]> git.ipfire.org Git - people/arne_f/kernel.git/blame - kernel/events/core.c
perf/x86/intel/uncore: Locate specific box by checking full device info
[people/arne_f/kernel.git] / kernel / events / core.c
CommitLineData
0793a61d 1/*
57c0c15b 2 * Performance events core code:
0793a61d 3 *
98144511 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
e7e7ee2e 5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
90eec103 6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
d36b6910 7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
7b732a75 8 *
57c0c15b 9 * For licensing details see kernel-base/COPYING
0793a61d
TG
10 */
11
12#include <linux/fs.h>
b9cacc7b 13#include <linux/mm.h>
0793a61d
TG
14#include <linux/cpu.h>
15#include <linux/smp.h>
2e80a82a 16#include <linux/idr.h>
04289bb9 17#include <linux/file.h>
0793a61d 18#include <linux/poll.h>
5a0e3ad6 19#include <linux/slab.h>
76e1d904 20#include <linux/hash.h>
12351ef8 21#include <linux/tick.h>
0793a61d 22#include <linux/sysfs.h>
22a4f650 23#include <linux/dcache.h>
0793a61d 24#include <linux/percpu.h>
22a4f650 25#include <linux/ptrace.h>
c277443c 26#include <linux/reboot.h>
b9cacc7b 27#include <linux/vmstat.h>
abe43400 28#include <linux/device.h>
6e5fdeed 29#include <linux/export.h>
906010b2 30#include <linux/vmalloc.h>
b9cacc7b
PZ
31#include <linux/hardirq.h>
32#include <linux/rculist.h>
0793a61d
TG
33#include <linux/uaccess.h>
34#include <linux/syscalls.h>
35#include <linux/anon_inodes.h>
aa9c4c0f 36#include <linux/kernel_stat.h>
39bed6cb 37#include <linux/cgroup.h>
cdd6c482 38#include <linux/perf_event.h>
af658dca 39#include <linux/trace_events.h>
3c502e7a 40#include <linux/hw_breakpoint.h>
c5ebcedb 41#include <linux/mm_types.h>
c464c76e 42#include <linux/module.h>
f972eb63 43#include <linux/mman.h>
b3f20785 44#include <linux/compat.h>
2541517c
AS
45#include <linux/bpf.h>
46#include <linux/filter.h>
375637bc
AS
47#include <linux/namei.h>
48#include <linux/parser.h>
0793a61d 49
76369139
FW
50#include "internal.h"
51
4e193bd4
TB
52#include <asm/irq_regs.h>
53
272325c4
PZ
54typedef int (*remote_function_f)(void *);
55
fe4b04fa 56struct remote_function_call {
e7e7ee2e 57 struct task_struct *p;
272325c4 58 remote_function_f func;
e7e7ee2e
IM
59 void *info;
60 int ret;
fe4b04fa
PZ
61};
62
63static void remote_function(void *data)
64{
65 struct remote_function_call *tfc = data;
66 struct task_struct *p = tfc->p;
67
68 if (p) {
0da4cf3e
PZ
69 /* -EAGAIN */
70 if (task_cpu(p) != smp_processor_id())
71 return;
72
73 /*
74 * Now that we're on right CPU with IRQs disabled, we can test
75 * if we hit the right task without races.
76 */
77
78 tfc->ret = -ESRCH; /* No such (running) process */
79 if (p != current)
fe4b04fa
PZ
80 return;
81 }
82
83 tfc->ret = tfc->func(tfc->info);
84}
85
86/**
87 * task_function_call - call a function on the cpu on which a task runs
88 * @p: the task to evaluate
89 * @func: the function to be called
90 * @info: the function call argument
91 *
92 * Calls the function @func when the task is currently running. This might
93 * be on the current CPU, which just calls the function directly
94 *
95 * returns: @func return value, or
96 * -ESRCH - when the process isn't running
97 * -EAGAIN - when the process moved away
98 */
99static int
272325c4 100task_function_call(struct task_struct *p, remote_function_f func, void *info)
fe4b04fa
PZ
101{
102 struct remote_function_call data = {
e7e7ee2e
IM
103 .p = p,
104 .func = func,
105 .info = info,
0da4cf3e 106 .ret = -EAGAIN,
fe4b04fa 107 };
0da4cf3e 108 int ret;
fe4b04fa 109
0da4cf3e
PZ
110 do {
111 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
112 if (!ret)
113 ret = data.ret;
114 } while (ret == -EAGAIN);
fe4b04fa 115
0da4cf3e 116 return ret;
fe4b04fa
PZ
117}
118
119/**
120 * cpu_function_call - call a function on the cpu
121 * @func: the function to be called
122 * @info: the function call argument
123 *
124 * Calls the function @func on the remote cpu.
125 *
126 * returns: @func return value or -ENXIO when the cpu is offline
127 */
272325c4 128static int cpu_function_call(int cpu, remote_function_f func, void *info)
fe4b04fa
PZ
129{
130 struct remote_function_call data = {
e7e7ee2e
IM
131 .p = NULL,
132 .func = func,
133 .info = info,
134 .ret = -ENXIO, /* No such CPU */
fe4b04fa
PZ
135 };
136
137 smp_call_function_single(cpu, remote_function, &data, 1);
138
139 return data.ret;
140}
141
fae3fde6
PZ
142static inline struct perf_cpu_context *
143__get_cpu_context(struct perf_event_context *ctx)
144{
145 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
146}
147
148static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
149 struct perf_event_context *ctx)
0017960f 150{
fae3fde6
PZ
151 raw_spin_lock(&cpuctx->ctx.lock);
152 if (ctx)
153 raw_spin_lock(&ctx->lock);
154}
155
156static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
157 struct perf_event_context *ctx)
158{
159 if (ctx)
160 raw_spin_unlock(&ctx->lock);
161 raw_spin_unlock(&cpuctx->ctx.lock);
162}
163
63b6da39
PZ
164#define TASK_TOMBSTONE ((void *)-1L)
165
166static bool is_kernel_event(struct perf_event *event)
167{
f47c02c0 168 return READ_ONCE(event->owner) == TASK_TOMBSTONE;
63b6da39
PZ
169}
170
39a43640
PZ
171/*
172 * On task ctx scheduling...
173 *
174 * When !ctx->nr_events a task context will not be scheduled. This means
175 * we can disable the scheduler hooks (for performance) without leaving
176 * pending task ctx state.
177 *
178 * This however results in two special cases:
179 *
180 * - removing the last event from a task ctx; this is relatively straight
181 * forward and is done in __perf_remove_from_context.
182 *
183 * - adding the first event to a task ctx; this is tricky because we cannot
184 * rely on ctx->is_active and therefore cannot use event_function_call().
185 * See perf_install_in_context().
186 *
39a43640
PZ
187 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
188 */
189
fae3fde6
PZ
190typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
191 struct perf_event_context *, void *);
192
193struct event_function_struct {
194 struct perf_event *event;
195 event_f func;
196 void *data;
197};
198
199static int event_function(void *info)
200{
201 struct event_function_struct *efs = info;
202 struct perf_event *event = efs->event;
0017960f 203 struct perf_event_context *ctx = event->ctx;
fae3fde6
PZ
204 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
205 struct perf_event_context *task_ctx = cpuctx->task_ctx;
63b6da39 206 int ret = 0;
fae3fde6
PZ
207
208 WARN_ON_ONCE(!irqs_disabled());
209
63b6da39 210 perf_ctx_lock(cpuctx, task_ctx);
fae3fde6
PZ
211 /*
212 * Since we do the IPI call without holding ctx->lock things can have
213 * changed, double check we hit the task we set out to hit.
fae3fde6
PZ
214 */
215 if (ctx->task) {
63b6da39 216 if (ctx->task != current) {
0da4cf3e 217 ret = -ESRCH;
63b6da39
PZ
218 goto unlock;
219 }
fae3fde6 220
fae3fde6
PZ
221 /*
222 * We only use event_function_call() on established contexts,
223 * and event_function() is only ever called when active (or
224 * rather, we'll have bailed in task_function_call() or the
225 * above ctx->task != current test), therefore we must have
226 * ctx->is_active here.
227 */
228 WARN_ON_ONCE(!ctx->is_active);
229 /*
230 * And since we have ctx->is_active, cpuctx->task_ctx must
231 * match.
232 */
63b6da39
PZ
233 WARN_ON_ONCE(task_ctx != ctx);
234 } else {
235 WARN_ON_ONCE(&cpuctx->ctx != ctx);
fae3fde6 236 }
63b6da39 237
fae3fde6 238 efs->func(event, cpuctx, ctx, efs->data);
63b6da39 239unlock:
fae3fde6
PZ
240 perf_ctx_unlock(cpuctx, task_ctx);
241
63b6da39 242 return ret;
fae3fde6
PZ
243}
244
245static void event_function_local(struct perf_event *event, event_f func, void *data)
246{
247 struct event_function_struct efs = {
248 .event = event,
249 .func = func,
250 .data = data,
251 };
252
253 int ret = event_function(&efs);
254 WARN_ON_ONCE(ret);
255}
256
257static void event_function_call(struct perf_event *event, event_f func, void *data)
0017960f
PZ
258{
259 struct perf_event_context *ctx = event->ctx;
63b6da39 260 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
fae3fde6
PZ
261 struct event_function_struct efs = {
262 .event = event,
263 .func = func,
264 .data = data,
265 };
0017960f 266
c97f4736
PZ
267 if (!event->parent) {
268 /*
269 * If this is a !child event, we must hold ctx::mutex to
270 * stabilize the the event->ctx relation. See
271 * perf_event_ctx_lock().
272 */
273 lockdep_assert_held(&ctx->mutex);
274 }
0017960f
PZ
275
276 if (!task) {
fae3fde6 277 cpu_function_call(event->cpu, event_function, &efs);
0017960f
PZ
278 return;
279 }
280
63b6da39
PZ
281 if (task == TASK_TOMBSTONE)
282 return;
283
a096309b 284again:
fae3fde6 285 if (!task_function_call(task, event_function, &efs))
0017960f
PZ
286 return;
287
288 raw_spin_lock_irq(&ctx->lock);
63b6da39
PZ
289 /*
290 * Reload the task pointer, it might have been changed by
291 * a concurrent perf_event_context_sched_out().
292 */
293 task = ctx->task;
a096309b
PZ
294 if (task == TASK_TOMBSTONE) {
295 raw_spin_unlock_irq(&ctx->lock);
296 return;
0017960f 297 }
a096309b
PZ
298 if (ctx->is_active) {
299 raw_spin_unlock_irq(&ctx->lock);
300 goto again;
301 }
302 func(event, NULL, ctx, data);
0017960f
PZ
303 raw_spin_unlock_irq(&ctx->lock);
304}
305
e5d1367f
SE
306#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
307 PERF_FLAG_FD_OUTPUT |\
a21b0b35
YD
308 PERF_FLAG_PID_CGROUP |\
309 PERF_FLAG_FD_CLOEXEC)
e5d1367f 310
bce38cd5
SE
311/*
312 * branch priv levels that need permission checks
313 */
314#define PERF_SAMPLE_BRANCH_PERM_PLM \
315 (PERF_SAMPLE_BRANCH_KERNEL |\
316 PERF_SAMPLE_BRANCH_HV)
317
0b3fcf17
SE
318enum event_type_t {
319 EVENT_FLEXIBLE = 0x1,
320 EVENT_PINNED = 0x2,
3cbaa590 321 EVENT_TIME = 0x4,
0b3fcf17
SE
322 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
323};
324
e5d1367f
SE
325/*
326 * perf_sched_events : >0 events exist
327 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
328 */
9107c89e
PZ
329
330static void perf_sched_delayed(struct work_struct *work);
331DEFINE_STATIC_KEY_FALSE(perf_sched_events);
332static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
333static DEFINE_MUTEX(perf_sched_mutex);
334static atomic_t perf_sched_count;
335
e5d1367f 336static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
ba532500 337static DEFINE_PER_CPU(int, perf_sched_cb_usages);
f2fb6bef 338static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
e5d1367f 339
cdd6c482
IM
340static atomic_t nr_mmap_events __read_mostly;
341static atomic_t nr_comm_events __read_mostly;
342static atomic_t nr_task_events __read_mostly;
948b26b6 343static atomic_t nr_freq_events __read_mostly;
45ac1403 344static atomic_t nr_switch_events __read_mostly;
9ee318a7 345
108b02cf
PZ
346static LIST_HEAD(pmus);
347static DEFINE_MUTEX(pmus_lock);
348static struct srcu_struct pmus_srcu;
349
0764771d 350/*
cdd6c482 351 * perf event paranoia level:
0fbdea19
IM
352 * -1 - not paranoid at all
353 * 0 - disallow raw tracepoint access for unpriv
cdd6c482 354 * 1 - disallow cpu events for unpriv
0fbdea19 355 * 2 - disallow kernel profiling for unpriv
0764771d 356 */
0161028b 357int sysctl_perf_event_paranoid __read_mostly = 2;
0764771d 358
20443384
FW
359/* Minimum for 512 kiB + 1 user control page */
360int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
df58ab24
PZ
361
362/*
cdd6c482 363 * max perf event sample rate
df58ab24 364 */
14c63f17
DH
365#define DEFAULT_MAX_SAMPLE_RATE 100000
366#define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
367#define DEFAULT_CPU_TIME_MAX_PERCENT 25
368
369int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
370
371static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
372static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
373
d9494cb4
PZ
374static int perf_sample_allowed_ns __read_mostly =
375 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
14c63f17 376
18ab2cd3 377static void update_perf_cpu_limits(void)
14c63f17
DH
378{
379 u64 tmp = perf_sample_period_ns;
380
381 tmp *= sysctl_perf_cpu_time_max_percent;
91a612ee
PZ
382 tmp = div_u64(tmp, 100);
383 if (!tmp)
384 tmp = 1;
385
386 WRITE_ONCE(perf_sample_allowed_ns, tmp);
14c63f17 387}
163ec435 388
9e630205
SE
389static int perf_rotate_context(struct perf_cpu_context *cpuctx);
390
163ec435
PZ
391int perf_proc_update_handler(struct ctl_table *table, int write,
392 void __user *buffer, size_t *lenp,
393 loff_t *ppos)
394{
723478c8 395 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
163ec435
PZ
396
397 if (ret || !write)
398 return ret;
399
ab7fdefb
KL
400 /*
401 * If throttling is disabled don't allow the write:
402 */
403 if (sysctl_perf_cpu_time_max_percent == 100 ||
404 sysctl_perf_cpu_time_max_percent == 0)
405 return -EINVAL;
406
163ec435 407 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
14c63f17
DH
408 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
409 update_perf_cpu_limits();
410
411 return 0;
412}
413
414int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
415
416int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
417 void __user *buffer, size_t *lenp,
418 loff_t *ppos)
419{
420 int ret = proc_dointvec(table, write, buffer, lenp, ppos);
421
422 if (ret || !write)
423 return ret;
424
b303e7c1
PZ
425 if (sysctl_perf_cpu_time_max_percent == 100 ||
426 sysctl_perf_cpu_time_max_percent == 0) {
91a612ee
PZ
427 printk(KERN_WARNING
428 "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
429 WRITE_ONCE(perf_sample_allowed_ns, 0);
430 } else {
431 update_perf_cpu_limits();
432 }
163ec435
PZ
433
434 return 0;
435}
1ccd1549 436
14c63f17
DH
437/*
438 * perf samples are done in some very critical code paths (NMIs).
439 * If they take too much CPU time, the system can lock up and not
440 * get any real work done. This will drop the sample rate when
441 * we detect that events are taking too long.
442 */
443#define NR_ACCUMULATED_SAMPLES 128
d9494cb4 444static DEFINE_PER_CPU(u64, running_sample_length);
14c63f17 445
91a612ee
PZ
446static u64 __report_avg;
447static u64 __report_allowed;
448
6a02ad66 449static void perf_duration_warn(struct irq_work *w)
14c63f17 450{
6a02ad66 451 printk_ratelimited(KERN_WARNING
91a612ee
PZ
452 "perf: interrupt took too long (%lld > %lld), lowering "
453 "kernel.perf_event_max_sample_rate to %d\n",
454 __report_avg, __report_allowed,
455 sysctl_perf_event_sample_rate);
6a02ad66
PZ
456}
457
458static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
459
460void perf_sample_event_took(u64 sample_len_ns)
461{
91a612ee
PZ
462 u64 max_len = READ_ONCE(perf_sample_allowed_ns);
463 u64 running_len;
464 u64 avg_len;
465 u32 max;
14c63f17 466
91a612ee 467 if (max_len == 0)
14c63f17
DH
468 return;
469
91a612ee
PZ
470 /* Decay the counter by 1 average sample. */
471 running_len = __this_cpu_read(running_sample_length);
472 running_len -= running_len/NR_ACCUMULATED_SAMPLES;
473 running_len += sample_len_ns;
474 __this_cpu_write(running_sample_length, running_len);
14c63f17
DH
475
476 /*
91a612ee
PZ
477 * Note: this will be biased artifically low until we have
478 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
14c63f17
DH
479 * from having to maintain a count.
480 */
91a612ee
PZ
481 avg_len = running_len/NR_ACCUMULATED_SAMPLES;
482 if (avg_len <= max_len)
14c63f17
DH
483 return;
484
91a612ee
PZ
485 __report_avg = avg_len;
486 __report_allowed = max_len;
14c63f17 487
91a612ee
PZ
488 /*
489 * Compute a throttle threshold 25% below the current duration.
490 */
491 avg_len += avg_len / 4;
492 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
493 if (avg_len < max)
494 max /= (u32)avg_len;
495 else
496 max = 1;
14c63f17 497
91a612ee
PZ
498 WRITE_ONCE(perf_sample_allowed_ns, avg_len);
499 WRITE_ONCE(max_samples_per_tick, max);
500
501 sysctl_perf_event_sample_rate = max * HZ;
502 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
6a02ad66 503
cd578abb 504 if (!irq_work_queue(&perf_duration_work)) {
91a612ee 505 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
cd578abb 506 "kernel.perf_event_max_sample_rate to %d\n",
91a612ee 507 __report_avg, __report_allowed,
cd578abb
PZ
508 sysctl_perf_event_sample_rate);
509 }
14c63f17
DH
510}
511
cdd6c482 512static atomic64_t perf_event_id;
a96bbc16 513
0b3fcf17
SE
514static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
515 enum event_type_t event_type);
516
517static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
518 enum event_type_t event_type,
519 struct task_struct *task);
520
521static void update_context_time(struct perf_event_context *ctx);
522static u64 perf_event_time(struct perf_event *event);
0b3fcf17 523
cdd6c482 524void __weak perf_event_print_debug(void) { }
0793a61d 525
84c79910 526extern __weak const char *perf_pmu_name(void)
0793a61d 527{
84c79910 528 return "pmu";
0793a61d
TG
529}
530
0b3fcf17
SE
531static inline u64 perf_clock(void)
532{
533 return local_clock();
534}
535
34f43927
PZ
536static inline u64 perf_event_clock(struct perf_event *event)
537{
538 return event->clock();
539}
540
e5d1367f
SE
541#ifdef CONFIG_CGROUP_PERF
542
e5d1367f
SE
543static inline bool
544perf_cgroup_match(struct perf_event *event)
545{
546 struct perf_event_context *ctx = event->ctx;
547 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
548
ef824fa1
TH
549 /* @event doesn't care about cgroup */
550 if (!event->cgrp)
551 return true;
552
553 /* wants specific cgroup scope but @cpuctx isn't associated with any */
554 if (!cpuctx->cgrp)
555 return false;
556
557 /*
558 * Cgroup scoping is recursive. An event enabled for a cgroup is
559 * also enabled for all its descendant cgroups. If @cpuctx's
560 * cgroup is a descendant of @event's (the test covers identity
561 * case), it's a match.
562 */
563 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
564 event->cgrp->css.cgroup);
e5d1367f
SE
565}
566
e5d1367f
SE
567static inline void perf_detach_cgroup(struct perf_event *event)
568{
4e2ba650 569 css_put(&event->cgrp->css);
e5d1367f
SE
570 event->cgrp = NULL;
571}
572
573static inline int is_cgroup_event(struct perf_event *event)
574{
575 return event->cgrp != NULL;
576}
577
578static inline u64 perf_cgroup_event_time(struct perf_event *event)
579{
580 struct perf_cgroup_info *t;
581
582 t = per_cpu_ptr(event->cgrp->info, event->cpu);
583 return t->time;
584}
585
586static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
587{
588 struct perf_cgroup_info *info;
589 u64 now;
590
591 now = perf_clock();
592
593 info = this_cpu_ptr(cgrp->info);
594
595 info->time += now - info->timestamp;
596 info->timestamp = now;
597}
598
599static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
600{
601 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
602 if (cgrp_out)
603 __update_cgrp_time(cgrp_out);
604}
605
606static inline void update_cgrp_time_from_event(struct perf_event *event)
607{
3f7cce3c
SE
608 struct perf_cgroup *cgrp;
609
e5d1367f 610 /*
3f7cce3c
SE
611 * ensure we access cgroup data only when needed and
612 * when we know the cgroup is pinned (css_get)
e5d1367f 613 */
3f7cce3c 614 if (!is_cgroup_event(event))
e5d1367f
SE
615 return;
616
614e4c4e 617 cgrp = perf_cgroup_from_task(current, event->ctx);
3f7cce3c
SE
618 /*
619 * Do not update time when cgroup is not active
620 */
621 if (cgrp == event->cgrp)
622 __update_cgrp_time(event->cgrp);
e5d1367f
SE
623}
624
625static inline void
3f7cce3c
SE
626perf_cgroup_set_timestamp(struct task_struct *task,
627 struct perf_event_context *ctx)
e5d1367f
SE
628{
629 struct perf_cgroup *cgrp;
630 struct perf_cgroup_info *info;
631
3f7cce3c
SE
632 /*
633 * ctx->lock held by caller
634 * ensure we do not access cgroup data
635 * unless we have the cgroup pinned (css_get)
636 */
637 if (!task || !ctx->nr_cgroups)
e5d1367f
SE
638 return;
639
614e4c4e 640 cgrp = perf_cgroup_from_task(task, ctx);
e5d1367f 641 info = this_cpu_ptr(cgrp->info);
3f7cce3c 642 info->timestamp = ctx->timestamp;
e5d1367f
SE
643}
644
645#define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
646#define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
647
648/*
649 * reschedule events based on the cgroup constraint of task.
650 *
651 * mode SWOUT : schedule out everything
652 * mode SWIN : schedule in based on cgroup for next
653 */
18ab2cd3 654static void perf_cgroup_switch(struct task_struct *task, int mode)
e5d1367f
SE
655{
656 struct perf_cpu_context *cpuctx;
657 struct pmu *pmu;
658 unsigned long flags;
659
660 /*
661 * disable interrupts to avoid geting nr_cgroup
662 * changes via __perf_event_disable(). Also
663 * avoids preemption.
664 */
665 local_irq_save(flags);
666
667 /*
668 * we reschedule only in the presence of cgroup
669 * constrained events.
670 */
e5d1367f
SE
671
672 list_for_each_entry_rcu(pmu, &pmus, entry) {
e5d1367f 673 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
95cf59ea
PZ
674 if (cpuctx->unique_pmu != pmu)
675 continue; /* ensure we process each cpuctx once */
e5d1367f 676
e5d1367f
SE
677 /*
678 * perf_cgroup_events says at least one
679 * context on this CPU has cgroup events.
680 *
681 * ctx->nr_cgroups reports the number of cgroup
682 * events for a context.
683 */
684 if (cpuctx->ctx.nr_cgroups > 0) {
facc4307
PZ
685 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
686 perf_pmu_disable(cpuctx->ctx.pmu);
e5d1367f
SE
687
688 if (mode & PERF_CGROUP_SWOUT) {
689 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
690 /*
691 * must not be done before ctxswout due
692 * to event_filter_match() in event_sched_out()
693 */
694 cpuctx->cgrp = NULL;
695 }
696
697 if (mode & PERF_CGROUP_SWIN) {
e566b76e 698 WARN_ON_ONCE(cpuctx->cgrp);
95cf59ea
PZ
699 /*
700 * set cgrp before ctxsw in to allow
701 * event_filter_match() to not have to pass
702 * task around
614e4c4e
SE
703 * we pass the cpuctx->ctx to perf_cgroup_from_task()
704 * because cgorup events are only per-cpu
e5d1367f 705 */
614e4c4e 706 cpuctx->cgrp = perf_cgroup_from_task(task, &cpuctx->ctx);
e5d1367f
SE
707 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
708 }
facc4307
PZ
709 perf_pmu_enable(cpuctx->ctx.pmu);
710 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
e5d1367f 711 }
e5d1367f
SE
712 }
713
e5d1367f
SE
714 local_irq_restore(flags);
715}
716
a8d757ef
SE
717static inline void perf_cgroup_sched_out(struct task_struct *task,
718 struct task_struct *next)
e5d1367f 719{
a8d757ef
SE
720 struct perf_cgroup *cgrp1;
721 struct perf_cgroup *cgrp2 = NULL;
722
ddaaf4e2 723 rcu_read_lock();
a8d757ef
SE
724 /*
725 * we come here when we know perf_cgroup_events > 0
614e4c4e
SE
726 * we do not need to pass the ctx here because we know
727 * we are holding the rcu lock
a8d757ef 728 */
614e4c4e 729 cgrp1 = perf_cgroup_from_task(task, NULL);
70a01657 730 cgrp2 = perf_cgroup_from_task(next, NULL);
a8d757ef
SE
731
732 /*
733 * only schedule out current cgroup events if we know
734 * that we are switching to a different cgroup. Otherwise,
735 * do no touch the cgroup events.
736 */
737 if (cgrp1 != cgrp2)
738 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
ddaaf4e2
SE
739
740 rcu_read_unlock();
e5d1367f
SE
741}
742
a8d757ef
SE
743static inline void perf_cgroup_sched_in(struct task_struct *prev,
744 struct task_struct *task)
e5d1367f 745{
a8d757ef
SE
746 struct perf_cgroup *cgrp1;
747 struct perf_cgroup *cgrp2 = NULL;
748
ddaaf4e2 749 rcu_read_lock();
a8d757ef
SE
750 /*
751 * we come here when we know perf_cgroup_events > 0
614e4c4e
SE
752 * we do not need to pass the ctx here because we know
753 * we are holding the rcu lock
a8d757ef 754 */
614e4c4e 755 cgrp1 = perf_cgroup_from_task(task, NULL);
614e4c4e 756 cgrp2 = perf_cgroup_from_task(prev, NULL);
a8d757ef
SE
757
758 /*
759 * only need to schedule in cgroup events if we are changing
760 * cgroup during ctxsw. Cgroup events were not scheduled
761 * out of ctxsw out if that was not the case.
762 */
763 if (cgrp1 != cgrp2)
764 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
ddaaf4e2
SE
765
766 rcu_read_unlock();
e5d1367f
SE
767}
768
769static inline int perf_cgroup_connect(int fd, struct perf_event *event,
770 struct perf_event_attr *attr,
771 struct perf_event *group_leader)
772{
773 struct perf_cgroup *cgrp;
774 struct cgroup_subsys_state *css;
2903ff01
AV
775 struct fd f = fdget(fd);
776 int ret = 0;
e5d1367f 777
2903ff01 778 if (!f.file)
e5d1367f
SE
779 return -EBADF;
780
b583043e 781 css = css_tryget_online_from_dir(f.file->f_path.dentry,
ec903c0c 782 &perf_event_cgrp_subsys);
3db272c0
LZ
783 if (IS_ERR(css)) {
784 ret = PTR_ERR(css);
785 goto out;
786 }
e5d1367f
SE
787
788 cgrp = container_of(css, struct perf_cgroup, css);
789 event->cgrp = cgrp;
790
791 /*
792 * all events in a group must monitor
793 * the same cgroup because a task belongs
794 * to only one perf cgroup at a time
795 */
796 if (group_leader && group_leader->cgrp != cgrp) {
797 perf_detach_cgroup(event);
798 ret = -EINVAL;
e5d1367f 799 }
3db272c0 800out:
2903ff01 801 fdput(f);
e5d1367f
SE
802 return ret;
803}
804
805static inline void
806perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
807{
808 struct perf_cgroup_info *t;
809 t = per_cpu_ptr(event->cgrp->info, event->cpu);
810 event->shadow_ctx_time = now - t->timestamp;
811}
812
813static inline void
814perf_cgroup_defer_enabled(struct perf_event *event)
815{
816 /*
817 * when the current task's perf cgroup does not match
818 * the event's, we need to remember to call the
819 * perf_mark_enable() function the first time a task with
820 * a matching perf cgroup is scheduled in.
821 */
822 if (is_cgroup_event(event) && !perf_cgroup_match(event))
823 event->cgrp_defer_enabled = 1;
824}
825
826static inline void
827perf_cgroup_mark_enabled(struct perf_event *event,
828 struct perf_event_context *ctx)
829{
830 struct perf_event *sub;
831 u64 tstamp = perf_event_time(event);
832
833 if (!event->cgrp_defer_enabled)
834 return;
835
836 event->cgrp_defer_enabled = 0;
837
838 event->tstamp_enabled = tstamp - event->total_time_enabled;
839 list_for_each_entry(sub, &event->sibling_list, group_entry) {
840 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
841 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
842 sub->cgrp_defer_enabled = 0;
843 }
844 }
845}
846#else /* !CONFIG_CGROUP_PERF */
847
848static inline bool
849perf_cgroup_match(struct perf_event *event)
850{
851 return true;
852}
853
854static inline void perf_detach_cgroup(struct perf_event *event)
855{}
856
857static inline int is_cgroup_event(struct perf_event *event)
858{
859 return 0;
860}
861
862static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
863{
864 return 0;
865}
866
867static inline void update_cgrp_time_from_event(struct perf_event *event)
868{
869}
870
871static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
872{
873}
874
a8d757ef
SE
875static inline void perf_cgroup_sched_out(struct task_struct *task,
876 struct task_struct *next)
e5d1367f
SE
877{
878}
879
a8d757ef
SE
880static inline void perf_cgroup_sched_in(struct task_struct *prev,
881 struct task_struct *task)
e5d1367f
SE
882{
883}
884
885static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
886 struct perf_event_attr *attr,
887 struct perf_event *group_leader)
888{
889 return -EINVAL;
890}
891
892static inline void
3f7cce3c
SE
893perf_cgroup_set_timestamp(struct task_struct *task,
894 struct perf_event_context *ctx)
e5d1367f
SE
895{
896}
897
898void
899perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
900{
901}
902
903static inline void
904perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
905{
906}
907
908static inline u64 perf_cgroup_event_time(struct perf_event *event)
909{
910 return 0;
911}
912
913static inline void
914perf_cgroup_defer_enabled(struct perf_event *event)
915{
916}
917
918static inline void
919perf_cgroup_mark_enabled(struct perf_event *event,
920 struct perf_event_context *ctx)
921{
922}
923#endif
924
9e630205
SE
925/*
926 * set default to be dependent on timer tick just
927 * like original code
928 */
929#define PERF_CPU_HRTIMER (1000 / HZ)
930/*
931 * function must be called with interrupts disbled
932 */
272325c4 933static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
9e630205
SE
934{
935 struct perf_cpu_context *cpuctx;
9e630205
SE
936 int rotations = 0;
937
938 WARN_ON(!irqs_disabled());
939
940 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
9e630205
SE
941 rotations = perf_rotate_context(cpuctx);
942
4cfafd30
PZ
943 raw_spin_lock(&cpuctx->hrtimer_lock);
944 if (rotations)
9e630205 945 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
4cfafd30
PZ
946 else
947 cpuctx->hrtimer_active = 0;
948 raw_spin_unlock(&cpuctx->hrtimer_lock);
9e630205 949
4cfafd30 950 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
9e630205
SE
951}
952
272325c4 953static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
9e630205 954{
272325c4 955 struct hrtimer *timer = &cpuctx->hrtimer;
9e630205 956 struct pmu *pmu = cpuctx->ctx.pmu;
272325c4 957 u64 interval;
9e630205
SE
958
959 /* no multiplexing needed for SW PMU */
960 if (pmu->task_ctx_nr == perf_sw_context)
961 return;
962
62b85639
SE
963 /*
964 * check default is sane, if not set then force to
965 * default interval (1/tick)
966 */
272325c4
PZ
967 interval = pmu->hrtimer_interval_ms;
968 if (interval < 1)
969 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
62b85639 970
272325c4 971 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
9e630205 972
4cfafd30
PZ
973 raw_spin_lock_init(&cpuctx->hrtimer_lock);
974 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
272325c4 975 timer->function = perf_mux_hrtimer_handler;
9e630205
SE
976}
977
272325c4 978static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
9e630205 979{
272325c4 980 struct hrtimer *timer = &cpuctx->hrtimer;
9e630205 981 struct pmu *pmu = cpuctx->ctx.pmu;
4cfafd30 982 unsigned long flags;
9e630205
SE
983
984 /* not for SW PMU */
985 if (pmu->task_ctx_nr == perf_sw_context)
272325c4 986 return 0;
9e630205 987
4cfafd30
PZ
988 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
989 if (!cpuctx->hrtimer_active) {
990 cpuctx->hrtimer_active = 1;
991 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
992 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
993 }
994 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
9e630205 995
272325c4 996 return 0;
9e630205
SE
997}
998
33696fc0 999void perf_pmu_disable(struct pmu *pmu)
9e35ad38 1000{
33696fc0
PZ
1001 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1002 if (!(*count)++)
1003 pmu->pmu_disable(pmu);
9e35ad38 1004}
9e35ad38 1005
33696fc0 1006void perf_pmu_enable(struct pmu *pmu)
9e35ad38 1007{
33696fc0
PZ
1008 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1009 if (!--(*count))
1010 pmu->pmu_enable(pmu);
9e35ad38 1011}
9e35ad38 1012
2fde4f94 1013static DEFINE_PER_CPU(struct list_head, active_ctx_list);
e9d2b064
PZ
1014
1015/*
2fde4f94
MR
1016 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1017 * perf_event_task_tick() are fully serialized because they're strictly cpu
1018 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1019 * disabled, while perf_event_task_tick is called from IRQ context.
e9d2b064 1020 */
2fde4f94 1021static void perf_event_ctx_activate(struct perf_event_context *ctx)
9e35ad38 1022{
2fde4f94 1023 struct list_head *head = this_cpu_ptr(&active_ctx_list);
b5ab4cd5 1024
e9d2b064 1025 WARN_ON(!irqs_disabled());
b5ab4cd5 1026
2fde4f94
MR
1027 WARN_ON(!list_empty(&ctx->active_ctx_list));
1028
1029 list_add(&ctx->active_ctx_list, head);
1030}
1031
1032static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1033{
1034 WARN_ON(!irqs_disabled());
1035
1036 WARN_ON(list_empty(&ctx->active_ctx_list));
1037
1038 list_del_init(&ctx->active_ctx_list);
9e35ad38 1039}
9e35ad38 1040
cdd6c482 1041static void get_ctx(struct perf_event_context *ctx)
a63eaf34 1042{
e5289d4a 1043 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
a63eaf34
PM
1044}
1045
4af57ef2
YZ
1046static void free_ctx(struct rcu_head *head)
1047{
1048 struct perf_event_context *ctx;
1049
1050 ctx = container_of(head, struct perf_event_context, rcu_head);
1051 kfree(ctx->task_ctx_data);
1052 kfree(ctx);
1053}
1054
cdd6c482 1055static void put_ctx(struct perf_event_context *ctx)
a63eaf34 1056{
564c2b21
PM
1057 if (atomic_dec_and_test(&ctx->refcount)) {
1058 if (ctx->parent_ctx)
1059 put_ctx(ctx->parent_ctx);
63b6da39 1060 if (ctx->task && ctx->task != TASK_TOMBSTONE)
c93f7669 1061 put_task_struct(ctx->task);
4af57ef2 1062 call_rcu(&ctx->rcu_head, free_ctx);
564c2b21 1063 }
a63eaf34
PM
1064}
1065
f63a8daa
PZ
1066/*
1067 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1068 * perf_pmu_migrate_context() we need some magic.
1069 *
1070 * Those places that change perf_event::ctx will hold both
1071 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1072 *
8b10c5e2
PZ
1073 * Lock ordering is by mutex address. There are two other sites where
1074 * perf_event_context::mutex nests and those are:
1075 *
1076 * - perf_event_exit_task_context() [ child , 0 ]
8ba289b8
PZ
1077 * perf_event_exit_event()
1078 * put_event() [ parent, 1 ]
8b10c5e2
PZ
1079 *
1080 * - perf_event_init_context() [ parent, 0 ]
1081 * inherit_task_group()
1082 * inherit_group()
1083 * inherit_event()
1084 * perf_event_alloc()
1085 * perf_init_event()
1086 * perf_try_init_event() [ child , 1 ]
1087 *
1088 * While it appears there is an obvious deadlock here -- the parent and child
1089 * nesting levels are inverted between the two. This is in fact safe because
1090 * life-time rules separate them. That is an exiting task cannot fork, and a
1091 * spawning task cannot (yet) exit.
1092 *
1093 * But remember that that these are parent<->child context relations, and
1094 * migration does not affect children, therefore these two orderings should not
1095 * interact.
f63a8daa
PZ
1096 *
1097 * The change in perf_event::ctx does not affect children (as claimed above)
1098 * because the sys_perf_event_open() case will install a new event and break
1099 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1100 * concerned with cpuctx and that doesn't have children.
1101 *
1102 * The places that change perf_event::ctx will issue:
1103 *
1104 * perf_remove_from_context();
1105 * synchronize_rcu();
1106 * perf_install_in_context();
1107 *
1108 * to affect the change. The remove_from_context() + synchronize_rcu() should
1109 * quiesce the event, after which we can install it in the new location. This
1110 * means that only external vectors (perf_fops, prctl) can perturb the event
1111 * while in transit. Therefore all such accessors should also acquire
1112 * perf_event_context::mutex to serialize against this.
1113 *
1114 * However; because event->ctx can change while we're waiting to acquire
1115 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1116 * function.
1117 *
1118 * Lock order:
79c9ce57 1119 * cred_guard_mutex
f63a8daa
PZ
1120 * task_struct::perf_event_mutex
1121 * perf_event_context::mutex
f63a8daa 1122 * perf_event::child_mutex;
07c4a776 1123 * perf_event_context::lock
f63a8daa
PZ
1124 * perf_event::mmap_mutex
1125 * mmap_sem
1126 */
a83fe28e
PZ
1127static struct perf_event_context *
1128perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
f63a8daa
PZ
1129{
1130 struct perf_event_context *ctx;
1131
1132again:
1133 rcu_read_lock();
1134 ctx = ACCESS_ONCE(event->ctx);
1135 if (!atomic_inc_not_zero(&ctx->refcount)) {
1136 rcu_read_unlock();
1137 goto again;
1138 }
1139 rcu_read_unlock();
1140
a83fe28e 1141 mutex_lock_nested(&ctx->mutex, nesting);
f63a8daa
PZ
1142 if (event->ctx != ctx) {
1143 mutex_unlock(&ctx->mutex);
1144 put_ctx(ctx);
1145 goto again;
1146 }
1147
1148 return ctx;
1149}
1150
a83fe28e
PZ
1151static inline struct perf_event_context *
1152perf_event_ctx_lock(struct perf_event *event)
1153{
1154 return perf_event_ctx_lock_nested(event, 0);
1155}
1156
f63a8daa
PZ
1157static void perf_event_ctx_unlock(struct perf_event *event,
1158 struct perf_event_context *ctx)
1159{
1160 mutex_unlock(&ctx->mutex);
1161 put_ctx(ctx);
1162}
1163
211de6eb
PZ
1164/*
1165 * This must be done under the ctx->lock, such as to serialize against
1166 * context_equiv(), therefore we cannot call put_ctx() since that might end up
1167 * calling scheduler related locks and ctx->lock nests inside those.
1168 */
1169static __must_check struct perf_event_context *
1170unclone_ctx(struct perf_event_context *ctx)
71a851b4 1171{
211de6eb
PZ
1172 struct perf_event_context *parent_ctx = ctx->parent_ctx;
1173
1174 lockdep_assert_held(&ctx->lock);
1175
1176 if (parent_ctx)
71a851b4 1177 ctx->parent_ctx = NULL;
5a3126d4 1178 ctx->generation++;
211de6eb
PZ
1179
1180 return parent_ctx;
71a851b4
PZ
1181}
1182
6844c09d
ACM
1183static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1184{
1185 /*
1186 * only top level events have the pid namespace they were created in
1187 */
1188 if (event->parent)
1189 event = event->parent;
1190
1191 return task_tgid_nr_ns(p, event->ns);
1192}
1193
1194static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1195{
1196 /*
1197 * only top level events have the pid namespace they were created in
1198 */
1199 if (event->parent)
1200 event = event->parent;
1201
1202 return task_pid_nr_ns(p, event->ns);
1203}
1204
7f453c24 1205/*
cdd6c482 1206 * If we inherit events we want to return the parent event id
7f453c24
PZ
1207 * to userspace.
1208 */
cdd6c482 1209static u64 primary_event_id(struct perf_event *event)
7f453c24 1210{
cdd6c482 1211 u64 id = event->id;
7f453c24 1212
cdd6c482
IM
1213 if (event->parent)
1214 id = event->parent->id;
7f453c24
PZ
1215
1216 return id;
1217}
1218
25346b93 1219/*
cdd6c482 1220 * Get the perf_event_context for a task and lock it.
63b6da39 1221 *
25346b93
PM
1222 * This has to cope with with the fact that until it is locked,
1223 * the context could get moved to another task.
1224 */
cdd6c482 1225static struct perf_event_context *
8dc85d54 1226perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
25346b93 1227{
cdd6c482 1228 struct perf_event_context *ctx;
25346b93 1229
9ed6060d 1230retry:
058ebd0e
PZ
1231 /*
1232 * One of the few rules of preemptible RCU is that one cannot do
1233 * rcu_read_unlock() while holding a scheduler (or nested) lock when
2fd59077 1234 * part of the read side critical section was irqs-enabled -- see
058ebd0e
PZ
1235 * rcu_read_unlock_special().
1236 *
1237 * Since ctx->lock nests under rq->lock we must ensure the entire read
2fd59077 1238 * side critical section has interrupts disabled.
058ebd0e 1239 */
2fd59077 1240 local_irq_save(*flags);
058ebd0e 1241 rcu_read_lock();
8dc85d54 1242 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
25346b93
PM
1243 if (ctx) {
1244 /*
1245 * If this context is a clone of another, it might
1246 * get swapped for another underneath us by
cdd6c482 1247 * perf_event_task_sched_out, though the
25346b93
PM
1248 * rcu_read_lock() protects us from any context
1249 * getting freed. Lock the context and check if it
1250 * got swapped before we could get the lock, and retry
1251 * if so. If we locked the right context, then it
1252 * can't get swapped on us any more.
1253 */
2fd59077 1254 raw_spin_lock(&ctx->lock);
8dc85d54 1255 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
2fd59077 1256 raw_spin_unlock(&ctx->lock);
058ebd0e 1257 rcu_read_unlock();
2fd59077 1258 local_irq_restore(*flags);
25346b93
PM
1259 goto retry;
1260 }
b49a9e7e 1261
63b6da39
PZ
1262 if (ctx->task == TASK_TOMBSTONE ||
1263 !atomic_inc_not_zero(&ctx->refcount)) {
2fd59077 1264 raw_spin_unlock(&ctx->lock);
b49a9e7e 1265 ctx = NULL;
828b6f0e
PZ
1266 } else {
1267 WARN_ON_ONCE(ctx->task != task);
b49a9e7e 1268 }
25346b93
PM
1269 }
1270 rcu_read_unlock();
2fd59077
PM
1271 if (!ctx)
1272 local_irq_restore(*flags);
25346b93
PM
1273 return ctx;
1274}
1275
1276/*
1277 * Get the context for a task and increment its pin_count so it
1278 * can't get swapped to another task. This also increments its
1279 * reference count so that the context can't get freed.
1280 */
8dc85d54
PZ
1281static struct perf_event_context *
1282perf_pin_task_context(struct task_struct *task, int ctxn)
25346b93 1283{
cdd6c482 1284 struct perf_event_context *ctx;
25346b93
PM
1285 unsigned long flags;
1286
8dc85d54 1287 ctx = perf_lock_task_context(task, ctxn, &flags);
25346b93
PM
1288 if (ctx) {
1289 ++ctx->pin_count;
e625cce1 1290 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1291 }
1292 return ctx;
1293}
1294
cdd6c482 1295static void perf_unpin_context(struct perf_event_context *ctx)
25346b93
PM
1296{
1297 unsigned long flags;
1298
e625cce1 1299 raw_spin_lock_irqsave(&ctx->lock, flags);
25346b93 1300 --ctx->pin_count;
e625cce1 1301 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1302}
1303
f67218c3
PZ
1304/*
1305 * Update the record of the current time in a context.
1306 */
1307static void update_context_time(struct perf_event_context *ctx)
1308{
1309 u64 now = perf_clock();
1310
1311 ctx->time += now - ctx->timestamp;
1312 ctx->timestamp = now;
1313}
1314
4158755d
SE
1315static u64 perf_event_time(struct perf_event *event)
1316{
1317 struct perf_event_context *ctx = event->ctx;
e5d1367f
SE
1318
1319 if (is_cgroup_event(event))
1320 return perf_cgroup_event_time(event);
1321
4158755d
SE
1322 return ctx ? ctx->time : 0;
1323}
1324
f67218c3
PZ
1325/*
1326 * Update the total_time_enabled and total_time_running fields for a event.
1327 */
1328static void update_event_times(struct perf_event *event)
1329{
1330 struct perf_event_context *ctx = event->ctx;
1331 u64 run_end;
1332
3cbaa590
PZ
1333 lockdep_assert_held(&ctx->lock);
1334
f67218c3
PZ
1335 if (event->state < PERF_EVENT_STATE_INACTIVE ||
1336 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1337 return;
3cbaa590 1338
e5d1367f
SE
1339 /*
1340 * in cgroup mode, time_enabled represents
1341 * the time the event was enabled AND active
1342 * tasks were in the monitored cgroup. This is
1343 * independent of the activity of the context as
1344 * there may be a mix of cgroup and non-cgroup events.
1345 *
1346 * That is why we treat cgroup events differently
1347 * here.
1348 */
1349 if (is_cgroup_event(event))
46cd6a7f 1350 run_end = perf_cgroup_event_time(event);
e5d1367f
SE
1351 else if (ctx->is_active)
1352 run_end = ctx->time;
acd1d7c1
PZ
1353 else
1354 run_end = event->tstamp_stopped;
1355
1356 event->total_time_enabled = run_end - event->tstamp_enabled;
f67218c3
PZ
1357
1358 if (event->state == PERF_EVENT_STATE_INACTIVE)
1359 run_end = event->tstamp_stopped;
1360 else
4158755d 1361 run_end = perf_event_time(event);
f67218c3
PZ
1362
1363 event->total_time_running = run_end - event->tstamp_running;
e5d1367f 1364
f67218c3
PZ
1365}
1366
96c21a46
PZ
1367/*
1368 * Update total_time_enabled and total_time_running for all events in a group.
1369 */
1370static void update_group_times(struct perf_event *leader)
1371{
1372 struct perf_event *event;
1373
1374 update_event_times(leader);
1375 list_for_each_entry(event, &leader->sibling_list, group_entry)
1376 update_event_times(event);
1377}
1378
889ff015
FW
1379static struct list_head *
1380ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1381{
1382 if (event->attr.pinned)
1383 return &ctx->pinned_groups;
1384 else
1385 return &ctx->flexible_groups;
1386}
1387
fccc714b 1388/*
cdd6c482 1389 * Add a event from the lists for its context.
fccc714b
PZ
1390 * Must be called with ctx->mutex and ctx->lock held.
1391 */
04289bb9 1392static void
cdd6c482 1393list_add_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1394{
c994d613
PZ
1395 lockdep_assert_held(&ctx->lock);
1396
8a49542c
PZ
1397 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1398 event->attach_state |= PERF_ATTACH_CONTEXT;
04289bb9
IM
1399
1400 /*
8a49542c
PZ
1401 * If we're a stand alone event or group leader, we go to the context
1402 * list, group events are kept attached to the group so that
1403 * perf_group_detach can, at all times, locate all siblings.
04289bb9 1404 */
8a49542c 1405 if (event->group_leader == event) {
889ff015
FW
1406 struct list_head *list;
1407
d6f962b5
FW
1408 if (is_software_event(event))
1409 event->group_flags |= PERF_GROUP_SOFTWARE;
1410
889ff015
FW
1411 list = ctx_group_list(event, ctx);
1412 list_add_tail(&event->group_entry, list);
5c148194 1413 }
592903cd 1414
08309379 1415 if (is_cgroup_event(event))
e5d1367f 1416 ctx->nr_cgroups++;
e5d1367f 1417
cdd6c482
IM
1418 list_add_rcu(&event->event_entry, &ctx->event_list);
1419 ctx->nr_events++;
1420 if (event->attr.inherit_stat)
bfbd3381 1421 ctx->nr_stat++;
5a3126d4
PZ
1422
1423 ctx->generation++;
04289bb9
IM
1424}
1425
0231bb53
JO
1426/*
1427 * Initialize event state based on the perf_event_attr::disabled.
1428 */
1429static inline void perf_event__state_init(struct perf_event *event)
1430{
1431 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1432 PERF_EVENT_STATE_INACTIVE;
1433}
1434
a723968c 1435static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
c320c7b7
ACM
1436{
1437 int entry = sizeof(u64); /* value */
1438 int size = 0;
1439 int nr = 1;
1440
1441 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1442 size += sizeof(u64);
1443
1444 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1445 size += sizeof(u64);
1446
1447 if (event->attr.read_format & PERF_FORMAT_ID)
1448 entry += sizeof(u64);
1449
1450 if (event->attr.read_format & PERF_FORMAT_GROUP) {
a723968c 1451 nr += nr_siblings;
c320c7b7
ACM
1452 size += sizeof(u64);
1453 }
1454
1455 size += entry * nr;
1456 event->read_size = size;
1457}
1458
a723968c 1459static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
c320c7b7
ACM
1460{
1461 struct perf_sample_data *data;
c320c7b7
ACM
1462 u16 size = 0;
1463
c320c7b7
ACM
1464 if (sample_type & PERF_SAMPLE_IP)
1465 size += sizeof(data->ip);
1466
6844c09d
ACM
1467 if (sample_type & PERF_SAMPLE_ADDR)
1468 size += sizeof(data->addr);
1469
1470 if (sample_type & PERF_SAMPLE_PERIOD)
1471 size += sizeof(data->period);
1472
c3feedf2
AK
1473 if (sample_type & PERF_SAMPLE_WEIGHT)
1474 size += sizeof(data->weight);
1475
6844c09d
ACM
1476 if (sample_type & PERF_SAMPLE_READ)
1477 size += event->read_size;
1478
d6be9ad6
SE
1479 if (sample_type & PERF_SAMPLE_DATA_SRC)
1480 size += sizeof(data->data_src.val);
1481
fdfbbd07
AK
1482 if (sample_type & PERF_SAMPLE_TRANSACTION)
1483 size += sizeof(data->txn);
1484
6844c09d
ACM
1485 event->header_size = size;
1486}
1487
a723968c
PZ
1488/*
1489 * Called at perf_event creation and when events are attached/detached from a
1490 * group.
1491 */
1492static void perf_event__header_size(struct perf_event *event)
1493{
1494 __perf_event_read_size(event,
1495 event->group_leader->nr_siblings);
1496 __perf_event_header_size(event, event->attr.sample_type);
1497}
1498
6844c09d
ACM
1499static void perf_event__id_header_size(struct perf_event *event)
1500{
1501 struct perf_sample_data *data;
1502 u64 sample_type = event->attr.sample_type;
1503 u16 size = 0;
1504
c320c7b7
ACM
1505 if (sample_type & PERF_SAMPLE_TID)
1506 size += sizeof(data->tid_entry);
1507
1508 if (sample_type & PERF_SAMPLE_TIME)
1509 size += sizeof(data->time);
1510
ff3d527c
AH
1511 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1512 size += sizeof(data->id);
1513
c320c7b7
ACM
1514 if (sample_type & PERF_SAMPLE_ID)
1515 size += sizeof(data->id);
1516
1517 if (sample_type & PERF_SAMPLE_STREAM_ID)
1518 size += sizeof(data->stream_id);
1519
1520 if (sample_type & PERF_SAMPLE_CPU)
1521 size += sizeof(data->cpu_entry);
1522
6844c09d 1523 event->id_header_size = size;
c320c7b7
ACM
1524}
1525
a723968c
PZ
1526static bool perf_event_validate_size(struct perf_event *event)
1527{
1528 /*
1529 * The values computed here will be over-written when we actually
1530 * attach the event.
1531 */
1532 __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1533 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1534 perf_event__id_header_size(event);
1535
1536 /*
1537 * Sum the lot; should not exceed the 64k limit we have on records.
1538 * Conservative limit to allow for callchains and other variable fields.
1539 */
1540 if (event->read_size + event->header_size +
1541 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1542 return false;
1543
1544 return true;
1545}
1546
8a49542c
PZ
1547static void perf_group_attach(struct perf_event *event)
1548{
c320c7b7 1549 struct perf_event *group_leader = event->group_leader, *pos;
8a49542c 1550
74c3337c
PZ
1551 /*
1552 * We can have double attach due to group movement in perf_event_open.
1553 */
1554 if (event->attach_state & PERF_ATTACH_GROUP)
1555 return;
1556
8a49542c
PZ
1557 event->attach_state |= PERF_ATTACH_GROUP;
1558
1559 if (group_leader == event)
1560 return;
1561
652884fe
PZ
1562 WARN_ON_ONCE(group_leader->ctx != event->ctx);
1563
8a49542c
PZ
1564 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1565 !is_software_event(event))
1566 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1567
1568 list_add_tail(&event->group_entry, &group_leader->sibling_list);
1569 group_leader->nr_siblings++;
c320c7b7
ACM
1570
1571 perf_event__header_size(group_leader);
1572
1573 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1574 perf_event__header_size(pos);
8a49542c
PZ
1575}
1576
a63eaf34 1577/*
cdd6c482 1578 * Remove a event from the lists for its context.
fccc714b 1579 * Must be called with ctx->mutex and ctx->lock held.
a63eaf34 1580 */
04289bb9 1581static void
cdd6c482 1582list_del_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1583{
68cacd29 1584 struct perf_cpu_context *cpuctx;
652884fe
PZ
1585
1586 WARN_ON_ONCE(event->ctx != ctx);
1587 lockdep_assert_held(&ctx->lock);
1588
8a49542c
PZ
1589 /*
1590 * We can have double detach due to exit/hot-unplug + close.
1591 */
1592 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
a63eaf34 1593 return;
8a49542c
PZ
1594
1595 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1596
68cacd29 1597 if (is_cgroup_event(event)) {
e5d1367f 1598 ctx->nr_cgroups--;
70a01657
PZ
1599 /*
1600 * Because cgroup events are always per-cpu events, this will
1601 * always be called from the right CPU.
1602 */
68cacd29
SE
1603 cpuctx = __get_cpu_context(ctx);
1604 /*
70a01657
PZ
1605 * If there are no more cgroup events then clear cgrp to avoid
1606 * stale pointer in update_cgrp_time_from_cpuctx().
68cacd29
SE
1607 */
1608 if (!ctx->nr_cgroups)
1609 cpuctx->cgrp = NULL;
1610 }
e5d1367f 1611
cdd6c482
IM
1612 ctx->nr_events--;
1613 if (event->attr.inherit_stat)
bfbd3381 1614 ctx->nr_stat--;
8bc20959 1615
cdd6c482 1616 list_del_rcu(&event->event_entry);
04289bb9 1617
8a49542c
PZ
1618 if (event->group_leader == event)
1619 list_del_init(&event->group_entry);
5c148194 1620
96c21a46 1621 update_group_times(event);
b2e74a26
SE
1622
1623 /*
1624 * If event was in error state, then keep it
1625 * that way, otherwise bogus counts will be
1626 * returned on read(). The only way to get out
1627 * of error state is by explicit re-enabling
1628 * of the event
1629 */
1630 if (event->state > PERF_EVENT_STATE_OFF)
1631 event->state = PERF_EVENT_STATE_OFF;
5a3126d4
PZ
1632
1633 ctx->generation++;
050735b0
PZ
1634}
1635
8a49542c 1636static void perf_group_detach(struct perf_event *event)
050735b0
PZ
1637{
1638 struct perf_event *sibling, *tmp;
8a49542c
PZ
1639 struct list_head *list = NULL;
1640
1641 /*
1642 * We can have double detach due to exit/hot-unplug + close.
1643 */
1644 if (!(event->attach_state & PERF_ATTACH_GROUP))
1645 return;
1646
1647 event->attach_state &= ~PERF_ATTACH_GROUP;
1648
1649 /*
1650 * If this is a sibling, remove it from its group.
1651 */
1652 if (event->group_leader != event) {
1653 list_del_init(&event->group_entry);
1654 event->group_leader->nr_siblings--;
c320c7b7 1655 goto out;
8a49542c
PZ
1656 }
1657
1658 if (!list_empty(&event->group_entry))
1659 list = &event->group_entry;
2e2af50b 1660
04289bb9 1661 /*
cdd6c482
IM
1662 * If this was a group event with sibling events then
1663 * upgrade the siblings to singleton events by adding them
8a49542c 1664 * to whatever list we are on.
04289bb9 1665 */
cdd6c482 1666 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
8a49542c
PZ
1667 if (list)
1668 list_move_tail(&sibling->group_entry, list);
04289bb9 1669 sibling->group_leader = sibling;
d6f962b5
FW
1670
1671 /* Inherit group flags from the previous leader */
1672 sibling->group_flags = event->group_flags;
652884fe
PZ
1673
1674 WARN_ON_ONCE(sibling->ctx != event->ctx);
04289bb9 1675 }
c320c7b7
ACM
1676
1677out:
1678 perf_event__header_size(event->group_leader);
1679
1680 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1681 perf_event__header_size(tmp);
04289bb9
IM
1682}
1683
fadfe7be
JO
1684static bool is_orphaned_event(struct perf_event *event)
1685{
a69b0ca4 1686 return event->state == PERF_EVENT_STATE_DEAD;
fadfe7be
JO
1687}
1688
66eb579e
MR
1689static inline int pmu_filter_match(struct perf_event *event)
1690{
1691 struct pmu *pmu = event->pmu;
1692 return pmu->filter_match ? pmu->filter_match(event) : 1;
1693}
1694
fa66f07a
SE
1695static inline int
1696event_filter_match(struct perf_event *event)
1697{
e5d1367f 1698 return (event->cpu == -1 || event->cpu == smp_processor_id())
66eb579e 1699 && perf_cgroup_match(event) && pmu_filter_match(event);
fa66f07a
SE
1700}
1701
9ffcfa6f
SE
1702static void
1703event_sched_out(struct perf_event *event,
3b6f9e5c 1704 struct perf_cpu_context *cpuctx,
cdd6c482 1705 struct perf_event_context *ctx)
3b6f9e5c 1706{
4158755d 1707 u64 tstamp = perf_event_time(event);
fa66f07a 1708 u64 delta;
652884fe
PZ
1709
1710 WARN_ON_ONCE(event->ctx != ctx);
1711 lockdep_assert_held(&ctx->lock);
1712
fa66f07a
SE
1713 /*
1714 * An event which could not be activated because of
1715 * filter mismatch still needs to have its timings
1716 * maintained, otherwise bogus information is return
1717 * via read() for time_enabled, time_running:
1718 */
1719 if (event->state == PERF_EVENT_STATE_INACTIVE
1720 && !event_filter_match(event)) {
e5d1367f 1721 delta = tstamp - event->tstamp_stopped;
fa66f07a 1722 event->tstamp_running += delta;
4158755d 1723 event->tstamp_stopped = tstamp;
fa66f07a
SE
1724 }
1725
cdd6c482 1726 if (event->state != PERF_EVENT_STATE_ACTIVE)
9ffcfa6f 1727 return;
3b6f9e5c 1728
44377277
AS
1729 perf_pmu_disable(event->pmu);
1730
28a967c3
PZ
1731 event->tstamp_stopped = tstamp;
1732 event->pmu->del(event, 0);
1733 event->oncpu = -1;
cdd6c482
IM
1734 event->state = PERF_EVENT_STATE_INACTIVE;
1735 if (event->pending_disable) {
1736 event->pending_disable = 0;
1737 event->state = PERF_EVENT_STATE_OFF;
970892a9 1738 }
3b6f9e5c 1739
cdd6c482 1740 if (!is_software_event(event))
3b6f9e5c 1741 cpuctx->active_oncpu--;
2fde4f94
MR
1742 if (!--ctx->nr_active)
1743 perf_event_ctx_deactivate(ctx);
0f5a2601
PZ
1744 if (event->attr.freq && event->attr.sample_freq)
1745 ctx->nr_freq--;
cdd6c482 1746 if (event->attr.exclusive || !cpuctx->active_oncpu)
3b6f9e5c 1747 cpuctx->exclusive = 0;
44377277
AS
1748
1749 perf_pmu_enable(event->pmu);
3b6f9e5c
PM
1750}
1751
d859e29f 1752static void
cdd6c482 1753group_sched_out(struct perf_event *group_event,
d859e29f 1754 struct perf_cpu_context *cpuctx,
cdd6c482 1755 struct perf_event_context *ctx)
d859e29f 1756{
cdd6c482 1757 struct perf_event *event;
fa66f07a 1758 int state = group_event->state;
d859e29f 1759
cdd6c482 1760 event_sched_out(group_event, cpuctx, ctx);
d859e29f
PM
1761
1762 /*
1763 * Schedule out siblings (if any):
1764 */
cdd6c482
IM
1765 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1766 event_sched_out(event, cpuctx, ctx);
d859e29f 1767
fa66f07a 1768 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
d859e29f
PM
1769 cpuctx->exclusive = 0;
1770}
1771
45a0e07a 1772#define DETACH_GROUP 0x01UL
0017960f 1773
0793a61d 1774/*
cdd6c482 1775 * Cross CPU call to remove a performance event
0793a61d 1776 *
cdd6c482 1777 * We disable the event on the hardware level first. After that we
0793a61d
TG
1778 * remove it from the context list.
1779 */
fae3fde6
PZ
1780static void
1781__perf_remove_from_context(struct perf_event *event,
1782 struct perf_cpu_context *cpuctx,
1783 struct perf_event_context *ctx,
1784 void *info)
0793a61d 1785{
45a0e07a 1786 unsigned long flags = (unsigned long)info;
0793a61d 1787
cdd6c482 1788 event_sched_out(event, cpuctx, ctx);
45a0e07a 1789 if (flags & DETACH_GROUP)
46ce0fe9 1790 perf_group_detach(event);
cdd6c482 1791 list_del_event(event, ctx);
39a43640
PZ
1792
1793 if (!ctx->nr_events && ctx->is_active) {
64ce3126 1794 ctx->is_active = 0;
39a43640
PZ
1795 if (ctx->task) {
1796 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
1797 cpuctx->task_ctx = NULL;
1798 }
64ce3126 1799 }
0793a61d
TG
1800}
1801
0793a61d 1802/*
cdd6c482 1803 * Remove the event from a task's (or a CPU's) list of events.
0793a61d 1804 *
cdd6c482
IM
1805 * If event->ctx is a cloned context, callers must make sure that
1806 * every task struct that event->ctx->task could possibly point to
c93f7669
PM
1807 * remains valid. This is OK when called from perf_release since
1808 * that only calls us on the top-level context, which can't be a clone.
cdd6c482 1809 * When called from perf_event_exit_task, it's OK because the
c93f7669 1810 * context has been detached from its task.
0793a61d 1811 */
45a0e07a 1812static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
0793a61d 1813{
fae3fde6 1814 lockdep_assert_held(&event->ctx->mutex);
0793a61d 1815
45a0e07a 1816 event_function_call(event, __perf_remove_from_context, (void *)flags);
0793a61d
TG
1817}
1818
d859e29f 1819/*
cdd6c482 1820 * Cross CPU call to disable a performance event
d859e29f 1821 */
fae3fde6
PZ
1822static void __perf_event_disable(struct perf_event *event,
1823 struct perf_cpu_context *cpuctx,
1824 struct perf_event_context *ctx,
1825 void *info)
7b648018 1826{
fae3fde6
PZ
1827 if (event->state < PERF_EVENT_STATE_INACTIVE)
1828 return;
7b648018 1829
fae3fde6
PZ
1830 update_context_time(ctx);
1831 update_cgrp_time_from_event(event);
1832 update_group_times(event);
1833 if (event == event->group_leader)
1834 group_sched_out(event, cpuctx, ctx);
1835 else
1836 event_sched_out(event, cpuctx, ctx);
1837 event->state = PERF_EVENT_STATE_OFF;
7b648018
PZ
1838}
1839
d859e29f 1840/*
cdd6c482 1841 * Disable a event.
c93f7669 1842 *
cdd6c482
IM
1843 * If event->ctx is a cloned context, callers must make sure that
1844 * every task struct that event->ctx->task could possibly point to
c93f7669 1845 * remains valid. This condition is satisifed when called through
cdd6c482
IM
1846 * perf_event_for_each_child or perf_event_for_each because they
1847 * hold the top-level event's child_mutex, so any descendant that
8ba289b8
PZ
1848 * goes to exit will block in perf_event_exit_event().
1849 *
cdd6c482 1850 * When called from perf_pending_event it's OK because event->ctx
c93f7669 1851 * is the current context on this CPU and preemption is disabled,
cdd6c482 1852 * hence we can't get into perf_event_task_sched_out for this context.
d859e29f 1853 */
f63a8daa 1854static void _perf_event_disable(struct perf_event *event)
d859e29f 1855{
cdd6c482 1856 struct perf_event_context *ctx = event->ctx;
d859e29f 1857
e625cce1 1858 raw_spin_lock_irq(&ctx->lock);
7b648018 1859 if (event->state <= PERF_EVENT_STATE_OFF) {
e625cce1 1860 raw_spin_unlock_irq(&ctx->lock);
7b648018 1861 return;
53cfbf59 1862 }
e625cce1 1863 raw_spin_unlock_irq(&ctx->lock);
7b648018 1864
fae3fde6
PZ
1865 event_function_call(event, __perf_event_disable, NULL);
1866}
1867
1868void perf_event_disable_local(struct perf_event *event)
1869{
1870 event_function_local(event, __perf_event_disable, NULL);
d859e29f 1871}
f63a8daa
PZ
1872
1873/*
1874 * Strictly speaking kernel users cannot create groups and therefore this
1875 * interface does not need the perf_event_ctx_lock() magic.
1876 */
1877void perf_event_disable(struct perf_event *event)
1878{
1879 struct perf_event_context *ctx;
1880
1881 ctx = perf_event_ctx_lock(event);
1882 _perf_event_disable(event);
1883 perf_event_ctx_unlock(event, ctx);
1884}
dcfce4a0 1885EXPORT_SYMBOL_GPL(perf_event_disable);
d859e29f 1886
e5d1367f
SE
1887static void perf_set_shadow_time(struct perf_event *event,
1888 struct perf_event_context *ctx,
1889 u64 tstamp)
1890{
1891 /*
1892 * use the correct time source for the time snapshot
1893 *
1894 * We could get by without this by leveraging the
1895 * fact that to get to this function, the caller
1896 * has most likely already called update_context_time()
1897 * and update_cgrp_time_xx() and thus both timestamp
1898 * are identical (or very close). Given that tstamp is,
1899 * already adjusted for cgroup, we could say that:
1900 * tstamp - ctx->timestamp
1901 * is equivalent to
1902 * tstamp - cgrp->timestamp.
1903 *
1904 * Then, in perf_output_read(), the calculation would
1905 * work with no changes because:
1906 * - event is guaranteed scheduled in
1907 * - no scheduled out in between
1908 * - thus the timestamp would be the same
1909 *
1910 * But this is a bit hairy.
1911 *
1912 * So instead, we have an explicit cgroup call to remain
1913 * within the time time source all along. We believe it
1914 * is cleaner and simpler to understand.
1915 */
1916 if (is_cgroup_event(event))
1917 perf_cgroup_set_shadow_time(event, tstamp);
1918 else
1919 event->shadow_ctx_time = tstamp - ctx->timestamp;
1920}
1921
4fe757dd
PZ
1922#define MAX_INTERRUPTS (~0ULL)
1923
1924static void perf_log_throttle(struct perf_event *event, int enable);
ec0d7729 1925static void perf_log_itrace_start(struct perf_event *event);
4fe757dd 1926
235c7fc7 1927static int
9ffcfa6f 1928event_sched_in(struct perf_event *event,
235c7fc7 1929 struct perf_cpu_context *cpuctx,
6e37738a 1930 struct perf_event_context *ctx)
235c7fc7 1931{
4158755d 1932 u64 tstamp = perf_event_time(event);
44377277 1933 int ret = 0;
4158755d 1934
63342411
PZ
1935 lockdep_assert_held(&ctx->lock);
1936
cdd6c482 1937 if (event->state <= PERF_EVENT_STATE_OFF)
235c7fc7
IM
1938 return 0;
1939
95ff4ca2
AS
1940 WRITE_ONCE(event->oncpu, smp_processor_id());
1941 /*
1942 * Order event::oncpu write to happen before the ACTIVE state
1943 * is visible.
1944 */
1945 smp_wmb();
1946 WRITE_ONCE(event->state, PERF_EVENT_STATE_ACTIVE);
4fe757dd
PZ
1947
1948 /*
1949 * Unthrottle events, since we scheduled we might have missed several
1950 * ticks already, also for a heavily scheduling task there is little
1951 * guarantee it'll get a tick in a timely manner.
1952 */
1953 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1954 perf_log_throttle(event, 1);
1955 event->hw.interrupts = 0;
1956 }
1957
235c7fc7
IM
1958 /*
1959 * The new state must be visible before we turn it on in the hardware:
1960 */
1961 smp_wmb();
1962
44377277
AS
1963 perf_pmu_disable(event->pmu);
1964
72f669c0
SL
1965 perf_set_shadow_time(event, ctx, tstamp);
1966
ec0d7729
AS
1967 perf_log_itrace_start(event);
1968
a4eaf7f1 1969 if (event->pmu->add(event, PERF_EF_START)) {
cdd6c482
IM
1970 event->state = PERF_EVENT_STATE_INACTIVE;
1971 event->oncpu = -1;
44377277
AS
1972 ret = -EAGAIN;
1973 goto out;
235c7fc7
IM
1974 }
1975
00a2916f
PZ
1976 event->tstamp_running += tstamp - event->tstamp_stopped;
1977
cdd6c482 1978 if (!is_software_event(event))
3b6f9e5c 1979 cpuctx->active_oncpu++;
2fde4f94
MR
1980 if (!ctx->nr_active++)
1981 perf_event_ctx_activate(ctx);
0f5a2601
PZ
1982 if (event->attr.freq && event->attr.sample_freq)
1983 ctx->nr_freq++;
235c7fc7 1984
cdd6c482 1985 if (event->attr.exclusive)
3b6f9e5c
PM
1986 cpuctx->exclusive = 1;
1987
44377277
AS
1988out:
1989 perf_pmu_enable(event->pmu);
1990
1991 return ret;
235c7fc7
IM
1992}
1993
6751b71e 1994static int
cdd6c482 1995group_sched_in(struct perf_event *group_event,
6751b71e 1996 struct perf_cpu_context *cpuctx,
6e37738a 1997 struct perf_event_context *ctx)
6751b71e 1998{
6bde9b6c 1999 struct perf_event *event, *partial_group = NULL;
4a234593 2000 struct pmu *pmu = ctx->pmu;
d7842da4
SE
2001 u64 now = ctx->time;
2002 bool simulate = false;
6751b71e 2003
cdd6c482 2004 if (group_event->state == PERF_EVENT_STATE_OFF)
6751b71e
PM
2005 return 0;
2006
fbbe0701 2007 pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
6bde9b6c 2008
9ffcfa6f 2009 if (event_sched_in(group_event, cpuctx, ctx)) {
ad5133b7 2010 pmu->cancel_txn(pmu);
272325c4 2011 perf_mux_hrtimer_restart(cpuctx);
6751b71e 2012 return -EAGAIN;
90151c35 2013 }
6751b71e
PM
2014
2015 /*
2016 * Schedule in siblings as one group (if any):
2017 */
cdd6c482 2018 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
9ffcfa6f 2019 if (event_sched_in(event, cpuctx, ctx)) {
cdd6c482 2020 partial_group = event;
6751b71e
PM
2021 goto group_error;
2022 }
2023 }
2024
9ffcfa6f 2025 if (!pmu->commit_txn(pmu))
6e85158c 2026 return 0;
9ffcfa6f 2027
6751b71e
PM
2028group_error:
2029 /*
2030 * Groups can be scheduled in as one unit only, so undo any
2031 * partial group before returning:
d7842da4
SE
2032 * The events up to the failed event are scheduled out normally,
2033 * tstamp_stopped will be updated.
2034 *
2035 * The failed events and the remaining siblings need to have
2036 * their timings updated as if they had gone thru event_sched_in()
2037 * and event_sched_out(). This is required to get consistent timings
2038 * across the group. This also takes care of the case where the group
2039 * could never be scheduled by ensuring tstamp_stopped is set to mark
2040 * the time the event was actually stopped, such that time delta
2041 * calculation in update_event_times() is correct.
6751b71e 2042 */
cdd6c482
IM
2043 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2044 if (event == partial_group)
d7842da4
SE
2045 simulate = true;
2046
2047 if (simulate) {
2048 event->tstamp_running += now - event->tstamp_stopped;
2049 event->tstamp_stopped = now;
2050 } else {
2051 event_sched_out(event, cpuctx, ctx);
2052 }
6751b71e 2053 }
9ffcfa6f 2054 event_sched_out(group_event, cpuctx, ctx);
6751b71e 2055
ad5133b7 2056 pmu->cancel_txn(pmu);
90151c35 2057
272325c4 2058 perf_mux_hrtimer_restart(cpuctx);
9e630205 2059
6751b71e
PM
2060 return -EAGAIN;
2061}
2062
3b6f9e5c 2063/*
cdd6c482 2064 * Work out whether we can put this event group on the CPU now.
3b6f9e5c 2065 */
cdd6c482 2066static int group_can_go_on(struct perf_event *event,
3b6f9e5c
PM
2067 struct perf_cpu_context *cpuctx,
2068 int can_add_hw)
2069{
2070 /*
cdd6c482 2071 * Groups consisting entirely of software events can always go on.
3b6f9e5c 2072 */
d6f962b5 2073 if (event->group_flags & PERF_GROUP_SOFTWARE)
3b6f9e5c
PM
2074 return 1;
2075 /*
2076 * If an exclusive group is already on, no other hardware
cdd6c482 2077 * events can go on.
3b6f9e5c
PM
2078 */
2079 if (cpuctx->exclusive)
2080 return 0;
2081 /*
2082 * If this group is exclusive and there are already
cdd6c482 2083 * events on the CPU, it can't go on.
3b6f9e5c 2084 */
cdd6c482 2085 if (event->attr.exclusive && cpuctx->active_oncpu)
3b6f9e5c
PM
2086 return 0;
2087 /*
2088 * Otherwise, try to add it if all previous groups were able
2089 * to go on.
2090 */
2091 return can_add_hw;
2092}
2093
cdd6c482
IM
2094static void add_event_to_ctx(struct perf_event *event,
2095 struct perf_event_context *ctx)
53cfbf59 2096{
4158755d
SE
2097 u64 tstamp = perf_event_time(event);
2098
cdd6c482 2099 list_add_event(event, ctx);
8a49542c 2100 perf_group_attach(event);
4158755d
SE
2101 event->tstamp_enabled = tstamp;
2102 event->tstamp_running = tstamp;
2103 event->tstamp_stopped = tstamp;
53cfbf59
PM
2104}
2105
bd2afa49
PZ
2106static void ctx_sched_out(struct perf_event_context *ctx,
2107 struct perf_cpu_context *cpuctx,
2108 enum event_type_t event_type);
2c29ef0f
PZ
2109static void
2110ctx_sched_in(struct perf_event_context *ctx,
2111 struct perf_cpu_context *cpuctx,
2112 enum event_type_t event_type,
2113 struct task_struct *task);
fe4b04fa 2114
bd2afa49
PZ
2115static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2116 struct perf_event_context *ctx)
2117{
2118 if (!cpuctx->task_ctx)
2119 return;
2120
2121 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2122 return;
2123
2124 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2125}
2126
dce5855b
PZ
2127static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2128 struct perf_event_context *ctx,
2129 struct task_struct *task)
2130{
2131 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2132 if (ctx)
2133 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2134 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2135 if (ctx)
2136 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2137}
2138
3e349507
PZ
2139static void ctx_resched(struct perf_cpu_context *cpuctx,
2140 struct perf_event_context *task_ctx)
0017960f 2141{
3e349507
PZ
2142 perf_pmu_disable(cpuctx->ctx.pmu);
2143 if (task_ctx)
2144 task_ctx_sched_out(cpuctx, task_ctx);
2145 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
2146 perf_event_sched_in(cpuctx, task_ctx, current);
2147 perf_pmu_enable(cpuctx->ctx.pmu);
0017960f
PZ
2148}
2149
0793a61d 2150/*
cdd6c482 2151 * Cross CPU call to install and enable a performance event
682076ae 2152 *
a096309b
PZ
2153 * Very similar to remote_function() + event_function() but cannot assume that
2154 * things like ctx->is_active and cpuctx->task_ctx are set.
0793a61d 2155 */
fe4b04fa 2156static int __perf_install_in_context(void *info)
0793a61d 2157{
a096309b
PZ
2158 struct perf_event *event = info;
2159 struct perf_event_context *ctx = event->ctx;
108b02cf 2160 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2c29ef0f 2161 struct perf_event_context *task_ctx = cpuctx->task_ctx;
a096309b
PZ
2162 bool activate = true;
2163 int ret = 0;
0793a61d 2164
63b6da39 2165 raw_spin_lock(&cpuctx->ctx.lock);
39a43640 2166 if (ctx->task) {
b58f6b0d
PZ
2167 raw_spin_lock(&ctx->lock);
2168 task_ctx = ctx;
a096309b
PZ
2169
2170 /* If we're on the wrong CPU, try again */
2171 if (task_cpu(ctx->task) != smp_processor_id()) {
2172 ret = -ESRCH;
63b6da39 2173 goto unlock;
a096309b 2174 }
b58f6b0d 2175
39a43640 2176 /*
a096309b
PZ
2177 * If we're on the right CPU, see if the task we target is
2178 * current, if not we don't have to activate the ctx, a future
2179 * context switch will do that for us.
39a43640 2180 */
a096309b
PZ
2181 if (ctx->task != current)
2182 activate = false;
2183 else
2184 WARN_ON_ONCE(cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2185
63b6da39
PZ
2186 } else if (task_ctx) {
2187 raw_spin_lock(&task_ctx->lock);
2c29ef0f 2188 }
b58f6b0d 2189
a096309b
PZ
2190 if (activate) {
2191 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2192 add_event_to_ctx(event, ctx);
2193 ctx_resched(cpuctx, task_ctx);
2194 } else {
2195 add_event_to_ctx(event, ctx);
2196 }
2197
63b6da39 2198unlock:
2c29ef0f 2199 perf_ctx_unlock(cpuctx, task_ctx);
fe4b04fa 2200
a096309b 2201 return ret;
0793a61d
TG
2202}
2203
2204/*
a096309b
PZ
2205 * Attach a performance event to a context.
2206 *
2207 * Very similar to event_function_call, see comment there.
0793a61d
TG
2208 */
2209static void
cdd6c482
IM
2210perf_install_in_context(struct perf_event_context *ctx,
2211 struct perf_event *event,
0793a61d
TG
2212 int cpu)
2213{
a096309b 2214 struct task_struct *task = READ_ONCE(ctx->task);
39a43640 2215
fe4b04fa
PZ
2216 lockdep_assert_held(&ctx->mutex);
2217
c3f00c70 2218 event->ctx = ctx;
0cda4c02
YZ
2219 if (event->cpu != -1)
2220 event->cpu = cpu;
c3f00c70 2221
a096309b
PZ
2222 if (!task) {
2223 cpu_function_call(cpu, __perf_install_in_context, event);
2224 return;
2225 }
2226
2227 /*
2228 * Should not happen, we validate the ctx is still alive before calling.
2229 */
2230 if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2231 return;
2232
39a43640
PZ
2233 /*
2234 * Installing events is tricky because we cannot rely on ctx->is_active
2235 * to be set in case this is the nr_events 0 -> 1 transition.
39a43640 2236 */
a096309b 2237again:
63b6da39 2238 /*
a096309b
PZ
2239 * Cannot use task_function_call() because we need to run on the task's
2240 * CPU regardless of whether its current or not.
63b6da39 2241 */
a096309b
PZ
2242 if (!cpu_function_call(task_cpu(task), __perf_install_in_context, event))
2243 return;
2244
2245 raw_spin_lock_irq(&ctx->lock);
2246 task = ctx->task;
84c4e620 2247 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
a096309b
PZ
2248 /*
2249 * Cannot happen because we already checked above (which also
2250 * cannot happen), and we hold ctx->mutex, which serializes us
2251 * against perf_event_exit_task_context().
2252 */
63b6da39
PZ
2253 raw_spin_unlock_irq(&ctx->lock);
2254 return;
2255 }
39a43640 2256 raw_spin_unlock_irq(&ctx->lock);
39a43640 2257 /*
a096309b
PZ
2258 * Since !ctx->is_active doesn't mean anything, we must IPI
2259 * unconditionally.
39a43640 2260 */
a096309b 2261 goto again;
0793a61d
TG
2262}
2263
fa289bec 2264/*
cdd6c482 2265 * Put a event into inactive state and update time fields.
fa289bec
PM
2266 * Enabling the leader of a group effectively enables all
2267 * the group members that aren't explicitly disabled, so we
2268 * have to update their ->tstamp_enabled also.
2269 * Note: this works for group members as well as group leaders
2270 * since the non-leader members' sibling_lists will be empty.
2271 */
1d9b482e 2272static void __perf_event_mark_enabled(struct perf_event *event)
fa289bec 2273{
cdd6c482 2274 struct perf_event *sub;
4158755d 2275 u64 tstamp = perf_event_time(event);
fa289bec 2276
cdd6c482 2277 event->state = PERF_EVENT_STATE_INACTIVE;
4158755d 2278 event->tstamp_enabled = tstamp - event->total_time_enabled;
9ed6060d 2279 list_for_each_entry(sub, &event->sibling_list, group_entry) {
4158755d
SE
2280 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2281 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
9ed6060d 2282 }
fa289bec
PM
2283}
2284
d859e29f 2285/*
cdd6c482 2286 * Cross CPU call to enable a performance event
d859e29f 2287 */
fae3fde6
PZ
2288static void __perf_event_enable(struct perf_event *event,
2289 struct perf_cpu_context *cpuctx,
2290 struct perf_event_context *ctx,
2291 void *info)
04289bb9 2292{
cdd6c482 2293 struct perf_event *leader = event->group_leader;
fae3fde6 2294 struct perf_event_context *task_ctx;
04289bb9 2295
6e801e01
PZ
2296 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2297 event->state <= PERF_EVENT_STATE_ERROR)
fae3fde6 2298 return;
3cbed429 2299
bd2afa49
PZ
2300 if (ctx->is_active)
2301 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2302
1d9b482e 2303 __perf_event_mark_enabled(event);
04289bb9 2304
fae3fde6
PZ
2305 if (!ctx->is_active)
2306 return;
2307
e5d1367f 2308 if (!event_filter_match(event)) {
bd2afa49 2309 if (is_cgroup_event(event))
e5d1367f 2310 perf_cgroup_defer_enabled(event);
bd2afa49 2311 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
fae3fde6 2312 return;
e5d1367f 2313 }
f4c4176f 2314
04289bb9 2315 /*
cdd6c482 2316 * If the event is in a group and isn't the group leader,
d859e29f 2317 * then don't put it on unless the group is on.
04289bb9 2318 */
bd2afa49
PZ
2319 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2320 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
fae3fde6 2321 return;
bd2afa49 2322 }
fe4b04fa 2323
fae3fde6
PZ
2324 task_ctx = cpuctx->task_ctx;
2325 if (ctx->task)
2326 WARN_ON_ONCE(task_ctx != ctx);
d859e29f 2327
fae3fde6 2328 ctx_resched(cpuctx, task_ctx);
7b648018
PZ
2329}
2330
d859e29f 2331/*
cdd6c482 2332 * Enable a event.
c93f7669 2333 *
cdd6c482
IM
2334 * If event->ctx is a cloned context, callers must make sure that
2335 * every task struct that event->ctx->task could possibly point to
c93f7669 2336 * remains valid. This condition is satisfied when called through
cdd6c482
IM
2337 * perf_event_for_each_child or perf_event_for_each as described
2338 * for perf_event_disable.
d859e29f 2339 */
f63a8daa 2340static void _perf_event_enable(struct perf_event *event)
d859e29f 2341{
cdd6c482 2342 struct perf_event_context *ctx = event->ctx;
d859e29f 2343
7b648018 2344 raw_spin_lock_irq(&ctx->lock);
6e801e01
PZ
2345 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2346 event->state < PERF_EVENT_STATE_ERROR) {
7b648018 2347 raw_spin_unlock_irq(&ctx->lock);
d859e29f
PM
2348 return;
2349 }
2350
d859e29f 2351 /*
cdd6c482 2352 * If the event is in error state, clear that first.
7b648018
PZ
2353 *
2354 * That way, if we see the event in error state below, we know that it
2355 * has gone back into error state, as distinct from the task having
2356 * been scheduled away before the cross-call arrived.
d859e29f 2357 */
cdd6c482
IM
2358 if (event->state == PERF_EVENT_STATE_ERROR)
2359 event->state = PERF_EVENT_STATE_OFF;
e625cce1 2360 raw_spin_unlock_irq(&ctx->lock);
fe4b04fa 2361
fae3fde6 2362 event_function_call(event, __perf_event_enable, NULL);
d859e29f 2363}
f63a8daa
PZ
2364
2365/*
2366 * See perf_event_disable();
2367 */
2368void perf_event_enable(struct perf_event *event)
2369{
2370 struct perf_event_context *ctx;
2371
2372 ctx = perf_event_ctx_lock(event);
2373 _perf_event_enable(event);
2374 perf_event_ctx_unlock(event, ctx);
2375}
dcfce4a0 2376EXPORT_SYMBOL_GPL(perf_event_enable);
d859e29f 2377
375637bc
AS
2378struct stop_event_data {
2379 struct perf_event *event;
2380 unsigned int restart;
2381};
2382
95ff4ca2
AS
2383static int __perf_event_stop(void *info)
2384{
375637bc
AS
2385 struct stop_event_data *sd = info;
2386 struct perf_event *event = sd->event;
95ff4ca2 2387
375637bc 2388 /* if it's already INACTIVE, do nothing */
95ff4ca2
AS
2389 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2390 return 0;
2391
2392 /* matches smp_wmb() in event_sched_in() */
2393 smp_rmb();
2394
2395 /*
2396 * There is a window with interrupts enabled before we get here,
2397 * so we need to check again lest we try to stop another CPU's event.
2398 */
2399 if (READ_ONCE(event->oncpu) != smp_processor_id())
2400 return -EAGAIN;
2401
2402 event->pmu->stop(event, PERF_EF_UPDATE);
2403
375637bc
AS
2404 /*
2405 * May race with the actual stop (through perf_pmu_output_stop()),
2406 * but it is only used for events with AUX ring buffer, and such
2407 * events will refuse to restart because of rb::aux_mmap_count==0,
2408 * see comments in perf_aux_output_begin().
2409 *
2410 * Since this is happening on a event-local CPU, no trace is lost
2411 * while restarting.
2412 */
2413 if (sd->restart)
2414 event->pmu->start(event, PERF_EF_START);
2415
95ff4ca2
AS
2416 return 0;
2417}
2418
375637bc
AS
2419static int perf_event_restart(struct perf_event *event)
2420{
2421 struct stop_event_data sd = {
2422 .event = event,
2423 .restart = 1,
2424 };
2425 int ret = 0;
2426
2427 do {
2428 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2429 return 0;
2430
2431 /* matches smp_wmb() in event_sched_in() */
2432 smp_rmb();
2433
2434 /*
2435 * We only want to restart ACTIVE events, so if the event goes
2436 * inactive here (event->oncpu==-1), there's nothing more to do;
2437 * fall through with ret==-ENXIO.
2438 */
2439 ret = cpu_function_call(READ_ONCE(event->oncpu),
2440 __perf_event_stop, &sd);
2441 } while (ret == -EAGAIN);
2442
2443 return ret;
2444}
2445
2446/*
2447 * In order to contain the amount of racy and tricky in the address filter
2448 * configuration management, it is a two part process:
2449 *
2450 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2451 * we update the addresses of corresponding vmas in
2452 * event::addr_filters_offs array and bump the event::addr_filters_gen;
2453 * (p2) when an event is scheduled in (pmu::add), it calls
2454 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2455 * if the generation has changed since the previous call.
2456 *
2457 * If (p1) happens while the event is active, we restart it to force (p2).
2458 *
2459 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2460 * pre-existing mappings, called once when new filters arrive via SET_FILTER
2461 * ioctl;
2462 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2463 * registered mapping, called for every new mmap(), with mm::mmap_sem down
2464 * for reading;
2465 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2466 * of exec.
2467 */
2468void perf_event_addr_filters_sync(struct perf_event *event)
2469{
2470 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2471
2472 if (!has_addr_filter(event))
2473 return;
2474
2475 raw_spin_lock(&ifh->lock);
2476 if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2477 event->pmu->addr_filters_sync(event);
2478 event->hw.addr_filters_gen = event->addr_filters_gen;
2479 }
2480 raw_spin_unlock(&ifh->lock);
2481}
2482EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2483
f63a8daa 2484static int _perf_event_refresh(struct perf_event *event, int refresh)
79f14641 2485{
2023b359 2486 /*
cdd6c482 2487 * not supported on inherited events
2023b359 2488 */
2e939d1d 2489 if (event->attr.inherit || !is_sampling_event(event))
2023b359
PZ
2490 return -EINVAL;
2491
cdd6c482 2492 atomic_add(refresh, &event->event_limit);
f63a8daa 2493 _perf_event_enable(event);
2023b359
PZ
2494
2495 return 0;
79f14641 2496}
f63a8daa
PZ
2497
2498/*
2499 * See perf_event_disable()
2500 */
2501int perf_event_refresh(struct perf_event *event, int refresh)
2502{
2503 struct perf_event_context *ctx;
2504 int ret;
2505
2506 ctx = perf_event_ctx_lock(event);
2507 ret = _perf_event_refresh(event, refresh);
2508 perf_event_ctx_unlock(event, ctx);
2509
2510 return ret;
2511}
26ca5c11 2512EXPORT_SYMBOL_GPL(perf_event_refresh);
79f14641 2513
5b0311e1
FW
2514static void ctx_sched_out(struct perf_event_context *ctx,
2515 struct perf_cpu_context *cpuctx,
2516 enum event_type_t event_type)
235c7fc7 2517{
db24d33e 2518 int is_active = ctx->is_active;
c994d613 2519 struct perf_event *event;
235c7fc7 2520
c994d613 2521 lockdep_assert_held(&ctx->lock);
235c7fc7 2522
39a43640
PZ
2523 if (likely(!ctx->nr_events)) {
2524 /*
2525 * See __perf_remove_from_context().
2526 */
2527 WARN_ON_ONCE(ctx->is_active);
2528 if (ctx->task)
2529 WARN_ON_ONCE(cpuctx->task_ctx);
facc4307 2530 return;
39a43640
PZ
2531 }
2532
db24d33e 2533 ctx->is_active &= ~event_type;
3cbaa590
PZ
2534 if (!(ctx->is_active & EVENT_ALL))
2535 ctx->is_active = 0;
2536
63e30d3e
PZ
2537 if (ctx->task) {
2538 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2539 if (!ctx->is_active)
2540 cpuctx->task_ctx = NULL;
2541 }
facc4307 2542
8fdc6539
PZ
2543 /*
2544 * Always update time if it was set; not only when it changes.
2545 * Otherwise we can 'forget' to update time for any but the last
2546 * context we sched out. For example:
2547 *
2548 * ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2549 * ctx_sched_out(.event_type = EVENT_PINNED)
2550 *
2551 * would only update time for the pinned events.
2552 */
3cbaa590
PZ
2553 if (is_active & EVENT_TIME) {
2554 /* update (and stop) ctx time */
2555 update_context_time(ctx);
2556 update_cgrp_time_from_cpuctx(cpuctx);
2557 }
2558
8fdc6539
PZ
2559 is_active ^= ctx->is_active; /* changed bits */
2560
3cbaa590 2561 if (!ctx->nr_active || !(is_active & EVENT_ALL))
facc4307 2562 return;
5b0311e1 2563
075e0b00 2564 perf_pmu_disable(ctx->pmu);
3cbaa590 2565 if (is_active & EVENT_PINNED) {
889ff015
FW
2566 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2567 group_sched_out(event, cpuctx, ctx);
9ed6060d 2568 }
889ff015 2569
3cbaa590 2570 if (is_active & EVENT_FLEXIBLE) {
889ff015 2571 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
8c9ed8e1 2572 group_sched_out(event, cpuctx, ctx);
9ed6060d 2573 }
1b9a644f 2574 perf_pmu_enable(ctx->pmu);
235c7fc7
IM
2575}
2576
564c2b21 2577/*
5a3126d4
PZ
2578 * Test whether two contexts are equivalent, i.e. whether they have both been
2579 * cloned from the same version of the same context.
2580 *
2581 * Equivalence is measured using a generation number in the context that is
2582 * incremented on each modification to it; see unclone_ctx(), list_add_event()
2583 * and list_del_event().
564c2b21 2584 */
cdd6c482
IM
2585static int context_equiv(struct perf_event_context *ctx1,
2586 struct perf_event_context *ctx2)
564c2b21 2587{
211de6eb
PZ
2588 lockdep_assert_held(&ctx1->lock);
2589 lockdep_assert_held(&ctx2->lock);
2590
5a3126d4
PZ
2591 /* Pinning disables the swap optimization */
2592 if (ctx1->pin_count || ctx2->pin_count)
2593 return 0;
2594
2595 /* If ctx1 is the parent of ctx2 */
2596 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2597 return 1;
2598
2599 /* If ctx2 is the parent of ctx1 */
2600 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2601 return 1;
2602
2603 /*
2604 * If ctx1 and ctx2 have the same parent; we flatten the parent
2605 * hierarchy, see perf_event_init_context().
2606 */
2607 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2608 ctx1->parent_gen == ctx2->parent_gen)
2609 return 1;
2610
2611 /* Unmatched */
2612 return 0;
564c2b21
PM
2613}
2614
cdd6c482
IM
2615static void __perf_event_sync_stat(struct perf_event *event,
2616 struct perf_event *next_event)
bfbd3381
PZ
2617{
2618 u64 value;
2619
cdd6c482 2620 if (!event->attr.inherit_stat)
bfbd3381
PZ
2621 return;
2622
2623 /*
cdd6c482 2624 * Update the event value, we cannot use perf_event_read()
bfbd3381
PZ
2625 * because we're in the middle of a context switch and have IRQs
2626 * disabled, which upsets smp_call_function_single(), however
cdd6c482 2627 * we know the event must be on the current CPU, therefore we
bfbd3381
PZ
2628 * don't need to use it.
2629 */
cdd6c482
IM
2630 switch (event->state) {
2631 case PERF_EVENT_STATE_ACTIVE:
3dbebf15
PZ
2632 event->pmu->read(event);
2633 /* fall-through */
bfbd3381 2634
cdd6c482
IM
2635 case PERF_EVENT_STATE_INACTIVE:
2636 update_event_times(event);
bfbd3381
PZ
2637 break;
2638
2639 default:
2640 break;
2641 }
2642
2643 /*
cdd6c482 2644 * In order to keep per-task stats reliable we need to flip the event
bfbd3381
PZ
2645 * values when we flip the contexts.
2646 */
e7850595
PZ
2647 value = local64_read(&next_event->count);
2648 value = local64_xchg(&event->count, value);
2649 local64_set(&next_event->count, value);
bfbd3381 2650
cdd6c482
IM
2651 swap(event->total_time_enabled, next_event->total_time_enabled);
2652 swap(event->total_time_running, next_event->total_time_running);
19d2e755 2653
bfbd3381 2654 /*
19d2e755 2655 * Since we swizzled the values, update the user visible data too.
bfbd3381 2656 */
cdd6c482
IM
2657 perf_event_update_userpage(event);
2658 perf_event_update_userpage(next_event);
bfbd3381
PZ
2659}
2660
cdd6c482
IM
2661static void perf_event_sync_stat(struct perf_event_context *ctx,
2662 struct perf_event_context *next_ctx)
bfbd3381 2663{
cdd6c482 2664 struct perf_event *event, *next_event;
bfbd3381
PZ
2665
2666 if (!ctx->nr_stat)
2667 return;
2668
02ffdbc8
PZ
2669 update_context_time(ctx);
2670
cdd6c482
IM
2671 event = list_first_entry(&ctx->event_list,
2672 struct perf_event, event_entry);
bfbd3381 2673
cdd6c482
IM
2674 next_event = list_first_entry(&next_ctx->event_list,
2675 struct perf_event, event_entry);
bfbd3381 2676
cdd6c482
IM
2677 while (&event->event_entry != &ctx->event_list &&
2678 &next_event->event_entry != &next_ctx->event_list) {
bfbd3381 2679
cdd6c482 2680 __perf_event_sync_stat(event, next_event);
bfbd3381 2681
cdd6c482
IM
2682 event = list_next_entry(event, event_entry);
2683 next_event = list_next_entry(next_event, event_entry);
bfbd3381
PZ
2684 }
2685}
2686
fe4b04fa
PZ
2687static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2688 struct task_struct *next)
0793a61d 2689{
8dc85d54 2690 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
cdd6c482 2691 struct perf_event_context *next_ctx;
5a3126d4 2692 struct perf_event_context *parent, *next_parent;
108b02cf 2693 struct perf_cpu_context *cpuctx;
c93f7669 2694 int do_switch = 1;
0793a61d 2695
108b02cf
PZ
2696 if (likely(!ctx))
2697 return;
10989fb2 2698
108b02cf
PZ
2699 cpuctx = __get_cpu_context(ctx);
2700 if (!cpuctx->task_ctx)
0793a61d
TG
2701 return;
2702
c93f7669 2703 rcu_read_lock();
8dc85d54 2704 next_ctx = next->perf_event_ctxp[ctxn];
5a3126d4
PZ
2705 if (!next_ctx)
2706 goto unlock;
2707
2708 parent = rcu_dereference(ctx->parent_ctx);
2709 next_parent = rcu_dereference(next_ctx->parent_ctx);
2710
2711 /* If neither context have a parent context; they cannot be clones. */
802c8a61 2712 if (!parent && !next_parent)
5a3126d4
PZ
2713 goto unlock;
2714
2715 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
c93f7669
PM
2716 /*
2717 * Looks like the two contexts are clones, so we might be
2718 * able to optimize the context switch. We lock both
2719 * contexts and check that they are clones under the
2720 * lock (including re-checking that neither has been
2721 * uncloned in the meantime). It doesn't matter which
2722 * order we take the locks because no other cpu could
2723 * be trying to lock both of these tasks.
2724 */
e625cce1
TG
2725 raw_spin_lock(&ctx->lock);
2726 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
c93f7669 2727 if (context_equiv(ctx, next_ctx)) {
63b6da39
PZ
2728 WRITE_ONCE(ctx->task, next);
2729 WRITE_ONCE(next_ctx->task, task);
5a158c3c
YZ
2730
2731 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2732
63b6da39
PZ
2733 /*
2734 * RCU_INIT_POINTER here is safe because we've not
2735 * modified the ctx and the above modification of
2736 * ctx->task and ctx->task_ctx_data are immaterial
2737 * since those values are always verified under
2738 * ctx->lock which we're now holding.
2739 */
2740 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
2741 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
2742
c93f7669 2743 do_switch = 0;
bfbd3381 2744
cdd6c482 2745 perf_event_sync_stat(ctx, next_ctx);
c93f7669 2746 }
e625cce1
TG
2747 raw_spin_unlock(&next_ctx->lock);
2748 raw_spin_unlock(&ctx->lock);
564c2b21 2749 }
5a3126d4 2750unlock:
c93f7669 2751 rcu_read_unlock();
564c2b21 2752
c93f7669 2753 if (do_switch) {
facc4307 2754 raw_spin_lock(&ctx->lock);
8833d0e2 2755 task_ctx_sched_out(cpuctx, ctx);
facc4307 2756 raw_spin_unlock(&ctx->lock);
c93f7669 2757 }
0793a61d
TG
2758}
2759
ba532500
YZ
2760void perf_sched_cb_dec(struct pmu *pmu)
2761{
2762 this_cpu_dec(perf_sched_cb_usages);
2763}
2764
2765void perf_sched_cb_inc(struct pmu *pmu)
2766{
2767 this_cpu_inc(perf_sched_cb_usages);
2768}
2769
2770/*
2771 * This function provides the context switch callback to the lower code
2772 * layer. It is invoked ONLY when the context switch callback is enabled.
2773 */
2774static void perf_pmu_sched_task(struct task_struct *prev,
2775 struct task_struct *next,
2776 bool sched_in)
2777{
2778 struct perf_cpu_context *cpuctx;
2779 struct pmu *pmu;
2780 unsigned long flags;
2781
2782 if (prev == next)
2783 return;
2784
2785 local_irq_save(flags);
2786
2787 rcu_read_lock();
2788
2789 list_for_each_entry_rcu(pmu, &pmus, entry) {
2790 if (pmu->sched_task) {
2791 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2792
2793 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2794
2795 perf_pmu_disable(pmu);
2796
2797 pmu->sched_task(cpuctx->task_ctx, sched_in);
2798
2799 perf_pmu_enable(pmu);
2800
2801 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2802 }
2803 }
2804
2805 rcu_read_unlock();
2806
2807 local_irq_restore(flags);
2808}
2809
45ac1403
AH
2810static void perf_event_switch(struct task_struct *task,
2811 struct task_struct *next_prev, bool sched_in);
2812
8dc85d54
PZ
2813#define for_each_task_context_nr(ctxn) \
2814 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2815
2816/*
2817 * Called from scheduler to remove the events of the current task,
2818 * with interrupts disabled.
2819 *
2820 * We stop each event and update the event value in event->count.
2821 *
2822 * This does not protect us against NMI, but disable()
2823 * sets the disabled bit in the control field of event _before_
2824 * accessing the event control register. If a NMI hits, then it will
2825 * not restart the event.
2826 */
ab0cce56
JO
2827void __perf_event_task_sched_out(struct task_struct *task,
2828 struct task_struct *next)
8dc85d54
PZ
2829{
2830 int ctxn;
2831
ba532500
YZ
2832 if (__this_cpu_read(perf_sched_cb_usages))
2833 perf_pmu_sched_task(task, next, false);
2834
45ac1403
AH
2835 if (atomic_read(&nr_switch_events))
2836 perf_event_switch(task, next, false);
2837
8dc85d54
PZ
2838 for_each_task_context_nr(ctxn)
2839 perf_event_context_sched_out(task, ctxn, next);
e5d1367f
SE
2840
2841 /*
2842 * if cgroup events exist on this CPU, then we need
2843 * to check if we have to switch out PMU state.
2844 * cgroup event are system-wide mode only
2845 */
4a32fea9 2846 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
a8d757ef 2847 perf_cgroup_sched_out(task, next);
8dc85d54
PZ
2848}
2849
5b0311e1
FW
2850/*
2851 * Called with IRQs disabled
2852 */
2853static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2854 enum event_type_t event_type)
2855{
2856 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
04289bb9
IM
2857}
2858
235c7fc7 2859static void
5b0311e1 2860ctx_pinned_sched_in(struct perf_event_context *ctx,
6e37738a 2861 struct perf_cpu_context *cpuctx)
0793a61d 2862{
cdd6c482 2863 struct perf_event *event;
0793a61d 2864
889ff015
FW
2865 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2866 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 2867 continue;
5632ab12 2868 if (!event_filter_match(event))
3b6f9e5c
PM
2869 continue;
2870
e5d1367f
SE
2871 /* may need to reset tstamp_enabled */
2872 if (is_cgroup_event(event))
2873 perf_cgroup_mark_enabled(event, ctx);
2874
8c9ed8e1 2875 if (group_can_go_on(event, cpuctx, 1))
6e37738a 2876 group_sched_in(event, cpuctx, ctx);
3b6f9e5c
PM
2877
2878 /*
2879 * If this pinned group hasn't been scheduled,
2880 * put it in error state.
2881 */
cdd6c482
IM
2882 if (event->state == PERF_EVENT_STATE_INACTIVE) {
2883 update_group_times(event);
2884 event->state = PERF_EVENT_STATE_ERROR;
53cfbf59 2885 }
3b6f9e5c 2886 }
5b0311e1
FW
2887}
2888
2889static void
2890ctx_flexible_sched_in(struct perf_event_context *ctx,
6e37738a 2891 struct perf_cpu_context *cpuctx)
5b0311e1
FW
2892{
2893 struct perf_event *event;
2894 int can_add_hw = 1;
3b6f9e5c 2895
889ff015
FW
2896 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2897 /* Ignore events in OFF or ERROR state */
2898 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 2899 continue;
04289bb9
IM
2900 /*
2901 * Listen to the 'cpu' scheduling filter constraint
cdd6c482 2902 * of events:
04289bb9 2903 */
5632ab12 2904 if (!event_filter_match(event))
0793a61d
TG
2905 continue;
2906
e5d1367f
SE
2907 /* may need to reset tstamp_enabled */
2908 if (is_cgroup_event(event))
2909 perf_cgroup_mark_enabled(event, ctx);
2910
9ed6060d 2911 if (group_can_go_on(event, cpuctx, can_add_hw)) {
6e37738a 2912 if (group_sched_in(event, cpuctx, ctx))
dd0e6ba2 2913 can_add_hw = 0;
9ed6060d 2914 }
0793a61d 2915 }
5b0311e1
FW
2916}
2917
2918static void
2919ctx_sched_in(struct perf_event_context *ctx,
2920 struct perf_cpu_context *cpuctx,
e5d1367f
SE
2921 enum event_type_t event_type,
2922 struct task_struct *task)
5b0311e1 2923{
db24d33e 2924 int is_active = ctx->is_active;
c994d613
PZ
2925 u64 now;
2926
2927 lockdep_assert_held(&ctx->lock);
e5d1367f 2928
5b0311e1 2929 if (likely(!ctx->nr_events))
facc4307 2930 return;
5b0311e1 2931
3cbaa590 2932 ctx->is_active |= (event_type | EVENT_TIME);
63e30d3e
PZ
2933 if (ctx->task) {
2934 if (!is_active)
2935 cpuctx->task_ctx = ctx;
2936 else
2937 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2938 }
2939
3cbaa590
PZ
2940 is_active ^= ctx->is_active; /* changed bits */
2941
2942 if (is_active & EVENT_TIME) {
2943 /* start ctx time */
2944 now = perf_clock();
2945 ctx->timestamp = now;
2946 perf_cgroup_set_timestamp(task, ctx);
2947 }
2948
5b0311e1
FW
2949 /*
2950 * First go through the list and put on any pinned groups
2951 * in order to give them the best chance of going on.
2952 */
3cbaa590 2953 if (is_active & EVENT_PINNED)
6e37738a 2954 ctx_pinned_sched_in(ctx, cpuctx);
5b0311e1
FW
2955
2956 /* Then walk through the lower prio flexible groups */
3cbaa590 2957 if (is_active & EVENT_FLEXIBLE)
6e37738a 2958 ctx_flexible_sched_in(ctx, cpuctx);
235c7fc7
IM
2959}
2960
329c0e01 2961static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
2962 enum event_type_t event_type,
2963 struct task_struct *task)
329c0e01
FW
2964{
2965 struct perf_event_context *ctx = &cpuctx->ctx;
2966
e5d1367f 2967 ctx_sched_in(ctx, cpuctx, event_type, task);
329c0e01
FW
2968}
2969
e5d1367f
SE
2970static void perf_event_context_sched_in(struct perf_event_context *ctx,
2971 struct task_struct *task)
235c7fc7 2972{
108b02cf 2973 struct perf_cpu_context *cpuctx;
235c7fc7 2974
108b02cf 2975 cpuctx = __get_cpu_context(ctx);
329c0e01
FW
2976 if (cpuctx->task_ctx == ctx)
2977 return;
2978
facc4307 2979 perf_ctx_lock(cpuctx, ctx);
1b9a644f 2980 perf_pmu_disable(ctx->pmu);
329c0e01
FW
2981 /*
2982 * We want to keep the following priority order:
2983 * cpu pinned (that don't need to move), task pinned,
2984 * cpu flexible, task flexible.
2985 */
2986 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
63e30d3e 2987 perf_event_sched_in(cpuctx, ctx, task);
facc4307
PZ
2988 perf_pmu_enable(ctx->pmu);
2989 perf_ctx_unlock(cpuctx, ctx);
235c7fc7
IM
2990}
2991
8dc85d54
PZ
2992/*
2993 * Called from scheduler to add the events of the current task
2994 * with interrupts disabled.
2995 *
2996 * We restore the event value and then enable it.
2997 *
2998 * This does not protect us against NMI, but enable()
2999 * sets the enabled bit in the control field of event _before_
3000 * accessing the event control register. If a NMI hits, then it will
3001 * keep the event running.
3002 */
ab0cce56
JO
3003void __perf_event_task_sched_in(struct task_struct *prev,
3004 struct task_struct *task)
8dc85d54
PZ
3005{
3006 struct perf_event_context *ctx;
3007 int ctxn;
3008
7e41d177
PZ
3009 /*
3010 * If cgroup events exist on this CPU, then we need to check if we have
3011 * to switch in PMU state; cgroup event are system-wide mode only.
3012 *
3013 * Since cgroup events are CPU events, we must schedule these in before
3014 * we schedule in the task events.
3015 */
3016 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3017 perf_cgroup_sched_in(prev, task);
3018
8dc85d54
PZ
3019 for_each_task_context_nr(ctxn) {
3020 ctx = task->perf_event_ctxp[ctxn];
3021 if (likely(!ctx))
3022 continue;
3023
e5d1367f 3024 perf_event_context_sched_in(ctx, task);
8dc85d54 3025 }
d010b332 3026
45ac1403
AH
3027 if (atomic_read(&nr_switch_events))
3028 perf_event_switch(task, prev, true);
3029
ba532500
YZ
3030 if (__this_cpu_read(perf_sched_cb_usages))
3031 perf_pmu_sched_task(prev, task, true);
235c7fc7
IM
3032}
3033
abd50713
PZ
3034static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3035{
3036 u64 frequency = event->attr.sample_freq;
3037 u64 sec = NSEC_PER_SEC;
3038 u64 divisor, dividend;
3039
3040 int count_fls, nsec_fls, frequency_fls, sec_fls;
3041
3042 count_fls = fls64(count);
3043 nsec_fls = fls64(nsec);
3044 frequency_fls = fls64(frequency);
3045 sec_fls = 30;
3046
3047 /*
3048 * We got @count in @nsec, with a target of sample_freq HZ
3049 * the target period becomes:
3050 *
3051 * @count * 10^9
3052 * period = -------------------
3053 * @nsec * sample_freq
3054 *
3055 */
3056
3057 /*
3058 * Reduce accuracy by one bit such that @a and @b converge
3059 * to a similar magnitude.
3060 */
fe4b04fa 3061#define REDUCE_FLS(a, b) \
abd50713
PZ
3062do { \
3063 if (a##_fls > b##_fls) { \
3064 a >>= 1; \
3065 a##_fls--; \
3066 } else { \
3067 b >>= 1; \
3068 b##_fls--; \
3069 } \
3070} while (0)
3071
3072 /*
3073 * Reduce accuracy until either term fits in a u64, then proceed with
3074 * the other, so that finally we can do a u64/u64 division.
3075 */
3076 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3077 REDUCE_FLS(nsec, frequency);
3078 REDUCE_FLS(sec, count);
3079 }
3080
3081 if (count_fls + sec_fls > 64) {
3082 divisor = nsec * frequency;
3083
3084 while (count_fls + sec_fls > 64) {
3085 REDUCE_FLS(count, sec);
3086 divisor >>= 1;
3087 }
3088
3089 dividend = count * sec;
3090 } else {
3091 dividend = count * sec;
3092
3093 while (nsec_fls + frequency_fls > 64) {
3094 REDUCE_FLS(nsec, frequency);
3095 dividend >>= 1;
3096 }
3097
3098 divisor = nsec * frequency;
3099 }
3100
f6ab91ad
PZ
3101 if (!divisor)
3102 return dividend;
3103
abd50713
PZ
3104 return div64_u64(dividend, divisor);
3105}
3106
e050e3f0
SE
3107static DEFINE_PER_CPU(int, perf_throttled_count);
3108static DEFINE_PER_CPU(u64, perf_throttled_seq);
3109
f39d47ff 3110static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
bd2b5b12 3111{
cdd6c482 3112 struct hw_perf_event *hwc = &event->hw;
f6ab91ad 3113 s64 period, sample_period;
bd2b5b12
PZ
3114 s64 delta;
3115
abd50713 3116 period = perf_calculate_period(event, nsec, count);
bd2b5b12
PZ
3117
3118 delta = (s64)(period - hwc->sample_period);
3119 delta = (delta + 7) / 8; /* low pass filter */
3120
3121 sample_period = hwc->sample_period + delta;
3122
3123 if (!sample_period)
3124 sample_period = 1;
3125
bd2b5b12 3126 hwc->sample_period = sample_period;
abd50713 3127
e7850595 3128 if (local64_read(&hwc->period_left) > 8*sample_period) {
f39d47ff
SE
3129 if (disable)
3130 event->pmu->stop(event, PERF_EF_UPDATE);
3131
e7850595 3132 local64_set(&hwc->period_left, 0);
f39d47ff
SE
3133
3134 if (disable)
3135 event->pmu->start(event, PERF_EF_RELOAD);
abd50713 3136 }
bd2b5b12
PZ
3137}
3138
e050e3f0
SE
3139/*
3140 * combine freq adjustment with unthrottling to avoid two passes over the
3141 * events. At the same time, make sure, having freq events does not change
3142 * the rate of unthrottling as that would introduce bias.
3143 */
3144static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3145 int needs_unthr)
60db5e09 3146{
cdd6c482
IM
3147 struct perf_event *event;
3148 struct hw_perf_event *hwc;
e050e3f0 3149 u64 now, period = TICK_NSEC;
abd50713 3150 s64 delta;
60db5e09 3151
e050e3f0
SE
3152 /*
3153 * only need to iterate over all events iff:
3154 * - context have events in frequency mode (needs freq adjust)
3155 * - there are events to unthrottle on this cpu
3156 */
3157 if (!(ctx->nr_freq || needs_unthr))
0f5a2601
PZ
3158 return;
3159
e050e3f0 3160 raw_spin_lock(&ctx->lock);
f39d47ff 3161 perf_pmu_disable(ctx->pmu);
e050e3f0 3162
03541f8b 3163 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
cdd6c482 3164 if (event->state != PERF_EVENT_STATE_ACTIVE)
60db5e09
PZ
3165 continue;
3166
5632ab12 3167 if (!event_filter_match(event))
5d27c23d
PZ
3168 continue;
3169
44377277
AS
3170 perf_pmu_disable(event->pmu);
3171
cdd6c482 3172 hwc = &event->hw;
6a24ed6c 3173
ae23bff1 3174 if (hwc->interrupts == MAX_INTERRUPTS) {
e050e3f0 3175 hwc->interrupts = 0;
cdd6c482 3176 perf_log_throttle(event, 1);
a4eaf7f1 3177 event->pmu->start(event, 0);
a78ac325
PZ
3178 }
3179
cdd6c482 3180 if (!event->attr.freq || !event->attr.sample_freq)
44377277 3181 goto next;
60db5e09 3182
e050e3f0
SE
3183 /*
3184 * stop the event and update event->count
3185 */
3186 event->pmu->stop(event, PERF_EF_UPDATE);
3187
e7850595 3188 now = local64_read(&event->count);
abd50713
PZ
3189 delta = now - hwc->freq_count_stamp;
3190 hwc->freq_count_stamp = now;
60db5e09 3191
e050e3f0
SE
3192 /*
3193 * restart the event
3194 * reload only if value has changed
f39d47ff
SE
3195 * we have stopped the event so tell that
3196 * to perf_adjust_period() to avoid stopping it
3197 * twice.
e050e3f0 3198 */
abd50713 3199 if (delta > 0)
f39d47ff 3200 perf_adjust_period(event, period, delta, false);
e050e3f0
SE
3201
3202 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
44377277
AS
3203 next:
3204 perf_pmu_enable(event->pmu);
60db5e09 3205 }
e050e3f0 3206
f39d47ff 3207 perf_pmu_enable(ctx->pmu);
e050e3f0 3208 raw_spin_unlock(&ctx->lock);
60db5e09
PZ
3209}
3210
235c7fc7 3211/*
cdd6c482 3212 * Round-robin a context's events:
235c7fc7 3213 */
cdd6c482 3214static void rotate_ctx(struct perf_event_context *ctx)
0793a61d 3215{
dddd3379
TG
3216 /*
3217 * Rotate the first entry last of non-pinned groups. Rotation might be
3218 * disabled by the inheritance code.
3219 */
3220 if (!ctx->rotate_disable)
3221 list_rotate_left(&ctx->flexible_groups);
235c7fc7
IM
3222}
3223
9e630205 3224static int perf_rotate_context(struct perf_cpu_context *cpuctx)
235c7fc7 3225{
8dc85d54 3226 struct perf_event_context *ctx = NULL;
2fde4f94 3227 int rotate = 0;
7fc23a53 3228
b5ab4cd5 3229 if (cpuctx->ctx.nr_events) {
b5ab4cd5
PZ
3230 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3231 rotate = 1;
3232 }
235c7fc7 3233
8dc85d54 3234 ctx = cpuctx->task_ctx;
b5ab4cd5 3235 if (ctx && ctx->nr_events) {
b5ab4cd5
PZ
3236 if (ctx->nr_events != ctx->nr_active)
3237 rotate = 1;
3238 }
9717e6cd 3239
e050e3f0 3240 if (!rotate)
0f5a2601
PZ
3241 goto done;
3242
facc4307 3243 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
1b9a644f 3244 perf_pmu_disable(cpuctx->ctx.pmu);
60db5e09 3245
e050e3f0
SE
3246 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3247 if (ctx)
3248 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
0793a61d 3249
e050e3f0
SE
3250 rotate_ctx(&cpuctx->ctx);
3251 if (ctx)
3252 rotate_ctx(ctx);
235c7fc7 3253
e050e3f0 3254 perf_event_sched_in(cpuctx, ctx, current);
235c7fc7 3255
0f5a2601
PZ
3256 perf_pmu_enable(cpuctx->ctx.pmu);
3257 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
b5ab4cd5 3258done:
9e630205
SE
3259
3260 return rotate;
e9d2b064
PZ
3261}
3262
3263void perf_event_task_tick(void)
3264{
2fde4f94
MR
3265 struct list_head *head = this_cpu_ptr(&active_ctx_list);
3266 struct perf_event_context *ctx, *tmp;
e050e3f0 3267 int throttled;
b5ab4cd5 3268
e9d2b064
PZ
3269 WARN_ON(!irqs_disabled());
3270
e050e3f0
SE
3271 __this_cpu_inc(perf_throttled_seq);
3272 throttled = __this_cpu_xchg(perf_throttled_count, 0);
555e0c1e 3273 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
e050e3f0 3274
2fde4f94 3275 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
e050e3f0 3276 perf_adjust_freq_unthr_context(ctx, throttled);
0793a61d
TG
3277}
3278
889ff015
FW
3279static int event_enable_on_exec(struct perf_event *event,
3280 struct perf_event_context *ctx)
3281{
3282 if (!event->attr.enable_on_exec)
3283 return 0;
3284
3285 event->attr.enable_on_exec = 0;
3286 if (event->state >= PERF_EVENT_STATE_INACTIVE)
3287 return 0;
3288
1d9b482e 3289 __perf_event_mark_enabled(event);
889ff015
FW
3290
3291 return 1;
3292}
3293
57e7986e 3294/*
cdd6c482 3295 * Enable all of a task's events that have been marked enable-on-exec.
57e7986e
PM
3296 * This expects task == current.
3297 */
c1274499 3298static void perf_event_enable_on_exec(int ctxn)
57e7986e 3299{
c1274499 3300 struct perf_event_context *ctx, *clone_ctx = NULL;
3e349507 3301 struct perf_cpu_context *cpuctx;
cdd6c482 3302 struct perf_event *event;
57e7986e
PM
3303 unsigned long flags;
3304 int enabled = 0;
3305
3306 local_irq_save(flags);
c1274499 3307 ctx = current->perf_event_ctxp[ctxn];
cdd6c482 3308 if (!ctx || !ctx->nr_events)
57e7986e
PM
3309 goto out;
3310
3e349507
PZ
3311 cpuctx = __get_cpu_context(ctx);
3312 perf_ctx_lock(cpuctx, ctx);
7fce2509 3313 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3e349507
PZ
3314 list_for_each_entry(event, &ctx->event_list, event_entry)
3315 enabled |= event_enable_on_exec(event, ctx);
57e7986e
PM
3316
3317 /*
3e349507 3318 * Unclone and reschedule this context if we enabled any event.
57e7986e 3319 */
3e349507 3320 if (enabled) {
211de6eb 3321 clone_ctx = unclone_ctx(ctx);
3e349507
PZ
3322 ctx_resched(cpuctx, ctx);
3323 }
3324 perf_ctx_unlock(cpuctx, ctx);
57e7986e 3325
9ed6060d 3326out:
57e7986e 3327 local_irq_restore(flags);
211de6eb
PZ
3328
3329 if (clone_ctx)
3330 put_ctx(clone_ctx);
57e7986e
PM
3331}
3332
0492d4c5
PZ
3333struct perf_read_data {
3334 struct perf_event *event;
3335 bool group;
7d88962e 3336 int ret;
0492d4c5
PZ
3337};
3338
0793a61d 3339/*
cdd6c482 3340 * Cross CPU call to read the hardware event
0793a61d 3341 */
cdd6c482 3342static void __perf_event_read(void *info)
0793a61d 3343{
0492d4c5
PZ
3344 struct perf_read_data *data = info;
3345 struct perf_event *sub, *event = data->event;
cdd6c482 3346 struct perf_event_context *ctx = event->ctx;
108b02cf 3347 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
4a00c16e 3348 struct pmu *pmu = event->pmu;
621a01ea 3349
e1ac3614
PM
3350 /*
3351 * If this is a task context, we need to check whether it is
3352 * the current task context of this cpu. If not it has been
3353 * scheduled out before the smp call arrived. In that case
cdd6c482
IM
3354 * event->count would have been updated to a recent sample
3355 * when the event was scheduled out.
e1ac3614
PM
3356 */
3357 if (ctx->task && cpuctx->task_ctx != ctx)
3358 return;
3359
e625cce1 3360 raw_spin_lock(&ctx->lock);
e5d1367f 3361 if (ctx->is_active) {
542e72fc 3362 update_context_time(ctx);
e5d1367f
SE
3363 update_cgrp_time_from_event(event);
3364 }
0492d4c5 3365
cdd6c482 3366 update_event_times(event);
4a00c16e
SB
3367 if (event->state != PERF_EVENT_STATE_ACTIVE)
3368 goto unlock;
0492d4c5 3369
4a00c16e
SB
3370 if (!data->group) {
3371 pmu->read(event);
3372 data->ret = 0;
0492d4c5 3373 goto unlock;
4a00c16e
SB
3374 }
3375
3376 pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3377
3378 pmu->read(event);
0492d4c5
PZ
3379
3380 list_for_each_entry(sub, &event->sibling_list, group_entry) {
3381 update_event_times(sub);
4a00c16e
SB
3382 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3383 /*
3384 * Use sibling's PMU rather than @event's since
3385 * sibling could be on different (eg: software) PMU.
3386 */
0492d4c5 3387 sub->pmu->read(sub);
4a00c16e 3388 }
0492d4c5 3389 }
4a00c16e
SB
3390
3391 data->ret = pmu->commit_txn(pmu);
0492d4c5
PZ
3392
3393unlock:
e625cce1 3394 raw_spin_unlock(&ctx->lock);
0793a61d
TG
3395}
3396
b5e58793
PZ
3397static inline u64 perf_event_count(struct perf_event *event)
3398{
eacd3ecc
MF
3399 if (event->pmu->count)
3400 return event->pmu->count(event);
3401
3402 return __perf_event_count(event);
b5e58793
PZ
3403}
3404
ffe8690c
KX
3405/*
3406 * NMI-safe method to read a local event, that is an event that
3407 * is:
3408 * - either for the current task, or for this CPU
3409 * - does not have inherit set, for inherited task events
3410 * will not be local and we cannot read them atomically
3411 * - must not have a pmu::count method
3412 */
3413u64 perf_event_read_local(struct perf_event *event)
3414{
3415 unsigned long flags;
3416 u64 val;
3417
3418 /*
3419 * Disabling interrupts avoids all counter scheduling (context
3420 * switches, timer based rotation and IPIs).
3421 */
3422 local_irq_save(flags);
3423
3424 /* If this is a per-task event, it must be for current */
3425 WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) &&
3426 event->hw.target != current);
3427
3428 /* If this is a per-CPU event, it must be for this CPU */
3429 WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) &&
3430 event->cpu != smp_processor_id());
3431
3432 /*
3433 * It must not be an event with inherit set, we cannot read
3434 * all child counters from atomic context.
3435 */
3436 WARN_ON_ONCE(event->attr.inherit);
3437
3438 /*
3439 * It must not have a pmu::count method, those are not
3440 * NMI safe.
3441 */
3442 WARN_ON_ONCE(event->pmu->count);
3443
3444 /*
3445 * If the event is currently on this CPU, its either a per-task event,
3446 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3447 * oncpu == -1).
3448 */
3449 if (event->oncpu == smp_processor_id())
3450 event->pmu->read(event);
3451
3452 val = local64_read(&event->count);
3453 local_irq_restore(flags);
3454
3455 return val;
3456}
3457
7d88962e 3458static int perf_event_read(struct perf_event *event, bool group)
0793a61d 3459{
7d88962e
SB
3460 int ret = 0;
3461
0793a61d 3462 /*
cdd6c482
IM
3463 * If event is enabled and currently active on a CPU, update the
3464 * value in the event structure:
0793a61d 3465 */
cdd6c482 3466 if (event->state == PERF_EVENT_STATE_ACTIVE) {
0492d4c5
PZ
3467 struct perf_read_data data = {
3468 .event = event,
3469 .group = group,
7d88962e 3470 .ret = 0,
0492d4c5 3471 };
cdd6c482 3472 smp_call_function_single(event->oncpu,
0492d4c5 3473 __perf_event_read, &data, 1);
7d88962e 3474 ret = data.ret;
cdd6c482 3475 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
2b8988c9
PZ
3476 struct perf_event_context *ctx = event->ctx;
3477 unsigned long flags;
3478
e625cce1 3479 raw_spin_lock_irqsave(&ctx->lock, flags);
c530ccd9
SE
3480 /*
3481 * may read while context is not active
3482 * (e.g., thread is blocked), in that case
3483 * we cannot update context time
3484 */
e5d1367f 3485 if (ctx->is_active) {
c530ccd9 3486 update_context_time(ctx);
e5d1367f
SE
3487 update_cgrp_time_from_event(event);
3488 }
0492d4c5
PZ
3489 if (group)
3490 update_group_times(event);
3491 else
3492 update_event_times(event);
e625cce1 3493 raw_spin_unlock_irqrestore(&ctx->lock, flags);
0793a61d 3494 }
7d88962e
SB
3495
3496 return ret;
0793a61d
TG
3497}
3498
a63eaf34 3499/*
cdd6c482 3500 * Initialize the perf_event context in a task_struct:
a63eaf34 3501 */
eb184479 3502static void __perf_event_init_context(struct perf_event_context *ctx)
a63eaf34 3503{
e625cce1 3504 raw_spin_lock_init(&ctx->lock);
a63eaf34 3505 mutex_init(&ctx->mutex);
2fde4f94 3506 INIT_LIST_HEAD(&ctx->active_ctx_list);
889ff015
FW
3507 INIT_LIST_HEAD(&ctx->pinned_groups);
3508 INIT_LIST_HEAD(&ctx->flexible_groups);
a63eaf34
PM
3509 INIT_LIST_HEAD(&ctx->event_list);
3510 atomic_set(&ctx->refcount, 1);
eb184479
PZ
3511}
3512
3513static struct perf_event_context *
3514alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3515{
3516 struct perf_event_context *ctx;
3517
3518 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3519 if (!ctx)
3520 return NULL;
3521
3522 __perf_event_init_context(ctx);
3523 if (task) {
3524 ctx->task = task;
3525 get_task_struct(task);
0793a61d 3526 }
eb184479
PZ
3527 ctx->pmu = pmu;
3528
3529 return ctx;
a63eaf34
PM
3530}
3531
2ebd4ffb
MH
3532static struct task_struct *
3533find_lively_task_by_vpid(pid_t vpid)
3534{
3535 struct task_struct *task;
0793a61d
TG
3536
3537 rcu_read_lock();
2ebd4ffb 3538 if (!vpid)
0793a61d
TG
3539 task = current;
3540 else
2ebd4ffb 3541 task = find_task_by_vpid(vpid);
0793a61d
TG
3542 if (task)
3543 get_task_struct(task);
3544 rcu_read_unlock();
3545
3546 if (!task)
3547 return ERR_PTR(-ESRCH);
3548
2ebd4ffb 3549 return task;
2ebd4ffb
MH
3550}
3551
fe4b04fa
PZ
3552/*
3553 * Returns a matching context with refcount and pincount.
3554 */
108b02cf 3555static struct perf_event_context *
4af57ef2
YZ
3556find_get_context(struct pmu *pmu, struct task_struct *task,
3557 struct perf_event *event)
0793a61d 3558{
211de6eb 3559 struct perf_event_context *ctx, *clone_ctx = NULL;
22a4f650 3560 struct perf_cpu_context *cpuctx;
4af57ef2 3561 void *task_ctx_data = NULL;
25346b93 3562 unsigned long flags;
8dc85d54 3563 int ctxn, err;
4af57ef2 3564 int cpu = event->cpu;
0793a61d 3565
22a4ec72 3566 if (!task) {
cdd6c482 3567 /* Must be root to operate on a CPU event: */
0764771d 3568 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
0793a61d
TG
3569 return ERR_PTR(-EACCES);
3570
0793a61d 3571 /*
cdd6c482 3572 * We could be clever and allow to attach a event to an
0793a61d
TG
3573 * offline CPU and activate it when the CPU comes up, but
3574 * that's for later.
3575 */
f6325e30 3576 if (!cpu_online(cpu))
0793a61d
TG
3577 return ERR_PTR(-ENODEV);
3578
108b02cf 3579 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
0793a61d 3580 ctx = &cpuctx->ctx;
c93f7669 3581 get_ctx(ctx);
fe4b04fa 3582 ++ctx->pin_count;
0793a61d 3583
0793a61d
TG
3584 return ctx;
3585 }
3586
8dc85d54
PZ
3587 err = -EINVAL;
3588 ctxn = pmu->task_ctx_nr;
3589 if (ctxn < 0)
3590 goto errout;
3591
4af57ef2
YZ
3592 if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3593 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3594 if (!task_ctx_data) {
3595 err = -ENOMEM;
3596 goto errout;
3597 }
3598 }
3599
9ed6060d 3600retry:
8dc85d54 3601 ctx = perf_lock_task_context(task, ctxn, &flags);
c93f7669 3602 if (ctx) {
211de6eb 3603 clone_ctx = unclone_ctx(ctx);
fe4b04fa 3604 ++ctx->pin_count;
4af57ef2
YZ
3605
3606 if (task_ctx_data && !ctx->task_ctx_data) {
3607 ctx->task_ctx_data = task_ctx_data;
3608 task_ctx_data = NULL;
3609 }
e625cce1 3610 raw_spin_unlock_irqrestore(&ctx->lock, flags);
211de6eb
PZ
3611
3612 if (clone_ctx)
3613 put_ctx(clone_ctx);
9137fb28 3614 } else {
eb184479 3615 ctx = alloc_perf_context(pmu, task);
c93f7669
PM
3616 err = -ENOMEM;
3617 if (!ctx)
3618 goto errout;
eb184479 3619
4af57ef2
YZ
3620 if (task_ctx_data) {
3621 ctx->task_ctx_data = task_ctx_data;
3622 task_ctx_data = NULL;
3623 }
3624
dbe08d82
ON
3625 err = 0;
3626 mutex_lock(&task->perf_event_mutex);
3627 /*
3628 * If it has already passed perf_event_exit_task().
3629 * we must see PF_EXITING, it takes this mutex too.
3630 */
3631 if (task->flags & PF_EXITING)
3632 err = -ESRCH;
3633 else if (task->perf_event_ctxp[ctxn])
3634 err = -EAGAIN;
fe4b04fa 3635 else {
9137fb28 3636 get_ctx(ctx);
fe4b04fa 3637 ++ctx->pin_count;
dbe08d82 3638 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
fe4b04fa 3639 }
dbe08d82
ON
3640 mutex_unlock(&task->perf_event_mutex);
3641
3642 if (unlikely(err)) {
9137fb28 3643 put_ctx(ctx);
dbe08d82
ON
3644
3645 if (err == -EAGAIN)
3646 goto retry;
3647 goto errout;
a63eaf34
PM
3648 }
3649 }
3650
4af57ef2 3651 kfree(task_ctx_data);
0793a61d 3652 return ctx;
c93f7669 3653
9ed6060d 3654errout:
4af57ef2 3655 kfree(task_ctx_data);
c93f7669 3656 return ERR_PTR(err);
0793a61d
TG
3657}
3658
6fb2915d 3659static void perf_event_free_filter(struct perf_event *event);
2541517c 3660static void perf_event_free_bpf_prog(struct perf_event *event);
6fb2915d 3661
cdd6c482 3662static void free_event_rcu(struct rcu_head *head)
592903cd 3663{
cdd6c482 3664 struct perf_event *event;
592903cd 3665
cdd6c482
IM
3666 event = container_of(head, struct perf_event, rcu_head);
3667 if (event->ns)
3668 put_pid_ns(event->ns);
6fb2915d 3669 perf_event_free_filter(event);
cdd6c482 3670 kfree(event);
592903cd
PZ
3671}
3672
b69cf536
PZ
3673static void ring_buffer_attach(struct perf_event *event,
3674 struct ring_buffer *rb);
925d519a 3675
f2fb6bef
KL
3676static void detach_sb_event(struct perf_event *event)
3677{
3678 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
3679
3680 raw_spin_lock(&pel->lock);
3681 list_del_rcu(&event->sb_list);
3682 raw_spin_unlock(&pel->lock);
3683}
3684
3685static void unaccount_pmu_sb_event(struct perf_event *event)
3686{
3687 if (event->parent)
3688 return;
3689
3690 if (event->attach_state & PERF_ATTACH_TASK)
3691 return;
3692
3693 detach_sb_event(event);
3694}
3695
4beb31f3 3696static void unaccount_event_cpu(struct perf_event *event, int cpu)
f1600952 3697{
4beb31f3
FW
3698 if (event->parent)
3699 return;
3700
4beb31f3
FW
3701 if (is_cgroup_event(event))
3702 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3703}
925d519a 3704
555e0c1e
FW
3705#ifdef CONFIG_NO_HZ_FULL
3706static DEFINE_SPINLOCK(nr_freq_lock);
3707#endif
3708
3709static void unaccount_freq_event_nohz(void)
3710{
3711#ifdef CONFIG_NO_HZ_FULL
3712 spin_lock(&nr_freq_lock);
3713 if (atomic_dec_and_test(&nr_freq_events))
3714 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
3715 spin_unlock(&nr_freq_lock);
3716#endif
3717}
3718
3719static void unaccount_freq_event(void)
3720{
3721 if (tick_nohz_full_enabled())
3722 unaccount_freq_event_nohz();
3723 else
3724 atomic_dec(&nr_freq_events);
3725}
3726
4beb31f3
FW
3727static void unaccount_event(struct perf_event *event)
3728{
25432ae9
PZ
3729 bool dec = false;
3730
4beb31f3
FW
3731 if (event->parent)
3732 return;
3733
3734 if (event->attach_state & PERF_ATTACH_TASK)
25432ae9 3735 dec = true;
4beb31f3
FW
3736 if (event->attr.mmap || event->attr.mmap_data)
3737 atomic_dec(&nr_mmap_events);
3738 if (event->attr.comm)
3739 atomic_dec(&nr_comm_events);
3740 if (event->attr.task)
3741 atomic_dec(&nr_task_events);
948b26b6 3742 if (event->attr.freq)
555e0c1e 3743 unaccount_freq_event();
45ac1403 3744 if (event->attr.context_switch) {
25432ae9 3745 dec = true;
45ac1403
AH
3746 atomic_dec(&nr_switch_events);
3747 }
4beb31f3 3748 if (is_cgroup_event(event))
25432ae9 3749 dec = true;
4beb31f3 3750 if (has_branch_stack(event))
25432ae9
PZ
3751 dec = true;
3752
9107c89e
PZ
3753 if (dec) {
3754 if (!atomic_add_unless(&perf_sched_count, -1, 1))
3755 schedule_delayed_work(&perf_sched_work, HZ);
3756 }
4beb31f3
FW
3757
3758 unaccount_event_cpu(event, event->cpu);
f2fb6bef
KL
3759
3760 unaccount_pmu_sb_event(event);
4beb31f3 3761}
925d519a 3762
9107c89e
PZ
3763static void perf_sched_delayed(struct work_struct *work)
3764{
3765 mutex_lock(&perf_sched_mutex);
3766 if (atomic_dec_and_test(&perf_sched_count))
3767 static_branch_disable(&perf_sched_events);
3768 mutex_unlock(&perf_sched_mutex);
3769}
3770
bed5b25a
AS
3771/*
3772 * The following implement mutual exclusion of events on "exclusive" pmus
3773 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
3774 * at a time, so we disallow creating events that might conflict, namely:
3775 *
3776 * 1) cpu-wide events in the presence of per-task events,
3777 * 2) per-task events in the presence of cpu-wide events,
3778 * 3) two matching events on the same context.
3779 *
3780 * The former two cases are handled in the allocation path (perf_event_alloc(),
a0733e69 3781 * _free_event()), the latter -- before the first perf_install_in_context().
bed5b25a
AS
3782 */
3783static int exclusive_event_init(struct perf_event *event)
3784{
3785 struct pmu *pmu = event->pmu;
3786
3787 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3788 return 0;
3789
3790 /*
3791 * Prevent co-existence of per-task and cpu-wide events on the
3792 * same exclusive pmu.
3793 *
3794 * Negative pmu::exclusive_cnt means there are cpu-wide
3795 * events on this "exclusive" pmu, positive means there are
3796 * per-task events.
3797 *
3798 * Since this is called in perf_event_alloc() path, event::ctx
3799 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
3800 * to mean "per-task event", because unlike other attach states it
3801 * never gets cleared.
3802 */
3803 if (event->attach_state & PERF_ATTACH_TASK) {
3804 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
3805 return -EBUSY;
3806 } else {
3807 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
3808 return -EBUSY;
3809 }
3810
3811 return 0;
3812}
3813
3814static void exclusive_event_destroy(struct perf_event *event)
3815{
3816 struct pmu *pmu = event->pmu;
3817
3818 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3819 return;
3820
3821 /* see comment in exclusive_event_init() */
3822 if (event->attach_state & PERF_ATTACH_TASK)
3823 atomic_dec(&pmu->exclusive_cnt);
3824 else
3825 atomic_inc(&pmu->exclusive_cnt);
3826}
3827
3828static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
3829{
3830 if ((e1->pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) &&
3831 (e1->cpu == e2->cpu ||
3832 e1->cpu == -1 ||
3833 e2->cpu == -1))
3834 return true;
3835 return false;
3836}
3837
3838/* Called under the same ctx::mutex as perf_install_in_context() */
3839static bool exclusive_event_installable(struct perf_event *event,
3840 struct perf_event_context *ctx)
3841{
3842 struct perf_event *iter_event;
3843 struct pmu *pmu = event->pmu;
3844
3845 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3846 return true;
3847
3848 list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
3849 if (exclusive_event_match(iter_event, event))
3850 return false;
3851 }
3852
3853 return true;
3854}
3855
375637bc
AS
3856static void perf_addr_filters_splice(struct perf_event *event,
3857 struct list_head *head);
3858
683ede43 3859static void _free_event(struct perf_event *event)
f1600952 3860{
e360adbe 3861 irq_work_sync(&event->pending);
925d519a 3862
4beb31f3 3863 unaccount_event(event);
9ee318a7 3864
76369139 3865 if (event->rb) {
9bb5d40c
PZ
3866 /*
3867 * Can happen when we close an event with re-directed output.
3868 *
3869 * Since we have a 0 refcount, perf_mmap_close() will skip
3870 * over us; possibly making our ring_buffer_put() the last.
3871 */
3872 mutex_lock(&event->mmap_mutex);
b69cf536 3873 ring_buffer_attach(event, NULL);
9bb5d40c 3874 mutex_unlock(&event->mmap_mutex);
a4be7c27
PZ
3875 }
3876
e5d1367f
SE
3877 if (is_cgroup_event(event))
3878 perf_detach_cgroup(event);
3879
a0733e69
PZ
3880 if (!event->parent) {
3881 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3882 put_callchain_buffers();
3883 }
3884
3885 perf_event_free_bpf_prog(event);
375637bc
AS
3886 perf_addr_filters_splice(event, NULL);
3887 kfree(event->addr_filters_offs);
a0733e69
PZ
3888
3889 if (event->destroy)
3890 event->destroy(event);
3891
3892 if (event->ctx)
3893 put_ctx(event->ctx);
3894
3895 if (event->pmu) {
3896 exclusive_event_destroy(event);
3897 module_put(event->pmu->module);
3898 }
3899
3900 call_rcu(&event->rcu_head, free_event_rcu);
f1600952
PZ
3901}
3902
683ede43
PZ
3903/*
3904 * Used to free events which have a known refcount of 1, such as in error paths
3905 * where the event isn't exposed yet and inherited events.
3906 */
3907static void free_event(struct perf_event *event)
0793a61d 3908{
683ede43
PZ
3909 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
3910 "unexpected event refcount: %ld; ptr=%p\n",
3911 atomic_long_read(&event->refcount), event)) {
3912 /* leak to avoid use-after-free */
3913 return;
3914 }
0793a61d 3915
683ede43 3916 _free_event(event);
0793a61d
TG
3917}
3918
a66a3052 3919/*
f8697762 3920 * Remove user event from the owner task.
a66a3052 3921 */
f8697762 3922static void perf_remove_from_owner(struct perf_event *event)
fb0459d7 3923{
8882135b 3924 struct task_struct *owner;
fb0459d7 3925
8882135b 3926 rcu_read_lock();
8882135b 3927 /*
f47c02c0
PZ
3928 * Matches the smp_store_release() in perf_event_exit_task(). If we
3929 * observe !owner it means the list deletion is complete and we can
3930 * indeed free this event, otherwise we need to serialize on
8882135b
PZ
3931 * owner->perf_event_mutex.
3932 */
f47c02c0 3933 owner = lockless_dereference(event->owner);
8882135b
PZ
3934 if (owner) {
3935 /*
3936 * Since delayed_put_task_struct() also drops the last
3937 * task reference we can safely take a new reference
3938 * while holding the rcu_read_lock().
3939 */
3940 get_task_struct(owner);
3941 }
3942 rcu_read_unlock();
3943
3944 if (owner) {
f63a8daa
PZ
3945 /*
3946 * If we're here through perf_event_exit_task() we're already
3947 * holding ctx->mutex which would be an inversion wrt. the
3948 * normal lock order.
3949 *
3950 * However we can safely take this lock because its the child
3951 * ctx->mutex.
3952 */
3953 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
3954
8882135b
PZ
3955 /*
3956 * We have to re-check the event->owner field, if it is cleared
3957 * we raced with perf_event_exit_task(), acquiring the mutex
3958 * ensured they're done, and we can proceed with freeing the
3959 * event.
3960 */
f47c02c0 3961 if (event->owner) {
8882135b 3962 list_del_init(&event->owner_entry);
f47c02c0
PZ
3963 smp_store_release(&event->owner, NULL);
3964 }
8882135b
PZ
3965 mutex_unlock(&owner->perf_event_mutex);
3966 put_task_struct(owner);
3967 }
f8697762
JO
3968}
3969
f8697762
JO
3970static void put_event(struct perf_event *event)
3971{
f8697762
JO
3972 if (!atomic_long_dec_and_test(&event->refcount))
3973 return;
3974
c6e5b732
PZ
3975 _free_event(event);
3976}
3977
3978/*
3979 * Kill an event dead; while event:refcount will preserve the event
3980 * object, it will not preserve its functionality. Once the last 'user'
3981 * gives up the object, we'll destroy the thing.
3982 */
3983int perf_event_release_kernel(struct perf_event *event)
3984{
a4f4bb6d 3985 struct perf_event_context *ctx = event->ctx;
c6e5b732
PZ
3986 struct perf_event *child, *tmp;
3987
a4f4bb6d
PZ
3988 /*
3989 * If we got here through err_file: fput(event_file); we will not have
3990 * attached to a context yet.
3991 */
3992 if (!ctx) {
3993 WARN_ON_ONCE(event->attach_state &
3994 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
3995 goto no_ctx;
3996 }
3997
f8697762
JO
3998 if (!is_kernel_event(event))
3999 perf_remove_from_owner(event);
8882135b 4000
5fa7c8ec 4001 ctx = perf_event_ctx_lock(event);
a83fe28e 4002 WARN_ON_ONCE(ctx->parent_ctx);
a69b0ca4 4003 perf_remove_from_context(event, DETACH_GROUP);
683ede43 4004
a69b0ca4 4005 raw_spin_lock_irq(&ctx->lock);
683ede43 4006 /*
a69b0ca4
PZ
4007 * Mark this even as STATE_DEAD, there is no external reference to it
4008 * anymore.
683ede43 4009 *
a69b0ca4
PZ
4010 * Anybody acquiring event->child_mutex after the below loop _must_
4011 * also see this, most importantly inherit_event() which will avoid
4012 * placing more children on the list.
683ede43 4013 *
c6e5b732
PZ
4014 * Thus this guarantees that we will in fact observe and kill _ALL_
4015 * child events.
683ede43 4016 */
a69b0ca4
PZ
4017 event->state = PERF_EVENT_STATE_DEAD;
4018 raw_spin_unlock_irq(&ctx->lock);
4019
4020 perf_event_ctx_unlock(event, ctx);
683ede43 4021
c6e5b732
PZ
4022again:
4023 mutex_lock(&event->child_mutex);
4024 list_for_each_entry(child, &event->child_list, child_list) {
a6fa941d 4025
c6e5b732
PZ
4026 /*
4027 * Cannot change, child events are not migrated, see the
4028 * comment with perf_event_ctx_lock_nested().
4029 */
4030 ctx = lockless_dereference(child->ctx);
4031 /*
4032 * Since child_mutex nests inside ctx::mutex, we must jump
4033 * through hoops. We start by grabbing a reference on the ctx.
4034 *
4035 * Since the event cannot get freed while we hold the
4036 * child_mutex, the context must also exist and have a !0
4037 * reference count.
4038 */
4039 get_ctx(ctx);
4040
4041 /*
4042 * Now that we have a ctx ref, we can drop child_mutex, and
4043 * acquire ctx::mutex without fear of it going away. Then we
4044 * can re-acquire child_mutex.
4045 */
4046 mutex_unlock(&event->child_mutex);
4047 mutex_lock(&ctx->mutex);
4048 mutex_lock(&event->child_mutex);
4049
4050 /*
4051 * Now that we hold ctx::mutex and child_mutex, revalidate our
4052 * state, if child is still the first entry, it didn't get freed
4053 * and we can continue doing so.
4054 */
4055 tmp = list_first_entry_or_null(&event->child_list,
4056 struct perf_event, child_list);
4057 if (tmp == child) {
4058 perf_remove_from_context(child, DETACH_GROUP);
4059 list_del(&child->child_list);
4060 free_event(child);
4061 /*
4062 * This matches the refcount bump in inherit_event();
4063 * this can't be the last reference.
4064 */
4065 put_event(event);
4066 }
4067
4068 mutex_unlock(&event->child_mutex);
4069 mutex_unlock(&ctx->mutex);
4070 put_ctx(ctx);
4071 goto again;
4072 }
4073 mutex_unlock(&event->child_mutex);
4074
a4f4bb6d
PZ
4075no_ctx:
4076 put_event(event); /* Must be the 'last' reference */
683ede43
PZ
4077 return 0;
4078}
4079EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4080
8b10c5e2
PZ
4081/*
4082 * Called when the last reference to the file is gone.
4083 */
a6fa941d
AV
4084static int perf_release(struct inode *inode, struct file *file)
4085{
c6e5b732 4086 perf_event_release_kernel(file->private_data);
a6fa941d 4087 return 0;
fb0459d7 4088}
fb0459d7 4089
59ed446f 4090u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
e53c0994 4091{
cdd6c482 4092 struct perf_event *child;
e53c0994
PZ
4093 u64 total = 0;
4094
59ed446f
PZ
4095 *enabled = 0;
4096 *running = 0;
4097
6f10581a 4098 mutex_lock(&event->child_mutex);
01add3ea 4099
7d88962e 4100 (void)perf_event_read(event, false);
01add3ea
SB
4101 total += perf_event_count(event);
4102
59ed446f
PZ
4103 *enabled += event->total_time_enabled +
4104 atomic64_read(&event->child_total_time_enabled);
4105 *running += event->total_time_running +
4106 atomic64_read(&event->child_total_time_running);
4107
4108 list_for_each_entry(child, &event->child_list, child_list) {
7d88962e 4109 (void)perf_event_read(child, false);
01add3ea 4110 total += perf_event_count(child);
59ed446f
PZ
4111 *enabled += child->total_time_enabled;
4112 *running += child->total_time_running;
4113 }
6f10581a 4114 mutex_unlock(&event->child_mutex);
e53c0994
PZ
4115
4116 return total;
4117}
fb0459d7 4118EXPORT_SYMBOL_GPL(perf_event_read_value);
e53c0994 4119
7d88962e 4120static int __perf_read_group_add(struct perf_event *leader,
fa8c2693 4121 u64 read_format, u64 *values)
3dab77fb 4122{
fa8c2693
PZ
4123 struct perf_event *sub;
4124 int n = 1; /* skip @nr */
7d88962e 4125 int ret;
f63a8daa 4126
7d88962e
SB
4127 ret = perf_event_read(leader, true);
4128 if (ret)
4129 return ret;
abf4868b 4130
fa8c2693
PZ
4131 /*
4132 * Since we co-schedule groups, {enabled,running} times of siblings
4133 * will be identical to those of the leader, so we only publish one
4134 * set.
4135 */
4136 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4137 values[n++] += leader->total_time_enabled +
4138 atomic64_read(&leader->child_total_time_enabled);
4139 }
3dab77fb 4140
fa8c2693
PZ
4141 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4142 values[n++] += leader->total_time_running +
4143 atomic64_read(&leader->child_total_time_running);
4144 }
4145
4146 /*
4147 * Write {count,id} tuples for every sibling.
4148 */
4149 values[n++] += perf_event_count(leader);
abf4868b
PZ
4150 if (read_format & PERF_FORMAT_ID)
4151 values[n++] = primary_event_id(leader);
3dab77fb 4152
fa8c2693
PZ
4153 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4154 values[n++] += perf_event_count(sub);
4155 if (read_format & PERF_FORMAT_ID)
4156 values[n++] = primary_event_id(sub);
4157 }
7d88962e
SB
4158
4159 return 0;
fa8c2693 4160}
3dab77fb 4161
fa8c2693
PZ
4162static int perf_read_group(struct perf_event *event,
4163 u64 read_format, char __user *buf)
4164{
4165 struct perf_event *leader = event->group_leader, *child;
4166 struct perf_event_context *ctx = leader->ctx;
7d88962e 4167 int ret;
fa8c2693 4168 u64 *values;
3dab77fb 4169
fa8c2693 4170 lockdep_assert_held(&ctx->mutex);
3dab77fb 4171
fa8c2693
PZ
4172 values = kzalloc(event->read_size, GFP_KERNEL);
4173 if (!values)
4174 return -ENOMEM;
3dab77fb 4175
fa8c2693
PZ
4176 values[0] = 1 + leader->nr_siblings;
4177
4178 /*
4179 * By locking the child_mutex of the leader we effectively
4180 * lock the child list of all siblings.. XXX explain how.
4181 */
4182 mutex_lock(&leader->child_mutex);
abf4868b 4183
7d88962e
SB
4184 ret = __perf_read_group_add(leader, read_format, values);
4185 if (ret)
4186 goto unlock;
4187
4188 list_for_each_entry(child, &leader->child_list, child_list) {
4189 ret = __perf_read_group_add(child, read_format, values);
4190 if (ret)
4191 goto unlock;
4192 }
abf4868b 4193
fa8c2693 4194 mutex_unlock(&leader->child_mutex);
abf4868b 4195
7d88962e 4196 ret = event->read_size;
fa8c2693
PZ
4197 if (copy_to_user(buf, values, event->read_size))
4198 ret = -EFAULT;
7d88962e 4199 goto out;
fa8c2693 4200
7d88962e
SB
4201unlock:
4202 mutex_unlock(&leader->child_mutex);
4203out:
fa8c2693 4204 kfree(values);
abf4868b 4205 return ret;
3dab77fb
PZ
4206}
4207
b15f495b 4208static int perf_read_one(struct perf_event *event,
3dab77fb
PZ
4209 u64 read_format, char __user *buf)
4210{
59ed446f 4211 u64 enabled, running;
3dab77fb
PZ
4212 u64 values[4];
4213 int n = 0;
4214
59ed446f
PZ
4215 values[n++] = perf_event_read_value(event, &enabled, &running);
4216 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4217 values[n++] = enabled;
4218 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4219 values[n++] = running;
3dab77fb 4220 if (read_format & PERF_FORMAT_ID)
cdd6c482 4221 values[n++] = primary_event_id(event);
3dab77fb
PZ
4222
4223 if (copy_to_user(buf, values, n * sizeof(u64)))
4224 return -EFAULT;
4225
4226 return n * sizeof(u64);
4227}
4228
dc633982
JO
4229static bool is_event_hup(struct perf_event *event)
4230{
4231 bool no_children;
4232
a69b0ca4 4233 if (event->state > PERF_EVENT_STATE_EXIT)
dc633982
JO
4234 return false;
4235
4236 mutex_lock(&event->child_mutex);
4237 no_children = list_empty(&event->child_list);
4238 mutex_unlock(&event->child_mutex);
4239 return no_children;
4240}
4241
0793a61d 4242/*
cdd6c482 4243 * Read the performance event - simple non blocking version for now
0793a61d
TG
4244 */
4245static ssize_t
b15f495b 4246__perf_read(struct perf_event *event, char __user *buf, size_t count)
0793a61d 4247{
cdd6c482 4248 u64 read_format = event->attr.read_format;
3dab77fb 4249 int ret;
0793a61d 4250
3b6f9e5c 4251 /*
cdd6c482 4252 * Return end-of-file for a read on a event that is in
3b6f9e5c
PM
4253 * error state (i.e. because it was pinned but it couldn't be
4254 * scheduled on to the CPU at some point).
4255 */
cdd6c482 4256 if (event->state == PERF_EVENT_STATE_ERROR)
3b6f9e5c
PM
4257 return 0;
4258
c320c7b7 4259 if (count < event->read_size)
3dab77fb
PZ
4260 return -ENOSPC;
4261
cdd6c482 4262 WARN_ON_ONCE(event->ctx->parent_ctx);
3dab77fb 4263 if (read_format & PERF_FORMAT_GROUP)
b15f495b 4264 ret = perf_read_group(event, read_format, buf);
3dab77fb 4265 else
b15f495b 4266 ret = perf_read_one(event, read_format, buf);
0793a61d 4267
3dab77fb 4268 return ret;
0793a61d
TG
4269}
4270
0793a61d
TG
4271static ssize_t
4272perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4273{
cdd6c482 4274 struct perf_event *event = file->private_data;
f63a8daa
PZ
4275 struct perf_event_context *ctx;
4276 int ret;
0793a61d 4277
f63a8daa 4278 ctx = perf_event_ctx_lock(event);
b15f495b 4279 ret = __perf_read(event, buf, count);
f63a8daa
PZ
4280 perf_event_ctx_unlock(event, ctx);
4281
4282 return ret;
0793a61d
TG
4283}
4284
4285static unsigned int perf_poll(struct file *file, poll_table *wait)
4286{
cdd6c482 4287 struct perf_event *event = file->private_data;
76369139 4288 struct ring_buffer *rb;
61b67684 4289 unsigned int events = POLLHUP;
c7138f37 4290
e708d7ad 4291 poll_wait(file, &event->waitq, wait);
179033b3 4292
dc633982 4293 if (is_event_hup(event))
179033b3 4294 return events;
c7138f37 4295
10c6db11 4296 /*
9bb5d40c
PZ
4297 * Pin the event->rb by taking event->mmap_mutex; otherwise
4298 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
10c6db11
PZ
4299 */
4300 mutex_lock(&event->mmap_mutex);
9bb5d40c
PZ
4301 rb = event->rb;
4302 if (rb)
76369139 4303 events = atomic_xchg(&rb->poll, 0);
10c6db11 4304 mutex_unlock(&event->mmap_mutex);
0793a61d
TG
4305 return events;
4306}
4307
f63a8daa 4308static void _perf_event_reset(struct perf_event *event)
6de6a7b9 4309{
7d88962e 4310 (void)perf_event_read(event, false);
e7850595 4311 local64_set(&event->count, 0);
cdd6c482 4312 perf_event_update_userpage(event);
3df5edad
PZ
4313}
4314
c93f7669 4315/*
cdd6c482
IM
4316 * Holding the top-level event's child_mutex means that any
4317 * descendant process that has inherited this event will block
8ba289b8 4318 * in perf_event_exit_event() if it goes to exit, thus satisfying the
cdd6c482 4319 * task existence requirements of perf_event_enable/disable.
c93f7669 4320 */
cdd6c482
IM
4321static void perf_event_for_each_child(struct perf_event *event,
4322 void (*func)(struct perf_event *))
3df5edad 4323{
cdd6c482 4324 struct perf_event *child;
3df5edad 4325
cdd6c482 4326 WARN_ON_ONCE(event->ctx->parent_ctx);
f63a8daa 4327
cdd6c482
IM
4328 mutex_lock(&event->child_mutex);
4329 func(event);
4330 list_for_each_entry(child, &event->child_list, child_list)
3df5edad 4331 func(child);
cdd6c482 4332 mutex_unlock(&event->child_mutex);
3df5edad
PZ
4333}
4334
cdd6c482
IM
4335static void perf_event_for_each(struct perf_event *event,
4336 void (*func)(struct perf_event *))
3df5edad 4337{
cdd6c482
IM
4338 struct perf_event_context *ctx = event->ctx;
4339 struct perf_event *sibling;
3df5edad 4340
f63a8daa
PZ
4341 lockdep_assert_held(&ctx->mutex);
4342
cdd6c482 4343 event = event->group_leader;
75f937f2 4344
cdd6c482 4345 perf_event_for_each_child(event, func);
cdd6c482 4346 list_for_each_entry(sibling, &event->sibling_list, group_entry)
724b6daa 4347 perf_event_for_each_child(sibling, func);
6de6a7b9
PZ
4348}
4349
fae3fde6
PZ
4350static void __perf_event_period(struct perf_event *event,
4351 struct perf_cpu_context *cpuctx,
4352 struct perf_event_context *ctx,
4353 void *info)
c7999c6f 4354{
fae3fde6 4355 u64 value = *((u64 *)info);
c7999c6f 4356 bool active;
08247e31 4357
cdd6c482 4358 if (event->attr.freq) {
cdd6c482 4359 event->attr.sample_freq = value;
08247e31 4360 } else {
cdd6c482
IM
4361 event->attr.sample_period = value;
4362 event->hw.sample_period = value;
08247e31 4363 }
bad7192b
PZ
4364
4365 active = (event->state == PERF_EVENT_STATE_ACTIVE);
4366 if (active) {
4367 perf_pmu_disable(ctx->pmu);
1e02cd40
PZ
4368 /*
4369 * We could be throttled; unthrottle now to avoid the tick
4370 * trying to unthrottle while we already re-started the event.
4371 */
4372 if (event->hw.interrupts == MAX_INTERRUPTS) {
4373 event->hw.interrupts = 0;
4374 perf_log_throttle(event, 1);
4375 }
bad7192b
PZ
4376 event->pmu->stop(event, PERF_EF_UPDATE);
4377 }
4378
4379 local64_set(&event->hw.period_left, 0);
4380
4381 if (active) {
4382 event->pmu->start(event, PERF_EF_RELOAD);
4383 perf_pmu_enable(ctx->pmu);
4384 }
c7999c6f
PZ
4385}
4386
4387static int perf_event_period(struct perf_event *event, u64 __user *arg)
4388{
c7999c6f
PZ
4389 u64 value;
4390
4391 if (!is_sampling_event(event))
4392 return -EINVAL;
4393
4394 if (copy_from_user(&value, arg, sizeof(value)))
4395 return -EFAULT;
4396
4397 if (!value)
4398 return -EINVAL;
4399
4400 if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4401 return -EINVAL;
4402
fae3fde6 4403 event_function_call(event, __perf_event_period, &value);
08247e31 4404
c7999c6f 4405 return 0;
08247e31
PZ
4406}
4407
ac9721f3
PZ
4408static const struct file_operations perf_fops;
4409
2903ff01 4410static inline int perf_fget_light(int fd, struct fd *p)
ac9721f3 4411{
2903ff01
AV
4412 struct fd f = fdget(fd);
4413 if (!f.file)
4414 return -EBADF;
ac9721f3 4415
2903ff01
AV
4416 if (f.file->f_op != &perf_fops) {
4417 fdput(f);
4418 return -EBADF;
ac9721f3 4419 }
2903ff01
AV
4420 *p = f;
4421 return 0;
ac9721f3
PZ
4422}
4423
4424static int perf_event_set_output(struct perf_event *event,
4425 struct perf_event *output_event);
6fb2915d 4426static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2541517c 4427static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
a4be7c27 4428
f63a8daa 4429static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
d859e29f 4430{
cdd6c482 4431 void (*func)(struct perf_event *);
3df5edad 4432 u32 flags = arg;
d859e29f
PM
4433
4434 switch (cmd) {
cdd6c482 4435 case PERF_EVENT_IOC_ENABLE:
f63a8daa 4436 func = _perf_event_enable;
d859e29f 4437 break;
cdd6c482 4438 case PERF_EVENT_IOC_DISABLE:
f63a8daa 4439 func = _perf_event_disable;
79f14641 4440 break;
cdd6c482 4441 case PERF_EVENT_IOC_RESET:
f63a8daa 4442 func = _perf_event_reset;
6de6a7b9 4443 break;
3df5edad 4444
cdd6c482 4445 case PERF_EVENT_IOC_REFRESH:
f63a8daa 4446 return _perf_event_refresh(event, arg);
08247e31 4447
cdd6c482
IM
4448 case PERF_EVENT_IOC_PERIOD:
4449 return perf_event_period(event, (u64 __user *)arg);
08247e31 4450
cf4957f1
JO
4451 case PERF_EVENT_IOC_ID:
4452 {
4453 u64 id = primary_event_id(event);
4454
4455 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4456 return -EFAULT;
4457 return 0;
4458 }
4459
cdd6c482 4460 case PERF_EVENT_IOC_SET_OUTPUT:
ac9721f3 4461 {
ac9721f3 4462 int ret;
ac9721f3 4463 if (arg != -1) {
2903ff01
AV
4464 struct perf_event *output_event;
4465 struct fd output;
4466 ret = perf_fget_light(arg, &output);
4467 if (ret)
4468 return ret;
4469 output_event = output.file->private_data;
4470 ret = perf_event_set_output(event, output_event);
4471 fdput(output);
4472 } else {
4473 ret = perf_event_set_output(event, NULL);
ac9721f3 4474 }
ac9721f3
PZ
4475 return ret;
4476 }
a4be7c27 4477
6fb2915d
LZ
4478 case PERF_EVENT_IOC_SET_FILTER:
4479 return perf_event_set_filter(event, (void __user *)arg);
4480
2541517c
AS
4481 case PERF_EVENT_IOC_SET_BPF:
4482 return perf_event_set_bpf_prog(event, arg);
4483
86e7972f
WN
4484 case PERF_EVENT_IOC_PAUSE_OUTPUT: {
4485 struct ring_buffer *rb;
4486
4487 rcu_read_lock();
4488 rb = rcu_dereference(event->rb);
4489 if (!rb || !rb->nr_pages) {
4490 rcu_read_unlock();
4491 return -EINVAL;
4492 }
4493 rb_toggle_paused(rb, !!arg);
4494 rcu_read_unlock();
4495 return 0;
4496 }
d859e29f 4497 default:
3df5edad 4498 return -ENOTTY;
d859e29f 4499 }
3df5edad
PZ
4500
4501 if (flags & PERF_IOC_FLAG_GROUP)
cdd6c482 4502 perf_event_for_each(event, func);
3df5edad 4503 else
cdd6c482 4504 perf_event_for_each_child(event, func);
3df5edad
PZ
4505
4506 return 0;
d859e29f
PM
4507}
4508
f63a8daa
PZ
4509static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4510{
4511 struct perf_event *event = file->private_data;
4512 struct perf_event_context *ctx;
4513 long ret;
4514
4515 ctx = perf_event_ctx_lock(event);
4516 ret = _perf_ioctl(event, cmd, arg);
4517 perf_event_ctx_unlock(event, ctx);
4518
4519 return ret;
4520}
4521
b3f20785
PM
4522#ifdef CONFIG_COMPAT
4523static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4524 unsigned long arg)
4525{
4526 switch (_IOC_NR(cmd)) {
4527 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4528 case _IOC_NR(PERF_EVENT_IOC_ID):
4529 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4530 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4531 cmd &= ~IOCSIZE_MASK;
4532 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4533 }
4534 break;
4535 }
4536 return perf_ioctl(file, cmd, arg);
4537}
4538#else
4539# define perf_compat_ioctl NULL
4540#endif
4541
cdd6c482 4542int perf_event_task_enable(void)
771d7cde 4543{
f63a8daa 4544 struct perf_event_context *ctx;
cdd6c482 4545 struct perf_event *event;
771d7cde 4546
cdd6c482 4547 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
4548 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4549 ctx = perf_event_ctx_lock(event);
4550 perf_event_for_each_child(event, _perf_event_enable);
4551 perf_event_ctx_unlock(event, ctx);
4552 }
cdd6c482 4553 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
4554
4555 return 0;
4556}
4557
cdd6c482 4558int perf_event_task_disable(void)
771d7cde 4559{
f63a8daa 4560 struct perf_event_context *ctx;
cdd6c482 4561 struct perf_event *event;
771d7cde 4562
cdd6c482 4563 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
4564 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4565 ctx = perf_event_ctx_lock(event);
4566 perf_event_for_each_child(event, _perf_event_disable);
4567 perf_event_ctx_unlock(event, ctx);
4568 }
cdd6c482 4569 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
4570
4571 return 0;
4572}
4573
cdd6c482 4574static int perf_event_index(struct perf_event *event)
194002b2 4575{
a4eaf7f1
PZ
4576 if (event->hw.state & PERF_HES_STOPPED)
4577 return 0;
4578
cdd6c482 4579 if (event->state != PERF_EVENT_STATE_ACTIVE)
194002b2
PZ
4580 return 0;
4581
35edc2a5 4582 return event->pmu->event_idx(event);
194002b2
PZ
4583}
4584
c4794295 4585static void calc_timer_values(struct perf_event *event,
e3f3541c 4586 u64 *now,
7f310a5d
EM
4587 u64 *enabled,
4588 u64 *running)
c4794295 4589{
e3f3541c 4590 u64 ctx_time;
c4794295 4591
e3f3541c
PZ
4592 *now = perf_clock();
4593 ctx_time = event->shadow_ctx_time + *now;
c4794295
EM
4594 *enabled = ctx_time - event->tstamp_enabled;
4595 *running = ctx_time - event->tstamp_running;
4596}
4597
fa731587
PZ
4598static void perf_event_init_userpage(struct perf_event *event)
4599{
4600 struct perf_event_mmap_page *userpg;
4601 struct ring_buffer *rb;
4602
4603 rcu_read_lock();
4604 rb = rcu_dereference(event->rb);
4605 if (!rb)
4606 goto unlock;
4607
4608 userpg = rb->user_page;
4609
4610 /* Allow new userspace to detect that bit 0 is deprecated */
4611 userpg->cap_bit0_is_deprecated = 1;
4612 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
e8c6deac
AS
4613 userpg->data_offset = PAGE_SIZE;
4614 userpg->data_size = perf_data_size(rb);
fa731587
PZ
4615
4616unlock:
4617 rcu_read_unlock();
4618}
4619
c1317ec2
AL
4620void __weak arch_perf_update_userpage(
4621 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
e3f3541c
PZ
4622{
4623}
4624
38ff667b
PZ
4625/*
4626 * Callers need to ensure there can be no nesting of this function, otherwise
4627 * the seqlock logic goes bad. We can not serialize this because the arch
4628 * code calls this from NMI context.
4629 */
cdd6c482 4630void perf_event_update_userpage(struct perf_event *event)
37d81828 4631{
cdd6c482 4632 struct perf_event_mmap_page *userpg;
76369139 4633 struct ring_buffer *rb;
e3f3541c 4634 u64 enabled, running, now;
38ff667b
PZ
4635
4636 rcu_read_lock();
5ec4c599
PZ
4637 rb = rcu_dereference(event->rb);
4638 if (!rb)
4639 goto unlock;
4640
0d641208
EM
4641 /*
4642 * compute total_time_enabled, total_time_running
4643 * based on snapshot values taken when the event
4644 * was last scheduled in.
4645 *
4646 * we cannot simply called update_context_time()
4647 * because of locking issue as we can be called in
4648 * NMI context
4649 */
e3f3541c 4650 calc_timer_values(event, &now, &enabled, &running);
38ff667b 4651
76369139 4652 userpg = rb->user_page;
7b732a75
PZ
4653 /*
4654 * Disable preemption so as to not let the corresponding user-space
4655 * spin too long if we get preempted.
4656 */
4657 preempt_disable();
37d81828 4658 ++userpg->lock;
92f22a38 4659 barrier();
cdd6c482 4660 userpg->index = perf_event_index(event);
b5e58793 4661 userpg->offset = perf_event_count(event);
365a4038 4662 if (userpg->index)
e7850595 4663 userpg->offset -= local64_read(&event->hw.prev_count);
7b732a75 4664
0d641208 4665 userpg->time_enabled = enabled +
cdd6c482 4666 atomic64_read(&event->child_total_time_enabled);
7f8b4e4e 4667
0d641208 4668 userpg->time_running = running +
cdd6c482 4669 atomic64_read(&event->child_total_time_running);
7f8b4e4e 4670
c1317ec2 4671 arch_perf_update_userpage(event, userpg, now);
e3f3541c 4672
92f22a38 4673 barrier();
37d81828 4674 ++userpg->lock;
7b732a75 4675 preempt_enable();
38ff667b 4676unlock:
7b732a75 4677 rcu_read_unlock();
37d81828
PM
4678}
4679
906010b2
PZ
4680static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
4681{
4682 struct perf_event *event = vma->vm_file->private_data;
76369139 4683 struct ring_buffer *rb;
906010b2
PZ
4684 int ret = VM_FAULT_SIGBUS;
4685
4686 if (vmf->flags & FAULT_FLAG_MKWRITE) {
4687 if (vmf->pgoff == 0)
4688 ret = 0;
4689 return ret;
4690 }
4691
4692 rcu_read_lock();
76369139
FW
4693 rb = rcu_dereference(event->rb);
4694 if (!rb)
906010b2
PZ
4695 goto unlock;
4696
4697 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4698 goto unlock;
4699
76369139 4700 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
906010b2
PZ
4701 if (!vmf->page)
4702 goto unlock;
4703
4704 get_page(vmf->page);
4705 vmf->page->mapping = vma->vm_file->f_mapping;
4706 vmf->page->index = vmf->pgoff;
4707
4708 ret = 0;
4709unlock:
4710 rcu_read_unlock();
4711
4712 return ret;
4713}
4714
10c6db11
PZ
4715static void ring_buffer_attach(struct perf_event *event,
4716 struct ring_buffer *rb)
4717{
b69cf536 4718 struct ring_buffer *old_rb = NULL;
10c6db11
PZ
4719 unsigned long flags;
4720
b69cf536
PZ
4721 if (event->rb) {
4722 /*
4723 * Should be impossible, we set this when removing
4724 * event->rb_entry and wait/clear when adding event->rb_entry.
4725 */
4726 WARN_ON_ONCE(event->rcu_pending);
10c6db11 4727
b69cf536 4728 old_rb = event->rb;
b69cf536
PZ
4729 spin_lock_irqsave(&old_rb->event_lock, flags);
4730 list_del_rcu(&event->rb_entry);
4731 spin_unlock_irqrestore(&old_rb->event_lock, flags);
10c6db11 4732
2f993cf0
ON
4733 event->rcu_batches = get_state_synchronize_rcu();
4734 event->rcu_pending = 1;
b69cf536 4735 }
10c6db11 4736
b69cf536 4737 if (rb) {
2f993cf0
ON
4738 if (event->rcu_pending) {
4739 cond_synchronize_rcu(event->rcu_batches);
4740 event->rcu_pending = 0;
4741 }
4742
b69cf536
PZ
4743 spin_lock_irqsave(&rb->event_lock, flags);
4744 list_add_rcu(&event->rb_entry, &rb->event_list);
4745 spin_unlock_irqrestore(&rb->event_lock, flags);
4746 }
4747
4748 rcu_assign_pointer(event->rb, rb);
4749
4750 if (old_rb) {
4751 ring_buffer_put(old_rb);
4752 /*
4753 * Since we detached before setting the new rb, so that we
4754 * could attach the new rb, we could have missed a wakeup.
4755 * Provide it now.
4756 */
4757 wake_up_all(&event->waitq);
4758 }
10c6db11
PZ
4759}
4760
4761static void ring_buffer_wakeup(struct perf_event *event)
4762{
4763 struct ring_buffer *rb;
4764
4765 rcu_read_lock();
4766 rb = rcu_dereference(event->rb);
9bb5d40c
PZ
4767 if (rb) {
4768 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
4769 wake_up_all(&event->waitq);
4770 }
10c6db11
PZ
4771 rcu_read_unlock();
4772}
4773
fdc26706 4774struct ring_buffer *ring_buffer_get(struct perf_event *event)
7b732a75 4775{
76369139 4776 struct ring_buffer *rb;
7b732a75 4777
ac9721f3 4778 rcu_read_lock();
76369139
FW
4779 rb = rcu_dereference(event->rb);
4780 if (rb) {
4781 if (!atomic_inc_not_zero(&rb->refcount))
4782 rb = NULL;
ac9721f3
PZ
4783 }
4784 rcu_read_unlock();
4785
76369139 4786 return rb;
ac9721f3
PZ
4787}
4788
fdc26706 4789void ring_buffer_put(struct ring_buffer *rb)
ac9721f3 4790{
76369139 4791 if (!atomic_dec_and_test(&rb->refcount))
ac9721f3 4792 return;
7b732a75 4793
9bb5d40c 4794 WARN_ON_ONCE(!list_empty(&rb->event_list));
10c6db11 4795
76369139 4796 call_rcu(&rb->rcu_head, rb_free_rcu);
7b732a75
PZ
4797}
4798
4799static void perf_mmap_open(struct vm_area_struct *vma)
4800{
cdd6c482 4801 struct perf_event *event = vma->vm_file->private_data;
7b732a75 4802
cdd6c482 4803 atomic_inc(&event->mmap_count);
9bb5d40c 4804 atomic_inc(&event->rb->mmap_count);
1e0fb9ec 4805
45bfb2e5
PZ
4806 if (vma->vm_pgoff)
4807 atomic_inc(&event->rb->aux_mmap_count);
4808
1e0fb9ec
AL
4809 if (event->pmu->event_mapped)
4810 event->pmu->event_mapped(event);
7b732a75
PZ
4811}
4812
95ff4ca2
AS
4813static void perf_pmu_output_stop(struct perf_event *event);
4814
9bb5d40c
PZ
4815/*
4816 * A buffer can be mmap()ed multiple times; either directly through the same
4817 * event, or through other events by use of perf_event_set_output().
4818 *
4819 * In order to undo the VM accounting done by perf_mmap() we need to destroy
4820 * the buffer here, where we still have a VM context. This means we need
4821 * to detach all events redirecting to us.
4822 */
7b732a75
PZ
4823static void perf_mmap_close(struct vm_area_struct *vma)
4824{
cdd6c482 4825 struct perf_event *event = vma->vm_file->private_data;
7b732a75 4826
b69cf536 4827 struct ring_buffer *rb = ring_buffer_get(event);
9bb5d40c
PZ
4828 struct user_struct *mmap_user = rb->mmap_user;
4829 int mmap_locked = rb->mmap_locked;
4830 unsigned long size = perf_data_size(rb);
789f90fc 4831
1e0fb9ec
AL
4832 if (event->pmu->event_unmapped)
4833 event->pmu->event_unmapped(event);
4834
45bfb2e5
PZ
4835 /*
4836 * rb->aux_mmap_count will always drop before rb->mmap_count and
4837 * event->mmap_count, so it is ok to use event->mmap_mutex to
4838 * serialize with perf_mmap here.
4839 */
4840 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
4841 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
95ff4ca2
AS
4842 /*
4843 * Stop all AUX events that are writing to this buffer,
4844 * so that we can free its AUX pages and corresponding PMU
4845 * data. Note that after rb::aux_mmap_count dropped to zero,
4846 * they won't start any more (see perf_aux_output_begin()).
4847 */
4848 perf_pmu_output_stop(event);
4849
4850 /* now it's safe to free the pages */
45bfb2e5
PZ
4851 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
4852 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
4853
95ff4ca2 4854 /* this has to be the last one */
45bfb2e5 4855 rb_free_aux(rb);
95ff4ca2
AS
4856 WARN_ON_ONCE(atomic_read(&rb->aux_refcount));
4857
45bfb2e5
PZ
4858 mutex_unlock(&event->mmap_mutex);
4859 }
4860
9bb5d40c
PZ
4861 atomic_dec(&rb->mmap_count);
4862
4863 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
b69cf536 4864 goto out_put;
9bb5d40c 4865
b69cf536 4866 ring_buffer_attach(event, NULL);
9bb5d40c
PZ
4867 mutex_unlock(&event->mmap_mutex);
4868
4869 /* If there's still other mmap()s of this buffer, we're done. */
b69cf536
PZ
4870 if (atomic_read(&rb->mmap_count))
4871 goto out_put;
ac9721f3 4872
9bb5d40c
PZ
4873 /*
4874 * No other mmap()s, detach from all other events that might redirect
4875 * into the now unreachable buffer. Somewhat complicated by the
4876 * fact that rb::event_lock otherwise nests inside mmap_mutex.
4877 */
4878again:
4879 rcu_read_lock();
4880 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
4881 if (!atomic_long_inc_not_zero(&event->refcount)) {
4882 /*
4883 * This event is en-route to free_event() which will
4884 * detach it and remove it from the list.
4885 */
4886 continue;
4887 }
4888 rcu_read_unlock();
789f90fc 4889
9bb5d40c
PZ
4890 mutex_lock(&event->mmap_mutex);
4891 /*
4892 * Check we didn't race with perf_event_set_output() which can
4893 * swizzle the rb from under us while we were waiting to
4894 * acquire mmap_mutex.
4895 *
4896 * If we find a different rb; ignore this event, a next
4897 * iteration will no longer find it on the list. We have to
4898 * still restart the iteration to make sure we're not now
4899 * iterating the wrong list.
4900 */
b69cf536
PZ
4901 if (event->rb == rb)
4902 ring_buffer_attach(event, NULL);
4903
cdd6c482 4904 mutex_unlock(&event->mmap_mutex);
9bb5d40c 4905 put_event(event);
ac9721f3 4906
9bb5d40c
PZ
4907 /*
4908 * Restart the iteration; either we're on the wrong list or
4909 * destroyed its integrity by doing a deletion.
4910 */
4911 goto again;
7b732a75 4912 }
9bb5d40c
PZ
4913 rcu_read_unlock();
4914
4915 /*
4916 * It could be there's still a few 0-ref events on the list; they'll
4917 * get cleaned up by free_event() -- they'll also still have their
4918 * ref on the rb and will free it whenever they are done with it.
4919 *
4920 * Aside from that, this buffer is 'fully' detached and unmapped,
4921 * undo the VM accounting.
4922 */
4923
4924 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
4925 vma->vm_mm->pinned_vm -= mmap_locked;
4926 free_uid(mmap_user);
4927
b69cf536 4928out_put:
9bb5d40c 4929 ring_buffer_put(rb); /* could be last */
37d81828
PM
4930}
4931
f0f37e2f 4932static const struct vm_operations_struct perf_mmap_vmops = {
43a21ea8 4933 .open = perf_mmap_open,
45bfb2e5 4934 .close = perf_mmap_close, /* non mergable */
43a21ea8
PZ
4935 .fault = perf_mmap_fault,
4936 .page_mkwrite = perf_mmap_fault,
37d81828
PM
4937};
4938
4939static int perf_mmap(struct file *file, struct vm_area_struct *vma)
4940{
cdd6c482 4941 struct perf_event *event = file->private_data;
22a4f650 4942 unsigned long user_locked, user_lock_limit;
789f90fc 4943 struct user_struct *user = current_user();
22a4f650 4944 unsigned long locked, lock_limit;
45bfb2e5 4945 struct ring_buffer *rb = NULL;
7b732a75
PZ
4946 unsigned long vma_size;
4947 unsigned long nr_pages;
45bfb2e5 4948 long user_extra = 0, extra = 0;
d57e34fd 4949 int ret = 0, flags = 0;
37d81828 4950
c7920614
PZ
4951 /*
4952 * Don't allow mmap() of inherited per-task counters. This would
4953 * create a performance issue due to all children writing to the
76369139 4954 * same rb.
c7920614
PZ
4955 */
4956 if (event->cpu == -1 && event->attr.inherit)
4957 return -EINVAL;
4958
43a21ea8 4959 if (!(vma->vm_flags & VM_SHARED))
37d81828 4960 return -EINVAL;
7b732a75
PZ
4961
4962 vma_size = vma->vm_end - vma->vm_start;
45bfb2e5
PZ
4963
4964 if (vma->vm_pgoff == 0) {
4965 nr_pages = (vma_size / PAGE_SIZE) - 1;
4966 } else {
4967 /*
4968 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
4969 * mapped, all subsequent mappings should have the same size
4970 * and offset. Must be above the normal perf buffer.
4971 */
4972 u64 aux_offset, aux_size;
4973
4974 if (!event->rb)
4975 return -EINVAL;
4976
4977 nr_pages = vma_size / PAGE_SIZE;
4978
4979 mutex_lock(&event->mmap_mutex);
4980 ret = -EINVAL;
4981
4982 rb = event->rb;
4983 if (!rb)
4984 goto aux_unlock;
4985
4986 aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
4987 aux_size = ACCESS_ONCE(rb->user_page->aux_size);
4988
4989 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
4990 goto aux_unlock;
4991
4992 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
4993 goto aux_unlock;
4994
4995 /* already mapped with a different offset */
4996 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
4997 goto aux_unlock;
4998
4999 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5000 goto aux_unlock;
5001
5002 /* already mapped with a different size */
5003 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5004 goto aux_unlock;
5005
5006 if (!is_power_of_2(nr_pages))
5007 goto aux_unlock;
5008
5009 if (!atomic_inc_not_zero(&rb->mmap_count))
5010 goto aux_unlock;
5011
5012 if (rb_has_aux(rb)) {
5013 atomic_inc(&rb->aux_mmap_count);
5014 ret = 0;
5015 goto unlock;
5016 }
5017
5018 atomic_set(&rb->aux_mmap_count, 1);
5019 user_extra = nr_pages;
5020
5021 goto accounting;
5022 }
7b732a75 5023
7730d865 5024 /*
76369139 5025 * If we have rb pages ensure they're a power-of-two number, so we
7730d865
PZ
5026 * can do bitmasks instead of modulo.
5027 */
2ed11312 5028 if (nr_pages != 0 && !is_power_of_2(nr_pages))
37d81828
PM
5029 return -EINVAL;
5030
7b732a75 5031 if (vma_size != PAGE_SIZE * (1 + nr_pages))
37d81828
PM
5032 return -EINVAL;
5033
cdd6c482 5034 WARN_ON_ONCE(event->ctx->parent_ctx);
9bb5d40c 5035again:
cdd6c482 5036 mutex_lock(&event->mmap_mutex);
76369139 5037 if (event->rb) {
9bb5d40c 5038 if (event->rb->nr_pages != nr_pages) {
ebb3c4c4 5039 ret = -EINVAL;
9bb5d40c
PZ
5040 goto unlock;
5041 }
5042
5043 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5044 /*
5045 * Raced against perf_mmap_close() through
5046 * perf_event_set_output(). Try again, hope for better
5047 * luck.
5048 */
5049 mutex_unlock(&event->mmap_mutex);
5050 goto again;
5051 }
5052
ebb3c4c4
PZ
5053 goto unlock;
5054 }
5055
789f90fc 5056 user_extra = nr_pages + 1;
45bfb2e5
PZ
5057
5058accounting:
cdd6c482 5059 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
a3862d3f
IM
5060
5061 /*
5062 * Increase the limit linearly with more CPUs:
5063 */
5064 user_lock_limit *= num_online_cpus();
5065
789f90fc 5066 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
c5078f78 5067
789f90fc
PZ
5068 if (user_locked > user_lock_limit)
5069 extra = user_locked - user_lock_limit;
7b732a75 5070
78d7d407 5071 lock_limit = rlimit(RLIMIT_MEMLOCK);
7b732a75 5072 lock_limit >>= PAGE_SHIFT;
bc3e53f6 5073 locked = vma->vm_mm->pinned_vm + extra;
7b732a75 5074
459ec28a
IM
5075 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5076 !capable(CAP_IPC_LOCK)) {
ebb3c4c4
PZ
5077 ret = -EPERM;
5078 goto unlock;
5079 }
7b732a75 5080
45bfb2e5 5081 WARN_ON(!rb && event->rb);
906010b2 5082
d57e34fd 5083 if (vma->vm_flags & VM_WRITE)
76369139 5084 flags |= RING_BUFFER_WRITABLE;
d57e34fd 5085
76369139 5086 if (!rb) {
45bfb2e5
PZ
5087 rb = rb_alloc(nr_pages,
5088 event->attr.watermark ? event->attr.wakeup_watermark : 0,
5089 event->cpu, flags);
26cb63ad 5090
45bfb2e5
PZ
5091 if (!rb) {
5092 ret = -ENOMEM;
5093 goto unlock;
5094 }
43a21ea8 5095
45bfb2e5
PZ
5096 atomic_set(&rb->mmap_count, 1);
5097 rb->mmap_user = get_current_user();
5098 rb->mmap_locked = extra;
26cb63ad 5099
45bfb2e5 5100 ring_buffer_attach(event, rb);
ac9721f3 5101
45bfb2e5
PZ
5102 perf_event_init_userpage(event);
5103 perf_event_update_userpage(event);
5104 } else {
1a594131
AS
5105 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5106 event->attr.aux_watermark, flags);
45bfb2e5
PZ
5107 if (!ret)
5108 rb->aux_mmap_locked = extra;
5109 }
9a0f05cb 5110
ebb3c4c4 5111unlock:
45bfb2e5
PZ
5112 if (!ret) {
5113 atomic_long_add(user_extra, &user->locked_vm);
5114 vma->vm_mm->pinned_vm += extra;
5115
ac9721f3 5116 atomic_inc(&event->mmap_count);
45bfb2e5
PZ
5117 } else if (rb) {
5118 atomic_dec(&rb->mmap_count);
5119 }
5120aux_unlock:
cdd6c482 5121 mutex_unlock(&event->mmap_mutex);
37d81828 5122
9bb5d40c
PZ
5123 /*
5124 * Since pinned accounting is per vm we cannot allow fork() to copy our
5125 * vma.
5126 */
26cb63ad 5127 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
37d81828 5128 vma->vm_ops = &perf_mmap_vmops;
7b732a75 5129
1e0fb9ec
AL
5130 if (event->pmu->event_mapped)
5131 event->pmu->event_mapped(event);
5132
7b732a75 5133 return ret;
37d81828
PM
5134}
5135
3c446b3d
PZ
5136static int perf_fasync(int fd, struct file *filp, int on)
5137{
496ad9aa 5138 struct inode *inode = file_inode(filp);
cdd6c482 5139 struct perf_event *event = filp->private_data;
3c446b3d
PZ
5140 int retval;
5141
5955102c 5142 inode_lock(inode);
cdd6c482 5143 retval = fasync_helper(fd, filp, on, &event->fasync);
5955102c 5144 inode_unlock(inode);
3c446b3d
PZ
5145
5146 if (retval < 0)
5147 return retval;
5148
5149 return 0;
5150}
5151
0793a61d 5152static const struct file_operations perf_fops = {
3326c1ce 5153 .llseek = no_llseek,
0793a61d
TG
5154 .release = perf_release,
5155 .read = perf_read,
5156 .poll = perf_poll,
d859e29f 5157 .unlocked_ioctl = perf_ioctl,
b3f20785 5158 .compat_ioctl = perf_compat_ioctl,
37d81828 5159 .mmap = perf_mmap,
3c446b3d 5160 .fasync = perf_fasync,
0793a61d
TG
5161};
5162
925d519a 5163/*
cdd6c482 5164 * Perf event wakeup
925d519a
PZ
5165 *
5166 * If there's data, ensure we set the poll() state and publish everything
5167 * to user-space before waking everybody up.
5168 */
5169
fed66e2c
PZ
5170static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5171{
5172 /* only the parent has fasync state */
5173 if (event->parent)
5174 event = event->parent;
5175 return &event->fasync;
5176}
5177
cdd6c482 5178void perf_event_wakeup(struct perf_event *event)
925d519a 5179{
10c6db11 5180 ring_buffer_wakeup(event);
4c9e2542 5181
cdd6c482 5182 if (event->pending_kill) {
fed66e2c 5183 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
cdd6c482 5184 event->pending_kill = 0;
4c9e2542 5185 }
925d519a
PZ
5186}
5187
e360adbe 5188static void perf_pending_event(struct irq_work *entry)
79f14641 5189{
cdd6c482
IM
5190 struct perf_event *event = container_of(entry,
5191 struct perf_event, pending);
d525211f
PZ
5192 int rctx;
5193
5194 rctx = perf_swevent_get_recursion_context();
5195 /*
5196 * If we 'fail' here, that's OK, it means recursion is already disabled
5197 * and we won't recurse 'further'.
5198 */
79f14641 5199
cdd6c482
IM
5200 if (event->pending_disable) {
5201 event->pending_disable = 0;
fae3fde6 5202 perf_event_disable_local(event);
79f14641
PZ
5203 }
5204
cdd6c482
IM
5205 if (event->pending_wakeup) {
5206 event->pending_wakeup = 0;
5207 perf_event_wakeup(event);
79f14641 5208 }
d525211f
PZ
5209
5210 if (rctx >= 0)
5211 perf_swevent_put_recursion_context(rctx);
79f14641
PZ
5212}
5213
39447b38
ZY
5214/*
5215 * We assume there is only KVM supporting the callbacks.
5216 * Later on, we might change it to a list if there is
5217 * another virtualization implementation supporting the callbacks.
5218 */
5219struct perf_guest_info_callbacks *perf_guest_cbs;
5220
5221int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5222{
5223 perf_guest_cbs = cbs;
5224 return 0;
5225}
5226EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5227
5228int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5229{
5230 perf_guest_cbs = NULL;
5231 return 0;
5232}
5233EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5234
4018994f
JO
5235static void
5236perf_output_sample_regs(struct perf_output_handle *handle,
5237 struct pt_regs *regs, u64 mask)
5238{
5239 int bit;
5240
5241 for_each_set_bit(bit, (const unsigned long *) &mask,
5242 sizeof(mask) * BITS_PER_BYTE) {
5243 u64 val;
5244
5245 val = perf_reg_value(regs, bit);
5246 perf_output_put(handle, val);
5247 }
5248}
5249
60e2364e 5250static void perf_sample_regs_user(struct perf_regs *regs_user,
88a7c26a
AL
5251 struct pt_regs *regs,
5252 struct pt_regs *regs_user_copy)
4018994f 5253{
88a7c26a
AL
5254 if (user_mode(regs)) {
5255 regs_user->abi = perf_reg_abi(current);
2565711f 5256 regs_user->regs = regs;
88a7c26a
AL
5257 } else if (current->mm) {
5258 perf_get_regs_user(regs_user, regs, regs_user_copy);
2565711f
PZ
5259 } else {
5260 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5261 regs_user->regs = NULL;
4018994f
JO
5262 }
5263}
5264
60e2364e
SE
5265static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5266 struct pt_regs *regs)
5267{
5268 regs_intr->regs = regs;
5269 regs_intr->abi = perf_reg_abi(current);
5270}
5271
5272
c5ebcedb
JO
5273/*
5274 * Get remaining task size from user stack pointer.
5275 *
5276 * It'd be better to take stack vma map and limit this more
5277 * precisly, but there's no way to get it safely under interrupt,
5278 * so using TASK_SIZE as limit.
5279 */
5280static u64 perf_ustack_task_size(struct pt_regs *regs)
5281{
5282 unsigned long addr = perf_user_stack_pointer(regs);
5283
5284 if (!addr || addr >= TASK_SIZE)
5285 return 0;
5286
5287 return TASK_SIZE - addr;
5288}
5289
5290static u16
5291perf_sample_ustack_size(u16 stack_size, u16 header_size,
5292 struct pt_regs *regs)
5293{
5294 u64 task_size;
5295
5296 /* No regs, no stack pointer, no dump. */
5297 if (!regs)
5298 return 0;
5299
5300 /*
5301 * Check if we fit in with the requested stack size into the:
5302 * - TASK_SIZE
5303 * If we don't, we limit the size to the TASK_SIZE.
5304 *
5305 * - remaining sample size
5306 * If we don't, we customize the stack size to
5307 * fit in to the remaining sample size.
5308 */
5309
5310 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5311 stack_size = min(stack_size, (u16) task_size);
5312
5313 /* Current header size plus static size and dynamic size. */
5314 header_size += 2 * sizeof(u64);
5315
5316 /* Do we fit in with the current stack dump size? */
5317 if ((u16) (header_size + stack_size) < header_size) {
5318 /*
5319 * If we overflow the maximum size for the sample,
5320 * we customize the stack dump size to fit in.
5321 */
5322 stack_size = USHRT_MAX - header_size - sizeof(u64);
5323 stack_size = round_up(stack_size, sizeof(u64));
5324 }
5325
5326 return stack_size;
5327}
5328
5329static void
5330perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5331 struct pt_regs *regs)
5332{
5333 /* Case of a kernel thread, nothing to dump */
5334 if (!regs) {
5335 u64 size = 0;
5336 perf_output_put(handle, size);
5337 } else {
5338 unsigned long sp;
5339 unsigned int rem;
5340 u64 dyn_size;
5341
5342 /*
5343 * We dump:
5344 * static size
5345 * - the size requested by user or the best one we can fit
5346 * in to the sample max size
5347 * data
5348 * - user stack dump data
5349 * dynamic size
5350 * - the actual dumped size
5351 */
5352
5353 /* Static size. */
5354 perf_output_put(handle, dump_size);
5355
5356 /* Data. */
5357 sp = perf_user_stack_pointer(regs);
5358 rem = __output_copy_user(handle, (void *) sp, dump_size);
5359 dyn_size = dump_size - rem;
5360
5361 perf_output_skip(handle, rem);
5362
5363 /* Dynamic size. */
5364 perf_output_put(handle, dyn_size);
5365 }
5366}
5367
c980d109
ACM
5368static void __perf_event_header__init_id(struct perf_event_header *header,
5369 struct perf_sample_data *data,
5370 struct perf_event *event)
6844c09d
ACM
5371{
5372 u64 sample_type = event->attr.sample_type;
5373
5374 data->type = sample_type;
5375 header->size += event->id_header_size;
5376
5377 if (sample_type & PERF_SAMPLE_TID) {
5378 /* namespace issues */
5379 data->tid_entry.pid = perf_event_pid(event, current);
5380 data->tid_entry.tid = perf_event_tid(event, current);
5381 }
5382
5383 if (sample_type & PERF_SAMPLE_TIME)
34f43927 5384 data->time = perf_event_clock(event);
6844c09d 5385
ff3d527c 5386 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6844c09d
ACM
5387 data->id = primary_event_id(event);
5388
5389 if (sample_type & PERF_SAMPLE_STREAM_ID)
5390 data->stream_id = event->id;
5391
5392 if (sample_type & PERF_SAMPLE_CPU) {
5393 data->cpu_entry.cpu = raw_smp_processor_id();
5394 data->cpu_entry.reserved = 0;
5395 }
5396}
5397
76369139
FW
5398void perf_event_header__init_id(struct perf_event_header *header,
5399 struct perf_sample_data *data,
5400 struct perf_event *event)
c980d109
ACM
5401{
5402 if (event->attr.sample_id_all)
5403 __perf_event_header__init_id(header, data, event);
5404}
5405
5406static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5407 struct perf_sample_data *data)
5408{
5409 u64 sample_type = data->type;
5410
5411 if (sample_type & PERF_SAMPLE_TID)
5412 perf_output_put(handle, data->tid_entry);
5413
5414 if (sample_type & PERF_SAMPLE_TIME)
5415 perf_output_put(handle, data->time);
5416
5417 if (sample_type & PERF_SAMPLE_ID)
5418 perf_output_put(handle, data->id);
5419
5420 if (sample_type & PERF_SAMPLE_STREAM_ID)
5421 perf_output_put(handle, data->stream_id);
5422
5423 if (sample_type & PERF_SAMPLE_CPU)
5424 perf_output_put(handle, data->cpu_entry);
ff3d527c
AH
5425
5426 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5427 perf_output_put(handle, data->id);
c980d109
ACM
5428}
5429
76369139
FW
5430void perf_event__output_id_sample(struct perf_event *event,
5431 struct perf_output_handle *handle,
5432 struct perf_sample_data *sample)
c980d109
ACM
5433{
5434 if (event->attr.sample_id_all)
5435 __perf_event__output_id_sample(handle, sample);
5436}
5437
3dab77fb 5438static void perf_output_read_one(struct perf_output_handle *handle,
eed01528
SE
5439 struct perf_event *event,
5440 u64 enabled, u64 running)
3dab77fb 5441{
cdd6c482 5442 u64 read_format = event->attr.read_format;
3dab77fb
PZ
5443 u64 values[4];
5444 int n = 0;
5445
b5e58793 5446 values[n++] = perf_event_count(event);
3dab77fb 5447 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
eed01528 5448 values[n++] = enabled +
cdd6c482 5449 atomic64_read(&event->child_total_time_enabled);
3dab77fb
PZ
5450 }
5451 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
eed01528 5452 values[n++] = running +
cdd6c482 5453 atomic64_read(&event->child_total_time_running);
3dab77fb
PZ
5454 }
5455 if (read_format & PERF_FORMAT_ID)
cdd6c482 5456 values[n++] = primary_event_id(event);
3dab77fb 5457
76369139 5458 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
5459}
5460
5461/*
cdd6c482 5462 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3dab77fb
PZ
5463 */
5464static void perf_output_read_group(struct perf_output_handle *handle,
eed01528
SE
5465 struct perf_event *event,
5466 u64 enabled, u64 running)
3dab77fb 5467{
cdd6c482
IM
5468 struct perf_event *leader = event->group_leader, *sub;
5469 u64 read_format = event->attr.read_format;
3dab77fb
PZ
5470 u64 values[5];
5471 int n = 0;
5472
5473 values[n++] = 1 + leader->nr_siblings;
5474
5475 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
eed01528 5476 values[n++] = enabled;
3dab77fb
PZ
5477
5478 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
eed01528 5479 values[n++] = running;
3dab77fb 5480
cdd6c482 5481 if (leader != event)
3dab77fb
PZ
5482 leader->pmu->read(leader);
5483
b5e58793 5484 values[n++] = perf_event_count(leader);
3dab77fb 5485 if (read_format & PERF_FORMAT_ID)
cdd6c482 5486 values[n++] = primary_event_id(leader);
3dab77fb 5487
76369139 5488 __output_copy(handle, values, n * sizeof(u64));
3dab77fb 5489
65abc865 5490 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3dab77fb
PZ
5491 n = 0;
5492
6f5ab001
JO
5493 if ((sub != event) &&
5494 (sub->state == PERF_EVENT_STATE_ACTIVE))
3dab77fb
PZ
5495 sub->pmu->read(sub);
5496
b5e58793 5497 values[n++] = perf_event_count(sub);
3dab77fb 5498 if (read_format & PERF_FORMAT_ID)
cdd6c482 5499 values[n++] = primary_event_id(sub);
3dab77fb 5500
76369139 5501 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
5502 }
5503}
5504
eed01528
SE
5505#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5506 PERF_FORMAT_TOTAL_TIME_RUNNING)
5507
3dab77fb 5508static void perf_output_read(struct perf_output_handle *handle,
cdd6c482 5509 struct perf_event *event)
3dab77fb 5510{
e3f3541c 5511 u64 enabled = 0, running = 0, now;
eed01528
SE
5512 u64 read_format = event->attr.read_format;
5513
5514 /*
5515 * compute total_time_enabled, total_time_running
5516 * based on snapshot values taken when the event
5517 * was last scheduled in.
5518 *
5519 * we cannot simply called update_context_time()
5520 * because of locking issue as we are called in
5521 * NMI context
5522 */
c4794295 5523 if (read_format & PERF_FORMAT_TOTAL_TIMES)
e3f3541c 5524 calc_timer_values(event, &now, &enabled, &running);
eed01528 5525
cdd6c482 5526 if (event->attr.read_format & PERF_FORMAT_GROUP)
eed01528 5527 perf_output_read_group(handle, event, enabled, running);
3dab77fb 5528 else
eed01528 5529 perf_output_read_one(handle, event, enabled, running);
3dab77fb
PZ
5530}
5531
5622f295
MM
5532void perf_output_sample(struct perf_output_handle *handle,
5533 struct perf_event_header *header,
5534 struct perf_sample_data *data,
cdd6c482 5535 struct perf_event *event)
5622f295
MM
5536{
5537 u64 sample_type = data->type;
5538
5539 perf_output_put(handle, *header);
5540
ff3d527c
AH
5541 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5542 perf_output_put(handle, data->id);
5543
5622f295
MM
5544 if (sample_type & PERF_SAMPLE_IP)
5545 perf_output_put(handle, data->ip);
5546
5547 if (sample_type & PERF_SAMPLE_TID)
5548 perf_output_put(handle, data->tid_entry);
5549
5550 if (sample_type & PERF_SAMPLE_TIME)
5551 perf_output_put(handle, data->time);
5552
5553 if (sample_type & PERF_SAMPLE_ADDR)
5554 perf_output_put(handle, data->addr);
5555
5556 if (sample_type & PERF_SAMPLE_ID)
5557 perf_output_put(handle, data->id);
5558
5559 if (sample_type & PERF_SAMPLE_STREAM_ID)
5560 perf_output_put(handle, data->stream_id);
5561
5562 if (sample_type & PERF_SAMPLE_CPU)
5563 perf_output_put(handle, data->cpu_entry);
5564
5565 if (sample_type & PERF_SAMPLE_PERIOD)
5566 perf_output_put(handle, data->period);
5567
5568 if (sample_type & PERF_SAMPLE_READ)
cdd6c482 5569 perf_output_read(handle, event);
5622f295
MM
5570
5571 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5572 if (data->callchain) {
5573 int size = 1;
5574
5575 if (data->callchain)
5576 size += data->callchain->nr;
5577
5578 size *= sizeof(u64);
5579
76369139 5580 __output_copy(handle, data->callchain, size);
5622f295
MM
5581 } else {
5582 u64 nr = 0;
5583 perf_output_put(handle, nr);
5584 }
5585 }
5586
5587 if (sample_type & PERF_SAMPLE_RAW) {
5588 if (data->raw) {
fa128e6a
AS
5589 u32 raw_size = data->raw->size;
5590 u32 real_size = round_up(raw_size + sizeof(u32),
5591 sizeof(u64)) - sizeof(u32);
5592 u64 zero = 0;
5593
5594 perf_output_put(handle, real_size);
5595 __output_copy(handle, data->raw->data, raw_size);
5596 if (real_size - raw_size)
5597 __output_copy(handle, &zero, real_size - raw_size);
5622f295
MM
5598 } else {
5599 struct {
5600 u32 size;
5601 u32 data;
5602 } raw = {
5603 .size = sizeof(u32),
5604 .data = 0,
5605 };
5606 perf_output_put(handle, raw);
5607 }
5608 }
a7ac67ea 5609
bce38cd5
SE
5610 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5611 if (data->br_stack) {
5612 size_t size;
5613
5614 size = data->br_stack->nr
5615 * sizeof(struct perf_branch_entry);
5616
5617 perf_output_put(handle, data->br_stack->nr);
5618 perf_output_copy(handle, data->br_stack->entries, size);
5619 } else {
5620 /*
5621 * we always store at least the value of nr
5622 */
5623 u64 nr = 0;
5624 perf_output_put(handle, nr);
5625 }
5626 }
4018994f
JO
5627
5628 if (sample_type & PERF_SAMPLE_REGS_USER) {
5629 u64 abi = data->regs_user.abi;
5630
5631 /*
5632 * If there are no regs to dump, notice it through
5633 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5634 */
5635 perf_output_put(handle, abi);
5636
5637 if (abi) {
5638 u64 mask = event->attr.sample_regs_user;
5639 perf_output_sample_regs(handle,
5640 data->regs_user.regs,
5641 mask);
5642 }
5643 }
c5ebcedb 5644
a5cdd40c 5645 if (sample_type & PERF_SAMPLE_STACK_USER) {
c5ebcedb
JO
5646 perf_output_sample_ustack(handle,
5647 data->stack_user_size,
5648 data->regs_user.regs);
a5cdd40c 5649 }
c3feedf2
AK
5650
5651 if (sample_type & PERF_SAMPLE_WEIGHT)
5652 perf_output_put(handle, data->weight);
d6be9ad6
SE
5653
5654 if (sample_type & PERF_SAMPLE_DATA_SRC)
5655 perf_output_put(handle, data->data_src.val);
a5cdd40c 5656
fdfbbd07
AK
5657 if (sample_type & PERF_SAMPLE_TRANSACTION)
5658 perf_output_put(handle, data->txn);
5659
60e2364e
SE
5660 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5661 u64 abi = data->regs_intr.abi;
5662 /*
5663 * If there are no regs to dump, notice it through
5664 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5665 */
5666 perf_output_put(handle, abi);
5667
5668 if (abi) {
5669 u64 mask = event->attr.sample_regs_intr;
5670
5671 perf_output_sample_regs(handle,
5672 data->regs_intr.regs,
5673 mask);
5674 }
5675 }
5676
a5cdd40c
PZ
5677 if (!event->attr.watermark) {
5678 int wakeup_events = event->attr.wakeup_events;
5679
5680 if (wakeup_events) {
5681 struct ring_buffer *rb = handle->rb;
5682 int events = local_inc_return(&rb->events);
5683
5684 if (events >= wakeup_events) {
5685 local_sub(wakeup_events, &rb->events);
5686 local_inc(&rb->wakeup);
5687 }
5688 }
5689 }
5622f295
MM
5690}
5691
5692void perf_prepare_sample(struct perf_event_header *header,
5693 struct perf_sample_data *data,
cdd6c482 5694 struct perf_event *event,
5622f295 5695 struct pt_regs *regs)
7b732a75 5696{
cdd6c482 5697 u64 sample_type = event->attr.sample_type;
7b732a75 5698
cdd6c482 5699 header->type = PERF_RECORD_SAMPLE;
c320c7b7 5700 header->size = sizeof(*header) + event->header_size;
5622f295
MM
5701
5702 header->misc = 0;
5703 header->misc |= perf_misc_flags(regs);
6fab0192 5704
c980d109 5705 __perf_event_header__init_id(header, data, event);
6844c09d 5706
c320c7b7 5707 if (sample_type & PERF_SAMPLE_IP)
5622f295
MM
5708 data->ip = perf_instruction_pointer(regs);
5709
b23f3325 5710 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5622f295 5711 int size = 1;
394ee076 5712
e6dab5ff 5713 data->callchain = perf_callchain(event, regs);
5622f295
MM
5714
5715 if (data->callchain)
5716 size += data->callchain->nr;
5717
5718 header->size += size * sizeof(u64);
394ee076
PZ
5719 }
5720
3a43ce68 5721 if (sample_type & PERF_SAMPLE_RAW) {
a044560c
PZ
5722 int size = sizeof(u32);
5723
5724 if (data->raw)
5725 size += data->raw->size;
5726 else
5727 size += sizeof(u32);
5728
fa128e6a 5729 header->size += round_up(size, sizeof(u64));
7f453c24 5730 }
bce38cd5
SE
5731
5732 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5733 int size = sizeof(u64); /* nr */
5734 if (data->br_stack) {
5735 size += data->br_stack->nr
5736 * sizeof(struct perf_branch_entry);
5737 }
5738 header->size += size;
5739 }
4018994f 5740
2565711f 5741 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
88a7c26a
AL
5742 perf_sample_regs_user(&data->regs_user, regs,
5743 &data->regs_user_copy);
2565711f 5744
4018994f
JO
5745 if (sample_type & PERF_SAMPLE_REGS_USER) {
5746 /* regs dump ABI info */
5747 int size = sizeof(u64);
5748
4018994f
JO
5749 if (data->regs_user.regs) {
5750 u64 mask = event->attr.sample_regs_user;
5751 size += hweight64(mask) * sizeof(u64);
5752 }
5753
5754 header->size += size;
5755 }
c5ebcedb
JO
5756
5757 if (sample_type & PERF_SAMPLE_STACK_USER) {
5758 /*
5759 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
5760 * processed as the last one or have additional check added
5761 * in case new sample type is added, because we could eat
5762 * up the rest of the sample size.
5763 */
c5ebcedb
JO
5764 u16 stack_size = event->attr.sample_stack_user;
5765 u16 size = sizeof(u64);
5766
c5ebcedb 5767 stack_size = perf_sample_ustack_size(stack_size, header->size,
2565711f 5768 data->regs_user.regs);
c5ebcedb
JO
5769
5770 /*
5771 * If there is something to dump, add space for the dump
5772 * itself and for the field that tells the dynamic size,
5773 * which is how many have been actually dumped.
5774 */
5775 if (stack_size)
5776 size += sizeof(u64) + stack_size;
5777
5778 data->stack_user_size = stack_size;
5779 header->size += size;
5780 }
60e2364e
SE
5781
5782 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5783 /* regs dump ABI info */
5784 int size = sizeof(u64);
5785
5786 perf_sample_regs_intr(&data->regs_intr, regs);
5787
5788 if (data->regs_intr.regs) {
5789 u64 mask = event->attr.sample_regs_intr;
5790
5791 size += hweight64(mask) * sizeof(u64);
5792 }
5793
5794 header->size += size;
5795 }
5622f295 5796}
7f453c24 5797
9ecda41a
WN
5798static void __always_inline
5799__perf_event_output(struct perf_event *event,
5800 struct perf_sample_data *data,
5801 struct pt_regs *regs,
5802 int (*output_begin)(struct perf_output_handle *,
5803 struct perf_event *,
5804 unsigned int))
5622f295
MM
5805{
5806 struct perf_output_handle handle;
5807 struct perf_event_header header;
689802b2 5808
927c7a9e
FW
5809 /* protect the callchain buffers */
5810 rcu_read_lock();
5811
cdd6c482 5812 perf_prepare_sample(&header, data, event, regs);
5c148194 5813
9ecda41a 5814 if (output_begin(&handle, event, header.size))
927c7a9e 5815 goto exit;
0322cd6e 5816
cdd6c482 5817 perf_output_sample(&handle, &header, data, event);
f413cdb8 5818
8a057d84 5819 perf_output_end(&handle);
927c7a9e
FW
5820
5821exit:
5822 rcu_read_unlock();
0322cd6e
PZ
5823}
5824
9ecda41a
WN
5825void
5826perf_event_output_forward(struct perf_event *event,
5827 struct perf_sample_data *data,
5828 struct pt_regs *regs)
5829{
5830 __perf_event_output(event, data, regs, perf_output_begin_forward);
5831}
5832
5833void
5834perf_event_output_backward(struct perf_event *event,
5835 struct perf_sample_data *data,
5836 struct pt_regs *regs)
5837{
5838 __perf_event_output(event, data, regs, perf_output_begin_backward);
5839}
5840
5841void
5842perf_event_output(struct perf_event *event,
5843 struct perf_sample_data *data,
5844 struct pt_regs *regs)
5845{
5846 __perf_event_output(event, data, regs, perf_output_begin);
5847}
5848
38b200d6 5849/*
cdd6c482 5850 * read event_id
38b200d6
PZ
5851 */
5852
5853struct perf_read_event {
5854 struct perf_event_header header;
5855
5856 u32 pid;
5857 u32 tid;
38b200d6
PZ
5858};
5859
5860static void
cdd6c482 5861perf_event_read_event(struct perf_event *event,
38b200d6
PZ
5862 struct task_struct *task)
5863{
5864 struct perf_output_handle handle;
c980d109 5865 struct perf_sample_data sample;
dfc65094 5866 struct perf_read_event read_event = {
38b200d6 5867 .header = {
cdd6c482 5868 .type = PERF_RECORD_READ,
38b200d6 5869 .misc = 0,
c320c7b7 5870 .size = sizeof(read_event) + event->read_size,
38b200d6 5871 },
cdd6c482
IM
5872 .pid = perf_event_pid(event, task),
5873 .tid = perf_event_tid(event, task),
38b200d6 5874 };
3dab77fb 5875 int ret;
38b200d6 5876
c980d109 5877 perf_event_header__init_id(&read_event.header, &sample, event);
a7ac67ea 5878 ret = perf_output_begin(&handle, event, read_event.header.size);
38b200d6
PZ
5879 if (ret)
5880 return;
5881
dfc65094 5882 perf_output_put(&handle, read_event);
cdd6c482 5883 perf_output_read(&handle, event);
c980d109 5884 perf_event__output_id_sample(event, &handle, &sample);
3dab77fb 5885
38b200d6
PZ
5886 perf_output_end(&handle);
5887}
5888
aab5b71e 5889typedef void (perf_iterate_f)(struct perf_event *event, void *data);
52d857a8
JO
5890
5891static void
aab5b71e
PZ
5892perf_iterate_ctx(struct perf_event_context *ctx,
5893 perf_iterate_f output,
b73e4fef 5894 void *data, bool all)
52d857a8
JO
5895{
5896 struct perf_event *event;
5897
5898 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
b73e4fef
AS
5899 if (!all) {
5900 if (event->state < PERF_EVENT_STATE_INACTIVE)
5901 continue;
5902 if (!event_filter_match(event))
5903 continue;
5904 }
5905
67516844 5906 output(event, data);
52d857a8
JO
5907 }
5908}
5909
aab5b71e 5910static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
f2fb6bef
KL
5911{
5912 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
5913 struct perf_event *event;
5914
5915 list_for_each_entry_rcu(event, &pel->list, sb_list) {
5916 if (event->state < PERF_EVENT_STATE_INACTIVE)
5917 continue;
5918 if (!event_filter_match(event))
5919 continue;
5920 output(event, data);
5921 }
5922}
5923
aab5b71e
PZ
5924/*
5925 * Iterate all events that need to receive side-band events.
5926 *
5927 * For new callers; ensure that account_pmu_sb_event() includes
5928 * your event, otherwise it might not get delivered.
5929 */
52d857a8 5930static void
aab5b71e 5931perf_iterate_sb(perf_iterate_f output, void *data,
52d857a8
JO
5932 struct perf_event_context *task_ctx)
5933{
52d857a8 5934 struct perf_event_context *ctx;
52d857a8
JO
5935 int ctxn;
5936
aab5b71e
PZ
5937 rcu_read_lock();
5938 preempt_disable();
5939
4e93ad60 5940 /*
aab5b71e
PZ
5941 * If we have task_ctx != NULL we only notify the task context itself.
5942 * The task_ctx is set only for EXIT events before releasing task
4e93ad60
JO
5943 * context.
5944 */
5945 if (task_ctx) {
aab5b71e
PZ
5946 perf_iterate_ctx(task_ctx, output, data, false);
5947 goto done;
4e93ad60
JO
5948 }
5949
aab5b71e 5950 perf_iterate_sb_cpu(output, data);
f2fb6bef
KL
5951
5952 for_each_task_context_nr(ctxn) {
52d857a8
JO
5953 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
5954 if (ctx)
aab5b71e 5955 perf_iterate_ctx(ctx, output, data, false);
52d857a8 5956 }
aab5b71e 5957done:
f2fb6bef 5958 preempt_enable();
52d857a8 5959 rcu_read_unlock();
95ff4ca2
AS
5960}
5961
375637bc
AS
5962/*
5963 * Clear all file-based filters at exec, they'll have to be
5964 * re-instated when/if these objects are mmapped again.
5965 */
5966static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
5967{
5968 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
5969 struct perf_addr_filter *filter;
5970 unsigned int restart = 0, count = 0;
5971 unsigned long flags;
5972
5973 if (!has_addr_filter(event))
5974 return;
5975
5976 raw_spin_lock_irqsave(&ifh->lock, flags);
5977 list_for_each_entry(filter, &ifh->list, entry) {
5978 if (filter->inode) {
5979 event->addr_filters_offs[count] = 0;
5980 restart++;
5981 }
5982
5983 count++;
5984 }
5985
5986 if (restart)
5987 event->addr_filters_gen++;
5988 raw_spin_unlock_irqrestore(&ifh->lock, flags);
5989
5990 if (restart)
5991 perf_event_restart(event);
5992}
5993
5994void perf_event_exec(void)
5995{
5996 struct perf_event_context *ctx;
5997 int ctxn;
5998
5999 rcu_read_lock();
6000 for_each_task_context_nr(ctxn) {
6001 ctx = current->perf_event_ctxp[ctxn];
6002 if (!ctx)
6003 continue;
6004
6005 perf_event_enable_on_exec(ctxn);
6006
aab5b71e 6007 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
375637bc
AS
6008 true);
6009 }
6010 rcu_read_unlock();
6011}
6012
95ff4ca2
AS
6013struct remote_output {
6014 struct ring_buffer *rb;
6015 int err;
6016};
6017
6018static void __perf_event_output_stop(struct perf_event *event, void *data)
6019{
6020 struct perf_event *parent = event->parent;
6021 struct remote_output *ro = data;
6022 struct ring_buffer *rb = ro->rb;
375637bc
AS
6023 struct stop_event_data sd = {
6024 .event = event,
6025 };
95ff4ca2
AS
6026
6027 if (!has_aux(event))
6028 return;
6029
6030 if (!parent)
6031 parent = event;
6032
6033 /*
6034 * In case of inheritance, it will be the parent that links to the
6035 * ring-buffer, but it will be the child that's actually using it:
6036 */
6037 if (rcu_dereference(parent->rb) == rb)
375637bc 6038 ro->err = __perf_event_stop(&sd);
95ff4ca2
AS
6039}
6040
6041static int __perf_pmu_output_stop(void *info)
6042{
6043 struct perf_event *event = info;
6044 struct pmu *pmu = event->pmu;
6045 struct perf_cpu_context *cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
6046 struct remote_output ro = {
6047 .rb = event->rb,
6048 };
6049
6050 rcu_read_lock();
aab5b71e 6051 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
95ff4ca2 6052 if (cpuctx->task_ctx)
aab5b71e 6053 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
b73e4fef 6054 &ro, false);
95ff4ca2
AS
6055 rcu_read_unlock();
6056
6057 return ro.err;
6058}
6059
6060static void perf_pmu_output_stop(struct perf_event *event)
6061{
6062 struct perf_event *iter;
6063 int err, cpu;
6064
6065restart:
6066 rcu_read_lock();
6067 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6068 /*
6069 * For per-CPU events, we need to make sure that neither they
6070 * nor their children are running; for cpu==-1 events it's
6071 * sufficient to stop the event itself if it's active, since
6072 * it can't have children.
6073 */
6074 cpu = iter->cpu;
6075 if (cpu == -1)
6076 cpu = READ_ONCE(iter->oncpu);
6077
6078 if (cpu == -1)
6079 continue;
6080
6081 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6082 if (err == -EAGAIN) {
6083 rcu_read_unlock();
6084 goto restart;
6085 }
6086 }
6087 rcu_read_unlock();
52d857a8
JO
6088}
6089
60313ebe 6090/*
9f498cc5
PZ
6091 * task tracking -- fork/exit
6092 *
13d7a241 6093 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
60313ebe
PZ
6094 */
6095
9f498cc5 6096struct perf_task_event {
3a80b4a3 6097 struct task_struct *task;
cdd6c482 6098 struct perf_event_context *task_ctx;
60313ebe
PZ
6099
6100 struct {
6101 struct perf_event_header header;
6102
6103 u32 pid;
6104 u32 ppid;
9f498cc5
PZ
6105 u32 tid;
6106 u32 ptid;
393b2ad8 6107 u64 time;
cdd6c482 6108 } event_id;
60313ebe
PZ
6109};
6110
67516844
JO
6111static int perf_event_task_match(struct perf_event *event)
6112{
13d7a241
SE
6113 return event->attr.comm || event->attr.mmap ||
6114 event->attr.mmap2 || event->attr.mmap_data ||
6115 event->attr.task;
67516844
JO
6116}
6117
cdd6c482 6118static void perf_event_task_output(struct perf_event *event,
52d857a8 6119 void *data)
60313ebe 6120{
52d857a8 6121 struct perf_task_event *task_event = data;
60313ebe 6122 struct perf_output_handle handle;
c980d109 6123 struct perf_sample_data sample;
9f498cc5 6124 struct task_struct *task = task_event->task;
c980d109 6125 int ret, size = task_event->event_id.header.size;
8bb39f9a 6126
67516844
JO
6127 if (!perf_event_task_match(event))
6128 return;
6129
c980d109 6130 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
60313ebe 6131
c980d109 6132 ret = perf_output_begin(&handle, event,
a7ac67ea 6133 task_event->event_id.header.size);
ef60777c 6134 if (ret)
c980d109 6135 goto out;
60313ebe 6136
cdd6c482
IM
6137 task_event->event_id.pid = perf_event_pid(event, task);
6138 task_event->event_id.ppid = perf_event_pid(event, current);
60313ebe 6139
cdd6c482
IM
6140 task_event->event_id.tid = perf_event_tid(event, task);
6141 task_event->event_id.ptid = perf_event_tid(event, current);
9f498cc5 6142
34f43927
PZ
6143 task_event->event_id.time = perf_event_clock(event);
6144
cdd6c482 6145 perf_output_put(&handle, task_event->event_id);
393b2ad8 6146
c980d109
ACM
6147 perf_event__output_id_sample(event, &handle, &sample);
6148
60313ebe 6149 perf_output_end(&handle);
c980d109
ACM
6150out:
6151 task_event->event_id.header.size = size;
60313ebe
PZ
6152}
6153
cdd6c482
IM
6154static void perf_event_task(struct task_struct *task,
6155 struct perf_event_context *task_ctx,
3a80b4a3 6156 int new)
60313ebe 6157{
9f498cc5 6158 struct perf_task_event task_event;
60313ebe 6159
cdd6c482
IM
6160 if (!atomic_read(&nr_comm_events) &&
6161 !atomic_read(&nr_mmap_events) &&
6162 !atomic_read(&nr_task_events))
60313ebe
PZ
6163 return;
6164
9f498cc5 6165 task_event = (struct perf_task_event){
3a80b4a3
PZ
6166 .task = task,
6167 .task_ctx = task_ctx,
cdd6c482 6168 .event_id = {
60313ebe 6169 .header = {
cdd6c482 6170 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
573402db 6171 .misc = 0,
cdd6c482 6172 .size = sizeof(task_event.event_id),
60313ebe 6173 },
573402db
PZ
6174 /* .pid */
6175 /* .ppid */
9f498cc5
PZ
6176 /* .tid */
6177 /* .ptid */
34f43927 6178 /* .time */
60313ebe
PZ
6179 },
6180 };
6181
aab5b71e 6182 perf_iterate_sb(perf_event_task_output,
52d857a8
JO
6183 &task_event,
6184 task_ctx);
9f498cc5
PZ
6185}
6186
cdd6c482 6187void perf_event_fork(struct task_struct *task)
9f498cc5 6188{
cdd6c482 6189 perf_event_task(task, NULL, 1);
60313ebe
PZ
6190}
6191
8d1b2d93
PZ
6192/*
6193 * comm tracking
6194 */
6195
6196struct perf_comm_event {
22a4f650
IM
6197 struct task_struct *task;
6198 char *comm;
8d1b2d93
PZ
6199 int comm_size;
6200
6201 struct {
6202 struct perf_event_header header;
6203
6204 u32 pid;
6205 u32 tid;
cdd6c482 6206 } event_id;
8d1b2d93
PZ
6207};
6208
67516844
JO
6209static int perf_event_comm_match(struct perf_event *event)
6210{
6211 return event->attr.comm;
6212}
6213
cdd6c482 6214static void perf_event_comm_output(struct perf_event *event,
52d857a8 6215 void *data)
8d1b2d93 6216{
52d857a8 6217 struct perf_comm_event *comm_event = data;
8d1b2d93 6218 struct perf_output_handle handle;
c980d109 6219 struct perf_sample_data sample;
cdd6c482 6220 int size = comm_event->event_id.header.size;
c980d109
ACM
6221 int ret;
6222
67516844
JO
6223 if (!perf_event_comm_match(event))
6224 return;
6225
c980d109
ACM
6226 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
6227 ret = perf_output_begin(&handle, event,
a7ac67ea 6228 comm_event->event_id.header.size);
8d1b2d93
PZ
6229
6230 if (ret)
c980d109 6231 goto out;
8d1b2d93 6232
cdd6c482
IM
6233 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
6234 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
709e50cf 6235
cdd6c482 6236 perf_output_put(&handle, comm_event->event_id);
76369139 6237 __output_copy(&handle, comm_event->comm,
8d1b2d93 6238 comm_event->comm_size);
c980d109
ACM
6239
6240 perf_event__output_id_sample(event, &handle, &sample);
6241
8d1b2d93 6242 perf_output_end(&handle);
c980d109
ACM
6243out:
6244 comm_event->event_id.header.size = size;
8d1b2d93
PZ
6245}
6246
cdd6c482 6247static void perf_event_comm_event(struct perf_comm_event *comm_event)
8d1b2d93 6248{
413ee3b4 6249 char comm[TASK_COMM_LEN];
8d1b2d93 6250 unsigned int size;
8d1b2d93 6251
413ee3b4 6252 memset(comm, 0, sizeof(comm));
96b02d78 6253 strlcpy(comm, comm_event->task->comm, sizeof(comm));
888fcee0 6254 size = ALIGN(strlen(comm)+1, sizeof(u64));
8d1b2d93
PZ
6255
6256 comm_event->comm = comm;
6257 comm_event->comm_size = size;
6258
cdd6c482 6259 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
8dc85d54 6260
aab5b71e 6261 perf_iterate_sb(perf_event_comm_output,
52d857a8
JO
6262 comm_event,
6263 NULL);
8d1b2d93
PZ
6264}
6265
82b89778 6266void perf_event_comm(struct task_struct *task, bool exec)
8d1b2d93 6267{
9ee318a7
PZ
6268 struct perf_comm_event comm_event;
6269
cdd6c482 6270 if (!atomic_read(&nr_comm_events))
9ee318a7 6271 return;
a63eaf34 6272
9ee318a7 6273 comm_event = (struct perf_comm_event){
8d1b2d93 6274 .task = task,
573402db
PZ
6275 /* .comm */
6276 /* .comm_size */
cdd6c482 6277 .event_id = {
573402db 6278 .header = {
cdd6c482 6279 .type = PERF_RECORD_COMM,
82b89778 6280 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
573402db
PZ
6281 /* .size */
6282 },
6283 /* .pid */
6284 /* .tid */
8d1b2d93
PZ
6285 },
6286 };
6287
cdd6c482 6288 perf_event_comm_event(&comm_event);
8d1b2d93
PZ
6289}
6290
0a4a9391
PZ
6291/*
6292 * mmap tracking
6293 */
6294
6295struct perf_mmap_event {
089dd79d
PZ
6296 struct vm_area_struct *vma;
6297
6298 const char *file_name;
6299 int file_size;
13d7a241
SE
6300 int maj, min;
6301 u64 ino;
6302 u64 ino_generation;
f972eb63 6303 u32 prot, flags;
0a4a9391
PZ
6304
6305 struct {
6306 struct perf_event_header header;
6307
6308 u32 pid;
6309 u32 tid;
6310 u64 start;
6311 u64 len;
6312 u64 pgoff;
cdd6c482 6313 } event_id;
0a4a9391
PZ
6314};
6315
67516844
JO
6316static int perf_event_mmap_match(struct perf_event *event,
6317 void *data)
6318{
6319 struct perf_mmap_event *mmap_event = data;
6320 struct vm_area_struct *vma = mmap_event->vma;
6321 int executable = vma->vm_flags & VM_EXEC;
6322
6323 return (!executable && event->attr.mmap_data) ||
13d7a241 6324 (executable && (event->attr.mmap || event->attr.mmap2));
67516844
JO
6325}
6326
cdd6c482 6327static void perf_event_mmap_output(struct perf_event *event,
52d857a8 6328 void *data)
0a4a9391 6329{
52d857a8 6330 struct perf_mmap_event *mmap_event = data;
0a4a9391 6331 struct perf_output_handle handle;
c980d109 6332 struct perf_sample_data sample;
cdd6c482 6333 int size = mmap_event->event_id.header.size;
c980d109 6334 int ret;
0a4a9391 6335
67516844
JO
6336 if (!perf_event_mmap_match(event, data))
6337 return;
6338
13d7a241
SE
6339 if (event->attr.mmap2) {
6340 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
6341 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
6342 mmap_event->event_id.header.size += sizeof(mmap_event->min);
6343 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
d008d525 6344 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
f972eb63
PZ
6345 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
6346 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
13d7a241
SE
6347 }
6348
c980d109
ACM
6349 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
6350 ret = perf_output_begin(&handle, event,
a7ac67ea 6351 mmap_event->event_id.header.size);
0a4a9391 6352 if (ret)
c980d109 6353 goto out;
0a4a9391 6354
cdd6c482
IM
6355 mmap_event->event_id.pid = perf_event_pid(event, current);
6356 mmap_event->event_id.tid = perf_event_tid(event, current);
709e50cf 6357
cdd6c482 6358 perf_output_put(&handle, mmap_event->event_id);
13d7a241
SE
6359
6360 if (event->attr.mmap2) {
6361 perf_output_put(&handle, mmap_event->maj);
6362 perf_output_put(&handle, mmap_event->min);
6363 perf_output_put(&handle, mmap_event->ino);
6364 perf_output_put(&handle, mmap_event->ino_generation);
f972eb63
PZ
6365 perf_output_put(&handle, mmap_event->prot);
6366 perf_output_put(&handle, mmap_event->flags);
13d7a241
SE
6367 }
6368
76369139 6369 __output_copy(&handle, mmap_event->file_name,
0a4a9391 6370 mmap_event->file_size);
c980d109
ACM
6371
6372 perf_event__output_id_sample(event, &handle, &sample);
6373
78d613eb 6374 perf_output_end(&handle);
c980d109
ACM
6375out:
6376 mmap_event->event_id.header.size = size;
0a4a9391
PZ
6377}
6378
cdd6c482 6379static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
0a4a9391 6380{
089dd79d
PZ
6381 struct vm_area_struct *vma = mmap_event->vma;
6382 struct file *file = vma->vm_file;
13d7a241
SE
6383 int maj = 0, min = 0;
6384 u64 ino = 0, gen = 0;
f972eb63 6385 u32 prot = 0, flags = 0;
0a4a9391
PZ
6386 unsigned int size;
6387 char tmp[16];
6388 char *buf = NULL;
2c42cfbf 6389 char *name;
413ee3b4 6390
0a4a9391 6391 if (file) {
13d7a241
SE
6392 struct inode *inode;
6393 dev_t dev;
3ea2f2b9 6394
2c42cfbf 6395 buf = kmalloc(PATH_MAX, GFP_KERNEL);
0a4a9391 6396 if (!buf) {
c7e548b4
ON
6397 name = "//enomem";
6398 goto cpy_name;
0a4a9391 6399 }
413ee3b4 6400 /*
3ea2f2b9 6401 * d_path() works from the end of the rb backwards, so we
413ee3b4
AB
6402 * need to add enough zero bytes after the string to handle
6403 * the 64bit alignment we do later.
6404 */
9bf39ab2 6405 name = file_path(file, buf, PATH_MAX - sizeof(u64));
0a4a9391 6406 if (IS_ERR(name)) {
c7e548b4
ON
6407 name = "//toolong";
6408 goto cpy_name;
0a4a9391 6409 }
13d7a241
SE
6410 inode = file_inode(vma->vm_file);
6411 dev = inode->i_sb->s_dev;
6412 ino = inode->i_ino;
6413 gen = inode->i_generation;
6414 maj = MAJOR(dev);
6415 min = MINOR(dev);
f972eb63
PZ
6416
6417 if (vma->vm_flags & VM_READ)
6418 prot |= PROT_READ;
6419 if (vma->vm_flags & VM_WRITE)
6420 prot |= PROT_WRITE;
6421 if (vma->vm_flags & VM_EXEC)
6422 prot |= PROT_EXEC;
6423
6424 if (vma->vm_flags & VM_MAYSHARE)
6425 flags = MAP_SHARED;
6426 else
6427 flags = MAP_PRIVATE;
6428
6429 if (vma->vm_flags & VM_DENYWRITE)
6430 flags |= MAP_DENYWRITE;
6431 if (vma->vm_flags & VM_MAYEXEC)
6432 flags |= MAP_EXECUTABLE;
6433 if (vma->vm_flags & VM_LOCKED)
6434 flags |= MAP_LOCKED;
6435 if (vma->vm_flags & VM_HUGETLB)
6436 flags |= MAP_HUGETLB;
6437
c7e548b4 6438 goto got_name;
0a4a9391 6439 } else {
fbe26abe
JO
6440 if (vma->vm_ops && vma->vm_ops->name) {
6441 name = (char *) vma->vm_ops->name(vma);
6442 if (name)
6443 goto cpy_name;
6444 }
6445
2c42cfbf 6446 name = (char *)arch_vma_name(vma);
c7e548b4
ON
6447 if (name)
6448 goto cpy_name;
089dd79d 6449
32c5fb7e 6450 if (vma->vm_start <= vma->vm_mm->start_brk &&
3af9e859 6451 vma->vm_end >= vma->vm_mm->brk) {
c7e548b4
ON
6452 name = "[heap]";
6453 goto cpy_name;
32c5fb7e
ON
6454 }
6455 if (vma->vm_start <= vma->vm_mm->start_stack &&
3af9e859 6456 vma->vm_end >= vma->vm_mm->start_stack) {
c7e548b4
ON
6457 name = "[stack]";
6458 goto cpy_name;
089dd79d
PZ
6459 }
6460
c7e548b4
ON
6461 name = "//anon";
6462 goto cpy_name;
0a4a9391
PZ
6463 }
6464
c7e548b4
ON
6465cpy_name:
6466 strlcpy(tmp, name, sizeof(tmp));
6467 name = tmp;
0a4a9391 6468got_name:
2c42cfbf
PZ
6469 /*
6470 * Since our buffer works in 8 byte units we need to align our string
6471 * size to a multiple of 8. However, we must guarantee the tail end is
6472 * zero'd out to avoid leaking random bits to userspace.
6473 */
6474 size = strlen(name)+1;
6475 while (!IS_ALIGNED(size, sizeof(u64)))
6476 name[size++] = '\0';
0a4a9391
PZ
6477
6478 mmap_event->file_name = name;
6479 mmap_event->file_size = size;
13d7a241
SE
6480 mmap_event->maj = maj;
6481 mmap_event->min = min;
6482 mmap_event->ino = ino;
6483 mmap_event->ino_generation = gen;
f972eb63
PZ
6484 mmap_event->prot = prot;
6485 mmap_event->flags = flags;
0a4a9391 6486
2fe85427
SE
6487 if (!(vma->vm_flags & VM_EXEC))
6488 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
6489
cdd6c482 6490 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
0a4a9391 6491
aab5b71e 6492 perf_iterate_sb(perf_event_mmap_output,
52d857a8
JO
6493 mmap_event,
6494 NULL);
665c2142 6495
0a4a9391
PZ
6496 kfree(buf);
6497}
6498
375637bc
AS
6499/*
6500 * Whether this @filter depends on a dynamic object which is not loaded
6501 * yet or its load addresses are not known.
6502 */
6503static bool perf_addr_filter_needs_mmap(struct perf_addr_filter *filter)
6504{
6505 return filter->filter && filter->inode;
6506}
6507
6508/*
6509 * Check whether inode and address range match filter criteria.
6510 */
6511static bool perf_addr_filter_match(struct perf_addr_filter *filter,
6512 struct file *file, unsigned long offset,
6513 unsigned long size)
6514{
6515 if (filter->inode != file->f_inode)
6516 return false;
6517
6518 if (filter->offset > offset + size)
6519 return false;
6520
6521 if (filter->offset + filter->size < offset)
6522 return false;
6523
6524 return true;
6525}
6526
6527static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
6528{
6529 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6530 struct vm_area_struct *vma = data;
6531 unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags;
6532 struct file *file = vma->vm_file;
6533 struct perf_addr_filter *filter;
6534 unsigned int restart = 0, count = 0;
6535
6536 if (!has_addr_filter(event))
6537 return;
6538
6539 if (!file)
6540 return;
6541
6542 raw_spin_lock_irqsave(&ifh->lock, flags);
6543 list_for_each_entry(filter, &ifh->list, entry) {
6544 if (perf_addr_filter_match(filter, file, off,
6545 vma->vm_end - vma->vm_start)) {
6546 event->addr_filters_offs[count] = vma->vm_start;
6547 restart++;
6548 }
6549
6550 count++;
6551 }
6552
6553 if (restart)
6554 event->addr_filters_gen++;
6555 raw_spin_unlock_irqrestore(&ifh->lock, flags);
6556
6557 if (restart)
6558 perf_event_restart(event);
6559}
6560
6561/*
6562 * Adjust all task's events' filters to the new vma
6563 */
6564static void perf_addr_filters_adjust(struct vm_area_struct *vma)
6565{
6566 struct perf_event_context *ctx;
6567 int ctxn;
6568
6569 rcu_read_lock();
6570 for_each_task_context_nr(ctxn) {
6571 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6572 if (!ctx)
6573 continue;
6574
aab5b71e 6575 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
375637bc
AS
6576 }
6577 rcu_read_unlock();
6578}
6579
3af9e859 6580void perf_event_mmap(struct vm_area_struct *vma)
0a4a9391 6581{
9ee318a7
PZ
6582 struct perf_mmap_event mmap_event;
6583
cdd6c482 6584 if (!atomic_read(&nr_mmap_events))
9ee318a7
PZ
6585 return;
6586
6587 mmap_event = (struct perf_mmap_event){
089dd79d 6588 .vma = vma,
573402db
PZ
6589 /* .file_name */
6590 /* .file_size */
cdd6c482 6591 .event_id = {
573402db 6592 .header = {
cdd6c482 6593 .type = PERF_RECORD_MMAP,
39447b38 6594 .misc = PERF_RECORD_MISC_USER,
573402db
PZ
6595 /* .size */
6596 },
6597 /* .pid */
6598 /* .tid */
089dd79d
PZ
6599 .start = vma->vm_start,
6600 .len = vma->vm_end - vma->vm_start,
3a0304e9 6601 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
0a4a9391 6602 },
13d7a241
SE
6603 /* .maj (attr_mmap2 only) */
6604 /* .min (attr_mmap2 only) */
6605 /* .ino (attr_mmap2 only) */
6606 /* .ino_generation (attr_mmap2 only) */
f972eb63
PZ
6607 /* .prot (attr_mmap2 only) */
6608 /* .flags (attr_mmap2 only) */
0a4a9391
PZ
6609 };
6610
375637bc 6611 perf_addr_filters_adjust(vma);
cdd6c482 6612 perf_event_mmap_event(&mmap_event);
0a4a9391
PZ
6613}
6614
68db7e98
AS
6615void perf_event_aux_event(struct perf_event *event, unsigned long head,
6616 unsigned long size, u64 flags)
6617{
6618 struct perf_output_handle handle;
6619 struct perf_sample_data sample;
6620 struct perf_aux_event {
6621 struct perf_event_header header;
6622 u64 offset;
6623 u64 size;
6624 u64 flags;
6625 } rec = {
6626 .header = {
6627 .type = PERF_RECORD_AUX,
6628 .misc = 0,
6629 .size = sizeof(rec),
6630 },
6631 .offset = head,
6632 .size = size,
6633 .flags = flags,
6634 };
6635 int ret;
6636
6637 perf_event_header__init_id(&rec.header, &sample, event);
6638 ret = perf_output_begin(&handle, event, rec.header.size);
6639
6640 if (ret)
6641 return;
6642
6643 perf_output_put(&handle, rec);
6644 perf_event__output_id_sample(event, &handle, &sample);
6645
6646 perf_output_end(&handle);
6647}
6648
f38b0dbb
KL
6649/*
6650 * Lost/dropped samples logging
6651 */
6652void perf_log_lost_samples(struct perf_event *event, u64 lost)
6653{
6654 struct perf_output_handle handle;
6655 struct perf_sample_data sample;
6656 int ret;
6657
6658 struct {
6659 struct perf_event_header header;
6660 u64 lost;
6661 } lost_samples_event = {
6662 .header = {
6663 .type = PERF_RECORD_LOST_SAMPLES,
6664 .misc = 0,
6665 .size = sizeof(lost_samples_event),
6666 },
6667 .lost = lost,
6668 };
6669
6670 perf_event_header__init_id(&lost_samples_event.header, &sample, event);
6671
6672 ret = perf_output_begin(&handle, event,
6673 lost_samples_event.header.size);
6674 if (ret)
6675 return;
6676
6677 perf_output_put(&handle, lost_samples_event);
6678 perf_event__output_id_sample(event, &handle, &sample);
6679 perf_output_end(&handle);
6680}
6681
45ac1403
AH
6682/*
6683 * context_switch tracking
6684 */
6685
6686struct perf_switch_event {
6687 struct task_struct *task;
6688 struct task_struct *next_prev;
6689
6690 struct {
6691 struct perf_event_header header;
6692 u32 next_prev_pid;
6693 u32 next_prev_tid;
6694 } event_id;
6695};
6696
6697static int perf_event_switch_match(struct perf_event *event)
6698{
6699 return event->attr.context_switch;
6700}
6701
6702static void perf_event_switch_output(struct perf_event *event, void *data)
6703{
6704 struct perf_switch_event *se = data;
6705 struct perf_output_handle handle;
6706 struct perf_sample_data sample;
6707 int ret;
6708
6709 if (!perf_event_switch_match(event))
6710 return;
6711
6712 /* Only CPU-wide events are allowed to see next/prev pid/tid */
6713 if (event->ctx->task) {
6714 se->event_id.header.type = PERF_RECORD_SWITCH;
6715 se->event_id.header.size = sizeof(se->event_id.header);
6716 } else {
6717 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
6718 se->event_id.header.size = sizeof(se->event_id);
6719 se->event_id.next_prev_pid =
6720 perf_event_pid(event, se->next_prev);
6721 se->event_id.next_prev_tid =
6722 perf_event_tid(event, se->next_prev);
6723 }
6724
6725 perf_event_header__init_id(&se->event_id.header, &sample, event);
6726
6727 ret = perf_output_begin(&handle, event, se->event_id.header.size);
6728 if (ret)
6729 return;
6730
6731 if (event->ctx->task)
6732 perf_output_put(&handle, se->event_id.header);
6733 else
6734 perf_output_put(&handle, se->event_id);
6735
6736 perf_event__output_id_sample(event, &handle, &sample);
6737
6738 perf_output_end(&handle);
6739}
6740
6741static void perf_event_switch(struct task_struct *task,
6742 struct task_struct *next_prev, bool sched_in)
6743{
6744 struct perf_switch_event switch_event;
6745
6746 /* N.B. caller checks nr_switch_events != 0 */
6747
6748 switch_event = (struct perf_switch_event){
6749 .task = task,
6750 .next_prev = next_prev,
6751 .event_id = {
6752 .header = {
6753 /* .type */
6754 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
6755 /* .size */
6756 },
6757 /* .next_prev_pid */
6758 /* .next_prev_tid */
6759 },
6760 };
6761
aab5b71e 6762 perf_iterate_sb(perf_event_switch_output,
45ac1403
AH
6763 &switch_event,
6764 NULL);
6765}
6766
a78ac325
PZ
6767/*
6768 * IRQ throttle logging
6769 */
6770
cdd6c482 6771static void perf_log_throttle(struct perf_event *event, int enable)
a78ac325
PZ
6772{
6773 struct perf_output_handle handle;
c980d109 6774 struct perf_sample_data sample;
a78ac325
PZ
6775 int ret;
6776
6777 struct {
6778 struct perf_event_header header;
6779 u64 time;
cca3f454 6780 u64 id;
7f453c24 6781 u64 stream_id;
a78ac325
PZ
6782 } throttle_event = {
6783 .header = {
cdd6c482 6784 .type = PERF_RECORD_THROTTLE,
a78ac325
PZ
6785 .misc = 0,
6786 .size = sizeof(throttle_event),
6787 },
34f43927 6788 .time = perf_event_clock(event),
cdd6c482
IM
6789 .id = primary_event_id(event),
6790 .stream_id = event->id,
a78ac325
PZ
6791 };
6792
966ee4d6 6793 if (enable)
cdd6c482 6794 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
966ee4d6 6795
c980d109
ACM
6796 perf_event_header__init_id(&throttle_event.header, &sample, event);
6797
6798 ret = perf_output_begin(&handle, event,
a7ac67ea 6799 throttle_event.header.size);
a78ac325
PZ
6800 if (ret)
6801 return;
6802
6803 perf_output_put(&handle, throttle_event);
c980d109 6804 perf_event__output_id_sample(event, &handle, &sample);
a78ac325
PZ
6805 perf_output_end(&handle);
6806}
6807
ec0d7729
AS
6808static void perf_log_itrace_start(struct perf_event *event)
6809{
6810 struct perf_output_handle handle;
6811 struct perf_sample_data sample;
6812 struct perf_aux_event {
6813 struct perf_event_header header;
6814 u32 pid;
6815 u32 tid;
6816 } rec;
6817 int ret;
6818
6819 if (event->parent)
6820 event = event->parent;
6821
6822 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
6823 event->hw.itrace_started)
6824 return;
6825
ec0d7729
AS
6826 rec.header.type = PERF_RECORD_ITRACE_START;
6827 rec.header.misc = 0;
6828 rec.header.size = sizeof(rec);
6829 rec.pid = perf_event_pid(event, current);
6830 rec.tid = perf_event_tid(event, current);
6831
6832 perf_event_header__init_id(&rec.header, &sample, event);
6833 ret = perf_output_begin(&handle, event, rec.header.size);
6834
6835 if (ret)
6836 return;
6837
6838 perf_output_put(&handle, rec);
6839 perf_event__output_id_sample(event, &handle, &sample);
6840
6841 perf_output_end(&handle);
6842}
6843
f6c7d5fe 6844/*
cdd6c482 6845 * Generic event overflow handling, sampling.
f6c7d5fe
PZ
6846 */
6847
a8b0ca17 6848static int __perf_event_overflow(struct perf_event *event,
5622f295
MM
6849 int throttle, struct perf_sample_data *data,
6850 struct pt_regs *regs)
f6c7d5fe 6851{
cdd6c482
IM
6852 int events = atomic_read(&event->event_limit);
6853 struct hw_perf_event *hwc = &event->hw;
e050e3f0 6854 u64 seq;
79f14641
PZ
6855 int ret = 0;
6856
96398826
PZ
6857 /*
6858 * Non-sampling counters might still use the PMI to fold short
6859 * hardware counters, ignore those.
6860 */
6861 if (unlikely(!is_sampling_event(event)))
6862 return 0;
6863
e050e3f0
SE
6864 seq = __this_cpu_read(perf_throttled_seq);
6865 if (seq != hwc->interrupts_seq) {
6866 hwc->interrupts_seq = seq;
6867 hwc->interrupts = 1;
6868 } else {
6869 hwc->interrupts++;
6870 if (unlikely(throttle
6871 && hwc->interrupts >= max_samples_per_tick)) {
6872 __this_cpu_inc(perf_throttled_count);
555e0c1e 6873 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
163ec435
PZ
6874 hwc->interrupts = MAX_INTERRUPTS;
6875 perf_log_throttle(event, 0);
a78ac325
PZ
6876 ret = 1;
6877 }
e050e3f0 6878 }
60db5e09 6879
cdd6c482 6880 if (event->attr.freq) {
def0a9b2 6881 u64 now = perf_clock();
abd50713 6882 s64 delta = now - hwc->freq_time_stamp;
bd2b5b12 6883
abd50713 6884 hwc->freq_time_stamp = now;
bd2b5b12 6885
abd50713 6886 if (delta > 0 && delta < 2*TICK_NSEC)
f39d47ff 6887 perf_adjust_period(event, delta, hwc->last_period, true);
bd2b5b12
PZ
6888 }
6889
2023b359
PZ
6890 /*
6891 * XXX event_limit might not quite work as expected on inherited
cdd6c482 6892 * events
2023b359
PZ
6893 */
6894
cdd6c482
IM
6895 event->pending_kill = POLL_IN;
6896 if (events && atomic_dec_and_test(&event->event_limit)) {
79f14641 6897 ret = 1;
cdd6c482 6898 event->pending_kill = POLL_HUP;
a8b0ca17
PZ
6899 event->pending_disable = 1;
6900 irq_work_queue(&event->pending);
79f14641
PZ
6901 }
6902
1879445d 6903 event->overflow_handler(event, data, regs);
453f19ee 6904
fed66e2c 6905 if (*perf_event_fasync(event) && event->pending_kill) {
a8b0ca17
PZ
6906 event->pending_wakeup = 1;
6907 irq_work_queue(&event->pending);
f506b3dc
PZ
6908 }
6909
79f14641 6910 return ret;
f6c7d5fe
PZ
6911}
6912
a8b0ca17 6913int perf_event_overflow(struct perf_event *event,
5622f295
MM
6914 struct perf_sample_data *data,
6915 struct pt_regs *regs)
850bc73f 6916{
a8b0ca17 6917 return __perf_event_overflow(event, 1, data, regs);
850bc73f
PZ
6918}
6919
15dbf27c 6920/*
cdd6c482 6921 * Generic software event infrastructure
15dbf27c
PZ
6922 */
6923
b28ab83c
PZ
6924struct swevent_htable {
6925 struct swevent_hlist *swevent_hlist;
6926 struct mutex hlist_mutex;
6927 int hlist_refcount;
6928
6929 /* Recursion avoidance in each contexts */
6930 int recursion[PERF_NR_CONTEXTS];
6931};
6932
6933static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
6934
7b4b6658 6935/*
cdd6c482
IM
6936 * We directly increment event->count and keep a second value in
6937 * event->hw.period_left to count intervals. This period event
7b4b6658
PZ
6938 * is kept in the range [-sample_period, 0] so that we can use the
6939 * sign as trigger.
6940 */
6941
ab573844 6942u64 perf_swevent_set_period(struct perf_event *event)
15dbf27c 6943{
cdd6c482 6944 struct hw_perf_event *hwc = &event->hw;
7b4b6658
PZ
6945 u64 period = hwc->last_period;
6946 u64 nr, offset;
6947 s64 old, val;
6948
6949 hwc->last_period = hwc->sample_period;
15dbf27c
PZ
6950
6951again:
e7850595 6952 old = val = local64_read(&hwc->period_left);
7b4b6658
PZ
6953 if (val < 0)
6954 return 0;
15dbf27c 6955
7b4b6658
PZ
6956 nr = div64_u64(period + val, period);
6957 offset = nr * period;
6958 val -= offset;
e7850595 6959 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7b4b6658 6960 goto again;
15dbf27c 6961
7b4b6658 6962 return nr;
15dbf27c
PZ
6963}
6964
0cff784a 6965static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
a8b0ca17 6966 struct perf_sample_data *data,
5622f295 6967 struct pt_regs *regs)
15dbf27c 6968{
cdd6c482 6969 struct hw_perf_event *hwc = &event->hw;
850bc73f 6970 int throttle = 0;
15dbf27c 6971
0cff784a
PZ
6972 if (!overflow)
6973 overflow = perf_swevent_set_period(event);
15dbf27c 6974
7b4b6658
PZ
6975 if (hwc->interrupts == MAX_INTERRUPTS)
6976 return;
15dbf27c 6977
7b4b6658 6978 for (; overflow; overflow--) {
a8b0ca17 6979 if (__perf_event_overflow(event, throttle,
5622f295 6980 data, regs)) {
7b4b6658
PZ
6981 /*
6982 * We inhibit the overflow from happening when
6983 * hwc->interrupts == MAX_INTERRUPTS.
6984 */
6985 break;
6986 }
cf450a73 6987 throttle = 1;
7b4b6658 6988 }
15dbf27c
PZ
6989}
6990
a4eaf7f1 6991static void perf_swevent_event(struct perf_event *event, u64 nr,
a8b0ca17 6992 struct perf_sample_data *data,
5622f295 6993 struct pt_regs *regs)
7b4b6658 6994{
cdd6c482 6995 struct hw_perf_event *hwc = &event->hw;
d6d020e9 6996
e7850595 6997 local64_add(nr, &event->count);
d6d020e9 6998
0cff784a
PZ
6999 if (!regs)
7000 return;
7001
6c7e550f 7002 if (!is_sampling_event(event))
7b4b6658 7003 return;
d6d020e9 7004
5d81e5cf
AV
7005 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
7006 data->period = nr;
7007 return perf_swevent_overflow(event, 1, data, regs);
7008 } else
7009 data->period = event->hw.last_period;
7010
0cff784a 7011 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
a8b0ca17 7012 return perf_swevent_overflow(event, 1, data, regs);
0cff784a 7013
e7850595 7014 if (local64_add_negative(nr, &hwc->period_left))
7b4b6658 7015 return;
df1a132b 7016
a8b0ca17 7017 perf_swevent_overflow(event, 0, data, regs);
d6d020e9
PZ
7018}
7019
f5ffe02e
FW
7020static int perf_exclude_event(struct perf_event *event,
7021 struct pt_regs *regs)
7022{
a4eaf7f1 7023 if (event->hw.state & PERF_HES_STOPPED)
91b2f482 7024 return 1;
a4eaf7f1 7025
f5ffe02e
FW
7026 if (regs) {
7027 if (event->attr.exclude_user && user_mode(regs))
7028 return 1;
7029
7030 if (event->attr.exclude_kernel && !user_mode(regs))
7031 return 1;
7032 }
7033
7034 return 0;
7035}
7036
cdd6c482 7037static int perf_swevent_match(struct perf_event *event,
1c432d89 7038 enum perf_type_id type,
6fb2915d
LZ
7039 u32 event_id,
7040 struct perf_sample_data *data,
7041 struct pt_regs *regs)
15dbf27c 7042{
cdd6c482 7043 if (event->attr.type != type)
a21ca2ca 7044 return 0;
f5ffe02e 7045
cdd6c482 7046 if (event->attr.config != event_id)
15dbf27c
PZ
7047 return 0;
7048
f5ffe02e
FW
7049 if (perf_exclude_event(event, regs))
7050 return 0;
15dbf27c
PZ
7051
7052 return 1;
7053}
7054
76e1d904
FW
7055static inline u64 swevent_hash(u64 type, u32 event_id)
7056{
7057 u64 val = event_id | (type << 32);
7058
7059 return hash_64(val, SWEVENT_HLIST_BITS);
7060}
7061
49f135ed
FW
7062static inline struct hlist_head *
7063__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
76e1d904 7064{
49f135ed
FW
7065 u64 hash = swevent_hash(type, event_id);
7066
7067 return &hlist->heads[hash];
7068}
76e1d904 7069
49f135ed
FW
7070/* For the read side: events when they trigger */
7071static inline struct hlist_head *
b28ab83c 7072find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
49f135ed
FW
7073{
7074 struct swevent_hlist *hlist;
76e1d904 7075
b28ab83c 7076 hlist = rcu_dereference(swhash->swevent_hlist);
76e1d904
FW
7077 if (!hlist)
7078 return NULL;
7079
49f135ed
FW
7080 return __find_swevent_head(hlist, type, event_id);
7081}
7082
7083/* For the event head insertion and removal in the hlist */
7084static inline struct hlist_head *
b28ab83c 7085find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
49f135ed
FW
7086{
7087 struct swevent_hlist *hlist;
7088 u32 event_id = event->attr.config;
7089 u64 type = event->attr.type;
7090
7091 /*
7092 * Event scheduling is always serialized against hlist allocation
7093 * and release. Which makes the protected version suitable here.
7094 * The context lock guarantees that.
7095 */
b28ab83c 7096 hlist = rcu_dereference_protected(swhash->swevent_hlist,
49f135ed
FW
7097 lockdep_is_held(&event->ctx->lock));
7098 if (!hlist)
7099 return NULL;
7100
7101 return __find_swevent_head(hlist, type, event_id);
76e1d904
FW
7102}
7103
7104static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
a8b0ca17 7105 u64 nr,
76e1d904
FW
7106 struct perf_sample_data *data,
7107 struct pt_regs *regs)
15dbf27c 7108{
4a32fea9 7109 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 7110 struct perf_event *event;
76e1d904 7111 struct hlist_head *head;
15dbf27c 7112
76e1d904 7113 rcu_read_lock();
b28ab83c 7114 head = find_swevent_head_rcu(swhash, type, event_id);
76e1d904
FW
7115 if (!head)
7116 goto end;
7117
b67bfe0d 7118 hlist_for_each_entry_rcu(event, head, hlist_entry) {
6fb2915d 7119 if (perf_swevent_match(event, type, event_id, data, regs))
a8b0ca17 7120 perf_swevent_event(event, nr, data, regs);
15dbf27c 7121 }
76e1d904
FW
7122end:
7123 rcu_read_unlock();
15dbf27c
PZ
7124}
7125
86038c5e
PZI
7126DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
7127
4ed7c92d 7128int perf_swevent_get_recursion_context(void)
96f6d444 7129{
4a32fea9 7130 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
96f6d444 7131
b28ab83c 7132 return get_recursion_context(swhash->recursion);
96f6d444 7133}
645e8cc0 7134EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
96f6d444 7135
fa9f90be 7136inline void perf_swevent_put_recursion_context(int rctx)
15dbf27c 7137{
4a32fea9 7138 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
927c7a9e 7139
b28ab83c 7140 put_recursion_context(swhash->recursion, rctx);
ce71b9df 7141}
15dbf27c 7142
86038c5e 7143void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
b8e83514 7144{
a4234bfc 7145 struct perf_sample_data data;
4ed7c92d 7146
86038c5e 7147 if (WARN_ON_ONCE(!regs))
4ed7c92d 7148 return;
a4234bfc 7149
fd0d000b 7150 perf_sample_data_init(&data, addr, 0);
a8b0ca17 7151 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
86038c5e
PZI
7152}
7153
7154void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7155{
7156 int rctx;
7157
7158 preempt_disable_notrace();
7159 rctx = perf_swevent_get_recursion_context();
7160 if (unlikely(rctx < 0))
7161 goto fail;
7162
7163 ___perf_sw_event(event_id, nr, regs, addr);
4ed7c92d
PZ
7164
7165 perf_swevent_put_recursion_context(rctx);
86038c5e 7166fail:
1c024eca 7167 preempt_enable_notrace();
b8e83514
PZ
7168}
7169
cdd6c482 7170static void perf_swevent_read(struct perf_event *event)
15dbf27c 7171{
15dbf27c
PZ
7172}
7173
a4eaf7f1 7174static int perf_swevent_add(struct perf_event *event, int flags)
15dbf27c 7175{
4a32fea9 7176 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 7177 struct hw_perf_event *hwc = &event->hw;
76e1d904
FW
7178 struct hlist_head *head;
7179
6c7e550f 7180 if (is_sampling_event(event)) {
7b4b6658 7181 hwc->last_period = hwc->sample_period;
cdd6c482 7182 perf_swevent_set_period(event);
7b4b6658 7183 }
76e1d904 7184
a4eaf7f1
PZ
7185 hwc->state = !(flags & PERF_EF_START);
7186
b28ab83c 7187 head = find_swevent_head(swhash, event);
12ca6ad2 7188 if (WARN_ON_ONCE(!head))
76e1d904
FW
7189 return -EINVAL;
7190
7191 hlist_add_head_rcu(&event->hlist_entry, head);
6a694a60 7192 perf_event_update_userpage(event);
76e1d904 7193
15dbf27c
PZ
7194 return 0;
7195}
7196
a4eaf7f1 7197static void perf_swevent_del(struct perf_event *event, int flags)
15dbf27c 7198{
76e1d904 7199 hlist_del_rcu(&event->hlist_entry);
15dbf27c
PZ
7200}
7201
a4eaf7f1 7202static void perf_swevent_start(struct perf_event *event, int flags)
5c92d124 7203{
a4eaf7f1 7204 event->hw.state = 0;
d6d020e9 7205}
aa9c4c0f 7206
a4eaf7f1 7207static void perf_swevent_stop(struct perf_event *event, int flags)
d6d020e9 7208{
a4eaf7f1 7209 event->hw.state = PERF_HES_STOPPED;
bae43c99
IM
7210}
7211
49f135ed
FW
7212/* Deref the hlist from the update side */
7213static inline struct swevent_hlist *
b28ab83c 7214swevent_hlist_deref(struct swevent_htable *swhash)
49f135ed 7215{
b28ab83c
PZ
7216 return rcu_dereference_protected(swhash->swevent_hlist,
7217 lockdep_is_held(&swhash->hlist_mutex));
49f135ed
FW
7218}
7219
b28ab83c 7220static void swevent_hlist_release(struct swevent_htable *swhash)
76e1d904 7221{
b28ab83c 7222 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
76e1d904 7223
49f135ed 7224 if (!hlist)
76e1d904
FW
7225 return;
7226
70691d4a 7227 RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
fa4bbc4c 7228 kfree_rcu(hlist, rcu_head);
76e1d904
FW
7229}
7230
3b364d7b 7231static void swevent_hlist_put_cpu(int cpu)
76e1d904 7232{
b28ab83c 7233 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904 7234
b28ab83c 7235 mutex_lock(&swhash->hlist_mutex);
76e1d904 7236
b28ab83c
PZ
7237 if (!--swhash->hlist_refcount)
7238 swevent_hlist_release(swhash);
76e1d904 7239
b28ab83c 7240 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
7241}
7242
3b364d7b 7243static void swevent_hlist_put(void)
76e1d904
FW
7244{
7245 int cpu;
7246
76e1d904 7247 for_each_possible_cpu(cpu)
3b364d7b 7248 swevent_hlist_put_cpu(cpu);
76e1d904
FW
7249}
7250
3b364d7b 7251static int swevent_hlist_get_cpu(int cpu)
76e1d904 7252{
b28ab83c 7253 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904
FW
7254 int err = 0;
7255
b28ab83c 7256 mutex_lock(&swhash->hlist_mutex);
b28ab83c 7257 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
76e1d904
FW
7258 struct swevent_hlist *hlist;
7259
7260 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
7261 if (!hlist) {
7262 err = -ENOMEM;
7263 goto exit;
7264 }
b28ab83c 7265 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 7266 }
b28ab83c 7267 swhash->hlist_refcount++;
9ed6060d 7268exit:
b28ab83c 7269 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
7270
7271 return err;
7272}
7273
3b364d7b 7274static int swevent_hlist_get(void)
76e1d904 7275{
3b364d7b 7276 int err, cpu, failed_cpu;
76e1d904 7277
76e1d904
FW
7278 get_online_cpus();
7279 for_each_possible_cpu(cpu) {
3b364d7b 7280 err = swevent_hlist_get_cpu(cpu);
76e1d904
FW
7281 if (err) {
7282 failed_cpu = cpu;
7283 goto fail;
7284 }
7285 }
7286 put_online_cpus();
7287
7288 return 0;
9ed6060d 7289fail:
76e1d904
FW
7290 for_each_possible_cpu(cpu) {
7291 if (cpu == failed_cpu)
7292 break;
3b364d7b 7293 swevent_hlist_put_cpu(cpu);
76e1d904
FW
7294 }
7295
7296 put_online_cpus();
7297 return err;
7298}
7299
c5905afb 7300struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
95476b64 7301
b0a873eb
PZ
7302static void sw_perf_event_destroy(struct perf_event *event)
7303{
7304 u64 event_id = event->attr.config;
95476b64 7305
b0a873eb
PZ
7306 WARN_ON(event->parent);
7307
c5905afb 7308 static_key_slow_dec(&perf_swevent_enabled[event_id]);
3b364d7b 7309 swevent_hlist_put();
b0a873eb
PZ
7310}
7311
7312static int perf_swevent_init(struct perf_event *event)
7313{
8176cced 7314 u64 event_id = event->attr.config;
b0a873eb
PZ
7315
7316 if (event->attr.type != PERF_TYPE_SOFTWARE)
7317 return -ENOENT;
7318
2481c5fa
SE
7319 /*
7320 * no branch sampling for software events
7321 */
7322 if (has_branch_stack(event))
7323 return -EOPNOTSUPP;
7324
b0a873eb
PZ
7325 switch (event_id) {
7326 case PERF_COUNT_SW_CPU_CLOCK:
7327 case PERF_COUNT_SW_TASK_CLOCK:
7328 return -ENOENT;
7329
7330 default:
7331 break;
7332 }
7333
ce677831 7334 if (event_id >= PERF_COUNT_SW_MAX)
b0a873eb
PZ
7335 return -ENOENT;
7336
7337 if (!event->parent) {
7338 int err;
7339
3b364d7b 7340 err = swevent_hlist_get();
b0a873eb
PZ
7341 if (err)
7342 return err;
7343
c5905afb 7344 static_key_slow_inc(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
7345 event->destroy = sw_perf_event_destroy;
7346 }
7347
7348 return 0;
7349}
7350
7351static struct pmu perf_swevent = {
89a1e187 7352 .task_ctx_nr = perf_sw_context,
95476b64 7353
34f43927
PZ
7354 .capabilities = PERF_PMU_CAP_NO_NMI,
7355
b0a873eb 7356 .event_init = perf_swevent_init,
a4eaf7f1
PZ
7357 .add = perf_swevent_add,
7358 .del = perf_swevent_del,
7359 .start = perf_swevent_start,
7360 .stop = perf_swevent_stop,
1c024eca 7361 .read = perf_swevent_read,
1c024eca
PZ
7362};
7363
b0a873eb
PZ
7364#ifdef CONFIG_EVENT_TRACING
7365
1c024eca
PZ
7366static int perf_tp_filter_match(struct perf_event *event,
7367 struct perf_sample_data *data)
7368{
7369 void *record = data->raw->data;
7370
b71b437e
PZ
7371 /* only top level events have filters set */
7372 if (event->parent)
7373 event = event->parent;
7374
1c024eca
PZ
7375 if (likely(!event->filter) || filter_match_preds(event->filter, record))
7376 return 1;
7377 return 0;
7378}
7379
7380static int perf_tp_event_match(struct perf_event *event,
7381 struct perf_sample_data *data,
7382 struct pt_regs *regs)
7383{
a0f7d0f7
FW
7384 if (event->hw.state & PERF_HES_STOPPED)
7385 return 0;
580d607c
PZ
7386 /*
7387 * All tracepoints are from kernel-space.
7388 */
7389 if (event->attr.exclude_kernel)
1c024eca
PZ
7390 return 0;
7391
7392 if (!perf_tp_filter_match(event, data))
7393 return 0;
7394
7395 return 1;
7396}
7397
7398void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
e6dab5ff
AV
7399 struct pt_regs *regs, struct hlist_head *head, int rctx,
7400 struct task_struct *task)
95476b64
FW
7401{
7402 struct perf_sample_data data;
1c024eca 7403 struct perf_event *event;
1c024eca 7404
95476b64
FW
7405 struct perf_raw_record raw = {
7406 .size = entry_size,
7407 .data = record,
7408 };
7409
fd0d000b 7410 perf_sample_data_init(&data, addr, 0);
95476b64
FW
7411 data.raw = &raw;
7412
b67bfe0d 7413 hlist_for_each_entry_rcu(event, head, hlist_entry) {
1c024eca 7414 if (perf_tp_event_match(event, &data, regs))
a8b0ca17 7415 perf_swevent_event(event, count, &data, regs);
4f41c013 7416 }
ecc55f84 7417
e6dab5ff
AV
7418 /*
7419 * If we got specified a target task, also iterate its context and
7420 * deliver this event there too.
7421 */
7422 if (task && task != current) {
7423 struct perf_event_context *ctx;
7424 struct trace_entry *entry = record;
7425
7426 rcu_read_lock();
7427 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
7428 if (!ctx)
7429 goto unlock;
7430
7431 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7432 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7433 continue;
7434 if (event->attr.config != entry->type)
7435 continue;
7436 if (perf_tp_event_match(event, &data, regs))
7437 perf_swevent_event(event, count, &data, regs);
7438 }
7439unlock:
7440 rcu_read_unlock();
7441 }
7442
ecc55f84 7443 perf_swevent_put_recursion_context(rctx);
95476b64
FW
7444}
7445EXPORT_SYMBOL_GPL(perf_tp_event);
7446
cdd6c482 7447static void tp_perf_event_destroy(struct perf_event *event)
e077df4f 7448{
1c024eca 7449 perf_trace_destroy(event);
e077df4f
PZ
7450}
7451
b0a873eb 7452static int perf_tp_event_init(struct perf_event *event)
e077df4f 7453{
76e1d904
FW
7454 int err;
7455
b0a873eb
PZ
7456 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7457 return -ENOENT;
7458
2481c5fa
SE
7459 /*
7460 * no branch sampling for tracepoint events
7461 */
7462 if (has_branch_stack(event))
7463 return -EOPNOTSUPP;
7464
1c024eca
PZ
7465 err = perf_trace_init(event);
7466 if (err)
b0a873eb 7467 return err;
e077df4f 7468
cdd6c482 7469 event->destroy = tp_perf_event_destroy;
e077df4f 7470
b0a873eb
PZ
7471 return 0;
7472}
7473
7474static struct pmu perf_tracepoint = {
89a1e187
PZ
7475 .task_ctx_nr = perf_sw_context,
7476
b0a873eb 7477 .event_init = perf_tp_event_init,
a4eaf7f1
PZ
7478 .add = perf_trace_add,
7479 .del = perf_trace_del,
7480 .start = perf_swevent_start,
7481 .stop = perf_swevent_stop,
b0a873eb 7482 .read = perf_swevent_read,
b0a873eb
PZ
7483};
7484
7485static inline void perf_tp_register(void)
7486{
2e80a82a 7487 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
e077df4f 7488}
6fb2915d 7489
6fb2915d
LZ
7490static void perf_event_free_filter(struct perf_event *event)
7491{
7492 ftrace_profile_free_filter(event);
7493}
7494
2541517c
AS
7495static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7496{
7497 struct bpf_prog *prog;
7498
7499 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7500 return -EINVAL;
7501
7502 if (event->tp_event->prog)
7503 return -EEXIST;
7504
04a22fae
WN
7505 if (!(event->tp_event->flags & TRACE_EVENT_FL_UKPROBE))
7506 /* bpf programs can only be attached to u/kprobes */
2541517c
AS
7507 return -EINVAL;
7508
7509 prog = bpf_prog_get(prog_fd);
7510 if (IS_ERR(prog))
7511 return PTR_ERR(prog);
7512
6c373ca8 7513 if (prog->type != BPF_PROG_TYPE_KPROBE) {
2541517c
AS
7514 /* valid fd, but invalid bpf program type */
7515 bpf_prog_put(prog);
7516 return -EINVAL;
7517 }
7518
7519 event->tp_event->prog = prog;
7520
7521 return 0;
7522}
7523
7524static void perf_event_free_bpf_prog(struct perf_event *event)
7525{
7526 struct bpf_prog *prog;
7527
7528 if (!event->tp_event)
7529 return;
7530
7531 prog = event->tp_event->prog;
7532 if (prog) {
7533 event->tp_event->prog = NULL;
7534 bpf_prog_put(prog);
7535 }
7536}
7537
e077df4f 7538#else
6fb2915d 7539
b0a873eb 7540static inline void perf_tp_register(void)
e077df4f 7541{
e077df4f 7542}
6fb2915d 7543
6fb2915d
LZ
7544static void perf_event_free_filter(struct perf_event *event)
7545{
7546}
7547
2541517c
AS
7548static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7549{
7550 return -ENOENT;
7551}
7552
7553static void perf_event_free_bpf_prog(struct perf_event *event)
7554{
7555}
07b139c8 7556#endif /* CONFIG_EVENT_TRACING */
e077df4f 7557
24f1e32c 7558#ifdef CONFIG_HAVE_HW_BREAKPOINT
f5ffe02e 7559void perf_bp_event(struct perf_event *bp, void *data)
24f1e32c 7560{
f5ffe02e
FW
7561 struct perf_sample_data sample;
7562 struct pt_regs *regs = data;
7563
fd0d000b 7564 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
f5ffe02e 7565
a4eaf7f1 7566 if (!bp->hw.state && !perf_exclude_event(bp, regs))
a8b0ca17 7567 perf_swevent_event(bp, 1, &sample, regs);
24f1e32c
FW
7568}
7569#endif
7570
375637bc
AS
7571/*
7572 * Allocate a new address filter
7573 */
7574static struct perf_addr_filter *
7575perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
7576{
7577 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
7578 struct perf_addr_filter *filter;
7579
7580 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
7581 if (!filter)
7582 return NULL;
7583
7584 INIT_LIST_HEAD(&filter->entry);
7585 list_add_tail(&filter->entry, filters);
7586
7587 return filter;
7588}
7589
7590static void free_filters_list(struct list_head *filters)
7591{
7592 struct perf_addr_filter *filter, *iter;
7593
7594 list_for_each_entry_safe(filter, iter, filters, entry) {
7595 if (filter->inode)
7596 iput(filter->inode);
7597 list_del(&filter->entry);
7598 kfree(filter);
7599 }
7600}
7601
7602/*
7603 * Free existing address filters and optionally install new ones
7604 */
7605static void perf_addr_filters_splice(struct perf_event *event,
7606 struct list_head *head)
7607{
7608 unsigned long flags;
7609 LIST_HEAD(list);
7610
7611 if (!has_addr_filter(event))
7612 return;
7613
7614 /* don't bother with children, they don't have their own filters */
7615 if (event->parent)
7616 return;
7617
7618 raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
7619
7620 list_splice_init(&event->addr_filters.list, &list);
7621 if (head)
7622 list_splice(head, &event->addr_filters.list);
7623
7624 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
7625
7626 free_filters_list(&list);
7627}
7628
7629/*
7630 * Scan through mm's vmas and see if one of them matches the
7631 * @filter; if so, adjust filter's address range.
7632 * Called with mm::mmap_sem down for reading.
7633 */
7634static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter,
7635 struct mm_struct *mm)
7636{
7637 struct vm_area_struct *vma;
7638
7639 for (vma = mm->mmap; vma; vma = vma->vm_next) {
7640 struct file *file = vma->vm_file;
7641 unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
7642 unsigned long vma_size = vma->vm_end - vma->vm_start;
7643
7644 if (!file)
7645 continue;
7646
7647 if (!perf_addr_filter_match(filter, file, off, vma_size))
7648 continue;
7649
7650 return vma->vm_start;
7651 }
7652
7653 return 0;
7654}
7655
7656/*
7657 * Update event's address range filters based on the
7658 * task's existing mappings, if any.
7659 */
7660static void perf_event_addr_filters_apply(struct perf_event *event)
7661{
7662 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7663 struct task_struct *task = READ_ONCE(event->ctx->task);
7664 struct perf_addr_filter *filter;
7665 struct mm_struct *mm = NULL;
7666 unsigned int count = 0;
7667 unsigned long flags;
7668
7669 /*
7670 * We may observe TASK_TOMBSTONE, which means that the event tear-down
7671 * will stop on the parent's child_mutex that our caller is also holding
7672 */
7673 if (task == TASK_TOMBSTONE)
7674 return;
7675
7676 mm = get_task_mm(event->ctx->task);
7677 if (!mm)
7678 goto restart;
7679
7680 down_read(&mm->mmap_sem);
7681
7682 raw_spin_lock_irqsave(&ifh->lock, flags);
7683 list_for_each_entry(filter, &ifh->list, entry) {
7684 event->addr_filters_offs[count] = 0;
7685
7686 if (perf_addr_filter_needs_mmap(filter))
7687 event->addr_filters_offs[count] =
7688 perf_addr_filter_apply(filter, mm);
7689
7690 count++;
7691 }
7692
7693 event->addr_filters_gen++;
7694 raw_spin_unlock_irqrestore(&ifh->lock, flags);
7695
7696 up_read(&mm->mmap_sem);
7697
7698 mmput(mm);
7699
7700restart:
7701 perf_event_restart(event);
7702}
7703
7704/*
7705 * Address range filtering: limiting the data to certain
7706 * instruction address ranges. Filters are ioctl()ed to us from
7707 * userspace as ascii strings.
7708 *
7709 * Filter string format:
7710 *
7711 * ACTION RANGE_SPEC
7712 * where ACTION is one of the
7713 * * "filter": limit the trace to this region
7714 * * "start": start tracing from this address
7715 * * "stop": stop tracing at this address/region;
7716 * RANGE_SPEC is
7717 * * for kernel addresses: <start address>[/<size>]
7718 * * for object files: <start address>[/<size>]@</path/to/object/file>
7719 *
7720 * if <size> is not specified, the range is treated as a single address.
7721 */
7722enum {
7723 IF_ACT_FILTER,
7724 IF_ACT_START,
7725 IF_ACT_STOP,
7726 IF_SRC_FILE,
7727 IF_SRC_KERNEL,
7728 IF_SRC_FILEADDR,
7729 IF_SRC_KERNELADDR,
7730};
7731
7732enum {
7733 IF_STATE_ACTION = 0,
7734 IF_STATE_SOURCE,
7735 IF_STATE_END,
7736};
7737
7738static const match_table_t if_tokens = {
7739 { IF_ACT_FILTER, "filter" },
7740 { IF_ACT_START, "start" },
7741 { IF_ACT_STOP, "stop" },
7742 { IF_SRC_FILE, "%u/%u@%s" },
7743 { IF_SRC_KERNEL, "%u/%u" },
7744 { IF_SRC_FILEADDR, "%u@%s" },
7745 { IF_SRC_KERNELADDR, "%u" },
7746};
7747
7748/*
7749 * Address filter string parser
7750 */
7751static int
7752perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
7753 struct list_head *filters)
7754{
7755 struct perf_addr_filter *filter = NULL;
7756 char *start, *orig, *filename = NULL;
7757 struct path path;
7758 substring_t args[MAX_OPT_ARGS];
7759 int state = IF_STATE_ACTION, token;
7760 unsigned int kernel = 0;
7761 int ret = -EINVAL;
7762
7763 orig = fstr = kstrdup(fstr, GFP_KERNEL);
7764 if (!fstr)
7765 return -ENOMEM;
7766
7767 while ((start = strsep(&fstr, " ,\n")) != NULL) {
7768 ret = -EINVAL;
7769
7770 if (!*start)
7771 continue;
7772
7773 /* filter definition begins */
7774 if (state == IF_STATE_ACTION) {
7775 filter = perf_addr_filter_new(event, filters);
7776 if (!filter)
7777 goto fail;
7778 }
7779
7780 token = match_token(start, if_tokens, args);
7781 switch (token) {
7782 case IF_ACT_FILTER:
7783 case IF_ACT_START:
7784 filter->filter = 1;
7785
7786 case IF_ACT_STOP:
7787 if (state != IF_STATE_ACTION)
7788 goto fail;
7789
7790 state = IF_STATE_SOURCE;
7791 break;
7792
7793 case IF_SRC_KERNELADDR:
7794 case IF_SRC_KERNEL:
7795 kernel = 1;
7796
7797 case IF_SRC_FILEADDR:
7798 case IF_SRC_FILE:
7799 if (state != IF_STATE_SOURCE)
7800 goto fail;
7801
7802 if (token == IF_SRC_FILE || token == IF_SRC_KERNEL)
7803 filter->range = 1;
7804
7805 *args[0].to = 0;
7806 ret = kstrtoul(args[0].from, 0, &filter->offset);
7807 if (ret)
7808 goto fail;
7809
7810 if (filter->range) {
7811 *args[1].to = 0;
7812 ret = kstrtoul(args[1].from, 0, &filter->size);
7813 if (ret)
7814 goto fail;
7815 }
7816
7817 if (token == IF_SRC_FILE) {
7818 filename = match_strdup(&args[2]);
7819 if (!filename) {
7820 ret = -ENOMEM;
7821 goto fail;
7822 }
7823 }
7824
7825 state = IF_STATE_END;
7826 break;
7827
7828 default:
7829 goto fail;
7830 }
7831
7832 /*
7833 * Filter definition is fully parsed, validate and install it.
7834 * Make sure that it doesn't contradict itself or the event's
7835 * attribute.
7836 */
7837 if (state == IF_STATE_END) {
7838 if (kernel && event->attr.exclude_kernel)
7839 goto fail;
7840
7841 if (!kernel) {
7842 if (!filename)
7843 goto fail;
7844
7845 /* look up the path and grab its inode */
7846 ret = kern_path(filename, LOOKUP_FOLLOW, &path);
7847 if (ret)
7848 goto fail_free_name;
7849
7850 filter->inode = igrab(d_inode(path.dentry));
7851 path_put(&path);
7852 kfree(filename);
7853 filename = NULL;
7854
7855 ret = -EINVAL;
7856 if (!filter->inode ||
7857 !S_ISREG(filter->inode->i_mode))
7858 /* free_filters_list() will iput() */
7859 goto fail;
7860 }
7861
7862 /* ready to consume more filters */
7863 state = IF_STATE_ACTION;
7864 filter = NULL;
7865 }
7866 }
7867
7868 if (state != IF_STATE_ACTION)
7869 goto fail;
7870
7871 kfree(orig);
7872
7873 return 0;
7874
7875fail_free_name:
7876 kfree(filename);
7877fail:
7878 free_filters_list(filters);
7879 kfree(orig);
7880
7881 return ret;
7882}
7883
7884static int
7885perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
7886{
7887 LIST_HEAD(filters);
7888 int ret;
7889
7890 /*
7891 * Since this is called in perf_ioctl() path, we're already holding
7892 * ctx::mutex.
7893 */
7894 lockdep_assert_held(&event->ctx->mutex);
7895
7896 if (WARN_ON_ONCE(event->parent))
7897 return -EINVAL;
7898
7899 /*
7900 * For now, we only support filtering in per-task events; doing so
7901 * for CPU-wide events requires additional context switching trickery,
7902 * since same object code will be mapped at different virtual
7903 * addresses in different processes.
7904 */
7905 if (!event->ctx->task)
7906 return -EOPNOTSUPP;
7907
7908 ret = perf_event_parse_addr_filter(event, filter_str, &filters);
7909 if (ret)
7910 return ret;
7911
7912 ret = event->pmu->addr_filters_validate(&filters);
7913 if (ret) {
7914 free_filters_list(&filters);
7915 return ret;
7916 }
7917
7918 /* remove existing filters, if any */
7919 perf_addr_filters_splice(event, &filters);
7920
7921 /* install new filters */
7922 perf_event_for_each_child(event, perf_event_addr_filters_apply);
7923
7924 return ret;
7925}
7926
c796bbbe
AS
7927static int perf_event_set_filter(struct perf_event *event, void __user *arg)
7928{
7929 char *filter_str;
7930 int ret = -EINVAL;
7931
375637bc
AS
7932 if ((event->attr.type != PERF_TYPE_TRACEPOINT ||
7933 !IS_ENABLED(CONFIG_EVENT_TRACING)) &&
7934 !has_addr_filter(event))
c796bbbe
AS
7935 return -EINVAL;
7936
7937 filter_str = strndup_user(arg, PAGE_SIZE);
7938 if (IS_ERR(filter_str))
7939 return PTR_ERR(filter_str);
7940
7941 if (IS_ENABLED(CONFIG_EVENT_TRACING) &&
7942 event->attr.type == PERF_TYPE_TRACEPOINT)
7943 ret = ftrace_profile_set_filter(event, event->attr.config,
7944 filter_str);
375637bc
AS
7945 else if (has_addr_filter(event))
7946 ret = perf_event_set_addr_filter(event, filter_str);
c796bbbe
AS
7947
7948 kfree(filter_str);
7949 return ret;
7950}
7951
b0a873eb
PZ
7952/*
7953 * hrtimer based swevent callback
7954 */
f29ac756 7955
b0a873eb 7956static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
f29ac756 7957{
b0a873eb
PZ
7958 enum hrtimer_restart ret = HRTIMER_RESTART;
7959 struct perf_sample_data data;
7960 struct pt_regs *regs;
7961 struct perf_event *event;
7962 u64 period;
f29ac756 7963
b0a873eb 7964 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
ba3dd36c
PZ
7965
7966 if (event->state != PERF_EVENT_STATE_ACTIVE)
7967 return HRTIMER_NORESTART;
7968
b0a873eb 7969 event->pmu->read(event);
f344011c 7970
fd0d000b 7971 perf_sample_data_init(&data, 0, event->hw.last_period);
b0a873eb
PZ
7972 regs = get_irq_regs();
7973
7974 if (regs && !perf_exclude_event(event, regs)) {
77aeeebd 7975 if (!(event->attr.exclude_idle && is_idle_task(current)))
33b07b8b 7976 if (__perf_event_overflow(event, 1, &data, regs))
b0a873eb
PZ
7977 ret = HRTIMER_NORESTART;
7978 }
24f1e32c 7979
b0a873eb
PZ
7980 period = max_t(u64, 10000, event->hw.sample_period);
7981 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
24f1e32c 7982
b0a873eb 7983 return ret;
f29ac756
PZ
7984}
7985
b0a873eb 7986static void perf_swevent_start_hrtimer(struct perf_event *event)
5c92d124 7987{
b0a873eb 7988 struct hw_perf_event *hwc = &event->hw;
5d508e82
FBH
7989 s64 period;
7990
7991 if (!is_sampling_event(event))
7992 return;
f5ffe02e 7993
5d508e82
FBH
7994 period = local64_read(&hwc->period_left);
7995 if (period) {
7996 if (period < 0)
7997 period = 10000;
fa407f35 7998
5d508e82
FBH
7999 local64_set(&hwc->period_left, 0);
8000 } else {
8001 period = max_t(u64, 10000, hwc->sample_period);
8002 }
3497d206
TG
8003 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
8004 HRTIMER_MODE_REL_PINNED);
24f1e32c 8005}
b0a873eb
PZ
8006
8007static void perf_swevent_cancel_hrtimer(struct perf_event *event)
24f1e32c 8008{
b0a873eb
PZ
8009 struct hw_perf_event *hwc = &event->hw;
8010
6c7e550f 8011 if (is_sampling_event(event)) {
b0a873eb 8012 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
fa407f35 8013 local64_set(&hwc->period_left, ktime_to_ns(remaining));
b0a873eb
PZ
8014
8015 hrtimer_cancel(&hwc->hrtimer);
8016 }
24f1e32c
FW
8017}
8018
ba3dd36c
PZ
8019static void perf_swevent_init_hrtimer(struct perf_event *event)
8020{
8021 struct hw_perf_event *hwc = &event->hw;
8022
8023 if (!is_sampling_event(event))
8024 return;
8025
8026 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
8027 hwc->hrtimer.function = perf_swevent_hrtimer;
8028
8029 /*
8030 * Since hrtimers have a fixed rate, we can do a static freq->period
8031 * mapping and avoid the whole period adjust feedback stuff.
8032 */
8033 if (event->attr.freq) {
8034 long freq = event->attr.sample_freq;
8035
8036 event->attr.sample_period = NSEC_PER_SEC / freq;
8037 hwc->sample_period = event->attr.sample_period;
8038 local64_set(&hwc->period_left, hwc->sample_period);
778141e3 8039 hwc->last_period = hwc->sample_period;
ba3dd36c
PZ
8040 event->attr.freq = 0;
8041 }
8042}
8043
b0a873eb
PZ
8044/*
8045 * Software event: cpu wall time clock
8046 */
8047
8048static void cpu_clock_event_update(struct perf_event *event)
24f1e32c 8049{
b0a873eb
PZ
8050 s64 prev;
8051 u64 now;
8052
a4eaf7f1 8053 now = local_clock();
b0a873eb
PZ
8054 prev = local64_xchg(&event->hw.prev_count, now);
8055 local64_add(now - prev, &event->count);
24f1e32c 8056}
24f1e32c 8057
a4eaf7f1 8058static void cpu_clock_event_start(struct perf_event *event, int flags)
b0a873eb 8059{
a4eaf7f1 8060 local64_set(&event->hw.prev_count, local_clock());
b0a873eb 8061 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
8062}
8063
a4eaf7f1 8064static void cpu_clock_event_stop(struct perf_event *event, int flags)
f29ac756 8065{
b0a873eb
PZ
8066 perf_swevent_cancel_hrtimer(event);
8067 cpu_clock_event_update(event);
8068}
f29ac756 8069
a4eaf7f1
PZ
8070static int cpu_clock_event_add(struct perf_event *event, int flags)
8071{
8072 if (flags & PERF_EF_START)
8073 cpu_clock_event_start(event, flags);
6a694a60 8074 perf_event_update_userpage(event);
a4eaf7f1
PZ
8075
8076 return 0;
8077}
8078
8079static void cpu_clock_event_del(struct perf_event *event, int flags)
8080{
8081 cpu_clock_event_stop(event, flags);
8082}
8083
b0a873eb
PZ
8084static void cpu_clock_event_read(struct perf_event *event)
8085{
8086 cpu_clock_event_update(event);
8087}
f344011c 8088
b0a873eb
PZ
8089static int cpu_clock_event_init(struct perf_event *event)
8090{
8091 if (event->attr.type != PERF_TYPE_SOFTWARE)
8092 return -ENOENT;
8093
8094 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
8095 return -ENOENT;
8096
2481c5fa
SE
8097 /*
8098 * no branch sampling for software events
8099 */
8100 if (has_branch_stack(event))
8101 return -EOPNOTSUPP;
8102
ba3dd36c
PZ
8103 perf_swevent_init_hrtimer(event);
8104
b0a873eb 8105 return 0;
f29ac756
PZ
8106}
8107
b0a873eb 8108static struct pmu perf_cpu_clock = {
89a1e187
PZ
8109 .task_ctx_nr = perf_sw_context,
8110
34f43927
PZ
8111 .capabilities = PERF_PMU_CAP_NO_NMI,
8112
b0a873eb 8113 .event_init = cpu_clock_event_init,
a4eaf7f1
PZ
8114 .add = cpu_clock_event_add,
8115 .del = cpu_clock_event_del,
8116 .start = cpu_clock_event_start,
8117 .stop = cpu_clock_event_stop,
b0a873eb
PZ
8118 .read = cpu_clock_event_read,
8119};
8120
8121/*
8122 * Software event: task time clock
8123 */
8124
8125static void task_clock_event_update(struct perf_event *event, u64 now)
5c92d124 8126{
b0a873eb
PZ
8127 u64 prev;
8128 s64 delta;
5c92d124 8129
b0a873eb
PZ
8130 prev = local64_xchg(&event->hw.prev_count, now);
8131 delta = now - prev;
8132 local64_add(delta, &event->count);
8133}
5c92d124 8134
a4eaf7f1 8135static void task_clock_event_start(struct perf_event *event, int flags)
b0a873eb 8136{
a4eaf7f1 8137 local64_set(&event->hw.prev_count, event->ctx->time);
b0a873eb 8138 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
8139}
8140
a4eaf7f1 8141static void task_clock_event_stop(struct perf_event *event, int flags)
b0a873eb
PZ
8142{
8143 perf_swevent_cancel_hrtimer(event);
8144 task_clock_event_update(event, event->ctx->time);
a4eaf7f1
PZ
8145}
8146
8147static int task_clock_event_add(struct perf_event *event, int flags)
8148{
8149 if (flags & PERF_EF_START)
8150 task_clock_event_start(event, flags);
6a694a60 8151 perf_event_update_userpage(event);
b0a873eb 8152
a4eaf7f1
PZ
8153 return 0;
8154}
8155
8156static void task_clock_event_del(struct perf_event *event, int flags)
8157{
8158 task_clock_event_stop(event, PERF_EF_UPDATE);
b0a873eb
PZ
8159}
8160
8161static void task_clock_event_read(struct perf_event *event)
8162{
768a06e2
PZ
8163 u64 now = perf_clock();
8164 u64 delta = now - event->ctx->timestamp;
8165 u64 time = event->ctx->time + delta;
b0a873eb
PZ
8166
8167 task_clock_event_update(event, time);
8168}
8169
8170static int task_clock_event_init(struct perf_event *event)
6fb2915d 8171{
b0a873eb
PZ
8172 if (event->attr.type != PERF_TYPE_SOFTWARE)
8173 return -ENOENT;
8174
8175 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
8176 return -ENOENT;
8177
2481c5fa
SE
8178 /*
8179 * no branch sampling for software events
8180 */
8181 if (has_branch_stack(event))
8182 return -EOPNOTSUPP;
8183
ba3dd36c
PZ
8184 perf_swevent_init_hrtimer(event);
8185
b0a873eb 8186 return 0;
6fb2915d
LZ
8187}
8188
b0a873eb 8189static struct pmu perf_task_clock = {
89a1e187
PZ
8190 .task_ctx_nr = perf_sw_context,
8191
34f43927
PZ
8192 .capabilities = PERF_PMU_CAP_NO_NMI,
8193
b0a873eb 8194 .event_init = task_clock_event_init,
a4eaf7f1
PZ
8195 .add = task_clock_event_add,
8196 .del = task_clock_event_del,
8197 .start = task_clock_event_start,
8198 .stop = task_clock_event_stop,
b0a873eb
PZ
8199 .read = task_clock_event_read,
8200};
6fb2915d 8201
ad5133b7 8202static void perf_pmu_nop_void(struct pmu *pmu)
e077df4f 8203{
e077df4f 8204}
6fb2915d 8205
fbbe0701
SB
8206static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
8207{
8208}
8209
ad5133b7 8210static int perf_pmu_nop_int(struct pmu *pmu)
6fb2915d 8211{
ad5133b7 8212 return 0;
6fb2915d
LZ
8213}
8214
18ab2cd3 8215static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
fbbe0701
SB
8216
8217static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
6fb2915d 8218{
fbbe0701
SB
8219 __this_cpu_write(nop_txn_flags, flags);
8220
8221 if (flags & ~PERF_PMU_TXN_ADD)
8222 return;
8223
ad5133b7 8224 perf_pmu_disable(pmu);
6fb2915d
LZ
8225}
8226
ad5133b7
PZ
8227static int perf_pmu_commit_txn(struct pmu *pmu)
8228{
fbbe0701
SB
8229 unsigned int flags = __this_cpu_read(nop_txn_flags);
8230
8231 __this_cpu_write(nop_txn_flags, 0);
8232
8233 if (flags & ~PERF_PMU_TXN_ADD)
8234 return 0;
8235
ad5133b7
PZ
8236 perf_pmu_enable(pmu);
8237 return 0;
8238}
e077df4f 8239
ad5133b7 8240static void perf_pmu_cancel_txn(struct pmu *pmu)
24f1e32c 8241{
fbbe0701
SB
8242 unsigned int flags = __this_cpu_read(nop_txn_flags);
8243
8244 __this_cpu_write(nop_txn_flags, 0);
8245
8246 if (flags & ~PERF_PMU_TXN_ADD)
8247 return;
8248
ad5133b7 8249 perf_pmu_enable(pmu);
24f1e32c
FW
8250}
8251
35edc2a5
PZ
8252static int perf_event_idx_default(struct perf_event *event)
8253{
c719f560 8254 return 0;
35edc2a5
PZ
8255}
8256
8dc85d54
PZ
8257/*
8258 * Ensures all contexts with the same task_ctx_nr have the same
8259 * pmu_cpu_context too.
8260 */
9e317041 8261static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
24f1e32c 8262{
8dc85d54 8263 struct pmu *pmu;
b326e956 8264
8dc85d54
PZ
8265 if (ctxn < 0)
8266 return NULL;
24f1e32c 8267
8dc85d54
PZ
8268 list_for_each_entry(pmu, &pmus, entry) {
8269 if (pmu->task_ctx_nr == ctxn)
8270 return pmu->pmu_cpu_context;
8271 }
24f1e32c 8272
8dc85d54 8273 return NULL;
24f1e32c
FW
8274}
8275
51676957 8276static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
24f1e32c 8277{
51676957
PZ
8278 int cpu;
8279
8280 for_each_possible_cpu(cpu) {
8281 struct perf_cpu_context *cpuctx;
8282
8283 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8284
3f1f3320
PZ
8285 if (cpuctx->unique_pmu == old_pmu)
8286 cpuctx->unique_pmu = pmu;
51676957
PZ
8287 }
8288}
8289
8290static void free_pmu_context(struct pmu *pmu)
8291{
8292 struct pmu *i;
f5ffe02e 8293
8dc85d54 8294 mutex_lock(&pmus_lock);
0475f9ea 8295 /*
8dc85d54 8296 * Like a real lame refcount.
0475f9ea 8297 */
51676957
PZ
8298 list_for_each_entry(i, &pmus, entry) {
8299 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
8300 update_pmu_context(i, pmu);
8dc85d54 8301 goto out;
51676957 8302 }
8dc85d54 8303 }
d6d020e9 8304
51676957 8305 free_percpu(pmu->pmu_cpu_context);
8dc85d54
PZ
8306out:
8307 mutex_unlock(&pmus_lock);
24f1e32c 8308}
6e855cd4
AS
8309
8310/*
8311 * Let userspace know that this PMU supports address range filtering:
8312 */
8313static ssize_t nr_addr_filters_show(struct device *dev,
8314 struct device_attribute *attr,
8315 char *page)
8316{
8317 struct pmu *pmu = dev_get_drvdata(dev);
8318
8319 return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
8320}
8321DEVICE_ATTR_RO(nr_addr_filters);
8322
2e80a82a 8323static struct idr pmu_idr;
d6d020e9 8324
abe43400
PZ
8325static ssize_t
8326type_show(struct device *dev, struct device_attribute *attr, char *page)
8327{
8328 struct pmu *pmu = dev_get_drvdata(dev);
8329
8330 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
8331}
90826ca7 8332static DEVICE_ATTR_RO(type);
abe43400 8333
62b85639
SE
8334static ssize_t
8335perf_event_mux_interval_ms_show(struct device *dev,
8336 struct device_attribute *attr,
8337 char *page)
8338{
8339 struct pmu *pmu = dev_get_drvdata(dev);
8340
8341 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
8342}
8343
272325c4
PZ
8344static DEFINE_MUTEX(mux_interval_mutex);
8345
62b85639
SE
8346static ssize_t
8347perf_event_mux_interval_ms_store(struct device *dev,
8348 struct device_attribute *attr,
8349 const char *buf, size_t count)
8350{
8351 struct pmu *pmu = dev_get_drvdata(dev);
8352 int timer, cpu, ret;
8353
8354 ret = kstrtoint(buf, 0, &timer);
8355 if (ret)
8356 return ret;
8357
8358 if (timer < 1)
8359 return -EINVAL;
8360
8361 /* same value, noting to do */
8362 if (timer == pmu->hrtimer_interval_ms)
8363 return count;
8364
272325c4 8365 mutex_lock(&mux_interval_mutex);
62b85639
SE
8366 pmu->hrtimer_interval_ms = timer;
8367
8368 /* update all cpuctx for this PMU */
272325c4
PZ
8369 get_online_cpus();
8370 for_each_online_cpu(cpu) {
62b85639
SE
8371 struct perf_cpu_context *cpuctx;
8372 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8373 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
8374
272325c4
PZ
8375 cpu_function_call(cpu,
8376 (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
62b85639 8377 }
272325c4
PZ
8378 put_online_cpus();
8379 mutex_unlock(&mux_interval_mutex);
62b85639
SE
8380
8381 return count;
8382}
90826ca7 8383static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
62b85639 8384
90826ca7
GKH
8385static struct attribute *pmu_dev_attrs[] = {
8386 &dev_attr_type.attr,
8387 &dev_attr_perf_event_mux_interval_ms.attr,
8388 NULL,
abe43400 8389};
90826ca7 8390ATTRIBUTE_GROUPS(pmu_dev);
abe43400
PZ
8391
8392static int pmu_bus_running;
8393static struct bus_type pmu_bus = {
8394 .name = "event_source",
90826ca7 8395 .dev_groups = pmu_dev_groups,
abe43400
PZ
8396};
8397
8398static void pmu_dev_release(struct device *dev)
8399{
8400 kfree(dev);
8401}
8402
8403static int pmu_dev_alloc(struct pmu *pmu)
8404{
8405 int ret = -ENOMEM;
8406
8407 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
8408 if (!pmu->dev)
8409 goto out;
8410
0c9d42ed 8411 pmu->dev->groups = pmu->attr_groups;
abe43400
PZ
8412 device_initialize(pmu->dev);
8413 ret = dev_set_name(pmu->dev, "%s", pmu->name);
8414 if (ret)
8415 goto free_dev;
8416
8417 dev_set_drvdata(pmu->dev, pmu);
8418 pmu->dev->bus = &pmu_bus;
8419 pmu->dev->release = pmu_dev_release;
8420 ret = device_add(pmu->dev);
8421 if (ret)
8422 goto free_dev;
8423
6e855cd4
AS
8424 /* For PMUs with address filters, throw in an extra attribute: */
8425 if (pmu->nr_addr_filters)
8426 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
8427
8428 if (ret)
8429 goto del_dev;
8430
abe43400
PZ
8431out:
8432 return ret;
8433
6e855cd4
AS
8434del_dev:
8435 device_del(pmu->dev);
8436
abe43400
PZ
8437free_dev:
8438 put_device(pmu->dev);
8439 goto out;
8440}
8441
547e9fd7 8442static struct lock_class_key cpuctx_mutex;
facc4307 8443static struct lock_class_key cpuctx_lock;
547e9fd7 8444
03d8e80b 8445int perf_pmu_register(struct pmu *pmu, const char *name, int type)
24f1e32c 8446{
108b02cf 8447 int cpu, ret;
24f1e32c 8448
b0a873eb 8449 mutex_lock(&pmus_lock);
33696fc0
PZ
8450 ret = -ENOMEM;
8451 pmu->pmu_disable_count = alloc_percpu(int);
8452 if (!pmu->pmu_disable_count)
8453 goto unlock;
f29ac756 8454
2e80a82a
PZ
8455 pmu->type = -1;
8456 if (!name)
8457 goto skip_type;
8458 pmu->name = name;
8459
8460 if (type < 0) {
0e9c3be2
TH
8461 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
8462 if (type < 0) {
8463 ret = type;
2e80a82a
PZ
8464 goto free_pdc;
8465 }
8466 }
8467 pmu->type = type;
8468
abe43400
PZ
8469 if (pmu_bus_running) {
8470 ret = pmu_dev_alloc(pmu);
8471 if (ret)
8472 goto free_idr;
8473 }
8474
2e80a82a 8475skip_type:
26657848
PZ
8476 if (pmu->task_ctx_nr == perf_hw_context) {
8477 static int hw_context_taken = 0;
8478
5101ef20
MR
8479 /*
8480 * Other than systems with heterogeneous CPUs, it never makes
8481 * sense for two PMUs to share perf_hw_context. PMUs which are
8482 * uncore must use perf_invalid_context.
8483 */
8484 if (WARN_ON_ONCE(hw_context_taken &&
8485 !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
26657848
PZ
8486 pmu->task_ctx_nr = perf_invalid_context;
8487
8488 hw_context_taken = 1;
8489 }
8490
8dc85d54
PZ
8491 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
8492 if (pmu->pmu_cpu_context)
8493 goto got_cpu_context;
f29ac756 8494
c4814202 8495 ret = -ENOMEM;
108b02cf
PZ
8496 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
8497 if (!pmu->pmu_cpu_context)
abe43400 8498 goto free_dev;
f344011c 8499
108b02cf
PZ
8500 for_each_possible_cpu(cpu) {
8501 struct perf_cpu_context *cpuctx;
8502
8503 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
eb184479 8504 __perf_event_init_context(&cpuctx->ctx);
547e9fd7 8505 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
facc4307 8506 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
108b02cf 8507 cpuctx->ctx.pmu = pmu;
9e630205 8508
272325c4 8509 __perf_mux_hrtimer_init(cpuctx, cpu);
9e630205 8510
3f1f3320 8511 cpuctx->unique_pmu = pmu;
108b02cf 8512 }
76e1d904 8513
8dc85d54 8514got_cpu_context:
ad5133b7
PZ
8515 if (!pmu->start_txn) {
8516 if (pmu->pmu_enable) {
8517 /*
8518 * If we have pmu_enable/pmu_disable calls, install
8519 * transaction stubs that use that to try and batch
8520 * hardware accesses.
8521 */
8522 pmu->start_txn = perf_pmu_start_txn;
8523 pmu->commit_txn = perf_pmu_commit_txn;
8524 pmu->cancel_txn = perf_pmu_cancel_txn;
8525 } else {
fbbe0701 8526 pmu->start_txn = perf_pmu_nop_txn;
ad5133b7
PZ
8527 pmu->commit_txn = perf_pmu_nop_int;
8528 pmu->cancel_txn = perf_pmu_nop_void;
f344011c 8529 }
5c92d124 8530 }
15dbf27c 8531
ad5133b7
PZ
8532 if (!pmu->pmu_enable) {
8533 pmu->pmu_enable = perf_pmu_nop_void;
8534 pmu->pmu_disable = perf_pmu_nop_void;
8535 }
8536
35edc2a5
PZ
8537 if (!pmu->event_idx)
8538 pmu->event_idx = perf_event_idx_default;
8539
b0a873eb 8540 list_add_rcu(&pmu->entry, &pmus);
bed5b25a 8541 atomic_set(&pmu->exclusive_cnt, 0);
33696fc0
PZ
8542 ret = 0;
8543unlock:
b0a873eb
PZ
8544 mutex_unlock(&pmus_lock);
8545
33696fc0 8546 return ret;
108b02cf 8547
abe43400
PZ
8548free_dev:
8549 device_del(pmu->dev);
8550 put_device(pmu->dev);
8551
2e80a82a
PZ
8552free_idr:
8553 if (pmu->type >= PERF_TYPE_MAX)
8554 idr_remove(&pmu_idr, pmu->type);
8555
108b02cf
PZ
8556free_pdc:
8557 free_percpu(pmu->pmu_disable_count);
8558 goto unlock;
f29ac756 8559}
c464c76e 8560EXPORT_SYMBOL_GPL(perf_pmu_register);
f29ac756 8561
b0a873eb 8562void perf_pmu_unregister(struct pmu *pmu)
5c92d124 8563{
b0a873eb
PZ
8564 mutex_lock(&pmus_lock);
8565 list_del_rcu(&pmu->entry);
8566 mutex_unlock(&pmus_lock);
5c92d124 8567
0475f9ea 8568 /*
cde8e884
PZ
8569 * We dereference the pmu list under both SRCU and regular RCU, so
8570 * synchronize against both of those.
0475f9ea 8571 */
b0a873eb 8572 synchronize_srcu(&pmus_srcu);
cde8e884 8573 synchronize_rcu();
d6d020e9 8574
33696fc0 8575 free_percpu(pmu->pmu_disable_count);
2e80a82a
PZ
8576 if (pmu->type >= PERF_TYPE_MAX)
8577 idr_remove(&pmu_idr, pmu->type);
6e855cd4
AS
8578 if (pmu->nr_addr_filters)
8579 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
abe43400
PZ
8580 device_del(pmu->dev);
8581 put_device(pmu->dev);
51676957 8582 free_pmu_context(pmu);
b0a873eb 8583}
c464c76e 8584EXPORT_SYMBOL_GPL(perf_pmu_unregister);
d6d020e9 8585
cc34b98b
MR
8586static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
8587{
ccd41c86 8588 struct perf_event_context *ctx = NULL;
cc34b98b
MR
8589 int ret;
8590
8591 if (!try_module_get(pmu->module))
8592 return -ENODEV;
ccd41c86
PZ
8593
8594 if (event->group_leader != event) {
8b10c5e2
PZ
8595 /*
8596 * This ctx->mutex can nest when we're called through
8597 * inheritance. See the perf_event_ctx_lock_nested() comment.
8598 */
8599 ctx = perf_event_ctx_lock_nested(event->group_leader,
8600 SINGLE_DEPTH_NESTING);
ccd41c86
PZ
8601 BUG_ON(!ctx);
8602 }
8603
cc34b98b
MR
8604 event->pmu = pmu;
8605 ret = pmu->event_init(event);
ccd41c86
PZ
8606
8607 if (ctx)
8608 perf_event_ctx_unlock(event->group_leader, ctx);
8609
cc34b98b
MR
8610 if (ret)
8611 module_put(pmu->module);
8612
8613 return ret;
8614}
8615
18ab2cd3 8616static struct pmu *perf_init_event(struct perf_event *event)
b0a873eb
PZ
8617{
8618 struct pmu *pmu = NULL;
8619 int idx;
940c5b29 8620 int ret;
b0a873eb
PZ
8621
8622 idx = srcu_read_lock(&pmus_srcu);
2e80a82a
PZ
8623
8624 rcu_read_lock();
8625 pmu = idr_find(&pmu_idr, event->attr.type);
8626 rcu_read_unlock();
940c5b29 8627 if (pmu) {
cc34b98b 8628 ret = perf_try_init_event(pmu, event);
940c5b29
LM
8629 if (ret)
8630 pmu = ERR_PTR(ret);
2e80a82a 8631 goto unlock;
940c5b29 8632 }
2e80a82a 8633
b0a873eb 8634 list_for_each_entry_rcu(pmu, &pmus, entry) {
cc34b98b 8635 ret = perf_try_init_event(pmu, event);
b0a873eb 8636 if (!ret)
e5f4d339 8637 goto unlock;
76e1d904 8638
b0a873eb
PZ
8639 if (ret != -ENOENT) {
8640 pmu = ERR_PTR(ret);
e5f4d339 8641 goto unlock;
f344011c 8642 }
5c92d124 8643 }
e5f4d339
PZ
8644 pmu = ERR_PTR(-ENOENT);
8645unlock:
b0a873eb 8646 srcu_read_unlock(&pmus_srcu, idx);
15dbf27c 8647
4aeb0b42 8648 return pmu;
5c92d124
IM
8649}
8650
f2fb6bef
KL
8651static void attach_sb_event(struct perf_event *event)
8652{
8653 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
8654
8655 raw_spin_lock(&pel->lock);
8656 list_add_rcu(&event->sb_list, &pel->list);
8657 raw_spin_unlock(&pel->lock);
8658}
8659
aab5b71e
PZ
8660/*
8661 * We keep a list of all !task (and therefore per-cpu) events
8662 * that need to receive side-band records.
8663 *
8664 * This avoids having to scan all the various PMU per-cpu contexts
8665 * looking for them.
8666 */
f2fb6bef
KL
8667static void account_pmu_sb_event(struct perf_event *event)
8668{
8669 struct perf_event_attr *attr = &event->attr;
8670
8671 if (event->parent)
8672 return;
8673
8674 if (event->attach_state & PERF_ATTACH_TASK)
8675 return;
8676
8677 if (attr->mmap || attr->mmap_data || attr->mmap2 ||
8678 attr->comm || attr->comm_exec ||
8679 attr->task ||
8680 attr->context_switch)
8681 attach_sb_event(event);
8682}
8683
4beb31f3
FW
8684static void account_event_cpu(struct perf_event *event, int cpu)
8685{
8686 if (event->parent)
8687 return;
8688
4beb31f3
FW
8689 if (is_cgroup_event(event))
8690 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
8691}
8692
555e0c1e
FW
8693/* Freq events need the tick to stay alive (see perf_event_task_tick). */
8694static void account_freq_event_nohz(void)
8695{
8696#ifdef CONFIG_NO_HZ_FULL
8697 /* Lock so we don't race with concurrent unaccount */
8698 spin_lock(&nr_freq_lock);
8699 if (atomic_inc_return(&nr_freq_events) == 1)
8700 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
8701 spin_unlock(&nr_freq_lock);
8702#endif
8703}
8704
8705static void account_freq_event(void)
8706{
8707 if (tick_nohz_full_enabled())
8708 account_freq_event_nohz();
8709 else
8710 atomic_inc(&nr_freq_events);
8711}
8712
8713
766d6c07
FW
8714static void account_event(struct perf_event *event)
8715{
25432ae9
PZ
8716 bool inc = false;
8717
4beb31f3
FW
8718 if (event->parent)
8719 return;
8720
766d6c07 8721 if (event->attach_state & PERF_ATTACH_TASK)
25432ae9 8722 inc = true;
766d6c07
FW
8723 if (event->attr.mmap || event->attr.mmap_data)
8724 atomic_inc(&nr_mmap_events);
8725 if (event->attr.comm)
8726 atomic_inc(&nr_comm_events);
8727 if (event->attr.task)
8728 atomic_inc(&nr_task_events);
555e0c1e
FW
8729 if (event->attr.freq)
8730 account_freq_event();
45ac1403
AH
8731 if (event->attr.context_switch) {
8732 atomic_inc(&nr_switch_events);
25432ae9 8733 inc = true;
45ac1403 8734 }
4beb31f3 8735 if (has_branch_stack(event))
25432ae9 8736 inc = true;
4beb31f3 8737 if (is_cgroup_event(event))
25432ae9
PZ
8738 inc = true;
8739
9107c89e
PZ
8740 if (inc) {
8741 if (atomic_inc_not_zero(&perf_sched_count))
8742 goto enabled;
8743
8744 mutex_lock(&perf_sched_mutex);
8745 if (!atomic_read(&perf_sched_count)) {
8746 static_branch_enable(&perf_sched_events);
8747 /*
8748 * Guarantee that all CPUs observe they key change and
8749 * call the perf scheduling hooks before proceeding to
8750 * install events that need them.
8751 */
8752 synchronize_sched();
8753 }
8754 /*
8755 * Now that we have waited for the sync_sched(), allow further
8756 * increments to by-pass the mutex.
8757 */
8758 atomic_inc(&perf_sched_count);
8759 mutex_unlock(&perf_sched_mutex);
8760 }
8761enabled:
4beb31f3
FW
8762
8763 account_event_cpu(event, event->cpu);
f2fb6bef
KL
8764
8765 account_pmu_sb_event(event);
766d6c07
FW
8766}
8767
0793a61d 8768/*
cdd6c482 8769 * Allocate and initialize a event structure
0793a61d 8770 */
cdd6c482 8771static struct perf_event *
c3f00c70 8772perf_event_alloc(struct perf_event_attr *attr, int cpu,
d580ff86
PZ
8773 struct task_struct *task,
8774 struct perf_event *group_leader,
8775 struct perf_event *parent_event,
4dc0da86 8776 perf_overflow_handler_t overflow_handler,
79dff51e 8777 void *context, int cgroup_fd)
0793a61d 8778{
51b0fe39 8779 struct pmu *pmu;
cdd6c482
IM
8780 struct perf_event *event;
8781 struct hw_perf_event *hwc;
90983b16 8782 long err = -EINVAL;
0793a61d 8783
66832eb4
ON
8784 if ((unsigned)cpu >= nr_cpu_ids) {
8785 if (!task || cpu != -1)
8786 return ERR_PTR(-EINVAL);
8787 }
8788
c3f00c70 8789 event = kzalloc(sizeof(*event), GFP_KERNEL);
cdd6c482 8790 if (!event)
d5d2bc0d 8791 return ERR_PTR(-ENOMEM);
0793a61d 8792
04289bb9 8793 /*
cdd6c482 8794 * Single events are their own group leaders, with an
04289bb9
IM
8795 * empty sibling list:
8796 */
8797 if (!group_leader)
cdd6c482 8798 group_leader = event;
04289bb9 8799
cdd6c482
IM
8800 mutex_init(&event->child_mutex);
8801 INIT_LIST_HEAD(&event->child_list);
fccc714b 8802
cdd6c482
IM
8803 INIT_LIST_HEAD(&event->group_entry);
8804 INIT_LIST_HEAD(&event->event_entry);
8805 INIT_LIST_HEAD(&event->sibling_list);
10c6db11 8806 INIT_LIST_HEAD(&event->rb_entry);
71ad88ef 8807 INIT_LIST_HEAD(&event->active_entry);
375637bc 8808 INIT_LIST_HEAD(&event->addr_filters.list);
f3ae75de
SE
8809 INIT_HLIST_NODE(&event->hlist_entry);
8810
10c6db11 8811
cdd6c482 8812 init_waitqueue_head(&event->waitq);
e360adbe 8813 init_irq_work(&event->pending, perf_pending_event);
0793a61d 8814
cdd6c482 8815 mutex_init(&event->mmap_mutex);
375637bc 8816 raw_spin_lock_init(&event->addr_filters.lock);
7b732a75 8817
a6fa941d 8818 atomic_long_set(&event->refcount, 1);
cdd6c482
IM
8819 event->cpu = cpu;
8820 event->attr = *attr;
8821 event->group_leader = group_leader;
8822 event->pmu = NULL;
cdd6c482 8823 event->oncpu = -1;
a96bbc16 8824
cdd6c482 8825 event->parent = parent_event;
b84fbc9f 8826
17cf22c3 8827 event->ns = get_pid_ns(task_active_pid_ns(current));
cdd6c482 8828 event->id = atomic64_inc_return(&perf_event_id);
a96bbc16 8829
cdd6c482 8830 event->state = PERF_EVENT_STATE_INACTIVE;
329d876d 8831
d580ff86
PZ
8832 if (task) {
8833 event->attach_state = PERF_ATTACH_TASK;
d580ff86 8834 /*
50f16a8b
PZ
8835 * XXX pmu::event_init needs to know what task to account to
8836 * and we cannot use the ctx information because we need the
8837 * pmu before we get a ctx.
d580ff86 8838 */
50f16a8b 8839 event->hw.target = task;
d580ff86
PZ
8840 }
8841
34f43927
PZ
8842 event->clock = &local_clock;
8843 if (parent_event)
8844 event->clock = parent_event->clock;
8845
4dc0da86 8846 if (!overflow_handler && parent_event) {
b326e956 8847 overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
8848 context = parent_event->overflow_handler_context;
8849 }
66832eb4 8850
1879445d
WN
8851 if (overflow_handler) {
8852 event->overflow_handler = overflow_handler;
8853 event->overflow_handler_context = context;
9ecda41a
WN
8854 } else if (is_write_backward(event)){
8855 event->overflow_handler = perf_event_output_backward;
8856 event->overflow_handler_context = NULL;
1879445d 8857 } else {
9ecda41a 8858 event->overflow_handler = perf_event_output_forward;
1879445d
WN
8859 event->overflow_handler_context = NULL;
8860 }
97eaf530 8861
0231bb53 8862 perf_event__state_init(event);
a86ed508 8863
4aeb0b42 8864 pmu = NULL;
b8e83514 8865
cdd6c482 8866 hwc = &event->hw;
bd2b5b12 8867 hwc->sample_period = attr->sample_period;
0d48696f 8868 if (attr->freq && attr->sample_freq)
bd2b5b12 8869 hwc->sample_period = 1;
eced1dfc 8870 hwc->last_period = hwc->sample_period;
bd2b5b12 8871
e7850595 8872 local64_set(&hwc->period_left, hwc->sample_period);
60db5e09 8873
2023b359 8874 /*
cdd6c482 8875 * we currently do not support PERF_FORMAT_GROUP on inherited events
2023b359 8876 */
3dab77fb 8877 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
90983b16 8878 goto err_ns;
a46a2300
YZ
8879
8880 if (!has_branch_stack(event))
8881 event->attr.branch_sample_type = 0;
2023b359 8882
79dff51e
MF
8883 if (cgroup_fd != -1) {
8884 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
8885 if (err)
8886 goto err_ns;
8887 }
8888
b0a873eb 8889 pmu = perf_init_event(event);
4aeb0b42 8890 if (!pmu)
90983b16
FW
8891 goto err_ns;
8892 else if (IS_ERR(pmu)) {
4aeb0b42 8893 err = PTR_ERR(pmu);
90983b16 8894 goto err_ns;
621a01ea 8895 }
d5d2bc0d 8896
bed5b25a
AS
8897 err = exclusive_event_init(event);
8898 if (err)
8899 goto err_pmu;
8900
375637bc
AS
8901 if (has_addr_filter(event)) {
8902 event->addr_filters_offs = kcalloc(pmu->nr_addr_filters,
8903 sizeof(unsigned long),
8904 GFP_KERNEL);
8905 if (!event->addr_filters_offs)
8906 goto err_per_task;
8907
8908 /* force hw sync on the address filters */
8909 event->addr_filters_gen = 1;
8910 }
8911
cdd6c482 8912 if (!event->parent) {
927c7a9e 8913 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
97c79a38 8914 err = get_callchain_buffers(attr->sample_max_stack);
90983b16 8915 if (err)
375637bc 8916 goto err_addr_filters;
d010b332 8917 }
f344011c 8918 }
9ee318a7 8919
927a5570
AS
8920 /* symmetric to unaccount_event() in _free_event() */
8921 account_event(event);
8922
cdd6c482 8923 return event;
90983b16 8924
375637bc
AS
8925err_addr_filters:
8926 kfree(event->addr_filters_offs);
8927
bed5b25a
AS
8928err_per_task:
8929 exclusive_event_destroy(event);
8930
90983b16
FW
8931err_pmu:
8932 if (event->destroy)
8933 event->destroy(event);
c464c76e 8934 module_put(pmu->module);
90983b16 8935err_ns:
79dff51e
MF
8936 if (is_cgroup_event(event))
8937 perf_detach_cgroup(event);
90983b16
FW
8938 if (event->ns)
8939 put_pid_ns(event->ns);
8940 kfree(event);
8941
8942 return ERR_PTR(err);
0793a61d
TG
8943}
8944
cdd6c482
IM
8945static int perf_copy_attr(struct perf_event_attr __user *uattr,
8946 struct perf_event_attr *attr)
974802ea 8947{
974802ea 8948 u32 size;
cdf8073d 8949 int ret;
974802ea
PZ
8950
8951 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
8952 return -EFAULT;
8953
8954 /*
8955 * zero the full structure, so that a short copy will be nice.
8956 */
8957 memset(attr, 0, sizeof(*attr));
8958
8959 ret = get_user(size, &uattr->size);
8960 if (ret)
8961 return ret;
8962
8963 if (size > PAGE_SIZE) /* silly large */
8964 goto err_size;
8965
8966 if (!size) /* abi compat */
8967 size = PERF_ATTR_SIZE_VER0;
8968
8969 if (size < PERF_ATTR_SIZE_VER0)
8970 goto err_size;
8971
8972 /*
8973 * If we're handed a bigger struct than we know of,
cdf8073d
IS
8974 * ensure all the unknown bits are 0 - i.e. new
8975 * user-space does not rely on any kernel feature
8976 * extensions we dont know about yet.
974802ea
PZ
8977 */
8978 if (size > sizeof(*attr)) {
cdf8073d
IS
8979 unsigned char __user *addr;
8980 unsigned char __user *end;
8981 unsigned char val;
974802ea 8982
cdf8073d
IS
8983 addr = (void __user *)uattr + sizeof(*attr);
8984 end = (void __user *)uattr + size;
974802ea 8985
cdf8073d 8986 for (; addr < end; addr++) {
974802ea
PZ
8987 ret = get_user(val, addr);
8988 if (ret)
8989 return ret;
8990 if (val)
8991 goto err_size;
8992 }
b3e62e35 8993 size = sizeof(*attr);
974802ea
PZ
8994 }
8995
8996 ret = copy_from_user(attr, uattr, size);
8997 if (ret)
8998 return -EFAULT;
8999
cd757645 9000 if (attr->__reserved_1)
974802ea
PZ
9001 return -EINVAL;
9002
9003 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
9004 return -EINVAL;
9005
9006 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
9007 return -EINVAL;
9008
bce38cd5
SE
9009 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
9010 u64 mask = attr->branch_sample_type;
9011
9012 /* only using defined bits */
9013 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
9014 return -EINVAL;
9015
9016 /* at least one branch bit must be set */
9017 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
9018 return -EINVAL;
9019
bce38cd5
SE
9020 /* propagate priv level, when not set for branch */
9021 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
9022
9023 /* exclude_kernel checked on syscall entry */
9024 if (!attr->exclude_kernel)
9025 mask |= PERF_SAMPLE_BRANCH_KERNEL;
9026
9027 if (!attr->exclude_user)
9028 mask |= PERF_SAMPLE_BRANCH_USER;
9029
9030 if (!attr->exclude_hv)
9031 mask |= PERF_SAMPLE_BRANCH_HV;
9032 /*
9033 * adjust user setting (for HW filter setup)
9034 */
9035 attr->branch_sample_type = mask;
9036 }
e712209a
SE
9037 /* privileged levels capture (kernel, hv): check permissions */
9038 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
2b923c8f
SE
9039 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9040 return -EACCES;
bce38cd5 9041 }
4018994f 9042
c5ebcedb 9043 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
4018994f 9044 ret = perf_reg_validate(attr->sample_regs_user);
c5ebcedb
JO
9045 if (ret)
9046 return ret;
9047 }
9048
9049 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
9050 if (!arch_perf_have_user_stack_dump())
9051 return -ENOSYS;
9052
9053 /*
9054 * We have __u32 type for the size, but so far
9055 * we can only use __u16 as maximum due to the
9056 * __u16 sample size limit.
9057 */
9058 if (attr->sample_stack_user >= USHRT_MAX)
9059 ret = -EINVAL;
9060 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
9061 ret = -EINVAL;
9062 }
4018994f 9063
60e2364e
SE
9064 if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
9065 ret = perf_reg_validate(attr->sample_regs_intr);
974802ea
PZ
9066out:
9067 return ret;
9068
9069err_size:
9070 put_user(sizeof(*attr), &uattr->size);
9071 ret = -E2BIG;
9072 goto out;
9073}
9074
ac9721f3
PZ
9075static int
9076perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
a4be7c27 9077{
b69cf536 9078 struct ring_buffer *rb = NULL;
a4be7c27
PZ
9079 int ret = -EINVAL;
9080
ac9721f3 9081 if (!output_event)
a4be7c27
PZ
9082 goto set;
9083
ac9721f3
PZ
9084 /* don't allow circular references */
9085 if (event == output_event)
a4be7c27
PZ
9086 goto out;
9087
0f139300
PZ
9088 /*
9089 * Don't allow cross-cpu buffers
9090 */
9091 if (output_event->cpu != event->cpu)
9092 goto out;
9093
9094 /*
76369139 9095 * If its not a per-cpu rb, it must be the same task.
0f139300
PZ
9096 */
9097 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
9098 goto out;
9099
34f43927
PZ
9100 /*
9101 * Mixing clocks in the same buffer is trouble you don't need.
9102 */
9103 if (output_event->clock != event->clock)
9104 goto out;
9105
9ecda41a
WN
9106 /*
9107 * Either writing ring buffer from beginning or from end.
9108 * Mixing is not allowed.
9109 */
9110 if (is_write_backward(output_event) != is_write_backward(event))
9111 goto out;
9112
45bfb2e5
PZ
9113 /*
9114 * If both events generate aux data, they must be on the same PMU
9115 */
9116 if (has_aux(event) && has_aux(output_event) &&
9117 event->pmu != output_event->pmu)
9118 goto out;
9119
a4be7c27 9120set:
cdd6c482 9121 mutex_lock(&event->mmap_mutex);
ac9721f3
PZ
9122 /* Can't redirect output if we've got an active mmap() */
9123 if (atomic_read(&event->mmap_count))
9124 goto unlock;
a4be7c27 9125
ac9721f3 9126 if (output_event) {
76369139
FW
9127 /* get the rb we want to redirect to */
9128 rb = ring_buffer_get(output_event);
9129 if (!rb)
ac9721f3 9130 goto unlock;
a4be7c27
PZ
9131 }
9132
b69cf536 9133 ring_buffer_attach(event, rb);
9bb5d40c 9134
a4be7c27 9135 ret = 0;
ac9721f3
PZ
9136unlock:
9137 mutex_unlock(&event->mmap_mutex);
9138
a4be7c27 9139out:
a4be7c27
PZ
9140 return ret;
9141}
9142
f63a8daa
PZ
9143static void mutex_lock_double(struct mutex *a, struct mutex *b)
9144{
9145 if (b < a)
9146 swap(a, b);
9147
9148 mutex_lock(a);
9149 mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
9150}
9151
34f43927
PZ
9152static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
9153{
9154 bool nmi_safe = false;
9155
9156 switch (clk_id) {
9157 case CLOCK_MONOTONIC:
9158 event->clock = &ktime_get_mono_fast_ns;
9159 nmi_safe = true;
9160 break;
9161
9162 case CLOCK_MONOTONIC_RAW:
9163 event->clock = &ktime_get_raw_fast_ns;
9164 nmi_safe = true;
9165 break;
9166
9167 case CLOCK_REALTIME:
9168 event->clock = &ktime_get_real_ns;
9169 break;
9170
9171 case CLOCK_BOOTTIME:
9172 event->clock = &ktime_get_boot_ns;
9173 break;
9174
9175 case CLOCK_TAI:
9176 event->clock = &ktime_get_tai_ns;
9177 break;
9178
9179 default:
9180 return -EINVAL;
9181 }
9182
9183 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
9184 return -EINVAL;
9185
9186 return 0;
9187}
9188
0793a61d 9189/**
cdd6c482 9190 * sys_perf_event_open - open a performance event, associate it to a task/cpu
9f66a381 9191 *
cdd6c482 9192 * @attr_uptr: event_id type attributes for monitoring/sampling
0793a61d 9193 * @pid: target pid
9f66a381 9194 * @cpu: target cpu
cdd6c482 9195 * @group_fd: group leader event fd
0793a61d 9196 */
cdd6c482
IM
9197SYSCALL_DEFINE5(perf_event_open,
9198 struct perf_event_attr __user *, attr_uptr,
2743a5b0 9199 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
0793a61d 9200{
b04243ef
PZ
9201 struct perf_event *group_leader = NULL, *output_event = NULL;
9202 struct perf_event *event, *sibling;
cdd6c482 9203 struct perf_event_attr attr;
f63a8daa 9204 struct perf_event_context *ctx, *uninitialized_var(gctx);
cdd6c482 9205 struct file *event_file = NULL;
2903ff01 9206 struct fd group = {NULL, 0};
38a81da2 9207 struct task_struct *task = NULL;
89a1e187 9208 struct pmu *pmu;
ea635c64 9209 int event_fd;
b04243ef 9210 int move_group = 0;
dc86cabe 9211 int err;
a21b0b35 9212 int f_flags = O_RDWR;
79dff51e 9213 int cgroup_fd = -1;
0793a61d 9214
2743a5b0 9215 /* for future expandability... */
e5d1367f 9216 if (flags & ~PERF_FLAG_ALL)
2743a5b0
PM
9217 return -EINVAL;
9218
dc86cabe
IM
9219 err = perf_copy_attr(attr_uptr, &attr);
9220 if (err)
9221 return err;
eab656ae 9222
0764771d
PZ
9223 if (!attr.exclude_kernel) {
9224 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9225 return -EACCES;
9226 }
9227
df58ab24 9228 if (attr.freq) {
cdd6c482 9229 if (attr.sample_freq > sysctl_perf_event_sample_rate)
df58ab24 9230 return -EINVAL;
0819b2e3
PZ
9231 } else {
9232 if (attr.sample_period & (1ULL << 63))
9233 return -EINVAL;
df58ab24
PZ
9234 }
9235
97c79a38
ACM
9236 if (!attr.sample_max_stack)
9237 attr.sample_max_stack = sysctl_perf_event_max_stack;
9238
e5d1367f
SE
9239 /*
9240 * In cgroup mode, the pid argument is used to pass the fd
9241 * opened to the cgroup directory in cgroupfs. The cpu argument
9242 * designates the cpu on which to monitor threads from that
9243 * cgroup.
9244 */
9245 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
9246 return -EINVAL;
9247
a21b0b35
YD
9248 if (flags & PERF_FLAG_FD_CLOEXEC)
9249 f_flags |= O_CLOEXEC;
9250
9251 event_fd = get_unused_fd_flags(f_flags);
ea635c64
AV
9252 if (event_fd < 0)
9253 return event_fd;
9254
ac9721f3 9255 if (group_fd != -1) {
2903ff01
AV
9256 err = perf_fget_light(group_fd, &group);
9257 if (err)
d14b12d7 9258 goto err_fd;
2903ff01 9259 group_leader = group.file->private_data;
ac9721f3
PZ
9260 if (flags & PERF_FLAG_FD_OUTPUT)
9261 output_event = group_leader;
9262 if (flags & PERF_FLAG_FD_NO_GROUP)
9263 group_leader = NULL;
9264 }
9265
e5d1367f 9266 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
c6be5a5c
PZ
9267 task = find_lively_task_by_vpid(pid);
9268 if (IS_ERR(task)) {
9269 err = PTR_ERR(task);
9270 goto err_group_fd;
9271 }
9272 }
9273
1f4ee503
PZ
9274 if (task && group_leader &&
9275 group_leader->attr.inherit != attr.inherit) {
9276 err = -EINVAL;
9277 goto err_task;
9278 }
9279
fbfc623f
YZ
9280 get_online_cpus();
9281
79c9ce57
PZ
9282 if (task) {
9283 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
9284 if (err)
9285 goto err_cpus;
9286
9287 /*
9288 * Reuse ptrace permission checks for now.
9289 *
9290 * We must hold cred_guard_mutex across this and any potential
9291 * perf_install_in_context() call for this new event to
9292 * serialize against exec() altering our credentials (and the
9293 * perf_event_exit_task() that could imply).
9294 */
9295 err = -EACCES;
9296 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
9297 goto err_cred;
9298 }
9299
79dff51e
MF
9300 if (flags & PERF_FLAG_PID_CGROUP)
9301 cgroup_fd = pid;
9302
4dc0da86 9303 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
79dff51e 9304 NULL, NULL, cgroup_fd);
d14b12d7
SE
9305 if (IS_ERR(event)) {
9306 err = PTR_ERR(event);
79c9ce57 9307 goto err_cred;
d14b12d7
SE
9308 }
9309
53b25335
VW
9310 if (is_sampling_event(event)) {
9311 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
9312 err = -ENOTSUPP;
9313 goto err_alloc;
9314 }
9315 }
9316
89a1e187
PZ
9317 /*
9318 * Special case software events and allow them to be part of
9319 * any hardware group.
9320 */
9321 pmu = event->pmu;
b04243ef 9322
34f43927
PZ
9323 if (attr.use_clockid) {
9324 err = perf_event_set_clock(event, attr.clockid);
9325 if (err)
9326 goto err_alloc;
9327 }
9328
b04243ef
PZ
9329 if (group_leader &&
9330 (is_software_event(event) != is_software_event(group_leader))) {
9331 if (is_software_event(event)) {
9332 /*
9333 * If event and group_leader are not both a software
9334 * event, and event is, then group leader is not.
9335 *
9336 * Allow the addition of software events to !software
9337 * groups, this is safe because software events never
9338 * fail to schedule.
9339 */
9340 pmu = group_leader->pmu;
9341 } else if (is_software_event(group_leader) &&
9342 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
9343 /*
9344 * In case the group is a pure software group, and we
9345 * try to add a hardware event, move the whole group to
9346 * the hardware context.
9347 */
9348 move_group = 1;
9349 }
9350 }
89a1e187
PZ
9351
9352 /*
9353 * Get the target context (task or percpu):
9354 */
4af57ef2 9355 ctx = find_get_context(pmu, task, event);
89a1e187
PZ
9356 if (IS_ERR(ctx)) {
9357 err = PTR_ERR(ctx);
c6be5a5c 9358 goto err_alloc;
89a1e187
PZ
9359 }
9360
bed5b25a
AS
9361 if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
9362 err = -EBUSY;
9363 goto err_context;
9364 }
9365
ccff286d 9366 /*
cdd6c482 9367 * Look up the group leader (we will attach this event to it):
04289bb9 9368 */
ac9721f3 9369 if (group_leader) {
dc86cabe 9370 err = -EINVAL;
04289bb9 9371
04289bb9 9372 /*
ccff286d
IM
9373 * Do not allow a recursive hierarchy (this new sibling
9374 * becoming part of another group-sibling):
9375 */
9376 if (group_leader->group_leader != group_leader)
c3f00c70 9377 goto err_context;
34f43927
PZ
9378
9379 /* All events in a group should have the same clock */
9380 if (group_leader->clock != event->clock)
9381 goto err_context;
9382
ccff286d
IM
9383 /*
9384 * Do not allow to attach to a group in a different
9385 * task or CPU context:
04289bb9 9386 */
b04243ef 9387 if (move_group) {
c3c87e77
PZ
9388 /*
9389 * Make sure we're both on the same task, or both
9390 * per-cpu events.
9391 */
9392 if (group_leader->ctx->task != ctx->task)
9393 goto err_context;
9394
9395 /*
9396 * Make sure we're both events for the same CPU;
9397 * grouping events for different CPUs is broken; since
9398 * you can never concurrently schedule them anyhow.
9399 */
9400 if (group_leader->cpu != event->cpu)
b04243ef
PZ
9401 goto err_context;
9402 } else {
9403 if (group_leader->ctx != ctx)
9404 goto err_context;
9405 }
9406
3b6f9e5c
PM
9407 /*
9408 * Only a group leader can be exclusive or pinned
9409 */
0d48696f 9410 if (attr.exclusive || attr.pinned)
c3f00c70 9411 goto err_context;
ac9721f3
PZ
9412 }
9413
9414 if (output_event) {
9415 err = perf_event_set_output(event, output_event);
9416 if (err)
c3f00c70 9417 goto err_context;
ac9721f3 9418 }
0793a61d 9419
a21b0b35
YD
9420 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
9421 f_flags);
ea635c64
AV
9422 if (IS_ERR(event_file)) {
9423 err = PTR_ERR(event_file);
201c2f85 9424 event_file = NULL;
c3f00c70 9425 goto err_context;
ea635c64 9426 }
9b51f66d 9427
b04243ef 9428 if (move_group) {
f63a8daa 9429 gctx = group_leader->ctx;
f55fc2a5 9430 mutex_lock_double(&gctx->mutex, &ctx->mutex);
84c4e620
PZ
9431 if (gctx->task == TASK_TOMBSTONE) {
9432 err = -ESRCH;
9433 goto err_locked;
9434 }
f55fc2a5
PZ
9435 } else {
9436 mutex_lock(&ctx->mutex);
9437 }
9438
84c4e620
PZ
9439 if (ctx->task == TASK_TOMBSTONE) {
9440 err = -ESRCH;
9441 goto err_locked;
9442 }
9443
a723968c
PZ
9444 if (!perf_event_validate_size(event)) {
9445 err = -E2BIG;
9446 goto err_locked;
9447 }
9448
f55fc2a5
PZ
9449 /*
9450 * Must be under the same ctx::mutex as perf_install_in_context(),
9451 * because we need to serialize with concurrent event creation.
9452 */
9453 if (!exclusive_event_installable(event, ctx)) {
9454 /* exclusive and group stuff are assumed mutually exclusive */
9455 WARN_ON_ONCE(move_group);
f63a8daa 9456
f55fc2a5
PZ
9457 err = -EBUSY;
9458 goto err_locked;
9459 }
f63a8daa 9460
f55fc2a5
PZ
9461 WARN_ON_ONCE(ctx->parent_ctx);
9462
79c9ce57
PZ
9463 /*
9464 * This is the point on no return; we cannot fail hereafter. This is
9465 * where we start modifying current state.
9466 */
9467
f55fc2a5 9468 if (move_group) {
f63a8daa
PZ
9469 /*
9470 * See perf_event_ctx_lock() for comments on the details
9471 * of swizzling perf_event::ctx.
9472 */
45a0e07a 9473 perf_remove_from_context(group_leader, 0);
0231bb53 9474
b04243ef
PZ
9475 list_for_each_entry(sibling, &group_leader->sibling_list,
9476 group_entry) {
45a0e07a 9477 perf_remove_from_context(sibling, 0);
b04243ef
PZ
9478 put_ctx(gctx);
9479 }
b04243ef 9480
f63a8daa
PZ
9481 /*
9482 * Wait for everybody to stop referencing the events through
9483 * the old lists, before installing it on new lists.
9484 */
0cda4c02 9485 synchronize_rcu();
f63a8daa 9486
8f95b435
PZI
9487 /*
9488 * Install the group siblings before the group leader.
9489 *
9490 * Because a group leader will try and install the entire group
9491 * (through the sibling list, which is still in-tact), we can
9492 * end up with siblings installed in the wrong context.
9493 *
9494 * By installing siblings first we NO-OP because they're not
9495 * reachable through the group lists.
9496 */
b04243ef
PZ
9497 list_for_each_entry(sibling, &group_leader->sibling_list,
9498 group_entry) {
8f95b435 9499 perf_event__state_init(sibling);
9fc81d87 9500 perf_install_in_context(ctx, sibling, sibling->cpu);
b04243ef
PZ
9501 get_ctx(ctx);
9502 }
8f95b435
PZI
9503
9504 /*
9505 * Removing from the context ends up with disabled
9506 * event. What we want here is event in the initial
9507 * startup state, ready to be add into new context.
9508 */
9509 perf_event__state_init(group_leader);
9510 perf_install_in_context(ctx, group_leader, group_leader->cpu);
9511 get_ctx(ctx);
b04243ef 9512
f55fc2a5
PZ
9513 /*
9514 * Now that all events are installed in @ctx, nothing
9515 * references @gctx anymore, so drop the last reference we have
9516 * on it.
9517 */
9518 put_ctx(gctx);
bed5b25a
AS
9519 }
9520
f73e22ab
PZ
9521 /*
9522 * Precalculate sample_data sizes; do while holding ctx::mutex such
9523 * that we're serialized against further additions and before
9524 * perf_install_in_context() which is the point the event is active and
9525 * can use these values.
9526 */
9527 perf_event__header_size(event);
9528 perf_event__id_header_size(event);
9529
78cd2c74
PZ
9530 event->owner = current;
9531
e2d37cd2 9532 perf_install_in_context(ctx, event, event->cpu);
fe4b04fa 9533 perf_unpin_context(ctx);
f63a8daa 9534
f55fc2a5 9535 if (move_group)
f63a8daa 9536 mutex_unlock(&gctx->mutex);
d859e29f 9537 mutex_unlock(&ctx->mutex);
9b51f66d 9538
79c9ce57
PZ
9539 if (task) {
9540 mutex_unlock(&task->signal->cred_guard_mutex);
9541 put_task_struct(task);
9542 }
9543
fbfc623f
YZ
9544 put_online_cpus();
9545
cdd6c482
IM
9546 mutex_lock(&current->perf_event_mutex);
9547 list_add_tail(&event->owner_entry, &current->perf_event_list);
9548 mutex_unlock(&current->perf_event_mutex);
082ff5a2 9549
8a49542c
PZ
9550 /*
9551 * Drop the reference on the group_event after placing the
9552 * new event on the sibling_list. This ensures destruction
9553 * of the group leader will find the pointer to itself in
9554 * perf_group_detach().
9555 */
2903ff01 9556 fdput(group);
ea635c64
AV
9557 fd_install(event_fd, event_file);
9558 return event_fd;
0793a61d 9559
f55fc2a5
PZ
9560err_locked:
9561 if (move_group)
9562 mutex_unlock(&gctx->mutex);
9563 mutex_unlock(&ctx->mutex);
9564/* err_file: */
9565 fput(event_file);
c3f00c70 9566err_context:
fe4b04fa 9567 perf_unpin_context(ctx);
ea635c64 9568 put_ctx(ctx);
c6be5a5c 9569err_alloc:
13005627
PZ
9570 /*
9571 * If event_file is set, the fput() above will have called ->release()
9572 * and that will take care of freeing the event.
9573 */
9574 if (!event_file)
9575 free_event(event);
79c9ce57
PZ
9576err_cred:
9577 if (task)
9578 mutex_unlock(&task->signal->cred_guard_mutex);
1f4ee503 9579err_cpus:
fbfc623f 9580 put_online_cpus();
1f4ee503 9581err_task:
e7d0bc04
PZ
9582 if (task)
9583 put_task_struct(task);
89a1e187 9584err_group_fd:
2903ff01 9585 fdput(group);
ea635c64
AV
9586err_fd:
9587 put_unused_fd(event_fd);
dc86cabe 9588 return err;
0793a61d
TG
9589}
9590
fb0459d7
AV
9591/**
9592 * perf_event_create_kernel_counter
9593 *
9594 * @attr: attributes of the counter to create
9595 * @cpu: cpu in which the counter is bound
38a81da2 9596 * @task: task to profile (NULL for percpu)
fb0459d7
AV
9597 */
9598struct perf_event *
9599perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
38a81da2 9600 struct task_struct *task,
4dc0da86
AK
9601 perf_overflow_handler_t overflow_handler,
9602 void *context)
fb0459d7 9603{
fb0459d7 9604 struct perf_event_context *ctx;
c3f00c70 9605 struct perf_event *event;
fb0459d7 9606 int err;
d859e29f 9607
fb0459d7
AV
9608 /*
9609 * Get the target context (task or percpu):
9610 */
d859e29f 9611
4dc0da86 9612 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
79dff51e 9613 overflow_handler, context, -1);
c3f00c70
PZ
9614 if (IS_ERR(event)) {
9615 err = PTR_ERR(event);
9616 goto err;
9617 }
d859e29f 9618
f8697762 9619 /* Mark owner so we could distinguish it from user events. */
63b6da39 9620 event->owner = TASK_TOMBSTONE;
f8697762 9621
4af57ef2 9622 ctx = find_get_context(event->pmu, task, event);
c6567f64
FW
9623 if (IS_ERR(ctx)) {
9624 err = PTR_ERR(ctx);
c3f00c70 9625 goto err_free;
d859e29f 9626 }
fb0459d7 9627
fb0459d7
AV
9628 WARN_ON_ONCE(ctx->parent_ctx);
9629 mutex_lock(&ctx->mutex);
84c4e620
PZ
9630 if (ctx->task == TASK_TOMBSTONE) {
9631 err = -ESRCH;
9632 goto err_unlock;
9633 }
9634
bed5b25a 9635 if (!exclusive_event_installable(event, ctx)) {
bed5b25a 9636 err = -EBUSY;
84c4e620 9637 goto err_unlock;
bed5b25a
AS
9638 }
9639
fb0459d7 9640 perf_install_in_context(ctx, event, cpu);
fe4b04fa 9641 perf_unpin_context(ctx);
fb0459d7
AV
9642 mutex_unlock(&ctx->mutex);
9643
fb0459d7
AV
9644 return event;
9645
84c4e620
PZ
9646err_unlock:
9647 mutex_unlock(&ctx->mutex);
9648 perf_unpin_context(ctx);
9649 put_ctx(ctx);
c3f00c70
PZ
9650err_free:
9651 free_event(event);
9652err:
c6567f64 9653 return ERR_PTR(err);
9b51f66d 9654}
fb0459d7 9655EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
9b51f66d 9656
0cda4c02
YZ
9657void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
9658{
9659 struct perf_event_context *src_ctx;
9660 struct perf_event_context *dst_ctx;
9661 struct perf_event *event, *tmp;
9662 LIST_HEAD(events);
9663
9664 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
9665 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
9666
f63a8daa
PZ
9667 /*
9668 * See perf_event_ctx_lock() for comments on the details
9669 * of swizzling perf_event::ctx.
9670 */
9671 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
0cda4c02
YZ
9672 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
9673 event_entry) {
45a0e07a 9674 perf_remove_from_context(event, 0);
9a545de0 9675 unaccount_event_cpu(event, src_cpu);
0cda4c02 9676 put_ctx(src_ctx);
9886167d 9677 list_add(&event->migrate_entry, &events);
0cda4c02 9678 }
0cda4c02 9679
8f95b435
PZI
9680 /*
9681 * Wait for the events to quiesce before re-instating them.
9682 */
0cda4c02
YZ
9683 synchronize_rcu();
9684
8f95b435
PZI
9685 /*
9686 * Re-instate events in 2 passes.
9687 *
9688 * Skip over group leaders and only install siblings on this first
9689 * pass, siblings will not get enabled without a leader, however a
9690 * leader will enable its siblings, even if those are still on the old
9691 * context.
9692 */
9693 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
9694 if (event->group_leader == event)
9695 continue;
9696
9697 list_del(&event->migrate_entry);
9698 if (event->state >= PERF_EVENT_STATE_OFF)
9699 event->state = PERF_EVENT_STATE_INACTIVE;
9700 account_event_cpu(event, dst_cpu);
9701 perf_install_in_context(dst_ctx, event, dst_cpu);
9702 get_ctx(dst_ctx);
9703 }
9704
9705 /*
9706 * Once all the siblings are setup properly, install the group leaders
9707 * to make it go.
9708 */
9886167d
PZ
9709 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
9710 list_del(&event->migrate_entry);
0cda4c02
YZ
9711 if (event->state >= PERF_EVENT_STATE_OFF)
9712 event->state = PERF_EVENT_STATE_INACTIVE;
9a545de0 9713 account_event_cpu(event, dst_cpu);
0cda4c02
YZ
9714 perf_install_in_context(dst_ctx, event, dst_cpu);
9715 get_ctx(dst_ctx);
9716 }
9717 mutex_unlock(&dst_ctx->mutex);
f63a8daa 9718 mutex_unlock(&src_ctx->mutex);
0cda4c02
YZ
9719}
9720EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
9721
cdd6c482 9722static void sync_child_event(struct perf_event *child_event,
38b200d6 9723 struct task_struct *child)
d859e29f 9724{
cdd6c482 9725 struct perf_event *parent_event = child_event->parent;
8bc20959 9726 u64 child_val;
d859e29f 9727
cdd6c482
IM
9728 if (child_event->attr.inherit_stat)
9729 perf_event_read_event(child_event, child);
38b200d6 9730
b5e58793 9731 child_val = perf_event_count(child_event);
d859e29f
PM
9732
9733 /*
9734 * Add back the child's count to the parent's count:
9735 */
a6e6dea6 9736 atomic64_add(child_val, &parent_event->child_count);
cdd6c482
IM
9737 atomic64_add(child_event->total_time_enabled,
9738 &parent_event->child_total_time_enabled);
9739 atomic64_add(child_event->total_time_running,
9740 &parent_event->child_total_time_running);
d859e29f
PM
9741}
9742
9b51f66d 9743static void
8ba289b8
PZ
9744perf_event_exit_event(struct perf_event *child_event,
9745 struct perf_event_context *child_ctx,
9746 struct task_struct *child)
9b51f66d 9747{
8ba289b8
PZ
9748 struct perf_event *parent_event = child_event->parent;
9749
1903d50c
PZ
9750 /*
9751 * Do not destroy the 'original' grouping; because of the context
9752 * switch optimization the original events could've ended up in a
9753 * random child task.
9754 *
9755 * If we were to destroy the original group, all group related
9756 * operations would cease to function properly after this random
9757 * child dies.
9758 *
9759 * Do destroy all inherited groups, we don't care about those
9760 * and being thorough is better.
9761 */
32132a3d
PZ
9762 raw_spin_lock_irq(&child_ctx->lock);
9763 WARN_ON_ONCE(child_ctx->is_active);
9764
8ba289b8 9765 if (parent_event)
32132a3d
PZ
9766 perf_group_detach(child_event);
9767 list_del_event(child_event, child_ctx);
a69b0ca4 9768 child_event->state = PERF_EVENT_STATE_EXIT; /* is_event_hup() */
32132a3d 9769 raw_spin_unlock_irq(&child_ctx->lock);
0cc0c027 9770
9b51f66d 9771 /*
8ba289b8 9772 * Parent events are governed by their filedesc, retain them.
9b51f66d 9773 */
8ba289b8 9774 if (!parent_event) {
179033b3 9775 perf_event_wakeup(child_event);
8ba289b8 9776 return;
4bcf349a 9777 }
8ba289b8
PZ
9778 /*
9779 * Child events can be cleaned up.
9780 */
9781
9782 sync_child_event(child_event, child);
9783
9784 /*
9785 * Remove this event from the parent's list
9786 */
9787 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
9788 mutex_lock(&parent_event->child_mutex);
9789 list_del_init(&child_event->child_list);
9790 mutex_unlock(&parent_event->child_mutex);
9791
9792 /*
9793 * Kick perf_poll() for is_event_hup().
9794 */
9795 perf_event_wakeup(parent_event);
9796 free_event(child_event);
9797 put_event(parent_event);
9b51f66d
IM
9798}
9799
8dc85d54 9800static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
9b51f66d 9801{
211de6eb 9802 struct perf_event_context *child_ctx, *clone_ctx = NULL;
63b6da39 9803 struct perf_event *child_event, *next;
63b6da39
PZ
9804
9805 WARN_ON_ONCE(child != current);
9b51f66d 9806
6a3351b6 9807 child_ctx = perf_pin_task_context(child, ctxn);
63b6da39 9808 if (!child_ctx)
9b51f66d
IM
9809 return;
9810
ad3a37de 9811 /*
6a3351b6
PZ
9812 * In order to reduce the amount of tricky in ctx tear-down, we hold
9813 * ctx::mutex over the entire thing. This serializes against almost
9814 * everything that wants to access the ctx.
9815 *
9816 * The exception is sys_perf_event_open() /
9817 * perf_event_create_kernel_count() which does find_get_context()
9818 * without ctx::mutex (it cannot because of the move_group double mutex
9819 * lock thing). See the comments in perf_install_in_context().
ad3a37de 9820 */
6a3351b6 9821 mutex_lock(&child_ctx->mutex);
c93f7669
PM
9822
9823 /*
6a3351b6
PZ
9824 * In a single ctx::lock section, de-schedule the events and detach the
9825 * context from the task such that we cannot ever get it scheduled back
9826 * in.
c93f7669 9827 */
6a3351b6 9828 raw_spin_lock_irq(&child_ctx->lock);
63b6da39 9829 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx);
4a1c0f26 9830
71a851b4 9831 /*
63b6da39
PZ
9832 * Now that the context is inactive, destroy the task <-> ctx relation
9833 * and mark the context dead.
71a851b4 9834 */
63b6da39
PZ
9835 RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
9836 put_ctx(child_ctx); /* cannot be last */
9837 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
9838 put_task_struct(current); /* cannot be last */
4a1c0f26 9839
211de6eb 9840 clone_ctx = unclone_ctx(child_ctx);
6a3351b6 9841 raw_spin_unlock_irq(&child_ctx->lock);
9f498cc5 9842
211de6eb
PZ
9843 if (clone_ctx)
9844 put_ctx(clone_ctx);
4a1c0f26 9845
9f498cc5 9846 /*
cdd6c482
IM
9847 * Report the task dead after unscheduling the events so that we
9848 * won't get any samples after PERF_RECORD_EXIT. We can however still
9849 * get a few PERF_RECORD_READ events.
9f498cc5 9850 */
cdd6c482 9851 perf_event_task(child, child_ctx, 0);
a63eaf34 9852
ebf905fc 9853 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
8ba289b8 9854 perf_event_exit_event(child_event, child_ctx, child);
8bc20959 9855
a63eaf34
PM
9856 mutex_unlock(&child_ctx->mutex);
9857
9858 put_ctx(child_ctx);
9b51f66d
IM
9859}
9860
8dc85d54
PZ
9861/*
9862 * When a child task exits, feed back event values to parent events.
79c9ce57
PZ
9863 *
9864 * Can be called with cred_guard_mutex held when called from
9865 * install_exec_creds().
8dc85d54
PZ
9866 */
9867void perf_event_exit_task(struct task_struct *child)
9868{
8882135b 9869 struct perf_event *event, *tmp;
8dc85d54
PZ
9870 int ctxn;
9871
8882135b
PZ
9872 mutex_lock(&child->perf_event_mutex);
9873 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
9874 owner_entry) {
9875 list_del_init(&event->owner_entry);
9876
9877 /*
9878 * Ensure the list deletion is visible before we clear
9879 * the owner, closes a race against perf_release() where
9880 * we need to serialize on the owner->perf_event_mutex.
9881 */
f47c02c0 9882 smp_store_release(&event->owner, NULL);
8882135b
PZ
9883 }
9884 mutex_unlock(&child->perf_event_mutex);
9885
8dc85d54
PZ
9886 for_each_task_context_nr(ctxn)
9887 perf_event_exit_task_context(child, ctxn);
4e93ad60
JO
9888
9889 /*
9890 * The perf_event_exit_task_context calls perf_event_task
9891 * with child's task_ctx, which generates EXIT events for
9892 * child contexts and sets child->perf_event_ctxp[] to NULL.
9893 * At this point we need to send EXIT events to cpu contexts.
9894 */
9895 perf_event_task(child, NULL, 0);
8dc85d54
PZ
9896}
9897
889ff015
FW
9898static void perf_free_event(struct perf_event *event,
9899 struct perf_event_context *ctx)
9900{
9901 struct perf_event *parent = event->parent;
9902
9903 if (WARN_ON_ONCE(!parent))
9904 return;
9905
9906 mutex_lock(&parent->child_mutex);
9907 list_del_init(&event->child_list);
9908 mutex_unlock(&parent->child_mutex);
9909
a6fa941d 9910 put_event(parent);
889ff015 9911
652884fe 9912 raw_spin_lock_irq(&ctx->lock);
8a49542c 9913 perf_group_detach(event);
889ff015 9914 list_del_event(event, ctx);
652884fe 9915 raw_spin_unlock_irq(&ctx->lock);
889ff015
FW
9916 free_event(event);
9917}
9918
bbbee908 9919/*
652884fe 9920 * Free an unexposed, unused context as created by inheritance by
8dc85d54 9921 * perf_event_init_task below, used by fork() in case of fail.
652884fe
PZ
9922 *
9923 * Not all locks are strictly required, but take them anyway to be nice and
9924 * help out with the lockdep assertions.
bbbee908 9925 */
cdd6c482 9926void perf_event_free_task(struct task_struct *task)
bbbee908 9927{
8dc85d54 9928 struct perf_event_context *ctx;
cdd6c482 9929 struct perf_event *event, *tmp;
8dc85d54 9930 int ctxn;
bbbee908 9931
8dc85d54
PZ
9932 for_each_task_context_nr(ctxn) {
9933 ctx = task->perf_event_ctxp[ctxn];
9934 if (!ctx)
9935 continue;
bbbee908 9936
8dc85d54 9937 mutex_lock(&ctx->mutex);
bbbee908 9938again:
8dc85d54
PZ
9939 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
9940 group_entry)
9941 perf_free_event(event, ctx);
bbbee908 9942
8dc85d54
PZ
9943 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
9944 group_entry)
9945 perf_free_event(event, ctx);
bbbee908 9946
8dc85d54
PZ
9947 if (!list_empty(&ctx->pinned_groups) ||
9948 !list_empty(&ctx->flexible_groups))
9949 goto again;
bbbee908 9950
8dc85d54 9951 mutex_unlock(&ctx->mutex);
bbbee908 9952
8dc85d54
PZ
9953 put_ctx(ctx);
9954 }
889ff015
FW
9955}
9956
4e231c79
PZ
9957void perf_event_delayed_put(struct task_struct *task)
9958{
9959 int ctxn;
9960
9961 for_each_task_context_nr(ctxn)
9962 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
9963}
9964
e03e7ee3 9965struct file *perf_event_get(unsigned int fd)
ffe8690c 9966{
e03e7ee3 9967 struct file *file;
ffe8690c 9968
e03e7ee3
AS
9969 file = fget_raw(fd);
9970 if (!file)
9971 return ERR_PTR(-EBADF);
ffe8690c 9972
e03e7ee3
AS
9973 if (file->f_op != &perf_fops) {
9974 fput(file);
9975 return ERR_PTR(-EBADF);
9976 }
ffe8690c 9977
e03e7ee3 9978 return file;
ffe8690c
KX
9979}
9980
9981const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
9982{
9983 if (!event)
9984 return ERR_PTR(-EINVAL);
9985
9986 return &event->attr;
9987}
9988
97dee4f3
PZ
9989/*
9990 * inherit a event from parent task to child task:
9991 */
9992static struct perf_event *
9993inherit_event(struct perf_event *parent_event,
9994 struct task_struct *parent,
9995 struct perf_event_context *parent_ctx,
9996 struct task_struct *child,
9997 struct perf_event *group_leader,
9998 struct perf_event_context *child_ctx)
9999{
1929def9 10000 enum perf_event_active_state parent_state = parent_event->state;
97dee4f3 10001 struct perf_event *child_event;
cee010ec 10002 unsigned long flags;
97dee4f3
PZ
10003
10004 /*
10005 * Instead of creating recursive hierarchies of events,
10006 * we link inherited events back to the original parent,
10007 * which has a filp for sure, which we use as the reference
10008 * count:
10009 */
10010 if (parent_event->parent)
10011 parent_event = parent_event->parent;
10012
10013 child_event = perf_event_alloc(&parent_event->attr,
10014 parent_event->cpu,
d580ff86 10015 child,
97dee4f3 10016 group_leader, parent_event,
79dff51e 10017 NULL, NULL, -1);
97dee4f3
PZ
10018 if (IS_ERR(child_event))
10019 return child_event;
a6fa941d 10020
c6e5b732
PZ
10021 /*
10022 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
10023 * must be under the same lock in order to serialize against
10024 * perf_event_release_kernel(), such that either we must observe
10025 * is_orphaned_event() or they will observe us on the child_list.
10026 */
10027 mutex_lock(&parent_event->child_mutex);
fadfe7be
JO
10028 if (is_orphaned_event(parent_event) ||
10029 !atomic_long_inc_not_zero(&parent_event->refcount)) {
c6e5b732 10030 mutex_unlock(&parent_event->child_mutex);
a6fa941d
AV
10031 free_event(child_event);
10032 return NULL;
10033 }
10034
97dee4f3
PZ
10035 get_ctx(child_ctx);
10036
10037 /*
10038 * Make the child state follow the state of the parent event,
10039 * not its attr.disabled bit. We hold the parent's mutex,
10040 * so we won't race with perf_event_{en, dis}able_family.
10041 */
1929def9 10042 if (parent_state >= PERF_EVENT_STATE_INACTIVE)
97dee4f3
PZ
10043 child_event->state = PERF_EVENT_STATE_INACTIVE;
10044 else
10045 child_event->state = PERF_EVENT_STATE_OFF;
10046
10047 if (parent_event->attr.freq) {
10048 u64 sample_period = parent_event->hw.sample_period;
10049 struct hw_perf_event *hwc = &child_event->hw;
10050
10051 hwc->sample_period = sample_period;
10052 hwc->last_period = sample_period;
10053
10054 local64_set(&hwc->period_left, sample_period);
10055 }
10056
10057 child_event->ctx = child_ctx;
10058 child_event->overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
10059 child_event->overflow_handler_context
10060 = parent_event->overflow_handler_context;
97dee4f3 10061
614b6780
TG
10062 /*
10063 * Precalculate sample_data sizes
10064 */
10065 perf_event__header_size(child_event);
6844c09d 10066 perf_event__id_header_size(child_event);
614b6780 10067
97dee4f3
PZ
10068 /*
10069 * Link it up in the child's context:
10070 */
cee010ec 10071 raw_spin_lock_irqsave(&child_ctx->lock, flags);
97dee4f3 10072 add_event_to_ctx(child_event, child_ctx);
cee010ec 10073 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
97dee4f3 10074
97dee4f3
PZ
10075 /*
10076 * Link this into the parent event's child list
10077 */
97dee4f3
PZ
10078 list_add_tail(&child_event->child_list, &parent_event->child_list);
10079 mutex_unlock(&parent_event->child_mutex);
10080
10081 return child_event;
10082}
10083
10084static int inherit_group(struct perf_event *parent_event,
10085 struct task_struct *parent,
10086 struct perf_event_context *parent_ctx,
10087 struct task_struct *child,
10088 struct perf_event_context *child_ctx)
10089{
10090 struct perf_event *leader;
10091 struct perf_event *sub;
10092 struct perf_event *child_ctr;
10093
10094 leader = inherit_event(parent_event, parent, parent_ctx,
10095 child, NULL, child_ctx);
10096 if (IS_ERR(leader))
10097 return PTR_ERR(leader);
10098 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
10099 child_ctr = inherit_event(sub, parent, parent_ctx,
10100 child, leader, child_ctx);
10101 if (IS_ERR(child_ctr))
10102 return PTR_ERR(child_ctr);
10103 }
10104 return 0;
889ff015
FW
10105}
10106
10107static int
10108inherit_task_group(struct perf_event *event, struct task_struct *parent,
10109 struct perf_event_context *parent_ctx,
8dc85d54 10110 struct task_struct *child, int ctxn,
889ff015
FW
10111 int *inherited_all)
10112{
10113 int ret;
8dc85d54 10114 struct perf_event_context *child_ctx;
889ff015
FW
10115
10116 if (!event->attr.inherit) {
10117 *inherited_all = 0;
10118 return 0;
bbbee908
PZ
10119 }
10120
fe4b04fa 10121 child_ctx = child->perf_event_ctxp[ctxn];
889ff015
FW
10122 if (!child_ctx) {
10123 /*
10124 * This is executed from the parent task context, so
10125 * inherit events that have been marked for cloning.
10126 * First allocate and initialize a context for the
10127 * child.
10128 */
bbbee908 10129
734df5ab 10130 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
889ff015
FW
10131 if (!child_ctx)
10132 return -ENOMEM;
bbbee908 10133
8dc85d54 10134 child->perf_event_ctxp[ctxn] = child_ctx;
889ff015
FW
10135 }
10136
10137 ret = inherit_group(event, parent, parent_ctx,
10138 child, child_ctx);
10139
10140 if (ret)
10141 *inherited_all = 0;
10142
10143 return ret;
bbbee908
PZ
10144}
10145
9b51f66d 10146/*
cdd6c482 10147 * Initialize the perf_event context in task_struct
9b51f66d 10148 */
985c8dcb 10149static int perf_event_init_context(struct task_struct *child, int ctxn)
9b51f66d 10150{
889ff015 10151 struct perf_event_context *child_ctx, *parent_ctx;
cdd6c482
IM
10152 struct perf_event_context *cloned_ctx;
10153 struct perf_event *event;
9b51f66d 10154 struct task_struct *parent = current;
564c2b21 10155 int inherited_all = 1;
dddd3379 10156 unsigned long flags;
6ab423e0 10157 int ret = 0;
9b51f66d 10158
8dc85d54 10159 if (likely(!parent->perf_event_ctxp[ctxn]))
6ab423e0
PZ
10160 return 0;
10161
ad3a37de 10162 /*
25346b93
PM
10163 * If the parent's context is a clone, pin it so it won't get
10164 * swapped under us.
ad3a37de 10165 */
8dc85d54 10166 parent_ctx = perf_pin_task_context(parent, ctxn);
ffb4ef21
PZ
10167 if (!parent_ctx)
10168 return 0;
25346b93 10169
ad3a37de
PM
10170 /*
10171 * No need to check if parent_ctx != NULL here; since we saw
10172 * it non-NULL earlier, the only reason for it to become NULL
10173 * is if we exit, and since we're currently in the middle of
10174 * a fork we can't be exiting at the same time.
10175 */
ad3a37de 10176
9b51f66d
IM
10177 /*
10178 * Lock the parent list. No need to lock the child - not PID
10179 * hashed yet and not running, so nobody can access it.
10180 */
d859e29f 10181 mutex_lock(&parent_ctx->mutex);
9b51f66d
IM
10182
10183 /*
10184 * We dont have to disable NMIs - we are only looking at
10185 * the list, not manipulating it:
10186 */
889ff015 10187 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
8dc85d54
PZ
10188 ret = inherit_task_group(event, parent, parent_ctx,
10189 child, ctxn, &inherited_all);
889ff015
FW
10190 if (ret)
10191 break;
10192 }
b93f7978 10193
dddd3379
TG
10194 /*
10195 * We can't hold ctx->lock when iterating the ->flexible_group list due
10196 * to allocations, but we need to prevent rotation because
10197 * rotate_ctx() will change the list from interrupt context.
10198 */
10199 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10200 parent_ctx->rotate_disable = 1;
10201 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10202
889ff015 10203 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
8dc85d54
PZ
10204 ret = inherit_task_group(event, parent, parent_ctx,
10205 child, ctxn, &inherited_all);
889ff015 10206 if (ret)
9b51f66d 10207 break;
564c2b21
PM
10208 }
10209
dddd3379
TG
10210 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10211 parent_ctx->rotate_disable = 0;
dddd3379 10212
8dc85d54 10213 child_ctx = child->perf_event_ctxp[ctxn];
889ff015 10214
05cbaa28 10215 if (child_ctx && inherited_all) {
564c2b21
PM
10216 /*
10217 * Mark the child context as a clone of the parent
10218 * context, or of whatever the parent is a clone of.
c5ed5145
PZ
10219 *
10220 * Note that if the parent is a clone, the holding of
10221 * parent_ctx->lock avoids it from being uncloned.
564c2b21 10222 */
c5ed5145 10223 cloned_ctx = parent_ctx->parent_ctx;
ad3a37de
PM
10224 if (cloned_ctx) {
10225 child_ctx->parent_ctx = cloned_ctx;
25346b93 10226 child_ctx->parent_gen = parent_ctx->parent_gen;
564c2b21
PM
10227 } else {
10228 child_ctx->parent_ctx = parent_ctx;
10229 child_ctx->parent_gen = parent_ctx->generation;
10230 }
10231 get_ctx(child_ctx->parent_ctx);
9b51f66d
IM
10232 }
10233
c5ed5145 10234 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
d859e29f 10235 mutex_unlock(&parent_ctx->mutex);
6ab423e0 10236
25346b93 10237 perf_unpin_context(parent_ctx);
fe4b04fa 10238 put_ctx(parent_ctx);
ad3a37de 10239
6ab423e0 10240 return ret;
9b51f66d
IM
10241}
10242
8dc85d54
PZ
10243/*
10244 * Initialize the perf_event context in task_struct
10245 */
10246int perf_event_init_task(struct task_struct *child)
10247{
10248 int ctxn, ret;
10249
8550d7cb
ON
10250 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
10251 mutex_init(&child->perf_event_mutex);
10252 INIT_LIST_HEAD(&child->perf_event_list);
10253
8dc85d54
PZ
10254 for_each_task_context_nr(ctxn) {
10255 ret = perf_event_init_context(child, ctxn);
6c72e350
PZ
10256 if (ret) {
10257 perf_event_free_task(child);
8dc85d54 10258 return ret;
6c72e350 10259 }
8dc85d54
PZ
10260 }
10261
10262 return 0;
10263}
10264
220b140b
PM
10265static void __init perf_event_init_all_cpus(void)
10266{
b28ab83c 10267 struct swevent_htable *swhash;
220b140b 10268 int cpu;
220b140b
PM
10269
10270 for_each_possible_cpu(cpu) {
b28ab83c
PZ
10271 swhash = &per_cpu(swevent_htable, cpu);
10272 mutex_init(&swhash->hlist_mutex);
2fde4f94 10273 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
f2fb6bef
KL
10274
10275 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
10276 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
220b140b
PM
10277 }
10278}
10279
0db0628d 10280static void perf_event_init_cpu(int cpu)
0793a61d 10281{
108b02cf 10282 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
0793a61d 10283
b28ab83c 10284 mutex_lock(&swhash->hlist_mutex);
059fcd8c 10285 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
76e1d904
FW
10286 struct swevent_hlist *hlist;
10287
b28ab83c
PZ
10288 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
10289 WARN_ON(!hlist);
10290 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 10291 }
b28ab83c 10292 mutex_unlock(&swhash->hlist_mutex);
0793a61d
TG
10293}
10294
2965faa5 10295#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
108b02cf 10296static void __perf_event_exit_context(void *__info)
0793a61d 10297{
108b02cf 10298 struct perf_event_context *ctx = __info;
fae3fde6
PZ
10299 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
10300 struct perf_event *event;
0793a61d 10301
fae3fde6
PZ
10302 raw_spin_lock(&ctx->lock);
10303 list_for_each_entry(event, &ctx->event_list, event_entry)
45a0e07a 10304 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
fae3fde6 10305 raw_spin_unlock(&ctx->lock);
0793a61d 10306}
108b02cf
PZ
10307
10308static void perf_event_exit_cpu_context(int cpu)
10309{
10310 struct perf_event_context *ctx;
10311 struct pmu *pmu;
10312 int idx;
10313
10314 idx = srcu_read_lock(&pmus_srcu);
10315 list_for_each_entry_rcu(pmu, &pmus, entry) {
917bdd1c 10316 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
108b02cf
PZ
10317
10318 mutex_lock(&ctx->mutex);
10319 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
10320 mutex_unlock(&ctx->mutex);
10321 }
10322 srcu_read_unlock(&pmus_srcu, idx);
108b02cf
PZ
10323}
10324
cdd6c482 10325static void perf_event_exit_cpu(int cpu)
0793a61d 10326{
e3703f8c 10327 perf_event_exit_cpu_context(cpu);
0793a61d
TG
10328}
10329#else
cdd6c482 10330static inline void perf_event_exit_cpu(int cpu) { }
0793a61d
TG
10331#endif
10332
c277443c
PZ
10333static int
10334perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
10335{
10336 int cpu;
10337
10338 for_each_online_cpu(cpu)
10339 perf_event_exit_cpu(cpu);
10340
10341 return NOTIFY_OK;
10342}
10343
10344/*
10345 * Run the perf reboot notifier at the very last possible moment so that
10346 * the generic watchdog code runs as long as possible.
10347 */
10348static struct notifier_block perf_reboot_notifier = {
10349 .notifier_call = perf_reboot,
10350 .priority = INT_MIN,
10351};
10352
0db0628d 10353static int
0793a61d
TG
10354perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
10355{
10356 unsigned int cpu = (long)hcpu;
10357
4536e4d1 10358 switch (action & ~CPU_TASKS_FROZEN) {
0793a61d
TG
10359
10360 case CPU_UP_PREPARE:
1dcaac1c
PZ
10361 /*
10362 * This must be done before the CPU comes alive, because the
10363 * moment we can run tasks we can encounter (software) events.
10364 *
10365 * Specifically, someone can have inherited events on kthreadd
10366 * or a pre-existing worker thread that gets re-bound.
10367 */
cdd6c482 10368 perf_event_init_cpu(cpu);
0793a61d
TG
10369 break;
10370
10371 case CPU_DOWN_PREPARE:
1dcaac1c
PZ
10372 /*
10373 * This must be done before the CPU dies because after that an
10374 * active event might want to IPI the CPU and that'll not work
10375 * so great for dead CPUs.
10376 *
10377 * XXX smp_call_function_single() return -ENXIO without a warn
10378 * so we could possibly deal with this.
10379 *
10380 * This is safe against new events arriving because
10381 * sys_perf_event_open() serializes against hotplug using
10382 * get_online_cpus().
10383 */
cdd6c482 10384 perf_event_exit_cpu(cpu);
0793a61d 10385 break;
0793a61d
TG
10386 default:
10387 break;
10388 }
10389
10390 return NOTIFY_OK;
10391}
10392
cdd6c482 10393void __init perf_event_init(void)
0793a61d 10394{
3c502e7a
JW
10395 int ret;
10396
2e80a82a
PZ
10397 idr_init(&pmu_idr);
10398
220b140b 10399 perf_event_init_all_cpus();
b0a873eb 10400 init_srcu_struct(&pmus_srcu);
2e80a82a
PZ
10401 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
10402 perf_pmu_register(&perf_cpu_clock, NULL, -1);
10403 perf_pmu_register(&perf_task_clock, NULL, -1);
b0a873eb
PZ
10404 perf_tp_register();
10405 perf_cpu_notifier(perf_cpu_notify);
c277443c 10406 register_reboot_notifier(&perf_reboot_notifier);
3c502e7a
JW
10407
10408 ret = init_hw_breakpoint();
10409 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
b2029520 10410
b01c3a00
JO
10411 /*
10412 * Build time assertion that we keep the data_head at the intended
10413 * location. IOW, validation we got the __reserved[] size right.
10414 */
10415 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
10416 != 1024);
0793a61d 10417}
abe43400 10418
fd979c01
CS
10419ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
10420 char *page)
10421{
10422 struct perf_pmu_events_attr *pmu_attr =
10423 container_of(attr, struct perf_pmu_events_attr, attr);
10424
10425 if (pmu_attr->event_str)
10426 return sprintf(page, "%s\n", pmu_attr->event_str);
10427
10428 return 0;
10429}
675965b0 10430EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
fd979c01 10431
abe43400
PZ
10432static int __init perf_event_sysfs_init(void)
10433{
10434 struct pmu *pmu;
10435 int ret;
10436
10437 mutex_lock(&pmus_lock);
10438
10439 ret = bus_register(&pmu_bus);
10440 if (ret)
10441 goto unlock;
10442
10443 list_for_each_entry(pmu, &pmus, entry) {
10444 if (!pmu->name || pmu->type < 0)
10445 continue;
10446
10447 ret = pmu_dev_alloc(pmu);
10448 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
10449 }
10450 pmu_bus_running = 1;
10451 ret = 0;
10452
10453unlock:
10454 mutex_unlock(&pmus_lock);
10455
10456 return ret;
10457}
10458device_initcall(perf_event_sysfs_init);
e5d1367f
SE
10459
10460#ifdef CONFIG_CGROUP_PERF
eb95419b
TH
10461static struct cgroup_subsys_state *
10462perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
e5d1367f
SE
10463{
10464 struct perf_cgroup *jc;
e5d1367f 10465
1b15d055 10466 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
e5d1367f
SE
10467 if (!jc)
10468 return ERR_PTR(-ENOMEM);
10469
e5d1367f
SE
10470 jc->info = alloc_percpu(struct perf_cgroup_info);
10471 if (!jc->info) {
10472 kfree(jc);
10473 return ERR_PTR(-ENOMEM);
10474 }
10475
e5d1367f
SE
10476 return &jc->css;
10477}
10478
eb95419b 10479static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
e5d1367f 10480{
eb95419b
TH
10481 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
10482
e5d1367f
SE
10483 free_percpu(jc->info);
10484 kfree(jc);
10485}
10486
10487static int __perf_cgroup_move(void *info)
10488{
10489 struct task_struct *task = info;
ddaaf4e2 10490 rcu_read_lock();
e5d1367f 10491 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
ddaaf4e2 10492 rcu_read_unlock();
e5d1367f
SE
10493 return 0;
10494}
10495
1f7dd3e5 10496static void perf_cgroup_attach(struct cgroup_taskset *tset)
e5d1367f 10497{
bb9d97b6 10498 struct task_struct *task;
1f7dd3e5 10499 struct cgroup_subsys_state *css;
bb9d97b6 10500
1f7dd3e5 10501 cgroup_taskset_for_each(task, css, tset)
bb9d97b6 10502 task_function_call(task, __perf_cgroup_move, task);
e5d1367f
SE
10503}
10504
073219e9 10505struct cgroup_subsys perf_event_cgrp_subsys = {
92fb9748
TH
10506 .css_alloc = perf_cgroup_css_alloc,
10507 .css_free = perf_cgroup_css_free,
bb9d97b6 10508 .attach = perf_cgroup_attach,
e5d1367f
SE
10509};
10510#endif /* CONFIG_CGROUP_PERF */