]> git.ipfire.org Git - thirdparty/linux.git/blame - kernel/events/core.c
perf/uprobes: Convert to SPDX license identifier
[thirdparty/linux.git] / kernel / events / core.c
CommitLineData
8e86e015 1// SPDX-License-Identifier: GPL-2.0
0793a61d 2/*
57c0c15b 3 * Performance events core code:
0793a61d 4 *
98144511 5 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
e7e7ee2e 6 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
90eec103 7 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
d36b6910 8 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
0793a61d
TG
9 */
10
11#include <linux/fs.h>
b9cacc7b 12#include <linux/mm.h>
0793a61d
TG
13#include <linux/cpu.h>
14#include <linux/smp.h>
2e80a82a 15#include <linux/idr.h>
04289bb9 16#include <linux/file.h>
0793a61d 17#include <linux/poll.h>
5a0e3ad6 18#include <linux/slab.h>
76e1d904 19#include <linux/hash.h>
12351ef8 20#include <linux/tick.h>
0793a61d 21#include <linux/sysfs.h>
22a4f650 22#include <linux/dcache.h>
0793a61d 23#include <linux/percpu.h>
22a4f650 24#include <linux/ptrace.h>
c277443c 25#include <linux/reboot.h>
b9cacc7b 26#include <linux/vmstat.h>
abe43400 27#include <linux/device.h>
6e5fdeed 28#include <linux/export.h>
906010b2 29#include <linux/vmalloc.h>
b9cacc7b
PZ
30#include <linux/hardirq.h>
31#include <linux/rculist.h>
0793a61d
TG
32#include <linux/uaccess.h>
33#include <linux/syscalls.h>
34#include <linux/anon_inodes.h>
aa9c4c0f 35#include <linux/kernel_stat.h>
39bed6cb 36#include <linux/cgroup.h>
cdd6c482 37#include <linux/perf_event.h>
af658dca 38#include <linux/trace_events.h>
3c502e7a 39#include <linux/hw_breakpoint.h>
c5ebcedb 40#include <linux/mm_types.h>
c464c76e 41#include <linux/module.h>
f972eb63 42#include <linux/mman.h>
b3f20785 43#include <linux/compat.h>
2541517c
AS
44#include <linux/bpf.h>
45#include <linux/filter.h>
375637bc
AS
46#include <linux/namei.h>
47#include <linux/parser.h>
e6017571 48#include <linux/sched/clock.h>
6e84f315 49#include <linux/sched/mm.h>
e4222673
HB
50#include <linux/proc_ns.h>
51#include <linux/mount.h>
0793a61d 52
76369139
FW
53#include "internal.h"
54
4e193bd4
TB
55#include <asm/irq_regs.h>
56
272325c4
PZ
57typedef int (*remote_function_f)(void *);
58
fe4b04fa 59struct remote_function_call {
e7e7ee2e 60 struct task_struct *p;
272325c4 61 remote_function_f func;
e7e7ee2e
IM
62 void *info;
63 int ret;
fe4b04fa
PZ
64};
65
66static void remote_function(void *data)
67{
68 struct remote_function_call *tfc = data;
69 struct task_struct *p = tfc->p;
70
71 if (p) {
0da4cf3e
PZ
72 /* -EAGAIN */
73 if (task_cpu(p) != smp_processor_id())
74 return;
75
76 /*
77 * Now that we're on right CPU with IRQs disabled, we can test
78 * if we hit the right task without races.
79 */
80
81 tfc->ret = -ESRCH; /* No such (running) process */
82 if (p != current)
fe4b04fa
PZ
83 return;
84 }
85
86 tfc->ret = tfc->func(tfc->info);
87}
88
89/**
90 * task_function_call - call a function on the cpu on which a task runs
91 * @p: the task to evaluate
92 * @func: the function to be called
93 * @info: the function call argument
94 *
95 * Calls the function @func when the task is currently running. This might
96 * be on the current CPU, which just calls the function directly
97 *
98 * returns: @func return value, or
99 * -ESRCH - when the process isn't running
100 * -EAGAIN - when the process moved away
101 */
102static int
272325c4 103task_function_call(struct task_struct *p, remote_function_f func, void *info)
fe4b04fa
PZ
104{
105 struct remote_function_call data = {
e7e7ee2e
IM
106 .p = p,
107 .func = func,
108 .info = info,
0da4cf3e 109 .ret = -EAGAIN,
fe4b04fa 110 };
0da4cf3e 111 int ret;
fe4b04fa 112
0da4cf3e
PZ
113 do {
114 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
115 if (!ret)
116 ret = data.ret;
117 } while (ret == -EAGAIN);
fe4b04fa 118
0da4cf3e 119 return ret;
fe4b04fa
PZ
120}
121
122/**
123 * cpu_function_call - call a function on the cpu
124 * @func: the function to be called
125 * @info: the function call argument
126 *
127 * Calls the function @func on the remote cpu.
128 *
129 * returns: @func return value or -ENXIO when the cpu is offline
130 */
272325c4 131static int cpu_function_call(int cpu, remote_function_f func, void *info)
fe4b04fa
PZ
132{
133 struct remote_function_call data = {
e7e7ee2e
IM
134 .p = NULL,
135 .func = func,
136 .info = info,
137 .ret = -ENXIO, /* No such CPU */
fe4b04fa
PZ
138 };
139
140 smp_call_function_single(cpu, remote_function, &data, 1);
141
142 return data.ret;
143}
144
fae3fde6
PZ
145static inline struct perf_cpu_context *
146__get_cpu_context(struct perf_event_context *ctx)
147{
148 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
149}
150
151static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
152 struct perf_event_context *ctx)
0017960f 153{
fae3fde6
PZ
154 raw_spin_lock(&cpuctx->ctx.lock);
155 if (ctx)
156 raw_spin_lock(&ctx->lock);
157}
158
159static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
160 struct perf_event_context *ctx)
161{
162 if (ctx)
163 raw_spin_unlock(&ctx->lock);
164 raw_spin_unlock(&cpuctx->ctx.lock);
165}
166
63b6da39
PZ
167#define TASK_TOMBSTONE ((void *)-1L)
168
169static bool is_kernel_event(struct perf_event *event)
170{
f47c02c0 171 return READ_ONCE(event->owner) == TASK_TOMBSTONE;
63b6da39
PZ
172}
173
39a43640
PZ
174/*
175 * On task ctx scheduling...
176 *
177 * When !ctx->nr_events a task context will not be scheduled. This means
178 * we can disable the scheduler hooks (for performance) without leaving
179 * pending task ctx state.
180 *
181 * This however results in two special cases:
182 *
183 * - removing the last event from a task ctx; this is relatively straight
184 * forward and is done in __perf_remove_from_context.
185 *
186 * - adding the first event to a task ctx; this is tricky because we cannot
187 * rely on ctx->is_active and therefore cannot use event_function_call().
188 * See perf_install_in_context().
189 *
39a43640
PZ
190 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
191 */
192
fae3fde6
PZ
193typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
194 struct perf_event_context *, void *);
195
196struct event_function_struct {
197 struct perf_event *event;
198 event_f func;
199 void *data;
200};
201
202static int event_function(void *info)
203{
204 struct event_function_struct *efs = info;
205 struct perf_event *event = efs->event;
0017960f 206 struct perf_event_context *ctx = event->ctx;
fae3fde6
PZ
207 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
208 struct perf_event_context *task_ctx = cpuctx->task_ctx;
63b6da39 209 int ret = 0;
fae3fde6 210
16444645 211 lockdep_assert_irqs_disabled();
fae3fde6 212
63b6da39 213 perf_ctx_lock(cpuctx, task_ctx);
fae3fde6
PZ
214 /*
215 * Since we do the IPI call without holding ctx->lock things can have
216 * changed, double check we hit the task we set out to hit.
fae3fde6
PZ
217 */
218 if (ctx->task) {
63b6da39 219 if (ctx->task != current) {
0da4cf3e 220 ret = -ESRCH;
63b6da39
PZ
221 goto unlock;
222 }
fae3fde6 223
fae3fde6
PZ
224 /*
225 * We only use event_function_call() on established contexts,
226 * and event_function() is only ever called when active (or
227 * rather, we'll have bailed in task_function_call() or the
228 * above ctx->task != current test), therefore we must have
229 * ctx->is_active here.
230 */
231 WARN_ON_ONCE(!ctx->is_active);
232 /*
233 * And since we have ctx->is_active, cpuctx->task_ctx must
234 * match.
235 */
63b6da39
PZ
236 WARN_ON_ONCE(task_ctx != ctx);
237 } else {
238 WARN_ON_ONCE(&cpuctx->ctx != ctx);
fae3fde6 239 }
63b6da39 240
fae3fde6 241 efs->func(event, cpuctx, ctx, efs->data);
63b6da39 242unlock:
fae3fde6
PZ
243 perf_ctx_unlock(cpuctx, task_ctx);
244
63b6da39 245 return ret;
fae3fde6
PZ
246}
247
fae3fde6 248static void event_function_call(struct perf_event *event, event_f func, void *data)
0017960f
PZ
249{
250 struct perf_event_context *ctx = event->ctx;
63b6da39 251 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
fae3fde6
PZ
252 struct event_function_struct efs = {
253 .event = event,
254 .func = func,
255 .data = data,
256 };
0017960f 257
c97f4736
PZ
258 if (!event->parent) {
259 /*
260 * If this is a !child event, we must hold ctx::mutex to
261 * stabilize the the event->ctx relation. See
262 * perf_event_ctx_lock().
263 */
264 lockdep_assert_held(&ctx->mutex);
265 }
0017960f
PZ
266
267 if (!task) {
fae3fde6 268 cpu_function_call(event->cpu, event_function, &efs);
0017960f
PZ
269 return;
270 }
271
63b6da39
PZ
272 if (task == TASK_TOMBSTONE)
273 return;
274
a096309b 275again:
fae3fde6 276 if (!task_function_call(task, event_function, &efs))
0017960f
PZ
277 return;
278
279 raw_spin_lock_irq(&ctx->lock);
63b6da39
PZ
280 /*
281 * Reload the task pointer, it might have been changed by
282 * a concurrent perf_event_context_sched_out().
283 */
284 task = ctx->task;
a096309b
PZ
285 if (task == TASK_TOMBSTONE) {
286 raw_spin_unlock_irq(&ctx->lock);
287 return;
0017960f 288 }
a096309b
PZ
289 if (ctx->is_active) {
290 raw_spin_unlock_irq(&ctx->lock);
291 goto again;
292 }
293 func(event, NULL, ctx, data);
0017960f
PZ
294 raw_spin_unlock_irq(&ctx->lock);
295}
296
cca20946
PZ
297/*
298 * Similar to event_function_call() + event_function(), but hard assumes IRQs
299 * are already disabled and we're on the right CPU.
300 */
301static void event_function_local(struct perf_event *event, event_f func, void *data)
302{
303 struct perf_event_context *ctx = event->ctx;
304 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
305 struct task_struct *task = READ_ONCE(ctx->task);
306 struct perf_event_context *task_ctx = NULL;
307
16444645 308 lockdep_assert_irqs_disabled();
cca20946
PZ
309
310 if (task) {
311 if (task == TASK_TOMBSTONE)
312 return;
313
314 task_ctx = ctx;
315 }
316
317 perf_ctx_lock(cpuctx, task_ctx);
318
319 task = ctx->task;
320 if (task == TASK_TOMBSTONE)
321 goto unlock;
322
323 if (task) {
324 /*
325 * We must be either inactive or active and the right task,
326 * otherwise we're screwed, since we cannot IPI to somewhere
327 * else.
328 */
329 if (ctx->is_active) {
330 if (WARN_ON_ONCE(task != current))
331 goto unlock;
332
333 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
334 goto unlock;
335 }
336 } else {
337 WARN_ON_ONCE(&cpuctx->ctx != ctx);
338 }
339
340 func(event, cpuctx, ctx, data);
341unlock:
342 perf_ctx_unlock(cpuctx, task_ctx);
343}
344
e5d1367f
SE
345#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
346 PERF_FLAG_FD_OUTPUT |\
a21b0b35
YD
347 PERF_FLAG_PID_CGROUP |\
348 PERF_FLAG_FD_CLOEXEC)
e5d1367f 349
bce38cd5
SE
350/*
351 * branch priv levels that need permission checks
352 */
353#define PERF_SAMPLE_BRANCH_PERM_PLM \
354 (PERF_SAMPLE_BRANCH_KERNEL |\
355 PERF_SAMPLE_BRANCH_HV)
356
0b3fcf17
SE
357enum event_type_t {
358 EVENT_FLEXIBLE = 0x1,
359 EVENT_PINNED = 0x2,
3cbaa590 360 EVENT_TIME = 0x4,
487f05e1
AS
361 /* see ctx_resched() for details */
362 EVENT_CPU = 0x8,
0b3fcf17
SE
363 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
364};
365
e5d1367f
SE
366/*
367 * perf_sched_events : >0 events exist
368 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
369 */
9107c89e
PZ
370
371static void perf_sched_delayed(struct work_struct *work);
372DEFINE_STATIC_KEY_FALSE(perf_sched_events);
373static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
374static DEFINE_MUTEX(perf_sched_mutex);
375static atomic_t perf_sched_count;
376
e5d1367f 377static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
ba532500 378static DEFINE_PER_CPU(int, perf_sched_cb_usages);
f2fb6bef 379static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
e5d1367f 380
cdd6c482
IM
381static atomic_t nr_mmap_events __read_mostly;
382static atomic_t nr_comm_events __read_mostly;
e4222673 383static atomic_t nr_namespaces_events __read_mostly;
cdd6c482 384static atomic_t nr_task_events __read_mostly;
948b26b6 385static atomic_t nr_freq_events __read_mostly;
45ac1403 386static atomic_t nr_switch_events __read_mostly;
76193a94 387static atomic_t nr_ksymbol_events __read_mostly;
6ee52e2a 388static atomic_t nr_bpf_events __read_mostly;
9ee318a7 389
108b02cf
PZ
390static LIST_HEAD(pmus);
391static DEFINE_MUTEX(pmus_lock);
392static struct srcu_struct pmus_srcu;
a63fbed7 393static cpumask_var_t perf_online_mask;
108b02cf 394
0764771d 395/*
cdd6c482 396 * perf event paranoia level:
0fbdea19
IM
397 * -1 - not paranoid at all
398 * 0 - disallow raw tracepoint access for unpriv
cdd6c482 399 * 1 - disallow cpu events for unpriv
0fbdea19 400 * 2 - disallow kernel profiling for unpriv
0764771d 401 */
0161028b 402int sysctl_perf_event_paranoid __read_mostly = 2;
0764771d 403
20443384
FW
404/* Minimum for 512 kiB + 1 user control page */
405int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
df58ab24
PZ
406
407/*
cdd6c482 408 * max perf event sample rate
df58ab24 409 */
14c63f17
DH
410#define DEFAULT_MAX_SAMPLE_RATE 100000
411#define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
412#define DEFAULT_CPU_TIME_MAX_PERCENT 25
413
414int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
415
416static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
417static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
418
d9494cb4
PZ
419static int perf_sample_allowed_ns __read_mostly =
420 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
14c63f17 421
18ab2cd3 422static void update_perf_cpu_limits(void)
14c63f17
DH
423{
424 u64 tmp = perf_sample_period_ns;
425
426 tmp *= sysctl_perf_cpu_time_max_percent;
91a612ee
PZ
427 tmp = div_u64(tmp, 100);
428 if (!tmp)
429 tmp = 1;
430
431 WRITE_ONCE(perf_sample_allowed_ns, tmp);
14c63f17 432}
163ec435 433
8d5bce0c 434static bool perf_rotate_context(struct perf_cpu_context *cpuctx);
9e630205 435
163ec435
PZ
436int perf_proc_update_handler(struct ctl_table *table, int write,
437 void __user *buffer, size_t *lenp,
438 loff_t *ppos)
439{
1a51c5da
SE
440 int ret;
441 int perf_cpu = sysctl_perf_cpu_time_max_percent;
ab7fdefb
KL
442 /*
443 * If throttling is disabled don't allow the write:
444 */
1a51c5da 445 if (write && (perf_cpu == 100 || perf_cpu == 0))
ab7fdefb
KL
446 return -EINVAL;
447
1a51c5da
SE
448 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
449 if (ret || !write)
450 return ret;
451
163ec435 452 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
14c63f17
DH
453 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
454 update_perf_cpu_limits();
455
456 return 0;
457}
458
459int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
460
461int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
462 void __user *buffer, size_t *lenp,
463 loff_t *ppos)
464{
1572e45a 465 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
14c63f17
DH
466
467 if (ret || !write)
468 return ret;
469
b303e7c1
PZ
470 if (sysctl_perf_cpu_time_max_percent == 100 ||
471 sysctl_perf_cpu_time_max_percent == 0) {
91a612ee
PZ
472 printk(KERN_WARNING
473 "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
474 WRITE_ONCE(perf_sample_allowed_ns, 0);
475 } else {
476 update_perf_cpu_limits();
477 }
163ec435
PZ
478
479 return 0;
480}
1ccd1549 481
14c63f17
DH
482/*
483 * perf samples are done in some very critical code paths (NMIs).
484 * If they take too much CPU time, the system can lock up and not
485 * get any real work done. This will drop the sample rate when
486 * we detect that events are taking too long.
487 */
488#define NR_ACCUMULATED_SAMPLES 128
d9494cb4 489static DEFINE_PER_CPU(u64, running_sample_length);
14c63f17 490
91a612ee
PZ
491static u64 __report_avg;
492static u64 __report_allowed;
493
6a02ad66 494static void perf_duration_warn(struct irq_work *w)
14c63f17 495{
0d87d7ec 496 printk_ratelimited(KERN_INFO
91a612ee
PZ
497 "perf: interrupt took too long (%lld > %lld), lowering "
498 "kernel.perf_event_max_sample_rate to %d\n",
499 __report_avg, __report_allowed,
500 sysctl_perf_event_sample_rate);
6a02ad66
PZ
501}
502
503static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
504
505void perf_sample_event_took(u64 sample_len_ns)
506{
91a612ee
PZ
507 u64 max_len = READ_ONCE(perf_sample_allowed_ns);
508 u64 running_len;
509 u64 avg_len;
510 u32 max;
14c63f17 511
91a612ee 512 if (max_len == 0)
14c63f17
DH
513 return;
514
91a612ee
PZ
515 /* Decay the counter by 1 average sample. */
516 running_len = __this_cpu_read(running_sample_length);
517 running_len -= running_len/NR_ACCUMULATED_SAMPLES;
518 running_len += sample_len_ns;
519 __this_cpu_write(running_sample_length, running_len);
14c63f17
DH
520
521 /*
91a612ee
PZ
522 * Note: this will be biased artifically low until we have
523 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
14c63f17
DH
524 * from having to maintain a count.
525 */
91a612ee
PZ
526 avg_len = running_len/NR_ACCUMULATED_SAMPLES;
527 if (avg_len <= max_len)
14c63f17
DH
528 return;
529
91a612ee
PZ
530 __report_avg = avg_len;
531 __report_allowed = max_len;
14c63f17 532
91a612ee
PZ
533 /*
534 * Compute a throttle threshold 25% below the current duration.
535 */
536 avg_len += avg_len / 4;
537 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
538 if (avg_len < max)
539 max /= (u32)avg_len;
540 else
541 max = 1;
14c63f17 542
91a612ee
PZ
543 WRITE_ONCE(perf_sample_allowed_ns, avg_len);
544 WRITE_ONCE(max_samples_per_tick, max);
545
546 sysctl_perf_event_sample_rate = max * HZ;
547 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
6a02ad66 548
cd578abb 549 if (!irq_work_queue(&perf_duration_work)) {
91a612ee 550 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
cd578abb 551 "kernel.perf_event_max_sample_rate to %d\n",
91a612ee 552 __report_avg, __report_allowed,
cd578abb
PZ
553 sysctl_perf_event_sample_rate);
554 }
14c63f17
DH
555}
556
cdd6c482 557static atomic64_t perf_event_id;
a96bbc16 558
0b3fcf17
SE
559static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
560 enum event_type_t event_type);
561
562static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
563 enum event_type_t event_type,
564 struct task_struct *task);
565
566static void update_context_time(struct perf_event_context *ctx);
567static u64 perf_event_time(struct perf_event *event);
0b3fcf17 568
cdd6c482 569void __weak perf_event_print_debug(void) { }
0793a61d 570
84c79910 571extern __weak const char *perf_pmu_name(void)
0793a61d 572{
84c79910 573 return "pmu";
0793a61d
TG
574}
575
0b3fcf17
SE
576static inline u64 perf_clock(void)
577{
578 return local_clock();
579}
580
34f43927
PZ
581static inline u64 perf_event_clock(struct perf_event *event)
582{
583 return event->clock();
584}
585
0d3d73aa
PZ
586/*
587 * State based event timekeeping...
588 *
589 * The basic idea is to use event->state to determine which (if any) time
590 * fields to increment with the current delta. This means we only need to
591 * update timestamps when we change state or when they are explicitly requested
592 * (read).
593 *
594 * Event groups make things a little more complicated, but not terribly so. The
595 * rules for a group are that if the group leader is OFF the entire group is
596 * OFF, irrespecive of what the group member states are. This results in
597 * __perf_effective_state().
598 *
599 * A futher ramification is that when a group leader flips between OFF and
600 * !OFF, we need to update all group member times.
601 *
602 *
603 * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
604 * need to make sure the relevant context time is updated before we try and
605 * update our timestamps.
606 */
607
608static __always_inline enum perf_event_state
609__perf_effective_state(struct perf_event *event)
610{
611 struct perf_event *leader = event->group_leader;
612
613 if (leader->state <= PERF_EVENT_STATE_OFF)
614 return leader->state;
615
616 return event->state;
617}
618
619static __always_inline void
620__perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
621{
622 enum perf_event_state state = __perf_effective_state(event);
623 u64 delta = now - event->tstamp;
624
625 *enabled = event->total_time_enabled;
626 if (state >= PERF_EVENT_STATE_INACTIVE)
627 *enabled += delta;
628
629 *running = event->total_time_running;
630 if (state >= PERF_EVENT_STATE_ACTIVE)
631 *running += delta;
632}
633
634static void perf_event_update_time(struct perf_event *event)
635{
636 u64 now = perf_event_time(event);
637
638 __perf_update_times(event, now, &event->total_time_enabled,
639 &event->total_time_running);
640 event->tstamp = now;
641}
642
643static void perf_event_update_sibling_time(struct perf_event *leader)
644{
645 struct perf_event *sibling;
646
edb39592 647 for_each_sibling_event(sibling, leader)
0d3d73aa
PZ
648 perf_event_update_time(sibling);
649}
650
651static void
652perf_event_set_state(struct perf_event *event, enum perf_event_state state)
653{
654 if (event->state == state)
655 return;
656
657 perf_event_update_time(event);
658 /*
659 * If a group leader gets enabled/disabled all its siblings
660 * are affected too.
661 */
662 if ((event->state < 0) ^ (state < 0))
663 perf_event_update_sibling_time(event);
664
665 WRITE_ONCE(event->state, state);
666}
667
e5d1367f
SE
668#ifdef CONFIG_CGROUP_PERF
669
e5d1367f
SE
670static inline bool
671perf_cgroup_match(struct perf_event *event)
672{
673 struct perf_event_context *ctx = event->ctx;
674 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
675
ef824fa1
TH
676 /* @event doesn't care about cgroup */
677 if (!event->cgrp)
678 return true;
679
680 /* wants specific cgroup scope but @cpuctx isn't associated with any */
681 if (!cpuctx->cgrp)
682 return false;
683
684 /*
685 * Cgroup scoping is recursive. An event enabled for a cgroup is
686 * also enabled for all its descendant cgroups. If @cpuctx's
687 * cgroup is a descendant of @event's (the test covers identity
688 * case), it's a match.
689 */
690 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
691 event->cgrp->css.cgroup);
e5d1367f
SE
692}
693
e5d1367f
SE
694static inline void perf_detach_cgroup(struct perf_event *event)
695{
4e2ba650 696 css_put(&event->cgrp->css);
e5d1367f
SE
697 event->cgrp = NULL;
698}
699
700static inline int is_cgroup_event(struct perf_event *event)
701{
702 return event->cgrp != NULL;
703}
704
705static inline u64 perf_cgroup_event_time(struct perf_event *event)
706{
707 struct perf_cgroup_info *t;
708
709 t = per_cpu_ptr(event->cgrp->info, event->cpu);
710 return t->time;
711}
712
713static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
714{
715 struct perf_cgroup_info *info;
716 u64 now;
717
718 now = perf_clock();
719
720 info = this_cpu_ptr(cgrp->info);
721
722 info->time += now - info->timestamp;
723 info->timestamp = now;
724}
725
726static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
727{
c917e0f2
SL
728 struct perf_cgroup *cgrp = cpuctx->cgrp;
729 struct cgroup_subsys_state *css;
730
731 if (cgrp) {
732 for (css = &cgrp->css; css; css = css->parent) {
733 cgrp = container_of(css, struct perf_cgroup, css);
734 __update_cgrp_time(cgrp);
735 }
736 }
e5d1367f
SE
737}
738
739static inline void update_cgrp_time_from_event(struct perf_event *event)
740{
3f7cce3c
SE
741 struct perf_cgroup *cgrp;
742
e5d1367f 743 /*
3f7cce3c
SE
744 * ensure we access cgroup data only when needed and
745 * when we know the cgroup is pinned (css_get)
e5d1367f 746 */
3f7cce3c 747 if (!is_cgroup_event(event))
e5d1367f
SE
748 return;
749
614e4c4e 750 cgrp = perf_cgroup_from_task(current, event->ctx);
3f7cce3c
SE
751 /*
752 * Do not update time when cgroup is not active
753 */
28fa741c 754 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
3f7cce3c 755 __update_cgrp_time(event->cgrp);
e5d1367f
SE
756}
757
758static inline void
3f7cce3c
SE
759perf_cgroup_set_timestamp(struct task_struct *task,
760 struct perf_event_context *ctx)
e5d1367f
SE
761{
762 struct perf_cgroup *cgrp;
763 struct perf_cgroup_info *info;
c917e0f2 764 struct cgroup_subsys_state *css;
e5d1367f 765
3f7cce3c
SE
766 /*
767 * ctx->lock held by caller
768 * ensure we do not access cgroup data
769 * unless we have the cgroup pinned (css_get)
770 */
771 if (!task || !ctx->nr_cgroups)
e5d1367f
SE
772 return;
773
614e4c4e 774 cgrp = perf_cgroup_from_task(task, ctx);
c917e0f2
SL
775
776 for (css = &cgrp->css; css; css = css->parent) {
777 cgrp = container_of(css, struct perf_cgroup, css);
778 info = this_cpu_ptr(cgrp->info);
779 info->timestamp = ctx->timestamp;
780 }
e5d1367f
SE
781}
782
058fe1c0
DCC
783static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
784
e5d1367f
SE
785#define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
786#define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
787
788/*
789 * reschedule events based on the cgroup constraint of task.
790 *
791 * mode SWOUT : schedule out everything
792 * mode SWIN : schedule in based on cgroup for next
793 */
18ab2cd3 794static void perf_cgroup_switch(struct task_struct *task, int mode)
e5d1367f
SE
795{
796 struct perf_cpu_context *cpuctx;
058fe1c0 797 struct list_head *list;
e5d1367f
SE
798 unsigned long flags;
799
800 /*
058fe1c0
DCC
801 * Disable interrupts and preemption to avoid this CPU's
802 * cgrp_cpuctx_entry to change under us.
e5d1367f
SE
803 */
804 local_irq_save(flags);
805
058fe1c0
DCC
806 list = this_cpu_ptr(&cgrp_cpuctx_list);
807 list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
808 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
e5d1367f 809
058fe1c0
DCC
810 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
811 perf_pmu_disable(cpuctx->ctx.pmu);
e5d1367f 812
058fe1c0
DCC
813 if (mode & PERF_CGROUP_SWOUT) {
814 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
815 /*
816 * must not be done before ctxswout due
817 * to event_filter_match() in event_sched_out()
818 */
819 cpuctx->cgrp = NULL;
820 }
e5d1367f 821
058fe1c0
DCC
822 if (mode & PERF_CGROUP_SWIN) {
823 WARN_ON_ONCE(cpuctx->cgrp);
824 /*
825 * set cgrp before ctxsw in to allow
826 * event_filter_match() to not have to pass
827 * task around
828 * we pass the cpuctx->ctx to perf_cgroup_from_task()
829 * because cgorup events are only per-cpu
830 */
831 cpuctx->cgrp = perf_cgroup_from_task(task,
832 &cpuctx->ctx);
833 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
e5d1367f 834 }
058fe1c0
DCC
835 perf_pmu_enable(cpuctx->ctx.pmu);
836 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
e5d1367f
SE
837 }
838
e5d1367f
SE
839 local_irq_restore(flags);
840}
841
a8d757ef
SE
842static inline void perf_cgroup_sched_out(struct task_struct *task,
843 struct task_struct *next)
e5d1367f 844{
a8d757ef
SE
845 struct perf_cgroup *cgrp1;
846 struct perf_cgroup *cgrp2 = NULL;
847
ddaaf4e2 848 rcu_read_lock();
a8d757ef
SE
849 /*
850 * we come here when we know perf_cgroup_events > 0
614e4c4e
SE
851 * we do not need to pass the ctx here because we know
852 * we are holding the rcu lock
a8d757ef 853 */
614e4c4e 854 cgrp1 = perf_cgroup_from_task(task, NULL);
70a01657 855 cgrp2 = perf_cgroup_from_task(next, NULL);
a8d757ef
SE
856
857 /*
858 * only schedule out current cgroup events if we know
859 * that we are switching to a different cgroup. Otherwise,
860 * do no touch the cgroup events.
861 */
862 if (cgrp1 != cgrp2)
863 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
ddaaf4e2
SE
864
865 rcu_read_unlock();
e5d1367f
SE
866}
867
a8d757ef
SE
868static inline void perf_cgroup_sched_in(struct task_struct *prev,
869 struct task_struct *task)
e5d1367f 870{
a8d757ef
SE
871 struct perf_cgroup *cgrp1;
872 struct perf_cgroup *cgrp2 = NULL;
873
ddaaf4e2 874 rcu_read_lock();
a8d757ef
SE
875 /*
876 * we come here when we know perf_cgroup_events > 0
614e4c4e
SE
877 * we do not need to pass the ctx here because we know
878 * we are holding the rcu lock
a8d757ef 879 */
614e4c4e 880 cgrp1 = perf_cgroup_from_task(task, NULL);
614e4c4e 881 cgrp2 = perf_cgroup_from_task(prev, NULL);
a8d757ef
SE
882
883 /*
884 * only need to schedule in cgroup events if we are changing
885 * cgroup during ctxsw. Cgroup events were not scheduled
886 * out of ctxsw out if that was not the case.
887 */
888 if (cgrp1 != cgrp2)
889 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
ddaaf4e2
SE
890
891 rcu_read_unlock();
e5d1367f
SE
892}
893
894static inline int perf_cgroup_connect(int fd, struct perf_event *event,
895 struct perf_event_attr *attr,
896 struct perf_event *group_leader)
897{
898 struct perf_cgroup *cgrp;
899 struct cgroup_subsys_state *css;
2903ff01
AV
900 struct fd f = fdget(fd);
901 int ret = 0;
e5d1367f 902
2903ff01 903 if (!f.file)
e5d1367f
SE
904 return -EBADF;
905
b583043e 906 css = css_tryget_online_from_dir(f.file->f_path.dentry,
ec903c0c 907 &perf_event_cgrp_subsys);
3db272c0
LZ
908 if (IS_ERR(css)) {
909 ret = PTR_ERR(css);
910 goto out;
911 }
e5d1367f
SE
912
913 cgrp = container_of(css, struct perf_cgroup, css);
914 event->cgrp = cgrp;
915
916 /*
917 * all events in a group must monitor
918 * the same cgroup because a task belongs
919 * to only one perf cgroup at a time
920 */
921 if (group_leader && group_leader->cgrp != cgrp) {
922 perf_detach_cgroup(event);
923 ret = -EINVAL;
e5d1367f 924 }
3db272c0 925out:
2903ff01 926 fdput(f);
e5d1367f
SE
927 return ret;
928}
929
930static inline void
931perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
932{
933 struct perf_cgroup_info *t;
934 t = per_cpu_ptr(event->cgrp->info, event->cpu);
935 event->shadow_ctx_time = now - t->timestamp;
936}
937
db4a8356
DCC
938/*
939 * Update cpuctx->cgrp so that it is set when first cgroup event is added and
940 * cleared when last cgroup event is removed.
941 */
942static inline void
943list_update_cgroup_event(struct perf_event *event,
944 struct perf_event_context *ctx, bool add)
945{
946 struct perf_cpu_context *cpuctx;
058fe1c0 947 struct list_head *cpuctx_entry;
db4a8356
DCC
948
949 if (!is_cgroup_event(event))
950 return;
951
db4a8356
DCC
952 /*
953 * Because cgroup events are always per-cpu events,
954 * this will always be called from the right CPU.
955 */
956 cpuctx = __get_cpu_context(ctx);
33801b94 957
958 /*
959 * Since setting cpuctx->cgrp is conditional on the current @cgrp
960 * matching the event's cgroup, we must do this for every new event,
961 * because if the first would mismatch, the second would not try again
962 * and we would leave cpuctx->cgrp unset.
963 */
964 if (add && !cpuctx->cgrp) {
be96b316
TH
965 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
966
be96b316
TH
967 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
968 cpuctx->cgrp = cgrp;
058fe1c0 969 }
33801b94 970
971 if (add && ctx->nr_cgroups++)
972 return;
973 else if (!add && --ctx->nr_cgroups)
974 return;
975
976 /* no cgroup running */
977 if (!add)
978 cpuctx->cgrp = NULL;
979
980 cpuctx_entry = &cpuctx->cgrp_cpuctx_entry;
981 if (add)
982 list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list));
983 else
984 list_del(cpuctx_entry);
db4a8356
DCC
985}
986
e5d1367f
SE
987#else /* !CONFIG_CGROUP_PERF */
988
989static inline bool
990perf_cgroup_match(struct perf_event *event)
991{
992 return true;
993}
994
995static inline void perf_detach_cgroup(struct perf_event *event)
996{}
997
998static inline int is_cgroup_event(struct perf_event *event)
999{
1000 return 0;
1001}
1002
e5d1367f
SE
1003static inline void update_cgrp_time_from_event(struct perf_event *event)
1004{
1005}
1006
1007static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
1008{
1009}
1010
a8d757ef
SE
1011static inline void perf_cgroup_sched_out(struct task_struct *task,
1012 struct task_struct *next)
e5d1367f
SE
1013{
1014}
1015
a8d757ef
SE
1016static inline void perf_cgroup_sched_in(struct task_struct *prev,
1017 struct task_struct *task)
e5d1367f
SE
1018{
1019}
1020
1021static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1022 struct perf_event_attr *attr,
1023 struct perf_event *group_leader)
1024{
1025 return -EINVAL;
1026}
1027
1028static inline void
3f7cce3c
SE
1029perf_cgroup_set_timestamp(struct task_struct *task,
1030 struct perf_event_context *ctx)
e5d1367f
SE
1031{
1032}
1033
1034void
1035perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
1036{
1037}
1038
1039static inline void
1040perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
1041{
1042}
1043
1044static inline u64 perf_cgroup_event_time(struct perf_event *event)
1045{
1046 return 0;
1047}
1048
db4a8356
DCC
1049static inline void
1050list_update_cgroup_event(struct perf_event *event,
1051 struct perf_event_context *ctx, bool add)
1052{
1053}
1054
e5d1367f
SE
1055#endif
1056
9e630205
SE
1057/*
1058 * set default to be dependent on timer tick just
1059 * like original code
1060 */
1061#define PERF_CPU_HRTIMER (1000 / HZ)
1062/*
8a1115ff 1063 * function must be called with interrupts disabled
9e630205 1064 */
272325c4 1065static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
9e630205
SE
1066{
1067 struct perf_cpu_context *cpuctx;
8d5bce0c 1068 bool rotations;
9e630205 1069
16444645 1070 lockdep_assert_irqs_disabled();
9e630205
SE
1071
1072 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
9e630205
SE
1073 rotations = perf_rotate_context(cpuctx);
1074
4cfafd30
PZ
1075 raw_spin_lock(&cpuctx->hrtimer_lock);
1076 if (rotations)
9e630205 1077 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
4cfafd30
PZ
1078 else
1079 cpuctx->hrtimer_active = 0;
1080 raw_spin_unlock(&cpuctx->hrtimer_lock);
9e630205 1081
4cfafd30 1082 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
9e630205
SE
1083}
1084
272325c4 1085static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
9e630205 1086{
272325c4 1087 struct hrtimer *timer = &cpuctx->hrtimer;
9e630205 1088 struct pmu *pmu = cpuctx->ctx.pmu;
272325c4 1089 u64 interval;
9e630205
SE
1090
1091 /* no multiplexing needed for SW PMU */
1092 if (pmu->task_ctx_nr == perf_sw_context)
1093 return;
1094
62b85639
SE
1095 /*
1096 * check default is sane, if not set then force to
1097 * default interval (1/tick)
1098 */
272325c4
PZ
1099 interval = pmu->hrtimer_interval_ms;
1100 if (interval < 1)
1101 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
62b85639 1102
272325c4 1103 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
9e630205 1104
4cfafd30
PZ
1105 raw_spin_lock_init(&cpuctx->hrtimer_lock);
1106 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
272325c4 1107 timer->function = perf_mux_hrtimer_handler;
9e630205
SE
1108}
1109
272325c4 1110static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
9e630205 1111{
272325c4 1112 struct hrtimer *timer = &cpuctx->hrtimer;
9e630205 1113 struct pmu *pmu = cpuctx->ctx.pmu;
4cfafd30 1114 unsigned long flags;
9e630205
SE
1115
1116 /* not for SW PMU */
1117 if (pmu->task_ctx_nr == perf_sw_context)
272325c4 1118 return 0;
9e630205 1119
4cfafd30
PZ
1120 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1121 if (!cpuctx->hrtimer_active) {
1122 cpuctx->hrtimer_active = 1;
1123 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1124 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
1125 }
1126 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
9e630205 1127
272325c4 1128 return 0;
9e630205
SE
1129}
1130
33696fc0 1131void perf_pmu_disable(struct pmu *pmu)
9e35ad38 1132{
33696fc0
PZ
1133 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1134 if (!(*count)++)
1135 pmu->pmu_disable(pmu);
9e35ad38 1136}
9e35ad38 1137
33696fc0 1138void perf_pmu_enable(struct pmu *pmu)
9e35ad38 1139{
33696fc0
PZ
1140 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1141 if (!--(*count))
1142 pmu->pmu_enable(pmu);
9e35ad38 1143}
9e35ad38 1144
2fde4f94 1145static DEFINE_PER_CPU(struct list_head, active_ctx_list);
e9d2b064
PZ
1146
1147/*
2fde4f94
MR
1148 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1149 * perf_event_task_tick() are fully serialized because they're strictly cpu
1150 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1151 * disabled, while perf_event_task_tick is called from IRQ context.
e9d2b064 1152 */
2fde4f94 1153static void perf_event_ctx_activate(struct perf_event_context *ctx)
9e35ad38 1154{
2fde4f94 1155 struct list_head *head = this_cpu_ptr(&active_ctx_list);
b5ab4cd5 1156
16444645 1157 lockdep_assert_irqs_disabled();
b5ab4cd5 1158
2fde4f94
MR
1159 WARN_ON(!list_empty(&ctx->active_ctx_list));
1160
1161 list_add(&ctx->active_ctx_list, head);
1162}
1163
1164static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1165{
16444645 1166 lockdep_assert_irqs_disabled();
2fde4f94
MR
1167
1168 WARN_ON(list_empty(&ctx->active_ctx_list));
1169
1170 list_del_init(&ctx->active_ctx_list);
9e35ad38 1171}
9e35ad38 1172
cdd6c482 1173static void get_ctx(struct perf_event_context *ctx)
a63eaf34 1174{
e5289d4a 1175 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
a63eaf34
PM
1176}
1177
4af57ef2
YZ
1178static void free_ctx(struct rcu_head *head)
1179{
1180 struct perf_event_context *ctx;
1181
1182 ctx = container_of(head, struct perf_event_context, rcu_head);
1183 kfree(ctx->task_ctx_data);
1184 kfree(ctx);
1185}
1186
cdd6c482 1187static void put_ctx(struct perf_event_context *ctx)
a63eaf34 1188{
564c2b21
PM
1189 if (atomic_dec_and_test(&ctx->refcount)) {
1190 if (ctx->parent_ctx)
1191 put_ctx(ctx->parent_ctx);
63b6da39 1192 if (ctx->task && ctx->task != TASK_TOMBSTONE)
c93f7669 1193 put_task_struct(ctx->task);
4af57ef2 1194 call_rcu(&ctx->rcu_head, free_ctx);
564c2b21 1195 }
a63eaf34
PM
1196}
1197
f63a8daa
PZ
1198/*
1199 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1200 * perf_pmu_migrate_context() we need some magic.
1201 *
1202 * Those places that change perf_event::ctx will hold both
1203 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1204 *
8b10c5e2
PZ
1205 * Lock ordering is by mutex address. There are two other sites where
1206 * perf_event_context::mutex nests and those are:
1207 *
1208 * - perf_event_exit_task_context() [ child , 0 ]
8ba289b8
PZ
1209 * perf_event_exit_event()
1210 * put_event() [ parent, 1 ]
8b10c5e2
PZ
1211 *
1212 * - perf_event_init_context() [ parent, 0 ]
1213 * inherit_task_group()
1214 * inherit_group()
1215 * inherit_event()
1216 * perf_event_alloc()
1217 * perf_init_event()
1218 * perf_try_init_event() [ child , 1 ]
1219 *
1220 * While it appears there is an obvious deadlock here -- the parent and child
1221 * nesting levels are inverted between the two. This is in fact safe because
1222 * life-time rules separate them. That is an exiting task cannot fork, and a
1223 * spawning task cannot (yet) exit.
1224 *
1225 * But remember that that these are parent<->child context relations, and
1226 * migration does not affect children, therefore these two orderings should not
1227 * interact.
f63a8daa
PZ
1228 *
1229 * The change in perf_event::ctx does not affect children (as claimed above)
1230 * because the sys_perf_event_open() case will install a new event and break
1231 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1232 * concerned with cpuctx and that doesn't have children.
1233 *
1234 * The places that change perf_event::ctx will issue:
1235 *
1236 * perf_remove_from_context();
1237 * synchronize_rcu();
1238 * perf_install_in_context();
1239 *
1240 * to affect the change. The remove_from_context() + synchronize_rcu() should
1241 * quiesce the event, after which we can install it in the new location. This
1242 * means that only external vectors (perf_fops, prctl) can perturb the event
1243 * while in transit. Therefore all such accessors should also acquire
1244 * perf_event_context::mutex to serialize against this.
1245 *
1246 * However; because event->ctx can change while we're waiting to acquire
1247 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1248 * function.
1249 *
1250 * Lock order:
79c9ce57 1251 * cred_guard_mutex
f63a8daa
PZ
1252 * task_struct::perf_event_mutex
1253 * perf_event_context::mutex
f63a8daa 1254 * perf_event::child_mutex;
07c4a776 1255 * perf_event_context::lock
f63a8daa
PZ
1256 * perf_event::mmap_mutex
1257 * mmap_sem
82d94856
PZ
1258 *
1259 * cpu_hotplug_lock
1260 * pmus_lock
1261 * cpuctx->mutex / perf_event_context::mutex
f63a8daa 1262 */
a83fe28e
PZ
1263static struct perf_event_context *
1264perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
f63a8daa
PZ
1265{
1266 struct perf_event_context *ctx;
1267
1268again:
1269 rcu_read_lock();
6aa7de05 1270 ctx = READ_ONCE(event->ctx);
f63a8daa
PZ
1271 if (!atomic_inc_not_zero(&ctx->refcount)) {
1272 rcu_read_unlock();
1273 goto again;
1274 }
1275 rcu_read_unlock();
1276
a83fe28e 1277 mutex_lock_nested(&ctx->mutex, nesting);
f63a8daa
PZ
1278 if (event->ctx != ctx) {
1279 mutex_unlock(&ctx->mutex);
1280 put_ctx(ctx);
1281 goto again;
1282 }
1283
1284 return ctx;
1285}
1286
a83fe28e
PZ
1287static inline struct perf_event_context *
1288perf_event_ctx_lock(struct perf_event *event)
1289{
1290 return perf_event_ctx_lock_nested(event, 0);
1291}
1292
f63a8daa
PZ
1293static void perf_event_ctx_unlock(struct perf_event *event,
1294 struct perf_event_context *ctx)
1295{
1296 mutex_unlock(&ctx->mutex);
1297 put_ctx(ctx);
1298}
1299
211de6eb
PZ
1300/*
1301 * This must be done under the ctx->lock, such as to serialize against
1302 * context_equiv(), therefore we cannot call put_ctx() since that might end up
1303 * calling scheduler related locks and ctx->lock nests inside those.
1304 */
1305static __must_check struct perf_event_context *
1306unclone_ctx(struct perf_event_context *ctx)
71a851b4 1307{
211de6eb
PZ
1308 struct perf_event_context *parent_ctx = ctx->parent_ctx;
1309
1310 lockdep_assert_held(&ctx->lock);
1311
1312 if (parent_ctx)
71a851b4 1313 ctx->parent_ctx = NULL;
5a3126d4 1314 ctx->generation++;
211de6eb
PZ
1315
1316 return parent_ctx;
71a851b4
PZ
1317}
1318
1d953111
ON
1319static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1320 enum pid_type type)
6844c09d 1321{
1d953111 1322 u32 nr;
6844c09d
ACM
1323 /*
1324 * only top level events have the pid namespace they were created in
1325 */
1326 if (event->parent)
1327 event = event->parent;
1328
1d953111
ON
1329 nr = __task_pid_nr_ns(p, type, event->ns);
1330 /* avoid -1 if it is idle thread or runs in another ns */
1331 if (!nr && !pid_alive(p))
1332 nr = -1;
1333 return nr;
6844c09d
ACM
1334}
1335
1d953111 1336static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
6844c09d 1337{
6883f81a 1338 return perf_event_pid_type(event, p, PIDTYPE_TGID);
1d953111 1339}
6844c09d 1340
1d953111
ON
1341static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1342{
1343 return perf_event_pid_type(event, p, PIDTYPE_PID);
6844c09d
ACM
1344}
1345
7f453c24 1346/*
cdd6c482 1347 * If we inherit events we want to return the parent event id
7f453c24
PZ
1348 * to userspace.
1349 */
cdd6c482 1350static u64 primary_event_id(struct perf_event *event)
7f453c24 1351{
cdd6c482 1352 u64 id = event->id;
7f453c24 1353
cdd6c482
IM
1354 if (event->parent)
1355 id = event->parent->id;
7f453c24
PZ
1356
1357 return id;
1358}
1359
25346b93 1360/*
cdd6c482 1361 * Get the perf_event_context for a task and lock it.
63b6da39 1362 *
25346b93
PM
1363 * This has to cope with with the fact that until it is locked,
1364 * the context could get moved to another task.
1365 */
cdd6c482 1366static struct perf_event_context *
8dc85d54 1367perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
25346b93 1368{
cdd6c482 1369 struct perf_event_context *ctx;
25346b93 1370
9ed6060d 1371retry:
058ebd0e
PZ
1372 /*
1373 * One of the few rules of preemptible RCU is that one cannot do
1374 * rcu_read_unlock() while holding a scheduler (or nested) lock when
2fd59077 1375 * part of the read side critical section was irqs-enabled -- see
058ebd0e
PZ
1376 * rcu_read_unlock_special().
1377 *
1378 * Since ctx->lock nests under rq->lock we must ensure the entire read
2fd59077 1379 * side critical section has interrupts disabled.
058ebd0e 1380 */
2fd59077 1381 local_irq_save(*flags);
058ebd0e 1382 rcu_read_lock();
8dc85d54 1383 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
25346b93
PM
1384 if (ctx) {
1385 /*
1386 * If this context is a clone of another, it might
1387 * get swapped for another underneath us by
cdd6c482 1388 * perf_event_task_sched_out, though the
25346b93
PM
1389 * rcu_read_lock() protects us from any context
1390 * getting freed. Lock the context and check if it
1391 * got swapped before we could get the lock, and retry
1392 * if so. If we locked the right context, then it
1393 * can't get swapped on us any more.
1394 */
2fd59077 1395 raw_spin_lock(&ctx->lock);
8dc85d54 1396 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
2fd59077 1397 raw_spin_unlock(&ctx->lock);
058ebd0e 1398 rcu_read_unlock();
2fd59077 1399 local_irq_restore(*flags);
25346b93
PM
1400 goto retry;
1401 }
b49a9e7e 1402
63b6da39
PZ
1403 if (ctx->task == TASK_TOMBSTONE ||
1404 !atomic_inc_not_zero(&ctx->refcount)) {
2fd59077 1405 raw_spin_unlock(&ctx->lock);
b49a9e7e 1406 ctx = NULL;
828b6f0e
PZ
1407 } else {
1408 WARN_ON_ONCE(ctx->task != task);
b49a9e7e 1409 }
25346b93
PM
1410 }
1411 rcu_read_unlock();
2fd59077
PM
1412 if (!ctx)
1413 local_irq_restore(*flags);
25346b93
PM
1414 return ctx;
1415}
1416
1417/*
1418 * Get the context for a task and increment its pin_count so it
1419 * can't get swapped to another task. This also increments its
1420 * reference count so that the context can't get freed.
1421 */
8dc85d54
PZ
1422static struct perf_event_context *
1423perf_pin_task_context(struct task_struct *task, int ctxn)
25346b93 1424{
cdd6c482 1425 struct perf_event_context *ctx;
25346b93
PM
1426 unsigned long flags;
1427
8dc85d54 1428 ctx = perf_lock_task_context(task, ctxn, &flags);
25346b93
PM
1429 if (ctx) {
1430 ++ctx->pin_count;
e625cce1 1431 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1432 }
1433 return ctx;
1434}
1435
cdd6c482 1436static void perf_unpin_context(struct perf_event_context *ctx)
25346b93
PM
1437{
1438 unsigned long flags;
1439
e625cce1 1440 raw_spin_lock_irqsave(&ctx->lock, flags);
25346b93 1441 --ctx->pin_count;
e625cce1 1442 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1443}
1444
f67218c3
PZ
1445/*
1446 * Update the record of the current time in a context.
1447 */
1448static void update_context_time(struct perf_event_context *ctx)
1449{
1450 u64 now = perf_clock();
1451
1452 ctx->time += now - ctx->timestamp;
1453 ctx->timestamp = now;
1454}
1455
4158755d
SE
1456static u64 perf_event_time(struct perf_event *event)
1457{
1458 struct perf_event_context *ctx = event->ctx;
e5d1367f
SE
1459
1460 if (is_cgroup_event(event))
1461 return perf_cgroup_event_time(event);
1462
4158755d
SE
1463 return ctx ? ctx->time : 0;
1464}
1465
487f05e1
AS
1466static enum event_type_t get_event_type(struct perf_event *event)
1467{
1468 struct perf_event_context *ctx = event->ctx;
1469 enum event_type_t event_type;
1470
1471 lockdep_assert_held(&ctx->lock);
1472
3bda69c1
AS
1473 /*
1474 * It's 'group type', really, because if our group leader is
1475 * pinned, so are we.
1476 */
1477 if (event->group_leader != event)
1478 event = event->group_leader;
1479
487f05e1
AS
1480 event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1481 if (!ctx->task)
1482 event_type |= EVENT_CPU;
1483
1484 return event_type;
1485}
1486
8e1a2031 1487/*
161c85fa 1488 * Helper function to initialize event group nodes.
8e1a2031 1489 */
161c85fa 1490static void init_event_group(struct perf_event *event)
8e1a2031
AB
1491{
1492 RB_CLEAR_NODE(&event->group_node);
1493 event->group_index = 0;
1494}
1495
1496/*
1497 * Extract pinned or flexible groups from the context
161c85fa 1498 * based on event attrs bits.
8e1a2031
AB
1499 */
1500static struct perf_event_groups *
1501get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
889ff015
FW
1502{
1503 if (event->attr.pinned)
1504 return &ctx->pinned_groups;
1505 else
1506 return &ctx->flexible_groups;
1507}
1508
8e1a2031 1509/*
161c85fa 1510 * Helper function to initializes perf_event_group trees.
8e1a2031 1511 */
161c85fa 1512static void perf_event_groups_init(struct perf_event_groups *groups)
8e1a2031
AB
1513{
1514 groups->tree = RB_ROOT;
1515 groups->index = 0;
1516}
1517
1518/*
1519 * Compare function for event groups;
161c85fa
PZ
1520 *
1521 * Implements complex key that first sorts by CPU and then by virtual index
1522 * which provides ordering when rotating groups for the same CPU.
8e1a2031 1523 */
161c85fa
PZ
1524static bool
1525perf_event_groups_less(struct perf_event *left, struct perf_event *right)
8e1a2031 1526{
161c85fa
PZ
1527 if (left->cpu < right->cpu)
1528 return true;
1529 if (left->cpu > right->cpu)
1530 return false;
1531
1532 if (left->group_index < right->group_index)
1533 return true;
1534 if (left->group_index > right->group_index)
1535 return false;
1536
1537 return false;
8e1a2031
AB
1538}
1539
1540/*
161c85fa
PZ
1541 * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for
1542 * key (see perf_event_groups_less). This places it last inside the CPU
1543 * subtree.
8e1a2031
AB
1544 */
1545static void
1546perf_event_groups_insert(struct perf_event_groups *groups,
161c85fa 1547 struct perf_event *event)
8e1a2031
AB
1548{
1549 struct perf_event *node_event;
1550 struct rb_node *parent;
1551 struct rb_node **node;
1552
1553 event->group_index = ++groups->index;
1554
1555 node = &groups->tree.rb_node;
1556 parent = *node;
1557
1558 while (*node) {
1559 parent = *node;
161c85fa 1560 node_event = container_of(*node, struct perf_event, group_node);
8e1a2031
AB
1561
1562 if (perf_event_groups_less(event, node_event))
1563 node = &parent->rb_left;
1564 else
1565 node = &parent->rb_right;
1566 }
1567
1568 rb_link_node(&event->group_node, parent, node);
1569 rb_insert_color(&event->group_node, &groups->tree);
1570}
1571
1572/*
161c85fa 1573 * Helper function to insert event into the pinned or flexible groups.
8e1a2031
AB
1574 */
1575static void
1576add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1577{
1578 struct perf_event_groups *groups;
1579
1580 groups = get_event_groups(event, ctx);
1581 perf_event_groups_insert(groups, event);
1582}
1583
1584/*
161c85fa 1585 * Delete a group from a tree.
8e1a2031
AB
1586 */
1587static void
1588perf_event_groups_delete(struct perf_event_groups *groups,
161c85fa 1589 struct perf_event *event)
8e1a2031 1590{
161c85fa
PZ
1591 WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1592 RB_EMPTY_ROOT(&groups->tree));
8e1a2031 1593
161c85fa 1594 rb_erase(&event->group_node, &groups->tree);
8e1a2031
AB
1595 init_event_group(event);
1596}
1597
1598/*
161c85fa 1599 * Helper function to delete event from its groups.
8e1a2031
AB
1600 */
1601static void
1602del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1603{
1604 struct perf_event_groups *groups;
1605
1606 groups = get_event_groups(event, ctx);
1607 perf_event_groups_delete(groups, event);
1608}
1609
1610/*
161c85fa 1611 * Get the leftmost event in the @cpu subtree.
8e1a2031
AB
1612 */
1613static struct perf_event *
1614perf_event_groups_first(struct perf_event_groups *groups, int cpu)
1615{
1616 struct perf_event *node_event = NULL, *match = NULL;
1617 struct rb_node *node = groups->tree.rb_node;
1618
1619 while (node) {
161c85fa 1620 node_event = container_of(node, struct perf_event, group_node);
8e1a2031
AB
1621
1622 if (cpu < node_event->cpu) {
1623 node = node->rb_left;
1624 } else if (cpu > node_event->cpu) {
1625 node = node->rb_right;
1626 } else {
1627 match = node_event;
1628 node = node->rb_left;
1629 }
1630 }
1631
1632 return match;
1633}
1634
1cac7b1a
PZ
1635/*
1636 * Like rb_entry_next_safe() for the @cpu subtree.
1637 */
1638static struct perf_event *
1639perf_event_groups_next(struct perf_event *event)
1640{
1641 struct perf_event *next;
1642
1643 next = rb_entry_safe(rb_next(&event->group_node), typeof(*event), group_node);
1644 if (next && next->cpu == event->cpu)
1645 return next;
1646
1647 return NULL;
1648}
1649
8e1a2031 1650/*
161c85fa 1651 * Iterate through the whole groups tree.
8e1a2031 1652 */
6e6804d2
PZ
1653#define perf_event_groups_for_each(event, groups) \
1654 for (event = rb_entry_safe(rb_first(&((groups)->tree)), \
1655 typeof(*event), group_node); event; \
1656 event = rb_entry_safe(rb_next(&event->group_node), \
1657 typeof(*event), group_node))
8e1a2031 1658
fccc714b 1659/*
788faab7 1660 * Add an event from the lists for its context.
fccc714b
PZ
1661 * Must be called with ctx->mutex and ctx->lock held.
1662 */
04289bb9 1663static void
cdd6c482 1664list_add_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1665{
c994d613
PZ
1666 lockdep_assert_held(&ctx->lock);
1667
8a49542c
PZ
1668 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1669 event->attach_state |= PERF_ATTACH_CONTEXT;
04289bb9 1670
0d3d73aa
PZ
1671 event->tstamp = perf_event_time(event);
1672
04289bb9 1673 /*
8a49542c
PZ
1674 * If we're a stand alone event or group leader, we go to the context
1675 * list, group events are kept attached to the group so that
1676 * perf_group_detach can, at all times, locate all siblings.
04289bb9 1677 */
8a49542c 1678 if (event->group_leader == event) {
4ff6a8de 1679 event->group_caps = event->event_caps;
8e1a2031 1680 add_event_to_groups(event, ctx);
5c148194 1681 }
592903cd 1682
db4a8356 1683 list_update_cgroup_event(event, ctx, true);
e5d1367f 1684
cdd6c482
IM
1685 list_add_rcu(&event->event_entry, &ctx->event_list);
1686 ctx->nr_events++;
1687 if (event->attr.inherit_stat)
bfbd3381 1688 ctx->nr_stat++;
5a3126d4
PZ
1689
1690 ctx->generation++;
04289bb9
IM
1691}
1692
0231bb53
JO
1693/*
1694 * Initialize event state based on the perf_event_attr::disabled.
1695 */
1696static inline void perf_event__state_init(struct perf_event *event)
1697{
1698 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1699 PERF_EVENT_STATE_INACTIVE;
1700}
1701
a723968c 1702static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
c320c7b7
ACM
1703{
1704 int entry = sizeof(u64); /* value */
1705 int size = 0;
1706 int nr = 1;
1707
1708 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1709 size += sizeof(u64);
1710
1711 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1712 size += sizeof(u64);
1713
1714 if (event->attr.read_format & PERF_FORMAT_ID)
1715 entry += sizeof(u64);
1716
1717 if (event->attr.read_format & PERF_FORMAT_GROUP) {
a723968c 1718 nr += nr_siblings;
c320c7b7
ACM
1719 size += sizeof(u64);
1720 }
1721
1722 size += entry * nr;
1723 event->read_size = size;
1724}
1725
a723968c 1726static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
c320c7b7
ACM
1727{
1728 struct perf_sample_data *data;
c320c7b7
ACM
1729 u16 size = 0;
1730
c320c7b7
ACM
1731 if (sample_type & PERF_SAMPLE_IP)
1732 size += sizeof(data->ip);
1733
6844c09d
ACM
1734 if (sample_type & PERF_SAMPLE_ADDR)
1735 size += sizeof(data->addr);
1736
1737 if (sample_type & PERF_SAMPLE_PERIOD)
1738 size += sizeof(data->period);
1739
c3feedf2
AK
1740 if (sample_type & PERF_SAMPLE_WEIGHT)
1741 size += sizeof(data->weight);
1742
6844c09d
ACM
1743 if (sample_type & PERF_SAMPLE_READ)
1744 size += event->read_size;
1745
d6be9ad6
SE
1746 if (sample_type & PERF_SAMPLE_DATA_SRC)
1747 size += sizeof(data->data_src.val);
1748
fdfbbd07
AK
1749 if (sample_type & PERF_SAMPLE_TRANSACTION)
1750 size += sizeof(data->txn);
1751
fc7ce9c7
KL
1752 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1753 size += sizeof(data->phys_addr);
1754
6844c09d
ACM
1755 event->header_size = size;
1756}
1757
a723968c
PZ
1758/*
1759 * Called at perf_event creation and when events are attached/detached from a
1760 * group.
1761 */
1762static void perf_event__header_size(struct perf_event *event)
1763{
1764 __perf_event_read_size(event,
1765 event->group_leader->nr_siblings);
1766 __perf_event_header_size(event, event->attr.sample_type);
1767}
1768
6844c09d
ACM
1769static void perf_event__id_header_size(struct perf_event *event)
1770{
1771 struct perf_sample_data *data;
1772 u64 sample_type = event->attr.sample_type;
1773 u16 size = 0;
1774
c320c7b7
ACM
1775 if (sample_type & PERF_SAMPLE_TID)
1776 size += sizeof(data->tid_entry);
1777
1778 if (sample_type & PERF_SAMPLE_TIME)
1779 size += sizeof(data->time);
1780
ff3d527c
AH
1781 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1782 size += sizeof(data->id);
1783
c320c7b7
ACM
1784 if (sample_type & PERF_SAMPLE_ID)
1785 size += sizeof(data->id);
1786
1787 if (sample_type & PERF_SAMPLE_STREAM_ID)
1788 size += sizeof(data->stream_id);
1789
1790 if (sample_type & PERF_SAMPLE_CPU)
1791 size += sizeof(data->cpu_entry);
1792
6844c09d 1793 event->id_header_size = size;
c320c7b7
ACM
1794}
1795
a723968c
PZ
1796static bool perf_event_validate_size(struct perf_event *event)
1797{
1798 /*
1799 * The values computed here will be over-written when we actually
1800 * attach the event.
1801 */
1802 __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1803 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1804 perf_event__id_header_size(event);
1805
1806 /*
1807 * Sum the lot; should not exceed the 64k limit we have on records.
1808 * Conservative limit to allow for callchains and other variable fields.
1809 */
1810 if (event->read_size + event->header_size +
1811 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1812 return false;
1813
1814 return true;
1815}
1816
8a49542c
PZ
1817static void perf_group_attach(struct perf_event *event)
1818{
c320c7b7 1819 struct perf_event *group_leader = event->group_leader, *pos;
8a49542c 1820
a76a82a3
PZ
1821 lockdep_assert_held(&event->ctx->lock);
1822
74c3337c
PZ
1823 /*
1824 * We can have double attach due to group movement in perf_event_open.
1825 */
1826 if (event->attach_state & PERF_ATTACH_GROUP)
1827 return;
1828
8a49542c
PZ
1829 event->attach_state |= PERF_ATTACH_GROUP;
1830
1831 if (group_leader == event)
1832 return;
1833
652884fe
PZ
1834 WARN_ON_ONCE(group_leader->ctx != event->ctx);
1835
4ff6a8de 1836 group_leader->group_caps &= event->event_caps;
8a49542c 1837
8343aae6 1838 list_add_tail(&event->sibling_list, &group_leader->sibling_list);
8a49542c 1839 group_leader->nr_siblings++;
c320c7b7
ACM
1840
1841 perf_event__header_size(group_leader);
1842
edb39592 1843 for_each_sibling_event(pos, group_leader)
c320c7b7 1844 perf_event__header_size(pos);
8a49542c
PZ
1845}
1846
a63eaf34 1847/*
788faab7 1848 * Remove an event from the lists for its context.
fccc714b 1849 * Must be called with ctx->mutex and ctx->lock held.
a63eaf34 1850 */
04289bb9 1851static void
cdd6c482 1852list_del_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1853{
652884fe
PZ
1854 WARN_ON_ONCE(event->ctx != ctx);
1855 lockdep_assert_held(&ctx->lock);
1856
8a49542c
PZ
1857 /*
1858 * We can have double detach due to exit/hot-unplug + close.
1859 */
1860 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
a63eaf34 1861 return;
8a49542c
PZ
1862
1863 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1864
db4a8356 1865 list_update_cgroup_event(event, ctx, false);
e5d1367f 1866
cdd6c482
IM
1867 ctx->nr_events--;
1868 if (event->attr.inherit_stat)
bfbd3381 1869 ctx->nr_stat--;
8bc20959 1870
cdd6c482 1871 list_del_rcu(&event->event_entry);
04289bb9 1872
8a49542c 1873 if (event->group_leader == event)
8e1a2031 1874 del_event_from_groups(event, ctx);
5c148194 1875
b2e74a26
SE
1876 /*
1877 * If event was in error state, then keep it
1878 * that way, otherwise bogus counts will be
1879 * returned on read(). The only way to get out
1880 * of error state is by explicit re-enabling
1881 * of the event
1882 */
1883 if (event->state > PERF_EVENT_STATE_OFF)
0d3d73aa 1884 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
5a3126d4
PZ
1885
1886 ctx->generation++;
050735b0
PZ
1887}
1888
8a49542c 1889static void perf_group_detach(struct perf_event *event)
050735b0
PZ
1890{
1891 struct perf_event *sibling, *tmp;
6668128a 1892 struct perf_event_context *ctx = event->ctx;
8a49542c 1893
6668128a 1894 lockdep_assert_held(&ctx->lock);
a76a82a3 1895
8a49542c
PZ
1896 /*
1897 * We can have double detach due to exit/hot-unplug + close.
1898 */
1899 if (!(event->attach_state & PERF_ATTACH_GROUP))
1900 return;
1901
1902 event->attach_state &= ~PERF_ATTACH_GROUP;
1903
1904 /*
1905 * If this is a sibling, remove it from its group.
1906 */
1907 if (event->group_leader != event) {
8343aae6 1908 list_del_init(&event->sibling_list);
8a49542c 1909 event->group_leader->nr_siblings--;
c320c7b7 1910 goto out;
8a49542c
PZ
1911 }
1912
04289bb9 1913 /*
cdd6c482
IM
1914 * If this was a group event with sibling events then
1915 * upgrade the siblings to singleton events by adding them
8a49542c 1916 * to whatever list we are on.
04289bb9 1917 */
8343aae6 1918 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
8e1a2031 1919
04289bb9 1920 sibling->group_leader = sibling;
24868367 1921 list_del_init(&sibling->sibling_list);
d6f962b5
FW
1922
1923 /* Inherit group flags from the previous leader */
4ff6a8de 1924 sibling->group_caps = event->group_caps;
652884fe 1925
8e1a2031 1926 if (!RB_EMPTY_NODE(&event->group_node)) {
8e1a2031 1927 add_event_to_groups(sibling, event->ctx);
6668128a
PZ
1928
1929 if (sibling->state == PERF_EVENT_STATE_ACTIVE) {
1930 struct list_head *list = sibling->attr.pinned ?
1931 &ctx->pinned_active : &ctx->flexible_active;
1932
1933 list_add_tail(&sibling->active_list, list);
1934 }
8e1a2031
AB
1935 }
1936
652884fe 1937 WARN_ON_ONCE(sibling->ctx != event->ctx);
04289bb9 1938 }
c320c7b7
ACM
1939
1940out:
1941 perf_event__header_size(event->group_leader);
1942
edb39592 1943 for_each_sibling_event(tmp, event->group_leader)
c320c7b7 1944 perf_event__header_size(tmp);
04289bb9
IM
1945}
1946
fadfe7be
JO
1947static bool is_orphaned_event(struct perf_event *event)
1948{
a69b0ca4 1949 return event->state == PERF_EVENT_STATE_DEAD;
fadfe7be
JO
1950}
1951
2c81a647 1952static inline int __pmu_filter_match(struct perf_event *event)
66eb579e
MR
1953{
1954 struct pmu *pmu = event->pmu;
1955 return pmu->filter_match ? pmu->filter_match(event) : 1;
1956}
1957
2c81a647
MR
1958/*
1959 * Check whether we should attempt to schedule an event group based on
1960 * PMU-specific filtering. An event group can consist of HW and SW events,
1961 * potentially with a SW leader, so we must check all the filters, to
1962 * determine whether a group is schedulable:
1963 */
1964static inline int pmu_filter_match(struct perf_event *event)
1965{
edb39592 1966 struct perf_event *sibling;
2c81a647
MR
1967
1968 if (!__pmu_filter_match(event))
1969 return 0;
1970
edb39592
PZ
1971 for_each_sibling_event(sibling, event) {
1972 if (!__pmu_filter_match(sibling))
2c81a647
MR
1973 return 0;
1974 }
1975
1976 return 1;
1977}
1978
fa66f07a
SE
1979static inline int
1980event_filter_match(struct perf_event *event)
1981{
0b8f1e2e
PZ
1982 return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
1983 perf_cgroup_match(event) && pmu_filter_match(event);
fa66f07a
SE
1984}
1985
9ffcfa6f
SE
1986static void
1987event_sched_out(struct perf_event *event,
3b6f9e5c 1988 struct perf_cpu_context *cpuctx,
cdd6c482 1989 struct perf_event_context *ctx)
3b6f9e5c 1990{
0d3d73aa 1991 enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
652884fe
PZ
1992
1993 WARN_ON_ONCE(event->ctx != ctx);
1994 lockdep_assert_held(&ctx->lock);
1995
cdd6c482 1996 if (event->state != PERF_EVENT_STATE_ACTIVE)
9ffcfa6f 1997 return;
3b6f9e5c 1998
6668128a
PZ
1999 /*
2000 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2001 * we can schedule events _OUT_ individually through things like
2002 * __perf_remove_from_context().
2003 */
2004 list_del_init(&event->active_list);
2005
44377277
AS
2006 perf_pmu_disable(event->pmu);
2007
28a967c3
PZ
2008 event->pmu->del(event, 0);
2009 event->oncpu = -1;
0d3d73aa 2010
cdd6c482
IM
2011 if (event->pending_disable) {
2012 event->pending_disable = 0;
0d3d73aa 2013 state = PERF_EVENT_STATE_OFF;
970892a9 2014 }
0d3d73aa 2015 perf_event_set_state(event, state);
3b6f9e5c 2016
cdd6c482 2017 if (!is_software_event(event))
3b6f9e5c 2018 cpuctx->active_oncpu--;
2fde4f94
MR
2019 if (!--ctx->nr_active)
2020 perf_event_ctx_deactivate(ctx);
0f5a2601
PZ
2021 if (event->attr.freq && event->attr.sample_freq)
2022 ctx->nr_freq--;
cdd6c482 2023 if (event->attr.exclusive || !cpuctx->active_oncpu)
3b6f9e5c 2024 cpuctx->exclusive = 0;
44377277
AS
2025
2026 perf_pmu_enable(event->pmu);
3b6f9e5c
PM
2027}
2028
d859e29f 2029static void
cdd6c482 2030group_sched_out(struct perf_event *group_event,
d859e29f 2031 struct perf_cpu_context *cpuctx,
cdd6c482 2032 struct perf_event_context *ctx)
d859e29f 2033{
cdd6c482 2034 struct perf_event *event;
0d3d73aa
PZ
2035
2036 if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2037 return;
d859e29f 2038
3f005e7d
MR
2039 perf_pmu_disable(ctx->pmu);
2040
cdd6c482 2041 event_sched_out(group_event, cpuctx, ctx);
d859e29f
PM
2042
2043 /*
2044 * Schedule out siblings (if any):
2045 */
edb39592 2046 for_each_sibling_event(event, group_event)
cdd6c482 2047 event_sched_out(event, cpuctx, ctx);
d859e29f 2048
3f005e7d
MR
2049 perf_pmu_enable(ctx->pmu);
2050
0d3d73aa 2051 if (group_event->attr.exclusive)
d859e29f
PM
2052 cpuctx->exclusive = 0;
2053}
2054
45a0e07a 2055#define DETACH_GROUP 0x01UL
0017960f 2056
0793a61d 2057/*
cdd6c482 2058 * Cross CPU call to remove a performance event
0793a61d 2059 *
cdd6c482 2060 * We disable the event on the hardware level first. After that we
0793a61d
TG
2061 * remove it from the context list.
2062 */
fae3fde6
PZ
2063static void
2064__perf_remove_from_context(struct perf_event *event,
2065 struct perf_cpu_context *cpuctx,
2066 struct perf_event_context *ctx,
2067 void *info)
0793a61d 2068{
45a0e07a 2069 unsigned long flags = (unsigned long)info;
0793a61d 2070
3c5c8711
PZ
2071 if (ctx->is_active & EVENT_TIME) {
2072 update_context_time(ctx);
2073 update_cgrp_time_from_cpuctx(cpuctx);
2074 }
2075
cdd6c482 2076 event_sched_out(event, cpuctx, ctx);
45a0e07a 2077 if (flags & DETACH_GROUP)
46ce0fe9 2078 perf_group_detach(event);
cdd6c482 2079 list_del_event(event, ctx);
39a43640
PZ
2080
2081 if (!ctx->nr_events && ctx->is_active) {
64ce3126 2082 ctx->is_active = 0;
39a43640
PZ
2083 if (ctx->task) {
2084 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2085 cpuctx->task_ctx = NULL;
2086 }
64ce3126 2087 }
0793a61d
TG
2088}
2089
0793a61d 2090/*
cdd6c482 2091 * Remove the event from a task's (or a CPU's) list of events.
0793a61d 2092 *
cdd6c482
IM
2093 * If event->ctx is a cloned context, callers must make sure that
2094 * every task struct that event->ctx->task could possibly point to
c93f7669
PM
2095 * remains valid. This is OK when called from perf_release since
2096 * that only calls us on the top-level context, which can't be a clone.
cdd6c482 2097 * When called from perf_event_exit_task, it's OK because the
c93f7669 2098 * context has been detached from its task.
0793a61d 2099 */
45a0e07a 2100static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
0793a61d 2101{
a76a82a3
PZ
2102 struct perf_event_context *ctx = event->ctx;
2103
2104 lockdep_assert_held(&ctx->mutex);
0793a61d 2105
45a0e07a 2106 event_function_call(event, __perf_remove_from_context, (void *)flags);
a76a82a3
PZ
2107
2108 /*
2109 * The above event_function_call() can NO-OP when it hits
2110 * TASK_TOMBSTONE. In that case we must already have been detached
2111 * from the context (by perf_event_exit_event()) but the grouping
2112 * might still be in-tact.
2113 */
2114 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
2115 if ((flags & DETACH_GROUP) &&
2116 (event->attach_state & PERF_ATTACH_GROUP)) {
2117 /*
2118 * Since in that case we cannot possibly be scheduled, simply
2119 * detach now.
2120 */
2121 raw_spin_lock_irq(&ctx->lock);
2122 perf_group_detach(event);
2123 raw_spin_unlock_irq(&ctx->lock);
2124 }
0793a61d
TG
2125}
2126
d859e29f 2127/*
cdd6c482 2128 * Cross CPU call to disable a performance event
d859e29f 2129 */
fae3fde6
PZ
2130static void __perf_event_disable(struct perf_event *event,
2131 struct perf_cpu_context *cpuctx,
2132 struct perf_event_context *ctx,
2133 void *info)
7b648018 2134{
fae3fde6
PZ
2135 if (event->state < PERF_EVENT_STATE_INACTIVE)
2136 return;
7b648018 2137
3c5c8711
PZ
2138 if (ctx->is_active & EVENT_TIME) {
2139 update_context_time(ctx);
2140 update_cgrp_time_from_event(event);
2141 }
2142
fae3fde6
PZ
2143 if (event == event->group_leader)
2144 group_sched_out(event, cpuctx, ctx);
2145 else
2146 event_sched_out(event, cpuctx, ctx);
0d3d73aa
PZ
2147
2148 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
7b648018
PZ
2149}
2150
d859e29f 2151/*
788faab7 2152 * Disable an event.
c93f7669 2153 *
cdd6c482
IM
2154 * If event->ctx is a cloned context, callers must make sure that
2155 * every task struct that event->ctx->task could possibly point to
c93f7669 2156 * remains valid. This condition is satisifed when called through
cdd6c482
IM
2157 * perf_event_for_each_child or perf_event_for_each because they
2158 * hold the top-level event's child_mutex, so any descendant that
8ba289b8
PZ
2159 * goes to exit will block in perf_event_exit_event().
2160 *
cdd6c482 2161 * When called from perf_pending_event it's OK because event->ctx
c93f7669 2162 * is the current context on this CPU and preemption is disabled,
cdd6c482 2163 * hence we can't get into perf_event_task_sched_out for this context.
d859e29f 2164 */
f63a8daa 2165static void _perf_event_disable(struct perf_event *event)
d859e29f 2166{
cdd6c482 2167 struct perf_event_context *ctx = event->ctx;
d859e29f 2168
e625cce1 2169 raw_spin_lock_irq(&ctx->lock);
7b648018 2170 if (event->state <= PERF_EVENT_STATE_OFF) {
e625cce1 2171 raw_spin_unlock_irq(&ctx->lock);
7b648018 2172 return;
53cfbf59 2173 }
e625cce1 2174 raw_spin_unlock_irq(&ctx->lock);
7b648018 2175
fae3fde6
PZ
2176 event_function_call(event, __perf_event_disable, NULL);
2177}
2178
2179void perf_event_disable_local(struct perf_event *event)
2180{
2181 event_function_local(event, __perf_event_disable, NULL);
d859e29f 2182}
f63a8daa
PZ
2183
2184/*
2185 * Strictly speaking kernel users cannot create groups and therefore this
2186 * interface does not need the perf_event_ctx_lock() magic.
2187 */
2188void perf_event_disable(struct perf_event *event)
2189{
2190 struct perf_event_context *ctx;
2191
2192 ctx = perf_event_ctx_lock(event);
2193 _perf_event_disable(event);
2194 perf_event_ctx_unlock(event, ctx);
2195}
dcfce4a0 2196EXPORT_SYMBOL_GPL(perf_event_disable);
d859e29f 2197
5aab90ce
JO
2198void perf_event_disable_inatomic(struct perf_event *event)
2199{
2200 event->pending_disable = 1;
2201 irq_work_queue(&event->pending);
2202}
2203
e5d1367f 2204static void perf_set_shadow_time(struct perf_event *event,
0d3d73aa 2205 struct perf_event_context *ctx)
e5d1367f
SE
2206{
2207 /*
2208 * use the correct time source for the time snapshot
2209 *
2210 * We could get by without this by leveraging the
2211 * fact that to get to this function, the caller
2212 * has most likely already called update_context_time()
2213 * and update_cgrp_time_xx() and thus both timestamp
2214 * are identical (or very close). Given that tstamp is,
2215 * already adjusted for cgroup, we could say that:
2216 * tstamp - ctx->timestamp
2217 * is equivalent to
2218 * tstamp - cgrp->timestamp.
2219 *
2220 * Then, in perf_output_read(), the calculation would
2221 * work with no changes because:
2222 * - event is guaranteed scheduled in
2223 * - no scheduled out in between
2224 * - thus the timestamp would be the same
2225 *
2226 * But this is a bit hairy.
2227 *
2228 * So instead, we have an explicit cgroup call to remain
2229 * within the time time source all along. We believe it
2230 * is cleaner and simpler to understand.
2231 */
2232 if (is_cgroup_event(event))
0d3d73aa 2233 perf_cgroup_set_shadow_time(event, event->tstamp);
e5d1367f 2234 else
0d3d73aa 2235 event->shadow_ctx_time = event->tstamp - ctx->timestamp;
e5d1367f
SE
2236}
2237
4fe757dd
PZ
2238#define MAX_INTERRUPTS (~0ULL)
2239
2240static void perf_log_throttle(struct perf_event *event, int enable);
ec0d7729 2241static void perf_log_itrace_start(struct perf_event *event);
4fe757dd 2242
235c7fc7 2243static int
9ffcfa6f 2244event_sched_in(struct perf_event *event,
235c7fc7 2245 struct perf_cpu_context *cpuctx,
6e37738a 2246 struct perf_event_context *ctx)
235c7fc7 2247{
44377277 2248 int ret = 0;
4158755d 2249
63342411
PZ
2250 lockdep_assert_held(&ctx->lock);
2251
cdd6c482 2252 if (event->state <= PERF_EVENT_STATE_OFF)
235c7fc7
IM
2253 return 0;
2254
95ff4ca2
AS
2255 WRITE_ONCE(event->oncpu, smp_processor_id());
2256 /*
0c1cbc18
PZ
2257 * Order event::oncpu write to happen before the ACTIVE state is
2258 * visible. This allows perf_event_{stop,read}() to observe the correct
2259 * ->oncpu if it sees ACTIVE.
95ff4ca2
AS
2260 */
2261 smp_wmb();
0d3d73aa 2262 perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
4fe757dd
PZ
2263
2264 /*
2265 * Unthrottle events, since we scheduled we might have missed several
2266 * ticks already, also for a heavily scheduling task there is little
2267 * guarantee it'll get a tick in a timely manner.
2268 */
2269 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2270 perf_log_throttle(event, 1);
2271 event->hw.interrupts = 0;
2272 }
2273
44377277
AS
2274 perf_pmu_disable(event->pmu);
2275
0d3d73aa 2276 perf_set_shadow_time(event, ctx);
72f669c0 2277
ec0d7729
AS
2278 perf_log_itrace_start(event);
2279
a4eaf7f1 2280 if (event->pmu->add(event, PERF_EF_START)) {
0d3d73aa 2281 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
cdd6c482 2282 event->oncpu = -1;
44377277
AS
2283 ret = -EAGAIN;
2284 goto out;
235c7fc7
IM
2285 }
2286
cdd6c482 2287 if (!is_software_event(event))
3b6f9e5c 2288 cpuctx->active_oncpu++;
2fde4f94
MR
2289 if (!ctx->nr_active++)
2290 perf_event_ctx_activate(ctx);
0f5a2601
PZ
2291 if (event->attr.freq && event->attr.sample_freq)
2292 ctx->nr_freq++;
235c7fc7 2293
cdd6c482 2294 if (event->attr.exclusive)
3b6f9e5c
PM
2295 cpuctx->exclusive = 1;
2296
44377277
AS
2297out:
2298 perf_pmu_enable(event->pmu);
2299
2300 return ret;
235c7fc7
IM
2301}
2302
6751b71e 2303static int
cdd6c482 2304group_sched_in(struct perf_event *group_event,
6751b71e 2305 struct perf_cpu_context *cpuctx,
6e37738a 2306 struct perf_event_context *ctx)
6751b71e 2307{
6bde9b6c 2308 struct perf_event *event, *partial_group = NULL;
4a234593 2309 struct pmu *pmu = ctx->pmu;
6751b71e 2310
cdd6c482 2311 if (group_event->state == PERF_EVENT_STATE_OFF)
6751b71e
PM
2312 return 0;
2313
fbbe0701 2314 pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
6bde9b6c 2315
9ffcfa6f 2316 if (event_sched_in(group_event, cpuctx, ctx)) {
ad5133b7 2317 pmu->cancel_txn(pmu);
272325c4 2318 perf_mux_hrtimer_restart(cpuctx);
6751b71e 2319 return -EAGAIN;
90151c35 2320 }
6751b71e
PM
2321
2322 /*
2323 * Schedule in siblings as one group (if any):
2324 */
edb39592 2325 for_each_sibling_event(event, group_event) {
9ffcfa6f 2326 if (event_sched_in(event, cpuctx, ctx)) {
cdd6c482 2327 partial_group = event;
6751b71e
PM
2328 goto group_error;
2329 }
2330 }
2331
9ffcfa6f 2332 if (!pmu->commit_txn(pmu))
6e85158c 2333 return 0;
9ffcfa6f 2334
6751b71e
PM
2335group_error:
2336 /*
2337 * Groups can be scheduled in as one unit only, so undo any
2338 * partial group before returning:
0d3d73aa 2339 * The events up to the failed event are scheduled out normally.
6751b71e 2340 */
edb39592 2341 for_each_sibling_event(event, group_event) {
cdd6c482 2342 if (event == partial_group)
0d3d73aa 2343 break;
d7842da4 2344
0d3d73aa 2345 event_sched_out(event, cpuctx, ctx);
6751b71e 2346 }
9ffcfa6f 2347 event_sched_out(group_event, cpuctx, ctx);
6751b71e 2348
ad5133b7 2349 pmu->cancel_txn(pmu);
90151c35 2350
272325c4 2351 perf_mux_hrtimer_restart(cpuctx);
9e630205 2352
6751b71e
PM
2353 return -EAGAIN;
2354}
2355
3b6f9e5c 2356/*
cdd6c482 2357 * Work out whether we can put this event group on the CPU now.
3b6f9e5c 2358 */
cdd6c482 2359static int group_can_go_on(struct perf_event *event,
3b6f9e5c
PM
2360 struct perf_cpu_context *cpuctx,
2361 int can_add_hw)
2362{
2363 /*
cdd6c482 2364 * Groups consisting entirely of software events can always go on.
3b6f9e5c 2365 */
4ff6a8de 2366 if (event->group_caps & PERF_EV_CAP_SOFTWARE)
3b6f9e5c
PM
2367 return 1;
2368 /*
2369 * If an exclusive group is already on, no other hardware
cdd6c482 2370 * events can go on.
3b6f9e5c
PM
2371 */
2372 if (cpuctx->exclusive)
2373 return 0;
2374 /*
2375 * If this group is exclusive and there are already
cdd6c482 2376 * events on the CPU, it can't go on.
3b6f9e5c 2377 */
cdd6c482 2378 if (event->attr.exclusive && cpuctx->active_oncpu)
3b6f9e5c
PM
2379 return 0;
2380 /*
2381 * Otherwise, try to add it if all previous groups were able
2382 * to go on.
2383 */
2384 return can_add_hw;
2385}
2386
cdd6c482
IM
2387static void add_event_to_ctx(struct perf_event *event,
2388 struct perf_event_context *ctx)
53cfbf59 2389{
cdd6c482 2390 list_add_event(event, ctx);
8a49542c 2391 perf_group_attach(event);
53cfbf59
PM
2392}
2393
bd2afa49
PZ
2394static void ctx_sched_out(struct perf_event_context *ctx,
2395 struct perf_cpu_context *cpuctx,
2396 enum event_type_t event_type);
2c29ef0f
PZ
2397static void
2398ctx_sched_in(struct perf_event_context *ctx,
2399 struct perf_cpu_context *cpuctx,
2400 enum event_type_t event_type,
2401 struct task_struct *task);
fe4b04fa 2402
bd2afa49 2403static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
487f05e1
AS
2404 struct perf_event_context *ctx,
2405 enum event_type_t event_type)
bd2afa49
PZ
2406{
2407 if (!cpuctx->task_ctx)
2408 return;
2409
2410 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2411 return;
2412
487f05e1 2413 ctx_sched_out(ctx, cpuctx, event_type);
bd2afa49
PZ
2414}
2415
dce5855b
PZ
2416static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2417 struct perf_event_context *ctx,
2418 struct task_struct *task)
2419{
2420 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2421 if (ctx)
2422 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2423 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2424 if (ctx)
2425 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2426}
2427
487f05e1
AS
2428/*
2429 * We want to maintain the following priority of scheduling:
2430 * - CPU pinned (EVENT_CPU | EVENT_PINNED)
2431 * - task pinned (EVENT_PINNED)
2432 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2433 * - task flexible (EVENT_FLEXIBLE).
2434 *
2435 * In order to avoid unscheduling and scheduling back in everything every
2436 * time an event is added, only do it for the groups of equal priority and
2437 * below.
2438 *
2439 * This can be called after a batch operation on task events, in which case
2440 * event_type is a bit mask of the types of events involved. For CPU events,
2441 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2442 */
3e349507 2443static void ctx_resched(struct perf_cpu_context *cpuctx,
487f05e1
AS
2444 struct perf_event_context *task_ctx,
2445 enum event_type_t event_type)
0017960f 2446{
bd903afe 2447 enum event_type_t ctx_event_type;
487f05e1
AS
2448 bool cpu_event = !!(event_type & EVENT_CPU);
2449
2450 /*
2451 * If pinned groups are involved, flexible groups also need to be
2452 * scheduled out.
2453 */
2454 if (event_type & EVENT_PINNED)
2455 event_type |= EVENT_FLEXIBLE;
2456
bd903afe
SL
2457 ctx_event_type = event_type & EVENT_ALL;
2458
3e349507
PZ
2459 perf_pmu_disable(cpuctx->ctx.pmu);
2460 if (task_ctx)
487f05e1
AS
2461 task_ctx_sched_out(cpuctx, task_ctx, event_type);
2462
2463 /*
2464 * Decide which cpu ctx groups to schedule out based on the types
2465 * of events that caused rescheduling:
2466 * - EVENT_CPU: schedule out corresponding groups;
2467 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2468 * - otherwise, do nothing more.
2469 */
2470 if (cpu_event)
2471 cpu_ctx_sched_out(cpuctx, ctx_event_type);
2472 else if (ctx_event_type & EVENT_PINNED)
2473 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2474
3e349507
PZ
2475 perf_event_sched_in(cpuctx, task_ctx, current);
2476 perf_pmu_enable(cpuctx->ctx.pmu);
0017960f
PZ
2477}
2478
0793a61d 2479/*
cdd6c482 2480 * Cross CPU call to install and enable a performance event
682076ae 2481 *
a096309b
PZ
2482 * Very similar to remote_function() + event_function() but cannot assume that
2483 * things like ctx->is_active and cpuctx->task_ctx are set.
0793a61d 2484 */
fe4b04fa 2485static int __perf_install_in_context(void *info)
0793a61d 2486{
a096309b
PZ
2487 struct perf_event *event = info;
2488 struct perf_event_context *ctx = event->ctx;
108b02cf 2489 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2c29ef0f 2490 struct perf_event_context *task_ctx = cpuctx->task_ctx;
63cae12b 2491 bool reprogram = true;
a096309b 2492 int ret = 0;
0793a61d 2493
63b6da39 2494 raw_spin_lock(&cpuctx->ctx.lock);
39a43640 2495 if (ctx->task) {
b58f6b0d
PZ
2496 raw_spin_lock(&ctx->lock);
2497 task_ctx = ctx;
a096309b 2498
63cae12b 2499 reprogram = (ctx->task == current);
b58f6b0d 2500
39a43640 2501 /*
63cae12b
PZ
2502 * If the task is running, it must be running on this CPU,
2503 * otherwise we cannot reprogram things.
2504 *
2505 * If its not running, we don't care, ctx->lock will
2506 * serialize against it becoming runnable.
39a43640 2507 */
63cae12b
PZ
2508 if (task_curr(ctx->task) && !reprogram) {
2509 ret = -ESRCH;
2510 goto unlock;
2511 }
a096309b 2512
63cae12b 2513 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
63b6da39
PZ
2514 } else if (task_ctx) {
2515 raw_spin_lock(&task_ctx->lock);
2c29ef0f 2516 }
b58f6b0d 2517
33801b94 2518#ifdef CONFIG_CGROUP_PERF
2519 if (is_cgroup_event(event)) {
2520 /*
2521 * If the current cgroup doesn't match the event's
2522 * cgroup, we should not try to schedule it.
2523 */
2524 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2525 reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2526 event->cgrp->css.cgroup);
2527 }
2528#endif
2529
63cae12b 2530 if (reprogram) {
a096309b
PZ
2531 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2532 add_event_to_ctx(event, ctx);
487f05e1 2533 ctx_resched(cpuctx, task_ctx, get_event_type(event));
a096309b
PZ
2534 } else {
2535 add_event_to_ctx(event, ctx);
2536 }
2537
63b6da39 2538unlock:
2c29ef0f 2539 perf_ctx_unlock(cpuctx, task_ctx);
fe4b04fa 2540
a096309b 2541 return ret;
0793a61d
TG
2542}
2543
2544/*
a096309b
PZ
2545 * Attach a performance event to a context.
2546 *
2547 * Very similar to event_function_call, see comment there.
0793a61d
TG
2548 */
2549static void
cdd6c482
IM
2550perf_install_in_context(struct perf_event_context *ctx,
2551 struct perf_event *event,
0793a61d
TG
2552 int cpu)
2553{
a096309b 2554 struct task_struct *task = READ_ONCE(ctx->task);
39a43640 2555
fe4b04fa
PZ
2556 lockdep_assert_held(&ctx->mutex);
2557
0cda4c02
YZ
2558 if (event->cpu != -1)
2559 event->cpu = cpu;
c3f00c70 2560
0b8f1e2e
PZ
2561 /*
2562 * Ensures that if we can observe event->ctx, both the event and ctx
2563 * will be 'complete'. See perf_iterate_sb_cpu().
2564 */
2565 smp_store_release(&event->ctx, ctx);
2566
a096309b
PZ
2567 if (!task) {
2568 cpu_function_call(cpu, __perf_install_in_context, event);
2569 return;
2570 }
2571
2572 /*
2573 * Should not happen, we validate the ctx is still alive before calling.
2574 */
2575 if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2576 return;
2577
39a43640
PZ
2578 /*
2579 * Installing events is tricky because we cannot rely on ctx->is_active
2580 * to be set in case this is the nr_events 0 -> 1 transition.
63cae12b
PZ
2581 *
2582 * Instead we use task_curr(), which tells us if the task is running.
2583 * However, since we use task_curr() outside of rq::lock, we can race
2584 * against the actual state. This means the result can be wrong.
2585 *
2586 * If we get a false positive, we retry, this is harmless.
2587 *
2588 * If we get a false negative, things are complicated. If we are after
2589 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2590 * value must be correct. If we're before, it doesn't matter since
2591 * perf_event_context_sched_in() will program the counter.
2592 *
2593 * However, this hinges on the remote context switch having observed
2594 * our task->perf_event_ctxp[] store, such that it will in fact take
2595 * ctx::lock in perf_event_context_sched_in().
2596 *
2597 * We do this by task_function_call(), if the IPI fails to hit the task
2598 * we know any future context switch of task must see the
2599 * perf_event_ctpx[] store.
39a43640 2600 */
63cae12b 2601
63b6da39 2602 /*
63cae12b
PZ
2603 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2604 * task_cpu() load, such that if the IPI then does not find the task
2605 * running, a future context switch of that task must observe the
2606 * store.
63b6da39 2607 */
63cae12b
PZ
2608 smp_mb();
2609again:
2610 if (!task_function_call(task, __perf_install_in_context, event))
a096309b
PZ
2611 return;
2612
2613 raw_spin_lock_irq(&ctx->lock);
2614 task = ctx->task;
84c4e620 2615 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
a096309b
PZ
2616 /*
2617 * Cannot happen because we already checked above (which also
2618 * cannot happen), and we hold ctx->mutex, which serializes us
2619 * against perf_event_exit_task_context().
2620 */
63b6da39
PZ
2621 raw_spin_unlock_irq(&ctx->lock);
2622 return;
2623 }
39a43640 2624 /*
63cae12b
PZ
2625 * If the task is not running, ctx->lock will avoid it becoming so,
2626 * thus we can safely install the event.
39a43640 2627 */
63cae12b
PZ
2628 if (task_curr(task)) {
2629 raw_spin_unlock_irq(&ctx->lock);
2630 goto again;
2631 }
2632 add_event_to_ctx(event, ctx);
2633 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
2634}
2635
d859e29f 2636/*
cdd6c482 2637 * Cross CPU call to enable a performance event
d859e29f 2638 */
fae3fde6
PZ
2639static void __perf_event_enable(struct perf_event *event,
2640 struct perf_cpu_context *cpuctx,
2641 struct perf_event_context *ctx,
2642 void *info)
04289bb9 2643{
cdd6c482 2644 struct perf_event *leader = event->group_leader;
fae3fde6 2645 struct perf_event_context *task_ctx;
04289bb9 2646
6e801e01
PZ
2647 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2648 event->state <= PERF_EVENT_STATE_ERROR)
fae3fde6 2649 return;
3cbed429 2650
bd2afa49
PZ
2651 if (ctx->is_active)
2652 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2653
0d3d73aa 2654 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
04289bb9 2655
fae3fde6
PZ
2656 if (!ctx->is_active)
2657 return;
2658
e5d1367f 2659 if (!event_filter_match(event)) {
bd2afa49 2660 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
fae3fde6 2661 return;
e5d1367f 2662 }
f4c4176f 2663
04289bb9 2664 /*
cdd6c482 2665 * If the event is in a group and isn't the group leader,
d859e29f 2666 * then don't put it on unless the group is on.
04289bb9 2667 */
bd2afa49
PZ
2668 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2669 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
fae3fde6 2670 return;
bd2afa49 2671 }
fe4b04fa 2672
fae3fde6
PZ
2673 task_ctx = cpuctx->task_ctx;
2674 if (ctx->task)
2675 WARN_ON_ONCE(task_ctx != ctx);
d859e29f 2676
487f05e1 2677 ctx_resched(cpuctx, task_ctx, get_event_type(event));
7b648018
PZ
2678}
2679
d859e29f 2680/*
788faab7 2681 * Enable an event.
c93f7669 2682 *
cdd6c482
IM
2683 * If event->ctx is a cloned context, callers must make sure that
2684 * every task struct that event->ctx->task could possibly point to
c93f7669 2685 * remains valid. This condition is satisfied when called through
cdd6c482
IM
2686 * perf_event_for_each_child or perf_event_for_each as described
2687 * for perf_event_disable.
d859e29f 2688 */
f63a8daa 2689static void _perf_event_enable(struct perf_event *event)
d859e29f 2690{
cdd6c482 2691 struct perf_event_context *ctx = event->ctx;
d859e29f 2692
7b648018 2693 raw_spin_lock_irq(&ctx->lock);
6e801e01
PZ
2694 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2695 event->state < PERF_EVENT_STATE_ERROR) {
7b648018 2696 raw_spin_unlock_irq(&ctx->lock);
d859e29f
PM
2697 return;
2698 }
2699
d859e29f 2700 /*
cdd6c482 2701 * If the event is in error state, clear that first.
7b648018
PZ
2702 *
2703 * That way, if we see the event in error state below, we know that it
2704 * has gone back into error state, as distinct from the task having
2705 * been scheduled away before the cross-call arrived.
d859e29f 2706 */
cdd6c482
IM
2707 if (event->state == PERF_EVENT_STATE_ERROR)
2708 event->state = PERF_EVENT_STATE_OFF;
e625cce1 2709 raw_spin_unlock_irq(&ctx->lock);
fe4b04fa 2710
fae3fde6 2711 event_function_call(event, __perf_event_enable, NULL);
d859e29f 2712}
f63a8daa
PZ
2713
2714/*
2715 * See perf_event_disable();
2716 */
2717void perf_event_enable(struct perf_event *event)
2718{
2719 struct perf_event_context *ctx;
2720
2721 ctx = perf_event_ctx_lock(event);
2722 _perf_event_enable(event);
2723 perf_event_ctx_unlock(event, ctx);
2724}
dcfce4a0 2725EXPORT_SYMBOL_GPL(perf_event_enable);
d859e29f 2726
375637bc
AS
2727struct stop_event_data {
2728 struct perf_event *event;
2729 unsigned int restart;
2730};
2731
95ff4ca2
AS
2732static int __perf_event_stop(void *info)
2733{
375637bc
AS
2734 struct stop_event_data *sd = info;
2735 struct perf_event *event = sd->event;
95ff4ca2 2736
375637bc 2737 /* if it's already INACTIVE, do nothing */
95ff4ca2
AS
2738 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2739 return 0;
2740
2741 /* matches smp_wmb() in event_sched_in() */
2742 smp_rmb();
2743
2744 /*
2745 * There is a window with interrupts enabled before we get here,
2746 * so we need to check again lest we try to stop another CPU's event.
2747 */
2748 if (READ_ONCE(event->oncpu) != smp_processor_id())
2749 return -EAGAIN;
2750
2751 event->pmu->stop(event, PERF_EF_UPDATE);
2752
375637bc
AS
2753 /*
2754 * May race with the actual stop (through perf_pmu_output_stop()),
2755 * but it is only used for events with AUX ring buffer, and such
2756 * events will refuse to restart because of rb::aux_mmap_count==0,
2757 * see comments in perf_aux_output_begin().
2758 *
788faab7 2759 * Since this is happening on an event-local CPU, no trace is lost
375637bc
AS
2760 * while restarting.
2761 */
2762 if (sd->restart)
c9bbdd48 2763 event->pmu->start(event, 0);
375637bc 2764
95ff4ca2
AS
2765 return 0;
2766}
2767
767ae086 2768static int perf_event_stop(struct perf_event *event, int restart)
375637bc
AS
2769{
2770 struct stop_event_data sd = {
2771 .event = event,
767ae086 2772 .restart = restart,
375637bc
AS
2773 };
2774 int ret = 0;
2775
2776 do {
2777 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2778 return 0;
2779
2780 /* matches smp_wmb() in event_sched_in() */
2781 smp_rmb();
2782
2783 /*
2784 * We only want to restart ACTIVE events, so if the event goes
2785 * inactive here (event->oncpu==-1), there's nothing more to do;
2786 * fall through with ret==-ENXIO.
2787 */
2788 ret = cpu_function_call(READ_ONCE(event->oncpu),
2789 __perf_event_stop, &sd);
2790 } while (ret == -EAGAIN);
2791
2792 return ret;
2793}
2794
2795/*
2796 * In order to contain the amount of racy and tricky in the address filter
2797 * configuration management, it is a two part process:
2798 *
2799 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2800 * we update the addresses of corresponding vmas in
2801 * event::addr_filters_offs array and bump the event::addr_filters_gen;
2802 * (p2) when an event is scheduled in (pmu::add), it calls
2803 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2804 * if the generation has changed since the previous call.
2805 *
2806 * If (p1) happens while the event is active, we restart it to force (p2).
2807 *
2808 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2809 * pre-existing mappings, called once when new filters arrive via SET_FILTER
2810 * ioctl;
2811 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2812 * registered mapping, called for every new mmap(), with mm::mmap_sem down
2813 * for reading;
2814 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2815 * of exec.
2816 */
2817void perf_event_addr_filters_sync(struct perf_event *event)
2818{
2819 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2820
2821 if (!has_addr_filter(event))
2822 return;
2823
2824 raw_spin_lock(&ifh->lock);
2825 if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2826 event->pmu->addr_filters_sync(event);
2827 event->hw.addr_filters_gen = event->addr_filters_gen;
2828 }
2829 raw_spin_unlock(&ifh->lock);
2830}
2831EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2832
f63a8daa 2833static int _perf_event_refresh(struct perf_event *event, int refresh)
79f14641 2834{
2023b359 2835 /*
cdd6c482 2836 * not supported on inherited events
2023b359 2837 */
2e939d1d 2838 if (event->attr.inherit || !is_sampling_event(event))
2023b359
PZ
2839 return -EINVAL;
2840
cdd6c482 2841 atomic_add(refresh, &event->event_limit);
f63a8daa 2842 _perf_event_enable(event);
2023b359
PZ
2843
2844 return 0;
79f14641 2845}
f63a8daa
PZ
2846
2847/*
2848 * See perf_event_disable()
2849 */
2850int perf_event_refresh(struct perf_event *event, int refresh)
2851{
2852 struct perf_event_context *ctx;
2853 int ret;
2854
2855 ctx = perf_event_ctx_lock(event);
2856 ret = _perf_event_refresh(event, refresh);
2857 perf_event_ctx_unlock(event, ctx);
2858
2859 return ret;
2860}
26ca5c11 2861EXPORT_SYMBOL_GPL(perf_event_refresh);
79f14641 2862
32ff77e8
MC
2863static int perf_event_modify_breakpoint(struct perf_event *bp,
2864 struct perf_event_attr *attr)
2865{
2866 int err;
2867
2868 _perf_event_disable(bp);
2869
2870 err = modify_user_hw_breakpoint_check(bp, attr, true);
32ff77e8 2871
bf06278c 2872 if (!bp->attr.disabled)
32ff77e8 2873 _perf_event_enable(bp);
bf06278c
JO
2874
2875 return err;
32ff77e8
MC
2876}
2877
2878static int perf_event_modify_attr(struct perf_event *event,
2879 struct perf_event_attr *attr)
2880{
2881 if (event->attr.type != attr->type)
2882 return -EINVAL;
2883
2884 switch (event->attr.type) {
2885 case PERF_TYPE_BREAKPOINT:
2886 return perf_event_modify_breakpoint(event, attr);
2887 default:
2888 /* Place holder for future additions. */
2889 return -EOPNOTSUPP;
2890 }
2891}
2892
5b0311e1
FW
2893static void ctx_sched_out(struct perf_event_context *ctx,
2894 struct perf_cpu_context *cpuctx,
2895 enum event_type_t event_type)
235c7fc7 2896{
6668128a 2897 struct perf_event *event, *tmp;
db24d33e 2898 int is_active = ctx->is_active;
235c7fc7 2899
c994d613 2900 lockdep_assert_held(&ctx->lock);
235c7fc7 2901
39a43640
PZ
2902 if (likely(!ctx->nr_events)) {
2903 /*
2904 * See __perf_remove_from_context().
2905 */
2906 WARN_ON_ONCE(ctx->is_active);
2907 if (ctx->task)
2908 WARN_ON_ONCE(cpuctx->task_ctx);
facc4307 2909 return;
39a43640
PZ
2910 }
2911
db24d33e 2912 ctx->is_active &= ~event_type;
3cbaa590
PZ
2913 if (!(ctx->is_active & EVENT_ALL))
2914 ctx->is_active = 0;
2915
63e30d3e
PZ
2916 if (ctx->task) {
2917 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2918 if (!ctx->is_active)
2919 cpuctx->task_ctx = NULL;
2920 }
facc4307 2921
8fdc6539
PZ
2922 /*
2923 * Always update time if it was set; not only when it changes.
2924 * Otherwise we can 'forget' to update time for any but the last
2925 * context we sched out. For example:
2926 *
2927 * ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2928 * ctx_sched_out(.event_type = EVENT_PINNED)
2929 *
2930 * would only update time for the pinned events.
2931 */
3cbaa590
PZ
2932 if (is_active & EVENT_TIME) {
2933 /* update (and stop) ctx time */
2934 update_context_time(ctx);
2935 update_cgrp_time_from_cpuctx(cpuctx);
2936 }
2937
8fdc6539
PZ
2938 is_active ^= ctx->is_active; /* changed bits */
2939
3cbaa590 2940 if (!ctx->nr_active || !(is_active & EVENT_ALL))
facc4307 2941 return;
5b0311e1 2942
075e0b00 2943 perf_pmu_disable(ctx->pmu);
3cbaa590 2944 if (is_active & EVENT_PINNED) {
6668128a 2945 list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list)
889ff015 2946 group_sched_out(event, cpuctx, ctx);
9ed6060d 2947 }
889ff015 2948
3cbaa590 2949 if (is_active & EVENT_FLEXIBLE) {
6668128a 2950 list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list)
8c9ed8e1 2951 group_sched_out(event, cpuctx, ctx);
9ed6060d 2952 }
1b9a644f 2953 perf_pmu_enable(ctx->pmu);
235c7fc7
IM
2954}
2955
564c2b21 2956/*
5a3126d4
PZ
2957 * Test whether two contexts are equivalent, i.e. whether they have both been
2958 * cloned from the same version of the same context.
2959 *
2960 * Equivalence is measured using a generation number in the context that is
2961 * incremented on each modification to it; see unclone_ctx(), list_add_event()
2962 * and list_del_event().
564c2b21 2963 */
cdd6c482
IM
2964static int context_equiv(struct perf_event_context *ctx1,
2965 struct perf_event_context *ctx2)
564c2b21 2966{
211de6eb
PZ
2967 lockdep_assert_held(&ctx1->lock);
2968 lockdep_assert_held(&ctx2->lock);
2969
5a3126d4
PZ
2970 /* Pinning disables the swap optimization */
2971 if (ctx1->pin_count || ctx2->pin_count)
2972 return 0;
2973
2974 /* If ctx1 is the parent of ctx2 */
2975 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2976 return 1;
2977
2978 /* If ctx2 is the parent of ctx1 */
2979 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2980 return 1;
2981
2982 /*
2983 * If ctx1 and ctx2 have the same parent; we flatten the parent
2984 * hierarchy, see perf_event_init_context().
2985 */
2986 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2987 ctx1->parent_gen == ctx2->parent_gen)
2988 return 1;
2989
2990 /* Unmatched */
2991 return 0;
564c2b21
PM
2992}
2993
cdd6c482
IM
2994static void __perf_event_sync_stat(struct perf_event *event,
2995 struct perf_event *next_event)
bfbd3381
PZ
2996{
2997 u64 value;
2998
cdd6c482 2999 if (!event->attr.inherit_stat)
bfbd3381
PZ
3000 return;
3001
3002 /*
cdd6c482 3003 * Update the event value, we cannot use perf_event_read()
bfbd3381
PZ
3004 * because we're in the middle of a context switch and have IRQs
3005 * disabled, which upsets smp_call_function_single(), however
cdd6c482 3006 * we know the event must be on the current CPU, therefore we
bfbd3381
PZ
3007 * don't need to use it.
3008 */
0d3d73aa 3009 if (event->state == PERF_EVENT_STATE_ACTIVE)
3dbebf15 3010 event->pmu->read(event);
bfbd3381 3011
0d3d73aa 3012 perf_event_update_time(event);
bfbd3381
PZ
3013
3014 /*
cdd6c482 3015 * In order to keep per-task stats reliable we need to flip the event
bfbd3381
PZ
3016 * values when we flip the contexts.
3017 */
e7850595
PZ
3018 value = local64_read(&next_event->count);
3019 value = local64_xchg(&event->count, value);
3020 local64_set(&next_event->count, value);
bfbd3381 3021
cdd6c482
IM
3022 swap(event->total_time_enabled, next_event->total_time_enabled);
3023 swap(event->total_time_running, next_event->total_time_running);
19d2e755 3024
bfbd3381 3025 /*
19d2e755 3026 * Since we swizzled the values, update the user visible data too.
bfbd3381 3027 */
cdd6c482
IM
3028 perf_event_update_userpage(event);
3029 perf_event_update_userpage(next_event);
bfbd3381
PZ
3030}
3031
cdd6c482
IM
3032static void perf_event_sync_stat(struct perf_event_context *ctx,
3033 struct perf_event_context *next_ctx)
bfbd3381 3034{
cdd6c482 3035 struct perf_event *event, *next_event;
bfbd3381
PZ
3036
3037 if (!ctx->nr_stat)
3038 return;
3039
02ffdbc8
PZ
3040 update_context_time(ctx);
3041
cdd6c482
IM
3042 event = list_first_entry(&ctx->event_list,
3043 struct perf_event, event_entry);
bfbd3381 3044
cdd6c482
IM
3045 next_event = list_first_entry(&next_ctx->event_list,
3046 struct perf_event, event_entry);
bfbd3381 3047
cdd6c482
IM
3048 while (&event->event_entry != &ctx->event_list &&
3049 &next_event->event_entry != &next_ctx->event_list) {
bfbd3381 3050
cdd6c482 3051 __perf_event_sync_stat(event, next_event);
bfbd3381 3052
cdd6c482
IM
3053 event = list_next_entry(event, event_entry);
3054 next_event = list_next_entry(next_event, event_entry);
bfbd3381
PZ
3055 }
3056}
3057
fe4b04fa
PZ
3058static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
3059 struct task_struct *next)
0793a61d 3060{
8dc85d54 3061 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
cdd6c482 3062 struct perf_event_context *next_ctx;
5a3126d4 3063 struct perf_event_context *parent, *next_parent;
108b02cf 3064 struct perf_cpu_context *cpuctx;
c93f7669 3065 int do_switch = 1;
0793a61d 3066
108b02cf
PZ
3067 if (likely(!ctx))
3068 return;
10989fb2 3069
108b02cf
PZ
3070 cpuctx = __get_cpu_context(ctx);
3071 if (!cpuctx->task_ctx)
0793a61d
TG
3072 return;
3073
c93f7669 3074 rcu_read_lock();
8dc85d54 3075 next_ctx = next->perf_event_ctxp[ctxn];
5a3126d4
PZ
3076 if (!next_ctx)
3077 goto unlock;
3078
3079 parent = rcu_dereference(ctx->parent_ctx);
3080 next_parent = rcu_dereference(next_ctx->parent_ctx);
3081
3082 /* If neither context have a parent context; they cannot be clones. */
802c8a61 3083 if (!parent && !next_parent)
5a3126d4
PZ
3084 goto unlock;
3085
3086 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
c93f7669
PM
3087 /*
3088 * Looks like the two contexts are clones, so we might be
3089 * able to optimize the context switch. We lock both
3090 * contexts and check that they are clones under the
3091 * lock (including re-checking that neither has been
3092 * uncloned in the meantime). It doesn't matter which
3093 * order we take the locks because no other cpu could
3094 * be trying to lock both of these tasks.
3095 */
e625cce1
TG
3096 raw_spin_lock(&ctx->lock);
3097 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
c93f7669 3098 if (context_equiv(ctx, next_ctx)) {
63b6da39
PZ
3099 WRITE_ONCE(ctx->task, next);
3100 WRITE_ONCE(next_ctx->task, task);
5a158c3c
YZ
3101
3102 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
3103
63b6da39
PZ
3104 /*
3105 * RCU_INIT_POINTER here is safe because we've not
3106 * modified the ctx and the above modification of
3107 * ctx->task and ctx->task_ctx_data are immaterial
3108 * since those values are always verified under
3109 * ctx->lock which we're now holding.
3110 */
3111 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
3112 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
3113
c93f7669 3114 do_switch = 0;
bfbd3381 3115
cdd6c482 3116 perf_event_sync_stat(ctx, next_ctx);
c93f7669 3117 }
e625cce1
TG
3118 raw_spin_unlock(&next_ctx->lock);
3119 raw_spin_unlock(&ctx->lock);
564c2b21 3120 }
5a3126d4 3121unlock:
c93f7669 3122 rcu_read_unlock();
564c2b21 3123
c93f7669 3124 if (do_switch) {
facc4307 3125 raw_spin_lock(&ctx->lock);
487f05e1 3126 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
facc4307 3127 raw_spin_unlock(&ctx->lock);
c93f7669 3128 }
0793a61d
TG
3129}
3130
e48c1788
PZ
3131static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3132
ba532500
YZ
3133void perf_sched_cb_dec(struct pmu *pmu)
3134{
e48c1788
PZ
3135 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3136
ba532500 3137 this_cpu_dec(perf_sched_cb_usages);
e48c1788
PZ
3138
3139 if (!--cpuctx->sched_cb_usage)
3140 list_del(&cpuctx->sched_cb_entry);
ba532500
YZ
3141}
3142
e48c1788 3143
ba532500
YZ
3144void perf_sched_cb_inc(struct pmu *pmu)
3145{
e48c1788
PZ
3146 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3147
3148 if (!cpuctx->sched_cb_usage++)
3149 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3150
ba532500
YZ
3151 this_cpu_inc(perf_sched_cb_usages);
3152}
3153
3154/*
3155 * This function provides the context switch callback to the lower code
3156 * layer. It is invoked ONLY when the context switch callback is enabled.
09e61b4f
PZ
3157 *
3158 * This callback is relevant even to per-cpu events; for example multi event
3159 * PEBS requires this to provide PID/TID information. This requires we flush
3160 * all queued PEBS records before we context switch to a new task.
ba532500
YZ
3161 */
3162static void perf_pmu_sched_task(struct task_struct *prev,
3163 struct task_struct *next,
3164 bool sched_in)
3165{
3166 struct perf_cpu_context *cpuctx;
3167 struct pmu *pmu;
ba532500
YZ
3168
3169 if (prev == next)
3170 return;
3171
e48c1788 3172 list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
1fd7e416 3173 pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
ba532500 3174
e48c1788
PZ
3175 if (WARN_ON_ONCE(!pmu->sched_task))
3176 continue;
ba532500 3177
e48c1788
PZ
3178 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3179 perf_pmu_disable(pmu);
ba532500 3180
e48c1788 3181 pmu->sched_task(cpuctx->task_ctx, sched_in);
ba532500 3182
e48c1788
PZ
3183 perf_pmu_enable(pmu);
3184 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
ba532500 3185 }
ba532500
YZ
3186}
3187
45ac1403
AH
3188static void perf_event_switch(struct task_struct *task,
3189 struct task_struct *next_prev, bool sched_in);
3190
8dc85d54
PZ
3191#define for_each_task_context_nr(ctxn) \
3192 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3193
3194/*
3195 * Called from scheduler to remove the events of the current task,
3196 * with interrupts disabled.
3197 *
3198 * We stop each event and update the event value in event->count.
3199 *
3200 * This does not protect us against NMI, but disable()
3201 * sets the disabled bit in the control field of event _before_
3202 * accessing the event control register. If a NMI hits, then it will
3203 * not restart the event.
3204 */
ab0cce56
JO
3205void __perf_event_task_sched_out(struct task_struct *task,
3206 struct task_struct *next)
8dc85d54
PZ
3207{
3208 int ctxn;
3209
ba532500
YZ
3210 if (__this_cpu_read(perf_sched_cb_usages))
3211 perf_pmu_sched_task(task, next, false);
3212
45ac1403
AH
3213 if (atomic_read(&nr_switch_events))
3214 perf_event_switch(task, next, false);
3215
8dc85d54
PZ
3216 for_each_task_context_nr(ctxn)
3217 perf_event_context_sched_out(task, ctxn, next);
e5d1367f
SE
3218
3219 /*
3220 * if cgroup events exist on this CPU, then we need
3221 * to check if we have to switch out PMU state.
3222 * cgroup event are system-wide mode only
3223 */
4a32fea9 3224 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
a8d757ef 3225 perf_cgroup_sched_out(task, next);
8dc85d54
PZ
3226}
3227
5b0311e1
FW
3228/*
3229 * Called with IRQs disabled
3230 */
3231static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3232 enum event_type_t event_type)
3233{
3234 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
04289bb9
IM
3235}
3236
1cac7b1a
PZ
3237static int visit_groups_merge(struct perf_event_groups *groups, int cpu,
3238 int (*func)(struct perf_event *, void *), void *data)
0793a61d 3239{
1cac7b1a
PZ
3240 struct perf_event **evt, *evt1, *evt2;
3241 int ret;
8e1a2031 3242
1cac7b1a
PZ
3243 evt1 = perf_event_groups_first(groups, -1);
3244 evt2 = perf_event_groups_first(groups, cpu);
3245
3246 while (evt1 || evt2) {
3247 if (evt1 && evt2) {
3248 if (evt1->group_index < evt2->group_index)
3249 evt = &evt1;
3250 else
3251 evt = &evt2;
3252 } else if (evt1) {
3253 evt = &evt1;
3254 } else {
3255 evt = &evt2;
8e1a2031 3256 }
1cac7b1a
PZ
3257
3258 ret = func(*evt, data);
3259 if (ret)
3260 return ret;
3261
3262 *evt = perf_event_groups_next(*evt);
8e1a2031 3263 }
0793a61d 3264
1cac7b1a
PZ
3265 return 0;
3266}
3267
3268struct sched_in_data {
3269 struct perf_event_context *ctx;
3270 struct perf_cpu_context *cpuctx;
3271 int can_add_hw;
3272};
3273
3274static int pinned_sched_in(struct perf_event *event, void *data)
3275{
3276 struct sched_in_data *sid = data;
3277
3278 if (event->state <= PERF_EVENT_STATE_OFF)
3279 return 0;
3280
3281 if (!event_filter_match(event))
3282 return 0;
3283
6668128a
PZ
3284 if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) {
3285 if (!group_sched_in(event, sid->cpuctx, sid->ctx))
3286 list_add_tail(&event->active_list, &sid->ctx->pinned_active);
3287 }
1cac7b1a
PZ
3288
3289 /*
3290 * If this pinned group hasn't been scheduled,
3291 * put it in error state.
3292 */
3293 if (event->state == PERF_EVENT_STATE_INACTIVE)
3294 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3295
3296 return 0;
3297}
3298
3299static int flexible_sched_in(struct perf_event *event, void *data)
3300{
3301 struct sched_in_data *sid = data;
3302
3303 if (event->state <= PERF_EVENT_STATE_OFF)
3304 return 0;
3305
3306 if (!event_filter_match(event))
3307 return 0;
3308
3309 if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) {
6668128a
PZ
3310 if (!group_sched_in(event, sid->cpuctx, sid->ctx))
3311 list_add_tail(&event->active_list, &sid->ctx->flexible_active);
3312 else
1cac7b1a 3313 sid->can_add_hw = 0;
3b6f9e5c 3314 }
1cac7b1a
PZ
3315
3316 return 0;
5b0311e1
FW
3317}
3318
3319static void
1cac7b1a
PZ
3320ctx_pinned_sched_in(struct perf_event_context *ctx,
3321 struct perf_cpu_context *cpuctx)
5b0311e1 3322{
1cac7b1a
PZ
3323 struct sched_in_data sid = {
3324 .ctx = ctx,
3325 .cpuctx = cpuctx,
3326 .can_add_hw = 1,
3327 };
3b6f9e5c 3328
1cac7b1a
PZ
3329 visit_groups_merge(&ctx->pinned_groups,
3330 smp_processor_id(),
3331 pinned_sched_in, &sid);
3332}
8e1a2031 3333
1cac7b1a
PZ
3334static void
3335ctx_flexible_sched_in(struct perf_event_context *ctx,
3336 struct perf_cpu_context *cpuctx)
3337{
3338 struct sched_in_data sid = {
3339 .ctx = ctx,
3340 .cpuctx = cpuctx,
3341 .can_add_hw = 1,
3342 };
0793a61d 3343
1cac7b1a
PZ
3344 visit_groups_merge(&ctx->flexible_groups,
3345 smp_processor_id(),
3346 flexible_sched_in, &sid);
5b0311e1
FW
3347}
3348
3349static void
3350ctx_sched_in(struct perf_event_context *ctx,
3351 struct perf_cpu_context *cpuctx,
e5d1367f
SE
3352 enum event_type_t event_type,
3353 struct task_struct *task)
5b0311e1 3354{
db24d33e 3355 int is_active = ctx->is_active;
c994d613
PZ
3356 u64 now;
3357
3358 lockdep_assert_held(&ctx->lock);
e5d1367f 3359
5b0311e1 3360 if (likely(!ctx->nr_events))
facc4307 3361 return;
5b0311e1 3362
3cbaa590 3363 ctx->is_active |= (event_type | EVENT_TIME);
63e30d3e
PZ
3364 if (ctx->task) {
3365 if (!is_active)
3366 cpuctx->task_ctx = ctx;
3367 else
3368 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3369 }
3370
3cbaa590
PZ
3371 is_active ^= ctx->is_active; /* changed bits */
3372
3373 if (is_active & EVENT_TIME) {
3374 /* start ctx time */
3375 now = perf_clock();
3376 ctx->timestamp = now;
3377 perf_cgroup_set_timestamp(task, ctx);
3378 }
3379
5b0311e1
FW
3380 /*
3381 * First go through the list and put on any pinned groups
3382 * in order to give them the best chance of going on.
3383 */
3cbaa590 3384 if (is_active & EVENT_PINNED)
6e37738a 3385 ctx_pinned_sched_in(ctx, cpuctx);
5b0311e1
FW
3386
3387 /* Then walk through the lower prio flexible groups */
3cbaa590 3388 if (is_active & EVENT_FLEXIBLE)
6e37738a 3389 ctx_flexible_sched_in(ctx, cpuctx);
235c7fc7
IM
3390}
3391
329c0e01 3392static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
3393 enum event_type_t event_type,
3394 struct task_struct *task)
329c0e01
FW
3395{
3396 struct perf_event_context *ctx = &cpuctx->ctx;
3397
e5d1367f 3398 ctx_sched_in(ctx, cpuctx, event_type, task);
329c0e01
FW
3399}
3400
e5d1367f
SE
3401static void perf_event_context_sched_in(struct perf_event_context *ctx,
3402 struct task_struct *task)
235c7fc7 3403{
108b02cf 3404 struct perf_cpu_context *cpuctx;
235c7fc7 3405
108b02cf 3406 cpuctx = __get_cpu_context(ctx);
329c0e01
FW
3407 if (cpuctx->task_ctx == ctx)
3408 return;
3409
facc4307 3410 perf_ctx_lock(cpuctx, ctx);
fdccc3fb 3411 /*
3412 * We must check ctx->nr_events while holding ctx->lock, such
3413 * that we serialize against perf_install_in_context().
3414 */
3415 if (!ctx->nr_events)
3416 goto unlock;
3417
1b9a644f 3418 perf_pmu_disable(ctx->pmu);
329c0e01
FW
3419 /*
3420 * We want to keep the following priority order:
3421 * cpu pinned (that don't need to move), task pinned,
3422 * cpu flexible, task flexible.
fe45bafb
AS
3423 *
3424 * However, if task's ctx is not carrying any pinned
3425 * events, no need to flip the cpuctx's events around.
329c0e01 3426 */
8e1a2031 3427 if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
fe45bafb 3428 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
63e30d3e 3429 perf_event_sched_in(cpuctx, ctx, task);
facc4307 3430 perf_pmu_enable(ctx->pmu);
fdccc3fb 3431
3432unlock:
facc4307 3433 perf_ctx_unlock(cpuctx, ctx);
235c7fc7
IM
3434}
3435
8dc85d54
PZ
3436/*
3437 * Called from scheduler to add the events of the current task
3438 * with interrupts disabled.
3439 *
3440 * We restore the event value and then enable it.
3441 *
3442 * This does not protect us against NMI, but enable()
3443 * sets the enabled bit in the control field of event _before_
3444 * accessing the event control register. If a NMI hits, then it will
3445 * keep the event running.
3446 */
ab0cce56
JO
3447void __perf_event_task_sched_in(struct task_struct *prev,
3448 struct task_struct *task)
8dc85d54
PZ
3449{
3450 struct perf_event_context *ctx;
3451 int ctxn;
3452
7e41d177
PZ
3453 /*
3454 * If cgroup events exist on this CPU, then we need to check if we have
3455 * to switch in PMU state; cgroup event are system-wide mode only.
3456 *
3457 * Since cgroup events are CPU events, we must schedule these in before
3458 * we schedule in the task events.
3459 */
3460 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3461 perf_cgroup_sched_in(prev, task);
3462
8dc85d54
PZ
3463 for_each_task_context_nr(ctxn) {
3464 ctx = task->perf_event_ctxp[ctxn];
3465 if (likely(!ctx))
3466 continue;
3467
e5d1367f 3468 perf_event_context_sched_in(ctx, task);
8dc85d54 3469 }
d010b332 3470
45ac1403
AH
3471 if (atomic_read(&nr_switch_events))
3472 perf_event_switch(task, prev, true);
3473
ba532500
YZ
3474 if (__this_cpu_read(perf_sched_cb_usages))
3475 perf_pmu_sched_task(prev, task, true);
235c7fc7
IM
3476}
3477
abd50713
PZ
3478static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3479{
3480 u64 frequency = event->attr.sample_freq;
3481 u64 sec = NSEC_PER_SEC;
3482 u64 divisor, dividend;
3483
3484 int count_fls, nsec_fls, frequency_fls, sec_fls;
3485
3486 count_fls = fls64(count);
3487 nsec_fls = fls64(nsec);
3488 frequency_fls = fls64(frequency);
3489 sec_fls = 30;
3490
3491 /*
3492 * We got @count in @nsec, with a target of sample_freq HZ
3493 * the target period becomes:
3494 *
3495 * @count * 10^9
3496 * period = -------------------
3497 * @nsec * sample_freq
3498 *
3499 */
3500
3501 /*
3502 * Reduce accuracy by one bit such that @a and @b converge
3503 * to a similar magnitude.
3504 */
fe4b04fa 3505#define REDUCE_FLS(a, b) \
abd50713
PZ
3506do { \
3507 if (a##_fls > b##_fls) { \
3508 a >>= 1; \
3509 a##_fls--; \
3510 } else { \
3511 b >>= 1; \
3512 b##_fls--; \
3513 } \
3514} while (0)
3515
3516 /*
3517 * Reduce accuracy until either term fits in a u64, then proceed with
3518 * the other, so that finally we can do a u64/u64 division.
3519 */
3520 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3521 REDUCE_FLS(nsec, frequency);
3522 REDUCE_FLS(sec, count);
3523 }
3524
3525 if (count_fls + sec_fls > 64) {
3526 divisor = nsec * frequency;
3527
3528 while (count_fls + sec_fls > 64) {
3529 REDUCE_FLS(count, sec);
3530 divisor >>= 1;
3531 }
3532
3533 dividend = count * sec;
3534 } else {
3535 dividend = count * sec;
3536
3537 while (nsec_fls + frequency_fls > 64) {
3538 REDUCE_FLS(nsec, frequency);
3539 dividend >>= 1;
3540 }
3541
3542 divisor = nsec * frequency;
3543 }
3544
f6ab91ad
PZ
3545 if (!divisor)
3546 return dividend;
3547
abd50713
PZ
3548 return div64_u64(dividend, divisor);
3549}
3550
e050e3f0
SE
3551static DEFINE_PER_CPU(int, perf_throttled_count);
3552static DEFINE_PER_CPU(u64, perf_throttled_seq);
3553
f39d47ff 3554static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
bd2b5b12 3555{
cdd6c482 3556 struct hw_perf_event *hwc = &event->hw;
f6ab91ad 3557 s64 period, sample_period;
bd2b5b12
PZ
3558 s64 delta;
3559
abd50713 3560 period = perf_calculate_period(event, nsec, count);
bd2b5b12
PZ
3561
3562 delta = (s64)(period - hwc->sample_period);
3563 delta = (delta + 7) / 8; /* low pass filter */
3564
3565 sample_period = hwc->sample_period + delta;
3566
3567 if (!sample_period)
3568 sample_period = 1;
3569
bd2b5b12 3570 hwc->sample_period = sample_period;
abd50713 3571
e7850595 3572 if (local64_read(&hwc->period_left) > 8*sample_period) {
f39d47ff
SE
3573 if (disable)
3574 event->pmu->stop(event, PERF_EF_UPDATE);
3575
e7850595 3576 local64_set(&hwc->period_left, 0);
f39d47ff
SE
3577
3578 if (disable)
3579 event->pmu->start(event, PERF_EF_RELOAD);
abd50713 3580 }
bd2b5b12
PZ
3581}
3582
e050e3f0
SE
3583/*
3584 * combine freq adjustment with unthrottling to avoid two passes over the
3585 * events. At the same time, make sure, having freq events does not change
3586 * the rate of unthrottling as that would introduce bias.
3587 */
3588static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3589 int needs_unthr)
60db5e09 3590{
cdd6c482
IM
3591 struct perf_event *event;
3592 struct hw_perf_event *hwc;
e050e3f0 3593 u64 now, period = TICK_NSEC;
abd50713 3594 s64 delta;
60db5e09 3595
e050e3f0
SE
3596 /*
3597 * only need to iterate over all events iff:
3598 * - context have events in frequency mode (needs freq adjust)
3599 * - there are events to unthrottle on this cpu
3600 */
3601 if (!(ctx->nr_freq || needs_unthr))
0f5a2601
PZ
3602 return;
3603
e050e3f0 3604 raw_spin_lock(&ctx->lock);
f39d47ff 3605 perf_pmu_disable(ctx->pmu);
e050e3f0 3606
03541f8b 3607 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
cdd6c482 3608 if (event->state != PERF_EVENT_STATE_ACTIVE)
60db5e09
PZ
3609 continue;
3610
5632ab12 3611 if (!event_filter_match(event))
5d27c23d
PZ
3612 continue;
3613
44377277
AS
3614 perf_pmu_disable(event->pmu);
3615
cdd6c482 3616 hwc = &event->hw;
6a24ed6c 3617
ae23bff1 3618 if (hwc->interrupts == MAX_INTERRUPTS) {
e050e3f0 3619 hwc->interrupts = 0;
cdd6c482 3620 perf_log_throttle(event, 1);
a4eaf7f1 3621 event->pmu->start(event, 0);
a78ac325
PZ
3622 }
3623
cdd6c482 3624 if (!event->attr.freq || !event->attr.sample_freq)
44377277 3625 goto next;
60db5e09 3626
e050e3f0
SE
3627 /*
3628 * stop the event and update event->count
3629 */
3630 event->pmu->stop(event, PERF_EF_UPDATE);
3631
e7850595 3632 now = local64_read(&event->count);
abd50713
PZ
3633 delta = now - hwc->freq_count_stamp;
3634 hwc->freq_count_stamp = now;
60db5e09 3635
e050e3f0
SE
3636 /*
3637 * restart the event
3638 * reload only if value has changed
f39d47ff
SE
3639 * we have stopped the event so tell that
3640 * to perf_adjust_period() to avoid stopping it
3641 * twice.
e050e3f0 3642 */
abd50713 3643 if (delta > 0)
f39d47ff 3644 perf_adjust_period(event, period, delta, false);
e050e3f0
SE
3645
3646 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
44377277
AS
3647 next:
3648 perf_pmu_enable(event->pmu);
60db5e09 3649 }
e050e3f0 3650
f39d47ff 3651 perf_pmu_enable(ctx->pmu);
e050e3f0 3652 raw_spin_unlock(&ctx->lock);
60db5e09
PZ
3653}
3654
235c7fc7 3655/*
8703a7cf 3656 * Move @event to the tail of the @ctx's elegible events.
235c7fc7 3657 */
8703a7cf 3658static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
0793a61d 3659{
dddd3379
TG
3660 /*
3661 * Rotate the first entry last of non-pinned groups. Rotation might be
3662 * disabled by the inheritance code.
3663 */
8703a7cf
PZ
3664 if (ctx->rotate_disable)
3665 return;
8e1a2031 3666
8703a7cf
PZ
3667 perf_event_groups_delete(&ctx->flexible_groups, event);
3668 perf_event_groups_insert(&ctx->flexible_groups, event);
235c7fc7
IM
3669}
3670
8d5bce0c
PZ
3671static inline struct perf_event *
3672ctx_first_active(struct perf_event_context *ctx)
235c7fc7 3673{
8d5bce0c
PZ
3674 return list_first_entry_or_null(&ctx->flexible_active,
3675 struct perf_event, active_list);
3676}
3677
3678static bool perf_rotate_context(struct perf_cpu_context *cpuctx)
3679{
3680 struct perf_event *cpu_event = NULL, *task_event = NULL;
3681 bool cpu_rotate = false, task_rotate = false;
8dc85d54 3682 struct perf_event_context *ctx = NULL;
8d5bce0c
PZ
3683
3684 /*
3685 * Since we run this from IRQ context, nobody can install new
3686 * events, thus the event count values are stable.
3687 */
7fc23a53 3688
b5ab4cd5 3689 if (cpuctx->ctx.nr_events) {
b5ab4cd5 3690 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
8d5bce0c 3691 cpu_rotate = true;
b5ab4cd5 3692 }
235c7fc7 3693
8dc85d54 3694 ctx = cpuctx->task_ctx;
b5ab4cd5 3695 if (ctx && ctx->nr_events) {
b5ab4cd5 3696 if (ctx->nr_events != ctx->nr_active)
8d5bce0c 3697 task_rotate = true;
b5ab4cd5 3698 }
9717e6cd 3699
8d5bce0c
PZ
3700 if (!(cpu_rotate || task_rotate))
3701 return false;
0f5a2601 3702
facc4307 3703 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
1b9a644f 3704 perf_pmu_disable(cpuctx->ctx.pmu);
60db5e09 3705
8d5bce0c
PZ
3706 if (task_rotate)
3707 task_event = ctx_first_active(ctx);
3708 if (cpu_rotate)
3709 cpu_event = ctx_first_active(&cpuctx->ctx);
8703a7cf 3710
8d5bce0c
PZ
3711 /*
3712 * As per the order given at ctx_resched() first 'pop' task flexible
3713 * and then, if needed CPU flexible.
3714 */
3715 if (task_event || (ctx && cpu_event))
e050e3f0 3716 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
8d5bce0c
PZ
3717 if (cpu_event)
3718 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
0793a61d 3719
8d5bce0c
PZ
3720 if (task_event)
3721 rotate_ctx(ctx, task_event);
3722 if (cpu_event)
3723 rotate_ctx(&cpuctx->ctx, cpu_event);
235c7fc7 3724
e050e3f0 3725 perf_event_sched_in(cpuctx, ctx, current);
235c7fc7 3726
0f5a2601
PZ
3727 perf_pmu_enable(cpuctx->ctx.pmu);
3728 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
9e630205 3729
8d5bce0c 3730 return true;
e9d2b064
PZ
3731}
3732
3733void perf_event_task_tick(void)
3734{
2fde4f94
MR
3735 struct list_head *head = this_cpu_ptr(&active_ctx_list);
3736 struct perf_event_context *ctx, *tmp;
e050e3f0 3737 int throttled;
b5ab4cd5 3738
16444645 3739 lockdep_assert_irqs_disabled();
e9d2b064 3740
e050e3f0
SE
3741 __this_cpu_inc(perf_throttled_seq);
3742 throttled = __this_cpu_xchg(perf_throttled_count, 0);
555e0c1e 3743 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
e050e3f0 3744
2fde4f94 3745 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
e050e3f0 3746 perf_adjust_freq_unthr_context(ctx, throttled);
0793a61d
TG
3747}
3748
889ff015
FW
3749static int event_enable_on_exec(struct perf_event *event,
3750 struct perf_event_context *ctx)
3751{
3752 if (!event->attr.enable_on_exec)
3753 return 0;
3754
3755 event->attr.enable_on_exec = 0;
3756 if (event->state >= PERF_EVENT_STATE_INACTIVE)
3757 return 0;
3758
0d3d73aa 3759 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
889ff015
FW
3760
3761 return 1;
3762}
3763
57e7986e 3764/*
cdd6c482 3765 * Enable all of a task's events that have been marked enable-on-exec.
57e7986e
PM
3766 * This expects task == current.
3767 */
c1274499 3768static void perf_event_enable_on_exec(int ctxn)
57e7986e 3769{
c1274499 3770 struct perf_event_context *ctx, *clone_ctx = NULL;
487f05e1 3771 enum event_type_t event_type = 0;
3e349507 3772 struct perf_cpu_context *cpuctx;
cdd6c482 3773 struct perf_event *event;
57e7986e
PM
3774 unsigned long flags;
3775 int enabled = 0;
3776
3777 local_irq_save(flags);
c1274499 3778 ctx = current->perf_event_ctxp[ctxn];
cdd6c482 3779 if (!ctx || !ctx->nr_events)
57e7986e
PM
3780 goto out;
3781
3e349507
PZ
3782 cpuctx = __get_cpu_context(ctx);
3783 perf_ctx_lock(cpuctx, ctx);
7fce2509 3784 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
487f05e1 3785 list_for_each_entry(event, &ctx->event_list, event_entry) {
3e349507 3786 enabled |= event_enable_on_exec(event, ctx);
487f05e1
AS
3787 event_type |= get_event_type(event);
3788 }
57e7986e
PM
3789
3790 /*
3e349507 3791 * Unclone and reschedule this context if we enabled any event.
57e7986e 3792 */
3e349507 3793 if (enabled) {
211de6eb 3794 clone_ctx = unclone_ctx(ctx);
487f05e1 3795 ctx_resched(cpuctx, ctx, event_type);
7bbba0eb
PZ
3796 } else {
3797 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
3e349507
PZ
3798 }
3799 perf_ctx_unlock(cpuctx, ctx);
57e7986e 3800
9ed6060d 3801out:
57e7986e 3802 local_irq_restore(flags);
211de6eb
PZ
3803
3804 if (clone_ctx)
3805 put_ctx(clone_ctx);
57e7986e
PM
3806}
3807
0492d4c5
PZ
3808struct perf_read_data {
3809 struct perf_event *event;
3810 bool group;
7d88962e 3811 int ret;
0492d4c5
PZ
3812};
3813
451d24d1 3814static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
d6a2f903 3815{
d6a2f903
DCC
3816 u16 local_pkg, event_pkg;
3817
3818 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
451d24d1
PZ
3819 int local_cpu = smp_processor_id();
3820
3821 event_pkg = topology_physical_package_id(event_cpu);
3822 local_pkg = topology_physical_package_id(local_cpu);
d6a2f903
DCC
3823
3824 if (event_pkg == local_pkg)
3825 return local_cpu;
3826 }
3827
3828 return event_cpu;
3829}
3830
0793a61d 3831/*
cdd6c482 3832 * Cross CPU call to read the hardware event
0793a61d 3833 */
cdd6c482 3834static void __perf_event_read(void *info)
0793a61d 3835{
0492d4c5
PZ
3836 struct perf_read_data *data = info;
3837 struct perf_event *sub, *event = data->event;
cdd6c482 3838 struct perf_event_context *ctx = event->ctx;
108b02cf 3839 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
4a00c16e 3840 struct pmu *pmu = event->pmu;
621a01ea 3841
e1ac3614
PM
3842 /*
3843 * If this is a task context, we need to check whether it is
3844 * the current task context of this cpu. If not it has been
3845 * scheduled out before the smp call arrived. In that case
cdd6c482
IM
3846 * event->count would have been updated to a recent sample
3847 * when the event was scheduled out.
e1ac3614
PM
3848 */
3849 if (ctx->task && cpuctx->task_ctx != ctx)
3850 return;
3851
e625cce1 3852 raw_spin_lock(&ctx->lock);
0c1cbc18 3853 if (ctx->is_active & EVENT_TIME) {
542e72fc 3854 update_context_time(ctx);
e5d1367f
SE
3855 update_cgrp_time_from_event(event);
3856 }
0492d4c5 3857
0d3d73aa
PZ
3858 perf_event_update_time(event);
3859 if (data->group)
3860 perf_event_update_sibling_time(event);
0c1cbc18 3861
4a00c16e
SB
3862 if (event->state != PERF_EVENT_STATE_ACTIVE)
3863 goto unlock;
0492d4c5 3864
4a00c16e
SB
3865 if (!data->group) {
3866 pmu->read(event);
3867 data->ret = 0;
0492d4c5 3868 goto unlock;
4a00c16e
SB
3869 }
3870
3871 pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3872
3873 pmu->read(event);
0492d4c5 3874
edb39592 3875 for_each_sibling_event(sub, event) {
4a00c16e
SB
3876 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3877 /*
3878 * Use sibling's PMU rather than @event's since
3879 * sibling could be on different (eg: software) PMU.
3880 */
0492d4c5 3881 sub->pmu->read(sub);
4a00c16e 3882 }
0492d4c5 3883 }
4a00c16e
SB
3884
3885 data->ret = pmu->commit_txn(pmu);
0492d4c5
PZ
3886
3887unlock:
e625cce1 3888 raw_spin_unlock(&ctx->lock);
0793a61d
TG
3889}
3890
b5e58793
PZ
3891static inline u64 perf_event_count(struct perf_event *event)
3892{
c39a0e2c 3893 return local64_read(&event->count) + atomic64_read(&event->child_count);
b5e58793
PZ
3894}
3895
ffe8690c
KX
3896/*
3897 * NMI-safe method to read a local event, that is an event that
3898 * is:
3899 * - either for the current task, or for this CPU
3900 * - does not have inherit set, for inherited task events
3901 * will not be local and we cannot read them atomically
3902 * - must not have a pmu::count method
3903 */
7d9285e8
YS
3904int perf_event_read_local(struct perf_event *event, u64 *value,
3905 u64 *enabled, u64 *running)
ffe8690c
KX
3906{
3907 unsigned long flags;
f91840a3 3908 int ret = 0;
ffe8690c
KX
3909
3910 /*
3911 * Disabling interrupts avoids all counter scheduling (context
3912 * switches, timer based rotation and IPIs).
3913 */
3914 local_irq_save(flags);
3915
ffe8690c
KX
3916 /*
3917 * It must not be an event with inherit set, we cannot read
3918 * all child counters from atomic context.
3919 */
f91840a3
AS
3920 if (event->attr.inherit) {
3921 ret = -EOPNOTSUPP;
3922 goto out;
3923 }
ffe8690c 3924
f91840a3
AS
3925 /* If this is a per-task event, it must be for current */
3926 if ((event->attach_state & PERF_ATTACH_TASK) &&
3927 event->hw.target != current) {
3928 ret = -EINVAL;
3929 goto out;
3930 }
3931
3932 /* If this is a per-CPU event, it must be for this CPU */
3933 if (!(event->attach_state & PERF_ATTACH_TASK) &&
3934 event->cpu != smp_processor_id()) {
3935 ret = -EINVAL;
3936 goto out;
3937 }
ffe8690c 3938
befb1b3c
RC
3939 /* If this is a pinned event it must be running on this CPU */
3940 if (event->attr.pinned && event->oncpu != smp_processor_id()) {
3941 ret = -EBUSY;
3942 goto out;
3943 }
3944
ffe8690c
KX
3945 /*
3946 * If the event is currently on this CPU, its either a per-task event,
3947 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3948 * oncpu == -1).
3949 */
3950 if (event->oncpu == smp_processor_id())
3951 event->pmu->read(event);
3952
f91840a3 3953 *value = local64_read(&event->count);
0d3d73aa
PZ
3954 if (enabled || running) {
3955 u64 now = event->shadow_ctx_time + perf_clock();
3956 u64 __enabled, __running;
3957
3958 __perf_update_times(event, now, &__enabled, &__running);
3959 if (enabled)
3960 *enabled = __enabled;
3961 if (running)
3962 *running = __running;
3963 }
f91840a3 3964out:
ffe8690c
KX
3965 local_irq_restore(flags);
3966
f91840a3 3967 return ret;
ffe8690c
KX
3968}
3969
7d88962e 3970static int perf_event_read(struct perf_event *event, bool group)
0793a61d 3971{
0c1cbc18 3972 enum perf_event_state state = READ_ONCE(event->state);
451d24d1 3973 int event_cpu, ret = 0;
7d88962e 3974
0793a61d 3975 /*
cdd6c482
IM
3976 * If event is enabled and currently active on a CPU, update the
3977 * value in the event structure:
0793a61d 3978 */
0c1cbc18
PZ
3979again:
3980 if (state == PERF_EVENT_STATE_ACTIVE) {
3981 struct perf_read_data data;
3982
3983 /*
3984 * Orders the ->state and ->oncpu loads such that if we see
3985 * ACTIVE we must also see the right ->oncpu.
3986 *
3987 * Matches the smp_wmb() from event_sched_in().
3988 */
3989 smp_rmb();
d6a2f903 3990
451d24d1
PZ
3991 event_cpu = READ_ONCE(event->oncpu);
3992 if ((unsigned)event_cpu >= nr_cpu_ids)
3993 return 0;
3994
0c1cbc18
PZ
3995 data = (struct perf_read_data){
3996 .event = event,
3997 .group = group,
3998 .ret = 0,
3999 };
4000
451d24d1
PZ
4001 preempt_disable();
4002 event_cpu = __perf_event_read_cpu(event, event_cpu);
d6a2f903 4003
58763148
PZ
4004 /*
4005 * Purposely ignore the smp_call_function_single() return
4006 * value.
4007 *
451d24d1 4008 * If event_cpu isn't a valid CPU it means the event got
58763148
PZ
4009 * scheduled out and that will have updated the event count.
4010 *
4011 * Therefore, either way, we'll have an up-to-date event count
4012 * after this.
4013 */
451d24d1
PZ
4014 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4015 preempt_enable();
58763148 4016 ret = data.ret;
0c1cbc18
PZ
4017
4018 } else if (state == PERF_EVENT_STATE_INACTIVE) {
2b8988c9
PZ
4019 struct perf_event_context *ctx = event->ctx;
4020 unsigned long flags;
4021
e625cce1 4022 raw_spin_lock_irqsave(&ctx->lock, flags);
0c1cbc18
PZ
4023 state = event->state;
4024 if (state != PERF_EVENT_STATE_INACTIVE) {
4025 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4026 goto again;
4027 }
4028
c530ccd9 4029 /*
0c1cbc18
PZ
4030 * May read while context is not active (e.g., thread is
4031 * blocked), in that case we cannot update context time
c530ccd9 4032 */
0c1cbc18 4033 if (ctx->is_active & EVENT_TIME) {
c530ccd9 4034 update_context_time(ctx);
e5d1367f
SE
4035 update_cgrp_time_from_event(event);
4036 }
0c1cbc18 4037
0d3d73aa 4038 perf_event_update_time(event);
0492d4c5 4039 if (group)
0d3d73aa 4040 perf_event_update_sibling_time(event);
e625cce1 4041 raw_spin_unlock_irqrestore(&ctx->lock, flags);
0793a61d 4042 }
7d88962e
SB
4043
4044 return ret;
0793a61d
TG
4045}
4046
a63eaf34 4047/*
cdd6c482 4048 * Initialize the perf_event context in a task_struct:
a63eaf34 4049 */
eb184479 4050static void __perf_event_init_context(struct perf_event_context *ctx)
a63eaf34 4051{
e625cce1 4052 raw_spin_lock_init(&ctx->lock);
a63eaf34 4053 mutex_init(&ctx->mutex);
2fde4f94 4054 INIT_LIST_HEAD(&ctx->active_ctx_list);
8e1a2031
AB
4055 perf_event_groups_init(&ctx->pinned_groups);
4056 perf_event_groups_init(&ctx->flexible_groups);
a63eaf34 4057 INIT_LIST_HEAD(&ctx->event_list);
6668128a
PZ
4058 INIT_LIST_HEAD(&ctx->pinned_active);
4059 INIT_LIST_HEAD(&ctx->flexible_active);
a63eaf34 4060 atomic_set(&ctx->refcount, 1);
eb184479
PZ
4061}
4062
4063static struct perf_event_context *
4064alloc_perf_context(struct pmu *pmu, struct task_struct *task)
4065{
4066 struct perf_event_context *ctx;
4067
4068 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4069 if (!ctx)
4070 return NULL;
4071
4072 __perf_event_init_context(ctx);
4073 if (task) {
4074 ctx->task = task;
4075 get_task_struct(task);
0793a61d 4076 }
eb184479
PZ
4077 ctx->pmu = pmu;
4078
4079 return ctx;
a63eaf34
PM
4080}
4081
2ebd4ffb
MH
4082static struct task_struct *
4083find_lively_task_by_vpid(pid_t vpid)
4084{
4085 struct task_struct *task;
0793a61d
TG
4086
4087 rcu_read_lock();
2ebd4ffb 4088 if (!vpid)
0793a61d
TG
4089 task = current;
4090 else
2ebd4ffb 4091 task = find_task_by_vpid(vpid);
0793a61d
TG
4092 if (task)
4093 get_task_struct(task);
4094 rcu_read_unlock();
4095
4096 if (!task)
4097 return ERR_PTR(-ESRCH);
4098
2ebd4ffb 4099 return task;
2ebd4ffb
MH
4100}
4101
fe4b04fa
PZ
4102/*
4103 * Returns a matching context with refcount and pincount.
4104 */
108b02cf 4105static struct perf_event_context *
4af57ef2
YZ
4106find_get_context(struct pmu *pmu, struct task_struct *task,
4107 struct perf_event *event)
0793a61d 4108{
211de6eb 4109 struct perf_event_context *ctx, *clone_ctx = NULL;
22a4f650 4110 struct perf_cpu_context *cpuctx;
4af57ef2 4111 void *task_ctx_data = NULL;
25346b93 4112 unsigned long flags;
8dc85d54 4113 int ctxn, err;
4af57ef2 4114 int cpu = event->cpu;
0793a61d 4115
22a4ec72 4116 if (!task) {
cdd6c482 4117 /* Must be root to operate on a CPU event: */
0764771d 4118 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
0793a61d
TG
4119 return ERR_PTR(-EACCES);
4120
108b02cf 4121 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
0793a61d 4122 ctx = &cpuctx->ctx;
c93f7669 4123 get_ctx(ctx);
fe4b04fa 4124 ++ctx->pin_count;
0793a61d 4125
0793a61d
TG
4126 return ctx;
4127 }
4128
8dc85d54
PZ
4129 err = -EINVAL;
4130 ctxn = pmu->task_ctx_nr;
4131 if (ctxn < 0)
4132 goto errout;
4133
4af57ef2
YZ
4134 if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4135 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
4136 if (!task_ctx_data) {
4137 err = -ENOMEM;
4138 goto errout;
4139 }
4140 }
4141
9ed6060d 4142retry:
8dc85d54 4143 ctx = perf_lock_task_context(task, ctxn, &flags);
c93f7669 4144 if (ctx) {
211de6eb 4145 clone_ctx = unclone_ctx(ctx);
fe4b04fa 4146 ++ctx->pin_count;
4af57ef2
YZ
4147
4148 if (task_ctx_data && !ctx->task_ctx_data) {
4149 ctx->task_ctx_data = task_ctx_data;
4150 task_ctx_data = NULL;
4151 }
e625cce1 4152 raw_spin_unlock_irqrestore(&ctx->lock, flags);
211de6eb
PZ
4153
4154 if (clone_ctx)
4155 put_ctx(clone_ctx);
9137fb28 4156 } else {
eb184479 4157 ctx = alloc_perf_context(pmu, task);
c93f7669
PM
4158 err = -ENOMEM;
4159 if (!ctx)
4160 goto errout;
eb184479 4161
4af57ef2
YZ
4162 if (task_ctx_data) {
4163 ctx->task_ctx_data = task_ctx_data;
4164 task_ctx_data = NULL;
4165 }
4166
dbe08d82
ON
4167 err = 0;
4168 mutex_lock(&task->perf_event_mutex);
4169 /*
4170 * If it has already passed perf_event_exit_task().
4171 * we must see PF_EXITING, it takes this mutex too.
4172 */
4173 if (task->flags & PF_EXITING)
4174 err = -ESRCH;
4175 else if (task->perf_event_ctxp[ctxn])
4176 err = -EAGAIN;
fe4b04fa 4177 else {
9137fb28 4178 get_ctx(ctx);
fe4b04fa 4179 ++ctx->pin_count;
dbe08d82 4180 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
fe4b04fa 4181 }
dbe08d82
ON
4182 mutex_unlock(&task->perf_event_mutex);
4183
4184 if (unlikely(err)) {
9137fb28 4185 put_ctx(ctx);
dbe08d82
ON
4186
4187 if (err == -EAGAIN)
4188 goto retry;
4189 goto errout;
a63eaf34
PM
4190 }
4191 }
4192
4af57ef2 4193 kfree(task_ctx_data);
0793a61d 4194 return ctx;
c93f7669 4195
9ed6060d 4196errout:
4af57ef2 4197 kfree(task_ctx_data);
c93f7669 4198 return ERR_PTR(err);
0793a61d
TG
4199}
4200
6fb2915d 4201static void perf_event_free_filter(struct perf_event *event);
2541517c 4202static void perf_event_free_bpf_prog(struct perf_event *event);
6fb2915d 4203
cdd6c482 4204static void free_event_rcu(struct rcu_head *head)
592903cd 4205{
cdd6c482 4206 struct perf_event *event;
592903cd 4207
cdd6c482
IM
4208 event = container_of(head, struct perf_event, rcu_head);
4209 if (event->ns)
4210 put_pid_ns(event->ns);
6fb2915d 4211 perf_event_free_filter(event);
cdd6c482 4212 kfree(event);
592903cd
PZ
4213}
4214
b69cf536
PZ
4215static void ring_buffer_attach(struct perf_event *event,
4216 struct ring_buffer *rb);
925d519a 4217
f2fb6bef
KL
4218static void detach_sb_event(struct perf_event *event)
4219{
4220 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
4221
4222 raw_spin_lock(&pel->lock);
4223 list_del_rcu(&event->sb_list);
4224 raw_spin_unlock(&pel->lock);
4225}
4226
a4f144eb 4227static bool is_sb_event(struct perf_event *event)
f2fb6bef 4228{
a4f144eb
DCC
4229 struct perf_event_attr *attr = &event->attr;
4230
f2fb6bef 4231 if (event->parent)
a4f144eb 4232 return false;
f2fb6bef
KL
4233
4234 if (event->attach_state & PERF_ATTACH_TASK)
a4f144eb 4235 return false;
f2fb6bef 4236
a4f144eb
DCC
4237 if (attr->mmap || attr->mmap_data || attr->mmap2 ||
4238 attr->comm || attr->comm_exec ||
76193a94 4239 attr->task || attr->ksymbol ||
a4f144eb
DCC
4240 attr->context_switch)
4241 return true;
4242 return false;
4243}
4244
4245static void unaccount_pmu_sb_event(struct perf_event *event)
4246{
4247 if (is_sb_event(event))
4248 detach_sb_event(event);
f2fb6bef
KL
4249}
4250
4beb31f3 4251static void unaccount_event_cpu(struct perf_event *event, int cpu)
f1600952 4252{
4beb31f3
FW
4253 if (event->parent)
4254 return;
4255
4beb31f3
FW
4256 if (is_cgroup_event(event))
4257 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
4258}
925d519a 4259
555e0c1e
FW
4260#ifdef CONFIG_NO_HZ_FULL
4261static DEFINE_SPINLOCK(nr_freq_lock);
4262#endif
4263
4264static void unaccount_freq_event_nohz(void)
4265{
4266#ifdef CONFIG_NO_HZ_FULL
4267 spin_lock(&nr_freq_lock);
4268 if (atomic_dec_and_test(&nr_freq_events))
4269 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
4270 spin_unlock(&nr_freq_lock);
4271#endif
4272}
4273
4274static void unaccount_freq_event(void)
4275{
4276 if (tick_nohz_full_enabled())
4277 unaccount_freq_event_nohz();
4278 else
4279 atomic_dec(&nr_freq_events);
4280}
4281
4beb31f3
FW
4282static void unaccount_event(struct perf_event *event)
4283{
25432ae9
PZ
4284 bool dec = false;
4285
4beb31f3
FW
4286 if (event->parent)
4287 return;
4288
4289 if (event->attach_state & PERF_ATTACH_TASK)
25432ae9 4290 dec = true;
4beb31f3
FW
4291 if (event->attr.mmap || event->attr.mmap_data)
4292 atomic_dec(&nr_mmap_events);
4293 if (event->attr.comm)
4294 atomic_dec(&nr_comm_events);
e4222673
HB
4295 if (event->attr.namespaces)
4296 atomic_dec(&nr_namespaces_events);
4beb31f3
FW
4297 if (event->attr.task)
4298 atomic_dec(&nr_task_events);
948b26b6 4299 if (event->attr.freq)
555e0c1e 4300 unaccount_freq_event();
45ac1403 4301 if (event->attr.context_switch) {
25432ae9 4302 dec = true;
45ac1403
AH
4303 atomic_dec(&nr_switch_events);
4304 }
4beb31f3 4305 if (is_cgroup_event(event))
25432ae9 4306 dec = true;
4beb31f3 4307 if (has_branch_stack(event))
25432ae9 4308 dec = true;
76193a94
SL
4309 if (event->attr.ksymbol)
4310 atomic_dec(&nr_ksymbol_events);
6ee52e2a
SL
4311 if (event->attr.bpf_event)
4312 atomic_dec(&nr_bpf_events);
25432ae9 4313
9107c89e
PZ
4314 if (dec) {
4315 if (!atomic_add_unless(&perf_sched_count, -1, 1))
4316 schedule_delayed_work(&perf_sched_work, HZ);
4317 }
4beb31f3
FW
4318
4319 unaccount_event_cpu(event, event->cpu);
f2fb6bef
KL
4320
4321 unaccount_pmu_sb_event(event);
4beb31f3 4322}
925d519a 4323
9107c89e
PZ
4324static void perf_sched_delayed(struct work_struct *work)
4325{
4326 mutex_lock(&perf_sched_mutex);
4327 if (atomic_dec_and_test(&perf_sched_count))
4328 static_branch_disable(&perf_sched_events);
4329 mutex_unlock(&perf_sched_mutex);
4330}
4331
bed5b25a
AS
4332/*
4333 * The following implement mutual exclusion of events on "exclusive" pmus
4334 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4335 * at a time, so we disallow creating events that might conflict, namely:
4336 *
4337 * 1) cpu-wide events in the presence of per-task events,
4338 * 2) per-task events in the presence of cpu-wide events,
4339 * 3) two matching events on the same context.
4340 *
4341 * The former two cases are handled in the allocation path (perf_event_alloc(),
a0733e69 4342 * _free_event()), the latter -- before the first perf_install_in_context().
bed5b25a
AS
4343 */
4344static int exclusive_event_init(struct perf_event *event)
4345{
4346 struct pmu *pmu = event->pmu;
4347
4348 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4349 return 0;
4350
4351 /*
4352 * Prevent co-existence of per-task and cpu-wide events on the
4353 * same exclusive pmu.
4354 *
4355 * Negative pmu::exclusive_cnt means there are cpu-wide
4356 * events on this "exclusive" pmu, positive means there are
4357 * per-task events.
4358 *
4359 * Since this is called in perf_event_alloc() path, event::ctx
4360 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4361 * to mean "per-task event", because unlike other attach states it
4362 * never gets cleared.
4363 */
4364 if (event->attach_state & PERF_ATTACH_TASK) {
4365 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4366 return -EBUSY;
4367 } else {
4368 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4369 return -EBUSY;
4370 }
4371
4372 return 0;
4373}
4374
4375static void exclusive_event_destroy(struct perf_event *event)
4376{
4377 struct pmu *pmu = event->pmu;
4378
4379 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4380 return;
4381
4382 /* see comment in exclusive_event_init() */
4383 if (event->attach_state & PERF_ATTACH_TASK)
4384 atomic_dec(&pmu->exclusive_cnt);
4385 else
4386 atomic_inc(&pmu->exclusive_cnt);
4387}
4388
4389static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4390{
3bf6215a 4391 if ((e1->pmu == e2->pmu) &&
bed5b25a
AS
4392 (e1->cpu == e2->cpu ||
4393 e1->cpu == -1 ||
4394 e2->cpu == -1))
4395 return true;
4396 return false;
4397}
4398
4399/* Called under the same ctx::mutex as perf_install_in_context() */
4400static bool exclusive_event_installable(struct perf_event *event,
4401 struct perf_event_context *ctx)
4402{
4403 struct perf_event *iter_event;
4404 struct pmu *pmu = event->pmu;
4405
4406 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4407 return true;
4408
4409 list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4410 if (exclusive_event_match(iter_event, event))
4411 return false;
4412 }
4413
4414 return true;
4415}
4416
375637bc
AS
4417static void perf_addr_filters_splice(struct perf_event *event,
4418 struct list_head *head);
4419
683ede43 4420static void _free_event(struct perf_event *event)
f1600952 4421{
e360adbe 4422 irq_work_sync(&event->pending);
925d519a 4423
4beb31f3 4424 unaccount_event(event);
9ee318a7 4425
76369139 4426 if (event->rb) {
9bb5d40c
PZ
4427 /*
4428 * Can happen when we close an event with re-directed output.
4429 *
4430 * Since we have a 0 refcount, perf_mmap_close() will skip
4431 * over us; possibly making our ring_buffer_put() the last.
4432 */
4433 mutex_lock(&event->mmap_mutex);
b69cf536 4434 ring_buffer_attach(event, NULL);
9bb5d40c 4435 mutex_unlock(&event->mmap_mutex);
a4be7c27
PZ
4436 }
4437
e5d1367f
SE
4438 if (is_cgroup_event(event))
4439 perf_detach_cgroup(event);
4440
a0733e69
PZ
4441 if (!event->parent) {
4442 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4443 put_callchain_buffers();
4444 }
4445
4446 perf_event_free_bpf_prog(event);
375637bc
AS
4447 perf_addr_filters_splice(event, NULL);
4448 kfree(event->addr_filters_offs);
a0733e69
PZ
4449
4450 if (event->destroy)
4451 event->destroy(event);
4452
4453 if (event->ctx)
4454 put_ctx(event->ctx);
4455
621b6d2e
PB
4456 if (event->hw.target)
4457 put_task_struct(event->hw.target);
4458
62a92c8f
AS
4459 exclusive_event_destroy(event);
4460 module_put(event->pmu->module);
a0733e69
PZ
4461
4462 call_rcu(&event->rcu_head, free_event_rcu);
f1600952
PZ
4463}
4464
683ede43
PZ
4465/*
4466 * Used to free events which have a known refcount of 1, such as in error paths
4467 * where the event isn't exposed yet and inherited events.
4468 */
4469static void free_event(struct perf_event *event)
0793a61d 4470{
683ede43
PZ
4471 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4472 "unexpected event refcount: %ld; ptr=%p\n",
4473 atomic_long_read(&event->refcount), event)) {
4474 /* leak to avoid use-after-free */
4475 return;
4476 }
0793a61d 4477
683ede43 4478 _free_event(event);
0793a61d
TG
4479}
4480
a66a3052 4481/*
f8697762 4482 * Remove user event from the owner task.
a66a3052 4483 */
f8697762 4484static void perf_remove_from_owner(struct perf_event *event)
fb0459d7 4485{
8882135b 4486 struct task_struct *owner;
fb0459d7 4487
8882135b 4488 rcu_read_lock();
8882135b 4489 /*
f47c02c0
PZ
4490 * Matches the smp_store_release() in perf_event_exit_task(). If we
4491 * observe !owner it means the list deletion is complete and we can
4492 * indeed free this event, otherwise we need to serialize on
8882135b
PZ
4493 * owner->perf_event_mutex.
4494 */
506458ef 4495 owner = READ_ONCE(event->owner);
8882135b
PZ
4496 if (owner) {
4497 /*
4498 * Since delayed_put_task_struct() also drops the last
4499 * task reference we can safely take a new reference
4500 * while holding the rcu_read_lock().
4501 */
4502 get_task_struct(owner);
4503 }
4504 rcu_read_unlock();
4505
4506 if (owner) {
f63a8daa
PZ
4507 /*
4508 * If we're here through perf_event_exit_task() we're already
4509 * holding ctx->mutex which would be an inversion wrt. the
4510 * normal lock order.
4511 *
4512 * However we can safely take this lock because its the child
4513 * ctx->mutex.
4514 */
4515 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4516
8882135b
PZ
4517 /*
4518 * We have to re-check the event->owner field, if it is cleared
4519 * we raced with perf_event_exit_task(), acquiring the mutex
4520 * ensured they're done, and we can proceed with freeing the
4521 * event.
4522 */
f47c02c0 4523 if (event->owner) {
8882135b 4524 list_del_init(&event->owner_entry);
f47c02c0
PZ
4525 smp_store_release(&event->owner, NULL);
4526 }
8882135b
PZ
4527 mutex_unlock(&owner->perf_event_mutex);
4528 put_task_struct(owner);
4529 }
f8697762
JO
4530}
4531
f8697762
JO
4532static void put_event(struct perf_event *event)
4533{
f8697762
JO
4534 if (!atomic_long_dec_and_test(&event->refcount))
4535 return;
4536
c6e5b732
PZ
4537 _free_event(event);
4538}
4539
4540/*
4541 * Kill an event dead; while event:refcount will preserve the event
4542 * object, it will not preserve its functionality. Once the last 'user'
4543 * gives up the object, we'll destroy the thing.
4544 */
4545int perf_event_release_kernel(struct perf_event *event)
4546{
a4f4bb6d 4547 struct perf_event_context *ctx = event->ctx;
c6e5b732 4548 struct perf_event *child, *tmp;
82d94856 4549 LIST_HEAD(free_list);
c6e5b732 4550
a4f4bb6d
PZ
4551 /*
4552 * If we got here through err_file: fput(event_file); we will not have
4553 * attached to a context yet.
4554 */
4555 if (!ctx) {
4556 WARN_ON_ONCE(event->attach_state &
4557 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4558 goto no_ctx;
4559 }
4560
f8697762
JO
4561 if (!is_kernel_event(event))
4562 perf_remove_from_owner(event);
8882135b 4563
5fa7c8ec 4564 ctx = perf_event_ctx_lock(event);
a83fe28e 4565 WARN_ON_ONCE(ctx->parent_ctx);
a69b0ca4 4566 perf_remove_from_context(event, DETACH_GROUP);
683ede43 4567
a69b0ca4 4568 raw_spin_lock_irq(&ctx->lock);
683ede43 4569 /*
d8a8cfc7 4570 * Mark this event as STATE_DEAD, there is no external reference to it
a69b0ca4 4571 * anymore.
683ede43 4572 *
a69b0ca4
PZ
4573 * Anybody acquiring event->child_mutex after the below loop _must_
4574 * also see this, most importantly inherit_event() which will avoid
4575 * placing more children on the list.
683ede43 4576 *
c6e5b732
PZ
4577 * Thus this guarantees that we will in fact observe and kill _ALL_
4578 * child events.
683ede43 4579 */
a69b0ca4
PZ
4580 event->state = PERF_EVENT_STATE_DEAD;
4581 raw_spin_unlock_irq(&ctx->lock);
4582
4583 perf_event_ctx_unlock(event, ctx);
683ede43 4584
c6e5b732
PZ
4585again:
4586 mutex_lock(&event->child_mutex);
4587 list_for_each_entry(child, &event->child_list, child_list) {
a6fa941d 4588
c6e5b732
PZ
4589 /*
4590 * Cannot change, child events are not migrated, see the
4591 * comment with perf_event_ctx_lock_nested().
4592 */
506458ef 4593 ctx = READ_ONCE(child->ctx);
c6e5b732
PZ
4594 /*
4595 * Since child_mutex nests inside ctx::mutex, we must jump
4596 * through hoops. We start by grabbing a reference on the ctx.
4597 *
4598 * Since the event cannot get freed while we hold the
4599 * child_mutex, the context must also exist and have a !0
4600 * reference count.
4601 */
4602 get_ctx(ctx);
4603
4604 /*
4605 * Now that we have a ctx ref, we can drop child_mutex, and
4606 * acquire ctx::mutex without fear of it going away. Then we
4607 * can re-acquire child_mutex.
4608 */
4609 mutex_unlock(&event->child_mutex);
4610 mutex_lock(&ctx->mutex);
4611 mutex_lock(&event->child_mutex);
4612
4613 /*
4614 * Now that we hold ctx::mutex and child_mutex, revalidate our
4615 * state, if child is still the first entry, it didn't get freed
4616 * and we can continue doing so.
4617 */
4618 tmp = list_first_entry_or_null(&event->child_list,
4619 struct perf_event, child_list);
4620 if (tmp == child) {
4621 perf_remove_from_context(child, DETACH_GROUP);
82d94856 4622 list_move(&child->child_list, &free_list);
c6e5b732
PZ
4623 /*
4624 * This matches the refcount bump in inherit_event();
4625 * this can't be the last reference.
4626 */
4627 put_event(event);
4628 }
4629
4630 mutex_unlock(&event->child_mutex);
4631 mutex_unlock(&ctx->mutex);
4632 put_ctx(ctx);
4633 goto again;
4634 }
4635 mutex_unlock(&event->child_mutex);
4636
82d94856
PZ
4637 list_for_each_entry_safe(child, tmp, &free_list, child_list) {
4638 list_del(&child->child_list);
4639 free_event(child);
4640 }
4641
a4f4bb6d
PZ
4642no_ctx:
4643 put_event(event); /* Must be the 'last' reference */
683ede43
PZ
4644 return 0;
4645}
4646EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4647
8b10c5e2
PZ
4648/*
4649 * Called when the last reference to the file is gone.
4650 */
a6fa941d
AV
4651static int perf_release(struct inode *inode, struct file *file)
4652{
c6e5b732 4653 perf_event_release_kernel(file->private_data);
a6fa941d 4654 return 0;
fb0459d7 4655}
fb0459d7 4656
ca0dd44c 4657static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
e53c0994 4658{
cdd6c482 4659 struct perf_event *child;
e53c0994
PZ
4660 u64 total = 0;
4661
59ed446f
PZ
4662 *enabled = 0;
4663 *running = 0;
4664
6f10581a 4665 mutex_lock(&event->child_mutex);
01add3ea 4666
7d88962e 4667 (void)perf_event_read(event, false);
01add3ea
SB
4668 total += perf_event_count(event);
4669
59ed446f
PZ
4670 *enabled += event->total_time_enabled +
4671 atomic64_read(&event->child_total_time_enabled);
4672 *running += event->total_time_running +
4673 atomic64_read(&event->child_total_time_running);
4674
4675 list_for_each_entry(child, &event->child_list, child_list) {
7d88962e 4676 (void)perf_event_read(child, false);
01add3ea 4677 total += perf_event_count(child);
59ed446f
PZ
4678 *enabled += child->total_time_enabled;
4679 *running += child->total_time_running;
4680 }
6f10581a 4681 mutex_unlock(&event->child_mutex);
e53c0994
PZ
4682
4683 return total;
4684}
ca0dd44c
PZ
4685
4686u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4687{
4688 struct perf_event_context *ctx;
4689 u64 count;
4690
4691 ctx = perf_event_ctx_lock(event);
4692 count = __perf_event_read_value(event, enabled, running);
4693 perf_event_ctx_unlock(event, ctx);
4694
4695 return count;
4696}
fb0459d7 4697EXPORT_SYMBOL_GPL(perf_event_read_value);
e53c0994 4698
7d88962e 4699static int __perf_read_group_add(struct perf_event *leader,
fa8c2693 4700 u64 read_format, u64 *values)
3dab77fb 4701{
2aeb1883 4702 struct perf_event_context *ctx = leader->ctx;
fa8c2693 4703 struct perf_event *sub;
2aeb1883 4704 unsigned long flags;
fa8c2693 4705 int n = 1; /* skip @nr */
7d88962e 4706 int ret;
f63a8daa 4707
7d88962e
SB
4708 ret = perf_event_read(leader, true);
4709 if (ret)
4710 return ret;
abf4868b 4711
a9cd8194
PZ
4712 raw_spin_lock_irqsave(&ctx->lock, flags);
4713
fa8c2693
PZ
4714 /*
4715 * Since we co-schedule groups, {enabled,running} times of siblings
4716 * will be identical to those of the leader, so we only publish one
4717 * set.
4718 */
4719 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4720 values[n++] += leader->total_time_enabled +
4721 atomic64_read(&leader->child_total_time_enabled);
4722 }
3dab77fb 4723
fa8c2693
PZ
4724 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4725 values[n++] += leader->total_time_running +
4726 atomic64_read(&leader->child_total_time_running);
4727 }
4728
4729 /*
4730 * Write {count,id} tuples for every sibling.
4731 */
4732 values[n++] += perf_event_count(leader);
abf4868b
PZ
4733 if (read_format & PERF_FORMAT_ID)
4734 values[n++] = primary_event_id(leader);
3dab77fb 4735
edb39592 4736 for_each_sibling_event(sub, leader) {
fa8c2693
PZ
4737 values[n++] += perf_event_count(sub);
4738 if (read_format & PERF_FORMAT_ID)
4739 values[n++] = primary_event_id(sub);
4740 }
7d88962e 4741
2aeb1883 4742 raw_spin_unlock_irqrestore(&ctx->lock, flags);
7d88962e 4743 return 0;
fa8c2693 4744}
3dab77fb 4745
fa8c2693
PZ
4746static int perf_read_group(struct perf_event *event,
4747 u64 read_format, char __user *buf)
4748{
4749 struct perf_event *leader = event->group_leader, *child;
4750 struct perf_event_context *ctx = leader->ctx;
7d88962e 4751 int ret;
fa8c2693 4752 u64 *values;
3dab77fb 4753
fa8c2693 4754 lockdep_assert_held(&ctx->mutex);
3dab77fb 4755
fa8c2693
PZ
4756 values = kzalloc(event->read_size, GFP_KERNEL);
4757 if (!values)
4758 return -ENOMEM;
3dab77fb 4759
fa8c2693
PZ
4760 values[0] = 1 + leader->nr_siblings;
4761
4762 /*
4763 * By locking the child_mutex of the leader we effectively
4764 * lock the child list of all siblings.. XXX explain how.
4765 */
4766 mutex_lock(&leader->child_mutex);
abf4868b 4767
7d88962e
SB
4768 ret = __perf_read_group_add(leader, read_format, values);
4769 if (ret)
4770 goto unlock;
4771
4772 list_for_each_entry(child, &leader->child_list, child_list) {
4773 ret = __perf_read_group_add(child, read_format, values);
4774 if (ret)
4775 goto unlock;
4776 }
abf4868b 4777
fa8c2693 4778 mutex_unlock(&leader->child_mutex);
abf4868b 4779
7d88962e 4780 ret = event->read_size;
fa8c2693
PZ
4781 if (copy_to_user(buf, values, event->read_size))
4782 ret = -EFAULT;
7d88962e 4783 goto out;
fa8c2693 4784
7d88962e
SB
4785unlock:
4786 mutex_unlock(&leader->child_mutex);
4787out:
fa8c2693 4788 kfree(values);
abf4868b 4789 return ret;
3dab77fb
PZ
4790}
4791
b15f495b 4792static int perf_read_one(struct perf_event *event,
3dab77fb
PZ
4793 u64 read_format, char __user *buf)
4794{
59ed446f 4795 u64 enabled, running;
3dab77fb
PZ
4796 u64 values[4];
4797 int n = 0;
4798
ca0dd44c 4799 values[n++] = __perf_event_read_value(event, &enabled, &running);
59ed446f
PZ
4800 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4801 values[n++] = enabled;
4802 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4803 values[n++] = running;
3dab77fb 4804 if (read_format & PERF_FORMAT_ID)
cdd6c482 4805 values[n++] = primary_event_id(event);
3dab77fb
PZ
4806
4807 if (copy_to_user(buf, values, n * sizeof(u64)))
4808 return -EFAULT;
4809
4810 return n * sizeof(u64);
4811}
4812
dc633982
JO
4813static bool is_event_hup(struct perf_event *event)
4814{
4815 bool no_children;
4816
a69b0ca4 4817 if (event->state > PERF_EVENT_STATE_EXIT)
dc633982
JO
4818 return false;
4819
4820 mutex_lock(&event->child_mutex);
4821 no_children = list_empty(&event->child_list);
4822 mutex_unlock(&event->child_mutex);
4823 return no_children;
4824}
4825
0793a61d 4826/*
cdd6c482 4827 * Read the performance event - simple non blocking version for now
0793a61d
TG
4828 */
4829static ssize_t
b15f495b 4830__perf_read(struct perf_event *event, char __user *buf, size_t count)
0793a61d 4831{
cdd6c482 4832 u64 read_format = event->attr.read_format;
3dab77fb 4833 int ret;
0793a61d 4834
3b6f9e5c 4835 /*
788faab7 4836 * Return end-of-file for a read on an event that is in
3b6f9e5c
PM
4837 * error state (i.e. because it was pinned but it couldn't be
4838 * scheduled on to the CPU at some point).
4839 */
cdd6c482 4840 if (event->state == PERF_EVENT_STATE_ERROR)
3b6f9e5c
PM
4841 return 0;
4842
c320c7b7 4843 if (count < event->read_size)
3dab77fb
PZ
4844 return -ENOSPC;
4845
cdd6c482 4846 WARN_ON_ONCE(event->ctx->parent_ctx);
3dab77fb 4847 if (read_format & PERF_FORMAT_GROUP)
b15f495b 4848 ret = perf_read_group(event, read_format, buf);
3dab77fb 4849 else
b15f495b 4850 ret = perf_read_one(event, read_format, buf);
0793a61d 4851
3dab77fb 4852 return ret;
0793a61d
TG
4853}
4854
0793a61d
TG
4855static ssize_t
4856perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4857{
cdd6c482 4858 struct perf_event *event = file->private_data;
f63a8daa
PZ
4859 struct perf_event_context *ctx;
4860 int ret;
0793a61d 4861
f63a8daa 4862 ctx = perf_event_ctx_lock(event);
b15f495b 4863 ret = __perf_read(event, buf, count);
f63a8daa
PZ
4864 perf_event_ctx_unlock(event, ctx);
4865
4866 return ret;
0793a61d
TG
4867}
4868
9dd95748 4869static __poll_t perf_poll(struct file *file, poll_table *wait)
0793a61d 4870{
cdd6c482 4871 struct perf_event *event = file->private_data;
76369139 4872 struct ring_buffer *rb;
a9a08845 4873 __poll_t events = EPOLLHUP;
c7138f37 4874
e708d7ad 4875 poll_wait(file, &event->waitq, wait);
179033b3 4876
dc633982 4877 if (is_event_hup(event))
179033b3 4878 return events;
c7138f37 4879
10c6db11 4880 /*
9bb5d40c
PZ
4881 * Pin the event->rb by taking event->mmap_mutex; otherwise
4882 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
10c6db11
PZ
4883 */
4884 mutex_lock(&event->mmap_mutex);
9bb5d40c
PZ
4885 rb = event->rb;
4886 if (rb)
76369139 4887 events = atomic_xchg(&rb->poll, 0);
10c6db11 4888 mutex_unlock(&event->mmap_mutex);
0793a61d
TG
4889 return events;
4890}
4891
f63a8daa 4892static void _perf_event_reset(struct perf_event *event)
6de6a7b9 4893{
7d88962e 4894 (void)perf_event_read(event, false);
e7850595 4895 local64_set(&event->count, 0);
cdd6c482 4896 perf_event_update_userpage(event);
3df5edad
PZ
4897}
4898
c93f7669 4899/*
cdd6c482
IM
4900 * Holding the top-level event's child_mutex means that any
4901 * descendant process that has inherited this event will block
8ba289b8 4902 * in perf_event_exit_event() if it goes to exit, thus satisfying the
cdd6c482 4903 * task existence requirements of perf_event_enable/disable.
c93f7669 4904 */
cdd6c482
IM
4905static void perf_event_for_each_child(struct perf_event *event,
4906 void (*func)(struct perf_event *))
3df5edad 4907{
cdd6c482 4908 struct perf_event *child;
3df5edad 4909
cdd6c482 4910 WARN_ON_ONCE(event->ctx->parent_ctx);
f63a8daa 4911
cdd6c482
IM
4912 mutex_lock(&event->child_mutex);
4913 func(event);
4914 list_for_each_entry(child, &event->child_list, child_list)
3df5edad 4915 func(child);
cdd6c482 4916 mutex_unlock(&event->child_mutex);
3df5edad
PZ
4917}
4918
cdd6c482
IM
4919static void perf_event_for_each(struct perf_event *event,
4920 void (*func)(struct perf_event *))
3df5edad 4921{
cdd6c482
IM
4922 struct perf_event_context *ctx = event->ctx;
4923 struct perf_event *sibling;
3df5edad 4924
f63a8daa
PZ
4925 lockdep_assert_held(&ctx->mutex);
4926
cdd6c482 4927 event = event->group_leader;
75f937f2 4928
cdd6c482 4929 perf_event_for_each_child(event, func);
edb39592 4930 for_each_sibling_event(sibling, event)
724b6daa 4931 perf_event_for_each_child(sibling, func);
6de6a7b9
PZ
4932}
4933
fae3fde6
PZ
4934static void __perf_event_period(struct perf_event *event,
4935 struct perf_cpu_context *cpuctx,
4936 struct perf_event_context *ctx,
4937 void *info)
c7999c6f 4938{
fae3fde6 4939 u64 value = *((u64 *)info);
c7999c6f 4940 bool active;
08247e31 4941
cdd6c482 4942 if (event->attr.freq) {
cdd6c482 4943 event->attr.sample_freq = value;
08247e31 4944 } else {
cdd6c482
IM
4945 event->attr.sample_period = value;
4946 event->hw.sample_period = value;
08247e31 4947 }
bad7192b
PZ
4948
4949 active = (event->state == PERF_EVENT_STATE_ACTIVE);
4950 if (active) {
4951 perf_pmu_disable(ctx->pmu);
1e02cd40
PZ
4952 /*
4953 * We could be throttled; unthrottle now to avoid the tick
4954 * trying to unthrottle while we already re-started the event.
4955 */
4956 if (event->hw.interrupts == MAX_INTERRUPTS) {
4957 event->hw.interrupts = 0;
4958 perf_log_throttle(event, 1);
4959 }
bad7192b
PZ
4960 event->pmu->stop(event, PERF_EF_UPDATE);
4961 }
4962
4963 local64_set(&event->hw.period_left, 0);
4964
4965 if (active) {
4966 event->pmu->start(event, PERF_EF_RELOAD);
4967 perf_pmu_enable(ctx->pmu);
4968 }
c7999c6f
PZ
4969}
4970
4971static int perf_event_period(struct perf_event *event, u64 __user *arg)
4972{
c7999c6f
PZ
4973 u64 value;
4974
4975 if (!is_sampling_event(event))
4976 return -EINVAL;
4977
4978 if (copy_from_user(&value, arg, sizeof(value)))
4979 return -EFAULT;
4980
4981 if (!value)
4982 return -EINVAL;
4983
4984 if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4985 return -EINVAL;
4986
fae3fde6 4987 event_function_call(event, __perf_event_period, &value);
08247e31 4988
c7999c6f 4989 return 0;
08247e31
PZ
4990}
4991
ac9721f3
PZ
4992static const struct file_operations perf_fops;
4993
2903ff01 4994static inline int perf_fget_light(int fd, struct fd *p)
ac9721f3 4995{
2903ff01
AV
4996 struct fd f = fdget(fd);
4997 if (!f.file)
4998 return -EBADF;
ac9721f3 4999
2903ff01
AV
5000 if (f.file->f_op != &perf_fops) {
5001 fdput(f);
5002 return -EBADF;
ac9721f3 5003 }
2903ff01
AV
5004 *p = f;
5005 return 0;
ac9721f3
PZ
5006}
5007
5008static int perf_event_set_output(struct perf_event *event,
5009 struct perf_event *output_event);
6fb2915d 5010static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2541517c 5011static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
32ff77e8
MC
5012static int perf_copy_attr(struct perf_event_attr __user *uattr,
5013 struct perf_event_attr *attr);
a4be7c27 5014
f63a8daa 5015static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
d859e29f 5016{
cdd6c482 5017 void (*func)(struct perf_event *);
3df5edad 5018 u32 flags = arg;
d859e29f
PM
5019
5020 switch (cmd) {
cdd6c482 5021 case PERF_EVENT_IOC_ENABLE:
f63a8daa 5022 func = _perf_event_enable;
d859e29f 5023 break;
cdd6c482 5024 case PERF_EVENT_IOC_DISABLE:
f63a8daa 5025 func = _perf_event_disable;
79f14641 5026 break;
cdd6c482 5027 case PERF_EVENT_IOC_RESET:
f63a8daa 5028 func = _perf_event_reset;
6de6a7b9 5029 break;
3df5edad 5030
cdd6c482 5031 case PERF_EVENT_IOC_REFRESH:
f63a8daa 5032 return _perf_event_refresh(event, arg);
08247e31 5033
cdd6c482
IM
5034 case PERF_EVENT_IOC_PERIOD:
5035 return perf_event_period(event, (u64 __user *)arg);
08247e31 5036
cf4957f1
JO
5037 case PERF_EVENT_IOC_ID:
5038 {
5039 u64 id = primary_event_id(event);
5040
5041 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
5042 return -EFAULT;
5043 return 0;
5044 }
5045
cdd6c482 5046 case PERF_EVENT_IOC_SET_OUTPUT:
ac9721f3 5047 {
ac9721f3 5048 int ret;
ac9721f3 5049 if (arg != -1) {
2903ff01
AV
5050 struct perf_event *output_event;
5051 struct fd output;
5052 ret = perf_fget_light(arg, &output);
5053 if (ret)
5054 return ret;
5055 output_event = output.file->private_data;
5056 ret = perf_event_set_output(event, output_event);
5057 fdput(output);
5058 } else {
5059 ret = perf_event_set_output(event, NULL);
ac9721f3 5060 }
ac9721f3
PZ
5061 return ret;
5062 }
a4be7c27 5063
6fb2915d
LZ
5064 case PERF_EVENT_IOC_SET_FILTER:
5065 return perf_event_set_filter(event, (void __user *)arg);
5066
2541517c
AS
5067 case PERF_EVENT_IOC_SET_BPF:
5068 return perf_event_set_bpf_prog(event, arg);
5069
86e7972f
WN
5070 case PERF_EVENT_IOC_PAUSE_OUTPUT: {
5071 struct ring_buffer *rb;
5072
5073 rcu_read_lock();
5074 rb = rcu_dereference(event->rb);
5075 if (!rb || !rb->nr_pages) {
5076 rcu_read_unlock();
5077 return -EINVAL;
5078 }
5079 rb_toggle_paused(rb, !!arg);
5080 rcu_read_unlock();
5081 return 0;
5082 }
f371b304
YS
5083
5084 case PERF_EVENT_IOC_QUERY_BPF:
f4e2298e 5085 return perf_event_query_prog_array(event, (void __user *)arg);
32ff77e8
MC
5086
5087 case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
5088 struct perf_event_attr new_attr;
5089 int err = perf_copy_attr((struct perf_event_attr __user *)arg,
5090 &new_attr);
5091
5092 if (err)
5093 return err;
5094
5095 return perf_event_modify_attr(event, &new_attr);
5096 }
d859e29f 5097 default:
3df5edad 5098 return -ENOTTY;
d859e29f 5099 }
3df5edad
PZ
5100
5101 if (flags & PERF_IOC_FLAG_GROUP)
cdd6c482 5102 perf_event_for_each(event, func);
3df5edad 5103 else
cdd6c482 5104 perf_event_for_each_child(event, func);
3df5edad
PZ
5105
5106 return 0;
d859e29f
PM
5107}
5108
f63a8daa
PZ
5109static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5110{
5111 struct perf_event *event = file->private_data;
5112 struct perf_event_context *ctx;
5113 long ret;
5114
5115 ctx = perf_event_ctx_lock(event);
5116 ret = _perf_ioctl(event, cmd, arg);
5117 perf_event_ctx_unlock(event, ctx);
5118
5119 return ret;
5120}
5121
b3f20785
PM
5122#ifdef CONFIG_COMPAT
5123static long perf_compat_ioctl(struct file *file, unsigned int cmd,
5124 unsigned long arg)
5125{
5126 switch (_IOC_NR(cmd)) {
5127 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
5128 case _IOC_NR(PERF_EVENT_IOC_ID):
82489c5f
ES
5129 case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
5130 case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
b3f20785
PM
5131 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
5132 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
5133 cmd &= ~IOCSIZE_MASK;
5134 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
5135 }
5136 break;
5137 }
5138 return perf_ioctl(file, cmd, arg);
5139}
5140#else
5141# define perf_compat_ioctl NULL
5142#endif
5143
cdd6c482 5144int perf_event_task_enable(void)
771d7cde 5145{
f63a8daa 5146 struct perf_event_context *ctx;
cdd6c482 5147 struct perf_event *event;
771d7cde 5148
cdd6c482 5149 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
5150 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5151 ctx = perf_event_ctx_lock(event);
5152 perf_event_for_each_child(event, _perf_event_enable);
5153 perf_event_ctx_unlock(event, ctx);
5154 }
cdd6c482 5155 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
5156
5157 return 0;
5158}
5159
cdd6c482 5160int perf_event_task_disable(void)
771d7cde 5161{
f63a8daa 5162 struct perf_event_context *ctx;
cdd6c482 5163 struct perf_event *event;
771d7cde 5164
cdd6c482 5165 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
5166 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5167 ctx = perf_event_ctx_lock(event);
5168 perf_event_for_each_child(event, _perf_event_disable);
5169 perf_event_ctx_unlock(event, ctx);
5170 }
cdd6c482 5171 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
5172
5173 return 0;
5174}
5175
cdd6c482 5176static int perf_event_index(struct perf_event *event)
194002b2 5177{
a4eaf7f1
PZ
5178 if (event->hw.state & PERF_HES_STOPPED)
5179 return 0;
5180
cdd6c482 5181 if (event->state != PERF_EVENT_STATE_ACTIVE)
194002b2
PZ
5182 return 0;
5183
35edc2a5 5184 return event->pmu->event_idx(event);
194002b2
PZ
5185}
5186
c4794295 5187static void calc_timer_values(struct perf_event *event,
e3f3541c 5188 u64 *now,
7f310a5d
EM
5189 u64 *enabled,
5190 u64 *running)
c4794295 5191{
e3f3541c 5192 u64 ctx_time;
c4794295 5193
e3f3541c
PZ
5194 *now = perf_clock();
5195 ctx_time = event->shadow_ctx_time + *now;
0d3d73aa 5196 __perf_update_times(event, ctx_time, enabled, running);
c4794295
EM
5197}
5198
fa731587
PZ
5199static void perf_event_init_userpage(struct perf_event *event)
5200{
5201 struct perf_event_mmap_page *userpg;
5202 struct ring_buffer *rb;
5203
5204 rcu_read_lock();
5205 rb = rcu_dereference(event->rb);
5206 if (!rb)
5207 goto unlock;
5208
5209 userpg = rb->user_page;
5210
5211 /* Allow new userspace to detect that bit 0 is deprecated */
5212 userpg->cap_bit0_is_deprecated = 1;
5213 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
e8c6deac
AS
5214 userpg->data_offset = PAGE_SIZE;
5215 userpg->data_size = perf_data_size(rb);
fa731587
PZ
5216
5217unlock:
5218 rcu_read_unlock();
5219}
5220
c1317ec2
AL
5221void __weak arch_perf_update_userpage(
5222 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
e3f3541c
PZ
5223{
5224}
5225
38ff667b
PZ
5226/*
5227 * Callers need to ensure there can be no nesting of this function, otherwise
5228 * the seqlock logic goes bad. We can not serialize this because the arch
5229 * code calls this from NMI context.
5230 */
cdd6c482 5231void perf_event_update_userpage(struct perf_event *event)
37d81828 5232{
cdd6c482 5233 struct perf_event_mmap_page *userpg;
76369139 5234 struct ring_buffer *rb;
e3f3541c 5235 u64 enabled, running, now;
38ff667b
PZ
5236
5237 rcu_read_lock();
5ec4c599
PZ
5238 rb = rcu_dereference(event->rb);
5239 if (!rb)
5240 goto unlock;
5241
0d641208
EM
5242 /*
5243 * compute total_time_enabled, total_time_running
5244 * based on snapshot values taken when the event
5245 * was last scheduled in.
5246 *
5247 * we cannot simply called update_context_time()
5248 * because of locking issue as we can be called in
5249 * NMI context
5250 */
e3f3541c 5251 calc_timer_values(event, &now, &enabled, &running);
38ff667b 5252
76369139 5253 userpg = rb->user_page;
7b732a75 5254 /*
9d2dcc8f
MF
5255 * Disable preemption to guarantee consistent time stamps are stored to
5256 * the user page.
7b732a75
PZ
5257 */
5258 preempt_disable();
37d81828 5259 ++userpg->lock;
92f22a38 5260 barrier();
cdd6c482 5261 userpg->index = perf_event_index(event);
b5e58793 5262 userpg->offset = perf_event_count(event);
365a4038 5263 if (userpg->index)
e7850595 5264 userpg->offset -= local64_read(&event->hw.prev_count);
7b732a75 5265
0d641208 5266 userpg->time_enabled = enabled +
cdd6c482 5267 atomic64_read(&event->child_total_time_enabled);
7f8b4e4e 5268
0d641208 5269 userpg->time_running = running +
cdd6c482 5270 atomic64_read(&event->child_total_time_running);
7f8b4e4e 5271
c1317ec2 5272 arch_perf_update_userpage(event, userpg, now);
e3f3541c 5273
92f22a38 5274 barrier();
37d81828 5275 ++userpg->lock;
7b732a75 5276 preempt_enable();
38ff667b 5277unlock:
7b732a75 5278 rcu_read_unlock();
37d81828 5279}
82975c46 5280EXPORT_SYMBOL_GPL(perf_event_update_userpage);
37d81828 5281
9e3ed2d7 5282static vm_fault_t perf_mmap_fault(struct vm_fault *vmf)
906010b2 5283{
11bac800 5284 struct perf_event *event = vmf->vma->vm_file->private_data;
76369139 5285 struct ring_buffer *rb;
9e3ed2d7 5286 vm_fault_t ret = VM_FAULT_SIGBUS;
906010b2
PZ
5287
5288 if (vmf->flags & FAULT_FLAG_MKWRITE) {
5289 if (vmf->pgoff == 0)
5290 ret = 0;
5291 return ret;
5292 }
5293
5294 rcu_read_lock();
76369139
FW
5295 rb = rcu_dereference(event->rb);
5296 if (!rb)
906010b2
PZ
5297 goto unlock;
5298
5299 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
5300 goto unlock;
5301
76369139 5302 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
906010b2
PZ
5303 if (!vmf->page)
5304 goto unlock;
5305
5306 get_page(vmf->page);
11bac800 5307 vmf->page->mapping = vmf->vma->vm_file->f_mapping;
906010b2
PZ
5308 vmf->page->index = vmf->pgoff;
5309
5310 ret = 0;
5311unlock:
5312 rcu_read_unlock();
5313
5314 return ret;
5315}
5316
10c6db11
PZ
5317static void ring_buffer_attach(struct perf_event *event,
5318 struct ring_buffer *rb)
5319{
b69cf536 5320 struct ring_buffer *old_rb = NULL;
10c6db11
PZ
5321 unsigned long flags;
5322
b69cf536
PZ
5323 if (event->rb) {
5324 /*
5325 * Should be impossible, we set this when removing
5326 * event->rb_entry and wait/clear when adding event->rb_entry.
5327 */
5328 WARN_ON_ONCE(event->rcu_pending);
10c6db11 5329
b69cf536 5330 old_rb = event->rb;
b69cf536
PZ
5331 spin_lock_irqsave(&old_rb->event_lock, flags);
5332 list_del_rcu(&event->rb_entry);
5333 spin_unlock_irqrestore(&old_rb->event_lock, flags);
10c6db11 5334
2f993cf0
ON
5335 event->rcu_batches = get_state_synchronize_rcu();
5336 event->rcu_pending = 1;
b69cf536 5337 }
10c6db11 5338
b69cf536 5339 if (rb) {
2f993cf0
ON
5340 if (event->rcu_pending) {
5341 cond_synchronize_rcu(event->rcu_batches);
5342 event->rcu_pending = 0;
5343 }
5344
b69cf536
PZ
5345 spin_lock_irqsave(&rb->event_lock, flags);
5346 list_add_rcu(&event->rb_entry, &rb->event_list);
5347 spin_unlock_irqrestore(&rb->event_lock, flags);
5348 }
5349
767ae086
AS
5350 /*
5351 * Avoid racing with perf_mmap_close(AUX): stop the event
5352 * before swizzling the event::rb pointer; if it's getting
5353 * unmapped, its aux_mmap_count will be 0 and it won't
5354 * restart. See the comment in __perf_pmu_output_stop().
5355 *
5356 * Data will inevitably be lost when set_output is done in
5357 * mid-air, but then again, whoever does it like this is
5358 * not in for the data anyway.
5359 */
5360 if (has_aux(event))
5361 perf_event_stop(event, 0);
5362
b69cf536
PZ
5363 rcu_assign_pointer(event->rb, rb);
5364
5365 if (old_rb) {
5366 ring_buffer_put(old_rb);
5367 /*
5368 * Since we detached before setting the new rb, so that we
5369 * could attach the new rb, we could have missed a wakeup.
5370 * Provide it now.
5371 */
5372 wake_up_all(&event->waitq);
5373 }
10c6db11
PZ
5374}
5375
5376static void ring_buffer_wakeup(struct perf_event *event)
5377{
5378 struct ring_buffer *rb;
5379
5380 rcu_read_lock();
5381 rb = rcu_dereference(event->rb);
9bb5d40c
PZ
5382 if (rb) {
5383 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5384 wake_up_all(&event->waitq);
5385 }
10c6db11
PZ
5386 rcu_read_unlock();
5387}
5388
fdc26706 5389struct ring_buffer *ring_buffer_get(struct perf_event *event)
7b732a75 5390{
76369139 5391 struct ring_buffer *rb;
7b732a75 5392
ac9721f3 5393 rcu_read_lock();
76369139
FW
5394 rb = rcu_dereference(event->rb);
5395 if (rb) {
5396 if (!atomic_inc_not_zero(&rb->refcount))
5397 rb = NULL;
ac9721f3
PZ
5398 }
5399 rcu_read_unlock();
5400
76369139 5401 return rb;
ac9721f3
PZ
5402}
5403
fdc26706 5404void ring_buffer_put(struct ring_buffer *rb)
ac9721f3 5405{
76369139 5406 if (!atomic_dec_and_test(&rb->refcount))
ac9721f3 5407 return;
7b732a75 5408
9bb5d40c 5409 WARN_ON_ONCE(!list_empty(&rb->event_list));
10c6db11 5410
76369139 5411 call_rcu(&rb->rcu_head, rb_free_rcu);
7b732a75
PZ
5412}
5413
5414static void perf_mmap_open(struct vm_area_struct *vma)
5415{
cdd6c482 5416 struct perf_event *event = vma->vm_file->private_data;
7b732a75 5417
cdd6c482 5418 atomic_inc(&event->mmap_count);
9bb5d40c 5419 atomic_inc(&event->rb->mmap_count);
1e0fb9ec 5420
45bfb2e5
PZ
5421 if (vma->vm_pgoff)
5422 atomic_inc(&event->rb->aux_mmap_count);
5423
1e0fb9ec 5424 if (event->pmu->event_mapped)
bfe33492 5425 event->pmu->event_mapped(event, vma->vm_mm);
7b732a75
PZ
5426}
5427
95ff4ca2
AS
5428static void perf_pmu_output_stop(struct perf_event *event);
5429
9bb5d40c
PZ
5430/*
5431 * A buffer can be mmap()ed multiple times; either directly through the same
5432 * event, or through other events by use of perf_event_set_output().
5433 *
5434 * In order to undo the VM accounting done by perf_mmap() we need to destroy
5435 * the buffer here, where we still have a VM context. This means we need
5436 * to detach all events redirecting to us.
5437 */
7b732a75
PZ
5438static void perf_mmap_close(struct vm_area_struct *vma)
5439{
cdd6c482 5440 struct perf_event *event = vma->vm_file->private_data;
7b732a75 5441
b69cf536 5442 struct ring_buffer *rb = ring_buffer_get(event);
9bb5d40c
PZ
5443 struct user_struct *mmap_user = rb->mmap_user;
5444 int mmap_locked = rb->mmap_locked;
5445 unsigned long size = perf_data_size(rb);
789f90fc 5446
1e0fb9ec 5447 if (event->pmu->event_unmapped)
bfe33492 5448 event->pmu->event_unmapped(event, vma->vm_mm);
1e0fb9ec 5449
45bfb2e5
PZ
5450 /*
5451 * rb->aux_mmap_count will always drop before rb->mmap_count and
5452 * event->mmap_count, so it is ok to use event->mmap_mutex to
5453 * serialize with perf_mmap here.
5454 */
5455 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5456 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
95ff4ca2
AS
5457 /*
5458 * Stop all AUX events that are writing to this buffer,
5459 * so that we can free its AUX pages and corresponding PMU
5460 * data. Note that after rb::aux_mmap_count dropped to zero,
5461 * they won't start any more (see perf_aux_output_begin()).
5462 */
5463 perf_pmu_output_stop(event);
5464
5465 /* now it's safe to free the pages */
45bfb2e5
PZ
5466 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
5467 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
5468
95ff4ca2 5469 /* this has to be the last one */
45bfb2e5 5470 rb_free_aux(rb);
95ff4ca2
AS
5471 WARN_ON_ONCE(atomic_read(&rb->aux_refcount));
5472
45bfb2e5
PZ
5473 mutex_unlock(&event->mmap_mutex);
5474 }
5475
9bb5d40c
PZ
5476 atomic_dec(&rb->mmap_count);
5477
5478 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
b69cf536 5479 goto out_put;
9bb5d40c 5480
b69cf536 5481 ring_buffer_attach(event, NULL);
9bb5d40c
PZ
5482 mutex_unlock(&event->mmap_mutex);
5483
5484 /* If there's still other mmap()s of this buffer, we're done. */
b69cf536
PZ
5485 if (atomic_read(&rb->mmap_count))
5486 goto out_put;
ac9721f3 5487
9bb5d40c
PZ
5488 /*
5489 * No other mmap()s, detach from all other events that might redirect
5490 * into the now unreachable buffer. Somewhat complicated by the
5491 * fact that rb::event_lock otherwise nests inside mmap_mutex.
5492 */
5493again:
5494 rcu_read_lock();
5495 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5496 if (!atomic_long_inc_not_zero(&event->refcount)) {
5497 /*
5498 * This event is en-route to free_event() which will
5499 * detach it and remove it from the list.
5500 */
5501 continue;
5502 }
5503 rcu_read_unlock();
789f90fc 5504
9bb5d40c
PZ
5505 mutex_lock(&event->mmap_mutex);
5506 /*
5507 * Check we didn't race with perf_event_set_output() which can
5508 * swizzle the rb from under us while we were waiting to
5509 * acquire mmap_mutex.
5510 *
5511 * If we find a different rb; ignore this event, a next
5512 * iteration will no longer find it on the list. We have to
5513 * still restart the iteration to make sure we're not now
5514 * iterating the wrong list.
5515 */
b69cf536
PZ
5516 if (event->rb == rb)
5517 ring_buffer_attach(event, NULL);
5518
cdd6c482 5519 mutex_unlock(&event->mmap_mutex);
9bb5d40c 5520 put_event(event);
ac9721f3 5521
9bb5d40c
PZ
5522 /*
5523 * Restart the iteration; either we're on the wrong list or
5524 * destroyed its integrity by doing a deletion.
5525 */
5526 goto again;
7b732a75 5527 }
9bb5d40c
PZ
5528 rcu_read_unlock();
5529
5530 /*
5531 * It could be there's still a few 0-ref events on the list; they'll
5532 * get cleaned up by free_event() -- they'll also still have their
5533 * ref on the rb and will free it whenever they are done with it.
5534 *
5535 * Aside from that, this buffer is 'fully' detached and unmapped,
5536 * undo the VM accounting.
5537 */
5538
5539 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
5540 vma->vm_mm->pinned_vm -= mmap_locked;
5541 free_uid(mmap_user);
5542
b69cf536 5543out_put:
9bb5d40c 5544 ring_buffer_put(rb); /* could be last */
37d81828
PM
5545}
5546
f0f37e2f 5547static const struct vm_operations_struct perf_mmap_vmops = {
43a21ea8 5548 .open = perf_mmap_open,
fca0c116 5549 .close = perf_mmap_close, /* non mergeable */
43a21ea8
PZ
5550 .fault = perf_mmap_fault,
5551 .page_mkwrite = perf_mmap_fault,
37d81828
PM
5552};
5553
5554static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5555{
cdd6c482 5556 struct perf_event *event = file->private_data;
22a4f650 5557 unsigned long user_locked, user_lock_limit;
789f90fc 5558 struct user_struct *user = current_user();
22a4f650 5559 unsigned long locked, lock_limit;
45bfb2e5 5560 struct ring_buffer *rb = NULL;
7b732a75
PZ
5561 unsigned long vma_size;
5562 unsigned long nr_pages;
45bfb2e5 5563 long user_extra = 0, extra = 0;
d57e34fd 5564 int ret = 0, flags = 0;
37d81828 5565
c7920614
PZ
5566 /*
5567 * Don't allow mmap() of inherited per-task counters. This would
5568 * create a performance issue due to all children writing to the
76369139 5569 * same rb.
c7920614
PZ
5570 */
5571 if (event->cpu == -1 && event->attr.inherit)
5572 return -EINVAL;
5573
43a21ea8 5574 if (!(vma->vm_flags & VM_SHARED))
37d81828 5575 return -EINVAL;
7b732a75
PZ
5576
5577 vma_size = vma->vm_end - vma->vm_start;
45bfb2e5
PZ
5578
5579 if (vma->vm_pgoff == 0) {
5580 nr_pages = (vma_size / PAGE_SIZE) - 1;
5581 } else {
5582 /*
5583 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5584 * mapped, all subsequent mappings should have the same size
5585 * and offset. Must be above the normal perf buffer.
5586 */
5587 u64 aux_offset, aux_size;
5588
5589 if (!event->rb)
5590 return -EINVAL;
5591
5592 nr_pages = vma_size / PAGE_SIZE;
5593
5594 mutex_lock(&event->mmap_mutex);
5595 ret = -EINVAL;
5596
5597 rb = event->rb;
5598 if (!rb)
5599 goto aux_unlock;
5600
6aa7de05
MR
5601 aux_offset = READ_ONCE(rb->user_page->aux_offset);
5602 aux_size = READ_ONCE(rb->user_page->aux_size);
45bfb2e5
PZ
5603
5604 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5605 goto aux_unlock;
5606
5607 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5608 goto aux_unlock;
5609
5610 /* already mapped with a different offset */
5611 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5612 goto aux_unlock;
5613
5614 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5615 goto aux_unlock;
5616
5617 /* already mapped with a different size */
5618 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5619 goto aux_unlock;
5620
5621 if (!is_power_of_2(nr_pages))
5622 goto aux_unlock;
5623
5624 if (!atomic_inc_not_zero(&rb->mmap_count))
5625 goto aux_unlock;
5626
5627 if (rb_has_aux(rb)) {
5628 atomic_inc(&rb->aux_mmap_count);
5629 ret = 0;
5630 goto unlock;
5631 }
5632
5633 atomic_set(&rb->aux_mmap_count, 1);
5634 user_extra = nr_pages;
5635
5636 goto accounting;
5637 }
7b732a75 5638
7730d865 5639 /*
76369139 5640 * If we have rb pages ensure they're a power-of-two number, so we
7730d865
PZ
5641 * can do bitmasks instead of modulo.
5642 */
2ed11312 5643 if (nr_pages != 0 && !is_power_of_2(nr_pages))
37d81828
PM
5644 return -EINVAL;
5645
7b732a75 5646 if (vma_size != PAGE_SIZE * (1 + nr_pages))
37d81828
PM
5647 return -EINVAL;
5648
cdd6c482 5649 WARN_ON_ONCE(event->ctx->parent_ctx);
9bb5d40c 5650again:
cdd6c482 5651 mutex_lock(&event->mmap_mutex);
76369139 5652 if (event->rb) {
9bb5d40c 5653 if (event->rb->nr_pages != nr_pages) {
ebb3c4c4 5654 ret = -EINVAL;
9bb5d40c
PZ
5655 goto unlock;
5656 }
5657
5658 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5659 /*
5660 * Raced against perf_mmap_close() through
5661 * perf_event_set_output(). Try again, hope for better
5662 * luck.
5663 */
5664 mutex_unlock(&event->mmap_mutex);
5665 goto again;
5666 }
5667
ebb3c4c4
PZ
5668 goto unlock;
5669 }
5670
789f90fc 5671 user_extra = nr_pages + 1;
45bfb2e5
PZ
5672
5673accounting:
cdd6c482 5674 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
a3862d3f
IM
5675
5676 /*
5677 * Increase the limit linearly with more CPUs:
5678 */
5679 user_lock_limit *= num_online_cpus();
5680
789f90fc 5681 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
c5078f78 5682
789f90fc
PZ
5683 if (user_locked > user_lock_limit)
5684 extra = user_locked - user_lock_limit;
7b732a75 5685
78d7d407 5686 lock_limit = rlimit(RLIMIT_MEMLOCK);
7b732a75 5687 lock_limit >>= PAGE_SHIFT;
bc3e53f6 5688 locked = vma->vm_mm->pinned_vm + extra;
7b732a75 5689
459ec28a
IM
5690 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5691 !capable(CAP_IPC_LOCK)) {
ebb3c4c4
PZ
5692 ret = -EPERM;
5693 goto unlock;
5694 }
7b732a75 5695
45bfb2e5 5696 WARN_ON(!rb && event->rb);
906010b2 5697
d57e34fd 5698 if (vma->vm_flags & VM_WRITE)
76369139 5699 flags |= RING_BUFFER_WRITABLE;
d57e34fd 5700
76369139 5701 if (!rb) {
45bfb2e5
PZ
5702 rb = rb_alloc(nr_pages,
5703 event->attr.watermark ? event->attr.wakeup_watermark : 0,
5704 event->cpu, flags);
26cb63ad 5705
45bfb2e5
PZ
5706 if (!rb) {
5707 ret = -ENOMEM;
5708 goto unlock;
5709 }
43a21ea8 5710
45bfb2e5
PZ
5711 atomic_set(&rb->mmap_count, 1);
5712 rb->mmap_user = get_current_user();
5713 rb->mmap_locked = extra;
26cb63ad 5714
45bfb2e5 5715 ring_buffer_attach(event, rb);
ac9721f3 5716
45bfb2e5
PZ
5717 perf_event_init_userpage(event);
5718 perf_event_update_userpage(event);
5719 } else {
1a594131
AS
5720 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5721 event->attr.aux_watermark, flags);
45bfb2e5
PZ
5722 if (!ret)
5723 rb->aux_mmap_locked = extra;
5724 }
9a0f05cb 5725
ebb3c4c4 5726unlock:
45bfb2e5
PZ
5727 if (!ret) {
5728 atomic_long_add(user_extra, &user->locked_vm);
5729 vma->vm_mm->pinned_vm += extra;
5730
ac9721f3 5731 atomic_inc(&event->mmap_count);
45bfb2e5
PZ
5732 } else if (rb) {
5733 atomic_dec(&rb->mmap_count);
5734 }
5735aux_unlock:
cdd6c482 5736 mutex_unlock(&event->mmap_mutex);
37d81828 5737
9bb5d40c
PZ
5738 /*
5739 * Since pinned accounting is per vm we cannot allow fork() to copy our
5740 * vma.
5741 */
26cb63ad 5742 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
37d81828 5743 vma->vm_ops = &perf_mmap_vmops;
7b732a75 5744
1e0fb9ec 5745 if (event->pmu->event_mapped)
bfe33492 5746 event->pmu->event_mapped(event, vma->vm_mm);
1e0fb9ec 5747
7b732a75 5748 return ret;
37d81828
PM
5749}
5750
3c446b3d
PZ
5751static int perf_fasync(int fd, struct file *filp, int on)
5752{
496ad9aa 5753 struct inode *inode = file_inode(filp);
cdd6c482 5754 struct perf_event *event = filp->private_data;
3c446b3d
PZ
5755 int retval;
5756
5955102c 5757 inode_lock(inode);
cdd6c482 5758 retval = fasync_helper(fd, filp, on, &event->fasync);
5955102c 5759 inode_unlock(inode);
3c446b3d
PZ
5760
5761 if (retval < 0)
5762 return retval;
5763
5764 return 0;
5765}
5766
0793a61d 5767static const struct file_operations perf_fops = {
3326c1ce 5768 .llseek = no_llseek,
0793a61d
TG
5769 .release = perf_release,
5770 .read = perf_read,
5771 .poll = perf_poll,
d859e29f 5772 .unlocked_ioctl = perf_ioctl,
b3f20785 5773 .compat_ioctl = perf_compat_ioctl,
37d81828 5774 .mmap = perf_mmap,
3c446b3d 5775 .fasync = perf_fasync,
0793a61d
TG
5776};
5777
925d519a 5778/*
cdd6c482 5779 * Perf event wakeup
925d519a
PZ
5780 *
5781 * If there's data, ensure we set the poll() state and publish everything
5782 * to user-space before waking everybody up.
5783 */
5784
fed66e2c
PZ
5785static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5786{
5787 /* only the parent has fasync state */
5788 if (event->parent)
5789 event = event->parent;
5790 return &event->fasync;
5791}
5792
cdd6c482 5793void perf_event_wakeup(struct perf_event *event)
925d519a 5794{
10c6db11 5795 ring_buffer_wakeup(event);
4c9e2542 5796
cdd6c482 5797 if (event->pending_kill) {
fed66e2c 5798 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
cdd6c482 5799 event->pending_kill = 0;
4c9e2542 5800 }
925d519a
PZ
5801}
5802
e360adbe 5803static void perf_pending_event(struct irq_work *entry)
79f14641 5804{
cdd6c482
IM
5805 struct perf_event *event = container_of(entry,
5806 struct perf_event, pending);
d525211f
PZ
5807 int rctx;
5808
5809 rctx = perf_swevent_get_recursion_context();
5810 /*
5811 * If we 'fail' here, that's OK, it means recursion is already disabled
5812 * and we won't recurse 'further'.
5813 */
79f14641 5814
cdd6c482
IM
5815 if (event->pending_disable) {
5816 event->pending_disable = 0;
fae3fde6 5817 perf_event_disable_local(event);
79f14641
PZ
5818 }
5819
cdd6c482
IM
5820 if (event->pending_wakeup) {
5821 event->pending_wakeup = 0;
5822 perf_event_wakeup(event);
79f14641 5823 }
d525211f
PZ
5824
5825 if (rctx >= 0)
5826 perf_swevent_put_recursion_context(rctx);
79f14641
PZ
5827}
5828
39447b38
ZY
5829/*
5830 * We assume there is only KVM supporting the callbacks.
5831 * Later on, we might change it to a list if there is
5832 * another virtualization implementation supporting the callbacks.
5833 */
5834struct perf_guest_info_callbacks *perf_guest_cbs;
5835
5836int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5837{
5838 perf_guest_cbs = cbs;
5839 return 0;
5840}
5841EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5842
5843int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5844{
5845 perf_guest_cbs = NULL;
5846 return 0;
5847}
5848EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5849
4018994f
JO
5850static void
5851perf_output_sample_regs(struct perf_output_handle *handle,
5852 struct pt_regs *regs, u64 mask)
5853{
5854 int bit;
29dd3288 5855 DECLARE_BITMAP(_mask, 64);
4018994f 5856
29dd3288
MS
5857 bitmap_from_u64(_mask, mask);
5858 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
4018994f
JO
5859 u64 val;
5860
5861 val = perf_reg_value(regs, bit);
5862 perf_output_put(handle, val);
5863 }
5864}
5865
60e2364e 5866static void perf_sample_regs_user(struct perf_regs *regs_user,
88a7c26a
AL
5867 struct pt_regs *regs,
5868 struct pt_regs *regs_user_copy)
4018994f 5869{
88a7c26a
AL
5870 if (user_mode(regs)) {
5871 regs_user->abi = perf_reg_abi(current);
2565711f 5872 regs_user->regs = regs;
88a7c26a
AL
5873 } else if (current->mm) {
5874 perf_get_regs_user(regs_user, regs, regs_user_copy);
2565711f
PZ
5875 } else {
5876 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5877 regs_user->regs = NULL;
4018994f
JO
5878 }
5879}
5880
60e2364e
SE
5881static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5882 struct pt_regs *regs)
5883{
5884 regs_intr->regs = regs;
5885 regs_intr->abi = perf_reg_abi(current);
5886}
5887
5888
c5ebcedb
JO
5889/*
5890 * Get remaining task size from user stack pointer.
5891 *
5892 * It'd be better to take stack vma map and limit this more
5893 * precisly, but there's no way to get it safely under interrupt,
5894 * so using TASK_SIZE as limit.
5895 */
5896static u64 perf_ustack_task_size(struct pt_regs *regs)
5897{
5898 unsigned long addr = perf_user_stack_pointer(regs);
5899
5900 if (!addr || addr >= TASK_SIZE)
5901 return 0;
5902
5903 return TASK_SIZE - addr;
5904}
5905
5906static u16
5907perf_sample_ustack_size(u16 stack_size, u16 header_size,
5908 struct pt_regs *regs)
5909{
5910 u64 task_size;
5911
5912 /* No regs, no stack pointer, no dump. */
5913 if (!regs)
5914 return 0;
5915
5916 /*
5917 * Check if we fit in with the requested stack size into the:
5918 * - TASK_SIZE
5919 * If we don't, we limit the size to the TASK_SIZE.
5920 *
5921 * - remaining sample size
5922 * If we don't, we customize the stack size to
5923 * fit in to the remaining sample size.
5924 */
5925
5926 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5927 stack_size = min(stack_size, (u16) task_size);
5928
5929 /* Current header size plus static size and dynamic size. */
5930 header_size += 2 * sizeof(u64);
5931
5932 /* Do we fit in with the current stack dump size? */
5933 if ((u16) (header_size + stack_size) < header_size) {
5934 /*
5935 * If we overflow the maximum size for the sample,
5936 * we customize the stack dump size to fit in.
5937 */
5938 stack_size = USHRT_MAX - header_size - sizeof(u64);
5939 stack_size = round_up(stack_size, sizeof(u64));
5940 }
5941
5942 return stack_size;
5943}
5944
5945static void
5946perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5947 struct pt_regs *regs)
5948{
5949 /* Case of a kernel thread, nothing to dump */
5950 if (!regs) {
5951 u64 size = 0;
5952 perf_output_put(handle, size);
5953 } else {
5954 unsigned long sp;
5955 unsigned int rem;
5956 u64 dyn_size;
02e18447 5957 mm_segment_t fs;
c5ebcedb
JO
5958
5959 /*
5960 * We dump:
5961 * static size
5962 * - the size requested by user or the best one we can fit
5963 * in to the sample max size
5964 * data
5965 * - user stack dump data
5966 * dynamic size
5967 * - the actual dumped size
5968 */
5969
5970 /* Static size. */
5971 perf_output_put(handle, dump_size);
5972
5973 /* Data. */
5974 sp = perf_user_stack_pointer(regs);
02e18447
YC
5975 fs = get_fs();
5976 set_fs(USER_DS);
c5ebcedb 5977 rem = __output_copy_user(handle, (void *) sp, dump_size);
02e18447 5978 set_fs(fs);
c5ebcedb
JO
5979 dyn_size = dump_size - rem;
5980
5981 perf_output_skip(handle, rem);
5982
5983 /* Dynamic size. */
5984 perf_output_put(handle, dyn_size);
5985 }
5986}
5987
c980d109
ACM
5988static void __perf_event_header__init_id(struct perf_event_header *header,
5989 struct perf_sample_data *data,
5990 struct perf_event *event)
6844c09d
ACM
5991{
5992 u64 sample_type = event->attr.sample_type;
5993
5994 data->type = sample_type;
5995 header->size += event->id_header_size;
5996
5997 if (sample_type & PERF_SAMPLE_TID) {
5998 /* namespace issues */
5999 data->tid_entry.pid = perf_event_pid(event, current);
6000 data->tid_entry.tid = perf_event_tid(event, current);
6001 }
6002
6003 if (sample_type & PERF_SAMPLE_TIME)
34f43927 6004 data->time = perf_event_clock(event);
6844c09d 6005
ff3d527c 6006 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6844c09d
ACM
6007 data->id = primary_event_id(event);
6008
6009 if (sample_type & PERF_SAMPLE_STREAM_ID)
6010 data->stream_id = event->id;
6011
6012 if (sample_type & PERF_SAMPLE_CPU) {
6013 data->cpu_entry.cpu = raw_smp_processor_id();
6014 data->cpu_entry.reserved = 0;
6015 }
6016}
6017
76369139
FW
6018void perf_event_header__init_id(struct perf_event_header *header,
6019 struct perf_sample_data *data,
6020 struct perf_event *event)
c980d109
ACM
6021{
6022 if (event->attr.sample_id_all)
6023 __perf_event_header__init_id(header, data, event);
6024}
6025
6026static void __perf_event__output_id_sample(struct perf_output_handle *handle,
6027 struct perf_sample_data *data)
6028{
6029 u64 sample_type = data->type;
6030
6031 if (sample_type & PERF_SAMPLE_TID)
6032 perf_output_put(handle, data->tid_entry);
6033
6034 if (sample_type & PERF_SAMPLE_TIME)
6035 perf_output_put(handle, data->time);
6036
6037 if (sample_type & PERF_SAMPLE_ID)
6038 perf_output_put(handle, data->id);
6039
6040 if (sample_type & PERF_SAMPLE_STREAM_ID)
6041 perf_output_put(handle, data->stream_id);
6042
6043 if (sample_type & PERF_SAMPLE_CPU)
6044 perf_output_put(handle, data->cpu_entry);
ff3d527c
AH
6045
6046 if (sample_type & PERF_SAMPLE_IDENTIFIER)
6047 perf_output_put(handle, data->id);
c980d109
ACM
6048}
6049
76369139
FW
6050void perf_event__output_id_sample(struct perf_event *event,
6051 struct perf_output_handle *handle,
6052 struct perf_sample_data *sample)
c980d109
ACM
6053{
6054 if (event->attr.sample_id_all)
6055 __perf_event__output_id_sample(handle, sample);
6056}
6057
3dab77fb 6058static void perf_output_read_one(struct perf_output_handle *handle,
eed01528
SE
6059 struct perf_event *event,
6060 u64 enabled, u64 running)
3dab77fb 6061{
cdd6c482 6062 u64 read_format = event->attr.read_format;
3dab77fb
PZ
6063 u64 values[4];
6064 int n = 0;
6065
b5e58793 6066 values[n++] = perf_event_count(event);
3dab77fb 6067 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
eed01528 6068 values[n++] = enabled +
cdd6c482 6069 atomic64_read(&event->child_total_time_enabled);
3dab77fb
PZ
6070 }
6071 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
eed01528 6072 values[n++] = running +
cdd6c482 6073 atomic64_read(&event->child_total_time_running);
3dab77fb
PZ
6074 }
6075 if (read_format & PERF_FORMAT_ID)
cdd6c482 6076 values[n++] = primary_event_id(event);
3dab77fb 6077
76369139 6078 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
6079}
6080
3dab77fb 6081static void perf_output_read_group(struct perf_output_handle *handle,
eed01528
SE
6082 struct perf_event *event,
6083 u64 enabled, u64 running)
3dab77fb 6084{
cdd6c482
IM
6085 struct perf_event *leader = event->group_leader, *sub;
6086 u64 read_format = event->attr.read_format;
3dab77fb
PZ
6087 u64 values[5];
6088 int n = 0;
6089
6090 values[n++] = 1 + leader->nr_siblings;
6091
6092 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
eed01528 6093 values[n++] = enabled;
3dab77fb
PZ
6094
6095 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
eed01528 6096 values[n++] = running;
3dab77fb 6097
9e5b127d
PZ
6098 if ((leader != event) &&
6099 (leader->state == PERF_EVENT_STATE_ACTIVE))
3dab77fb
PZ
6100 leader->pmu->read(leader);
6101
b5e58793 6102 values[n++] = perf_event_count(leader);
3dab77fb 6103 if (read_format & PERF_FORMAT_ID)
cdd6c482 6104 values[n++] = primary_event_id(leader);
3dab77fb 6105
76369139 6106 __output_copy(handle, values, n * sizeof(u64));
3dab77fb 6107
edb39592 6108 for_each_sibling_event(sub, leader) {
3dab77fb
PZ
6109 n = 0;
6110
6f5ab001
JO
6111 if ((sub != event) &&
6112 (sub->state == PERF_EVENT_STATE_ACTIVE))
3dab77fb
PZ
6113 sub->pmu->read(sub);
6114
b5e58793 6115 values[n++] = perf_event_count(sub);
3dab77fb 6116 if (read_format & PERF_FORMAT_ID)
cdd6c482 6117 values[n++] = primary_event_id(sub);
3dab77fb 6118
76369139 6119 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
6120 }
6121}
6122
eed01528
SE
6123#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
6124 PERF_FORMAT_TOTAL_TIME_RUNNING)
6125
ba5213ae
PZ
6126/*
6127 * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
6128 *
6129 * The problem is that its both hard and excessively expensive to iterate the
6130 * child list, not to mention that its impossible to IPI the children running
6131 * on another CPU, from interrupt/NMI context.
6132 */
3dab77fb 6133static void perf_output_read(struct perf_output_handle *handle,
cdd6c482 6134 struct perf_event *event)
3dab77fb 6135{
e3f3541c 6136 u64 enabled = 0, running = 0, now;
eed01528
SE
6137 u64 read_format = event->attr.read_format;
6138
6139 /*
6140 * compute total_time_enabled, total_time_running
6141 * based on snapshot values taken when the event
6142 * was last scheduled in.
6143 *
6144 * we cannot simply called update_context_time()
6145 * because of locking issue as we are called in
6146 * NMI context
6147 */
c4794295 6148 if (read_format & PERF_FORMAT_TOTAL_TIMES)
e3f3541c 6149 calc_timer_values(event, &now, &enabled, &running);
eed01528 6150
cdd6c482 6151 if (event->attr.read_format & PERF_FORMAT_GROUP)
eed01528 6152 perf_output_read_group(handle, event, enabled, running);
3dab77fb 6153 else
eed01528 6154 perf_output_read_one(handle, event, enabled, running);
3dab77fb
PZ
6155}
6156
5622f295
MM
6157void perf_output_sample(struct perf_output_handle *handle,
6158 struct perf_event_header *header,
6159 struct perf_sample_data *data,
cdd6c482 6160 struct perf_event *event)
5622f295
MM
6161{
6162 u64 sample_type = data->type;
6163
6164 perf_output_put(handle, *header);
6165
ff3d527c
AH
6166 if (sample_type & PERF_SAMPLE_IDENTIFIER)
6167 perf_output_put(handle, data->id);
6168
5622f295
MM
6169 if (sample_type & PERF_SAMPLE_IP)
6170 perf_output_put(handle, data->ip);
6171
6172 if (sample_type & PERF_SAMPLE_TID)
6173 perf_output_put(handle, data->tid_entry);
6174
6175 if (sample_type & PERF_SAMPLE_TIME)
6176 perf_output_put(handle, data->time);
6177
6178 if (sample_type & PERF_SAMPLE_ADDR)
6179 perf_output_put(handle, data->addr);
6180
6181 if (sample_type & PERF_SAMPLE_ID)
6182 perf_output_put(handle, data->id);
6183
6184 if (sample_type & PERF_SAMPLE_STREAM_ID)
6185 perf_output_put(handle, data->stream_id);
6186
6187 if (sample_type & PERF_SAMPLE_CPU)
6188 perf_output_put(handle, data->cpu_entry);
6189
6190 if (sample_type & PERF_SAMPLE_PERIOD)
6191 perf_output_put(handle, data->period);
6192
6193 if (sample_type & PERF_SAMPLE_READ)
cdd6c482 6194 perf_output_read(handle, event);
5622f295
MM
6195
6196 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
99e818cc 6197 int size = 1;
5622f295 6198
99e818cc
JO
6199 size += data->callchain->nr;
6200 size *= sizeof(u64);
6201 __output_copy(handle, data->callchain, size);
5622f295
MM
6202 }
6203
6204 if (sample_type & PERF_SAMPLE_RAW) {
7e3f977e
DB
6205 struct perf_raw_record *raw = data->raw;
6206
6207 if (raw) {
6208 struct perf_raw_frag *frag = &raw->frag;
6209
6210 perf_output_put(handle, raw->size);
6211 do {
6212 if (frag->copy) {
6213 __output_custom(handle, frag->copy,
6214 frag->data, frag->size);
6215 } else {
6216 __output_copy(handle, frag->data,
6217 frag->size);
6218 }
6219 if (perf_raw_frag_last(frag))
6220 break;
6221 frag = frag->next;
6222 } while (1);
6223 if (frag->pad)
6224 __output_skip(handle, NULL, frag->pad);
5622f295
MM
6225 } else {
6226 struct {
6227 u32 size;
6228 u32 data;
6229 } raw = {
6230 .size = sizeof(u32),
6231 .data = 0,
6232 };
6233 perf_output_put(handle, raw);
6234 }
6235 }
a7ac67ea 6236
bce38cd5
SE
6237 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6238 if (data->br_stack) {
6239 size_t size;
6240
6241 size = data->br_stack->nr
6242 * sizeof(struct perf_branch_entry);
6243
6244 perf_output_put(handle, data->br_stack->nr);
6245 perf_output_copy(handle, data->br_stack->entries, size);
6246 } else {
6247 /*
6248 * we always store at least the value of nr
6249 */
6250 u64 nr = 0;
6251 perf_output_put(handle, nr);
6252 }
6253 }
4018994f
JO
6254
6255 if (sample_type & PERF_SAMPLE_REGS_USER) {
6256 u64 abi = data->regs_user.abi;
6257
6258 /*
6259 * If there are no regs to dump, notice it through
6260 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6261 */
6262 perf_output_put(handle, abi);
6263
6264 if (abi) {
6265 u64 mask = event->attr.sample_regs_user;
6266 perf_output_sample_regs(handle,
6267 data->regs_user.regs,
6268 mask);
6269 }
6270 }
c5ebcedb 6271
a5cdd40c 6272 if (sample_type & PERF_SAMPLE_STACK_USER) {
c5ebcedb
JO
6273 perf_output_sample_ustack(handle,
6274 data->stack_user_size,
6275 data->regs_user.regs);
a5cdd40c 6276 }
c3feedf2
AK
6277
6278 if (sample_type & PERF_SAMPLE_WEIGHT)
6279 perf_output_put(handle, data->weight);
d6be9ad6
SE
6280
6281 if (sample_type & PERF_SAMPLE_DATA_SRC)
6282 perf_output_put(handle, data->data_src.val);
a5cdd40c 6283
fdfbbd07
AK
6284 if (sample_type & PERF_SAMPLE_TRANSACTION)
6285 perf_output_put(handle, data->txn);
6286
60e2364e
SE
6287 if (sample_type & PERF_SAMPLE_REGS_INTR) {
6288 u64 abi = data->regs_intr.abi;
6289 /*
6290 * If there are no regs to dump, notice it through
6291 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6292 */
6293 perf_output_put(handle, abi);
6294
6295 if (abi) {
6296 u64 mask = event->attr.sample_regs_intr;
6297
6298 perf_output_sample_regs(handle,
6299 data->regs_intr.regs,
6300 mask);
6301 }
6302 }
6303
fc7ce9c7
KL
6304 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6305 perf_output_put(handle, data->phys_addr);
6306
a5cdd40c
PZ
6307 if (!event->attr.watermark) {
6308 int wakeup_events = event->attr.wakeup_events;
6309
6310 if (wakeup_events) {
6311 struct ring_buffer *rb = handle->rb;
6312 int events = local_inc_return(&rb->events);
6313
6314 if (events >= wakeup_events) {
6315 local_sub(wakeup_events, &rb->events);
6316 local_inc(&rb->wakeup);
6317 }
6318 }
6319 }
5622f295
MM
6320}
6321
fc7ce9c7
KL
6322static u64 perf_virt_to_phys(u64 virt)
6323{
6324 u64 phys_addr = 0;
6325 struct page *p = NULL;
6326
6327 if (!virt)
6328 return 0;
6329
6330 if (virt >= TASK_SIZE) {
6331 /* If it's vmalloc()d memory, leave phys_addr as 0 */
6332 if (virt_addr_valid((void *)(uintptr_t)virt) &&
6333 !(virt >= VMALLOC_START && virt < VMALLOC_END))
6334 phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
6335 } else {
6336 /*
6337 * Walking the pages tables for user address.
6338 * Interrupts are disabled, so it prevents any tear down
6339 * of the page tables.
6340 * Try IRQ-safe __get_user_pages_fast first.
6341 * If failed, leave phys_addr as 0.
6342 */
6343 if ((current->mm != NULL) &&
6344 (__get_user_pages_fast(virt, 1, 0, &p) == 1))
6345 phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
6346
6347 if (p)
6348 put_page(p);
6349 }
6350
6351 return phys_addr;
6352}
6353
99e818cc
JO
6354static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
6355
6cbc304f 6356struct perf_callchain_entry *
8cf7e0e2
JO
6357perf_callchain(struct perf_event *event, struct pt_regs *regs)
6358{
6359 bool kernel = !event->attr.exclude_callchain_kernel;
6360 bool user = !event->attr.exclude_callchain_user;
6361 /* Disallow cross-task user callchains. */
6362 bool crosstask = event->ctx->task && event->ctx->task != current;
6363 const u32 max_stack = event->attr.sample_max_stack;
99e818cc 6364 struct perf_callchain_entry *callchain;
8cf7e0e2
JO
6365
6366 if (!kernel && !user)
99e818cc 6367 return &__empty_callchain;
8cf7e0e2 6368
99e818cc
JO
6369 callchain = get_perf_callchain(regs, 0, kernel, user,
6370 max_stack, crosstask, true);
6371 return callchain ?: &__empty_callchain;
8cf7e0e2
JO
6372}
6373
5622f295
MM
6374void perf_prepare_sample(struct perf_event_header *header,
6375 struct perf_sample_data *data,
cdd6c482 6376 struct perf_event *event,
5622f295 6377 struct pt_regs *regs)
7b732a75 6378{
cdd6c482 6379 u64 sample_type = event->attr.sample_type;
7b732a75 6380
cdd6c482 6381 header->type = PERF_RECORD_SAMPLE;
c320c7b7 6382 header->size = sizeof(*header) + event->header_size;
5622f295
MM
6383
6384 header->misc = 0;
6385 header->misc |= perf_misc_flags(regs);
6fab0192 6386
c980d109 6387 __perf_event_header__init_id(header, data, event);
6844c09d 6388
c320c7b7 6389 if (sample_type & PERF_SAMPLE_IP)
5622f295
MM
6390 data->ip = perf_instruction_pointer(regs);
6391
b23f3325 6392 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5622f295 6393 int size = 1;
394ee076 6394
6cbc304f
PZ
6395 if (!(sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY))
6396 data->callchain = perf_callchain(event, regs);
6397
99e818cc 6398 size += data->callchain->nr;
5622f295
MM
6399
6400 header->size += size * sizeof(u64);
394ee076
PZ
6401 }
6402
3a43ce68 6403 if (sample_type & PERF_SAMPLE_RAW) {
7e3f977e
DB
6404 struct perf_raw_record *raw = data->raw;
6405 int size;
6406
6407 if (raw) {
6408 struct perf_raw_frag *frag = &raw->frag;
6409 u32 sum = 0;
6410
6411 do {
6412 sum += frag->size;
6413 if (perf_raw_frag_last(frag))
6414 break;
6415 frag = frag->next;
6416 } while (1);
6417
6418 size = round_up(sum + sizeof(u32), sizeof(u64));
6419 raw->size = size - sizeof(u32);
6420 frag->pad = raw->size - sum;
6421 } else {
6422 size = sizeof(u64);
6423 }
a044560c 6424
7e3f977e 6425 header->size += size;
7f453c24 6426 }
bce38cd5
SE
6427
6428 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6429 int size = sizeof(u64); /* nr */
6430 if (data->br_stack) {
6431 size += data->br_stack->nr
6432 * sizeof(struct perf_branch_entry);
6433 }
6434 header->size += size;
6435 }
4018994f 6436
2565711f 6437 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
88a7c26a
AL
6438 perf_sample_regs_user(&data->regs_user, regs,
6439 &data->regs_user_copy);
2565711f 6440
4018994f
JO
6441 if (sample_type & PERF_SAMPLE_REGS_USER) {
6442 /* regs dump ABI info */
6443 int size = sizeof(u64);
6444
4018994f
JO
6445 if (data->regs_user.regs) {
6446 u64 mask = event->attr.sample_regs_user;
6447 size += hweight64(mask) * sizeof(u64);
6448 }
6449
6450 header->size += size;
6451 }
c5ebcedb
JO
6452
6453 if (sample_type & PERF_SAMPLE_STACK_USER) {
6454 /*
6455 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
6456 * processed as the last one or have additional check added
6457 * in case new sample type is added, because we could eat
6458 * up the rest of the sample size.
6459 */
c5ebcedb
JO
6460 u16 stack_size = event->attr.sample_stack_user;
6461 u16 size = sizeof(u64);
6462
c5ebcedb 6463 stack_size = perf_sample_ustack_size(stack_size, header->size,
2565711f 6464 data->regs_user.regs);
c5ebcedb
JO
6465
6466 /*
6467 * If there is something to dump, add space for the dump
6468 * itself and for the field that tells the dynamic size,
6469 * which is how many have been actually dumped.
6470 */
6471 if (stack_size)
6472 size += sizeof(u64) + stack_size;
6473
6474 data->stack_user_size = stack_size;
6475 header->size += size;
6476 }
60e2364e
SE
6477
6478 if (sample_type & PERF_SAMPLE_REGS_INTR) {
6479 /* regs dump ABI info */
6480 int size = sizeof(u64);
6481
6482 perf_sample_regs_intr(&data->regs_intr, regs);
6483
6484 if (data->regs_intr.regs) {
6485 u64 mask = event->attr.sample_regs_intr;
6486
6487 size += hweight64(mask) * sizeof(u64);
6488 }
6489
6490 header->size += size;
6491 }
fc7ce9c7
KL
6492
6493 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6494 data->phys_addr = perf_virt_to_phys(data->addr);
5622f295 6495}
7f453c24 6496
56201969 6497static __always_inline int
9ecda41a
WN
6498__perf_event_output(struct perf_event *event,
6499 struct perf_sample_data *data,
6500 struct pt_regs *regs,
6501 int (*output_begin)(struct perf_output_handle *,
6502 struct perf_event *,
6503 unsigned int))
5622f295
MM
6504{
6505 struct perf_output_handle handle;
6506 struct perf_event_header header;
56201969 6507 int err;
689802b2 6508
927c7a9e
FW
6509 /* protect the callchain buffers */
6510 rcu_read_lock();
6511
cdd6c482 6512 perf_prepare_sample(&header, data, event, regs);
5c148194 6513
56201969
ACM
6514 err = output_begin(&handle, event, header.size);
6515 if (err)
927c7a9e 6516 goto exit;
0322cd6e 6517
cdd6c482 6518 perf_output_sample(&handle, &header, data, event);
f413cdb8 6519
8a057d84 6520 perf_output_end(&handle);
927c7a9e
FW
6521
6522exit:
6523 rcu_read_unlock();
56201969 6524 return err;
0322cd6e
PZ
6525}
6526
9ecda41a
WN
6527void
6528perf_event_output_forward(struct perf_event *event,
6529 struct perf_sample_data *data,
6530 struct pt_regs *regs)
6531{
6532 __perf_event_output(event, data, regs, perf_output_begin_forward);
6533}
6534
6535void
6536perf_event_output_backward(struct perf_event *event,
6537 struct perf_sample_data *data,
6538 struct pt_regs *regs)
6539{
6540 __perf_event_output(event, data, regs, perf_output_begin_backward);
6541}
6542
56201969 6543int
9ecda41a
WN
6544perf_event_output(struct perf_event *event,
6545 struct perf_sample_data *data,
6546 struct pt_regs *regs)
6547{
56201969 6548 return __perf_event_output(event, data, regs, perf_output_begin);
9ecda41a
WN
6549}
6550
38b200d6 6551/*
cdd6c482 6552 * read event_id
38b200d6
PZ
6553 */
6554
6555struct perf_read_event {
6556 struct perf_event_header header;
6557
6558 u32 pid;
6559 u32 tid;
38b200d6
PZ
6560};
6561
6562static void
cdd6c482 6563perf_event_read_event(struct perf_event *event,
38b200d6
PZ
6564 struct task_struct *task)
6565{
6566 struct perf_output_handle handle;
c980d109 6567 struct perf_sample_data sample;
dfc65094 6568 struct perf_read_event read_event = {
38b200d6 6569 .header = {
cdd6c482 6570 .type = PERF_RECORD_READ,
38b200d6 6571 .misc = 0,
c320c7b7 6572 .size = sizeof(read_event) + event->read_size,
38b200d6 6573 },
cdd6c482
IM
6574 .pid = perf_event_pid(event, task),
6575 .tid = perf_event_tid(event, task),
38b200d6 6576 };
3dab77fb 6577 int ret;
38b200d6 6578
c980d109 6579 perf_event_header__init_id(&read_event.header, &sample, event);
a7ac67ea 6580 ret = perf_output_begin(&handle, event, read_event.header.size);
38b200d6
PZ
6581 if (ret)
6582 return;
6583
dfc65094 6584 perf_output_put(&handle, read_event);
cdd6c482 6585 perf_output_read(&handle, event);
c980d109 6586 perf_event__output_id_sample(event, &handle, &sample);
3dab77fb 6587
38b200d6
PZ
6588 perf_output_end(&handle);
6589}
6590
aab5b71e 6591typedef void (perf_iterate_f)(struct perf_event *event, void *data);
52d857a8
JO
6592
6593static void
aab5b71e
PZ
6594perf_iterate_ctx(struct perf_event_context *ctx,
6595 perf_iterate_f output,
b73e4fef 6596 void *data, bool all)
52d857a8
JO
6597{
6598 struct perf_event *event;
6599
6600 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
b73e4fef
AS
6601 if (!all) {
6602 if (event->state < PERF_EVENT_STATE_INACTIVE)
6603 continue;
6604 if (!event_filter_match(event))
6605 continue;
6606 }
6607
67516844 6608 output(event, data);
52d857a8
JO
6609 }
6610}
6611
aab5b71e 6612static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
f2fb6bef
KL
6613{
6614 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
6615 struct perf_event *event;
6616
6617 list_for_each_entry_rcu(event, &pel->list, sb_list) {
0b8f1e2e
PZ
6618 /*
6619 * Skip events that are not fully formed yet; ensure that
6620 * if we observe event->ctx, both event and ctx will be
6621 * complete enough. See perf_install_in_context().
6622 */
6623 if (!smp_load_acquire(&event->ctx))
6624 continue;
6625
f2fb6bef
KL
6626 if (event->state < PERF_EVENT_STATE_INACTIVE)
6627 continue;
6628 if (!event_filter_match(event))
6629 continue;
6630 output(event, data);
6631 }
6632}
6633
aab5b71e
PZ
6634/*
6635 * Iterate all events that need to receive side-band events.
6636 *
6637 * For new callers; ensure that account_pmu_sb_event() includes
6638 * your event, otherwise it might not get delivered.
6639 */
52d857a8 6640static void
aab5b71e 6641perf_iterate_sb(perf_iterate_f output, void *data,
52d857a8
JO
6642 struct perf_event_context *task_ctx)
6643{
52d857a8 6644 struct perf_event_context *ctx;
52d857a8
JO
6645 int ctxn;
6646
aab5b71e
PZ
6647 rcu_read_lock();
6648 preempt_disable();
6649
4e93ad60 6650 /*
aab5b71e
PZ
6651 * If we have task_ctx != NULL we only notify the task context itself.
6652 * The task_ctx is set only for EXIT events before releasing task
4e93ad60
JO
6653 * context.
6654 */
6655 if (task_ctx) {
aab5b71e
PZ
6656 perf_iterate_ctx(task_ctx, output, data, false);
6657 goto done;
4e93ad60
JO
6658 }
6659
aab5b71e 6660 perf_iterate_sb_cpu(output, data);
f2fb6bef
KL
6661
6662 for_each_task_context_nr(ctxn) {
52d857a8
JO
6663 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6664 if (ctx)
aab5b71e 6665 perf_iterate_ctx(ctx, output, data, false);
52d857a8 6666 }
aab5b71e 6667done:
f2fb6bef 6668 preempt_enable();
52d857a8 6669 rcu_read_unlock();
95ff4ca2
AS
6670}
6671
375637bc
AS
6672/*
6673 * Clear all file-based filters at exec, they'll have to be
6674 * re-instated when/if these objects are mmapped again.
6675 */
6676static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
6677{
6678 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6679 struct perf_addr_filter *filter;
6680 unsigned int restart = 0, count = 0;
6681 unsigned long flags;
6682
6683 if (!has_addr_filter(event))
6684 return;
6685
6686 raw_spin_lock_irqsave(&ifh->lock, flags);
6687 list_for_each_entry(filter, &ifh->list, entry) {
9511bce9 6688 if (filter->path.dentry) {
375637bc
AS
6689 event->addr_filters_offs[count] = 0;
6690 restart++;
6691 }
6692
6693 count++;
6694 }
6695
6696 if (restart)
6697 event->addr_filters_gen++;
6698 raw_spin_unlock_irqrestore(&ifh->lock, flags);
6699
6700 if (restart)
767ae086 6701 perf_event_stop(event, 1);
375637bc
AS
6702}
6703
6704void perf_event_exec(void)
6705{
6706 struct perf_event_context *ctx;
6707 int ctxn;
6708
6709 rcu_read_lock();
6710 for_each_task_context_nr(ctxn) {
6711 ctx = current->perf_event_ctxp[ctxn];
6712 if (!ctx)
6713 continue;
6714
6715 perf_event_enable_on_exec(ctxn);
6716
aab5b71e 6717 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
375637bc
AS
6718 true);
6719 }
6720 rcu_read_unlock();
6721}
6722
95ff4ca2
AS
6723struct remote_output {
6724 struct ring_buffer *rb;
6725 int err;
6726};
6727
6728static void __perf_event_output_stop(struct perf_event *event, void *data)
6729{
6730 struct perf_event *parent = event->parent;
6731 struct remote_output *ro = data;
6732 struct ring_buffer *rb = ro->rb;
375637bc
AS
6733 struct stop_event_data sd = {
6734 .event = event,
6735 };
95ff4ca2
AS
6736
6737 if (!has_aux(event))
6738 return;
6739
6740 if (!parent)
6741 parent = event;
6742
6743 /*
6744 * In case of inheritance, it will be the parent that links to the
767ae086
AS
6745 * ring-buffer, but it will be the child that's actually using it.
6746 *
6747 * We are using event::rb to determine if the event should be stopped,
6748 * however this may race with ring_buffer_attach() (through set_output),
6749 * which will make us skip the event that actually needs to be stopped.
6750 * So ring_buffer_attach() has to stop an aux event before re-assigning
6751 * its rb pointer.
95ff4ca2
AS
6752 */
6753 if (rcu_dereference(parent->rb) == rb)
375637bc 6754 ro->err = __perf_event_stop(&sd);
95ff4ca2
AS
6755}
6756
6757static int __perf_pmu_output_stop(void *info)
6758{
6759 struct perf_event *event = info;
6760 struct pmu *pmu = event->pmu;
8b6a3fe8 6761 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
95ff4ca2
AS
6762 struct remote_output ro = {
6763 .rb = event->rb,
6764 };
6765
6766 rcu_read_lock();
aab5b71e 6767 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
95ff4ca2 6768 if (cpuctx->task_ctx)
aab5b71e 6769 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
b73e4fef 6770 &ro, false);
95ff4ca2
AS
6771 rcu_read_unlock();
6772
6773 return ro.err;
6774}
6775
6776static void perf_pmu_output_stop(struct perf_event *event)
6777{
6778 struct perf_event *iter;
6779 int err, cpu;
6780
6781restart:
6782 rcu_read_lock();
6783 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6784 /*
6785 * For per-CPU events, we need to make sure that neither they
6786 * nor their children are running; for cpu==-1 events it's
6787 * sufficient to stop the event itself if it's active, since
6788 * it can't have children.
6789 */
6790 cpu = iter->cpu;
6791 if (cpu == -1)
6792 cpu = READ_ONCE(iter->oncpu);
6793
6794 if (cpu == -1)
6795 continue;
6796
6797 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6798 if (err == -EAGAIN) {
6799 rcu_read_unlock();
6800 goto restart;
6801 }
6802 }
6803 rcu_read_unlock();
52d857a8
JO
6804}
6805
60313ebe 6806/*
9f498cc5
PZ
6807 * task tracking -- fork/exit
6808 *
13d7a241 6809 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
60313ebe
PZ
6810 */
6811
9f498cc5 6812struct perf_task_event {
3a80b4a3 6813 struct task_struct *task;
cdd6c482 6814 struct perf_event_context *task_ctx;
60313ebe
PZ
6815
6816 struct {
6817 struct perf_event_header header;
6818
6819 u32 pid;
6820 u32 ppid;
9f498cc5
PZ
6821 u32 tid;
6822 u32 ptid;
393b2ad8 6823 u64 time;
cdd6c482 6824 } event_id;
60313ebe
PZ
6825};
6826
67516844
JO
6827static int perf_event_task_match(struct perf_event *event)
6828{
13d7a241
SE
6829 return event->attr.comm || event->attr.mmap ||
6830 event->attr.mmap2 || event->attr.mmap_data ||
6831 event->attr.task;
67516844
JO
6832}
6833
cdd6c482 6834static void perf_event_task_output(struct perf_event *event,
52d857a8 6835 void *data)
60313ebe 6836{
52d857a8 6837 struct perf_task_event *task_event = data;
60313ebe 6838 struct perf_output_handle handle;
c980d109 6839 struct perf_sample_data sample;
9f498cc5 6840 struct task_struct *task = task_event->task;
c980d109 6841 int ret, size = task_event->event_id.header.size;
8bb39f9a 6842
67516844
JO
6843 if (!perf_event_task_match(event))
6844 return;
6845
c980d109 6846 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
60313ebe 6847
c980d109 6848 ret = perf_output_begin(&handle, event,
a7ac67ea 6849 task_event->event_id.header.size);
ef60777c 6850 if (ret)
c980d109 6851 goto out;
60313ebe 6852
cdd6c482
IM
6853 task_event->event_id.pid = perf_event_pid(event, task);
6854 task_event->event_id.ppid = perf_event_pid(event, current);
60313ebe 6855
cdd6c482
IM
6856 task_event->event_id.tid = perf_event_tid(event, task);
6857 task_event->event_id.ptid = perf_event_tid(event, current);
9f498cc5 6858
34f43927
PZ
6859 task_event->event_id.time = perf_event_clock(event);
6860
cdd6c482 6861 perf_output_put(&handle, task_event->event_id);
393b2ad8 6862
c980d109
ACM
6863 perf_event__output_id_sample(event, &handle, &sample);
6864
60313ebe 6865 perf_output_end(&handle);
c980d109
ACM
6866out:
6867 task_event->event_id.header.size = size;
60313ebe
PZ
6868}
6869
cdd6c482
IM
6870static void perf_event_task(struct task_struct *task,
6871 struct perf_event_context *task_ctx,
3a80b4a3 6872 int new)
60313ebe 6873{
9f498cc5 6874 struct perf_task_event task_event;
60313ebe 6875
cdd6c482
IM
6876 if (!atomic_read(&nr_comm_events) &&
6877 !atomic_read(&nr_mmap_events) &&
6878 !atomic_read(&nr_task_events))
60313ebe
PZ
6879 return;
6880
9f498cc5 6881 task_event = (struct perf_task_event){
3a80b4a3
PZ
6882 .task = task,
6883 .task_ctx = task_ctx,
cdd6c482 6884 .event_id = {
60313ebe 6885 .header = {
cdd6c482 6886 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
573402db 6887 .misc = 0,
cdd6c482 6888 .size = sizeof(task_event.event_id),
60313ebe 6889 },
573402db
PZ
6890 /* .pid */
6891 /* .ppid */
9f498cc5
PZ
6892 /* .tid */
6893 /* .ptid */
34f43927 6894 /* .time */
60313ebe
PZ
6895 },
6896 };
6897
aab5b71e 6898 perf_iterate_sb(perf_event_task_output,
52d857a8
JO
6899 &task_event,
6900 task_ctx);
9f498cc5
PZ
6901}
6902
cdd6c482 6903void perf_event_fork(struct task_struct *task)
9f498cc5 6904{
cdd6c482 6905 perf_event_task(task, NULL, 1);
e4222673 6906 perf_event_namespaces(task);
60313ebe
PZ
6907}
6908
8d1b2d93
PZ
6909/*
6910 * comm tracking
6911 */
6912
6913struct perf_comm_event {
22a4f650
IM
6914 struct task_struct *task;
6915 char *comm;
8d1b2d93
PZ
6916 int comm_size;
6917
6918 struct {
6919 struct perf_event_header header;
6920
6921 u32 pid;
6922 u32 tid;
cdd6c482 6923 } event_id;
8d1b2d93
PZ
6924};
6925
67516844
JO
6926static int perf_event_comm_match(struct perf_event *event)
6927{
6928 return event->attr.comm;
6929}
6930
cdd6c482 6931static void perf_event_comm_output(struct perf_event *event,
52d857a8 6932 void *data)
8d1b2d93 6933{
52d857a8 6934 struct perf_comm_event *comm_event = data;
8d1b2d93 6935 struct perf_output_handle handle;
c980d109 6936 struct perf_sample_data sample;
cdd6c482 6937 int size = comm_event->event_id.header.size;
c980d109
ACM
6938 int ret;
6939
67516844
JO
6940 if (!perf_event_comm_match(event))
6941 return;
6942
c980d109
ACM
6943 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
6944 ret = perf_output_begin(&handle, event,
a7ac67ea 6945 comm_event->event_id.header.size);
8d1b2d93
PZ
6946
6947 if (ret)
c980d109 6948 goto out;
8d1b2d93 6949
cdd6c482
IM
6950 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
6951 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
709e50cf 6952
cdd6c482 6953 perf_output_put(&handle, comm_event->event_id);
76369139 6954 __output_copy(&handle, comm_event->comm,
8d1b2d93 6955 comm_event->comm_size);
c980d109
ACM
6956
6957 perf_event__output_id_sample(event, &handle, &sample);
6958
8d1b2d93 6959 perf_output_end(&handle);
c980d109
ACM
6960out:
6961 comm_event->event_id.header.size = size;
8d1b2d93
PZ
6962}
6963
cdd6c482 6964static void perf_event_comm_event(struct perf_comm_event *comm_event)
8d1b2d93 6965{
413ee3b4 6966 char comm[TASK_COMM_LEN];
8d1b2d93 6967 unsigned int size;
8d1b2d93 6968
413ee3b4 6969 memset(comm, 0, sizeof(comm));
96b02d78 6970 strlcpy(comm, comm_event->task->comm, sizeof(comm));
888fcee0 6971 size = ALIGN(strlen(comm)+1, sizeof(u64));
8d1b2d93
PZ
6972
6973 comm_event->comm = comm;
6974 comm_event->comm_size = size;
6975
cdd6c482 6976 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
8dc85d54 6977
aab5b71e 6978 perf_iterate_sb(perf_event_comm_output,
52d857a8
JO
6979 comm_event,
6980 NULL);
8d1b2d93
PZ
6981}
6982
82b89778 6983void perf_event_comm(struct task_struct *task, bool exec)
8d1b2d93 6984{
9ee318a7
PZ
6985 struct perf_comm_event comm_event;
6986
cdd6c482 6987 if (!atomic_read(&nr_comm_events))
9ee318a7 6988 return;
a63eaf34 6989
9ee318a7 6990 comm_event = (struct perf_comm_event){
8d1b2d93 6991 .task = task,
573402db
PZ
6992 /* .comm */
6993 /* .comm_size */
cdd6c482 6994 .event_id = {
573402db 6995 .header = {
cdd6c482 6996 .type = PERF_RECORD_COMM,
82b89778 6997 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
573402db
PZ
6998 /* .size */
6999 },
7000 /* .pid */
7001 /* .tid */
8d1b2d93
PZ
7002 },
7003 };
7004
cdd6c482 7005 perf_event_comm_event(&comm_event);
8d1b2d93
PZ
7006}
7007
e4222673
HB
7008/*
7009 * namespaces tracking
7010 */
7011
7012struct perf_namespaces_event {
7013 struct task_struct *task;
7014
7015 struct {
7016 struct perf_event_header header;
7017
7018 u32 pid;
7019 u32 tid;
7020 u64 nr_namespaces;
7021 struct perf_ns_link_info link_info[NR_NAMESPACES];
7022 } event_id;
7023};
7024
7025static int perf_event_namespaces_match(struct perf_event *event)
7026{
7027 return event->attr.namespaces;
7028}
7029
7030static void perf_event_namespaces_output(struct perf_event *event,
7031 void *data)
7032{
7033 struct perf_namespaces_event *namespaces_event = data;
7034 struct perf_output_handle handle;
7035 struct perf_sample_data sample;
34900ec5 7036 u16 header_size = namespaces_event->event_id.header.size;
e4222673
HB
7037 int ret;
7038
7039 if (!perf_event_namespaces_match(event))
7040 return;
7041
7042 perf_event_header__init_id(&namespaces_event->event_id.header,
7043 &sample, event);
7044 ret = perf_output_begin(&handle, event,
7045 namespaces_event->event_id.header.size);
7046 if (ret)
34900ec5 7047 goto out;
e4222673
HB
7048
7049 namespaces_event->event_id.pid = perf_event_pid(event,
7050 namespaces_event->task);
7051 namespaces_event->event_id.tid = perf_event_tid(event,
7052 namespaces_event->task);
7053
7054 perf_output_put(&handle, namespaces_event->event_id);
7055
7056 perf_event__output_id_sample(event, &handle, &sample);
7057
7058 perf_output_end(&handle);
34900ec5
JO
7059out:
7060 namespaces_event->event_id.header.size = header_size;
e4222673
HB
7061}
7062
7063static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
7064 struct task_struct *task,
7065 const struct proc_ns_operations *ns_ops)
7066{
7067 struct path ns_path;
7068 struct inode *ns_inode;
7069 void *error;
7070
7071 error = ns_get_path(&ns_path, task, ns_ops);
7072 if (!error) {
7073 ns_inode = ns_path.dentry->d_inode;
7074 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
7075 ns_link_info->ino = ns_inode->i_ino;
0e18dd12 7076 path_put(&ns_path);
e4222673
HB
7077 }
7078}
7079
7080void perf_event_namespaces(struct task_struct *task)
7081{
7082 struct perf_namespaces_event namespaces_event;
7083 struct perf_ns_link_info *ns_link_info;
7084
7085 if (!atomic_read(&nr_namespaces_events))
7086 return;
7087
7088 namespaces_event = (struct perf_namespaces_event){
7089 .task = task,
7090 .event_id = {
7091 .header = {
7092 .type = PERF_RECORD_NAMESPACES,
7093 .misc = 0,
7094 .size = sizeof(namespaces_event.event_id),
7095 },
7096 /* .pid */
7097 /* .tid */
7098 .nr_namespaces = NR_NAMESPACES,
7099 /* .link_info[NR_NAMESPACES] */
7100 },
7101 };
7102
7103 ns_link_info = namespaces_event.event_id.link_info;
7104
7105 perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
7106 task, &mntns_operations);
7107
7108#ifdef CONFIG_USER_NS
7109 perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
7110 task, &userns_operations);
7111#endif
7112#ifdef CONFIG_NET_NS
7113 perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
7114 task, &netns_operations);
7115#endif
7116#ifdef CONFIG_UTS_NS
7117 perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
7118 task, &utsns_operations);
7119#endif
7120#ifdef CONFIG_IPC_NS
7121 perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
7122 task, &ipcns_operations);
7123#endif
7124#ifdef CONFIG_PID_NS
7125 perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
7126 task, &pidns_operations);
7127#endif
7128#ifdef CONFIG_CGROUPS
7129 perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
7130 task, &cgroupns_operations);
7131#endif
7132
7133 perf_iterate_sb(perf_event_namespaces_output,
7134 &namespaces_event,
7135 NULL);
7136}
7137
0a4a9391
PZ
7138/*
7139 * mmap tracking
7140 */
7141
7142struct perf_mmap_event {
089dd79d
PZ
7143 struct vm_area_struct *vma;
7144
7145 const char *file_name;
7146 int file_size;
13d7a241
SE
7147 int maj, min;
7148 u64 ino;
7149 u64 ino_generation;
f972eb63 7150 u32 prot, flags;
0a4a9391
PZ
7151
7152 struct {
7153 struct perf_event_header header;
7154
7155 u32 pid;
7156 u32 tid;
7157 u64 start;
7158 u64 len;
7159 u64 pgoff;
cdd6c482 7160 } event_id;
0a4a9391
PZ
7161};
7162
67516844
JO
7163static int perf_event_mmap_match(struct perf_event *event,
7164 void *data)
7165{
7166 struct perf_mmap_event *mmap_event = data;
7167 struct vm_area_struct *vma = mmap_event->vma;
7168 int executable = vma->vm_flags & VM_EXEC;
7169
7170 return (!executable && event->attr.mmap_data) ||
13d7a241 7171 (executable && (event->attr.mmap || event->attr.mmap2));
67516844
JO
7172}
7173
cdd6c482 7174static void perf_event_mmap_output(struct perf_event *event,
52d857a8 7175 void *data)
0a4a9391 7176{
52d857a8 7177 struct perf_mmap_event *mmap_event = data;
0a4a9391 7178 struct perf_output_handle handle;
c980d109 7179 struct perf_sample_data sample;
cdd6c482 7180 int size = mmap_event->event_id.header.size;
c980d109 7181 int ret;
0a4a9391 7182
67516844
JO
7183 if (!perf_event_mmap_match(event, data))
7184 return;
7185
13d7a241
SE
7186 if (event->attr.mmap2) {
7187 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
7188 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
7189 mmap_event->event_id.header.size += sizeof(mmap_event->min);
7190 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
d008d525 7191 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
f972eb63
PZ
7192 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
7193 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
13d7a241
SE
7194 }
7195
c980d109
ACM
7196 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
7197 ret = perf_output_begin(&handle, event,
a7ac67ea 7198 mmap_event->event_id.header.size);
0a4a9391 7199 if (ret)
c980d109 7200 goto out;
0a4a9391 7201
cdd6c482
IM
7202 mmap_event->event_id.pid = perf_event_pid(event, current);
7203 mmap_event->event_id.tid = perf_event_tid(event, current);
709e50cf 7204
cdd6c482 7205 perf_output_put(&handle, mmap_event->event_id);
13d7a241
SE
7206
7207 if (event->attr.mmap2) {
7208 perf_output_put(&handle, mmap_event->maj);
7209 perf_output_put(&handle, mmap_event->min);
7210 perf_output_put(&handle, mmap_event->ino);
7211 perf_output_put(&handle, mmap_event->ino_generation);
f972eb63
PZ
7212 perf_output_put(&handle, mmap_event->prot);
7213 perf_output_put(&handle, mmap_event->flags);
13d7a241
SE
7214 }
7215
76369139 7216 __output_copy(&handle, mmap_event->file_name,
0a4a9391 7217 mmap_event->file_size);
c980d109
ACM
7218
7219 perf_event__output_id_sample(event, &handle, &sample);
7220
78d613eb 7221 perf_output_end(&handle);
c980d109
ACM
7222out:
7223 mmap_event->event_id.header.size = size;
0a4a9391
PZ
7224}
7225
cdd6c482 7226static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
0a4a9391 7227{
089dd79d
PZ
7228 struct vm_area_struct *vma = mmap_event->vma;
7229 struct file *file = vma->vm_file;
13d7a241
SE
7230 int maj = 0, min = 0;
7231 u64 ino = 0, gen = 0;
f972eb63 7232 u32 prot = 0, flags = 0;
0a4a9391
PZ
7233 unsigned int size;
7234 char tmp[16];
7235 char *buf = NULL;
2c42cfbf 7236 char *name;
413ee3b4 7237
0b3589be
PZ
7238 if (vma->vm_flags & VM_READ)
7239 prot |= PROT_READ;
7240 if (vma->vm_flags & VM_WRITE)
7241 prot |= PROT_WRITE;
7242 if (vma->vm_flags & VM_EXEC)
7243 prot |= PROT_EXEC;
7244
7245 if (vma->vm_flags & VM_MAYSHARE)
7246 flags = MAP_SHARED;
7247 else
7248 flags = MAP_PRIVATE;
7249
7250 if (vma->vm_flags & VM_DENYWRITE)
7251 flags |= MAP_DENYWRITE;
7252 if (vma->vm_flags & VM_MAYEXEC)
7253 flags |= MAP_EXECUTABLE;
7254 if (vma->vm_flags & VM_LOCKED)
7255 flags |= MAP_LOCKED;
7256 if (vma->vm_flags & VM_HUGETLB)
7257 flags |= MAP_HUGETLB;
7258
0a4a9391 7259 if (file) {
13d7a241
SE
7260 struct inode *inode;
7261 dev_t dev;
3ea2f2b9 7262
2c42cfbf 7263 buf = kmalloc(PATH_MAX, GFP_KERNEL);
0a4a9391 7264 if (!buf) {
c7e548b4
ON
7265 name = "//enomem";
7266 goto cpy_name;
0a4a9391 7267 }
413ee3b4 7268 /*
3ea2f2b9 7269 * d_path() works from the end of the rb backwards, so we
413ee3b4
AB
7270 * need to add enough zero bytes after the string to handle
7271 * the 64bit alignment we do later.
7272 */
9bf39ab2 7273 name = file_path(file, buf, PATH_MAX - sizeof(u64));
0a4a9391 7274 if (IS_ERR(name)) {
c7e548b4
ON
7275 name = "//toolong";
7276 goto cpy_name;
0a4a9391 7277 }
13d7a241
SE
7278 inode = file_inode(vma->vm_file);
7279 dev = inode->i_sb->s_dev;
7280 ino = inode->i_ino;
7281 gen = inode->i_generation;
7282 maj = MAJOR(dev);
7283 min = MINOR(dev);
f972eb63 7284
c7e548b4 7285 goto got_name;
0a4a9391 7286 } else {
fbe26abe
JO
7287 if (vma->vm_ops && vma->vm_ops->name) {
7288 name = (char *) vma->vm_ops->name(vma);
7289 if (name)
7290 goto cpy_name;
7291 }
7292
2c42cfbf 7293 name = (char *)arch_vma_name(vma);
c7e548b4
ON
7294 if (name)
7295 goto cpy_name;
089dd79d 7296
32c5fb7e 7297 if (vma->vm_start <= vma->vm_mm->start_brk &&
3af9e859 7298 vma->vm_end >= vma->vm_mm->brk) {
c7e548b4
ON
7299 name = "[heap]";
7300 goto cpy_name;
32c5fb7e
ON
7301 }
7302 if (vma->vm_start <= vma->vm_mm->start_stack &&
3af9e859 7303 vma->vm_end >= vma->vm_mm->start_stack) {
c7e548b4
ON
7304 name = "[stack]";
7305 goto cpy_name;
089dd79d
PZ
7306 }
7307
c7e548b4
ON
7308 name = "//anon";
7309 goto cpy_name;
0a4a9391
PZ
7310 }
7311
c7e548b4
ON
7312cpy_name:
7313 strlcpy(tmp, name, sizeof(tmp));
7314 name = tmp;
0a4a9391 7315got_name:
2c42cfbf
PZ
7316 /*
7317 * Since our buffer works in 8 byte units we need to align our string
7318 * size to a multiple of 8. However, we must guarantee the tail end is
7319 * zero'd out to avoid leaking random bits to userspace.
7320 */
7321 size = strlen(name)+1;
7322 while (!IS_ALIGNED(size, sizeof(u64)))
7323 name[size++] = '\0';
0a4a9391
PZ
7324
7325 mmap_event->file_name = name;
7326 mmap_event->file_size = size;
13d7a241
SE
7327 mmap_event->maj = maj;
7328 mmap_event->min = min;
7329 mmap_event->ino = ino;
7330 mmap_event->ino_generation = gen;
f972eb63
PZ
7331 mmap_event->prot = prot;
7332 mmap_event->flags = flags;
0a4a9391 7333
2fe85427
SE
7334 if (!(vma->vm_flags & VM_EXEC))
7335 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
7336
cdd6c482 7337 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
0a4a9391 7338
aab5b71e 7339 perf_iterate_sb(perf_event_mmap_output,
52d857a8
JO
7340 mmap_event,
7341 NULL);
665c2142 7342
0a4a9391
PZ
7343 kfree(buf);
7344}
7345
375637bc
AS
7346/*
7347 * Check whether inode and address range match filter criteria.
7348 */
7349static bool perf_addr_filter_match(struct perf_addr_filter *filter,
7350 struct file *file, unsigned long offset,
7351 unsigned long size)
7352{
7f635ff1
MP
7353 /* d_inode(NULL) won't be equal to any mapped user-space file */
7354 if (!filter->path.dentry)
7355 return false;
7356
9511bce9 7357 if (d_inode(filter->path.dentry) != file_inode(file))
375637bc
AS
7358 return false;
7359
7360 if (filter->offset > offset + size)
7361 return false;
7362
7363 if (filter->offset + filter->size < offset)
7364 return false;
7365
7366 return true;
7367}
7368
7369static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
7370{
7371 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7372 struct vm_area_struct *vma = data;
7373 unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags;
7374 struct file *file = vma->vm_file;
7375 struct perf_addr_filter *filter;
7376 unsigned int restart = 0, count = 0;
7377
7378 if (!has_addr_filter(event))
7379 return;
7380
7381 if (!file)
7382 return;
7383
7384 raw_spin_lock_irqsave(&ifh->lock, flags);
7385 list_for_each_entry(filter, &ifh->list, entry) {
7386 if (perf_addr_filter_match(filter, file, off,
7387 vma->vm_end - vma->vm_start)) {
7388 event->addr_filters_offs[count] = vma->vm_start;
7389 restart++;
7390 }
7391
7392 count++;
7393 }
7394
7395 if (restart)
7396 event->addr_filters_gen++;
7397 raw_spin_unlock_irqrestore(&ifh->lock, flags);
7398
7399 if (restart)
767ae086 7400 perf_event_stop(event, 1);
375637bc
AS
7401}
7402
7403/*
7404 * Adjust all task's events' filters to the new vma
7405 */
7406static void perf_addr_filters_adjust(struct vm_area_struct *vma)
7407{
7408 struct perf_event_context *ctx;
7409 int ctxn;
7410
12b40a23
MP
7411 /*
7412 * Data tracing isn't supported yet and as such there is no need
7413 * to keep track of anything that isn't related to executable code:
7414 */
7415 if (!(vma->vm_flags & VM_EXEC))
7416 return;
7417
375637bc
AS
7418 rcu_read_lock();
7419 for_each_task_context_nr(ctxn) {
7420 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7421 if (!ctx)
7422 continue;
7423
aab5b71e 7424 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
375637bc
AS
7425 }
7426 rcu_read_unlock();
7427}
7428
3af9e859 7429void perf_event_mmap(struct vm_area_struct *vma)
0a4a9391 7430{
9ee318a7
PZ
7431 struct perf_mmap_event mmap_event;
7432
cdd6c482 7433 if (!atomic_read(&nr_mmap_events))
9ee318a7
PZ
7434 return;
7435
7436 mmap_event = (struct perf_mmap_event){
089dd79d 7437 .vma = vma,
573402db
PZ
7438 /* .file_name */
7439 /* .file_size */
cdd6c482 7440 .event_id = {
573402db 7441 .header = {
cdd6c482 7442 .type = PERF_RECORD_MMAP,
39447b38 7443 .misc = PERF_RECORD_MISC_USER,
573402db
PZ
7444 /* .size */
7445 },
7446 /* .pid */
7447 /* .tid */
089dd79d
PZ
7448 .start = vma->vm_start,
7449 .len = vma->vm_end - vma->vm_start,
3a0304e9 7450 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
0a4a9391 7451 },
13d7a241
SE
7452 /* .maj (attr_mmap2 only) */
7453 /* .min (attr_mmap2 only) */
7454 /* .ino (attr_mmap2 only) */
7455 /* .ino_generation (attr_mmap2 only) */
f972eb63
PZ
7456 /* .prot (attr_mmap2 only) */
7457 /* .flags (attr_mmap2 only) */
0a4a9391
PZ
7458 };
7459
375637bc 7460 perf_addr_filters_adjust(vma);
cdd6c482 7461 perf_event_mmap_event(&mmap_event);
0a4a9391
PZ
7462}
7463
68db7e98
AS
7464void perf_event_aux_event(struct perf_event *event, unsigned long head,
7465 unsigned long size, u64 flags)
7466{
7467 struct perf_output_handle handle;
7468 struct perf_sample_data sample;
7469 struct perf_aux_event {
7470 struct perf_event_header header;
7471 u64 offset;
7472 u64 size;
7473 u64 flags;
7474 } rec = {
7475 .header = {
7476 .type = PERF_RECORD_AUX,
7477 .misc = 0,
7478 .size = sizeof(rec),
7479 },
7480 .offset = head,
7481 .size = size,
7482 .flags = flags,
7483 };
7484 int ret;
7485
7486 perf_event_header__init_id(&rec.header, &sample, event);
7487 ret = perf_output_begin(&handle, event, rec.header.size);
7488
7489 if (ret)
7490 return;
7491
7492 perf_output_put(&handle, rec);
7493 perf_event__output_id_sample(event, &handle, &sample);
7494
7495 perf_output_end(&handle);
7496}
7497
f38b0dbb
KL
7498/*
7499 * Lost/dropped samples logging
7500 */
7501void perf_log_lost_samples(struct perf_event *event, u64 lost)
7502{
7503 struct perf_output_handle handle;
7504 struct perf_sample_data sample;
7505 int ret;
7506
7507 struct {
7508 struct perf_event_header header;
7509 u64 lost;
7510 } lost_samples_event = {
7511 .header = {
7512 .type = PERF_RECORD_LOST_SAMPLES,
7513 .misc = 0,
7514 .size = sizeof(lost_samples_event),
7515 },
7516 .lost = lost,
7517 };
7518
7519 perf_event_header__init_id(&lost_samples_event.header, &sample, event);
7520
7521 ret = perf_output_begin(&handle, event,
7522 lost_samples_event.header.size);
7523 if (ret)
7524 return;
7525
7526 perf_output_put(&handle, lost_samples_event);
7527 perf_event__output_id_sample(event, &handle, &sample);
7528 perf_output_end(&handle);
7529}
7530
45ac1403
AH
7531/*
7532 * context_switch tracking
7533 */
7534
7535struct perf_switch_event {
7536 struct task_struct *task;
7537 struct task_struct *next_prev;
7538
7539 struct {
7540 struct perf_event_header header;
7541 u32 next_prev_pid;
7542 u32 next_prev_tid;
7543 } event_id;
7544};
7545
7546static int perf_event_switch_match(struct perf_event *event)
7547{
7548 return event->attr.context_switch;
7549}
7550
7551static void perf_event_switch_output(struct perf_event *event, void *data)
7552{
7553 struct perf_switch_event *se = data;
7554 struct perf_output_handle handle;
7555 struct perf_sample_data sample;
7556 int ret;
7557
7558 if (!perf_event_switch_match(event))
7559 return;
7560
7561 /* Only CPU-wide events are allowed to see next/prev pid/tid */
7562 if (event->ctx->task) {
7563 se->event_id.header.type = PERF_RECORD_SWITCH;
7564 se->event_id.header.size = sizeof(se->event_id.header);
7565 } else {
7566 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
7567 se->event_id.header.size = sizeof(se->event_id);
7568 se->event_id.next_prev_pid =
7569 perf_event_pid(event, se->next_prev);
7570 se->event_id.next_prev_tid =
7571 perf_event_tid(event, se->next_prev);
7572 }
7573
7574 perf_event_header__init_id(&se->event_id.header, &sample, event);
7575
7576 ret = perf_output_begin(&handle, event, se->event_id.header.size);
7577 if (ret)
7578 return;
7579
7580 if (event->ctx->task)
7581 perf_output_put(&handle, se->event_id.header);
7582 else
7583 perf_output_put(&handle, se->event_id);
7584
7585 perf_event__output_id_sample(event, &handle, &sample);
7586
7587 perf_output_end(&handle);
7588}
7589
7590static void perf_event_switch(struct task_struct *task,
7591 struct task_struct *next_prev, bool sched_in)
7592{
7593 struct perf_switch_event switch_event;
7594
7595 /* N.B. caller checks nr_switch_events != 0 */
7596
7597 switch_event = (struct perf_switch_event){
7598 .task = task,
7599 .next_prev = next_prev,
7600 .event_id = {
7601 .header = {
7602 /* .type */
7603 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
7604 /* .size */
7605 },
7606 /* .next_prev_pid */
7607 /* .next_prev_tid */
7608 },
7609 };
7610
101592b4
AB
7611 if (!sched_in && task->state == TASK_RUNNING)
7612 switch_event.event_id.header.misc |=
7613 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
7614
aab5b71e 7615 perf_iterate_sb(perf_event_switch_output,
45ac1403
AH
7616 &switch_event,
7617 NULL);
7618}
7619
a78ac325
PZ
7620/*
7621 * IRQ throttle logging
7622 */
7623
cdd6c482 7624static void perf_log_throttle(struct perf_event *event, int enable)
a78ac325
PZ
7625{
7626 struct perf_output_handle handle;
c980d109 7627 struct perf_sample_data sample;
a78ac325
PZ
7628 int ret;
7629
7630 struct {
7631 struct perf_event_header header;
7632 u64 time;
cca3f454 7633 u64 id;
7f453c24 7634 u64 stream_id;
a78ac325
PZ
7635 } throttle_event = {
7636 .header = {
cdd6c482 7637 .type = PERF_RECORD_THROTTLE,
a78ac325
PZ
7638 .misc = 0,
7639 .size = sizeof(throttle_event),
7640 },
34f43927 7641 .time = perf_event_clock(event),
cdd6c482
IM
7642 .id = primary_event_id(event),
7643 .stream_id = event->id,
a78ac325
PZ
7644 };
7645
966ee4d6 7646 if (enable)
cdd6c482 7647 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
966ee4d6 7648
c980d109
ACM
7649 perf_event_header__init_id(&throttle_event.header, &sample, event);
7650
7651 ret = perf_output_begin(&handle, event,
a7ac67ea 7652 throttle_event.header.size);
a78ac325
PZ
7653 if (ret)
7654 return;
7655
7656 perf_output_put(&handle, throttle_event);
c980d109 7657 perf_event__output_id_sample(event, &handle, &sample);
a78ac325
PZ
7658 perf_output_end(&handle);
7659}
7660
76193a94
SL
7661/*
7662 * ksymbol register/unregister tracking
7663 */
7664
7665struct perf_ksymbol_event {
7666 const char *name;
7667 int name_len;
7668 struct {
7669 struct perf_event_header header;
7670 u64 addr;
7671 u32 len;
7672 u16 ksym_type;
7673 u16 flags;
7674 } event_id;
7675};
7676
7677static int perf_event_ksymbol_match(struct perf_event *event)
7678{
7679 return event->attr.ksymbol;
7680}
7681
7682static void perf_event_ksymbol_output(struct perf_event *event, void *data)
7683{
7684 struct perf_ksymbol_event *ksymbol_event = data;
7685 struct perf_output_handle handle;
7686 struct perf_sample_data sample;
7687 int ret;
7688
7689 if (!perf_event_ksymbol_match(event))
7690 return;
7691
7692 perf_event_header__init_id(&ksymbol_event->event_id.header,
7693 &sample, event);
7694 ret = perf_output_begin(&handle, event,
7695 ksymbol_event->event_id.header.size);
7696 if (ret)
7697 return;
7698
7699 perf_output_put(&handle, ksymbol_event->event_id);
7700 __output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len);
7701 perf_event__output_id_sample(event, &handle, &sample);
7702
7703 perf_output_end(&handle);
7704}
7705
7706void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister,
7707 const char *sym)
7708{
7709 struct perf_ksymbol_event ksymbol_event;
7710 char name[KSYM_NAME_LEN];
7711 u16 flags = 0;
7712 int name_len;
7713
7714 if (!atomic_read(&nr_ksymbol_events))
7715 return;
7716
7717 if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX ||
7718 ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN)
7719 goto err;
7720
7721 strlcpy(name, sym, KSYM_NAME_LEN);
7722 name_len = strlen(name) + 1;
7723 while (!IS_ALIGNED(name_len, sizeof(u64)))
7724 name[name_len++] = '\0';
7725 BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64));
7726
7727 if (unregister)
7728 flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER;
7729
7730 ksymbol_event = (struct perf_ksymbol_event){
7731 .name = name,
7732 .name_len = name_len,
7733 .event_id = {
7734 .header = {
7735 .type = PERF_RECORD_KSYMBOL,
7736 .size = sizeof(ksymbol_event.event_id) +
7737 name_len,
7738 },
7739 .addr = addr,
7740 .len = len,
7741 .ksym_type = ksym_type,
7742 .flags = flags,
7743 },
7744 };
7745
7746 perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL);
7747 return;
7748err:
7749 WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type);
7750}
7751
6ee52e2a
SL
7752/*
7753 * bpf program load/unload tracking
7754 */
7755
7756struct perf_bpf_event {
7757 struct bpf_prog *prog;
7758 struct {
7759 struct perf_event_header header;
7760 u16 type;
7761 u16 flags;
7762 u32 id;
7763 u8 tag[BPF_TAG_SIZE];
7764 } event_id;
7765};
7766
7767static int perf_event_bpf_match(struct perf_event *event)
7768{
7769 return event->attr.bpf_event;
7770}
7771
7772static void perf_event_bpf_output(struct perf_event *event, void *data)
7773{
7774 struct perf_bpf_event *bpf_event = data;
7775 struct perf_output_handle handle;
7776 struct perf_sample_data sample;
7777 int ret;
7778
7779 if (!perf_event_bpf_match(event))
7780 return;
7781
7782 perf_event_header__init_id(&bpf_event->event_id.header,
7783 &sample, event);
7784 ret = perf_output_begin(&handle, event,
7785 bpf_event->event_id.header.size);
7786 if (ret)
7787 return;
7788
7789 perf_output_put(&handle, bpf_event->event_id);
7790 perf_event__output_id_sample(event, &handle, &sample);
7791
7792 perf_output_end(&handle);
7793}
7794
7795static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog,
7796 enum perf_bpf_event_type type)
7797{
7798 bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD;
7799 char sym[KSYM_NAME_LEN];
7800 int i;
7801
7802 if (prog->aux->func_cnt == 0) {
7803 bpf_get_prog_name(prog, sym);
7804 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF,
7805 (u64)(unsigned long)prog->bpf_func,
7806 prog->jited_len, unregister, sym);
7807 } else {
7808 for (i = 0; i < prog->aux->func_cnt; i++) {
7809 struct bpf_prog *subprog = prog->aux->func[i];
7810
7811 bpf_get_prog_name(subprog, sym);
7812 perf_event_ksymbol(
7813 PERF_RECORD_KSYMBOL_TYPE_BPF,
7814 (u64)(unsigned long)subprog->bpf_func,
7815 subprog->jited_len, unregister, sym);
7816 }
7817 }
7818}
7819
7820void perf_event_bpf_event(struct bpf_prog *prog,
7821 enum perf_bpf_event_type type,
7822 u16 flags)
7823{
7824 struct perf_bpf_event bpf_event;
7825
7826 if (type <= PERF_BPF_EVENT_UNKNOWN ||
7827 type >= PERF_BPF_EVENT_MAX)
7828 return;
7829
7830 switch (type) {
7831 case PERF_BPF_EVENT_PROG_LOAD:
7832 case PERF_BPF_EVENT_PROG_UNLOAD:
7833 if (atomic_read(&nr_ksymbol_events))
7834 perf_event_bpf_emit_ksymbols(prog, type);
7835 break;
7836 default:
7837 break;
7838 }
7839
7840 if (!atomic_read(&nr_bpf_events))
7841 return;
7842
7843 bpf_event = (struct perf_bpf_event){
7844 .prog = prog,
7845 .event_id = {
7846 .header = {
7847 .type = PERF_RECORD_BPF_EVENT,
7848 .size = sizeof(bpf_event.event_id),
7849 },
7850 .type = type,
7851 .flags = flags,
7852 .id = prog->aux->id,
7853 },
7854 };
7855
7856 BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64));
7857
7858 memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE);
7859 perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL);
7860}
7861
8d4e6c4c
AS
7862void perf_event_itrace_started(struct perf_event *event)
7863{
7864 event->attach_state |= PERF_ATTACH_ITRACE;
7865}
7866
ec0d7729
AS
7867static void perf_log_itrace_start(struct perf_event *event)
7868{
7869 struct perf_output_handle handle;
7870 struct perf_sample_data sample;
7871 struct perf_aux_event {
7872 struct perf_event_header header;
7873 u32 pid;
7874 u32 tid;
7875 } rec;
7876 int ret;
7877
7878 if (event->parent)
7879 event = event->parent;
7880
7881 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
8d4e6c4c 7882 event->attach_state & PERF_ATTACH_ITRACE)
ec0d7729
AS
7883 return;
7884
ec0d7729
AS
7885 rec.header.type = PERF_RECORD_ITRACE_START;
7886 rec.header.misc = 0;
7887 rec.header.size = sizeof(rec);
7888 rec.pid = perf_event_pid(event, current);
7889 rec.tid = perf_event_tid(event, current);
7890
7891 perf_event_header__init_id(&rec.header, &sample, event);
7892 ret = perf_output_begin(&handle, event, rec.header.size);
7893
7894 if (ret)
7895 return;
7896
7897 perf_output_put(&handle, rec);
7898 perf_event__output_id_sample(event, &handle, &sample);
7899
7900 perf_output_end(&handle);
7901}
7902
475113d9
JO
7903static int
7904__perf_event_account_interrupt(struct perf_event *event, int throttle)
f6c7d5fe 7905{
cdd6c482 7906 struct hw_perf_event *hwc = &event->hw;
79f14641 7907 int ret = 0;
475113d9 7908 u64 seq;
96398826 7909
e050e3f0
SE
7910 seq = __this_cpu_read(perf_throttled_seq);
7911 if (seq != hwc->interrupts_seq) {
7912 hwc->interrupts_seq = seq;
7913 hwc->interrupts = 1;
7914 } else {
7915 hwc->interrupts++;
7916 if (unlikely(throttle
7917 && hwc->interrupts >= max_samples_per_tick)) {
7918 __this_cpu_inc(perf_throttled_count);
555e0c1e 7919 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
163ec435
PZ
7920 hwc->interrupts = MAX_INTERRUPTS;
7921 perf_log_throttle(event, 0);
a78ac325
PZ
7922 ret = 1;
7923 }
e050e3f0 7924 }
60db5e09 7925
cdd6c482 7926 if (event->attr.freq) {
def0a9b2 7927 u64 now = perf_clock();
abd50713 7928 s64 delta = now - hwc->freq_time_stamp;
bd2b5b12 7929
abd50713 7930 hwc->freq_time_stamp = now;
bd2b5b12 7931
abd50713 7932 if (delta > 0 && delta < 2*TICK_NSEC)
f39d47ff 7933 perf_adjust_period(event, delta, hwc->last_period, true);
bd2b5b12
PZ
7934 }
7935
475113d9
JO
7936 return ret;
7937}
7938
7939int perf_event_account_interrupt(struct perf_event *event)
7940{
7941 return __perf_event_account_interrupt(event, 1);
7942}
7943
7944/*
7945 * Generic event overflow handling, sampling.
7946 */
7947
7948static int __perf_event_overflow(struct perf_event *event,
7949 int throttle, struct perf_sample_data *data,
7950 struct pt_regs *regs)
7951{
7952 int events = atomic_read(&event->event_limit);
7953 int ret = 0;
7954
7955 /*
7956 * Non-sampling counters might still use the PMI to fold short
7957 * hardware counters, ignore those.
7958 */
7959 if (unlikely(!is_sampling_event(event)))
7960 return 0;
7961
7962 ret = __perf_event_account_interrupt(event, throttle);
cc1582c2 7963
2023b359
PZ
7964 /*
7965 * XXX event_limit might not quite work as expected on inherited
cdd6c482 7966 * events
2023b359
PZ
7967 */
7968
cdd6c482
IM
7969 event->pending_kill = POLL_IN;
7970 if (events && atomic_dec_and_test(&event->event_limit)) {
79f14641 7971 ret = 1;
cdd6c482 7972 event->pending_kill = POLL_HUP;
5aab90ce
JO
7973
7974 perf_event_disable_inatomic(event);
79f14641
PZ
7975 }
7976
aa6a5f3c 7977 READ_ONCE(event->overflow_handler)(event, data, regs);
453f19ee 7978
fed66e2c 7979 if (*perf_event_fasync(event) && event->pending_kill) {
a8b0ca17
PZ
7980 event->pending_wakeup = 1;
7981 irq_work_queue(&event->pending);
f506b3dc
PZ
7982 }
7983
79f14641 7984 return ret;
f6c7d5fe
PZ
7985}
7986
a8b0ca17 7987int perf_event_overflow(struct perf_event *event,
5622f295
MM
7988 struct perf_sample_data *data,
7989 struct pt_regs *regs)
850bc73f 7990{
a8b0ca17 7991 return __perf_event_overflow(event, 1, data, regs);
850bc73f
PZ
7992}
7993
15dbf27c 7994/*
cdd6c482 7995 * Generic software event infrastructure
15dbf27c
PZ
7996 */
7997
b28ab83c
PZ
7998struct swevent_htable {
7999 struct swevent_hlist *swevent_hlist;
8000 struct mutex hlist_mutex;
8001 int hlist_refcount;
8002
8003 /* Recursion avoidance in each contexts */
8004 int recursion[PERF_NR_CONTEXTS];
8005};
8006
8007static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
8008
7b4b6658 8009/*
cdd6c482
IM
8010 * We directly increment event->count and keep a second value in
8011 * event->hw.period_left to count intervals. This period event
7b4b6658
PZ
8012 * is kept in the range [-sample_period, 0] so that we can use the
8013 * sign as trigger.
8014 */
8015
ab573844 8016u64 perf_swevent_set_period(struct perf_event *event)
15dbf27c 8017{
cdd6c482 8018 struct hw_perf_event *hwc = &event->hw;
7b4b6658
PZ
8019 u64 period = hwc->last_period;
8020 u64 nr, offset;
8021 s64 old, val;
8022
8023 hwc->last_period = hwc->sample_period;
15dbf27c
PZ
8024
8025again:
e7850595 8026 old = val = local64_read(&hwc->period_left);
7b4b6658
PZ
8027 if (val < 0)
8028 return 0;
15dbf27c 8029
7b4b6658
PZ
8030 nr = div64_u64(period + val, period);
8031 offset = nr * period;
8032 val -= offset;
e7850595 8033 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7b4b6658 8034 goto again;
15dbf27c 8035
7b4b6658 8036 return nr;
15dbf27c
PZ
8037}
8038
0cff784a 8039static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
a8b0ca17 8040 struct perf_sample_data *data,
5622f295 8041 struct pt_regs *regs)
15dbf27c 8042{
cdd6c482 8043 struct hw_perf_event *hwc = &event->hw;
850bc73f 8044 int throttle = 0;
15dbf27c 8045
0cff784a
PZ
8046 if (!overflow)
8047 overflow = perf_swevent_set_period(event);
15dbf27c 8048
7b4b6658
PZ
8049 if (hwc->interrupts == MAX_INTERRUPTS)
8050 return;
15dbf27c 8051
7b4b6658 8052 for (; overflow; overflow--) {
a8b0ca17 8053 if (__perf_event_overflow(event, throttle,
5622f295 8054 data, regs)) {
7b4b6658
PZ
8055 /*
8056 * We inhibit the overflow from happening when
8057 * hwc->interrupts == MAX_INTERRUPTS.
8058 */
8059 break;
8060 }
cf450a73 8061 throttle = 1;
7b4b6658 8062 }
15dbf27c
PZ
8063}
8064
a4eaf7f1 8065static void perf_swevent_event(struct perf_event *event, u64 nr,
a8b0ca17 8066 struct perf_sample_data *data,
5622f295 8067 struct pt_regs *regs)
7b4b6658 8068{
cdd6c482 8069 struct hw_perf_event *hwc = &event->hw;
d6d020e9 8070
e7850595 8071 local64_add(nr, &event->count);
d6d020e9 8072
0cff784a
PZ
8073 if (!regs)
8074 return;
8075
6c7e550f 8076 if (!is_sampling_event(event))
7b4b6658 8077 return;
d6d020e9 8078
5d81e5cf
AV
8079 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
8080 data->period = nr;
8081 return perf_swevent_overflow(event, 1, data, regs);
8082 } else
8083 data->period = event->hw.last_period;
8084
0cff784a 8085 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
a8b0ca17 8086 return perf_swevent_overflow(event, 1, data, regs);
0cff784a 8087
e7850595 8088 if (local64_add_negative(nr, &hwc->period_left))
7b4b6658 8089 return;
df1a132b 8090
a8b0ca17 8091 perf_swevent_overflow(event, 0, data, regs);
d6d020e9
PZ
8092}
8093
f5ffe02e
FW
8094static int perf_exclude_event(struct perf_event *event,
8095 struct pt_regs *regs)
8096{
a4eaf7f1 8097 if (event->hw.state & PERF_HES_STOPPED)
91b2f482 8098 return 1;
a4eaf7f1 8099
f5ffe02e
FW
8100 if (regs) {
8101 if (event->attr.exclude_user && user_mode(regs))
8102 return 1;
8103
8104 if (event->attr.exclude_kernel && !user_mode(regs))
8105 return 1;
8106 }
8107
8108 return 0;
8109}
8110
cdd6c482 8111static int perf_swevent_match(struct perf_event *event,
1c432d89 8112 enum perf_type_id type,
6fb2915d
LZ
8113 u32 event_id,
8114 struct perf_sample_data *data,
8115 struct pt_regs *regs)
15dbf27c 8116{
cdd6c482 8117 if (event->attr.type != type)
a21ca2ca 8118 return 0;
f5ffe02e 8119
cdd6c482 8120 if (event->attr.config != event_id)
15dbf27c
PZ
8121 return 0;
8122
f5ffe02e
FW
8123 if (perf_exclude_event(event, regs))
8124 return 0;
15dbf27c
PZ
8125
8126 return 1;
8127}
8128
76e1d904
FW
8129static inline u64 swevent_hash(u64 type, u32 event_id)
8130{
8131 u64 val = event_id | (type << 32);
8132
8133 return hash_64(val, SWEVENT_HLIST_BITS);
8134}
8135
49f135ed
FW
8136static inline struct hlist_head *
8137__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
76e1d904 8138{
49f135ed
FW
8139 u64 hash = swevent_hash(type, event_id);
8140
8141 return &hlist->heads[hash];
8142}
76e1d904 8143
49f135ed
FW
8144/* For the read side: events when they trigger */
8145static inline struct hlist_head *
b28ab83c 8146find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
49f135ed
FW
8147{
8148 struct swevent_hlist *hlist;
76e1d904 8149
b28ab83c 8150 hlist = rcu_dereference(swhash->swevent_hlist);
76e1d904
FW
8151 if (!hlist)
8152 return NULL;
8153
49f135ed
FW
8154 return __find_swevent_head(hlist, type, event_id);
8155}
8156
8157/* For the event head insertion and removal in the hlist */
8158static inline struct hlist_head *
b28ab83c 8159find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
49f135ed
FW
8160{
8161 struct swevent_hlist *hlist;
8162 u32 event_id = event->attr.config;
8163 u64 type = event->attr.type;
8164
8165 /*
8166 * Event scheduling is always serialized against hlist allocation
8167 * and release. Which makes the protected version suitable here.
8168 * The context lock guarantees that.
8169 */
b28ab83c 8170 hlist = rcu_dereference_protected(swhash->swevent_hlist,
49f135ed
FW
8171 lockdep_is_held(&event->ctx->lock));
8172 if (!hlist)
8173 return NULL;
8174
8175 return __find_swevent_head(hlist, type, event_id);
76e1d904
FW
8176}
8177
8178static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
a8b0ca17 8179 u64 nr,
76e1d904
FW
8180 struct perf_sample_data *data,
8181 struct pt_regs *regs)
15dbf27c 8182{
4a32fea9 8183 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 8184 struct perf_event *event;
76e1d904 8185 struct hlist_head *head;
15dbf27c 8186
76e1d904 8187 rcu_read_lock();
b28ab83c 8188 head = find_swevent_head_rcu(swhash, type, event_id);
76e1d904
FW
8189 if (!head)
8190 goto end;
8191
b67bfe0d 8192 hlist_for_each_entry_rcu(event, head, hlist_entry) {
6fb2915d 8193 if (perf_swevent_match(event, type, event_id, data, regs))
a8b0ca17 8194 perf_swevent_event(event, nr, data, regs);
15dbf27c 8195 }
76e1d904
FW
8196end:
8197 rcu_read_unlock();
15dbf27c
PZ
8198}
8199
86038c5e
PZI
8200DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
8201
4ed7c92d 8202int perf_swevent_get_recursion_context(void)
96f6d444 8203{
4a32fea9 8204 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
96f6d444 8205
b28ab83c 8206 return get_recursion_context(swhash->recursion);
96f6d444 8207}
645e8cc0 8208EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
96f6d444 8209
98b5c2c6 8210void perf_swevent_put_recursion_context(int rctx)
15dbf27c 8211{
4a32fea9 8212 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
927c7a9e 8213
b28ab83c 8214 put_recursion_context(swhash->recursion, rctx);
ce71b9df 8215}
15dbf27c 8216
86038c5e 8217void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
b8e83514 8218{
a4234bfc 8219 struct perf_sample_data data;
4ed7c92d 8220
86038c5e 8221 if (WARN_ON_ONCE(!regs))
4ed7c92d 8222 return;
a4234bfc 8223
fd0d000b 8224 perf_sample_data_init(&data, addr, 0);
a8b0ca17 8225 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
86038c5e
PZI
8226}
8227
8228void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
8229{
8230 int rctx;
8231
8232 preempt_disable_notrace();
8233 rctx = perf_swevent_get_recursion_context();
8234 if (unlikely(rctx < 0))
8235 goto fail;
8236
8237 ___perf_sw_event(event_id, nr, regs, addr);
4ed7c92d
PZ
8238
8239 perf_swevent_put_recursion_context(rctx);
86038c5e 8240fail:
1c024eca 8241 preempt_enable_notrace();
b8e83514
PZ
8242}
8243
cdd6c482 8244static void perf_swevent_read(struct perf_event *event)
15dbf27c 8245{
15dbf27c
PZ
8246}
8247
a4eaf7f1 8248static int perf_swevent_add(struct perf_event *event, int flags)
15dbf27c 8249{
4a32fea9 8250 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 8251 struct hw_perf_event *hwc = &event->hw;
76e1d904
FW
8252 struct hlist_head *head;
8253
6c7e550f 8254 if (is_sampling_event(event)) {
7b4b6658 8255 hwc->last_period = hwc->sample_period;
cdd6c482 8256 perf_swevent_set_period(event);
7b4b6658 8257 }
76e1d904 8258
a4eaf7f1
PZ
8259 hwc->state = !(flags & PERF_EF_START);
8260
b28ab83c 8261 head = find_swevent_head(swhash, event);
12ca6ad2 8262 if (WARN_ON_ONCE(!head))
76e1d904
FW
8263 return -EINVAL;
8264
8265 hlist_add_head_rcu(&event->hlist_entry, head);
6a694a60 8266 perf_event_update_userpage(event);
76e1d904 8267
15dbf27c
PZ
8268 return 0;
8269}
8270
a4eaf7f1 8271static void perf_swevent_del(struct perf_event *event, int flags)
15dbf27c 8272{
76e1d904 8273 hlist_del_rcu(&event->hlist_entry);
15dbf27c
PZ
8274}
8275
a4eaf7f1 8276static void perf_swevent_start(struct perf_event *event, int flags)
5c92d124 8277{
a4eaf7f1 8278 event->hw.state = 0;
d6d020e9 8279}
aa9c4c0f 8280
a4eaf7f1 8281static void perf_swevent_stop(struct perf_event *event, int flags)
d6d020e9 8282{
a4eaf7f1 8283 event->hw.state = PERF_HES_STOPPED;
bae43c99
IM
8284}
8285
49f135ed
FW
8286/* Deref the hlist from the update side */
8287static inline struct swevent_hlist *
b28ab83c 8288swevent_hlist_deref(struct swevent_htable *swhash)
49f135ed 8289{
b28ab83c
PZ
8290 return rcu_dereference_protected(swhash->swevent_hlist,
8291 lockdep_is_held(&swhash->hlist_mutex));
49f135ed
FW
8292}
8293
b28ab83c 8294static void swevent_hlist_release(struct swevent_htable *swhash)
76e1d904 8295{
b28ab83c 8296 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
76e1d904 8297
49f135ed 8298 if (!hlist)
76e1d904
FW
8299 return;
8300
70691d4a 8301 RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
fa4bbc4c 8302 kfree_rcu(hlist, rcu_head);
76e1d904
FW
8303}
8304
3b364d7b 8305static void swevent_hlist_put_cpu(int cpu)
76e1d904 8306{
b28ab83c 8307 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904 8308
b28ab83c 8309 mutex_lock(&swhash->hlist_mutex);
76e1d904 8310
b28ab83c
PZ
8311 if (!--swhash->hlist_refcount)
8312 swevent_hlist_release(swhash);
76e1d904 8313
b28ab83c 8314 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
8315}
8316
3b364d7b 8317static void swevent_hlist_put(void)
76e1d904
FW
8318{
8319 int cpu;
8320
76e1d904 8321 for_each_possible_cpu(cpu)
3b364d7b 8322 swevent_hlist_put_cpu(cpu);
76e1d904
FW
8323}
8324
3b364d7b 8325static int swevent_hlist_get_cpu(int cpu)
76e1d904 8326{
b28ab83c 8327 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904
FW
8328 int err = 0;
8329
b28ab83c 8330 mutex_lock(&swhash->hlist_mutex);
a63fbed7
TG
8331 if (!swevent_hlist_deref(swhash) &&
8332 cpumask_test_cpu(cpu, perf_online_mask)) {
76e1d904
FW
8333 struct swevent_hlist *hlist;
8334
8335 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
8336 if (!hlist) {
8337 err = -ENOMEM;
8338 goto exit;
8339 }
b28ab83c 8340 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 8341 }
b28ab83c 8342 swhash->hlist_refcount++;
9ed6060d 8343exit:
b28ab83c 8344 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
8345
8346 return err;
8347}
8348
3b364d7b 8349static int swevent_hlist_get(void)
76e1d904 8350{
3b364d7b 8351 int err, cpu, failed_cpu;
76e1d904 8352
a63fbed7 8353 mutex_lock(&pmus_lock);
76e1d904 8354 for_each_possible_cpu(cpu) {
3b364d7b 8355 err = swevent_hlist_get_cpu(cpu);
76e1d904
FW
8356 if (err) {
8357 failed_cpu = cpu;
8358 goto fail;
8359 }
8360 }
a63fbed7 8361 mutex_unlock(&pmus_lock);
76e1d904 8362 return 0;
9ed6060d 8363fail:
76e1d904
FW
8364 for_each_possible_cpu(cpu) {
8365 if (cpu == failed_cpu)
8366 break;
3b364d7b 8367 swevent_hlist_put_cpu(cpu);
76e1d904 8368 }
a63fbed7 8369 mutex_unlock(&pmus_lock);
76e1d904
FW
8370 return err;
8371}
8372
c5905afb 8373struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
95476b64 8374
b0a873eb
PZ
8375static void sw_perf_event_destroy(struct perf_event *event)
8376{
8377 u64 event_id = event->attr.config;
95476b64 8378
b0a873eb
PZ
8379 WARN_ON(event->parent);
8380
c5905afb 8381 static_key_slow_dec(&perf_swevent_enabled[event_id]);
3b364d7b 8382 swevent_hlist_put();
b0a873eb
PZ
8383}
8384
8385static int perf_swevent_init(struct perf_event *event)
8386{
8176cced 8387 u64 event_id = event->attr.config;
b0a873eb
PZ
8388
8389 if (event->attr.type != PERF_TYPE_SOFTWARE)
8390 return -ENOENT;
8391
2481c5fa
SE
8392 /*
8393 * no branch sampling for software events
8394 */
8395 if (has_branch_stack(event))
8396 return -EOPNOTSUPP;
8397
b0a873eb
PZ
8398 switch (event_id) {
8399 case PERF_COUNT_SW_CPU_CLOCK:
8400 case PERF_COUNT_SW_TASK_CLOCK:
8401 return -ENOENT;
8402
8403 default:
8404 break;
8405 }
8406
ce677831 8407 if (event_id >= PERF_COUNT_SW_MAX)
b0a873eb
PZ
8408 return -ENOENT;
8409
8410 if (!event->parent) {
8411 int err;
8412
3b364d7b 8413 err = swevent_hlist_get();
b0a873eb
PZ
8414 if (err)
8415 return err;
8416
c5905afb 8417 static_key_slow_inc(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
8418 event->destroy = sw_perf_event_destroy;
8419 }
8420
8421 return 0;
8422}
8423
8424static struct pmu perf_swevent = {
89a1e187 8425 .task_ctx_nr = perf_sw_context,
95476b64 8426
34f43927
PZ
8427 .capabilities = PERF_PMU_CAP_NO_NMI,
8428
b0a873eb 8429 .event_init = perf_swevent_init,
a4eaf7f1
PZ
8430 .add = perf_swevent_add,
8431 .del = perf_swevent_del,
8432 .start = perf_swevent_start,
8433 .stop = perf_swevent_stop,
1c024eca 8434 .read = perf_swevent_read,
1c024eca
PZ
8435};
8436
b0a873eb
PZ
8437#ifdef CONFIG_EVENT_TRACING
8438
1c024eca
PZ
8439static int perf_tp_filter_match(struct perf_event *event,
8440 struct perf_sample_data *data)
8441{
7e3f977e 8442 void *record = data->raw->frag.data;
1c024eca 8443
b71b437e
PZ
8444 /* only top level events have filters set */
8445 if (event->parent)
8446 event = event->parent;
8447
1c024eca
PZ
8448 if (likely(!event->filter) || filter_match_preds(event->filter, record))
8449 return 1;
8450 return 0;
8451}
8452
8453static int perf_tp_event_match(struct perf_event *event,
8454 struct perf_sample_data *data,
8455 struct pt_regs *regs)
8456{
a0f7d0f7
FW
8457 if (event->hw.state & PERF_HES_STOPPED)
8458 return 0;
580d607c
PZ
8459 /*
8460 * All tracepoints are from kernel-space.
8461 */
8462 if (event->attr.exclude_kernel)
1c024eca
PZ
8463 return 0;
8464
8465 if (!perf_tp_filter_match(event, data))
8466 return 0;
8467
8468 return 1;
8469}
8470
85b67bcb
AS
8471void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
8472 struct trace_event_call *call, u64 count,
8473 struct pt_regs *regs, struct hlist_head *head,
8474 struct task_struct *task)
8475{
e87c6bc3 8476 if (bpf_prog_array_valid(call)) {
85b67bcb 8477 *(struct pt_regs **)raw_data = regs;
e87c6bc3 8478 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
85b67bcb
AS
8479 perf_swevent_put_recursion_context(rctx);
8480 return;
8481 }
8482 }
8483 perf_tp_event(call->event.type, count, raw_data, size, regs, head,
8fd0fbbe 8484 rctx, task);
85b67bcb
AS
8485}
8486EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
8487
1e1dcd93 8488void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
e6dab5ff 8489 struct pt_regs *regs, struct hlist_head *head, int rctx,
8fd0fbbe 8490 struct task_struct *task)
95476b64
FW
8491{
8492 struct perf_sample_data data;
8fd0fbbe 8493 struct perf_event *event;
1c024eca 8494
95476b64 8495 struct perf_raw_record raw = {
7e3f977e
DB
8496 .frag = {
8497 .size = entry_size,
8498 .data = record,
8499 },
95476b64
FW
8500 };
8501
1e1dcd93 8502 perf_sample_data_init(&data, 0, 0);
95476b64
FW
8503 data.raw = &raw;
8504
1e1dcd93
AS
8505 perf_trace_buf_update(record, event_type);
8506
8fd0fbbe 8507 hlist_for_each_entry_rcu(event, head, hlist_entry) {
1c024eca 8508 if (perf_tp_event_match(event, &data, regs))
a8b0ca17 8509 perf_swevent_event(event, count, &data, regs);
4f41c013 8510 }
ecc55f84 8511
e6dab5ff
AV
8512 /*
8513 * If we got specified a target task, also iterate its context and
8514 * deliver this event there too.
8515 */
8516 if (task && task != current) {
8517 struct perf_event_context *ctx;
8518 struct trace_entry *entry = record;
8519
8520 rcu_read_lock();
8521 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
8522 if (!ctx)
8523 goto unlock;
8524
8525 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
cd6fb677
JO
8526 if (event->cpu != smp_processor_id())
8527 continue;
e6dab5ff
AV
8528 if (event->attr.type != PERF_TYPE_TRACEPOINT)
8529 continue;
8530 if (event->attr.config != entry->type)
8531 continue;
8532 if (perf_tp_event_match(event, &data, regs))
8533 perf_swevent_event(event, count, &data, regs);
8534 }
8535unlock:
8536 rcu_read_unlock();
8537 }
8538
ecc55f84 8539 perf_swevent_put_recursion_context(rctx);
95476b64
FW
8540}
8541EXPORT_SYMBOL_GPL(perf_tp_event);
8542
cdd6c482 8543static void tp_perf_event_destroy(struct perf_event *event)
e077df4f 8544{
1c024eca 8545 perf_trace_destroy(event);
e077df4f
PZ
8546}
8547
b0a873eb 8548static int perf_tp_event_init(struct perf_event *event)
e077df4f 8549{
76e1d904
FW
8550 int err;
8551
b0a873eb
PZ
8552 if (event->attr.type != PERF_TYPE_TRACEPOINT)
8553 return -ENOENT;
8554
2481c5fa
SE
8555 /*
8556 * no branch sampling for tracepoint events
8557 */
8558 if (has_branch_stack(event))
8559 return -EOPNOTSUPP;
8560
1c024eca
PZ
8561 err = perf_trace_init(event);
8562 if (err)
b0a873eb 8563 return err;
e077df4f 8564
cdd6c482 8565 event->destroy = tp_perf_event_destroy;
e077df4f 8566
b0a873eb
PZ
8567 return 0;
8568}
8569
8570static struct pmu perf_tracepoint = {
89a1e187
PZ
8571 .task_ctx_nr = perf_sw_context,
8572
b0a873eb 8573 .event_init = perf_tp_event_init,
a4eaf7f1
PZ
8574 .add = perf_trace_add,
8575 .del = perf_trace_del,
8576 .start = perf_swevent_start,
8577 .stop = perf_swevent_stop,
b0a873eb 8578 .read = perf_swevent_read,
b0a873eb
PZ
8579};
8580
33ea4b24 8581#if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
e12f03d7
SL
8582/*
8583 * Flags in config, used by dynamic PMU kprobe and uprobe
8584 * The flags should match following PMU_FORMAT_ATTR().
8585 *
8586 * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
8587 * if not set, create kprobe/uprobe
a6ca88b2
SL
8588 *
8589 * The following values specify a reference counter (or semaphore in the
8590 * terminology of tools like dtrace, systemtap, etc.) Userspace Statically
8591 * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset.
8592 *
8593 * PERF_UPROBE_REF_CTR_OFFSET_BITS # of bits in config as th offset
8594 * PERF_UPROBE_REF_CTR_OFFSET_SHIFT # of bits to shift left
e12f03d7
SL
8595 */
8596enum perf_probe_config {
8597 PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0, /* [k,u]retprobe */
a6ca88b2
SL
8598 PERF_UPROBE_REF_CTR_OFFSET_BITS = 32,
8599 PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS,
e12f03d7
SL
8600};
8601
8602PMU_FORMAT_ATTR(retprobe, "config:0");
a6ca88b2 8603#endif
e12f03d7 8604
a6ca88b2
SL
8605#ifdef CONFIG_KPROBE_EVENTS
8606static struct attribute *kprobe_attrs[] = {
e12f03d7
SL
8607 &format_attr_retprobe.attr,
8608 NULL,
8609};
8610
a6ca88b2 8611static struct attribute_group kprobe_format_group = {
e12f03d7 8612 .name = "format",
a6ca88b2 8613 .attrs = kprobe_attrs,
e12f03d7
SL
8614};
8615
a6ca88b2
SL
8616static const struct attribute_group *kprobe_attr_groups[] = {
8617 &kprobe_format_group,
e12f03d7
SL
8618 NULL,
8619};
8620
8621static int perf_kprobe_event_init(struct perf_event *event);
8622static struct pmu perf_kprobe = {
8623 .task_ctx_nr = perf_sw_context,
8624 .event_init = perf_kprobe_event_init,
8625 .add = perf_trace_add,
8626 .del = perf_trace_del,
8627 .start = perf_swevent_start,
8628 .stop = perf_swevent_stop,
8629 .read = perf_swevent_read,
a6ca88b2 8630 .attr_groups = kprobe_attr_groups,
e12f03d7
SL
8631};
8632
8633static int perf_kprobe_event_init(struct perf_event *event)
8634{
8635 int err;
8636 bool is_retprobe;
8637
8638 if (event->attr.type != perf_kprobe.type)
8639 return -ENOENT;
32e6e967
SL
8640
8641 if (!capable(CAP_SYS_ADMIN))
8642 return -EACCES;
8643
e12f03d7
SL
8644 /*
8645 * no branch sampling for probe events
8646 */
8647 if (has_branch_stack(event))
8648 return -EOPNOTSUPP;
8649
8650 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
8651 err = perf_kprobe_init(event, is_retprobe);
8652 if (err)
8653 return err;
8654
8655 event->destroy = perf_kprobe_destroy;
8656
8657 return 0;
8658}
8659#endif /* CONFIG_KPROBE_EVENTS */
8660
33ea4b24 8661#ifdef CONFIG_UPROBE_EVENTS
a6ca88b2
SL
8662PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63");
8663
8664static struct attribute *uprobe_attrs[] = {
8665 &format_attr_retprobe.attr,
8666 &format_attr_ref_ctr_offset.attr,
8667 NULL,
8668};
8669
8670static struct attribute_group uprobe_format_group = {
8671 .name = "format",
8672 .attrs = uprobe_attrs,
8673};
8674
8675static const struct attribute_group *uprobe_attr_groups[] = {
8676 &uprobe_format_group,
8677 NULL,
8678};
8679
33ea4b24
SL
8680static int perf_uprobe_event_init(struct perf_event *event);
8681static struct pmu perf_uprobe = {
8682 .task_ctx_nr = perf_sw_context,
8683 .event_init = perf_uprobe_event_init,
8684 .add = perf_trace_add,
8685 .del = perf_trace_del,
8686 .start = perf_swevent_start,
8687 .stop = perf_swevent_stop,
8688 .read = perf_swevent_read,
a6ca88b2 8689 .attr_groups = uprobe_attr_groups,
33ea4b24
SL
8690};
8691
8692static int perf_uprobe_event_init(struct perf_event *event)
8693{
8694 int err;
a6ca88b2 8695 unsigned long ref_ctr_offset;
33ea4b24
SL
8696 bool is_retprobe;
8697
8698 if (event->attr.type != perf_uprobe.type)
8699 return -ENOENT;
32e6e967
SL
8700
8701 if (!capable(CAP_SYS_ADMIN))
8702 return -EACCES;
8703
33ea4b24
SL
8704 /*
8705 * no branch sampling for probe events
8706 */
8707 if (has_branch_stack(event))
8708 return -EOPNOTSUPP;
8709
8710 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
a6ca88b2
SL
8711 ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
8712 err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe);
33ea4b24
SL
8713 if (err)
8714 return err;
8715
8716 event->destroy = perf_uprobe_destroy;
8717
8718 return 0;
8719}
8720#endif /* CONFIG_UPROBE_EVENTS */
8721
b0a873eb
PZ
8722static inline void perf_tp_register(void)
8723{
2e80a82a 8724 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
e12f03d7
SL
8725#ifdef CONFIG_KPROBE_EVENTS
8726 perf_pmu_register(&perf_kprobe, "kprobe", -1);
8727#endif
33ea4b24
SL
8728#ifdef CONFIG_UPROBE_EVENTS
8729 perf_pmu_register(&perf_uprobe, "uprobe", -1);
8730#endif
e077df4f 8731}
6fb2915d 8732
6fb2915d
LZ
8733static void perf_event_free_filter(struct perf_event *event)
8734{
8735 ftrace_profile_free_filter(event);
8736}
8737
aa6a5f3c
AS
8738#ifdef CONFIG_BPF_SYSCALL
8739static void bpf_overflow_handler(struct perf_event *event,
8740 struct perf_sample_data *data,
8741 struct pt_regs *regs)
8742{
8743 struct bpf_perf_event_data_kern ctx = {
8744 .data = data,
7d9285e8 8745 .event = event,
aa6a5f3c
AS
8746 };
8747 int ret = 0;
8748
c895f6f7 8749 ctx.regs = perf_arch_bpf_user_pt_regs(regs);
aa6a5f3c
AS
8750 preempt_disable();
8751 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
8752 goto out;
8753 rcu_read_lock();
88575199 8754 ret = BPF_PROG_RUN(event->prog, &ctx);
aa6a5f3c
AS
8755 rcu_read_unlock();
8756out:
8757 __this_cpu_dec(bpf_prog_active);
8758 preempt_enable();
8759 if (!ret)
8760 return;
8761
8762 event->orig_overflow_handler(event, data, regs);
8763}
8764
8765static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8766{
8767 struct bpf_prog *prog;
8768
8769 if (event->overflow_handler_context)
8770 /* hw breakpoint or kernel counter */
8771 return -EINVAL;
8772
8773 if (event->prog)
8774 return -EEXIST;
8775
8776 prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
8777 if (IS_ERR(prog))
8778 return PTR_ERR(prog);
8779
8780 event->prog = prog;
8781 event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
8782 WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
8783 return 0;
8784}
8785
8786static void perf_event_free_bpf_handler(struct perf_event *event)
8787{
8788 struct bpf_prog *prog = event->prog;
8789
8790 if (!prog)
8791 return;
8792
8793 WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
8794 event->prog = NULL;
8795 bpf_prog_put(prog);
8796}
8797#else
8798static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8799{
8800 return -EOPNOTSUPP;
8801}
8802static void perf_event_free_bpf_handler(struct perf_event *event)
8803{
8804}
8805#endif
8806
e12f03d7
SL
8807/*
8808 * returns true if the event is a tracepoint, or a kprobe/upprobe created
8809 * with perf_event_open()
8810 */
8811static inline bool perf_event_is_tracing(struct perf_event *event)
8812{
8813 if (event->pmu == &perf_tracepoint)
8814 return true;
8815#ifdef CONFIG_KPROBE_EVENTS
8816 if (event->pmu == &perf_kprobe)
8817 return true;
33ea4b24
SL
8818#endif
8819#ifdef CONFIG_UPROBE_EVENTS
8820 if (event->pmu == &perf_uprobe)
8821 return true;
e12f03d7
SL
8822#endif
8823 return false;
8824}
8825
2541517c
AS
8826static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8827{
cf5f5cea 8828 bool is_kprobe, is_tracepoint, is_syscall_tp;
2541517c 8829 struct bpf_prog *prog;
e87c6bc3 8830 int ret;
2541517c 8831
e12f03d7 8832 if (!perf_event_is_tracing(event))
f91840a3 8833 return perf_event_set_bpf_handler(event, prog_fd);
2541517c 8834
98b5c2c6
AS
8835 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
8836 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
cf5f5cea
YS
8837 is_syscall_tp = is_syscall_trace_event(event->tp_event);
8838 if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
98b5c2c6 8839 /* bpf programs can only be attached to u/kprobe or tracepoint */
2541517c
AS
8840 return -EINVAL;
8841
8842 prog = bpf_prog_get(prog_fd);
8843 if (IS_ERR(prog))
8844 return PTR_ERR(prog);
8845
98b5c2c6 8846 if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
cf5f5cea
YS
8847 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
8848 (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
2541517c
AS
8849 /* valid fd, but invalid bpf program type */
8850 bpf_prog_put(prog);
8851 return -EINVAL;
8852 }
8853
9802d865
JB
8854 /* Kprobe override only works for kprobes, not uprobes. */
8855 if (prog->kprobe_override &&
8856 !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE)) {
8857 bpf_prog_put(prog);
8858 return -EINVAL;
8859 }
8860
cf5f5cea 8861 if (is_tracepoint || is_syscall_tp) {
32bbe007
AS
8862 int off = trace_event_get_offsets(event->tp_event);
8863
8864 if (prog->aux->max_ctx_offset > off) {
8865 bpf_prog_put(prog);
8866 return -EACCES;
8867 }
8868 }
2541517c 8869
e87c6bc3
YS
8870 ret = perf_event_attach_bpf_prog(event, prog);
8871 if (ret)
8872 bpf_prog_put(prog);
8873 return ret;
2541517c
AS
8874}
8875
8876static void perf_event_free_bpf_prog(struct perf_event *event)
8877{
e12f03d7 8878 if (!perf_event_is_tracing(event)) {
0b4c6841 8879 perf_event_free_bpf_handler(event);
2541517c 8880 return;
2541517c 8881 }
e87c6bc3 8882 perf_event_detach_bpf_prog(event);
2541517c
AS
8883}
8884
e077df4f 8885#else
6fb2915d 8886
b0a873eb 8887static inline void perf_tp_register(void)
e077df4f 8888{
e077df4f 8889}
6fb2915d 8890
6fb2915d
LZ
8891static void perf_event_free_filter(struct perf_event *event)
8892{
8893}
8894
2541517c
AS
8895static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8896{
8897 return -ENOENT;
8898}
8899
8900static void perf_event_free_bpf_prog(struct perf_event *event)
8901{
8902}
07b139c8 8903#endif /* CONFIG_EVENT_TRACING */
e077df4f 8904
24f1e32c 8905#ifdef CONFIG_HAVE_HW_BREAKPOINT
f5ffe02e 8906void perf_bp_event(struct perf_event *bp, void *data)
24f1e32c 8907{
f5ffe02e
FW
8908 struct perf_sample_data sample;
8909 struct pt_regs *regs = data;
8910
fd0d000b 8911 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
f5ffe02e 8912
a4eaf7f1 8913 if (!bp->hw.state && !perf_exclude_event(bp, regs))
a8b0ca17 8914 perf_swevent_event(bp, 1, &sample, regs);
24f1e32c
FW
8915}
8916#endif
8917
375637bc
AS
8918/*
8919 * Allocate a new address filter
8920 */
8921static struct perf_addr_filter *
8922perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
8923{
8924 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
8925 struct perf_addr_filter *filter;
8926
8927 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
8928 if (!filter)
8929 return NULL;
8930
8931 INIT_LIST_HEAD(&filter->entry);
8932 list_add_tail(&filter->entry, filters);
8933
8934 return filter;
8935}
8936
8937static void free_filters_list(struct list_head *filters)
8938{
8939 struct perf_addr_filter *filter, *iter;
8940
8941 list_for_each_entry_safe(filter, iter, filters, entry) {
9511bce9 8942 path_put(&filter->path);
375637bc
AS
8943 list_del(&filter->entry);
8944 kfree(filter);
8945 }
8946}
8947
8948/*
8949 * Free existing address filters and optionally install new ones
8950 */
8951static void perf_addr_filters_splice(struct perf_event *event,
8952 struct list_head *head)
8953{
8954 unsigned long flags;
8955 LIST_HEAD(list);
8956
8957 if (!has_addr_filter(event))
8958 return;
8959
8960 /* don't bother with children, they don't have their own filters */
8961 if (event->parent)
8962 return;
8963
8964 raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
8965
8966 list_splice_init(&event->addr_filters.list, &list);
8967 if (head)
8968 list_splice(head, &event->addr_filters.list);
8969
8970 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
8971
8972 free_filters_list(&list);
8973}
8974
8975/*
8976 * Scan through mm's vmas and see if one of them matches the
8977 * @filter; if so, adjust filter's address range.
8978 * Called with mm::mmap_sem down for reading.
8979 */
8980static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter,
8981 struct mm_struct *mm)
8982{
8983 struct vm_area_struct *vma;
8984
8985 for (vma = mm->mmap; vma; vma = vma->vm_next) {
8986 struct file *file = vma->vm_file;
8987 unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8988 unsigned long vma_size = vma->vm_end - vma->vm_start;
8989
8990 if (!file)
8991 continue;
8992
8993 if (!perf_addr_filter_match(filter, file, off, vma_size))
8994 continue;
8995
8996 return vma->vm_start;
8997 }
8998
8999 return 0;
9000}
9001
9002/*
9003 * Update event's address range filters based on the
9004 * task's existing mappings, if any.
9005 */
9006static void perf_event_addr_filters_apply(struct perf_event *event)
9007{
9008 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
9009 struct task_struct *task = READ_ONCE(event->ctx->task);
9010 struct perf_addr_filter *filter;
9011 struct mm_struct *mm = NULL;
9012 unsigned int count = 0;
9013 unsigned long flags;
9014
9015 /*
9016 * We may observe TASK_TOMBSTONE, which means that the event tear-down
9017 * will stop on the parent's child_mutex that our caller is also holding
9018 */
9019 if (task == TASK_TOMBSTONE)
9020 return;
9021
6ce77bfd
AS
9022 if (!ifh->nr_file_filters)
9023 return;
9024
375637bc
AS
9025 mm = get_task_mm(event->ctx->task);
9026 if (!mm)
9027 goto restart;
9028
9029 down_read(&mm->mmap_sem);
9030
9031 raw_spin_lock_irqsave(&ifh->lock, flags);
9032 list_for_each_entry(filter, &ifh->list, entry) {
9033 event->addr_filters_offs[count] = 0;
9034
99f5bc9b
MP
9035 /*
9036 * Adjust base offset if the filter is associated to a binary
9037 * that needs to be mapped:
9038 */
9511bce9 9039 if (filter->path.dentry)
375637bc
AS
9040 event->addr_filters_offs[count] =
9041 perf_addr_filter_apply(filter, mm);
9042
9043 count++;
9044 }
9045
9046 event->addr_filters_gen++;
9047 raw_spin_unlock_irqrestore(&ifh->lock, flags);
9048
9049 up_read(&mm->mmap_sem);
9050
9051 mmput(mm);
9052
9053restart:
767ae086 9054 perf_event_stop(event, 1);
375637bc
AS
9055}
9056
9057/*
9058 * Address range filtering: limiting the data to certain
9059 * instruction address ranges. Filters are ioctl()ed to us from
9060 * userspace as ascii strings.
9061 *
9062 * Filter string format:
9063 *
9064 * ACTION RANGE_SPEC
9065 * where ACTION is one of the
9066 * * "filter": limit the trace to this region
9067 * * "start": start tracing from this address
9068 * * "stop": stop tracing at this address/region;
9069 * RANGE_SPEC is
9070 * * for kernel addresses: <start address>[/<size>]
9071 * * for object files: <start address>[/<size>]@</path/to/object/file>
9072 *
6ed70cf3
AS
9073 * if <size> is not specified or is zero, the range is treated as a single
9074 * address; not valid for ACTION=="filter".
375637bc
AS
9075 */
9076enum {
e96271f3 9077 IF_ACT_NONE = -1,
375637bc
AS
9078 IF_ACT_FILTER,
9079 IF_ACT_START,
9080 IF_ACT_STOP,
9081 IF_SRC_FILE,
9082 IF_SRC_KERNEL,
9083 IF_SRC_FILEADDR,
9084 IF_SRC_KERNELADDR,
9085};
9086
9087enum {
9088 IF_STATE_ACTION = 0,
9089 IF_STATE_SOURCE,
9090 IF_STATE_END,
9091};
9092
9093static const match_table_t if_tokens = {
9094 { IF_ACT_FILTER, "filter" },
9095 { IF_ACT_START, "start" },
9096 { IF_ACT_STOP, "stop" },
9097 { IF_SRC_FILE, "%u/%u@%s" },
9098 { IF_SRC_KERNEL, "%u/%u" },
9099 { IF_SRC_FILEADDR, "%u@%s" },
9100 { IF_SRC_KERNELADDR, "%u" },
e96271f3 9101 { IF_ACT_NONE, NULL },
375637bc
AS
9102};
9103
9104/*
9105 * Address filter string parser
9106 */
9107static int
9108perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
9109 struct list_head *filters)
9110{
9111 struct perf_addr_filter *filter = NULL;
9112 char *start, *orig, *filename = NULL;
375637bc
AS
9113 substring_t args[MAX_OPT_ARGS];
9114 int state = IF_STATE_ACTION, token;
9115 unsigned int kernel = 0;
9116 int ret = -EINVAL;
9117
9118 orig = fstr = kstrdup(fstr, GFP_KERNEL);
9119 if (!fstr)
9120 return -ENOMEM;
9121
9122 while ((start = strsep(&fstr, " ,\n")) != NULL) {
6ed70cf3
AS
9123 static const enum perf_addr_filter_action_t actions[] = {
9124 [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER,
9125 [IF_ACT_START] = PERF_ADDR_FILTER_ACTION_START,
9126 [IF_ACT_STOP] = PERF_ADDR_FILTER_ACTION_STOP,
9127 };
375637bc
AS
9128 ret = -EINVAL;
9129
9130 if (!*start)
9131 continue;
9132
9133 /* filter definition begins */
9134 if (state == IF_STATE_ACTION) {
9135 filter = perf_addr_filter_new(event, filters);
9136 if (!filter)
9137 goto fail;
9138 }
9139
9140 token = match_token(start, if_tokens, args);
9141 switch (token) {
9142 case IF_ACT_FILTER:
9143 case IF_ACT_START:
375637bc
AS
9144 case IF_ACT_STOP:
9145 if (state != IF_STATE_ACTION)
9146 goto fail;
9147
6ed70cf3 9148 filter->action = actions[token];
375637bc
AS
9149 state = IF_STATE_SOURCE;
9150 break;
9151
9152 case IF_SRC_KERNELADDR:
9153 case IF_SRC_KERNEL:
9154 kernel = 1;
9155
9156 case IF_SRC_FILEADDR:
9157 case IF_SRC_FILE:
9158 if (state != IF_STATE_SOURCE)
9159 goto fail;
9160
375637bc
AS
9161 *args[0].to = 0;
9162 ret = kstrtoul(args[0].from, 0, &filter->offset);
9163 if (ret)
9164 goto fail;
9165
6ed70cf3 9166 if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
375637bc
AS
9167 *args[1].to = 0;
9168 ret = kstrtoul(args[1].from, 0, &filter->size);
9169 if (ret)
9170 goto fail;
9171 }
9172
4059ffd0 9173 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
6ed70cf3 9174 int fpos = token == IF_SRC_FILE ? 2 : 1;
4059ffd0
MP
9175
9176 filename = match_strdup(&args[fpos]);
375637bc
AS
9177 if (!filename) {
9178 ret = -ENOMEM;
9179 goto fail;
9180 }
9181 }
9182
9183 state = IF_STATE_END;
9184 break;
9185
9186 default:
9187 goto fail;
9188 }
9189
9190 /*
9191 * Filter definition is fully parsed, validate and install it.
9192 * Make sure that it doesn't contradict itself or the event's
9193 * attribute.
9194 */
9195 if (state == IF_STATE_END) {
9ccbfbb1 9196 ret = -EINVAL;
375637bc
AS
9197 if (kernel && event->attr.exclude_kernel)
9198 goto fail;
9199
6ed70cf3
AS
9200 /*
9201 * ACTION "filter" must have a non-zero length region
9202 * specified.
9203 */
9204 if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
9205 !filter->size)
9206 goto fail;
9207
375637bc
AS
9208 if (!kernel) {
9209 if (!filename)
9210 goto fail;
9211
6ce77bfd
AS
9212 /*
9213 * For now, we only support file-based filters
9214 * in per-task events; doing so for CPU-wide
9215 * events requires additional context switching
9216 * trickery, since same object code will be
9217 * mapped at different virtual addresses in
9218 * different processes.
9219 */
9220 ret = -EOPNOTSUPP;
9221 if (!event->ctx->task)
9222 goto fail_free_name;
9223
375637bc 9224 /* look up the path and grab its inode */
9511bce9
SL
9225 ret = kern_path(filename, LOOKUP_FOLLOW,
9226 &filter->path);
375637bc
AS
9227 if (ret)
9228 goto fail_free_name;
9229
375637bc
AS
9230 kfree(filename);
9231 filename = NULL;
9232
9233 ret = -EINVAL;
9511bce9
SL
9234 if (!filter->path.dentry ||
9235 !S_ISREG(d_inode(filter->path.dentry)
9236 ->i_mode))
375637bc 9237 goto fail;
6ce77bfd
AS
9238
9239 event->addr_filters.nr_file_filters++;
375637bc
AS
9240 }
9241
9242 /* ready to consume more filters */
9243 state = IF_STATE_ACTION;
9244 filter = NULL;
9245 }
9246 }
9247
9248 if (state != IF_STATE_ACTION)
9249 goto fail;
9250
9251 kfree(orig);
9252
9253 return 0;
9254
9255fail_free_name:
9256 kfree(filename);
9257fail:
9258 free_filters_list(filters);
9259 kfree(orig);
9260
9261 return ret;
9262}
9263
9264static int
9265perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
9266{
9267 LIST_HEAD(filters);
9268 int ret;
9269
9270 /*
9271 * Since this is called in perf_ioctl() path, we're already holding
9272 * ctx::mutex.
9273 */
9274 lockdep_assert_held(&event->ctx->mutex);
9275
9276 if (WARN_ON_ONCE(event->parent))
9277 return -EINVAL;
9278
375637bc
AS
9279 ret = perf_event_parse_addr_filter(event, filter_str, &filters);
9280 if (ret)
6ce77bfd 9281 goto fail_clear_files;
375637bc
AS
9282
9283 ret = event->pmu->addr_filters_validate(&filters);
6ce77bfd
AS
9284 if (ret)
9285 goto fail_free_filters;
375637bc
AS
9286
9287 /* remove existing filters, if any */
9288 perf_addr_filters_splice(event, &filters);
9289
9290 /* install new filters */
9291 perf_event_for_each_child(event, perf_event_addr_filters_apply);
9292
6ce77bfd
AS
9293 return ret;
9294
9295fail_free_filters:
9296 free_filters_list(&filters);
9297
9298fail_clear_files:
9299 event->addr_filters.nr_file_filters = 0;
9300
375637bc
AS
9301 return ret;
9302}
9303
c796bbbe
AS
9304static int perf_event_set_filter(struct perf_event *event, void __user *arg)
9305{
c796bbbe 9306 int ret = -EINVAL;
e12f03d7 9307 char *filter_str;
c796bbbe
AS
9308
9309 filter_str = strndup_user(arg, PAGE_SIZE);
9310 if (IS_ERR(filter_str))
9311 return PTR_ERR(filter_str);
9312
e12f03d7
SL
9313#ifdef CONFIG_EVENT_TRACING
9314 if (perf_event_is_tracing(event)) {
9315 struct perf_event_context *ctx = event->ctx;
9316
9317 /*
9318 * Beware, here be dragons!!
9319 *
9320 * the tracepoint muck will deadlock against ctx->mutex, but
9321 * the tracepoint stuff does not actually need it. So
9322 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
9323 * already have a reference on ctx.
9324 *
9325 * This can result in event getting moved to a different ctx,
9326 * but that does not affect the tracepoint state.
9327 */
9328 mutex_unlock(&ctx->mutex);
9329 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
9330 mutex_lock(&ctx->mutex);
9331 } else
9332#endif
9333 if (has_addr_filter(event))
375637bc 9334 ret = perf_event_set_addr_filter(event, filter_str);
c796bbbe
AS
9335
9336 kfree(filter_str);
9337 return ret;
9338}
9339
b0a873eb
PZ
9340/*
9341 * hrtimer based swevent callback
9342 */
f29ac756 9343
b0a873eb 9344static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
f29ac756 9345{
b0a873eb
PZ
9346 enum hrtimer_restart ret = HRTIMER_RESTART;
9347 struct perf_sample_data data;
9348 struct pt_regs *regs;
9349 struct perf_event *event;
9350 u64 period;
f29ac756 9351
b0a873eb 9352 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
ba3dd36c
PZ
9353
9354 if (event->state != PERF_EVENT_STATE_ACTIVE)
9355 return HRTIMER_NORESTART;
9356
b0a873eb 9357 event->pmu->read(event);
f344011c 9358
fd0d000b 9359 perf_sample_data_init(&data, 0, event->hw.last_period);
b0a873eb
PZ
9360 regs = get_irq_regs();
9361
9362 if (regs && !perf_exclude_event(event, regs)) {
77aeeebd 9363 if (!(event->attr.exclude_idle && is_idle_task(current)))
33b07b8b 9364 if (__perf_event_overflow(event, 1, &data, regs))
b0a873eb
PZ
9365 ret = HRTIMER_NORESTART;
9366 }
24f1e32c 9367
b0a873eb
PZ
9368 period = max_t(u64, 10000, event->hw.sample_period);
9369 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
24f1e32c 9370
b0a873eb 9371 return ret;
f29ac756
PZ
9372}
9373
b0a873eb 9374static void perf_swevent_start_hrtimer(struct perf_event *event)
5c92d124 9375{
b0a873eb 9376 struct hw_perf_event *hwc = &event->hw;
5d508e82
FBH
9377 s64 period;
9378
9379 if (!is_sampling_event(event))
9380 return;
f5ffe02e 9381
5d508e82
FBH
9382 period = local64_read(&hwc->period_left);
9383 if (period) {
9384 if (period < 0)
9385 period = 10000;
fa407f35 9386
5d508e82
FBH
9387 local64_set(&hwc->period_left, 0);
9388 } else {
9389 period = max_t(u64, 10000, hwc->sample_period);
9390 }
3497d206
TG
9391 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
9392 HRTIMER_MODE_REL_PINNED);
24f1e32c 9393}
b0a873eb
PZ
9394
9395static void perf_swevent_cancel_hrtimer(struct perf_event *event)
24f1e32c 9396{
b0a873eb
PZ
9397 struct hw_perf_event *hwc = &event->hw;
9398
6c7e550f 9399 if (is_sampling_event(event)) {
b0a873eb 9400 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
fa407f35 9401 local64_set(&hwc->period_left, ktime_to_ns(remaining));
b0a873eb
PZ
9402
9403 hrtimer_cancel(&hwc->hrtimer);
9404 }
24f1e32c
FW
9405}
9406
ba3dd36c
PZ
9407static void perf_swevent_init_hrtimer(struct perf_event *event)
9408{
9409 struct hw_perf_event *hwc = &event->hw;
9410
9411 if (!is_sampling_event(event))
9412 return;
9413
9414 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
9415 hwc->hrtimer.function = perf_swevent_hrtimer;
9416
9417 /*
9418 * Since hrtimers have a fixed rate, we can do a static freq->period
9419 * mapping and avoid the whole period adjust feedback stuff.
9420 */
9421 if (event->attr.freq) {
9422 long freq = event->attr.sample_freq;
9423
9424 event->attr.sample_period = NSEC_PER_SEC / freq;
9425 hwc->sample_period = event->attr.sample_period;
9426 local64_set(&hwc->period_left, hwc->sample_period);
778141e3 9427 hwc->last_period = hwc->sample_period;
ba3dd36c
PZ
9428 event->attr.freq = 0;
9429 }
9430}
9431
b0a873eb
PZ
9432/*
9433 * Software event: cpu wall time clock
9434 */
9435
9436static void cpu_clock_event_update(struct perf_event *event)
24f1e32c 9437{
b0a873eb
PZ
9438 s64 prev;
9439 u64 now;
9440
a4eaf7f1 9441 now = local_clock();
b0a873eb
PZ
9442 prev = local64_xchg(&event->hw.prev_count, now);
9443 local64_add(now - prev, &event->count);
24f1e32c 9444}
24f1e32c 9445
a4eaf7f1 9446static void cpu_clock_event_start(struct perf_event *event, int flags)
b0a873eb 9447{
a4eaf7f1 9448 local64_set(&event->hw.prev_count, local_clock());
b0a873eb 9449 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
9450}
9451
a4eaf7f1 9452static void cpu_clock_event_stop(struct perf_event *event, int flags)
f29ac756 9453{
b0a873eb
PZ
9454 perf_swevent_cancel_hrtimer(event);
9455 cpu_clock_event_update(event);
9456}
f29ac756 9457
a4eaf7f1
PZ
9458static int cpu_clock_event_add(struct perf_event *event, int flags)
9459{
9460 if (flags & PERF_EF_START)
9461 cpu_clock_event_start(event, flags);
6a694a60 9462 perf_event_update_userpage(event);
a4eaf7f1
PZ
9463
9464 return 0;
9465}
9466
9467static void cpu_clock_event_del(struct perf_event *event, int flags)
9468{
9469 cpu_clock_event_stop(event, flags);
9470}
9471
b0a873eb
PZ
9472static void cpu_clock_event_read(struct perf_event *event)
9473{
9474 cpu_clock_event_update(event);
9475}
f344011c 9476
b0a873eb
PZ
9477static int cpu_clock_event_init(struct perf_event *event)
9478{
9479 if (event->attr.type != PERF_TYPE_SOFTWARE)
9480 return -ENOENT;
9481
9482 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
9483 return -ENOENT;
9484
2481c5fa
SE
9485 /*
9486 * no branch sampling for software events
9487 */
9488 if (has_branch_stack(event))
9489 return -EOPNOTSUPP;
9490
ba3dd36c
PZ
9491 perf_swevent_init_hrtimer(event);
9492
b0a873eb 9493 return 0;
f29ac756
PZ
9494}
9495
b0a873eb 9496static struct pmu perf_cpu_clock = {
89a1e187
PZ
9497 .task_ctx_nr = perf_sw_context,
9498
34f43927
PZ
9499 .capabilities = PERF_PMU_CAP_NO_NMI,
9500
b0a873eb 9501 .event_init = cpu_clock_event_init,
a4eaf7f1
PZ
9502 .add = cpu_clock_event_add,
9503 .del = cpu_clock_event_del,
9504 .start = cpu_clock_event_start,
9505 .stop = cpu_clock_event_stop,
b0a873eb
PZ
9506 .read = cpu_clock_event_read,
9507};
9508
9509/*
9510 * Software event: task time clock
9511 */
9512
9513static void task_clock_event_update(struct perf_event *event, u64 now)
5c92d124 9514{
b0a873eb
PZ
9515 u64 prev;
9516 s64 delta;
5c92d124 9517
b0a873eb
PZ
9518 prev = local64_xchg(&event->hw.prev_count, now);
9519 delta = now - prev;
9520 local64_add(delta, &event->count);
9521}
5c92d124 9522
a4eaf7f1 9523static void task_clock_event_start(struct perf_event *event, int flags)
b0a873eb 9524{
a4eaf7f1 9525 local64_set(&event->hw.prev_count, event->ctx->time);
b0a873eb 9526 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
9527}
9528
a4eaf7f1 9529static void task_clock_event_stop(struct perf_event *event, int flags)
b0a873eb
PZ
9530{
9531 perf_swevent_cancel_hrtimer(event);
9532 task_clock_event_update(event, event->ctx->time);
a4eaf7f1
PZ
9533}
9534
9535static int task_clock_event_add(struct perf_event *event, int flags)
9536{
9537 if (flags & PERF_EF_START)
9538 task_clock_event_start(event, flags);
6a694a60 9539 perf_event_update_userpage(event);
b0a873eb 9540
a4eaf7f1
PZ
9541 return 0;
9542}
9543
9544static void task_clock_event_del(struct perf_event *event, int flags)
9545{
9546 task_clock_event_stop(event, PERF_EF_UPDATE);
b0a873eb
PZ
9547}
9548
9549static void task_clock_event_read(struct perf_event *event)
9550{
768a06e2
PZ
9551 u64 now = perf_clock();
9552 u64 delta = now - event->ctx->timestamp;
9553 u64 time = event->ctx->time + delta;
b0a873eb
PZ
9554
9555 task_clock_event_update(event, time);
9556}
9557
9558static int task_clock_event_init(struct perf_event *event)
6fb2915d 9559{
b0a873eb
PZ
9560 if (event->attr.type != PERF_TYPE_SOFTWARE)
9561 return -ENOENT;
9562
9563 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
9564 return -ENOENT;
9565
2481c5fa
SE
9566 /*
9567 * no branch sampling for software events
9568 */
9569 if (has_branch_stack(event))
9570 return -EOPNOTSUPP;
9571
ba3dd36c
PZ
9572 perf_swevent_init_hrtimer(event);
9573
b0a873eb 9574 return 0;
6fb2915d
LZ
9575}
9576
b0a873eb 9577static struct pmu perf_task_clock = {
89a1e187
PZ
9578 .task_ctx_nr = perf_sw_context,
9579
34f43927
PZ
9580 .capabilities = PERF_PMU_CAP_NO_NMI,
9581
b0a873eb 9582 .event_init = task_clock_event_init,
a4eaf7f1
PZ
9583 .add = task_clock_event_add,
9584 .del = task_clock_event_del,
9585 .start = task_clock_event_start,
9586 .stop = task_clock_event_stop,
b0a873eb
PZ
9587 .read = task_clock_event_read,
9588};
6fb2915d 9589
ad5133b7 9590static void perf_pmu_nop_void(struct pmu *pmu)
e077df4f 9591{
e077df4f 9592}
6fb2915d 9593
fbbe0701
SB
9594static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
9595{
9596}
9597
ad5133b7 9598static int perf_pmu_nop_int(struct pmu *pmu)
6fb2915d 9599{
ad5133b7 9600 return 0;
6fb2915d
LZ
9601}
9602
18ab2cd3 9603static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
fbbe0701
SB
9604
9605static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
6fb2915d 9606{
fbbe0701
SB
9607 __this_cpu_write(nop_txn_flags, flags);
9608
9609 if (flags & ~PERF_PMU_TXN_ADD)
9610 return;
9611
ad5133b7 9612 perf_pmu_disable(pmu);
6fb2915d
LZ
9613}
9614
ad5133b7
PZ
9615static int perf_pmu_commit_txn(struct pmu *pmu)
9616{
fbbe0701
SB
9617 unsigned int flags = __this_cpu_read(nop_txn_flags);
9618
9619 __this_cpu_write(nop_txn_flags, 0);
9620
9621 if (flags & ~PERF_PMU_TXN_ADD)
9622 return 0;
9623
ad5133b7
PZ
9624 perf_pmu_enable(pmu);
9625 return 0;
9626}
e077df4f 9627
ad5133b7 9628static void perf_pmu_cancel_txn(struct pmu *pmu)
24f1e32c 9629{
fbbe0701
SB
9630 unsigned int flags = __this_cpu_read(nop_txn_flags);
9631
9632 __this_cpu_write(nop_txn_flags, 0);
9633
9634 if (flags & ~PERF_PMU_TXN_ADD)
9635 return;
9636
ad5133b7 9637 perf_pmu_enable(pmu);
24f1e32c
FW
9638}
9639
35edc2a5
PZ
9640static int perf_event_idx_default(struct perf_event *event)
9641{
c719f560 9642 return 0;
35edc2a5
PZ
9643}
9644
8dc85d54
PZ
9645/*
9646 * Ensures all contexts with the same task_ctx_nr have the same
9647 * pmu_cpu_context too.
9648 */
9e317041 9649static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
24f1e32c 9650{
8dc85d54 9651 struct pmu *pmu;
b326e956 9652
8dc85d54
PZ
9653 if (ctxn < 0)
9654 return NULL;
24f1e32c 9655
8dc85d54
PZ
9656 list_for_each_entry(pmu, &pmus, entry) {
9657 if (pmu->task_ctx_nr == ctxn)
9658 return pmu->pmu_cpu_context;
9659 }
24f1e32c 9660
8dc85d54 9661 return NULL;
24f1e32c
FW
9662}
9663
51676957
PZ
9664static void free_pmu_context(struct pmu *pmu)
9665{
df0062b2
WD
9666 /*
9667 * Static contexts such as perf_sw_context have a global lifetime
9668 * and may be shared between different PMUs. Avoid freeing them
9669 * when a single PMU is going away.
9670 */
9671 if (pmu->task_ctx_nr > perf_invalid_context)
9672 return;
9673
51676957 9674 free_percpu(pmu->pmu_cpu_context);
24f1e32c 9675}
6e855cd4
AS
9676
9677/*
9678 * Let userspace know that this PMU supports address range filtering:
9679 */
9680static ssize_t nr_addr_filters_show(struct device *dev,
9681 struct device_attribute *attr,
9682 char *page)
9683{
9684 struct pmu *pmu = dev_get_drvdata(dev);
9685
9686 return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
9687}
9688DEVICE_ATTR_RO(nr_addr_filters);
9689
2e80a82a 9690static struct idr pmu_idr;
d6d020e9 9691
abe43400
PZ
9692static ssize_t
9693type_show(struct device *dev, struct device_attribute *attr, char *page)
9694{
9695 struct pmu *pmu = dev_get_drvdata(dev);
9696
9697 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
9698}
90826ca7 9699static DEVICE_ATTR_RO(type);
abe43400 9700
62b85639
SE
9701static ssize_t
9702perf_event_mux_interval_ms_show(struct device *dev,
9703 struct device_attribute *attr,
9704 char *page)
9705{
9706 struct pmu *pmu = dev_get_drvdata(dev);
9707
9708 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
9709}
9710
272325c4
PZ
9711static DEFINE_MUTEX(mux_interval_mutex);
9712
62b85639
SE
9713static ssize_t
9714perf_event_mux_interval_ms_store(struct device *dev,
9715 struct device_attribute *attr,
9716 const char *buf, size_t count)
9717{
9718 struct pmu *pmu = dev_get_drvdata(dev);
9719 int timer, cpu, ret;
9720
9721 ret = kstrtoint(buf, 0, &timer);
9722 if (ret)
9723 return ret;
9724
9725 if (timer < 1)
9726 return -EINVAL;
9727
9728 /* same value, noting to do */
9729 if (timer == pmu->hrtimer_interval_ms)
9730 return count;
9731
272325c4 9732 mutex_lock(&mux_interval_mutex);
62b85639
SE
9733 pmu->hrtimer_interval_ms = timer;
9734
9735 /* update all cpuctx for this PMU */
a63fbed7 9736 cpus_read_lock();
272325c4 9737 for_each_online_cpu(cpu) {
62b85639
SE
9738 struct perf_cpu_context *cpuctx;
9739 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
9740 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
9741
272325c4
PZ
9742 cpu_function_call(cpu,
9743 (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
62b85639 9744 }
a63fbed7 9745 cpus_read_unlock();
272325c4 9746 mutex_unlock(&mux_interval_mutex);
62b85639
SE
9747
9748 return count;
9749}
90826ca7 9750static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
62b85639 9751
90826ca7
GKH
9752static struct attribute *pmu_dev_attrs[] = {
9753 &dev_attr_type.attr,
9754 &dev_attr_perf_event_mux_interval_ms.attr,
9755 NULL,
abe43400 9756};
90826ca7 9757ATTRIBUTE_GROUPS(pmu_dev);
abe43400
PZ
9758
9759static int pmu_bus_running;
9760static struct bus_type pmu_bus = {
9761 .name = "event_source",
90826ca7 9762 .dev_groups = pmu_dev_groups,
abe43400
PZ
9763};
9764
9765static void pmu_dev_release(struct device *dev)
9766{
9767 kfree(dev);
9768}
9769
9770static int pmu_dev_alloc(struct pmu *pmu)
9771{
9772 int ret = -ENOMEM;
9773
9774 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
9775 if (!pmu->dev)
9776 goto out;
9777
0c9d42ed 9778 pmu->dev->groups = pmu->attr_groups;
abe43400
PZ
9779 device_initialize(pmu->dev);
9780 ret = dev_set_name(pmu->dev, "%s", pmu->name);
9781 if (ret)
9782 goto free_dev;
9783
9784 dev_set_drvdata(pmu->dev, pmu);
9785 pmu->dev->bus = &pmu_bus;
9786 pmu->dev->release = pmu_dev_release;
9787 ret = device_add(pmu->dev);
9788 if (ret)
9789 goto free_dev;
9790
6e855cd4
AS
9791 /* For PMUs with address filters, throw in an extra attribute: */
9792 if (pmu->nr_addr_filters)
9793 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
9794
9795 if (ret)
9796 goto del_dev;
9797
abe43400
PZ
9798out:
9799 return ret;
9800
6e855cd4
AS
9801del_dev:
9802 device_del(pmu->dev);
9803
abe43400
PZ
9804free_dev:
9805 put_device(pmu->dev);
9806 goto out;
9807}
9808
547e9fd7 9809static struct lock_class_key cpuctx_mutex;
facc4307 9810static struct lock_class_key cpuctx_lock;
547e9fd7 9811
03d8e80b 9812int perf_pmu_register(struct pmu *pmu, const char *name, int type)
24f1e32c 9813{
108b02cf 9814 int cpu, ret;
24f1e32c 9815
b0a873eb 9816 mutex_lock(&pmus_lock);
33696fc0
PZ
9817 ret = -ENOMEM;
9818 pmu->pmu_disable_count = alloc_percpu(int);
9819 if (!pmu->pmu_disable_count)
9820 goto unlock;
f29ac756 9821
2e80a82a
PZ
9822 pmu->type = -1;
9823 if (!name)
9824 goto skip_type;
9825 pmu->name = name;
9826
9827 if (type < 0) {
0e9c3be2
TH
9828 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
9829 if (type < 0) {
9830 ret = type;
2e80a82a
PZ
9831 goto free_pdc;
9832 }
9833 }
9834 pmu->type = type;
9835
abe43400
PZ
9836 if (pmu_bus_running) {
9837 ret = pmu_dev_alloc(pmu);
9838 if (ret)
9839 goto free_idr;
9840 }
9841
2e80a82a 9842skip_type:
26657848
PZ
9843 if (pmu->task_ctx_nr == perf_hw_context) {
9844 static int hw_context_taken = 0;
9845
5101ef20
MR
9846 /*
9847 * Other than systems with heterogeneous CPUs, it never makes
9848 * sense for two PMUs to share perf_hw_context. PMUs which are
9849 * uncore must use perf_invalid_context.
9850 */
9851 if (WARN_ON_ONCE(hw_context_taken &&
9852 !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
26657848
PZ
9853 pmu->task_ctx_nr = perf_invalid_context;
9854
9855 hw_context_taken = 1;
9856 }
9857
8dc85d54
PZ
9858 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
9859 if (pmu->pmu_cpu_context)
9860 goto got_cpu_context;
f29ac756 9861
c4814202 9862 ret = -ENOMEM;
108b02cf
PZ
9863 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
9864 if (!pmu->pmu_cpu_context)
abe43400 9865 goto free_dev;
f344011c 9866
108b02cf
PZ
9867 for_each_possible_cpu(cpu) {
9868 struct perf_cpu_context *cpuctx;
9869
9870 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
eb184479 9871 __perf_event_init_context(&cpuctx->ctx);
547e9fd7 9872 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
facc4307 9873 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
108b02cf 9874 cpuctx->ctx.pmu = pmu;
a63fbed7 9875 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
9e630205 9876
272325c4 9877 __perf_mux_hrtimer_init(cpuctx, cpu);
108b02cf 9878 }
76e1d904 9879
8dc85d54 9880got_cpu_context:
ad5133b7
PZ
9881 if (!pmu->start_txn) {
9882 if (pmu->pmu_enable) {
9883 /*
9884 * If we have pmu_enable/pmu_disable calls, install
9885 * transaction stubs that use that to try and batch
9886 * hardware accesses.
9887 */
9888 pmu->start_txn = perf_pmu_start_txn;
9889 pmu->commit_txn = perf_pmu_commit_txn;
9890 pmu->cancel_txn = perf_pmu_cancel_txn;
9891 } else {
fbbe0701 9892 pmu->start_txn = perf_pmu_nop_txn;
ad5133b7
PZ
9893 pmu->commit_txn = perf_pmu_nop_int;
9894 pmu->cancel_txn = perf_pmu_nop_void;
f344011c 9895 }
5c92d124 9896 }
15dbf27c 9897
ad5133b7
PZ
9898 if (!pmu->pmu_enable) {
9899 pmu->pmu_enable = perf_pmu_nop_void;
9900 pmu->pmu_disable = perf_pmu_nop_void;
9901 }
9902
35edc2a5
PZ
9903 if (!pmu->event_idx)
9904 pmu->event_idx = perf_event_idx_default;
9905
b0a873eb 9906 list_add_rcu(&pmu->entry, &pmus);
bed5b25a 9907 atomic_set(&pmu->exclusive_cnt, 0);
33696fc0
PZ
9908 ret = 0;
9909unlock:
b0a873eb
PZ
9910 mutex_unlock(&pmus_lock);
9911
33696fc0 9912 return ret;
108b02cf 9913
abe43400
PZ
9914free_dev:
9915 device_del(pmu->dev);
9916 put_device(pmu->dev);
9917
2e80a82a
PZ
9918free_idr:
9919 if (pmu->type >= PERF_TYPE_MAX)
9920 idr_remove(&pmu_idr, pmu->type);
9921
108b02cf
PZ
9922free_pdc:
9923 free_percpu(pmu->pmu_disable_count);
9924 goto unlock;
f29ac756 9925}
c464c76e 9926EXPORT_SYMBOL_GPL(perf_pmu_register);
f29ac756 9927
b0a873eb 9928void perf_pmu_unregister(struct pmu *pmu)
5c92d124 9929{
b0a873eb
PZ
9930 mutex_lock(&pmus_lock);
9931 list_del_rcu(&pmu->entry);
5c92d124 9932
0475f9ea 9933 /*
cde8e884
PZ
9934 * We dereference the pmu list under both SRCU and regular RCU, so
9935 * synchronize against both of those.
0475f9ea 9936 */
b0a873eb 9937 synchronize_srcu(&pmus_srcu);
cde8e884 9938 synchronize_rcu();
d6d020e9 9939
33696fc0 9940 free_percpu(pmu->pmu_disable_count);
2e80a82a
PZ
9941 if (pmu->type >= PERF_TYPE_MAX)
9942 idr_remove(&pmu_idr, pmu->type);
a9f97721 9943 if (pmu_bus_running) {
0933840a
JO
9944 if (pmu->nr_addr_filters)
9945 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
9946 device_del(pmu->dev);
9947 put_device(pmu->dev);
9948 }
51676957 9949 free_pmu_context(pmu);
a9f97721 9950 mutex_unlock(&pmus_lock);
b0a873eb 9951}
c464c76e 9952EXPORT_SYMBOL_GPL(perf_pmu_unregister);
d6d020e9 9953
cc34b98b
MR
9954static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
9955{
ccd41c86 9956 struct perf_event_context *ctx = NULL;
cc34b98b
MR
9957 int ret;
9958
9959 if (!try_module_get(pmu->module))
9960 return -ENODEV;
ccd41c86 9961
0c7296ca
PZ
9962 /*
9963 * A number of pmu->event_init() methods iterate the sibling_list to,
9964 * for example, validate if the group fits on the PMU. Therefore,
9965 * if this is a sibling event, acquire the ctx->mutex to protect
9966 * the sibling_list.
9967 */
9968 if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
8b10c5e2
PZ
9969 /*
9970 * This ctx->mutex can nest when we're called through
9971 * inheritance. See the perf_event_ctx_lock_nested() comment.
9972 */
9973 ctx = perf_event_ctx_lock_nested(event->group_leader,
9974 SINGLE_DEPTH_NESTING);
ccd41c86
PZ
9975 BUG_ON(!ctx);
9976 }
9977
cc34b98b
MR
9978 event->pmu = pmu;
9979 ret = pmu->event_init(event);
ccd41c86
PZ
9980
9981 if (ctx)
9982 perf_event_ctx_unlock(event->group_leader, ctx);
9983
cc6795ae
AM
9984 if (!ret) {
9985 if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE &&
9986 event_has_any_exclude_flag(event)) {
9987 if (event->destroy)
9988 event->destroy(event);
9989 ret = -EINVAL;
9990 }
9991 }
9992
cc34b98b
MR
9993 if (ret)
9994 module_put(pmu->module);
9995
9996 return ret;
9997}
9998
18ab2cd3 9999static struct pmu *perf_init_event(struct perf_event *event)
b0a873eb 10000{
85c617ab 10001 struct pmu *pmu;
b0a873eb 10002 int idx;
940c5b29 10003 int ret;
b0a873eb
PZ
10004
10005 idx = srcu_read_lock(&pmus_srcu);
2e80a82a 10006
40999312
KL
10007 /* Try parent's PMU first: */
10008 if (event->parent && event->parent->pmu) {
10009 pmu = event->parent->pmu;
10010 ret = perf_try_init_event(pmu, event);
10011 if (!ret)
10012 goto unlock;
10013 }
10014
2e80a82a
PZ
10015 rcu_read_lock();
10016 pmu = idr_find(&pmu_idr, event->attr.type);
10017 rcu_read_unlock();
940c5b29 10018 if (pmu) {
cc34b98b 10019 ret = perf_try_init_event(pmu, event);
940c5b29
LM
10020 if (ret)
10021 pmu = ERR_PTR(ret);
2e80a82a 10022 goto unlock;
940c5b29 10023 }
2e80a82a 10024
b0a873eb 10025 list_for_each_entry_rcu(pmu, &pmus, entry) {
cc34b98b 10026 ret = perf_try_init_event(pmu, event);
b0a873eb 10027 if (!ret)
e5f4d339 10028 goto unlock;
76e1d904 10029
b0a873eb
PZ
10030 if (ret != -ENOENT) {
10031 pmu = ERR_PTR(ret);
e5f4d339 10032 goto unlock;
f344011c 10033 }
5c92d124 10034 }
e5f4d339
PZ
10035 pmu = ERR_PTR(-ENOENT);
10036unlock:
b0a873eb 10037 srcu_read_unlock(&pmus_srcu, idx);
15dbf27c 10038
4aeb0b42 10039 return pmu;
5c92d124
IM
10040}
10041
f2fb6bef
KL
10042static void attach_sb_event(struct perf_event *event)
10043{
10044 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
10045
10046 raw_spin_lock(&pel->lock);
10047 list_add_rcu(&event->sb_list, &pel->list);
10048 raw_spin_unlock(&pel->lock);
10049}
10050
aab5b71e
PZ
10051/*
10052 * We keep a list of all !task (and therefore per-cpu) events
10053 * that need to receive side-band records.
10054 *
10055 * This avoids having to scan all the various PMU per-cpu contexts
10056 * looking for them.
10057 */
f2fb6bef
KL
10058static void account_pmu_sb_event(struct perf_event *event)
10059{
a4f144eb 10060 if (is_sb_event(event))
f2fb6bef
KL
10061 attach_sb_event(event);
10062}
10063
4beb31f3
FW
10064static void account_event_cpu(struct perf_event *event, int cpu)
10065{
10066 if (event->parent)
10067 return;
10068
4beb31f3
FW
10069 if (is_cgroup_event(event))
10070 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
10071}
10072
555e0c1e
FW
10073/* Freq events need the tick to stay alive (see perf_event_task_tick). */
10074static void account_freq_event_nohz(void)
10075{
10076#ifdef CONFIG_NO_HZ_FULL
10077 /* Lock so we don't race with concurrent unaccount */
10078 spin_lock(&nr_freq_lock);
10079 if (atomic_inc_return(&nr_freq_events) == 1)
10080 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
10081 spin_unlock(&nr_freq_lock);
10082#endif
10083}
10084
10085static void account_freq_event(void)
10086{
10087 if (tick_nohz_full_enabled())
10088 account_freq_event_nohz();
10089 else
10090 atomic_inc(&nr_freq_events);
10091}
10092
10093
766d6c07
FW
10094static void account_event(struct perf_event *event)
10095{
25432ae9
PZ
10096 bool inc = false;
10097
4beb31f3
FW
10098 if (event->parent)
10099 return;
10100
766d6c07 10101 if (event->attach_state & PERF_ATTACH_TASK)
25432ae9 10102 inc = true;
766d6c07
FW
10103 if (event->attr.mmap || event->attr.mmap_data)
10104 atomic_inc(&nr_mmap_events);
10105 if (event->attr.comm)
10106 atomic_inc(&nr_comm_events);
e4222673
HB
10107 if (event->attr.namespaces)
10108 atomic_inc(&nr_namespaces_events);
766d6c07
FW
10109 if (event->attr.task)
10110 atomic_inc(&nr_task_events);
555e0c1e
FW
10111 if (event->attr.freq)
10112 account_freq_event();
45ac1403
AH
10113 if (event->attr.context_switch) {
10114 atomic_inc(&nr_switch_events);
25432ae9 10115 inc = true;
45ac1403 10116 }
4beb31f3 10117 if (has_branch_stack(event))
25432ae9 10118 inc = true;
4beb31f3 10119 if (is_cgroup_event(event))
25432ae9 10120 inc = true;
76193a94
SL
10121 if (event->attr.ksymbol)
10122 atomic_inc(&nr_ksymbol_events);
6ee52e2a
SL
10123 if (event->attr.bpf_event)
10124 atomic_inc(&nr_bpf_events);
25432ae9 10125
9107c89e 10126 if (inc) {
5bce9db1
AS
10127 /*
10128 * We need the mutex here because static_branch_enable()
10129 * must complete *before* the perf_sched_count increment
10130 * becomes visible.
10131 */
9107c89e
PZ
10132 if (atomic_inc_not_zero(&perf_sched_count))
10133 goto enabled;
10134
10135 mutex_lock(&perf_sched_mutex);
10136 if (!atomic_read(&perf_sched_count)) {
10137 static_branch_enable(&perf_sched_events);
10138 /*
10139 * Guarantee that all CPUs observe they key change and
10140 * call the perf scheduling hooks before proceeding to
10141 * install events that need them.
10142 */
0809d954 10143 synchronize_rcu();
9107c89e
PZ
10144 }
10145 /*
10146 * Now that we have waited for the sync_sched(), allow further
10147 * increments to by-pass the mutex.
10148 */
10149 atomic_inc(&perf_sched_count);
10150 mutex_unlock(&perf_sched_mutex);
10151 }
10152enabled:
4beb31f3
FW
10153
10154 account_event_cpu(event, event->cpu);
f2fb6bef
KL
10155
10156 account_pmu_sb_event(event);
766d6c07
FW
10157}
10158
0793a61d 10159/*
788faab7 10160 * Allocate and initialize an event structure
0793a61d 10161 */
cdd6c482 10162static struct perf_event *
c3f00c70 10163perf_event_alloc(struct perf_event_attr *attr, int cpu,
d580ff86
PZ
10164 struct task_struct *task,
10165 struct perf_event *group_leader,
10166 struct perf_event *parent_event,
4dc0da86 10167 perf_overflow_handler_t overflow_handler,
79dff51e 10168 void *context, int cgroup_fd)
0793a61d 10169{
51b0fe39 10170 struct pmu *pmu;
cdd6c482
IM
10171 struct perf_event *event;
10172 struct hw_perf_event *hwc;
90983b16 10173 long err = -EINVAL;
0793a61d 10174
66832eb4
ON
10175 if ((unsigned)cpu >= nr_cpu_ids) {
10176 if (!task || cpu != -1)
10177 return ERR_PTR(-EINVAL);
10178 }
10179
c3f00c70 10180 event = kzalloc(sizeof(*event), GFP_KERNEL);
cdd6c482 10181 if (!event)
d5d2bc0d 10182 return ERR_PTR(-ENOMEM);
0793a61d 10183
04289bb9 10184 /*
cdd6c482 10185 * Single events are their own group leaders, with an
04289bb9
IM
10186 * empty sibling list:
10187 */
10188 if (!group_leader)
cdd6c482 10189 group_leader = event;
04289bb9 10190
cdd6c482
IM
10191 mutex_init(&event->child_mutex);
10192 INIT_LIST_HEAD(&event->child_list);
fccc714b 10193
cdd6c482
IM
10194 INIT_LIST_HEAD(&event->event_entry);
10195 INIT_LIST_HEAD(&event->sibling_list);
6668128a 10196 INIT_LIST_HEAD(&event->active_list);
8e1a2031 10197 init_event_group(event);
10c6db11 10198 INIT_LIST_HEAD(&event->rb_entry);
71ad88ef 10199 INIT_LIST_HEAD(&event->active_entry);
375637bc 10200 INIT_LIST_HEAD(&event->addr_filters.list);
f3ae75de
SE
10201 INIT_HLIST_NODE(&event->hlist_entry);
10202
10c6db11 10203
cdd6c482 10204 init_waitqueue_head(&event->waitq);
e360adbe 10205 init_irq_work(&event->pending, perf_pending_event);
0793a61d 10206
cdd6c482 10207 mutex_init(&event->mmap_mutex);
375637bc 10208 raw_spin_lock_init(&event->addr_filters.lock);
7b732a75 10209
a6fa941d 10210 atomic_long_set(&event->refcount, 1);
cdd6c482
IM
10211 event->cpu = cpu;
10212 event->attr = *attr;
10213 event->group_leader = group_leader;
10214 event->pmu = NULL;
cdd6c482 10215 event->oncpu = -1;
a96bbc16 10216
cdd6c482 10217 event->parent = parent_event;
b84fbc9f 10218
17cf22c3 10219 event->ns = get_pid_ns(task_active_pid_ns(current));
cdd6c482 10220 event->id = atomic64_inc_return(&perf_event_id);
a96bbc16 10221
cdd6c482 10222 event->state = PERF_EVENT_STATE_INACTIVE;
329d876d 10223
d580ff86
PZ
10224 if (task) {
10225 event->attach_state = PERF_ATTACH_TASK;
d580ff86 10226 /*
50f16a8b
PZ
10227 * XXX pmu::event_init needs to know what task to account to
10228 * and we cannot use the ctx information because we need the
10229 * pmu before we get a ctx.
d580ff86 10230 */
621b6d2e 10231 get_task_struct(task);
50f16a8b 10232 event->hw.target = task;
d580ff86
PZ
10233 }
10234
34f43927
PZ
10235 event->clock = &local_clock;
10236 if (parent_event)
10237 event->clock = parent_event->clock;
10238
4dc0da86 10239 if (!overflow_handler && parent_event) {
b326e956 10240 overflow_handler = parent_event->overflow_handler;
4dc0da86 10241 context = parent_event->overflow_handler_context;
f1e4ba5b 10242#if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
aa6a5f3c
AS
10243 if (overflow_handler == bpf_overflow_handler) {
10244 struct bpf_prog *prog = bpf_prog_inc(parent_event->prog);
10245
10246 if (IS_ERR(prog)) {
10247 err = PTR_ERR(prog);
10248 goto err_ns;
10249 }
10250 event->prog = prog;
10251 event->orig_overflow_handler =
10252 parent_event->orig_overflow_handler;
10253 }
10254#endif
4dc0da86 10255 }
66832eb4 10256
1879445d
WN
10257 if (overflow_handler) {
10258 event->overflow_handler = overflow_handler;
10259 event->overflow_handler_context = context;
9ecda41a
WN
10260 } else if (is_write_backward(event)){
10261 event->overflow_handler = perf_event_output_backward;
10262 event->overflow_handler_context = NULL;
1879445d 10263 } else {
9ecda41a 10264 event->overflow_handler = perf_event_output_forward;
1879445d
WN
10265 event->overflow_handler_context = NULL;
10266 }
97eaf530 10267
0231bb53 10268 perf_event__state_init(event);
a86ed508 10269
4aeb0b42 10270 pmu = NULL;
b8e83514 10271
cdd6c482 10272 hwc = &event->hw;
bd2b5b12 10273 hwc->sample_period = attr->sample_period;
0d48696f 10274 if (attr->freq && attr->sample_freq)
bd2b5b12 10275 hwc->sample_period = 1;
eced1dfc 10276 hwc->last_period = hwc->sample_period;
bd2b5b12 10277
e7850595 10278 local64_set(&hwc->period_left, hwc->sample_period);
60db5e09 10279
2023b359 10280 /*
ba5213ae
PZ
10281 * We currently do not support PERF_SAMPLE_READ on inherited events.
10282 * See perf_output_read().
2023b359 10283 */
ba5213ae 10284 if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
90983b16 10285 goto err_ns;
a46a2300
YZ
10286
10287 if (!has_branch_stack(event))
10288 event->attr.branch_sample_type = 0;
2023b359 10289
79dff51e
MF
10290 if (cgroup_fd != -1) {
10291 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
10292 if (err)
10293 goto err_ns;
10294 }
10295
b0a873eb 10296 pmu = perf_init_event(event);
85c617ab 10297 if (IS_ERR(pmu)) {
4aeb0b42 10298 err = PTR_ERR(pmu);
90983b16 10299 goto err_ns;
621a01ea 10300 }
d5d2bc0d 10301
bed5b25a
AS
10302 err = exclusive_event_init(event);
10303 if (err)
10304 goto err_pmu;
10305
375637bc
AS
10306 if (has_addr_filter(event)) {
10307 event->addr_filters_offs = kcalloc(pmu->nr_addr_filters,
10308 sizeof(unsigned long),
10309 GFP_KERNEL);
36cc2b92
DC
10310 if (!event->addr_filters_offs) {
10311 err = -ENOMEM;
375637bc 10312 goto err_per_task;
36cc2b92 10313 }
375637bc
AS
10314
10315 /* force hw sync on the address filters */
10316 event->addr_filters_gen = 1;
10317 }
10318
cdd6c482 10319 if (!event->parent) {
927c7a9e 10320 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
97c79a38 10321 err = get_callchain_buffers(attr->sample_max_stack);
90983b16 10322 if (err)
375637bc 10323 goto err_addr_filters;
d010b332 10324 }
f344011c 10325 }
9ee318a7 10326
927a5570
AS
10327 /* symmetric to unaccount_event() in _free_event() */
10328 account_event(event);
10329
cdd6c482 10330 return event;
90983b16 10331
375637bc
AS
10332err_addr_filters:
10333 kfree(event->addr_filters_offs);
10334
bed5b25a
AS
10335err_per_task:
10336 exclusive_event_destroy(event);
10337
90983b16
FW
10338err_pmu:
10339 if (event->destroy)
10340 event->destroy(event);
c464c76e 10341 module_put(pmu->module);
90983b16 10342err_ns:
79dff51e
MF
10343 if (is_cgroup_event(event))
10344 perf_detach_cgroup(event);
90983b16
FW
10345 if (event->ns)
10346 put_pid_ns(event->ns);
621b6d2e
PB
10347 if (event->hw.target)
10348 put_task_struct(event->hw.target);
90983b16
FW
10349 kfree(event);
10350
10351 return ERR_PTR(err);
0793a61d
TG
10352}
10353
cdd6c482
IM
10354static int perf_copy_attr(struct perf_event_attr __user *uattr,
10355 struct perf_event_attr *attr)
974802ea 10356{
974802ea 10357 u32 size;
cdf8073d 10358 int ret;
974802ea 10359
96d4f267 10360 if (!access_ok(uattr, PERF_ATTR_SIZE_VER0))
974802ea
PZ
10361 return -EFAULT;
10362
10363 /*
10364 * zero the full structure, so that a short copy will be nice.
10365 */
10366 memset(attr, 0, sizeof(*attr));
10367
10368 ret = get_user(size, &uattr->size);
10369 if (ret)
10370 return ret;
10371
10372 if (size > PAGE_SIZE) /* silly large */
10373 goto err_size;
10374
10375 if (!size) /* abi compat */
10376 size = PERF_ATTR_SIZE_VER0;
10377
10378 if (size < PERF_ATTR_SIZE_VER0)
10379 goto err_size;
10380
10381 /*
10382 * If we're handed a bigger struct than we know of,
cdf8073d
IS
10383 * ensure all the unknown bits are 0 - i.e. new
10384 * user-space does not rely on any kernel feature
10385 * extensions we dont know about yet.
974802ea
PZ
10386 */
10387 if (size > sizeof(*attr)) {
cdf8073d
IS
10388 unsigned char __user *addr;
10389 unsigned char __user *end;
10390 unsigned char val;
974802ea 10391
cdf8073d
IS
10392 addr = (void __user *)uattr + sizeof(*attr);
10393 end = (void __user *)uattr + size;
974802ea 10394
cdf8073d 10395 for (; addr < end; addr++) {
974802ea
PZ
10396 ret = get_user(val, addr);
10397 if (ret)
10398 return ret;
10399 if (val)
10400 goto err_size;
10401 }
b3e62e35 10402 size = sizeof(*attr);
974802ea
PZ
10403 }
10404
10405 ret = copy_from_user(attr, uattr, size);
10406 if (ret)
10407 return -EFAULT;
10408
f12f42ac
MX
10409 attr->size = size;
10410
cd757645 10411 if (attr->__reserved_1)
974802ea
PZ
10412 return -EINVAL;
10413
10414 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
10415 return -EINVAL;
10416
10417 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
10418 return -EINVAL;
10419
bce38cd5
SE
10420 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
10421 u64 mask = attr->branch_sample_type;
10422
10423 /* only using defined bits */
10424 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
10425 return -EINVAL;
10426
10427 /* at least one branch bit must be set */
10428 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
10429 return -EINVAL;
10430
bce38cd5
SE
10431 /* propagate priv level, when not set for branch */
10432 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
10433
10434 /* exclude_kernel checked on syscall entry */
10435 if (!attr->exclude_kernel)
10436 mask |= PERF_SAMPLE_BRANCH_KERNEL;
10437
10438 if (!attr->exclude_user)
10439 mask |= PERF_SAMPLE_BRANCH_USER;
10440
10441 if (!attr->exclude_hv)
10442 mask |= PERF_SAMPLE_BRANCH_HV;
10443 /*
10444 * adjust user setting (for HW filter setup)
10445 */
10446 attr->branch_sample_type = mask;
10447 }
e712209a
SE
10448 /* privileged levels capture (kernel, hv): check permissions */
10449 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
2b923c8f
SE
10450 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10451 return -EACCES;
bce38cd5 10452 }
4018994f 10453
c5ebcedb 10454 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
4018994f 10455 ret = perf_reg_validate(attr->sample_regs_user);
c5ebcedb
JO
10456 if (ret)
10457 return ret;
10458 }
10459
10460 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
10461 if (!arch_perf_have_user_stack_dump())
10462 return -ENOSYS;
10463
10464 /*
10465 * We have __u32 type for the size, but so far
10466 * we can only use __u16 as maximum due to the
10467 * __u16 sample size limit.
10468 */
10469 if (attr->sample_stack_user >= USHRT_MAX)
78b562fb 10470 return -EINVAL;
c5ebcedb 10471 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
78b562fb 10472 return -EINVAL;
c5ebcedb 10473 }
4018994f 10474
5f970521
JO
10475 if (!attr->sample_max_stack)
10476 attr->sample_max_stack = sysctl_perf_event_max_stack;
10477
60e2364e
SE
10478 if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
10479 ret = perf_reg_validate(attr->sample_regs_intr);
974802ea
PZ
10480out:
10481 return ret;
10482
10483err_size:
10484 put_user(sizeof(*attr), &uattr->size);
10485 ret = -E2BIG;
10486 goto out;
10487}
10488
ac9721f3
PZ
10489static int
10490perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
a4be7c27 10491{
b69cf536 10492 struct ring_buffer *rb = NULL;
a4be7c27
PZ
10493 int ret = -EINVAL;
10494
ac9721f3 10495 if (!output_event)
a4be7c27
PZ
10496 goto set;
10497
ac9721f3
PZ
10498 /* don't allow circular references */
10499 if (event == output_event)
a4be7c27
PZ
10500 goto out;
10501
0f139300
PZ
10502 /*
10503 * Don't allow cross-cpu buffers
10504 */
10505 if (output_event->cpu != event->cpu)
10506 goto out;
10507
10508 /*
76369139 10509 * If its not a per-cpu rb, it must be the same task.
0f139300
PZ
10510 */
10511 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
10512 goto out;
10513
34f43927
PZ
10514 /*
10515 * Mixing clocks in the same buffer is trouble you don't need.
10516 */
10517 if (output_event->clock != event->clock)
10518 goto out;
10519
9ecda41a
WN
10520 /*
10521 * Either writing ring buffer from beginning or from end.
10522 * Mixing is not allowed.
10523 */
10524 if (is_write_backward(output_event) != is_write_backward(event))
10525 goto out;
10526
45bfb2e5
PZ
10527 /*
10528 * If both events generate aux data, they must be on the same PMU
10529 */
10530 if (has_aux(event) && has_aux(output_event) &&
10531 event->pmu != output_event->pmu)
10532 goto out;
10533
a4be7c27 10534set:
cdd6c482 10535 mutex_lock(&event->mmap_mutex);
ac9721f3
PZ
10536 /* Can't redirect output if we've got an active mmap() */
10537 if (atomic_read(&event->mmap_count))
10538 goto unlock;
a4be7c27 10539
ac9721f3 10540 if (output_event) {
76369139
FW
10541 /* get the rb we want to redirect to */
10542 rb = ring_buffer_get(output_event);
10543 if (!rb)
ac9721f3 10544 goto unlock;
a4be7c27
PZ
10545 }
10546
b69cf536 10547 ring_buffer_attach(event, rb);
9bb5d40c 10548
a4be7c27 10549 ret = 0;
ac9721f3
PZ
10550unlock:
10551 mutex_unlock(&event->mmap_mutex);
10552
a4be7c27 10553out:
a4be7c27
PZ
10554 return ret;
10555}
10556
f63a8daa
PZ
10557static void mutex_lock_double(struct mutex *a, struct mutex *b)
10558{
10559 if (b < a)
10560 swap(a, b);
10561
10562 mutex_lock(a);
10563 mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
10564}
10565
34f43927
PZ
10566static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
10567{
10568 bool nmi_safe = false;
10569
10570 switch (clk_id) {
10571 case CLOCK_MONOTONIC:
10572 event->clock = &ktime_get_mono_fast_ns;
10573 nmi_safe = true;
10574 break;
10575
10576 case CLOCK_MONOTONIC_RAW:
10577 event->clock = &ktime_get_raw_fast_ns;
10578 nmi_safe = true;
10579 break;
10580
10581 case CLOCK_REALTIME:
10582 event->clock = &ktime_get_real_ns;
10583 break;
10584
10585 case CLOCK_BOOTTIME:
10586 event->clock = &ktime_get_boot_ns;
10587 break;
10588
10589 case CLOCK_TAI:
10590 event->clock = &ktime_get_tai_ns;
10591 break;
10592
10593 default:
10594 return -EINVAL;
10595 }
10596
10597 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
10598 return -EINVAL;
10599
10600 return 0;
10601}
10602
321027c1
PZ
10603/*
10604 * Variation on perf_event_ctx_lock_nested(), except we take two context
10605 * mutexes.
10606 */
10607static struct perf_event_context *
10608__perf_event_ctx_lock_double(struct perf_event *group_leader,
10609 struct perf_event_context *ctx)
10610{
10611 struct perf_event_context *gctx;
10612
10613again:
10614 rcu_read_lock();
10615 gctx = READ_ONCE(group_leader->ctx);
10616 if (!atomic_inc_not_zero(&gctx->refcount)) {
10617 rcu_read_unlock();
10618 goto again;
10619 }
10620 rcu_read_unlock();
10621
10622 mutex_lock_double(&gctx->mutex, &ctx->mutex);
10623
10624 if (group_leader->ctx != gctx) {
10625 mutex_unlock(&ctx->mutex);
10626 mutex_unlock(&gctx->mutex);
10627 put_ctx(gctx);
10628 goto again;
10629 }
10630
10631 return gctx;
10632}
10633
0793a61d 10634/**
cdd6c482 10635 * sys_perf_event_open - open a performance event, associate it to a task/cpu
9f66a381 10636 *
cdd6c482 10637 * @attr_uptr: event_id type attributes for monitoring/sampling
0793a61d 10638 * @pid: target pid
9f66a381 10639 * @cpu: target cpu
cdd6c482 10640 * @group_fd: group leader event fd
0793a61d 10641 */
cdd6c482
IM
10642SYSCALL_DEFINE5(perf_event_open,
10643 struct perf_event_attr __user *, attr_uptr,
2743a5b0 10644 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
0793a61d 10645{
b04243ef
PZ
10646 struct perf_event *group_leader = NULL, *output_event = NULL;
10647 struct perf_event *event, *sibling;
cdd6c482 10648 struct perf_event_attr attr;
f63a8daa 10649 struct perf_event_context *ctx, *uninitialized_var(gctx);
cdd6c482 10650 struct file *event_file = NULL;
2903ff01 10651 struct fd group = {NULL, 0};
38a81da2 10652 struct task_struct *task = NULL;
89a1e187 10653 struct pmu *pmu;
ea635c64 10654 int event_fd;
b04243ef 10655 int move_group = 0;
dc86cabe 10656 int err;
a21b0b35 10657 int f_flags = O_RDWR;
79dff51e 10658 int cgroup_fd = -1;
0793a61d 10659
2743a5b0 10660 /* for future expandability... */
e5d1367f 10661 if (flags & ~PERF_FLAG_ALL)
2743a5b0
PM
10662 return -EINVAL;
10663
dc86cabe
IM
10664 err = perf_copy_attr(attr_uptr, &attr);
10665 if (err)
10666 return err;
eab656ae 10667
0764771d
PZ
10668 if (!attr.exclude_kernel) {
10669 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10670 return -EACCES;
10671 }
10672
e4222673
HB
10673 if (attr.namespaces) {
10674 if (!capable(CAP_SYS_ADMIN))
10675 return -EACCES;
10676 }
10677
df58ab24 10678 if (attr.freq) {
cdd6c482 10679 if (attr.sample_freq > sysctl_perf_event_sample_rate)
df58ab24 10680 return -EINVAL;
0819b2e3
PZ
10681 } else {
10682 if (attr.sample_period & (1ULL << 63))
10683 return -EINVAL;
df58ab24
PZ
10684 }
10685
fc7ce9c7
KL
10686 /* Only privileged users can get physical addresses */
10687 if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR) &&
10688 perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10689 return -EACCES;
10690
e5d1367f
SE
10691 /*
10692 * In cgroup mode, the pid argument is used to pass the fd
10693 * opened to the cgroup directory in cgroupfs. The cpu argument
10694 * designates the cpu on which to monitor threads from that
10695 * cgroup.
10696 */
10697 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
10698 return -EINVAL;
10699
a21b0b35
YD
10700 if (flags & PERF_FLAG_FD_CLOEXEC)
10701 f_flags |= O_CLOEXEC;
10702
10703 event_fd = get_unused_fd_flags(f_flags);
ea635c64
AV
10704 if (event_fd < 0)
10705 return event_fd;
10706
ac9721f3 10707 if (group_fd != -1) {
2903ff01
AV
10708 err = perf_fget_light(group_fd, &group);
10709 if (err)
d14b12d7 10710 goto err_fd;
2903ff01 10711 group_leader = group.file->private_data;
ac9721f3
PZ
10712 if (flags & PERF_FLAG_FD_OUTPUT)
10713 output_event = group_leader;
10714 if (flags & PERF_FLAG_FD_NO_GROUP)
10715 group_leader = NULL;
10716 }
10717
e5d1367f 10718 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
c6be5a5c
PZ
10719 task = find_lively_task_by_vpid(pid);
10720 if (IS_ERR(task)) {
10721 err = PTR_ERR(task);
10722 goto err_group_fd;
10723 }
10724 }
10725
1f4ee503
PZ
10726 if (task && group_leader &&
10727 group_leader->attr.inherit != attr.inherit) {
10728 err = -EINVAL;
10729 goto err_task;
10730 }
10731
79c9ce57
PZ
10732 if (task) {
10733 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
10734 if (err)
e5aeee51 10735 goto err_task;
79c9ce57
PZ
10736
10737 /*
10738 * Reuse ptrace permission checks for now.
10739 *
10740 * We must hold cred_guard_mutex across this and any potential
10741 * perf_install_in_context() call for this new event to
10742 * serialize against exec() altering our credentials (and the
10743 * perf_event_exit_task() that could imply).
10744 */
10745 err = -EACCES;
10746 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
10747 goto err_cred;
10748 }
10749
79dff51e
MF
10750 if (flags & PERF_FLAG_PID_CGROUP)
10751 cgroup_fd = pid;
10752
4dc0da86 10753 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
79dff51e 10754 NULL, NULL, cgroup_fd);
d14b12d7
SE
10755 if (IS_ERR(event)) {
10756 err = PTR_ERR(event);
79c9ce57 10757 goto err_cred;
d14b12d7
SE
10758 }
10759
53b25335
VW
10760 if (is_sampling_event(event)) {
10761 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
a1396555 10762 err = -EOPNOTSUPP;
53b25335
VW
10763 goto err_alloc;
10764 }
10765 }
10766
89a1e187
PZ
10767 /*
10768 * Special case software events and allow them to be part of
10769 * any hardware group.
10770 */
10771 pmu = event->pmu;
b04243ef 10772
34f43927
PZ
10773 if (attr.use_clockid) {
10774 err = perf_event_set_clock(event, attr.clockid);
10775 if (err)
10776 goto err_alloc;
10777 }
10778
4ff6a8de
DCC
10779 if (pmu->task_ctx_nr == perf_sw_context)
10780 event->event_caps |= PERF_EV_CAP_SOFTWARE;
10781
a1150c20
SL
10782 if (group_leader) {
10783 if (is_software_event(event) &&
10784 !in_software_context(group_leader)) {
b04243ef 10785 /*
a1150c20
SL
10786 * If the event is a sw event, but the group_leader
10787 * is on hw context.
b04243ef 10788 *
a1150c20
SL
10789 * Allow the addition of software events to hw
10790 * groups, this is safe because software events
10791 * never fail to schedule.
b04243ef 10792 */
a1150c20
SL
10793 pmu = group_leader->ctx->pmu;
10794 } else if (!is_software_event(event) &&
10795 is_software_event(group_leader) &&
4ff6a8de 10796 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
b04243ef
PZ
10797 /*
10798 * In case the group is a pure software group, and we
10799 * try to add a hardware event, move the whole group to
10800 * the hardware context.
10801 */
10802 move_group = 1;
10803 }
10804 }
89a1e187
PZ
10805
10806 /*
10807 * Get the target context (task or percpu):
10808 */
4af57ef2 10809 ctx = find_get_context(pmu, task, event);
89a1e187
PZ
10810 if (IS_ERR(ctx)) {
10811 err = PTR_ERR(ctx);
c6be5a5c 10812 goto err_alloc;
89a1e187
PZ
10813 }
10814
bed5b25a
AS
10815 if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
10816 err = -EBUSY;
10817 goto err_context;
10818 }
10819
ccff286d 10820 /*
cdd6c482 10821 * Look up the group leader (we will attach this event to it):
04289bb9 10822 */
ac9721f3 10823 if (group_leader) {
dc86cabe 10824 err = -EINVAL;
04289bb9 10825
04289bb9 10826 /*
ccff286d
IM
10827 * Do not allow a recursive hierarchy (this new sibling
10828 * becoming part of another group-sibling):
10829 */
10830 if (group_leader->group_leader != group_leader)
c3f00c70 10831 goto err_context;
34f43927
PZ
10832
10833 /* All events in a group should have the same clock */
10834 if (group_leader->clock != event->clock)
10835 goto err_context;
10836
ccff286d 10837 /*
64aee2a9
MR
10838 * Make sure we're both events for the same CPU;
10839 * grouping events for different CPUs is broken; since
10840 * you can never concurrently schedule them anyhow.
04289bb9 10841 */
64aee2a9
MR
10842 if (group_leader->cpu != event->cpu)
10843 goto err_context;
c3c87e77 10844
64aee2a9
MR
10845 /*
10846 * Make sure we're both on the same task, or both
10847 * per-CPU events.
10848 */
10849 if (group_leader->ctx->task != ctx->task)
10850 goto err_context;
10851
10852 /*
10853 * Do not allow to attach to a group in a different task
10854 * or CPU context. If we're moving SW events, we'll fix
10855 * this up later, so allow that.
10856 */
10857 if (!move_group && group_leader->ctx != ctx)
10858 goto err_context;
b04243ef 10859
3b6f9e5c
PM
10860 /*
10861 * Only a group leader can be exclusive or pinned
10862 */
0d48696f 10863 if (attr.exclusive || attr.pinned)
c3f00c70 10864 goto err_context;
ac9721f3
PZ
10865 }
10866
10867 if (output_event) {
10868 err = perf_event_set_output(event, output_event);
10869 if (err)
c3f00c70 10870 goto err_context;
ac9721f3 10871 }
0793a61d 10872
a21b0b35
YD
10873 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
10874 f_flags);
ea635c64
AV
10875 if (IS_ERR(event_file)) {
10876 err = PTR_ERR(event_file);
201c2f85 10877 event_file = NULL;
c3f00c70 10878 goto err_context;
ea635c64 10879 }
9b51f66d 10880
b04243ef 10881 if (move_group) {
321027c1
PZ
10882 gctx = __perf_event_ctx_lock_double(group_leader, ctx);
10883
84c4e620
PZ
10884 if (gctx->task == TASK_TOMBSTONE) {
10885 err = -ESRCH;
10886 goto err_locked;
10887 }
321027c1
PZ
10888
10889 /*
10890 * Check if we raced against another sys_perf_event_open() call
10891 * moving the software group underneath us.
10892 */
10893 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
10894 /*
10895 * If someone moved the group out from under us, check
10896 * if this new event wound up on the same ctx, if so
10897 * its the regular !move_group case, otherwise fail.
10898 */
10899 if (gctx != ctx) {
10900 err = -EINVAL;
10901 goto err_locked;
10902 } else {
10903 perf_event_ctx_unlock(group_leader, gctx);
10904 move_group = 0;
10905 }
10906 }
f55fc2a5
PZ
10907 } else {
10908 mutex_lock(&ctx->mutex);
10909 }
10910
84c4e620
PZ
10911 if (ctx->task == TASK_TOMBSTONE) {
10912 err = -ESRCH;
10913 goto err_locked;
10914 }
10915
a723968c
PZ
10916 if (!perf_event_validate_size(event)) {
10917 err = -E2BIG;
10918 goto err_locked;
10919 }
10920
a63fbed7
TG
10921 if (!task) {
10922 /*
10923 * Check if the @cpu we're creating an event for is online.
10924 *
10925 * We use the perf_cpu_context::ctx::mutex to serialize against
10926 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
10927 */
10928 struct perf_cpu_context *cpuctx =
10929 container_of(ctx, struct perf_cpu_context, ctx);
10930
10931 if (!cpuctx->online) {
10932 err = -ENODEV;
10933 goto err_locked;
10934 }
10935 }
10936
10937
f55fc2a5
PZ
10938 /*
10939 * Must be under the same ctx::mutex as perf_install_in_context(),
10940 * because we need to serialize with concurrent event creation.
10941 */
10942 if (!exclusive_event_installable(event, ctx)) {
10943 /* exclusive and group stuff are assumed mutually exclusive */
10944 WARN_ON_ONCE(move_group);
f63a8daa 10945
f55fc2a5
PZ
10946 err = -EBUSY;
10947 goto err_locked;
10948 }
f63a8daa 10949
f55fc2a5
PZ
10950 WARN_ON_ONCE(ctx->parent_ctx);
10951
79c9ce57
PZ
10952 /*
10953 * This is the point on no return; we cannot fail hereafter. This is
10954 * where we start modifying current state.
10955 */
10956
f55fc2a5 10957 if (move_group) {
f63a8daa
PZ
10958 /*
10959 * See perf_event_ctx_lock() for comments on the details
10960 * of swizzling perf_event::ctx.
10961 */
45a0e07a 10962 perf_remove_from_context(group_leader, 0);
279b5165 10963 put_ctx(gctx);
0231bb53 10964
edb39592 10965 for_each_sibling_event(sibling, group_leader) {
45a0e07a 10966 perf_remove_from_context(sibling, 0);
b04243ef
PZ
10967 put_ctx(gctx);
10968 }
b04243ef 10969
f63a8daa
PZ
10970 /*
10971 * Wait for everybody to stop referencing the events through
10972 * the old lists, before installing it on new lists.
10973 */
0cda4c02 10974 synchronize_rcu();
f63a8daa 10975
8f95b435
PZI
10976 /*
10977 * Install the group siblings before the group leader.
10978 *
10979 * Because a group leader will try and install the entire group
10980 * (through the sibling list, which is still in-tact), we can
10981 * end up with siblings installed in the wrong context.
10982 *
10983 * By installing siblings first we NO-OP because they're not
10984 * reachable through the group lists.
10985 */
edb39592 10986 for_each_sibling_event(sibling, group_leader) {
8f95b435 10987 perf_event__state_init(sibling);
9fc81d87 10988 perf_install_in_context(ctx, sibling, sibling->cpu);
b04243ef
PZ
10989 get_ctx(ctx);
10990 }
8f95b435
PZI
10991
10992 /*
10993 * Removing from the context ends up with disabled
10994 * event. What we want here is event in the initial
10995 * startup state, ready to be add into new context.
10996 */
10997 perf_event__state_init(group_leader);
10998 perf_install_in_context(ctx, group_leader, group_leader->cpu);
10999 get_ctx(ctx);
bed5b25a
AS
11000 }
11001
f73e22ab
PZ
11002 /*
11003 * Precalculate sample_data sizes; do while holding ctx::mutex such
11004 * that we're serialized against further additions and before
11005 * perf_install_in_context() which is the point the event is active and
11006 * can use these values.
11007 */
11008 perf_event__header_size(event);
11009 perf_event__id_header_size(event);
11010
78cd2c74
PZ
11011 event->owner = current;
11012
e2d37cd2 11013 perf_install_in_context(ctx, event, event->cpu);
fe4b04fa 11014 perf_unpin_context(ctx);
f63a8daa 11015
f55fc2a5 11016 if (move_group)
321027c1 11017 perf_event_ctx_unlock(group_leader, gctx);
d859e29f 11018 mutex_unlock(&ctx->mutex);
9b51f66d 11019
79c9ce57
PZ
11020 if (task) {
11021 mutex_unlock(&task->signal->cred_guard_mutex);
11022 put_task_struct(task);
11023 }
11024
cdd6c482
IM
11025 mutex_lock(&current->perf_event_mutex);
11026 list_add_tail(&event->owner_entry, &current->perf_event_list);
11027 mutex_unlock(&current->perf_event_mutex);
082ff5a2 11028
8a49542c
PZ
11029 /*
11030 * Drop the reference on the group_event after placing the
11031 * new event on the sibling_list. This ensures destruction
11032 * of the group leader will find the pointer to itself in
11033 * perf_group_detach().
11034 */
2903ff01 11035 fdput(group);
ea635c64
AV
11036 fd_install(event_fd, event_file);
11037 return event_fd;
0793a61d 11038
f55fc2a5
PZ
11039err_locked:
11040 if (move_group)
321027c1 11041 perf_event_ctx_unlock(group_leader, gctx);
f55fc2a5
PZ
11042 mutex_unlock(&ctx->mutex);
11043/* err_file: */
11044 fput(event_file);
c3f00c70 11045err_context:
fe4b04fa 11046 perf_unpin_context(ctx);
ea635c64 11047 put_ctx(ctx);
c6be5a5c 11048err_alloc:
13005627
PZ
11049 /*
11050 * If event_file is set, the fput() above will have called ->release()
11051 * and that will take care of freeing the event.
11052 */
11053 if (!event_file)
11054 free_event(event);
79c9ce57
PZ
11055err_cred:
11056 if (task)
11057 mutex_unlock(&task->signal->cred_guard_mutex);
1f4ee503 11058err_task:
e7d0bc04
PZ
11059 if (task)
11060 put_task_struct(task);
89a1e187 11061err_group_fd:
2903ff01 11062 fdput(group);
ea635c64
AV
11063err_fd:
11064 put_unused_fd(event_fd);
dc86cabe 11065 return err;
0793a61d
TG
11066}
11067
fb0459d7
AV
11068/**
11069 * perf_event_create_kernel_counter
11070 *
11071 * @attr: attributes of the counter to create
11072 * @cpu: cpu in which the counter is bound
38a81da2 11073 * @task: task to profile (NULL for percpu)
fb0459d7
AV
11074 */
11075struct perf_event *
11076perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
38a81da2 11077 struct task_struct *task,
4dc0da86
AK
11078 perf_overflow_handler_t overflow_handler,
11079 void *context)
fb0459d7 11080{
fb0459d7 11081 struct perf_event_context *ctx;
c3f00c70 11082 struct perf_event *event;
fb0459d7 11083 int err;
d859e29f 11084
fb0459d7
AV
11085 /*
11086 * Get the target context (task or percpu):
11087 */
d859e29f 11088
4dc0da86 11089 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
79dff51e 11090 overflow_handler, context, -1);
c3f00c70
PZ
11091 if (IS_ERR(event)) {
11092 err = PTR_ERR(event);
11093 goto err;
11094 }
d859e29f 11095
f8697762 11096 /* Mark owner so we could distinguish it from user events. */
63b6da39 11097 event->owner = TASK_TOMBSTONE;
f8697762 11098
4af57ef2 11099 ctx = find_get_context(event->pmu, task, event);
c6567f64
FW
11100 if (IS_ERR(ctx)) {
11101 err = PTR_ERR(ctx);
c3f00c70 11102 goto err_free;
d859e29f 11103 }
fb0459d7 11104
fb0459d7
AV
11105 WARN_ON_ONCE(ctx->parent_ctx);
11106 mutex_lock(&ctx->mutex);
84c4e620
PZ
11107 if (ctx->task == TASK_TOMBSTONE) {
11108 err = -ESRCH;
11109 goto err_unlock;
11110 }
11111
a63fbed7
TG
11112 if (!task) {
11113 /*
11114 * Check if the @cpu we're creating an event for is online.
11115 *
11116 * We use the perf_cpu_context::ctx::mutex to serialize against
11117 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
11118 */
11119 struct perf_cpu_context *cpuctx =
11120 container_of(ctx, struct perf_cpu_context, ctx);
11121 if (!cpuctx->online) {
11122 err = -ENODEV;
11123 goto err_unlock;
11124 }
11125 }
11126
bed5b25a 11127 if (!exclusive_event_installable(event, ctx)) {
bed5b25a 11128 err = -EBUSY;
84c4e620 11129 goto err_unlock;
bed5b25a
AS
11130 }
11131
fb0459d7 11132 perf_install_in_context(ctx, event, cpu);
fe4b04fa 11133 perf_unpin_context(ctx);
fb0459d7
AV
11134 mutex_unlock(&ctx->mutex);
11135
fb0459d7
AV
11136 return event;
11137
84c4e620
PZ
11138err_unlock:
11139 mutex_unlock(&ctx->mutex);
11140 perf_unpin_context(ctx);
11141 put_ctx(ctx);
c3f00c70
PZ
11142err_free:
11143 free_event(event);
11144err:
c6567f64 11145 return ERR_PTR(err);
9b51f66d 11146}
fb0459d7 11147EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
9b51f66d 11148
0cda4c02
YZ
11149void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
11150{
11151 struct perf_event_context *src_ctx;
11152 struct perf_event_context *dst_ctx;
11153 struct perf_event *event, *tmp;
11154 LIST_HEAD(events);
11155
11156 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
11157 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
11158
f63a8daa
PZ
11159 /*
11160 * See perf_event_ctx_lock() for comments on the details
11161 * of swizzling perf_event::ctx.
11162 */
11163 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
0cda4c02
YZ
11164 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
11165 event_entry) {
45a0e07a 11166 perf_remove_from_context(event, 0);
9a545de0 11167 unaccount_event_cpu(event, src_cpu);
0cda4c02 11168 put_ctx(src_ctx);
9886167d 11169 list_add(&event->migrate_entry, &events);
0cda4c02 11170 }
0cda4c02 11171
8f95b435
PZI
11172 /*
11173 * Wait for the events to quiesce before re-instating them.
11174 */
0cda4c02
YZ
11175 synchronize_rcu();
11176
8f95b435
PZI
11177 /*
11178 * Re-instate events in 2 passes.
11179 *
11180 * Skip over group leaders and only install siblings on this first
11181 * pass, siblings will not get enabled without a leader, however a
11182 * leader will enable its siblings, even if those are still on the old
11183 * context.
11184 */
11185 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
11186 if (event->group_leader == event)
11187 continue;
11188
11189 list_del(&event->migrate_entry);
11190 if (event->state >= PERF_EVENT_STATE_OFF)
11191 event->state = PERF_EVENT_STATE_INACTIVE;
11192 account_event_cpu(event, dst_cpu);
11193 perf_install_in_context(dst_ctx, event, dst_cpu);
11194 get_ctx(dst_ctx);
11195 }
11196
11197 /*
11198 * Once all the siblings are setup properly, install the group leaders
11199 * to make it go.
11200 */
9886167d
PZ
11201 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
11202 list_del(&event->migrate_entry);
0cda4c02
YZ
11203 if (event->state >= PERF_EVENT_STATE_OFF)
11204 event->state = PERF_EVENT_STATE_INACTIVE;
9a545de0 11205 account_event_cpu(event, dst_cpu);
0cda4c02
YZ
11206 perf_install_in_context(dst_ctx, event, dst_cpu);
11207 get_ctx(dst_ctx);
11208 }
11209 mutex_unlock(&dst_ctx->mutex);
f63a8daa 11210 mutex_unlock(&src_ctx->mutex);
0cda4c02
YZ
11211}
11212EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
11213
cdd6c482 11214static void sync_child_event(struct perf_event *child_event,
38b200d6 11215 struct task_struct *child)
d859e29f 11216{
cdd6c482 11217 struct perf_event *parent_event = child_event->parent;
8bc20959 11218 u64 child_val;
d859e29f 11219
cdd6c482
IM
11220 if (child_event->attr.inherit_stat)
11221 perf_event_read_event(child_event, child);
38b200d6 11222
b5e58793 11223 child_val = perf_event_count(child_event);
d859e29f
PM
11224
11225 /*
11226 * Add back the child's count to the parent's count:
11227 */
a6e6dea6 11228 atomic64_add(child_val, &parent_event->child_count);
cdd6c482
IM
11229 atomic64_add(child_event->total_time_enabled,
11230 &parent_event->child_total_time_enabled);
11231 atomic64_add(child_event->total_time_running,
11232 &parent_event->child_total_time_running);
d859e29f
PM
11233}
11234
9b51f66d 11235static void
8ba289b8
PZ
11236perf_event_exit_event(struct perf_event *child_event,
11237 struct perf_event_context *child_ctx,
11238 struct task_struct *child)
9b51f66d 11239{
8ba289b8
PZ
11240 struct perf_event *parent_event = child_event->parent;
11241
1903d50c
PZ
11242 /*
11243 * Do not destroy the 'original' grouping; because of the context
11244 * switch optimization the original events could've ended up in a
11245 * random child task.
11246 *
11247 * If we were to destroy the original group, all group related
11248 * operations would cease to function properly after this random
11249 * child dies.
11250 *
11251 * Do destroy all inherited groups, we don't care about those
11252 * and being thorough is better.
11253 */
32132a3d
PZ
11254 raw_spin_lock_irq(&child_ctx->lock);
11255 WARN_ON_ONCE(child_ctx->is_active);
11256
8ba289b8 11257 if (parent_event)
32132a3d
PZ
11258 perf_group_detach(child_event);
11259 list_del_event(child_event, child_ctx);
0d3d73aa 11260 perf_event_set_state(child_event, PERF_EVENT_STATE_EXIT); /* is_event_hup() */
32132a3d 11261 raw_spin_unlock_irq(&child_ctx->lock);
0cc0c027 11262
9b51f66d 11263 /*
8ba289b8 11264 * Parent events are governed by their filedesc, retain them.
9b51f66d 11265 */
8ba289b8 11266 if (!parent_event) {
179033b3 11267 perf_event_wakeup(child_event);
8ba289b8 11268 return;
4bcf349a 11269 }
8ba289b8
PZ
11270 /*
11271 * Child events can be cleaned up.
11272 */
11273
11274 sync_child_event(child_event, child);
11275
11276 /*
11277 * Remove this event from the parent's list
11278 */
11279 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
11280 mutex_lock(&parent_event->child_mutex);
11281 list_del_init(&child_event->child_list);
11282 mutex_unlock(&parent_event->child_mutex);
11283
11284 /*
11285 * Kick perf_poll() for is_event_hup().
11286 */
11287 perf_event_wakeup(parent_event);
11288 free_event(child_event);
11289 put_event(parent_event);
9b51f66d
IM
11290}
11291
8dc85d54 11292static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
9b51f66d 11293{
211de6eb 11294 struct perf_event_context *child_ctx, *clone_ctx = NULL;
63b6da39 11295 struct perf_event *child_event, *next;
63b6da39
PZ
11296
11297 WARN_ON_ONCE(child != current);
9b51f66d 11298
6a3351b6 11299 child_ctx = perf_pin_task_context(child, ctxn);
63b6da39 11300 if (!child_ctx)
9b51f66d
IM
11301 return;
11302
ad3a37de 11303 /*
6a3351b6
PZ
11304 * In order to reduce the amount of tricky in ctx tear-down, we hold
11305 * ctx::mutex over the entire thing. This serializes against almost
11306 * everything that wants to access the ctx.
11307 *
11308 * The exception is sys_perf_event_open() /
11309 * perf_event_create_kernel_count() which does find_get_context()
11310 * without ctx::mutex (it cannot because of the move_group double mutex
11311 * lock thing). See the comments in perf_install_in_context().
ad3a37de 11312 */
6a3351b6 11313 mutex_lock(&child_ctx->mutex);
c93f7669
PM
11314
11315 /*
6a3351b6
PZ
11316 * In a single ctx::lock section, de-schedule the events and detach the
11317 * context from the task such that we cannot ever get it scheduled back
11318 * in.
c93f7669 11319 */
6a3351b6 11320 raw_spin_lock_irq(&child_ctx->lock);
487f05e1 11321 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
4a1c0f26 11322
71a851b4 11323 /*
63b6da39
PZ
11324 * Now that the context is inactive, destroy the task <-> ctx relation
11325 * and mark the context dead.
71a851b4 11326 */
63b6da39
PZ
11327 RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
11328 put_ctx(child_ctx); /* cannot be last */
11329 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
11330 put_task_struct(current); /* cannot be last */
4a1c0f26 11331
211de6eb 11332 clone_ctx = unclone_ctx(child_ctx);
6a3351b6 11333 raw_spin_unlock_irq(&child_ctx->lock);
9f498cc5 11334
211de6eb
PZ
11335 if (clone_ctx)
11336 put_ctx(clone_ctx);
4a1c0f26 11337
9f498cc5 11338 /*
cdd6c482
IM
11339 * Report the task dead after unscheduling the events so that we
11340 * won't get any samples after PERF_RECORD_EXIT. We can however still
11341 * get a few PERF_RECORD_READ events.
9f498cc5 11342 */
cdd6c482 11343 perf_event_task(child, child_ctx, 0);
a63eaf34 11344
ebf905fc 11345 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
8ba289b8 11346 perf_event_exit_event(child_event, child_ctx, child);
8bc20959 11347
a63eaf34
PM
11348 mutex_unlock(&child_ctx->mutex);
11349
11350 put_ctx(child_ctx);
9b51f66d
IM
11351}
11352
8dc85d54
PZ
11353/*
11354 * When a child task exits, feed back event values to parent events.
79c9ce57
PZ
11355 *
11356 * Can be called with cred_guard_mutex held when called from
11357 * install_exec_creds().
8dc85d54
PZ
11358 */
11359void perf_event_exit_task(struct task_struct *child)
11360{
8882135b 11361 struct perf_event *event, *tmp;
8dc85d54
PZ
11362 int ctxn;
11363
8882135b
PZ
11364 mutex_lock(&child->perf_event_mutex);
11365 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
11366 owner_entry) {
11367 list_del_init(&event->owner_entry);
11368
11369 /*
11370 * Ensure the list deletion is visible before we clear
11371 * the owner, closes a race against perf_release() where
11372 * we need to serialize on the owner->perf_event_mutex.
11373 */
f47c02c0 11374 smp_store_release(&event->owner, NULL);
8882135b
PZ
11375 }
11376 mutex_unlock(&child->perf_event_mutex);
11377
8dc85d54
PZ
11378 for_each_task_context_nr(ctxn)
11379 perf_event_exit_task_context(child, ctxn);
4e93ad60
JO
11380
11381 /*
11382 * The perf_event_exit_task_context calls perf_event_task
11383 * with child's task_ctx, which generates EXIT events for
11384 * child contexts and sets child->perf_event_ctxp[] to NULL.
11385 * At this point we need to send EXIT events to cpu contexts.
11386 */
11387 perf_event_task(child, NULL, 0);
8dc85d54
PZ
11388}
11389
889ff015
FW
11390static void perf_free_event(struct perf_event *event,
11391 struct perf_event_context *ctx)
11392{
11393 struct perf_event *parent = event->parent;
11394
11395 if (WARN_ON_ONCE(!parent))
11396 return;
11397
11398 mutex_lock(&parent->child_mutex);
11399 list_del_init(&event->child_list);
11400 mutex_unlock(&parent->child_mutex);
11401
a6fa941d 11402 put_event(parent);
889ff015 11403
652884fe 11404 raw_spin_lock_irq(&ctx->lock);
8a49542c 11405 perf_group_detach(event);
889ff015 11406 list_del_event(event, ctx);
652884fe 11407 raw_spin_unlock_irq(&ctx->lock);
889ff015
FW
11408 free_event(event);
11409}
11410
bbbee908 11411/*
652884fe 11412 * Free an unexposed, unused context as created by inheritance by
8dc85d54 11413 * perf_event_init_task below, used by fork() in case of fail.
652884fe
PZ
11414 *
11415 * Not all locks are strictly required, but take them anyway to be nice and
11416 * help out with the lockdep assertions.
bbbee908 11417 */
cdd6c482 11418void perf_event_free_task(struct task_struct *task)
bbbee908 11419{
8dc85d54 11420 struct perf_event_context *ctx;
cdd6c482 11421 struct perf_event *event, *tmp;
8dc85d54 11422 int ctxn;
bbbee908 11423
8dc85d54
PZ
11424 for_each_task_context_nr(ctxn) {
11425 ctx = task->perf_event_ctxp[ctxn];
11426 if (!ctx)
11427 continue;
bbbee908 11428
8dc85d54 11429 mutex_lock(&ctx->mutex);
e552a838
PZ
11430 raw_spin_lock_irq(&ctx->lock);
11431 /*
11432 * Destroy the task <-> ctx relation and mark the context dead.
11433 *
11434 * This is important because even though the task hasn't been
11435 * exposed yet the context has been (through child_list).
11436 */
11437 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
11438 WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
11439 put_task_struct(task); /* cannot be last */
11440 raw_spin_unlock_irq(&ctx->lock);
bbbee908 11441
15121c78 11442 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
8dc85d54 11443 perf_free_event(event, ctx);
bbbee908 11444
8dc85d54 11445 mutex_unlock(&ctx->mutex);
8dc85d54
PZ
11446 put_ctx(ctx);
11447 }
889ff015
FW
11448}
11449
4e231c79
PZ
11450void perf_event_delayed_put(struct task_struct *task)
11451{
11452 int ctxn;
11453
11454 for_each_task_context_nr(ctxn)
11455 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
11456}
11457
e03e7ee3 11458struct file *perf_event_get(unsigned int fd)
ffe8690c 11459{
e03e7ee3 11460 struct file *file;
ffe8690c 11461
e03e7ee3
AS
11462 file = fget_raw(fd);
11463 if (!file)
11464 return ERR_PTR(-EBADF);
ffe8690c 11465
e03e7ee3
AS
11466 if (file->f_op != &perf_fops) {
11467 fput(file);
11468 return ERR_PTR(-EBADF);
11469 }
ffe8690c 11470
e03e7ee3 11471 return file;
ffe8690c
KX
11472}
11473
f8d959a5
YS
11474const struct perf_event *perf_get_event(struct file *file)
11475{
11476 if (file->f_op != &perf_fops)
11477 return ERR_PTR(-EINVAL);
11478
11479 return file->private_data;
11480}
11481
ffe8690c
KX
11482const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
11483{
11484 if (!event)
11485 return ERR_PTR(-EINVAL);
11486
11487 return &event->attr;
11488}
11489
97dee4f3 11490/*
788faab7 11491 * Inherit an event from parent task to child task.
d8a8cfc7
PZ
11492 *
11493 * Returns:
11494 * - valid pointer on success
11495 * - NULL for orphaned events
11496 * - IS_ERR() on error
97dee4f3
PZ
11497 */
11498static struct perf_event *
11499inherit_event(struct perf_event *parent_event,
11500 struct task_struct *parent,
11501 struct perf_event_context *parent_ctx,
11502 struct task_struct *child,
11503 struct perf_event *group_leader,
11504 struct perf_event_context *child_ctx)
11505{
8ca2bd41 11506 enum perf_event_state parent_state = parent_event->state;
97dee4f3 11507 struct perf_event *child_event;
cee010ec 11508 unsigned long flags;
97dee4f3
PZ
11509
11510 /*
11511 * Instead of creating recursive hierarchies of events,
11512 * we link inherited events back to the original parent,
11513 * which has a filp for sure, which we use as the reference
11514 * count:
11515 */
11516 if (parent_event->parent)
11517 parent_event = parent_event->parent;
11518
11519 child_event = perf_event_alloc(&parent_event->attr,
11520 parent_event->cpu,
d580ff86 11521 child,
97dee4f3 11522 group_leader, parent_event,
79dff51e 11523 NULL, NULL, -1);
97dee4f3
PZ
11524 if (IS_ERR(child_event))
11525 return child_event;
a6fa941d 11526
313ccb96
JO
11527
11528 if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) &&
11529 !child_ctx->task_ctx_data) {
11530 struct pmu *pmu = child_event->pmu;
11531
11532 child_ctx->task_ctx_data = kzalloc(pmu->task_ctx_size,
11533 GFP_KERNEL);
11534 if (!child_ctx->task_ctx_data) {
11535 free_event(child_event);
11536 return NULL;
11537 }
11538 }
11539
c6e5b732
PZ
11540 /*
11541 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
11542 * must be under the same lock in order to serialize against
11543 * perf_event_release_kernel(), such that either we must observe
11544 * is_orphaned_event() or they will observe us on the child_list.
11545 */
11546 mutex_lock(&parent_event->child_mutex);
fadfe7be
JO
11547 if (is_orphaned_event(parent_event) ||
11548 !atomic_long_inc_not_zero(&parent_event->refcount)) {
c6e5b732 11549 mutex_unlock(&parent_event->child_mutex);
313ccb96 11550 /* task_ctx_data is freed with child_ctx */
a6fa941d
AV
11551 free_event(child_event);
11552 return NULL;
11553 }
11554
97dee4f3
PZ
11555 get_ctx(child_ctx);
11556
11557 /*
11558 * Make the child state follow the state of the parent event,
11559 * not its attr.disabled bit. We hold the parent's mutex,
11560 * so we won't race with perf_event_{en, dis}able_family.
11561 */
1929def9 11562 if (parent_state >= PERF_EVENT_STATE_INACTIVE)
97dee4f3
PZ
11563 child_event->state = PERF_EVENT_STATE_INACTIVE;
11564 else
11565 child_event->state = PERF_EVENT_STATE_OFF;
11566
11567 if (parent_event->attr.freq) {
11568 u64 sample_period = parent_event->hw.sample_period;
11569 struct hw_perf_event *hwc = &child_event->hw;
11570
11571 hwc->sample_period = sample_period;
11572 hwc->last_period = sample_period;
11573
11574 local64_set(&hwc->period_left, sample_period);
11575 }
11576
11577 child_event->ctx = child_ctx;
11578 child_event->overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
11579 child_event->overflow_handler_context
11580 = parent_event->overflow_handler_context;
97dee4f3 11581
614b6780
TG
11582 /*
11583 * Precalculate sample_data sizes
11584 */
11585 perf_event__header_size(child_event);
6844c09d 11586 perf_event__id_header_size(child_event);
614b6780 11587
97dee4f3
PZ
11588 /*
11589 * Link it up in the child's context:
11590 */
cee010ec 11591 raw_spin_lock_irqsave(&child_ctx->lock, flags);
97dee4f3 11592 add_event_to_ctx(child_event, child_ctx);
cee010ec 11593 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
97dee4f3 11594
97dee4f3
PZ
11595 /*
11596 * Link this into the parent event's child list
11597 */
97dee4f3
PZ
11598 list_add_tail(&child_event->child_list, &parent_event->child_list);
11599 mutex_unlock(&parent_event->child_mutex);
11600
11601 return child_event;
11602}
11603
d8a8cfc7
PZ
11604/*
11605 * Inherits an event group.
11606 *
11607 * This will quietly suppress orphaned events; !inherit_event() is not an error.
11608 * This matches with perf_event_release_kernel() removing all child events.
11609 *
11610 * Returns:
11611 * - 0 on success
11612 * - <0 on error
11613 */
97dee4f3
PZ
11614static int inherit_group(struct perf_event *parent_event,
11615 struct task_struct *parent,
11616 struct perf_event_context *parent_ctx,
11617 struct task_struct *child,
11618 struct perf_event_context *child_ctx)
11619{
11620 struct perf_event *leader;
11621 struct perf_event *sub;
11622 struct perf_event *child_ctr;
11623
11624 leader = inherit_event(parent_event, parent, parent_ctx,
11625 child, NULL, child_ctx);
11626 if (IS_ERR(leader))
11627 return PTR_ERR(leader);
d8a8cfc7
PZ
11628 /*
11629 * @leader can be NULL here because of is_orphaned_event(). In this
11630 * case inherit_event() will create individual events, similar to what
11631 * perf_group_detach() would do anyway.
11632 */
edb39592 11633 for_each_sibling_event(sub, parent_event) {
97dee4f3
PZ
11634 child_ctr = inherit_event(sub, parent, parent_ctx,
11635 child, leader, child_ctx);
11636 if (IS_ERR(child_ctr))
11637 return PTR_ERR(child_ctr);
11638 }
11639 return 0;
889ff015
FW
11640}
11641
d8a8cfc7
PZ
11642/*
11643 * Creates the child task context and tries to inherit the event-group.
11644 *
11645 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
11646 * inherited_all set when we 'fail' to inherit an orphaned event; this is
11647 * consistent with perf_event_release_kernel() removing all child events.
11648 *
11649 * Returns:
11650 * - 0 on success
11651 * - <0 on error
11652 */
889ff015
FW
11653static int
11654inherit_task_group(struct perf_event *event, struct task_struct *parent,
11655 struct perf_event_context *parent_ctx,
8dc85d54 11656 struct task_struct *child, int ctxn,
889ff015
FW
11657 int *inherited_all)
11658{
11659 int ret;
8dc85d54 11660 struct perf_event_context *child_ctx;
889ff015
FW
11661
11662 if (!event->attr.inherit) {
11663 *inherited_all = 0;
11664 return 0;
bbbee908
PZ
11665 }
11666
fe4b04fa 11667 child_ctx = child->perf_event_ctxp[ctxn];
889ff015
FW
11668 if (!child_ctx) {
11669 /*
11670 * This is executed from the parent task context, so
11671 * inherit events that have been marked for cloning.
11672 * First allocate and initialize a context for the
11673 * child.
11674 */
734df5ab 11675 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
889ff015
FW
11676 if (!child_ctx)
11677 return -ENOMEM;
bbbee908 11678
8dc85d54 11679 child->perf_event_ctxp[ctxn] = child_ctx;
889ff015
FW
11680 }
11681
11682 ret = inherit_group(event, parent, parent_ctx,
11683 child, child_ctx);
11684
11685 if (ret)
11686 *inherited_all = 0;
11687
11688 return ret;
bbbee908
PZ
11689}
11690
9b51f66d 11691/*
cdd6c482 11692 * Initialize the perf_event context in task_struct
9b51f66d 11693 */
985c8dcb 11694static int perf_event_init_context(struct task_struct *child, int ctxn)
9b51f66d 11695{
889ff015 11696 struct perf_event_context *child_ctx, *parent_ctx;
cdd6c482
IM
11697 struct perf_event_context *cloned_ctx;
11698 struct perf_event *event;
9b51f66d 11699 struct task_struct *parent = current;
564c2b21 11700 int inherited_all = 1;
dddd3379 11701 unsigned long flags;
6ab423e0 11702 int ret = 0;
9b51f66d 11703
8dc85d54 11704 if (likely(!parent->perf_event_ctxp[ctxn]))
6ab423e0
PZ
11705 return 0;
11706
ad3a37de 11707 /*
25346b93
PM
11708 * If the parent's context is a clone, pin it so it won't get
11709 * swapped under us.
ad3a37de 11710 */
8dc85d54 11711 parent_ctx = perf_pin_task_context(parent, ctxn);
ffb4ef21
PZ
11712 if (!parent_ctx)
11713 return 0;
25346b93 11714
ad3a37de
PM
11715 /*
11716 * No need to check if parent_ctx != NULL here; since we saw
11717 * it non-NULL earlier, the only reason for it to become NULL
11718 * is if we exit, and since we're currently in the middle of
11719 * a fork we can't be exiting at the same time.
11720 */
ad3a37de 11721
9b51f66d
IM
11722 /*
11723 * Lock the parent list. No need to lock the child - not PID
11724 * hashed yet and not running, so nobody can access it.
11725 */
d859e29f 11726 mutex_lock(&parent_ctx->mutex);
9b51f66d
IM
11727
11728 /*
11729 * We dont have to disable NMIs - we are only looking at
11730 * the list, not manipulating it:
11731 */
6e6804d2 11732 perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
8dc85d54
PZ
11733 ret = inherit_task_group(event, parent, parent_ctx,
11734 child, ctxn, &inherited_all);
889ff015 11735 if (ret)
e7cc4865 11736 goto out_unlock;
889ff015 11737 }
b93f7978 11738
dddd3379
TG
11739 /*
11740 * We can't hold ctx->lock when iterating the ->flexible_group list due
11741 * to allocations, but we need to prevent rotation because
11742 * rotate_ctx() will change the list from interrupt context.
11743 */
11744 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
11745 parent_ctx->rotate_disable = 1;
11746 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
11747
6e6804d2 11748 perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
8dc85d54
PZ
11749 ret = inherit_task_group(event, parent, parent_ctx,
11750 child, ctxn, &inherited_all);
889ff015 11751 if (ret)
e7cc4865 11752 goto out_unlock;
564c2b21
PM
11753 }
11754
dddd3379
TG
11755 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
11756 parent_ctx->rotate_disable = 0;
dddd3379 11757
8dc85d54 11758 child_ctx = child->perf_event_ctxp[ctxn];
889ff015 11759
05cbaa28 11760 if (child_ctx && inherited_all) {
564c2b21
PM
11761 /*
11762 * Mark the child context as a clone of the parent
11763 * context, or of whatever the parent is a clone of.
c5ed5145
PZ
11764 *
11765 * Note that if the parent is a clone, the holding of
11766 * parent_ctx->lock avoids it from being uncloned.
564c2b21 11767 */
c5ed5145 11768 cloned_ctx = parent_ctx->parent_ctx;
ad3a37de
PM
11769 if (cloned_ctx) {
11770 child_ctx->parent_ctx = cloned_ctx;
25346b93 11771 child_ctx->parent_gen = parent_ctx->parent_gen;
564c2b21
PM
11772 } else {
11773 child_ctx->parent_ctx = parent_ctx;
11774 child_ctx->parent_gen = parent_ctx->generation;
11775 }
11776 get_ctx(child_ctx->parent_ctx);
9b51f66d
IM
11777 }
11778
c5ed5145 11779 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
e7cc4865 11780out_unlock:
d859e29f 11781 mutex_unlock(&parent_ctx->mutex);
6ab423e0 11782
25346b93 11783 perf_unpin_context(parent_ctx);
fe4b04fa 11784 put_ctx(parent_ctx);
ad3a37de 11785
6ab423e0 11786 return ret;
9b51f66d
IM
11787}
11788
8dc85d54
PZ
11789/*
11790 * Initialize the perf_event context in task_struct
11791 */
11792int perf_event_init_task(struct task_struct *child)
11793{
11794 int ctxn, ret;
11795
8550d7cb
ON
11796 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
11797 mutex_init(&child->perf_event_mutex);
11798 INIT_LIST_HEAD(&child->perf_event_list);
11799
8dc85d54
PZ
11800 for_each_task_context_nr(ctxn) {
11801 ret = perf_event_init_context(child, ctxn);
6c72e350
PZ
11802 if (ret) {
11803 perf_event_free_task(child);
8dc85d54 11804 return ret;
6c72e350 11805 }
8dc85d54
PZ
11806 }
11807
11808 return 0;
11809}
11810
220b140b
PM
11811static void __init perf_event_init_all_cpus(void)
11812{
b28ab83c 11813 struct swevent_htable *swhash;
220b140b 11814 int cpu;
220b140b 11815
a63fbed7
TG
11816 zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
11817
220b140b 11818 for_each_possible_cpu(cpu) {
b28ab83c
PZ
11819 swhash = &per_cpu(swevent_htable, cpu);
11820 mutex_init(&swhash->hlist_mutex);
2fde4f94 11821 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
f2fb6bef
KL
11822
11823 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
11824 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
e48c1788 11825
058fe1c0
DCC
11826#ifdef CONFIG_CGROUP_PERF
11827 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
11828#endif
e48c1788 11829 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
220b140b
PM
11830 }
11831}
11832
a63fbed7 11833void perf_swevent_init_cpu(unsigned int cpu)
0793a61d 11834{
108b02cf 11835 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
0793a61d 11836
b28ab83c 11837 mutex_lock(&swhash->hlist_mutex);
059fcd8c 11838 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
76e1d904
FW
11839 struct swevent_hlist *hlist;
11840
b28ab83c
PZ
11841 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
11842 WARN_ON(!hlist);
11843 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 11844 }
b28ab83c 11845 mutex_unlock(&swhash->hlist_mutex);
0793a61d
TG
11846}
11847
2965faa5 11848#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
108b02cf 11849static void __perf_event_exit_context(void *__info)
0793a61d 11850{
108b02cf 11851 struct perf_event_context *ctx = __info;
fae3fde6
PZ
11852 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
11853 struct perf_event *event;
0793a61d 11854
fae3fde6 11855 raw_spin_lock(&ctx->lock);
0ee098c9 11856 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
fae3fde6 11857 list_for_each_entry(event, &ctx->event_list, event_entry)
45a0e07a 11858 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
fae3fde6 11859 raw_spin_unlock(&ctx->lock);
0793a61d 11860}
108b02cf
PZ
11861
11862static void perf_event_exit_cpu_context(int cpu)
11863{
a63fbed7 11864 struct perf_cpu_context *cpuctx;
108b02cf
PZ
11865 struct perf_event_context *ctx;
11866 struct pmu *pmu;
108b02cf 11867
a63fbed7
TG
11868 mutex_lock(&pmus_lock);
11869 list_for_each_entry(pmu, &pmus, entry) {
11870 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11871 ctx = &cpuctx->ctx;
108b02cf
PZ
11872
11873 mutex_lock(&ctx->mutex);
11874 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
a63fbed7 11875 cpuctx->online = 0;
108b02cf
PZ
11876 mutex_unlock(&ctx->mutex);
11877 }
a63fbed7
TG
11878 cpumask_clear_cpu(cpu, perf_online_mask);
11879 mutex_unlock(&pmus_lock);
108b02cf 11880}
00e16c3d
TG
11881#else
11882
11883static void perf_event_exit_cpu_context(int cpu) { }
11884
11885#endif
108b02cf 11886
a63fbed7
TG
11887int perf_event_init_cpu(unsigned int cpu)
11888{
11889 struct perf_cpu_context *cpuctx;
11890 struct perf_event_context *ctx;
11891 struct pmu *pmu;
11892
11893 perf_swevent_init_cpu(cpu);
11894
11895 mutex_lock(&pmus_lock);
11896 cpumask_set_cpu(cpu, perf_online_mask);
11897 list_for_each_entry(pmu, &pmus, entry) {
11898 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11899 ctx = &cpuctx->ctx;
11900
11901 mutex_lock(&ctx->mutex);
11902 cpuctx->online = 1;
11903 mutex_unlock(&ctx->mutex);
11904 }
11905 mutex_unlock(&pmus_lock);
11906
11907 return 0;
11908}
11909
00e16c3d 11910int perf_event_exit_cpu(unsigned int cpu)
0793a61d 11911{
e3703f8c 11912 perf_event_exit_cpu_context(cpu);
00e16c3d 11913 return 0;
0793a61d 11914}
0793a61d 11915
c277443c
PZ
11916static int
11917perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
11918{
11919 int cpu;
11920
11921 for_each_online_cpu(cpu)
11922 perf_event_exit_cpu(cpu);
11923
11924 return NOTIFY_OK;
11925}
11926
11927/*
11928 * Run the perf reboot notifier at the very last possible moment so that
11929 * the generic watchdog code runs as long as possible.
11930 */
11931static struct notifier_block perf_reboot_notifier = {
11932 .notifier_call = perf_reboot,
11933 .priority = INT_MIN,
11934};
11935
cdd6c482 11936void __init perf_event_init(void)
0793a61d 11937{
3c502e7a
JW
11938 int ret;
11939
2e80a82a
PZ
11940 idr_init(&pmu_idr);
11941
220b140b 11942 perf_event_init_all_cpus();
b0a873eb 11943 init_srcu_struct(&pmus_srcu);
2e80a82a
PZ
11944 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
11945 perf_pmu_register(&perf_cpu_clock, NULL, -1);
11946 perf_pmu_register(&perf_task_clock, NULL, -1);
b0a873eb 11947 perf_tp_register();
00e16c3d 11948 perf_event_init_cpu(smp_processor_id());
c277443c 11949 register_reboot_notifier(&perf_reboot_notifier);
3c502e7a
JW
11950
11951 ret = init_hw_breakpoint();
11952 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
b2029520 11953
b01c3a00
JO
11954 /*
11955 * Build time assertion that we keep the data_head at the intended
11956 * location. IOW, validation we got the __reserved[] size right.
11957 */
11958 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
11959 != 1024);
0793a61d 11960}
abe43400 11961
fd979c01
CS
11962ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
11963 char *page)
11964{
11965 struct perf_pmu_events_attr *pmu_attr =
11966 container_of(attr, struct perf_pmu_events_attr, attr);
11967
11968 if (pmu_attr->event_str)
11969 return sprintf(page, "%s\n", pmu_attr->event_str);
11970
11971 return 0;
11972}
675965b0 11973EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
fd979c01 11974
abe43400
PZ
11975static int __init perf_event_sysfs_init(void)
11976{
11977 struct pmu *pmu;
11978 int ret;
11979
11980 mutex_lock(&pmus_lock);
11981
11982 ret = bus_register(&pmu_bus);
11983 if (ret)
11984 goto unlock;
11985
11986 list_for_each_entry(pmu, &pmus, entry) {
11987 if (!pmu->name || pmu->type < 0)
11988 continue;
11989
11990 ret = pmu_dev_alloc(pmu);
11991 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
11992 }
11993 pmu_bus_running = 1;
11994 ret = 0;
11995
11996unlock:
11997 mutex_unlock(&pmus_lock);
11998
11999 return ret;
12000}
12001device_initcall(perf_event_sysfs_init);
e5d1367f
SE
12002
12003#ifdef CONFIG_CGROUP_PERF
eb95419b
TH
12004static struct cgroup_subsys_state *
12005perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
e5d1367f
SE
12006{
12007 struct perf_cgroup *jc;
e5d1367f 12008
1b15d055 12009 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
e5d1367f
SE
12010 if (!jc)
12011 return ERR_PTR(-ENOMEM);
12012
e5d1367f
SE
12013 jc->info = alloc_percpu(struct perf_cgroup_info);
12014 if (!jc->info) {
12015 kfree(jc);
12016 return ERR_PTR(-ENOMEM);
12017 }
12018
e5d1367f
SE
12019 return &jc->css;
12020}
12021
eb95419b 12022static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
e5d1367f 12023{
eb95419b
TH
12024 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
12025
e5d1367f
SE
12026 free_percpu(jc->info);
12027 kfree(jc);
12028}
12029
12030static int __perf_cgroup_move(void *info)
12031{
12032 struct task_struct *task = info;
ddaaf4e2 12033 rcu_read_lock();
e5d1367f 12034 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
ddaaf4e2 12035 rcu_read_unlock();
e5d1367f
SE
12036 return 0;
12037}
12038
1f7dd3e5 12039static void perf_cgroup_attach(struct cgroup_taskset *tset)
e5d1367f 12040{
bb9d97b6 12041 struct task_struct *task;
1f7dd3e5 12042 struct cgroup_subsys_state *css;
bb9d97b6 12043
1f7dd3e5 12044 cgroup_taskset_for_each(task, css, tset)
bb9d97b6 12045 task_function_call(task, __perf_cgroup_move, task);
e5d1367f
SE
12046}
12047
073219e9 12048struct cgroup_subsys perf_event_cgrp_subsys = {
92fb9748
TH
12049 .css_alloc = perf_cgroup_css_alloc,
12050 .css_free = perf_cgroup_css_free,
bb9d97b6 12051 .attach = perf_cgroup_attach,
968ebff1
TH
12052 /*
12053 * Implicitly enable on dfl hierarchy so that perf events can
12054 * always be filtered by cgroup2 path as long as perf_event
12055 * controller is not mounted on a legacy hierarchy.
12056 */
12057 .implicit_on_dfl = true,
8cfd8147 12058 .threaded = true,
e5d1367f
SE
12059};
12060#endif /* CONFIG_CGROUP_PERF */