]> git.ipfire.org Git - thirdparty/linux.git/blame - kernel/events/core.c
perf/x86: Fix data source decoding for Skylake
[thirdparty/linux.git] / kernel / events / core.c
CommitLineData
0793a61d 1/*
57c0c15b 2 * Performance events core code:
0793a61d 3 *
98144511 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
e7e7ee2e 5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
90eec103 6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
d36b6910 7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
7b732a75 8 *
57c0c15b 9 * For licensing details see kernel-base/COPYING
0793a61d
TG
10 */
11
12#include <linux/fs.h>
b9cacc7b 13#include <linux/mm.h>
0793a61d
TG
14#include <linux/cpu.h>
15#include <linux/smp.h>
2e80a82a 16#include <linux/idr.h>
04289bb9 17#include <linux/file.h>
0793a61d 18#include <linux/poll.h>
5a0e3ad6 19#include <linux/slab.h>
76e1d904 20#include <linux/hash.h>
12351ef8 21#include <linux/tick.h>
0793a61d 22#include <linux/sysfs.h>
22a4f650 23#include <linux/dcache.h>
0793a61d 24#include <linux/percpu.h>
22a4f650 25#include <linux/ptrace.h>
c277443c 26#include <linux/reboot.h>
b9cacc7b 27#include <linux/vmstat.h>
abe43400 28#include <linux/device.h>
6e5fdeed 29#include <linux/export.h>
906010b2 30#include <linux/vmalloc.h>
b9cacc7b
PZ
31#include <linux/hardirq.h>
32#include <linux/rculist.h>
0793a61d
TG
33#include <linux/uaccess.h>
34#include <linux/syscalls.h>
35#include <linux/anon_inodes.h>
aa9c4c0f 36#include <linux/kernel_stat.h>
39bed6cb 37#include <linux/cgroup.h>
cdd6c482 38#include <linux/perf_event.h>
af658dca 39#include <linux/trace_events.h>
3c502e7a 40#include <linux/hw_breakpoint.h>
c5ebcedb 41#include <linux/mm_types.h>
c464c76e 42#include <linux/module.h>
f972eb63 43#include <linux/mman.h>
b3f20785 44#include <linux/compat.h>
2541517c
AS
45#include <linux/bpf.h>
46#include <linux/filter.h>
375637bc
AS
47#include <linux/namei.h>
48#include <linux/parser.h>
e6017571 49#include <linux/sched/clock.h>
6e84f315 50#include <linux/sched/mm.h>
e4222673
HB
51#include <linux/proc_ns.h>
52#include <linux/mount.h>
0793a61d 53
76369139
FW
54#include "internal.h"
55
4e193bd4
TB
56#include <asm/irq_regs.h>
57
272325c4
PZ
58typedef int (*remote_function_f)(void *);
59
fe4b04fa 60struct remote_function_call {
e7e7ee2e 61 struct task_struct *p;
272325c4 62 remote_function_f func;
e7e7ee2e
IM
63 void *info;
64 int ret;
fe4b04fa
PZ
65};
66
67static void remote_function(void *data)
68{
69 struct remote_function_call *tfc = data;
70 struct task_struct *p = tfc->p;
71
72 if (p) {
0da4cf3e
PZ
73 /* -EAGAIN */
74 if (task_cpu(p) != smp_processor_id())
75 return;
76
77 /*
78 * Now that we're on right CPU with IRQs disabled, we can test
79 * if we hit the right task without races.
80 */
81
82 tfc->ret = -ESRCH; /* No such (running) process */
83 if (p != current)
fe4b04fa
PZ
84 return;
85 }
86
87 tfc->ret = tfc->func(tfc->info);
88}
89
90/**
91 * task_function_call - call a function on the cpu on which a task runs
92 * @p: the task to evaluate
93 * @func: the function to be called
94 * @info: the function call argument
95 *
96 * Calls the function @func when the task is currently running. This might
97 * be on the current CPU, which just calls the function directly
98 *
99 * returns: @func return value, or
100 * -ESRCH - when the process isn't running
101 * -EAGAIN - when the process moved away
102 */
103static int
272325c4 104task_function_call(struct task_struct *p, remote_function_f func, void *info)
fe4b04fa
PZ
105{
106 struct remote_function_call data = {
e7e7ee2e
IM
107 .p = p,
108 .func = func,
109 .info = info,
0da4cf3e 110 .ret = -EAGAIN,
fe4b04fa 111 };
0da4cf3e 112 int ret;
fe4b04fa 113
0da4cf3e
PZ
114 do {
115 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
116 if (!ret)
117 ret = data.ret;
118 } while (ret == -EAGAIN);
fe4b04fa 119
0da4cf3e 120 return ret;
fe4b04fa
PZ
121}
122
123/**
124 * cpu_function_call - call a function on the cpu
125 * @func: the function to be called
126 * @info: the function call argument
127 *
128 * Calls the function @func on the remote cpu.
129 *
130 * returns: @func return value or -ENXIO when the cpu is offline
131 */
272325c4 132static int cpu_function_call(int cpu, remote_function_f func, void *info)
fe4b04fa
PZ
133{
134 struct remote_function_call data = {
e7e7ee2e
IM
135 .p = NULL,
136 .func = func,
137 .info = info,
138 .ret = -ENXIO, /* No such CPU */
fe4b04fa
PZ
139 };
140
141 smp_call_function_single(cpu, remote_function, &data, 1);
142
143 return data.ret;
144}
145
fae3fde6
PZ
146static inline struct perf_cpu_context *
147__get_cpu_context(struct perf_event_context *ctx)
148{
149 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
150}
151
152static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
153 struct perf_event_context *ctx)
0017960f 154{
fae3fde6
PZ
155 raw_spin_lock(&cpuctx->ctx.lock);
156 if (ctx)
157 raw_spin_lock(&ctx->lock);
158}
159
160static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
161 struct perf_event_context *ctx)
162{
163 if (ctx)
164 raw_spin_unlock(&ctx->lock);
165 raw_spin_unlock(&cpuctx->ctx.lock);
166}
167
63b6da39
PZ
168#define TASK_TOMBSTONE ((void *)-1L)
169
170static bool is_kernel_event(struct perf_event *event)
171{
f47c02c0 172 return READ_ONCE(event->owner) == TASK_TOMBSTONE;
63b6da39
PZ
173}
174
39a43640
PZ
175/*
176 * On task ctx scheduling...
177 *
178 * When !ctx->nr_events a task context will not be scheduled. This means
179 * we can disable the scheduler hooks (for performance) without leaving
180 * pending task ctx state.
181 *
182 * This however results in two special cases:
183 *
184 * - removing the last event from a task ctx; this is relatively straight
185 * forward and is done in __perf_remove_from_context.
186 *
187 * - adding the first event to a task ctx; this is tricky because we cannot
188 * rely on ctx->is_active and therefore cannot use event_function_call().
189 * See perf_install_in_context().
190 *
39a43640
PZ
191 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
192 */
193
fae3fde6
PZ
194typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
195 struct perf_event_context *, void *);
196
197struct event_function_struct {
198 struct perf_event *event;
199 event_f func;
200 void *data;
201};
202
203static int event_function(void *info)
204{
205 struct event_function_struct *efs = info;
206 struct perf_event *event = efs->event;
0017960f 207 struct perf_event_context *ctx = event->ctx;
fae3fde6
PZ
208 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
209 struct perf_event_context *task_ctx = cpuctx->task_ctx;
63b6da39 210 int ret = 0;
fae3fde6
PZ
211
212 WARN_ON_ONCE(!irqs_disabled());
213
63b6da39 214 perf_ctx_lock(cpuctx, task_ctx);
fae3fde6
PZ
215 /*
216 * Since we do the IPI call without holding ctx->lock things can have
217 * changed, double check we hit the task we set out to hit.
fae3fde6
PZ
218 */
219 if (ctx->task) {
63b6da39 220 if (ctx->task != current) {
0da4cf3e 221 ret = -ESRCH;
63b6da39
PZ
222 goto unlock;
223 }
fae3fde6 224
fae3fde6
PZ
225 /*
226 * We only use event_function_call() on established contexts,
227 * and event_function() is only ever called when active (or
228 * rather, we'll have bailed in task_function_call() or the
229 * above ctx->task != current test), therefore we must have
230 * ctx->is_active here.
231 */
232 WARN_ON_ONCE(!ctx->is_active);
233 /*
234 * And since we have ctx->is_active, cpuctx->task_ctx must
235 * match.
236 */
63b6da39
PZ
237 WARN_ON_ONCE(task_ctx != ctx);
238 } else {
239 WARN_ON_ONCE(&cpuctx->ctx != ctx);
fae3fde6 240 }
63b6da39 241
fae3fde6 242 efs->func(event, cpuctx, ctx, efs->data);
63b6da39 243unlock:
fae3fde6
PZ
244 perf_ctx_unlock(cpuctx, task_ctx);
245
63b6da39 246 return ret;
fae3fde6
PZ
247}
248
fae3fde6 249static void event_function_call(struct perf_event *event, event_f func, void *data)
0017960f
PZ
250{
251 struct perf_event_context *ctx = event->ctx;
63b6da39 252 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
fae3fde6
PZ
253 struct event_function_struct efs = {
254 .event = event,
255 .func = func,
256 .data = data,
257 };
0017960f 258
c97f4736
PZ
259 if (!event->parent) {
260 /*
261 * If this is a !child event, we must hold ctx::mutex to
262 * stabilize the the event->ctx relation. See
263 * perf_event_ctx_lock().
264 */
265 lockdep_assert_held(&ctx->mutex);
266 }
0017960f
PZ
267
268 if (!task) {
fae3fde6 269 cpu_function_call(event->cpu, event_function, &efs);
0017960f
PZ
270 return;
271 }
272
63b6da39
PZ
273 if (task == TASK_TOMBSTONE)
274 return;
275
a096309b 276again:
fae3fde6 277 if (!task_function_call(task, event_function, &efs))
0017960f
PZ
278 return;
279
280 raw_spin_lock_irq(&ctx->lock);
63b6da39
PZ
281 /*
282 * Reload the task pointer, it might have been changed by
283 * a concurrent perf_event_context_sched_out().
284 */
285 task = ctx->task;
a096309b
PZ
286 if (task == TASK_TOMBSTONE) {
287 raw_spin_unlock_irq(&ctx->lock);
288 return;
0017960f 289 }
a096309b
PZ
290 if (ctx->is_active) {
291 raw_spin_unlock_irq(&ctx->lock);
292 goto again;
293 }
294 func(event, NULL, ctx, data);
0017960f
PZ
295 raw_spin_unlock_irq(&ctx->lock);
296}
297
cca20946
PZ
298/*
299 * Similar to event_function_call() + event_function(), but hard assumes IRQs
300 * are already disabled and we're on the right CPU.
301 */
302static void event_function_local(struct perf_event *event, event_f func, void *data)
303{
304 struct perf_event_context *ctx = event->ctx;
305 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
306 struct task_struct *task = READ_ONCE(ctx->task);
307 struct perf_event_context *task_ctx = NULL;
308
309 WARN_ON_ONCE(!irqs_disabled());
310
311 if (task) {
312 if (task == TASK_TOMBSTONE)
313 return;
314
315 task_ctx = ctx;
316 }
317
318 perf_ctx_lock(cpuctx, task_ctx);
319
320 task = ctx->task;
321 if (task == TASK_TOMBSTONE)
322 goto unlock;
323
324 if (task) {
325 /*
326 * We must be either inactive or active and the right task,
327 * otherwise we're screwed, since we cannot IPI to somewhere
328 * else.
329 */
330 if (ctx->is_active) {
331 if (WARN_ON_ONCE(task != current))
332 goto unlock;
333
334 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
335 goto unlock;
336 }
337 } else {
338 WARN_ON_ONCE(&cpuctx->ctx != ctx);
339 }
340
341 func(event, cpuctx, ctx, data);
342unlock:
343 perf_ctx_unlock(cpuctx, task_ctx);
344}
345
e5d1367f
SE
346#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
347 PERF_FLAG_FD_OUTPUT |\
a21b0b35
YD
348 PERF_FLAG_PID_CGROUP |\
349 PERF_FLAG_FD_CLOEXEC)
e5d1367f 350
bce38cd5
SE
351/*
352 * branch priv levels that need permission checks
353 */
354#define PERF_SAMPLE_BRANCH_PERM_PLM \
355 (PERF_SAMPLE_BRANCH_KERNEL |\
356 PERF_SAMPLE_BRANCH_HV)
357
0b3fcf17
SE
358enum event_type_t {
359 EVENT_FLEXIBLE = 0x1,
360 EVENT_PINNED = 0x2,
3cbaa590 361 EVENT_TIME = 0x4,
487f05e1
AS
362 /* see ctx_resched() for details */
363 EVENT_CPU = 0x8,
0b3fcf17
SE
364 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
365};
366
e5d1367f
SE
367/*
368 * perf_sched_events : >0 events exist
369 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
370 */
9107c89e
PZ
371
372static void perf_sched_delayed(struct work_struct *work);
373DEFINE_STATIC_KEY_FALSE(perf_sched_events);
374static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
375static DEFINE_MUTEX(perf_sched_mutex);
376static atomic_t perf_sched_count;
377
e5d1367f 378static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
ba532500 379static DEFINE_PER_CPU(int, perf_sched_cb_usages);
f2fb6bef 380static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
e5d1367f 381
cdd6c482
IM
382static atomic_t nr_mmap_events __read_mostly;
383static atomic_t nr_comm_events __read_mostly;
e4222673 384static atomic_t nr_namespaces_events __read_mostly;
cdd6c482 385static atomic_t nr_task_events __read_mostly;
948b26b6 386static atomic_t nr_freq_events __read_mostly;
45ac1403 387static atomic_t nr_switch_events __read_mostly;
9ee318a7 388
108b02cf
PZ
389static LIST_HEAD(pmus);
390static DEFINE_MUTEX(pmus_lock);
391static struct srcu_struct pmus_srcu;
a63fbed7 392static cpumask_var_t perf_online_mask;
108b02cf 393
0764771d 394/*
cdd6c482 395 * perf event paranoia level:
0fbdea19
IM
396 * -1 - not paranoid at all
397 * 0 - disallow raw tracepoint access for unpriv
cdd6c482 398 * 1 - disallow cpu events for unpriv
0fbdea19 399 * 2 - disallow kernel profiling for unpriv
0764771d 400 */
0161028b 401int sysctl_perf_event_paranoid __read_mostly = 2;
0764771d 402
20443384
FW
403/* Minimum for 512 kiB + 1 user control page */
404int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
df58ab24
PZ
405
406/*
cdd6c482 407 * max perf event sample rate
df58ab24 408 */
14c63f17
DH
409#define DEFAULT_MAX_SAMPLE_RATE 100000
410#define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
411#define DEFAULT_CPU_TIME_MAX_PERCENT 25
412
413int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
414
415static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
416static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
417
d9494cb4
PZ
418static int perf_sample_allowed_ns __read_mostly =
419 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
14c63f17 420
18ab2cd3 421static void update_perf_cpu_limits(void)
14c63f17
DH
422{
423 u64 tmp = perf_sample_period_ns;
424
425 tmp *= sysctl_perf_cpu_time_max_percent;
91a612ee
PZ
426 tmp = div_u64(tmp, 100);
427 if (!tmp)
428 tmp = 1;
429
430 WRITE_ONCE(perf_sample_allowed_ns, tmp);
14c63f17 431}
163ec435 432
9e630205
SE
433static int perf_rotate_context(struct perf_cpu_context *cpuctx);
434
163ec435
PZ
435int perf_proc_update_handler(struct ctl_table *table, int write,
436 void __user *buffer, size_t *lenp,
437 loff_t *ppos)
438{
723478c8 439 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
163ec435
PZ
440
441 if (ret || !write)
442 return ret;
443
ab7fdefb
KL
444 /*
445 * If throttling is disabled don't allow the write:
446 */
447 if (sysctl_perf_cpu_time_max_percent == 100 ||
448 sysctl_perf_cpu_time_max_percent == 0)
449 return -EINVAL;
450
163ec435 451 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
14c63f17
DH
452 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
453 update_perf_cpu_limits();
454
455 return 0;
456}
457
458int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
459
460int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
461 void __user *buffer, size_t *lenp,
462 loff_t *ppos)
463{
1572e45a 464 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
14c63f17
DH
465
466 if (ret || !write)
467 return ret;
468
b303e7c1
PZ
469 if (sysctl_perf_cpu_time_max_percent == 100 ||
470 sysctl_perf_cpu_time_max_percent == 0) {
91a612ee
PZ
471 printk(KERN_WARNING
472 "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
473 WRITE_ONCE(perf_sample_allowed_ns, 0);
474 } else {
475 update_perf_cpu_limits();
476 }
163ec435
PZ
477
478 return 0;
479}
1ccd1549 480
14c63f17
DH
481/*
482 * perf samples are done in some very critical code paths (NMIs).
483 * If they take too much CPU time, the system can lock up and not
484 * get any real work done. This will drop the sample rate when
485 * we detect that events are taking too long.
486 */
487#define NR_ACCUMULATED_SAMPLES 128
d9494cb4 488static DEFINE_PER_CPU(u64, running_sample_length);
14c63f17 489
91a612ee
PZ
490static u64 __report_avg;
491static u64 __report_allowed;
492
6a02ad66 493static void perf_duration_warn(struct irq_work *w)
14c63f17 494{
0d87d7ec 495 printk_ratelimited(KERN_INFO
91a612ee
PZ
496 "perf: interrupt took too long (%lld > %lld), lowering "
497 "kernel.perf_event_max_sample_rate to %d\n",
498 __report_avg, __report_allowed,
499 sysctl_perf_event_sample_rate);
6a02ad66
PZ
500}
501
502static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
503
504void perf_sample_event_took(u64 sample_len_ns)
505{
91a612ee
PZ
506 u64 max_len = READ_ONCE(perf_sample_allowed_ns);
507 u64 running_len;
508 u64 avg_len;
509 u32 max;
14c63f17 510
91a612ee 511 if (max_len == 0)
14c63f17
DH
512 return;
513
91a612ee
PZ
514 /* Decay the counter by 1 average sample. */
515 running_len = __this_cpu_read(running_sample_length);
516 running_len -= running_len/NR_ACCUMULATED_SAMPLES;
517 running_len += sample_len_ns;
518 __this_cpu_write(running_sample_length, running_len);
14c63f17
DH
519
520 /*
91a612ee
PZ
521 * Note: this will be biased artifically low until we have
522 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
14c63f17
DH
523 * from having to maintain a count.
524 */
91a612ee
PZ
525 avg_len = running_len/NR_ACCUMULATED_SAMPLES;
526 if (avg_len <= max_len)
14c63f17
DH
527 return;
528
91a612ee
PZ
529 __report_avg = avg_len;
530 __report_allowed = max_len;
14c63f17 531
91a612ee
PZ
532 /*
533 * Compute a throttle threshold 25% below the current duration.
534 */
535 avg_len += avg_len / 4;
536 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
537 if (avg_len < max)
538 max /= (u32)avg_len;
539 else
540 max = 1;
14c63f17 541
91a612ee
PZ
542 WRITE_ONCE(perf_sample_allowed_ns, avg_len);
543 WRITE_ONCE(max_samples_per_tick, max);
544
545 sysctl_perf_event_sample_rate = max * HZ;
546 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
6a02ad66 547
cd578abb 548 if (!irq_work_queue(&perf_duration_work)) {
91a612ee 549 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
cd578abb 550 "kernel.perf_event_max_sample_rate to %d\n",
91a612ee 551 __report_avg, __report_allowed,
cd578abb
PZ
552 sysctl_perf_event_sample_rate);
553 }
14c63f17
DH
554}
555
cdd6c482 556static atomic64_t perf_event_id;
a96bbc16 557
0b3fcf17
SE
558static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
559 enum event_type_t event_type);
560
561static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
562 enum event_type_t event_type,
563 struct task_struct *task);
564
565static void update_context_time(struct perf_event_context *ctx);
566static u64 perf_event_time(struct perf_event *event);
0b3fcf17 567
cdd6c482 568void __weak perf_event_print_debug(void) { }
0793a61d 569
84c79910 570extern __weak const char *perf_pmu_name(void)
0793a61d 571{
84c79910 572 return "pmu";
0793a61d
TG
573}
574
0b3fcf17
SE
575static inline u64 perf_clock(void)
576{
577 return local_clock();
578}
579
34f43927
PZ
580static inline u64 perf_event_clock(struct perf_event *event)
581{
582 return event->clock();
583}
584
e5d1367f
SE
585#ifdef CONFIG_CGROUP_PERF
586
e5d1367f
SE
587static inline bool
588perf_cgroup_match(struct perf_event *event)
589{
590 struct perf_event_context *ctx = event->ctx;
591 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
592
ef824fa1
TH
593 /* @event doesn't care about cgroup */
594 if (!event->cgrp)
595 return true;
596
597 /* wants specific cgroup scope but @cpuctx isn't associated with any */
598 if (!cpuctx->cgrp)
599 return false;
600
601 /*
602 * Cgroup scoping is recursive. An event enabled for a cgroup is
603 * also enabled for all its descendant cgroups. If @cpuctx's
604 * cgroup is a descendant of @event's (the test covers identity
605 * case), it's a match.
606 */
607 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
608 event->cgrp->css.cgroup);
e5d1367f
SE
609}
610
e5d1367f
SE
611static inline void perf_detach_cgroup(struct perf_event *event)
612{
4e2ba650 613 css_put(&event->cgrp->css);
e5d1367f
SE
614 event->cgrp = NULL;
615}
616
617static inline int is_cgroup_event(struct perf_event *event)
618{
619 return event->cgrp != NULL;
620}
621
622static inline u64 perf_cgroup_event_time(struct perf_event *event)
623{
624 struct perf_cgroup_info *t;
625
626 t = per_cpu_ptr(event->cgrp->info, event->cpu);
627 return t->time;
628}
629
630static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
631{
632 struct perf_cgroup_info *info;
633 u64 now;
634
635 now = perf_clock();
636
637 info = this_cpu_ptr(cgrp->info);
638
639 info->time += now - info->timestamp;
640 info->timestamp = now;
641}
642
643static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
644{
645 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
646 if (cgrp_out)
647 __update_cgrp_time(cgrp_out);
648}
649
650static inline void update_cgrp_time_from_event(struct perf_event *event)
651{
3f7cce3c
SE
652 struct perf_cgroup *cgrp;
653
e5d1367f 654 /*
3f7cce3c
SE
655 * ensure we access cgroup data only when needed and
656 * when we know the cgroup is pinned (css_get)
e5d1367f 657 */
3f7cce3c 658 if (!is_cgroup_event(event))
e5d1367f
SE
659 return;
660
614e4c4e 661 cgrp = perf_cgroup_from_task(current, event->ctx);
3f7cce3c
SE
662 /*
663 * Do not update time when cgroup is not active
664 */
665 if (cgrp == event->cgrp)
666 __update_cgrp_time(event->cgrp);
e5d1367f
SE
667}
668
669static inline void
3f7cce3c
SE
670perf_cgroup_set_timestamp(struct task_struct *task,
671 struct perf_event_context *ctx)
e5d1367f
SE
672{
673 struct perf_cgroup *cgrp;
674 struct perf_cgroup_info *info;
675
3f7cce3c
SE
676 /*
677 * ctx->lock held by caller
678 * ensure we do not access cgroup data
679 * unless we have the cgroup pinned (css_get)
680 */
681 if (!task || !ctx->nr_cgroups)
e5d1367f
SE
682 return;
683
614e4c4e 684 cgrp = perf_cgroup_from_task(task, ctx);
e5d1367f 685 info = this_cpu_ptr(cgrp->info);
3f7cce3c 686 info->timestamp = ctx->timestamp;
e5d1367f
SE
687}
688
058fe1c0
DCC
689static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
690
e5d1367f
SE
691#define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
692#define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
693
694/*
695 * reschedule events based on the cgroup constraint of task.
696 *
697 * mode SWOUT : schedule out everything
698 * mode SWIN : schedule in based on cgroup for next
699 */
18ab2cd3 700static void perf_cgroup_switch(struct task_struct *task, int mode)
e5d1367f
SE
701{
702 struct perf_cpu_context *cpuctx;
058fe1c0 703 struct list_head *list;
e5d1367f
SE
704 unsigned long flags;
705
706 /*
058fe1c0
DCC
707 * Disable interrupts and preemption to avoid this CPU's
708 * cgrp_cpuctx_entry to change under us.
e5d1367f
SE
709 */
710 local_irq_save(flags);
711
058fe1c0
DCC
712 list = this_cpu_ptr(&cgrp_cpuctx_list);
713 list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
714 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
e5d1367f 715
058fe1c0
DCC
716 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
717 perf_pmu_disable(cpuctx->ctx.pmu);
e5d1367f 718
058fe1c0
DCC
719 if (mode & PERF_CGROUP_SWOUT) {
720 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
721 /*
722 * must not be done before ctxswout due
723 * to event_filter_match() in event_sched_out()
724 */
725 cpuctx->cgrp = NULL;
726 }
e5d1367f 727
058fe1c0
DCC
728 if (mode & PERF_CGROUP_SWIN) {
729 WARN_ON_ONCE(cpuctx->cgrp);
730 /*
731 * set cgrp before ctxsw in to allow
732 * event_filter_match() to not have to pass
733 * task around
734 * we pass the cpuctx->ctx to perf_cgroup_from_task()
735 * because cgorup events are only per-cpu
736 */
737 cpuctx->cgrp = perf_cgroup_from_task(task,
738 &cpuctx->ctx);
739 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
e5d1367f 740 }
058fe1c0
DCC
741 perf_pmu_enable(cpuctx->ctx.pmu);
742 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
e5d1367f
SE
743 }
744
e5d1367f
SE
745 local_irq_restore(flags);
746}
747
a8d757ef
SE
748static inline void perf_cgroup_sched_out(struct task_struct *task,
749 struct task_struct *next)
e5d1367f 750{
a8d757ef
SE
751 struct perf_cgroup *cgrp1;
752 struct perf_cgroup *cgrp2 = NULL;
753
ddaaf4e2 754 rcu_read_lock();
a8d757ef
SE
755 /*
756 * we come here when we know perf_cgroup_events > 0
614e4c4e
SE
757 * we do not need to pass the ctx here because we know
758 * we are holding the rcu lock
a8d757ef 759 */
614e4c4e 760 cgrp1 = perf_cgroup_from_task(task, NULL);
70a01657 761 cgrp2 = perf_cgroup_from_task(next, NULL);
a8d757ef
SE
762
763 /*
764 * only schedule out current cgroup events if we know
765 * that we are switching to a different cgroup. Otherwise,
766 * do no touch the cgroup events.
767 */
768 if (cgrp1 != cgrp2)
769 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
ddaaf4e2
SE
770
771 rcu_read_unlock();
e5d1367f
SE
772}
773
a8d757ef
SE
774static inline void perf_cgroup_sched_in(struct task_struct *prev,
775 struct task_struct *task)
e5d1367f 776{
a8d757ef
SE
777 struct perf_cgroup *cgrp1;
778 struct perf_cgroup *cgrp2 = NULL;
779
ddaaf4e2 780 rcu_read_lock();
a8d757ef
SE
781 /*
782 * we come here when we know perf_cgroup_events > 0
614e4c4e
SE
783 * we do not need to pass the ctx here because we know
784 * we are holding the rcu lock
a8d757ef 785 */
614e4c4e 786 cgrp1 = perf_cgroup_from_task(task, NULL);
614e4c4e 787 cgrp2 = perf_cgroup_from_task(prev, NULL);
a8d757ef
SE
788
789 /*
790 * only need to schedule in cgroup events if we are changing
791 * cgroup during ctxsw. Cgroup events were not scheduled
792 * out of ctxsw out if that was not the case.
793 */
794 if (cgrp1 != cgrp2)
795 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
ddaaf4e2
SE
796
797 rcu_read_unlock();
e5d1367f
SE
798}
799
800static inline int perf_cgroup_connect(int fd, struct perf_event *event,
801 struct perf_event_attr *attr,
802 struct perf_event *group_leader)
803{
804 struct perf_cgroup *cgrp;
805 struct cgroup_subsys_state *css;
2903ff01
AV
806 struct fd f = fdget(fd);
807 int ret = 0;
e5d1367f 808
2903ff01 809 if (!f.file)
e5d1367f
SE
810 return -EBADF;
811
b583043e 812 css = css_tryget_online_from_dir(f.file->f_path.dentry,
ec903c0c 813 &perf_event_cgrp_subsys);
3db272c0
LZ
814 if (IS_ERR(css)) {
815 ret = PTR_ERR(css);
816 goto out;
817 }
e5d1367f
SE
818
819 cgrp = container_of(css, struct perf_cgroup, css);
820 event->cgrp = cgrp;
821
822 /*
823 * all events in a group must monitor
824 * the same cgroup because a task belongs
825 * to only one perf cgroup at a time
826 */
827 if (group_leader && group_leader->cgrp != cgrp) {
828 perf_detach_cgroup(event);
829 ret = -EINVAL;
e5d1367f 830 }
3db272c0 831out:
2903ff01 832 fdput(f);
e5d1367f
SE
833 return ret;
834}
835
836static inline void
837perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
838{
839 struct perf_cgroup_info *t;
840 t = per_cpu_ptr(event->cgrp->info, event->cpu);
841 event->shadow_ctx_time = now - t->timestamp;
842}
843
844static inline void
845perf_cgroup_defer_enabled(struct perf_event *event)
846{
847 /*
848 * when the current task's perf cgroup does not match
849 * the event's, we need to remember to call the
850 * perf_mark_enable() function the first time a task with
851 * a matching perf cgroup is scheduled in.
852 */
853 if (is_cgroup_event(event) && !perf_cgroup_match(event))
854 event->cgrp_defer_enabled = 1;
855}
856
857static inline void
858perf_cgroup_mark_enabled(struct perf_event *event,
859 struct perf_event_context *ctx)
860{
861 struct perf_event *sub;
862 u64 tstamp = perf_event_time(event);
863
864 if (!event->cgrp_defer_enabled)
865 return;
866
867 event->cgrp_defer_enabled = 0;
868
869 event->tstamp_enabled = tstamp - event->total_time_enabled;
870 list_for_each_entry(sub, &event->sibling_list, group_entry) {
871 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
872 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
873 sub->cgrp_defer_enabled = 0;
874 }
875 }
876}
db4a8356
DCC
877
878/*
879 * Update cpuctx->cgrp so that it is set when first cgroup event is added and
880 * cleared when last cgroup event is removed.
881 */
882static inline void
883list_update_cgroup_event(struct perf_event *event,
884 struct perf_event_context *ctx, bool add)
885{
886 struct perf_cpu_context *cpuctx;
058fe1c0 887 struct list_head *cpuctx_entry;
db4a8356
DCC
888
889 if (!is_cgroup_event(event))
890 return;
891
892 if (add && ctx->nr_cgroups++)
893 return;
894 else if (!add && --ctx->nr_cgroups)
895 return;
896 /*
897 * Because cgroup events are always per-cpu events,
898 * this will always be called from the right CPU.
899 */
900 cpuctx = __get_cpu_context(ctx);
058fe1c0
DCC
901 cpuctx_entry = &cpuctx->cgrp_cpuctx_entry;
902 /* cpuctx->cgrp is NULL unless a cgroup event is active in this CPU .*/
903 if (add) {
904 list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list));
905 if (perf_cgroup_from_task(current, ctx) == event->cgrp)
906 cpuctx->cgrp = event->cgrp;
907 } else {
908 list_del(cpuctx_entry);
8fc31ce8 909 cpuctx->cgrp = NULL;
058fe1c0 910 }
db4a8356
DCC
911}
912
e5d1367f
SE
913#else /* !CONFIG_CGROUP_PERF */
914
915static inline bool
916perf_cgroup_match(struct perf_event *event)
917{
918 return true;
919}
920
921static inline void perf_detach_cgroup(struct perf_event *event)
922{}
923
924static inline int is_cgroup_event(struct perf_event *event)
925{
926 return 0;
927}
928
e5d1367f
SE
929static inline void update_cgrp_time_from_event(struct perf_event *event)
930{
931}
932
933static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
934{
935}
936
a8d757ef
SE
937static inline void perf_cgroup_sched_out(struct task_struct *task,
938 struct task_struct *next)
e5d1367f
SE
939{
940}
941
a8d757ef
SE
942static inline void perf_cgroup_sched_in(struct task_struct *prev,
943 struct task_struct *task)
e5d1367f
SE
944{
945}
946
947static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
948 struct perf_event_attr *attr,
949 struct perf_event *group_leader)
950{
951 return -EINVAL;
952}
953
954static inline void
3f7cce3c
SE
955perf_cgroup_set_timestamp(struct task_struct *task,
956 struct perf_event_context *ctx)
e5d1367f
SE
957{
958}
959
960void
961perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
962{
963}
964
965static inline void
966perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
967{
968}
969
970static inline u64 perf_cgroup_event_time(struct perf_event *event)
971{
972 return 0;
973}
974
975static inline void
976perf_cgroup_defer_enabled(struct perf_event *event)
977{
978}
979
980static inline void
981perf_cgroup_mark_enabled(struct perf_event *event,
982 struct perf_event_context *ctx)
983{
984}
db4a8356
DCC
985
986static inline void
987list_update_cgroup_event(struct perf_event *event,
988 struct perf_event_context *ctx, bool add)
989{
990}
991
e5d1367f
SE
992#endif
993
9e630205
SE
994/*
995 * set default to be dependent on timer tick just
996 * like original code
997 */
998#define PERF_CPU_HRTIMER (1000 / HZ)
999/*
8a1115ff 1000 * function must be called with interrupts disabled
9e630205 1001 */
272325c4 1002static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
9e630205
SE
1003{
1004 struct perf_cpu_context *cpuctx;
9e630205
SE
1005 int rotations = 0;
1006
1007 WARN_ON(!irqs_disabled());
1008
1009 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
9e630205
SE
1010 rotations = perf_rotate_context(cpuctx);
1011
4cfafd30
PZ
1012 raw_spin_lock(&cpuctx->hrtimer_lock);
1013 if (rotations)
9e630205 1014 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
4cfafd30
PZ
1015 else
1016 cpuctx->hrtimer_active = 0;
1017 raw_spin_unlock(&cpuctx->hrtimer_lock);
9e630205 1018
4cfafd30 1019 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
9e630205
SE
1020}
1021
272325c4 1022static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
9e630205 1023{
272325c4 1024 struct hrtimer *timer = &cpuctx->hrtimer;
9e630205 1025 struct pmu *pmu = cpuctx->ctx.pmu;
272325c4 1026 u64 interval;
9e630205
SE
1027
1028 /* no multiplexing needed for SW PMU */
1029 if (pmu->task_ctx_nr == perf_sw_context)
1030 return;
1031
62b85639
SE
1032 /*
1033 * check default is sane, if not set then force to
1034 * default interval (1/tick)
1035 */
272325c4
PZ
1036 interval = pmu->hrtimer_interval_ms;
1037 if (interval < 1)
1038 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
62b85639 1039
272325c4 1040 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
9e630205 1041
4cfafd30
PZ
1042 raw_spin_lock_init(&cpuctx->hrtimer_lock);
1043 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
272325c4 1044 timer->function = perf_mux_hrtimer_handler;
9e630205
SE
1045}
1046
272325c4 1047static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
9e630205 1048{
272325c4 1049 struct hrtimer *timer = &cpuctx->hrtimer;
9e630205 1050 struct pmu *pmu = cpuctx->ctx.pmu;
4cfafd30 1051 unsigned long flags;
9e630205
SE
1052
1053 /* not for SW PMU */
1054 if (pmu->task_ctx_nr == perf_sw_context)
272325c4 1055 return 0;
9e630205 1056
4cfafd30
PZ
1057 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1058 if (!cpuctx->hrtimer_active) {
1059 cpuctx->hrtimer_active = 1;
1060 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1061 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
1062 }
1063 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
9e630205 1064
272325c4 1065 return 0;
9e630205
SE
1066}
1067
33696fc0 1068void perf_pmu_disable(struct pmu *pmu)
9e35ad38 1069{
33696fc0
PZ
1070 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1071 if (!(*count)++)
1072 pmu->pmu_disable(pmu);
9e35ad38 1073}
9e35ad38 1074
33696fc0 1075void perf_pmu_enable(struct pmu *pmu)
9e35ad38 1076{
33696fc0
PZ
1077 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1078 if (!--(*count))
1079 pmu->pmu_enable(pmu);
9e35ad38 1080}
9e35ad38 1081
2fde4f94 1082static DEFINE_PER_CPU(struct list_head, active_ctx_list);
e9d2b064
PZ
1083
1084/*
2fde4f94
MR
1085 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1086 * perf_event_task_tick() are fully serialized because they're strictly cpu
1087 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1088 * disabled, while perf_event_task_tick is called from IRQ context.
e9d2b064 1089 */
2fde4f94 1090static void perf_event_ctx_activate(struct perf_event_context *ctx)
9e35ad38 1091{
2fde4f94 1092 struct list_head *head = this_cpu_ptr(&active_ctx_list);
b5ab4cd5 1093
e9d2b064 1094 WARN_ON(!irqs_disabled());
b5ab4cd5 1095
2fde4f94
MR
1096 WARN_ON(!list_empty(&ctx->active_ctx_list));
1097
1098 list_add(&ctx->active_ctx_list, head);
1099}
1100
1101static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1102{
1103 WARN_ON(!irqs_disabled());
1104
1105 WARN_ON(list_empty(&ctx->active_ctx_list));
1106
1107 list_del_init(&ctx->active_ctx_list);
9e35ad38 1108}
9e35ad38 1109
cdd6c482 1110static void get_ctx(struct perf_event_context *ctx)
a63eaf34 1111{
e5289d4a 1112 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
a63eaf34
PM
1113}
1114
4af57ef2
YZ
1115static void free_ctx(struct rcu_head *head)
1116{
1117 struct perf_event_context *ctx;
1118
1119 ctx = container_of(head, struct perf_event_context, rcu_head);
1120 kfree(ctx->task_ctx_data);
1121 kfree(ctx);
1122}
1123
cdd6c482 1124static void put_ctx(struct perf_event_context *ctx)
a63eaf34 1125{
564c2b21
PM
1126 if (atomic_dec_and_test(&ctx->refcount)) {
1127 if (ctx->parent_ctx)
1128 put_ctx(ctx->parent_ctx);
63b6da39 1129 if (ctx->task && ctx->task != TASK_TOMBSTONE)
c93f7669 1130 put_task_struct(ctx->task);
4af57ef2 1131 call_rcu(&ctx->rcu_head, free_ctx);
564c2b21 1132 }
a63eaf34
PM
1133}
1134
f63a8daa
PZ
1135/*
1136 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1137 * perf_pmu_migrate_context() we need some magic.
1138 *
1139 * Those places that change perf_event::ctx will hold both
1140 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1141 *
8b10c5e2
PZ
1142 * Lock ordering is by mutex address. There are two other sites where
1143 * perf_event_context::mutex nests and those are:
1144 *
1145 * - perf_event_exit_task_context() [ child , 0 ]
8ba289b8
PZ
1146 * perf_event_exit_event()
1147 * put_event() [ parent, 1 ]
8b10c5e2
PZ
1148 *
1149 * - perf_event_init_context() [ parent, 0 ]
1150 * inherit_task_group()
1151 * inherit_group()
1152 * inherit_event()
1153 * perf_event_alloc()
1154 * perf_init_event()
1155 * perf_try_init_event() [ child , 1 ]
1156 *
1157 * While it appears there is an obvious deadlock here -- the parent and child
1158 * nesting levels are inverted between the two. This is in fact safe because
1159 * life-time rules separate them. That is an exiting task cannot fork, and a
1160 * spawning task cannot (yet) exit.
1161 *
1162 * But remember that that these are parent<->child context relations, and
1163 * migration does not affect children, therefore these two orderings should not
1164 * interact.
f63a8daa
PZ
1165 *
1166 * The change in perf_event::ctx does not affect children (as claimed above)
1167 * because the sys_perf_event_open() case will install a new event and break
1168 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1169 * concerned with cpuctx and that doesn't have children.
1170 *
1171 * The places that change perf_event::ctx will issue:
1172 *
1173 * perf_remove_from_context();
1174 * synchronize_rcu();
1175 * perf_install_in_context();
1176 *
1177 * to affect the change. The remove_from_context() + synchronize_rcu() should
1178 * quiesce the event, after which we can install it in the new location. This
1179 * means that only external vectors (perf_fops, prctl) can perturb the event
1180 * while in transit. Therefore all such accessors should also acquire
1181 * perf_event_context::mutex to serialize against this.
1182 *
1183 * However; because event->ctx can change while we're waiting to acquire
1184 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1185 * function.
1186 *
1187 * Lock order:
79c9ce57 1188 * cred_guard_mutex
f63a8daa
PZ
1189 * task_struct::perf_event_mutex
1190 * perf_event_context::mutex
f63a8daa 1191 * perf_event::child_mutex;
07c4a776 1192 * perf_event_context::lock
f63a8daa
PZ
1193 * perf_event::mmap_mutex
1194 * mmap_sem
1195 */
a83fe28e
PZ
1196static struct perf_event_context *
1197perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
f63a8daa
PZ
1198{
1199 struct perf_event_context *ctx;
1200
1201again:
1202 rcu_read_lock();
1203 ctx = ACCESS_ONCE(event->ctx);
1204 if (!atomic_inc_not_zero(&ctx->refcount)) {
1205 rcu_read_unlock();
1206 goto again;
1207 }
1208 rcu_read_unlock();
1209
a83fe28e 1210 mutex_lock_nested(&ctx->mutex, nesting);
f63a8daa
PZ
1211 if (event->ctx != ctx) {
1212 mutex_unlock(&ctx->mutex);
1213 put_ctx(ctx);
1214 goto again;
1215 }
1216
1217 return ctx;
1218}
1219
a83fe28e
PZ
1220static inline struct perf_event_context *
1221perf_event_ctx_lock(struct perf_event *event)
1222{
1223 return perf_event_ctx_lock_nested(event, 0);
1224}
1225
f63a8daa
PZ
1226static void perf_event_ctx_unlock(struct perf_event *event,
1227 struct perf_event_context *ctx)
1228{
1229 mutex_unlock(&ctx->mutex);
1230 put_ctx(ctx);
1231}
1232
211de6eb
PZ
1233/*
1234 * This must be done under the ctx->lock, such as to serialize against
1235 * context_equiv(), therefore we cannot call put_ctx() since that might end up
1236 * calling scheduler related locks and ctx->lock nests inside those.
1237 */
1238static __must_check struct perf_event_context *
1239unclone_ctx(struct perf_event_context *ctx)
71a851b4 1240{
211de6eb
PZ
1241 struct perf_event_context *parent_ctx = ctx->parent_ctx;
1242
1243 lockdep_assert_held(&ctx->lock);
1244
1245 if (parent_ctx)
71a851b4 1246 ctx->parent_ctx = NULL;
5a3126d4 1247 ctx->generation++;
211de6eb
PZ
1248
1249 return parent_ctx;
71a851b4
PZ
1250}
1251
6844c09d
ACM
1252static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1253{
1254 /*
1255 * only top level events have the pid namespace they were created in
1256 */
1257 if (event->parent)
1258 event = event->parent;
1259
1260 return task_tgid_nr_ns(p, event->ns);
1261}
1262
1263static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1264{
1265 /*
1266 * only top level events have the pid namespace they were created in
1267 */
1268 if (event->parent)
1269 event = event->parent;
1270
1271 return task_pid_nr_ns(p, event->ns);
1272}
1273
7f453c24 1274/*
cdd6c482 1275 * If we inherit events we want to return the parent event id
7f453c24
PZ
1276 * to userspace.
1277 */
cdd6c482 1278static u64 primary_event_id(struct perf_event *event)
7f453c24 1279{
cdd6c482 1280 u64 id = event->id;
7f453c24 1281
cdd6c482
IM
1282 if (event->parent)
1283 id = event->parent->id;
7f453c24
PZ
1284
1285 return id;
1286}
1287
25346b93 1288/*
cdd6c482 1289 * Get the perf_event_context for a task and lock it.
63b6da39 1290 *
25346b93
PM
1291 * This has to cope with with the fact that until it is locked,
1292 * the context could get moved to another task.
1293 */
cdd6c482 1294static struct perf_event_context *
8dc85d54 1295perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
25346b93 1296{
cdd6c482 1297 struct perf_event_context *ctx;
25346b93 1298
9ed6060d 1299retry:
058ebd0e
PZ
1300 /*
1301 * One of the few rules of preemptible RCU is that one cannot do
1302 * rcu_read_unlock() while holding a scheduler (or nested) lock when
2fd59077 1303 * part of the read side critical section was irqs-enabled -- see
058ebd0e
PZ
1304 * rcu_read_unlock_special().
1305 *
1306 * Since ctx->lock nests under rq->lock we must ensure the entire read
2fd59077 1307 * side critical section has interrupts disabled.
058ebd0e 1308 */
2fd59077 1309 local_irq_save(*flags);
058ebd0e 1310 rcu_read_lock();
8dc85d54 1311 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
25346b93
PM
1312 if (ctx) {
1313 /*
1314 * If this context is a clone of another, it might
1315 * get swapped for another underneath us by
cdd6c482 1316 * perf_event_task_sched_out, though the
25346b93
PM
1317 * rcu_read_lock() protects us from any context
1318 * getting freed. Lock the context and check if it
1319 * got swapped before we could get the lock, and retry
1320 * if so. If we locked the right context, then it
1321 * can't get swapped on us any more.
1322 */
2fd59077 1323 raw_spin_lock(&ctx->lock);
8dc85d54 1324 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
2fd59077 1325 raw_spin_unlock(&ctx->lock);
058ebd0e 1326 rcu_read_unlock();
2fd59077 1327 local_irq_restore(*flags);
25346b93
PM
1328 goto retry;
1329 }
b49a9e7e 1330
63b6da39
PZ
1331 if (ctx->task == TASK_TOMBSTONE ||
1332 !atomic_inc_not_zero(&ctx->refcount)) {
2fd59077 1333 raw_spin_unlock(&ctx->lock);
b49a9e7e 1334 ctx = NULL;
828b6f0e
PZ
1335 } else {
1336 WARN_ON_ONCE(ctx->task != task);
b49a9e7e 1337 }
25346b93
PM
1338 }
1339 rcu_read_unlock();
2fd59077
PM
1340 if (!ctx)
1341 local_irq_restore(*flags);
25346b93
PM
1342 return ctx;
1343}
1344
1345/*
1346 * Get the context for a task and increment its pin_count so it
1347 * can't get swapped to another task. This also increments its
1348 * reference count so that the context can't get freed.
1349 */
8dc85d54
PZ
1350static struct perf_event_context *
1351perf_pin_task_context(struct task_struct *task, int ctxn)
25346b93 1352{
cdd6c482 1353 struct perf_event_context *ctx;
25346b93
PM
1354 unsigned long flags;
1355
8dc85d54 1356 ctx = perf_lock_task_context(task, ctxn, &flags);
25346b93
PM
1357 if (ctx) {
1358 ++ctx->pin_count;
e625cce1 1359 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1360 }
1361 return ctx;
1362}
1363
cdd6c482 1364static void perf_unpin_context(struct perf_event_context *ctx)
25346b93
PM
1365{
1366 unsigned long flags;
1367
e625cce1 1368 raw_spin_lock_irqsave(&ctx->lock, flags);
25346b93 1369 --ctx->pin_count;
e625cce1 1370 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1371}
1372
f67218c3
PZ
1373/*
1374 * Update the record of the current time in a context.
1375 */
1376static void update_context_time(struct perf_event_context *ctx)
1377{
1378 u64 now = perf_clock();
1379
1380 ctx->time += now - ctx->timestamp;
1381 ctx->timestamp = now;
1382}
1383
4158755d
SE
1384static u64 perf_event_time(struct perf_event *event)
1385{
1386 struct perf_event_context *ctx = event->ctx;
e5d1367f
SE
1387
1388 if (is_cgroup_event(event))
1389 return perf_cgroup_event_time(event);
1390
4158755d
SE
1391 return ctx ? ctx->time : 0;
1392}
1393
f67218c3
PZ
1394/*
1395 * Update the total_time_enabled and total_time_running fields for a event.
1396 */
1397static void update_event_times(struct perf_event *event)
1398{
1399 struct perf_event_context *ctx = event->ctx;
1400 u64 run_end;
1401
3cbaa590
PZ
1402 lockdep_assert_held(&ctx->lock);
1403
f67218c3
PZ
1404 if (event->state < PERF_EVENT_STATE_INACTIVE ||
1405 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1406 return;
3cbaa590 1407
e5d1367f
SE
1408 /*
1409 * in cgroup mode, time_enabled represents
1410 * the time the event was enabled AND active
1411 * tasks were in the monitored cgroup. This is
1412 * independent of the activity of the context as
1413 * there may be a mix of cgroup and non-cgroup events.
1414 *
1415 * That is why we treat cgroup events differently
1416 * here.
1417 */
1418 if (is_cgroup_event(event))
46cd6a7f 1419 run_end = perf_cgroup_event_time(event);
e5d1367f
SE
1420 else if (ctx->is_active)
1421 run_end = ctx->time;
acd1d7c1
PZ
1422 else
1423 run_end = event->tstamp_stopped;
1424
1425 event->total_time_enabled = run_end - event->tstamp_enabled;
f67218c3
PZ
1426
1427 if (event->state == PERF_EVENT_STATE_INACTIVE)
1428 run_end = event->tstamp_stopped;
1429 else
4158755d 1430 run_end = perf_event_time(event);
f67218c3
PZ
1431
1432 event->total_time_running = run_end - event->tstamp_running;
e5d1367f 1433
f67218c3
PZ
1434}
1435
96c21a46
PZ
1436/*
1437 * Update total_time_enabled and total_time_running for all events in a group.
1438 */
1439static void update_group_times(struct perf_event *leader)
1440{
1441 struct perf_event *event;
1442
1443 update_event_times(leader);
1444 list_for_each_entry(event, &leader->sibling_list, group_entry)
1445 update_event_times(event);
1446}
1447
487f05e1
AS
1448static enum event_type_t get_event_type(struct perf_event *event)
1449{
1450 struct perf_event_context *ctx = event->ctx;
1451 enum event_type_t event_type;
1452
1453 lockdep_assert_held(&ctx->lock);
1454
3bda69c1
AS
1455 /*
1456 * It's 'group type', really, because if our group leader is
1457 * pinned, so are we.
1458 */
1459 if (event->group_leader != event)
1460 event = event->group_leader;
1461
487f05e1
AS
1462 event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1463 if (!ctx->task)
1464 event_type |= EVENT_CPU;
1465
1466 return event_type;
1467}
1468
889ff015
FW
1469static struct list_head *
1470ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1471{
1472 if (event->attr.pinned)
1473 return &ctx->pinned_groups;
1474 else
1475 return &ctx->flexible_groups;
1476}
1477
fccc714b 1478/*
cdd6c482 1479 * Add a event from the lists for its context.
fccc714b
PZ
1480 * Must be called with ctx->mutex and ctx->lock held.
1481 */
04289bb9 1482static void
cdd6c482 1483list_add_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1484{
c994d613
PZ
1485 lockdep_assert_held(&ctx->lock);
1486
8a49542c
PZ
1487 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1488 event->attach_state |= PERF_ATTACH_CONTEXT;
04289bb9
IM
1489
1490 /*
8a49542c
PZ
1491 * If we're a stand alone event or group leader, we go to the context
1492 * list, group events are kept attached to the group so that
1493 * perf_group_detach can, at all times, locate all siblings.
04289bb9 1494 */
8a49542c 1495 if (event->group_leader == event) {
889ff015
FW
1496 struct list_head *list;
1497
4ff6a8de 1498 event->group_caps = event->event_caps;
d6f962b5 1499
889ff015
FW
1500 list = ctx_group_list(event, ctx);
1501 list_add_tail(&event->group_entry, list);
5c148194 1502 }
592903cd 1503
db4a8356 1504 list_update_cgroup_event(event, ctx, true);
e5d1367f 1505
cdd6c482
IM
1506 list_add_rcu(&event->event_entry, &ctx->event_list);
1507 ctx->nr_events++;
1508 if (event->attr.inherit_stat)
bfbd3381 1509 ctx->nr_stat++;
5a3126d4
PZ
1510
1511 ctx->generation++;
04289bb9
IM
1512}
1513
0231bb53
JO
1514/*
1515 * Initialize event state based on the perf_event_attr::disabled.
1516 */
1517static inline void perf_event__state_init(struct perf_event *event)
1518{
1519 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1520 PERF_EVENT_STATE_INACTIVE;
1521}
1522
a723968c 1523static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
c320c7b7
ACM
1524{
1525 int entry = sizeof(u64); /* value */
1526 int size = 0;
1527 int nr = 1;
1528
1529 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1530 size += sizeof(u64);
1531
1532 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1533 size += sizeof(u64);
1534
1535 if (event->attr.read_format & PERF_FORMAT_ID)
1536 entry += sizeof(u64);
1537
1538 if (event->attr.read_format & PERF_FORMAT_GROUP) {
a723968c 1539 nr += nr_siblings;
c320c7b7
ACM
1540 size += sizeof(u64);
1541 }
1542
1543 size += entry * nr;
1544 event->read_size = size;
1545}
1546
a723968c 1547static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
c320c7b7
ACM
1548{
1549 struct perf_sample_data *data;
c320c7b7
ACM
1550 u16 size = 0;
1551
c320c7b7
ACM
1552 if (sample_type & PERF_SAMPLE_IP)
1553 size += sizeof(data->ip);
1554
6844c09d
ACM
1555 if (sample_type & PERF_SAMPLE_ADDR)
1556 size += sizeof(data->addr);
1557
1558 if (sample_type & PERF_SAMPLE_PERIOD)
1559 size += sizeof(data->period);
1560
c3feedf2
AK
1561 if (sample_type & PERF_SAMPLE_WEIGHT)
1562 size += sizeof(data->weight);
1563
6844c09d
ACM
1564 if (sample_type & PERF_SAMPLE_READ)
1565 size += event->read_size;
1566
d6be9ad6
SE
1567 if (sample_type & PERF_SAMPLE_DATA_SRC)
1568 size += sizeof(data->data_src.val);
1569
fdfbbd07
AK
1570 if (sample_type & PERF_SAMPLE_TRANSACTION)
1571 size += sizeof(data->txn);
1572
6844c09d
ACM
1573 event->header_size = size;
1574}
1575
a723968c
PZ
1576/*
1577 * Called at perf_event creation and when events are attached/detached from a
1578 * group.
1579 */
1580static void perf_event__header_size(struct perf_event *event)
1581{
1582 __perf_event_read_size(event,
1583 event->group_leader->nr_siblings);
1584 __perf_event_header_size(event, event->attr.sample_type);
1585}
1586
6844c09d
ACM
1587static void perf_event__id_header_size(struct perf_event *event)
1588{
1589 struct perf_sample_data *data;
1590 u64 sample_type = event->attr.sample_type;
1591 u16 size = 0;
1592
c320c7b7
ACM
1593 if (sample_type & PERF_SAMPLE_TID)
1594 size += sizeof(data->tid_entry);
1595
1596 if (sample_type & PERF_SAMPLE_TIME)
1597 size += sizeof(data->time);
1598
ff3d527c
AH
1599 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1600 size += sizeof(data->id);
1601
c320c7b7
ACM
1602 if (sample_type & PERF_SAMPLE_ID)
1603 size += sizeof(data->id);
1604
1605 if (sample_type & PERF_SAMPLE_STREAM_ID)
1606 size += sizeof(data->stream_id);
1607
1608 if (sample_type & PERF_SAMPLE_CPU)
1609 size += sizeof(data->cpu_entry);
1610
6844c09d 1611 event->id_header_size = size;
c320c7b7
ACM
1612}
1613
a723968c
PZ
1614static bool perf_event_validate_size(struct perf_event *event)
1615{
1616 /*
1617 * The values computed here will be over-written when we actually
1618 * attach the event.
1619 */
1620 __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1621 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1622 perf_event__id_header_size(event);
1623
1624 /*
1625 * Sum the lot; should not exceed the 64k limit we have on records.
1626 * Conservative limit to allow for callchains and other variable fields.
1627 */
1628 if (event->read_size + event->header_size +
1629 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1630 return false;
1631
1632 return true;
1633}
1634
8a49542c
PZ
1635static void perf_group_attach(struct perf_event *event)
1636{
c320c7b7 1637 struct perf_event *group_leader = event->group_leader, *pos;
8a49542c 1638
a76a82a3
PZ
1639 lockdep_assert_held(&event->ctx->lock);
1640
74c3337c
PZ
1641 /*
1642 * We can have double attach due to group movement in perf_event_open.
1643 */
1644 if (event->attach_state & PERF_ATTACH_GROUP)
1645 return;
1646
8a49542c
PZ
1647 event->attach_state |= PERF_ATTACH_GROUP;
1648
1649 if (group_leader == event)
1650 return;
1651
652884fe
PZ
1652 WARN_ON_ONCE(group_leader->ctx != event->ctx);
1653
4ff6a8de 1654 group_leader->group_caps &= event->event_caps;
8a49542c
PZ
1655
1656 list_add_tail(&event->group_entry, &group_leader->sibling_list);
1657 group_leader->nr_siblings++;
c320c7b7
ACM
1658
1659 perf_event__header_size(group_leader);
1660
1661 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1662 perf_event__header_size(pos);
8a49542c
PZ
1663}
1664
a63eaf34 1665/*
cdd6c482 1666 * Remove a event from the lists for its context.
fccc714b 1667 * Must be called with ctx->mutex and ctx->lock held.
a63eaf34 1668 */
04289bb9 1669static void
cdd6c482 1670list_del_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1671{
652884fe
PZ
1672 WARN_ON_ONCE(event->ctx != ctx);
1673 lockdep_assert_held(&ctx->lock);
1674
8a49542c
PZ
1675 /*
1676 * We can have double detach due to exit/hot-unplug + close.
1677 */
1678 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
a63eaf34 1679 return;
8a49542c
PZ
1680
1681 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1682
db4a8356 1683 list_update_cgroup_event(event, ctx, false);
e5d1367f 1684
cdd6c482
IM
1685 ctx->nr_events--;
1686 if (event->attr.inherit_stat)
bfbd3381 1687 ctx->nr_stat--;
8bc20959 1688
cdd6c482 1689 list_del_rcu(&event->event_entry);
04289bb9 1690
8a49542c
PZ
1691 if (event->group_leader == event)
1692 list_del_init(&event->group_entry);
5c148194 1693
96c21a46 1694 update_group_times(event);
b2e74a26
SE
1695
1696 /*
1697 * If event was in error state, then keep it
1698 * that way, otherwise bogus counts will be
1699 * returned on read(). The only way to get out
1700 * of error state is by explicit re-enabling
1701 * of the event
1702 */
1703 if (event->state > PERF_EVENT_STATE_OFF)
1704 event->state = PERF_EVENT_STATE_OFF;
5a3126d4
PZ
1705
1706 ctx->generation++;
050735b0
PZ
1707}
1708
8a49542c 1709static void perf_group_detach(struct perf_event *event)
050735b0
PZ
1710{
1711 struct perf_event *sibling, *tmp;
8a49542c
PZ
1712 struct list_head *list = NULL;
1713
a76a82a3
PZ
1714 lockdep_assert_held(&event->ctx->lock);
1715
8a49542c
PZ
1716 /*
1717 * We can have double detach due to exit/hot-unplug + close.
1718 */
1719 if (!(event->attach_state & PERF_ATTACH_GROUP))
1720 return;
1721
1722 event->attach_state &= ~PERF_ATTACH_GROUP;
1723
1724 /*
1725 * If this is a sibling, remove it from its group.
1726 */
1727 if (event->group_leader != event) {
1728 list_del_init(&event->group_entry);
1729 event->group_leader->nr_siblings--;
c320c7b7 1730 goto out;
8a49542c
PZ
1731 }
1732
1733 if (!list_empty(&event->group_entry))
1734 list = &event->group_entry;
2e2af50b 1735
04289bb9 1736 /*
cdd6c482
IM
1737 * If this was a group event with sibling events then
1738 * upgrade the siblings to singleton events by adding them
8a49542c 1739 * to whatever list we are on.
04289bb9 1740 */
cdd6c482 1741 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
8a49542c
PZ
1742 if (list)
1743 list_move_tail(&sibling->group_entry, list);
04289bb9 1744 sibling->group_leader = sibling;
d6f962b5
FW
1745
1746 /* Inherit group flags from the previous leader */
4ff6a8de 1747 sibling->group_caps = event->group_caps;
652884fe
PZ
1748
1749 WARN_ON_ONCE(sibling->ctx != event->ctx);
04289bb9 1750 }
c320c7b7
ACM
1751
1752out:
1753 perf_event__header_size(event->group_leader);
1754
1755 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1756 perf_event__header_size(tmp);
04289bb9
IM
1757}
1758
fadfe7be
JO
1759static bool is_orphaned_event(struct perf_event *event)
1760{
a69b0ca4 1761 return event->state == PERF_EVENT_STATE_DEAD;
fadfe7be
JO
1762}
1763
2c81a647 1764static inline int __pmu_filter_match(struct perf_event *event)
66eb579e
MR
1765{
1766 struct pmu *pmu = event->pmu;
1767 return pmu->filter_match ? pmu->filter_match(event) : 1;
1768}
1769
2c81a647
MR
1770/*
1771 * Check whether we should attempt to schedule an event group based on
1772 * PMU-specific filtering. An event group can consist of HW and SW events,
1773 * potentially with a SW leader, so we must check all the filters, to
1774 * determine whether a group is schedulable:
1775 */
1776static inline int pmu_filter_match(struct perf_event *event)
1777{
1778 struct perf_event *child;
1779
1780 if (!__pmu_filter_match(event))
1781 return 0;
1782
1783 list_for_each_entry(child, &event->sibling_list, group_entry) {
1784 if (!__pmu_filter_match(child))
1785 return 0;
1786 }
1787
1788 return 1;
1789}
1790
fa66f07a
SE
1791static inline int
1792event_filter_match(struct perf_event *event)
1793{
0b8f1e2e
PZ
1794 return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
1795 perf_cgroup_match(event) && pmu_filter_match(event);
fa66f07a
SE
1796}
1797
9ffcfa6f
SE
1798static void
1799event_sched_out(struct perf_event *event,
3b6f9e5c 1800 struct perf_cpu_context *cpuctx,
cdd6c482 1801 struct perf_event_context *ctx)
3b6f9e5c 1802{
4158755d 1803 u64 tstamp = perf_event_time(event);
fa66f07a 1804 u64 delta;
652884fe
PZ
1805
1806 WARN_ON_ONCE(event->ctx != ctx);
1807 lockdep_assert_held(&ctx->lock);
1808
fa66f07a
SE
1809 /*
1810 * An event which could not be activated because of
1811 * filter mismatch still needs to have its timings
1812 * maintained, otherwise bogus information is return
1813 * via read() for time_enabled, time_running:
1814 */
0b8f1e2e
PZ
1815 if (event->state == PERF_EVENT_STATE_INACTIVE &&
1816 !event_filter_match(event)) {
e5d1367f 1817 delta = tstamp - event->tstamp_stopped;
fa66f07a 1818 event->tstamp_running += delta;
4158755d 1819 event->tstamp_stopped = tstamp;
fa66f07a
SE
1820 }
1821
cdd6c482 1822 if (event->state != PERF_EVENT_STATE_ACTIVE)
9ffcfa6f 1823 return;
3b6f9e5c 1824
44377277
AS
1825 perf_pmu_disable(event->pmu);
1826
28a967c3
PZ
1827 event->tstamp_stopped = tstamp;
1828 event->pmu->del(event, 0);
1829 event->oncpu = -1;
cdd6c482
IM
1830 event->state = PERF_EVENT_STATE_INACTIVE;
1831 if (event->pending_disable) {
1832 event->pending_disable = 0;
1833 event->state = PERF_EVENT_STATE_OFF;
970892a9 1834 }
3b6f9e5c 1835
cdd6c482 1836 if (!is_software_event(event))
3b6f9e5c 1837 cpuctx->active_oncpu--;
2fde4f94
MR
1838 if (!--ctx->nr_active)
1839 perf_event_ctx_deactivate(ctx);
0f5a2601
PZ
1840 if (event->attr.freq && event->attr.sample_freq)
1841 ctx->nr_freq--;
cdd6c482 1842 if (event->attr.exclusive || !cpuctx->active_oncpu)
3b6f9e5c 1843 cpuctx->exclusive = 0;
44377277
AS
1844
1845 perf_pmu_enable(event->pmu);
3b6f9e5c
PM
1846}
1847
d859e29f 1848static void
cdd6c482 1849group_sched_out(struct perf_event *group_event,
d859e29f 1850 struct perf_cpu_context *cpuctx,
cdd6c482 1851 struct perf_event_context *ctx)
d859e29f 1852{
cdd6c482 1853 struct perf_event *event;
fa66f07a 1854 int state = group_event->state;
d859e29f 1855
3f005e7d
MR
1856 perf_pmu_disable(ctx->pmu);
1857
cdd6c482 1858 event_sched_out(group_event, cpuctx, ctx);
d859e29f
PM
1859
1860 /*
1861 * Schedule out siblings (if any):
1862 */
cdd6c482
IM
1863 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1864 event_sched_out(event, cpuctx, ctx);
d859e29f 1865
3f005e7d
MR
1866 perf_pmu_enable(ctx->pmu);
1867
fa66f07a 1868 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
d859e29f
PM
1869 cpuctx->exclusive = 0;
1870}
1871
45a0e07a 1872#define DETACH_GROUP 0x01UL
0017960f 1873
0793a61d 1874/*
cdd6c482 1875 * Cross CPU call to remove a performance event
0793a61d 1876 *
cdd6c482 1877 * We disable the event on the hardware level first. After that we
0793a61d
TG
1878 * remove it from the context list.
1879 */
fae3fde6
PZ
1880static void
1881__perf_remove_from_context(struct perf_event *event,
1882 struct perf_cpu_context *cpuctx,
1883 struct perf_event_context *ctx,
1884 void *info)
0793a61d 1885{
45a0e07a 1886 unsigned long flags = (unsigned long)info;
0793a61d 1887
cdd6c482 1888 event_sched_out(event, cpuctx, ctx);
45a0e07a 1889 if (flags & DETACH_GROUP)
46ce0fe9 1890 perf_group_detach(event);
cdd6c482 1891 list_del_event(event, ctx);
39a43640
PZ
1892
1893 if (!ctx->nr_events && ctx->is_active) {
64ce3126 1894 ctx->is_active = 0;
39a43640
PZ
1895 if (ctx->task) {
1896 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
1897 cpuctx->task_ctx = NULL;
1898 }
64ce3126 1899 }
0793a61d
TG
1900}
1901
0793a61d 1902/*
cdd6c482 1903 * Remove the event from a task's (or a CPU's) list of events.
0793a61d 1904 *
cdd6c482
IM
1905 * If event->ctx is a cloned context, callers must make sure that
1906 * every task struct that event->ctx->task could possibly point to
c93f7669
PM
1907 * remains valid. This is OK when called from perf_release since
1908 * that only calls us on the top-level context, which can't be a clone.
cdd6c482 1909 * When called from perf_event_exit_task, it's OK because the
c93f7669 1910 * context has been detached from its task.
0793a61d 1911 */
45a0e07a 1912static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
0793a61d 1913{
a76a82a3
PZ
1914 struct perf_event_context *ctx = event->ctx;
1915
1916 lockdep_assert_held(&ctx->mutex);
0793a61d 1917
45a0e07a 1918 event_function_call(event, __perf_remove_from_context, (void *)flags);
a76a82a3
PZ
1919
1920 /*
1921 * The above event_function_call() can NO-OP when it hits
1922 * TASK_TOMBSTONE. In that case we must already have been detached
1923 * from the context (by perf_event_exit_event()) but the grouping
1924 * might still be in-tact.
1925 */
1926 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1927 if ((flags & DETACH_GROUP) &&
1928 (event->attach_state & PERF_ATTACH_GROUP)) {
1929 /*
1930 * Since in that case we cannot possibly be scheduled, simply
1931 * detach now.
1932 */
1933 raw_spin_lock_irq(&ctx->lock);
1934 perf_group_detach(event);
1935 raw_spin_unlock_irq(&ctx->lock);
1936 }
0793a61d
TG
1937}
1938
d859e29f 1939/*
cdd6c482 1940 * Cross CPU call to disable a performance event
d859e29f 1941 */
fae3fde6
PZ
1942static void __perf_event_disable(struct perf_event *event,
1943 struct perf_cpu_context *cpuctx,
1944 struct perf_event_context *ctx,
1945 void *info)
7b648018 1946{
fae3fde6
PZ
1947 if (event->state < PERF_EVENT_STATE_INACTIVE)
1948 return;
7b648018 1949
fae3fde6
PZ
1950 update_context_time(ctx);
1951 update_cgrp_time_from_event(event);
1952 update_group_times(event);
1953 if (event == event->group_leader)
1954 group_sched_out(event, cpuctx, ctx);
1955 else
1956 event_sched_out(event, cpuctx, ctx);
1957 event->state = PERF_EVENT_STATE_OFF;
7b648018
PZ
1958}
1959
d859e29f 1960/*
cdd6c482 1961 * Disable a event.
c93f7669 1962 *
cdd6c482
IM
1963 * If event->ctx is a cloned context, callers must make sure that
1964 * every task struct that event->ctx->task could possibly point to
c93f7669 1965 * remains valid. This condition is satisifed when called through
cdd6c482
IM
1966 * perf_event_for_each_child or perf_event_for_each because they
1967 * hold the top-level event's child_mutex, so any descendant that
8ba289b8
PZ
1968 * goes to exit will block in perf_event_exit_event().
1969 *
cdd6c482 1970 * When called from perf_pending_event it's OK because event->ctx
c93f7669 1971 * is the current context on this CPU and preemption is disabled,
cdd6c482 1972 * hence we can't get into perf_event_task_sched_out for this context.
d859e29f 1973 */
f63a8daa 1974static void _perf_event_disable(struct perf_event *event)
d859e29f 1975{
cdd6c482 1976 struct perf_event_context *ctx = event->ctx;
d859e29f 1977
e625cce1 1978 raw_spin_lock_irq(&ctx->lock);
7b648018 1979 if (event->state <= PERF_EVENT_STATE_OFF) {
e625cce1 1980 raw_spin_unlock_irq(&ctx->lock);
7b648018 1981 return;
53cfbf59 1982 }
e625cce1 1983 raw_spin_unlock_irq(&ctx->lock);
7b648018 1984
fae3fde6
PZ
1985 event_function_call(event, __perf_event_disable, NULL);
1986}
1987
1988void perf_event_disable_local(struct perf_event *event)
1989{
1990 event_function_local(event, __perf_event_disable, NULL);
d859e29f 1991}
f63a8daa
PZ
1992
1993/*
1994 * Strictly speaking kernel users cannot create groups and therefore this
1995 * interface does not need the perf_event_ctx_lock() magic.
1996 */
1997void perf_event_disable(struct perf_event *event)
1998{
1999 struct perf_event_context *ctx;
2000
2001 ctx = perf_event_ctx_lock(event);
2002 _perf_event_disable(event);
2003 perf_event_ctx_unlock(event, ctx);
2004}
dcfce4a0 2005EXPORT_SYMBOL_GPL(perf_event_disable);
d859e29f 2006
5aab90ce
JO
2007void perf_event_disable_inatomic(struct perf_event *event)
2008{
2009 event->pending_disable = 1;
2010 irq_work_queue(&event->pending);
2011}
2012
e5d1367f
SE
2013static void perf_set_shadow_time(struct perf_event *event,
2014 struct perf_event_context *ctx,
2015 u64 tstamp)
2016{
2017 /*
2018 * use the correct time source for the time snapshot
2019 *
2020 * We could get by without this by leveraging the
2021 * fact that to get to this function, the caller
2022 * has most likely already called update_context_time()
2023 * and update_cgrp_time_xx() and thus both timestamp
2024 * are identical (or very close). Given that tstamp is,
2025 * already adjusted for cgroup, we could say that:
2026 * tstamp - ctx->timestamp
2027 * is equivalent to
2028 * tstamp - cgrp->timestamp.
2029 *
2030 * Then, in perf_output_read(), the calculation would
2031 * work with no changes because:
2032 * - event is guaranteed scheduled in
2033 * - no scheduled out in between
2034 * - thus the timestamp would be the same
2035 *
2036 * But this is a bit hairy.
2037 *
2038 * So instead, we have an explicit cgroup call to remain
2039 * within the time time source all along. We believe it
2040 * is cleaner and simpler to understand.
2041 */
2042 if (is_cgroup_event(event))
2043 perf_cgroup_set_shadow_time(event, tstamp);
2044 else
2045 event->shadow_ctx_time = tstamp - ctx->timestamp;
2046}
2047
4fe757dd
PZ
2048#define MAX_INTERRUPTS (~0ULL)
2049
2050static void perf_log_throttle(struct perf_event *event, int enable);
ec0d7729 2051static void perf_log_itrace_start(struct perf_event *event);
4fe757dd 2052
235c7fc7 2053static int
9ffcfa6f 2054event_sched_in(struct perf_event *event,
235c7fc7 2055 struct perf_cpu_context *cpuctx,
6e37738a 2056 struct perf_event_context *ctx)
235c7fc7 2057{
4158755d 2058 u64 tstamp = perf_event_time(event);
44377277 2059 int ret = 0;
4158755d 2060
63342411
PZ
2061 lockdep_assert_held(&ctx->lock);
2062
cdd6c482 2063 if (event->state <= PERF_EVENT_STATE_OFF)
235c7fc7
IM
2064 return 0;
2065
95ff4ca2
AS
2066 WRITE_ONCE(event->oncpu, smp_processor_id());
2067 /*
2068 * Order event::oncpu write to happen before the ACTIVE state
2069 * is visible.
2070 */
2071 smp_wmb();
2072 WRITE_ONCE(event->state, PERF_EVENT_STATE_ACTIVE);
4fe757dd
PZ
2073
2074 /*
2075 * Unthrottle events, since we scheduled we might have missed several
2076 * ticks already, also for a heavily scheduling task there is little
2077 * guarantee it'll get a tick in a timely manner.
2078 */
2079 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2080 perf_log_throttle(event, 1);
2081 event->hw.interrupts = 0;
2082 }
2083
235c7fc7
IM
2084 /*
2085 * The new state must be visible before we turn it on in the hardware:
2086 */
2087 smp_wmb();
2088
44377277
AS
2089 perf_pmu_disable(event->pmu);
2090
72f669c0
SL
2091 perf_set_shadow_time(event, ctx, tstamp);
2092
ec0d7729
AS
2093 perf_log_itrace_start(event);
2094
a4eaf7f1 2095 if (event->pmu->add(event, PERF_EF_START)) {
cdd6c482
IM
2096 event->state = PERF_EVENT_STATE_INACTIVE;
2097 event->oncpu = -1;
44377277
AS
2098 ret = -EAGAIN;
2099 goto out;
235c7fc7
IM
2100 }
2101
00a2916f
PZ
2102 event->tstamp_running += tstamp - event->tstamp_stopped;
2103
cdd6c482 2104 if (!is_software_event(event))
3b6f9e5c 2105 cpuctx->active_oncpu++;
2fde4f94
MR
2106 if (!ctx->nr_active++)
2107 perf_event_ctx_activate(ctx);
0f5a2601
PZ
2108 if (event->attr.freq && event->attr.sample_freq)
2109 ctx->nr_freq++;
235c7fc7 2110
cdd6c482 2111 if (event->attr.exclusive)
3b6f9e5c
PM
2112 cpuctx->exclusive = 1;
2113
44377277
AS
2114out:
2115 perf_pmu_enable(event->pmu);
2116
2117 return ret;
235c7fc7
IM
2118}
2119
6751b71e 2120static int
cdd6c482 2121group_sched_in(struct perf_event *group_event,
6751b71e 2122 struct perf_cpu_context *cpuctx,
6e37738a 2123 struct perf_event_context *ctx)
6751b71e 2124{
6bde9b6c 2125 struct perf_event *event, *partial_group = NULL;
4a234593 2126 struct pmu *pmu = ctx->pmu;
d7842da4
SE
2127 u64 now = ctx->time;
2128 bool simulate = false;
6751b71e 2129
cdd6c482 2130 if (group_event->state == PERF_EVENT_STATE_OFF)
6751b71e
PM
2131 return 0;
2132
fbbe0701 2133 pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
6bde9b6c 2134
9ffcfa6f 2135 if (event_sched_in(group_event, cpuctx, ctx)) {
ad5133b7 2136 pmu->cancel_txn(pmu);
272325c4 2137 perf_mux_hrtimer_restart(cpuctx);
6751b71e 2138 return -EAGAIN;
90151c35 2139 }
6751b71e
PM
2140
2141 /*
2142 * Schedule in siblings as one group (if any):
2143 */
cdd6c482 2144 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
9ffcfa6f 2145 if (event_sched_in(event, cpuctx, ctx)) {
cdd6c482 2146 partial_group = event;
6751b71e
PM
2147 goto group_error;
2148 }
2149 }
2150
9ffcfa6f 2151 if (!pmu->commit_txn(pmu))
6e85158c 2152 return 0;
9ffcfa6f 2153
6751b71e
PM
2154group_error:
2155 /*
2156 * Groups can be scheduled in as one unit only, so undo any
2157 * partial group before returning:
d7842da4
SE
2158 * The events up to the failed event are scheduled out normally,
2159 * tstamp_stopped will be updated.
2160 *
2161 * The failed events and the remaining siblings need to have
2162 * their timings updated as if they had gone thru event_sched_in()
2163 * and event_sched_out(). This is required to get consistent timings
2164 * across the group. This also takes care of the case where the group
2165 * could never be scheduled by ensuring tstamp_stopped is set to mark
2166 * the time the event was actually stopped, such that time delta
2167 * calculation in update_event_times() is correct.
6751b71e 2168 */
cdd6c482
IM
2169 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2170 if (event == partial_group)
d7842da4
SE
2171 simulate = true;
2172
2173 if (simulate) {
2174 event->tstamp_running += now - event->tstamp_stopped;
2175 event->tstamp_stopped = now;
2176 } else {
2177 event_sched_out(event, cpuctx, ctx);
2178 }
6751b71e 2179 }
9ffcfa6f 2180 event_sched_out(group_event, cpuctx, ctx);
6751b71e 2181
ad5133b7 2182 pmu->cancel_txn(pmu);
90151c35 2183
272325c4 2184 perf_mux_hrtimer_restart(cpuctx);
9e630205 2185
6751b71e
PM
2186 return -EAGAIN;
2187}
2188
3b6f9e5c 2189/*
cdd6c482 2190 * Work out whether we can put this event group on the CPU now.
3b6f9e5c 2191 */
cdd6c482 2192static int group_can_go_on(struct perf_event *event,
3b6f9e5c
PM
2193 struct perf_cpu_context *cpuctx,
2194 int can_add_hw)
2195{
2196 /*
cdd6c482 2197 * Groups consisting entirely of software events can always go on.
3b6f9e5c 2198 */
4ff6a8de 2199 if (event->group_caps & PERF_EV_CAP_SOFTWARE)
3b6f9e5c
PM
2200 return 1;
2201 /*
2202 * If an exclusive group is already on, no other hardware
cdd6c482 2203 * events can go on.
3b6f9e5c
PM
2204 */
2205 if (cpuctx->exclusive)
2206 return 0;
2207 /*
2208 * If this group is exclusive and there are already
cdd6c482 2209 * events on the CPU, it can't go on.
3b6f9e5c 2210 */
cdd6c482 2211 if (event->attr.exclusive && cpuctx->active_oncpu)
3b6f9e5c
PM
2212 return 0;
2213 /*
2214 * Otherwise, try to add it if all previous groups were able
2215 * to go on.
2216 */
2217 return can_add_hw;
2218}
2219
9b231d9f
PZ
2220/*
2221 * Complement to update_event_times(). This computes the tstamp_* values to
2222 * continue 'enabled' state from @now, and effectively discards the time
2223 * between the prior tstamp_stopped and now (as we were in the OFF state, or
2224 * just switched (context) time base).
2225 *
2226 * This further assumes '@event->state == INACTIVE' (we just came from OFF) and
2227 * cannot have been scheduled in yet. And going into INACTIVE state means
2228 * '@event->tstamp_stopped = @now'.
2229 *
2230 * Thus given the rules of update_event_times():
2231 *
2232 * total_time_enabled = tstamp_stopped - tstamp_enabled
2233 * total_time_running = tstamp_stopped - tstamp_running
2234 *
2235 * We can insert 'tstamp_stopped == now' and reverse them to compute new
2236 * tstamp_* values.
2237 */
2238static void __perf_event_enable_time(struct perf_event *event, u64 now)
2239{
2240 WARN_ON_ONCE(event->state != PERF_EVENT_STATE_INACTIVE);
2241
2242 event->tstamp_stopped = now;
2243 event->tstamp_enabled = now - event->total_time_enabled;
2244 event->tstamp_running = now - event->total_time_running;
2245}
2246
cdd6c482
IM
2247static void add_event_to_ctx(struct perf_event *event,
2248 struct perf_event_context *ctx)
53cfbf59 2249{
4158755d
SE
2250 u64 tstamp = perf_event_time(event);
2251
cdd6c482 2252 list_add_event(event, ctx);
8a49542c 2253 perf_group_attach(event);
9b231d9f
PZ
2254 /*
2255 * We can be called with event->state == STATE_OFF when we create with
2256 * .disabled = 1. In that case the IOC_ENABLE will call this function.
2257 */
2258 if (event->state == PERF_EVENT_STATE_INACTIVE)
2259 __perf_event_enable_time(event, tstamp);
53cfbf59
PM
2260}
2261
bd2afa49
PZ
2262static void ctx_sched_out(struct perf_event_context *ctx,
2263 struct perf_cpu_context *cpuctx,
2264 enum event_type_t event_type);
2c29ef0f
PZ
2265static void
2266ctx_sched_in(struct perf_event_context *ctx,
2267 struct perf_cpu_context *cpuctx,
2268 enum event_type_t event_type,
2269 struct task_struct *task);
fe4b04fa 2270
bd2afa49 2271static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
487f05e1
AS
2272 struct perf_event_context *ctx,
2273 enum event_type_t event_type)
bd2afa49
PZ
2274{
2275 if (!cpuctx->task_ctx)
2276 return;
2277
2278 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2279 return;
2280
487f05e1 2281 ctx_sched_out(ctx, cpuctx, event_type);
bd2afa49
PZ
2282}
2283
dce5855b
PZ
2284static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2285 struct perf_event_context *ctx,
2286 struct task_struct *task)
2287{
2288 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2289 if (ctx)
2290 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2291 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2292 if (ctx)
2293 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2294}
2295
487f05e1
AS
2296/*
2297 * We want to maintain the following priority of scheduling:
2298 * - CPU pinned (EVENT_CPU | EVENT_PINNED)
2299 * - task pinned (EVENT_PINNED)
2300 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2301 * - task flexible (EVENT_FLEXIBLE).
2302 *
2303 * In order to avoid unscheduling and scheduling back in everything every
2304 * time an event is added, only do it for the groups of equal priority and
2305 * below.
2306 *
2307 * This can be called after a batch operation on task events, in which case
2308 * event_type is a bit mask of the types of events involved. For CPU events,
2309 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2310 */
3e349507 2311static void ctx_resched(struct perf_cpu_context *cpuctx,
487f05e1
AS
2312 struct perf_event_context *task_ctx,
2313 enum event_type_t event_type)
0017960f 2314{
487f05e1
AS
2315 enum event_type_t ctx_event_type = event_type & EVENT_ALL;
2316 bool cpu_event = !!(event_type & EVENT_CPU);
2317
2318 /*
2319 * If pinned groups are involved, flexible groups also need to be
2320 * scheduled out.
2321 */
2322 if (event_type & EVENT_PINNED)
2323 event_type |= EVENT_FLEXIBLE;
2324
3e349507
PZ
2325 perf_pmu_disable(cpuctx->ctx.pmu);
2326 if (task_ctx)
487f05e1
AS
2327 task_ctx_sched_out(cpuctx, task_ctx, event_type);
2328
2329 /*
2330 * Decide which cpu ctx groups to schedule out based on the types
2331 * of events that caused rescheduling:
2332 * - EVENT_CPU: schedule out corresponding groups;
2333 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2334 * - otherwise, do nothing more.
2335 */
2336 if (cpu_event)
2337 cpu_ctx_sched_out(cpuctx, ctx_event_type);
2338 else if (ctx_event_type & EVENT_PINNED)
2339 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2340
3e349507
PZ
2341 perf_event_sched_in(cpuctx, task_ctx, current);
2342 perf_pmu_enable(cpuctx->ctx.pmu);
0017960f
PZ
2343}
2344
0793a61d 2345/*
cdd6c482 2346 * Cross CPU call to install and enable a performance event
682076ae 2347 *
a096309b
PZ
2348 * Very similar to remote_function() + event_function() but cannot assume that
2349 * things like ctx->is_active and cpuctx->task_ctx are set.
0793a61d 2350 */
fe4b04fa 2351static int __perf_install_in_context(void *info)
0793a61d 2352{
a096309b
PZ
2353 struct perf_event *event = info;
2354 struct perf_event_context *ctx = event->ctx;
108b02cf 2355 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2c29ef0f 2356 struct perf_event_context *task_ctx = cpuctx->task_ctx;
63cae12b 2357 bool reprogram = true;
a096309b 2358 int ret = 0;
0793a61d 2359
63b6da39 2360 raw_spin_lock(&cpuctx->ctx.lock);
39a43640 2361 if (ctx->task) {
b58f6b0d
PZ
2362 raw_spin_lock(&ctx->lock);
2363 task_ctx = ctx;
a096309b 2364
63cae12b 2365 reprogram = (ctx->task == current);
b58f6b0d 2366
39a43640 2367 /*
63cae12b
PZ
2368 * If the task is running, it must be running on this CPU,
2369 * otherwise we cannot reprogram things.
2370 *
2371 * If its not running, we don't care, ctx->lock will
2372 * serialize against it becoming runnable.
39a43640 2373 */
63cae12b
PZ
2374 if (task_curr(ctx->task) && !reprogram) {
2375 ret = -ESRCH;
2376 goto unlock;
2377 }
a096309b 2378
63cae12b 2379 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
63b6da39
PZ
2380 } else if (task_ctx) {
2381 raw_spin_lock(&task_ctx->lock);
2c29ef0f 2382 }
b58f6b0d 2383
63cae12b 2384 if (reprogram) {
a096309b
PZ
2385 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2386 add_event_to_ctx(event, ctx);
487f05e1 2387 ctx_resched(cpuctx, task_ctx, get_event_type(event));
a096309b
PZ
2388 } else {
2389 add_event_to_ctx(event, ctx);
2390 }
2391
63b6da39 2392unlock:
2c29ef0f 2393 perf_ctx_unlock(cpuctx, task_ctx);
fe4b04fa 2394
a096309b 2395 return ret;
0793a61d
TG
2396}
2397
2398/*
a096309b
PZ
2399 * Attach a performance event to a context.
2400 *
2401 * Very similar to event_function_call, see comment there.
0793a61d
TG
2402 */
2403static void
cdd6c482
IM
2404perf_install_in_context(struct perf_event_context *ctx,
2405 struct perf_event *event,
0793a61d
TG
2406 int cpu)
2407{
a096309b 2408 struct task_struct *task = READ_ONCE(ctx->task);
39a43640 2409
fe4b04fa
PZ
2410 lockdep_assert_held(&ctx->mutex);
2411
0cda4c02
YZ
2412 if (event->cpu != -1)
2413 event->cpu = cpu;
c3f00c70 2414
0b8f1e2e
PZ
2415 /*
2416 * Ensures that if we can observe event->ctx, both the event and ctx
2417 * will be 'complete'. See perf_iterate_sb_cpu().
2418 */
2419 smp_store_release(&event->ctx, ctx);
2420
a096309b
PZ
2421 if (!task) {
2422 cpu_function_call(cpu, __perf_install_in_context, event);
2423 return;
2424 }
2425
2426 /*
2427 * Should not happen, we validate the ctx is still alive before calling.
2428 */
2429 if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2430 return;
2431
39a43640
PZ
2432 /*
2433 * Installing events is tricky because we cannot rely on ctx->is_active
2434 * to be set in case this is the nr_events 0 -> 1 transition.
63cae12b
PZ
2435 *
2436 * Instead we use task_curr(), which tells us if the task is running.
2437 * However, since we use task_curr() outside of rq::lock, we can race
2438 * against the actual state. This means the result can be wrong.
2439 *
2440 * If we get a false positive, we retry, this is harmless.
2441 *
2442 * If we get a false negative, things are complicated. If we are after
2443 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2444 * value must be correct. If we're before, it doesn't matter since
2445 * perf_event_context_sched_in() will program the counter.
2446 *
2447 * However, this hinges on the remote context switch having observed
2448 * our task->perf_event_ctxp[] store, such that it will in fact take
2449 * ctx::lock in perf_event_context_sched_in().
2450 *
2451 * We do this by task_function_call(), if the IPI fails to hit the task
2452 * we know any future context switch of task must see the
2453 * perf_event_ctpx[] store.
39a43640 2454 */
63cae12b 2455
63b6da39 2456 /*
63cae12b
PZ
2457 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2458 * task_cpu() load, such that if the IPI then does not find the task
2459 * running, a future context switch of that task must observe the
2460 * store.
63b6da39 2461 */
63cae12b
PZ
2462 smp_mb();
2463again:
2464 if (!task_function_call(task, __perf_install_in_context, event))
a096309b
PZ
2465 return;
2466
2467 raw_spin_lock_irq(&ctx->lock);
2468 task = ctx->task;
84c4e620 2469 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
a096309b
PZ
2470 /*
2471 * Cannot happen because we already checked above (which also
2472 * cannot happen), and we hold ctx->mutex, which serializes us
2473 * against perf_event_exit_task_context().
2474 */
63b6da39
PZ
2475 raw_spin_unlock_irq(&ctx->lock);
2476 return;
2477 }
39a43640 2478 /*
63cae12b
PZ
2479 * If the task is not running, ctx->lock will avoid it becoming so,
2480 * thus we can safely install the event.
39a43640 2481 */
63cae12b
PZ
2482 if (task_curr(task)) {
2483 raw_spin_unlock_irq(&ctx->lock);
2484 goto again;
2485 }
2486 add_event_to_ctx(event, ctx);
2487 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
2488}
2489
fa289bec 2490/*
cdd6c482 2491 * Put a event into inactive state and update time fields.
fa289bec
PM
2492 * Enabling the leader of a group effectively enables all
2493 * the group members that aren't explicitly disabled, so we
2494 * have to update their ->tstamp_enabled also.
2495 * Note: this works for group members as well as group leaders
2496 * since the non-leader members' sibling_lists will be empty.
2497 */
1d9b482e 2498static void __perf_event_mark_enabled(struct perf_event *event)
fa289bec 2499{
cdd6c482 2500 struct perf_event *sub;
4158755d 2501 u64 tstamp = perf_event_time(event);
fa289bec 2502
cdd6c482 2503 event->state = PERF_EVENT_STATE_INACTIVE;
9b231d9f 2504 __perf_event_enable_time(event, tstamp);
9ed6060d 2505 list_for_each_entry(sub, &event->sibling_list, group_entry) {
9b231d9f 2506 /* XXX should not be > INACTIVE if event isn't */
4158755d 2507 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
9b231d9f 2508 __perf_event_enable_time(sub, tstamp);
9ed6060d 2509 }
fa289bec
PM
2510}
2511
d859e29f 2512/*
cdd6c482 2513 * Cross CPU call to enable a performance event
d859e29f 2514 */
fae3fde6
PZ
2515static void __perf_event_enable(struct perf_event *event,
2516 struct perf_cpu_context *cpuctx,
2517 struct perf_event_context *ctx,
2518 void *info)
04289bb9 2519{
cdd6c482 2520 struct perf_event *leader = event->group_leader;
fae3fde6 2521 struct perf_event_context *task_ctx;
04289bb9 2522
6e801e01
PZ
2523 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2524 event->state <= PERF_EVENT_STATE_ERROR)
fae3fde6 2525 return;
3cbed429 2526
bd2afa49
PZ
2527 if (ctx->is_active)
2528 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2529
1d9b482e 2530 __perf_event_mark_enabled(event);
04289bb9 2531
fae3fde6
PZ
2532 if (!ctx->is_active)
2533 return;
2534
e5d1367f 2535 if (!event_filter_match(event)) {
bd2afa49 2536 if (is_cgroup_event(event))
e5d1367f 2537 perf_cgroup_defer_enabled(event);
bd2afa49 2538 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
fae3fde6 2539 return;
e5d1367f 2540 }
f4c4176f 2541
04289bb9 2542 /*
cdd6c482 2543 * If the event is in a group and isn't the group leader,
d859e29f 2544 * then don't put it on unless the group is on.
04289bb9 2545 */
bd2afa49
PZ
2546 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2547 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
fae3fde6 2548 return;
bd2afa49 2549 }
fe4b04fa 2550
fae3fde6
PZ
2551 task_ctx = cpuctx->task_ctx;
2552 if (ctx->task)
2553 WARN_ON_ONCE(task_ctx != ctx);
d859e29f 2554
487f05e1 2555 ctx_resched(cpuctx, task_ctx, get_event_type(event));
7b648018
PZ
2556}
2557
d859e29f 2558/*
cdd6c482 2559 * Enable a event.
c93f7669 2560 *
cdd6c482
IM
2561 * If event->ctx is a cloned context, callers must make sure that
2562 * every task struct that event->ctx->task could possibly point to
c93f7669 2563 * remains valid. This condition is satisfied when called through
cdd6c482
IM
2564 * perf_event_for_each_child or perf_event_for_each as described
2565 * for perf_event_disable.
d859e29f 2566 */
f63a8daa 2567static void _perf_event_enable(struct perf_event *event)
d859e29f 2568{
cdd6c482 2569 struct perf_event_context *ctx = event->ctx;
d859e29f 2570
7b648018 2571 raw_spin_lock_irq(&ctx->lock);
6e801e01
PZ
2572 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2573 event->state < PERF_EVENT_STATE_ERROR) {
7b648018 2574 raw_spin_unlock_irq(&ctx->lock);
d859e29f
PM
2575 return;
2576 }
2577
d859e29f 2578 /*
cdd6c482 2579 * If the event is in error state, clear that first.
7b648018
PZ
2580 *
2581 * That way, if we see the event in error state below, we know that it
2582 * has gone back into error state, as distinct from the task having
2583 * been scheduled away before the cross-call arrived.
d859e29f 2584 */
cdd6c482
IM
2585 if (event->state == PERF_EVENT_STATE_ERROR)
2586 event->state = PERF_EVENT_STATE_OFF;
e625cce1 2587 raw_spin_unlock_irq(&ctx->lock);
fe4b04fa 2588
fae3fde6 2589 event_function_call(event, __perf_event_enable, NULL);
d859e29f 2590}
f63a8daa
PZ
2591
2592/*
2593 * See perf_event_disable();
2594 */
2595void perf_event_enable(struct perf_event *event)
2596{
2597 struct perf_event_context *ctx;
2598
2599 ctx = perf_event_ctx_lock(event);
2600 _perf_event_enable(event);
2601 perf_event_ctx_unlock(event, ctx);
2602}
dcfce4a0 2603EXPORT_SYMBOL_GPL(perf_event_enable);
d859e29f 2604
375637bc
AS
2605struct stop_event_data {
2606 struct perf_event *event;
2607 unsigned int restart;
2608};
2609
95ff4ca2
AS
2610static int __perf_event_stop(void *info)
2611{
375637bc
AS
2612 struct stop_event_data *sd = info;
2613 struct perf_event *event = sd->event;
95ff4ca2 2614
375637bc 2615 /* if it's already INACTIVE, do nothing */
95ff4ca2
AS
2616 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2617 return 0;
2618
2619 /* matches smp_wmb() in event_sched_in() */
2620 smp_rmb();
2621
2622 /*
2623 * There is a window with interrupts enabled before we get here,
2624 * so we need to check again lest we try to stop another CPU's event.
2625 */
2626 if (READ_ONCE(event->oncpu) != smp_processor_id())
2627 return -EAGAIN;
2628
2629 event->pmu->stop(event, PERF_EF_UPDATE);
2630
375637bc
AS
2631 /*
2632 * May race with the actual stop (through perf_pmu_output_stop()),
2633 * but it is only used for events with AUX ring buffer, and such
2634 * events will refuse to restart because of rb::aux_mmap_count==0,
2635 * see comments in perf_aux_output_begin().
2636 *
2637 * Since this is happening on a event-local CPU, no trace is lost
2638 * while restarting.
2639 */
2640 if (sd->restart)
c9bbdd48 2641 event->pmu->start(event, 0);
375637bc 2642
95ff4ca2
AS
2643 return 0;
2644}
2645
767ae086 2646static int perf_event_stop(struct perf_event *event, int restart)
375637bc
AS
2647{
2648 struct stop_event_data sd = {
2649 .event = event,
767ae086 2650 .restart = restart,
375637bc
AS
2651 };
2652 int ret = 0;
2653
2654 do {
2655 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2656 return 0;
2657
2658 /* matches smp_wmb() in event_sched_in() */
2659 smp_rmb();
2660
2661 /*
2662 * We only want to restart ACTIVE events, so if the event goes
2663 * inactive here (event->oncpu==-1), there's nothing more to do;
2664 * fall through with ret==-ENXIO.
2665 */
2666 ret = cpu_function_call(READ_ONCE(event->oncpu),
2667 __perf_event_stop, &sd);
2668 } while (ret == -EAGAIN);
2669
2670 return ret;
2671}
2672
2673/*
2674 * In order to contain the amount of racy and tricky in the address filter
2675 * configuration management, it is a two part process:
2676 *
2677 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2678 * we update the addresses of corresponding vmas in
2679 * event::addr_filters_offs array and bump the event::addr_filters_gen;
2680 * (p2) when an event is scheduled in (pmu::add), it calls
2681 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2682 * if the generation has changed since the previous call.
2683 *
2684 * If (p1) happens while the event is active, we restart it to force (p2).
2685 *
2686 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2687 * pre-existing mappings, called once when new filters arrive via SET_FILTER
2688 * ioctl;
2689 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2690 * registered mapping, called for every new mmap(), with mm::mmap_sem down
2691 * for reading;
2692 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2693 * of exec.
2694 */
2695void perf_event_addr_filters_sync(struct perf_event *event)
2696{
2697 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2698
2699 if (!has_addr_filter(event))
2700 return;
2701
2702 raw_spin_lock(&ifh->lock);
2703 if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2704 event->pmu->addr_filters_sync(event);
2705 event->hw.addr_filters_gen = event->addr_filters_gen;
2706 }
2707 raw_spin_unlock(&ifh->lock);
2708}
2709EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2710
f63a8daa 2711static int _perf_event_refresh(struct perf_event *event, int refresh)
79f14641 2712{
2023b359 2713 /*
cdd6c482 2714 * not supported on inherited events
2023b359 2715 */
2e939d1d 2716 if (event->attr.inherit || !is_sampling_event(event))
2023b359
PZ
2717 return -EINVAL;
2718
cdd6c482 2719 atomic_add(refresh, &event->event_limit);
f63a8daa 2720 _perf_event_enable(event);
2023b359
PZ
2721
2722 return 0;
79f14641 2723}
f63a8daa
PZ
2724
2725/*
2726 * See perf_event_disable()
2727 */
2728int perf_event_refresh(struct perf_event *event, int refresh)
2729{
2730 struct perf_event_context *ctx;
2731 int ret;
2732
2733 ctx = perf_event_ctx_lock(event);
2734 ret = _perf_event_refresh(event, refresh);
2735 perf_event_ctx_unlock(event, ctx);
2736
2737 return ret;
2738}
26ca5c11 2739EXPORT_SYMBOL_GPL(perf_event_refresh);
79f14641 2740
5b0311e1
FW
2741static void ctx_sched_out(struct perf_event_context *ctx,
2742 struct perf_cpu_context *cpuctx,
2743 enum event_type_t event_type)
235c7fc7 2744{
db24d33e 2745 int is_active = ctx->is_active;
c994d613 2746 struct perf_event *event;
235c7fc7 2747
c994d613 2748 lockdep_assert_held(&ctx->lock);
235c7fc7 2749
39a43640
PZ
2750 if (likely(!ctx->nr_events)) {
2751 /*
2752 * See __perf_remove_from_context().
2753 */
2754 WARN_ON_ONCE(ctx->is_active);
2755 if (ctx->task)
2756 WARN_ON_ONCE(cpuctx->task_ctx);
facc4307 2757 return;
39a43640
PZ
2758 }
2759
db24d33e 2760 ctx->is_active &= ~event_type;
3cbaa590
PZ
2761 if (!(ctx->is_active & EVENT_ALL))
2762 ctx->is_active = 0;
2763
63e30d3e
PZ
2764 if (ctx->task) {
2765 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2766 if (!ctx->is_active)
2767 cpuctx->task_ctx = NULL;
2768 }
facc4307 2769
8fdc6539
PZ
2770 /*
2771 * Always update time if it was set; not only when it changes.
2772 * Otherwise we can 'forget' to update time for any but the last
2773 * context we sched out. For example:
2774 *
2775 * ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2776 * ctx_sched_out(.event_type = EVENT_PINNED)
2777 *
2778 * would only update time for the pinned events.
2779 */
3cbaa590
PZ
2780 if (is_active & EVENT_TIME) {
2781 /* update (and stop) ctx time */
2782 update_context_time(ctx);
2783 update_cgrp_time_from_cpuctx(cpuctx);
2784 }
2785
8fdc6539
PZ
2786 is_active ^= ctx->is_active; /* changed bits */
2787
3cbaa590 2788 if (!ctx->nr_active || !(is_active & EVENT_ALL))
facc4307 2789 return;
5b0311e1 2790
075e0b00 2791 perf_pmu_disable(ctx->pmu);
3cbaa590 2792 if (is_active & EVENT_PINNED) {
889ff015
FW
2793 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2794 group_sched_out(event, cpuctx, ctx);
9ed6060d 2795 }
889ff015 2796
3cbaa590 2797 if (is_active & EVENT_FLEXIBLE) {
889ff015 2798 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
8c9ed8e1 2799 group_sched_out(event, cpuctx, ctx);
9ed6060d 2800 }
1b9a644f 2801 perf_pmu_enable(ctx->pmu);
235c7fc7
IM
2802}
2803
564c2b21 2804/*
5a3126d4
PZ
2805 * Test whether two contexts are equivalent, i.e. whether they have both been
2806 * cloned from the same version of the same context.
2807 *
2808 * Equivalence is measured using a generation number in the context that is
2809 * incremented on each modification to it; see unclone_ctx(), list_add_event()
2810 * and list_del_event().
564c2b21 2811 */
cdd6c482
IM
2812static int context_equiv(struct perf_event_context *ctx1,
2813 struct perf_event_context *ctx2)
564c2b21 2814{
211de6eb
PZ
2815 lockdep_assert_held(&ctx1->lock);
2816 lockdep_assert_held(&ctx2->lock);
2817
5a3126d4
PZ
2818 /* Pinning disables the swap optimization */
2819 if (ctx1->pin_count || ctx2->pin_count)
2820 return 0;
2821
2822 /* If ctx1 is the parent of ctx2 */
2823 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2824 return 1;
2825
2826 /* If ctx2 is the parent of ctx1 */
2827 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2828 return 1;
2829
2830 /*
2831 * If ctx1 and ctx2 have the same parent; we flatten the parent
2832 * hierarchy, see perf_event_init_context().
2833 */
2834 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2835 ctx1->parent_gen == ctx2->parent_gen)
2836 return 1;
2837
2838 /* Unmatched */
2839 return 0;
564c2b21
PM
2840}
2841
cdd6c482
IM
2842static void __perf_event_sync_stat(struct perf_event *event,
2843 struct perf_event *next_event)
bfbd3381
PZ
2844{
2845 u64 value;
2846
cdd6c482 2847 if (!event->attr.inherit_stat)
bfbd3381
PZ
2848 return;
2849
2850 /*
cdd6c482 2851 * Update the event value, we cannot use perf_event_read()
bfbd3381
PZ
2852 * because we're in the middle of a context switch and have IRQs
2853 * disabled, which upsets smp_call_function_single(), however
cdd6c482 2854 * we know the event must be on the current CPU, therefore we
bfbd3381
PZ
2855 * don't need to use it.
2856 */
cdd6c482
IM
2857 switch (event->state) {
2858 case PERF_EVENT_STATE_ACTIVE:
3dbebf15
PZ
2859 event->pmu->read(event);
2860 /* fall-through */
bfbd3381 2861
cdd6c482
IM
2862 case PERF_EVENT_STATE_INACTIVE:
2863 update_event_times(event);
bfbd3381
PZ
2864 break;
2865
2866 default:
2867 break;
2868 }
2869
2870 /*
cdd6c482 2871 * In order to keep per-task stats reliable we need to flip the event
bfbd3381
PZ
2872 * values when we flip the contexts.
2873 */
e7850595
PZ
2874 value = local64_read(&next_event->count);
2875 value = local64_xchg(&event->count, value);
2876 local64_set(&next_event->count, value);
bfbd3381 2877
cdd6c482
IM
2878 swap(event->total_time_enabled, next_event->total_time_enabled);
2879 swap(event->total_time_running, next_event->total_time_running);
19d2e755 2880
bfbd3381 2881 /*
19d2e755 2882 * Since we swizzled the values, update the user visible data too.
bfbd3381 2883 */
cdd6c482
IM
2884 perf_event_update_userpage(event);
2885 perf_event_update_userpage(next_event);
bfbd3381
PZ
2886}
2887
cdd6c482
IM
2888static void perf_event_sync_stat(struct perf_event_context *ctx,
2889 struct perf_event_context *next_ctx)
bfbd3381 2890{
cdd6c482 2891 struct perf_event *event, *next_event;
bfbd3381
PZ
2892
2893 if (!ctx->nr_stat)
2894 return;
2895
02ffdbc8
PZ
2896 update_context_time(ctx);
2897
cdd6c482
IM
2898 event = list_first_entry(&ctx->event_list,
2899 struct perf_event, event_entry);
bfbd3381 2900
cdd6c482
IM
2901 next_event = list_first_entry(&next_ctx->event_list,
2902 struct perf_event, event_entry);
bfbd3381 2903
cdd6c482
IM
2904 while (&event->event_entry != &ctx->event_list &&
2905 &next_event->event_entry != &next_ctx->event_list) {
bfbd3381 2906
cdd6c482 2907 __perf_event_sync_stat(event, next_event);
bfbd3381 2908
cdd6c482
IM
2909 event = list_next_entry(event, event_entry);
2910 next_event = list_next_entry(next_event, event_entry);
bfbd3381
PZ
2911 }
2912}
2913
fe4b04fa
PZ
2914static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2915 struct task_struct *next)
0793a61d 2916{
8dc85d54 2917 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
cdd6c482 2918 struct perf_event_context *next_ctx;
5a3126d4 2919 struct perf_event_context *parent, *next_parent;
108b02cf 2920 struct perf_cpu_context *cpuctx;
c93f7669 2921 int do_switch = 1;
0793a61d 2922
108b02cf
PZ
2923 if (likely(!ctx))
2924 return;
10989fb2 2925
108b02cf
PZ
2926 cpuctx = __get_cpu_context(ctx);
2927 if (!cpuctx->task_ctx)
0793a61d
TG
2928 return;
2929
c93f7669 2930 rcu_read_lock();
8dc85d54 2931 next_ctx = next->perf_event_ctxp[ctxn];
5a3126d4
PZ
2932 if (!next_ctx)
2933 goto unlock;
2934
2935 parent = rcu_dereference(ctx->parent_ctx);
2936 next_parent = rcu_dereference(next_ctx->parent_ctx);
2937
2938 /* If neither context have a parent context; they cannot be clones. */
802c8a61 2939 if (!parent && !next_parent)
5a3126d4
PZ
2940 goto unlock;
2941
2942 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
c93f7669
PM
2943 /*
2944 * Looks like the two contexts are clones, so we might be
2945 * able to optimize the context switch. We lock both
2946 * contexts and check that they are clones under the
2947 * lock (including re-checking that neither has been
2948 * uncloned in the meantime). It doesn't matter which
2949 * order we take the locks because no other cpu could
2950 * be trying to lock both of these tasks.
2951 */
e625cce1
TG
2952 raw_spin_lock(&ctx->lock);
2953 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
c93f7669 2954 if (context_equiv(ctx, next_ctx)) {
63b6da39
PZ
2955 WRITE_ONCE(ctx->task, next);
2956 WRITE_ONCE(next_ctx->task, task);
5a158c3c
YZ
2957
2958 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2959
63b6da39
PZ
2960 /*
2961 * RCU_INIT_POINTER here is safe because we've not
2962 * modified the ctx and the above modification of
2963 * ctx->task and ctx->task_ctx_data are immaterial
2964 * since those values are always verified under
2965 * ctx->lock which we're now holding.
2966 */
2967 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
2968 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
2969
c93f7669 2970 do_switch = 0;
bfbd3381 2971
cdd6c482 2972 perf_event_sync_stat(ctx, next_ctx);
c93f7669 2973 }
e625cce1
TG
2974 raw_spin_unlock(&next_ctx->lock);
2975 raw_spin_unlock(&ctx->lock);
564c2b21 2976 }
5a3126d4 2977unlock:
c93f7669 2978 rcu_read_unlock();
564c2b21 2979
c93f7669 2980 if (do_switch) {
facc4307 2981 raw_spin_lock(&ctx->lock);
487f05e1 2982 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
facc4307 2983 raw_spin_unlock(&ctx->lock);
c93f7669 2984 }
0793a61d
TG
2985}
2986
e48c1788
PZ
2987static DEFINE_PER_CPU(struct list_head, sched_cb_list);
2988
ba532500
YZ
2989void perf_sched_cb_dec(struct pmu *pmu)
2990{
e48c1788
PZ
2991 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2992
ba532500 2993 this_cpu_dec(perf_sched_cb_usages);
e48c1788
PZ
2994
2995 if (!--cpuctx->sched_cb_usage)
2996 list_del(&cpuctx->sched_cb_entry);
ba532500
YZ
2997}
2998
e48c1788 2999
ba532500
YZ
3000void perf_sched_cb_inc(struct pmu *pmu)
3001{
e48c1788
PZ
3002 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3003
3004 if (!cpuctx->sched_cb_usage++)
3005 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3006
ba532500
YZ
3007 this_cpu_inc(perf_sched_cb_usages);
3008}
3009
3010/*
3011 * This function provides the context switch callback to the lower code
3012 * layer. It is invoked ONLY when the context switch callback is enabled.
09e61b4f
PZ
3013 *
3014 * This callback is relevant even to per-cpu events; for example multi event
3015 * PEBS requires this to provide PID/TID information. This requires we flush
3016 * all queued PEBS records before we context switch to a new task.
ba532500
YZ
3017 */
3018static void perf_pmu_sched_task(struct task_struct *prev,
3019 struct task_struct *next,
3020 bool sched_in)
3021{
3022 struct perf_cpu_context *cpuctx;
3023 struct pmu *pmu;
ba532500
YZ
3024
3025 if (prev == next)
3026 return;
3027
e48c1788 3028 list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
1fd7e416 3029 pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
ba532500 3030
e48c1788
PZ
3031 if (WARN_ON_ONCE(!pmu->sched_task))
3032 continue;
ba532500 3033
e48c1788
PZ
3034 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3035 perf_pmu_disable(pmu);
ba532500 3036
e48c1788 3037 pmu->sched_task(cpuctx->task_ctx, sched_in);
ba532500 3038
e48c1788
PZ
3039 perf_pmu_enable(pmu);
3040 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
ba532500 3041 }
ba532500
YZ
3042}
3043
45ac1403
AH
3044static void perf_event_switch(struct task_struct *task,
3045 struct task_struct *next_prev, bool sched_in);
3046
8dc85d54
PZ
3047#define for_each_task_context_nr(ctxn) \
3048 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3049
3050/*
3051 * Called from scheduler to remove the events of the current task,
3052 * with interrupts disabled.
3053 *
3054 * We stop each event and update the event value in event->count.
3055 *
3056 * This does not protect us against NMI, but disable()
3057 * sets the disabled bit in the control field of event _before_
3058 * accessing the event control register. If a NMI hits, then it will
3059 * not restart the event.
3060 */
ab0cce56
JO
3061void __perf_event_task_sched_out(struct task_struct *task,
3062 struct task_struct *next)
8dc85d54
PZ
3063{
3064 int ctxn;
3065
ba532500
YZ
3066 if (__this_cpu_read(perf_sched_cb_usages))
3067 perf_pmu_sched_task(task, next, false);
3068
45ac1403
AH
3069 if (atomic_read(&nr_switch_events))
3070 perf_event_switch(task, next, false);
3071
8dc85d54
PZ
3072 for_each_task_context_nr(ctxn)
3073 perf_event_context_sched_out(task, ctxn, next);
e5d1367f
SE
3074
3075 /*
3076 * if cgroup events exist on this CPU, then we need
3077 * to check if we have to switch out PMU state.
3078 * cgroup event are system-wide mode only
3079 */
4a32fea9 3080 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
a8d757ef 3081 perf_cgroup_sched_out(task, next);
8dc85d54
PZ
3082}
3083
5b0311e1
FW
3084/*
3085 * Called with IRQs disabled
3086 */
3087static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3088 enum event_type_t event_type)
3089{
3090 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
04289bb9
IM
3091}
3092
235c7fc7 3093static void
5b0311e1 3094ctx_pinned_sched_in(struct perf_event_context *ctx,
6e37738a 3095 struct perf_cpu_context *cpuctx)
0793a61d 3096{
cdd6c482 3097 struct perf_event *event;
0793a61d 3098
889ff015
FW
3099 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
3100 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 3101 continue;
5632ab12 3102 if (!event_filter_match(event))
3b6f9e5c
PM
3103 continue;
3104
e5d1367f
SE
3105 /* may need to reset tstamp_enabled */
3106 if (is_cgroup_event(event))
3107 perf_cgroup_mark_enabled(event, ctx);
3108
8c9ed8e1 3109 if (group_can_go_on(event, cpuctx, 1))
6e37738a 3110 group_sched_in(event, cpuctx, ctx);
3b6f9e5c
PM
3111
3112 /*
3113 * If this pinned group hasn't been scheduled,
3114 * put it in error state.
3115 */
cdd6c482
IM
3116 if (event->state == PERF_EVENT_STATE_INACTIVE) {
3117 update_group_times(event);
3118 event->state = PERF_EVENT_STATE_ERROR;
53cfbf59 3119 }
3b6f9e5c 3120 }
5b0311e1
FW
3121}
3122
3123static void
3124ctx_flexible_sched_in(struct perf_event_context *ctx,
6e37738a 3125 struct perf_cpu_context *cpuctx)
5b0311e1
FW
3126{
3127 struct perf_event *event;
3128 int can_add_hw = 1;
3b6f9e5c 3129
889ff015
FW
3130 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
3131 /* Ignore events in OFF or ERROR state */
3132 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 3133 continue;
04289bb9
IM
3134 /*
3135 * Listen to the 'cpu' scheduling filter constraint
cdd6c482 3136 * of events:
04289bb9 3137 */
5632ab12 3138 if (!event_filter_match(event))
0793a61d
TG
3139 continue;
3140
e5d1367f
SE
3141 /* may need to reset tstamp_enabled */
3142 if (is_cgroup_event(event))
3143 perf_cgroup_mark_enabled(event, ctx);
3144
9ed6060d 3145 if (group_can_go_on(event, cpuctx, can_add_hw)) {
6e37738a 3146 if (group_sched_in(event, cpuctx, ctx))
dd0e6ba2 3147 can_add_hw = 0;
9ed6060d 3148 }
0793a61d 3149 }
5b0311e1
FW
3150}
3151
3152static void
3153ctx_sched_in(struct perf_event_context *ctx,
3154 struct perf_cpu_context *cpuctx,
e5d1367f
SE
3155 enum event_type_t event_type,
3156 struct task_struct *task)
5b0311e1 3157{
db24d33e 3158 int is_active = ctx->is_active;
c994d613
PZ
3159 u64 now;
3160
3161 lockdep_assert_held(&ctx->lock);
e5d1367f 3162
5b0311e1 3163 if (likely(!ctx->nr_events))
facc4307 3164 return;
5b0311e1 3165
3cbaa590 3166 ctx->is_active |= (event_type | EVENT_TIME);
63e30d3e
PZ
3167 if (ctx->task) {
3168 if (!is_active)
3169 cpuctx->task_ctx = ctx;
3170 else
3171 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3172 }
3173
3cbaa590
PZ
3174 is_active ^= ctx->is_active; /* changed bits */
3175
3176 if (is_active & EVENT_TIME) {
3177 /* start ctx time */
3178 now = perf_clock();
3179 ctx->timestamp = now;
3180 perf_cgroup_set_timestamp(task, ctx);
3181 }
3182
5b0311e1
FW
3183 /*
3184 * First go through the list and put on any pinned groups
3185 * in order to give them the best chance of going on.
3186 */
3cbaa590 3187 if (is_active & EVENT_PINNED)
6e37738a 3188 ctx_pinned_sched_in(ctx, cpuctx);
5b0311e1
FW
3189
3190 /* Then walk through the lower prio flexible groups */
3cbaa590 3191 if (is_active & EVENT_FLEXIBLE)
6e37738a 3192 ctx_flexible_sched_in(ctx, cpuctx);
235c7fc7
IM
3193}
3194
329c0e01 3195static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
3196 enum event_type_t event_type,
3197 struct task_struct *task)
329c0e01
FW
3198{
3199 struct perf_event_context *ctx = &cpuctx->ctx;
3200
e5d1367f 3201 ctx_sched_in(ctx, cpuctx, event_type, task);
329c0e01
FW
3202}
3203
e5d1367f
SE
3204static void perf_event_context_sched_in(struct perf_event_context *ctx,
3205 struct task_struct *task)
235c7fc7 3206{
108b02cf 3207 struct perf_cpu_context *cpuctx;
235c7fc7 3208
108b02cf 3209 cpuctx = __get_cpu_context(ctx);
329c0e01
FW
3210 if (cpuctx->task_ctx == ctx)
3211 return;
3212
facc4307 3213 perf_ctx_lock(cpuctx, ctx);
fdccc3fb 3214 /*
3215 * We must check ctx->nr_events while holding ctx->lock, such
3216 * that we serialize against perf_install_in_context().
3217 */
3218 if (!ctx->nr_events)
3219 goto unlock;
3220
1b9a644f 3221 perf_pmu_disable(ctx->pmu);
329c0e01
FW
3222 /*
3223 * We want to keep the following priority order:
3224 * cpu pinned (that don't need to move), task pinned,
3225 * cpu flexible, task flexible.
fe45bafb
AS
3226 *
3227 * However, if task's ctx is not carrying any pinned
3228 * events, no need to flip the cpuctx's events around.
329c0e01 3229 */
fe45bafb
AS
3230 if (!list_empty(&ctx->pinned_groups))
3231 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
63e30d3e 3232 perf_event_sched_in(cpuctx, ctx, task);
facc4307 3233 perf_pmu_enable(ctx->pmu);
fdccc3fb 3234
3235unlock:
facc4307 3236 perf_ctx_unlock(cpuctx, ctx);
235c7fc7
IM
3237}
3238
8dc85d54
PZ
3239/*
3240 * Called from scheduler to add the events of the current task
3241 * with interrupts disabled.
3242 *
3243 * We restore the event value and then enable it.
3244 *
3245 * This does not protect us against NMI, but enable()
3246 * sets the enabled bit in the control field of event _before_
3247 * accessing the event control register. If a NMI hits, then it will
3248 * keep the event running.
3249 */
ab0cce56
JO
3250void __perf_event_task_sched_in(struct task_struct *prev,
3251 struct task_struct *task)
8dc85d54
PZ
3252{
3253 struct perf_event_context *ctx;
3254 int ctxn;
3255
7e41d177
PZ
3256 /*
3257 * If cgroup events exist on this CPU, then we need to check if we have
3258 * to switch in PMU state; cgroup event are system-wide mode only.
3259 *
3260 * Since cgroup events are CPU events, we must schedule these in before
3261 * we schedule in the task events.
3262 */
3263 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3264 perf_cgroup_sched_in(prev, task);
3265
8dc85d54
PZ
3266 for_each_task_context_nr(ctxn) {
3267 ctx = task->perf_event_ctxp[ctxn];
3268 if (likely(!ctx))
3269 continue;
3270
e5d1367f 3271 perf_event_context_sched_in(ctx, task);
8dc85d54 3272 }
d010b332 3273
45ac1403
AH
3274 if (atomic_read(&nr_switch_events))
3275 perf_event_switch(task, prev, true);
3276
ba532500
YZ
3277 if (__this_cpu_read(perf_sched_cb_usages))
3278 perf_pmu_sched_task(prev, task, true);
235c7fc7
IM
3279}
3280
abd50713
PZ
3281static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3282{
3283 u64 frequency = event->attr.sample_freq;
3284 u64 sec = NSEC_PER_SEC;
3285 u64 divisor, dividend;
3286
3287 int count_fls, nsec_fls, frequency_fls, sec_fls;
3288
3289 count_fls = fls64(count);
3290 nsec_fls = fls64(nsec);
3291 frequency_fls = fls64(frequency);
3292 sec_fls = 30;
3293
3294 /*
3295 * We got @count in @nsec, with a target of sample_freq HZ
3296 * the target period becomes:
3297 *
3298 * @count * 10^9
3299 * period = -------------------
3300 * @nsec * sample_freq
3301 *
3302 */
3303
3304 /*
3305 * Reduce accuracy by one bit such that @a and @b converge
3306 * to a similar magnitude.
3307 */
fe4b04fa 3308#define REDUCE_FLS(a, b) \
abd50713
PZ
3309do { \
3310 if (a##_fls > b##_fls) { \
3311 a >>= 1; \
3312 a##_fls--; \
3313 } else { \
3314 b >>= 1; \
3315 b##_fls--; \
3316 } \
3317} while (0)
3318
3319 /*
3320 * Reduce accuracy until either term fits in a u64, then proceed with
3321 * the other, so that finally we can do a u64/u64 division.
3322 */
3323 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3324 REDUCE_FLS(nsec, frequency);
3325 REDUCE_FLS(sec, count);
3326 }
3327
3328 if (count_fls + sec_fls > 64) {
3329 divisor = nsec * frequency;
3330
3331 while (count_fls + sec_fls > 64) {
3332 REDUCE_FLS(count, sec);
3333 divisor >>= 1;
3334 }
3335
3336 dividend = count * sec;
3337 } else {
3338 dividend = count * sec;
3339
3340 while (nsec_fls + frequency_fls > 64) {
3341 REDUCE_FLS(nsec, frequency);
3342 dividend >>= 1;
3343 }
3344
3345 divisor = nsec * frequency;
3346 }
3347
f6ab91ad
PZ
3348 if (!divisor)
3349 return dividend;
3350
abd50713
PZ
3351 return div64_u64(dividend, divisor);
3352}
3353
e050e3f0
SE
3354static DEFINE_PER_CPU(int, perf_throttled_count);
3355static DEFINE_PER_CPU(u64, perf_throttled_seq);
3356
f39d47ff 3357static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
bd2b5b12 3358{
cdd6c482 3359 struct hw_perf_event *hwc = &event->hw;
f6ab91ad 3360 s64 period, sample_period;
bd2b5b12
PZ
3361 s64 delta;
3362
abd50713 3363 period = perf_calculate_period(event, nsec, count);
bd2b5b12
PZ
3364
3365 delta = (s64)(period - hwc->sample_period);
3366 delta = (delta + 7) / 8; /* low pass filter */
3367
3368 sample_period = hwc->sample_period + delta;
3369
3370 if (!sample_period)
3371 sample_period = 1;
3372
bd2b5b12 3373 hwc->sample_period = sample_period;
abd50713 3374
e7850595 3375 if (local64_read(&hwc->period_left) > 8*sample_period) {
f39d47ff
SE
3376 if (disable)
3377 event->pmu->stop(event, PERF_EF_UPDATE);
3378
e7850595 3379 local64_set(&hwc->period_left, 0);
f39d47ff
SE
3380
3381 if (disable)
3382 event->pmu->start(event, PERF_EF_RELOAD);
abd50713 3383 }
bd2b5b12
PZ
3384}
3385
e050e3f0
SE
3386/*
3387 * combine freq adjustment with unthrottling to avoid two passes over the
3388 * events. At the same time, make sure, having freq events does not change
3389 * the rate of unthrottling as that would introduce bias.
3390 */
3391static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3392 int needs_unthr)
60db5e09 3393{
cdd6c482
IM
3394 struct perf_event *event;
3395 struct hw_perf_event *hwc;
e050e3f0 3396 u64 now, period = TICK_NSEC;
abd50713 3397 s64 delta;
60db5e09 3398
e050e3f0
SE
3399 /*
3400 * only need to iterate over all events iff:
3401 * - context have events in frequency mode (needs freq adjust)
3402 * - there are events to unthrottle on this cpu
3403 */
3404 if (!(ctx->nr_freq || needs_unthr))
0f5a2601
PZ
3405 return;
3406
e050e3f0 3407 raw_spin_lock(&ctx->lock);
f39d47ff 3408 perf_pmu_disable(ctx->pmu);
e050e3f0 3409
03541f8b 3410 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
cdd6c482 3411 if (event->state != PERF_EVENT_STATE_ACTIVE)
60db5e09
PZ
3412 continue;
3413
5632ab12 3414 if (!event_filter_match(event))
5d27c23d
PZ
3415 continue;
3416
44377277
AS
3417 perf_pmu_disable(event->pmu);
3418
cdd6c482 3419 hwc = &event->hw;
6a24ed6c 3420
ae23bff1 3421 if (hwc->interrupts == MAX_INTERRUPTS) {
e050e3f0 3422 hwc->interrupts = 0;
cdd6c482 3423 perf_log_throttle(event, 1);
a4eaf7f1 3424 event->pmu->start(event, 0);
a78ac325
PZ
3425 }
3426
cdd6c482 3427 if (!event->attr.freq || !event->attr.sample_freq)
44377277 3428 goto next;
60db5e09 3429
e050e3f0
SE
3430 /*
3431 * stop the event and update event->count
3432 */
3433 event->pmu->stop(event, PERF_EF_UPDATE);
3434
e7850595 3435 now = local64_read(&event->count);
abd50713
PZ
3436 delta = now - hwc->freq_count_stamp;
3437 hwc->freq_count_stamp = now;
60db5e09 3438
e050e3f0
SE
3439 /*
3440 * restart the event
3441 * reload only if value has changed
f39d47ff
SE
3442 * we have stopped the event so tell that
3443 * to perf_adjust_period() to avoid stopping it
3444 * twice.
e050e3f0 3445 */
abd50713 3446 if (delta > 0)
f39d47ff 3447 perf_adjust_period(event, period, delta, false);
e050e3f0
SE
3448
3449 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
44377277
AS
3450 next:
3451 perf_pmu_enable(event->pmu);
60db5e09 3452 }
e050e3f0 3453
f39d47ff 3454 perf_pmu_enable(ctx->pmu);
e050e3f0 3455 raw_spin_unlock(&ctx->lock);
60db5e09
PZ
3456}
3457
235c7fc7 3458/*
cdd6c482 3459 * Round-robin a context's events:
235c7fc7 3460 */
cdd6c482 3461static void rotate_ctx(struct perf_event_context *ctx)
0793a61d 3462{
dddd3379
TG
3463 /*
3464 * Rotate the first entry last of non-pinned groups. Rotation might be
3465 * disabled by the inheritance code.
3466 */
3467 if (!ctx->rotate_disable)
3468 list_rotate_left(&ctx->flexible_groups);
235c7fc7
IM
3469}
3470
9e630205 3471static int perf_rotate_context(struct perf_cpu_context *cpuctx)
235c7fc7 3472{
8dc85d54 3473 struct perf_event_context *ctx = NULL;
2fde4f94 3474 int rotate = 0;
7fc23a53 3475
b5ab4cd5 3476 if (cpuctx->ctx.nr_events) {
b5ab4cd5
PZ
3477 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3478 rotate = 1;
3479 }
235c7fc7 3480
8dc85d54 3481 ctx = cpuctx->task_ctx;
b5ab4cd5 3482 if (ctx && ctx->nr_events) {
b5ab4cd5
PZ
3483 if (ctx->nr_events != ctx->nr_active)
3484 rotate = 1;
3485 }
9717e6cd 3486
e050e3f0 3487 if (!rotate)
0f5a2601
PZ
3488 goto done;
3489
facc4307 3490 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
1b9a644f 3491 perf_pmu_disable(cpuctx->ctx.pmu);
60db5e09 3492
e050e3f0
SE
3493 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3494 if (ctx)
3495 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
0793a61d 3496
e050e3f0
SE
3497 rotate_ctx(&cpuctx->ctx);
3498 if (ctx)
3499 rotate_ctx(ctx);
235c7fc7 3500
e050e3f0 3501 perf_event_sched_in(cpuctx, ctx, current);
235c7fc7 3502
0f5a2601
PZ
3503 perf_pmu_enable(cpuctx->ctx.pmu);
3504 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
b5ab4cd5 3505done:
9e630205
SE
3506
3507 return rotate;
e9d2b064
PZ
3508}
3509
3510void perf_event_task_tick(void)
3511{
2fde4f94
MR
3512 struct list_head *head = this_cpu_ptr(&active_ctx_list);
3513 struct perf_event_context *ctx, *tmp;
e050e3f0 3514 int throttled;
b5ab4cd5 3515
e9d2b064
PZ
3516 WARN_ON(!irqs_disabled());
3517
e050e3f0
SE
3518 __this_cpu_inc(perf_throttled_seq);
3519 throttled = __this_cpu_xchg(perf_throttled_count, 0);
555e0c1e 3520 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
e050e3f0 3521
2fde4f94 3522 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
e050e3f0 3523 perf_adjust_freq_unthr_context(ctx, throttled);
0793a61d
TG
3524}
3525
889ff015
FW
3526static int event_enable_on_exec(struct perf_event *event,
3527 struct perf_event_context *ctx)
3528{
3529 if (!event->attr.enable_on_exec)
3530 return 0;
3531
3532 event->attr.enable_on_exec = 0;
3533 if (event->state >= PERF_EVENT_STATE_INACTIVE)
3534 return 0;
3535
1d9b482e 3536 __perf_event_mark_enabled(event);
889ff015
FW
3537
3538 return 1;
3539}
3540
57e7986e 3541/*
cdd6c482 3542 * Enable all of a task's events that have been marked enable-on-exec.
57e7986e
PM
3543 * This expects task == current.
3544 */
c1274499 3545static void perf_event_enable_on_exec(int ctxn)
57e7986e 3546{
c1274499 3547 struct perf_event_context *ctx, *clone_ctx = NULL;
487f05e1 3548 enum event_type_t event_type = 0;
3e349507 3549 struct perf_cpu_context *cpuctx;
cdd6c482 3550 struct perf_event *event;
57e7986e
PM
3551 unsigned long flags;
3552 int enabled = 0;
3553
3554 local_irq_save(flags);
c1274499 3555 ctx = current->perf_event_ctxp[ctxn];
cdd6c482 3556 if (!ctx || !ctx->nr_events)
57e7986e
PM
3557 goto out;
3558
3e349507
PZ
3559 cpuctx = __get_cpu_context(ctx);
3560 perf_ctx_lock(cpuctx, ctx);
7fce2509 3561 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
487f05e1 3562 list_for_each_entry(event, &ctx->event_list, event_entry) {
3e349507 3563 enabled |= event_enable_on_exec(event, ctx);
487f05e1
AS
3564 event_type |= get_event_type(event);
3565 }
57e7986e
PM
3566
3567 /*
3e349507 3568 * Unclone and reschedule this context if we enabled any event.
57e7986e 3569 */
3e349507 3570 if (enabled) {
211de6eb 3571 clone_ctx = unclone_ctx(ctx);
487f05e1 3572 ctx_resched(cpuctx, ctx, event_type);
7bbba0eb
PZ
3573 } else {
3574 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
3e349507
PZ
3575 }
3576 perf_ctx_unlock(cpuctx, ctx);
57e7986e 3577
9ed6060d 3578out:
57e7986e 3579 local_irq_restore(flags);
211de6eb
PZ
3580
3581 if (clone_ctx)
3582 put_ctx(clone_ctx);
57e7986e
PM
3583}
3584
0492d4c5
PZ
3585struct perf_read_data {
3586 struct perf_event *event;
3587 bool group;
7d88962e 3588 int ret;
0492d4c5
PZ
3589};
3590
451d24d1 3591static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
d6a2f903 3592{
d6a2f903
DCC
3593 u16 local_pkg, event_pkg;
3594
3595 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
451d24d1
PZ
3596 int local_cpu = smp_processor_id();
3597
3598 event_pkg = topology_physical_package_id(event_cpu);
3599 local_pkg = topology_physical_package_id(local_cpu);
d6a2f903
DCC
3600
3601 if (event_pkg == local_pkg)
3602 return local_cpu;
3603 }
3604
3605 return event_cpu;
3606}
3607
0793a61d 3608/*
cdd6c482 3609 * Cross CPU call to read the hardware event
0793a61d 3610 */
cdd6c482 3611static void __perf_event_read(void *info)
0793a61d 3612{
0492d4c5
PZ
3613 struct perf_read_data *data = info;
3614 struct perf_event *sub, *event = data->event;
cdd6c482 3615 struct perf_event_context *ctx = event->ctx;
108b02cf 3616 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
4a00c16e 3617 struct pmu *pmu = event->pmu;
621a01ea 3618
e1ac3614
PM
3619 /*
3620 * If this is a task context, we need to check whether it is
3621 * the current task context of this cpu. If not it has been
3622 * scheduled out before the smp call arrived. In that case
cdd6c482
IM
3623 * event->count would have been updated to a recent sample
3624 * when the event was scheduled out.
e1ac3614
PM
3625 */
3626 if (ctx->task && cpuctx->task_ctx != ctx)
3627 return;
3628
e625cce1 3629 raw_spin_lock(&ctx->lock);
e5d1367f 3630 if (ctx->is_active) {
542e72fc 3631 update_context_time(ctx);
e5d1367f
SE
3632 update_cgrp_time_from_event(event);
3633 }
0492d4c5 3634
cdd6c482 3635 update_event_times(event);
4a00c16e
SB
3636 if (event->state != PERF_EVENT_STATE_ACTIVE)
3637 goto unlock;
0492d4c5 3638
4a00c16e
SB
3639 if (!data->group) {
3640 pmu->read(event);
3641 data->ret = 0;
0492d4c5 3642 goto unlock;
4a00c16e
SB
3643 }
3644
3645 pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3646
3647 pmu->read(event);
0492d4c5
PZ
3648
3649 list_for_each_entry(sub, &event->sibling_list, group_entry) {
3650 update_event_times(sub);
4a00c16e
SB
3651 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3652 /*
3653 * Use sibling's PMU rather than @event's since
3654 * sibling could be on different (eg: software) PMU.
3655 */
0492d4c5 3656 sub->pmu->read(sub);
4a00c16e 3657 }
0492d4c5 3658 }
4a00c16e
SB
3659
3660 data->ret = pmu->commit_txn(pmu);
0492d4c5
PZ
3661
3662unlock:
e625cce1 3663 raw_spin_unlock(&ctx->lock);
0793a61d
TG
3664}
3665
b5e58793
PZ
3666static inline u64 perf_event_count(struct perf_event *event)
3667{
eacd3ecc
MF
3668 if (event->pmu->count)
3669 return event->pmu->count(event);
3670
3671 return __perf_event_count(event);
b5e58793
PZ
3672}
3673
ffe8690c
KX
3674/*
3675 * NMI-safe method to read a local event, that is an event that
3676 * is:
3677 * - either for the current task, or for this CPU
3678 * - does not have inherit set, for inherited task events
3679 * will not be local and we cannot read them atomically
3680 * - must not have a pmu::count method
3681 */
f91840a3 3682int perf_event_read_local(struct perf_event *event, u64 *value)
ffe8690c
KX
3683{
3684 unsigned long flags;
f91840a3 3685 int ret = 0;
ffe8690c
KX
3686
3687 /*
3688 * Disabling interrupts avoids all counter scheduling (context
3689 * switches, timer based rotation and IPIs).
3690 */
3691 local_irq_save(flags);
3692
ffe8690c
KX
3693 /*
3694 * It must not be an event with inherit set, we cannot read
3695 * all child counters from atomic context.
3696 */
f91840a3
AS
3697 if (event->attr.inherit) {
3698 ret = -EOPNOTSUPP;
3699 goto out;
3700 }
ffe8690c
KX
3701
3702 /*
3703 * It must not have a pmu::count method, those are not
3704 * NMI safe.
3705 */
f91840a3
AS
3706 if (event->pmu->count) {
3707 ret = -EOPNOTSUPP;
3708 goto out;
3709 }
3710
3711 /* If this is a per-task event, it must be for current */
3712 if ((event->attach_state & PERF_ATTACH_TASK) &&
3713 event->hw.target != current) {
3714 ret = -EINVAL;
3715 goto out;
3716 }
3717
3718 /* If this is a per-CPU event, it must be for this CPU */
3719 if (!(event->attach_state & PERF_ATTACH_TASK) &&
3720 event->cpu != smp_processor_id()) {
3721 ret = -EINVAL;
3722 goto out;
3723 }
ffe8690c
KX
3724
3725 /*
3726 * If the event is currently on this CPU, its either a per-task event,
3727 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3728 * oncpu == -1).
3729 */
3730 if (event->oncpu == smp_processor_id())
3731 event->pmu->read(event);
3732
f91840a3
AS
3733 *value = local64_read(&event->count);
3734out:
ffe8690c
KX
3735 local_irq_restore(flags);
3736
f91840a3 3737 return ret;
ffe8690c
KX
3738}
3739
7d88962e 3740static int perf_event_read(struct perf_event *event, bool group)
0793a61d 3741{
451d24d1 3742 int event_cpu, ret = 0;
7d88962e 3743
0793a61d 3744 /*
cdd6c482
IM
3745 * If event is enabled and currently active on a CPU, update the
3746 * value in the event structure:
0793a61d 3747 */
cdd6c482 3748 if (event->state == PERF_EVENT_STATE_ACTIVE) {
0492d4c5
PZ
3749 struct perf_read_data data = {
3750 .event = event,
3751 .group = group,
7d88962e 3752 .ret = 0,
0492d4c5 3753 };
d6a2f903 3754
451d24d1
PZ
3755 event_cpu = READ_ONCE(event->oncpu);
3756 if ((unsigned)event_cpu >= nr_cpu_ids)
3757 return 0;
3758
3759 preempt_disable();
3760 event_cpu = __perf_event_read_cpu(event, event_cpu);
d6a2f903 3761
58763148
PZ
3762 /*
3763 * Purposely ignore the smp_call_function_single() return
3764 * value.
3765 *
451d24d1 3766 * If event_cpu isn't a valid CPU it means the event got
58763148
PZ
3767 * scheduled out and that will have updated the event count.
3768 *
3769 * Therefore, either way, we'll have an up-to-date event count
3770 * after this.
3771 */
451d24d1
PZ
3772 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
3773 preempt_enable();
58763148 3774 ret = data.ret;
cdd6c482 3775 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
2b8988c9
PZ
3776 struct perf_event_context *ctx = event->ctx;
3777 unsigned long flags;
3778
e625cce1 3779 raw_spin_lock_irqsave(&ctx->lock, flags);
c530ccd9
SE
3780 /*
3781 * may read while context is not active
3782 * (e.g., thread is blocked), in that case
3783 * we cannot update context time
3784 */
e5d1367f 3785 if (ctx->is_active) {
c530ccd9 3786 update_context_time(ctx);
e5d1367f
SE
3787 update_cgrp_time_from_event(event);
3788 }
0492d4c5
PZ
3789 if (group)
3790 update_group_times(event);
3791 else
3792 update_event_times(event);
e625cce1 3793 raw_spin_unlock_irqrestore(&ctx->lock, flags);
0793a61d 3794 }
7d88962e
SB
3795
3796 return ret;
0793a61d
TG
3797}
3798
a63eaf34 3799/*
cdd6c482 3800 * Initialize the perf_event context in a task_struct:
a63eaf34 3801 */
eb184479 3802static void __perf_event_init_context(struct perf_event_context *ctx)
a63eaf34 3803{
e625cce1 3804 raw_spin_lock_init(&ctx->lock);
a63eaf34 3805 mutex_init(&ctx->mutex);
2fde4f94 3806 INIT_LIST_HEAD(&ctx->active_ctx_list);
889ff015
FW
3807 INIT_LIST_HEAD(&ctx->pinned_groups);
3808 INIT_LIST_HEAD(&ctx->flexible_groups);
a63eaf34
PM
3809 INIT_LIST_HEAD(&ctx->event_list);
3810 atomic_set(&ctx->refcount, 1);
eb184479
PZ
3811}
3812
3813static struct perf_event_context *
3814alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3815{
3816 struct perf_event_context *ctx;
3817
3818 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3819 if (!ctx)
3820 return NULL;
3821
3822 __perf_event_init_context(ctx);
3823 if (task) {
3824 ctx->task = task;
3825 get_task_struct(task);
0793a61d 3826 }
eb184479
PZ
3827 ctx->pmu = pmu;
3828
3829 return ctx;
a63eaf34
PM
3830}
3831
2ebd4ffb
MH
3832static struct task_struct *
3833find_lively_task_by_vpid(pid_t vpid)
3834{
3835 struct task_struct *task;
0793a61d
TG
3836
3837 rcu_read_lock();
2ebd4ffb 3838 if (!vpid)
0793a61d
TG
3839 task = current;
3840 else
2ebd4ffb 3841 task = find_task_by_vpid(vpid);
0793a61d
TG
3842 if (task)
3843 get_task_struct(task);
3844 rcu_read_unlock();
3845
3846 if (!task)
3847 return ERR_PTR(-ESRCH);
3848
2ebd4ffb 3849 return task;
2ebd4ffb
MH
3850}
3851
fe4b04fa
PZ
3852/*
3853 * Returns a matching context with refcount and pincount.
3854 */
108b02cf 3855static struct perf_event_context *
4af57ef2
YZ
3856find_get_context(struct pmu *pmu, struct task_struct *task,
3857 struct perf_event *event)
0793a61d 3858{
211de6eb 3859 struct perf_event_context *ctx, *clone_ctx = NULL;
22a4f650 3860 struct perf_cpu_context *cpuctx;
4af57ef2 3861 void *task_ctx_data = NULL;
25346b93 3862 unsigned long flags;
8dc85d54 3863 int ctxn, err;
4af57ef2 3864 int cpu = event->cpu;
0793a61d 3865
22a4ec72 3866 if (!task) {
cdd6c482 3867 /* Must be root to operate on a CPU event: */
0764771d 3868 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
0793a61d
TG
3869 return ERR_PTR(-EACCES);
3870
108b02cf 3871 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
0793a61d 3872 ctx = &cpuctx->ctx;
c93f7669 3873 get_ctx(ctx);
fe4b04fa 3874 ++ctx->pin_count;
0793a61d 3875
0793a61d
TG
3876 return ctx;
3877 }
3878
8dc85d54
PZ
3879 err = -EINVAL;
3880 ctxn = pmu->task_ctx_nr;
3881 if (ctxn < 0)
3882 goto errout;
3883
4af57ef2
YZ
3884 if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3885 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3886 if (!task_ctx_data) {
3887 err = -ENOMEM;
3888 goto errout;
3889 }
3890 }
3891
9ed6060d 3892retry:
8dc85d54 3893 ctx = perf_lock_task_context(task, ctxn, &flags);
c93f7669 3894 if (ctx) {
211de6eb 3895 clone_ctx = unclone_ctx(ctx);
fe4b04fa 3896 ++ctx->pin_count;
4af57ef2
YZ
3897
3898 if (task_ctx_data && !ctx->task_ctx_data) {
3899 ctx->task_ctx_data = task_ctx_data;
3900 task_ctx_data = NULL;
3901 }
e625cce1 3902 raw_spin_unlock_irqrestore(&ctx->lock, flags);
211de6eb
PZ
3903
3904 if (clone_ctx)
3905 put_ctx(clone_ctx);
9137fb28 3906 } else {
eb184479 3907 ctx = alloc_perf_context(pmu, task);
c93f7669
PM
3908 err = -ENOMEM;
3909 if (!ctx)
3910 goto errout;
eb184479 3911
4af57ef2
YZ
3912 if (task_ctx_data) {
3913 ctx->task_ctx_data = task_ctx_data;
3914 task_ctx_data = NULL;
3915 }
3916
dbe08d82
ON
3917 err = 0;
3918 mutex_lock(&task->perf_event_mutex);
3919 /*
3920 * If it has already passed perf_event_exit_task().
3921 * we must see PF_EXITING, it takes this mutex too.
3922 */
3923 if (task->flags & PF_EXITING)
3924 err = -ESRCH;
3925 else if (task->perf_event_ctxp[ctxn])
3926 err = -EAGAIN;
fe4b04fa 3927 else {
9137fb28 3928 get_ctx(ctx);
fe4b04fa 3929 ++ctx->pin_count;
dbe08d82 3930 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
fe4b04fa 3931 }
dbe08d82
ON
3932 mutex_unlock(&task->perf_event_mutex);
3933
3934 if (unlikely(err)) {
9137fb28 3935 put_ctx(ctx);
dbe08d82
ON
3936
3937 if (err == -EAGAIN)
3938 goto retry;
3939 goto errout;
a63eaf34
PM
3940 }
3941 }
3942
4af57ef2 3943 kfree(task_ctx_data);
0793a61d 3944 return ctx;
c93f7669 3945
9ed6060d 3946errout:
4af57ef2 3947 kfree(task_ctx_data);
c93f7669 3948 return ERR_PTR(err);
0793a61d
TG
3949}
3950
6fb2915d 3951static void perf_event_free_filter(struct perf_event *event);
2541517c 3952static void perf_event_free_bpf_prog(struct perf_event *event);
6fb2915d 3953
cdd6c482 3954static void free_event_rcu(struct rcu_head *head)
592903cd 3955{
cdd6c482 3956 struct perf_event *event;
592903cd 3957
cdd6c482
IM
3958 event = container_of(head, struct perf_event, rcu_head);
3959 if (event->ns)
3960 put_pid_ns(event->ns);
6fb2915d 3961 perf_event_free_filter(event);
cdd6c482 3962 kfree(event);
592903cd
PZ
3963}
3964
b69cf536
PZ
3965static void ring_buffer_attach(struct perf_event *event,
3966 struct ring_buffer *rb);
925d519a 3967
f2fb6bef
KL
3968static void detach_sb_event(struct perf_event *event)
3969{
3970 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
3971
3972 raw_spin_lock(&pel->lock);
3973 list_del_rcu(&event->sb_list);
3974 raw_spin_unlock(&pel->lock);
3975}
3976
a4f144eb 3977static bool is_sb_event(struct perf_event *event)
f2fb6bef 3978{
a4f144eb
DCC
3979 struct perf_event_attr *attr = &event->attr;
3980
f2fb6bef 3981 if (event->parent)
a4f144eb 3982 return false;
f2fb6bef
KL
3983
3984 if (event->attach_state & PERF_ATTACH_TASK)
a4f144eb 3985 return false;
f2fb6bef 3986
a4f144eb
DCC
3987 if (attr->mmap || attr->mmap_data || attr->mmap2 ||
3988 attr->comm || attr->comm_exec ||
3989 attr->task ||
3990 attr->context_switch)
3991 return true;
3992 return false;
3993}
3994
3995static void unaccount_pmu_sb_event(struct perf_event *event)
3996{
3997 if (is_sb_event(event))
3998 detach_sb_event(event);
f2fb6bef
KL
3999}
4000
4beb31f3 4001static void unaccount_event_cpu(struct perf_event *event, int cpu)
f1600952 4002{
4beb31f3
FW
4003 if (event->parent)
4004 return;
4005
4beb31f3
FW
4006 if (is_cgroup_event(event))
4007 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
4008}
925d519a 4009
555e0c1e
FW
4010#ifdef CONFIG_NO_HZ_FULL
4011static DEFINE_SPINLOCK(nr_freq_lock);
4012#endif
4013
4014static void unaccount_freq_event_nohz(void)
4015{
4016#ifdef CONFIG_NO_HZ_FULL
4017 spin_lock(&nr_freq_lock);
4018 if (atomic_dec_and_test(&nr_freq_events))
4019 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
4020 spin_unlock(&nr_freq_lock);
4021#endif
4022}
4023
4024static void unaccount_freq_event(void)
4025{
4026 if (tick_nohz_full_enabled())
4027 unaccount_freq_event_nohz();
4028 else
4029 atomic_dec(&nr_freq_events);
4030}
4031
4beb31f3
FW
4032static void unaccount_event(struct perf_event *event)
4033{
25432ae9
PZ
4034 bool dec = false;
4035
4beb31f3
FW
4036 if (event->parent)
4037 return;
4038
4039 if (event->attach_state & PERF_ATTACH_TASK)
25432ae9 4040 dec = true;
4beb31f3
FW
4041 if (event->attr.mmap || event->attr.mmap_data)
4042 atomic_dec(&nr_mmap_events);
4043 if (event->attr.comm)
4044 atomic_dec(&nr_comm_events);
e4222673
HB
4045 if (event->attr.namespaces)
4046 atomic_dec(&nr_namespaces_events);
4beb31f3
FW
4047 if (event->attr.task)
4048 atomic_dec(&nr_task_events);
948b26b6 4049 if (event->attr.freq)
555e0c1e 4050 unaccount_freq_event();
45ac1403 4051 if (event->attr.context_switch) {
25432ae9 4052 dec = true;
45ac1403
AH
4053 atomic_dec(&nr_switch_events);
4054 }
4beb31f3 4055 if (is_cgroup_event(event))
25432ae9 4056 dec = true;
4beb31f3 4057 if (has_branch_stack(event))
25432ae9
PZ
4058 dec = true;
4059
9107c89e
PZ
4060 if (dec) {
4061 if (!atomic_add_unless(&perf_sched_count, -1, 1))
4062 schedule_delayed_work(&perf_sched_work, HZ);
4063 }
4beb31f3
FW
4064
4065 unaccount_event_cpu(event, event->cpu);
f2fb6bef
KL
4066
4067 unaccount_pmu_sb_event(event);
4beb31f3 4068}
925d519a 4069
9107c89e
PZ
4070static void perf_sched_delayed(struct work_struct *work)
4071{
4072 mutex_lock(&perf_sched_mutex);
4073 if (atomic_dec_and_test(&perf_sched_count))
4074 static_branch_disable(&perf_sched_events);
4075 mutex_unlock(&perf_sched_mutex);
4076}
4077
bed5b25a
AS
4078/*
4079 * The following implement mutual exclusion of events on "exclusive" pmus
4080 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4081 * at a time, so we disallow creating events that might conflict, namely:
4082 *
4083 * 1) cpu-wide events in the presence of per-task events,
4084 * 2) per-task events in the presence of cpu-wide events,
4085 * 3) two matching events on the same context.
4086 *
4087 * The former two cases are handled in the allocation path (perf_event_alloc(),
a0733e69 4088 * _free_event()), the latter -- before the first perf_install_in_context().
bed5b25a
AS
4089 */
4090static int exclusive_event_init(struct perf_event *event)
4091{
4092 struct pmu *pmu = event->pmu;
4093
4094 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4095 return 0;
4096
4097 /*
4098 * Prevent co-existence of per-task and cpu-wide events on the
4099 * same exclusive pmu.
4100 *
4101 * Negative pmu::exclusive_cnt means there are cpu-wide
4102 * events on this "exclusive" pmu, positive means there are
4103 * per-task events.
4104 *
4105 * Since this is called in perf_event_alloc() path, event::ctx
4106 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4107 * to mean "per-task event", because unlike other attach states it
4108 * never gets cleared.
4109 */
4110 if (event->attach_state & PERF_ATTACH_TASK) {
4111 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4112 return -EBUSY;
4113 } else {
4114 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4115 return -EBUSY;
4116 }
4117
4118 return 0;
4119}
4120
4121static void exclusive_event_destroy(struct perf_event *event)
4122{
4123 struct pmu *pmu = event->pmu;
4124
4125 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4126 return;
4127
4128 /* see comment in exclusive_event_init() */
4129 if (event->attach_state & PERF_ATTACH_TASK)
4130 atomic_dec(&pmu->exclusive_cnt);
4131 else
4132 atomic_inc(&pmu->exclusive_cnt);
4133}
4134
4135static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4136{
3bf6215a 4137 if ((e1->pmu == e2->pmu) &&
bed5b25a
AS
4138 (e1->cpu == e2->cpu ||
4139 e1->cpu == -1 ||
4140 e2->cpu == -1))
4141 return true;
4142 return false;
4143}
4144
4145/* Called under the same ctx::mutex as perf_install_in_context() */
4146static bool exclusive_event_installable(struct perf_event *event,
4147 struct perf_event_context *ctx)
4148{
4149 struct perf_event *iter_event;
4150 struct pmu *pmu = event->pmu;
4151
4152 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4153 return true;
4154
4155 list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4156 if (exclusive_event_match(iter_event, event))
4157 return false;
4158 }
4159
4160 return true;
4161}
4162
375637bc
AS
4163static void perf_addr_filters_splice(struct perf_event *event,
4164 struct list_head *head);
4165
683ede43 4166static void _free_event(struct perf_event *event)
f1600952 4167{
e360adbe 4168 irq_work_sync(&event->pending);
925d519a 4169
4beb31f3 4170 unaccount_event(event);
9ee318a7 4171
76369139 4172 if (event->rb) {
9bb5d40c
PZ
4173 /*
4174 * Can happen when we close an event with re-directed output.
4175 *
4176 * Since we have a 0 refcount, perf_mmap_close() will skip
4177 * over us; possibly making our ring_buffer_put() the last.
4178 */
4179 mutex_lock(&event->mmap_mutex);
b69cf536 4180 ring_buffer_attach(event, NULL);
9bb5d40c 4181 mutex_unlock(&event->mmap_mutex);
a4be7c27
PZ
4182 }
4183
e5d1367f
SE
4184 if (is_cgroup_event(event))
4185 perf_detach_cgroup(event);
4186
a0733e69
PZ
4187 if (!event->parent) {
4188 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4189 put_callchain_buffers();
4190 }
4191
4192 perf_event_free_bpf_prog(event);
375637bc
AS
4193 perf_addr_filters_splice(event, NULL);
4194 kfree(event->addr_filters_offs);
a0733e69
PZ
4195
4196 if (event->destroy)
4197 event->destroy(event);
4198
4199 if (event->ctx)
4200 put_ctx(event->ctx);
4201
62a92c8f
AS
4202 exclusive_event_destroy(event);
4203 module_put(event->pmu->module);
a0733e69
PZ
4204
4205 call_rcu(&event->rcu_head, free_event_rcu);
f1600952
PZ
4206}
4207
683ede43
PZ
4208/*
4209 * Used to free events which have a known refcount of 1, such as in error paths
4210 * where the event isn't exposed yet and inherited events.
4211 */
4212static void free_event(struct perf_event *event)
0793a61d 4213{
683ede43
PZ
4214 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4215 "unexpected event refcount: %ld; ptr=%p\n",
4216 atomic_long_read(&event->refcount), event)) {
4217 /* leak to avoid use-after-free */
4218 return;
4219 }
0793a61d 4220
683ede43 4221 _free_event(event);
0793a61d
TG
4222}
4223
a66a3052 4224/*
f8697762 4225 * Remove user event from the owner task.
a66a3052 4226 */
f8697762 4227static void perf_remove_from_owner(struct perf_event *event)
fb0459d7 4228{
8882135b 4229 struct task_struct *owner;
fb0459d7 4230
8882135b 4231 rcu_read_lock();
8882135b 4232 /*
f47c02c0
PZ
4233 * Matches the smp_store_release() in perf_event_exit_task(). If we
4234 * observe !owner it means the list deletion is complete and we can
4235 * indeed free this event, otherwise we need to serialize on
8882135b
PZ
4236 * owner->perf_event_mutex.
4237 */
f47c02c0 4238 owner = lockless_dereference(event->owner);
8882135b
PZ
4239 if (owner) {
4240 /*
4241 * Since delayed_put_task_struct() also drops the last
4242 * task reference we can safely take a new reference
4243 * while holding the rcu_read_lock().
4244 */
4245 get_task_struct(owner);
4246 }
4247 rcu_read_unlock();
4248
4249 if (owner) {
f63a8daa
PZ
4250 /*
4251 * If we're here through perf_event_exit_task() we're already
4252 * holding ctx->mutex which would be an inversion wrt. the
4253 * normal lock order.
4254 *
4255 * However we can safely take this lock because its the child
4256 * ctx->mutex.
4257 */
4258 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4259
8882135b
PZ
4260 /*
4261 * We have to re-check the event->owner field, if it is cleared
4262 * we raced with perf_event_exit_task(), acquiring the mutex
4263 * ensured they're done, and we can proceed with freeing the
4264 * event.
4265 */
f47c02c0 4266 if (event->owner) {
8882135b 4267 list_del_init(&event->owner_entry);
f47c02c0
PZ
4268 smp_store_release(&event->owner, NULL);
4269 }
8882135b
PZ
4270 mutex_unlock(&owner->perf_event_mutex);
4271 put_task_struct(owner);
4272 }
f8697762
JO
4273}
4274
f8697762
JO
4275static void put_event(struct perf_event *event)
4276{
f8697762
JO
4277 if (!atomic_long_dec_and_test(&event->refcount))
4278 return;
4279
c6e5b732
PZ
4280 _free_event(event);
4281}
4282
4283/*
4284 * Kill an event dead; while event:refcount will preserve the event
4285 * object, it will not preserve its functionality. Once the last 'user'
4286 * gives up the object, we'll destroy the thing.
4287 */
4288int perf_event_release_kernel(struct perf_event *event)
4289{
a4f4bb6d 4290 struct perf_event_context *ctx = event->ctx;
c6e5b732
PZ
4291 struct perf_event *child, *tmp;
4292
a4f4bb6d
PZ
4293 /*
4294 * If we got here through err_file: fput(event_file); we will not have
4295 * attached to a context yet.
4296 */
4297 if (!ctx) {
4298 WARN_ON_ONCE(event->attach_state &
4299 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4300 goto no_ctx;
4301 }
4302
f8697762
JO
4303 if (!is_kernel_event(event))
4304 perf_remove_from_owner(event);
8882135b 4305
5fa7c8ec 4306 ctx = perf_event_ctx_lock(event);
a83fe28e 4307 WARN_ON_ONCE(ctx->parent_ctx);
a69b0ca4 4308 perf_remove_from_context(event, DETACH_GROUP);
683ede43 4309
a69b0ca4 4310 raw_spin_lock_irq(&ctx->lock);
683ede43 4311 /*
d8a8cfc7 4312 * Mark this event as STATE_DEAD, there is no external reference to it
a69b0ca4 4313 * anymore.
683ede43 4314 *
a69b0ca4
PZ
4315 * Anybody acquiring event->child_mutex after the below loop _must_
4316 * also see this, most importantly inherit_event() which will avoid
4317 * placing more children on the list.
683ede43 4318 *
c6e5b732
PZ
4319 * Thus this guarantees that we will in fact observe and kill _ALL_
4320 * child events.
683ede43 4321 */
a69b0ca4
PZ
4322 event->state = PERF_EVENT_STATE_DEAD;
4323 raw_spin_unlock_irq(&ctx->lock);
4324
4325 perf_event_ctx_unlock(event, ctx);
683ede43 4326
c6e5b732
PZ
4327again:
4328 mutex_lock(&event->child_mutex);
4329 list_for_each_entry(child, &event->child_list, child_list) {
a6fa941d 4330
c6e5b732
PZ
4331 /*
4332 * Cannot change, child events are not migrated, see the
4333 * comment with perf_event_ctx_lock_nested().
4334 */
4335 ctx = lockless_dereference(child->ctx);
4336 /*
4337 * Since child_mutex nests inside ctx::mutex, we must jump
4338 * through hoops. We start by grabbing a reference on the ctx.
4339 *
4340 * Since the event cannot get freed while we hold the
4341 * child_mutex, the context must also exist and have a !0
4342 * reference count.
4343 */
4344 get_ctx(ctx);
4345
4346 /*
4347 * Now that we have a ctx ref, we can drop child_mutex, and
4348 * acquire ctx::mutex without fear of it going away. Then we
4349 * can re-acquire child_mutex.
4350 */
4351 mutex_unlock(&event->child_mutex);
4352 mutex_lock(&ctx->mutex);
4353 mutex_lock(&event->child_mutex);
4354
4355 /*
4356 * Now that we hold ctx::mutex and child_mutex, revalidate our
4357 * state, if child is still the first entry, it didn't get freed
4358 * and we can continue doing so.
4359 */
4360 tmp = list_first_entry_or_null(&event->child_list,
4361 struct perf_event, child_list);
4362 if (tmp == child) {
4363 perf_remove_from_context(child, DETACH_GROUP);
4364 list_del(&child->child_list);
4365 free_event(child);
4366 /*
4367 * This matches the refcount bump in inherit_event();
4368 * this can't be the last reference.
4369 */
4370 put_event(event);
4371 }
4372
4373 mutex_unlock(&event->child_mutex);
4374 mutex_unlock(&ctx->mutex);
4375 put_ctx(ctx);
4376 goto again;
4377 }
4378 mutex_unlock(&event->child_mutex);
4379
a4f4bb6d
PZ
4380no_ctx:
4381 put_event(event); /* Must be the 'last' reference */
683ede43
PZ
4382 return 0;
4383}
4384EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4385
8b10c5e2
PZ
4386/*
4387 * Called when the last reference to the file is gone.
4388 */
a6fa941d
AV
4389static int perf_release(struct inode *inode, struct file *file)
4390{
c6e5b732 4391 perf_event_release_kernel(file->private_data);
a6fa941d 4392 return 0;
fb0459d7 4393}
fb0459d7 4394
59ed446f 4395u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
e53c0994 4396{
cdd6c482 4397 struct perf_event *child;
e53c0994
PZ
4398 u64 total = 0;
4399
59ed446f
PZ
4400 *enabled = 0;
4401 *running = 0;
4402
6f10581a 4403 mutex_lock(&event->child_mutex);
01add3ea 4404
7d88962e 4405 (void)perf_event_read(event, false);
01add3ea
SB
4406 total += perf_event_count(event);
4407
59ed446f
PZ
4408 *enabled += event->total_time_enabled +
4409 atomic64_read(&event->child_total_time_enabled);
4410 *running += event->total_time_running +
4411 atomic64_read(&event->child_total_time_running);
4412
4413 list_for_each_entry(child, &event->child_list, child_list) {
7d88962e 4414 (void)perf_event_read(child, false);
01add3ea 4415 total += perf_event_count(child);
59ed446f
PZ
4416 *enabled += child->total_time_enabled;
4417 *running += child->total_time_running;
4418 }
6f10581a 4419 mutex_unlock(&event->child_mutex);
e53c0994
PZ
4420
4421 return total;
4422}
fb0459d7 4423EXPORT_SYMBOL_GPL(perf_event_read_value);
e53c0994 4424
7d88962e 4425static int __perf_read_group_add(struct perf_event *leader,
fa8c2693 4426 u64 read_format, u64 *values)
3dab77fb 4427{
2aeb1883 4428 struct perf_event_context *ctx = leader->ctx;
fa8c2693 4429 struct perf_event *sub;
2aeb1883 4430 unsigned long flags;
fa8c2693 4431 int n = 1; /* skip @nr */
7d88962e 4432 int ret;
f63a8daa 4433
7d88962e
SB
4434 ret = perf_event_read(leader, true);
4435 if (ret)
4436 return ret;
abf4868b 4437
fa8c2693
PZ
4438 /*
4439 * Since we co-schedule groups, {enabled,running} times of siblings
4440 * will be identical to those of the leader, so we only publish one
4441 * set.
4442 */
4443 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4444 values[n++] += leader->total_time_enabled +
4445 atomic64_read(&leader->child_total_time_enabled);
4446 }
3dab77fb 4447
fa8c2693
PZ
4448 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4449 values[n++] += leader->total_time_running +
4450 atomic64_read(&leader->child_total_time_running);
4451 }
4452
4453 /*
4454 * Write {count,id} tuples for every sibling.
4455 */
4456 values[n++] += perf_event_count(leader);
abf4868b
PZ
4457 if (read_format & PERF_FORMAT_ID)
4458 values[n++] = primary_event_id(leader);
3dab77fb 4459
2aeb1883
JO
4460 raw_spin_lock_irqsave(&ctx->lock, flags);
4461
fa8c2693
PZ
4462 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4463 values[n++] += perf_event_count(sub);
4464 if (read_format & PERF_FORMAT_ID)
4465 values[n++] = primary_event_id(sub);
4466 }
7d88962e 4467
2aeb1883 4468 raw_spin_unlock_irqrestore(&ctx->lock, flags);
7d88962e 4469 return 0;
fa8c2693 4470}
3dab77fb 4471
fa8c2693
PZ
4472static int perf_read_group(struct perf_event *event,
4473 u64 read_format, char __user *buf)
4474{
4475 struct perf_event *leader = event->group_leader, *child;
4476 struct perf_event_context *ctx = leader->ctx;
7d88962e 4477 int ret;
fa8c2693 4478 u64 *values;
3dab77fb 4479
fa8c2693 4480 lockdep_assert_held(&ctx->mutex);
3dab77fb 4481
fa8c2693
PZ
4482 values = kzalloc(event->read_size, GFP_KERNEL);
4483 if (!values)
4484 return -ENOMEM;
3dab77fb 4485
fa8c2693
PZ
4486 values[0] = 1 + leader->nr_siblings;
4487
4488 /*
4489 * By locking the child_mutex of the leader we effectively
4490 * lock the child list of all siblings.. XXX explain how.
4491 */
4492 mutex_lock(&leader->child_mutex);
abf4868b 4493
7d88962e
SB
4494 ret = __perf_read_group_add(leader, read_format, values);
4495 if (ret)
4496 goto unlock;
4497
4498 list_for_each_entry(child, &leader->child_list, child_list) {
4499 ret = __perf_read_group_add(child, read_format, values);
4500 if (ret)
4501 goto unlock;
4502 }
abf4868b 4503
fa8c2693 4504 mutex_unlock(&leader->child_mutex);
abf4868b 4505
7d88962e 4506 ret = event->read_size;
fa8c2693
PZ
4507 if (copy_to_user(buf, values, event->read_size))
4508 ret = -EFAULT;
7d88962e 4509 goto out;
fa8c2693 4510
7d88962e
SB
4511unlock:
4512 mutex_unlock(&leader->child_mutex);
4513out:
fa8c2693 4514 kfree(values);
abf4868b 4515 return ret;
3dab77fb
PZ
4516}
4517
b15f495b 4518static int perf_read_one(struct perf_event *event,
3dab77fb
PZ
4519 u64 read_format, char __user *buf)
4520{
59ed446f 4521 u64 enabled, running;
3dab77fb
PZ
4522 u64 values[4];
4523 int n = 0;
4524
59ed446f
PZ
4525 values[n++] = perf_event_read_value(event, &enabled, &running);
4526 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4527 values[n++] = enabled;
4528 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4529 values[n++] = running;
3dab77fb 4530 if (read_format & PERF_FORMAT_ID)
cdd6c482 4531 values[n++] = primary_event_id(event);
3dab77fb
PZ
4532
4533 if (copy_to_user(buf, values, n * sizeof(u64)))
4534 return -EFAULT;
4535
4536 return n * sizeof(u64);
4537}
4538
dc633982
JO
4539static bool is_event_hup(struct perf_event *event)
4540{
4541 bool no_children;
4542
a69b0ca4 4543 if (event->state > PERF_EVENT_STATE_EXIT)
dc633982
JO
4544 return false;
4545
4546 mutex_lock(&event->child_mutex);
4547 no_children = list_empty(&event->child_list);
4548 mutex_unlock(&event->child_mutex);
4549 return no_children;
4550}
4551
0793a61d 4552/*
cdd6c482 4553 * Read the performance event - simple non blocking version for now
0793a61d
TG
4554 */
4555static ssize_t
b15f495b 4556__perf_read(struct perf_event *event, char __user *buf, size_t count)
0793a61d 4557{
cdd6c482 4558 u64 read_format = event->attr.read_format;
3dab77fb 4559 int ret;
0793a61d 4560
3b6f9e5c 4561 /*
cdd6c482 4562 * Return end-of-file for a read on a event that is in
3b6f9e5c
PM
4563 * error state (i.e. because it was pinned but it couldn't be
4564 * scheduled on to the CPU at some point).
4565 */
cdd6c482 4566 if (event->state == PERF_EVENT_STATE_ERROR)
3b6f9e5c
PM
4567 return 0;
4568
c320c7b7 4569 if (count < event->read_size)
3dab77fb
PZ
4570 return -ENOSPC;
4571
cdd6c482 4572 WARN_ON_ONCE(event->ctx->parent_ctx);
3dab77fb 4573 if (read_format & PERF_FORMAT_GROUP)
b15f495b 4574 ret = perf_read_group(event, read_format, buf);
3dab77fb 4575 else
b15f495b 4576 ret = perf_read_one(event, read_format, buf);
0793a61d 4577
3dab77fb 4578 return ret;
0793a61d
TG
4579}
4580
0793a61d
TG
4581static ssize_t
4582perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4583{
cdd6c482 4584 struct perf_event *event = file->private_data;
f63a8daa
PZ
4585 struct perf_event_context *ctx;
4586 int ret;
0793a61d 4587
f63a8daa 4588 ctx = perf_event_ctx_lock(event);
b15f495b 4589 ret = __perf_read(event, buf, count);
f63a8daa
PZ
4590 perf_event_ctx_unlock(event, ctx);
4591
4592 return ret;
0793a61d
TG
4593}
4594
4595static unsigned int perf_poll(struct file *file, poll_table *wait)
4596{
cdd6c482 4597 struct perf_event *event = file->private_data;
76369139 4598 struct ring_buffer *rb;
61b67684 4599 unsigned int events = POLLHUP;
c7138f37 4600
e708d7ad 4601 poll_wait(file, &event->waitq, wait);
179033b3 4602
dc633982 4603 if (is_event_hup(event))
179033b3 4604 return events;
c7138f37 4605
10c6db11 4606 /*
9bb5d40c
PZ
4607 * Pin the event->rb by taking event->mmap_mutex; otherwise
4608 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
10c6db11
PZ
4609 */
4610 mutex_lock(&event->mmap_mutex);
9bb5d40c
PZ
4611 rb = event->rb;
4612 if (rb)
76369139 4613 events = atomic_xchg(&rb->poll, 0);
10c6db11 4614 mutex_unlock(&event->mmap_mutex);
0793a61d
TG
4615 return events;
4616}
4617
f63a8daa 4618static void _perf_event_reset(struct perf_event *event)
6de6a7b9 4619{
7d88962e 4620 (void)perf_event_read(event, false);
e7850595 4621 local64_set(&event->count, 0);
cdd6c482 4622 perf_event_update_userpage(event);
3df5edad
PZ
4623}
4624
c93f7669 4625/*
cdd6c482
IM
4626 * Holding the top-level event's child_mutex means that any
4627 * descendant process that has inherited this event will block
8ba289b8 4628 * in perf_event_exit_event() if it goes to exit, thus satisfying the
cdd6c482 4629 * task existence requirements of perf_event_enable/disable.
c93f7669 4630 */
cdd6c482
IM
4631static void perf_event_for_each_child(struct perf_event *event,
4632 void (*func)(struct perf_event *))
3df5edad 4633{
cdd6c482 4634 struct perf_event *child;
3df5edad 4635
cdd6c482 4636 WARN_ON_ONCE(event->ctx->parent_ctx);
f63a8daa 4637
cdd6c482
IM
4638 mutex_lock(&event->child_mutex);
4639 func(event);
4640 list_for_each_entry(child, &event->child_list, child_list)
3df5edad 4641 func(child);
cdd6c482 4642 mutex_unlock(&event->child_mutex);
3df5edad
PZ
4643}
4644
cdd6c482
IM
4645static void perf_event_for_each(struct perf_event *event,
4646 void (*func)(struct perf_event *))
3df5edad 4647{
cdd6c482
IM
4648 struct perf_event_context *ctx = event->ctx;
4649 struct perf_event *sibling;
3df5edad 4650
f63a8daa
PZ
4651 lockdep_assert_held(&ctx->mutex);
4652
cdd6c482 4653 event = event->group_leader;
75f937f2 4654
cdd6c482 4655 perf_event_for_each_child(event, func);
cdd6c482 4656 list_for_each_entry(sibling, &event->sibling_list, group_entry)
724b6daa 4657 perf_event_for_each_child(sibling, func);
6de6a7b9
PZ
4658}
4659
fae3fde6
PZ
4660static void __perf_event_period(struct perf_event *event,
4661 struct perf_cpu_context *cpuctx,
4662 struct perf_event_context *ctx,
4663 void *info)
c7999c6f 4664{
fae3fde6 4665 u64 value = *((u64 *)info);
c7999c6f 4666 bool active;
08247e31 4667
cdd6c482 4668 if (event->attr.freq) {
cdd6c482 4669 event->attr.sample_freq = value;
08247e31 4670 } else {
cdd6c482
IM
4671 event->attr.sample_period = value;
4672 event->hw.sample_period = value;
08247e31 4673 }
bad7192b
PZ
4674
4675 active = (event->state == PERF_EVENT_STATE_ACTIVE);
4676 if (active) {
4677 perf_pmu_disable(ctx->pmu);
1e02cd40
PZ
4678 /*
4679 * We could be throttled; unthrottle now to avoid the tick
4680 * trying to unthrottle while we already re-started the event.
4681 */
4682 if (event->hw.interrupts == MAX_INTERRUPTS) {
4683 event->hw.interrupts = 0;
4684 perf_log_throttle(event, 1);
4685 }
bad7192b
PZ
4686 event->pmu->stop(event, PERF_EF_UPDATE);
4687 }
4688
4689 local64_set(&event->hw.period_left, 0);
4690
4691 if (active) {
4692 event->pmu->start(event, PERF_EF_RELOAD);
4693 perf_pmu_enable(ctx->pmu);
4694 }
c7999c6f
PZ
4695}
4696
4697static int perf_event_period(struct perf_event *event, u64 __user *arg)
4698{
c7999c6f
PZ
4699 u64 value;
4700
4701 if (!is_sampling_event(event))
4702 return -EINVAL;
4703
4704 if (copy_from_user(&value, arg, sizeof(value)))
4705 return -EFAULT;
4706
4707 if (!value)
4708 return -EINVAL;
4709
4710 if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4711 return -EINVAL;
4712
fae3fde6 4713 event_function_call(event, __perf_event_period, &value);
08247e31 4714
c7999c6f 4715 return 0;
08247e31
PZ
4716}
4717
ac9721f3
PZ
4718static const struct file_operations perf_fops;
4719
2903ff01 4720static inline int perf_fget_light(int fd, struct fd *p)
ac9721f3 4721{
2903ff01
AV
4722 struct fd f = fdget(fd);
4723 if (!f.file)
4724 return -EBADF;
ac9721f3 4725
2903ff01
AV
4726 if (f.file->f_op != &perf_fops) {
4727 fdput(f);
4728 return -EBADF;
ac9721f3 4729 }
2903ff01
AV
4730 *p = f;
4731 return 0;
ac9721f3
PZ
4732}
4733
4734static int perf_event_set_output(struct perf_event *event,
4735 struct perf_event *output_event);
6fb2915d 4736static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2541517c 4737static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
a4be7c27 4738
f63a8daa 4739static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
d859e29f 4740{
cdd6c482 4741 void (*func)(struct perf_event *);
3df5edad 4742 u32 flags = arg;
d859e29f
PM
4743
4744 switch (cmd) {
cdd6c482 4745 case PERF_EVENT_IOC_ENABLE:
f63a8daa 4746 func = _perf_event_enable;
d859e29f 4747 break;
cdd6c482 4748 case PERF_EVENT_IOC_DISABLE:
f63a8daa 4749 func = _perf_event_disable;
79f14641 4750 break;
cdd6c482 4751 case PERF_EVENT_IOC_RESET:
f63a8daa 4752 func = _perf_event_reset;
6de6a7b9 4753 break;
3df5edad 4754
cdd6c482 4755 case PERF_EVENT_IOC_REFRESH:
f63a8daa 4756 return _perf_event_refresh(event, arg);
08247e31 4757
cdd6c482
IM
4758 case PERF_EVENT_IOC_PERIOD:
4759 return perf_event_period(event, (u64 __user *)arg);
08247e31 4760
cf4957f1
JO
4761 case PERF_EVENT_IOC_ID:
4762 {
4763 u64 id = primary_event_id(event);
4764
4765 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4766 return -EFAULT;
4767 return 0;
4768 }
4769
cdd6c482 4770 case PERF_EVENT_IOC_SET_OUTPUT:
ac9721f3 4771 {
ac9721f3 4772 int ret;
ac9721f3 4773 if (arg != -1) {
2903ff01
AV
4774 struct perf_event *output_event;
4775 struct fd output;
4776 ret = perf_fget_light(arg, &output);
4777 if (ret)
4778 return ret;
4779 output_event = output.file->private_data;
4780 ret = perf_event_set_output(event, output_event);
4781 fdput(output);
4782 } else {
4783 ret = perf_event_set_output(event, NULL);
ac9721f3 4784 }
ac9721f3
PZ
4785 return ret;
4786 }
a4be7c27 4787
6fb2915d
LZ
4788 case PERF_EVENT_IOC_SET_FILTER:
4789 return perf_event_set_filter(event, (void __user *)arg);
4790
2541517c
AS
4791 case PERF_EVENT_IOC_SET_BPF:
4792 return perf_event_set_bpf_prog(event, arg);
4793
86e7972f
WN
4794 case PERF_EVENT_IOC_PAUSE_OUTPUT: {
4795 struct ring_buffer *rb;
4796
4797 rcu_read_lock();
4798 rb = rcu_dereference(event->rb);
4799 if (!rb || !rb->nr_pages) {
4800 rcu_read_unlock();
4801 return -EINVAL;
4802 }
4803 rb_toggle_paused(rb, !!arg);
4804 rcu_read_unlock();
4805 return 0;
4806 }
d859e29f 4807 default:
3df5edad 4808 return -ENOTTY;
d859e29f 4809 }
3df5edad
PZ
4810
4811 if (flags & PERF_IOC_FLAG_GROUP)
cdd6c482 4812 perf_event_for_each(event, func);
3df5edad 4813 else
cdd6c482 4814 perf_event_for_each_child(event, func);
3df5edad
PZ
4815
4816 return 0;
d859e29f
PM
4817}
4818
f63a8daa
PZ
4819static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4820{
4821 struct perf_event *event = file->private_data;
4822 struct perf_event_context *ctx;
4823 long ret;
4824
4825 ctx = perf_event_ctx_lock(event);
4826 ret = _perf_ioctl(event, cmd, arg);
4827 perf_event_ctx_unlock(event, ctx);
4828
4829 return ret;
4830}
4831
b3f20785
PM
4832#ifdef CONFIG_COMPAT
4833static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4834 unsigned long arg)
4835{
4836 switch (_IOC_NR(cmd)) {
4837 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4838 case _IOC_NR(PERF_EVENT_IOC_ID):
4839 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4840 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4841 cmd &= ~IOCSIZE_MASK;
4842 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4843 }
4844 break;
4845 }
4846 return perf_ioctl(file, cmd, arg);
4847}
4848#else
4849# define perf_compat_ioctl NULL
4850#endif
4851
cdd6c482 4852int perf_event_task_enable(void)
771d7cde 4853{
f63a8daa 4854 struct perf_event_context *ctx;
cdd6c482 4855 struct perf_event *event;
771d7cde 4856
cdd6c482 4857 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
4858 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4859 ctx = perf_event_ctx_lock(event);
4860 perf_event_for_each_child(event, _perf_event_enable);
4861 perf_event_ctx_unlock(event, ctx);
4862 }
cdd6c482 4863 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
4864
4865 return 0;
4866}
4867
cdd6c482 4868int perf_event_task_disable(void)
771d7cde 4869{
f63a8daa 4870 struct perf_event_context *ctx;
cdd6c482 4871 struct perf_event *event;
771d7cde 4872
cdd6c482 4873 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
4874 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4875 ctx = perf_event_ctx_lock(event);
4876 perf_event_for_each_child(event, _perf_event_disable);
4877 perf_event_ctx_unlock(event, ctx);
4878 }
cdd6c482 4879 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
4880
4881 return 0;
4882}
4883
cdd6c482 4884static int perf_event_index(struct perf_event *event)
194002b2 4885{
a4eaf7f1
PZ
4886 if (event->hw.state & PERF_HES_STOPPED)
4887 return 0;
4888
cdd6c482 4889 if (event->state != PERF_EVENT_STATE_ACTIVE)
194002b2
PZ
4890 return 0;
4891
35edc2a5 4892 return event->pmu->event_idx(event);
194002b2
PZ
4893}
4894
c4794295 4895static void calc_timer_values(struct perf_event *event,
e3f3541c 4896 u64 *now,
7f310a5d
EM
4897 u64 *enabled,
4898 u64 *running)
c4794295 4899{
e3f3541c 4900 u64 ctx_time;
c4794295 4901
e3f3541c
PZ
4902 *now = perf_clock();
4903 ctx_time = event->shadow_ctx_time + *now;
c4794295
EM
4904 *enabled = ctx_time - event->tstamp_enabled;
4905 *running = ctx_time - event->tstamp_running;
4906}
4907
fa731587
PZ
4908static void perf_event_init_userpage(struct perf_event *event)
4909{
4910 struct perf_event_mmap_page *userpg;
4911 struct ring_buffer *rb;
4912
4913 rcu_read_lock();
4914 rb = rcu_dereference(event->rb);
4915 if (!rb)
4916 goto unlock;
4917
4918 userpg = rb->user_page;
4919
4920 /* Allow new userspace to detect that bit 0 is deprecated */
4921 userpg->cap_bit0_is_deprecated = 1;
4922 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
e8c6deac
AS
4923 userpg->data_offset = PAGE_SIZE;
4924 userpg->data_size = perf_data_size(rb);
fa731587
PZ
4925
4926unlock:
4927 rcu_read_unlock();
4928}
4929
c1317ec2
AL
4930void __weak arch_perf_update_userpage(
4931 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
e3f3541c
PZ
4932{
4933}
4934
38ff667b
PZ
4935/*
4936 * Callers need to ensure there can be no nesting of this function, otherwise
4937 * the seqlock logic goes bad. We can not serialize this because the arch
4938 * code calls this from NMI context.
4939 */
cdd6c482 4940void perf_event_update_userpage(struct perf_event *event)
37d81828 4941{
cdd6c482 4942 struct perf_event_mmap_page *userpg;
76369139 4943 struct ring_buffer *rb;
e3f3541c 4944 u64 enabled, running, now;
38ff667b
PZ
4945
4946 rcu_read_lock();
5ec4c599
PZ
4947 rb = rcu_dereference(event->rb);
4948 if (!rb)
4949 goto unlock;
4950
0d641208
EM
4951 /*
4952 * compute total_time_enabled, total_time_running
4953 * based on snapshot values taken when the event
4954 * was last scheduled in.
4955 *
4956 * we cannot simply called update_context_time()
4957 * because of locking issue as we can be called in
4958 * NMI context
4959 */
e3f3541c 4960 calc_timer_values(event, &now, &enabled, &running);
38ff667b 4961
76369139 4962 userpg = rb->user_page;
7b732a75
PZ
4963 /*
4964 * Disable preemption so as to not let the corresponding user-space
4965 * spin too long if we get preempted.
4966 */
4967 preempt_disable();
37d81828 4968 ++userpg->lock;
92f22a38 4969 barrier();
cdd6c482 4970 userpg->index = perf_event_index(event);
b5e58793 4971 userpg->offset = perf_event_count(event);
365a4038 4972 if (userpg->index)
e7850595 4973 userpg->offset -= local64_read(&event->hw.prev_count);
7b732a75 4974
0d641208 4975 userpg->time_enabled = enabled +
cdd6c482 4976 atomic64_read(&event->child_total_time_enabled);
7f8b4e4e 4977
0d641208 4978 userpg->time_running = running +
cdd6c482 4979 atomic64_read(&event->child_total_time_running);
7f8b4e4e 4980
c1317ec2 4981 arch_perf_update_userpage(event, userpg, now);
e3f3541c 4982
92f22a38 4983 barrier();
37d81828 4984 ++userpg->lock;
7b732a75 4985 preempt_enable();
38ff667b 4986unlock:
7b732a75 4987 rcu_read_unlock();
37d81828
PM
4988}
4989
11bac800 4990static int perf_mmap_fault(struct vm_fault *vmf)
906010b2 4991{
11bac800 4992 struct perf_event *event = vmf->vma->vm_file->private_data;
76369139 4993 struct ring_buffer *rb;
906010b2
PZ
4994 int ret = VM_FAULT_SIGBUS;
4995
4996 if (vmf->flags & FAULT_FLAG_MKWRITE) {
4997 if (vmf->pgoff == 0)
4998 ret = 0;
4999 return ret;
5000 }
5001
5002 rcu_read_lock();
76369139
FW
5003 rb = rcu_dereference(event->rb);
5004 if (!rb)
906010b2
PZ
5005 goto unlock;
5006
5007 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
5008 goto unlock;
5009
76369139 5010 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
906010b2
PZ
5011 if (!vmf->page)
5012 goto unlock;
5013
5014 get_page(vmf->page);
11bac800 5015 vmf->page->mapping = vmf->vma->vm_file->f_mapping;
906010b2
PZ
5016 vmf->page->index = vmf->pgoff;
5017
5018 ret = 0;
5019unlock:
5020 rcu_read_unlock();
5021
5022 return ret;
5023}
5024
10c6db11
PZ
5025static void ring_buffer_attach(struct perf_event *event,
5026 struct ring_buffer *rb)
5027{
b69cf536 5028 struct ring_buffer *old_rb = NULL;
10c6db11
PZ
5029 unsigned long flags;
5030
b69cf536
PZ
5031 if (event->rb) {
5032 /*
5033 * Should be impossible, we set this when removing
5034 * event->rb_entry and wait/clear when adding event->rb_entry.
5035 */
5036 WARN_ON_ONCE(event->rcu_pending);
10c6db11 5037
b69cf536 5038 old_rb = event->rb;
b69cf536
PZ
5039 spin_lock_irqsave(&old_rb->event_lock, flags);
5040 list_del_rcu(&event->rb_entry);
5041 spin_unlock_irqrestore(&old_rb->event_lock, flags);
10c6db11 5042
2f993cf0
ON
5043 event->rcu_batches = get_state_synchronize_rcu();
5044 event->rcu_pending = 1;
b69cf536 5045 }
10c6db11 5046
b69cf536 5047 if (rb) {
2f993cf0
ON
5048 if (event->rcu_pending) {
5049 cond_synchronize_rcu(event->rcu_batches);
5050 event->rcu_pending = 0;
5051 }
5052
b69cf536
PZ
5053 spin_lock_irqsave(&rb->event_lock, flags);
5054 list_add_rcu(&event->rb_entry, &rb->event_list);
5055 spin_unlock_irqrestore(&rb->event_lock, flags);
5056 }
5057
767ae086
AS
5058 /*
5059 * Avoid racing with perf_mmap_close(AUX): stop the event
5060 * before swizzling the event::rb pointer; if it's getting
5061 * unmapped, its aux_mmap_count will be 0 and it won't
5062 * restart. See the comment in __perf_pmu_output_stop().
5063 *
5064 * Data will inevitably be lost when set_output is done in
5065 * mid-air, but then again, whoever does it like this is
5066 * not in for the data anyway.
5067 */
5068 if (has_aux(event))
5069 perf_event_stop(event, 0);
5070
b69cf536
PZ
5071 rcu_assign_pointer(event->rb, rb);
5072
5073 if (old_rb) {
5074 ring_buffer_put(old_rb);
5075 /*
5076 * Since we detached before setting the new rb, so that we
5077 * could attach the new rb, we could have missed a wakeup.
5078 * Provide it now.
5079 */
5080 wake_up_all(&event->waitq);
5081 }
10c6db11
PZ
5082}
5083
5084static void ring_buffer_wakeup(struct perf_event *event)
5085{
5086 struct ring_buffer *rb;
5087
5088 rcu_read_lock();
5089 rb = rcu_dereference(event->rb);
9bb5d40c
PZ
5090 if (rb) {
5091 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5092 wake_up_all(&event->waitq);
5093 }
10c6db11
PZ
5094 rcu_read_unlock();
5095}
5096
fdc26706 5097struct ring_buffer *ring_buffer_get(struct perf_event *event)
7b732a75 5098{
76369139 5099 struct ring_buffer *rb;
7b732a75 5100
ac9721f3 5101 rcu_read_lock();
76369139
FW
5102 rb = rcu_dereference(event->rb);
5103 if (rb) {
5104 if (!atomic_inc_not_zero(&rb->refcount))
5105 rb = NULL;
ac9721f3
PZ
5106 }
5107 rcu_read_unlock();
5108
76369139 5109 return rb;
ac9721f3
PZ
5110}
5111
fdc26706 5112void ring_buffer_put(struct ring_buffer *rb)
ac9721f3 5113{
76369139 5114 if (!atomic_dec_and_test(&rb->refcount))
ac9721f3 5115 return;
7b732a75 5116
9bb5d40c 5117 WARN_ON_ONCE(!list_empty(&rb->event_list));
10c6db11 5118
76369139 5119 call_rcu(&rb->rcu_head, rb_free_rcu);
7b732a75
PZ
5120}
5121
5122static void perf_mmap_open(struct vm_area_struct *vma)
5123{
cdd6c482 5124 struct perf_event *event = vma->vm_file->private_data;
7b732a75 5125
cdd6c482 5126 atomic_inc(&event->mmap_count);
9bb5d40c 5127 atomic_inc(&event->rb->mmap_count);
1e0fb9ec 5128
45bfb2e5
PZ
5129 if (vma->vm_pgoff)
5130 atomic_inc(&event->rb->aux_mmap_count);
5131
1e0fb9ec 5132 if (event->pmu->event_mapped)
bfe33492 5133 event->pmu->event_mapped(event, vma->vm_mm);
7b732a75
PZ
5134}
5135
95ff4ca2
AS
5136static void perf_pmu_output_stop(struct perf_event *event);
5137
9bb5d40c
PZ
5138/*
5139 * A buffer can be mmap()ed multiple times; either directly through the same
5140 * event, or through other events by use of perf_event_set_output().
5141 *
5142 * In order to undo the VM accounting done by perf_mmap() we need to destroy
5143 * the buffer here, where we still have a VM context. This means we need
5144 * to detach all events redirecting to us.
5145 */
7b732a75
PZ
5146static void perf_mmap_close(struct vm_area_struct *vma)
5147{
cdd6c482 5148 struct perf_event *event = vma->vm_file->private_data;
7b732a75 5149
b69cf536 5150 struct ring_buffer *rb = ring_buffer_get(event);
9bb5d40c
PZ
5151 struct user_struct *mmap_user = rb->mmap_user;
5152 int mmap_locked = rb->mmap_locked;
5153 unsigned long size = perf_data_size(rb);
789f90fc 5154
1e0fb9ec 5155 if (event->pmu->event_unmapped)
bfe33492 5156 event->pmu->event_unmapped(event, vma->vm_mm);
1e0fb9ec 5157
45bfb2e5
PZ
5158 /*
5159 * rb->aux_mmap_count will always drop before rb->mmap_count and
5160 * event->mmap_count, so it is ok to use event->mmap_mutex to
5161 * serialize with perf_mmap here.
5162 */
5163 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5164 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
95ff4ca2
AS
5165 /*
5166 * Stop all AUX events that are writing to this buffer,
5167 * so that we can free its AUX pages and corresponding PMU
5168 * data. Note that after rb::aux_mmap_count dropped to zero,
5169 * they won't start any more (see perf_aux_output_begin()).
5170 */
5171 perf_pmu_output_stop(event);
5172
5173 /* now it's safe to free the pages */
45bfb2e5
PZ
5174 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
5175 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
5176
95ff4ca2 5177 /* this has to be the last one */
45bfb2e5 5178 rb_free_aux(rb);
95ff4ca2
AS
5179 WARN_ON_ONCE(atomic_read(&rb->aux_refcount));
5180
45bfb2e5
PZ
5181 mutex_unlock(&event->mmap_mutex);
5182 }
5183
9bb5d40c
PZ
5184 atomic_dec(&rb->mmap_count);
5185
5186 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
b69cf536 5187 goto out_put;
9bb5d40c 5188
b69cf536 5189 ring_buffer_attach(event, NULL);
9bb5d40c
PZ
5190 mutex_unlock(&event->mmap_mutex);
5191
5192 /* If there's still other mmap()s of this buffer, we're done. */
b69cf536
PZ
5193 if (atomic_read(&rb->mmap_count))
5194 goto out_put;
ac9721f3 5195
9bb5d40c
PZ
5196 /*
5197 * No other mmap()s, detach from all other events that might redirect
5198 * into the now unreachable buffer. Somewhat complicated by the
5199 * fact that rb::event_lock otherwise nests inside mmap_mutex.
5200 */
5201again:
5202 rcu_read_lock();
5203 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5204 if (!atomic_long_inc_not_zero(&event->refcount)) {
5205 /*
5206 * This event is en-route to free_event() which will
5207 * detach it and remove it from the list.
5208 */
5209 continue;
5210 }
5211 rcu_read_unlock();
789f90fc 5212
9bb5d40c
PZ
5213 mutex_lock(&event->mmap_mutex);
5214 /*
5215 * Check we didn't race with perf_event_set_output() which can
5216 * swizzle the rb from under us while we were waiting to
5217 * acquire mmap_mutex.
5218 *
5219 * If we find a different rb; ignore this event, a next
5220 * iteration will no longer find it on the list. We have to
5221 * still restart the iteration to make sure we're not now
5222 * iterating the wrong list.
5223 */
b69cf536
PZ
5224 if (event->rb == rb)
5225 ring_buffer_attach(event, NULL);
5226
cdd6c482 5227 mutex_unlock(&event->mmap_mutex);
9bb5d40c 5228 put_event(event);
ac9721f3 5229
9bb5d40c
PZ
5230 /*
5231 * Restart the iteration; either we're on the wrong list or
5232 * destroyed its integrity by doing a deletion.
5233 */
5234 goto again;
7b732a75 5235 }
9bb5d40c
PZ
5236 rcu_read_unlock();
5237
5238 /*
5239 * It could be there's still a few 0-ref events on the list; they'll
5240 * get cleaned up by free_event() -- they'll also still have their
5241 * ref on the rb and will free it whenever they are done with it.
5242 *
5243 * Aside from that, this buffer is 'fully' detached and unmapped,
5244 * undo the VM accounting.
5245 */
5246
5247 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
5248 vma->vm_mm->pinned_vm -= mmap_locked;
5249 free_uid(mmap_user);
5250
b69cf536 5251out_put:
9bb5d40c 5252 ring_buffer_put(rb); /* could be last */
37d81828
PM
5253}
5254
f0f37e2f 5255static const struct vm_operations_struct perf_mmap_vmops = {
43a21ea8 5256 .open = perf_mmap_open,
45bfb2e5 5257 .close = perf_mmap_close, /* non mergable */
43a21ea8
PZ
5258 .fault = perf_mmap_fault,
5259 .page_mkwrite = perf_mmap_fault,
37d81828
PM
5260};
5261
5262static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5263{
cdd6c482 5264 struct perf_event *event = file->private_data;
22a4f650 5265 unsigned long user_locked, user_lock_limit;
789f90fc 5266 struct user_struct *user = current_user();
22a4f650 5267 unsigned long locked, lock_limit;
45bfb2e5 5268 struct ring_buffer *rb = NULL;
7b732a75
PZ
5269 unsigned long vma_size;
5270 unsigned long nr_pages;
45bfb2e5 5271 long user_extra = 0, extra = 0;
d57e34fd 5272 int ret = 0, flags = 0;
37d81828 5273
c7920614
PZ
5274 /*
5275 * Don't allow mmap() of inherited per-task counters. This would
5276 * create a performance issue due to all children writing to the
76369139 5277 * same rb.
c7920614
PZ
5278 */
5279 if (event->cpu == -1 && event->attr.inherit)
5280 return -EINVAL;
5281
43a21ea8 5282 if (!(vma->vm_flags & VM_SHARED))
37d81828 5283 return -EINVAL;
7b732a75
PZ
5284
5285 vma_size = vma->vm_end - vma->vm_start;
45bfb2e5
PZ
5286
5287 if (vma->vm_pgoff == 0) {
5288 nr_pages = (vma_size / PAGE_SIZE) - 1;
5289 } else {
5290 /*
5291 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5292 * mapped, all subsequent mappings should have the same size
5293 * and offset. Must be above the normal perf buffer.
5294 */
5295 u64 aux_offset, aux_size;
5296
5297 if (!event->rb)
5298 return -EINVAL;
5299
5300 nr_pages = vma_size / PAGE_SIZE;
5301
5302 mutex_lock(&event->mmap_mutex);
5303 ret = -EINVAL;
5304
5305 rb = event->rb;
5306 if (!rb)
5307 goto aux_unlock;
5308
5309 aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
5310 aux_size = ACCESS_ONCE(rb->user_page->aux_size);
5311
5312 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5313 goto aux_unlock;
5314
5315 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5316 goto aux_unlock;
5317
5318 /* already mapped with a different offset */
5319 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5320 goto aux_unlock;
5321
5322 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5323 goto aux_unlock;
5324
5325 /* already mapped with a different size */
5326 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5327 goto aux_unlock;
5328
5329 if (!is_power_of_2(nr_pages))
5330 goto aux_unlock;
5331
5332 if (!atomic_inc_not_zero(&rb->mmap_count))
5333 goto aux_unlock;
5334
5335 if (rb_has_aux(rb)) {
5336 atomic_inc(&rb->aux_mmap_count);
5337 ret = 0;
5338 goto unlock;
5339 }
5340
5341 atomic_set(&rb->aux_mmap_count, 1);
5342 user_extra = nr_pages;
5343
5344 goto accounting;
5345 }
7b732a75 5346
7730d865 5347 /*
76369139 5348 * If we have rb pages ensure they're a power-of-two number, so we
7730d865
PZ
5349 * can do bitmasks instead of modulo.
5350 */
2ed11312 5351 if (nr_pages != 0 && !is_power_of_2(nr_pages))
37d81828
PM
5352 return -EINVAL;
5353
7b732a75 5354 if (vma_size != PAGE_SIZE * (1 + nr_pages))
37d81828
PM
5355 return -EINVAL;
5356
cdd6c482 5357 WARN_ON_ONCE(event->ctx->parent_ctx);
9bb5d40c 5358again:
cdd6c482 5359 mutex_lock(&event->mmap_mutex);
76369139 5360 if (event->rb) {
9bb5d40c 5361 if (event->rb->nr_pages != nr_pages) {
ebb3c4c4 5362 ret = -EINVAL;
9bb5d40c
PZ
5363 goto unlock;
5364 }
5365
5366 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5367 /*
5368 * Raced against perf_mmap_close() through
5369 * perf_event_set_output(). Try again, hope for better
5370 * luck.
5371 */
5372 mutex_unlock(&event->mmap_mutex);
5373 goto again;
5374 }
5375
ebb3c4c4
PZ
5376 goto unlock;
5377 }
5378
789f90fc 5379 user_extra = nr_pages + 1;
45bfb2e5
PZ
5380
5381accounting:
cdd6c482 5382 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
a3862d3f
IM
5383
5384 /*
5385 * Increase the limit linearly with more CPUs:
5386 */
5387 user_lock_limit *= num_online_cpus();
5388
789f90fc 5389 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
c5078f78 5390
789f90fc
PZ
5391 if (user_locked > user_lock_limit)
5392 extra = user_locked - user_lock_limit;
7b732a75 5393
78d7d407 5394 lock_limit = rlimit(RLIMIT_MEMLOCK);
7b732a75 5395 lock_limit >>= PAGE_SHIFT;
bc3e53f6 5396 locked = vma->vm_mm->pinned_vm + extra;
7b732a75 5397
459ec28a
IM
5398 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5399 !capable(CAP_IPC_LOCK)) {
ebb3c4c4
PZ
5400 ret = -EPERM;
5401 goto unlock;
5402 }
7b732a75 5403
45bfb2e5 5404 WARN_ON(!rb && event->rb);
906010b2 5405
d57e34fd 5406 if (vma->vm_flags & VM_WRITE)
76369139 5407 flags |= RING_BUFFER_WRITABLE;
d57e34fd 5408
76369139 5409 if (!rb) {
45bfb2e5
PZ
5410 rb = rb_alloc(nr_pages,
5411 event->attr.watermark ? event->attr.wakeup_watermark : 0,
5412 event->cpu, flags);
26cb63ad 5413
45bfb2e5
PZ
5414 if (!rb) {
5415 ret = -ENOMEM;
5416 goto unlock;
5417 }
43a21ea8 5418
45bfb2e5
PZ
5419 atomic_set(&rb->mmap_count, 1);
5420 rb->mmap_user = get_current_user();
5421 rb->mmap_locked = extra;
26cb63ad 5422
45bfb2e5 5423 ring_buffer_attach(event, rb);
ac9721f3 5424
45bfb2e5
PZ
5425 perf_event_init_userpage(event);
5426 perf_event_update_userpage(event);
5427 } else {
1a594131
AS
5428 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5429 event->attr.aux_watermark, flags);
45bfb2e5
PZ
5430 if (!ret)
5431 rb->aux_mmap_locked = extra;
5432 }
9a0f05cb 5433
ebb3c4c4 5434unlock:
45bfb2e5
PZ
5435 if (!ret) {
5436 atomic_long_add(user_extra, &user->locked_vm);
5437 vma->vm_mm->pinned_vm += extra;
5438
ac9721f3 5439 atomic_inc(&event->mmap_count);
45bfb2e5
PZ
5440 } else if (rb) {
5441 atomic_dec(&rb->mmap_count);
5442 }
5443aux_unlock:
cdd6c482 5444 mutex_unlock(&event->mmap_mutex);
37d81828 5445
9bb5d40c
PZ
5446 /*
5447 * Since pinned accounting is per vm we cannot allow fork() to copy our
5448 * vma.
5449 */
26cb63ad 5450 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
37d81828 5451 vma->vm_ops = &perf_mmap_vmops;
7b732a75 5452
1e0fb9ec 5453 if (event->pmu->event_mapped)
bfe33492 5454 event->pmu->event_mapped(event, vma->vm_mm);
1e0fb9ec 5455
7b732a75 5456 return ret;
37d81828
PM
5457}
5458
3c446b3d
PZ
5459static int perf_fasync(int fd, struct file *filp, int on)
5460{
496ad9aa 5461 struct inode *inode = file_inode(filp);
cdd6c482 5462 struct perf_event *event = filp->private_data;
3c446b3d
PZ
5463 int retval;
5464
5955102c 5465 inode_lock(inode);
cdd6c482 5466 retval = fasync_helper(fd, filp, on, &event->fasync);
5955102c 5467 inode_unlock(inode);
3c446b3d
PZ
5468
5469 if (retval < 0)
5470 return retval;
5471
5472 return 0;
5473}
5474
0793a61d 5475static const struct file_operations perf_fops = {
3326c1ce 5476 .llseek = no_llseek,
0793a61d
TG
5477 .release = perf_release,
5478 .read = perf_read,
5479 .poll = perf_poll,
d859e29f 5480 .unlocked_ioctl = perf_ioctl,
b3f20785 5481 .compat_ioctl = perf_compat_ioctl,
37d81828 5482 .mmap = perf_mmap,
3c446b3d 5483 .fasync = perf_fasync,
0793a61d
TG
5484};
5485
925d519a 5486/*
cdd6c482 5487 * Perf event wakeup
925d519a
PZ
5488 *
5489 * If there's data, ensure we set the poll() state and publish everything
5490 * to user-space before waking everybody up.
5491 */
5492
fed66e2c
PZ
5493static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5494{
5495 /* only the parent has fasync state */
5496 if (event->parent)
5497 event = event->parent;
5498 return &event->fasync;
5499}
5500
cdd6c482 5501void perf_event_wakeup(struct perf_event *event)
925d519a 5502{
10c6db11 5503 ring_buffer_wakeup(event);
4c9e2542 5504
cdd6c482 5505 if (event->pending_kill) {
fed66e2c 5506 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
cdd6c482 5507 event->pending_kill = 0;
4c9e2542 5508 }
925d519a
PZ
5509}
5510
e360adbe 5511static void perf_pending_event(struct irq_work *entry)
79f14641 5512{
cdd6c482
IM
5513 struct perf_event *event = container_of(entry,
5514 struct perf_event, pending);
d525211f
PZ
5515 int rctx;
5516
5517 rctx = perf_swevent_get_recursion_context();
5518 /*
5519 * If we 'fail' here, that's OK, it means recursion is already disabled
5520 * and we won't recurse 'further'.
5521 */
79f14641 5522
cdd6c482
IM
5523 if (event->pending_disable) {
5524 event->pending_disable = 0;
fae3fde6 5525 perf_event_disable_local(event);
79f14641
PZ
5526 }
5527
cdd6c482
IM
5528 if (event->pending_wakeup) {
5529 event->pending_wakeup = 0;
5530 perf_event_wakeup(event);
79f14641 5531 }
d525211f
PZ
5532
5533 if (rctx >= 0)
5534 perf_swevent_put_recursion_context(rctx);
79f14641
PZ
5535}
5536
39447b38
ZY
5537/*
5538 * We assume there is only KVM supporting the callbacks.
5539 * Later on, we might change it to a list if there is
5540 * another virtualization implementation supporting the callbacks.
5541 */
5542struct perf_guest_info_callbacks *perf_guest_cbs;
5543
5544int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5545{
5546 perf_guest_cbs = cbs;
5547 return 0;
5548}
5549EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5550
5551int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5552{
5553 perf_guest_cbs = NULL;
5554 return 0;
5555}
5556EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5557
4018994f
JO
5558static void
5559perf_output_sample_regs(struct perf_output_handle *handle,
5560 struct pt_regs *regs, u64 mask)
5561{
5562 int bit;
29dd3288 5563 DECLARE_BITMAP(_mask, 64);
4018994f 5564
29dd3288
MS
5565 bitmap_from_u64(_mask, mask);
5566 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
4018994f
JO
5567 u64 val;
5568
5569 val = perf_reg_value(regs, bit);
5570 perf_output_put(handle, val);
5571 }
5572}
5573
60e2364e 5574static void perf_sample_regs_user(struct perf_regs *regs_user,
88a7c26a
AL
5575 struct pt_regs *regs,
5576 struct pt_regs *regs_user_copy)
4018994f 5577{
88a7c26a
AL
5578 if (user_mode(regs)) {
5579 regs_user->abi = perf_reg_abi(current);
2565711f 5580 regs_user->regs = regs;
88a7c26a
AL
5581 } else if (current->mm) {
5582 perf_get_regs_user(regs_user, regs, regs_user_copy);
2565711f
PZ
5583 } else {
5584 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5585 regs_user->regs = NULL;
4018994f
JO
5586 }
5587}
5588
60e2364e
SE
5589static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5590 struct pt_regs *regs)
5591{
5592 regs_intr->regs = regs;
5593 regs_intr->abi = perf_reg_abi(current);
5594}
5595
5596
c5ebcedb
JO
5597/*
5598 * Get remaining task size from user stack pointer.
5599 *
5600 * It'd be better to take stack vma map and limit this more
5601 * precisly, but there's no way to get it safely under interrupt,
5602 * so using TASK_SIZE as limit.
5603 */
5604static u64 perf_ustack_task_size(struct pt_regs *regs)
5605{
5606 unsigned long addr = perf_user_stack_pointer(regs);
5607
5608 if (!addr || addr >= TASK_SIZE)
5609 return 0;
5610
5611 return TASK_SIZE - addr;
5612}
5613
5614static u16
5615perf_sample_ustack_size(u16 stack_size, u16 header_size,
5616 struct pt_regs *regs)
5617{
5618 u64 task_size;
5619
5620 /* No regs, no stack pointer, no dump. */
5621 if (!regs)
5622 return 0;
5623
5624 /*
5625 * Check if we fit in with the requested stack size into the:
5626 * - TASK_SIZE
5627 * If we don't, we limit the size to the TASK_SIZE.
5628 *
5629 * - remaining sample size
5630 * If we don't, we customize the stack size to
5631 * fit in to the remaining sample size.
5632 */
5633
5634 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5635 stack_size = min(stack_size, (u16) task_size);
5636
5637 /* Current header size plus static size and dynamic size. */
5638 header_size += 2 * sizeof(u64);
5639
5640 /* Do we fit in with the current stack dump size? */
5641 if ((u16) (header_size + stack_size) < header_size) {
5642 /*
5643 * If we overflow the maximum size for the sample,
5644 * we customize the stack dump size to fit in.
5645 */
5646 stack_size = USHRT_MAX - header_size - sizeof(u64);
5647 stack_size = round_up(stack_size, sizeof(u64));
5648 }
5649
5650 return stack_size;
5651}
5652
5653static void
5654perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5655 struct pt_regs *regs)
5656{
5657 /* Case of a kernel thread, nothing to dump */
5658 if (!regs) {
5659 u64 size = 0;
5660 perf_output_put(handle, size);
5661 } else {
5662 unsigned long sp;
5663 unsigned int rem;
5664 u64 dyn_size;
5665
5666 /*
5667 * We dump:
5668 * static size
5669 * - the size requested by user or the best one we can fit
5670 * in to the sample max size
5671 * data
5672 * - user stack dump data
5673 * dynamic size
5674 * - the actual dumped size
5675 */
5676
5677 /* Static size. */
5678 perf_output_put(handle, dump_size);
5679
5680 /* Data. */
5681 sp = perf_user_stack_pointer(regs);
5682 rem = __output_copy_user(handle, (void *) sp, dump_size);
5683 dyn_size = dump_size - rem;
5684
5685 perf_output_skip(handle, rem);
5686
5687 /* Dynamic size. */
5688 perf_output_put(handle, dyn_size);
5689 }
5690}
5691
c980d109
ACM
5692static void __perf_event_header__init_id(struct perf_event_header *header,
5693 struct perf_sample_data *data,
5694 struct perf_event *event)
6844c09d
ACM
5695{
5696 u64 sample_type = event->attr.sample_type;
5697
5698 data->type = sample_type;
5699 header->size += event->id_header_size;
5700
5701 if (sample_type & PERF_SAMPLE_TID) {
5702 /* namespace issues */
5703 data->tid_entry.pid = perf_event_pid(event, current);
5704 data->tid_entry.tid = perf_event_tid(event, current);
5705 }
5706
5707 if (sample_type & PERF_SAMPLE_TIME)
34f43927 5708 data->time = perf_event_clock(event);
6844c09d 5709
ff3d527c 5710 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6844c09d
ACM
5711 data->id = primary_event_id(event);
5712
5713 if (sample_type & PERF_SAMPLE_STREAM_ID)
5714 data->stream_id = event->id;
5715
5716 if (sample_type & PERF_SAMPLE_CPU) {
5717 data->cpu_entry.cpu = raw_smp_processor_id();
5718 data->cpu_entry.reserved = 0;
5719 }
5720}
5721
76369139
FW
5722void perf_event_header__init_id(struct perf_event_header *header,
5723 struct perf_sample_data *data,
5724 struct perf_event *event)
c980d109
ACM
5725{
5726 if (event->attr.sample_id_all)
5727 __perf_event_header__init_id(header, data, event);
5728}
5729
5730static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5731 struct perf_sample_data *data)
5732{
5733 u64 sample_type = data->type;
5734
5735 if (sample_type & PERF_SAMPLE_TID)
5736 perf_output_put(handle, data->tid_entry);
5737
5738 if (sample_type & PERF_SAMPLE_TIME)
5739 perf_output_put(handle, data->time);
5740
5741 if (sample_type & PERF_SAMPLE_ID)
5742 perf_output_put(handle, data->id);
5743
5744 if (sample_type & PERF_SAMPLE_STREAM_ID)
5745 perf_output_put(handle, data->stream_id);
5746
5747 if (sample_type & PERF_SAMPLE_CPU)
5748 perf_output_put(handle, data->cpu_entry);
ff3d527c
AH
5749
5750 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5751 perf_output_put(handle, data->id);
c980d109
ACM
5752}
5753
76369139
FW
5754void perf_event__output_id_sample(struct perf_event *event,
5755 struct perf_output_handle *handle,
5756 struct perf_sample_data *sample)
c980d109
ACM
5757{
5758 if (event->attr.sample_id_all)
5759 __perf_event__output_id_sample(handle, sample);
5760}
5761
3dab77fb 5762static void perf_output_read_one(struct perf_output_handle *handle,
eed01528
SE
5763 struct perf_event *event,
5764 u64 enabled, u64 running)
3dab77fb 5765{
cdd6c482 5766 u64 read_format = event->attr.read_format;
3dab77fb
PZ
5767 u64 values[4];
5768 int n = 0;
5769
b5e58793 5770 values[n++] = perf_event_count(event);
3dab77fb 5771 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
eed01528 5772 values[n++] = enabled +
cdd6c482 5773 atomic64_read(&event->child_total_time_enabled);
3dab77fb
PZ
5774 }
5775 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
eed01528 5776 values[n++] = running +
cdd6c482 5777 atomic64_read(&event->child_total_time_running);
3dab77fb
PZ
5778 }
5779 if (read_format & PERF_FORMAT_ID)
cdd6c482 5780 values[n++] = primary_event_id(event);
3dab77fb 5781
76369139 5782 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
5783}
5784
3dab77fb 5785static void perf_output_read_group(struct perf_output_handle *handle,
eed01528
SE
5786 struct perf_event *event,
5787 u64 enabled, u64 running)
3dab77fb 5788{
cdd6c482
IM
5789 struct perf_event *leader = event->group_leader, *sub;
5790 u64 read_format = event->attr.read_format;
3dab77fb
PZ
5791 u64 values[5];
5792 int n = 0;
5793
5794 values[n++] = 1 + leader->nr_siblings;
5795
5796 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
eed01528 5797 values[n++] = enabled;
3dab77fb
PZ
5798
5799 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
eed01528 5800 values[n++] = running;
3dab77fb 5801
cdd6c482 5802 if (leader != event)
3dab77fb
PZ
5803 leader->pmu->read(leader);
5804
b5e58793 5805 values[n++] = perf_event_count(leader);
3dab77fb 5806 if (read_format & PERF_FORMAT_ID)
cdd6c482 5807 values[n++] = primary_event_id(leader);
3dab77fb 5808
76369139 5809 __output_copy(handle, values, n * sizeof(u64));
3dab77fb 5810
65abc865 5811 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3dab77fb
PZ
5812 n = 0;
5813
6f5ab001
JO
5814 if ((sub != event) &&
5815 (sub->state == PERF_EVENT_STATE_ACTIVE))
3dab77fb
PZ
5816 sub->pmu->read(sub);
5817
b5e58793 5818 values[n++] = perf_event_count(sub);
3dab77fb 5819 if (read_format & PERF_FORMAT_ID)
cdd6c482 5820 values[n++] = primary_event_id(sub);
3dab77fb 5821
76369139 5822 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
5823 }
5824}
5825
eed01528
SE
5826#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5827 PERF_FORMAT_TOTAL_TIME_RUNNING)
5828
ba5213ae
PZ
5829/*
5830 * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
5831 *
5832 * The problem is that its both hard and excessively expensive to iterate the
5833 * child list, not to mention that its impossible to IPI the children running
5834 * on another CPU, from interrupt/NMI context.
5835 */
3dab77fb 5836static void perf_output_read(struct perf_output_handle *handle,
cdd6c482 5837 struct perf_event *event)
3dab77fb 5838{
e3f3541c 5839 u64 enabled = 0, running = 0, now;
eed01528
SE
5840 u64 read_format = event->attr.read_format;
5841
5842 /*
5843 * compute total_time_enabled, total_time_running
5844 * based on snapshot values taken when the event
5845 * was last scheduled in.
5846 *
5847 * we cannot simply called update_context_time()
5848 * because of locking issue as we are called in
5849 * NMI context
5850 */
c4794295 5851 if (read_format & PERF_FORMAT_TOTAL_TIMES)
e3f3541c 5852 calc_timer_values(event, &now, &enabled, &running);
eed01528 5853
cdd6c482 5854 if (event->attr.read_format & PERF_FORMAT_GROUP)
eed01528 5855 perf_output_read_group(handle, event, enabled, running);
3dab77fb 5856 else
eed01528 5857 perf_output_read_one(handle, event, enabled, running);
3dab77fb
PZ
5858}
5859
5622f295
MM
5860void perf_output_sample(struct perf_output_handle *handle,
5861 struct perf_event_header *header,
5862 struct perf_sample_data *data,
cdd6c482 5863 struct perf_event *event)
5622f295
MM
5864{
5865 u64 sample_type = data->type;
5866
5867 perf_output_put(handle, *header);
5868
ff3d527c
AH
5869 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5870 perf_output_put(handle, data->id);
5871
5622f295
MM
5872 if (sample_type & PERF_SAMPLE_IP)
5873 perf_output_put(handle, data->ip);
5874
5875 if (sample_type & PERF_SAMPLE_TID)
5876 perf_output_put(handle, data->tid_entry);
5877
5878 if (sample_type & PERF_SAMPLE_TIME)
5879 perf_output_put(handle, data->time);
5880
5881 if (sample_type & PERF_SAMPLE_ADDR)
5882 perf_output_put(handle, data->addr);
5883
5884 if (sample_type & PERF_SAMPLE_ID)
5885 perf_output_put(handle, data->id);
5886
5887 if (sample_type & PERF_SAMPLE_STREAM_ID)
5888 perf_output_put(handle, data->stream_id);
5889
5890 if (sample_type & PERF_SAMPLE_CPU)
5891 perf_output_put(handle, data->cpu_entry);
5892
5893 if (sample_type & PERF_SAMPLE_PERIOD)
5894 perf_output_put(handle, data->period);
5895
5896 if (sample_type & PERF_SAMPLE_READ)
cdd6c482 5897 perf_output_read(handle, event);
5622f295
MM
5898
5899 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5900 if (data->callchain) {
5901 int size = 1;
5902
5903 if (data->callchain)
5904 size += data->callchain->nr;
5905
5906 size *= sizeof(u64);
5907
76369139 5908 __output_copy(handle, data->callchain, size);
5622f295
MM
5909 } else {
5910 u64 nr = 0;
5911 perf_output_put(handle, nr);
5912 }
5913 }
5914
5915 if (sample_type & PERF_SAMPLE_RAW) {
7e3f977e
DB
5916 struct perf_raw_record *raw = data->raw;
5917
5918 if (raw) {
5919 struct perf_raw_frag *frag = &raw->frag;
5920
5921 perf_output_put(handle, raw->size);
5922 do {
5923 if (frag->copy) {
5924 __output_custom(handle, frag->copy,
5925 frag->data, frag->size);
5926 } else {
5927 __output_copy(handle, frag->data,
5928 frag->size);
5929 }
5930 if (perf_raw_frag_last(frag))
5931 break;
5932 frag = frag->next;
5933 } while (1);
5934 if (frag->pad)
5935 __output_skip(handle, NULL, frag->pad);
5622f295
MM
5936 } else {
5937 struct {
5938 u32 size;
5939 u32 data;
5940 } raw = {
5941 .size = sizeof(u32),
5942 .data = 0,
5943 };
5944 perf_output_put(handle, raw);
5945 }
5946 }
a7ac67ea 5947
bce38cd5
SE
5948 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5949 if (data->br_stack) {
5950 size_t size;
5951
5952 size = data->br_stack->nr
5953 * sizeof(struct perf_branch_entry);
5954
5955 perf_output_put(handle, data->br_stack->nr);
5956 perf_output_copy(handle, data->br_stack->entries, size);
5957 } else {
5958 /*
5959 * we always store at least the value of nr
5960 */
5961 u64 nr = 0;
5962 perf_output_put(handle, nr);
5963 }
5964 }
4018994f
JO
5965
5966 if (sample_type & PERF_SAMPLE_REGS_USER) {
5967 u64 abi = data->regs_user.abi;
5968
5969 /*
5970 * If there are no regs to dump, notice it through
5971 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5972 */
5973 perf_output_put(handle, abi);
5974
5975 if (abi) {
5976 u64 mask = event->attr.sample_regs_user;
5977 perf_output_sample_regs(handle,
5978 data->regs_user.regs,
5979 mask);
5980 }
5981 }
c5ebcedb 5982
a5cdd40c 5983 if (sample_type & PERF_SAMPLE_STACK_USER) {
c5ebcedb
JO
5984 perf_output_sample_ustack(handle,
5985 data->stack_user_size,
5986 data->regs_user.regs);
a5cdd40c 5987 }
c3feedf2
AK
5988
5989 if (sample_type & PERF_SAMPLE_WEIGHT)
5990 perf_output_put(handle, data->weight);
d6be9ad6
SE
5991
5992 if (sample_type & PERF_SAMPLE_DATA_SRC)
5993 perf_output_put(handle, data->data_src.val);
a5cdd40c 5994
fdfbbd07
AK
5995 if (sample_type & PERF_SAMPLE_TRANSACTION)
5996 perf_output_put(handle, data->txn);
5997
60e2364e
SE
5998 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5999 u64 abi = data->regs_intr.abi;
6000 /*
6001 * If there are no regs to dump, notice it through
6002 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6003 */
6004 perf_output_put(handle, abi);
6005
6006 if (abi) {
6007 u64 mask = event->attr.sample_regs_intr;
6008
6009 perf_output_sample_regs(handle,
6010 data->regs_intr.regs,
6011 mask);
6012 }
6013 }
6014
a5cdd40c
PZ
6015 if (!event->attr.watermark) {
6016 int wakeup_events = event->attr.wakeup_events;
6017
6018 if (wakeup_events) {
6019 struct ring_buffer *rb = handle->rb;
6020 int events = local_inc_return(&rb->events);
6021
6022 if (events >= wakeup_events) {
6023 local_sub(wakeup_events, &rb->events);
6024 local_inc(&rb->wakeup);
6025 }
6026 }
6027 }
5622f295
MM
6028}
6029
6030void perf_prepare_sample(struct perf_event_header *header,
6031 struct perf_sample_data *data,
cdd6c482 6032 struct perf_event *event,
5622f295 6033 struct pt_regs *regs)
7b732a75 6034{
cdd6c482 6035 u64 sample_type = event->attr.sample_type;
7b732a75 6036
cdd6c482 6037 header->type = PERF_RECORD_SAMPLE;
c320c7b7 6038 header->size = sizeof(*header) + event->header_size;
5622f295
MM
6039
6040 header->misc = 0;
6041 header->misc |= perf_misc_flags(regs);
6fab0192 6042
c980d109 6043 __perf_event_header__init_id(header, data, event);
6844c09d 6044
c320c7b7 6045 if (sample_type & PERF_SAMPLE_IP)
5622f295
MM
6046 data->ip = perf_instruction_pointer(regs);
6047
b23f3325 6048 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5622f295 6049 int size = 1;
394ee076 6050
e6dab5ff 6051 data->callchain = perf_callchain(event, regs);
5622f295
MM
6052
6053 if (data->callchain)
6054 size += data->callchain->nr;
6055
6056 header->size += size * sizeof(u64);
394ee076
PZ
6057 }
6058
3a43ce68 6059 if (sample_type & PERF_SAMPLE_RAW) {
7e3f977e
DB
6060 struct perf_raw_record *raw = data->raw;
6061 int size;
6062
6063 if (raw) {
6064 struct perf_raw_frag *frag = &raw->frag;
6065 u32 sum = 0;
6066
6067 do {
6068 sum += frag->size;
6069 if (perf_raw_frag_last(frag))
6070 break;
6071 frag = frag->next;
6072 } while (1);
6073
6074 size = round_up(sum + sizeof(u32), sizeof(u64));
6075 raw->size = size - sizeof(u32);
6076 frag->pad = raw->size - sum;
6077 } else {
6078 size = sizeof(u64);
6079 }
a044560c 6080
7e3f977e 6081 header->size += size;
7f453c24 6082 }
bce38cd5
SE
6083
6084 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6085 int size = sizeof(u64); /* nr */
6086 if (data->br_stack) {
6087 size += data->br_stack->nr
6088 * sizeof(struct perf_branch_entry);
6089 }
6090 header->size += size;
6091 }
4018994f 6092
2565711f 6093 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
88a7c26a
AL
6094 perf_sample_regs_user(&data->regs_user, regs,
6095 &data->regs_user_copy);
2565711f 6096
4018994f
JO
6097 if (sample_type & PERF_SAMPLE_REGS_USER) {
6098 /* regs dump ABI info */
6099 int size = sizeof(u64);
6100
4018994f
JO
6101 if (data->regs_user.regs) {
6102 u64 mask = event->attr.sample_regs_user;
6103 size += hweight64(mask) * sizeof(u64);
6104 }
6105
6106 header->size += size;
6107 }
c5ebcedb
JO
6108
6109 if (sample_type & PERF_SAMPLE_STACK_USER) {
6110 /*
6111 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
6112 * processed as the last one or have additional check added
6113 * in case new sample type is added, because we could eat
6114 * up the rest of the sample size.
6115 */
c5ebcedb
JO
6116 u16 stack_size = event->attr.sample_stack_user;
6117 u16 size = sizeof(u64);
6118
c5ebcedb 6119 stack_size = perf_sample_ustack_size(stack_size, header->size,
2565711f 6120 data->regs_user.regs);
c5ebcedb
JO
6121
6122 /*
6123 * If there is something to dump, add space for the dump
6124 * itself and for the field that tells the dynamic size,
6125 * which is how many have been actually dumped.
6126 */
6127 if (stack_size)
6128 size += sizeof(u64) + stack_size;
6129
6130 data->stack_user_size = stack_size;
6131 header->size += size;
6132 }
60e2364e
SE
6133
6134 if (sample_type & PERF_SAMPLE_REGS_INTR) {
6135 /* regs dump ABI info */
6136 int size = sizeof(u64);
6137
6138 perf_sample_regs_intr(&data->regs_intr, regs);
6139
6140 if (data->regs_intr.regs) {
6141 u64 mask = event->attr.sample_regs_intr;
6142
6143 size += hweight64(mask) * sizeof(u64);
6144 }
6145
6146 header->size += size;
6147 }
5622f295 6148}
7f453c24 6149
9ecda41a
WN
6150static void __always_inline
6151__perf_event_output(struct perf_event *event,
6152 struct perf_sample_data *data,
6153 struct pt_regs *regs,
6154 int (*output_begin)(struct perf_output_handle *,
6155 struct perf_event *,
6156 unsigned int))
5622f295
MM
6157{
6158 struct perf_output_handle handle;
6159 struct perf_event_header header;
689802b2 6160
927c7a9e
FW
6161 /* protect the callchain buffers */
6162 rcu_read_lock();
6163
cdd6c482 6164 perf_prepare_sample(&header, data, event, regs);
5c148194 6165
9ecda41a 6166 if (output_begin(&handle, event, header.size))
927c7a9e 6167 goto exit;
0322cd6e 6168
cdd6c482 6169 perf_output_sample(&handle, &header, data, event);
f413cdb8 6170
8a057d84 6171 perf_output_end(&handle);
927c7a9e
FW
6172
6173exit:
6174 rcu_read_unlock();
0322cd6e
PZ
6175}
6176
9ecda41a
WN
6177void
6178perf_event_output_forward(struct perf_event *event,
6179 struct perf_sample_data *data,
6180 struct pt_regs *regs)
6181{
6182 __perf_event_output(event, data, regs, perf_output_begin_forward);
6183}
6184
6185void
6186perf_event_output_backward(struct perf_event *event,
6187 struct perf_sample_data *data,
6188 struct pt_regs *regs)
6189{
6190 __perf_event_output(event, data, regs, perf_output_begin_backward);
6191}
6192
6193void
6194perf_event_output(struct perf_event *event,
6195 struct perf_sample_data *data,
6196 struct pt_regs *regs)
6197{
6198 __perf_event_output(event, data, regs, perf_output_begin);
6199}
6200
38b200d6 6201/*
cdd6c482 6202 * read event_id
38b200d6
PZ
6203 */
6204
6205struct perf_read_event {
6206 struct perf_event_header header;
6207
6208 u32 pid;
6209 u32 tid;
38b200d6
PZ
6210};
6211
6212static void
cdd6c482 6213perf_event_read_event(struct perf_event *event,
38b200d6
PZ
6214 struct task_struct *task)
6215{
6216 struct perf_output_handle handle;
c980d109 6217 struct perf_sample_data sample;
dfc65094 6218 struct perf_read_event read_event = {
38b200d6 6219 .header = {
cdd6c482 6220 .type = PERF_RECORD_READ,
38b200d6 6221 .misc = 0,
c320c7b7 6222 .size = sizeof(read_event) + event->read_size,
38b200d6 6223 },
cdd6c482
IM
6224 .pid = perf_event_pid(event, task),
6225 .tid = perf_event_tid(event, task),
38b200d6 6226 };
3dab77fb 6227 int ret;
38b200d6 6228
c980d109 6229 perf_event_header__init_id(&read_event.header, &sample, event);
a7ac67ea 6230 ret = perf_output_begin(&handle, event, read_event.header.size);
38b200d6
PZ
6231 if (ret)
6232 return;
6233
dfc65094 6234 perf_output_put(&handle, read_event);
cdd6c482 6235 perf_output_read(&handle, event);
c980d109 6236 perf_event__output_id_sample(event, &handle, &sample);
3dab77fb 6237
38b200d6
PZ
6238 perf_output_end(&handle);
6239}
6240
aab5b71e 6241typedef void (perf_iterate_f)(struct perf_event *event, void *data);
52d857a8
JO
6242
6243static void
aab5b71e
PZ
6244perf_iterate_ctx(struct perf_event_context *ctx,
6245 perf_iterate_f output,
b73e4fef 6246 void *data, bool all)
52d857a8
JO
6247{
6248 struct perf_event *event;
6249
6250 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
b73e4fef
AS
6251 if (!all) {
6252 if (event->state < PERF_EVENT_STATE_INACTIVE)
6253 continue;
6254 if (!event_filter_match(event))
6255 continue;
6256 }
6257
67516844 6258 output(event, data);
52d857a8
JO
6259 }
6260}
6261
aab5b71e 6262static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
f2fb6bef
KL
6263{
6264 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
6265 struct perf_event *event;
6266
6267 list_for_each_entry_rcu(event, &pel->list, sb_list) {
0b8f1e2e
PZ
6268 /*
6269 * Skip events that are not fully formed yet; ensure that
6270 * if we observe event->ctx, both event and ctx will be
6271 * complete enough. See perf_install_in_context().
6272 */
6273 if (!smp_load_acquire(&event->ctx))
6274 continue;
6275
f2fb6bef
KL
6276 if (event->state < PERF_EVENT_STATE_INACTIVE)
6277 continue;
6278 if (!event_filter_match(event))
6279 continue;
6280 output(event, data);
6281 }
6282}
6283
aab5b71e
PZ
6284/*
6285 * Iterate all events that need to receive side-band events.
6286 *
6287 * For new callers; ensure that account_pmu_sb_event() includes
6288 * your event, otherwise it might not get delivered.
6289 */
52d857a8 6290static void
aab5b71e 6291perf_iterate_sb(perf_iterate_f output, void *data,
52d857a8
JO
6292 struct perf_event_context *task_ctx)
6293{
52d857a8 6294 struct perf_event_context *ctx;
52d857a8
JO
6295 int ctxn;
6296
aab5b71e
PZ
6297 rcu_read_lock();
6298 preempt_disable();
6299
4e93ad60 6300 /*
aab5b71e
PZ
6301 * If we have task_ctx != NULL we only notify the task context itself.
6302 * The task_ctx is set only for EXIT events before releasing task
4e93ad60
JO
6303 * context.
6304 */
6305 if (task_ctx) {
aab5b71e
PZ
6306 perf_iterate_ctx(task_ctx, output, data, false);
6307 goto done;
4e93ad60
JO
6308 }
6309
aab5b71e 6310 perf_iterate_sb_cpu(output, data);
f2fb6bef
KL
6311
6312 for_each_task_context_nr(ctxn) {
52d857a8
JO
6313 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6314 if (ctx)
aab5b71e 6315 perf_iterate_ctx(ctx, output, data, false);
52d857a8 6316 }
aab5b71e 6317done:
f2fb6bef 6318 preempt_enable();
52d857a8 6319 rcu_read_unlock();
95ff4ca2
AS
6320}
6321
375637bc
AS
6322/*
6323 * Clear all file-based filters at exec, they'll have to be
6324 * re-instated when/if these objects are mmapped again.
6325 */
6326static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
6327{
6328 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6329 struct perf_addr_filter *filter;
6330 unsigned int restart = 0, count = 0;
6331 unsigned long flags;
6332
6333 if (!has_addr_filter(event))
6334 return;
6335
6336 raw_spin_lock_irqsave(&ifh->lock, flags);
6337 list_for_each_entry(filter, &ifh->list, entry) {
6338 if (filter->inode) {
6339 event->addr_filters_offs[count] = 0;
6340 restart++;
6341 }
6342
6343 count++;
6344 }
6345
6346 if (restart)
6347 event->addr_filters_gen++;
6348 raw_spin_unlock_irqrestore(&ifh->lock, flags);
6349
6350 if (restart)
767ae086 6351 perf_event_stop(event, 1);
375637bc
AS
6352}
6353
6354void perf_event_exec(void)
6355{
6356 struct perf_event_context *ctx;
6357 int ctxn;
6358
6359 rcu_read_lock();
6360 for_each_task_context_nr(ctxn) {
6361 ctx = current->perf_event_ctxp[ctxn];
6362 if (!ctx)
6363 continue;
6364
6365 perf_event_enable_on_exec(ctxn);
6366
aab5b71e 6367 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
375637bc
AS
6368 true);
6369 }
6370 rcu_read_unlock();
6371}
6372
95ff4ca2
AS
6373struct remote_output {
6374 struct ring_buffer *rb;
6375 int err;
6376};
6377
6378static void __perf_event_output_stop(struct perf_event *event, void *data)
6379{
6380 struct perf_event *parent = event->parent;
6381 struct remote_output *ro = data;
6382 struct ring_buffer *rb = ro->rb;
375637bc
AS
6383 struct stop_event_data sd = {
6384 .event = event,
6385 };
95ff4ca2
AS
6386
6387 if (!has_aux(event))
6388 return;
6389
6390 if (!parent)
6391 parent = event;
6392
6393 /*
6394 * In case of inheritance, it will be the parent that links to the
767ae086
AS
6395 * ring-buffer, but it will be the child that's actually using it.
6396 *
6397 * We are using event::rb to determine if the event should be stopped,
6398 * however this may race with ring_buffer_attach() (through set_output),
6399 * which will make us skip the event that actually needs to be stopped.
6400 * So ring_buffer_attach() has to stop an aux event before re-assigning
6401 * its rb pointer.
95ff4ca2
AS
6402 */
6403 if (rcu_dereference(parent->rb) == rb)
375637bc 6404 ro->err = __perf_event_stop(&sd);
95ff4ca2
AS
6405}
6406
6407static int __perf_pmu_output_stop(void *info)
6408{
6409 struct perf_event *event = info;
6410 struct pmu *pmu = event->pmu;
8b6a3fe8 6411 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
95ff4ca2
AS
6412 struct remote_output ro = {
6413 .rb = event->rb,
6414 };
6415
6416 rcu_read_lock();
aab5b71e 6417 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
95ff4ca2 6418 if (cpuctx->task_ctx)
aab5b71e 6419 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
b73e4fef 6420 &ro, false);
95ff4ca2
AS
6421 rcu_read_unlock();
6422
6423 return ro.err;
6424}
6425
6426static void perf_pmu_output_stop(struct perf_event *event)
6427{
6428 struct perf_event *iter;
6429 int err, cpu;
6430
6431restart:
6432 rcu_read_lock();
6433 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6434 /*
6435 * For per-CPU events, we need to make sure that neither they
6436 * nor their children are running; for cpu==-1 events it's
6437 * sufficient to stop the event itself if it's active, since
6438 * it can't have children.
6439 */
6440 cpu = iter->cpu;
6441 if (cpu == -1)
6442 cpu = READ_ONCE(iter->oncpu);
6443
6444 if (cpu == -1)
6445 continue;
6446
6447 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6448 if (err == -EAGAIN) {
6449 rcu_read_unlock();
6450 goto restart;
6451 }
6452 }
6453 rcu_read_unlock();
52d857a8
JO
6454}
6455
60313ebe 6456/*
9f498cc5
PZ
6457 * task tracking -- fork/exit
6458 *
13d7a241 6459 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
60313ebe
PZ
6460 */
6461
9f498cc5 6462struct perf_task_event {
3a80b4a3 6463 struct task_struct *task;
cdd6c482 6464 struct perf_event_context *task_ctx;
60313ebe
PZ
6465
6466 struct {
6467 struct perf_event_header header;
6468
6469 u32 pid;
6470 u32 ppid;
9f498cc5
PZ
6471 u32 tid;
6472 u32 ptid;
393b2ad8 6473 u64 time;
cdd6c482 6474 } event_id;
60313ebe
PZ
6475};
6476
67516844
JO
6477static int perf_event_task_match(struct perf_event *event)
6478{
13d7a241
SE
6479 return event->attr.comm || event->attr.mmap ||
6480 event->attr.mmap2 || event->attr.mmap_data ||
6481 event->attr.task;
67516844
JO
6482}
6483
cdd6c482 6484static void perf_event_task_output(struct perf_event *event,
52d857a8 6485 void *data)
60313ebe 6486{
52d857a8 6487 struct perf_task_event *task_event = data;
60313ebe 6488 struct perf_output_handle handle;
c980d109 6489 struct perf_sample_data sample;
9f498cc5 6490 struct task_struct *task = task_event->task;
c980d109 6491 int ret, size = task_event->event_id.header.size;
8bb39f9a 6492
67516844
JO
6493 if (!perf_event_task_match(event))
6494 return;
6495
c980d109 6496 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
60313ebe 6497
c980d109 6498 ret = perf_output_begin(&handle, event,
a7ac67ea 6499 task_event->event_id.header.size);
ef60777c 6500 if (ret)
c980d109 6501 goto out;
60313ebe 6502
cdd6c482
IM
6503 task_event->event_id.pid = perf_event_pid(event, task);
6504 task_event->event_id.ppid = perf_event_pid(event, current);
60313ebe 6505
cdd6c482
IM
6506 task_event->event_id.tid = perf_event_tid(event, task);
6507 task_event->event_id.ptid = perf_event_tid(event, current);
9f498cc5 6508
34f43927
PZ
6509 task_event->event_id.time = perf_event_clock(event);
6510
cdd6c482 6511 perf_output_put(&handle, task_event->event_id);
393b2ad8 6512
c980d109
ACM
6513 perf_event__output_id_sample(event, &handle, &sample);
6514
60313ebe 6515 perf_output_end(&handle);
c980d109
ACM
6516out:
6517 task_event->event_id.header.size = size;
60313ebe
PZ
6518}
6519
cdd6c482
IM
6520static void perf_event_task(struct task_struct *task,
6521 struct perf_event_context *task_ctx,
3a80b4a3 6522 int new)
60313ebe 6523{
9f498cc5 6524 struct perf_task_event task_event;
60313ebe 6525
cdd6c482
IM
6526 if (!atomic_read(&nr_comm_events) &&
6527 !atomic_read(&nr_mmap_events) &&
6528 !atomic_read(&nr_task_events))
60313ebe
PZ
6529 return;
6530
9f498cc5 6531 task_event = (struct perf_task_event){
3a80b4a3
PZ
6532 .task = task,
6533 .task_ctx = task_ctx,
cdd6c482 6534 .event_id = {
60313ebe 6535 .header = {
cdd6c482 6536 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
573402db 6537 .misc = 0,
cdd6c482 6538 .size = sizeof(task_event.event_id),
60313ebe 6539 },
573402db
PZ
6540 /* .pid */
6541 /* .ppid */
9f498cc5
PZ
6542 /* .tid */
6543 /* .ptid */
34f43927 6544 /* .time */
60313ebe
PZ
6545 },
6546 };
6547
aab5b71e 6548 perf_iterate_sb(perf_event_task_output,
52d857a8
JO
6549 &task_event,
6550 task_ctx);
9f498cc5
PZ
6551}
6552
cdd6c482 6553void perf_event_fork(struct task_struct *task)
9f498cc5 6554{
cdd6c482 6555 perf_event_task(task, NULL, 1);
e4222673 6556 perf_event_namespaces(task);
60313ebe
PZ
6557}
6558
8d1b2d93
PZ
6559/*
6560 * comm tracking
6561 */
6562
6563struct perf_comm_event {
22a4f650
IM
6564 struct task_struct *task;
6565 char *comm;
8d1b2d93
PZ
6566 int comm_size;
6567
6568 struct {
6569 struct perf_event_header header;
6570
6571 u32 pid;
6572 u32 tid;
cdd6c482 6573 } event_id;
8d1b2d93
PZ
6574};
6575
67516844
JO
6576static int perf_event_comm_match(struct perf_event *event)
6577{
6578 return event->attr.comm;
6579}
6580
cdd6c482 6581static void perf_event_comm_output(struct perf_event *event,
52d857a8 6582 void *data)
8d1b2d93 6583{
52d857a8 6584 struct perf_comm_event *comm_event = data;
8d1b2d93 6585 struct perf_output_handle handle;
c980d109 6586 struct perf_sample_data sample;
cdd6c482 6587 int size = comm_event->event_id.header.size;
c980d109
ACM
6588 int ret;
6589
67516844
JO
6590 if (!perf_event_comm_match(event))
6591 return;
6592
c980d109
ACM
6593 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
6594 ret = perf_output_begin(&handle, event,
a7ac67ea 6595 comm_event->event_id.header.size);
8d1b2d93
PZ
6596
6597 if (ret)
c980d109 6598 goto out;
8d1b2d93 6599
cdd6c482
IM
6600 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
6601 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
709e50cf 6602
cdd6c482 6603 perf_output_put(&handle, comm_event->event_id);
76369139 6604 __output_copy(&handle, comm_event->comm,
8d1b2d93 6605 comm_event->comm_size);
c980d109
ACM
6606
6607 perf_event__output_id_sample(event, &handle, &sample);
6608
8d1b2d93 6609 perf_output_end(&handle);
c980d109
ACM
6610out:
6611 comm_event->event_id.header.size = size;
8d1b2d93
PZ
6612}
6613
cdd6c482 6614static void perf_event_comm_event(struct perf_comm_event *comm_event)
8d1b2d93 6615{
413ee3b4 6616 char comm[TASK_COMM_LEN];
8d1b2d93 6617 unsigned int size;
8d1b2d93 6618
413ee3b4 6619 memset(comm, 0, sizeof(comm));
96b02d78 6620 strlcpy(comm, comm_event->task->comm, sizeof(comm));
888fcee0 6621 size = ALIGN(strlen(comm)+1, sizeof(u64));
8d1b2d93
PZ
6622
6623 comm_event->comm = comm;
6624 comm_event->comm_size = size;
6625
cdd6c482 6626 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
8dc85d54 6627
aab5b71e 6628 perf_iterate_sb(perf_event_comm_output,
52d857a8
JO
6629 comm_event,
6630 NULL);
8d1b2d93
PZ
6631}
6632
82b89778 6633void perf_event_comm(struct task_struct *task, bool exec)
8d1b2d93 6634{
9ee318a7
PZ
6635 struct perf_comm_event comm_event;
6636
cdd6c482 6637 if (!atomic_read(&nr_comm_events))
9ee318a7 6638 return;
a63eaf34 6639
9ee318a7 6640 comm_event = (struct perf_comm_event){
8d1b2d93 6641 .task = task,
573402db
PZ
6642 /* .comm */
6643 /* .comm_size */
cdd6c482 6644 .event_id = {
573402db 6645 .header = {
cdd6c482 6646 .type = PERF_RECORD_COMM,
82b89778 6647 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
573402db
PZ
6648 /* .size */
6649 },
6650 /* .pid */
6651 /* .tid */
8d1b2d93
PZ
6652 },
6653 };
6654
cdd6c482 6655 perf_event_comm_event(&comm_event);
8d1b2d93
PZ
6656}
6657
e4222673
HB
6658/*
6659 * namespaces tracking
6660 */
6661
6662struct perf_namespaces_event {
6663 struct task_struct *task;
6664
6665 struct {
6666 struct perf_event_header header;
6667
6668 u32 pid;
6669 u32 tid;
6670 u64 nr_namespaces;
6671 struct perf_ns_link_info link_info[NR_NAMESPACES];
6672 } event_id;
6673};
6674
6675static int perf_event_namespaces_match(struct perf_event *event)
6676{
6677 return event->attr.namespaces;
6678}
6679
6680static void perf_event_namespaces_output(struct perf_event *event,
6681 void *data)
6682{
6683 struct perf_namespaces_event *namespaces_event = data;
6684 struct perf_output_handle handle;
6685 struct perf_sample_data sample;
6686 int ret;
6687
6688 if (!perf_event_namespaces_match(event))
6689 return;
6690
6691 perf_event_header__init_id(&namespaces_event->event_id.header,
6692 &sample, event);
6693 ret = perf_output_begin(&handle, event,
6694 namespaces_event->event_id.header.size);
6695 if (ret)
6696 return;
6697
6698 namespaces_event->event_id.pid = perf_event_pid(event,
6699 namespaces_event->task);
6700 namespaces_event->event_id.tid = perf_event_tid(event,
6701 namespaces_event->task);
6702
6703 perf_output_put(&handle, namespaces_event->event_id);
6704
6705 perf_event__output_id_sample(event, &handle, &sample);
6706
6707 perf_output_end(&handle);
6708}
6709
6710static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
6711 struct task_struct *task,
6712 const struct proc_ns_operations *ns_ops)
6713{
6714 struct path ns_path;
6715 struct inode *ns_inode;
6716 void *error;
6717
6718 error = ns_get_path(&ns_path, task, ns_ops);
6719 if (!error) {
6720 ns_inode = ns_path.dentry->d_inode;
6721 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
6722 ns_link_info->ino = ns_inode->i_ino;
6723 }
6724}
6725
6726void perf_event_namespaces(struct task_struct *task)
6727{
6728 struct perf_namespaces_event namespaces_event;
6729 struct perf_ns_link_info *ns_link_info;
6730
6731 if (!atomic_read(&nr_namespaces_events))
6732 return;
6733
6734 namespaces_event = (struct perf_namespaces_event){
6735 .task = task,
6736 .event_id = {
6737 .header = {
6738 .type = PERF_RECORD_NAMESPACES,
6739 .misc = 0,
6740 .size = sizeof(namespaces_event.event_id),
6741 },
6742 /* .pid */
6743 /* .tid */
6744 .nr_namespaces = NR_NAMESPACES,
6745 /* .link_info[NR_NAMESPACES] */
6746 },
6747 };
6748
6749 ns_link_info = namespaces_event.event_id.link_info;
6750
6751 perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
6752 task, &mntns_operations);
6753
6754#ifdef CONFIG_USER_NS
6755 perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
6756 task, &userns_operations);
6757#endif
6758#ifdef CONFIG_NET_NS
6759 perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
6760 task, &netns_operations);
6761#endif
6762#ifdef CONFIG_UTS_NS
6763 perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
6764 task, &utsns_operations);
6765#endif
6766#ifdef CONFIG_IPC_NS
6767 perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
6768 task, &ipcns_operations);
6769#endif
6770#ifdef CONFIG_PID_NS
6771 perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
6772 task, &pidns_operations);
6773#endif
6774#ifdef CONFIG_CGROUPS
6775 perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
6776 task, &cgroupns_operations);
6777#endif
6778
6779 perf_iterate_sb(perf_event_namespaces_output,
6780 &namespaces_event,
6781 NULL);
6782}
6783
0a4a9391
PZ
6784/*
6785 * mmap tracking
6786 */
6787
6788struct perf_mmap_event {
089dd79d
PZ
6789 struct vm_area_struct *vma;
6790
6791 const char *file_name;
6792 int file_size;
13d7a241
SE
6793 int maj, min;
6794 u64 ino;
6795 u64 ino_generation;
f972eb63 6796 u32 prot, flags;
0a4a9391
PZ
6797
6798 struct {
6799 struct perf_event_header header;
6800
6801 u32 pid;
6802 u32 tid;
6803 u64 start;
6804 u64 len;
6805 u64 pgoff;
cdd6c482 6806 } event_id;
0a4a9391
PZ
6807};
6808
67516844
JO
6809static int perf_event_mmap_match(struct perf_event *event,
6810 void *data)
6811{
6812 struct perf_mmap_event *mmap_event = data;
6813 struct vm_area_struct *vma = mmap_event->vma;
6814 int executable = vma->vm_flags & VM_EXEC;
6815
6816 return (!executable && event->attr.mmap_data) ||
13d7a241 6817 (executable && (event->attr.mmap || event->attr.mmap2));
67516844
JO
6818}
6819
cdd6c482 6820static void perf_event_mmap_output(struct perf_event *event,
52d857a8 6821 void *data)
0a4a9391 6822{
52d857a8 6823 struct perf_mmap_event *mmap_event = data;
0a4a9391 6824 struct perf_output_handle handle;
c980d109 6825 struct perf_sample_data sample;
cdd6c482 6826 int size = mmap_event->event_id.header.size;
c980d109 6827 int ret;
0a4a9391 6828
67516844
JO
6829 if (!perf_event_mmap_match(event, data))
6830 return;
6831
13d7a241
SE
6832 if (event->attr.mmap2) {
6833 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
6834 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
6835 mmap_event->event_id.header.size += sizeof(mmap_event->min);
6836 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
d008d525 6837 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
f972eb63
PZ
6838 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
6839 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
13d7a241
SE
6840 }
6841
c980d109
ACM
6842 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
6843 ret = perf_output_begin(&handle, event,
a7ac67ea 6844 mmap_event->event_id.header.size);
0a4a9391 6845 if (ret)
c980d109 6846 goto out;
0a4a9391 6847
cdd6c482
IM
6848 mmap_event->event_id.pid = perf_event_pid(event, current);
6849 mmap_event->event_id.tid = perf_event_tid(event, current);
709e50cf 6850
cdd6c482 6851 perf_output_put(&handle, mmap_event->event_id);
13d7a241
SE
6852
6853 if (event->attr.mmap2) {
6854 perf_output_put(&handle, mmap_event->maj);
6855 perf_output_put(&handle, mmap_event->min);
6856 perf_output_put(&handle, mmap_event->ino);
6857 perf_output_put(&handle, mmap_event->ino_generation);
f972eb63
PZ
6858 perf_output_put(&handle, mmap_event->prot);
6859 perf_output_put(&handle, mmap_event->flags);
13d7a241
SE
6860 }
6861
76369139 6862 __output_copy(&handle, mmap_event->file_name,
0a4a9391 6863 mmap_event->file_size);
c980d109
ACM
6864
6865 perf_event__output_id_sample(event, &handle, &sample);
6866
78d613eb 6867 perf_output_end(&handle);
c980d109
ACM
6868out:
6869 mmap_event->event_id.header.size = size;
0a4a9391
PZ
6870}
6871
cdd6c482 6872static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
0a4a9391 6873{
089dd79d
PZ
6874 struct vm_area_struct *vma = mmap_event->vma;
6875 struct file *file = vma->vm_file;
13d7a241
SE
6876 int maj = 0, min = 0;
6877 u64 ino = 0, gen = 0;
f972eb63 6878 u32 prot = 0, flags = 0;
0a4a9391
PZ
6879 unsigned int size;
6880 char tmp[16];
6881 char *buf = NULL;
2c42cfbf 6882 char *name;
413ee3b4 6883
0b3589be
PZ
6884 if (vma->vm_flags & VM_READ)
6885 prot |= PROT_READ;
6886 if (vma->vm_flags & VM_WRITE)
6887 prot |= PROT_WRITE;
6888 if (vma->vm_flags & VM_EXEC)
6889 prot |= PROT_EXEC;
6890
6891 if (vma->vm_flags & VM_MAYSHARE)
6892 flags = MAP_SHARED;
6893 else
6894 flags = MAP_PRIVATE;
6895
6896 if (vma->vm_flags & VM_DENYWRITE)
6897 flags |= MAP_DENYWRITE;
6898 if (vma->vm_flags & VM_MAYEXEC)
6899 flags |= MAP_EXECUTABLE;
6900 if (vma->vm_flags & VM_LOCKED)
6901 flags |= MAP_LOCKED;
6902 if (vma->vm_flags & VM_HUGETLB)
6903 flags |= MAP_HUGETLB;
6904
0a4a9391 6905 if (file) {
13d7a241
SE
6906 struct inode *inode;
6907 dev_t dev;
3ea2f2b9 6908
2c42cfbf 6909 buf = kmalloc(PATH_MAX, GFP_KERNEL);
0a4a9391 6910 if (!buf) {
c7e548b4
ON
6911 name = "//enomem";
6912 goto cpy_name;
0a4a9391 6913 }
413ee3b4 6914 /*
3ea2f2b9 6915 * d_path() works from the end of the rb backwards, so we
413ee3b4
AB
6916 * need to add enough zero bytes after the string to handle
6917 * the 64bit alignment we do later.
6918 */
9bf39ab2 6919 name = file_path(file, buf, PATH_MAX - sizeof(u64));
0a4a9391 6920 if (IS_ERR(name)) {
c7e548b4
ON
6921 name = "//toolong";
6922 goto cpy_name;
0a4a9391 6923 }
13d7a241
SE
6924 inode = file_inode(vma->vm_file);
6925 dev = inode->i_sb->s_dev;
6926 ino = inode->i_ino;
6927 gen = inode->i_generation;
6928 maj = MAJOR(dev);
6929 min = MINOR(dev);
f972eb63 6930
c7e548b4 6931 goto got_name;
0a4a9391 6932 } else {
fbe26abe
JO
6933 if (vma->vm_ops && vma->vm_ops->name) {
6934 name = (char *) vma->vm_ops->name(vma);
6935 if (name)
6936 goto cpy_name;
6937 }
6938
2c42cfbf 6939 name = (char *)arch_vma_name(vma);
c7e548b4
ON
6940 if (name)
6941 goto cpy_name;
089dd79d 6942
32c5fb7e 6943 if (vma->vm_start <= vma->vm_mm->start_brk &&
3af9e859 6944 vma->vm_end >= vma->vm_mm->brk) {
c7e548b4
ON
6945 name = "[heap]";
6946 goto cpy_name;
32c5fb7e
ON
6947 }
6948 if (vma->vm_start <= vma->vm_mm->start_stack &&
3af9e859 6949 vma->vm_end >= vma->vm_mm->start_stack) {
c7e548b4
ON
6950 name = "[stack]";
6951 goto cpy_name;
089dd79d
PZ
6952 }
6953
c7e548b4
ON
6954 name = "//anon";
6955 goto cpy_name;
0a4a9391
PZ
6956 }
6957
c7e548b4
ON
6958cpy_name:
6959 strlcpy(tmp, name, sizeof(tmp));
6960 name = tmp;
0a4a9391 6961got_name:
2c42cfbf
PZ
6962 /*
6963 * Since our buffer works in 8 byte units we need to align our string
6964 * size to a multiple of 8. However, we must guarantee the tail end is
6965 * zero'd out to avoid leaking random bits to userspace.
6966 */
6967 size = strlen(name)+1;
6968 while (!IS_ALIGNED(size, sizeof(u64)))
6969 name[size++] = '\0';
0a4a9391
PZ
6970
6971 mmap_event->file_name = name;
6972 mmap_event->file_size = size;
13d7a241
SE
6973 mmap_event->maj = maj;
6974 mmap_event->min = min;
6975 mmap_event->ino = ino;
6976 mmap_event->ino_generation = gen;
f972eb63
PZ
6977 mmap_event->prot = prot;
6978 mmap_event->flags = flags;
0a4a9391 6979
2fe85427
SE
6980 if (!(vma->vm_flags & VM_EXEC))
6981 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
6982
cdd6c482 6983 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
0a4a9391 6984
aab5b71e 6985 perf_iterate_sb(perf_event_mmap_output,
52d857a8
JO
6986 mmap_event,
6987 NULL);
665c2142 6988
0a4a9391
PZ
6989 kfree(buf);
6990}
6991
375637bc
AS
6992/*
6993 * Check whether inode and address range match filter criteria.
6994 */
6995static bool perf_addr_filter_match(struct perf_addr_filter *filter,
6996 struct file *file, unsigned long offset,
6997 unsigned long size)
6998{
45063097 6999 if (filter->inode != file_inode(file))
375637bc
AS
7000 return false;
7001
7002 if (filter->offset > offset + size)
7003 return false;
7004
7005 if (filter->offset + filter->size < offset)
7006 return false;
7007
7008 return true;
7009}
7010
7011static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
7012{
7013 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7014 struct vm_area_struct *vma = data;
7015 unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags;
7016 struct file *file = vma->vm_file;
7017 struct perf_addr_filter *filter;
7018 unsigned int restart = 0, count = 0;
7019
7020 if (!has_addr_filter(event))
7021 return;
7022
7023 if (!file)
7024 return;
7025
7026 raw_spin_lock_irqsave(&ifh->lock, flags);
7027 list_for_each_entry(filter, &ifh->list, entry) {
7028 if (perf_addr_filter_match(filter, file, off,
7029 vma->vm_end - vma->vm_start)) {
7030 event->addr_filters_offs[count] = vma->vm_start;
7031 restart++;
7032 }
7033
7034 count++;
7035 }
7036
7037 if (restart)
7038 event->addr_filters_gen++;
7039 raw_spin_unlock_irqrestore(&ifh->lock, flags);
7040
7041 if (restart)
767ae086 7042 perf_event_stop(event, 1);
375637bc
AS
7043}
7044
7045/*
7046 * Adjust all task's events' filters to the new vma
7047 */
7048static void perf_addr_filters_adjust(struct vm_area_struct *vma)
7049{
7050 struct perf_event_context *ctx;
7051 int ctxn;
7052
12b40a23
MP
7053 /*
7054 * Data tracing isn't supported yet and as such there is no need
7055 * to keep track of anything that isn't related to executable code:
7056 */
7057 if (!(vma->vm_flags & VM_EXEC))
7058 return;
7059
375637bc
AS
7060 rcu_read_lock();
7061 for_each_task_context_nr(ctxn) {
7062 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7063 if (!ctx)
7064 continue;
7065
aab5b71e 7066 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
375637bc
AS
7067 }
7068 rcu_read_unlock();
7069}
7070
3af9e859 7071void perf_event_mmap(struct vm_area_struct *vma)
0a4a9391 7072{
9ee318a7
PZ
7073 struct perf_mmap_event mmap_event;
7074
cdd6c482 7075 if (!atomic_read(&nr_mmap_events))
9ee318a7
PZ
7076 return;
7077
7078 mmap_event = (struct perf_mmap_event){
089dd79d 7079 .vma = vma,
573402db
PZ
7080 /* .file_name */
7081 /* .file_size */
cdd6c482 7082 .event_id = {
573402db 7083 .header = {
cdd6c482 7084 .type = PERF_RECORD_MMAP,
39447b38 7085 .misc = PERF_RECORD_MISC_USER,
573402db
PZ
7086 /* .size */
7087 },
7088 /* .pid */
7089 /* .tid */
089dd79d
PZ
7090 .start = vma->vm_start,
7091 .len = vma->vm_end - vma->vm_start,
3a0304e9 7092 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
0a4a9391 7093 },
13d7a241
SE
7094 /* .maj (attr_mmap2 only) */
7095 /* .min (attr_mmap2 only) */
7096 /* .ino (attr_mmap2 only) */
7097 /* .ino_generation (attr_mmap2 only) */
f972eb63
PZ
7098 /* .prot (attr_mmap2 only) */
7099 /* .flags (attr_mmap2 only) */
0a4a9391
PZ
7100 };
7101
375637bc 7102 perf_addr_filters_adjust(vma);
cdd6c482 7103 perf_event_mmap_event(&mmap_event);
0a4a9391
PZ
7104}
7105
68db7e98
AS
7106void perf_event_aux_event(struct perf_event *event, unsigned long head,
7107 unsigned long size, u64 flags)
7108{
7109 struct perf_output_handle handle;
7110 struct perf_sample_data sample;
7111 struct perf_aux_event {
7112 struct perf_event_header header;
7113 u64 offset;
7114 u64 size;
7115 u64 flags;
7116 } rec = {
7117 .header = {
7118 .type = PERF_RECORD_AUX,
7119 .misc = 0,
7120 .size = sizeof(rec),
7121 },
7122 .offset = head,
7123 .size = size,
7124 .flags = flags,
7125 };
7126 int ret;
7127
7128 perf_event_header__init_id(&rec.header, &sample, event);
7129 ret = perf_output_begin(&handle, event, rec.header.size);
7130
7131 if (ret)
7132 return;
7133
7134 perf_output_put(&handle, rec);
7135 perf_event__output_id_sample(event, &handle, &sample);
7136
7137 perf_output_end(&handle);
7138}
7139
f38b0dbb
KL
7140/*
7141 * Lost/dropped samples logging
7142 */
7143void perf_log_lost_samples(struct perf_event *event, u64 lost)
7144{
7145 struct perf_output_handle handle;
7146 struct perf_sample_data sample;
7147 int ret;
7148
7149 struct {
7150 struct perf_event_header header;
7151 u64 lost;
7152 } lost_samples_event = {
7153 .header = {
7154 .type = PERF_RECORD_LOST_SAMPLES,
7155 .misc = 0,
7156 .size = sizeof(lost_samples_event),
7157 },
7158 .lost = lost,
7159 };
7160
7161 perf_event_header__init_id(&lost_samples_event.header, &sample, event);
7162
7163 ret = perf_output_begin(&handle, event,
7164 lost_samples_event.header.size);
7165 if (ret)
7166 return;
7167
7168 perf_output_put(&handle, lost_samples_event);
7169 perf_event__output_id_sample(event, &handle, &sample);
7170 perf_output_end(&handle);
7171}
7172
45ac1403
AH
7173/*
7174 * context_switch tracking
7175 */
7176
7177struct perf_switch_event {
7178 struct task_struct *task;
7179 struct task_struct *next_prev;
7180
7181 struct {
7182 struct perf_event_header header;
7183 u32 next_prev_pid;
7184 u32 next_prev_tid;
7185 } event_id;
7186};
7187
7188static int perf_event_switch_match(struct perf_event *event)
7189{
7190 return event->attr.context_switch;
7191}
7192
7193static void perf_event_switch_output(struct perf_event *event, void *data)
7194{
7195 struct perf_switch_event *se = data;
7196 struct perf_output_handle handle;
7197 struct perf_sample_data sample;
7198 int ret;
7199
7200 if (!perf_event_switch_match(event))
7201 return;
7202
7203 /* Only CPU-wide events are allowed to see next/prev pid/tid */
7204 if (event->ctx->task) {
7205 se->event_id.header.type = PERF_RECORD_SWITCH;
7206 se->event_id.header.size = sizeof(se->event_id.header);
7207 } else {
7208 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
7209 se->event_id.header.size = sizeof(se->event_id);
7210 se->event_id.next_prev_pid =
7211 perf_event_pid(event, se->next_prev);
7212 se->event_id.next_prev_tid =
7213 perf_event_tid(event, se->next_prev);
7214 }
7215
7216 perf_event_header__init_id(&se->event_id.header, &sample, event);
7217
7218 ret = perf_output_begin(&handle, event, se->event_id.header.size);
7219 if (ret)
7220 return;
7221
7222 if (event->ctx->task)
7223 perf_output_put(&handle, se->event_id.header);
7224 else
7225 perf_output_put(&handle, se->event_id);
7226
7227 perf_event__output_id_sample(event, &handle, &sample);
7228
7229 perf_output_end(&handle);
7230}
7231
7232static void perf_event_switch(struct task_struct *task,
7233 struct task_struct *next_prev, bool sched_in)
7234{
7235 struct perf_switch_event switch_event;
7236
7237 /* N.B. caller checks nr_switch_events != 0 */
7238
7239 switch_event = (struct perf_switch_event){
7240 .task = task,
7241 .next_prev = next_prev,
7242 .event_id = {
7243 .header = {
7244 /* .type */
7245 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
7246 /* .size */
7247 },
7248 /* .next_prev_pid */
7249 /* .next_prev_tid */
7250 },
7251 };
7252
aab5b71e 7253 perf_iterate_sb(perf_event_switch_output,
45ac1403
AH
7254 &switch_event,
7255 NULL);
7256}
7257
a78ac325
PZ
7258/*
7259 * IRQ throttle logging
7260 */
7261
cdd6c482 7262static void perf_log_throttle(struct perf_event *event, int enable)
a78ac325
PZ
7263{
7264 struct perf_output_handle handle;
c980d109 7265 struct perf_sample_data sample;
a78ac325
PZ
7266 int ret;
7267
7268 struct {
7269 struct perf_event_header header;
7270 u64 time;
cca3f454 7271 u64 id;
7f453c24 7272 u64 stream_id;
a78ac325
PZ
7273 } throttle_event = {
7274 .header = {
cdd6c482 7275 .type = PERF_RECORD_THROTTLE,
a78ac325
PZ
7276 .misc = 0,
7277 .size = sizeof(throttle_event),
7278 },
34f43927 7279 .time = perf_event_clock(event),
cdd6c482
IM
7280 .id = primary_event_id(event),
7281 .stream_id = event->id,
a78ac325
PZ
7282 };
7283
966ee4d6 7284 if (enable)
cdd6c482 7285 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
966ee4d6 7286
c980d109
ACM
7287 perf_event_header__init_id(&throttle_event.header, &sample, event);
7288
7289 ret = perf_output_begin(&handle, event,
a7ac67ea 7290 throttle_event.header.size);
a78ac325
PZ
7291 if (ret)
7292 return;
7293
7294 perf_output_put(&handle, throttle_event);
c980d109 7295 perf_event__output_id_sample(event, &handle, &sample);
a78ac325
PZ
7296 perf_output_end(&handle);
7297}
7298
ec0d7729
AS
7299static void perf_log_itrace_start(struct perf_event *event)
7300{
7301 struct perf_output_handle handle;
7302 struct perf_sample_data sample;
7303 struct perf_aux_event {
7304 struct perf_event_header header;
7305 u32 pid;
7306 u32 tid;
7307 } rec;
7308 int ret;
7309
7310 if (event->parent)
7311 event = event->parent;
7312
7313 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
7314 event->hw.itrace_started)
7315 return;
7316
ec0d7729
AS
7317 rec.header.type = PERF_RECORD_ITRACE_START;
7318 rec.header.misc = 0;
7319 rec.header.size = sizeof(rec);
7320 rec.pid = perf_event_pid(event, current);
7321 rec.tid = perf_event_tid(event, current);
7322
7323 perf_event_header__init_id(&rec.header, &sample, event);
7324 ret = perf_output_begin(&handle, event, rec.header.size);
7325
7326 if (ret)
7327 return;
7328
7329 perf_output_put(&handle, rec);
7330 perf_event__output_id_sample(event, &handle, &sample);
7331
7332 perf_output_end(&handle);
7333}
7334
475113d9
JO
7335static int
7336__perf_event_account_interrupt(struct perf_event *event, int throttle)
f6c7d5fe 7337{
cdd6c482 7338 struct hw_perf_event *hwc = &event->hw;
79f14641 7339 int ret = 0;
475113d9 7340 u64 seq;
96398826 7341
e050e3f0
SE
7342 seq = __this_cpu_read(perf_throttled_seq);
7343 if (seq != hwc->interrupts_seq) {
7344 hwc->interrupts_seq = seq;
7345 hwc->interrupts = 1;
7346 } else {
7347 hwc->interrupts++;
7348 if (unlikely(throttle
7349 && hwc->interrupts >= max_samples_per_tick)) {
7350 __this_cpu_inc(perf_throttled_count);
555e0c1e 7351 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
163ec435
PZ
7352 hwc->interrupts = MAX_INTERRUPTS;
7353 perf_log_throttle(event, 0);
a78ac325
PZ
7354 ret = 1;
7355 }
e050e3f0 7356 }
60db5e09 7357
cdd6c482 7358 if (event->attr.freq) {
def0a9b2 7359 u64 now = perf_clock();
abd50713 7360 s64 delta = now - hwc->freq_time_stamp;
bd2b5b12 7361
abd50713 7362 hwc->freq_time_stamp = now;
bd2b5b12 7363
abd50713 7364 if (delta > 0 && delta < 2*TICK_NSEC)
f39d47ff 7365 perf_adjust_period(event, delta, hwc->last_period, true);
bd2b5b12
PZ
7366 }
7367
475113d9
JO
7368 return ret;
7369}
7370
7371int perf_event_account_interrupt(struct perf_event *event)
7372{
7373 return __perf_event_account_interrupt(event, 1);
7374}
7375
7376/*
7377 * Generic event overflow handling, sampling.
7378 */
7379
7380static int __perf_event_overflow(struct perf_event *event,
7381 int throttle, struct perf_sample_data *data,
7382 struct pt_regs *regs)
7383{
7384 int events = atomic_read(&event->event_limit);
7385 int ret = 0;
7386
7387 /*
7388 * Non-sampling counters might still use the PMI to fold short
7389 * hardware counters, ignore those.
7390 */
7391 if (unlikely(!is_sampling_event(event)))
7392 return 0;
7393
7394 ret = __perf_event_account_interrupt(event, throttle);
cc1582c2 7395
2023b359
PZ
7396 /*
7397 * XXX event_limit might not quite work as expected on inherited
cdd6c482 7398 * events
2023b359
PZ
7399 */
7400
cdd6c482
IM
7401 event->pending_kill = POLL_IN;
7402 if (events && atomic_dec_and_test(&event->event_limit)) {
79f14641 7403 ret = 1;
cdd6c482 7404 event->pending_kill = POLL_HUP;
5aab90ce
JO
7405
7406 perf_event_disable_inatomic(event);
79f14641
PZ
7407 }
7408
aa6a5f3c 7409 READ_ONCE(event->overflow_handler)(event, data, regs);
453f19ee 7410
fed66e2c 7411 if (*perf_event_fasync(event) && event->pending_kill) {
a8b0ca17
PZ
7412 event->pending_wakeup = 1;
7413 irq_work_queue(&event->pending);
f506b3dc
PZ
7414 }
7415
79f14641 7416 return ret;
f6c7d5fe
PZ
7417}
7418
a8b0ca17 7419int perf_event_overflow(struct perf_event *event,
5622f295
MM
7420 struct perf_sample_data *data,
7421 struct pt_regs *regs)
850bc73f 7422{
a8b0ca17 7423 return __perf_event_overflow(event, 1, data, regs);
850bc73f
PZ
7424}
7425
15dbf27c 7426/*
cdd6c482 7427 * Generic software event infrastructure
15dbf27c
PZ
7428 */
7429
b28ab83c
PZ
7430struct swevent_htable {
7431 struct swevent_hlist *swevent_hlist;
7432 struct mutex hlist_mutex;
7433 int hlist_refcount;
7434
7435 /* Recursion avoidance in each contexts */
7436 int recursion[PERF_NR_CONTEXTS];
7437};
7438
7439static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
7440
7b4b6658 7441/*
cdd6c482
IM
7442 * We directly increment event->count and keep a second value in
7443 * event->hw.period_left to count intervals. This period event
7b4b6658
PZ
7444 * is kept in the range [-sample_period, 0] so that we can use the
7445 * sign as trigger.
7446 */
7447
ab573844 7448u64 perf_swevent_set_period(struct perf_event *event)
15dbf27c 7449{
cdd6c482 7450 struct hw_perf_event *hwc = &event->hw;
7b4b6658
PZ
7451 u64 period = hwc->last_period;
7452 u64 nr, offset;
7453 s64 old, val;
7454
7455 hwc->last_period = hwc->sample_period;
15dbf27c
PZ
7456
7457again:
e7850595 7458 old = val = local64_read(&hwc->period_left);
7b4b6658
PZ
7459 if (val < 0)
7460 return 0;
15dbf27c 7461
7b4b6658
PZ
7462 nr = div64_u64(period + val, period);
7463 offset = nr * period;
7464 val -= offset;
e7850595 7465 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7b4b6658 7466 goto again;
15dbf27c 7467
7b4b6658 7468 return nr;
15dbf27c
PZ
7469}
7470
0cff784a 7471static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
a8b0ca17 7472 struct perf_sample_data *data,
5622f295 7473 struct pt_regs *regs)
15dbf27c 7474{
cdd6c482 7475 struct hw_perf_event *hwc = &event->hw;
850bc73f 7476 int throttle = 0;
15dbf27c 7477
0cff784a
PZ
7478 if (!overflow)
7479 overflow = perf_swevent_set_period(event);
15dbf27c 7480
7b4b6658
PZ
7481 if (hwc->interrupts == MAX_INTERRUPTS)
7482 return;
15dbf27c 7483
7b4b6658 7484 for (; overflow; overflow--) {
a8b0ca17 7485 if (__perf_event_overflow(event, throttle,
5622f295 7486 data, regs)) {
7b4b6658
PZ
7487 /*
7488 * We inhibit the overflow from happening when
7489 * hwc->interrupts == MAX_INTERRUPTS.
7490 */
7491 break;
7492 }
cf450a73 7493 throttle = 1;
7b4b6658 7494 }
15dbf27c
PZ
7495}
7496
a4eaf7f1 7497static void perf_swevent_event(struct perf_event *event, u64 nr,
a8b0ca17 7498 struct perf_sample_data *data,
5622f295 7499 struct pt_regs *regs)
7b4b6658 7500{
cdd6c482 7501 struct hw_perf_event *hwc = &event->hw;
d6d020e9 7502
e7850595 7503 local64_add(nr, &event->count);
d6d020e9 7504
0cff784a
PZ
7505 if (!regs)
7506 return;
7507
6c7e550f 7508 if (!is_sampling_event(event))
7b4b6658 7509 return;
d6d020e9 7510
5d81e5cf
AV
7511 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
7512 data->period = nr;
7513 return perf_swevent_overflow(event, 1, data, regs);
7514 } else
7515 data->period = event->hw.last_period;
7516
0cff784a 7517 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
a8b0ca17 7518 return perf_swevent_overflow(event, 1, data, regs);
0cff784a 7519
e7850595 7520 if (local64_add_negative(nr, &hwc->period_left))
7b4b6658 7521 return;
df1a132b 7522
a8b0ca17 7523 perf_swevent_overflow(event, 0, data, regs);
d6d020e9
PZ
7524}
7525
f5ffe02e
FW
7526static int perf_exclude_event(struct perf_event *event,
7527 struct pt_regs *regs)
7528{
a4eaf7f1 7529 if (event->hw.state & PERF_HES_STOPPED)
91b2f482 7530 return 1;
a4eaf7f1 7531
f5ffe02e
FW
7532 if (regs) {
7533 if (event->attr.exclude_user && user_mode(regs))
7534 return 1;
7535
7536 if (event->attr.exclude_kernel && !user_mode(regs))
7537 return 1;
7538 }
7539
7540 return 0;
7541}
7542
cdd6c482 7543static int perf_swevent_match(struct perf_event *event,
1c432d89 7544 enum perf_type_id type,
6fb2915d
LZ
7545 u32 event_id,
7546 struct perf_sample_data *data,
7547 struct pt_regs *regs)
15dbf27c 7548{
cdd6c482 7549 if (event->attr.type != type)
a21ca2ca 7550 return 0;
f5ffe02e 7551
cdd6c482 7552 if (event->attr.config != event_id)
15dbf27c
PZ
7553 return 0;
7554
f5ffe02e
FW
7555 if (perf_exclude_event(event, regs))
7556 return 0;
15dbf27c
PZ
7557
7558 return 1;
7559}
7560
76e1d904
FW
7561static inline u64 swevent_hash(u64 type, u32 event_id)
7562{
7563 u64 val = event_id | (type << 32);
7564
7565 return hash_64(val, SWEVENT_HLIST_BITS);
7566}
7567
49f135ed
FW
7568static inline struct hlist_head *
7569__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
76e1d904 7570{
49f135ed
FW
7571 u64 hash = swevent_hash(type, event_id);
7572
7573 return &hlist->heads[hash];
7574}
76e1d904 7575
49f135ed
FW
7576/* For the read side: events when they trigger */
7577static inline struct hlist_head *
b28ab83c 7578find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
49f135ed
FW
7579{
7580 struct swevent_hlist *hlist;
76e1d904 7581
b28ab83c 7582 hlist = rcu_dereference(swhash->swevent_hlist);
76e1d904
FW
7583 if (!hlist)
7584 return NULL;
7585
49f135ed
FW
7586 return __find_swevent_head(hlist, type, event_id);
7587}
7588
7589/* For the event head insertion and removal in the hlist */
7590static inline struct hlist_head *
b28ab83c 7591find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
49f135ed
FW
7592{
7593 struct swevent_hlist *hlist;
7594 u32 event_id = event->attr.config;
7595 u64 type = event->attr.type;
7596
7597 /*
7598 * Event scheduling is always serialized against hlist allocation
7599 * and release. Which makes the protected version suitable here.
7600 * The context lock guarantees that.
7601 */
b28ab83c 7602 hlist = rcu_dereference_protected(swhash->swevent_hlist,
49f135ed
FW
7603 lockdep_is_held(&event->ctx->lock));
7604 if (!hlist)
7605 return NULL;
7606
7607 return __find_swevent_head(hlist, type, event_id);
76e1d904
FW
7608}
7609
7610static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
a8b0ca17 7611 u64 nr,
76e1d904
FW
7612 struct perf_sample_data *data,
7613 struct pt_regs *regs)
15dbf27c 7614{
4a32fea9 7615 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 7616 struct perf_event *event;
76e1d904 7617 struct hlist_head *head;
15dbf27c 7618
76e1d904 7619 rcu_read_lock();
b28ab83c 7620 head = find_swevent_head_rcu(swhash, type, event_id);
76e1d904
FW
7621 if (!head)
7622 goto end;
7623
b67bfe0d 7624 hlist_for_each_entry_rcu(event, head, hlist_entry) {
6fb2915d 7625 if (perf_swevent_match(event, type, event_id, data, regs))
a8b0ca17 7626 perf_swevent_event(event, nr, data, regs);
15dbf27c 7627 }
76e1d904
FW
7628end:
7629 rcu_read_unlock();
15dbf27c
PZ
7630}
7631
86038c5e
PZI
7632DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
7633
4ed7c92d 7634int perf_swevent_get_recursion_context(void)
96f6d444 7635{
4a32fea9 7636 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
96f6d444 7637
b28ab83c 7638 return get_recursion_context(swhash->recursion);
96f6d444 7639}
645e8cc0 7640EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
96f6d444 7641
98b5c2c6 7642void perf_swevent_put_recursion_context(int rctx)
15dbf27c 7643{
4a32fea9 7644 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
927c7a9e 7645
b28ab83c 7646 put_recursion_context(swhash->recursion, rctx);
ce71b9df 7647}
15dbf27c 7648
86038c5e 7649void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
b8e83514 7650{
a4234bfc 7651 struct perf_sample_data data;
4ed7c92d 7652
86038c5e 7653 if (WARN_ON_ONCE(!regs))
4ed7c92d 7654 return;
a4234bfc 7655
fd0d000b 7656 perf_sample_data_init(&data, addr, 0);
a8b0ca17 7657 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
86038c5e
PZI
7658}
7659
7660void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7661{
7662 int rctx;
7663
7664 preempt_disable_notrace();
7665 rctx = perf_swevent_get_recursion_context();
7666 if (unlikely(rctx < 0))
7667 goto fail;
7668
7669 ___perf_sw_event(event_id, nr, regs, addr);
4ed7c92d
PZ
7670
7671 perf_swevent_put_recursion_context(rctx);
86038c5e 7672fail:
1c024eca 7673 preempt_enable_notrace();
b8e83514
PZ
7674}
7675
cdd6c482 7676static void perf_swevent_read(struct perf_event *event)
15dbf27c 7677{
15dbf27c
PZ
7678}
7679
a4eaf7f1 7680static int perf_swevent_add(struct perf_event *event, int flags)
15dbf27c 7681{
4a32fea9 7682 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 7683 struct hw_perf_event *hwc = &event->hw;
76e1d904
FW
7684 struct hlist_head *head;
7685
6c7e550f 7686 if (is_sampling_event(event)) {
7b4b6658 7687 hwc->last_period = hwc->sample_period;
cdd6c482 7688 perf_swevent_set_period(event);
7b4b6658 7689 }
76e1d904 7690
a4eaf7f1
PZ
7691 hwc->state = !(flags & PERF_EF_START);
7692
b28ab83c 7693 head = find_swevent_head(swhash, event);
12ca6ad2 7694 if (WARN_ON_ONCE(!head))
76e1d904
FW
7695 return -EINVAL;
7696
7697 hlist_add_head_rcu(&event->hlist_entry, head);
6a694a60 7698 perf_event_update_userpage(event);
76e1d904 7699
15dbf27c
PZ
7700 return 0;
7701}
7702
a4eaf7f1 7703static void perf_swevent_del(struct perf_event *event, int flags)
15dbf27c 7704{
76e1d904 7705 hlist_del_rcu(&event->hlist_entry);
15dbf27c
PZ
7706}
7707
a4eaf7f1 7708static void perf_swevent_start(struct perf_event *event, int flags)
5c92d124 7709{
a4eaf7f1 7710 event->hw.state = 0;
d6d020e9 7711}
aa9c4c0f 7712
a4eaf7f1 7713static void perf_swevent_stop(struct perf_event *event, int flags)
d6d020e9 7714{
a4eaf7f1 7715 event->hw.state = PERF_HES_STOPPED;
bae43c99
IM
7716}
7717
49f135ed
FW
7718/* Deref the hlist from the update side */
7719static inline struct swevent_hlist *
b28ab83c 7720swevent_hlist_deref(struct swevent_htable *swhash)
49f135ed 7721{
b28ab83c
PZ
7722 return rcu_dereference_protected(swhash->swevent_hlist,
7723 lockdep_is_held(&swhash->hlist_mutex));
49f135ed
FW
7724}
7725
b28ab83c 7726static void swevent_hlist_release(struct swevent_htable *swhash)
76e1d904 7727{
b28ab83c 7728 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
76e1d904 7729
49f135ed 7730 if (!hlist)
76e1d904
FW
7731 return;
7732
70691d4a 7733 RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
fa4bbc4c 7734 kfree_rcu(hlist, rcu_head);
76e1d904
FW
7735}
7736
3b364d7b 7737static void swevent_hlist_put_cpu(int cpu)
76e1d904 7738{
b28ab83c 7739 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904 7740
b28ab83c 7741 mutex_lock(&swhash->hlist_mutex);
76e1d904 7742
b28ab83c
PZ
7743 if (!--swhash->hlist_refcount)
7744 swevent_hlist_release(swhash);
76e1d904 7745
b28ab83c 7746 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
7747}
7748
3b364d7b 7749static void swevent_hlist_put(void)
76e1d904
FW
7750{
7751 int cpu;
7752
76e1d904 7753 for_each_possible_cpu(cpu)
3b364d7b 7754 swevent_hlist_put_cpu(cpu);
76e1d904
FW
7755}
7756
3b364d7b 7757static int swevent_hlist_get_cpu(int cpu)
76e1d904 7758{
b28ab83c 7759 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904
FW
7760 int err = 0;
7761
b28ab83c 7762 mutex_lock(&swhash->hlist_mutex);
a63fbed7
TG
7763 if (!swevent_hlist_deref(swhash) &&
7764 cpumask_test_cpu(cpu, perf_online_mask)) {
76e1d904
FW
7765 struct swevent_hlist *hlist;
7766
7767 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
7768 if (!hlist) {
7769 err = -ENOMEM;
7770 goto exit;
7771 }
b28ab83c 7772 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 7773 }
b28ab83c 7774 swhash->hlist_refcount++;
9ed6060d 7775exit:
b28ab83c 7776 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
7777
7778 return err;
7779}
7780
3b364d7b 7781static int swevent_hlist_get(void)
76e1d904 7782{
3b364d7b 7783 int err, cpu, failed_cpu;
76e1d904 7784
a63fbed7 7785 mutex_lock(&pmus_lock);
76e1d904 7786 for_each_possible_cpu(cpu) {
3b364d7b 7787 err = swevent_hlist_get_cpu(cpu);
76e1d904
FW
7788 if (err) {
7789 failed_cpu = cpu;
7790 goto fail;
7791 }
7792 }
a63fbed7 7793 mutex_unlock(&pmus_lock);
76e1d904 7794 return 0;
9ed6060d 7795fail:
76e1d904
FW
7796 for_each_possible_cpu(cpu) {
7797 if (cpu == failed_cpu)
7798 break;
3b364d7b 7799 swevent_hlist_put_cpu(cpu);
76e1d904 7800 }
a63fbed7 7801 mutex_unlock(&pmus_lock);
76e1d904
FW
7802 return err;
7803}
7804
c5905afb 7805struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
95476b64 7806
b0a873eb
PZ
7807static void sw_perf_event_destroy(struct perf_event *event)
7808{
7809 u64 event_id = event->attr.config;
95476b64 7810
b0a873eb
PZ
7811 WARN_ON(event->parent);
7812
c5905afb 7813 static_key_slow_dec(&perf_swevent_enabled[event_id]);
3b364d7b 7814 swevent_hlist_put();
b0a873eb
PZ
7815}
7816
7817static int perf_swevent_init(struct perf_event *event)
7818{
8176cced 7819 u64 event_id = event->attr.config;
b0a873eb
PZ
7820
7821 if (event->attr.type != PERF_TYPE_SOFTWARE)
7822 return -ENOENT;
7823
2481c5fa
SE
7824 /*
7825 * no branch sampling for software events
7826 */
7827 if (has_branch_stack(event))
7828 return -EOPNOTSUPP;
7829
b0a873eb
PZ
7830 switch (event_id) {
7831 case PERF_COUNT_SW_CPU_CLOCK:
7832 case PERF_COUNT_SW_TASK_CLOCK:
7833 return -ENOENT;
7834
7835 default:
7836 break;
7837 }
7838
ce677831 7839 if (event_id >= PERF_COUNT_SW_MAX)
b0a873eb
PZ
7840 return -ENOENT;
7841
7842 if (!event->parent) {
7843 int err;
7844
3b364d7b 7845 err = swevent_hlist_get();
b0a873eb
PZ
7846 if (err)
7847 return err;
7848
c5905afb 7849 static_key_slow_inc(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
7850 event->destroy = sw_perf_event_destroy;
7851 }
7852
7853 return 0;
7854}
7855
7856static struct pmu perf_swevent = {
89a1e187 7857 .task_ctx_nr = perf_sw_context,
95476b64 7858
34f43927
PZ
7859 .capabilities = PERF_PMU_CAP_NO_NMI,
7860
b0a873eb 7861 .event_init = perf_swevent_init,
a4eaf7f1
PZ
7862 .add = perf_swevent_add,
7863 .del = perf_swevent_del,
7864 .start = perf_swevent_start,
7865 .stop = perf_swevent_stop,
1c024eca 7866 .read = perf_swevent_read,
1c024eca
PZ
7867};
7868
b0a873eb
PZ
7869#ifdef CONFIG_EVENT_TRACING
7870
1c024eca
PZ
7871static int perf_tp_filter_match(struct perf_event *event,
7872 struct perf_sample_data *data)
7873{
7e3f977e 7874 void *record = data->raw->frag.data;
1c024eca 7875
b71b437e
PZ
7876 /* only top level events have filters set */
7877 if (event->parent)
7878 event = event->parent;
7879
1c024eca
PZ
7880 if (likely(!event->filter) || filter_match_preds(event->filter, record))
7881 return 1;
7882 return 0;
7883}
7884
7885static int perf_tp_event_match(struct perf_event *event,
7886 struct perf_sample_data *data,
7887 struct pt_regs *regs)
7888{
a0f7d0f7
FW
7889 if (event->hw.state & PERF_HES_STOPPED)
7890 return 0;
580d607c
PZ
7891 /*
7892 * All tracepoints are from kernel-space.
7893 */
7894 if (event->attr.exclude_kernel)
1c024eca
PZ
7895 return 0;
7896
7897 if (!perf_tp_filter_match(event, data))
7898 return 0;
7899
7900 return 1;
7901}
7902
85b67bcb
AS
7903void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
7904 struct trace_event_call *call, u64 count,
7905 struct pt_regs *regs, struct hlist_head *head,
7906 struct task_struct *task)
7907{
7908 struct bpf_prog *prog = call->prog;
7909
7910 if (prog) {
7911 *(struct pt_regs **)raw_data = regs;
7912 if (!trace_call_bpf(prog, raw_data) || hlist_empty(head)) {
7913 perf_swevent_put_recursion_context(rctx);
7914 return;
7915 }
7916 }
7917 perf_tp_event(call->event.type, count, raw_data, size, regs, head,
7918 rctx, task);
7919}
7920EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
7921
1e1dcd93 7922void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
e6dab5ff
AV
7923 struct pt_regs *regs, struct hlist_head *head, int rctx,
7924 struct task_struct *task)
95476b64
FW
7925{
7926 struct perf_sample_data data;
1c024eca 7927 struct perf_event *event;
1c024eca 7928
95476b64 7929 struct perf_raw_record raw = {
7e3f977e
DB
7930 .frag = {
7931 .size = entry_size,
7932 .data = record,
7933 },
95476b64
FW
7934 };
7935
1e1dcd93 7936 perf_sample_data_init(&data, 0, 0);
95476b64
FW
7937 data.raw = &raw;
7938
1e1dcd93
AS
7939 perf_trace_buf_update(record, event_type);
7940
b67bfe0d 7941 hlist_for_each_entry_rcu(event, head, hlist_entry) {
1c024eca 7942 if (perf_tp_event_match(event, &data, regs))
a8b0ca17 7943 perf_swevent_event(event, count, &data, regs);
4f41c013 7944 }
ecc55f84 7945
e6dab5ff
AV
7946 /*
7947 * If we got specified a target task, also iterate its context and
7948 * deliver this event there too.
7949 */
7950 if (task && task != current) {
7951 struct perf_event_context *ctx;
7952 struct trace_entry *entry = record;
7953
7954 rcu_read_lock();
7955 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
7956 if (!ctx)
7957 goto unlock;
7958
7959 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7960 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7961 continue;
7962 if (event->attr.config != entry->type)
7963 continue;
7964 if (perf_tp_event_match(event, &data, regs))
7965 perf_swevent_event(event, count, &data, regs);
7966 }
7967unlock:
7968 rcu_read_unlock();
7969 }
7970
ecc55f84 7971 perf_swevent_put_recursion_context(rctx);
95476b64
FW
7972}
7973EXPORT_SYMBOL_GPL(perf_tp_event);
7974
cdd6c482 7975static void tp_perf_event_destroy(struct perf_event *event)
e077df4f 7976{
1c024eca 7977 perf_trace_destroy(event);
e077df4f
PZ
7978}
7979
b0a873eb 7980static int perf_tp_event_init(struct perf_event *event)
e077df4f 7981{
76e1d904
FW
7982 int err;
7983
b0a873eb
PZ
7984 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7985 return -ENOENT;
7986
2481c5fa
SE
7987 /*
7988 * no branch sampling for tracepoint events
7989 */
7990 if (has_branch_stack(event))
7991 return -EOPNOTSUPP;
7992
1c024eca
PZ
7993 err = perf_trace_init(event);
7994 if (err)
b0a873eb 7995 return err;
e077df4f 7996
cdd6c482 7997 event->destroy = tp_perf_event_destroy;
e077df4f 7998
b0a873eb
PZ
7999 return 0;
8000}
8001
8002static struct pmu perf_tracepoint = {
89a1e187
PZ
8003 .task_ctx_nr = perf_sw_context,
8004
b0a873eb 8005 .event_init = perf_tp_event_init,
a4eaf7f1
PZ
8006 .add = perf_trace_add,
8007 .del = perf_trace_del,
8008 .start = perf_swevent_start,
8009 .stop = perf_swevent_stop,
b0a873eb 8010 .read = perf_swevent_read,
b0a873eb
PZ
8011};
8012
8013static inline void perf_tp_register(void)
8014{
2e80a82a 8015 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
e077df4f 8016}
6fb2915d 8017
6fb2915d
LZ
8018static void perf_event_free_filter(struct perf_event *event)
8019{
8020 ftrace_profile_free_filter(event);
8021}
8022
aa6a5f3c
AS
8023#ifdef CONFIG_BPF_SYSCALL
8024static void bpf_overflow_handler(struct perf_event *event,
8025 struct perf_sample_data *data,
8026 struct pt_regs *regs)
8027{
8028 struct bpf_perf_event_data_kern ctx = {
8029 .data = data,
8030 .regs = regs,
8031 };
8032 int ret = 0;
8033
8034 preempt_disable();
8035 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
8036 goto out;
8037 rcu_read_lock();
88575199 8038 ret = BPF_PROG_RUN(event->prog, &ctx);
aa6a5f3c
AS
8039 rcu_read_unlock();
8040out:
8041 __this_cpu_dec(bpf_prog_active);
8042 preempt_enable();
8043 if (!ret)
8044 return;
8045
8046 event->orig_overflow_handler(event, data, regs);
8047}
8048
8049static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8050{
8051 struct bpf_prog *prog;
8052
8053 if (event->overflow_handler_context)
8054 /* hw breakpoint or kernel counter */
8055 return -EINVAL;
8056
8057 if (event->prog)
8058 return -EEXIST;
8059
8060 prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
8061 if (IS_ERR(prog))
8062 return PTR_ERR(prog);
8063
8064 event->prog = prog;
8065 event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
8066 WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
8067 return 0;
8068}
8069
8070static void perf_event_free_bpf_handler(struct perf_event *event)
8071{
8072 struct bpf_prog *prog = event->prog;
8073
8074 if (!prog)
8075 return;
8076
8077 WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
8078 event->prog = NULL;
8079 bpf_prog_put(prog);
8080}
8081#else
8082static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8083{
8084 return -EOPNOTSUPP;
8085}
8086static void perf_event_free_bpf_handler(struct perf_event *event)
8087{
8088}
8089#endif
8090
2541517c
AS
8091static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8092{
98b5c2c6 8093 bool is_kprobe, is_tracepoint;
2541517c
AS
8094 struct bpf_prog *prog;
8095
8096 if (event->attr.type != PERF_TYPE_TRACEPOINT)
f91840a3 8097 return perf_event_set_bpf_handler(event, prog_fd);
2541517c
AS
8098
8099 if (event->tp_event->prog)
8100 return -EEXIST;
8101
98b5c2c6
AS
8102 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
8103 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
8104 if (!is_kprobe && !is_tracepoint)
8105 /* bpf programs can only be attached to u/kprobe or tracepoint */
2541517c
AS
8106 return -EINVAL;
8107
8108 prog = bpf_prog_get(prog_fd);
8109 if (IS_ERR(prog))
8110 return PTR_ERR(prog);
8111
98b5c2c6
AS
8112 if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
8113 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
2541517c
AS
8114 /* valid fd, but invalid bpf program type */
8115 bpf_prog_put(prog);
8116 return -EINVAL;
8117 }
8118
32bbe007
AS
8119 if (is_tracepoint) {
8120 int off = trace_event_get_offsets(event->tp_event);
8121
8122 if (prog->aux->max_ctx_offset > off) {
8123 bpf_prog_put(prog);
8124 return -EACCES;
8125 }
8126 }
2541517c
AS
8127 event->tp_event->prog = prog;
8128
8129 return 0;
8130}
8131
8132static void perf_event_free_bpf_prog(struct perf_event *event)
8133{
8134 struct bpf_prog *prog;
8135
aa6a5f3c
AS
8136 perf_event_free_bpf_handler(event);
8137
2541517c
AS
8138 if (!event->tp_event)
8139 return;
8140
8141 prog = event->tp_event->prog;
8142 if (prog) {
8143 event->tp_event->prog = NULL;
1aacde3d 8144 bpf_prog_put(prog);
2541517c
AS
8145 }
8146}
8147
e077df4f 8148#else
6fb2915d 8149
b0a873eb 8150static inline void perf_tp_register(void)
e077df4f 8151{
e077df4f 8152}
6fb2915d 8153
6fb2915d
LZ
8154static void perf_event_free_filter(struct perf_event *event)
8155{
8156}
8157
2541517c
AS
8158static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8159{
8160 return -ENOENT;
8161}
8162
8163static void perf_event_free_bpf_prog(struct perf_event *event)
8164{
8165}
07b139c8 8166#endif /* CONFIG_EVENT_TRACING */
e077df4f 8167
24f1e32c 8168#ifdef CONFIG_HAVE_HW_BREAKPOINT
f5ffe02e 8169void perf_bp_event(struct perf_event *bp, void *data)
24f1e32c 8170{
f5ffe02e
FW
8171 struct perf_sample_data sample;
8172 struct pt_regs *regs = data;
8173
fd0d000b 8174 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
f5ffe02e 8175
a4eaf7f1 8176 if (!bp->hw.state && !perf_exclude_event(bp, regs))
a8b0ca17 8177 perf_swevent_event(bp, 1, &sample, regs);
24f1e32c
FW
8178}
8179#endif
8180
375637bc
AS
8181/*
8182 * Allocate a new address filter
8183 */
8184static struct perf_addr_filter *
8185perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
8186{
8187 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
8188 struct perf_addr_filter *filter;
8189
8190 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
8191 if (!filter)
8192 return NULL;
8193
8194 INIT_LIST_HEAD(&filter->entry);
8195 list_add_tail(&filter->entry, filters);
8196
8197 return filter;
8198}
8199
8200static void free_filters_list(struct list_head *filters)
8201{
8202 struct perf_addr_filter *filter, *iter;
8203
8204 list_for_each_entry_safe(filter, iter, filters, entry) {
8205 if (filter->inode)
8206 iput(filter->inode);
8207 list_del(&filter->entry);
8208 kfree(filter);
8209 }
8210}
8211
8212/*
8213 * Free existing address filters and optionally install new ones
8214 */
8215static void perf_addr_filters_splice(struct perf_event *event,
8216 struct list_head *head)
8217{
8218 unsigned long flags;
8219 LIST_HEAD(list);
8220
8221 if (!has_addr_filter(event))
8222 return;
8223
8224 /* don't bother with children, they don't have their own filters */
8225 if (event->parent)
8226 return;
8227
8228 raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
8229
8230 list_splice_init(&event->addr_filters.list, &list);
8231 if (head)
8232 list_splice(head, &event->addr_filters.list);
8233
8234 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
8235
8236 free_filters_list(&list);
8237}
8238
8239/*
8240 * Scan through mm's vmas and see if one of them matches the
8241 * @filter; if so, adjust filter's address range.
8242 * Called with mm::mmap_sem down for reading.
8243 */
8244static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter,
8245 struct mm_struct *mm)
8246{
8247 struct vm_area_struct *vma;
8248
8249 for (vma = mm->mmap; vma; vma = vma->vm_next) {
8250 struct file *file = vma->vm_file;
8251 unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8252 unsigned long vma_size = vma->vm_end - vma->vm_start;
8253
8254 if (!file)
8255 continue;
8256
8257 if (!perf_addr_filter_match(filter, file, off, vma_size))
8258 continue;
8259
8260 return vma->vm_start;
8261 }
8262
8263 return 0;
8264}
8265
8266/*
8267 * Update event's address range filters based on the
8268 * task's existing mappings, if any.
8269 */
8270static void perf_event_addr_filters_apply(struct perf_event *event)
8271{
8272 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8273 struct task_struct *task = READ_ONCE(event->ctx->task);
8274 struct perf_addr_filter *filter;
8275 struct mm_struct *mm = NULL;
8276 unsigned int count = 0;
8277 unsigned long flags;
8278
8279 /*
8280 * We may observe TASK_TOMBSTONE, which means that the event tear-down
8281 * will stop on the parent's child_mutex that our caller is also holding
8282 */
8283 if (task == TASK_TOMBSTONE)
8284 return;
8285
6ce77bfd
AS
8286 if (!ifh->nr_file_filters)
8287 return;
8288
375637bc
AS
8289 mm = get_task_mm(event->ctx->task);
8290 if (!mm)
8291 goto restart;
8292
8293 down_read(&mm->mmap_sem);
8294
8295 raw_spin_lock_irqsave(&ifh->lock, flags);
8296 list_for_each_entry(filter, &ifh->list, entry) {
8297 event->addr_filters_offs[count] = 0;
8298
99f5bc9b
MP
8299 /*
8300 * Adjust base offset if the filter is associated to a binary
8301 * that needs to be mapped:
8302 */
8303 if (filter->inode)
375637bc
AS
8304 event->addr_filters_offs[count] =
8305 perf_addr_filter_apply(filter, mm);
8306
8307 count++;
8308 }
8309
8310 event->addr_filters_gen++;
8311 raw_spin_unlock_irqrestore(&ifh->lock, flags);
8312
8313 up_read(&mm->mmap_sem);
8314
8315 mmput(mm);
8316
8317restart:
767ae086 8318 perf_event_stop(event, 1);
375637bc
AS
8319}
8320
8321/*
8322 * Address range filtering: limiting the data to certain
8323 * instruction address ranges. Filters are ioctl()ed to us from
8324 * userspace as ascii strings.
8325 *
8326 * Filter string format:
8327 *
8328 * ACTION RANGE_SPEC
8329 * where ACTION is one of the
8330 * * "filter": limit the trace to this region
8331 * * "start": start tracing from this address
8332 * * "stop": stop tracing at this address/region;
8333 * RANGE_SPEC is
8334 * * for kernel addresses: <start address>[/<size>]
8335 * * for object files: <start address>[/<size>]@</path/to/object/file>
8336 *
8337 * if <size> is not specified, the range is treated as a single address.
8338 */
8339enum {
e96271f3 8340 IF_ACT_NONE = -1,
375637bc
AS
8341 IF_ACT_FILTER,
8342 IF_ACT_START,
8343 IF_ACT_STOP,
8344 IF_SRC_FILE,
8345 IF_SRC_KERNEL,
8346 IF_SRC_FILEADDR,
8347 IF_SRC_KERNELADDR,
8348};
8349
8350enum {
8351 IF_STATE_ACTION = 0,
8352 IF_STATE_SOURCE,
8353 IF_STATE_END,
8354};
8355
8356static const match_table_t if_tokens = {
8357 { IF_ACT_FILTER, "filter" },
8358 { IF_ACT_START, "start" },
8359 { IF_ACT_STOP, "stop" },
8360 { IF_SRC_FILE, "%u/%u@%s" },
8361 { IF_SRC_KERNEL, "%u/%u" },
8362 { IF_SRC_FILEADDR, "%u@%s" },
8363 { IF_SRC_KERNELADDR, "%u" },
e96271f3 8364 { IF_ACT_NONE, NULL },
375637bc
AS
8365};
8366
8367/*
8368 * Address filter string parser
8369 */
8370static int
8371perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
8372 struct list_head *filters)
8373{
8374 struct perf_addr_filter *filter = NULL;
8375 char *start, *orig, *filename = NULL;
8376 struct path path;
8377 substring_t args[MAX_OPT_ARGS];
8378 int state = IF_STATE_ACTION, token;
8379 unsigned int kernel = 0;
8380 int ret = -EINVAL;
8381
8382 orig = fstr = kstrdup(fstr, GFP_KERNEL);
8383 if (!fstr)
8384 return -ENOMEM;
8385
8386 while ((start = strsep(&fstr, " ,\n")) != NULL) {
8387 ret = -EINVAL;
8388
8389 if (!*start)
8390 continue;
8391
8392 /* filter definition begins */
8393 if (state == IF_STATE_ACTION) {
8394 filter = perf_addr_filter_new(event, filters);
8395 if (!filter)
8396 goto fail;
8397 }
8398
8399 token = match_token(start, if_tokens, args);
8400 switch (token) {
8401 case IF_ACT_FILTER:
8402 case IF_ACT_START:
8403 filter->filter = 1;
8404
8405 case IF_ACT_STOP:
8406 if (state != IF_STATE_ACTION)
8407 goto fail;
8408
8409 state = IF_STATE_SOURCE;
8410 break;
8411
8412 case IF_SRC_KERNELADDR:
8413 case IF_SRC_KERNEL:
8414 kernel = 1;
8415
8416 case IF_SRC_FILEADDR:
8417 case IF_SRC_FILE:
8418 if (state != IF_STATE_SOURCE)
8419 goto fail;
8420
8421 if (token == IF_SRC_FILE || token == IF_SRC_KERNEL)
8422 filter->range = 1;
8423
8424 *args[0].to = 0;
8425 ret = kstrtoul(args[0].from, 0, &filter->offset);
8426 if (ret)
8427 goto fail;
8428
8429 if (filter->range) {
8430 *args[1].to = 0;
8431 ret = kstrtoul(args[1].from, 0, &filter->size);
8432 if (ret)
8433 goto fail;
8434 }
8435
4059ffd0
MP
8436 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
8437 int fpos = filter->range ? 2 : 1;
8438
8439 filename = match_strdup(&args[fpos]);
375637bc
AS
8440 if (!filename) {
8441 ret = -ENOMEM;
8442 goto fail;
8443 }
8444 }
8445
8446 state = IF_STATE_END;
8447 break;
8448
8449 default:
8450 goto fail;
8451 }
8452
8453 /*
8454 * Filter definition is fully parsed, validate and install it.
8455 * Make sure that it doesn't contradict itself or the event's
8456 * attribute.
8457 */
8458 if (state == IF_STATE_END) {
9ccbfbb1 8459 ret = -EINVAL;
375637bc
AS
8460 if (kernel && event->attr.exclude_kernel)
8461 goto fail;
8462
8463 if (!kernel) {
8464 if (!filename)
8465 goto fail;
8466
6ce77bfd
AS
8467 /*
8468 * For now, we only support file-based filters
8469 * in per-task events; doing so for CPU-wide
8470 * events requires additional context switching
8471 * trickery, since same object code will be
8472 * mapped at different virtual addresses in
8473 * different processes.
8474 */
8475 ret = -EOPNOTSUPP;
8476 if (!event->ctx->task)
8477 goto fail_free_name;
8478
375637bc
AS
8479 /* look up the path and grab its inode */
8480 ret = kern_path(filename, LOOKUP_FOLLOW, &path);
8481 if (ret)
8482 goto fail_free_name;
8483
8484 filter->inode = igrab(d_inode(path.dentry));
8485 path_put(&path);
8486 kfree(filename);
8487 filename = NULL;
8488
8489 ret = -EINVAL;
8490 if (!filter->inode ||
8491 !S_ISREG(filter->inode->i_mode))
8492 /* free_filters_list() will iput() */
8493 goto fail;
6ce77bfd
AS
8494
8495 event->addr_filters.nr_file_filters++;
375637bc
AS
8496 }
8497
8498 /* ready to consume more filters */
8499 state = IF_STATE_ACTION;
8500 filter = NULL;
8501 }
8502 }
8503
8504 if (state != IF_STATE_ACTION)
8505 goto fail;
8506
8507 kfree(orig);
8508
8509 return 0;
8510
8511fail_free_name:
8512 kfree(filename);
8513fail:
8514 free_filters_list(filters);
8515 kfree(orig);
8516
8517 return ret;
8518}
8519
8520static int
8521perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
8522{
8523 LIST_HEAD(filters);
8524 int ret;
8525
8526 /*
8527 * Since this is called in perf_ioctl() path, we're already holding
8528 * ctx::mutex.
8529 */
8530 lockdep_assert_held(&event->ctx->mutex);
8531
8532 if (WARN_ON_ONCE(event->parent))
8533 return -EINVAL;
8534
375637bc
AS
8535 ret = perf_event_parse_addr_filter(event, filter_str, &filters);
8536 if (ret)
6ce77bfd 8537 goto fail_clear_files;
375637bc
AS
8538
8539 ret = event->pmu->addr_filters_validate(&filters);
6ce77bfd
AS
8540 if (ret)
8541 goto fail_free_filters;
375637bc
AS
8542
8543 /* remove existing filters, if any */
8544 perf_addr_filters_splice(event, &filters);
8545
8546 /* install new filters */
8547 perf_event_for_each_child(event, perf_event_addr_filters_apply);
8548
6ce77bfd
AS
8549 return ret;
8550
8551fail_free_filters:
8552 free_filters_list(&filters);
8553
8554fail_clear_files:
8555 event->addr_filters.nr_file_filters = 0;
8556
375637bc
AS
8557 return ret;
8558}
8559
c796bbbe
AS
8560static int perf_event_set_filter(struct perf_event *event, void __user *arg)
8561{
8562 char *filter_str;
8563 int ret = -EINVAL;
8564
375637bc
AS
8565 if ((event->attr.type != PERF_TYPE_TRACEPOINT ||
8566 !IS_ENABLED(CONFIG_EVENT_TRACING)) &&
8567 !has_addr_filter(event))
c796bbbe
AS
8568 return -EINVAL;
8569
8570 filter_str = strndup_user(arg, PAGE_SIZE);
8571 if (IS_ERR(filter_str))
8572 return PTR_ERR(filter_str);
8573
8574 if (IS_ENABLED(CONFIG_EVENT_TRACING) &&
8575 event->attr.type == PERF_TYPE_TRACEPOINT)
8576 ret = ftrace_profile_set_filter(event, event->attr.config,
8577 filter_str);
375637bc
AS
8578 else if (has_addr_filter(event))
8579 ret = perf_event_set_addr_filter(event, filter_str);
c796bbbe
AS
8580
8581 kfree(filter_str);
8582 return ret;
8583}
8584
b0a873eb
PZ
8585/*
8586 * hrtimer based swevent callback
8587 */
f29ac756 8588
b0a873eb 8589static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
f29ac756 8590{
b0a873eb
PZ
8591 enum hrtimer_restart ret = HRTIMER_RESTART;
8592 struct perf_sample_data data;
8593 struct pt_regs *regs;
8594 struct perf_event *event;
8595 u64 period;
f29ac756 8596
b0a873eb 8597 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
ba3dd36c
PZ
8598
8599 if (event->state != PERF_EVENT_STATE_ACTIVE)
8600 return HRTIMER_NORESTART;
8601
b0a873eb 8602 event->pmu->read(event);
f344011c 8603
fd0d000b 8604 perf_sample_data_init(&data, 0, event->hw.last_period);
b0a873eb
PZ
8605 regs = get_irq_regs();
8606
8607 if (regs && !perf_exclude_event(event, regs)) {
77aeeebd 8608 if (!(event->attr.exclude_idle && is_idle_task(current)))
33b07b8b 8609 if (__perf_event_overflow(event, 1, &data, regs))
b0a873eb
PZ
8610 ret = HRTIMER_NORESTART;
8611 }
24f1e32c 8612
b0a873eb
PZ
8613 period = max_t(u64, 10000, event->hw.sample_period);
8614 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
24f1e32c 8615
b0a873eb 8616 return ret;
f29ac756
PZ
8617}
8618
b0a873eb 8619static void perf_swevent_start_hrtimer(struct perf_event *event)
5c92d124 8620{
b0a873eb 8621 struct hw_perf_event *hwc = &event->hw;
5d508e82
FBH
8622 s64 period;
8623
8624 if (!is_sampling_event(event))
8625 return;
f5ffe02e 8626
5d508e82
FBH
8627 period = local64_read(&hwc->period_left);
8628 if (period) {
8629 if (period < 0)
8630 period = 10000;
fa407f35 8631
5d508e82
FBH
8632 local64_set(&hwc->period_left, 0);
8633 } else {
8634 period = max_t(u64, 10000, hwc->sample_period);
8635 }
3497d206
TG
8636 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
8637 HRTIMER_MODE_REL_PINNED);
24f1e32c 8638}
b0a873eb
PZ
8639
8640static void perf_swevent_cancel_hrtimer(struct perf_event *event)
24f1e32c 8641{
b0a873eb
PZ
8642 struct hw_perf_event *hwc = &event->hw;
8643
6c7e550f 8644 if (is_sampling_event(event)) {
b0a873eb 8645 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
fa407f35 8646 local64_set(&hwc->period_left, ktime_to_ns(remaining));
b0a873eb
PZ
8647
8648 hrtimer_cancel(&hwc->hrtimer);
8649 }
24f1e32c
FW
8650}
8651
ba3dd36c
PZ
8652static void perf_swevent_init_hrtimer(struct perf_event *event)
8653{
8654 struct hw_perf_event *hwc = &event->hw;
8655
8656 if (!is_sampling_event(event))
8657 return;
8658
8659 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
8660 hwc->hrtimer.function = perf_swevent_hrtimer;
8661
8662 /*
8663 * Since hrtimers have a fixed rate, we can do a static freq->period
8664 * mapping and avoid the whole period adjust feedback stuff.
8665 */
8666 if (event->attr.freq) {
8667 long freq = event->attr.sample_freq;
8668
8669 event->attr.sample_period = NSEC_PER_SEC / freq;
8670 hwc->sample_period = event->attr.sample_period;
8671 local64_set(&hwc->period_left, hwc->sample_period);
778141e3 8672 hwc->last_period = hwc->sample_period;
ba3dd36c
PZ
8673 event->attr.freq = 0;
8674 }
8675}
8676
b0a873eb
PZ
8677/*
8678 * Software event: cpu wall time clock
8679 */
8680
8681static void cpu_clock_event_update(struct perf_event *event)
24f1e32c 8682{
b0a873eb
PZ
8683 s64 prev;
8684 u64 now;
8685
a4eaf7f1 8686 now = local_clock();
b0a873eb
PZ
8687 prev = local64_xchg(&event->hw.prev_count, now);
8688 local64_add(now - prev, &event->count);
24f1e32c 8689}
24f1e32c 8690
a4eaf7f1 8691static void cpu_clock_event_start(struct perf_event *event, int flags)
b0a873eb 8692{
a4eaf7f1 8693 local64_set(&event->hw.prev_count, local_clock());
b0a873eb 8694 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
8695}
8696
a4eaf7f1 8697static void cpu_clock_event_stop(struct perf_event *event, int flags)
f29ac756 8698{
b0a873eb
PZ
8699 perf_swevent_cancel_hrtimer(event);
8700 cpu_clock_event_update(event);
8701}
f29ac756 8702
a4eaf7f1
PZ
8703static int cpu_clock_event_add(struct perf_event *event, int flags)
8704{
8705 if (flags & PERF_EF_START)
8706 cpu_clock_event_start(event, flags);
6a694a60 8707 perf_event_update_userpage(event);
a4eaf7f1
PZ
8708
8709 return 0;
8710}
8711
8712static void cpu_clock_event_del(struct perf_event *event, int flags)
8713{
8714 cpu_clock_event_stop(event, flags);
8715}
8716
b0a873eb
PZ
8717static void cpu_clock_event_read(struct perf_event *event)
8718{
8719 cpu_clock_event_update(event);
8720}
f344011c 8721
b0a873eb
PZ
8722static int cpu_clock_event_init(struct perf_event *event)
8723{
8724 if (event->attr.type != PERF_TYPE_SOFTWARE)
8725 return -ENOENT;
8726
8727 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
8728 return -ENOENT;
8729
2481c5fa
SE
8730 /*
8731 * no branch sampling for software events
8732 */
8733 if (has_branch_stack(event))
8734 return -EOPNOTSUPP;
8735
ba3dd36c
PZ
8736 perf_swevent_init_hrtimer(event);
8737
b0a873eb 8738 return 0;
f29ac756
PZ
8739}
8740
b0a873eb 8741static struct pmu perf_cpu_clock = {
89a1e187
PZ
8742 .task_ctx_nr = perf_sw_context,
8743
34f43927
PZ
8744 .capabilities = PERF_PMU_CAP_NO_NMI,
8745
b0a873eb 8746 .event_init = cpu_clock_event_init,
a4eaf7f1
PZ
8747 .add = cpu_clock_event_add,
8748 .del = cpu_clock_event_del,
8749 .start = cpu_clock_event_start,
8750 .stop = cpu_clock_event_stop,
b0a873eb
PZ
8751 .read = cpu_clock_event_read,
8752};
8753
8754/*
8755 * Software event: task time clock
8756 */
8757
8758static void task_clock_event_update(struct perf_event *event, u64 now)
5c92d124 8759{
b0a873eb
PZ
8760 u64 prev;
8761 s64 delta;
5c92d124 8762
b0a873eb
PZ
8763 prev = local64_xchg(&event->hw.prev_count, now);
8764 delta = now - prev;
8765 local64_add(delta, &event->count);
8766}
5c92d124 8767
a4eaf7f1 8768static void task_clock_event_start(struct perf_event *event, int flags)
b0a873eb 8769{
a4eaf7f1 8770 local64_set(&event->hw.prev_count, event->ctx->time);
b0a873eb 8771 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
8772}
8773
a4eaf7f1 8774static void task_clock_event_stop(struct perf_event *event, int flags)
b0a873eb
PZ
8775{
8776 perf_swevent_cancel_hrtimer(event);
8777 task_clock_event_update(event, event->ctx->time);
a4eaf7f1
PZ
8778}
8779
8780static int task_clock_event_add(struct perf_event *event, int flags)
8781{
8782 if (flags & PERF_EF_START)
8783 task_clock_event_start(event, flags);
6a694a60 8784 perf_event_update_userpage(event);
b0a873eb 8785
a4eaf7f1
PZ
8786 return 0;
8787}
8788
8789static void task_clock_event_del(struct perf_event *event, int flags)
8790{
8791 task_clock_event_stop(event, PERF_EF_UPDATE);
b0a873eb
PZ
8792}
8793
8794static void task_clock_event_read(struct perf_event *event)
8795{
768a06e2
PZ
8796 u64 now = perf_clock();
8797 u64 delta = now - event->ctx->timestamp;
8798 u64 time = event->ctx->time + delta;
b0a873eb
PZ
8799
8800 task_clock_event_update(event, time);
8801}
8802
8803static int task_clock_event_init(struct perf_event *event)
6fb2915d 8804{
b0a873eb
PZ
8805 if (event->attr.type != PERF_TYPE_SOFTWARE)
8806 return -ENOENT;
8807
8808 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
8809 return -ENOENT;
8810
2481c5fa
SE
8811 /*
8812 * no branch sampling for software events
8813 */
8814 if (has_branch_stack(event))
8815 return -EOPNOTSUPP;
8816
ba3dd36c
PZ
8817 perf_swevent_init_hrtimer(event);
8818
b0a873eb 8819 return 0;
6fb2915d
LZ
8820}
8821
b0a873eb 8822static struct pmu perf_task_clock = {
89a1e187
PZ
8823 .task_ctx_nr = perf_sw_context,
8824
34f43927
PZ
8825 .capabilities = PERF_PMU_CAP_NO_NMI,
8826
b0a873eb 8827 .event_init = task_clock_event_init,
a4eaf7f1
PZ
8828 .add = task_clock_event_add,
8829 .del = task_clock_event_del,
8830 .start = task_clock_event_start,
8831 .stop = task_clock_event_stop,
b0a873eb
PZ
8832 .read = task_clock_event_read,
8833};
6fb2915d 8834
ad5133b7 8835static void perf_pmu_nop_void(struct pmu *pmu)
e077df4f 8836{
e077df4f 8837}
6fb2915d 8838
fbbe0701
SB
8839static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
8840{
8841}
8842
ad5133b7 8843static int perf_pmu_nop_int(struct pmu *pmu)
6fb2915d 8844{
ad5133b7 8845 return 0;
6fb2915d
LZ
8846}
8847
18ab2cd3 8848static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
fbbe0701
SB
8849
8850static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
6fb2915d 8851{
fbbe0701
SB
8852 __this_cpu_write(nop_txn_flags, flags);
8853
8854 if (flags & ~PERF_PMU_TXN_ADD)
8855 return;
8856
ad5133b7 8857 perf_pmu_disable(pmu);
6fb2915d
LZ
8858}
8859
ad5133b7
PZ
8860static int perf_pmu_commit_txn(struct pmu *pmu)
8861{
fbbe0701
SB
8862 unsigned int flags = __this_cpu_read(nop_txn_flags);
8863
8864 __this_cpu_write(nop_txn_flags, 0);
8865
8866 if (flags & ~PERF_PMU_TXN_ADD)
8867 return 0;
8868
ad5133b7
PZ
8869 perf_pmu_enable(pmu);
8870 return 0;
8871}
e077df4f 8872
ad5133b7 8873static void perf_pmu_cancel_txn(struct pmu *pmu)
24f1e32c 8874{
fbbe0701
SB
8875 unsigned int flags = __this_cpu_read(nop_txn_flags);
8876
8877 __this_cpu_write(nop_txn_flags, 0);
8878
8879 if (flags & ~PERF_PMU_TXN_ADD)
8880 return;
8881
ad5133b7 8882 perf_pmu_enable(pmu);
24f1e32c
FW
8883}
8884
35edc2a5
PZ
8885static int perf_event_idx_default(struct perf_event *event)
8886{
c719f560 8887 return 0;
35edc2a5
PZ
8888}
8889
8dc85d54
PZ
8890/*
8891 * Ensures all contexts with the same task_ctx_nr have the same
8892 * pmu_cpu_context too.
8893 */
9e317041 8894static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
24f1e32c 8895{
8dc85d54 8896 struct pmu *pmu;
b326e956 8897
8dc85d54
PZ
8898 if (ctxn < 0)
8899 return NULL;
24f1e32c 8900
8dc85d54
PZ
8901 list_for_each_entry(pmu, &pmus, entry) {
8902 if (pmu->task_ctx_nr == ctxn)
8903 return pmu->pmu_cpu_context;
8904 }
24f1e32c 8905
8dc85d54 8906 return NULL;
24f1e32c
FW
8907}
8908
51676957
PZ
8909static void free_pmu_context(struct pmu *pmu)
8910{
8dc85d54 8911 mutex_lock(&pmus_lock);
51676957 8912 free_percpu(pmu->pmu_cpu_context);
8dc85d54 8913 mutex_unlock(&pmus_lock);
24f1e32c 8914}
6e855cd4
AS
8915
8916/*
8917 * Let userspace know that this PMU supports address range filtering:
8918 */
8919static ssize_t nr_addr_filters_show(struct device *dev,
8920 struct device_attribute *attr,
8921 char *page)
8922{
8923 struct pmu *pmu = dev_get_drvdata(dev);
8924
8925 return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
8926}
8927DEVICE_ATTR_RO(nr_addr_filters);
8928
2e80a82a 8929static struct idr pmu_idr;
d6d020e9 8930
abe43400
PZ
8931static ssize_t
8932type_show(struct device *dev, struct device_attribute *attr, char *page)
8933{
8934 struct pmu *pmu = dev_get_drvdata(dev);
8935
8936 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
8937}
90826ca7 8938static DEVICE_ATTR_RO(type);
abe43400 8939
62b85639
SE
8940static ssize_t
8941perf_event_mux_interval_ms_show(struct device *dev,
8942 struct device_attribute *attr,
8943 char *page)
8944{
8945 struct pmu *pmu = dev_get_drvdata(dev);
8946
8947 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
8948}
8949
272325c4
PZ
8950static DEFINE_MUTEX(mux_interval_mutex);
8951
62b85639
SE
8952static ssize_t
8953perf_event_mux_interval_ms_store(struct device *dev,
8954 struct device_attribute *attr,
8955 const char *buf, size_t count)
8956{
8957 struct pmu *pmu = dev_get_drvdata(dev);
8958 int timer, cpu, ret;
8959
8960 ret = kstrtoint(buf, 0, &timer);
8961 if (ret)
8962 return ret;
8963
8964 if (timer < 1)
8965 return -EINVAL;
8966
8967 /* same value, noting to do */
8968 if (timer == pmu->hrtimer_interval_ms)
8969 return count;
8970
272325c4 8971 mutex_lock(&mux_interval_mutex);
62b85639
SE
8972 pmu->hrtimer_interval_ms = timer;
8973
8974 /* update all cpuctx for this PMU */
a63fbed7 8975 cpus_read_lock();
272325c4 8976 for_each_online_cpu(cpu) {
62b85639
SE
8977 struct perf_cpu_context *cpuctx;
8978 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8979 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
8980
272325c4
PZ
8981 cpu_function_call(cpu,
8982 (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
62b85639 8983 }
a63fbed7 8984 cpus_read_unlock();
272325c4 8985 mutex_unlock(&mux_interval_mutex);
62b85639
SE
8986
8987 return count;
8988}
90826ca7 8989static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
62b85639 8990
90826ca7
GKH
8991static struct attribute *pmu_dev_attrs[] = {
8992 &dev_attr_type.attr,
8993 &dev_attr_perf_event_mux_interval_ms.attr,
8994 NULL,
abe43400 8995};
90826ca7 8996ATTRIBUTE_GROUPS(pmu_dev);
abe43400
PZ
8997
8998static int pmu_bus_running;
8999static struct bus_type pmu_bus = {
9000 .name = "event_source",
90826ca7 9001 .dev_groups = pmu_dev_groups,
abe43400
PZ
9002};
9003
9004static void pmu_dev_release(struct device *dev)
9005{
9006 kfree(dev);
9007}
9008
9009static int pmu_dev_alloc(struct pmu *pmu)
9010{
9011 int ret = -ENOMEM;
9012
9013 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
9014 if (!pmu->dev)
9015 goto out;
9016
0c9d42ed 9017 pmu->dev->groups = pmu->attr_groups;
abe43400
PZ
9018 device_initialize(pmu->dev);
9019 ret = dev_set_name(pmu->dev, "%s", pmu->name);
9020 if (ret)
9021 goto free_dev;
9022
9023 dev_set_drvdata(pmu->dev, pmu);
9024 pmu->dev->bus = &pmu_bus;
9025 pmu->dev->release = pmu_dev_release;
9026 ret = device_add(pmu->dev);
9027 if (ret)
9028 goto free_dev;
9029
6e855cd4
AS
9030 /* For PMUs with address filters, throw in an extra attribute: */
9031 if (pmu->nr_addr_filters)
9032 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
9033
9034 if (ret)
9035 goto del_dev;
9036
abe43400
PZ
9037out:
9038 return ret;
9039
6e855cd4
AS
9040del_dev:
9041 device_del(pmu->dev);
9042
abe43400
PZ
9043free_dev:
9044 put_device(pmu->dev);
9045 goto out;
9046}
9047
547e9fd7 9048static struct lock_class_key cpuctx_mutex;
facc4307 9049static struct lock_class_key cpuctx_lock;
547e9fd7 9050
03d8e80b 9051int perf_pmu_register(struct pmu *pmu, const char *name, int type)
24f1e32c 9052{
108b02cf 9053 int cpu, ret;
24f1e32c 9054
b0a873eb 9055 mutex_lock(&pmus_lock);
33696fc0
PZ
9056 ret = -ENOMEM;
9057 pmu->pmu_disable_count = alloc_percpu(int);
9058 if (!pmu->pmu_disable_count)
9059 goto unlock;
f29ac756 9060
2e80a82a
PZ
9061 pmu->type = -1;
9062 if (!name)
9063 goto skip_type;
9064 pmu->name = name;
9065
9066 if (type < 0) {
0e9c3be2
TH
9067 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
9068 if (type < 0) {
9069 ret = type;
2e80a82a
PZ
9070 goto free_pdc;
9071 }
9072 }
9073 pmu->type = type;
9074
abe43400
PZ
9075 if (pmu_bus_running) {
9076 ret = pmu_dev_alloc(pmu);
9077 if (ret)
9078 goto free_idr;
9079 }
9080
2e80a82a 9081skip_type:
26657848
PZ
9082 if (pmu->task_ctx_nr == perf_hw_context) {
9083 static int hw_context_taken = 0;
9084
5101ef20
MR
9085 /*
9086 * Other than systems with heterogeneous CPUs, it never makes
9087 * sense for two PMUs to share perf_hw_context. PMUs which are
9088 * uncore must use perf_invalid_context.
9089 */
9090 if (WARN_ON_ONCE(hw_context_taken &&
9091 !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
26657848
PZ
9092 pmu->task_ctx_nr = perf_invalid_context;
9093
9094 hw_context_taken = 1;
9095 }
9096
8dc85d54
PZ
9097 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
9098 if (pmu->pmu_cpu_context)
9099 goto got_cpu_context;
f29ac756 9100
c4814202 9101 ret = -ENOMEM;
108b02cf
PZ
9102 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
9103 if (!pmu->pmu_cpu_context)
abe43400 9104 goto free_dev;
f344011c 9105
108b02cf
PZ
9106 for_each_possible_cpu(cpu) {
9107 struct perf_cpu_context *cpuctx;
9108
9109 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
eb184479 9110 __perf_event_init_context(&cpuctx->ctx);
547e9fd7 9111 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
facc4307 9112 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
108b02cf 9113 cpuctx->ctx.pmu = pmu;
a63fbed7 9114 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
9e630205 9115
272325c4 9116 __perf_mux_hrtimer_init(cpuctx, cpu);
108b02cf 9117 }
76e1d904 9118
8dc85d54 9119got_cpu_context:
ad5133b7
PZ
9120 if (!pmu->start_txn) {
9121 if (pmu->pmu_enable) {
9122 /*
9123 * If we have pmu_enable/pmu_disable calls, install
9124 * transaction stubs that use that to try and batch
9125 * hardware accesses.
9126 */
9127 pmu->start_txn = perf_pmu_start_txn;
9128 pmu->commit_txn = perf_pmu_commit_txn;
9129 pmu->cancel_txn = perf_pmu_cancel_txn;
9130 } else {
fbbe0701 9131 pmu->start_txn = perf_pmu_nop_txn;
ad5133b7
PZ
9132 pmu->commit_txn = perf_pmu_nop_int;
9133 pmu->cancel_txn = perf_pmu_nop_void;
f344011c 9134 }
5c92d124 9135 }
15dbf27c 9136
ad5133b7
PZ
9137 if (!pmu->pmu_enable) {
9138 pmu->pmu_enable = perf_pmu_nop_void;
9139 pmu->pmu_disable = perf_pmu_nop_void;
9140 }
9141
35edc2a5
PZ
9142 if (!pmu->event_idx)
9143 pmu->event_idx = perf_event_idx_default;
9144
b0a873eb 9145 list_add_rcu(&pmu->entry, &pmus);
bed5b25a 9146 atomic_set(&pmu->exclusive_cnt, 0);
33696fc0
PZ
9147 ret = 0;
9148unlock:
b0a873eb
PZ
9149 mutex_unlock(&pmus_lock);
9150
33696fc0 9151 return ret;
108b02cf 9152
abe43400
PZ
9153free_dev:
9154 device_del(pmu->dev);
9155 put_device(pmu->dev);
9156
2e80a82a
PZ
9157free_idr:
9158 if (pmu->type >= PERF_TYPE_MAX)
9159 idr_remove(&pmu_idr, pmu->type);
9160
108b02cf
PZ
9161free_pdc:
9162 free_percpu(pmu->pmu_disable_count);
9163 goto unlock;
f29ac756 9164}
c464c76e 9165EXPORT_SYMBOL_GPL(perf_pmu_register);
f29ac756 9166
b0a873eb 9167void perf_pmu_unregister(struct pmu *pmu)
5c92d124 9168{
0933840a
JO
9169 int remove_device;
9170
b0a873eb 9171 mutex_lock(&pmus_lock);
0933840a 9172 remove_device = pmu_bus_running;
b0a873eb
PZ
9173 list_del_rcu(&pmu->entry);
9174 mutex_unlock(&pmus_lock);
5c92d124 9175
0475f9ea 9176 /*
cde8e884
PZ
9177 * We dereference the pmu list under both SRCU and regular RCU, so
9178 * synchronize against both of those.
0475f9ea 9179 */
b0a873eb 9180 synchronize_srcu(&pmus_srcu);
cde8e884 9181 synchronize_rcu();
d6d020e9 9182
33696fc0 9183 free_percpu(pmu->pmu_disable_count);
2e80a82a
PZ
9184 if (pmu->type >= PERF_TYPE_MAX)
9185 idr_remove(&pmu_idr, pmu->type);
0933840a
JO
9186 if (remove_device) {
9187 if (pmu->nr_addr_filters)
9188 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
9189 device_del(pmu->dev);
9190 put_device(pmu->dev);
9191 }
51676957 9192 free_pmu_context(pmu);
b0a873eb 9193}
c464c76e 9194EXPORT_SYMBOL_GPL(perf_pmu_unregister);
d6d020e9 9195
cc34b98b
MR
9196static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
9197{
ccd41c86 9198 struct perf_event_context *ctx = NULL;
cc34b98b
MR
9199 int ret;
9200
9201 if (!try_module_get(pmu->module))
9202 return -ENODEV;
ccd41c86
PZ
9203
9204 if (event->group_leader != event) {
8b10c5e2
PZ
9205 /*
9206 * This ctx->mutex can nest when we're called through
9207 * inheritance. See the perf_event_ctx_lock_nested() comment.
9208 */
9209 ctx = perf_event_ctx_lock_nested(event->group_leader,
9210 SINGLE_DEPTH_NESTING);
ccd41c86
PZ
9211 BUG_ON(!ctx);
9212 }
9213
cc34b98b
MR
9214 event->pmu = pmu;
9215 ret = pmu->event_init(event);
ccd41c86
PZ
9216
9217 if (ctx)
9218 perf_event_ctx_unlock(event->group_leader, ctx);
9219
cc34b98b
MR
9220 if (ret)
9221 module_put(pmu->module);
9222
9223 return ret;
9224}
9225
18ab2cd3 9226static struct pmu *perf_init_event(struct perf_event *event)
b0a873eb 9227{
85c617ab 9228 struct pmu *pmu;
b0a873eb 9229 int idx;
940c5b29 9230 int ret;
b0a873eb
PZ
9231
9232 idx = srcu_read_lock(&pmus_srcu);
2e80a82a 9233
40999312
KL
9234 /* Try parent's PMU first: */
9235 if (event->parent && event->parent->pmu) {
9236 pmu = event->parent->pmu;
9237 ret = perf_try_init_event(pmu, event);
9238 if (!ret)
9239 goto unlock;
9240 }
9241
2e80a82a
PZ
9242 rcu_read_lock();
9243 pmu = idr_find(&pmu_idr, event->attr.type);
9244 rcu_read_unlock();
940c5b29 9245 if (pmu) {
cc34b98b 9246 ret = perf_try_init_event(pmu, event);
940c5b29
LM
9247 if (ret)
9248 pmu = ERR_PTR(ret);
2e80a82a 9249 goto unlock;
940c5b29 9250 }
2e80a82a 9251
b0a873eb 9252 list_for_each_entry_rcu(pmu, &pmus, entry) {
cc34b98b 9253 ret = perf_try_init_event(pmu, event);
b0a873eb 9254 if (!ret)
e5f4d339 9255 goto unlock;
76e1d904 9256
b0a873eb
PZ
9257 if (ret != -ENOENT) {
9258 pmu = ERR_PTR(ret);
e5f4d339 9259 goto unlock;
f344011c 9260 }
5c92d124 9261 }
e5f4d339
PZ
9262 pmu = ERR_PTR(-ENOENT);
9263unlock:
b0a873eb 9264 srcu_read_unlock(&pmus_srcu, idx);
15dbf27c 9265
4aeb0b42 9266 return pmu;
5c92d124
IM
9267}
9268
f2fb6bef
KL
9269static void attach_sb_event(struct perf_event *event)
9270{
9271 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
9272
9273 raw_spin_lock(&pel->lock);
9274 list_add_rcu(&event->sb_list, &pel->list);
9275 raw_spin_unlock(&pel->lock);
9276}
9277
aab5b71e
PZ
9278/*
9279 * We keep a list of all !task (and therefore per-cpu) events
9280 * that need to receive side-band records.
9281 *
9282 * This avoids having to scan all the various PMU per-cpu contexts
9283 * looking for them.
9284 */
f2fb6bef
KL
9285static void account_pmu_sb_event(struct perf_event *event)
9286{
a4f144eb 9287 if (is_sb_event(event))
f2fb6bef
KL
9288 attach_sb_event(event);
9289}
9290
4beb31f3
FW
9291static void account_event_cpu(struct perf_event *event, int cpu)
9292{
9293 if (event->parent)
9294 return;
9295
4beb31f3
FW
9296 if (is_cgroup_event(event))
9297 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
9298}
9299
555e0c1e
FW
9300/* Freq events need the tick to stay alive (see perf_event_task_tick). */
9301static void account_freq_event_nohz(void)
9302{
9303#ifdef CONFIG_NO_HZ_FULL
9304 /* Lock so we don't race with concurrent unaccount */
9305 spin_lock(&nr_freq_lock);
9306 if (atomic_inc_return(&nr_freq_events) == 1)
9307 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
9308 spin_unlock(&nr_freq_lock);
9309#endif
9310}
9311
9312static void account_freq_event(void)
9313{
9314 if (tick_nohz_full_enabled())
9315 account_freq_event_nohz();
9316 else
9317 atomic_inc(&nr_freq_events);
9318}
9319
9320
766d6c07
FW
9321static void account_event(struct perf_event *event)
9322{
25432ae9
PZ
9323 bool inc = false;
9324
4beb31f3
FW
9325 if (event->parent)
9326 return;
9327
766d6c07 9328 if (event->attach_state & PERF_ATTACH_TASK)
25432ae9 9329 inc = true;
766d6c07
FW
9330 if (event->attr.mmap || event->attr.mmap_data)
9331 atomic_inc(&nr_mmap_events);
9332 if (event->attr.comm)
9333 atomic_inc(&nr_comm_events);
e4222673
HB
9334 if (event->attr.namespaces)
9335 atomic_inc(&nr_namespaces_events);
766d6c07
FW
9336 if (event->attr.task)
9337 atomic_inc(&nr_task_events);
555e0c1e
FW
9338 if (event->attr.freq)
9339 account_freq_event();
45ac1403
AH
9340 if (event->attr.context_switch) {
9341 atomic_inc(&nr_switch_events);
25432ae9 9342 inc = true;
45ac1403 9343 }
4beb31f3 9344 if (has_branch_stack(event))
25432ae9 9345 inc = true;
4beb31f3 9346 if (is_cgroup_event(event))
25432ae9
PZ
9347 inc = true;
9348
9107c89e
PZ
9349 if (inc) {
9350 if (atomic_inc_not_zero(&perf_sched_count))
9351 goto enabled;
9352
9353 mutex_lock(&perf_sched_mutex);
9354 if (!atomic_read(&perf_sched_count)) {
9355 static_branch_enable(&perf_sched_events);
9356 /*
9357 * Guarantee that all CPUs observe they key change and
9358 * call the perf scheduling hooks before proceeding to
9359 * install events that need them.
9360 */
9361 synchronize_sched();
9362 }
9363 /*
9364 * Now that we have waited for the sync_sched(), allow further
9365 * increments to by-pass the mutex.
9366 */
9367 atomic_inc(&perf_sched_count);
9368 mutex_unlock(&perf_sched_mutex);
9369 }
9370enabled:
4beb31f3
FW
9371
9372 account_event_cpu(event, event->cpu);
f2fb6bef
KL
9373
9374 account_pmu_sb_event(event);
766d6c07
FW
9375}
9376
0793a61d 9377/*
cdd6c482 9378 * Allocate and initialize a event structure
0793a61d 9379 */
cdd6c482 9380static struct perf_event *
c3f00c70 9381perf_event_alloc(struct perf_event_attr *attr, int cpu,
d580ff86
PZ
9382 struct task_struct *task,
9383 struct perf_event *group_leader,
9384 struct perf_event *parent_event,
4dc0da86 9385 perf_overflow_handler_t overflow_handler,
79dff51e 9386 void *context, int cgroup_fd)
0793a61d 9387{
51b0fe39 9388 struct pmu *pmu;
cdd6c482
IM
9389 struct perf_event *event;
9390 struct hw_perf_event *hwc;
90983b16 9391 long err = -EINVAL;
0793a61d 9392
66832eb4
ON
9393 if ((unsigned)cpu >= nr_cpu_ids) {
9394 if (!task || cpu != -1)
9395 return ERR_PTR(-EINVAL);
9396 }
9397
c3f00c70 9398 event = kzalloc(sizeof(*event), GFP_KERNEL);
cdd6c482 9399 if (!event)
d5d2bc0d 9400 return ERR_PTR(-ENOMEM);
0793a61d 9401
04289bb9 9402 /*
cdd6c482 9403 * Single events are their own group leaders, with an
04289bb9
IM
9404 * empty sibling list:
9405 */
9406 if (!group_leader)
cdd6c482 9407 group_leader = event;
04289bb9 9408
cdd6c482
IM
9409 mutex_init(&event->child_mutex);
9410 INIT_LIST_HEAD(&event->child_list);
fccc714b 9411
cdd6c482
IM
9412 INIT_LIST_HEAD(&event->group_entry);
9413 INIT_LIST_HEAD(&event->event_entry);
9414 INIT_LIST_HEAD(&event->sibling_list);
10c6db11 9415 INIT_LIST_HEAD(&event->rb_entry);
71ad88ef 9416 INIT_LIST_HEAD(&event->active_entry);
375637bc 9417 INIT_LIST_HEAD(&event->addr_filters.list);
f3ae75de
SE
9418 INIT_HLIST_NODE(&event->hlist_entry);
9419
10c6db11 9420
cdd6c482 9421 init_waitqueue_head(&event->waitq);
e360adbe 9422 init_irq_work(&event->pending, perf_pending_event);
0793a61d 9423
cdd6c482 9424 mutex_init(&event->mmap_mutex);
375637bc 9425 raw_spin_lock_init(&event->addr_filters.lock);
7b732a75 9426
a6fa941d 9427 atomic_long_set(&event->refcount, 1);
cdd6c482
IM
9428 event->cpu = cpu;
9429 event->attr = *attr;
9430 event->group_leader = group_leader;
9431 event->pmu = NULL;
cdd6c482 9432 event->oncpu = -1;
a96bbc16 9433
cdd6c482 9434 event->parent = parent_event;
b84fbc9f 9435
17cf22c3 9436 event->ns = get_pid_ns(task_active_pid_ns(current));
cdd6c482 9437 event->id = atomic64_inc_return(&perf_event_id);
a96bbc16 9438
cdd6c482 9439 event->state = PERF_EVENT_STATE_INACTIVE;
329d876d 9440
d580ff86
PZ
9441 if (task) {
9442 event->attach_state = PERF_ATTACH_TASK;
d580ff86 9443 /*
50f16a8b
PZ
9444 * XXX pmu::event_init needs to know what task to account to
9445 * and we cannot use the ctx information because we need the
9446 * pmu before we get a ctx.
d580ff86 9447 */
50f16a8b 9448 event->hw.target = task;
d580ff86
PZ
9449 }
9450
34f43927
PZ
9451 event->clock = &local_clock;
9452 if (parent_event)
9453 event->clock = parent_event->clock;
9454
4dc0da86 9455 if (!overflow_handler && parent_event) {
b326e956 9456 overflow_handler = parent_event->overflow_handler;
4dc0da86 9457 context = parent_event->overflow_handler_context;
f1e4ba5b 9458#if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
aa6a5f3c
AS
9459 if (overflow_handler == bpf_overflow_handler) {
9460 struct bpf_prog *prog = bpf_prog_inc(parent_event->prog);
9461
9462 if (IS_ERR(prog)) {
9463 err = PTR_ERR(prog);
9464 goto err_ns;
9465 }
9466 event->prog = prog;
9467 event->orig_overflow_handler =
9468 parent_event->orig_overflow_handler;
9469 }
9470#endif
4dc0da86 9471 }
66832eb4 9472
1879445d
WN
9473 if (overflow_handler) {
9474 event->overflow_handler = overflow_handler;
9475 event->overflow_handler_context = context;
9ecda41a
WN
9476 } else if (is_write_backward(event)){
9477 event->overflow_handler = perf_event_output_backward;
9478 event->overflow_handler_context = NULL;
1879445d 9479 } else {
9ecda41a 9480 event->overflow_handler = perf_event_output_forward;
1879445d
WN
9481 event->overflow_handler_context = NULL;
9482 }
97eaf530 9483
0231bb53 9484 perf_event__state_init(event);
a86ed508 9485
4aeb0b42 9486 pmu = NULL;
b8e83514 9487
cdd6c482 9488 hwc = &event->hw;
bd2b5b12 9489 hwc->sample_period = attr->sample_period;
0d48696f 9490 if (attr->freq && attr->sample_freq)
bd2b5b12 9491 hwc->sample_period = 1;
eced1dfc 9492 hwc->last_period = hwc->sample_period;
bd2b5b12 9493
e7850595 9494 local64_set(&hwc->period_left, hwc->sample_period);
60db5e09 9495
2023b359 9496 /*
ba5213ae
PZ
9497 * We currently do not support PERF_SAMPLE_READ on inherited events.
9498 * See perf_output_read().
2023b359 9499 */
ba5213ae 9500 if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
90983b16 9501 goto err_ns;
a46a2300
YZ
9502
9503 if (!has_branch_stack(event))
9504 event->attr.branch_sample_type = 0;
2023b359 9505
79dff51e
MF
9506 if (cgroup_fd != -1) {
9507 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
9508 if (err)
9509 goto err_ns;
9510 }
9511
b0a873eb 9512 pmu = perf_init_event(event);
85c617ab 9513 if (IS_ERR(pmu)) {
4aeb0b42 9514 err = PTR_ERR(pmu);
90983b16 9515 goto err_ns;
621a01ea 9516 }
d5d2bc0d 9517
bed5b25a
AS
9518 err = exclusive_event_init(event);
9519 if (err)
9520 goto err_pmu;
9521
375637bc
AS
9522 if (has_addr_filter(event)) {
9523 event->addr_filters_offs = kcalloc(pmu->nr_addr_filters,
9524 sizeof(unsigned long),
9525 GFP_KERNEL);
36cc2b92
DC
9526 if (!event->addr_filters_offs) {
9527 err = -ENOMEM;
375637bc 9528 goto err_per_task;
36cc2b92 9529 }
375637bc
AS
9530
9531 /* force hw sync on the address filters */
9532 event->addr_filters_gen = 1;
9533 }
9534
cdd6c482 9535 if (!event->parent) {
927c7a9e 9536 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
97c79a38 9537 err = get_callchain_buffers(attr->sample_max_stack);
90983b16 9538 if (err)
375637bc 9539 goto err_addr_filters;
d010b332 9540 }
f344011c 9541 }
9ee318a7 9542
927a5570
AS
9543 /* symmetric to unaccount_event() in _free_event() */
9544 account_event(event);
9545
cdd6c482 9546 return event;
90983b16 9547
375637bc
AS
9548err_addr_filters:
9549 kfree(event->addr_filters_offs);
9550
bed5b25a
AS
9551err_per_task:
9552 exclusive_event_destroy(event);
9553
90983b16
FW
9554err_pmu:
9555 if (event->destroy)
9556 event->destroy(event);
c464c76e 9557 module_put(pmu->module);
90983b16 9558err_ns:
79dff51e
MF
9559 if (is_cgroup_event(event))
9560 perf_detach_cgroup(event);
90983b16
FW
9561 if (event->ns)
9562 put_pid_ns(event->ns);
9563 kfree(event);
9564
9565 return ERR_PTR(err);
0793a61d
TG
9566}
9567
cdd6c482
IM
9568static int perf_copy_attr(struct perf_event_attr __user *uattr,
9569 struct perf_event_attr *attr)
974802ea 9570{
974802ea 9571 u32 size;
cdf8073d 9572 int ret;
974802ea
PZ
9573
9574 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
9575 return -EFAULT;
9576
9577 /*
9578 * zero the full structure, so that a short copy will be nice.
9579 */
9580 memset(attr, 0, sizeof(*attr));
9581
9582 ret = get_user(size, &uattr->size);
9583 if (ret)
9584 return ret;
9585
9586 if (size > PAGE_SIZE) /* silly large */
9587 goto err_size;
9588
9589 if (!size) /* abi compat */
9590 size = PERF_ATTR_SIZE_VER0;
9591
9592 if (size < PERF_ATTR_SIZE_VER0)
9593 goto err_size;
9594
9595 /*
9596 * If we're handed a bigger struct than we know of,
cdf8073d
IS
9597 * ensure all the unknown bits are 0 - i.e. new
9598 * user-space does not rely on any kernel feature
9599 * extensions we dont know about yet.
974802ea
PZ
9600 */
9601 if (size > sizeof(*attr)) {
cdf8073d
IS
9602 unsigned char __user *addr;
9603 unsigned char __user *end;
9604 unsigned char val;
974802ea 9605
cdf8073d
IS
9606 addr = (void __user *)uattr + sizeof(*attr);
9607 end = (void __user *)uattr + size;
974802ea 9608
cdf8073d 9609 for (; addr < end; addr++) {
974802ea
PZ
9610 ret = get_user(val, addr);
9611 if (ret)
9612 return ret;
9613 if (val)
9614 goto err_size;
9615 }
b3e62e35 9616 size = sizeof(*attr);
974802ea
PZ
9617 }
9618
9619 ret = copy_from_user(attr, uattr, size);
9620 if (ret)
9621 return -EFAULT;
9622
cd757645 9623 if (attr->__reserved_1)
974802ea
PZ
9624 return -EINVAL;
9625
9626 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
9627 return -EINVAL;
9628
9629 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
9630 return -EINVAL;
9631
bce38cd5
SE
9632 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
9633 u64 mask = attr->branch_sample_type;
9634
9635 /* only using defined bits */
9636 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
9637 return -EINVAL;
9638
9639 /* at least one branch bit must be set */
9640 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
9641 return -EINVAL;
9642
bce38cd5
SE
9643 /* propagate priv level, when not set for branch */
9644 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
9645
9646 /* exclude_kernel checked on syscall entry */
9647 if (!attr->exclude_kernel)
9648 mask |= PERF_SAMPLE_BRANCH_KERNEL;
9649
9650 if (!attr->exclude_user)
9651 mask |= PERF_SAMPLE_BRANCH_USER;
9652
9653 if (!attr->exclude_hv)
9654 mask |= PERF_SAMPLE_BRANCH_HV;
9655 /*
9656 * adjust user setting (for HW filter setup)
9657 */
9658 attr->branch_sample_type = mask;
9659 }
e712209a
SE
9660 /* privileged levels capture (kernel, hv): check permissions */
9661 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
2b923c8f
SE
9662 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9663 return -EACCES;
bce38cd5 9664 }
4018994f 9665
c5ebcedb 9666 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
4018994f 9667 ret = perf_reg_validate(attr->sample_regs_user);
c5ebcedb
JO
9668 if (ret)
9669 return ret;
9670 }
9671
9672 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
9673 if (!arch_perf_have_user_stack_dump())
9674 return -ENOSYS;
9675
9676 /*
9677 * We have __u32 type for the size, but so far
9678 * we can only use __u16 as maximum due to the
9679 * __u16 sample size limit.
9680 */
9681 if (attr->sample_stack_user >= USHRT_MAX)
9682 ret = -EINVAL;
9683 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
9684 ret = -EINVAL;
9685 }
4018994f 9686
60e2364e
SE
9687 if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
9688 ret = perf_reg_validate(attr->sample_regs_intr);
974802ea
PZ
9689out:
9690 return ret;
9691
9692err_size:
9693 put_user(sizeof(*attr), &uattr->size);
9694 ret = -E2BIG;
9695 goto out;
9696}
9697
ac9721f3
PZ
9698static int
9699perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
a4be7c27 9700{
b69cf536 9701 struct ring_buffer *rb = NULL;
a4be7c27
PZ
9702 int ret = -EINVAL;
9703
ac9721f3 9704 if (!output_event)
a4be7c27
PZ
9705 goto set;
9706
ac9721f3
PZ
9707 /* don't allow circular references */
9708 if (event == output_event)
a4be7c27
PZ
9709 goto out;
9710
0f139300
PZ
9711 /*
9712 * Don't allow cross-cpu buffers
9713 */
9714 if (output_event->cpu != event->cpu)
9715 goto out;
9716
9717 /*
76369139 9718 * If its not a per-cpu rb, it must be the same task.
0f139300
PZ
9719 */
9720 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
9721 goto out;
9722
34f43927
PZ
9723 /*
9724 * Mixing clocks in the same buffer is trouble you don't need.
9725 */
9726 if (output_event->clock != event->clock)
9727 goto out;
9728
9ecda41a
WN
9729 /*
9730 * Either writing ring buffer from beginning or from end.
9731 * Mixing is not allowed.
9732 */
9733 if (is_write_backward(output_event) != is_write_backward(event))
9734 goto out;
9735
45bfb2e5
PZ
9736 /*
9737 * If both events generate aux data, they must be on the same PMU
9738 */
9739 if (has_aux(event) && has_aux(output_event) &&
9740 event->pmu != output_event->pmu)
9741 goto out;
9742
a4be7c27 9743set:
cdd6c482 9744 mutex_lock(&event->mmap_mutex);
ac9721f3
PZ
9745 /* Can't redirect output if we've got an active mmap() */
9746 if (atomic_read(&event->mmap_count))
9747 goto unlock;
a4be7c27 9748
ac9721f3 9749 if (output_event) {
76369139
FW
9750 /* get the rb we want to redirect to */
9751 rb = ring_buffer_get(output_event);
9752 if (!rb)
ac9721f3 9753 goto unlock;
a4be7c27
PZ
9754 }
9755
b69cf536 9756 ring_buffer_attach(event, rb);
9bb5d40c 9757
a4be7c27 9758 ret = 0;
ac9721f3
PZ
9759unlock:
9760 mutex_unlock(&event->mmap_mutex);
9761
a4be7c27 9762out:
a4be7c27
PZ
9763 return ret;
9764}
9765
f63a8daa
PZ
9766static void mutex_lock_double(struct mutex *a, struct mutex *b)
9767{
9768 if (b < a)
9769 swap(a, b);
9770
9771 mutex_lock(a);
9772 mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
9773}
9774
34f43927
PZ
9775static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
9776{
9777 bool nmi_safe = false;
9778
9779 switch (clk_id) {
9780 case CLOCK_MONOTONIC:
9781 event->clock = &ktime_get_mono_fast_ns;
9782 nmi_safe = true;
9783 break;
9784
9785 case CLOCK_MONOTONIC_RAW:
9786 event->clock = &ktime_get_raw_fast_ns;
9787 nmi_safe = true;
9788 break;
9789
9790 case CLOCK_REALTIME:
9791 event->clock = &ktime_get_real_ns;
9792 break;
9793
9794 case CLOCK_BOOTTIME:
9795 event->clock = &ktime_get_boot_ns;
9796 break;
9797
9798 case CLOCK_TAI:
9799 event->clock = &ktime_get_tai_ns;
9800 break;
9801
9802 default:
9803 return -EINVAL;
9804 }
9805
9806 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
9807 return -EINVAL;
9808
9809 return 0;
9810}
9811
321027c1
PZ
9812/*
9813 * Variation on perf_event_ctx_lock_nested(), except we take two context
9814 * mutexes.
9815 */
9816static struct perf_event_context *
9817__perf_event_ctx_lock_double(struct perf_event *group_leader,
9818 struct perf_event_context *ctx)
9819{
9820 struct perf_event_context *gctx;
9821
9822again:
9823 rcu_read_lock();
9824 gctx = READ_ONCE(group_leader->ctx);
9825 if (!atomic_inc_not_zero(&gctx->refcount)) {
9826 rcu_read_unlock();
9827 goto again;
9828 }
9829 rcu_read_unlock();
9830
9831 mutex_lock_double(&gctx->mutex, &ctx->mutex);
9832
9833 if (group_leader->ctx != gctx) {
9834 mutex_unlock(&ctx->mutex);
9835 mutex_unlock(&gctx->mutex);
9836 put_ctx(gctx);
9837 goto again;
9838 }
9839
9840 return gctx;
9841}
9842
0793a61d 9843/**
cdd6c482 9844 * sys_perf_event_open - open a performance event, associate it to a task/cpu
9f66a381 9845 *
cdd6c482 9846 * @attr_uptr: event_id type attributes for monitoring/sampling
0793a61d 9847 * @pid: target pid
9f66a381 9848 * @cpu: target cpu
cdd6c482 9849 * @group_fd: group leader event fd
0793a61d 9850 */
cdd6c482
IM
9851SYSCALL_DEFINE5(perf_event_open,
9852 struct perf_event_attr __user *, attr_uptr,
2743a5b0 9853 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
0793a61d 9854{
b04243ef
PZ
9855 struct perf_event *group_leader = NULL, *output_event = NULL;
9856 struct perf_event *event, *sibling;
cdd6c482 9857 struct perf_event_attr attr;
f63a8daa 9858 struct perf_event_context *ctx, *uninitialized_var(gctx);
cdd6c482 9859 struct file *event_file = NULL;
2903ff01 9860 struct fd group = {NULL, 0};
38a81da2 9861 struct task_struct *task = NULL;
89a1e187 9862 struct pmu *pmu;
ea635c64 9863 int event_fd;
b04243ef 9864 int move_group = 0;
dc86cabe 9865 int err;
a21b0b35 9866 int f_flags = O_RDWR;
79dff51e 9867 int cgroup_fd = -1;
0793a61d 9868
2743a5b0 9869 /* for future expandability... */
e5d1367f 9870 if (flags & ~PERF_FLAG_ALL)
2743a5b0
PM
9871 return -EINVAL;
9872
dc86cabe
IM
9873 err = perf_copy_attr(attr_uptr, &attr);
9874 if (err)
9875 return err;
eab656ae 9876
0764771d
PZ
9877 if (!attr.exclude_kernel) {
9878 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9879 return -EACCES;
9880 }
9881
e4222673
HB
9882 if (attr.namespaces) {
9883 if (!capable(CAP_SYS_ADMIN))
9884 return -EACCES;
9885 }
9886
df58ab24 9887 if (attr.freq) {
cdd6c482 9888 if (attr.sample_freq > sysctl_perf_event_sample_rate)
df58ab24 9889 return -EINVAL;
0819b2e3
PZ
9890 } else {
9891 if (attr.sample_period & (1ULL << 63))
9892 return -EINVAL;
df58ab24
PZ
9893 }
9894
97c79a38
ACM
9895 if (!attr.sample_max_stack)
9896 attr.sample_max_stack = sysctl_perf_event_max_stack;
9897
e5d1367f
SE
9898 /*
9899 * In cgroup mode, the pid argument is used to pass the fd
9900 * opened to the cgroup directory in cgroupfs. The cpu argument
9901 * designates the cpu on which to monitor threads from that
9902 * cgroup.
9903 */
9904 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
9905 return -EINVAL;
9906
a21b0b35
YD
9907 if (flags & PERF_FLAG_FD_CLOEXEC)
9908 f_flags |= O_CLOEXEC;
9909
9910 event_fd = get_unused_fd_flags(f_flags);
ea635c64
AV
9911 if (event_fd < 0)
9912 return event_fd;
9913
ac9721f3 9914 if (group_fd != -1) {
2903ff01
AV
9915 err = perf_fget_light(group_fd, &group);
9916 if (err)
d14b12d7 9917 goto err_fd;
2903ff01 9918 group_leader = group.file->private_data;
ac9721f3
PZ
9919 if (flags & PERF_FLAG_FD_OUTPUT)
9920 output_event = group_leader;
9921 if (flags & PERF_FLAG_FD_NO_GROUP)
9922 group_leader = NULL;
9923 }
9924
e5d1367f 9925 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
c6be5a5c
PZ
9926 task = find_lively_task_by_vpid(pid);
9927 if (IS_ERR(task)) {
9928 err = PTR_ERR(task);
9929 goto err_group_fd;
9930 }
9931 }
9932
1f4ee503
PZ
9933 if (task && group_leader &&
9934 group_leader->attr.inherit != attr.inherit) {
9935 err = -EINVAL;
9936 goto err_task;
9937 }
9938
79c9ce57
PZ
9939 if (task) {
9940 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
9941 if (err)
e5aeee51 9942 goto err_task;
79c9ce57
PZ
9943
9944 /*
9945 * Reuse ptrace permission checks for now.
9946 *
9947 * We must hold cred_guard_mutex across this and any potential
9948 * perf_install_in_context() call for this new event to
9949 * serialize against exec() altering our credentials (and the
9950 * perf_event_exit_task() that could imply).
9951 */
9952 err = -EACCES;
9953 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
9954 goto err_cred;
9955 }
9956
79dff51e
MF
9957 if (flags & PERF_FLAG_PID_CGROUP)
9958 cgroup_fd = pid;
9959
4dc0da86 9960 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
79dff51e 9961 NULL, NULL, cgroup_fd);
d14b12d7
SE
9962 if (IS_ERR(event)) {
9963 err = PTR_ERR(event);
79c9ce57 9964 goto err_cred;
d14b12d7
SE
9965 }
9966
53b25335
VW
9967 if (is_sampling_event(event)) {
9968 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
a1396555 9969 err = -EOPNOTSUPP;
53b25335
VW
9970 goto err_alloc;
9971 }
9972 }
9973
89a1e187
PZ
9974 /*
9975 * Special case software events and allow them to be part of
9976 * any hardware group.
9977 */
9978 pmu = event->pmu;
b04243ef 9979
34f43927
PZ
9980 if (attr.use_clockid) {
9981 err = perf_event_set_clock(event, attr.clockid);
9982 if (err)
9983 goto err_alloc;
9984 }
9985
4ff6a8de
DCC
9986 if (pmu->task_ctx_nr == perf_sw_context)
9987 event->event_caps |= PERF_EV_CAP_SOFTWARE;
9988
b04243ef
PZ
9989 if (group_leader &&
9990 (is_software_event(event) != is_software_event(group_leader))) {
9991 if (is_software_event(event)) {
9992 /*
9993 * If event and group_leader are not both a software
9994 * event, and event is, then group leader is not.
9995 *
9996 * Allow the addition of software events to !software
9997 * groups, this is safe because software events never
9998 * fail to schedule.
9999 */
10000 pmu = group_leader->pmu;
10001 } else if (is_software_event(group_leader) &&
4ff6a8de 10002 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
b04243ef
PZ
10003 /*
10004 * In case the group is a pure software group, and we
10005 * try to add a hardware event, move the whole group to
10006 * the hardware context.
10007 */
10008 move_group = 1;
10009 }
10010 }
89a1e187
PZ
10011
10012 /*
10013 * Get the target context (task or percpu):
10014 */
4af57ef2 10015 ctx = find_get_context(pmu, task, event);
89a1e187
PZ
10016 if (IS_ERR(ctx)) {
10017 err = PTR_ERR(ctx);
c6be5a5c 10018 goto err_alloc;
89a1e187
PZ
10019 }
10020
bed5b25a
AS
10021 if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
10022 err = -EBUSY;
10023 goto err_context;
10024 }
10025
ccff286d 10026 /*
cdd6c482 10027 * Look up the group leader (we will attach this event to it):
04289bb9 10028 */
ac9721f3 10029 if (group_leader) {
dc86cabe 10030 err = -EINVAL;
04289bb9 10031
04289bb9 10032 /*
ccff286d
IM
10033 * Do not allow a recursive hierarchy (this new sibling
10034 * becoming part of another group-sibling):
10035 */
10036 if (group_leader->group_leader != group_leader)
c3f00c70 10037 goto err_context;
34f43927
PZ
10038
10039 /* All events in a group should have the same clock */
10040 if (group_leader->clock != event->clock)
10041 goto err_context;
10042
ccff286d 10043 /*
64aee2a9
MR
10044 * Make sure we're both events for the same CPU;
10045 * grouping events for different CPUs is broken; since
10046 * you can never concurrently schedule them anyhow.
04289bb9 10047 */
64aee2a9
MR
10048 if (group_leader->cpu != event->cpu)
10049 goto err_context;
c3c87e77 10050
64aee2a9
MR
10051 /*
10052 * Make sure we're both on the same task, or both
10053 * per-CPU events.
10054 */
10055 if (group_leader->ctx->task != ctx->task)
10056 goto err_context;
10057
10058 /*
10059 * Do not allow to attach to a group in a different task
10060 * or CPU context. If we're moving SW events, we'll fix
10061 * this up later, so allow that.
10062 */
10063 if (!move_group && group_leader->ctx != ctx)
10064 goto err_context;
b04243ef 10065
3b6f9e5c
PM
10066 /*
10067 * Only a group leader can be exclusive or pinned
10068 */
0d48696f 10069 if (attr.exclusive || attr.pinned)
c3f00c70 10070 goto err_context;
ac9721f3
PZ
10071 }
10072
10073 if (output_event) {
10074 err = perf_event_set_output(event, output_event);
10075 if (err)
c3f00c70 10076 goto err_context;
ac9721f3 10077 }
0793a61d 10078
a21b0b35
YD
10079 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
10080 f_flags);
ea635c64
AV
10081 if (IS_ERR(event_file)) {
10082 err = PTR_ERR(event_file);
201c2f85 10083 event_file = NULL;
c3f00c70 10084 goto err_context;
ea635c64 10085 }
9b51f66d 10086
b04243ef 10087 if (move_group) {
321027c1
PZ
10088 gctx = __perf_event_ctx_lock_double(group_leader, ctx);
10089
84c4e620
PZ
10090 if (gctx->task == TASK_TOMBSTONE) {
10091 err = -ESRCH;
10092 goto err_locked;
10093 }
321027c1
PZ
10094
10095 /*
10096 * Check if we raced against another sys_perf_event_open() call
10097 * moving the software group underneath us.
10098 */
10099 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
10100 /*
10101 * If someone moved the group out from under us, check
10102 * if this new event wound up on the same ctx, if so
10103 * its the regular !move_group case, otherwise fail.
10104 */
10105 if (gctx != ctx) {
10106 err = -EINVAL;
10107 goto err_locked;
10108 } else {
10109 perf_event_ctx_unlock(group_leader, gctx);
10110 move_group = 0;
10111 }
10112 }
f55fc2a5
PZ
10113 } else {
10114 mutex_lock(&ctx->mutex);
10115 }
10116
84c4e620
PZ
10117 if (ctx->task == TASK_TOMBSTONE) {
10118 err = -ESRCH;
10119 goto err_locked;
10120 }
10121
a723968c
PZ
10122 if (!perf_event_validate_size(event)) {
10123 err = -E2BIG;
10124 goto err_locked;
10125 }
10126
a63fbed7
TG
10127 if (!task) {
10128 /*
10129 * Check if the @cpu we're creating an event for is online.
10130 *
10131 * We use the perf_cpu_context::ctx::mutex to serialize against
10132 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
10133 */
10134 struct perf_cpu_context *cpuctx =
10135 container_of(ctx, struct perf_cpu_context, ctx);
10136
10137 if (!cpuctx->online) {
10138 err = -ENODEV;
10139 goto err_locked;
10140 }
10141 }
10142
10143
f55fc2a5
PZ
10144 /*
10145 * Must be under the same ctx::mutex as perf_install_in_context(),
10146 * because we need to serialize with concurrent event creation.
10147 */
10148 if (!exclusive_event_installable(event, ctx)) {
10149 /* exclusive and group stuff are assumed mutually exclusive */
10150 WARN_ON_ONCE(move_group);
f63a8daa 10151
f55fc2a5
PZ
10152 err = -EBUSY;
10153 goto err_locked;
10154 }
f63a8daa 10155
f55fc2a5
PZ
10156 WARN_ON_ONCE(ctx->parent_ctx);
10157
79c9ce57
PZ
10158 /*
10159 * This is the point on no return; we cannot fail hereafter. This is
10160 * where we start modifying current state.
10161 */
10162
f55fc2a5 10163 if (move_group) {
f63a8daa
PZ
10164 /*
10165 * See perf_event_ctx_lock() for comments on the details
10166 * of swizzling perf_event::ctx.
10167 */
45a0e07a 10168 perf_remove_from_context(group_leader, 0);
279b5165 10169 put_ctx(gctx);
0231bb53 10170
b04243ef
PZ
10171 list_for_each_entry(sibling, &group_leader->sibling_list,
10172 group_entry) {
45a0e07a 10173 perf_remove_from_context(sibling, 0);
b04243ef
PZ
10174 put_ctx(gctx);
10175 }
b04243ef 10176
f63a8daa
PZ
10177 /*
10178 * Wait for everybody to stop referencing the events through
10179 * the old lists, before installing it on new lists.
10180 */
0cda4c02 10181 synchronize_rcu();
f63a8daa 10182
8f95b435
PZI
10183 /*
10184 * Install the group siblings before the group leader.
10185 *
10186 * Because a group leader will try and install the entire group
10187 * (through the sibling list, which is still in-tact), we can
10188 * end up with siblings installed in the wrong context.
10189 *
10190 * By installing siblings first we NO-OP because they're not
10191 * reachable through the group lists.
10192 */
b04243ef
PZ
10193 list_for_each_entry(sibling, &group_leader->sibling_list,
10194 group_entry) {
8f95b435 10195 perf_event__state_init(sibling);
9fc81d87 10196 perf_install_in_context(ctx, sibling, sibling->cpu);
b04243ef
PZ
10197 get_ctx(ctx);
10198 }
8f95b435
PZI
10199
10200 /*
10201 * Removing from the context ends up with disabled
10202 * event. What we want here is event in the initial
10203 * startup state, ready to be add into new context.
10204 */
10205 perf_event__state_init(group_leader);
10206 perf_install_in_context(ctx, group_leader, group_leader->cpu);
10207 get_ctx(ctx);
bed5b25a
AS
10208 }
10209
f73e22ab
PZ
10210 /*
10211 * Precalculate sample_data sizes; do while holding ctx::mutex such
10212 * that we're serialized against further additions and before
10213 * perf_install_in_context() which is the point the event is active and
10214 * can use these values.
10215 */
10216 perf_event__header_size(event);
10217 perf_event__id_header_size(event);
10218
78cd2c74
PZ
10219 event->owner = current;
10220
e2d37cd2 10221 perf_install_in_context(ctx, event, event->cpu);
fe4b04fa 10222 perf_unpin_context(ctx);
f63a8daa 10223
f55fc2a5 10224 if (move_group)
321027c1 10225 perf_event_ctx_unlock(group_leader, gctx);
d859e29f 10226 mutex_unlock(&ctx->mutex);
9b51f66d 10227
79c9ce57
PZ
10228 if (task) {
10229 mutex_unlock(&task->signal->cred_guard_mutex);
10230 put_task_struct(task);
10231 }
10232
cdd6c482
IM
10233 mutex_lock(&current->perf_event_mutex);
10234 list_add_tail(&event->owner_entry, &current->perf_event_list);
10235 mutex_unlock(&current->perf_event_mutex);
082ff5a2 10236
8a49542c
PZ
10237 /*
10238 * Drop the reference on the group_event after placing the
10239 * new event on the sibling_list. This ensures destruction
10240 * of the group leader will find the pointer to itself in
10241 * perf_group_detach().
10242 */
2903ff01 10243 fdput(group);
ea635c64
AV
10244 fd_install(event_fd, event_file);
10245 return event_fd;
0793a61d 10246
f55fc2a5
PZ
10247err_locked:
10248 if (move_group)
321027c1 10249 perf_event_ctx_unlock(group_leader, gctx);
f55fc2a5
PZ
10250 mutex_unlock(&ctx->mutex);
10251/* err_file: */
10252 fput(event_file);
c3f00c70 10253err_context:
fe4b04fa 10254 perf_unpin_context(ctx);
ea635c64 10255 put_ctx(ctx);
c6be5a5c 10256err_alloc:
13005627
PZ
10257 /*
10258 * If event_file is set, the fput() above will have called ->release()
10259 * and that will take care of freeing the event.
10260 */
10261 if (!event_file)
10262 free_event(event);
79c9ce57
PZ
10263err_cred:
10264 if (task)
10265 mutex_unlock(&task->signal->cred_guard_mutex);
1f4ee503 10266err_task:
e7d0bc04
PZ
10267 if (task)
10268 put_task_struct(task);
89a1e187 10269err_group_fd:
2903ff01 10270 fdput(group);
ea635c64
AV
10271err_fd:
10272 put_unused_fd(event_fd);
dc86cabe 10273 return err;
0793a61d
TG
10274}
10275
fb0459d7
AV
10276/**
10277 * perf_event_create_kernel_counter
10278 *
10279 * @attr: attributes of the counter to create
10280 * @cpu: cpu in which the counter is bound
38a81da2 10281 * @task: task to profile (NULL for percpu)
fb0459d7
AV
10282 */
10283struct perf_event *
10284perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
38a81da2 10285 struct task_struct *task,
4dc0da86
AK
10286 perf_overflow_handler_t overflow_handler,
10287 void *context)
fb0459d7 10288{
fb0459d7 10289 struct perf_event_context *ctx;
c3f00c70 10290 struct perf_event *event;
fb0459d7 10291 int err;
d859e29f 10292
fb0459d7
AV
10293 /*
10294 * Get the target context (task or percpu):
10295 */
d859e29f 10296
4dc0da86 10297 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
79dff51e 10298 overflow_handler, context, -1);
c3f00c70
PZ
10299 if (IS_ERR(event)) {
10300 err = PTR_ERR(event);
10301 goto err;
10302 }
d859e29f 10303
f8697762 10304 /* Mark owner so we could distinguish it from user events. */
63b6da39 10305 event->owner = TASK_TOMBSTONE;
f8697762 10306
4af57ef2 10307 ctx = find_get_context(event->pmu, task, event);
c6567f64
FW
10308 if (IS_ERR(ctx)) {
10309 err = PTR_ERR(ctx);
c3f00c70 10310 goto err_free;
d859e29f 10311 }
fb0459d7 10312
fb0459d7
AV
10313 WARN_ON_ONCE(ctx->parent_ctx);
10314 mutex_lock(&ctx->mutex);
84c4e620
PZ
10315 if (ctx->task == TASK_TOMBSTONE) {
10316 err = -ESRCH;
10317 goto err_unlock;
10318 }
10319
a63fbed7
TG
10320 if (!task) {
10321 /*
10322 * Check if the @cpu we're creating an event for is online.
10323 *
10324 * We use the perf_cpu_context::ctx::mutex to serialize against
10325 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
10326 */
10327 struct perf_cpu_context *cpuctx =
10328 container_of(ctx, struct perf_cpu_context, ctx);
10329 if (!cpuctx->online) {
10330 err = -ENODEV;
10331 goto err_unlock;
10332 }
10333 }
10334
bed5b25a 10335 if (!exclusive_event_installable(event, ctx)) {
bed5b25a 10336 err = -EBUSY;
84c4e620 10337 goto err_unlock;
bed5b25a
AS
10338 }
10339
fb0459d7 10340 perf_install_in_context(ctx, event, cpu);
fe4b04fa 10341 perf_unpin_context(ctx);
fb0459d7
AV
10342 mutex_unlock(&ctx->mutex);
10343
fb0459d7
AV
10344 return event;
10345
84c4e620
PZ
10346err_unlock:
10347 mutex_unlock(&ctx->mutex);
10348 perf_unpin_context(ctx);
10349 put_ctx(ctx);
c3f00c70
PZ
10350err_free:
10351 free_event(event);
10352err:
c6567f64 10353 return ERR_PTR(err);
9b51f66d 10354}
fb0459d7 10355EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
9b51f66d 10356
0cda4c02
YZ
10357void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
10358{
10359 struct perf_event_context *src_ctx;
10360 struct perf_event_context *dst_ctx;
10361 struct perf_event *event, *tmp;
10362 LIST_HEAD(events);
10363
10364 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
10365 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
10366
f63a8daa
PZ
10367 /*
10368 * See perf_event_ctx_lock() for comments on the details
10369 * of swizzling perf_event::ctx.
10370 */
10371 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
0cda4c02
YZ
10372 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
10373 event_entry) {
45a0e07a 10374 perf_remove_from_context(event, 0);
9a545de0 10375 unaccount_event_cpu(event, src_cpu);
0cda4c02 10376 put_ctx(src_ctx);
9886167d 10377 list_add(&event->migrate_entry, &events);
0cda4c02 10378 }
0cda4c02 10379
8f95b435
PZI
10380 /*
10381 * Wait for the events to quiesce before re-instating them.
10382 */
0cda4c02
YZ
10383 synchronize_rcu();
10384
8f95b435
PZI
10385 /*
10386 * Re-instate events in 2 passes.
10387 *
10388 * Skip over group leaders and only install siblings on this first
10389 * pass, siblings will not get enabled without a leader, however a
10390 * leader will enable its siblings, even if those are still on the old
10391 * context.
10392 */
10393 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10394 if (event->group_leader == event)
10395 continue;
10396
10397 list_del(&event->migrate_entry);
10398 if (event->state >= PERF_EVENT_STATE_OFF)
10399 event->state = PERF_EVENT_STATE_INACTIVE;
10400 account_event_cpu(event, dst_cpu);
10401 perf_install_in_context(dst_ctx, event, dst_cpu);
10402 get_ctx(dst_ctx);
10403 }
10404
10405 /*
10406 * Once all the siblings are setup properly, install the group leaders
10407 * to make it go.
10408 */
9886167d
PZ
10409 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10410 list_del(&event->migrate_entry);
0cda4c02
YZ
10411 if (event->state >= PERF_EVENT_STATE_OFF)
10412 event->state = PERF_EVENT_STATE_INACTIVE;
9a545de0 10413 account_event_cpu(event, dst_cpu);
0cda4c02
YZ
10414 perf_install_in_context(dst_ctx, event, dst_cpu);
10415 get_ctx(dst_ctx);
10416 }
10417 mutex_unlock(&dst_ctx->mutex);
f63a8daa 10418 mutex_unlock(&src_ctx->mutex);
0cda4c02
YZ
10419}
10420EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
10421
cdd6c482 10422static void sync_child_event(struct perf_event *child_event,
38b200d6 10423 struct task_struct *child)
d859e29f 10424{
cdd6c482 10425 struct perf_event *parent_event = child_event->parent;
8bc20959 10426 u64 child_val;
d859e29f 10427
cdd6c482
IM
10428 if (child_event->attr.inherit_stat)
10429 perf_event_read_event(child_event, child);
38b200d6 10430
b5e58793 10431 child_val = perf_event_count(child_event);
d859e29f
PM
10432
10433 /*
10434 * Add back the child's count to the parent's count:
10435 */
a6e6dea6 10436 atomic64_add(child_val, &parent_event->child_count);
cdd6c482
IM
10437 atomic64_add(child_event->total_time_enabled,
10438 &parent_event->child_total_time_enabled);
10439 atomic64_add(child_event->total_time_running,
10440 &parent_event->child_total_time_running);
d859e29f
PM
10441}
10442
9b51f66d 10443static void
8ba289b8
PZ
10444perf_event_exit_event(struct perf_event *child_event,
10445 struct perf_event_context *child_ctx,
10446 struct task_struct *child)
9b51f66d 10447{
8ba289b8
PZ
10448 struct perf_event *parent_event = child_event->parent;
10449
1903d50c
PZ
10450 /*
10451 * Do not destroy the 'original' grouping; because of the context
10452 * switch optimization the original events could've ended up in a
10453 * random child task.
10454 *
10455 * If we were to destroy the original group, all group related
10456 * operations would cease to function properly after this random
10457 * child dies.
10458 *
10459 * Do destroy all inherited groups, we don't care about those
10460 * and being thorough is better.
10461 */
32132a3d
PZ
10462 raw_spin_lock_irq(&child_ctx->lock);
10463 WARN_ON_ONCE(child_ctx->is_active);
10464
8ba289b8 10465 if (parent_event)
32132a3d
PZ
10466 perf_group_detach(child_event);
10467 list_del_event(child_event, child_ctx);
a69b0ca4 10468 child_event->state = PERF_EVENT_STATE_EXIT; /* is_event_hup() */
32132a3d 10469 raw_spin_unlock_irq(&child_ctx->lock);
0cc0c027 10470
9b51f66d 10471 /*
8ba289b8 10472 * Parent events are governed by their filedesc, retain them.
9b51f66d 10473 */
8ba289b8 10474 if (!parent_event) {
179033b3 10475 perf_event_wakeup(child_event);
8ba289b8 10476 return;
4bcf349a 10477 }
8ba289b8
PZ
10478 /*
10479 * Child events can be cleaned up.
10480 */
10481
10482 sync_child_event(child_event, child);
10483
10484 /*
10485 * Remove this event from the parent's list
10486 */
10487 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
10488 mutex_lock(&parent_event->child_mutex);
10489 list_del_init(&child_event->child_list);
10490 mutex_unlock(&parent_event->child_mutex);
10491
10492 /*
10493 * Kick perf_poll() for is_event_hup().
10494 */
10495 perf_event_wakeup(parent_event);
10496 free_event(child_event);
10497 put_event(parent_event);
9b51f66d
IM
10498}
10499
8dc85d54 10500static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
9b51f66d 10501{
211de6eb 10502 struct perf_event_context *child_ctx, *clone_ctx = NULL;
63b6da39 10503 struct perf_event *child_event, *next;
63b6da39
PZ
10504
10505 WARN_ON_ONCE(child != current);
9b51f66d 10506
6a3351b6 10507 child_ctx = perf_pin_task_context(child, ctxn);
63b6da39 10508 if (!child_ctx)
9b51f66d
IM
10509 return;
10510
ad3a37de 10511 /*
6a3351b6
PZ
10512 * In order to reduce the amount of tricky in ctx tear-down, we hold
10513 * ctx::mutex over the entire thing. This serializes against almost
10514 * everything that wants to access the ctx.
10515 *
10516 * The exception is sys_perf_event_open() /
10517 * perf_event_create_kernel_count() which does find_get_context()
10518 * without ctx::mutex (it cannot because of the move_group double mutex
10519 * lock thing). See the comments in perf_install_in_context().
ad3a37de 10520 */
6a3351b6 10521 mutex_lock(&child_ctx->mutex);
c93f7669
PM
10522
10523 /*
6a3351b6
PZ
10524 * In a single ctx::lock section, de-schedule the events and detach the
10525 * context from the task such that we cannot ever get it scheduled back
10526 * in.
c93f7669 10527 */
6a3351b6 10528 raw_spin_lock_irq(&child_ctx->lock);
487f05e1 10529 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
4a1c0f26 10530
71a851b4 10531 /*
63b6da39
PZ
10532 * Now that the context is inactive, destroy the task <-> ctx relation
10533 * and mark the context dead.
71a851b4 10534 */
63b6da39
PZ
10535 RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
10536 put_ctx(child_ctx); /* cannot be last */
10537 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
10538 put_task_struct(current); /* cannot be last */
4a1c0f26 10539
211de6eb 10540 clone_ctx = unclone_ctx(child_ctx);
6a3351b6 10541 raw_spin_unlock_irq(&child_ctx->lock);
9f498cc5 10542
211de6eb
PZ
10543 if (clone_ctx)
10544 put_ctx(clone_ctx);
4a1c0f26 10545
9f498cc5 10546 /*
cdd6c482
IM
10547 * Report the task dead after unscheduling the events so that we
10548 * won't get any samples after PERF_RECORD_EXIT. We can however still
10549 * get a few PERF_RECORD_READ events.
9f498cc5 10550 */
cdd6c482 10551 perf_event_task(child, child_ctx, 0);
a63eaf34 10552
ebf905fc 10553 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
8ba289b8 10554 perf_event_exit_event(child_event, child_ctx, child);
8bc20959 10555
a63eaf34
PM
10556 mutex_unlock(&child_ctx->mutex);
10557
10558 put_ctx(child_ctx);
9b51f66d
IM
10559}
10560
8dc85d54
PZ
10561/*
10562 * When a child task exits, feed back event values to parent events.
79c9ce57
PZ
10563 *
10564 * Can be called with cred_guard_mutex held when called from
10565 * install_exec_creds().
8dc85d54
PZ
10566 */
10567void perf_event_exit_task(struct task_struct *child)
10568{
8882135b 10569 struct perf_event *event, *tmp;
8dc85d54
PZ
10570 int ctxn;
10571
8882135b
PZ
10572 mutex_lock(&child->perf_event_mutex);
10573 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
10574 owner_entry) {
10575 list_del_init(&event->owner_entry);
10576
10577 /*
10578 * Ensure the list deletion is visible before we clear
10579 * the owner, closes a race against perf_release() where
10580 * we need to serialize on the owner->perf_event_mutex.
10581 */
f47c02c0 10582 smp_store_release(&event->owner, NULL);
8882135b
PZ
10583 }
10584 mutex_unlock(&child->perf_event_mutex);
10585
8dc85d54
PZ
10586 for_each_task_context_nr(ctxn)
10587 perf_event_exit_task_context(child, ctxn);
4e93ad60
JO
10588
10589 /*
10590 * The perf_event_exit_task_context calls perf_event_task
10591 * with child's task_ctx, which generates EXIT events for
10592 * child contexts and sets child->perf_event_ctxp[] to NULL.
10593 * At this point we need to send EXIT events to cpu contexts.
10594 */
10595 perf_event_task(child, NULL, 0);
8dc85d54
PZ
10596}
10597
889ff015
FW
10598static void perf_free_event(struct perf_event *event,
10599 struct perf_event_context *ctx)
10600{
10601 struct perf_event *parent = event->parent;
10602
10603 if (WARN_ON_ONCE(!parent))
10604 return;
10605
10606 mutex_lock(&parent->child_mutex);
10607 list_del_init(&event->child_list);
10608 mutex_unlock(&parent->child_mutex);
10609
a6fa941d 10610 put_event(parent);
889ff015 10611
652884fe 10612 raw_spin_lock_irq(&ctx->lock);
8a49542c 10613 perf_group_detach(event);
889ff015 10614 list_del_event(event, ctx);
652884fe 10615 raw_spin_unlock_irq(&ctx->lock);
889ff015
FW
10616 free_event(event);
10617}
10618
bbbee908 10619/*
652884fe 10620 * Free an unexposed, unused context as created by inheritance by
8dc85d54 10621 * perf_event_init_task below, used by fork() in case of fail.
652884fe
PZ
10622 *
10623 * Not all locks are strictly required, but take them anyway to be nice and
10624 * help out with the lockdep assertions.
bbbee908 10625 */
cdd6c482 10626void perf_event_free_task(struct task_struct *task)
bbbee908 10627{
8dc85d54 10628 struct perf_event_context *ctx;
cdd6c482 10629 struct perf_event *event, *tmp;
8dc85d54 10630 int ctxn;
bbbee908 10631
8dc85d54
PZ
10632 for_each_task_context_nr(ctxn) {
10633 ctx = task->perf_event_ctxp[ctxn];
10634 if (!ctx)
10635 continue;
bbbee908 10636
8dc85d54 10637 mutex_lock(&ctx->mutex);
e552a838
PZ
10638 raw_spin_lock_irq(&ctx->lock);
10639 /*
10640 * Destroy the task <-> ctx relation and mark the context dead.
10641 *
10642 * This is important because even though the task hasn't been
10643 * exposed yet the context has been (through child_list).
10644 */
10645 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
10646 WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
10647 put_task_struct(task); /* cannot be last */
10648 raw_spin_unlock_irq(&ctx->lock);
bbbee908 10649
15121c78 10650 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
8dc85d54 10651 perf_free_event(event, ctx);
bbbee908 10652
8dc85d54 10653 mutex_unlock(&ctx->mutex);
8dc85d54
PZ
10654 put_ctx(ctx);
10655 }
889ff015
FW
10656}
10657
4e231c79
PZ
10658void perf_event_delayed_put(struct task_struct *task)
10659{
10660 int ctxn;
10661
10662 for_each_task_context_nr(ctxn)
10663 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
10664}
10665
e03e7ee3 10666struct file *perf_event_get(unsigned int fd)
ffe8690c 10667{
e03e7ee3 10668 struct file *file;
ffe8690c 10669
e03e7ee3
AS
10670 file = fget_raw(fd);
10671 if (!file)
10672 return ERR_PTR(-EBADF);
ffe8690c 10673
e03e7ee3
AS
10674 if (file->f_op != &perf_fops) {
10675 fput(file);
10676 return ERR_PTR(-EBADF);
10677 }
ffe8690c 10678
e03e7ee3 10679 return file;
ffe8690c
KX
10680}
10681
10682const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
10683{
10684 if (!event)
10685 return ERR_PTR(-EINVAL);
10686
10687 return &event->attr;
10688}
10689
97dee4f3 10690/*
d8a8cfc7
PZ
10691 * Inherit a event from parent task to child task.
10692 *
10693 * Returns:
10694 * - valid pointer on success
10695 * - NULL for orphaned events
10696 * - IS_ERR() on error
97dee4f3
PZ
10697 */
10698static struct perf_event *
10699inherit_event(struct perf_event *parent_event,
10700 struct task_struct *parent,
10701 struct perf_event_context *parent_ctx,
10702 struct task_struct *child,
10703 struct perf_event *group_leader,
10704 struct perf_event_context *child_ctx)
10705{
1929def9 10706 enum perf_event_active_state parent_state = parent_event->state;
97dee4f3 10707 struct perf_event *child_event;
cee010ec 10708 unsigned long flags;
97dee4f3
PZ
10709
10710 /*
10711 * Instead of creating recursive hierarchies of events,
10712 * we link inherited events back to the original parent,
10713 * which has a filp for sure, which we use as the reference
10714 * count:
10715 */
10716 if (parent_event->parent)
10717 parent_event = parent_event->parent;
10718
10719 child_event = perf_event_alloc(&parent_event->attr,
10720 parent_event->cpu,
d580ff86 10721 child,
97dee4f3 10722 group_leader, parent_event,
79dff51e 10723 NULL, NULL, -1);
97dee4f3
PZ
10724 if (IS_ERR(child_event))
10725 return child_event;
a6fa941d 10726
c6e5b732
PZ
10727 /*
10728 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
10729 * must be under the same lock in order to serialize against
10730 * perf_event_release_kernel(), such that either we must observe
10731 * is_orphaned_event() or they will observe us on the child_list.
10732 */
10733 mutex_lock(&parent_event->child_mutex);
fadfe7be
JO
10734 if (is_orphaned_event(parent_event) ||
10735 !atomic_long_inc_not_zero(&parent_event->refcount)) {
c6e5b732 10736 mutex_unlock(&parent_event->child_mutex);
a6fa941d
AV
10737 free_event(child_event);
10738 return NULL;
10739 }
10740
97dee4f3
PZ
10741 get_ctx(child_ctx);
10742
10743 /*
10744 * Make the child state follow the state of the parent event,
10745 * not its attr.disabled bit. We hold the parent's mutex,
10746 * so we won't race with perf_event_{en, dis}able_family.
10747 */
1929def9 10748 if (parent_state >= PERF_EVENT_STATE_INACTIVE)
97dee4f3
PZ
10749 child_event->state = PERF_EVENT_STATE_INACTIVE;
10750 else
10751 child_event->state = PERF_EVENT_STATE_OFF;
10752
10753 if (parent_event->attr.freq) {
10754 u64 sample_period = parent_event->hw.sample_period;
10755 struct hw_perf_event *hwc = &child_event->hw;
10756
10757 hwc->sample_period = sample_period;
10758 hwc->last_period = sample_period;
10759
10760 local64_set(&hwc->period_left, sample_period);
10761 }
10762
10763 child_event->ctx = child_ctx;
10764 child_event->overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
10765 child_event->overflow_handler_context
10766 = parent_event->overflow_handler_context;
97dee4f3 10767
614b6780
TG
10768 /*
10769 * Precalculate sample_data sizes
10770 */
10771 perf_event__header_size(child_event);
6844c09d 10772 perf_event__id_header_size(child_event);
614b6780 10773
97dee4f3
PZ
10774 /*
10775 * Link it up in the child's context:
10776 */
cee010ec 10777 raw_spin_lock_irqsave(&child_ctx->lock, flags);
97dee4f3 10778 add_event_to_ctx(child_event, child_ctx);
cee010ec 10779 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
97dee4f3 10780
97dee4f3
PZ
10781 /*
10782 * Link this into the parent event's child list
10783 */
97dee4f3
PZ
10784 list_add_tail(&child_event->child_list, &parent_event->child_list);
10785 mutex_unlock(&parent_event->child_mutex);
10786
10787 return child_event;
10788}
10789
d8a8cfc7
PZ
10790/*
10791 * Inherits an event group.
10792 *
10793 * This will quietly suppress orphaned events; !inherit_event() is not an error.
10794 * This matches with perf_event_release_kernel() removing all child events.
10795 *
10796 * Returns:
10797 * - 0 on success
10798 * - <0 on error
10799 */
97dee4f3
PZ
10800static int inherit_group(struct perf_event *parent_event,
10801 struct task_struct *parent,
10802 struct perf_event_context *parent_ctx,
10803 struct task_struct *child,
10804 struct perf_event_context *child_ctx)
10805{
10806 struct perf_event *leader;
10807 struct perf_event *sub;
10808 struct perf_event *child_ctr;
10809
10810 leader = inherit_event(parent_event, parent, parent_ctx,
10811 child, NULL, child_ctx);
10812 if (IS_ERR(leader))
10813 return PTR_ERR(leader);
d8a8cfc7
PZ
10814 /*
10815 * @leader can be NULL here because of is_orphaned_event(). In this
10816 * case inherit_event() will create individual events, similar to what
10817 * perf_group_detach() would do anyway.
10818 */
97dee4f3
PZ
10819 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
10820 child_ctr = inherit_event(sub, parent, parent_ctx,
10821 child, leader, child_ctx);
10822 if (IS_ERR(child_ctr))
10823 return PTR_ERR(child_ctr);
10824 }
10825 return 0;
889ff015
FW
10826}
10827
d8a8cfc7
PZ
10828/*
10829 * Creates the child task context and tries to inherit the event-group.
10830 *
10831 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
10832 * inherited_all set when we 'fail' to inherit an orphaned event; this is
10833 * consistent with perf_event_release_kernel() removing all child events.
10834 *
10835 * Returns:
10836 * - 0 on success
10837 * - <0 on error
10838 */
889ff015
FW
10839static int
10840inherit_task_group(struct perf_event *event, struct task_struct *parent,
10841 struct perf_event_context *parent_ctx,
8dc85d54 10842 struct task_struct *child, int ctxn,
889ff015
FW
10843 int *inherited_all)
10844{
10845 int ret;
8dc85d54 10846 struct perf_event_context *child_ctx;
889ff015
FW
10847
10848 if (!event->attr.inherit) {
10849 *inherited_all = 0;
10850 return 0;
bbbee908
PZ
10851 }
10852
fe4b04fa 10853 child_ctx = child->perf_event_ctxp[ctxn];
889ff015
FW
10854 if (!child_ctx) {
10855 /*
10856 * This is executed from the parent task context, so
10857 * inherit events that have been marked for cloning.
10858 * First allocate and initialize a context for the
10859 * child.
10860 */
734df5ab 10861 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
889ff015
FW
10862 if (!child_ctx)
10863 return -ENOMEM;
bbbee908 10864
8dc85d54 10865 child->perf_event_ctxp[ctxn] = child_ctx;
889ff015
FW
10866 }
10867
10868 ret = inherit_group(event, parent, parent_ctx,
10869 child, child_ctx);
10870
10871 if (ret)
10872 *inherited_all = 0;
10873
10874 return ret;
bbbee908
PZ
10875}
10876
9b51f66d 10877/*
cdd6c482 10878 * Initialize the perf_event context in task_struct
9b51f66d 10879 */
985c8dcb 10880static int perf_event_init_context(struct task_struct *child, int ctxn)
9b51f66d 10881{
889ff015 10882 struct perf_event_context *child_ctx, *parent_ctx;
cdd6c482
IM
10883 struct perf_event_context *cloned_ctx;
10884 struct perf_event *event;
9b51f66d 10885 struct task_struct *parent = current;
564c2b21 10886 int inherited_all = 1;
dddd3379 10887 unsigned long flags;
6ab423e0 10888 int ret = 0;
9b51f66d 10889
8dc85d54 10890 if (likely(!parent->perf_event_ctxp[ctxn]))
6ab423e0
PZ
10891 return 0;
10892
ad3a37de 10893 /*
25346b93
PM
10894 * If the parent's context is a clone, pin it so it won't get
10895 * swapped under us.
ad3a37de 10896 */
8dc85d54 10897 parent_ctx = perf_pin_task_context(parent, ctxn);
ffb4ef21
PZ
10898 if (!parent_ctx)
10899 return 0;
25346b93 10900
ad3a37de
PM
10901 /*
10902 * No need to check if parent_ctx != NULL here; since we saw
10903 * it non-NULL earlier, the only reason for it to become NULL
10904 * is if we exit, and since we're currently in the middle of
10905 * a fork we can't be exiting at the same time.
10906 */
ad3a37de 10907
9b51f66d
IM
10908 /*
10909 * Lock the parent list. No need to lock the child - not PID
10910 * hashed yet and not running, so nobody can access it.
10911 */
d859e29f 10912 mutex_lock(&parent_ctx->mutex);
9b51f66d
IM
10913
10914 /*
10915 * We dont have to disable NMIs - we are only looking at
10916 * the list, not manipulating it:
10917 */
889ff015 10918 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
8dc85d54
PZ
10919 ret = inherit_task_group(event, parent, parent_ctx,
10920 child, ctxn, &inherited_all);
889ff015 10921 if (ret)
e7cc4865 10922 goto out_unlock;
889ff015 10923 }
b93f7978 10924
dddd3379
TG
10925 /*
10926 * We can't hold ctx->lock when iterating the ->flexible_group list due
10927 * to allocations, but we need to prevent rotation because
10928 * rotate_ctx() will change the list from interrupt context.
10929 */
10930 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10931 parent_ctx->rotate_disable = 1;
10932 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10933
889ff015 10934 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
8dc85d54
PZ
10935 ret = inherit_task_group(event, parent, parent_ctx,
10936 child, ctxn, &inherited_all);
889ff015 10937 if (ret)
e7cc4865 10938 goto out_unlock;
564c2b21
PM
10939 }
10940
dddd3379
TG
10941 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10942 parent_ctx->rotate_disable = 0;
dddd3379 10943
8dc85d54 10944 child_ctx = child->perf_event_ctxp[ctxn];
889ff015 10945
05cbaa28 10946 if (child_ctx && inherited_all) {
564c2b21
PM
10947 /*
10948 * Mark the child context as a clone of the parent
10949 * context, or of whatever the parent is a clone of.
c5ed5145
PZ
10950 *
10951 * Note that if the parent is a clone, the holding of
10952 * parent_ctx->lock avoids it from being uncloned.
564c2b21 10953 */
c5ed5145 10954 cloned_ctx = parent_ctx->parent_ctx;
ad3a37de
PM
10955 if (cloned_ctx) {
10956 child_ctx->parent_ctx = cloned_ctx;
25346b93 10957 child_ctx->parent_gen = parent_ctx->parent_gen;
564c2b21
PM
10958 } else {
10959 child_ctx->parent_ctx = parent_ctx;
10960 child_ctx->parent_gen = parent_ctx->generation;
10961 }
10962 get_ctx(child_ctx->parent_ctx);
9b51f66d
IM
10963 }
10964
c5ed5145 10965 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
e7cc4865 10966out_unlock:
d859e29f 10967 mutex_unlock(&parent_ctx->mutex);
6ab423e0 10968
25346b93 10969 perf_unpin_context(parent_ctx);
fe4b04fa 10970 put_ctx(parent_ctx);
ad3a37de 10971
6ab423e0 10972 return ret;
9b51f66d
IM
10973}
10974
8dc85d54
PZ
10975/*
10976 * Initialize the perf_event context in task_struct
10977 */
10978int perf_event_init_task(struct task_struct *child)
10979{
10980 int ctxn, ret;
10981
8550d7cb
ON
10982 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
10983 mutex_init(&child->perf_event_mutex);
10984 INIT_LIST_HEAD(&child->perf_event_list);
10985
8dc85d54
PZ
10986 for_each_task_context_nr(ctxn) {
10987 ret = perf_event_init_context(child, ctxn);
6c72e350
PZ
10988 if (ret) {
10989 perf_event_free_task(child);
8dc85d54 10990 return ret;
6c72e350 10991 }
8dc85d54
PZ
10992 }
10993
10994 return 0;
10995}
10996
220b140b
PM
10997static void __init perf_event_init_all_cpus(void)
10998{
b28ab83c 10999 struct swevent_htable *swhash;
220b140b 11000 int cpu;
220b140b 11001
a63fbed7
TG
11002 zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
11003
220b140b 11004 for_each_possible_cpu(cpu) {
b28ab83c
PZ
11005 swhash = &per_cpu(swevent_htable, cpu);
11006 mutex_init(&swhash->hlist_mutex);
2fde4f94 11007 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
f2fb6bef
KL
11008
11009 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
11010 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
e48c1788 11011
058fe1c0
DCC
11012#ifdef CONFIG_CGROUP_PERF
11013 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
11014#endif
e48c1788 11015 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
220b140b
PM
11016 }
11017}
11018
a63fbed7 11019void perf_swevent_init_cpu(unsigned int cpu)
0793a61d 11020{
108b02cf 11021 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
0793a61d 11022
b28ab83c 11023 mutex_lock(&swhash->hlist_mutex);
059fcd8c 11024 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
76e1d904
FW
11025 struct swevent_hlist *hlist;
11026
b28ab83c
PZ
11027 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
11028 WARN_ON(!hlist);
11029 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 11030 }
b28ab83c 11031 mutex_unlock(&swhash->hlist_mutex);
0793a61d
TG
11032}
11033
2965faa5 11034#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
108b02cf 11035static void __perf_event_exit_context(void *__info)
0793a61d 11036{
108b02cf 11037 struct perf_event_context *ctx = __info;
fae3fde6
PZ
11038 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
11039 struct perf_event *event;
0793a61d 11040
fae3fde6
PZ
11041 raw_spin_lock(&ctx->lock);
11042 list_for_each_entry(event, &ctx->event_list, event_entry)
45a0e07a 11043 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
fae3fde6 11044 raw_spin_unlock(&ctx->lock);
0793a61d 11045}
108b02cf
PZ
11046
11047static void perf_event_exit_cpu_context(int cpu)
11048{
a63fbed7 11049 struct perf_cpu_context *cpuctx;
108b02cf
PZ
11050 struct perf_event_context *ctx;
11051 struct pmu *pmu;
108b02cf 11052
a63fbed7
TG
11053 mutex_lock(&pmus_lock);
11054 list_for_each_entry(pmu, &pmus, entry) {
11055 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11056 ctx = &cpuctx->ctx;
108b02cf
PZ
11057
11058 mutex_lock(&ctx->mutex);
11059 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
a63fbed7 11060 cpuctx->online = 0;
108b02cf
PZ
11061 mutex_unlock(&ctx->mutex);
11062 }
a63fbed7
TG
11063 cpumask_clear_cpu(cpu, perf_online_mask);
11064 mutex_unlock(&pmus_lock);
108b02cf 11065}
00e16c3d
TG
11066#else
11067
11068static void perf_event_exit_cpu_context(int cpu) { }
11069
11070#endif
108b02cf 11071
a63fbed7
TG
11072int perf_event_init_cpu(unsigned int cpu)
11073{
11074 struct perf_cpu_context *cpuctx;
11075 struct perf_event_context *ctx;
11076 struct pmu *pmu;
11077
11078 perf_swevent_init_cpu(cpu);
11079
11080 mutex_lock(&pmus_lock);
11081 cpumask_set_cpu(cpu, perf_online_mask);
11082 list_for_each_entry(pmu, &pmus, entry) {
11083 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11084 ctx = &cpuctx->ctx;
11085
11086 mutex_lock(&ctx->mutex);
11087 cpuctx->online = 1;
11088 mutex_unlock(&ctx->mutex);
11089 }
11090 mutex_unlock(&pmus_lock);
11091
11092 return 0;
11093}
11094
00e16c3d 11095int perf_event_exit_cpu(unsigned int cpu)
0793a61d 11096{
e3703f8c 11097 perf_event_exit_cpu_context(cpu);
00e16c3d 11098 return 0;
0793a61d 11099}
0793a61d 11100
c277443c
PZ
11101static int
11102perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
11103{
11104 int cpu;
11105
11106 for_each_online_cpu(cpu)
11107 perf_event_exit_cpu(cpu);
11108
11109 return NOTIFY_OK;
11110}
11111
11112/*
11113 * Run the perf reboot notifier at the very last possible moment so that
11114 * the generic watchdog code runs as long as possible.
11115 */
11116static struct notifier_block perf_reboot_notifier = {
11117 .notifier_call = perf_reboot,
11118 .priority = INT_MIN,
11119};
11120
cdd6c482 11121void __init perf_event_init(void)
0793a61d 11122{
3c502e7a
JW
11123 int ret;
11124
2e80a82a
PZ
11125 idr_init(&pmu_idr);
11126
220b140b 11127 perf_event_init_all_cpus();
b0a873eb 11128 init_srcu_struct(&pmus_srcu);
2e80a82a
PZ
11129 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
11130 perf_pmu_register(&perf_cpu_clock, NULL, -1);
11131 perf_pmu_register(&perf_task_clock, NULL, -1);
b0a873eb 11132 perf_tp_register();
00e16c3d 11133 perf_event_init_cpu(smp_processor_id());
c277443c 11134 register_reboot_notifier(&perf_reboot_notifier);
3c502e7a
JW
11135
11136 ret = init_hw_breakpoint();
11137 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
b2029520 11138
b01c3a00
JO
11139 /*
11140 * Build time assertion that we keep the data_head at the intended
11141 * location. IOW, validation we got the __reserved[] size right.
11142 */
11143 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
11144 != 1024);
0793a61d 11145}
abe43400 11146
fd979c01
CS
11147ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
11148 char *page)
11149{
11150 struct perf_pmu_events_attr *pmu_attr =
11151 container_of(attr, struct perf_pmu_events_attr, attr);
11152
11153 if (pmu_attr->event_str)
11154 return sprintf(page, "%s\n", pmu_attr->event_str);
11155
11156 return 0;
11157}
675965b0 11158EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
fd979c01 11159
abe43400
PZ
11160static int __init perf_event_sysfs_init(void)
11161{
11162 struct pmu *pmu;
11163 int ret;
11164
11165 mutex_lock(&pmus_lock);
11166
11167 ret = bus_register(&pmu_bus);
11168 if (ret)
11169 goto unlock;
11170
11171 list_for_each_entry(pmu, &pmus, entry) {
11172 if (!pmu->name || pmu->type < 0)
11173 continue;
11174
11175 ret = pmu_dev_alloc(pmu);
11176 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
11177 }
11178 pmu_bus_running = 1;
11179 ret = 0;
11180
11181unlock:
11182 mutex_unlock(&pmus_lock);
11183
11184 return ret;
11185}
11186device_initcall(perf_event_sysfs_init);
e5d1367f
SE
11187
11188#ifdef CONFIG_CGROUP_PERF
eb95419b
TH
11189static struct cgroup_subsys_state *
11190perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
e5d1367f
SE
11191{
11192 struct perf_cgroup *jc;
e5d1367f 11193
1b15d055 11194 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
e5d1367f
SE
11195 if (!jc)
11196 return ERR_PTR(-ENOMEM);
11197
e5d1367f
SE
11198 jc->info = alloc_percpu(struct perf_cgroup_info);
11199 if (!jc->info) {
11200 kfree(jc);
11201 return ERR_PTR(-ENOMEM);
11202 }
11203
e5d1367f
SE
11204 return &jc->css;
11205}
11206
eb95419b 11207static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
e5d1367f 11208{
eb95419b
TH
11209 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
11210
e5d1367f
SE
11211 free_percpu(jc->info);
11212 kfree(jc);
11213}
11214
11215static int __perf_cgroup_move(void *info)
11216{
11217 struct task_struct *task = info;
ddaaf4e2 11218 rcu_read_lock();
e5d1367f 11219 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
ddaaf4e2 11220 rcu_read_unlock();
e5d1367f
SE
11221 return 0;
11222}
11223
1f7dd3e5 11224static void perf_cgroup_attach(struct cgroup_taskset *tset)
e5d1367f 11225{
bb9d97b6 11226 struct task_struct *task;
1f7dd3e5 11227 struct cgroup_subsys_state *css;
bb9d97b6 11228
1f7dd3e5 11229 cgroup_taskset_for_each(task, css, tset)
bb9d97b6 11230 task_function_call(task, __perf_cgroup_move, task);
e5d1367f
SE
11231}
11232
073219e9 11233struct cgroup_subsys perf_event_cgrp_subsys = {
92fb9748
TH
11234 .css_alloc = perf_cgroup_css_alloc,
11235 .css_free = perf_cgroup_css_free,
bb9d97b6 11236 .attach = perf_cgroup_attach,
968ebff1
TH
11237 /*
11238 * Implicitly enable on dfl hierarchy so that perf events can
11239 * always be filtered by cgroup2 path as long as perf_event
11240 * controller is not mounted on a legacy hierarchy.
11241 */
11242 .implicit_on_dfl = true,
e5d1367f
SE
11243};
11244#endif /* CONFIG_CGROUP_PERF */