]> git.ipfire.org Git - thirdparty/linux.git/blame - kernel/events/core.c
perf/x86/amd/uncore: Prevent use after free
[thirdparty/linux.git] / kernel / events / core.c
CommitLineData
0793a61d 1/*
57c0c15b 2 * Performance events core code:
0793a61d 3 *
98144511 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
e7e7ee2e 5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
90eec103 6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
d36b6910 7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
7b732a75 8 *
57c0c15b 9 * For licensing details see kernel-base/COPYING
0793a61d
TG
10 */
11
12#include <linux/fs.h>
b9cacc7b 13#include <linux/mm.h>
0793a61d
TG
14#include <linux/cpu.h>
15#include <linux/smp.h>
2e80a82a 16#include <linux/idr.h>
04289bb9 17#include <linux/file.h>
0793a61d 18#include <linux/poll.h>
5a0e3ad6 19#include <linux/slab.h>
76e1d904 20#include <linux/hash.h>
12351ef8 21#include <linux/tick.h>
0793a61d 22#include <linux/sysfs.h>
22a4f650 23#include <linux/dcache.h>
0793a61d 24#include <linux/percpu.h>
22a4f650 25#include <linux/ptrace.h>
c277443c 26#include <linux/reboot.h>
b9cacc7b 27#include <linux/vmstat.h>
abe43400 28#include <linux/device.h>
6e5fdeed 29#include <linux/export.h>
906010b2 30#include <linux/vmalloc.h>
b9cacc7b
PZ
31#include <linux/hardirq.h>
32#include <linux/rculist.h>
0793a61d
TG
33#include <linux/uaccess.h>
34#include <linux/syscalls.h>
35#include <linux/anon_inodes.h>
aa9c4c0f 36#include <linux/kernel_stat.h>
39bed6cb 37#include <linux/cgroup.h>
cdd6c482 38#include <linux/perf_event.h>
af658dca 39#include <linux/trace_events.h>
3c502e7a 40#include <linux/hw_breakpoint.h>
c5ebcedb 41#include <linux/mm_types.h>
c464c76e 42#include <linux/module.h>
f972eb63 43#include <linux/mman.h>
b3f20785 44#include <linux/compat.h>
2541517c
AS
45#include <linux/bpf.h>
46#include <linux/filter.h>
375637bc
AS
47#include <linux/namei.h>
48#include <linux/parser.h>
0793a61d 49
76369139
FW
50#include "internal.h"
51
4e193bd4
TB
52#include <asm/irq_regs.h>
53
272325c4
PZ
54typedef int (*remote_function_f)(void *);
55
fe4b04fa 56struct remote_function_call {
e7e7ee2e 57 struct task_struct *p;
272325c4 58 remote_function_f func;
e7e7ee2e
IM
59 void *info;
60 int ret;
fe4b04fa
PZ
61};
62
63static void remote_function(void *data)
64{
65 struct remote_function_call *tfc = data;
66 struct task_struct *p = tfc->p;
67
68 if (p) {
0da4cf3e
PZ
69 /* -EAGAIN */
70 if (task_cpu(p) != smp_processor_id())
71 return;
72
73 /*
74 * Now that we're on right CPU with IRQs disabled, we can test
75 * if we hit the right task without races.
76 */
77
78 tfc->ret = -ESRCH; /* No such (running) process */
79 if (p != current)
fe4b04fa
PZ
80 return;
81 }
82
83 tfc->ret = tfc->func(tfc->info);
84}
85
86/**
87 * task_function_call - call a function on the cpu on which a task runs
88 * @p: the task to evaluate
89 * @func: the function to be called
90 * @info: the function call argument
91 *
92 * Calls the function @func when the task is currently running. This might
93 * be on the current CPU, which just calls the function directly
94 *
95 * returns: @func return value, or
96 * -ESRCH - when the process isn't running
97 * -EAGAIN - when the process moved away
98 */
99static int
272325c4 100task_function_call(struct task_struct *p, remote_function_f func, void *info)
fe4b04fa
PZ
101{
102 struct remote_function_call data = {
e7e7ee2e
IM
103 .p = p,
104 .func = func,
105 .info = info,
0da4cf3e 106 .ret = -EAGAIN,
fe4b04fa 107 };
0da4cf3e 108 int ret;
fe4b04fa 109
0da4cf3e
PZ
110 do {
111 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
112 if (!ret)
113 ret = data.ret;
114 } while (ret == -EAGAIN);
fe4b04fa 115
0da4cf3e 116 return ret;
fe4b04fa
PZ
117}
118
119/**
120 * cpu_function_call - call a function on the cpu
121 * @func: the function to be called
122 * @info: the function call argument
123 *
124 * Calls the function @func on the remote cpu.
125 *
126 * returns: @func return value or -ENXIO when the cpu is offline
127 */
272325c4 128static int cpu_function_call(int cpu, remote_function_f func, void *info)
fe4b04fa
PZ
129{
130 struct remote_function_call data = {
e7e7ee2e
IM
131 .p = NULL,
132 .func = func,
133 .info = info,
134 .ret = -ENXIO, /* No such CPU */
fe4b04fa
PZ
135 };
136
137 smp_call_function_single(cpu, remote_function, &data, 1);
138
139 return data.ret;
140}
141
fae3fde6
PZ
142static inline struct perf_cpu_context *
143__get_cpu_context(struct perf_event_context *ctx)
144{
145 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
146}
147
148static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
149 struct perf_event_context *ctx)
0017960f 150{
fae3fde6
PZ
151 raw_spin_lock(&cpuctx->ctx.lock);
152 if (ctx)
153 raw_spin_lock(&ctx->lock);
154}
155
156static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
157 struct perf_event_context *ctx)
158{
159 if (ctx)
160 raw_spin_unlock(&ctx->lock);
161 raw_spin_unlock(&cpuctx->ctx.lock);
162}
163
63b6da39
PZ
164#define TASK_TOMBSTONE ((void *)-1L)
165
166static bool is_kernel_event(struct perf_event *event)
167{
f47c02c0 168 return READ_ONCE(event->owner) == TASK_TOMBSTONE;
63b6da39
PZ
169}
170
39a43640
PZ
171/*
172 * On task ctx scheduling...
173 *
174 * When !ctx->nr_events a task context will not be scheduled. This means
175 * we can disable the scheduler hooks (for performance) without leaving
176 * pending task ctx state.
177 *
178 * This however results in two special cases:
179 *
180 * - removing the last event from a task ctx; this is relatively straight
181 * forward and is done in __perf_remove_from_context.
182 *
183 * - adding the first event to a task ctx; this is tricky because we cannot
184 * rely on ctx->is_active and therefore cannot use event_function_call().
185 * See perf_install_in_context().
186 *
39a43640
PZ
187 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
188 */
189
fae3fde6
PZ
190typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
191 struct perf_event_context *, void *);
192
193struct event_function_struct {
194 struct perf_event *event;
195 event_f func;
196 void *data;
197};
198
199static int event_function(void *info)
200{
201 struct event_function_struct *efs = info;
202 struct perf_event *event = efs->event;
0017960f 203 struct perf_event_context *ctx = event->ctx;
fae3fde6
PZ
204 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
205 struct perf_event_context *task_ctx = cpuctx->task_ctx;
63b6da39 206 int ret = 0;
fae3fde6
PZ
207
208 WARN_ON_ONCE(!irqs_disabled());
209
63b6da39 210 perf_ctx_lock(cpuctx, task_ctx);
fae3fde6
PZ
211 /*
212 * Since we do the IPI call without holding ctx->lock things can have
213 * changed, double check we hit the task we set out to hit.
fae3fde6
PZ
214 */
215 if (ctx->task) {
63b6da39 216 if (ctx->task != current) {
0da4cf3e 217 ret = -ESRCH;
63b6da39
PZ
218 goto unlock;
219 }
fae3fde6 220
fae3fde6
PZ
221 /*
222 * We only use event_function_call() on established contexts,
223 * and event_function() is only ever called when active (or
224 * rather, we'll have bailed in task_function_call() or the
225 * above ctx->task != current test), therefore we must have
226 * ctx->is_active here.
227 */
228 WARN_ON_ONCE(!ctx->is_active);
229 /*
230 * And since we have ctx->is_active, cpuctx->task_ctx must
231 * match.
232 */
63b6da39
PZ
233 WARN_ON_ONCE(task_ctx != ctx);
234 } else {
235 WARN_ON_ONCE(&cpuctx->ctx != ctx);
fae3fde6 236 }
63b6da39 237
fae3fde6 238 efs->func(event, cpuctx, ctx, efs->data);
63b6da39 239unlock:
fae3fde6
PZ
240 perf_ctx_unlock(cpuctx, task_ctx);
241
63b6da39 242 return ret;
fae3fde6
PZ
243}
244
fae3fde6 245static void event_function_call(struct perf_event *event, event_f func, void *data)
0017960f
PZ
246{
247 struct perf_event_context *ctx = event->ctx;
63b6da39 248 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
fae3fde6
PZ
249 struct event_function_struct efs = {
250 .event = event,
251 .func = func,
252 .data = data,
253 };
0017960f 254
c97f4736
PZ
255 if (!event->parent) {
256 /*
257 * If this is a !child event, we must hold ctx::mutex to
258 * stabilize the the event->ctx relation. See
259 * perf_event_ctx_lock().
260 */
261 lockdep_assert_held(&ctx->mutex);
262 }
0017960f
PZ
263
264 if (!task) {
fae3fde6 265 cpu_function_call(event->cpu, event_function, &efs);
0017960f
PZ
266 return;
267 }
268
63b6da39
PZ
269 if (task == TASK_TOMBSTONE)
270 return;
271
a096309b 272again:
fae3fde6 273 if (!task_function_call(task, event_function, &efs))
0017960f
PZ
274 return;
275
276 raw_spin_lock_irq(&ctx->lock);
63b6da39
PZ
277 /*
278 * Reload the task pointer, it might have been changed by
279 * a concurrent perf_event_context_sched_out().
280 */
281 task = ctx->task;
a096309b
PZ
282 if (task == TASK_TOMBSTONE) {
283 raw_spin_unlock_irq(&ctx->lock);
284 return;
0017960f 285 }
a096309b
PZ
286 if (ctx->is_active) {
287 raw_spin_unlock_irq(&ctx->lock);
288 goto again;
289 }
290 func(event, NULL, ctx, data);
0017960f
PZ
291 raw_spin_unlock_irq(&ctx->lock);
292}
293
cca20946
PZ
294/*
295 * Similar to event_function_call() + event_function(), but hard assumes IRQs
296 * are already disabled and we're on the right CPU.
297 */
298static void event_function_local(struct perf_event *event, event_f func, void *data)
299{
300 struct perf_event_context *ctx = event->ctx;
301 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
302 struct task_struct *task = READ_ONCE(ctx->task);
303 struct perf_event_context *task_ctx = NULL;
304
305 WARN_ON_ONCE(!irqs_disabled());
306
307 if (task) {
308 if (task == TASK_TOMBSTONE)
309 return;
310
311 task_ctx = ctx;
312 }
313
314 perf_ctx_lock(cpuctx, task_ctx);
315
316 task = ctx->task;
317 if (task == TASK_TOMBSTONE)
318 goto unlock;
319
320 if (task) {
321 /*
322 * We must be either inactive or active and the right task,
323 * otherwise we're screwed, since we cannot IPI to somewhere
324 * else.
325 */
326 if (ctx->is_active) {
327 if (WARN_ON_ONCE(task != current))
328 goto unlock;
329
330 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
331 goto unlock;
332 }
333 } else {
334 WARN_ON_ONCE(&cpuctx->ctx != ctx);
335 }
336
337 func(event, cpuctx, ctx, data);
338unlock:
339 perf_ctx_unlock(cpuctx, task_ctx);
340}
341
e5d1367f
SE
342#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
343 PERF_FLAG_FD_OUTPUT |\
a21b0b35
YD
344 PERF_FLAG_PID_CGROUP |\
345 PERF_FLAG_FD_CLOEXEC)
e5d1367f 346
bce38cd5
SE
347/*
348 * branch priv levels that need permission checks
349 */
350#define PERF_SAMPLE_BRANCH_PERM_PLM \
351 (PERF_SAMPLE_BRANCH_KERNEL |\
352 PERF_SAMPLE_BRANCH_HV)
353
0b3fcf17
SE
354enum event_type_t {
355 EVENT_FLEXIBLE = 0x1,
356 EVENT_PINNED = 0x2,
3cbaa590 357 EVENT_TIME = 0x4,
0b3fcf17
SE
358 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
359};
360
e5d1367f
SE
361/*
362 * perf_sched_events : >0 events exist
363 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
364 */
9107c89e
PZ
365
366static void perf_sched_delayed(struct work_struct *work);
367DEFINE_STATIC_KEY_FALSE(perf_sched_events);
368static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
369static DEFINE_MUTEX(perf_sched_mutex);
370static atomic_t perf_sched_count;
371
e5d1367f 372static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
ba532500 373static DEFINE_PER_CPU(int, perf_sched_cb_usages);
f2fb6bef 374static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
e5d1367f 375
cdd6c482
IM
376static atomic_t nr_mmap_events __read_mostly;
377static atomic_t nr_comm_events __read_mostly;
378static atomic_t nr_task_events __read_mostly;
948b26b6 379static atomic_t nr_freq_events __read_mostly;
45ac1403 380static atomic_t nr_switch_events __read_mostly;
9ee318a7 381
108b02cf
PZ
382static LIST_HEAD(pmus);
383static DEFINE_MUTEX(pmus_lock);
384static struct srcu_struct pmus_srcu;
385
0764771d 386/*
cdd6c482 387 * perf event paranoia level:
0fbdea19
IM
388 * -1 - not paranoid at all
389 * 0 - disallow raw tracepoint access for unpriv
cdd6c482 390 * 1 - disallow cpu events for unpriv
0fbdea19 391 * 2 - disallow kernel profiling for unpriv
0764771d 392 */
0161028b 393int sysctl_perf_event_paranoid __read_mostly = 2;
0764771d 394
20443384
FW
395/* Minimum for 512 kiB + 1 user control page */
396int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
df58ab24
PZ
397
398/*
cdd6c482 399 * max perf event sample rate
df58ab24 400 */
14c63f17
DH
401#define DEFAULT_MAX_SAMPLE_RATE 100000
402#define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
403#define DEFAULT_CPU_TIME_MAX_PERCENT 25
404
405int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
406
407static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
408static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
409
d9494cb4
PZ
410static int perf_sample_allowed_ns __read_mostly =
411 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
14c63f17 412
18ab2cd3 413static void update_perf_cpu_limits(void)
14c63f17
DH
414{
415 u64 tmp = perf_sample_period_ns;
416
417 tmp *= sysctl_perf_cpu_time_max_percent;
91a612ee
PZ
418 tmp = div_u64(tmp, 100);
419 if (!tmp)
420 tmp = 1;
421
422 WRITE_ONCE(perf_sample_allowed_ns, tmp);
14c63f17 423}
163ec435 424
9e630205
SE
425static int perf_rotate_context(struct perf_cpu_context *cpuctx);
426
163ec435
PZ
427int perf_proc_update_handler(struct ctl_table *table, int write,
428 void __user *buffer, size_t *lenp,
429 loff_t *ppos)
430{
723478c8 431 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
163ec435
PZ
432
433 if (ret || !write)
434 return ret;
435
ab7fdefb
KL
436 /*
437 * If throttling is disabled don't allow the write:
438 */
439 if (sysctl_perf_cpu_time_max_percent == 100 ||
440 sysctl_perf_cpu_time_max_percent == 0)
441 return -EINVAL;
442
163ec435 443 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
14c63f17
DH
444 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
445 update_perf_cpu_limits();
446
447 return 0;
448}
449
450int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
451
452int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
453 void __user *buffer, size_t *lenp,
454 loff_t *ppos)
455{
456 int ret = proc_dointvec(table, write, buffer, lenp, ppos);
457
458 if (ret || !write)
459 return ret;
460
b303e7c1
PZ
461 if (sysctl_perf_cpu_time_max_percent == 100 ||
462 sysctl_perf_cpu_time_max_percent == 0) {
91a612ee
PZ
463 printk(KERN_WARNING
464 "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
465 WRITE_ONCE(perf_sample_allowed_ns, 0);
466 } else {
467 update_perf_cpu_limits();
468 }
163ec435
PZ
469
470 return 0;
471}
1ccd1549 472
14c63f17
DH
473/*
474 * perf samples are done in some very critical code paths (NMIs).
475 * If they take too much CPU time, the system can lock up and not
476 * get any real work done. This will drop the sample rate when
477 * we detect that events are taking too long.
478 */
479#define NR_ACCUMULATED_SAMPLES 128
d9494cb4 480static DEFINE_PER_CPU(u64, running_sample_length);
14c63f17 481
91a612ee
PZ
482static u64 __report_avg;
483static u64 __report_allowed;
484
6a02ad66 485static void perf_duration_warn(struct irq_work *w)
14c63f17 486{
0d87d7ec 487 printk_ratelimited(KERN_INFO
91a612ee
PZ
488 "perf: interrupt took too long (%lld > %lld), lowering "
489 "kernel.perf_event_max_sample_rate to %d\n",
490 __report_avg, __report_allowed,
491 sysctl_perf_event_sample_rate);
6a02ad66
PZ
492}
493
494static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
495
496void perf_sample_event_took(u64 sample_len_ns)
497{
91a612ee
PZ
498 u64 max_len = READ_ONCE(perf_sample_allowed_ns);
499 u64 running_len;
500 u64 avg_len;
501 u32 max;
14c63f17 502
91a612ee 503 if (max_len == 0)
14c63f17
DH
504 return;
505
91a612ee
PZ
506 /* Decay the counter by 1 average sample. */
507 running_len = __this_cpu_read(running_sample_length);
508 running_len -= running_len/NR_ACCUMULATED_SAMPLES;
509 running_len += sample_len_ns;
510 __this_cpu_write(running_sample_length, running_len);
14c63f17
DH
511
512 /*
91a612ee
PZ
513 * Note: this will be biased artifically low until we have
514 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
14c63f17
DH
515 * from having to maintain a count.
516 */
91a612ee
PZ
517 avg_len = running_len/NR_ACCUMULATED_SAMPLES;
518 if (avg_len <= max_len)
14c63f17
DH
519 return;
520
91a612ee
PZ
521 __report_avg = avg_len;
522 __report_allowed = max_len;
14c63f17 523
91a612ee
PZ
524 /*
525 * Compute a throttle threshold 25% below the current duration.
526 */
527 avg_len += avg_len / 4;
528 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
529 if (avg_len < max)
530 max /= (u32)avg_len;
531 else
532 max = 1;
14c63f17 533
91a612ee
PZ
534 WRITE_ONCE(perf_sample_allowed_ns, avg_len);
535 WRITE_ONCE(max_samples_per_tick, max);
536
537 sysctl_perf_event_sample_rate = max * HZ;
538 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
6a02ad66 539
cd578abb 540 if (!irq_work_queue(&perf_duration_work)) {
91a612ee 541 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
cd578abb 542 "kernel.perf_event_max_sample_rate to %d\n",
91a612ee 543 __report_avg, __report_allowed,
cd578abb
PZ
544 sysctl_perf_event_sample_rate);
545 }
14c63f17
DH
546}
547
cdd6c482 548static atomic64_t perf_event_id;
a96bbc16 549
0b3fcf17
SE
550static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
551 enum event_type_t event_type);
552
553static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
554 enum event_type_t event_type,
555 struct task_struct *task);
556
557static void update_context_time(struct perf_event_context *ctx);
558static u64 perf_event_time(struct perf_event *event);
0b3fcf17 559
cdd6c482 560void __weak perf_event_print_debug(void) { }
0793a61d 561
84c79910 562extern __weak const char *perf_pmu_name(void)
0793a61d 563{
84c79910 564 return "pmu";
0793a61d
TG
565}
566
0b3fcf17
SE
567static inline u64 perf_clock(void)
568{
569 return local_clock();
570}
571
34f43927
PZ
572static inline u64 perf_event_clock(struct perf_event *event)
573{
574 return event->clock();
575}
576
e5d1367f
SE
577#ifdef CONFIG_CGROUP_PERF
578
e5d1367f
SE
579static inline bool
580perf_cgroup_match(struct perf_event *event)
581{
582 struct perf_event_context *ctx = event->ctx;
583 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
584
ef824fa1
TH
585 /* @event doesn't care about cgroup */
586 if (!event->cgrp)
587 return true;
588
589 /* wants specific cgroup scope but @cpuctx isn't associated with any */
590 if (!cpuctx->cgrp)
591 return false;
592
593 /*
594 * Cgroup scoping is recursive. An event enabled for a cgroup is
595 * also enabled for all its descendant cgroups. If @cpuctx's
596 * cgroup is a descendant of @event's (the test covers identity
597 * case), it's a match.
598 */
599 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
600 event->cgrp->css.cgroup);
e5d1367f
SE
601}
602
e5d1367f
SE
603static inline void perf_detach_cgroup(struct perf_event *event)
604{
4e2ba650 605 css_put(&event->cgrp->css);
e5d1367f
SE
606 event->cgrp = NULL;
607}
608
609static inline int is_cgroup_event(struct perf_event *event)
610{
611 return event->cgrp != NULL;
612}
613
614static inline u64 perf_cgroup_event_time(struct perf_event *event)
615{
616 struct perf_cgroup_info *t;
617
618 t = per_cpu_ptr(event->cgrp->info, event->cpu);
619 return t->time;
620}
621
622static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
623{
624 struct perf_cgroup_info *info;
625 u64 now;
626
627 now = perf_clock();
628
629 info = this_cpu_ptr(cgrp->info);
630
631 info->time += now - info->timestamp;
632 info->timestamp = now;
633}
634
635static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
636{
637 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
638 if (cgrp_out)
639 __update_cgrp_time(cgrp_out);
640}
641
642static inline void update_cgrp_time_from_event(struct perf_event *event)
643{
3f7cce3c
SE
644 struct perf_cgroup *cgrp;
645
e5d1367f 646 /*
3f7cce3c
SE
647 * ensure we access cgroup data only when needed and
648 * when we know the cgroup is pinned (css_get)
e5d1367f 649 */
3f7cce3c 650 if (!is_cgroup_event(event))
e5d1367f
SE
651 return;
652
614e4c4e 653 cgrp = perf_cgroup_from_task(current, event->ctx);
3f7cce3c
SE
654 /*
655 * Do not update time when cgroup is not active
656 */
657 if (cgrp == event->cgrp)
658 __update_cgrp_time(event->cgrp);
e5d1367f
SE
659}
660
661static inline void
3f7cce3c
SE
662perf_cgroup_set_timestamp(struct task_struct *task,
663 struct perf_event_context *ctx)
e5d1367f
SE
664{
665 struct perf_cgroup *cgrp;
666 struct perf_cgroup_info *info;
667
3f7cce3c
SE
668 /*
669 * ctx->lock held by caller
670 * ensure we do not access cgroup data
671 * unless we have the cgroup pinned (css_get)
672 */
673 if (!task || !ctx->nr_cgroups)
e5d1367f
SE
674 return;
675
614e4c4e 676 cgrp = perf_cgroup_from_task(task, ctx);
e5d1367f 677 info = this_cpu_ptr(cgrp->info);
3f7cce3c 678 info->timestamp = ctx->timestamp;
e5d1367f
SE
679}
680
681#define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
682#define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
683
684/*
685 * reschedule events based on the cgroup constraint of task.
686 *
687 * mode SWOUT : schedule out everything
688 * mode SWIN : schedule in based on cgroup for next
689 */
18ab2cd3 690static void perf_cgroup_switch(struct task_struct *task, int mode)
e5d1367f
SE
691{
692 struct perf_cpu_context *cpuctx;
693 struct pmu *pmu;
694 unsigned long flags;
695
696 /*
697 * disable interrupts to avoid geting nr_cgroup
698 * changes via __perf_event_disable(). Also
699 * avoids preemption.
700 */
701 local_irq_save(flags);
702
703 /*
704 * we reschedule only in the presence of cgroup
705 * constrained events.
706 */
e5d1367f
SE
707
708 list_for_each_entry_rcu(pmu, &pmus, entry) {
e5d1367f 709 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
95cf59ea
PZ
710 if (cpuctx->unique_pmu != pmu)
711 continue; /* ensure we process each cpuctx once */
e5d1367f 712
e5d1367f
SE
713 /*
714 * perf_cgroup_events says at least one
715 * context on this CPU has cgroup events.
716 *
717 * ctx->nr_cgroups reports the number of cgroup
718 * events for a context.
719 */
720 if (cpuctx->ctx.nr_cgroups > 0) {
facc4307
PZ
721 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
722 perf_pmu_disable(cpuctx->ctx.pmu);
e5d1367f
SE
723
724 if (mode & PERF_CGROUP_SWOUT) {
725 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
726 /*
727 * must not be done before ctxswout due
728 * to event_filter_match() in event_sched_out()
729 */
730 cpuctx->cgrp = NULL;
731 }
732
733 if (mode & PERF_CGROUP_SWIN) {
e566b76e 734 WARN_ON_ONCE(cpuctx->cgrp);
95cf59ea
PZ
735 /*
736 * set cgrp before ctxsw in to allow
737 * event_filter_match() to not have to pass
738 * task around
614e4c4e
SE
739 * we pass the cpuctx->ctx to perf_cgroup_from_task()
740 * because cgorup events are only per-cpu
e5d1367f 741 */
614e4c4e 742 cpuctx->cgrp = perf_cgroup_from_task(task, &cpuctx->ctx);
e5d1367f
SE
743 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
744 }
facc4307
PZ
745 perf_pmu_enable(cpuctx->ctx.pmu);
746 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
e5d1367f 747 }
e5d1367f
SE
748 }
749
e5d1367f
SE
750 local_irq_restore(flags);
751}
752
a8d757ef
SE
753static inline void perf_cgroup_sched_out(struct task_struct *task,
754 struct task_struct *next)
e5d1367f 755{
a8d757ef
SE
756 struct perf_cgroup *cgrp1;
757 struct perf_cgroup *cgrp2 = NULL;
758
ddaaf4e2 759 rcu_read_lock();
a8d757ef
SE
760 /*
761 * we come here when we know perf_cgroup_events > 0
614e4c4e
SE
762 * we do not need to pass the ctx here because we know
763 * we are holding the rcu lock
a8d757ef 764 */
614e4c4e 765 cgrp1 = perf_cgroup_from_task(task, NULL);
70a01657 766 cgrp2 = perf_cgroup_from_task(next, NULL);
a8d757ef
SE
767
768 /*
769 * only schedule out current cgroup events if we know
770 * that we are switching to a different cgroup. Otherwise,
771 * do no touch the cgroup events.
772 */
773 if (cgrp1 != cgrp2)
774 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
ddaaf4e2
SE
775
776 rcu_read_unlock();
e5d1367f
SE
777}
778
a8d757ef
SE
779static inline void perf_cgroup_sched_in(struct task_struct *prev,
780 struct task_struct *task)
e5d1367f 781{
a8d757ef
SE
782 struct perf_cgroup *cgrp1;
783 struct perf_cgroup *cgrp2 = NULL;
784
ddaaf4e2 785 rcu_read_lock();
a8d757ef
SE
786 /*
787 * we come here when we know perf_cgroup_events > 0
614e4c4e
SE
788 * we do not need to pass the ctx here because we know
789 * we are holding the rcu lock
a8d757ef 790 */
614e4c4e 791 cgrp1 = perf_cgroup_from_task(task, NULL);
614e4c4e 792 cgrp2 = perf_cgroup_from_task(prev, NULL);
a8d757ef
SE
793
794 /*
795 * only need to schedule in cgroup events if we are changing
796 * cgroup during ctxsw. Cgroup events were not scheduled
797 * out of ctxsw out if that was not the case.
798 */
799 if (cgrp1 != cgrp2)
800 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
ddaaf4e2
SE
801
802 rcu_read_unlock();
e5d1367f
SE
803}
804
805static inline int perf_cgroup_connect(int fd, struct perf_event *event,
806 struct perf_event_attr *attr,
807 struct perf_event *group_leader)
808{
809 struct perf_cgroup *cgrp;
810 struct cgroup_subsys_state *css;
2903ff01
AV
811 struct fd f = fdget(fd);
812 int ret = 0;
e5d1367f 813
2903ff01 814 if (!f.file)
e5d1367f
SE
815 return -EBADF;
816
b583043e 817 css = css_tryget_online_from_dir(f.file->f_path.dentry,
ec903c0c 818 &perf_event_cgrp_subsys);
3db272c0
LZ
819 if (IS_ERR(css)) {
820 ret = PTR_ERR(css);
821 goto out;
822 }
e5d1367f
SE
823
824 cgrp = container_of(css, struct perf_cgroup, css);
825 event->cgrp = cgrp;
826
827 /*
828 * all events in a group must monitor
829 * the same cgroup because a task belongs
830 * to only one perf cgroup at a time
831 */
832 if (group_leader && group_leader->cgrp != cgrp) {
833 perf_detach_cgroup(event);
834 ret = -EINVAL;
e5d1367f 835 }
3db272c0 836out:
2903ff01 837 fdput(f);
e5d1367f
SE
838 return ret;
839}
840
841static inline void
842perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
843{
844 struct perf_cgroup_info *t;
845 t = per_cpu_ptr(event->cgrp->info, event->cpu);
846 event->shadow_ctx_time = now - t->timestamp;
847}
848
849static inline void
850perf_cgroup_defer_enabled(struct perf_event *event)
851{
852 /*
853 * when the current task's perf cgroup does not match
854 * the event's, we need to remember to call the
855 * perf_mark_enable() function the first time a task with
856 * a matching perf cgroup is scheduled in.
857 */
858 if (is_cgroup_event(event) && !perf_cgroup_match(event))
859 event->cgrp_defer_enabled = 1;
860}
861
862static inline void
863perf_cgroup_mark_enabled(struct perf_event *event,
864 struct perf_event_context *ctx)
865{
866 struct perf_event *sub;
867 u64 tstamp = perf_event_time(event);
868
869 if (!event->cgrp_defer_enabled)
870 return;
871
872 event->cgrp_defer_enabled = 0;
873
874 event->tstamp_enabled = tstamp - event->total_time_enabled;
875 list_for_each_entry(sub, &event->sibling_list, group_entry) {
876 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
877 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
878 sub->cgrp_defer_enabled = 0;
879 }
880 }
881}
db4a8356
DCC
882
883/*
884 * Update cpuctx->cgrp so that it is set when first cgroup event is added and
885 * cleared when last cgroup event is removed.
886 */
887static inline void
888list_update_cgroup_event(struct perf_event *event,
889 struct perf_event_context *ctx, bool add)
890{
891 struct perf_cpu_context *cpuctx;
892
893 if (!is_cgroup_event(event))
894 return;
895
896 if (add && ctx->nr_cgroups++)
897 return;
898 else if (!add && --ctx->nr_cgroups)
899 return;
900 /*
901 * Because cgroup events are always per-cpu events,
902 * this will always be called from the right CPU.
903 */
904 cpuctx = __get_cpu_context(ctx);
905 cpuctx->cgrp = add ? event->cgrp : NULL;
906}
907
e5d1367f
SE
908#else /* !CONFIG_CGROUP_PERF */
909
910static inline bool
911perf_cgroup_match(struct perf_event *event)
912{
913 return true;
914}
915
916static inline void perf_detach_cgroup(struct perf_event *event)
917{}
918
919static inline int is_cgroup_event(struct perf_event *event)
920{
921 return 0;
922}
923
924static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
925{
926 return 0;
927}
928
929static inline void update_cgrp_time_from_event(struct perf_event *event)
930{
931}
932
933static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
934{
935}
936
a8d757ef
SE
937static inline void perf_cgroup_sched_out(struct task_struct *task,
938 struct task_struct *next)
e5d1367f
SE
939{
940}
941
a8d757ef
SE
942static inline void perf_cgroup_sched_in(struct task_struct *prev,
943 struct task_struct *task)
e5d1367f
SE
944{
945}
946
947static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
948 struct perf_event_attr *attr,
949 struct perf_event *group_leader)
950{
951 return -EINVAL;
952}
953
954static inline void
3f7cce3c
SE
955perf_cgroup_set_timestamp(struct task_struct *task,
956 struct perf_event_context *ctx)
e5d1367f
SE
957{
958}
959
960void
961perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
962{
963}
964
965static inline void
966perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
967{
968}
969
970static inline u64 perf_cgroup_event_time(struct perf_event *event)
971{
972 return 0;
973}
974
975static inline void
976perf_cgroup_defer_enabled(struct perf_event *event)
977{
978}
979
980static inline void
981perf_cgroup_mark_enabled(struct perf_event *event,
982 struct perf_event_context *ctx)
983{
984}
db4a8356
DCC
985
986static inline void
987list_update_cgroup_event(struct perf_event *event,
988 struct perf_event_context *ctx, bool add)
989{
990}
991
e5d1367f
SE
992#endif
993
9e630205
SE
994/*
995 * set default to be dependent on timer tick just
996 * like original code
997 */
998#define PERF_CPU_HRTIMER (1000 / HZ)
999/*
1000 * function must be called with interrupts disbled
1001 */
272325c4 1002static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
9e630205
SE
1003{
1004 struct perf_cpu_context *cpuctx;
9e630205
SE
1005 int rotations = 0;
1006
1007 WARN_ON(!irqs_disabled());
1008
1009 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
9e630205
SE
1010 rotations = perf_rotate_context(cpuctx);
1011
4cfafd30
PZ
1012 raw_spin_lock(&cpuctx->hrtimer_lock);
1013 if (rotations)
9e630205 1014 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
4cfafd30
PZ
1015 else
1016 cpuctx->hrtimer_active = 0;
1017 raw_spin_unlock(&cpuctx->hrtimer_lock);
9e630205 1018
4cfafd30 1019 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
9e630205
SE
1020}
1021
272325c4 1022static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
9e630205 1023{
272325c4 1024 struct hrtimer *timer = &cpuctx->hrtimer;
9e630205 1025 struct pmu *pmu = cpuctx->ctx.pmu;
272325c4 1026 u64 interval;
9e630205
SE
1027
1028 /* no multiplexing needed for SW PMU */
1029 if (pmu->task_ctx_nr == perf_sw_context)
1030 return;
1031
62b85639
SE
1032 /*
1033 * check default is sane, if not set then force to
1034 * default interval (1/tick)
1035 */
272325c4
PZ
1036 interval = pmu->hrtimer_interval_ms;
1037 if (interval < 1)
1038 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
62b85639 1039
272325c4 1040 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
9e630205 1041
4cfafd30
PZ
1042 raw_spin_lock_init(&cpuctx->hrtimer_lock);
1043 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
272325c4 1044 timer->function = perf_mux_hrtimer_handler;
9e630205
SE
1045}
1046
272325c4 1047static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
9e630205 1048{
272325c4 1049 struct hrtimer *timer = &cpuctx->hrtimer;
9e630205 1050 struct pmu *pmu = cpuctx->ctx.pmu;
4cfafd30 1051 unsigned long flags;
9e630205
SE
1052
1053 /* not for SW PMU */
1054 if (pmu->task_ctx_nr == perf_sw_context)
272325c4 1055 return 0;
9e630205 1056
4cfafd30
PZ
1057 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1058 if (!cpuctx->hrtimer_active) {
1059 cpuctx->hrtimer_active = 1;
1060 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1061 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
1062 }
1063 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
9e630205 1064
272325c4 1065 return 0;
9e630205
SE
1066}
1067
33696fc0 1068void perf_pmu_disable(struct pmu *pmu)
9e35ad38 1069{
33696fc0
PZ
1070 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1071 if (!(*count)++)
1072 pmu->pmu_disable(pmu);
9e35ad38 1073}
9e35ad38 1074
33696fc0 1075void perf_pmu_enable(struct pmu *pmu)
9e35ad38 1076{
33696fc0
PZ
1077 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1078 if (!--(*count))
1079 pmu->pmu_enable(pmu);
9e35ad38 1080}
9e35ad38 1081
2fde4f94 1082static DEFINE_PER_CPU(struct list_head, active_ctx_list);
e9d2b064
PZ
1083
1084/*
2fde4f94
MR
1085 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1086 * perf_event_task_tick() are fully serialized because they're strictly cpu
1087 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1088 * disabled, while perf_event_task_tick is called from IRQ context.
e9d2b064 1089 */
2fde4f94 1090static void perf_event_ctx_activate(struct perf_event_context *ctx)
9e35ad38 1091{
2fde4f94 1092 struct list_head *head = this_cpu_ptr(&active_ctx_list);
b5ab4cd5 1093
e9d2b064 1094 WARN_ON(!irqs_disabled());
b5ab4cd5 1095
2fde4f94
MR
1096 WARN_ON(!list_empty(&ctx->active_ctx_list));
1097
1098 list_add(&ctx->active_ctx_list, head);
1099}
1100
1101static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1102{
1103 WARN_ON(!irqs_disabled());
1104
1105 WARN_ON(list_empty(&ctx->active_ctx_list));
1106
1107 list_del_init(&ctx->active_ctx_list);
9e35ad38 1108}
9e35ad38 1109
cdd6c482 1110static void get_ctx(struct perf_event_context *ctx)
a63eaf34 1111{
e5289d4a 1112 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
a63eaf34
PM
1113}
1114
4af57ef2
YZ
1115static void free_ctx(struct rcu_head *head)
1116{
1117 struct perf_event_context *ctx;
1118
1119 ctx = container_of(head, struct perf_event_context, rcu_head);
1120 kfree(ctx->task_ctx_data);
1121 kfree(ctx);
1122}
1123
cdd6c482 1124static void put_ctx(struct perf_event_context *ctx)
a63eaf34 1125{
564c2b21
PM
1126 if (atomic_dec_and_test(&ctx->refcount)) {
1127 if (ctx->parent_ctx)
1128 put_ctx(ctx->parent_ctx);
63b6da39 1129 if (ctx->task && ctx->task != TASK_TOMBSTONE)
c93f7669 1130 put_task_struct(ctx->task);
4af57ef2 1131 call_rcu(&ctx->rcu_head, free_ctx);
564c2b21 1132 }
a63eaf34
PM
1133}
1134
f63a8daa
PZ
1135/*
1136 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1137 * perf_pmu_migrate_context() we need some magic.
1138 *
1139 * Those places that change perf_event::ctx will hold both
1140 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1141 *
8b10c5e2
PZ
1142 * Lock ordering is by mutex address. There are two other sites where
1143 * perf_event_context::mutex nests and those are:
1144 *
1145 * - perf_event_exit_task_context() [ child , 0 ]
8ba289b8
PZ
1146 * perf_event_exit_event()
1147 * put_event() [ parent, 1 ]
8b10c5e2
PZ
1148 *
1149 * - perf_event_init_context() [ parent, 0 ]
1150 * inherit_task_group()
1151 * inherit_group()
1152 * inherit_event()
1153 * perf_event_alloc()
1154 * perf_init_event()
1155 * perf_try_init_event() [ child , 1 ]
1156 *
1157 * While it appears there is an obvious deadlock here -- the parent and child
1158 * nesting levels are inverted between the two. This is in fact safe because
1159 * life-time rules separate them. That is an exiting task cannot fork, and a
1160 * spawning task cannot (yet) exit.
1161 *
1162 * But remember that that these are parent<->child context relations, and
1163 * migration does not affect children, therefore these two orderings should not
1164 * interact.
f63a8daa
PZ
1165 *
1166 * The change in perf_event::ctx does not affect children (as claimed above)
1167 * because the sys_perf_event_open() case will install a new event and break
1168 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1169 * concerned with cpuctx and that doesn't have children.
1170 *
1171 * The places that change perf_event::ctx will issue:
1172 *
1173 * perf_remove_from_context();
1174 * synchronize_rcu();
1175 * perf_install_in_context();
1176 *
1177 * to affect the change. The remove_from_context() + synchronize_rcu() should
1178 * quiesce the event, after which we can install it in the new location. This
1179 * means that only external vectors (perf_fops, prctl) can perturb the event
1180 * while in transit. Therefore all such accessors should also acquire
1181 * perf_event_context::mutex to serialize against this.
1182 *
1183 * However; because event->ctx can change while we're waiting to acquire
1184 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1185 * function.
1186 *
1187 * Lock order:
79c9ce57 1188 * cred_guard_mutex
f63a8daa
PZ
1189 * task_struct::perf_event_mutex
1190 * perf_event_context::mutex
f63a8daa 1191 * perf_event::child_mutex;
07c4a776 1192 * perf_event_context::lock
f63a8daa
PZ
1193 * perf_event::mmap_mutex
1194 * mmap_sem
1195 */
a83fe28e
PZ
1196static struct perf_event_context *
1197perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
f63a8daa
PZ
1198{
1199 struct perf_event_context *ctx;
1200
1201again:
1202 rcu_read_lock();
1203 ctx = ACCESS_ONCE(event->ctx);
1204 if (!atomic_inc_not_zero(&ctx->refcount)) {
1205 rcu_read_unlock();
1206 goto again;
1207 }
1208 rcu_read_unlock();
1209
a83fe28e 1210 mutex_lock_nested(&ctx->mutex, nesting);
f63a8daa
PZ
1211 if (event->ctx != ctx) {
1212 mutex_unlock(&ctx->mutex);
1213 put_ctx(ctx);
1214 goto again;
1215 }
1216
1217 return ctx;
1218}
1219
a83fe28e
PZ
1220static inline struct perf_event_context *
1221perf_event_ctx_lock(struct perf_event *event)
1222{
1223 return perf_event_ctx_lock_nested(event, 0);
1224}
1225
f63a8daa
PZ
1226static void perf_event_ctx_unlock(struct perf_event *event,
1227 struct perf_event_context *ctx)
1228{
1229 mutex_unlock(&ctx->mutex);
1230 put_ctx(ctx);
1231}
1232
211de6eb
PZ
1233/*
1234 * This must be done under the ctx->lock, such as to serialize against
1235 * context_equiv(), therefore we cannot call put_ctx() since that might end up
1236 * calling scheduler related locks and ctx->lock nests inside those.
1237 */
1238static __must_check struct perf_event_context *
1239unclone_ctx(struct perf_event_context *ctx)
71a851b4 1240{
211de6eb
PZ
1241 struct perf_event_context *parent_ctx = ctx->parent_ctx;
1242
1243 lockdep_assert_held(&ctx->lock);
1244
1245 if (parent_ctx)
71a851b4 1246 ctx->parent_ctx = NULL;
5a3126d4 1247 ctx->generation++;
211de6eb
PZ
1248
1249 return parent_ctx;
71a851b4
PZ
1250}
1251
6844c09d
ACM
1252static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1253{
1254 /*
1255 * only top level events have the pid namespace they were created in
1256 */
1257 if (event->parent)
1258 event = event->parent;
1259
1260 return task_tgid_nr_ns(p, event->ns);
1261}
1262
1263static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1264{
1265 /*
1266 * only top level events have the pid namespace they were created in
1267 */
1268 if (event->parent)
1269 event = event->parent;
1270
1271 return task_pid_nr_ns(p, event->ns);
1272}
1273
7f453c24 1274/*
cdd6c482 1275 * If we inherit events we want to return the parent event id
7f453c24
PZ
1276 * to userspace.
1277 */
cdd6c482 1278static u64 primary_event_id(struct perf_event *event)
7f453c24 1279{
cdd6c482 1280 u64 id = event->id;
7f453c24 1281
cdd6c482
IM
1282 if (event->parent)
1283 id = event->parent->id;
7f453c24
PZ
1284
1285 return id;
1286}
1287
25346b93 1288/*
cdd6c482 1289 * Get the perf_event_context for a task and lock it.
63b6da39 1290 *
25346b93
PM
1291 * This has to cope with with the fact that until it is locked,
1292 * the context could get moved to another task.
1293 */
cdd6c482 1294static struct perf_event_context *
8dc85d54 1295perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
25346b93 1296{
cdd6c482 1297 struct perf_event_context *ctx;
25346b93 1298
9ed6060d 1299retry:
058ebd0e
PZ
1300 /*
1301 * One of the few rules of preemptible RCU is that one cannot do
1302 * rcu_read_unlock() while holding a scheduler (or nested) lock when
2fd59077 1303 * part of the read side critical section was irqs-enabled -- see
058ebd0e
PZ
1304 * rcu_read_unlock_special().
1305 *
1306 * Since ctx->lock nests under rq->lock we must ensure the entire read
2fd59077 1307 * side critical section has interrupts disabled.
058ebd0e 1308 */
2fd59077 1309 local_irq_save(*flags);
058ebd0e 1310 rcu_read_lock();
8dc85d54 1311 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
25346b93
PM
1312 if (ctx) {
1313 /*
1314 * If this context is a clone of another, it might
1315 * get swapped for another underneath us by
cdd6c482 1316 * perf_event_task_sched_out, though the
25346b93
PM
1317 * rcu_read_lock() protects us from any context
1318 * getting freed. Lock the context and check if it
1319 * got swapped before we could get the lock, and retry
1320 * if so. If we locked the right context, then it
1321 * can't get swapped on us any more.
1322 */
2fd59077 1323 raw_spin_lock(&ctx->lock);
8dc85d54 1324 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
2fd59077 1325 raw_spin_unlock(&ctx->lock);
058ebd0e 1326 rcu_read_unlock();
2fd59077 1327 local_irq_restore(*flags);
25346b93
PM
1328 goto retry;
1329 }
b49a9e7e 1330
63b6da39
PZ
1331 if (ctx->task == TASK_TOMBSTONE ||
1332 !atomic_inc_not_zero(&ctx->refcount)) {
2fd59077 1333 raw_spin_unlock(&ctx->lock);
b49a9e7e 1334 ctx = NULL;
828b6f0e
PZ
1335 } else {
1336 WARN_ON_ONCE(ctx->task != task);
b49a9e7e 1337 }
25346b93
PM
1338 }
1339 rcu_read_unlock();
2fd59077
PM
1340 if (!ctx)
1341 local_irq_restore(*flags);
25346b93
PM
1342 return ctx;
1343}
1344
1345/*
1346 * Get the context for a task and increment its pin_count so it
1347 * can't get swapped to another task. This also increments its
1348 * reference count so that the context can't get freed.
1349 */
8dc85d54
PZ
1350static struct perf_event_context *
1351perf_pin_task_context(struct task_struct *task, int ctxn)
25346b93 1352{
cdd6c482 1353 struct perf_event_context *ctx;
25346b93
PM
1354 unsigned long flags;
1355
8dc85d54 1356 ctx = perf_lock_task_context(task, ctxn, &flags);
25346b93
PM
1357 if (ctx) {
1358 ++ctx->pin_count;
e625cce1 1359 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1360 }
1361 return ctx;
1362}
1363
cdd6c482 1364static void perf_unpin_context(struct perf_event_context *ctx)
25346b93
PM
1365{
1366 unsigned long flags;
1367
e625cce1 1368 raw_spin_lock_irqsave(&ctx->lock, flags);
25346b93 1369 --ctx->pin_count;
e625cce1 1370 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1371}
1372
f67218c3
PZ
1373/*
1374 * Update the record of the current time in a context.
1375 */
1376static void update_context_time(struct perf_event_context *ctx)
1377{
1378 u64 now = perf_clock();
1379
1380 ctx->time += now - ctx->timestamp;
1381 ctx->timestamp = now;
1382}
1383
4158755d
SE
1384static u64 perf_event_time(struct perf_event *event)
1385{
1386 struct perf_event_context *ctx = event->ctx;
e5d1367f
SE
1387
1388 if (is_cgroup_event(event))
1389 return perf_cgroup_event_time(event);
1390
4158755d
SE
1391 return ctx ? ctx->time : 0;
1392}
1393
f67218c3
PZ
1394/*
1395 * Update the total_time_enabled and total_time_running fields for a event.
1396 */
1397static void update_event_times(struct perf_event *event)
1398{
1399 struct perf_event_context *ctx = event->ctx;
1400 u64 run_end;
1401
3cbaa590
PZ
1402 lockdep_assert_held(&ctx->lock);
1403
f67218c3
PZ
1404 if (event->state < PERF_EVENT_STATE_INACTIVE ||
1405 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1406 return;
3cbaa590 1407
e5d1367f
SE
1408 /*
1409 * in cgroup mode, time_enabled represents
1410 * the time the event was enabled AND active
1411 * tasks were in the monitored cgroup. This is
1412 * independent of the activity of the context as
1413 * there may be a mix of cgroup and non-cgroup events.
1414 *
1415 * That is why we treat cgroup events differently
1416 * here.
1417 */
1418 if (is_cgroup_event(event))
46cd6a7f 1419 run_end = perf_cgroup_event_time(event);
e5d1367f
SE
1420 else if (ctx->is_active)
1421 run_end = ctx->time;
acd1d7c1
PZ
1422 else
1423 run_end = event->tstamp_stopped;
1424
1425 event->total_time_enabled = run_end - event->tstamp_enabled;
f67218c3
PZ
1426
1427 if (event->state == PERF_EVENT_STATE_INACTIVE)
1428 run_end = event->tstamp_stopped;
1429 else
4158755d 1430 run_end = perf_event_time(event);
f67218c3
PZ
1431
1432 event->total_time_running = run_end - event->tstamp_running;
e5d1367f 1433
f67218c3
PZ
1434}
1435
96c21a46
PZ
1436/*
1437 * Update total_time_enabled and total_time_running for all events in a group.
1438 */
1439static void update_group_times(struct perf_event *leader)
1440{
1441 struct perf_event *event;
1442
1443 update_event_times(leader);
1444 list_for_each_entry(event, &leader->sibling_list, group_entry)
1445 update_event_times(event);
1446}
1447
889ff015
FW
1448static struct list_head *
1449ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1450{
1451 if (event->attr.pinned)
1452 return &ctx->pinned_groups;
1453 else
1454 return &ctx->flexible_groups;
1455}
1456
fccc714b 1457/*
cdd6c482 1458 * Add a event from the lists for its context.
fccc714b
PZ
1459 * Must be called with ctx->mutex and ctx->lock held.
1460 */
04289bb9 1461static void
cdd6c482 1462list_add_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1463{
db4a8356 1464
c994d613
PZ
1465 lockdep_assert_held(&ctx->lock);
1466
8a49542c
PZ
1467 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1468 event->attach_state |= PERF_ATTACH_CONTEXT;
04289bb9
IM
1469
1470 /*
8a49542c
PZ
1471 * If we're a stand alone event or group leader, we go to the context
1472 * list, group events are kept attached to the group so that
1473 * perf_group_detach can, at all times, locate all siblings.
04289bb9 1474 */
8a49542c 1475 if (event->group_leader == event) {
889ff015
FW
1476 struct list_head *list;
1477
d6f962b5
FW
1478 if (is_software_event(event))
1479 event->group_flags |= PERF_GROUP_SOFTWARE;
1480
889ff015
FW
1481 list = ctx_group_list(event, ctx);
1482 list_add_tail(&event->group_entry, list);
5c148194 1483 }
592903cd 1484
db4a8356 1485 list_update_cgroup_event(event, ctx, true);
e5d1367f 1486
cdd6c482
IM
1487 list_add_rcu(&event->event_entry, &ctx->event_list);
1488 ctx->nr_events++;
1489 if (event->attr.inherit_stat)
bfbd3381 1490 ctx->nr_stat++;
5a3126d4
PZ
1491
1492 ctx->generation++;
04289bb9
IM
1493}
1494
0231bb53
JO
1495/*
1496 * Initialize event state based on the perf_event_attr::disabled.
1497 */
1498static inline void perf_event__state_init(struct perf_event *event)
1499{
1500 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1501 PERF_EVENT_STATE_INACTIVE;
1502}
1503
a723968c 1504static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
c320c7b7
ACM
1505{
1506 int entry = sizeof(u64); /* value */
1507 int size = 0;
1508 int nr = 1;
1509
1510 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1511 size += sizeof(u64);
1512
1513 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1514 size += sizeof(u64);
1515
1516 if (event->attr.read_format & PERF_FORMAT_ID)
1517 entry += sizeof(u64);
1518
1519 if (event->attr.read_format & PERF_FORMAT_GROUP) {
a723968c 1520 nr += nr_siblings;
c320c7b7
ACM
1521 size += sizeof(u64);
1522 }
1523
1524 size += entry * nr;
1525 event->read_size = size;
1526}
1527
a723968c 1528static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
c320c7b7
ACM
1529{
1530 struct perf_sample_data *data;
c320c7b7
ACM
1531 u16 size = 0;
1532
c320c7b7
ACM
1533 if (sample_type & PERF_SAMPLE_IP)
1534 size += sizeof(data->ip);
1535
6844c09d
ACM
1536 if (sample_type & PERF_SAMPLE_ADDR)
1537 size += sizeof(data->addr);
1538
1539 if (sample_type & PERF_SAMPLE_PERIOD)
1540 size += sizeof(data->period);
1541
c3feedf2
AK
1542 if (sample_type & PERF_SAMPLE_WEIGHT)
1543 size += sizeof(data->weight);
1544
6844c09d
ACM
1545 if (sample_type & PERF_SAMPLE_READ)
1546 size += event->read_size;
1547
d6be9ad6
SE
1548 if (sample_type & PERF_SAMPLE_DATA_SRC)
1549 size += sizeof(data->data_src.val);
1550
fdfbbd07
AK
1551 if (sample_type & PERF_SAMPLE_TRANSACTION)
1552 size += sizeof(data->txn);
1553
6844c09d
ACM
1554 event->header_size = size;
1555}
1556
a723968c
PZ
1557/*
1558 * Called at perf_event creation and when events are attached/detached from a
1559 * group.
1560 */
1561static void perf_event__header_size(struct perf_event *event)
1562{
1563 __perf_event_read_size(event,
1564 event->group_leader->nr_siblings);
1565 __perf_event_header_size(event, event->attr.sample_type);
1566}
1567
6844c09d
ACM
1568static void perf_event__id_header_size(struct perf_event *event)
1569{
1570 struct perf_sample_data *data;
1571 u64 sample_type = event->attr.sample_type;
1572 u16 size = 0;
1573
c320c7b7
ACM
1574 if (sample_type & PERF_SAMPLE_TID)
1575 size += sizeof(data->tid_entry);
1576
1577 if (sample_type & PERF_SAMPLE_TIME)
1578 size += sizeof(data->time);
1579
ff3d527c
AH
1580 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1581 size += sizeof(data->id);
1582
c320c7b7
ACM
1583 if (sample_type & PERF_SAMPLE_ID)
1584 size += sizeof(data->id);
1585
1586 if (sample_type & PERF_SAMPLE_STREAM_ID)
1587 size += sizeof(data->stream_id);
1588
1589 if (sample_type & PERF_SAMPLE_CPU)
1590 size += sizeof(data->cpu_entry);
1591
6844c09d 1592 event->id_header_size = size;
c320c7b7
ACM
1593}
1594
a723968c
PZ
1595static bool perf_event_validate_size(struct perf_event *event)
1596{
1597 /*
1598 * The values computed here will be over-written when we actually
1599 * attach the event.
1600 */
1601 __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1602 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1603 perf_event__id_header_size(event);
1604
1605 /*
1606 * Sum the lot; should not exceed the 64k limit we have on records.
1607 * Conservative limit to allow for callchains and other variable fields.
1608 */
1609 if (event->read_size + event->header_size +
1610 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1611 return false;
1612
1613 return true;
1614}
1615
8a49542c
PZ
1616static void perf_group_attach(struct perf_event *event)
1617{
c320c7b7 1618 struct perf_event *group_leader = event->group_leader, *pos;
8a49542c 1619
74c3337c
PZ
1620 /*
1621 * We can have double attach due to group movement in perf_event_open.
1622 */
1623 if (event->attach_state & PERF_ATTACH_GROUP)
1624 return;
1625
8a49542c
PZ
1626 event->attach_state |= PERF_ATTACH_GROUP;
1627
1628 if (group_leader == event)
1629 return;
1630
652884fe
PZ
1631 WARN_ON_ONCE(group_leader->ctx != event->ctx);
1632
8a49542c
PZ
1633 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1634 !is_software_event(event))
1635 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1636
1637 list_add_tail(&event->group_entry, &group_leader->sibling_list);
1638 group_leader->nr_siblings++;
c320c7b7
ACM
1639
1640 perf_event__header_size(group_leader);
1641
1642 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1643 perf_event__header_size(pos);
8a49542c
PZ
1644}
1645
a63eaf34 1646/*
cdd6c482 1647 * Remove a event from the lists for its context.
fccc714b 1648 * Must be called with ctx->mutex and ctx->lock held.
a63eaf34 1649 */
04289bb9 1650static void
cdd6c482 1651list_del_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1652{
652884fe
PZ
1653 WARN_ON_ONCE(event->ctx != ctx);
1654 lockdep_assert_held(&ctx->lock);
1655
8a49542c
PZ
1656 /*
1657 * We can have double detach due to exit/hot-unplug + close.
1658 */
1659 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
a63eaf34 1660 return;
8a49542c
PZ
1661
1662 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1663
db4a8356 1664 list_update_cgroup_event(event, ctx, false);
e5d1367f 1665
cdd6c482
IM
1666 ctx->nr_events--;
1667 if (event->attr.inherit_stat)
bfbd3381 1668 ctx->nr_stat--;
8bc20959 1669
cdd6c482 1670 list_del_rcu(&event->event_entry);
04289bb9 1671
8a49542c
PZ
1672 if (event->group_leader == event)
1673 list_del_init(&event->group_entry);
5c148194 1674
96c21a46 1675 update_group_times(event);
b2e74a26
SE
1676
1677 /*
1678 * If event was in error state, then keep it
1679 * that way, otherwise bogus counts will be
1680 * returned on read(). The only way to get out
1681 * of error state is by explicit re-enabling
1682 * of the event
1683 */
1684 if (event->state > PERF_EVENT_STATE_OFF)
1685 event->state = PERF_EVENT_STATE_OFF;
5a3126d4
PZ
1686
1687 ctx->generation++;
050735b0
PZ
1688}
1689
8a49542c 1690static void perf_group_detach(struct perf_event *event)
050735b0
PZ
1691{
1692 struct perf_event *sibling, *tmp;
8a49542c
PZ
1693 struct list_head *list = NULL;
1694
1695 /*
1696 * We can have double detach due to exit/hot-unplug + close.
1697 */
1698 if (!(event->attach_state & PERF_ATTACH_GROUP))
1699 return;
1700
1701 event->attach_state &= ~PERF_ATTACH_GROUP;
1702
1703 /*
1704 * If this is a sibling, remove it from its group.
1705 */
1706 if (event->group_leader != event) {
1707 list_del_init(&event->group_entry);
1708 event->group_leader->nr_siblings--;
c320c7b7 1709 goto out;
8a49542c
PZ
1710 }
1711
1712 if (!list_empty(&event->group_entry))
1713 list = &event->group_entry;
2e2af50b 1714
04289bb9 1715 /*
cdd6c482
IM
1716 * If this was a group event with sibling events then
1717 * upgrade the siblings to singleton events by adding them
8a49542c 1718 * to whatever list we are on.
04289bb9 1719 */
cdd6c482 1720 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
8a49542c
PZ
1721 if (list)
1722 list_move_tail(&sibling->group_entry, list);
04289bb9 1723 sibling->group_leader = sibling;
d6f962b5
FW
1724
1725 /* Inherit group flags from the previous leader */
1726 sibling->group_flags = event->group_flags;
652884fe
PZ
1727
1728 WARN_ON_ONCE(sibling->ctx != event->ctx);
04289bb9 1729 }
c320c7b7
ACM
1730
1731out:
1732 perf_event__header_size(event->group_leader);
1733
1734 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1735 perf_event__header_size(tmp);
04289bb9
IM
1736}
1737
fadfe7be
JO
1738static bool is_orphaned_event(struct perf_event *event)
1739{
a69b0ca4 1740 return event->state == PERF_EVENT_STATE_DEAD;
fadfe7be
JO
1741}
1742
2c81a647 1743static inline int __pmu_filter_match(struct perf_event *event)
66eb579e
MR
1744{
1745 struct pmu *pmu = event->pmu;
1746 return pmu->filter_match ? pmu->filter_match(event) : 1;
1747}
1748
2c81a647
MR
1749/*
1750 * Check whether we should attempt to schedule an event group based on
1751 * PMU-specific filtering. An event group can consist of HW and SW events,
1752 * potentially with a SW leader, so we must check all the filters, to
1753 * determine whether a group is schedulable:
1754 */
1755static inline int pmu_filter_match(struct perf_event *event)
1756{
1757 struct perf_event *child;
1758
1759 if (!__pmu_filter_match(event))
1760 return 0;
1761
1762 list_for_each_entry(child, &event->sibling_list, group_entry) {
1763 if (!__pmu_filter_match(child))
1764 return 0;
1765 }
1766
1767 return 1;
1768}
1769
fa66f07a
SE
1770static inline int
1771event_filter_match(struct perf_event *event)
1772{
0b8f1e2e
PZ
1773 return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
1774 perf_cgroup_match(event) && pmu_filter_match(event);
fa66f07a
SE
1775}
1776
9ffcfa6f
SE
1777static void
1778event_sched_out(struct perf_event *event,
3b6f9e5c 1779 struct perf_cpu_context *cpuctx,
cdd6c482 1780 struct perf_event_context *ctx)
3b6f9e5c 1781{
4158755d 1782 u64 tstamp = perf_event_time(event);
fa66f07a 1783 u64 delta;
652884fe
PZ
1784
1785 WARN_ON_ONCE(event->ctx != ctx);
1786 lockdep_assert_held(&ctx->lock);
1787
fa66f07a
SE
1788 /*
1789 * An event which could not be activated because of
1790 * filter mismatch still needs to have its timings
1791 * maintained, otherwise bogus information is return
1792 * via read() for time_enabled, time_running:
1793 */
0b8f1e2e
PZ
1794 if (event->state == PERF_EVENT_STATE_INACTIVE &&
1795 !event_filter_match(event)) {
e5d1367f 1796 delta = tstamp - event->tstamp_stopped;
fa66f07a 1797 event->tstamp_running += delta;
4158755d 1798 event->tstamp_stopped = tstamp;
fa66f07a
SE
1799 }
1800
cdd6c482 1801 if (event->state != PERF_EVENT_STATE_ACTIVE)
9ffcfa6f 1802 return;
3b6f9e5c 1803
44377277
AS
1804 perf_pmu_disable(event->pmu);
1805
28a967c3
PZ
1806 event->tstamp_stopped = tstamp;
1807 event->pmu->del(event, 0);
1808 event->oncpu = -1;
cdd6c482
IM
1809 event->state = PERF_EVENT_STATE_INACTIVE;
1810 if (event->pending_disable) {
1811 event->pending_disable = 0;
1812 event->state = PERF_EVENT_STATE_OFF;
970892a9 1813 }
3b6f9e5c 1814
cdd6c482 1815 if (!is_software_event(event))
3b6f9e5c 1816 cpuctx->active_oncpu--;
2fde4f94
MR
1817 if (!--ctx->nr_active)
1818 perf_event_ctx_deactivate(ctx);
0f5a2601
PZ
1819 if (event->attr.freq && event->attr.sample_freq)
1820 ctx->nr_freq--;
cdd6c482 1821 if (event->attr.exclusive || !cpuctx->active_oncpu)
3b6f9e5c 1822 cpuctx->exclusive = 0;
44377277
AS
1823
1824 perf_pmu_enable(event->pmu);
3b6f9e5c
PM
1825}
1826
d859e29f 1827static void
cdd6c482 1828group_sched_out(struct perf_event *group_event,
d859e29f 1829 struct perf_cpu_context *cpuctx,
cdd6c482 1830 struct perf_event_context *ctx)
d859e29f 1831{
cdd6c482 1832 struct perf_event *event;
fa66f07a 1833 int state = group_event->state;
d859e29f 1834
cdd6c482 1835 event_sched_out(group_event, cpuctx, ctx);
d859e29f
PM
1836
1837 /*
1838 * Schedule out siblings (if any):
1839 */
cdd6c482
IM
1840 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1841 event_sched_out(event, cpuctx, ctx);
d859e29f 1842
fa66f07a 1843 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
d859e29f
PM
1844 cpuctx->exclusive = 0;
1845}
1846
45a0e07a 1847#define DETACH_GROUP 0x01UL
0017960f 1848
0793a61d 1849/*
cdd6c482 1850 * Cross CPU call to remove a performance event
0793a61d 1851 *
cdd6c482 1852 * We disable the event on the hardware level first. After that we
0793a61d
TG
1853 * remove it from the context list.
1854 */
fae3fde6
PZ
1855static void
1856__perf_remove_from_context(struct perf_event *event,
1857 struct perf_cpu_context *cpuctx,
1858 struct perf_event_context *ctx,
1859 void *info)
0793a61d 1860{
45a0e07a 1861 unsigned long flags = (unsigned long)info;
0793a61d 1862
cdd6c482 1863 event_sched_out(event, cpuctx, ctx);
45a0e07a 1864 if (flags & DETACH_GROUP)
46ce0fe9 1865 perf_group_detach(event);
cdd6c482 1866 list_del_event(event, ctx);
39a43640
PZ
1867
1868 if (!ctx->nr_events && ctx->is_active) {
64ce3126 1869 ctx->is_active = 0;
39a43640
PZ
1870 if (ctx->task) {
1871 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
1872 cpuctx->task_ctx = NULL;
1873 }
64ce3126 1874 }
0793a61d
TG
1875}
1876
0793a61d 1877/*
cdd6c482 1878 * Remove the event from a task's (or a CPU's) list of events.
0793a61d 1879 *
cdd6c482
IM
1880 * If event->ctx is a cloned context, callers must make sure that
1881 * every task struct that event->ctx->task could possibly point to
c93f7669
PM
1882 * remains valid. This is OK when called from perf_release since
1883 * that only calls us on the top-level context, which can't be a clone.
cdd6c482 1884 * When called from perf_event_exit_task, it's OK because the
c93f7669 1885 * context has been detached from its task.
0793a61d 1886 */
45a0e07a 1887static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
0793a61d 1888{
fae3fde6 1889 lockdep_assert_held(&event->ctx->mutex);
0793a61d 1890
45a0e07a 1891 event_function_call(event, __perf_remove_from_context, (void *)flags);
0793a61d
TG
1892}
1893
d859e29f 1894/*
cdd6c482 1895 * Cross CPU call to disable a performance event
d859e29f 1896 */
fae3fde6
PZ
1897static void __perf_event_disable(struct perf_event *event,
1898 struct perf_cpu_context *cpuctx,
1899 struct perf_event_context *ctx,
1900 void *info)
7b648018 1901{
fae3fde6
PZ
1902 if (event->state < PERF_EVENT_STATE_INACTIVE)
1903 return;
7b648018 1904
fae3fde6
PZ
1905 update_context_time(ctx);
1906 update_cgrp_time_from_event(event);
1907 update_group_times(event);
1908 if (event == event->group_leader)
1909 group_sched_out(event, cpuctx, ctx);
1910 else
1911 event_sched_out(event, cpuctx, ctx);
1912 event->state = PERF_EVENT_STATE_OFF;
7b648018
PZ
1913}
1914
d859e29f 1915/*
cdd6c482 1916 * Disable a event.
c93f7669 1917 *
cdd6c482
IM
1918 * If event->ctx is a cloned context, callers must make sure that
1919 * every task struct that event->ctx->task could possibly point to
c93f7669 1920 * remains valid. This condition is satisifed when called through
cdd6c482
IM
1921 * perf_event_for_each_child or perf_event_for_each because they
1922 * hold the top-level event's child_mutex, so any descendant that
8ba289b8
PZ
1923 * goes to exit will block in perf_event_exit_event().
1924 *
cdd6c482 1925 * When called from perf_pending_event it's OK because event->ctx
c93f7669 1926 * is the current context on this CPU and preemption is disabled,
cdd6c482 1927 * hence we can't get into perf_event_task_sched_out for this context.
d859e29f 1928 */
f63a8daa 1929static void _perf_event_disable(struct perf_event *event)
d859e29f 1930{
cdd6c482 1931 struct perf_event_context *ctx = event->ctx;
d859e29f 1932
e625cce1 1933 raw_spin_lock_irq(&ctx->lock);
7b648018 1934 if (event->state <= PERF_EVENT_STATE_OFF) {
e625cce1 1935 raw_spin_unlock_irq(&ctx->lock);
7b648018 1936 return;
53cfbf59 1937 }
e625cce1 1938 raw_spin_unlock_irq(&ctx->lock);
7b648018 1939
fae3fde6
PZ
1940 event_function_call(event, __perf_event_disable, NULL);
1941}
1942
1943void perf_event_disable_local(struct perf_event *event)
1944{
1945 event_function_local(event, __perf_event_disable, NULL);
d859e29f 1946}
f63a8daa
PZ
1947
1948/*
1949 * Strictly speaking kernel users cannot create groups and therefore this
1950 * interface does not need the perf_event_ctx_lock() magic.
1951 */
1952void perf_event_disable(struct perf_event *event)
1953{
1954 struct perf_event_context *ctx;
1955
1956 ctx = perf_event_ctx_lock(event);
1957 _perf_event_disable(event);
1958 perf_event_ctx_unlock(event, ctx);
1959}
dcfce4a0 1960EXPORT_SYMBOL_GPL(perf_event_disable);
d859e29f 1961
e5d1367f
SE
1962static void perf_set_shadow_time(struct perf_event *event,
1963 struct perf_event_context *ctx,
1964 u64 tstamp)
1965{
1966 /*
1967 * use the correct time source for the time snapshot
1968 *
1969 * We could get by without this by leveraging the
1970 * fact that to get to this function, the caller
1971 * has most likely already called update_context_time()
1972 * and update_cgrp_time_xx() and thus both timestamp
1973 * are identical (or very close). Given that tstamp is,
1974 * already adjusted for cgroup, we could say that:
1975 * tstamp - ctx->timestamp
1976 * is equivalent to
1977 * tstamp - cgrp->timestamp.
1978 *
1979 * Then, in perf_output_read(), the calculation would
1980 * work with no changes because:
1981 * - event is guaranteed scheduled in
1982 * - no scheduled out in between
1983 * - thus the timestamp would be the same
1984 *
1985 * But this is a bit hairy.
1986 *
1987 * So instead, we have an explicit cgroup call to remain
1988 * within the time time source all along. We believe it
1989 * is cleaner and simpler to understand.
1990 */
1991 if (is_cgroup_event(event))
1992 perf_cgroup_set_shadow_time(event, tstamp);
1993 else
1994 event->shadow_ctx_time = tstamp - ctx->timestamp;
1995}
1996
4fe757dd
PZ
1997#define MAX_INTERRUPTS (~0ULL)
1998
1999static void perf_log_throttle(struct perf_event *event, int enable);
ec0d7729 2000static void perf_log_itrace_start(struct perf_event *event);
4fe757dd 2001
235c7fc7 2002static int
9ffcfa6f 2003event_sched_in(struct perf_event *event,
235c7fc7 2004 struct perf_cpu_context *cpuctx,
6e37738a 2005 struct perf_event_context *ctx)
235c7fc7 2006{
4158755d 2007 u64 tstamp = perf_event_time(event);
44377277 2008 int ret = 0;
4158755d 2009
63342411
PZ
2010 lockdep_assert_held(&ctx->lock);
2011
cdd6c482 2012 if (event->state <= PERF_EVENT_STATE_OFF)
235c7fc7
IM
2013 return 0;
2014
95ff4ca2
AS
2015 WRITE_ONCE(event->oncpu, smp_processor_id());
2016 /*
2017 * Order event::oncpu write to happen before the ACTIVE state
2018 * is visible.
2019 */
2020 smp_wmb();
2021 WRITE_ONCE(event->state, PERF_EVENT_STATE_ACTIVE);
4fe757dd
PZ
2022
2023 /*
2024 * Unthrottle events, since we scheduled we might have missed several
2025 * ticks already, also for a heavily scheduling task there is little
2026 * guarantee it'll get a tick in a timely manner.
2027 */
2028 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2029 perf_log_throttle(event, 1);
2030 event->hw.interrupts = 0;
2031 }
2032
235c7fc7
IM
2033 /*
2034 * The new state must be visible before we turn it on in the hardware:
2035 */
2036 smp_wmb();
2037
44377277
AS
2038 perf_pmu_disable(event->pmu);
2039
72f669c0
SL
2040 perf_set_shadow_time(event, ctx, tstamp);
2041
ec0d7729
AS
2042 perf_log_itrace_start(event);
2043
a4eaf7f1 2044 if (event->pmu->add(event, PERF_EF_START)) {
cdd6c482
IM
2045 event->state = PERF_EVENT_STATE_INACTIVE;
2046 event->oncpu = -1;
44377277
AS
2047 ret = -EAGAIN;
2048 goto out;
235c7fc7
IM
2049 }
2050
00a2916f
PZ
2051 event->tstamp_running += tstamp - event->tstamp_stopped;
2052
cdd6c482 2053 if (!is_software_event(event))
3b6f9e5c 2054 cpuctx->active_oncpu++;
2fde4f94
MR
2055 if (!ctx->nr_active++)
2056 perf_event_ctx_activate(ctx);
0f5a2601
PZ
2057 if (event->attr.freq && event->attr.sample_freq)
2058 ctx->nr_freq++;
235c7fc7 2059
cdd6c482 2060 if (event->attr.exclusive)
3b6f9e5c
PM
2061 cpuctx->exclusive = 1;
2062
44377277
AS
2063out:
2064 perf_pmu_enable(event->pmu);
2065
2066 return ret;
235c7fc7
IM
2067}
2068
6751b71e 2069static int
cdd6c482 2070group_sched_in(struct perf_event *group_event,
6751b71e 2071 struct perf_cpu_context *cpuctx,
6e37738a 2072 struct perf_event_context *ctx)
6751b71e 2073{
6bde9b6c 2074 struct perf_event *event, *partial_group = NULL;
4a234593 2075 struct pmu *pmu = ctx->pmu;
d7842da4
SE
2076 u64 now = ctx->time;
2077 bool simulate = false;
6751b71e 2078
cdd6c482 2079 if (group_event->state == PERF_EVENT_STATE_OFF)
6751b71e
PM
2080 return 0;
2081
fbbe0701 2082 pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
6bde9b6c 2083
9ffcfa6f 2084 if (event_sched_in(group_event, cpuctx, ctx)) {
ad5133b7 2085 pmu->cancel_txn(pmu);
272325c4 2086 perf_mux_hrtimer_restart(cpuctx);
6751b71e 2087 return -EAGAIN;
90151c35 2088 }
6751b71e
PM
2089
2090 /*
2091 * Schedule in siblings as one group (if any):
2092 */
cdd6c482 2093 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
9ffcfa6f 2094 if (event_sched_in(event, cpuctx, ctx)) {
cdd6c482 2095 partial_group = event;
6751b71e
PM
2096 goto group_error;
2097 }
2098 }
2099
9ffcfa6f 2100 if (!pmu->commit_txn(pmu))
6e85158c 2101 return 0;
9ffcfa6f 2102
6751b71e
PM
2103group_error:
2104 /*
2105 * Groups can be scheduled in as one unit only, so undo any
2106 * partial group before returning:
d7842da4
SE
2107 * The events up to the failed event are scheduled out normally,
2108 * tstamp_stopped will be updated.
2109 *
2110 * The failed events and the remaining siblings need to have
2111 * their timings updated as if they had gone thru event_sched_in()
2112 * and event_sched_out(). This is required to get consistent timings
2113 * across the group. This also takes care of the case where the group
2114 * could never be scheduled by ensuring tstamp_stopped is set to mark
2115 * the time the event was actually stopped, such that time delta
2116 * calculation in update_event_times() is correct.
6751b71e 2117 */
cdd6c482
IM
2118 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2119 if (event == partial_group)
d7842da4
SE
2120 simulate = true;
2121
2122 if (simulate) {
2123 event->tstamp_running += now - event->tstamp_stopped;
2124 event->tstamp_stopped = now;
2125 } else {
2126 event_sched_out(event, cpuctx, ctx);
2127 }
6751b71e 2128 }
9ffcfa6f 2129 event_sched_out(group_event, cpuctx, ctx);
6751b71e 2130
ad5133b7 2131 pmu->cancel_txn(pmu);
90151c35 2132
272325c4 2133 perf_mux_hrtimer_restart(cpuctx);
9e630205 2134
6751b71e
PM
2135 return -EAGAIN;
2136}
2137
3b6f9e5c 2138/*
cdd6c482 2139 * Work out whether we can put this event group on the CPU now.
3b6f9e5c 2140 */
cdd6c482 2141static int group_can_go_on(struct perf_event *event,
3b6f9e5c
PM
2142 struct perf_cpu_context *cpuctx,
2143 int can_add_hw)
2144{
2145 /*
cdd6c482 2146 * Groups consisting entirely of software events can always go on.
3b6f9e5c 2147 */
d6f962b5 2148 if (event->group_flags & PERF_GROUP_SOFTWARE)
3b6f9e5c
PM
2149 return 1;
2150 /*
2151 * If an exclusive group is already on, no other hardware
cdd6c482 2152 * events can go on.
3b6f9e5c
PM
2153 */
2154 if (cpuctx->exclusive)
2155 return 0;
2156 /*
2157 * If this group is exclusive and there are already
cdd6c482 2158 * events on the CPU, it can't go on.
3b6f9e5c 2159 */
cdd6c482 2160 if (event->attr.exclusive && cpuctx->active_oncpu)
3b6f9e5c
PM
2161 return 0;
2162 /*
2163 * Otherwise, try to add it if all previous groups were able
2164 * to go on.
2165 */
2166 return can_add_hw;
2167}
2168
cdd6c482
IM
2169static void add_event_to_ctx(struct perf_event *event,
2170 struct perf_event_context *ctx)
53cfbf59 2171{
4158755d
SE
2172 u64 tstamp = perf_event_time(event);
2173
cdd6c482 2174 list_add_event(event, ctx);
8a49542c 2175 perf_group_attach(event);
4158755d
SE
2176 event->tstamp_enabled = tstamp;
2177 event->tstamp_running = tstamp;
2178 event->tstamp_stopped = tstamp;
53cfbf59
PM
2179}
2180
bd2afa49
PZ
2181static void ctx_sched_out(struct perf_event_context *ctx,
2182 struct perf_cpu_context *cpuctx,
2183 enum event_type_t event_type);
2c29ef0f
PZ
2184static void
2185ctx_sched_in(struct perf_event_context *ctx,
2186 struct perf_cpu_context *cpuctx,
2187 enum event_type_t event_type,
2188 struct task_struct *task);
fe4b04fa 2189
bd2afa49
PZ
2190static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2191 struct perf_event_context *ctx)
2192{
2193 if (!cpuctx->task_ctx)
2194 return;
2195
2196 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2197 return;
2198
2199 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2200}
2201
dce5855b
PZ
2202static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2203 struct perf_event_context *ctx,
2204 struct task_struct *task)
2205{
2206 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2207 if (ctx)
2208 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2209 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2210 if (ctx)
2211 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2212}
2213
3e349507
PZ
2214static void ctx_resched(struct perf_cpu_context *cpuctx,
2215 struct perf_event_context *task_ctx)
0017960f 2216{
3e349507
PZ
2217 perf_pmu_disable(cpuctx->ctx.pmu);
2218 if (task_ctx)
2219 task_ctx_sched_out(cpuctx, task_ctx);
2220 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
2221 perf_event_sched_in(cpuctx, task_ctx, current);
2222 perf_pmu_enable(cpuctx->ctx.pmu);
0017960f
PZ
2223}
2224
0793a61d 2225/*
cdd6c482 2226 * Cross CPU call to install and enable a performance event
682076ae 2227 *
a096309b
PZ
2228 * Very similar to remote_function() + event_function() but cannot assume that
2229 * things like ctx->is_active and cpuctx->task_ctx are set.
0793a61d 2230 */
fe4b04fa 2231static int __perf_install_in_context(void *info)
0793a61d 2232{
a096309b
PZ
2233 struct perf_event *event = info;
2234 struct perf_event_context *ctx = event->ctx;
108b02cf 2235 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2c29ef0f 2236 struct perf_event_context *task_ctx = cpuctx->task_ctx;
a096309b
PZ
2237 bool activate = true;
2238 int ret = 0;
0793a61d 2239
63b6da39 2240 raw_spin_lock(&cpuctx->ctx.lock);
39a43640 2241 if (ctx->task) {
b58f6b0d
PZ
2242 raw_spin_lock(&ctx->lock);
2243 task_ctx = ctx;
a096309b
PZ
2244
2245 /* If we're on the wrong CPU, try again */
2246 if (task_cpu(ctx->task) != smp_processor_id()) {
2247 ret = -ESRCH;
63b6da39 2248 goto unlock;
a096309b 2249 }
b58f6b0d 2250
39a43640 2251 /*
a096309b
PZ
2252 * If we're on the right CPU, see if the task we target is
2253 * current, if not we don't have to activate the ctx, a future
2254 * context switch will do that for us.
39a43640 2255 */
a096309b
PZ
2256 if (ctx->task != current)
2257 activate = false;
2258 else
2259 WARN_ON_ONCE(cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2260
63b6da39
PZ
2261 } else if (task_ctx) {
2262 raw_spin_lock(&task_ctx->lock);
2c29ef0f 2263 }
b58f6b0d 2264
a096309b
PZ
2265 if (activate) {
2266 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2267 add_event_to_ctx(event, ctx);
2268 ctx_resched(cpuctx, task_ctx);
2269 } else {
2270 add_event_to_ctx(event, ctx);
2271 }
2272
63b6da39 2273unlock:
2c29ef0f 2274 perf_ctx_unlock(cpuctx, task_ctx);
fe4b04fa 2275
a096309b 2276 return ret;
0793a61d
TG
2277}
2278
2279/*
a096309b
PZ
2280 * Attach a performance event to a context.
2281 *
2282 * Very similar to event_function_call, see comment there.
0793a61d
TG
2283 */
2284static void
cdd6c482
IM
2285perf_install_in_context(struct perf_event_context *ctx,
2286 struct perf_event *event,
0793a61d
TG
2287 int cpu)
2288{
a096309b 2289 struct task_struct *task = READ_ONCE(ctx->task);
39a43640 2290
fe4b04fa
PZ
2291 lockdep_assert_held(&ctx->mutex);
2292
0cda4c02
YZ
2293 if (event->cpu != -1)
2294 event->cpu = cpu;
c3f00c70 2295
0b8f1e2e
PZ
2296 /*
2297 * Ensures that if we can observe event->ctx, both the event and ctx
2298 * will be 'complete'. See perf_iterate_sb_cpu().
2299 */
2300 smp_store_release(&event->ctx, ctx);
2301
a096309b
PZ
2302 if (!task) {
2303 cpu_function_call(cpu, __perf_install_in_context, event);
2304 return;
2305 }
2306
2307 /*
2308 * Should not happen, we validate the ctx is still alive before calling.
2309 */
2310 if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2311 return;
2312
39a43640
PZ
2313 /*
2314 * Installing events is tricky because we cannot rely on ctx->is_active
2315 * to be set in case this is the nr_events 0 -> 1 transition.
39a43640 2316 */
a096309b 2317again:
63b6da39 2318 /*
a096309b
PZ
2319 * Cannot use task_function_call() because we need to run on the task's
2320 * CPU regardless of whether its current or not.
63b6da39 2321 */
a096309b
PZ
2322 if (!cpu_function_call(task_cpu(task), __perf_install_in_context, event))
2323 return;
2324
2325 raw_spin_lock_irq(&ctx->lock);
2326 task = ctx->task;
84c4e620 2327 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
a096309b
PZ
2328 /*
2329 * Cannot happen because we already checked above (which also
2330 * cannot happen), and we hold ctx->mutex, which serializes us
2331 * against perf_event_exit_task_context().
2332 */
63b6da39
PZ
2333 raw_spin_unlock_irq(&ctx->lock);
2334 return;
2335 }
39a43640 2336 raw_spin_unlock_irq(&ctx->lock);
39a43640 2337 /*
a096309b
PZ
2338 * Since !ctx->is_active doesn't mean anything, we must IPI
2339 * unconditionally.
39a43640 2340 */
a096309b 2341 goto again;
0793a61d
TG
2342}
2343
fa289bec 2344/*
cdd6c482 2345 * Put a event into inactive state and update time fields.
fa289bec
PM
2346 * Enabling the leader of a group effectively enables all
2347 * the group members that aren't explicitly disabled, so we
2348 * have to update their ->tstamp_enabled also.
2349 * Note: this works for group members as well as group leaders
2350 * since the non-leader members' sibling_lists will be empty.
2351 */
1d9b482e 2352static void __perf_event_mark_enabled(struct perf_event *event)
fa289bec 2353{
cdd6c482 2354 struct perf_event *sub;
4158755d 2355 u64 tstamp = perf_event_time(event);
fa289bec 2356
cdd6c482 2357 event->state = PERF_EVENT_STATE_INACTIVE;
4158755d 2358 event->tstamp_enabled = tstamp - event->total_time_enabled;
9ed6060d 2359 list_for_each_entry(sub, &event->sibling_list, group_entry) {
4158755d
SE
2360 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2361 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
9ed6060d 2362 }
fa289bec
PM
2363}
2364
d859e29f 2365/*
cdd6c482 2366 * Cross CPU call to enable a performance event
d859e29f 2367 */
fae3fde6
PZ
2368static void __perf_event_enable(struct perf_event *event,
2369 struct perf_cpu_context *cpuctx,
2370 struct perf_event_context *ctx,
2371 void *info)
04289bb9 2372{
cdd6c482 2373 struct perf_event *leader = event->group_leader;
fae3fde6 2374 struct perf_event_context *task_ctx;
04289bb9 2375
6e801e01
PZ
2376 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2377 event->state <= PERF_EVENT_STATE_ERROR)
fae3fde6 2378 return;
3cbed429 2379
bd2afa49
PZ
2380 if (ctx->is_active)
2381 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2382
1d9b482e 2383 __perf_event_mark_enabled(event);
04289bb9 2384
fae3fde6
PZ
2385 if (!ctx->is_active)
2386 return;
2387
e5d1367f 2388 if (!event_filter_match(event)) {
bd2afa49 2389 if (is_cgroup_event(event))
e5d1367f 2390 perf_cgroup_defer_enabled(event);
bd2afa49 2391 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
fae3fde6 2392 return;
e5d1367f 2393 }
f4c4176f 2394
04289bb9 2395 /*
cdd6c482 2396 * If the event is in a group and isn't the group leader,
d859e29f 2397 * then don't put it on unless the group is on.
04289bb9 2398 */
bd2afa49
PZ
2399 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2400 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
fae3fde6 2401 return;
bd2afa49 2402 }
fe4b04fa 2403
fae3fde6
PZ
2404 task_ctx = cpuctx->task_ctx;
2405 if (ctx->task)
2406 WARN_ON_ONCE(task_ctx != ctx);
d859e29f 2407
fae3fde6 2408 ctx_resched(cpuctx, task_ctx);
7b648018
PZ
2409}
2410
d859e29f 2411/*
cdd6c482 2412 * Enable a event.
c93f7669 2413 *
cdd6c482
IM
2414 * If event->ctx is a cloned context, callers must make sure that
2415 * every task struct that event->ctx->task could possibly point to
c93f7669 2416 * remains valid. This condition is satisfied when called through
cdd6c482
IM
2417 * perf_event_for_each_child or perf_event_for_each as described
2418 * for perf_event_disable.
d859e29f 2419 */
f63a8daa 2420static void _perf_event_enable(struct perf_event *event)
d859e29f 2421{
cdd6c482 2422 struct perf_event_context *ctx = event->ctx;
d859e29f 2423
7b648018 2424 raw_spin_lock_irq(&ctx->lock);
6e801e01
PZ
2425 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2426 event->state < PERF_EVENT_STATE_ERROR) {
7b648018 2427 raw_spin_unlock_irq(&ctx->lock);
d859e29f
PM
2428 return;
2429 }
2430
d859e29f 2431 /*
cdd6c482 2432 * If the event is in error state, clear that first.
7b648018
PZ
2433 *
2434 * That way, if we see the event in error state below, we know that it
2435 * has gone back into error state, as distinct from the task having
2436 * been scheduled away before the cross-call arrived.
d859e29f 2437 */
cdd6c482
IM
2438 if (event->state == PERF_EVENT_STATE_ERROR)
2439 event->state = PERF_EVENT_STATE_OFF;
e625cce1 2440 raw_spin_unlock_irq(&ctx->lock);
fe4b04fa 2441
fae3fde6 2442 event_function_call(event, __perf_event_enable, NULL);
d859e29f 2443}
f63a8daa
PZ
2444
2445/*
2446 * See perf_event_disable();
2447 */
2448void perf_event_enable(struct perf_event *event)
2449{
2450 struct perf_event_context *ctx;
2451
2452 ctx = perf_event_ctx_lock(event);
2453 _perf_event_enable(event);
2454 perf_event_ctx_unlock(event, ctx);
2455}
dcfce4a0 2456EXPORT_SYMBOL_GPL(perf_event_enable);
d859e29f 2457
375637bc
AS
2458struct stop_event_data {
2459 struct perf_event *event;
2460 unsigned int restart;
2461};
2462
95ff4ca2
AS
2463static int __perf_event_stop(void *info)
2464{
375637bc
AS
2465 struct stop_event_data *sd = info;
2466 struct perf_event *event = sd->event;
95ff4ca2 2467
375637bc 2468 /* if it's already INACTIVE, do nothing */
95ff4ca2
AS
2469 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2470 return 0;
2471
2472 /* matches smp_wmb() in event_sched_in() */
2473 smp_rmb();
2474
2475 /*
2476 * There is a window with interrupts enabled before we get here,
2477 * so we need to check again lest we try to stop another CPU's event.
2478 */
2479 if (READ_ONCE(event->oncpu) != smp_processor_id())
2480 return -EAGAIN;
2481
2482 event->pmu->stop(event, PERF_EF_UPDATE);
2483
375637bc
AS
2484 /*
2485 * May race with the actual stop (through perf_pmu_output_stop()),
2486 * but it is only used for events with AUX ring buffer, and such
2487 * events will refuse to restart because of rb::aux_mmap_count==0,
2488 * see comments in perf_aux_output_begin().
2489 *
2490 * Since this is happening on a event-local CPU, no trace is lost
2491 * while restarting.
2492 */
2493 if (sd->restart)
2494 event->pmu->start(event, PERF_EF_START);
2495
95ff4ca2
AS
2496 return 0;
2497}
2498
375637bc
AS
2499static int perf_event_restart(struct perf_event *event)
2500{
2501 struct stop_event_data sd = {
2502 .event = event,
2503 .restart = 1,
2504 };
2505 int ret = 0;
2506
2507 do {
2508 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2509 return 0;
2510
2511 /* matches smp_wmb() in event_sched_in() */
2512 smp_rmb();
2513
2514 /*
2515 * We only want to restart ACTIVE events, so if the event goes
2516 * inactive here (event->oncpu==-1), there's nothing more to do;
2517 * fall through with ret==-ENXIO.
2518 */
2519 ret = cpu_function_call(READ_ONCE(event->oncpu),
2520 __perf_event_stop, &sd);
2521 } while (ret == -EAGAIN);
2522
2523 return ret;
2524}
2525
2526/*
2527 * In order to contain the amount of racy and tricky in the address filter
2528 * configuration management, it is a two part process:
2529 *
2530 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2531 * we update the addresses of corresponding vmas in
2532 * event::addr_filters_offs array and bump the event::addr_filters_gen;
2533 * (p2) when an event is scheduled in (pmu::add), it calls
2534 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2535 * if the generation has changed since the previous call.
2536 *
2537 * If (p1) happens while the event is active, we restart it to force (p2).
2538 *
2539 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2540 * pre-existing mappings, called once when new filters arrive via SET_FILTER
2541 * ioctl;
2542 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2543 * registered mapping, called for every new mmap(), with mm::mmap_sem down
2544 * for reading;
2545 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2546 * of exec.
2547 */
2548void perf_event_addr_filters_sync(struct perf_event *event)
2549{
2550 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2551
2552 if (!has_addr_filter(event))
2553 return;
2554
2555 raw_spin_lock(&ifh->lock);
2556 if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2557 event->pmu->addr_filters_sync(event);
2558 event->hw.addr_filters_gen = event->addr_filters_gen;
2559 }
2560 raw_spin_unlock(&ifh->lock);
2561}
2562EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2563
f63a8daa 2564static int _perf_event_refresh(struct perf_event *event, int refresh)
79f14641 2565{
2023b359 2566 /*
cdd6c482 2567 * not supported on inherited events
2023b359 2568 */
2e939d1d 2569 if (event->attr.inherit || !is_sampling_event(event))
2023b359
PZ
2570 return -EINVAL;
2571
cdd6c482 2572 atomic_add(refresh, &event->event_limit);
f63a8daa 2573 _perf_event_enable(event);
2023b359
PZ
2574
2575 return 0;
79f14641 2576}
f63a8daa
PZ
2577
2578/*
2579 * See perf_event_disable()
2580 */
2581int perf_event_refresh(struct perf_event *event, int refresh)
2582{
2583 struct perf_event_context *ctx;
2584 int ret;
2585
2586 ctx = perf_event_ctx_lock(event);
2587 ret = _perf_event_refresh(event, refresh);
2588 perf_event_ctx_unlock(event, ctx);
2589
2590 return ret;
2591}
26ca5c11 2592EXPORT_SYMBOL_GPL(perf_event_refresh);
79f14641 2593
5b0311e1
FW
2594static void ctx_sched_out(struct perf_event_context *ctx,
2595 struct perf_cpu_context *cpuctx,
2596 enum event_type_t event_type)
235c7fc7 2597{
db24d33e 2598 int is_active = ctx->is_active;
c994d613 2599 struct perf_event *event;
235c7fc7 2600
c994d613 2601 lockdep_assert_held(&ctx->lock);
235c7fc7 2602
39a43640
PZ
2603 if (likely(!ctx->nr_events)) {
2604 /*
2605 * See __perf_remove_from_context().
2606 */
2607 WARN_ON_ONCE(ctx->is_active);
2608 if (ctx->task)
2609 WARN_ON_ONCE(cpuctx->task_ctx);
facc4307 2610 return;
39a43640
PZ
2611 }
2612
db24d33e 2613 ctx->is_active &= ~event_type;
3cbaa590
PZ
2614 if (!(ctx->is_active & EVENT_ALL))
2615 ctx->is_active = 0;
2616
63e30d3e
PZ
2617 if (ctx->task) {
2618 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2619 if (!ctx->is_active)
2620 cpuctx->task_ctx = NULL;
2621 }
facc4307 2622
8fdc6539
PZ
2623 /*
2624 * Always update time if it was set; not only when it changes.
2625 * Otherwise we can 'forget' to update time for any but the last
2626 * context we sched out. For example:
2627 *
2628 * ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2629 * ctx_sched_out(.event_type = EVENT_PINNED)
2630 *
2631 * would only update time for the pinned events.
2632 */
3cbaa590
PZ
2633 if (is_active & EVENT_TIME) {
2634 /* update (and stop) ctx time */
2635 update_context_time(ctx);
2636 update_cgrp_time_from_cpuctx(cpuctx);
2637 }
2638
8fdc6539
PZ
2639 is_active ^= ctx->is_active; /* changed bits */
2640
3cbaa590 2641 if (!ctx->nr_active || !(is_active & EVENT_ALL))
facc4307 2642 return;
5b0311e1 2643
075e0b00 2644 perf_pmu_disable(ctx->pmu);
3cbaa590 2645 if (is_active & EVENT_PINNED) {
889ff015
FW
2646 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2647 group_sched_out(event, cpuctx, ctx);
9ed6060d 2648 }
889ff015 2649
3cbaa590 2650 if (is_active & EVENT_FLEXIBLE) {
889ff015 2651 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
8c9ed8e1 2652 group_sched_out(event, cpuctx, ctx);
9ed6060d 2653 }
1b9a644f 2654 perf_pmu_enable(ctx->pmu);
235c7fc7
IM
2655}
2656
564c2b21 2657/*
5a3126d4
PZ
2658 * Test whether two contexts are equivalent, i.e. whether they have both been
2659 * cloned from the same version of the same context.
2660 *
2661 * Equivalence is measured using a generation number in the context that is
2662 * incremented on each modification to it; see unclone_ctx(), list_add_event()
2663 * and list_del_event().
564c2b21 2664 */
cdd6c482
IM
2665static int context_equiv(struct perf_event_context *ctx1,
2666 struct perf_event_context *ctx2)
564c2b21 2667{
211de6eb
PZ
2668 lockdep_assert_held(&ctx1->lock);
2669 lockdep_assert_held(&ctx2->lock);
2670
5a3126d4
PZ
2671 /* Pinning disables the swap optimization */
2672 if (ctx1->pin_count || ctx2->pin_count)
2673 return 0;
2674
2675 /* If ctx1 is the parent of ctx2 */
2676 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2677 return 1;
2678
2679 /* If ctx2 is the parent of ctx1 */
2680 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2681 return 1;
2682
2683 /*
2684 * If ctx1 and ctx2 have the same parent; we flatten the parent
2685 * hierarchy, see perf_event_init_context().
2686 */
2687 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2688 ctx1->parent_gen == ctx2->parent_gen)
2689 return 1;
2690
2691 /* Unmatched */
2692 return 0;
564c2b21
PM
2693}
2694
cdd6c482
IM
2695static void __perf_event_sync_stat(struct perf_event *event,
2696 struct perf_event *next_event)
bfbd3381
PZ
2697{
2698 u64 value;
2699
cdd6c482 2700 if (!event->attr.inherit_stat)
bfbd3381
PZ
2701 return;
2702
2703 /*
cdd6c482 2704 * Update the event value, we cannot use perf_event_read()
bfbd3381
PZ
2705 * because we're in the middle of a context switch and have IRQs
2706 * disabled, which upsets smp_call_function_single(), however
cdd6c482 2707 * we know the event must be on the current CPU, therefore we
bfbd3381
PZ
2708 * don't need to use it.
2709 */
cdd6c482
IM
2710 switch (event->state) {
2711 case PERF_EVENT_STATE_ACTIVE:
3dbebf15
PZ
2712 event->pmu->read(event);
2713 /* fall-through */
bfbd3381 2714
cdd6c482
IM
2715 case PERF_EVENT_STATE_INACTIVE:
2716 update_event_times(event);
bfbd3381
PZ
2717 break;
2718
2719 default:
2720 break;
2721 }
2722
2723 /*
cdd6c482 2724 * In order to keep per-task stats reliable we need to flip the event
bfbd3381
PZ
2725 * values when we flip the contexts.
2726 */
e7850595
PZ
2727 value = local64_read(&next_event->count);
2728 value = local64_xchg(&event->count, value);
2729 local64_set(&next_event->count, value);
bfbd3381 2730
cdd6c482
IM
2731 swap(event->total_time_enabled, next_event->total_time_enabled);
2732 swap(event->total_time_running, next_event->total_time_running);
19d2e755 2733
bfbd3381 2734 /*
19d2e755 2735 * Since we swizzled the values, update the user visible data too.
bfbd3381 2736 */
cdd6c482
IM
2737 perf_event_update_userpage(event);
2738 perf_event_update_userpage(next_event);
bfbd3381
PZ
2739}
2740
cdd6c482
IM
2741static void perf_event_sync_stat(struct perf_event_context *ctx,
2742 struct perf_event_context *next_ctx)
bfbd3381 2743{
cdd6c482 2744 struct perf_event *event, *next_event;
bfbd3381
PZ
2745
2746 if (!ctx->nr_stat)
2747 return;
2748
02ffdbc8
PZ
2749 update_context_time(ctx);
2750
cdd6c482
IM
2751 event = list_first_entry(&ctx->event_list,
2752 struct perf_event, event_entry);
bfbd3381 2753
cdd6c482
IM
2754 next_event = list_first_entry(&next_ctx->event_list,
2755 struct perf_event, event_entry);
bfbd3381 2756
cdd6c482
IM
2757 while (&event->event_entry != &ctx->event_list &&
2758 &next_event->event_entry != &next_ctx->event_list) {
bfbd3381 2759
cdd6c482 2760 __perf_event_sync_stat(event, next_event);
bfbd3381 2761
cdd6c482
IM
2762 event = list_next_entry(event, event_entry);
2763 next_event = list_next_entry(next_event, event_entry);
bfbd3381
PZ
2764 }
2765}
2766
fe4b04fa
PZ
2767static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2768 struct task_struct *next)
0793a61d 2769{
8dc85d54 2770 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
cdd6c482 2771 struct perf_event_context *next_ctx;
5a3126d4 2772 struct perf_event_context *parent, *next_parent;
108b02cf 2773 struct perf_cpu_context *cpuctx;
c93f7669 2774 int do_switch = 1;
0793a61d 2775
108b02cf
PZ
2776 if (likely(!ctx))
2777 return;
10989fb2 2778
108b02cf
PZ
2779 cpuctx = __get_cpu_context(ctx);
2780 if (!cpuctx->task_ctx)
0793a61d
TG
2781 return;
2782
c93f7669 2783 rcu_read_lock();
8dc85d54 2784 next_ctx = next->perf_event_ctxp[ctxn];
5a3126d4
PZ
2785 if (!next_ctx)
2786 goto unlock;
2787
2788 parent = rcu_dereference(ctx->parent_ctx);
2789 next_parent = rcu_dereference(next_ctx->parent_ctx);
2790
2791 /* If neither context have a parent context; they cannot be clones. */
802c8a61 2792 if (!parent && !next_parent)
5a3126d4
PZ
2793 goto unlock;
2794
2795 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
c93f7669
PM
2796 /*
2797 * Looks like the two contexts are clones, so we might be
2798 * able to optimize the context switch. We lock both
2799 * contexts and check that they are clones under the
2800 * lock (including re-checking that neither has been
2801 * uncloned in the meantime). It doesn't matter which
2802 * order we take the locks because no other cpu could
2803 * be trying to lock both of these tasks.
2804 */
e625cce1
TG
2805 raw_spin_lock(&ctx->lock);
2806 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
c93f7669 2807 if (context_equiv(ctx, next_ctx)) {
63b6da39
PZ
2808 WRITE_ONCE(ctx->task, next);
2809 WRITE_ONCE(next_ctx->task, task);
5a158c3c
YZ
2810
2811 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2812
63b6da39
PZ
2813 /*
2814 * RCU_INIT_POINTER here is safe because we've not
2815 * modified the ctx and the above modification of
2816 * ctx->task and ctx->task_ctx_data are immaterial
2817 * since those values are always verified under
2818 * ctx->lock which we're now holding.
2819 */
2820 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
2821 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
2822
c93f7669 2823 do_switch = 0;
bfbd3381 2824
cdd6c482 2825 perf_event_sync_stat(ctx, next_ctx);
c93f7669 2826 }
e625cce1
TG
2827 raw_spin_unlock(&next_ctx->lock);
2828 raw_spin_unlock(&ctx->lock);
564c2b21 2829 }
5a3126d4 2830unlock:
c93f7669 2831 rcu_read_unlock();
564c2b21 2832
c93f7669 2833 if (do_switch) {
facc4307 2834 raw_spin_lock(&ctx->lock);
8833d0e2 2835 task_ctx_sched_out(cpuctx, ctx);
facc4307 2836 raw_spin_unlock(&ctx->lock);
c93f7669 2837 }
0793a61d
TG
2838}
2839
ba532500
YZ
2840void perf_sched_cb_dec(struct pmu *pmu)
2841{
2842 this_cpu_dec(perf_sched_cb_usages);
2843}
2844
2845void perf_sched_cb_inc(struct pmu *pmu)
2846{
2847 this_cpu_inc(perf_sched_cb_usages);
2848}
2849
2850/*
2851 * This function provides the context switch callback to the lower code
2852 * layer. It is invoked ONLY when the context switch callback is enabled.
2853 */
2854static void perf_pmu_sched_task(struct task_struct *prev,
2855 struct task_struct *next,
2856 bool sched_in)
2857{
2858 struct perf_cpu_context *cpuctx;
2859 struct pmu *pmu;
2860 unsigned long flags;
2861
2862 if (prev == next)
2863 return;
2864
2865 local_irq_save(flags);
2866
2867 rcu_read_lock();
2868
2869 list_for_each_entry_rcu(pmu, &pmus, entry) {
2870 if (pmu->sched_task) {
2871 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2872
2873 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2874
2875 perf_pmu_disable(pmu);
2876
2877 pmu->sched_task(cpuctx->task_ctx, sched_in);
2878
2879 perf_pmu_enable(pmu);
2880
2881 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2882 }
2883 }
2884
2885 rcu_read_unlock();
2886
2887 local_irq_restore(flags);
2888}
2889
45ac1403
AH
2890static void perf_event_switch(struct task_struct *task,
2891 struct task_struct *next_prev, bool sched_in);
2892
8dc85d54
PZ
2893#define for_each_task_context_nr(ctxn) \
2894 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2895
2896/*
2897 * Called from scheduler to remove the events of the current task,
2898 * with interrupts disabled.
2899 *
2900 * We stop each event and update the event value in event->count.
2901 *
2902 * This does not protect us against NMI, but disable()
2903 * sets the disabled bit in the control field of event _before_
2904 * accessing the event control register. If a NMI hits, then it will
2905 * not restart the event.
2906 */
ab0cce56
JO
2907void __perf_event_task_sched_out(struct task_struct *task,
2908 struct task_struct *next)
8dc85d54
PZ
2909{
2910 int ctxn;
2911
ba532500
YZ
2912 if (__this_cpu_read(perf_sched_cb_usages))
2913 perf_pmu_sched_task(task, next, false);
2914
45ac1403
AH
2915 if (atomic_read(&nr_switch_events))
2916 perf_event_switch(task, next, false);
2917
8dc85d54
PZ
2918 for_each_task_context_nr(ctxn)
2919 perf_event_context_sched_out(task, ctxn, next);
e5d1367f
SE
2920
2921 /*
2922 * if cgroup events exist on this CPU, then we need
2923 * to check if we have to switch out PMU state.
2924 * cgroup event are system-wide mode only
2925 */
4a32fea9 2926 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
a8d757ef 2927 perf_cgroup_sched_out(task, next);
8dc85d54
PZ
2928}
2929
5b0311e1
FW
2930/*
2931 * Called with IRQs disabled
2932 */
2933static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2934 enum event_type_t event_type)
2935{
2936 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
04289bb9
IM
2937}
2938
235c7fc7 2939static void
5b0311e1 2940ctx_pinned_sched_in(struct perf_event_context *ctx,
6e37738a 2941 struct perf_cpu_context *cpuctx)
0793a61d 2942{
cdd6c482 2943 struct perf_event *event;
0793a61d 2944
889ff015
FW
2945 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2946 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 2947 continue;
5632ab12 2948 if (!event_filter_match(event))
3b6f9e5c
PM
2949 continue;
2950
e5d1367f
SE
2951 /* may need to reset tstamp_enabled */
2952 if (is_cgroup_event(event))
2953 perf_cgroup_mark_enabled(event, ctx);
2954
8c9ed8e1 2955 if (group_can_go_on(event, cpuctx, 1))
6e37738a 2956 group_sched_in(event, cpuctx, ctx);
3b6f9e5c
PM
2957
2958 /*
2959 * If this pinned group hasn't been scheduled,
2960 * put it in error state.
2961 */
cdd6c482
IM
2962 if (event->state == PERF_EVENT_STATE_INACTIVE) {
2963 update_group_times(event);
2964 event->state = PERF_EVENT_STATE_ERROR;
53cfbf59 2965 }
3b6f9e5c 2966 }
5b0311e1
FW
2967}
2968
2969static void
2970ctx_flexible_sched_in(struct perf_event_context *ctx,
6e37738a 2971 struct perf_cpu_context *cpuctx)
5b0311e1
FW
2972{
2973 struct perf_event *event;
2974 int can_add_hw = 1;
3b6f9e5c 2975
889ff015
FW
2976 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2977 /* Ignore events in OFF or ERROR state */
2978 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 2979 continue;
04289bb9
IM
2980 /*
2981 * Listen to the 'cpu' scheduling filter constraint
cdd6c482 2982 * of events:
04289bb9 2983 */
5632ab12 2984 if (!event_filter_match(event))
0793a61d
TG
2985 continue;
2986
e5d1367f
SE
2987 /* may need to reset tstamp_enabled */
2988 if (is_cgroup_event(event))
2989 perf_cgroup_mark_enabled(event, ctx);
2990
9ed6060d 2991 if (group_can_go_on(event, cpuctx, can_add_hw)) {
6e37738a 2992 if (group_sched_in(event, cpuctx, ctx))
dd0e6ba2 2993 can_add_hw = 0;
9ed6060d 2994 }
0793a61d 2995 }
5b0311e1
FW
2996}
2997
2998static void
2999ctx_sched_in(struct perf_event_context *ctx,
3000 struct perf_cpu_context *cpuctx,
e5d1367f
SE
3001 enum event_type_t event_type,
3002 struct task_struct *task)
5b0311e1 3003{
db24d33e 3004 int is_active = ctx->is_active;
c994d613
PZ
3005 u64 now;
3006
3007 lockdep_assert_held(&ctx->lock);
e5d1367f 3008
5b0311e1 3009 if (likely(!ctx->nr_events))
facc4307 3010 return;
5b0311e1 3011
3cbaa590 3012 ctx->is_active |= (event_type | EVENT_TIME);
63e30d3e
PZ
3013 if (ctx->task) {
3014 if (!is_active)
3015 cpuctx->task_ctx = ctx;
3016 else
3017 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3018 }
3019
3cbaa590
PZ
3020 is_active ^= ctx->is_active; /* changed bits */
3021
3022 if (is_active & EVENT_TIME) {
3023 /* start ctx time */
3024 now = perf_clock();
3025 ctx->timestamp = now;
3026 perf_cgroup_set_timestamp(task, ctx);
3027 }
3028
5b0311e1
FW
3029 /*
3030 * First go through the list and put on any pinned groups
3031 * in order to give them the best chance of going on.
3032 */
3cbaa590 3033 if (is_active & EVENT_PINNED)
6e37738a 3034 ctx_pinned_sched_in(ctx, cpuctx);
5b0311e1
FW
3035
3036 /* Then walk through the lower prio flexible groups */
3cbaa590 3037 if (is_active & EVENT_FLEXIBLE)
6e37738a 3038 ctx_flexible_sched_in(ctx, cpuctx);
235c7fc7
IM
3039}
3040
329c0e01 3041static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
3042 enum event_type_t event_type,
3043 struct task_struct *task)
329c0e01
FW
3044{
3045 struct perf_event_context *ctx = &cpuctx->ctx;
3046
e5d1367f 3047 ctx_sched_in(ctx, cpuctx, event_type, task);
329c0e01
FW
3048}
3049
e5d1367f
SE
3050static void perf_event_context_sched_in(struct perf_event_context *ctx,
3051 struct task_struct *task)
235c7fc7 3052{
108b02cf 3053 struct perf_cpu_context *cpuctx;
235c7fc7 3054
108b02cf 3055 cpuctx = __get_cpu_context(ctx);
329c0e01
FW
3056 if (cpuctx->task_ctx == ctx)
3057 return;
3058
facc4307 3059 perf_ctx_lock(cpuctx, ctx);
1b9a644f 3060 perf_pmu_disable(ctx->pmu);
329c0e01
FW
3061 /*
3062 * We want to keep the following priority order:
3063 * cpu pinned (that don't need to move), task pinned,
3064 * cpu flexible, task flexible.
3065 */
3066 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
63e30d3e 3067 perf_event_sched_in(cpuctx, ctx, task);
facc4307
PZ
3068 perf_pmu_enable(ctx->pmu);
3069 perf_ctx_unlock(cpuctx, ctx);
235c7fc7
IM
3070}
3071
8dc85d54
PZ
3072/*
3073 * Called from scheduler to add the events of the current task
3074 * with interrupts disabled.
3075 *
3076 * We restore the event value and then enable it.
3077 *
3078 * This does not protect us against NMI, but enable()
3079 * sets the enabled bit in the control field of event _before_
3080 * accessing the event control register. If a NMI hits, then it will
3081 * keep the event running.
3082 */
ab0cce56
JO
3083void __perf_event_task_sched_in(struct task_struct *prev,
3084 struct task_struct *task)
8dc85d54
PZ
3085{
3086 struct perf_event_context *ctx;
3087 int ctxn;
3088
7e41d177
PZ
3089 /*
3090 * If cgroup events exist on this CPU, then we need to check if we have
3091 * to switch in PMU state; cgroup event are system-wide mode only.
3092 *
3093 * Since cgroup events are CPU events, we must schedule these in before
3094 * we schedule in the task events.
3095 */
3096 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3097 perf_cgroup_sched_in(prev, task);
3098
8dc85d54
PZ
3099 for_each_task_context_nr(ctxn) {
3100 ctx = task->perf_event_ctxp[ctxn];
3101 if (likely(!ctx))
3102 continue;
3103
e5d1367f 3104 perf_event_context_sched_in(ctx, task);
8dc85d54 3105 }
d010b332 3106
45ac1403
AH
3107 if (atomic_read(&nr_switch_events))
3108 perf_event_switch(task, prev, true);
3109
ba532500
YZ
3110 if (__this_cpu_read(perf_sched_cb_usages))
3111 perf_pmu_sched_task(prev, task, true);
235c7fc7
IM
3112}
3113
abd50713
PZ
3114static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3115{
3116 u64 frequency = event->attr.sample_freq;
3117 u64 sec = NSEC_PER_SEC;
3118 u64 divisor, dividend;
3119
3120 int count_fls, nsec_fls, frequency_fls, sec_fls;
3121
3122 count_fls = fls64(count);
3123 nsec_fls = fls64(nsec);
3124 frequency_fls = fls64(frequency);
3125 sec_fls = 30;
3126
3127 /*
3128 * We got @count in @nsec, with a target of sample_freq HZ
3129 * the target period becomes:
3130 *
3131 * @count * 10^9
3132 * period = -------------------
3133 * @nsec * sample_freq
3134 *
3135 */
3136
3137 /*
3138 * Reduce accuracy by one bit such that @a and @b converge
3139 * to a similar magnitude.
3140 */
fe4b04fa 3141#define REDUCE_FLS(a, b) \
abd50713
PZ
3142do { \
3143 if (a##_fls > b##_fls) { \
3144 a >>= 1; \
3145 a##_fls--; \
3146 } else { \
3147 b >>= 1; \
3148 b##_fls--; \
3149 } \
3150} while (0)
3151
3152 /*
3153 * Reduce accuracy until either term fits in a u64, then proceed with
3154 * the other, so that finally we can do a u64/u64 division.
3155 */
3156 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3157 REDUCE_FLS(nsec, frequency);
3158 REDUCE_FLS(sec, count);
3159 }
3160
3161 if (count_fls + sec_fls > 64) {
3162 divisor = nsec * frequency;
3163
3164 while (count_fls + sec_fls > 64) {
3165 REDUCE_FLS(count, sec);
3166 divisor >>= 1;
3167 }
3168
3169 dividend = count * sec;
3170 } else {
3171 dividend = count * sec;
3172
3173 while (nsec_fls + frequency_fls > 64) {
3174 REDUCE_FLS(nsec, frequency);
3175 dividend >>= 1;
3176 }
3177
3178 divisor = nsec * frequency;
3179 }
3180
f6ab91ad
PZ
3181 if (!divisor)
3182 return dividend;
3183
abd50713
PZ
3184 return div64_u64(dividend, divisor);
3185}
3186
e050e3f0
SE
3187static DEFINE_PER_CPU(int, perf_throttled_count);
3188static DEFINE_PER_CPU(u64, perf_throttled_seq);
3189
f39d47ff 3190static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
bd2b5b12 3191{
cdd6c482 3192 struct hw_perf_event *hwc = &event->hw;
f6ab91ad 3193 s64 period, sample_period;
bd2b5b12
PZ
3194 s64 delta;
3195
abd50713 3196 period = perf_calculate_period(event, nsec, count);
bd2b5b12
PZ
3197
3198 delta = (s64)(period - hwc->sample_period);
3199 delta = (delta + 7) / 8; /* low pass filter */
3200
3201 sample_period = hwc->sample_period + delta;
3202
3203 if (!sample_period)
3204 sample_period = 1;
3205
bd2b5b12 3206 hwc->sample_period = sample_period;
abd50713 3207
e7850595 3208 if (local64_read(&hwc->period_left) > 8*sample_period) {
f39d47ff
SE
3209 if (disable)
3210 event->pmu->stop(event, PERF_EF_UPDATE);
3211
e7850595 3212 local64_set(&hwc->period_left, 0);
f39d47ff
SE
3213
3214 if (disable)
3215 event->pmu->start(event, PERF_EF_RELOAD);
abd50713 3216 }
bd2b5b12
PZ
3217}
3218
e050e3f0
SE
3219/*
3220 * combine freq adjustment with unthrottling to avoid two passes over the
3221 * events. At the same time, make sure, having freq events does not change
3222 * the rate of unthrottling as that would introduce bias.
3223 */
3224static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3225 int needs_unthr)
60db5e09 3226{
cdd6c482
IM
3227 struct perf_event *event;
3228 struct hw_perf_event *hwc;
e050e3f0 3229 u64 now, period = TICK_NSEC;
abd50713 3230 s64 delta;
60db5e09 3231
e050e3f0
SE
3232 /*
3233 * only need to iterate over all events iff:
3234 * - context have events in frequency mode (needs freq adjust)
3235 * - there are events to unthrottle on this cpu
3236 */
3237 if (!(ctx->nr_freq || needs_unthr))
0f5a2601
PZ
3238 return;
3239
e050e3f0 3240 raw_spin_lock(&ctx->lock);
f39d47ff 3241 perf_pmu_disable(ctx->pmu);
e050e3f0 3242
03541f8b 3243 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
cdd6c482 3244 if (event->state != PERF_EVENT_STATE_ACTIVE)
60db5e09
PZ
3245 continue;
3246
5632ab12 3247 if (!event_filter_match(event))
5d27c23d
PZ
3248 continue;
3249
44377277
AS
3250 perf_pmu_disable(event->pmu);
3251
cdd6c482 3252 hwc = &event->hw;
6a24ed6c 3253
ae23bff1 3254 if (hwc->interrupts == MAX_INTERRUPTS) {
e050e3f0 3255 hwc->interrupts = 0;
cdd6c482 3256 perf_log_throttle(event, 1);
a4eaf7f1 3257 event->pmu->start(event, 0);
a78ac325
PZ
3258 }
3259
cdd6c482 3260 if (!event->attr.freq || !event->attr.sample_freq)
44377277 3261 goto next;
60db5e09 3262
e050e3f0
SE
3263 /*
3264 * stop the event and update event->count
3265 */
3266 event->pmu->stop(event, PERF_EF_UPDATE);
3267
e7850595 3268 now = local64_read(&event->count);
abd50713
PZ
3269 delta = now - hwc->freq_count_stamp;
3270 hwc->freq_count_stamp = now;
60db5e09 3271
e050e3f0
SE
3272 /*
3273 * restart the event
3274 * reload only if value has changed
f39d47ff
SE
3275 * we have stopped the event so tell that
3276 * to perf_adjust_period() to avoid stopping it
3277 * twice.
e050e3f0 3278 */
abd50713 3279 if (delta > 0)
f39d47ff 3280 perf_adjust_period(event, period, delta, false);
e050e3f0
SE
3281
3282 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
44377277
AS
3283 next:
3284 perf_pmu_enable(event->pmu);
60db5e09 3285 }
e050e3f0 3286
f39d47ff 3287 perf_pmu_enable(ctx->pmu);
e050e3f0 3288 raw_spin_unlock(&ctx->lock);
60db5e09
PZ
3289}
3290
235c7fc7 3291/*
cdd6c482 3292 * Round-robin a context's events:
235c7fc7 3293 */
cdd6c482 3294static void rotate_ctx(struct perf_event_context *ctx)
0793a61d 3295{
dddd3379
TG
3296 /*
3297 * Rotate the first entry last of non-pinned groups. Rotation might be
3298 * disabled by the inheritance code.
3299 */
3300 if (!ctx->rotate_disable)
3301 list_rotate_left(&ctx->flexible_groups);
235c7fc7
IM
3302}
3303
9e630205 3304static int perf_rotate_context(struct perf_cpu_context *cpuctx)
235c7fc7 3305{
8dc85d54 3306 struct perf_event_context *ctx = NULL;
2fde4f94 3307 int rotate = 0;
7fc23a53 3308
b5ab4cd5 3309 if (cpuctx->ctx.nr_events) {
b5ab4cd5
PZ
3310 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3311 rotate = 1;
3312 }
235c7fc7 3313
8dc85d54 3314 ctx = cpuctx->task_ctx;
b5ab4cd5 3315 if (ctx && ctx->nr_events) {
b5ab4cd5
PZ
3316 if (ctx->nr_events != ctx->nr_active)
3317 rotate = 1;
3318 }
9717e6cd 3319
e050e3f0 3320 if (!rotate)
0f5a2601
PZ
3321 goto done;
3322
facc4307 3323 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
1b9a644f 3324 perf_pmu_disable(cpuctx->ctx.pmu);
60db5e09 3325
e050e3f0
SE
3326 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3327 if (ctx)
3328 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
0793a61d 3329
e050e3f0
SE
3330 rotate_ctx(&cpuctx->ctx);
3331 if (ctx)
3332 rotate_ctx(ctx);
235c7fc7 3333
e050e3f0 3334 perf_event_sched_in(cpuctx, ctx, current);
235c7fc7 3335
0f5a2601
PZ
3336 perf_pmu_enable(cpuctx->ctx.pmu);
3337 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
b5ab4cd5 3338done:
9e630205
SE
3339
3340 return rotate;
e9d2b064
PZ
3341}
3342
3343void perf_event_task_tick(void)
3344{
2fde4f94
MR
3345 struct list_head *head = this_cpu_ptr(&active_ctx_list);
3346 struct perf_event_context *ctx, *tmp;
e050e3f0 3347 int throttled;
b5ab4cd5 3348
e9d2b064
PZ
3349 WARN_ON(!irqs_disabled());
3350
e050e3f0
SE
3351 __this_cpu_inc(perf_throttled_seq);
3352 throttled = __this_cpu_xchg(perf_throttled_count, 0);
555e0c1e 3353 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
e050e3f0 3354
2fde4f94 3355 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
e050e3f0 3356 perf_adjust_freq_unthr_context(ctx, throttled);
0793a61d
TG
3357}
3358
889ff015
FW
3359static int event_enable_on_exec(struct perf_event *event,
3360 struct perf_event_context *ctx)
3361{
3362 if (!event->attr.enable_on_exec)
3363 return 0;
3364
3365 event->attr.enable_on_exec = 0;
3366 if (event->state >= PERF_EVENT_STATE_INACTIVE)
3367 return 0;
3368
1d9b482e 3369 __perf_event_mark_enabled(event);
889ff015
FW
3370
3371 return 1;
3372}
3373
57e7986e 3374/*
cdd6c482 3375 * Enable all of a task's events that have been marked enable-on-exec.
57e7986e
PM
3376 * This expects task == current.
3377 */
c1274499 3378static void perf_event_enable_on_exec(int ctxn)
57e7986e 3379{
c1274499 3380 struct perf_event_context *ctx, *clone_ctx = NULL;
3e349507 3381 struct perf_cpu_context *cpuctx;
cdd6c482 3382 struct perf_event *event;
57e7986e
PM
3383 unsigned long flags;
3384 int enabled = 0;
3385
3386 local_irq_save(flags);
c1274499 3387 ctx = current->perf_event_ctxp[ctxn];
cdd6c482 3388 if (!ctx || !ctx->nr_events)
57e7986e
PM
3389 goto out;
3390
3e349507
PZ
3391 cpuctx = __get_cpu_context(ctx);
3392 perf_ctx_lock(cpuctx, ctx);
7fce2509 3393 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3e349507
PZ
3394 list_for_each_entry(event, &ctx->event_list, event_entry)
3395 enabled |= event_enable_on_exec(event, ctx);
57e7986e
PM
3396
3397 /*
3e349507 3398 * Unclone and reschedule this context if we enabled any event.
57e7986e 3399 */
3e349507 3400 if (enabled) {
211de6eb 3401 clone_ctx = unclone_ctx(ctx);
3e349507
PZ
3402 ctx_resched(cpuctx, ctx);
3403 }
3404 perf_ctx_unlock(cpuctx, ctx);
57e7986e 3405
9ed6060d 3406out:
57e7986e 3407 local_irq_restore(flags);
211de6eb
PZ
3408
3409 if (clone_ctx)
3410 put_ctx(clone_ctx);
57e7986e
PM
3411}
3412
0492d4c5
PZ
3413struct perf_read_data {
3414 struct perf_event *event;
3415 bool group;
7d88962e 3416 int ret;
0492d4c5
PZ
3417};
3418
0793a61d 3419/*
cdd6c482 3420 * Cross CPU call to read the hardware event
0793a61d 3421 */
cdd6c482 3422static void __perf_event_read(void *info)
0793a61d 3423{
0492d4c5
PZ
3424 struct perf_read_data *data = info;
3425 struct perf_event *sub, *event = data->event;
cdd6c482 3426 struct perf_event_context *ctx = event->ctx;
108b02cf 3427 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
4a00c16e 3428 struct pmu *pmu = event->pmu;
621a01ea 3429
e1ac3614
PM
3430 /*
3431 * If this is a task context, we need to check whether it is
3432 * the current task context of this cpu. If not it has been
3433 * scheduled out before the smp call arrived. In that case
cdd6c482
IM
3434 * event->count would have been updated to a recent sample
3435 * when the event was scheduled out.
e1ac3614
PM
3436 */
3437 if (ctx->task && cpuctx->task_ctx != ctx)
3438 return;
3439
e625cce1 3440 raw_spin_lock(&ctx->lock);
e5d1367f 3441 if (ctx->is_active) {
542e72fc 3442 update_context_time(ctx);
e5d1367f
SE
3443 update_cgrp_time_from_event(event);
3444 }
0492d4c5 3445
cdd6c482 3446 update_event_times(event);
4a00c16e
SB
3447 if (event->state != PERF_EVENT_STATE_ACTIVE)
3448 goto unlock;
0492d4c5 3449
4a00c16e
SB
3450 if (!data->group) {
3451 pmu->read(event);
3452 data->ret = 0;
0492d4c5 3453 goto unlock;
4a00c16e
SB
3454 }
3455
3456 pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3457
3458 pmu->read(event);
0492d4c5
PZ
3459
3460 list_for_each_entry(sub, &event->sibling_list, group_entry) {
3461 update_event_times(sub);
4a00c16e
SB
3462 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3463 /*
3464 * Use sibling's PMU rather than @event's since
3465 * sibling could be on different (eg: software) PMU.
3466 */
0492d4c5 3467 sub->pmu->read(sub);
4a00c16e 3468 }
0492d4c5 3469 }
4a00c16e
SB
3470
3471 data->ret = pmu->commit_txn(pmu);
0492d4c5
PZ
3472
3473unlock:
e625cce1 3474 raw_spin_unlock(&ctx->lock);
0793a61d
TG
3475}
3476
b5e58793
PZ
3477static inline u64 perf_event_count(struct perf_event *event)
3478{
eacd3ecc
MF
3479 if (event->pmu->count)
3480 return event->pmu->count(event);
3481
3482 return __perf_event_count(event);
b5e58793
PZ
3483}
3484
ffe8690c
KX
3485/*
3486 * NMI-safe method to read a local event, that is an event that
3487 * is:
3488 * - either for the current task, or for this CPU
3489 * - does not have inherit set, for inherited task events
3490 * will not be local and we cannot read them atomically
3491 * - must not have a pmu::count method
3492 */
3493u64 perf_event_read_local(struct perf_event *event)
3494{
3495 unsigned long flags;
3496 u64 val;
3497
3498 /*
3499 * Disabling interrupts avoids all counter scheduling (context
3500 * switches, timer based rotation and IPIs).
3501 */
3502 local_irq_save(flags);
3503
3504 /* If this is a per-task event, it must be for current */
3505 WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) &&
3506 event->hw.target != current);
3507
3508 /* If this is a per-CPU event, it must be for this CPU */
3509 WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) &&
3510 event->cpu != smp_processor_id());
3511
3512 /*
3513 * It must not be an event with inherit set, we cannot read
3514 * all child counters from atomic context.
3515 */
3516 WARN_ON_ONCE(event->attr.inherit);
3517
3518 /*
3519 * It must not have a pmu::count method, those are not
3520 * NMI safe.
3521 */
3522 WARN_ON_ONCE(event->pmu->count);
3523
3524 /*
3525 * If the event is currently on this CPU, its either a per-task event,
3526 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3527 * oncpu == -1).
3528 */
3529 if (event->oncpu == smp_processor_id())
3530 event->pmu->read(event);
3531
3532 val = local64_read(&event->count);
3533 local_irq_restore(flags);
3534
3535 return val;
3536}
3537
7d88962e 3538static int perf_event_read(struct perf_event *event, bool group)
0793a61d 3539{
7d88962e
SB
3540 int ret = 0;
3541
0793a61d 3542 /*
cdd6c482
IM
3543 * If event is enabled and currently active on a CPU, update the
3544 * value in the event structure:
0793a61d 3545 */
cdd6c482 3546 if (event->state == PERF_EVENT_STATE_ACTIVE) {
0492d4c5
PZ
3547 struct perf_read_data data = {
3548 .event = event,
3549 .group = group,
7d88962e 3550 .ret = 0,
0492d4c5 3551 };
58763148
PZ
3552 /*
3553 * Purposely ignore the smp_call_function_single() return
3554 * value.
3555 *
3556 * If event->oncpu isn't a valid CPU it means the event got
3557 * scheduled out and that will have updated the event count.
3558 *
3559 * Therefore, either way, we'll have an up-to-date event count
3560 * after this.
3561 */
3562 (void)smp_call_function_single(event->oncpu, __perf_event_read, &data, 1);
3563 ret = data.ret;
cdd6c482 3564 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
2b8988c9
PZ
3565 struct perf_event_context *ctx = event->ctx;
3566 unsigned long flags;
3567
e625cce1 3568 raw_spin_lock_irqsave(&ctx->lock, flags);
c530ccd9
SE
3569 /*
3570 * may read while context is not active
3571 * (e.g., thread is blocked), in that case
3572 * we cannot update context time
3573 */
e5d1367f 3574 if (ctx->is_active) {
c530ccd9 3575 update_context_time(ctx);
e5d1367f
SE
3576 update_cgrp_time_from_event(event);
3577 }
0492d4c5
PZ
3578 if (group)
3579 update_group_times(event);
3580 else
3581 update_event_times(event);
e625cce1 3582 raw_spin_unlock_irqrestore(&ctx->lock, flags);
0793a61d 3583 }
7d88962e
SB
3584
3585 return ret;
0793a61d
TG
3586}
3587
a63eaf34 3588/*
cdd6c482 3589 * Initialize the perf_event context in a task_struct:
a63eaf34 3590 */
eb184479 3591static void __perf_event_init_context(struct perf_event_context *ctx)
a63eaf34 3592{
e625cce1 3593 raw_spin_lock_init(&ctx->lock);
a63eaf34 3594 mutex_init(&ctx->mutex);
2fde4f94 3595 INIT_LIST_HEAD(&ctx->active_ctx_list);
889ff015
FW
3596 INIT_LIST_HEAD(&ctx->pinned_groups);
3597 INIT_LIST_HEAD(&ctx->flexible_groups);
a63eaf34
PM
3598 INIT_LIST_HEAD(&ctx->event_list);
3599 atomic_set(&ctx->refcount, 1);
eb184479
PZ
3600}
3601
3602static struct perf_event_context *
3603alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3604{
3605 struct perf_event_context *ctx;
3606
3607 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3608 if (!ctx)
3609 return NULL;
3610
3611 __perf_event_init_context(ctx);
3612 if (task) {
3613 ctx->task = task;
3614 get_task_struct(task);
0793a61d 3615 }
eb184479
PZ
3616 ctx->pmu = pmu;
3617
3618 return ctx;
a63eaf34
PM
3619}
3620
2ebd4ffb
MH
3621static struct task_struct *
3622find_lively_task_by_vpid(pid_t vpid)
3623{
3624 struct task_struct *task;
0793a61d
TG
3625
3626 rcu_read_lock();
2ebd4ffb 3627 if (!vpid)
0793a61d
TG
3628 task = current;
3629 else
2ebd4ffb 3630 task = find_task_by_vpid(vpid);
0793a61d
TG
3631 if (task)
3632 get_task_struct(task);
3633 rcu_read_unlock();
3634
3635 if (!task)
3636 return ERR_PTR(-ESRCH);
3637
2ebd4ffb 3638 return task;
2ebd4ffb
MH
3639}
3640
fe4b04fa
PZ
3641/*
3642 * Returns a matching context with refcount and pincount.
3643 */
108b02cf 3644static struct perf_event_context *
4af57ef2
YZ
3645find_get_context(struct pmu *pmu, struct task_struct *task,
3646 struct perf_event *event)
0793a61d 3647{
211de6eb 3648 struct perf_event_context *ctx, *clone_ctx = NULL;
22a4f650 3649 struct perf_cpu_context *cpuctx;
4af57ef2 3650 void *task_ctx_data = NULL;
25346b93 3651 unsigned long flags;
8dc85d54 3652 int ctxn, err;
4af57ef2 3653 int cpu = event->cpu;
0793a61d 3654
22a4ec72 3655 if (!task) {
cdd6c482 3656 /* Must be root to operate on a CPU event: */
0764771d 3657 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
0793a61d
TG
3658 return ERR_PTR(-EACCES);
3659
0793a61d 3660 /*
cdd6c482 3661 * We could be clever and allow to attach a event to an
0793a61d
TG
3662 * offline CPU and activate it when the CPU comes up, but
3663 * that's for later.
3664 */
f6325e30 3665 if (!cpu_online(cpu))
0793a61d
TG
3666 return ERR_PTR(-ENODEV);
3667
108b02cf 3668 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
0793a61d 3669 ctx = &cpuctx->ctx;
c93f7669 3670 get_ctx(ctx);
fe4b04fa 3671 ++ctx->pin_count;
0793a61d 3672
0793a61d
TG
3673 return ctx;
3674 }
3675
8dc85d54
PZ
3676 err = -EINVAL;
3677 ctxn = pmu->task_ctx_nr;
3678 if (ctxn < 0)
3679 goto errout;
3680
4af57ef2
YZ
3681 if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3682 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3683 if (!task_ctx_data) {
3684 err = -ENOMEM;
3685 goto errout;
3686 }
3687 }
3688
9ed6060d 3689retry:
8dc85d54 3690 ctx = perf_lock_task_context(task, ctxn, &flags);
c93f7669 3691 if (ctx) {
211de6eb 3692 clone_ctx = unclone_ctx(ctx);
fe4b04fa 3693 ++ctx->pin_count;
4af57ef2
YZ
3694
3695 if (task_ctx_data && !ctx->task_ctx_data) {
3696 ctx->task_ctx_data = task_ctx_data;
3697 task_ctx_data = NULL;
3698 }
e625cce1 3699 raw_spin_unlock_irqrestore(&ctx->lock, flags);
211de6eb
PZ
3700
3701 if (clone_ctx)
3702 put_ctx(clone_ctx);
9137fb28 3703 } else {
eb184479 3704 ctx = alloc_perf_context(pmu, task);
c93f7669
PM
3705 err = -ENOMEM;
3706 if (!ctx)
3707 goto errout;
eb184479 3708
4af57ef2
YZ
3709 if (task_ctx_data) {
3710 ctx->task_ctx_data = task_ctx_data;
3711 task_ctx_data = NULL;
3712 }
3713
dbe08d82
ON
3714 err = 0;
3715 mutex_lock(&task->perf_event_mutex);
3716 /*
3717 * If it has already passed perf_event_exit_task().
3718 * we must see PF_EXITING, it takes this mutex too.
3719 */
3720 if (task->flags & PF_EXITING)
3721 err = -ESRCH;
3722 else if (task->perf_event_ctxp[ctxn])
3723 err = -EAGAIN;
fe4b04fa 3724 else {
9137fb28 3725 get_ctx(ctx);
fe4b04fa 3726 ++ctx->pin_count;
dbe08d82 3727 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
fe4b04fa 3728 }
dbe08d82
ON
3729 mutex_unlock(&task->perf_event_mutex);
3730
3731 if (unlikely(err)) {
9137fb28 3732 put_ctx(ctx);
dbe08d82
ON
3733
3734 if (err == -EAGAIN)
3735 goto retry;
3736 goto errout;
a63eaf34
PM
3737 }
3738 }
3739
4af57ef2 3740 kfree(task_ctx_data);
0793a61d 3741 return ctx;
c93f7669 3742
9ed6060d 3743errout:
4af57ef2 3744 kfree(task_ctx_data);
c93f7669 3745 return ERR_PTR(err);
0793a61d
TG
3746}
3747
6fb2915d 3748static void perf_event_free_filter(struct perf_event *event);
2541517c 3749static void perf_event_free_bpf_prog(struct perf_event *event);
6fb2915d 3750
cdd6c482 3751static void free_event_rcu(struct rcu_head *head)
592903cd 3752{
cdd6c482 3753 struct perf_event *event;
592903cd 3754
cdd6c482
IM
3755 event = container_of(head, struct perf_event, rcu_head);
3756 if (event->ns)
3757 put_pid_ns(event->ns);
6fb2915d 3758 perf_event_free_filter(event);
cdd6c482 3759 kfree(event);
592903cd
PZ
3760}
3761
b69cf536
PZ
3762static void ring_buffer_attach(struct perf_event *event,
3763 struct ring_buffer *rb);
925d519a 3764
f2fb6bef
KL
3765static void detach_sb_event(struct perf_event *event)
3766{
3767 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
3768
3769 raw_spin_lock(&pel->lock);
3770 list_del_rcu(&event->sb_list);
3771 raw_spin_unlock(&pel->lock);
3772}
3773
a4f144eb 3774static bool is_sb_event(struct perf_event *event)
f2fb6bef 3775{
a4f144eb
DCC
3776 struct perf_event_attr *attr = &event->attr;
3777
f2fb6bef 3778 if (event->parent)
a4f144eb 3779 return false;
f2fb6bef
KL
3780
3781 if (event->attach_state & PERF_ATTACH_TASK)
a4f144eb 3782 return false;
f2fb6bef 3783
a4f144eb
DCC
3784 if (attr->mmap || attr->mmap_data || attr->mmap2 ||
3785 attr->comm || attr->comm_exec ||
3786 attr->task ||
3787 attr->context_switch)
3788 return true;
3789 return false;
3790}
3791
3792static void unaccount_pmu_sb_event(struct perf_event *event)
3793{
3794 if (is_sb_event(event))
3795 detach_sb_event(event);
f2fb6bef
KL
3796}
3797
4beb31f3 3798static void unaccount_event_cpu(struct perf_event *event, int cpu)
f1600952 3799{
4beb31f3
FW
3800 if (event->parent)
3801 return;
3802
4beb31f3
FW
3803 if (is_cgroup_event(event))
3804 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3805}
925d519a 3806
555e0c1e
FW
3807#ifdef CONFIG_NO_HZ_FULL
3808static DEFINE_SPINLOCK(nr_freq_lock);
3809#endif
3810
3811static void unaccount_freq_event_nohz(void)
3812{
3813#ifdef CONFIG_NO_HZ_FULL
3814 spin_lock(&nr_freq_lock);
3815 if (atomic_dec_and_test(&nr_freq_events))
3816 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
3817 spin_unlock(&nr_freq_lock);
3818#endif
3819}
3820
3821static void unaccount_freq_event(void)
3822{
3823 if (tick_nohz_full_enabled())
3824 unaccount_freq_event_nohz();
3825 else
3826 atomic_dec(&nr_freq_events);
3827}
3828
4beb31f3
FW
3829static void unaccount_event(struct perf_event *event)
3830{
25432ae9
PZ
3831 bool dec = false;
3832
4beb31f3
FW
3833 if (event->parent)
3834 return;
3835
3836 if (event->attach_state & PERF_ATTACH_TASK)
25432ae9 3837 dec = true;
4beb31f3
FW
3838 if (event->attr.mmap || event->attr.mmap_data)
3839 atomic_dec(&nr_mmap_events);
3840 if (event->attr.comm)
3841 atomic_dec(&nr_comm_events);
3842 if (event->attr.task)
3843 atomic_dec(&nr_task_events);
948b26b6 3844 if (event->attr.freq)
555e0c1e 3845 unaccount_freq_event();
45ac1403 3846 if (event->attr.context_switch) {
25432ae9 3847 dec = true;
45ac1403
AH
3848 atomic_dec(&nr_switch_events);
3849 }
4beb31f3 3850 if (is_cgroup_event(event))
25432ae9 3851 dec = true;
4beb31f3 3852 if (has_branch_stack(event))
25432ae9
PZ
3853 dec = true;
3854
9107c89e
PZ
3855 if (dec) {
3856 if (!atomic_add_unless(&perf_sched_count, -1, 1))
3857 schedule_delayed_work(&perf_sched_work, HZ);
3858 }
4beb31f3
FW
3859
3860 unaccount_event_cpu(event, event->cpu);
f2fb6bef
KL
3861
3862 unaccount_pmu_sb_event(event);
4beb31f3 3863}
925d519a 3864
9107c89e
PZ
3865static void perf_sched_delayed(struct work_struct *work)
3866{
3867 mutex_lock(&perf_sched_mutex);
3868 if (atomic_dec_and_test(&perf_sched_count))
3869 static_branch_disable(&perf_sched_events);
3870 mutex_unlock(&perf_sched_mutex);
3871}
3872
bed5b25a
AS
3873/*
3874 * The following implement mutual exclusion of events on "exclusive" pmus
3875 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
3876 * at a time, so we disallow creating events that might conflict, namely:
3877 *
3878 * 1) cpu-wide events in the presence of per-task events,
3879 * 2) per-task events in the presence of cpu-wide events,
3880 * 3) two matching events on the same context.
3881 *
3882 * The former two cases are handled in the allocation path (perf_event_alloc(),
a0733e69 3883 * _free_event()), the latter -- before the first perf_install_in_context().
bed5b25a
AS
3884 */
3885static int exclusive_event_init(struct perf_event *event)
3886{
3887 struct pmu *pmu = event->pmu;
3888
3889 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3890 return 0;
3891
3892 /*
3893 * Prevent co-existence of per-task and cpu-wide events on the
3894 * same exclusive pmu.
3895 *
3896 * Negative pmu::exclusive_cnt means there are cpu-wide
3897 * events on this "exclusive" pmu, positive means there are
3898 * per-task events.
3899 *
3900 * Since this is called in perf_event_alloc() path, event::ctx
3901 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
3902 * to mean "per-task event", because unlike other attach states it
3903 * never gets cleared.
3904 */
3905 if (event->attach_state & PERF_ATTACH_TASK) {
3906 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
3907 return -EBUSY;
3908 } else {
3909 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
3910 return -EBUSY;
3911 }
3912
3913 return 0;
3914}
3915
3916static void exclusive_event_destroy(struct perf_event *event)
3917{
3918 struct pmu *pmu = event->pmu;
3919
3920 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3921 return;
3922
3923 /* see comment in exclusive_event_init() */
3924 if (event->attach_state & PERF_ATTACH_TASK)
3925 atomic_dec(&pmu->exclusive_cnt);
3926 else
3927 atomic_inc(&pmu->exclusive_cnt);
3928}
3929
3930static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
3931{
3932 if ((e1->pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) &&
3933 (e1->cpu == e2->cpu ||
3934 e1->cpu == -1 ||
3935 e2->cpu == -1))
3936 return true;
3937 return false;
3938}
3939
3940/* Called under the same ctx::mutex as perf_install_in_context() */
3941static bool exclusive_event_installable(struct perf_event *event,
3942 struct perf_event_context *ctx)
3943{
3944 struct perf_event *iter_event;
3945 struct pmu *pmu = event->pmu;
3946
3947 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3948 return true;
3949
3950 list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
3951 if (exclusive_event_match(iter_event, event))
3952 return false;
3953 }
3954
3955 return true;
3956}
3957
375637bc
AS
3958static void perf_addr_filters_splice(struct perf_event *event,
3959 struct list_head *head);
3960
683ede43 3961static void _free_event(struct perf_event *event)
f1600952 3962{
e360adbe 3963 irq_work_sync(&event->pending);
925d519a 3964
4beb31f3 3965 unaccount_event(event);
9ee318a7 3966
76369139 3967 if (event->rb) {
9bb5d40c
PZ
3968 /*
3969 * Can happen when we close an event with re-directed output.
3970 *
3971 * Since we have a 0 refcount, perf_mmap_close() will skip
3972 * over us; possibly making our ring_buffer_put() the last.
3973 */
3974 mutex_lock(&event->mmap_mutex);
b69cf536 3975 ring_buffer_attach(event, NULL);
9bb5d40c 3976 mutex_unlock(&event->mmap_mutex);
a4be7c27
PZ
3977 }
3978
e5d1367f
SE
3979 if (is_cgroup_event(event))
3980 perf_detach_cgroup(event);
3981
a0733e69
PZ
3982 if (!event->parent) {
3983 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3984 put_callchain_buffers();
3985 }
3986
3987 perf_event_free_bpf_prog(event);
375637bc
AS
3988 perf_addr_filters_splice(event, NULL);
3989 kfree(event->addr_filters_offs);
a0733e69
PZ
3990
3991 if (event->destroy)
3992 event->destroy(event);
3993
3994 if (event->ctx)
3995 put_ctx(event->ctx);
3996
62a92c8f
AS
3997 exclusive_event_destroy(event);
3998 module_put(event->pmu->module);
a0733e69
PZ
3999
4000 call_rcu(&event->rcu_head, free_event_rcu);
f1600952
PZ
4001}
4002
683ede43
PZ
4003/*
4004 * Used to free events which have a known refcount of 1, such as in error paths
4005 * where the event isn't exposed yet and inherited events.
4006 */
4007static void free_event(struct perf_event *event)
0793a61d 4008{
683ede43
PZ
4009 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4010 "unexpected event refcount: %ld; ptr=%p\n",
4011 atomic_long_read(&event->refcount), event)) {
4012 /* leak to avoid use-after-free */
4013 return;
4014 }
0793a61d 4015
683ede43 4016 _free_event(event);
0793a61d
TG
4017}
4018
a66a3052 4019/*
f8697762 4020 * Remove user event from the owner task.
a66a3052 4021 */
f8697762 4022static void perf_remove_from_owner(struct perf_event *event)
fb0459d7 4023{
8882135b 4024 struct task_struct *owner;
fb0459d7 4025
8882135b 4026 rcu_read_lock();
8882135b 4027 /*
f47c02c0
PZ
4028 * Matches the smp_store_release() in perf_event_exit_task(). If we
4029 * observe !owner it means the list deletion is complete and we can
4030 * indeed free this event, otherwise we need to serialize on
8882135b
PZ
4031 * owner->perf_event_mutex.
4032 */
f47c02c0 4033 owner = lockless_dereference(event->owner);
8882135b
PZ
4034 if (owner) {
4035 /*
4036 * Since delayed_put_task_struct() also drops the last
4037 * task reference we can safely take a new reference
4038 * while holding the rcu_read_lock().
4039 */
4040 get_task_struct(owner);
4041 }
4042 rcu_read_unlock();
4043
4044 if (owner) {
f63a8daa
PZ
4045 /*
4046 * If we're here through perf_event_exit_task() we're already
4047 * holding ctx->mutex which would be an inversion wrt. the
4048 * normal lock order.
4049 *
4050 * However we can safely take this lock because its the child
4051 * ctx->mutex.
4052 */
4053 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4054
8882135b
PZ
4055 /*
4056 * We have to re-check the event->owner field, if it is cleared
4057 * we raced with perf_event_exit_task(), acquiring the mutex
4058 * ensured they're done, and we can proceed with freeing the
4059 * event.
4060 */
f47c02c0 4061 if (event->owner) {
8882135b 4062 list_del_init(&event->owner_entry);
f47c02c0
PZ
4063 smp_store_release(&event->owner, NULL);
4064 }
8882135b
PZ
4065 mutex_unlock(&owner->perf_event_mutex);
4066 put_task_struct(owner);
4067 }
f8697762
JO
4068}
4069
f8697762
JO
4070static void put_event(struct perf_event *event)
4071{
f8697762
JO
4072 if (!atomic_long_dec_and_test(&event->refcount))
4073 return;
4074
c6e5b732
PZ
4075 _free_event(event);
4076}
4077
4078/*
4079 * Kill an event dead; while event:refcount will preserve the event
4080 * object, it will not preserve its functionality. Once the last 'user'
4081 * gives up the object, we'll destroy the thing.
4082 */
4083int perf_event_release_kernel(struct perf_event *event)
4084{
a4f4bb6d 4085 struct perf_event_context *ctx = event->ctx;
c6e5b732
PZ
4086 struct perf_event *child, *tmp;
4087
a4f4bb6d
PZ
4088 /*
4089 * If we got here through err_file: fput(event_file); we will not have
4090 * attached to a context yet.
4091 */
4092 if (!ctx) {
4093 WARN_ON_ONCE(event->attach_state &
4094 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4095 goto no_ctx;
4096 }
4097
f8697762
JO
4098 if (!is_kernel_event(event))
4099 perf_remove_from_owner(event);
8882135b 4100
5fa7c8ec 4101 ctx = perf_event_ctx_lock(event);
a83fe28e 4102 WARN_ON_ONCE(ctx->parent_ctx);
a69b0ca4 4103 perf_remove_from_context(event, DETACH_GROUP);
683ede43 4104
a69b0ca4 4105 raw_spin_lock_irq(&ctx->lock);
683ede43 4106 /*
a69b0ca4
PZ
4107 * Mark this even as STATE_DEAD, there is no external reference to it
4108 * anymore.
683ede43 4109 *
a69b0ca4
PZ
4110 * Anybody acquiring event->child_mutex after the below loop _must_
4111 * also see this, most importantly inherit_event() which will avoid
4112 * placing more children on the list.
683ede43 4113 *
c6e5b732
PZ
4114 * Thus this guarantees that we will in fact observe and kill _ALL_
4115 * child events.
683ede43 4116 */
a69b0ca4
PZ
4117 event->state = PERF_EVENT_STATE_DEAD;
4118 raw_spin_unlock_irq(&ctx->lock);
4119
4120 perf_event_ctx_unlock(event, ctx);
683ede43 4121
c6e5b732
PZ
4122again:
4123 mutex_lock(&event->child_mutex);
4124 list_for_each_entry(child, &event->child_list, child_list) {
a6fa941d 4125
c6e5b732
PZ
4126 /*
4127 * Cannot change, child events are not migrated, see the
4128 * comment with perf_event_ctx_lock_nested().
4129 */
4130 ctx = lockless_dereference(child->ctx);
4131 /*
4132 * Since child_mutex nests inside ctx::mutex, we must jump
4133 * through hoops. We start by grabbing a reference on the ctx.
4134 *
4135 * Since the event cannot get freed while we hold the
4136 * child_mutex, the context must also exist and have a !0
4137 * reference count.
4138 */
4139 get_ctx(ctx);
4140
4141 /*
4142 * Now that we have a ctx ref, we can drop child_mutex, and
4143 * acquire ctx::mutex without fear of it going away. Then we
4144 * can re-acquire child_mutex.
4145 */
4146 mutex_unlock(&event->child_mutex);
4147 mutex_lock(&ctx->mutex);
4148 mutex_lock(&event->child_mutex);
4149
4150 /*
4151 * Now that we hold ctx::mutex and child_mutex, revalidate our
4152 * state, if child is still the first entry, it didn't get freed
4153 * and we can continue doing so.
4154 */
4155 tmp = list_first_entry_or_null(&event->child_list,
4156 struct perf_event, child_list);
4157 if (tmp == child) {
4158 perf_remove_from_context(child, DETACH_GROUP);
4159 list_del(&child->child_list);
4160 free_event(child);
4161 /*
4162 * This matches the refcount bump in inherit_event();
4163 * this can't be the last reference.
4164 */
4165 put_event(event);
4166 }
4167
4168 mutex_unlock(&event->child_mutex);
4169 mutex_unlock(&ctx->mutex);
4170 put_ctx(ctx);
4171 goto again;
4172 }
4173 mutex_unlock(&event->child_mutex);
4174
a4f4bb6d
PZ
4175no_ctx:
4176 put_event(event); /* Must be the 'last' reference */
683ede43
PZ
4177 return 0;
4178}
4179EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4180
8b10c5e2
PZ
4181/*
4182 * Called when the last reference to the file is gone.
4183 */
a6fa941d
AV
4184static int perf_release(struct inode *inode, struct file *file)
4185{
c6e5b732 4186 perf_event_release_kernel(file->private_data);
a6fa941d 4187 return 0;
fb0459d7 4188}
fb0459d7 4189
59ed446f 4190u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
e53c0994 4191{
cdd6c482 4192 struct perf_event *child;
e53c0994
PZ
4193 u64 total = 0;
4194
59ed446f
PZ
4195 *enabled = 0;
4196 *running = 0;
4197
6f10581a 4198 mutex_lock(&event->child_mutex);
01add3ea 4199
7d88962e 4200 (void)perf_event_read(event, false);
01add3ea
SB
4201 total += perf_event_count(event);
4202
59ed446f
PZ
4203 *enabled += event->total_time_enabled +
4204 atomic64_read(&event->child_total_time_enabled);
4205 *running += event->total_time_running +
4206 atomic64_read(&event->child_total_time_running);
4207
4208 list_for_each_entry(child, &event->child_list, child_list) {
7d88962e 4209 (void)perf_event_read(child, false);
01add3ea 4210 total += perf_event_count(child);
59ed446f
PZ
4211 *enabled += child->total_time_enabled;
4212 *running += child->total_time_running;
4213 }
6f10581a 4214 mutex_unlock(&event->child_mutex);
e53c0994
PZ
4215
4216 return total;
4217}
fb0459d7 4218EXPORT_SYMBOL_GPL(perf_event_read_value);
e53c0994 4219
7d88962e 4220static int __perf_read_group_add(struct perf_event *leader,
fa8c2693 4221 u64 read_format, u64 *values)
3dab77fb 4222{
fa8c2693
PZ
4223 struct perf_event *sub;
4224 int n = 1; /* skip @nr */
7d88962e 4225 int ret;
f63a8daa 4226
7d88962e
SB
4227 ret = perf_event_read(leader, true);
4228 if (ret)
4229 return ret;
abf4868b 4230
fa8c2693
PZ
4231 /*
4232 * Since we co-schedule groups, {enabled,running} times of siblings
4233 * will be identical to those of the leader, so we only publish one
4234 * set.
4235 */
4236 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4237 values[n++] += leader->total_time_enabled +
4238 atomic64_read(&leader->child_total_time_enabled);
4239 }
3dab77fb 4240
fa8c2693
PZ
4241 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4242 values[n++] += leader->total_time_running +
4243 atomic64_read(&leader->child_total_time_running);
4244 }
4245
4246 /*
4247 * Write {count,id} tuples for every sibling.
4248 */
4249 values[n++] += perf_event_count(leader);
abf4868b
PZ
4250 if (read_format & PERF_FORMAT_ID)
4251 values[n++] = primary_event_id(leader);
3dab77fb 4252
fa8c2693
PZ
4253 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4254 values[n++] += perf_event_count(sub);
4255 if (read_format & PERF_FORMAT_ID)
4256 values[n++] = primary_event_id(sub);
4257 }
7d88962e
SB
4258
4259 return 0;
fa8c2693 4260}
3dab77fb 4261
fa8c2693
PZ
4262static int perf_read_group(struct perf_event *event,
4263 u64 read_format, char __user *buf)
4264{
4265 struct perf_event *leader = event->group_leader, *child;
4266 struct perf_event_context *ctx = leader->ctx;
7d88962e 4267 int ret;
fa8c2693 4268 u64 *values;
3dab77fb 4269
fa8c2693 4270 lockdep_assert_held(&ctx->mutex);
3dab77fb 4271
fa8c2693
PZ
4272 values = kzalloc(event->read_size, GFP_KERNEL);
4273 if (!values)
4274 return -ENOMEM;
3dab77fb 4275
fa8c2693
PZ
4276 values[0] = 1 + leader->nr_siblings;
4277
4278 /*
4279 * By locking the child_mutex of the leader we effectively
4280 * lock the child list of all siblings.. XXX explain how.
4281 */
4282 mutex_lock(&leader->child_mutex);
abf4868b 4283
7d88962e
SB
4284 ret = __perf_read_group_add(leader, read_format, values);
4285 if (ret)
4286 goto unlock;
4287
4288 list_for_each_entry(child, &leader->child_list, child_list) {
4289 ret = __perf_read_group_add(child, read_format, values);
4290 if (ret)
4291 goto unlock;
4292 }
abf4868b 4293
fa8c2693 4294 mutex_unlock(&leader->child_mutex);
abf4868b 4295
7d88962e 4296 ret = event->read_size;
fa8c2693
PZ
4297 if (copy_to_user(buf, values, event->read_size))
4298 ret = -EFAULT;
7d88962e 4299 goto out;
fa8c2693 4300
7d88962e
SB
4301unlock:
4302 mutex_unlock(&leader->child_mutex);
4303out:
fa8c2693 4304 kfree(values);
abf4868b 4305 return ret;
3dab77fb
PZ
4306}
4307
b15f495b 4308static int perf_read_one(struct perf_event *event,
3dab77fb
PZ
4309 u64 read_format, char __user *buf)
4310{
59ed446f 4311 u64 enabled, running;
3dab77fb
PZ
4312 u64 values[4];
4313 int n = 0;
4314
59ed446f
PZ
4315 values[n++] = perf_event_read_value(event, &enabled, &running);
4316 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4317 values[n++] = enabled;
4318 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4319 values[n++] = running;
3dab77fb 4320 if (read_format & PERF_FORMAT_ID)
cdd6c482 4321 values[n++] = primary_event_id(event);
3dab77fb
PZ
4322
4323 if (copy_to_user(buf, values, n * sizeof(u64)))
4324 return -EFAULT;
4325
4326 return n * sizeof(u64);
4327}
4328
dc633982
JO
4329static bool is_event_hup(struct perf_event *event)
4330{
4331 bool no_children;
4332
a69b0ca4 4333 if (event->state > PERF_EVENT_STATE_EXIT)
dc633982
JO
4334 return false;
4335
4336 mutex_lock(&event->child_mutex);
4337 no_children = list_empty(&event->child_list);
4338 mutex_unlock(&event->child_mutex);
4339 return no_children;
4340}
4341
0793a61d 4342/*
cdd6c482 4343 * Read the performance event - simple non blocking version for now
0793a61d
TG
4344 */
4345static ssize_t
b15f495b 4346__perf_read(struct perf_event *event, char __user *buf, size_t count)
0793a61d 4347{
cdd6c482 4348 u64 read_format = event->attr.read_format;
3dab77fb 4349 int ret;
0793a61d 4350
3b6f9e5c 4351 /*
cdd6c482 4352 * Return end-of-file for a read on a event that is in
3b6f9e5c
PM
4353 * error state (i.e. because it was pinned but it couldn't be
4354 * scheduled on to the CPU at some point).
4355 */
cdd6c482 4356 if (event->state == PERF_EVENT_STATE_ERROR)
3b6f9e5c
PM
4357 return 0;
4358
c320c7b7 4359 if (count < event->read_size)
3dab77fb
PZ
4360 return -ENOSPC;
4361
cdd6c482 4362 WARN_ON_ONCE(event->ctx->parent_ctx);
3dab77fb 4363 if (read_format & PERF_FORMAT_GROUP)
b15f495b 4364 ret = perf_read_group(event, read_format, buf);
3dab77fb 4365 else
b15f495b 4366 ret = perf_read_one(event, read_format, buf);
0793a61d 4367
3dab77fb 4368 return ret;
0793a61d
TG
4369}
4370
0793a61d
TG
4371static ssize_t
4372perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4373{
cdd6c482 4374 struct perf_event *event = file->private_data;
f63a8daa
PZ
4375 struct perf_event_context *ctx;
4376 int ret;
0793a61d 4377
f63a8daa 4378 ctx = perf_event_ctx_lock(event);
b15f495b 4379 ret = __perf_read(event, buf, count);
f63a8daa
PZ
4380 perf_event_ctx_unlock(event, ctx);
4381
4382 return ret;
0793a61d
TG
4383}
4384
4385static unsigned int perf_poll(struct file *file, poll_table *wait)
4386{
cdd6c482 4387 struct perf_event *event = file->private_data;
76369139 4388 struct ring_buffer *rb;
61b67684 4389 unsigned int events = POLLHUP;
c7138f37 4390
e708d7ad 4391 poll_wait(file, &event->waitq, wait);
179033b3 4392
dc633982 4393 if (is_event_hup(event))
179033b3 4394 return events;
c7138f37 4395
10c6db11 4396 /*
9bb5d40c
PZ
4397 * Pin the event->rb by taking event->mmap_mutex; otherwise
4398 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
10c6db11
PZ
4399 */
4400 mutex_lock(&event->mmap_mutex);
9bb5d40c
PZ
4401 rb = event->rb;
4402 if (rb)
76369139 4403 events = atomic_xchg(&rb->poll, 0);
10c6db11 4404 mutex_unlock(&event->mmap_mutex);
0793a61d
TG
4405 return events;
4406}
4407
f63a8daa 4408static void _perf_event_reset(struct perf_event *event)
6de6a7b9 4409{
7d88962e 4410 (void)perf_event_read(event, false);
e7850595 4411 local64_set(&event->count, 0);
cdd6c482 4412 perf_event_update_userpage(event);
3df5edad
PZ
4413}
4414
c93f7669 4415/*
cdd6c482
IM
4416 * Holding the top-level event's child_mutex means that any
4417 * descendant process that has inherited this event will block
8ba289b8 4418 * in perf_event_exit_event() if it goes to exit, thus satisfying the
cdd6c482 4419 * task existence requirements of perf_event_enable/disable.
c93f7669 4420 */
cdd6c482
IM
4421static void perf_event_for_each_child(struct perf_event *event,
4422 void (*func)(struct perf_event *))
3df5edad 4423{
cdd6c482 4424 struct perf_event *child;
3df5edad 4425
cdd6c482 4426 WARN_ON_ONCE(event->ctx->parent_ctx);
f63a8daa 4427
cdd6c482
IM
4428 mutex_lock(&event->child_mutex);
4429 func(event);
4430 list_for_each_entry(child, &event->child_list, child_list)
3df5edad 4431 func(child);
cdd6c482 4432 mutex_unlock(&event->child_mutex);
3df5edad
PZ
4433}
4434
cdd6c482
IM
4435static void perf_event_for_each(struct perf_event *event,
4436 void (*func)(struct perf_event *))
3df5edad 4437{
cdd6c482
IM
4438 struct perf_event_context *ctx = event->ctx;
4439 struct perf_event *sibling;
3df5edad 4440
f63a8daa
PZ
4441 lockdep_assert_held(&ctx->mutex);
4442
cdd6c482 4443 event = event->group_leader;
75f937f2 4444
cdd6c482 4445 perf_event_for_each_child(event, func);
cdd6c482 4446 list_for_each_entry(sibling, &event->sibling_list, group_entry)
724b6daa 4447 perf_event_for_each_child(sibling, func);
6de6a7b9
PZ
4448}
4449
fae3fde6
PZ
4450static void __perf_event_period(struct perf_event *event,
4451 struct perf_cpu_context *cpuctx,
4452 struct perf_event_context *ctx,
4453 void *info)
c7999c6f 4454{
fae3fde6 4455 u64 value = *((u64 *)info);
c7999c6f 4456 bool active;
08247e31 4457
cdd6c482 4458 if (event->attr.freq) {
cdd6c482 4459 event->attr.sample_freq = value;
08247e31 4460 } else {
cdd6c482
IM
4461 event->attr.sample_period = value;
4462 event->hw.sample_period = value;
08247e31 4463 }
bad7192b
PZ
4464
4465 active = (event->state == PERF_EVENT_STATE_ACTIVE);
4466 if (active) {
4467 perf_pmu_disable(ctx->pmu);
1e02cd40
PZ
4468 /*
4469 * We could be throttled; unthrottle now to avoid the tick
4470 * trying to unthrottle while we already re-started the event.
4471 */
4472 if (event->hw.interrupts == MAX_INTERRUPTS) {
4473 event->hw.interrupts = 0;
4474 perf_log_throttle(event, 1);
4475 }
bad7192b
PZ
4476 event->pmu->stop(event, PERF_EF_UPDATE);
4477 }
4478
4479 local64_set(&event->hw.period_left, 0);
4480
4481 if (active) {
4482 event->pmu->start(event, PERF_EF_RELOAD);
4483 perf_pmu_enable(ctx->pmu);
4484 }
c7999c6f
PZ
4485}
4486
4487static int perf_event_period(struct perf_event *event, u64 __user *arg)
4488{
c7999c6f
PZ
4489 u64 value;
4490
4491 if (!is_sampling_event(event))
4492 return -EINVAL;
4493
4494 if (copy_from_user(&value, arg, sizeof(value)))
4495 return -EFAULT;
4496
4497 if (!value)
4498 return -EINVAL;
4499
4500 if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4501 return -EINVAL;
4502
fae3fde6 4503 event_function_call(event, __perf_event_period, &value);
08247e31 4504
c7999c6f 4505 return 0;
08247e31
PZ
4506}
4507
ac9721f3
PZ
4508static const struct file_operations perf_fops;
4509
2903ff01 4510static inline int perf_fget_light(int fd, struct fd *p)
ac9721f3 4511{
2903ff01
AV
4512 struct fd f = fdget(fd);
4513 if (!f.file)
4514 return -EBADF;
ac9721f3 4515
2903ff01
AV
4516 if (f.file->f_op != &perf_fops) {
4517 fdput(f);
4518 return -EBADF;
ac9721f3 4519 }
2903ff01
AV
4520 *p = f;
4521 return 0;
ac9721f3
PZ
4522}
4523
4524static int perf_event_set_output(struct perf_event *event,
4525 struct perf_event *output_event);
6fb2915d 4526static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2541517c 4527static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
a4be7c27 4528
f63a8daa 4529static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
d859e29f 4530{
cdd6c482 4531 void (*func)(struct perf_event *);
3df5edad 4532 u32 flags = arg;
d859e29f
PM
4533
4534 switch (cmd) {
cdd6c482 4535 case PERF_EVENT_IOC_ENABLE:
f63a8daa 4536 func = _perf_event_enable;
d859e29f 4537 break;
cdd6c482 4538 case PERF_EVENT_IOC_DISABLE:
f63a8daa 4539 func = _perf_event_disable;
79f14641 4540 break;
cdd6c482 4541 case PERF_EVENT_IOC_RESET:
f63a8daa 4542 func = _perf_event_reset;
6de6a7b9 4543 break;
3df5edad 4544
cdd6c482 4545 case PERF_EVENT_IOC_REFRESH:
f63a8daa 4546 return _perf_event_refresh(event, arg);
08247e31 4547
cdd6c482
IM
4548 case PERF_EVENT_IOC_PERIOD:
4549 return perf_event_period(event, (u64 __user *)arg);
08247e31 4550
cf4957f1
JO
4551 case PERF_EVENT_IOC_ID:
4552 {
4553 u64 id = primary_event_id(event);
4554
4555 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4556 return -EFAULT;
4557 return 0;
4558 }
4559
cdd6c482 4560 case PERF_EVENT_IOC_SET_OUTPUT:
ac9721f3 4561 {
ac9721f3 4562 int ret;
ac9721f3 4563 if (arg != -1) {
2903ff01
AV
4564 struct perf_event *output_event;
4565 struct fd output;
4566 ret = perf_fget_light(arg, &output);
4567 if (ret)
4568 return ret;
4569 output_event = output.file->private_data;
4570 ret = perf_event_set_output(event, output_event);
4571 fdput(output);
4572 } else {
4573 ret = perf_event_set_output(event, NULL);
ac9721f3 4574 }
ac9721f3
PZ
4575 return ret;
4576 }
a4be7c27 4577
6fb2915d
LZ
4578 case PERF_EVENT_IOC_SET_FILTER:
4579 return perf_event_set_filter(event, (void __user *)arg);
4580
2541517c
AS
4581 case PERF_EVENT_IOC_SET_BPF:
4582 return perf_event_set_bpf_prog(event, arg);
4583
86e7972f
WN
4584 case PERF_EVENT_IOC_PAUSE_OUTPUT: {
4585 struct ring_buffer *rb;
4586
4587 rcu_read_lock();
4588 rb = rcu_dereference(event->rb);
4589 if (!rb || !rb->nr_pages) {
4590 rcu_read_unlock();
4591 return -EINVAL;
4592 }
4593 rb_toggle_paused(rb, !!arg);
4594 rcu_read_unlock();
4595 return 0;
4596 }
d859e29f 4597 default:
3df5edad 4598 return -ENOTTY;
d859e29f 4599 }
3df5edad
PZ
4600
4601 if (flags & PERF_IOC_FLAG_GROUP)
cdd6c482 4602 perf_event_for_each(event, func);
3df5edad 4603 else
cdd6c482 4604 perf_event_for_each_child(event, func);
3df5edad
PZ
4605
4606 return 0;
d859e29f
PM
4607}
4608
f63a8daa
PZ
4609static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4610{
4611 struct perf_event *event = file->private_data;
4612 struct perf_event_context *ctx;
4613 long ret;
4614
4615 ctx = perf_event_ctx_lock(event);
4616 ret = _perf_ioctl(event, cmd, arg);
4617 perf_event_ctx_unlock(event, ctx);
4618
4619 return ret;
4620}
4621
b3f20785
PM
4622#ifdef CONFIG_COMPAT
4623static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4624 unsigned long arg)
4625{
4626 switch (_IOC_NR(cmd)) {
4627 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4628 case _IOC_NR(PERF_EVENT_IOC_ID):
4629 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4630 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4631 cmd &= ~IOCSIZE_MASK;
4632 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4633 }
4634 break;
4635 }
4636 return perf_ioctl(file, cmd, arg);
4637}
4638#else
4639# define perf_compat_ioctl NULL
4640#endif
4641
cdd6c482 4642int perf_event_task_enable(void)
771d7cde 4643{
f63a8daa 4644 struct perf_event_context *ctx;
cdd6c482 4645 struct perf_event *event;
771d7cde 4646
cdd6c482 4647 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
4648 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4649 ctx = perf_event_ctx_lock(event);
4650 perf_event_for_each_child(event, _perf_event_enable);
4651 perf_event_ctx_unlock(event, ctx);
4652 }
cdd6c482 4653 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
4654
4655 return 0;
4656}
4657
cdd6c482 4658int perf_event_task_disable(void)
771d7cde 4659{
f63a8daa 4660 struct perf_event_context *ctx;
cdd6c482 4661 struct perf_event *event;
771d7cde 4662
cdd6c482 4663 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
4664 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4665 ctx = perf_event_ctx_lock(event);
4666 perf_event_for_each_child(event, _perf_event_disable);
4667 perf_event_ctx_unlock(event, ctx);
4668 }
cdd6c482 4669 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
4670
4671 return 0;
4672}
4673
cdd6c482 4674static int perf_event_index(struct perf_event *event)
194002b2 4675{
a4eaf7f1
PZ
4676 if (event->hw.state & PERF_HES_STOPPED)
4677 return 0;
4678
cdd6c482 4679 if (event->state != PERF_EVENT_STATE_ACTIVE)
194002b2
PZ
4680 return 0;
4681
35edc2a5 4682 return event->pmu->event_idx(event);
194002b2
PZ
4683}
4684
c4794295 4685static void calc_timer_values(struct perf_event *event,
e3f3541c 4686 u64 *now,
7f310a5d
EM
4687 u64 *enabled,
4688 u64 *running)
c4794295 4689{
e3f3541c 4690 u64 ctx_time;
c4794295 4691
e3f3541c
PZ
4692 *now = perf_clock();
4693 ctx_time = event->shadow_ctx_time + *now;
c4794295
EM
4694 *enabled = ctx_time - event->tstamp_enabled;
4695 *running = ctx_time - event->tstamp_running;
4696}
4697
fa731587
PZ
4698static void perf_event_init_userpage(struct perf_event *event)
4699{
4700 struct perf_event_mmap_page *userpg;
4701 struct ring_buffer *rb;
4702
4703 rcu_read_lock();
4704 rb = rcu_dereference(event->rb);
4705 if (!rb)
4706 goto unlock;
4707
4708 userpg = rb->user_page;
4709
4710 /* Allow new userspace to detect that bit 0 is deprecated */
4711 userpg->cap_bit0_is_deprecated = 1;
4712 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
e8c6deac
AS
4713 userpg->data_offset = PAGE_SIZE;
4714 userpg->data_size = perf_data_size(rb);
fa731587
PZ
4715
4716unlock:
4717 rcu_read_unlock();
4718}
4719
c1317ec2
AL
4720void __weak arch_perf_update_userpage(
4721 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
e3f3541c
PZ
4722{
4723}
4724
38ff667b
PZ
4725/*
4726 * Callers need to ensure there can be no nesting of this function, otherwise
4727 * the seqlock logic goes bad. We can not serialize this because the arch
4728 * code calls this from NMI context.
4729 */
cdd6c482 4730void perf_event_update_userpage(struct perf_event *event)
37d81828 4731{
cdd6c482 4732 struct perf_event_mmap_page *userpg;
76369139 4733 struct ring_buffer *rb;
e3f3541c 4734 u64 enabled, running, now;
38ff667b
PZ
4735
4736 rcu_read_lock();
5ec4c599
PZ
4737 rb = rcu_dereference(event->rb);
4738 if (!rb)
4739 goto unlock;
4740
0d641208
EM
4741 /*
4742 * compute total_time_enabled, total_time_running
4743 * based on snapshot values taken when the event
4744 * was last scheduled in.
4745 *
4746 * we cannot simply called update_context_time()
4747 * because of locking issue as we can be called in
4748 * NMI context
4749 */
e3f3541c 4750 calc_timer_values(event, &now, &enabled, &running);
38ff667b 4751
76369139 4752 userpg = rb->user_page;
7b732a75
PZ
4753 /*
4754 * Disable preemption so as to not let the corresponding user-space
4755 * spin too long if we get preempted.
4756 */
4757 preempt_disable();
37d81828 4758 ++userpg->lock;
92f22a38 4759 barrier();
cdd6c482 4760 userpg->index = perf_event_index(event);
b5e58793 4761 userpg->offset = perf_event_count(event);
365a4038 4762 if (userpg->index)
e7850595 4763 userpg->offset -= local64_read(&event->hw.prev_count);
7b732a75 4764
0d641208 4765 userpg->time_enabled = enabled +
cdd6c482 4766 atomic64_read(&event->child_total_time_enabled);
7f8b4e4e 4767
0d641208 4768 userpg->time_running = running +
cdd6c482 4769 atomic64_read(&event->child_total_time_running);
7f8b4e4e 4770
c1317ec2 4771 arch_perf_update_userpage(event, userpg, now);
e3f3541c 4772
92f22a38 4773 barrier();
37d81828 4774 ++userpg->lock;
7b732a75 4775 preempt_enable();
38ff667b 4776unlock:
7b732a75 4777 rcu_read_unlock();
37d81828
PM
4778}
4779
906010b2
PZ
4780static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
4781{
4782 struct perf_event *event = vma->vm_file->private_data;
76369139 4783 struct ring_buffer *rb;
906010b2
PZ
4784 int ret = VM_FAULT_SIGBUS;
4785
4786 if (vmf->flags & FAULT_FLAG_MKWRITE) {
4787 if (vmf->pgoff == 0)
4788 ret = 0;
4789 return ret;
4790 }
4791
4792 rcu_read_lock();
76369139
FW
4793 rb = rcu_dereference(event->rb);
4794 if (!rb)
906010b2
PZ
4795 goto unlock;
4796
4797 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4798 goto unlock;
4799
76369139 4800 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
906010b2
PZ
4801 if (!vmf->page)
4802 goto unlock;
4803
4804 get_page(vmf->page);
4805 vmf->page->mapping = vma->vm_file->f_mapping;
4806 vmf->page->index = vmf->pgoff;
4807
4808 ret = 0;
4809unlock:
4810 rcu_read_unlock();
4811
4812 return ret;
4813}
4814
10c6db11
PZ
4815static void ring_buffer_attach(struct perf_event *event,
4816 struct ring_buffer *rb)
4817{
b69cf536 4818 struct ring_buffer *old_rb = NULL;
10c6db11
PZ
4819 unsigned long flags;
4820
b69cf536
PZ
4821 if (event->rb) {
4822 /*
4823 * Should be impossible, we set this when removing
4824 * event->rb_entry and wait/clear when adding event->rb_entry.
4825 */
4826 WARN_ON_ONCE(event->rcu_pending);
10c6db11 4827
b69cf536 4828 old_rb = event->rb;
b69cf536
PZ
4829 spin_lock_irqsave(&old_rb->event_lock, flags);
4830 list_del_rcu(&event->rb_entry);
4831 spin_unlock_irqrestore(&old_rb->event_lock, flags);
10c6db11 4832
2f993cf0
ON
4833 event->rcu_batches = get_state_synchronize_rcu();
4834 event->rcu_pending = 1;
b69cf536 4835 }
10c6db11 4836
b69cf536 4837 if (rb) {
2f993cf0
ON
4838 if (event->rcu_pending) {
4839 cond_synchronize_rcu(event->rcu_batches);
4840 event->rcu_pending = 0;
4841 }
4842
b69cf536
PZ
4843 spin_lock_irqsave(&rb->event_lock, flags);
4844 list_add_rcu(&event->rb_entry, &rb->event_list);
4845 spin_unlock_irqrestore(&rb->event_lock, flags);
4846 }
4847
4848 rcu_assign_pointer(event->rb, rb);
4849
4850 if (old_rb) {
4851 ring_buffer_put(old_rb);
4852 /*
4853 * Since we detached before setting the new rb, so that we
4854 * could attach the new rb, we could have missed a wakeup.
4855 * Provide it now.
4856 */
4857 wake_up_all(&event->waitq);
4858 }
10c6db11
PZ
4859}
4860
4861static void ring_buffer_wakeup(struct perf_event *event)
4862{
4863 struct ring_buffer *rb;
4864
4865 rcu_read_lock();
4866 rb = rcu_dereference(event->rb);
9bb5d40c
PZ
4867 if (rb) {
4868 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
4869 wake_up_all(&event->waitq);
4870 }
10c6db11
PZ
4871 rcu_read_unlock();
4872}
4873
fdc26706 4874struct ring_buffer *ring_buffer_get(struct perf_event *event)
7b732a75 4875{
76369139 4876 struct ring_buffer *rb;
7b732a75 4877
ac9721f3 4878 rcu_read_lock();
76369139
FW
4879 rb = rcu_dereference(event->rb);
4880 if (rb) {
4881 if (!atomic_inc_not_zero(&rb->refcount))
4882 rb = NULL;
ac9721f3
PZ
4883 }
4884 rcu_read_unlock();
4885
76369139 4886 return rb;
ac9721f3
PZ
4887}
4888
fdc26706 4889void ring_buffer_put(struct ring_buffer *rb)
ac9721f3 4890{
76369139 4891 if (!atomic_dec_and_test(&rb->refcount))
ac9721f3 4892 return;
7b732a75 4893
9bb5d40c 4894 WARN_ON_ONCE(!list_empty(&rb->event_list));
10c6db11 4895
76369139 4896 call_rcu(&rb->rcu_head, rb_free_rcu);
7b732a75
PZ
4897}
4898
4899static void perf_mmap_open(struct vm_area_struct *vma)
4900{
cdd6c482 4901 struct perf_event *event = vma->vm_file->private_data;
7b732a75 4902
cdd6c482 4903 atomic_inc(&event->mmap_count);
9bb5d40c 4904 atomic_inc(&event->rb->mmap_count);
1e0fb9ec 4905
45bfb2e5
PZ
4906 if (vma->vm_pgoff)
4907 atomic_inc(&event->rb->aux_mmap_count);
4908
1e0fb9ec
AL
4909 if (event->pmu->event_mapped)
4910 event->pmu->event_mapped(event);
7b732a75
PZ
4911}
4912
95ff4ca2
AS
4913static void perf_pmu_output_stop(struct perf_event *event);
4914
9bb5d40c
PZ
4915/*
4916 * A buffer can be mmap()ed multiple times; either directly through the same
4917 * event, or through other events by use of perf_event_set_output().
4918 *
4919 * In order to undo the VM accounting done by perf_mmap() we need to destroy
4920 * the buffer here, where we still have a VM context. This means we need
4921 * to detach all events redirecting to us.
4922 */
7b732a75
PZ
4923static void perf_mmap_close(struct vm_area_struct *vma)
4924{
cdd6c482 4925 struct perf_event *event = vma->vm_file->private_data;
7b732a75 4926
b69cf536 4927 struct ring_buffer *rb = ring_buffer_get(event);
9bb5d40c
PZ
4928 struct user_struct *mmap_user = rb->mmap_user;
4929 int mmap_locked = rb->mmap_locked;
4930 unsigned long size = perf_data_size(rb);
789f90fc 4931
1e0fb9ec
AL
4932 if (event->pmu->event_unmapped)
4933 event->pmu->event_unmapped(event);
4934
45bfb2e5
PZ
4935 /*
4936 * rb->aux_mmap_count will always drop before rb->mmap_count and
4937 * event->mmap_count, so it is ok to use event->mmap_mutex to
4938 * serialize with perf_mmap here.
4939 */
4940 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
4941 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
95ff4ca2
AS
4942 /*
4943 * Stop all AUX events that are writing to this buffer,
4944 * so that we can free its AUX pages and corresponding PMU
4945 * data. Note that after rb::aux_mmap_count dropped to zero,
4946 * they won't start any more (see perf_aux_output_begin()).
4947 */
4948 perf_pmu_output_stop(event);
4949
4950 /* now it's safe to free the pages */
45bfb2e5
PZ
4951 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
4952 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
4953
95ff4ca2 4954 /* this has to be the last one */
45bfb2e5 4955 rb_free_aux(rb);
95ff4ca2
AS
4956 WARN_ON_ONCE(atomic_read(&rb->aux_refcount));
4957
45bfb2e5
PZ
4958 mutex_unlock(&event->mmap_mutex);
4959 }
4960
9bb5d40c
PZ
4961 atomic_dec(&rb->mmap_count);
4962
4963 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
b69cf536 4964 goto out_put;
9bb5d40c 4965
b69cf536 4966 ring_buffer_attach(event, NULL);
9bb5d40c
PZ
4967 mutex_unlock(&event->mmap_mutex);
4968
4969 /* If there's still other mmap()s of this buffer, we're done. */
b69cf536
PZ
4970 if (atomic_read(&rb->mmap_count))
4971 goto out_put;
ac9721f3 4972
9bb5d40c
PZ
4973 /*
4974 * No other mmap()s, detach from all other events that might redirect
4975 * into the now unreachable buffer. Somewhat complicated by the
4976 * fact that rb::event_lock otherwise nests inside mmap_mutex.
4977 */
4978again:
4979 rcu_read_lock();
4980 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
4981 if (!atomic_long_inc_not_zero(&event->refcount)) {
4982 /*
4983 * This event is en-route to free_event() which will
4984 * detach it and remove it from the list.
4985 */
4986 continue;
4987 }
4988 rcu_read_unlock();
789f90fc 4989
9bb5d40c
PZ
4990 mutex_lock(&event->mmap_mutex);
4991 /*
4992 * Check we didn't race with perf_event_set_output() which can
4993 * swizzle the rb from under us while we were waiting to
4994 * acquire mmap_mutex.
4995 *
4996 * If we find a different rb; ignore this event, a next
4997 * iteration will no longer find it on the list. We have to
4998 * still restart the iteration to make sure we're not now
4999 * iterating the wrong list.
5000 */
b69cf536
PZ
5001 if (event->rb == rb)
5002 ring_buffer_attach(event, NULL);
5003
cdd6c482 5004 mutex_unlock(&event->mmap_mutex);
9bb5d40c 5005 put_event(event);
ac9721f3 5006
9bb5d40c
PZ
5007 /*
5008 * Restart the iteration; either we're on the wrong list or
5009 * destroyed its integrity by doing a deletion.
5010 */
5011 goto again;
7b732a75 5012 }
9bb5d40c
PZ
5013 rcu_read_unlock();
5014
5015 /*
5016 * It could be there's still a few 0-ref events on the list; they'll
5017 * get cleaned up by free_event() -- they'll also still have their
5018 * ref on the rb and will free it whenever they are done with it.
5019 *
5020 * Aside from that, this buffer is 'fully' detached and unmapped,
5021 * undo the VM accounting.
5022 */
5023
5024 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
5025 vma->vm_mm->pinned_vm -= mmap_locked;
5026 free_uid(mmap_user);
5027
b69cf536 5028out_put:
9bb5d40c 5029 ring_buffer_put(rb); /* could be last */
37d81828
PM
5030}
5031
f0f37e2f 5032static const struct vm_operations_struct perf_mmap_vmops = {
43a21ea8 5033 .open = perf_mmap_open,
45bfb2e5 5034 .close = perf_mmap_close, /* non mergable */
43a21ea8
PZ
5035 .fault = perf_mmap_fault,
5036 .page_mkwrite = perf_mmap_fault,
37d81828
PM
5037};
5038
5039static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5040{
cdd6c482 5041 struct perf_event *event = file->private_data;
22a4f650 5042 unsigned long user_locked, user_lock_limit;
789f90fc 5043 struct user_struct *user = current_user();
22a4f650 5044 unsigned long locked, lock_limit;
45bfb2e5 5045 struct ring_buffer *rb = NULL;
7b732a75
PZ
5046 unsigned long vma_size;
5047 unsigned long nr_pages;
45bfb2e5 5048 long user_extra = 0, extra = 0;
d57e34fd 5049 int ret = 0, flags = 0;
37d81828 5050
c7920614
PZ
5051 /*
5052 * Don't allow mmap() of inherited per-task counters. This would
5053 * create a performance issue due to all children writing to the
76369139 5054 * same rb.
c7920614
PZ
5055 */
5056 if (event->cpu == -1 && event->attr.inherit)
5057 return -EINVAL;
5058
43a21ea8 5059 if (!(vma->vm_flags & VM_SHARED))
37d81828 5060 return -EINVAL;
7b732a75
PZ
5061
5062 vma_size = vma->vm_end - vma->vm_start;
45bfb2e5
PZ
5063
5064 if (vma->vm_pgoff == 0) {
5065 nr_pages = (vma_size / PAGE_SIZE) - 1;
5066 } else {
5067 /*
5068 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5069 * mapped, all subsequent mappings should have the same size
5070 * and offset. Must be above the normal perf buffer.
5071 */
5072 u64 aux_offset, aux_size;
5073
5074 if (!event->rb)
5075 return -EINVAL;
5076
5077 nr_pages = vma_size / PAGE_SIZE;
5078
5079 mutex_lock(&event->mmap_mutex);
5080 ret = -EINVAL;
5081
5082 rb = event->rb;
5083 if (!rb)
5084 goto aux_unlock;
5085
5086 aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
5087 aux_size = ACCESS_ONCE(rb->user_page->aux_size);
5088
5089 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5090 goto aux_unlock;
5091
5092 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5093 goto aux_unlock;
5094
5095 /* already mapped with a different offset */
5096 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5097 goto aux_unlock;
5098
5099 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5100 goto aux_unlock;
5101
5102 /* already mapped with a different size */
5103 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5104 goto aux_unlock;
5105
5106 if (!is_power_of_2(nr_pages))
5107 goto aux_unlock;
5108
5109 if (!atomic_inc_not_zero(&rb->mmap_count))
5110 goto aux_unlock;
5111
5112 if (rb_has_aux(rb)) {
5113 atomic_inc(&rb->aux_mmap_count);
5114 ret = 0;
5115 goto unlock;
5116 }
5117
5118 atomic_set(&rb->aux_mmap_count, 1);
5119 user_extra = nr_pages;
5120
5121 goto accounting;
5122 }
7b732a75 5123
7730d865 5124 /*
76369139 5125 * If we have rb pages ensure they're a power-of-two number, so we
7730d865
PZ
5126 * can do bitmasks instead of modulo.
5127 */
2ed11312 5128 if (nr_pages != 0 && !is_power_of_2(nr_pages))
37d81828
PM
5129 return -EINVAL;
5130
7b732a75 5131 if (vma_size != PAGE_SIZE * (1 + nr_pages))
37d81828
PM
5132 return -EINVAL;
5133
cdd6c482 5134 WARN_ON_ONCE(event->ctx->parent_ctx);
9bb5d40c 5135again:
cdd6c482 5136 mutex_lock(&event->mmap_mutex);
76369139 5137 if (event->rb) {
9bb5d40c 5138 if (event->rb->nr_pages != nr_pages) {
ebb3c4c4 5139 ret = -EINVAL;
9bb5d40c
PZ
5140 goto unlock;
5141 }
5142
5143 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5144 /*
5145 * Raced against perf_mmap_close() through
5146 * perf_event_set_output(). Try again, hope for better
5147 * luck.
5148 */
5149 mutex_unlock(&event->mmap_mutex);
5150 goto again;
5151 }
5152
ebb3c4c4
PZ
5153 goto unlock;
5154 }
5155
789f90fc 5156 user_extra = nr_pages + 1;
45bfb2e5
PZ
5157
5158accounting:
cdd6c482 5159 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
a3862d3f
IM
5160
5161 /*
5162 * Increase the limit linearly with more CPUs:
5163 */
5164 user_lock_limit *= num_online_cpus();
5165
789f90fc 5166 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
c5078f78 5167
789f90fc
PZ
5168 if (user_locked > user_lock_limit)
5169 extra = user_locked - user_lock_limit;
7b732a75 5170
78d7d407 5171 lock_limit = rlimit(RLIMIT_MEMLOCK);
7b732a75 5172 lock_limit >>= PAGE_SHIFT;
bc3e53f6 5173 locked = vma->vm_mm->pinned_vm + extra;
7b732a75 5174
459ec28a
IM
5175 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5176 !capable(CAP_IPC_LOCK)) {
ebb3c4c4
PZ
5177 ret = -EPERM;
5178 goto unlock;
5179 }
7b732a75 5180
45bfb2e5 5181 WARN_ON(!rb && event->rb);
906010b2 5182
d57e34fd 5183 if (vma->vm_flags & VM_WRITE)
76369139 5184 flags |= RING_BUFFER_WRITABLE;
d57e34fd 5185
76369139 5186 if (!rb) {
45bfb2e5
PZ
5187 rb = rb_alloc(nr_pages,
5188 event->attr.watermark ? event->attr.wakeup_watermark : 0,
5189 event->cpu, flags);
26cb63ad 5190
45bfb2e5
PZ
5191 if (!rb) {
5192 ret = -ENOMEM;
5193 goto unlock;
5194 }
43a21ea8 5195
45bfb2e5
PZ
5196 atomic_set(&rb->mmap_count, 1);
5197 rb->mmap_user = get_current_user();
5198 rb->mmap_locked = extra;
26cb63ad 5199
45bfb2e5 5200 ring_buffer_attach(event, rb);
ac9721f3 5201
45bfb2e5
PZ
5202 perf_event_init_userpage(event);
5203 perf_event_update_userpage(event);
5204 } else {
1a594131
AS
5205 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5206 event->attr.aux_watermark, flags);
45bfb2e5
PZ
5207 if (!ret)
5208 rb->aux_mmap_locked = extra;
5209 }
9a0f05cb 5210
ebb3c4c4 5211unlock:
45bfb2e5
PZ
5212 if (!ret) {
5213 atomic_long_add(user_extra, &user->locked_vm);
5214 vma->vm_mm->pinned_vm += extra;
5215
ac9721f3 5216 atomic_inc(&event->mmap_count);
45bfb2e5
PZ
5217 } else if (rb) {
5218 atomic_dec(&rb->mmap_count);
5219 }
5220aux_unlock:
cdd6c482 5221 mutex_unlock(&event->mmap_mutex);
37d81828 5222
9bb5d40c
PZ
5223 /*
5224 * Since pinned accounting is per vm we cannot allow fork() to copy our
5225 * vma.
5226 */
26cb63ad 5227 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
37d81828 5228 vma->vm_ops = &perf_mmap_vmops;
7b732a75 5229
1e0fb9ec
AL
5230 if (event->pmu->event_mapped)
5231 event->pmu->event_mapped(event);
5232
7b732a75 5233 return ret;
37d81828
PM
5234}
5235
3c446b3d
PZ
5236static int perf_fasync(int fd, struct file *filp, int on)
5237{
496ad9aa 5238 struct inode *inode = file_inode(filp);
cdd6c482 5239 struct perf_event *event = filp->private_data;
3c446b3d
PZ
5240 int retval;
5241
5955102c 5242 inode_lock(inode);
cdd6c482 5243 retval = fasync_helper(fd, filp, on, &event->fasync);
5955102c 5244 inode_unlock(inode);
3c446b3d
PZ
5245
5246 if (retval < 0)
5247 return retval;
5248
5249 return 0;
5250}
5251
0793a61d 5252static const struct file_operations perf_fops = {
3326c1ce 5253 .llseek = no_llseek,
0793a61d
TG
5254 .release = perf_release,
5255 .read = perf_read,
5256 .poll = perf_poll,
d859e29f 5257 .unlocked_ioctl = perf_ioctl,
b3f20785 5258 .compat_ioctl = perf_compat_ioctl,
37d81828 5259 .mmap = perf_mmap,
3c446b3d 5260 .fasync = perf_fasync,
0793a61d
TG
5261};
5262
925d519a 5263/*
cdd6c482 5264 * Perf event wakeup
925d519a
PZ
5265 *
5266 * If there's data, ensure we set the poll() state and publish everything
5267 * to user-space before waking everybody up.
5268 */
5269
fed66e2c
PZ
5270static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5271{
5272 /* only the parent has fasync state */
5273 if (event->parent)
5274 event = event->parent;
5275 return &event->fasync;
5276}
5277
cdd6c482 5278void perf_event_wakeup(struct perf_event *event)
925d519a 5279{
10c6db11 5280 ring_buffer_wakeup(event);
4c9e2542 5281
cdd6c482 5282 if (event->pending_kill) {
fed66e2c 5283 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
cdd6c482 5284 event->pending_kill = 0;
4c9e2542 5285 }
925d519a
PZ
5286}
5287
e360adbe 5288static void perf_pending_event(struct irq_work *entry)
79f14641 5289{
cdd6c482
IM
5290 struct perf_event *event = container_of(entry,
5291 struct perf_event, pending);
d525211f
PZ
5292 int rctx;
5293
5294 rctx = perf_swevent_get_recursion_context();
5295 /*
5296 * If we 'fail' here, that's OK, it means recursion is already disabled
5297 * and we won't recurse 'further'.
5298 */
79f14641 5299
cdd6c482
IM
5300 if (event->pending_disable) {
5301 event->pending_disable = 0;
fae3fde6 5302 perf_event_disable_local(event);
79f14641
PZ
5303 }
5304
cdd6c482
IM
5305 if (event->pending_wakeup) {
5306 event->pending_wakeup = 0;
5307 perf_event_wakeup(event);
79f14641 5308 }
d525211f
PZ
5309
5310 if (rctx >= 0)
5311 perf_swevent_put_recursion_context(rctx);
79f14641
PZ
5312}
5313
39447b38
ZY
5314/*
5315 * We assume there is only KVM supporting the callbacks.
5316 * Later on, we might change it to a list if there is
5317 * another virtualization implementation supporting the callbacks.
5318 */
5319struct perf_guest_info_callbacks *perf_guest_cbs;
5320
5321int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5322{
5323 perf_guest_cbs = cbs;
5324 return 0;
5325}
5326EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5327
5328int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5329{
5330 perf_guest_cbs = NULL;
5331 return 0;
5332}
5333EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5334
4018994f
JO
5335static void
5336perf_output_sample_regs(struct perf_output_handle *handle,
5337 struct pt_regs *regs, u64 mask)
5338{
5339 int bit;
5340
5341 for_each_set_bit(bit, (const unsigned long *) &mask,
5342 sizeof(mask) * BITS_PER_BYTE) {
5343 u64 val;
5344
5345 val = perf_reg_value(regs, bit);
5346 perf_output_put(handle, val);
5347 }
5348}
5349
60e2364e 5350static void perf_sample_regs_user(struct perf_regs *regs_user,
88a7c26a
AL
5351 struct pt_regs *regs,
5352 struct pt_regs *regs_user_copy)
4018994f 5353{
88a7c26a
AL
5354 if (user_mode(regs)) {
5355 regs_user->abi = perf_reg_abi(current);
2565711f 5356 regs_user->regs = regs;
88a7c26a
AL
5357 } else if (current->mm) {
5358 perf_get_regs_user(regs_user, regs, regs_user_copy);
2565711f
PZ
5359 } else {
5360 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5361 regs_user->regs = NULL;
4018994f
JO
5362 }
5363}
5364
60e2364e
SE
5365static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5366 struct pt_regs *regs)
5367{
5368 regs_intr->regs = regs;
5369 regs_intr->abi = perf_reg_abi(current);
5370}
5371
5372
c5ebcedb
JO
5373/*
5374 * Get remaining task size from user stack pointer.
5375 *
5376 * It'd be better to take stack vma map and limit this more
5377 * precisly, but there's no way to get it safely under interrupt,
5378 * so using TASK_SIZE as limit.
5379 */
5380static u64 perf_ustack_task_size(struct pt_regs *regs)
5381{
5382 unsigned long addr = perf_user_stack_pointer(regs);
5383
5384 if (!addr || addr >= TASK_SIZE)
5385 return 0;
5386
5387 return TASK_SIZE - addr;
5388}
5389
5390static u16
5391perf_sample_ustack_size(u16 stack_size, u16 header_size,
5392 struct pt_regs *regs)
5393{
5394 u64 task_size;
5395
5396 /* No regs, no stack pointer, no dump. */
5397 if (!regs)
5398 return 0;
5399
5400 /*
5401 * Check if we fit in with the requested stack size into the:
5402 * - TASK_SIZE
5403 * If we don't, we limit the size to the TASK_SIZE.
5404 *
5405 * - remaining sample size
5406 * If we don't, we customize the stack size to
5407 * fit in to the remaining sample size.
5408 */
5409
5410 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5411 stack_size = min(stack_size, (u16) task_size);
5412
5413 /* Current header size plus static size and dynamic size. */
5414 header_size += 2 * sizeof(u64);
5415
5416 /* Do we fit in with the current stack dump size? */
5417 if ((u16) (header_size + stack_size) < header_size) {
5418 /*
5419 * If we overflow the maximum size for the sample,
5420 * we customize the stack dump size to fit in.
5421 */
5422 stack_size = USHRT_MAX - header_size - sizeof(u64);
5423 stack_size = round_up(stack_size, sizeof(u64));
5424 }
5425
5426 return stack_size;
5427}
5428
5429static void
5430perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5431 struct pt_regs *regs)
5432{
5433 /* Case of a kernel thread, nothing to dump */
5434 if (!regs) {
5435 u64 size = 0;
5436 perf_output_put(handle, size);
5437 } else {
5438 unsigned long sp;
5439 unsigned int rem;
5440 u64 dyn_size;
5441
5442 /*
5443 * We dump:
5444 * static size
5445 * - the size requested by user or the best one we can fit
5446 * in to the sample max size
5447 * data
5448 * - user stack dump data
5449 * dynamic size
5450 * - the actual dumped size
5451 */
5452
5453 /* Static size. */
5454 perf_output_put(handle, dump_size);
5455
5456 /* Data. */
5457 sp = perf_user_stack_pointer(regs);
5458 rem = __output_copy_user(handle, (void *) sp, dump_size);
5459 dyn_size = dump_size - rem;
5460
5461 perf_output_skip(handle, rem);
5462
5463 /* Dynamic size. */
5464 perf_output_put(handle, dyn_size);
5465 }
5466}
5467
c980d109
ACM
5468static void __perf_event_header__init_id(struct perf_event_header *header,
5469 struct perf_sample_data *data,
5470 struct perf_event *event)
6844c09d
ACM
5471{
5472 u64 sample_type = event->attr.sample_type;
5473
5474 data->type = sample_type;
5475 header->size += event->id_header_size;
5476
5477 if (sample_type & PERF_SAMPLE_TID) {
5478 /* namespace issues */
5479 data->tid_entry.pid = perf_event_pid(event, current);
5480 data->tid_entry.tid = perf_event_tid(event, current);
5481 }
5482
5483 if (sample_type & PERF_SAMPLE_TIME)
34f43927 5484 data->time = perf_event_clock(event);
6844c09d 5485
ff3d527c 5486 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6844c09d
ACM
5487 data->id = primary_event_id(event);
5488
5489 if (sample_type & PERF_SAMPLE_STREAM_ID)
5490 data->stream_id = event->id;
5491
5492 if (sample_type & PERF_SAMPLE_CPU) {
5493 data->cpu_entry.cpu = raw_smp_processor_id();
5494 data->cpu_entry.reserved = 0;
5495 }
5496}
5497
76369139
FW
5498void perf_event_header__init_id(struct perf_event_header *header,
5499 struct perf_sample_data *data,
5500 struct perf_event *event)
c980d109
ACM
5501{
5502 if (event->attr.sample_id_all)
5503 __perf_event_header__init_id(header, data, event);
5504}
5505
5506static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5507 struct perf_sample_data *data)
5508{
5509 u64 sample_type = data->type;
5510
5511 if (sample_type & PERF_SAMPLE_TID)
5512 perf_output_put(handle, data->tid_entry);
5513
5514 if (sample_type & PERF_SAMPLE_TIME)
5515 perf_output_put(handle, data->time);
5516
5517 if (sample_type & PERF_SAMPLE_ID)
5518 perf_output_put(handle, data->id);
5519
5520 if (sample_type & PERF_SAMPLE_STREAM_ID)
5521 perf_output_put(handle, data->stream_id);
5522
5523 if (sample_type & PERF_SAMPLE_CPU)
5524 perf_output_put(handle, data->cpu_entry);
ff3d527c
AH
5525
5526 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5527 perf_output_put(handle, data->id);
c980d109
ACM
5528}
5529
76369139
FW
5530void perf_event__output_id_sample(struct perf_event *event,
5531 struct perf_output_handle *handle,
5532 struct perf_sample_data *sample)
c980d109
ACM
5533{
5534 if (event->attr.sample_id_all)
5535 __perf_event__output_id_sample(handle, sample);
5536}
5537
3dab77fb 5538static void perf_output_read_one(struct perf_output_handle *handle,
eed01528
SE
5539 struct perf_event *event,
5540 u64 enabled, u64 running)
3dab77fb 5541{
cdd6c482 5542 u64 read_format = event->attr.read_format;
3dab77fb
PZ
5543 u64 values[4];
5544 int n = 0;
5545
b5e58793 5546 values[n++] = perf_event_count(event);
3dab77fb 5547 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
eed01528 5548 values[n++] = enabled +
cdd6c482 5549 atomic64_read(&event->child_total_time_enabled);
3dab77fb
PZ
5550 }
5551 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
eed01528 5552 values[n++] = running +
cdd6c482 5553 atomic64_read(&event->child_total_time_running);
3dab77fb
PZ
5554 }
5555 if (read_format & PERF_FORMAT_ID)
cdd6c482 5556 values[n++] = primary_event_id(event);
3dab77fb 5557
76369139 5558 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
5559}
5560
5561/*
cdd6c482 5562 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3dab77fb
PZ
5563 */
5564static void perf_output_read_group(struct perf_output_handle *handle,
eed01528
SE
5565 struct perf_event *event,
5566 u64 enabled, u64 running)
3dab77fb 5567{
cdd6c482
IM
5568 struct perf_event *leader = event->group_leader, *sub;
5569 u64 read_format = event->attr.read_format;
3dab77fb
PZ
5570 u64 values[5];
5571 int n = 0;
5572
5573 values[n++] = 1 + leader->nr_siblings;
5574
5575 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
eed01528 5576 values[n++] = enabled;
3dab77fb
PZ
5577
5578 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
eed01528 5579 values[n++] = running;
3dab77fb 5580
cdd6c482 5581 if (leader != event)
3dab77fb
PZ
5582 leader->pmu->read(leader);
5583
b5e58793 5584 values[n++] = perf_event_count(leader);
3dab77fb 5585 if (read_format & PERF_FORMAT_ID)
cdd6c482 5586 values[n++] = primary_event_id(leader);
3dab77fb 5587
76369139 5588 __output_copy(handle, values, n * sizeof(u64));
3dab77fb 5589
65abc865 5590 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3dab77fb
PZ
5591 n = 0;
5592
6f5ab001
JO
5593 if ((sub != event) &&
5594 (sub->state == PERF_EVENT_STATE_ACTIVE))
3dab77fb
PZ
5595 sub->pmu->read(sub);
5596
b5e58793 5597 values[n++] = perf_event_count(sub);
3dab77fb 5598 if (read_format & PERF_FORMAT_ID)
cdd6c482 5599 values[n++] = primary_event_id(sub);
3dab77fb 5600
76369139 5601 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
5602 }
5603}
5604
eed01528
SE
5605#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5606 PERF_FORMAT_TOTAL_TIME_RUNNING)
5607
3dab77fb 5608static void perf_output_read(struct perf_output_handle *handle,
cdd6c482 5609 struct perf_event *event)
3dab77fb 5610{
e3f3541c 5611 u64 enabled = 0, running = 0, now;
eed01528
SE
5612 u64 read_format = event->attr.read_format;
5613
5614 /*
5615 * compute total_time_enabled, total_time_running
5616 * based on snapshot values taken when the event
5617 * was last scheduled in.
5618 *
5619 * we cannot simply called update_context_time()
5620 * because of locking issue as we are called in
5621 * NMI context
5622 */
c4794295 5623 if (read_format & PERF_FORMAT_TOTAL_TIMES)
e3f3541c 5624 calc_timer_values(event, &now, &enabled, &running);
eed01528 5625
cdd6c482 5626 if (event->attr.read_format & PERF_FORMAT_GROUP)
eed01528 5627 perf_output_read_group(handle, event, enabled, running);
3dab77fb 5628 else
eed01528 5629 perf_output_read_one(handle, event, enabled, running);
3dab77fb
PZ
5630}
5631
5622f295
MM
5632void perf_output_sample(struct perf_output_handle *handle,
5633 struct perf_event_header *header,
5634 struct perf_sample_data *data,
cdd6c482 5635 struct perf_event *event)
5622f295
MM
5636{
5637 u64 sample_type = data->type;
5638
5639 perf_output_put(handle, *header);
5640
ff3d527c
AH
5641 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5642 perf_output_put(handle, data->id);
5643
5622f295
MM
5644 if (sample_type & PERF_SAMPLE_IP)
5645 perf_output_put(handle, data->ip);
5646
5647 if (sample_type & PERF_SAMPLE_TID)
5648 perf_output_put(handle, data->tid_entry);
5649
5650 if (sample_type & PERF_SAMPLE_TIME)
5651 perf_output_put(handle, data->time);
5652
5653 if (sample_type & PERF_SAMPLE_ADDR)
5654 perf_output_put(handle, data->addr);
5655
5656 if (sample_type & PERF_SAMPLE_ID)
5657 perf_output_put(handle, data->id);
5658
5659 if (sample_type & PERF_SAMPLE_STREAM_ID)
5660 perf_output_put(handle, data->stream_id);
5661
5662 if (sample_type & PERF_SAMPLE_CPU)
5663 perf_output_put(handle, data->cpu_entry);
5664
5665 if (sample_type & PERF_SAMPLE_PERIOD)
5666 perf_output_put(handle, data->period);
5667
5668 if (sample_type & PERF_SAMPLE_READ)
cdd6c482 5669 perf_output_read(handle, event);
5622f295
MM
5670
5671 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5672 if (data->callchain) {
5673 int size = 1;
5674
5675 if (data->callchain)
5676 size += data->callchain->nr;
5677
5678 size *= sizeof(u64);
5679
76369139 5680 __output_copy(handle, data->callchain, size);
5622f295
MM
5681 } else {
5682 u64 nr = 0;
5683 perf_output_put(handle, nr);
5684 }
5685 }
5686
5687 if (sample_type & PERF_SAMPLE_RAW) {
7e3f977e
DB
5688 struct perf_raw_record *raw = data->raw;
5689
5690 if (raw) {
5691 struct perf_raw_frag *frag = &raw->frag;
5692
5693 perf_output_put(handle, raw->size);
5694 do {
5695 if (frag->copy) {
5696 __output_custom(handle, frag->copy,
5697 frag->data, frag->size);
5698 } else {
5699 __output_copy(handle, frag->data,
5700 frag->size);
5701 }
5702 if (perf_raw_frag_last(frag))
5703 break;
5704 frag = frag->next;
5705 } while (1);
5706 if (frag->pad)
5707 __output_skip(handle, NULL, frag->pad);
5622f295
MM
5708 } else {
5709 struct {
5710 u32 size;
5711 u32 data;
5712 } raw = {
5713 .size = sizeof(u32),
5714 .data = 0,
5715 };
5716 perf_output_put(handle, raw);
5717 }
5718 }
a7ac67ea 5719
bce38cd5
SE
5720 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5721 if (data->br_stack) {
5722 size_t size;
5723
5724 size = data->br_stack->nr
5725 * sizeof(struct perf_branch_entry);
5726
5727 perf_output_put(handle, data->br_stack->nr);
5728 perf_output_copy(handle, data->br_stack->entries, size);
5729 } else {
5730 /*
5731 * we always store at least the value of nr
5732 */
5733 u64 nr = 0;
5734 perf_output_put(handle, nr);
5735 }
5736 }
4018994f
JO
5737
5738 if (sample_type & PERF_SAMPLE_REGS_USER) {
5739 u64 abi = data->regs_user.abi;
5740
5741 /*
5742 * If there are no regs to dump, notice it through
5743 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5744 */
5745 perf_output_put(handle, abi);
5746
5747 if (abi) {
5748 u64 mask = event->attr.sample_regs_user;
5749 perf_output_sample_regs(handle,
5750 data->regs_user.regs,
5751 mask);
5752 }
5753 }
c5ebcedb 5754
a5cdd40c 5755 if (sample_type & PERF_SAMPLE_STACK_USER) {
c5ebcedb
JO
5756 perf_output_sample_ustack(handle,
5757 data->stack_user_size,
5758 data->regs_user.regs);
a5cdd40c 5759 }
c3feedf2
AK
5760
5761 if (sample_type & PERF_SAMPLE_WEIGHT)
5762 perf_output_put(handle, data->weight);
d6be9ad6
SE
5763
5764 if (sample_type & PERF_SAMPLE_DATA_SRC)
5765 perf_output_put(handle, data->data_src.val);
a5cdd40c 5766
fdfbbd07
AK
5767 if (sample_type & PERF_SAMPLE_TRANSACTION)
5768 perf_output_put(handle, data->txn);
5769
60e2364e
SE
5770 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5771 u64 abi = data->regs_intr.abi;
5772 /*
5773 * If there are no regs to dump, notice it through
5774 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5775 */
5776 perf_output_put(handle, abi);
5777
5778 if (abi) {
5779 u64 mask = event->attr.sample_regs_intr;
5780
5781 perf_output_sample_regs(handle,
5782 data->regs_intr.regs,
5783 mask);
5784 }
5785 }
5786
a5cdd40c
PZ
5787 if (!event->attr.watermark) {
5788 int wakeup_events = event->attr.wakeup_events;
5789
5790 if (wakeup_events) {
5791 struct ring_buffer *rb = handle->rb;
5792 int events = local_inc_return(&rb->events);
5793
5794 if (events >= wakeup_events) {
5795 local_sub(wakeup_events, &rb->events);
5796 local_inc(&rb->wakeup);
5797 }
5798 }
5799 }
5622f295
MM
5800}
5801
5802void perf_prepare_sample(struct perf_event_header *header,
5803 struct perf_sample_data *data,
cdd6c482 5804 struct perf_event *event,
5622f295 5805 struct pt_regs *regs)
7b732a75 5806{
cdd6c482 5807 u64 sample_type = event->attr.sample_type;
7b732a75 5808
cdd6c482 5809 header->type = PERF_RECORD_SAMPLE;
c320c7b7 5810 header->size = sizeof(*header) + event->header_size;
5622f295
MM
5811
5812 header->misc = 0;
5813 header->misc |= perf_misc_flags(regs);
6fab0192 5814
c980d109 5815 __perf_event_header__init_id(header, data, event);
6844c09d 5816
c320c7b7 5817 if (sample_type & PERF_SAMPLE_IP)
5622f295
MM
5818 data->ip = perf_instruction_pointer(regs);
5819
b23f3325 5820 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5622f295 5821 int size = 1;
394ee076 5822
e6dab5ff 5823 data->callchain = perf_callchain(event, regs);
5622f295
MM
5824
5825 if (data->callchain)
5826 size += data->callchain->nr;
5827
5828 header->size += size * sizeof(u64);
394ee076
PZ
5829 }
5830
3a43ce68 5831 if (sample_type & PERF_SAMPLE_RAW) {
7e3f977e
DB
5832 struct perf_raw_record *raw = data->raw;
5833 int size;
5834
5835 if (raw) {
5836 struct perf_raw_frag *frag = &raw->frag;
5837 u32 sum = 0;
5838
5839 do {
5840 sum += frag->size;
5841 if (perf_raw_frag_last(frag))
5842 break;
5843 frag = frag->next;
5844 } while (1);
5845
5846 size = round_up(sum + sizeof(u32), sizeof(u64));
5847 raw->size = size - sizeof(u32);
5848 frag->pad = raw->size - sum;
5849 } else {
5850 size = sizeof(u64);
5851 }
a044560c 5852
7e3f977e 5853 header->size += size;
7f453c24 5854 }
bce38cd5
SE
5855
5856 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5857 int size = sizeof(u64); /* nr */
5858 if (data->br_stack) {
5859 size += data->br_stack->nr
5860 * sizeof(struct perf_branch_entry);
5861 }
5862 header->size += size;
5863 }
4018994f 5864
2565711f 5865 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
88a7c26a
AL
5866 perf_sample_regs_user(&data->regs_user, regs,
5867 &data->regs_user_copy);
2565711f 5868
4018994f
JO
5869 if (sample_type & PERF_SAMPLE_REGS_USER) {
5870 /* regs dump ABI info */
5871 int size = sizeof(u64);
5872
4018994f
JO
5873 if (data->regs_user.regs) {
5874 u64 mask = event->attr.sample_regs_user;
5875 size += hweight64(mask) * sizeof(u64);
5876 }
5877
5878 header->size += size;
5879 }
c5ebcedb
JO
5880
5881 if (sample_type & PERF_SAMPLE_STACK_USER) {
5882 /*
5883 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
5884 * processed as the last one or have additional check added
5885 * in case new sample type is added, because we could eat
5886 * up the rest of the sample size.
5887 */
c5ebcedb
JO
5888 u16 stack_size = event->attr.sample_stack_user;
5889 u16 size = sizeof(u64);
5890
c5ebcedb 5891 stack_size = perf_sample_ustack_size(stack_size, header->size,
2565711f 5892 data->regs_user.regs);
c5ebcedb
JO
5893
5894 /*
5895 * If there is something to dump, add space for the dump
5896 * itself and for the field that tells the dynamic size,
5897 * which is how many have been actually dumped.
5898 */
5899 if (stack_size)
5900 size += sizeof(u64) + stack_size;
5901
5902 data->stack_user_size = stack_size;
5903 header->size += size;
5904 }
60e2364e
SE
5905
5906 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5907 /* regs dump ABI info */
5908 int size = sizeof(u64);
5909
5910 perf_sample_regs_intr(&data->regs_intr, regs);
5911
5912 if (data->regs_intr.regs) {
5913 u64 mask = event->attr.sample_regs_intr;
5914
5915 size += hweight64(mask) * sizeof(u64);
5916 }
5917
5918 header->size += size;
5919 }
5622f295 5920}
7f453c24 5921
9ecda41a
WN
5922static void __always_inline
5923__perf_event_output(struct perf_event *event,
5924 struct perf_sample_data *data,
5925 struct pt_regs *regs,
5926 int (*output_begin)(struct perf_output_handle *,
5927 struct perf_event *,
5928 unsigned int))
5622f295
MM
5929{
5930 struct perf_output_handle handle;
5931 struct perf_event_header header;
689802b2 5932
927c7a9e
FW
5933 /* protect the callchain buffers */
5934 rcu_read_lock();
5935
cdd6c482 5936 perf_prepare_sample(&header, data, event, regs);
5c148194 5937
9ecda41a 5938 if (output_begin(&handle, event, header.size))
927c7a9e 5939 goto exit;
0322cd6e 5940
cdd6c482 5941 perf_output_sample(&handle, &header, data, event);
f413cdb8 5942
8a057d84 5943 perf_output_end(&handle);
927c7a9e
FW
5944
5945exit:
5946 rcu_read_unlock();
0322cd6e
PZ
5947}
5948
9ecda41a
WN
5949void
5950perf_event_output_forward(struct perf_event *event,
5951 struct perf_sample_data *data,
5952 struct pt_regs *regs)
5953{
5954 __perf_event_output(event, data, regs, perf_output_begin_forward);
5955}
5956
5957void
5958perf_event_output_backward(struct perf_event *event,
5959 struct perf_sample_data *data,
5960 struct pt_regs *regs)
5961{
5962 __perf_event_output(event, data, regs, perf_output_begin_backward);
5963}
5964
5965void
5966perf_event_output(struct perf_event *event,
5967 struct perf_sample_data *data,
5968 struct pt_regs *regs)
5969{
5970 __perf_event_output(event, data, regs, perf_output_begin);
5971}
5972
38b200d6 5973/*
cdd6c482 5974 * read event_id
38b200d6
PZ
5975 */
5976
5977struct perf_read_event {
5978 struct perf_event_header header;
5979
5980 u32 pid;
5981 u32 tid;
38b200d6
PZ
5982};
5983
5984static void
cdd6c482 5985perf_event_read_event(struct perf_event *event,
38b200d6
PZ
5986 struct task_struct *task)
5987{
5988 struct perf_output_handle handle;
c980d109 5989 struct perf_sample_data sample;
dfc65094 5990 struct perf_read_event read_event = {
38b200d6 5991 .header = {
cdd6c482 5992 .type = PERF_RECORD_READ,
38b200d6 5993 .misc = 0,
c320c7b7 5994 .size = sizeof(read_event) + event->read_size,
38b200d6 5995 },
cdd6c482
IM
5996 .pid = perf_event_pid(event, task),
5997 .tid = perf_event_tid(event, task),
38b200d6 5998 };
3dab77fb 5999 int ret;
38b200d6 6000
c980d109 6001 perf_event_header__init_id(&read_event.header, &sample, event);
a7ac67ea 6002 ret = perf_output_begin(&handle, event, read_event.header.size);
38b200d6
PZ
6003 if (ret)
6004 return;
6005
dfc65094 6006 perf_output_put(&handle, read_event);
cdd6c482 6007 perf_output_read(&handle, event);
c980d109 6008 perf_event__output_id_sample(event, &handle, &sample);
3dab77fb 6009
38b200d6
PZ
6010 perf_output_end(&handle);
6011}
6012
aab5b71e 6013typedef void (perf_iterate_f)(struct perf_event *event, void *data);
52d857a8
JO
6014
6015static void
aab5b71e
PZ
6016perf_iterate_ctx(struct perf_event_context *ctx,
6017 perf_iterate_f output,
b73e4fef 6018 void *data, bool all)
52d857a8
JO
6019{
6020 struct perf_event *event;
6021
6022 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
b73e4fef
AS
6023 if (!all) {
6024 if (event->state < PERF_EVENT_STATE_INACTIVE)
6025 continue;
6026 if (!event_filter_match(event))
6027 continue;
6028 }
6029
67516844 6030 output(event, data);
52d857a8
JO
6031 }
6032}
6033
aab5b71e 6034static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
f2fb6bef
KL
6035{
6036 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
6037 struct perf_event *event;
6038
6039 list_for_each_entry_rcu(event, &pel->list, sb_list) {
0b8f1e2e
PZ
6040 /*
6041 * Skip events that are not fully formed yet; ensure that
6042 * if we observe event->ctx, both event and ctx will be
6043 * complete enough. See perf_install_in_context().
6044 */
6045 if (!smp_load_acquire(&event->ctx))
6046 continue;
6047
f2fb6bef
KL
6048 if (event->state < PERF_EVENT_STATE_INACTIVE)
6049 continue;
6050 if (!event_filter_match(event))
6051 continue;
6052 output(event, data);
6053 }
6054}
6055
aab5b71e
PZ
6056/*
6057 * Iterate all events that need to receive side-band events.
6058 *
6059 * For new callers; ensure that account_pmu_sb_event() includes
6060 * your event, otherwise it might not get delivered.
6061 */
52d857a8 6062static void
aab5b71e 6063perf_iterate_sb(perf_iterate_f output, void *data,
52d857a8
JO
6064 struct perf_event_context *task_ctx)
6065{
52d857a8 6066 struct perf_event_context *ctx;
52d857a8
JO
6067 int ctxn;
6068
aab5b71e
PZ
6069 rcu_read_lock();
6070 preempt_disable();
6071
4e93ad60 6072 /*
aab5b71e
PZ
6073 * If we have task_ctx != NULL we only notify the task context itself.
6074 * The task_ctx is set only for EXIT events before releasing task
4e93ad60
JO
6075 * context.
6076 */
6077 if (task_ctx) {
aab5b71e
PZ
6078 perf_iterate_ctx(task_ctx, output, data, false);
6079 goto done;
4e93ad60
JO
6080 }
6081
aab5b71e 6082 perf_iterate_sb_cpu(output, data);
f2fb6bef
KL
6083
6084 for_each_task_context_nr(ctxn) {
52d857a8
JO
6085 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6086 if (ctx)
aab5b71e 6087 perf_iterate_ctx(ctx, output, data, false);
52d857a8 6088 }
aab5b71e 6089done:
f2fb6bef 6090 preempt_enable();
52d857a8 6091 rcu_read_unlock();
95ff4ca2
AS
6092}
6093
375637bc
AS
6094/*
6095 * Clear all file-based filters at exec, they'll have to be
6096 * re-instated when/if these objects are mmapped again.
6097 */
6098static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
6099{
6100 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6101 struct perf_addr_filter *filter;
6102 unsigned int restart = 0, count = 0;
6103 unsigned long flags;
6104
6105 if (!has_addr_filter(event))
6106 return;
6107
6108 raw_spin_lock_irqsave(&ifh->lock, flags);
6109 list_for_each_entry(filter, &ifh->list, entry) {
6110 if (filter->inode) {
6111 event->addr_filters_offs[count] = 0;
6112 restart++;
6113 }
6114
6115 count++;
6116 }
6117
6118 if (restart)
6119 event->addr_filters_gen++;
6120 raw_spin_unlock_irqrestore(&ifh->lock, flags);
6121
6122 if (restart)
6123 perf_event_restart(event);
6124}
6125
6126void perf_event_exec(void)
6127{
6128 struct perf_event_context *ctx;
6129 int ctxn;
6130
6131 rcu_read_lock();
6132 for_each_task_context_nr(ctxn) {
6133 ctx = current->perf_event_ctxp[ctxn];
6134 if (!ctx)
6135 continue;
6136
6137 perf_event_enable_on_exec(ctxn);
6138
aab5b71e 6139 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
375637bc
AS
6140 true);
6141 }
6142 rcu_read_unlock();
6143}
6144
95ff4ca2
AS
6145struct remote_output {
6146 struct ring_buffer *rb;
6147 int err;
6148};
6149
6150static void __perf_event_output_stop(struct perf_event *event, void *data)
6151{
6152 struct perf_event *parent = event->parent;
6153 struct remote_output *ro = data;
6154 struct ring_buffer *rb = ro->rb;
375637bc
AS
6155 struct stop_event_data sd = {
6156 .event = event,
6157 };
95ff4ca2
AS
6158
6159 if (!has_aux(event))
6160 return;
6161
6162 if (!parent)
6163 parent = event;
6164
6165 /*
6166 * In case of inheritance, it will be the parent that links to the
6167 * ring-buffer, but it will be the child that's actually using it:
6168 */
6169 if (rcu_dereference(parent->rb) == rb)
375637bc 6170 ro->err = __perf_event_stop(&sd);
95ff4ca2
AS
6171}
6172
6173static int __perf_pmu_output_stop(void *info)
6174{
6175 struct perf_event *event = info;
6176 struct pmu *pmu = event->pmu;
8b6a3fe8 6177 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
95ff4ca2
AS
6178 struct remote_output ro = {
6179 .rb = event->rb,
6180 };
6181
6182 rcu_read_lock();
aab5b71e 6183 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
95ff4ca2 6184 if (cpuctx->task_ctx)
aab5b71e 6185 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
b73e4fef 6186 &ro, false);
95ff4ca2
AS
6187 rcu_read_unlock();
6188
6189 return ro.err;
6190}
6191
6192static void perf_pmu_output_stop(struct perf_event *event)
6193{
6194 struct perf_event *iter;
6195 int err, cpu;
6196
6197restart:
6198 rcu_read_lock();
6199 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6200 /*
6201 * For per-CPU events, we need to make sure that neither they
6202 * nor their children are running; for cpu==-1 events it's
6203 * sufficient to stop the event itself if it's active, since
6204 * it can't have children.
6205 */
6206 cpu = iter->cpu;
6207 if (cpu == -1)
6208 cpu = READ_ONCE(iter->oncpu);
6209
6210 if (cpu == -1)
6211 continue;
6212
6213 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6214 if (err == -EAGAIN) {
6215 rcu_read_unlock();
6216 goto restart;
6217 }
6218 }
6219 rcu_read_unlock();
52d857a8
JO
6220}
6221
60313ebe 6222/*
9f498cc5
PZ
6223 * task tracking -- fork/exit
6224 *
13d7a241 6225 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
60313ebe
PZ
6226 */
6227
9f498cc5 6228struct perf_task_event {
3a80b4a3 6229 struct task_struct *task;
cdd6c482 6230 struct perf_event_context *task_ctx;
60313ebe
PZ
6231
6232 struct {
6233 struct perf_event_header header;
6234
6235 u32 pid;
6236 u32 ppid;
9f498cc5
PZ
6237 u32 tid;
6238 u32 ptid;
393b2ad8 6239 u64 time;
cdd6c482 6240 } event_id;
60313ebe
PZ
6241};
6242
67516844
JO
6243static int perf_event_task_match(struct perf_event *event)
6244{
13d7a241
SE
6245 return event->attr.comm || event->attr.mmap ||
6246 event->attr.mmap2 || event->attr.mmap_data ||
6247 event->attr.task;
67516844
JO
6248}
6249
cdd6c482 6250static void perf_event_task_output(struct perf_event *event,
52d857a8 6251 void *data)
60313ebe 6252{
52d857a8 6253 struct perf_task_event *task_event = data;
60313ebe 6254 struct perf_output_handle handle;
c980d109 6255 struct perf_sample_data sample;
9f498cc5 6256 struct task_struct *task = task_event->task;
c980d109 6257 int ret, size = task_event->event_id.header.size;
8bb39f9a 6258
67516844
JO
6259 if (!perf_event_task_match(event))
6260 return;
6261
c980d109 6262 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
60313ebe 6263
c980d109 6264 ret = perf_output_begin(&handle, event,
a7ac67ea 6265 task_event->event_id.header.size);
ef60777c 6266 if (ret)
c980d109 6267 goto out;
60313ebe 6268
cdd6c482
IM
6269 task_event->event_id.pid = perf_event_pid(event, task);
6270 task_event->event_id.ppid = perf_event_pid(event, current);
60313ebe 6271
cdd6c482
IM
6272 task_event->event_id.tid = perf_event_tid(event, task);
6273 task_event->event_id.ptid = perf_event_tid(event, current);
9f498cc5 6274
34f43927
PZ
6275 task_event->event_id.time = perf_event_clock(event);
6276
cdd6c482 6277 perf_output_put(&handle, task_event->event_id);
393b2ad8 6278
c980d109
ACM
6279 perf_event__output_id_sample(event, &handle, &sample);
6280
60313ebe 6281 perf_output_end(&handle);
c980d109
ACM
6282out:
6283 task_event->event_id.header.size = size;
60313ebe
PZ
6284}
6285
cdd6c482
IM
6286static void perf_event_task(struct task_struct *task,
6287 struct perf_event_context *task_ctx,
3a80b4a3 6288 int new)
60313ebe 6289{
9f498cc5 6290 struct perf_task_event task_event;
60313ebe 6291
cdd6c482
IM
6292 if (!atomic_read(&nr_comm_events) &&
6293 !atomic_read(&nr_mmap_events) &&
6294 !atomic_read(&nr_task_events))
60313ebe
PZ
6295 return;
6296
9f498cc5 6297 task_event = (struct perf_task_event){
3a80b4a3
PZ
6298 .task = task,
6299 .task_ctx = task_ctx,
cdd6c482 6300 .event_id = {
60313ebe 6301 .header = {
cdd6c482 6302 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
573402db 6303 .misc = 0,
cdd6c482 6304 .size = sizeof(task_event.event_id),
60313ebe 6305 },
573402db
PZ
6306 /* .pid */
6307 /* .ppid */
9f498cc5
PZ
6308 /* .tid */
6309 /* .ptid */
34f43927 6310 /* .time */
60313ebe
PZ
6311 },
6312 };
6313
aab5b71e 6314 perf_iterate_sb(perf_event_task_output,
52d857a8
JO
6315 &task_event,
6316 task_ctx);
9f498cc5
PZ
6317}
6318
cdd6c482 6319void perf_event_fork(struct task_struct *task)
9f498cc5 6320{
cdd6c482 6321 perf_event_task(task, NULL, 1);
60313ebe
PZ
6322}
6323
8d1b2d93
PZ
6324/*
6325 * comm tracking
6326 */
6327
6328struct perf_comm_event {
22a4f650
IM
6329 struct task_struct *task;
6330 char *comm;
8d1b2d93
PZ
6331 int comm_size;
6332
6333 struct {
6334 struct perf_event_header header;
6335
6336 u32 pid;
6337 u32 tid;
cdd6c482 6338 } event_id;
8d1b2d93
PZ
6339};
6340
67516844
JO
6341static int perf_event_comm_match(struct perf_event *event)
6342{
6343 return event->attr.comm;
6344}
6345
cdd6c482 6346static void perf_event_comm_output(struct perf_event *event,
52d857a8 6347 void *data)
8d1b2d93 6348{
52d857a8 6349 struct perf_comm_event *comm_event = data;
8d1b2d93 6350 struct perf_output_handle handle;
c980d109 6351 struct perf_sample_data sample;
cdd6c482 6352 int size = comm_event->event_id.header.size;
c980d109
ACM
6353 int ret;
6354
67516844
JO
6355 if (!perf_event_comm_match(event))
6356 return;
6357
c980d109
ACM
6358 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
6359 ret = perf_output_begin(&handle, event,
a7ac67ea 6360 comm_event->event_id.header.size);
8d1b2d93
PZ
6361
6362 if (ret)
c980d109 6363 goto out;
8d1b2d93 6364
cdd6c482
IM
6365 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
6366 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
709e50cf 6367
cdd6c482 6368 perf_output_put(&handle, comm_event->event_id);
76369139 6369 __output_copy(&handle, comm_event->comm,
8d1b2d93 6370 comm_event->comm_size);
c980d109
ACM
6371
6372 perf_event__output_id_sample(event, &handle, &sample);
6373
8d1b2d93 6374 perf_output_end(&handle);
c980d109
ACM
6375out:
6376 comm_event->event_id.header.size = size;
8d1b2d93
PZ
6377}
6378
cdd6c482 6379static void perf_event_comm_event(struct perf_comm_event *comm_event)
8d1b2d93 6380{
413ee3b4 6381 char comm[TASK_COMM_LEN];
8d1b2d93 6382 unsigned int size;
8d1b2d93 6383
413ee3b4 6384 memset(comm, 0, sizeof(comm));
96b02d78 6385 strlcpy(comm, comm_event->task->comm, sizeof(comm));
888fcee0 6386 size = ALIGN(strlen(comm)+1, sizeof(u64));
8d1b2d93
PZ
6387
6388 comm_event->comm = comm;
6389 comm_event->comm_size = size;
6390
cdd6c482 6391 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
8dc85d54 6392
aab5b71e 6393 perf_iterate_sb(perf_event_comm_output,
52d857a8
JO
6394 comm_event,
6395 NULL);
8d1b2d93
PZ
6396}
6397
82b89778 6398void perf_event_comm(struct task_struct *task, bool exec)
8d1b2d93 6399{
9ee318a7
PZ
6400 struct perf_comm_event comm_event;
6401
cdd6c482 6402 if (!atomic_read(&nr_comm_events))
9ee318a7 6403 return;
a63eaf34 6404
9ee318a7 6405 comm_event = (struct perf_comm_event){
8d1b2d93 6406 .task = task,
573402db
PZ
6407 /* .comm */
6408 /* .comm_size */
cdd6c482 6409 .event_id = {
573402db 6410 .header = {
cdd6c482 6411 .type = PERF_RECORD_COMM,
82b89778 6412 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
573402db
PZ
6413 /* .size */
6414 },
6415 /* .pid */
6416 /* .tid */
8d1b2d93
PZ
6417 },
6418 };
6419
cdd6c482 6420 perf_event_comm_event(&comm_event);
8d1b2d93
PZ
6421}
6422
0a4a9391
PZ
6423/*
6424 * mmap tracking
6425 */
6426
6427struct perf_mmap_event {
089dd79d
PZ
6428 struct vm_area_struct *vma;
6429
6430 const char *file_name;
6431 int file_size;
13d7a241
SE
6432 int maj, min;
6433 u64 ino;
6434 u64 ino_generation;
f972eb63 6435 u32 prot, flags;
0a4a9391
PZ
6436
6437 struct {
6438 struct perf_event_header header;
6439
6440 u32 pid;
6441 u32 tid;
6442 u64 start;
6443 u64 len;
6444 u64 pgoff;
cdd6c482 6445 } event_id;
0a4a9391
PZ
6446};
6447
67516844
JO
6448static int perf_event_mmap_match(struct perf_event *event,
6449 void *data)
6450{
6451 struct perf_mmap_event *mmap_event = data;
6452 struct vm_area_struct *vma = mmap_event->vma;
6453 int executable = vma->vm_flags & VM_EXEC;
6454
6455 return (!executable && event->attr.mmap_data) ||
13d7a241 6456 (executable && (event->attr.mmap || event->attr.mmap2));
67516844
JO
6457}
6458
cdd6c482 6459static void perf_event_mmap_output(struct perf_event *event,
52d857a8 6460 void *data)
0a4a9391 6461{
52d857a8 6462 struct perf_mmap_event *mmap_event = data;
0a4a9391 6463 struct perf_output_handle handle;
c980d109 6464 struct perf_sample_data sample;
cdd6c482 6465 int size = mmap_event->event_id.header.size;
c980d109 6466 int ret;
0a4a9391 6467
67516844
JO
6468 if (!perf_event_mmap_match(event, data))
6469 return;
6470
13d7a241
SE
6471 if (event->attr.mmap2) {
6472 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
6473 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
6474 mmap_event->event_id.header.size += sizeof(mmap_event->min);
6475 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
d008d525 6476 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
f972eb63
PZ
6477 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
6478 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
13d7a241
SE
6479 }
6480
c980d109
ACM
6481 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
6482 ret = perf_output_begin(&handle, event,
a7ac67ea 6483 mmap_event->event_id.header.size);
0a4a9391 6484 if (ret)
c980d109 6485 goto out;
0a4a9391 6486
cdd6c482
IM
6487 mmap_event->event_id.pid = perf_event_pid(event, current);
6488 mmap_event->event_id.tid = perf_event_tid(event, current);
709e50cf 6489
cdd6c482 6490 perf_output_put(&handle, mmap_event->event_id);
13d7a241
SE
6491
6492 if (event->attr.mmap2) {
6493 perf_output_put(&handle, mmap_event->maj);
6494 perf_output_put(&handle, mmap_event->min);
6495 perf_output_put(&handle, mmap_event->ino);
6496 perf_output_put(&handle, mmap_event->ino_generation);
f972eb63
PZ
6497 perf_output_put(&handle, mmap_event->prot);
6498 perf_output_put(&handle, mmap_event->flags);
13d7a241
SE
6499 }
6500
76369139 6501 __output_copy(&handle, mmap_event->file_name,
0a4a9391 6502 mmap_event->file_size);
c980d109
ACM
6503
6504 perf_event__output_id_sample(event, &handle, &sample);
6505
78d613eb 6506 perf_output_end(&handle);
c980d109
ACM
6507out:
6508 mmap_event->event_id.header.size = size;
0a4a9391
PZ
6509}
6510
cdd6c482 6511static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
0a4a9391 6512{
089dd79d
PZ
6513 struct vm_area_struct *vma = mmap_event->vma;
6514 struct file *file = vma->vm_file;
13d7a241
SE
6515 int maj = 0, min = 0;
6516 u64 ino = 0, gen = 0;
f972eb63 6517 u32 prot = 0, flags = 0;
0a4a9391
PZ
6518 unsigned int size;
6519 char tmp[16];
6520 char *buf = NULL;
2c42cfbf 6521 char *name;
413ee3b4 6522
0a4a9391 6523 if (file) {
13d7a241
SE
6524 struct inode *inode;
6525 dev_t dev;
3ea2f2b9 6526
2c42cfbf 6527 buf = kmalloc(PATH_MAX, GFP_KERNEL);
0a4a9391 6528 if (!buf) {
c7e548b4
ON
6529 name = "//enomem";
6530 goto cpy_name;
0a4a9391 6531 }
413ee3b4 6532 /*
3ea2f2b9 6533 * d_path() works from the end of the rb backwards, so we
413ee3b4
AB
6534 * need to add enough zero bytes after the string to handle
6535 * the 64bit alignment we do later.
6536 */
9bf39ab2 6537 name = file_path(file, buf, PATH_MAX - sizeof(u64));
0a4a9391 6538 if (IS_ERR(name)) {
c7e548b4
ON
6539 name = "//toolong";
6540 goto cpy_name;
0a4a9391 6541 }
13d7a241
SE
6542 inode = file_inode(vma->vm_file);
6543 dev = inode->i_sb->s_dev;
6544 ino = inode->i_ino;
6545 gen = inode->i_generation;
6546 maj = MAJOR(dev);
6547 min = MINOR(dev);
f972eb63
PZ
6548
6549 if (vma->vm_flags & VM_READ)
6550 prot |= PROT_READ;
6551 if (vma->vm_flags & VM_WRITE)
6552 prot |= PROT_WRITE;
6553 if (vma->vm_flags & VM_EXEC)
6554 prot |= PROT_EXEC;
6555
6556 if (vma->vm_flags & VM_MAYSHARE)
6557 flags = MAP_SHARED;
6558 else
6559 flags = MAP_PRIVATE;
6560
6561 if (vma->vm_flags & VM_DENYWRITE)
6562 flags |= MAP_DENYWRITE;
6563 if (vma->vm_flags & VM_MAYEXEC)
6564 flags |= MAP_EXECUTABLE;
6565 if (vma->vm_flags & VM_LOCKED)
6566 flags |= MAP_LOCKED;
6567 if (vma->vm_flags & VM_HUGETLB)
6568 flags |= MAP_HUGETLB;
6569
c7e548b4 6570 goto got_name;
0a4a9391 6571 } else {
fbe26abe
JO
6572 if (vma->vm_ops && vma->vm_ops->name) {
6573 name = (char *) vma->vm_ops->name(vma);
6574 if (name)
6575 goto cpy_name;
6576 }
6577
2c42cfbf 6578 name = (char *)arch_vma_name(vma);
c7e548b4
ON
6579 if (name)
6580 goto cpy_name;
089dd79d 6581
32c5fb7e 6582 if (vma->vm_start <= vma->vm_mm->start_brk &&
3af9e859 6583 vma->vm_end >= vma->vm_mm->brk) {
c7e548b4
ON
6584 name = "[heap]";
6585 goto cpy_name;
32c5fb7e
ON
6586 }
6587 if (vma->vm_start <= vma->vm_mm->start_stack &&
3af9e859 6588 vma->vm_end >= vma->vm_mm->start_stack) {
c7e548b4
ON
6589 name = "[stack]";
6590 goto cpy_name;
089dd79d
PZ
6591 }
6592
c7e548b4
ON
6593 name = "//anon";
6594 goto cpy_name;
0a4a9391
PZ
6595 }
6596
c7e548b4
ON
6597cpy_name:
6598 strlcpy(tmp, name, sizeof(tmp));
6599 name = tmp;
0a4a9391 6600got_name:
2c42cfbf
PZ
6601 /*
6602 * Since our buffer works in 8 byte units we need to align our string
6603 * size to a multiple of 8. However, we must guarantee the tail end is
6604 * zero'd out to avoid leaking random bits to userspace.
6605 */
6606 size = strlen(name)+1;
6607 while (!IS_ALIGNED(size, sizeof(u64)))
6608 name[size++] = '\0';
0a4a9391
PZ
6609
6610 mmap_event->file_name = name;
6611 mmap_event->file_size = size;
13d7a241
SE
6612 mmap_event->maj = maj;
6613 mmap_event->min = min;
6614 mmap_event->ino = ino;
6615 mmap_event->ino_generation = gen;
f972eb63
PZ
6616 mmap_event->prot = prot;
6617 mmap_event->flags = flags;
0a4a9391 6618
2fe85427
SE
6619 if (!(vma->vm_flags & VM_EXEC))
6620 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
6621
cdd6c482 6622 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
0a4a9391 6623
aab5b71e 6624 perf_iterate_sb(perf_event_mmap_output,
52d857a8
JO
6625 mmap_event,
6626 NULL);
665c2142 6627
0a4a9391
PZ
6628 kfree(buf);
6629}
6630
375637bc
AS
6631/*
6632 * Check whether inode and address range match filter criteria.
6633 */
6634static bool perf_addr_filter_match(struct perf_addr_filter *filter,
6635 struct file *file, unsigned long offset,
6636 unsigned long size)
6637{
6638 if (filter->inode != file->f_inode)
6639 return false;
6640
6641 if (filter->offset > offset + size)
6642 return false;
6643
6644 if (filter->offset + filter->size < offset)
6645 return false;
6646
6647 return true;
6648}
6649
6650static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
6651{
6652 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6653 struct vm_area_struct *vma = data;
6654 unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags;
6655 struct file *file = vma->vm_file;
6656 struct perf_addr_filter *filter;
6657 unsigned int restart = 0, count = 0;
6658
6659 if (!has_addr_filter(event))
6660 return;
6661
6662 if (!file)
6663 return;
6664
6665 raw_spin_lock_irqsave(&ifh->lock, flags);
6666 list_for_each_entry(filter, &ifh->list, entry) {
6667 if (perf_addr_filter_match(filter, file, off,
6668 vma->vm_end - vma->vm_start)) {
6669 event->addr_filters_offs[count] = vma->vm_start;
6670 restart++;
6671 }
6672
6673 count++;
6674 }
6675
6676 if (restart)
6677 event->addr_filters_gen++;
6678 raw_spin_unlock_irqrestore(&ifh->lock, flags);
6679
6680 if (restart)
6681 perf_event_restart(event);
6682}
6683
6684/*
6685 * Adjust all task's events' filters to the new vma
6686 */
6687static void perf_addr_filters_adjust(struct vm_area_struct *vma)
6688{
6689 struct perf_event_context *ctx;
6690 int ctxn;
6691
12b40a23
MP
6692 /*
6693 * Data tracing isn't supported yet and as such there is no need
6694 * to keep track of anything that isn't related to executable code:
6695 */
6696 if (!(vma->vm_flags & VM_EXEC))
6697 return;
6698
375637bc
AS
6699 rcu_read_lock();
6700 for_each_task_context_nr(ctxn) {
6701 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6702 if (!ctx)
6703 continue;
6704
aab5b71e 6705 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
375637bc
AS
6706 }
6707 rcu_read_unlock();
6708}
6709
3af9e859 6710void perf_event_mmap(struct vm_area_struct *vma)
0a4a9391 6711{
9ee318a7
PZ
6712 struct perf_mmap_event mmap_event;
6713
cdd6c482 6714 if (!atomic_read(&nr_mmap_events))
9ee318a7
PZ
6715 return;
6716
6717 mmap_event = (struct perf_mmap_event){
089dd79d 6718 .vma = vma,
573402db
PZ
6719 /* .file_name */
6720 /* .file_size */
cdd6c482 6721 .event_id = {
573402db 6722 .header = {
cdd6c482 6723 .type = PERF_RECORD_MMAP,
39447b38 6724 .misc = PERF_RECORD_MISC_USER,
573402db
PZ
6725 /* .size */
6726 },
6727 /* .pid */
6728 /* .tid */
089dd79d
PZ
6729 .start = vma->vm_start,
6730 .len = vma->vm_end - vma->vm_start,
3a0304e9 6731 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
0a4a9391 6732 },
13d7a241
SE
6733 /* .maj (attr_mmap2 only) */
6734 /* .min (attr_mmap2 only) */
6735 /* .ino (attr_mmap2 only) */
6736 /* .ino_generation (attr_mmap2 only) */
f972eb63
PZ
6737 /* .prot (attr_mmap2 only) */
6738 /* .flags (attr_mmap2 only) */
0a4a9391
PZ
6739 };
6740
375637bc 6741 perf_addr_filters_adjust(vma);
cdd6c482 6742 perf_event_mmap_event(&mmap_event);
0a4a9391
PZ
6743}
6744
68db7e98
AS
6745void perf_event_aux_event(struct perf_event *event, unsigned long head,
6746 unsigned long size, u64 flags)
6747{
6748 struct perf_output_handle handle;
6749 struct perf_sample_data sample;
6750 struct perf_aux_event {
6751 struct perf_event_header header;
6752 u64 offset;
6753 u64 size;
6754 u64 flags;
6755 } rec = {
6756 .header = {
6757 .type = PERF_RECORD_AUX,
6758 .misc = 0,
6759 .size = sizeof(rec),
6760 },
6761 .offset = head,
6762 .size = size,
6763 .flags = flags,
6764 };
6765 int ret;
6766
6767 perf_event_header__init_id(&rec.header, &sample, event);
6768 ret = perf_output_begin(&handle, event, rec.header.size);
6769
6770 if (ret)
6771 return;
6772
6773 perf_output_put(&handle, rec);
6774 perf_event__output_id_sample(event, &handle, &sample);
6775
6776 perf_output_end(&handle);
6777}
6778
f38b0dbb
KL
6779/*
6780 * Lost/dropped samples logging
6781 */
6782void perf_log_lost_samples(struct perf_event *event, u64 lost)
6783{
6784 struct perf_output_handle handle;
6785 struct perf_sample_data sample;
6786 int ret;
6787
6788 struct {
6789 struct perf_event_header header;
6790 u64 lost;
6791 } lost_samples_event = {
6792 .header = {
6793 .type = PERF_RECORD_LOST_SAMPLES,
6794 .misc = 0,
6795 .size = sizeof(lost_samples_event),
6796 },
6797 .lost = lost,
6798 };
6799
6800 perf_event_header__init_id(&lost_samples_event.header, &sample, event);
6801
6802 ret = perf_output_begin(&handle, event,
6803 lost_samples_event.header.size);
6804 if (ret)
6805 return;
6806
6807 perf_output_put(&handle, lost_samples_event);
6808 perf_event__output_id_sample(event, &handle, &sample);
6809 perf_output_end(&handle);
6810}
6811
45ac1403
AH
6812/*
6813 * context_switch tracking
6814 */
6815
6816struct perf_switch_event {
6817 struct task_struct *task;
6818 struct task_struct *next_prev;
6819
6820 struct {
6821 struct perf_event_header header;
6822 u32 next_prev_pid;
6823 u32 next_prev_tid;
6824 } event_id;
6825};
6826
6827static int perf_event_switch_match(struct perf_event *event)
6828{
6829 return event->attr.context_switch;
6830}
6831
6832static void perf_event_switch_output(struct perf_event *event, void *data)
6833{
6834 struct perf_switch_event *se = data;
6835 struct perf_output_handle handle;
6836 struct perf_sample_data sample;
6837 int ret;
6838
6839 if (!perf_event_switch_match(event))
6840 return;
6841
6842 /* Only CPU-wide events are allowed to see next/prev pid/tid */
6843 if (event->ctx->task) {
6844 se->event_id.header.type = PERF_RECORD_SWITCH;
6845 se->event_id.header.size = sizeof(se->event_id.header);
6846 } else {
6847 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
6848 se->event_id.header.size = sizeof(se->event_id);
6849 se->event_id.next_prev_pid =
6850 perf_event_pid(event, se->next_prev);
6851 se->event_id.next_prev_tid =
6852 perf_event_tid(event, se->next_prev);
6853 }
6854
6855 perf_event_header__init_id(&se->event_id.header, &sample, event);
6856
6857 ret = perf_output_begin(&handle, event, se->event_id.header.size);
6858 if (ret)
6859 return;
6860
6861 if (event->ctx->task)
6862 perf_output_put(&handle, se->event_id.header);
6863 else
6864 perf_output_put(&handle, se->event_id);
6865
6866 perf_event__output_id_sample(event, &handle, &sample);
6867
6868 perf_output_end(&handle);
6869}
6870
6871static void perf_event_switch(struct task_struct *task,
6872 struct task_struct *next_prev, bool sched_in)
6873{
6874 struct perf_switch_event switch_event;
6875
6876 /* N.B. caller checks nr_switch_events != 0 */
6877
6878 switch_event = (struct perf_switch_event){
6879 .task = task,
6880 .next_prev = next_prev,
6881 .event_id = {
6882 .header = {
6883 /* .type */
6884 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
6885 /* .size */
6886 },
6887 /* .next_prev_pid */
6888 /* .next_prev_tid */
6889 },
6890 };
6891
aab5b71e 6892 perf_iterate_sb(perf_event_switch_output,
45ac1403
AH
6893 &switch_event,
6894 NULL);
6895}
6896
a78ac325
PZ
6897/*
6898 * IRQ throttle logging
6899 */
6900
cdd6c482 6901static void perf_log_throttle(struct perf_event *event, int enable)
a78ac325
PZ
6902{
6903 struct perf_output_handle handle;
c980d109 6904 struct perf_sample_data sample;
a78ac325
PZ
6905 int ret;
6906
6907 struct {
6908 struct perf_event_header header;
6909 u64 time;
cca3f454 6910 u64 id;
7f453c24 6911 u64 stream_id;
a78ac325
PZ
6912 } throttle_event = {
6913 .header = {
cdd6c482 6914 .type = PERF_RECORD_THROTTLE,
a78ac325
PZ
6915 .misc = 0,
6916 .size = sizeof(throttle_event),
6917 },
34f43927 6918 .time = perf_event_clock(event),
cdd6c482
IM
6919 .id = primary_event_id(event),
6920 .stream_id = event->id,
a78ac325
PZ
6921 };
6922
966ee4d6 6923 if (enable)
cdd6c482 6924 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
966ee4d6 6925
c980d109
ACM
6926 perf_event_header__init_id(&throttle_event.header, &sample, event);
6927
6928 ret = perf_output_begin(&handle, event,
a7ac67ea 6929 throttle_event.header.size);
a78ac325
PZ
6930 if (ret)
6931 return;
6932
6933 perf_output_put(&handle, throttle_event);
c980d109 6934 perf_event__output_id_sample(event, &handle, &sample);
a78ac325
PZ
6935 perf_output_end(&handle);
6936}
6937
ec0d7729
AS
6938static void perf_log_itrace_start(struct perf_event *event)
6939{
6940 struct perf_output_handle handle;
6941 struct perf_sample_data sample;
6942 struct perf_aux_event {
6943 struct perf_event_header header;
6944 u32 pid;
6945 u32 tid;
6946 } rec;
6947 int ret;
6948
6949 if (event->parent)
6950 event = event->parent;
6951
6952 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
6953 event->hw.itrace_started)
6954 return;
6955
ec0d7729
AS
6956 rec.header.type = PERF_RECORD_ITRACE_START;
6957 rec.header.misc = 0;
6958 rec.header.size = sizeof(rec);
6959 rec.pid = perf_event_pid(event, current);
6960 rec.tid = perf_event_tid(event, current);
6961
6962 perf_event_header__init_id(&rec.header, &sample, event);
6963 ret = perf_output_begin(&handle, event, rec.header.size);
6964
6965 if (ret)
6966 return;
6967
6968 perf_output_put(&handle, rec);
6969 perf_event__output_id_sample(event, &handle, &sample);
6970
6971 perf_output_end(&handle);
6972}
6973
f6c7d5fe 6974/*
cdd6c482 6975 * Generic event overflow handling, sampling.
f6c7d5fe
PZ
6976 */
6977
a8b0ca17 6978static int __perf_event_overflow(struct perf_event *event,
5622f295
MM
6979 int throttle, struct perf_sample_data *data,
6980 struct pt_regs *regs)
f6c7d5fe 6981{
cdd6c482
IM
6982 int events = atomic_read(&event->event_limit);
6983 struct hw_perf_event *hwc = &event->hw;
e050e3f0 6984 u64 seq;
79f14641
PZ
6985 int ret = 0;
6986
96398826
PZ
6987 /*
6988 * Non-sampling counters might still use the PMI to fold short
6989 * hardware counters, ignore those.
6990 */
6991 if (unlikely(!is_sampling_event(event)))
6992 return 0;
6993
e050e3f0
SE
6994 seq = __this_cpu_read(perf_throttled_seq);
6995 if (seq != hwc->interrupts_seq) {
6996 hwc->interrupts_seq = seq;
6997 hwc->interrupts = 1;
6998 } else {
6999 hwc->interrupts++;
7000 if (unlikely(throttle
7001 && hwc->interrupts >= max_samples_per_tick)) {
7002 __this_cpu_inc(perf_throttled_count);
555e0c1e 7003 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
163ec435
PZ
7004 hwc->interrupts = MAX_INTERRUPTS;
7005 perf_log_throttle(event, 0);
a78ac325
PZ
7006 ret = 1;
7007 }
e050e3f0 7008 }
60db5e09 7009
cdd6c482 7010 if (event->attr.freq) {
def0a9b2 7011 u64 now = perf_clock();
abd50713 7012 s64 delta = now - hwc->freq_time_stamp;
bd2b5b12 7013
abd50713 7014 hwc->freq_time_stamp = now;
bd2b5b12 7015
abd50713 7016 if (delta > 0 && delta < 2*TICK_NSEC)
f39d47ff 7017 perf_adjust_period(event, delta, hwc->last_period, true);
bd2b5b12
PZ
7018 }
7019
2023b359
PZ
7020 /*
7021 * XXX event_limit might not quite work as expected on inherited
cdd6c482 7022 * events
2023b359
PZ
7023 */
7024
cdd6c482
IM
7025 event->pending_kill = POLL_IN;
7026 if (events && atomic_dec_and_test(&event->event_limit)) {
79f14641 7027 ret = 1;
cdd6c482 7028 event->pending_kill = POLL_HUP;
a8b0ca17
PZ
7029 event->pending_disable = 1;
7030 irq_work_queue(&event->pending);
79f14641
PZ
7031 }
7032
1879445d 7033 event->overflow_handler(event, data, regs);
453f19ee 7034
fed66e2c 7035 if (*perf_event_fasync(event) && event->pending_kill) {
a8b0ca17
PZ
7036 event->pending_wakeup = 1;
7037 irq_work_queue(&event->pending);
f506b3dc
PZ
7038 }
7039
79f14641 7040 return ret;
f6c7d5fe
PZ
7041}
7042
a8b0ca17 7043int perf_event_overflow(struct perf_event *event,
5622f295
MM
7044 struct perf_sample_data *data,
7045 struct pt_regs *regs)
850bc73f 7046{
a8b0ca17 7047 return __perf_event_overflow(event, 1, data, regs);
850bc73f
PZ
7048}
7049
15dbf27c 7050/*
cdd6c482 7051 * Generic software event infrastructure
15dbf27c
PZ
7052 */
7053
b28ab83c
PZ
7054struct swevent_htable {
7055 struct swevent_hlist *swevent_hlist;
7056 struct mutex hlist_mutex;
7057 int hlist_refcount;
7058
7059 /* Recursion avoidance in each contexts */
7060 int recursion[PERF_NR_CONTEXTS];
7061};
7062
7063static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
7064
7b4b6658 7065/*
cdd6c482
IM
7066 * We directly increment event->count and keep a second value in
7067 * event->hw.period_left to count intervals. This period event
7b4b6658
PZ
7068 * is kept in the range [-sample_period, 0] so that we can use the
7069 * sign as trigger.
7070 */
7071
ab573844 7072u64 perf_swevent_set_period(struct perf_event *event)
15dbf27c 7073{
cdd6c482 7074 struct hw_perf_event *hwc = &event->hw;
7b4b6658
PZ
7075 u64 period = hwc->last_period;
7076 u64 nr, offset;
7077 s64 old, val;
7078
7079 hwc->last_period = hwc->sample_period;
15dbf27c
PZ
7080
7081again:
e7850595 7082 old = val = local64_read(&hwc->period_left);
7b4b6658
PZ
7083 if (val < 0)
7084 return 0;
15dbf27c 7085
7b4b6658
PZ
7086 nr = div64_u64(period + val, period);
7087 offset = nr * period;
7088 val -= offset;
e7850595 7089 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7b4b6658 7090 goto again;
15dbf27c 7091
7b4b6658 7092 return nr;
15dbf27c
PZ
7093}
7094
0cff784a 7095static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
a8b0ca17 7096 struct perf_sample_data *data,
5622f295 7097 struct pt_regs *regs)
15dbf27c 7098{
cdd6c482 7099 struct hw_perf_event *hwc = &event->hw;
850bc73f 7100 int throttle = 0;
15dbf27c 7101
0cff784a
PZ
7102 if (!overflow)
7103 overflow = perf_swevent_set_period(event);
15dbf27c 7104
7b4b6658
PZ
7105 if (hwc->interrupts == MAX_INTERRUPTS)
7106 return;
15dbf27c 7107
7b4b6658 7108 for (; overflow; overflow--) {
a8b0ca17 7109 if (__perf_event_overflow(event, throttle,
5622f295 7110 data, regs)) {
7b4b6658
PZ
7111 /*
7112 * We inhibit the overflow from happening when
7113 * hwc->interrupts == MAX_INTERRUPTS.
7114 */
7115 break;
7116 }
cf450a73 7117 throttle = 1;
7b4b6658 7118 }
15dbf27c
PZ
7119}
7120
a4eaf7f1 7121static void perf_swevent_event(struct perf_event *event, u64 nr,
a8b0ca17 7122 struct perf_sample_data *data,
5622f295 7123 struct pt_regs *regs)
7b4b6658 7124{
cdd6c482 7125 struct hw_perf_event *hwc = &event->hw;
d6d020e9 7126
e7850595 7127 local64_add(nr, &event->count);
d6d020e9 7128
0cff784a
PZ
7129 if (!regs)
7130 return;
7131
6c7e550f 7132 if (!is_sampling_event(event))
7b4b6658 7133 return;
d6d020e9 7134
5d81e5cf
AV
7135 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
7136 data->period = nr;
7137 return perf_swevent_overflow(event, 1, data, regs);
7138 } else
7139 data->period = event->hw.last_period;
7140
0cff784a 7141 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
a8b0ca17 7142 return perf_swevent_overflow(event, 1, data, regs);
0cff784a 7143
e7850595 7144 if (local64_add_negative(nr, &hwc->period_left))
7b4b6658 7145 return;
df1a132b 7146
a8b0ca17 7147 perf_swevent_overflow(event, 0, data, regs);
d6d020e9
PZ
7148}
7149
f5ffe02e
FW
7150static int perf_exclude_event(struct perf_event *event,
7151 struct pt_regs *regs)
7152{
a4eaf7f1 7153 if (event->hw.state & PERF_HES_STOPPED)
91b2f482 7154 return 1;
a4eaf7f1 7155
f5ffe02e
FW
7156 if (regs) {
7157 if (event->attr.exclude_user && user_mode(regs))
7158 return 1;
7159
7160 if (event->attr.exclude_kernel && !user_mode(regs))
7161 return 1;
7162 }
7163
7164 return 0;
7165}
7166
cdd6c482 7167static int perf_swevent_match(struct perf_event *event,
1c432d89 7168 enum perf_type_id type,
6fb2915d
LZ
7169 u32 event_id,
7170 struct perf_sample_data *data,
7171 struct pt_regs *regs)
15dbf27c 7172{
cdd6c482 7173 if (event->attr.type != type)
a21ca2ca 7174 return 0;
f5ffe02e 7175
cdd6c482 7176 if (event->attr.config != event_id)
15dbf27c
PZ
7177 return 0;
7178
f5ffe02e
FW
7179 if (perf_exclude_event(event, regs))
7180 return 0;
15dbf27c
PZ
7181
7182 return 1;
7183}
7184
76e1d904
FW
7185static inline u64 swevent_hash(u64 type, u32 event_id)
7186{
7187 u64 val = event_id | (type << 32);
7188
7189 return hash_64(val, SWEVENT_HLIST_BITS);
7190}
7191
49f135ed
FW
7192static inline struct hlist_head *
7193__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
76e1d904 7194{
49f135ed
FW
7195 u64 hash = swevent_hash(type, event_id);
7196
7197 return &hlist->heads[hash];
7198}
76e1d904 7199
49f135ed
FW
7200/* For the read side: events when they trigger */
7201static inline struct hlist_head *
b28ab83c 7202find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
49f135ed
FW
7203{
7204 struct swevent_hlist *hlist;
76e1d904 7205
b28ab83c 7206 hlist = rcu_dereference(swhash->swevent_hlist);
76e1d904
FW
7207 if (!hlist)
7208 return NULL;
7209
49f135ed
FW
7210 return __find_swevent_head(hlist, type, event_id);
7211}
7212
7213/* For the event head insertion and removal in the hlist */
7214static inline struct hlist_head *
b28ab83c 7215find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
49f135ed
FW
7216{
7217 struct swevent_hlist *hlist;
7218 u32 event_id = event->attr.config;
7219 u64 type = event->attr.type;
7220
7221 /*
7222 * Event scheduling is always serialized against hlist allocation
7223 * and release. Which makes the protected version suitable here.
7224 * The context lock guarantees that.
7225 */
b28ab83c 7226 hlist = rcu_dereference_protected(swhash->swevent_hlist,
49f135ed
FW
7227 lockdep_is_held(&event->ctx->lock));
7228 if (!hlist)
7229 return NULL;
7230
7231 return __find_swevent_head(hlist, type, event_id);
76e1d904
FW
7232}
7233
7234static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
a8b0ca17 7235 u64 nr,
76e1d904
FW
7236 struct perf_sample_data *data,
7237 struct pt_regs *regs)
15dbf27c 7238{
4a32fea9 7239 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 7240 struct perf_event *event;
76e1d904 7241 struct hlist_head *head;
15dbf27c 7242
76e1d904 7243 rcu_read_lock();
b28ab83c 7244 head = find_swevent_head_rcu(swhash, type, event_id);
76e1d904
FW
7245 if (!head)
7246 goto end;
7247
b67bfe0d 7248 hlist_for_each_entry_rcu(event, head, hlist_entry) {
6fb2915d 7249 if (perf_swevent_match(event, type, event_id, data, regs))
a8b0ca17 7250 perf_swevent_event(event, nr, data, regs);
15dbf27c 7251 }
76e1d904
FW
7252end:
7253 rcu_read_unlock();
15dbf27c
PZ
7254}
7255
86038c5e
PZI
7256DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
7257
4ed7c92d 7258int perf_swevent_get_recursion_context(void)
96f6d444 7259{
4a32fea9 7260 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
96f6d444 7261
b28ab83c 7262 return get_recursion_context(swhash->recursion);
96f6d444 7263}
645e8cc0 7264EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
96f6d444 7265
98b5c2c6 7266void perf_swevent_put_recursion_context(int rctx)
15dbf27c 7267{
4a32fea9 7268 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
927c7a9e 7269
b28ab83c 7270 put_recursion_context(swhash->recursion, rctx);
ce71b9df 7271}
15dbf27c 7272
86038c5e 7273void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
b8e83514 7274{
a4234bfc 7275 struct perf_sample_data data;
4ed7c92d 7276
86038c5e 7277 if (WARN_ON_ONCE(!regs))
4ed7c92d 7278 return;
a4234bfc 7279
fd0d000b 7280 perf_sample_data_init(&data, addr, 0);
a8b0ca17 7281 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
86038c5e
PZI
7282}
7283
7284void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7285{
7286 int rctx;
7287
7288 preempt_disable_notrace();
7289 rctx = perf_swevent_get_recursion_context();
7290 if (unlikely(rctx < 0))
7291 goto fail;
7292
7293 ___perf_sw_event(event_id, nr, regs, addr);
4ed7c92d
PZ
7294
7295 perf_swevent_put_recursion_context(rctx);
86038c5e 7296fail:
1c024eca 7297 preempt_enable_notrace();
b8e83514
PZ
7298}
7299
cdd6c482 7300static void perf_swevent_read(struct perf_event *event)
15dbf27c 7301{
15dbf27c
PZ
7302}
7303
a4eaf7f1 7304static int perf_swevent_add(struct perf_event *event, int flags)
15dbf27c 7305{
4a32fea9 7306 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 7307 struct hw_perf_event *hwc = &event->hw;
76e1d904
FW
7308 struct hlist_head *head;
7309
6c7e550f 7310 if (is_sampling_event(event)) {
7b4b6658 7311 hwc->last_period = hwc->sample_period;
cdd6c482 7312 perf_swevent_set_period(event);
7b4b6658 7313 }
76e1d904 7314
a4eaf7f1
PZ
7315 hwc->state = !(flags & PERF_EF_START);
7316
b28ab83c 7317 head = find_swevent_head(swhash, event);
12ca6ad2 7318 if (WARN_ON_ONCE(!head))
76e1d904
FW
7319 return -EINVAL;
7320
7321 hlist_add_head_rcu(&event->hlist_entry, head);
6a694a60 7322 perf_event_update_userpage(event);
76e1d904 7323
15dbf27c
PZ
7324 return 0;
7325}
7326
a4eaf7f1 7327static void perf_swevent_del(struct perf_event *event, int flags)
15dbf27c 7328{
76e1d904 7329 hlist_del_rcu(&event->hlist_entry);
15dbf27c
PZ
7330}
7331
a4eaf7f1 7332static void perf_swevent_start(struct perf_event *event, int flags)
5c92d124 7333{
a4eaf7f1 7334 event->hw.state = 0;
d6d020e9 7335}
aa9c4c0f 7336
a4eaf7f1 7337static void perf_swevent_stop(struct perf_event *event, int flags)
d6d020e9 7338{
a4eaf7f1 7339 event->hw.state = PERF_HES_STOPPED;
bae43c99
IM
7340}
7341
49f135ed
FW
7342/* Deref the hlist from the update side */
7343static inline struct swevent_hlist *
b28ab83c 7344swevent_hlist_deref(struct swevent_htable *swhash)
49f135ed 7345{
b28ab83c
PZ
7346 return rcu_dereference_protected(swhash->swevent_hlist,
7347 lockdep_is_held(&swhash->hlist_mutex));
49f135ed
FW
7348}
7349
b28ab83c 7350static void swevent_hlist_release(struct swevent_htable *swhash)
76e1d904 7351{
b28ab83c 7352 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
76e1d904 7353
49f135ed 7354 if (!hlist)
76e1d904
FW
7355 return;
7356
70691d4a 7357 RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
fa4bbc4c 7358 kfree_rcu(hlist, rcu_head);
76e1d904
FW
7359}
7360
3b364d7b 7361static void swevent_hlist_put_cpu(int cpu)
76e1d904 7362{
b28ab83c 7363 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904 7364
b28ab83c 7365 mutex_lock(&swhash->hlist_mutex);
76e1d904 7366
b28ab83c
PZ
7367 if (!--swhash->hlist_refcount)
7368 swevent_hlist_release(swhash);
76e1d904 7369
b28ab83c 7370 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
7371}
7372
3b364d7b 7373static void swevent_hlist_put(void)
76e1d904
FW
7374{
7375 int cpu;
7376
76e1d904 7377 for_each_possible_cpu(cpu)
3b364d7b 7378 swevent_hlist_put_cpu(cpu);
76e1d904
FW
7379}
7380
3b364d7b 7381static int swevent_hlist_get_cpu(int cpu)
76e1d904 7382{
b28ab83c 7383 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904
FW
7384 int err = 0;
7385
b28ab83c 7386 mutex_lock(&swhash->hlist_mutex);
b28ab83c 7387 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
76e1d904
FW
7388 struct swevent_hlist *hlist;
7389
7390 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
7391 if (!hlist) {
7392 err = -ENOMEM;
7393 goto exit;
7394 }
b28ab83c 7395 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 7396 }
b28ab83c 7397 swhash->hlist_refcount++;
9ed6060d 7398exit:
b28ab83c 7399 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
7400
7401 return err;
7402}
7403
3b364d7b 7404static int swevent_hlist_get(void)
76e1d904 7405{
3b364d7b 7406 int err, cpu, failed_cpu;
76e1d904 7407
76e1d904
FW
7408 get_online_cpus();
7409 for_each_possible_cpu(cpu) {
3b364d7b 7410 err = swevent_hlist_get_cpu(cpu);
76e1d904
FW
7411 if (err) {
7412 failed_cpu = cpu;
7413 goto fail;
7414 }
7415 }
7416 put_online_cpus();
7417
7418 return 0;
9ed6060d 7419fail:
76e1d904
FW
7420 for_each_possible_cpu(cpu) {
7421 if (cpu == failed_cpu)
7422 break;
3b364d7b 7423 swevent_hlist_put_cpu(cpu);
76e1d904
FW
7424 }
7425
7426 put_online_cpus();
7427 return err;
7428}
7429
c5905afb 7430struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
95476b64 7431
b0a873eb
PZ
7432static void sw_perf_event_destroy(struct perf_event *event)
7433{
7434 u64 event_id = event->attr.config;
95476b64 7435
b0a873eb
PZ
7436 WARN_ON(event->parent);
7437
c5905afb 7438 static_key_slow_dec(&perf_swevent_enabled[event_id]);
3b364d7b 7439 swevent_hlist_put();
b0a873eb
PZ
7440}
7441
7442static int perf_swevent_init(struct perf_event *event)
7443{
8176cced 7444 u64 event_id = event->attr.config;
b0a873eb
PZ
7445
7446 if (event->attr.type != PERF_TYPE_SOFTWARE)
7447 return -ENOENT;
7448
2481c5fa
SE
7449 /*
7450 * no branch sampling for software events
7451 */
7452 if (has_branch_stack(event))
7453 return -EOPNOTSUPP;
7454
b0a873eb
PZ
7455 switch (event_id) {
7456 case PERF_COUNT_SW_CPU_CLOCK:
7457 case PERF_COUNT_SW_TASK_CLOCK:
7458 return -ENOENT;
7459
7460 default:
7461 break;
7462 }
7463
ce677831 7464 if (event_id >= PERF_COUNT_SW_MAX)
b0a873eb
PZ
7465 return -ENOENT;
7466
7467 if (!event->parent) {
7468 int err;
7469
3b364d7b 7470 err = swevent_hlist_get();
b0a873eb
PZ
7471 if (err)
7472 return err;
7473
c5905afb 7474 static_key_slow_inc(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
7475 event->destroy = sw_perf_event_destroy;
7476 }
7477
7478 return 0;
7479}
7480
7481static struct pmu perf_swevent = {
89a1e187 7482 .task_ctx_nr = perf_sw_context,
95476b64 7483
34f43927
PZ
7484 .capabilities = PERF_PMU_CAP_NO_NMI,
7485
b0a873eb 7486 .event_init = perf_swevent_init,
a4eaf7f1
PZ
7487 .add = perf_swevent_add,
7488 .del = perf_swevent_del,
7489 .start = perf_swevent_start,
7490 .stop = perf_swevent_stop,
1c024eca 7491 .read = perf_swevent_read,
1c024eca
PZ
7492};
7493
b0a873eb
PZ
7494#ifdef CONFIG_EVENT_TRACING
7495
1c024eca
PZ
7496static int perf_tp_filter_match(struct perf_event *event,
7497 struct perf_sample_data *data)
7498{
7e3f977e 7499 void *record = data->raw->frag.data;
1c024eca 7500
b71b437e
PZ
7501 /* only top level events have filters set */
7502 if (event->parent)
7503 event = event->parent;
7504
1c024eca
PZ
7505 if (likely(!event->filter) || filter_match_preds(event->filter, record))
7506 return 1;
7507 return 0;
7508}
7509
7510static int perf_tp_event_match(struct perf_event *event,
7511 struct perf_sample_data *data,
7512 struct pt_regs *regs)
7513{
a0f7d0f7
FW
7514 if (event->hw.state & PERF_HES_STOPPED)
7515 return 0;
580d607c
PZ
7516 /*
7517 * All tracepoints are from kernel-space.
7518 */
7519 if (event->attr.exclude_kernel)
1c024eca
PZ
7520 return 0;
7521
7522 if (!perf_tp_filter_match(event, data))
7523 return 0;
7524
7525 return 1;
7526}
7527
85b67bcb
AS
7528void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
7529 struct trace_event_call *call, u64 count,
7530 struct pt_regs *regs, struct hlist_head *head,
7531 struct task_struct *task)
7532{
7533 struct bpf_prog *prog = call->prog;
7534
7535 if (prog) {
7536 *(struct pt_regs **)raw_data = regs;
7537 if (!trace_call_bpf(prog, raw_data) || hlist_empty(head)) {
7538 perf_swevent_put_recursion_context(rctx);
7539 return;
7540 }
7541 }
7542 perf_tp_event(call->event.type, count, raw_data, size, regs, head,
7543 rctx, task);
7544}
7545EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
7546
1e1dcd93 7547void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
e6dab5ff
AV
7548 struct pt_regs *regs, struct hlist_head *head, int rctx,
7549 struct task_struct *task)
95476b64
FW
7550{
7551 struct perf_sample_data data;
1c024eca 7552 struct perf_event *event;
1c024eca 7553
95476b64 7554 struct perf_raw_record raw = {
7e3f977e
DB
7555 .frag = {
7556 .size = entry_size,
7557 .data = record,
7558 },
95476b64
FW
7559 };
7560
1e1dcd93 7561 perf_sample_data_init(&data, 0, 0);
95476b64
FW
7562 data.raw = &raw;
7563
1e1dcd93
AS
7564 perf_trace_buf_update(record, event_type);
7565
b67bfe0d 7566 hlist_for_each_entry_rcu(event, head, hlist_entry) {
1c024eca 7567 if (perf_tp_event_match(event, &data, regs))
a8b0ca17 7568 perf_swevent_event(event, count, &data, regs);
4f41c013 7569 }
ecc55f84 7570
e6dab5ff
AV
7571 /*
7572 * If we got specified a target task, also iterate its context and
7573 * deliver this event there too.
7574 */
7575 if (task && task != current) {
7576 struct perf_event_context *ctx;
7577 struct trace_entry *entry = record;
7578
7579 rcu_read_lock();
7580 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
7581 if (!ctx)
7582 goto unlock;
7583
7584 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7585 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7586 continue;
7587 if (event->attr.config != entry->type)
7588 continue;
7589 if (perf_tp_event_match(event, &data, regs))
7590 perf_swevent_event(event, count, &data, regs);
7591 }
7592unlock:
7593 rcu_read_unlock();
7594 }
7595
ecc55f84 7596 perf_swevent_put_recursion_context(rctx);
95476b64
FW
7597}
7598EXPORT_SYMBOL_GPL(perf_tp_event);
7599
cdd6c482 7600static void tp_perf_event_destroy(struct perf_event *event)
e077df4f 7601{
1c024eca 7602 perf_trace_destroy(event);
e077df4f
PZ
7603}
7604
b0a873eb 7605static int perf_tp_event_init(struct perf_event *event)
e077df4f 7606{
76e1d904
FW
7607 int err;
7608
b0a873eb
PZ
7609 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7610 return -ENOENT;
7611
2481c5fa
SE
7612 /*
7613 * no branch sampling for tracepoint events
7614 */
7615 if (has_branch_stack(event))
7616 return -EOPNOTSUPP;
7617
1c024eca
PZ
7618 err = perf_trace_init(event);
7619 if (err)
b0a873eb 7620 return err;
e077df4f 7621
cdd6c482 7622 event->destroy = tp_perf_event_destroy;
e077df4f 7623
b0a873eb
PZ
7624 return 0;
7625}
7626
7627static struct pmu perf_tracepoint = {
89a1e187
PZ
7628 .task_ctx_nr = perf_sw_context,
7629
b0a873eb 7630 .event_init = perf_tp_event_init,
a4eaf7f1
PZ
7631 .add = perf_trace_add,
7632 .del = perf_trace_del,
7633 .start = perf_swevent_start,
7634 .stop = perf_swevent_stop,
b0a873eb 7635 .read = perf_swevent_read,
b0a873eb
PZ
7636};
7637
7638static inline void perf_tp_register(void)
7639{
2e80a82a 7640 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
e077df4f 7641}
6fb2915d 7642
6fb2915d
LZ
7643static void perf_event_free_filter(struct perf_event *event)
7644{
7645 ftrace_profile_free_filter(event);
7646}
7647
2541517c
AS
7648static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7649{
98b5c2c6 7650 bool is_kprobe, is_tracepoint;
2541517c
AS
7651 struct bpf_prog *prog;
7652
7653 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7654 return -EINVAL;
7655
7656 if (event->tp_event->prog)
7657 return -EEXIST;
7658
98b5c2c6
AS
7659 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
7660 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
7661 if (!is_kprobe && !is_tracepoint)
7662 /* bpf programs can only be attached to u/kprobe or tracepoint */
2541517c
AS
7663 return -EINVAL;
7664
7665 prog = bpf_prog_get(prog_fd);
7666 if (IS_ERR(prog))
7667 return PTR_ERR(prog);
7668
98b5c2c6
AS
7669 if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
7670 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
2541517c
AS
7671 /* valid fd, but invalid bpf program type */
7672 bpf_prog_put(prog);
7673 return -EINVAL;
7674 }
7675
32bbe007
AS
7676 if (is_tracepoint) {
7677 int off = trace_event_get_offsets(event->tp_event);
7678
7679 if (prog->aux->max_ctx_offset > off) {
7680 bpf_prog_put(prog);
7681 return -EACCES;
7682 }
7683 }
2541517c
AS
7684 event->tp_event->prog = prog;
7685
7686 return 0;
7687}
7688
7689static void perf_event_free_bpf_prog(struct perf_event *event)
7690{
7691 struct bpf_prog *prog;
7692
7693 if (!event->tp_event)
7694 return;
7695
7696 prog = event->tp_event->prog;
7697 if (prog) {
7698 event->tp_event->prog = NULL;
1aacde3d 7699 bpf_prog_put(prog);
2541517c
AS
7700 }
7701}
7702
e077df4f 7703#else
6fb2915d 7704
b0a873eb 7705static inline void perf_tp_register(void)
e077df4f 7706{
e077df4f 7707}
6fb2915d 7708
6fb2915d
LZ
7709static void perf_event_free_filter(struct perf_event *event)
7710{
7711}
7712
2541517c
AS
7713static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7714{
7715 return -ENOENT;
7716}
7717
7718static void perf_event_free_bpf_prog(struct perf_event *event)
7719{
7720}
07b139c8 7721#endif /* CONFIG_EVENT_TRACING */
e077df4f 7722
24f1e32c 7723#ifdef CONFIG_HAVE_HW_BREAKPOINT
f5ffe02e 7724void perf_bp_event(struct perf_event *bp, void *data)
24f1e32c 7725{
f5ffe02e
FW
7726 struct perf_sample_data sample;
7727 struct pt_regs *regs = data;
7728
fd0d000b 7729 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
f5ffe02e 7730
a4eaf7f1 7731 if (!bp->hw.state && !perf_exclude_event(bp, regs))
a8b0ca17 7732 perf_swevent_event(bp, 1, &sample, regs);
24f1e32c
FW
7733}
7734#endif
7735
375637bc
AS
7736/*
7737 * Allocate a new address filter
7738 */
7739static struct perf_addr_filter *
7740perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
7741{
7742 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
7743 struct perf_addr_filter *filter;
7744
7745 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
7746 if (!filter)
7747 return NULL;
7748
7749 INIT_LIST_HEAD(&filter->entry);
7750 list_add_tail(&filter->entry, filters);
7751
7752 return filter;
7753}
7754
7755static void free_filters_list(struct list_head *filters)
7756{
7757 struct perf_addr_filter *filter, *iter;
7758
7759 list_for_each_entry_safe(filter, iter, filters, entry) {
7760 if (filter->inode)
7761 iput(filter->inode);
7762 list_del(&filter->entry);
7763 kfree(filter);
7764 }
7765}
7766
7767/*
7768 * Free existing address filters and optionally install new ones
7769 */
7770static void perf_addr_filters_splice(struct perf_event *event,
7771 struct list_head *head)
7772{
7773 unsigned long flags;
7774 LIST_HEAD(list);
7775
7776 if (!has_addr_filter(event))
7777 return;
7778
7779 /* don't bother with children, they don't have their own filters */
7780 if (event->parent)
7781 return;
7782
7783 raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
7784
7785 list_splice_init(&event->addr_filters.list, &list);
7786 if (head)
7787 list_splice(head, &event->addr_filters.list);
7788
7789 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
7790
7791 free_filters_list(&list);
7792}
7793
7794/*
7795 * Scan through mm's vmas and see if one of them matches the
7796 * @filter; if so, adjust filter's address range.
7797 * Called with mm::mmap_sem down for reading.
7798 */
7799static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter,
7800 struct mm_struct *mm)
7801{
7802 struct vm_area_struct *vma;
7803
7804 for (vma = mm->mmap; vma; vma = vma->vm_next) {
7805 struct file *file = vma->vm_file;
7806 unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
7807 unsigned long vma_size = vma->vm_end - vma->vm_start;
7808
7809 if (!file)
7810 continue;
7811
7812 if (!perf_addr_filter_match(filter, file, off, vma_size))
7813 continue;
7814
7815 return vma->vm_start;
7816 }
7817
7818 return 0;
7819}
7820
7821/*
7822 * Update event's address range filters based on the
7823 * task's existing mappings, if any.
7824 */
7825static void perf_event_addr_filters_apply(struct perf_event *event)
7826{
7827 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7828 struct task_struct *task = READ_ONCE(event->ctx->task);
7829 struct perf_addr_filter *filter;
7830 struct mm_struct *mm = NULL;
7831 unsigned int count = 0;
7832 unsigned long flags;
7833
7834 /*
7835 * We may observe TASK_TOMBSTONE, which means that the event tear-down
7836 * will stop on the parent's child_mutex that our caller is also holding
7837 */
7838 if (task == TASK_TOMBSTONE)
7839 return;
7840
7841 mm = get_task_mm(event->ctx->task);
7842 if (!mm)
7843 goto restart;
7844
7845 down_read(&mm->mmap_sem);
7846
7847 raw_spin_lock_irqsave(&ifh->lock, flags);
7848 list_for_each_entry(filter, &ifh->list, entry) {
7849 event->addr_filters_offs[count] = 0;
7850
99f5bc9b
MP
7851 /*
7852 * Adjust base offset if the filter is associated to a binary
7853 * that needs to be mapped:
7854 */
7855 if (filter->inode)
375637bc
AS
7856 event->addr_filters_offs[count] =
7857 perf_addr_filter_apply(filter, mm);
7858
7859 count++;
7860 }
7861
7862 event->addr_filters_gen++;
7863 raw_spin_unlock_irqrestore(&ifh->lock, flags);
7864
7865 up_read(&mm->mmap_sem);
7866
7867 mmput(mm);
7868
7869restart:
7870 perf_event_restart(event);
7871}
7872
7873/*
7874 * Address range filtering: limiting the data to certain
7875 * instruction address ranges. Filters are ioctl()ed to us from
7876 * userspace as ascii strings.
7877 *
7878 * Filter string format:
7879 *
7880 * ACTION RANGE_SPEC
7881 * where ACTION is one of the
7882 * * "filter": limit the trace to this region
7883 * * "start": start tracing from this address
7884 * * "stop": stop tracing at this address/region;
7885 * RANGE_SPEC is
7886 * * for kernel addresses: <start address>[/<size>]
7887 * * for object files: <start address>[/<size>]@</path/to/object/file>
7888 *
7889 * if <size> is not specified, the range is treated as a single address.
7890 */
7891enum {
7892 IF_ACT_FILTER,
7893 IF_ACT_START,
7894 IF_ACT_STOP,
7895 IF_SRC_FILE,
7896 IF_SRC_KERNEL,
7897 IF_SRC_FILEADDR,
7898 IF_SRC_KERNELADDR,
7899};
7900
7901enum {
7902 IF_STATE_ACTION = 0,
7903 IF_STATE_SOURCE,
7904 IF_STATE_END,
7905};
7906
7907static const match_table_t if_tokens = {
7908 { IF_ACT_FILTER, "filter" },
7909 { IF_ACT_START, "start" },
7910 { IF_ACT_STOP, "stop" },
7911 { IF_SRC_FILE, "%u/%u@%s" },
7912 { IF_SRC_KERNEL, "%u/%u" },
7913 { IF_SRC_FILEADDR, "%u@%s" },
7914 { IF_SRC_KERNELADDR, "%u" },
7915};
7916
7917/*
7918 * Address filter string parser
7919 */
7920static int
7921perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
7922 struct list_head *filters)
7923{
7924 struct perf_addr_filter *filter = NULL;
7925 char *start, *orig, *filename = NULL;
7926 struct path path;
7927 substring_t args[MAX_OPT_ARGS];
7928 int state = IF_STATE_ACTION, token;
7929 unsigned int kernel = 0;
7930 int ret = -EINVAL;
7931
7932 orig = fstr = kstrdup(fstr, GFP_KERNEL);
7933 if (!fstr)
7934 return -ENOMEM;
7935
7936 while ((start = strsep(&fstr, " ,\n")) != NULL) {
7937 ret = -EINVAL;
7938
7939 if (!*start)
7940 continue;
7941
7942 /* filter definition begins */
7943 if (state == IF_STATE_ACTION) {
7944 filter = perf_addr_filter_new(event, filters);
7945 if (!filter)
7946 goto fail;
7947 }
7948
7949 token = match_token(start, if_tokens, args);
7950 switch (token) {
7951 case IF_ACT_FILTER:
7952 case IF_ACT_START:
7953 filter->filter = 1;
7954
7955 case IF_ACT_STOP:
7956 if (state != IF_STATE_ACTION)
7957 goto fail;
7958
7959 state = IF_STATE_SOURCE;
7960 break;
7961
7962 case IF_SRC_KERNELADDR:
7963 case IF_SRC_KERNEL:
7964 kernel = 1;
7965
7966 case IF_SRC_FILEADDR:
7967 case IF_SRC_FILE:
7968 if (state != IF_STATE_SOURCE)
7969 goto fail;
7970
7971 if (token == IF_SRC_FILE || token == IF_SRC_KERNEL)
7972 filter->range = 1;
7973
7974 *args[0].to = 0;
7975 ret = kstrtoul(args[0].from, 0, &filter->offset);
7976 if (ret)
7977 goto fail;
7978
7979 if (filter->range) {
7980 *args[1].to = 0;
7981 ret = kstrtoul(args[1].from, 0, &filter->size);
7982 if (ret)
7983 goto fail;
7984 }
7985
4059ffd0
MP
7986 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
7987 int fpos = filter->range ? 2 : 1;
7988
7989 filename = match_strdup(&args[fpos]);
375637bc
AS
7990 if (!filename) {
7991 ret = -ENOMEM;
7992 goto fail;
7993 }
7994 }
7995
7996 state = IF_STATE_END;
7997 break;
7998
7999 default:
8000 goto fail;
8001 }
8002
8003 /*
8004 * Filter definition is fully parsed, validate and install it.
8005 * Make sure that it doesn't contradict itself or the event's
8006 * attribute.
8007 */
8008 if (state == IF_STATE_END) {
8009 if (kernel && event->attr.exclude_kernel)
8010 goto fail;
8011
8012 if (!kernel) {
8013 if (!filename)
8014 goto fail;
8015
8016 /* look up the path and grab its inode */
8017 ret = kern_path(filename, LOOKUP_FOLLOW, &path);
8018 if (ret)
8019 goto fail_free_name;
8020
8021 filter->inode = igrab(d_inode(path.dentry));
8022 path_put(&path);
8023 kfree(filename);
8024 filename = NULL;
8025
8026 ret = -EINVAL;
8027 if (!filter->inode ||
8028 !S_ISREG(filter->inode->i_mode))
8029 /* free_filters_list() will iput() */
8030 goto fail;
8031 }
8032
8033 /* ready to consume more filters */
8034 state = IF_STATE_ACTION;
8035 filter = NULL;
8036 }
8037 }
8038
8039 if (state != IF_STATE_ACTION)
8040 goto fail;
8041
8042 kfree(orig);
8043
8044 return 0;
8045
8046fail_free_name:
8047 kfree(filename);
8048fail:
8049 free_filters_list(filters);
8050 kfree(orig);
8051
8052 return ret;
8053}
8054
8055static int
8056perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
8057{
8058 LIST_HEAD(filters);
8059 int ret;
8060
8061 /*
8062 * Since this is called in perf_ioctl() path, we're already holding
8063 * ctx::mutex.
8064 */
8065 lockdep_assert_held(&event->ctx->mutex);
8066
8067 if (WARN_ON_ONCE(event->parent))
8068 return -EINVAL;
8069
8070 /*
8071 * For now, we only support filtering in per-task events; doing so
8072 * for CPU-wide events requires additional context switching trickery,
8073 * since same object code will be mapped at different virtual
8074 * addresses in different processes.
8075 */
8076 if (!event->ctx->task)
8077 return -EOPNOTSUPP;
8078
8079 ret = perf_event_parse_addr_filter(event, filter_str, &filters);
8080 if (ret)
8081 return ret;
8082
8083 ret = event->pmu->addr_filters_validate(&filters);
8084 if (ret) {
8085 free_filters_list(&filters);
8086 return ret;
8087 }
8088
8089 /* remove existing filters, if any */
8090 perf_addr_filters_splice(event, &filters);
8091
8092 /* install new filters */
8093 perf_event_for_each_child(event, perf_event_addr_filters_apply);
8094
8095 return ret;
8096}
8097
c796bbbe
AS
8098static int perf_event_set_filter(struct perf_event *event, void __user *arg)
8099{
8100 char *filter_str;
8101 int ret = -EINVAL;
8102
375637bc
AS
8103 if ((event->attr.type != PERF_TYPE_TRACEPOINT ||
8104 !IS_ENABLED(CONFIG_EVENT_TRACING)) &&
8105 !has_addr_filter(event))
c796bbbe
AS
8106 return -EINVAL;
8107
8108 filter_str = strndup_user(arg, PAGE_SIZE);
8109 if (IS_ERR(filter_str))
8110 return PTR_ERR(filter_str);
8111
8112 if (IS_ENABLED(CONFIG_EVENT_TRACING) &&
8113 event->attr.type == PERF_TYPE_TRACEPOINT)
8114 ret = ftrace_profile_set_filter(event, event->attr.config,
8115 filter_str);
375637bc
AS
8116 else if (has_addr_filter(event))
8117 ret = perf_event_set_addr_filter(event, filter_str);
c796bbbe
AS
8118
8119 kfree(filter_str);
8120 return ret;
8121}
8122
b0a873eb
PZ
8123/*
8124 * hrtimer based swevent callback
8125 */
f29ac756 8126
b0a873eb 8127static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
f29ac756 8128{
b0a873eb
PZ
8129 enum hrtimer_restart ret = HRTIMER_RESTART;
8130 struct perf_sample_data data;
8131 struct pt_regs *regs;
8132 struct perf_event *event;
8133 u64 period;
f29ac756 8134
b0a873eb 8135 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
ba3dd36c
PZ
8136
8137 if (event->state != PERF_EVENT_STATE_ACTIVE)
8138 return HRTIMER_NORESTART;
8139
b0a873eb 8140 event->pmu->read(event);
f344011c 8141
fd0d000b 8142 perf_sample_data_init(&data, 0, event->hw.last_period);
b0a873eb
PZ
8143 regs = get_irq_regs();
8144
8145 if (regs && !perf_exclude_event(event, regs)) {
77aeeebd 8146 if (!(event->attr.exclude_idle && is_idle_task(current)))
33b07b8b 8147 if (__perf_event_overflow(event, 1, &data, regs))
b0a873eb
PZ
8148 ret = HRTIMER_NORESTART;
8149 }
24f1e32c 8150
b0a873eb
PZ
8151 period = max_t(u64, 10000, event->hw.sample_period);
8152 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
24f1e32c 8153
b0a873eb 8154 return ret;
f29ac756
PZ
8155}
8156
b0a873eb 8157static void perf_swevent_start_hrtimer(struct perf_event *event)
5c92d124 8158{
b0a873eb 8159 struct hw_perf_event *hwc = &event->hw;
5d508e82
FBH
8160 s64 period;
8161
8162 if (!is_sampling_event(event))
8163 return;
f5ffe02e 8164
5d508e82
FBH
8165 period = local64_read(&hwc->period_left);
8166 if (period) {
8167 if (period < 0)
8168 period = 10000;
fa407f35 8169
5d508e82
FBH
8170 local64_set(&hwc->period_left, 0);
8171 } else {
8172 period = max_t(u64, 10000, hwc->sample_period);
8173 }
3497d206
TG
8174 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
8175 HRTIMER_MODE_REL_PINNED);
24f1e32c 8176}
b0a873eb
PZ
8177
8178static void perf_swevent_cancel_hrtimer(struct perf_event *event)
24f1e32c 8179{
b0a873eb
PZ
8180 struct hw_perf_event *hwc = &event->hw;
8181
6c7e550f 8182 if (is_sampling_event(event)) {
b0a873eb 8183 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
fa407f35 8184 local64_set(&hwc->period_left, ktime_to_ns(remaining));
b0a873eb
PZ
8185
8186 hrtimer_cancel(&hwc->hrtimer);
8187 }
24f1e32c
FW
8188}
8189
ba3dd36c
PZ
8190static void perf_swevent_init_hrtimer(struct perf_event *event)
8191{
8192 struct hw_perf_event *hwc = &event->hw;
8193
8194 if (!is_sampling_event(event))
8195 return;
8196
8197 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
8198 hwc->hrtimer.function = perf_swevent_hrtimer;
8199
8200 /*
8201 * Since hrtimers have a fixed rate, we can do a static freq->period
8202 * mapping and avoid the whole period adjust feedback stuff.
8203 */
8204 if (event->attr.freq) {
8205 long freq = event->attr.sample_freq;
8206
8207 event->attr.sample_period = NSEC_PER_SEC / freq;
8208 hwc->sample_period = event->attr.sample_period;
8209 local64_set(&hwc->period_left, hwc->sample_period);
778141e3 8210 hwc->last_period = hwc->sample_period;
ba3dd36c
PZ
8211 event->attr.freq = 0;
8212 }
8213}
8214
b0a873eb
PZ
8215/*
8216 * Software event: cpu wall time clock
8217 */
8218
8219static void cpu_clock_event_update(struct perf_event *event)
24f1e32c 8220{
b0a873eb
PZ
8221 s64 prev;
8222 u64 now;
8223
a4eaf7f1 8224 now = local_clock();
b0a873eb
PZ
8225 prev = local64_xchg(&event->hw.prev_count, now);
8226 local64_add(now - prev, &event->count);
24f1e32c 8227}
24f1e32c 8228
a4eaf7f1 8229static void cpu_clock_event_start(struct perf_event *event, int flags)
b0a873eb 8230{
a4eaf7f1 8231 local64_set(&event->hw.prev_count, local_clock());
b0a873eb 8232 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
8233}
8234
a4eaf7f1 8235static void cpu_clock_event_stop(struct perf_event *event, int flags)
f29ac756 8236{
b0a873eb
PZ
8237 perf_swevent_cancel_hrtimer(event);
8238 cpu_clock_event_update(event);
8239}
f29ac756 8240
a4eaf7f1
PZ
8241static int cpu_clock_event_add(struct perf_event *event, int flags)
8242{
8243 if (flags & PERF_EF_START)
8244 cpu_clock_event_start(event, flags);
6a694a60 8245 perf_event_update_userpage(event);
a4eaf7f1
PZ
8246
8247 return 0;
8248}
8249
8250static void cpu_clock_event_del(struct perf_event *event, int flags)
8251{
8252 cpu_clock_event_stop(event, flags);
8253}
8254
b0a873eb
PZ
8255static void cpu_clock_event_read(struct perf_event *event)
8256{
8257 cpu_clock_event_update(event);
8258}
f344011c 8259
b0a873eb
PZ
8260static int cpu_clock_event_init(struct perf_event *event)
8261{
8262 if (event->attr.type != PERF_TYPE_SOFTWARE)
8263 return -ENOENT;
8264
8265 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
8266 return -ENOENT;
8267
2481c5fa
SE
8268 /*
8269 * no branch sampling for software events
8270 */
8271 if (has_branch_stack(event))
8272 return -EOPNOTSUPP;
8273
ba3dd36c
PZ
8274 perf_swevent_init_hrtimer(event);
8275
b0a873eb 8276 return 0;
f29ac756
PZ
8277}
8278
b0a873eb 8279static struct pmu perf_cpu_clock = {
89a1e187
PZ
8280 .task_ctx_nr = perf_sw_context,
8281
34f43927
PZ
8282 .capabilities = PERF_PMU_CAP_NO_NMI,
8283
b0a873eb 8284 .event_init = cpu_clock_event_init,
a4eaf7f1
PZ
8285 .add = cpu_clock_event_add,
8286 .del = cpu_clock_event_del,
8287 .start = cpu_clock_event_start,
8288 .stop = cpu_clock_event_stop,
b0a873eb
PZ
8289 .read = cpu_clock_event_read,
8290};
8291
8292/*
8293 * Software event: task time clock
8294 */
8295
8296static void task_clock_event_update(struct perf_event *event, u64 now)
5c92d124 8297{
b0a873eb
PZ
8298 u64 prev;
8299 s64 delta;
5c92d124 8300
b0a873eb
PZ
8301 prev = local64_xchg(&event->hw.prev_count, now);
8302 delta = now - prev;
8303 local64_add(delta, &event->count);
8304}
5c92d124 8305
a4eaf7f1 8306static void task_clock_event_start(struct perf_event *event, int flags)
b0a873eb 8307{
a4eaf7f1 8308 local64_set(&event->hw.prev_count, event->ctx->time);
b0a873eb 8309 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
8310}
8311
a4eaf7f1 8312static void task_clock_event_stop(struct perf_event *event, int flags)
b0a873eb
PZ
8313{
8314 perf_swevent_cancel_hrtimer(event);
8315 task_clock_event_update(event, event->ctx->time);
a4eaf7f1
PZ
8316}
8317
8318static int task_clock_event_add(struct perf_event *event, int flags)
8319{
8320 if (flags & PERF_EF_START)
8321 task_clock_event_start(event, flags);
6a694a60 8322 perf_event_update_userpage(event);
b0a873eb 8323
a4eaf7f1
PZ
8324 return 0;
8325}
8326
8327static void task_clock_event_del(struct perf_event *event, int flags)
8328{
8329 task_clock_event_stop(event, PERF_EF_UPDATE);
b0a873eb
PZ
8330}
8331
8332static void task_clock_event_read(struct perf_event *event)
8333{
768a06e2
PZ
8334 u64 now = perf_clock();
8335 u64 delta = now - event->ctx->timestamp;
8336 u64 time = event->ctx->time + delta;
b0a873eb
PZ
8337
8338 task_clock_event_update(event, time);
8339}
8340
8341static int task_clock_event_init(struct perf_event *event)
6fb2915d 8342{
b0a873eb
PZ
8343 if (event->attr.type != PERF_TYPE_SOFTWARE)
8344 return -ENOENT;
8345
8346 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
8347 return -ENOENT;
8348
2481c5fa
SE
8349 /*
8350 * no branch sampling for software events
8351 */
8352 if (has_branch_stack(event))
8353 return -EOPNOTSUPP;
8354
ba3dd36c
PZ
8355 perf_swevent_init_hrtimer(event);
8356
b0a873eb 8357 return 0;
6fb2915d
LZ
8358}
8359
b0a873eb 8360static struct pmu perf_task_clock = {
89a1e187
PZ
8361 .task_ctx_nr = perf_sw_context,
8362
34f43927
PZ
8363 .capabilities = PERF_PMU_CAP_NO_NMI,
8364
b0a873eb 8365 .event_init = task_clock_event_init,
a4eaf7f1
PZ
8366 .add = task_clock_event_add,
8367 .del = task_clock_event_del,
8368 .start = task_clock_event_start,
8369 .stop = task_clock_event_stop,
b0a873eb
PZ
8370 .read = task_clock_event_read,
8371};
6fb2915d 8372
ad5133b7 8373static void perf_pmu_nop_void(struct pmu *pmu)
e077df4f 8374{
e077df4f 8375}
6fb2915d 8376
fbbe0701
SB
8377static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
8378{
8379}
8380
ad5133b7 8381static int perf_pmu_nop_int(struct pmu *pmu)
6fb2915d 8382{
ad5133b7 8383 return 0;
6fb2915d
LZ
8384}
8385
18ab2cd3 8386static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
fbbe0701
SB
8387
8388static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
6fb2915d 8389{
fbbe0701
SB
8390 __this_cpu_write(nop_txn_flags, flags);
8391
8392 if (flags & ~PERF_PMU_TXN_ADD)
8393 return;
8394
ad5133b7 8395 perf_pmu_disable(pmu);
6fb2915d
LZ
8396}
8397
ad5133b7
PZ
8398static int perf_pmu_commit_txn(struct pmu *pmu)
8399{
fbbe0701
SB
8400 unsigned int flags = __this_cpu_read(nop_txn_flags);
8401
8402 __this_cpu_write(nop_txn_flags, 0);
8403
8404 if (flags & ~PERF_PMU_TXN_ADD)
8405 return 0;
8406
ad5133b7
PZ
8407 perf_pmu_enable(pmu);
8408 return 0;
8409}
e077df4f 8410
ad5133b7 8411static void perf_pmu_cancel_txn(struct pmu *pmu)
24f1e32c 8412{
fbbe0701
SB
8413 unsigned int flags = __this_cpu_read(nop_txn_flags);
8414
8415 __this_cpu_write(nop_txn_flags, 0);
8416
8417 if (flags & ~PERF_PMU_TXN_ADD)
8418 return;
8419
ad5133b7 8420 perf_pmu_enable(pmu);
24f1e32c
FW
8421}
8422
35edc2a5
PZ
8423static int perf_event_idx_default(struct perf_event *event)
8424{
c719f560 8425 return 0;
35edc2a5
PZ
8426}
8427
8dc85d54
PZ
8428/*
8429 * Ensures all contexts with the same task_ctx_nr have the same
8430 * pmu_cpu_context too.
8431 */
9e317041 8432static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
24f1e32c 8433{
8dc85d54 8434 struct pmu *pmu;
b326e956 8435
8dc85d54
PZ
8436 if (ctxn < 0)
8437 return NULL;
24f1e32c 8438
8dc85d54
PZ
8439 list_for_each_entry(pmu, &pmus, entry) {
8440 if (pmu->task_ctx_nr == ctxn)
8441 return pmu->pmu_cpu_context;
8442 }
24f1e32c 8443
8dc85d54 8444 return NULL;
24f1e32c
FW
8445}
8446
51676957 8447static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
24f1e32c 8448{
51676957
PZ
8449 int cpu;
8450
8451 for_each_possible_cpu(cpu) {
8452 struct perf_cpu_context *cpuctx;
8453
8454 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8455
3f1f3320
PZ
8456 if (cpuctx->unique_pmu == old_pmu)
8457 cpuctx->unique_pmu = pmu;
51676957
PZ
8458 }
8459}
8460
8461static void free_pmu_context(struct pmu *pmu)
8462{
8463 struct pmu *i;
f5ffe02e 8464
8dc85d54 8465 mutex_lock(&pmus_lock);
0475f9ea 8466 /*
8dc85d54 8467 * Like a real lame refcount.
0475f9ea 8468 */
51676957
PZ
8469 list_for_each_entry(i, &pmus, entry) {
8470 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
8471 update_pmu_context(i, pmu);
8dc85d54 8472 goto out;
51676957 8473 }
8dc85d54 8474 }
d6d020e9 8475
51676957 8476 free_percpu(pmu->pmu_cpu_context);
8dc85d54
PZ
8477out:
8478 mutex_unlock(&pmus_lock);
24f1e32c 8479}
6e855cd4
AS
8480
8481/*
8482 * Let userspace know that this PMU supports address range filtering:
8483 */
8484static ssize_t nr_addr_filters_show(struct device *dev,
8485 struct device_attribute *attr,
8486 char *page)
8487{
8488 struct pmu *pmu = dev_get_drvdata(dev);
8489
8490 return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
8491}
8492DEVICE_ATTR_RO(nr_addr_filters);
8493
2e80a82a 8494static struct idr pmu_idr;
d6d020e9 8495
abe43400
PZ
8496static ssize_t
8497type_show(struct device *dev, struct device_attribute *attr, char *page)
8498{
8499 struct pmu *pmu = dev_get_drvdata(dev);
8500
8501 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
8502}
90826ca7 8503static DEVICE_ATTR_RO(type);
abe43400 8504
62b85639
SE
8505static ssize_t
8506perf_event_mux_interval_ms_show(struct device *dev,
8507 struct device_attribute *attr,
8508 char *page)
8509{
8510 struct pmu *pmu = dev_get_drvdata(dev);
8511
8512 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
8513}
8514
272325c4
PZ
8515static DEFINE_MUTEX(mux_interval_mutex);
8516
62b85639
SE
8517static ssize_t
8518perf_event_mux_interval_ms_store(struct device *dev,
8519 struct device_attribute *attr,
8520 const char *buf, size_t count)
8521{
8522 struct pmu *pmu = dev_get_drvdata(dev);
8523 int timer, cpu, ret;
8524
8525 ret = kstrtoint(buf, 0, &timer);
8526 if (ret)
8527 return ret;
8528
8529 if (timer < 1)
8530 return -EINVAL;
8531
8532 /* same value, noting to do */
8533 if (timer == pmu->hrtimer_interval_ms)
8534 return count;
8535
272325c4 8536 mutex_lock(&mux_interval_mutex);
62b85639
SE
8537 pmu->hrtimer_interval_ms = timer;
8538
8539 /* update all cpuctx for this PMU */
272325c4
PZ
8540 get_online_cpus();
8541 for_each_online_cpu(cpu) {
62b85639
SE
8542 struct perf_cpu_context *cpuctx;
8543 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8544 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
8545
272325c4
PZ
8546 cpu_function_call(cpu,
8547 (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
62b85639 8548 }
272325c4
PZ
8549 put_online_cpus();
8550 mutex_unlock(&mux_interval_mutex);
62b85639
SE
8551
8552 return count;
8553}
90826ca7 8554static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
62b85639 8555
90826ca7
GKH
8556static struct attribute *pmu_dev_attrs[] = {
8557 &dev_attr_type.attr,
8558 &dev_attr_perf_event_mux_interval_ms.attr,
8559 NULL,
abe43400 8560};
90826ca7 8561ATTRIBUTE_GROUPS(pmu_dev);
abe43400
PZ
8562
8563static int pmu_bus_running;
8564static struct bus_type pmu_bus = {
8565 .name = "event_source",
90826ca7 8566 .dev_groups = pmu_dev_groups,
abe43400
PZ
8567};
8568
8569static void pmu_dev_release(struct device *dev)
8570{
8571 kfree(dev);
8572}
8573
8574static int pmu_dev_alloc(struct pmu *pmu)
8575{
8576 int ret = -ENOMEM;
8577
8578 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
8579 if (!pmu->dev)
8580 goto out;
8581
0c9d42ed 8582 pmu->dev->groups = pmu->attr_groups;
abe43400
PZ
8583 device_initialize(pmu->dev);
8584 ret = dev_set_name(pmu->dev, "%s", pmu->name);
8585 if (ret)
8586 goto free_dev;
8587
8588 dev_set_drvdata(pmu->dev, pmu);
8589 pmu->dev->bus = &pmu_bus;
8590 pmu->dev->release = pmu_dev_release;
8591 ret = device_add(pmu->dev);
8592 if (ret)
8593 goto free_dev;
8594
6e855cd4
AS
8595 /* For PMUs with address filters, throw in an extra attribute: */
8596 if (pmu->nr_addr_filters)
8597 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
8598
8599 if (ret)
8600 goto del_dev;
8601
abe43400
PZ
8602out:
8603 return ret;
8604
6e855cd4
AS
8605del_dev:
8606 device_del(pmu->dev);
8607
abe43400
PZ
8608free_dev:
8609 put_device(pmu->dev);
8610 goto out;
8611}
8612
547e9fd7 8613static struct lock_class_key cpuctx_mutex;
facc4307 8614static struct lock_class_key cpuctx_lock;
547e9fd7 8615
03d8e80b 8616int perf_pmu_register(struct pmu *pmu, const char *name, int type)
24f1e32c 8617{
108b02cf 8618 int cpu, ret;
24f1e32c 8619
b0a873eb 8620 mutex_lock(&pmus_lock);
33696fc0
PZ
8621 ret = -ENOMEM;
8622 pmu->pmu_disable_count = alloc_percpu(int);
8623 if (!pmu->pmu_disable_count)
8624 goto unlock;
f29ac756 8625
2e80a82a
PZ
8626 pmu->type = -1;
8627 if (!name)
8628 goto skip_type;
8629 pmu->name = name;
8630
8631 if (type < 0) {
0e9c3be2
TH
8632 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
8633 if (type < 0) {
8634 ret = type;
2e80a82a
PZ
8635 goto free_pdc;
8636 }
8637 }
8638 pmu->type = type;
8639
abe43400
PZ
8640 if (pmu_bus_running) {
8641 ret = pmu_dev_alloc(pmu);
8642 if (ret)
8643 goto free_idr;
8644 }
8645
2e80a82a 8646skip_type:
26657848
PZ
8647 if (pmu->task_ctx_nr == perf_hw_context) {
8648 static int hw_context_taken = 0;
8649
5101ef20
MR
8650 /*
8651 * Other than systems with heterogeneous CPUs, it never makes
8652 * sense for two PMUs to share perf_hw_context. PMUs which are
8653 * uncore must use perf_invalid_context.
8654 */
8655 if (WARN_ON_ONCE(hw_context_taken &&
8656 !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
26657848
PZ
8657 pmu->task_ctx_nr = perf_invalid_context;
8658
8659 hw_context_taken = 1;
8660 }
8661
8dc85d54
PZ
8662 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
8663 if (pmu->pmu_cpu_context)
8664 goto got_cpu_context;
f29ac756 8665
c4814202 8666 ret = -ENOMEM;
108b02cf
PZ
8667 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
8668 if (!pmu->pmu_cpu_context)
abe43400 8669 goto free_dev;
f344011c 8670
108b02cf
PZ
8671 for_each_possible_cpu(cpu) {
8672 struct perf_cpu_context *cpuctx;
8673
8674 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
eb184479 8675 __perf_event_init_context(&cpuctx->ctx);
547e9fd7 8676 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
facc4307 8677 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
108b02cf 8678 cpuctx->ctx.pmu = pmu;
9e630205 8679
272325c4 8680 __perf_mux_hrtimer_init(cpuctx, cpu);
9e630205 8681
3f1f3320 8682 cpuctx->unique_pmu = pmu;
108b02cf 8683 }
76e1d904 8684
8dc85d54 8685got_cpu_context:
ad5133b7
PZ
8686 if (!pmu->start_txn) {
8687 if (pmu->pmu_enable) {
8688 /*
8689 * If we have pmu_enable/pmu_disable calls, install
8690 * transaction stubs that use that to try and batch
8691 * hardware accesses.
8692 */
8693 pmu->start_txn = perf_pmu_start_txn;
8694 pmu->commit_txn = perf_pmu_commit_txn;
8695 pmu->cancel_txn = perf_pmu_cancel_txn;
8696 } else {
fbbe0701 8697 pmu->start_txn = perf_pmu_nop_txn;
ad5133b7
PZ
8698 pmu->commit_txn = perf_pmu_nop_int;
8699 pmu->cancel_txn = perf_pmu_nop_void;
f344011c 8700 }
5c92d124 8701 }
15dbf27c 8702
ad5133b7
PZ
8703 if (!pmu->pmu_enable) {
8704 pmu->pmu_enable = perf_pmu_nop_void;
8705 pmu->pmu_disable = perf_pmu_nop_void;
8706 }
8707
35edc2a5
PZ
8708 if (!pmu->event_idx)
8709 pmu->event_idx = perf_event_idx_default;
8710
b0a873eb 8711 list_add_rcu(&pmu->entry, &pmus);
bed5b25a 8712 atomic_set(&pmu->exclusive_cnt, 0);
33696fc0
PZ
8713 ret = 0;
8714unlock:
b0a873eb
PZ
8715 mutex_unlock(&pmus_lock);
8716
33696fc0 8717 return ret;
108b02cf 8718
abe43400
PZ
8719free_dev:
8720 device_del(pmu->dev);
8721 put_device(pmu->dev);
8722
2e80a82a
PZ
8723free_idr:
8724 if (pmu->type >= PERF_TYPE_MAX)
8725 idr_remove(&pmu_idr, pmu->type);
8726
108b02cf
PZ
8727free_pdc:
8728 free_percpu(pmu->pmu_disable_count);
8729 goto unlock;
f29ac756 8730}
c464c76e 8731EXPORT_SYMBOL_GPL(perf_pmu_register);
f29ac756 8732
b0a873eb 8733void perf_pmu_unregister(struct pmu *pmu)
5c92d124 8734{
b0a873eb
PZ
8735 mutex_lock(&pmus_lock);
8736 list_del_rcu(&pmu->entry);
8737 mutex_unlock(&pmus_lock);
5c92d124 8738
0475f9ea 8739 /*
cde8e884
PZ
8740 * We dereference the pmu list under both SRCU and regular RCU, so
8741 * synchronize against both of those.
0475f9ea 8742 */
b0a873eb 8743 synchronize_srcu(&pmus_srcu);
cde8e884 8744 synchronize_rcu();
d6d020e9 8745
33696fc0 8746 free_percpu(pmu->pmu_disable_count);
2e80a82a
PZ
8747 if (pmu->type >= PERF_TYPE_MAX)
8748 idr_remove(&pmu_idr, pmu->type);
6e855cd4
AS
8749 if (pmu->nr_addr_filters)
8750 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
abe43400
PZ
8751 device_del(pmu->dev);
8752 put_device(pmu->dev);
51676957 8753 free_pmu_context(pmu);
b0a873eb 8754}
c464c76e 8755EXPORT_SYMBOL_GPL(perf_pmu_unregister);
d6d020e9 8756
cc34b98b
MR
8757static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
8758{
ccd41c86 8759 struct perf_event_context *ctx = NULL;
cc34b98b
MR
8760 int ret;
8761
8762 if (!try_module_get(pmu->module))
8763 return -ENODEV;
ccd41c86
PZ
8764
8765 if (event->group_leader != event) {
8b10c5e2
PZ
8766 /*
8767 * This ctx->mutex can nest when we're called through
8768 * inheritance. See the perf_event_ctx_lock_nested() comment.
8769 */
8770 ctx = perf_event_ctx_lock_nested(event->group_leader,
8771 SINGLE_DEPTH_NESTING);
ccd41c86
PZ
8772 BUG_ON(!ctx);
8773 }
8774
cc34b98b
MR
8775 event->pmu = pmu;
8776 ret = pmu->event_init(event);
ccd41c86
PZ
8777
8778 if (ctx)
8779 perf_event_ctx_unlock(event->group_leader, ctx);
8780
cc34b98b
MR
8781 if (ret)
8782 module_put(pmu->module);
8783
8784 return ret;
8785}
8786
18ab2cd3 8787static struct pmu *perf_init_event(struct perf_event *event)
b0a873eb
PZ
8788{
8789 struct pmu *pmu = NULL;
8790 int idx;
940c5b29 8791 int ret;
b0a873eb
PZ
8792
8793 idx = srcu_read_lock(&pmus_srcu);
2e80a82a
PZ
8794
8795 rcu_read_lock();
8796 pmu = idr_find(&pmu_idr, event->attr.type);
8797 rcu_read_unlock();
940c5b29 8798 if (pmu) {
cc34b98b 8799 ret = perf_try_init_event(pmu, event);
940c5b29
LM
8800 if (ret)
8801 pmu = ERR_PTR(ret);
2e80a82a 8802 goto unlock;
940c5b29 8803 }
2e80a82a 8804
b0a873eb 8805 list_for_each_entry_rcu(pmu, &pmus, entry) {
cc34b98b 8806 ret = perf_try_init_event(pmu, event);
b0a873eb 8807 if (!ret)
e5f4d339 8808 goto unlock;
76e1d904 8809
b0a873eb
PZ
8810 if (ret != -ENOENT) {
8811 pmu = ERR_PTR(ret);
e5f4d339 8812 goto unlock;
f344011c 8813 }
5c92d124 8814 }
e5f4d339
PZ
8815 pmu = ERR_PTR(-ENOENT);
8816unlock:
b0a873eb 8817 srcu_read_unlock(&pmus_srcu, idx);
15dbf27c 8818
4aeb0b42 8819 return pmu;
5c92d124
IM
8820}
8821
f2fb6bef
KL
8822static void attach_sb_event(struct perf_event *event)
8823{
8824 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
8825
8826 raw_spin_lock(&pel->lock);
8827 list_add_rcu(&event->sb_list, &pel->list);
8828 raw_spin_unlock(&pel->lock);
8829}
8830
aab5b71e
PZ
8831/*
8832 * We keep a list of all !task (and therefore per-cpu) events
8833 * that need to receive side-band records.
8834 *
8835 * This avoids having to scan all the various PMU per-cpu contexts
8836 * looking for them.
8837 */
f2fb6bef
KL
8838static void account_pmu_sb_event(struct perf_event *event)
8839{
a4f144eb 8840 if (is_sb_event(event))
f2fb6bef
KL
8841 attach_sb_event(event);
8842}
8843
4beb31f3
FW
8844static void account_event_cpu(struct perf_event *event, int cpu)
8845{
8846 if (event->parent)
8847 return;
8848
4beb31f3
FW
8849 if (is_cgroup_event(event))
8850 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
8851}
8852
555e0c1e
FW
8853/* Freq events need the tick to stay alive (see perf_event_task_tick). */
8854static void account_freq_event_nohz(void)
8855{
8856#ifdef CONFIG_NO_HZ_FULL
8857 /* Lock so we don't race with concurrent unaccount */
8858 spin_lock(&nr_freq_lock);
8859 if (atomic_inc_return(&nr_freq_events) == 1)
8860 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
8861 spin_unlock(&nr_freq_lock);
8862#endif
8863}
8864
8865static void account_freq_event(void)
8866{
8867 if (tick_nohz_full_enabled())
8868 account_freq_event_nohz();
8869 else
8870 atomic_inc(&nr_freq_events);
8871}
8872
8873
766d6c07
FW
8874static void account_event(struct perf_event *event)
8875{
25432ae9
PZ
8876 bool inc = false;
8877
4beb31f3
FW
8878 if (event->parent)
8879 return;
8880
766d6c07 8881 if (event->attach_state & PERF_ATTACH_TASK)
25432ae9 8882 inc = true;
766d6c07
FW
8883 if (event->attr.mmap || event->attr.mmap_data)
8884 atomic_inc(&nr_mmap_events);
8885 if (event->attr.comm)
8886 atomic_inc(&nr_comm_events);
8887 if (event->attr.task)
8888 atomic_inc(&nr_task_events);
555e0c1e
FW
8889 if (event->attr.freq)
8890 account_freq_event();
45ac1403
AH
8891 if (event->attr.context_switch) {
8892 atomic_inc(&nr_switch_events);
25432ae9 8893 inc = true;
45ac1403 8894 }
4beb31f3 8895 if (has_branch_stack(event))
25432ae9 8896 inc = true;
4beb31f3 8897 if (is_cgroup_event(event))
25432ae9
PZ
8898 inc = true;
8899
9107c89e
PZ
8900 if (inc) {
8901 if (atomic_inc_not_zero(&perf_sched_count))
8902 goto enabled;
8903
8904 mutex_lock(&perf_sched_mutex);
8905 if (!atomic_read(&perf_sched_count)) {
8906 static_branch_enable(&perf_sched_events);
8907 /*
8908 * Guarantee that all CPUs observe they key change and
8909 * call the perf scheduling hooks before proceeding to
8910 * install events that need them.
8911 */
8912 synchronize_sched();
8913 }
8914 /*
8915 * Now that we have waited for the sync_sched(), allow further
8916 * increments to by-pass the mutex.
8917 */
8918 atomic_inc(&perf_sched_count);
8919 mutex_unlock(&perf_sched_mutex);
8920 }
8921enabled:
4beb31f3
FW
8922
8923 account_event_cpu(event, event->cpu);
f2fb6bef
KL
8924
8925 account_pmu_sb_event(event);
766d6c07
FW
8926}
8927
0793a61d 8928/*
cdd6c482 8929 * Allocate and initialize a event structure
0793a61d 8930 */
cdd6c482 8931static struct perf_event *
c3f00c70 8932perf_event_alloc(struct perf_event_attr *attr, int cpu,
d580ff86
PZ
8933 struct task_struct *task,
8934 struct perf_event *group_leader,
8935 struct perf_event *parent_event,
4dc0da86 8936 perf_overflow_handler_t overflow_handler,
79dff51e 8937 void *context, int cgroup_fd)
0793a61d 8938{
51b0fe39 8939 struct pmu *pmu;
cdd6c482
IM
8940 struct perf_event *event;
8941 struct hw_perf_event *hwc;
90983b16 8942 long err = -EINVAL;
0793a61d 8943
66832eb4
ON
8944 if ((unsigned)cpu >= nr_cpu_ids) {
8945 if (!task || cpu != -1)
8946 return ERR_PTR(-EINVAL);
8947 }
8948
c3f00c70 8949 event = kzalloc(sizeof(*event), GFP_KERNEL);
cdd6c482 8950 if (!event)
d5d2bc0d 8951 return ERR_PTR(-ENOMEM);
0793a61d 8952
04289bb9 8953 /*
cdd6c482 8954 * Single events are their own group leaders, with an
04289bb9
IM
8955 * empty sibling list:
8956 */
8957 if (!group_leader)
cdd6c482 8958 group_leader = event;
04289bb9 8959
cdd6c482
IM
8960 mutex_init(&event->child_mutex);
8961 INIT_LIST_HEAD(&event->child_list);
fccc714b 8962
cdd6c482
IM
8963 INIT_LIST_HEAD(&event->group_entry);
8964 INIT_LIST_HEAD(&event->event_entry);
8965 INIT_LIST_HEAD(&event->sibling_list);
10c6db11 8966 INIT_LIST_HEAD(&event->rb_entry);
71ad88ef 8967 INIT_LIST_HEAD(&event->active_entry);
375637bc 8968 INIT_LIST_HEAD(&event->addr_filters.list);
f3ae75de
SE
8969 INIT_HLIST_NODE(&event->hlist_entry);
8970
10c6db11 8971
cdd6c482 8972 init_waitqueue_head(&event->waitq);
e360adbe 8973 init_irq_work(&event->pending, perf_pending_event);
0793a61d 8974
cdd6c482 8975 mutex_init(&event->mmap_mutex);
375637bc 8976 raw_spin_lock_init(&event->addr_filters.lock);
7b732a75 8977
a6fa941d 8978 atomic_long_set(&event->refcount, 1);
cdd6c482
IM
8979 event->cpu = cpu;
8980 event->attr = *attr;
8981 event->group_leader = group_leader;
8982 event->pmu = NULL;
cdd6c482 8983 event->oncpu = -1;
a96bbc16 8984
cdd6c482 8985 event->parent = parent_event;
b84fbc9f 8986
17cf22c3 8987 event->ns = get_pid_ns(task_active_pid_ns(current));
cdd6c482 8988 event->id = atomic64_inc_return(&perf_event_id);
a96bbc16 8989
cdd6c482 8990 event->state = PERF_EVENT_STATE_INACTIVE;
329d876d 8991
d580ff86
PZ
8992 if (task) {
8993 event->attach_state = PERF_ATTACH_TASK;
d580ff86 8994 /*
50f16a8b
PZ
8995 * XXX pmu::event_init needs to know what task to account to
8996 * and we cannot use the ctx information because we need the
8997 * pmu before we get a ctx.
d580ff86 8998 */
50f16a8b 8999 event->hw.target = task;
d580ff86
PZ
9000 }
9001
34f43927
PZ
9002 event->clock = &local_clock;
9003 if (parent_event)
9004 event->clock = parent_event->clock;
9005
4dc0da86 9006 if (!overflow_handler && parent_event) {
b326e956 9007 overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
9008 context = parent_event->overflow_handler_context;
9009 }
66832eb4 9010
1879445d
WN
9011 if (overflow_handler) {
9012 event->overflow_handler = overflow_handler;
9013 event->overflow_handler_context = context;
9ecda41a
WN
9014 } else if (is_write_backward(event)){
9015 event->overflow_handler = perf_event_output_backward;
9016 event->overflow_handler_context = NULL;
1879445d 9017 } else {
9ecda41a 9018 event->overflow_handler = perf_event_output_forward;
1879445d
WN
9019 event->overflow_handler_context = NULL;
9020 }
97eaf530 9021
0231bb53 9022 perf_event__state_init(event);
a86ed508 9023
4aeb0b42 9024 pmu = NULL;
b8e83514 9025
cdd6c482 9026 hwc = &event->hw;
bd2b5b12 9027 hwc->sample_period = attr->sample_period;
0d48696f 9028 if (attr->freq && attr->sample_freq)
bd2b5b12 9029 hwc->sample_period = 1;
eced1dfc 9030 hwc->last_period = hwc->sample_period;
bd2b5b12 9031
e7850595 9032 local64_set(&hwc->period_left, hwc->sample_period);
60db5e09 9033
2023b359 9034 /*
cdd6c482 9035 * we currently do not support PERF_FORMAT_GROUP on inherited events
2023b359 9036 */
3dab77fb 9037 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
90983b16 9038 goto err_ns;
a46a2300
YZ
9039
9040 if (!has_branch_stack(event))
9041 event->attr.branch_sample_type = 0;
2023b359 9042
79dff51e
MF
9043 if (cgroup_fd != -1) {
9044 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
9045 if (err)
9046 goto err_ns;
9047 }
9048
b0a873eb 9049 pmu = perf_init_event(event);
4aeb0b42 9050 if (!pmu)
90983b16
FW
9051 goto err_ns;
9052 else if (IS_ERR(pmu)) {
4aeb0b42 9053 err = PTR_ERR(pmu);
90983b16 9054 goto err_ns;
621a01ea 9055 }
d5d2bc0d 9056
bed5b25a
AS
9057 err = exclusive_event_init(event);
9058 if (err)
9059 goto err_pmu;
9060
375637bc
AS
9061 if (has_addr_filter(event)) {
9062 event->addr_filters_offs = kcalloc(pmu->nr_addr_filters,
9063 sizeof(unsigned long),
9064 GFP_KERNEL);
9065 if (!event->addr_filters_offs)
9066 goto err_per_task;
9067
9068 /* force hw sync on the address filters */
9069 event->addr_filters_gen = 1;
9070 }
9071
cdd6c482 9072 if (!event->parent) {
927c7a9e 9073 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
97c79a38 9074 err = get_callchain_buffers(attr->sample_max_stack);
90983b16 9075 if (err)
375637bc 9076 goto err_addr_filters;
d010b332 9077 }
f344011c 9078 }
9ee318a7 9079
927a5570
AS
9080 /* symmetric to unaccount_event() in _free_event() */
9081 account_event(event);
9082
cdd6c482 9083 return event;
90983b16 9084
375637bc
AS
9085err_addr_filters:
9086 kfree(event->addr_filters_offs);
9087
bed5b25a
AS
9088err_per_task:
9089 exclusive_event_destroy(event);
9090
90983b16
FW
9091err_pmu:
9092 if (event->destroy)
9093 event->destroy(event);
c464c76e 9094 module_put(pmu->module);
90983b16 9095err_ns:
79dff51e
MF
9096 if (is_cgroup_event(event))
9097 perf_detach_cgroup(event);
90983b16
FW
9098 if (event->ns)
9099 put_pid_ns(event->ns);
9100 kfree(event);
9101
9102 return ERR_PTR(err);
0793a61d
TG
9103}
9104
cdd6c482
IM
9105static int perf_copy_attr(struct perf_event_attr __user *uattr,
9106 struct perf_event_attr *attr)
974802ea 9107{
974802ea 9108 u32 size;
cdf8073d 9109 int ret;
974802ea
PZ
9110
9111 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
9112 return -EFAULT;
9113
9114 /*
9115 * zero the full structure, so that a short copy will be nice.
9116 */
9117 memset(attr, 0, sizeof(*attr));
9118
9119 ret = get_user(size, &uattr->size);
9120 if (ret)
9121 return ret;
9122
9123 if (size > PAGE_SIZE) /* silly large */
9124 goto err_size;
9125
9126 if (!size) /* abi compat */
9127 size = PERF_ATTR_SIZE_VER0;
9128
9129 if (size < PERF_ATTR_SIZE_VER0)
9130 goto err_size;
9131
9132 /*
9133 * If we're handed a bigger struct than we know of,
cdf8073d
IS
9134 * ensure all the unknown bits are 0 - i.e. new
9135 * user-space does not rely on any kernel feature
9136 * extensions we dont know about yet.
974802ea
PZ
9137 */
9138 if (size > sizeof(*attr)) {
cdf8073d
IS
9139 unsigned char __user *addr;
9140 unsigned char __user *end;
9141 unsigned char val;
974802ea 9142
cdf8073d
IS
9143 addr = (void __user *)uattr + sizeof(*attr);
9144 end = (void __user *)uattr + size;
974802ea 9145
cdf8073d 9146 for (; addr < end; addr++) {
974802ea
PZ
9147 ret = get_user(val, addr);
9148 if (ret)
9149 return ret;
9150 if (val)
9151 goto err_size;
9152 }
b3e62e35 9153 size = sizeof(*attr);
974802ea
PZ
9154 }
9155
9156 ret = copy_from_user(attr, uattr, size);
9157 if (ret)
9158 return -EFAULT;
9159
cd757645 9160 if (attr->__reserved_1)
974802ea
PZ
9161 return -EINVAL;
9162
9163 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
9164 return -EINVAL;
9165
9166 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
9167 return -EINVAL;
9168
bce38cd5
SE
9169 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
9170 u64 mask = attr->branch_sample_type;
9171
9172 /* only using defined bits */
9173 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
9174 return -EINVAL;
9175
9176 /* at least one branch bit must be set */
9177 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
9178 return -EINVAL;
9179
bce38cd5
SE
9180 /* propagate priv level, when not set for branch */
9181 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
9182
9183 /* exclude_kernel checked on syscall entry */
9184 if (!attr->exclude_kernel)
9185 mask |= PERF_SAMPLE_BRANCH_KERNEL;
9186
9187 if (!attr->exclude_user)
9188 mask |= PERF_SAMPLE_BRANCH_USER;
9189
9190 if (!attr->exclude_hv)
9191 mask |= PERF_SAMPLE_BRANCH_HV;
9192 /*
9193 * adjust user setting (for HW filter setup)
9194 */
9195 attr->branch_sample_type = mask;
9196 }
e712209a
SE
9197 /* privileged levels capture (kernel, hv): check permissions */
9198 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
2b923c8f
SE
9199 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9200 return -EACCES;
bce38cd5 9201 }
4018994f 9202
c5ebcedb 9203 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
4018994f 9204 ret = perf_reg_validate(attr->sample_regs_user);
c5ebcedb
JO
9205 if (ret)
9206 return ret;
9207 }
9208
9209 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
9210 if (!arch_perf_have_user_stack_dump())
9211 return -ENOSYS;
9212
9213 /*
9214 * We have __u32 type for the size, but so far
9215 * we can only use __u16 as maximum due to the
9216 * __u16 sample size limit.
9217 */
9218 if (attr->sample_stack_user >= USHRT_MAX)
9219 ret = -EINVAL;
9220 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
9221 ret = -EINVAL;
9222 }
4018994f 9223
60e2364e
SE
9224 if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
9225 ret = perf_reg_validate(attr->sample_regs_intr);
974802ea
PZ
9226out:
9227 return ret;
9228
9229err_size:
9230 put_user(sizeof(*attr), &uattr->size);
9231 ret = -E2BIG;
9232 goto out;
9233}
9234
ac9721f3
PZ
9235static int
9236perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
a4be7c27 9237{
b69cf536 9238 struct ring_buffer *rb = NULL;
a4be7c27
PZ
9239 int ret = -EINVAL;
9240
ac9721f3 9241 if (!output_event)
a4be7c27
PZ
9242 goto set;
9243
ac9721f3
PZ
9244 /* don't allow circular references */
9245 if (event == output_event)
a4be7c27
PZ
9246 goto out;
9247
0f139300
PZ
9248 /*
9249 * Don't allow cross-cpu buffers
9250 */
9251 if (output_event->cpu != event->cpu)
9252 goto out;
9253
9254 /*
76369139 9255 * If its not a per-cpu rb, it must be the same task.
0f139300
PZ
9256 */
9257 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
9258 goto out;
9259
34f43927
PZ
9260 /*
9261 * Mixing clocks in the same buffer is trouble you don't need.
9262 */
9263 if (output_event->clock != event->clock)
9264 goto out;
9265
9ecda41a
WN
9266 /*
9267 * Either writing ring buffer from beginning or from end.
9268 * Mixing is not allowed.
9269 */
9270 if (is_write_backward(output_event) != is_write_backward(event))
9271 goto out;
9272
45bfb2e5
PZ
9273 /*
9274 * If both events generate aux data, they must be on the same PMU
9275 */
9276 if (has_aux(event) && has_aux(output_event) &&
9277 event->pmu != output_event->pmu)
9278 goto out;
9279
a4be7c27 9280set:
cdd6c482 9281 mutex_lock(&event->mmap_mutex);
ac9721f3
PZ
9282 /* Can't redirect output if we've got an active mmap() */
9283 if (atomic_read(&event->mmap_count))
9284 goto unlock;
a4be7c27 9285
ac9721f3 9286 if (output_event) {
76369139
FW
9287 /* get the rb we want to redirect to */
9288 rb = ring_buffer_get(output_event);
9289 if (!rb)
ac9721f3 9290 goto unlock;
a4be7c27
PZ
9291 }
9292
b69cf536 9293 ring_buffer_attach(event, rb);
9bb5d40c 9294
a4be7c27 9295 ret = 0;
ac9721f3
PZ
9296unlock:
9297 mutex_unlock(&event->mmap_mutex);
9298
a4be7c27 9299out:
a4be7c27
PZ
9300 return ret;
9301}
9302
f63a8daa
PZ
9303static void mutex_lock_double(struct mutex *a, struct mutex *b)
9304{
9305 if (b < a)
9306 swap(a, b);
9307
9308 mutex_lock(a);
9309 mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
9310}
9311
34f43927
PZ
9312static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
9313{
9314 bool nmi_safe = false;
9315
9316 switch (clk_id) {
9317 case CLOCK_MONOTONIC:
9318 event->clock = &ktime_get_mono_fast_ns;
9319 nmi_safe = true;
9320 break;
9321
9322 case CLOCK_MONOTONIC_RAW:
9323 event->clock = &ktime_get_raw_fast_ns;
9324 nmi_safe = true;
9325 break;
9326
9327 case CLOCK_REALTIME:
9328 event->clock = &ktime_get_real_ns;
9329 break;
9330
9331 case CLOCK_BOOTTIME:
9332 event->clock = &ktime_get_boot_ns;
9333 break;
9334
9335 case CLOCK_TAI:
9336 event->clock = &ktime_get_tai_ns;
9337 break;
9338
9339 default:
9340 return -EINVAL;
9341 }
9342
9343 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
9344 return -EINVAL;
9345
9346 return 0;
9347}
9348
0793a61d 9349/**
cdd6c482 9350 * sys_perf_event_open - open a performance event, associate it to a task/cpu
9f66a381 9351 *
cdd6c482 9352 * @attr_uptr: event_id type attributes for monitoring/sampling
0793a61d 9353 * @pid: target pid
9f66a381 9354 * @cpu: target cpu
cdd6c482 9355 * @group_fd: group leader event fd
0793a61d 9356 */
cdd6c482
IM
9357SYSCALL_DEFINE5(perf_event_open,
9358 struct perf_event_attr __user *, attr_uptr,
2743a5b0 9359 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
0793a61d 9360{
b04243ef
PZ
9361 struct perf_event *group_leader = NULL, *output_event = NULL;
9362 struct perf_event *event, *sibling;
cdd6c482 9363 struct perf_event_attr attr;
f63a8daa 9364 struct perf_event_context *ctx, *uninitialized_var(gctx);
cdd6c482 9365 struct file *event_file = NULL;
2903ff01 9366 struct fd group = {NULL, 0};
38a81da2 9367 struct task_struct *task = NULL;
89a1e187 9368 struct pmu *pmu;
ea635c64 9369 int event_fd;
b04243ef 9370 int move_group = 0;
dc86cabe 9371 int err;
a21b0b35 9372 int f_flags = O_RDWR;
79dff51e 9373 int cgroup_fd = -1;
0793a61d 9374
2743a5b0 9375 /* for future expandability... */
e5d1367f 9376 if (flags & ~PERF_FLAG_ALL)
2743a5b0
PM
9377 return -EINVAL;
9378
dc86cabe
IM
9379 err = perf_copy_attr(attr_uptr, &attr);
9380 if (err)
9381 return err;
eab656ae 9382
0764771d
PZ
9383 if (!attr.exclude_kernel) {
9384 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9385 return -EACCES;
9386 }
9387
df58ab24 9388 if (attr.freq) {
cdd6c482 9389 if (attr.sample_freq > sysctl_perf_event_sample_rate)
df58ab24 9390 return -EINVAL;
0819b2e3
PZ
9391 } else {
9392 if (attr.sample_period & (1ULL << 63))
9393 return -EINVAL;
df58ab24
PZ
9394 }
9395
97c79a38
ACM
9396 if (!attr.sample_max_stack)
9397 attr.sample_max_stack = sysctl_perf_event_max_stack;
9398
e5d1367f
SE
9399 /*
9400 * In cgroup mode, the pid argument is used to pass the fd
9401 * opened to the cgroup directory in cgroupfs. The cpu argument
9402 * designates the cpu on which to monitor threads from that
9403 * cgroup.
9404 */
9405 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
9406 return -EINVAL;
9407
a21b0b35
YD
9408 if (flags & PERF_FLAG_FD_CLOEXEC)
9409 f_flags |= O_CLOEXEC;
9410
9411 event_fd = get_unused_fd_flags(f_flags);
ea635c64
AV
9412 if (event_fd < 0)
9413 return event_fd;
9414
ac9721f3 9415 if (group_fd != -1) {
2903ff01
AV
9416 err = perf_fget_light(group_fd, &group);
9417 if (err)
d14b12d7 9418 goto err_fd;
2903ff01 9419 group_leader = group.file->private_data;
ac9721f3
PZ
9420 if (flags & PERF_FLAG_FD_OUTPUT)
9421 output_event = group_leader;
9422 if (flags & PERF_FLAG_FD_NO_GROUP)
9423 group_leader = NULL;
9424 }
9425
e5d1367f 9426 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
c6be5a5c
PZ
9427 task = find_lively_task_by_vpid(pid);
9428 if (IS_ERR(task)) {
9429 err = PTR_ERR(task);
9430 goto err_group_fd;
9431 }
9432 }
9433
1f4ee503
PZ
9434 if (task && group_leader &&
9435 group_leader->attr.inherit != attr.inherit) {
9436 err = -EINVAL;
9437 goto err_task;
9438 }
9439
fbfc623f
YZ
9440 get_online_cpus();
9441
79c9ce57
PZ
9442 if (task) {
9443 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
9444 if (err)
9445 goto err_cpus;
9446
9447 /*
9448 * Reuse ptrace permission checks for now.
9449 *
9450 * We must hold cred_guard_mutex across this and any potential
9451 * perf_install_in_context() call for this new event to
9452 * serialize against exec() altering our credentials (and the
9453 * perf_event_exit_task() that could imply).
9454 */
9455 err = -EACCES;
9456 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
9457 goto err_cred;
9458 }
9459
79dff51e
MF
9460 if (flags & PERF_FLAG_PID_CGROUP)
9461 cgroup_fd = pid;
9462
4dc0da86 9463 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
79dff51e 9464 NULL, NULL, cgroup_fd);
d14b12d7
SE
9465 if (IS_ERR(event)) {
9466 err = PTR_ERR(event);
79c9ce57 9467 goto err_cred;
d14b12d7
SE
9468 }
9469
53b25335
VW
9470 if (is_sampling_event(event)) {
9471 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
a1396555 9472 err = -EOPNOTSUPP;
53b25335
VW
9473 goto err_alloc;
9474 }
9475 }
9476
89a1e187
PZ
9477 /*
9478 * Special case software events and allow them to be part of
9479 * any hardware group.
9480 */
9481 pmu = event->pmu;
b04243ef 9482
34f43927
PZ
9483 if (attr.use_clockid) {
9484 err = perf_event_set_clock(event, attr.clockid);
9485 if (err)
9486 goto err_alloc;
9487 }
9488
b04243ef
PZ
9489 if (group_leader &&
9490 (is_software_event(event) != is_software_event(group_leader))) {
9491 if (is_software_event(event)) {
9492 /*
9493 * If event and group_leader are not both a software
9494 * event, and event is, then group leader is not.
9495 *
9496 * Allow the addition of software events to !software
9497 * groups, this is safe because software events never
9498 * fail to schedule.
9499 */
9500 pmu = group_leader->pmu;
9501 } else if (is_software_event(group_leader) &&
9502 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
9503 /*
9504 * In case the group is a pure software group, and we
9505 * try to add a hardware event, move the whole group to
9506 * the hardware context.
9507 */
9508 move_group = 1;
9509 }
9510 }
89a1e187
PZ
9511
9512 /*
9513 * Get the target context (task or percpu):
9514 */
4af57ef2 9515 ctx = find_get_context(pmu, task, event);
89a1e187
PZ
9516 if (IS_ERR(ctx)) {
9517 err = PTR_ERR(ctx);
c6be5a5c 9518 goto err_alloc;
89a1e187
PZ
9519 }
9520
bed5b25a
AS
9521 if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
9522 err = -EBUSY;
9523 goto err_context;
9524 }
9525
ccff286d 9526 /*
cdd6c482 9527 * Look up the group leader (we will attach this event to it):
04289bb9 9528 */
ac9721f3 9529 if (group_leader) {
dc86cabe 9530 err = -EINVAL;
04289bb9 9531
04289bb9 9532 /*
ccff286d
IM
9533 * Do not allow a recursive hierarchy (this new sibling
9534 * becoming part of another group-sibling):
9535 */
9536 if (group_leader->group_leader != group_leader)
c3f00c70 9537 goto err_context;
34f43927
PZ
9538
9539 /* All events in a group should have the same clock */
9540 if (group_leader->clock != event->clock)
9541 goto err_context;
9542
ccff286d
IM
9543 /*
9544 * Do not allow to attach to a group in a different
9545 * task or CPU context:
04289bb9 9546 */
b04243ef 9547 if (move_group) {
c3c87e77
PZ
9548 /*
9549 * Make sure we're both on the same task, or both
9550 * per-cpu events.
9551 */
9552 if (group_leader->ctx->task != ctx->task)
9553 goto err_context;
9554
9555 /*
9556 * Make sure we're both events for the same CPU;
9557 * grouping events for different CPUs is broken; since
9558 * you can never concurrently schedule them anyhow.
9559 */
9560 if (group_leader->cpu != event->cpu)
b04243ef
PZ
9561 goto err_context;
9562 } else {
9563 if (group_leader->ctx != ctx)
9564 goto err_context;
9565 }
9566
3b6f9e5c
PM
9567 /*
9568 * Only a group leader can be exclusive or pinned
9569 */
0d48696f 9570 if (attr.exclusive || attr.pinned)
c3f00c70 9571 goto err_context;
ac9721f3
PZ
9572 }
9573
9574 if (output_event) {
9575 err = perf_event_set_output(event, output_event);
9576 if (err)
c3f00c70 9577 goto err_context;
ac9721f3 9578 }
0793a61d 9579
a21b0b35
YD
9580 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
9581 f_flags);
ea635c64
AV
9582 if (IS_ERR(event_file)) {
9583 err = PTR_ERR(event_file);
201c2f85 9584 event_file = NULL;
c3f00c70 9585 goto err_context;
ea635c64 9586 }
9b51f66d 9587
b04243ef 9588 if (move_group) {
f63a8daa 9589 gctx = group_leader->ctx;
f55fc2a5 9590 mutex_lock_double(&gctx->mutex, &ctx->mutex);
84c4e620
PZ
9591 if (gctx->task == TASK_TOMBSTONE) {
9592 err = -ESRCH;
9593 goto err_locked;
9594 }
f55fc2a5
PZ
9595 } else {
9596 mutex_lock(&ctx->mutex);
9597 }
9598
84c4e620
PZ
9599 if (ctx->task == TASK_TOMBSTONE) {
9600 err = -ESRCH;
9601 goto err_locked;
9602 }
9603
a723968c
PZ
9604 if (!perf_event_validate_size(event)) {
9605 err = -E2BIG;
9606 goto err_locked;
9607 }
9608
f55fc2a5
PZ
9609 /*
9610 * Must be under the same ctx::mutex as perf_install_in_context(),
9611 * because we need to serialize with concurrent event creation.
9612 */
9613 if (!exclusive_event_installable(event, ctx)) {
9614 /* exclusive and group stuff are assumed mutually exclusive */
9615 WARN_ON_ONCE(move_group);
f63a8daa 9616
f55fc2a5
PZ
9617 err = -EBUSY;
9618 goto err_locked;
9619 }
f63a8daa 9620
f55fc2a5
PZ
9621 WARN_ON_ONCE(ctx->parent_ctx);
9622
79c9ce57
PZ
9623 /*
9624 * This is the point on no return; we cannot fail hereafter. This is
9625 * where we start modifying current state.
9626 */
9627
f55fc2a5 9628 if (move_group) {
f63a8daa
PZ
9629 /*
9630 * See perf_event_ctx_lock() for comments on the details
9631 * of swizzling perf_event::ctx.
9632 */
45a0e07a 9633 perf_remove_from_context(group_leader, 0);
0231bb53 9634
b04243ef
PZ
9635 list_for_each_entry(sibling, &group_leader->sibling_list,
9636 group_entry) {
45a0e07a 9637 perf_remove_from_context(sibling, 0);
b04243ef
PZ
9638 put_ctx(gctx);
9639 }
b04243ef 9640
f63a8daa
PZ
9641 /*
9642 * Wait for everybody to stop referencing the events through
9643 * the old lists, before installing it on new lists.
9644 */
0cda4c02 9645 synchronize_rcu();
f63a8daa 9646
8f95b435
PZI
9647 /*
9648 * Install the group siblings before the group leader.
9649 *
9650 * Because a group leader will try and install the entire group
9651 * (through the sibling list, which is still in-tact), we can
9652 * end up with siblings installed in the wrong context.
9653 *
9654 * By installing siblings first we NO-OP because they're not
9655 * reachable through the group lists.
9656 */
b04243ef
PZ
9657 list_for_each_entry(sibling, &group_leader->sibling_list,
9658 group_entry) {
8f95b435 9659 perf_event__state_init(sibling);
9fc81d87 9660 perf_install_in_context(ctx, sibling, sibling->cpu);
b04243ef
PZ
9661 get_ctx(ctx);
9662 }
8f95b435
PZI
9663
9664 /*
9665 * Removing from the context ends up with disabled
9666 * event. What we want here is event in the initial
9667 * startup state, ready to be add into new context.
9668 */
9669 perf_event__state_init(group_leader);
9670 perf_install_in_context(ctx, group_leader, group_leader->cpu);
9671 get_ctx(ctx);
b04243ef 9672
f55fc2a5
PZ
9673 /*
9674 * Now that all events are installed in @ctx, nothing
9675 * references @gctx anymore, so drop the last reference we have
9676 * on it.
9677 */
9678 put_ctx(gctx);
bed5b25a
AS
9679 }
9680
f73e22ab
PZ
9681 /*
9682 * Precalculate sample_data sizes; do while holding ctx::mutex such
9683 * that we're serialized against further additions and before
9684 * perf_install_in_context() which is the point the event is active and
9685 * can use these values.
9686 */
9687 perf_event__header_size(event);
9688 perf_event__id_header_size(event);
9689
78cd2c74
PZ
9690 event->owner = current;
9691
e2d37cd2 9692 perf_install_in_context(ctx, event, event->cpu);
fe4b04fa 9693 perf_unpin_context(ctx);
f63a8daa 9694
f55fc2a5 9695 if (move_group)
f63a8daa 9696 mutex_unlock(&gctx->mutex);
d859e29f 9697 mutex_unlock(&ctx->mutex);
9b51f66d 9698
79c9ce57
PZ
9699 if (task) {
9700 mutex_unlock(&task->signal->cred_guard_mutex);
9701 put_task_struct(task);
9702 }
9703
fbfc623f
YZ
9704 put_online_cpus();
9705
cdd6c482
IM
9706 mutex_lock(&current->perf_event_mutex);
9707 list_add_tail(&event->owner_entry, &current->perf_event_list);
9708 mutex_unlock(&current->perf_event_mutex);
082ff5a2 9709
8a49542c
PZ
9710 /*
9711 * Drop the reference on the group_event after placing the
9712 * new event on the sibling_list. This ensures destruction
9713 * of the group leader will find the pointer to itself in
9714 * perf_group_detach().
9715 */
2903ff01 9716 fdput(group);
ea635c64
AV
9717 fd_install(event_fd, event_file);
9718 return event_fd;
0793a61d 9719
f55fc2a5
PZ
9720err_locked:
9721 if (move_group)
9722 mutex_unlock(&gctx->mutex);
9723 mutex_unlock(&ctx->mutex);
9724/* err_file: */
9725 fput(event_file);
c3f00c70 9726err_context:
fe4b04fa 9727 perf_unpin_context(ctx);
ea635c64 9728 put_ctx(ctx);
c6be5a5c 9729err_alloc:
13005627
PZ
9730 /*
9731 * If event_file is set, the fput() above will have called ->release()
9732 * and that will take care of freeing the event.
9733 */
9734 if (!event_file)
9735 free_event(event);
79c9ce57
PZ
9736err_cred:
9737 if (task)
9738 mutex_unlock(&task->signal->cred_guard_mutex);
1f4ee503 9739err_cpus:
fbfc623f 9740 put_online_cpus();
1f4ee503 9741err_task:
e7d0bc04
PZ
9742 if (task)
9743 put_task_struct(task);
89a1e187 9744err_group_fd:
2903ff01 9745 fdput(group);
ea635c64
AV
9746err_fd:
9747 put_unused_fd(event_fd);
dc86cabe 9748 return err;
0793a61d
TG
9749}
9750
fb0459d7
AV
9751/**
9752 * perf_event_create_kernel_counter
9753 *
9754 * @attr: attributes of the counter to create
9755 * @cpu: cpu in which the counter is bound
38a81da2 9756 * @task: task to profile (NULL for percpu)
fb0459d7
AV
9757 */
9758struct perf_event *
9759perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
38a81da2 9760 struct task_struct *task,
4dc0da86
AK
9761 perf_overflow_handler_t overflow_handler,
9762 void *context)
fb0459d7 9763{
fb0459d7 9764 struct perf_event_context *ctx;
c3f00c70 9765 struct perf_event *event;
fb0459d7 9766 int err;
d859e29f 9767
fb0459d7
AV
9768 /*
9769 * Get the target context (task or percpu):
9770 */
d859e29f 9771
4dc0da86 9772 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
79dff51e 9773 overflow_handler, context, -1);
c3f00c70
PZ
9774 if (IS_ERR(event)) {
9775 err = PTR_ERR(event);
9776 goto err;
9777 }
d859e29f 9778
f8697762 9779 /* Mark owner so we could distinguish it from user events. */
63b6da39 9780 event->owner = TASK_TOMBSTONE;
f8697762 9781
4af57ef2 9782 ctx = find_get_context(event->pmu, task, event);
c6567f64
FW
9783 if (IS_ERR(ctx)) {
9784 err = PTR_ERR(ctx);
c3f00c70 9785 goto err_free;
d859e29f 9786 }
fb0459d7 9787
fb0459d7
AV
9788 WARN_ON_ONCE(ctx->parent_ctx);
9789 mutex_lock(&ctx->mutex);
84c4e620
PZ
9790 if (ctx->task == TASK_TOMBSTONE) {
9791 err = -ESRCH;
9792 goto err_unlock;
9793 }
9794
bed5b25a 9795 if (!exclusive_event_installable(event, ctx)) {
bed5b25a 9796 err = -EBUSY;
84c4e620 9797 goto err_unlock;
bed5b25a
AS
9798 }
9799
fb0459d7 9800 perf_install_in_context(ctx, event, cpu);
fe4b04fa 9801 perf_unpin_context(ctx);
fb0459d7
AV
9802 mutex_unlock(&ctx->mutex);
9803
fb0459d7
AV
9804 return event;
9805
84c4e620
PZ
9806err_unlock:
9807 mutex_unlock(&ctx->mutex);
9808 perf_unpin_context(ctx);
9809 put_ctx(ctx);
c3f00c70
PZ
9810err_free:
9811 free_event(event);
9812err:
c6567f64 9813 return ERR_PTR(err);
9b51f66d 9814}
fb0459d7 9815EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
9b51f66d 9816
0cda4c02
YZ
9817void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
9818{
9819 struct perf_event_context *src_ctx;
9820 struct perf_event_context *dst_ctx;
9821 struct perf_event *event, *tmp;
9822 LIST_HEAD(events);
9823
9824 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
9825 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
9826
f63a8daa
PZ
9827 /*
9828 * See perf_event_ctx_lock() for comments on the details
9829 * of swizzling perf_event::ctx.
9830 */
9831 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
0cda4c02
YZ
9832 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
9833 event_entry) {
45a0e07a 9834 perf_remove_from_context(event, 0);
9a545de0 9835 unaccount_event_cpu(event, src_cpu);
0cda4c02 9836 put_ctx(src_ctx);
9886167d 9837 list_add(&event->migrate_entry, &events);
0cda4c02 9838 }
0cda4c02 9839
8f95b435
PZI
9840 /*
9841 * Wait for the events to quiesce before re-instating them.
9842 */
0cda4c02
YZ
9843 synchronize_rcu();
9844
8f95b435
PZI
9845 /*
9846 * Re-instate events in 2 passes.
9847 *
9848 * Skip over group leaders and only install siblings on this first
9849 * pass, siblings will not get enabled without a leader, however a
9850 * leader will enable its siblings, even if those are still on the old
9851 * context.
9852 */
9853 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
9854 if (event->group_leader == event)
9855 continue;
9856
9857 list_del(&event->migrate_entry);
9858 if (event->state >= PERF_EVENT_STATE_OFF)
9859 event->state = PERF_EVENT_STATE_INACTIVE;
9860 account_event_cpu(event, dst_cpu);
9861 perf_install_in_context(dst_ctx, event, dst_cpu);
9862 get_ctx(dst_ctx);
9863 }
9864
9865 /*
9866 * Once all the siblings are setup properly, install the group leaders
9867 * to make it go.
9868 */
9886167d
PZ
9869 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
9870 list_del(&event->migrate_entry);
0cda4c02
YZ
9871 if (event->state >= PERF_EVENT_STATE_OFF)
9872 event->state = PERF_EVENT_STATE_INACTIVE;
9a545de0 9873 account_event_cpu(event, dst_cpu);
0cda4c02
YZ
9874 perf_install_in_context(dst_ctx, event, dst_cpu);
9875 get_ctx(dst_ctx);
9876 }
9877 mutex_unlock(&dst_ctx->mutex);
f63a8daa 9878 mutex_unlock(&src_ctx->mutex);
0cda4c02
YZ
9879}
9880EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
9881
cdd6c482 9882static void sync_child_event(struct perf_event *child_event,
38b200d6 9883 struct task_struct *child)
d859e29f 9884{
cdd6c482 9885 struct perf_event *parent_event = child_event->parent;
8bc20959 9886 u64 child_val;
d859e29f 9887
cdd6c482
IM
9888 if (child_event->attr.inherit_stat)
9889 perf_event_read_event(child_event, child);
38b200d6 9890
b5e58793 9891 child_val = perf_event_count(child_event);
d859e29f
PM
9892
9893 /*
9894 * Add back the child's count to the parent's count:
9895 */
a6e6dea6 9896 atomic64_add(child_val, &parent_event->child_count);
cdd6c482
IM
9897 atomic64_add(child_event->total_time_enabled,
9898 &parent_event->child_total_time_enabled);
9899 atomic64_add(child_event->total_time_running,
9900 &parent_event->child_total_time_running);
d859e29f
PM
9901}
9902
9b51f66d 9903static void
8ba289b8
PZ
9904perf_event_exit_event(struct perf_event *child_event,
9905 struct perf_event_context *child_ctx,
9906 struct task_struct *child)
9b51f66d 9907{
8ba289b8
PZ
9908 struct perf_event *parent_event = child_event->parent;
9909
1903d50c
PZ
9910 /*
9911 * Do not destroy the 'original' grouping; because of the context
9912 * switch optimization the original events could've ended up in a
9913 * random child task.
9914 *
9915 * If we were to destroy the original group, all group related
9916 * operations would cease to function properly after this random
9917 * child dies.
9918 *
9919 * Do destroy all inherited groups, we don't care about those
9920 * and being thorough is better.
9921 */
32132a3d
PZ
9922 raw_spin_lock_irq(&child_ctx->lock);
9923 WARN_ON_ONCE(child_ctx->is_active);
9924
8ba289b8 9925 if (parent_event)
32132a3d
PZ
9926 perf_group_detach(child_event);
9927 list_del_event(child_event, child_ctx);
a69b0ca4 9928 child_event->state = PERF_EVENT_STATE_EXIT; /* is_event_hup() */
32132a3d 9929 raw_spin_unlock_irq(&child_ctx->lock);
0cc0c027 9930
9b51f66d 9931 /*
8ba289b8 9932 * Parent events are governed by their filedesc, retain them.
9b51f66d 9933 */
8ba289b8 9934 if (!parent_event) {
179033b3 9935 perf_event_wakeup(child_event);
8ba289b8 9936 return;
4bcf349a 9937 }
8ba289b8
PZ
9938 /*
9939 * Child events can be cleaned up.
9940 */
9941
9942 sync_child_event(child_event, child);
9943
9944 /*
9945 * Remove this event from the parent's list
9946 */
9947 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
9948 mutex_lock(&parent_event->child_mutex);
9949 list_del_init(&child_event->child_list);
9950 mutex_unlock(&parent_event->child_mutex);
9951
9952 /*
9953 * Kick perf_poll() for is_event_hup().
9954 */
9955 perf_event_wakeup(parent_event);
9956 free_event(child_event);
9957 put_event(parent_event);
9b51f66d
IM
9958}
9959
8dc85d54 9960static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
9b51f66d 9961{
211de6eb 9962 struct perf_event_context *child_ctx, *clone_ctx = NULL;
63b6da39 9963 struct perf_event *child_event, *next;
63b6da39
PZ
9964
9965 WARN_ON_ONCE(child != current);
9b51f66d 9966
6a3351b6 9967 child_ctx = perf_pin_task_context(child, ctxn);
63b6da39 9968 if (!child_ctx)
9b51f66d
IM
9969 return;
9970
ad3a37de 9971 /*
6a3351b6
PZ
9972 * In order to reduce the amount of tricky in ctx tear-down, we hold
9973 * ctx::mutex over the entire thing. This serializes against almost
9974 * everything that wants to access the ctx.
9975 *
9976 * The exception is sys_perf_event_open() /
9977 * perf_event_create_kernel_count() which does find_get_context()
9978 * without ctx::mutex (it cannot because of the move_group double mutex
9979 * lock thing). See the comments in perf_install_in_context().
ad3a37de 9980 */
6a3351b6 9981 mutex_lock(&child_ctx->mutex);
c93f7669
PM
9982
9983 /*
6a3351b6
PZ
9984 * In a single ctx::lock section, de-schedule the events and detach the
9985 * context from the task such that we cannot ever get it scheduled back
9986 * in.
c93f7669 9987 */
6a3351b6 9988 raw_spin_lock_irq(&child_ctx->lock);
63b6da39 9989 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx);
4a1c0f26 9990
71a851b4 9991 /*
63b6da39
PZ
9992 * Now that the context is inactive, destroy the task <-> ctx relation
9993 * and mark the context dead.
71a851b4 9994 */
63b6da39
PZ
9995 RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
9996 put_ctx(child_ctx); /* cannot be last */
9997 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
9998 put_task_struct(current); /* cannot be last */
4a1c0f26 9999
211de6eb 10000 clone_ctx = unclone_ctx(child_ctx);
6a3351b6 10001 raw_spin_unlock_irq(&child_ctx->lock);
9f498cc5 10002
211de6eb
PZ
10003 if (clone_ctx)
10004 put_ctx(clone_ctx);
4a1c0f26 10005
9f498cc5 10006 /*
cdd6c482
IM
10007 * Report the task dead after unscheduling the events so that we
10008 * won't get any samples after PERF_RECORD_EXIT. We can however still
10009 * get a few PERF_RECORD_READ events.
9f498cc5 10010 */
cdd6c482 10011 perf_event_task(child, child_ctx, 0);
a63eaf34 10012
ebf905fc 10013 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
8ba289b8 10014 perf_event_exit_event(child_event, child_ctx, child);
8bc20959 10015
a63eaf34
PM
10016 mutex_unlock(&child_ctx->mutex);
10017
10018 put_ctx(child_ctx);
9b51f66d
IM
10019}
10020
8dc85d54
PZ
10021/*
10022 * When a child task exits, feed back event values to parent events.
79c9ce57
PZ
10023 *
10024 * Can be called with cred_guard_mutex held when called from
10025 * install_exec_creds().
8dc85d54
PZ
10026 */
10027void perf_event_exit_task(struct task_struct *child)
10028{
8882135b 10029 struct perf_event *event, *tmp;
8dc85d54
PZ
10030 int ctxn;
10031
8882135b
PZ
10032 mutex_lock(&child->perf_event_mutex);
10033 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
10034 owner_entry) {
10035 list_del_init(&event->owner_entry);
10036
10037 /*
10038 * Ensure the list deletion is visible before we clear
10039 * the owner, closes a race against perf_release() where
10040 * we need to serialize on the owner->perf_event_mutex.
10041 */
f47c02c0 10042 smp_store_release(&event->owner, NULL);
8882135b
PZ
10043 }
10044 mutex_unlock(&child->perf_event_mutex);
10045
8dc85d54
PZ
10046 for_each_task_context_nr(ctxn)
10047 perf_event_exit_task_context(child, ctxn);
4e93ad60
JO
10048
10049 /*
10050 * The perf_event_exit_task_context calls perf_event_task
10051 * with child's task_ctx, which generates EXIT events for
10052 * child contexts and sets child->perf_event_ctxp[] to NULL.
10053 * At this point we need to send EXIT events to cpu contexts.
10054 */
10055 perf_event_task(child, NULL, 0);
8dc85d54
PZ
10056}
10057
889ff015
FW
10058static void perf_free_event(struct perf_event *event,
10059 struct perf_event_context *ctx)
10060{
10061 struct perf_event *parent = event->parent;
10062
10063 if (WARN_ON_ONCE(!parent))
10064 return;
10065
10066 mutex_lock(&parent->child_mutex);
10067 list_del_init(&event->child_list);
10068 mutex_unlock(&parent->child_mutex);
10069
a6fa941d 10070 put_event(parent);
889ff015 10071
652884fe 10072 raw_spin_lock_irq(&ctx->lock);
8a49542c 10073 perf_group_detach(event);
889ff015 10074 list_del_event(event, ctx);
652884fe 10075 raw_spin_unlock_irq(&ctx->lock);
889ff015
FW
10076 free_event(event);
10077}
10078
bbbee908 10079/*
652884fe 10080 * Free an unexposed, unused context as created by inheritance by
8dc85d54 10081 * perf_event_init_task below, used by fork() in case of fail.
652884fe
PZ
10082 *
10083 * Not all locks are strictly required, but take them anyway to be nice and
10084 * help out with the lockdep assertions.
bbbee908 10085 */
cdd6c482 10086void perf_event_free_task(struct task_struct *task)
bbbee908 10087{
8dc85d54 10088 struct perf_event_context *ctx;
cdd6c482 10089 struct perf_event *event, *tmp;
8dc85d54 10090 int ctxn;
bbbee908 10091
8dc85d54
PZ
10092 for_each_task_context_nr(ctxn) {
10093 ctx = task->perf_event_ctxp[ctxn];
10094 if (!ctx)
10095 continue;
bbbee908 10096
8dc85d54 10097 mutex_lock(&ctx->mutex);
bbbee908 10098again:
8dc85d54
PZ
10099 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
10100 group_entry)
10101 perf_free_event(event, ctx);
bbbee908 10102
8dc85d54
PZ
10103 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
10104 group_entry)
10105 perf_free_event(event, ctx);
bbbee908 10106
8dc85d54
PZ
10107 if (!list_empty(&ctx->pinned_groups) ||
10108 !list_empty(&ctx->flexible_groups))
10109 goto again;
bbbee908 10110
8dc85d54 10111 mutex_unlock(&ctx->mutex);
bbbee908 10112
8dc85d54
PZ
10113 put_ctx(ctx);
10114 }
889ff015
FW
10115}
10116
4e231c79
PZ
10117void perf_event_delayed_put(struct task_struct *task)
10118{
10119 int ctxn;
10120
10121 for_each_task_context_nr(ctxn)
10122 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
10123}
10124
e03e7ee3 10125struct file *perf_event_get(unsigned int fd)
ffe8690c 10126{
e03e7ee3 10127 struct file *file;
ffe8690c 10128
e03e7ee3
AS
10129 file = fget_raw(fd);
10130 if (!file)
10131 return ERR_PTR(-EBADF);
ffe8690c 10132
e03e7ee3
AS
10133 if (file->f_op != &perf_fops) {
10134 fput(file);
10135 return ERR_PTR(-EBADF);
10136 }
ffe8690c 10137
e03e7ee3 10138 return file;
ffe8690c
KX
10139}
10140
10141const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
10142{
10143 if (!event)
10144 return ERR_PTR(-EINVAL);
10145
10146 return &event->attr;
10147}
10148
97dee4f3
PZ
10149/*
10150 * inherit a event from parent task to child task:
10151 */
10152static struct perf_event *
10153inherit_event(struct perf_event *parent_event,
10154 struct task_struct *parent,
10155 struct perf_event_context *parent_ctx,
10156 struct task_struct *child,
10157 struct perf_event *group_leader,
10158 struct perf_event_context *child_ctx)
10159{
1929def9 10160 enum perf_event_active_state parent_state = parent_event->state;
97dee4f3 10161 struct perf_event *child_event;
cee010ec 10162 unsigned long flags;
97dee4f3
PZ
10163
10164 /*
10165 * Instead of creating recursive hierarchies of events,
10166 * we link inherited events back to the original parent,
10167 * which has a filp for sure, which we use as the reference
10168 * count:
10169 */
10170 if (parent_event->parent)
10171 parent_event = parent_event->parent;
10172
10173 child_event = perf_event_alloc(&parent_event->attr,
10174 parent_event->cpu,
d580ff86 10175 child,
97dee4f3 10176 group_leader, parent_event,
79dff51e 10177 NULL, NULL, -1);
97dee4f3
PZ
10178 if (IS_ERR(child_event))
10179 return child_event;
a6fa941d 10180
c6e5b732
PZ
10181 /*
10182 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
10183 * must be under the same lock in order to serialize against
10184 * perf_event_release_kernel(), such that either we must observe
10185 * is_orphaned_event() or they will observe us on the child_list.
10186 */
10187 mutex_lock(&parent_event->child_mutex);
fadfe7be
JO
10188 if (is_orphaned_event(parent_event) ||
10189 !atomic_long_inc_not_zero(&parent_event->refcount)) {
c6e5b732 10190 mutex_unlock(&parent_event->child_mutex);
a6fa941d
AV
10191 free_event(child_event);
10192 return NULL;
10193 }
10194
97dee4f3
PZ
10195 get_ctx(child_ctx);
10196
10197 /*
10198 * Make the child state follow the state of the parent event,
10199 * not its attr.disabled bit. We hold the parent's mutex,
10200 * so we won't race with perf_event_{en, dis}able_family.
10201 */
1929def9 10202 if (parent_state >= PERF_EVENT_STATE_INACTIVE)
97dee4f3
PZ
10203 child_event->state = PERF_EVENT_STATE_INACTIVE;
10204 else
10205 child_event->state = PERF_EVENT_STATE_OFF;
10206
10207 if (parent_event->attr.freq) {
10208 u64 sample_period = parent_event->hw.sample_period;
10209 struct hw_perf_event *hwc = &child_event->hw;
10210
10211 hwc->sample_period = sample_period;
10212 hwc->last_period = sample_period;
10213
10214 local64_set(&hwc->period_left, sample_period);
10215 }
10216
10217 child_event->ctx = child_ctx;
10218 child_event->overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
10219 child_event->overflow_handler_context
10220 = parent_event->overflow_handler_context;
97dee4f3 10221
614b6780
TG
10222 /*
10223 * Precalculate sample_data sizes
10224 */
10225 perf_event__header_size(child_event);
6844c09d 10226 perf_event__id_header_size(child_event);
614b6780 10227
97dee4f3
PZ
10228 /*
10229 * Link it up in the child's context:
10230 */
cee010ec 10231 raw_spin_lock_irqsave(&child_ctx->lock, flags);
97dee4f3 10232 add_event_to_ctx(child_event, child_ctx);
cee010ec 10233 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
97dee4f3 10234
97dee4f3
PZ
10235 /*
10236 * Link this into the parent event's child list
10237 */
97dee4f3
PZ
10238 list_add_tail(&child_event->child_list, &parent_event->child_list);
10239 mutex_unlock(&parent_event->child_mutex);
10240
10241 return child_event;
10242}
10243
10244static int inherit_group(struct perf_event *parent_event,
10245 struct task_struct *parent,
10246 struct perf_event_context *parent_ctx,
10247 struct task_struct *child,
10248 struct perf_event_context *child_ctx)
10249{
10250 struct perf_event *leader;
10251 struct perf_event *sub;
10252 struct perf_event *child_ctr;
10253
10254 leader = inherit_event(parent_event, parent, parent_ctx,
10255 child, NULL, child_ctx);
10256 if (IS_ERR(leader))
10257 return PTR_ERR(leader);
10258 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
10259 child_ctr = inherit_event(sub, parent, parent_ctx,
10260 child, leader, child_ctx);
10261 if (IS_ERR(child_ctr))
10262 return PTR_ERR(child_ctr);
10263 }
10264 return 0;
889ff015
FW
10265}
10266
10267static int
10268inherit_task_group(struct perf_event *event, struct task_struct *parent,
10269 struct perf_event_context *parent_ctx,
8dc85d54 10270 struct task_struct *child, int ctxn,
889ff015
FW
10271 int *inherited_all)
10272{
10273 int ret;
8dc85d54 10274 struct perf_event_context *child_ctx;
889ff015
FW
10275
10276 if (!event->attr.inherit) {
10277 *inherited_all = 0;
10278 return 0;
bbbee908
PZ
10279 }
10280
fe4b04fa 10281 child_ctx = child->perf_event_ctxp[ctxn];
889ff015
FW
10282 if (!child_ctx) {
10283 /*
10284 * This is executed from the parent task context, so
10285 * inherit events that have been marked for cloning.
10286 * First allocate and initialize a context for the
10287 * child.
10288 */
bbbee908 10289
734df5ab 10290 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
889ff015
FW
10291 if (!child_ctx)
10292 return -ENOMEM;
bbbee908 10293
8dc85d54 10294 child->perf_event_ctxp[ctxn] = child_ctx;
889ff015
FW
10295 }
10296
10297 ret = inherit_group(event, parent, parent_ctx,
10298 child, child_ctx);
10299
10300 if (ret)
10301 *inherited_all = 0;
10302
10303 return ret;
bbbee908
PZ
10304}
10305
9b51f66d 10306/*
cdd6c482 10307 * Initialize the perf_event context in task_struct
9b51f66d 10308 */
985c8dcb 10309static int perf_event_init_context(struct task_struct *child, int ctxn)
9b51f66d 10310{
889ff015 10311 struct perf_event_context *child_ctx, *parent_ctx;
cdd6c482
IM
10312 struct perf_event_context *cloned_ctx;
10313 struct perf_event *event;
9b51f66d 10314 struct task_struct *parent = current;
564c2b21 10315 int inherited_all = 1;
dddd3379 10316 unsigned long flags;
6ab423e0 10317 int ret = 0;
9b51f66d 10318
8dc85d54 10319 if (likely(!parent->perf_event_ctxp[ctxn]))
6ab423e0
PZ
10320 return 0;
10321
ad3a37de 10322 /*
25346b93
PM
10323 * If the parent's context is a clone, pin it so it won't get
10324 * swapped under us.
ad3a37de 10325 */
8dc85d54 10326 parent_ctx = perf_pin_task_context(parent, ctxn);
ffb4ef21
PZ
10327 if (!parent_ctx)
10328 return 0;
25346b93 10329
ad3a37de
PM
10330 /*
10331 * No need to check if parent_ctx != NULL here; since we saw
10332 * it non-NULL earlier, the only reason for it to become NULL
10333 * is if we exit, and since we're currently in the middle of
10334 * a fork we can't be exiting at the same time.
10335 */
ad3a37de 10336
9b51f66d
IM
10337 /*
10338 * Lock the parent list. No need to lock the child - not PID
10339 * hashed yet and not running, so nobody can access it.
10340 */
d859e29f 10341 mutex_lock(&parent_ctx->mutex);
9b51f66d
IM
10342
10343 /*
10344 * We dont have to disable NMIs - we are only looking at
10345 * the list, not manipulating it:
10346 */
889ff015 10347 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
8dc85d54
PZ
10348 ret = inherit_task_group(event, parent, parent_ctx,
10349 child, ctxn, &inherited_all);
889ff015
FW
10350 if (ret)
10351 break;
10352 }
b93f7978 10353
dddd3379
TG
10354 /*
10355 * We can't hold ctx->lock when iterating the ->flexible_group list due
10356 * to allocations, but we need to prevent rotation because
10357 * rotate_ctx() will change the list from interrupt context.
10358 */
10359 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10360 parent_ctx->rotate_disable = 1;
10361 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10362
889ff015 10363 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
8dc85d54
PZ
10364 ret = inherit_task_group(event, parent, parent_ctx,
10365 child, ctxn, &inherited_all);
889ff015 10366 if (ret)
9b51f66d 10367 break;
564c2b21
PM
10368 }
10369
dddd3379
TG
10370 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10371 parent_ctx->rotate_disable = 0;
dddd3379 10372
8dc85d54 10373 child_ctx = child->perf_event_ctxp[ctxn];
889ff015 10374
05cbaa28 10375 if (child_ctx && inherited_all) {
564c2b21
PM
10376 /*
10377 * Mark the child context as a clone of the parent
10378 * context, or of whatever the parent is a clone of.
c5ed5145
PZ
10379 *
10380 * Note that if the parent is a clone, the holding of
10381 * parent_ctx->lock avoids it from being uncloned.
564c2b21 10382 */
c5ed5145 10383 cloned_ctx = parent_ctx->parent_ctx;
ad3a37de
PM
10384 if (cloned_ctx) {
10385 child_ctx->parent_ctx = cloned_ctx;
25346b93 10386 child_ctx->parent_gen = parent_ctx->parent_gen;
564c2b21
PM
10387 } else {
10388 child_ctx->parent_ctx = parent_ctx;
10389 child_ctx->parent_gen = parent_ctx->generation;
10390 }
10391 get_ctx(child_ctx->parent_ctx);
9b51f66d
IM
10392 }
10393
c5ed5145 10394 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
d859e29f 10395 mutex_unlock(&parent_ctx->mutex);
6ab423e0 10396
25346b93 10397 perf_unpin_context(parent_ctx);
fe4b04fa 10398 put_ctx(parent_ctx);
ad3a37de 10399
6ab423e0 10400 return ret;
9b51f66d
IM
10401}
10402
8dc85d54
PZ
10403/*
10404 * Initialize the perf_event context in task_struct
10405 */
10406int perf_event_init_task(struct task_struct *child)
10407{
10408 int ctxn, ret;
10409
8550d7cb
ON
10410 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
10411 mutex_init(&child->perf_event_mutex);
10412 INIT_LIST_HEAD(&child->perf_event_list);
10413
8dc85d54
PZ
10414 for_each_task_context_nr(ctxn) {
10415 ret = perf_event_init_context(child, ctxn);
6c72e350
PZ
10416 if (ret) {
10417 perf_event_free_task(child);
8dc85d54 10418 return ret;
6c72e350 10419 }
8dc85d54
PZ
10420 }
10421
10422 return 0;
10423}
10424
220b140b
PM
10425static void __init perf_event_init_all_cpus(void)
10426{
b28ab83c 10427 struct swevent_htable *swhash;
220b140b 10428 int cpu;
220b140b
PM
10429
10430 for_each_possible_cpu(cpu) {
b28ab83c
PZ
10431 swhash = &per_cpu(swevent_htable, cpu);
10432 mutex_init(&swhash->hlist_mutex);
2fde4f94 10433 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
f2fb6bef
KL
10434
10435 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
10436 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
220b140b
PM
10437 }
10438}
10439
00e16c3d 10440int perf_event_init_cpu(unsigned int cpu)
0793a61d 10441{
108b02cf 10442 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
0793a61d 10443
b28ab83c 10444 mutex_lock(&swhash->hlist_mutex);
059fcd8c 10445 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
76e1d904
FW
10446 struct swevent_hlist *hlist;
10447
b28ab83c
PZ
10448 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
10449 WARN_ON(!hlist);
10450 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 10451 }
b28ab83c 10452 mutex_unlock(&swhash->hlist_mutex);
00e16c3d 10453 return 0;
0793a61d
TG
10454}
10455
2965faa5 10456#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
108b02cf 10457static void __perf_event_exit_context(void *__info)
0793a61d 10458{
108b02cf 10459 struct perf_event_context *ctx = __info;
fae3fde6
PZ
10460 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
10461 struct perf_event *event;
0793a61d 10462
fae3fde6
PZ
10463 raw_spin_lock(&ctx->lock);
10464 list_for_each_entry(event, &ctx->event_list, event_entry)
45a0e07a 10465 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
fae3fde6 10466 raw_spin_unlock(&ctx->lock);
0793a61d 10467}
108b02cf
PZ
10468
10469static void perf_event_exit_cpu_context(int cpu)
10470{
10471 struct perf_event_context *ctx;
10472 struct pmu *pmu;
10473 int idx;
10474
10475 idx = srcu_read_lock(&pmus_srcu);
10476 list_for_each_entry_rcu(pmu, &pmus, entry) {
917bdd1c 10477 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
108b02cf
PZ
10478
10479 mutex_lock(&ctx->mutex);
10480 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
10481 mutex_unlock(&ctx->mutex);
10482 }
10483 srcu_read_unlock(&pmus_srcu, idx);
108b02cf 10484}
00e16c3d
TG
10485#else
10486
10487static void perf_event_exit_cpu_context(int cpu) { }
10488
10489#endif
108b02cf 10490
00e16c3d 10491int perf_event_exit_cpu(unsigned int cpu)
0793a61d 10492{
e3703f8c 10493 perf_event_exit_cpu_context(cpu);
00e16c3d 10494 return 0;
0793a61d 10495}
0793a61d 10496
c277443c
PZ
10497static int
10498perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
10499{
10500 int cpu;
10501
10502 for_each_online_cpu(cpu)
10503 perf_event_exit_cpu(cpu);
10504
10505 return NOTIFY_OK;
10506}
10507
10508/*
10509 * Run the perf reboot notifier at the very last possible moment so that
10510 * the generic watchdog code runs as long as possible.
10511 */
10512static struct notifier_block perf_reboot_notifier = {
10513 .notifier_call = perf_reboot,
10514 .priority = INT_MIN,
10515};
10516
cdd6c482 10517void __init perf_event_init(void)
0793a61d 10518{
3c502e7a
JW
10519 int ret;
10520
2e80a82a
PZ
10521 idr_init(&pmu_idr);
10522
220b140b 10523 perf_event_init_all_cpus();
b0a873eb 10524 init_srcu_struct(&pmus_srcu);
2e80a82a
PZ
10525 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
10526 perf_pmu_register(&perf_cpu_clock, NULL, -1);
10527 perf_pmu_register(&perf_task_clock, NULL, -1);
b0a873eb 10528 perf_tp_register();
00e16c3d 10529 perf_event_init_cpu(smp_processor_id());
c277443c 10530 register_reboot_notifier(&perf_reboot_notifier);
3c502e7a
JW
10531
10532 ret = init_hw_breakpoint();
10533 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
b2029520 10534
b01c3a00
JO
10535 /*
10536 * Build time assertion that we keep the data_head at the intended
10537 * location. IOW, validation we got the __reserved[] size right.
10538 */
10539 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
10540 != 1024);
0793a61d 10541}
abe43400 10542
fd979c01
CS
10543ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
10544 char *page)
10545{
10546 struct perf_pmu_events_attr *pmu_attr =
10547 container_of(attr, struct perf_pmu_events_attr, attr);
10548
10549 if (pmu_attr->event_str)
10550 return sprintf(page, "%s\n", pmu_attr->event_str);
10551
10552 return 0;
10553}
675965b0 10554EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
fd979c01 10555
abe43400
PZ
10556static int __init perf_event_sysfs_init(void)
10557{
10558 struct pmu *pmu;
10559 int ret;
10560
10561 mutex_lock(&pmus_lock);
10562
10563 ret = bus_register(&pmu_bus);
10564 if (ret)
10565 goto unlock;
10566
10567 list_for_each_entry(pmu, &pmus, entry) {
10568 if (!pmu->name || pmu->type < 0)
10569 continue;
10570
10571 ret = pmu_dev_alloc(pmu);
10572 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
10573 }
10574 pmu_bus_running = 1;
10575 ret = 0;
10576
10577unlock:
10578 mutex_unlock(&pmus_lock);
10579
10580 return ret;
10581}
10582device_initcall(perf_event_sysfs_init);
e5d1367f
SE
10583
10584#ifdef CONFIG_CGROUP_PERF
eb95419b
TH
10585static struct cgroup_subsys_state *
10586perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
e5d1367f
SE
10587{
10588 struct perf_cgroup *jc;
e5d1367f 10589
1b15d055 10590 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
e5d1367f
SE
10591 if (!jc)
10592 return ERR_PTR(-ENOMEM);
10593
e5d1367f
SE
10594 jc->info = alloc_percpu(struct perf_cgroup_info);
10595 if (!jc->info) {
10596 kfree(jc);
10597 return ERR_PTR(-ENOMEM);
10598 }
10599
e5d1367f
SE
10600 return &jc->css;
10601}
10602
eb95419b 10603static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
e5d1367f 10604{
eb95419b
TH
10605 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
10606
e5d1367f
SE
10607 free_percpu(jc->info);
10608 kfree(jc);
10609}
10610
10611static int __perf_cgroup_move(void *info)
10612{
10613 struct task_struct *task = info;
ddaaf4e2 10614 rcu_read_lock();
e5d1367f 10615 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
ddaaf4e2 10616 rcu_read_unlock();
e5d1367f
SE
10617 return 0;
10618}
10619
1f7dd3e5 10620static void perf_cgroup_attach(struct cgroup_taskset *tset)
e5d1367f 10621{
bb9d97b6 10622 struct task_struct *task;
1f7dd3e5 10623 struct cgroup_subsys_state *css;
bb9d97b6 10624
1f7dd3e5 10625 cgroup_taskset_for_each(task, css, tset)
bb9d97b6 10626 task_function_call(task, __perf_cgroup_move, task);
e5d1367f
SE
10627}
10628
073219e9 10629struct cgroup_subsys perf_event_cgrp_subsys = {
92fb9748
TH
10630 .css_alloc = perf_cgroup_css_alloc,
10631 .css_free = perf_cgroup_css_free,
bb9d97b6 10632 .attach = perf_cgroup_attach,
e5d1367f
SE
10633};
10634#endif /* CONFIG_CGROUP_PERF */