]> git.ipfire.org Git - thirdparty/linux.git/blame - kernel/events/core.c
perf: Use hrtimers for event multiplexing
[thirdparty/linux.git] / kernel / events / core.c
CommitLineData
0793a61d 1/*
57c0c15b 2 * Performance events core code:
0793a61d 3 *
98144511 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
e7e7ee2e
IM
5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
d36b6910 7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
7b732a75 8 *
57c0c15b 9 * For licensing details see kernel-base/COPYING
0793a61d
TG
10 */
11
12#include <linux/fs.h>
b9cacc7b 13#include <linux/mm.h>
0793a61d
TG
14#include <linux/cpu.h>
15#include <linux/smp.h>
2e80a82a 16#include <linux/idr.h>
04289bb9 17#include <linux/file.h>
0793a61d 18#include <linux/poll.h>
5a0e3ad6 19#include <linux/slab.h>
76e1d904 20#include <linux/hash.h>
12351ef8 21#include <linux/tick.h>
0793a61d 22#include <linux/sysfs.h>
22a4f650 23#include <linux/dcache.h>
0793a61d 24#include <linux/percpu.h>
22a4f650 25#include <linux/ptrace.h>
c277443c 26#include <linux/reboot.h>
b9cacc7b 27#include <linux/vmstat.h>
abe43400 28#include <linux/device.h>
6e5fdeed 29#include <linux/export.h>
906010b2 30#include <linux/vmalloc.h>
b9cacc7b
PZ
31#include <linux/hardirq.h>
32#include <linux/rculist.h>
0793a61d
TG
33#include <linux/uaccess.h>
34#include <linux/syscalls.h>
35#include <linux/anon_inodes.h>
aa9c4c0f 36#include <linux/kernel_stat.h>
cdd6c482 37#include <linux/perf_event.h>
6fb2915d 38#include <linux/ftrace_event.h>
3c502e7a 39#include <linux/hw_breakpoint.h>
c5ebcedb 40#include <linux/mm_types.h>
877c6856 41#include <linux/cgroup.h>
0793a61d 42
76369139
FW
43#include "internal.h"
44
4e193bd4
TB
45#include <asm/irq_regs.h>
46
fe4b04fa 47struct remote_function_call {
e7e7ee2e
IM
48 struct task_struct *p;
49 int (*func)(void *info);
50 void *info;
51 int ret;
fe4b04fa
PZ
52};
53
54static void remote_function(void *data)
55{
56 struct remote_function_call *tfc = data;
57 struct task_struct *p = tfc->p;
58
59 if (p) {
60 tfc->ret = -EAGAIN;
61 if (task_cpu(p) != smp_processor_id() || !task_curr(p))
62 return;
63 }
64
65 tfc->ret = tfc->func(tfc->info);
66}
67
68/**
69 * task_function_call - call a function on the cpu on which a task runs
70 * @p: the task to evaluate
71 * @func: the function to be called
72 * @info: the function call argument
73 *
74 * Calls the function @func when the task is currently running. This might
75 * be on the current CPU, which just calls the function directly
76 *
77 * returns: @func return value, or
78 * -ESRCH - when the process isn't running
79 * -EAGAIN - when the process moved away
80 */
81static int
82task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
83{
84 struct remote_function_call data = {
e7e7ee2e
IM
85 .p = p,
86 .func = func,
87 .info = info,
88 .ret = -ESRCH, /* No such (running) process */
fe4b04fa
PZ
89 };
90
91 if (task_curr(p))
92 smp_call_function_single(task_cpu(p), remote_function, &data, 1);
93
94 return data.ret;
95}
96
97/**
98 * cpu_function_call - call a function on the cpu
99 * @func: the function to be called
100 * @info: the function call argument
101 *
102 * Calls the function @func on the remote cpu.
103 *
104 * returns: @func return value or -ENXIO when the cpu is offline
105 */
106static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
107{
108 struct remote_function_call data = {
e7e7ee2e
IM
109 .p = NULL,
110 .func = func,
111 .info = info,
112 .ret = -ENXIO, /* No such CPU */
fe4b04fa
PZ
113 };
114
115 smp_call_function_single(cpu, remote_function, &data, 1);
116
117 return data.ret;
118}
119
e5d1367f
SE
120#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
121 PERF_FLAG_FD_OUTPUT |\
122 PERF_FLAG_PID_CGROUP)
123
bce38cd5
SE
124/*
125 * branch priv levels that need permission checks
126 */
127#define PERF_SAMPLE_BRANCH_PERM_PLM \
128 (PERF_SAMPLE_BRANCH_KERNEL |\
129 PERF_SAMPLE_BRANCH_HV)
130
0b3fcf17
SE
131enum event_type_t {
132 EVENT_FLEXIBLE = 0x1,
133 EVENT_PINNED = 0x2,
134 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
135};
136
e5d1367f
SE
137/*
138 * perf_sched_events : >0 events exist
139 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
140 */
c5905afb 141struct static_key_deferred perf_sched_events __read_mostly;
e5d1367f 142static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
d010b332 143static DEFINE_PER_CPU(atomic_t, perf_branch_stack_events);
e5d1367f 144
cdd6c482
IM
145static atomic_t nr_mmap_events __read_mostly;
146static atomic_t nr_comm_events __read_mostly;
147static atomic_t nr_task_events __read_mostly;
9ee318a7 148
108b02cf
PZ
149static LIST_HEAD(pmus);
150static DEFINE_MUTEX(pmus_lock);
151static struct srcu_struct pmus_srcu;
152
0764771d 153/*
cdd6c482 154 * perf event paranoia level:
0fbdea19
IM
155 * -1 - not paranoid at all
156 * 0 - disallow raw tracepoint access for unpriv
cdd6c482 157 * 1 - disallow cpu events for unpriv
0fbdea19 158 * 2 - disallow kernel profiling for unpriv
0764771d 159 */
cdd6c482 160int sysctl_perf_event_paranoid __read_mostly = 1;
0764771d 161
20443384
FW
162/* Minimum for 512 kiB + 1 user control page */
163int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
df58ab24
PZ
164
165/*
cdd6c482 166 * max perf event sample rate
df58ab24 167 */
163ec435
PZ
168#define DEFAULT_MAX_SAMPLE_RATE 100000
169int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
170static int max_samples_per_tick __read_mostly =
171 DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
172
9e630205
SE
173static int perf_rotate_context(struct perf_cpu_context *cpuctx);
174
163ec435
PZ
175int perf_proc_update_handler(struct ctl_table *table, int write,
176 void __user *buffer, size_t *lenp,
177 loff_t *ppos)
178{
179 int ret = proc_dointvec(table, write, buffer, lenp, ppos);
180
181 if (ret || !write)
182 return ret;
183
184 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
185
186 return 0;
187}
1ccd1549 188
cdd6c482 189static atomic64_t perf_event_id;
a96bbc16 190
0b3fcf17
SE
191static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
192 enum event_type_t event_type);
193
194static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
195 enum event_type_t event_type,
196 struct task_struct *task);
197
198static void update_context_time(struct perf_event_context *ctx);
199static u64 perf_event_time(struct perf_event *event);
0b3fcf17 200
10c6db11
PZ
201static void ring_buffer_attach(struct perf_event *event,
202 struct ring_buffer *rb);
203
cdd6c482 204void __weak perf_event_print_debug(void) { }
0793a61d 205
84c79910 206extern __weak const char *perf_pmu_name(void)
0793a61d 207{
84c79910 208 return "pmu";
0793a61d
TG
209}
210
0b3fcf17
SE
211static inline u64 perf_clock(void)
212{
213 return local_clock();
214}
215
e5d1367f
SE
216static inline struct perf_cpu_context *
217__get_cpu_context(struct perf_event_context *ctx)
218{
219 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
220}
221
facc4307
PZ
222static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
223 struct perf_event_context *ctx)
224{
225 raw_spin_lock(&cpuctx->ctx.lock);
226 if (ctx)
227 raw_spin_lock(&ctx->lock);
228}
229
230static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
231 struct perf_event_context *ctx)
232{
233 if (ctx)
234 raw_spin_unlock(&ctx->lock);
235 raw_spin_unlock(&cpuctx->ctx.lock);
236}
237
e5d1367f
SE
238#ifdef CONFIG_CGROUP_PERF
239
877c6856
LZ
240/*
241 * perf_cgroup_info keeps track of time_enabled for a cgroup.
242 * This is a per-cpu dynamically allocated data structure.
243 */
244struct perf_cgroup_info {
245 u64 time;
246 u64 timestamp;
247};
248
249struct perf_cgroup {
250 struct cgroup_subsys_state css;
86e213e1 251 struct perf_cgroup_info __percpu *info;
877c6856
LZ
252};
253
3f7cce3c
SE
254/*
255 * Must ensure cgroup is pinned (css_get) before calling
256 * this function. In other words, we cannot call this function
257 * if there is no cgroup event for the current CPU context.
258 */
e5d1367f
SE
259static inline struct perf_cgroup *
260perf_cgroup_from_task(struct task_struct *task)
261{
262 return container_of(task_subsys_state(task, perf_subsys_id),
263 struct perf_cgroup, css);
264}
265
266static inline bool
267perf_cgroup_match(struct perf_event *event)
268{
269 struct perf_event_context *ctx = event->ctx;
270 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
271
ef824fa1
TH
272 /* @event doesn't care about cgroup */
273 if (!event->cgrp)
274 return true;
275
276 /* wants specific cgroup scope but @cpuctx isn't associated with any */
277 if (!cpuctx->cgrp)
278 return false;
279
280 /*
281 * Cgroup scoping is recursive. An event enabled for a cgroup is
282 * also enabled for all its descendant cgroups. If @cpuctx's
283 * cgroup is a descendant of @event's (the test covers identity
284 * case), it's a match.
285 */
286 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
287 event->cgrp->css.cgroup);
e5d1367f
SE
288}
289
9c5da09d 290static inline bool perf_tryget_cgroup(struct perf_event *event)
e5d1367f 291{
9c5da09d 292 return css_tryget(&event->cgrp->css);
e5d1367f
SE
293}
294
295static inline void perf_put_cgroup(struct perf_event *event)
296{
297 css_put(&event->cgrp->css);
298}
299
300static inline void perf_detach_cgroup(struct perf_event *event)
301{
302 perf_put_cgroup(event);
303 event->cgrp = NULL;
304}
305
306static inline int is_cgroup_event(struct perf_event *event)
307{
308 return event->cgrp != NULL;
309}
310
311static inline u64 perf_cgroup_event_time(struct perf_event *event)
312{
313 struct perf_cgroup_info *t;
314
315 t = per_cpu_ptr(event->cgrp->info, event->cpu);
316 return t->time;
317}
318
319static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
320{
321 struct perf_cgroup_info *info;
322 u64 now;
323
324 now = perf_clock();
325
326 info = this_cpu_ptr(cgrp->info);
327
328 info->time += now - info->timestamp;
329 info->timestamp = now;
330}
331
332static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
333{
334 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
335 if (cgrp_out)
336 __update_cgrp_time(cgrp_out);
337}
338
339static inline void update_cgrp_time_from_event(struct perf_event *event)
340{
3f7cce3c
SE
341 struct perf_cgroup *cgrp;
342
e5d1367f 343 /*
3f7cce3c
SE
344 * ensure we access cgroup data only when needed and
345 * when we know the cgroup is pinned (css_get)
e5d1367f 346 */
3f7cce3c 347 if (!is_cgroup_event(event))
e5d1367f
SE
348 return;
349
3f7cce3c
SE
350 cgrp = perf_cgroup_from_task(current);
351 /*
352 * Do not update time when cgroup is not active
353 */
354 if (cgrp == event->cgrp)
355 __update_cgrp_time(event->cgrp);
e5d1367f
SE
356}
357
358static inline void
3f7cce3c
SE
359perf_cgroup_set_timestamp(struct task_struct *task,
360 struct perf_event_context *ctx)
e5d1367f
SE
361{
362 struct perf_cgroup *cgrp;
363 struct perf_cgroup_info *info;
364
3f7cce3c
SE
365 /*
366 * ctx->lock held by caller
367 * ensure we do not access cgroup data
368 * unless we have the cgroup pinned (css_get)
369 */
370 if (!task || !ctx->nr_cgroups)
e5d1367f
SE
371 return;
372
373 cgrp = perf_cgroup_from_task(task);
374 info = this_cpu_ptr(cgrp->info);
3f7cce3c 375 info->timestamp = ctx->timestamp;
e5d1367f
SE
376}
377
378#define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
379#define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
380
381/*
382 * reschedule events based on the cgroup constraint of task.
383 *
384 * mode SWOUT : schedule out everything
385 * mode SWIN : schedule in based on cgroup for next
386 */
387void perf_cgroup_switch(struct task_struct *task, int mode)
388{
389 struct perf_cpu_context *cpuctx;
390 struct pmu *pmu;
391 unsigned long flags;
392
393 /*
394 * disable interrupts to avoid geting nr_cgroup
395 * changes via __perf_event_disable(). Also
396 * avoids preemption.
397 */
398 local_irq_save(flags);
399
400 /*
401 * we reschedule only in the presence of cgroup
402 * constrained events.
403 */
404 rcu_read_lock();
405
406 list_for_each_entry_rcu(pmu, &pmus, entry) {
e5d1367f 407 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
95cf59ea
PZ
408 if (cpuctx->unique_pmu != pmu)
409 continue; /* ensure we process each cpuctx once */
e5d1367f 410
e5d1367f
SE
411 /*
412 * perf_cgroup_events says at least one
413 * context on this CPU has cgroup events.
414 *
415 * ctx->nr_cgroups reports the number of cgroup
416 * events for a context.
417 */
418 if (cpuctx->ctx.nr_cgroups > 0) {
facc4307
PZ
419 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
420 perf_pmu_disable(cpuctx->ctx.pmu);
e5d1367f
SE
421
422 if (mode & PERF_CGROUP_SWOUT) {
423 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
424 /*
425 * must not be done before ctxswout due
426 * to event_filter_match() in event_sched_out()
427 */
428 cpuctx->cgrp = NULL;
429 }
430
431 if (mode & PERF_CGROUP_SWIN) {
e566b76e 432 WARN_ON_ONCE(cpuctx->cgrp);
95cf59ea
PZ
433 /*
434 * set cgrp before ctxsw in to allow
435 * event_filter_match() to not have to pass
436 * task around
e5d1367f
SE
437 */
438 cpuctx->cgrp = perf_cgroup_from_task(task);
439 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
440 }
facc4307
PZ
441 perf_pmu_enable(cpuctx->ctx.pmu);
442 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
e5d1367f 443 }
e5d1367f
SE
444 }
445
446 rcu_read_unlock();
447
448 local_irq_restore(flags);
449}
450
a8d757ef
SE
451static inline void perf_cgroup_sched_out(struct task_struct *task,
452 struct task_struct *next)
e5d1367f 453{
a8d757ef
SE
454 struct perf_cgroup *cgrp1;
455 struct perf_cgroup *cgrp2 = NULL;
456
457 /*
458 * we come here when we know perf_cgroup_events > 0
459 */
460 cgrp1 = perf_cgroup_from_task(task);
461
462 /*
463 * next is NULL when called from perf_event_enable_on_exec()
464 * that will systematically cause a cgroup_switch()
465 */
466 if (next)
467 cgrp2 = perf_cgroup_from_task(next);
468
469 /*
470 * only schedule out current cgroup events if we know
471 * that we are switching to a different cgroup. Otherwise,
472 * do no touch the cgroup events.
473 */
474 if (cgrp1 != cgrp2)
475 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
e5d1367f
SE
476}
477
a8d757ef
SE
478static inline void perf_cgroup_sched_in(struct task_struct *prev,
479 struct task_struct *task)
e5d1367f 480{
a8d757ef
SE
481 struct perf_cgroup *cgrp1;
482 struct perf_cgroup *cgrp2 = NULL;
483
484 /*
485 * we come here when we know perf_cgroup_events > 0
486 */
487 cgrp1 = perf_cgroup_from_task(task);
488
489 /* prev can never be NULL */
490 cgrp2 = perf_cgroup_from_task(prev);
491
492 /*
493 * only need to schedule in cgroup events if we are changing
494 * cgroup during ctxsw. Cgroup events were not scheduled
495 * out of ctxsw out if that was not the case.
496 */
497 if (cgrp1 != cgrp2)
498 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
e5d1367f
SE
499}
500
501static inline int perf_cgroup_connect(int fd, struct perf_event *event,
502 struct perf_event_attr *attr,
503 struct perf_event *group_leader)
504{
505 struct perf_cgroup *cgrp;
506 struct cgroup_subsys_state *css;
2903ff01
AV
507 struct fd f = fdget(fd);
508 int ret = 0;
e5d1367f 509
2903ff01 510 if (!f.file)
e5d1367f
SE
511 return -EBADF;
512
2903ff01 513 css = cgroup_css_from_dir(f.file, perf_subsys_id);
3db272c0
LZ
514 if (IS_ERR(css)) {
515 ret = PTR_ERR(css);
516 goto out;
517 }
e5d1367f
SE
518
519 cgrp = container_of(css, struct perf_cgroup, css);
520 event->cgrp = cgrp;
521
f75e18cb 522 /* must be done before we fput() the file */
9c5da09d
SQ
523 if (!perf_tryget_cgroup(event)) {
524 event->cgrp = NULL;
525 ret = -ENOENT;
526 goto out;
527 }
f75e18cb 528
e5d1367f
SE
529 /*
530 * all events in a group must monitor
531 * the same cgroup because a task belongs
532 * to only one perf cgroup at a time
533 */
534 if (group_leader && group_leader->cgrp != cgrp) {
535 perf_detach_cgroup(event);
536 ret = -EINVAL;
e5d1367f 537 }
3db272c0 538out:
2903ff01 539 fdput(f);
e5d1367f
SE
540 return ret;
541}
542
543static inline void
544perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
545{
546 struct perf_cgroup_info *t;
547 t = per_cpu_ptr(event->cgrp->info, event->cpu);
548 event->shadow_ctx_time = now - t->timestamp;
549}
550
551static inline void
552perf_cgroup_defer_enabled(struct perf_event *event)
553{
554 /*
555 * when the current task's perf cgroup does not match
556 * the event's, we need to remember to call the
557 * perf_mark_enable() function the first time a task with
558 * a matching perf cgroup is scheduled in.
559 */
560 if (is_cgroup_event(event) && !perf_cgroup_match(event))
561 event->cgrp_defer_enabled = 1;
562}
563
564static inline void
565perf_cgroup_mark_enabled(struct perf_event *event,
566 struct perf_event_context *ctx)
567{
568 struct perf_event *sub;
569 u64 tstamp = perf_event_time(event);
570
571 if (!event->cgrp_defer_enabled)
572 return;
573
574 event->cgrp_defer_enabled = 0;
575
576 event->tstamp_enabled = tstamp - event->total_time_enabled;
577 list_for_each_entry(sub, &event->sibling_list, group_entry) {
578 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
579 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
580 sub->cgrp_defer_enabled = 0;
581 }
582 }
583}
584#else /* !CONFIG_CGROUP_PERF */
585
586static inline bool
587perf_cgroup_match(struct perf_event *event)
588{
589 return true;
590}
591
592static inline void perf_detach_cgroup(struct perf_event *event)
593{}
594
595static inline int is_cgroup_event(struct perf_event *event)
596{
597 return 0;
598}
599
600static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
601{
602 return 0;
603}
604
605static inline void update_cgrp_time_from_event(struct perf_event *event)
606{
607}
608
609static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
610{
611}
612
a8d757ef
SE
613static inline void perf_cgroup_sched_out(struct task_struct *task,
614 struct task_struct *next)
e5d1367f
SE
615{
616}
617
a8d757ef
SE
618static inline void perf_cgroup_sched_in(struct task_struct *prev,
619 struct task_struct *task)
e5d1367f
SE
620{
621}
622
623static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
624 struct perf_event_attr *attr,
625 struct perf_event *group_leader)
626{
627 return -EINVAL;
628}
629
630static inline void
3f7cce3c
SE
631perf_cgroup_set_timestamp(struct task_struct *task,
632 struct perf_event_context *ctx)
e5d1367f
SE
633{
634}
635
636void
637perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
638{
639}
640
641static inline void
642perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
643{
644}
645
646static inline u64 perf_cgroup_event_time(struct perf_event *event)
647{
648 return 0;
649}
650
651static inline void
652perf_cgroup_defer_enabled(struct perf_event *event)
653{
654}
655
656static inline void
657perf_cgroup_mark_enabled(struct perf_event *event,
658 struct perf_event_context *ctx)
659{
660}
661#endif
662
9e630205
SE
663/*
664 * set default to be dependent on timer tick just
665 * like original code
666 */
667#define PERF_CPU_HRTIMER (1000 / HZ)
668/*
669 * function must be called with interrupts disbled
670 */
671static enum hrtimer_restart perf_cpu_hrtimer_handler(struct hrtimer *hr)
672{
673 struct perf_cpu_context *cpuctx;
674 enum hrtimer_restart ret = HRTIMER_NORESTART;
675 int rotations = 0;
676
677 WARN_ON(!irqs_disabled());
678
679 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
680
681 rotations = perf_rotate_context(cpuctx);
682
683 /*
684 * arm timer if needed
685 */
686 if (rotations) {
687 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
688 ret = HRTIMER_RESTART;
689 }
690
691 return ret;
692}
693
694/* CPU is going down */
695void perf_cpu_hrtimer_cancel(int cpu)
696{
697 struct perf_cpu_context *cpuctx;
698 struct pmu *pmu;
699 unsigned long flags;
700
701 if (WARN_ON(cpu != smp_processor_id()))
702 return;
703
704 local_irq_save(flags);
705
706 rcu_read_lock();
707
708 list_for_each_entry_rcu(pmu, &pmus, entry) {
709 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
710
711 if (pmu->task_ctx_nr == perf_sw_context)
712 continue;
713
714 hrtimer_cancel(&cpuctx->hrtimer);
715 }
716
717 rcu_read_unlock();
718
719 local_irq_restore(flags);
720}
721
722static void __perf_cpu_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
723{
724 struct hrtimer *hr = &cpuctx->hrtimer;
725 struct pmu *pmu = cpuctx->ctx.pmu;
726
727 /* no multiplexing needed for SW PMU */
728 if (pmu->task_ctx_nr == perf_sw_context)
729 return;
730
731 cpuctx->hrtimer_interval =
732 ns_to_ktime(NSEC_PER_MSEC * PERF_CPU_HRTIMER);
733
734 hrtimer_init(hr, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
735 hr->function = perf_cpu_hrtimer_handler;
736}
737
738static void perf_cpu_hrtimer_restart(struct perf_cpu_context *cpuctx)
739{
740 struct hrtimer *hr = &cpuctx->hrtimer;
741 struct pmu *pmu = cpuctx->ctx.pmu;
742
743 /* not for SW PMU */
744 if (pmu->task_ctx_nr == perf_sw_context)
745 return;
746
747 if (hrtimer_active(hr))
748 return;
749
750 if (!hrtimer_callback_running(hr))
751 __hrtimer_start_range_ns(hr, cpuctx->hrtimer_interval,
752 0, HRTIMER_MODE_REL_PINNED, 0);
753}
754
33696fc0 755void perf_pmu_disable(struct pmu *pmu)
9e35ad38 756{
33696fc0
PZ
757 int *count = this_cpu_ptr(pmu->pmu_disable_count);
758 if (!(*count)++)
759 pmu->pmu_disable(pmu);
9e35ad38 760}
9e35ad38 761
33696fc0 762void perf_pmu_enable(struct pmu *pmu)
9e35ad38 763{
33696fc0
PZ
764 int *count = this_cpu_ptr(pmu->pmu_disable_count);
765 if (!--(*count))
766 pmu->pmu_enable(pmu);
9e35ad38 767}
9e35ad38 768
e9d2b064
PZ
769static DEFINE_PER_CPU(struct list_head, rotation_list);
770
771/*
772 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
773 * because they're strictly cpu affine and rotate_start is called with IRQs
774 * disabled, while rotate_context is called from IRQ context.
775 */
108b02cf 776static void perf_pmu_rotate_start(struct pmu *pmu)
9e35ad38 777{
108b02cf 778 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
e9d2b064 779 struct list_head *head = &__get_cpu_var(rotation_list);
b5ab4cd5 780
e9d2b064 781 WARN_ON(!irqs_disabled());
b5ab4cd5 782
12351ef8
FW
783 if (list_empty(&cpuctx->rotation_list)) {
784 int was_empty = list_empty(head);
e9d2b064 785 list_add(&cpuctx->rotation_list, head);
12351ef8
FW
786 if (was_empty)
787 tick_nohz_full_kick();
788 }
9e35ad38 789}
9e35ad38 790
cdd6c482 791static void get_ctx(struct perf_event_context *ctx)
a63eaf34 792{
e5289d4a 793 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
a63eaf34
PM
794}
795
cdd6c482 796static void put_ctx(struct perf_event_context *ctx)
a63eaf34 797{
564c2b21
PM
798 if (atomic_dec_and_test(&ctx->refcount)) {
799 if (ctx->parent_ctx)
800 put_ctx(ctx->parent_ctx);
c93f7669
PM
801 if (ctx->task)
802 put_task_struct(ctx->task);
cb796ff3 803 kfree_rcu(ctx, rcu_head);
564c2b21 804 }
a63eaf34
PM
805}
806
cdd6c482 807static void unclone_ctx(struct perf_event_context *ctx)
71a851b4
PZ
808{
809 if (ctx->parent_ctx) {
810 put_ctx(ctx->parent_ctx);
811 ctx->parent_ctx = NULL;
812 }
813}
814
6844c09d
ACM
815static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
816{
817 /*
818 * only top level events have the pid namespace they were created in
819 */
820 if (event->parent)
821 event = event->parent;
822
823 return task_tgid_nr_ns(p, event->ns);
824}
825
826static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
827{
828 /*
829 * only top level events have the pid namespace they were created in
830 */
831 if (event->parent)
832 event = event->parent;
833
834 return task_pid_nr_ns(p, event->ns);
835}
836
7f453c24 837/*
cdd6c482 838 * If we inherit events we want to return the parent event id
7f453c24
PZ
839 * to userspace.
840 */
cdd6c482 841static u64 primary_event_id(struct perf_event *event)
7f453c24 842{
cdd6c482 843 u64 id = event->id;
7f453c24 844
cdd6c482
IM
845 if (event->parent)
846 id = event->parent->id;
7f453c24
PZ
847
848 return id;
849}
850
25346b93 851/*
cdd6c482 852 * Get the perf_event_context for a task and lock it.
25346b93
PM
853 * This has to cope with with the fact that until it is locked,
854 * the context could get moved to another task.
855 */
cdd6c482 856static struct perf_event_context *
8dc85d54 857perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
25346b93 858{
cdd6c482 859 struct perf_event_context *ctx;
25346b93
PM
860
861 rcu_read_lock();
9ed6060d 862retry:
8dc85d54 863 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
25346b93
PM
864 if (ctx) {
865 /*
866 * If this context is a clone of another, it might
867 * get swapped for another underneath us by
cdd6c482 868 * perf_event_task_sched_out, though the
25346b93
PM
869 * rcu_read_lock() protects us from any context
870 * getting freed. Lock the context and check if it
871 * got swapped before we could get the lock, and retry
872 * if so. If we locked the right context, then it
873 * can't get swapped on us any more.
874 */
e625cce1 875 raw_spin_lock_irqsave(&ctx->lock, *flags);
8dc85d54 876 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
e625cce1 877 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
25346b93
PM
878 goto retry;
879 }
b49a9e7e
PZ
880
881 if (!atomic_inc_not_zero(&ctx->refcount)) {
e625cce1 882 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
b49a9e7e
PZ
883 ctx = NULL;
884 }
25346b93
PM
885 }
886 rcu_read_unlock();
887 return ctx;
888}
889
890/*
891 * Get the context for a task and increment its pin_count so it
892 * can't get swapped to another task. This also increments its
893 * reference count so that the context can't get freed.
894 */
8dc85d54
PZ
895static struct perf_event_context *
896perf_pin_task_context(struct task_struct *task, int ctxn)
25346b93 897{
cdd6c482 898 struct perf_event_context *ctx;
25346b93
PM
899 unsigned long flags;
900
8dc85d54 901 ctx = perf_lock_task_context(task, ctxn, &flags);
25346b93
PM
902 if (ctx) {
903 ++ctx->pin_count;
e625cce1 904 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
905 }
906 return ctx;
907}
908
cdd6c482 909static void perf_unpin_context(struct perf_event_context *ctx)
25346b93
PM
910{
911 unsigned long flags;
912
e625cce1 913 raw_spin_lock_irqsave(&ctx->lock, flags);
25346b93 914 --ctx->pin_count;
e625cce1 915 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
916}
917
f67218c3
PZ
918/*
919 * Update the record of the current time in a context.
920 */
921static void update_context_time(struct perf_event_context *ctx)
922{
923 u64 now = perf_clock();
924
925 ctx->time += now - ctx->timestamp;
926 ctx->timestamp = now;
927}
928
4158755d
SE
929static u64 perf_event_time(struct perf_event *event)
930{
931 struct perf_event_context *ctx = event->ctx;
e5d1367f
SE
932
933 if (is_cgroup_event(event))
934 return perf_cgroup_event_time(event);
935
4158755d
SE
936 return ctx ? ctx->time : 0;
937}
938
f67218c3
PZ
939/*
940 * Update the total_time_enabled and total_time_running fields for a event.
b7526f0c 941 * The caller of this function needs to hold the ctx->lock.
f67218c3
PZ
942 */
943static void update_event_times(struct perf_event *event)
944{
945 struct perf_event_context *ctx = event->ctx;
946 u64 run_end;
947
948 if (event->state < PERF_EVENT_STATE_INACTIVE ||
949 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
950 return;
e5d1367f
SE
951 /*
952 * in cgroup mode, time_enabled represents
953 * the time the event was enabled AND active
954 * tasks were in the monitored cgroup. This is
955 * independent of the activity of the context as
956 * there may be a mix of cgroup and non-cgroup events.
957 *
958 * That is why we treat cgroup events differently
959 * here.
960 */
961 if (is_cgroup_event(event))
46cd6a7f 962 run_end = perf_cgroup_event_time(event);
e5d1367f
SE
963 else if (ctx->is_active)
964 run_end = ctx->time;
acd1d7c1
PZ
965 else
966 run_end = event->tstamp_stopped;
967
968 event->total_time_enabled = run_end - event->tstamp_enabled;
f67218c3
PZ
969
970 if (event->state == PERF_EVENT_STATE_INACTIVE)
971 run_end = event->tstamp_stopped;
972 else
4158755d 973 run_end = perf_event_time(event);
f67218c3
PZ
974
975 event->total_time_running = run_end - event->tstamp_running;
e5d1367f 976
f67218c3
PZ
977}
978
96c21a46
PZ
979/*
980 * Update total_time_enabled and total_time_running for all events in a group.
981 */
982static void update_group_times(struct perf_event *leader)
983{
984 struct perf_event *event;
985
986 update_event_times(leader);
987 list_for_each_entry(event, &leader->sibling_list, group_entry)
988 update_event_times(event);
989}
990
889ff015
FW
991static struct list_head *
992ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
993{
994 if (event->attr.pinned)
995 return &ctx->pinned_groups;
996 else
997 return &ctx->flexible_groups;
998}
999
fccc714b 1000/*
cdd6c482 1001 * Add a event from the lists for its context.
fccc714b
PZ
1002 * Must be called with ctx->mutex and ctx->lock held.
1003 */
04289bb9 1004static void
cdd6c482 1005list_add_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1006{
8a49542c
PZ
1007 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1008 event->attach_state |= PERF_ATTACH_CONTEXT;
04289bb9
IM
1009
1010 /*
8a49542c
PZ
1011 * If we're a stand alone event or group leader, we go to the context
1012 * list, group events are kept attached to the group so that
1013 * perf_group_detach can, at all times, locate all siblings.
04289bb9 1014 */
8a49542c 1015 if (event->group_leader == event) {
889ff015
FW
1016 struct list_head *list;
1017
d6f962b5
FW
1018 if (is_software_event(event))
1019 event->group_flags |= PERF_GROUP_SOFTWARE;
1020
889ff015
FW
1021 list = ctx_group_list(event, ctx);
1022 list_add_tail(&event->group_entry, list);
5c148194 1023 }
592903cd 1024
08309379 1025 if (is_cgroup_event(event))
e5d1367f 1026 ctx->nr_cgroups++;
e5d1367f 1027
d010b332
SE
1028 if (has_branch_stack(event))
1029 ctx->nr_branch_stack++;
1030
cdd6c482 1031 list_add_rcu(&event->event_entry, &ctx->event_list);
b5ab4cd5 1032 if (!ctx->nr_events)
108b02cf 1033 perf_pmu_rotate_start(ctx->pmu);
cdd6c482
IM
1034 ctx->nr_events++;
1035 if (event->attr.inherit_stat)
bfbd3381 1036 ctx->nr_stat++;
04289bb9
IM
1037}
1038
0231bb53
JO
1039/*
1040 * Initialize event state based on the perf_event_attr::disabled.
1041 */
1042static inline void perf_event__state_init(struct perf_event *event)
1043{
1044 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1045 PERF_EVENT_STATE_INACTIVE;
1046}
1047
c320c7b7
ACM
1048/*
1049 * Called at perf_event creation and when events are attached/detached from a
1050 * group.
1051 */
1052static void perf_event__read_size(struct perf_event *event)
1053{
1054 int entry = sizeof(u64); /* value */
1055 int size = 0;
1056 int nr = 1;
1057
1058 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1059 size += sizeof(u64);
1060
1061 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1062 size += sizeof(u64);
1063
1064 if (event->attr.read_format & PERF_FORMAT_ID)
1065 entry += sizeof(u64);
1066
1067 if (event->attr.read_format & PERF_FORMAT_GROUP) {
1068 nr += event->group_leader->nr_siblings;
1069 size += sizeof(u64);
1070 }
1071
1072 size += entry * nr;
1073 event->read_size = size;
1074}
1075
1076static void perf_event__header_size(struct perf_event *event)
1077{
1078 struct perf_sample_data *data;
1079 u64 sample_type = event->attr.sample_type;
1080 u16 size = 0;
1081
1082 perf_event__read_size(event);
1083
1084 if (sample_type & PERF_SAMPLE_IP)
1085 size += sizeof(data->ip);
1086
6844c09d
ACM
1087 if (sample_type & PERF_SAMPLE_ADDR)
1088 size += sizeof(data->addr);
1089
1090 if (sample_type & PERF_SAMPLE_PERIOD)
1091 size += sizeof(data->period);
1092
c3feedf2
AK
1093 if (sample_type & PERF_SAMPLE_WEIGHT)
1094 size += sizeof(data->weight);
1095
6844c09d
ACM
1096 if (sample_type & PERF_SAMPLE_READ)
1097 size += event->read_size;
1098
d6be9ad6
SE
1099 if (sample_type & PERF_SAMPLE_DATA_SRC)
1100 size += sizeof(data->data_src.val);
1101
6844c09d
ACM
1102 event->header_size = size;
1103}
1104
1105static void perf_event__id_header_size(struct perf_event *event)
1106{
1107 struct perf_sample_data *data;
1108 u64 sample_type = event->attr.sample_type;
1109 u16 size = 0;
1110
c320c7b7
ACM
1111 if (sample_type & PERF_SAMPLE_TID)
1112 size += sizeof(data->tid_entry);
1113
1114 if (sample_type & PERF_SAMPLE_TIME)
1115 size += sizeof(data->time);
1116
c320c7b7
ACM
1117 if (sample_type & PERF_SAMPLE_ID)
1118 size += sizeof(data->id);
1119
1120 if (sample_type & PERF_SAMPLE_STREAM_ID)
1121 size += sizeof(data->stream_id);
1122
1123 if (sample_type & PERF_SAMPLE_CPU)
1124 size += sizeof(data->cpu_entry);
1125
6844c09d 1126 event->id_header_size = size;
c320c7b7
ACM
1127}
1128
8a49542c
PZ
1129static void perf_group_attach(struct perf_event *event)
1130{
c320c7b7 1131 struct perf_event *group_leader = event->group_leader, *pos;
8a49542c 1132
74c3337c
PZ
1133 /*
1134 * We can have double attach due to group movement in perf_event_open.
1135 */
1136 if (event->attach_state & PERF_ATTACH_GROUP)
1137 return;
1138
8a49542c
PZ
1139 event->attach_state |= PERF_ATTACH_GROUP;
1140
1141 if (group_leader == event)
1142 return;
1143
1144 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1145 !is_software_event(event))
1146 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1147
1148 list_add_tail(&event->group_entry, &group_leader->sibling_list);
1149 group_leader->nr_siblings++;
c320c7b7
ACM
1150
1151 perf_event__header_size(group_leader);
1152
1153 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1154 perf_event__header_size(pos);
8a49542c
PZ
1155}
1156
a63eaf34 1157/*
cdd6c482 1158 * Remove a event from the lists for its context.
fccc714b 1159 * Must be called with ctx->mutex and ctx->lock held.
a63eaf34 1160 */
04289bb9 1161static void
cdd6c482 1162list_del_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1163{
68cacd29 1164 struct perf_cpu_context *cpuctx;
8a49542c
PZ
1165 /*
1166 * We can have double detach due to exit/hot-unplug + close.
1167 */
1168 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
a63eaf34 1169 return;
8a49542c
PZ
1170
1171 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1172
68cacd29 1173 if (is_cgroup_event(event)) {
e5d1367f 1174 ctx->nr_cgroups--;
68cacd29
SE
1175 cpuctx = __get_cpu_context(ctx);
1176 /*
1177 * if there are no more cgroup events
1178 * then cler cgrp to avoid stale pointer
1179 * in update_cgrp_time_from_cpuctx()
1180 */
1181 if (!ctx->nr_cgroups)
1182 cpuctx->cgrp = NULL;
1183 }
e5d1367f 1184
d010b332
SE
1185 if (has_branch_stack(event))
1186 ctx->nr_branch_stack--;
1187
cdd6c482
IM
1188 ctx->nr_events--;
1189 if (event->attr.inherit_stat)
bfbd3381 1190 ctx->nr_stat--;
8bc20959 1191
cdd6c482 1192 list_del_rcu(&event->event_entry);
04289bb9 1193
8a49542c
PZ
1194 if (event->group_leader == event)
1195 list_del_init(&event->group_entry);
5c148194 1196
96c21a46 1197 update_group_times(event);
b2e74a26
SE
1198
1199 /*
1200 * If event was in error state, then keep it
1201 * that way, otherwise bogus counts will be
1202 * returned on read(). The only way to get out
1203 * of error state is by explicit re-enabling
1204 * of the event
1205 */
1206 if (event->state > PERF_EVENT_STATE_OFF)
1207 event->state = PERF_EVENT_STATE_OFF;
050735b0
PZ
1208}
1209
8a49542c 1210static void perf_group_detach(struct perf_event *event)
050735b0
PZ
1211{
1212 struct perf_event *sibling, *tmp;
8a49542c
PZ
1213 struct list_head *list = NULL;
1214
1215 /*
1216 * We can have double detach due to exit/hot-unplug + close.
1217 */
1218 if (!(event->attach_state & PERF_ATTACH_GROUP))
1219 return;
1220
1221 event->attach_state &= ~PERF_ATTACH_GROUP;
1222
1223 /*
1224 * If this is a sibling, remove it from its group.
1225 */
1226 if (event->group_leader != event) {
1227 list_del_init(&event->group_entry);
1228 event->group_leader->nr_siblings--;
c320c7b7 1229 goto out;
8a49542c
PZ
1230 }
1231
1232 if (!list_empty(&event->group_entry))
1233 list = &event->group_entry;
2e2af50b 1234
04289bb9 1235 /*
cdd6c482
IM
1236 * If this was a group event with sibling events then
1237 * upgrade the siblings to singleton events by adding them
8a49542c 1238 * to whatever list we are on.
04289bb9 1239 */
cdd6c482 1240 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
8a49542c
PZ
1241 if (list)
1242 list_move_tail(&sibling->group_entry, list);
04289bb9 1243 sibling->group_leader = sibling;
d6f962b5
FW
1244
1245 /* Inherit group flags from the previous leader */
1246 sibling->group_flags = event->group_flags;
04289bb9 1247 }
c320c7b7
ACM
1248
1249out:
1250 perf_event__header_size(event->group_leader);
1251
1252 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1253 perf_event__header_size(tmp);
04289bb9
IM
1254}
1255
fa66f07a
SE
1256static inline int
1257event_filter_match(struct perf_event *event)
1258{
e5d1367f
SE
1259 return (event->cpu == -1 || event->cpu == smp_processor_id())
1260 && perf_cgroup_match(event);
fa66f07a
SE
1261}
1262
9ffcfa6f
SE
1263static void
1264event_sched_out(struct perf_event *event,
3b6f9e5c 1265 struct perf_cpu_context *cpuctx,
cdd6c482 1266 struct perf_event_context *ctx)
3b6f9e5c 1267{
4158755d 1268 u64 tstamp = perf_event_time(event);
fa66f07a
SE
1269 u64 delta;
1270 /*
1271 * An event which could not be activated because of
1272 * filter mismatch still needs to have its timings
1273 * maintained, otherwise bogus information is return
1274 * via read() for time_enabled, time_running:
1275 */
1276 if (event->state == PERF_EVENT_STATE_INACTIVE
1277 && !event_filter_match(event)) {
e5d1367f 1278 delta = tstamp - event->tstamp_stopped;
fa66f07a 1279 event->tstamp_running += delta;
4158755d 1280 event->tstamp_stopped = tstamp;
fa66f07a
SE
1281 }
1282
cdd6c482 1283 if (event->state != PERF_EVENT_STATE_ACTIVE)
9ffcfa6f 1284 return;
3b6f9e5c 1285
cdd6c482
IM
1286 event->state = PERF_EVENT_STATE_INACTIVE;
1287 if (event->pending_disable) {
1288 event->pending_disable = 0;
1289 event->state = PERF_EVENT_STATE_OFF;
970892a9 1290 }
4158755d 1291 event->tstamp_stopped = tstamp;
a4eaf7f1 1292 event->pmu->del(event, 0);
cdd6c482 1293 event->oncpu = -1;
3b6f9e5c 1294
cdd6c482 1295 if (!is_software_event(event))
3b6f9e5c
PM
1296 cpuctx->active_oncpu--;
1297 ctx->nr_active--;
0f5a2601
PZ
1298 if (event->attr.freq && event->attr.sample_freq)
1299 ctx->nr_freq--;
cdd6c482 1300 if (event->attr.exclusive || !cpuctx->active_oncpu)
3b6f9e5c
PM
1301 cpuctx->exclusive = 0;
1302}
1303
d859e29f 1304static void
cdd6c482 1305group_sched_out(struct perf_event *group_event,
d859e29f 1306 struct perf_cpu_context *cpuctx,
cdd6c482 1307 struct perf_event_context *ctx)
d859e29f 1308{
cdd6c482 1309 struct perf_event *event;
fa66f07a 1310 int state = group_event->state;
d859e29f 1311
cdd6c482 1312 event_sched_out(group_event, cpuctx, ctx);
d859e29f
PM
1313
1314 /*
1315 * Schedule out siblings (if any):
1316 */
cdd6c482
IM
1317 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1318 event_sched_out(event, cpuctx, ctx);
d859e29f 1319
fa66f07a 1320 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
d859e29f
PM
1321 cpuctx->exclusive = 0;
1322}
1323
0793a61d 1324/*
cdd6c482 1325 * Cross CPU call to remove a performance event
0793a61d 1326 *
cdd6c482 1327 * We disable the event on the hardware level first. After that we
0793a61d
TG
1328 * remove it from the context list.
1329 */
fe4b04fa 1330static int __perf_remove_from_context(void *info)
0793a61d 1331{
cdd6c482
IM
1332 struct perf_event *event = info;
1333 struct perf_event_context *ctx = event->ctx;
108b02cf 1334 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
0793a61d 1335
e625cce1 1336 raw_spin_lock(&ctx->lock);
cdd6c482 1337 event_sched_out(event, cpuctx, ctx);
cdd6c482 1338 list_del_event(event, ctx);
64ce3126
PZ
1339 if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
1340 ctx->is_active = 0;
1341 cpuctx->task_ctx = NULL;
1342 }
e625cce1 1343 raw_spin_unlock(&ctx->lock);
fe4b04fa
PZ
1344
1345 return 0;
0793a61d
TG
1346}
1347
1348
1349/*
cdd6c482 1350 * Remove the event from a task's (or a CPU's) list of events.
0793a61d 1351 *
cdd6c482 1352 * CPU events are removed with a smp call. For task events we only
0793a61d 1353 * call when the task is on a CPU.
c93f7669 1354 *
cdd6c482
IM
1355 * If event->ctx is a cloned context, callers must make sure that
1356 * every task struct that event->ctx->task could possibly point to
c93f7669
PM
1357 * remains valid. This is OK when called from perf_release since
1358 * that only calls us on the top-level context, which can't be a clone.
cdd6c482 1359 * When called from perf_event_exit_task, it's OK because the
c93f7669 1360 * context has been detached from its task.
0793a61d 1361 */
fe4b04fa 1362static void perf_remove_from_context(struct perf_event *event)
0793a61d 1363{
cdd6c482 1364 struct perf_event_context *ctx = event->ctx;
0793a61d
TG
1365 struct task_struct *task = ctx->task;
1366
fe4b04fa
PZ
1367 lockdep_assert_held(&ctx->mutex);
1368
0793a61d
TG
1369 if (!task) {
1370 /*
cdd6c482 1371 * Per cpu events are removed via an smp call and
af901ca1 1372 * the removal is always successful.
0793a61d 1373 */
fe4b04fa 1374 cpu_function_call(event->cpu, __perf_remove_from_context, event);
0793a61d
TG
1375 return;
1376 }
1377
1378retry:
fe4b04fa
PZ
1379 if (!task_function_call(task, __perf_remove_from_context, event))
1380 return;
0793a61d 1381
e625cce1 1382 raw_spin_lock_irq(&ctx->lock);
0793a61d 1383 /*
fe4b04fa
PZ
1384 * If we failed to find a running task, but find the context active now
1385 * that we've acquired the ctx->lock, retry.
0793a61d 1386 */
fe4b04fa 1387 if (ctx->is_active) {
e625cce1 1388 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
1389 goto retry;
1390 }
1391
1392 /*
fe4b04fa
PZ
1393 * Since the task isn't running, its safe to remove the event, us
1394 * holding the ctx->lock ensures the task won't get scheduled in.
0793a61d 1395 */
fe4b04fa 1396 list_del_event(event, ctx);
e625cce1 1397 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
1398}
1399
d859e29f 1400/*
cdd6c482 1401 * Cross CPU call to disable a performance event
d859e29f 1402 */
500ad2d8 1403int __perf_event_disable(void *info)
d859e29f 1404{
cdd6c482 1405 struct perf_event *event = info;
cdd6c482 1406 struct perf_event_context *ctx = event->ctx;
108b02cf 1407 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
d859e29f
PM
1408
1409 /*
cdd6c482
IM
1410 * If this is a per-task event, need to check whether this
1411 * event's task is the current task on this cpu.
fe4b04fa
PZ
1412 *
1413 * Can trigger due to concurrent perf_event_context_sched_out()
1414 * flipping contexts around.
d859e29f 1415 */
665c2142 1416 if (ctx->task && cpuctx->task_ctx != ctx)
fe4b04fa 1417 return -EINVAL;
d859e29f 1418
e625cce1 1419 raw_spin_lock(&ctx->lock);
d859e29f
PM
1420
1421 /*
cdd6c482 1422 * If the event is on, turn it off.
d859e29f
PM
1423 * If it is in error state, leave it in error state.
1424 */
cdd6c482 1425 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
4af4998b 1426 update_context_time(ctx);
e5d1367f 1427 update_cgrp_time_from_event(event);
cdd6c482
IM
1428 update_group_times(event);
1429 if (event == event->group_leader)
1430 group_sched_out(event, cpuctx, ctx);
d859e29f 1431 else
cdd6c482
IM
1432 event_sched_out(event, cpuctx, ctx);
1433 event->state = PERF_EVENT_STATE_OFF;
d859e29f
PM
1434 }
1435
e625cce1 1436 raw_spin_unlock(&ctx->lock);
fe4b04fa
PZ
1437
1438 return 0;
d859e29f
PM
1439}
1440
1441/*
cdd6c482 1442 * Disable a event.
c93f7669 1443 *
cdd6c482
IM
1444 * If event->ctx is a cloned context, callers must make sure that
1445 * every task struct that event->ctx->task could possibly point to
c93f7669 1446 * remains valid. This condition is satisifed when called through
cdd6c482
IM
1447 * perf_event_for_each_child or perf_event_for_each because they
1448 * hold the top-level event's child_mutex, so any descendant that
1449 * goes to exit will block in sync_child_event.
1450 * When called from perf_pending_event it's OK because event->ctx
c93f7669 1451 * is the current context on this CPU and preemption is disabled,
cdd6c482 1452 * hence we can't get into perf_event_task_sched_out for this context.
d859e29f 1453 */
44234adc 1454void perf_event_disable(struct perf_event *event)
d859e29f 1455{
cdd6c482 1456 struct perf_event_context *ctx = event->ctx;
d859e29f
PM
1457 struct task_struct *task = ctx->task;
1458
1459 if (!task) {
1460 /*
cdd6c482 1461 * Disable the event on the cpu that it's on
d859e29f 1462 */
fe4b04fa 1463 cpu_function_call(event->cpu, __perf_event_disable, event);
d859e29f
PM
1464 return;
1465 }
1466
9ed6060d 1467retry:
fe4b04fa
PZ
1468 if (!task_function_call(task, __perf_event_disable, event))
1469 return;
d859e29f 1470
e625cce1 1471 raw_spin_lock_irq(&ctx->lock);
d859e29f 1472 /*
cdd6c482 1473 * If the event is still active, we need to retry the cross-call.
d859e29f 1474 */
cdd6c482 1475 if (event->state == PERF_EVENT_STATE_ACTIVE) {
e625cce1 1476 raw_spin_unlock_irq(&ctx->lock);
fe4b04fa
PZ
1477 /*
1478 * Reload the task pointer, it might have been changed by
1479 * a concurrent perf_event_context_sched_out().
1480 */
1481 task = ctx->task;
d859e29f
PM
1482 goto retry;
1483 }
1484
1485 /*
1486 * Since we have the lock this context can't be scheduled
1487 * in, so we can change the state safely.
1488 */
cdd6c482
IM
1489 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1490 update_group_times(event);
1491 event->state = PERF_EVENT_STATE_OFF;
53cfbf59 1492 }
e625cce1 1493 raw_spin_unlock_irq(&ctx->lock);
d859e29f 1494}
dcfce4a0 1495EXPORT_SYMBOL_GPL(perf_event_disable);
d859e29f 1496
e5d1367f
SE
1497static void perf_set_shadow_time(struct perf_event *event,
1498 struct perf_event_context *ctx,
1499 u64 tstamp)
1500{
1501 /*
1502 * use the correct time source for the time snapshot
1503 *
1504 * We could get by without this by leveraging the
1505 * fact that to get to this function, the caller
1506 * has most likely already called update_context_time()
1507 * and update_cgrp_time_xx() and thus both timestamp
1508 * are identical (or very close). Given that tstamp is,
1509 * already adjusted for cgroup, we could say that:
1510 * tstamp - ctx->timestamp
1511 * is equivalent to
1512 * tstamp - cgrp->timestamp.
1513 *
1514 * Then, in perf_output_read(), the calculation would
1515 * work with no changes because:
1516 * - event is guaranteed scheduled in
1517 * - no scheduled out in between
1518 * - thus the timestamp would be the same
1519 *
1520 * But this is a bit hairy.
1521 *
1522 * So instead, we have an explicit cgroup call to remain
1523 * within the time time source all along. We believe it
1524 * is cleaner and simpler to understand.
1525 */
1526 if (is_cgroup_event(event))
1527 perf_cgroup_set_shadow_time(event, tstamp);
1528 else
1529 event->shadow_ctx_time = tstamp - ctx->timestamp;
1530}
1531
4fe757dd
PZ
1532#define MAX_INTERRUPTS (~0ULL)
1533
1534static void perf_log_throttle(struct perf_event *event, int enable);
1535
235c7fc7 1536static int
9ffcfa6f 1537event_sched_in(struct perf_event *event,
235c7fc7 1538 struct perf_cpu_context *cpuctx,
6e37738a 1539 struct perf_event_context *ctx)
235c7fc7 1540{
4158755d
SE
1541 u64 tstamp = perf_event_time(event);
1542
cdd6c482 1543 if (event->state <= PERF_EVENT_STATE_OFF)
235c7fc7
IM
1544 return 0;
1545
cdd6c482 1546 event->state = PERF_EVENT_STATE_ACTIVE;
6e37738a 1547 event->oncpu = smp_processor_id();
4fe757dd
PZ
1548
1549 /*
1550 * Unthrottle events, since we scheduled we might have missed several
1551 * ticks already, also for a heavily scheduling task there is little
1552 * guarantee it'll get a tick in a timely manner.
1553 */
1554 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1555 perf_log_throttle(event, 1);
1556 event->hw.interrupts = 0;
1557 }
1558
235c7fc7
IM
1559 /*
1560 * The new state must be visible before we turn it on in the hardware:
1561 */
1562 smp_wmb();
1563
a4eaf7f1 1564 if (event->pmu->add(event, PERF_EF_START)) {
cdd6c482
IM
1565 event->state = PERF_EVENT_STATE_INACTIVE;
1566 event->oncpu = -1;
235c7fc7
IM
1567 return -EAGAIN;
1568 }
1569
4158755d 1570 event->tstamp_running += tstamp - event->tstamp_stopped;
9ffcfa6f 1571
e5d1367f 1572 perf_set_shadow_time(event, ctx, tstamp);
eed01528 1573
cdd6c482 1574 if (!is_software_event(event))
3b6f9e5c 1575 cpuctx->active_oncpu++;
235c7fc7 1576 ctx->nr_active++;
0f5a2601
PZ
1577 if (event->attr.freq && event->attr.sample_freq)
1578 ctx->nr_freq++;
235c7fc7 1579
cdd6c482 1580 if (event->attr.exclusive)
3b6f9e5c
PM
1581 cpuctx->exclusive = 1;
1582
235c7fc7
IM
1583 return 0;
1584}
1585
6751b71e 1586static int
cdd6c482 1587group_sched_in(struct perf_event *group_event,
6751b71e 1588 struct perf_cpu_context *cpuctx,
6e37738a 1589 struct perf_event_context *ctx)
6751b71e 1590{
6bde9b6c 1591 struct perf_event *event, *partial_group = NULL;
51b0fe39 1592 struct pmu *pmu = group_event->pmu;
d7842da4
SE
1593 u64 now = ctx->time;
1594 bool simulate = false;
6751b71e 1595
cdd6c482 1596 if (group_event->state == PERF_EVENT_STATE_OFF)
6751b71e
PM
1597 return 0;
1598
ad5133b7 1599 pmu->start_txn(pmu);
6bde9b6c 1600
9ffcfa6f 1601 if (event_sched_in(group_event, cpuctx, ctx)) {
ad5133b7 1602 pmu->cancel_txn(pmu);
9e630205 1603 perf_cpu_hrtimer_restart(cpuctx);
6751b71e 1604 return -EAGAIN;
90151c35 1605 }
6751b71e
PM
1606
1607 /*
1608 * Schedule in siblings as one group (if any):
1609 */
cdd6c482 1610 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
9ffcfa6f 1611 if (event_sched_in(event, cpuctx, ctx)) {
cdd6c482 1612 partial_group = event;
6751b71e
PM
1613 goto group_error;
1614 }
1615 }
1616
9ffcfa6f 1617 if (!pmu->commit_txn(pmu))
6e85158c 1618 return 0;
9ffcfa6f 1619
6751b71e
PM
1620group_error:
1621 /*
1622 * Groups can be scheduled in as one unit only, so undo any
1623 * partial group before returning:
d7842da4
SE
1624 * The events up to the failed event are scheduled out normally,
1625 * tstamp_stopped will be updated.
1626 *
1627 * The failed events and the remaining siblings need to have
1628 * their timings updated as if they had gone thru event_sched_in()
1629 * and event_sched_out(). This is required to get consistent timings
1630 * across the group. This also takes care of the case where the group
1631 * could never be scheduled by ensuring tstamp_stopped is set to mark
1632 * the time the event was actually stopped, such that time delta
1633 * calculation in update_event_times() is correct.
6751b71e 1634 */
cdd6c482
IM
1635 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1636 if (event == partial_group)
d7842da4
SE
1637 simulate = true;
1638
1639 if (simulate) {
1640 event->tstamp_running += now - event->tstamp_stopped;
1641 event->tstamp_stopped = now;
1642 } else {
1643 event_sched_out(event, cpuctx, ctx);
1644 }
6751b71e 1645 }
9ffcfa6f 1646 event_sched_out(group_event, cpuctx, ctx);
6751b71e 1647
ad5133b7 1648 pmu->cancel_txn(pmu);
90151c35 1649
9e630205
SE
1650 perf_cpu_hrtimer_restart(cpuctx);
1651
6751b71e
PM
1652 return -EAGAIN;
1653}
1654
3b6f9e5c 1655/*
cdd6c482 1656 * Work out whether we can put this event group on the CPU now.
3b6f9e5c 1657 */
cdd6c482 1658static int group_can_go_on(struct perf_event *event,
3b6f9e5c
PM
1659 struct perf_cpu_context *cpuctx,
1660 int can_add_hw)
1661{
1662 /*
cdd6c482 1663 * Groups consisting entirely of software events can always go on.
3b6f9e5c 1664 */
d6f962b5 1665 if (event->group_flags & PERF_GROUP_SOFTWARE)
3b6f9e5c
PM
1666 return 1;
1667 /*
1668 * If an exclusive group is already on, no other hardware
cdd6c482 1669 * events can go on.
3b6f9e5c
PM
1670 */
1671 if (cpuctx->exclusive)
1672 return 0;
1673 /*
1674 * If this group is exclusive and there are already
cdd6c482 1675 * events on the CPU, it can't go on.
3b6f9e5c 1676 */
cdd6c482 1677 if (event->attr.exclusive && cpuctx->active_oncpu)
3b6f9e5c
PM
1678 return 0;
1679 /*
1680 * Otherwise, try to add it if all previous groups were able
1681 * to go on.
1682 */
1683 return can_add_hw;
1684}
1685
cdd6c482
IM
1686static void add_event_to_ctx(struct perf_event *event,
1687 struct perf_event_context *ctx)
53cfbf59 1688{
4158755d
SE
1689 u64 tstamp = perf_event_time(event);
1690
cdd6c482 1691 list_add_event(event, ctx);
8a49542c 1692 perf_group_attach(event);
4158755d
SE
1693 event->tstamp_enabled = tstamp;
1694 event->tstamp_running = tstamp;
1695 event->tstamp_stopped = tstamp;
53cfbf59
PM
1696}
1697
2c29ef0f
PZ
1698static void task_ctx_sched_out(struct perf_event_context *ctx);
1699static void
1700ctx_sched_in(struct perf_event_context *ctx,
1701 struct perf_cpu_context *cpuctx,
1702 enum event_type_t event_type,
1703 struct task_struct *task);
fe4b04fa 1704
dce5855b
PZ
1705static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
1706 struct perf_event_context *ctx,
1707 struct task_struct *task)
1708{
1709 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
1710 if (ctx)
1711 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
1712 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
1713 if (ctx)
1714 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
1715}
1716
0793a61d 1717/*
cdd6c482 1718 * Cross CPU call to install and enable a performance event
682076ae
PZ
1719 *
1720 * Must be called with ctx->mutex held
0793a61d 1721 */
fe4b04fa 1722static int __perf_install_in_context(void *info)
0793a61d 1723{
cdd6c482
IM
1724 struct perf_event *event = info;
1725 struct perf_event_context *ctx = event->ctx;
108b02cf 1726 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2c29ef0f
PZ
1727 struct perf_event_context *task_ctx = cpuctx->task_ctx;
1728 struct task_struct *task = current;
1729
b58f6b0d 1730 perf_ctx_lock(cpuctx, task_ctx);
2c29ef0f 1731 perf_pmu_disable(cpuctx->ctx.pmu);
0793a61d
TG
1732
1733 /*
2c29ef0f 1734 * If there was an active task_ctx schedule it out.
0793a61d 1735 */
b58f6b0d 1736 if (task_ctx)
2c29ef0f 1737 task_ctx_sched_out(task_ctx);
b58f6b0d
PZ
1738
1739 /*
1740 * If the context we're installing events in is not the
1741 * active task_ctx, flip them.
1742 */
1743 if (ctx->task && task_ctx != ctx) {
1744 if (task_ctx)
1745 raw_spin_unlock(&task_ctx->lock);
1746 raw_spin_lock(&ctx->lock);
1747 task_ctx = ctx;
1748 }
1749
1750 if (task_ctx) {
1751 cpuctx->task_ctx = task_ctx;
2c29ef0f
PZ
1752 task = task_ctx->task;
1753 }
b58f6b0d 1754
2c29ef0f 1755 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
0793a61d 1756
4af4998b 1757 update_context_time(ctx);
e5d1367f
SE
1758 /*
1759 * update cgrp time only if current cgrp
1760 * matches event->cgrp. Must be done before
1761 * calling add_event_to_ctx()
1762 */
1763 update_cgrp_time_from_event(event);
0793a61d 1764
cdd6c482 1765 add_event_to_ctx(event, ctx);
0793a61d 1766
d859e29f 1767 /*
2c29ef0f 1768 * Schedule everything back in
d859e29f 1769 */
dce5855b 1770 perf_event_sched_in(cpuctx, task_ctx, task);
2c29ef0f
PZ
1771
1772 perf_pmu_enable(cpuctx->ctx.pmu);
1773 perf_ctx_unlock(cpuctx, task_ctx);
fe4b04fa
PZ
1774
1775 return 0;
0793a61d
TG
1776}
1777
1778/*
cdd6c482 1779 * Attach a performance event to a context
0793a61d 1780 *
cdd6c482
IM
1781 * First we add the event to the list with the hardware enable bit
1782 * in event->hw_config cleared.
0793a61d 1783 *
cdd6c482 1784 * If the event is attached to a task which is on a CPU we use a smp
0793a61d
TG
1785 * call to enable it in the task context. The task might have been
1786 * scheduled away, but we check this in the smp call again.
1787 */
1788static void
cdd6c482
IM
1789perf_install_in_context(struct perf_event_context *ctx,
1790 struct perf_event *event,
0793a61d
TG
1791 int cpu)
1792{
1793 struct task_struct *task = ctx->task;
1794
fe4b04fa
PZ
1795 lockdep_assert_held(&ctx->mutex);
1796
c3f00c70 1797 event->ctx = ctx;
0cda4c02
YZ
1798 if (event->cpu != -1)
1799 event->cpu = cpu;
c3f00c70 1800
0793a61d
TG
1801 if (!task) {
1802 /*
cdd6c482 1803 * Per cpu events are installed via an smp call and
af901ca1 1804 * the install is always successful.
0793a61d 1805 */
fe4b04fa 1806 cpu_function_call(cpu, __perf_install_in_context, event);
0793a61d
TG
1807 return;
1808 }
1809
0793a61d 1810retry:
fe4b04fa
PZ
1811 if (!task_function_call(task, __perf_install_in_context, event))
1812 return;
0793a61d 1813
e625cce1 1814 raw_spin_lock_irq(&ctx->lock);
0793a61d 1815 /*
fe4b04fa
PZ
1816 * If we failed to find a running task, but find the context active now
1817 * that we've acquired the ctx->lock, retry.
0793a61d 1818 */
fe4b04fa 1819 if (ctx->is_active) {
e625cce1 1820 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
1821 goto retry;
1822 }
1823
1824 /*
fe4b04fa
PZ
1825 * Since the task isn't running, its safe to add the event, us holding
1826 * the ctx->lock ensures the task won't get scheduled in.
0793a61d 1827 */
fe4b04fa 1828 add_event_to_ctx(event, ctx);
e625cce1 1829 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
1830}
1831
fa289bec 1832/*
cdd6c482 1833 * Put a event into inactive state and update time fields.
fa289bec
PM
1834 * Enabling the leader of a group effectively enables all
1835 * the group members that aren't explicitly disabled, so we
1836 * have to update their ->tstamp_enabled also.
1837 * Note: this works for group members as well as group leaders
1838 * since the non-leader members' sibling_lists will be empty.
1839 */
1d9b482e 1840static void __perf_event_mark_enabled(struct perf_event *event)
fa289bec 1841{
cdd6c482 1842 struct perf_event *sub;
4158755d 1843 u64 tstamp = perf_event_time(event);
fa289bec 1844
cdd6c482 1845 event->state = PERF_EVENT_STATE_INACTIVE;
4158755d 1846 event->tstamp_enabled = tstamp - event->total_time_enabled;
9ed6060d 1847 list_for_each_entry(sub, &event->sibling_list, group_entry) {
4158755d
SE
1848 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
1849 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
9ed6060d 1850 }
fa289bec
PM
1851}
1852
d859e29f 1853/*
cdd6c482 1854 * Cross CPU call to enable a performance event
d859e29f 1855 */
fe4b04fa 1856static int __perf_event_enable(void *info)
04289bb9 1857{
cdd6c482 1858 struct perf_event *event = info;
cdd6c482
IM
1859 struct perf_event_context *ctx = event->ctx;
1860 struct perf_event *leader = event->group_leader;
108b02cf 1861 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
d859e29f 1862 int err;
04289bb9 1863
fe4b04fa
PZ
1864 if (WARN_ON_ONCE(!ctx->is_active))
1865 return -EINVAL;
3cbed429 1866
e625cce1 1867 raw_spin_lock(&ctx->lock);
4af4998b 1868 update_context_time(ctx);
d859e29f 1869
cdd6c482 1870 if (event->state >= PERF_EVENT_STATE_INACTIVE)
d859e29f 1871 goto unlock;
e5d1367f
SE
1872
1873 /*
1874 * set current task's cgroup time reference point
1875 */
3f7cce3c 1876 perf_cgroup_set_timestamp(current, ctx);
e5d1367f 1877
1d9b482e 1878 __perf_event_mark_enabled(event);
04289bb9 1879
e5d1367f
SE
1880 if (!event_filter_match(event)) {
1881 if (is_cgroup_event(event))
1882 perf_cgroup_defer_enabled(event);
f4c4176f 1883 goto unlock;
e5d1367f 1884 }
f4c4176f 1885
04289bb9 1886 /*
cdd6c482 1887 * If the event is in a group and isn't the group leader,
d859e29f 1888 * then don't put it on unless the group is on.
04289bb9 1889 */
cdd6c482 1890 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
d859e29f 1891 goto unlock;
3b6f9e5c 1892
cdd6c482 1893 if (!group_can_go_on(event, cpuctx, 1)) {
d859e29f 1894 err = -EEXIST;
e758a33d 1895 } else {
cdd6c482 1896 if (event == leader)
6e37738a 1897 err = group_sched_in(event, cpuctx, ctx);
e758a33d 1898 else
6e37738a 1899 err = event_sched_in(event, cpuctx, ctx);
e758a33d 1900 }
d859e29f
PM
1901
1902 if (err) {
1903 /*
cdd6c482 1904 * If this event can't go on and it's part of a
d859e29f
PM
1905 * group, then the whole group has to come off.
1906 */
9e630205 1907 if (leader != event) {
d859e29f 1908 group_sched_out(leader, cpuctx, ctx);
9e630205
SE
1909 perf_cpu_hrtimer_restart(cpuctx);
1910 }
0d48696f 1911 if (leader->attr.pinned) {
53cfbf59 1912 update_group_times(leader);
cdd6c482 1913 leader->state = PERF_EVENT_STATE_ERROR;
53cfbf59 1914 }
d859e29f
PM
1915 }
1916
9ed6060d 1917unlock:
e625cce1 1918 raw_spin_unlock(&ctx->lock);
fe4b04fa
PZ
1919
1920 return 0;
d859e29f
PM
1921}
1922
1923/*
cdd6c482 1924 * Enable a event.
c93f7669 1925 *
cdd6c482
IM
1926 * If event->ctx is a cloned context, callers must make sure that
1927 * every task struct that event->ctx->task could possibly point to
c93f7669 1928 * remains valid. This condition is satisfied when called through
cdd6c482
IM
1929 * perf_event_for_each_child or perf_event_for_each as described
1930 * for perf_event_disable.
d859e29f 1931 */
44234adc 1932void perf_event_enable(struct perf_event *event)
d859e29f 1933{
cdd6c482 1934 struct perf_event_context *ctx = event->ctx;
d859e29f
PM
1935 struct task_struct *task = ctx->task;
1936
1937 if (!task) {
1938 /*
cdd6c482 1939 * Enable the event on the cpu that it's on
d859e29f 1940 */
fe4b04fa 1941 cpu_function_call(event->cpu, __perf_event_enable, event);
d859e29f
PM
1942 return;
1943 }
1944
e625cce1 1945 raw_spin_lock_irq(&ctx->lock);
cdd6c482 1946 if (event->state >= PERF_EVENT_STATE_INACTIVE)
d859e29f
PM
1947 goto out;
1948
1949 /*
cdd6c482
IM
1950 * If the event is in error state, clear that first.
1951 * That way, if we see the event in error state below, we
d859e29f
PM
1952 * know that it has gone back into error state, as distinct
1953 * from the task having been scheduled away before the
1954 * cross-call arrived.
1955 */
cdd6c482
IM
1956 if (event->state == PERF_EVENT_STATE_ERROR)
1957 event->state = PERF_EVENT_STATE_OFF;
d859e29f 1958
9ed6060d 1959retry:
fe4b04fa 1960 if (!ctx->is_active) {
1d9b482e 1961 __perf_event_mark_enabled(event);
fe4b04fa
PZ
1962 goto out;
1963 }
1964
e625cce1 1965 raw_spin_unlock_irq(&ctx->lock);
fe4b04fa
PZ
1966
1967 if (!task_function_call(task, __perf_event_enable, event))
1968 return;
d859e29f 1969
e625cce1 1970 raw_spin_lock_irq(&ctx->lock);
d859e29f
PM
1971
1972 /*
cdd6c482 1973 * If the context is active and the event is still off,
d859e29f
PM
1974 * we need to retry the cross-call.
1975 */
fe4b04fa
PZ
1976 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
1977 /*
1978 * task could have been flipped by a concurrent
1979 * perf_event_context_sched_out()
1980 */
1981 task = ctx->task;
d859e29f 1982 goto retry;
fe4b04fa 1983 }
fa289bec 1984
9ed6060d 1985out:
e625cce1 1986 raw_spin_unlock_irq(&ctx->lock);
d859e29f 1987}
dcfce4a0 1988EXPORT_SYMBOL_GPL(perf_event_enable);
d859e29f 1989
26ca5c11 1990int perf_event_refresh(struct perf_event *event, int refresh)
79f14641 1991{
2023b359 1992 /*
cdd6c482 1993 * not supported on inherited events
2023b359 1994 */
2e939d1d 1995 if (event->attr.inherit || !is_sampling_event(event))
2023b359
PZ
1996 return -EINVAL;
1997
cdd6c482
IM
1998 atomic_add(refresh, &event->event_limit);
1999 perf_event_enable(event);
2023b359
PZ
2000
2001 return 0;
79f14641 2002}
26ca5c11 2003EXPORT_SYMBOL_GPL(perf_event_refresh);
79f14641 2004
5b0311e1
FW
2005static void ctx_sched_out(struct perf_event_context *ctx,
2006 struct perf_cpu_context *cpuctx,
2007 enum event_type_t event_type)
235c7fc7 2008{
cdd6c482 2009 struct perf_event *event;
db24d33e 2010 int is_active = ctx->is_active;
235c7fc7 2011
db24d33e 2012 ctx->is_active &= ~event_type;
cdd6c482 2013 if (likely(!ctx->nr_events))
facc4307
PZ
2014 return;
2015
4af4998b 2016 update_context_time(ctx);
e5d1367f 2017 update_cgrp_time_from_cpuctx(cpuctx);
5b0311e1 2018 if (!ctx->nr_active)
facc4307 2019 return;
5b0311e1 2020
075e0b00 2021 perf_pmu_disable(ctx->pmu);
db24d33e 2022 if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
889ff015
FW
2023 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2024 group_sched_out(event, cpuctx, ctx);
9ed6060d 2025 }
889ff015 2026
db24d33e 2027 if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
889ff015 2028 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
8c9ed8e1 2029 group_sched_out(event, cpuctx, ctx);
9ed6060d 2030 }
1b9a644f 2031 perf_pmu_enable(ctx->pmu);
235c7fc7
IM
2032}
2033
564c2b21
PM
2034/*
2035 * Test whether two contexts are equivalent, i.e. whether they
2036 * have both been cloned from the same version of the same context
cdd6c482
IM
2037 * and they both have the same number of enabled events.
2038 * If the number of enabled events is the same, then the set
2039 * of enabled events should be the same, because these are both
2040 * inherited contexts, therefore we can't access individual events
564c2b21 2041 * in them directly with an fd; we can only enable/disable all
cdd6c482 2042 * events via prctl, or enable/disable all events in a family
564c2b21
PM
2043 * via ioctl, which will have the same effect on both contexts.
2044 */
cdd6c482
IM
2045static int context_equiv(struct perf_event_context *ctx1,
2046 struct perf_event_context *ctx2)
564c2b21
PM
2047{
2048 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
ad3a37de 2049 && ctx1->parent_gen == ctx2->parent_gen
25346b93 2050 && !ctx1->pin_count && !ctx2->pin_count;
564c2b21
PM
2051}
2052
cdd6c482
IM
2053static void __perf_event_sync_stat(struct perf_event *event,
2054 struct perf_event *next_event)
bfbd3381
PZ
2055{
2056 u64 value;
2057
cdd6c482 2058 if (!event->attr.inherit_stat)
bfbd3381
PZ
2059 return;
2060
2061 /*
cdd6c482 2062 * Update the event value, we cannot use perf_event_read()
bfbd3381
PZ
2063 * because we're in the middle of a context switch and have IRQs
2064 * disabled, which upsets smp_call_function_single(), however
cdd6c482 2065 * we know the event must be on the current CPU, therefore we
bfbd3381
PZ
2066 * don't need to use it.
2067 */
cdd6c482
IM
2068 switch (event->state) {
2069 case PERF_EVENT_STATE_ACTIVE:
3dbebf15
PZ
2070 event->pmu->read(event);
2071 /* fall-through */
bfbd3381 2072
cdd6c482
IM
2073 case PERF_EVENT_STATE_INACTIVE:
2074 update_event_times(event);
bfbd3381
PZ
2075 break;
2076
2077 default:
2078 break;
2079 }
2080
2081 /*
cdd6c482 2082 * In order to keep per-task stats reliable we need to flip the event
bfbd3381
PZ
2083 * values when we flip the contexts.
2084 */
e7850595
PZ
2085 value = local64_read(&next_event->count);
2086 value = local64_xchg(&event->count, value);
2087 local64_set(&next_event->count, value);
bfbd3381 2088
cdd6c482
IM
2089 swap(event->total_time_enabled, next_event->total_time_enabled);
2090 swap(event->total_time_running, next_event->total_time_running);
19d2e755 2091
bfbd3381 2092 /*
19d2e755 2093 * Since we swizzled the values, update the user visible data too.
bfbd3381 2094 */
cdd6c482
IM
2095 perf_event_update_userpage(event);
2096 perf_event_update_userpage(next_event);
bfbd3381
PZ
2097}
2098
2099#define list_next_entry(pos, member) \
2100 list_entry(pos->member.next, typeof(*pos), member)
2101
cdd6c482
IM
2102static void perf_event_sync_stat(struct perf_event_context *ctx,
2103 struct perf_event_context *next_ctx)
bfbd3381 2104{
cdd6c482 2105 struct perf_event *event, *next_event;
bfbd3381
PZ
2106
2107 if (!ctx->nr_stat)
2108 return;
2109
02ffdbc8
PZ
2110 update_context_time(ctx);
2111
cdd6c482
IM
2112 event = list_first_entry(&ctx->event_list,
2113 struct perf_event, event_entry);
bfbd3381 2114
cdd6c482
IM
2115 next_event = list_first_entry(&next_ctx->event_list,
2116 struct perf_event, event_entry);
bfbd3381 2117
cdd6c482
IM
2118 while (&event->event_entry != &ctx->event_list &&
2119 &next_event->event_entry != &next_ctx->event_list) {
bfbd3381 2120
cdd6c482 2121 __perf_event_sync_stat(event, next_event);
bfbd3381 2122
cdd6c482
IM
2123 event = list_next_entry(event, event_entry);
2124 next_event = list_next_entry(next_event, event_entry);
bfbd3381
PZ
2125 }
2126}
2127
fe4b04fa
PZ
2128static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2129 struct task_struct *next)
0793a61d 2130{
8dc85d54 2131 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
cdd6c482
IM
2132 struct perf_event_context *next_ctx;
2133 struct perf_event_context *parent;
108b02cf 2134 struct perf_cpu_context *cpuctx;
c93f7669 2135 int do_switch = 1;
0793a61d 2136
108b02cf
PZ
2137 if (likely(!ctx))
2138 return;
10989fb2 2139
108b02cf
PZ
2140 cpuctx = __get_cpu_context(ctx);
2141 if (!cpuctx->task_ctx)
0793a61d
TG
2142 return;
2143
c93f7669
PM
2144 rcu_read_lock();
2145 parent = rcu_dereference(ctx->parent_ctx);
8dc85d54 2146 next_ctx = next->perf_event_ctxp[ctxn];
c93f7669
PM
2147 if (parent && next_ctx &&
2148 rcu_dereference(next_ctx->parent_ctx) == parent) {
2149 /*
2150 * Looks like the two contexts are clones, so we might be
2151 * able to optimize the context switch. We lock both
2152 * contexts and check that they are clones under the
2153 * lock (including re-checking that neither has been
2154 * uncloned in the meantime). It doesn't matter which
2155 * order we take the locks because no other cpu could
2156 * be trying to lock both of these tasks.
2157 */
e625cce1
TG
2158 raw_spin_lock(&ctx->lock);
2159 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
c93f7669 2160 if (context_equiv(ctx, next_ctx)) {
665c2142
PZ
2161 /*
2162 * XXX do we need a memory barrier of sorts
cdd6c482 2163 * wrt to rcu_dereference() of perf_event_ctxp
665c2142 2164 */
8dc85d54
PZ
2165 task->perf_event_ctxp[ctxn] = next_ctx;
2166 next->perf_event_ctxp[ctxn] = ctx;
c93f7669
PM
2167 ctx->task = next;
2168 next_ctx->task = task;
2169 do_switch = 0;
bfbd3381 2170
cdd6c482 2171 perf_event_sync_stat(ctx, next_ctx);
c93f7669 2172 }
e625cce1
TG
2173 raw_spin_unlock(&next_ctx->lock);
2174 raw_spin_unlock(&ctx->lock);
564c2b21 2175 }
c93f7669 2176 rcu_read_unlock();
564c2b21 2177
c93f7669 2178 if (do_switch) {
facc4307 2179 raw_spin_lock(&ctx->lock);
5b0311e1 2180 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
c93f7669 2181 cpuctx->task_ctx = NULL;
facc4307 2182 raw_spin_unlock(&ctx->lock);
c93f7669 2183 }
0793a61d
TG
2184}
2185
8dc85d54
PZ
2186#define for_each_task_context_nr(ctxn) \
2187 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2188
2189/*
2190 * Called from scheduler to remove the events of the current task,
2191 * with interrupts disabled.
2192 *
2193 * We stop each event and update the event value in event->count.
2194 *
2195 * This does not protect us against NMI, but disable()
2196 * sets the disabled bit in the control field of event _before_
2197 * accessing the event control register. If a NMI hits, then it will
2198 * not restart the event.
2199 */
ab0cce56
JO
2200void __perf_event_task_sched_out(struct task_struct *task,
2201 struct task_struct *next)
8dc85d54
PZ
2202{
2203 int ctxn;
2204
8dc85d54
PZ
2205 for_each_task_context_nr(ctxn)
2206 perf_event_context_sched_out(task, ctxn, next);
e5d1367f
SE
2207
2208 /*
2209 * if cgroup events exist on this CPU, then we need
2210 * to check if we have to switch out PMU state.
2211 * cgroup event are system-wide mode only
2212 */
2213 if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
a8d757ef 2214 perf_cgroup_sched_out(task, next);
8dc85d54
PZ
2215}
2216
04dc2dbb 2217static void task_ctx_sched_out(struct perf_event_context *ctx)
a08b159f 2218{
108b02cf 2219 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
a08b159f 2220
a63eaf34
PM
2221 if (!cpuctx->task_ctx)
2222 return;
012b84da
IM
2223
2224 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2225 return;
2226
04dc2dbb 2227 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
a08b159f
PM
2228 cpuctx->task_ctx = NULL;
2229}
2230
5b0311e1
FW
2231/*
2232 * Called with IRQs disabled
2233 */
2234static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2235 enum event_type_t event_type)
2236{
2237 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
04289bb9
IM
2238}
2239
235c7fc7 2240static void
5b0311e1 2241ctx_pinned_sched_in(struct perf_event_context *ctx,
6e37738a 2242 struct perf_cpu_context *cpuctx)
0793a61d 2243{
cdd6c482 2244 struct perf_event *event;
0793a61d 2245
889ff015
FW
2246 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2247 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 2248 continue;
5632ab12 2249 if (!event_filter_match(event))
3b6f9e5c
PM
2250 continue;
2251
e5d1367f
SE
2252 /* may need to reset tstamp_enabled */
2253 if (is_cgroup_event(event))
2254 perf_cgroup_mark_enabled(event, ctx);
2255
8c9ed8e1 2256 if (group_can_go_on(event, cpuctx, 1))
6e37738a 2257 group_sched_in(event, cpuctx, ctx);
3b6f9e5c
PM
2258
2259 /*
2260 * If this pinned group hasn't been scheduled,
2261 * put it in error state.
2262 */
cdd6c482
IM
2263 if (event->state == PERF_EVENT_STATE_INACTIVE) {
2264 update_group_times(event);
2265 event->state = PERF_EVENT_STATE_ERROR;
53cfbf59 2266 }
3b6f9e5c 2267 }
5b0311e1
FW
2268}
2269
2270static void
2271ctx_flexible_sched_in(struct perf_event_context *ctx,
6e37738a 2272 struct perf_cpu_context *cpuctx)
5b0311e1
FW
2273{
2274 struct perf_event *event;
2275 int can_add_hw = 1;
3b6f9e5c 2276
889ff015
FW
2277 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2278 /* Ignore events in OFF or ERROR state */
2279 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 2280 continue;
04289bb9
IM
2281 /*
2282 * Listen to the 'cpu' scheduling filter constraint
cdd6c482 2283 * of events:
04289bb9 2284 */
5632ab12 2285 if (!event_filter_match(event))
0793a61d
TG
2286 continue;
2287
e5d1367f
SE
2288 /* may need to reset tstamp_enabled */
2289 if (is_cgroup_event(event))
2290 perf_cgroup_mark_enabled(event, ctx);
2291
9ed6060d 2292 if (group_can_go_on(event, cpuctx, can_add_hw)) {
6e37738a 2293 if (group_sched_in(event, cpuctx, ctx))
dd0e6ba2 2294 can_add_hw = 0;
9ed6060d 2295 }
0793a61d 2296 }
5b0311e1
FW
2297}
2298
2299static void
2300ctx_sched_in(struct perf_event_context *ctx,
2301 struct perf_cpu_context *cpuctx,
e5d1367f
SE
2302 enum event_type_t event_type,
2303 struct task_struct *task)
5b0311e1 2304{
e5d1367f 2305 u64 now;
db24d33e 2306 int is_active = ctx->is_active;
e5d1367f 2307
db24d33e 2308 ctx->is_active |= event_type;
5b0311e1 2309 if (likely(!ctx->nr_events))
facc4307 2310 return;
5b0311e1 2311
e5d1367f
SE
2312 now = perf_clock();
2313 ctx->timestamp = now;
3f7cce3c 2314 perf_cgroup_set_timestamp(task, ctx);
5b0311e1
FW
2315 /*
2316 * First go through the list and put on any pinned groups
2317 * in order to give them the best chance of going on.
2318 */
db24d33e 2319 if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
6e37738a 2320 ctx_pinned_sched_in(ctx, cpuctx);
5b0311e1
FW
2321
2322 /* Then walk through the lower prio flexible groups */
db24d33e 2323 if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
6e37738a 2324 ctx_flexible_sched_in(ctx, cpuctx);
235c7fc7
IM
2325}
2326
329c0e01 2327static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
2328 enum event_type_t event_type,
2329 struct task_struct *task)
329c0e01
FW
2330{
2331 struct perf_event_context *ctx = &cpuctx->ctx;
2332
e5d1367f 2333 ctx_sched_in(ctx, cpuctx, event_type, task);
329c0e01
FW
2334}
2335
e5d1367f
SE
2336static void perf_event_context_sched_in(struct perf_event_context *ctx,
2337 struct task_struct *task)
235c7fc7 2338{
108b02cf 2339 struct perf_cpu_context *cpuctx;
235c7fc7 2340
108b02cf 2341 cpuctx = __get_cpu_context(ctx);
329c0e01
FW
2342 if (cpuctx->task_ctx == ctx)
2343 return;
2344
facc4307 2345 perf_ctx_lock(cpuctx, ctx);
1b9a644f 2346 perf_pmu_disable(ctx->pmu);
329c0e01
FW
2347 /*
2348 * We want to keep the following priority order:
2349 * cpu pinned (that don't need to move), task pinned,
2350 * cpu flexible, task flexible.
2351 */
2352 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2353
1d5f003f
GN
2354 if (ctx->nr_events)
2355 cpuctx->task_ctx = ctx;
9b33fa6b 2356
86b47c25
GN
2357 perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);
2358
facc4307
PZ
2359 perf_pmu_enable(ctx->pmu);
2360 perf_ctx_unlock(cpuctx, ctx);
2361
b5ab4cd5
PZ
2362 /*
2363 * Since these rotations are per-cpu, we need to ensure the
2364 * cpu-context we got scheduled on is actually rotating.
2365 */
108b02cf 2366 perf_pmu_rotate_start(ctx->pmu);
235c7fc7
IM
2367}
2368
d010b332
SE
2369/*
2370 * When sampling the branck stack in system-wide, it may be necessary
2371 * to flush the stack on context switch. This happens when the branch
2372 * stack does not tag its entries with the pid of the current task.
2373 * Otherwise it becomes impossible to associate a branch entry with a
2374 * task. This ambiguity is more likely to appear when the branch stack
2375 * supports priv level filtering and the user sets it to monitor only
2376 * at the user level (which could be a useful measurement in system-wide
2377 * mode). In that case, the risk is high of having a branch stack with
2378 * branch from multiple tasks. Flushing may mean dropping the existing
2379 * entries or stashing them somewhere in the PMU specific code layer.
2380 *
2381 * This function provides the context switch callback to the lower code
2382 * layer. It is invoked ONLY when there is at least one system-wide context
2383 * with at least one active event using taken branch sampling.
2384 */
2385static void perf_branch_stack_sched_in(struct task_struct *prev,
2386 struct task_struct *task)
2387{
2388 struct perf_cpu_context *cpuctx;
2389 struct pmu *pmu;
2390 unsigned long flags;
2391
2392 /* no need to flush branch stack if not changing task */
2393 if (prev == task)
2394 return;
2395
2396 local_irq_save(flags);
2397
2398 rcu_read_lock();
2399
2400 list_for_each_entry_rcu(pmu, &pmus, entry) {
2401 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2402
2403 /*
2404 * check if the context has at least one
2405 * event using PERF_SAMPLE_BRANCH_STACK
2406 */
2407 if (cpuctx->ctx.nr_branch_stack > 0
2408 && pmu->flush_branch_stack) {
2409
2410 pmu = cpuctx->ctx.pmu;
2411
2412 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2413
2414 perf_pmu_disable(pmu);
2415
2416 pmu->flush_branch_stack();
2417
2418 perf_pmu_enable(pmu);
2419
2420 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2421 }
2422 }
2423
2424 rcu_read_unlock();
2425
2426 local_irq_restore(flags);
2427}
2428
8dc85d54
PZ
2429/*
2430 * Called from scheduler to add the events of the current task
2431 * with interrupts disabled.
2432 *
2433 * We restore the event value and then enable it.
2434 *
2435 * This does not protect us against NMI, but enable()
2436 * sets the enabled bit in the control field of event _before_
2437 * accessing the event control register. If a NMI hits, then it will
2438 * keep the event running.
2439 */
ab0cce56
JO
2440void __perf_event_task_sched_in(struct task_struct *prev,
2441 struct task_struct *task)
8dc85d54
PZ
2442{
2443 struct perf_event_context *ctx;
2444 int ctxn;
2445
2446 for_each_task_context_nr(ctxn) {
2447 ctx = task->perf_event_ctxp[ctxn];
2448 if (likely(!ctx))
2449 continue;
2450
e5d1367f 2451 perf_event_context_sched_in(ctx, task);
8dc85d54 2452 }
e5d1367f
SE
2453 /*
2454 * if cgroup events exist on this CPU, then we need
2455 * to check if we have to switch in PMU state.
2456 * cgroup event are system-wide mode only
2457 */
2458 if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
a8d757ef 2459 perf_cgroup_sched_in(prev, task);
d010b332
SE
2460
2461 /* check for system-wide branch_stack events */
2462 if (atomic_read(&__get_cpu_var(perf_branch_stack_events)))
2463 perf_branch_stack_sched_in(prev, task);
235c7fc7
IM
2464}
2465
abd50713
PZ
2466static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2467{
2468 u64 frequency = event->attr.sample_freq;
2469 u64 sec = NSEC_PER_SEC;
2470 u64 divisor, dividend;
2471
2472 int count_fls, nsec_fls, frequency_fls, sec_fls;
2473
2474 count_fls = fls64(count);
2475 nsec_fls = fls64(nsec);
2476 frequency_fls = fls64(frequency);
2477 sec_fls = 30;
2478
2479 /*
2480 * We got @count in @nsec, with a target of sample_freq HZ
2481 * the target period becomes:
2482 *
2483 * @count * 10^9
2484 * period = -------------------
2485 * @nsec * sample_freq
2486 *
2487 */
2488
2489 /*
2490 * Reduce accuracy by one bit such that @a and @b converge
2491 * to a similar magnitude.
2492 */
fe4b04fa 2493#define REDUCE_FLS(a, b) \
abd50713
PZ
2494do { \
2495 if (a##_fls > b##_fls) { \
2496 a >>= 1; \
2497 a##_fls--; \
2498 } else { \
2499 b >>= 1; \
2500 b##_fls--; \
2501 } \
2502} while (0)
2503
2504 /*
2505 * Reduce accuracy until either term fits in a u64, then proceed with
2506 * the other, so that finally we can do a u64/u64 division.
2507 */
2508 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2509 REDUCE_FLS(nsec, frequency);
2510 REDUCE_FLS(sec, count);
2511 }
2512
2513 if (count_fls + sec_fls > 64) {
2514 divisor = nsec * frequency;
2515
2516 while (count_fls + sec_fls > 64) {
2517 REDUCE_FLS(count, sec);
2518 divisor >>= 1;
2519 }
2520
2521 dividend = count * sec;
2522 } else {
2523 dividend = count * sec;
2524
2525 while (nsec_fls + frequency_fls > 64) {
2526 REDUCE_FLS(nsec, frequency);
2527 dividend >>= 1;
2528 }
2529
2530 divisor = nsec * frequency;
2531 }
2532
f6ab91ad
PZ
2533 if (!divisor)
2534 return dividend;
2535
abd50713
PZ
2536 return div64_u64(dividend, divisor);
2537}
2538
e050e3f0
SE
2539static DEFINE_PER_CPU(int, perf_throttled_count);
2540static DEFINE_PER_CPU(u64, perf_throttled_seq);
2541
f39d47ff 2542static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
bd2b5b12 2543{
cdd6c482 2544 struct hw_perf_event *hwc = &event->hw;
f6ab91ad 2545 s64 period, sample_period;
bd2b5b12
PZ
2546 s64 delta;
2547
abd50713 2548 period = perf_calculate_period(event, nsec, count);
bd2b5b12
PZ
2549
2550 delta = (s64)(period - hwc->sample_period);
2551 delta = (delta + 7) / 8; /* low pass filter */
2552
2553 sample_period = hwc->sample_period + delta;
2554
2555 if (!sample_period)
2556 sample_period = 1;
2557
bd2b5b12 2558 hwc->sample_period = sample_period;
abd50713 2559
e7850595 2560 if (local64_read(&hwc->period_left) > 8*sample_period) {
f39d47ff
SE
2561 if (disable)
2562 event->pmu->stop(event, PERF_EF_UPDATE);
2563
e7850595 2564 local64_set(&hwc->period_left, 0);
f39d47ff
SE
2565
2566 if (disable)
2567 event->pmu->start(event, PERF_EF_RELOAD);
abd50713 2568 }
bd2b5b12
PZ
2569}
2570
e050e3f0
SE
2571/*
2572 * combine freq adjustment with unthrottling to avoid two passes over the
2573 * events. At the same time, make sure, having freq events does not change
2574 * the rate of unthrottling as that would introduce bias.
2575 */
2576static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
2577 int needs_unthr)
60db5e09 2578{
cdd6c482
IM
2579 struct perf_event *event;
2580 struct hw_perf_event *hwc;
e050e3f0 2581 u64 now, period = TICK_NSEC;
abd50713 2582 s64 delta;
60db5e09 2583
e050e3f0
SE
2584 /*
2585 * only need to iterate over all events iff:
2586 * - context have events in frequency mode (needs freq adjust)
2587 * - there are events to unthrottle on this cpu
2588 */
2589 if (!(ctx->nr_freq || needs_unthr))
0f5a2601
PZ
2590 return;
2591
e050e3f0 2592 raw_spin_lock(&ctx->lock);
f39d47ff 2593 perf_pmu_disable(ctx->pmu);
e050e3f0 2594
03541f8b 2595 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
cdd6c482 2596 if (event->state != PERF_EVENT_STATE_ACTIVE)
60db5e09
PZ
2597 continue;
2598
5632ab12 2599 if (!event_filter_match(event))
5d27c23d
PZ
2600 continue;
2601
cdd6c482 2602 hwc = &event->hw;
6a24ed6c 2603
e050e3f0
SE
2604 if (needs_unthr && hwc->interrupts == MAX_INTERRUPTS) {
2605 hwc->interrupts = 0;
cdd6c482 2606 perf_log_throttle(event, 1);
a4eaf7f1 2607 event->pmu->start(event, 0);
a78ac325
PZ
2608 }
2609
cdd6c482 2610 if (!event->attr.freq || !event->attr.sample_freq)
60db5e09
PZ
2611 continue;
2612
e050e3f0
SE
2613 /*
2614 * stop the event and update event->count
2615 */
2616 event->pmu->stop(event, PERF_EF_UPDATE);
2617
e7850595 2618 now = local64_read(&event->count);
abd50713
PZ
2619 delta = now - hwc->freq_count_stamp;
2620 hwc->freq_count_stamp = now;
60db5e09 2621
e050e3f0
SE
2622 /*
2623 * restart the event
2624 * reload only if value has changed
f39d47ff
SE
2625 * we have stopped the event so tell that
2626 * to perf_adjust_period() to avoid stopping it
2627 * twice.
e050e3f0 2628 */
abd50713 2629 if (delta > 0)
f39d47ff 2630 perf_adjust_period(event, period, delta, false);
e050e3f0
SE
2631
2632 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
60db5e09 2633 }
e050e3f0 2634
f39d47ff 2635 perf_pmu_enable(ctx->pmu);
e050e3f0 2636 raw_spin_unlock(&ctx->lock);
60db5e09
PZ
2637}
2638
235c7fc7 2639/*
cdd6c482 2640 * Round-robin a context's events:
235c7fc7 2641 */
cdd6c482 2642static void rotate_ctx(struct perf_event_context *ctx)
0793a61d 2643{
dddd3379
TG
2644 /*
2645 * Rotate the first entry last of non-pinned groups. Rotation might be
2646 * disabled by the inheritance code.
2647 */
2648 if (!ctx->rotate_disable)
2649 list_rotate_left(&ctx->flexible_groups);
235c7fc7
IM
2650}
2651
b5ab4cd5 2652/*
e9d2b064
PZ
2653 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
2654 * because they're strictly cpu affine and rotate_start is called with IRQs
2655 * disabled, while rotate_context is called from IRQ context.
b5ab4cd5 2656 */
9e630205 2657static int perf_rotate_context(struct perf_cpu_context *cpuctx)
235c7fc7 2658{
8dc85d54 2659 struct perf_event_context *ctx = NULL;
e050e3f0 2660 int rotate = 0, remove = 1;
7fc23a53 2661
b5ab4cd5 2662 if (cpuctx->ctx.nr_events) {
e9d2b064 2663 remove = 0;
b5ab4cd5
PZ
2664 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
2665 rotate = 1;
2666 }
235c7fc7 2667
8dc85d54 2668 ctx = cpuctx->task_ctx;
b5ab4cd5 2669 if (ctx && ctx->nr_events) {
e9d2b064 2670 remove = 0;
b5ab4cd5
PZ
2671 if (ctx->nr_events != ctx->nr_active)
2672 rotate = 1;
2673 }
9717e6cd 2674
e050e3f0 2675 if (!rotate)
0f5a2601
PZ
2676 goto done;
2677
facc4307 2678 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
1b9a644f 2679 perf_pmu_disable(cpuctx->ctx.pmu);
60db5e09 2680
e050e3f0
SE
2681 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2682 if (ctx)
2683 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
0793a61d 2684
e050e3f0
SE
2685 rotate_ctx(&cpuctx->ctx);
2686 if (ctx)
2687 rotate_ctx(ctx);
235c7fc7 2688
e050e3f0 2689 perf_event_sched_in(cpuctx, ctx, current);
235c7fc7 2690
0f5a2601
PZ
2691 perf_pmu_enable(cpuctx->ctx.pmu);
2692 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
b5ab4cd5 2693done:
e9d2b064
PZ
2694 if (remove)
2695 list_del_init(&cpuctx->rotation_list);
9e630205
SE
2696
2697 return rotate;
e9d2b064
PZ
2698}
2699
026249ef
FW
2700#ifdef CONFIG_NO_HZ_FULL
2701bool perf_event_can_stop_tick(void)
2702{
2703 if (list_empty(&__get_cpu_var(rotation_list)))
2704 return true;
2705 else
2706 return false;
2707}
2708#endif
2709
e9d2b064
PZ
2710void perf_event_task_tick(void)
2711{
2712 struct list_head *head = &__get_cpu_var(rotation_list);
2713 struct perf_cpu_context *cpuctx, *tmp;
e050e3f0
SE
2714 struct perf_event_context *ctx;
2715 int throttled;
b5ab4cd5 2716
e9d2b064
PZ
2717 WARN_ON(!irqs_disabled());
2718
e050e3f0
SE
2719 __this_cpu_inc(perf_throttled_seq);
2720 throttled = __this_cpu_xchg(perf_throttled_count, 0);
2721
e9d2b064 2722 list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
e050e3f0
SE
2723 ctx = &cpuctx->ctx;
2724 perf_adjust_freq_unthr_context(ctx, throttled);
2725
2726 ctx = cpuctx->task_ctx;
2727 if (ctx)
2728 perf_adjust_freq_unthr_context(ctx, throttled);
e9d2b064 2729 }
0793a61d
TG
2730}
2731
889ff015
FW
2732static int event_enable_on_exec(struct perf_event *event,
2733 struct perf_event_context *ctx)
2734{
2735 if (!event->attr.enable_on_exec)
2736 return 0;
2737
2738 event->attr.enable_on_exec = 0;
2739 if (event->state >= PERF_EVENT_STATE_INACTIVE)
2740 return 0;
2741
1d9b482e 2742 __perf_event_mark_enabled(event);
889ff015
FW
2743
2744 return 1;
2745}
2746
57e7986e 2747/*
cdd6c482 2748 * Enable all of a task's events that have been marked enable-on-exec.
57e7986e
PM
2749 * This expects task == current.
2750 */
8dc85d54 2751static void perf_event_enable_on_exec(struct perf_event_context *ctx)
57e7986e 2752{
cdd6c482 2753 struct perf_event *event;
57e7986e
PM
2754 unsigned long flags;
2755 int enabled = 0;
889ff015 2756 int ret;
57e7986e
PM
2757
2758 local_irq_save(flags);
cdd6c482 2759 if (!ctx || !ctx->nr_events)
57e7986e
PM
2760 goto out;
2761
e566b76e
SE
2762 /*
2763 * We must ctxsw out cgroup events to avoid conflict
2764 * when invoking perf_task_event_sched_in() later on
2765 * in this function. Otherwise we end up trying to
2766 * ctxswin cgroup events which are already scheduled
2767 * in.
2768 */
a8d757ef 2769 perf_cgroup_sched_out(current, NULL);
57e7986e 2770
e625cce1 2771 raw_spin_lock(&ctx->lock);
04dc2dbb 2772 task_ctx_sched_out(ctx);
57e7986e 2773
b79387ef 2774 list_for_each_entry(event, &ctx->event_list, event_entry) {
889ff015
FW
2775 ret = event_enable_on_exec(event, ctx);
2776 if (ret)
2777 enabled = 1;
57e7986e
PM
2778 }
2779
2780 /*
cdd6c482 2781 * Unclone this context if we enabled any event.
57e7986e 2782 */
71a851b4
PZ
2783 if (enabled)
2784 unclone_ctx(ctx);
57e7986e 2785
e625cce1 2786 raw_spin_unlock(&ctx->lock);
57e7986e 2787
e566b76e
SE
2788 /*
2789 * Also calls ctxswin for cgroup events, if any:
2790 */
e5d1367f 2791 perf_event_context_sched_in(ctx, ctx->task);
9ed6060d 2792out:
57e7986e
PM
2793 local_irq_restore(flags);
2794}
2795
0793a61d 2796/*
cdd6c482 2797 * Cross CPU call to read the hardware event
0793a61d 2798 */
cdd6c482 2799static void __perf_event_read(void *info)
0793a61d 2800{
cdd6c482
IM
2801 struct perf_event *event = info;
2802 struct perf_event_context *ctx = event->ctx;
108b02cf 2803 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
621a01ea 2804
e1ac3614
PM
2805 /*
2806 * If this is a task context, we need to check whether it is
2807 * the current task context of this cpu. If not it has been
2808 * scheduled out before the smp call arrived. In that case
cdd6c482
IM
2809 * event->count would have been updated to a recent sample
2810 * when the event was scheduled out.
e1ac3614
PM
2811 */
2812 if (ctx->task && cpuctx->task_ctx != ctx)
2813 return;
2814
e625cce1 2815 raw_spin_lock(&ctx->lock);
e5d1367f 2816 if (ctx->is_active) {
542e72fc 2817 update_context_time(ctx);
e5d1367f
SE
2818 update_cgrp_time_from_event(event);
2819 }
cdd6c482 2820 update_event_times(event);
542e72fc
PZ
2821 if (event->state == PERF_EVENT_STATE_ACTIVE)
2822 event->pmu->read(event);
e625cce1 2823 raw_spin_unlock(&ctx->lock);
0793a61d
TG
2824}
2825
b5e58793
PZ
2826static inline u64 perf_event_count(struct perf_event *event)
2827{
e7850595 2828 return local64_read(&event->count) + atomic64_read(&event->child_count);
b5e58793
PZ
2829}
2830
cdd6c482 2831static u64 perf_event_read(struct perf_event *event)
0793a61d
TG
2832{
2833 /*
cdd6c482
IM
2834 * If event is enabled and currently active on a CPU, update the
2835 * value in the event structure:
0793a61d 2836 */
cdd6c482
IM
2837 if (event->state == PERF_EVENT_STATE_ACTIVE) {
2838 smp_call_function_single(event->oncpu,
2839 __perf_event_read, event, 1);
2840 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
2b8988c9
PZ
2841 struct perf_event_context *ctx = event->ctx;
2842 unsigned long flags;
2843
e625cce1 2844 raw_spin_lock_irqsave(&ctx->lock, flags);
c530ccd9
SE
2845 /*
2846 * may read while context is not active
2847 * (e.g., thread is blocked), in that case
2848 * we cannot update context time
2849 */
e5d1367f 2850 if (ctx->is_active) {
c530ccd9 2851 update_context_time(ctx);
e5d1367f
SE
2852 update_cgrp_time_from_event(event);
2853 }
cdd6c482 2854 update_event_times(event);
e625cce1 2855 raw_spin_unlock_irqrestore(&ctx->lock, flags);
0793a61d
TG
2856 }
2857
b5e58793 2858 return perf_event_count(event);
0793a61d
TG
2859}
2860
a63eaf34 2861/*
cdd6c482 2862 * Initialize the perf_event context in a task_struct:
a63eaf34 2863 */
eb184479 2864static void __perf_event_init_context(struct perf_event_context *ctx)
a63eaf34 2865{
e625cce1 2866 raw_spin_lock_init(&ctx->lock);
a63eaf34 2867 mutex_init(&ctx->mutex);
889ff015
FW
2868 INIT_LIST_HEAD(&ctx->pinned_groups);
2869 INIT_LIST_HEAD(&ctx->flexible_groups);
a63eaf34
PM
2870 INIT_LIST_HEAD(&ctx->event_list);
2871 atomic_set(&ctx->refcount, 1);
eb184479
PZ
2872}
2873
2874static struct perf_event_context *
2875alloc_perf_context(struct pmu *pmu, struct task_struct *task)
2876{
2877 struct perf_event_context *ctx;
2878
2879 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
2880 if (!ctx)
2881 return NULL;
2882
2883 __perf_event_init_context(ctx);
2884 if (task) {
2885 ctx->task = task;
2886 get_task_struct(task);
0793a61d 2887 }
eb184479
PZ
2888 ctx->pmu = pmu;
2889
2890 return ctx;
a63eaf34
PM
2891}
2892
2ebd4ffb
MH
2893static struct task_struct *
2894find_lively_task_by_vpid(pid_t vpid)
2895{
2896 struct task_struct *task;
2897 int err;
0793a61d
TG
2898
2899 rcu_read_lock();
2ebd4ffb 2900 if (!vpid)
0793a61d
TG
2901 task = current;
2902 else
2ebd4ffb 2903 task = find_task_by_vpid(vpid);
0793a61d
TG
2904 if (task)
2905 get_task_struct(task);
2906 rcu_read_unlock();
2907
2908 if (!task)
2909 return ERR_PTR(-ESRCH);
2910
0793a61d 2911 /* Reuse ptrace permission checks for now. */
c93f7669
PM
2912 err = -EACCES;
2913 if (!ptrace_may_access(task, PTRACE_MODE_READ))
2914 goto errout;
2915
2ebd4ffb
MH
2916 return task;
2917errout:
2918 put_task_struct(task);
2919 return ERR_PTR(err);
2920
2921}
2922
fe4b04fa
PZ
2923/*
2924 * Returns a matching context with refcount and pincount.
2925 */
108b02cf 2926static struct perf_event_context *
38a81da2 2927find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
0793a61d 2928{
cdd6c482 2929 struct perf_event_context *ctx;
22a4f650 2930 struct perf_cpu_context *cpuctx;
25346b93 2931 unsigned long flags;
8dc85d54 2932 int ctxn, err;
0793a61d 2933
22a4ec72 2934 if (!task) {
cdd6c482 2935 /* Must be root to operate on a CPU event: */
0764771d 2936 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
0793a61d
TG
2937 return ERR_PTR(-EACCES);
2938
0793a61d 2939 /*
cdd6c482 2940 * We could be clever and allow to attach a event to an
0793a61d
TG
2941 * offline CPU and activate it when the CPU comes up, but
2942 * that's for later.
2943 */
f6325e30 2944 if (!cpu_online(cpu))
0793a61d
TG
2945 return ERR_PTR(-ENODEV);
2946
108b02cf 2947 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
0793a61d 2948 ctx = &cpuctx->ctx;
c93f7669 2949 get_ctx(ctx);
fe4b04fa 2950 ++ctx->pin_count;
0793a61d 2951
0793a61d
TG
2952 return ctx;
2953 }
2954
8dc85d54
PZ
2955 err = -EINVAL;
2956 ctxn = pmu->task_ctx_nr;
2957 if (ctxn < 0)
2958 goto errout;
2959
9ed6060d 2960retry:
8dc85d54 2961 ctx = perf_lock_task_context(task, ctxn, &flags);
c93f7669 2962 if (ctx) {
71a851b4 2963 unclone_ctx(ctx);
fe4b04fa 2964 ++ctx->pin_count;
e625cce1 2965 raw_spin_unlock_irqrestore(&ctx->lock, flags);
9137fb28 2966 } else {
eb184479 2967 ctx = alloc_perf_context(pmu, task);
c93f7669
PM
2968 err = -ENOMEM;
2969 if (!ctx)
2970 goto errout;
eb184479 2971
dbe08d82
ON
2972 err = 0;
2973 mutex_lock(&task->perf_event_mutex);
2974 /*
2975 * If it has already passed perf_event_exit_task().
2976 * we must see PF_EXITING, it takes this mutex too.
2977 */
2978 if (task->flags & PF_EXITING)
2979 err = -ESRCH;
2980 else if (task->perf_event_ctxp[ctxn])
2981 err = -EAGAIN;
fe4b04fa 2982 else {
9137fb28 2983 get_ctx(ctx);
fe4b04fa 2984 ++ctx->pin_count;
dbe08d82 2985 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
fe4b04fa 2986 }
dbe08d82
ON
2987 mutex_unlock(&task->perf_event_mutex);
2988
2989 if (unlikely(err)) {
9137fb28 2990 put_ctx(ctx);
dbe08d82
ON
2991
2992 if (err == -EAGAIN)
2993 goto retry;
2994 goto errout;
a63eaf34
PM
2995 }
2996 }
2997
0793a61d 2998 return ctx;
c93f7669 2999
9ed6060d 3000errout:
c93f7669 3001 return ERR_PTR(err);
0793a61d
TG
3002}
3003
6fb2915d
LZ
3004static void perf_event_free_filter(struct perf_event *event);
3005
cdd6c482 3006static void free_event_rcu(struct rcu_head *head)
592903cd 3007{
cdd6c482 3008 struct perf_event *event;
592903cd 3009
cdd6c482
IM
3010 event = container_of(head, struct perf_event, rcu_head);
3011 if (event->ns)
3012 put_pid_ns(event->ns);
6fb2915d 3013 perf_event_free_filter(event);
cdd6c482 3014 kfree(event);
592903cd
PZ
3015}
3016
76369139 3017static void ring_buffer_put(struct ring_buffer *rb);
925d519a 3018
cdd6c482 3019static void free_event(struct perf_event *event)
f1600952 3020{
e360adbe 3021 irq_work_sync(&event->pending);
925d519a 3022
cdd6c482 3023 if (!event->parent) {
82cd6def 3024 if (event->attach_state & PERF_ATTACH_TASK)
c5905afb 3025 static_key_slow_dec_deferred(&perf_sched_events);
3af9e859 3026 if (event->attr.mmap || event->attr.mmap_data)
cdd6c482
IM
3027 atomic_dec(&nr_mmap_events);
3028 if (event->attr.comm)
3029 atomic_dec(&nr_comm_events);
3030 if (event->attr.task)
3031 atomic_dec(&nr_task_events);
927c7a9e
FW
3032 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3033 put_callchain_buffers();
08309379
PZ
3034 if (is_cgroup_event(event)) {
3035 atomic_dec(&per_cpu(perf_cgroup_events, event->cpu));
c5905afb 3036 static_key_slow_dec_deferred(&perf_sched_events);
08309379 3037 }
d010b332
SE
3038
3039 if (has_branch_stack(event)) {
3040 static_key_slow_dec_deferred(&perf_sched_events);
3041 /* is system-wide event */
3042 if (!(event->attach_state & PERF_ATTACH_TASK))
3043 atomic_dec(&per_cpu(perf_branch_stack_events,
3044 event->cpu));
3045 }
f344011c 3046 }
9ee318a7 3047
76369139
FW
3048 if (event->rb) {
3049 ring_buffer_put(event->rb);
3050 event->rb = NULL;
a4be7c27
PZ
3051 }
3052
e5d1367f
SE
3053 if (is_cgroup_event(event))
3054 perf_detach_cgroup(event);
3055
cdd6c482
IM
3056 if (event->destroy)
3057 event->destroy(event);
e077df4f 3058
0c67b408
PZ
3059 if (event->ctx)
3060 put_ctx(event->ctx);
3061
cdd6c482 3062 call_rcu(&event->rcu_head, free_event_rcu);
f1600952
PZ
3063}
3064
a66a3052 3065int perf_event_release_kernel(struct perf_event *event)
0793a61d 3066{
cdd6c482 3067 struct perf_event_context *ctx = event->ctx;
0793a61d 3068
ad3a37de 3069 WARN_ON_ONCE(ctx->parent_ctx);
a0507c84
PZ
3070 /*
3071 * There are two ways this annotation is useful:
3072 *
3073 * 1) there is a lock recursion from perf_event_exit_task
3074 * see the comment there.
3075 *
3076 * 2) there is a lock-inversion with mmap_sem through
3077 * perf_event_read_group(), which takes faults while
3078 * holding ctx->mutex, however this is called after
3079 * the last filedesc died, so there is no possibility
3080 * to trigger the AB-BA case.
3081 */
3082 mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
050735b0 3083 raw_spin_lock_irq(&ctx->lock);
8a49542c 3084 perf_group_detach(event);
050735b0 3085 raw_spin_unlock_irq(&ctx->lock);
e03a9a55 3086 perf_remove_from_context(event);
d859e29f 3087 mutex_unlock(&ctx->mutex);
0793a61d 3088
cdd6c482 3089 free_event(event);
0793a61d
TG
3090
3091 return 0;
3092}
a66a3052 3093EXPORT_SYMBOL_GPL(perf_event_release_kernel);
0793a61d 3094
a66a3052
PZ
3095/*
3096 * Called when the last reference to the file is gone.
3097 */
a6fa941d 3098static void put_event(struct perf_event *event)
fb0459d7 3099{
8882135b 3100 struct task_struct *owner;
fb0459d7 3101
a6fa941d
AV
3102 if (!atomic_long_dec_and_test(&event->refcount))
3103 return;
fb0459d7 3104
8882135b
PZ
3105 rcu_read_lock();
3106 owner = ACCESS_ONCE(event->owner);
3107 /*
3108 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
3109 * !owner it means the list deletion is complete and we can indeed
3110 * free this event, otherwise we need to serialize on
3111 * owner->perf_event_mutex.
3112 */
3113 smp_read_barrier_depends();
3114 if (owner) {
3115 /*
3116 * Since delayed_put_task_struct() also drops the last
3117 * task reference we can safely take a new reference
3118 * while holding the rcu_read_lock().
3119 */
3120 get_task_struct(owner);
3121 }
3122 rcu_read_unlock();
3123
3124 if (owner) {
3125 mutex_lock(&owner->perf_event_mutex);
3126 /*
3127 * We have to re-check the event->owner field, if it is cleared
3128 * we raced with perf_event_exit_task(), acquiring the mutex
3129 * ensured they're done, and we can proceed with freeing the
3130 * event.
3131 */
3132 if (event->owner)
3133 list_del_init(&event->owner_entry);
3134 mutex_unlock(&owner->perf_event_mutex);
3135 put_task_struct(owner);
3136 }
3137
a6fa941d
AV
3138 perf_event_release_kernel(event);
3139}
3140
3141static int perf_release(struct inode *inode, struct file *file)
3142{
3143 put_event(file->private_data);
3144 return 0;
fb0459d7 3145}
fb0459d7 3146
59ed446f 3147u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
e53c0994 3148{
cdd6c482 3149 struct perf_event *child;
e53c0994
PZ
3150 u64 total = 0;
3151
59ed446f
PZ
3152 *enabled = 0;
3153 *running = 0;
3154
6f10581a 3155 mutex_lock(&event->child_mutex);
cdd6c482 3156 total += perf_event_read(event);
59ed446f
PZ
3157 *enabled += event->total_time_enabled +
3158 atomic64_read(&event->child_total_time_enabled);
3159 *running += event->total_time_running +
3160 atomic64_read(&event->child_total_time_running);
3161
3162 list_for_each_entry(child, &event->child_list, child_list) {
cdd6c482 3163 total += perf_event_read(child);
59ed446f
PZ
3164 *enabled += child->total_time_enabled;
3165 *running += child->total_time_running;
3166 }
6f10581a 3167 mutex_unlock(&event->child_mutex);
e53c0994
PZ
3168
3169 return total;
3170}
fb0459d7 3171EXPORT_SYMBOL_GPL(perf_event_read_value);
e53c0994 3172
cdd6c482 3173static int perf_event_read_group(struct perf_event *event,
3dab77fb
PZ
3174 u64 read_format, char __user *buf)
3175{
cdd6c482 3176 struct perf_event *leader = event->group_leader, *sub;
6f10581a
PZ
3177 int n = 0, size = 0, ret = -EFAULT;
3178 struct perf_event_context *ctx = leader->ctx;
abf4868b 3179 u64 values[5];
59ed446f 3180 u64 count, enabled, running;
abf4868b 3181
6f10581a 3182 mutex_lock(&ctx->mutex);
59ed446f 3183 count = perf_event_read_value(leader, &enabled, &running);
3dab77fb
PZ
3184
3185 values[n++] = 1 + leader->nr_siblings;
59ed446f
PZ
3186 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3187 values[n++] = enabled;
3188 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3189 values[n++] = running;
abf4868b
PZ
3190 values[n++] = count;
3191 if (read_format & PERF_FORMAT_ID)
3192 values[n++] = primary_event_id(leader);
3dab77fb
PZ
3193
3194 size = n * sizeof(u64);
3195
3196 if (copy_to_user(buf, values, size))
6f10581a 3197 goto unlock;
3dab77fb 3198
6f10581a 3199 ret = size;
3dab77fb 3200
65abc865 3201 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
abf4868b 3202 n = 0;
3dab77fb 3203
59ed446f 3204 values[n++] = perf_event_read_value(sub, &enabled, &running);
abf4868b
PZ
3205 if (read_format & PERF_FORMAT_ID)
3206 values[n++] = primary_event_id(sub);
3207
3208 size = n * sizeof(u64);
3209
184d3da8 3210 if (copy_to_user(buf + ret, values, size)) {
6f10581a
PZ
3211 ret = -EFAULT;
3212 goto unlock;
3213 }
abf4868b
PZ
3214
3215 ret += size;
3dab77fb 3216 }
6f10581a
PZ
3217unlock:
3218 mutex_unlock(&ctx->mutex);
3dab77fb 3219
abf4868b 3220 return ret;
3dab77fb
PZ
3221}
3222
cdd6c482 3223static int perf_event_read_one(struct perf_event *event,
3dab77fb
PZ
3224 u64 read_format, char __user *buf)
3225{
59ed446f 3226 u64 enabled, running;
3dab77fb
PZ
3227 u64 values[4];
3228 int n = 0;
3229
59ed446f
PZ
3230 values[n++] = perf_event_read_value(event, &enabled, &running);
3231 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3232 values[n++] = enabled;
3233 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3234 values[n++] = running;
3dab77fb 3235 if (read_format & PERF_FORMAT_ID)
cdd6c482 3236 values[n++] = primary_event_id(event);
3dab77fb
PZ
3237
3238 if (copy_to_user(buf, values, n * sizeof(u64)))
3239 return -EFAULT;
3240
3241 return n * sizeof(u64);
3242}
3243
0793a61d 3244/*
cdd6c482 3245 * Read the performance event - simple non blocking version for now
0793a61d
TG
3246 */
3247static ssize_t
cdd6c482 3248perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
0793a61d 3249{
cdd6c482 3250 u64 read_format = event->attr.read_format;
3dab77fb 3251 int ret;
0793a61d 3252
3b6f9e5c 3253 /*
cdd6c482 3254 * Return end-of-file for a read on a event that is in
3b6f9e5c
PM
3255 * error state (i.e. because it was pinned but it couldn't be
3256 * scheduled on to the CPU at some point).
3257 */
cdd6c482 3258 if (event->state == PERF_EVENT_STATE_ERROR)
3b6f9e5c
PM
3259 return 0;
3260
c320c7b7 3261 if (count < event->read_size)
3dab77fb
PZ
3262 return -ENOSPC;
3263
cdd6c482 3264 WARN_ON_ONCE(event->ctx->parent_ctx);
3dab77fb 3265 if (read_format & PERF_FORMAT_GROUP)
cdd6c482 3266 ret = perf_event_read_group(event, read_format, buf);
3dab77fb 3267 else
cdd6c482 3268 ret = perf_event_read_one(event, read_format, buf);
0793a61d 3269
3dab77fb 3270 return ret;
0793a61d
TG
3271}
3272
0793a61d
TG
3273static ssize_t
3274perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
3275{
cdd6c482 3276 struct perf_event *event = file->private_data;
0793a61d 3277
cdd6c482 3278 return perf_read_hw(event, buf, count);
0793a61d
TG
3279}
3280
3281static unsigned int perf_poll(struct file *file, poll_table *wait)
3282{
cdd6c482 3283 struct perf_event *event = file->private_data;
76369139 3284 struct ring_buffer *rb;
c33a0bc4 3285 unsigned int events = POLL_HUP;
c7138f37 3286
10c6db11
PZ
3287 /*
3288 * Race between perf_event_set_output() and perf_poll(): perf_poll()
3289 * grabs the rb reference but perf_event_set_output() overrides it.
3290 * Here is the timeline for two threads T1, T2:
3291 * t0: T1, rb = rcu_dereference(event->rb)
3292 * t1: T2, old_rb = event->rb
3293 * t2: T2, event->rb = new rb
3294 * t3: T2, ring_buffer_detach(old_rb)
3295 * t4: T1, ring_buffer_attach(rb1)
3296 * t5: T1, poll_wait(event->waitq)
3297 *
3298 * To avoid this problem, we grab mmap_mutex in perf_poll()
3299 * thereby ensuring that the assignment of the new ring buffer
3300 * and the detachment of the old buffer appear atomic to perf_poll()
3301 */
3302 mutex_lock(&event->mmap_mutex);
3303
c7138f37 3304 rcu_read_lock();
76369139 3305 rb = rcu_dereference(event->rb);
10c6db11
PZ
3306 if (rb) {
3307 ring_buffer_attach(event, rb);
76369139 3308 events = atomic_xchg(&rb->poll, 0);
10c6db11 3309 }
c7138f37 3310 rcu_read_unlock();
0793a61d 3311
10c6db11
PZ
3312 mutex_unlock(&event->mmap_mutex);
3313
cdd6c482 3314 poll_wait(file, &event->waitq, wait);
0793a61d 3315
0793a61d
TG
3316 return events;
3317}
3318
cdd6c482 3319static void perf_event_reset(struct perf_event *event)
6de6a7b9 3320{
cdd6c482 3321 (void)perf_event_read(event);
e7850595 3322 local64_set(&event->count, 0);
cdd6c482 3323 perf_event_update_userpage(event);
3df5edad
PZ
3324}
3325
c93f7669 3326/*
cdd6c482
IM
3327 * Holding the top-level event's child_mutex means that any
3328 * descendant process that has inherited this event will block
3329 * in sync_child_event if it goes to exit, thus satisfying the
3330 * task existence requirements of perf_event_enable/disable.
c93f7669 3331 */
cdd6c482
IM
3332static void perf_event_for_each_child(struct perf_event *event,
3333 void (*func)(struct perf_event *))
3df5edad 3334{
cdd6c482 3335 struct perf_event *child;
3df5edad 3336
cdd6c482
IM
3337 WARN_ON_ONCE(event->ctx->parent_ctx);
3338 mutex_lock(&event->child_mutex);
3339 func(event);
3340 list_for_each_entry(child, &event->child_list, child_list)
3df5edad 3341 func(child);
cdd6c482 3342 mutex_unlock(&event->child_mutex);
3df5edad
PZ
3343}
3344
cdd6c482
IM
3345static void perf_event_for_each(struct perf_event *event,
3346 void (*func)(struct perf_event *))
3df5edad 3347{
cdd6c482
IM
3348 struct perf_event_context *ctx = event->ctx;
3349 struct perf_event *sibling;
3df5edad 3350
75f937f2
PZ
3351 WARN_ON_ONCE(ctx->parent_ctx);
3352 mutex_lock(&ctx->mutex);
cdd6c482 3353 event = event->group_leader;
75f937f2 3354
cdd6c482 3355 perf_event_for_each_child(event, func);
cdd6c482 3356 list_for_each_entry(sibling, &event->sibling_list, group_entry)
724b6daa 3357 perf_event_for_each_child(sibling, func);
75f937f2 3358 mutex_unlock(&ctx->mutex);
6de6a7b9
PZ
3359}
3360
cdd6c482 3361static int perf_event_period(struct perf_event *event, u64 __user *arg)
08247e31 3362{
cdd6c482 3363 struct perf_event_context *ctx = event->ctx;
08247e31
PZ
3364 int ret = 0;
3365 u64 value;
3366
6c7e550f 3367 if (!is_sampling_event(event))
08247e31
PZ
3368 return -EINVAL;
3369
ad0cf347 3370 if (copy_from_user(&value, arg, sizeof(value)))
08247e31
PZ
3371 return -EFAULT;
3372
3373 if (!value)
3374 return -EINVAL;
3375
e625cce1 3376 raw_spin_lock_irq(&ctx->lock);
cdd6c482
IM
3377 if (event->attr.freq) {
3378 if (value > sysctl_perf_event_sample_rate) {
08247e31
PZ
3379 ret = -EINVAL;
3380 goto unlock;
3381 }
3382
cdd6c482 3383 event->attr.sample_freq = value;
08247e31 3384 } else {
cdd6c482
IM
3385 event->attr.sample_period = value;
3386 event->hw.sample_period = value;
08247e31
PZ
3387 }
3388unlock:
e625cce1 3389 raw_spin_unlock_irq(&ctx->lock);
08247e31
PZ
3390
3391 return ret;
3392}
3393
ac9721f3
PZ
3394static const struct file_operations perf_fops;
3395
2903ff01 3396static inline int perf_fget_light(int fd, struct fd *p)
ac9721f3 3397{
2903ff01
AV
3398 struct fd f = fdget(fd);
3399 if (!f.file)
3400 return -EBADF;
ac9721f3 3401
2903ff01
AV
3402 if (f.file->f_op != &perf_fops) {
3403 fdput(f);
3404 return -EBADF;
ac9721f3 3405 }
2903ff01
AV
3406 *p = f;
3407 return 0;
ac9721f3
PZ
3408}
3409
3410static int perf_event_set_output(struct perf_event *event,
3411 struct perf_event *output_event);
6fb2915d 3412static int perf_event_set_filter(struct perf_event *event, void __user *arg);
a4be7c27 3413
d859e29f
PM
3414static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
3415{
cdd6c482
IM
3416 struct perf_event *event = file->private_data;
3417 void (*func)(struct perf_event *);
3df5edad 3418 u32 flags = arg;
d859e29f
PM
3419
3420 switch (cmd) {
cdd6c482
IM
3421 case PERF_EVENT_IOC_ENABLE:
3422 func = perf_event_enable;
d859e29f 3423 break;
cdd6c482
IM
3424 case PERF_EVENT_IOC_DISABLE:
3425 func = perf_event_disable;
79f14641 3426 break;
cdd6c482
IM
3427 case PERF_EVENT_IOC_RESET:
3428 func = perf_event_reset;
6de6a7b9 3429 break;
3df5edad 3430
cdd6c482
IM
3431 case PERF_EVENT_IOC_REFRESH:
3432 return perf_event_refresh(event, arg);
08247e31 3433
cdd6c482
IM
3434 case PERF_EVENT_IOC_PERIOD:
3435 return perf_event_period(event, (u64 __user *)arg);
08247e31 3436
cdd6c482 3437 case PERF_EVENT_IOC_SET_OUTPUT:
ac9721f3 3438 {
ac9721f3 3439 int ret;
ac9721f3 3440 if (arg != -1) {
2903ff01
AV
3441 struct perf_event *output_event;
3442 struct fd output;
3443 ret = perf_fget_light(arg, &output);
3444 if (ret)
3445 return ret;
3446 output_event = output.file->private_data;
3447 ret = perf_event_set_output(event, output_event);
3448 fdput(output);
3449 } else {
3450 ret = perf_event_set_output(event, NULL);
ac9721f3 3451 }
ac9721f3
PZ
3452 return ret;
3453 }
a4be7c27 3454
6fb2915d
LZ
3455 case PERF_EVENT_IOC_SET_FILTER:
3456 return perf_event_set_filter(event, (void __user *)arg);
3457
d859e29f 3458 default:
3df5edad 3459 return -ENOTTY;
d859e29f 3460 }
3df5edad
PZ
3461
3462 if (flags & PERF_IOC_FLAG_GROUP)
cdd6c482 3463 perf_event_for_each(event, func);
3df5edad 3464 else
cdd6c482 3465 perf_event_for_each_child(event, func);
3df5edad
PZ
3466
3467 return 0;
d859e29f
PM
3468}
3469
cdd6c482 3470int perf_event_task_enable(void)
771d7cde 3471{
cdd6c482 3472 struct perf_event *event;
771d7cde 3473
cdd6c482
IM
3474 mutex_lock(&current->perf_event_mutex);
3475 list_for_each_entry(event, &current->perf_event_list, owner_entry)
3476 perf_event_for_each_child(event, perf_event_enable);
3477 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
3478
3479 return 0;
3480}
3481
cdd6c482 3482int perf_event_task_disable(void)
771d7cde 3483{
cdd6c482 3484 struct perf_event *event;
771d7cde 3485
cdd6c482
IM
3486 mutex_lock(&current->perf_event_mutex);
3487 list_for_each_entry(event, &current->perf_event_list, owner_entry)
3488 perf_event_for_each_child(event, perf_event_disable);
3489 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
3490
3491 return 0;
3492}
3493
cdd6c482 3494static int perf_event_index(struct perf_event *event)
194002b2 3495{
a4eaf7f1
PZ
3496 if (event->hw.state & PERF_HES_STOPPED)
3497 return 0;
3498
cdd6c482 3499 if (event->state != PERF_EVENT_STATE_ACTIVE)
194002b2
PZ
3500 return 0;
3501
35edc2a5 3502 return event->pmu->event_idx(event);
194002b2
PZ
3503}
3504
c4794295 3505static void calc_timer_values(struct perf_event *event,
e3f3541c 3506 u64 *now,
7f310a5d
EM
3507 u64 *enabled,
3508 u64 *running)
c4794295 3509{
e3f3541c 3510 u64 ctx_time;
c4794295 3511
e3f3541c
PZ
3512 *now = perf_clock();
3513 ctx_time = event->shadow_ctx_time + *now;
c4794295
EM
3514 *enabled = ctx_time - event->tstamp_enabled;
3515 *running = ctx_time - event->tstamp_running;
3516}
3517
c7206205 3518void __weak arch_perf_update_userpage(struct perf_event_mmap_page *userpg, u64 now)
e3f3541c
PZ
3519{
3520}
3521
38ff667b
PZ
3522/*
3523 * Callers need to ensure there can be no nesting of this function, otherwise
3524 * the seqlock logic goes bad. We can not serialize this because the arch
3525 * code calls this from NMI context.
3526 */
cdd6c482 3527void perf_event_update_userpage(struct perf_event *event)
37d81828 3528{
cdd6c482 3529 struct perf_event_mmap_page *userpg;
76369139 3530 struct ring_buffer *rb;
e3f3541c 3531 u64 enabled, running, now;
38ff667b
PZ
3532
3533 rcu_read_lock();
0d641208
EM
3534 /*
3535 * compute total_time_enabled, total_time_running
3536 * based on snapshot values taken when the event
3537 * was last scheduled in.
3538 *
3539 * we cannot simply called update_context_time()
3540 * because of locking issue as we can be called in
3541 * NMI context
3542 */
e3f3541c 3543 calc_timer_values(event, &now, &enabled, &running);
76369139
FW
3544 rb = rcu_dereference(event->rb);
3545 if (!rb)
38ff667b
PZ
3546 goto unlock;
3547
76369139 3548 userpg = rb->user_page;
37d81828 3549
7b732a75
PZ
3550 /*
3551 * Disable preemption so as to not let the corresponding user-space
3552 * spin too long if we get preempted.
3553 */
3554 preempt_disable();
37d81828 3555 ++userpg->lock;
92f22a38 3556 barrier();
cdd6c482 3557 userpg->index = perf_event_index(event);
b5e58793 3558 userpg->offset = perf_event_count(event);
365a4038 3559 if (userpg->index)
e7850595 3560 userpg->offset -= local64_read(&event->hw.prev_count);
7b732a75 3561
0d641208 3562 userpg->time_enabled = enabled +
cdd6c482 3563 atomic64_read(&event->child_total_time_enabled);
7f8b4e4e 3564
0d641208 3565 userpg->time_running = running +
cdd6c482 3566 atomic64_read(&event->child_total_time_running);
7f8b4e4e 3567
c7206205 3568 arch_perf_update_userpage(userpg, now);
e3f3541c 3569
92f22a38 3570 barrier();
37d81828 3571 ++userpg->lock;
7b732a75 3572 preempt_enable();
38ff667b 3573unlock:
7b732a75 3574 rcu_read_unlock();
37d81828
PM
3575}
3576
906010b2
PZ
3577static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
3578{
3579 struct perf_event *event = vma->vm_file->private_data;
76369139 3580 struct ring_buffer *rb;
906010b2
PZ
3581 int ret = VM_FAULT_SIGBUS;
3582
3583 if (vmf->flags & FAULT_FLAG_MKWRITE) {
3584 if (vmf->pgoff == 0)
3585 ret = 0;
3586 return ret;
3587 }
3588
3589 rcu_read_lock();
76369139
FW
3590 rb = rcu_dereference(event->rb);
3591 if (!rb)
906010b2
PZ
3592 goto unlock;
3593
3594 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
3595 goto unlock;
3596
76369139 3597 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
906010b2
PZ
3598 if (!vmf->page)
3599 goto unlock;
3600
3601 get_page(vmf->page);
3602 vmf->page->mapping = vma->vm_file->f_mapping;
3603 vmf->page->index = vmf->pgoff;
3604
3605 ret = 0;
3606unlock:
3607 rcu_read_unlock();
3608
3609 return ret;
3610}
3611
10c6db11
PZ
3612static void ring_buffer_attach(struct perf_event *event,
3613 struct ring_buffer *rb)
3614{
3615 unsigned long flags;
3616
3617 if (!list_empty(&event->rb_entry))
3618 return;
3619
3620 spin_lock_irqsave(&rb->event_lock, flags);
3621 if (!list_empty(&event->rb_entry))
3622 goto unlock;
3623
3624 list_add(&event->rb_entry, &rb->event_list);
3625unlock:
3626 spin_unlock_irqrestore(&rb->event_lock, flags);
3627}
3628
3629static void ring_buffer_detach(struct perf_event *event,
3630 struct ring_buffer *rb)
3631{
3632 unsigned long flags;
3633
3634 if (list_empty(&event->rb_entry))
3635 return;
3636
3637 spin_lock_irqsave(&rb->event_lock, flags);
3638 list_del_init(&event->rb_entry);
3639 wake_up_all(&event->waitq);
3640 spin_unlock_irqrestore(&rb->event_lock, flags);
3641}
3642
3643static void ring_buffer_wakeup(struct perf_event *event)
3644{
3645 struct ring_buffer *rb;
3646
3647 rcu_read_lock();
3648 rb = rcu_dereference(event->rb);
44b7f4b9
WD
3649 if (!rb)
3650 goto unlock;
3651
3652 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
10c6db11 3653 wake_up_all(&event->waitq);
44b7f4b9
WD
3654
3655unlock:
10c6db11
PZ
3656 rcu_read_unlock();
3657}
3658
76369139 3659static void rb_free_rcu(struct rcu_head *rcu_head)
906010b2 3660{
76369139 3661 struct ring_buffer *rb;
906010b2 3662
76369139
FW
3663 rb = container_of(rcu_head, struct ring_buffer, rcu_head);
3664 rb_free(rb);
7b732a75
PZ
3665}
3666
76369139 3667static struct ring_buffer *ring_buffer_get(struct perf_event *event)
7b732a75 3668{
76369139 3669 struct ring_buffer *rb;
7b732a75 3670
ac9721f3 3671 rcu_read_lock();
76369139
FW
3672 rb = rcu_dereference(event->rb);
3673 if (rb) {
3674 if (!atomic_inc_not_zero(&rb->refcount))
3675 rb = NULL;
ac9721f3
PZ
3676 }
3677 rcu_read_unlock();
3678
76369139 3679 return rb;
ac9721f3
PZ
3680}
3681
76369139 3682static void ring_buffer_put(struct ring_buffer *rb)
ac9721f3 3683{
10c6db11
PZ
3684 struct perf_event *event, *n;
3685 unsigned long flags;
3686
76369139 3687 if (!atomic_dec_and_test(&rb->refcount))
ac9721f3 3688 return;
7b732a75 3689
10c6db11
PZ
3690 spin_lock_irqsave(&rb->event_lock, flags);
3691 list_for_each_entry_safe(event, n, &rb->event_list, rb_entry) {
3692 list_del_init(&event->rb_entry);
3693 wake_up_all(&event->waitq);
3694 }
3695 spin_unlock_irqrestore(&rb->event_lock, flags);
3696
76369139 3697 call_rcu(&rb->rcu_head, rb_free_rcu);
7b732a75
PZ
3698}
3699
3700static void perf_mmap_open(struct vm_area_struct *vma)
3701{
cdd6c482 3702 struct perf_event *event = vma->vm_file->private_data;
7b732a75 3703
cdd6c482 3704 atomic_inc(&event->mmap_count);
7b732a75
PZ
3705}
3706
3707static void perf_mmap_close(struct vm_area_struct *vma)
3708{
cdd6c482 3709 struct perf_event *event = vma->vm_file->private_data;
7b732a75 3710
cdd6c482 3711 if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
76369139 3712 unsigned long size = perf_data_size(event->rb);
ac9721f3 3713 struct user_struct *user = event->mmap_user;
76369139 3714 struct ring_buffer *rb = event->rb;
789f90fc 3715
906010b2 3716 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
bc3e53f6 3717 vma->vm_mm->pinned_vm -= event->mmap_locked;
76369139 3718 rcu_assign_pointer(event->rb, NULL);
10c6db11 3719 ring_buffer_detach(event, rb);
cdd6c482 3720 mutex_unlock(&event->mmap_mutex);
ac9721f3 3721
76369139 3722 ring_buffer_put(rb);
ac9721f3 3723 free_uid(user);
7b732a75 3724 }
37d81828
PM
3725}
3726
f0f37e2f 3727static const struct vm_operations_struct perf_mmap_vmops = {
43a21ea8
PZ
3728 .open = perf_mmap_open,
3729 .close = perf_mmap_close,
3730 .fault = perf_mmap_fault,
3731 .page_mkwrite = perf_mmap_fault,
37d81828
PM
3732};
3733
3734static int perf_mmap(struct file *file, struct vm_area_struct *vma)
3735{
cdd6c482 3736 struct perf_event *event = file->private_data;
22a4f650 3737 unsigned long user_locked, user_lock_limit;
789f90fc 3738 struct user_struct *user = current_user();
22a4f650 3739 unsigned long locked, lock_limit;
76369139 3740 struct ring_buffer *rb;
7b732a75
PZ
3741 unsigned long vma_size;
3742 unsigned long nr_pages;
789f90fc 3743 long user_extra, extra;
d57e34fd 3744 int ret = 0, flags = 0;
37d81828 3745
c7920614
PZ
3746 /*
3747 * Don't allow mmap() of inherited per-task counters. This would
3748 * create a performance issue due to all children writing to the
76369139 3749 * same rb.
c7920614
PZ
3750 */
3751 if (event->cpu == -1 && event->attr.inherit)
3752 return -EINVAL;
3753
43a21ea8 3754 if (!(vma->vm_flags & VM_SHARED))
37d81828 3755 return -EINVAL;
7b732a75
PZ
3756
3757 vma_size = vma->vm_end - vma->vm_start;
3758 nr_pages = (vma_size / PAGE_SIZE) - 1;
3759
7730d865 3760 /*
76369139 3761 * If we have rb pages ensure they're a power-of-two number, so we
7730d865
PZ
3762 * can do bitmasks instead of modulo.
3763 */
3764 if (nr_pages != 0 && !is_power_of_2(nr_pages))
37d81828
PM
3765 return -EINVAL;
3766
7b732a75 3767 if (vma_size != PAGE_SIZE * (1 + nr_pages))
37d81828
PM
3768 return -EINVAL;
3769
7b732a75
PZ
3770 if (vma->vm_pgoff != 0)
3771 return -EINVAL;
37d81828 3772
cdd6c482
IM
3773 WARN_ON_ONCE(event->ctx->parent_ctx);
3774 mutex_lock(&event->mmap_mutex);
76369139
FW
3775 if (event->rb) {
3776 if (event->rb->nr_pages == nr_pages)
3777 atomic_inc(&event->rb->refcount);
ac9721f3 3778 else
ebb3c4c4
PZ
3779 ret = -EINVAL;
3780 goto unlock;
3781 }
3782
789f90fc 3783 user_extra = nr_pages + 1;
cdd6c482 3784 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
a3862d3f
IM
3785
3786 /*
3787 * Increase the limit linearly with more CPUs:
3788 */
3789 user_lock_limit *= num_online_cpus();
3790
789f90fc 3791 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
c5078f78 3792
789f90fc
PZ
3793 extra = 0;
3794 if (user_locked > user_lock_limit)
3795 extra = user_locked - user_lock_limit;
7b732a75 3796
78d7d407 3797 lock_limit = rlimit(RLIMIT_MEMLOCK);
7b732a75 3798 lock_limit >>= PAGE_SHIFT;
bc3e53f6 3799 locked = vma->vm_mm->pinned_vm + extra;
7b732a75 3800
459ec28a
IM
3801 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
3802 !capable(CAP_IPC_LOCK)) {
ebb3c4c4
PZ
3803 ret = -EPERM;
3804 goto unlock;
3805 }
7b732a75 3806
76369139 3807 WARN_ON(event->rb);
906010b2 3808
d57e34fd 3809 if (vma->vm_flags & VM_WRITE)
76369139 3810 flags |= RING_BUFFER_WRITABLE;
d57e34fd 3811
4ec8363d
VW
3812 rb = rb_alloc(nr_pages,
3813 event->attr.watermark ? event->attr.wakeup_watermark : 0,
3814 event->cpu, flags);
3815
76369139 3816 if (!rb) {
ac9721f3 3817 ret = -ENOMEM;
ebb3c4c4 3818 goto unlock;
ac9721f3 3819 }
76369139 3820 rcu_assign_pointer(event->rb, rb);
43a21ea8 3821
ac9721f3
PZ
3822 atomic_long_add(user_extra, &user->locked_vm);
3823 event->mmap_locked = extra;
3824 event->mmap_user = get_current_user();
bc3e53f6 3825 vma->vm_mm->pinned_vm += event->mmap_locked;
ac9721f3 3826
9a0f05cb
PZ
3827 perf_event_update_userpage(event);
3828
ebb3c4c4 3829unlock:
ac9721f3
PZ
3830 if (!ret)
3831 atomic_inc(&event->mmap_count);
cdd6c482 3832 mutex_unlock(&event->mmap_mutex);
37d81828 3833
314e51b9 3834 vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
37d81828 3835 vma->vm_ops = &perf_mmap_vmops;
7b732a75
PZ
3836
3837 return ret;
37d81828
PM
3838}
3839
3c446b3d
PZ
3840static int perf_fasync(int fd, struct file *filp, int on)
3841{
496ad9aa 3842 struct inode *inode = file_inode(filp);
cdd6c482 3843 struct perf_event *event = filp->private_data;
3c446b3d
PZ
3844 int retval;
3845
3846 mutex_lock(&inode->i_mutex);
cdd6c482 3847 retval = fasync_helper(fd, filp, on, &event->fasync);
3c446b3d
PZ
3848 mutex_unlock(&inode->i_mutex);
3849
3850 if (retval < 0)
3851 return retval;
3852
3853 return 0;
3854}
3855
0793a61d 3856static const struct file_operations perf_fops = {
3326c1ce 3857 .llseek = no_llseek,
0793a61d
TG
3858 .release = perf_release,
3859 .read = perf_read,
3860 .poll = perf_poll,
d859e29f
PM
3861 .unlocked_ioctl = perf_ioctl,
3862 .compat_ioctl = perf_ioctl,
37d81828 3863 .mmap = perf_mmap,
3c446b3d 3864 .fasync = perf_fasync,
0793a61d
TG
3865};
3866
925d519a 3867/*
cdd6c482 3868 * Perf event wakeup
925d519a
PZ
3869 *
3870 * If there's data, ensure we set the poll() state and publish everything
3871 * to user-space before waking everybody up.
3872 */
3873
cdd6c482 3874void perf_event_wakeup(struct perf_event *event)
925d519a 3875{
10c6db11 3876 ring_buffer_wakeup(event);
4c9e2542 3877
cdd6c482
IM
3878 if (event->pending_kill) {
3879 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
3880 event->pending_kill = 0;
4c9e2542 3881 }
925d519a
PZ
3882}
3883
e360adbe 3884static void perf_pending_event(struct irq_work *entry)
79f14641 3885{
cdd6c482
IM
3886 struct perf_event *event = container_of(entry,
3887 struct perf_event, pending);
79f14641 3888
cdd6c482
IM
3889 if (event->pending_disable) {
3890 event->pending_disable = 0;
3891 __perf_event_disable(event);
79f14641
PZ
3892 }
3893
cdd6c482
IM
3894 if (event->pending_wakeup) {
3895 event->pending_wakeup = 0;
3896 perf_event_wakeup(event);
79f14641
PZ
3897 }
3898}
3899
39447b38
ZY
3900/*
3901 * We assume there is only KVM supporting the callbacks.
3902 * Later on, we might change it to a list if there is
3903 * another virtualization implementation supporting the callbacks.
3904 */
3905struct perf_guest_info_callbacks *perf_guest_cbs;
3906
3907int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3908{
3909 perf_guest_cbs = cbs;
3910 return 0;
3911}
3912EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
3913
3914int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3915{
3916 perf_guest_cbs = NULL;
3917 return 0;
3918}
3919EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
3920
4018994f
JO
3921static void
3922perf_output_sample_regs(struct perf_output_handle *handle,
3923 struct pt_regs *regs, u64 mask)
3924{
3925 int bit;
3926
3927 for_each_set_bit(bit, (const unsigned long *) &mask,
3928 sizeof(mask) * BITS_PER_BYTE) {
3929 u64 val;
3930
3931 val = perf_reg_value(regs, bit);
3932 perf_output_put(handle, val);
3933 }
3934}
3935
3936static void perf_sample_regs_user(struct perf_regs_user *regs_user,
3937 struct pt_regs *regs)
3938{
3939 if (!user_mode(regs)) {
3940 if (current->mm)
3941 regs = task_pt_regs(current);
3942 else
3943 regs = NULL;
3944 }
3945
3946 if (regs) {
3947 regs_user->regs = regs;
3948 regs_user->abi = perf_reg_abi(current);
3949 }
3950}
3951
c5ebcedb
JO
3952/*
3953 * Get remaining task size from user stack pointer.
3954 *
3955 * It'd be better to take stack vma map and limit this more
3956 * precisly, but there's no way to get it safely under interrupt,
3957 * so using TASK_SIZE as limit.
3958 */
3959static u64 perf_ustack_task_size(struct pt_regs *regs)
3960{
3961 unsigned long addr = perf_user_stack_pointer(regs);
3962
3963 if (!addr || addr >= TASK_SIZE)
3964 return 0;
3965
3966 return TASK_SIZE - addr;
3967}
3968
3969static u16
3970perf_sample_ustack_size(u16 stack_size, u16 header_size,
3971 struct pt_regs *regs)
3972{
3973 u64 task_size;
3974
3975 /* No regs, no stack pointer, no dump. */
3976 if (!regs)
3977 return 0;
3978
3979 /*
3980 * Check if we fit in with the requested stack size into the:
3981 * - TASK_SIZE
3982 * If we don't, we limit the size to the TASK_SIZE.
3983 *
3984 * - remaining sample size
3985 * If we don't, we customize the stack size to
3986 * fit in to the remaining sample size.
3987 */
3988
3989 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
3990 stack_size = min(stack_size, (u16) task_size);
3991
3992 /* Current header size plus static size and dynamic size. */
3993 header_size += 2 * sizeof(u64);
3994
3995 /* Do we fit in with the current stack dump size? */
3996 if ((u16) (header_size + stack_size) < header_size) {
3997 /*
3998 * If we overflow the maximum size for the sample,
3999 * we customize the stack dump size to fit in.
4000 */
4001 stack_size = USHRT_MAX - header_size - sizeof(u64);
4002 stack_size = round_up(stack_size, sizeof(u64));
4003 }
4004
4005 return stack_size;
4006}
4007
4008static void
4009perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
4010 struct pt_regs *regs)
4011{
4012 /* Case of a kernel thread, nothing to dump */
4013 if (!regs) {
4014 u64 size = 0;
4015 perf_output_put(handle, size);
4016 } else {
4017 unsigned long sp;
4018 unsigned int rem;
4019 u64 dyn_size;
4020
4021 /*
4022 * We dump:
4023 * static size
4024 * - the size requested by user or the best one we can fit
4025 * in to the sample max size
4026 * data
4027 * - user stack dump data
4028 * dynamic size
4029 * - the actual dumped size
4030 */
4031
4032 /* Static size. */
4033 perf_output_put(handle, dump_size);
4034
4035 /* Data. */
4036 sp = perf_user_stack_pointer(regs);
4037 rem = __output_copy_user(handle, (void *) sp, dump_size);
4038 dyn_size = dump_size - rem;
4039
4040 perf_output_skip(handle, rem);
4041
4042 /* Dynamic size. */
4043 perf_output_put(handle, dyn_size);
4044 }
4045}
4046
c980d109
ACM
4047static void __perf_event_header__init_id(struct perf_event_header *header,
4048 struct perf_sample_data *data,
4049 struct perf_event *event)
6844c09d
ACM
4050{
4051 u64 sample_type = event->attr.sample_type;
4052
4053 data->type = sample_type;
4054 header->size += event->id_header_size;
4055
4056 if (sample_type & PERF_SAMPLE_TID) {
4057 /* namespace issues */
4058 data->tid_entry.pid = perf_event_pid(event, current);
4059 data->tid_entry.tid = perf_event_tid(event, current);
4060 }
4061
4062 if (sample_type & PERF_SAMPLE_TIME)
4063 data->time = perf_clock();
4064
4065 if (sample_type & PERF_SAMPLE_ID)
4066 data->id = primary_event_id(event);
4067
4068 if (sample_type & PERF_SAMPLE_STREAM_ID)
4069 data->stream_id = event->id;
4070
4071 if (sample_type & PERF_SAMPLE_CPU) {
4072 data->cpu_entry.cpu = raw_smp_processor_id();
4073 data->cpu_entry.reserved = 0;
4074 }
4075}
4076
76369139
FW
4077void perf_event_header__init_id(struct perf_event_header *header,
4078 struct perf_sample_data *data,
4079 struct perf_event *event)
c980d109
ACM
4080{
4081 if (event->attr.sample_id_all)
4082 __perf_event_header__init_id(header, data, event);
4083}
4084
4085static void __perf_event__output_id_sample(struct perf_output_handle *handle,
4086 struct perf_sample_data *data)
4087{
4088 u64 sample_type = data->type;
4089
4090 if (sample_type & PERF_SAMPLE_TID)
4091 perf_output_put(handle, data->tid_entry);
4092
4093 if (sample_type & PERF_SAMPLE_TIME)
4094 perf_output_put(handle, data->time);
4095
4096 if (sample_type & PERF_SAMPLE_ID)
4097 perf_output_put(handle, data->id);
4098
4099 if (sample_type & PERF_SAMPLE_STREAM_ID)
4100 perf_output_put(handle, data->stream_id);
4101
4102 if (sample_type & PERF_SAMPLE_CPU)
4103 perf_output_put(handle, data->cpu_entry);
4104}
4105
76369139
FW
4106void perf_event__output_id_sample(struct perf_event *event,
4107 struct perf_output_handle *handle,
4108 struct perf_sample_data *sample)
c980d109
ACM
4109{
4110 if (event->attr.sample_id_all)
4111 __perf_event__output_id_sample(handle, sample);
4112}
4113
3dab77fb 4114static void perf_output_read_one(struct perf_output_handle *handle,
eed01528
SE
4115 struct perf_event *event,
4116 u64 enabled, u64 running)
3dab77fb 4117{
cdd6c482 4118 u64 read_format = event->attr.read_format;
3dab77fb
PZ
4119 u64 values[4];
4120 int n = 0;
4121
b5e58793 4122 values[n++] = perf_event_count(event);
3dab77fb 4123 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
eed01528 4124 values[n++] = enabled +
cdd6c482 4125 atomic64_read(&event->child_total_time_enabled);
3dab77fb
PZ
4126 }
4127 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
eed01528 4128 values[n++] = running +
cdd6c482 4129 atomic64_read(&event->child_total_time_running);
3dab77fb
PZ
4130 }
4131 if (read_format & PERF_FORMAT_ID)
cdd6c482 4132 values[n++] = primary_event_id(event);
3dab77fb 4133
76369139 4134 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
4135}
4136
4137/*
cdd6c482 4138 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3dab77fb
PZ
4139 */
4140static void perf_output_read_group(struct perf_output_handle *handle,
eed01528
SE
4141 struct perf_event *event,
4142 u64 enabled, u64 running)
3dab77fb 4143{
cdd6c482
IM
4144 struct perf_event *leader = event->group_leader, *sub;
4145 u64 read_format = event->attr.read_format;
3dab77fb
PZ
4146 u64 values[5];
4147 int n = 0;
4148
4149 values[n++] = 1 + leader->nr_siblings;
4150
4151 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
eed01528 4152 values[n++] = enabled;
3dab77fb
PZ
4153
4154 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
eed01528 4155 values[n++] = running;
3dab77fb 4156
cdd6c482 4157 if (leader != event)
3dab77fb
PZ
4158 leader->pmu->read(leader);
4159
b5e58793 4160 values[n++] = perf_event_count(leader);
3dab77fb 4161 if (read_format & PERF_FORMAT_ID)
cdd6c482 4162 values[n++] = primary_event_id(leader);
3dab77fb 4163
76369139 4164 __output_copy(handle, values, n * sizeof(u64));
3dab77fb 4165
65abc865 4166 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3dab77fb
PZ
4167 n = 0;
4168
cdd6c482 4169 if (sub != event)
3dab77fb
PZ
4170 sub->pmu->read(sub);
4171
b5e58793 4172 values[n++] = perf_event_count(sub);
3dab77fb 4173 if (read_format & PERF_FORMAT_ID)
cdd6c482 4174 values[n++] = primary_event_id(sub);
3dab77fb 4175
76369139 4176 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
4177 }
4178}
4179
eed01528
SE
4180#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
4181 PERF_FORMAT_TOTAL_TIME_RUNNING)
4182
3dab77fb 4183static void perf_output_read(struct perf_output_handle *handle,
cdd6c482 4184 struct perf_event *event)
3dab77fb 4185{
e3f3541c 4186 u64 enabled = 0, running = 0, now;
eed01528
SE
4187 u64 read_format = event->attr.read_format;
4188
4189 /*
4190 * compute total_time_enabled, total_time_running
4191 * based on snapshot values taken when the event
4192 * was last scheduled in.
4193 *
4194 * we cannot simply called update_context_time()
4195 * because of locking issue as we are called in
4196 * NMI context
4197 */
c4794295 4198 if (read_format & PERF_FORMAT_TOTAL_TIMES)
e3f3541c 4199 calc_timer_values(event, &now, &enabled, &running);
eed01528 4200
cdd6c482 4201 if (event->attr.read_format & PERF_FORMAT_GROUP)
eed01528 4202 perf_output_read_group(handle, event, enabled, running);
3dab77fb 4203 else
eed01528 4204 perf_output_read_one(handle, event, enabled, running);
3dab77fb
PZ
4205}
4206
5622f295
MM
4207void perf_output_sample(struct perf_output_handle *handle,
4208 struct perf_event_header *header,
4209 struct perf_sample_data *data,
cdd6c482 4210 struct perf_event *event)
5622f295
MM
4211{
4212 u64 sample_type = data->type;
4213
4214 perf_output_put(handle, *header);
4215
4216 if (sample_type & PERF_SAMPLE_IP)
4217 perf_output_put(handle, data->ip);
4218
4219 if (sample_type & PERF_SAMPLE_TID)
4220 perf_output_put(handle, data->tid_entry);
4221
4222 if (sample_type & PERF_SAMPLE_TIME)
4223 perf_output_put(handle, data->time);
4224
4225 if (sample_type & PERF_SAMPLE_ADDR)
4226 perf_output_put(handle, data->addr);
4227
4228 if (sample_type & PERF_SAMPLE_ID)
4229 perf_output_put(handle, data->id);
4230
4231 if (sample_type & PERF_SAMPLE_STREAM_ID)
4232 perf_output_put(handle, data->stream_id);
4233
4234 if (sample_type & PERF_SAMPLE_CPU)
4235 perf_output_put(handle, data->cpu_entry);
4236
4237 if (sample_type & PERF_SAMPLE_PERIOD)
4238 perf_output_put(handle, data->period);
4239
4240 if (sample_type & PERF_SAMPLE_READ)
cdd6c482 4241 perf_output_read(handle, event);
5622f295
MM
4242
4243 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4244 if (data->callchain) {
4245 int size = 1;
4246
4247 if (data->callchain)
4248 size += data->callchain->nr;
4249
4250 size *= sizeof(u64);
4251
76369139 4252 __output_copy(handle, data->callchain, size);
5622f295
MM
4253 } else {
4254 u64 nr = 0;
4255 perf_output_put(handle, nr);
4256 }
4257 }
4258
4259 if (sample_type & PERF_SAMPLE_RAW) {
4260 if (data->raw) {
4261 perf_output_put(handle, data->raw->size);
76369139
FW
4262 __output_copy(handle, data->raw->data,
4263 data->raw->size);
5622f295
MM
4264 } else {
4265 struct {
4266 u32 size;
4267 u32 data;
4268 } raw = {
4269 .size = sizeof(u32),
4270 .data = 0,
4271 };
4272 perf_output_put(handle, raw);
4273 }
4274 }
a7ac67ea
PZ
4275
4276 if (!event->attr.watermark) {
4277 int wakeup_events = event->attr.wakeup_events;
4278
4279 if (wakeup_events) {
4280 struct ring_buffer *rb = handle->rb;
4281 int events = local_inc_return(&rb->events);
4282
4283 if (events >= wakeup_events) {
4284 local_sub(wakeup_events, &rb->events);
4285 local_inc(&rb->wakeup);
4286 }
4287 }
4288 }
bce38cd5
SE
4289
4290 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4291 if (data->br_stack) {
4292 size_t size;
4293
4294 size = data->br_stack->nr
4295 * sizeof(struct perf_branch_entry);
4296
4297 perf_output_put(handle, data->br_stack->nr);
4298 perf_output_copy(handle, data->br_stack->entries, size);
4299 } else {
4300 /*
4301 * we always store at least the value of nr
4302 */
4303 u64 nr = 0;
4304 perf_output_put(handle, nr);
4305 }
4306 }
4018994f
JO
4307
4308 if (sample_type & PERF_SAMPLE_REGS_USER) {
4309 u64 abi = data->regs_user.abi;
4310
4311 /*
4312 * If there are no regs to dump, notice it through
4313 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
4314 */
4315 perf_output_put(handle, abi);
4316
4317 if (abi) {
4318 u64 mask = event->attr.sample_regs_user;
4319 perf_output_sample_regs(handle,
4320 data->regs_user.regs,
4321 mask);
4322 }
4323 }
c5ebcedb
JO
4324
4325 if (sample_type & PERF_SAMPLE_STACK_USER)
4326 perf_output_sample_ustack(handle,
4327 data->stack_user_size,
4328 data->regs_user.regs);
c3feedf2
AK
4329
4330 if (sample_type & PERF_SAMPLE_WEIGHT)
4331 perf_output_put(handle, data->weight);
d6be9ad6
SE
4332
4333 if (sample_type & PERF_SAMPLE_DATA_SRC)
4334 perf_output_put(handle, data->data_src.val);
5622f295
MM
4335}
4336
4337void perf_prepare_sample(struct perf_event_header *header,
4338 struct perf_sample_data *data,
cdd6c482 4339 struct perf_event *event,
5622f295 4340 struct pt_regs *regs)
7b732a75 4341{
cdd6c482 4342 u64 sample_type = event->attr.sample_type;
7b732a75 4343
cdd6c482 4344 header->type = PERF_RECORD_SAMPLE;
c320c7b7 4345 header->size = sizeof(*header) + event->header_size;
5622f295
MM
4346
4347 header->misc = 0;
4348 header->misc |= perf_misc_flags(regs);
6fab0192 4349
c980d109 4350 __perf_event_header__init_id(header, data, event);
6844c09d 4351
c320c7b7 4352 if (sample_type & PERF_SAMPLE_IP)
5622f295
MM
4353 data->ip = perf_instruction_pointer(regs);
4354
b23f3325 4355 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5622f295 4356 int size = 1;
394ee076 4357
e6dab5ff 4358 data->callchain = perf_callchain(event, regs);
5622f295
MM
4359
4360 if (data->callchain)
4361 size += data->callchain->nr;
4362
4363 header->size += size * sizeof(u64);
394ee076
PZ
4364 }
4365
3a43ce68 4366 if (sample_type & PERF_SAMPLE_RAW) {
a044560c
PZ
4367 int size = sizeof(u32);
4368
4369 if (data->raw)
4370 size += data->raw->size;
4371 else
4372 size += sizeof(u32);
4373
4374 WARN_ON_ONCE(size & (sizeof(u64)-1));
5622f295 4375 header->size += size;
7f453c24 4376 }
bce38cd5
SE
4377
4378 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
4379 int size = sizeof(u64); /* nr */
4380 if (data->br_stack) {
4381 size += data->br_stack->nr
4382 * sizeof(struct perf_branch_entry);
4383 }
4384 header->size += size;
4385 }
4018994f
JO
4386
4387 if (sample_type & PERF_SAMPLE_REGS_USER) {
4388 /* regs dump ABI info */
4389 int size = sizeof(u64);
4390
4391 perf_sample_regs_user(&data->regs_user, regs);
4392
4393 if (data->regs_user.regs) {
4394 u64 mask = event->attr.sample_regs_user;
4395 size += hweight64(mask) * sizeof(u64);
4396 }
4397
4398 header->size += size;
4399 }
c5ebcedb
JO
4400
4401 if (sample_type & PERF_SAMPLE_STACK_USER) {
4402 /*
4403 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
4404 * processed as the last one or have additional check added
4405 * in case new sample type is added, because we could eat
4406 * up the rest of the sample size.
4407 */
4408 struct perf_regs_user *uregs = &data->regs_user;
4409 u16 stack_size = event->attr.sample_stack_user;
4410 u16 size = sizeof(u64);
4411
4412 if (!uregs->abi)
4413 perf_sample_regs_user(uregs, regs);
4414
4415 stack_size = perf_sample_ustack_size(stack_size, header->size,
4416 uregs->regs);
4417
4418 /*
4419 * If there is something to dump, add space for the dump
4420 * itself and for the field that tells the dynamic size,
4421 * which is how many have been actually dumped.
4422 */
4423 if (stack_size)
4424 size += sizeof(u64) + stack_size;
4425
4426 data->stack_user_size = stack_size;
4427 header->size += size;
4428 }
5622f295 4429}
7f453c24 4430
a8b0ca17 4431static void perf_event_output(struct perf_event *event,
5622f295
MM
4432 struct perf_sample_data *data,
4433 struct pt_regs *regs)
4434{
4435 struct perf_output_handle handle;
4436 struct perf_event_header header;
689802b2 4437
927c7a9e
FW
4438 /* protect the callchain buffers */
4439 rcu_read_lock();
4440
cdd6c482 4441 perf_prepare_sample(&header, data, event, regs);
5c148194 4442
a7ac67ea 4443 if (perf_output_begin(&handle, event, header.size))
927c7a9e 4444 goto exit;
0322cd6e 4445
cdd6c482 4446 perf_output_sample(&handle, &header, data, event);
f413cdb8 4447
8a057d84 4448 perf_output_end(&handle);
927c7a9e
FW
4449
4450exit:
4451 rcu_read_unlock();
0322cd6e
PZ
4452}
4453
38b200d6 4454/*
cdd6c482 4455 * read event_id
38b200d6
PZ
4456 */
4457
4458struct perf_read_event {
4459 struct perf_event_header header;
4460
4461 u32 pid;
4462 u32 tid;
38b200d6
PZ
4463};
4464
4465static void
cdd6c482 4466perf_event_read_event(struct perf_event *event,
38b200d6
PZ
4467 struct task_struct *task)
4468{
4469 struct perf_output_handle handle;
c980d109 4470 struct perf_sample_data sample;
dfc65094 4471 struct perf_read_event read_event = {
38b200d6 4472 .header = {
cdd6c482 4473 .type = PERF_RECORD_READ,
38b200d6 4474 .misc = 0,
c320c7b7 4475 .size = sizeof(read_event) + event->read_size,
38b200d6 4476 },
cdd6c482
IM
4477 .pid = perf_event_pid(event, task),
4478 .tid = perf_event_tid(event, task),
38b200d6 4479 };
3dab77fb 4480 int ret;
38b200d6 4481
c980d109 4482 perf_event_header__init_id(&read_event.header, &sample, event);
a7ac67ea 4483 ret = perf_output_begin(&handle, event, read_event.header.size);
38b200d6
PZ
4484 if (ret)
4485 return;
4486
dfc65094 4487 perf_output_put(&handle, read_event);
cdd6c482 4488 perf_output_read(&handle, event);
c980d109 4489 perf_event__output_id_sample(event, &handle, &sample);
3dab77fb 4490
38b200d6
PZ
4491 perf_output_end(&handle);
4492}
4493
52d857a8
JO
4494typedef int (perf_event_aux_match_cb)(struct perf_event *event, void *data);
4495typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);
4496
4497static void
4498perf_event_aux_ctx(struct perf_event_context *ctx,
4499 perf_event_aux_match_cb match,
4500 perf_event_aux_output_cb output,
4501 void *data)
4502{
4503 struct perf_event *event;
4504
4505 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4506 if (event->state < PERF_EVENT_STATE_INACTIVE)
4507 continue;
4508 if (!event_filter_match(event))
4509 continue;
4510 if (match(event, data))
4511 output(event, data);
4512 }
4513}
4514
4515static void
4516perf_event_aux(perf_event_aux_match_cb match,
4517 perf_event_aux_output_cb output,
4518 void *data,
4519 struct perf_event_context *task_ctx)
4520{
4521 struct perf_cpu_context *cpuctx;
4522 struct perf_event_context *ctx;
4523 struct pmu *pmu;
4524 int ctxn;
4525
4526 rcu_read_lock();
4527 list_for_each_entry_rcu(pmu, &pmus, entry) {
4528 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4529 if (cpuctx->unique_pmu != pmu)
4530 goto next;
4531 perf_event_aux_ctx(&cpuctx->ctx, match, output, data);
4532 if (task_ctx)
4533 goto next;
4534 ctxn = pmu->task_ctx_nr;
4535 if (ctxn < 0)
4536 goto next;
4537 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4538 if (ctx)
4539 perf_event_aux_ctx(ctx, match, output, data);
4540next:
4541 put_cpu_ptr(pmu->pmu_cpu_context);
4542 }
4543
4544 if (task_ctx) {
4545 preempt_disable();
4546 perf_event_aux_ctx(task_ctx, match, output, data);
4547 preempt_enable();
4548 }
4549 rcu_read_unlock();
4550}
4551
60313ebe 4552/*
9f498cc5
PZ
4553 * task tracking -- fork/exit
4554 *
3af9e859 4555 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
60313ebe
PZ
4556 */
4557
9f498cc5 4558struct perf_task_event {
3a80b4a3 4559 struct task_struct *task;
cdd6c482 4560 struct perf_event_context *task_ctx;
60313ebe
PZ
4561
4562 struct {
4563 struct perf_event_header header;
4564
4565 u32 pid;
4566 u32 ppid;
9f498cc5
PZ
4567 u32 tid;
4568 u32 ptid;
393b2ad8 4569 u64 time;
cdd6c482 4570 } event_id;
60313ebe
PZ
4571};
4572
cdd6c482 4573static void perf_event_task_output(struct perf_event *event,
52d857a8 4574 void *data)
60313ebe 4575{
52d857a8 4576 struct perf_task_event *task_event = data;
60313ebe 4577 struct perf_output_handle handle;
c980d109 4578 struct perf_sample_data sample;
9f498cc5 4579 struct task_struct *task = task_event->task;
c980d109 4580 int ret, size = task_event->event_id.header.size;
8bb39f9a 4581
c980d109 4582 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
60313ebe 4583
c980d109 4584 ret = perf_output_begin(&handle, event,
a7ac67ea 4585 task_event->event_id.header.size);
ef60777c 4586 if (ret)
c980d109 4587 goto out;
60313ebe 4588
cdd6c482
IM
4589 task_event->event_id.pid = perf_event_pid(event, task);
4590 task_event->event_id.ppid = perf_event_pid(event, current);
60313ebe 4591
cdd6c482
IM
4592 task_event->event_id.tid = perf_event_tid(event, task);
4593 task_event->event_id.ptid = perf_event_tid(event, current);
9f498cc5 4594
cdd6c482 4595 perf_output_put(&handle, task_event->event_id);
393b2ad8 4596
c980d109
ACM
4597 perf_event__output_id_sample(event, &handle, &sample);
4598
60313ebe 4599 perf_output_end(&handle);
c980d109
ACM
4600out:
4601 task_event->event_id.header.size = size;
60313ebe
PZ
4602}
4603
52d857a8
JO
4604static int perf_event_task_match(struct perf_event *event,
4605 void *data __maybe_unused)
60313ebe 4606{
52d857a8
JO
4607 return event->attr.comm || event->attr.mmap ||
4608 event->attr.mmap_data || event->attr.task;
60313ebe
PZ
4609}
4610
cdd6c482
IM
4611static void perf_event_task(struct task_struct *task,
4612 struct perf_event_context *task_ctx,
3a80b4a3 4613 int new)
60313ebe 4614{
9f498cc5 4615 struct perf_task_event task_event;
60313ebe 4616
cdd6c482
IM
4617 if (!atomic_read(&nr_comm_events) &&
4618 !atomic_read(&nr_mmap_events) &&
4619 !atomic_read(&nr_task_events))
60313ebe
PZ
4620 return;
4621
9f498cc5 4622 task_event = (struct perf_task_event){
3a80b4a3
PZ
4623 .task = task,
4624 .task_ctx = task_ctx,
cdd6c482 4625 .event_id = {
60313ebe 4626 .header = {
cdd6c482 4627 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
573402db 4628 .misc = 0,
cdd6c482 4629 .size = sizeof(task_event.event_id),
60313ebe 4630 },
573402db
PZ
4631 /* .pid */
4632 /* .ppid */
9f498cc5
PZ
4633 /* .tid */
4634 /* .ptid */
6f93d0a7 4635 .time = perf_clock(),
60313ebe
PZ
4636 },
4637 };
4638
52d857a8
JO
4639 perf_event_aux(perf_event_task_match,
4640 perf_event_task_output,
4641 &task_event,
4642 task_ctx);
9f498cc5
PZ
4643}
4644
cdd6c482 4645void perf_event_fork(struct task_struct *task)
9f498cc5 4646{
cdd6c482 4647 perf_event_task(task, NULL, 1);
60313ebe
PZ
4648}
4649
8d1b2d93
PZ
4650/*
4651 * comm tracking
4652 */
4653
4654struct perf_comm_event {
22a4f650
IM
4655 struct task_struct *task;
4656 char *comm;
8d1b2d93
PZ
4657 int comm_size;
4658
4659 struct {
4660 struct perf_event_header header;
4661
4662 u32 pid;
4663 u32 tid;
cdd6c482 4664 } event_id;
8d1b2d93
PZ
4665};
4666
cdd6c482 4667static void perf_event_comm_output(struct perf_event *event,
52d857a8 4668 void *data)
8d1b2d93 4669{
52d857a8 4670 struct perf_comm_event *comm_event = data;
8d1b2d93 4671 struct perf_output_handle handle;
c980d109 4672 struct perf_sample_data sample;
cdd6c482 4673 int size = comm_event->event_id.header.size;
c980d109
ACM
4674 int ret;
4675
4676 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
4677 ret = perf_output_begin(&handle, event,
a7ac67ea 4678 comm_event->event_id.header.size);
8d1b2d93
PZ
4679
4680 if (ret)
c980d109 4681 goto out;
8d1b2d93 4682
cdd6c482
IM
4683 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
4684 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
709e50cf 4685
cdd6c482 4686 perf_output_put(&handle, comm_event->event_id);
76369139 4687 __output_copy(&handle, comm_event->comm,
8d1b2d93 4688 comm_event->comm_size);
c980d109
ACM
4689
4690 perf_event__output_id_sample(event, &handle, &sample);
4691
8d1b2d93 4692 perf_output_end(&handle);
c980d109
ACM
4693out:
4694 comm_event->event_id.header.size = size;
8d1b2d93
PZ
4695}
4696
52d857a8
JO
4697static int perf_event_comm_match(struct perf_event *event,
4698 void *data __maybe_unused)
8d1b2d93 4699{
52d857a8 4700 return event->attr.comm;
8d1b2d93
PZ
4701}
4702
cdd6c482 4703static void perf_event_comm_event(struct perf_comm_event *comm_event)
8d1b2d93 4704{
413ee3b4 4705 char comm[TASK_COMM_LEN];
8d1b2d93 4706 unsigned int size;
8d1b2d93 4707
413ee3b4 4708 memset(comm, 0, sizeof(comm));
96b02d78 4709 strlcpy(comm, comm_event->task->comm, sizeof(comm));
888fcee0 4710 size = ALIGN(strlen(comm)+1, sizeof(u64));
8d1b2d93
PZ
4711
4712 comm_event->comm = comm;
4713 comm_event->comm_size = size;
4714
cdd6c482 4715 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
8dc85d54 4716
52d857a8
JO
4717 perf_event_aux(perf_event_comm_match,
4718 perf_event_comm_output,
4719 comm_event,
4720 NULL);
8d1b2d93
PZ
4721}
4722
cdd6c482 4723void perf_event_comm(struct task_struct *task)
8d1b2d93 4724{
9ee318a7 4725 struct perf_comm_event comm_event;
8dc85d54
PZ
4726 struct perf_event_context *ctx;
4727 int ctxn;
9ee318a7 4728
c79aa0d9 4729 rcu_read_lock();
8dc85d54
PZ
4730 for_each_task_context_nr(ctxn) {
4731 ctx = task->perf_event_ctxp[ctxn];
4732 if (!ctx)
4733 continue;
9ee318a7 4734
8dc85d54
PZ
4735 perf_event_enable_on_exec(ctx);
4736 }
c79aa0d9 4737 rcu_read_unlock();
9ee318a7 4738
cdd6c482 4739 if (!atomic_read(&nr_comm_events))
9ee318a7 4740 return;
a63eaf34 4741
9ee318a7 4742 comm_event = (struct perf_comm_event){
8d1b2d93 4743 .task = task,
573402db
PZ
4744 /* .comm */
4745 /* .comm_size */
cdd6c482 4746 .event_id = {
573402db 4747 .header = {
cdd6c482 4748 .type = PERF_RECORD_COMM,
573402db
PZ
4749 .misc = 0,
4750 /* .size */
4751 },
4752 /* .pid */
4753 /* .tid */
8d1b2d93
PZ
4754 },
4755 };
4756
cdd6c482 4757 perf_event_comm_event(&comm_event);
8d1b2d93
PZ
4758}
4759
0a4a9391
PZ
4760/*
4761 * mmap tracking
4762 */
4763
4764struct perf_mmap_event {
089dd79d
PZ
4765 struct vm_area_struct *vma;
4766
4767 const char *file_name;
4768 int file_size;
0a4a9391
PZ
4769
4770 struct {
4771 struct perf_event_header header;
4772
4773 u32 pid;
4774 u32 tid;
4775 u64 start;
4776 u64 len;
4777 u64 pgoff;
cdd6c482 4778 } event_id;
0a4a9391
PZ
4779};
4780
cdd6c482 4781static void perf_event_mmap_output(struct perf_event *event,
52d857a8 4782 void *data)
0a4a9391 4783{
52d857a8 4784 struct perf_mmap_event *mmap_event = data;
0a4a9391 4785 struct perf_output_handle handle;
c980d109 4786 struct perf_sample_data sample;
cdd6c482 4787 int size = mmap_event->event_id.header.size;
c980d109 4788 int ret;
0a4a9391 4789
c980d109
ACM
4790 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
4791 ret = perf_output_begin(&handle, event,
a7ac67ea 4792 mmap_event->event_id.header.size);
0a4a9391 4793 if (ret)
c980d109 4794 goto out;
0a4a9391 4795
cdd6c482
IM
4796 mmap_event->event_id.pid = perf_event_pid(event, current);
4797 mmap_event->event_id.tid = perf_event_tid(event, current);
709e50cf 4798
cdd6c482 4799 perf_output_put(&handle, mmap_event->event_id);
76369139 4800 __output_copy(&handle, mmap_event->file_name,
0a4a9391 4801 mmap_event->file_size);
c980d109
ACM
4802
4803 perf_event__output_id_sample(event, &handle, &sample);
4804
78d613eb 4805 perf_output_end(&handle);
c980d109
ACM
4806out:
4807 mmap_event->event_id.header.size = size;
0a4a9391
PZ
4808}
4809
cdd6c482 4810static int perf_event_mmap_match(struct perf_event *event,
52d857a8 4811 void *data)
0a4a9391 4812{
52d857a8
JO
4813 struct perf_mmap_event *mmap_event = data;
4814 struct vm_area_struct *vma = mmap_event->vma;
4815 int executable = vma->vm_flags & VM_EXEC;
0a4a9391 4816
52d857a8
JO
4817 return (!executable && event->attr.mmap_data) ||
4818 (executable && event->attr.mmap);
0a4a9391
PZ
4819}
4820
cdd6c482 4821static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
0a4a9391 4822{
089dd79d
PZ
4823 struct vm_area_struct *vma = mmap_event->vma;
4824 struct file *file = vma->vm_file;
0a4a9391
PZ
4825 unsigned int size;
4826 char tmp[16];
4827 char *buf = NULL;
089dd79d 4828 const char *name;
0a4a9391 4829
413ee3b4
AB
4830 memset(tmp, 0, sizeof(tmp));
4831
0a4a9391 4832 if (file) {
413ee3b4 4833 /*
76369139 4834 * d_path works from the end of the rb backwards, so we
413ee3b4
AB
4835 * need to add enough zero bytes after the string to handle
4836 * the 64bit alignment we do later.
4837 */
4838 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
0a4a9391
PZ
4839 if (!buf) {
4840 name = strncpy(tmp, "//enomem", sizeof(tmp));
4841 goto got_name;
4842 }
d3d21c41 4843 name = d_path(&file->f_path, buf, PATH_MAX);
0a4a9391
PZ
4844 if (IS_ERR(name)) {
4845 name = strncpy(tmp, "//toolong", sizeof(tmp));
4846 goto got_name;
4847 }
4848 } else {
413ee3b4
AB
4849 if (arch_vma_name(mmap_event->vma)) {
4850 name = strncpy(tmp, arch_vma_name(mmap_event->vma),
c97847d2
CG
4851 sizeof(tmp) - 1);
4852 tmp[sizeof(tmp) - 1] = '\0';
089dd79d 4853 goto got_name;
413ee3b4 4854 }
089dd79d
PZ
4855
4856 if (!vma->vm_mm) {
4857 name = strncpy(tmp, "[vdso]", sizeof(tmp));
4858 goto got_name;
3af9e859
EM
4859 } else if (vma->vm_start <= vma->vm_mm->start_brk &&
4860 vma->vm_end >= vma->vm_mm->brk) {
4861 name = strncpy(tmp, "[heap]", sizeof(tmp));
4862 goto got_name;
4863 } else if (vma->vm_start <= vma->vm_mm->start_stack &&
4864 vma->vm_end >= vma->vm_mm->start_stack) {
4865 name = strncpy(tmp, "[stack]", sizeof(tmp));
4866 goto got_name;
089dd79d
PZ
4867 }
4868
0a4a9391
PZ
4869 name = strncpy(tmp, "//anon", sizeof(tmp));
4870 goto got_name;
4871 }
4872
4873got_name:
888fcee0 4874 size = ALIGN(strlen(name)+1, sizeof(u64));
0a4a9391
PZ
4875
4876 mmap_event->file_name = name;
4877 mmap_event->file_size = size;
4878
2fe85427
SE
4879 if (!(vma->vm_flags & VM_EXEC))
4880 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
4881
cdd6c482 4882 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
0a4a9391 4883
52d857a8
JO
4884 perf_event_aux(perf_event_mmap_match,
4885 perf_event_mmap_output,
4886 mmap_event,
4887 NULL);
665c2142 4888
0a4a9391
PZ
4889 kfree(buf);
4890}
4891
3af9e859 4892void perf_event_mmap(struct vm_area_struct *vma)
0a4a9391 4893{
9ee318a7
PZ
4894 struct perf_mmap_event mmap_event;
4895
cdd6c482 4896 if (!atomic_read(&nr_mmap_events))
9ee318a7
PZ
4897 return;
4898
4899 mmap_event = (struct perf_mmap_event){
089dd79d 4900 .vma = vma,
573402db
PZ
4901 /* .file_name */
4902 /* .file_size */
cdd6c482 4903 .event_id = {
573402db 4904 .header = {
cdd6c482 4905 .type = PERF_RECORD_MMAP,
39447b38 4906 .misc = PERF_RECORD_MISC_USER,
573402db
PZ
4907 /* .size */
4908 },
4909 /* .pid */
4910 /* .tid */
089dd79d
PZ
4911 .start = vma->vm_start,
4912 .len = vma->vm_end - vma->vm_start,
3a0304e9 4913 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
0a4a9391
PZ
4914 },
4915 };
4916
cdd6c482 4917 perf_event_mmap_event(&mmap_event);
0a4a9391
PZ
4918}
4919
a78ac325
PZ
4920/*
4921 * IRQ throttle logging
4922 */
4923
cdd6c482 4924static void perf_log_throttle(struct perf_event *event, int enable)
a78ac325
PZ
4925{
4926 struct perf_output_handle handle;
c980d109 4927 struct perf_sample_data sample;
a78ac325
PZ
4928 int ret;
4929
4930 struct {
4931 struct perf_event_header header;
4932 u64 time;
cca3f454 4933 u64 id;
7f453c24 4934 u64 stream_id;
a78ac325
PZ
4935 } throttle_event = {
4936 .header = {
cdd6c482 4937 .type = PERF_RECORD_THROTTLE,
a78ac325
PZ
4938 .misc = 0,
4939 .size = sizeof(throttle_event),
4940 },
def0a9b2 4941 .time = perf_clock(),
cdd6c482
IM
4942 .id = primary_event_id(event),
4943 .stream_id = event->id,
a78ac325
PZ
4944 };
4945
966ee4d6 4946 if (enable)
cdd6c482 4947 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
966ee4d6 4948
c980d109
ACM
4949 perf_event_header__init_id(&throttle_event.header, &sample, event);
4950
4951 ret = perf_output_begin(&handle, event,
a7ac67ea 4952 throttle_event.header.size);
a78ac325
PZ
4953 if (ret)
4954 return;
4955
4956 perf_output_put(&handle, throttle_event);
c980d109 4957 perf_event__output_id_sample(event, &handle, &sample);
a78ac325
PZ
4958 perf_output_end(&handle);
4959}
4960
f6c7d5fe 4961/*
cdd6c482 4962 * Generic event overflow handling, sampling.
f6c7d5fe
PZ
4963 */
4964
a8b0ca17 4965static int __perf_event_overflow(struct perf_event *event,
5622f295
MM
4966 int throttle, struct perf_sample_data *data,
4967 struct pt_regs *regs)
f6c7d5fe 4968{
cdd6c482
IM
4969 int events = atomic_read(&event->event_limit);
4970 struct hw_perf_event *hwc = &event->hw;
e050e3f0 4971 u64 seq;
79f14641
PZ
4972 int ret = 0;
4973
96398826
PZ
4974 /*
4975 * Non-sampling counters might still use the PMI to fold short
4976 * hardware counters, ignore those.
4977 */
4978 if (unlikely(!is_sampling_event(event)))
4979 return 0;
4980
e050e3f0
SE
4981 seq = __this_cpu_read(perf_throttled_seq);
4982 if (seq != hwc->interrupts_seq) {
4983 hwc->interrupts_seq = seq;
4984 hwc->interrupts = 1;
4985 } else {
4986 hwc->interrupts++;
4987 if (unlikely(throttle
4988 && hwc->interrupts >= max_samples_per_tick)) {
4989 __this_cpu_inc(perf_throttled_count);
163ec435
PZ
4990 hwc->interrupts = MAX_INTERRUPTS;
4991 perf_log_throttle(event, 0);
a78ac325
PZ
4992 ret = 1;
4993 }
e050e3f0 4994 }
60db5e09 4995
cdd6c482 4996 if (event->attr.freq) {
def0a9b2 4997 u64 now = perf_clock();
abd50713 4998 s64 delta = now - hwc->freq_time_stamp;
bd2b5b12 4999
abd50713 5000 hwc->freq_time_stamp = now;
bd2b5b12 5001
abd50713 5002 if (delta > 0 && delta < 2*TICK_NSEC)
f39d47ff 5003 perf_adjust_period(event, delta, hwc->last_period, true);
bd2b5b12
PZ
5004 }
5005
2023b359
PZ
5006 /*
5007 * XXX event_limit might not quite work as expected on inherited
cdd6c482 5008 * events
2023b359
PZ
5009 */
5010
cdd6c482
IM
5011 event->pending_kill = POLL_IN;
5012 if (events && atomic_dec_and_test(&event->event_limit)) {
79f14641 5013 ret = 1;
cdd6c482 5014 event->pending_kill = POLL_HUP;
a8b0ca17
PZ
5015 event->pending_disable = 1;
5016 irq_work_queue(&event->pending);
79f14641
PZ
5017 }
5018
453f19ee 5019 if (event->overflow_handler)
a8b0ca17 5020 event->overflow_handler(event, data, regs);
453f19ee 5021 else
a8b0ca17 5022 perf_event_output(event, data, regs);
453f19ee 5023
f506b3dc 5024 if (event->fasync && event->pending_kill) {
a8b0ca17
PZ
5025 event->pending_wakeup = 1;
5026 irq_work_queue(&event->pending);
f506b3dc
PZ
5027 }
5028
79f14641 5029 return ret;
f6c7d5fe
PZ
5030}
5031
a8b0ca17 5032int perf_event_overflow(struct perf_event *event,
5622f295
MM
5033 struct perf_sample_data *data,
5034 struct pt_regs *regs)
850bc73f 5035{
a8b0ca17 5036 return __perf_event_overflow(event, 1, data, regs);
850bc73f
PZ
5037}
5038
15dbf27c 5039/*
cdd6c482 5040 * Generic software event infrastructure
15dbf27c
PZ
5041 */
5042
b28ab83c
PZ
5043struct swevent_htable {
5044 struct swevent_hlist *swevent_hlist;
5045 struct mutex hlist_mutex;
5046 int hlist_refcount;
5047
5048 /* Recursion avoidance in each contexts */
5049 int recursion[PERF_NR_CONTEXTS];
5050};
5051
5052static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
5053
7b4b6658 5054/*
cdd6c482
IM
5055 * We directly increment event->count and keep a second value in
5056 * event->hw.period_left to count intervals. This period event
7b4b6658
PZ
5057 * is kept in the range [-sample_period, 0] so that we can use the
5058 * sign as trigger.
5059 */
5060
ab573844 5061u64 perf_swevent_set_period(struct perf_event *event)
15dbf27c 5062{
cdd6c482 5063 struct hw_perf_event *hwc = &event->hw;
7b4b6658
PZ
5064 u64 period = hwc->last_period;
5065 u64 nr, offset;
5066 s64 old, val;
5067
5068 hwc->last_period = hwc->sample_period;
15dbf27c
PZ
5069
5070again:
e7850595 5071 old = val = local64_read(&hwc->period_left);
7b4b6658
PZ
5072 if (val < 0)
5073 return 0;
15dbf27c 5074
7b4b6658
PZ
5075 nr = div64_u64(period + val, period);
5076 offset = nr * period;
5077 val -= offset;
e7850595 5078 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7b4b6658 5079 goto again;
15dbf27c 5080
7b4b6658 5081 return nr;
15dbf27c
PZ
5082}
5083
0cff784a 5084static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
a8b0ca17 5085 struct perf_sample_data *data,
5622f295 5086 struct pt_regs *regs)
15dbf27c 5087{
cdd6c482 5088 struct hw_perf_event *hwc = &event->hw;
850bc73f 5089 int throttle = 0;
15dbf27c 5090
0cff784a
PZ
5091 if (!overflow)
5092 overflow = perf_swevent_set_period(event);
15dbf27c 5093
7b4b6658
PZ
5094 if (hwc->interrupts == MAX_INTERRUPTS)
5095 return;
15dbf27c 5096
7b4b6658 5097 for (; overflow; overflow--) {
a8b0ca17 5098 if (__perf_event_overflow(event, throttle,
5622f295 5099 data, regs)) {
7b4b6658
PZ
5100 /*
5101 * We inhibit the overflow from happening when
5102 * hwc->interrupts == MAX_INTERRUPTS.
5103 */
5104 break;
5105 }
cf450a73 5106 throttle = 1;
7b4b6658 5107 }
15dbf27c
PZ
5108}
5109
a4eaf7f1 5110static void perf_swevent_event(struct perf_event *event, u64 nr,
a8b0ca17 5111 struct perf_sample_data *data,
5622f295 5112 struct pt_regs *regs)
7b4b6658 5113{
cdd6c482 5114 struct hw_perf_event *hwc = &event->hw;
d6d020e9 5115
e7850595 5116 local64_add(nr, &event->count);
d6d020e9 5117
0cff784a
PZ
5118 if (!regs)
5119 return;
5120
6c7e550f 5121 if (!is_sampling_event(event))
7b4b6658 5122 return;
d6d020e9 5123
5d81e5cf
AV
5124 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
5125 data->period = nr;
5126 return perf_swevent_overflow(event, 1, data, regs);
5127 } else
5128 data->period = event->hw.last_period;
5129
0cff784a 5130 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
a8b0ca17 5131 return perf_swevent_overflow(event, 1, data, regs);
0cff784a 5132
e7850595 5133 if (local64_add_negative(nr, &hwc->period_left))
7b4b6658 5134 return;
df1a132b 5135
a8b0ca17 5136 perf_swevent_overflow(event, 0, data, regs);
d6d020e9
PZ
5137}
5138
f5ffe02e
FW
5139static int perf_exclude_event(struct perf_event *event,
5140 struct pt_regs *regs)
5141{
a4eaf7f1 5142 if (event->hw.state & PERF_HES_STOPPED)
91b2f482 5143 return 1;
a4eaf7f1 5144
f5ffe02e
FW
5145 if (regs) {
5146 if (event->attr.exclude_user && user_mode(regs))
5147 return 1;
5148
5149 if (event->attr.exclude_kernel && !user_mode(regs))
5150 return 1;
5151 }
5152
5153 return 0;
5154}
5155
cdd6c482 5156static int perf_swevent_match(struct perf_event *event,
1c432d89 5157 enum perf_type_id type,
6fb2915d
LZ
5158 u32 event_id,
5159 struct perf_sample_data *data,
5160 struct pt_regs *regs)
15dbf27c 5161{
cdd6c482 5162 if (event->attr.type != type)
a21ca2ca 5163 return 0;
f5ffe02e 5164
cdd6c482 5165 if (event->attr.config != event_id)
15dbf27c
PZ
5166 return 0;
5167
f5ffe02e
FW
5168 if (perf_exclude_event(event, regs))
5169 return 0;
15dbf27c
PZ
5170
5171 return 1;
5172}
5173
76e1d904
FW
5174static inline u64 swevent_hash(u64 type, u32 event_id)
5175{
5176 u64 val = event_id | (type << 32);
5177
5178 return hash_64(val, SWEVENT_HLIST_BITS);
5179}
5180
49f135ed
FW
5181static inline struct hlist_head *
5182__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
76e1d904 5183{
49f135ed
FW
5184 u64 hash = swevent_hash(type, event_id);
5185
5186 return &hlist->heads[hash];
5187}
76e1d904 5188
49f135ed
FW
5189/* For the read side: events when they trigger */
5190static inline struct hlist_head *
b28ab83c 5191find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
49f135ed
FW
5192{
5193 struct swevent_hlist *hlist;
76e1d904 5194
b28ab83c 5195 hlist = rcu_dereference(swhash->swevent_hlist);
76e1d904
FW
5196 if (!hlist)
5197 return NULL;
5198
49f135ed
FW
5199 return __find_swevent_head(hlist, type, event_id);
5200}
5201
5202/* For the event head insertion and removal in the hlist */
5203static inline struct hlist_head *
b28ab83c 5204find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
49f135ed
FW
5205{
5206 struct swevent_hlist *hlist;
5207 u32 event_id = event->attr.config;
5208 u64 type = event->attr.type;
5209
5210 /*
5211 * Event scheduling is always serialized against hlist allocation
5212 * and release. Which makes the protected version suitable here.
5213 * The context lock guarantees that.
5214 */
b28ab83c 5215 hlist = rcu_dereference_protected(swhash->swevent_hlist,
49f135ed
FW
5216 lockdep_is_held(&event->ctx->lock));
5217 if (!hlist)
5218 return NULL;
5219
5220 return __find_swevent_head(hlist, type, event_id);
76e1d904
FW
5221}
5222
5223static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
a8b0ca17 5224 u64 nr,
76e1d904
FW
5225 struct perf_sample_data *data,
5226 struct pt_regs *regs)
15dbf27c 5227{
b28ab83c 5228 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
cdd6c482 5229 struct perf_event *event;
76e1d904 5230 struct hlist_head *head;
15dbf27c 5231
76e1d904 5232 rcu_read_lock();
b28ab83c 5233 head = find_swevent_head_rcu(swhash, type, event_id);
76e1d904
FW
5234 if (!head)
5235 goto end;
5236
b67bfe0d 5237 hlist_for_each_entry_rcu(event, head, hlist_entry) {
6fb2915d 5238 if (perf_swevent_match(event, type, event_id, data, regs))
a8b0ca17 5239 perf_swevent_event(event, nr, data, regs);
15dbf27c 5240 }
76e1d904
FW
5241end:
5242 rcu_read_unlock();
15dbf27c
PZ
5243}
5244
4ed7c92d 5245int perf_swevent_get_recursion_context(void)
96f6d444 5246{
b28ab83c 5247 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
96f6d444 5248
b28ab83c 5249 return get_recursion_context(swhash->recursion);
96f6d444 5250}
645e8cc0 5251EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
96f6d444 5252
fa9f90be 5253inline void perf_swevent_put_recursion_context(int rctx)
15dbf27c 5254{
b28ab83c 5255 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
927c7a9e 5256
b28ab83c 5257 put_recursion_context(swhash->recursion, rctx);
ce71b9df 5258}
15dbf27c 5259
a8b0ca17 5260void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
b8e83514 5261{
a4234bfc 5262 struct perf_sample_data data;
4ed7c92d
PZ
5263 int rctx;
5264
1c024eca 5265 preempt_disable_notrace();
4ed7c92d
PZ
5266 rctx = perf_swevent_get_recursion_context();
5267 if (rctx < 0)
5268 return;
a4234bfc 5269
fd0d000b 5270 perf_sample_data_init(&data, addr, 0);
92bf309a 5271
a8b0ca17 5272 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
4ed7c92d
PZ
5273
5274 perf_swevent_put_recursion_context(rctx);
1c024eca 5275 preempt_enable_notrace();
b8e83514
PZ
5276}
5277
cdd6c482 5278static void perf_swevent_read(struct perf_event *event)
15dbf27c 5279{
15dbf27c
PZ
5280}
5281
a4eaf7f1 5282static int perf_swevent_add(struct perf_event *event, int flags)
15dbf27c 5283{
b28ab83c 5284 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
cdd6c482 5285 struct hw_perf_event *hwc = &event->hw;
76e1d904
FW
5286 struct hlist_head *head;
5287
6c7e550f 5288 if (is_sampling_event(event)) {
7b4b6658 5289 hwc->last_period = hwc->sample_period;
cdd6c482 5290 perf_swevent_set_period(event);
7b4b6658 5291 }
76e1d904 5292
a4eaf7f1
PZ
5293 hwc->state = !(flags & PERF_EF_START);
5294
b28ab83c 5295 head = find_swevent_head(swhash, event);
76e1d904
FW
5296 if (WARN_ON_ONCE(!head))
5297 return -EINVAL;
5298
5299 hlist_add_head_rcu(&event->hlist_entry, head);
5300
15dbf27c
PZ
5301 return 0;
5302}
5303
a4eaf7f1 5304static void perf_swevent_del(struct perf_event *event, int flags)
15dbf27c 5305{
76e1d904 5306 hlist_del_rcu(&event->hlist_entry);
15dbf27c
PZ
5307}
5308
a4eaf7f1 5309static void perf_swevent_start(struct perf_event *event, int flags)
5c92d124 5310{
a4eaf7f1 5311 event->hw.state = 0;
d6d020e9 5312}
aa9c4c0f 5313
a4eaf7f1 5314static void perf_swevent_stop(struct perf_event *event, int flags)
d6d020e9 5315{
a4eaf7f1 5316 event->hw.state = PERF_HES_STOPPED;
bae43c99
IM
5317}
5318
49f135ed
FW
5319/* Deref the hlist from the update side */
5320static inline struct swevent_hlist *
b28ab83c 5321swevent_hlist_deref(struct swevent_htable *swhash)
49f135ed 5322{
b28ab83c
PZ
5323 return rcu_dereference_protected(swhash->swevent_hlist,
5324 lockdep_is_held(&swhash->hlist_mutex));
49f135ed
FW
5325}
5326
b28ab83c 5327static void swevent_hlist_release(struct swevent_htable *swhash)
76e1d904 5328{
b28ab83c 5329 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
76e1d904 5330
49f135ed 5331 if (!hlist)
76e1d904
FW
5332 return;
5333
b28ab83c 5334 rcu_assign_pointer(swhash->swevent_hlist, NULL);
fa4bbc4c 5335 kfree_rcu(hlist, rcu_head);
76e1d904
FW
5336}
5337
5338static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
5339{
b28ab83c 5340 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904 5341
b28ab83c 5342 mutex_lock(&swhash->hlist_mutex);
76e1d904 5343
b28ab83c
PZ
5344 if (!--swhash->hlist_refcount)
5345 swevent_hlist_release(swhash);
76e1d904 5346
b28ab83c 5347 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
5348}
5349
5350static void swevent_hlist_put(struct perf_event *event)
5351{
5352 int cpu;
5353
5354 if (event->cpu != -1) {
5355 swevent_hlist_put_cpu(event, event->cpu);
5356 return;
5357 }
5358
5359 for_each_possible_cpu(cpu)
5360 swevent_hlist_put_cpu(event, cpu);
5361}
5362
5363static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
5364{
b28ab83c 5365 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904
FW
5366 int err = 0;
5367
b28ab83c 5368 mutex_lock(&swhash->hlist_mutex);
76e1d904 5369
b28ab83c 5370 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
76e1d904
FW
5371 struct swevent_hlist *hlist;
5372
5373 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
5374 if (!hlist) {
5375 err = -ENOMEM;
5376 goto exit;
5377 }
b28ab83c 5378 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 5379 }
b28ab83c 5380 swhash->hlist_refcount++;
9ed6060d 5381exit:
b28ab83c 5382 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
5383
5384 return err;
5385}
5386
5387static int swevent_hlist_get(struct perf_event *event)
5388{
5389 int err;
5390 int cpu, failed_cpu;
5391
5392 if (event->cpu != -1)
5393 return swevent_hlist_get_cpu(event, event->cpu);
5394
5395 get_online_cpus();
5396 for_each_possible_cpu(cpu) {
5397 err = swevent_hlist_get_cpu(event, cpu);
5398 if (err) {
5399 failed_cpu = cpu;
5400 goto fail;
5401 }
5402 }
5403 put_online_cpus();
5404
5405 return 0;
9ed6060d 5406fail:
76e1d904
FW
5407 for_each_possible_cpu(cpu) {
5408 if (cpu == failed_cpu)
5409 break;
5410 swevent_hlist_put_cpu(event, cpu);
5411 }
5412
5413 put_online_cpus();
5414 return err;
5415}
5416
c5905afb 5417struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
95476b64 5418
b0a873eb
PZ
5419static void sw_perf_event_destroy(struct perf_event *event)
5420{
5421 u64 event_id = event->attr.config;
95476b64 5422
b0a873eb
PZ
5423 WARN_ON(event->parent);
5424
c5905afb 5425 static_key_slow_dec(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
5426 swevent_hlist_put(event);
5427}
5428
5429static int perf_swevent_init(struct perf_event *event)
5430{
8176cced 5431 u64 event_id = event->attr.config;
b0a873eb
PZ
5432
5433 if (event->attr.type != PERF_TYPE_SOFTWARE)
5434 return -ENOENT;
5435
2481c5fa
SE
5436 /*
5437 * no branch sampling for software events
5438 */
5439 if (has_branch_stack(event))
5440 return -EOPNOTSUPP;
5441
b0a873eb
PZ
5442 switch (event_id) {
5443 case PERF_COUNT_SW_CPU_CLOCK:
5444 case PERF_COUNT_SW_TASK_CLOCK:
5445 return -ENOENT;
5446
5447 default:
5448 break;
5449 }
5450
ce677831 5451 if (event_id >= PERF_COUNT_SW_MAX)
b0a873eb
PZ
5452 return -ENOENT;
5453
5454 if (!event->parent) {
5455 int err;
5456
5457 err = swevent_hlist_get(event);
5458 if (err)
5459 return err;
5460
c5905afb 5461 static_key_slow_inc(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
5462 event->destroy = sw_perf_event_destroy;
5463 }
5464
5465 return 0;
5466}
5467
35edc2a5
PZ
5468static int perf_swevent_event_idx(struct perf_event *event)
5469{
5470 return 0;
5471}
5472
b0a873eb 5473static struct pmu perf_swevent = {
89a1e187 5474 .task_ctx_nr = perf_sw_context,
95476b64 5475
b0a873eb 5476 .event_init = perf_swevent_init,
a4eaf7f1
PZ
5477 .add = perf_swevent_add,
5478 .del = perf_swevent_del,
5479 .start = perf_swevent_start,
5480 .stop = perf_swevent_stop,
1c024eca 5481 .read = perf_swevent_read,
35edc2a5
PZ
5482
5483 .event_idx = perf_swevent_event_idx,
1c024eca
PZ
5484};
5485
b0a873eb
PZ
5486#ifdef CONFIG_EVENT_TRACING
5487
1c024eca
PZ
5488static int perf_tp_filter_match(struct perf_event *event,
5489 struct perf_sample_data *data)
5490{
5491 void *record = data->raw->data;
5492
5493 if (likely(!event->filter) || filter_match_preds(event->filter, record))
5494 return 1;
5495 return 0;
5496}
5497
5498static int perf_tp_event_match(struct perf_event *event,
5499 struct perf_sample_data *data,
5500 struct pt_regs *regs)
5501{
a0f7d0f7
FW
5502 if (event->hw.state & PERF_HES_STOPPED)
5503 return 0;
580d607c
PZ
5504 /*
5505 * All tracepoints are from kernel-space.
5506 */
5507 if (event->attr.exclude_kernel)
1c024eca
PZ
5508 return 0;
5509
5510 if (!perf_tp_filter_match(event, data))
5511 return 0;
5512
5513 return 1;
5514}
5515
5516void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
e6dab5ff
AV
5517 struct pt_regs *regs, struct hlist_head *head, int rctx,
5518 struct task_struct *task)
95476b64
FW
5519{
5520 struct perf_sample_data data;
1c024eca 5521 struct perf_event *event;
1c024eca 5522
95476b64
FW
5523 struct perf_raw_record raw = {
5524 .size = entry_size,
5525 .data = record,
5526 };
5527
fd0d000b 5528 perf_sample_data_init(&data, addr, 0);
95476b64
FW
5529 data.raw = &raw;
5530
b67bfe0d 5531 hlist_for_each_entry_rcu(event, head, hlist_entry) {
1c024eca 5532 if (perf_tp_event_match(event, &data, regs))
a8b0ca17 5533 perf_swevent_event(event, count, &data, regs);
4f41c013 5534 }
ecc55f84 5535
e6dab5ff
AV
5536 /*
5537 * If we got specified a target task, also iterate its context and
5538 * deliver this event there too.
5539 */
5540 if (task && task != current) {
5541 struct perf_event_context *ctx;
5542 struct trace_entry *entry = record;
5543
5544 rcu_read_lock();
5545 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
5546 if (!ctx)
5547 goto unlock;
5548
5549 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
5550 if (event->attr.type != PERF_TYPE_TRACEPOINT)
5551 continue;
5552 if (event->attr.config != entry->type)
5553 continue;
5554 if (perf_tp_event_match(event, &data, regs))
5555 perf_swevent_event(event, count, &data, regs);
5556 }
5557unlock:
5558 rcu_read_unlock();
5559 }
5560
ecc55f84 5561 perf_swevent_put_recursion_context(rctx);
95476b64
FW
5562}
5563EXPORT_SYMBOL_GPL(perf_tp_event);
5564
cdd6c482 5565static void tp_perf_event_destroy(struct perf_event *event)
e077df4f 5566{
1c024eca 5567 perf_trace_destroy(event);
e077df4f
PZ
5568}
5569
b0a873eb 5570static int perf_tp_event_init(struct perf_event *event)
e077df4f 5571{
76e1d904
FW
5572 int err;
5573
b0a873eb
PZ
5574 if (event->attr.type != PERF_TYPE_TRACEPOINT)
5575 return -ENOENT;
5576
2481c5fa
SE
5577 /*
5578 * no branch sampling for tracepoint events
5579 */
5580 if (has_branch_stack(event))
5581 return -EOPNOTSUPP;
5582
1c024eca
PZ
5583 err = perf_trace_init(event);
5584 if (err)
b0a873eb 5585 return err;
e077df4f 5586
cdd6c482 5587 event->destroy = tp_perf_event_destroy;
e077df4f 5588
b0a873eb
PZ
5589 return 0;
5590}
5591
5592static struct pmu perf_tracepoint = {
89a1e187
PZ
5593 .task_ctx_nr = perf_sw_context,
5594
b0a873eb 5595 .event_init = perf_tp_event_init,
a4eaf7f1
PZ
5596 .add = perf_trace_add,
5597 .del = perf_trace_del,
5598 .start = perf_swevent_start,
5599 .stop = perf_swevent_stop,
b0a873eb 5600 .read = perf_swevent_read,
35edc2a5
PZ
5601
5602 .event_idx = perf_swevent_event_idx,
b0a873eb
PZ
5603};
5604
5605static inline void perf_tp_register(void)
5606{
2e80a82a 5607 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
e077df4f 5608}
6fb2915d
LZ
5609
5610static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5611{
5612 char *filter_str;
5613 int ret;
5614
5615 if (event->attr.type != PERF_TYPE_TRACEPOINT)
5616 return -EINVAL;
5617
5618 filter_str = strndup_user(arg, PAGE_SIZE);
5619 if (IS_ERR(filter_str))
5620 return PTR_ERR(filter_str);
5621
5622 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
5623
5624 kfree(filter_str);
5625 return ret;
5626}
5627
5628static void perf_event_free_filter(struct perf_event *event)
5629{
5630 ftrace_profile_free_filter(event);
5631}
5632
e077df4f 5633#else
6fb2915d 5634
b0a873eb 5635static inline void perf_tp_register(void)
e077df4f 5636{
e077df4f 5637}
6fb2915d
LZ
5638
5639static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5640{
5641 return -ENOENT;
5642}
5643
5644static void perf_event_free_filter(struct perf_event *event)
5645{
5646}
5647
07b139c8 5648#endif /* CONFIG_EVENT_TRACING */
e077df4f 5649
24f1e32c 5650#ifdef CONFIG_HAVE_HW_BREAKPOINT
f5ffe02e 5651void perf_bp_event(struct perf_event *bp, void *data)
24f1e32c 5652{
f5ffe02e
FW
5653 struct perf_sample_data sample;
5654 struct pt_regs *regs = data;
5655
fd0d000b 5656 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
f5ffe02e 5657
a4eaf7f1 5658 if (!bp->hw.state && !perf_exclude_event(bp, regs))
a8b0ca17 5659 perf_swevent_event(bp, 1, &sample, regs);
24f1e32c
FW
5660}
5661#endif
5662
b0a873eb
PZ
5663/*
5664 * hrtimer based swevent callback
5665 */
f29ac756 5666
b0a873eb 5667static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
f29ac756 5668{
b0a873eb
PZ
5669 enum hrtimer_restart ret = HRTIMER_RESTART;
5670 struct perf_sample_data data;
5671 struct pt_regs *regs;
5672 struct perf_event *event;
5673 u64 period;
f29ac756 5674
b0a873eb 5675 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
ba3dd36c
PZ
5676
5677 if (event->state != PERF_EVENT_STATE_ACTIVE)
5678 return HRTIMER_NORESTART;
5679
b0a873eb 5680 event->pmu->read(event);
f344011c 5681
fd0d000b 5682 perf_sample_data_init(&data, 0, event->hw.last_period);
b0a873eb
PZ
5683 regs = get_irq_regs();
5684
5685 if (regs && !perf_exclude_event(event, regs)) {
77aeeebd 5686 if (!(event->attr.exclude_idle && is_idle_task(current)))
33b07b8b 5687 if (__perf_event_overflow(event, 1, &data, regs))
b0a873eb
PZ
5688 ret = HRTIMER_NORESTART;
5689 }
24f1e32c 5690
b0a873eb
PZ
5691 period = max_t(u64, 10000, event->hw.sample_period);
5692 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
24f1e32c 5693
b0a873eb 5694 return ret;
f29ac756
PZ
5695}
5696
b0a873eb 5697static void perf_swevent_start_hrtimer(struct perf_event *event)
5c92d124 5698{
b0a873eb 5699 struct hw_perf_event *hwc = &event->hw;
5d508e82
FBH
5700 s64 period;
5701
5702 if (!is_sampling_event(event))
5703 return;
f5ffe02e 5704
5d508e82
FBH
5705 period = local64_read(&hwc->period_left);
5706 if (period) {
5707 if (period < 0)
5708 period = 10000;
fa407f35 5709
5d508e82
FBH
5710 local64_set(&hwc->period_left, 0);
5711 } else {
5712 period = max_t(u64, 10000, hwc->sample_period);
5713 }
5714 __hrtimer_start_range_ns(&hwc->hrtimer,
b0a873eb 5715 ns_to_ktime(period), 0,
b5ab4cd5 5716 HRTIMER_MODE_REL_PINNED, 0);
24f1e32c 5717}
b0a873eb
PZ
5718
5719static void perf_swevent_cancel_hrtimer(struct perf_event *event)
24f1e32c 5720{
b0a873eb
PZ
5721 struct hw_perf_event *hwc = &event->hw;
5722
6c7e550f 5723 if (is_sampling_event(event)) {
b0a873eb 5724 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
fa407f35 5725 local64_set(&hwc->period_left, ktime_to_ns(remaining));
b0a873eb
PZ
5726
5727 hrtimer_cancel(&hwc->hrtimer);
5728 }
24f1e32c
FW
5729}
5730
ba3dd36c
PZ
5731static void perf_swevent_init_hrtimer(struct perf_event *event)
5732{
5733 struct hw_perf_event *hwc = &event->hw;
5734
5735 if (!is_sampling_event(event))
5736 return;
5737
5738 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
5739 hwc->hrtimer.function = perf_swevent_hrtimer;
5740
5741 /*
5742 * Since hrtimers have a fixed rate, we can do a static freq->period
5743 * mapping and avoid the whole period adjust feedback stuff.
5744 */
5745 if (event->attr.freq) {
5746 long freq = event->attr.sample_freq;
5747
5748 event->attr.sample_period = NSEC_PER_SEC / freq;
5749 hwc->sample_period = event->attr.sample_period;
5750 local64_set(&hwc->period_left, hwc->sample_period);
778141e3 5751 hwc->last_period = hwc->sample_period;
ba3dd36c
PZ
5752 event->attr.freq = 0;
5753 }
5754}
5755
b0a873eb
PZ
5756/*
5757 * Software event: cpu wall time clock
5758 */
5759
5760static void cpu_clock_event_update(struct perf_event *event)
24f1e32c 5761{
b0a873eb
PZ
5762 s64 prev;
5763 u64 now;
5764
a4eaf7f1 5765 now = local_clock();
b0a873eb
PZ
5766 prev = local64_xchg(&event->hw.prev_count, now);
5767 local64_add(now - prev, &event->count);
24f1e32c 5768}
24f1e32c 5769
a4eaf7f1 5770static void cpu_clock_event_start(struct perf_event *event, int flags)
b0a873eb 5771{
a4eaf7f1 5772 local64_set(&event->hw.prev_count, local_clock());
b0a873eb 5773 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
5774}
5775
a4eaf7f1 5776static void cpu_clock_event_stop(struct perf_event *event, int flags)
f29ac756 5777{
b0a873eb
PZ
5778 perf_swevent_cancel_hrtimer(event);
5779 cpu_clock_event_update(event);
5780}
f29ac756 5781
a4eaf7f1
PZ
5782static int cpu_clock_event_add(struct perf_event *event, int flags)
5783{
5784 if (flags & PERF_EF_START)
5785 cpu_clock_event_start(event, flags);
5786
5787 return 0;
5788}
5789
5790static void cpu_clock_event_del(struct perf_event *event, int flags)
5791{
5792 cpu_clock_event_stop(event, flags);
5793}
5794
b0a873eb
PZ
5795static void cpu_clock_event_read(struct perf_event *event)
5796{
5797 cpu_clock_event_update(event);
5798}
f344011c 5799
b0a873eb
PZ
5800static int cpu_clock_event_init(struct perf_event *event)
5801{
5802 if (event->attr.type != PERF_TYPE_SOFTWARE)
5803 return -ENOENT;
5804
5805 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
5806 return -ENOENT;
5807
2481c5fa
SE
5808 /*
5809 * no branch sampling for software events
5810 */
5811 if (has_branch_stack(event))
5812 return -EOPNOTSUPP;
5813
ba3dd36c
PZ
5814 perf_swevent_init_hrtimer(event);
5815
b0a873eb 5816 return 0;
f29ac756
PZ
5817}
5818
b0a873eb 5819static struct pmu perf_cpu_clock = {
89a1e187
PZ
5820 .task_ctx_nr = perf_sw_context,
5821
b0a873eb 5822 .event_init = cpu_clock_event_init,
a4eaf7f1
PZ
5823 .add = cpu_clock_event_add,
5824 .del = cpu_clock_event_del,
5825 .start = cpu_clock_event_start,
5826 .stop = cpu_clock_event_stop,
b0a873eb 5827 .read = cpu_clock_event_read,
35edc2a5
PZ
5828
5829 .event_idx = perf_swevent_event_idx,
b0a873eb
PZ
5830};
5831
5832/*
5833 * Software event: task time clock
5834 */
5835
5836static void task_clock_event_update(struct perf_event *event, u64 now)
5c92d124 5837{
b0a873eb
PZ
5838 u64 prev;
5839 s64 delta;
5c92d124 5840
b0a873eb
PZ
5841 prev = local64_xchg(&event->hw.prev_count, now);
5842 delta = now - prev;
5843 local64_add(delta, &event->count);
5844}
5c92d124 5845
a4eaf7f1 5846static void task_clock_event_start(struct perf_event *event, int flags)
b0a873eb 5847{
a4eaf7f1 5848 local64_set(&event->hw.prev_count, event->ctx->time);
b0a873eb 5849 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
5850}
5851
a4eaf7f1 5852static void task_clock_event_stop(struct perf_event *event, int flags)
b0a873eb
PZ
5853{
5854 perf_swevent_cancel_hrtimer(event);
5855 task_clock_event_update(event, event->ctx->time);
a4eaf7f1
PZ
5856}
5857
5858static int task_clock_event_add(struct perf_event *event, int flags)
5859{
5860 if (flags & PERF_EF_START)
5861 task_clock_event_start(event, flags);
b0a873eb 5862
a4eaf7f1
PZ
5863 return 0;
5864}
5865
5866static void task_clock_event_del(struct perf_event *event, int flags)
5867{
5868 task_clock_event_stop(event, PERF_EF_UPDATE);
b0a873eb
PZ
5869}
5870
5871static void task_clock_event_read(struct perf_event *event)
5872{
768a06e2
PZ
5873 u64 now = perf_clock();
5874 u64 delta = now - event->ctx->timestamp;
5875 u64 time = event->ctx->time + delta;
b0a873eb
PZ
5876
5877 task_clock_event_update(event, time);
5878}
5879
5880static int task_clock_event_init(struct perf_event *event)
6fb2915d 5881{
b0a873eb
PZ
5882 if (event->attr.type != PERF_TYPE_SOFTWARE)
5883 return -ENOENT;
5884
5885 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
5886 return -ENOENT;
5887
2481c5fa
SE
5888 /*
5889 * no branch sampling for software events
5890 */
5891 if (has_branch_stack(event))
5892 return -EOPNOTSUPP;
5893
ba3dd36c
PZ
5894 perf_swevent_init_hrtimer(event);
5895
b0a873eb 5896 return 0;
6fb2915d
LZ
5897}
5898
b0a873eb 5899static struct pmu perf_task_clock = {
89a1e187
PZ
5900 .task_ctx_nr = perf_sw_context,
5901
b0a873eb 5902 .event_init = task_clock_event_init,
a4eaf7f1
PZ
5903 .add = task_clock_event_add,
5904 .del = task_clock_event_del,
5905 .start = task_clock_event_start,
5906 .stop = task_clock_event_stop,
b0a873eb 5907 .read = task_clock_event_read,
35edc2a5
PZ
5908
5909 .event_idx = perf_swevent_event_idx,
b0a873eb 5910};
6fb2915d 5911
ad5133b7 5912static void perf_pmu_nop_void(struct pmu *pmu)
e077df4f 5913{
e077df4f 5914}
6fb2915d 5915
ad5133b7 5916static int perf_pmu_nop_int(struct pmu *pmu)
6fb2915d 5917{
ad5133b7 5918 return 0;
6fb2915d
LZ
5919}
5920
ad5133b7 5921static void perf_pmu_start_txn(struct pmu *pmu)
6fb2915d 5922{
ad5133b7 5923 perf_pmu_disable(pmu);
6fb2915d
LZ
5924}
5925
ad5133b7
PZ
5926static int perf_pmu_commit_txn(struct pmu *pmu)
5927{
5928 perf_pmu_enable(pmu);
5929 return 0;
5930}
e077df4f 5931
ad5133b7 5932static void perf_pmu_cancel_txn(struct pmu *pmu)
24f1e32c 5933{
ad5133b7 5934 perf_pmu_enable(pmu);
24f1e32c
FW
5935}
5936
35edc2a5
PZ
5937static int perf_event_idx_default(struct perf_event *event)
5938{
5939 return event->hw.idx + 1;
5940}
5941
8dc85d54
PZ
5942/*
5943 * Ensures all contexts with the same task_ctx_nr have the same
5944 * pmu_cpu_context too.
5945 */
5946static void *find_pmu_context(int ctxn)
24f1e32c 5947{
8dc85d54 5948 struct pmu *pmu;
b326e956 5949
8dc85d54
PZ
5950 if (ctxn < 0)
5951 return NULL;
24f1e32c 5952
8dc85d54
PZ
5953 list_for_each_entry(pmu, &pmus, entry) {
5954 if (pmu->task_ctx_nr == ctxn)
5955 return pmu->pmu_cpu_context;
5956 }
24f1e32c 5957
8dc85d54 5958 return NULL;
24f1e32c
FW
5959}
5960
51676957 5961static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
24f1e32c 5962{
51676957
PZ
5963 int cpu;
5964
5965 for_each_possible_cpu(cpu) {
5966 struct perf_cpu_context *cpuctx;
5967
5968 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
5969
3f1f3320
PZ
5970 if (cpuctx->unique_pmu == old_pmu)
5971 cpuctx->unique_pmu = pmu;
51676957
PZ
5972 }
5973}
5974
5975static void free_pmu_context(struct pmu *pmu)
5976{
5977 struct pmu *i;
f5ffe02e 5978
8dc85d54 5979 mutex_lock(&pmus_lock);
0475f9ea 5980 /*
8dc85d54 5981 * Like a real lame refcount.
0475f9ea 5982 */
51676957
PZ
5983 list_for_each_entry(i, &pmus, entry) {
5984 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
5985 update_pmu_context(i, pmu);
8dc85d54 5986 goto out;
51676957 5987 }
8dc85d54 5988 }
d6d020e9 5989
51676957 5990 free_percpu(pmu->pmu_cpu_context);
8dc85d54
PZ
5991out:
5992 mutex_unlock(&pmus_lock);
24f1e32c 5993}
2e80a82a 5994static struct idr pmu_idr;
d6d020e9 5995
abe43400
PZ
5996static ssize_t
5997type_show(struct device *dev, struct device_attribute *attr, char *page)
5998{
5999 struct pmu *pmu = dev_get_drvdata(dev);
6000
6001 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
6002}
6003
6004static struct device_attribute pmu_dev_attrs[] = {
6005 __ATTR_RO(type),
6006 __ATTR_NULL,
6007};
6008
6009static int pmu_bus_running;
6010static struct bus_type pmu_bus = {
6011 .name = "event_source",
6012 .dev_attrs = pmu_dev_attrs,
6013};
6014
6015static void pmu_dev_release(struct device *dev)
6016{
6017 kfree(dev);
6018}
6019
6020static int pmu_dev_alloc(struct pmu *pmu)
6021{
6022 int ret = -ENOMEM;
6023
6024 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
6025 if (!pmu->dev)
6026 goto out;
6027
0c9d42ed 6028 pmu->dev->groups = pmu->attr_groups;
abe43400
PZ
6029 device_initialize(pmu->dev);
6030 ret = dev_set_name(pmu->dev, "%s", pmu->name);
6031 if (ret)
6032 goto free_dev;
6033
6034 dev_set_drvdata(pmu->dev, pmu);
6035 pmu->dev->bus = &pmu_bus;
6036 pmu->dev->release = pmu_dev_release;
6037 ret = device_add(pmu->dev);
6038 if (ret)
6039 goto free_dev;
6040
6041out:
6042 return ret;
6043
6044free_dev:
6045 put_device(pmu->dev);
6046 goto out;
6047}
6048
547e9fd7 6049static struct lock_class_key cpuctx_mutex;
facc4307 6050static struct lock_class_key cpuctx_lock;
547e9fd7 6051
2e80a82a 6052int perf_pmu_register(struct pmu *pmu, char *name, int type)
24f1e32c 6053{
108b02cf 6054 int cpu, ret;
24f1e32c 6055
b0a873eb 6056 mutex_lock(&pmus_lock);
33696fc0
PZ
6057 ret = -ENOMEM;
6058 pmu->pmu_disable_count = alloc_percpu(int);
6059 if (!pmu->pmu_disable_count)
6060 goto unlock;
f29ac756 6061
2e80a82a
PZ
6062 pmu->type = -1;
6063 if (!name)
6064 goto skip_type;
6065 pmu->name = name;
6066
6067 if (type < 0) {
0e9c3be2
TH
6068 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
6069 if (type < 0) {
6070 ret = type;
2e80a82a
PZ
6071 goto free_pdc;
6072 }
6073 }
6074 pmu->type = type;
6075
abe43400
PZ
6076 if (pmu_bus_running) {
6077 ret = pmu_dev_alloc(pmu);
6078 if (ret)
6079 goto free_idr;
6080 }
6081
2e80a82a 6082skip_type:
8dc85d54
PZ
6083 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
6084 if (pmu->pmu_cpu_context)
6085 goto got_cpu_context;
f29ac756 6086
c4814202 6087 ret = -ENOMEM;
108b02cf
PZ
6088 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
6089 if (!pmu->pmu_cpu_context)
abe43400 6090 goto free_dev;
f344011c 6091
108b02cf
PZ
6092 for_each_possible_cpu(cpu) {
6093 struct perf_cpu_context *cpuctx;
6094
6095 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
eb184479 6096 __perf_event_init_context(&cpuctx->ctx);
547e9fd7 6097 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
facc4307 6098 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
b04243ef 6099 cpuctx->ctx.type = cpu_context;
108b02cf 6100 cpuctx->ctx.pmu = pmu;
9e630205
SE
6101
6102 __perf_cpu_hrtimer_init(cpuctx, cpu);
6103
e9d2b064 6104 INIT_LIST_HEAD(&cpuctx->rotation_list);
3f1f3320 6105 cpuctx->unique_pmu = pmu;
108b02cf 6106 }
76e1d904 6107
8dc85d54 6108got_cpu_context:
ad5133b7
PZ
6109 if (!pmu->start_txn) {
6110 if (pmu->pmu_enable) {
6111 /*
6112 * If we have pmu_enable/pmu_disable calls, install
6113 * transaction stubs that use that to try and batch
6114 * hardware accesses.
6115 */
6116 pmu->start_txn = perf_pmu_start_txn;
6117 pmu->commit_txn = perf_pmu_commit_txn;
6118 pmu->cancel_txn = perf_pmu_cancel_txn;
6119 } else {
6120 pmu->start_txn = perf_pmu_nop_void;
6121 pmu->commit_txn = perf_pmu_nop_int;
6122 pmu->cancel_txn = perf_pmu_nop_void;
f344011c 6123 }
5c92d124 6124 }
15dbf27c 6125
ad5133b7
PZ
6126 if (!pmu->pmu_enable) {
6127 pmu->pmu_enable = perf_pmu_nop_void;
6128 pmu->pmu_disable = perf_pmu_nop_void;
6129 }
6130
35edc2a5
PZ
6131 if (!pmu->event_idx)
6132 pmu->event_idx = perf_event_idx_default;
6133
b0a873eb 6134 list_add_rcu(&pmu->entry, &pmus);
33696fc0
PZ
6135 ret = 0;
6136unlock:
b0a873eb
PZ
6137 mutex_unlock(&pmus_lock);
6138
33696fc0 6139 return ret;
108b02cf 6140
abe43400
PZ
6141free_dev:
6142 device_del(pmu->dev);
6143 put_device(pmu->dev);
6144
2e80a82a
PZ
6145free_idr:
6146 if (pmu->type >= PERF_TYPE_MAX)
6147 idr_remove(&pmu_idr, pmu->type);
6148
108b02cf
PZ
6149free_pdc:
6150 free_percpu(pmu->pmu_disable_count);
6151 goto unlock;
f29ac756
PZ
6152}
6153
b0a873eb 6154void perf_pmu_unregister(struct pmu *pmu)
5c92d124 6155{
b0a873eb
PZ
6156 mutex_lock(&pmus_lock);
6157 list_del_rcu(&pmu->entry);
6158 mutex_unlock(&pmus_lock);
5c92d124 6159
0475f9ea 6160 /*
cde8e884
PZ
6161 * We dereference the pmu list under both SRCU and regular RCU, so
6162 * synchronize against both of those.
0475f9ea 6163 */
b0a873eb 6164 synchronize_srcu(&pmus_srcu);
cde8e884 6165 synchronize_rcu();
d6d020e9 6166
33696fc0 6167 free_percpu(pmu->pmu_disable_count);
2e80a82a
PZ
6168 if (pmu->type >= PERF_TYPE_MAX)
6169 idr_remove(&pmu_idr, pmu->type);
abe43400
PZ
6170 device_del(pmu->dev);
6171 put_device(pmu->dev);
51676957 6172 free_pmu_context(pmu);
b0a873eb 6173}
d6d020e9 6174
b0a873eb
PZ
6175struct pmu *perf_init_event(struct perf_event *event)
6176{
6177 struct pmu *pmu = NULL;
6178 int idx;
940c5b29 6179 int ret;
b0a873eb
PZ
6180
6181 idx = srcu_read_lock(&pmus_srcu);
2e80a82a
PZ
6182
6183 rcu_read_lock();
6184 pmu = idr_find(&pmu_idr, event->attr.type);
6185 rcu_read_unlock();
940c5b29 6186 if (pmu) {
7e5b2a01 6187 event->pmu = pmu;
940c5b29
LM
6188 ret = pmu->event_init(event);
6189 if (ret)
6190 pmu = ERR_PTR(ret);
2e80a82a 6191 goto unlock;
940c5b29 6192 }
2e80a82a 6193
b0a873eb 6194 list_for_each_entry_rcu(pmu, &pmus, entry) {
7e5b2a01 6195 event->pmu = pmu;
940c5b29 6196 ret = pmu->event_init(event);
b0a873eb 6197 if (!ret)
e5f4d339 6198 goto unlock;
76e1d904 6199
b0a873eb
PZ
6200 if (ret != -ENOENT) {
6201 pmu = ERR_PTR(ret);
e5f4d339 6202 goto unlock;
f344011c 6203 }
5c92d124 6204 }
e5f4d339
PZ
6205 pmu = ERR_PTR(-ENOENT);
6206unlock:
b0a873eb 6207 srcu_read_unlock(&pmus_srcu, idx);
15dbf27c 6208
4aeb0b42 6209 return pmu;
5c92d124
IM
6210}
6211
0793a61d 6212/*
cdd6c482 6213 * Allocate and initialize a event structure
0793a61d 6214 */
cdd6c482 6215static struct perf_event *
c3f00c70 6216perf_event_alloc(struct perf_event_attr *attr, int cpu,
d580ff86
PZ
6217 struct task_struct *task,
6218 struct perf_event *group_leader,
6219 struct perf_event *parent_event,
4dc0da86
AK
6220 perf_overflow_handler_t overflow_handler,
6221 void *context)
0793a61d 6222{
51b0fe39 6223 struct pmu *pmu;
cdd6c482
IM
6224 struct perf_event *event;
6225 struct hw_perf_event *hwc;
d5d2bc0d 6226 long err;
0793a61d 6227
66832eb4
ON
6228 if ((unsigned)cpu >= nr_cpu_ids) {
6229 if (!task || cpu != -1)
6230 return ERR_PTR(-EINVAL);
6231 }
6232
c3f00c70 6233 event = kzalloc(sizeof(*event), GFP_KERNEL);
cdd6c482 6234 if (!event)
d5d2bc0d 6235 return ERR_PTR(-ENOMEM);
0793a61d 6236
04289bb9 6237 /*
cdd6c482 6238 * Single events are their own group leaders, with an
04289bb9
IM
6239 * empty sibling list:
6240 */
6241 if (!group_leader)
cdd6c482 6242 group_leader = event;
04289bb9 6243
cdd6c482
IM
6244 mutex_init(&event->child_mutex);
6245 INIT_LIST_HEAD(&event->child_list);
fccc714b 6246
cdd6c482
IM
6247 INIT_LIST_HEAD(&event->group_entry);
6248 INIT_LIST_HEAD(&event->event_entry);
6249 INIT_LIST_HEAD(&event->sibling_list);
10c6db11
PZ
6250 INIT_LIST_HEAD(&event->rb_entry);
6251
cdd6c482 6252 init_waitqueue_head(&event->waitq);
e360adbe 6253 init_irq_work(&event->pending, perf_pending_event);
0793a61d 6254
cdd6c482 6255 mutex_init(&event->mmap_mutex);
7b732a75 6256
a6fa941d 6257 atomic_long_set(&event->refcount, 1);
cdd6c482
IM
6258 event->cpu = cpu;
6259 event->attr = *attr;
6260 event->group_leader = group_leader;
6261 event->pmu = NULL;
cdd6c482 6262 event->oncpu = -1;
a96bbc16 6263
cdd6c482 6264 event->parent = parent_event;
b84fbc9f 6265
17cf22c3 6266 event->ns = get_pid_ns(task_active_pid_ns(current));
cdd6c482 6267 event->id = atomic64_inc_return(&perf_event_id);
a96bbc16 6268
cdd6c482 6269 event->state = PERF_EVENT_STATE_INACTIVE;
329d876d 6270
d580ff86
PZ
6271 if (task) {
6272 event->attach_state = PERF_ATTACH_TASK;
f22c1bb6
ON
6273
6274 if (attr->type == PERF_TYPE_TRACEPOINT)
6275 event->hw.tp_target = task;
d580ff86
PZ
6276#ifdef CONFIG_HAVE_HW_BREAKPOINT
6277 /*
6278 * hw_breakpoint is a bit difficult here..
6279 */
f22c1bb6 6280 else if (attr->type == PERF_TYPE_BREAKPOINT)
d580ff86
PZ
6281 event->hw.bp_target = task;
6282#endif
6283 }
6284
4dc0da86 6285 if (!overflow_handler && parent_event) {
b326e956 6286 overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
6287 context = parent_event->overflow_handler_context;
6288 }
66832eb4 6289
b326e956 6290 event->overflow_handler = overflow_handler;
4dc0da86 6291 event->overflow_handler_context = context;
97eaf530 6292
0231bb53 6293 perf_event__state_init(event);
a86ed508 6294
4aeb0b42 6295 pmu = NULL;
b8e83514 6296
cdd6c482 6297 hwc = &event->hw;
bd2b5b12 6298 hwc->sample_period = attr->sample_period;
0d48696f 6299 if (attr->freq && attr->sample_freq)
bd2b5b12 6300 hwc->sample_period = 1;
eced1dfc 6301 hwc->last_period = hwc->sample_period;
bd2b5b12 6302
e7850595 6303 local64_set(&hwc->period_left, hwc->sample_period);
60db5e09 6304
2023b359 6305 /*
cdd6c482 6306 * we currently do not support PERF_FORMAT_GROUP on inherited events
2023b359 6307 */
3dab77fb 6308 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
2023b359
PZ
6309 goto done;
6310
b0a873eb 6311 pmu = perf_init_event(event);
974802ea 6312
d5d2bc0d
PM
6313done:
6314 err = 0;
4aeb0b42 6315 if (!pmu)
d5d2bc0d 6316 err = -EINVAL;
4aeb0b42
RR
6317 else if (IS_ERR(pmu))
6318 err = PTR_ERR(pmu);
5c92d124 6319
d5d2bc0d 6320 if (err) {
cdd6c482
IM
6321 if (event->ns)
6322 put_pid_ns(event->ns);
6323 kfree(event);
d5d2bc0d 6324 return ERR_PTR(err);
621a01ea 6325 }
d5d2bc0d 6326
cdd6c482 6327 if (!event->parent) {
82cd6def 6328 if (event->attach_state & PERF_ATTACH_TASK)
c5905afb 6329 static_key_slow_inc(&perf_sched_events.key);
3af9e859 6330 if (event->attr.mmap || event->attr.mmap_data)
cdd6c482
IM
6331 atomic_inc(&nr_mmap_events);
6332 if (event->attr.comm)
6333 atomic_inc(&nr_comm_events);
6334 if (event->attr.task)
6335 atomic_inc(&nr_task_events);
927c7a9e
FW
6336 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
6337 err = get_callchain_buffers();
6338 if (err) {
6339 free_event(event);
6340 return ERR_PTR(err);
6341 }
6342 }
d010b332
SE
6343 if (has_branch_stack(event)) {
6344 static_key_slow_inc(&perf_sched_events.key);
6345 if (!(event->attach_state & PERF_ATTACH_TASK))
6346 atomic_inc(&per_cpu(perf_branch_stack_events,
6347 event->cpu));
6348 }
f344011c 6349 }
9ee318a7 6350
cdd6c482 6351 return event;
0793a61d
TG
6352}
6353
cdd6c482
IM
6354static int perf_copy_attr(struct perf_event_attr __user *uattr,
6355 struct perf_event_attr *attr)
974802ea 6356{
974802ea 6357 u32 size;
cdf8073d 6358 int ret;
974802ea
PZ
6359
6360 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
6361 return -EFAULT;
6362
6363 /*
6364 * zero the full structure, so that a short copy will be nice.
6365 */
6366 memset(attr, 0, sizeof(*attr));
6367
6368 ret = get_user(size, &uattr->size);
6369 if (ret)
6370 return ret;
6371
6372 if (size > PAGE_SIZE) /* silly large */
6373 goto err_size;
6374
6375 if (!size) /* abi compat */
6376 size = PERF_ATTR_SIZE_VER0;
6377
6378 if (size < PERF_ATTR_SIZE_VER0)
6379 goto err_size;
6380
6381 /*
6382 * If we're handed a bigger struct than we know of,
cdf8073d
IS
6383 * ensure all the unknown bits are 0 - i.e. new
6384 * user-space does not rely on any kernel feature
6385 * extensions we dont know about yet.
974802ea
PZ
6386 */
6387 if (size > sizeof(*attr)) {
cdf8073d
IS
6388 unsigned char __user *addr;
6389 unsigned char __user *end;
6390 unsigned char val;
974802ea 6391
cdf8073d
IS
6392 addr = (void __user *)uattr + sizeof(*attr);
6393 end = (void __user *)uattr + size;
974802ea 6394
cdf8073d 6395 for (; addr < end; addr++) {
974802ea
PZ
6396 ret = get_user(val, addr);
6397 if (ret)
6398 return ret;
6399 if (val)
6400 goto err_size;
6401 }
b3e62e35 6402 size = sizeof(*attr);
974802ea
PZ
6403 }
6404
6405 ret = copy_from_user(attr, uattr, size);
6406 if (ret)
6407 return -EFAULT;
6408
cd757645 6409 if (attr->__reserved_1)
974802ea
PZ
6410 return -EINVAL;
6411
6412 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
6413 return -EINVAL;
6414
6415 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
6416 return -EINVAL;
6417
bce38cd5
SE
6418 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
6419 u64 mask = attr->branch_sample_type;
6420
6421 /* only using defined bits */
6422 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
6423 return -EINVAL;
6424
6425 /* at least one branch bit must be set */
6426 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
6427 return -EINVAL;
6428
6429 /* kernel level capture: check permissions */
6430 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
6431 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
6432 return -EACCES;
6433
6434 /* propagate priv level, when not set for branch */
6435 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
6436
6437 /* exclude_kernel checked on syscall entry */
6438 if (!attr->exclude_kernel)
6439 mask |= PERF_SAMPLE_BRANCH_KERNEL;
6440
6441 if (!attr->exclude_user)
6442 mask |= PERF_SAMPLE_BRANCH_USER;
6443
6444 if (!attr->exclude_hv)
6445 mask |= PERF_SAMPLE_BRANCH_HV;
6446 /*
6447 * adjust user setting (for HW filter setup)
6448 */
6449 attr->branch_sample_type = mask;
6450 }
6451 }
4018994f 6452
c5ebcedb 6453 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
4018994f 6454 ret = perf_reg_validate(attr->sample_regs_user);
c5ebcedb
JO
6455 if (ret)
6456 return ret;
6457 }
6458
6459 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
6460 if (!arch_perf_have_user_stack_dump())
6461 return -ENOSYS;
6462
6463 /*
6464 * We have __u32 type for the size, but so far
6465 * we can only use __u16 as maximum due to the
6466 * __u16 sample size limit.
6467 */
6468 if (attr->sample_stack_user >= USHRT_MAX)
6469 ret = -EINVAL;
6470 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
6471 ret = -EINVAL;
6472 }
4018994f 6473
974802ea
PZ
6474out:
6475 return ret;
6476
6477err_size:
6478 put_user(sizeof(*attr), &uattr->size);
6479 ret = -E2BIG;
6480 goto out;
6481}
6482
ac9721f3
PZ
6483static int
6484perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
a4be7c27 6485{
76369139 6486 struct ring_buffer *rb = NULL, *old_rb = NULL;
a4be7c27
PZ
6487 int ret = -EINVAL;
6488
ac9721f3 6489 if (!output_event)
a4be7c27
PZ
6490 goto set;
6491
ac9721f3
PZ
6492 /* don't allow circular references */
6493 if (event == output_event)
a4be7c27
PZ
6494 goto out;
6495
0f139300
PZ
6496 /*
6497 * Don't allow cross-cpu buffers
6498 */
6499 if (output_event->cpu != event->cpu)
6500 goto out;
6501
6502 /*
76369139 6503 * If its not a per-cpu rb, it must be the same task.
0f139300
PZ
6504 */
6505 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
6506 goto out;
6507
a4be7c27 6508set:
cdd6c482 6509 mutex_lock(&event->mmap_mutex);
ac9721f3
PZ
6510 /* Can't redirect output if we've got an active mmap() */
6511 if (atomic_read(&event->mmap_count))
6512 goto unlock;
a4be7c27 6513
ac9721f3 6514 if (output_event) {
76369139
FW
6515 /* get the rb we want to redirect to */
6516 rb = ring_buffer_get(output_event);
6517 if (!rb)
ac9721f3 6518 goto unlock;
a4be7c27
PZ
6519 }
6520
76369139
FW
6521 old_rb = event->rb;
6522 rcu_assign_pointer(event->rb, rb);
10c6db11
PZ
6523 if (old_rb)
6524 ring_buffer_detach(event, old_rb);
a4be7c27 6525 ret = 0;
ac9721f3
PZ
6526unlock:
6527 mutex_unlock(&event->mmap_mutex);
6528
76369139
FW
6529 if (old_rb)
6530 ring_buffer_put(old_rb);
a4be7c27 6531out:
a4be7c27
PZ
6532 return ret;
6533}
6534
0793a61d 6535/**
cdd6c482 6536 * sys_perf_event_open - open a performance event, associate it to a task/cpu
9f66a381 6537 *
cdd6c482 6538 * @attr_uptr: event_id type attributes for monitoring/sampling
0793a61d 6539 * @pid: target pid
9f66a381 6540 * @cpu: target cpu
cdd6c482 6541 * @group_fd: group leader event fd
0793a61d 6542 */
cdd6c482
IM
6543SYSCALL_DEFINE5(perf_event_open,
6544 struct perf_event_attr __user *, attr_uptr,
2743a5b0 6545 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
0793a61d 6546{
b04243ef
PZ
6547 struct perf_event *group_leader = NULL, *output_event = NULL;
6548 struct perf_event *event, *sibling;
cdd6c482
IM
6549 struct perf_event_attr attr;
6550 struct perf_event_context *ctx;
6551 struct file *event_file = NULL;
2903ff01 6552 struct fd group = {NULL, 0};
38a81da2 6553 struct task_struct *task = NULL;
89a1e187 6554 struct pmu *pmu;
ea635c64 6555 int event_fd;
b04243ef 6556 int move_group = 0;
dc86cabe 6557 int err;
0793a61d 6558
2743a5b0 6559 /* for future expandability... */
e5d1367f 6560 if (flags & ~PERF_FLAG_ALL)
2743a5b0
PM
6561 return -EINVAL;
6562
dc86cabe
IM
6563 err = perf_copy_attr(attr_uptr, &attr);
6564 if (err)
6565 return err;
eab656ae 6566
0764771d
PZ
6567 if (!attr.exclude_kernel) {
6568 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
6569 return -EACCES;
6570 }
6571
df58ab24 6572 if (attr.freq) {
cdd6c482 6573 if (attr.sample_freq > sysctl_perf_event_sample_rate)
df58ab24
PZ
6574 return -EINVAL;
6575 }
6576
e5d1367f
SE
6577 /*
6578 * In cgroup mode, the pid argument is used to pass the fd
6579 * opened to the cgroup directory in cgroupfs. The cpu argument
6580 * designates the cpu on which to monitor threads from that
6581 * cgroup.
6582 */
6583 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
6584 return -EINVAL;
6585
ab72a702 6586 event_fd = get_unused_fd();
ea635c64
AV
6587 if (event_fd < 0)
6588 return event_fd;
6589
ac9721f3 6590 if (group_fd != -1) {
2903ff01
AV
6591 err = perf_fget_light(group_fd, &group);
6592 if (err)
d14b12d7 6593 goto err_fd;
2903ff01 6594 group_leader = group.file->private_data;
ac9721f3
PZ
6595 if (flags & PERF_FLAG_FD_OUTPUT)
6596 output_event = group_leader;
6597 if (flags & PERF_FLAG_FD_NO_GROUP)
6598 group_leader = NULL;
6599 }
6600
e5d1367f 6601 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
c6be5a5c
PZ
6602 task = find_lively_task_by_vpid(pid);
6603 if (IS_ERR(task)) {
6604 err = PTR_ERR(task);
6605 goto err_group_fd;
6606 }
6607 }
6608
fbfc623f
YZ
6609 get_online_cpus();
6610
4dc0da86
AK
6611 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
6612 NULL, NULL);
d14b12d7
SE
6613 if (IS_ERR(event)) {
6614 err = PTR_ERR(event);
c6be5a5c 6615 goto err_task;
d14b12d7
SE
6616 }
6617
e5d1367f
SE
6618 if (flags & PERF_FLAG_PID_CGROUP) {
6619 err = perf_cgroup_connect(pid, event, &attr, group_leader);
6620 if (err)
6621 goto err_alloc;
08309379
PZ
6622 /*
6623 * one more event:
6624 * - that has cgroup constraint on event->cpu
6625 * - that may need work on context switch
6626 */
6627 atomic_inc(&per_cpu(perf_cgroup_events, event->cpu));
c5905afb 6628 static_key_slow_inc(&perf_sched_events.key);
e5d1367f
SE
6629 }
6630
89a1e187
PZ
6631 /*
6632 * Special case software events and allow them to be part of
6633 * any hardware group.
6634 */
6635 pmu = event->pmu;
b04243ef
PZ
6636
6637 if (group_leader &&
6638 (is_software_event(event) != is_software_event(group_leader))) {
6639 if (is_software_event(event)) {
6640 /*
6641 * If event and group_leader are not both a software
6642 * event, and event is, then group leader is not.
6643 *
6644 * Allow the addition of software events to !software
6645 * groups, this is safe because software events never
6646 * fail to schedule.
6647 */
6648 pmu = group_leader->pmu;
6649 } else if (is_software_event(group_leader) &&
6650 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
6651 /*
6652 * In case the group is a pure software group, and we
6653 * try to add a hardware event, move the whole group to
6654 * the hardware context.
6655 */
6656 move_group = 1;
6657 }
6658 }
89a1e187
PZ
6659
6660 /*
6661 * Get the target context (task or percpu):
6662 */
e2d37cd2 6663 ctx = find_get_context(pmu, task, event->cpu);
89a1e187
PZ
6664 if (IS_ERR(ctx)) {
6665 err = PTR_ERR(ctx);
c6be5a5c 6666 goto err_alloc;
89a1e187
PZ
6667 }
6668
fd1edb3a
PZ
6669 if (task) {
6670 put_task_struct(task);
6671 task = NULL;
6672 }
6673
ccff286d 6674 /*
cdd6c482 6675 * Look up the group leader (we will attach this event to it):
04289bb9 6676 */
ac9721f3 6677 if (group_leader) {
dc86cabe 6678 err = -EINVAL;
04289bb9 6679
04289bb9 6680 /*
ccff286d
IM
6681 * Do not allow a recursive hierarchy (this new sibling
6682 * becoming part of another group-sibling):
6683 */
6684 if (group_leader->group_leader != group_leader)
c3f00c70 6685 goto err_context;
ccff286d
IM
6686 /*
6687 * Do not allow to attach to a group in a different
6688 * task or CPU context:
04289bb9 6689 */
b04243ef
PZ
6690 if (move_group) {
6691 if (group_leader->ctx->type != ctx->type)
6692 goto err_context;
6693 } else {
6694 if (group_leader->ctx != ctx)
6695 goto err_context;
6696 }
6697
3b6f9e5c
PM
6698 /*
6699 * Only a group leader can be exclusive or pinned
6700 */
0d48696f 6701 if (attr.exclusive || attr.pinned)
c3f00c70 6702 goto err_context;
ac9721f3
PZ
6703 }
6704
6705 if (output_event) {
6706 err = perf_event_set_output(event, output_event);
6707 if (err)
c3f00c70 6708 goto err_context;
ac9721f3 6709 }
0793a61d 6710
ea635c64
AV
6711 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
6712 if (IS_ERR(event_file)) {
6713 err = PTR_ERR(event_file);
c3f00c70 6714 goto err_context;
ea635c64 6715 }
9b51f66d 6716
b04243ef
PZ
6717 if (move_group) {
6718 struct perf_event_context *gctx = group_leader->ctx;
6719
6720 mutex_lock(&gctx->mutex);
fe4b04fa 6721 perf_remove_from_context(group_leader);
0231bb53
JO
6722
6723 /*
6724 * Removing from the context ends up with disabled
6725 * event. What we want here is event in the initial
6726 * startup state, ready to be add into new context.
6727 */
6728 perf_event__state_init(group_leader);
b04243ef
PZ
6729 list_for_each_entry(sibling, &group_leader->sibling_list,
6730 group_entry) {
fe4b04fa 6731 perf_remove_from_context(sibling);
0231bb53 6732 perf_event__state_init(sibling);
b04243ef
PZ
6733 put_ctx(gctx);
6734 }
6735 mutex_unlock(&gctx->mutex);
6736 put_ctx(gctx);
ea635c64 6737 }
9b51f66d 6738
ad3a37de 6739 WARN_ON_ONCE(ctx->parent_ctx);
d859e29f 6740 mutex_lock(&ctx->mutex);
b04243ef
PZ
6741
6742 if (move_group) {
0cda4c02 6743 synchronize_rcu();
e2d37cd2 6744 perf_install_in_context(ctx, group_leader, event->cpu);
b04243ef
PZ
6745 get_ctx(ctx);
6746 list_for_each_entry(sibling, &group_leader->sibling_list,
6747 group_entry) {
e2d37cd2 6748 perf_install_in_context(ctx, sibling, event->cpu);
b04243ef
PZ
6749 get_ctx(ctx);
6750 }
6751 }
6752
e2d37cd2 6753 perf_install_in_context(ctx, event, event->cpu);
ad3a37de 6754 ++ctx->generation;
fe4b04fa 6755 perf_unpin_context(ctx);
d859e29f 6756 mutex_unlock(&ctx->mutex);
9b51f66d 6757
fbfc623f
YZ
6758 put_online_cpus();
6759
cdd6c482 6760 event->owner = current;
8882135b 6761
cdd6c482
IM
6762 mutex_lock(&current->perf_event_mutex);
6763 list_add_tail(&event->owner_entry, &current->perf_event_list);
6764 mutex_unlock(&current->perf_event_mutex);
082ff5a2 6765
c320c7b7
ACM
6766 /*
6767 * Precalculate sample_data sizes
6768 */
6769 perf_event__header_size(event);
6844c09d 6770 perf_event__id_header_size(event);
c320c7b7 6771
8a49542c
PZ
6772 /*
6773 * Drop the reference on the group_event after placing the
6774 * new event on the sibling_list. This ensures destruction
6775 * of the group leader will find the pointer to itself in
6776 * perf_group_detach().
6777 */
2903ff01 6778 fdput(group);
ea635c64
AV
6779 fd_install(event_fd, event_file);
6780 return event_fd;
0793a61d 6781
c3f00c70 6782err_context:
fe4b04fa 6783 perf_unpin_context(ctx);
ea635c64 6784 put_ctx(ctx);
c6be5a5c 6785err_alloc:
ea635c64 6786 free_event(event);
e7d0bc04 6787err_task:
fbfc623f 6788 put_online_cpus();
e7d0bc04
PZ
6789 if (task)
6790 put_task_struct(task);
89a1e187 6791err_group_fd:
2903ff01 6792 fdput(group);
ea635c64
AV
6793err_fd:
6794 put_unused_fd(event_fd);
dc86cabe 6795 return err;
0793a61d
TG
6796}
6797
fb0459d7
AV
6798/**
6799 * perf_event_create_kernel_counter
6800 *
6801 * @attr: attributes of the counter to create
6802 * @cpu: cpu in which the counter is bound
38a81da2 6803 * @task: task to profile (NULL for percpu)
fb0459d7
AV
6804 */
6805struct perf_event *
6806perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
38a81da2 6807 struct task_struct *task,
4dc0da86
AK
6808 perf_overflow_handler_t overflow_handler,
6809 void *context)
fb0459d7 6810{
fb0459d7 6811 struct perf_event_context *ctx;
c3f00c70 6812 struct perf_event *event;
fb0459d7 6813 int err;
d859e29f 6814
fb0459d7
AV
6815 /*
6816 * Get the target context (task or percpu):
6817 */
d859e29f 6818
4dc0da86
AK
6819 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
6820 overflow_handler, context);
c3f00c70
PZ
6821 if (IS_ERR(event)) {
6822 err = PTR_ERR(event);
6823 goto err;
6824 }
d859e29f 6825
38a81da2 6826 ctx = find_get_context(event->pmu, task, cpu);
c6567f64
FW
6827 if (IS_ERR(ctx)) {
6828 err = PTR_ERR(ctx);
c3f00c70 6829 goto err_free;
d859e29f 6830 }
fb0459d7 6831
fb0459d7
AV
6832 WARN_ON_ONCE(ctx->parent_ctx);
6833 mutex_lock(&ctx->mutex);
6834 perf_install_in_context(ctx, event, cpu);
6835 ++ctx->generation;
fe4b04fa 6836 perf_unpin_context(ctx);
fb0459d7
AV
6837 mutex_unlock(&ctx->mutex);
6838
fb0459d7
AV
6839 return event;
6840
c3f00c70
PZ
6841err_free:
6842 free_event(event);
6843err:
c6567f64 6844 return ERR_PTR(err);
9b51f66d 6845}
fb0459d7 6846EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
9b51f66d 6847
0cda4c02
YZ
6848void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
6849{
6850 struct perf_event_context *src_ctx;
6851 struct perf_event_context *dst_ctx;
6852 struct perf_event *event, *tmp;
6853 LIST_HEAD(events);
6854
6855 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
6856 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
6857
6858 mutex_lock(&src_ctx->mutex);
6859 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
6860 event_entry) {
6861 perf_remove_from_context(event);
6862 put_ctx(src_ctx);
6863 list_add(&event->event_entry, &events);
6864 }
6865 mutex_unlock(&src_ctx->mutex);
6866
6867 synchronize_rcu();
6868
6869 mutex_lock(&dst_ctx->mutex);
6870 list_for_each_entry_safe(event, tmp, &events, event_entry) {
6871 list_del(&event->event_entry);
6872 if (event->state >= PERF_EVENT_STATE_OFF)
6873 event->state = PERF_EVENT_STATE_INACTIVE;
6874 perf_install_in_context(dst_ctx, event, dst_cpu);
6875 get_ctx(dst_ctx);
6876 }
6877 mutex_unlock(&dst_ctx->mutex);
6878}
6879EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
6880
cdd6c482 6881static void sync_child_event(struct perf_event *child_event,
38b200d6 6882 struct task_struct *child)
d859e29f 6883{
cdd6c482 6884 struct perf_event *parent_event = child_event->parent;
8bc20959 6885 u64 child_val;
d859e29f 6886
cdd6c482
IM
6887 if (child_event->attr.inherit_stat)
6888 perf_event_read_event(child_event, child);
38b200d6 6889
b5e58793 6890 child_val = perf_event_count(child_event);
d859e29f
PM
6891
6892 /*
6893 * Add back the child's count to the parent's count:
6894 */
a6e6dea6 6895 atomic64_add(child_val, &parent_event->child_count);
cdd6c482
IM
6896 atomic64_add(child_event->total_time_enabled,
6897 &parent_event->child_total_time_enabled);
6898 atomic64_add(child_event->total_time_running,
6899 &parent_event->child_total_time_running);
d859e29f
PM
6900
6901 /*
cdd6c482 6902 * Remove this event from the parent's list
d859e29f 6903 */
cdd6c482
IM
6904 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
6905 mutex_lock(&parent_event->child_mutex);
6906 list_del_init(&child_event->child_list);
6907 mutex_unlock(&parent_event->child_mutex);
d859e29f
PM
6908
6909 /*
cdd6c482 6910 * Release the parent event, if this was the last
d859e29f
PM
6911 * reference to it.
6912 */
a6fa941d 6913 put_event(parent_event);
d859e29f
PM
6914}
6915
9b51f66d 6916static void
cdd6c482
IM
6917__perf_event_exit_task(struct perf_event *child_event,
6918 struct perf_event_context *child_ctx,
38b200d6 6919 struct task_struct *child)
9b51f66d 6920{
38b435b1
PZ
6921 if (child_event->parent) {
6922 raw_spin_lock_irq(&child_ctx->lock);
6923 perf_group_detach(child_event);
6924 raw_spin_unlock_irq(&child_ctx->lock);
6925 }
9b51f66d 6926
fe4b04fa 6927 perf_remove_from_context(child_event);
0cc0c027 6928
9b51f66d 6929 /*
38b435b1 6930 * It can happen that the parent exits first, and has events
9b51f66d 6931 * that are still around due to the child reference. These
38b435b1 6932 * events need to be zapped.
9b51f66d 6933 */
38b435b1 6934 if (child_event->parent) {
cdd6c482
IM
6935 sync_child_event(child_event, child);
6936 free_event(child_event);
4bcf349a 6937 }
9b51f66d
IM
6938}
6939
8dc85d54 6940static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
9b51f66d 6941{
cdd6c482
IM
6942 struct perf_event *child_event, *tmp;
6943 struct perf_event_context *child_ctx;
a63eaf34 6944 unsigned long flags;
9b51f66d 6945
8dc85d54 6946 if (likely(!child->perf_event_ctxp[ctxn])) {
cdd6c482 6947 perf_event_task(child, NULL, 0);
9b51f66d 6948 return;
9f498cc5 6949 }
9b51f66d 6950
a63eaf34 6951 local_irq_save(flags);
ad3a37de
PM
6952 /*
6953 * We can't reschedule here because interrupts are disabled,
6954 * and either child is current or it is a task that can't be
6955 * scheduled, so we are now safe from rescheduling changing
6956 * our context.
6957 */
806839b2 6958 child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
c93f7669
PM
6959
6960 /*
6961 * Take the context lock here so that if find_get_context is
cdd6c482 6962 * reading child->perf_event_ctxp, we wait until it has
c93f7669
PM
6963 * incremented the context's refcount before we do put_ctx below.
6964 */
e625cce1 6965 raw_spin_lock(&child_ctx->lock);
04dc2dbb 6966 task_ctx_sched_out(child_ctx);
8dc85d54 6967 child->perf_event_ctxp[ctxn] = NULL;
71a851b4
PZ
6968 /*
6969 * If this context is a clone; unclone it so it can't get
6970 * swapped to another process while we're removing all
cdd6c482 6971 * the events from it.
71a851b4
PZ
6972 */
6973 unclone_ctx(child_ctx);
5e942bb3 6974 update_context_time(child_ctx);
e625cce1 6975 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
9f498cc5
PZ
6976
6977 /*
cdd6c482
IM
6978 * Report the task dead after unscheduling the events so that we
6979 * won't get any samples after PERF_RECORD_EXIT. We can however still
6980 * get a few PERF_RECORD_READ events.
9f498cc5 6981 */
cdd6c482 6982 perf_event_task(child, child_ctx, 0);
a63eaf34 6983
66fff224
PZ
6984 /*
6985 * We can recurse on the same lock type through:
6986 *
cdd6c482
IM
6987 * __perf_event_exit_task()
6988 * sync_child_event()
a6fa941d
AV
6989 * put_event()
6990 * mutex_lock(&ctx->mutex)
66fff224
PZ
6991 *
6992 * But since its the parent context it won't be the same instance.
6993 */
a0507c84 6994 mutex_lock(&child_ctx->mutex);
a63eaf34 6995
8bc20959 6996again:
889ff015
FW
6997 list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
6998 group_entry)
6999 __perf_event_exit_task(child_event, child_ctx, child);
7000
7001 list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
65abc865 7002 group_entry)
cdd6c482 7003 __perf_event_exit_task(child_event, child_ctx, child);
8bc20959
PZ
7004
7005 /*
cdd6c482 7006 * If the last event was a group event, it will have appended all
8bc20959
PZ
7007 * its siblings to the list, but we obtained 'tmp' before that which
7008 * will still point to the list head terminating the iteration.
7009 */
889ff015
FW
7010 if (!list_empty(&child_ctx->pinned_groups) ||
7011 !list_empty(&child_ctx->flexible_groups))
8bc20959 7012 goto again;
a63eaf34
PM
7013
7014 mutex_unlock(&child_ctx->mutex);
7015
7016 put_ctx(child_ctx);
9b51f66d
IM
7017}
7018
8dc85d54
PZ
7019/*
7020 * When a child task exits, feed back event values to parent events.
7021 */
7022void perf_event_exit_task(struct task_struct *child)
7023{
8882135b 7024 struct perf_event *event, *tmp;
8dc85d54
PZ
7025 int ctxn;
7026
8882135b
PZ
7027 mutex_lock(&child->perf_event_mutex);
7028 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
7029 owner_entry) {
7030 list_del_init(&event->owner_entry);
7031
7032 /*
7033 * Ensure the list deletion is visible before we clear
7034 * the owner, closes a race against perf_release() where
7035 * we need to serialize on the owner->perf_event_mutex.
7036 */
7037 smp_wmb();
7038 event->owner = NULL;
7039 }
7040 mutex_unlock(&child->perf_event_mutex);
7041
8dc85d54
PZ
7042 for_each_task_context_nr(ctxn)
7043 perf_event_exit_task_context(child, ctxn);
7044}
7045
889ff015
FW
7046static void perf_free_event(struct perf_event *event,
7047 struct perf_event_context *ctx)
7048{
7049 struct perf_event *parent = event->parent;
7050
7051 if (WARN_ON_ONCE(!parent))
7052 return;
7053
7054 mutex_lock(&parent->child_mutex);
7055 list_del_init(&event->child_list);
7056 mutex_unlock(&parent->child_mutex);
7057
a6fa941d 7058 put_event(parent);
889ff015 7059
8a49542c 7060 perf_group_detach(event);
889ff015
FW
7061 list_del_event(event, ctx);
7062 free_event(event);
7063}
7064
bbbee908
PZ
7065/*
7066 * free an unexposed, unused context as created by inheritance by
8dc85d54 7067 * perf_event_init_task below, used by fork() in case of fail.
bbbee908 7068 */
cdd6c482 7069void perf_event_free_task(struct task_struct *task)
bbbee908 7070{
8dc85d54 7071 struct perf_event_context *ctx;
cdd6c482 7072 struct perf_event *event, *tmp;
8dc85d54 7073 int ctxn;
bbbee908 7074
8dc85d54
PZ
7075 for_each_task_context_nr(ctxn) {
7076 ctx = task->perf_event_ctxp[ctxn];
7077 if (!ctx)
7078 continue;
bbbee908 7079
8dc85d54 7080 mutex_lock(&ctx->mutex);
bbbee908 7081again:
8dc85d54
PZ
7082 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
7083 group_entry)
7084 perf_free_event(event, ctx);
bbbee908 7085
8dc85d54
PZ
7086 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
7087 group_entry)
7088 perf_free_event(event, ctx);
bbbee908 7089
8dc85d54
PZ
7090 if (!list_empty(&ctx->pinned_groups) ||
7091 !list_empty(&ctx->flexible_groups))
7092 goto again;
bbbee908 7093
8dc85d54 7094 mutex_unlock(&ctx->mutex);
bbbee908 7095
8dc85d54
PZ
7096 put_ctx(ctx);
7097 }
889ff015
FW
7098}
7099
4e231c79
PZ
7100void perf_event_delayed_put(struct task_struct *task)
7101{
7102 int ctxn;
7103
7104 for_each_task_context_nr(ctxn)
7105 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
7106}
7107
97dee4f3
PZ
7108/*
7109 * inherit a event from parent task to child task:
7110 */
7111static struct perf_event *
7112inherit_event(struct perf_event *parent_event,
7113 struct task_struct *parent,
7114 struct perf_event_context *parent_ctx,
7115 struct task_struct *child,
7116 struct perf_event *group_leader,
7117 struct perf_event_context *child_ctx)
7118{
7119 struct perf_event *child_event;
cee010ec 7120 unsigned long flags;
97dee4f3
PZ
7121
7122 /*
7123 * Instead of creating recursive hierarchies of events,
7124 * we link inherited events back to the original parent,
7125 * which has a filp for sure, which we use as the reference
7126 * count:
7127 */
7128 if (parent_event->parent)
7129 parent_event = parent_event->parent;
7130
7131 child_event = perf_event_alloc(&parent_event->attr,
7132 parent_event->cpu,
d580ff86 7133 child,
97dee4f3 7134 group_leader, parent_event,
4dc0da86 7135 NULL, NULL);
97dee4f3
PZ
7136 if (IS_ERR(child_event))
7137 return child_event;
a6fa941d
AV
7138
7139 if (!atomic_long_inc_not_zero(&parent_event->refcount)) {
7140 free_event(child_event);
7141 return NULL;
7142 }
7143
97dee4f3
PZ
7144 get_ctx(child_ctx);
7145
7146 /*
7147 * Make the child state follow the state of the parent event,
7148 * not its attr.disabled bit. We hold the parent's mutex,
7149 * so we won't race with perf_event_{en, dis}able_family.
7150 */
7151 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
7152 child_event->state = PERF_EVENT_STATE_INACTIVE;
7153 else
7154 child_event->state = PERF_EVENT_STATE_OFF;
7155
7156 if (parent_event->attr.freq) {
7157 u64 sample_period = parent_event->hw.sample_period;
7158 struct hw_perf_event *hwc = &child_event->hw;
7159
7160 hwc->sample_period = sample_period;
7161 hwc->last_period = sample_period;
7162
7163 local64_set(&hwc->period_left, sample_period);
7164 }
7165
7166 child_event->ctx = child_ctx;
7167 child_event->overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
7168 child_event->overflow_handler_context
7169 = parent_event->overflow_handler_context;
97dee4f3 7170
614b6780
TG
7171 /*
7172 * Precalculate sample_data sizes
7173 */
7174 perf_event__header_size(child_event);
6844c09d 7175 perf_event__id_header_size(child_event);
614b6780 7176
97dee4f3
PZ
7177 /*
7178 * Link it up in the child's context:
7179 */
cee010ec 7180 raw_spin_lock_irqsave(&child_ctx->lock, flags);
97dee4f3 7181 add_event_to_ctx(child_event, child_ctx);
cee010ec 7182 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
97dee4f3 7183
97dee4f3
PZ
7184 /*
7185 * Link this into the parent event's child list
7186 */
7187 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
7188 mutex_lock(&parent_event->child_mutex);
7189 list_add_tail(&child_event->child_list, &parent_event->child_list);
7190 mutex_unlock(&parent_event->child_mutex);
7191
7192 return child_event;
7193}
7194
7195static int inherit_group(struct perf_event *parent_event,
7196 struct task_struct *parent,
7197 struct perf_event_context *parent_ctx,
7198 struct task_struct *child,
7199 struct perf_event_context *child_ctx)
7200{
7201 struct perf_event *leader;
7202 struct perf_event *sub;
7203 struct perf_event *child_ctr;
7204
7205 leader = inherit_event(parent_event, parent, parent_ctx,
7206 child, NULL, child_ctx);
7207 if (IS_ERR(leader))
7208 return PTR_ERR(leader);
7209 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
7210 child_ctr = inherit_event(sub, parent, parent_ctx,
7211 child, leader, child_ctx);
7212 if (IS_ERR(child_ctr))
7213 return PTR_ERR(child_ctr);
7214 }
7215 return 0;
889ff015
FW
7216}
7217
7218static int
7219inherit_task_group(struct perf_event *event, struct task_struct *parent,
7220 struct perf_event_context *parent_ctx,
8dc85d54 7221 struct task_struct *child, int ctxn,
889ff015
FW
7222 int *inherited_all)
7223{
7224 int ret;
8dc85d54 7225 struct perf_event_context *child_ctx;
889ff015
FW
7226
7227 if (!event->attr.inherit) {
7228 *inherited_all = 0;
7229 return 0;
bbbee908
PZ
7230 }
7231
fe4b04fa 7232 child_ctx = child->perf_event_ctxp[ctxn];
889ff015
FW
7233 if (!child_ctx) {
7234 /*
7235 * This is executed from the parent task context, so
7236 * inherit events that have been marked for cloning.
7237 * First allocate and initialize a context for the
7238 * child.
7239 */
bbbee908 7240
eb184479 7241 child_ctx = alloc_perf_context(event->pmu, child);
889ff015
FW
7242 if (!child_ctx)
7243 return -ENOMEM;
bbbee908 7244
8dc85d54 7245 child->perf_event_ctxp[ctxn] = child_ctx;
889ff015
FW
7246 }
7247
7248 ret = inherit_group(event, parent, parent_ctx,
7249 child, child_ctx);
7250
7251 if (ret)
7252 *inherited_all = 0;
7253
7254 return ret;
bbbee908
PZ
7255}
7256
9b51f66d 7257/*
cdd6c482 7258 * Initialize the perf_event context in task_struct
9b51f66d 7259 */
8dc85d54 7260int perf_event_init_context(struct task_struct *child, int ctxn)
9b51f66d 7261{
889ff015 7262 struct perf_event_context *child_ctx, *parent_ctx;
cdd6c482
IM
7263 struct perf_event_context *cloned_ctx;
7264 struct perf_event *event;
9b51f66d 7265 struct task_struct *parent = current;
564c2b21 7266 int inherited_all = 1;
dddd3379 7267 unsigned long flags;
6ab423e0 7268 int ret = 0;
9b51f66d 7269
8dc85d54 7270 if (likely(!parent->perf_event_ctxp[ctxn]))
6ab423e0
PZ
7271 return 0;
7272
ad3a37de 7273 /*
25346b93
PM
7274 * If the parent's context is a clone, pin it so it won't get
7275 * swapped under us.
ad3a37de 7276 */
8dc85d54 7277 parent_ctx = perf_pin_task_context(parent, ctxn);
25346b93 7278
ad3a37de
PM
7279 /*
7280 * No need to check if parent_ctx != NULL here; since we saw
7281 * it non-NULL earlier, the only reason for it to become NULL
7282 * is if we exit, and since we're currently in the middle of
7283 * a fork we can't be exiting at the same time.
7284 */
ad3a37de 7285
9b51f66d
IM
7286 /*
7287 * Lock the parent list. No need to lock the child - not PID
7288 * hashed yet and not running, so nobody can access it.
7289 */
d859e29f 7290 mutex_lock(&parent_ctx->mutex);
9b51f66d
IM
7291
7292 /*
7293 * We dont have to disable NMIs - we are only looking at
7294 * the list, not manipulating it:
7295 */
889ff015 7296 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
8dc85d54
PZ
7297 ret = inherit_task_group(event, parent, parent_ctx,
7298 child, ctxn, &inherited_all);
889ff015
FW
7299 if (ret)
7300 break;
7301 }
b93f7978 7302
dddd3379
TG
7303 /*
7304 * We can't hold ctx->lock when iterating the ->flexible_group list due
7305 * to allocations, but we need to prevent rotation because
7306 * rotate_ctx() will change the list from interrupt context.
7307 */
7308 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
7309 parent_ctx->rotate_disable = 1;
7310 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
7311
889ff015 7312 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
8dc85d54
PZ
7313 ret = inherit_task_group(event, parent, parent_ctx,
7314 child, ctxn, &inherited_all);
889ff015 7315 if (ret)
9b51f66d 7316 break;
564c2b21
PM
7317 }
7318
dddd3379
TG
7319 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
7320 parent_ctx->rotate_disable = 0;
dddd3379 7321
8dc85d54 7322 child_ctx = child->perf_event_ctxp[ctxn];
889ff015 7323
05cbaa28 7324 if (child_ctx && inherited_all) {
564c2b21
PM
7325 /*
7326 * Mark the child context as a clone of the parent
7327 * context, or of whatever the parent is a clone of.
c5ed5145
PZ
7328 *
7329 * Note that if the parent is a clone, the holding of
7330 * parent_ctx->lock avoids it from being uncloned.
564c2b21 7331 */
c5ed5145 7332 cloned_ctx = parent_ctx->parent_ctx;
ad3a37de
PM
7333 if (cloned_ctx) {
7334 child_ctx->parent_ctx = cloned_ctx;
25346b93 7335 child_ctx->parent_gen = parent_ctx->parent_gen;
564c2b21
PM
7336 } else {
7337 child_ctx->parent_ctx = parent_ctx;
7338 child_ctx->parent_gen = parent_ctx->generation;
7339 }
7340 get_ctx(child_ctx->parent_ctx);
9b51f66d
IM
7341 }
7342
c5ed5145 7343 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
d859e29f 7344 mutex_unlock(&parent_ctx->mutex);
6ab423e0 7345
25346b93 7346 perf_unpin_context(parent_ctx);
fe4b04fa 7347 put_ctx(parent_ctx);
ad3a37de 7348
6ab423e0 7349 return ret;
9b51f66d
IM
7350}
7351
8dc85d54
PZ
7352/*
7353 * Initialize the perf_event context in task_struct
7354 */
7355int perf_event_init_task(struct task_struct *child)
7356{
7357 int ctxn, ret;
7358
8550d7cb
ON
7359 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
7360 mutex_init(&child->perf_event_mutex);
7361 INIT_LIST_HEAD(&child->perf_event_list);
7362
8dc85d54
PZ
7363 for_each_task_context_nr(ctxn) {
7364 ret = perf_event_init_context(child, ctxn);
7365 if (ret)
7366 return ret;
7367 }
7368
7369 return 0;
7370}
7371
220b140b
PM
7372static void __init perf_event_init_all_cpus(void)
7373{
b28ab83c 7374 struct swevent_htable *swhash;
220b140b 7375 int cpu;
220b140b
PM
7376
7377 for_each_possible_cpu(cpu) {
b28ab83c
PZ
7378 swhash = &per_cpu(swevent_htable, cpu);
7379 mutex_init(&swhash->hlist_mutex);
e9d2b064 7380 INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
220b140b
PM
7381 }
7382}
7383
cdd6c482 7384static void __cpuinit perf_event_init_cpu(int cpu)
0793a61d 7385{
108b02cf 7386 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
0793a61d 7387
b28ab83c 7388 mutex_lock(&swhash->hlist_mutex);
4536e4d1 7389 if (swhash->hlist_refcount > 0) {
76e1d904
FW
7390 struct swevent_hlist *hlist;
7391
b28ab83c
PZ
7392 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
7393 WARN_ON(!hlist);
7394 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 7395 }
b28ab83c 7396 mutex_unlock(&swhash->hlist_mutex);
0793a61d
TG
7397}
7398
c277443c 7399#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
e9d2b064 7400static void perf_pmu_rotate_stop(struct pmu *pmu)
0793a61d 7401{
e9d2b064
PZ
7402 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
7403
7404 WARN_ON(!irqs_disabled());
7405
7406 list_del_init(&cpuctx->rotation_list);
7407}
7408
108b02cf 7409static void __perf_event_exit_context(void *__info)
0793a61d 7410{
108b02cf 7411 struct perf_event_context *ctx = __info;
cdd6c482 7412 struct perf_event *event, *tmp;
0793a61d 7413
108b02cf 7414 perf_pmu_rotate_stop(ctx->pmu);
b5ab4cd5 7415
889ff015 7416 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
fe4b04fa 7417 __perf_remove_from_context(event);
889ff015 7418 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
fe4b04fa 7419 __perf_remove_from_context(event);
0793a61d 7420}
108b02cf
PZ
7421
7422static void perf_event_exit_cpu_context(int cpu)
7423{
7424 struct perf_event_context *ctx;
7425 struct pmu *pmu;
7426 int idx;
7427
7428 idx = srcu_read_lock(&pmus_srcu);
7429 list_for_each_entry_rcu(pmu, &pmus, entry) {
917bdd1c 7430 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
108b02cf
PZ
7431
7432 mutex_lock(&ctx->mutex);
7433 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
7434 mutex_unlock(&ctx->mutex);
7435 }
7436 srcu_read_unlock(&pmus_srcu, idx);
108b02cf
PZ
7437}
7438
cdd6c482 7439static void perf_event_exit_cpu(int cpu)
0793a61d 7440{
b28ab83c 7441 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
d859e29f 7442
b28ab83c
PZ
7443 mutex_lock(&swhash->hlist_mutex);
7444 swevent_hlist_release(swhash);
7445 mutex_unlock(&swhash->hlist_mutex);
76e1d904 7446
108b02cf 7447 perf_event_exit_cpu_context(cpu);
0793a61d
TG
7448}
7449#else
cdd6c482 7450static inline void perf_event_exit_cpu(int cpu) { }
0793a61d
TG
7451#endif
7452
c277443c
PZ
7453static int
7454perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
7455{
7456 int cpu;
7457
7458 for_each_online_cpu(cpu)
7459 perf_event_exit_cpu(cpu);
7460
7461 return NOTIFY_OK;
7462}
7463
7464/*
7465 * Run the perf reboot notifier at the very last possible moment so that
7466 * the generic watchdog code runs as long as possible.
7467 */
7468static struct notifier_block perf_reboot_notifier = {
7469 .notifier_call = perf_reboot,
7470 .priority = INT_MIN,
7471};
7472
0793a61d
TG
7473static int __cpuinit
7474perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
7475{
7476 unsigned int cpu = (long)hcpu;
7477
4536e4d1 7478 switch (action & ~CPU_TASKS_FROZEN) {
0793a61d
TG
7479
7480 case CPU_UP_PREPARE:
5e11637e 7481 case CPU_DOWN_FAILED:
cdd6c482 7482 perf_event_init_cpu(cpu);
0793a61d
TG
7483 break;
7484
5e11637e 7485 case CPU_UP_CANCELED:
0793a61d 7486 case CPU_DOWN_PREPARE:
cdd6c482 7487 perf_event_exit_cpu(cpu);
0793a61d 7488 break;
0793a61d
TG
7489 default:
7490 break;
7491 }
7492
7493 return NOTIFY_OK;
7494}
7495
cdd6c482 7496void __init perf_event_init(void)
0793a61d 7497{
3c502e7a
JW
7498 int ret;
7499
2e80a82a
PZ
7500 idr_init(&pmu_idr);
7501
220b140b 7502 perf_event_init_all_cpus();
b0a873eb 7503 init_srcu_struct(&pmus_srcu);
2e80a82a
PZ
7504 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
7505 perf_pmu_register(&perf_cpu_clock, NULL, -1);
7506 perf_pmu_register(&perf_task_clock, NULL, -1);
b0a873eb
PZ
7507 perf_tp_register();
7508 perf_cpu_notifier(perf_cpu_notify);
c277443c 7509 register_reboot_notifier(&perf_reboot_notifier);
3c502e7a
JW
7510
7511 ret = init_hw_breakpoint();
7512 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
b2029520
GN
7513
7514 /* do not patch jump label more than once per second */
7515 jump_label_rate_limit(&perf_sched_events, HZ);
b01c3a00
JO
7516
7517 /*
7518 * Build time assertion that we keep the data_head at the intended
7519 * location. IOW, validation we got the __reserved[] size right.
7520 */
7521 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
7522 != 1024);
0793a61d 7523}
abe43400
PZ
7524
7525static int __init perf_event_sysfs_init(void)
7526{
7527 struct pmu *pmu;
7528 int ret;
7529
7530 mutex_lock(&pmus_lock);
7531
7532 ret = bus_register(&pmu_bus);
7533 if (ret)
7534 goto unlock;
7535
7536 list_for_each_entry(pmu, &pmus, entry) {
7537 if (!pmu->name || pmu->type < 0)
7538 continue;
7539
7540 ret = pmu_dev_alloc(pmu);
7541 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
7542 }
7543 pmu_bus_running = 1;
7544 ret = 0;
7545
7546unlock:
7547 mutex_unlock(&pmus_lock);
7548
7549 return ret;
7550}
7551device_initcall(perf_event_sysfs_init);
e5d1367f
SE
7552
7553#ifdef CONFIG_CGROUP_PERF
92fb9748 7554static struct cgroup_subsys_state *perf_cgroup_css_alloc(struct cgroup *cont)
e5d1367f
SE
7555{
7556 struct perf_cgroup *jc;
e5d1367f 7557
1b15d055 7558 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
e5d1367f
SE
7559 if (!jc)
7560 return ERR_PTR(-ENOMEM);
7561
e5d1367f
SE
7562 jc->info = alloc_percpu(struct perf_cgroup_info);
7563 if (!jc->info) {
7564 kfree(jc);
7565 return ERR_PTR(-ENOMEM);
7566 }
7567
e5d1367f
SE
7568 return &jc->css;
7569}
7570
92fb9748 7571static void perf_cgroup_css_free(struct cgroup *cont)
e5d1367f
SE
7572{
7573 struct perf_cgroup *jc;
7574 jc = container_of(cgroup_subsys_state(cont, perf_subsys_id),
7575 struct perf_cgroup, css);
7576 free_percpu(jc->info);
7577 kfree(jc);
7578}
7579
7580static int __perf_cgroup_move(void *info)
7581{
7582 struct task_struct *task = info;
7583 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
7584 return 0;
7585}
7586
761b3ef5 7587static void perf_cgroup_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
e5d1367f 7588{
bb9d97b6
TH
7589 struct task_struct *task;
7590
7591 cgroup_taskset_for_each(task, cgrp, tset)
7592 task_function_call(task, __perf_cgroup_move, task);
e5d1367f
SE
7593}
7594
761b3ef5
LZ
7595static void perf_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
7596 struct task_struct *task)
e5d1367f
SE
7597{
7598 /*
7599 * cgroup_exit() is called in the copy_process() failure path.
7600 * Ignore this case since the task hasn't ran yet, this avoids
7601 * trying to poke a half freed task state from generic code.
7602 */
7603 if (!(task->flags & PF_EXITING))
7604 return;
7605
bb9d97b6 7606 task_function_call(task, __perf_cgroup_move, task);
e5d1367f
SE
7607}
7608
7609struct cgroup_subsys perf_subsys = {
e7e7ee2e
IM
7610 .name = "perf_event",
7611 .subsys_id = perf_subsys_id,
92fb9748
TH
7612 .css_alloc = perf_cgroup_css_alloc,
7613 .css_free = perf_cgroup_css_free,
e7e7ee2e 7614 .exit = perf_cgroup_exit,
bb9d97b6 7615 .attach = perf_cgroup_attach,
e5d1367f
SE
7616};
7617#endif /* CONFIG_CGROUP_PERF */