vm_mm->pinned_vm + extra;
7b732a75 5203
459ec28a
IM
5204 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5205 !capable(CAP_IPC_LOCK)) {
ebb3c4c4
PZ
5206 ret = -EPERM;
5207 goto unlock;
5208 }
7b732a75 5209
45bfb2e5 5210 WARN_ON(!rb && event->rb);
906010b2 5211
d57e34fd 5212 if (vma->vm_flags & VM_WRITE)
76369139 5213 flags |= RING_BUFFER_WRITABLE;
d57e34fd 5214
76369139 5215 if (!rb) {
45bfb2e5
PZ
5216 rb = rb_alloc(nr_pages,
5217 event->attr.watermark ? event->attr.wakeup_watermark : 0,
5218 event->cpu, flags);
26cb63ad 5219
45bfb2e5
PZ
5220 if (!rb) {
5221 ret = -ENOMEM;
5222 goto unlock;
5223 }
43a21ea8 5224
45bfb2e5
PZ
5225 atomic_set(&rb->mmap_count, 1);
5226 rb->mmap_user = get_current_user();
5227 rb->mmap_locked = extra;
26cb63ad 5228
45bfb2e5 5229 ring_buffer_attach(event, rb);
ac9721f3 5230
45bfb2e5
PZ
5231 perf_event_init_userpage(event);
5232 perf_event_update_userpage(event);
5233 } else {
1a594131
AS
5234 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5235 event->attr.aux_watermark, flags);
45bfb2e5
PZ
5236 if (!ret)
5237 rb->aux_mmap_locked = extra;
5238 }
9a0f05cb 5239
ebb3c4c4 5240unlock:
45bfb2e5
PZ
5241 if (!ret) {
5242 atomic_long_add(user_extra, &user->locked_vm);
5243 vma->vm_mm->pinned_vm += extra;
5244
ac9721f3 5245 atomic_inc(&event->mmap_count);
45bfb2e5
PZ
5246 } else if (rb) {
5247 atomic_dec(&rb->mmap_count);
5248 }
5249aux_unlock:
cdd6c482 5250 mutex_unlock(&event->mmap_mutex);
37d81828 5251
9bb5d40c
PZ
5252 /*
5253 * Since pinned accounting is per vm we cannot allow fork() to copy our
5254 * vma.
5255 */
26cb63ad 5256 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
37d81828 5257 vma->vm_ops = &perf_mmap_vmops;
7b732a75 5258
1e0fb9ec
AL
5259 if (event->pmu->event_mapped)
5260 event->pmu->event_mapped(event);
5261
7b732a75 5262 return ret;
37d81828
PM
5263}
5264
3c446b3d
PZ
5265static int perf_fasync(int fd, struct file *filp, int on)
5266{
496ad9aa 5267 struct inode *inode = file_inode(filp);
cdd6c482 5268 struct perf_event *event = filp->private_data;
3c446b3d
PZ
5269 int retval;
5270
5955102c 5271 inode_lock(inode);
cdd6c482 5272 retval = fasync_helper(fd, filp, on, &event->fasync);
5955102c 5273 inode_unlock(inode);
3c446b3d
PZ
5274
5275 if (retval < 0)
5276 return retval;
5277
5278 return 0;
5279}
5280
0793a61d 5281static const struct file_operations perf_fops = {
3326c1ce 5282 .llseek = no_llseek,
0793a61d
TG
5283 .release = perf_release,
5284 .read = perf_read,
5285 .poll = perf_poll,
d859e29f 5286 .unlocked_ioctl = perf_ioctl,
b3f20785 5287 .compat_ioctl = perf_compat_ioctl,
37d81828 5288 .mmap = perf_mmap,
3c446b3d 5289 .fasync = perf_fasync,
0793a61d
TG
5290};
5291
925d519a 5292/*
cdd6c482 5293 * Perf event wakeup
925d519a
PZ
5294 *
5295 * If there's data, ensure we set the poll() state and publish everything
5296 * to user-space before waking everybody up.
5297 */
5298
fed66e2c
PZ
5299static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5300{
5301 /* only the parent has fasync state */
5302 if (event->parent)
5303 event = event->parent;
5304 return &event->fasync;
5305}
5306
cdd6c482 5307void perf_event_wakeup(struct perf_event *event)
925d519a 5308{
10c6db11 5309 ring_buffer_wakeup(event);
4c9e2542 5310
cdd6c482 5311 if (event->pending_kill) {
fed66e2c 5312 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
cdd6c482 5313 event->pending_kill = 0;
4c9e2542 5314 }
925d519a
PZ
5315}
5316
e360adbe 5317static void perf_pending_event(struct irq_work *entry)
79f14641 5318{
cdd6c482
IM
5319 struct perf_event *event = container_of(entry,
5320 struct perf_event, pending);
d525211f
PZ
5321 int rctx;
5322
5323 rctx = perf_swevent_get_recursion_context();
5324 /*
5325 * If we 'fail' here, that's OK, it means recursion is already disabled
5326 * and we won't recurse 'further'.
5327 */
79f14641 5328
cdd6c482
IM
5329 if (event->pending_disable) {
5330 event->pending_disable = 0;
fae3fde6 5331 perf_event_disable_local(event);
79f14641
PZ
5332 }
5333
cdd6c482
IM
5334 if (event->pending_wakeup) {
5335 event->pending_wakeup = 0;
5336 perf_event_wakeup(event);
79f14641 5337 }
d525211f
PZ
5338
5339 if (rctx >= 0)
5340 perf_swevent_put_recursion_context(rctx);
79f14641
PZ
5341}
5342
39447b38
ZY
5343/*
5344 * We assume there is only KVM supporting the callbacks.
5345 * Later on, we might change it to a list if there is
5346 * another virtualization implementation supporting the callbacks.
5347 */
5348struct perf_guest_info_callbacks *perf_guest_cbs;
5349
5350int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5351{
5352 perf_guest_cbs = cbs;
5353 return 0;
5354}
5355EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5356
5357int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5358{
5359 perf_guest_cbs = NULL;
5360 return 0;
5361}
5362EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5363
4018994f
JO
5364static void
5365perf_output_sample_regs(struct perf_output_handle *handle,
5366 struct pt_regs *regs, u64 mask)
5367{
5368 int bit;
29dd3288 5369 DECLARE_BITMAP(_mask, 64);
4018994f 5370
29dd3288
MS
5371 bitmap_from_u64(_mask, mask);
5372 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
4018994f
JO
5373 u64 val;
5374
5375 val = perf_reg_value(regs, bit);
5376 perf_output_put(handle, val);
5377 }
5378}
5379
60e2364e 5380static void perf_sample_regs_user(struct perf_regs *regs_user,
88a7c26a
AL
5381 struct pt_regs *regs,
5382 struct pt_regs *regs_user_copy)
4018994f 5383{
88a7c26a
AL
5384 if (user_mode(regs)) {
5385 regs_user->abi = perf_reg_abi(current);
2565711f 5386 regs_user->regs = regs;
88a7c26a
AL
5387 } else if (current->mm) {
5388 perf_get_regs_user(regs_user, regs, regs_user_copy);
2565711f
PZ
5389 } else {
5390 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5391 regs_user->regs = NULL;
4018994f
JO
5392 }
5393}
5394
60e2364e
SE
5395static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5396 struct pt_regs *regs)
5397{
5398 regs_intr->regs = regs;
5399 regs_intr->abi = perf_reg_abi(current);
5400}
5401
5402
c5ebcedb
JO
5403/*
5404 * Get remaining task size from user stack pointer.
5405 *
5406 * It'd be better to take stack vma map and limit this more
5407 * precisly, but there's no way to get it safely under interrupt,
5408 * so using TASK_SIZE as limit.
5409 */
5410static u64 perf_ustack_task_size(struct pt_regs *regs)
5411{
5412 unsigned long addr = perf_user_stack_pointer(regs);
5413
5414 if (!addr || addr >= TASK_SIZE)
5415 return 0;
5416
5417 return TASK_SIZE - addr;
5418}
5419
5420static u16
5421perf_sample_ustack_size(u16 stack_size, u16 header_size,
5422 struct pt_regs *regs)
5423{
5424 u64 task_size;
5425
5426 /* No regs, no stack pointer, no dump. */
5427 if (!regs)
5428 return 0;
5429
5430 /*
5431 * Check if we fit in with the requested stack size into the:
5432 * - TASK_SIZE
5433 * If we don't, we limit the size to the TASK_SIZE.
5434 *
5435 * - remaining sample size
5436 * If we don't, we customize the stack size to
5437 * fit in to the remaining sample size.
5438 */
5439
5440 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5441 stack_size = min(stack_size, (u16) task_size);
5442
5443 /* Current header size plus static size and dynamic size. */
5444 header_size += 2 * sizeof(u64);
5445
5446 /* Do we fit in with the current stack dump size? */
5447 if ((u16) (header_size + stack_size) < header_size) {
5448 /*
5449 * If we overflow the maximum size for the sample,
5450 * we customize the stack dump size to fit in.
5451 */
5452 stack_size = USHRT_MAX - header_size - sizeof(u64);
5453 stack_size = round_up(stack_size, sizeof(u64));
5454 }
5455
5456 return stack_size;
5457}
5458
5459static void
5460perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5461 struct pt_regs *regs)
5462{
5463 /* Case of a kernel thread, nothing to dump */
5464 if (!regs) {
5465 u64 size = 0;
5466 perf_output_put(handle, size);
5467 } else {
5468 unsigned long sp;
5469 unsigned int rem;
5470 u64 dyn_size;
5471
5472 /*
5473 * We dump:
5474 * static size
5475 * - the size requested by user or the best one we can fit
5476 * in to the sample max size
5477 * data
5478 * - user stack dump data
5479 * dynamic size
5480 * - the actual dumped size
5481 */
5482
5483 /* Static size. */
5484 perf_output_put(handle, dump_size);
5485
5486 /* Data. */
5487 sp = perf_user_stack_pointer(regs);
5488 rem = __output_copy_user(handle, (void *) sp, dump_size);
5489 dyn_size = dump_size - rem;
5490
5491 perf_output_skip(handle, rem);
5492
5493 /* Dynamic size. */
5494 perf_output_put(handle, dyn_size);
5495 }
5496}
5497
c980d109
ACM
5498static void __perf_event_header__init_id(struct perf_event_header *header,
5499 struct perf_sample_data *data,
5500 struct perf_event *event)
6844c09d
ACM
5501{
5502 u64 sample_type = event->attr.sample_type;
5503
5504 data->type = sample_type;
5505 header->size += event->id_header_size;
5506
5507 if (sample_type & PERF_SAMPLE_TID) {
5508 /* namespace issues */
5509 data->tid_entry.pid = perf_event_pid(event, current);
5510 data->tid_entry.tid = perf_event_tid(event, current);
5511 }
5512
5513 if (sample_type & PERF_SAMPLE_TIME)
34f43927 5514 data->time = perf_event_clock(event);
6844c09d 5515
ff3d527c 5516 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6844c09d
ACM
5517 data->id = primary_event_id(event);
5518
5519 if (sample_type & PERF_SAMPLE_STREAM_ID)
5520 data->stream_id = event->id;
5521
5522 if (sample_type & PERF_SAMPLE_CPU) {
5523 data->cpu_entry.cpu = raw_smp_processor_id();
5524 data->cpu_entry.reserved = 0;
5525 }
5526}
5527
76369139
FW
5528void perf_event_header__init_id(struct perf_event_header *header,
5529 struct perf_sample_data *data,
5530 struct perf_event *event)
c980d109
ACM
5531{
5532 if (event->attr.sample_id_all)
5533 __perf_event_header__init_id(header, data, event);
5534}
5535
5536static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5537 struct perf_sample_data *data)
5538{
5539 u64 sample_type = data->type;
5540
5541 if (sample_type & PERF_SAMPLE_TID)
5542 perf_output_put(handle, data->tid_entry);
5543
5544 if (sample_type & PERF_SAMPLE_TIME)
5545 perf_output_put(handle, data->time);
5546
5547 if (sample_type & PERF_SAMPLE_ID)
5548 perf_output_put(handle, data->id);
5549
5550 if (sample_type & PERF_SAMPLE_STREAM_ID)
5551 perf_output_put(handle, data->stream_id);
5552
5553 if (sample_type & PERF_SAMPLE_CPU)
5554 perf_output_put(handle, data->cpu_entry);
ff3d527c
AH
5555
5556 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5557 perf_output_put(handle, data->id);
c980d109
ACM
5558}
5559
76369139
FW
5560void perf_event__output_id_sample(struct perf_event *event,
5561 struct perf_output_handle *handle,
5562 struct perf_sample_data *sample)
c980d109
ACM
5563{
5564 if (event->attr.sample_id_all)
5565 __perf_event__output_id_sample(handle, sample);
5566}
5567
3dab77fb 5568static void perf_output_read_one(struct perf_output_handle *handle,
eed01528
SE
5569 struct perf_event *event,
5570 u64 enabled, u64 running)
3dab77fb 5571{
cdd6c482 5572 u64 read_format = event->attr.read_format;
3dab77fb
PZ
5573 u64 values[4];
5574 int n = 0;
5575
b5e58793 5576 values[n++] = perf_event_count(event);
3dab77fb 5577 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
eed01528 5578 values[n++] = enabled +
cdd6c482 5579 atomic64_read(&event->child_total_time_enabled);
3dab77fb
PZ
5580 }
5581 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
eed01528 5582 values[n++] = running +
cdd6c482 5583 atomic64_read(&event->child_total_time_running);
3dab77fb
PZ
5584 }
5585 if (read_format & PERF_FORMAT_ID)
cdd6c482 5586 values[n++] = primary_event_id(event);
3dab77fb 5587
76369139 5588 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
5589}
5590
5591/*
cdd6c482 5592 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3dab77fb
PZ
5593 */
5594static void perf_output_read_group(struct perf_output_handle *handle,
eed01528
SE
5595 struct perf_event *event,
5596 u64 enabled, u64 running)
3dab77fb 5597{
cdd6c482
IM
5598 struct perf_event *leader = event->group_leader, *sub;
5599 u64 read_format = event->attr.read_format;
3dab77fb
PZ
5600 u64 values[5];
5601 int n = 0;
5602
5603 values[n++] = 1 + leader->nr_siblings;
5604
5605 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
eed01528 5606 values[n++] = enabled;
3dab77fb
PZ
5607
5608 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
eed01528 5609 values[n++] = running;
3dab77fb 5610
cdd6c482 5611 if (leader != event)
3dab77fb
PZ
5612 leader->pmu->read(leader);
5613
b5e58793 5614 values[n++] = perf_event_count(leader);
3dab77fb 5615 if (read_format & PERF_FORMAT_ID)
cdd6c482 5616 values[n++] = primary_event_id(leader);
3dab77fb 5617
76369139 5618 __output_copy(handle, values, n * sizeof(u64));
3dab77fb 5619
65abc865 5620 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3dab77fb
PZ
5621 n = 0;
5622
6f5ab001
JO
5623 if ((sub != event) &&
5624 (sub->state == PERF_EVENT_STATE_ACTIVE))
3dab77fb
PZ
5625 sub->pmu->read(sub);
5626
b5e58793 5627 values[n++] = perf_event_count(sub);
3dab77fb 5628 if (read_format & PERF_FORMAT_ID)
cdd6c482 5629 values[n++] = primary_event_id(sub);
3dab77fb 5630
76369139 5631 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
5632 }
5633}
5634
eed01528
SE
5635#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5636 PERF_FORMAT_TOTAL_TIME_RUNNING)
5637
3dab77fb 5638static void perf_output_read(struct perf_output_handle *handle,
cdd6c482 5639 struct perf_event *event)
3dab77fb 5640{
e3f3541c 5641 u64 enabled = 0, running = 0, now;
eed01528
SE
5642 u64 read_format = event->attr.read_format;
5643
5644 /*
5645 * compute total_time_enabled, total_time_running
5646 * based on snapshot values taken when the event
5647 * was last scheduled in.
5648 *
5649 * we cannot simply called update_context_time()
5650 * because of locking issue as we are called in
5651 * NMI context
5652 */
c4794295 5653 if (read_format & PERF_FORMAT_TOTAL_TIMES)
e3f3541c 5654 calc_timer_values(event, &now, &enabled, &running);
eed01528 5655
cdd6c482 5656 if (event->attr.read_format & PERF_FORMAT_GROUP)
eed01528 5657 perf_output_read_group(handle, event, enabled, running);
3dab77fb 5658 else
eed01528 5659 perf_output_read_one(handle, event, enabled, running);
3dab77fb
PZ
5660}
5661
5622f295
MM
5662void perf_output_sample(struct perf_output_handle *handle,
5663 struct perf_event_header *header,
5664 struct perf_sample_data *data,
cdd6c482 5665 struct perf_event *event)
5622f295
MM
5666{
5667 u64 sample_type = data->type;
5668
5669 perf_output_put(handle, *header);
5670
ff3d527c
AH
5671 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5672 perf_output_put(handle, data->id);
5673
5622f295
MM
5674 if (sample_type & PERF_SAMPLE_IP)
5675 perf_output_put(handle, data->ip);
5676
5677 if (sample_type & PERF_SAMPLE_TID)
5678 perf_output_put(handle, data->tid_entry);
5679
5680 if (sample_type & PERF_SAMPLE_TIME)
5681 perf_output_put(handle, data->time);
5682
5683 if (sample_type & PERF_SAMPLE_ADDR)
5684 perf_output_put(handle, data->addr);
5685
5686 if (sample_type & PERF_SAMPLE_ID)
5687 perf_output_put(handle, data->id);
5688
5689 if (sample_type & PERF_SAMPLE_STREAM_ID)
5690 perf_output_put(handle, data->stream_id);
5691
5692 if (sample_type & PERF_SAMPLE_CPU)
5693 perf_output_put(handle, data->cpu_entry);
5694
5695 if (sample_type & PERF_SAMPLE_PERIOD)
5696 perf_output_put(handle, data->period);
5697
5698 if (sample_type & PERF_SAMPLE_READ)
cdd6c482 5699 perf_output_read(handle, event);
5622f295
MM
5700
5701 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5702 if (data->callchain) {
5703 int size = 1;
5704
5705 if (data->callchain)
5706 size += data->callchain->nr;
5707
5708 size *= sizeof(u64);
5709
76369139 5710 __output_copy(handle, data->callchain, size);
5622f295
MM
5711 } else {
5712 u64 nr = 0;
5713 perf_output_put(handle, nr);
5714 }
5715 }
5716
5717 if (sample_type & PERF_SAMPLE_RAW) {
7e3f977e
DB
5718 struct perf_raw_record *raw = data->raw;
5719
5720 if (raw) {
5721 struct perf_raw_frag *frag = &raw->frag;
5722
5723 perf_output_put(handle, raw->size);
5724 do {
5725 if (frag->copy) {
5726 __output_custom(handle, frag->copy,
5727 frag->data, frag->size);
5728 } else {
5729 __output_copy(handle, frag->data,
5730 frag->size);
5731 }
5732 if (perf_raw_frag_last(frag))
5733 break;
5734 frag = frag->next;
5735 } while (1);
5736 if (frag->pad)
5737 __output_skip(handle, NULL, frag->pad);
5622f295
MM
5738 } else {
5739 struct {
5740 u32 size;
5741 u32 data;
5742 } raw = {
5743 .size = sizeof(u32),
5744 .data = 0,
5745 };
5746 perf_output_put(handle, raw);
5747 }
5748 }
a7ac67ea 5749
bce38cd5
SE
5750 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5751 if (data->br_stack) {
5752 size_t size;
5753
5754 size = data->br_stack->nr
5755 * sizeof(struct perf_branch_entry);
5756
5757 perf_output_put(handle, data->br_stack->nr);
5758 perf_output_copy(handle, data->br_stack->entries, size);
5759 } else {
5760 /*
5761 * we always store at least the value of nr
5762 */
5763 u64 nr = 0;
5764 perf_output_put(handle, nr);
5765 }
5766 }
4018994f
JO
5767
5768 if (sample_type & PERF_SAMPLE_REGS_USER) {
5769 u64 abi = data->regs_user.abi;
5770
5771 /*
5772 * If there are no regs to dump, notice it through
5773 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5774 */
5775 perf_output_put(handle, abi);
5776
5777 if (abi) {
5778 u64 mask = event->attr.sample_regs_user;
5779 perf_output_sample_regs(handle,
5780 data->regs_user.regs,
5781 mask);
5782 }
5783 }
c5ebcedb 5784
a5cdd40c 5785 if (sample_type & PERF_SAMPLE_STACK_USER) {
c5ebcedb
JO
5786 perf_output_sample_ustack(handle,
5787 data->stack_user_size,
5788 data->regs_user.regs);
a5cdd40c 5789 }
c3feedf2
AK
5790
5791 if (sample_type & PERF_SAMPLE_WEIGHT)
5792 perf_output_put(handle, data->weight);
d6be9ad6
SE
5793
5794 if (sample_type & PERF_SAMPLE_DATA_SRC)
5795 perf_output_put(handle, data->data_src.val);
a5cdd40c 5796
fdfbbd07
AK
5797 if (sample_type & PERF_SAMPLE_TRANSACTION)
5798 perf_output_put(handle, data->txn);
5799
60e2364e
SE
5800 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5801 u64 abi = data->regs_intr.abi;
5802 /*
5803 * If there are no regs to dump, notice it through
5804 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5805 */
5806 perf_output_put(handle, abi);
5807
5808 if (abi) {
5809 u64 mask = event->attr.sample_regs_intr;
5810
5811 perf_output_sample_regs(handle,
5812 data->regs_intr.regs,
5813 mask);
5814 }
5815 }
5816
a5cdd40c
PZ
5817 if (!event->attr.watermark) {
5818 int wakeup_events = event->attr.wakeup_events;
5819
5820 if (wakeup_events) {
5821 struct ring_buffer *rb = handle->rb;
5822 int events = local_inc_return(&rb->events);
5823
5824 if (events >= wakeup_events) {
5825 local_sub(wakeup_events, &rb->events);
5826 local_inc(&rb->wakeup);
5827 }
5828 }
5829 }
5622f295
MM
5830}
5831
5832void perf_prepare_sample(struct perf_event_header *header,
5833 struct perf_sample_data *data,
cdd6c482 5834 struct perf_event *event,
5622f295 5835 struct pt_regs *regs)
7b732a75 5836{
cdd6c482 5837 u64 sample_type = event->attr.sample_type;
7b732a75 5838
cdd6c482 5839 header->type = PERF_RECORD_SAMPLE;
c320c7b7 5840 header->size = sizeof(*header) + event->header_size;
5622f295
MM
5841
5842 header->misc = 0;
5843 header->misc |= perf_misc_flags(regs);
6fab0192 5844
c980d109 5845 __perf_event_header__init_id(header, data, event);
6844c09d 5846
c320c7b7 5847 if (sample_type & PERF_SAMPLE_IP)
5622f295
MM
5848 data->ip = perf_instruction_pointer(regs);
5849
b23f3325 5850 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5622f295 5851 int size = 1;
394ee076 5852
e6dab5ff 5853 data->callchain = perf_callchain(event, regs);
5622f295
MM
5854
5855 if (data->callchain)
5856 size += data->callchain->nr;
5857
5858 header->size += size * sizeof(u64);
394ee076
PZ
5859 }
5860
3a43ce68 5861 if (sample_type & PERF_SAMPLE_RAW) {
7e3f977e
DB
5862 struct perf_raw_record *raw = data->raw;
5863 int size;
5864
5865 if (raw) {
5866 struct perf_raw_frag *frag = &raw->frag;
5867 u32 sum = 0;
5868
5869 do {
5870 sum += frag->size;
5871 if (perf_raw_frag_last(frag))
5872 break;
5873 frag = frag->next;
5874 } while (1);
5875
5876 size = round_up(sum + sizeof(u32), sizeof(u64));
5877 raw->size = size - sizeof(u32);
5878 frag->pad = raw->size - sum;
5879 } else {
5880 size = sizeof(u64);
5881 }
a044560c 5882
7e3f977e 5883 header->size += size;
7f453c24 5884 }
bce38cd5
SE
5885
5886 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5887 int size = sizeof(u64); /* nr */
5888 if (data->br_stack) {
5889 size += data->br_stack->nr
5890 * sizeof(struct perf_branch_entry);
5891 }
5892 header->size += size;
5893 }
4018994f 5894
2565711f 5895 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
88a7c26a
AL
5896 perf_sample_regs_user(&data->regs_user, regs,
5897 &data->regs_user_copy);
2565711f 5898
4018994f
JO
5899 if (sample_type & PERF_SAMPLE_REGS_USER) {
5900 /* regs dump ABI info */
5901 int size = sizeof(u64);
5902
4018994f
JO
5903 if (data->regs_user.regs) {
5904 u64 mask = event->attr.sample_regs_user;
5905 size += hweight64(mask) * sizeof(u64);
5906 }
5907
5908 header->size += size;
5909 }
c5ebcedb
JO
5910
5911 if (sample_type & PERF_SAMPLE_STACK_USER) {
5912 /*
5913 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
5914 * processed as the last one or have additional check added
5915 * in case new sample type is added, because we could eat
5916 * up the rest of the sample size.
5917 */
c5ebcedb
JO
5918 u16 stack_size = event->attr.sample_stack_user;
5919 u16 size = sizeof(u64);
5920
c5ebcedb 5921 stack_size = perf_sample_ustack_size(stack_size, header->size,
2565711f 5922 data->regs_user.regs);
c5ebcedb
JO
5923
5924 /*
5925 * If there is something to dump, add space for the dump
5926 * itself and for the field that tells the dynamic size,
5927 * which is how many have been actually dumped.
5928 */
5929 if (stack_size)
5930 size += sizeof(u64) + stack_size;
5931
5932 data->stack_user_size = stack_size;
5933 header->size += size;
5934 }
60e2364e
SE
5935
5936 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5937 /* regs dump ABI info */
5938 int size = sizeof(u64);
5939
5940 perf_sample_regs_intr(&data->regs_intr, regs);
5941
5942 if (data->regs_intr.regs) {
5943 u64 mask = event->attr.sample_regs_intr;
5944
5945 size += hweight64(mask) * sizeof(u64);
5946 }
5947
5948 header->size += size;
5949 }
5622f295 5950}
7f453c24 5951
9ecda41a
WN
5952static void __always_inline
5953__perf_event_output(struct perf_event *event,
5954 struct perf_sample_data *data,
5955 struct pt_regs *regs,
5956 int (*output_begin)(struct perf_output_handle *,
5957 struct perf_event *,
5958 unsigned int))
5622f295
MM
5959{
5960 struct perf_output_handle handle;
5961 struct perf_event_header header;
689802b2 5962
927c7a9e
FW
5963 /* protect the callchain buffers */
5964 rcu_read_lock();
5965
cdd6c482 5966 perf_prepare_sample(&header, data, event, regs);
5c148194 5967
9ecda41a 5968 if (output_begin(&handle, event, header.size))
927c7a9e 5969 goto exit;
0322cd6e 5970
cdd6c482 5971 perf_output_sample(&handle, &header, data, event);
f413cdb8 5972
8a057d84 5973 perf_output_end(&handle);
927c7a9e
FW
5974
5975exit:
5976 rcu_read_unlock();
0322cd6e
PZ
5977}
5978
9ecda41a
WN
5979void
5980perf_event_output_forward(struct perf_event *event,
5981 struct perf_sample_data *data,
5982 struct pt_regs *regs)
5983{
5984 __perf_event_output(event, data, regs, perf_output_begin_forward);
5985}
5986
5987void
5988perf_event_output_backward(struct perf_event *event,
5989 struct perf_sample_data *data,
5990 struct pt_regs *regs)
5991{
5992 __perf_event_output(event, data, regs, perf_output_begin_backward);
5993}
5994
5995void
5996perf_event_output(struct perf_event *event,
5997 struct perf_sample_data *data,
5998 struct pt_regs *regs)
5999{
6000 __perf_event_output(event, data, regs, perf_output_begin);
6001}
6002
38b200d6 6003/*
cdd6c482 6004 * read event_id
38b200d6
PZ
6005 */
6006
6007struct perf_read_event {
6008 struct perf_event_header header;
6009
6010 u32 pid;
6011 u32 tid;
38b200d6
PZ
6012};
6013
6014static void
cdd6c482 6015perf_event_read_event(struct perf_event *event,
38b200d6
PZ
6016 struct task_struct *task)
6017{
6018 struct perf_output_handle handle;
c980d109 6019 struct perf_sample_data sample;
dfc65094 6020 struct perf_read_event read_event = {
38b200d6 6021 .header = {
cdd6c482 6022 .type = PERF_RECORD_READ,
38b200d6 6023 .misc = 0,
c320c7b7 6024 .size = sizeof(read_event) + event->read_size,
38b200d6 6025 },
cdd6c482
IM
6026 .pid = perf_event_pid(event, task),
6027 .tid = perf_event_tid(event, task),
38b200d6 6028 };
3dab77fb 6029 int ret;
38b200d6 6030
c980d109 6031 perf_event_header__init_id(&read_event.header, &sample, event);
a7ac67ea 6032 ret = perf_output_begin(&handle, event, read_event.header.size);
38b200d6
PZ
6033 if (ret)
6034 return;
6035
dfc65094 6036 perf_output_put(&handle, read_event);
cdd6c482 6037 perf_output_read(&handle, event);
c980d109 6038 perf_event__output_id_sample(event, &handle, &sample);
3dab77fb 6039
38b200d6
PZ
6040 perf_output_end(&handle);
6041}
6042
aab5b71e 6043typedef void (perf_iterate_f)(struct perf_event *event, void *data);
52d857a8
JO
6044
6045static void
aab5b71e
PZ
6046perf_iterate_ctx(struct perf_event_context *ctx,
6047 perf_iterate_f output,
b73e4fef 6048 void *data, bool all)
52d857a8
JO
6049{
6050 struct perf_event *event;
6051
6052 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
b73e4fef
AS
6053 if (!all) {
6054 if (event->state < PERF_EVENT_STATE_INACTIVE)
6055 continue;
6056 if (!event_filter_match(event))
6057 continue;
6058 }
6059
67516844 6060 output(event, data);
52d857a8
JO
6061 }
6062}
6063
aab5b71e 6064static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
f2fb6bef
KL
6065{
6066 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
6067 struct perf_event *event;
6068
6069 list_for_each_entry_rcu(event, &pel->list, sb_list) {
0b8f1e2e
PZ
6070 /*
6071 * Skip events that are not fully formed yet; ensure that
6072 * if we observe event->ctx, both event and ctx will be
6073 * complete enough. See perf_install_in_context().
6074 */
6075 if (!smp_load_acquire(&event->ctx))
6076 continue;
6077
f2fb6bef
KL
6078 if (event->state < PERF_EVENT_STATE_INACTIVE)
6079 continue;
6080 if (!event_filter_match(event))
6081 continue;
6082 output(event, data);
6083 }
6084}
6085
aab5b71e
PZ
6086/*
6087 * Iterate all events that need to receive side-band events.
6088 *
6089 * For new callers; ensure that account_pmu_sb_event() includes
6090 * your event, otherwise it might not get delivered.
6091 */
52d857a8 6092static void
aab5b71e 6093perf_iterate_sb(perf_iterate_f output, void *data,
52d857a8
JO
6094 struct perf_event_context *task_ctx)
6095{
52d857a8 6096 struct perf_event_context *ctx;
52d857a8
JO
6097 int ctxn;
6098
aab5b71e
PZ
6099 rcu_read_lock();
6100 preempt_disable();
6101
4e93ad60 6102 /*
aab5b71e
PZ
6103 * If we have task_ctx != NULL we only notify the task context itself.
6104 * The task_ctx is set only for EXIT events before releasing task
4e93ad60
JO
6105 * context.
6106 */
6107 if (task_ctx) {
aab5b71e
PZ
6108 perf_iterate_ctx(task_ctx, output, data, false);
6109 goto done;
4e93ad60
JO
6110 }
6111
aab5b71e 6112 perf_iterate_sb_cpu(output, data);
f2fb6bef
KL
6113
6114 for_each_task_context_nr(ctxn) {
52d857a8
JO
6115 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6116 if (ctx)
aab5b71e 6117 perf_iterate_ctx(ctx, output, data, false);
52d857a8 6118 }
aab5b71e 6119done:
f2fb6bef 6120 preempt_enable();
52d857a8 6121 rcu_read_unlock();
95ff4ca2
AS
6122}
6123
375637bc
AS
6124/*
6125 * Clear all file-based filters at exec, they'll have to be
6126 * re-instated when/if these objects are mmapped again.
6127 */
6128static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
6129{
6130 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6131 struct perf_addr_filter *filter;
6132 unsigned int restart = 0, count = 0;
6133 unsigned long flags;
6134
6135 if (!has_addr_filter(event))
6136 return;
6137
6138 raw_spin_lock_irqsave(&ifh->lock, flags);
6139 list_for_each_entry(filter, &ifh->list, entry) {
6140 if (filter->inode) {
6141 event->addr_filters_offs[count] = 0;
6142 restart++;
6143 }
6144
6145 count++;
6146 }
6147
6148 if (restart)
6149 event->addr_filters_gen++;
6150 raw_spin_unlock_irqrestore(&ifh->lock, flags);
6151
6152 if (restart)
6153 perf_event_restart(event);
6154}
6155
6156void perf_event_exec(void)
6157{
6158 struct perf_event_context *ctx;
6159 int ctxn;
6160
6161 rcu_read_lock();
6162 for_each_task_context_nr(ctxn) {
6163 ctx = current->perf_event_ctxp[ctxn];
6164 if (!ctx)
6165 continue;
6166
6167 perf_event_enable_on_exec(ctxn);
6168
aab5b71e 6169 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
375637bc
AS
6170 true);
6171 }
6172 rcu_read_unlock();
6173}
6174
95ff4ca2
AS
6175struct remote_output {
6176 struct ring_buffer *rb;
6177 int err;
6178};
6179
6180static void __perf_event_output_stop(struct perf_event *event, void *data)
6181{
6182 struct perf_event *parent = event->parent;
6183 struct remote_output *ro = data;
6184 struct ring_buffer *rb = ro->rb;
375637bc
AS
6185 struct stop_event_data sd = {
6186 .event = event,
6187 };
95ff4ca2
AS
6188
6189 if (!has_aux(event))
6190 return;
6191
6192 if (!parent)
6193 parent = event;
6194
6195 /*
6196 * In case of inheritance, it will be the parent that links to the
6197 * ring-buffer, but it will be the child that's actually using it:
6198 */
6199 if (rcu_dereference(parent->rb) == rb)
375637bc 6200 ro->err = __perf_event_stop(&sd);
95ff4ca2
AS
6201}
6202
6203static int __perf_pmu_output_stop(void *info)
6204{
6205 struct perf_event *event = info;
6206 struct pmu *pmu = event->pmu;
8b6a3fe8 6207 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
95ff4ca2
AS
6208 struct remote_output ro = {
6209 .rb = event->rb,
6210 };
6211
6212 rcu_read_lock();
aab5b71e 6213 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
95ff4ca2 6214 if (cpuctx->task_ctx)
aab5b71e 6215 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
b73e4fef 6216 &ro, false);
95ff4ca2
AS
6217 rcu_read_unlock();
6218
6219 return ro.err;
6220}
6221
6222static void perf_pmu_output_stop(struct perf_event *event)
6223{
6224 struct perf_event *iter;
6225 int err, cpu;
6226
6227restart:
6228 rcu_read_lock();
6229 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6230 /*
6231 * For per-CPU events, we need to make sure that neither they
6232 * nor their children are running; for cpu==-1 events it's
6233 * sufficient to stop the event itself if it's active, since
6234 * it can't have children.
6235 */
6236 cpu = iter->cpu;
6237 if (cpu == -1)
6238 cpu = READ_ONCE(iter->oncpu);
6239
6240 if (cpu == -1)
6241 continue;
6242
6243 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6244 if (err == -EAGAIN) {
6245 rcu_read_unlock();
6246 goto restart;
6247 }
6248 }
6249 rcu_read_unlock();
52d857a8
JO
6250}
6251
60313ebe 6252/*
9f498cc5
PZ
6253 * task tracking -- fork/exit
6254 *
13d7a241 6255 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
60313ebe
PZ
6256 */
6257
9f498cc5 6258struct perf_task_event {
3a80b4a3 6259 struct task_struct *task;
cdd6c482 6260 struct perf_event_context *task_ctx;
60313ebe
PZ
6261
6262 struct {
6263 struct perf_event_header header;
6264
6265 u32 pid;
6266 u32 ppid;
9f498cc5
PZ
6267 u32 tid;
6268 u32 ptid;
393b2ad8 6269 u64 time;
cdd6c482 6270 } event_id;
60313ebe
PZ
6271};
6272
67516844
JO
6273static int perf_event_task_match(struct perf_event *event)
6274{
13d7a241
SE
6275 return event->attr.comm || event->attr.mmap ||
6276 event->attr.mmap2 || event->attr.mmap_data ||
6277 event->attr.task;
67516844
JO
6278}
6279
cdd6c482 6280static void perf_event_task_output(struct perf_event *event,
52d857a8 6281 void *data)
60313ebe 6282{
52d857a8 6283 struct perf_task_event *task_event = data;
60313ebe 6284 struct perf_output_handle handle;
c980d109 6285 struct perf_sample_data sample;
9f498cc5 6286 struct task_struct *task = task_event->task;
c980d109 6287 int ret, size = task_event->event_id.header.size;
8bb39f9a 6288
67516844
JO
6289 if (!perf_event_task_match(event))
6290 return;
6291
c980d109 6292 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
60313ebe 6293
c980d109 6294 ret = perf_output_begin(&handle, event,
a7ac67ea 6295 task_event->event_id.header.size);
ef60777c 6296 if (ret)
c980d109 6297 goto out;
60313ebe 6298
cdd6c482
IM
6299 task_event->event_id.pid = perf_event_pid(event, task);
6300 task_event->event_id.ppid = perf_event_pid(event, current);
60313ebe 6301
cdd6c482
IM
6302 task_event->event_id.tid = perf_event_tid(event, task);
6303 task_event->event_id.ptid = perf_event_tid(event, current);
9f498cc5 6304
34f43927
PZ
6305 task_event->event_id.time = perf_event_clock(event);
6306
cdd6c482 6307 perf_output_put(&handle, task_event->event_id);
393b2ad8 6308
c980d109
ACM
6309 perf_event__output_id_sample(event, &handle, &sample);
6310
60313ebe 6311 perf_output_end(&handle);
c980d109
ACM
6312out:
6313 task_event->event_id.header.size = size;
60313ebe
PZ
6314}
6315
cdd6c482
IM
6316static void perf_event_task(struct task_struct *task,
6317 struct perf_event_context *task_ctx,
3a80b4a3 6318 int new)
60313ebe 6319{
9f498cc5 6320 struct perf_task_event task_event;
60313ebe 6321
cdd6c482
IM
6322 if (!atomic_read(&nr_comm_events) &&
6323 !atomic_read(&nr_mmap_events) &&
6324 !atomic_read(&nr_task_events))
60313ebe
PZ
6325 return;
6326
9f498cc5 6327 task_event = (struct perf_task_event){
3a80b4a3
PZ
6328 .task = task,
6329 .task_ctx = task_ctx,
cdd6c482 6330 .event_id = {
60313ebe 6331 .header = {
cdd6c482 6332 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
573402db 6333 .misc = 0,
cdd6c482 6334 .size = sizeof(task_event.event_id),
60313ebe 6335 },
573402db
PZ
6336 /* .pid */
6337 /* .ppid */
9f498cc5
PZ
6338 /* .tid */
6339 /* .ptid */
34f43927 6340 /* .time */
60313ebe
PZ
6341 },
6342 };
6343
aab5b71e 6344 perf_iterate_sb(perf_event_task_output,
52d857a8
JO
6345 &task_event,
6346 task_ctx);
9f498cc5
PZ
6347}
6348
cdd6c482 6349void perf_event_fork(struct task_struct *task)
9f498cc5 6350{
cdd6c482 6351 perf_event_task(task, NULL, 1);
60313ebe
PZ
6352}
6353
8d1b2d93
PZ
6354/*
6355 * comm tracking
6356 */
6357
6358struct perf_comm_event {
22a4f650
IM
6359 struct task_struct *task;
6360 char *comm;
8d1b2d93
PZ
6361 int comm_size;
6362
6363 struct {
6364 struct perf_event_header header;
6365
6366 u32 pid;
6367 u32 tid;
cdd6c482 6368 } event_id;
8d1b2d93
PZ
6369};
6370
67516844
JO
6371static int perf_event_comm_match(struct perf_event *event)
6372{
6373 return event->attr.comm;
6374}
6375
cdd6c482 6376static void perf_event_comm_output(struct perf_event *event,
52d857a8 6377 void *data)
8d1b2d93 6378{
52d857a8 6379 struct perf_comm_event *comm_event = data;
8d1b2d93 6380 struct perf_output_handle handle;
c980d109 6381 struct perf_sample_data sample;
cdd6c482 6382 int size = comm_event->event_id.header.size;
c980d109
ACM
6383 int ret;
6384
67516844
JO
6385 if (!perf_event_comm_match(event))
6386 return;
6387
c980d109
ACM
6388 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
6389 ret = perf_output_begin(&handle, event,
a7ac67ea 6390 comm_event->event_id.header.size);
8d1b2d93
PZ
6391
6392 if (ret)
c980d109 6393 goto out;
8d1b2d93 6394
cdd6c482
IM
6395 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
6396 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
709e50cf 6397
cdd6c482 6398 perf_output_put(&handle, comm_event->event_id);
76369139 6399 __output_copy(&handle, comm_event->comm,
8d1b2d93 6400 comm_event->comm_size);
c980d109
ACM
6401
6402 perf_event__output_id_sample(event, &handle, &sample);
6403
8d1b2d93 6404 perf_output_end(&handle);
c980d109
ACM
6405out:
6406 comm_event->event_id.header.size = size;
8d1b2d93
PZ
6407}
6408
cdd6c482 6409static void perf_event_comm_event(struct perf_comm_event *comm_event)
8d1b2d93 6410{
413ee3b4 6411 char comm[TASK_COMM_LEN];
8d1b2d93 6412 unsigned int size;
8d1b2d93 6413
413ee3b4 6414 memset(comm, 0, sizeof(comm));
96b02d78 6415 strlcpy(comm, comm_event->task->comm, sizeof(comm));
888fcee0 6416 size = ALIGN(strlen(comm)+1, sizeof(u64));
8d1b2d93
PZ
6417
6418 comm_event->comm = comm;
6419 comm_event->comm_size = size;
6420
cdd6c482 6421 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
8dc85d54 6422
aab5b71e 6423 perf_iterate_sb(perf_event_comm_output,
52d857a8
JO
6424 comm_event,
6425 NULL);
8d1b2d93
PZ
6426}
6427
82b89778 6428void perf_event_comm(struct task_struct *task, bool exec)
8d1b2d93 6429{
9ee318a7
PZ
6430 struct perf_comm_event comm_event;
6431
cdd6c482 6432 if (!atomic_read(&nr_comm_events))
9ee318a7 6433 return;
a63eaf34 6434
9ee318a7 6435 comm_event = (struct perf_comm_event){
8d1b2d93 6436 .task = task,
573402db
PZ
6437 /* .comm */
6438 /* .comm_size */
cdd6c482 6439 .event_id = {
573402db 6440 .header = {
cdd6c482 6441 .type = PERF_RECORD_COMM,
82b89778 6442 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
573402db
PZ
6443 /* .size */
6444 },
6445 /* .pid */
6446 /* .tid */
8d1b2d93
PZ
6447 },
6448 };
6449
cdd6c482 6450 perf_event_comm_event(&comm_event);
8d1b2d93
PZ
6451}
6452
0a4a9391
PZ
6453/*
6454 * mmap tracking
6455 */
6456
6457struct perf_mmap_event {
089dd79d
PZ
6458 struct vm_area_struct *vma;
6459
6460 const char *file_name;
6461 int file_size;
13d7a241
SE
6462 int maj, min;
6463 u64 ino;
6464 u64 ino_generation;
f972eb63 6465 u32 prot, flags;
0a4a9391
PZ
6466
6467 struct {
6468 struct perf_event_header header;
6469
6470 u32 pid;
6471 u32 tid;
6472 u64 start;
6473 u64 len;
6474 u64 pgoff;
cdd6c482 6475 } event_id;
0a4a9391
PZ
6476};
6477
67516844
JO
6478static int perf_event_mmap_match(struct perf_event *event,
6479 void *data)
6480{
6481 struct perf_mmap_event *mmap_event = data;
6482 struct vm_area_struct *vma = mmap_event->vma;
6483 int executable = vma->vm_flags & VM_EXEC;
6484
6485 return (!executable && event->attr.mmap_data) ||
13d7a241 6486 (executable && (event->attr.mmap || event->attr.mmap2));
67516844
JO
6487}
6488
cdd6c482 6489static void perf_event_mmap_output(struct perf_event *event,
52d857a8 6490 void *data)
0a4a9391 6491{
52d857a8 6492 struct perf_mmap_event *mmap_event = data;
0a4a9391 6493 struct perf_output_handle handle;
c980d109 6494 struct perf_sample_data sample;
cdd6c482 6495 int size = mmap_event->event_id.header.size;
c980d109 6496 int ret;
0a4a9391 6497
67516844
JO
6498 if (!perf_event_mmap_match(event, data))
6499 return;
6500
13d7a241
SE
6501 if (event->attr.mmap2) {
6502 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
6503 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
6504 mmap_event->event_id.header.size += sizeof(mmap_event->min);
6505 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
d008d525 6506 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
f972eb63
PZ
6507 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
6508 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
13d7a241
SE
6509 }
6510
c980d109
ACM
6511 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
6512 ret = perf_output_begin(&handle, event,
a7ac67ea 6513 mmap_event->event_id.header.size);
0a4a9391 6514 if (ret)
c980d109 6515 goto out;
0a4a9391 6516
cdd6c482
IM
6517 mmap_event->event_id.pid = perf_event_pid(event, current);
6518 mmap_event->event_id.tid = perf_event_tid(event, current);
709e50cf 6519
cdd6c482 6520 perf_output_put(&handle, mmap_event->event_id);
13d7a241
SE
6521
6522 if (event->attr.mmap2) {
6523 perf_output_put(&handle, mmap_event->maj);
6524 perf_output_put(&handle, mmap_event->min);
6525 perf_output_put(&handle, mmap_event->ino);
6526 perf_output_put(&handle, mmap_event->ino_generation);
f972eb63
PZ
6527 perf_output_put(&handle, mmap_event->prot);
6528 perf_output_put(&handle, mmap_event->flags);
13d7a241
SE
6529 }
6530
76369139 6531 __output_copy(&handle, mmap_event->file_name,
0a4a9391 6532 mmap_event->file_size);
c980d109
ACM
6533
6534 perf_event__output_id_sample(event, &handle, &sample);
6535
78d613eb 6536 perf_output_end(&handle);
c980d109
ACM
6537out:
6538 mmap_event->event_id.header.size = size;
0a4a9391
PZ
6539}
6540
cdd6c482 6541static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
0a4a9391 6542{
089dd79d
PZ
6543 struct vm_area_struct *vma = mmap_event->vma;
6544 struct file *file = vma->vm_file;
13d7a241
SE
6545 int maj = 0, min = 0;
6546 u64 ino = 0, gen = 0;
f972eb63 6547 u32 prot = 0, flags = 0;
0a4a9391
PZ
6548 unsigned int size;
6549 char tmp[16];
6550 char *buf = NULL;
2c42cfbf 6551 char *name;
413ee3b4 6552
0a4a9391 6553 if (file) {
13d7a241
SE
6554 struct inode *inode;
6555 dev_t dev;
3ea2f2b9 6556
2c42cfbf 6557 buf = kmalloc(PATH_MAX, GFP_KERNEL);
0a4a9391 6558 if (!buf) {
c7e548b4
ON
6559 name = "//enomem";
6560 goto cpy_name;
0a4a9391 6561 }
413ee3b4 6562 /*
3ea2f2b9 6563 * d_path() works from the end of the rb backwards, so we
413ee3b4
AB
6564 * need to add enough zero bytes after the string to handle
6565 * the 64bit alignment we do later.
6566 */
9bf39ab2 6567 name = file_path(file, buf, PATH_MAX - sizeof(u64));
0a4a9391 6568 if (IS_ERR(name)) {
c7e548b4
ON
6569 name = "//toolong";
6570 goto cpy_name;
0a4a9391 6571 }
13d7a241
SE
6572 inode = file_inode(vma->vm_file);
6573 dev = inode->i_sb->s_dev;
6574 ino = inode->i_ino;
6575 gen = inode->i_generation;
6576 maj = MAJOR(dev);
6577 min = MINOR(dev);
f972eb63
PZ
6578
6579 if (vma->vm_flags & VM_READ)
6580 prot |= PROT_READ;
6581 if (vma->vm_flags & VM_WRITE)
6582 prot |= PROT_WRITE;
6583 if (vma->vm_flags & VM_EXEC)
6584 prot |= PROT_EXEC;
6585
6586 if (vma->vm_flags & VM_MAYSHARE)
6587 flags = MAP_SHARED;
6588 else
6589 flags = MAP_PRIVATE;
6590
6591 if (vma->vm_flags & VM_DENYWRITE)
6592 flags |= MAP_DENYWRITE;
6593 if (vma->vm_flags & VM_MAYEXEC)
6594 flags |= MAP_EXECUTABLE;
6595 if (vma->vm_flags & VM_LOCKED)
6596 flags |= MAP_LOCKED;
6597 if (vma->vm_flags & VM_HUGETLB)
6598 flags |= MAP_HUGETLB;
6599
c7e548b4 6600 goto got_name;
0a4a9391 6601 } else {
fbe26abe
JO
6602 if (vma->vm_ops && vma->vm_ops->name) {
6603 name = (char *) vma->vm_ops->name(vma);
6604 if (name)
6605 goto cpy_name;
6606 }
6607
2c42cfbf 6608 name = (char *)arch_vma_name(vma);
c7e548b4
ON
6609 if (name)
6610 goto cpy_name;
089dd79d 6611
32c5fb7e 6612 if (vma->vm_start <= vma->vm_mm->start_brk &&
3af9e859 6613 vma->vm_end >= vma->vm_mm->brk) {
c7e548b4
ON
6614 name = "[heap]";
6615 goto cpy_name;
32c5fb7e
ON
6616 }
6617 if (vma->vm_start <= vma->vm_mm->start_stack &&
3af9e859 6618 vma->vm_end >= vma->vm_mm->start_stack) {
c7e548b4
ON
6619 name = "[stack]";
6620 goto cpy_name;
089dd79d
PZ
6621 }
6622
c7e548b4
ON
6623 name = "//anon";
6624 goto cpy_name;
0a4a9391
PZ
6625 }
6626
c7e548b4
ON
6627cpy_name:
6628 strlcpy(tmp, name, sizeof(tmp));
6629 name = tmp;
0a4a9391 6630got_name:
2c42cfbf
PZ
6631 /*
6632 * Since our buffer works in 8 byte units we need to align our string
6633 * size to a multiple of 8. However, we must guarantee the tail end is
6634 * zero'd out to avoid leaking random bits to userspace.
6635 */
6636 size = strlen(name)+1;
6637 while (!IS_ALIGNED(size, sizeof(u64)))
6638 name[size++] = '\0';
0a4a9391
PZ
6639
6640 mmap_event->file_name = name;
6641 mmap_event->file_size = size;
13d7a241
SE
6642 mmap_event->maj = maj;
6643 mmap_event->min = min;
6644 mmap_event->ino = ino;
6645 mmap_event->ino_generation = gen;
f972eb63
PZ
6646 mmap_event->prot = prot;
6647 mmap_event->flags = flags;
0a4a9391 6648
2fe85427
SE
6649 if (!(vma->vm_flags & VM_EXEC))
6650 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
6651
cdd6c482 6652 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
0a4a9391 6653
aab5b71e 6654 perf_iterate_sb(perf_event_mmap_output,
52d857a8
JO
6655 mmap_event,
6656 NULL);
665c2142 6657
0a4a9391
PZ
6658 kfree(buf);
6659}
6660
375637bc
AS
6661/*
6662 * Check whether inode and address range match filter criteria.
6663 */
6664static bool perf_addr_filter_match(struct perf_addr_filter *filter,
6665 struct file *file, unsigned long offset,
6666 unsigned long size)
6667{
6668 if (filter->inode != file->f_inode)
6669 return false;
6670
6671 if (filter->offset > offset + size)
6672 return false;
6673
6674 if (filter->offset + filter->size < offset)
6675 return false;
6676
6677 return true;
6678}
6679
6680static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
6681{
6682 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6683 struct vm_area_struct *vma = data;
6684 unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags;
6685 struct file *file = vma->vm_file;
6686 struct perf_addr_filter *filter;
6687 unsigned int restart = 0, count = 0;
6688
6689 if (!has_addr_filter(event))
6690 return;
6691
6692 if (!file)
6693 return;
6694
6695 raw_spin_lock_irqsave(&ifh->lock, flags);
6696 list_for_each_entry(filter, &ifh->list, entry) {
6697 if (perf_addr_filter_match(filter, file, off,
6698 vma->vm_end - vma->vm_start)) {
6699 event->addr_filters_offs[count] = vma->vm_start;
6700 restart++;
6701 }
6702
6703 count++;
6704 }
6705
6706 if (restart)
6707 event->addr_filters_gen++;
6708 raw_spin_unlock_irqrestore(&ifh->lock, flags);
6709
6710 if (restart)
6711 perf_event_restart(event);
6712}
6713
6714/*
6715 * Adjust all task's events' filters to the new vma
6716 */
6717static void perf_addr_filters_adjust(struct vm_area_struct *vma)
6718{
6719 struct perf_event_context *ctx;
6720 int ctxn;
6721
12b40a23
MP
6722 /*
6723 * Data tracing isn't supported yet and as such there is no need
6724 * to keep track of anything that isn't related to executable code:
6725 */
6726 if (!(vma->vm_flags & VM_EXEC))
6727 return;
6728
375637bc
AS
6729 rcu_read_lock();
6730 for_each_task_context_nr(ctxn) {
6731 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6732 if (!ctx)
6733 continue;
6734
aab5b71e 6735 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
375637bc
AS
6736 }
6737 rcu_read_unlock();
6738}
6739
3af9e859 6740void perf_event_mmap(struct vm_area_struct *vma)
0a4a9391 6741{
9ee318a7
PZ
6742 struct perf_mmap_event mmap_event;
6743
cdd6c482 6744 if (!atomic_read(&nr_mmap_events))
9ee318a7
PZ
6745 return;
6746
6747 mmap_event = (struct perf_mmap_event){
089dd79d 6748 .vma = vma,
573402db
PZ
6749 /* .file_name */
6750 /* .file_size */
cdd6c482 6751 .event_id = {
573402db 6752 .header = {
cdd6c482 6753 .type = PERF_RECORD_MMAP,
39447b38 6754 .misc = PERF_RECORD_MISC_USER,
573402db
PZ
6755 /* .size */
6756 },
6757 /* .pid */
6758 /* .tid */
089dd79d
PZ
6759 .start = vma->vm_start,
6760 .len = vma->vm_end - vma->vm_start,
3a0304e9 6761 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
0a4a9391 6762 },
13d7a241
SE
6763 /* .maj (attr_mmap2 only) */
6764 /* .min (attr_mmap2 only) */
6765 /* .ino (attr_mmap2 only) */
6766 /* .ino_generation (attr_mmap2 only) */
f972eb63
PZ
6767 /* .prot (attr_mmap2 only) */
6768 /* .flags (attr_mmap2 only) */
0a4a9391
PZ
6769 };
6770
375637bc 6771 perf_addr_filters_adjust(vma);
cdd6c482 6772 perf_event_mmap_event(&mmap_event);
0a4a9391
PZ
6773}
6774
68db7e98
AS
6775void perf_event_aux_event(struct perf_event *event, unsigned long head,
6776 unsigned long size, u64 flags)
6777{
6778 struct perf_output_handle handle;
6779 struct perf_sample_data sample;
6780 struct perf_aux_event {
6781 struct perf_event_header header;
6782 u64 offset;
6783 u64 size;
6784 u64 flags;
6785 } rec = {
6786 .header = {
6787 .type = PERF_RECORD_AUX,
6788 .misc = 0,
6789 .size = sizeof(rec),
6790 },
6791 .offset = head,
6792 .size = size,
6793 .flags = flags,
6794 };
6795 int ret;
6796
6797 perf_event_header__init_id(&rec.header, &sample, event);
6798 ret = perf_output_begin(&handle, event, rec.header.size);
6799
6800 if (ret)
6801 return;
6802
6803 perf_output_put(&handle, rec);
6804 perf_event__output_id_sample(event, &handle, &sample);
6805
6806 perf_output_end(&handle);
6807}
6808
f38b0dbb
KL
6809/*
6810 * Lost/dropped samples logging
6811 */
6812void perf_log_lost_samples(struct perf_event *event, u64 lost)
6813{
6814 struct perf_output_handle handle;
6815 struct perf_sample_data sample;
6816 int ret;
6817
6818 struct {
6819 struct perf_event_header header;
6820 u64 lost;
6821 } lost_samples_event = {
6822 .header = {
6823 .type = PERF_RECORD_LOST_SAMPLES,
6824 .misc = 0,
6825 .size = sizeof(lost_samples_event),
6826 },
6827 .lost = lost,
6828 };
6829
6830 perf_event_header__init_id(&lost_samples_event.header, &sample, event);
6831
6832 ret = perf_output_begin(&handle, event,
6833 lost_samples_event.header.size);
6834 if (ret)
6835 return;
6836
6837 perf_output_put(&handle, lost_samples_event);
6838 perf_event__output_id_sample(event, &handle, &sample);
6839 perf_output_end(&handle);
6840}
6841
45ac1403
AH
6842/*
6843 * context_switch tracking
6844 */
6845
6846struct perf_switch_event {
6847 struct task_struct *task;
6848 struct task_struct *next_prev;
6849
6850 struct {
6851 struct perf_event_header header;
6852 u32 next_prev_pid;
6853 u32 next_prev_tid;
6854 } event_id;
6855};
6856
6857static int perf_event_switch_match(struct perf_event *event)
6858{
6859 return event->attr.context_switch;
6860}
6861
6862static void perf_event_switch_output(struct perf_event *event, void *data)
6863{
6864 struct perf_switch_event *se = data;
6865 struct perf_output_handle handle;
6866 struct perf_sample_data sample;
6867 int ret;
6868
6869 if (!perf_event_switch_match(event))
6870 return;
6871
6872 /* Only CPU-wide events are allowed to see next/prev pid/tid */
6873 if (event->ctx->task) {
6874 se->event_id.header.type = PERF_RECORD_SWITCH;
6875 se->event_id.header.size = sizeof(se->event_id.header);
6876 } else {
6877 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
6878 se->event_id.header.size = sizeof(se->event_id);
6879 se->event_id.next_prev_pid =
6880 perf_event_pid(event, se->next_prev);
6881 se->event_id.next_prev_tid =
6882 perf_event_tid(event, se->next_prev);
6883 }
6884
6885 perf_event_header__init_id(&se->event_id.header, &sample, event);
6886
6887 ret = perf_output_begin(&handle, event, se->event_id.header.size);
6888 if (ret)
6889 return;
6890
6891 if (event->ctx->task)
6892 perf_output_put(&handle, se->event_id.header);
6893 else
6894 perf_output_put(&handle, se->event_id);
6895
6896 perf_event__output_id_sample(event, &handle, &sample);
6897
6898 perf_output_end(&handle);
6899}
6900
6901static void perf_event_switch(struct task_struct *task,
6902 struct task_struct *next_prev, bool sched_in)
6903{
6904 struct perf_switch_event switch_event;
6905
6906 /* N.B. caller checks nr_switch_events != 0 */
6907
6908 switch_event = (struct perf_switch_event){
6909 .task = task,
6910 .next_prev = next_prev,
6911 .event_id = {
6912 .header = {
6913 /* .type */
6914 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
6915 /* .size */
6916 },
6917 /* .next_prev_pid */
6918 /* .next_prev_tid */
6919 },
6920 };
6921
aab5b71e 6922 perf_iterate_sb(perf_event_switch_output,
45ac1403
AH
6923 &switch_event,
6924 NULL);
6925}
6926
a78ac325
PZ
6927/*
6928 * IRQ throttle logging
6929 */
6930
cdd6c482 6931static void perf_log_throttle(struct perf_event *event, int enable)
a78ac325
PZ
6932{
6933 struct perf_output_handle handle;
c980d109 6934 struct perf_sample_data sample;
a78ac325
PZ
6935 int ret;
6936
6937 struct {
6938 struct perf_event_header header;
6939 u64 time;
cca3f454 6940 u64 id;
7f453c24 6941 u64 stream_id;
a78ac325
PZ
6942 } throttle_event = {
6943 .header = {
cdd6c482 6944 .type = PERF_RECORD_THROTTLE,
a78ac325
PZ
6945 .misc = 0,
6946 .size = sizeof(throttle_event),
6947 },
34f43927 6948 .time = perf_event_clock(event),
cdd6c482
IM
6949 .id = primary_event_id(event),
6950 .stream_id = event->id,
a78ac325
PZ
6951 };
6952
966ee4d6 6953 if (enable)
cdd6c482 6954 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
966ee4d6 6955
c980d109
ACM
6956 perf_event_header__init_id(&throttle_event.header, &sample, event);
6957
6958 ret = perf_output_begin(&handle, event,
a7ac67ea 6959 throttle_event.header.size);
a78ac325
PZ
6960 if (ret)
6961 return;
6962
6963 perf_output_put(&handle, throttle_event);
c980d109 6964 perf_event__output_id_sample(event, &handle, &sample);
a78ac325
PZ
6965 perf_output_end(&handle);
6966}
6967
ec0d7729
AS
6968static void perf_log_itrace_start(struct perf_event *event)
6969{
6970 struct perf_output_handle handle;
6971 struct perf_sample_data sample;
6972 struct perf_aux_event {
6973 struct perf_event_header header;
6974 u32 pid;
6975 u32 tid;
6976 } rec;
6977 int ret;
6978
6979 if (event->parent)
6980 event = event->parent;
6981
6982 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
6983 event->hw.itrace_started)
6984 return;
6985
ec0d7729
AS
6986 rec.header.type = PERF_RECORD_ITRACE_START;
6987 rec.header.misc = 0;
6988 rec.header.size = sizeof(rec);
6989 rec.pid = perf_event_pid(event, current);
6990 rec.tid = perf_event_tid(event, current);
6991
6992 perf_event_header__init_id(&rec.header, &sample, event);
6993 ret = perf_output_begin(&handle, event, rec.header.size);
6994
6995 if (ret)
6996 return;
6997
6998 perf_output_put(&handle, rec);
6999 perf_event__output_id_sample(event, &handle, &sample);
7000
7001 perf_output_end(&handle);
7002}
7003
f6c7d5fe 7004/*
cdd6c482 7005 * Generic event overflow handling, sampling.
f6c7d5fe
PZ
7006 */
7007
a8b0ca17 7008static int __perf_event_overflow(struct perf_event *event,
5622f295
MM
7009 int throttle, struct perf_sample_data *data,
7010 struct pt_regs *regs)
f6c7d5fe 7011{
cdd6c482
IM
7012 int events = atomic_read(&event->event_limit);
7013 struct hw_perf_event *hwc = &event->hw;
e050e3f0 7014 u64 seq;
79f14641
PZ
7015 int ret = 0;
7016
96398826
PZ
7017 /*
7018 * Non-sampling counters might still use the PMI to fold short
7019 * hardware counters, ignore those.
7020 */
7021 if (unlikely(!is_sampling_event(event)))
7022 return 0;
7023
e050e3f0
SE
7024 seq = __this_cpu_read(perf_throttled_seq);
7025 if (seq != hwc->interrupts_seq) {
7026 hwc->interrupts_seq = seq;
7027 hwc->interrupts = 1;
7028 } else {
7029 hwc->interrupts++;
7030 if (unlikely(throttle
7031 && hwc->interrupts >= max_samples_per_tick)) {
7032 __this_cpu_inc(perf_throttled_count);
555e0c1e 7033 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
163ec435
PZ
7034 hwc->interrupts = MAX_INTERRUPTS;
7035 perf_log_throttle(event, 0);
a78ac325
PZ
7036 ret = 1;
7037 }
e050e3f0 7038 }
60db5e09 7039
cdd6c482 7040 if (event->attr.freq) {
def0a9b2 7041 u64 now = perf_clock();
abd50713 7042 s64 delta = now - hwc->freq_time_stamp;
bd2b5b12 7043
abd50713 7044 hwc->freq_time_stamp = now;
bd2b5b12 7045
abd50713 7046 if (delta > 0 && delta < 2*TICK_NSEC)
f39d47ff 7047 perf_adjust_period(event, delta, hwc->last_period, true);
bd2b5b12
PZ
7048 }
7049
2023b359
PZ
7050 /*
7051 * XXX event_limit might not quite work as expected on inherited
cdd6c482 7052 * events
2023b359
PZ
7053 */
7054
cdd6c482
IM
7055 event->pending_kill = POLL_IN;
7056 if (events && atomic_dec_and_test(&event->event_limit)) {
79f14641 7057 ret = 1;
cdd6c482 7058 event->pending_kill = POLL_HUP;
a8b0ca17
PZ
7059 event->pending_disable = 1;
7060 irq_work_queue(&event->pending);
79f14641
PZ
7061 }
7062
1879445d 7063 event->overflow_handler(event, data, regs);
453f19ee 7064
fed66e2c 7065 if (*perf_event_fasync(event) && event->pending_kill) {
a8b0ca17
PZ
7066 event->pending_wakeup = 1;
7067 irq_work_queue(&event->pending);
f506b3dc
PZ
7068 }
7069
79f14641 7070 return ret;
f6c7d5fe
PZ
7071}
7072
a8b0ca17 7073int perf_event_overflow(struct perf_event *event,
5622f295
MM
7074 struct perf_sample_data *data,
7075 struct pt_regs *regs)
850bc73f 7076{
a8b0ca17 7077 return __perf_event_overflow(event, 1, data, regs);
850bc73f
PZ
7078}
7079
15dbf27c 7080/*
cdd6c482 7081 * Generic software event infrastructure
15dbf27c
PZ
7082 */
7083
b28ab83c
PZ
7084struct swevent_htable {
7085 struct swevent_hlist *swevent_hlist;
7086 struct mutex hlist_mutex;
7087 int hlist_refcount;
7088
7089 /* Recursion avoidance in each contexts */
7090 int recursion[PERF_NR_CONTEXTS];
7091};
7092
7093static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
7094
7b4b6658 7095/*
cdd6c482
IM
7096 * We directly increment event->count and keep a second value in
7097 * event->hw.period_left to count intervals. This period event
7b4b6658
PZ
7098 * is kept in the range [-sample_period, 0] so that we can use the
7099 * sign as trigger.
7100 */
7101
ab573844 7102u64 perf_swevent_set_period(struct perf_event *event)
15dbf27c 7103{
cdd6c482 7104 struct hw_perf_event *hwc = &event->hw;
7b4b6658
PZ
7105 u64 period = hwc->last_period;
7106 u64 nr, offset;
7107 s64 old, val;
7108
7109 hwc->last_period = hwc->sample_period;
15dbf27c
PZ
7110
7111again:
e7850595 7112 old = val = local64_read(&hwc->period_left);
7b4b6658
PZ
7113 if (val < 0)
7114 return 0;
15dbf27c 7115
7b4b6658
PZ
7116 nr = div64_u64(period + val, period);
7117 offset = nr * period;
7118 val -= offset;
e7850595 7119 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7b4b6658 7120 goto again;
15dbf27c 7121
7b4b6658 7122 return nr;
15dbf27c
PZ
7123}
7124
0cff784a 7125static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
a8b0ca17 7126 struct perf_sample_data *data,
5622f295 7127 struct pt_regs *regs)
15dbf27c 7128{
cdd6c482 7129 struct hw_perf_event *hwc = &event->hw;
850bc73f 7130 int throttle = 0;
15dbf27c 7131
0cff784a
PZ
7132 if (!overflow)
7133 overflow = perf_swevent_set_period(event);
15dbf27c 7134
7b4b6658
PZ
7135 if (hwc->interrupts == MAX_INTERRUPTS)
7136 return;
15dbf27c 7137
7b4b6658 7138 for (; overflow; overflow--) {
a8b0ca17 7139 if (__perf_event_overflow(event, throttle,
5622f295 7140 data, regs)) {
7b4b6658
PZ
7141 /*
7142 * We inhibit the overflow from happening when
7143 * hwc->interrupts == MAX_INTERRUPTS.
7144 */
7145 break;
7146 }
cf450a73 7147 throttle = 1;
7b4b6658 7148 }
15dbf27c
PZ
7149}
7150
a4eaf7f1 7151static void perf_swevent_event(struct perf_event *event, u64 nr,
a8b0ca17 7152 struct perf_sample_data *data,
5622f295 7153 struct pt_regs *regs)
7b4b6658 7154{
cdd6c482 7155 struct hw_perf_event *hwc = &event->hw;
d6d020e9 7156
e7850595 7157 local64_add(nr, &event->count);
d6d020e9 7158
0cff784a
PZ
7159 if (!regs)
7160 return;
7161
6c7e550f 7162 if (!is_sampling_event(event))
7b4b6658 7163 return;
d6d020e9 7164
5d81e5cf
AV
7165 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
7166 data->period = nr;
7167 return perf_swevent_overflow(event, 1, data, regs);
7168 } else
7169 data->period = event->hw.last_period;
7170
0cff784a 7171 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
a8b0ca17 7172 return perf_swevent_overflow(event, 1, data, regs);
0cff784a 7173
e7850595 7174 if (local64_add_negative(nr, &hwc->period_left))
7b4b6658 7175 return;
df1a132b 7176
a8b0ca17 7177 perf_swevent_overflow(event, 0, data, regs);
d6d020e9
PZ
7178}
7179
f5ffe02e
FW
7180static int perf_exclude_event(struct perf_event *event,
7181 struct pt_regs *regs)
7182{
a4eaf7f1 7183 if (event->hw.state & PERF_HES_STOPPED)
91b2f482 7184 return 1;
a4eaf7f1 7185
f5ffe02e
FW
7186 if (regs) {
7187 if (event->attr.exclude_user && user_mode(regs))
7188 return 1;
7189
7190 if (event->attr.exclude_kernel && !user_mode(regs))
7191 return 1;
7192 }
7193
7194 return 0;
7195}
7196
cdd6c482 7197static int perf_swevent_match(struct perf_event *event,
1c432d89 7198 enum perf_type_id type,
6fb2915d
LZ
7199 u32 event_id,
7200 struct perf_sample_data *data,
7201 struct pt_regs *regs)
15dbf27c 7202{
cdd6c482 7203 if (event->attr.type != type)
a21ca2ca 7204 return 0;
f5ffe02e 7205
cdd6c482 7206 if (event->attr.config != event_id)
15dbf27c
PZ
7207 return 0;
7208
f5ffe02e
FW
7209 if (perf_exclude_event(event, regs))
7210 return 0;
15dbf27c
PZ
7211
7212 return 1;
7213}
7214
76e1d904
FW
7215static inline u64 swevent_hash(u64 type, u32 event_id)
7216{
7217 u64 val = event_id | (type << 32);
7218
7219 return hash_64(val, SWEVENT_HLIST_BITS);
7220}
7221
49f135ed
FW
7222static inline struct hlist_head *
7223__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
76e1d904 7224{
49f135ed
FW
7225 u64 hash = swevent_hash(type, event_id);
7226
7227 return &hlist->heads[hash];
7228}
76e1d904 7229
49f135ed
FW
7230/* For the read side: events when they trigger */
7231static inline struct hlist_head *
b28ab83c 7232find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
49f135ed
FW
7233{
7234 struct swevent_hlist *hlist;
76e1d904 7235
b28ab83c 7236 hlist = rcu_dereference(swhash->swevent_hlist);
76e1d904
FW
7237 if (!hlist)
7238 return NULL;
7239
49f135ed
FW
7240 return __find_swevent_head(hlist, type, event_id);
7241}
7242
7243/* For the event head insertion and removal in the hlist */
7244static inline struct hlist_head *
b28ab83c 7245find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
49f135ed
FW
7246{
7247 struct swevent_hlist *hlist;
7248 u32 event_id = event->attr.config;
7249 u64 type = event->attr.type;
7250
7251 /*
7252 * Event scheduling is always serialized against hlist allocation
7253 * and release. Which makes the protected version suitable here.
7254 * The context lock guarantees that.
7255 */
b28ab83c 7256 hlist = rcu_dereference_protected(swhash->swevent_hlist,
49f135ed
FW
7257 lockdep_is_held(&event->ctx->lock));
7258 if (!hlist)
7259 return NULL;
7260
7261 return __find_swevent_head(hlist, type, event_id);
76e1d904
FW
7262}
7263
7264static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
a8b0ca17 7265 u64 nr,
76e1d904
FW
7266 struct perf_sample_data *data,
7267 struct pt_regs *regs)
15dbf27c 7268{
4a32fea9 7269 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 7270 struct perf_event *event;
76e1d904 7271 struct hlist_head *head;
15dbf27c 7272
76e1d904 7273 rcu_read_lock();
b28ab83c 7274 head = find_swevent_head_rcu(swhash, type, event_id);
76e1d904
FW
7275 if (!head)
7276 goto end;
7277
b67bfe0d 7278 hlist_for_each_entry_rcu(event, head, hlist_entry) {
6fb2915d 7279 if (perf_swevent_match(event, type, event_id, data, regs))
a8b0ca17 7280 perf_swevent_event(event, nr, data, regs);
15dbf27c 7281 }
76e1d904
FW
7282end:
7283 rcu_read_unlock();
15dbf27c
PZ
7284}
7285
86038c5e
PZI
7286DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
7287
4ed7c92d 7288int perf_swevent_get_recursion_context(void)
96f6d444 7289{
4a32fea9 7290 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
96f6d444 7291
b28ab83c 7292 return get_recursion_context(swhash->recursion);
96f6d444 7293}
645e8cc0 7294EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
96f6d444 7295
98b5c2c6 7296void perf_swevent_put_recursion_context(int rctx)
15dbf27c 7297{
4a32fea9 7298 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
927c7a9e 7299
b28ab83c 7300 put_recursion_context(swhash->recursion, rctx);
ce71b9df 7301}
15dbf27c 7302
86038c5e 7303void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
b8e83514 7304{
a4234bfc 7305 struct perf_sample_data data;
4ed7c92d 7306
86038c5e 7307 if (WARN_ON_ONCE(!regs))
4ed7c92d 7308 return;
a4234bfc 7309
fd0d000b 7310 perf_sample_data_init(&data, addr, 0);
a8b0ca17 7311 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
86038c5e
PZI
7312}
7313
7314void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7315{
7316 int rctx;
7317
7318 preempt_disable_notrace();
7319 rctx = perf_swevent_get_recursion_context();
7320 if (unlikely(rctx < 0))
7321 goto fail;
7322
7323 ___perf_sw_event(event_id, nr, regs, addr);
4ed7c92d
PZ
7324
7325 perf_swevent_put_recursion_context(rctx);
86038c5e 7326fail:
1c024eca 7327 preempt_enable_notrace();
b8e83514
PZ
7328}
7329
cdd6c482 7330static void perf_swevent_read(struct perf_event *event)
15dbf27c 7331{
15dbf27c
PZ
7332}
7333
a4eaf7f1 7334static int perf_swevent_add(struct perf_event *event, int flags)
15dbf27c 7335{
4a32fea9 7336 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 7337 struct hw_perf_event *hwc = &event->hw;
76e1d904
FW
7338 struct hlist_head *head;
7339
6c7e550f 7340 if (is_sampling_event(event)) {
7b4b6658 7341 hwc->last_period = hwc->sample_period;
cdd6c482 7342 perf_swevent_set_period(event);
7b4b6658 7343 }
76e1d904 7344
a4eaf7f1
PZ
7345 hwc->state = !(flags & PERF_EF_START);
7346
b28ab83c 7347 head = find_swevent_head(swhash, event);
12ca6ad2 7348 if (WARN_ON_ONCE(!head))
76e1d904
FW
7349 return -EINVAL;
7350
7351 hlist_add_head_rcu(&event->hlist_entry, head);
6a694a60 7352 perf_event_update_userpage(event);
76e1d904 7353
15dbf27c
PZ
7354 return 0;
7355}
7356
a4eaf7f1 7357static void perf_swevent_del(struct perf_event *event, int flags)
15dbf27c 7358{
76e1d904 7359 hlist_del_rcu(&event->hlist_entry);
15dbf27c
PZ
7360}
7361
a4eaf7f1 7362static void perf_swevent_start(struct perf_event *event, int flags)
5c92d124 7363{
a4eaf7f1 7364 event->hw.state = 0;
d6d020e9 7365}
aa9c4c0f 7366
a4eaf7f1 7367static void perf_swevent_stop(struct perf_event *event, int flags)
d6d020e9 7368{
a4eaf7f1 7369 event->hw.state = PERF_HES_STOPPED;
bae43c99
IM
7370}
7371
49f135ed
FW
7372/* Deref the hlist from the update side */
7373static inline struct swevent_hlist *
b28ab83c 7374swevent_hlist_deref(struct swevent_htable *swhash)
49f135ed 7375{
b28ab83c
PZ
7376 return rcu_dereference_protected(swhash->swevent_hlist,
7377 lockdep_is_held(&swhash->hlist_mutex));
49f135ed
FW
7378}
7379
b28ab83c 7380static void swevent_hlist_release(struct swevent_htable *swhash)
76e1d904 7381{
b28ab83c 7382 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
76e1d904 7383
49f135ed 7384 if (!hlist)
76e1d904
FW
7385 return;
7386
70691d4a 7387 RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
fa4bbc4c 7388 kfree_rcu(hlist, rcu_head);
76e1d904
FW
7389}
7390
3b364d7b 7391static void swevent_hlist_put_cpu(int cpu)
76e1d904 7392{
b28ab83c 7393 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904 7394
b28ab83c 7395 mutex_lock(&swhash->hlist_mutex);
76e1d904 7396
b28ab83c
PZ
7397 if (!--swhash->hlist_refcount)
7398 swevent_hlist_release(swhash);
76e1d904 7399
b28ab83c 7400 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
7401}
7402
3b364d7b 7403static void swevent_hlist_put(void)
76e1d904
FW
7404{
7405 int cpu;
7406
76e1d904 7407 for_each_possible_cpu(cpu)
3b364d7b 7408 swevent_hlist_put_cpu(cpu);
76e1d904
FW
7409}
7410
3b364d7b 7411static int swevent_hlist_get_cpu(int cpu)
76e1d904 7412{
b28ab83c 7413 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904
FW
7414 int err = 0;
7415
b28ab83c 7416 mutex_lock(&swhash->hlist_mutex);
b28ab83c 7417 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
76e1d904
FW
7418 struct swevent_hlist *hlist;
7419
7420 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
7421 if (!hlist) {
7422 err = -ENOMEM;
7423 goto exit;
7424 }
b28ab83c 7425 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 7426 }
b28ab83c 7427 swhash->hlist_refcount++;
9ed6060d 7428exit:
b28ab83c 7429 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
7430
7431 return err;
7432}
7433
3b364d7b 7434static int swevent_hlist_get(void)
76e1d904 7435{
3b364d7b 7436 int err, cpu, failed_cpu;
76e1d904 7437
76e1d904
FW
7438 get_online_cpus();
7439 for_each_possible_cpu(cpu) {
3b364d7b 7440 err = swevent_hlist_get_cpu(cpu);
76e1d904
FW
7441 if (err) {
7442 failed_cpu = cpu;
7443 goto fail;
7444 }
7445 }
7446 put_online_cpus();
7447
7448 return 0;
9ed6060d 7449fail:
76e1d904
FW
7450 for_each_possible_cpu(cpu) {
7451 if (cpu == failed_cpu)
7452 break;
3b364d7b 7453 swevent_hlist_put_cpu(cpu);
76e1d904
FW
7454 }
7455
7456 put_online_cpus();
7457 return err;
7458}
7459
c5905afb 7460struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
95476b64 7461
b0a873eb
PZ
7462static void sw_perf_event_destroy(struct perf_event *event)
7463{
7464 u64 event_id = event->attr.config;
95476b64 7465
b0a873eb
PZ
7466 WARN_ON(event->parent);
7467
c5905afb 7468 static_key_slow_dec(&perf_swevent_enabled[event_id]);
3b364d7b 7469 swevent_hlist_put();
b0a873eb
PZ
7470}
7471
7472static int perf_swevent_init(struct perf_event *event)
7473{
8176cced 7474 u64 event_id = event->attr.config;
b0a873eb
PZ
7475
7476 if (event->attr.type != PERF_TYPE_SOFTWARE)
7477 return -ENOENT;
7478
2481c5fa
SE
7479 /*
7480 * no branch sampling for software events
7481 */
7482 if (has_branch_stack(event))
7483 return -EOPNOTSUPP;
7484
b0a873eb
PZ
7485 switch (event_id) {
7486 case PERF_COUNT_SW_CPU_CLOCK:
7487 case PERF_COUNT_SW_TASK_CLOCK:
7488 return -ENOENT;
7489
7490 default:
7491 break;
7492 }
7493
ce677831 7494 if (event_id >= PERF_COUNT_SW_MAX)
b0a873eb
PZ
7495 return -ENOENT;
7496
7497 if (!event->parent) {
7498 int err;
7499
3b364d7b 7500 err = swevent_hlist_get();
b0a873eb
PZ
7501 if (err)
7502 return err;
7503
c5905afb 7504 static_key_slow_inc(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
7505 event->destroy = sw_perf_event_destroy;
7506 }
7507
7508 return 0;
7509}
7510
7511static struct pmu perf_swevent = {
89a1e187 7512 .task_ctx_nr = perf_sw_context,
95476b64 7513
34f43927
PZ
7514 .capabilities = PERF_PMU_CAP_NO_NMI,
7515
b0a873eb 7516 .event_init = perf_swevent_init,
a4eaf7f1
PZ
7517 .add = perf_swevent_add,
7518 .del = perf_swevent_del,
7519 .start = perf_swevent_start,
7520 .stop = perf_swevent_stop,
1c024eca 7521 .read = perf_swevent_read,
1c024eca
PZ
7522};
7523
b0a873eb
PZ
7524#ifdef CONFIG_EVENT_TRACING
7525
1c024eca
PZ
7526static int perf_tp_filter_match(struct perf_event *event,
7527 struct perf_sample_data *data)
7528{
7e3f977e 7529 void *record = data->raw->frag.data;
1c024eca 7530
b71b437e
PZ
7531 /* only top level events have filters set */
7532 if (event->parent)
7533 event = event->parent;
7534
1c024eca
PZ
7535 if (likely(!event->filter) || filter_match_preds(event->filter, record))
7536 return 1;
7537 return 0;
7538}
7539
7540static int perf_tp_event_match(struct perf_event *event,
7541 struct perf_sample_data *data,
7542 struct pt_regs *regs)
7543{
a0f7d0f7
FW
7544 if (event->hw.state & PERF_HES_STOPPED)
7545 return 0;
580d607c
PZ
7546 /*
7547 * All tracepoints are from kernel-space.
7548 */
7549 if (event->attr.exclude_kernel)
1c024eca
PZ
7550 return 0;
7551
7552 if (!perf_tp_filter_match(event, data))
7553 return 0;
7554
7555 return 1;
7556}
7557
85b67bcb
AS
7558void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
7559 struct trace_event_call *call, u64 count,
7560 struct pt_regs *regs, struct hlist_head *head,
7561 struct task_struct *task)
7562{
7563 struct bpf_prog *prog = call->prog;
7564
7565 if (prog) {
7566 *(struct pt_regs **)raw_data = regs;
7567 if (!trace_call_bpf(prog, raw_data) || hlist_empty(head)) {
7568 perf_swevent_put_recursion_context(rctx);
7569 return;
7570 }
7571 }
7572 perf_tp_event(call->event.type, count, raw_data, size, regs, head,
7573 rctx, task);
7574}
7575EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
7576
1e1dcd93 7577void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
e6dab5ff
AV
7578 struct pt_regs *regs, struct hlist_head *head, int rctx,
7579 struct task_struct *task)
95476b64
FW
7580{
7581 struct perf_sample_data data;
1c024eca 7582 struct perf_event *event;
1c024eca 7583
95476b64 7584 struct perf_raw_record raw = {
7e3f977e
DB
7585 .frag = {
7586 .size = entry_size,
7587 .data = record,
7588 },
95476b64
FW
7589 };
7590
1e1dcd93 7591 perf_sample_data_init(&data, 0, 0);
95476b64
FW
7592 data.raw = &raw;
7593
1e1dcd93
AS
7594 perf_trace_buf_update(record, event_type);
7595
b67bfe0d 7596 hlist_for_each_entry_rcu(event, head, hlist_entry) {
1c024eca 7597 if (perf_tp_event_match(event, &data, regs))
a8b0ca17 7598 perf_swevent_event(event, count, &data, regs);
4f41c013 7599 }
ecc55f84 7600
e6dab5ff
AV
7601 /*
7602 * If we got specified a target task, also iterate its context and
7603 * deliver this event there too.
7604 */
7605 if (task && task != current) {
7606 struct perf_event_context *ctx;
7607 struct trace_entry *entry = record;
7608
7609 rcu_read_lock();
7610 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
7611 if (!ctx)
7612 goto unlock;
7613
7614 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7615 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7616 continue;
7617 if (event->attr.config != entry->type)
7618 continue;
7619 if (perf_tp_event_match(event, &data, regs))
7620 perf_swevent_event(event, count, &data, regs);
7621 }
7622unlock:
7623 rcu_read_unlock();
7624 }
7625
ecc55f84 7626 perf_swevent_put_recursion_context(rctx);
95476b64
FW
7627}
7628EXPORT_SYMBOL_GPL(perf_tp_event);
7629
cdd6c482 7630static void tp_perf_event_destroy(struct perf_event *event)
e077df4f 7631{
1c024eca 7632 perf_trace_destroy(event);
e077df4f
PZ
7633}
7634
b0a873eb 7635static int perf_tp_event_init(struct perf_event *event)
e077df4f 7636{
76e1d904
FW
7637 int err;
7638
b0a873eb
PZ
7639 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7640 return -ENOENT;
7641
2481c5fa
SE
7642 /*
7643 * no branch sampling for tracepoint events
7644 */
7645 if (has_branch_stack(event))
7646 return -EOPNOTSUPP;
7647
1c024eca
PZ
7648 err = perf_trace_init(event);
7649 if (err)
b0a873eb 7650 return err;
e077df4f 7651
cdd6c482 7652 event->destroy = tp_perf_event_destroy;
e077df4f 7653
b0a873eb
PZ
7654 return 0;
7655}
7656
7657static struct pmu perf_tracepoint = {
89a1e187
PZ
7658 .task_ctx_nr = perf_sw_context,
7659
b0a873eb 7660 .event_init = perf_tp_event_init,
a4eaf7f1
PZ
7661 .add = perf_trace_add,
7662 .del = perf_trace_del,
7663 .start = perf_swevent_start,
7664 .stop = perf_swevent_stop,
b0a873eb 7665 .read = perf_swevent_read,
b0a873eb
PZ
7666};
7667
7668static inline void perf_tp_register(void)
7669{
2e80a82a 7670 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
e077df4f 7671}
6fb2915d 7672
6fb2915d
LZ
7673static void perf_event_free_filter(struct perf_event *event)
7674{
7675 ftrace_profile_free_filter(event);
7676}
7677
2541517c
AS
7678static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7679{
98b5c2c6 7680 bool is_kprobe, is_tracepoint;
2541517c
AS
7681 struct bpf_prog *prog;
7682
7683 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7684 return -EINVAL;
7685
7686 if (event->tp_event->prog)
7687 return -EEXIST;
7688
98b5c2c6
AS
7689 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
7690 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
7691 if (!is_kprobe && !is_tracepoint)
7692 /* bpf programs can only be attached to u/kprobe or tracepoint */
2541517c
AS
7693 return -EINVAL;
7694
7695 prog = bpf_prog_get(prog_fd);
7696 if (IS_ERR(prog))
7697 return PTR_ERR(prog);
7698
98b5c2c6
AS
7699 if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
7700 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
2541517c
AS
7701 /* valid fd, but invalid bpf program type */
7702 bpf_prog_put(prog);
7703 return -EINVAL;
7704 }
7705
32bbe007
AS
7706 if (is_tracepoint) {
7707 int off = trace_event_get_offsets(event->tp_event);
7708
7709 if (prog->aux->max_ctx_offset > off) {
7710 bpf_prog_put(prog);
7711 return -EACCES;
7712 }
7713 }
2541517c
AS
7714 event->tp_event->prog = prog;
7715
7716 return 0;
7717}
7718
7719static void perf_event_free_bpf_prog(struct perf_event *event)
7720{
7721 struct bpf_prog *prog;
7722
7723 if (!event->tp_event)
7724 return;
7725
7726 prog = event->tp_event->prog;
7727 if (prog) {
7728 event->tp_event->prog = NULL;
1aacde3d 7729 bpf_prog_put(prog);
2541517c
AS
7730 }
7731}
7732
e077df4f 7733#else
6fb2915d 7734
b0a873eb 7735static inline void perf_tp_register(void)
e077df4f 7736{
e077df4f 7737}
6fb2915d 7738
6fb2915d
LZ
7739static void perf_event_free_filter(struct perf_event *event)
7740{
7741}
7742
2541517c
AS
7743static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7744{
7745 return -ENOENT;
7746}
7747
7748static void perf_event_free_bpf_prog(struct perf_event *event)
7749{
7750}
07b139c8 7751#endif /* CONFIG_EVENT_TRACING */
e077df4f 7752
24f1e32c 7753#ifdef CONFIG_HAVE_HW_BREAKPOINT
f5ffe02e 7754void perf_bp_event(struct perf_event *bp, void *data)
24f1e32c 7755{
f5ffe02e
FW
7756 struct perf_sample_data sample;
7757 struct pt_regs *regs = data;
7758
fd0d000b 7759 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
f5ffe02e 7760
a4eaf7f1 7761 if (!bp->hw.state && !perf_exclude_event(bp, regs))
a8b0ca17 7762 perf_swevent_event(bp, 1, &sample, regs);
24f1e32c
FW
7763}
7764#endif
7765
375637bc
AS
7766/*
7767 * Allocate a new address filter
7768 */
7769static struct perf_addr_filter *
7770perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
7771{
7772 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
7773 struct perf_addr_filter *filter;
7774
7775 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
7776 if (!filter)
7777 return NULL;
7778
7779 INIT_LIST_HEAD(&filter->entry);
7780 list_add_tail(&filter->entry, filters);
7781
7782 return filter;
7783}
7784
7785static void free_filters_list(struct list_head *filters)
7786{
7787 struct perf_addr_filter *filter, *iter;
7788
7789 list_for_each_entry_safe(filter, iter, filters, entry) {
7790 if (filter->inode)
7791 iput(filter->inode);
7792 list_del(&filter->entry);
7793 kfree(filter);
7794 }
7795}
7796
7797/*
7798 * Free existing address filters and optionally install new ones
7799 */
7800static void perf_addr_filters_splice(struct perf_event *event,
7801 struct list_head *head)
7802{
7803 unsigned long flags;
7804 LIST_HEAD(list);
7805
7806 if (!has_addr_filter(event))
7807 return;
7808
7809 /* don't bother with children, they don't have their own filters */
7810 if (event->parent)
7811 return;
7812
7813 raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
7814
7815 list_splice_init(&event->addr_filters.list, &list);
7816 if (head)
7817 list_splice(head, &event->addr_filters.list);
7818
7819 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
7820
7821 free_filters_list(&list);
7822}
7823
7824/*
7825 * Scan through mm's vmas and see if one of them matches the
7826 * @filter; if so, adjust filter's address range.
7827 * Called with mm::mmap_sem down for reading.
7828 */
7829static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter,
7830 struct mm_struct *mm)
7831{
7832 struct vm_area_struct *vma;
7833
7834 for (vma = mm->mmap; vma; vma = vma->vm_next) {
7835 struct file *file = vma->vm_file;
7836 unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
7837 unsigned long vma_size = vma->vm_end - vma->vm_start;
7838
7839 if (!file)
7840 continue;
7841
7842 if (!perf_addr_filter_match(filter, file, off, vma_size))
7843 continue;
7844
7845 return vma->vm_start;
7846 }
7847
7848 return 0;
7849}
7850
7851/*
7852 * Update event's address range filters based on the
7853 * task's existing mappings, if any.
7854 */
7855static void perf_event_addr_filters_apply(struct perf_event *event)
7856{
7857 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7858 struct task_struct *task = READ_ONCE(event->ctx->task);
7859 struct perf_addr_filter *filter;
7860 struct mm_struct *mm = NULL;
7861 unsigned int count = 0;
7862 unsigned long flags;
7863
7864 /*
7865 * We may observe TASK_TOMBSTONE, which means that the event tear-down
7866 * will stop on the parent's child_mutex that our caller is also holding
7867 */
7868 if (task == TASK_TOMBSTONE)
7869 return;
7870
7871 mm = get_task_mm(event->ctx->task);
7872 if (!mm)
7873 goto restart;
7874
7875 down_read(&mm->mmap_sem);
7876
7877 raw_spin_lock_irqsave(&ifh->lock, flags);
7878 list_for_each_entry(filter, &ifh->list, entry) {
7879 event->addr_filters_offs[count] = 0;
7880
99f5bc9b
MP
7881 /*
7882 * Adjust base offset if the filter is associated to a binary
7883 * that needs to be mapped:
7884 */
7885 if (filter->inode)
375637bc
AS
7886 event->addr_filters_offs[count] =
7887 perf_addr_filter_apply(filter, mm);
7888
7889 count++;
7890 }
7891
7892 event->addr_filters_gen++;
7893 raw_spin_unlock_irqrestore(&ifh->lock, flags);
7894
7895 up_read(&mm->mmap_sem);
7896
7897 mmput(mm);
7898
7899restart:
7900 perf_event_restart(event);
7901}
7902
7903/*
7904 * Address range filtering: limiting the data to certain
7905 * instruction address ranges. Filters are ioctl()ed to us from
7906 * userspace as ascii strings.
7907 *
7908 * Filter string format:
7909 *
7910 * ACTION RANGE_SPEC
7911 * where ACTION is one of the
7912 * * "filter": limit the trace to this region
7913 * * "start": start tracing from this address
7914 * * "stop": stop tracing at this address/region;
7915 * RANGE_SPEC is
7916 * * for kernel addresses: <start address>[/<size>]
7917 * * for object files: <start address>[/<size>]@</path/to/object/file>
7918 *
7919 * if <size> is not specified, the range is treated as a single address.
7920 */
7921enum {
7922 IF_ACT_FILTER,
7923 IF_ACT_START,
7924 IF_ACT_STOP,
7925 IF_SRC_FILE,
7926 IF_SRC_KERNEL,
7927 IF_SRC_FILEADDR,
7928 IF_SRC_KERNELADDR,
7929};
7930
7931enum {
7932 IF_STATE_ACTION = 0,
7933 IF_STATE_SOURCE,
7934 IF_STATE_END,
7935};
7936
7937static const match_table_t if_tokens = {
7938 { IF_ACT_FILTER, "filter" },
7939 { IF_ACT_START, "start" },
7940 { IF_ACT_STOP, "stop" },
7941 { IF_SRC_FILE, "%u/%u@%s" },
7942 { IF_SRC_KERNEL, "%u/%u" },
7943 { IF_SRC_FILEADDR, "%u@%s" },
7944 { IF_SRC_KERNELADDR, "%u" },
7945};
7946
7947/*
7948 * Address filter string parser
7949 */
7950static int
7951perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
7952 struct list_head *filters)
7953{
7954 struct perf_addr_filter *filter = NULL;
7955 char *start, *orig, *filename = NULL;
7956 struct path path;
7957 substring_t args[MAX_OPT_ARGS];
7958 int state = IF_STATE_ACTION, token;
7959 unsigned int kernel = 0;
7960 int ret = -EINVAL;
7961
7962 orig = fstr = kstrdup(fstr, GFP_KERNEL);
7963 if (!fstr)
7964 return -ENOMEM;
7965
7966 while ((start = strsep(&fstr, " ,\n")) != NULL) {
7967 ret = -EINVAL;
7968
7969 if (!*start)
7970 continue;
7971
7972 /* filter definition begins */
7973 if (state == IF_STATE_ACTION) {
7974 filter = perf_addr_filter_new(event, filters);
7975 if (!filter)
7976 goto fail;
7977 }
7978
7979 token = match_token(start, if_tokens, args);
7980 switch (token) {
7981 case IF_ACT_FILTER:
7982 case IF_ACT_START:
7983 filter->filter = 1;
7984
7985 case IF_ACT_STOP:
7986 if (state != IF_STATE_ACTION)
7987 goto fail;
7988
7989 state = IF_STATE_SOURCE;
7990 break;
7991
7992 case IF_SRC_KERNELADDR:
7993 case IF_SRC_KERNEL:
7994 kernel = 1;
7995
7996 case IF_SRC_FILEADDR:
7997 case IF_SRC_FILE:
7998 if (state != IF_STATE_SOURCE)
7999 goto fail;
8000
8001 if (token == IF_SRC_FILE || token == IF_SRC_KERNEL)
8002 filter->range = 1;
8003
8004 *args[0].to = 0;
8005 ret = kstrtoul(args[0].from, 0, &filter->offset);
8006 if (ret)
8007 goto fail;
8008
8009 if (filter->range) {
8010 *args[1].to = 0;
8011 ret = kstrtoul(args[1].from, 0, &filter->size);
8012 if (ret)
8013 goto fail;
8014 }
8015
4059ffd0
MP
8016 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
8017 int fpos = filter->range ? 2 : 1;
8018
8019 filename = match_strdup(&args[fpos]);
375637bc
AS
8020 if (!filename) {
8021 ret = -ENOMEM;
8022 goto fail;
8023 }
8024 }
8025
8026 state = IF_STATE_END;
8027 break;
8028
8029 default:
8030 goto fail;
8031 }
8032
8033 /*
8034 * Filter definition is fully parsed, validate and install it.
8035 * Make sure that it doesn't contradict itself or the event's
8036 * attribute.
8037 */
8038 if (state == IF_STATE_END) {
8039 if (kernel && event->attr.exclude_kernel)
8040 goto fail;
8041
8042 if (!kernel) {
8043 if (!filename)
8044 goto fail;
8045
8046 /* look up the path and grab its inode */
8047 ret = kern_path(filename, LOOKUP_FOLLOW, &path);
8048 if (ret)
8049 goto fail_free_name;
8050
8051 filter->inode = igrab(d_inode(path.dentry));
8052 path_put(&path);
8053 kfree(filename);
8054 filename = NULL;
8055
8056 ret = -EINVAL;
8057 if (!filter->inode ||
8058 !S_ISREG(filter->inode->i_mode))
8059 /* free_filters_list() will iput() */
8060 goto fail;
8061 }
8062
8063 /* ready to consume more filters */
8064 state = IF_STATE_ACTION;
8065 filter = NULL;
8066 }
8067 }
8068
8069 if (state != IF_STATE_ACTION)
8070 goto fail;
8071
8072 kfree(orig);
8073
8074 return 0;
8075
8076fail_free_name:
8077 kfree(filename);
8078fail:
8079 free_filters_list(filters);
8080 kfree(orig);
8081
8082 return ret;
8083}
8084
8085static int
8086perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
8087{
8088 LIST_HEAD(filters);
8089 int ret;
8090
8091 /*
8092 * Since this is called in perf_ioctl() path, we're already holding
8093 * ctx::mutex.
8094 */
8095 lockdep_assert_held(&event->ctx->mutex);
8096
8097 if (WARN_ON_ONCE(event->parent))
8098 return -EINVAL;
8099
8100 /*
8101 * For now, we only support filtering in per-task events; doing so
8102 * for CPU-wide events requires additional context switching trickery,
8103 * since same object code will be mapped at different virtual
8104 * addresses in different processes.
8105 */
8106 if (!event->ctx->task)
8107 return -EOPNOTSUPP;
8108
8109 ret = perf_event_parse_addr_filter(event, filter_str, &filters);
8110 if (ret)
8111 return ret;
8112
8113 ret = event->pmu->addr_filters_validate(&filters);
8114 if (ret) {
8115 free_filters_list(&filters);
8116 return ret;
8117 }
8118
8119 /* remove existing filters, if any */
8120 perf_addr_filters_splice(event, &filters);
8121
8122 /* install new filters */
8123 perf_event_for_each_child(event, perf_event_addr_filters_apply);
8124
8125 return ret;
8126}
8127
c796bbbe
AS
8128static int perf_event_set_filter(struct perf_event *event, void __user *arg)
8129{
8130 char *filter_str;
8131 int ret = -EINVAL;
8132
375637bc
AS
8133 if ((event->attr.type != PERF_TYPE_TRACEPOINT ||
8134 !IS_ENABLED(CONFIG_EVENT_TRACING)) &&
8135 !has_addr_filter(event))
c796bbbe
AS
8136 return -EINVAL;
8137
8138 filter_str = strndup_user(arg, PAGE_SIZE);
8139 if (IS_ERR(filter_str))
8140 return PTR_ERR(filter_str);
8141
8142 if (IS_ENABLED(CONFIG_EVENT_TRACING) &&
8143 event->attr.type == PERF_TYPE_TRACEPOINT)
8144 ret = ftrace_profile_set_filter(event, event->attr.config,
8145 filter_str);
375637bc
AS
8146 else if (has_addr_filter(event))
8147 ret = perf_event_set_addr_filter(event, filter_str);
c796bbbe
AS
8148
8149 kfree(filter_str);
8150 return ret;
8151}
8152
b0a873eb
PZ
8153/*
8154 * hrtimer based swevent callback
8155 */
f29ac756 8156
b0a873eb 8157static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
f29ac756 8158{
b0a873eb
PZ
8159 enum hrtimer_restart ret = HRTIMER_RESTART;
8160 struct perf_sample_data data;
8161 struct pt_regs *regs;
8162 struct perf_event *event;
8163 u64 period;
f29ac756 8164
b0a873eb 8165 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
ba3dd36c
PZ
8166
8167 if (event->state != PERF_EVENT_STATE_ACTIVE)
8168 return HRTIMER_NORESTART;
8169
b0a873eb 8170 event->pmu->read(event);
f344011c 8171
fd0d000b 8172 perf_sample_data_init(&data, 0, event->hw.last_period);
b0a873eb
PZ
8173 regs = get_irq_regs();
8174
8175 if (regs && !perf_exclude_event(event, regs)) {
77aeeebd 8176 if (!(event->attr.exclude_idle && is_idle_task(current)))
33b07b8b 8177 if (__perf_event_overflow(event, 1, &data, regs))
b0a873eb
PZ
8178 ret = HRTIMER_NORESTART;
8179 }
24f1e32c 8180
b0a873eb
PZ
8181 period = max_t(u64, 10000, event->hw.sample_period);
8182 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
24f1e32c 8183
b0a873eb 8184 return ret;
f29ac756
PZ
8185}
8186
b0a873eb 8187static void perf_swevent_start_hrtimer(struct perf_event *event)
5c92d124 8188{
b0a873eb 8189 struct hw_perf_event *hwc = &event->hw;
5d508e82
FBH
8190 s64 period;
8191
8192 if (!is_sampling_event(event))
8193 return;
f5ffe02e 8194
5d508e82
FBH
8195 period = local64_read(&hwc->period_left);
8196 if (period) {
8197 if (period < 0)
8198 period = 10000;
fa407f35 8199
5d508e82
FBH
8200 local64_set(&hwc->period_left, 0);
8201 } else {
8202 period = max_t(u64, 10000, hwc->sample_period);
8203 }
3497d206
TG
8204 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
8205 HRTIMER_MODE_REL_PINNED);
24f1e32c 8206}
b0a873eb
PZ
8207
8208static void perf_swevent_cancel_hrtimer(struct perf_event *event)
24f1e32c 8209{
b0a873eb
PZ
8210 struct hw_perf_event *hwc = &event->hw;
8211
6c7e550f 8212 if (is_sampling_event(event)) {
b0a873eb 8213 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
fa407f35 8214 local64_set(&hwc->period_left, ktime_to_ns(remaining));
b0a873eb
PZ
8215
8216 hrtimer_cancel(&hwc->hrtimer);
8217 }
24f1e32c
FW
8218}
8219
ba3dd36c
PZ
8220static void perf_swevent_init_hrtimer(struct perf_event *event)
8221{
8222 struct hw_perf_event *hwc = &event->hw;
8223
8224 if (!is_sampling_event(event))
8225 return;
8226
8227 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
8228 hwc->hrtimer.function = perf_swevent_hrtimer;
8229
8230 /*
8231 * Since hrtimers have a fixed rate, we can do a static freq->period
8232 * mapping and avoid the whole period adjust feedback stuff.
8233 */
8234 if (event->attr.freq) {
8235 long freq = event->attr.sample_freq;
8236
8237 event->attr.sample_period = NSEC_PER_SEC / freq;
8238 hwc->sample_period = event->attr.sample_period;
8239 local64_set(&hwc->period_left, hwc->sample_period);
778141e3 8240 hwc->last_period = hwc->sample_period;
ba3dd36c
PZ
8241 event->attr.freq = 0;
8242 }
8243}
8244
b0a873eb
PZ
8245/*
8246 * Software event: cpu wall time clock
8247 */
8248
8249static void cpu_clock_event_update(struct perf_event *event)
24f1e32c 8250{
b0a873eb
PZ
8251 s64 prev;
8252 u64 now;
8253
a4eaf7f1 8254 now = local_clock();
b0a873eb
PZ
8255 prev = local64_xchg(&event->hw.prev_count, now);
8256 local64_add(now - prev, &event->count);
24f1e32c 8257}
24f1e32c 8258
a4eaf7f1 8259static void cpu_clock_event_start(struct perf_event *event, int flags)
b0a873eb 8260{
a4eaf7f1 8261 local64_set(&event->hw.prev_count, local_clock());
b0a873eb 8262 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
8263}
8264
a4eaf7f1 8265static void cpu_clock_event_stop(struct perf_event *event, int flags)
f29ac756 8266{
b0a873eb
PZ
8267 perf_swevent_cancel_hrtimer(event);
8268 cpu_clock_event_update(event);
8269}
f29ac756 8270
a4eaf7f1
PZ
8271static int cpu_clock_event_add(struct perf_event *event, int flags)
8272{
8273 if (flags & PERF_EF_START)
8274 cpu_clock_event_start(event, flags);
6a694a60 8275 perf_event_update_userpage(event);
a4eaf7f1
PZ
8276
8277 return 0;
8278}
8279
8280static void cpu_clock_event_del(struct perf_event *event, int flags)
8281{
8282 cpu_clock_event_stop(event, flags);
8283}
8284
b0a873eb
PZ
8285static void cpu_clock_event_read(struct perf_event *event)
8286{
8287 cpu_clock_event_update(event);
8288}
f344011c 8289
b0a873eb
PZ
8290static int cpu_clock_event_init(struct perf_event *event)
8291{
8292 if (event->attr.type != PERF_TYPE_SOFTWARE)
8293 return -ENOENT;
8294
8295 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
8296 return -ENOENT;
8297
2481c5fa
SE
8298 /*
8299 * no branch sampling for software events
8300 */
8301 if (has_branch_stack(event))
8302 return -EOPNOTSUPP;
8303
ba3dd36c
PZ
8304 perf_swevent_init_hrtimer(event);
8305
b0a873eb 8306 return 0;
f29ac756
PZ
8307}
8308
b0a873eb 8309static struct pmu perf_cpu_clock = {
89a1e187
PZ
8310 .task_ctx_nr = perf_sw_context,
8311
34f43927
PZ
8312 .capabilities = PERF_PMU_CAP_NO_NMI,
8313
b0a873eb 8314 .event_init = cpu_clock_event_init,
a4eaf7f1
PZ
8315 .add = cpu_clock_event_add,
8316 .del = cpu_clock_event_del,
8317 .start = cpu_clock_event_start,
8318 .stop = cpu_clock_event_stop,
b0a873eb
PZ
8319 .read = cpu_clock_event_read,
8320};
8321
8322/*
8323 * Software event: task time clock
8324 */
8325
8326static void task_clock_event_update(struct perf_event *event, u64 now)
5c92d124 8327{
b0a873eb
PZ
8328 u64 prev;
8329 s64 delta;
5c92d124 8330
b0a873eb
PZ
8331 prev = local64_xchg(&event->hw.prev_count, now);
8332 delta = now - prev;
8333 local64_add(delta, &event->count);
8334}
5c92d124 8335
a4eaf7f1 8336static void task_clock_event_start(struct perf_event *event, int flags)
b0a873eb 8337{
a4eaf7f1 8338 local64_set(&event->hw.prev_count, event->ctx->time);
b0a873eb 8339 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
8340}
8341
a4eaf7f1 8342static void task_clock_event_stop(struct perf_event *event, int flags)
b0a873eb
PZ
8343{
8344 perf_swevent_cancel_hrtimer(event);
8345 task_clock_event_update(event, event->ctx->time);
a4eaf7f1
PZ
8346}
8347
8348static int task_clock_event_add(struct perf_event *event, int flags)
8349{
8350 if (flags & PERF_EF_START)
8351 task_clock_event_start(event, flags);
6a694a60 8352 perf_event_update_userpage(event);
b0a873eb 8353
a4eaf7f1
PZ
8354 return 0;
8355}
8356
8357static void task_clock_event_del(struct perf_event *event, int flags)
8358{
8359 task_clock_event_stop(event, PERF_EF_UPDATE);
b0a873eb
PZ
8360}
8361
8362static void task_clock_event_read(struct perf_event *event)
8363{
768a06e2
PZ
8364 u64 now = perf_clock();
8365 u64 delta = now - event->ctx->timestamp;
8366 u64 time = event->ctx->time + delta;
b0a873eb
PZ
8367
8368 task_clock_event_update(event, time);
8369}
8370
8371static int task_clock_event_init(struct perf_event *event)
6fb2915d 8372{
b0a873eb
PZ
8373 if (event->attr.type != PERF_TYPE_SOFTWARE)
8374 return -ENOENT;
8375
8376 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
8377 return -ENOENT;
8378
2481c5fa
SE
8379 /*
8380 * no branch sampling for software events
8381 */
8382 if (has_branch_stack(event))
8383 return -EOPNOTSUPP;
8384
ba3dd36c
PZ
8385 perf_swevent_init_hrtimer(event);
8386
b0a873eb 8387 return 0;
6fb2915d
LZ
8388}
8389
b0a873eb 8390static struct pmu perf_task_clock = {
89a1e187
PZ
8391 .task_ctx_nr = perf_sw_context,
8392
34f43927
PZ
8393 .capabilities = PERF_PMU_CAP_NO_NMI,
8394
b0a873eb 8395 .event_init = task_clock_event_init,
a4eaf7f1
PZ
8396 .add = task_clock_event_add,
8397 .del = task_clock_event_del,
8398 .start = task_clock_event_start,
8399 .stop = task_clock_event_stop,
b0a873eb
PZ
8400 .read = task_clock_event_read,
8401};
6fb2915d 8402
ad5133b7 8403static void perf_pmu_nop_void(struct pmu *pmu)
e077df4f 8404{
e077df4f 8405}
6fb2915d 8406
fbbe0701
SB
8407static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
8408{
8409}
8410
ad5133b7 8411static int perf_pmu_nop_int(struct pmu *pmu)
6fb2915d 8412{
ad5133b7 8413 return 0;
6fb2915d
LZ
8414}
8415
18ab2cd3 8416static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
fbbe0701
SB
8417
8418static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
6fb2915d 8419{
fbbe0701
SB
8420 __this_cpu_write(nop_txn_flags, flags);
8421
8422 if (flags & ~PERF_PMU_TXN_ADD)
8423 return;
8424
ad5133b7 8425 perf_pmu_disable(pmu);
6fb2915d
LZ
8426}
8427
ad5133b7
PZ
8428static int perf_pmu_commit_txn(struct pmu *pmu)
8429{
fbbe0701
SB
8430 unsigned int flags = __this_cpu_read(nop_txn_flags);
8431
8432 __this_cpu_write(nop_txn_flags, 0);
8433
8434 if (flags & ~PERF_PMU_TXN_ADD)
8435 return 0;
8436
ad5133b7
PZ
8437 perf_pmu_enable(pmu);
8438 return 0;
8439}
e077df4f 8440
ad5133b7 8441static void perf_pmu_cancel_txn(struct pmu *pmu)
24f1e32c 8442{
fbbe0701
SB
8443 unsigned int flags = __this_cpu_read(nop_txn_flags);
8444
8445 __this_cpu_write(nop_txn_flags, 0);
8446
8447 if (flags & ~PERF_PMU_TXN_ADD)
8448 return;
8449
ad5133b7 8450 perf_pmu_enable(pmu);
24f1e32c
FW
8451}
8452
35edc2a5
PZ
8453static int perf_event_idx_default(struct perf_event *event)
8454{
c719f560 8455 return 0;
35edc2a5
PZ
8456}
8457
8dc85d54
PZ
8458/*
8459 * Ensures all contexts with the same task_ctx_nr have the same
8460 * pmu_cpu_context too.
8461 */
9e317041 8462static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
24f1e32c 8463{
8dc85d54 8464 struct pmu *pmu;
b326e956 8465
8dc85d54
PZ
8466 if (ctxn < 0)
8467 return NULL;
24f1e32c 8468
8dc85d54
PZ
8469 list_for_each_entry(pmu, &pmus, entry) {
8470 if (pmu->task_ctx_nr == ctxn)
8471 return pmu->pmu_cpu_context;
8472 }
24f1e32c 8473
8dc85d54 8474 return NULL;
24f1e32c
FW
8475}
8476
51676957 8477static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
24f1e32c 8478{
51676957
PZ
8479 int cpu;
8480
8481 for_each_possible_cpu(cpu) {
8482 struct perf_cpu_context *cpuctx;
8483
8484 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8485
3f1f3320
PZ
8486 if (cpuctx->unique_pmu == old_pmu)
8487 cpuctx->unique_pmu = pmu;
51676957
PZ
8488 }
8489}
8490
8491static void free_pmu_context(struct pmu *pmu)
8492{
8493 struct pmu *i;
f5ffe02e 8494
8dc85d54 8495 mutex_lock(&pmus_lock);
0475f9ea 8496 /*
8dc85d54 8497 * Like a real lame refcount.
0475f9ea 8498 */
51676957
PZ
8499 list_for_each_entry(i, &pmus, entry) {
8500 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
8501 update_pmu_context(i, pmu);
8dc85d54 8502 goto out;
51676957 8503 }
8dc85d54 8504 }
d6d020e9 8505
51676957 8506 free_percpu(pmu->pmu_cpu_context);
8dc85d54
PZ
8507out:
8508 mutex_unlock(&pmus_lock);
24f1e32c 8509}
6e855cd4
AS
8510
8511/*
8512 * Let userspace know that this PMU supports address range filtering:
8513 */
8514static ssize_t nr_addr_filters_show(struct device *dev,
8515 struct device_attribute *attr,
8516 char *page)
8517{
8518 struct pmu *pmu = dev_get_drvdata(dev);
8519
8520 return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
8521}
8522DEVICE_ATTR_RO(nr_addr_filters);
8523
2e80a82a 8524static struct idr pmu_idr;
d6d020e9 8525
abe43400
PZ
8526static ssize_t
8527type_show(struct device *dev, struct device_attribute *attr, char *page)
8528{
8529 struct pmu *pmu = dev_get_drvdata(dev);
8530
8531 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
8532}
90826ca7 8533static DEVICE_ATTR_RO(type);
abe43400 8534
62b85639
SE
8535static ssize_t
8536perf_event_mux_interval_ms_show(struct device *dev,
8537 struct device_attribute *attr,
8538 char *page)
8539{
8540 struct pmu *pmu = dev_get_drvdata(dev);
8541
8542 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
8543}
8544
272325c4
PZ
8545static DEFINE_MUTEX(mux_interval_mutex);
8546
62b85639
SE
8547static ssize_t
8548perf_event_mux_interval_ms_store(struct device *dev,
8549 struct device_attribute *attr,
8550 const char *buf, size_t count)
8551{
8552 struct pmu *pmu = dev_get_drvdata(dev);
8553 int timer, cpu, ret;
8554
8555 ret = kstrtoint(buf, 0, &timer);
8556 if (ret)
8557 return ret;
8558
8559 if (timer < 1)
8560 return -EINVAL;
8561
8562 /* same value, noting to do */
8563 if (timer == pmu->hrtimer_interval_ms)
8564 return count;
8565
272325c4 8566 mutex_lock(&mux_interval_mutex);
62b85639
SE
8567 pmu->hrtimer_interval_ms = timer;
8568
8569 /* update all cpuctx for this PMU */
272325c4
PZ
8570 get_online_cpus();
8571 for_each_online_cpu(cpu) {
62b85639
SE
8572 struct perf_cpu_context *cpuctx;
8573 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8574 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
8575
272325c4
PZ
8576 cpu_function_call(cpu,
8577 (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
62b85639 8578 }
272325c4
PZ
8579 put_online_cpus();
8580 mutex_unlock(&mux_interval_mutex);
62b85639
SE
8581
8582 return count;
8583}
90826ca7 8584static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
62b85639 8585
90826ca7
GKH
8586static struct attribute *pmu_dev_attrs[] = {
8587 &dev_attr_type.attr,
8588 &dev_attr_perf_event_mux_interval_ms.attr,
8589 NULL,
abe43400 8590};
90826ca7 8591ATTRIBUTE_GROUPS(pmu_dev);
abe43400
PZ
8592
8593static int pmu_bus_running;
8594static struct bus_type pmu_bus = {
8595 .name = "event_source",
90826ca7 8596 .dev_groups = pmu_dev_groups,
abe43400
PZ
8597};
8598
8599static void pmu_dev_release(struct device *dev)
8600{
8601 kfree(dev);
8602}
8603
8604static int pmu_dev_alloc(struct pmu *pmu)
8605{
8606 int ret = -ENOMEM;
8607
8608 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
8609 if (!pmu->dev)
8610 goto out;
8611
0c9d42ed 8612 pmu->dev->groups = pmu->attr_groups;
abe43400
PZ
8613 device_initialize(pmu->dev);
8614 ret = dev_set_name(pmu->dev, "%s", pmu->name);
8615 if (ret)
8616 goto free_dev;
8617
8618 dev_set_drvdata(pmu->dev, pmu);
8619 pmu->dev->bus = &pmu_bus;
8620 pmu->dev->release = pmu_dev_release;
8621 ret = device_add(pmu->dev);
8622 if (ret)
8623 goto free_dev;
8624
6e855cd4
AS
8625 /* For PMUs with address filters, throw in an extra attribute: */
8626 if (pmu->nr_addr_filters)
8627 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
8628
8629 if (ret)
8630 goto del_dev;
8631
abe43400
PZ
8632out:
8633 return ret;
8634
6e855cd4
AS
8635del_dev:
8636 device_del(pmu->dev);
8637
abe43400
PZ
8638free_dev:
8639 put_device(pmu->dev);
8640 goto out;
8641}
8642
547e9fd7 8643static struct lock_class_key cpuctx_mutex;
facc4307 8644static struct lock_class_key cpuctx_lock;
547e9fd7 8645
03d8e80b 8646int perf_pmu_register(struct pmu *pmu, const char *name, int type)
24f1e32c 8647{
108b02cf 8648 int cpu, ret;
24f1e32c 8649
b0a873eb 8650 mutex_lock(&pmus_lock);
33696fc0
PZ
8651 ret = -ENOMEM;
8652 pmu->pmu_disable_count = alloc_percpu(int);
8653 if (!pmu->pmu_disable_count)
8654 goto unlock;
f29ac756 8655
2e80a82a
PZ
8656 pmu->type = -1;
8657 if (!name)
8658 goto skip_type;
8659 pmu->name = name;
8660
8661 if (type < 0) {
0e9c3be2
TH
8662 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
8663 if (type < 0) {
8664 ret = type;
2e80a82a
PZ
8665 goto free_pdc;
8666 }
8667 }
8668 pmu->type = type;
8669
abe43400
PZ
8670 if (pmu_bus_running) {
8671 ret = pmu_dev_alloc(pmu);
8672 if (ret)
8673 goto free_idr;
8674 }
8675
2e80a82a 8676skip_type:
26657848
PZ
8677 if (pmu->task_ctx_nr == perf_hw_context) {
8678 static int hw_context_taken = 0;
8679
5101ef20
MR
8680 /*
8681 * Other than systems with heterogeneous CPUs, it never makes
8682 * sense for two PMUs to share perf_hw_context. PMUs which are
8683 * uncore must use perf_invalid_context.
8684 */
8685 if (WARN_ON_ONCE(hw_context_taken &&
8686 !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
26657848
PZ
8687 pmu->task_ctx_nr = perf_invalid_context;
8688
8689 hw_context_taken = 1;
8690 }
8691
8dc85d54
PZ
8692 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
8693 if (pmu->pmu_cpu_context)
8694 goto got_cpu_context;
f29ac756 8695
c4814202 8696 ret = -ENOMEM;
108b02cf
PZ
8697 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
8698 if (!pmu->pmu_cpu_context)
abe43400 8699 goto free_dev;
f344011c 8700
108b02cf
PZ
8701 for_each_possible_cpu(cpu) {
8702 struct perf_cpu_context *cpuctx;
8703
8704 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
eb184479 8705 __perf_event_init_context(&cpuctx->ctx);
547e9fd7 8706 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
facc4307 8707 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
108b02cf 8708 cpuctx->ctx.pmu = pmu;
9e630205 8709
272325c4 8710 __perf_mux_hrtimer_init(cpuctx, cpu);
9e630205 8711
3f1f3320 8712 cpuctx->unique_pmu = pmu;
108b02cf 8713 }
76e1d904 8714
8dc85d54 8715got_cpu_context:
ad5133b7
PZ
8716 if (!pmu->start_txn) {
8717 if (pmu->pmu_enable) {
8718 /*
8719 * If we have pmu_enable/pmu_disable calls, install
8720 * transaction stubs that use that to try and batch
8721 * hardware accesses.
8722 */
8723 pmu->start_txn = perf_pmu_start_txn;
8724 pmu->commit_txn = perf_pmu_commit_txn;
8725 pmu->cancel_txn = perf_pmu_cancel_txn;
8726 } else {
fbbe0701 8727 pmu->start_txn = perf_pmu_nop_txn;
ad5133b7
PZ
8728 pmu->commit_txn = perf_pmu_nop_int;
8729 pmu->cancel_txn = perf_pmu_nop_void;
f344011c 8730 }
5c92d124 8731 }
15dbf27c 8732
ad5133b7
PZ
8733 if (!pmu->pmu_enable) {
8734 pmu->pmu_enable = perf_pmu_nop_void;
8735 pmu->pmu_disable = perf_pmu_nop_void;
8736 }
8737
35edc2a5
PZ
8738 if (!pmu->event_idx)
8739 pmu->event_idx = perf_event_idx_default;
8740
b0a873eb 8741 list_add_rcu(&pmu->entry, &pmus);
bed5b25a 8742 atomic_set(&pmu->exclusive_cnt, 0);
33696fc0
PZ
8743 ret = 0;
8744unlock:
b0a873eb
PZ
8745 mutex_unlock(&pmus_lock);
8746
33696fc0 8747 return ret;
108b02cf 8748
abe43400
PZ
8749free_dev:
8750 device_del(pmu->dev);
8751 put_device(pmu->dev);
8752
2e80a82a
PZ
8753free_idr:
8754 if (pmu->type >= PERF_TYPE_MAX)
8755 idr_remove(&pmu_idr, pmu->type);
8756
108b02cf
PZ
8757free_pdc:
8758 free_percpu(pmu->pmu_disable_count);
8759 goto unlock;
f29ac756 8760}
c464c76e 8761EXPORT_SYMBOL_GPL(perf_pmu_register);
f29ac756 8762
b0a873eb 8763void perf_pmu_unregister(struct pmu *pmu)
5c92d124 8764{
b0a873eb
PZ
8765 mutex_lock(&pmus_lock);
8766 list_del_rcu(&pmu->entry);
8767 mutex_unlock(&pmus_lock);
5c92d124 8768
0475f9ea 8769 /*
cde8e884
PZ
8770 * We dereference the pmu list under both SRCU and regular RCU, so
8771 * synchronize against both of those.
0475f9ea 8772 */
b0a873eb 8773 synchronize_srcu(&pmus_srcu);
cde8e884 8774 synchronize_rcu();
d6d020e9 8775
33696fc0 8776 free_percpu(pmu->pmu_disable_count);
2e80a82a
PZ
8777 if (pmu->type >= PERF_TYPE_MAX)
8778 idr_remove(&pmu_idr, pmu->type);
6e855cd4
AS
8779 if (pmu->nr_addr_filters)
8780 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
abe43400
PZ
8781 device_del(pmu->dev);
8782 put_device(pmu->dev);
51676957 8783 free_pmu_context(pmu);
b0a873eb 8784}
c464c76e 8785EXPORT_SYMBOL_GPL(perf_pmu_unregister);
d6d020e9 8786
cc34b98b
MR
8787static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
8788{
ccd41c86 8789 struct perf_event_context *ctx = NULL;
cc34b98b
MR
8790 int ret;
8791
8792 if (!try_module_get(pmu->module))
8793 return -ENODEV;
ccd41c86
PZ
8794
8795 if (event->group_leader != event) {
8b10c5e2
PZ
8796 /*
8797 * This ctx->mutex can nest when we're called through
8798 * inheritance. See the perf_event_ctx_lock_nested() comment.
8799 */
8800 ctx = perf_event_ctx_lock_nested(event->group_leader,
8801 SINGLE_DEPTH_NESTING);
ccd41c86
PZ
8802 BUG_ON(!ctx);
8803 }
8804
cc34b98b
MR
8805 event->pmu = pmu;
8806 ret = pmu->event_init(event);
ccd41c86
PZ
8807
8808 if (ctx)
8809 perf_event_ctx_unlock(event->group_leader, ctx);
8810
cc34b98b
MR
8811 if (ret)
8812 module_put(pmu->module);
8813
8814 return ret;
8815}
8816
18ab2cd3 8817static struct pmu *perf_init_event(struct perf_event *event)
b0a873eb
PZ
8818{
8819 struct pmu *pmu = NULL;
8820 int idx;
940c5b29 8821 int ret;
b0a873eb
PZ
8822
8823 idx = srcu_read_lock(&pmus_srcu);
2e80a82a
PZ
8824
8825 rcu_read_lock();
8826 pmu = idr_find(&pmu_idr, event->attr.type);
8827 rcu_read_unlock();
940c5b29 8828 if (pmu) {
cc34b98b 8829 ret = perf_try_init_event(pmu, event);
940c5b29
LM
8830 if (ret)
8831 pmu = ERR_PTR(ret);
2e80a82a 8832 goto unlock;
940c5b29 8833 }
2e80a82a 8834
b0a873eb 8835 list_for_each_entry_rcu(pmu, &pmus, entry) {
cc34b98b 8836 ret = perf_try_init_event(pmu, event);
b0a873eb 8837 if (!ret)
e5f4d339 8838 goto unlock;
76e1d904 8839
b0a873eb
PZ
8840 if (ret != -ENOENT) {
8841 pmu = ERR_PTR(ret);
e5f4d339 8842 goto unlock;
f344011c 8843 }
5c92d124 8844 }
e5f4d339
PZ
8845 pmu = ERR_PTR(-ENOENT);
8846unlock:
b0a873eb 8847 srcu_read_unlock(&pmus_srcu, idx);
15dbf27c 8848
4aeb0b42 8849 return pmu;
5c92d124
IM
8850}
8851
f2fb6bef
KL
8852static void attach_sb_event(struct perf_event *event)
8853{
8854 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
8855
8856 raw_spin_lock(&pel->lock);
8857 list_add_rcu(&event->sb_list, &pel->list);
8858 raw_spin_unlock(&pel->lock);
8859}
8860
aab5b71e
PZ
8861/*
8862 * We keep a list of all !task (and therefore per-cpu) events
8863 * that need to receive side-band records.
8864 *
8865 * This avoids having to scan all the various PMU per-cpu contexts
8866 * looking for them.
8867 */
f2fb6bef
KL
8868static void account_pmu_sb_event(struct perf_event *event)
8869{
a4f144eb 8870 if (is_sb_event(event))
f2fb6bef
KL
8871 attach_sb_event(event);
8872}
8873
4beb31f3
FW
8874static void account_event_cpu(struct perf_event *event, int cpu)
8875{
8876 if (event->parent)
8877 return;
8878
4beb31f3
FW
8879 if (is_cgroup_event(event))
8880 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
8881}
8882
555e0c1e
FW
8883/* Freq events need the tick to stay alive (see perf_event_task_tick). */
8884static void account_freq_event_nohz(void)
8885{
8886#ifdef CONFIG_NO_HZ_FULL
8887 /* Lock so we don't race with concurrent unaccount */
8888 spin_lock(&nr_freq_lock);
8889 if (atomic_inc_return(&nr_freq_events) == 1)
8890 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
8891 spin_unlock(&nr_freq_lock);
8892#endif
8893}
8894
8895static void account_freq_event(void)
8896{
8897 if (tick_nohz_full_enabled())
8898 account_freq_event_nohz();
8899 else
8900 atomic_inc(&nr_freq_events);
8901}
8902
8903
766d6c07
FW
8904static void account_event(struct perf_event *event)
8905{
25432ae9
PZ
8906 bool inc = false;
8907
4beb31f3
FW
8908 if (event->parent)
8909 return;
8910
766d6c07 8911 if (event->attach_state & PERF_ATTACH_TASK)
25432ae9 8912 inc = true;
766d6c07
FW
8913 if (event->attr.mmap || event->attr.mmap_data)
8914 atomic_inc(&nr_mmap_events);
8915 if (event->attr.comm)
8916 atomic_inc(&nr_comm_events);
8917 if (event->attr.task)
8918 atomic_inc(&nr_task_events);
555e0c1e
FW
8919 if (event->attr.freq)
8920 account_freq_event();
45ac1403
AH
8921 if (event->attr.context_switch) {
8922 atomic_inc(&nr_switch_events);
25432ae9 8923 inc = true;
45ac1403 8924 }
4beb31f3 8925 if (has_branch_stack(event))
25432ae9 8926 inc = true;
4beb31f3 8927 if (is_cgroup_event(event))
25432ae9
PZ
8928 inc = true;
8929
9107c89e
PZ
8930 if (inc) {
8931 if (atomic_inc_not_zero(&perf_sched_count))
8932 goto enabled;
8933
8934 mutex_lock(&perf_sched_mutex);
8935 if (!atomic_read(&perf_sched_count)) {
8936 static_branch_enable(&perf_sched_events);
8937 /*
8938 * Guarantee that all CPUs observe they key change and
8939 * call the perf scheduling hooks before proceeding to
8940 * install events that need them.
8941 */
8942 synchronize_sched();
8943 }
8944 /*
8945 * Now that we have waited for the sync_sched(), allow further
8946 * increments to by-pass the mutex.
8947 */
8948 atomic_inc(&perf_sched_count);
8949 mutex_unlock(&perf_sched_mutex);
8950 }
8951enabled:
4beb31f3
FW
8952
8953 account_event_cpu(event, event->cpu);
f2fb6bef
KL
8954
8955 account_pmu_sb_event(event);
766d6c07
FW
8956}
8957
0793a61d 8958/*
cdd6c482 8959 * Allocate and initialize a event structure
0793a61d 8960 */
cdd6c482 8961static struct perf_event *
c3f00c70 8962perf_event_alloc(struct perf_event_attr *attr, int cpu,
d580ff86
PZ
8963 struct task_struct *task,
8964 struct perf_event *group_leader,
8965 struct perf_event *parent_event,
4dc0da86 8966 perf_overflow_handler_t overflow_handler,
79dff51e 8967 void *context, int cgroup_fd)
0793a61d 8968{
51b0fe39 8969 struct pmu *pmu;
cdd6c482
IM
8970 struct perf_event *event;
8971 struct hw_perf_event *hwc;
90983b16 8972 long err = -EINVAL;
0793a61d 8973
66832eb4
ON
8974 if ((unsigned)cpu >= nr_cpu_ids) {
8975 if (!task || cpu != -1)
8976 return ERR_PTR(-EINVAL);
8977 }
8978
c3f00c70 8979 event = kzalloc(sizeof(*event), GFP_KERNEL);
cdd6c482 8980 if (!event)
d5d2bc0d 8981 return ERR_PTR(-ENOMEM);
0793a61d 8982
04289bb9 8983 /*
cdd6c482 8984 * Single events are their own group leaders, with an
04289bb9
IM
8985 * empty sibling list:
8986 */
8987 if (!group_leader)
cdd6c482 8988 group_leader = event;
04289bb9 8989
cdd6c482
IM
8990 mutex_init(&event->child_mutex);
8991 INIT_LIST_HEAD(&event->child_list);
fccc714b 8992
cdd6c482
IM
8993 INIT_LIST_HEAD(&event->group_entry);
8994 INIT_LIST_HEAD(&event->event_entry);
8995 INIT_LIST_HEAD(&event->sibling_list);
10c6db11 8996 INIT_LIST_HEAD(&event->rb_entry);
71ad88ef 8997 INIT_LIST_HEAD(&event->active_entry);
375637bc 8998 INIT_LIST_HEAD(&event->addr_filters.list);
f3ae75de
SE
8999 INIT_HLIST_NODE(&event->hlist_entry);
9000
10c6db11 9001
cdd6c482 9002 init_waitqueue_head(&event->waitq);
e360adbe 9003 init_irq_work(&event->pending, perf_pending_event);
0793a61d 9004
cdd6c482 9005 mutex_init(&event->mmap_mutex);
375637bc 9006 raw_spin_lock_init(&event->addr_filters.lock);
7b732a75 9007
a6fa941d 9008 atomic_long_set(&event->refcount, 1);
cdd6c482
IM
9009 event->cpu = cpu;
9010 event->attr = *attr;
9011 event->group_leader = group_leader;
9012 event->pmu = NULL;
cdd6c482 9013 event->oncpu = -1;
a96bbc16 9014
cdd6c482 9015 event->parent = parent_event;
b84fbc9f 9016
17cf22c3 9017 event->ns = get_pid_ns(task_active_pid_ns(current));
cdd6c482 9018 event->id = atomic64_inc_return(&perf_event_id);
a96bbc16 9019
cdd6c482 9020 event->state = PERF_EVENT_STATE_INACTIVE;
329d876d 9021
d580ff86
PZ
9022 if (task) {
9023 event->attach_state = PERF_ATTACH_TASK;
d580ff86 9024 /*
50f16a8b
PZ
9025 * XXX pmu::event_init needs to know what task to account to
9026 * and we cannot use the ctx information because we need the
9027 * pmu before we get a ctx.
d580ff86 9028 */
50f16a8b 9029 event->hw.target = task;
d580ff86
PZ
9030 }
9031
34f43927
PZ
9032 event->clock = &local_clock;
9033 if (parent_event)
9034 event->clock = parent_event->clock;
9035
4dc0da86 9036 if (!overflow_handler && parent_event) {
b326e956 9037 overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
9038 context = parent_event->overflow_handler_context;
9039 }
66832eb4 9040
1879445d
WN
9041 if (overflow_handler) {
9042 event->overflow_handler = overflow_handler;
9043 event->overflow_handler_context = context;
9ecda41a
WN
9044 } else if (is_write_backward(event)){
9045 event->overflow_handler = perf_event_output_backward;
9046 event->overflow_handler_context = NULL;
1879445d 9047 } else {
9ecda41a 9048 event->overflow_handler = perf_event_output_forward;
1879445d
WN
9049 event->overflow_handler_context = NULL;
9050 }
97eaf530 9051
0231bb53 9052 perf_event__state_init(event);
a86ed508 9053
4aeb0b42 9054 pmu = NULL;
b8e83514 9055
cdd6c482 9056 hwc = &event->hw;
bd2b5b12 9057 hwc->sample_period = attr->sample_period;
0d48696f 9058 if (attr->freq && attr->sample_freq)
bd2b5b12 9059 hwc->sample_period = 1;
eced1dfc 9060 hwc->last_period = hwc->sample_period;
bd2b5b12 9061
e7850595 9062 local64_set(&hwc->period_left, hwc->sample_period);
60db5e09 9063
2023b359 9064 /*
cdd6c482 9065 * we currently do not support PERF_FORMAT_GROUP on inherited events
2023b359 9066 */
3dab77fb 9067 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
90983b16 9068 goto err_ns;
a46a2300
YZ
9069
9070 if (!has_branch_stack(event))
9071 event->attr.branch_sample_type = 0;
2023b359 9072
79dff51e
MF
9073 if (cgroup_fd != -1) {
9074 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
9075 if (err)
9076 goto err_ns;
9077 }
9078
b0a873eb 9079 pmu = perf_init_event(event);
4aeb0b42 9080 if (!pmu)
90983b16
FW
9081 goto err_ns;
9082 else if (IS_ERR(pmu)) {
4aeb0b42 9083 err = PTR_ERR(pmu);
90983b16 9084 goto err_ns;
621a01ea 9085 }
d5d2bc0d 9086
bed5b25a
AS
9087 err = exclusive_event_init(event);
9088 if (err)
9089 goto err_pmu;
9090
375637bc
AS
9091 if (has_addr_filter(event)) {
9092 event->addr_filters_offs = kcalloc(pmu->nr_addr_filters,
9093 sizeof(unsigned long),
9094 GFP_KERNEL);
9095 if (!event->addr_filters_offs)
9096 goto err_per_task;
9097
9098 /* force hw sync on the address filters */
9099 event->addr_filters_gen = 1;
9100 }
9101
cdd6c482 9102 if (!event->parent) {
927c7a9e 9103 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
97c79a38 9104 err = get_callchain_buffers(attr->sample_max_stack);
90983b16 9105 if (err)
375637bc 9106 goto err_addr_filters;
d010b332 9107 }
f344011c 9108 }
9ee318a7 9109
927a5570
AS
9110 /* symmetric to unaccount_event() in _free_event() */
9111 account_event(event);
9112
cdd6c482 9113 return event;
90983b16 9114
375637bc
AS
9115err_addr_filters:
9116 kfree(event->addr_filters_offs);
9117
bed5b25a
AS
9118err_per_task:
9119 exclusive_event_destroy(event);
9120
90983b16
FW
9121err_pmu:
9122 if (event->destroy)
9123 event->destroy(event);
c464c76e 9124 module_put(pmu->module);
90983b16 9125err_ns:
79dff51e
MF
9126 if (is_cgroup_event(event))
9127 perf_detach_cgroup(event);
90983b16
FW
9128 if (event->ns)
9129 put_pid_ns(event->ns);
9130 kfree(event);
9131
9132 return ERR_PTR(err);
0793a61d
TG
9133}
9134
cdd6c482
IM
9135static int perf_copy_attr(struct perf_event_attr __user *uattr,
9136 struct perf_event_attr *attr)
974802ea 9137{
974802ea 9138 u32 size;
cdf8073d 9139 int ret;
974802ea
PZ
9140
9141 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
9142 return -EFAULT;
9143
9144 /*
9145 * zero the full structure, so that a short copy will be nice.
9146 */
9147 memset(attr, 0, sizeof(*attr));
9148
9149 ret = get_user(size, &uattr->size);
9150 if (ret)
9151 return ret;
9152
9153 if (size > PAGE_SIZE) /* silly large */
9154 goto err_size;
9155
9156 if (!size) /* abi compat */
9157 size = PERF_ATTR_SIZE_VER0;
9158
9159 if (size < PERF_ATTR_SIZE_VER0)
9160 goto err_size;
9161
9162 /*
9163 * If we're handed a bigger struct than we know of,
cdf8073d
IS
9164 * ensure all the unknown bits are 0 - i.e. new
9165 * user-space does not rely on any kernel feature
9166 * extensions we dont know about yet.
974802ea
PZ
9167 */
9168 if (size > sizeof(*attr)) {
cdf8073d
IS
9169 unsigned char __user *addr;
9170 unsigned char __user *end;
9171 unsigned char val;
974802ea 9172
cdf8073d
IS
9173 addr = (void __user *)uattr + sizeof(*attr);
9174 end = (void __user *)uattr + size;
974802ea 9175
cdf8073d 9176 for (; addr < end; addr++) {
974802ea
PZ
9177 ret = get_user(val, addr);
9178 if (ret)
9179 return ret;
9180 if (val)
9181 goto err_size;
9182 }
b3e62e35 9183 size = sizeof(*attr);
974802ea
PZ
9184 }
9185
9186 ret = copy_from_user(attr, uattr, size);
9187 if (ret)
9188 return -EFAULT;
9189
cd757645 9190 if (attr->__reserved_1)
974802ea
PZ
9191 return -EINVAL;
9192
9193 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
9194 return -EINVAL;
9195
9196 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
9197 return -EINVAL;
9198
bce38cd5
SE
9199 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
9200 u64 mask = attr->branch_sample_type;
9201
9202 /* only using defined bits */
9203 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
9204 return -EINVAL;
9205
9206 /* at least one branch bit must be set */
9207 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
9208 return -EINVAL;
9209
bce38cd5
SE
9210 /* propagate priv level, when not set for branch */
9211 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
9212
9213 /* exclude_kernel checked on syscall entry */
9214 if (!attr->exclude_kernel)
9215 mask |= PERF_SAMPLE_BRANCH_KERNEL;
9216
9217 if (!attr->exclude_user)
9218 mask |= PERF_SAMPLE_BRANCH_USER;
9219
9220 if (!attr->exclude_hv)
9221 mask |= PERF_SAMPLE_BRANCH_HV;
9222 /*
9223 * adjust user setting (for HW filter setup)
9224 */
9225 attr->branch_sample_type = mask;
9226 }
e712209a
SE
9227 /* privileged levels capture (kernel, hv): check permissions */
9228 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
2b923c8f
SE
9229 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9230 return -EACCES;
bce38cd5 9231 }
4018994f 9232
c5ebcedb 9233 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
4018994f 9234 ret = perf_reg_validate(attr->sample_regs_user);
c5ebcedb
JO
9235 if (ret)
9236 return ret;
9237 }
9238
9239 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
9240 if (!arch_perf_have_user_stack_dump())
9241 return -ENOSYS;
9242
9243 /*
9244 * We have __u32 type for the size, but so far
9245 * we can only use __u16 as maximum due to the
9246 * __u16 sample size limit.
9247 */
9248 if (attr->sample_stack_user >= USHRT_MAX)
9249 ret = -EINVAL;
9250 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
9251 ret = -EINVAL;
9252 }
4018994f 9253
60e2364e
SE
9254 if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
9255 ret = perf_reg_validate(attr->sample_regs_intr);
974802ea
PZ
9256out:
9257 return ret;
9258
9259err_size:
9260 put_user(sizeof(*attr), &uattr->size);
9261 ret = -E2BIG;
9262 goto out;
9263}
9264
ac9721f3
PZ
9265static int
9266perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
a4be7c27 9267{
b69cf536 9268 struct ring_buffer *rb = NULL;
a4be7c27
PZ
9269 int ret = -EINVAL;
9270
ac9721f3 9271 if (!output_event)
a4be7c27
PZ
9272 goto set;
9273
ac9721f3
PZ
9274 /* don't allow circular references */
9275 if (event == output_event)
a4be7c27
PZ
9276 goto out;
9277
0f139300
PZ
9278 /*
9279 * Don't allow cross-cpu buffers
9280 */
9281 if (output_event->cpu != event->cpu)
9282 goto out;
9283
9284 /*
76369139 9285 * If its not a per-cpu rb, it must be the same task.
0f139300
PZ
9286 */
9287 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
9288 goto out;
9289
34f43927
PZ
9290 /*
9291 * Mixing clocks in the same buffer is trouble you don't need.
9292 */
9293 if (output_event->clock != event->clock)
9294 goto out;
9295
9ecda41a
WN
9296 /*
9297 * Either writing ring buffer from beginning or from end.
9298 * Mixing is not allowed.
9299 */
9300 if (is_write_backward(output_event) != is_write_backward(event))
9301 goto out;
9302
45bfb2e5
PZ
9303 /*
9304 * If both events generate aux data, they must be on the same PMU
9305 */
9306 if (has_aux(event) && has_aux(output_event) &&
9307 event->pmu != output_event->pmu)
9308 goto out;
9309
a4be7c27 9310set:
cdd6c482 9311 mutex_lock(&event->mmap_mutex);
ac9721f3
PZ
9312 /* Can't redirect output if we've got an active mmap() */
9313 if (atomic_read(&event->mmap_count))
9314 goto unlock;
a4be7c27 9315
ac9721f3 9316 if (output_event) {
76369139
FW
9317 /* get the rb we want to redirect to */
9318 rb = ring_buffer_get(output_event);
9319 if (!rb)
ac9721f3 9320 goto unlock;
a4be7c27
PZ
9321 }
9322
b69cf536 9323 ring_buffer_attach(event, rb);
9bb5d40c 9324
a4be7c27 9325 ret = 0;
ac9721f3
PZ
9326unlock:
9327 mutex_unlock(&event->mmap_mutex);
9328
a4be7c27 9329out:
a4be7c27
PZ
9330 return ret;
9331}
9332
f63a8daa
PZ
9333static void mutex_lock_double(struct mutex *a, struct mutex *b)
9334{
9335 if (b < a)
9336 swap(a, b);
9337
9338 mutex_lock(a);
9339 mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
9340}
9341
34f43927
PZ
9342static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
9343{
9344 bool nmi_safe = false;
9345
9346 switch (clk_id) {
9347 case CLOCK_MONOTONIC:
9348 event->clock = &ktime_get_mono_fast_ns;
9349 nmi_safe = true;
9350 break;
9351
9352 case CLOCK_MONOTONIC_RAW:
9353 event->clock = &ktime_get_raw_fast_ns;
9354 nmi_safe = true;
9355 break;
9356
9357 case CLOCK_REALTIME:
9358 event->clock = &ktime_get_real_ns;
9359 break;
9360
9361 case CLOCK_BOOTTIME:
9362 event->clock = &ktime_get_boot_ns;
9363 break;
9364
9365 case CLOCK_TAI:
9366 event->clock = &ktime_get_tai_ns;
9367 break;
9368
9369 default:
9370 return -EINVAL;
9371 }
9372
9373 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
9374 return -EINVAL;
9375
9376 return 0;
9377}
9378
0793a61d 9379/**
cdd6c482 9380 * sys_perf_event_open - open a performance event, associate it to a task/cpu
9f66a381 9381 *
cdd6c482 9382 * @attr_uptr: event_id type attributes for monitoring/sampling
0793a61d 9383 * @pid: target pid
9f66a381 9384 * @cpu: target cpu
cdd6c482 9385 * @group_fd: group leader event fd
0793a61d 9386 */
cdd6c482
IM
9387SYSCALL_DEFINE5(perf_event_open,
9388 struct perf_event_attr __user *, attr_uptr,
2743a5b0 9389 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
0793a61d 9390{
b04243ef
PZ
9391 struct perf_event *group_leader = NULL, *output_event = NULL;
9392 struct perf_event *event, *sibling;
cdd6c482 9393 struct perf_event_attr attr;
f63a8daa 9394 struct perf_event_context *ctx, *uninitialized_var(gctx);
cdd6c482 9395 struct file *event_file = NULL;
2903ff01 9396 struct fd group = {NULL, 0};
38a81da2 9397 struct task_struct *task = NULL;
89a1e187 9398 struct pmu *pmu;
ea635c64 9399 int event_fd;
b04243ef 9400 int move_group = 0;
dc86cabe 9401 int err;
a21b0b35 9402 int f_flags = O_RDWR;
79dff51e 9403 int cgroup_fd = -1;
0793a61d 9404
2743a5b0 9405 /* for future expandability... */
e5d1367f 9406 if (flags & ~PERF_FLAG_ALL)
2743a5b0
PM
9407 return -EINVAL;
9408
dc86cabe
IM
9409 err = perf_copy_attr(attr_uptr, &attr);
9410 if (err)
9411 return err;
eab656ae 9412
0764771d
PZ
9413 if (!attr.exclude_kernel) {
9414 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9415 return -EACCES;
9416 }
9417
df58ab24 9418 if (attr.freq) {
cdd6c482 9419 if (attr.sample_freq > sysctl_perf_event_sample_rate)
df58ab24 9420 return -EINVAL;
0819b2e3
PZ
9421 } else {
9422 if (attr.sample_period & (1ULL << 63))
9423 return -EINVAL;
df58ab24
PZ
9424 }
9425
97c79a38
ACM
9426 if (!attr.sample_max_stack)
9427 attr.sample_max_stack = sysctl_perf_event_max_stack;
9428
e5d1367f
SE
9429 /*
9430 * In cgroup mode, the pid argument is used to pass the fd
9431 * opened to the cgroup directory in cgroupfs. The cpu argument
9432 * designates the cpu on which to monitor threads from that
9433 * cgroup.
9434 */
9435 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
9436 return -EINVAL;
9437
a21b0b35
YD
9438 if (flags & PERF_FLAG_FD_CLOEXEC)
9439 f_flags |= O_CLOEXEC;
9440
9441 event_fd = get_unused_fd_flags(f_flags);
ea635c64
AV
9442 if (event_fd < 0)
9443 return event_fd;
9444
ac9721f3 9445 if (group_fd != -1) {
2903ff01
AV
9446 err = perf_fget_light(group_fd, &group);
9447 if (err)
d14b12d7 9448 goto err_fd;
2903ff01 9449 group_leader = group.file->private_data;
ac9721f3
PZ
9450 if (flags & PERF_FLAG_FD_OUTPUT)
9451 output_event = group_leader;
9452 if (flags & PERF_FLAG_FD_NO_GROUP)
9453 group_leader = NULL;
9454 }
9455
e5d1367f 9456 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
c6be5a5c
PZ
9457 task = find_lively_task_by_vpid(pid);
9458 if (IS_ERR(task)) {
9459 err = PTR_ERR(task);
9460 goto err_group_fd;
9461 }
9462 }
9463
1f4ee503
PZ
9464 if (task && group_leader &&
9465 group_leader->attr.inherit != attr.inherit) {
9466 err = -EINVAL;
9467 goto err_task;
9468 }
9469
fbfc623f
YZ
9470 get_online_cpus();
9471
79c9ce57
PZ
9472 if (task) {
9473 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
9474 if (err)
9475 goto err_cpus;
9476
9477 /*
9478 * Reuse ptrace permission checks for now.
9479 *
9480 * We must hold cred_guard_mutex across this and any potential
9481 * perf_install_in_context() call for this new event to
9482 * serialize against exec() altering our credentials (and the
9483 * perf_event_exit_task() that could imply).
9484 */
9485 err = -EACCES;
9486 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
9487 goto err_cred;
9488 }
9489
79dff51e
MF
9490 if (flags & PERF_FLAG_PID_CGROUP)
9491 cgroup_fd = pid;
9492
4dc0da86 9493 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
79dff51e 9494 NULL, NULL, cgroup_fd);
d14b12d7
SE
9495 if (IS_ERR(event)) {
9496 err = PTR_ERR(event);
79c9ce57 9497 goto err_cred;
d14b12d7
SE
9498 }
9499
53b25335
VW
9500 if (is_sampling_event(event)) {
9501 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
a1396555 9502 err = -EOPNOTSUPP;
53b25335
VW
9503 goto err_alloc;
9504 }
9505 }
9506
89a1e187
PZ
9507 /*
9508 * Special case software events and allow them to be part of
9509 * any hardware group.
9510 */
9511 pmu = event->pmu;
b04243ef 9512
34f43927
PZ
9513 if (attr.use_clockid) {
9514 err = perf_event_set_clock(event, attr.clockid);
9515 if (err)
9516 goto err_alloc;
9517 }
9518
4ff6a8de
DCC
9519 if (pmu->task_ctx_nr == perf_sw_context)
9520 event->event_caps |= PERF_EV_CAP_SOFTWARE;
9521
b04243ef
PZ
9522 if (group_leader &&
9523 (is_software_event(event) != is_software_event(group_leader))) {
9524 if (is_software_event(event)) {
9525 /*
9526 * If event and group_leader are not both a software
9527 * event, and event is, then group leader is not.
9528 *
9529 * Allow the addition of software events to !software
9530 * groups, this is safe because software events never
9531 * fail to schedule.
9532 */
9533 pmu = group_leader->pmu;
9534 } else if (is_software_event(group_leader) &&
4ff6a8de 9535 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
b04243ef
PZ
9536 /*
9537 * In case the group is a pure software group, and we
9538 * try to add a hardware event, move the whole group to
9539 * the hardware context.
9540 */
9541 move_group = 1;
9542 }
9543 }
89a1e187
PZ
9544
9545 /*
9546 * Get the target context (task or percpu):
9547 */
4af57ef2 9548 ctx = find_get_context(pmu, task, event);
89a1e187
PZ
9549 if (IS_ERR(ctx)) {
9550 err = PTR_ERR(ctx);
c6be5a5c 9551 goto err_alloc;
89a1e187
PZ
9552 }
9553
bed5b25a
AS
9554 if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
9555 err = -EBUSY;
9556 goto err_context;
9557 }
9558
ccff286d 9559 /*
cdd6c482 9560 * Look up the group leader (we will attach this event to it):
04289bb9 9561 */
ac9721f3 9562 if (group_leader) {
dc86cabe 9563 err = -EINVAL;
04289bb9 9564
04289bb9 9565 /*
ccff286d
IM
9566 * Do not allow a recursive hierarchy (this new sibling
9567 * becoming part of another group-sibling):
9568 */
9569 if (group_leader->group_leader != group_leader)
c3f00c70 9570 goto err_context;
34f43927
PZ
9571
9572 /* All events in a group should have the same clock */
9573 if (group_leader->clock != event->clock)
9574 goto err_context;
9575
ccff286d
IM
9576 /*
9577 * Do not allow to attach to a group in a different
9578 * task or CPU context:
04289bb9 9579 */
b04243ef 9580 if (move_group) {
c3c87e77
PZ
9581 /*
9582 * Make sure we're both on the same task, or both
9583 * per-cpu events.
9584 */
9585 if (group_leader->ctx->task != ctx->task)
9586 goto err_context;
9587
9588 /*
9589 * Make sure we're both events for the same CPU;
9590 * grouping events for different CPUs is broken; since
9591 * you can never concurrently schedule them anyhow.
9592 */
9593 if (group_leader->cpu != event->cpu)
b04243ef
PZ
9594 goto err_context;
9595 } else {
9596 if (group_leader->ctx != ctx)
9597 goto err_context;
9598 }
9599
3b6f9e5c
PM
9600 /*
9601 * Only a group leader can be exclusive or pinned
9602 */
0d48696f 9603 if (attr.exclusive || attr.pinned)
c3f00c70 9604 goto err_context;
ac9721f3
PZ
9605 }
9606
9607 if (output_event) {
9608 err = perf_event_set_output(event, output_event);
9609 if (err)
c3f00c70 9610 goto err_context;
ac9721f3 9611 }
0793a61d 9612
a21b0b35
YD
9613 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
9614 f_flags);
ea635c64
AV
9615 if (IS_ERR(event_file)) {
9616 err = PTR_ERR(event_file);
201c2f85 9617 event_file = NULL;
c3f00c70 9618 goto err_context;
ea635c64 9619 }
9b51f66d 9620
b04243ef 9621 if (move_group) {
f63a8daa 9622 gctx = group_leader->ctx;
f55fc2a5 9623 mutex_lock_double(&gctx->mutex, &ctx->mutex);
84c4e620
PZ
9624 if (gctx->task == TASK_TOMBSTONE) {
9625 err = -ESRCH;
9626 goto err_locked;
9627 }
f55fc2a5
PZ
9628 } else {
9629 mutex_lock(&ctx->mutex);
9630 }
9631
84c4e620
PZ
9632 if (ctx->task == TASK_TOMBSTONE) {
9633 err = -ESRCH;
9634 goto err_locked;
9635 }
9636
a723968c
PZ
9637 if (!perf_event_validate_size(event)) {
9638 err = -E2BIG;
9639 goto err_locked;
9640 }
9641
f55fc2a5
PZ
9642 /*
9643 * Must be under the same ctx::mutex as perf_install_in_context(),
9644 * because we need to serialize with concurrent event creation.
9645 */
9646 if (!exclusive_event_installable(event, ctx)) {
9647 /* exclusive and group stuff are assumed mutually exclusive */
9648 WARN_ON_ONCE(move_group);
f63a8daa 9649
f55fc2a5
PZ
9650 err = -EBUSY;
9651 goto err_locked;
9652 }
f63a8daa 9653
f55fc2a5
PZ
9654 WARN_ON_ONCE(ctx->parent_ctx);
9655
79c9ce57
PZ
9656 /*
9657 * This is the point on no return; we cannot fail hereafter. This is
9658 * where we start modifying current state.
9659 */
9660
f55fc2a5 9661 if (move_group) {
f63a8daa
PZ
9662 /*
9663 * See perf_event_ctx_lock() for comments on the details
9664 * of swizzling perf_event::ctx.
9665 */
45a0e07a 9666 perf_remove_from_context(group_leader, 0);
0231bb53 9667
b04243ef
PZ
9668 list_for_each_entry(sibling, &group_leader->sibling_list,
9669 group_entry) {
45a0e07a 9670 perf_remove_from_context(sibling, 0);
b04243ef
PZ
9671 put_ctx(gctx);
9672 }
b04243ef 9673
f63a8daa
PZ
9674 /*
9675 * Wait for everybody to stop referencing the events through
9676 * the old lists, before installing it on new lists.
9677 */
0cda4c02 9678 synchronize_rcu();
f63a8daa 9679
8f95b435
PZI
9680 /*
9681 * Install the group siblings before the group leader.
9682 *
9683 * Because a group leader will try and install the entire group
9684 * (through the sibling list, which is still in-tact), we can
9685 * end up with siblings installed in the wrong context.
9686 *
9687 * By installing siblings first we NO-OP because they're not
9688 * reachable through the group lists.
9689 */
b04243ef
PZ
9690 list_for_each_entry(sibling, &group_leader->sibling_list,
9691 group_entry) {
8f95b435 9692 perf_event__state_init(sibling);
9fc81d87 9693 perf_install_in_context(ctx, sibling, sibling->cpu);
b04243ef
PZ
9694 get_ctx(ctx);
9695 }
8f95b435
PZI
9696
9697 /*
9698 * Removing from the context ends up with disabled
9699 * event. What we want here is event in the initial
9700 * startup state, ready to be add into new context.
9701 */
9702 perf_event__state_init(group_leader);
9703 perf_install_in_context(ctx, group_leader, group_leader->cpu);
9704 get_ctx(ctx);
b04243ef 9705
f55fc2a5
PZ
9706 /*
9707 * Now that all events are installed in @ctx, nothing
9708 * references @gctx anymore, so drop the last reference we have
9709 * on it.
9710 */
9711 put_ctx(gctx);
bed5b25a
AS
9712 }
9713
f73e22ab
PZ
9714 /*
9715 * Precalculate sample_data sizes; do while holding ctx::mutex such
9716 * that we're serialized against further additions and before
9717 * perf_install_in_context() which is the point the event is active and
9718 * can use these values.
9719 */
9720 perf_event__header_size(event);
9721 perf_event__id_header_size(event);
9722
78cd2c74
PZ
9723 event->owner = current;
9724
e2d37cd2 9725 perf_install_in_context(ctx, event, event->cpu);
fe4b04fa 9726 perf_unpin_context(ctx);
f63a8daa 9727
f55fc2a5 9728 if (move_group)
f63a8daa 9729 mutex_unlock(&gctx->mutex);
d859e29f 9730 mutex_unlock(&ctx->mutex);
9b51f66d 9731
79c9ce57
PZ
9732 if (task) {
9733 mutex_unlock(&task->signal->cred_guard_mutex);
9734 put_task_struct(task);
9735 }
9736
fbfc623f
YZ
9737 put_online_cpus();
9738
cdd6c482
IM
9739 mutex_lock(&current->perf_event_mutex);
9740 list_add_tail(&event->owner_entry, &current->perf_event_list);
9741 mutex_unlock(&current->perf_event_mutex);
082ff5a2 9742
8a49542c
PZ
9743 /*
9744 * Drop the reference on the group_event after placing the
9745 * new event on the sibling_list. This ensures destruction
9746 * of the group leader will find the pointer to itself in
9747 * perf_group_detach().
9748 */
2903ff01 9749 fdput(group);
ea635c64
AV
9750 fd_install(event_fd, event_file);
9751 return event_fd;
0793a61d 9752
f55fc2a5
PZ
9753err_locked:
9754 if (move_group)
9755 mutex_unlock(&gctx->mutex);
9756 mutex_unlock(&ctx->mutex);
9757/* err_file: */
9758 fput(event_file);
c3f00c70 9759err_context:
fe4b04fa 9760 perf_unpin_context(ctx);
ea635c64 9761 put_ctx(ctx);
c6be5a5c 9762err_alloc:
13005627
PZ
9763 /*
9764 * If event_file is set, the fput() above will have called ->release()
9765 * and that will take care of freeing the event.
9766 */
9767 if (!event_file)
9768 free_event(event);
79c9ce57
PZ
9769err_cred:
9770 if (task)
9771 mutex_unlock(&task->signal->cred_guard_mutex);
1f4ee503 9772err_cpus:
fbfc623f 9773 put_online_cpus();
1f4ee503 9774err_task:
e7d0bc04
PZ
9775 if (task)
9776 put_task_struct(task);
89a1e187 9777err_group_fd:
2903ff01 9778 fdput(group);
ea635c64
AV
9779err_fd:
9780 put_unused_fd(event_fd);
dc86cabe 9781 return err;
0793a61d
TG
9782}
9783
fb0459d7
AV
9784/**
9785 * perf_event_create_kernel_counter
9786 *
9787 * @attr: attributes of the counter to create
9788 * @cpu: cpu in which the counter is bound
38a81da2 9789 * @task: task to profile (NULL for percpu)
fb0459d7
AV
9790 */
9791struct perf_event *
9792perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
38a81da2 9793 struct task_struct *task,
4dc0da86
AK
9794 perf_overflow_handler_t overflow_handler,
9795 void *context)
fb0459d7 9796{
fb0459d7 9797 struct perf_event_context *ctx;
c3f00c70 9798 struct perf_event *event;
fb0459d7 9799 int err;
d859e29f 9800
fb0459d7
AV
9801 /*
9802 * Get the target context (task or percpu):
9803 */
d859e29f 9804
4dc0da86 9805 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
79dff51e 9806 overflow_handler, context, -1);
c3f00c70
PZ
9807 if (IS_ERR(event)) {
9808 err = PTR_ERR(event);
9809 goto err;
9810 }
d859e29f 9811
f8697762 9812 /* Mark owner so we could distinguish it from user events. */
63b6da39 9813 event->owner = TASK_TOMBSTONE;
f8697762 9814
4af57ef2 9815 ctx = find_get_context(event->pmu, task, event);
c6567f64
FW
9816 if (IS_ERR(ctx)) {
9817 err = PTR_ERR(ctx);
c3f00c70 9818 goto err_free;
d859e29f 9819 }
fb0459d7 9820
fb0459d7
AV
9821 WARN_ON_ONCE(ctx->parent_ctx);
9822 mutex_lock(&ctx->mutex);
84c4e620
PZ
9823 if (ctx->task == TASK_TOMBSTONE) {
9824 err = -ESRCH;
9825 goto err_unlock;
9826 }
9827
bed5b25a 9828 if (!exclusive_event_installable(event, ctx)) {
bed5b25a 9829 err = -EBUSY;
84c4e620 9830 goto err_unlock;
bed5b25a
AS
9831 }
9832
fb0459d7 9833 perf_install_in_context(ctx, event, cpu);
fe4b04fa 9834 perf_unpin_context(ctx);
fb0459d7
AV
9835 mutex_unlock(&ctx->mutex);
9836
fb0459d7
AV
9837 return event;
9838
84c4e620
PZ
9839err_unlock:
9840 mutex_unlock(&ctx->mutex);
9841 perf_unpin_context(ctx);
9842 put_ctx(ctx);
c3f00c70
PZ
9843err_free:
9844 free_event(event);
9845err:
c6567f64 9846 return ERR_PTR(err);
9b51f66d 9847}
fb0459d7 9848EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
9b51f66d 9849
0cda4c02
YZ
9850void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
9851{
9852 struct perf_event_context *src_ctx;
9853 struct perf_event_context *dst_ctx;
9854 struct perf_event *event, *tmp;
9855 LIST_HEAD(events);
9856
9857 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
9858 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
9859
f63a8daa
PZ
9860 /*
9861 * See perf_event_ctx_lock() for comments on the details
9862 * of swizzling perf_event::ctx.
9863 */
9864 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
0cda4c02
YZ
9865 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
9866 event_entry) {
45a0e07a 9867 perf_remove_from_context(event, 0);
9a545de0 9868 unaccount_event_cpu(event, src_cpu);
0cda4c02 9869 put_ctx(src_ctx);
9886167d 9870 list_add(&event->migrate_entry, &events);
0cda4c02 9871 }
0cda4c02 9872
8f95b435
PZI
9873 /*
9874 * Wait for the events to quiesce before re-instating them.
9875 */
0cda4c02
YZ
9876 synchronize_rcu();
9877
8f95b435
PZI
9878 /*
9879 * Re-instate events in 2 passes.
9880 *
9881 * Skip over group leaders and only install siblings on this first
9882 * pass, siblings will not get enabled without a leader, however a
9883 * leader will enable its siblings, even if those are still on the old
9884 * context.
9885 */
9886 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
9887 if (event->group_leader == event)
9888 continue;
9889
9890 list_del(&event->migrate_entry);
9891 if (event->state >= PERF_EVENT_STATE_OFF)
9892 event->state = PERF_EVENT_STATE_INACTIVE;
9893 account_event_cpu(event, dst_cpu);
9894 perf_install_in_context(dst_ctx, event, dst_cpu);
9895 get_ctx(dst_ctx);
9896 }
9897
9898 /*
9899 * Once all the siblings are setup properly, install the group leaders
9900 * to make it go.
9901 */
9886167d
PZ
9902 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
9903 list_del(&event->migrate_entry);
0cda4c02
YZ
9904 if (event->state >= PERF_EVENT_STATE_OFF)
9905 event->state = PERF_EVENT_STATE_INACTIVE;
9a545de0 9906 account_event_cpu(event, dst_cpu);
0cda4c02
YZ
9907 perf_install_in_context(dst_ctx, event, dst_cpu);
9908 get_ctx(dst_ctx);
9909 }
9910 mutex_unlock(&dst_ctx->mutex);
f63a8daa 9911 mutex_unlock(&src_ctx->mutex);
0cda4c02
YZ
9912}
9913EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
9914
cdd6c482 9915static void sync_child_event(struct perf_event *child_event,
38b200d6 9916 struct task_struct *child)
d859e29f 9917{
cdd6c482 9918 struct perf_event *parent_event = child_event->parent;
8bc20959 9919 u64 child_val;
d859e29f 9920
cdd6c482
IM
9921 if (child_event->attr.inherit_stat)
9922 perf_event_read_event(child_event, child);
38b200d6 9923
b5e58793 9924 child_val = perf_event_count(child_event);
d859e29f
PM
9925
9926 /*
9927 * Add back the child's count to the parent's count:
9928 */
a6e6dea6 9929 atomic64_add(child_val, &parent_event->child_count);
cdd6c482
IM
9930 atomic64_add(child_event->total_time_enabled,
9931 &parent_event->child_total_time_enabled);
9932 atomic64_add(child_event->total_time_running,
9933 &parent_event->child_total_time_running);
d859e29f
PM
9934}
9935
9b51f66d 9936static void
8ba289b8
PZ
9937perf_event_exit_event(struct perf_event *child_event,
9938 struct perf_event_context *child_ctx,
9939 struct task_struct *child)
9b51f66d 9940{
8ba289b8
PZ
9941 struct perf_event *parent_event = child_event->parent;
9942
1903d50c
PZ
9943 /*
9944 * Do not destroy the 'original' grouping; because of the context
9945 * switch optimization the original events could've ended up in a
9946 * random child task.
9947 *
9948 * If we were to destroy the original group, all group related
9949 * operations would cease to function properly after this random
9950 * child dies.
9951 *
9952 * Do destroy all inherited groups, we don't care about those
9953 * and being thorough is better.
9954 */
32132a3d
PZ
9955 raw_spin_lock_irq(&child_ctx->lock);
9956 WARN_ON_ONCE(child_ctx->is_active);
9957
8ba289b8 9958 if (parent_event)
32132a3d
PZ
9959 perf_group_detach(child_event);
9960 list_del_event(child_event, child_ctx);
a69b0ca4 9961 child_event->state = PERF_EVENT_STATE_EXIT; /* is_event_hup() */
32132a3d 9962 raw_spin_unlock_irq(&child_ctx->lock);
0cc0c027 9963
9b51f66d 9964 /*
8ba289b8 9965 * Parent events are governed by their filedesc, retain them.
9b51f66d 9966 */
8ba289b8 9967 if (!parent_event) {
179033b3 9968 perf_event_wakeup(child_event);
8ba289b8 9969 return;
4bcf349a 9970 }
8ba289b8
PZ
9971 /*
9972 * Child events can be cleaned up.
9973 */
9974
9975 sync_child_event(child_event, child);
9976
9977 /*
9978 * Remove this event from the parent's list
9979 */
9980 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
9981 mutex_lock(&parent_event->child_mutex);
9982 list_del_init(&child_event->child_list);
9983 mutex_unlock(&parent_event->child_mutex);
9984
9985 /*
9986 * Kick perf_poll() for is_event_hup().
9987 */
9988 perf_event_wakeup(parent_event);
9989 free_event(child_event);
9990 put_event(parent_event);
9b51f66d
IM
9991}
9992
8dc85d54 9993static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
9b51f66d 9994{
211de6eb 9995 struct perf_event_context *child_ctx, *clone_ctx = NULL;
63b6da39 9996 struct perf_event *child_event, *next;
63b6da39
PZ
9997
9998 WARN_ON_ONCE(child != current);
9b51f66d 9999
6a3351b6 10000 child_ctx = perf_pin_task_context(child, ctxn);
63b6da39 10001 if (!child_ctx)
9b51f66d
IM
10002 return;
10003
ad3a37de 10004 /*
6a3351b6
PZ
10005 * In order to reduce the amount of tricky in ctx tear-down, we hold
10006 * ctx::mutex over the entire thing. This serializes against almost
10007 * everything that wants to access the ctx.
10008 *
10009 * The exception is sys_perf_event_open() /
10010 * perf_event_create_kernel_count() which does find_get_context()
10011 * without ctx::mutex (it cannot because of the move_group double mutex
10012 * lock thing). See the comments in perf_install_in_context().
ad3a37de 10013 */
6a3351b6 10014 mutex_lock(&child_ctx->mutex);
c93f7669
PM
10015
10016 /*
6a3351b6
PZ
10017 * In a single ctx::lock section, de-schedule the events and detach the
10018 * context from the task such that we cannot ever get it scheduled back
10019 * in.
c93f7669 10020 */
6a3351b6 10021 raw_spin_lock_irq(&child_ctx->lock);
63b6da39 10022 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx);
4a1c0f26 10023
71a851b4 10024 /*
63b6da39
PZ
10025 * Now that the context is inactive, destroy the task <-> ctx relation
10026 * and mark the context dead.
71a851b4 10027 */
63b6da39
PZ
10028 RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
10029 put_ctx(child_ctx); /* cannot be last */
10030 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
10031 put_task_struct(current); /* cannot be last */
4a1c0f26 10032
211de6eb 10033 clone_ctx = unclone_ctx(child_ctx);
6a3351b6 10034 raw_spin_unlock_irq(&child_ctx->lock);
9f498cc5 10035
211de6eb
PZ
10036 if (clone_ctx)
10037 put_ctx(clone_ctx);
4a1c0f26 10038
9f498cc5 10039 /*
cdd6c482
IM
10040 * Report the task dead after unscheduling the events so that we
10041 * won't get any samples after PERF_RECORD_EXIT. We can however still
10042 * get a few PERF_RECORD_READ events.
9f498cc5 10043 */
cdd6c482 10044 perf_event_task(child, child_ctx, 0);
a63eaf34 10045
ebf905fc 10046 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
8ba289b8 10047 perf_event_exit_event(child_event, child_ctx, child);
8bc20959 10048
a63eaf34
PM
10049 mutex_unlock(&child_ctx->mutex);
10050
10051 put_ctx(child_ctx);
9b51f66d
IM
10052}
10053
8dc85d54
PZ
10054/*
10055 * When a child task exits, feed back event values to parent events.
79c9ce57
PZ
10056 *
10057 * Can be called with cred_guard_mutex held when called from
10058 * install_exec_creds().
8dc85d54
PZ
10059 */
10060void perf_event_exit_task(struct task_struct *child)
10061{
8882135b 10062 struct perf_event *event, *tmp;
8dc85d54
PZ
10063 int ctxn;
10064
8882135b
PZ
10065 mutex_lock(&child->perf_event_mutex);
10066 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
10067 owner_entry) {
10068 list_del_init(&event->owner_entry);
10069
10070 /*
10071 * Ensure the list deletion is visible before we clear
10072 * the owner, closes a race against perf_release() where
10073 * we need to serialize on the owner->perf_event_mutex.
10074 */
f47c02c0 10075 smp_store_release(&event->owner, NULL);
8882135b
PZ
10076 }
10077 mutex_unlock(&child->perf_event_mutex);
10078
8dc85d54
PZ
10079 for_each_task_context_nr(ctxn)
10080 perf_event_exit_task_context(child, ctxn);
4e93ad60
JO
10081
10082 /*
10083 * The perf_event_exit_task_context calls perf_event_task
10084 * with child's task_ctx, which generates EXIT events for
10085 * child contexts and sets child->perf_event_ctxp[] to NULL.
10086 * At this point we need to send EXIT events to cpu contexts.
10087 */
10088 perf_event_task(child, NULL, 0);
8dc85d54
PZ
10089}
10090
889ff015
FW
10091static void perf_free_event(struct perf_event *event,
10092 struct perf_event_context *ctx)
10093{
10094 struct perf_event *parent = event->parent;
10095
10096 if (WARN_ON_ONCE(!parent))
10097 return;
10098
10099 mutex_lock(&parent->child_mutex);
10100 list_del_init(&event->child_list);
10101 mutex_unlock(&parent->child_mutex);
10102
a6fa941d 10103 put_event(parent);
889ff015 10104
652884fe 10105 raw_spin_lock_irq(&ctx->lock);
8a49542c 10106 perf_group_detach(event);
889ff015 10107 list_del_event(event, ctx);
652884fe 10108 raw_spin_unlock_irq(&ctx->lock);
889ff015
FW
10109 free_event(event);
10110}
10111
bbbee908 10112/*
652884fe 10113 * Free an unexposed, unused context as created by inheritance by
8dc85d54 10114 * perf_event_init_task below, used by fork() in case of fail.
652884fe
PZ
10115 *
10116 * Not all locks are strictly required, but take them anyway to be nice and
10117 * help out with the lockdep assertions.
bbbee908 10118 */
cdd6c482 10119void perf_event_free_task(struct task_struct *task)
bbbee908 10120{
8dc85d54 10121 struct perf_event_context *ctx;
cdd6c482 10122 struct perf_event *event, *tmp;
8dc85d54 10123 int ctxn;
bbbee908 10124
8dc85d54
PZ
10125 for_each_task_context_nr(ctxn) {
10126 ctx = task->perf_event_ctxp[ctxn];
10127 if (!ctx)
10128 continue;
bbbee908 10129
8dc85d54 10130 mutex_lock(&ctx->mutex);
bbbee908 10131again:
8dc85d54
PZ
10132 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
10133 group_entry)
10134 perf_free_event(event, ctx);
bbbee908 10135
8dc85d54
PZ
10136 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
10137 group_entry)
10138 perf_free_event(event, ctx);
bbbee908 10139
8dc85d54
PZ
10140 if (!list_empty(&ctx->pinned_groups) ||
10141 !list_empty(&ctx->flexible_groups))
10142 goto again;
bbbee908 10143
8dc85d54 10144 mutex_unlock(&ctx->mutex);
bbbee908 10145
8dc85d54
PZ
10146 put_ctx(ctx);
10147 }
889ff015
FW
10148}
10149
4e231c79
PZ
10150void perf_event_delayed_put(struct task_struct *task)
10151{
10152 int ctxn;
10153
10154 for_each_task_context_nr(ctxn)
10155 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
10156}
10157
e03e7ee3 10158struct file *perf_event_get(unsigned int fd)
ffe8690c 10159{
e03e7ee3 10160 struct file *file;
ffe8690c 10161
e03e7ee3
AS
10162 file = fget_raw(fd);
10163 if (!file)
10164 return ERR_PTR(-EBADF);
ffe8690c 10165
e03e7ee3
AS
10166 if (file->f_op != &perf_fops) {
10167 fput(file);
10168 return ERR_PTR(-EBADF);
10169 }
ffe8690c 10170
e03e7ee3 10171 return file;
ffe8690c
KX
10172}
10173
10174const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
10175{
10176 if (!event)
10177 return ERR_PTR(-EINVAL);
10178
10179 return &event->attr;
10180}
10181
97dee4f3
PZ
10182/*
10183 * inherit a event from parent task to child task:
10184 */
10185static struct perf_event *
10186inherit_event(struct perf_event *parent_event,
10187 struct task_struct *parent,
10188 struct perf_event_context *parent_ctx,
10189 struct task_struct *child,
10190 struct perf_event *group_leader,
10191 struct perf_event_context *child_ctx)
10192{
1929def9 10193 enum perf_event_active_state parent_state = parent_event->state;
97dee4f3 10194 struct perf_event *child_event;
cee010ec 10195 unsigned long flags;
97dee4f3
PZ
10196
10197 /*
10198 * Instead of creating recursive hierarchies of events,
10199 * we link inherited events back to the original parent,
10200 * which has a filp for sure, which we use as the reference
10201 * count:
10202 */
10203 if (parent_event->parent)
10204 parent_event = parent_event->parent;
10205
10206 child_event = perf_event_alloc(&parent_event->attr,
10207 parent_event->cpu,
d580ff86 10208 child,
97dee4f3 10209 group_leader, parent_event,
79dff51e 10210 NULL, NULL, -1);
97dee4f3
PZ
10211 if (IS_ERR(child_event))
10212 return child_event;
a6fa941d 10213
c6e5b732
PZ
10214 /*
10215 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
10216 * must be under the same lock in order to serialize against
10217 * perf_event_release_kernel(), such that either we must observe
10218 * is_orphaned_event() or they will observe us on the child_list.
10219 */
10220 mutex_lock(&parent_event->child_mutex);
fadfe7be
JO
10221 if (is_orphaned_event(parent_event) ||
10222 !atomic_long_inc_not_zero(&parent_event->refcount)) {
c6e5b732 10223 mutex_unlock(&parent_event->child_mutex);
a6fa941d
AV
10224 free_event(child_event);
10225 return NULL;
10226 }
10227
97dee4f3
PZ
10228 get_ctx(child_ctx);
10229
10230 /*
10231 * Make the child state follow the state of the parent event,
10232 * not its attr.disabled bit. We hold the parent's mutex,
10233 * so we won't race with perf_event_{en, dis}able_family.
10234 */
1929def9 10235 if (parent_state >= PERF_EVENT_STATE_INACTIVE)
97dee4f3
PZ
10236 child_event->state = PERF_EVENT_STATE_INACTIVE;
10237 else
10238 child_event->state = PERF_EVENT_STATE_OFF;
10239
10240 if (parent_event->attr.freq) {
10241 u64 sample_period = parent_event->hw.sample_period;
10242 struct hw_perf_event *hwc = &child_event->hw;
10243
10244 hwc->sample_period = sample_period;
10245 hwc->last_period = sample_period;
10246
10247 local64_set(&hwc->period_left, sample_period);
10248 }
10249
10250 child_event->ctx = child_ctx;
10251 child_event->overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
10252 child_event->overflow_handler_context
10253 = parent_event->overflow_handler_context;
97dee4f3 10254
614b6780
TG
10255 /*
10256 * Precalculate sample_data sizes
10257 */
10258 perf_event__header_size(child_event);
6844c09d 10259 perf_event__id_header_size(child_event);
614b6780 10260
97dee4f3
PZ
10261 /*
10262 * Link it up in the child's context:
10263 */
cee010ec 10264 raw_spin_lock_irqsave(&child_ctx->lock, flags);
97dee4f3 10265 add_event_to_ctx(child_event, child_ctx);
cee010ec 10266 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
97dee4f3 10267
97dee4f3
PZ
10268 /*
10269 * Link this into the parent event's child list
10270 */
97dee4f3
PZ
10271 list_add_tail(&child_event->child_list, &parent_event->child_list);
10272 mutex_unlock(&parent_event->child_mutex);
10273
10274 return child_event;
10275}
10276
10277static int inherit_group(struct perf_event *parent_event,
10278 struct task_struct *parent,
10279 struct perf_event_context *parent_ctx,
10280 struct task_struct *child,
10281 struct perf_event_context *child_ctx)
10282{
10283 struct perf_event *leader;
10284 struct perf_event *sub;
10285 struct perf_event *child_ctr;
10286
10287 leader = inherit_event(parent_event, parent, parent_ctx,
10288 child, NULL, child_ctx);
10289 if (IS_ERR(leader))
10290 return PTR_ERR(leader);
10291 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
10292 child_ctr = inherit_event(sub, parent, parent_ctx,
10293 child, leader, child_ctx);
10294 if (IS_ERR(child_ctr))
10295 return PTR_ERR(child_ctr);
10296 }
10297 return 0;
889ff015
FW
10298}
10299
10300static int
10301inherit_task_group(struct perf_event *event, struct task_struct *parent,
10302 struct perf_event_context *parent_ctx,
8dc85d54 10303 struct task_struct *child, int ctxn,
889ff015
FW
10304 int *inherited_all)
10305{
10306 int ret;
8dc85d54 10307 struct perf_event_context *child_ctx;
889ff015
FW
10308
10309 if (!event->attr.inherit) {
10310 *inherited_all = 0;
10311 return 0;
bbbee908
PZ
10312 }
10313
fe4b04fa 10314 child_ctx = child->perf_event_ctxp[ctxn];
889ff015
FW
10315 if (!child_ctx) {
10316 /*
10317 * This is executed from the parent task context, so
10318 * inherit events that have been marked for cloning.
10319 * First allocate and initialize a context for the
10320 * child.
10321 */
bbbee908 10322
734df5ab 10323 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
889ff015
FW
10324 if (!child_ctx)
10325 return -ENOMEM;
bbbee908 10326
8dc85d54 10327 child->perf_event_ctxp[ctxn] = child_ctx;
889ff015
FW
10328 }
10329
10330 ret = inherit_group(event, parent, parent_ctx,
10331 child, child_ctx);
10332
10333 if (ret)
10334 *inherited_all = 0;
10335
10336 return ret;
bbbee908
PZ
10337}
10338
9b51f66d 10339/*
cdd6c482 10340 * Initialize the perf_event context in task_struct
9b51f66d 10341 */
985c8dcb 10342static int perf_event_init_context(struct task_struct *child, int ctxn)
9b51f66d 10343{
889ff015 10344 struct perf_event_context *child_ctx, *parent_ctx;
cdd6c482
IM
10345 struct perf_event_context *cloned_ctx;
10346 struct perf_event *event;
9b51f66d 10347 struct task_struct *parent = current;
564c2b21 10348 int inherited_all = 1;
dddd3379 10349 unsigned long flags;
6ab423e0 10350 int ret = 0;
9b51f66d 10351
8dc85d54 10352 if (likely(!parent->perf_event_ctxp[ctxn]))
6ab423e0
PZ
10353 return 0;
10354
ad3a37de 10355 /*
25346b93
PM
10356 * If the parent's context is a clone, pin it so it won't get
10357 * swapped under us.
ad3a37de 10358 */
8dc85d54 10359 parent_ctx = perf_pin_task_context(parent, ctxn);
ffb4ef21
PZ
10360 if (!parent_ctx)
10361 return 0;
25346b93 10362
ad3a37de
PM
10363 /*
10364 * No need to check if parent_ctx != NULL here; since we saw
10365 * it non-NULL earlier, the only reason for it to become NULL
10366 * is if we exit, and since we're currently in the middle of
10367 * a fork we can't be exiting at the same time.
10368 */
ad3a37de 10369
9b51f66d
IM
10370 /*
10371 * Lock the parent list. No need to lock the child - not PID
10372 * hashed yet and not running, so nobody can access it.
10373 */
d859e29f 10374 mutex_lock(&parent_ctx->mutex);
9b51f66d
IM
10375
10376 /*
10377 * We dont have to disable NMIs - we are only looking at
10378 * the list, not manipulating it:
10379 */
889ff015 10380 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
8dc85d54
PZ
10381 ret = inherit_task_group(event, parent, parent_ctx,
10382 child, ctxn, &inherited_all);
889ff015
FW
10383 if (ret)
10384 break;
10385 }
b93f7978 10386
dddd3379
TG
10387 /*
10388 * We can't hold ctx->lock when iterating the ->flexible_group list due
10389 * to allocations, but we need to prevent rotation because
10390 * rotate_ctx() will change the list from interrupt context.
10391 */
10392 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10393 parent_ctx->rotate_disable = 1;
10394 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10395
889ff015 10396 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
8dc85d54
PZ
10397 ret = inherit_task_group(event, parent, parent_ctx,
10398 child, ctxn, &inherited_all);
889ff015 10399 if (ret)
9b51f66d 10400 break;
564c2b21
PM
10401 }
10402
dddd3379
TG
10403 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10404 parent_ctx->rotate_disable = 0;
dddd3379 10405
8dc85d54 10406 child_ctx = child->perf_event_ctxp[ctxn];
889ff015 10407
05cbaa28 10408 if (child_ctx && inherited_all) {
564c2b21
PM
10409 /*
10410 * Mark the child context as a clone of the parent
10411 * context, or of whatever the parent is a clone of.
c5ed5145
PZ
10412 *
10413 * Note that if the parent is a clone, the holding of
10414 * parent_ctx->lock avoids it from being uncloned.
564c2b21 10415 */
c5ed5145 10416 cloned_ctx = parent_ctx->parent_ctx;
ad3a37de
PM
10417 if (cloned_ctx) {
10418 child_ctx->parent_ctx = cloned_ctx;
25346b93 10419 child_ctx->parent_gen = parent_ctx->parent_gen;
564c2b21
PM
10420 } else {
10421 child_ctx->parent_ctx = parent_ctx;
10422 child_ctx->parent_gen = parent_ctx->generation;
10423 }
10424 get_ctx(child_ctx->parent_ctx);
9b51f66d
IM
10425 }
10426
c5ed5145 10427 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
d859e29f 10428 mutex_unlock(&parent_ctx->mutex);
6ab423e0 10429
25346b93 10430 perf_unpin_context(parent_ctx);
fe4b04fa 10431 put_ctx(parent_ctx);
ad3a37de 10432
6ab423e0 10433 return ret;
9b51f66d
IM
10434}
10435
8dc85d54
PZ
10436/*
10437 * Initialize the perf_event context in task_struct
10438 */
10439int perf_event_init_task(struct task_struct *child)
10440{
10441 int ctxn, ret;
10442
8550d7cb
ON
10443 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
10444 mutex_init(&child->perf_event_mutex);
10445 INIT_LIST_HEAD(&child->perf_event_list);
10446
8dc85d54
PZ
10447 for_each_task_context_nr(ctxn) {
10448 ret = perf_event_init_context(child, ctxn);
6c72e350
PZ
10449 if (ret) {
10450 perf_event_free_task(child);
8dc85d54 10451 return ret;
6c72e350 10452 }
8dc85d54
PZ
10453 }
10454
10455 return 0;
10456}
10457
220b140b
PM
10458static void __init perf_event_init_all_cpus(void)
10459{
b28ab83c 10460 struct swevent_htable *swhash;
220b140b 10461 int cpu;
220b140b
PM
10462
10463 for_each_possible_cpu(cpu) {
b28ab83c
PZ
10464 swhash = &per_cpu(swevent_htable, cpu);
10465 mutex_init(&swhash->hlist_mutex);
2fde4f94 10466 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
f2fb6bef
KL
10467
10468 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
10469 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
e48c1788
PZ
10470
10471 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
220b140b
PM
10472 }
10473}
10474
00e16c3d 10475int perf_event_init_cpu(unsigned int cpu)
0793a61d 10476{
108b02cf 10477 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
0793a61d 10478
b28ab83c 10479 mutex_lock(&swhash->hlist_mutex);
059fcd8c 10480 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
76e1d904
FW
10481 struct swevent_hlist *hlist;
10482
b28ab83c
PZ
10483 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
10484 WARN_ON(!hlist);
10485 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 10486 }
b28ab83c 10487 mutex_unlock(&swhash->hlist_mutex);
00e16c3d 10488 return 0;
0793a61d
TG
10489}
10490
2965faa5 10491#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
108b02cf 10492static void __perf_event_exit_context(void *__info)
0793a61d 10493{
108b02cf 10494 struct perf_event_context *ctx = __info;
fae3fde6
PZ
10495 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
10496 struct perf_event *event;
0793a61d 10497
fae3fde6
PZ
10498 raw_spin_lock(&ctx->lock);
10499 list_for_each_entry(event, &ctx->event_list, event_entry)
45a0e07a 10500 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
fae3fde6 10501 raw_spin_unlock(&ctx->lock);
0793a61d 10502}
108b02cf
PZ
10503
10504static void perf_event_exit_cpu_context(int cpu)
10505{
10506 struct perf_event_context *ctx;
10507 struct pmu *pmu;
10508 int idx;
10509
10510 idx = srcu_read_lock(&pmus_srcu);
10511 list_for_each_entry_rcu(pmu, &pmus, entry) {
917bdd1c 10512 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
108b02cf
PZ
10513
10514 mutex_lock(&ctx->mutex);
10515 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
10516 mutex_unlock(&ctx->mutex);
10517 }
10518 srcu_read_unlock(&pmus_srcu, idx);
108b02cf 10519}
00e16c3d
TG
10520#else
10521
10522static void perf_event_exit_cpu_context(int cpu) { }
10523
10524#endif
108b02cf 10525
00e16c3d 10526int perf_event_exit_cpu(unsigned int cpu)
0793a61d 10527{
e3703f8c 10528 perf_event_exit_cpu_context(cpu);
00e16c3d 10529 return 0;
0793a61d 10530}
0793a61d 10531
c277443c
PZ
10532static int
10533perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
10534{
10535 int cpu;
10536
10537 for_each_online_cpu(cpu)
10538 perf_event_exit_cpu(cpu);
10539
10540 return NOTIFY_OK;
10541}
10542
10543/*
10544 * Run the perf reboot notifier at the very last possible moment so that
10545 * the generic watchdog code runs as long as possible.
10546 */
10547static struct notifier_block perf_reboot_notifier = {
10548 .notifier_call = perf_reboot,
10549 .priority = INT_MIN,
10550};
10551
cdd6c482 10552void __init perf_event_init(void)
0793a61d 10553{
3c502e7a
JW
10554 int ret;
10555
2e80a82a
PZ
10556 idr_init(&pmu_idr);
10557
220b140b 10558 perf_event_init_all_cpus();
b0a873eb 10559 init_srcu_struct(&pmus_srcu);
2e80a82a
PZ
10560 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
10561 perf_pmu_register(&perf_cpu_clock, NULL, -1);
10562 perf_pmu_register(&perf_task_clock, NULL, -1);
b0a873eb 10563 perf_tp_register();
00e16c3d 10564 perf_event_init_cpu(smp_processor_id());
c277443c 10565 register_reboot_notifier(&perf_reboot_notifier);
3c502e7a
JW
10566
10567 ret = init_hw_breakpoint();
10568 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
b2029520 10569
b01c3a00
JO
10570 /*
10571 * Build time assertion that we keep the data_head at the intended
10572 * location. IOW, validation we got the __reserved[] size right.
10573 */
10574 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
10575 != 1024);
0793a61d 10576}
abe43400 10577
fd979c01
CS
10578ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
10579 char *page)
10580{
10581 struct perf_pmu_events_attr *pmu_attr =
10582 container_of(attr, struct perf_pmu_events_attr, attr);
10583
10584 if (pmu_attr->event_str)
10585 return sprintf(page, "%s\n", pmu_attr->event_str);
10586
10587 return 0;
10588}
675965b0 10589EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
fd979c01 10590
abe43400
PZ
10591static int __init perf_event_sysfs_init(void)
10592{
10593 struct pmu *pmu;
10594 int ret;
10595
10596 mutex_lock(&pmus_lock);
10597
10598 ret = bus_register(&pmu_bus);
10599 if (ret)
10600 goto unlock;
10601
10602 list_for_each_entry(pmu, &pmus, entry) {
10603 if (!pmu->name || pmu->type < 0)
10604 continue;
10605
10606 ret = pmu_dev_alloc(pmu);
10607 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
10608 }
10609 pmu_bus_running = 1;
10610 ret = 0;
10611
10612unlock:
10613 mutex_unlock(&pmus_lock);
10614
10615 return ret;
10616}
10617device_initcall(perf_event_sysfs_init);
e5d1367f
SE
10618
10619#ifdef CONFIG_CGROUP_PERF
eb95419b
TH
10620static struct cgroup_subsys_state *
10621perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
e5d1367f
SE
10622{
10623 struct perf_cgroup *jc;
e5d1367f 10624
1b15d055 10625 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
e5d1367f
SE
10626 if (!jc)
10627 return ERR_PTR(-ENOMEM);
10628
e5d1367f
SE
10629 jc->info = alloc_percpu(struct perf_cgroup_info);
10630 if (!jc->info) {
10631 kfree(jc);
10632 return ERR_PTR(-ENOMEM);
10633 }
10634
e5d1367f
SE
10635 return &jc->css;
10636}
10637
eb95419b 10638static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
e5d1367f 10639{
eb95419b
TH
10640 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
10641
e5d1367f
SE
10642 free_percpu(jc->info);
10643 kfree(jc);
10644}
10645
10646static int __perf_cgroup_move(void *info)
10647{
10648 struct task_struct *task = info;
ddaaf4e2 10649 rcu_read_lock();
e5d1367f 10650 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
ddaaf4e2 10651 rcu_read_unlock();
e5d1367f
SE
10652 return 0;
10653}
10654
1f7dd3e5 10655static void perf_cgroup_attach(struct cgroup_taskset *tset)
e5d1367f 10656{
bb9d97b6 10657 struct task_struct *task;
1f7dd3e5 10658 struct cgroup_subsys_state *css;
bb9d97b6 10659
1f7dd3e5 10660 cgroup_taskset_for_each(task, css, tset)
bb9d97b6 10661 task_function_call(task, __perf_cgroup_move, task);
e5d1367f
SE
10662}
10663
073219e9 10664struct cgroup_subsys perf_event_cgrp_subsys = {
92fb9748
TH
10665 .css_alloc = perf_cgroup_css_alloc,
10666 .css_free = perf_cgroup_css_free,
bb9d97b6 10667 .attach = perf_cgroup_attach,
e5d1367f
SE
10668};
10669#endif /* CONFIG_CGROUP_PERF */