]> git.ipfire.org Git - thirdparty/linux.git/blame - kernel/events/core.c
perf: Add perf_output_skip function to skip bytes in sample
[thirdparty/linux.git] / kernel / events / core.c
CommitLineData
0793a61d 1/*
57c0c15b 2 * Performance events core code:
0793a61d 3 *
98144511 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
e7e7ee2e
IM
5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
d36b6910 7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
7b732a75 8 *
57c0c15b 9 * For licensing details see kernel-base/COPYING
0793a61d
TG
10 */
11
12#include <linux/fs.h>
b9cacc7b 13#include <linux/mm.h>
0793a61d
TG
14#include <linux/cpu.h>
15#include <linux/smp.h>
2e80a82a 16#include <linux/idr.h>
04289bb9 17#include <linux/file.h>
0793a61d 18#include <linux/poll.h>
5a0e3ad6 19#include <linux/slab.h>
76e1d904 20#include <linux/hash.h>
0793a61d 21#include <linux/sysfs.h>
22a4f650 22#include <linux/dcache.h>
0793a61d 23#include <linux/percpu.h>
22a4f650 24#include <linux/ptrace.h>
c277443c 25#include <linux/reboot.h>
b9cacc7b 26#include <linux/vmstat.h>
abe43400 27#include <linux/device.h>
6e5fdeed 28#include <linux/export.h>
906010b2 29#include <linux/vmalloc.h>
b9cacc7b
PZ
30#include <linux/hardirq.h>
31#include <linux/rculist.h>
0793a61d
TG
32#include <linux/uaccess.h>
33#include <linux/syscalls.h>
34#include <linux/anon_inodes.h>
aa9c4c0f 35#include <linux/kernel_stat.h>
cdd6c482 36#include <linux/perf_event.h>
6fb2915d 37#include <linux/ftrace_event.h>
3c502e7a 38#include <linux/hw_breakpoint.h>
0793a61d 39
76369139
FW
40#include "internal.h"
41
4e193bd4
TB
42#include <asm/irq_regs.h>
43
fe4b04fa 44struct remote_function_call {
e7e7ee2e
IM
45 struct task_struct *p;
46 int (*func)(void *info);
47 void *info;
48 int ret;
fe4b04fa
PZ
49};
50
51static void remote_function(void *data)
52{
53 struct remote_function_call *tfc = data;
54 struct task_struct *p = tfc->p;
55
56 if (p) {
57 tfc->ret = -EAGAIN;
58 if (task_cpu(p) != smp_processor_id() || !task_curr(p))
59 return;
60 }
61
62 tfc->ret = tfc->func(tfc->info);
63}
64
65/**
66 * task_function_call - call a function on the cpu on which a task runs
67 * @p: the task to evaluate
68 * @func: the function to be called
69 * @info: the function call argument
70 *
71 * Calls the function @func when the task is currently running. This might
72 * be on the current CPU, which just calls the function directly
73 *
74 * returns: @func return value, or
75 * -ESRCH - when the process isn't running
76 * -EAGAIN - when the process moved away
77 */
78static int
79task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
80{
81 struct remote_function_call data = {
e7e7ee2e
IM
82 .p = p,
83 .func = func,
84 .info = info,
85 .ret = -ESRCH, /* No such (running) process */
fe4b04fa
PZ
86 };
87
88 if (task_curr(p))
89 smp_call_function_single(task_cpu(p), remote_function, &data, 1);
90
91 return data.ret;
92}
93
94/**
95 * cpu_function_call - call a function on the cpu
96 * @func: the function to be called
97 * @info: the function call argument
98 *
99 * Calls the function @func on the remote cpu.
100 *
101 * returns: @func return value or -ENXIO when the cpu is offline
102 */
103static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
104{
105 struct remote_function_call data = {
e7e7ee2e
IM
106 .p = NULL,
107 .func = func,
108 .info = info,
109 .ret = -ENXIO, /* No such CPU */
fe4b04fa
PZ
110 };
111
112 smp_call_function_single(cpu, remote_function, &data, 1);
113
114 return data.ret;
115}
116
e5d1367f
SE
117#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
118 PERF_FLAG_FD_OUTPUT |\
119 PERF_FLAG_PID_CGROUP)
120
bce38cd5
SE
121/*
122 * branch priv levels that need permission checks
123 */
124#define PERF_SAMPLE_BRANCH_PERM_PLM \
125 (PERF_SAMPLE_BRANCH_KERNEL |\
126 PERF_SAMPLE_BRANCH_HV)
127
0b3fcf17
SE
128enum event_type_t {
129 EVENT_FLEXIBLE = 0x1,
130 EVENT_PINNED = 0x2,
131 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
132};
133
e5d1367f
SE
134/*
135 * perf_sched_events : >0 events exist
136 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
137 */
c5905afb 138struct static_key_deferred perf_sched_events __read_mostly;
e5d1367f 139static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
d010b332 140static DEFINE_PER_CPU(atomic_t, perf_branch_stack_events);
e5d1367f 141
cdd6c482
IM
142static atomic_t nr_mmap_events __read_mostly;
143static atomic_t nr_comm_events __read_mostly;
144static atomic_t nr_task_events __read_mostly;
9ee318a7 145
108b02cf
PZ
146static LIST_HEAD(pmus);
147static DEFINE_MUTEX(pmus_lock);
148static struct srcu_struct pmus_srcu;
149
0764771d 150/*
cdd6c482 151 * perf event paranoia level:
0fbdea19
IM
152 * -1 - not paranoid at all
153 * 0 - disallow raw tracepoint access for unpriv
cdd6c482 154 * 1 - disallow cpu events for unpriv
0fbdea19 155 * 2 - disallow kernel profiling for unpriv
0764771d 156 */
cdd6c482 157int sysctl_perf_event_paranoid __read_mostly = 1;
0764771d 158
20443384
FW
159/* Minimum for 512 kiB + 1 user control page */
160int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
df58ab24
PZ
161
162/*
cdd6c482 163 * max perf event sample rate
df58ab24 164 */
163ec435
PZ
165#define DEFAULT_MAX_SAMPLE_RATE 100000
166int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
167static int max_samples_per_tick __read_mostly =
168 DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
169
170int perf_proc_update_handler(struct ctl_table *table, int write,
171 void __user *buffer, size_t *lenp,
172 loff_t *ppos)
173{
174 int ret = proc_dointvec(table, write, buffer, lenp, ppos);
175
176 if (ret || !write)
177 return ret;
178
179 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
180
181 return 0;
182}
1ccd1549 183
cdd6c482 184static atomic64_t perf_event_id;
a96bbc16 185
0b3fcf17
SE
186static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
187 enum event_type_t event_type);
188
189static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
190 enum event_type_t event_type,
191 struct task_struct *task);
192
193static void update_context_time(struct perf_event_context *ctx);
194static u64 perf_event_time(struct perf_event *event);
0b3fcf17 195
10c6db11
PZ
196static void ring_buffer_attach(struct perf_event *event,
197 struct ring_buffer *rb);
198
cdd6c482 199void __weak perf_event_print_debug(void) { }
0793a61d 200
84c79910 201extern __weak const char *perf_pmu_name(void)
0793a61d 202{
84c79910 203 return "pmu";
0793a61d
TG
204}
205
0b3fcf17
SE
206static inline u64 perf_clock(void)
207{
208 return local_clock();
209}
210
e5d1367f
SE
211static inline struct perf_cpu_context *
212__get_cpu_context(struct perf_event_context *ctx)
213{
214 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
215}
216
facc4307
PZ
217static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
218 struct perf_event_context *ctx)
219{
220 raw_spin_lock(&cpuctx->ctx.lock);
221 if (ctx)
222 raw_spin_lock(&ctx->lock);
223}
224
225static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
226 struct perf_event_context *ctx)
227{
228 if (ctx)
229 raw_spin_unlock(&ctx->lock);
230 raw_spin_unlock(&cpuctx->ctx.lock);
231}
232
e5d1367f
SE
233#ifdef CONFIG_CGROUP_PERF
234
3f7cce3c
SE
235/*
236 * Must ensure cgroup is pinned (css_get) before calling
237 * this function. In other words, we cannot call this function
238 * if there is no cgroup event for the current CPU context.
239 */
e5d1367f
SE
240static inline struct perf_cgroup *
241perf_cgroup_from_task(struct task_struct *task)
242{
243 return container_of(task_subsys_state(task, perf_subsys_id),
244 struct perf_cgroup, css);
245}
246
247static inline bool
248perf_cgroup_match(struct perf_event *event)
249{
250 struct perf_event_context *ctx = event->ctx;
251 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
252
253 return !event->cgrp || event->cgrp == cpuctx->cgrp;
254}
255
9c5da09d 256static inline bool perf_tryget_cgroup(struct perf_event *event)
e5d1367f 257{
9c5da09d 258 return css_tryget(&event->cgrp->css);
e5d1367f
SE
259}
260
261static inline void perf_put_cgroup(struct perf_event *event)
262{
263 css_put(&event->cgrp->css);
264}
265
266static inline void perf_detach_cgroup(struct perf_event *event)
267{
268 perf_put_cgroup(event);
269 event->cgrp = NULL;
270}
271
272static inline int is_cgroup_event(struct perf_event *event)
273{
274 return event->cgrp != NULL;
275}
276
277static inline u64 perf_cgroup_event_time(struct perf_event *event)
278{
279 struct perf_cgroup_info *t;
280
281 t = per_cpu_ptr(event->cgrp->info, event->cpu);
282 return t->time;
283}
284
285static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
286{
287 struct perf_cgroup_info *info;
288 u64 now;
289
290 now = perf_clock();
291
292 info = this_cpu_ptr(cgrp->info);
293
294 info->time += now - info->timestamp;
295 info->timestamp = now;
296}
297
298static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
299{
300 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
301 if (cgrp_out)
302 __update_cgrp_time(cgrp_out);
303}
304
305static inline void update_cgrp_time_from_event(struct perf_event *event)
306{
3f7cce3c
SE
307 struct perf_cgroup *cgrp;
308
e5d1367f 309 /*
3f7cce3c
SE
310 * ensure we access cgroup data only when needed and
311 * when we know the cgroup is pinned (css_get)
e5d1367f 312 */
3f7cce3c 313 if (!is_cgroup_event(event))
e5d1367f
SE
314 return;
315
3f7cce3c
SE
316 cgrp = perf_cgroup_from_task(current);
317 /*
318 * Do not update time when cgroup is not active
319 */
320 if (cgrp == event->cgrp)
321 __update_cgrp_time(event->cgrp);
e5d1367f
SE
322}
323
324static inline void
3f7cce3c
SE
325perf_cgroup_set_timestamp(struct task_struct *task,
326 struct perf_event_context *ctx)
e5d1367f
SE
327{
328 struct perf_cgroup *cgrp;
329 struct perf_cgroup_info *info;
330
3f7cce3c
SE
331 /*
332 * ctx->lock held by caller
333 * ensure we do not access cgroup data
334 * unless we have the cgroup pinned (css_get)
335 */
336 if (!task || !ctx->nr_cgroups)
e5d1367f
SE
337 return;
338
339 cgrp = perf_cgroup_from_task(task);
340 info = this_cpu_ptr(cgrp->info);
3f7cce3c 341 info->timestamp = ctx->timestamp;
e5d1367f
SE
342}
343
344#define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
345#define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
346
347/*
348 * reschedule events based on the cgroup constraint of task.
349 *
350 * mode SWOUT : schedule out everything
351 * mode SWIN : schedule in based on cgroup for next
352 */
353void perf_cgroup_switch(struct task_struct *task, int mode)
354{
355 struct perf_cpu_context *cpuctx;
356 struct pmu *pmu;
357 unsigned long flags;
358
359 /*
360 * disable interrupts to avoid geting nr_cgroup
361 * changes via __perf_event_disable(). Also
362 * avoids preemption.
363 */
364 local_irq_save(flags);
365
366 /*
367 * we reschedule only in the presence of cgroup
368 * constrained events.
369 */
370 rcu_read_lock();
371
372 list_for_each_entry_rcu(pmu, &pmus, entry) {
e5d1367f
SE
373 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
374
e5d1367f
SE
375 /*
376 * perf_cgroup_events says at least one
377 * context on this CPU has cgroup events.
378 *
379 * ctx->nr_cgroups reports the number of cgroup
380 * events for a context.
381 */
382 if (cpuctx->ctx.nr_cgroups > 0) {
facc4307
PZ
383 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
384 perf_pmu_disable(cpuctx->ctx.pmu);
e5d1367f
SE
385
386 if (mode & PERF_CGROUP_SWOUT) {
387 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
388 /*
389 * must not be done before ctxswout due
390 * to event_filter_match() in event_sched_out()
391 */
392 cpuctx->cgrp = NULL;
393 }
394
395 if (mode & PERF_CGROUP_SWIN) {
e566b76e 396 WARN_ON_ONCE(cpuctx->cgrp);
e5d1367f
SE
397 /* set cgrp before ctxsw in to
398 * allow event_filter_match() to not
399 * have to pass task around
400 */
401 cpuctx->cgrp = perf_cgroup_from_task(task);
402 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
403 }
facc4307
PZ
404 perf_pmu_enable(cpuctx->ctx.pmu);
405 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
e5d1367f 406 }
e5d1367f
SE
407 }
408
409 rcu_read_unlock();
410
411 local_irq_restore(flags);
412}
413
a8d757ef
SE
414static inline void perf_cgroup_sched_out(struct task_struct *task,
415 struct task_struct *next)
e5d1367f 416{
a8d757ef
SE
417 struct perf_cgroup *cgrp1;
418 struct perf_cgroup *cgrp2 = NULL;
419
420 /*
421 * we come here when we know perf_cgroup_events > 0
422 */
423 cgrp1 = perf_cgroup_from_task(task);
424
425 /*
426 * next is NULL when called from perf_event_enable_on_exec()
427 * that will systematically cause a cgroup_switch()
428 */
429 if (next)
430 cgrp2 = perf_cgroup_from_task(next);
431
432 /*
433 * only schedule out current cgroup events if we know
434 * that we are switching to a different cgroup. Otherwise,
435 * do no touch the cgroup events.
436 */
437 if (cgrp1 != cgrp2)
438 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
e5d1367f
SE
439}
440
a8d757ef
SE
441static inline void perf_cgroup_sched_in(struct task_struct *prev,
442 struct task_struct *task)
e5d1367f 443{
a8d757ef
SE
444 struct perf_cgroup *cgrp1;
445 struct perf_cgroup *cgrp2 = NULL;
446
447 /*
448 * we come here when we know perf_cgroup_events > 0
449 */
450 cgrp1 = perf_cgroup_from_task(task);
451
452 /* prev can never be NULL */
453 cgrp2 = perf_cgroup_from_task(prev);
454
455 /*
456 * only need to schedule in cgroup events if we are changing
457 * cgroup during ctxsw. Cgroup events were not scheduled
458 * out of ctxsw out if that was not the case.
459 */
460 if (cgrp1 != cgrp2)
461 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
e5d1367f
SE
462}
463
464static inline int perf_cgroup_connect(int fd, struct perf_event *event,
465 struct perf_event_attr *attr,
466 struct perf_event *group_leader)
467{
468 struct perf_cgroup *cgrp;
469 struct cgroup_subsys_state *css;
470 struct file *file;
471 int ret = 0, fput_needed;
472
473 file = fget_light(fd, &fput_needed);
474 if (!file)
475 return -EBADF;
476
477 css = cgroup_css_from_dir(file, perf_subsys_id);
3db272c0
LZ
478 if (IS_ERR(css)) {
479 ret = PTR_ERR(css);
480 goto out;
481 }
e5d1367f
SE
482
483 cgrp = container_of(css, struct perf_cgroup, css);
484 event->cgrp = cgrp;
485
f75e18cb 486 /* must be done before we fput() the file */
9c5da09d
SQ
487 if (!perf_tryget_cgroup(event)) {
488 event->cgrp = NULL;
489 ret = -ENOENT;
490 goto out;
491 }
f75e18cb 492
e5d1367f
SE
493 /*
494 * all events in a group must monitor
495 * the same cgroup because a task belongs
496 * to only one perf cgroup at a time
497 */
498 if (group_leader && group_leader->cgrp != cgrp) {
499 perf_detach_cgroup(event);
500 ret = -EINVAL;
e5d1367f 501 }
3db272c0 502out:
e5d1367f
SE
503 fput_light(file, fput_needed);
504 return ret;
505}
506
507static inline void
508perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
509{
510 struct perf_cgroup_info *t;
511 t = per_cpu_ptr(event->cgrp->info, event->cpu);
512 event->shadow_ctx_time = now - t->timestamp;
513}
514
515static inline void
516perf_cgroup_defer_enabled(struct perf_event *event)
517{
518 /*
519 * when the current task's perf cgroup does not match
520 * the event's, we need to remember to call the
521 * perf_mark_enable() function the first time a task with
522 * a matching perf cgroup is scheduled in.
523 */
524 if (is_cgroup_event(event) && !perf_cgroup_match(event))
525 event->cgrp_defer_enabled = 1;
526}
527
528static inline void
529perf_cgroup_mark_enabled(struct perf_event *event,
530 struct perf_event_context *ctx)
531{
532 struct perf_event *sub;
533 u64 tstamp = perf_event_time(event);
534
535 if (!event->cgrp_defer_enabled)
536 return;
537
538 event->cgrp_defer_enabled = 0;
539
540 event->tstamp_enabled = tstamp - event->total_time_enabled;
541 list_for_each_entry(sub, &event->sibling_list, group_entry) {
542 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
543 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
544 sub->cgrp_defer_enabled = 0;
545 }
546 }
547}
548#else /* !CONFIG_CGROUP_PERF */
549
550static inline bool
551perf_cgroup_match(struct perf_event *event)
552{
553 return true;
554}
555
556static inline void perf_detach_cgroup(struct perf_event *event)
557{}
558
559static inline int is_cgroup_event(struct perf_event *event)
560{
561 return 0;
562}
563
564static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
565{
566 return 0;
567}
568
569static inline void update_cgrp_time_from_event(struct perf_event *event)
570{
571}
572
573static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
574{
575}
576
a8d757ef
SE
577static inline void perf_cgroup_sched_out(struct task_struct *task,
578 struct task_struct *next)
e5d1367f
SE
579{
580}
581
a8d757ef
SE
582static inline void perf_cgroup_sched_in(struct task_struct *prev,
583 struct task_struct *task)
e5d1367f
SE
584{
585}
586
587static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
588 struct perf_event_attr *attr,
589 struct perf_event *group_leader)
590{
591 return -EINVAL;
592}
593
594static inline void
3f7cce3c
SE
595perf_cgroup_set_timestamp(struct task_struct *task,
596 struct perf_event_context *ctx)
e5d1367f
SE
597{
598}
599
600void
601perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
602{
603}
604
605static inline void
606perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
607{
608}
609
610static inline u64 perf_cgroup_event_time(struct perf_event *event)
611{
612 return 0;
613}
614
615static inline void
616perf_cgroup_defer_enabled(struct perf_event *event)
617{
618}
619
620static inline void
621perf_cgroup_mark_enabled(struct perf_event *event,
622 struct perf_event_context *ctx)
623{
624}
625#endif
626
33696fc0 627void perf_pmu_disable(struct pmu *pmu)
9e35ad38 628{
33696fc0
PZ
629 int *count = this_cpu_ptr(pmu->pmu_disable_count);
630 if (!(*count)++)
631 pmu->pmu_disable(pmu);
9e35ad38 632}
9e35ad38 633
33696fc0 634void perf_pmu_enable(struct pmu *pmu)
9e35ad38 635{
33696fc0
PZ
636 int *count = this_cpu_ptr(pmu->pmu_disable_count);
637 if (!--(*count))
638 pmu->pmu_enable(pmu);
9e35ad38 639}
9e35ad38 640
e9d2b064
PZ
641static DEFINE_PER_CPU(struct list_head, rotation_list);
642
643/*
644 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
645 * because they're strictly cpu affine and rotate_start is called with IRQs
646 * disabled, while rotate_context is called from IRQ context.
647 */
108b02cf 648static void perf_pmu_rotate_start(struct pmu *pmu)
9e35ad38 649{
108b02cf 650 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
e9d2b064 651 struct list_head *head = &__get_cpu_var(rotation_list);
b5ab4cd5 652
e9d2b064 653 WARN_ON(!irqs_disabled());
b5ab4cd5 654
e9d2b064
PZ
655 if (list_empty(&cpuctx->rotation_list))
656 list_add(&cpuctx->rotation_list, head);
9e35ad38 657}
9e35ad38 658
cdd6c482 659static void get_ctx(struct perf_event_context *ctx)
a63eaf34 660{
e5289d4a 661 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
a63eaf34
PM
662}
663
cdd6c482 664static void put_ctx(struct perf_event_context *ctx)
a63eaf34 665{
564c2b21
PM
666 if (atomic_dec_and_test(&ctx->refcount)) {
667 if (ctx->parent_ctx)
668 put_ctx(ctx->parent_ctx);
c93f7669
PM
669 if (ctx->task)
670 put_task_struct(ctx->task);
cb796ff3 671 kfree_rcu(ctx, rcu_head);
564c2b21 672 }
a63eaf34
PM
673}
674
cdd6c482 675static void unclone_ctx(struct perf_event_context *ctx)
71a851b4
PZ
676{
677 if (ctx->parent_ctx) {
678 put_ctx(ctx->parent_ctx);
679 ctx->parent_ctx = NULL;
680 }
681}
682
6844c09d
ACM
683static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
684{
685 /*
686 * only top level events have the pid namespace they were created in
687 */
688 if (event->parent)
689 event = event->parent;
690
691 return task_tgid_nr_ns(p, event->ns);
692}
693
694static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
695{
696 /*
697 * only top level events have the pid namespace they were created in
698 */
699 if (event->parent)
700 event = event->parent;
701
702 return task_pid_nr_ns(p, event->ns);
703}
704
7f453c24 705/*
cdd6c482 706 * If we inherit events we want to return the parent event id
7f453c24
PZ
707 * to userspace.
708 */
cdd6c482 709static u64 primary_event_id(struct perf_event *event)
7f453c24 710{
cdd6c482 711 u64 id = event->id;
7f453c24 712
cdd6c482
IM
713 if (event->parent)
714 id = event->parent->id;
7f453c24
PZ
715
716 return id;
717}
718
25346b93 719/*
cdd6c482 720 * Get the perf_event_context for a task and lock it.
25346b93
PM
721 * This has to cope with with the fact that until it is locked,
722 * the context could get moved to another task.
723 */
cdd6c482 724static struct perf_event_context *
8dc85d54 725perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
25346b93 726{
cdd6c482 727 struct perf_event_context *ctx;
25346b93
PM
728
729 rcu_read_lock();
9ed6060d 730retry:
8dc85d54 731 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
25346b93
PM
732 if (ctx) {
733 /*
734 * If this context is a clone of another, it might
735 * get swapped for another underneath us by
cdd6c482 736 * perf_event_task_sched_out, though the
25346b93
PM
737 * rcu_read_lock() protects us from any context
738 * getting freed. Lock the context and check if it
739 * got swapped before we could get the lock, and retry
740 * if so. If we locked the right context, then it
741 * can't get swapped on us any more.
742 */
e625cce1 743 raw_spin_lock_irqsave(&ctx->lock, *flags);
8dc85d54 744 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
e625cce1 745 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
25346b93
PM
746 goto retry;
747 }
b49a9e7e
PZ
748
749 if (!atomic_inc_not_zero(&ctx->refcount)) {
e625cce1 750 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
b49a9e7e
PZ
751 ctx = NULL;
752 }
25346b93
PM
753 }
754 rcu_read_unlock();
755 return ctx;
756}
757
758/*
759 * Get the context for a task and increment its pin_count so it
760 * can't get swapped to another task. This also increments its
761 * reference count so that the context can't get freed.
762 */
8dc85d54
PZ
763static struct perf_event_context *
764perf_pin_task_context(struct task_struct *task, int ctxn)
25346b93 765{
cdd6c482 766 struct perf_event_context *ctx;
25346b93
PM
767 unsigned long flags;
768
8dc85d54 769 ctx = perf_lock_task_context(task, ctxn, &flags);
25346b93
PM
770 if (ctx) {
771 ++ctx->pin_count;
e625cce1 772 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
773 }
774 return ctx;
775}
776
cdd6c482 777static void perf_unpin_context(struct perf_event_context *ctx)
25346b93
PM
778{
779 unsigned long flags;
780
e625cce1 781 raw_spin_lock_irqsave(&ctx->lock, flags);
25346b93 782 --ctx->pin_count;
e625cce1 783 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
784}
785
f67218c3
PZ
786/*
787 * Update the record of the current time in a context.
788 */
789static void update_context_time(struct perf_event_context *ctx)
790{
791 u64 now = perf_clock();
792
793 ctx->time += now - ctx->timestamp;
794 ctx->timestamp = now;
795}
796
4158755d
SE
797static u64 perf_event_time(struct perf_event *event)
798{
799 struct perf_event_context *ctx = event->ctx;
e5d1367f
SE
800
801 if (is_cgroup_event(event))
802 return perf_cgroup_event_time(event);
803
4158755d
SE
804 return ctx ? ctx->time : 0;
805}
806
f67218c3
PZ
807/*
808 * Update the total_time_enabled and total_time_running fields for a event.
b7526f0c 809 * The caller of this function needs to hold the ctx->lock.
f67218c3
PZ
810 */
811static void update_event_times(struct perf_event *event)
812{
813 struct perf_event_context *ctx = event->ctx;
814 u64 run_end;
815
816 if (event->state < PERF_EVENT_STATE_INACTIVE ||
817 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
818 return;
e5d1367f
SE
819 /*
820 * in cgroup mode, time_enabled represents
821 * the time the event was enabled AND active
822 * tasks were in the monitored cgroup. This is
823 * independent of the activity of the context as
824 * there may be a mix of cgroup and non-cgroup events.
825 *
826 * That is why we treat cgroup events differently
827 * here.
828 */
829 if (is_cgroup_event(event))
46cd6a7f 830 run_end = perf_cgroup_event_time(event);
e5d1367f
SE
831 else if (ctx->is_active)
832 run_end = ctx->time;
acd1d7c1
PZ
833 else
834 run_end = event->tstamp_stopped;
835
836 event->total_time_enabled = run_end - event->tstamp_enabled;
f67218c3
PZ
837
838 if (event->state == PERF_EVENT_STATE_INACTIVE)
839 run_end = event->tstamp_stopped;
840 else
4158755d 841 run_end = perf_event_time(event);
f67218c3
PZ
842
843 event->total_time_running = run_end - event->tstamp_running;
e5d1367f 844
f67218c3
PZ
845}
846
96c21a46
PZ
847/*
848 * Update total_time_enabled and total_time_running for all events in a group.
849 */
850static void update_group_times(struct perf_event *leader)
851{
852 struct perf_event *event;
853
854 update_event_times(leader);
855 list_for_each_entry(event, &leader->sibling_list, group_entry)
856 update_event_times(event);
857}
858
889ff015
FW
859static struct list_head *
860ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
861{
862 if (event->attr.pinned)
863 return &ctx->pinned_groups;
864 else
865 return &ctx->flexible_groups;
866}
867
fccc714b 868/*
cdd6c482 869 * Add a event from the lists for its context.
fccc714b
PZ
870 * Must be called with ctx->mutex and ctx->lock held.
871 */
04289bb9 872static void
cdd6c482 873list_add_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 874{
8a49542c
PZ
875 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
876 event->attach_state |= PERF_ATTACH_CONTEXT;
04289bb9
IM
877
878 /*
8a49542c
PZ
879 * If we're a stand alone event or group leader, we go to the context
880 * list, group events are kept attached to the group so that
881 * perf_group_detach can, at all times, locate all siblings.
04289bb9 882 */
8a49542c 883 if (event->group_leader == event) {
889ff015
FW
884 struct list_head *list;
885
d6f962b5
FW
886 if (is_software_event(event))
887 event->group_flags |= PERF_GROUP_SOFTWARE;
888
889ff015
FW
889 list = ctx_group_list(event, ctx);
890 list_add_tail(&event->group_entry, list);
5c148194 891 }
592903cd 892
08309379 893 if (is_cgroup_event(event))
e5d1367f 894 ctx->nr_cgroups++;
e5d1367f 895
d010b332
SE
896 if (has_branch_stack(event))
897 ctx->nr_branch_stack++;
898
cdd6c482 899 list_add_rcu(&event->event_entry, &ctx->event_list);
b5ab4cd5 900 if (!ctx->nr_events)
108b02cf 901 perf_pmu_rotate_start(ctx->pmu);
cdd6c482
IM
902 ctx->nr_events++;
903 if (event->attr.inherit_stat)
bfbd3381 904 ctx->nr_stat++;
04289bb9
IM
905}
906
c320c7b7
ACM
907/*
908 * Called at perf_event creation and when events are attached/detached from a
909 * group.
910 */
911static void perf_event__read_size(struct perf_event *event)
912{
913 int entry = sizeof(u64); /* value */
914 int size = 0;
915 int nr = 1;
916
917 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
918 size += sizeof(u64);
919
920 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
921 size += sizeof(u64);
922
923 if (event->attr.read_format & PERF_FORMAT_ID)
924 entry += sizeof(u64);
925
926 if (event->attr.read_format & PERF_FORMAT_GROUP) {
927 nr += event->group_leader->nr_siblings;
928 size += sizeof(u64);
929 }
930
931 size += entry * nr;
932 event->read_size = size;
933}
934
935static void perf_event__header_size(struct perf_event *event)
936{
937 struct perf_sample_data *data;
938 u64 sample_type = event->attr.sample_type;
939 u16 size = 0;
940
941 perf_event__read_size(event);
942
943 if (sample_type & PERF_SAMPLE_IP)
944 size += sizeof(data->ip);
945
6844c09d
ACM
946 if (sample_type & PERF_SAMPLE_ADDR)
947 size += sizeof(data->addr);
948
949 if (sample_type & PERF_SAMPLE_PERIOD)
950 size += sizeof(data->period);
951
952 if (sample_type & PERF_SAMPLE_READ)
953 size += event->read_size;
954
955 event->header_size = size;
956}
957
958static void perf_event__id_header_size(struct perf_event *event)
959{
960 struct perf_sample_data *data;
961 u64 sample_type = event->attr.sample_type;
962 u16 size = 0;
963
c320c7b7
ACM
964 if (sample_type & PERF_SAMPLE_TID)
965 size += sizeof(data->tid_entry);
966
967 if (sample_type & PERF_SAMPLE_TIME)
968 size += sizeof(data->time);
969
c320c7b7
ACM
970 if (sample_type & PERF_SAMPLE_ID)
971 size += sizeof(data->id);
972
973 if (sample_type & PERF_SAMPLE_STREAM_ID)
974 size += sizeof(data->stream_id);
975
976 if (sample_type & PERF_SAMPLE_CPU)
977 size += sizeof(data->cpu_entry);
978
6844c09d 979 event->id_header_size = size;
c320c7b7
ACM
980}
981
8a49542c
PZ
982static void perf_group_attach(struct perf_event *event)
983{
c320c7b7 984 struct perf_event *group_leader = event->group_leader, *pos;
8a49542c 985
74c3337c
PZ
986 /*
987 * We can have double attach due to group movement in perf_event_open.
988 */
989 if (event->attach_state & PERF_ATTACH_GROUP)
990 return;
991
8a49542c
PZ
992 event->attach_state |= PERF_ATTACH_GROUP;
993
994 if (group_leader == event)
995 return;
996
997 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
998 !is_software_event(event))
999 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1000
1001 list_add_tail(&event->group_entry, &group_leader->sibling_list);
1002 group_leader->nr_siblings++;
c320c7b7
ACM
1003
1004 perf_event__header_size(group_leader);
1005
1006 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1007 perf_event__header_size(pos);
8a49542c
PZ
1008}
1009
a63eaf34 1010/*
cdd6c482 1011 * Remove a event from the lists for its context.
fccc714b 1012 * Must be called with ctx->mutex and ctx->lock held.
a63eaf34 1013 */
04289bb9 1014static void
cdd6c482 1015list_del_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1016{
68cacd29 1017 struct perf_cpu_context *cpuctx;
8a49542c
PZ
1018 /*
1019 * We can have double detach due to exit/hot-unplug + close.
1020 */
1021 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
a63eaf34 1022 return;
8a49542c
PZ
1023
1024 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1025
68cacd29 1026 if (is_cgroup_event(event)) {
e5d1367f 1027 ctx->nr_cgroups--;
68cacd29
SE
1028 cpuctx = __get_cpu_context(ctx);
1029 /*
1030 * if there are no more cgroup events
1031 * then cler cgrp to avoid stale pointer
1032 * in update_cgrp_time_from_cpuctx()
1033 */
1034 if (!ctx->nr_cgroups)
1035 cpuctx->cgrp = NULL;
1036 }
e5d1367f 1037
d010b332
SE
1038 if (has_branch_stack(event))
1039 ctx->nr_branch_stack--;
1040
cdd6c482
IM
1041 ctx->nr_events--;
1042 if (event->attr.inherit_stat)
bfbd3381 1043 ctx->nr_stat--;
8bc20959 1044
cdd6c482 1045 list_del_rcu(&event->event_entry);
04289bb9 1046
8a49542c
PZ
1047 if (event->group_leader == event)
1048 list_del_init(&event->group_entry);
5c148194 1049
96c21a46 1050 update_group_times(event);
b2e74a26
SE
1051
1052 /*
1053 * If event was in error state, then keep it
1054 * that way, otherwise bogus counts will be
1055 * returned on read(). The only way to get out
1056 * of error state is by explicit re-enabling
1057 * of the event
1058 */
1059 if (event->state > PERF_EVENT_STATE_OFF)
1060 event->state = PERF_EVENT_STATE_OFF;
050735b0
PZ
1061}
1062
8a49542c 1063static void perf_group_detach(struct perf_event *event)
050735b0
PZ
1064{
1065 struct perf_event *sibling, *tmp;
8a49542c
PZ
1066 struct list_head *list = NULL;
1067
1068 /*
1069 * We can have double detach due to exit/hot-unplug + close.
1070 */
1071 if (!(event->attach_state & PERF_ATTACH_GROUP))
1072 return;
1073
1074 event->attach_state &= ~PERF_ATTACH_GROUP;
1075
1076 /*
1077 * If this is a sibling, remove it from its group.
1078 */
1079 if (event->group_leader != event) {
1080 list_del_init(&event->group_entry);
1081 event->group_leader->nr_siblings--;
c320c7b7 1082 goto out;
8a49542c
PZ
1083 }
1084
1085 if (!list_empty(&event->group_entry))
1086 list = &event->group_entry;
2e2af50b 1087
04289bb9 1088 /*
cdd6c482
IM
1089 * If this was a group event with sibling events then
1090 * upgrade the siblings to singleton events by adding them
8a49542c 1091 * to whatever list we are on.
04289bb9 1092 */
cdd6c482 1093 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
8a49542c
PZ
1094 if (list)
1095 list_move_tail(&sibling->group_entry, list);
04289bb9 1096 sibling->group_leader = sibling;
d6f962b5
FW
1097
1098 /* Inherit group flags from the previous leader */
1099 sibling->group_flags = event->group_flags;
04289bb9 1100 }
c320c7b7
ACM
1101
1102out:
1103 perf_event__header_size(event->group_leader);
1104
1105 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1106 perf_event__header_size(tmp);
04289bb9
IM
1107}
1108
fa66f07a
SE
1109static inline int
1110event_filter_match(struct perf_event *event)
1111{
e5d1367f
SE
1112 return (event->cpu == -1 || event->cpu == smp_processor_id())
1113 && perf_cgroup_match(event);
fa66f07a
SE
1114}
1115
9ffcfa6f
SE
1116static void
1117event_sched_out(struct perf_event *event,
3b6f9e5c 1118 struct perf_cpu_context *cpuctx,
cdd6c482 1119 struct perf_event_context *ctx)
3b6f9e5c 1120{
4158755d 1121 u64 tstamp = perf_event_time(event);
fa66f07a
SE
1122 u64 delta;
1123 /*
1124 * An event which could not be activated because of
1125 * filter mismatch still needs to have its timings
1126 * maintained, otherwise bogus information is return
1127 * via read() for time_enabled, time_running:
1128 */
1129 if (event->state == PERF_EVENT_STATE_INACTIVE
1130 && !event_filter_match(event)) {
e5d1367f 1131 delta = tstamp - event->tstamp_stopped;
fa66f07a 1132 event->tstamp_running += delta;
4158755d 1133 event->tstamp_stopped = tstamp;
fa66f07a
SE
1134 }
1135
cdd6c482 1136 if (event->state != PERF_EVENT_STATE_ACTIVE)
9ffcfa6f 1137 return;
3b6f9e5c 1138
cdd6c482
IM
1139 event->state = PERF_EVENT_STATE_INACTIVE;
1140 if (event->pending_disable) {
1141 event->pending_disable = 0;
1142 event->state = PERF_EVENT_STATE_OFF;
970892a9 1143 }
4158755d 1144 event->tstamp_stopped = tstamp;
a4eaf7f1 1145 event->pmu->del(event, 0);
cdd6c482 1146 event->oncpu = -1;
3b6f9e5c 1147
cdd6c482 1148 if (!is_software_event(event))
3b6f9e5c
PM
1149 cpuctx->active_oncpu--;
1150 ctx->nr_active--;
0f5a2601
PZ
1151 if (event->attr.freq && event->attr.sample_freq)
1152 ctx->nr_freq--;
cdd6c482 1153 if (event->attr.exclusive || !cpuctx->active_oncpu)
3b6f9e5c
PM
1154 cpuctx->exclusive = 0;
1155}
1156
d859e29f 1157static void
cdd6c482 1158group_sched_out(struct perf_event *group_event,
d859e29f 1159 struct perf_cpu_context *cpuctx,
cdd6c482 1160 struct perf_event_context *ctx)
d859e29f 1161{
cdd6c482 1162 struct perf_event *event;
fa66f07a 1163 int state = group_event->state;
d859e29f 1164
cdd6c482 1165 event_sched_out(group_event, cpuctx, ctx);
d859e29f
PM
1166
1167 /*
1168 * Schedule out siblings (if any):
1169 */
cdd6c482
IM
1170 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1171 event_sched_out(event, cpuctx, ctx);
d859e29f 1172
fa66f07a 1173 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
d859e29f
PM
1174 cpuctx->exclusive = 0;
1175}
1176
0793a61d 1177/*
cdd6c482 1178 * Cross CPU call to remove a performance event
0793a61d 1179 *
cdd6c482 1180 * We disable the event on the hardware level first. After that we
0793a61d
TG
1181 * remove it from the context list.
1182 */
fe4b04fa 1183static int __perf_remove_from_context(void *info)
0793a61d 1184{
cdd6c482
IM
1185 struct perf_event *event = info;
1186 struct perf_event_context *ctx = event->ctx;
108b02cf 1187 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
0793a61d 1188
e625cce1 1189 raw_spin_lock(&ctx->lock);
cdd6c482 1190 event_sched_out(event, cpuctx, ctx);
cdd6c482 1191 list_del_event(event, ctx);
64ce3126
PZ
1192 if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
1193 ctx->is_active = 0;
1194 cpuctx->task_ctx = NULL;
1195 }
e625cce1 1196 raw_spin_unlock(&ctx->lock);
fe4b04fa
PZ
1197
1198 return 0;
0793a61d
TG
1199}
1200
1201
1202/*
cdd6c482 1203 * Remove the event from a task's (or a CPU's) list of events.
0793a61d 1204 *
cdd6c482 1205 * CPU events are removed with a smp call. For task events we only
0793a61d 1206 * call when the task is on a CPU.
c93f7669 1207 *
cdd6c482
IM
1208 * If event->ctx is a cloned context, callers must make sure that
1209 * every task struct that event->ctx->task could possibly point to
c93f7669
PM
1210 * remains valid. This is OK when called from perf_release since
1211 * that only calls us on the top-level context, which can't be a clone.
cdd6c482 1212 * When called from perf_event_exit_task, it's OK because the
c93f7669 1213 * context has been detached from its task.
0793a61d 1214 */
fe4b04fa 1215static void perf_remove_from_context(struct perf_event *event)
0793a61d 1216{
cdd6c482 1217 struct perf_event_context *ctx = event->ctx;
0793a61d
TG
1218 struct task_struct *task = ctx->task;
1219
fe4b04fa
PZ
1220 lockdep_assert_held(&ctx->mutex);
1221
0793a61d
TG
1222 if (!task) {
1223 /*
cdd6c482 1224 * Per cpu events are removed via an smp call and
af901ca1 1225 * the removal is always successful.
0793a61d 1226 */
fe4b04fa 1227 cpu_function_call(event->cpu, __perf_remove_from_context, event);
0793a61d
TG
1228 return;
1229 }
1230
1231retry:
fe4b04fa
PZ
1232 if (!task_function_call(task, __perf_remove_from_context, event))
1233 return;
0793a61d 1234
e625cce1 1235 raw_spin_lock_irq(&ctx->lock);
0793a61d 1236 /*
fe4b04fa
PZ
1237 * If we failed to find a running task, but find the context active now
1238 * that we've acquired the ctx->lock, retry.
0793a61d 1239 */
fe4b04fa 1240 if (ctx->is_active) {
e625cce1 1241 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
1242 goto retry;
1243 }
1244
1245 /*
fe4b04fa
PZ
1246 * Since the task isn't running, its safe to remove the event, us
1247 * holding the ctx->lock ensures the task won't get scheduled in.
0793a61d 1248 */
fe4b04fa 1249 list_del_event(event, ctx);
e625cce1 1250 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
1251}
1252
d859e29f 1253/*
cdd6c482 1254 * Cross CPU call to disable a performance event
d859e29f 1255 */
fe4b04fa 1256static int __perf_event_disable(void *info)
d859e29f 1257{
cdd6c482 1258 struct perf_event *event = info;
cdd6c482 1259 struct perf_event_context *ctx = event->ctx;
108b02cf 1260 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
d859e29f
PM
1261
1262 /*
cdd6c482
IM
1263 * If this is a per-task event, need to check whether this
1264 * event's task is the current task on this cpu.
fe4b04fa
PZ
1265 *
1266 * Can trigger due to concurrent perf_event_context_sched_out()
1267 * flipping contexts around.
d859e29f 1268 */
665c2142 1269 if (ctx->task && cpuctx->task_ctx != ctx)
fe4b04fa 1270 return -EINVAL;
d859e29f 1271
e625cce1 1272 raw_spin_lock(&ctx->lock);
d859e29f
PM
1273
1274 /*
cdd6c482 1275 * If the event is on, turn it off.
d859e29f
PM
1276 * If it is in error state, leave it in error state.
1277 */
cdd6c482 1278 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
4af4998b 1279 update_context_time(ctx);
e5d1367f 1280 update_cgrp_time_from_event(event);
cdd6c482
IM
1281 update_group_times(event);
1282 if (event == event->group_leader)
1283 group_sched_out(event, cpuctx, ctx);
d859e29f 1284 else
cdd6c482
IM
1285 event_sched_out(event, cpuctx, ctx);
1286 event->state = PERF_EVENT_STATE_OFF;
d859e29f
PM
1287 }
1288
e625cce1 1289 raw_spin_unlock(&ctx->lock);
fe4b04fa
PZ
1290
1291 return 0;
d859e29f
PM
1292}
1293
1294/*
cdd6c482 1295 * Disable a event.
c93f7669 1296 *
cdd6c482
IM
1297 * If event->ctx is a cloned context, callers must make sure that
1298 * every task struct that event->ctx->task could possibly point to
c93f7669 1299 * remains valid. This condition is satisifed when called through
cdd6c482
IM
1300 * perf_event_for_each_child or perf_event_for_each because they
1301 * hold the top-level event's child_mutex, so any descendant that
1302 * goes to exit will block in sync_child_event.
1303 * When called from perf_pending_event it's OK because event->ctx
c93f7669 1304 * is the current context on this CPU and preemption is disabled,
cdd6c482 1305 * hence we can't get into perf_event_task_sched_out for this context.
d859e29f 1306 */
44234adc 1307void perf_event_disable(struct perf_event *event)
d859e29f 1308{
cdd6c482 1309 struct perf_event_context *ctx = event->ctx;
d859e29f
PM
1310 struct task_struct *task = ctx->task;
1311
1312 if (!task) {
1313 /*
cdd6c482 1314 * Disable the event on the cpu that it's on
d859e29f 1315 */
fe4b04fa 1316 cpu_function_call(event->cpu, __perf_event_disable, event);
d859e29f
PM
1317 return;
1318 }
1319
9ed6060d 1320retry:
fe4b04fa
PZ
1321 if (!task_function_call(task, __perf_event_disable, event))
1322 return;
d859e29f 1323
e625cce1 1324 raw_spin_lock_irq(&ctx->lock);
d859e29f 1325 /*
cdd6c482 1326 * If the event is still active, we need to retry the cross-call.
d859e29f 1327 */
cdd6c482 1328 if (event->state == PERF_EVENT_STATE_ACTIVE) {
e625cce1 1329 raw_spin_unlock_irq(&ctx->lock);
fe4b04fa
PZ
1330 /*
1331 * Reload the task pointer, it might have been changed by
1332 * a concurrent perf_event_context_sched_out().
1333 */
1334 task = ctx->task;
d859e29f
PM
1335 goto retry;
1336 }
1337
1338 /*
1339 * Since we have the lock this context can't be scheduled
1340 * in, so we can change the state safely.
1341 */
cdd6c482
IM
1342 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1343 update_group_times(event);
1344 event->state = PERF_EVENT_STATE_OFF;
53cfbf59 1345 }
e625cce1 1346 raw_spin_unlock_irq(&ctx->lock);
d859e29f 1347}
dcfce4a0 1348EXPORT_SYMBOL_GPL(perf_event_disable);
d859e29f 1349
e5d1367f
SE
1350static void perf_set_shadow_time(struct perf_event *event,
1351 struct perf_event_context *ctx,
1352 u64 tstamp)
1353{
1354 /*
1355 * use the correct time source for the time snapshot
1356 *
1357 * We could get by without this by leveraging the
1358 * fact that to get to this function, the caller
1359 * has most likely already called update_context_time()
1360 * and update_cgrp_time_xx() and thus both timestamp
1361 * are identical (or very close). Given that tstamp is,
1362 * already adjusted for cgroup, we could say that:
1363 * tstamp - ctx->timestamp
1364 * is equivalent to
1365 * tstamp - cgrp->timestamp.
1366 *
1367 * Then, in perf_output_read(), the calculation would
1368 * work with no changes because:
1369 * - event is guaranteed scheduled in
1370 * - no scheduled out in between
1371 * - thus the timestamp would be the same
1372 *
1373 * But this is a bit hairy.
1374 *
1375 * So instead, we have an explicit cgroup call to remain
1376 * within the time time source all along. We believe it
1377 * is cleaner and simpler to understand.
1378 */
1379 if (is_cgroup_event(event))
1380 perf_cgroup_set_shadow_time(event, tstamp);
1381 else
1382 event->shadow_ctx_time = tstamp - ctx->timestamp;
1383}
1384
4fe757dd
PZ
1385#define MAX_INTERRUPTS (~0ULL)
1386
1387static void perf_log_throttle(struct perf_event *event, int enable);
1388
235c7fc7 1389static int
9ffcfa6f 1390event_sched_in(struct perf_event *event,
235c7fc7 1391 struct perf_cpu_context *cpuctx,
6e37738a 1392 struct perf_event_context *ctx)
235c7fc7 1393{
4158755d
SE
1394 u64 tstamp = perf_event_time(event);
1395
cdd6c482 1396 if (event->state <= PERF_EVENT_STATE_OFF)
235c7fc7
IM
1397 return 0;
1398
cdd6c482 1399 event->state = PERF_EVENT_STATE_ACTIVE;
6e37738a 1400 event->oncpu = smp_processor_id();
4fe757dd
PZ
1401
1402 /*
1403 * Unthrottle events, since we scheduled we might have missed several
1404 * ticks already, also for a heavily scheduling task there is little
1405 * guarantee it'll get a tick in a timely manner.
1406 */
1407 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1408 perf_log_throttle(event, 1);
1409 event->hw.interrupts = 0;
1410 }
1411
235c7fc7
IM
1412 /*
1413 * The new state must be visible before we turn it on in the hardware:
1414 */
1415 smp_wmb();
1416
a4eaf7f1 1417 if (event->pmu->add(event, PERF_EF_START)) {
cdd6c482
IM
1418 event->state = PERF_EVENT_STATE_INACTIVE;
1419 event->oncpu = -1;
235c7fc7
IM
1420 return -EAGAIN;
1421 }
1422
4158755d 1423 event->tstamp_running += tstamp - event->tstamp_stopped;
9ffcfa6f 1424
e5d1367f 1425 perf_set_shadow_time(event, ctx, tstamp);
eed01528 1426
cdd6c482 1427 if (!is_software_event(event))
3b6f9e5c 1428 cpuctx->active_oncpu++;
235c7fc7 1429 ctx->nr_active++;
0f5a2601
PZ
1430 if (event->attr.freq && event->attr.sample_freq)
1431 ctx->nr_freq++;
235c7fc7 1432
cdd6c482 1433 if (event->attr.exclusive)
3b6f9e5c
PM
1434 cpuctx->exclusive = 1;
1435
235c7fc7
IM
1436 return 0;
1437}
1438
6751b71e 1439static int
cdd6c482 1440group_sched_in(struct perf_event *group_event,
6751b71e 1441 struct perf_cpu_context *cpuctx,
6e37738a 1442 struct perf_event_context *ctx)
6751b71e 1443{
6bde9b6c 1444 struct perf_event *event, *partial_group = NULL;
51b0fe39 1445 struct pmu *pmu = group_event->pmu;
d7842da4
SE
1446 u64 now = ctx->time;
1447 bool simulate = false;
6751b71e 1448
cdd6c482 1449 if (group_event->state == PERF_EVENT_STATE_OFF)
6751b71e
PM
1450 return 0;
1451
ad5133b7 1452 pmu->start_txn(pmu);
6bde9b6c 1453
9ffcfa6f 1454 if (event_sched_in(group_event, cpuctx, ctx)) {
ad5133b7 1455 pmu->cancel_txn(pmu);
6751b71e 1456 return -EAGAIN;
90151c35 1457 }
6751b71e
PM
1458
1459 /*
1460 * Schedule in siblings as one group (if any):
1461 */
cdd6c482 1462 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
9ffcfa6f 1463 if (event_sched_in(event, cpuctx, ctx)) {
cdd6c482 1464 partial_group = event;
6751b71e
PM
1465 goto group_error;
1466 }
1467 }
1468
9ffcfa6f 1469 if (!pmu->commit_txn(pmu))
6e85158c 1470 return 0;
9ffcfa6f 1471
6751b71e
PM
1472group_error:
1473 /*
1474 * Groups can be scheduled in as one unit only, so undo any
1475 * partial group before returning:
d7842da4
SE
1476 * The events up to the failed event are scheduled out normally,
1477 * tstamp_stopped will be updated.
1478 *
1479 * The failed events and the remaining siblings need to have
1480 * their timings updated as if they had gone thru event_sched_in()
1481 * and event_sched_out(). This is required to get consistent timings
1482 * across the group. This also takes care of the case where the group
1483 * could never be scheduled by ensuring tstamp_stopped is set to mark
1484 * the time the event was actually stopped, such that time delta
1485 * calculation in update_event_times() is correct.
6751b71e 1486 */
cdd6c482
IM
1487 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1488 if (event == partial_group)
d7842da4
SE
1489 simulate = true;
1490
1491 if (simulate) {
1492 event->tstamp_running += now - event->tstamp_stopped;
1493 event->tstamp_stopped = now;
1494 } else {
1495 event_sched_out(event, cpuctx, ctx);
1496 }
6751b71e 1497 }
9ffcfa6f 1498 event_sched_out(group_event, cpuctx, ctx);
6751b71e 1499
ad5133b7 1500 pmu->cancel_txn(pmu);
90151c35 1501
6751b71e
PM
1502 return -EAGAIN;
1503}
1504
3b6f9e5c 1505/*
cdd6c482 1506 * Work out whether we can put this event group on the CPU now.
3b6f9e5c 1507 */
cdd6c482 1508static int group_can_go_on(struct perf_event *event,
3b6f9e5c
PM
1509 struct perf_cpu_context *cpuctx,
1510 int can_add_hw)
1511{
1512 /*
cdd6c482 1513 * Groups consisting entirely of software events can always go on.
3b6f9e5c 1514 */
d6f962b5 1515 if (event->group_flags & PERF_GROUP_SOFTWARE)
3b6f9e5c
PM
1516 return 1;
1517 /*
1518 * If an exclusive group is already on, no other hardware
cdd6c482 1519 * events can go on.
3b6f9e5c
PM
1520 */
1521 if (cpuctx->exclusive)
1522 return 0;
1523 /*
1524 * If this group is exclusive and there are already
cdd6c482 1525 * events on the CPU, it can't go on.
3b6f9e5c 1526 */
cdd6c482 1527 if (event->attr.exclusive && cpuctx->active_oncpu)
3b6f9e5c
PM
1528 return 0;
1529 /*
1530 * Otherwise, try to add it if all previous groups were able
1531 * to go on.
1532 */
1533 return can_add_hw;
1534}
1535
cdd6c482
IM
1536static void add_event_to_ctx(struct perf_event *event,
1537 struct perf_event_context *ctx)
53cfbf59 1538{
4158755d
SE
1539 u64 tstamp = perf_event_time(event);
1540
cdd6c482 1541 list_add_event(event, ctx);
8a49542c 1542 perf_group_attach(event);
4158755d
SE
1543 event->tstamp_enabled = tstamp;
1544 event->tstamp_running = tstamp;
1545 event->tstamp_stopped = tstamp;
53cfbf59
PM
1546}
1547
2c29ef0f
PZ
1548static void task_ctx_sched_out(struct perf_event_context *ctx);
1549static void
1550ctx_sched_in(struct perf_event_context *ctx,
1551 struct perf_cpu_context *cpuctx,
1552 enum event_type_t event_type,
1553 struct task_struct *task);
fe4b04fa 1554
dce5855b
PZ
1555static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
1556 struct perf_event_context *ctx,
1557 struct task_struct *task)
1558{
1559 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
1560 if (ctx)
1561 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
1562 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
1563 if (ctx)
1564 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
1565}
1566
0793a61d 1567/*
cdd6c482 1568 * Cross CPU call to install and enable a performance event
682076ae
PZ
1569 *
1570 * Must be called with ctx->mutex held
0793a61d 1571 */
fe4b04fa 1572static int __perf_install_in_context(void *info)
0793a61d 1573{
cdd6c482
IM
1574 struct perf_event *event = info;
1575 struct perf_event_context *ctx = event->ctx;
108b02cf 1576 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2c29ef0f
PZ
1577 struct perf_event_context *task_ctx = cpuctx->task_ctx;
1578 struct task_struct *task = current;
1579
b58f6b0d 1580 perf_ctx_lock(cpuctx, task_ctx);
2c29ef0f 1581 perf_pmu_disable(cpuctx->ctx.pmu);
0793a61d
TG
1582
1583 /*
2c29ef0f 1584 * If there was an active task_ctx schedule it out.
0793a61d 1585 */
b58f6b0d 1586 if (task_ctx)
2c29ef0f 1587 task_ctx_sched_out(task_ctx);
b58f6b0d
PZ
1588
1589 /*
1590 * If the context we're installing events in is not the
1591 * active task_ctx, flip them.
1592 */
1593 if (ctx->task && task_ctx != ctx) {
1594 if (task_ctx)
1595 raw_spin_unlock(&task_ctx->lock);
1596 raw_spin_lock(&ctx->lock);
1597 task_ctx = ctx;
1598 }
1599
1600 if (task_ctx) {
1601 cpuctx->task_ctx = task_ctx;
2c29ef0f
PZ
1602 task = task_ctx->task;
1603 }
b58f6b0d 1604
2c29ef0f 1605 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
0793a61d 1606
4af4998b 1607 update_context_time(ctx);
e5d1367f
SE
1608 /*
1609 * update cgrp time only if current cgrp
1610 * matches event->cgrp. Must be done before
1611 * calling add_event_to_ctx()
1612 */
1613 update_cgrp_time_from_event(event);
0793a61d 1614
cdd6c482 1615 add_event_to_ctx(event, ctx);
0793a61d 1616
d859e29f 1617 /*
2c29ef0f 1618 * Schedule everything back in
d859e29f 1619 */
dce5855b 1620 perf_event_sched_in(cpuctx, task_ctx, task);
2c29ef0f
PZ
1621
1622 perf_pmu_enable(cpuctx->ctx.pmu);
1623 perf_ctx_unlock(cpuctx, task_ctx);
fe4b04fa
PZ
1624
1625 return 0;
0793a61d
TG
1626}
1627
1628/*
cdd6c482 1629 * Attach a performance event to a context
0793a61d 1630 *
cdd6c482
IM
1631 * First we add the event to the list with the hardware enable bit
1632 * in event->hw_config cleared.
0793a61d 1633 *
cdd6c482 1634 * If the event is attached to a task which is on a CPU we use a smp
0793a61d
TG
1635 * call to enable it in the task context. The task might have been
1636 * scheduled away, but we check this in the smp call again.
1637 */
1638static void
cdd6c482
IM
1639perf_install_in_context(struct perf_event_context *ctx,
1640 struct perf_event *event,
0793a61d
TG
1641 int cpu)
1642{
1643 struct task_struct *task = ctx->task;
1644
fe4b04fa
PZ
1645 lockdep_assert_held(&ctx->mutex);
1646
c3f00c70 1647 event->ctx = ctx;
0cda4c02
YZ
1648 if (event->cpu != -1)
1649 event->cpu = cpu;
c3f00c70 1650
0793a61d
TG
1651 if (!task) {
1652 /*
cdd6c482 1653 * Per cpu events are installed via an smp call and
af901ca1 1654 * the install is always successful.
0793a61d 1655 */
fe4b04fa 1656 cpu_function_call(cpu, __perf_install_in_context, event);
0793a61d
TG
1657 return;
1658 }
1659
0793a61d 1660retry:
fe4b04fa
PZ
1661 if (!task_function_call(task, __perf_install_in_context, event))
1662 return;
0793a61d 1663
e625cce1 1664 raw_spin_lock_irq(&ctx->lock);
0793a61d 1665 /*
fe4b04fa
PZ
1666 * If we failed to find a running task, but find the context active now
1667 * that we've acquired the ctx->lock, retry.
0793a61d 1668 */
fe4b04fa 1669 if (ctx->is_active) {
e625cce1 1670 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
1671 goto retry;
1672 }
1673
1674 /*
fe4b04fa
PZ
1675 * Since the task isn't running, its safe to add the event, us holding
1676 * the ctx->lock ensures the task won't get scheduled in.
0793a61d 1677 */
fe4b04fa 1678 add_event_to_ctx(event, ctx);
e625cce1 1679 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
1680}
1681
fa289bec 1682/*
cdd6c482 1683 * Put a event into inactive state and update time fields.
fa289bec
PM
1684 * Enabling the leader of a group effectively enables all
1685 * the group members that aren't explicitly disabled, so we
1686 * have to update their ->tstamp_enabled also.
1687 * Note: this works for group members as well as group leaders
1688 * since the non-leader members' sibling_lists will be empty.
1689 */
1d9b482e 1690static void __perf_event_mark_enabled(struct perf_event *event)
fa289bec 1691{
cdd6c482 1692 struct perf_event *sub;
4158755d 1693 u64 tstamp = perf_event_time(event);
fa289bec 1694
cdd6c482 1695 event->state = PERF_EVENT_STATE_INACTIVE;
4158755d 1696 event->tstamp_enabled = tstamp - event->total_time_enabled;
9ed6060d 1697 list_for_each_entry(sub, &event->sibling_list, group_entry) {
4158755d
SE
1698 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
1699 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
9ed6060d 1700 }
fa289bec
PM
1701}
1702
d859e29f 1703/*
cdd6c482 1704 * Cross CPU call to enable a performance event
d859e29f 1705 */
fe4b04fa 1706static int __perf_event_enable(void *info)
04289bb9 1707{
cdd6c482 1708 struct perf_event *event = info;
cdd6c482
IM
1709 struct perf_event_context *ctx = event->ctx;
1710 struct perf_event *leader = event->group_leader;
108b02cf 1711 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
d859e29f 1712 int err;
04289bb9 1713
fe4b04fa
PZ
1714 if (WARN_ON_ONCE(!ctx->is_active))
1715 return -EINVAL;
3cbed429 1716
e625cce1 1717 raw_spin_lock(&ctx->lock);
4af4998b 1718 update_context_time(ctx);
d859e29f 1719
cdd6c482 1720 if (event->state >= PERF_EVENT_STATE_INACTIVE)
d859e29f 1721 goto unlock;
e5d1367f
SE
1722
1723 /*
1724 * set current task's cgroup time reference point
1725 */
3f7cce3c 1726 perf_cgroup_set_timestamp(current, ctx);
e5d1367f 1727
1d9b482e 1728 __perf_event_mark_enabled(event);
04289bb9 1729
e5d1367f
SE
1730 if (!event_filter_match(event)) {
1731 if (is_cgroup_event(event))
1732 perf_cgroup_defer_enabled(event);
f4c4176f 1733 goto unlock;
e5d1367f 1734 }
f4c4176f 1735
04289bb9 1736 /*
cdd6c482 1737 * If the event is in a group and isn't the group leader,
d859e29f 1738 * then don't put it on unless the group is on.
04289bb9 1739 */
cdd6c482 1740 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
d859e29f 1741 goto unlock;
3b6f9e5c 1742
cdd6c482 1743 if (!group_can_go_on(event, cpuctx, 1)) {
d859e29f 1744 err = -EEXIST;
e758a33d 1745 } else {
cdd6c482 1746 if (event == leader)
6e37738a 1747 err = group_sched_in(event, cpuctx, ctx);
e758a33d 1748 else
6e37738a 1749 err = event_sched_in(event, cpuctx, ctx);
e758a33d 1750 }
d859e29f
PM
1751
1752 if (err) {
1753 /*
cdd6c482 1754 * If this event can't go on and it's part of a
d859e29f
PM
1755 * group, then the whole group has to come off.
1756 */
cdd6c482 1757 if (leader != event)
d859e29f 1758 group_sched_out(leader, cpuctx, ctx);
0d48696f 1759 if (leader->attr.pinned) {
53cfbf59 1760 update_group_times(leader);
cdd6c482 1761 leader->state = PERF_EVENT_STATE_ERROR;
53cfbf59 1762 }
d859e29f
PM
1763 }
1764
9ed6060d 1765unlock:
e625cce1 1766 raw_spin_unlock(&ctx->lock);
fe4b04fa
PZ
1767
1768 return 0;
d859e29f
PM
1769}
1770
1771/*
cdd6c482 1772 * Enable a event.
c93f7669 1773 *
cdd6c482
IM
1774 * If event->ctx is a cloned context, callers must make sure that
1775 * every task struct that event->ctx->task could possibly point to
c93f7669 1776 * remains valid. This condition is satisfied when called through
cdd6c482
IM
1777 * perf_event_for_each_child or perf_event_for_each as described
1778 * for perf_event_disable.
d859e29f 1779 */
44234adc 1780void perf_event_enable(struct perf_event *event)
d859e29f 1781{
cdd6c482 1782 struct perf_event_context *ctx = event->ctx;
d859e29f
PM
1783 struct task_struct *task = ctx->task;
1784
1785 if (!task) {
1786 /*
cdd6c482 1787 * Enable the event on the cpu that it's on
d859e29f 1788 */
fe4b04fa 1789 cpu_function_call(event->cpu, __perf_event_enable, event);
d859e29f
PM
1790 return;
1791 }
1792
e625cce1 1793 raw_spin_lock_irq(&ctx->lock);
cdd6c482 1794 if (event->state >= PERF_EVENT_STATE_INACTIVE)
d859e29f
PM
1795 goto out;
1796
1797 /*
cdd6c482
IM
1798 * If the event is in error state, clear that first.
1799 * That way, if we see the event in error state below, we
d859e29f
PM
1800 * know that it has gone back into error state, as distinct
1801 * from the task having been scheduled away before the
1802 * cross-call arrived.
1803 */
cdd6c482
IM
1804 if (event->state == PERF_EVENT_STATE_ERROR)
1805 event->state = PERF_EVENT_STATE_OFF;
d859e29f 1806
9ed6060d 1807retry:
fe4b04fa 1808 if (!ctx->is_active) {
1d9b482e 1809 __perf_event_mark_enabled(event);
fe4b04fa
PZ
1810 goto out;
1811 }
1812
e625cce1 1813 raw_spin_unlock_irq(&ctx->lock);
fe4b04fa
PZ
1814
1815 if (!task_function_call(task, __perf_event_enable, event))
1816 return;
d859e29f 1817
e625cce1 1818 raw_spin_lock_irq(&ctx->lock);
d859e29f
PM
1819
1820 /*
cdd6c482 1821 * If the context is active and the event is still off,
d859e29f
PM
1822 * we need to retry the cross-call.
1823 */
fe4b04fa
PZ
1824 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
1825 /*
1826 * task could have been flipped by a concurrent
1827 * perf_event_context_sched_out()
1828 */
1829 task = ctx->task;
d859e29f 1830 goto retry;
fe4b04fa 1831 }
fa289bec 1832
9ed6060d 1833out:
e625cce1 1834 raw_spin_unlock_irq(&ctx->lock);
d859e29f 1835}
dcfce4a0 1836EXPORT_SYMBOL_GPL(perf_event_enable);
d859e29f 1837
26ca5c11 1838int perf_event_refresh(struct perf_event *event, int refresh)
79f14641 1839{
2023b359 1840 /*
cdd6c482 1841 * not supported on inherited events
2023b359 1842 */
2e939d1d 1843 if (event->attr.inherit || !is_sampling_event(event))
2023b359
PZ
1844 return -EINVAL;
1845
cdd6c482
IM
1846 atomic_add(refresh, &event->event_limit);
1847 perf_event_enable(event);
2023b359
PZ
1848
1849 return 0;
79f14641 1850}
26ca5c11 1851EXPORT_SYMBOL_GPL(perf_event_refresh);
79f14641 1852
5b0311e1
FW
1853static void ctx_sched_out(struct perf_event_context *ctx,
1854 struct perf_cpu_context *cpuctx,
1855 enum event_type_t event_type)
235c7fc7 1856{
cdd6c482 1857 struct perf_event *event;
db24d33e 1858 int is_active = ctx->is_active;
235c7fc7 1859
db24d33e 1860 ctx->is_active &= ~event_type;
cdd6c482 1861 if (likely(!ctx->nr_events))
facc4307
PZ
1862 return;
1863
4af4998b 1864 update_context_time(ctx);
e5d1367f 1865 update_cgrp_time_from_cpuctx(cpuctx);
5b0311e1 1866 if (!ctx->nr_active)
facc4307 1867 return;
5b0311e1 1868
075e0b00 1869 perf_pmu_disable(ctx->pmu);
db24d33e 1870 if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
889ff015
FW
1871 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
1872 group_sched_out(event, cpuctx, ctx);
9ed6060d 1873 }
889ff015 1874
db24d33e 1875 if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
889ff015 1876 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
8c9ed8e1 1877 group_sched_out(event, cpuctx, ctx);
9ed6060d 1878 }
1b9a644f 1879 perf_pmu_enable(ctx->pmu);
235c7fc7
IM
1880}
1881
564c2b21
PM
1882/*
1883 * Test whether two contexts are equivalent, i.e. whether they
1884 * have both been cloned from the same version of the same context
cdd6c482
IM
1885 * and they both have the same number of enabled events.
1886 * If the number of enabled events is the same, then the set
1887 * of enabled events should be the same, because these are both
1888 * inherited contexts, therefore we can't access individual events
564c2b21 1889 * in them directly with an fd; we can only enable/disable all
cdd6c482 1890 * events via prctl, or enable/disable all events in a family
564c2b21
PM
1891 * via ioctl, which will have the same effect on both contexts.
1892 */
cdd6c482
IM
1893static int context_equiv(struct perf_event_context *ctx1,
1894 struct perf_event_context *ctx2)
564c2b21
PM
1895{
1896 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
ad3a37de 1897 && ctx1->parent_gen == ctx2->parent_gen
25346b93 1898 && !ctx1->pin_count && !ctx2->pin_count;
564c2b21
PM
1899}
1900
cdd6c482
IM
1901static void __perf_event_sync_stat(struct perf_event *event,
1902 struct perf_event *next_event)
bfbd3381
PZ
1903{
1904 u64 value;
1905
cdd6c482 1906 if (!event->attr.inherit_stat)
bfbd3381
PZ
1907 return;
1908
1909 /*
cdd6c482 1910 * Update the event value, we cannot use perf_event_read()
bfbd3381
PZ
1911 * because we're in the middle of a context switch and have IRQs
1912 * disabled, which upsets smp_call_function_single(), however
cdd6c482 1913 * we know the event must be on the current CPU, therefore we
bfbd3381
PZ
1914 * don't need to use it.
1915 */
cdd6c482
IM
1916 switch (event->state) {
1917 case PERF_EVENT_STATE_ACTIVE:
3dbebf15
PZ
1918 event->pmu->read(event);
1919 /* fall-through */
bfbd3381 1920
cdd6c482
IM
1921 case PERF_EVENT_STATE_INACTIVE:
1922 update_event_times(event);
bfbd3381
PZ
1923 break;
1924
1925 default:
1926 break;
1927 }
1928
1929 /*
cdd6c482 1930 * In order to keep per-task stats reliable we need to flip the event
bfbd3381
PZ
1931 * values when we flip the contexts.
1932 */
e7850595
PZ
1933 value = local64_read(&next_event->count);
1934 value = local64_xchg(&event->count, value);
1935 local64_set(&next_event->count, value);
bfbd3381 1936
cdd6c482
IM
1937 swap(event->total_time_enabled, next_event->total_time_enabled);
1938 swap(event->total_time_running, next_event->total_time_running);
19d2e755 1939
bfbd3381 1940 /*
19d2e755 1941 * Since we swizzled the values, update the user visible data too.
bfbd3381 1942 */
cdd6c482
IM
1943 perf_event_update_userpage(event);
1944 perf_event_update_userpage(next_event);
bfbd3381
PZ
1945}
1946
1947#define list_next_entry(pos, member) \
1948 list_entry(pos->member.next, typeof(*pos), member)
1949
cdd6c482
IM
1950static void perf_event_sync_stat(struct perf_event_context *ctx,
1951 struct perf_event_context *next_ctx)
bfbd3381 1952{
cdd6c482 1953 struct perf_event *event, *next_event;
bfbd3381
PZ
1954
1955 if (!ctx->nr_stat)
1956 return;
1957
02ffdbc8
PZ
1958 update_context_time(ctx);
1959
cdd6c482
IM
1960 event = list_first_entry(&ctx->event_list,
1961 struct perf_event, event_entry);
bfbd3381 1962
cdd6c482
IM
1963 next_event = list_first_entry(&next_ctx->event_list,
1964 struct perf_event, event_entry);
bfbd3381 1965
cdd6c482
IM
1966 while (&event->event_entry != &ctx->event_list &&
1967 &next_event->event_entry != &next_ctx->event_list) {
bfbd3381 1968
cdd6c482 1969 __perf_event_sync_stat(event, next_event);
bfbd3381 1970
cdd6c482
IM
1971 event = list_next_entry(event, event_entry);
1972 next_event = list_next_entry(next_event, event_entry);
bfbd3381
PZ
1973 }
1974}
1975
fe4b04fa
PZ
1976static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
1977 struct task_struct *next)
0793a61d 1978{
8dc85d54 1979 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
cdd6c482
IM
1980 struct perf_event_context *next_ctx;
1981 struct perf_event_context *parent;
108b02cf 1982 struct perf_cpu_context *cpuctx;
c93f7669 1983 int do_switch = 1;
0793a61d 1984
108b02cf
PZ
1985 if (likely(!ctx))
1986 return;
10989fb2 1987
108b02cf
PZ
1988 cpuctx = __get_cpu_context(ctx);
1989 if (!cpuctx->task_ctx)
0793a61d
TG
1990 return;
1991
c93f7669
PM
1992 rcu_read_lock();
1993 parent = rcu_dereference(ctx->parent_ctx);
8dc85d54 1994 next_ctx = next->perf_event_ctxp[ctxn];
c93f7669
PM
1995 if (parent && next_ctx &&
1996 rcu_dereference(next_ctx->parent_ctx) == parent) {
1997 /*
1998 * Looks like the two contexts are clones, so we might be
1999 * able to optimize the context switch. We lock both
2000 * contexts and check that they are clones under the
2001 * lock (including re-checking that neither has been
2002 * uncloned in the meantime). It doesn't matter which
2003 * order we take the locks because no other cpu could
2004 * be trying to lock both of these tasks.
2005 */
e625cce1
TG
2006 raw_spin_lock(&ctx->lock);
2007 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
c93f7669 2008 if (context_equiv(ctx, next_ctx)) {
665c2142
PZ
2009 /*
2010 * XXX do we need a memory barrier of sorts
cdd6c482 2011 * wrt to rcu_dereference() of perf_event_ctxp
665c2142 2012 */
8dc85d54
PZ
2013 task->perf_event_ctxp[ctxn] = next_ctx;
2014 next->perf_event_ctxp[ctxn] = ctx;
c93f7669
PM
2015 ctx->task = next;
2016 next_ctx->task = task;
2017 do_switch = 0;
bfbd3381 2018
cdd6c482 2019 perf_event_sync_stat(ctx, next_ctx);
c93f7669 2020 }
e625cce1
TG
2021 raw_spin_unlock(&next_ctx->lock);
2022 raw_spin_unlock(&ctx->lock);
564c2b21 2023 }
c93f7669 2024 rcu_read_unlock();
564c2b21 2025
c93f7669 2026 if (do_switch) {
facc4307 2027 raw_spin_lock(&ctx->lock);
5b0311e1 2028 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
c93f7669 2029 cpuctx->task_ctx = NULL;
facc4307 2030 raw_spin_unlock(&ctx->lock);
c93f7669 2031 }
0793a61d
TG
2032}
2033
8dc85d54
PZ
2034#define for_each_task_context_nr(ctxn) \
2035 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2036
2037/*
2038 * Called from scheduler to remove the events of the current task,
2039 * with interrupts disabled.
2040 *
2041 * We stop each event and update the event value in event->count.
2042 *
2043 * This does not protect us against NMI, but disable()
2044 * sets the disabled bit in the control field of event _before_
2045 * accessing the event control register. If a NMI hits, then it will
2046 * not restart the event.
2047 */
ab0cce56
JO
2048void __perf_event_task_sched_out(struct task_struct *task,
2049 struct task_struct *next)
8dc85d54
PZ
2050{
2051 int ctxn;
2052
8dc85d54
PZ
2053 for_each_task_context_nr(ctxn)
2054 perf_event_context_sched_out(task, ctxn, next);
e5d1367f
SE
2055
2056 /*
2057 * if cgroup events exist on this CPU, then we need
2058 * to check if we have to switch out PMU state.
2059 * cgroup event are system-wide mode only
2060 */
2061 if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
a8d757ef 2062 perf_cgroup_sched_out(task, next);
8dc85d54
PZ
2063}
2064
04dc2dbb 2065static void task_ctx_sched_out(struct perf_event_context *ctx)
a08b159f 2066{
108b02cf 2067 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
a08b159f 2068
a63eaf34
PM
2069 if (!cpuctx->task_ctx)
2070 return;
012b84da
IM
2071
2072 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2073 return;
2074
04dc2dbb 2075 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
a08b159f
PM
2076 cpuctx->task_ctx = NULL;
2077}
2078
5b0311e1
FW
2079/*
2080 * Called with IRQs disabled
2081 */
2082static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2083 enum event_type_t event_type)
2084{
2085 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
04289bb9
IM
2086}
2087
235c7fc7 2088static void
5b0311e1 2089ctx_pinned_sched_in(struct perf_event_context *ctx,
6e37738a 2090 struct perf_cpu_context *cpuctx)
0793a61d 2091{
cdd6c482 2092 struct perf_event *event;
0793a61d 2093
889ff015
FW
2094 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2095 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 2096 continue;
5632ab12 2097 if (!event_filter_match(event))
3b6f9e5c
PM
2098 continue;
2099
e5d1367f
SE
2100 /* may need to reset tstamp_enabled */
2101 if (is_cgroup_event(event))
2102 perf_cgroup_mark_enabled(event, ctx);
2103
8c9ed8e1 2104 if (group_can_go_on(event, cpuctx, 1))
6e37738a 2105 group_sched_in(event, cpuctx, ctx);
3b6f9e5c
PM
2106
2107 /*
2108 * If this pinned group hasn't been scheduled,
2109 * put it in error state.
2110 */
cdd6c482
IM
2111 if (event->state == PERF_EVENT_STATE_INACTIVE) {
2112 update_group_times(event);
2113 event->state = PERF_EVENT_STATE_ERROR;
53cfbf59 2114 }
3b6f9e5c 2115 }
5b0311e1
FW
2116}
2117
2118static void
2119ctx_flexible_sched_in(struct perf_event_context *ctx,
6e37738a 2120 struct perf_cpu_context *cpuctx)
5b0311e1
FW
2121{
2122 struct perf_event *event;
2123 int can_add_hw = 1;
3b6f9e5c 2124
889ff015
FW
2125 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2126 /* Ignore events in OFF or ERROR state */
2127 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 2128 continue;
04289bb9
IM
2129 /*
2130 * Listen to the 'cpu' scheduling filter constraint
cdd6c482 2131 * of events:
04289bb9 2132 */
5632ab12 2133 if (!event_filter_match(event))
0793a61d
TG
2134 continue;
2135
e5d1367f
SE
2136 /* may need to reset tstamp_enabled */
2137 if (is_cgroup_event(event))
2138 perf_cgroup_mark_enabled(event, ctx);
2139
9ed6060d 2140 if (group_can_go_on(event, cpuctx, can_add_hw)) {
6e37738a 2141 if (group_sched_in(event, cpuctx, ctx))
dd0e6ba2 2142 can_add_hw = 0;
9ed6060d 2143 }
0793a61d 2144 }
5b0311e1
FW
2145}
2146
2147static void
2148ctx_sched_in(struct perf_event_context *ctx,
2149 struct perf_cpu_context *cpuctx,
e5d1367f
SE
2150 enum event_type_t event_type,
2151 struct task_struct *task)
5b0311e1 2152{
e5d1367f 2153 u64 now;
db24d33e 2154 int is_active = ctx->is_active;
e5d1367f 2155
db24d33e 2156 ctx->is_active |= event_type;
5b0311e1 2157 if (likely(!ctx->nr_events))
facc4307 2158 return;
5b0311e1 2159
e5d1367f
SE
2160 now = perf_clock();
2161 ctx->timestamp = now;
3f7cce3c 2162 perf_cgroup_set_timestamp(task, ctx);
5b0311e1
FW
2163 /*
2164 * First go through the list and put on any pinned groups
2165 * in order to give them the best chance of going on.
2166 */
db24d33e 2167 if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
6e37738a 2168 ctx_pinned_sched_in(ctx, cpuctx);
5b0311e1
FW
2169
2170 /* Then walk through the lower prio flexible groups */
db24d33e 2171 if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
6e37738a 2172 ctx_flexible_sched_in(ctx, cpuctx);
235c7fc7
IM
2173}
2174
329c0e01 2175static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
2176 enum event_type_t event_type,
2177 struct task_struct *task)
329c0e01
FW
2178{
2179 struct perf_event_context *ctx = &cpuctx->ctx;
2180
e5d1367f 2181 ctx_sched_in(ctx, cpuctx, event_type, task);
329c0e01
FW
2182}
2183
e5d1367f
SE
2184static void perf_event_context_sched_in(struct perf_event_context *ctx,
2185 struct task_struct *task)
235c7fc7 2186{
108b02cf 2187 struct perf_cpu_context *cpuctx;
235c7fc7 2188
108b02cf 2189 cpuctx = __get_cpu_context(ctx);
329c0e01
FW
2190 if (cpuctx->task_ctx == ctx)
2191 return;
2192
facc4307 2193 perf_ctx_lock(cpuctx, ctx);
1b9a644f 2194 perf_pmu_disable(ctx->pmu);
329c0e01
FW
2195 /*
2196 * We want to keep the following priority order:
2197 * cpu pinned (that don't need to move), task pinned,
2198 * cpu flexible, task flexible.
2199 */
2200 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2201
1d5f003f
GN
2202 if (ctx->nr_events)
2203 cpuctx->task_ctx = ctx;
9b33fa6b 2204
86b47c25
GN
2205 perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);
2206
facc4307
PZ
2207 perf_pmu_enable(ctx->pmu);
2208 perf_ctx_unlock(cpuctx, ctx);
2209
b5ab4cd5
PZ
2210 /*
2211 * Since these rotations are per-cpu, we need to ensure the
2212 * cpu-context we got scheduled on is actually rotating.
2213 */
108b02cf 2214 perf_pmu_rotate_start(ctx->pmu);
235c7fc7
IM
2215}
2216
d010b332
SE
2217/*
2218 * When sampling the branck stack in system-wide, it may be necessary
2219 * to flush the stack on context switch. This happens when the branch
2220 * stack does not tag its entries with the pid of the current task.
2221 * Otherwise it becomes impossible to associate a branch entry with a
2222 * task. This ambiguity is more likely to appear when the branch stack
2223 * supports priv level filtering and the user sets it to monitor only
2224 * at the user level (which could be a useful measurement in system-wide
2225 * mode). In that case, the risk is high of having a branch stack with
2226 * branch from multiple tasks. Flushing may mean dropping the existing
2227 * entries or stashing them somewhere in the PMU specific code layer.
2228 *
2229 * This function provides the context switch callback to the lower code
2230 * layer. It is invoked ONLY when there is at least one system-wide context
2231 * with at least one active event using taken branch sampling.
2232 */
2233static void perf_branch_stack_sched_in(struct task_struct *prev,
2234 struct task_struct *task)
2235{
2236 struct perf_cpu_context *cpuctx;
2237 struct pmu *pmu;
2238 unsigned long flags;
2239
2240 /* no need to flush branch stack if not changing task */
2241 if (prev == task)
2242 return;
2243
2244 local_irq_save(flags);
2245
2246 rcu_read_lock();
2247
2248 list_for_each_entry_rcu(pmu, &pmus, entry) {
2249 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2250
2251 /*
2252 * check if the context has at least one
2253 * event using PERF_SAMPLE_BRANCH_STACK
2254 */
2255 if (cpuctx->ctx.nr_branch_stack > 0
2256 && pmu->flush_branch_stack) {
2257
2258 pmu = cpuctx->ctx.pmu;
2259
2260 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2261
2262 perf_pmu_disable(pmu);
2263
2264 pmu->flush_branch_stack();
2265
2266 perf_pmu_enable(pmu);
2267
2268 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2269 }
2270 }
2271
2272 rcu_read_unlock();
2273
2274 local_irq_restore(flags);
2275}
2276
8dc85d54
PZ
2277/*
2278 * Called from scheduler to add the events of the current task
2279 * with interrupts disabled.
2280 *
2281 * We restore the event value and then enable it.
2282 *
2283 * This does not protect us against NMI, but enable()
2284 * sets the enabled bit in the control field of event _before_
2285 * accessing the event control register. If a NMI hits, then it will
2286 * keep the event running.
2287 */
ab0cce56
JO
2288void __perf_event_task_sched_in(struct task_struct *prev,
2289 struct task_struct *task)
8dc85d54
PZ
2290{
2291 struct perf_event_context *ctx;
2292 int ctxn;
2293
2294 for_each_task_context_nr(ctxn) {
2295 ctx = task->perf_event_ctxp[ctxn];
2296 if (likely(!ctx))
2297 continue;
2298
e5d1367f 2299 perf_event_context_sched_in(ctx, task);
8dc85d54 2300 }
e5d1367f
SE
2301 /*
2302 * if cgroup events exist on this CPU, then we need
2303 * to check if we have to switch in PMU state.
2304 * cgroup event are system-wide mode only
2305 */
2306 if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
a8d757ef 2307 perf_cgroup_sched_in(prev, task);
d010b332
SE
2308
2309 /* check for system-wide branch_stack events */
2310 if (atomic_read(&__get_cpu_var(perf_branch_stack_events)))
2311 perf_branch_stack_sched_in(prev, task);
235c7fc7
IM
2312}
2313
abd50713
PZ
2314static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2315{
2316 u64 frequency = event->attr.sample_freq;
2317 u64 sec = NSEC_PER_SEC;
2318 u64 divisor, dividend;
2319
2320 int count_fls, nsec_fls, frequency_fls, sec_fls;
2321
2322 count_fls = fls64(count);
2323 nsec_fls = fls64(nsec);
2324 frequency_fls = fls64(frequency);
2325 sec_fls = 30;
2326
2327 /*
2328 * We got @count in @nsec, with a target of sample_freq HZ
2329 * the target period becomes:
2330 *
2331 * @count * 10^9
2332 * period = -------------------
2333 * @nsec * sample_freq
2334 *
2335 */
2336
2337 /*
2338 * Reduce accuracy by one bit such that @a and @b converge
2339 * to a similar magnitude.
2340 */
fe4b04fa 2341#define REDUCE_FLS(a, b) \
abd50713
PZ
2342do { \
2343 if (a##_fls > b##_fls) { \
2344 a >>= 1; \
2345 a##_fls--; \
2346 } else { \
2347 b >>= 1; \
2348 b##_fls--; \
2349 } \
2350} while (0)
2351
2352 /*
2353 * Reduce accuracy until either term fits in a u64, then proceed with
2354 * the other, so that finally we can do a u64/u64 division.
2355 */
2356 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2357 REDUCE_FLS(nsec, frequency);
2358 REDUCE_FLS(sec, count);
2359 }
2360
2361 if (count_fls + sec_fls > 64) {
2362 divisor = nsec * frequency;
2363
2364 while (count_fls + sec_fls > 64) {
2365 REDUCE_FLS(count, sec);
2366 divisor >>= 1;
2367 }
2368
2369 dividend = count * sec;
2370 } else {
2371 dividend = count * sec;
2372
2373 while (nsec_fls + frequency_fls > 64) {
2374 REDUCE_FLS(nsec, frequency);
2375 dividend >>= 1;
2376 }
2377
2378 divisor = nsec * frequency;
2379 }
2380
f6ab91ad
PZ
2381 if (!divisor)
2382 return dividend;
2383
abd50713
PZ
2384 return div64_u64(dividend, divisor);
2385}
2386
e050e3f0
SE
2387static DEFINE_PER_CPU(int, perf_throttled_count);
2388static DEFINE_PER_CPU(u64, perf_throttled_seq);
2389
f39d47ff 2390static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
bd2b5b12 2391{
cdd6c482 2392 struct hw_perf_event *hwc = &event->hw;
f6ab91ad 2393 s64 period, sample_period;
bd2b5b12
PZ
2394 s64 delta;
2395
abd50713 2396 period = perf_calculate_period(event, nsec, count);
bd2b5b12
PZ
2397
2398 delta = (s64)(period - hwc->sample_period);
2399 delta = (delta + 7) / 8; /* low pass filter */
2400
2401 sample_period = hwc->sample_period + delta;
2402
2403 if (!sample_period)
2404 sample_period = 1;
2405
bd2b5b12 2406 hwc->sample_period = sample_period;
abd50713 2407
e7850595 2408 if (local64_read(&hwc->period_left) > 8*sample_period) {
f39d47ff
SE
2409 if (disable)
2410 event->pmu->stop(event, PERF_EF_UPDATE);
2411
e7850595 2412 local64_set(&hwc->period_left, 0);
f39d47ff
SE
2413
2414 if (disable)
2415 event->pmu->start(event, PERF_EF_RELOAD);
abd50713 2416 }
bd2b5b12
PZ
2417}
2418
e050e3f0
SE
2419/*
2420 * combine freq adjustment with unthrottling to avoid two passes over the
2421 * events. At the same time, make sure, having freq events does not change
2422 * the rate of unthrottling as that would introduce bias.
2423 */
2424static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
2425 int needs_unthr)
60db5e09 2426{
cdd6c482
IM
2427 struct perf_event *event;
2428 struct hw_perf_event *hwc;
e050e3f0 2429 u64 now, period = TICK_NSEC;
abd50713 2430 s64 delta;
60db5e09 2431
e050e3f0
SE
2432 /*
2433 * only need to iterate over all events iff:
2434 * - context have events in frequency mode (needs freq adjust)
2435 * - there are events to unthrottle on this cpu
2436 */
2437 if (!(ctx->nr_freq || needs_unthr))
0f5a2601
PZ
2438 return;
2439
e050e3f0 2440 raw_spin_lock(&ctx->lock);
f39d47ff 2441 perf_pmu_disable(ctx->pmu);
e050e3f0 2442
03541f8b 2443 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
cdd6c482 2444 if (event->state != PERF_EVENT_STATE_ACTIVE)
60db5e09
PZ
2445 continue;
2446
5632ab12 2447 if (!event_filter_match(event))
5d27c23d
PZ
2448 continue;
2449
cdd6c482 2450 hwc = &event->hw;
6a24ed6c 2451
e050e3f0
SE
2452 if (needs_unthr && hwc->interrupts == MAX_INTERRUPTS) {
2453 hwc->interrupts = 0;
cdd6c482 2454 perf_log_throttle(event, 1);
a4eaf7f1 2455 event->pmu->start(event, 0);
a78ac325
PZ
2456 }
2457
cdd6c482 2458 if (!event->attr.freq || !event->attr.sample_freq)
60db5e09
PZ
2459 continue;
2460
e050e3f0
SE
2461 /*
2462 * stop the event and update event->count
2463 */
2464 event->pmu->stop(event, PERF_EF_UPDATE);
2465
e7850595 2466 now = local64_read(&event->count);
abd50713
PZ
2467 delta = now - hwc->freq_count_stamp;
2468 hwc->freq_count_stamp = now;
60db5e09 2469
e050e3f0
SE
2470 /*
2471 * restart the event
2472 * reload only if value has changed
f39d47ff
SE
2473 * we have stopped the event so tell that
2474 * to perf_adjust_period() to avoid stopping it
2475 * twice.
e050e3f0 2476 */
abd50713 2477 if (delta > 0)
f39d47ff 2478 perf_adjust_period(event, period, delta, false);
e050e3f0
SE
2479
2480 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
60db5e09 2481 }
e050e3f0 2482
f39d47ff 2483 perf_pmu_enable(ctx->pmu);
e050e3f0 2484 raw_spin_unlock(&ctx->lock);
60db5e09
PZ
2485}
2486
235c7fc7 2487/*
cdd6c482 2488 * Round-robin a context's events:
235c7fc7 2489 */
cdd6c482 2490static void rotate_ctx(struct perf_event_context *ctx)
0793a61d 2491{
dddd3379
TG
2492 /*
2493 * Rotate the first entry last of non-pinned groups. Rotation might be
2494 * disabled by the inheritance code.
2495 */
2496 if (!ctx->rotate_disable)
2497 list_rotate_left(&ctx->flexible_groups);
235c7fc7
IM
2498}
2499
b5ab4cd5 2500/*
e9d2b064
PZ
2501 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
2502 * because they're strictly cpu affine and rotate_start is called with IRQs
2503 * disabled, while rotate_context is called from IRQ context.
b5ab4cd5 2504 */
e9d2b064 2505static void perf_rotate_context(struct perf_cpu_context *cpuctx)
235c7fc7 2506{
8dc85d54 2507 struct perf_event_context *ctx = NULL;
e050e3f0 2508 int rotate = 0, remove = 1;
7fc23a53 2509
b5ab4cd5 2510 if (cpuctx->ctx.nr_events) {
e9d2b064 2511 remove = 0;
b5ab4cd5
PZ
2512 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
2513 rotate = 1;
2514 }
235c7fc7 2515
8dc85d54 2516 ctx = cpuctx->task_ctx;
b5ab4cd5 2517 if (ctx && ctx->nr_events) {
e9d2b064 2518 remove = 0;
b5ab4cd5
PZ
2519 if (ctx->nr_events != ctx->nr_active)
2520 rotate = 1;
2521 }
9717e6cd 2522
e050e3f0 2523 if (!rotate)
0f5a2601
PZ
2524 goto done;
2525
facc4307 2526 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
1b9a644f 2527 perf_pmu_disable(cpuctx->ctx.pmu);
60db5e09 2528
e050e3f0
SE
2529 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2530 if (ctx)
2531 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
0793a61d 2532
e050e3f0
SE
2533 rotate_ctx(&cpuctx->ctx);
2534 if (ctx)
2535 rotate_ctx(ctx);
235c7fc7 2536
e050e3f0 2537 perf_event_sched_in(cpuctx, ctx, current);
235c7fc7 2538
0f5a2601
PZ
2539 perf_pmu_enable(cpuctx->ctx.pmu);
2540 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
b5ab4cd5 2541done:
e9d2b064
PZ
2542 if (remove)
2543 list_del_init(&cpuctx->rotation_list);
e9d2b064
PZ
2544}
2545
2546void perf_event_task_tick(void)
2547{
2548 struct list_head *head = &__get_cpu_var(rotation_list);
2549 struct perf_cpu_context *cpuctx, *tmp;
e050e3f0
SE
2550 struct perf_event_context *ctx;
2551 int throttled;
b5ab4cd5 2552
e9d2b064
PZ
2553 WARN_ON(!irqs_disabled());
2554
e050e3f0
SE
2555 __this_cpu_inc(perf_throttled_seq);
2556 throttled = __this_cpu_xchg(perf_throttled_count, 0);
2557
e9d2b064 2558 list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
e050e3f0
SE
2559 ctx = &cpuctx->ctx;
2560 perf_adjust_freq_unthr_context(ctx, throttled);
2561
2562 ctx = cpuctx->task_ctx;
2563 if (ctx)
2564 perf_adjust_freq_unthr_context(ctx, throttled);
2565
e9d2b064
PZ
2566 if (cpuctx->jiffies_interval == 1 ||
2567 !(jiffies % cpuctx->jiffies_interval))
2568 perf_rotate_context(cpuctx);
2569 }
0793a61d
TG
2570}
2571
889ff015
FW
2572static int event_enable_on_exec(struct perf_event *event,
2573 struct perf_event_context *ctx)
2574{
2575 if (!event->attr.enable_on_exec)
2576 return 0;
2577
2578 event->attr.enable_on_exec = 0;
2579 if (event->state >= PERF_EVENT_STATE_INACTIVE)
2580 return 0;
2581
1d9b482e 2582 __perf_event_mark_enabled(event);
889ff015
FW
2583
2584 return 1;
2585}
2586
57e7986e 2587/*
cdd6c482 2588 * Enable all of a task's events that have been marked enable-on-exec.
57e7986e
PM
2589 * This expects task == current.
2590 */
8dc85d54 2591static void perf_event_enable_on_exec(struct perf_event_context *ctx)
57e7986e 2592{
cdd6c482 2593 struct perf_event *event;
57e7986e
PM
2594 unsigned long flags;
2595 int enabled = 0;
889ff015 2596 int ret;
57e7986e
PM
2597
2598 local_irq_save(flags);
cdd6c482 2599 if (!ctx || !ctx->nr_events)
57e7986e
PM
2600 goto out;
2601
e566b76e
SE
2602 /*
2603 * We must ctxsw out cgroup events to avoid conflict
2604 * when invoking perf_task_event_sched_in() later on
2605 * in this function. Otherwise we end up trying to
2606 * ctxswin cgroup events which are already scheduled
2607 * in.
2608 */
a8d757ef 2609 perf_cgroup_sched_out(current, NULL);
57e7986e 2610
e625cce1 2611 raw_spin_lock(&ctx->lock);
04dc2dbb 2612 task_ctx_sched_out(ctx);
57e7986e 2613
b79387ef 2614 list_for_each_entry(event, &ctx->event_list, event_entry) {
889ff015
FW
2615 ret = event_enable_on_exec(event, ctx);
2616 if (ret)
2617 enabled = 1;
57e7986e
PM
2618 }
2619
2620 /*
cdd6c482 2621 * Unclone this context if we enabled any event.
57e7986e 2622 */
71a851b4
PZ
2623 if (enabled)
2624 unclone_ctx(ctx);
57e7986e 2625
e625cce1 2626 raw_spin_unlock(&ctx->lock);
57e7986e 2627
e566b76e
SE
2628 /*
2629 * Also calls ctxswin for cgroup events, if any:
2630 */
e5d1367f 2631 perf_event_context_sched_in(ctx, ctx->task);
9ed6060d 2632out:
57e7986e
PM
2633 local_irq_restore(flags);
2634}
2635
0793a61d 2636/*
cdd6c482 2637 * Cross CPU call to read the hardware event
0793a61d 2638 */
cdd6c482 2639static void __perf_event_read(void *info)
0793a61d 2640{
cdd6c482
IM
2641 struct perf_event *event = info;
2642 struct perf_event_context *ctx = event->ctx;
108b02cf 2643 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
621a01ea 2644
e1ac3614
PM
2645 /*
2646 * If this is a task context, we need to check whether it is
2647 * the current task context of this cpu. If not it has been
2648 * scheduled out before the smp call arrived. In that case
cdd6c482
IM
2649 * event->count would have been updated to a recent sample
2650 * when the event was scheduled out.
e1ac3614
PM
2651 */
2652 if (ctx->task && cpuctx->task_ctx != ctx)
2653 return;
2654
e625cce1 2655 raw_spin_lock(&ctx->lock);
e5d1367f 2656 if (ctx->is_active) {
542e72fc 2657 update_context_time(ctx);
e5d1367f
SE
2658 update_cgrp_time_from_event(event);
2659 }
cdd6c482 2660 update_event_times(event);
542e72fc
PZ
2661 if (event->state == PERF_EVENT_STATE_ACTIVE)
2662 event->pmu->read(event);
e625cce1 2663 raw_spin_unlock(&ctx->lock);
0793a61d
TG
2664}
2665
b5e58793
PZ
2666static inline u64 perf_event_count(struct perf_event *event)
2667{
e7850595 2668 return local64_read(&event->count) + atomic64_read(&event->child_count);
b5e58793
PZ
2669}
2670
cdd6c482 2671static u64 perf_event_read(struct perf_event *event)
0793a61d
TG
2672{
2673 /*
cdd6c482
IM
2674 * If event is enabled and currently active on a CPU, update the
2675 * value in the event structure:
0793a61d 2676 */
cdd6c482
IM
2677 if (event->state == PERF_EVENT_STATE_ACTIVE) {
2678 smp_call_function_single(event->oncpu,
2679 __perf_event_read, event, 1);
2680 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
2b8988c9
PZ
2681 struct perf_event_context *ctx = event->ctx;
2682 unsigned long flags;
2683
e625cce1 2684 raw_spin_lock_irqsave(&ctx->lock, flags);
c530ccd9
SE
2685 /*
2686 * may read while context is not active
2687 * (e.g., thread is blocked), in that case
2688 * we cannot update context time
2689 */
e5d1367f 2690 if (ctx->is_active) {
c530ccd9 2691 update_context_time(ctx);
e5d1367f
SE
2692 update_cgrp_time_from_event(event);
2693 }
cdd6c482 2694 update_event_times(event);
e625cce1 2695 raw_spin_unlock_irqrestore(&ctx->lock, flags);
0793a61d
TG
2696 }
2697
b5e58793 2698 return perf_event_count(event);
0793a61d
TG
2699}
2700
a63eaf34 2701/*
cdd6c482 2702 * Initialize the perf_event context in a task_struct:
a63eaf34 2703 */
eb184479 2704static void __perf_event_init_context(struct perf_event_context *ctx)
a63eaf34 2705{
e625cce1 2706 raw_spin_lock_init(&ctx->lock);
a63eaf34 2707 mutex_init(&ctx->mutex);
889ff015
FW
2708 INIT_LIST_HEAD(&ctx->pinned_groups);
2709 INIT_LIST_HEAD(&ctx->flexible_groups);
a63eaf34
PM
2710 INIT_LIST_HEAD(&ctx->event_list);
2711 atomic_set(&ctx->refcount, 1);
eb184479
PZ
2712}
2713
2714static struct perf_event_context *
2715alloc_perf_context(struct pmu *pmu, struct task_struct *task)
2716{
2717 struct perf_event_context *ctx;
2718
2719 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
2720 if (!ctx)
2721 return NULL;
2722
2723 __perf_event_init_context(ctx);
2724 if (task) {
2725 ctx->task = task;
2726 get_task_struct(task);
0793a61d 2727 }
eb184479
PZ
2728 ctx->pmu = pmu;
2729
2730 return ctx;
a63eaf34
PM
2731}
2732
2ebd4ffb
MH
2733static struct task_struct *
2734find_lively_task_by_vpid(pid_t vpid)
2735{
2736 struct task_struct *task;
2737 int err;
0793a61d
TG
2738
2739 rcu_read_lock();
2ebd4ffb 2740 if (!vpid)
0793a61d
TG
2741 task = current;
2742 else
2ebd4ffb 2743 task = find_task_by_vpid(vpid);
0793a61d
TG
2744 if (task)
2745 get_task_struct(task);
2746 rcu_read_unlock();
2747
2748 if (!task)
2749 return ERR_PTR(-ESRCH);
2750
0793a61d 2751 /* Reuse ptrace permission checks for now. */
c93f7669
PM
2752 err = -EACCES;
2753 if (!ptrace_may_access(task, PTRACE_MODE_READ))
2754 goto errout;
2755
2ebd4ffb
MH
2756 return task;
2757errout:
2758 put_task_struct(task);
2759 return ERR_PTR(err);
2760
2761}
2762
fe4b04fa
PZ
2763/*
2764 * Returns a matching context with refcount and pincount.
2765 */
108b02cf 2766static struct perf_event_context *
38a81da2 2767find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
0793a61d 2768{
cdd6c482 2769 struct perf_event_context *ctx;
22a4f650 2770 struct perf_cpu_context *cpuctx;
25346b93 2771 unsigned long flags;
8dc85d54 2772 int ctxn, err;
0793a61d 2773
22a4ec72 2774 if (!task) {
cdd6c482 2775 /* Must be root to operate on a CPU event: */
0764771d 2776 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
0793a61d
TG
2777 return ERR_PTR(-EACCES);
2778
0793a61d 2779 /*
cdd6c482 2780 * We could be clever and allow to attach a event to an
0793a61d
TG
2781 * offline CPU and activate it when the CPU comes up, but
2782 * that's for later.
2783 */
f6325e30 2784 if (!cpu_online(cpu))
0793a61d
TG
2785 return ERR_PTR(-ENODEV);
2786
108b02cf 2787 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
0793a61d 2788 ctx = &cpuctx->ctx;
c93f7669 2789 get_ctx(ctx);
fe4b04fa 2790 ++ctx->pin_count;
0793a61d 2791
0793a61d
TG
2792 return ctx;
2793 }
2794
8dc85d54
PZ
2795 err = -EINVAL;
2796 ctxn = pmu->task_ctx_nr;
2797 if (ctxn < 0)
2798 goto errout;
2799
9ed6060d 2800retry:
8dc85d54 2801 ctx = perf_lock_task_context(task, ctxn, &flags);
c93f7669 2802 if (ctx) {
71a851b4 2803 unclone_ctx(ctx);
fe4b04fa 2804 ++ctx->pin_count;
e625cce1 2805 raw_spin_unlock_irqrestore(&ctx->lock, flags);
9137fb28 2806 } else {
eb184479 2807 ctx = alloc_perf_context(pmu, task);
c93f7669
PM
2808 err = -ENOMEM;
2809 if (!ctx)
2810 goto errout;
eb184479 2811
dbe08d82
ON
2812 err = 0;
2813 mutex_lock(&task->perf_event_mutex);
2814 /*
2815 * If it has already passed perf_event_exit_task().
2816 * we must see PF_EXITING, it takes this mutex too.
2817 */
2818 if (task->flags & PF_EXITING)
2819 err = -ESRCH;
2820 else if (task->perf_event_ctxp[ctxn])
2821 err = -EAGAIN;
fe4b04fa 2822 else {
9137fb28 2823 get_ctx(ctx);
fe4b04fa 2824 ++ctx->pin_count;
dbe08d82 2825 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
fe4b04fa 2826 }
dbe08d82
ON
2827 mutex_unlock(&task->perf_event_mutex);
2828
2829 if (unlikely(err)) {
9137fb28 2830 put_ctx(ctx);
dbe08d82
ON
2831
2832 if (err == -EAGAIN)
2833 goto retry;
2834 goto errout;
a63eaf34
PM
2835 }
2836 }
2837
0793a61d 2838 return ctx;
c93f7669 2839
9ed6060d 2840errout:
c93f7669 2841 return ERR_PTR(err);
0793a61d
TG
2842}
2843
6fb2915d
LZ
2844static void perf_event_free_filter(struct perf_event *event);
2845
cdd6c482 2846static void free_event_rcu(struct rcu_head *head)
592903cd 2847{
cdd6c482 2848 struct perf_event *event;
592903cd 2849
cdd6c482
IM
2850 event = container_of(head, struct perf_event, rcu_head);
2851 if (event->ns)
2852 put_pid_ns(event->ns);
6fb2915d 2853 perf_event_free_filter(event);
cdd6c482 2854 kfree(event);
592903cd
PZ
2855}
2856
76369139 2857static void ring_buffer_put(struct ring_buffer *rb);
925d519a 2858
cdd6c482 2859static void free_event(struct perf_event *event)
f1600952 2860{
e360adbe 2861 irq_work_sync(&event->pending);
925d519a 2862
cdd6c482 2863 if (!event->parent) {
82cd6def 2864 if (event->attach_state & PERF_ATTACH_TASK)
c5905afb 2865 static_key_slow_dec_deferred(&perf_sched_events);
3af9e859 2866 if (event->attr.mmap || event->attr.mmap_data)
cdd6c482
IM
2867 atomic_dec(&nr_mmap_events);
2868 if (event->attr.comm)
2869 atomic_dec(&nr_comm_events);
2870 if (event->attr.task)
2871 atomic_dec(&nr_task_events);
927c7a9e
FW
2872 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
2873 put_callchain_buffers();
08309379
PZ
2874 if (is_cgroup_event(event)) {
2875 atomic_dec(&per_cpu(perf_cgroup_events, event->cpu));
c5905afb 2876 static_key_slow_dec_deferred(&perf_sched_events);
08309379 2877 }
d010b332
SE
2878
2879 if (has_branch_stack(event)) {
2880 static_key_slow_dec_deferred(&perf_sched_events);
2881 /* is system-wide event */
2882 if (!(event->attach_state & PERF_ATTACH_TASK))
2883 atomic_dec(&per_cpu(perf_branch_stack_events,
2884 event->cpu));
2885 }
f344011c 2886 }
9ee318a7 2887
76369139
FW
2888 if (event->rb) {
2889 ring_buffer_put(event->rb);
2890 event->rb = NULL;
a4be7c27
PZ
2891 }
2892
e5d1367f
SE
2893 if (is_cgroup_event(event))
2894 perf_detach_cgroup(event);
2895
cdd6c482
IM
2896 if (event->destroy)
2897 event->destroy(event);
e077df4f 2898
0c67b408
PZ
2899 if (event->ctx)
2900 put_ctx(event->ctx);
2901
cdd6c482 2902 call_rcu(&event->rcu_head, free_event_rcu);
f1600952
PZ
2903}
2904
a66a3052 2905int perf_event_release_kernel(struct perf_event *event)
0793a61d 2906{
cdd6c482 2907 struct perf_event_context *ctx = event->ctx;
0793a61d 2908
ad3a37de 2909 WARN_ON_ONCE(ctx->parent_ctx);
a0507c84
PZ
2910 /*
2911 * There are two ways this annotation is useful:
2912 *
2913 * 1) there is a lock recursion from perf_event_exit_task
2914 * see the comment there.
2915 *
2916 * 2) there is a lock-inversion with mmap_sem through
2917 * perf_event_read_group(), which takes faults while
2918 * holding ctx->mutex, however this is called after
2919 * the last filedesc died, so there is no possibility
2920 * to trigger the AB-BA case.
2921 */
2922 mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
050735b0 2923 raw_spin_lock_irq(&ctx->lock);
8a49542c 2924 perf_group_detach(event);
050735b0 2925 raw_spin_unlock_irq(&ctx->lock);
e03a9a55 2926 perf_remove_from_context(event);
d859e29f 2927 mutex_unlock(&ctx->mutex);
0793a61d 2928
cdd6c482 2929 free_event(event);
0793a61d
TG
2930
2931 return 0;
2932}
a66a3052 2933EXPORT_SYMBOL_GPL(perf_event_release_kernel);
0793a61d 2934
a66a3052
PZ
2935/*
2936 * Called when the last reference to the file is gone.
2937 */
2938static int perf_release(struct inode *inode, struct file *file)
fb0459d7 2939{
a66a3052 2940 struct perf_event *event = file->private_data;
8882135b 2941 struct task_struct *owner;
fb0459d7 2942
a66a3052 2943 file->private_data = NULL;
fb0459d7 2944
8882135b
PZ
2945 rcu_read_lock();
2946 owner = ACCESS_ONCE(event->owner);
2947 /*
2948 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
2949 * !owner it means the list deletion is complete and we can indeed
2950 * free this event, otherwise we need to serialize on
2951 * owner->perf_event_mutex.
2952 */
2953 smp_read_barrier_depends();
2954 if (owner) {
2955 /*
2956 * Since delayed_put_task_struct() also drops the last
2957 * task reference we can safely take a new reference
2958 * while holding the rcu_read_lock().
2959 */
2960 get_task_struct(owner);
2961 }
2962 rcu_read_unlock();
2963
2964 if (owner) {
2965 mutex_lock(&owner->perf_event_mutex);
2966 /*
2967 * We have to re-check the event->owner field, if it is cleared
2968 * we raced with perf_event_exit_task(), acquiring the mutex
2969 * ensured they're done, and we can proceed with freeing the
2970 * event.
2971 */
2972 if (event->owner)
2973 list_del_init(&event->owner_entry);
2974 mutex_unlock(&owner->perf_event_mutex);
2975 put_task_struct(owner);
2976 }
2977
a66a3052 2978 return perf_event_release_kernel(event);
fb0459d7 2979}
fb0459d7 2980
59ed446f 2981u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
e53c0994 2982{
cdd6c482 2983 struct perf_event *child;
e53c0994
PZ
2984 u64 total = 0;
2985
59ed446f
PZ
2986 *enabled = 0;
2987 *running = 0;
2988
6f10581a 2989 mutex_lock(&event->child_mutex);
cdd6c482 2990 total += perf_event_read(event);
59ed446f
PZ
2991 *enabled += event->total_time_enabled +
2992 atomic64_read(&event->child_total_time_enabled);
2993 *running += event->total_time_running +
2994 atomic64_read(&event->child_total_time_running);
2995
2996 list_for_each_entry(child, &event->child_list, child_list) {
cdd6c482 2997 total += perf_event_read(child);
59ed446f
PZ
2998 *enabled += child->total_time_enabled;
2999 *running += child->total_time_running;
3000 }
6f10581a 3001 mutex_unlock(&event->child_mutex);
e53c0994
PZ
3002
3003 return total;
3004}
fb0459d7 3005EXPORT_SYMBOL_GPL(perf_event_read_value);
e53c0994 3006
cdd6c482 3007static int perf_event_read_group(struct perf_event *event,
3dab77fb
PZ
3008 u64 read_format, char __user *buf)
3009{
cdd6c482 3010 struct perf_event *leader = event->group_leader, *sub;
6f10581a
PZ
3011 int n = 0, size = 0, ret = -EFAULT;
3012 struct perf_event_context *ctx = leader->ctx;
abf4868b 3013 u64 values[5];
59ed446f 3014 u64 count, enabled, running;
abf4868b 3015
6f10581a 3016 mutex_lock(&ctx->mutex);
59ed446f 3017 count = perf_event_read_value(leader, &enabled, &running);
3dab77fb
PZ
3018
3019 values[n++] = 1 + leader->nr_siblings;
59ed446f
PZ
3020 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3021 values[n++] = enabled;
3022 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3023 values[n++] = running;
abf4868b
PZ
3024 values[n++] = count;
3025 if (read_format & PERF_FORMAT_ID)
3026 values[n++] = primary_event_id(leader);
3dab77fb
PZ
3027
3028 size = n * sizeof(u64);
3029
3030 if (copy_to_user(buf, values, size))
6f10581a 3031 goto unlock;
3dab77fb 3032
6f10581a 3033 ret = size;
3dab77fb 3034
65abc865 3035 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
abf4868b 3036 n = 0;
3dab77fb 3037
59ed446f 3038 values[n++] = perf_event_read_value(sub, &enabled, &running);
abf4868b
PZ
3039 if (read_format & PERF_FORMAT_ID)
3040 values[n++] = primary_event_id(sub);
3041
3042 size = n * sizeof(u64);
3043
184d3da8 3044 if (copy_to_user(buf + ret, values, size)) {
6f10581a
PZ
3045 ret = -EFAULT;
3046 goto unlock;
3047 }
abf4868b
PZ
3048
3049 ret += size;
3dab77fb 3050 }
6f10581a
PZ
3051unlock:
3052 mutex_unlock(&ctx->mutex);
3dab77fb 3053
abf4868b 3054 return ret;
3dab77fb
PZ
3055}
3056
cdd6c482 3057static int perf_event_read_one(struct perf_event *event,
3dab77fb
PZ
3058 u64 read_format, char __user *buf)
3059{
59ed446f 3060 u64 enabled, running;
3dab77fb
PZ
3061 u64 values[4];
3062 int n = 0;
3063
59ed446f
PZ
3064 values[n++] = perf_event_read_value(event, &enabled, &running);
3065 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3066 values[n++] = enabled;
3067 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3068 values[n++] = running;
3dab77fb 3069 if (read_format & PERF_FORMAT_ID)
cdd6c482 3070 values[n++] = primary_event_id(event);
3dab77fb
PZ
3071
3072 if (copy_to_user(buf, values, n * sizeof(u64)))
3073 return -EFAULT;
3074
3075 return n * sizeof(u64);
3076}
3077
0793a61d 3078/*
cdd6c482 3079 * Read the performance event - simple non blocking version for now
0793a61d
TG
3080 */
3081static ssize_t
cdd6c482 3082perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
0793a61d 3083{
cdd6c482 3084 u64 read_format = event->attr.read_format;
3dab77fb 3085 int ret;
0793a61d 3086
3b6f9e5c 3087 /*
cdd6c482 3088 * Return end-of-file for a read on a event that is in
3b6f9e5c
PM
3089 * error state (i.e. because it was pinned but it couldn't be
3090 * scheduled on to the CPU at some point).
3091 */
cdd6c482 3092 if (event->state == PERF_EVENT_STATE_ERROR)
3b6f9e5c
PM
3093 return 0;
3094
c320c7b7 3095 if (count < event->read_size)
3dab77fb
PZ
3096 return -ENOSPC;
3097
cdd6c482 3098 WARN_ON_ONCE(event->ctx->parent_ctx);
3dab77fb 3099 if (read_format & PERF_FORMAT_GROUP)
cdd6c482 3100 ret = perf_event_read_group(event, read_format, buf);
3dab77fb 3101 else
cdd6c482 3102 ret = perf_event_read_one(event, read_format, buf);
0793a61d 3103
3dab77fb 3104 return ret;
0793a61d
TG
3105}
3106
0793a61d
TG
3107static ssize_t
3108perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
3109{
cdd6c482 3110 struct perf_event *event = file->private_data;
0793a61d 3111
cdd6c482 3112 return perf_read_hw(event, buf, count);
0793a61d
TG
3113}
3114
3115static unsigned int perf_poll(struct file *file, poll_table *wait)
3116{
cdd6c482 3117 struct perf_event *event = file->private_data;
76369139 3118 struct ring_buffer *rb;
c33a0bc4 3119 unsigned int events = POLL_HUP;
c7138f37 3120
10c6db11
PZ
3121 /*
3122 * Race between perf_event_set_output() and perf_poll(): perf_poll()
3123 * grabs the rb reference but perf_event_set_output() overrides it.
3124 * Here is the timeline for two threads T1, T2:
3125 * t0: T1, rb = rcu_dereference(event->rb)
3126 * t1: T2, old_rb = event->rb
3127 * t2: T2, event->rb = new rb
3128 * t3: T2, ring_buffer_detach(old_rb)
3129 * t4: T1, ring_buffer_attach(rb1)
3130 * t5: T1, poll_wait(event->waitq)
3131 *
3132 * To avoid this problem, we grab mmap_mutex in perf_poll()
3133 * thereby ensuring that the assignment of the new ring buffer
3134 * and the detachment of the old buffer appear atomic to perf_poll()
3135 */
3136 mutex_lock(&event->mmap_mutex);
3137
c7138f37 3138 rcu_read_lock();
76369139 3139 rb = rcu_dereference(event->rb);
10c6db11
PZ
3140 if (rb) {
3141 ring_buffer_attach(event, rb);
76369139 3142 events = atomic_xchg(&rb->poll, 0);
10c6db11 3143 }
c7138f37 3144 rcu_read_unlock();
0793a61d 3145
10c6db11
PZ
3146 mutex_unlock(&event->mmap_mutex);
3147
cdd6c482 3148 poll_wait(file, &event->waitq, wait);
0793a61d 3149
0793a61d
TG
3150 return events;
3151}
3152
cdd6c482 3153static void perf_event_reset(struct perf_event *event)
6de6a7b9 3154{
cdd6c482 3155 (void)perf_event_read(event);
e7850595 3156 local64_set(&event->count, 0);
cdd6c482 3157 perf_event_update_userpage(event);
3df5edad
PZ
3158}
3159
c93f7669 3160/*
cdd6c482
IM
3161 * Holding the top-level event's child_mutex means that any
3162 * descendant process that has inherited this event will block
3163 * in sync_child_event if it goes to exit, thus satisfying the
3164 * task existence requirements of perf_event_enable/disable.
c93f7669 3165 */
cdd6c482
IM
3166static void perf_event_for_each_child(struct perf_event *event,
3167 void (*func)(struct perf_event *))
3df5edad 3168{
cdd6c482 3169 struct perf_event *child;
3df5edad 3170
cdd6c482
IM
3171 WARN_ON_ONCE(event->ctx->parent_ctx);
3172 mutex_lock(&event->child_mutex);
3173 func(event);
3174 list_for_each_entry(child, &event->child_list, child_list)
3df5edad 3175 func(child);
cdd6c482 3176 mutex_unlock(&event->child_mutex);
3df5edad
PZ
3177}
3178
cdd6c482
IM
3179static void perf_event_for_each(struct perf_event *event,
3180 void (*func)(struct perf_event *))
3df5edad 3181{
cdd6c482
IM
3182 struct perf_event_context *ctx = event->ctx;
3183 struct perf_event *sibling;
3df5edad 3184
75f937f2
PZ
3185 WARN_ON_ONCE(ctx->parent_ctx);
3186 mutex_lock(&ctx->mutex);
cdd6c482 3187 event = event->group_leader;
75f937f2 3188
cdd6c482 3189 perf_event_for_each_child(event, func);
cdd6c482 3190 list_for_each_entry(sibling, &event->sibling_list, group_entry)
724b6daa 3191 perf_event_for_each_child(sibling, func);
75f937f2 3192 mutex_unlock(&ctx->mutex);
6de6a7b9
PZ
3193}
3194
cdd6c482 3195static int perf_event_period(struct perf_event *event, u64 __user *arg)
08247e31 3196{
cdd6c482 3197 struct perf_event_context *ctx = event->ctx;
08247e31
PZ
3198 int ret = 0;
3199 u64 value;
3200
6c7e550f 3201 if (!is_sampling_event(event))
08247e31
PZ
3202 return -EINVAL;
3203
ad0cf347 3204 if (copy_from_user(&value, arg, sizeof(value)))
08247e31
PZ
3205 return -EFAULT;
3206
3207 if (!value)
3208 return -EINVAL;
3209
e625cce1 3210 raw_spin_lock_irq(&ctx->lock);
cdd6c482
IM
3211 if (event->attr.freq) {
3212 if (value > sysctl_perf_event_sample_rate) {
08247e31
PZ
3213 ret = -EINVAL;
3214 goto unlock;
3215 }
3216
cdd6c482 3217 event->attr.sample_freq = value;
08247e31 3218 } else {
cdd6c482
IM
3219 event->attr.sample_period = value;
3220 event->hw.sample_period = value;
08247e31
PZ
3221 }
3222unlock:
e625cce1 3223 raw_spin_unlock_irq(&ctx->lock);
08247e31
PZ
3224
3225 return ret;
3226}
3227
ac9721f3
PZ
3228static const struct file_operations perf_fops;
3229
3230static struct perf_event *perf_fget_light(int fd, int *fput_needed)
3231{
3232 struct file *file;
3233
3234 file = fget_light(fd, fput_needed);
3235 if (!file)
3236 return ERR_PTR(-EBADF);
3237
3238 if (file->f_op != &perf_fops) {
3239 fput_light(file, *fput_needed);
3240 *fput_needed = 0;
3241 return ERR_PTR(-EBADF);
3242 }
3243
3244 return file->private_data;
3245}
3246
3247static int perf_event_set_output(struct perf_event *event,
3248 struct perf_event *output_event);
6fb2915d 3249static int perf_event_set_filter(struct perf_event *event, void __user *arg);
a4be7c27 3250
d859e29f
PM
3251static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
3252{
cdd6c482
IM
3253 struct perf_event *event = file->private_data;
3254 void (*func)(struct perf_event *);
3df5edad 3255 u32 flags = arg;
d859e29f
PM
3256
3257 switch (cmd) {
cdd6c482
IM
3258 case PERF_EVENT_IOC_ENABLE:
3259 func = perf_event_enable;
d859e29f 3260 break;
cdd6c482
IM
3261 case PERF_EVENT_IOC_DISABLE:
3262 func = perf_event_disable;
79f14641 3263 break;
cdd6c482
IM
3264 case PERF_EVENT_IOC_RESET:
3265 func = perf_event_reset;
6de6a7b9 3266 break;
3df5edad 3267
cdd6c482
IM
3268 case PERF_EVENT_IOC_REFRESH:
3269 return perf_event_refresh(event, arg);
08247e31 3270
cdd6c482
IM
3271 case PERF_EVENT_IOC_PERIOD:
3272 return perf_event_period(event, (u64 __user *)arg);
08247e31 3273
cdd6c482 3274 case PERF_EVENT_IOC_SET_OUTPUT:
ac9721f3
PZ
3275 {
3276 struct perf_event *output_event = NULL;
3277 int fput_needed = 0;
3278 int ret;
3279
3280 if (arg != -1) {
3281 output_event = perf_fget_light(arg, &fput_needed);
3282 if (IS_ERR(output_event))
3283 return PTR_ERR(output_event);
3284 }
3285
3286 ret = perf_event_set_output(event, output_event);
3287 if (output_event)
3288 fput_light(output_event->filp, fput_needed);
3289
3290 return ret;
3291 }
a4be7c27 3292
6fb2915d
LZ
3293 case PERF_EVENT_IOC_SET_FILTER:
3294 return perf_event_set_filter(event, (void __user *)arg);
3295
d859e29f 3296 default:
3df5edad 3297 return -ENOTTY;
d859e29f 3298 }
3df5edad
PZ
3299
3300 if (flags & PERF_IOC_FLAG_GROUP)
cdd6c482 3301 perf_event_for_each(event, func);
3df5edad 3302 else
cdd6c482 3303 perf_event_for_each_child(event, func);
3df5edad
PZ
3304
3305 return 0;
d859e29f
PM
3306}
3307
cdd6c482 3308int perf_event_task_enable(void)
771d7cde 3309{
cdd6c482 3310 struct perf_event *event;
771d7cde 3311
cdd6c482
IM
3312 mutex_lock(&current->perf_event_mutex);
3313 list_for_each_entry(event, &current->perf_event_list, owner_entry)
3314 perf_event_for_each_child(event, perf_event_enable);
3315 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
3316
3317 return 0;
3318}
3319
cdd6c482 3320int perf_event_task_disable(void)
771d7cde 3321{
cdd6c482 3322 struct perf_event *event;
771d7cde 3323
cdd6c482
IM
3324 mutex_lock(&current->perf_event_mutex);
3325 list_for_each_entry(event, &current->perf_event_list, owner_entry)
3326 perf_event_for_each_child(event, perf_event_disable);
3327 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
3328
3329 return 0;
3330}
3331
cdd6c482 3332static int perf_event_index(struct perf_event *event)
194002b2 3333{
a4eaf7f1
PZ
3334 if (event->hw.state & PERF_HES_STOPPED)
3335 return 0;
3336
cdd6c482 3337 if (event->state != PERF_EVENT_STATE_ACTIVE)
194002b2
PZ
3338 return 0;
3339
35edc2a5 3340 return event->pmu->event_idx(event);
194002b2
PZ
3341}
3342
c4794295 3343static void calc_timer_values(struct perf_event *event,
e3f3541c 3344 u64 *now,
7f310a5d
EM
3345 u64 *enabled,
3346 u64 *running)
c4794295 3347{
e3f3541c 3348 u64 ctx_time;
c4794295 3349
e3f3541c
PZ
3350 *now = perf_clock();
3351 ctx_time = event->shadow_ctx_time + *now;
c4794295
EM
3352 *enabled = ctx_time - event->tstamp_enabled;
3353 *running = ctx_time - event->tstamp_running;
3354}
3355
c7206205 3356void __weak arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now)
e3f3541c
PZ
3357{
3358}
3359
38ff667b
PZ
3360/*
3361 * Callers need to ensure there can be no nesting of this function, otherwise
3362 * the seqlock logic goes bad. We can not serialize this because the arch
3363 * code calls this from NMI context.
3364 */
cdd6c482 3365void perf_event_update_userpage(struct perf_event *event)
37d81828 3366{
cdd6c482 3367 struct perf_event_mmap_page *userpg;
76369139 3368 struct ring_buffer *rb;
e3f3541c 3369 u64 enabled, running, now;
38ff667b
PZ
3370
3371 rcu_read_lock();
0d641208
EM
3372 /*
3373 * compute total_time_enabled, total_time_running
3374 * based on snapshot values taken when the event
3375 * was last scheduled in.
3376 *
3377 * we cannot simply called update_context_time()
3378 * because of locking issue as we can be called in
3379 * NMI context
3380 */
e3f3541c 3381 calc_timer_values(event, &now, &enabled, &running);
76369139
FW
3382 rb = rcu_dereference(event->rb);
3383 if (!rb)
38ff667b
PZ
3384 goto unlock;
3385
76369139 3386 userpg = rb->user_page;
37d81828 3387
7b732a75
PZ
3388 /*
3389 * Disable preemption so as to not let the corresponding user-space
3390 * spin too long if we get preempted.
3391 */
3392 preempt_disable();
37d81828 3393 ++userpg->lock;
92f22a38 3394 barrier();
cdd6c482 3395 userpg->index = perf_event_index(event);
b5e58793 3396 userpg->offset = perf_event_count(event);
365a4038 3397 if (userpg->index)
e7850595 3398 userpg->offset -= local64_read(&event->hw.prev_count);
7b732a75 3399
0d641208 3400 userpg->time_enabled = enabled +
cdd6c482 3401 atomic64_read(&event->child_total_time_enabled);
7f8b4e4e 3402
0d641208 3403 userpg->time_running = running +
cdd6c482 3404 atomic64_read(&event->child_total_time_running);
7f8b4e4e 3405
c7206205 3406 arch_perf_update_userpage(userpg, now);
e3f3541c 3407
92f22a38 3408 barrier();
37d81828 3409 ++userpg->lock;
7b732a75 3410 preempt_enable();
38ff667b 3411unlock:
7b732a75 3412 rcu_read_unlock();
37d81828
PM
3413}
3414
906010b2
PZ
3415static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
3416{
3417 struct perf_event *event = vma->vm_file->private_data;
76369139 3418 struct ring_buffer *rb;
906010b2
PZ
3419 int ret = VM_FAULT_SIGBUS;
3420
3421 if (vmf->flags & FAULT_FLAG_MKWRITE) {
3422 if (vmf->pgoff == 0)
3423 ret = 0;
3424 return ret;
3425 }
3426
3427 rcu_read_lock();
76369139
FW
3428 rb = rcu_dereference(event->rb);
3429 if (!rb)
906010b2
PZ
3430 goto unlock;
3431
3432 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
3433 goto unlock;
3434
76369139 3435 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
906010b2
PZ
3436 if (!vmf->page)
3437 goto unlock;
3438
3439 get_page(vmf->page);
3440 vmf->page->mapping = vma->vm_file->f_mapping;
3441 vmf->page->index = vmf->pgoff;
3442
3443 ret = 0;
3444unlock:
3445 rcu_read_unlock();
3446
3447 return ret;
3448}
3449
10c6db11
PZ
3450static void ring_buffer_attach(struct perf_event *event,
3451 struct ring_buffer *rb)
3452{
3453 unsigned long flags;
3454
3455 if (!list_empty(&event->rb_entry))
3456 return;
3457
3458 spin_lock_irqsave(&rb->event_lock, flags);
3459 if (!list_empty(&event->rb_entry))
3460 goto unlock;
3461
3462 list_add(&event->rb_entry, &rb->event_list);
3463unlock:
3464 spin_unlock_irqrestore(&rb->event_lock, flags);
3465}
3466
3467static void ring_buffer_detach(struct perf_event *event,
3468 struct ring_buffer *rb)
3469{
3470 unsigned long flags;
3471
3472 if (list_empty(&event->rb_entry))
3473 return;
3474
3475 spin_lock_irqsave(&rb->event_lock, flags);
3476 list_del_init(&event->rb_entry);
3477 wake_up_all(&event->waitq);
3478 spin_unlock_irqrestore(&rb->event_lock, flags);
3479}
3480
3481static void ring_buffer_wakeup(struct perf_event *event)
3482{
3483 struct ring_buffer *rb;
3484
3485 rcu_read_lock();
3486 rb = rcu_dereference(event->rb);
44b7f4b9
WD
3487 if (!rb)
3488 goto unlock;
3489
3490 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
10c6db11 3491 wake_up_all(&event->waitq);
44b7f4b9
WD
3492
3493unlock:
10c6db11
PZ
3494 rcu_read_unlock();
3495}
3496
76369139 3497static void rb_free_rcu(struct rcu_head *rcu_head)
906010b2 3498{
76369139 3499 struct ring_buffer *rb;
906010b2 3500
76369139
FW
3501 rb = container_of(rcu_head, struct ring_buffer, rcu_head);
3502 rb_free(rb);
7b732a75
PZ
3503}
3504
76369139 3505static struct ring_buffer *ring_buffer_get(struct perf_event *event)
7b732a75 3506{
76369139 3507 struct ring_buffer *rb;
7b732a75 3508
ac9721f3 3509 rcu_read_lock();
76369139
FW
3510 rb = rcu_dereference(event->rb);
3511 if (rb) {
3512 if (!atomic_inc_not_zero(&rb->refcount))
3513 rb = NULL;
ac9721f3
PZ
3514 }
3515 rcu_read_unlock();
3516
76369139 3517 return rb;
ac9721f3
PZ
3518}
3519
76369139 3520static void ring_buffer_put(struct ring_buffer *rb)
ac9721f3 3521{
10c6db11
PZ
3522 struct perf_event *event, *n;
3523 unsigned long flags;
3524
76369139 3525 if (!atomic_dec_and_test(&rb->refcount))
ac9721f3 3526 return;
7b732a75 3527
10c6db11
PZ
3528 spin_lock_irqsave(&rb->event_lock, flags);
3529 list_for_each_entry_safe(event, n, &rb->event_list, rb_entry) {
3530 list_del_init(&event->rb_entry);
3531 wake_up_all(&event->waitq);
3532 }
3533 spin_unlock_irqrestore(&rb->event_lock, flags);
3534
76369139 3535 call_rcu(&rb->rcu_head, rb_free_rcu);
7b732a75
PZ
3536}
3537
3538static void perf_mmap_open(struct vm_area_struct *vma)
3539{
cdd6c482 3540 struct perf_event *event = vma->vm_file->private_data;
7b732a75 3541
cdd6c482 3542 atomic_inc(&event->mmap_count);
7b732a75
PZ
3543}
3544
3545static void perf_mmap_close(struct vm_area_struct *vma)
3546{
cdd6c482 3547 struct perf_event *event = vma->vm_file->private_data;
7b732a75 3548
cdd6c482 3549 if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
76369139 3550 unsigned long size = perf_data_size(event->rb);
ac9721f3 3551 struct user_struct *user = event->mmap_user;
76369139 3552 struct ring_buffer *rb = event->rb;
789f90fc 3553
906010b2 3554 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
bc3e53f6 3555 vma->vm_mm->pinned_vm -= event->mmap_locked;
76369139 3556 rcu_assign_pointer(event->rb, NULL);
10c6db11 3557 ring_buffer_detach(event, rb);
cdd6c482 3558 mutex_unlock(&event->mmap_mutex);
ac9721f3 3559
76369139 3560 ring_buffer_put(rb);
ac9721f3 3561 free_uid(user);
7b732a75 3562 }
37d81828
PM
3563}
3564
f0f37e2f 3565static const struct vm_operations_struct perf_mmap_vmops = {
43a21ea8
PZ
3566 .open = perf_mmap_open,
3567 .close = perf_mmap_close,
3568 .fault = perf_mmap_fault,
3569 .page_mkwrite = perf_mmap_fault,
37d81828
PM
3570};
3571
3572static int perf_mmap(struct file *file, struct vm_area_struct *vma)
3573{
cdd6c482 3574 struct perf_event *event = file->private_data;
22a4f650 3575 unsigned long user_locked, user_lock_limit;
789f90fc 3576 struct user_struct *user = current_user();
22a4f650 3577 unsigned long locked, lock_limit;
76369139 3578 struct ring_buffer *rb;
7b732a75
PZ
3579 unsigned long vma_size;
3580 unsigned long nr_pages;
789f90fc 3581 long user_extra, extra;
d57e34fd 3582 int ret = 0, flags = 0;
37d81828 3583
c7920614
PZ
3584 /*
3585 * Don't allow mmap() of inherited per-task counters. This would
3586 * create a performance issue due to all children writing to the
76369139 3587 * same rb.
c7920614
PZ
3588 */
3589 if (event->cpu == -1 && event->attr.inherit)
3590 return -EINVAL;
3591
43a21ea8 3592 if (!(vma->vm_flags & VM_SHARED))
37d81828 3593 return -EINVAL;
7b732a75
PZ
3594
3595 vma_size = vma->vm_end - vma->vm_start;
3596 nr_pages = (vma_size / PAGE_SIZE) - 1;
3597
7730d865 3598 /*
76369139 3599 * If we have rb pages ensure they're a power-of-two number, so we
7730d865
PZ
3600 * can do bitmasks instead of modulo.
3601 */
3602 if (nr_pages != 0 && !is_power_of_2(nr_pages))
37d81828
PM
3603 return -EINVAL;
3604
7b732a75 3605 if (vma_size != PAGE_SIZE * (1 + nr_pages))
37d81828
PM
3606 return -EINVAL;
3607
7b732a75
PZ
3608 if (vma->vm_pgoff != 0)
3609 return -EINVAL;
37d81828 3610
cdd6c482
IM
3611 WARN_ON_ONCE(event->ctx->parent_ctx);
3612 mutex_lock(&event->mmap_mutex);
76369139
FW
3613 if (event->rb) {
3614 if (event->rb->nr_pages == nr_pages)
3615 atomic_inc(&event->rb->refcount);
ac9721f3 3616 else
ebb3c4c4
PZ
3617 ret = -EINVAL;
3618 goto unlock;
3619 }
3620
789f90fc 3621 user_extra = nr_pages + 1;
cdd6c482 3622 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
a3862d3f
IM
3623
3624 /*
3625 * Increase the limit linearly with more CPUs:
3626 */
3627 user_lock_limit *= num_online_cpus();
3628
789f90fc 3629 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
c5078f78 3630
789f90fc
PZ
3631 extra = 0;
3632 if (user_locked > user_lock_limit)
3633 extra = user_locked - user_lock_limit;
7b732a75 3634
78d7d407 3635 lock_limit = rlimit(RLIMIT_MEMLOCK);
7b732a75 3636 lock_limit >>= PAGE_SHIFT;
bc3e53f6 3637 locked = vma->vm_mm->pinned_vm + extra;
7b732a75 3638
459ec28a
IM
3639 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
3640 !capable(CAP_IPC_LOCK)) {
ebb3c4c4
PZ
3641 ret = -EPERM;
3642 goto unlock;
3643 }
7b732a75 3644
76369139 3645 WARN_ON(event->rb);
906010b2 3646
d57e34fd 3647 if (vma->vm_flags & VM_WRITE)
76369139 3648 flags |= RING_BUFFER_WRITABLE;
d57e34fd 3649
4ec8363d
VW
3650 rb = rb_alloc(nr_pages,
3651 event->attr.watermark ? event->attr.wakeup_watermark : 0,
3652 event->cpu, flags);
3653
76369139 3654 if (!rb) {
ac9721f3 3655 ret = -ENOMEM;
ebb3c4c4 3656 goto unlock;
ac9721f3 3657 }
76369139 3658 rcu_assign_pointer(event->rb, rb);
43a21ea8 3659
ac9721f3
PZ
3660 atomic_long_add(user_extra, &user->locked_vm);
3661 event->mmap_locked = extra;
3662 event->mmap_user = get_current_user();
bc3e53f6 3663 vma->vm_mm->pinned_vm += event->mmap_locked;
ac9721f3 3664
9a0f05cb
PZ
3665 perf_event_update_userpage(event);
3666
ebb3c4c4 3667unlock:
ac9721f3
PZ
3668 if (!ret)
3669 atomic_inc(&event->mmap_count);
cdd6c482 3670 mutex_unlock(&event->mmap_mutex);
37d81828 3671
37d81828
PM
3672 vma->vm_flags |= VM_RESERVED;
3673 vma->vm_ops = &perf_mmap_vmops;
7b732a75
PZ
3674
3675 return ret;
37d81828
PM
3676}
3677
3c446b3d
PZ
3678static int perf_fasync(int fd, struct file *filp, int on)
3679{
3c446b3d 3680 struct inode *inode = filp->f_path.dentry->d_inode;
cdd6c482 3681 struct perf_event *event = filp->private_data;
3c446b3d
PZ
3682 int retval;
3683
3684 mutex_lock(&inode->i_mutex);
cdd6c482 3685 retval = fasync_helper(fd, filp, on, &event->fasync);
3c446b3d
PZ
3686 mutex_unlock(&inode->i_mutex);
3687
3688 if (retval < 0)
3689 return retval;
3690
3691 return 0;
3692}
3693
0793a61d 3694static const struct file_operations perf_fops = {
3326c1ce 3695 .llseek = no_llseek,
0793a61d
TG
3696 .release = perf_release,
3697 .read = perf_read,
3698 .poll = perf_poll,
d859e29f
PM
3699 .unlocked_ioctl = perf_ioctl,
3700 .compat_ioctl = perf_ioctl,
37d81828 3701 .mmap = perf_mmap,
3c446b3d 3702 .fasync = perf_fasync,
0793a61d
TG
3703};
3704
925d519a 3705/*
cdd6c482 3706 * Perf event wakeup
925d519a
PZ
3707 *
3708 * If there's data, ensure we set the poll() state and publish everything
3709 * to user-space before waking everybody up.
3710 */
3711
cdd6c482 3712void perf_event_wakeup(struct perf_event *event)
925d519a 3713{
10c6db11 3714 ring_buffer_wakeup(event);
4c9e2542 3715
cdd6c482
IM
3716 if (event->pending_kill) {
3717 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
3718 event->pending_kill = 0;
4c9e2542 3719 }
925d519a
PZ
3720}
3721
e360adbe 3722static void perf_pending_event(struct irq_work *entry)
79f14641 3723{
cdd6c482
IM
3724 struct perf_event *event = container_of(entry,
3725 struct perf_event, pending);
79f14641 3726
cdd6c482
IM
3727 if (event->pending_disable) {
3728 event->pending_disable = 0;
3729 __perf_event_disable(event);
79f14641
PZ
3730 }
3731
cdd6c482
IM
3732 if (event->pending_wakeup) {
3733 event->pending_wakeup = 0;
3734 perf_event_wakeup(event);
79f14641
PZ
3735 }
3736}
3737
39447b38
ZY
3738/*
3739 * We assume there is only KVM supporting the callbacks.
3740 * Later on, we might change it to a list if there is
3741 * another virtualization implementation supporting the callbacks.
3742 */
3743struct perf_guest_info_callbacks *perf_guest_cbs;
3744
3745int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3746{
3747 perf_guest_cbs = cbs;
3748 return 0;
3749}
3750EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
3751
3752int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3753{
3754 perf_guest_cbs = NULL;
3755 return 0;
3756}
3757EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
3758
4018994f
JO
3759static void
3760perf_output_sample_regs(struct perf_output_handle *handle,
3761 struct pt_regs *regs, u64 mask)
3762{
3763 int bit;
3764
3765 for_each_set_bit(bit, (const unsigned long *) &mask,
3766 sizeof(mask) * BITS_PER_BYTE) {
3767 u64 val;
3768
3769 val = perf_reg_value(regs, bit);
3770 perf_output_put(handle, val);
3771 }
3772}
3773
3774static void perf_sample_regs_user(struct perf_regs_user *regs_user,
3775 struct pt_regs *regs)
3776{
3777 if (!user_mode(regs)) {
3778 if (current->mm)
3779 regs = task_pt_regs(current);
3780 else
3781 regs = NULL;
3782 }
3783
3784 if (regs) {
3785 regs_user->regs = regs;
3786 regs_user->abi = perf_reg_abi(current);
3787 }
3788}
3789
c980d109
ACM
3790static void __perf_event_header__init_id(struct perf_event_header *header,
3791 struct perf_sample_data *data,
3792 struct perf_event *event)
6844c09d
ACM
3793{
3794 u64 sample_type = event->attr.sample_type;
3795
3796 data->type = sample_type;
3797 header->size += event->id_header_size;
3798
3799 if (sample_type & PERF_SAMPLE_TID) {
3800 /* namespace issues */
3801 data->tid_entry.pid = perf_event_pid(event, current);
3802 data->tid_entry.tid = perf_event_tid(event, current);
3803 }
3804
3805 if (sample_type & PERF_SAMPLE_TIME)
3806 data->time = perf_clock();
3807
3808 if (sample_type & PERF_SAMPLE_ID)
3809 data->id = primary_event_id(event);
3810
3811 if (sample_type & PERF_SAMPLE_STREAM_ID)
3812 data->stream_id = event->id;
3813
3814 if (sample_type & PERF_SAMPLE_CPU) {
3815 data->cpu_entry.cpu = raw_smp_processor_id();
3816 data->cpu_entry.reserved = 0;
3817 }
3818}
3819
76369139
FW
3820void perf_event_header__init_id(struct perf_event_header *header,
3821 struct perf_sample_data *data,
3822 struct perf_event *event)
c980d109
ACM
3823{
3824 if (event->attr.sample_id_all)
3825 __perf_event_header__init_id(header, data, event);
3826}
3827
3828static void __perf_event__output_id_sample(struct perf_output_handle *handle,
3829 struct perf_sample_data *data)
3830{
3831 u64 sample_type = data->type;
3832
3833 if (sample_type & PERF_SAMPLE_TID)
3834 perf_output_put(handle, data->tid_entry);
3835
3836 if (sample_type & PERF_SAMPLE_TIME)
3837 perf_output_put(handle, data->time);
3838
3839 if (sample_type & PERF_SAMPLE_ID)
3840 perf_output_put(handle, data->id);
3841
3842 if (sample_type & PERF_SAMPLE_STREAM_ID)
3843 perf_output_put(handle, data->stream_id);
3844
3845 if (sample_type & PERF_SAMPLE_CPU)
3846 perf_output_put(handle, data->cpu_entry);
3847}
3848
76369139
FW
3849void perf_event__output_id_sample(struct perf_event *event,
3850 struct perf_output_handle *handle,
3851 struct perf_sample_data *sample)
c980d109
ACM
3852{
3853 if (event->attr.sample_id_all)
3854 __perf_event__output_id_sample(handle, sample);
3855}
3856
3dab77fb 3857static void perf_output_read_one(struct perf_output_handle *handle,
eed01528
SE
3858 struct perf_event *event,
3859 u64 enabled, u64 running)
3dab77fb 3860{
cdd6c482 3861 u64 read_format = event->attr.read_format;
3dab77fb
PZ
3862 u64 values[4];
3863 int n = 0;
3864
b5e58793 3865 values[n++] = perf_event_count(event);
3dab77fb 3866 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
eed01528 3867 values[n++] = enabled +
cdd6c482 3868 atomic64_read(&event->child_total_time_enabled);
3dab77fb
PZ
3869 }
3870 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
eed01528 3871 values[n++] = running +
cdd6c482 3872 atomic64_read(&event->child_total_time_running);
3dab77fb
PZ
3873 }
3874 if (read_format & PERF_FORMAT_ID)
cdd6c482 3875 values[n++] = primary_event_id(event);
3dab77fb 3876
76369139 3877 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
3878}
3879
3880/*
cdd6c482 3881 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3dab77fb
PZ
3882 */
3883static void perf_output_read_group(struct perf_output_handle *handle,
eed01528
SE
3884 struct perf_event *event,
3885 u64 enabled, u64 running)
3dab77fb 3886{
cdd6c482
IM
3887 struct perf_event *leader = event->group_leader, *sub;
3888 u64 read_format = event->attr.read_format;
3dab77fb
PZ
3889 u64 values[5];
3890 int n = 0;
3891
3892 values[n++] = 1 + leader->nr_siblings;
3893
3894 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
eed01528 3895 values[n++] = enabled;
3dab77fb
PZ
3896
3897 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
eed01528 3898 values[n++] = running;
3dab77fb 3899
cdd6c482 3900 if (leader != event)
3dab77fb
PZ
3901 leader->pmu->read(leader);
3902
b5e58793 3903 values[n++] = perf_event_count(leader);
3dab77fb 3904 if (read_format & PERF_FORMAT_ID)
cdd6c482 3905 values[n++] = primary_event_id(leader);
3dab77fb 3906
76369139 3907 __output_copy(handle, values, n * sizeof(u64));
3dab77fb 3908
65abc865 3909 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3dab77fb
PZ
3910 n = 0;
3911
cdd6c482 3912 if (sub != event)
3dab77fb
PZ
3913 sub->pmu->read(sub);
3914
b5e58793 3915 values[n++] = perf_event_count(sub);
3dab77fb 3916 if (read_format & PERF_FORMAT_ID)
cdd6c482 3917 values[n++] = primary_event_id(sub);
3dab77fb 3918
76369139 3919 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
3920 }
3921}
3922
eed01528
SE
3923#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
3924 PERF_FORMAT_TOTAL_TIME_RUNNING)
3925
3dab77fb 3926static void perf_output_read(struct perf_output_handle *handle,
cdd6c482 3927 struct perf_event *event)
3dab77fb 3928{
e3f3541c 3929 u64 enabled = 0, running = 0, now;
eed01528
SE
3930 u64 read_format = event->attr.read_format;
3931
3932 /*
3933 * compute total_time_enabled, total_time_running
3934 * based on snapshot values taken when the event
3935 * was last scheduled in.
3936 *
3937 * we cannot simply called update_context_time()
3938 * because of locking issue as we are called in
3939 * NMI context
3940 */
c4794295 3941 if (read_format & PERF_FORMAT_TOTAL_TIMES)
e3f3541c 3942 calc_timer_values(event, &now, &enabled, &running);
eed01528 3943
cdd6c482 3944 if (event->attr.read_format & PERF_FORMAT_GROUP)
eed01528 3945 perf_output_read_group(handle, event, enabled, running);
3dab77fb 3946 else
eed01528 3947 perf_output_read_one(handle, event, enabled, running);
3dab77fb
PZ
3948}
3949
5622f295
MM
3950void perf_output_sample(struct perf_output_handle *handle,
3951 struct perf_event_header *header,
3952 struct perf_sample_data *data,
cdd6c482 3953 struct perf_event *event)
5622f295
MM
3954{
3955 u64 sample_type = data->type;
3956
3957 perf_output_put(handle, *header);
3958
3959 if (sample_type & PERF_SAMPLE_IP)
3960 perf_output_put(handle, data->ip);
3961
3962 if (sample_type & PERF_SAMPLE_TID)
3963 perf_output_put(handle, data->tid_entry);
3964
3965 if (sample_type & PERF_SAMPLE_TIME)
3966 perf_output_put(handle, data->time);
3967
3968 if (sample_type & PERF_SAMPLE_ADDR)
3969 perf_output_put(handle, data->addr);
3970
3971 if (sample_type & PERF_SAMPLE_ID)
3972 perf_output_put(handle, data->id);
3973
3974 if (sample_type & PERF_SAMPLE_STREAM_ID)
3975 perf_output_put(handle, data->stream_id);
3976
3977 if (sample_type & PERF_SAMPLE_CPU)
3978 perf_output_put(handle, data->cpu_entry);
3979
3980 if (sample_type & PERF_SAMPLE_PERIOD)
3981 perf_output_put(handle, data->period);
3982
3983 if (sample_type & PERF_SAMPLE_READ)
cdd6c482 3984 perf_output_read(handle, event);
5622f295
MM
3985
3986 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3987 if (data->callchain) {
3988 int size = 1;
3989
3990 if (data->callchain)
3991 size += data->callchain->nr;
3992
3993 size *= sizeof(u64);
3994
76369139 3995 __output_copy(handle, data->callchain, size);
5622f295
MM
3996 } else {
3997 u64 nr = 0;
3998 perf_output_put(handle, nr);
3999 }
4000 }
4001
4002 if (sample_type & PERF_SAMPLE_RAW) {
4003 if (data->raw) {
4004 perf_output_put(handle, data->raw->size);
76369139
FW
4005 __output_copy(handle, data->raw->data,
4006 data->raw->size);
5622f295
MM
4007 } else {
4008 struct {
4009 u32 size;
4010 u32 data;
4011 } raw = {
4012 .size = sizeof(u32),
4013 .data = 0,
4014 };
4015 perf_output_put(handle, raw);
4016 }
4017 }
a7ac67ea
PZ
4018
4019 if (!event->attr.watermark) {
4020 int wakeup_events = event->attr.wakeup_events;
4021
4022 if (wakeup_events) {
4023 struct ring_buffer *rb = handle->rb;
4024 int events = local_inc_return(&rb->events);
4025
4026 if (events >= wakeup_events) {
4027 local_sub(wakeup_events, &rb->events);
4028 local_inc(&rb->wakeup);
4029 }
4030 }
4031 }
bce38cd5
SE
4032
4033 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4034 if (data->br_stack) {
4035 size_t size;
4036
4037 size = data->br_stack->nr
4038 * sizeof(struct perf_branch_entry);
4039
4040 perf_output_put(handle, data->br_stack->nr);
4041 perf_output_copy(handle, data->br_stack->entries, size);
4042 } else {
4043 /*
4044 * we always store at least the value of nr
4045 */
4046 u64 nr = 0;
4047 perf_output_put(handle, nr);
4048 }
4049 }
4018994f
JO
4050
4051 if (sample_type & PERF_SAMPLE_REGS_USER) {
4052 u64 abi = data->regs_user.abi;
4053
4054 /*
4055 * If there are no regs to dump, notice it through
4056 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
4057 */
4058 perf_output_put(handle, abi);
4059
4060 if (abi) {
4061 u64 mask = event->attr.sample_regs_user;
4062 perf_output_sample_regs(handle,
4063 data->regs_user.regs,
4064 mask);
4065 }
4066 }
5622f295
MM
4067}
4068
4069void perf_prepare_sample(struct perf_event_header *header,
4070 struct perf_sample_data *data,
cdd6c482 4071 struct perf_event *event,
5622f295 4072 struct pt_regs *regs)
7b732a75 4073{
cdd6c482 4074 u64 sample_type = event->attr.sample_type;
7b732a75 4075
cdd6c482 4076 header->type = PERF_RECORD_SAMPLE;
c320c7b7 4077 header->size = sizeof(*header) + event->header_size;
5622f295
MM
4078
4079 header->misc = 0;
4080 header->misc |= perf_misc_flags(regs);
6fab0192 4081
c980d109 4082 __perf_event_header__init_id(header, data, event);
6844c09d 4083
c320c7b7 4084 if (sample_type & PERF_SAMPLE_IP)
5622f295
MM
4085 data->ip = perf_instruction_pointer(regs);
4086
b23f3325 4087 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5622f295 4088 int size = 1;
394ee076 4089
e6dab5ff 4090 data->callchain = perf_callchain(event, regs);
5622f295
MM
4091
4092 if (data->callchain)
4093 size += data->callchain->nr;
4094
4095 header->size += size * sizeof(u64);
394ee076
PZ
4096 }
4097
3a43ce68 4098 if (sample_type & PERF_SAMPLE_RAW) {
a044560c
PZ
4099 int size = sizeof(u32);
4100
4101 if (data->raw)
4102 size += data->raw->size;
4103 else
4104 size += sizeof(u32);
4105
4106 WARN_ON_ONCE(size & (sizeof(u64)-1));
5622f295 4107 header->size += size;
7f453c24 4108 }
bce38cd5
SE
4109
4110 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4111 int size = sizeof(u64); /* nr */
4112 if (data->br_stack) {
4113 size += data->br_stack->nr
4114 * sizeof(struct perf_branch_entry);
4115 }
4116 header->size += size;
4117 }
4018994f
JO
4118
4119 if (sample_type & PERF_SAMPLE_REGS_USER) {
4120 /* regs dump ABI info */
4121 int size = sizeof(u64);
4122
4123 perf_sample_regs_user(&data->regs_user, regs);
4124
4125 if (data->regs_user.regs) {
4126 u64 mask = event->attr.sample_regs_user;
4127 size += hweight64(mask) * sizeof(u64);
4128 }
4129
4130 header->size += size;
4131 }
5622f295 4132}
7f453c24 4133
a8b0ca17 4134static void perf_event_output(struct perf_event *event,
5622f295
MM
4135 struct perf_sample_data *data,
4136 struct pt_regs *regs)
4137{
4138 struct perf_output_handle handle;
4139 struct perf_event_header header;
689802b2 4140
927c7a9e
FW
4141 /* protect the callchain buffers */
4142 rcu_read_lock();
4143
cdd6c482 4144 perf_prepare_sample(&header, data, event, regs);
5c148194 4145
a7ac67ea 4146 if (perf_output_begin(&handle, event, header.size))
927c7a9e 4147 goto exit;
0322cd6e 4148
cdd6c482 4149 perf_output_sample(&handle, &header, data, event);
f413cdb8 4150
8a057d84 4151 perf_output_end(&handle);
927c7a9e
FW
4152
4153exit:
4154 rcu_read_unlock();
0322cd6e
PZ
4155}
4156
38b200d6 4157/*
cdd6c482 4158 * read event_id
38b200d6
PZ
4159 */
4160
4161struct perf_read_event {
4162 struct perf_event_header header;
4163
4164 u32 pid;
4165 u32 tid;
38b200d6
PZ
4166};
4167
4168static void
cdd6c482 4169perf_event_read_event(struct perf_event *event,
38b200d6
PZ
4170 struct task_struct *task)
4171{
4172 struct perf_output_handle handle;
c980d109 4173 struct perf_sample_data sample;
dfc65094 4174 struct perf_read_event read_event = {
38b200d6 4175 .header = {
cdd6c482 4176 .type = PERF_RECORD_READ,
38b200d6 4177 .misc = 0,
c320c7b7 4178 .size = sizeof(read_event) + event->read_size,
38b200d6 4179 },
cdd6c482
IM
4180 .pid = perf_event_pid(event, task),
4181 .tid = perf_event_tid(event, task),
38b200d6 4182 };
3dab77fb 4183 int ret;
38b200d6 4184
c980d109 4185 perf_event_header__init_id(&read_event.header, &sample, event);
a7ac67ea 4186 ret = perf_output_begin(&handle, event, read_event.header.size);
38b200d6
PZ
4187 if (ret)
4188 return;
4189
dfc65094 4190 perf_output_put(&handle, read_event);
cdd6c482 4191 perf_output_read(&handle, event);
c980d109 4192 perf_event__output_id_sample(event, &handle, &sample);
3dab77fb 4193
38b200d6
PZ
4194 perf_output_end(&handle);
4195}
4196
60313ebe 4197/*
9f498cc5
PZ
4198 * task tracking -- fork/exit
4199 *
3af9e859 4200 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
60313ebe
PZ
4201 */
4202
9f498cc5 4203struct perf_task_event {
3a80b4a3 4204 struct task_struct *task;
cdd6c482 4205 struct perf_event_context *task_ctx;
60313ebe
PZ
4206
4207 struct {
4208 struct perf_event_header header;
4209
4210 u32 pid;
4211 u32 ppid;
9f498cc5
PZ
4212 u32 tid;
4213 u32 ptid;
393b2ad8 4214 u64 time;
cdd6c482 4215 } event_id;
60313ebe
PZ
4216};
4217
cdd6c482 4218static void perf_event_task_output(struct perf_event *event,
9f498cc5 4219 struct perf_task_event *task_event)
60313ebe
PZ
4220{
4221 struct perf_output_handle handle;
c980d109 4222 struct perf_sample_data sample;
9f498cc5 4223 struct task_struct *task = task_event->task;
c980d109 4224 int ret, size = task_event->event_id.header.size;
8bb39f9a 4225
c980d109 4226 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
60313ebe 4227
c980d109 4228 ret = perf_output_begin(&handle, event,
a7ac67ea 4229 task_event->event_id.header.size);
ef60777c 4230 if (ret)
c980d109 4231 goto out;
60313ebe 4232
cdd6c482
IM
4233 task_event->event_id.pid = perf_event_pid(event, task);
4234 task_event->event_id.ppid = perf_event_pid(event, current);
60313ebe 4235
cdd6c482
IM
4236 task_event->event_id.tid = perf_event_tid(event, task);
4237 task_event->event_id.ptid = perf_event_tid(event, current);
9f498cc5 4238
cdd6c482 4239 perf_output_put(&handle, task_event->event_id);
393b2ad8 4240
c980d109
ACM
4241 perf_event__output_id_sample(event, &handle, &sample);
4242
60313ebe 4243 perf_output_end(&handle);
c980d109
ACM
4244out:
4245 task_event->event_id.header.size = size;
60313ebe
PZ
4246}
4247
cdd6c482 4248static int perf_event_task_match(struct perf_event *event)
60313ebe 4249{
6f93d0a7 4250 if (event->state < PERF_EVENT_STATE_INACTIVE)
22e19085
PZ
4251 return 0;
4252
5632ab12 4253 if (!event_filter_match(event))
5d27c23d
PZ
4254 return 0;
4255
3af9e859
EM
4256 if (event->attr.comm || event->attr.mmap ||
4257 event->attr.mmap_data || event->attr.task)
60313ebe
PZ
4258 return 1;
4259
4260 return 0;
4261}
4262
cdd6c482 4263static void perf_event_task_ctx(struct perf_event_context *ctx,
9f498cc5 4264 struct perf_task_event *task_event)
60313ebe 4265{
cdd6c482 4266 struct perf_event *event;
60313ebe 4267
cdd6c482
IM
4268 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4269 if (perf_event_task_match(event))
4270 perf_event_task_output(event, task_event);
60313ebe 4271 }
60313ebe
PZ
4272}
4273
cdd6c482 4274static void perf_event_task_event(struct perf_task_event *task_event)
60313ebe
PZ
4275{
4276 struct perf_cpu_context *cpuctx;
8dc85d54 4277 struct perf_event_context *ctx;
108b02cf 4278 struct pmu *pmu;
8dc85d54 4279 int ctxn;
60313ebe 4280
d6ff86cf 4281 rcu_read_lock();
108b02cf 4282 list_for_each_entry_rcu(pmu, &pmus, entry) {
41945f6c 4283 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
51676957
PZ
4284 if (cpuctx->active_pmu != pmu)
4285 goto next;
108b02cf 4286 perf_event_task_ctx(&cpuctx->ctx, task_event);
8dc85d54
PZ
4287
4288 ctx = task_event->task_ctx;
4289 if (!ctx) {
4290 ctxn = pmu->task_ctx_nr;
4291 if (ctxn < 0)
41945f6c 4292 goto next;
8dc85d54
PZ
4293 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4294 }
4295 if (ctx)
4296 perf_event_task_ctx(ctx, task_event);
41945f6c
PZ
4297next:
4298 put_cpu_ptr(pmu->pmu_cpu_context);
108b02cf 4299 }
60313ebe
PZ
4300 rcu_read_unlock();
4301}
4302
cdd6c482
IM
4303static void perf_event_task(struct task_struct *task,
4304 struct perf_event_context *task_ctx,
3a80b4a3 4305 int new)
60313ebe 4306{
9f498cc5 4307 struct perf_task_event task_event;
60313ebe 4308
cdd6c482
IM
4309 if (!atomic_read(&nr_comm_events) &&
4310 !atomic_read(&nr_mmap_events) &&
4311 !atomic_read(&nr_task_events))
60313ebe
PZ
4312 return;
4313
9f498cc5 4314 task_event = (struct perf_task_event){
3a80b4a3
PZ
4315 .task = task,
4316 .task_ctx = task_ctx,
cdd6c482 4317 .event_id = {
60313ebe 4318 .header = {
cdd6c482 4319 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
573402db 4320 .misc = 0,
cdd6c482 4321 .size = sizeof(task_event.event_id),
60313ebe 4322 },
573402db
PZ
4323 /* .pid */
4324 /* .ppid */
9f498cc5
PZ
4325 /* .tid */
4326 /* .ptid */
6f93d0a7 4327 .time = perf_clock(),
60313ebe
PZ
4328 },
4329 };
4330
cdd6c482 4331 perf_event_task_event(&task_event);
9f498cc5
PZ
4332}
4333
cdd6c482 4334void perf_event_fork(struct task_struct *task)
9f498cc5 4335{
cdd6c482 4336 perf_event_task(task, NULL, 1);
60313ebe
PZ
4337}
4338
8d1b2d93
PZ
4339/*
4340 * comm tracking
4341 */
4342
4343struct perf_comm_event {
22a4f650
IM
4344 struct task_struct *task;
4345 char *comm;
8d1b2d93
PZ
4346 int comm_size;
4347
4348 struct {
4349 struct perf_event_header header;
4350
4351 u32 pid;
4352 u32 tid;
cdd6c482 4353 } event_id;
8d1b2d93
PZ
4354};
4355
cdd6c482 4356static void perf_event_comm_output(struct perf_event *event,
8d1b2d93
PZ
4357 struct perf_comm_event *comm_event)
4358{
4359 struct perf_output_handle handle;
c980d109 4360 struct perf_sample_data sample;
cdd6c482 4361 int size = comm_event->event_id.header.size;
c980d109
ACM
4362 int ret;
4363
4364 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
4365 ret = perf_output_begin(&handle, event,
a7ac67ea 4366 comm_event->event_id.header.size);
8d1b2d93
PZ
4367
4368 if (ret)
c980d109 4369 goto out;
8d1b2d93 4370
cdd6c482
IM
4371 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
4372 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
709e50cf 4373
cdd6c482 4374 perf_output_put(&handle, comm_event->event_id);
76369139 4375 __output_copy(&handle, comm_event->comm,
8d1b2d93 4376 comm_event->comm_size);
c980d109
ACM
4377
4378 perf_event__output_id_sample(event, &handle, &sample);
4379
8d1b2d93 4380 perf_output_end(&handle);
c980d109
ACM
4381out:
4382 comm_event->event_id.header.size = size;
8d1b2d93
PZ
4383}
4384
cdd6c482 4385static int perf_event_comm_match(struct perf_event *event)
8d1b2d93 4386{
6f93d0a7 4387 if (event->state < PERF_EVENT_STATE_INACTIVE)
22e19085
PZ
4388 return 0;
4389
5632ab12 4390 if (!event_filter_match(event))
5d27c23d
PZ
4391 return 0;
4392
cdd6c482 4393 if (event->attr.comm)
8d1b2d93
PZ
4394 return 1;
4395
4396 return 0;
4397}
4398
cdd6c482 4399static void perf_event_comm_ctx(struct perf_event_context *ctx,
8d1b2d93
PZ
4400 struct perf_comm_event *comm_event)
4401{
cdd6c482 4402 struct perf_event *event;
8d1b2d93 4403
cdd6c482
IM
4404 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4405 if (perf_event_comm_match(event))
4406 perf_event_comm_output(event, comm_event);
8d1b2d93 4407 }
8d1b2d93
PZ
4408}
4409
cdd6c482 4410static void perf_event_comm_event(struct perf_comm_event *comm_event)
8d1b2d93
PZ
4411{
4412 struct perf_cpu_context *cpuctx;
cdd6c482 4413 struct perf_event_context *ctx;
413ee3b4 4414 char comm[TASK_COMM_LEN];
8d1b2d93 4415 unsigned int size;
108b02cf 4416 struct pmu *pmu;
8dc85d54 4417 int ctxn;
8d1b2d93 4418
413ee3b4 4419 memset(comm, 0, sizeof(comm));
96b02d78 4420 strlcpy(comm, comm_event->task->comm, sizeof(comm));
888fcee0 4421 size = ALIGN(strlen(comm)+1, sizeof(u64));
8d1b2d93
PZ
4422
4423 comm_event->comm = comm;
4424 comm_event->comm_size = size;
4425
cdd6c482 4426 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
f6595f3a 4427 rcu_read_lock();
108b02cf 4428 list_for_each_entry_rcu(pmu, &pmus, entry) {
41945f6c 4429 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
51676957
PZ
4430 if (cpuctx->active_pmu != pmu)
4431 goto next;
108b02cf 4432 perf_event_comm_ctx(&cpuctx->ctx, comm_event);
8dc85d54
PZ
4433
4434 ctxn = pmu->task_ctx_nr;
4435 if (ctxn < 0)
41945f6c 4436 goto next;
8dc85d54
PZ
4437
4438 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4439 if (ctx)
4440 perf_event_comm_ctx(ctx, comm_event);
41945f6c
PZ
4441next:
4442 put_cpu_ptr(pmu->pmu_cpu_context);
108b02cf 4443 }
665c2142 4444 rcu_read_unlock();
8d1b2d93
PZ
4445}
4446
cdd6c482 4447void perf_event_comm(struct task_struct *task)
8d1b2d93 4448{
9ee318a7 4449 struct perf_comm_event comm_event;
8dc85d54
PZ
4450 struct perf_event_context *ctx;
4451 int ctxn;
9ee318a7 4452
8dc85d54
PZ
4453 for_each_task_context_nr(ctxn) {
4454 ctx = task->perf_event_ctxp[ctxn];
4455 if (!ctx)
4456 continue;
9ee318a7 4457
8dc85d54
PZ
4458 perf_event_enable_on_exec(ctx);
4459 }
9ee318a7 4460
cdd6c482 4461 if (!atomic_read(&nr_comm_events))
9ee318a7 4462 return;
a63eaf34 4463
9ee318a7 4464 comm_event = (struct perf_comm_event){
8d1b2d93 4465 .task = task,
573402db
PZ
4466 /* .comm */
4467 /* .comm_size */
cdd6c482 4468 .event_id = {
573402db 4469 .header = {
cdd6c482 4470 .type = PERF_RECORD_COMM,
573402db
PZ
4471 .misc = 0,
4472 /* .size */
4473 },
4474 /* .pid */
4475 /* .tid */
8d1b2d93
PZ
4476 },
4477 };
4478
cdd6c482 4479 perf_event_comm_event(&comm_event);
8d1b2d93
PZ
4480}
4481
0a4a9391
PZ
4482/*
4483 * mmap tracking
4484 */
4485
4486struct perf_mmap_event {
089dd79d
PZ
4487 struct vm_area_struct *vma;
4488
4489 const char *file_name;
4490 int file_size;
0a4a9391
PZ
4491
4492 struct {
4493 struct perf_event_header header;
4494
4495 u32 pid;
4496 u32 tid;
4497 u64 start;
4498 u64 len;
4499 u64 pgoff;
cdd6c482 4500 } event_id;
0a4a9391
PZ
4501};
4502
cdd6c482 4503static void perf_event_mmap_output(struct perf_event *event,
0a4a9391
PZ
4504 struct perf_mmap_event *mmap_event)
4505{
4506 struct perf_output_handle handle;
c980d109 4507 struct perf_sample_data sample;
cdd6c482 4508 int size = mmap_event->event_id.header.size;
c980d109 4509 int ret;
0a4a9391 4510
c980d109
ACM
4511 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
4512 ret = perf_output_begin(&handle, event,
a7ac67ea 4513 mmap_event->event_id.header.size);
0a4a9391 4514 if (ret)
c980d109 4515 goto out;
0a4a9391 4516
cdd6c482
IM
4517 mmap_event->event_id.pid = perf_event_pid(event, current);
4518 mmap_event->event_id.tid = perf_event_tid(event, current);
709e50cf 4519
cdd6c482 4520 perf_output_put(&handle, mmap_event->event_id);
76369139 4521 __output_copy(&handle, mmap_event->file_name,
0a4a9391 4522 mmap_event->file_size);
c980d109
ACM
4523
4524 perf_event__output_id_sample(event, &handle, &sample);
4525
78d613eb 4526 perf_output_end(&handle);
c980d109
ACM
4527out:
4528 mmap_event->event_id.header.size = size;
0a4a9391
PZ
4529}
4530
cdd6c482 4531static int perf_event_mmap_match(struct perf_event *event,
3af9e859
EM
4532 struct perf_mmap_event *mmap_event,
4533 int executable)
0a4a9391 4534{
6f93d0a7 4535 if (event->state < PERF_EVENT_STATE_INACTIVE)
22e19085
PZ
4536 return 0;
4537
5632ab12 4538 if (!event_filter_match(event))
5d27c23d
PZ
4539 return 0;
4540
3af9e859
EM
4541 if ((!executable && event->attr.mmap_data) ||
4542 (executable && event->attr.mmap))
0a4a9391
PZ
4543 return 1;
4544
4545 return 0;
4546}
4547
cdd6c482 4548static void perf_event_mmap_ctx(struct perf_event_context *ctx,
3af9e859
EM
4549 struct perf_mmap_event *mmap_event,
4550 int executable)
0a4a9391 4551{
cdd6c482 4552 struct perf_event *event;
0a4a9391 4553
cdd6c482 4554 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3af9e859 4555 if (perf_event_mmap_match(event, mmap_event, executable))
cdd6c482 4556 perf_event_mmap_output(event, mmap_event);
0a4a9391 4557 }
0a4a9391
PZ
4558}
4559
cdd6c482 4560static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
0a4a9391
PZ
4561{
4562 struct perf_cpu_context *cpuctx;
cdd6c482 4563 struct perf_event_context *ctx;
089dd79d
PZ
4564 struct vm_area_struct *vma = mmap_event->vma;
4565 struct file *file = vma->vm_file;
0a4a9391
PZ
4566 unsigned int size;
4567 char tmp[16];
4568 char *buf = NULL;
089dd79d 4569 const char *name;
108b02cf 4570 struct pmu *pmu;
8dc85d54 4571 int ctxn;
0a4a9391 4572
413ee3b4
AB
4573 memset(tmp, 0, sizeof(tmp));
4574
0a4a9391 4575 if (file) {
413ee3b4 4576 /*
76369139 4577 * d_path works from the end of the rb backwards, so we
413ee3b4
AB
4578 * need to add enough zero bytes after the string to handle
4579 * the 64bit alignment we do later.
4580 */
4581 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
0a4a9391
PZ
4582 if (!buf) {
4583 name = strncpy(tmp, "//enomem", sizeof(tmp));
4584 goto got_name;
4585 }
d3d21c41 4586 name = d_path(&file->f_path, buf, PATH_MAX);
0a4a9391
PZ
4587 if (IS_ERR(name)) {
4588 name = strncpy(tmp, "//toolong", sizeof(tmp));
4589 goto got_name;
4590 }
4591 } else {
413ee3b4
AB
4592 if (arch_vma_name(mmap_event->vma)) {
4593 name = strncpy(tmp, arch_vma_name(mmap_event->vma),
4594 sizeof(tmp));
089dd79d 4595 goto got_name;
413ee3b4 4596 }
089dd79d
PZ
4597
4598 if (!vma->vm_mm) {
4599 name = strncpy(tmp, "[vdso]", sizeof(tmp));
4600 goto got_name;
3af9e859
EM
4601 } else if (vma->vm_start <= vma->vm_mm->start_brk &&
4602 vma->vm_end >= vma->vm_mm->brk) {
4603 name = strncpy(tmp, "[heap]", sizeof(tmp));
4604 goto got_name;
4605 } else if (vma->vm_start <= vma->vm_mm->start_stack &&
4606 vma->vm_end >= vma->vm_mm->start_stack) {
4607 name = strncpy(tmp, "[stack]", sizeof(tmp));
4608 goto got_name;
089dd79d
PZ
4609 }
4610
0a4a9391
PZ
4611 name = strncpy(tmp, "//anon", sizeof(tmp));
4612 goto got_name;
4613 }
4614
4615got_name:
888fcee0 4616 size = ALIGN(strlen(name)+1, sizeof(u64));
0a4a9391
PZ
4617
4618 mmap_event->file_name = name;
4619 mmap_event->file_size = size;
4620
cdd6c482 4621 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
0a4a9391 4622
f6d9dd23 4623 rcu_read_lock();
108b02cf 4624 list_for_each_entry_rcu(pmu, &pmus, entry) {
41945f6c 4625 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
51676957
PZ
4626 if (cpuctx->active_pmu != pmu)
4627 goto next;
108b02cf
PZ
4628 perf_event_mmap_ctx(&cpuctx->ctx, mmap_event,
4629 vma->vm_flags & VM_EXEC);
8dc85d54
PZ
4630
4631 ctxn = pmu->task_ctx_nr;
4632 if (ctxn < 0)
41945f6c 4633 goto next;
8dc85d54
PZ
4634
4635 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4636 if (ctx) {
4637 perf_event_mmap_ctx(ctx, mmap_event,
4638 vma->vm_flags & VM_EXEC);
4639 }
41945f6c
PZ
4640next:
4641 put_cpu_ptr(pmu->pmu_cpu_context);
108b02cf 4642 }
665c2142
PZ
4643 rcu_read_unlock();
4644
0a4a9391
PZ
4645 kfree(buf);
4646}
4647
3af9e859 4648void perf_event_mmap(struct vm_area_struct *vma)
0a4a9391 4649{
9ee318a7
PZ
4650 struct perf_mmap_event mmap_event;
4651
cdd6c482 4652 if (!atomic_read(&nr_mmap_events))
9ee318a7
PZ
4653 return;
4654
4655 mmap_event = (struct perf_mmap_event){
089dd79d 4656 .vma = vma,
573402db
PZ
4657 /* .file_name */
4658 /* .file_size */
cdd6c482 4659 .event_id = {
573402db 4660 .header = {
cdd6c482 4661 .type = PERF_RECORD_MMAP,
39447b38 4662 .misc = PERF_RECORD_MISC_USER,
573402db
PZ
4663 /* .size */
4664 },
4665 /* .pid */
4666 /* .tid */
089dd79d
PZ
4667 .start = vma->vm_start,
4668 .len = vma->vm_end - vma->vm_start,
3a0304e9 4669 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
0a4a9391
PZ
4670 },
4671 };
4672
cdd6c482 4673 perf_event_mmap_event(&mmap_event);
0a4a9391
PZ
4674}
4675
a78ac325
PZ
4676/*
4677 * IRQ throttle logging
4678 */
4679
cdd6c482 4680static void perf_log_throttle(struct perf_event *event, int enable)
a78ac325
PZ
4681{
4682 struct perf_output_handle handle;
c980d109 4683 struct perf_sample_data sample;
a78ac325
PZ
4684 int ret;
4685
4686 struct {
4687 struct perf_event_header header;
4688 u64 time;
cca3f454 4689 u64 id;
7f453c24 4690 u64 stream_id;
a78ac325
PZ
4691 } throttle_event = {
4692 .header = {
cdd6c482 4693 .type = PERF_RECORD_THROTTLE,
a78ac325
PZ
4694 .misc = 0,
4695 .size = sizeof(throttle_event),
4696 },
def0a9b2 4697 .time = perf_clock(),
cdd6c482
IM
4698 .id = primary_event_id(event),
4699 .stream_id = event->id,
a78ac325
PZ
4700 };
4701
966ee4d6 4702 if (enable)
cdd6c482 4703 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
966ee4d6 4704
c980d109
ACM
4705 perf_event_header__init_id(&throttle_event.header, &sample, event);
4706
4707 ret = perf_output_begin(&handle, event,
a7ac67ea 4708 throttle_event.header.size);
a78ac325
PZ
4709 if (ret)
4710 return;
4711
4712 perf_output_put(&handle, throttle_event);
c980d109 4713 perf_event__output_id_sample(event, &handle, &sample);
a78ac325
PZ
4714 perf_output_end(&handle);
4715}
4716
f6c7d5fe 4717/*
cdd6c482 4718 * Generic event overflow handling, sampling.
f6c7d5fe
PZ
4719 */
4720
a8b0ca17 4721static int __perf_event_overflow(struct perf_event *event,
5622f295
MM
4722 int throttle, struct perf_sample_data *data,
4723 struct pt_regs *regs)
f6c7d5fe 4724{
cdd6c482
IM
4725 int events = atomic_read(&event->event_limit);
4726 struct hw_perf_event *hwc = &event->hw;
e050e3f0 4727 u64 seq;
79f14641
PZ
4728 int ret = 0;
4729
96398826
PZ
4730 /*
4731 * Non-sampling counters might still use the PMI to fold short
4732 * hardware counters, ignore those.
4733 */
4734 if (unlikely(!is_sampling_event(event)))
4735 return 0;
4736
e050e3f0
SE
4737 seq = __this_cpu_read(perf_throttled_seq);
4738 if (seq != hwc->interrupts_seq) {
4739 hwc->interrupts_seq = seq;
4740 hwc->interrupts = 1;
4741 } else {
4742 hwc->interrupts++;
4743 if (unlikely(throttle
4744 && hwc->interrupts >= max_samples_per_tick)) {
4745 __this_cpu_inc(perf_throttled_count);
163ec435
PZ
4746 hwc->interrupts = MAX_INTERRUPTS;
4747 perf_log_throttle(event, 0);
a78ac325
PZ
4748 ret = 1;
4749 }
e050e3f0 4750 }
60db5e09 4751
cdd6c482 4752 if (event->attr.freq) {
def0a9b2 4753 u64 now = perf_clock();
abd50713 4754 s64 delta = now - hwc->freq_time_stamp;
bd2b5b12 4755
abd50713 4756 hwc->freq_time_stamp = now;
bd2b5b12 4757
abd50713 4758 if (delta > 0 && delta < 2*TICK_NSEC)
f39d47ff 4759 perf_adjust_period(event, delta, hwc->last_period, true);
bd2b5b12
PZ
4760 }
4761
2023b359
PZ
4762 /*
4763 * XXX event_limit might not quite work as expected on inherited
cdd6c482 4764 * events
2023b359
PZ
4765 */
4766
cdd6c482
IM
4767 event->pending_kill = POLL_IN;
4768 if (events && atomic_dec_and_test(&event->event_limit)) {
79f14641 4769 ret = 1;
cdd6c482 4770 event->pending_kill = POLL_HUP;
a8b0ca17
PZ
4771 event->pending_disable = 1;
4772 irq_work_queue(&event->pending);
79f14641
PZ
4773 }
4774
453f19ee 4775 if (event->overflow_handler)
a8b0ca17 4776 event->overflow_handler(event, data, regs);
453f19ee 4777 else
a8b0ca17 4778 perf_event_output(event, data, regs);
453f19ee 4779
f506b3dc 4780 if (event->fasync && event->pending_kill) {
a8b0ca17
PZ
4781 event->pending_wakeup = 1;
4782 irq_work_queue(&event->pending);
f506b3dc
PZ
4783 }
4784
79f14641 4785 return ret;
f6c7d5fe
PZ
4786}
4787
a8b0ca17 4788int perf_event_overflow(struct perf_event *event,
5622f295
MM
4789 struct perf_sample_data *data,
4790 struct pt_regs *regs)
850bc73f 4791{
a8b0ca17 4792 return __perf_event_overflow(event, 1, data, regs);
850bc73f
PZ
4793}
4794
15dbf27c 4795/*
cdd6c482 4796 * Generic software event infrastructure
15dbf27c
PZ
4797 */
4798
b28ab83c
PZ
4799struct swevent_htable {
4800 struct swevent_hlist *swevent_hlist;
4801 struct mutex hlist_mutex;
4802 int hlist_refcount;
4803
4804 /* Recursion avoidance in each contexts */
4805 int recursion[PERF_NR_CONTEXTS];
4806};
4807
4808static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
4809
7b4b6658 4810/*
cdd6c482
IM
4811 * We directly increment event->count and keep a second value in
4812 * event->hw.period_left to count intervals. This period event
7b4b6658
PZ
4813 * is kept in the range [-sample_period, 0] so that we can use the
4814 * sign as trigger.
4815 */
4816
cdd6c482 4817static u64 perf_swevent_set_period(struct perf_event *event)
15dbf27c 4818{
cdd6c482 4819 struct hw_perf_event *hwc = &event->hw;
7b4b6658
PZ
4820 u64 period = hwc->last_period;
4821 u64 nr, offset;
4822 s64 old, val;
4823
4824 hwc->last_period = hwc->sample_period;
15dbf27c
PZ
4825
4826again:
e7850595 4827 old = val = local64_read(&hwc->period_left);
7b4b6658
PZ
4828 if (val < 0)
4829 return 0;
15dbf27c 4830
7b4b6658
PZ
4831 nr = div64_u64(period + val, period);
4832 offset = nr * period;
4833 val -= offset;
e7850595 4834 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7b4b6658 4835 goto again;
15dbf27c 4836
7b4b6658 4837 return nr;
15dbf27c
PZ
4838}
4839
0cff784a 4840static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
a8b0ca17 4841 struct perf_sample_data *data,
5622f295 4842 struct pt_regs *regs)
15dbf27c 4843{
cdd6c482 4844 struct hw_perf_event *hwc = &event->hw;
850bc73f 4845 int throttle = 0;
15dbf27c 4846
0cff784a
PZ
4847 if (!overflow)
4848 overflow = perf_swevent_set_period(event);
15dbf27c 4849
7b4b6658
PZ
4850 if (hwc->interrupts == MAX_INTERRUPTS)
4851 return;
15dbf27c 4852
7b4b6658 4853 for (; overflow; overflow--) {
a8b0ca17 4854 if (__perf_event_overflow(event, throttle,
5622f295 4855 data, regs)) {
7b4b6658
PZ
4856 /*
4857 * We inhibit the overflow from happening when
4858 * hwc->interrupts == MAX_INTERRUPTS.
4859 */
4860 break;
4861 }
cf450a73 4862 throttle = 1;
7b4b6658 4863 }
15dbf27c
PZ
4864}
4865
a4eaf7f1 4866static void perf_swevent_event(struct perf_event *event, u64 nr,
a8b0ca17 4867 struct perf_sample_data *data,
5622f295 4868 struct pt_regs *regs)
7b4b6658 4869{
cdd6c482 4870 struct hw_perf_event *hwc = &event->hw;
d6d020e9 4871
e7850595 4872 local64_add(nr, &event->count);
d6d020e9 4873
0cff784a
PZ
4874 if (!regs)
4875 return;
4876
6c7e550f 4877 if (!is_sampling_event(event))
7b4b6658 4878 return;
d6d020e9 4879
5d81e5cf
AV
4880 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
4881 data->period = nr;
4882 return perf_swevent_overflow(event, 1, data, regs);
4883 } else
4884 data->period = event->hw.last_period;
4885
0cff784a 4886 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
a8b0ca17 4887 return perf_swevent_overflow(event, 1, data, regs);
0cff784a 4888
e7850595 4889 if (local64_add_negative(nr, &hwc->period_left))
7b4b6658 4890 return;
df1a132b 4891
a8b0ca17 4892 perf_swevent_overflow(event, 0, data, regs);
d6d020e9
PZ
4893}
4894
f5ffe02e
FW
4895static int perf_exclude_event(struct perf_event *event,
4896 struct pt_regs *regs)
4897{
a4eaf7f1 4898 if (event->hw.state & PERF_HES_STOPPED)
91b2f482 4899 return 1;
a4eaf7f1 4900
f5ffe02e
FW
4901 if (regs) {
4902 if (event->attr.exclude_user && user_mode(regs))
4903 return 1;
4904
4905 if (event->attr.exclude_kernel && !user_mode(regs))
4906 return 1;
4907 }
4908
4909 return 0;
4910}
4911
cdd6c482 4912static int perf_swevent_match(struct perf_event *event,
1c432d89 4913 enum perf_type_id type,
6fb2915d
LZ
4914 u32 event_id,
4915 struct perf_sample_data *data,
4916 struct pt_regs *regs)
15dbf27c 4917{
cdd6c482 4918 if (event->attr.type != type)
a21ca2ca 4919 return 0;
f5ffe02e 4920
cdd6c482 4921 if (event->attr.config != event_id)
15dbf27c
PZ
4922 return 0;
4923
f5ffe02e
FW
4924 if (perf_exclude_event(event, regs))
4925 return 0;
15dbf27c
PZ
4926
4927 return 1;
4928}
4929
76e1d904
FW
4930static inline u64 swevent_hash(u64 type, u32 event_id)
4931{
4932 u64 val = event_id | (type << 32);
4933
4934 return hash_64(val, SWEVENT_HLIST_BITS);
4935}
4936
49f135ed
FW
4937static inline struct hlist_head *
4938__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
76e1d904 4939{
49f135ed
FW
4940 u64 hash = swevent_hash(type, event_id);
4941
4942 return &hlist->heads[hash];
4943}
76e1d904 4944
49f135ed
FW
4945/* For the read side: events when they trigger */
4946static inline struct hlist_head *
b28ab83c 4947find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
49f135ed
FW
4948{
4949 struct swevent_hlist *hlist;
76e1d904 4950
b28ab83c 4951 hlist = rcu_dereference(swhash->swevent_hlist);
76e1d904
FW
4952 if (!hlist)
4953 return NULL;
4954
49f135ed
FW
4955 return __find_swevent_head(hlist, type, event_id);
4956}
4957
4958/* For the event head insertion and removal in the hlist */
4959static inline struct hlist_head *
b28ab83c 4960find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
49f135ed
FW
4961{
4962 struct swevent_hlist *hlist;
4963 u32 event_id = event->attr.config;
4964 u64 type = event->attr.type;
4965
4966 /*
4967 * Event scheduling is always serialized against hlist allocation
4968 * and release. Which makes the protected version suitable here.
4969 * The context lock guarantees that.
4970 */
b28ab83c 4971 hlist = rcu_dereference_protected(swhash->swevent_hlist,
49f135ed
FW
4972 lockdep_is_held(&event->ctx->lock));
4973 if (!hlist)
4974 return NULL;
4975
4976 return __find_swevent_head(hlist, type, event_id);
76e1d904
FW
4977}
4978
4979static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
a8b0ca17 4980 u64 nr,
76e1d904
FW
4981 struct perf_sample_data *data,
4982 struct pt_regs *regs)
15dbf27c 4983{
b28ab83c 4984 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
cdd6c482 4985 struct perf_event *event;
76e1d904
FW
4986 struct hlist_node *node;
4987 struct hlist_head *head;
15dbf27c 4988
76e1d904 4989 rcu_read_lock();
b28ab83c 4990 head = find_swevent_head_rcu(swhash, type, event_id);
76e1d904
FW
4991 if (!head)
4992 goto end;
4993
4994 hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
6fb2915d 4995 if (perf_swevent_match(event, type, event_id, data, regs))
a8b0ca17 4996 perf_swevent_event(event, nr, data, regs);
15dbf27c 4997 }
76e1d904
FW
4998end:
4999 rcu_read_unlock();
15dbf27c
PZ
5000}
5001
4ed7c92d 5002int perf_swevent_get_recursion_context(void)
96f6d444 5003{
b28ab83c 5004 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
96f6d444 5005
b28ab83c 5006 return get_recursion_context(swhash->recursion);
96f6d444 5007}
645e8cc0 5008EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
96f6d444 5009
fa9f90be 5010inline void perf_swevent_put_recursion_context(int rctx)
15dbf27c 5011{
b28ab83c 5012 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
927c7a9e 5013
b28ab83c 5014 put_recursion_context(swhash->recursion, rctx);
ce71b9df 5015}
15dbf27c 5016
a8b0ca17 5017void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
b8e83514 5018{
a4234bfc 5019 struct perf_sample_data data;
4ed7c92d
PZ
5020 int rctx;
5021
1c024eca 5022 preempt_disable_notrace();
4ed7c92d
PZ
5023 rctx = perf_swevent_get_recursion_context();
5024 if (rctx < 0)
5025 return;
a4234bfc 5026
fd0d000b 5027 perf_sample_data_init(&data, addr, 0);
92bf309a 5028
a8b0ca17 5029 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
4ed7c92d
PZ
5030
5031 perf_swevent_put_recursion_context(rctx);
1c024eca 5032 preempt_enable_notrace();
b8e83514
PZ
5033}
5034
cdd6c482 5035static void perf_swevent_read(struct perf_event *event)
15dbf27c 5036{
15dbf27c
PZ
5037}
5038
a4eaf7f1 5039static int perf_swevent_add(struct perf_event *event, int flags)
15dbf27c 5040{
b28ab83c 5041 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
cdd6c482 5042 struct hw_perf_event *hwc = &event->hw;
76e1d904
FW
5043 struct hlist_head *head;
5044
6c7e550f 5045 if (is_sampling_event(event)) {
7b4b6658 5046 hwc->last_period = hwc->sample_period;
cdd6c482 5047 perf_swevent_set_period(event);
7b4b6658 5048 }
76e1d904 5049
a4eaf7f1
PZ
5050 hwc->state = !(flags & PERF_EF_START);
5051
b28ab83c 5052 head = find_swevent_head(swhash, event);
76e1d904
FW
5053 if (WARN_ON_ONCE(!head))
5054 return -EINVAL;
5055
5056 hlist_add_head_rcu(&event->hlist_entry, head);
5057
15dbf27c
PZ
5058 return 0;
5059}
5060
a4eaf7f1 5061static void perf_swevent_del(struct perf_event *event, int flags)
15dbf27c 5062{
76e1d904 5063 hlist_del_rcu(&event->hlist_entry);
15dbf27c
PZ
5064}
5065
a4eaf7f1 5066static void perf_swevent_start(struct perf_event *event, int flags)
5c92d124 5067{
a4eaf7f1 5068 event->hw.state = 0;
d6d020e9 5069}
aa9c4c0f 5070
a4eaf7f1 5071static void perf_swevent_stop(struct perf_event *event, int flags)
d6d020e9 5072{
a4eaf7f1 5073 event->hw.state = PERF_HES_STOPPED;
bae43c99
IM
5074}
5075
49f135ed
FW
5076/* Deref the hlist from the update side */
5077static inline struct swevent_hlist *
b28ab83c 5078swevent_hlist_deref(struct swevent_htable *swhash)
49f135ed 5079{
b28ab83c
PZ
5080 return rcu_dereference_protected(swhash->swevent_hlist,
5081 lockdep_is_held(&swhash->hlist_mutex));
49f135ed
FW
5082}
5083
b28ab83c 5084static void swevent_hlist_release(struct swevent_htable *swhash)
76e1d904 5085{
b28ab83c 5086 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
76e1d904 5087
49f135ed 5088 if (!hlist)
76e1d904
FW
5089 return;
5090
b28ab83c 5091 rcu_assign_pointer(swhash->swevent_hlist, NULL);
fa4bbc4c 5092 kfree_rcu(hlist, rcu_head);
76e1d904
FW
5093}
5094
5095static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
5096{
b28ab83c 5097 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904 5098
b28ab83c 5099 mutex_lock(&swhash->hlist_mutex);
76e1d904 5100
b28ab83c
PZ
5101 if (!--swhash->hlist_refcount)
5102 swevent_hlist_release(swhash);
76e1d904 5103
b28ab83c 5104 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
5105}
5106
5107static void swevent_hlist_put(struct perf_event *event)
5108{
5109 int cpu;
5110
5111 if (event->cpu != -1) {
5112 swevent_hlist_put_cpu(event, event->cpu);
5113 return;
5114 }
5115
5116 for_each_possible_cpu(cpu)
5117 swevent_hlist_put_cpu(event, cpu);
5118}
5119
5120static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
5121{
b28ab83c 5122 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904
FW
5123 int err = 0;
5124
b28ab83c 5125 mutex_lock(&swhash->hlist_mutex);
76e1d904 5126
b28ab83c 5127 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
76e1d904
FW
5128 struct swevent_hlist *hlist;
5129
5130 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
5131 if (!hlist) {
5132 err = -ENOMEM;
5133 goto exit;
5134 }
b28ab83c 5135 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 5136 }
b28ab83c 5137 swhash->hlist_refcount++;
9ed6060d 5138exit:
b28ab83c 5139 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
5140
5141 return err;
5142}
5143
5144static int swevent_hlist_get(struct perf_event *event)
5145{
5146 int err;
5147 int cpu, failed_cpu;
5148
5149 if (event->cpu != -1)
5150 return swevent_hlist_get_cpu(event, event->cpu);
5151
5152 get_online_cpus();
5153 for_each_possible_cpu(cpu) {
5154 err = swevent_hlist_get_cpu(event, cpu);
5155 if (err) {
5156 failed_cpu = cpu;
5157 goto fail;
5158 }
5159 }
5160 put_online_cpus();
5161
5162 return 0;
9ed6060d 5163fail:
76e1d904
FW
5164 for_each_possible_cpu(cpu) {
5165 if (cpu == failed_cpu)
5166 break;
5167 swevent_hlist_put_cpu(event, cpu);
5168 }
5169
5170 put_online_cpus();
5171 return err;
5172}
5173
c5905afb 5174struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
95476b64 5175
b0a873eb
PZ
5176static void sw_perf_event_destroy(struct perf_event *event)
5177{
5178 u64 event_id = event->attr.config;
95476b64 5179
b0a873eb
PZ
5180 WARN_ON(event->parent);
5181
c5905afb 5182 static_key_slow_dec(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
5183 swevent_hlist_put(event);
5184}
5185
5186static int perf_swevent_init(struct perf_event *event)
5187{
5188 int event_id = event->attr.config;
5189
5190 if (event->attr.type != PERF_TYPE_SOFTWARE)
5191 return -ENOENT;
5192
2481c5fa
SE
5193 /*
5194 * no branch sampling for software events
5195 */
5196 if (has_branch_stack(event))
5197 return -EOPNOTSUPP;
5198
b0a873eb
PZ
5199 switch (event_id) {
5200 case PERF_COUNT_SW_CPU_CLOCK:
5201 case PERF_COUNT_SW_TASK_CLOCK:
5202 return -ENOENT;
5203
5204 default:
5205 break;
5206 }
5207
ce677831 5208 if (event_id >= PERF_COUNT_SW_MAX)
b0a873eb
PZ
5209 return -ENOENT;
5210
5211 if (!event->parent) {
5212 int err;
5213
5214 err = swevent_hlist_get(event);
5215 if (err)
5216 return err;
5217
c5905afb 5218 static_key_slow_inc(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
5219 event->destroy = sw_perf_event_destroy;
5220 }
5221
5222 return 0;
5223}
5224
35edc2a5
PZ
5225static int perf_swevent_event_idx(struct perf_event *event)
5226{
5227 return 0;
5228}
5229
b0a873eb 5230static struct pmu perf_swevent = {
89a1e187 5231 .task_ctx_nr = perf_sw_context,
95476b64 5232
b0a873eb 5233 .event_init = perf_swevent_init,
a4eaf7f1
PZ
5234 .add = perf_swevent_add,
5235 .del = perf_swevent_del,
5236 .start = perf_swevent_start,
5237 .stop = perf_swevent_stop,
1c024eca 5238 .read = perf_swevent_read,
35edc2a5
PZ
5239
5240 .event_idx = perf_swevent_event_idx,
1c024eca
PZ
5241};
5242
b0a873eb
PZ
5243#ifdef CONFIG_EVENT_TRACING
5244
1c024eca
PZ
5245static int perf_tp_filter_match(struct perf_event *event,
5246 struct perf_sample_data *data)
5247{
5248 void *record = data->raw->data;
5249
5250 if (likely(!event->filter) || filter_match_preds(event->filter, record))
5251 return 1;
5252 return 0;
5253}
5254
5255static int perf_tp_event_match(struct perf_event *event,
5256 struct perf_sample_data *data,
5257 struct pt_regs *regs)
5258{
a0f7d0f7
FW
5259 if (event->hw.state & PERF_HES_STOPPED)
5260 return 0;
580d607c
PZ
5261 /*
5262 * All tracepoints are from kernel-space.
5263 */
5264 if (event->attr.exclude_kernel)
1c024eca
PZ
5265 return 0;
5266
5267 if (!perf_tp_filter_match(event, data))
5268 return 0;
5269
5270 return 1;
5271}
5272
5273void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
e6dab5ff
AV
5274 struct pt_regs *regs, struct hlist_head *head, int rctx,
5275 struct task_struct *task)
95476b64
FW
5276{
5277 struct perf_sample_data data;
1c024eca
PZ
5278 struct perf_event *event;
5279 struct hlist_node *node;
5280
95476b64
FW
5281 struct perf_raw_record raw = {
5282 .size = entry_size,
5283 .data = record,
5284 };
5285
fd0d000b 5286 perf_sample_data_init(&data, addr, 0);
95476b64
FW
5287 data.raw = &raw;
5288
1c024eca
PZ
5289 hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
5290 if (perf_tp_event_match(event, &data, regs))
a8b0ca17 5291 perf_swevent_event(event, count, &data, regs);
4f41c013 5292 }
ecc55f84 5293
e6dab5ff
AV
5294 /*
5295 * If we got specified a target task, also iterate its context and
5296 * deliver this event there too.
5297 */
5298 if (task && task != current) {
5299 struct perf_event_context *ctx;
5300 struct trace_entry *entry = record;
5301
5302 rcu_read_lock();
5303 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
5304 if (!ctx)
5305 goto unlock;
5306
5307 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
5308 if (event->attr.type != PERF_TYPE_TRACEPOINT)
5309 continue;
5310 if (event->attr.config != entry->type)
5311 continue;
5312 if (perf_tp_event_match(event, &data, regs))
5313 perf_swevent_event(event, count, &data, regs);
5314 }
5315unlock:
5316 rcu_read_unlock();
5317 }
5318
ecc55f84 5319 perf_swevent_put_recursion_context(rctx);
95476b64
FW
5320}
5321EXPORT_SYMBOL_GPL(perf_tp_event);
5322
cdd6c482 5323static void tp_perf_event_destroy(struct perf_event *event)
e077df4f 5324{
1c024eca 5325 perf_trace_destroy(event);
e077df4f
PZ
5326}
5327
b0a873eb 5328static int perf_tp_event_init(struct perf_event *event)
e077df4f 5329{
76e1d904
FW
5330 int err;
5331
b0a873eb
PZ
5332 if (event->attr.type != PERF_TYPE_TRACEPOINT)
5333 return -ENOENT;
5334
2481c5fa
SE
5335 /*
5336 * no branch sampling for tracepoint events
5337 */
5338 if (has_branch_stack(event))
5339 return -EOPNOTSUPP;
5340
1c024eca
PZ
5341 err = perf_trace_init(event);
5342 if (err)
b0a873eb 5343 return err;
e077df4f 5344
cdd6c482 5345 event->destroy = tp_perf_event_destroy;
e077df4f 5346
b0a873eb
PZ
5347 return 0;
5348}
5349
5350static struct pmu perf_tracepoint = {
89a1e187
PZ
5351 .task_ctx_nr = perf_sw_context,
5352
b0a873eb 5353 .event_init = perf_tp_event_init,
a4eaf7f1
PZ
5354 .add = perf_trace_add,
5355 .del = perf_trace_del,
5356 .start = perf_swevent_start,
5357 .stop = perf_swevent_stop,
b0a873eb 5358 .read = perf_swevent_read,
35edc2a5
PZ
5359
5360 .event_idx = perf_swevent_event_idx,
b0a873eb
PZ
5361};
5362
5363static inline void perf_tp_register(void)
5364{
2e80a82a 5365 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
e077df4f 5366}
6fb2915d
LZ
5367
5368static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5369{
5370 char *filter_str;
5371 int ret;
5372
5373 if (event->attr.type != PERF_TYPE_TRACEPOINT)
5374 return -EINVAL;
5375
5376 filter_str = strndup_user(arg, PAGE_SIZE);
5377 if (IS_ERR(filter_str))
5378 return PTR_ERR(filter_str);
5379
5380 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
5381
5382 kfree(filter_str);
5383 return ret;
5384}
5385
5386static void perf_event_free_filter(struct perf_event *event)
5387{
5388 ftrace_profile_free_filter(event);
5389}
5390
e077df4f 5391#else
6fb2915d 5392
b0a873eb 5393static inline void perf_tp_register(void)
e077df4f 5394{
e077df4f 5395}
6fb2915d
LZ
5396
5397static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5398{
5399 return -ENOENT;
5400}
5401
5402static void perf_event_free_filter(struct perf_event *event)
5403{
5404}
5405
07b139c8 5406#endif /* CONFIG_EVENT_TRACING */
e077df4f 5407
24f1e32c 5408#ifdef CONFIG_HAVE_HW_BREAKPOINT
f5ffe02e 5409void perf_bp_event(struct perf_event *bp, void *data)
24f1e32c 5410{
f5ffe02e
FW
5411 struct perf_sample_data sample;
5412 struct pt_regs *regs = data;
5413
fd0d000b 5414 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
f5ffe02e 5415
a4eaf7f1 5416 if (!bp->hw.state && !perf_exclude_event(bp, regs))
a8b0ca17 5417 perf_swevent_event(bp, 1, &sample, regs);
24f1e32c
FW
5418}
5419#endif
5420
b0a873eb
PZ
5421/*
5422 * hrtimer based swevent callback
5423 */
f29ac756 5424
b0a873eb 5425static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
f29ac756 5426{
b0a873eb
PZ
5427 enum hrtimer_restart ret = HRTIMER_RESTART;
5428 struct perf_sample_data data;
5429 struct pt_regs *regs;
5430 struct perf_event *event;
5431 u64 period;
f29ac756 5432
b0a873eb 5433 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
ba3dd36c
PZ
5434
5435 if (event->state != PERF_EVENT_STATE_ACTIVE)
5436 return HRTIMER_NORESTART;
5437
b0a873eb 5438 event->pmu->read(event);
f344011c 5439
fd0d000b 5440 perf_sample_data_init(&data, 0, event->hw.last_period);
b0a873eb
PZ
5441 regs = get_irq_regs();
5442
5443 if (regs && !perf_exclude_event(event, regs)) {
77aeeebd 5444 if (!(event->attr.exclude_idle && is_idle_task(current)))
33b07b8b 5445 if (__perf_event_overflow(event, 1, &data, regs))
b0a873eb
PZ
5446 ret = HRTIMER_NORESTART;
5447 }
24f1e32c 5448
b0a873eb
PZ
5449 period = max_t(u64, 10000, event->hw.sample_period);
5450 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
24f1e32c 5451
b0a873eb 5452 return ret;
f29ac756
PZ
5453}
5454
b0a873eb 5455static void perf_swevent_start_hrtimer(struct perf_event *event)
5c92d124 5456{
b0a873eb 5457 struct hw_perf_event *hwc = &event->hw;
5d508e82
FBH
5458 s64 period;
5459
5460 if (!is_sampling_event(event))
5461 return;
f5ffe02e 5462
5d508e82
FBH
5463 period = local64_read(&hwc->period_left);
5464 if (period) {
5465 if (period < 0)
5466 period = 10000;
fa407f35 5467
5d508e82
FBH
5468 local64_set(&hwc->period_left, 0);
5469 } else {
5470 period = max_t(u64, 10000, hwc->sample_period);
5471 }
5472 __hrtimer_start_range_ns(&hwc->hrtimer,
b0a873eb 5473 ns_to_ktime(period), 0,
b5ab4cd5 5474 HRTIMER_MODE_REL_PINNED, 0);
24f1e32c 5475}
b0a873eb
PZ
5476
5477static void perf_swevent_cancel_hrtimer(struct perf_event *event)
24f1e32c 5478{
b0a873eb
PZ
5479 struct hw_perf_event *hwc = &event->hw;
5480
6c7e550f 5481 if (is_sampling_event(event)) {
b0a873eb 5482 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
fa407f35 5483 local64_set(&hwc->period_left, ktime_to_ns(remaining));
b0a873eb
PZ
5484
5485 hrtimer_cancel(&hwc->hrtimer);
5486 }
24f1e32c
FW
5487}
5488
ba3dd36c
PZ
5489static void perf_swevent_init_hrtimer(struct perf_event *event)
5490{
5491 struct hw_perf_event *hwc = &event->hw;
5492
5493 if (!is_sampling_event(event))
5494 return;
5495
5496 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
5497 hwc->hrtimer.function = perf_swevent_hrtimer;
5498
5499 /*
5500 * Since hrtimers have a fixed rate, we can do a static freq->period
5501 * mapping and avoid the whole period adjust feedback stuff.
5502 */
5503 if (event->attr.freq) {
5504 long freq = event->attr.sample_freq;
5505
5506 event->attr.sample_period = NSEC_PER_SEC / freq;
5507 hwc->sample_period = event->attr.sample_period;
5508 local64_set(&hwc->period_left, hwc->sample_period);
5509 event->attr.freq = 0;
5510 }
5511}
5512
b0a873eb
PZ
5513/*
5514 * Software event: cpu wall time clock
5515 */
5516
5517static void cpu_clock_event_update(struct perf_event *event)
24f1e32c 5518{
b0a873eb
PZ
5519 s64 prev;
5520 u64 now;
5521
a4eaf7f1 5522 now = local_clock();
b0a873eb
PZ
5523 prev = local64_xchg(&event->hw.prev_count, now);
5524 local64_add(now - prev, &event->count);
24f1e32c 5525}
24f1e32c 5526
a4eaf7f1 5527static void cpu_clock_event_start(struct perf_event *event, int flags)
b0a873eb 5528{
a4eaf7f1 5529 local64_set(&event->hw.prev_count, local_clock());
b0a873eb 5530 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
5531}
5532
a4eaf7f1 5533static void cpu_clock_event_stop(struct perf_event *event, int flags)
f29ac756 5534{
b0a873eb
PZ
5535 perf_swevent_cancel_hrtimer(event);
5536 cpu_clock_event_update(event);
5537}
f29ac756 5538
a4eaf7f1
PZ
5539static int cpu_clock_event_add(struct perf_event *event, int flags)
5540{
5541 if (flags & PERF_EF_START)
5542 cpu_clock_event_start(event, flags);
5543
5544 return 0;
5545}
5546
5547static void cpu_clock_event_del(struct perf_event *event, int flags)
5548{
5549 cpu_clock_event_stop(event, flags);
5550}
5551
b0a873eb
PZ
5552static void cpu_clock_event_read(struct perf_event *event)
5553{
5554 cpu_clock_event_update(event);
5555}
f344011c 5556
b0a873eb
PZ
5557static int cpu_clock_event_init(struct perf_event *event)
5558{
5559 if (event->attr.type != PERF_TYPE_SOFTWARE)
5560 return -ENOENT;
5561
5562 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
5563 return -ENOENT;
5564
2481c5fa
SE
5565 /*
5566 * no branch sampling for software events
5567 */
5568 if (has_branch_stack(event))
5569 return -EOPNOTSUPP;
5570
ba3dd36c
PZ
5571 perf_swevent_init_hrtimer(event);
5572
b0a873eb 5573 return 0;
f29ac756
PZ
5574}
5575
b0a873eb 5576static struct pmu perf_cpu_clock = {
89a1e187
PZ
5577 .task_ctx_nr = perf_sw_context,
5578
b0a873eb 5579 .event_init = cpu_clock_event_init,
a4eaf7f1
PZ
5580 .add = cpu_clock_event_add,
5581 .del = cpu_clock_event_del,
5582 .start = cpu_clock_event_start,
5583 .stop = cpu_clock_event_stop,
b0a873eb 5584 .read = cpu_clock_event_read,
35edc2a5
PZ
5585
5586 .event_idx = perf_swevent_event_idx,
b0a873eb
PZ
5587};
5588
5589/*
5590 * Software event: task time clock
5591 */
5592
5593static void task_clock_event_update(struct perf_event *event, u64 now)
5c92d124 5594{
b0a873eb
PZ
5595 u64 prev;
5596 s64 delta;
5c92d124 5597
b0a873eb
PZ
5598 prev = local64_xchg(&event->hw.prev_count, now);
5599 delta = now - prev;
5600 local64_add(delta, &event->count);
5601}
5c92d124 5602
a4eaf7f1 5603static void task_clock_event_start(struct perf_event *event, int flags)
b0a873eb 5604{
a4eaf7f1 5605 local64_set(&event->hw.prev_count, event->ctx->time);
b0a873eb 5606 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
5607}
5608
a4eaf7f1 5609static void task_clock_event_stop(struct perf_event *event, int flags)
b0a873eb
PZ
5610{
5611 perf_swevent_cancel_hrtimer(event);
5612 task_clock_event_update(event, event->ctx->time);
a4eaf7f1
PZ
5613}
5614
5615static int task_clock_event_add(struct perf_event *event, int flags)
5616{
5617 if (flags & PERF_EF_START)
5618 task_clock_event_start(event, flags);
b0a873eb 5619
a4eaf7f1
PZ
5620 return 0;
5621}
5622
5623static void task_clock_event_del(struct perf_event *event, int flags)
5624{
5625 task_clock_event_stop(event, PERF_EF_UPDATE);
b0a873eb
PZ
5626}
5627
5628static void task_clock_event_read(struct perf_event *event)
5629{
768a06e2
PZ
5630 u64 now = perf_clock();
5631 u64 delta = now - event->ctx->timestamp;
5632 u64 time = event->ctx->time + delta;
b0a873eb
PZ
5633
5634 task_clock_event_update(event, time);
5635}
5636
5637static int task_clock_event_init(struct perf_event *event)
6fb2915d 5638{
b0a873eb
PZ
5639 if (event->attr.type != PERF_TYPE_SOFTWARE)
5640 return -ENOENT;
5641
5642 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
5643 return -ENOENT;
5644
2481c5fa
SE
5645 /*
5646 * no branch sampling for software events
5647 */
5648 if (has_branch_stack(event))
5649 return -EOPNOTSUPP;
5650
ba3dd36c
PZ
5651 perf_swevent_init_hrtimer(event);
5652
b0a873eb 5653 return 0;
6fb2915d
LZ
5654}
5655
b0a873eb 5656static struct pmu perf_task_clock = {
89a1e187
PZ
5657 .task_ctx_nr = perf_sw_context,
5658
b0a873eb 5659 .event_init = task_clock_event_init,
a4eaf7f1
PZ
5660 .add = task_clock_event_add,
5661 .del = task_clock_event_del,
5662 .start = task_clock_event_start,
5663 .stop = task_clock_event_stop,
b0a873eb 5664 .read = task_clock_event_read,
35edc2a5
PZ
5665
5666 .event_idx = perf_swevent_event_idx,
b0a873eb 5667};
6fb2915d 5668
ad5133b7 5669static void perf_pmu_nop_void(struct pmu *pmu)
e077df4f 5670{
e077df4f 5671}
6fb2915d 5672
ad5133b7 5673static int perf_pmu_nop_int(struct pmu *pmu)
6fb2915d 5674{
ad5133b7 5675 return 0;
6fb2915d
LZ
5676}
5677
ad5133b7 5678static void perf_pmu_start_txn(struct pmu *pmu)
6fb2915d 5679{
ad5133b7 5680 perf_pmu_disable(pmu);
6fb2915d
LZ
5681}
5682
ad5133b7
PZ
5683static int perf_pmu_commit_txn(struct pmu *pmu)
5684{
5685 perf_pmu_enable(pmu);
5686 return 0;
5687}
e077df4f 5688
ad5133b7 5689static void perf_pmu_cancel_txn(struct pmu *pmu)
24f1e32c 5690{
ad5133b7 5691 perf_pmu_enable(pmu);
24f1e32c
FW
5692}
5693
35edc2a5
PZ
5694static int perf_event_idx_default(struct perf_event *event)
5695{
5696 return event->hw.idx + 1;
5697}
5698
8dc85d54
PZ
5699/*
5700 * Ensures all contexts with the same task_ctx_nr have the same
5701 * pmu_cpu_context too.
5702 */
5703static void *find_pmu_context(int ctxn)
24f1e32c 5704{
8dc85d54 5705 struct pmu *pmu;
b326e956 5706
8dc85d54
PZ
5707 if (ctxn < 0)
5708 return NULL;
24f1e32c 5709
8dc85d54
PZ
5710 list_for_each_entry(pmu, &pmus, entry) {
5711 if (pmu->task_ctx_nr == ctxn)
5712 return pmu->pmu_cpu_context;
5713 }
24f1e32c 5714
8dc85d54 5715 return NULL;
24f1e32c
FW
5716}
5717
51676957 5718static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
24f1e32c 5719{
51676957
PZ
5720 int cpu;
5721
5722 for_each_possible_cpu(cpu) {
5723 struct perf_cpu_context *cpuctx;
5724
5725 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
5726
5727 if (cpuctx->active_pmu == old_pmu)
5728 cpuctx->active_pmu = pmu;
5729 }
5730}
5731
5732static void free_pmu_context(struct pmu *pmu)
5733{
5734 struct pmu *i;
f5ffe02e 5735
8dc85d54 5736 mutex_lock(&pmus_lock);
0475f9ea 5737 /*
8dc85d54 5738 * Like a real lame refcount.
0475f9ea 5739 */
51676957
PZ
5740 list_for_each_entry(i, &pmus, entry) {
5741 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
5742 update_pmu_context(i, pmu);
8dc85d54 5743 goto out;
51676957 5744 }
8dc85d54 5745 }
d6d020e9 5746
51676957 5747 free_percpu(pmu->pmu_cpu_context);
8dc85d54
PZ
5748out:
5749 mutex_unlock(&pmus_lock);
24f1e32c 5750}
2e80a82a 5751static struct idr pmu_idr;
d6d020e9 5752
abe43400
PZ
5753static ssize_t
5754type_show(struct device *dev, struct device_attribute *attr, char *page)
5755{
5756 struct pmu *pmu = dev_get_drvdata(dev);
5757
5758 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
5759}
5760
5761static struct device_attribute pmu_dev_attrs[] = {
5762 __ATTR_RO(type),
5763 __ATTR_NULL,
5764};
5765
5766static int pmu_bus_running;
5767static struct bus_type pmu_bus = {
5768 .name = "event_source",
5769 .dev_attrs = pmu_dev_attrs,
5770};
5771
5772static void pmu_dev_release(struct device *dev)
5773{
5774 kfree(dev);
5775}
5776
5777static int pmu_dev_alloc(struct pmu *pmu)
5778{
5779 int ret = -ENOMEM;
5780
5781 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
5782 if (!pmu->dev)
5783 goto out;
5784
0c9d42ed 5785 pmu->dev->groups = pmu->attr_groups;
abe43400
PZ
5786 device_initialize(pmu->dev);
5787 ret = dev_set_name(pmu->dev, "%s", pmu->name);
5788 if (ret)
5789 goto free_dev;
5790
5791 dev_set_drvdata(pmu->dev, pmu);
5792 pmu->dev->bus = &pmu_bus;
5793 pmu->dev->release = pmu_dev_release;
5794 ret = device_add(pmu->dev);
5795 if (ret)
5796 goto free_dev;
5797
5798out:
5799 return ret;
5800
5801free_dev:
5802 put_device(pmu->dev);
5803 goto out;
5804}
5805
547e9fd7 5806static struct lock_class_key cpuctx_mutex;
facc4307 5807static struct lock_class_key cpuctx_lock;
547e9fd7 5808
2e80a82a 5809int perf_pmu_register(struct pmu *pmu, char *name, int type)
24f1e32c 5810{
108b02cf 5811 int cpu, ret;
24f1e32c 5812
b0a873eb 5813 mutex_lock(&pmus_lock);
33696fc0
PZ
5814 ret = -ENOMEM;
5815 pmu->pmu_disable_count = alloc_percpu(int);
5816 if (!pmu->pmu_disable_count)
5817 goto unlock;
f29ac756 5818
2e80a82a
PZ
5819 pmu->type = -1;
5820 if (!name)
5821 goto skip_type;
5822 pmu->name = name;
5823
5824 if (type < 0) {
5825 int err = idr_pre_get(&pmu_idr, GFP_KERNEL);
5826 if (!err)
5827 goto free_pdc;
5828
5829 err = idr_get_new_above(&pmu_idr, pmu, PERF_TYPE_MAX, &type);
5830 if (err) {
5831 ret = err;
5832 goto free_pdc;
5833 }
5834 }
5835 pmu->type = type;
5836
abe43400
PZ
5837 if (pmu_bus_running) {
5838 ret = pmu_dev_alloc(pmu);
5839 if (ret)
5840 goto free_idr;
5841 }
5842
2e80a82a 5843skip_type:
8dc85d54
PZ
5844 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
5845 if (pmu->pmu_cpu_context)
5846 goto got_cpu_context;
f29ac756 5847
108b02cf
PZ
5848 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
5849 if (!pmu->pmu_cpu_context)
abe43400 5850 goto free_dev;
f344011c 5851
108b02cf
PZ
5852 for_each_possible_cpu(cpu) {
5853 struct perf_cpu_context *cpuctx;
5854
5855 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
eb184479 5856 __perf_event_init_context(&cpuctx->ctx);
547e9fd7 5857 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
facc4307 5858 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
b04243ef 5859 cpuctx->ctx.type = cpu_context;
108b02cf 5860 cpuctx->ctx.pmu = pmu;
e9d2b064
PZ
5861 cpuctx->jiffies_interval = 1;
5862 INIT_LIST_HEAD(&cpuctx->rotation_list);
51676957 5863 cpuctx->active_pmu = pmu;
108b02cf 5864 }
76e1d904 5865
8dc85d54 5866got_cpu_context:
ad5133b7
PZ
5867 if (!pmu->start_txn) {
5868 if (pmu->pmu_enable) {
5869 /*
5870 * If we have pmu_enable/pmu_disable calls, install
5871 * transaction stubs that use that to try and batch
5872 * hardware accesses.
5873 */
5874 pmu->start_txn = perf_pmu_start_txn;
5875 pmu->commit_txn = perf_pmu_commit_txn;
5876 pmu->cancel_txn = perf_pmu_cancel_txn;
5877 } else {
5878 pmu->start_txn = perf_pmu_nop_void;
5879 pmu->commit_txn = perf_pmu_nop_int;
5880 pmu->cancel_txn = perf_pmu_nop_void;
f344011c 5881 }
5c92d124 5882 }
15dbf27c 5883
ad5133b7
PZ
5884 if (!pmu->pmu_enable) {
5885 pmu->pmu_enable = perf_pmu_nop_void;
5886 pmu->pmu_disable = perf_pmu_nop_void;
5887 }
5888
35edc2a5
PZ
5889 if (!pmu->event_idx)
5890 pmu->event_idx = perf_event_idx_default;
5891
b0a873eb 5892 list_add_rcu(&pmu->entry, &pmus);
33696fc0
PZ
5893 ret = 0;
5894unlock:
b0a873eb
PZ
5895 mutex_unlock(&pmus_lock);
5896
33696fc0 5897 return ret;
108b02cf 5898
abe43400
PZ
5899free_dev:
5900 device_del(pmu->dev);
5901 put_device(pmu->dev);
5902
2e80a82a
PZ
5903free_idr:
5904 if (pmu->type >= PERF_TYPE_MAX)
5905 idr_remove(&pmu_idr, pmu->type);
5906
108b02cf
PZ
5907free_pdc:
5908 free_percpu(pmu->pmu_disable_count);
5909 goto unlock;
f29ac756
PZ
5910}
5911
b0a873eb 5912void perf_pmu_unregister(struct pmu *pmu)
5c92d124 5913{
b0a873eb
PZ
5914 mutex_lock(&pmus_lock);
5915 list_del_rcu(&pmu->entry);
5916 mutex_unlock(&pmus_lock);
5c92d124 5917
0475f9ea 5918 /*
cde8e884
PZ
5919 * We dereference the pmu list under both SRCU and regular RCU, so
5920 * synchronize against both of those.
0475f9ea 5921 */
b0a873eb 5922 synchronize_srcu(&pmus_srcu);
cde8e884 5923 synchronize_rcu();
d6d020e9 5924
33696fc0 5925 free_percpu(pmu->pmu_disable_count);
2e80a82a
PZ
5926 if (pmu->type >= PERF_TYPE_MAX)
5927 idr_remove(&pmu_idr, pmu->type);
abe43400
PZ
5928 device_del(pmu->dev);
5929 put_device(pmu->dev);
51676957 5930 free_pmu_context(pmu);
b0a873eb 5931}
d6d020e9 5932
b0a873eb
PZ
5933struct pmu *perf_init_event(struct perf_event *event)
5934{
5935 struct pmu *pmu = NULL;
5936 int idx;
940c5b29 5937 int ret;
b0a873eb
PZ
5938
5939 idx = srcu_read_lock(&pmus_srcu);
2e80a82a
PZ
5940
5941 rcu_read_lock();
5942 pmu = idr_find(&pmu_idr, event->attr.type);
5943 rcu_read_unlock();
940c5b29 5944 if (pmu) {
7e5b2a01 5945 event->pmu = pmu;
940c5b29
LM
5946 ret = pmu->event_init(event);
5947 if (ret)
5948 pmu = ERR_PTR(ret);
2e80a82a 5949 goto unlock;
940c5b29 5950 }
2e80a82a 5951
b0a873eb 5952 list_for_each_entry_rcu(pmu, &pmus, entry) {
7e5b2a01 5953 event->pmu = pmu;
940c5b29 5954 ret = pmu->event_init(event);
b0a873eb 5955 if (!ret)
e5f4d339 5956 goto unlock;
76e1d904 5957
b0a873eb
PZ
5958 if (ret != -ENOENT) {
5959 pmu = ERR_PTR(ret);
e5f4d339 5960 goto unlock;
f344011c 5961 }
5c92d124 5962 }
e5f4d339
PZ
5963 pmu = ERR_PTR(-ENOENT);
5964unlock:
b0a873eb 5965 srcu_read_unlock(&pmus_srcu, idx);
15dbf27c 5966
4aeb0b42 5967 return pmu;
5c92d124
IM
5968}
5969
0793a61d 5970/*
cdd6c482 5971 * Allocate and initialize a event structure
0793a61d 5972 */
cdd6c482 5973static struct perf_event *
c3f00c70 5974perf_event_alloc(struct perf_event_attr *attr, int cpu,
d580ff86
PZ
5975 struct task_struct *task,
5976 struct perf_event *group_leader,
5977 struct perf_event *parent_event,
4dc0da86
AK
5978 perf_overflow_handler_t overflow_handler,
5979 void *context)
0793a61d 5980{
51b0fe39 5981 struct pmu *pmu;
cdd6c482
IM
5982 struct perf_event *event;
5983 struct hw_perf_event *hwc;
d5d2bc0d 5984 long err;
0793a61d 5985
66832eb4
ON
5986 if ((unsigned)cpu >= nr_cpu_ids) {
5987 if (!task || cpu != -1)
5988 return ERR_PTR(-EINVAL);
5989 }
5990
c3f00c70 5991 event = kzalloc(sizeof(*event), GFP_KERNEL);
cdd6c482 5992 if (!event)
d5d2bc0d 5993 return ERR_PTR(-ENOMEM);
0793a61d 5994
04289bb9 5995 /*
cdd6c482 5996 * Single events are their own group leaders, with an
04289bb9
IM
5997 * empty sibling list:
5998 */
5999 if (!group_leader)
cdd6c482 6000 group_leader = event;
04289bb9 6001
cdd6c482
IM
6002 mutex_init(&event->child_mutex);
6003 INIT_LIST_HEAD(&event->child_list);
fccc714b 6004
cdd6c482
IM
6005 INIT_LIST_HEAD(&event->group_entry);
6006 INIT_LIST_HEAD(&event->event_entry);
6007 INIT_LIST_HEAD(&event->sibling_list);
10c6db11
PZ
6008 INIT_LIST_HEAD(&event->rb_entry);
6009
cdd6c482 6010 init_waitqueue_head(&event->waitq);
e360adbe 6011 init_irq_work(&event->pending, perf_pending_event);
0793a61d 6012
cdd6c482 6013 mutex_init(&event->mmap_mutex);
7b732a75 6014
cdd6c482
IM
6015 event->cpu = cpu;
6016 event->attr = *attr;
6017 event->group_leader = group_leader;
6018 event->pmu = NULL;
cdd6c482 6019 event->oncpu = -1;
a96bbc16 6020
cdd6c482 6021 event->parent = parent_event;
b84fbc9f 6022
cdd6c482
IM
6023 event->ns = get_pid_ns(current->nsproxy->pid_ns);
6024 event->id = atomic64_inc_return(&perf_event_id);
a96bbc16 6025
cdd6c482 6026 event->state = PERF_EVENT_STATE_INACTIVE;
329d876d 6027
d580ff86
PZ
6028 if (task) {
6029 event->attach_state = PERF_ATTACH_TASK;
6030#ifdef CONFIG_HAVE_HW_BREAKPOINT
6031 /*
6032 * hw_breakpoint is a bit difficult here..
6033 */
6034 if (attr->type == PERF_TYPE_BREAKPOINT)
6035 event->hw.bp_target = task;
6036#endif
6037 }
6038
4dc0da86 6039 if (!overflow_handler && parent_event) {
b326e956 6040 overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
6041 context = parent_event->overflow_handler_context;
6042 }
66832eb4 6043
b326e956 6044 event->overflow_handler = overflow_handler;
4dc0da86 6045 event->overflow_handler_context = context;
97eaf530 6046
0d48696f 6047 if (attr->disabled)
cdd6c482 6048 event->state = PERF_EVENT_STATE_OFF;
a86ed508 6049
4aeb0b42 6050 pmu = NULL;
b8e83514 6051
cdd6c482 6052 hwc = &event->hw;
bd2b5b12 6053 hwc->sample_period = attr->sample_period;
0d48696f 6054 if (attr->freq && attr->sample_freq)
bd2b5b12 6055 hwc->sample_period = 1;
eced1dfc 6056 hwc->last_period = hwc->sample_period;
bd2b5b12 6057
e7850595 6058 local64_set(&hwc->period_left, hwc->sample_period);
60db5e09 6059
2023b359 6060 /*
cdd6c482 6061 * we currently do not support PERF_FORMAT_GROUP on inherited events
2023b359 6062 */
3dab77fb 6063 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
2023b359
PZ
6064 goto done;
6065
b0a873eb 6066 pmu = perf_init_event(event);
974802ea 6067
d5d2bc0d
PM
6068done:
6069 err = 0;
4aeb0b42 6070 if (!pmu)
d5d2bc0d 6071 err = -EINVAL;
4aeb0b42
RR
6072 else if (IS_ERR(pmu))
6073 err = PTR_ERR(pmu);
5c92d124 6074
d5d2bc0d 6075 if (err) {
cdd6c482
IM
6076 if (event->ns)
6077 put_pid_ns(event->ns);
6078 kfree(event);
d5d2bc0d 6079 return ERR_PTR(err);
621a01ea 6080 }
d5d2bc0d 6081
cdd6c482 6082 if (!event->parent) {
82cd6def 6083 if (event->attach_state & PERF_ATTACH_TASK)
c5905afb 6084 static_key_slow_inc(&perf_sched_events.key);
3af9e859 6085 if (event->attr.mmap || event->attr.mmap_data)
cdd6c482
IM
6086 atomic_inc(&nr_mmap_events);
6087 if (event->attr.comm)
6088 atomic_inc(&nr_comm_events);
6089 if (event->attr.task)
6090 atomic_inc(&nr_task_events);
927c7a9e
FW
6091 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
6092 err = get_callchain_buffers();
6093 if (err) {
6094 free_event(event);
6095 return ERR_PTR(err);
6096 }
6097 }
d010b332
SE
6098 if (has_branch_stack(event)) {
6099 static_key_slow_inc(&perf_sched_events.key);
6100 if (!(event->attach_state & PERF_ATTACH_TASK))
6101 atomic_inc(&per_cpu(perf_branch_stack_events,
6102 event->cpu));
6103 }
f344011c 6104 }
9ee318a7 6105
cdd6c482 6106 return event;
0793a61d
TG
6107}
6108
cdd6c482
IM
6109static int perf_copy_attr(struct perf_event_attr __user *uattr,
6110 struct perf_event_attr *attr)
974802ea 6111{
974802ea 6112 u32 size;
cdf8073d 6113 int ret;
974802ea
PZ
6114
6115 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
6116 return -EFAULT;
6117
6118 /*
6119 * zero the full structure, so that a short copy will be nice.
6120 */
6121 memset(attr, 0, sizeof(*attr));
6122
6123 ret = get_user(size, &uattr->size);
6124 if (ret)
6125 return ret;
6126
6127 if (size > PAGE_SIZE) /* silly large */
6128 goto err_size;
6129
6130 if (!size) /* abi compat */
6131 size = PERF_ATTR_SIZE_VER0;
6132
6133 if (size < PERF_ATTR_SIZE_VER0)
6134 goto err_size;
6135
6136 /*
6137 * If we're handed a bigger struct than we know of,
cdf8073d
IS
6138 * ensure all the unknown bits are 0 - i.e. new
6139 * user-space does not rely on any kernel feature
6140 * extensions we dont know about yet.
974802ea
PZ
6141 */
6142 if (size > sizeof(*attr)) {
cdf8073d
IS
6143 unsigned char __user *addr;
6144 unsigned char __user *end;
6145 unsigned char val;
974802ea 6146
cdf8073d
IS
6147 addr = (void __user *)uattr + sizeof(*attr);
6148 end = (void __user *)uattr + size;
974802ea 6149
cdf8073d 6150 for (; addr < end; addr++) {
974802ea
PZ
6151 ret = get_user(val, addr);
6152 if (ret)
6153 return ret;
6154 if (val)
6155 goto err_size;
6156 }
b3e62e35 6157 size = sizeof(*attr);
974802ea
PZ
6158 }
6159
6160 ret = copy_from_user(attr, uattr, size);
6161 if (ret)
6162 return -EFAULT;
6163
cd757645 6164 if (attr->__reserved_1)
974802ea
PZ
6165 return -EINVAL;
6166
6167 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
6168 return -EINVAL;
6169
6170 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
6171 return -EINVAL;
6172
bce38cd5
SE
6173 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
6174 u64 mask = attr->branch_sample_type;
6175
6176 /* only using defined bits */
6177 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
6178 return -EINVAL;
6179
6180 /* at least one branch bit must be set */
6181 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
6182 return -EINVAL;
6183
6184 /* kernel level capture: check permissions */
6185 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
6186 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
6187 return -EACCES;
6188
6189 /* propagate priv level, when not set for branch */
6190 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
6191
6192 /* exclude_kernel checked on syscall entry */
6193 if (!attr->exclude_kernel)
6194 mask |= PERF_SAMPLE_BRANCH_KERNEL;
6195
6196 if (!attr->exclude_user)
6197 mask |= PERF_SAMPLE_BRANCH_USER;
6198
6199 if (!attr->exclude_hv)
6200 mask |= PERF_SAMPLE_BRANCH_HV;
6201 /*
6202 * adjust user setting (for HW filter setup)
6203 */
6204 attr->branch_sample_type = mask;
6205 }
6206 }
4018994f
JO
6207
6208 if (attr->sample_type & PERF_SAMPLE_REGS_USER)
6209 ret = perf_reg_validate(attr->sample_regs_user);
6210
974802ea
PZ
6211out:
6212 return ret;
6213
6214err_size:
6215 put_user(sizeof(*attr), &uattr->size);
6216 ret = -E2BIG;
6217 goto out;
6218}
6219
ac9721f3
PZ
6220static int
6221perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
a4be7c27 6222{
76369139 6223 struct ring_buffer *rb = NULL, *old_rb = NULL;
a4be7c27
PZ
6224 int ret = -EINVAL;
6225
ac9721f3 6226 if (!output_event)
a4be7c27
PZ
6227 goto set;
6228
ac9721f3
PZ
6229 /* don't allow circular references */
6230 if (event == output_event)
a4be7c27
PZ
6231 goto out;
6232
0f139300
PZ
6233 /*
6234 * Don't allow cross-cpu buffers
6235 */
6236 if (output_event->cpu != event->cpu)
6237 goto out;
6238
6239 /*
76369139 6240 * If its not a per-cpu rb, it must be the same task.
0f139300
PZ
6241 */
6242 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
6243 goto out;
6244
a4be7c27 6245set:
cdd6c482 6246 mutex_lock(&event->mmap_mutex);
ac9721f3
PZ
6247 /* Can't redirect output if we've got an active mmap() */
6248 if (atomic_read(&event->mmap_count))
6249 goto unlock;
a4be7c27 6250
ac9721f3 6251 if (output_event) {
76369139
FW
6252 /* get the rb we want to redirect to */
6253 rb = ring_buffer_get(output_event);
6254 if (!rb)
ac9721f3 6255 goto unlock;
a4be7c27
PZ
6256 }
6257
76369139
FW
6258 old_rb = event->rb;
6259 rcu_assign_pointer(event->rb, rb);
10c6db11
PZ
6260 if (old_rb)
6261 ring_buffer_detach(event, old_rb);
a4be7c27 6262 ret = 0;
ac9721f3
PZ
6263unlock:
6264 mutex_unlock(&event->mmap_mutex);
6265
76369139
FW
6266 if (old_rb)
6267 ring_buffer_put(old_rb);
a4be7c27 6268out:
a4be7c27
PZ
6269 return ret;
6270}
6271
0793a61d 6272/**
cdd6c482 6273 * sys_perf_event_open - open a performance event, associate it to a task/cpu
9f66a381 6274 *
cdd6c482 6275 * @attr_uptr: event_id type attributes for monitoring/sampling
0793a61d 6276 * @pid: target pid
9f66a381 6277 * @cpu: target cpu
cdd6c482 6278 * @group_fd: group leader event fd
0793a61d 6279 */
cdd6c482
IM
6280SYSCALL_DEFINE5(perf_event_open,
6281 struct perf_event_attr __user *, attr_uptr,
2743a5b0 6282 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
0793a61d 6283{
b04243ef
PZ
6284 struct perf_event *group_leader = NULL, *output_event = NULL;
6285 struct perf_event *event, *sibling;
cdd6c482
IM
6286 struct perf_event_attr attr;
6287 struct perf_event_context *ctx;
6288 struct file *event_file = NULL;
04289bb9 6289 struct file *group_file = NULL;
38a81da2 6290 struct task_struct *task = NULL;
89a1e187 6291 struct pmu *pmu;
ea635c64 6292 int event_fd;
b04243ef 6293 int move_group = 0;
04289bb9 6294 int fput_needed = 0;
dc86cabe 6295 int err;
0793a61d 6296
2743a5b0 6297 /* for future expandability... */
e5d1367f 6298 if (flags & ~PERF_FLAG_ALL)
2743a5b0
PM
6299 return -EINVAL;
6300
dc86cabe
IM
6301 err = perf_copy_attr(attr_uptr, &attr);
6302 if (err)
6303 return err;
eab656ae 6304
0764771d
PZ
6305 if (!attr.exclude_kernel) {
6306 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
6307 return -EACCES;
6308 }
6309
df58ab24 6310 if (attr.freq) {
cdd6c482 6311 if (attr.sample_freq > sysctl_perf_event_sample_rate)
df58ab24
PZ
6312 return -EINVAL;
6313 }
6314
e5d1367f
SE
6315 /*
6316 * In cgroup mode, the pid argument is used to pass the fd
6317 * opened to the cgroup directory in cgroupfs. The cpu argument
6318 * designates the cpu on which to monitor threads from that
6319 * cgroup.
6320 */
6321 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
6322 return -EINVAL;
6323
ea635c64
AV
6324 event_fd = get_unused_fd_flags(O_RDWR);
6325 if (event_fd < 0)
6326 return event_fd;
6327
ac9721f3
PZ
6328 if (group_fd != -1) {
6329 group_leader = perf_fget_light(group_fd, &fput_needed);
6330 if (IS_ERR(group_leader)) {
6331 err = PTR_ERR(group_leader);
d14b12d7 6332 goto err_fd;
ac9721f3
PZ
6333 }
6334 group_file = group_leader->filp;
6335 if (flags & PERF_FLAG_FD_OUTPUT)
6336 output_event = group_leader;
6337 if (flags & PERF_FLAG_FD_NO_GROUP)
6338 group_leader = NULL;
6339 }
6340
e5d1367f 6341 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
c6be5a5c
PZ
6342 task = find_lively_task_by_vpid(pid);
6343 if (IS_ERR(task)) {
6344 err = PTR_ERR(task);
6345 goto err_group_fd;
6346 }
6347 }
6348
fbfc623f
YZ
6349 get_online_cpus();
6350
4dc0da86
AK
6351 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
6352 NULL, NULL);
d14b12d7
SE
6353 if (IS_ERR(event)) {
6354 err = PTR_ERR(event);
c6be5a5c 6355 goto err_task;
d14b12d7
SE
6356 }
6357
e5d1367f
SE
6358 if (flags & PERF_FLAG_PID_CGROUP) {
6359 err = perf_cgroup_connect(pid, event, &attr, group_leader);
6360 if (err)
6361 goto err_alloc;
08309379
PZ
6362 /*
6363 * one more event:
6364 * - that has cgroup constraint on event->cpu
6365 * - that may need work on context switch
6366 */
6367 atomic_inc(&per_cpu(perf_cgroup_events, event->cpu));
c5905afb 6368 static_key_slow_inc(&perf_sched_events.key);
e5d1367f
SE
6369 }
6370
89a1e187
PZ
6371 /*
6372 * Special case software events and allow them to be part of
6373 * any hardware group.
6374 */
6375 pmu = event->pmu;
b04243ef
PZ
6376
6377 if (group_leader &&
6378 (is_software_event(event) != is_software_event(group_leader))) {
6379 if (is_software_event(event)) {
6380 /*
6381 * If event and group_leader are not both a software
6382 * event, and event is, then group leader is not.
6383 *
6384 * Allow the addition of software events to !software
6385 * groups, this is safe because software events never
6386 * fail to schedule.
6387 */
6388 pmu = group_leader->pmu;
6389 } else if (is_software_event(group_leader) &&
6390 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
6391 /*
6392 * In case the group is a pure software group, and we
6393 * try to add a hardware event, move the whole group to
6394 * the hardware context.
6395 */
6396 move_group = 1;
6397 }
6398 }
89a1e187
PZ
6399
6400 /*
6401 * Get the target context (task or percpu):
6402 */
e2d37cd2 6403 ctx = find_get_context(pmu, task, event->cpu);
89a1e187
PZ
6404 if (IS_ERR(ctx)) {
6405 err = PTR_ERR(ctx);
c6be5a5c 6406 goto err_alloc;
89a1e187
PZ
6407 }
6408
fd1edb3a
PZ
6409 if (task) {
6410 put_task_struct(task);
6411 task = NULL;
6412 }
6413
ccff286d 6414 /*
cdd6c482 6415 * Look up the group leader (we will attach this event to it):
04289bb9 6416 */
ac9721f3 6417 if (group_leader) {
dc86cabe 6418 err = -EINVAL;
04289bb9 6419
04289bb9 6420 /*
ccff286d
IM
6421 * Do not allow a recursive hierarchy (this new sibling
6422 * becoming part of another group-sibling):
6423 */
6424 if (group_leader->group_leader != group_leader)
c3f00c70 6425 goto err_context;
ccff286d
IM
6426 /*
6427 * Do not allow to attach to a group in a different
6428 * task or CPU context:
04289bb9 6429 */
b04243ef
PZ
6430 if (move_group) {
6431 if (group_leader->ctx->type != ctx->type)
6432 goto err_context;
6433 } else {
6434 if (group_leader->ctx != ctx)
6435 goto err_context;
6436 }
6437
3b6f9e5c
PM
6438 /*
6439 * Only a group leader can be exclusive or pinned
6440 */
0d48696f 6441 if (attr.exclusive || attr.pinned)
c3f00c70 6442 goto err_context;
ac9721f3
PZ
6443 }
6444
6445 if (output_event) {
6446 err = perf_event_set_output(event, output_event);
6447 if (err)
c3f00c70 6448 goto err_context;
ac9721f3 6449 }
0793a61d 6450
ea635c64
AV
6451 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
6452 if (IS_ERR(event_file)) {
6453 err = PTR_ERR(event_file);
c3f00c70 6454 goto err_context;
ea635c64 6455 }
9b51f66d 6456
b04243ef
PZ
6457 if (move_group) {
6458 struct perf_event_context *gctx = group_leader->ctx;
6459
6460 mutex_lock(&gctx->mutex);
fe4b04fa 6461 perf_remove_from_context(group_leader);
b04243ef
PZ
6462 list_for_each_entry(sibling, &group_leader->sibling_list,
6463 group_entry) {
fe4b04fa 6464 perf_remove_from_context(sibling);
b04243ef
PZ
6465 put_ctx(gctx);
6466 }
6467 mutex_unlock(&gctx->mutex);
6468 put_ctx(gctx);
ea635c64 6469 }
9b51f66d 6470
cdd6c482 6471 event->filp = event_file;
ad3a37de 6472 WARN_ON_ONCE(ctx->parent_ctx);
d859e29f 6473 mutex_lock(&ctx->mutex);
b04243ef
PZ
6474
6475 if (move_group) {
0cda4c02 6476 synchronize_rcu();
e2d37cd2 6477 perf_install_in_context(ctx, group_leader, event->cpu);
b04243ef
PZ
6478 get_ctx(ctx);
6479 list_for_each_entry(sibling, &group_leader->sibling_list,
6480 group_entry) {
e2d37cd2 6481 perf_install_in_context(ctx, sibling, event->cpu);
b04243ef
PZ
6482 get_ctx(ctx);
6483 }
6484 }
6485
e2d37cd2 6486 perf_install_in_context(ctx, event, event->cpu);
ad3a37de 6487 ++ctx->generation;
fe4b04fa 6488 perf_unpin_context(ctx);
d859e29f 6489 mutex_unlock(&ctx->mutex);
9b51f66d 6490
fbfc623f
YZ
6491 put_online_cpus();
6492
cdd6c482 6493 event->owner = current;
8882135b 6494
cdd6c482
IM
6495 mutex_lock(&current->perf_event_mutex);
6496 list_add_tail(&event->owner_entry, &current->perf_event_list);
6497 mutex_unlock(&current->perf_event_mutex);
082ff5a2 6498
c320c7b7
ACM
6499 /*
6500 * Precalculate sample_data sizes
6501 */
6502 perf_event__header_size(event);
6844c09d 6503 perf_event__id_header_size(event);
c320c7b7 6504
8a49542c
PZ
6505 /*
6506 * Drop the reference on the group_event after placing the
6507 * new event on the sibling_list. This ensures destruction
6508 * of the group leader will find the pointer to itself in
6509 * perf_group_detach().
6510 */
ea635c64
AV
6511 fput_light(group_file, fput_needed);
6512 fd_install(event_fd, event_file);
6513 return event_fd;
0793a61d 6514
c3f00c70 6515err_context:
fe4b04fa 6516 perf_unpin_context(ctx);
ea635c64 6517 put_ctx(ctx);
c6be5a5c 6518err_alloc:
ea635c64 6519 free_event(event);
e7d0bc04 6520err_task:
fbfc623f 6521 put_online_cpus();
e7d0bc04
PZ
6522 if (task)
6523 put_task_struct(task);
89a1e187 6524err_group_fd:
dc86cabe 6525 fput_light(group_file, fput_needed);
ea635c64
AV
6526err_fd:
6527 put_unused_fd(event_fd);
dc86cabe 6528 return err;
0793a61d
TG
6529}
6530
fb0459d7
AV
6531/**
6532 * perf_event_create_kernel_counter
6533 *
6534 * @attr: attributes of the counter to create
6535 * @cpu: cpu in which the counter is bound
38a81da2 6536 * @task: task to profile (NULL for percpu)
fb0459d7
AV
6537 */
6538struct perf_event *
6539perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
38a81da2 6540 struct task_struct *task,
4dc0da86
AK
6541 perf_overflow_handler_t overflow_handler,
6542 void *context)
fb0459d7 6543{
fb0459d7 6544 struct perf_event_context *ctx;
c3f00c70 6545 struct perf_event *event;
fb0459d7 6546 int err;
d859e29f 6547
fb0459d7
AV
6548 /*
6549 * Get the target context (task or percpu):
6550 */
d859e29f 6551
4dc0da86
AK
6552 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
6553 overflow_handler, context);
c3f00c70
PZ
6554 if (IS_ERR(event)) {
6555 err = PTR_ERR(event);
6556 goto err;
6557 }
d859e29f 6558
38a81da2 6559 ctx = find_get_context(event->pmu, task, cpu);
c6567f64
FW
6560 if (IS_ERR(ctx)) {
6561 err = PTR_ERR(ctx);
c3f00c70 6562 goto err_free;
d859e29f 6563 }
fb0459d7
AV
6564
6565 event->filp = NULL;
6566 WARN_ON_ONCE(ctx->parent_ctx);
6567 mutex_lock(&ctx->mutex);
6568 perf_install_in_context(ctx, event, cpu);
6569 ++ctx->generation;
fe4b04fa 6570 perf_unpin_context(ctx);
fb0459d7
AV
6571 mutex_unlock(&ctx->mutex);
6572
fb0459d7
AV
6573 return event;
6574
c3f00c70
PZ
6575err_free:
6576 free_event(event);
6577err:
c6567f64 6578 return ERR_PTR(err);
9b51f66d 6579}
fb0459d7 6580EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
9b51f66d 6581
0cda4c02
YZ
6582void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
6583{
6584 struct perf_event_context *src_ctx;
6585 struct perf_event_context *dst_ctx;
6586 struct perf_event *event, *tmp;
6587 LIST_HEAD(events);
6588
6589 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
6590 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
6591
6592 mutex_lock(&src_ctx->mutex);
6593 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
6594 event_entry) {
6595 perf_remove_from_context(event);
6596 put_ctx(src_ctx);
6597 list_add(&event->event_entry, &events);
6598 }
6599 mutex_unlock(&src_ctx->mutex);
6600
6601 synchronize_rcu();
6602
6603 mutex_lock(&dst_ctx->mutex);
6604 list_for_each_entry_safe(event, tmp, &events, event_entry) {
6605 list_del(&event->event_entry);
6606 if (event->state >= PERF_EVENT_STATE_OFF)
6607 event->state = PERF_EVENT_STATE_INACTIVE;
6608 perf_install_in_context(dst_ctx, event, dst_cpu);
6609 get_ctx(dst_ctx);
6610 }
6611 mutex_unlock(&dst_ctx->mutex);
6612}
6613EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
6614
cdd6c482 6615static void sync_child_event(struct perf_event *child_event,
38b200d6 6616 struct task_struct *child)
d859e29f 6617{
cdd6c482 6618 struct perf_event *parent_event = child_event->parent;
8bc20959 6619 u64 child_val;
d859e29f 6620
cdd6c482
IM
6621 if (child_event->attr.inherit_stat)
6622 perf_event_read_event(child_event, child);
38b200d6 6623
b5e58793 6624 child_val = perf_event_count(child_event);
d859e29f
PM
6625
6626 /*
6627 * Add back the child's count to the parent's count:
6628 */
a6e6dea6 6629 atomic64_add(child_val, &parent_event->child_count);
cdd6c482
IM
6630 atomic64_add(child_event->total_time_enabled,
6631 &parent_event->child_total_time_enabled);
6632 atomic64_add(child_event->total_time_running,
6633 &parent_event->child_total_time_running);
d859e29f
PM
6634
6635 /*
cdd6c482 6636 * Remove this event from the parent's list
d859e29f 6637 */
cdd6c482
IM
6638 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
6639 mutex_lock(&parent_event->child_mutex);
6640 list_del_init(&child_event->child_list);
6641 mutex_unlock(&parent_event->child_mutex);
d859e29f
PM
6642
6643 /*
cdd6c482 6644 * Release the parent event, if this was the last
d859e29f
PM
6645 * reference to it.
6646 */
cdd6c482 6647 fput(parent_event->filp);
d859e29f
PM
6648}
6649
9b51f66d 6650static void
cdd6c482
IM
6651__perf_event_exit_task(struct perf_event *child_event,
6652 struct perf_event_context *child_ctx,
38b200d6 6653 struct task_struct *child)
9b51f66d 6654{
38b435b1
PZ
6655 if (child_event->parent) {
6656 raw_spin_lock_irq(&child_ctx->lock);
6657 perf_group_detach(child_event);
6658 raw_spin_unlock_irq(&child_ctx->lock);
6659 }
9b51f66d 6660
fe4b04fa 6661 perf_remove_from_context(child_event);
0cc0c027 6662
9b51f66d 6663 /*
38b435b1 6664 * It can happen that the parent exits first, and has events
9b51f66d 6665 * that are still around due to the child reference. These
38b435b1 6666 * events need to be zapped.
9b51f66d 6667 */
38b435b1 6668 if (child_event->parent) {
cdd6c482
IM
6669 sync_child_event(child_event, child);
6670 free_event(child_event);
4bcf349a 6671 }
9b51f66d
IM
6672}
6673
8dc85d54 6674static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
9b51f66d 6675{
cdd6c482
IM
6676 struct perf_event *child_event, *tmp;
6677 struct perf_event_context *child_ctx;
a63eaf34 6678 unsigned long flags;
9b51f66d 6679
8dc85d54 6680 if (likely(!child->perf_event_ctxp[ctxn])) {
cdd6c482 6681 perf_event_task(child, NULL, 0);
9b51f66d 6682 return;
9f498cc5 6683 }
9b51f66d 6684
a63eaf34 6685 local_irq_save(flags);
ad3a37de
PM
6686 /*
6687 * We can't reschedule here because interrupts are disabled,
6688 * and either child is current or it is a task that can't be
6689 * scheduled, so we are now safe from rescheduling changing
6690 * our context.
6691 */
806839b2 6692 child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
c93f7669
PM
6693
6694 /*
6695 * Take the context lock here so that if find_get_context is
cdd6c482 6696 * reading child->perf_event_ctxp, we wait until it has
c93f7669
PM
6697 * incremented the context's refcount before we do put_ctx below.
6698 */
e625cce1 6699 raw_spin_lock(&child_ctx->lock);
04dc2dbb 6700 task_ctx_sched_out(child_ctx);
8dc85d54 6701 child->perf_event_ctxp[ctxn] = NULL;
71a851b4
PZ
6702 /*
6703 * If this context is a clone; unclone it so it can't get
6704 * swapped to another process while we're removing all
cdd6c482 6705 * the events from it.
71a851b4
PZ
6706 */
6707 unclone_ctx(child_ctx);
5e942bb3 6708 update_context_time(child_ctx);
e625cce1 6709 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
9f498cc5
PZ
6710
6711 /*
cdd6c482
IM
6712 * Report the task dead after unscheduling the events so that we
6713 * won't get any samples after PERF_RECORD_EXIT. We can however still
6714 * get a few PERF_RECORD_READ events.
9f498cc5 6715 */
cdd6c482 6716 perf_event_task(child, child_ctx, 0);
a63eaf34 6717
66fff224
PZ
6718 /*
6719 * We can recurse on the same lock type through:
6720 *
cdd6c482
IM
6721 * __perf_event_exit_task()
6722 * sync_child_event()
6723 * fput(parent_event->filp)
66fff224
PZ
6724 * perf_release()
6725 * mutex_lock(&ctx->mutex)
6726 *
6727 * But since its the parent context it won't be the same instance.
6728 */
a0507c84 6729 mutex_lock(&child_ctx->mutex);
a63eaf34 6730
8bc20959 6731again:
889ff015
FW
6732 list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
6733 group_entry)
6734 __perf_event_exit_task(child_event, child_ctx, child);
6735
6736 list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
65abc865 6737 group_entry)
cdd6c482 6738 __perf_event_exit_task(child_event, child_ctx, child);
8bc20959
PZ
6739
6740 /*
cdd6c482 6741 * If the last event was a group event, it will have appended all
8bc20959
PZ
6742 * its siblings to the list, but we obtained 'tmp' before that which
6743 * will still point to the list head terminating the iteration.
6744 */
889ff015
FW
6745 if (!list_empty(&child_ctx->pinned_groups) ||
6746 !list_empty(&child_ctx->flexible_groups))
8bc20959 6747 goto again;
a63eaf34
PM
6748
6749 mutex_unlock(&child_ctx->mutex);
6750
6751 put_ctx(child_ctx);
9b51f66d
IM
6752}
6753
8dc85d54
PZ
6754/*
6755 * When a child task exits, feed back event values to parent events.
6756 */
6757void perf_event_exit_task(struct task_struct *child)
6758{
8882135b 6759 struct perf_event *event, *tmp;
8dc85d54
PZ
6760 int ctxn;
6761
8882135b
PZ
6762 mutex_lock(&child->perf_event_mutex);
6763 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
6764 owner_entry) {
6765 list_del_init(&event->owner_entry);
6766
6767 /*
6768 * Ensure the list deletion is visible before we clear
6769 * the owner, closes a race against perf_release() where
6770 * we need to serialize on the owner->perf_event_mutex.
6771 */
6772 smp_wmb();
6773 event->owner = NULL;
6774 }
6775 mutex_unlock(&child->perf_event_mutex);
6776
8dc85d54
PZ
6777 for_each_task_context_nr(ctxn)
6778 perf_event_exit_task_context(child, ctxn);
6779}
6780
889ff015
FW
6781static void perf_free_event(struct perf_event *event,
6782 struct perf_event_context *ctx)
6783{
6784 struct perf_event *parent = event->parent;
6785
6786 if (WARN_ON_ONCE(!parent))
6787 return;
6788
6789 mutex_lock(&parent->child_mutex);
6790 list_del_init(&event->child_list);
6791 mutex_unlock(&parent->child_mutex);
6792
6793 fput(parent->filp);
6794
8a49542c 6795 perf_group_detach(event);
889ff015
FW
6796 list_del_event(event, ctx);
6797 free_event(event);
6798}
6799
bbbee908
PZ
6800/*
6801 * free an unexposed, unused context as created by inheritance by
8dc85d54 6802 * perf_event_init_task below, used by fork() in case of fail.
bbbee908 6803 */
cdd6c482 6804void perf_event_free_task(struct task_struct *task)
bbbee908 6805{
8dc85d54 6806 struct perf_event_context *ctx;
cdd6c482 6807 struct perf_event *event, *tmp;
8dc85d54 6808 int ctxn;
bbbee908 6809
8dc85d54
PZ
6810 for_each_task_context_nr(ctxn) {
6811 ctx = task->perf_event_ctxp[ctxn];
6812 if (!ctx)
6813 continue;
bbbee908 6814
8dc85d54 6815 mutex_lock(&ctx->mutex);
bbbee908 6816again:
8dc85d54
PZ
6817 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
6818 group_entry)
6819 perf_free_event(event, ctx);
bbbee908 6820
8dc85d54
PZ
6821 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
6822 group_entry)
6823 perf_free_event(event, ctx);
bbbee908 6824
8dc85d54
PZ
6825 if (!list_empty(&ctx->pinned_groups) ||
6826 !list_empty(&ctx->flexible_groups))
6827 goto again;
bbbee908 6828
8dc85d54 6829 mutex_unlock(&ctx->mutex);
bbbee908 6830
8dc85d54
PZ
6831 put_ctx(ctx);
6832 }
889ff015
FW
6833}
6834
4e231c79
PZ
6835void perf_event_delayed_put(struct task_struct *task)
6836{
6837 int ctxn;
6838
6839 for_each_task_context_nr(ctxn)
6840 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
6841}
6842
97dee4f3
PZ
6843/*
6844 * inherit a event from parent task to child task:
6845 */
6846static struct perf_event *
6847inherit_event(struct perf_event *parent_event,
6848 struct task_struct *parent,
6849 struct perf_event_context *parent_ctx,
6850 struct task_struct *child,
6851 struct perf_event *group_leader,
6852 struct perf_event_context *child_ctx)
6853{
6854 struct perf_event *child_event;
cee010ec 6855 unsigned long flags;
97dee4f3
PZ
6856
6857 /*
6858 * Instead of creating recursive hierarchies of events,
6859 * we link inherited events back to the original parent,
6860 * which has a filp for sure, which we use as the reference
6861 * count:
6862 */
6863 if (parent_event->parent)
6864 parent_event = parent_event->parent;
6865
6866 child_event = perf_event_alloc(&parent_event->attr,
6867 parent_event->cpu,
d580ff86 6868 child,
97dee4f3 6869 group_leader, parent_event,
4dc0da86 6870 NULL, NULL);
97dee4f3
PZ
6871 if (IS_ERR(child_event))
6872 return child_event;
6873 get_ctx(child_ctx);
6874
6875 /*
6876 * Make the child state follow the state of the parent event,
6877 * not its attr.disabled bit. We hold the parent's mutex,
6878 * so we won't race with perf_event_{en, dis}able_family.
6879 */
6880 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
6881 child_event->state = PERF_EVENT_STATE_INACTIVE;
6882 else
6883 child_event->state = PERF_EVENT_STATE_OFF;
6884
6885 if (parent_event->attr.freq) {
6886 u64 sample_period = parent_event->hw.sample_period;
6887 struct hw_perf_event *hwc = &child_event->hw;
6888
6889 hwc->sample_period = sample_period;
6890 hwc->last_period = sample_period;
6891
6892 local64_set(&hwc->period_left, sample_period);
6893 }
6894
6895 child_event->ctx = child_ctx;
6896 child_event->overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
6897 child_event->overflow_handler_context
6898 = parent_event->overflow_handler_context;
97dee4f3 6899
614b6780
TG
6900 /*
6901 * Precalculate sample_data sizes
6902 */
6903 perf_event__header_size(child_event);
6844c09d 6904 perf_event__id_header_size(child_event);
614b6780 6905
97dee4f3
PZ
6906 /*
6907 * Link it up in the child's context:
6908 */
cee010ec 6909 raw_spin_lock_irqsave(&child_ctx->lock, flags);
97dee4f3 6910 add_event_to_ctx(child_event, child_ctx);
cee010ec 6911 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
97dee4f3
PZ
6912
6913 /*
6914 * Get a reference to the parent filp - we will fput it
6915 * when the child event exits. This is safe to do because
6916 * we are in the parent and we know that the filp still
6917 * exists and has a nonzero count:
6918 */
6919 atomic_long_inc(&parent_event->filp->f_count);
6920
6921 /*
6922 * Link this into the parent event's child list
6923 */
6924 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
6925 mutex_lock(&parent_event->child_mutex);
6926 list_add_tail(&child_event->child_list, &parent_event->child_list);
6927 mutex_unlock(&parent_event->child_mutex);
6928
6929 return child_event;
6930}
6931
6932static int inherit_group(struct perf_event *parent_event,
6933 struct task_struct *parent,
6934 struct perf_event_context *parent_ctx,
6935 struct task_struct *child,
6936 struct perf_event_context *child_ctx)
6937{
6938 struct perf_event *leader;
6939 struct perf_event *sub;
6940 struct perf_event *child_ctr;
6941
6942 leader = inherit_event(parent_event, parent, parent_ctx,
6943 child, NULL, child_ctx);
6944 if (IS_ERR(leader))
6945 return PTR_ERR(leader);
6946 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
6947 child_ctr = inherit_event(sub, parent, parent_ctx,
6948 child, leader, child_ctx);
6949 if (IS_ERR(child_ctr))
6950 return PTR_ERR(child_ctr);
6951 }
6952 return 0;
889ff015
FW
6953}
6954
6955static int
6956inherit_task_group(struct perf_event *event, struct task_struct *parent,
6957 struct perf_event_context *parent_ctx,
8dc85d54 6958 struct task_struct *child, int ctxn,
889ff015
FW
6959 int *inherited_all)
6960{
6961 int ret;
8dc85d54 6962 struct perf_event_context *child_ctx;
889ff015
FW
6963
6964 if (!event->attr.inherit) {
6965 *inherited_all = 0;
6966 return 0;
bbbee908
PZ
6967 }
6968
fe4b04fa 6969 child_ctx = child->perf_event_ctxp[ctxn];
889ff015
FW
6970 if (!child_ctx) {
6971 /*
6972 * This is executed from the parent task context, so
6973 * inherit events that have been marked for cloning.
6974 * First allocate and initialize a context for the
6975 * child.
6976 */
bbbee908 6977
eb184479 6978 child_ctx = alloc_perf_context(event->pmu, child);
889ff015
FW
6979 if (!child_ctx)
6980 return -ENOMEM;
bbbee908 6981
8dc85d54 6982 child->perf_event_ctxp[ctxn] = child_ctx;
889ff015
FW
6983 }
6984
6985 ret = inherit_group(event, parent, parent_ctx,
6986 child, child_ctx);
6987
6988 if (ret)
6989 *inherited_all = 0;
6990
6991 return ret;
bbbee908
PZ
6992}
6993
9b51f66d 6994/*
cdd6c482 6995 * Initialize the perf_event context in task_struct
9b51f66d 6996 */
8dc85d54 6997int perf_event_init_context(struct task_struct *child, int ctxn)
9b51f66d 6998{
889ff015 6999 struct perf_event_context *child_ctx, *parent_ctx;
cdd6c482
IM
7000 struct perf_event_context *cloned_ctx;
7001 struct perf_event *event;
9b51f66d 7002 struct task_struct *parent = current;
564c2b21 7003 int inherited_all = 1;
dddd3379 7004 unsigned long flags;
6ab423e0 7005 int ret = 0;
9b51f66d 7006
8dc85d54 7007 if (likely(!parent->perf_event_ctxp[ctxn]))
6ab423e0
PZ
7008 return 0;
7009
ad3a37de 7010 /*
25346b93
PM
7011 * If the parent's context is a clone, pin it so it won't get
7012 * swapped under us.
ad3a37de 7013 */
8dc85d54 7014 parent_ctx = perf_pin_task_context(parent, ctxn);
25346b93 7015
ad3a37de
PM
7016 /*
7017 * No need to check if parent_ctx != NULL here; since we saw
7018 * it non-NULL earlier, the only reason for it to become NULL
7019 * is if we exit, and since we're currently in the middle of
7020 * a fork we can't be exiting at the same time.
7021 */
ad3a37de 7022
9b51f66d
IM
7023 /*
7024 * Lock the parent list. No need to lock the child - not PID
7025 * hashed yet and not running, so nobody can access it.
7026 */
d859e29f 7027 mutex_lock(&parent_ctx->mutex);
9b51f66d
IM
7028
7029 /*
7030 * We dont have to disable NMIs - we are only looking at
7031 * the list, not manipulating it:
7032 */
889ff015 7033 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
8dc85d54
PZ
7034 ret = inherit_task_group(event, parent, parent_ctx,
7035 child, ctxn, &inherited_all);
889ff015
FW
7036 if (ret)
7037 break;
7038 }
b93f7978 7039
dddd3379
TG
7040 /*
7041 * We can't hold ctx->lock when iterating the ->flexible_group list due
7042 * to allocations, but we need to prevent rotation because
7043 * rotate_ctx() will change the list from interrupt context.
7044 */
7045 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
7046 parent_ctx->rotate_disable = 1;
7047 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
7048
889ff015 7049 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
8dc85d54
PZ
7050 ret = inherit_task_group(event, parent, parent_ctx,
7051 child, ctxn, &inherited_all);
889ff015 7052 if (ret)
9b51f66d 7053 break;
564c2b21
PM
7054 }
7055
dddd3379
TG
7056 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
7057 parent_ctx->rotate_disable = 0;
dddd3379 7058
8dc85d54 7059 child_ctx = child->perf_event_ctxp[ctxn];
889ff015 7060
05cbaa28 7061 if (child_ctx && inherited_all) {
564c2b21
PM
7062 /*
7063 * Mark the child context as a clone of the parent
7064 * context, or of whatever the parent is a clone of.
c5ed5145
PZ
7065 *
7066 * Note that if the parent is a clone, the holding of
7067 * parent_ctx->lock avoids it from being uncloned.
564c2b21 7068 */
c5ed5145 7069 cloned_ctx = parent_ctx->parent_ctx;
ad3a37de
PM
7070 if (cloned_ctx) {
7071 child_ctx->parent_ctx = cloned_ctx;
25346b93 7072 child_ctx->parent_gen = parent_ctx->parent_gen;
564c2b21
PM
7073 } else {
7074 child_ctx->parent_ctx = parent_ctx;
7075 child_ctx->parent_gen = parent_ctx->generation;
7076 }
7077 get_ctx(child_ctx->parent_ctx);
9b51f66d
IM
7078 }
7079
c5ed5145 7080 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
d859e29f 7081 mutex_unlock(&parent_ctx->mutex);
6ab423e0 7082
25346b93 7083 perf_unpin_context(parent_ctx);
fe4b04fa 7084 put_ctx(parent_ctx);
ad3a37de 7085
6ab423e0 7086 return ret;
9b51f66d
IM
7087}
7088
8dc85d54
PZ
7089/*
7090 * Initialize the perf_event context in task_struct
7091 */
7092int perf_event_init_task(struct task_struct *child)
7093{
7094 int ctxn, ret;
7095
8550d7cb
ON
7096 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
7097 mutex_init(&child->perf_event_mutex);
7098 INIT_LIST_HEAD(&child->perf_event_list);
7099
8dc85d54
PZ
7100 for_each_task_context_nr(ctxn) {
7101 ret = perf_event_init_context(child, ctxn);
7102 if (ret)
7103 return ret;
7104 }
7105
7106 return 0;
7107}
7108
220b140b
PM
7109static void __init perf_event_init_all_cpus(void)
7110{
b28ab83c 7111 struct swevent_htable *swhash;
220b140b 7112 int cpu;
220b140b
PM
7113
7114 for_each_possible_cpu(cpu) {
b28ab83c
PZ
7115 swhash = &per_cpu(swevent_htable, cpu);
7116 mutex_init(&swhash->hlist_mutex);
e9d2b064 7117 INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
220b140b
PM
7118 }
7119}
7120
cdd6c482 7121static void __cpuinit perf_event_init_cpu(int cpu)
0793a61d 7122{
108b02cf 7123 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
0793a61d 7124
b28ab83c 7125 mutex_lock(&swhash->hlist_mutex);
4536e4d1 7126 if (swhash->hlist_refcount > 0) {
76e1d904
FW
7127 struct swevent_hlist *hlist;
7128
b28ab83c
PZ
7129 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
7130 WARN_ON(!hlist);
7131 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 7132 }
b28ab83c 7133 mutex_unlock(&swhash->hlist_mutex);
0793a61d
TG
7134}
7135
c277443c 7136#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
e9d2b064 7137static void perf_pmu_rotate_stop(struct pmu *pmu)
0793a61d 7138{
e9d2b064
PZ
7139 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
7140
7141 WARN_ON(!irqs_disabled());
7142
7143 list_del_init(&cpuctx->rotation_list);
7144}
7145
108b02cf 7146static void __perf_event_exit_context(void *__info)
0793a61d 7147{
108b02cf 7148 struct perf_event_context *ctx = __info;
cdd6c482 7149 struct perf_event *event, *tmp;
0793a61d 7150
108b02cf 7151 perf_pmu_rotate_stop(ctx->pmu);
b5ab4cd5 7152
889ff015 7153 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
fe4b04fa 7154 __perf_remove_from_context(event);
889ff015 7155 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
fe4b04fa 7156 __perf_remove_from_context(event);
0793a61d 7157}
108b02cf
PZ
7158
7159static void perf_event_exit_cpu_context(int cpu)
7160{
7161 struct perf_event_context *ctx;
7162 struct pmu *pmu;
7163 int idx;
7164
7165 idx = srcu_read_lock(&pmus_srcu);
7166 list_for_each_entry_rcu(pmu, &pmus, entry) {
917bdd1c 7167 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
108b02cf
PZ
7168
7169 mutex_lock(&ctx->mutex);
7170 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
7171 mutex_unlock(&ctx->mutex);
7172 }
7173 srcu_read_unlock(&pmus_srcu, idx);
108b02cf
PZ
7174}
7175
cdd6c482 7176static void perf_event_exit_cpu(int cpu)
0793a61d 7177{
b28ab83c 7178 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
d859e29f 7179
b28ab83c
PZ
7180 mutex_lock(&swhash->hlist_mutex);
7181 swevent_hlist_release(swhash);
7182 mutex_unlock(&swhash->hlist_mutex);
76e1d904 7183
108b02cf 7184 perf_event_exit_cpu_context(cpu);
0793a61d
TG
7185}
7186#else
cdd6c482 7187static inline void perf_event_exit_cpu(int cpu) { }
0793a61d
TG
7188#endif
7189
c277443c
PZ
7190static int
7191perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
7192{
7193 int cpu;
7194
7195 for_each_online_cpu(cpu)
7196 perf_event_exit_cpu(cpu);
7197
7198 return NOTIFY_OK;
7199}
7200
7201/*
7202 * Run the perf reboot notifier at the very last possible moment so that
7203 * the generic watchdog code runs as long as possible.
7204 */
7205static struct notifier_block perf_reboot_notifier = {
7206 .notifier_call = perf_reboot,
7207 .priority = INT_MIN,
7208};
7209
0793a61d
TG
7210static int __cpuinit
7211perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
7212{
7213 unsigned int cpu = (long)hcpu;
7214
4536e4d1 7215 switch (action & ~CPU_TASKS_FROZEN) {
0793a61d
TG
7216
7217 case CPU_UP_PREPARE:
5e11637e 7218 case CPU_DOWN_FAILED:
cdd6c482 7219 perf_event_init_cpu(cpu);
0793a61d
TG
7220 break;
7221
5e11637e 7222 case CPU_UP_CANCELED:
0793a61d 7223 case CPU_DOWN_PREPARE:
cdd6c482 7224 perf_event_exit_cpu(cpu);
0793a61d
TG
7225 break;
7226
7227 default:
7228 break;
7229 }
7230
7231 return NOTIFY_OK;
7232}
7233
cdd6c482 7234void __init perf_event_init(void)
0793a61d 7235{
3c502e7a
JW
7236 int ret;
7237
2e80a82a
PZ
7238 idr_init(&pmu_idr);
7239
220b140b 7240 perf_event_init_all_cpus();
b0a873eb 7241 init_srcu_struct(&pmus_srcu);
2e80a82a
PZ
7242 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
7243 perf_pmu_register(&perf_cpu_clock, NULL, -1);
7244 perf_pmu_register(&perf_task_clock, NULL, -1);
b0a873eb
PZ
7245 perf_tp_register();
7246 perf_cpu_notifier(perf_cpu_notify);
c277443c 7247 register_reboot_notifier(&perf_reboot_notifier);
3c502e7a
JW
7248
7249 ret = init_hw_breakpoint();
7250 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
b2029520
GN
7251
7252 /* do not patch jump label more than once per second */
7253 jump_label_rate_limit(&perf_sched_events, HZ);
b01c3a00
JO
7254
7255 /*
7256 * Build time assertion that we keep the data_head at the intended
7257 * location. IOW, validation we got the __reserved[] size right.
7258 */
7259 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
7260 != 1024);
0793a61d 7261}
abe43400
PZ
7262
7263static int __init perf_event_sysfs_init(void)
7264{
7265 struct pmu *pmu;
7266 int ret;
7267
7268 mutex_lock(&pmus_lock);
7269
7270 ret = bus_register(&pmu_bus);
7271 if (ret)
7272 goto unlock;
7273
7274 list_for_each_entry(pmu, &pmus, entry) {
7275 if (!pmu->name || pmu->type < 0)
7276 continue;
7277
7278 ret = pmu_dev_alloc(pmu);
7279 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
7280 }
7281 pmu_bus_running = 1;
7282 ret = 0;
7283
7284unlock:
7285 mutex_unlock(&pmus_lock);
7286
7287 return ret;
7288}
7289device_initcall(perf_event_sysfs_init);
e5d1367f
SE
7290
7291#ifdef CONFIG_CGROUP_PERF
761b3ef5 7292static struct cgroup_subsys_state *perf_cgroup_create(struct cgroup *cont)
e5d1367f
SE
7293{
7294 struct perf_cgroup *jc;
e5d1367f 7295
1b15d055 7296 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
e5d1367f
SE
7297 if (!jc)
7298 return ERR_PTR(-ENOMEM);
7299
e5d1367f
SE
7300 jc->info = alloc_percpu(struct perf_cgroup_info);
7301 if (!jc->info) {
7302 kfree(jc);
7303 return ERR_PTR(-ENOMEM);
7304 }
7305
e5d1367f
SE
7306 return &jc->css;
7307}
7308
761b3ef5 7309static void perf_cgroup_destroy(struct cgroup *cont)
e5d1367f
SE
7310{
7311 struct perf_cgroup *jc;
7312 jc = container_of(cgroup_subsys_state(cont, perf_subsys_id),
7313 struct perf_cgroup, css);
7314 free_percpu(jc->info);
7315 kfree(jc);
7316}
7317
7318static int __perf_cgroup_move(void *info)
7319{
7320 struct task_struct *task = info;
7321 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
7322 return 0;
7323}
7324
761b3ef5 7325static void perf_cgroup_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
e5d1367f 7326{
bb9d97b6
TH
7327 struct task_struct *task;
7328
7329 cgroup_taskset_for_each(task, cgrp, tset)
7330 task_function_call(task, __perf_cgroup_move, task);
e5d1367f
SE
7331}
7332
761b3ef5
LZ
7333static void perf_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
7334 struct task_struct *task)
e5d1367f
SE
7335{
7336 /*
7337 * cgroup_exit() is called in the copy_process() failure path.
7338 * Ignore this case since the task hasn't ran yet, this avoids
7339 * trying to poke a half freed task state from generic code.
7340 */
7341 if (!(task->flags & PF_EXITING))
7342 return;
7343
bb9d97b6 7344 task_function_call(task, __perf_cgroup_move, task);
e5d1367f
SE
7345}
7346
7347struct cgroup_subsys perf_subsys = {
e7e7ee2e
IM
7348 .name = "perf_event",
7349 .subsys_id = perf_subsys_id,
7350 .create = perf_cgroup_create,
7351 .destroy = perf_cgroup_destroy,
7352 .exit = perf_cgroup_exit,
bb9d97b6 7353 .attach = perf_cgroup_attach,
e5d1367f
SE
7354};
7355#endif /* CONFIG_CGROUP_PERF */