]> git.ipfire.org Git - thirdparty/linux.git/blame - kernel/events/core.c
cgroup: implement CSS_TASK_ITER_THREADED
[thirdparty/linux.git] / kernel / events / core.c
CommitLineData
0793a61d 1/*
57c0c15b 2 * Performance events core code:
0793a61d 3 *
98144511 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
e7e7ee2e 5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
90eec103 6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
d36b6910 7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
7b732a75 8 *
57c0c15b 9 * For licensing details see kernel-base/COPYING
0793a61d
TG
10 */
11
12#include <linux/fs.h>
b9cacc7b 13#include <linux/mm.h>
0793a61d
TG
14#include <linux/cpu.h>
15#include <linux/smp.h>
2e80a82a 16#include <linux/idr.h>
04289bb9 17#include <linux/file.h>
0793a61d 18#include <linux/poll.h>
5a0e3ad6 19#include <linux/slab.h>
76e1d904 20#include <linux/hash.h>
12351ef8 21#include <linux/tick.h>
0793a61d 22#include <linux/sysfs.h>
22a4f650 23#include <linux/dcache.h>
0793a61d 24#include <linux/percpu.h>
22a4f650 25#include <linux/ptrace.h>
c277443c 26#include <linux/reboot.h>
b9cacc7b 27#include <linux/vmstat.h>
abe43400 28#include <linux/device.h>
6e5fdeed 29#include <linux/export.h>
906010b2 30#include <linux/vmalloc.h>
b9cacc7b
PZ
31#include <linux/hardirq.h>
32#include <linux/rculist.h>
0793a61d
TG
33#include <linux/uaccess.h>
34#include <linux/syscalls.h>
35#include <linux/anon_inodes.h>
aa9c4c0f 36#include <linux/kernel_stat.h>
39bed6cb 37#include <linux/cgroup.h>
cdd6c482 38#include <linux/perf_event.h>
af658dca 39#include <linux/trace_events.h>
3c502e7a 40#include <linux/hw_breakpoint.h>
c5ebcedb 41#include <linux/mm_types.h>
c464c76e 42#include <linux/module.h>
f972eb63 43#include <linux/mman.h>
b3f20785 44#include <linux/compat.h>
2541517c
AS
45#include <linux/bpf.h>
46#include <linux/filter.h>
375637bc
AS
47#include <linux/namei.h>
48#include <linux/parser.h>
e6017571 49#include <linux/sched/clock.h>
6e84f315 50#include <linux/sched/mm.h>
e4222673
HB
51#include <linux/proc_ns.h>
52#include <linux/mount.h>
0793a61d 53
76369139
FW
54#include "internal.h"
55
4e193bd4
TB
56#include <asm/irq_regs.h>
57
272325c4
PZ
58typedef int (*remote_function_f)(void *);
59
fe4b04fa 60struct remote_function_call {
e7e7ee2e 61 struct task_struct *p;
272325c4 62 remote_function_f func;
e7e7ee2e
IM
63 void *info;
64 int ret;
fe4b04fa
PZ
65};
66
67static void remote_function(void *data)
68{
69 struct remote_function_call *tfc = data;
70 struct task_struct *p = tfc->p;
71
72 if (p) {
0da4cf3e
PZ
73 /* -EAGAIN */
74 if (task_cpu(p) != smp_processor_id())
75 return;
76
77 /*
78 * Now that we're on right CPU with IRQs disabled, we can test
79 * if we hit the right task without races.
80 */
81
82 tfc->ret = -ESRCH; /* No such (running) process */
83 if (p != current)
fe4b04fa
PZ
84 return;
85 }
86
87 tfc->ret = tfc->func(tfc->info);
88}
89
90/**
91 * task_function_call - call a function on the cpu on which a task runs
92 * @p: the task to evaluate
93 * @func: the function to be called
94 * @info: the function call argument
95 *
96 * Calls the function @func when the task is currently running. This might
97 * be on the current CPU, which just calls the function directly
98 *
99 * returns: @func return value, or
100 * -ESRCH - when the process isn't running
101 * -EAGAIN - when the process moved away
102 */
103static int
272325c4 104task_function_call(struct task_struct *p, remote_function_f func, void *info)
fe4b04fa
PZ
105{
106 struct remote_function_call data = {
e7e7ee2e
IM
107 .p = p,
108 .func = func,
109 .info = info,
0da4cf3e 110 .ret = -EAGAIN,
fe4b04fa 111 };
0da4cf3e 112 int ret;
fe4b04fa 113
0da4cf3e
PZ
114 do {
115 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
116 if (!ret)
117 ret = data.ret;
118 } while (ret == -EAGAIN);
fe4b04fa 119
0da4cf3e 120 return ret;
fe4b04fa
PZ
121}
122
123/**
124 * cpu_function_call - call a function on the cpu
125 * @func: the function to be called
126 * @info: the function call argument
127 *
128 * Calls the function @func on the remote cpu.
129 *
130 * returns: @func return value or -ENXIO when the cpu is offline
131 */
272325c4 132static int cpu_function_call(int cpu, remote_function_f func, void *info)
fe4b04fa
PZ
133{
134 struct remote_function_call data = {
e7e7ee2e
IM
135 .p = NULL,
136 .func = func,
137 .info = info,
138 .ret = -ENXIO, /* No such CPU */
fe4b04fa
PZ
139 };
140
141 smp_call_function_single(cpu, remote_function, &data, 1);
142
143 return data.ret;
144}
145
fae3fde6
PZ
146static inline struct perf_cpu_context *
147__get_cpu_context(struct perf_event_context *ctx)
148{
149 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
150}
151
152static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
153 struct perf_event_context *ctx)
0017960f 154{
fae3fde6
PZ
155 raw_spin_lock(&cpuctx->ctx.lock);
156 if (ctx)
157 raw_spin_lock(&ctx->lock);
158}
159
160static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
161 struct perf_event_context *ctx)
162{
163 if (ctx)
164 raw_spin_unlock(&ctx->lock);
165 raw_spin_unlock(&cpuctx->ctx.lock);
166}
167
63b6da39
PZ
168#define TASK_TOMBSTONE ((void *)-1L)
169
170static bool is_kernel_event(struct perf_event *event)
171{
f47c02c0 172 return READ_ONCE(event->owner) == TASK_TOMBSTONE;
63b6da39
PZ
173}
174
39a43640
PZ
175/*
176 * On task ctx scheduling...
177 *
178 * When !ctx->nr_events a task context will not be scheduled. This means
179 * we can disable the scheduler hooks (for performance) without leaving
180 * pending task ctx state.
181 *
182 * This however results in two special cases:
183 *
184 * - removing the last event from a task ctx; this is relatively straight
185 * forward and is done in __perf_remove_from_context.
186 *
187 * - adding the first event to a task ctx; this is tricky because we cannot
188 * rely on ctx->is_active and therefore cannot use event_function_call().
189 * See perf_install_in_context().
190 *
39a43640
PZ
191 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
192 */
193
fae3fde6
PZ
194typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
195 struct perf_event_context *, void *);
196
197struct event_function_struct {
198 struct perf_event *event;
199 event_f func;
200 void *data;
201};
202
203static int event_function(void *info)
204{
205 struct event_function_struct *efs = info;
206 struct perf_event *event = efs->event;
0017960f 207 struct perf_event_context *ctx = event->ctx;
fae3fde6
PZ
208 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
209 struct perf_event_context *task_ctx = cpuctx->task_ctx;
63b6da39 210 int ret = 0;
fae3fde6
PZ
211
212 WARN_ON_ONCE(!irqs_disabled());
213
63b6da39 214 perf_ctx_lock(cpuctx, task_ctx);
fae3fde6
PZ
215 /*
216 * Since we do the IPI call without holding ctx->lock things can have
217 * changed, double check we hit the task we set out to hit.
fae3fde6
PZ
218 */
219 if (ctx->task) {
63b6da39 220 if (ctx->task != current) {
0da4cf3e 221 ret = -ESRCH;
63b6da39
PZ
222 goto unlock;
223 }
fae3fde6 224
fae3fde6
PZ
225 /*
226 * We only use event_function_call() on established contexts,
227 * and event_function() is only ever called when active (or
228 * rather, we'll have bailed in task_function_call() or the
229 * above ctx->task != current test), therefore we must have
230 * ctx->is_active here.
231 */
232 WARN_ON_ONCE(!ctx->is_active);
233 /*
234 * And since we have ctx->is_active, cpuctx->task_ctx must
235 * match.
236 */
63b6da39
PZ
237 WARN_ON_ONCE(task_ctx != ctx);
238 } else {
239 WARN_ON_ONCE(&cpuctx->ctx != ctx);
fae3fde6 240 }
63b6da39 241
fae3fde6 242 efs->func(event, cpuctx, ctx, efs->data);
63b6da39 243unlock:
fae3fde6
PZ
244 perf_ctx_unlock(cpuctx, task_ctx);
245
63b6da39 246 return ret;
fae3fde6
PZ
247}
248
fae3fde6 249static void event_function_call(struct perf_event *event, event_f func, void *data)
0017960f
PZ
250{
251 struct perf_event_context *ctx = event->ctx;
63b6da39 252 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
fae3fde6
PZ
253 struct event_function_struct efs = {
254 .event = event,
255 .func = func,
256 .data = data,
257 };
0017960f 258
c97f4736
PZ
259 if (!event->parent) {
260 /*
261 * If this is a !child event, we must hold ctx::mutex to
262 * stabilize the the event->ctx relation. See
263 * perf_event_ctx_lock().
264 */
265 lockdep_assert_held(&ctx->mutex);
266 }
0017960f
PZ
267
268 if (!task) {
fae3fde6 269 cpu_function_call(event->cpu, event_function, &efs);
0017960f
PZ
270 return;
271 }
272
63b6da39
PZ
273 if (task == TASK_TOMBSTONE)
274 return;
275
a096309b 276again:
fae3fde6 277 if (!task_function_call(task, event_function, &efs))
0017960f
PZ
278 return;
279
280 raw_spin_lock_irq(&ctx->lock);
63b6da39
PZ
281 /*
282 * Reload the task pointer, it might have been changed by
283 * a concurrent perf_event_context_sched_out().
284 */
285 task = ctx->task;
a096309b
PZ
286 if (task == TASK_TOMBSTONE) {
287 raw_spin_unlock_irq(&ctx->lock);
288 return;
0017960f 289 }
a096309b
PZ
290 if (ctx->is_active) {
291 raw_spin_unlock_irq(&ctx->lock);
292 goto again;
293 }
294 func(event, NULL, ctx, data);
0017960f
PZ
295 raw_spin_unlock_irq(&ctx->lock);
296}
297
cca20946
PZ
298/*
299 * Similar to event_function_call() + event_function(), but hard assumes IRQs
300 * are already disabled and we're on the right CPU.
301 */
302static void event_function_local(struct perf_event *event, event_f func, void *data)
303{
304 struct perf_event_context *ctx = event->ctx;
305 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
306 struct task_struct *task = READ_ONCE(ctx->task);
307 struct perf_event_context *task_ctx = NULL;
308
309 WARN_ON_ONCE(!irqs_disabled());
310
311 if (task) {
312 if (task == TASK_TOMBSTONE)
313 return;
314
315 task_ctx = ctx;
316 }
317
318 perf_ctx_lock(cpuctx, task_ctx);
319
320 task = ctx->task;
321 if (task == TASK_TOMBSTONE)
322 goto unlock;
323
324 if (task) {
325 /*
326 * We must be either inactive or active and the right task,
327 * otherwise we're screwed, since we cannot IPI to somewhere
328 * else.
329 */
330 if (ctx->is_active) {
331 if (WARN_ON_ONCE(task != current))
332 goto unlock;
333
334 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
335 goto unlock;
336 }
337 } else {
338 WARN_ON_ONCE(&cpuctx->ctx != ctx);
339 }
340
341 func(event, cpuctx, ctx, data);
342unlock:
343 perf_ctx_unlock(cpuctx, task_ctx);
344}
345
e5d1367f
SE
346#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
347 PERF_FLAG_FD_OUTPUT |\
a21b0b35
YD
348 PERF_FLAG_PID_CGROUP |\
349 PERF_FLAG_FD_CLOEXEC)
e5d1367f 350
bce38cd5
SE
351/*
352 * branch priv levels that need permission checks
353 */
354#define PERF_SAMPLE_BRANCH_PERM_PLM \
355 (PERF_SAMPLE_BRANCH_KERNEL |\
356 PERF_SAMPLE_BRANCH_HV)
357
0b3fcf17
SE
358enum event_type_t {
359 EVENT_FLEXIBLE = 0x1,
360 EVENT_PINNED = 0x2,
3cbaa590 361 EVENT_TIME = 0x4,
487f05e1
AS
362 /* see ctx_resched() for details */
363 EVENT_CPU = 0x8,
0b3fcf17
SE
364 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
365};
366
e5d1367f
SE
367/*
368 * perf_sched_events : >0 events exist
369 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
370 */
9107c89e
PZ
371
372static void perf_sched_delayed(struct work_struct *work);
373DEFINE_STATIC_KEY_FALSE(perf_sched_events);
374static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
375static DEFINE_MUTEX(perf_sched_mutex);
376static atomic_t perf_sched_count;
377
e5d1367f 378static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
ba532500 379static DEFINE_PER_CPU(int, perf_sched_cb_usages);
f2fb6bef 380static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
e5d1367f 381
cdd6c482
IM
382static atomic_t nr_mmap_events __read_mostly;
383static atomic_t nr_comm_events __read_mostly;
e4222673 384static atomic_t nr_namespaces_events __read_mostly;
cdd6c482 385static atomic_t nr_task_events __read_mostly;
948b26b6 386static atomic_t nr_freq_events __read_mostly;
45ac1403 387static atomic_t nr_switch_events __read_mostly;
9ee318a7 388
108b02cf
PZ
389static LIST_HEAD(pmus);
390static DEFINE_MUTEX(pmus_lock);
391static struct srcu_struct pmus_srcu;
a63fbed7 392static cpumask_var_t perf_online_mask;
108b02cf 393
0764771d 394/*
cdd6c482 395 * perf event paranoia level:
0fbdea19
IM
396 * -1 - not paranoid at all
397 * 0 - disallow raw tracepoint access for unpriv
cdd6c482 398 * 1 - disallow cpu events for unpriv
0fbdea19 399 * 2 - disallow kernel profiling for unpriv
0764771d 400 */
0161028b 401int sysctl_perf_event_paranoid __read_mostly = 2;
0764771d 402
20443384
FW
403/* Minimum for 512 kiB + 1 user control page */
404int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
df58ab24
PZ
405
406/*
cdd6c482 407 * max perf event sample rate
df58ab24 408 */
14c63f17
DH
409#define DEFAULT_MAX_SAMPLE_RATE 100000
410#define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
411#define DEFAULT_CPU_TIME_MAX_PERCENT 25
412
413int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
414
415static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
416static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
417
d9494cb4
PZ
418static int perf_sample_allowed_ns __read_mostly =
419 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
14c63f17 420
18ab2cd3 421static void update_perf_cpu_limits(void)
14c63f17
DH
422{
423 u64 tmp = perf_sample_period_ns;
424
425 tmp *= sysctl_perf_cpu_time_max_percent;
91a612ee
PZ
426 tmp = div_u64(tmp, 100);
427 if (!tmp)
428 tmp = 1;
429
430 WRITE_ONCE(perf_sample_allowed_ns, tmp);
14c63f17 431}
163ec435 432
9e630205
SE
433static int perf_rotate_context(struct perf_cpu_context *cpuctx);
434
163ec435
PZ
435int perf_proc_update_handler(struct ctl_table *table, int write,
436 void __user *buffer, size_t *lenp,
437 loff_t *ppos)
438{
723478c8 439 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
163ec435
PZ
440
441 if (ret || !write)
442 return ret;
443
ab7fdefb
KL
444 /*
445 * If throttling is disabled don't allow the write:
446 */
447 if (sysctl_perf_cpu_time_max_percent == 100 ||
448 sysctl_perf_cpu_time_max_percent == 0)
449 return -EINVAL;
450
163ec435 451 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
14c63f17
DH
452 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
453 update_perf_cpu_limits();
454
455 return 0;
456}
457
458int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
459
460int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
461 void __user *buffer, size_t *lenp,
462 loff_t *ppos)
463{
1572e45a 464 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
14c63f17
DH
465
466 if (ret || !write)
467 return ret;
468
b303e7c1
PZ
469 if (sysctl_perf_cpu_time_max_percent == 100 ||
470 sysctl_perf_cpu_time_max_percent == 0) {
91a612ee
PZ
471 printk(KERN_WARNING
472 "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
473 WRITE_ONCE(perf_sample_allowed_ns, 0);
474 } else {
475 update_perf_cpu_limits();
476 }
163ec435
PZ
477
478 return 0;
479}
1ccd1549 480
14c63f17
DH
481/*
482 * perf samples are done in some very critical code paths (NMIs).
483 * If they take too much CPU time, the system can lock up and not
484 * get any real work done. This will drop the sample rate when
485 * we detect that events are taking too long.
486 */
487#define NR_ACCUMULATED_SAMPLES 128
d9494cb4 488static DEFINE_PER_CPU(u64, running_sample_length);
14c63f17 489
91a612ee
PZ
490static u64 __report_avg;
491static u64 __report_allowed;
492
6a02ad66 493static void perf_duration_warn(struct irq_work *w)
14c63f17 494{
0d87d7ec 495 printk_ratelimited(KERN_INFO
91a612ee
PZ
496 "perf: interrupt took too long (%lld > %lld), lowering "
497 "kernel.perf_event_max_sample_rate to %d\n",
498 __report_avg, __report_allowed,
499 sysctl_perf_event_sample_rate);
6a02ad66
PZ
500}
501
502static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
503
504void perf_sample_event_took(u64 sample_len_ns)
505{
91a612ee
PZ
506 u64 max_len = READ_ONCE(perf_sample_allowed_ns);
507 u64 running_len;
508 u64 avg_len;
509 u32 max;
14c63f17 510
91a612ee 511 if (max_len == 0)
14c63f17
DH
512 return;
513
91a612ee
PZ
514 /* Decay the counter by 1 average sample. */
515 running_len = __this_cpu_read(running_sample_length);
516 running_len -= running_len/NR_ACCUMULATED_SAMPLES;
517 running_len += sample_len_ns;
518 __this_cpu_write(running_sample_length, running_len);
14c63f17
DH
519
520 /*
91a612ee
PZ
521 * Note: this will be biased artifically low until we have
522 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
14c63f17
DH
523 * from having to maintain a count.
524 */
91a612ee
PZ
525 avg_len = running_len/NR_ACCUMULATED_SAMPLES;
526 if (avg_len <= max_len)
14c63f17
DH
527 return;
528
91a612ee
PZ
529 __report_avg = avg_len;
530 __report_allowed = max_len;
14c63f17 531
91a612ee
PZ
532 /*
533 * Compute a throttle threshold 25% below the current duration.
534 */
535 avg_len += avg_len / 4;
536 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
537 if (avg_len < max)
538 max /= (u32)avg_len;
539 else
540 max = 1;
14c63f17 541
91a612ee
PZ
542 WRITE_ONCE(perf_sample_allowed_ns, avg_len);
543 WRITE_ONCE(max_samples_per_tick, max);
544
545 sysctl_perf_event_sample_rate = max * HZ;
546 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
6a02ad66 547
cd578abb 548 if (!irq_work_queue(&perf_duration_work)) {
91a612ee 549 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
cd578abb 550 "kernel.perf_event_max_sample_rate to %d\n",
91a612ee 551 __report_avg, __report_allowed,
cd578abb
PZ
552 sysctl_perf_event_sample_rate);
553 }
14c63f17
DH
554}
555
cdd6c482 556static atomic64_t perf_event_id;
a96bbc16 557
0b3fcf17
SE
558static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
559 enum event_type_t event_type);
560
561static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
562 enum event_type_t event_type,
563 struct task_struct *task);
564
565static void update_context_time(struct perf_event_context *ctx);
566static u64 perf_event_time(struct perf_event *event);
0b3fcf17 567
cdd6c482 568void __weak perf_event_print_debug(void) { }
0793a61d 569
84c79910 570extern __weak const char *perf_pmu_name(void)
0793a61d 571{
84c79910 572 return "pmu";
0793a61d
TG
573}
574
0b3fcf17
SE
575static inline u64 perf_clock(void)
576{
577 return local_clock();
578}
579
34f43927
PZ
580static inline u64 perf_event_clock(struct perf_event *event)
581{
582 return event->clock();
583}
584
e5d1367f
SE
585#ifdef CONFIG_CGROUP_PERF
586
e5d1367f
SE
587static inline bool
588perf_cgroup_match(struct perf_event *event)
589{
590 struct perf_event_context *ctx = event->ctx;
591 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
592
ef824fa1
TH
593 /* @event doesn't care about cgroup */
594 if (!event->cgrp)
595 return true;
596
597 /* wants specific cgroup scope but @cpuctx isn't associated with any */
598 if (!cpuctx->cgrp)
599 return false;
600
601 /*
602 * Cgroup scoping is recursive. An event enabled for a cgroup is
603 * also enabled for all its descendant cgroups. If @cpuctx's
604 * cgroup is a descendant of @event's (the test covers identity
605 * case), it's a match.
606 */
607 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
608 event->cgrp->css.cgroup);
e5d1367f
SE
609}
610
e5d1367f
SE
611static inline void perf_detach_cgroup(struct perf_event *event)
612{
4e2ba650 613 css_put(&event->cgrp->css);
e5d1367f
SE
614 event->cgrp = NULL;
615}
616
617static inline int is_cgroup_event(struct perf_event *event)
618{
619 return event->cgrp != NULL;
620}
621
622static inline u64 perf_cgroup_event_time(struct perf_event *event)
623{
624 struct perf_cgroup_info *t;
625
626 t = per_cpu_ptr(event->cgrp->info, event->cpu);
627 return t->time;
628}
629
630static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
631{
632 struct perf_cgroup_info *info;
633 u64 now;
634
635 now = perf_clock();
636
637 info = this_cpu_ptr(cgrp->info);
638
639 info->time += now - info->timestamp;
640 info->timestamp = now;
641}
642
643static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
644{
645 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
646 if (cgrp_out)
647 __update_cgrp_time(cgrp_out);
648}
649
650static inline void update_cgrp_time_from_event(struct perf_event *event)
651{
3f7cce3c
SE
652 struct perf_cgroup *cgrp;
653
e5d1367f 654 /*
3f7cce3c
SE
655 * ensure we access cgroup data only when needed and
656 * when we know the cgroup is pinned (css_get)
e5d1367f 657 */
3f7cce3c 658 if (!is_cgroup_event(event))
e5d1367f
SE
659 return;
660
614e4c4e 661 cgrp = perf_cgroup_from_task(current, event->ctx);
3f7cce3c
SE
662 /*
663 * Do not update time when cgroup is not active
664 */
665 if (cgrp == event->cgrp)
666 __update_cgrp_time(event->cgrp);
e5d1367f
SE
667}
668
669static inline void
3f7cce3c
SE
670perf_cgroup_set_timestamp(struct task_struct *task,
671 struct perf_event_context *ctx)
e5d1367f
SE
672{
673 struct perf_cgroup *cgrp;
674 struct perf_cgroup_info *info;
675
3f7cce3c
SE
676 /*
677 * ctx->lock held by caller
678 * ensure we do not access cgroup data
679 * unless we have the cgroup pinned (css_get)
680 */
681 if (!task || !ctx->nr_cgroups)
e5d1367f
SE
682 return;
683
614e4c4e 684 cgrp = perf_cgroup_from_task(task, ctx);
e5d1367f 685 info = this_cpu_ptr(cgrp->info);
3f7cce3c 686 info->timestamp = ctx->timestamp;
e5d1367f
SE
687}
688
058fe1c0
DCC
689static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
690
e5d1367f
SE
691#define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
692#define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
693
694/*
695 * reschedule events based on the cgroup constraint of task.
696 *
697 * mode SWOUT : schedule out everything
698 * mode SWIN : schedule in based on cgroup for next
699 */
18ab2cd3 700static void perf_cgroup_switch(struct task_struct *task, int mode)
e5d1367f
SE
701{
702 struct perf_cpu_context *cpuctx;
058fe1c0 703 struct list_head *list;
e5d1367f
SE
704 unsigned long flags;
705
706 /*
058fe1c0
DCC
707 * Disable interrupts and preemption to avoid this CPU's
708 * cgrp_cpuctx_entry to change under us.
e5d1367f
SE
709 */
710 local_irq_save(flags);
711
058fe1c0
DCC
712 list = this_cpu_ptr(&cgrp_cpuctx_list);
713 list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
714 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
e5d1367f 715
058fe1c0
DCC
716 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
717 perf_pmu_disable(cpuctx->ctx.pmu);
e5d1367f 718
058fe1c0
DCC
719 if (mode & PERF_CGROUP_SWOUT) {
720 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
721 /*
722 * must not be done before ctxswout due
723 * to event_filter_match() in event_sched_out()
724 */
725 cpuctx->cgrp = NULL;
726 }
e5d1367f 727
058fe1c0
DCC
728 if (mode & PERF_CGROUP_SWIN) {
729 WARN_ON_ONCE(cpuctx->cgrp);
730 /*
731 * set cgrp before ctxsw in to allow
732 * event_filter_match() to not have to pass
733 * task around
734 * we pass the cpuctx->ctx to perf_cgroup_from_task()
735 * because cgorup events are only per-cpu
736 */
737 cpuctx->cgrp = perf_cgroup_from_task(task,
738 &cpuctx->ctx);
739 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
e5d1367f 740 }
058fe1c0
DCC
741 perf_pmu_enable(cpuctx->ctx.pmu);
742 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
e5d1367f
SE
743 }
744
e5d1367f
SE
745 local_irq_restore(flags);
746}
747
a8d757ef
SE
748static inline void perf_cgroup_sched_out(struct task_struct *task,
749 struct task_struct *next)
e5d1367f 750{
a8d757ef
SE
751 struct perf_cgroup *cgrp1;
752 struct perf_cgroup *cgrp2 = NULL;
753
ddaaf4e2 754 rcu_read_lock();
a8d757ef
SE
755 /*
756 * we come here when we know perf_cgroup_events > 0
614e4c4e
SE
757 * we do not need to pass the ctx here because we know
758 * we are holding the rcu lock
a8d757ef 759 */
614e4c4e 760 cgrp1 = perf_cgroup_from_task(task, NULL);
70a01657 761 cgrp2 = perf_cgroup_from_task(next, NULL);
a8d757ef
SE
762
763 /*
764 * only schedule out current cgroup events if we know
765 * that we are switching to a different cgroup. Otherwise,
766 * do no touch the cgroup events.
767 */
768 if (cgrp1 != cgrp2)
769 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
ddaaf4e2
SE
770
771 rcu_read_unlock();
e5d1367f
SE
772}
773
a8d757ef
SE
774static inline void perf_cgroup_sched_in(struct task_struct *prev,
775 struct task_struct *task)
e5d1367f 776{
a8d757ef
SE
777 struct perf_cgroup *cgrp1;
778 struct perf_cgroup *cgrp2 = NULL;
779
ddaaf4e2 780 rcu_read_lock();
a8d757ef
SE
781 /*
782 * we come here when we know perf_cgroup_events > 0
614e4c4e
SE
783 * we do not need to pass the ctx here because we know
784 * we are holding the rcu lock
a8d757ef 785 */
614e4c4e 786 cgrp1 = perf_cgroup_from_task(task, NULL);
614e4c4e 787 cgrp2 = perf_cgroup_from_task(prev, NULL);
a8d757ef
SE
788
789 /*
790 * only need to schedule in cgroup events if we are changing
791 * cgroup during ctxsw. Cgroup events were not scheduled
792 * out of ctxsw out if that was not the case.
793 */
794 if (cgrp1 != cgrp2)
795 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
ddaaf4e2
SE
796
797 rcu_read_unlock();
e5d1367f
SE
798}
799
800static inline int perf_cgroup_connect(int fd, struct perf_event *event,
801 struct perf_event_attr *attr,
802 struct perf_event *group_leader)
803{
804 struct perf_cgroup *cgrp;
805 struct cgroup_subsys_state *css;
2903ff01
AV
806 struct fd f = fdget(fd);
807 int ret = 0;
e5d1367f 808
2903ff01 809 if (!f.file)
e5d1367f
SE
810 return -EBADF;
811
b583043e 812 css = css_tryget_online_from_dir(f.file->f_path.dentry,
ec903c0c 813 &perf_event_cgrp_subsys);
3db272c0
LZ
814 if (IS_ERR(css)) {
815 ret = PTR_ERR(css);
816 goto out;
817 }
e5d1367f
SE
818
819 cgrp = container_of(css, struct perf_cgroup, css);
820 event->cgrp = cgrp;
821
822 /*
823 * all events in a group must monitor
824 * the same cgroup because a task belongs
825 * to only one perf cgroup at a time
826 */
827 if (group_leader && group_leader->cgrp != cgrp) {
828 perf_detach_cgroup(event);
829 ret = -EINVAL;
e5d1367f 830 }
3db272c0 831out:
2903ff01 832 fdput(f);
e5d1367f
SE
833 return ret;
834}
835
836static inline void
837perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
838{
839 struct perf_cgroup_info *t;
840 t = per_cpu_ptr(event->cgrp->info, event->cpu);
841 event->shadow_ctx_time = now - t->timestamp;
842}
843
844static inline void
845perf_cgroup_defer_enabled(struct perf_event *event)
846{
847 /*
848 * when the current task's perf cgroup does not match
849 * the event's, we need to remember to call the
850 * perf_mark_enable() function the first time a task with
851 * a matching perf cgroup is scheduled in.
852 */
853 if (is_cgroup_event(event) && !perf_cgroup_match(event))
854 event->cgrp_defer_enabled = 1;
855}
856
857static inline void
858perf_cgroup_mark_enabled(struct perf_event *event,
859 struct perf_event_context *ctx)
860{
861 struct perf_event *sub;
862 u64 tstamp = perf_event_time(event);
863
864 if (!event->cgrp_defer_enabled)
865 return;
866
867 event->cgrp_defer_enabled = 0;
868
869 event->tstamp_enabled = tstamp - event->total_time_enabled;
870 list_for_each_entry(sub, &event->sibling_list, group_entry) {
871 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
872 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
873 sub->cgrp_defer_enabled = 0;
874 }
875 }
876}
db4a8356
DCC
877
878/*
879 * Update cpuctx->cgrp so that it is set when first cgroup event is added and
880 * cleared when last cgroup event is removed.
881 */
882static inline void
883list_update_cgroup_event(struct perf_event *event,
884 struct perf_event_context *ctx, bool add)
885{
886 struct perf_cpu_context *cpuctx;
058fe1c0 887 struct list_head *cpuctx_entry;
db4a8356
DCC
888
889 if (!is_cgroup_event(event))
890 return;
891
892 if (add && ctx->nr_cgroups++)
893 return;
894 else if (!add && --ctx->nr_cgroups)
895 return;
896 /*
897 * Because cgroup events are always per-cpu events,
898 * this will always be called from the right CPU.
899 */
900 cpuctx = __get_cpu_context(ctx);
058fe1c0
DCC
901 cpuctx_entry = &cpuctx->cgrp_cpuctx_entry;
902 /* cpuctx->cgrp is NULL unless a cgroup event is active in this CPU .*/
903 if (add) {
904 list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list));
905 if (perf_cgroup_from_task(current, ctx) == event->cgrp)
906 cpuctx->cgrp = event->cgrp;
907 } else {
908 list_del(cpuctx_entry);
8fc31ce8 909 cpuctx->cgrp = NULL;
058fe1c0 910 }
db4a8356
DCC
911}
912
e5d1367f
SE
913#else /* !CONFIG_CGROUP_PERF */
914
915static inline bool
916perf_cgroup_match(struct perf_event *event)
917{
918 return true;
919}
920
921static inline void perf_detach_cgroup(struct perf_event *event)
922{}
923
924static inline int is_cgroup_event(struct perf_event *event)
925{
926 return 0;
927}
928
e5d1367f
SE
929static inline void update_cgrp_time_from_event(struct perf_event *event)
930{
931}
932
933static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
934{
935}
936
a8d757ef
SE
937static inline void perf_cgroup_sched_out(struct task_struct *task,
938 struct task_struct *next)
e5d1367f
SE
939{
940}
941
a8d757ef
SE
942static inline void perf_cgroup_sched_in(struct task_struct *prev,
943 struct task_struct *task)
e5d1367f
SE
944{
945}
946
947static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
948 struct perf_event_attr *attr,
949 struct perf_event *group_leader)
950{
951 return -EINVAL;
952}
953
954static inline void
3f7cce3c
SE
955perf_cgroup_set_timestamp(struct task_struct *task,
956 struct perf_event_context *ctx)
e5d1367f
SE
957{
958}
959
960void
961perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
962{
963}
964
965static inline void
966perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
967{
968}
969
970static inline u64 perf_cgroup_event_time(struct perf_event *event)
971{
972 return 0;
973}
974
975static inline void
976perf_cgroup_defer_enabled(struct perf_event *event)
977{
978}
979
980static inline void
981perf_cgroup_mark_enabled(struct perf_event *event,
982 struct perf_event_context *ctx)
983{
984}
db4a8356
DCC
985
986static inline void
987list_update_cgroup_event(struct perf_event *event,
988 struct perf_event_context *ctx, bool add)
989{
990}
991
e5d1367f
SE
992#endif
993
9e630205
SE
994/*
995 * set default to be dependent on timer tick just
996 * like original code
997 */
998#define PERF_CPU_HRTIMER (1000 / HZ)
999/*
8a1115ff 1000 * function must be called with interrupts disabled
9e630205 1001 */
272325c4 1002static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
9e630205
SE
1003{
1004 struct perf_cpu_context *cpuctx;
9e630205
SE
1005 int rotations = 0;
1006
1007 WARN_ON(!irqs_disabled());
1008
1009 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
9e630205
SE
1010 rotations = perf_rotate_context(cpuctx);
1011
4cfafd30
PZ
1012 raw_spin_lock(&cpuctx->hrtimer_lock);
1013 if (rotations)
9e630205 1014 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
4cfafd30
PZ
1015 else
1016 cpuctx->hrtimer_active = 0;
1017 raw_spin_unlock(&cpuctx->hrtimer_lock);
9e630205 1018
4cfafd30 1019 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
9e630205
SE
1020}
1021
272325c4 1022static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
9e630205 1023{
272325c4 1024 struct hrtimer *timer = &cpuctx->hrtimer;
9e630205 1025 struct pmu *pmu = cpuctx->ctx.pmu;
272325c4 1026 u64 interval;
9e630205
SE
1027
1028 /* no multiplexing needed for SW PMU */
1029 if (pmu->task_ctx_nr == perf_sw_context)
1030 return;
1031
62b85639
SE
1032 /*
1033 * check default is sane, if not set then force to
1034 * default interval (1/tick)
1035 */
272325c4
PZ
1036 interval = pmu->hrtimer_interval_ms;
1037 if (interval < 1)
1038 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
62b85639 1039
272325c4 1040 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
9e630205 1041
4cfafd30
PZ
1042 raw_spin_lock_init(&cpuctx->hrtimer_lock);
1043 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
272325c4 1044 timer->function = perf_mux_hrtimer_handler;
9e630205
SE
1045}
1046
272325c4 1047static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
9e630205 1048{
272325c4 1049 struct hrtimer *timer = &cpuctx->hrtimer;
9e630205 1050 struct pmu *pmu = cpuctx->ctx.pmu;
4cfafd30 1051 unsigned long flags;
9e630205
SE
1052
1053 /* not for SW PMU */
1054 if (pmu->task_ctx_nr == perf_sw_context)
272325c4 1055 return 0;
9e630205 1056
4cfafd30
PZ
1057 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1058 if (!cpuctx->hrtimer_active) {
1059 cpuctx->hrtimer_active = 1;
1060 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1061 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
1062 }
1063 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
9e630205 1064
272325c4 1065 return 0;
9e630205
SE
1066}
1067
33696fc0 1068void perf_pmu_disable(struct pmu *pmu)
9e35ad38 1069{
33696fc0
PZ
1070 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1071 if (!(*count)++)
1072 pmu->pmu_disable(pmu);
9e35ad38 1073}
9e35ad38 1074
33696fc0 1075void perf_pmu_enable(struct pmu *pmu)
9e35ad38 1076{
33696fc0
PZ
1077 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1078 if (!--(*count))
1079 pmu->pmu_enable(pmu);
9e35ad38 1080}
9e35ad38 1081
2fde4f94 1082static DEFINE_PER_CPU(struct list_head, active_ctx_list);
e9d2b064
PZ
1083
1084/*
2fde4f94
MR
1085 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1086 * perf_event_task_tick() are fully serialized because they're strictly cpu
1087 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1088 * disabled, while perf_event_task_tick is called from IRQ context.
e9d2b064 1089 */
2fde4f94 1090static void perf_event_ctx_activate(struct perf_event_context *ctx)
9e35ad38 1091{
2fde4f94 1092 struct list_head *head = this_cpu_ptr(&active_ctx_list);
b5ab4cd5 1093
e9d2b064 1094 WARN_ON(!irqs_disabled());
b5ab4cd5 1095
2fde4f94
MR
1096 WARN_ON(!list_empty(&ctx->active_ctx_list));
1097
1098 list_add(&ctx->active_ctx_list, head);
1099}
1100
1101static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1102{
1103 WARN_ON(!irqs_disabled());
1104
1105 WARN_ON(list_empty(&ctx->active_ctx_list));
1106
1107 list_del_init(&ctx->active_ctx_list);
9e35ad38 1108}
9e35ad38 1109
cdd6c482 1110static void get_ctx(struct perf_event_context *ctx)
a63eaf34 1111{
e5289d4a 1112 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
a63eaf34
PM
1113}
1114
4af57ef2
YZ
1115static void free_ctx(struct rcu_head *head)
1116{
1117 struct perf_event_context *ctx;
1118
1119 ctx = container_of(head, struct perf_event_context, rcu_head);
1120 kfree(ctx->task_ctx_data);
1121 kfree(ctx);
1122}
1123
cdd6c482 1124static void put_ctx(struct perf_event_context *ctx)
a63eaf34 1125{
564c2b21
PM
1126 if (atomic_dec_and_test(&ctx->refcount)) {
1127 if (ctx->parent_ctx)
1128 put_ctx(ctx->parent_ctx);
63b6da39 1129 if (ctx->task && ctx->task != TASK_TOMBSTONE)
c93f7669 1130 put_task_struct(ctx->task);
4af57ef2 1131 call_rcu(&ctx->rcu_head, free_ctx);
564c2b21 1132 }
a63eaf34
PM
1133}
1134
f63a8daa
PZ
1135/*
1136 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1137 * perf_pmu_migrate_context() we need some magic.
1138 *
1139 * Those places that change perf_event::ctx will hold both
1140 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1141 *
8b10c5e2
PZ
1142 * Lock ordering is by mutex address. There are two other sites where
1143 * perf_event_context::mutex nests and those are:
1144 *
1145 * - perf_event_exit_task_context() [ child , 0 ]
8ba289b8
PZ
1146 * perf_event_exit_event()
1147 * put_event() [ parent, 1 ]
8b10c5e2
PZ
1148 *
1149 * - perf_event_init_context() [ parent, 0 ]
1150 * inherit_task_group()
1151 * inherit_group()
1152 * inherit_event()
1153 * perf_event_alloc()
1154 * perf_init_event()
1155 * perf_try_init_event() [ child , 1 ]
1156 *
1157 * While it appears there is an obvious deadlock here -- the parent and child
1158 * nesting levels are inverted between the two. This is in fact safe because
1159 * life-time rules separate them. That is an exiting task cannot fork, and a
1160 * spawning task cannot (yet) exit.
1161 *
1162 * But remember that that these are parent<->child context relations, and
1163 * migration does not affect children, therefore these two orderings should not
1164 * interact.
f63a8daa
PZ
1165 *
1166 * The change in perf_event::ctx does not affect children (as claimed above)
1167 * because the sys_perf_event_open() case will install a new event and break
1168 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1169 * concerned with cpuctx and that doesn't have children.
1170 *
1171 * The places that change perf_event::ctx will issue:
1172 *
1173 * perf_remove_from_context();
1174 * synchronize_rcu();
1175 * perf_install_in_context();
1176 *
1177 * to affect the change. The remove_from_context() + synchronize_rcu() should
1178 * quiesce the event, after which we can install it in the new location. This
1179 * means that only external vectors (perf_fops, prctl) can perturb the event
1180 * while in transit. Therefore all such accessors should also acquire
1181 * perf_event_context::mutex to serialize against this.
1182 *
1183 * However; because event->ctx can change while we're waiting to acquire
1184 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1185 * function.
1186 *
1187 * Lock order:
79c9ce57 1188 * cred_guard_mutex
f63a8daa
PZ
1189 * task_struct::perf_event_mutex
1190 * perf_event_context::mutex
f63a8daa 1191 * perf_event::child_mutex;
07c4a776 1192 * perf_event_context::lock
f63a8daa
PZ
1193 * perf_event::mmap_mutex
1194 * mmap_sem
1195 */
a83fe28e
PZ
1196static struct perf_event_context *
1197perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
f63a8daa
PZ
1198{
1199 struct perf_event_context *ctx;
1200
1201again:
1202 rcu_read_lock();
1203 ctx = ACCESS_ONCE(event->ctx);
1204 if (!atomic_inc_not_zero(&ctx->refcount)) {
1205 rcu_read_unlock();
1206 goto again;
1207 }
1208 rcu_read_unlock();
1209
a83fe28e 1210 mutex_lock_nested(&ctx->mutex, nesting);
f63a8daa
PZ
1211 if (event->ctx != ctx) {
1212 mutex_unlock(&ctx->mutex);
1213 put_ctx(ctx);
1214 goto again;
1215 }
1216
1217 return ctx;
1218}
1219
a83fe28e
PZ
1220static inline struct perf_event_context *
1221perf_event_ctx_lock(struct perf_event *event)
1222{
1223 return perf_event_ctx_lock_nested(event, 0);
1224}
1225
f63a8daa
PZ
1226static void perf_event_ctx_unlock(struct perf_event *event,
1227 struct perf_event_context *ctx)
1228{
1229 mutex_unlock(&ctx->mutex);
1230 put_ctx(ctx);
1231}
1232
211de6eb
PZ
1233/*
1234 * This must be done under the ctx->lock, such as to serialize against
1235 * context_equiv(), therefore we cannot call put_ctx() since that might end up
1236 * calling scheduler related locks and ctx->lock nests inside those.
1237 */
1238static __must_check struct perf_event_context *
1239unclone_ctx(struct perf_event_context *ctx)
71a851b4 1240{
211de6eb
PZ
1241 struct perf_event_context *parent_ctx = ctx->parent_ctx;
1242
1243 lockdep_assert_held(&ctx->lock);
1244
1245 if (parent_ctx)
71a851b4 1246 ctx->parent_ctx = NULL;
5a3126d4 1247 ctx->generation++;
211de6eb
PZ
1248
1249 return parent_ctx;
71a851b4
PZ
1250}
1251
6844c09d
ACM
1252static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1253{
1254 /*
1255 * only top level events have the pid namespace they were created in
1256 */
1257 if (event->parent)
1258 event = event->parent;
1259
1260 return task_tgid_nr_ns(p, event->ns);
1261}
1262
1263static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1264{
1265 /*
1266 * only top level events have the pid namespace they were created in
1267 */
1268 if (event->parent)
1269 event = event->parent;
1270
1271 return task_pid_nr_ns(p, event->ns);
1272}
1273
7f453c24 1274/*
cdd6c482 1275 * If we inherit events we want to return the parent event id
7f453c24
PZ
1276 * to userspace.
1277 */
cdd6c482 1278static u64 primary_event_id(struct perf_event *event)
7f453c24 1279{
cdd6c482 1280 u64 id = event->id;
7f453c24 1281
cdd6c482
IM
1282 if (event->parent)
1283 id = event->parent->id;
7f453c24
PZ
1284
1285 return id;
1286}
1287
25346b93 1288/*
cdd6c482 1289 * Get the perf_event_context for a task and lock it.
63b6da39 1290 *
25346b93
PM
1291 * This has to cope with with the fact that until it is locked,
1292 * the context could get moved to another task.
1293 */
cdd6c482 1294static struct perf_event_context *
8dc85d54 1295perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
25346b93 1296{
cdd6c482 1297 struct perf_event_context *ctx;
25346b93 1298
9ed6060d 1299retry:
058ebd0e
PZ
1300 /*
1301 * One of the few rules of preemptible RCU is that one cannot do
1302 * rcu_read_unlock() while holding a scheduler (or nested) lock when
2fd59077 1303 * part of the read side critical section was irqs-enabled -- see
058ebd0e
PZ
1304 * rcu_read_unlock_special().
1305 *
1306 * Since ctx->lock nests under rq->lock we must ensure the entire read
2fd59077 1307 * side critical section has interrupts disabled.
058ebd0e 1308 */
2fd59077 1309 local_irq_save(*flags);
058ebd0e 1310 rcu_read_lock();
8dc85d54 1311 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
25346b93
PM
1312 if (ctx) {
1313 /*
1314 * If this context is a clone of another, it might
1315 * get swapped for another underneath us by
cdd6c482 1316 * perf_event_task_sched_out, though the
25346b93
PM
1317 * rcu_read_lock() protects us from any context
1318 * getting freed. Lock the context and check if it
1319 * got swapped before we could get the lock, and retry
1320 * if so. If we locked the right context, then it
1321 * can't get swapped on us any more.
1322 */
2fd59077 1323 raw_spin_lock(&ctx->lock);
8dc85d54 1324 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
2fd59077 1325 raw_spin_unlock(&ctx->lock);
058ebd0e 1326 rcu_read_unlock();
2fd59077 1327 local_irq_restore(*flags);
25346b93
PM
1328 goto retry;
1329 }
b49a9e7e 1330
63b6da39
PZ
1331 if (ctx->task == TASK_TOMBSTONE ||
1332 !atomic_inc_not_zero(&ctx->refcount)) {
2fd59077 1333 raw_spin_unlock(&ctx->lock);
b49a9e7e 1334 ctx = NULL;
828b6f0e
PZ
1335 } else {
1336 WARN_ON_ONCE(ctx->task != task);
b49a9e7e 1337 }
25346b93
PM
1338 }
1339 rcu_read_unlock();
2fd59077
PM
1340 if (!ctx)
1341 local_irq_restore(*flags);
25346b93
PM
1342 return ctx;
1343}
1344
1345/*
1346 * Get the context for a task and increment its pin_count so it
1347 * can't get swapped to another task. This also increments its
1348 * reference count so that the context can't get freed.
1349 */
8dc85d54
PZ
1350static struct perf_event_context *
1351perf_pin_task_context(struct task_struct *task, int ctxn)
25346b93 1352{
cdd6c482 1353 struct perf_event_context *ctx;
25346b93
PM
1354 unsigned long flags;
1355
8dc85d54 1356 ctx = perf_lock_task_context(task, ctxn, &flags);
25346b93
PM
1357 if (ctx) {
1358 ++ctx->pin_count;
e625cce1 1359 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1360 }
1361 return ctx;
1362}
1363
cdd6c482 1364static void perf_unpin_context(struct perf_event_context *ctx)
25346b93
PM
1365{
1366 unsigned long flags;
1367
e625cce1 1368 raw_spin_lock_irqsave(&ctx->lock, flags);
25346b93 1369 --ctx->pin_count;
e625cce1 1370 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1371}
1372
f67218c3
PZ
1373/*
1374 * Update the record of the current time in a context.
1375 */
1376static void update_context_time(struct perf_event_context *ctx)
1377{
1378 u64 now = perf_clock();
1379
1380 ctx->time += now - ctx->timestamp;
1381 ctx->timestamp = now;
1382}
1383
4158755d
SE
1384static u64 perf_event_time(struct perf_event *event)
1385{
1386 struct perf_event_context *ctx = event->ctx;
e5d1367f
SE
1387
1388 if (is_cgroup_event(event))
1389 return perf_cgroup_event_time(event);
1390
4158755d
SE
1391 return ctx ? ctx->time : 0;
1392}
1393
f67218c3
PZ
1394/*
1395 * Update the total_time_enabled and total_time_running fields for a event.
1396 */
1397static void update_event_times(struct perf_event *event)
1398{
1399 struct perf_event_context *ctx = event->ctx;
1400 u64 run_end;
1401
3cbaa590
PZ
1402 lockdep_assert_held(&ctx->lock);
1403
f67218c3
PZ
1404 if (event->state < PERF_EVENT_STATE_INACTIVE ||
1405 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1406 return;
3cbaa590 1407
e5d1367f
SE
1408 /*
1409 * in cgroup mode, time_enabled represents
1410 * the time the event was enabled AND active
1411 * tasks were in the monitored cgroup. This is
1412 * independent of the activity of the context as
1413 * there may be a mix of cgroup and non-cgroup events.
1414 *
1415 * That is why we treat cgroup events differently
1416 * here.
1417 */
1418 if (is_cgroup_event(event))
46cd6a7f 1419 run_end = perf_cgroup_event_time(event);
e5d1367f
SE
1420 else if (ctx->is_active)
1421 run_end = ctx->time;
acd1d7c1
PZ
1422 else
1423 run_end = event->tstamp_stopped;
1424
1425 event->total_time_enabled = run_end - event->tstamp_enabled;
f67218c3
PZ
1426
1427 if (event->state == PERF_EVENT_STATE_INACTIVE)
1428 run_end = event->tstamp_stopped;
1429 else
4158755d 1430 run_end = perf_event_time(event);
f67218c3
PZ
1431
1432 event->total_time_running = run_end - event->tstamp_running;
e5d1367f 1433
f67218c3
PZ
1434}
1435
96c21a46
PZ
1436/*
1437 * Update total_time_enabled and total_time_running for all events in a group.
1438 */
1439static void update_group_times(struct perf_event *leader)
1440{
1441 struct perf_event *event;
1442
1443 update_event_times(leader);
1444 list_for_each_entry(event, &leader->sibling_list, group_entry)
1445 update_event_times(event);
1446}
1447
487f05e1
AS
1448static enum event_type_t get_event_type(struct perf_event *event)
1449{
1450 struct perf_event_context *ctx = event->ctx;
1451 enum event_type_t event_type;
1452
1453 lockdep_assert_held(&ctx->lock);
1454
1455 event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1456 if (!ctx->task)
1457 event_type |= EVENT_CPU;
1458
1459 return event_type;
1460}
1461
889ff015
FW
1462static struct list_head *
1463ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1464{
1465 if (event->attr.pinned)
1466 return &ctx->pinned_groups;
1467 else
1468 return &ctx->flexible_groups;
1469}
1470
fccc714b 1471/*
cdd6c482 1472 * Add a event from the lists for its context.
fccc714b
PZ
1473 * Must be called with ctx->mutex and ctx->lock held.
1474 */
04289bb9 1475static void
cdd6c482 1476list_add_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1477{
c994d613
PZ
1478 lockdep_assert_held(&ctx->lock);
1479
8a49542c
PZ
1480 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1481 event->attach_state |= PERF_ATTACH_CONTEXT;
04289bb9
IM
1482
1483 /*
8a49542c
PZ
1484 * If we're a stand alone event or group leader, we go to the context
1485 * list, group events are kept attached to the group so that
1486 * perf_group_detach can, at all times, locate all siblings.
04289bb9 1487 */
8a49542c 1488 if (event->group_leader == event) {
889ff015
FW
1489 struct list_head *list;
1490
4ff6a8de 1491 event->group_caps = event->event_caps;
d6f962b5 1492
889ff015
FW
1493 list = ctx_group_list(event, ctx);
1494 list_add_tail(&event->group_entry, list);
5c148194 1495 }
592903cd 1496
db4a8356 1497 list_update_cgroup_event(event, ctx, true);
e5d1367f 1498
cdd6c482
IM
1499 list_add_rcu(&event->event_entry, &ctx->event_list);
1500 ctx->nr_events++;
1501 if (event->attr.inherit_stat)
bfbd3381 1502 ctx->nr_stat++;
5a3126d4
PZ
1503
1504 ctx->generation++;
04289bb9
IM
1505}
1506
0231bb53
JO
1507/*
1508 * Initialize event state based on the perf_event_attr::disabled.
1509 */
1510static inline void perf_event__state_init(struct perf_event *event)
1511{
1512 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1513 PERF_EVENT_STATE_INACTIVE;
1514}
1515
a723968c 1516static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
c320c7b7
ACM
1517{
1518 int entry = sizeof(u64); /* value */
1519 int size = 0;
1520 int nr = 1;
1521
1522 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1523 size += sizeof(u64);
1524
1525 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1526 size += sizeof(u64);
1527
1528 if (event->attr.read_format & PERF_FORMAT_ID)
1529 entry += sizeof(u64);
1530
1531 if (event->attr.read_format & PERF_FORMAT_GROUP) {
a723968c 1532 nr += nr_siblings;
c320c7b7
ACM
1533 size += sizeof(u64);
1534 }
1535
1536 size += entry * nr;
1537 event->read_size = size;
1538}
1539
a723968c 1540static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
c320c7b7
ACM
1541{
1542 struct perf_sample_data *data;
c320c7b7
ACM
1543 u16 size = 0;
1544
c320c7b7
ACM
1545 if (sample_type & PERF_SAMPLE_IP)
1546 size += sizeof(data->ip);
1547
6844c09d
ACM
1548 if (sample_type & PERF_SAMPLE_ADDR)
1549 size += sizeof(data->addr);
1550
1551 if (sample_type & PERF_SAMPLE_PERIOD)
1552 size += sizeof(data->period);
1553
c3feedf2
AK
1554 if (sample_type & PERF_SAMPLE_WEIGHT)
1555 size += sizeof(data->weight);
1556
6844c09d
ACM
1557 if (sample_type & PERF_SAMPLE_READ)
1558 size += event->read_size;
1559
d6be9ad6
SE
1560 if (sample_type & PERF_SAMPLE_DATA_SRC)
1561 size += sizeof(data->data_src.val);
1562
fdfbbd07
AK
1563 if (sample_type & PERF_SAMPLE_TRANSACTION)
1564 size += sizeof(data->txn);
1565
6844c09d
ACM
1566 event->header_size = size;
1567}
1568
a723968c
PZ
1569/*
1570 * Called at perf_event creation and when events are attached/detached from a
1571 * group.
1572 */
1573static void perf_event__header_size(struct perf_event *event)
1574{
1575 __perf_event_read_size(event,
1576 event->group_leader->nr_siblings);
1577 __perf_event_header_size(event, event->attr.sample_type);
1578}
1579
6844c09d
ACM
1580static void perf_event__id_header_size(struct perf_event *event)
1581{
1582 struct perf_sample_data *data;
1583 u64 sample_type = event->attr.sample_type;
1584 u16 size = 0;
1585
c320c7b7
ACM
1586 if (sample_type & PERF_SAMPLE_TID)
1587 size += sizeof(data->tid_entry);
1588
1589 if (sample_type & PERF_SAMPLE_TIME)
1590 size += sizeof(data->time);
1591
ff3d527c
AH
1592 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1593 size += sizeof(data->id);
1594
c320c7b7
ACM
1595 if (sample_type & PERF_SAMPLE_ID)
1596 size += sizeof(data->id);
1597
1598 if (sample_type & PERF_SAMPLE_STREAM_ID)
1599 size += sizeof(data->stream_id);
1600
1601 if (sample_type & PERF_SAMPLE_CPU)
1602 size += sizeof(data->cpu_entry);
1603
6844c09d 1604 event->id_header_size = size;
c320c7b7
ACM
1605}
1606
a723968c
PZ
1607static bool perf_event_validate_size(struct perf_event *event)
1608{
1609 /*
1610 * The values computed here will be over-written when we actually
1611 * attach the event.
1612 */
1613 __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1614 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1615 perf_event__id_header_size(event);
1616
1617 /*
1618 * Sum the lot; should not exceed the 64k limit we have on records.
1619 * Conservative limit to allow for callchains and other variable fields.
1620 */
1621 if (event->read_size + event->header_size +
1622 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1623 return false;
1624
1625 return true;
1626}
1627
8a49542c
PZ
1628static void perf_group_attach(struct perf_event *event)
1629{
c320c7b7 1630 struct perf_event *group_leader = event->group_leader, *pos;
8a49542c 1631
a76a82a3
PZ
1632 lockdep_assert_held(&event->ctx->lock);
1633
74c3337c
PZ
1634 /*
1635 * We can have double attach due to group movement in perf_event_open.
1636 */
1637 if (event->attach_state & PERF_ATTACH_GROUP)
1638 return;
1639
8a49542c
PZ
1640 event->attach_state |= PERF_ATTACH_GROUP;
1641
1642 if (group_leader == event)
1643 return;
1644
652884fe
PZ
1645 WARN_ON_ONCE(group_leader->ctx != event->ctx);
1646
4ff6a8de 1647 group_leader->group_caps &= event->event_caps;
8a49542c
PZ
1648
1649 list_add_tail(&event->group_entry, &group_leader->sibling_list);
1650 group_leader->nr_siblings++;
c320c7b7
ACM
1651
1652 perf_event__header_size(group_leader);
1653
1654 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1655 perf_event__header_size(pos);
8a49542c
PZ
1656}
1657
a63eaf34 1658/*
cdd6c482 1659 * Remove a event from the lists for its context.
fccc714b 1660 * Must be called with ctx->mutex and ctx->lock held.
a63eaf34 1661 */
04289bb9 1662static void
cdd6c482 1663list_del_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1664{
652884fe
PZ
1665 WARN_ON_ONCE(event->ctx != ctx);
1666 lockdep_assert_held(&ctx->lock);
1667
8a49542c
PZ
1668 /*
1669 * We can have double detach due to exit/hot-unplug + close.
1670 */
1671 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
a63eaf34 1672 return;
8a49542c
PZ
1673
1674 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1675
db4a8356 1676 list_update_cgroup_event(event, ctx, false);
e5d1367f 1677
cdd6c482
IM
1678 ctx->nr_events--;
1679 if (event->attr.inherit_stat)
bfbd3381 1680 ctx->nr_stat--;
8bc20959 1681
cdd6c482 1682 list_del_rcu(&event->event_entry);
04289bb9 1683
8a49542c
PZ
1684 if (event->group_leader == event)
1685 list_del_init(&event->group_entry);
5c148194 1686
96c21a46 1687 update_group_times(event);
b2e74a26
SE
1688
1689 /*
1690 * If event was in error state, then keep it
1691 * that way, otherwise bogus counts will be
1692 * returned on read(). The only way to get out
1693 * of error state is by explicit re-enabling
1694 * of the event
1695 */
1696 if (event->state > PERF_EVENT_STATE_OFF)
1697 event->state = PERF_EVENT_STATE_OFF;
5a3126d4
PZ
1698
1699 ctx->generation++;
050735b0
PZ
1700}
1701
8a49542c 1702static void perf_group_detach(struct perf_event *event)
050735b0
PZ
1703{
1704 struct perf_event *sibling, *tmp;
8a49542c
PZ
1705 struct list_head *list = NULL;
1706
a76a82a3
PZ
1707 lockdep_assert_held(&event->ctx->lock);
1708
8a49542c
PZ
1709 /*
1710 * We can have double detach due to exit/hot-unplug + close.
1711 */
1712 if (!(event->attach_state & PERF_ATTACH_GROUP))
1713 return;
1714
1715 event->attach_state &= ~PERF_ATTACH_GROUP;
1716
1717 /*
1718 * If this is a sibling, remove it from its group.
1719 */
1720 if (event->group_leader != event) {
1721 list_del_init(&event->group_entry);
1722 event->group_leader->nr_siblings--;
c320c7b7 1723 goto out;
8a49542c
PZ
1724 }
1725
1726 if (!list_empty(&event->group_entry))
1727 list = &event->group_entry;
2e2af50b 1728
04289bb9 1729 /*
cdd6c482
IM
1730 * If this was a group event with sibling events then
1731 * upgrade the siblings to singleton events by adding them
8a49542c 1732 * to whatever list we are on.
04289bb9 1733 */
cdd6c482 1734 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
8a49542c
PZ
1735 if (list)
1736 list_move_tail(&sibling->group_entry, list);
04289bb9 1737 sibling->group_leader = sibling;
d6f962b5
FW
1738
1739 /* Inherit group flags from the previous leader */
4ff6a8de 1740 sibling->group_caps = event->group_caps;
652884fe
PZ
1741
1742 WARN_ON_ONCE(sibling->ctx != event->ctx);
04289bb9 1743 }
c320c7b7
ACM
1744
1745out:
1746 perf_event__header_size(event->group_leader);
1747
1748 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1749 perf_event__header_size(tmp);
04289bb9
IM
1750}
1751
fadfe7be
JO
1752static bool is_orphaned_event(struct perf_event *event)
1753{
a69b0ca4 1754 return event->state == PERF_EVENT_STATE_DEAD;
fadfe7be
JO
1755}
1756
2c81a647 1757static inline int __pmu_filter_match(struct perf_event *event)
66eb579e
MR
1758{
1759 struct pmu *pmu = event->pmu;
1760 return pmu->filter_match ? pmu->filter_match(event) : 1;
1761}
1762
2c81a647
MR
1763/*
1764 * Check whether we should attempt to schedule an event group based on
1765 * PMU-specific filtering. An event group can consist of HW and SW events,
1766 * potentially with a SW leader, so we must check all the filters, to
1767 * determine whether a group is schedulable:
1768 */
1769static inline int pmu_filter_match(struct perf_event *event)
1770{
1771 struct perf_event *child;
1772
1773 if (!__pmu_filter_match(event))
1774 return 0;
1775
1776 list_for_each_entry(child, &event->sibling_list, group_entry) {
1777 if (!__pmu_filter_match(child))
1778 return 0;
1779 }
1780
1781 return 1;
1782}
1783
fa66f07a
SE
1784static inline int
1785event_filter_match(struct perf_event *event)
1786{
0b8f1e2e
PZ
1787 return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
1788 perf_cgroup_match(event) && pmu_filter_match(event);
fa66f07a
SE
1789}
1790
9ffcfa6f
SE
1791static void
1792event_sched_out(struct perf_event *event,
3b6f9e5c 1793 struct perf_cpu_context *cpuctx,
cdd6c482 1794 struct perf_event_context *ctx)
3b6f9e5c 1795{
4158755d 1796 u64 tstamp = perf_event_time(event);
fa66f07a 1797 u64 delta;
652884fe
PZ
1798
1799 WARN_ON_ONCE(event->ctx != ctx);
1800 lockdep_assert_held(&ctx->lock);
1801
fa66f07a
SE
1802 /*
1803 * An event which could not be activated because of
1804 * filter mismatch still needs to have its timings
1805 * maintained, otherwise bogus information is return
1806 * via read() for time_enabled, time_running:
1807 */
0b8f1e2e
PZ
1808 if (event->state == PERF_EVENT_STATE_INACTIVE &&
1809 !event_filter_match(event)) {
e5d1367f 1810 delta = tstamp - event->tstamp_stopped;
fa66f07a 1811 event->tstamp_running += delta;
4158755d 1812 event->tstamp_stopped = tstamp;
fa66f07a
SE
1813 }
1814
cdd6c482 1815 if (event->state != PERF_EVENT_STATE_ACTIVE)
9ffcfa6f 1816 return;
3b6f9e5c 1817
44377277
AS
1818 perf_pmu_disable(event->pmu);
1819
28a967c3
PZ
1820 event->tstamp_stopped = tstamp;
1821 event->pmu->del(event, 0);
1822 event->oncpu = -1;
cdd6c482
IM
1823 event->state = PERF_EVENT_STATE_INACTIVE;
1824 if (event->pending_disable) {
1825 event->pending_disable = 0;
1826 event->state = PERF_EVENT_STATE_OFF;
970892a9 1827 }
3b6f9e5c 1828
cdd6c482 1829 if (!is_software_event(event))
3b6f9e5c 1830 cpuctx->active_oncpu--;
2fde4f94
MR
1831 if (!--ctx->nr_active)
1832 perf_event_ctx_deactivate(ctx);
0f5a2601
PZ
1833 if (event->attr.freq && event->attr.sample_freq)
1834 ctx->nr_freq--;
cdd6c482 1835 if (event->attr.exclusive || !cpuctx->active_oncpu)
3b6f9e5c 1836 cpuctx->exclusive = 0;
44377277
AS
1837
1838 perf_pmu_enable(event->pmu);
3b6f9e5c
PM
1839}
1840
d859e29f 1841static void
cdd6c482 1842group_sched_out(struct perf_event *group_event,
d859e29f 1843 struct perf_cpu_context *cpuctx,
cdd6c482 1844 struct perf_event_context *ctx)
d859e29f 1845{
cdd6c482 1846 struct perf_event *event;
fa66f07a 1847 int state = group_event->state;
d859e29f 1848
3f005e7d
MR
1849 perf_pmu_disable(ctx->pmu);
1850
cdd6c482 1851 event_sched_out(group_event, cpuctx, ctx);
d859e29f
PM
1852
1853 /*
1854 * Schedule out siblings (if any):
1855 */
cdd6c482
IM
1856 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1857 event_sched_out(event, cpuctx, ctx);
d859e29f 1858
3f005e7d
MR
1859 perf_pmu_enable(ctx->pmu);
1860
fa66f07a 1861 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
d859e29f
PM
1862 cpuctx->exclusive = 0;
1863}
1864
45a0e07a 1865#define DETACH_GROUP 0x01UL
0017960f 1866
0793a61d 1867/*
cdd6c482 1868 * Cross CPU call to remove a performance event
0793a61d 1869 *
cdd6c482 1870 * We disable the event on the hardware level first. After that we
0793a61d
TG
1871 * remove it from the context list.
1872 */
fae3fde6
PZ
1873static void
1874__perf_remove_from_context(struct perf_event *event,
1875 struct perf_cpu_context *cpuctx,
1876 struct perf_event_context *ctx,
1877 void *info)
0793a61d 1878{
45a0e07a 1879 unsigned long flags = (unsigned long)info;
0793a61d 1880
cdd6c482 1881 event_sched_out(event, cpuctx, ctx);
45a0e07a 1882 if (flags & DETACH_GROUP)
46ce0fe9 1883 perf_group_detach(event);
cdd6c482 1884 list_del_event(event, ctx);
39a43640
PZ
1885
1886 if (!ctx->nr_events && ctx->is_active) {
64ce3126 1887 ctx->is_active = 0;
39a43640
PZ
1888 if (ctx->task) {
1889 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
1890 cpuctx->task_ctx = NULL;
1891 }
64ce3126 1892 }
0793a61d
TG
1893}
1894
0793a61d 1895/*
cdd6c482 1896 * Remove the event from a task's (or a CPU's) list of events.
0793a61d 1897 *
cdd6c482
IM
1898 * If event->ctx is a cloned context, callers must make sure that
1899 * every task struct that event->ctx->task could possibly point to
c93f7669
PM
1900 * remains valid. This is OK when called from perf_release since
1901 * that only calls us on the top-level context, which can't be a clone.
cdd6c482 1902 * When called from perf_event_exit_task, it's OK because the
c93f7669 1903 * context has been detached from its task.
0793a61d 1904 */
45a0e07a 1905static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
0793a61d 1906{
a76a82a3
PZ
1907 struct perf_event_context *ctx = event->ctx;
1908
1909 lockdep_assert_held(&ctx->mutex);
0793a61d 1910
45a0e07a 1911 event_function_call(event, __perf_remove_from_context, (void *)flags);
a76a82a3
PZ
1912
1913 /*
1914 * The above event_function_call() can NO-OP when it hits
1915 * TASK_TOMBSTONE. In that case we must already have been detached
1916 * from the context (by perf_event_exit_event()) but the grouping
1917 * might still be in-tact.
1918 */
1919 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1920 if ((flags & DETACH_GROUP) &&
1921 (event->attach_state & PERF_ATTACH_GROUP)) {
1922 /*
1923 * Since in that case we cannot possibly be scheduled, simply
1924 * detach now.
1925 */
1926 raw_spin_lock_irq(&ctx->lock);
1927 perf_group_detach(event);
1928 raw_spin_unlock_irq(&ctx->lock);
1929 }
0793a61d
TG
1930}
1931
d859e29f 1932/*
cdd6c482 1933 * Cross CPU call to disable a performance event
d859e29f 1934 */
fae3fde6
PZ
1935static void __perf_event_disable(struct perf_event *event,
1936 struct perf_cpu_context *cpuctx,
1937 struct perf_event_context *ctx,
1938 void *info)
7b648018 1939{
fae3fde6
PZ
1940 if (event->state < PERF_EVENT_STATE_INACTIVE)
1941 return;
7b648018 1942
fae3fde6
PZ
1943 update_context_time(ctx);
1944 update_cgrp_time_from_event(event);
1945 update_group_times(event);
1946 if (event == event->group_leader)
1947 group_sched_out(event, cpuctx, ctx);
1948 else
1949 event_sched_out(event, cpuctx, ctx);
1950 event->state = PERF_EVENT_STATE_OFF;
7b648018
PZ
1951}
1952
d859e29f 1953/*
cdd6c482 1954 * Disable a event.
c93f7669 1955 *
cdd6c482
IM
1956 * If event->ctx is a cloned context, callers must make sure that
1957 * every task struct that event->ctx->task could possibly point to
c93f7669 1958 * remains valid. This condition is satisifed when called through
cdd6c482
IM
1959 * perf_event_for_each_child or perf_event_for_each because they
1960 * hold the top-level event's child_mutex, so any descendant that
8ba289b8
PZ
1961 * goes to exit will block in perf_event_exit_event().
1962 *
cdd6c482 1963 * When called from perf_pending_event it's OK because event->ctx
c93f7669 1964 * is the current context on this CPU and preemption is disabled,
cdd6c482 1965 * hence we can't get into perf_event_task_sched_out for this context.
d859e29f 1966 */
f63a8daa 1967static void _perf_event_disable(struct perf_event *event)
d859e29f 1968{
cdd6c482 1969 struct perf_event_context *ctx = event->ctx;
d859e29f 1970
e625cce1 1971 raw_spin_lock_irq(&ctx->lock);
7b648018 1972 if (event->state <= PERF_EVENT_STATE_OFF) {
e625cce1 1973 raw_spin_unlock_irq(&ctx->lock);
7b648018 1974 return;
53cfbf59 1975 }
e625cce1 1976 raw_spin_unlock_irq(&ctx->lock);
7b648018 1977
fae3fde6
PZ
1978 event_function_call(event, __perf_event_disable, NULL);
1979}
1980
1981void perf_event_disable_local(struct perf_event *event)
1982{
1983 event_function_local(event, __perf_event_disable, NULL);
d859e29f 1984}
f63a8daa
PZ
1985
1986/*
1987 * Strictly speaking kernel users cannot create groups and therefore this
1988 * interface does not need the perf_event_ctx_lock() magic.
1989 */
1990void perf_event_disable(struct perf_event *event)
1991{
1992 struct perf_event_context *ctx;
1993
1994 ctx = perf_event_ctx_lock(event);
1995 _perf_event_disable(event);
1996 perf_event_ctx_unlock(event, ctx);
1997}
dcfce4a0 1998EXPORT_SYMBOL_GPL(perf_event_disable);
d859e29f 1999
5aab90ce
JO
2000void perf_event_disable_inatomic(struct perf_event *event)
2001{
2002 event->pending_disable = 1;
2003 irq_work_queue(&event->pending);
2004}
2005
e5d1367f
SE
2006static void perf_set_shadow_time(struct perf_event *event,
2007 struct perf_event_context *ctx,
2008 u64 tstamp)
2009{
2010 /*
2011 * use the correct time source for the time snapshot
2012 *
2013 * We could get by without this by leveraging the
2014 * fact that to get to this function, the caller
2015 * has most likely already called update_context_time()
2016 * and update_cgrp_time_xx() and thus both timestamp
2017 * are identical (or very close). Given that tstamp is,
2018 * already adjusted for cgroup, we could say that:
2019 * tstamp - ctx->timestamp
2020 * is equivalent to
2021 * tstamp - cgrp->timestamp.
2022 *
2023 * Then, in perf_output_read(), the calculation would
2024 * work with no changes because:
2025 * - event is guaranteed scheduled in
2026 * - no scheduled out in between
2027 * - thus the timestamp would be the same
2028 *
2029 * But this is a bit hairy.
2030 *
2031 * So instead, we have an explicit cgroup call to remain
2032 * within the time time source all along. We believe it
2033 * is cleaner and simpler to understand.
2034 */
2035 if (is_cgroup_event(event))
2036 perf_cgroup_set_shadow_time(event, tstamp);
2037 else
2038 event->shadow_ctx_time = tstamp - ctx->timestamp;
2039}
2040
4fe757dd
PZ
2041#define MAX_INTERRUPTS (~0ULL)
2042
2043static void perf_log_throttle(struct perf_event *event, int enable);
ec0d7729 2044static void perf_log_itrace_start(struct perf_event *event);
4fe757dd 2045
235c7fc7 2046static int
9ffcfa6f 2047event_sched_in(struct perf_event *event,
235c7fc7 2048 struct perf_cpu_context *cpuctx,
6e37738a 2049 struct perf_event_context *ctx)
235c7fc7 2050{
4158755d 2051 u64 tstamp = perf_event_time(event);
44377277 2052 int ret = 0;
4158755d 2053
63342411
PZ
2054 lockdep_assert_held(&ctx->lock);
2055
cdd6c482 2056 if (event->state <= PERF_EVENT_STATE_OFF)
235c7fc7
IM
2057 return 0;
2058
95ff4ca2
AS
2059 WRITE_ONCE(event->oncpu, smp_processor_id());
2060 /*
2061 * Order event::oncpu write to happen before the ACTIVE state
2062 * is visible.
2063 */
2064 smp_wmb();
2065 WRITE_ONCE(event->state, PERF_EVENT_STATE_ACTIVE);
4fe757dd
PZ
2066
2067 /*
2068 * Unthrottle events, since we scheduled we might have missed several
2069 * ticks already, also for a heavily scheduling task there is little
2070 * guarantee it'll get a tick in a timely manner.
2071 */
2072 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2073 perf_log_throttle(event, 1);
2074 event->hw.interrupts = 0;
2075 }
2076
235c7fc7
IM
2077 /*
2078 * The new state must be visible before we turn it on in the hardware:
2079 */
2080 smp_wmb();
2081
44377277
AS
2082 perf_pmu_disable(event->pmu);
2083
72f669c0
SL
2084 perf_set_shadow_time(event, ctx, tstamp);
2085
ec0d7729
AS
2086 perf_log_itrace_start(event);
2087
a4eaf7f1 2088 if (event->pmu->add(event, PERF_EF_START)) {
cdd6c482
IM
2089 event->state = PERF_EVENT_STATE_INACTIVE;
2090 event->oncpu = -1;
44377277
AS
2091 ret = -EAGAIN;
2092 goto out;
235c7fc7
IM
2093 }
2094
00a2916f
PZ
2095 event->tstamp_running += tstamp - event->tstamp_stopped;
2096
cdd6c482 2097 if (!is_software_event(event))
3b6f9e5c 2098 cpuctx->active_oncpu++;
2fde4f94
MR
2099 if (!ctx->nr_active++)
2100 perf_event_ctx_activate(ctx);
0f5a2601
PZ
2101 if (event->attr.freq && event->attr.sample_freq)
2102 ctx->nr_freq++;
235c7fc7 2103
cdd6c482 2104 if (event->attr.exclusive)
3b6f9e5c
PM
2105 cpuctx->exclusive = 1;
2106
44377277
AS
2107out:
2108 perf_pmu_enable(event->pmu);
2109
2110 return ret;
235c7fc7
IM
2111}
2112
6751b71e 2113static int
cdd6c482 2114group_sched_in(struct perf_event *group_event,
6751b71e 2115 struct perf_cpu_context *cpuctx,
6e37738a 2116 struct perf_event_context *ctx)
6751b71e 2117{
6bde9b6c 2118 struct perf_event *event, *partial_group = NULL;
4a234593 2119 struct pmu *pmu = ctx->pmu;
d7842da4
SE
2120 u64 now = ctx->time;
2121 bool simulate = false;
6751b71e 2122
cdd6c482 2123 if (group_event->state == PERF_EVENT_STATE_OFF)
6751b71e
PM
2124 return 0;
2125
fbbe0701 2126 pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
6bde9b6c 2127
9ffcfa6f 2128 if (event_sched_in(group_event, cpuctx, ctx)) {
ad5133b7 2129 pmu->cancel_txn(pmu);
272325c4 2130 perf_mux_hrtimer_restart(cpuctx);
6751b71e 2131 return -EAGAIN;
90151c35 2132 }
6751b71e
PM
2133
2134 /*
2135 * Schedule in siblings as one group (if any):
2136 */
cdd6c482 2137 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
9ffcfa6f 2138 if (event_sched_in(event, cpuctx, ctx)) {
cdd6c482 2139 partial_group = event;
6751b71e
PM
2140 goto group_error;
2141 }
2142 }
2143
9ffcfa6f 2144 if (!pmu->commit_txn(pmu))
6e85158c 2145 return 0;
9ffcfa6f 2146
6751b71e
PM
2147group_error:
2148 /*
2149 * Groups can be scheduled in as one unit only, so undo any
2150 * partial group before returning:
d7842da4
SE
2151 * The events up to the failed event are scheduled out normally,
2152 * tstamp_stopped will be updated.
2153 *
2154 * The failed events and the remaining siblings need to have
2155 * their timings updated as if they had gone thru event_sched_in()
2156 * and event_sched_out(). This is required to get consistent timings
2157 * across the group. This also takes care of the case where the group
2158 * could never be scheduled by ensuring tstamp_stopped is set to mark
2159 * the time the event was actually stopped, such that time delta
2160 * calculation in update_event_times() is correct.
6751b71e 2161 */
cdd6c482
IM
2162 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2163 if (event == partial_group)
d7842da4
SE
2164 simulate = true;
2165
2166 if (simulate) {
2167 event->tstamp_running += now - event->tstamp_stopped;
2168 event->tstamp_stopped = now;
2169 } else {
2170 event_sched_out(event, cpuctx, ctx);
2171 }
6751b71e 2172 }
9ffcfa6f 2173 event_sched_out(group_event, cpuctx, ctx);
6751b71e 2174
ad5133b7 2175 pmu->cancel_txn(pmu);
90151c35 2176
272325c4 2177 perf_mux_hrtimer_restart(cpuctx);
9e630205 2178
6751b71e
PM
2179 return -EAGAIN;
2180}
2181
3b6f9e5c 2182/*
cdd6c482 2183 * Work out whether we can put this event group on the CPU now.
3b6f9e5c 2184 */
cdd6c482 2185static int group_can_go_on(struct perf_event *event,
3b6f9e5c
PM
2186 struct perf_cpu_context *cpuctx,
2187 int can_add_hw)
2188{
2189 /*
cdd6c482 2190 * Groups consisting entirely of software events can always go on.
3b6f9e5c 2191 */
4ff6a8de 2192 if (event->group_caps & PERF_EV_CAP_SOFTWARE)
3b6f9e5c
PM
2193 return 1;
2194 /*
2195 * If an exclusive group is already on, no other hardware
cdd6c482 2196 * events can go on.
3b6f9e5c
PM
2197 */
2198 if (cpuctx->exclusive)
2199 return 0;
2200 /*
2201 * If this group is exclusive and there are already
cdd6c482 2202 * events on the CPU, it can't go on.
3b6f9e5c 2203 */
cdd6c482 2204 if (event->attr.exclusive && cpuctx->active_oncpu)
3b6f9e5c
PM
2205 return 0;
2206 /*
2207 * Otherwise, try to add it if all previous groups were able
2208 * to go on.
2209 */
2210 return can_add_hw;
2211}
2212
cdd6c482
IM
2213static void add_event_to_ctx(struct perf_event *event,
2214 struct perf_event_context *ctx)
53cfbf59 2215{
4158755d
SE
2216 u64 tstamp = perf_event_time(event);
2217
cdd6c482 2218 list_add_event(event, ctx);
8a49542c 2219 perf_group_attach(event);
4158755d
SE
2220 event->tstamp_enabled = tstamp;
2221 event->tstamp_running = tstamp;
2222 event->tstamp_stopped = tstamp;
53cfbf59
PM
2223}
2224
bd2afa49
PZ
2225static void ctx_sched_out(struct perf_event_context *ctx,
2226 struct perf_cpu_context *cpuctx,
2227 enum event_type_t event_type);
2c29ef0f
PZ
2228static void
2229ctx_sched_in(struct perf_event_context *ctx,
2230 struct perf_cpu_context *cpuctx,
2231 enum event_type_t event_type,
2232 struct task_struct *task);
fe4b04fa 2233
bd2afa49 2234static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
487f05e1
AS
2235 struct perf_event_context *ctx,
2236 enum event_type_t event_type)
bd2afa49
PZ
2237{
2238 if (!cpuctx->task_ctx)
2239 return;
2240
2241 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2242 return;
2243
487f05e1 2244 ctx_sched_out(ctx, cpuctx, event_type);
bd2afa49
PZ
2245}
2246
dce5855b
PZ
2247static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2248 struct perf_event_context *ctx,
2249 struct task_struct *task)
2250{
2251 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2252 if (ctx)
2253 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2254 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2255 if (ctx)
2256 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2257}
2258
487f05e1
AS
2259/*
2260 * We want to maintain the following priority of scheduling:
2261 * - CPU pinned (EVENT_CPU | EVENT_PINNED)
2262 * - task pinned (EVENT_PINNED)
2263 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2264 * - task flexible (EVENT_FLEXIBLE).
2265 *
2266 * In order to avoid unscheduling and scheduling back in everything every
2267 * time an event is added, only do it for the groups of equal priority and
2268 * below.
2269 *
2270 * This can be called after a batch operation on task events, in which case
2271 * event_type is a bit mask of the types of events involved. For CPU events,
2272 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2273 */
3e349507 2274static void ctx_resched(struct perf_cpu_context *cpuctx,
487f05e1
AS
2275 struct perf_event_context *task_ctx,
2276 enum event_type_t event_type)
0017960f 2277{
487f05e1
AS
2278 enum event_type_t ctx_event_type = event_type & EVENT_ALL;
2279 bool cpu_event = !!(event_type & EVENT_CPU);
2280
2281 /*
2282 * If pinned groups are involved, flexible groups also need to be
2283 * scheduled out.
2284 */
2285 if (event_type & EVENT_PINNED)
2286 event_type |= EVENT_FLEXIBLE;
2287
3e349507
PZ
2288 perf_pmu_disable(cpuctx->ctx.pmu);
2289 if (task_ctx)
487f05e1
AS
2290 task_ctx_sched_out(cpuctx, task_ctx, event_type);
2291
2292 /*
2293 * Decide which cpu ctx groups to schedule out based on the types
2294 * of events that caused rescheduling:
2295 * - EVENT_CPU: schedule out corresponding groups;
2296 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2297 * - otherwise, do nothing more.
2298 */
2299 if (cpu_event)
2300 cpu_ctx_sched_out(cpuctx, ctx_event_type);
2301 else if (ctx_event_type & EVENT_PINNED)
2302 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2303
3e349507
PZ
2304 perf_event_sched_in(cpuctx, task_ctx, current);
2305 perf_pmu_enable(cpuctx->ctx.pmu);
0017960f
PZ
2306}
2307
0793a61d 2308/*
cdd6c482 2309 * Cross CPU call to install and enable a performance event
682076ae 2310 *
a096309b
PZ
2311 * Very similar to remote_function() + event_function() but cannot assume that
2312 * things like ctx->is_active and cpuctx->task_ctx are set.
0793a61d 2313 */
fe4b04fa 2314static int __perf_install_in_context(void *info)
0793a61d 2315{
a096309b
PZ
2316 struct perf_event *event = info;
2317 struct perf_event_context *ctx = event->ctx;
108b02cf 2318 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2c29ef0f 2319 struct perf_event_context *task_ctx = cpuctx->task_ctx;
63cae12b 2320 bool reprogram = true;
a096309b 2321 int ret = 0;
0793a61d 2322
63b6da39 2323 raw_spin_lock(&cpuctx->ctx.lock);
39a43640 2324 if (ctx->task) {
b58f6b0d
PZ
2325 raw_spin_lock(&ctx->lock);
2326 task_ctx = ctx;
a096309b 2327
63cae12b 2328 reprogram = (ctx->task == current);
b58f6b0d 2329
39a43640 2330 /*
63cae12b
PZ
2331 * If the task is running, it must be running on this CPU,
2332 * otherwise we cannot reprogram things.
2333 *
2334 * If its not running, we don't care, ctx->lock will
2335 * serialize against it becoming runnable.
39a43640 2336 */
63cae12b
PZ
2337 if (task_curr(ctx->task) && !reprogram) {
2338 ret = -ESRCH;
2339 goto unlock;
2340 }
a096309b 2341
63cae12b 2342 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
63b6da39
PZ
2343 } else if (task_ctx) {
2344 raw_spin_lock(&task_ctx->lock);
2c29ef0f 2345 }
b58f6b0d 2346
63cae12b 2347 if (reprogram) {
a096309b
PZ
2348 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2349 add_event_to_ctx(event, ctx);
487f05e1 2350 ctx_resched(cpuctx, task_ctx, get_event_type(event));
a096309b
PZ
2351 } else {
2352 add_event_to_ctx(event, ctx);
2353 }
2354
63b6da39 2355unlock:
2c29ef0f 2356 perf_ctx_unlock(cpuctx, task_ctx);
fe4b04fa 2357
a096309b 2358 return ret;
0793a61d
TG
2359}
2360
2361/*
a096309b
PZ
2362 * Attach a performance event to a context.
2363 *
2364 * Very similar to event_function_call, see comment there.
0793a61d
TG
2365 */
2366static void
cdd6c482
IM
2367perf_install_in_context(struct perf_event_context *ctx,
2368 struct perf_event *event,
0793a61d
TG
2369 int cpu)
2370{
a096309b 2371 struct task_struct *task = READ_ONCE(ctx->task);
39a43640 2372
fe4b04fa
PZ
2373 lockdep_assert_held(&ctx->mutex);
2374
0cda4c02
YZ
2375 if (event->cpu != -1)
2376 event->cpu = cpu;
c3f00c70 2377
0b8f1e2e
PZ
2378 /*
2379 * Ensures that if we can observe event->ctx, both the event and ctx
2380 * will be 'complete'. See perf_iterate_sb_cpu().
2381 */
2382 smp_store_release(&event->ctx, ctx);
2383
a096309b
PZ
2384 if (!task) {
2385 cpu_function_call(cpu, __perf_install_in_context, event);
2386 return;
2387 }
2388
2389 /*
2390 * Should not happen, we validate the ctx is still alive before calling.
2391 */
2392 if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2393 return;
2394
39a43640
PZ
2395 /*
2396 * Installing events is tricky because we cannot rely on ctx->is_active
2397 * to be set in case this is the nr_events 0 -> 1 transition.
63cae12b
PZ
2398 *
2399 * Instead we use task_curr(), which tells us if the task is running.
2400 * However, since we use task_curr() outside of rq::lock, we can race
2401 * against the actual state. This means the result can be wrong.
2402 *
2403 * If we get a false positive, we retry, this is harmless.
2404 *
2405 * If we get a false negative, things are complicated. If we are after
2406 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2407 * value must be correct. If we're before, it doesn't matter since
2408 * perf_event_context_sched_in() will program the counter.
2409 *
2410 * However, this hinges on the remote context switch having observed
2411 * our task->perf_event_ctxp[] store, such that it will in fact take
2412 * ctx::lock in perf_event_context_sched_in().
2413 *
2414 * We do this by task_function_call(), if the IPI fails to hit the task
2415 * we know any future context switch of task must see the
2416 * perf_event_ctpx[] store.
39a43640 2417 */
63cae12b 2418
63b6da39 2419 /*
63cae12b
PZ
2420 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2421 * task_cpu() load, such that if the IPI then does not find the task
2422 * running, a future context switch of that task must observe the
2423 * store.
63b6da39 2424 */
63cae12b
PZ
2425 smp_mb();
2426again:
2427 if (!task_function_call(task, __perf_install_in_context, event))
a096309b
PZ
2428 return;
2429
2430 raw_spin_lock_irq(&ctx->lock);
2431 task = ctx->task;
84c4e620 2432 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
a096309b
PZ
2433 /*
2434 * Cannot happen because we already checked above (which also
2435 * cannot happen), and we hold ctx->mutex, which serializes us
2436 * against perf_event_exit_task_context().
2437 */
63b6da39
PZ
2438 raw_spin_unlock_irq(&ctx->lock);
2439 return;
2440 }
39a43640 2441 /*
63cae12b
PZ
2442 * If the task is not running, ctx->lock will avoid it becoming so,
2443 * thus we can safely install the event.
39a43640 2444 */
63cae12b
PZ
2445 if (task_curr(task)) {
2446 raw_spin_unlock_irq(&ctx->lock);
2447 goto again;
2448 }
2449 add_event_to_ctx(event, ctx);
2450 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
2451}
2452
fa289bec 2453/*
cdd6c482 2454 * Put a event into inactive state and update time fields.
fa289bec
PM
2455 * Enabling the leader of a group effectively enables all
2456 * the group members that aren't explicitly disabled, so we
2457 * have to update their ->tstamp_enabled also.
2458 * Note: this works for group members as well as group leaders
2459 * since the non-leader members' sibling_lists will be empty.
2460 */
1d9b482e 2461static void __perf_event_mark_enabled(struct perf_event *event)
fa289bec 2462{
cdd6c482 2463 struct perf_event *sub;
4158755d 2464 u64 tstamp = perf_event_time(event);
fa289bec 2465
cdd6c482 2466 event->state = PERF_EVENT_STATE_INACTIVE;
4158755d 2467 event->tstamp_enabled = tstamp - event->total_time_enabled;
9ed6060d 2468 list_for_each_entry(sub, &event->sibling_list, group_entry) {
4158755d
SE
2469 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2470 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
9ed6060d 2471 }
fa289bec
PM
2472}
2473
d859e29f 2474/*
cdd6c482 2475 * Cross CPU call to enable a performance event
d859e29f 2476 */
fae3fde6
PZ
2477static void __perf_event_enable(struct perf_event *event,
2478 struct perf_cpu_context *cpuctx,
2479 struct perf_event_context *ctx,
2480 void *info)
04289bb9 2481{
cdd6c482 2482 struct perf_event *leader = event->group_leader;
fae3fde6 2483 struct perf_event_context *task_ctx;
04289bb9 2484
6e801e01
PZ
2485 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2486 event->state <= PERF_EVENT_STATE_ERROR)
fae3fde6 2487 return;
3cbed429 2488
bd2afa49
PZ
2489 if (ctx->is_active)
2490 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2491
1d9b482e 2492 __perf_event_mark_enabled(event);
04289bb9 2493
fae3fde6
PZ
2494 if (!ctx->is_active)
2495 return;
2496
e5d1367f 2497 if (!event_filter_match(event)) {
bd2afa49 2498 if (is_cgroup_event(event))
e5d1367f 2499 perf_cgroup_defer_enabled(event);
bd2afa49 2500 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
fae3fde6 2501 return;
e5d1367f 2502 }
f4c4176f 2503
04289bb9 2504 /*
cdd6c482 2505 * If the event is in a group and isn't the group leader,
d859e29f 2506 * then don't put it on unless the group is on.
04289bb9 2507 */
bd2afa49
PZ
2508 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2509 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
fae3fde6 2510 return;
bd2afa49 2511 }
fe4b04fa 2512
fae3fde6
PZ
2513 task_ctx = cpuctx->task_ctx;
2514 if (ctx->task)
2515 WARN_ON_ONCE(task_ctx != ctx);
d859e29f 2516
487f05e1 2517 ctx_resched(cpuctx, task_ctx, get_event_type(event));
7b648018
PZ
2518}
2519
d859e29f 2520/*
cdd6c482 2521 * Enable a event.
c93f7669 2522 *
cdd6c482
IM
2523 * If event->ctx is a cloned context, callers must make sure that
2524 * every task struct that event->ctx->task could possibly point to
c93f7669 2525 * remains valid. This condition is satisfied when called through
cdd6c482
IM
2526 * perf_event_for_each_child or perf_event_for_each as described
2527 * for perf_event_disable.
d859e29f 2528 */
f63a8daa 2529static void _perf_event_enable(struct perf_event *event)
d859e29f 2530{
cdd6c482 2531 struct perf_event_context *ctx = event->ctx;
d859e29f 2532
7b648018 2533 raw_spin_lock_irq(&ctx->lock);
6e801e01
PZ
2534 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2535 event->state < PERF_EVENT_STATE_ERROR) {
7b648018 2536 raw_spin_unlock_irq(&ctx->lock);
d859e29f
PM
2537 return;
2538 }
2539
d859e29f 2540 /*
cdd6c482 2541 * If the event is in error state, clear that first.
7b648018
PZ
2542 *
2543 * That way, if we see the event in error state below, we know that it
2544 * has gone back into error state, as distinct from the task having
2545 * been scheduled away before the cross-call arrived.
d859e29f 2546 */
cdd6c482
IM
2547 if (event->state == PERF_EVENT_STATE_ERROR)
2548 event->state = PERF_EVENT_STATE_OFF;
e625cce1 2549 raw_spin_unlock_irq(&ctx->lock);
fe4b04fa 2550
fae3fde6 2551 event_function_call(event, __perf_event_enable, NULL);
d859e29f 2552}
f63a8daa
PZ
2553
2554/*
2555 * See perf_event_disable();
2556 */
2557void perf_event_enable(struct perf_event *event)
2558{
2559 struct perf_event_context *ctx;
2560
2561 ctx = perf_event_ctx_lock(event);
2562 _perf_event_enable(event);
2563 perf_event_ctx_unlock(event, ctx);
2564}
dcfce4a0 2565EXPORT_SYMBOL_GPL(perf_event_enable);
d859e29f 2566
375637bc
AS
2567struct stop_event_data {
2568 struct perf_event *event;
2569 unsigned int restart;
2570};
2571
95ff4ca2
AS
2572static int __perf_event_stop(void *info)
2573{
375637bc
AS
2574 struct stop_event_data *sd = info;
2575 struct perf_event *event = sd->event;
95ff4ca2 2576
375637bc 2577 /* if it's already INACTIVE, do nothing */
95ff4ca2
AS
2578 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2579 return 0;
2580
2581 /* matches smp_wmb() in event_sched_in() */
2582 smp_rmb();
2583
2584 /*
2585 * There is a window with interrupts enabled before we get here,
2586 * so we need to check again lest we try to stop another CPU's event.
2587 */
2588 if (READ_ONCE(event->oncpu) != smp_processor_id())
2589 return -EAGAIN;
2590
2591 event->pmu->stop(event, PERF_EF_UPDATE);
2592
375637bc
AS
2593 /*
2594 * May race with the actual stop (through perf_pmu_output_stop()),
2595 * but it is only used for events with AUX ring buffer, and such
2596 * events will refuse to restart because of rb::aux_mmap_count==0,
2597 * see comments in perf_aux_output_begin().
2598 *
2599 * Since this is happening on a event-local CPU, no trace is lost
2600 * while restarting.
2601 */
2602 if (sd->restart)
c9bbdd48 2603 event->pmu->start(event, 0);
375637bc 2604
95ff4ca2
AS
2605 return 0;
2606}
2607
767ae086 2608static int perf_event_stop(struct perf_event *event, int restart)
375637bc
AS
2609{
2610 struct stop_event_data sd = {
2611 .event = event,
767ae086 2612 .restart = restart,
375637bc
AS
2613 };
2614 int ret = 0;
2615
2616 do {
2617 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2618 return 0;
2619
2620 /* matches smp_wmb() in event_sched_in() */
2621 smp_rmb();
2622
2623 /*
2624 * We only want to restart ACTIVE events, so if the event goes
2625 * inactive here (event->oncpu==-1), there's nothing more to do;
2626 * fall through with ret==-ENXIO.
2627 */
2628 ret = cpu_function_call(READ_ONCE(event->oncpu),
2629 __perf_event_stop, &sd);
2630 } while (ret == -EAGAIN);
2631
2632 return ret;
2633}
2634
2635/*
2636 * In order to contain the amount of racy and tricky in the address filter
2637 * configuration management, it is a two part process:
2638 *
2639 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2640 * we update the addresses of corresponding vmas in
2641 * event::addr_filters_offs array and bump the event::addr_filters_gen;
2642 * (p2) when an event is scheduled in (pmu::add), it calls
2643 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2644 * if the generation has changed since the previous call.
2645 *
2646 * If (p1) happens while the event is active, we restart it to force (p2).
2647 *
2648 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2649 * pre-existing mappings, called once when new filters arrive via SET_FILTER
2650 * ioctl;
2651 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2652 * registered mapping, called for every new mmap(), with mm::mmap_sem down
2653 * for reading;
2654 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2655 * of exec.
2656 */
2657void perf_event_addr_filters_sync(struct perf_event *event)
2658{
2659 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2660
2661 if (!has_addr_filter(event))
2662 return;
2663
2664 raw_spin_lock(&ifh->lock);
2665 if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2666 event->pmu->addr_filters_sync(event);
2667 event->hw.addr_filters_gen = event->addr_filters_gen;
2668 }
2669 raw_spin_unlock(&ifh->lock);
2670}
2671EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2672
f63a8daa 2673static int _perf_event_refresh(struct perf_event *event, int refresh)
79f14641 2674{
2023b359 2675 /*
cdd6c482 2676 * not supported on inherited events
2023b359 2677 */
2e939d1d 2678 if (event->attr.inherit || !is_sampling_event(event))
2023b359
PZ
2679 return -EINVAL;
2680
cdd6c482 2681 atomic_add(refresh, &event->event_limit);
f63a8daa 2682 _perf_event_enable(event);
2023b359
PZ
2683
2684 return 0;
79f14641 2685}
f63a8daa
PZ
2686
2687/*
2688 * See perf_event_disable()
2689 */
2690int perf_event_refresh(struct perf_event *event, int refresh)
2691{
2692 struct perf_event_context *ctx;
2693 int ret;
2694
2695 ctx = perf_event_ctx_lock(event);
2696 ret = _perf_event_refresh(event, refresh);
2697 perf_event_ctx_unlock(event, ctx);
2698
2699 return ret;
2700}
26ca5c11 2701EXPORT_SYMBOL_GPL(perf_event_refresh);
79f14641 2702
5b0311e1
FW
2703static void ctx_sched_out(struct perf_event_context *ctx,
2704 struct perf_cpu_context *cpuctx,
2705 enum event_type_t event_type)
235c7fc7 2706{
db24d33e 2707 int is_active = ctx->is_active;
c994d613 2708 struct perf_event *event;
235c7fc7 2709
c994d613 2710 lockdep_assert_held(&ctx->lock);
235c7fc7 2711
39a43640
PZ
2712 if (likely(!ctx->nr_events)) {
2713 /*
2714 * See __perf_remove_from_context().
2715 */
2716 WARN_ON_ONCE(ctx->is_active);
2717 if (ctx->task)
2718 WARN_ON_ONCE(cpuctx->task_ctx);
facc4307 2719 return;
39a43640
PZ
2720 }
2721
db24d33e 2722 ctx->is_active &= ~event_type;
3cbaa590
PZ
2723 if (!(ctx->is_active & EVENT_ALL))
2724 ctx->is_active = 0;
2725
63e30d3e
PZ
2726 if (ctx->task) {
2727 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2728 if (!ctx->is_active)
2729 cpuctx->task_ctx = NULL;
2730 }
facc4307 2731
8fdc6539
PZ
2732 /*
2733 * Always update time if it was set; not only when it changes.
2734 * Otherwise we can 'forget' to update time for any but the last
2735 * context we sched out. For example:
2736 *
2737 * ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2738 * ctx_sched_out(.event_type = EVENT_PINNED)
2739 *
2740 * would only update time for the pinned events.
2741 */
3cbaa590
PZ
2742 if (is_active & EVENT_TIME) {
2743 /* update (and stop) ctx time */
2744 update_context_time(ctx);
2745 update_cgrp_time_from_cpuctx(cpuctx);
2746 }
2747
8fdc6539
PZ
2748 is_active ^= ctx->is_active; /* changed bits */
2749
3cbaa590 2750 if (!ctx->nr_active || !(is_active & EVENT_ALL))
facc4307 2751 return;
5b0311e1 2752
075e0b00 2753 perf_pmu_disable(ctx->pmu);
3cbaa590 2754 if (is_active & EVENT_PINNED) {
889ff015
FW
2755 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2756 group_sched_out(event, cpuctx, ctx);
9ed6060d 2757 }
889ff015 2758
3cbaa590 2759 if (is_active & EVENT_FLEXIBLE) {
889ff015 2760 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
8c9ed8e1 2761 group_sched_out(event, cpuctx, ctx);
9ed6060d 2762 }
1b9a644f 2763 perf_pmu_enable(ctx->pmu);
235c7fc7
IM
2764}
2765
564c2b21 2766/*
5a3126d4
PZ
2767 * Test whether two contexts are equivalent, i.e. whether they have both been
2768 * cloned from the same version of the same context.
2769 *
2770 * Equivalence is measured using a generation number in the context that is
2771 * incremented on each modification to it; see unclone_ctx(), list_add_event()
2772 * and list_del_event().
564c2b21 2773 */
cdd6c482
IM
2774static int context_equiv(struct perf_event_context *ctx1,
2775 struct perf_event_context *ctx2)
564c2b21 2776{
211de6eb
PZ
2777 lockdep_assert_held(&ctx1->lock);
2778 lockdep_assert_held(&ctx2->lock);
2779
5a3126d4
PZ
2780 /* Pinning disables the swap optimization */
2781 if (ctx1->pin_count || ctx2->pin_count)
2782 return 0;
2783
2784 /* If ctx1 is the parent of ctx2 */
2785 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2786 return 1;
2787
2788 /* If ctx2 is the parent of ctx1 */
2789 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2790 return 1;
2791
2792 /*
2793 * If ctx1 and ctx2 have the same parent; we flatten the parent
2794 * hierarchy, see perf_event_init_context().
2795 */
2796 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2797 ctx1->parent_gen == ctx2->parent_gen)
2798 return 1;
2799
2800 /* Unmatched */
2801 return 0;
564c2b21
PM
2802}
2803
cdd6c482
IM
2804static void __perf_event_sync_stat(struct perf_event *event,
2805 struct perf_event *next_event)
bfbd3381
PZ
2806{
2807 u64 value;
2808
cdd6c482 2809 if (!event->attr.inherit_stat)
bfbd3381
PZ
2810 return;
2811
2812 /*
cdd6c482 2813 * Update the event value, we cannot use perf_event_read()
bfbd3381
PZ
2814 * because we're in the middle of a context switch and have IRQs
2815 * disabled, which upsets smp_call_function_single(), however
cdd6c482 2816 * we know the event must be on the current CPU, therefore we
bfbd3381
PZ
2817 * don't need to use it.
2818 */
cdd6c482
IM
2819 switch (event->state) {
2820 case PERF_EVENT_STATE_ACTIVE:
3dbebf15
PZ
2821 event->pmu->read(event);
2822 /* fall-through */
bfbd3381 2823
cdd6c482
IM
2824 case PERF_EVENT_STATE_INACTIVE:
2825 update_event_times(event);
bfbd3381
PZ
2826 break;
2827
2828 default:
2829 break;
2830 }
2831
2832 /*
cdd6c482 2833 * In order to keep per-task stats reliable we need to flip the event
bfbd3381
PZ
2834 * values when we flip the contexts.
2835 */
e7850595
PZ
2836 value = local64_read(&next_event->count);
2837 value = local64_xchg(&event->count, value);
2838 local64_set(&next_event->count, value);
bfbd3381 2839
cdd6c482
IM
2840 swap(event->total_time_enabled, next_event->total_time_enabled);
2841 swap(event->total_time_running, next_event->total_time_running);
19d2e755 2842
bfbd3381 2843 /*
19d2e755 2844 * Since we swizzled the values, update the user visible data too.
bfbd3381 2845 */
cdd6c482
IM
2846 perf_event_update_userpage(event);
2847 perf_event_update_userpage(next_event);
bfbd3381
PZ
2848}
2849
cdd6c482
IM
2850static void perf_event_sync_stat(struct perf_event_context *ctx,
2851 struct perf_event_context *next_ctx)
bfbd3381 2852{
cdd6c482 2853 struct perf_event *event, *next_event;
bfbd3381
PZ
2854
2855 if (!ctx->nr_stat)
2856 return;
2857
02ffdbc8
PZ
2858 update_context_time(ctx);
2859
cdd6c482
IM
2860 event = list_first_entry(&ctx->event_list,
2861 struct perf_event, event_entry);
bfbd3381 2862
cdd6c482
IM
2863 next_event = list_first_entry(&next_ctx->event_list,
2864 struct perf_event, event_entry);
bfbd3381 2865
cdd6c482
IM
2866 while (&event->event_entry != &ctx->event_list &&
2867 &next_event->event_entry != &next_ctx->event_list) {
bfbd3381 2868
cdd6c482 2869 __perf_event_sync_stat(event, next_event);
bfbd3381 2870
cdd6c482
IM
2871 event = list_next_entry(event, event_entry);
2872 next_event = list_next_entry(next_event, event_entry);
bfbd3381
PZ
2873 }
2874}
2875
fe4b04fa
PZ
2876static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2877 struct task_struct *next)
0793a61d 2878{
8dc85d54 2879 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
cdd6c482 2880 struct perf_event_context *next_ctx;
5a3126d4 2881 struct perf_event_context *parent, *next_parent;
108b02cf 2882 struct perf_cpu_context *cpuctx;
c93f7669 2883 int do_switch = 1;
0793a61d 2884
108b02cf
PZ
2885 if (likely(!ctx))
2886 return;
10989fb2 2887
108b02cf
PZ
2888 cpuctx = __get_cpu_context(ctx);
2889 if (!cpuctx->task_ctx)
0793a61d
TG
2890 return;
2891
c93f7669 2892 rcu_read_lock();
8dc85d54 2893 next_ctx = next->perf_event_ctxp[ctxn];
5a3126d4
PZ
2894 if (!next_ctx)
2895 goto unlock;
2896
2897 parent = rcu_dereference(ctx->parent_ctx);
2898 next_parent = rcu_dereference(next_ctx->parent_ctx);
2899
2900 /* If neither context have a parent context; they cannot be clones. */
802c8a61 2901 if (!parent && !next_parent)
5a3126d4
PZ
2902 goto unlock;
2903
2904 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
c93f7669
PM
2905 /*
2906 * Looks like the two contexts are clones, so we might be
2907 * able to optimize the context switch. We lock both
2908 * contexts and check that they are clones under the
2909 * lock (including re-checking that neither has been
2910 * uncloned in the meantime). It doesn't matter which
2911 * order we take the locks because no other cpu could
2912 * be trying to lock both of these tasks.
2913 */
e625cce1
TG
2914 raw_spin_lock(&ctx->lock);
2915 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
c93f7669 2916 if (context_equiv(ctx, next_ctx)) {
63b6da39
PZ
2917 WRITE_ONCE(ctx->task, next);
2918 WRITE_ONCE(next_ctx->task, task);
5a158c3c
YZ
2919
2920 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2921
63b6da39
PZ
2922 /*
2923 * RCU_INIT_POINTER here is safe because we've not
2924 * modified the ctx and the above modification of
2925 * ctx->task and ctx->task_ctx_data are immaterial
2926 * since those values are always verified under
2927 * ctx->lock which we're now holding.
2928 */
2929 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
2930 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
2931
c93f7669 2932 do_switch = 0;
bfbd3381 2933
cdd6c482 2934 perf_event_sync_stat(ctx, next_ctx);
c93f7669 2935 }
e625cce1
TG
2936 raw_spin_unlock(&next_ctx->lock);
2937 raw_spin_unlock(&ctx->lock);
564c2b21 2938 }
5a3126d4 2939unlock:
c93f7669 2940 rcu_read_unlock();
564c2b21 2941
c93f7669 2942 if (do_switch) {
facc4307 2943 raw_spin_lock(&ctx->lock);
487f05e1 2944 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
facc4307 2945 raw_spin_unlock(&ctx->lock);
c93f7669 2946 }
0793a61d
TG
2947}
2948
e48c1788
PZ
2949static DEFINE_PER_CPU(struct list_head, sched_cb_list);
2950
ba532500
YZ
2951void perf_sched_cb_dec(struct pmu *pmu)
2952{
e48c1788
PZ
2953 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2954
ba532500 2955 this_cpu_dec(perf_sched_cb_usages);
e48c1788
PZ
2956
2957 if (!--cpuctx->sched_cb_usage)
2958 list_del(&cpuctx->sched_cb_entry);
ba532500
YZ
2959}
2960
e48c1788 2961
ba532500
YZ
2962void perf_sched_cb_inc(struct pmu *pmu)
2963{
e48c1788
PZ
2964 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2965
2966 if (!cpuctx->sched_cb_usage++)
2967 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
2968
ba532500
YZ
2969 this_cpu_inc(perf_sched_cb_usages);
2970}
2971
2972/*
2973 * This function provides the context switch callback to the lower code
2974 * layer. It is invoked ONLY when the context switch callback is enabled.
09e61b4f
PZ
2975 *
2976 * This callback is relevant even to per-cpu events; for example multi event
2977 * PEBS requires this to provide PID/TID information. This requires we flush
2978 * all queued PEBS records before we context switch to a new task.
ba532500
YZ
2979 */
2980static void perf_pmu_sched_task(struct task_struct *prev,
2981 struct task_struct *next,
2982 bool sched_in)
2983{
2984 struct perf_cpu_context *cpuctx;
2985 struct pmu *pmu;
ba532500
YZ
2986
2987 if (prev == next)
2988 return;
2989
e48c1788 2990 list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
1fd7e416 2991 pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
ba532500 2992
e48c1788
PZ
2993 if (WARN_ON_ONCE(!pmu->sched_task))
2994 continue;
ba532500 2995
e48c1788
PZ
2996 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2997 perf_pmu_disable(pmu);
ba532500 2998
e48c1788 2999 pmu->sched_task(cpuctx->task_ctx, sched_in);
ba532500 3000
e48c1788
PZ
3001 perf_pmu_enable(pmu);
3002 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
ba532500 3003 }
ba532500
YZ
3004}
3005
45ac1403
AH
3006static void perf_event_switch(struct task_struct *task,
3007 struct task_struct *next_prev, bool sched_in);
3008
8dc85d54
PZ
3009#define for_each_task_context_nr(ctxn) \
3010 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3011
3012/*
3013 * Called from scheduler to remove the events of the current task,
3014 * with interrupts disabled.
3015 *
3016 * We stop each event and update the event value in event->count.
3017 *
3018 * This does not protect us against NMI, but disable()
3019 * sets the disabled bit in the control field of event _before_
3020 * accessing the event control register. If a NMI hits, then it will
3021 * not restart the event.
3022 */
ab0cce56
JO
3023void __perf_event_task_sched_out(struct task_struct *task,
3024 struct task_struct *next)
8dc85d54
PZ
3025{
3026 int ctxn;
3027
ba532500
YZ
3028 if (__this_cpu_read(perf_sched_cb_usages))
3029 perf_pmu_sched_task(task, next, false);
3030
45ac1403
AH
3031 if (atomic_read(&nr_switch_events))
3032 perf_event_switch(task, next, false);
3033
8dc85d54
PZ
3034 for_each_task_context_nr(ctxn)
3035 perf_event_context_sched_out(task, ctxn, next);
e5d1367f
SE
3036
3037 /*
3038 * if cgroup events exist on this CPU, then we need
3039 * to check if we have to switch out PMU state.
3040 * cgroup event are system-wide mode only
3041 */
4a32fea9 3042 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
a8d757ef 3043 perf_cgroup_sched_out(task, next);
8dc85d54
PZ
3044}
3045
5b0311e1
FW
3046/*
3047 * Called with IRQs disabled
3048 */
3049static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3050 enum event_type_t event_type)
3051{
3052 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
04289bb9
IM
3053}
3054
235c7fc7 3055static void
5b0311e1 3056ctx_pinned_sched_in(struct perf_event_context *ctx,
6e37738a 3057 struct perf_cpu_context *cpuctx)
0793a61d 3058{
cdd6c482 3059 struct perf_event *event;
0793a61d 3060
889ff015
FW
3061 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
3062 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 3063 continue;
5632ab12 3064 if (!event_filter_match(event))
3b6f9e5c
PM
3065 continue;
3066
e5d1367f
SE
3067 /* may need to reset tstamp_enabled */
3068 if (is_cgroup_event(event))
3069 perf_cgroup_mark_enabled(event, ctx);
3070
8c9ed8e1 3071 if (group_can_go_on(event, cpuctx, 1))
6e37738a 3072 group_sched_in(event, cpuctx, ctx);
3b6f9e5c
PM
3073
3074 /*
3075 * If this pinned group hasn't been scheduled,
3076 * put it in error state.
3077 */
cdd6c482
IM
3078 if (event->state == PERF_EVENT_STATE_INACTIVE) {
3079 update_group_times(event);
3080 event->state = PERF_EVENT_STATE_ERROR;
53cfbf59 3081 }
3b6f9e5c 3082 }
5b0311e1
FW
3083}
3084
3085static void
3086ctx_flexible_sched_in(struct perf_event_context *ctx,
6e37738a 3087 struct perf_cpu_context *cpuctx)
5b0311e1
FW
3088{
3089 struct perf_event *event;
3090 int can_add_hw = 1;
3b6f9e5c 3091
889ff015
FW
3092 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
3093 /* Ignore events in OFF or ERROR state */
3094 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 3095 continue;
04289bb9
IM
3096 /*
3097 * Listen to the 'cpu' scheduling filter constraint
cdd6c482 3098 * of events:
04289bb9 3099 */
5632ab12 3100 if (!event_filter_match(event))
0793a61d
TG
3101 continue;
3102
e5d1367f
SE
3103 /* may need to reset tstamp_enabled */
3104 if (is_cgroup_event(event))
3105 perf_cgroup_mark_enabled(event, ctx);
3106
9ed6060d 3107 if (group_can_go_on(event, cpuctx, can_add_hw)) {
6e37738a 3108 if (group_sched_in(event, cpuctx, ctx))
dd0e6ba2 3109 can_add_hw = 0;
9ed6060d 3110 }
0793a61d 3111 }
5b0311e1
FW
3112}
3113
3114static void
3115ctx_sched_in(struct perf_event_context *ctx,
3116 struct perf_cpu_context *cpuctx,
e5d1367f
SE
3117 enum event_type_t event_type,
3118 struct task_struct *task)
5b0311e1 3119{
db24d33e 3120 int is_active = ctx->is_active;
c994d613
PZ
3121 u64 now;
3122
3123 lockdep_assert_held(&ctx->lock);
e5d1367f 3124
5b0311e1 3125 if (likely(!ctx->nr_events))
facc4307 3126 return;
5b0311e1 3127
3cbaa590 3128 ctx->is_active |= (event_type | EVENT_TIME);
63e30d3e
PZ
3129 if (ctx->task) {
3130 if (!is_active)
3131 cpuctx->task_ctx = ctx;
3132 else
3133 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3134 }
3135
3cbaa590
PZ
3136 is_active ^= ctx->is_active; /* changed bits */
3137
3138 if (is_active & EVENT_TIME) {
3139 /* start ctx time */
3140 now = perf_clock();
3141 ctx->timestamp = now;
3142 perf_cgroup_set_timestamp(task, ctx);
3143 }
3144
5b0311e1
FW
3145 /*
3146 * First go through the list and put on any pinned groups
3147 * in order to give them the best chance of going on.
3148 */
3cbaa590 3149 if (is_active & EVENT_PINNED)
6e37738a 3150 ctx_pinned_sched_in(ctx, cpuctx);
5b0311e1
FW
3151
3152 /* Then walk through the lower prio flexible groups */
3cbaa590 3153 if (is_active & EVENT_FLEXIBLE)
6e37738a 3154 ctx_flexible_sched_in(ctx, cpuctx);
235c7fc7
IM
3155}
3156
329c0e01 3157static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
3158 enum event_type_t event_type,
3159 struct task_struct *task)
329c0e01
FW
3160{
3161 struct perf_event_context *ctx = &cpuctx->ctx;
3162
e5d1367f 3163 ctx_sched_in(ctx, cpuctx, event_type, task);
329c0e01
FW
3164}
3165
e5d1367f
SE
3166static void perf_event_context_sched_in(struct perf_event_context *ctx,
3167 struct task_struct *task)
235c7fc7 3168{
108b02cf 3169 struct perf_cpu_context *cpuctx;
235c7fc7 3170
108b02cf 3171 cpuctx = __get_cpu_context(ctx);
329c0e01
FW
3172 if (cpuctx->task_ctx == ctx)
3173 return;
3174
facc4307 3175 perf_ctx_lock(cpuctx, ctx);
1b9a644f 3176 perf_pmu_disable(ctx->pmu);
329c0e01
FW
3177 /*
3178 * We want to keep the following priority order:
3179 * cpu pinned (that don't need to move), task pinned,
3180 * cpu flexible, task flexible.
fe45bafb
AS
3181 *
3182 * However, if task's ctx is not carrying any pinned
3183 * events, no need to flip the cpuctx's events around.
329c0e01 3184 */
fe45bafb
AS
3185 if (!list_empty(&ctx->pinned_groups))
3186 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
63e30d3e 3187 perf_event_sched_in(cpuctx, ctx, task);
facc4307
PZ
3188 perf_pmu_enable(ctx->pmu);
3189 perf_ctx_unlock(cpuctx, ctx);
235c7fc7
IM
3190}
3191
8dc85d54
PZ
3192/*
3193 * Called from scheduler to add the events of the current task
3194 * with interrupts disabled.
3195 *
3196 * We restore the event value and then enable it.
3197 *
3198 * This does not protect us against NMI, but enable()
3199 * sets the enabled bit in the control field of event _before_
3200 * accessing the event control register. If a NMI hits, then it will
3201 * keep the event running.
3202 */
ab0cce56
JO
3203void __perf_event_task_sched_in(struct task_struct *prev,
3204 struct task_struct *task)
8dc85d54
PZ
3205{
3206 struct perf_event_context *ctx;
3207 int ctxn;
3208
7e41d177
PZ
3209 /*
3210 * If cgroup events exist on this CPU, then we need to check if we have
3211 * to switch in PMU state; cgroup event are system-wide mode only.
3212 *
3213 * Since cgroup events are CPU events, we must schedule these in before
3214 * we schedule in the task events.
3215 */
3216 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3217 perf_cgroup_sched_in(prev, task);
3218
8dc85d54
PZ
3219 for_each_task_context_nr(ctxn) {
3220 ctx = task->perf_event_ctxp[ctxn];
3221 if (likely(!ctx))
3222 continue;
3223
e5d1367f 3224 perf_event_context_sched_in(ctx, task);
8dc85d54 3225 }
d010b332 3226
45ac1403
AH
3227 if (atomic_read(&nr_switch_events))
3228 perf_event_switch(task, prev, true);
3229
ba532500
YZ
3230 if (__this_cpu_read(perf_sched_cb_usages))
3231 perf_pmu_sched_task(prev, task, true);
235c7fc7
IM
3232}
3233
abd50713
PZ
3234static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3235{
3236 u64 frequency = event->attr.sample_freq;
3237 u64 sec = NSEC_PER_SEC;
3238 u64 divisor, dividend;
3239
3240 int count_fls, nsec_fls, frequency_fls, sec_fls;
3241
3242 count_fls = fls64(count);
3243 nsec_fls = fls64(nsec);
3244 frequency_fls = fls64(frequency);
3245 sec_fls = 30;
3246
3247 /*
3248 * We got @count in @nsec, with a target of sample_freq HZ
3249 * the target period becomes:
3250 *
3251 * @count * 10^9
3252 * period = -------------------
3253 * @nsec * sample_freq
3254 *
3255 */
3256
3257 /*
3258 * Reduce accuracy by one bit such that @a and @b converge
3259 * to a similar magnitude.
3260 */
fe4b04fa 3261#define REDUCE_FLS(a, b) \
abd50713
PZ
3262do { \
3263 if (a##_fls > b##_fls) { \
3264 a >>= 1; \
3265 a##_fls--; \
3266 } else { \
3267 b >>= 1; \
3268 b##_fls--; \
3269 } \
3270} while (0)
3271
3272 /*
3273 * Reduce accuracy until either term fits in a u64, then proceed with
3274 * the other, so that finally we can do a u64/u64 division.
3275 */
3276 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3277 REDUCE_FLS(nsec, frequency);
3278 REDUCE_FLS(sec, count);
3279 }
3280
3281 if (count_fls + sec_fls > 64) {
3282 divisor = nsec * frequency;
3283
3284 while (count_fls + sec_fls > 64) {
3285 REDUCE_FLS(count, sec);
3286 divisor >>= 1;
3287 }
3288
3289 dividend = count * sec;
3290 } else {
3291 dividend = count * sec;
3292
3293 while (nsec_fls + frequency_fls > 64) {
3294 REDUCE_FLS(nsec, frequency);
3295 dividend >>= 1;
3296 }
3297
3298 divisor = nsec * frequency;
3299 }
3300
f6ab91ad
PZ
3301 if (!divisor)
3302 return dividend;
3303
abd50713
PZ
3304 return div64_u64(dividend, divisor);
3305}
3306
e050e3f0
SE
3307static DEFINE_PER_CPU(int, perf_throttled_count);
3308static DEFINE_PER_CPU(u64, perf_throttled_seq);
3309
f39d47ff 3310static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
bd2b5b12 3311{
cdd6c482 3312 struct hw_perf_event *hwc = &event->hw;
f6ab91ad 3313 s64 period, sample_period;
bd2b5b12
PZ
3314 s64 delta;
3315
abd50713 3316 period = perf_calculate_period(event, nsec, count);
bd2b5b12
PZ
3317
3318 delta = (s64)(period - hwc->sample_period);
3319 delta = (delta + 7) / 8; /* low pass filter */
3320
3321 sample_period = hwc->sample_period + delta;
3322
3323 if (!sample_period)
3324 sample_period = 1;
3325
bd2b5b12 3326 hwc->sample_period = sample_period;
abd50713 3327
e7850595 3328 if (local64_read(&hwc->period_left) > 8*sample_period) {
f39d47ff
SE
3329 if (disable)
3330 event->pmu->stop(event, PERF_EF_UPDATE);
3331
e7850595 3332 local64_set(&hwc->period_left, 0);
f39d47ff
SE
3333
3334 if (disable)
3335 event->pmu->start(event, PERF_EF_RELOAD);
abd50713 3336 }
bd2b5b12
PZ
3337}
3338
e050e3f0
SE
3339/*
3340 * combine freq adjustment with unthrottling to avoid two passes over the
3341 * events. At the same time, make sure, having freq events does not change
3342 * the rate of unthrottling as that would introduce bias.
3343 */
3344static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3345 int needs_unthr)
60db5e09 3346{
cdd6c482
IM
3347 struct perf_event *event;
3348 struct hw_perf_event *hwc;
e050e3f0 3349 u64 now, period = TICK_NSEC;
abd50713 3350 s64 delta;
60db5e09 3351
e050e3f0
SE
3352 /*
3353 * only need to iterate over all events iff:
3354 * - context have events in frequency mode (needs freq adjust)
3355 * - there are events to unthrottle on this cpu
3356 */
3357 if (!(ctx->nr_freq || needs_unthr))
0f5a2601
PZ
3358 return;
3359
e050e3f0 3360 raw_spin_lock(&ctx->lock);
f39d47ff 3361 perf_pmu_disable(ctx->pmu);
e050e3f0 3362
03541f8b 3363 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
cdd6c482 3364 if (event->state != PERF_EVENT_STATE_ACTIVE)
60db5e09
PZ
3365 continue;
3366
5632ab12 3367 if (!event_filter_match(event))
5d27c23d
PZ
3368 continue;
3369
44377277
AS
3370 perf_pmu_disable(event->pmu);
3371
cdd6c482 3372 hwc = &event->hw;
6a24ed6c 3373
ae23bff1 3374 if (hwc->interrupts == MAX_INTERRUPTS) {
e050e3f0 3375 hwc->interrupts = 0;
cdd6c482 3376 perf_log_throttle(event, 1);
a4eaf7f1 3377 event->pmu->start(event, 0);
a78ac325
PZ
3378 }
3379
cdd6c482 3380 if (!event->attr.freq || !event->attr.sample_freq)
44377277 3381 goto next;
60db5e09 3382
e050e3f0
SE
3383 /*
3384 * stop the event and update event->count
3385 */
3386 event->pmu->stop(event, PERF_EF_UPDATE);
3387
e7850595 3388 now = local64_read(&event->count);
abd50713
PZ
3389 delta = now - hwc->freq_count_stamp;
3390 hwc->freq_count_stamp = now;
60db5e09 3391
e050e3f0
SE
3392 /*
3393 * restart the event
3394 * reload only if value has changed
f39d47ff
SE
3395 * we have stopped the event so tell that
3396 * to perf_adjust_period() to avoid stopping it
3397 * twice.
e050e3f0 3398 */
abd50713 3399 if (delta > 0)
f39d47ff 3400 perf_adjust_period(event, period, delta, false);
e050e3f0
SE
3401
3402 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
44377277
AS
3403 next:
3404 perf_pmu_enable(event->pmu);
60db5e09 3405 }
e050e3f0 3406
f39d47ff 3407 perf_pmu_enable(ctx->pmu);
e050e3f0 3408 raw_spin_unlock(&ctx->lock);
60db5e09
PZ
3409}
3410
235c7fc7 3411/*
cdd6c482 3412 * Round-robin a context's events:
235c7fc7 3413 */
cdd6c482 3414static void rotate_ctx(struct perf_event_context *ctx)
0793a61d 3415{
dddd3379
TG
3416 /*
3417 * Rotate the first entry last of non-pinned groups. Rotation might be
3418 * disabled by the inheritance code.
3419 */
3420 if (!ctx->rotate_disable)
3421 list_rotate_left(&ctx->flexible_groups);
235c7fc7
IM
3422}
3423
9e630205 3424static int perf_rotate_context(struct perf_cpu_context *cpuctx)
235c7fc7 3425{
8dc85d54 3426 struct perf_event_context *ctx = NULL;
2fde4f94 3427 int rotate = 0;
7fc23a53 3428
b5ab4cd5 3429 if (cpuctx->ctx.nr_events) {
b5ab4cd5
PZ
3430 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3431 rotate = 1;
3432 }
235c7fc7 3433
8dc85d54 3434 ctx = cpuctx->task_ctx;
b5ab4cd5 3435 if (ctx && ctx->nr_events) {
b5ab4cd5
PZ
3436 if (ctx->nr_events != ctx->nr_active)
3437 rotate = 1;
3438 }
9717e6cd 3439
e050e3f0 3440 if (!rotate)
0f5a2601
PZ
3441 goto done;
3442
facc4307 3443 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
1b9a644f 3444 perf_pmu_disable(cpuctx->ctx.pmu);
60db5e09 3445
e050e3f0
SE
3446 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3447 if (ctx)
3448 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
0793a61d 3449
e050e3f0
SE
3450 rotate_ctx(&cpuctx->ctx);
3451 if (ctx)
3452 rotate_ctx(ctx);
235c7fc7 3453
e050e3f0 3454 perf_event_sched_in(cpuctx, ctx, current);
235c7fc7 3455
0f5a2601
PZ
3456 perf_pmu_enable(cpuctx->ctx.pmu);
3457 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
b5ab4cd5 3458done:
9e630205
SE
3459
3460 return rotate;
e9d2b064
PZ
3461}
3462
3463void perf_event_task_tick(void)
3464{
2fde4f94
MR
3465 struct list_head *head = this_cpu_ptr(&active_ctx_list);
3466 struct perf_event_context *ctx, *tmp;
e050e3f0 3467 int throttled;
b5ab4cd5 3468
e9d2b064
PZ
3469 WARN_ON(!irqs_disabled());
3470
e050e3f0
SE
3471 __this_cpu_inc(perf_throttled_seq);
3472 throttled = __this_cpu_xchg(perf_throttled_count, 0);
555e0c1e 3473 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
e050e3f0 3474
2fde4f94 3475 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
e050e3f0 3476 perf_adjust_freq_unthr_context(ctx, throttled);
0793a61d
TG
3477}
3478
889ff015
FW
3479static int event_enable_on_exec(struct perf_event *event,
3480 struct perf_event_context *ctx)
3481{
3482 if (!event->attr.enable_on_exec)
3483 return 0;
3484
3485 event->attr.enable_on_exec = 0;
3486 if (event->state >= PERF_EVENT_STATE_INACTIVE)
3487 return 0;
3488
1d9b482e 3489 __perf_event_mark_enabled(event);
889ff015
FW
3490
3491 return 1;
3492}
3493
57e7986e 3494/*
cdd6c482 3495 * Enable all of a task's events that have been marked enable-on-exec.
57e7986e
PM
3496 * This expects task == current.
3497 */
c1274499 3498static void perf_event_enable_on_exec(int ctxn)
57e7986e 3499{
c1274499 3500 struct perf_event_context *ctx, *clone_ctx = NULL;
487f05e1 3501 enum event_type_t event_type = 0;
3e349507 3502 struct perf_cpu_context *cpuctx;
cdd6c482 3503 struct perf_event *event;
57e7986e
PM
3504 unsigned long flags;
3505 int enabled = 0;
3506
3507 local_irq_save(flags);
c1274499 3508 ctx = current->perf_event_ctxp[ctxn];
cdd6c482 3509 if (!ctx || !ctx->nr_events)
57e7986e
PM
3510 goto out;
3511
3e349507
PZ
3512 cpuctx = __get_cpu_context(ctx);
3513 perf_ctx_lock(cpuctx, ctx);
7fce2509 3514 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
487f05e1 3515 list_for_each_entry(event, &ctx->event_list, event_entry) {
3e349507 3516 enabled |= event_enable_on_exec(event, ctx);
487f05e1
AS
3517 event_type |= get_event_type(event);
3518 }
57e7986e
PM
3519
3520 /*
3e349507 3521 * Unclone and reschedule this context if we enabled any event.
57e7986e 3522 */
3e349507 3523 if (enabled) {
211de6eb 3524 clone_ctx = unclone_ctx(ctx);
487f05e1 3525 ctx_resched(cpuctx, ctx, event_type);
7bbba0eb
PZ
3526 } else {
3527 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
3e349507
PZ
3528 }
3529 perf_ctx_unlock(cpuctx, ctx);
57e7986e 3530
9ed6060d 3531out:
57e7986e 3532 local_irq_restore(flags);
211de6eb
PZ
3533
3534 if (clone_ctx)
3535 put_ctx(clone_ctx);
57e7986e
PM
3536}
3537
0492d4c5
PZ
3538struct perf_read_data {
3539 struct perf_event *event;
3540 bool group;
7d88962e 3541 int ret;
0492d4c5
PZ
3542};
3543
451d24d1 3544static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
d6a2f903 3545{
d6a2f903
DCC
3546 u16 local_pkg, event_pkg;
3547
3548 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
451d24d1
PZ
3549 int local_cpu = smp_processor_id();
3550
3551 event_pkg = topology_physical_package_id(event_cpu);
3552 local_pkg = topology_physical_package_id(local_cpu);
d6a2f903
DCC
3553
3554 if (event_pkg == local_pkg)
3555 return local_cpu;
3556 }
3557
3558 return event_cpu;
3559}
3560
0793a61d 3561/*
cdd6c482 3562 * Cross CPU call to read the hardware event
0793a61d 3563 */
cdd6c482 3564static void __perf_event_read(void *info)
0793a61d 3565{
0492d4c5
PZ
3566 struct perf_read_data *data = info;
3567 struct perf_event *sub, *event = data->event;
cdd6c482 3568 struct perf_event_context *ctx = event->ctx;
108b02cf 3569 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
4a00c16e 3570 struct pmu *pmu = event->pmu;
621a01ea 3571
e1ac3614
PM
3572 /*
3573 * If this is a task context, we need to check whether it is
3574 * the current task context of this cpu. If not it has been
3575 * scheduled out before the smp call arrived. In that case
cdd6c482
IM
3576 * event->count would have been updated to a recent sample
3577 * when the event was scheduled out.
e1ac3614
PM
3578 */
3579 if (ctx->task && cpuctx->task_ctx != ctx)
3580 return;
3581
e625cce1 3582 raw_spin_lock(&ctx->lock);
e5d1367f 3583 if (ctx->is_active) {
542e72fc 3584 update_context_time(ctx);
e5d1367f
SE
3585 update_cgrp_time_from_event(event);
3586 }
0492d4c5 3587
cdd6c482 3588 update_event_times(event);
4a00c16e
SB
3589 if (event->state != PERF_EVENT_STATE_ACTIVE)
3590 goto unlock;
0492d4c5 3591
4a00c16e
SB
3592 if (!data->group) {
3593 pmu->read(event);
3594 data->ret = 0;
0492d4c5 3595 goto unlock;
4a00c16e
SB
3596 }
3597
3598 pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3599
3600 pmu->read(event);
0492d4c5
PZ
3601
3602 list_for_each_entry(sub, &event->sibling_list, group_entry) {
3603 update_event_times(sub);
4a00c16e
SB
3604 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3605 /*
3606 * Use sibling's PMU rather than @event's since
3607 * sibling could be on different (eg: software) PMU.
3608 */
0492d4c5 3609 sub->pmu->read(sub);
4a00c16e 3610 }
0492d4c5 3611 }
4a00c16e
SB
3612
3613 data->ret = pmu->commit_txn(pmu);
0492d4c5
PZ
3614
3615unlock:
e625cce1 3616 raw_spin_unlock(&ctx->lock);
0793a61d
TG
3617}
3618
b5e58793
PZ
3619static inline u64 perf_event_count(struct perf_event *event)
3620{
eacd3ecc
MF
3621 if (event->pmu->count)
3622 return event->pmu->count(event);
3623
3624 return __perf_event_count(event);
b5e58793
PZ
3625}
3626
ffe8690c
KX
3627/*
3628 * NMI-safe method to read a local event, that is an event that
3629 * is:
3630 * - either for the current task, or for this CPU
3631 * - does not have inherit set, for inherited task events
3632 * will not be local and we cannot read them atomically
3633 * - must not have a pmu::count method
3634 */
f91840a3 3635int perf_event_read_local(struct perf_event *event, u64 *value)
ffe8690c
KX
3636{
3637 unsigned long flags;
f91840a3 3638 int ret = 0;
ffe8690c
KX
3639
3640 /*
3641 * Disabling interrupts avoids all counter scheduling (context
3642 * switches, timer based rotation and IPIs).
3643 */
3644 local_irq_save(flags);
3645
ffe8690c
KX
3646 /*
3647 * It must not be an event with inherit set, we cannot read
3648 * all child counters from atomic context.
3649 */
f91840a3
AS
3650 if (event->attr.inherit) {
3651 ret = -EOPNOTSUPP;
3652 goto out;
3653 }
ffe8690c
KX
3654
3655 /*
3656 * It must not have a pmu::count method, those are not
3657 * NMI safe.
3658 */
f91840a3
AS
3659 if (event->pmu->count) {
3660 ret = -EOPNOTSUPP;
3661 goto out;
3662 }
3663
3664 /* If this is a per-task event, it must be for current */
3665 if ((event->attach_state & PERF_ATTACH_TASK) &&
3666 event->hw.target != current) {
3667 ret = -EINVAL;
3668 goto out;
3669 }
3670
3671 /* If this is a per-CPU event, it must be for this CPU */
3672 if (!(event->attach_state & PERF_ATTACH_TASK) &&
3673 event->cpu != smp_processor_id()) {
3674 ret = -EINVAL;
3675 goto out;
3676 }
ffe8690c
KX
3677
3678 /*
3679 * If the event is currently on this CPU, its either a per-task event,
3680 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3681 * oncpu == -1).
3682 */
3683 if (event->oncpu == smp_processor_id())
3684 event->pmu->read(event);
3685
f91840a3
AS
3686 *value = local64_read(&event->count);
3687out:
ffe8690c
KX
3688 local_irq_restore(flags);
3689
f91840a3 3690 return ret;
ffe8690c
KX
3691}
3692
7d88962e 3693static int perf_event_read(struct perf_event *event, bool group)
0793a61d 3694{
451d24d1 3695 int event_cpu, ret = 0;
7d88962e 3696
0793a61d 3697 /*
cdd6c482
IM
3698 * If event is enabled and currently active on a CPU, update the
3699 * value in the event structure:
0793a61d 3700 */
cdd6c482 3701 if (event->state == PERF_EVENT_STATE_ACTIVE) {
0492d4c5
PZ
3702 struct perf_read_data data = {
3703 .event = event,
3704 .group = group,
7d88962e 3705 .ret = 0,
0492d4c5 3706 };
d6a2f903 3707
451d24d1
PZ
3708 event_cpu = READ_ONCE(event->oncpu);
3709 if ((unsigned)event_cpu >= nr_cpu_ids)
3710 return 0;
3711
3712 preempt_disable();
3713 event_cpu = __perf_event_read_cpu(event, event_cpu);
d6a2f903 3714
58763148
PZ
3715 /*
3716 * Purposely ignore the smp_call_function_single() return
3717 * value.
3718 *
451d24d1 3719 * If event_cpu isn't a valid CPU it means the event got
58763148
PZ
3720 * scheduled out and that will have updated the event count.
3721 *
3722 * Therefore, either way, we'll have an up-to-date event count
3723 * after this.
3724 */
451d24d1
PZ
3725 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
3726 preempt_enable();
58763148 3727 ret = data.ret;
cdd6c482 3728 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
2b8988c9
PZ
3729 struct perf_event_context *ctx = event->ctx;
3730 unsigned long flags;
3731
e625cce1 3732 raw_spin_lock_irqsave(&ctx->lock, flags);
c530ccd9
SE
3733 /*
3734 * may read while context is not active
3735 * (e.g., thread is blocked), in that case
3736 * we cannot update context time
3737 */
e5d1367f 3738 if (ctx->is_active) {
c530ccd9 3739 update_context_time(ctx);
e5d1367f
SE
3740 update_cgrp_time_from_event(event);
3741 }
0492d4c5
PZ
3742 if (group)
3743 update_group_times(event);
3744 else
3745 update_event_times(event);
e625cce1 3746 raw_spin_unlock_irqrestore(&ctx->lock, flags);
0793a61d 3747 }
7d88962e
SB
3748
3749 return ret;
0793a61d
TG
3750}
3751
a63eaf34 3752/*
cdd6c482 3753 * Initialize the perf_event context in a task_struct:
a63eaf34 3754 */
eb184479 3755static void __perf_event_init_context(struct perf_event_context *ctx)
a63eaf34 3756{
e625cce1 3757 raw_spin_lock_init(&ctx->lock);
a63eaf34 3758 mutex_init(&ctx->mutex);
2fde4f94 3759 INIT_LIST_HEAD(&ctx->active_ctx_list);
889ff015
FW
3760 INIT_LIST_HEAD(&ctx->pinned_groups);
3761 INIT_LIST_HEAD(&ctx->flexible_groups);
a63eaf34
PM
3762 INIT_LIST_HEAD(&ctx->event_list);
3763 atomic_set(&ctx->refcount, 1);
eb184479
PZ
3764}
3765
3766static struct perf_event_context *
3767alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3768{
3769 struct perf_event_context *ctx;
3770
3771 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3772 if (!ctx)
3773 return NULL;
3774
3775 __perf_event_init_context(ctx);
3776 if (task) {
3777 ctx->task = task;
3778 get_task_struct(task);
0793a61d 3779 }
eb184479
PZ
3780 ctx->pmu = pmu;
3781
3782 return ctx;
a63eaf34
PM
3783}
3784
2ebd4ffb
MH
3785static struct task_struct *
3786find_lively_task_by_vpid(pid_t vpid)
3787{
3788 struct task_struct *task;
0793a61d
TG
3789
3790 rcu_read_lock();
2ebd4ffb 3791 if (!vpid)
0793a61d
TG
3792 task = current;
3793 else
2ebd4ffb 3794 task = find_task_by_vpid(vpid);
0793a61d
TG
3795 if (task)
3796 get_task_struct(task);
3797 rcu_read_unlock();
3798
3799 if (!task)
3800 return ERR_PTR(-ESRCH);
3801
2ebd4ffb 3802 return task;
2ebd4ffb
MH
3803}
3804
fe4b04fa
PZ
3805/*
3806 * Returns a matching context with refcount and pincount.
3807 */
108b02cf 3808static struct perf_event_context *
4af57ef2
YZ
3809find_get_context(struct pmu *pmu, struct task_struct *task,
3810 struct perf_event *event)
0793a61d 3811{
211de6eb 3812 struct perf_event_context *ctx, *clone_ctx = NULL;
22a4f650 3813 struct perf_cpu_context *cpuctx;
4af57ef2 3814 void *task_ctx_data = NULL;
25346b93 3815 unsigned long flags;
8dc85d54 3816 int ctxn, err;
4af57ef2 3817 int cpu = event->cpu;
0793a61d 3818
22a4ec72 3819 if (!task) {
cdd6c482 3820 /* Must be root to operate on a CPU event: */
0764771d 3821 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
0793a61d
TG
3822 return ERR_PTR(-EACCES);
3823
108b02cf 3824 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
0793a61d 3825 ctx = &cpuctx->ctx;
c93f7669 3826 get_ctx(ctx);
fe4b04fa 3827 ++ctx->pin_count;
0793a61d 3828
0793a61d
TG
3829 return ctx;
3830 }
3831
8dc85d54
PZ
3832 err = -EINVAL;
3833 ctxn = pmu->task_ctx_nr;
3834 if (ctxn < 0)
3835 goto errout;
3836
4af57ef2
YZ
3837 if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3838 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3839 if (!task_ctx_data) {
3840 err = -ENOMEM;
3841 goto errout;
3842 }
3843 }
3844
9ed6060d 3845retry:
8dc85d54 3846 ctx = perf_lock_task_context(task, ctxn, &flags);
c93f7669 3847 if (ctx) {
211de6eb 3848 clone_ctx = unclone_ctx(ctx);
fe4b04fa 3849 ++ctx->pin_count;
4af57ef2
YZ
3850
3851 if (task_ctx_data && !ctx->task_ctx_data) {
3852 ctx->task_ctx_data = task_ctx_data;
3853 task_ctx_data = NULL;
3854 }
e625cce1 3855 raw_spin_unlock_irqrestore(&ctx->lock, flags);
211de6eb
PZ
3856
3857 if (clone_ctx)
3858 put_ctx(clone_ctx);
9137fb28 3859 } else {
eb184479 3860 ctx = alloc_perf_context(pmu, task);
c93f7669
PM
3861 err = -ENOMEM;
3862 if (!ctx)
3863 goto errout;
eb184479 3864
4af57ef2
YZ
3865 if (task_ctx_data) {
3866 ctx->task_ctx_data = task_ctx_data;
3867 task_ctx_data = NULL;
3868 }
3869
dbe08d82
ON
3870 err = 0;
3871 mutex_lock(&task->perf_event_mutex);
3872 /*
3873 * If it has already passed perf_event_exit_task().
3874 * we must see PF_EXITING, it takes this mutex too.
3875 */
3876 if (task->flags & PF_EXITING)
3877 err = -ESRCH;
3878 else if (task->perf_event_ctxp[ctxn])
3879 err = -EAGAIN;
fe4b04fa 3880 else {
9137fb28 3881 get_ctx(ctx);
fe4b04fa 3882 ++ctx->pin_count;
dbe08d82 3883 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
fe4b04fa 3884 }
dbe08d82
ON
3885 mutex_unlock(&task->perf_event_mutex);
3886
3887 if (unlikely(err)) {
9137fb28 3888 put_ctx(ctx);
dbe08d82
ON
3889
3890 if (err == -EAGAIN)
3891 goto retry;
3892 goto errout;
a63eaf34
PM
3893 }
3894 }
3895
4af57ef2 3896 kfree(task_ctx_data);
0793a61d 3897 return ctx;
c93f7669 3898
9ed6060d 3899errout:
4af57ef2 3900 kfree(task_ctx_data);
c93f7669 3901 return ERR_PTR(err);
0793a61d
TG
3902}
3903
6fb2915d 3904static void perf_event_free_filter(struct perf_event *event);
2541517c 3905static void perf_event_free_bpf_prog(struct perf_event *event);
6fb2915d 3906
cdd6c482 3907static void free_event_rcu(struct rcu_head *head)
592903cd 3908{
cdd6c482 3909 struct perf_event *event;
592903cd 3910
cdd6c482
IM
3911 event = container_of(head, struct perf_event, rcu_head);
3912 if (event->ns)
3913 put_pid_ns(event->ns);
6fb2915d 3914 perf_event_free_filter(event);
cdd6c482 3915 kfree(event);
592903cd
PZ
3916}
3917
b69cf536
PZ
3918static void ring_buffer_attach(struct perf_event *event,
3919 struct ring_buffer *rb);
925d519a 3920
f2fb6bef
KL
3921static void detach_sb_event(struct perf_event *event)
3922{
3923 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
3924
3925 raw_spin_lock(&pel->lock);
3926 list_del_rcu(&event->sb_list);
3927 raw_spin_unlock(&pel->lock);
3928}
3929
a4f144eb 3930static bool is_sb_event(struct perf_event *event)
f2fb6bef 3931{
a4f144eb
DCC
3932 struct perf_event_attr *attr = &event->attr;
3933
f2fb6bef 3934 if (event->parent)
a4f144eb 3935 return false;
f2fb6bef
KL
3936
3937 if (event->attach_state & PERF_ATTACH_TASK)
a4f144eb 3938 return false;
f2fb6bef 3939
a4f144eb
DCC
3940 if (attr->mmap || attr->mmap_data || attr->mmap2 ||
3941 attr->comm || attr->comm_exec ||
3942 attr->task ||
3943 attr->context_switch)
3944 return true;
3945 return false;
3946}
3947
3948static void unaccount_pmu_sb_event(struct perf_event *event)
3949{
3950 if (is_sb_event(event))
3951 detach_sb_event(event);
f2fb6bef
KL
3952}
3953
4beb31f3 3954static void unaccount_event_cpu(struct perf_event *event, int cpu)
f1600952 3955{
4beb31f3
FW
3956 if (event->parent)
3957 return;
3958
4beb31f3
FW
3959 if (is_cgroup_event(event))
3960 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3961}
925d519a 3962
555e0c1e
FW
3963#ifdef CONFIG_NO_HZ_FULL
3964static DEFINE_SPINLOCK(nr_freq_lock);
3965#endif
3966
3967static void unaccount_freq_event_nohz(void)
3968{
3969#ifdef CONFIG_NO_HZ_FULL
3970 spin_lock(&nr_freq_lock);
3971 if (atomic_dec_and_test(&nr_freq_events))
3972 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
3973 spin_unlock(&nr_freq_lock);
3974#endif
3975}
3976
3977static void unaccount_freq_event(void)
3978{
3979 if (tick_nohz_full_enabled())
3980 unaccount_freq_event_nohz();
3981 else
3982 atomic_dec(&nr_freq_events);
3983}
3984
4beb31f3
FW
3985static void unaccount_event(struct perf_event *event)
3986{
25432ae9
PZ
3987 bool dec = false;
3988
4beb31f3
FW
3989 if (event->parent)
3990 return;
3991
3992 if (event->attach_state & PERF_ATTACH_TASK)
25432ae9 3993 dec = true;
4beb31f3
FW
3994 if (event->attr.mmap || event->attr.mmap_data)
3995 atomic_dec(&nr_mmap_events);
3996 if (event->attr.comm)
3997 atomic_dec(&nr_comm_events);
e4222673
HB
3998 if (event->attr.namespaces)
3999 atomic_dec(&nr_namespaces_events);
4beb31f3
FW
4000 if (event->attr.task)
4001 atomic_dec(&nr_task_events);
948b26b6 4002 if (event->attr.freq)
555e0c1e 4003 unaccount_freq_event();
45ac1403 4004 if (event->attr.context_switch) {
25432ae9 4005 dec = true;
45ac1403
AH
4006 atomic_dec(&nr_switch_events);
4007 }
4beb31f3 4008 if (is_cgroup_event(event))
25432ae9 4009 dec = true;
4beb31f3 4010 if (has_branch_stack(event))
25432ae9
PZ
4011 dec = true;
4012
9107c89e
PZ
4013 if (dec) {
4014 if (!atomic_add_unless(&perf_sched_count, -1, 1))
4015 schedule_delayed_work(&perf_sched_work, HZ);
4016 }
4beb31f3
FW
4017
4018 unaccount_event_cpu(event, event->cpu);
f2fb6bef
KL
4019
4020 unaccount_pmu_sb_event(event);
4beb31f3 4021}
925d519a 4022
9107c89e
PZ
4023static void perf_sched_delayed(struct work_struct *work)
4024{
4025 mutex_lock(&perf_sched_mutex);
4026 if (atomic_dec_and_test(&perf_sched_count))
4027 static_branch_disable(&perf_sched_events);
4028 mutex_unlock(&perf_sched_mutex);
4029}
4030
bed5b25a
AS
4031/*
4032 * The following implement mutual exclusion of events on "exclusive" pmus
4033 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4034 * at a time, so we disallow creating events that might conflict, namely:
4035 *
4036 * 1) cpu-wide events in the presence of per-task events,
4037 * 2) per-task events in the presence of cpu-wide events,
4038 * 3) two matching events on the same context.
4039 *
4040 * The former two cases are handled in the allocation path (perf_event_alloc(),
a0733e69 4041 * _free_event()), the latter -- before the first perf_install_in_context().
bed5b25a
AS
4042 */
4043static int exclusive_event_init(struct perf_event *event)
4044{
4045 struct pmu *pmu = event->pmu;
4046
4047 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4048 return 0;
4049
4050 /*
4051 * Prevent co-existence of per-task and cpu-wide events on the
4052 * same exclusive pmu.
4053 *
4054 * Negative pmu::exclusive_cnt means there are cpu-wide
4055 * events on this "exclusive" pmu, positive means there are
4056 * per-task events.
4057 *
4058 * Since this is called in perf_event_alloc() path, event::ctx
4059 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4060 * to mean "per-task event", because unlike other attach states it
4061 * never gets cleared.
4062 */
4063 if (event->attach_state & PERF_ATTACH_TASK) {
4064 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4065 return -EBUSY;
4066 } else {
4067 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4068 return -EBUSY;
4069 }
4070
4071 return 0;
4072}
4073
4074static void exclusive_event_destroy(struct perf_event *event)
4075{
4076 struct pmu *pmu = event->pmu;
4077
4078 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4079 return;
4080
4081 /* see comment in exclusive_event_init() */
4082 if (event->attach_state & PERF_ATTACH_TASK)
4083 atomic_dec(&pmu->exclusive_cnt);
4084 else
4085 atomic_inc(&pmu->exclusive_cnt);
4086}
4087
4088static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4089{
3bf6215a 4090 if ((e1->pmu == e2->pmu) &&
bed5b25a
AS
4091 (e1->cpu == e2->cpu ||
4092 e1->cpu == -1 ||
4093 e2->cpu == -1))
4094 return true;
4095 return false;
4096}
4097
4098/* Called under the same ctx::mutex as perf_install_in_context() */
4099static bool exclusive_event_installable(struct perf_event *event,
4100 struct perf_event_context *ctx)
4101{
4102 struct perf_event *iter_event;
4103 struct pmu *pmu = event->pmu;
4104
4105 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4106 return true;
4107
4108 list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4109 if (exclusive_event_match(iter_event, event))
4110 return false;
4111 }
4112
4113 return true;
4114}
4115
375637bc
AS
4116static void perf_addr_filters_splice(struct perf_event *event,
4117 struct list_head *head);
4118
683ede43 4119static void _free_event(struct perf_event *event)
f1600952 4120{
e360adbe 4121 irq_work_sync(&event->pending);
925d519a 4122
4beb31f3 4123 unaccount_event(event);
9ee318a7 4124
76369139 4125 if (event->rb) {
9bb5d40c
PZ
4126 /*
4127 * Can happen when we close an event with re-directed output.
4128 *
4129 * Since we have a 0 refcount, perf_mmap_close() will skip
4130 * over us; possibly making our ring_buffer_put() the last.
4131 */
4132 mutex_lock(&event->mmap_mutex);
b69cf536 4133 ring_buffer_attach(event, NULL);
9bb5d40c 4134 mutex_unlock(&event->mmap_mutex);
a4be7c27
PZ
4135 }
4136
e5d1367f
SE
4137 if (is_cgroup_event(event))
4138 perf_detach_cgroup(event);
4139
a0733e69
PZ
4140 if (!event->parent) {
4141 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4142 put_callchain_buffers();
4143 }
4144
4145 perf_event_free_bpf_prog(event);
375637bc
AS
4146 perf_addr_filters_splice(event, NULL);
4147 kfree(event->addr_filters_offs);
a0733e69
PZ
4148
4149 if (event->destroy)
4150 event->destroy(event);
4151
4152 if (event->ctx)
4153 put_ctx(event->ctx);
4154
62a92c8f
AS
4155 exclusive_event_destroy(event);
4156 module_put(event->pmu->module);
a0733e69
PZ
4157
4158 call_rcu(&event->rcu_head, free_event_rcu);
f1600952
PZ
4159}
4160
683ede43
PZ
4161/*
4162 * Used to free events which have a known refcount of 1, such as in error paths
4163 * where the event isn't exposed yet and inherited events.
4164 */
4165static void free_event(struct perf_event *event)
0793a61d 4166{
683ede43
PZ
4167 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4168 "unexpected event refcount: %ld; ptr=%p\n",
4169 atomic_long_read(&event->refcount), event)) {
4170 /* leak to avoid use-after-free */
4171 return;
4172 }
0793a61d 4173
683ede43 4174 _free_event(event);
0793a61d
TG
4175}
4176
a66a3052 4177/*
f8697762 4178 * Remove user event from the owner task.
a66a3052 4179 */
f8697762 4180static void perf_remove_from_owner(struct perf_event *event)
fb0459d7 4181{
8882135b 4182 struct task_struct *owner;
fb0459d7 4183
8882135b 4184 rcu_read_lock();
8882135b 4185 /*
f47c02c0
PZ
4186 * Matches the smp_store_release() in perf_event_exit_task(). If we
4187 * observe !owner it means the list deletion is complete and we can
4188 * indeed free this event, otherwise we need to serialize on
8882135b
PZ
4189 * owner->perf_event_mutex.
4190 */
f47c02c0 4191 owner = lockless_dereference(event->owner);
8882135b
PZ
4192 if (owner) {
4193 /*
4194 * Since delayed_put_task_struct() also drops the last
4195 * task reference we can safely take a new reference
4196 * while holding the rcu_read_lock().
4197 */
4198 get_task_struct(owner);
4199 }
4200 rcu_read_unlock();
4201
4202 if (owner) {
f63a8daa
PZ
4203 /*
4204 * If we're here through perf_event_exit_task() we're already
4205 * holding ctx->mutex which would be an inversion wrt. the
4206 * normal lock order.
4207 *
4208 * However we can safely take this lock because its the child
4209 * ctx->mutex.
4210 */
4211 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4212
8882135b
PZ
4213 /*
4214 * We have to re-check the event->owner field, if it is cleared
4215 * we raced with perf_event_exit_task(), acquiring the mutex
4216 * ensured they're done, and we can proceed with freeing the
4217 * event.
4218 */
f47c02c0 4219 if (event->owner) {
8882135b 4220 list_del_init(&event->owner_entry);
f47c02c0
PZ
4221 smp_store_release(&event->owner, NULL);
4222 }
8882135b
PZ
4223 mutex_unlock(&owner->perf_event_mutex);
4224 put_task_struct(owner);
4225 }
f8697762
JO
4226}
4227
f8697762
JO
4228static void put_event(struct perf_event *event)
4229{
f8697762
JO
4230 if (!atomic_long_dec_and_test(&event->refcount))
4231 return;
4232
c6e5b732
PZ
4233 _free_event(event);
4234}
4235
4236/*
4237 * Kill an event dead; while event:refcount will preserve the event
4238 * object, it will not preserve its functionality. Once the last 'user'
4239 * gives up the object, we'll destroy the thing.
4240 */
4241int perf_event_release_kernel(struct perf_event *event)
4242{
a4f4bb6d 4243 struct perf_event_context *ctx = event->ctx;
c6e5b732
PZ
4244 struct perf_event *child, *tmp;
4245
a4f4bb6d
PZ
4246 /*
4247 * If we got here through err_file: fput(event_file); we will not have
4248 * attached to a context yet.
4249 */
4250 if (!ctx) {
4251 WARN_ON_ONCE(event->attach_state &
4252 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4253 goto no_ctx;
4254 }
4255
f8697762
JO
4256 if (!is_kernel_event(event))
4257 perf_remove_from_owner(event);
8882135b 4258
5fa7c8ec 4259 ctx = perf_event_ctx_lock(event);
a83fe28e 4260 WARN_ON_ONCE(ctx->parent_ctx);
a69b0ca4 4261 perf_remove_from_context(event, DETACH_GROUP);
683ede43 4262
a69b0ca4 4263 raw_spin_lock_irq(&ctx->lock);
683ede43 4264 /*
d8a8cfc7 4265 * Mark this event as STATE_DEAD, there is no external reference to it
a69b0ca4 4266 * anymore.
683ede43 4267 *
a69b0ca4
PZ
4268 * Anybody acquiring event->child_mutex after the below loop _must_
4269 * also see this, most importantly inherit_event() which will avoid
4270 * placing more children on the list.
683ede43 4271 *
c6e5b732
PZ
4272 * Thus this guarantees that we will in fact observe and kill _ALL_
4273 * child events.
683ede43 4274 */
a69b0ca4
PZ
4275 event->state = PERF_EVENT_STATE_DEAD;
4276 raw_spin_unlock_irq(&ctx->lock);
4277
4278 perf_event_ctx_unlock(event, ctx);
683ede43 4279
c6e5b732
PZ
4280again:
4281 mutex_lock(&event->child_mutex);
4282 list_for_each_entry(child, &event->child_list, child_list) {
a6fa941d 4283
c6e5b732
PZ
4284 /*
4285 * Cannot change, child events are not migrated, see the
4286 * comment with perf_event_ctx_lock_nested().
4287 */
4288 ctx = lockless_dereference(child->ctx);
4289 /*
4290 * Since child_mutex nests inside ctx::mutex, we must jump
4291 * through hoops. We start by grabbing a reference on the ctx.
4292 *
4293 * Since the event cannot get freed while we hold the
4294 * child_mutex, the context must also exist and have a !0
4295 * reference count.
4296 */
4297 get_ctx(ctx);
4298
4299 /*
4300 * Now that we have a ctx ref, we can drop child_mutex, and
4301 * acquire ctx::mutex without fear of it going away. Then we
4302 * can re-acquire child_mutex.
4303 */
4304 mutex_unlock(&event->child_mutex);
4305 mutex_lock(&ctx->mutex);
4306 mutex_lock(&event->child_mutex);
4307
4308 /*
4309 * Now that we hold ctx::mutex and child_mutex, revalidate our
4310 * state, if child is still the first entry, it didn't get freed
4311 * and we can continue doing so.
4312 */
4313 tmp = list_first_entry_or_null(&event->child_list,
4314 struct perf_event, child_list);
4315 if (tmp == child) {
4316 perf_remove_from_context(child, DETACH_GROUP);
4317 list_del(&child->child_list);
4318 free_event(child);
4319 /*
4320 * This matches the refcount bump in inherit_event();
4321 * this can't be the last reference.
4322 */
4323 put_event(event);
4324 }
4325
4326 mutex_unlock(&event->child_mutex);
4327 mutex_unlock(&ctx->mutex);
4328 put_ctx(ctx);
4329 goto again;
4330 }
4331 mutex_unlock(&event->child_mutex);
4332
a4f4bb6d
PZ
4333no_ctx:
4334 put_event(event); /* Must be the 'last' reference */
683ede43
PZ
4335 return 0;
4336}
4337EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4338
8b10c5e2
PZ
4339/*
4340 * Called when the last reference to the file is gone.
4341 */
a6fa941d
AV
4342static int perf_release(struct inode *inode, struct file *file)
4343{
c6e5b732 4344 perf_event_release_kernel(file->private_data);
a6fa941d 4345 return 0;
fb0459d7 4346}
fb0459d7 4347
59ed446f 4348u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
e53c0994 4349{
cdd6c482 4350 struct perf_event *child;
e53c0994
PZ
4351 u64 total = 0;
4352
59ed446f
PZ
4353 *enabled = 0;
4354 *running = 0;
4355
6f10581a 4356 mutex_lock(&event->child_mutex);
01add3ea 4357
7d88962e 4358 (void)perf_event_read(event, false);
01add3ea
SB
4359 total += perf_event_count(event);
4360
59ed446f
PZ
4361 *enabled += event->total_time_enabled +
4362 atomic64_read(&event->child_total_time_enabled);
4363 *running += event->total_time_running +
4364 atomic64_read(&event->child_total_time_running);
4365
4366 list_for_each_entry(child, &event->child_list, child_list) {
7d88962e 4367 (void)perf_event_read(child, false);
01add3ea 4368 total += perf_event_count(child);
59ed446f
PZ
4369 *enabled += child->total_time_enabled;
4370 *running += child->total_time_running;
4371 }
6f10581a 4372 mutex_unlock(&event->child_mutex);
e53c0994
PZ
4373
4374 return total;
4375}
fb0459d7 4376EXPORT_SYMBOL_GPL(perf_event_read_value);
e53c0994 4377
7d88962e 4378static int __perf_read_group_add(struct perf_event *leader,
fa8c2693 4379 u64 read_format, u64 *values)
3dab77fb 4380{
fa8c2693
PZ
4381 struct perf_event *sub;
4382 int n = 1; /* skip @nr */
7d88962e 4383 int ret;
f63a8daa 4384
7d88962e
SB
4385 ret = perf_event_read(leader, true);
4386 if (ret)
4387 return ret;
abf4868b 4388
fa8c2693
PZ
4389 /*
4390 * Since we co-schedule groups, {enabled,running} times of siblings
4391 * will be identical to those of the leader, so we only publish one
4392 * set.
4393 */
4394 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4395 values[n++] += leader->total_time_enabled +
4396 atomic64_read(&leader->child_total_time_enabled);
4397 }
3dab77fb 4398
fa8c2693
PZ
4399 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4400 values[n++] += leader->total_time_running +
4401 atomic64_read(&leader->child_total_time_running);
4402 }
4403
4404 /*
4405 * Write {count,id} tuples for every sibling.
4406 */
4407 values[n++] += perf_event_count(leader);
abf4868b
PZ
4408 if (read_format & PERF_FORMAT_ID)
4409 values[n++] = primary_event_id(leader);
3dab77fb 4410
fa8c2693
PZ
4411 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4412 values[n++] += perf_event_count(sub);
4413 if (read_format & PERF_FORMAT_ID)
4414 values[n++] = primary_event_id(sub);
4415 }
7d88962e
SB
4416
4417 return 0;
fa8c2693 4418}
3dab77fb 4419
fa8c2693
PZ
4420static int perf_read_group(struct perf_event *event,
4421 u64 read_format, char __user *buf)
4422{
4423 struct perf_event *leader = event->group_leader, *child;
4424 struct perf_event_context *ctx = leader->ctx;
7d88962e 4425 int ret;
fa8c2693 4426 u64 *values;
3dab77fb 4427
fa8c2693 4428 lockdep_assert_held(&ctx->mutex);
3dab77fb 4429
fa8c2693
PZ
4430 values = kzalloc(event->read_size, GFP_KERNEL);
4431 if (!values)
4432 return -ENOMEM;
3dab77fb 4433
fa8c2693
PZ
4434 values[0] = 1 + leader->nr_siblings;
4435
4436 /*
4437 * By locking the child_mutex of the leader we effectively
4438 * lock the child list of all siblings.. XXX explain how.
4439 */
4440 mutex_lock(&leader->child_mutex);
abf4868b 4441
7d88962e
SB
4442 ret = __perf_read_group_add(leader, read_format, values);
4443 if (ret)
4444 goto unlock;
4445
4446 list_for_each_entry(child, &leader->child_list, child_list) {
4447 ret = __perf_read_group_add(child, read_format, values);
4448 if (ret)
4449 goto unlock;
4450 }
abf4868b 4451
fa8c2693 4452 mutex_unlock(&leader->child_mutex);
abf4868b 4453
7d88962e 4454 ret = event->read_size;
fa8c2693
PZ
4455 if (copy_to_user(buf, values, event->read_size))
4456 ret = -EFAULT;
7d88962e 4457 goto out;
fa8c2693 4458
7d88962e
SB
4459unlock:
4460 mutex_unlock(&leader->child_mutex);
4461out:
fa8c2693 4462 kfree(values);
abf4868b 4463 return ret;
3dab77fb
PZ
4464}
4465
b15f495b 4466static int perf_read_one(struct perf_event *event,
3dab77fb
PZ
4467 u64 read_format, char __user *buf)
4468{
59ed446f 4469 u64 enabled, running;
3dab77fb
PZ
4470 u64 values[4];
4471 int n = 0;
4472
59ed446f
PZ
4473 values[n++] = perf_event_read_value(event, &enabled, &running);
4474 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4475 values[n++] = enabled;
4476 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4477 values[n++] = running;
3dab77fb 4478 if (read_format & PERF_FORMAT_ID)
cdd6c482 4479 values[n++] = primary_event_id(event);
3dab77fb
PZ
4480
4481 if (copy_to_user(buf, values, n * sizeof(u64)))
4482 return -EFAULT;
4483
4484 return n * sizeof(u64);
4485}
4486
dc633982
JO
4487static bool is_event_hup(struct perf_event *event)
4488{
4489 bool no_children;
4490
a69b0ca4 4491 if (event->state > PERF_EVENT_STATE_EXIT)
dc633982
JO
4492 return false;
4493
4494 mutex_lock(&event->child_mutex);
4495 no_children = list_empty(&event->child_list);
4496 mutex_unlock(&event->child_mutex);
4497 return no_children;
4498}
4499
0793a61d 4500/*
cdd6c482 4501 * Read the performance event - simple non blocking version for now
0793a61d
TG
4502 */
4503static ssize_t
b15f495b 4504__perf_read(struct perf_event *event, char __user *buf, size_t count)
0793a61d 4505{
cdd6c482 4506 u64 read_format = event->attr.read_format;
3dab77fb 4507 int ret;
0793a61d 4508
3b6f9e5c 4509 /*
cdd6c482 4510 * Return end-of-file for a read on a event that is in
3b6f9e5c
PM
4511 * error state (i.e. because it was pinned but it couldn't be
4512 * scheduled on to the CPU at some point).
4513 */
cdd6c482 4514 if (event->state == PERF_EVENT_STATE_ERROR)
3b6f9e5c
PM
4515 return 0;
4516
c320c7b7 4517 if (count < event->read_size)
3dab77fb
PZ
4518 return -ENOSPC;
4519
cdd6c482 4520 WARN_ON_ONCE(event->ctx->parent_ctx);
3dab77fb 4521 if (read_format & PERF_FORMAT_GROUP)
b15f495b 4522 ret = perf_read_group(event, read_format, buf);
3dab77fb 4523 else
b15f495b 4524 ret = perf_read_one(event, read_format, buf);
0793a61d 4525
3dab77fb 4526 return ret;
0793a61d
TG
4527}
4528
0793a61d
TG
4529static ssize_t
4530perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4531{
cdd6c482 4532 struct perf_event *event = file->private_data;
f63a8daa
PZ
4533 struct perf_event_context *ctx;
4534 int ret;
0793a61d 4535
f63a8daa 4536 ctx = perf_event_ctx_lock(event);
b15f495b 4537 ret = __perf_read(event, buf, count);
f63a8daa
PZ
4538 perf_event_ctx_unlock(event, ctx);
4539
4540 return ret;
0793a61d
TG
4541}
4542
4543static unsigned int perf_poll(struct file *file, poll_table *wait)
4544{
cdd6c482 4545 struct perf_event *event = file->private_data;
76369139 4546 struct ring_buffer *rb;
61b67684 4547 unsigned int events = POLLHUP;
c7138f37 4548
e708d7ad 4549 poll_wait(file, &event->waitq, wait);
179033b3 4550
dc633982 4551 if (is_event_hup(event))
179033b3 4552 return events;
c7138f37 4553
10c6db11 4554 /*
9bb5d40c
PZ
4555 * Pin the event->rb by taking event->mmap_mutex; otherwise
4556 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
10c6db11
PZ
4557 */
4558 mutex_lock(&event->mmap_mutex);
9bb5d40c
PZ
4559 rb = event->rb;
4560 if (rb)
76369139 4561 events = atomic_xchg(&rb->poll, 0);
10c6db11 4562 mutex_unlock(&event->mmap_mutex);
0793a61d
TG
4563 return events;
4564}
4565
f63a8daa 4566static void _perf_event_reset(struct perf_event *event)
6de6a7b9 4567{
7d88962e 4568 (void)perf_event_read(event, false);
e7850595 4569 local64_set(&event->count, 0);
cdd6c482 4570 perf_event_update_userpage(event);
3df5edad
PZ
4571}
4572
c93f7669 4573/*
cdd6c482
IM
4574 * Holding the top-level event's child_mutex means that any
4575 * descendant process that has inherited this event will block
8ba289b8 4576 * in perf_event_exit_event() if it goes to exit, thus satisfying the
cdd6c482 4577 * task existence requirements of perf_event_enable/disable.
c93f7669 4578 */
cdd6c482
IM
4579static void perf_event_for_each_child(struct perf_event *event,
4580 void (*func)(struct perf_event *))
3df5edad 4581{
cdd6c482 4582 struct perf_event *child;
3df5edad 4583
cdd6c482 4584 WARN_ON_ONCE(event->ctx->parent_ctx);
f63a8daa 4585
cdd6c482
IM
4586 mutex_lock(&event->child_mutex);
4587 func(event);
4588 list_for_each_entry(child, &event->child_list, child_list)
3df5edad 4589 func(child);
cdd6c482 4590 mutex_unlock(&event->child_mutex);
3df5edad
PZ
4591}
4592
cdd6c482
IM
4593static void perf_event_for_each(struct perf_event *event,
4594 void (*func)(struct perf_event *))
3df5edad 4595{
cdd6c482
IM
4596 struct perf_event_context *ctx = event->ctx;
4597 struct perf_event *sibling;
3df5edad 4598
f63a8daa
PZ
4599 lockdep_assert_held(&ctx->mutex);
4600
cdd6c482 4601 event = event->group_leader;
75f937f2 4602
cdd6c482 4603 perf_event_for_each_child(event, func);
cdd6c482 4604 list_for_each_entry(sibling, &event->sibling_list, group_entry)
724b6daa 4605 perf_event_for_each_child(sibling, func);
6de6a7b9
PZ
4606}
4607
fae3fde6
PZ
4608static void __perf_event_period(struct perf_event *event,
4609 struct perf_cpu_context *cpuctx,
4610 struct perf_event_context *ctx,
4611 void *info)
c7999c6f 4612{
fae3fde6 4613 u64 value = *((u64 *)info);
c7999c6f 4614 bool active;
08247e31 4615
cdd6c482 4616 if (event->attr.freq) {
cdd6c482 4617 event->attr.sample_freq = value;
08247e31 4618 } else {
cdd6c482
IM
4619 event->attr.sample_period = value;
4620 event->hw.sample_period = value;
08247e31 4621 }
bad7192b
PZ
4622
4623 active = (event->state == PERF_EVENT_STATE_ACTIVE);
4624 if (active) {
4625 perf_pmu_disable(ctx->pmu);
1e02cd40
PZ
4626 /*
4627 * We could be throttled; unthrottle now to avoid the tick
4628 * trying to unthrottle while we already re-started the event.
4629 */
4630 if (event->hw.interrupts == MAX_INTERRUPTS) {
4631 event->hw.interrupts = 0;
4632 perf_log_throttle(event, 1);
4633 }
bad7192b
PZ
4634 event->pmu->stop(event, PERF_EF_UPDATE);
4635 }
4636
4637 local64_set(&event->hw.period_left, 0);
4638
4639 if (active) {
4640 event->pmu->start(event, PERF_EF_RELOAD);
4641 perf_pmu_enable(ctx->pmu);
4642 }
c7999c6f
PZ
4643}
4644
4645static int perf_event_period(struct perf_event *event, u64 __user *arg)
4646{
c7999c6f
PZ
4647 u64 value;
4648
4649 if (!is_sampling_event(event))
4650 return -EINVAL;
4651
4652 if (copy_from_user(&value, arg, sizeof(value)))
4653 return -EFAULT;
4654
4655 if (!value)
4656 return -EINVAL;
4657
4658 if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4659 return -EINVAL;
4660
fae3fde6 4661 event_function_call(event, __perf_event_period, &value);
08247e31 4662
c7999c6f 4663 return 0;
08247e31
PZ
4664}
4665
ac9721f3
PZ
4666static const struct file_operations perf_fops;
4667
2903ff01 4668static inline int perf_fget_light(int fd, struct fd *p)
ac9721f3 4669{
2903ff01
AV
4670 struct fd f = fdget(fd);
4671 if (!f.file)
4672 return -EBADF;
ac9721f3 4673
2903ff01
AV
4674 if (f.file->f_op != &perf_fops) {
4675 fdput(f);
4676 return -EBADF;
ac9721f3 4677 }
2903ff01
AV
4678 *p = f;
4679 return 0;
ac9721f3
PZ
4680}
4681
4682static int perf_event_set_output(struct perf_event *event,
4683 struct perf_event *output_event);
6fb2915d 4684static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2541517c 4685static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
a4be7c27 4686
f63a8daa 4687static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
d859e29f 4688{
cdd6c482 4689 void (*func)(struct perf_event *);
3df5edad 4690 u32 flags = arg;
d859e29f
PM
4691
4692 switch (cmd) {
cdd6c482 4693 case PERF_EVENT_IOC_ENABLE:
f63a8daa 4694 func = _perf_event_enable;
d859e29f 4695 break;
cdd6c482 4696 case PERF_EVENT_IOC_DISABLE:
f63a8daa 4697 func = _perf_event_disable;
79f14641 4698 break;
cdd6c482 4699 case PERF_EVENT_IOC_RESET:
f63a8daa 4700 func = _perf_event_reset;
6de6a7b9 4701 break;
3df5edad 4702
cdd6c482 4703 case PERF_EVENT_IOC_REFRESH:
f63a8daa 4704 return _perf_event_refresh(event, arg);
08247e31 4705
cdd6c482
IM
4706 case PERF_EVENT_IOC_PERIOD:
4707 return perf_event_period(event, (u64 __user *)arg);
08247e31 4708
cf4957f1
JO
4709 case PERF_EVENT_IOC_ID:
4710 {
4711 u64 id = primary_event_id(event);
4712
4713 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4714 return -EFAULT;
4715 return 0;
4716 }
4717
cdd6c482 4718 case PERF_EVENT_IOC_SET_OUTPUT:
ac9721f3 4719 {
ac9721f3 4720 int ret;
ac9721f3 4721 if (arg != -1) {
2903ff01
AV
4722 struct perf_event *output_event;
4723 struct fd output;
4724 ret = perf_fget_light(arg, &output);
4725 if (ret)
4726 return ret;
4727 output_event = output.file->private_data;
4728 ret = perf_event_set_output(event, output_event);
4729 fdput(output);
4730 } else {
4731 ret = perf_event_set_output(event, NULL);
ac9721f3 4732 }
ac9721f3
PZ
4733 return ret;
4734 }
a4be7c27 4735
6fb2915d
LZ
4736 case PERF_EVENT_IOC_SET_FILTER:
4737 return perf_event_set_filter(event, (void __user *)arg);
4738
2541517c
AS
4739 case PERF_EVENT_IOC_SET_BPF:
4740 return perf_event_set_bpf_prog(event, arg);
4741
86e7972f
WN
4742 case PERF_EVENT_IOC_PAUSE_OUTPUT: {
4743 struct ring_buffer *rb;
4744
4745 rcu_read_lock();
4746 rb = rcu_dereference(event->rb);
4747 if (!rb || !rb->nr_pages) {
4748 rcu_read_unlock();
4749 return -EINVAL;
4750 }
4751 rb_toggle_paused(rb, !!arg);
4752 rcu_read_unlock();
4753 return 0;
4754 }
d859e29f 4755 default:
3df5edad 4756 return -ENOTTY;
d859e29f 4757 }
3df5edad
PZ
4758
4759 if (flags & PERF_IOC_FLAG_GROUP)
cdd6c482 4760 perf_event_for_each(event, func);
3df5edad 4761 else
cdd6c482 4762 perf_event_for_each_child(event, func);
3df5edad
PZ
4763
4764 return 0;
d859e29f
PM
4765}
4766
f63a8daa
PZ
4767static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4768{
4769 struct perf_event *event = file->private_data;
4770 struct perf_event_context *ctx;
4771 long ret;
4772
4773 ctx = perf_event_ctx_lock(event);
4774 ret = _perf_ioctl(event, cmd, arg);
4775 perf_event_ctx_unlock(event, ctx);
4776
4777 return ret;
4778}
4779
b3f20785
PM
4780#ifdef CONFIG_COMPAT
4781static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4782 unsigned long arg)
4783{
4784 switch (_IOC_NR(cmd)) {
4785 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4786 case _IOC_NR(PERF_EVENT_IOC_ID):
4787 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4788 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4789 cmd &= ~IOCSIZE_MASK;
4790 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4791 }
4792 break;
4793 }
4794 return perf_ioctl(file, cmd, arg);
4795}
4796#else
4797# define perf_compat_ioctl NULL
4798#endif
4799
cdd6c482 4800int perf_event_task_enable(void)
771d7cde 4801{
f63a8daa 4802 struct perf_event_context *ctx;
cdd6c482 4803 struct perf_event *event;
771d7cde 4804
cdd6c482 4805 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
4806 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4807 ctx = perf_event_ctx_lock(event);
4808 perf_event_for_each_child(event, _perf_event_enable);
4809 perf_event_ctx_unlock(event, ctx);
4810 }
cdd6c482 4811 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
4812
4813 return 0;
4814}
4815
cdd6c482 4816int perf_event_task_disable(void)
771d7cde 4817{
f63a8daa 4818 struct perf_event_context *ctx;
cdd6c482 4819 struct perf_event *event;
771d7cde 4820
cdd6c482 4821 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
4822 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4823 ctx = perf_event_ctx_lock(event);
4824 perf_event_for_each_child(event, _perf_event_disable);
4825 perf_event_ctx_unlock(event, ctx);
4826 }
cdd6c482 4827 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
4828
4829 return 0;
4830}
4831
cdd6c482 4832static int perf_event_index(struct perf_event *event)
194002b2 4833{
a4eaf7f1
PZ
4834 if (event->hw.state & PERF_HES_STOPPED)
4835 return 0;
4836
cdd6c482 4837 if (event->state != PERF_EVENT_STATE_ACTIVE)
194002b2
PZ
4838 return 0;
4839
35edc2a5 4840 return event->pmu->event_idx(event);
194002b2
PZ
4841}
4842
c4794295 4843static void calc_timer_values(struct perf_event *event,
e3f3541c 4844 u64 *now,
7f310a5d
EM
4845 u64 *enabled,
4846 u64 *running)
c4794295 4847{
e3f3541c 4848 u64 ctx_time;
c4794295 4849
e3f3541c
PZ
4850 *now = perf_clock();
4851 ctx_time = event->shadow_ctx_time + *now;
c4794295
EM
4852 *enabled = ctx_time - event->tstamp_enabled;
4853 *running = ctx_time - event->tstamp_running;
4854}
4855
fa731587
PZ
4856static void perf_event_init_userpage(struct perf_event *event)
4857{
4858 struct perf_event_mmap_page *userpg;
4859 struct ring_buffer *rb;
4860
4861 rcu_read_lock();
4862 rb = rcu_dereference(event->rb);
4863 if (!rb)
4864 goto unlock;
4865
4866 userpg = rb->user_page;
4867
4868 /* Allow new userspace to detect that bit 0 is deprecated */
4869 userpg->cap_bit0_is_deprecated = 1;
4870 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
e8c6deac
AS
4871 userpg->data_offset = PAGE_SIZE;
4872 userpg->data_size = perf_data_size(rb);
fa731587
PZ
4873
4874unlock:
4875 rcu_read_unlock();
4876}
4877
c1317ec2
AL
4878void __weak arch_perf_update_userpage(
4879 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
e3f3541c
PZ
4880{
4881}
4882
38ff667b
PZ
4883/*
4884 * Callers need to ensure there can be no nesting of this function, otherwise
4885 * the seqlock logic goes bad. We can not serialize this because the arch
4886 * code calls this from NMI context.
4887 */
cdd6c482 4888void perf_event_update_userpage(struct perf_event *event)
37d81828 4889{
cdd6c482 4890 struct perf_event_mmap_page *userpg;
76369139 4891 struct ring_buffer *rb;
e3f3541c 4892 u64 enabled, running, now;
38ff667b
PZ
4893
4894 rcu_read_lock();
5ec4c599
PZ
4895 rb = rcu_dereference(event->rb);
4896 if (!rb)
4897 goto unlock;
4898
0d641208
EM
4899 /*
4900 * compute total_time_enabled, total_time_running
4901 * based on snapshot values taken when the event
4902 * was last scheduled in.
4903 *
4904 * we cannot simply called update_context_time()
4905 * because of locking issue as we can be called in
4906 * NMI context
4907 */
e3f3541c 4908 calc_timer_values(event, &now, &enabled, &running);
38ff667b 4909
76369139 4910 userpg = rb->user_page;
7b732a75
PZ
4911 /*
4912 * Disable preemption so as to not let the corresponding user-space
4913 * spin too long if we get preempted.
4914 */
4915 preempt_disable();
37d81828 4916 ++userpg->lock;
92f22a38 4917 barrier();
cdd6c482 4918 userpg->index = perf_event_index(event);
b5e58793 4919 userpg->offset = perf_event_count(event);
365a4038 4920 if (userpg->index)
e7850595 4921 userpg->offset -= local64_read(&event->hw.prev_count);
7b732a75 4922
0d641208 4923 userpg->time_enabled = enabled +
cdd6c482 4924 atomic64_read(&event->child_total_time_enabled);
7f8b4e4e 4925
0d641208 4926 userpg->time_running = running +
cdd6c482 4927 atomic64_read(&event->child_total_time_running);
7f8b4e4e 4928
c1317ec2 4929 arch_perf_update_userpage(event, userpg, now);
e3f3541c 4930
92f22a38 4931 barrier();
37d81828 4932 ++userpg->lock;
7b732a75 4933 preempt_enable();
38ff667b 4934unlock:
7b732a75 4935 rcu_read_unlock();
37d81828
PM
4936}
4937
11bac800 4938static int perf_mmap_fault(struct vm_fault *vmf)
906010b2 4939{
11bac800 4940 struct perf_event *event = vmf->vma->vm_file->private_data;
76369139 4941 struct ring_buffer *rb;
906010b2
PZ
4942 int ret = VM_FAULT_SIGBUS;
4943
4944 if (vmf->flags & FAULT_FLAG_MKWRITE) {
4945 if (vmf->pgoff == 0)
4946 ret = 0;
4947 return ret;
4948 }
4949
4950 rcu_read_lock();
76369139
FW
4951 rb = rcu_dereference(event->rb);
4952 if (!rb)
906010b2
PZ
4953 goto unlock;
4954
4955 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4956 goto unlock;
4957
76369139 4958 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
906010b2
PZ
4959 if (!vmf->page)
4960 goto unlock;
4961
4962 get_page(vmf->page);
11bac800 4963 vmf->page->mapping = vmf->vma->vm_file->f_mapping;
906010b2
PZ
4964 vmf->page->index = vmf->pgoff;
4965
4966 ret = 0;
4967unlock:
4968 rcu_read_unlock();
4969
4970 return ret;
4971}
4972
10c6db11
PZ
4973static void ring_buffer_attach(struct perf_event *event,
4974 struct ring_buffer *rb)
4975{
b69cf536 4976 struct ring_buffer *old_rb = NULL;
10c6db11
PZ
4977 unsigned long flags;
4978
b69cf536
PZ
4979 if (event->rb) {
4980 /*
4981 * Should be impossible, we set this when removing
4982 * event->rb_entry and wait/clear when adding event->rb_entry.
4983 */
4984 WARN_ON_ONCE(event->rcu_pending);
10c6db11 4985
b69cf536 4986 old_rb = event->rb;
b69cf536
PZ
4987 spin_lock_irqsave(&old_rb->event_lock, flags);
4988 list_del_rcu(&event->rb_entry);
4989 spin_unlock_irqrestore(&old_rb->event_lock, flags);
10c6db11 4990
2f993cf0
ON
4991 event->rcu_batches = get_state_synchronize_rcu();
4992 event->rcu_pending = 1;
b69cf536 4993 }
10c6db11 4994
b69cf536 4995 if (rb) {
2f993cf0
ON
4996 if (event->rcu_pending) {
4997 cond_synchronize_rcu(event->rcu_batches);
4998 event->rcu_pending = 0;
4999 }
5000
b69cf536
PZ
5001 spin_lock_irqsave(&rb->event_lock, flags);
5002 list_add_rcu(&event->rb_entry, &rb->event_list);
5003 spin_unlock_irqrestore(&rb->event_lock, flags);
5004 }
5005
767ae086
AS
5006 /*
5007 * Avoid racing with perf_mmap_close(AUX): stop the event
5008 * before swizzling the event::rb pointer; if it's getting
5009 * unmapped, its aux_mmap_count will be 0 and it won't
5010 * restart. See the comment in __perf_pmu_output_stop().
5011 *
5012 * Data will inevitably be lost when set_output is done in
5013 * mid-air, but then again, whoever does it like this is
5014 * not in for the data anyway.
5015 */
5016 if (has_aux(event))
5017 perf_event_stop(event, 0);
5018
b69cf536
PZ
5019 rcu_assign_pointer(event->rb, rb);
5020
5021 if (old_rb) {
5022 ring_buffer_put(old_rb);
5023 /*
5024 * Since we detached before setting the new rb, so that we
5025 * could attach the new rb, we could have missed a wakeup.
5026 * Provide it now.
5027 */
5028 wake_up_all(&event->waitq);
5029 }
10c6db11
PZ
5030}
5031
5032static void ring_buffer_wakeup(struct perf_event *event)
5033{
5034 struct ring_buffer *rb;
5035
5036 rcu_read_lock();
5037 rb = rcu_dereference(event->rb);
9bb5d40c
PZ
5038 if (rb) {
5039 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5040 wake_up_all(&event->waitq);
5041 }
10c6db11
PZ
5042 rcu_read_unlock();
5043}
5044
fdc26706 5045struct ring_buffer *ring_buffer_get(struct perf_event *event)
7b732a75 5046{
76369139 5047 struct ring_buffer *rb;
7b732a75 5048
ac9721f3 5049 rcu_read_lock();
76369139
FW
5050 rb = rcu_dereference(event->rb);
5051 if (rb) {
5052 if (!atomic_inc_not_zero(&rb->refcount))
5053 rb = NULL;
ac9721f3
PZ
5054 }
5055 rcu_read_unlock();
5056
76369139 5057 return rb;
ac9721f3
PZ
5058}
5059
fdc26706 5060void ring_buffer_put(struct ring_buffer *rb)
ac9721f3 5061{
76369139 5062 if (!atomic_dec_and_test(&rb->refcount))
ac9721f3 5063 return;
7b732a75 5064
9bb5d40c 5065 WARN_ON_ONCE(!list_empty(&rb->event_list));
10c6db11 5066
76369139 5067 call_rcu(&rb->rcu_head, rb_free_rcu);
7b732a75
PZ
5068}
5069
5070static void perf_mmap_open(struct vm_area_struct *vma)
5071{
cdd6c482 5072 struct perf_event *event = vma->vm_file->private_data;
7b732a75 5073
cdd6c482 5074 atomic_inc(&event->mmap_count);
9bb5d40c 5075 atomic_inc(&event->rb->mmap_count);
1e0fb9ec 5076
45bfb2e5
PZ
5077 if (vma->vm_pgoff)
5078 atomic_inc(&event->rb->aux_mmap_count);
5079
1e0fb9ec
AL
5080 if (event->pmu->event_mapped)
5081 event->pmu->event_mapped(event);
7b732a75
PZ
5082}
5083
95ff4ca2
AS
5084static void perf_pmu_output_stop(struct perf_event *event);
5085
9bb5d40c
PZ
5086/*
5087 * A buffer can be mmap()ed multiple times; either directly through the same
5088 * event, or through other events by use of perf_event_set_output().
5089 *
5090 * In order to undo the VM accounting done by perf_mmap() we need to destroy
5091 * the buffer here, where we still have a VM context. This means we need
5092 * to detach all events redirecting to us.
5093 */
7b732a75
PZ
5094static void perf_mmap_close(struct vm_area_struct *vma)
5095{
cdd6c482 5096 struct perf_event *event = vma->vm_file->private_data;
7b732a75 5097
b69cf536 5098 struct ring_buffer *rb = ring_buffer_get(event);
9bb5d40c
PZ
5099 struct user_struct *mmap_user = rb->mmap_user;
5100 int mmap_locked = rb->mmap_locked;
5101 unsigned long size = perf_data_size(rb);
789f90fc 5102
1e0fb9ec
AL
5103 if (event->pmu->event_unmapped)
5104 event->pmu->event_unmapped(event);
5105
45bfb2e5
PZ
5106 /*
5107 * rb->aux_mmap_count will always drop before rb->mmap_count and
5108 * event->mmap_count, so it is ok to use event->mmap_mutex to
5109 * serialize with perf_mmap here.
5110 */
5111 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5112 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
95ff4ca2
AS
5113 /*
5114 * Stop all AUX events that are writing to this buffer,
5115 * so that we can free its AUX pages and corresponding PMU
5116 * data. Note that after rb::aux_mmap_count dropped to zero,
5117 * they won't start any more (see perf_aux_output_begin()).
5118 */
5119 perf_pmu_output_stop(event);
5120
5121 /* now it's safe to free the pages */
45bfb2e5
PZ
5122 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
5123 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
5124
95ff4ca2 5125 /* this has to be the last one */
45bfb2e5 5126 rb_free_aux(rb);
95ff4ca2
AS
5127 WARN_ON_ONCE(atomic_read(&rb->aux_refcount));
5128
45bfb2e5
PZ
5129 mutex_unlock(&event->mmap_mutex);
5130 }
5131
9bb5d40c
PZ
5132 atomic_dec(&rb->mmap_count);
5133
5134 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
b69cf536 5135 goto out_put;
9bb5d40c 5136
b69cf536 5137 ring_buffer_attach(event, NULL);
9bb5d40c
PZ
5138 mutex_unlock(&event->mmap_mutex);
5139
5140 /* If there's still other mmap()s of this buffer, we're done. */
b69cf536
PZ
5141 if (atomic_read(&rb->mmap_count))
5142 goto out_put;
ac9721f3 5143
9bb5d40c
PZ
5144 /*
5145 * No other mmap()s, detach from all other events that might redirect
5146 * into the now unreachable buffer. Somewhat complicated by the
5147 * fact that rb::event_lock otherwise nests inside mmap_mutex.
5148 */
5149again:
5150 rcu_read_lock();
5151 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5152 if (!atomic_long_inc_not_zero(&event->refcount)) {
5153 /*
5154 * This event is en-route to free_event() which will
5155 * detach it and remove it from the list.
5156 */
5157 continue;
5158 }
5159 rcu_read_unlock();
789f90fc 5160
9bb5d40c
PZ
5161 mutex_lock(&event->mmap_mutex);
5162 /*
5163 * Check we didn't race with perf_event_set_output() which can
5164 * swizzle the rb from under us while we were waiting to
5165 * acquire mmap_mutex.
5166 *
5167 * If we find a different rb; ignore this event, a next
5168 * iteration will no longer find it on the list. We have to
5169 * still restart the iteration to make sure we're not now
5170 * iterating the wrong list.
5171 */
b69cf536
PZ
5172 if (event->rb == rb)
5173 ring_buffer_attach(event, NULL);
5174
cdd6c482 5175 mutex_unlock(&event->mmap_mutex);
9bb5d40c 5176 put_event(event);
ac9721f3 5177
9bb5d40c
PZ
5178 /*
5179 * Restart the iteration; either we're on the wrong list or
5180 * destroyed its integrity by doing a deletion.
5181 */
5182 goto again;
7b732a75 5183 }
9bb5d40c
PZ
5184 rcu_read_unlock();
5185
5186 /*
5187 * It could be there's still a few 0-ref events on the list; they'll
5188 * get cleaned up by free_event() -- they'll also still have their
5189 * ref on the rb and will free it whenever they are done with it.
5190 *
5191 * Aside from that, this buffer is 'fully' detached and unmapped,
5192 * undo the VM accounting.
5193 */
5194
5195 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
5196 vma->vm_mm->pinned_vm -= mmap_locked;
5197 free_uid(mmap_user);
5198
b69cf536 5199out_put:
9bb5d40c 5200 ring_buffer_put(rb); /* could be last */
37d81828
PM
5201}
5202
f0f37e2f 5203static const struct vm_operations_struct perf_mmap_vmops = {
43a21ea8 5204 .open = perf_mmap_open,
45bfb2e5 5205 .close = perf_mmap_close, /* non mergable */
43a21ea8
PZ
5206 .fault = perf_mmap_fault,
5207 .page_mkwrite = perf_mmap_fault,
37d81828
PM
5208};
5209
5210static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5211{
cdd6c482 5212 struct perf_event *event = file->private_data;
22a4f650 5213 unsigned long user_locked, user_lock_limit;
789f90fc 5214 struct user_struct *user = current_user();
22a4f650 5215 unsigned long locked, lock_limit;
45bfb2e5 5216 struct ring_buffer *rb = NULL;
7b732a75
PZ
5217 unsigned long vma_size;
5218 unsigned long nr_pages;
45bfb2e5 5219 long user_extra = 0, extra = 0;
d57e34fd 5220 int ret = 0, flags = 0;
37d81828 5221
c7920614
PZ
5222 /*
5223 * Don't allow mmap() of inherited per-task counters. This would
5224 * create a performance issue due to all children writing to the
76369139 5225 * same rb.
c7920614
PZ
5226 */
5227 if (event->cpu == -1 && event->attr.inherit)
5228 return -EINVAL;
5229
43a21ea8 5230 if (!(vma->vm_flags & VM_SHARED))
37d81828 5231 return -EINVAL;
7b732a75
PZ
5232
5233 vma_size = vma->vm_end - vma->vm_start;
45bfb2e5
PZ
5234
5235 if (vma->vm_pgoff == 0) {
5236 nr_pages = (vma_size / PAGE_SIZE) - 1;
5237 } else {
5238 /*
5239 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5240 * mapped, all subsequent mappings should have the same size
5241 * and offset. Must be above the normal perf buffer.
5242 */
5243 u64 aux_offset, aux_size;
5244
5245 if (!event->rb)
5246 return -EINVAL;
5247
5248 nr_pages = vma_size / PAGE_SIZE;
5249
5250 mutex_lock(&event->mmap_mutex);
5251 ret = -EINVAL;
5252
5253 rb = event->rb;
5254 if (!rb)
5255 goto aux_unlock;
5256
5257 aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
5258 aux_size = ACCESS_ONCE(rb->user_page->aux_size);
5259
5260 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5261 goto aux_unlock;
5262
5263 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5264 goto aux_unlock;
5265
5266 /* already mapped with a different offset */
5267 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5268 goto aux_unlock;
5269
5270 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5271 goto aux_unlock;
5272
5273 /* already mapped with a different size */
5274 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5275 goto aux_unlock;
5276
5277 if (!is_power_of_2(nr_pages))
5278 goto aux_unlock;
5279
5280 if (!atomic_inc_not_zero(&rb->mmap_count))
5281 goto aux_unlock;
5282
5283 if (rb_has_aux(rb)) {
5284 atomic_inc(&rb->aux_mmap_count);
5285 ret = 0;
5286 goto unlock;
5287 }
5288
5289 atomic_set(&rb->aux_mmap_count, 1);
5290 user_extra = nr_pages;
5291
5292 goto accounting;
5293 }
7b732a75 5294
7730d865 5295 /*
76369139 5296 * If we have rb pages ensure they're a power-of-two number, so we
7730d865
PZ
5297 * can do bitmasks instead of modulo.
5298 */
2ed11312 5299 if (nr_pages != 0 && !is_power_of_2(nr_pages))
37d81828
PM
5300 return -EINVAL;
5301
7b732a75 5302 if (vma_size != PAGE_SIZE * (1 + nr_pages))
37d81828
PM
5303 return -EINVAL;
5304
cdd6c482 5305 WARN_ON_ONCE(event->ctx->parent_ctx);
9bb5d40c 5306again:
cdd6c482 5307 mutex_lock(&event->mmap_mutex);
76369139 5308 if (event->rb) {
9bb5d40c 5309 if (event->rb->nr_pages != nr_pages) {
ebb3c4c4 5310 ret = -EINVAL;
9bb5d40c
PZ
5311 goto unlock;
5312 }
5313
5314 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5315 /*
5316 * Raced against perf_mmap_close() through
5317 * perf_event_set_output(). Try again, hope for better
5318 * luck.
5319 */
5320 mutex_unlock(&event->mmap_mutex);
5321 goto again;
5322 }
5323
ebb3c4c4
PZ
5324 goto unlock;
5325 }
5326
789f90fc 5327 user_extra = nr_pages + 1;
45bfb2e5
PZ
5328
5329accounting:
cdd6c482 5330 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
a3862d3f
IM
5331
5332 /*
5333 * Increase the limit linearly with more CPUs:
5334 */
5335 user_lock_limit *= num_online_cpus();
5336
789f90fc 5337 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
c5078f78 5338
789f90fc
PZ
5339 if (user_locked > user_lock_limit)
5340 extra = user_locked - user_lock_limit;
7b732a75 5341
78d7d407 5342 lock_limit = rlimit(RLIMIT_MEMLOCK);
7b732a75 5343 lock_limit >>= PAGE_SHIFT;
bc3e53f6 5344 locked = vma->vm_mm->pinned_vm + extra;
7b732a75 5345
459ec28a
IM
5346 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5347 !capable(CAP_IPC_LOCK)) {
ebb3c4c4
PZ
5348 ret = -EPERM;
5349 goto unlock;
5350 }
7b732a75 5351
45bfb2e5 5352 WARN_ON(!rb && event->rb);
906010b2 5353
d57e34fd 5354 if (vma->vm_flags & VM_WRITE)
76369139 5355 flags |= RING_BUFFER_WRITABLE;
d57e34fd 5356
76369139 5357 if (!rb) {
45bfb2e5
PZ
5358 rb = rb_alloc(nr_pages,
5359 event->attr.watermark ? event->attr.wakeup_watermark : 0,
5360 event->cpu, flags);
26cb63ad 5361
45bfb2e5
PZ
5362 if (!rb) {
5363 ret = -ENOMEM;
5364 goto unlock;
5365 }
43a21ea8 5366
45bfb2e5
PZ
5367 atomic_set(&rb->mmap_count, 1);
5368 rb->mmap_user = get_current_user();
5369 rb->mmap_locked = extra;
26cb63ad 5370
45bfb2e5 5371 ring_buffer_attach(event, rb);
ac9721f3 5372
45bfb2e5
PZ
5373 perf_event_init_userpage(event);
5374 perf_event_update_userpage(event);
5375 } else {
1a594131
AS
5376 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5377 event->attr.aux_watermark, flags);
45bfb2e5
PZ
5378 if (!ret)
5379 rb->aux_mmap_locked = extra;
5380 }
9a0f05cb 5381
ebb3c4c4 5382unlock:
45bfb2e5
PZ
5383 if (!ret) {
5384 atomic_long_add(user_extra, &user->locked_vm);
5385 vma->vm_mm->pinned_vm += extra;
5386
ac9721f3 5387 atomic_inc(&event->mmap_count);
45bfb2e5
PZ
5388 } else if (rb) {
5389 atomic_dec(&rb->mmap_count);
5390 }
5391aux_unlock:
cdd6c482 5392 mutex_unlock(&event->mmap_mutex);
37d81828 5393
9bb5d40c
PZ
5394 /*
5395 * Since pinned accounting is per vm we cannot allow fork() to copy our
5396 * vma.
5397 */
26cb63ad 5398 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
37d81828 5399 vma->vm_ops = &perf_mmap_vmops;
7b732a75 5400
1e0fb9ec
AL
5401 if (event->pmu->event_mapped)
5402 event->pmu->event_mapped(event);
5403
7b732a75 5404 return ret;
37d81828
PM
5405}
5406
3c446b3d
PZ
5407static int perf_fasync(int fd, struct file *filp, int on)
5408{
496ad9aa 5409 struct inode *inode = file_inode(filp);
cdd6c482 5410 struct perf_event *event = filp->private_data;
3c446b3d
PZ
5411 int retval;
5412
5955102c 5413 inode_lock(inode);
cdd6c482 5414 retval = fasync_helper(fd, filp, on, &event->fasync);
5955102c 5415 inode_unlock(inode);
3c446b3d
PZ
5416
5417 if (retval < 0)
5418 return retval;
5419
5420 return 0;
5421}
5422
0793a61d 5423static const struct file_operations perf_fops = {
3326c1ce 5424 .llseek = no_llseek,
0793a61d
TG
5425 .release = perf_release,
5426 .read = perf_read,
5427 .poll = perf_poll,
d859e29f 5428 .unlocked_ioctl = perf_ioctl,
b3f20785 5429 .compat_ioctl = perf_compat_ioctl,
37d81828 5430 .mmap = perf_mmap,
3c446b3d 5431 .fasync = perf_fasync,
0793a61d
TG
5432};
5433
925d519a 5434/*
cdd6c482 5435 * Perf event wakeup
925d519a
PZ
5436 *
5437 * If there's data, ensure we set the poll() state and publish everything
5438 * to user-space before waking everybody up.
5439 */
5440
fed66e2c
PZ
5441static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5442{
5443 /* only the parent has fasync state */
5444 if (event->parent)
5445 event = event->parent;
5446 return &event->fasync;
5447}
5448
cdd6c482 5449void perf_event_wakeup(struct perf_event *event)
925d519a 5450{
10c6db11 5451 ring_buffer_wakeup(event);
4c9e2542 5452
cdd6c482 5453 if (event->pending_kill) {
fed66e2c 5454 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
cdd6c482 5455 event->pending_kill = 0;
4c9e2542 5456 }
925d519a
PZ
5457}
5458
e360adbe 5459static void perf_pending_event(struct irq_work *entry)
79f14641 5460{
cdd6c482
IM
5461 struct perf_event *event = container_of(entry,
5462 struct perf_event, pending);
d525211f
PZ
5463 int rctx;
5464
5465 rctx = perf_swevent_get_recursion_context();
5466 /*
5467 * If we 'fail' here, that's OK, it means recursion is already disabled
5468 * and we won't recurse 'further'.
5469 */
79f14641 5470
cdd6c482
IM
5471 if (event->pending_disable) {
5472 event->pending_disable = 0;
fae3fde6 5473 perf_event_disable_local(event);
79f14641
PZ
5474 }
5475
cdd6c482
IM
5476 if (event->pending_wakeup) {
5477 event->pending_wakeup = 0;
5478 perf_event_wakeup(event);
79f14641 5479 }
d525211f
PZ
5480
5481 if (rctx >= 0)
5482 perf_swevent_put_recursion_context(rctx);
79f14641
PZ
5483}
5484
39447b38
ZY
5485/*
5486 * We assume there is only KVM supporting the callbacks.
5487 * Later on, we might change it to a list if there is
5488 * another virtualization implementation supporting the callbacks.
5489 */
5490struct perf_guest_info_callbacks *perf_guest_cbs;
5491
5492int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5493{
5494 perf_guest_cbs = cbs;
5495 return 0;
5496}
5497EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5498
5499int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5500{
5501 perf_guest_cbs = NULL;
5502 return 0;
5503}
5504EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5505
4018994f
JO
5506static void
5507perf_output_sample_regs(struct perf_output_handle *handle,
5508 struct pt_regs *regs, u64 mask)
5509{
5510 int bit;
29dd3288 5511 DECLARE_BITMAP(_mask, 64);
4018994f 5512
29dd3288
MS
5513 bitmap_from_u64(_mask, mask);
5514 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
4018994f
JO
5515 u64 val;
5516
5517 val = perf_reg_value(regs, bit);
5518 perf_output_put(handle, val);
5519 }
5520}
5521
60e2364e 5522static void perf_sample_regs_user(struct perf_regs *regs_user,
88a7c26a
AL
5523 struct pt_regs *regs,
5524 struct pt_regs *regs_user_copy)
4018994f 5525{
88a7c26a
AL
5526 if (user_mode(regs)) {
5527 regs_user->abi = perf_reg_abi(current);
2565711f 5528 regs_user->regs = regs;
88a7c26a
AL
5529 } else if (current->mm) {
5530 perf_get_regs_user(regs_user, regs, regs_user_copy);
2565711f
PZ
5531 } else {
5532 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5533 regs_user->regs = NULL;
4018994f
JO
5534 }
5535}
5536
60e2364e
SE
5537static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5538 struct pt_regs *regs)
5539{
5540 regs_intr->regs = regs;
5541 regs_intr->abi = perf_reg_abi(current);
5542}
5543
5544
c5ebcedb
JO
5545/*
5546 * Get remaining task size from user stack pointer.
5547 *
5548 * It'd be better to take stack vma map and limit this more
5549 * precisly, but there's no way to get it safely under interrupt,
5550 * so using TASK_SIZE as limit.
5551 */
5552static u64 perf_ustack_task_size(struct pt_regs *regs)
5553{
5554 unsigned long addr = perf_user_stack_pointer(regs);
5555
5556 if (!addr || addr >= TASK_SIZE)
5557 return 0;
5558
5559 return TASK_SIZE - addr;
5560}
5561
5562static u16
5563perf_sample_ustack_size(u16 stack_size, u16 header_size,
5564 struct pt_regs *regs)
5565{
5566 u64 task_size;
5567
5568 /* No regs, no stack pointer, no dump. */
5569 if (!regs)
5570 return 0;
5571
5572 /*
5573 * Check if we fit in with the requested stack size into the:
5574 * - TASK_SIZE
5575 * If we don't, we limit the size to the TASK_SIZE.
5576 *
5577 * - remaining sample size
5578 * If we don't, we customize the stack size to
5579 * fit in to the remaining sample size.
5580 */
5581
5582 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5583 stack_size = min(stack_size, (u16) task_size);
5584
5585 /* Current header size plus static size and dynamic size. */
5586 header_size += 2 * sizeof(u64);
5587
5588 /* Do we fit in with the current stack dump size? */
5589 if ((u16) (header_size + stack_size) < header_size) {
5590 /*
5591 * If we overflow the maximum size for the sample,
5592 * we customize the stack dump size to fit in.
5593 */
5594 stack_size = USHRT_MAX - header_size - sizeof(u64);
5595 stack_size = round_up(stack_size, sizeof(u64));
5596 }
5597
5598 return stack_size;
5599}
5600
5601static void
5602perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5603 struct pt_regs *regs)
5604{
5605 /* Case of a kernel thread, nothing to dump */
5606 if (!regs) {
5607 u64 size = 0;
5608 perf_output_put(handle, size);
5609 } else {
5610 unsigned long sp;
5611 unsigned int rem;
5612 u64 dyn_size;
5613
5614 /*
5615 * We dump:
5616 * static size
5617 * - the size requested by user or the best one we can fit
5618 * in to the sample max size
5619 * data
5620 * - user stack dump data
5621 * dynamic size
5622 * - the actual dumped size
5623 */
5624
5625 /* Static size. */
5626 perf_output_put(handle, dump_size);
5627
5628 /* Data. */
5629 sp = perf_user_stack_pointer(regs);
5630 rem = __output_copy_user(handle, (void *) sp, dump_size);
5631 dyn_size = dump_size - rem;
5632
5633 perf_output_skip(handle, rem);
5634
5635 /* Dynamic size. */
5636 perf_output_put(handle, dyn_size);
5637 }
5638}
5639
c980d109
ACM
5640static void __perf_event_header__init_id(struct perf_event_header *header,
5641 struct perf_sample_data *data,
5642 struct perf_event *event)
6844c09d
ACM
5643{
5644 u64 sample_type = event->attr.sample_type;
5645
5646 data->type = sample_type;
5647 header->size += event->id_header_size;
5648
5649 if (sample_type & PERF_SAMPLE_TID) {
5650 /* namespace issues */
5651 data->tid_entry.pid = perf_event_pid(event, current);
5652 data->tid_entry.tid = perf_event_tid(event, current);
5653 }
5654
5655 if (sample_type & PERF_SAMPLE_TIME)
34f43927 5656 data->time = perf_event_clock(event);
6844c09d 5657
ff3d527c 5658 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6844c09d
ACM
5659 data->id = primary_event_id(event);
5660
5661 if (sample_type & PERF_SAMPLE_STREAM_ID)
5662 data->stream_id = event->id;
5663
5664 if (sample_type & PERF_SAMPLE_CPU) {
5665 data->cpu_entry.cpu = raw_smp_processor_id();
5666 data->cpu_entry.reserved = 0;
5667 }
5668}
5669
76369139
FW
5670void perf_event_header__init_id(struct perf_event_header *header,
5671 struct perf_sample_data *data,
5672 struct perf_event *event)
c980d109
ACM
5673{
5674 if (event->attr.sample_id_all)
5675 __perf_event_header__init_id(header, data, event);
5676}
5677
5678static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5679 struct perf_sample_data *data)
5680{
5681 u64 sample_type = data->type;
5682
5683 if (sample_type & PERF_SAMPLE_TID)
5684 perf_output_put(handle, data->tid_entry);
5685
5686 if (sample_type & PERF_SAMPLE_TIME)
5687 perf_output_put(handle, data->time);
5688
5689 if (sample_type & PERF_SAMPLE_ID)
5690 perf_output_put(handle, data->id);
5691
5692 if (sample_type & PERF_SAMPLE_STREAM_ID)
5693 perf_output_put(handle, data->stream_id);
5694
5695 if (sample_type & PERF_SAMPLE_CPU)
5696 perf_output_put(handle, data->cpu_entry);
ff3d527c
AH
5697
5698 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5699 perf_output_put(handle, data->id);
c980d109
ACM
5700}
5701
76369139
FW
5702void perf_event__output_id_sample(struct perf_event *event,
5703 struct perf_output_handle *handle,
5704 struct perf_sample_data *sample)
c980d109
ACM
5705{
5706 if (event->attr.sample_id_all)
5707 __perf_event__output_id_sample(handle, sample);
5708}
5709
3dab77fb 5710static void perf_output_read_one(struct perf_output_handle *handle,
eed01528
SE
5711 struct perf_event *event,
5712 u64 enabled, u64 running)
3dab77fb 5713{
cdd6c482 5714 u64 read_format = event->attr.read_format;
3dab77fb
PZ
5715 u64 values[4];
5716 int n = 0;
5717
b5e58793 5718 values[n++] = perf_event_count(event);
3dab77fb 5719 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
eed01528 5720 values[n++] = enabled +
cdd6c482 5721 atomic64_read(&event->child_total_time_enabled);
3dab77fb
PZ
5722 }
5723 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
eed01528 5724 values[n++] = running +
cdd6c482 5725 atomic64_read(&event->child_total_time_running);
3dab77fb
PZ
5726 }
5727 if (read_format & PERF_FORMAT_ID)
cdd6c482 5728 values[n++] = primary_event_id(event);
3dab77fb 5729
76369139 5730 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
5731}
5732
3dab77fb 5733static void perf_output_read_group(struct perf_output_handle *handle,
eed01528
SE
5734 struct perf_event *event,
5735 u64 enabled, u64 running)
3dab77fb 5736{
cdd6c482
IM
5737 struct perf_event *leader = event->group_leader, *sub;
5738 u64 read_format = event->attr.read_format;
3dab77fb
PZ
5739 u64 values[5];
5740 int n = 0;
5741
5742 values[n++] = 1 + leader->nr_siblings;
5743
5744 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
eed01528 5745 values[n++] = enabled;
3dab77fb
PZ
5746
5747 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
eed01528 5748 values[n++] = running;
3dab77fb 5749
cdd6c482 5750 if (leader != event)
3dab77fb
PZ
5751 leader->pmu->read(leader);
5752
b5e58793 5753 values[n++] = perf_event_count(leader);
3dab77fb 5754 if (read_format & PERF_FORMAT_ID)
cdd6c482 5755 values[n++] = primary_event_id(leader);
3dab77fb 5756
76369139 5757 __output_copy(handle, values, n * sizeof(u64));
3dab77fb 5758
65abc865 5759 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3dab77fb
PZ
5760 n = 0;
5761
6f5ab001
JO
5762 if ((sub != event) &&
5763 (sub->state == PERF_EVENT_STATE_ACTIVE))
3dab77fb
PZ
5764 sub->pmu->read(sub);
5765
b5e58793 5766 values[n++] = perf_event_count(sub);
3dab77fb 5767 if (read_format & PERF_FORMAT_ID)
cdd6c482 5768 values[n++] = primary_event_id(sub);
3dab77fb 5769
76369139 5770 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
5771 }
5772}
5773
eed01528
SE
5774#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5775 PERF_FORMAT_TOTAL_TIME_RUNNING)
5776
ba5213ae
PZ
5777/*
5778 * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
5779 *
5780 * The problem is that its both hard and excessively expensive to iterate the
5781 * child list, not to mention that its impossible to IPI the children running
5782 * on another CPU, from interrupt/NMI context.
5783 */
3dab77fb 5784static void perf_output_read(struct perf_output_handle *handle,
cdd6c482 5785 struct perf_event *event)
3dab77fb 5786{
e3f3541c 5787 u64 enabled = 0, running = 0, now;
eed01528
SE
5788 u64 read_format = event->attr.read_format;
5789
5790 /*
5791 * compute total_time_enabled, total_time_running
5792 * based on snapshot values taken when the event
5793 * was last scheduled in.
5794 *
5795 * we cannot simply called update_context_time()
5796 * because of locking issue as we are called in
5797 * NMI context
5798 */
c4794295 5799 if (read_format & PERF_FORMAT_TOTAL_TIMES)
e3f3541c 5800 calc_timer_values(event, &now, &enabled, &running);
eed01528 5801
cdd6c482 5802 if (event->attr.read_format & PERF_FORMAT_GROUP)
eed01528 5803 perf_output_read_group(handle, event, enabled, running);
3dab77fb 5804 else
eed01528 5805 perf_output_read_one(handle, event, enabled, running);
3dab77fb
PZ
5806}
5807
5622f295
MM
5808void perf_output_sample(struct perf_output_handle *handle,
5809 struct perf_event_header *header,
5810 struct perf_sample_data *data,
cdd6c482 5811 struct perf_event *event)
5622f295
MM
5812{
5813 u64 sample_type = data->type;
5814
5815 perf_output_put(handle, *header);
5816
ff3d527c
AH
5817 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5818 perf_output_put(handle, data->id);
5819
5622f295
MM
5820 if (sample_type & PERF_SAMPLE_IP)
5821 perf_output_put(handle, data->ip);
5822
5823 if (sample_type & PERF_SAMPLE_TID)
5824 perf_output_put(handle, data->tid_entry);
5825
5826 if (sample_type & PERF_SAMPLE_TIME)
5827 perf_output_put(handle, data->time);
5828
5829 if (sample_type & PERF_SAMPLE_ADDR)
5830 perf_output_put(handle, data->addr);
5831
5832 if (sample_type & PERF_SAMPLE_ID)
5833 perf_output_put(handle, data->id);
5834
5835 if (sample_type & PERF_SAMPLE_STREAM_ID)
5836 perf_output_put(handle, data->stream_id);
5837
5838 if (sample_type & PERF_SAMPLE_CPU)
5839 perf_output_put(handle, data->cpu_entry);
5840
5841 if (sample_type & PERF_SAMPLE_PERIOD)
5842 perf_output_put(handle, data->period);
5843
5844 if (sample_type & PERF_SAMPLE_READ)
cdd6c482 5845 perf_output_read(handle, event);
5622f295
MM
5846
5847 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5848 if (data->callchain) {
5849 int size = 1;
5850
5851 if (data->callchain)
5852 size += data->callchain->nr;
5853
5854 size *= sizeof(u64);
5855
76369139 5856 __output_copy(handle, data->callchain, size);
5622f295
MM
5857 } else {
5858 u64 nr = 0;
5859 perf_output_put(handle, nr);
5860 }
5861 }
5862
5863 if (sample_type & PERF_SAMPLE_RAW) {
7e3f977e
DB
5864 struct perf_raw_record *raw = data->raw;
5865
5866 if (raw) {
5867 struct perf_raw_frag *frag = &raw->frag;
5868
5869 perf_output_put(handle, raw->size);
5870 do {
5871 if (frag->copy) {
5872 __output_custom(handle, frag->copy,
5873 frag->data, frag->size);
5874 } else {
5875 __output_copy(handle, frag->data,
5876 frag->size);
5877 }
5878 if (perf_raw_frag_last(frag))
5879 break;
5880 frag = frag->next;
5881 } while (1);
5882 if (frag->pad)
5883 __output_skip(handle, NULL, frag->pad);
5622f295
MM
5884 } else {
5885 struct {
5886 u32 size;
5887 u32 data;
5888 } raw = {
5889 .size = sizeof(u32),
5890 .data = 0,
5891 };
5892 perf_output_put(handle, raw);
5893 }
5894 }
a7ac67ea 5895
bce38cd5
SE
5896 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5897 if (data->br_stack) {
5898 size_t size;
5899
5900 size = data->br_stack->nr
5901 * sizeof(struct perf_branch_entry);
5902
5903 perf_output_put(handle, data->br_stack->nr);
5904 perf_output_copy(handle, data->br_stack->entries, size);
5905 } else {
5906 /*
5907 * we always store at least the value of nr
5908 */
5909 u64 nr = 0;
5910 perf_output_put(handle, nr);
5911 }
5912 }
4018994f
JO
5913
5914 if (sample_type & PERF_SAMPLE_REGS_USER) {
5915 u64 abi = data->regs_user.abi;
5916
5917 /*
5918 * If there are no regs to dump, notice it through
5919 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5920 */
5921 perf_output_put(handle, abi);
5922
5923 if (abi) {
5924 u64 mask = event->attr.sample_regs_user;
5925 perf_output_sample_regs(handle,
5926 data->regs_user.regs,
5927 mask);
5928 }
5929 }
c5ebcedb 5930
a5cdd40c 5931 if (sample_type & PERF_SAMPLE_STACK_USER) {
c5ebcedb
JO
5932 perf_output_sample_ustack(handle,
5933 data->stack_user_size,
5934 data->regs_user.regs);
a5cdd40c 5935 }
c3feedf2
AK
5936
5937 if (sample_type & PERF_SAMPLE_WEIGHT)
5938 perf_output_put(handle, data->weight);
d6be9ad6
SE
5939
5940 if (sample_type & PERF_SAMPLE_DATA_SRC)
5941 perf_output_put(handle, data->data_src.val);
a5cdd40c 5942
fdfbbd07
AK
5943 if (sample_type & PERF_SAMPLE_TRANSACTION)
5944 perf_output_put(handle, data->txn);
5945
60e2364e
SE
5946 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5947 u64 abi = data->regs_intr.abi;
5948 /*
5949 * If there are no regs to dump, notice it through
5950 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5951 */
5952 perf_output_put(handle, abi);
5953
5954 if (abi) {
5955 u64 mask = event->attr.sample_regs_intr;
5956
5957 perf_output_sample_regs(handle,
5958 data->regs_intr.regs,
5959 mask);
5960 }
5961 }
5962
a5cdd40c
PZ
5963 if (!event->attr.watermark) {
5964 int wakeup_events = event->attr.wakeup_events;
5965
5966 if (wakeup_events) {
5967 struct ring_buffer *rb = handle->rb;
5968 int events = local_inc_return(&rb->events);
5969
5970 if (events >= wakeup_events) {
5971 local_sub(wakeup_events, &rb->events);
5972 local_inc(&rb->wakeup);
5973 }
5974 }
5975 }
5622f295
MM
5976}
5977
5978void perf_prepare_sample(struct perf_event_header *header,
5979 struct perf_sample_data *data,
cdd6c482 5980 struct perf_event *event,
5622f295 5981 struct pt_regs *regs)
7b732a75 5982{
cdd6c482 5983 u64 sample_type = event->attr.sample_type;
7b732a75 5984
cdd6c482 5985 header->type = PERF_RECORD_SAMPLE;
c320c7b7 5986 header->size = sizeof(*header) + event->header_size;
5622f295
MM
5987
5988 header->misc = 0;
5989 header->misc |= perf_misc_flags(regs);
6fab0192 5990
c980d109 5991 __perf_event_header__init_id(header, data, event);
6844c09d 5992
c320c7b7 5993 if (sample_type & PERF_SAMPLE_IP)
5622f295
MM
5994 data->ip = perf_instruction_pointer(regs);
5995
b23f3325 5996 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5622f295 5997 int size = 1;
394ee076 5998
e6dab5ff 5999 data->callchain = perf_callchain(event, regs);
5622f295
MM
6000
6001 if (data->callchain)
6002 size += data->callchain->nr;
6003
6004 header->size += size * sizeof(u64);
394ee076
PZ
6005 }
6006
3a43ce68 6007 if (sample_type & PERF_SAMPLE_RAW) {
7e3f977e
DB
6008 struct perf_raw_record *raw = data->raw;
6009 int size;
6010
6011 if (raw) {
6012 struct perf_raw_frag *frag = &raw->frag;
6013 u32 sum = 0;
6014
6015 do {
6016 sum += frag->size;
6017 if (perf_raw_frag_last(frag))
6018 break;
6019 frag = frag->next;
6020 } while (1);
6021
6022 size = round_up(sum + sizeof(u32), sizeof(u64));
6023 raw->size = size - sizeof(u32);
6024 frag->pad = raw->size - sum;
6025 } else {
6026 size = sizeof(u64);
6027 }
a044560c 6028
7e3f977e 6029 header->size += size;
7f453c24 6030 }
bce38cd5
SE
6031
6032 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6033 int size = sizeof(u64); /* nr */
6034 if (data->br_stack) {
6035 size += data->br_stack->nr
6036 * sizeof(struct perf_branch_entry);
6037 }
6038 header->size += size;
6039 }
4018994f 6040
2565711f 6041 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
88a7c26a
AL
6042 perf_sample_regs_user(&data->regs_user, regs,
6043 &data->regs_user_copy);
2565711f 6044
4018994f
JO
6045 if (sample_type & PERF_SAMPLE_REGS_USER) {
6046 /* regs dump ABI info */
6047 int size = sizeof(u64);
6048
4018994f
JO
6049 if (data->regs_user.regs) {
6050 u64 mask = event->attr.sample_regs_user;
6051 size += hweight64(mask) * sizeof(u64);
6052 }
6053
6054 header->size += size;
6055 }
c5ebcedb
JO
6056
6057 if (sample_type & PERF_SAMPLE_STACK_USER) {
6058 /*
6059 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
6060 * processed as the last one or have additional check added
6061 * in case new sample type is added, because we could eat
6062 * up the rest of the sample size.
6063 */
c5ebcedb
JO
6064 u16 stack_size = event->attr.sample_stack_user;
6065 u16 size = sizeof(u64);
6066
c5ebcedb 6067 stack_size = perf_sample_ustack_size(stack_size, header->size,
2565711f 6068 data->regs_user.regs);
c5ebcedb
JO
6069
6070 /*
6071 * If there is something to dump, add space for the dump
6072 * itself and for the field that tells the dynamic size,
6073 * which is how many have been actually dumped.
6074 */
6075 if (stack_size)
6076 size += sizeof(u64) + stack_size;
6077
6078 data->stack_user_size = stack_size;
6079 header->size += size;
6080 }
60e2364e
SE
6081
6082 if (sample_type & PERF_SAMPLE_REGS_INTR) {
6083 /* regs dump ABI info */
6084 int size = sizeof(u64);
6085
6086 perf_sample_regs_intr(&data->regs_intr, regs);
6087
6088 if (data->regs_intr.regs) {
6089 u64 mask = event->attr.sample_regs_intr;
6090
6091 size += hweight64(mask) * sizeof(u64);
6092 }
6093
6094 header->size += size;
6095 }
5622f295 6096}
7f453c24 6097
9ecda41a
WN
6098static void __always_inline
6099__perf_event_output(struct perf_event *event,
6100 struct perf_sample_data *data,
6101 struct pt_regs *regs,
6102 int (*output_begin)(struct perf_output_handle *,
6103 struct perf_event *,
6104 unsigned int))
5622f295
MM
6105{
6106 struct perf_output_handle handle;
6107 struct perf_event_header header;
689802b2 6108
927c7a9e
FW
6109 /* protect the callchain buffers */
6110 rcu_read_lock();
6111
cdd6c482 6112 perf_prepare_sample(&header, data, event, regs);
5c148194 6113
9ecda41a 6114 if (output_begin(&handle, event, header.size))
927c7a9e 6115 goto exit;
0322cd6e 6116
cdd6c482 6117 perf_output_sample(&handle, &header, data, event);
f413cdb8 6118
8a057d84 6119 perf_output_end(&handle);
927c7a9e
FW
6120
6121exit:
6122 rcu_read_unlock();
0322cd6e
PZ
6123}
6124
9ecda41a
WN
6125void
6126perf_event_output_forward(struct perf_event *event,
6127 struct perf_sample_data *data,
6128 struct pt_regs *regs)
6129{
6130 __perf_event_output(event, data, regs, perf_output_begin_forward);
6131}
6132
6133void
6134perf_event_output_backward(struct perf_event *event,
6135 struct perf_sample_data *data,
6136 struct pt_regs *regs)
6137{
6138 __perf_event_output(event, data, regs, perf_output_begin_backward);
6139}
6140
6141void
6142perf_event_output(struct perf_event *event,
6143 struct perf_sample_data *data,
6144 struct pt_regs *regs)
6145{
6146 __perf_event_output(event, data, regs, perf_output_begin);
6147}
6148
38b200d6 6149/*
cdd6c482 6150 * read event_id
38b200d6
PZ
6151 */
6152
6153struct perf_read_event {
6154 struct perf_event_header header;
6155
6156 u32 pid;
6157 u32 tid;
38b200d6
PZ
6158};
6159
6160static void
cdd6c482 6161perf_event_read_event(struct perf_event *event,
38b200d6
PZ
6162 struct task_struct *task)
6163{
6164 struct perf_output_handle handle;
c980d109 6165 struct perf_sample_data sample;
dfc65094 6166 struct perf_read_event read_event = {
38b200d6 6167 .header = {
cdd6c482 6168 .type = PERF_RECORD_READ,
38b200d6 6169 .misc = 0,
c320c7b7 6170 .size = sizeof(read_event) + event->read_size,
38b200d6 6171 },
cdd6c482
IM
6172 .pid = perf_event_pid(event, task),
6173 .tid = perf_event_tid(event, task),
38b200d6 6174 };
3dab77fb 6175 int ret;
38b200d6 6176
c980d109 6177 perf_event_header__init_id(&read_event.header, &sample, event);
a7ac67ea 6178 ret = perf_output_begin(&handle, event, read_event.header.size);
38b200d6
PZ
6179 if (ret)
6180 return;
6181
dfc65094 6182 perf_output_put(&handle, read_event);
cdd6c482 6183 perf_output_read(&handle, event);
c980d109 6184 perf_event__output_id_sample(event, &handle, &sample);
3dab77fb 6185
38b200d6
PZ
6186 perf_output_end(&handle);
6187}
6188
aab5b71e 6189typedef void (perf_iterate_f)(struct perf_event *event, void *data);
52d857a8
JO
6190
6191static void
aab5b71e
PZ
6192perf_iterate_ctx(struct perf_event_context *ctx,
6193 perf_iterate_f output,
b73e4fef 6194 void *data, bool all)
52d857a8
JO
6195{
6196 struct perf_event *event;
6197
6198 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
b73e4fef
AS
6199 if (!all) {
6200 if (event->state < PERF_EVENT_STATE_INACTIVE)
6201 continue;
6202 if (!event_filter_match(event))
6203 continue;
6204 }
6205
67516844 6206 output(event, data);
52d857a8
JO
6207 }
6208}
6209
aab5b71e 6210static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
f2fb6bef
KL
6211{
6212 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
6213 struct perf_event *event;
6214
6215 list_for_each_entry_rcu(event, &pel->list, sb_list) {
0b8f1e2e
PZ
6216 /*
6217 * Skip events that are not fully formed yet; ensure that
6218 * if we observe event->ctx, both event and ctx will be
6219 * complete enough. See perf_install_in_context().
6220 */
6221 if (!smp_load_acquire(&event->ctx))
6222 continue;
6223
f2fb6bef
KL
6224 if (event->state < PERF_EVENT_STATE_INACTIVE)
6225 continue;
6226 if (!event_filter_match(event))
6227 continue;
6228 output(event, data);
6229 }
6230}
6231
aab5b71e
PZ
6232/*
6233 * Iterate all events that need to receive side-band events.
6234 *
6235 * For new callers; ensure that account_pmu_sb_event() includes
6236 * your event, otherwise it might not get delivered.
6237 */
52d857a8 6238static void
aab5b71e 6239perf_iterate_sb(perf_iterate_f output, void *data,
52d857a8
JO
6240 struct perf_event_context *task_ctx)
6241{
52d857a8 6242 struct perf_event_context *ctx;
52d857a8
JO
6243 int ctxn;
6244
aab5b71e
PZ
6245 rcu_read_lock();
6246 preempt_disable();
6247
4e93ad60 6248 /*
aab5b71e
PZ
6249 * If we have task_ctx != NULL we only notify the task context itself.
6250 * The task_ctx is set only for EXIT events before releasing task
4e93ad60
JO
6251 * context.
6252 */
6253 if (task_ctx) {
aab5b71e
PZ
6254 perf_iterate_ctx(task_ctx, output, data, false);
6255 goto done;
4e93ad60
JO
6256 }
6257
aab5b71e 6258 perf_iterate_sb_cpu(output, data);
f2fb6bef
KL
6259
6260 for_each_task_context_nr(ctxn) {
52d857a8
JO
6261 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6262 if (ctx)
aab5b71e 6263 perf_iterate_ctx(ctx, output, data, false);
52d857a8 6264 }
aab5b71e 6265done:
f2fb6bef 6266 preempt_enable();
52d857a8 6267 rcu_read_unlock();
95ff4ca2
AS
6268}
6269
375637bc
AS
6270/*
6271 * Clear all file-based filters at exec, they'll have to be
6272 * re-instated when/if these objects are mmapped again.
6273 */
6274static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
6275{
6276 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6277 struct perf_addr_filter *filter;
6278 unsigned int restart = 0, count = 0;
6279 unsigned long flags;
6280
6281 if (!has_addr_filter(event))
6282 return;
6283
6284 raw_spin_lock_irqsave(&ifh->lock, flags);
6285 list_for_each_entry(filter, &ifh->list, entry) {
6286 if (filter->inode) {
6287 event->addr_filters_offs[count] = 0;
6288 restart++;
6289 }
6290
6291 count++;
6292 }
6293
6294 if (restart)
6295 event->addr_filters_gen++;
6296 raw_spin_unlock_irqrestore(&ifh->lock, flags);
6297
6298 if (restart)
767ae086 6299 perf_event_stop(event, 1);
375637bc
AS
6300}
6301
6302void perf_event_exec(void)
6303{
6304 struct perf_event_context *ctx;
6305 int ctxn;
6306
6307 rcu_read_lock();
6308 for_each_task_context_nr(ctxn) {
6309 ctx = current->perf_event_ctxp[ctxn];
6310 if (!ctx)
6311 continue;
6312
6313 perf_event_enable_on_exec(ctxn);
6314
aab5b71e 6315 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
375637bc
AS
6316 true);
6317 }
6318 rcu_read_unlock();
6319}
6320
95ff4ca2
AS
6321struct remote_output {
6322 struct ring_buffer *rb;
6323 int err;
6324};
6325
6326static void __perf_event_output_stop(struct perf_event *event, void *data)
6327{
6328 struct perf_event *parent = event->parent;
6329 struct remote_output *ro = data;
6330 struct ring_buffer *rb = ro->rb;
375637bc
AS
6331 struct stop_event_data sd = {
6332 .event = event,
6333 };
95ff4ca2
AS
6334
6335 if (!has_aux(event))
6336 return;
6337
6338 if (!parent)
6339 parent = event;
6340
6341 /*
6342 * In case of inheritance, it will be the parent that links to the
767ae086
AS
6343 * ring-buffer, but it will be the child that's actually using it.
6344 *
6345 * We are using event::rb to determine if the event should be stopped,
6346 * however this may race with ring_buffer_attach() (through set_output),
6347 * which will make us skip the event that actually needs to be stopped.
6348 * So ring_buffer_attach() has to stop an aux event before re-assigning
6349 * its rb pointer.
95ff4ca2
AS
6350 */
6351 if (rcu_dereference(parent->rb) == rb)
375637bc 6352 ro->err = __perf_event_stop(&sd);
95ff4ca2
AS
6353}
6354
6355static int __perf_pmu_output_stop(void *info)
6356{
6357 struct perf_event *event = info;
6358 struct pmu *pmu = event->pmu;
8b6a3fe8 6359 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
95ff4ca2
AS
6360 struct remote_output ro = {
6361 .rb = event->rb,
6362 };
6363
6364 rcu_read_lock();
aab5b71e 6365 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
95ff4ca2 6366 if (cpuctx->task_ctx)
aab5b71e 6367 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
b73e4fef 6368 &ro, false);
95ff4ca2
AS
6369 rcu_read_unlock();
6370
6371 return ro.err;
6372}
6373
6374static void perf_pmu_output_stop(struct perf_event *event)
6375{
6376 struct perf_event *iter;
6377 int err, cpu;
6378
6379restart:
6380 rcu_read_lock();
6381 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6382 /*
6383 * For per-CPU events, we need to make sure that neither they
6384 * nor their children are running; for cpu==-1 events it's
6385 * sufficient to stop the event itself if it's active, since
6386 * it can't have children.
6387 */
6388 cpu = iter->cpu;
6389 if (cpu == -1)
6390 cpu = READ_ONCE(iter->oncpu);
6391
6392 if (cpu == -1)
6393 continue;
6394
6395 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6396 if (err == -EAGAIN) {
6397 rcu_read_unlock();
6398 goto restart;
6399 }
6400 }
6401 rcu_read_unlock();
52d857a8
JO
6402}
6403
60313ebe 6404/*
9f498cc5
PZ
6405 * task tracking -- fork/exit
6406 *
13d7a241 6407 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
60313ebe
PZ
6408 */
6409
9f498cc5 6410struct perf_task_event {
3a80b4a3 6411 struct task_struct *task;
cdd6c482 6412 struct perf_event_context *task_ctx;
60313ebe
PZ
6413
6414 struct {
6415 struct perf_event_header header;
6416
6417 u32 pid;
6418 u32 ppid;
9f498cc5
PZ
6419 u32 tid;
6420 u32 ptid;
393b2ad8 6421 u64 time;
cdd6c482 6422 } event_id;
60313ebe
PZ
6423};
6424
67516844
JO
6425static int perf_event_task_match(struct perf_event *event)
6426{
13d7a241
SE
6427 return event->attr.comm || event->attr.mmap ||
6428 event->attr.mmap2 || event->attr.mmap_data ||
6429 event->attr.task;
67516844
JO
6430}
6431
cdd6c482 6432static void perf_event_task_output(struct perf_event *event,
52d857a8 6433 void *data)
60313ebe 6434{
52d857a8 6435 struct perf_task_event *task_event = data;
60313ebe 6436 struct perf_output_handle handle;
c980d109 6437 struct perf_sample_data sample;
9f498cc5 6438 struct task_struct *task = task_event->task;
c980d109 6439 int ret, size = task_event->event_id.header.size;
8bb39f9a 6440
67516844
JO
6441 if (!perf_event_task_match(event))
6442 return;
6443
c980d109 6444 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
60313ebe 6445
c980d109 6446 ret = perf_output_begin(&handle, event,
a7ac67ea 6447 task_event->event_id.header.size);
ef60777c 6448 if (ret)
c980d109 6449 goto out;
60313ebe 6450
cdd6c482
IM
6451 task_event->event_id.pid = perf_event_pid(event, task);
6452 task_event->event_id.ppid = perf_event_pid(event, current);
60313ebe 6453
cdd6c482
IM
6454 task_event->event_id.tid = perf_event_tid(event, task);
6455 task_event->event_id.ptid = perf_event_tid(event, current);
9f498cc5 6456
34f43927
PZ
6457 task_event->event_id.time = perf_event_clock(event);
6458
cdd6c482 6459 perf_output_put(&handle, task_event->event_id);
393b2ad8 6460
c980d109
ACM
6461 perf_event__output_id_sample(event, &handle, &sample);
6462
60313ebe 6463 perf_output_end(&handle);
c980d109
ACM
6464out:
6465 task_event->event_id.header.size = size;
60313ebe
PZ
6466}
6467
cdd6c482
IM
6468static void perf_event_task(struct task_struct *task,
6469 struct perf_event_context *task_ctx,
3a80b4a3 6470 int new)
60313ebe 6471{
9f498cc5 6472 struct perf_task_event task_event;
60313ebe 6473
cdd6c482
IM
6474 if (!atomic_read(&nr_comm_events) &&
6475 !atomic_read(&nr_mmap_events) &&
6476 !atomic_read(&nr_task_events))
60313ebe
PZ
6477 return;
6478
9f498cc5 6479 task_event = (struct perf_task_event){
3a80b4a3
PZ
6480 .task = task,
6481 .task_ctx = task_ctx,
cdd6c482 6482 .event_id = {
60313ebe 6483 .header = {
cdd6c482 6484 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
573402db 6485 .misc = 0,
cdd6c482 6486 .size = sizeof(task_event.event_id),
60313ebe 6487 },
573402db
PZ
6488 /* .pid */
6489 /* .ppid */
9f498cc5
PZ
6490 /* .tid */
6491 /* .ptid */
34f43927 6492 /* .time */
60313ebe
PZ
6493 },
6494 };
6495
aab5b71e 6496 perf_iterate_sb(perf_event_task_output,
52d857a8
JO
6497 &task_event,
6498 task_ctx);
9f498cc5
PZ
6499}
6500
cdd6c482 6501void perf_event_fork(struct task_struct *task)
9f498cc5 6502{
cdd6c482 6503 perf_event_task(task, NULL, 1);
e4222673 6504 perf_event_namespaces(task);
60313ebe
PZ
6505}
6506
8d1b2d93
PZ
6507/*
6508 * comm tracking
6509 */
6510
6511struct perf_comm_event {
22a4f650
IM
6512 struct task_struct *task;
6513 char *comm;
8d1b2d93
PZ
6514 int comm_size;
6515
6516 struct {
6517 struct perf_event_header header;
6518
6519 u32 pid;
6520 u32 tid;
cdd6c482 6521 } event_id;
8d1b2d93
PZ
6522};
6523
67516844
JO
6524static int perf_event_comm_match(struct perf_event *event)
6525{
6526 return event->attr.comm;
6527}
6528
cdd6c482 6529static void perf_event_comm_output(struct perf_event *event,
52d857a8 6530 void *data)
8d1b2d93 6531{
52d857a8 6532 struct perf_comm_event *comm_event = data;
8d1b2d93 6533 struct perf_output_handle handle;
c980d109 6534 struct perf_sample_data sample;
cdd6c482 6535 int size = comm_event->event_id.header.size;
c980d109
ACM
6536 int ret;
6537
67516844
JO
6538 if (!perf_event_comm_match(event))
6539 return;
6540
c980d109
ACM
6541 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
6542 ret = perf_output_begin(&handle, event,
a7ac67ea 6543 comm_event->event_id.header.size);
8d1b2d93
PZ
6544
6545 if (ret)
c980d109 6546 goto out;
8d1b2d93 6547
cdd6c482
IM
6548 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
6549 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
709e50cf 6550
cdd6c482 6551 perf_output_put(&handle, comm_event->event_id);
76369139 6552 __output_copy(&handle, comm_event->comm,
8d1b2d93 6553 comm_event->comm_size);
c980d109
ACM
6554
6555 perf_event__output_id_sample(event, &handle, &sample);
6556
8d1b2d93 6557 perf_output_end(&handle);
c980d109
ACM
6558out:
6559 comm_event->event_id.header.size = size;
8d1b2d93
PZ
6560}
6561
cdd6c482 6562static void perf_event_comm_event(struct perf_comm_event *comm_event)
8d1b2d93 6563{
413ee3b4 6564 char comm[TASK_COMM_LEN];
8d1b2d93 6565 unsigned int size;
8d1b2d93 6566
413ee3b4 6567 memset(comm, 0, sizeof(comm));
96b02d78 6568 strlcpy(comm, comm_event->task->comm, sizeof(comm));
888fcee0 6569 size = ALIGN(strlen(comm)+1, sizeof(u64));
8d1b2d93
PZ
6570
6571 comm_event->comm = comm;
6572 comm_event->comm_size = size;
6573
cdd6c482 6574 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
8dc85d54 6575
aab5b71e 6576 perf_iterate_sb(perf_event_comm_output,
52d857a8
JO
6577 comm_event,
6578 NULL);
8d1b2d93
PZ
6579}
6580
82b89778 6581void perf_event_comm(struct task_struct *task, bool exec)
8d1b2d93 6582{
9ee318a7
PZ
6583 struct perf_comm_event comm_event;
6584
cdd6c482 6585 if (!atomic_read(&nr_comm_events))
9ee318a7 6586 return;
a63eaf34 6587
9ee318a7 6588 comm_event = (struct perf_comm_event){
8d1b2d93 6589 .task = task,
573402db
PZ
6590 /* .comm */
6591 /* .comm_size */
cdd6c482 6592 .event_id = {
573402db 6593 .header = {
cdd6c482 6594 .type = PERF_RECORD_COMM,
82b89778 6595 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
573402db
PZ
6596 /* .size */
6597 },
6598 /* .pid */
6599 /* .tid */
8d1b2d93
PZ
6600 },
6601 };
6602
cdd6c482 6603 perf_event_comm_event(&comm_event);
8d1b2d93
PZ
6604}
6605
e4222673
HB
6606/*
6607 * namespaces tracking
6608 */
6609
6610struct perf_namespaces_event {
6611 struct task_struct *task;
6612
6613 struct {
6614 struct perf_event_header header;
6615
6616 u32 pid;
6617 u32 tid;
6618 u64 nr_namespaces;
6619 struct perf_ns_link_info link_info[NR_NAMESPACES];
6620 } event_id;
6621};
6622
6623static int perf_event_namespaces_match(struct perf_event *event)
6624{
6625 return event->attr.namespaces;
6626}
6627
6628static void perf_event_namespaces_output(struct perf_event *event,
6629 void *data)
6630{
6631 struct perf_namespaces_event *namespaces_event = data;
6632 struct perf_output_handle handle;
6633 struct perf_sample_data sample;
6634 int ret;
6635
6636 if (!perf_event_namespaces_match(event))
6637 return;
6638
6639 perf_event_header__init_id(&namespaces_event->event_id.header,
6640 &sample, event);
6641 ret = perf_output_begin(&handle, event,
6642 namespaces_event->event_id.header.size);
6643 if (ret)
6644 return;
6645
6646 namespaces_event->event_id.pid = perf_event_pid(event,
6647 namespaces_event->task);
6648 namespaces_event->event_id.tid = perf_event_tid(event,
6649 namespaces_event->task);
6650
6651 perf_output_put(&handle, namespaces_event->event_id);
6652
6653 perf_event__output_id_sample(event, &handle, &sample);
6654
6655 perf_output_end(&handle);
6656}
6657
6658static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
6659 struct task_struct *task,
6660 const struct proc_ns_operations *ns_ops)
6661{
6662 struct path ns_path;
6663 struct inode *ns_inode;
6664 void *error;
6665
6666 error = ns_get_path(&ns_path, task, ns_ops);
6667 if (!error) {
6668 ns_inode = ns_path.dentry->d_inode;
6669 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
6670 ns_link_info->ino = ns_inode->i_ino;
6671 }
6672}
6673
6674void perf_event_namespaces(struct task_struct *task)
6675{
6676 struct perf_namespaces_event namespaces_event;
6677 struct perf_ns_link_info *ns_link_info;
6678
6679 if (!atomic_read(&nr_namespaces_events))
6680 return;
6681
6682 namespaces_event = (struct perf_namespaces_event){
6683 .task = task,
6684 .event_id = {
6685 .header = {
6686 .type = PERF_RECORD_NAMESPACES,
6687 .misc = 0,
6688 .size = sizeof(namespaces_event.event_id),
6689 },
6690 /* .pid */
6691 /* .tid */
6692 .nr_namespaces = NR_NAMESPACES,
6693 /* .link_info[NR_NAMESPACES] */
6694 },
6695 };
6696
6697 ns_link_info = namespaces_event.event_id.link_info;
6698
6699 perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
6700 task, &mntns_operations);
6701
6702#ifdef CONFIG_USER_NS
6703 perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
6704 task, &userns_operations);
6705#endif
6706#ifdef CONFIG_NET_NS
6707 perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
6708 task, &netns_operations);
6709#endif
6710#ifdef CONFIG_UTS_NS
6711 perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
6712 task, &utsns_operations);
6713#endif
6714#ifdef CONFIG_IPC_NS
6715 perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
6716 task, &ipcns_operations);
6717#endif
6718#ifdef CONFIG_PID_NS
6719 perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
6720 task, &pidns_operations);
6721#endif
6722#ifdef CONFIG_CGROUPS
6723 perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
6724 task, &cgroupns_operations);
6725#endif
6726
6727 perf_iterate_sb(perf_event_namespaces_output,
6728 &namespaces_event,
6729 NULL);
6730}
6731
0a4a9391
PZ
6732/*
6733 * mmap tracking
6734 */
6735
6736struct perf_mmap_event {
089dd79d
PZ
6737 struct vm_area_struct *vma;
6738
6739 const char *file_name;
6740 int file_size;
13d7a241
SE
6741 int maj, min;
6742 u64 ino;
6743 u64 ino_generation;
f972eb63 6744 u32 prot, flags;
0a4a9391
PZ
6745
6746 struct {
6747 struct perf_event_header header;
6748
6749 u32 pid;
6750 u32 tid;
6751 u64 start;
6752 u64 len;
6753 u64 pgoff;
cdd6c482 6754 } event_id;
0a4a9391
PZ
6755};
6756
67516844
JO
6757static int perf_event_mmap_match(struct perf_event *event,
6758 void *data)
6759{
6760 struct perf_mmap_event *mmap_event = data;
6761 struct vm_area_struct *vma = mmap_event->vma;
6762 int executable = vma->vm_flags & VM_EXEC;
6763
6764 return (!executable && event->attr.mmap_data) ||
13d7a241 6765 (executable && (event->attr.mmap || event->attr.mmap2));
67516844
JO
6766}
6767
cdd6c482 6768static void perf_event_mmap_output(struct perf_event *event,
52d857a8 6769 void *data)
0a4a9391 6770{
52d857a8 6771 struct perf_mmap_event *mmap_event = data;
0a4a9391 6772 struct perf_output_handle handle;
c980d109 6773 struct perf_sample_data sample;
cdd6c482 6774 int size = mmap_event->event_id.header.size;
c980d109 6775 int ret;
0a4a9391 6776
67516844
JO
6777 if (!perf_event_mmap_match(event, data))
6778 return;
6779
13d7a241
SE
6780 if (event->attr.mmap2) {
6781 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
6782 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
6783 mmap_event->event_id.header.size += sizeof(mmap_event->min);
6784 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
d008d525 6785 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
f972eb63
PZ
6786 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
6787 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
13d7a241
SE
6788 }
6789
c980d109
ACM
6790 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
6791 ret = perf_output_begin(&handle, event,
a7ac67ea 6792 mmap_event->event_id.header.size);
0a4a9391 6793 if (ret)
c980d109 6794 goto out;
0a4a9391 6795
cdd6c482
IM
6796 mmap_event->event_id.pid = perf_event_pid(event, current);
6797 mmap_event->event_id.tid = perf_event_tid(event, current);
709e50cf 6798
cdd6c482 6799 perf_output_put(&handle, mmap_event->event_id);
13d7a241
SE
6800
6801 if (event->attr.mmap2) {
6802 perf_output_put(&handle, mmap_event->maj);
6803 perf_output_put(&handle, mmap_event->min);
6804 perf_output_put(&handle, mmap_event->ino);
6805 perf_output_put(&handle, mmap_event->ino_generation);
f972eb63
PZ
6806 perf_output_put(&handle, mmap_event->prot);
6807 perf_output_put(&handle, mmap_event->flags);
13d7a241
SE
6808 }
6809
76369139 6810 __output_copy(&handle, mmap_event->file_name,
0a4a9391 6811 mmap_event->file_size);
c980d109
ACM
6812
6813 perf_event__output_id_sample(event, &handle, &sample);
6814
78d613eb 6815 perf_output_end(&handle);
c980d109
ACM
6816out:
6817 mmap_event->event_id.header.size = size;
0a4a9391
PZ
6818}
6819
cdd6c482 6820static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
0a4a9391 6821{
089dd79d
PZ
6822 struct vm_area_struct *vma = mmap_event->vma;
6823 struct file *file = vma->vm_file;
13d7a241
SE
6824 int maj = 0, min = 0;
6825 u64 ino = 0, gen = 0;
f972eb63 6826 u32 prot = 0, flags = 0;
0a4a9391
PZ
6827 unsigned int size;
6828 char tmp[16];
6829 char *buf = NULL;
2c42cfbf 6830 char *name;
413ee3b4 6831
0b3589be
PZ
6832 if (vma->vm_flags & VM_READ)
6833 prot |= PROT_READ;
6834 if (vma->vm_flags & VM_WRITE)
6835 prot |= PROT_WRITE;
6836 if (vma->vm_flags & VM_EXEC)
6837 prot |= PROT_EXEC;
6838
6839 if (vma->vm_flags & VM_MAYSHARE)
6840 flags = MAP_SHARED;
6841 else
6842 flags = MAP_PRIVATE;
6843
6844 if (vma->vm_flags & VM_DENYWRITE)
6845 flags |= MAP_DENYWRITE;
6846 if (vma->vm_flags & VM_MAYEXEC)
6847 flags |= MAP_EXECUTABLE;
6848 if (vma->vm_flags & VM_LOCKED)
6849 flags |= MAP_LOCKED;
6850 if (vma->vm_flags & VM_HUGETLB)
6851 flags |= MAP_HUGETLB;
6852
0a4a9391 6853 if (file) {
13d7a241
SE
6854 struct inode *inode;
6855 dev_t dev;
3ea2f2b9 6856
2c42cfbf 6857 buf = kmalloc(PATH_MAX, GFP_KERNEL);
0a4a9391 6858 if (!buf) {
c7e548b4
ON
6859 name = "//enomem";
6860 goto cpy_name;
0a4a9391 6861 }
413ee3b4 6862 /*
3ea2f2b9 6863 * d_path() works from the end of the rb backwards, so we
413ee3b4
AB
6864 * need to add enough zero bytes after the string to handle
6865 * the 64bit alignment we do later.
6866 */
9bf39ab2 6867 name = file_path(file, buf, PATH_MAX - sizeof(u64));
0a4a9391 6868 if (IS_ERR(name)) {
c7e548b4
ON
6869 name = "//toolong";
6870 goto cpy_name;
0a4a9391 6871 }
13d7a241
SE
6872 inode = file_inode(vma->vm_file);
6873 dev = inode->i_sb->s_dev;
6874 ino = inode->i_ino;
6875 gen = inode->i_generation;
6876 maj = MAJOR(dev);
6877 min = MINOR(dev);
f972eb63 6878
c7e548b4 6879 goto got_name;
0a4a9391 6880 } else {
fbe26abe
JO
6881 if (vma->vm_ops && vma->vm_ops->name) {
6882 name = (char *) vma->vm_ops->name(vma);
6883 if (name)
6884 goto cpy_name;
6885 }
6886
2c42cfbf 6887 name = (char *)arch_vma_name(vma);
c7e548b4
ON
6888 if (name)
6889 goto cpy_name;
089dd79d 6890
32c5fb7e 6891 if (vma->vm_start <= vma->vm_mm->start_brk &&
3af9e859 6892 vma->vm_end >= vma->vm_mm->brk) {
c7e548b4
ON
6893 name = "[heap]";
6894 goto cpy_name;
32c5fb7e
ON
6895 }
6896 if (vma->vm_start <= vma->vm_mm->start_stack &&
3af9e859 6897 vma->vm_end >= vma->vm_mm->start_stack) {
c7e548b4
ON
6898 name = "[stack]";
6899 goto cpy_name;
089dd79d
PZ
6900 }
6901
c7e548b4
ON
6902 name = "//anon";
6903 goto cpy_name;
0a4a9391
PZ
6904 }
6905
c7e548b4
ON
6906cpy_name:
6907 strlcpy(tmp, name, sizeof(tmp));
6908 name = tmp;
0a4a9391 6909got_name:
2c42cfbf
PZ
6910 /*
6911 * Since our buffer works in 8 byte units we need to align our string
6912 * size to a multiple of 8. However, we must guarantee the tail end is
6913 * zero'd out to avoid leaking random bits to userspace.
6914 */
6915 size = strlen(name)+1;
6916 while (!IS_ALIGNED(size, sizeof(u64)))
6917 name[size++] = '\0';
0a4a9391
PZ
6918
6919 mmap_event->file_name = name;
6920 mmap_event->file_size = size;
13d7a241
SE
6921 mmap_event->maj = maj;
6922 mmap_event->min = min;
6923 mmap_event->ino = ino;
6924 mmap_event->ino_generation = gen;
f972eb63
PZ
6925 mmap_event->prot = prot;
6926 mmap_event->flags = flags;
0a4a9391 6927
2fe85427
SE
6928 if (!(vma->vm_flags & VM_EXEC))
6929 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
6930
cdd6c482 6931 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
0a4a9391 6932
aab5b71e 6933 perf_iterate_sb(perf_event_mmap_output,
52d857a8
JO
6934 mmap_event,
6935 NULL);
665c2142 6936
0a4a9391
PZ
6937 kfree(buf);
6938}
6939
375637bc
AS
6940/*
6941 * Check whether inode and address range match filter criteria.
6942 */
6943static bool perf_addr_filter_match(struct perf_addr_filter *filter,
6944 struct file *file, unsigned long offset,
6945 unsigned long size)
6946{
45063097 6947 if (filter->inode != file_inode(file))
375637bc
AS
6948 return false;
6949
6950 if (filter->offset > offset + size)
6951 return false;
6952
6953 if (filter->offset + filter->size < offset)
6954 return false;
6955
6956 return true;
6957}
6958
6959static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
6960{
6961 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6962 struct vm_area_struct *vma = data;
6963 unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags;
6964 struct file *file = vma->vm_file;
6965 struct perf_addr_filter *filter;
6966 unsigned int restart = 0, count = 0;
6967
6968 if (!has_addr_filter(event))
6969 return;
6970
6971 if (!file)
6972 return;
6973
6974 raw_spin_lock_irqsave(&ifh->lock, flags);
6975 list_for_each_entry(filter, &ifh->list, entry) {
6976 if (perf_addr_filter_match(filter, file, off,
6977 vma->vm_end - vma->vm_start)) {
6978 event->addr_filters_offs[count] = vma->vm_start;
6979 restart++;
6980 }
6981
6982 count++;
6983 }
6984
6985 if (restart)
6986 event->addr_filters_gen++;
6987 raw_spin_unlock_irqrestore(&ifh->lock, flags);
6988
6989 if (restart)
767ae086 6990 perf_event_stop(event, 1);
375637bc
AS
6991}
6992
6993/*
6994 * Adjust all task's events' filters to the new vma
6995 */
6996static void perf_addr_filters_adjust(struct vm_area_struct *vma)
6997{
6998 struct perf_event_context *ctx;
6999 int ctxn;
7000
12b40a23
MP
7001 /*
7002 * Data tracing isn't supported yet and as such there is no need
7003 * to keep track of anything that isn't related to executable code:
7004 */
7005 if (!(vma->vm_flags & VM_EXEC))
7006 return;
7007
375637bc
AS
7008 rcu_read_lock();
7009 for_each_task_context_nr(ctxn) {
7010 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7011 if (!ctx)
7012 continue;
7013
aab5b71e 7014 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
375637bc
AS
7015 }
7016 rcu_read_unlock();
7017}
7018
3af9e859 7019void perf_event_mmap(struct vm_area_struct *vma)
0a4a9391 7020{
9ee318a7
PZ
7021 struct perf_mmap_event mmap_event;
7022
cdd6c482 7023 if (!atomic_read(&nr_mmap_events))
9ee318a7
PZ
7024 return;
7025
7026 mmap_event = (struct perf_mmap_event){
089dd79d 7027 .vma = vma,
573402db
PZ
7028 /* .file_name */
7029 /* .file_size */
cdd6c482 7030 .event_id = {
573402db 7031 .header = {
cdd6c482 7032 .type = PERF_RECORD_MMAP,
39447b38 7033 .misc = PERF_RECORD_MISC_USER,
573402db
PZ
7034 /* .size */
7035 },
7036 /* .pid */
7037 /* .tid */
089dd79d
PZ
7038 .start = vma->vm_start,
7039 .len = vma->vm_end - vma->vm_start,
3a0304e9 7040 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
0a4a9391 7041 },
13d7a241
SE
7042 /* .maj (attr_mmap2 only) */
7043 /* .min (attr_mmap2 only) */
7044 /* .ino (attr_mmap2 only) */
7045 /* .ino_generation (attr_mmap2 only) */
f972eb63
PZ
7046 /* .prot (attr_mmap2 only) */
7047 /* .flags (attr_mmap2 only) */
0a4a9391
PZ
7048 };
7049
375637bc 7050 perf_addr_filters_adjust(vma);
cdd6c482 7051 perf_event_mmap_event(&mmap_event);
0a4a9391
PZ
7052}
7053
68db7e98
AS
7054void perf_event_aux_event(struct perf_event *event, unsigned long head,
7055 unsigned long size, u64 flags)
7056{
7057 struct perf_output_handle handle;
7058 struct perf_sample_data sample;
7059 struct perf_aux_event {
7060 struct perf_event_header header;
7061 u64 offset;
7062 u64 size;
7063 u64 flags;
7064 } rec = {
7065 .header = {
7066 .type = PERF_RECORD_AUX,
7067 .misc = 0,
7068 .size = sizeof(rec),
7069 },
7070 .offset = head,
7071 .size = size,
7072 .flags = flags,
7073 };
7074 int ret;
7075
7076 perf_event_header__init_id(&rec.header, &sample, event);
7077 ret = perf_output_begin(&handle, event, rec.header.size);
7078
7079 if (ret)
7080 return;
7081
7082 perf_output_put(&handle, rec);
7083 perf_event__output_id_sample(event, &handle, &sample);
7084
7085 perf_output_end(&handle);
7086}
7087
f38b0dbb
KL
7088/*
7089 * Lost/dropped samples logging
7090 */
7091void perf_log_lost_samples(struct perf_event *event, u64 lost)
7092{
7093 struct perf_output_handle handle;
7094 struct perf_sample_data sample;
7095 int ret;
7096
7097 struct {
7098 struct perf_event_header header;
7099 u64 lost;
7100 } lost_samples_event = {
7101 .header = {
7102 .type = PERF_RECORD_LOST_SAMPLES,
7103 .misc = 0,
7104 .size = sizeof(lost_samples_event),
7105 },
7106 .lost = lost,
7107 };
7108
7109 perf_event_header__init_id(&lost_samples_event.header, &sample, event);
7110
7111 ret = perf_output_begin(&handle, event,
7112 lost_samples_event.header.size);
7113 if (ret)
7114 return;
7115
7116 perf_output_put(&handle, lost_samples_event);
7117 perf_event__output_id_sample(event, &handle, &sample);
7118 perf_output_end(&handle);
7119}
7120
45ac1403
AH
7121/*
7122 * context_switch tracking
7123 */
7124
7125struct perf_switch_event {
7126 struct task_struct *task;
7127 struct task_struct *next_prev;
7128
7129 struct {
7130 struct perf_event_header header;
7131 u32 next_prev_pid;
7132 u32 next_prev_tid;
7133 } event_id;
7134};
7135
7136static int perf_event_switch_match(struct perf_event *event)
7137{
7138 return event->attr.context_switch;
7139}
7140
7141static void perf_event_switch_output(struct perf_event *event, void *data)
7142{
7143 struct perf_switch_event *se = data;
7144 struct perf_output_handle handle;
7145 struct perf_sample_data sample;
7146 int ret;
7147
7148 if (!perf_event_switch_match(event))
7149 return;
7150
7151 /* Only CPU-wide events are allowed to see next/prev pid/tid */
7152 if (event->ctx->task) {
7153 se->event_id.header.type = PERF_RECORD_SWITCH;
7154 se->event_id.header.size = sizeof(se->event_id.header);
7155 } else {
7156 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
7157 se->event_id.header.size = sizeof(se->event_id);
7158 se->event_id.next_prev_pid =
7159 perf_event_pid(event, se->next_prev);
7160 se->event_id.next_prev_tid =
7161 perf_event_tid(event, se->next_prev);
7162 }
7163
7164 perf_event_header__init_id(&se->event_id.header, &sample, event);
7165
7166 ret = perf_output_begin(&handle, event, se->event_id.header.size);
7167 if (ret)
7168 return;
7169
7170 if (event->ctx->task)
7171 perf_output_put(&handle, se->event_id.header);
7172 else
7173 perf_output_put(&handle, se->event_id);
7174
7175 perf_event__output_id_sample(event, &handle, &sample);
7176
7177 perf_output_end(&handle);
7178}
7179
7180static void perf_event_switch(struct task_struct *task,
7181 struct task_struct *next_prev, bool sched_in)
7182{
7183 struct perf_switch_event switch_event;
7184
7185 /* N.B. caller checks nr_switch_events != 0 */
7186
7187 switch_event = (struct perf_switch_event){
7188 .task = task,
7189 .next_prev = next_prev,
7190 .event_id = {
7191 .header = {
7192 /* .type */
7193 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
7194 /* .size */
7195 },
7196 /* .next_prev_pid */
7197 /* .next_prev_tid */
7198 },
7199 };
7200
aab5b71e 7201 perf_iterate_sb(perf_event_switch_output,
45ac1403
AH
7202 &switch_event,
7203 NULL);
7204}
7205
a78ac325
PZ
7206/*
7207 * IRQ throttle logging
7208 */
7209
cdd6c482 7210static void perf_log_throttle(struct perf_event *event, int enable)
a78ac325
PZ
7211{
7212 struct perf_output_handle handle;
c980d109 7213 struct perf_sample_data sample;
a78ac325
PZ
7214 int ret;
7215
7216 struct {
7217 struct perf_event_header header;
7218 u64 time;
cca3f454 7219 u64 id;
7f453c24 7220 u64 stream_id;
a78ac325
PZ
7221 } throttle_event = {
7222 .header = {
cdd6c482 7223 .type = PERF_RECORD_THROTTLE,
a78ac325
PZ
7224 .misc = 0,
7225 .size = sizeof(throttle_event),
7226 },
34f43927 7227 .time = perf_event_clock(event),
cdd6c482
IM
7228 .id = primary_event_id(event),
7229 .stream_id = event->id,
a78ac325
PZ
7230 };
7231
966ee4d6 7232 if (enable)
cdd6c482 7233 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
966ee4d6 7234
c980d109
ACM
7235 perf_event_header__init_id(&throttle_event.header, &sample, event);
7236
7237 ret = perf_output_begin(&handle, event,
a7ac67ea 7238 throttle_event.header.size);
a78ac325
PZ
7239 if (ret)
7240 return;
7241
7242 perf_output_put(&handle, throttle_event);
c980d109 7243 perf_event__output_id_sample(event, &handle, &sample);
a78ac325
PZ
7244 perf_output_end(&handle);
7245}
7246
ec0d7729
AS
7247static void perf_log_itrace_start(struct perf_event *event)
7248{
7249 struct perf_output_handle handle;
7250 struct perf_sample_data sample;
7251 struct perf_aux_event {
7252 struct perf_event_header header;
7253 u32 pid;
7254 u32 tid;
7255 } rec;
7256 int ret;
7257
7258 if (event->parent)
7259 event = event->parent;
7260
7261 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
7262 event->hw.itrace_started)
7263 return;
7264
ec0d7729
AS
7265 rec.header.type = PERF_RECORD_ITRACE_START;
7266 rec.header.misc = 0;
7267 rec.header.size = sizeof(rec);
7268 rec.pid = perf_event_pid(event, current);
7269 rec.tid = perf_event_tid(event, current);
7270
7271 perf_event_header__init_id(&rec.header, &sample, event);
7272 ret = perf_output_begin(&handle, event, rec.header.size);
7273
7274 if (ret)
7275 return;
7276
7277 perf_output_put(&handle, rec);
7278 perf_event__output_id_sample(event, &handle, &sample);
7279
7280 perf_output_end(&handle);
7281}
7282
475113d9
JO
7283static int
7284__perf_event_account_interrupt(struct perf_event *event, int throttle)
f6c7d5fe 7285{
cdd6c482 7286 struct hw_perf_event *hwc = &event->hw;
79f14641 7287 int ret = 0;
475113d9 7288 u64 seq;
96398826 7289
e050e3f0
SE
7290 seq = __this_cpu_read(perf_throttled_seq);
7291 if (seq != hwc->interrupts_seq) {
7292 hwc->interrupts_seq = seq;
7293 hwc->interrupts = 1;
7294 } else {
7295 hwc->interrupts++;
7296 if (unlikely(throttle
7297 && hwc->interrupts >= max_samples_per_tick)) {
7298 __this_cpu_inc(perf_throttled_count);
555e0c1e 7299 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
163ec435
PZ
7300 hwc->interrupts = MAX_INTERRUPTS;
7301 perf_log_throttle(event, 0);
a78ac325
PZ
7302 ret = 1;
7303 }
e050e3f0 7304 }
60db5e09 7305
cdd6c482 7306 if (event->attr.freq) {
def0a9b2 7307 u64 now = perf_clock();
abd50713 7308 s64 delta = now - hwc->freq_time_stamp;
bd2b5b12 7309
abd50713 7310 hwc->freq_time_stamp = now;
bd2b5b12 7311
abd50713 7312 if (delta > 0 && delta < 2*TICK_NSEC)
f39d47ff 7313 perf_adjust_period(event, delta, hwc->last_period, true);
bd2b5b12
PZ
7314 }
7315
475113d9
JO
7316 return ret;
7317}
7318
7319int perf_event_account_interrupt(struct perf_event *event)
7320{
7321 return __perf_event_account_interrupt(event, 1);
7322}
7323
cc1582c2
JY
7324static bool sample_is_allowed(struct perf_event *event, struct pt_regs *regs)
7325{
7326 /*
7327 * Due to interrupt latency (AKA "skid"), we may enter the
7328 * kernel before taking an overflow, even if the PMU is only
7329 * counting user events.
7330 * To avoid leaking information to userspace, we must always
7331 * reject kernel samples when exclude_kernel is set.
7332 */
7333 if (event->attr.exclude_kernel && !user_mode(regs))
7334 return false;
7335
7336 return true;
7337}
7338
475113d9
JO
7339/*
7340 * Generic event overflow handling, sampling.
7341 */
7342
7343static int __perf_event_overflow(struct perf_event *event,
7344 int throttle, struct perf_sample_data *data,
7345 struct pt_regs *regs)
7346{
7347 int events = atomic_read(&event->event_limit);
7348 int ret = 0;
7349
7350 /*
7351 * Non-sampling counters might still use the PMI to fold short
7352 * hardware counters, ignore those.
7353 */
7354 if (unlikely(!is_sampling_event(event)))
7355 return 0;
7356
7357 ret = __perf_event_account_interrupt(event, throttle);
7358
cc1582c2
JY
7359 /*
7360 * For security, drop the skid kernel samples if necessary.
7361 */
7362 if (!sample_is_allowed(event, regs))
7363 return ret;
7364
2023b359
PZ
7365 /*
7366 * XXX event_limit might not quite work as expected on inherited
cdd6c482 7367 * events
2023b359
PZ
7368 */
7369
cdd6c482
IM
7370 event->pending_kill = POLL_IN;
7371 if (events && atomic_dec_and_test(&event->event_limit)) {
79f14641 7372 ret = 1;
cdd6c482 7373 event->pending_kill = POLL_HUP;
5aab90ce
JO
7374
7375 perf_event_disable_inatomic(event);
79f14641
PZ
7376 }
7377
aa6a5f3c 7378 READ_ONCE(event->overflow_handler)(event, data, regs);
453f19ee 7379
fed66e2c 7380 if (*perf_event_fasync(event) && event->pending_kill) {
a8b0ca17
PZ
7381 event->pending_wakeup = 1;
7382 irq_work_queue(&event->pending);
f506b3dc
PZ
7383 }
7384
79f14641 7385 return ret;
f6c7d5fe
PZ
7386}
7387
a8b0ca17 7388int perf_event_overflow(struct perf_event *event,
5622f295
MM
7389 struct perf_sample_data *data,
7390 struct pt_regs *regs)
850bc73f 7391{
a8b0ca17 7392 return __perf_event_overflow(event, 1, data, regs);
850bc73f
PZ
7393}
7394
15dbf27c 7395/*
cdd6c482 7396 * Generic software event infrastructure
15dbf27c
PZ
7397 */
7398
b28ab83c
PZ
7399struct swevent_htable {
7400 struct swevent_hlist *swevent_hlist;
7401 struct mutex hlist_mutex;
7402 int hlist_refcount;
7403
7404 /* Recursion avoidance in each contexts */
7405 int recursion[PERF_NR_CONTEXTS];
7406};
7407
7408static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
7409
7b4b6658 7410/*
cdd6c482
IM
7411 * We directly increment event->count and keep a second value in
7412 * event->hw.period_left to count intervals. This period event
7b4b6658
PZ
7413 * is kept in the range [-sample_period, 0] so that we can use the
7414 * sign as trigger.
7415 */
7416
ab573844 7417u64 perf_swevent_set_period(struct perf_event *event)
15dbf27c 7418{
cdd6c482 7419 struct hw_perf_event *hwc = &event->hw;
7b4b6658
PZ
7420 u64 period = hwc->last_period;
7421 u64 nr, offset;
7422 s64 old, val;
7423
7424 hwc->last_period = hwc->sample_period;
15dbf27c
PZ
7425
7426again:
e7850595 7427 old = val = local64_read(&hwc->period_left);
7b4b6658
PZ
7428 if (val < 0)
7429 return 0;
15dbf27c 7430
7b4b6658
PZ
7431 nr = div64_u64(period + val, period);
7432 offset = nr * period;
7433 val -= offset;
e7850595 7434 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7b4b6658 7435 goto again;
15dbf27c 7436
7b4b6658 7437 return nr;
15dbf27c
PZ
7438}
7439
0cff784a 7440static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
a8b0ca17 7441 struct perf_sample_data *data,
5622f295 7442 struct pt_regs *regs)
15dbf27c 7443{
cdd6c482 7444 struct hw_perf_event *hwc = &event->hw;
850bc73f 7445 int throttle = 0;
15dbf27c 7446
0cff784a
PZ
7447 if (!overflow)
7448 overflow = perf_swevent_set_period(event);
15dbf27c 7449
7b4b6658
PZ
7450 if (hwc->interrupts == MAX_INTERRUPTS)
7451 return;
15dbf27c 7452
7b4b6658 7453 for (; overflow; overflow--) {
a8b0ca17 7454 if (__perf_event_overflow(event, throttle,
5622f295 7455 data, regs)) {
7b4b6658
PZ
7456 /*
7457 * We inhibit the overflow from happening when
7458 * hwc->interrupts == MAX_INTERRUPTS.
7459 */
7460 break;
7461 }
cf450a73 7462 throttle = 1;
7b4b6658 7463 }
15dbf27c
PZ
7464}
7465
a4eaf7f1 7466static void perf_swevent_event(struct perf_event *event, u64 nr,
a8b0ca17 7467 struct perf_sample_data *data,
5622f295 7468 struct pt_regs *regs)
7b4b6658 7469{
cdd6c482 7470 struct hw_perf_event *hwc = &event->hw;
d6d020e9 7471
e7850595 7472 local64_add(nr, &event->count);
d6d020e9 7473
0cff784a
PZ
7474 if (!regs)
7475 return;
7476
6c7e550f 7477 if (!is_sampling_event(event))
7b4b6658 7478 return;
d6d020e9 7479
5d81e5cf
AV
7480 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
7481 data->period = nr;
7482 return perf_swevent_overflow(event, 1, data, regs);
7483 } else
7484 data->period = event->hw.last_period;
7485
0cff784a 7486 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
a8b0ca17 7487 return perf_swevent_overflow(event, 1, data, regs);
0cff784a 7488
e7850595 7489 if (local64_add_negative(nr, &hwc->period_left))
7b4b6658 7490 return;
df1a132b 7491
a8b0ca17 7492 perf_swevent_overflow(event, 0, data, regs);
d6d020e9
PZ
7493}
7494
f5ffe02e
FW
7495static int perf_exclude_event(struct perf_event *event,
7496 struct pt_regs *regs)
7497{
a4eaf7f1 7498 if (event->hw.state & PERF_HES_STOPPED)
91b2f482 7499 return 1;
a4eaf7f1 7500
f5ffe02e
FW
7501 if (regs) {
7502 if (event->attr.exclude_user && user_mode(regs))
7503 return 1;
7504
7505 if (event->attr.exclude_kernel && !user_mode(regs))
7506 return 1;
7507 }
7508
7509 return 0;
7510}
7511
cdd6c482 7512static int perf_swevent_match(struct perf_event *event,
1c432d89 7513 enum perf_type_id type,
6fb2915d
LZ
7514 u32 event_id,
7515 struct perf_sample_data *data,
7516 struct pt_regs *regs)
15dbf27c 7517{
cdd6c482 7518 if (event->attr.type != type)
a21ca2ca 7519 return 0;
f5ffe02e 7520
cdd6c482 7521 if (event->attr.config != event_id)
15dbf27c
PZ
7522 return 0;
7523
f5ffe02e
FW
7524 if (perf_exclude_event(event, regs))
7525 return 0;
15dbf27c
PZ
7526
7527 return 1;
7528}
7529
76e1d904
FW
7530static inline u64 swevent_hash(u64 type, u32 event_id)
7531{
7532 u64 val = event_id | (type << 32);
7533
7534 return hash_64(val, SWEVENT_HLIST_BITS);
7535}
7536
49f135ed
FW
7537static inline struct hlist_head *
7538__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
76e1d904 7539{
49f135ed
FW
7540 u64 hash = swevent_hash(type, event_id);
7541
7542 return &hlist->heads[hash];
7543}
76e1d904 7544
49f135ed
FW
7545/* For the read side: events when they trigger */
7546static inline struct hlist_head *
b28ab83c 7547find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
49f135ed
FW
7548{
7549 struct swevent_hlist *hlist;
76e1d904 7550
b28ab83c 7551 hlist = rcu_dereference(swhash->swevent_hlist);
76e1d904
FW
7552 if (!hlist)
7553 return NULL;
7554
49f135ed
FW
7555 return __find_swevent_head(hlist, type, event_id);
7556}
7557
7558/* For the event head insertion and removal in the hlist */
7559static inline struct hlist_head *
b28ab83c 7560find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
49f135ed
FW
7561{
7562 struct swevent_hlist *hlist;
7563 u32 event_id = event->attr.config;
7564 u64 type = event->attr.type;
7565
7566 /*
7567 * Event scheduling is always serialized against hlist allocation
7568 * and release. Which makes the protected version suitable here.
7569 * The context lock guarantees that.
7570 */
b28ab83c 7571 hlist = rcu_dereference_protected(swhash->swevent_hlist,
49f135ed
FW
7572 lockdep_is_held(&event->ctx->lock));
7573 if (!hlist)
7574 return NULL;
7575
7576 return __find_swevent_head(hlist, type, event_id);
76e1d904
FW
7577}
7578
7579static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
a8b0ca17 7580 u64 nr,
76e1d904
FW
7581 struct perf_sample_data *data,
7582 struct pt_regs *regs)
15dbf27c 7583{
4a32fea9 7584 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 7585 struct perf_event *event;
76e1d904 7586 struct hlist_head *head;
15dbf27c 7587
76e1d904 7588 rcu_read_lock();
b28ab83c 7589 head = find_swevent_head_rcu(swhash, type, event_id);
76e1d904
FW
7590 if (!head)
7591 goto end;
7592
b67bfe0d 7593 hlist_for_each_entry_rcu(event, head, hlist_entry) {
6fb2915d 7594 if (perf_swevent_match(event, type, event_id, data, regs))
a8b0ca17 7595 perf_swevent_event(event, nr, data, regs);
15dbf27c 7596 }
76e1d904
FW
7597end:
7598 rcu_read_unlock();
15dbf27c
PZ
7599}
7600
86038c5e
PZI
7601DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
7602
4ed7c92d 7603int perf_swevent_get_recursion_context(void)
96f6d444 7604{
4a32fea9 7605 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
96f6d444 7606
b28ab83c 7607 return get_recursion_context(swhash->recursion);
96f6d444 7608}
645e8cc0 7609EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
96f6d444 7610
98b5c2c6 7611void perf_swevent_put_recursion_context(int rctx)
15dbf27c 7612{
4a32fea9 7613 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
927c7a9e 7614
b28ab83c 7615 put_recursion_context(swhash->recursion, rctx);
ce71b9df 7616}
15dbf27c 7617
86038c5e 7618void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
b8e83514 7619{
a4234bfc 7620 struct perf_sample_data data;
4ed7c92d 7621
86038c5e 7622 if (WARN_ON_ONCE(!regs))
4ed7c92d 7623 return;
a4234bfc 7624
fd0d000b 7625 perf_sample_data_init(&data, addr, 0);
a8b0ca17 7626 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
86038c5e
PZI
7627}
7628
7629void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7630{
7631 int rctx;
7632
7633 preempt_disable_notrace();
7634 rctx = perf_swevent_get_recursion_context();
7635 if (unlikely(rctx < 0))
7636 goto fail;
7637
7638 ___perf_sw_event(event_id, nr, regs, addr);
4ed7c92d
PZ
7639
7640 perf_swevent_put_recursion_context(rctx);
86038c5e 7641fail:
1c024eca 7642 preempt_enable_notrace();
b8e83514
PZ
7643}
7644
cdd6c482 7645static void perf_swevent_read(struct perf_event *event)
15dbf27c 7646{
15dbf27c
PZ
7647}
7648
a4eaf7f1 7649static int perf_swevent_add(struct perf_event *event, int flags)
15dbf27c 7650{
4a32fea9 7651 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 7652 struct hw_perf_event *hwc = &event->hw;
76e1d904
FW
7653 struct hlist_head *head;
7654
6c7e550f 7655 if (is_sampling_event(event)) {
7b4b6658 7656 hwc->last_period = hwc->sample_period;
cdd6c482 7657 perf_swevent_set_period(event);
7b4b6658 7658 }
76e1d904 7659
a4eaf7f1
PZ
7660 hwc->state = !(flags & PERF_EF_START);
7661
b28ab83c 7662 head = find_swevent_head(swhash, event);
12ca6ad2 7663 if (WARN_ON_ONCE(!head))
76e1d904
FW
7664 return -EINVAL;
7665
7666 hlist_add_head_rcu(&event->hlist_entry, head);
6a694a60 7667 perf_event_update_userpage(event);
76e1d904 7668
15dbf27c
PZ
7669 return 0;
7670}
7671
a4eaf7f1 7672static void perf_swevent_del(struct perf_event *event, int flags)
15dbf27c 7673{
76e1d904 7674 hlist_del_rcu(&event->hlist_entry);
15dbf27c
PZ
7675}
7676
a4eaf7f1 7677static void perf_swevent_start(struct perf_event *event, int flags)
5c92d124 7678{
a4eaf7f1 7679 event->hw.state = 0;
d6d020e9 7680}
aa9c4c0f 7681
a4eaf7f1 7682static void perf_swevent_stop(struct perf_event *event, int flags)
d6d020e9 7683{
a4eaf7f1 7684 event->hw.state = PERF_HES_STOPPED;
bae43c99
IM
7685}
7686
49f135ed
FW
7687/* Deref the hlist from the update side */
7688static inline struct swevent_hlist *
b28ab83c 7689swevent_hlist_deref(struct swevent_htable *swhash)
49f135ed 7690{
b28ab83c
PZ
7691 return rcu_dereference_protected(swhash->swevent_hlist,
7692 lockdep_is_held(&swhash->hlist_mutex));
49f135ed
FW
7693}
7694
b28ab83c 7695static void swevent_hlist_release(struct swevent_htable *swhash)
76e1d904 7696{
b28ab83c 7697 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
76e1d904 7698
49f135ed 7699 if (!hlist)
76e1d904
FW
7700 return;
7701
70691d4a 7702 RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
fa4bbc4c 7703 kfree_rcu(hlist, rcu_head);
76e1d904
FW
7704}
7705
3b364d7b 7706static void swevent_hlist_put_cpu(int cpu)
76e1d904 7707{
b28ab83c 7708 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904 7709
b28ab83c 7710 mutex_lock(&swhash->hlist_mutex);
76e1d904 7711
b28ab83c
PZ
7712 if (!--swhash->hlist_refcount)
7713 swevent_hlist_release(swhash);
76e1d904 7714
b28ab83c 7715 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
7716}
7717
3b364d7b 7718static void swevent_hlist_put(void)
76e1d904
FW
7719{
7720 int cpu;
7721
76e1d904 7722 for_each_possible_cpu(cpu)
3b364d7b 7723 swevent_hlist_put_cpu(cpu);
76e1d904
FW
7724}
7725
3b364d7b 7726static int swevent_hlist_get_cpu(int cpu)
76e1d904 7727{
b28ab83c 7728 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904
FW
7729 int err = 0;
7730
b28ab83c 7731 mutex_lock(&swhash->hlist_mutex);
a63fbed7
TG
7732 if (!swevent_hlist_deref(swhash) &&
7733 cpumask_test_cpu(cpu, perf_online_mask)) {
76e1d904
FW
7734 struct swevent_hlist *hlist;
7735
7736 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
7737 if (!hlist) {
7738 err = -ENOMEM;
7739 goto exit;
7740 }
b28ab83c 7741 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 7742 }
b28ab83c 7743 swhash->hlist_refcount++;
9ed6060d 7744exit:
b28ab83c 7745 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
7746
7747 return err;
7748}
7749
3b364d7b 7750static int swevent_hlist_get(void)
76e1d904 7751{
3b364d7b 7752 int err, cpu, failed_cpu;
76e1d904 7753
a63fbed7 7754 mutex_lock(&pmus_lock);
76e1d904 7755 for_each_possible_cpu(cpu) {
3b364d7b 7756 err = swevent_hlist_get_cpu(cpu);
76e1d904
FW
7757 if (err) {
7758 failed_cpu = cpu;
7759 goto fail;
7760 }
7761 }
a63fbed7 7762 mutex_unlock(&pmus_lock);
76e1d904 7763 return 0;
9ed6060d 7764fail:
76e1d904
FW
7765 for_each_possible_cpu(cpu) {
7766 if (cpu == failed_cpu)
7767 break;
3b364d7b 7768 swevent_hlist_put_cpu(cpu);
76e1d904 7769 }
a63fbed7 7770 mutex_unlock(&pmus_lock);
76e1d904
FW
7771 return err;
7772}
7773
c5905afb 7774struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
95476b64 7775
b0a873eb
PZ
7776static void sw_perf_event_destroy(struct perf_event *event)
7777{
7778 u64 event_id = event->attr.config;
95476b64 7779
b0a873eb
PZ
7780 WARN_ON(event->parent);
7781
c5905afb 7782 static_key_slow_dec(&perf_swevent_enabled[event_id]);
3b364d7b 7783 swevent_hlist_put();
b0a873eb
PZ
7784}
7785
7786static int perf_swevent_init(struct perf_event *event)
7787{
8176cced 7788 u64 event_id = event->attr.config;
b0a873eb
PZ
7789
7790 if (event->attr.type != PERF_TYPE_SOFTWARE)
7791 return -ENOENT;
7792
2481c5fa
SE
7793 /*
7794 * no branch sampling for software events
7795 */
7796 if (has_branch_stack(event))
7797 return -EOPNOTSUPP;
7798
b0a873eb
PZ
7799 switch (event_id) {
7800 case PERF_COUNT_SW_CPU_CLOCK:
7801 case PERF_COUNT_SW_TASK_CLOCK:
7802 return -ENOENT;
7803
7804 default:
7805 break;
7806 }
7807
ce677831 7808 if (event_id >= PERF_COUNT_SW_MAX)
b0a873eb
PZ
7809 return -ENOENT;
7810
7811 if (!event->parent) {
7812 int err;
7813
3b364d7b 7814 err = swevent_hlist_get();
b0a873eb
PZ
7815 if (err)
7816 return err;
7817
c5905afb 7818 static_key_slow_inc(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
7819 event->destroy = sw_perf_event_destroy;
7820 }
7821
7822 return 0;
7823}
7824
7825static struct pmu perf_swevent = {
89a1e187 7826 .task_ctx_nr = perf_sw_context,
95476b64 7827
34f43927
PZ
7828 .capabilities = PERF_PMU_CAP_NO_NMI,
7829
b0a873eb 7830 .event_init = perf_swevent_init,
a4eaf7f1
PZ
7831 .add = perf_swevent_add,
7832 .del = perf_swevent_del,
7833 .start = perf_swevent_start,
7834 .stop = perf_swevent_stop,
1c024eca 7835 .read = perf_swevent_read,
1c024eca
PZ
7836};
7837
b0a873eb
PZ
7838#ifdef CONFIG_EVENT_TRACING
7839
1c024eca
PZ
7840static int perf_tp_filter_match(struct perf_event *event,
7841 struct perf_sample_data *data)
7842{
7e3f977e 7843 void *record = data->raw->frag.data;
1c024eca 7844
b71b437e
PZ
7845 /* only top level events have filters set */
7846 if (event->parent)
7847 event = event->parent;
7848
1c024eca
PZ
7849 if (likely(!event->filter) || filter_match_preds(event->filter, record))
7850 return 1;
7851 return 0;
7852}
7853
7854static int perf_tp_event_match(struct perf_event *event,
7855 struct perf_sample_data *data,
7856 struct pt_regs *regs)
7857{
a0f7d0f7
FW
7858 if (event->hw.state & PERF_HES_STOPPED)
7859 return 0;
580d607c
PZ
7860 /*
7861 * All tracepoints are from kernel-space.
7862 */
7863 if (event->attr.exclude_kernel)
1c024eca
PZ
7864 return 0;
7865
7866 if (!perf_tp_filter_match(event, data))
7867 return 0;
7868
7869 return 1;
7870}
7871
85b67bcb
AS
7872void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
7873 struct trace_event_call *call, u64 count,
7874 struct pt_regs *regs, struct hlist_head *head,
7875 struct task_struct *task)
7876{
7877 struct bpf_prog *prog = call->prog;
7878
7879 if (prog) {
7880 *(struct pt_regs **)raw_data = regs;
7881 if (!trace_call_bpf(prog, raw_data) || hlist_empty(head)) {
7882 perf_swevent_put_recursion_context(rctx);
7883 return;
7884 }
7885 }
7886 perf_tp_event(call->event.type, count, raw_data, size, regs, head,
7887 rctx, task);
7888}
7889EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
7890
1e1dcd93 7891void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
e6dab5ff
AV
7892 struct pt_regs *regs, struct hlist_head *head, int rctx,
7893 struct task_struct *task)
95476b64
FW
7894{
7895 struct perf_sample_data data;
1c024eca 7896 struct perf_event *event;
1c024eca 7897
95476b64 7898 struct perf_raw_record raw = {
7e3f977e
DB
7899 .frag = {
7900 .size = entry_size,
7901 .data = record,
7902 },
95476b64
FW
7903 };
7904
1e1dcd93 7905 perf_sample_data_init(&data, 0, 0);
95476b64
FW
7906 data.raw = &raw;
7907
1e1dcd93
AS
7908 perf_trace_buf_update(record, event_type);
7909
b67bfe0d 7910 hlist_for_each_entry_rcu(event, head, hlist_entry) {
1c024eca 7911 if (perf_tp_event_match(event, &data, regs))
a8b0ca17 7912 perf_swevent_event(event, count, &data, regs);
4f41c013 7913 }
ecc55f84 7914
e6dab5ff
AV
7915 /*
7916 * If we got specified a target task, also iterate its context and
7917 * deliver this event there too.
7918 */
7919 if (task && task != current) {
7920 struct perf_event_context *ctx;
7921 struct trace_entry *entry = record;
7922
7923 rcu_read_lock();
7924 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
7925 if (!ctx)
7926 goto unlock;
7927
7928 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7929 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7930 continue;
7931 if (event->attr.config != entry->type)
7932 continue;
7933 if (perf_tp_event_match(event, &data, regs))
7934 perf_swevent_event(event, count, &data, regs);
7935 }
7936unlock:
7937 rcu_read_unlock();
7938 }
7939
ecc55f84 7940 perf_swevent_put_recursion_context(rctx);
95476b64
FW
7941}
7942EXPORT_SYMBOL_GPL(perf_tp_event);
7943
cdd6c482 7944static void tp_perf_event_destroy(struct perf_event *event)
e077df4f 7945{
1c024eca 7946 perf_trace_destroy(event);
e077df4f
PZ
7947}
7948
b0a873eb 7949static int perf_tp_event_init(struct perf_event *event)
e077df4f 7950{
76e1d904
FW
7951 int err;
7952
b0a873eb
PZ
7953 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7954 return -ENOENT;
7955
2481c5fa
SE
7956 /*
7957 * no branch sampling for tracepoint events
7958 */
7959 if (has_branch_stack(event))
7960 return -EOPNOTSUPP;
7961
1c024eca
PZ
7962 err = perf_trace_init(event);
7963 if (err)
b0a873eb 7964 return err;
e077df4f 7965
cdd6c482 7966 event->destroy = tp_perf_event_destroy;
e077df4f 7967
b0a873eb
PZ
7968 return 0;
7969}
7970
7971static struct pmu perf_tracepoint = {
89a1e187
PZ
7972 .task_ctx_nr = perf_sw_context,
7973
b0a873eb 7974 .event_init = perf_tp_event_init,
a4eaf7f1
PZ
7975 .add = perf_trace_add,
7976 .del = perf_trace_del,
7977 .start = perf_swevent_start,
7978 .stop = perf_swevent_stop,
b0a873eb 7979 .read = perf_swevent_read,
b0a873eb
PZ
7980};
7981
7982static inline void perf_tp_register(void)
7983{
2e80a82a 7984 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
e077df4f 7985}
6fb2915d 7986
6fb2915d
LZ
7987static void perf_event_free_filter(struct perf_event *event)
7988{
7989 ftrace_profile_free_filter(event);
7990}
7991
aa6a5f3c
AS
7992#ifdef CONFIG_BPF_SYSCALL
7993static void bpf_overflow_handler(struct perf_event *event,
7994 struct perf_sample_data *data,
7995 struct pt_regs *regs)
7996{
7997 struct bpf_perf_event_data_kern ctx = {
7998 .data = data,
7999 .regs = regs,
8000 };
8001 int ret = 0;
8002
8003 preempt_disable();
8004 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
8005 goto out;
8006 rcu_read_lock();
88575199 8007 ret = BPF_PROG_RUN(event->prog, &ctx);
aa6a5f3c
AS
8008 rcu_read_unlock();
8009out:
8010 __this_cpu_dec(bpf_prog_active);
8011 preempt_enable();
8012 if (!ret)
8013 return;
8014
8015 event->orig_overflow_handler(event, data, regs);
8016}
8017
8018static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8019{
8020 struct bpf_prog *prog;
8021
8022 if (event->overflow_handler_context)
8023 /* hw breakpoint or kernel counter */
8024 return -EINVAL;
8025
8026 if (event->prog)
8027 return -EEXIST;
8028
8029 prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
8030 if (IS_ERR(prog))
8031 return PTR_ERR(prog);
8032
8033 event->prog = prog;
8034 event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
8035 WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
8036 return 0;
8037}
8038
8039static void perf_event_free_bpf_handler(struct perf_event *event)
8040{
8041 struct bpf_prog *prog = event->prog;
8042
8043 if (!prog)
8044 return;
8045
8046 WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
8047 event->prog = NULL;
8048 bpf_prog_put(prog);
8049}
8050#else
8051static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8052{
8053 return -EOPNOTSUPP;
8054}
8055static void perf_event_free_bpf_handler(struct perf_event *event)
8056{
8057}
8058#endif
8059
2541517c
AS
8060static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8061{
98b5c2c6 8062 bool is_kprobe, is_tracepoint;
2541517c
AS
8063 struct bpf_prog *prog;
8064
8065 if (event->attr.type != PERF_TYPE_TRACEPOINT)
f91840a3 8066 return perf_event_set_bpf_handler(event, prog_fd);
2541517c
AS
8067
8068 if (event->tp_event->prog)
8069 return -EEXIST;
8070
98b5c2c6
AS
8071 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
8072 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
8073 if (!is_kprobe && !is_tracepoint)
8074 /* bpf programs can only be attached to u/kprobe or tracepoint */
2541517c
AS
8075 return -EINVAL;
8076
8077 prog = bpf_prog_get(prog_fd);
8078 if (IS_ERR(prog))
8079 return PTR_ERR(prog);
8080
98b5c2c6
AS
8081 if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
8082 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
2541517c
AS
8083 /* valid fd, but invalid bpf program type */
8084 bpf_prog_put(prog);
8085 return -EINVAL;
8086 }
8087
32bbe007
AS
8088 if (is_tracepoint) {
8089 int off = trace_event_get_offsets(event->tp_event);
8090
8091 if (prog->aux->max_ctx_offset > off) {
8092 bpf_prog_put(prog);
8093 return -EACCES;
8094 }
8095 }
2541517c
AS
8096 event->tp_event->prog = prog;
8097
8098 return 0;
8099}
8100
8101static void perf_event_free_bpf_prog(struct perf_event *event)
8102{
8103 struct bpf_prog *prog;
8104
aa6a5f3c
AS
8105 perf_event_free_bpf_handler(event);
8106
2541517c
AS
8107 if (!event->tp_event)
8108 return;
8109
8110 prog = event->tp_event->prog;
8111 if (prog) {
8112 event->tp_event->prog = NULL;
1aacde3d 8113 bpf_prog_put(prog);
2541517c
AS
8114 }
8115}
8116
e077df4f 8117#else
6fb2915d 8118
b0a873eb 8119static inline void perf_tp_register(void)
e077df4f 8120{
e077df4f 8121}
6fb2915d 8122
6fb2915d
LZ
8123static void perf_event_free_filter(struct perf_event *event)
8124{
8125}
8126
2541517c
AS
8127static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8128{
8129 return -ENOENT;
8130}
8131
8132static void perf_event_free_bpf_prog(struct perf_event *event)
8133{
8134}
07b139c8 8135#endif /* CONFIG_EVENT_TRACING */
e077df4f 8136
24f1e32c 8137#ifdef CONFIG_HAVE_HW_BREAKPOINT
f5ffe02e 8138void perf_bp_event(struct perf_event *bp, void *data)
24f1e32c 8139{
f5ffe02e
FW
8140 struct perf_sample_data sample;
8141 struct pt_regs *regs = data;
8142
fd0d000b 8143 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
f5ffe02e 8144
a4eaf7f1 8145 if (!bp->hw.state && !perf_exclude_event(bp, regs))
a8b0ca17 8146 perf_swevent_event(bp, 1, &sample, regs);
24f1e32c
FW
8147}
8148#endif
8149
375637bc
AS
8150/*
8151 * Allocate a new address filter
8152 */
8153static struct perf_addr_filter *
8154perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
8155{
8156 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
8157 struct perf_addr_filter *filter;
8158
8159 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
8160 if (!filter)
8161 return NULL;
8162
8163 INIT_LIST_HEAD(&filter->entry);
8164 list_add_tail(&filter->entry, filters);
8165
8166 return filter;
8167}
8168
8169static void free_filters_list(struct list_head *filters)
8170{
8171 struct perf_addr_filter *filter, *iter;
8172
8173 list_for_each_entry_safe(filter, iter, filters, entry) {
8174 if (filter->inode)
8175 iput(filter->inode);
8176 list_del(&filter->entry);
8177 kfree(filter);
8178 }
8179}
8180
8181/*
8182 * Free existing address filters and optionally install new ones
8183 */
8184static void perf_addr_filters_splice(struct perf_event *event,
8185 struct list_head *head)
8186{
8187 unsigned long flags;
8188 LIST_HEAD(list);
8189
8190 if (!has_addr_filter(event))
8191 return;
8192
8193 /* don't bother with children, they don't have their own filters */
8194 if (event->parent)
8195 return;
8196
8197 raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
8198
8199 list_splice_init(&event->addr_filters.list, &list);
8200 if (head)
8201 list_splice(head, &event->addr_filters.list);
8202
8203 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
8204
8205 free_filters_list(&list);
8206}
8207
8208/*
8209 * Scan through mm's vmas and see if one of them matches the
8210 * @filter; if so, adjust filter's address range.
8211 * Called with mm::mmap_sem down for reading.
8212 */
8213static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter,
8214 struct mm_struct *mm)
8215{
8216 struct vm_area_struct *vma;
8217
8218 for (vma = mm->mmap; vma; vma = vma->vm_next) {
8219 struct file *file = vma->vm_file;
8220 unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8221 unsigned long vma_size = vma->vm_end - vma->vm_start;
8222
8223 if (!file)
8224 continue;
8225
8226 if (!perf_addr_filter_match(filter, file, off, vma_size))
8227 continue;
8228
8229 return vma->vm_start;
8230 }
8231
8232 return 0;
8233}
8234
8235/*
8236 * Update event's address range filters based on the
8237 * task's existing mappings, if any.
8238 */
8239static void perf_event_addr_filters_apply(struct perf_event *event)
8240{
8241 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8242 struct task_struct *task = READ_ONCE(event->ctx->task);
8243 struct perf_addr_filter *filter;
8244 struct mm_struct *mm = NULL;
8245 unsigned int count = 0;
8246 unsigned long flags;
8247
8248 /*
8249 * We may observe TASK_TOMBSTONE, which means that the event tear-down
8250 * will stop on the parent's child_mutex that our caller is also holding
8251 */
8252 if (task == TASK_TOMBSTONE)
8253 return;
8254
6ce77bfd
AS
8255 if (!ifh->nr_file_filters)
8256 return;
8257
375637bc
AS
8258 mm = get_task_mm(event->ctx->task);
8259 if (!mm)
8260 goto restart;
8261
8262 down_read(&mm->mmap_sem);
8263
8264 raw_spin_lock_irqsave(&ifh->lock, flags);
8265 list_for_each_entry(filter, &ifh->list, entry) {
8266 event->addr_filters_offs[count] = 0;
8267
99f5bc9b
MP
8268 /*
8269 * Adjust base offset if the filter is associated to a binary
8270 * that needs to be mapped:
8271 */
8272 if (filter->inode)
375637bc
AS
8273 event->addr_filters_offs[count] =
8274 perf_addr_filter_apply(filter, mm);
8275
8276 count++;
8277 }
8278
8279 event->addr_filters_gen++;
8280 raw_spin_unlock_irqrestore(&ifh->lock, flags);
8281
8282 up_read(&mm->mmap_sem);
8283
8284 mmput(mm);
8285
8286restart:
767ae086 8287 perf_event_stop(event, 1);
375637bc
AS
8288}
8289
8290/*
8291 * Address range filtering: limiting the data to certain
8292 * instruction address ranges. Filters are ioctl()ed to us from
8293 * userspace as ascii strings.
8294 *
8295 * Filter string format:
8296 *
8297 * ACTION RANGE_SPEC
8298 * where ACTION is one of the
8299 * * "filter": limit the trace to this region
8300 * * "start": start tracing from this address
8301 * * "stop": stop tracing at this address/region;
8302 * RANGE_SPEC is
8303 * * for kernel addresses: <start address>[/<size>]
8304 * * for object files: <start address>[/<size>]@</path/to/object/file>
8305 *
8306 * if <size> is not specified, the range is treated as a single address.
8307 */
8308enum {
e96271f3 8309 IF_ACT_NONE = -1,
375637bc
AS
8310 IF_ACT_FILTER,
8311 IF_ACT_START,
8312 IF_ACT_STOP,
8313 IF_SRC_FILE,
8314 IF_SRC_KERNEL,
8315 IF_SRC_FILEADDR,
8316 IF_SRC_KERNELADDR,
8317};
8318
8319enum {
8320 IF_STATE_ACTION = 0,
8321 IF_STATE_SOURCE,
8322 IF_STATE_END,
8323};
8324
8325static const match_table_t if_tokens = {
8326 { IF_ACT_FILTER, "filter" },
8327 { IF_ACT_START, "start" },
8328 { IF_ACT_STOP, "stop" },
8329 { IF_SRC_FILE, "%u/%u@%s" },
8330 { IF_SRC_KERNEL, "%u/%u" },
8331 { IF_SRC_FILEADDR, "%u@%s" },
8332 { IF_SRC_KERNELADDR, "%u" },
e96271f3 8333 { IF_ACT_NONE, NULL },
375637bc
AS
8334};
8335
8336/*
8337 * Address filter string parser
8338 */
8339static int
8340perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
8341 struct list_head *filters)
8342{
8343 struct perf_addr_filter *filter = NULL;
8344 char *start, *orig, *filename = NULL;
8345 struct path path;
8346 substring_t args[MAX_OPT_ARGS];
8347 int state = IF_STATE_ACTION, token;
8348 unsigned int kernel = 0;
8349 int ret = -EINVAL;
8350
8351 orig = fstr = kstrdup(fstr, GFP_KERNEL);
8352 if (!fstr)
8353 return -ENOMEM;
8354
8355 while ((start = strsep(&fstr, " ,\n")) != NULL) {
8356 ret = -EINVAL;
8357
8358 if (!*start)
8359 continue;
8360
8361 /* filter definition begins */
8362 if (state == IF_STATE_ACTION) {
8363 filter = perf_addr_filter_new(event, filters);
8364 if (!filter)
8365 goto fail;
8366 }
8367
8368 token = match_token(start, if_tokens, args);
8369 switch (token) {
8370 case IF_ACT_FILTER:
8371 case IF_ACT_START:
8372 filter->filter = 1;
8373
8374 case IF_ACT_STOP:
8375 if (state != IF_STATE_ACTION)
8376 goto fail;
8377
8378 state = IF_STATE_SOURCE;
8379 break;
8380
8381 case IF_SRC_KERNELADDR:
8382 case IF_SRC_KERNEL:
8383 kernel = 1;
8384
8385 case IF_SRC_FILEADDR:
8386 case IF_SRC_FILE:
8387 if (state != IF_STATE_SOURCE)
8388 goto fail;
8389
8390 if (token == IF_SRC_FILE || token == IF_SRC_KERNEL)
8391 filter->range = 1;
8392
8393 *args[0].to = 0;
8394 ret = kstrtoul(args[0].from, 0, &filter->offset);
8395 if (ret)
8396 goto fail;
8397
8398 if (filter->range) {
8399 *args[1].to = 0;
8400 ret = kstrtoul(args[1].from, 0, &filter->size);
8401 if (ret)
8402 goto fail;
8403 }
8404
4059ffd0
MP
8405 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
8406 int fpos = filter->range ? 2 : 1;
8407
8408 filename = match_strdup(&args[fpos]);
375637bc
AS
8409 if (!filename) {
8410 ret = -ENOMEM;
8411 goto fail;
8412 }
8413 }
8414
8415 state = IF_STATE_END;
8416 break;
8417
8418 default:
8419 goto fail;
8420 }
8421
8422 /*
8423 * Filter definition is fully parsed, validate and install it.
8424 * Make sure that it doesn't contradict itself or the event's
8425 * attribute.
8426 */
8427 if (state == IF_STATE_END) {
9ccbfbb1 8428 ret = -EINVAL;
375637bc
AS
8429 if (kernel && event->attr.exclude_kernel)
8430 goto fail;
8431
8432 if (!kernel) {
8433 if (!filename)
8434 goto fail;
8435
6ce77bfd
AS
8436 /*
8437 * For now, we only support file-based filters
8438 * in per-task events; doing so for CPU-wide
8439 * events requires additional context switching
8440 * trickery, since same object code will be
8441 * mapped at different virtual addresses in
8442 * different processes.
8443 */
8444 ret = -EOPNOTSUPP;
8445 if (!event->ctx->task)
8446 goto fail_free_name;
8447
375637bc
AS
8448 /* look up the path and grab its inode */
8449 ret = kern_path(filename, LOOKUP_FOLLOW, &path);
8450 if (ret)
8451 goto fail_free_name;
8452
8453 filter->inode = igrab(d_inode(path.dentry));
8454 path_put(&path);
8455 kfree(filename);
8456 filename = NULL;
8457
8458 ret = -EINVAL;
8459 if (!filter->inode ||
8460 !S_ISREG(filter->inode->i_mode))
8461 /* free_filters_list() will iput() */
8462 goto fail;
6ce77bfd
AS
8463
8464 event->addr_filters.nr_file_filters++;
375637bc
AS
8465 }
8466
8467 /* ready to consume more filters */
8468 state = IF_STATE_ACTION;
8469 filter = NULL;
8470 }
8471 }
8472
8473 if (state != IF_STATE_ACTION)
8474 goto fail;
8475
8476 kfree(orig);
8477
8478 return 0;
8479
8480fail_free_name:
8481 kfree(filename);
8482fail:
8483 free_filters_list(filters);
8484 kfree(orig);
8485
8486 return ret;
8487}
8488
8489static int
8490perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
8491{
8492 LIST_HEAD(filters);
8493 int ret;
8494
8495 /*
8496 * Since this is called in perf_ioctl() path, we're already holding
8497 * ctx::mutex.
8498 */
8499 lockdep_assert_held(&event->ctx->mutex);
8500
8501 if (WARN_ON_ONCE(event->parent))
8502 return -EINVAL;
8503
375637bc
AS
8504 ret = perf_event_parse_addr_filter(event, filter_str, &filters);
8505 if (ret)
6ce77bfd 8506 goto fail_clear_files;
375637bc
AS
8507
8508 ret = event->pmu->addr_filters_validate(&filters);
6ce77bfd
AS
8509 if (ret)
8510 goto fail_free_filters;
375637bc
AS
8511
8512 /* remove existing filters, if any */
8513 perf_addr_filters_splice(event, &filters);
8514
8515 /* install new filters */
8516 perf_event_for_each_child(event, perf_event_addr_filters_apply);
8517
6ce77bfd
AS
8518 return ret;
8519
8520fail_free_filters:
8521 free_filters_list(&filters);
8522
8523fail_clear_files:
8524 event->addr_filters.nr_file_filters = 0;
8525
375637bc
AS
8526 return ret;
8527}
8528
c796bbbe
AS
8529static int perf_event_set_filter(struct perf_event *event, void __user *arg)
8530{
8531 char *filter_str;
8532 int ret = -EINVAL;
8533
375637bc
AS
8534 if ((event->attr.type != PERF_TYPE_TRACEPOINT ||
8535 !IS_ENABLED(CONFIG_EVENT_TRACING)) &&
8536 !has_addr_filter(event))
c796bbbe
AS
8537 return -EINVAL;
8538
8539 filter_str = strndup_user(arg, PAGE_SIZE);
8540 if (IS_ERR(filter_str))
8541 return PTR_ERR(filter_str);
8542
8543 if (IS_ENABLED(CONFIG_EVENT_TRACING) &&
8544 event->attr.type == PERF_TYPE_TRACEPOINT)
8545 ret = ftrace_profile_set_filter(event, event->attr.config,
8546 filter_str);
375637bc
AS
8547 else if (has_addr_filter(event))
8548 ret = perf_event_set_addr_filter(event, filter_str);
c796bbbe
AS
8549
8550 kfree(filter_str);
8551 return ret;
8552}
8553
b0a873eb
PZ
8554/*
8555 * hrtimer based swevent callback
8556 */
f29ac756 8557
b0a873eb 8558static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
f29ac756 8559{
b0a873eb
PZ
8560 enum hrtimer_restart ret = HRTIMER_RESTART;
8561 struct perf_sample_data data;
8562 struct pt_regs *regs;
8563 struct perf_event *event;
8564 u64 period;
f29ac756 8565
b0a873eb 8566 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
ba3dd36c
PZ
8567
8568 if (event->state != PERF_EVENT_STATE_ACTIVE)
8569 return HRTIMER_NORESTART;
8570
b0a873eb 8571 event->pmu->read(event);
f344011c 8572
fd0d000b 8573 perf_sample_data_init(&data, 0, event->hw.last_period);
b0a873eb
PZ
8574 regs = get_irq_regs();
8575
8576 if (regs && !perf_exclude_event(event, regs)) {
77aeeebd 8577 if (!(event->attr.exclude_idle && is_idle_task(current)))
33b07b8b 8578 if (__perf_event_overflow(event, 1, &data, regs))
b0a873eb
PZ
8579 ret = HRTIMER_NORESTART;
8580 }
24f1e32c 8581
b0a873eb
PZ
8582 period = max_t(u64, 10000, event->hw.sample_period);
8583 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
24f1e32c 8584
b0a873eb 8585 return ret;
f29ac756
PZ
8586}
8587
b0a873eb 8588static void perf_swevent_start_hrtimer(struct perf_event *event)
5c92d124 8589{
b0a873eb 8590 struct hw_perf_event *hwc = &event->hw;
5d508e82
FBH
8591 s64 period;
8592
8593 if (!is_sampling_event(event))
8594 return;
f5ffe02e 8595
5d508e82
FBH
8596 period = local64_read(&hwc->period_left);
8597 if (period) {
8598 if (period < 0)
8599 period = 10000;
fa407f35 8600
5d508e82
FBH
8601 local64_set(&hwc->period_left, 0);
8602 } else {
8603 period = max_t(u64, 10000, hwc->sample_period);
8604 }
3497d206
TG
8605 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
8606 HRTIMER_MODE_REL_PINNED);
24f1e32c 8607}
b0a873eb
PZ
8608
8609static void perf_swevent_cancel_hrtimer(struct perf_event *event)
24f1e32c 8610{
b0a873eb
PZ
8611 struct hw_perf_event *hwc = &event->hw;
8612
6c7e550f 8613 if (is_sampling_event(event)) {
b0a873eb 8614 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
fa407f35 8615 local64_set(&hwc->period_left, ktime_to_ns(remaining));
b0a873eb
PZ
8616
8617 hrtimer_cancel(&hwc->hrtimer);
8618 }
24f1e32c
FW
8619}
8620
ba3dd36c
PZ
8621static void perf_swevent_init_hrtimer(struct perf_event *event)
8622{
8623 struct hw_perf_event *hwc = &event->hw;
8624
8625 if (!is_sampling_event(event))
8626 return;
8627
8628 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
8629 hwc->hrtimer.function = perf_swevent_hrtimer;
8630
8631 /*
8632 * Since hrtimers have a fixed rate, we can do a static freq->period
8633 * mapping and avoid the whole period adjust feedback stuff.
8634 */
8635 if (event->attr.freq) {
8636 long freq = event->attr.sample_freq;
8637
8638 event->attr.sample_period = NSEC_PER_SEC / freq;
8639 hwc->sample_period = event->attr.sample_period;
8640 local64_set(&hwc->period_left, hwc->sample_period);
778141e3 8641 hwc->last_period = hwc->sample_period;
ba3dd36c
PZ
8642 event->attr.freq = 0;
8643 }
8644}
8645
b0a873eb
PZ
8646/*
8647 * Software event: cpu wall time clock
8648 */
8649
8650static void cpu_clock_event_update(struct perf_event *event)
24f1e32c 8651{
b0a873eb
PZ
8652 s64 prev;
8653 u64 now;
8654
a4eaf7f1 8655 now = local_clock();
b0a873eb
PZ
8656 prev = local64_xchg(&event->hw.prev_count, now);
8657 local64_add(now - prev, &event->count);
24f1e32c 8658}
24f1e32c 8659
a4eaf7f1 8660static void cpu_clock_event_start(struct perf_event *event, int flags)
b0a873eb 8661{
a4eaf7f1 8662 local64_set(&event->hw.prev_count, local_clock());
b0a873eb 8663 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
8664}
8665
a4eaf7f1 8666static void cpu_clock_event_stop(struct perf_event *event, int flags)
f29ac756 8667{
b0a873eb
PZ
8668 perf_swevent_cancel_hrtimer(event);
8669 cpu_clock_event_update(event);
8670}
f29ac756 8671
a4eaf7f1
PZ
8672static int cpu_clock_event_add(struct perf_event *event, int flags)
8673{
8674 if (flags & PERF_EF_START)
8675 cpu_clock_event_start(event, flags);
6a694a60 8676 perf_event_update_userpage(event);
a4eaf7f1
PZ
8677
8678 return 0;
8679}
8680
8681static void cpu_clock_event_del(struct perf_event *event, int flags)
8682{
8683 cpu_clock_event_stop(event, flags);
8684}
8685
b0a873eb
PZ
8686static void cpu_clock_event_read(struct perf_event *event)
8687{
8688 cpu_clock_event_update(event);
8689}
f344011c 8690
b0a873eb
PZ
8691static int cpu_clock_event_init(struct perf_event *event)
8692{
8693 if (event->attr.type != PERF_TYPE_SOFTWARE)
8694 return -ENOENT;
8695
8696 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
8697 return -ENOENT;
8698
2481c5fa
SE
8699 /*
8700 * no branch sampling for software events
8701 */
8702 if (has_branch_stack(event))
8703 return -EOPNOTSUPP;
8704
ba3dd36c
PZ
8705 perf_swevent_init_hrtimer(event);
8706
b0a873eb 8707 return 0;
f29ac756
PZ
8708}
8709
b0a873eb 8710static struct pmu perf_cpu_clock = {
89a1e187
PZ
8711 .task_ctx_nr = perf_sw_context,
8712
34f43927
PZ
8713 .capabilities = PERF_PMU_CAP_NO_NMI,
8714
b0a873eb 8715 .event_init = cpu_clock_event_init,
a4eaf7f1
PZ
8716 .add = cpu_clock_event_add,
8717 .del = cpu_clock_event_del,
8718 .start = cpu_clock_event_start,
8719 .stop = cpu_clock_event_stop,
b0a873eb
PZ
8720 .read = cpu_clock_event_read,
8721};
8722
8723/*
8724 * Software event: task time clock
8725 */
8726
8727static void task_clock_event_update(struct perf_event *event, u64 now)
5c92d124 8728{
b0a873eb
PZ
8729 u64 prev;
8730 s64 delta;
5c92d124 8731
b0a873eb
PZ
8732 prev = local64_xchg(&event->hw.prev_count, now);
8733 delta = now - prev;
8734 local64_add(delta, &event->count);
8735}
5c92d124 8736
a4eaf7f1 8737static void task_clock_event_start(struct perf_event *event, int flags)
b0a873eb 8738{
a4eaf7f1 8739 local64_set(&event->hw.prev_count, event->ctx->time);
b0a873eb 8740 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
8741}
8742
a4eaf7f1 8743static void task_clock_event_stop(struct perf_event *event, int flags)
b0a873eb
PZ
8744{
8745 perf_swevent_cancel_hrtimer(event);
8746 task_clock_event_update(event, event->ctx->time);
a4eaf7f1
PZ
8747}
8748
8749static int task_clock_event_add(struct perf_event *event, int flags)
8750{
8751 if (flags & PERF_EF_START)
8752 task_clock_event_start(event, flags);
6a694a60 8753 perf_event_update_userpage(event);
b0a873eb 8754
a4eaf7f1
PZ
8755 return 0;
8756}
8757
8758static void task_clock_event_del(struct perf_event *event, int flags)
8759{
8760 task_clock_event_stop(event, PERF_EF_UPDATE);
b0a873eb
PZ
8761}
8762
8763static void task_clock_event_read(struct perf_event *event)
8764{
768a06e2
PZ
8765 u64 now = perf_clock();
8766 u64 delta = now - event->ctx->timestamp;
8767 u64 time = event->ctx->time + delta;
b0a873eb
PZ
8768
8769 task_clock_event_update(event, time);
8770}
8771
8772static int task_clock_event_init(struct perf_event *event)
6fb2915d 8773{
b0a873eb
PZ
8774 if (event->attr.type != PERF_TYPE_SOFTWARE)
8775 return -ENOENT;
8776
8777 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
8778 return -ENOENT;
8779
2481c5fa
SE
8780 /*
8781 * no branch sampling for software events
8782 */
8783 if (has_branch_stack(event))
8784 return -EOPNOTSUPP;
8785
ba3dd36c
PZ
8786 perf_swevent_init_hrtimer(event);
8787
b0a873eb 8788 return 0;
6fb2915d
LZ
8789}
8790
b0a873eb 8791static struct pmu perf_task_clock = {
89a1e187
PZ
8792 .task_ctx_nr = perf_sw_context,
8793
34f43927
PZ
8794 .capabilities = PERF_PMU_CAP_NO_NMI,
8795
b0a873eb 8796 .event_init = task_clock_event_init,
a4eaf7f1
PZ
8797 .add = task_clock_event_add,
8798 .del = task_clock_event_del,
8799 .start = task_clock_event_start,
8800 .stop = task_clock_event_stop,
b0a873eb
PZ
8801 .read = task_clock_event_read,
8802};
6fb2915d 8803
ad5133b7 8804static void perf_pmu_nop_void(struct pmu *pmu)
e077df4f 8805{
e077df4f 8806}
6fb2915d 8807
fbbe0701
SB
8808static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
8809{
8810}
8811
ad5133b7 8812static int perf_pmu_nop_int(struct pmu *pmu)
6fb2915d 8813{
ad5133b7 8814 return 0;
6fb2915d
LZ
8815}
8816
18ab2cd3 8817static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
fbbe0701
SB
8818
8819static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
6fb2915d 8820{
fbbe0701
SB
8821 __this_cpu_write(nop_txn_flags, flags);
8822
8823 if (flags & ~PERF_PMU_TXN_ADD)
8824 return;
8825
ad5133b7 8826 perf_pmu_disable(pmu);
6fb2915d
LZ
8827}
8828
ad5133b7
PZ
8829static int perf_pmu_commit_txn(struct pmu *pmu)
8830{
fbbe0701
SB
8831 unsigned int flags = __this_cpu_read(nop_txn_flags);
8832
8833 __this_cpu_write(nop_txn_flags, 0);
8834
8835 if (flags & ~PERF_PMU_TXN_ADD)
8836 return 0;
8837
ad5133b7
PZ
8838 perf_pmu_enable(pmu);
8839 return 0;
8840}
e077df4f 8841
ad5133b7 8842static void perf_pmu_cancel_txn(struct pmu *pmu)
24f1e32c 8843{
fbbe0701
SB
8844 unsigned int flags = __this_cpu_read(nop_txn_flags);
8845
8846 __this_cpu_write(nop_txn_flags, 0);
8847
8848 if (flags & ~PERF_PMU_TXN_ADD)
8849 return;
8850
ad5133b7 8851 perf_pmu_enable(pmu);
24f1e32c
FW
8852}
8853
35edc2a5
PZ
8854static int perf_event_idx_default(struct perf_event *event)
8855{
c719f560 8856 return 0;
35edc2a5
PZ
8857}
8858
8dc85d54
PZ
8859/*
8860 * Ensures all contexts with the same task_ctx_nr have the same
8861 * pmu_cpu_context too.
8862 */
9e317041 8863static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
24f1e32c 8864{
8dc85d54 8865 struct pmu *pmu;
b326e956 8866
8dc85d54
PZ
8867 if (ctxn < 0)
8868 return NULL;
24f1e32c 8869
8dc85d54
PZ
8870 list_for_each_entry(pmu, &pmus, entry) {
8871 if (pmu->task_ctx_nr == ctxn)
8872 return pmu->pmu_cpu_context;
8873 }
24f1e32c 8874
8dc85d54 8875 return NULL;
24f1e32c
FW
8876}
8877
51676957
PZ
8878static void free_pmu_context(struct pmu *pmu)
8879{
8dc85d54 8880 mutex_lock(&pmus_lock);
51676957 8881 free_percpu(pmu->pmu_cpu_context);
8dc85d54 8882 mutex_unlock(&pmus_lock);
24f1e32c 8883}
6e855cd4
AS
8884
8885/*
8886 * Let userspace know that this PMU supports address range filtering:
8887 */
8888static ssize_t nr_addr_filters_show(struct device *dev,
8889 struct device_attribute *attr,
8890 char *page)
8891{
8892 struct pmu *pmu = dev_get_drvdata(dev);
8893
8894 return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
8895}
8896DEVICE_ATTR_RO(nr_addr_filters);
8897
2e80a82a 8898static struct idr pmu_idr;
d6d020e9 8899
abe43400
PZ
8900static ssize_t
8901type_show(struct device *dev, struct device_attribute *attr, char *page)
8902{
8903 struct pmu *pmu = dev_get_drvdata(dev);
8904
8905 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
8906}
90826ca7 8907static DEVICE_ATTR_RO(type);
abe43400 8908
62b85639
SE
8909static ssize_t
8910perf_event_mux_interval_ms_show(struct device *dev,
8911 struct device_attribute *attr,
8912 char *page)
8913{
8914 struct pmu *pmu = dev_get_drvdata(dev);
8915
8916 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
8917}
8918
272325c4
PZ
8919static DEFINE_MUTEX(mux_interval_mutex);
8920
62b85639
SE
8921static ssize_t
8922perf_event_mux_interval_ms_store(struct device *dev,
8923 struct device_attribute *attr,
8924 const char *buf, size_t count)
8925{
8926 struct pmu *pmu = dev_get_drvdata(dev);
8927 int timer, cpu, ret;
8928
8929 ret = kstrtoint(buf, 0, &timer);
8930 if (ret)
8931 return ret;
8932
8933 if (timer < 1)
8934 return -EINVAL;
8935
8936 /* same value, noting to do */
8937 if (timer == pmu->hrtimer_interval_ms)
8938 return count;
8939
272325c4 8940 mutex_lock(&mux_interval_mutex);
62b85639
SE
8941 pmu->hrtimer_interval_ms = timer;
8942
8943 /* update all cpuctx for this PMU */
a63fbed7 8944 cpus_read_lock();
272325c4 8945 for_each_online_cpu(cpu) {
62b85639
SE
8946 struct perf_cpu_context *cpuctx;
8947 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8948 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
8949
272325c4
PZ
8950 cpu_function_call(cpu,
8951 (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
62b85639 8952 }
a63fbed7 8953 cpus_read_unlock();
272325c4 8954 mutex_unlock(&mux_interval_mutex);
62b85639
SE
8955
8956 return count;
8957}
90826ca7 8958static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
62b85639 8959
90826ca7
GKH
8960static struct attribute *pmu_dev_attrs[] = {
8961 &dev_attr_type.attr,
8962 &dev_attr_perf_event_mux_interval_ms.attr,
8963 NULL,
abe43400 8964};
90826ca7 8965ATTRIBUTE_GROUPS(pmu_dev);
abe43400
PZ
8966
8967static int pmu_bus_running;
8968static struct bus_type pmu_bus = {
8969 .name = "event_source",
90826ca7 8970 .dev_groups = pmu_dev_groups,
abe43400
PZ
8971};
8972
8973static void pmu_dev_release(struct device *dev)
8974{
8975 kfree(dev);
8976}
8977
8978static int pmu_dev_alloc(struct pmu *pmu)
8979{
8980 int ret = -ENOMEM;
8981
8982 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
8983 if (!pmu->dev)
8984 goto out;
8985
0c9d42ed 8986 pmu->dev->groups = pmu->attr_groups;
abe43400
PZ
8987 device_initialize(pmu->dev);
8988 ret = dev_set_name(pmu->dev, "%s", pmu->name);
8989 if (ret)
8990 goto free_dev;
8991
8992 dev_set_drvdata(pmu->dev, pmu);
8993 pmu->dev->bus = &pmu_bus;
8994 pmu->dev->release = pmu_dev_release;
8995 ret = device_add(pmu->dev);
8996 if (ret)
8997 goto free_dev;
8998
6e855cd4
AS
8999 /* For PMUs with address filters, throw in an extra attribute: */
9000 if (pmu->nr_addr_filters)
9001 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
9002
9003 if (ret)
9004 goto del_dev;
9005
abe43400
PZ
9006out:
9007 return ret;
9008
6e855cd4
AS
9009del_dev:
9010 device_del(pmu->dev);
9011
abe43400
PZ
9012free_dev:
9013 put_device(pmu->dev);
9014 goto out;
9015}
9016
547e9fd7 9017static struct lock_class_key cpuctx_mutex;
facc4307 9018static struct lock_class_key cpuctx_lock;
547e9fd7 9019
03d8e80b 9020int perf_pmu_register(struct pmu *pmu, const char *name, int type)
24f1e32c 9021{
108b02cf 9022 int cpu, ret;
24f1e32c 9023
b0a873eb 9024 mutex_lock(&pmus_lock);
33696fc0
PZ
9025 ret = -ENOMEM;
9026 pmu->pmu_disable_count = alloc_percpu(int);
9027 if (!pmu->pmu_disable_count)
9028 goto unlock;
f29ac756 9029
2e80a82a
PZ
9030 pmu->type = -1;
9031 if (!name)
9032 goto skip_type;
9033 pmu->name = name;
9034
9035 if (type < 0) {
0e9c3be2
TH
9036 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
9037 if (type < 0) {
9038 ret = type;
2e80a82a
PZ
9039 goto free_pdc;
9040 }
9041 }
9042 pmu->type = type;
9043
abe43400
PZ
9044 if (pmu_bus_running) {
9045 ret = pmu_dev_alloc(pmu);
9046 if (ret)
9047 goto free_idr;
9048 }
9049
2e80a82a 9050skip_type:
26657848
PZ
9051 if (pmu->task_ctx_nr == perf_hw_context) {
9052 static int hw_context_taken = 0;
9053
5101ef20
MR
9054 /*
9055 * Other than systems with heterogeneous CPUs, it never makes
9056 * sense for two PMUs to share perf_hw_context. PMUs which are
9057 * uncore must use perf_invalid_context.
9058 */
9059 if (WARN_ON_ONCE(hw_context_taken &&
9060 !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
26657848
PZ
9061 pmu->task_ctx_nr = perf_invalid_context;
9062
9063 hw_context_taken = 1;
9064 }
9065
8dc85d54
PZ
9066 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
9067 if (pmu->pmu_cpu_context)
9068 goto got_cpu_context;
f29ac756 9069
c4814202 9070 ret = -ENOMEM;
108b02cf
PZ
9071 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
9072 if (!pmu->pmu_cpu_context)
abe43400 9073 goto free_dev;
f344011c 9074
108b02cf
PZ
9075 for_each_possible_cpu(cpu) {
9076 struct perf_cpu_context *cpuctx;
9077
9078 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
eb184479 9079 __perf_event_init_context(&cpuctx->ctx);
547e9fd7 9080 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
facc4307 9081 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
108b02cf 9082 cpuctx->ctx.pmu = pmu;
a63fbed7 9083 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
9e630205 9084
272325c4 9085 __perf_mux_hrtimer_init(cpuctx, cpu);
108b02cf 9086 }
76e1d904 9087
8dc85d54 9088got_cpu_context:
ad5133b7
PZ
9089 if (!pmu->start_txn) {
9090 if (pmu->pmu_enable) {
9091 /*
9092 * If we have pmu_enable/pmu_disable calls, install
9093 * transaction stubs that use that to try and batch
9094 * hardware accesses.
9095 */
9096 pmu->start_txn = perf_pmu_start_txn;
9097 pmu->commit_txn = perf_pmu_commit_txn;
9098 pmu->cancel_txn = perf_pmu_cancel_txn;
9099 } else {
fbbe0701 9100 pmu->start_txn = perf_pmu_nop_txn;
ad5133b7
PZ
9101 pmu->commit_txn = perf_pmu_nop_int;
9102 pmu->cancel_txn = perf_pmu_nop_void;
f344011c 9103 }
5c92d124 9104 }
15dbf27c 9105
ad5133b7
PZ
9106 if (!pmu->pmu_enable) {
9107 pmu->pmu_enable = perf_pmu_nop_void;
9108 pmu->pmu_disable = perf_pmu_nop_void;
9109 }
9110
35edc2a5
PZ
9111 if (!pmu->event_idx)
9112 pmu->event_idx = perf_event_idx_default;
9113
b0a873eb 9114 list_add_rcu(&pmu->entry, &pmus);
bed5b25a 9115 atomic_set(&pmu->exclusive_cnt, 0);
33696fc0
PZ
9116 ret = 0;
9117unlock:
b0a873eb
PZ
9118 mutex_unlock(&pmus_lock);
9119
33696fc0 9120 return ret;
108b02cf 9121
abe43400
PZ
9122free_dev:
9123 device_del(pmu->dev);
9124 put_device(pmu->dev);
9125
2e80a82a
PZ
9126free_idr:
9127 if (pmu->type >= PERF_TYPE_MAX)
9128 idr_remove(&pmu_idr, pmu->type);
9129
108b02cf
PZ
9130free_pdc:
9131 free_percpu(pmu->pmu_disable_count);
9132 goto unlock;
f29ac756 9133}
c464c76e 9134EXPORT_SYMBOL_GPL(perf_pmu_register);
f29ac756 9135
b0a873eb 9136void perf_pmu_unregister(struct pmu *pmu)
5c92d124 9137{
0933840a
JO
9138 int remove_device;
9139
b0a873eb 9140 mutex_lock(&pmus_lock);
0933840a 9141 remove_device = pmu_bus_running;
b0a873eb
PZ
9142 list_del_rcu(&pmu->entry);
9143 mutex_unlock(&pmus_lock);
5c92d124 9144
0475f9ea 9145 /*
cde8e884
PZ
9146 * We dereference the pmu list under both SRCU and regular RCU, so
9147 * synchronize against both of those.
0475f9ea 9148 */
b0a873eb 9149 synchronize_srcu(&pmus_srcu);
cde8e884 9150 synchronize_rcu();
d6d020e9 9151
33696fc0 9152 free_percpu(pmu->pmu_disable_count);
2e80a82a
PZ
9153 if (pmu->type >= PERF_TYPE_MAX)
9154 idr_remove(&pmu_idr, pmu->type);
0933840a
JO
9155 if (remove_device) {
9156 if (pmu->nr_addr_filters)
9157 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
9158 device_del(pmu->dev);
9159 put_device(pmu->dev);
9160 }
51676957 9161 free_pmu_context(pmu);
b0a873eb 9162}
c464c76e 9163EXPORT_SYMBOL_GPL(perf_pmu_unregister);
d6d020e9 9164
cc34b98b
MR
9165static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
9166{
ccd41c86 9167 struct perf_event_context *ctx = NULL;
cc34b98b
MR
9168 int ret;
9169
9170 if (!try_module_get(pmu->module))
9171 return -ENODEV;
ccd41c86
PZ
9172
9173 if (event->group_leader != event) {
8b10c5e2
PZ
9174 /*
9175 * This ctx->mutex can nest when we're called through
9176 * inheritance. See the perf_event_ctx_lock_nested() comment.
9177 */
9178 ctx = perf_event_ctx_lock_nested(event->group_leader,
9179 SINGLE_DEPTH_NESTING);
ccd41c86
PZ
9180 BUG_ON(!ctx);
9181 }
9182
cc34b98b
MR
9183 event->pmu = pmu;
9184 ret = pmu->event_init(event);
ccd41c86
PZ
9185
9186 if (ctx)
9187 perf_event_ctx_unlock(event->group_leader, ctx);
9188
cc34b98b
MR
9189 if (ret)
9190 module_put(pmu->module);
9191
9192 return ret;
9193}
9194
18ab2cd3 9195static struct pmu *perf_init_event(struct perf_event *event)
b0a873eb 9196{
85c617ab 9197 struct pmu *pmu;
b0a873eb 9198 int idx;
940c5b29 9199 int ret;
b0a873eb
PZ
9200
9201 idx = srcu_read_lock(&pmus_srcu);
2e80a82a 9202
40999312
KL
9203 /* Try parent's PMU first: */
9204 if (event->parent && event->parent->pmu) {
9205 pmu = event->parent->pmu;
9206 ret = perf_try_init_event(pmu, event);
9207 if (!ret)
9208 goto unlock;
9209 }
9210
2e80a82a
PZ
9211 rcu_read_lock();
9212 pmu = idr_find(&pmu_idr, event->attr.type);
9213 rcu_read_unlock();
940c5b29 9214 if (pmu) {
cc34b98b 9215 ret = perf_try_init_event(pmu, event);
940c5b29
LM
9216 if (ret)
9217 pmu = ERR_PTR(ret);
2e80a82a 9218 goto unlock;
940c5b29 9219 }
2e80a82a 9220
b0a873eb 9221 list_for_each_entry_rcu(pmu, &pmus, entry) {
cc34b98b 9222 ret = perf_try_init_event(pmu, event);
b0a873eb 9223 if (!ret)
e5f4d339 9224 goto unlock;
76e1d904 9225
b0a873eb
PZ
9226 if (ret != -ENOENT) {
9227 pmu = ERR_PTR(ret);
e5f4d339 9228 goto unlock;
f344011c 9229 }
5c92d124 9230 }
e5f4d339
PZ
9231 pmu = ERR_PTR(-ENOENT);
9232unlock:
b0a873eb 9233 srcu_read_unlock(&pmus_srcu, idx);
15dbf27c 9234
4aeb0b42 9235 return pmu;
5c92d124
IM
9236}
9237
f2fb6bef
KL
9238static void attach_sb_event(struct perf_event *event)
9239{
9240 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
9241
9242 raw_spin_lock(&pel->lock);
9243 list_add_rcu(&event->sb_list, &pel->list);
9244 raw_spin_unlock(&pel->lock);
9245}
9246
aab5b71e
PZ
9247/*
9248 * We keep a list of all !task (and therefore per-cpu) events
9249 * that need to receive side-band records.
9250 *
9251 * This avoids having to scan all the various PMU per-cpu contexts
9252 * looking for them.
9253 */
f2fb6bef
KL
9254static void account_pmu_sb_event(struct perf_event *event)
9255{
a4f144eb 9256 if (is_sb_event(event))
f2fb6bef
KL
9257 attach_sb_event(event);
9258}
9259
4beb31f3
FW
9260static void account_event_cpu(struct perf_event *event, int cpu)
9261{
9262 if (event->parent)
9263 return;
9264
4beb31f3
FW
9265 if (is_cgroup_event(event))
9266 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
9267}
9268
555e0c1e
FW
9269/* Freq events need the tick to stay alive (see perf_event_task_tick). */
9270static void account_freq_event_nohz(void)
9271{
9272#ifdef CONFIG_NO_HZ_FULL
9273 /* Lock so we don't race with concurrent unaccount */
9274 spin_lock(&nr_freq_lock);
9275 if (atomic_inc_return(&nr_freq_events) == 1)
9276 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
9277 spin_unlock(&nr_freq_lock);
9278#endif
9279}
9280
9281static void account_freq_event(void)
9282{
9283 if (tick_nohz_full_enabled())
9284 account_freq_event_nohz();
9285 else
9286 atomic_inc(&nr_freq_events);
9287}
9288
9289
766d6c07
FW
9290static void account_event(struct perf_event *event)
9291{
25432ae9
PZ
9292 bool inc = false;
9293
4beb31f3
FW
9294 if (event->parent)
9295 return;
9296
766d6c07 9297 if (event->attach_state & PERF_ATTACH_TASK)
25432ae9 9298 inc = true;
766d6c07
FW
9299 if (event->attr.mmap || event->attr.mmap_data)
9300 atomic_inc(&nr_mmap_events);
9301 if (event->attr.comm)
9302 atomic_inc(&nr_comm_events);
e4222673
HB
9303 if (event->attr.namespaces)
9304 atomic_inc(&nr_namespaces_events);
766d6c07
FW
9305 if (event->attr.task)
9306 atomic_inc(&nr_task_events);
555e0c1e
FW
9307 if (event->attr.freq)
9308 account_freq_event();
45ac1403
AH
9309 if (event->attr.context_switch) {
9310 atomic_inc(&nr_switch_events);
25432ae9 9311 inc = true;
45ac1403 9312 }
4beb31f3 9313 if (has_branch_stack(event))
25432ae9 9314 inc = true;
4beb31f3 9315 if (is_cgroup_event(event))
25432ae9
PZ
9316 inc = true;
9317
9107c89e
PZ
9318 if (inc) {
9319 if (atomic_inc_not_zero(&perf_sched_count))
9320 goto enabled;
9321
9322 mutex_lock(&perf_sched_mutex);
9323 if (!atomic_read(&perf_sched_count)) {
9324 static_branch_enable(&perf_sched_events);
9325 /*
9326 * Guarantee that all CPUs observe they key change and
9327 * call the perf scheduling hooks before proceeding to
9328 * install events that need them.
9329 */
9330 synchronize_sched();
9331 }
9332 /*
9333 * Now that we have waited for the sync_sched(), allow further
9334 * increments to by-pass the mutex.
9335 */
9336 atomic_inc(&perf_sched_count);
9337 mutex_unlock(&perf_sched_mutex);
9338 }
9339enabled:
4beb31f3
FW
9340
9341 account_event_cpu(event, event->cpu);
f2fb6bef
KL
9342
9343 account_pmu_sb_event(event);
766d6c07
FW
9344}
9345
0793a61d 9346/*
cdd6c482 9347 * Allocate and initialize a event structure
0793a61d 9348 */
cdd6c482 9349static struct perf_event *
c3f00c70 9350perf_event_alloc(struct perf_event_attr *attr, int cpu,
d580ff86
PZ
9351 struct task_struct *task,
9352 struct perf_event *group_leader,
9353 struct perf_event *parent_event,
4dc0da86 9354 perf_overflow_handler_t overflow_handler,
79dff51e 9355 void *context, int cgroup_fd)
0793a61d 9356{
51b0fe39 9357 struct pmu *pmu;
cdd6c482
IM
9358 struct perf_event *event;
9359 struct hw_perf_event *hwc;
90983b16 9360 long err = -EINVAL;
0793a61d 9361
66832eb4
ON
9362 if ((unsigned)cpu >= nr_cpu_ids) {
9363 if (!task || cpu != -1)
9364 return ERR_PTR(-EINVAL);
9365 }
9366
c3f00c70 9367 event = kzalloc(sizeof(*event), GFP_KERNEL);
cdd6c482 9368 if (!event)
d5d2bc0d 9369 return ERR_PTR(-ENOMEM);
0793a61d 9370
04289bb9 9371 /*
cdd6c482 9372 * Single events are their own group leaders, with an
04289bb9
IM
9373 * empty sibling list:
9374 */
9375 if (!group_leader)
cdd6c482 9376 group_leader = event;
04289bb9 9377
cdd6c482
IM
9378 mutex_init(&event->child_mutex);
9379 INIT_LIST_HEAD(&event->child_list);
fccc714b 9380
cdd6c482
IM
9381 INIT_LIST_HEAD(&event->group_entry);
9382 INIT_LIST_HEAD(&event->event_entry);
9383 INIT_LIST_HEAD(&event->sibling_list);
10c6db11 9384 INIT_LIST_HEAD(&event->rb_entry);
71ad88ef 9385 INIT_LIST_HEAD(&event->active_entry);
375637bc 9386 INIT_LIST_HEAD(&event->addr_filters.list);
f3ae75de
SE
9387 INIT_HLIST_NODE(&event->hlist_entry);
9388
10c6db11 9389
cdd6c482 9390 init_waitqueue_head(&event->waitq);
e360adbe 9391 init_irq_work(&event->pending, perf_pending_event);
0793a61d 9392
cdd6c482 9393 mutex_init(&event->mmap_mutex);
375637bc 9394 raw_spin_lock_init(&event->addr_filters.lock);
7b732a75 9395
a6fa941d 9396 atomic_long_set(&event->refcount, 1);
cdd6c482
IM
9397 event->cpu = cpu;
9398 event->attr = *attr;
9399 event->group_leader = group_leader;
9400 event->pmu = NULL;
cdd6c482 9401 event->oncpu = -1;
a96bbc16 9402
cdd6c482 9403 event->parent = parent_event;
b84fbc9f 9404
17cf22c3 9405 event->ns = get_pid_ns(task_active_pid_ns(current));
cdd6c482 9406 event->id = atomic64_inc_return(&perf_event_id);
a96bbc16 9407
cdd6c482 9408 event->state = PERF_EVENT_STATE_INACTIVE;
329d876d 9409
d580ff86
PZ
9410 if (task) {
9411 event->attach_state = PERF_ATTACH_TASK;
d580ff86 9412 /*
50f16a8b
PZ
9413 * XXX pmu::event_init needs to know what task to account to
9414 * and we cannot use the ctx information because we need the
9415 * pmu before we get a ctx.
d580ff86 9416 */
50f16a8b 9417 event->hw.target = task;
d580ff86
PZ
9418 }
9419
34f43927
PZ
9420 event->clock = &local_clock;
9421 if (parent_event)
9422 event->clock = parent_event->clock;
9423
4dc0da86 9424 if (!overflow_handler && parent_event) {
b326e956 9425 overflow_handler = parent_event->overflow_handler;
4dc0da86 9426 context = parent_event->overflow_handler_context;
f1e4ba5b 9427#if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
aa6a5f3c
AS
9428 if (overflow_handler == bpf_overflow_handler) {
9429 struct bpf_prog *prog = bpf_prog_inc(parent_event->prog);
9430
9431 if (IS_ERR(prog)) {
9432 err = PTR_ERR(prog);
9433 goto err_ns;
9434 }
9435 event->prog = prog;
9436 event->orig_overflow_handler =
9437 parent_event->orig_overflow_handler;
9438 }
9439#endif
4dc0da86 9440 }
66832eb4 9441
1879445d
WN
9442 if (overflow_handler) {
9443 event->overflow_handler = overflow_handler;
9444 event->overflow_handler_context = context;
9ecda41a
WN
9445 } else if (is_write_backward(event)){
9446 event->overflow_handler = perf_event_output_backward;
9447 event->overflow_handler_context = NULL;
1879445d 9448 } else {
9ecda41a 9449 event->overflow_handler = perf_event_output_forward;
1879445d
WN
9450 event->overflow_handler_context = NULL;
9451 }
97eaf530 9452
0231bb53 9453 perf_event__state_init(event);
a86ed508 9454
4aeb0b42 9455 pmu = NULL;
b8e83514 9456
cdd6c482 9457 hwc = &event->hw;
bd2b5b12 9458 hwc->sample_period = attr->sample_period;
0d48696f 9459 if (attr->freq && attr->sample_freq)
bd2b5b12 9460 hwc->sample_period = 1;
eced1dfc 9461 hwc->last_period = hwc->sample_period;
bd2b5b12 9462
e7850595 9463 local64_set(&hwc->period_left, hwc->sample_period);
60db5e09 9464
2023b359 9465 /*
ba5213ae
PZ
9466 * We currently do not support PERF_SAMPLE_READ on inherited events.
9467 * See perf_output_read().
2023b359 9468 */
ba5213ae 9469 if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
90983b16 9470 goto err_ns;
a46a2300
YZ
9471
9472 if (!has_branch_stack(event))
9473 event->attr.branch_sample_type = 0;
2023b359 9474
79dff51e
MF
9475 if (cgroup_fd != -1) {
9476 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
9477 if (err)
9478 goto err_ns;
9479 }
9480
b0a873eb 9481 pmu = perf_init_event(event);
85c617ab 9482 if (IS_ERR(pmu)) {
4aeb0b42 9483 err = PTR_ERR(pmu);
90983b16 9484 goto err_ns;
621a01ea 9485 }
d5d2bc0d 9486
bed5b25a
AS
9487 err = exclusive_event_init(event);
9488 if (err)
9489 goto err_pmu;
9490
375637bc
AS
9491 if (has_addr_filter(event)) {
9492 event->addr_filters_offs = kcalloc(pmu->nr_addr_filters,
9493 sizeof(unsigned long),
9494 GFP_KERNEL);
36cc2b92
DC
9495 if (!event->addr_filters_offs) {
9496 err = -ENOMEM;
375637bc 9497 goto err_per_task;
36cc2b92 9498 }
375637bc
AS
9499
9500 /* force hw sync on the address filters */
9501 event->addr_filters_gen = 1;
9502 }
9503
cdd6c482 9504 if (!event->parent) {
927c7a9e 9505 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
97c79a38 9506 err = get_callchain_buffers(attr->sample_max_stack);
90983b16 9507 if (err)
375637bc 9508 goto err_addr_filters;
d010b332 9509 }
f344011c 9510 }
9ee318a7 9511
927a5570
AS
9512 /* symmetric to unaccount_event() in _free_event() */
9513 account_event(event);
9514
cdd6c482 9515 return event;
90983b16 9516
375637bc
AS
9517err_addr_filters:
9518 kfree(event->addr_filters_offs);
9519
bed5b25a
AS
9520err_per_task:
9521 exclusive_event_destroy(event);
9522
90983b16
FW
9523err_pmu:
9524 if (event->destroy)
9525 event->destroy(event);
c464c76e 9526 module_put(pmu->module);
90983b16 9527err_ns:
79dff51e
MF
9528 if (is_cgroup_event(event))
9529 perf_detach_cgroup(event);
90983b16
FW
9530 if (event->ns)
9531 put_pid_ns(event->ns);
9532 kfree(event);
9533
9534 return ERR_PTR(err);
0793a61d
TG
9535}
9536
cdd6c482
IM
9537static int perf_copy_attr(struct perf_event_attr __user *uattr,
9538 struct perf_event_attr *attr)
974802ea 9539{
974802ea 9540 u32 size;
cdf8073d 9541 int ret;
974802ea
PZ
9542
9543 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
9544 return -EFAULT;
9545
9546 /*
9547 * zero the full structure, so that a short copy will be nice.
9548 */
9549 memset(attr, 0, sizeof(*attr));
9550
9551 ret = get_user(size, &uattr->size);
9552 if (ret)
9553 return ret;
9554
9555 if (size > PAGE_SIZE) /* silly large */
9556 goto err_size;
9557
9558 if (!size) /* abi compat */
9559 size = PERF_ATTR_SIZE_VER0;
9560
9561 if (size < PERF_ATTR_SIZE_VER0)
9562 goto err_size;
9563
9564 /*
9565 * If we're handed a bigger struct than we know of,
cdf8073d
IS
9566 * ensure all the unknown bits are 0 - i.e. new
9567 * user-space does not rely on any kernel feature
9568 * extensions we dont know about yet.
974802ea
PZ
9569 */
9570 if (size > sizeof(*attr)) {
cdf8073d
IS
9571 unsigned char __user *addr;
9572 unsigned char __user *end;
9573 unsigned char val;
974802ea 9574
cdf8073d
IS
9575 addr = (void __user *)uattr + sizeof(*attr);
9576 end = (void __user *)uattr + size;
974802ea 9577
cdf8073d 9578 for (; addr < end; addr++) {
974802ea
PZ
9579 ret = get_user(val, addr);
9580 if (ret)
9581 return ret;
9582 if (val)
9583 goto err_size;
9584 }
b3e62e35 9585 size = sizeof(*attr);
974802ea
PZ
9586 }
9587
9588 ret = copy_from_user(attr, uattr, size);
9589 if (ret)
9590 return -EFAULT;
9591
cd757645 9592 if (attr->__reserved_1)
974802ea
PZ
9593 return -EINVAL;
9594
9595 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
9596 return -EINVAL;
9597
9598 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
9599 return -EINVAL;
9600
bce38cd5
SE
9601 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
9602 u64 mask = attr->branch_sample_type;
9603
9604 /* only using defined bits */
9605 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
9606 return -EINVAL;
9607
9608 /* at least one branch bit must be set */
9609 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
9610 return -EINVAL;
9611
bce38cd5
SE
9612 /* propagate priv level, when not set for branch */
9613 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
9614
9615 /* exclude_kernel checked on syscall entry */
9616 if (!attr->exclude_kernel)
9617 mask |= PERF_SAMPLE_BRANCH_KERNEL;
9618
9619 if (!attr->exclude_user)
9620 mask |= PERF_SAMPLE_BRANCH_USER;
9621
9622 if (!attr->exclude_hv)
9623 mask |= PERF_SAMPLE_BRANCH_HV;
9624 /*
9625 * adjust user setting (for HW filter setup)
9626 */
9627 attr->branch_sample_type = mask;
9628 }
e712209a
SE
9629 /* privileged levels capture (kernel, hv): check permissions */
9630 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
2b923c8f
SE
9631 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9632 return -EACCES;
bce38cd5 9633 }
4018994f 9634
c5ebcedb 9635 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
4018994f 9636 ret = perf_reg_validate(attr->sample_regs_user);
c5ebcedb
JO
9637 if (ret)
9638 return ret;
9639 }
9640
9641 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
9642 if (!arch_perf_have_user_stack_dump())
9643 return -ENOSYS;
9644
9645 /*
9646 * We have __u32 type for the size, but so far
9647 * we can only use __u16 as maximum due to the
9648 * __u16 sample size limit.
9649 */
9650 if (attr->sample_stack_user >= USHRT_MAX)
9651 ret = -EINVAL;
9652 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
9653 ret = -EINVAL;
9654 }
4018994f 9655
60e2364e
SE
9656 if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
9657 ret = perf_reg_validate(attr->sample_regs_intr);
974802ea
PZ
9658out:
9659 return ret;
9660
9661err_size:
9662 put_user(sizeof(*attr), &uattr->size);
9663 ret = -E2BIG;
9664 goto out;
9665}
9666
ac9721f3
PZ
9667static int
9668perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
a4be7c27 9669{
b69cf536 9670 struct ring_buffer *rb = NULL;
a4be7c27
PZ
9671 int ret = -EINVAL;
9672
ac9721f3 9673 if (!output_event)
a4be7c27
PZ
9674 goto set;
9675
ac9721f3
PZ
9676 /* don't allow circular references */
9677 if (event == output_event)
a4be7c27
PZ
9678 goto out;
9679
0f139300
PZ
9680 /*
9681 * Don't allow cross-cpu buffers
9682 */
9683 if (output_event->cpu != event->cpu)
9684 goto out;
9685
9686 /*
76369139 9687 * If its not a per-cpu rb, it must be the same task.
0f139300
PZ
9688 */
9689 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
9690 goto out;
9691
34f43927
PZ
9692 /*
9693 * Mixing clocks in the same buffer is trouble you don't need.
9694 */
9695 if (output_event->clock != event->clock)
9696 goto out;
9697
9ecda41a
WN
9698 /*
9699 * Either writing ring buffer from beginning or from end.
9700 * Mixing is not allowed.
9701 */
9702 if (is_write_backward(output_event) != is_write_backward(event))
9703 goto out;
9704
45bfb2e5
PZ
9705 /*
9706 * If both events generate aux data, they must be on the same PMU
9707 */
9708 if (has_aux(event) && has_aux(output_event) &&
9709 event->pmu != output_event->pmu)
9710 goto out;
9711
a4be7c27 9712set:
cdd6c482 9713 mutex_lock(&event->mmap_mutex);
ac9721f3
PZ
9714 /* Can't redirect output if we've got an active mmap() */
9715 if (atomic_read(&event->mmap_count))
9716 goto unlock;
a4be7c27 9717
ac9721f3 9718 if (output_event) {
76369139
FW
9719 /* get the rb we want to redirect to */
9720 rb = ring_buffer_get(output_event);
9721 if (!rb)
ac9721f3 9722 goto unlock;
a4be7c27
PZ
9723 }
9724
b69cf536 9725 ring_buffer_attach(event, rb);
9bb5d40c 9726
a4be7c27 9727 ret = 0;
ac9721f3
PZ
9728unlock:
9729 mutex_unlock(&event->mmap_mutex);
9730
a4be7c27 9731out:
a4be7c27
PZ
9732 return ret;
9733}
9734
f63a8daa
PZ
9735static void mutex_lock_double(struct mutex *a, struct mutex *b)
9736{
9737 if (b < a)
9738 swap(a, b);
9739
9740 mutex_lock(a);
9741 mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
9742}
9743
34f43927
PZ
9744static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
9745{
9746 bool nmi_safe = false;
9747
9748 switch (clk_id) {
9749 case CLOCK_MONOTONIC:
9750 event->clock = &ktime_get_mono_fast_ns;
9751 nmi_safe = true;
9752 break;
9753
9754 case CLOCK_MONOTONIC_RAW:
9755 event->clock = &ktime_get_raw_fast_ns;
9756 nmi_safe = true;
9757 break;
9758
9759 case CLOCK_REALTIME:
9760 event->clock = &ktime_get_real_ns;
9761 break;
9762
9763 case CLOCK_BOOTTIME:
9764 event->clock = &ktime_get_boot_ns;
9765 break;
9766
9767 case CLOCK_TAI:
9768 event->clock = &ktime_get_tai_ns;
9769 break;
9770
9771 default:
9772 return -EINVAL;
9773 }
9774
9775 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
9776 return -EINVAL;
9777
9778 return 0;
9779}
9780
321027c1
PZ
9781/*
9782 * Variation on perf_event_ctx_lock_nested(), except we take two context
9783 * mutexes.
9784 */
9785static struct perf_event_context *
9786__perf_event_ctx_lock_double(struct perf_event *group_leader,
9787 struct perf_event_context *ctx)
9788{
9789 struct perf_event_context *gctx;
9790
9791again:
9792 rcu_read_lock();
9793 gctx = READ_ONCE(group_leader->ctx);
9794 if (!atomic_inc_not_zero(&gctx->refcount)) {
9795 rcu_read_unlock();
9796 goto again;
9797 }
9798 rcu_read_unlock();
9799
9800 mutex_lock_double(&gctx->mutex, &ctx->mutex);
9801
9802 if (group_leader->ctx != gctx) {
9803 mutex_unlock(&ctx->mutex);
9804 mutex_unlock(&gctx->mutex);
9805 put_ctx(gctx);
9806 goto again;
9807 }
9808
9809 return gctx;
9810}
9811
0793a61d 9812/**
cdd6c482 9813 * sys_perf_event_open - open a performance event, associate it to a task/cpu
9f66a381 9814 *
cdd6c482 9815 * @attr_uptr: event_id type attributes for monitoring/sampling
0793a61d 9816 * @pid: target pid
9f66a381 9817 * @cpu: target cpu
cdd6c482 9818 * @group_fd: group leader event fd
0793a61d 9819 */
cdd6c482
IM
9820SYSCALL_DEFINE5(perf_event_open,
9821 struct perf_event_attr __user *, attr_uptr,
2743a5b0 9822 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
0793a61d 9823{
b04243ef
PZ
9824 struct perf_event *group_leader = NULL, *output_event = NULL;
9825 struct perf_event *event, *sibling;
cdd6c482 9826 struct perf_event_attr attr;
f63a8daa 9827 struct perf_event_context *ctx, *uninitialized_var(gctx);
cdd6c482 9828 struct file *event_file = NULL;
2903ff01 9829 struct fd group = {NULL, 0};
38a81da2 9830 struct task_struct *task = NULL;
89a1e187 9831 struct pmu *pmu;
ea635c64 9832 int event_fd;
b04243ef 9833 int move_group = 0;
dc86cabe 9834 int err;
a21b0b35 9835 int f_flags = O_RDWR;
79dff51e 9836 int cgroup_fd = -1;
0793a61d 9837
2743a5b0 9838 /* for future expandability... */
e5d1367f 9839 if (flags & ~PERF_FLAG_ALL)
2743a5b0
PM
9840 return -EINVAL;
9841
dc86cabe
IM
9842 err = perf_copy_attr(attr_uptr, &attr);
9843 if (err)
9844 return err;
eab656ae 9845
0764771d
PZ
9846 if (!attr.exclude_kernel) {
9847 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9848 return -EACCES;
9849 }
9850
e4222673
HB
9851 if (attr.namespaces) {
9852 if (!capable(CAP_SYS_ADMIN))
9853 return -EACCES;
9854 }
9855
df58ab24 9856 if (attr.freq) {
cdd6c482 9857 if (attr.sample_freq > sysctl_perf_event_sample_rate)
df58ab24 9858 return -EINVAL;
0819b2e3
PZ
9859 } else {
9860 if (attr.sample_period & (1ULL << 63))
9861 return -EINVAL;
df58ab24
PZ
9862 }
9863
97c79a38
ACM
9864 if (!attr.sample_max_stack)
9865 attr.sample_max_stack = sysctl_perf_event_max_stack;
9866
e5d1367f
SE
9867 /*
9868 * In cgroup mode, the pid argument is used to pass the fd
9869 * opened to the cgroup directory in cgroupfs. The cpu argument
9870 * designates the cpu on which to monitor threads from that
9871 * cgroup.
9872 */
9873 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
9874 return -EINVAL;
9875
a21b0b35
YD
9876 if (flags & PERF_FLAG_FD_CLOEXEC)
9877 f_flags |= O_CLOEXEC;
9878
9879 event_fd = get_unused_fd_flags(f_flags);
ea635c64
AV
9880 if (event_fd < 0)
9881 return event_fd;
9882
ac9721f3 9883 if (group_fd != -1) {
2903ff01
AV
9884 err = perf_fget_light(group_fd, &group);
9885 if (err)
d14b12d7 9886 goto err_fd;
2903ff01 9887 group_leader = group.file->private_data;
ac9721f3
PZ
9888 if (flags & PERF_FLAG_FD_OUTPUT)
9889 output_event = group_leader;
9890 if (flags & PERF_FLAG_FD_NO_GROUP)
9891 group_leader = NULL;
9892 }
9893
e5d1367f 9894 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
c6be5a5c
PZ
9895 task = find_lively_task_by_vpid(pid);
9896 if (IS_ERR(task)) {
9897 err = PTR_ERR(task);
9898 goto err_group_fd;
9899 }
9900 }
9901
1f4ee503
PZ
9902 if (task && group_leader &&
9903 group_leader->attr.inherit != attr.inherit) {
9904 err = -EINVAL;
9905 goto err_task;
9906 }
9907
79c9ce57
PZ
9908 if (task) {
9909 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
9910 if (err)
e5aeee51 9911 goto err_task;
79c9ce57
PZ
9912
9913 /*
9914 * Reuse ptrace permission checks for now.
9915 *
9916 * We must hold cred_guard_mutex across this and any potential
9917 * perf_install_in_context() call for this new event to
9918 * serialize against exec() altering our credentials (and the
9919 * perf_event_exit_task() that could imply).
9920 */
9921 err = -EACCES;
9922 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
9923 goto err_cred;
9924 }
9925
79dff51e
MF
9926 if (flags & PERF_FLAG_PID_CGROUP)
9927 cgroup_fd = pid;
9928
4dc0da86 9929 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
79dff51e 9930 NULL, NULL, cgroup_fd);
d14b12d7
SE
9931 if (IS_ERR(event)) {
9932 err = PTR_ERR(event);
79c9ce57 9933 goto err_cred;
d14b12d7
SE
9934 }
9935
53b25335
VW
9936 if (is_sampling_event(event)) {
9937 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
a1396555 9938 err = -EOPNOTSUPP;
53b25335
VW
9939 goto err_alloc;
9940 }
9941 }
9942
89a1e187
PZ
9943 /*
9944 * Special case software events and allow them to be part of
9945 * any hardware group.
9946 */
9947 pmu = event->pmu;
b04243ef 9948
34f43927
PZ
9949 if (attr.use_clockid) {
9950 err = perf_event_set_clock(event, attr.clockid);
9951 if (err)
9952 goto err_alloc;
9953 }
9954
4ff6a8de
DCC
9955 if (pmu->task_ctx_nr == perf_sw_context)
9956 event->event_caps |= PERF_EV_CAP_SOFTWARE;
9957
b04243ef
PZ
9958 if (group_leader &&
9959 (is_software_event(event) != is_software_event(group_leader))) {
9960 if (is_software_event(event)) {
9961 /*
9962 * If event and group_leader are not both a software
9963 * event, and event is, then group leader is not.
9964 *
9965 * Allow the addition of software events to !software
9966 * groups, this is safe because software events never
9967 * fail to schedule.
9968 */
9969 pmu = group_leader->pmu;
9970 } else if (is_software_event(group_leader) &&
4ff6a8de 9971 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
b04243ef
PZ
9972 /*
9973 * In case the group is a pure software group, and we
9974 * try to add a hardware event, move the whole group to
9975 * the hardware context.
9976 */
9977 move_group = 1;
9978 }
9979 }
89a1e187
PZ
9980
9981 /*
9982 * Get the target context (task or percpu):
9983 */
4af57ef2 9984 ctx = find_get_context(pmu, task, event);
89a1e187
PZ
9985 if (IS_ERR(ctx)) {
9986 err = PTR_ERR(ctx);
c6be5a5c 9987 goto err_alloc;
89a1e187
PZ
9988 }
9989
bed5b25a
AS
9990 if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
9991 err = -EBUSY;
9992 goto err_context;
9993 }
9994
ccff286d 9995 /*
cdd6c482 9996 * Look up the group leader (we will attach this event to it):
04289bb9 9997 */
ac9721f3 9998 if (group_leader) {
dc86cabe 9999 err = -EINVAL;
04289bb9 10000
04289bb9 10001 /*
ccff286d
IM
10002 * Do not allow a recursive hierarchy (this new sibling
10003 * becoming part of another group-sibling):
10004 */
10005 if (group_leader->group_leader != group_leader)
c3f00c70 10006 goto err_context;
34f43927
PZ
10007
10008 /* All events in a group should have the same clock */
10009 if (group_leader->clock != event->clock)
10010 goto err_context;
10011
ccff286d
IM
10012 /*
10013 * Do not allow to attach to a group in a different
10014 * task or CPU context:
04289bb9 10015 */
b04243ef 10016 if (move_group) {
c3c87e77
PZ
10017 /*
10018 * Make sure we're both on the same task, or both
10019 * per-cpu events.
10020 */
10021 if (group_leader->ctx->task != ctx->task)
10022 goto err_context;
10023
10024 /*
10025 * Make sure we're both events for the same CPU;
10026 * grouping events for different CPUs is broken; since
10027 * you can never concurrently schedule them anyhow.
10028 */
10029 if (group_leader->cpu != event->cpu)
b04243ef
PZ
10030 goto err_context;
10031 } else {
10032 if (group_leader->ctx != ctx)
10033 goto err_context;
10034 }
10035
3b6f9e5c
PM
10036 /*
10037 * Only a group leader can be exclusive or pinned
10038 */
0d48696f 10039 if (attr.exclusive || attr.pinned)
c3f00c70 10040 goto err_context;
ac9721f3
PZ
10041 }
10042
10043 if (output_event) {
10044 err = perf_event_set_output(event, output_event);
10045 if (err)
c3f00c70 10046 goto err_context;
ac9721f3 10047 }
0793a61d 10048
a21b0b35
YD
10049 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
10050 f_flags);
ea635c64
AV
10051 if (IS_ERR(event_file)) {
10052 err = PTR_ERR(event_file);
201c2f85 10053 event_file = NULL;
c3f00c70 10054 goto err_context;
ea635c64 10055 }
9b51f66d 10056
b04243ef 10057 if (move_group) {
321027c1
PZ
10058 gctx = __perf_event_ctx_lock_double(group_leader, ctx);
10059
84c4e620
PZ
10060 if (gctx->task == TASK_TOMBSTONE) {
10061 err = -ESRCH;
10062 goto err_locked;
10063 }
321027c1
PZ
10064
10065 /*
10066 * Check if we raced against another sys_perf_event_open() call
10067 * moving the software group underneath us.
10068 */
10069 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
10070 /*
10071 * If someone moved the group out from under us, check
10072 * if this new event wound up on the same ctx, if so
10073 * its the regular !move_group case, otherwise fail.
10074 */
10075 if (gctx != ctx) {
10076 err = -EINVAL;
10077 goto err_locked;
10078 } else {
10079 perf_event_ctx_unlock(group_leader, gctx);
10080 move_group = 0;
10081 }
10082 }
f55fc2a5
PZ
10083 } else {
10084 mutex_lock(&ctx->mutex);
10085 }
10086
84c4e620
PZ
10087 if (ctx->task == TASK_TOMBSTONE) {
10088 err = -ESRCH;
10089 goto err_locked;
10090 }
10091
a723968c
PZ
10092 if (!perf_event_validate_size(event)) {
10093 err = -E2BIG;
10094 goto err_locked;
10095 }
10096
a63fbed7
TG
10097 if (!task) {
10098 /*
10099 * Check if the @cpu we're creating an event for is online.
10100 *
10101 * We use the perf_cpu_context::ctx::mutex to serialize against
10102 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
10103 */
10104 struct perf_cpu_context *cpuctx =
10105 container_of(ctx, struct perf_cpu_context, ctx);
10106
10107 if (!cpuctx->online) {
10108 err = -ENODEV;
10109 goto err_locked;
10110 }
10111 }
10112
10113
f55fc2a5
PZ
10114 /*
10115 * Must be under the same ctx::mutex as perf_install_in_context(),
10116 * because we need to serialize with concurrent event creation.
10117 */
10118 if (!exclusive_event_installable(event, ctx)) {
10119 /* exclusive and group stuff are assumed mutually exclusive */
10120 WARN_ON_ONCE(move_group);
f63a8daa 10121
f55fc2a5
PZ
10122 err = -EBUSY;
10123 goto err_locked;
10124 }
f63a8daa 10125
f55fc2a5
PZ
10126 WARN_ON_ONCE(ctx->parent_ctx);
10127
79c9ce57
PZ
10128 /*
10129 * This is the point on no return; we cannot fail hereafter. This is
10130 * where we start modifying current state.
10131 */
10132
f55fc2a5 10133 if (move_group) {
f63a8daa
PZ
10134 /*
10135 * See perf_event_ctx_lock() for comments on the details
10136 * of swizzling perf_event::ctx.
10137 */
45a0e07a 10138 perf_remove_from_context(group_leader, 0);
279b5165 10139 put_ctx(gctx);
0231bb53 10140
b04243ef
PZ
10141 list_for_each_entry(sibling, &group_leader->sibling_list,
10142 group_entry) {
45a0e07a 10143 perf_remove_from_context(sibling, 0);
b04243ef
PZ
10144 put_ctx(gctx);
10145 }
b04243ef 10146
f63a8daa
PZ
10147 /*
10148 * Wait for everybody to stop referencing the events through
10149 * the old lists, before installing it on new lists.
10150 */
0cda4c02 10151 synchronize_rcu();
f63a8daa 10152
8f95b435
PZI
10153 /*
10154 * Install the group siblings before the group leader.
10155 *
10156 * Because a group leader will try and install the entire group
10157 * (through the sibling list, which is still in-tact), we can
10158 * end up with siblings installed in the wrong context.
10159 *
10160 * By installing siblings first we NO-OP because they're not
10161 * reachable through the group lists.
10162 */
b04243ef
PZ
10163 list_for_each_entry(sibling, &group_leader->sibling_list,
10164 group_entry) {
8f95b435 10165 perf_event__state_init(sibling);
9fc81d87 10166 perf_install_in_context(ctx, sibling, sibling->cpu);
b04243ef
PZ
10167 get_ctx(ctx);
10168 }
8f95b435
PZI
10169
10170 /*
10171 * Removing from the context ends up with disabled
10172 * event. What we want here is event in the initial
10173 * startup state, ready to be add into new context.
10174 */
10175 perf_event__state_init(group_leader);
10176 perf_install_in_context(ctx, group_leader, group_leader->cpu);
10177 get_ctx(ctx);
bed5b25a
AS
10178 }
10179
f73e22ab
PZ
10180 /*
10181 * Precalculate sample_data sizes; do while holding ctx::mutex such
10182 * that we're serialized against further additions and before
10183 * perf_install_in_context() which is the point the event is active and
10184 * can use these values.
10185 */
10186 perf_event__header_size(event);
10187 perf_event__id_header_size(event);
10188
78cd2c74
PZ
10189 event->owner = current;
10190
e2d37cd2 10191 perf_install_in_context(ctx, event, event->cpu);
fe4b04fa 10192 perf_unpin_context(ctx);
f63a8daa 10193
f55fc2a5 10194 if (move_group)
321027c1 10195 perf_event_ctx_unlock(group_leader, gctx);
d859e29f 10196 mutex_unlock(&ctx->mutex);
9b51f66d 10197
79c9ce57
PZ
10198 if (task) {
10199 mutex_unlock(&task->signal->cred_guard_mutex);
10200 put_task_struct(task);
10201 }
10202
cdd6c482
IM
10203 mutex_lock(&current->perf_event_mutex);
10204 list_add_tail(&event->owner_entry, &current->perf_event_list);
10205 mutex_unlock(&current->perf_event_mutex);
082ff5a2 10206
8a49542c
PZ
10207 /*
10208 * Drop the reference on the group_event after placing the
10209 * new event on the sibling_list. This ensures destruction
10210 * of the group leader will find the pointer to itself in
10211 * perf_group_detach().
10212 */
2903ff01 10213 fdput(group);
ea635c64
AV
10214 fd_install(event_fd, event_file);
10215 return event_fd;
0793a61d 10216
f55fc2a5
PZ
10217err_locked:
10218 if (move_group)
321027c1 10219 perf_event_ctx_unlock(group_leader, gctx);
f55fc2a5
PZ
10220 mutex_unlock(&ctx->mutex);
10221/* err_file: */
10222 fput(event_file);
c3f00c70 10223err_context:
fe4b04fa 10224 perf_unpin_context(ctx);
ea635c64 10225 put_ctx(ctx);
c6be5a5c 10226err_alloc:
13005627
PZ
10227 /*
10228 * If event_file is set, the fput() above will have called ->release()
10229 * and that will take care of freeing the event.
10230 */
10231 if (!event_file)
10232 free_event(event);
79c9ce57
PZ
10233err_cred:
10234 if (task)
10235 mutex_unlock(&task->signal->cred_guard_mutex);
1f4ee503 10236err_task:
e7d0bc04
PZ
10237 if (task)
10238 put_task_struct(task);
89a1e187 10239err_group_fd:
2903ff01 10240 fdput(group);
ea635c64
AV
10241err_fd:
10242 put_unused_fd(event_fd);
dc86cabe 10243 return err;
0793a61d
TG
10244}
10245
fb0459d7
AV
10246/**
10247 * perf_event_create_kernel_counter
10248 *
10249 * @attr: attributes of the counter to create
10250 * @cpu: cpu in which the counter is bound
38a81da2 10251 * @task: task to profile (NULL for percpu)
fb0459d7
AV
10252 */
10253struct perf_event *
10254perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
38a81da2 10255 struct task_struct *task,
4dc0da86
AK
10256 perf_overflow_handler_t overflow_handler,
10257 void *context)
fb0459d7 10258{
fb0459d7 10259 struct perf_event_context *ctx;
c3f00c70 10260 struct perf_event *event;
fb0459d7 10261 int err;
d859e29f 10262
fb0459d7
AV
10263 /*
10264 * Get the target context (task or percpu):
10265 */
d859e29f 10266
4dc0da86 10267 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
79dff51e 10268 overflow_handler, context, -1);
c3f00c70
PZ
10269 if (IS_ERR(event)) {
10270 err = PTR_ERR(event);
10271 goto err;
10272 }
d859e29f 10273
f8697762 10274 /* Mark owner so we could distinguish it from user events. */
63b6da39 10275 event->owner = TASK_TOMBSTONE;
f8697762 10276
4af57ef2 10277 ctx = find_get_context(event->pmu, task, event);
c6567f64
FW
10278 if (IS_ERR(ctx)) {
10279 err = PTR_ERR(ctx);
c3f00c70 10280 goto err_free;
d859e29f 10281 }
fb0459d7 10282
fb0459d7
AV
10283 WARN_ON_ONCE(ctx->parent_ctx);
10284 mutex_lock(&ctx->mutex);
84c4e620
PZ
10285 if (ctx->task == TASK_TOMBSTONE) {
10286 err = -ESRCH;
10287 goto err_unlock;
10288 }
10289
a63fbed7
TG
10290 if (!task) {
10291 /*
10292 * Check if the @cpu we're creating an event for is online.
10293 *
10294 * We use the perf_cpu_context::ctx::mutex to serialize against
10295 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
10296 */
10297 struct perf_cpu_context *cpuctx =
10298 container_of(ctx, struct perf_cpu_context, ctx);
10299 if (!cpuctx->online) {
10300 err = -ENODEV;
10301 goto err_unlock;
10302 }
10303 }
10304
bed5b25a 10305 if (!exclusive_event_installable(event, ctx)) {
bed5b25a 10306 err = -EBUSY;
84c4e620 10307 goto err_unlock;
bed5b25a
AS
10308 }
10309
fb0459d7 10310 perf_install_in_context(ctx, event, cpu);
fe4b04fa 10311 perf_unpin_context(ctx);
fb0459d7
AV
10312 mutex_unlock(&ctx->mutex);
10313
fb0459d7
AV
10314 return event;
10315
84c4e620
PZ
10316err_unlock:
10317 mutex_unlock(&ctx->mutex);
10318 perf_unpin_context(ctx);
10319 put_ctx(ctx);
c3f00c70
PZ
10320err_free:
10321 free_event(event);
10322err:
c6567f64 10323 return ERR_PTR(err);
9b51f66d 10324}
fb0459d7 10325EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
9b51f66d 10326
0cda4c02
YZ
10327void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
10328{
10329 struct perf_event_context *src_ctx;
10330 struct perf_event_context *dst_ctx;
10331 struct perf_event *event, *tmp;
10332 LIST_HEAD(events);
10333
10334 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
10335 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
10336
f63a8daa
PZ
10337 /*
10338 * See perf_event_ctx_lock() for comments on the details
10339 * of swizzling perf_event::ctx.
10340 */
10341 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
0cda4c02
YZ
10342 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
10343 event_entry) {
45a0e07a 10344 perf_remove_from_context(event, 0);
9a545de0 10345 unaccount_event_cpu(event, src_cpu);
0cda4c02 10346 put_ctx(src_ctx);
9886167d 10347 list_add(&event->migrate_entry, &events);
0cda4c02 10348 }
0cda4c02 10349
8f95b435
PZI
10350 /*
10351 * Wait for the events to quiesce before re-instating them.
10352 */
0cda4c02
YZ
10353 synchronize_rcu();
10354
8f95b435
PZI
10355 /*
10356 * Re-instate events in 2 passes.
10357 *
10358 * Skip over group leaders and only install siblings on this first
10359 * pass, siblings will not get enabled without a leader, however a
10360 * leader will enable its siblings, even if those are still on the old
10361 * context.
10362 */
10363 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10364 if (event->group_leader == event)
10365 continue;
10366
10367 list_del(&event->migrate_entry);
10368 if (event->state >= PERF_EVENT_STATE_OFF)
10369 event->state = PERF_EVENT_STATE_INACTIVE;
10370 account_event_cpu(event, dst_cpu);
10371 perf_install_in_context(dst_ctx, event, dst_cpu);
10372 get_ctx(dst_ctx);
10373 }
10374
10375 /*
10376 * Once all the siblings are setup properly, install the group leaders
10377 * to make it go.
10378 */
9886167d
PZ
10379 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10380 list_del(&event->migrate_entry);
0cda4c02
YZ
10381 if (event->state >= PERF_EVENT_STATE_OFF)
10382 event->state = PERF_EVENT_STATE_INACTIVE;
9a545de0 10383 account_event_cpu(event, dst_cpu);
0cda4c02
YZ
10384 perf_install_in_context(dst_ctx, event, dst_cpu);
10385 get_ctx(dst_ctx);
10386 }
10387 mutex_unlock(&dst_ctx->mutex);
f63a8daa 10388 mutex_unlock(&src_ctx->mutex);
0cda4c02
YZ
10389}
10390EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
10391
cdd6c482 10392static void sync_child_event(struct perf_event *child_event,
38b200d6 10393 struct task_struct *child)
d859e29f 10394{
cdd6c482 10395 struct perf_event *parent_event = child_event->parent;
8bc20959 10396 u64 child_val;
d859e29f 10397
cdd6c482
IM
10398 if (child_event->attr.inherit_stat)
10399 perf_event_read_event(child_event, child);
38b200d6 10400
b5e58793 10401 child_val = perf_event_count(child_event);
d859e29f
PM
10402
10403 /*
10404 * Add back the child's count to the parent's count:
10405 */
a6e6dea6 10406 atomic64_add(child_val, &parent_event->child_count);
cdd6c482
IM
10407 atomic64_add(child_event->total_time_enabled,
10408 &parent_event->child_total_time_enabled);
10409 atomic64_add(child_event->total_time_running,
10410 &parent_event->child_total_time_running);
d859e29f
PM
10411}
10412
9b51f66d 10413static void
8ba289b8
PZ
10414perf_event_exit_event(struct perf_event *child_event,
10415 struct perf_event_context *child_ctx,
10416 struct task_struct *child)
9b51f66d 10417{
8ba289b8
PZ
10418 struct perf_event *parent_event = child_event->parent;
10419
1903d50c
PZ
10420 /*
10421 * Do not destroy the 'original' grouping; because of the context
10422 * switch optimization the original events could've ended up in a
10423 * random child task.
10424 *
10425 * If we were to destroy the original group, all group related
10426 * operations would cease to function properly after this random
10427 * child dies.
10428 *
10429 * Do destroy all inherited groups, we don't care about those
10430 * and being thorough is better.
10431 */
32132a3d
PZ
10432 raw_spin_lock_irq(&child_ctx->lock);
10433 WARN_ON_ONCE(child_ctx->is_active);
10434
8ba289b8 10435 if (parent_event)
32132a3d
PZ
10436 perf_group_detach(child_event);
10437 list_del_event(child_event, child_ctx);
a69b0ca4 10438 child_event->state = PERF_EVENT_STATE_EXIT; /* is_event_hup() */
32132a3d 10439 raw_spin_unlock_irq(&child_ctx->lock);
0cc0c027 10440
9b51f66d 10441 /*
8ba289b8 10442 * Parent events are governed by their filedesc, retain them.
9b51f66d 10443 */
8ba289b8 10444 if (!parent_event) {
179033b3 10445 perf_event_wakeup(child_event);
8ba289b8 10446 return;
4bcf349a 10447 }
8ba289b8
PZ
10448 /*
10449 * Child events can be cleaned up.
10450 */
10451
10452 sync_child_event(child_event, child);
10453
10454 /*
10455 * Remove this event from the parent's list
10456 */
10457 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
10458 mutex_lock(&parent_event->child_mutex);
10459 list_del_init(&child_event->child_list);
10460 mutex_unlock(&parent_event->child_mutex);
10461
10462 /*
10463 * Kick perf_poll() for is_event_hup().
10464 */
10465 perf_event_wakeup(parent_event);
10466 free_event(child_event);
10467 put_event(parent_event);
9b51f66d
IM
10468}
10469
8dc85d54 10470static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
9b51f66d 10471{
211de6eb 10472 struct perf_event_context *child_ctx, *clone_ctx = NULL;
63b6da39 10473 struct perf_event *child_event, *next;
63b6da39
PZ
10474
10475 WARN_ON_ONCE(child != current);
9b51f66d 10476
6a3351b6 10477 child_ctx = perf_pin_task_context(child, ctxn);
63b6da39 10478 if (!child_ctx)
9b51f66d
IM
10479 return;
10480
ad3a37de 10481 /*
6a3351b6
PZ
10482 * In order to reduce the amount of tricky in ctx tear-down, we hold
10483 * ctx::mutex over the entire thing. This serializes against almost
10484 * everything that wants to access the ctx.
10485 *
10486 * The exception is sys_perf_event_open() /
10487 * perf_event_create_kernel_count() which does find_get_context()
10488 * without ctx::mutex (it cannot because of the move_group double mutex
10489 * lock thing). See the comments in perf_install_in_context().
ad3a37de 10490 */
6a3351b6 10491 mutex_lock(&child_ctx->mutex);
c93f7669
PM
10492
10493 /*
6a3351b6
PZ
10494 * In a single ctx::lock section, de-schedule the events and detach the
10495 * context from the task such that we cannot ever get it scheduled back
10496 * in.
c93f7669 10497 */
6a3351b6 10498 raw_spin_lock_irq(&child_ctx->lock);
487f05e1 10499 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
4a1c0f26 10500
71a851b4 10501 /*
63b6da39
PZ
10502 * Now that the context is inactive, destroy the task <-> ctx relation
10503 * and mark the context dead.
71a851b4 10504 */
63b6da39
PZ
10505 RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
10506 put_ctx(child_ctx); /* cannot be last */
10507 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
10508 put_task_struct(current); /* cannot be last */
4a1c0f26 10509
211de6eb 10510 clone_ctx = unclone_ctx(child_ctx);
6a3351b6 10511 raw_spin_unlock_irq(&child_ctx->lock);
9f498cc5 10512
211de6eb
PZ
10513 if (clone_ctx)
10514 put_ctx(clone_ctx);
4a1c0f26 10515
9f498cc5 10516 /*
cdd6c482
IM
10517 * Report the task dead after unscheduling the events so that we
10518 * won't get any samples after PERF_RECORD_EXIT. We can however still
10519 * get a few PERF_RECORD_READ events.
9f498cc5 10520 */
cdd6c482 10521 perf_event_task(child, child_ctx, 0);
a63eaf34 10522
ebf905fc 10523 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
8ba289b8 10524 perf_event_exit_event(child_event, child_ctx, child);
8bc20959 10525
a63eaf34
PM
10526 mutex_unlock(&child_ctx->mutex);
10527
10528 put_ctx(child_ctx);
9b51f66d
IM
10529}
10530
8dc85d54
PZ
10531/*
10532 * When a child task exits, feed back event values to parent events.
79c9ce57
PZ
10533 *
10534 * Can be called with cred_guard_mutex held when called from
10535 * install_exec_creds().
8dc85d54
PZ
10536 */
10537void perf_event_exit_task(struct task_struct *child)
10538{
8882135b 10539 struct perf_event *event, *tmp;
8dc85d54
PZ
10540 int ctxn;
10541
8882135b
PZ
10542 mutex_lock(&child->perf_event_mutex);
10543 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
10544 owner_entry) {
10545 list_del_init(&event->owner_entry);
10546
10547 /*
10548 * Ensure the list deletion is visible before we clear
10549 * the owner, closes a race against perf_release() where
10550 * we need to serialize on the owner->perf_event_mutex.
10551 */
f47c02c0 10552 smp_store_release(&event->owner, NULL);
8882135b
PZ
10553 }
10554 mutex_unlock(&child->perf_event_mutex);
10555
8dc85d54
PZ
10556 for_each_task_context_nr(ctxn)
10557 perf_event_exit_task_context(child, ctxn);
4e93ad60
JO
10558
10559 /*
10560 * The perf_event_exit_task_context calls perf_event_task
10561 * with child's task_ctx, which generates EXIT events for
10562 * child contexts and sets child->perf_event_ctxp[] to NULL.
10563 * At this point we need to send EXIT events to cpu contexts.
10564 */
10565 perf_event_task(child, NULL, 0);
8dc85d54
PZ
10566}
10567
889ff015
FW
10568static void perf_free_event(struct perf_event *event,
10569 struct perf_event_context *ctx)
10570{
10571 struct perf_event *parent = event->parent;
10572
10573 if (WARN_ON_ONCE(!parent))
10574 return;
10575
10576 mutex_lock(&parent->child_mutex);
10577 list_del_init(&event->child_list);
10578 mutex_unlock(&parent->child_mutex);
10579
a6fa941d 10580 put_event(parent);
889ff015 10581
652884fe 10582 raw_spin_lock_irq(&ctx->lock);
8a49542c 10583 perf_group_detach(event);
889ff015 10584 list_del_event(event, ctx);
652884fe 10585 raw_spin_unlock_irq(&ctx->lock);
889ff015
FW
10586 free_event(event);
10587}
10588
bbbee908 10589/*
652884fe 10590 * Free an unexposed, unused context as created by inheritance by
8dc85d54 10591 * perf_event_init_task below, used by fork() in case of fail.
652884fe
PZ
10592 *
10593 * Not all locks are strictly required, but take them anyway to be nice and
10594 * help out with the lockdep assertions.
bbbee908 10595 */
cdd6c482 10596void perf_event_free_task(struct task_struct *task)
bbbee908 10597{
8dc85d54 10598 struct perf_event_context *ctx;
cdd6c482 10599 struct perf_event *event, *tmp;
8dc85d54 10600 int ctxn;
bbbee908 10601
8dc85d54
PZ
10602 for_each_task_context_nr(ctxn) {
10603 ctx = task->perf_event_ctxp[ctxn];
10604 if (!ctx)
10605 continue;
bbbee908 10606
8dc85d54 10607 mutex_lock(&ctx->mutex);
e552a838
PZ
10608 raw_spin_lock_irq(&ctx->lock);
10609 /*
10610 * Destroy the task <-> ctx relation and mark the context dead.
10611 *
10612 * This is important because even though the task hasn't been
10613 * exposed yet the context has been (through child_list).
10614 */
10615 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
10616 WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
10617 put_task_struct(task); /* cannot be last */
10618 raw_spin_unlock_irq(&ctx->lock);
bbbee908 10619
15121c78 10620 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
8dc85d54 10621 perf_free_event(event, ctx);
bbbee908 10622
8dc85d54 10623 mutex_unlock(&ctx->mutex);
8dc85d54
PZ
10624 put_ctx(ctx);
10625 }
889ff015
FW
10626}
10627
4e231c79
PZ
10628void perf_event_delayed_put(struct task_struct *task)
10629{
10630 int ctxn;
10631
10632 for_each_task_context_nr(ctxn)
10633 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
10634}
10635
e03e7ee3 10636struct file *perf_event_get(unsigned int fd)
ffe8690c 10637{
e03e7ee3 10638 struct file *file;
ffe8690c 10639
e03e7ee3
AS
10640 file = fget_raw(fd);
10641 if (!file)
10642 return ERR_PTR(-EBADF);
ffe8690c 10643
e03e7ee3
AS
10644 if (file->f_op != &perf_fops) {
10645 fput(file);
10646 return ERR_PTR(-EBADF);
10647 }
ffe8690c 10648
e03e7ee3 10649 return file;
ffe8690c
KX
10650}
10651
10652const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
10653{
10654 if (!event)
10655 return ERR_PTR(-EINVAL);
10656
10657 return &event->attr;
10658}
10659
97dee4f3 10660/*
d8a8cfc7
PZ
10661 * Inherit a event from parent task to child task.
10662 *
10663 * Returns:
10664 * - valid pointer on success
10665 * - NULL for orphaned events
10666 * - IS_ERR() on error
97dee4f3
PZ
10667 */
10668static struct perf_event *
10669inherit_event(struct perf_event *parent_event,
10670 struct task_struct *parent,
10671 struct perf_event_context *parent_ctx,
10672 struct task_struct *child,
10673 struct perf_event *group_leader,
10674 struct perf_event_context *child_ctx)
10675{
1929def9 10676 enum perf_event_active_state parent_state = parent_event->state;
97dee4f3 10677 struct perf_event *child_event;
cee010ec 10678 unsigned long flags;
97dee4f3
PZ
10679
10680 /*
10681 * Instead of creating recursive hierarchies of events,
10682 * we link inherited events back to the original parent,
10683 * which has a filp for sure, which we use as the reference
10684 * count:
10685 */
10686 if (parent_event->parent)
10687 parent_event = parent_event->parent;
10688
10689 child_event = perf_event_alloc(&parent_event->attr,
10690 parent_event->cpu,
d580ff86 10691 child,
97dee4f3 10692 group_leader, parent_event,
79dff51e 10693 NULL, NULL, -1);
97dee4f3
PZ
10694 if (IS_ERR(child_event))
10695 return child_event;
a6fa941d 10696
c6e5b732
PZ
10697 /*
10698 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
10699 * must be under the same lock in order to serialize against
10700 * perf_event_release_kernel(), such that either we must observe
10701 * is_orphaned_event() or they will observe us on the child_list.
10702 */
10703 mutex_lock(&parent_event->child_mutex);
fadfe7be
JO
10704 if (is_orphaned_event(parent_event) ||
10705 !atomic_long_inc_not_zero(&parent_event->refcount)) {
c6e5b732 10706 mutex_unlock(&parent_event->child_mutex);
a6fa941d
AV
10707 free_event(child_event);
10708 return NULL;
10709 }
10710
97dee4f3
PZ
10711 get_ctx(child_ctx);
10712
10713 /*
10714 * Make the child state follow the state of the parent event,
10715 * not its attr.disabled bit. We hold the parent's mutex,
10716 * so we won't race with perf_event_{en, dis}able_family.
10717 */
1929def9 10718 if (parent_state >= PERF_EVENT_STATE_INACTIVE)
97dee4f3
PZ
10719 child_event->state = PERF_EVENT_STATE_INACTIVE;
10720 else
10721 child_event->state = PERF_EVENT_STATE_OFF;
10722
10723 if (parent_event->attr.freq) {
10724 u64 sample_period = parent_event->hw.sample_period;
10725 struct hw_perf_event *hwc = &child_event->hw;
10726
10727 hwc->sample_period = sample_period;
10728 hwc->last_period = sample_period;
10729
10730 local64_set(&hwc->period_left, sample_period);
10731 }
10732
10733 child_event->ctx = child_ctx;
10734 child_event->overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
10735 child_event->overflow_handler_context
10736 = parent_event->overflow_handler_context;
97dee4f3 10737
614b6780
TG
10738 /*
10739 * Precalculate sample_data sizes
10740 */
10741 perf_event__header_size(child_event);
6844c09d 10742 perf_event__id_header_size(child_event);
614b6780 10743
97dee4f3
PZ
10744 /*
10745 * Link it up in the child's context:
10746 */
cee010ec 10747 raw_spin_lock_irqsave(&child_ctx->lock, flags);
97dee4f3 10748 add_event_to_ctx(child_event, child_ctx);
cee010ec 10749 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
97dee4f3 10750
97dee4f3
PZ
10751 /*
10752 * Link this into the parent event's child list
10753 */
97dee4f3
PZ
10754 list_add_tail(&child_event->child_list, &parent_event->child_list);
10755 mutex_unlock(&parent_event->child_mutex);
10756
10757 return child_event;
10758}
10759
d8a8cfc7
PZ
10760/*
10761 * Inherits an event group.
10762 *
10763 * This will quietly suppress orphaned events; !inherit_event() is not an error.
10764 * This matches with perf_event_release_kernel() removing all child events.
10765 *
10766 * Returns:
10767 * - 0 on success
10768 * - <0 on error
10769 */
97dee4f3
PZ
10770static int inherit_group(struct perf_event *parent_event,
10771 struct task_struct *parent,
10772 struct perf_event_context *parent_ctx,
10773 struct task_struct *child,
10774 struct perf_event_context *child_ctx)
10775{
10776 struct perf_event *leader;
10777 struct perf_event *sub;
10778 struct perf_event *child_ctr;
10779
10780 leader = inherit_event(parent_event, parent, parent_ctx,
10781 child, NULL, child_ctx);
10782 if (IS_ERR(leader))
10783 return PTR_ERR(leader);
d8a8cfc7
PZ
10784 /*
10785 * @leader can be NULL here because of is_orphaned_event(). In this
10786 * case inherit_event() will create individual events, similar to what
10787 * perf_group_detach() would do anyway.
10788 */
97dee4f3
PZ
10789 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
10790 child_ctr = inherit_event(sub, parent, parent_ctx,
10791 child, leader, child_ctx);
10792 if (IS_ERR(child_ctr))
10793 return PTR_ERR(child_ctr);
10794 }
10795 return 0;
889ff015
FW
10796}
10797
d8a8cfc7
PZ
10798/*
10799 * Creates the child task context and tries to inherit the event-group.
10800 *
10801 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
10802 * inherited_all set when we 'fail' to inherit an orphaned event; this is
10803 * consistent with perf_event_release_kernel() removing all child events.
10804 *
10805 * Returns:
10806 * - 0 on success
10807 * - <0 on error
10808 */
889ff015
FW
10809static int
10810inherit_task_group(struct perf_event *event, struct task_struct *parent,
10811 struct perf_event_context *parent_ctx,
8dc85d54 10812 struct task_struct *child, int ctxn,
889ff015
FW
10813 int *inherited_all)
10814{
10815 int ret;
8dc85d54 10816 struct perf_event_context *child_ctx;
889ff015
FW
10817
10818 if (!event->attr.inherit) {
10819 *inherited_all = 0;
10820 return 0;
bbbee908
PZ
10821 }
10822
fe4b04fa 10823 child_ctx = child->perf_event_ctxp[ctxn];
889ff015
FW
10824 if (!child_ctx) {
10825 /*
10826 * This is executed from the parent task context, so
10827 * inherit events that have been marked for cloning.
10828 * First allocate and initialize a context for the
10829 * child.
10830 */
734df5ab 10831 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
889ff015
FW
10832 if (!child_ctx)
10833 return -ENOMEM;
bbbee908 10834
8dc85d54 10835 child->perf_event_ctxp[ctxn] = child_ctx;
889ff015
FW
10836 }
10837
10838 ret = inherit_group(event, parent, parent_ctx,
10839 child, child_ctx);
10840
10841 if (ret)
10842 *inherited_all = 0;
10843
10844 return ret;
bbbee908
PZ
10845}
10846
9b51f66d 10847/*
cdd6c482 10848 * Initialize the perf_event context in task_struct
9b51f66d 10849 */
985c8dcb 10850static int perf_event_init_context(struct task_struct *child, int ctxn)
9b51f66d 10851{
889ff015 10852 struct perf_event_context *child_ctx, *parent_ctx;
cdd6c482
IM
10853 struct perf_event_context *cloned_ctx;
10854 struct perf_event *event;
9b51f66d 10855 struct task_struct *parent = current;
564c2b21 10856 int inherited_all = 1;
dddd3379 10857 unsigned long flags;
6ab423e0 10858 int ret = 0;
9b51f66d 10859
8dc85d54 10860 if (likely(!parent->perf_event_ctxp[ctxn]))
6ab423e0
PZ
10861 return 0;
10862
ad3a37de 10863 /*
25346b93
PM
10864 * If the parent's context is a clone, pin it so it won't get
10865 * swapped under us.
ad3a37de 10866 */
8dc85d54 10867 parent_ctx = perf_pin_task_context(parent, ctxn);
ffb4ef21
PZ
10868 if (!parent_ctx)
10869 return 0;
25346b93 10870
ad3a37de
PM
10871 /*
10872 * No need to check if parent_ctx != NULL here; since we saw
10873 * it non-NULL earlier, the only reason for it to become NULL
10874 * is if we exit, and since we're currently in the middle of
10875 * a fork we can't be exiting at the same time.
10876 */
ad3a37de 10877
9b51f66d
IM
10878 /*
10879 * Lock the parent list. No need to lock the child - not PID
10880 * hashed yet and not running, so nobody can access it.
10881 */
d859e29f 10882 mutex_lock(&parent_ctx->mutex);
9b51f66d
IM
10883
10884 /*
10885 * We dont have to disable NMIs - we are only looking at
10886 * the list, not manipulating it:
10887 */
889ff015 10888 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
8dc85d54
PZ
10889 ret = inherit_task_group(event, parent, parent_ctx,
10890 child, ctxn, &inherited_all);
889ff015 10891 if (ret)
e7cc4865 10892 goto out_unlock;
889ff015 10893 }
b93f7978 10894
dddd3379
TG
10895 /*
10896 * We can't hold ctx->lock when iterating the ->flexible_group list due
10897 * to allocations, but we need to prevent rotation because
10898 * rotate_ctx() will change the list from interrupt context.
10899 */
10900 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10901 parent_ctx->rotate_disable = 1;
10902 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10903
889ff015 10904 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
8dc85d54
PZ
10905 ret = inherit_task_group(event, parent, parent_ctx,
10906 child, ctxn, &inherited_all);
889ff015 10907 if (ret)
e7cc4865 10908 goto out_unlock;
564c2b21
PM
10909 }
10910
dddd3379
TG
10911 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10912 parent_ctx->rotate_disable = 0;
dddd3379 10913
8dc85d54 10914 child_ctx = child->perf_event_ctxp[ctxn];
889ff015 10915
05cbaa28 10916 if (child_ctx && inherited_all) {
564c2b21
PM
10917 /*
10918 * Mark the child context as a clone of the parent
10919 * context, or of whatever the parent is a clone of.
c5ed5145
PZ
10920 *
10921 * Note that if the parent is a clone, the holding of
10922 * parent_ctx->lock avoids it from being uncloned.
564c2b21 10923 */
c5ed5145 10924 cloned_ctx = parent_ctx->parent_ctx;
ad3a37de
PM
10925 if (cloned_ctx) {
10926 child_ctx->parent_ctx = cloned_ctx;
25346b93 10927 child_ctx->parent_gen = parent_ctx->parent_gen;
564c2b21
PM
10928 } else {
10929 child_ctx->parent_ctx = parent_ctx;
10930 child_ctx->parent_gen = parent_ctx->generation;
10931 }
10932 get_ctx(child_ctx->parent_ctx);
9b51f66d
IM
10933 }
10934
c5ed5145 10935 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
e7cc4865 10936out_unlock:
d859e29f 10937 mutex_unlock(&parent_ctx->mutex);
6ab423e0 10938
25346b93 10939 perf_unpin_context(parent_ctx);
fe4b04fa 10940 put_ctx(parent_ctx);
ad3a37de 10941
6ab423e0 10942 return ret;
9b51f66d
IM
10943}
10944
8dc85d54
PZ
10945/*
10946 * Initialize the perf_event context in task_struct
10947 */
10948int perf_event_init_task(struct task_struct *child)
10949{
10950 int ctxn, ret;
10951
8550d7cb
ON
10952 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
10953 mutex_init(&child->perf_event_mutex);
10954 INIT_LIST_HEAD(&child->perf_event_list);
10955
8dc85d54
PZ
10956 for_each_task_context_nr(ctxn) {
10957 ret = perf_event_init_context(child, ctxn);
6c72e350
PZ
10958 if (ret) {
10959 perf_event_free_task(child);
8dc85d54 10960 return ret;
6c72e350 10961 }
8dc85d54
PZ
10962 }
10963
10964 return 0;
10965}
10966
220b140b
PM
10967static void __init perf_event_init_all_cpus(void)
10968{
b28ab83c 10969 struct swevent_htable *swhash;
220b140b 10970 int cpu;
220b140b 10971
a63fbed7
TG
10972 zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
10973
220b140b 10974 for_each_possible_cpu(cpu) {
b28ab83c
PZ
10975 swhash = &per_cpu(swevent_htable, cpu);
10976 mutex_init(&swhash->hlist_mutex);
2fde4f94 10977 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
f2fb6bef
KL
10978
10979 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
10980 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
e48c1788 10981
058fe1c0
DCC
10982#ifdef CONFIG_CGROUP_PERF
10983 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
10984#endif
e48c1788 10985 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
220b140b
PM
10986 }
10987}
10988
a63fbed7 10989void perf_swevent_init_cpu(unsigned int cpu)
0793a61d 10990{
108b02cf 10991 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
0793a61d 10992
b28ab83c 10993 mutex_lock(&swhash->hlist_mutex);
059fcd8c 10994 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
76e1d904
FW
10995 struct swevent_hlist *hlist;
10996
b28ab83c
PZ
10997 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
10998 WARN_ON(!hlist);
10999 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 11000 }
b28ab83c 11001 mutex_unlock(&swhash->hlist_mutex);
0793a61d
TG
11002}
11003
2965faa5 11004#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
108b02cf 11005static void __perf_event_exit_context(void *__info)
0793a61d 11006{
108b02cf 11007 struct perf_event_context *ctx = __info;
fae3fde6
PZ
11008 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
11009 struct perf_event *event;
0793a61d 11010
fae3fde6
PZ
11011 raw_spin_lock(&ctx->lock);
11012 list_for_each_entry(event, &ctx->event_list, event_entry)
45a0e07a 11013 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
fae3fde6 11014 raw_spin_unlock(&ctx->lock);
0793a61d 11015}
108b02cf
PZ
11016
11017static void perf_event_exit_cpu_context(int cpu)
11018{
a63fbed7 11019 struct perf_cpu_context *cpuctx;
108b02cf
PZ
11020 struct perf_event_context *ctx;
11021 struct pmu *pmu;
108b02cf 11022
a63fbed7
TG
11023 mutex_lock(&pmus_lock);
11024 list_for_each_entry(pmu, &pmus, entry) {
11025 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11026 ctx = &cpuctx->ctx;
108b02cf
PZ
11027
11028 mutex_lock(&ctx->mutex);
11029 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
a63fbed7 11030 cpuctx->online = 0;
108b02cf
PZ
11031 mutex_unlock(&ctx->mutex);
11032 }
a63fbed7
TG
11033 cpumask_clear_cpu(cpu, perf_online_mask);
11034 mutex_unlock(&pmus_lock);
108b02cf 11035}
00e16c3d
TG
11036#else
11037
11038static void perf_event_exit_cpu_context(int cpu) { }
11039
11040#endif
108b02cf 11041
a63fbed7
TG
11042int perf_event_init_cpu(unsigned int cpu)
11043{
11044 struct perf_cpu_context *cpuctx;
11045 struct perf_event_context *ctx;
11046 struct pmu *pmu;
11047
11048 perf_swevent_init_cpu(cpu);
11049
11050 mutex_lock(&pmus_lock);
11051 cpumask_set_cpu(cpu, perf_online_mask);
11052 list_for_each_entry(pmu, &pmus, entry) {
11053 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11054 ctx = &cpuctx->ctx;
11055
11056 mutex_lock(&ctx->mutex);
11057 cpuctx->online = 1;
11058 mutex_unlock(&ctx->mutex);
11059 }
11060 mutex_unlock(&pmus_lock);
11061
11062 return 0;
11063}
11064
00e16c3d 11065int perf_event_exit_cpu(unsigned int cpu)
0793a61d 11066{
e3703f8c 11067 perf_event_exit_cpu_context(cpu);
00e16c3d 11068 return 0;
0793a61d 11069}
0793a61d 11070
c277443c
PZ
11071static int
11072perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
11073{
11074 int cpu;
11075
11076 for_each_online_cpu(cpu)
11077 perf_event_exit_cpu(cpu);
11078
11079 return NOTIFY_OK;
11080}
11081
11082/*
11083 * Run the perf reboot notifier at the very last possible moment so that
11084 * the generic watchdog code runs as long as possible.
11085 */
11086static struct notifier_block perf_reboot_notifier = {
11087 .notifier_call = perf_reboot,
11088 .priority = INT_MIN,
11089};
11090
cdd6c482 11091void __init perf_event_init(void)
0793a61d 11092{
3c502e7a
JW
11093 int ret;
11094
2e80a82a
PZ
11095 idr_init(&pmu_idr);
11096
220b140b 11097 perf_event_init_all_cpus();
b0a873eb 11098 init_srcu_struct(&pmus_srcu);
2e80a82a
PZ
11099 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
11100 perf_pmu_register(&perf_cpu_clock, NULL, -1);
11101 perf_pmu_register(&perf_task_clock, NULL, -1);
b0a873eb 11102 perf_tp_register();
00e16c3d 11103 perf_event_init_cpu(smp_processor_id());
c277443c 11104 register_reboot_notifier(&perf_reboot_notifier);
3c502e7a
JW
11105
11106 ret = init_hw_breakpoint();
11107 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
b2029520 11108
b01c3a00
JO
11109 /*
11110 * Build time assertion that we keep the data_head at the intended
11111 * location. IOW, validation we got the __reserved[] size right.
11112 */
11113 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
11114 != 1024);
0793a61d 11115}
abe43400 11116
fd979c01
CS
11117ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
11118 char *page)
11119{
11120 struct perf_pmu_events_attr *pmu_attr =
11121 container_of(attr, struct perf_pmu_events_attr, attr);
11122
11123 if (pmu_attr->event_str)
11124 return sprintf(page, "%s\n", pmu_attr->event_str);
11125
11126 return 0;
11127}
675965b0 11128EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
fd979c01 11129
abe43400
PZ
11130static int __init perf_event_sysfs_init(void)
11131{
11132 struct pmu *pmu;
11133 int ret;
11134
11135 mutex_lock(&pmus_lock);
11136
11137 ret = bus_register(&pmu_bus);
11138 if (ret)
11139 goto unlock;
11140
11141 list_for_each_entry(pmu, &pmus, entry) {
11142 if (!pmu->name || pmu->type < 0)
11143 continue;
11144
11145 ret = pmu_dev_alloc(pmu);
11146 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
11147 }
11148 pmu_bus_running = 1;
11149 ret = 0;
11150
11151unlock:
11152 mutex_unlock(&pmus_lock);
11153
11154 return ret;
11155}
11156device_initcall(perf_event_sysfs_init);
e5d1367f
SE
11157
11158#ifdef CONFIG_CGROUP_PERF
eb95419b
TH
11159static struct cgroup_subsys_state *
11160perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
e5d1367f
SE
11161{
11162 struct perf_cgroup *jc;
e5d1367f 11163
1b15d055 11164 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
e5d1367f
SE
11165 if (!jc)
11166 return ERR_PTR(-ENOMEM);
11167
e5d1367f
SE
11168 jc->info = alloc_percpu(struct perf_cgroup_info);
11169 if (!jc->info) {
11170 kfree(jc);
11171 return ERR_PTR(-ENOMEM);
11172 }
11173
e5d1367f
SE
11174 return &jc->css;
11175}
11176
eb95419b 11177static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
e5d1367f 11178{
eb95419b
TH
11179 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
11180
e5d1367f
SE
11181 free_percpu(jc->info);
11182 kfree(jc);
11183}
11184
11185static int __perf_cgroup_move(void *info)
11186{
11187 struct task_struct *task = info;
ddaaf4e2 11188 rcu_read_lock();
e5d1367f 11189 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
ddaaf4e2 11190 rcu_read_unlock();
e5d1367f
SE
11191 return 0;
11192}
11193
1f7dd3e5 11194static void perf_cgroup_attach(struct cgroup_taskset *tset)
e5d1367f 11195{
bb9d97b6 11196 struct task_struct *task;
1f7dd3e5 11197 struct cgroup_subsys_state *css;
bb9d97b6 11198
1f7dd3e5 11199 cgroup_taskset_for_each(task, css, tset)
bb9d97b6 11200 task_function_call(task, __perf_cgroup_move, task);
e5d1367f
SE
11201}
11202
073219e9 11203struct cgroup_subsys perf_event_cgrp_subsys = {
92fb9748
TH
11204 .css_alloc = perf_cgroup_css_alloc,
11205 .css_free = perf_cgroup_css_free,
bb9d97b6 11206 .attach = perf_cgroup_attach,
968ebff1
TH
11207 /*
11208 * Implicitly enable on dfl hierarchy so that perf events can
11209 * always be filtered by cgroup2 path as long as perf_event
11210 * controller is not mounted on a legacy hierarchy.
11211 */
11212 .implicit_on_dfl = true,
e5d1367f
SE
11213};
11214#endif /* CONFIG_CGROUP_PERF */