]> git.ipfire.org Git - people/arne_f/kernel.git/blame - kernel/events/core.c
cgroup: misc cleanups
[people/arne_f/kernel.git] / kernel / events / core.c
CommitLineData
0793a61d 1/*
57c0c15b 2 * Performance events core code:
0793a61d 3 *
98144511 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
e7e7ee2e 5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
90eec103 6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
d36b6910 7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
7b732a75 8 *
57c0c15b 9 * For licensing details see kernel-base/COPYING
0793a61d
TG
10 */
11
12#include <linux/fs.h>
b9cacc7b 13#include <linux/mm.h>
0793a61d
TG
14#include <linux/cpu.h>
15#include <linux/smp.h>
2e80a82a 16#include <linux/idr.h>
04289bb9 17#include <linux/file.h>
0793a61d 18#include <linux/poll.h>
5a0e3ad6 19#include <linux/slab.h>
76e1d904 20#include <linux/hash.h>
12351ef8 21#include <linux/tick.h>
0793a61d 22#include <linux/sysfs.h>
22a4f650 23#include <linux/dcache.h>
0793a61d 24#include <linux/percpu.h>
22a4f650 25#include <linux/ptrace.h>
c277443c 26#include <linux/reboot.h>
b9cacc7b 27#include <linux/vmstat.h>
abe43400 28#include <linux/device.h>
6e5fdeed 29#include <linux/export.h>
906010b2 30#include <linux/vmalloc.h>
b9cacc7b
PZ
31#include <linux/hardirq.h>
32#include <linux/rculist.h>
0793a61d
TG
33#include <linux/uaccess.h>
34#include <linux/syscalls.h>
35#include <linux/anon_inodes.h>
aa9c4c0f 36#include <linux/kernel_stat.h>
39bed6cb 37#include <linux/cgroup.h>
cdd6c482 38#include <linux/perf_event.h>
af658dca 39#include <linux/trace_events.h>
3c502e7a 40#include <linux/hw_breakpoint.h>
c5ebcedb 41#include <linux/mm_types.h>
c464c76e 42#include <linux/module.h>
f972eb63 43#include <linux/mman.h>
b3f20785 44#include <linux/compat.h>
2541517c
AS
45#include <linux/bpf.h>
46#include <linux/filter.h>
375637bc
AS
47#include <linux/namei.h>
48#include <linux/parser.h>
0793a61d 49
76369139
FW
50#include "internal.h"
51
4e193bd4
TB
52#include <asm/irq_regs.h>
53
272325c4
PZ
54typedef int (*remote_function_f)(void *);
55
fe4b04fa 56struct remote_function_call {
e7e7ee2e 57 struct task_struct *p;
272325c4 58 remote_function_f func;
e7e7ee2e
IM
59 void *info;
60 int ret;
fe4b04fa
PZ
61};
62
63static void remote_function(void *data)
64{
65 struct remote_function_call *tfc = data;
66 struct task_struct *p = tfc->p;
67
68 if (p) {
0da4cf3e
PZ
69 /* -EAGAIN */
70 if (task_cpu(p) != smp_processor_id())
71 return;
72
73 /*
74 * Now that we're on right CPU with IRQs disabled, we can test
75 * if we hit the right task without races.
76 */
77
78 tfc->ret = -ESRCH; /* No such (running) process */
79 if (p != current)
fe4b04fa
PZ
80 return;
81 }
82
83 tfc->ret = tfc->func(tfc->info);
84}
85
86/**
87 * task_function_call - call a function on the cpu on which a task runs
88 * @p: the task to evaluate
89 * @func: the function to be called
90 * @info: the function call argument
91 *
92 * Calls the function @func when the task is currently running. This might
93 * be on the current CPU, which just calls the function directly
94 *
95 * returns: @func return value, or
96 * -ESRCH - when the process isn't running
97 * -EAGAIN - when the process moved away
98 */
99static int
272325c4 100task_function_call(struct task_struct *p, remote_function_f func, void *info)
fe4b04fa
PZ
101{
102 struct remote_function_call data = {
e7e7ee2e
IM
103 .p = p,
104 .func = func,
105 .info = info,
0da4cf3e 106 .ret = -EAGAIN,
fe4b04fa 107 };
0da4cf3e 108 int ret;
fe4b04fa 109
0da4cf3e
PZ
110 do {
111 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
112 if (!ret)
113 ret = data.ret;
114 } while (ret == -EAGAIN);
fe4b04fa 115
0da4cf3e 116 return ret;
fe4b04fa
PZ
117}
118
119/**
120 * cpu_function_call - call a function on the cpu
121 * @func: the function to be called
122 * @info: the function call argument
123 *
124 * Calls the function @func on the remote cpu.
125 *
126 * returns: @func return value or -ENXIO when the cpu is offline
127 */
272325c4 128static int cpu_function_call(int cpu, remote_function_f func, void *info)
fe4b04fa
PZ
129{
130 struct remote_function_call data = {
e7e7ee2e
IM
131 .p = NULL,
132 .func = func,
133 .info = info,
134 .ret = -ENXIO, /* No such CPU */
fe4b04fa
PZ
135 };
136
137 smp_call_function_single(cpu, remote_function, &data, 1);
138
139 return data.ret;
140}
141
fae3fde6
PZ
142static inline struct perf_cpu_context *
143__get_cpu_context(struct perf_event_context *ctx)
144{
145 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
146}
147
148static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
149 struct perf_event_context *ctx)
0017960f 150{
fae3fde6
PZ
151 raw_spin_lock(&cpuctx->ctx.lock);
152 if (ctx)
153 raw_spin_lock(&ctx->lock);
154}
155
156static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
157 struct perf_event_context *ctx)
158{
159 if (ctx)
160 raw_spin_unlock(&ctx->lock);
161 raw_spin_unlock(&cpuctx->ctx.lock);
162}
163
63b6da39
PZ
164#define TASK_TOMBSTONE ((void *)-1L)
165
166static bool is_kernel_event(struct perf_event *event)
167{
f47c02c0 168 return READ_ONCE(event->owner) == TASK_TOMBSTONE;
63b6da39
PZ
169}
170
39a43640
PZ
171/*
172 * On task ctx scheduling...
173 *
174 * When !ctx->nr_events a task context will not be scheduled. This means
175 * we can disable the scheduler hooks (for performance) without leaving
176 * pending task ctx state.
177 *
178 * This however results in two special cases:
179 *
180 * - removing the last event from a task ctx; this is relatively straight
181 * forward and is done in __perf_remove_from_context.
182 *
183 * - adding the first event to a task ctx; this is tricky because we cannot
184 * rely on ctx->is_active and therefore cannot use event_function_call().
185 * See perf_install_in_context().
186 *
39a43640
PZ
187 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
188 */
189
fae3fde6
PZ
190typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
191 struct perf_event_context *, void *);
192
193struct event_function_struct {
194 struct perf_event *event;
195 event_f func;
196 void *data;
197};
198
199static int event_function(void *info)
200{
201 struct event_function_struct *efs = info;
202 struct perf_event *event = efs->event;
0017960f 203 struct perf_event_context *ctx = event->ctx;
fae3fde6
PZ
204 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
205 struct perf_event_context *task_ctx = cpuctx->task_ctx;
63b6da39 206 int ret = 0;
fae3fde6
PZ
207
208 WARN_ON_ONCE(!irqs_disabled());
209
63b6da39 210 perf_ctx_lock(cpuctx, task_ctx);
fae3fde6
PZ
211 /*
212 * Since we do the IPI call without holding ctx->lock things can have
213 * changed, double check we hit the task we set out to hit.
fae3fde6
PZ
214 */
215 if (ctx->task) {
63b6da39 216 if (ctx->task != current) {
0da4cf3e 217 ret = -ESRCH;
63b6da39
PZ
218 goto unlock;
219 }
fae3fde6 220
fae3fde6
PZ
221 /*
222 * We only use event_function_call() on established contexts,
223 * and event_function() is only ever called when active (or
224 * rather, we'll have bailed in task_function_call() or the
225 * above ctx->task != current test), therefore we must have
226 * ctx->is_active here.
227 */
228 WARN_ON_ONCE(!ctx->is_active);
229 /*
230 * And since we have ctx->is_active, cpuctx->task_ctx must
231 * match.
232 */
63b6da39
PZ
233 WARN_ON_ONCE(task_ctx != ctx);
234 } else {
235 WARN_ON_ONCE(&cpuctx->ctx != ctx);
fae3fde6 236 }
63b6da39 237
fae3fde6 238 efs->func(event, cpuctx, ctx, efs->data);
63b6da39 239unlock:
fae3fde6
PZ
240 perf_ctx_unlock(cpuctx, task_ctx);
241
63b6da39 242 return ret;
fae3fde6
PZ
243}
244
fae3fde6 245static void event_function_call(struct perf_event *event, event_f func, void *data)
0017960f
PZ
246{
247 struct perf_event_context *ctx = event->ctx;
63b6da39 248 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
fae3fde6
PZ
249 struct event_function_struct efs = {
250 .event = event,
251 .func = func,
252 .data = data,
253 };
0017960f 254
c97f4736
PZ
255 if (!event->parent) {
256 /*
257 * If this is a !child event, we must hold ctx::mutex to
258 * stabilize the the event->ctx relation. See
259 * perf_event_ctx_lock().
260 */
261 lockdep_assert_held(&ctx->mutex);
262 }
0017960f
PZ
263
264 if (!task) {
fae3fde6 265 cpu_function_call(event->cpu, event_function, &efs);
0017960f
PZ
266 return;
267 }
268
63b6da39
PZ
269 if (task == TASK_TOMBSTONE)
270 return;
271
a096309b 272again:
fae3fde6 273 if (!task_function_call(task, event_function, &efs))
0017960f
PZ
274 return;
275
276 raw_spin_lock_irq(&ctx->lock);
63b6da39
PZ
277 /*
278 * Reload the task pointer, it might have been changed by
279 * a concurrent perf_event_context_sched_out().
280 */
281 task = ctx->task;
a096309b
PZ
282 if (task == TASK_TOMBSTONE) {
283 raw_spin_unlock_irq(&ctx->lock);
284 return;
0017960f 285 }
a096309b
PZ
286 if (ctx->is_active) {
287 raw_spin_unlock_irq(&ctx->lock);
288 goto again;
289 }
290 func(event, NULL, ctx, data);
0017960f
PZ
291 raw_spin_unlock_irq(&ctx->lock);
292}
293
cca20946
PZ
294/*
295 * Similar to event_function_call() + event_function(), but hard assumes IRQs
296 * are already disabled and we're on the right CPU.
297 */
298static void event_function_local(struct perf_event *event, event_f func, void *data)
299{
300 struct perf_event_context *ctx = event->ctx;
301 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
302 struct task_struct *task = READ_ONCE(ctx->task);
303 struct perf_event_context *task_ctx = NULL;
304
305 WARN_ON_ONCE(!irqs_disabled());
306
307 if (task) {
308 if (task == TASK_TOMBSTONE)
309 return;
310
311 task_ctx = ctx;
312 }
313
314 perf_ctx_lock(cpuctx, task_ctx);
315
316 task = ctx->task;
317 if (task == TASK_TOMBSTONE)
318 goto unlock;
319
320 if (task) {
321 /*
322 * We must be either inactive or active and the right task,
323 * otherwise we're screwed, since we cannot IPI to somewhere
324 * else.
325 */
326 if (ctx->is_active) {
327 if (WARN_ON_ONCE(task != current))
328 goto unlock;
329
330 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
331 goto unlock;
332 }
333 } else {
334 WARN_ON_ONCE(&cpuctx->ctx != ctx);
335 }
336
337 func(event, cpuctx, ctx, data);
338unlock:
339 perf_ctx_unlock(cpuctx, task_ctx);
340}
341
e5d1367f
SE
342#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
343 PERF_FLAG_FD_OUTPUT |\
a21b0b35
YD
344 PERF_FLAG_PID_CGROUP |\
345 PERF_FLAG_FD_CLOEXEC)
e5d1367f 346
bce38cd5
SE
347/*
348 * branch priv levels that need permission checks
349 */
350#define PERF_SAMPLE_BRANCH_PERM_PLM \
351 (PERF_SAMPLE_BRANCH_KERNEL |\
352 PERF_SAMPLE_BRANCH_HV)
353
0b3fcf17
SE
354enum event_type_t {
355 EVENT_FLEXIBLE = 0x1,
356 EVENT_PINNED = 0x2,
3cbaa590 357 EVENT_TIME = 0x4,
0b3fcf17
SE
358 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
359};
360
e5d1367f
SE
361/*
362 * perf_sched_events : >0 events exist
363 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
364 */
9107c89e
PZ
365
366static void perf_sched_delayed(struct work_struct *work);
367DEFINE_STATIC_KEY_FALSE(perf_sched_events);
368static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
369static DEFINE_MUTEX(perf_sched_mutex);
370static atomic_t perf_sched_count;
371
e5d1367f 372static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
ba532500 373static DEFINE_PER_CPU(int, perf_sched_cb_usages);
f2fb6bef 374static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
e5d1367f 375
cdd6c482
IM
376static atomic_t nr_mmap_events __read_mostly;
377static atomic_t nr_comm_events __read_mostly;
378static atomic_t nr_task_events __read_mostly;
948b26b6 379static atomic_t nr_freq_events __read_mostly;
45ac1403 380static atomic_t nr_switch_events __read_mostly;
9ee318a7 381
108b02cf
PZ
382static LIST_HEAD(pmus);
383static DEFINE_MUTEX(pmus_lock);
384static struct srcu_struct pmus_srcu;
385
0764771d 386/*
cdd6c482 387 * perf event paranoia level:
0fbdea19
IM
388 * -1 - not paranoid at all
389 * 0 - disallow raw tracepoint access for unpriv
cdd6c482 390 * 1 - disallow cpu events for unpriv
0fbdea19 391 * 2 - disallow kernel profiling for unpriv
0764771d 392 */
0161028b 393int sysctl_perf_event_paranoid __read_mostly = 2;
0764771d 394
20443384
FW
395/* Minimum for 512 kiB + 1 user control page */
396int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
df58ab24
PZ
397
398/*
cdd6c482 399 * max perf event sample rate
df58ab24 400 */
14c63f17
DH
401#define DEFAULT_MAX_SAMPLE_RATE 100000
402#define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
403#define DEFAULT_CPU_TIME_MAX_PERCENT 25
404
405int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
406
407static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
408static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
409
d9494cb4
PZ
410static int perf_sample_allowed_ns __read_mostly =
411 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
14c63f17 412
18ab2cd3 413static void update_perf_cpu_limits(void)
14c63f17
DH
414{
415 u64 tmp = perf_sample_period_ns;
416
417 tmp *= sysctl_perf_cpu_time_max_percent;
91a612ee
PZ
418 tmp = div_u64(tmp, 100);
419 if (!tmp)
420 tmp = 1;
421
422 WRITE_ONCE(perf_sample_allowed_ns, tmp);
14c63f17 423}
163ec435 424
9e630205
SE
425static int perf_rotate_context(struct perf_cpu_context *cpuctx);
426
163ec435
PZ
427int perf_proc_update_handler(struct ctl_table *table, int write,
428 void __user *buffer, size_t *lenp,
429 loff_t *ppos)
430{
723478c8 431 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
163ec435
PZ
432
433 if (ret || !write)
434 return ret;
435
ab7fdefb
KL
436 /*
437 * If throttling is disabled don't allow the write:
438 */
439 if (sysctl_perf_cpu_time_max_percent == 100 ||
440 sysctl_perf_cpu_time_max_percent == 0)
441 return -EINVAL;
442
163ec435 443 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
14c63f17
DH
444 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
445 update_perf_cpu_limits();
446
447 return 0;
448}
449
450int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
451
452int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
453 void __user *buffer, size_t *lenp,
454 loff_t *ppos)
455{
456 int ret = proc_dointvec(table, write, buffer, lenp, ppos);
457
458 if (ret || !write)
459 return ret;
460
b303e7c1
PZ
461 if (sysctl_perf_cpu_time_max_percent == 100 ||
462 sysctl_perf_cpu_time_max_percent == 0) {
91a612ee
PZ
463 printk(KERN_WARNING
464 "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
465 WRITE_ONCE(perf_sample_allowed_ns, 0);
466 } else {
467 update_perf_cpu_limits();
468 }
163ec435
PZ
469
470 return 0;
471}
1ccd1549 472
14c63f17
DH
473/*
474 * perf samples are done in some very critical code paths (NMIs).
475 * If they take too much CPU time, the system can lock up and not
476 * get any real work done. This will drop the sample rate when
477 * we detect that events are taking too long.
478 */
479#define NR_ACCUMULATED_SAMPLES 128
d9494cb4 480static DEFINE_PER_CPU(u64, running_sample_length);
14c63f17 481
91a612ee
PZ
482static u64 __report_avg;
483static u64 __report_allowed;
484
6a02ad66 485static void perf_duration_warn(struct irq_work *w)
14c63f17 486{
0d87d7ec 487 printk_ratelimited(KERN_INFO
91a612ee
PZ
488 "perf: interrupt took too long (%lld > %lld), lowering "
489 "kernel.perf_event_max_sample_rate to %d\n",
490 __report_avg, __report_allowed,
491 sysctl_perf_event_sample_rate);
6a02ad66
PZ
492}
493
494static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
495
496void perf_sample_event_took(u64 sample_len_ns)
497{
91a612ee
PZ
498 u64 max_len = READ_ONCE(perf_sample_allowed_ns);
499 u64 running_len;
500 u64 avg_len;
501 u32 max;
14c63f17 502
91a612ee 503 if (max_len == 0)
14c63f17
DH
504 return;
505
91a612ee
PZ
506 /* Decay the counter by 1 average sample. */
507 running_len = __this_cpu_read(running_sample_length);
508 running_len -= running_len/NR_ACCUMULATED_SAMPLES;
509 running_len += sample_len_ns;
510 __this_cpu_write(running_sample_length, running_len);
14c63f17
DH
511
512 /*
91a612ee
PZ
513 * Note: this will be biased artifically low until we have
514 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
14c63f17
DH
515 * from having to maintain a count.
516 */
91a612ee
PZ
517 avg_len = running_len/NR_ACCUMULATED_SAMPLES;
518 if (avg_len <= max_len)
14c63f17
DH
519 return;
520
91a612ee
PZ
521 __report_avg = avg_len;
522 __report_allowed = max_len;
14c63f17 523
91a612ee
PZ
524 /*
525 * Compute a throttle threshold 25% below the current duration.
526 */
527 avg_len += avg_len / 4;
528 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
529 if (avg_len < max)
530 max /= (u32)avg_len;
531 else
532 max = 1;
14c63f17 533
91a612ee
PZ
534 WRITE_ONCE(perf_sample_allowed_ns, avg_len);
535 WRITE_ONCE(max_samples_per_tick, max);
536
537 sysctl_perf_event_sample_rate = max * HZ;
538 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
6a02ad66 539
cd578abb 540 if (!irq_work_queue(&perf_duration_work)) {
91a612ee 541 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
cd578abb 542 "kernel.perf_event_max_sample_rate to %d\n",
91a612ee 543 __report_avg, __report_allowed,
cd578abb
PZ
544 sysctl_perf_event_sample_rate);
545 }
14c63f17
DH
546}
547
cdd6c482 548static atomic64_t perf_event_id;
a96bbc16 549
0b3fcf17
SE
550static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
551 enum event_type_t event_type);
552
553static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
554 enum event_type_t event_type,
555 struct task_struct *task);
556
557static void update_context_time(struct perf_event_context *ctx);
558static u64 perf_event_time(struct perf_event *event);
0b3fcf17 559
cdd6c482 560void __weak perf_event_print_debug(void) { }
0793a61d 561
84c79910 562extern __weak const char *perf_pmu_name(void)
0793a61d 563{
84c79910 564 return "pmu";
0793a61d
TG
565}
566
0b3fcf17
SE
567static inline u64 perf_clock(void)
568{
569 return local_clock();
570}
571
34f43927
PZ
572static inline u64 perf_event_clock(struct perf_event *event)
573{
574 return event->clock();
575}
576
e5d1367f
SE
577#ifdef CONFIG_CGROUP_PERF
578
e5d1367f
SE
579static inline bool
580perf_cgroup_match(struct perf_event *event)
581{
582 struct perf_event_context *ctx = event->ctx;
583 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
584
ef824fa1
TH
585 /* @event doesn't care about cgroup */
586 if (!event->cgrp)
587 return true;
588
589 /* wants specific cgroup scope but @cpuctx isn't associated with any */
590 if (!cpuctx->cgrp)
591 return false;
592
593 /*
594 * Cgroup scoping is recursive. An event enabled for a cgroup is
595 * also enabled for all its descendant cgroups. If @cpuctx's
596 * cgroup is a descendant of @event's (the test covers identity
597 * case), it's a match.
598 */
599 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
600 event->cgrp->css.cgroup);
e5d1367f
SE
601}
602
e5d1367f
SE
603static inline void perf_detach_cgroup(struct perf_event *event)
604{
4e2ba650 605 css_put(&event->cgrp->css);
e5d1367f
SE
606 event->cgrp = NULL;
607}
608
609static inline int is_cgroup_event(struct perf_event *event)
610{
611 return event->cgrp != NULL;
612}
613
614static inline u64 perf_cgroup_event_time(struct perf_event *event)
615{
616 struct perf_cgroup_info *t;
617
618 t = per_cpu_ptr(event->cgrp->info, event->cpu);
619 return t->time;
620}
621
622static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
623{
624 struct perf_cgroup_info *info;
625 u64 now;
626
627 now = perf_clock();
628
629 info = this_cpu_ptr(cgrp->info);
630
631 info->time += now - info->timestamp;
632 info->timestamp = now;
633}
634
635static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
636{
637 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
638 if (cgrp_out)
639 __update_cgrp_time(cgrp_out);
640}
641
642static inline void update_cgrp_time_from_event(struct perf_event *event)
643{
3f7cce3c
SE
644 struct perf_cgroup *cgrp;
645
e5d1367f 646 /*
3f7cce3c
SE
647 * ensure we access cgroup data only when needed and
648 * when we know the cgroup is pinned (css_get)
e5d1367f 649 */
3f7cce3c 650 if (!is_cgroup_event(event))
e5d1367f
SE
651 return;
652
614e4c4e 653 cgrp = perf_cgroup_from_task(current, event->ctx);
3f7cce3c
SE
654 /*
655 * Do not update time when cgroup is not active
656 */
657 if (cgrp == event->cgrp)
658 __update_cgrp_time(event->cgrp);
e5d1367f
SE
659}
660
661static inline void
3f7cce3c
SE
662perf_cgroup_set_timestamp(struct task_struct *task,
663 struct perf_event_context *ctx)
e5d1367f
SE
664{
665 struct perf_cgroup *cgrp;
666 struct perf_cgroup_info *info;
667
3f7cce3c
SE
668 /*
669 * ctx->lock held by caller
670 * ensure we do not access cgroup data
671 * unless we have the cgroup pinned (css_get)
672 */
673 if (!task || !ctx->nr_cgroups)
e5d1367f
SE
674 return;
675
614e4c4e 676 cgrp = perf_cgroup_from_task(task, ctx);
e5d1367f 677 info = this_cpu_ptr(cgrp->info);
3f7cce3c 678 info->timestamp = ctx->timestamp;
e5d1367f
SE
679}
680
681#define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
682#define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
683
684/*
685 * reschedule events based on the cgroup constraint of task.
686 *
687 * mode SWOUT : schedule out everything
688 * mode SWIN : schedule in based on cgroup for next
689 */
18ab2cd3 690static void perf_cgroup_switch(struct task_struct *task, int mode)
e5d1367f
SE
691{
692 struct perf_cpu_context *cpuctx;
693 struct pmu *pmu;
694 unsigned long flags;
695
696 /*
697 * disable interrupts to avoid geting nr_cgroup
698 * changes via __perf_event_disable(). Also
699 * avoids preemption.
700 */
701 local_irq_save(flags);
702
703 /*
704 * we reschedule only in the presence of cgroup
705 * constrained events.
706 */
e5d1367f
SE
707
708 list_for_each_entry_rcu(pmu, &pmus, entry) {
e5d1367f 709 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
95cf59ea
PZ
710 if (cpuctx->unique_pmu != pmu)
711 continue; /* ensure we process each cpuctx once */
e5d1367f 712
e5d1367f
SE
713 /*
714 * perf_cgroup_events says at least one
715 * context on this CPU has cgroup events.
716 *
717 * ctx->nr_cgroups reports the number of cgroup
718 * events for a context.
719 */
720 if (cpuctx->ctx.nr_cgroups > 0) {
facc4307
PZ
721 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
722 perf_pmu_disable(cpuctx->ctx.pmu);
e5d1367f
SE
723
724 if (mode & PERF_CGROUP_SWOUT) {
725 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
726 /*
727 * must not be done before ctxswout due
728 * to event_filter_match() in event_sched_out()
729 */
730 cpuctx->cgrp = NULL;
731 }
732
733 if (mode & PERF_CGROUP_SWIN) {
e566b76e 734 WARN_ON_ONCE(cpuctx->cgrp);
95cf59ea
PZ
735 /*
736 * set cgrp before ctxsw in to allow
737 * event_filter_match() to not have to pass
738 * task around
614e4c4e
SE
739 * we pass the cpuctx->ctx to perf_cgroup_from_task()
740 * because cgorup events are only per-cpu
e5d1367f 741 */
614e4c4e 742 cpuctx->cgrp = perf_cgroup_from_task(task, &cpuctx->ctx);
e5d1367f
SE
743 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
744 }
facc4307
PZ
745 perf_pmu_enable(cpuctx->ctx.pmu);
746 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
e5d1367f 747 }
e5d1367f
SE
748 }
749
e5d1367f
SE
750 local_irq_restore(flags);
751}
752
a8d757ef
SE
753static inline void perf_cgroup_sched_out(struct task_struct *task,
754 struct task_struct *next)
e5d1367f 755{
a8d757ef
SE
756 struct perf_cgroup *cgrp1;
757 struct perf_cgroup *cgrp2 = NULL;
758
ddaaf4e2 759 rcu_read_lock();
a8d757ef
SE
760 /*
761 * we come here when we know perf_cgroup_events > 0
614e4c4e
SE
762 * we do not need to pass the ctx here because we know
763 * we are holding the rcu lock
a8d757ef 764 */
614e4c4e 765 cgrp1 = perf_cgroup_from_task(task, NULL);
70a01657 766 cgrp2 = perf_cgroup_from_task(next, NULL);
a8d757ef
SE
767
768 /*
769 * only schedule out current cgroup events if we know
770 * that we are switching to a different cgroup. Otherwise,
771 * do no touch the cgroup events.
772 */
773 if (cgrp1 != cgrp2)
774 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
ddaaf4e2
SE
775
776 rcu_read_unlock();
e5d1367f
SE
777}
778
a8d757ef
SE
779static inline void perf_cgroup_sched_in(struct task_struct *prev,
780 struct task_struct *task)
e5d1367f 781{
a8d757ef
SE
782 struct perf_cgroup *cgrp1;
783 struct perf_cgroup *cgrp2 = NULL;
784
ddaaf4e2 785 rcu_read_lock();
a8d757ef
SE
786 /*
787 * we come here when we know perf_cgroup_events > 0
614e4c4e
SE
788 * we do not need to pass the ctx here because we know
789 * we are holding the rcu lock
a8d757ef 790 */
614e4c4e 791 cgrp1 = perf_cgroup_from_task(task, NULL);
614e4c4e 792 cgrp2 = perf_cgroup_from_task(prev, NULL);
a8d757ef
SE
793
794 /*
795 * only need to schedule in cgroup events if we are changing
796 * cgroup during ctxsw. Cgroup events were not scheduled
797 * out of ctxsw out if that was not the case.
798 */
799 if (cgrp1 != cgrp2)
800 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
ddaaf4e2
SE
801
802 rcu_read_unlock();
e5d1367f
SE
803}
804
805static inline int perf_cgroup_connect(int fd, struct perf_event *event,
806 struct perf_event_attr *attr,
807 struct perf_event *group_leader)
808{
809 struct perf_cgroup *cgrp;
810 struct cgroup_subsys_state *css;
2903ff01
AV
811 struct fd f = fdget(fd);
812 int ret = 0;
e5d1367f 813
2903ff01 814 if (!f.file)
e5d1367f
SE
815 return -EBADF;
816
b583043e 817 css = css_tryget_online_from_dir(f.file->f_path.dentry,
ec903c0c 818 &perf_event_cgrp_subsys);
3db272c0
LZ
819 if (IS_ERR(css)) {
820 ret = PTR_ERR(css);
821 goto out;
822 }
e5d1367f
SE
823
824 cgrp = container_of(css, struct perf_cgroup, css);
825 event->cgrp = cgrp;
826
827 /*
828 * all events in a group must monitor
829 * the same cgroup because a task belongs
830 * to only one perf cgroup at a time
831 */
832 if (group_leader && group_leader->cgrp != cgrp) {
833 perf_detach_cgroup(event);
834 ret = -EINVAL;
e5d1367f 835 }
3db272c0 836out:
2903ff01 837 fdput(f);
e5d1367f
SE
838 return ret;
839}
840
841static inline void
842perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
843{
844 struct perf_cgroup_info *t;
845 t = per_cpu_ptr(event->cgrp->info, event->cpu);
846 event->shadow_ctx_time = now - t->timestamp;
847}
848
849static inline void
850perf_cgroup_defer_enabled(struct perf_event *event)
851{
852 /*
853 * when the current task's perf cgroup does not match
854 * the event's, we need to remember to call the
855 * perf_mark_enable() function the first time a task with
856 * a matching perf cgroup is scheduled in.
857 */
858 if (is_cgroup_event(event) && !perf_cgroup_match(event))
859 event->cgrp_defer_enabled = 1;
860}
861
862static inline void
863perf_cgroup_mark_enabled(struct perf_event *event,
864 struct perf_event_context *ctx)
865{
866 struct perf_event *sub;
867 u64 tstamp = perf_event_time(event);
868
869 if (!event->cgrp_defer_enabled)
870 return;
871
872 event->cgrp_defer_enabled = 0;
873
874 event->tstamp_enabled = tstamp - event->total_time_enabled;
875 list_for_each_entry(sub, &event->sibling_list, group_entry) {
876 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
877 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
878 sub->cgrp_defer_enabled = 0;
879 }
880 }
881}
db4a8356
DCC
882
883/*
884 * Update cpuctx->cgrp so that it is set when first cgroup event is added and
885 * cleared when last cgroup event is removed.
886 */
887static inline void
888list_update_cgroup_event(struct perf_event *event,
889 struct perf_event_context *ctx, bool add)
890{
891 struct perf_cpu_context *cpuctx;
892
893 if (!is_cgroup_event(event))
894 return;
895
896 if (add && ctx->nr_cgroups++)
897 return;
898 else if (!add && --ctx->nr_cgroups)
899 return;
900 /*
901 * Because cgroup events are always per-cpu events,
902 * this will always be called from the right CPU.
903 */
904 cpuctx = __get_cpu_context(ctx);
864c2357 905
8fc31ce8
DCC
906 /*
907 * cpuctx->cgrp is NULL until a cgroup event is sched in or
908 * ctx->nr_cgroup == 0 .
909 */
910 if (add && perf_cgroup_from_task(current, ctx) == event->cgrp)
911 cpuctx->cgrp = event->cgrp;
912 else if (!add)
913 cpuctx->cgrp = NULL;
db4a8356
DCC
914}
915
e5d1367f
SE
916#else /* !CONFIG_CGROUP_PERF */
917
918static inline bool
919perf_cgroup_match(struct perf_event *event)
920{
921 return true;
922}
923
924static inline void perf_detach_cgroup(struct perf_event *event)
925{}
926
927static inline int is_cgroup_event(struct perf_event *event)
928{
929 return 0;
930}
931
932static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
933{
934 return 0;
935}
936
937static inline void update_cgrp_time_from_event(struct perf_event *event)
938{
939}
940
941static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
942{
943}
944
a8d757ef
SE
945static inline void perf_cgroup_sched_out(struct task_struct *task,
946 struct task_struct *next)
e5d1367f
SE
947{
948}
949
a8d757ef
SE
950static inline void perf_cgroup_sched_in(struct task_struct *prev,
951 struct task_struct *task)
e5d1367f
SE
952{
953}
954
955static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
956 struct perf_event_attr *attr,
957 struct perf_event *group_leader)
958{
959 return -EINVAL;
960}
961
962static inline void
3f7cce3c
SE
963perf_cgroup_set_timestamp(struct task_struct *task,
964 struct perf_event_context *ctx)
e5d1367f
SE
965{
966}
967
968void
969perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
970{
971}
972
973static inline void
974perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
975{
976}
977
978static inline u64 perf_cgroup_event_time(struct perf_event *event)
979{
980 return 0;
981}
982
983static inline void
984perf_cgroup_defer_enabled(struct perf_event *event)
985{
986}
987
988static inline void
989perf_cgroup_mark_enabled(struct perf_event *event,
990 struct perf_event_context *ctx)
991{
992}
db4a8356
DCC
993
994static inline void
995list_update_cgroup_event(struct perf_event *event,
996 struct perf_event_context *ctx, bool add)
997{
998}
999
e5d1367f
SE
1000#endif
1001
9e630205
SE
1002/*
1003 * set default to be dependent on timer tick just
1004 * like original code
1005 */
1006#define PERF_CPU_HRTIMER (1000 / HZ)
1007/*
1008 * function must be called with interrupts disbled
1009 */
272325c4 1010static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
9e630205
SE
1011{
1012 struct perf_cpu_context *cpuctx;
9e630205
SE
1013 int rotations = 0;
1014
1015 WARN_ON(!irqs_disabled());
1016
1017 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
9e630205
SE
1018 rotations = perf_rotate_context(cpuctx);
1019
4cfafd30
PZ
1020 raw_spin_lock(&cpuctx->hrtimer_lock);
1021 if (rotations)
9e630205 1022 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
4cfafd30
PZ
1023 else
1024 cpuctx->hrtimer_active = 0;
1025 raw_spin_unlock(&cpuctx->hrtimer_lock);
9e630205 1026
4cfafd30 1027 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
9e630205
SE
1028}
1029
272325c4 1030static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
9e630205 1031{
272325c4 1032 struct hrtimer *timer = &cpuctx->hrtimer;
9e630205 1033 struct pmu *pmu = cpuctx->ctx.pmu;
272325c4 1034 u64 interval;
9e630205
SE
1035
1036 /* no multiplexing needed for SW PMU */
1037 if (pmu->task_ctx_nr == perf_sw_context)
1038 return;
1039
62b85639
SE
1040 /*
1041 * check default is sane, if not set then force to
1042 * default interval (1/tick)
1043 */
272325c4
PZ
1044 interval = pmu->hrtimer_interval_ms;
1045 if (interval < 1)
1046 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
62b85639 1047
272325c4 1048 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
9e630205 1049
4cfafd30
PZ
1050 raw_spin_lock_init(&cpuctx->hrtimer_lock);
1051 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
272325c4 1052 timer->function = perf_mux_hrtimer_handler;
9e630205
SE
1053}
1054
272325c4 1055static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
9e630205 1056{
272325c4 1057 struct hrtimer *timer = &cpuctx->hrtimer;
9e630205 1058 struct pmu *pmu = cpuctx->ctx.pmu;
4cfafd30 1059 unsigned long flags;
9e630205
SE
1060
1061 /* not for SW PMU */
1062 if (pmu->task_ctx_nr == perf_sw_context)
272325c4 1063 return 0;
9e630205 1064
4cfafd30
PZ
1065 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1066 if (!cpuctx->hrtimer_active) {
1067 cpuctx->hrtimer_active = 1;
1068 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1069 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
1070 }
1071 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
9e630205 1072
272325c4 1073 return 0;
9e630205
SE
1074}
1075
33696fc0 1076void perf_pmu_disable(struct pmu *pmu)
9e35ad38 1077{
33696fc0
PZ
1078 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1079 if (!(*count)++)
1080 pmu->pmu_disable(pmu);
9e35ad38 1081}
9e35ad38 1082
33696fc0 1083void perf_pmu_enable(struct pmu *pmu)
9e35ad38 1084{
33696fc0
PZ
1085 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1086 if (!--(*count))
1087 pmu->pmu_enable(pmu);
9e35ad38 1088}
9e35ad38 1089
2fde4f94 1090static DEFINE_PER_CPU(struct list_head, active_ctx_list);
e9d2b064
PZ
1091
1092/*
2fde4f94
MR
1093 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1094 * perf_event_task_tick() are fully serialized because they're strictly cpu
1095 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1096 * disabled, while perf_event_task_tick is called from IRQ context.
e9d2b064 1097 */
2fde4f94 1098static void perf_event_ctx_activate(struct perf_event_context *ctx)
9e35ad38 1099{
2fde4f94 1100 struct list_head *head = this_cpu_ptr(&active_ctx_list);
b5ab4cd5 1101
e9d2b064 1102 WARN_ON(!irqs_disabled());
b5ab4cd5 1103
2fde4f94
MR
1104 WARN_ON(!list_empty(&ctx->active_ctx_list));
1105
1106 list_add(&ctx->active_ctx_list, head);
1107}
1108
1109static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1110{
1111 WARN_ON(!irqs_disabled());
1112
1113 WARN_ON(list_empty(&ctx->active_ctx_list));
1114
1115 list_del_init(&ctx->active_ctx_list);
9e35ad38 1116}
9e35ad38 1117
cdd6c482 1118static void get_ctx(struct perf_event_context *ctx)
a63eaf34 1119{
e5289d4a 1120 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
a63eaf34
PM
1121}
1122
4af57ef2
YZ
1123static void free_ctx(struct rcu_head *head)
1124{
1125 struct perf_event_context *ctx;
1126
1127 ctx = container_of(head, struct perf_event_context, rcu_head);
1128 kfree(ctx->task_ctx_data);
1129 kfree(ctx);
1130}
1131
cdd6c482 1132static void put_ctx(struct perf_event_context *ctx)
a63eaf34 1133{
564c2b21
PM
1134 if (atomic_dec_and_test(&ctx->refcount)) {
1135 if (ctx->parent_ctx)
1136 put_ctx(ctx->parent_ctx);
63b6da39 1137 if (ctx->task && ctx->task != TASK_TOMBSTONE)
c93f7669 1138 put_task_struct(ctx->task);
4af57ef2 1139 call_rcu(&ctx->rcu_head, free_ctx);
564c2b21 1140 }
a63eaf34
PM
1141}
1142
f63a8daa
PZ
1143/*
1144 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1145 * perf_pmu_migrate_context() we need some magic.
1146 *
1147 * Those places that change perf_event::ctx will hold both
1148 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1149 *
8b10c5e2
PZ
1150 * Lock ordering is by mutex address. There are two other sites where
1151 * perf_event_context::mutex nests and those are:
1152 *
1153 * - perf_event_exit_task_context() [ child , 0 ]
8ba289b8
PZ
1154 * perf_event_exit_event()
1155 * put_event() [ parent, 1 ]
8b10c5e2
PZ
1156 *
1157 * - perf_event_init_context() [ parent, 0 ]
1158 * inherit_task_group()
1159 * inherit_group()
1160 * inherit_event()
1161 * perf_event_alloc()
1162 * perf_init_event()
1163 * perf_try_init_event() [ child , 1 ]
1164 *
1165 * While it appears there is an obvious deadlock here -- the parent and child
1166 * nesting levels are inverted between the two. This is in fact safe because
1167 * life-time rules separate them. That is an exiting task cannot fork, and a
1168 * spawning task cannot (yet) exit.
1169 *
1170 * But remember that that these are parent<->child context relations, and
1171 * migration does not affect children, therefore these two orderings should not
1172 * interact.
f63a8daa
PZ
1173 *
1174 * The change in perf_event::ctx does not affect children (as claimed above)
1175 * because the sys_perf_event_open() case will install a new event and break
1176 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1177 * concerned with cpuctx and that doesn't have children.
1178 *
1179 * The places that change perf_event::ctx will issue:
1180 *
1181 * perf_remove_from_context();
1182 * synchronize_rcu();
1183 * perf_install_in_context();
1184 *
1185 * to affect the change. The remove_from_context() + synchronize_rcu() should
1186 * quiesce the event, after which we can install it in the new location. This
1187 * means that only external vectors (perf_fops, prctl) can perturb the event
1188 * while in transit. Therefore all such accessors should also acquire
1189 * perf_event_context::mutex to serialize against this.
1190 *
1191 * However; because event->ctx can change while we're waiting to acquire
1192 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1193 * function.
1194 *
1195 * Lock order:
79c9ce57 1196 * cred_guard_mutex
f63a8daa
PZ
1197 * task_struct::perf_event_mutex
1198 * perf_event_context::mutex
f63a8daa 1199 * perf_event::child_mutex;
07c4a776 1200 * perf_event_context::lock
f63a8daa
PZ
1201 * perf_event::mmap_mutex
1202 * mmap_sem
1203 */
a83fe28e
PZ
1204static struct perf_event_context *
1205perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
f63a8daa
PZ
1206{
1207 struct perf_event_context *ctx;
1208
1209again:
1210 rcu_read_lock();
1211 ctx = ACCESS_ONCE(event->ctx);
1212 if (!atomic_inc_not_zero(&ctx->refcount)) {
1213 rcu_read_unlock();
1214 goto again;
1215 }
1216 rcu_read_unlock();
1217
a83fe28e 1218 mutex_lock_nested(&ctx->mutex, nesting);
f63a8daa
PZ
1219 if (event->ctx != ctx) {
1220 mutex_unlock(&ctx->mutex);
1221 put_ctx(ctx);
1222 goto again;
1223 }
1224
1225 return ctx;
1226}
1227
a83fe28e
PZ
1228static inline struct perf_event_context *
1229perf_event_ctx_lock(struct perf_event *event)
1230{
1231 return perf_event_ctx_lock_nested(event, 0);
1232}
1233
f63a8daa
PZ
1234static void perf_event_ctx_unlock(struct perf_event *event,
1235 struct perf_event_context *ctx)
1236{
1237 mutex_unlock(&ctx->mutex);
1238 put_ctx(ctx);
1239}
1240
211de6eb
PZ
1241/*
1242 * This must be done under the ctx->lock, such as to serialize against
1243 * context_equiv(), therefore we cannot call put_ctx() since that might end up
1244 * calling scheduler related locks and ctx->lock nests inside those.
1245 */
1246static __must_check struct perf_event_context *
1247unclone_ctx(struct perf_event_context *ctx)
71a851b4 1248{
211de6eb
PZ
1249 struct perf_event_context *parent_ctx = ctx->parent_ctx;
1250
1251 lockdep_assert_held(&ctx->lock);
1252
1253 if (parent_ctx)
71a851b4 1254 ctx->parent_ctx = NULL;
5a3126d4 1255 ctx->generation++;
211de6eb
PZ
1256
1257 return parent_ctx;
71a851b4
PZ
1258}
1259
6844c09d
ACM
1260static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1261{
1262 /*
1263 * only top level events have the pid namespace they were created in
1264 */
1265 if (event->parent)
1266 event = event->parent;
1267
1268 return task_tgid_nr_ns(p, event->ns);
1269}
1270
1271static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1272{
1273 /*
1274 * only top level events have the pid namespace they were created in
1275 */
1276 if (event->parent)
1277 event = event->parent;
1278
1279 return task_pid_nr_ns(p, event->ns);
1280}
1281
7f453c24 1282/*
cdd6c482 1283 * If we inherit events we want to return the parent event id
7f453c24
PZ
1284 * to userspace.
1285 */
cdd6c482 1286static u64 primary_event_id(struct perf_event *event)
7f453c24 1287{
cdd6c482 1288 u64 id = event->id;
7f453c24 1289
cdd6c482
IM
1290 if (event->parent)
1291 id = event->parent->id;
7f453c24
PZ
1292
1293 return id;
1294}
1295
25346b93 1296/*
cdd6c482 1297 * Get the perf_event_context for a task and lock it.
63b6da39 1298 *
25346b93
PM
1299 * This has to cope with with the fact that until it is locked,
1300 * the context could get moved to another task.
1301 */
cdd6c482 1302static struct perf_event_context *
8dc85d54 1303perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
25346b93 1304{
cdd6c482 1305 struct perf_event_context *ctx;
25346b93 1306
9ed6060d 1307retry:
058ebd0e
PZ
1308 /*
1309 * One of the few rules of preemptible RCU is that one cannot do
1310 * rcu_read_unlock() while holding a scheduler (or nested) lock when
2fd59077 1311 * part of the read side critical section was irqs-enabled -- see
058ebd0e
PZ
1312 * rcu_read_unlock_special().
1313 *
1314 * Since ctx->lock nests under rq->lock we must ensure the entire read
2fd59077 1315 * side critical section has interrupts disabled.
058ebd0e 1316 */
2fd59077 1317 local_irq_save(*flags);
058ebd0e 1318 rcu_read_lock();
8dc85d54 1319 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
25346b93
PM
1320 if (ctx) {
1321 /*
1322 * If this context is a clone of another, it might
1323 * get swapped for another underneath us by
cdd6c482 1324 * perf_event_task_sched_out, though the
25346b93
PM
1325 * rcu_read_lock() protects us from any context
1326 * getting freed. Lock the context and check if it
1327 * got swapped before we could get the lock, and retry
1328 * if so. If we locked the right context, then it
1329 * can't get swapped on us any more.
1330 */
2fd59077 1331 raw_spin_lock(&ctx->lock);
8dc85d54 1332 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
2fd59077 1333 raw_spin_unlock(&ctx->lock);
058ebd0e 1334 rcu_read_unlock();
2fd59077 1335 local_irq_restore(*flags);
25346b93
PM
1336 goto retry;
1337 }
b49a9e7e 1338
63b6da39
PZ
1339 if (ctx->task == TASK_TOMBSTONE ||
1340 !atomic_inc_not_zero(&ctx->refcount)) {
2fd59077 1341 raw_spin_unlock(&ctx->lock);
b49a9e7e 1342 ctx = NULL;
828b6f0e
PZ
1343 } else {
1344 WARN_ON_ONCE(ctx->task != task);
b49a9e7e 1345 }
25346b93
PM
1346 }
1347 rcu_read_unlock();
2fd59077
PM
1348 if (!ctx)
1349 local_irq_restore(*flags);
25346b93
PM
1350 return ctx;
1351}
1352
1353/*
1354 * Get the context for a task and increment its pin_count so it
1355 * can't get swapped to another task. This also increments its
1356 * reference count so that the context can't get freed.
1357 */
8dc85d54
PZ
1358static struct perf_event_context *
1359perf_pin_task_context(struct task_struct *task, int ctxn)
25346b93 1360{
cdd6c482 1361 struct perf_event_context *ctx;
25346b93
PM
1362 unsigned long flags;
1363
8dc85d54 1364 ctx = perf_lock_task_context(task, ctxn, &flags);
25346b93
PM
1365 if (ctx) {
1366 ++ctx->pin_count;
e625cce1 1367 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1368 }
1369 return ctx;
1370}
1371
cdd6c482 1372static void perf_unpin_context(struct perf_event_context *ctx)
25346b93
PM
1373{
1374 unsigned long flags;
1375
e625cce1 1376 raw_spin_lock_irqsave(&ctx->lock, flags);
25346b93 1377 --ctx->pin_count;
e625cce1 1378 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1379}
1380
f67218c3
PZ
1381/*
1382 * Update the record of the current time in a context.
1383 */
1384static void update_context_time(struct perf_event_context *ctx)
1385{
1386 u64 now = perf_clock();
1387
1388 ctx->time += now - ctx->timestamp;
1389 ctx->timestamp = now;
1390}
1391
4158755d
SE
1392static u64 perf_event_time(struct perf_event *event)
1393{
1394 struct perf_event_context *ctx = event->ctx;
e5d1367f
SE
1395
1396 if (is_cgroup_event(event))
1397 return perf_cgroup_event_time(event);
1398
4158755d
SE
1399 return ctx ? ctx->time : 0;
1400}
1401
f67218c3
PZ
1402/*
1403 * Update the total_time_enabled and total_time_running fields for a event.
1404 */
1405static void update_event_times(struct perf_event *event)
1406{
1407 struct perf_event_context *ctx = event->ctx;
1408 u64 run_end;
1409
3cbaa590
PZ
1410 lockdep_assert_held(&ctx->lock);
1411
f67218c3
PZ
1412 if (event->state < PERF_EVENT_STATE_INACTIVE ||
1413 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1414 return;
3cbaa590 1415
e5d1367f
SE
1416 /*
1417 * in cgroup mode, time_enabled represents
1418 * the time the event was enabled AND active
1419 * tasks were in the monitored cgroup. This is
1420 * independent of the activity of the context as
1421 * there may be a mix of cgroup and non-cgroup events.
1422 *
1423 * That is why we treat cgroup events differently
1424 * here.
1425 */
1426 if (is_cgroup_event(event))
46cd6a7f 1427 run_end = perf_cgroup_event_time(event);
e5d1367f
SE
1428 else if (ctx->is_active)
1429 run_end = ctx->time;
acd1d7c1
PZ
1430 else
1431 run_end = event->tstamp_stopped;
1432
1433 event->total_time_enabled = run_end - event->tstamp_enabled;
f67218c3
PZ
1434
1435 if (event->state == PERF_EVENT_STATE_INACTIVE)
1436 run_end = event->tstamp_stopped;
1437 else
4158755d 1438 run_end = perf_event_time(event);
f67218c3
PZ
1439
1440 event->total_time_running = run_end - event->tstamp_running;
e5d1367f 1441
f67218c3
PZ
1442}
1443
96c21a46
PZ
1444/*
1445 * Update total_time_enabled and total_time_running for all events in a group.
1446 */
1447static void update_group_times(struct perf_event *leader)
1448{
1449 struct perf_event *event;
1450
1451 update_event_times(leader);
1452 list_for_each_entry(event, &leader->sibling_list, group_entry)
1453 update_event_times(event);
1454}
1455
889ff015
FW
1456static struct list_head *
1457ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1458{
1459 if (event->attr.pinned)
1460 return &ctx->pinned_groups;
1461 else
1462 return &ctx->flexible_groups;
1463}
1464
fccc714b 1465/*
cdd6c482 1466 * Add a event from the lists for its context.
fccc714b
PZ
1467 * Must be called with ctx->mutex and ctx->lock held.
1468 */
04289bb9 1469static void
cdd6c482 1470list_add_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1471{
db4a8356 1472
c994d613
PZ
1473 lockdep_assert_held(&ctx->lock);
1474
8a49542c
PZ
1475 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1476 event->attach_state |= PERF_ATTACH_CONTEXT;
04289bb9
IM
1477
1478 /*
8a49542c
PZ
1479 * If we're a stand alone event or group leader, we go to the context
1480 * list, group events are kept attached to the group so that
1481 * perf_group_detach can, at all times, locate all siblings.
04289bb9 1482 */
8a49542c 1483 if (event->group_leader == event) {
889ff015
FW
1484 struct list_head *list;
1485
4ff6a8de 1486 event->group_caps = event->event_caps;
d6f962b5 1487
889ff015
FW
1488 list = ctx_group_list(event, ctx);
1489 list_add_tail(&event->group_entry, list);
5c148194 1490 }
592903cd 1491
db4a8356 1492 list_update_cgroup_event(event, ctx, true);
e5d1367f 1493
cdd6c482
IM
1494 list_add_rcu(&event->event_entry, &ctx->event_list);
1495 ctx->nr_events++;
1496 if (event->attr.inherit_stat)
bfbd3381 1497 ctx->nr_stat++;
5a3126d4
PZ
1498
1499 ctx->generation++;
04289bb9
IM
1500}
1501
0231bb53
JO
1502/*
1503 * Initialize event state based on the perf_event_attr::disabled.
1504 */
1505static inline void perf_event__state_init(struct perf_event *event)
1506{
1507 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1508 PERF_EVENT_STATE_INACTIVE;
1509}
1510
a723968c 1511static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
c320c7b7
ACM
1512{
1513 int entry = sizeof(u64); /* value */
1514 int size = 0;
1515 int nr = 1;
1516
1517 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1518 size += sizeof(u64);
1519
1520 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1521 size += sizeof(u64);
1522
1523 if (event->attr.read_format & PERF_FORMAT_ID)
1524 entry += sizeof(u64);
1525
1526 if (event->attr.read_format & PERF_FORMAT_GROUP) {
a723968c 1527 nr += nr_siblings;
c320c7b7
ACM
1528 size += sizeof(u64);
1529 }
1530
1531 size += entry * nr;
1532 event->read_size = size;
1533}
1534
a723968c 1535static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
c320c7b7
ACM
1536{
1537 struct perf_sample_data *data;
c320c7b7
ACM
1538 u16 size = 0;
1539
c320c7b7
ACM
1540 if (sample_type & PERF_SAMPLE_IP)
1541 size += sizeof(data->ip);
1542
6844c09d
ACM
1543 if (sample_type & PERF_SAMPLE_ADDR)
1544 size += sizeof(data->addr);
1545
1546 if (sample_type & PERF_SAMPLE_PERIOD)
1547 size += sizeof(data->period);
1548
c3feedf2
AK
1549 if (sample_type & PERF_SAMPLE_WEIGHT)
1550 size += sizeof(data->weight);
1551
6844c09d
ACM
1552 if (sample_type & PERF_SAMPLE_READ)
1553 size += event->read_size;
1554
d6be9ad6
SE
1555 if (sample_type & PERF_SAMPLE_DATA_SRC)
1556 size += sizeof(data->data_src.val);
1557
fdfbbd07
AK
1558 if (sample_type & PERF_SAMPLE_TRANSACTION)
1559 size += sizeof(data->txn);
1560
6844c09d
ACM
1561 event->header_size = size;
1562}
1563
a723968c
PZ
1564/*
1565 * Called at perf_event creation and when events are attached/detached from a
1566 * group.
1567 */
1568static void perf_event__header_size(struct perf_event *event)
1569{
1570 __perf_event_read_size(event,
1571 event->group_leader->nr_siblings);
1572 __perf_event_header_size(event, event->attr.sample_type);
1573}
1574
6844c09d
ACM
1575static void perf_event__id_header_size(struct perf_event *event)
1576{
1577 struct perf_sample_data *data;
1578 u64 sample_type = event->attr.sample_type;
1579 u16 size = 0;
1580
c320c7b7
ACM
1581 if (sample_type & PERF_SAMPLE_TID)
1582 size += sizeof(data->tid_entry);
1583
1584 if (sample_type & PERF_SAMPLE_TIME)
1585 size += sizeof(data->time);
1586
ff3d527c
AH
1587 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1588 size += sizeof(data->id);
1589
c320c7b7
ACM
1590 if (sample_type & PERF_SAMPLE_ID)
1591 size += sizeof(data->id);
1592
1593 if (sample_type & PERF_SAMPLE_STREAM_ID)
1594 size += sizeof(data->stream_id);
1595
1596 if (sample_type & PERF_SAMPLE_CPU)
1597 size += sizeof(data->cpu_entry);
1598
6844c09d 1599 event->id_header_size = size;
c320c7b7
ACM
1600}
1601
a723968c
PZ
1602static bool perf_event_validate_size(struct perf_event *event)
1603{
1604 /*
1605 * The values computed here will be over-written when we actually
1606 * attach the event.
1607 */
1608 __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1609 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1610 perf_event__id_header_size(event);
1611
1612 /*
1613 * Sum the lot; should not exceed the 64k limit we have on records.
1614 * Conservative limit to allow for callchains and other variable fields.
1615 */
1616 if (event->read_size + event->header_size +
1617 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1618 return false;
1619
1620 return true;
1621}
1622
8a49542c
PZ
1623static void perf_group_attach(struct perf_event *event)
1624{
c320c7b7 1625 struct perf_event *group_leader = event->group_leader, *pos;
8a49542c 1626
74c3337c
PZ
1627 /*
1628 * We can have double attach due to group movement in perf_event_open.
1629 */
1630 if (event->attach_state & PERF_ATTACH_GROUP)
1631 return;
1632
8a49542c
PZ
1633 event->attach_state |= PERF_ATTACH_GROUP;
1634
1635 if (group_leader == event)
1636 return;
1637
652884fe
PZ
1638 WARN_ON_ONCE(group_leader->ctx != event->ctx);
1639
4ff6a8de 1640 group_leader->group_caps &= event->event_caps;
8a49542c
PZ
1641
1642 list_add_tail(&event->group_entry, &group_leader->sibling_list);
1643 group_leader->nr_siblings++;
c320c7b7
ACM
1644
1645 perf_event__header_size(group_leader);
1646
1647 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1648 perf_event__header_size(pos);
8a49542c
PZ
1649}
1650
a63eaf34 1651/*
cdd6c482 1652 * Remove a event from the lists for its context.
fccc714b 1653 * Must be called with ctx->mutex and ctx->lock held.
a63eaf34 1654 */
04289bb9 1655static void
cdd6c482 1656list_del_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1657{
652884fe
PZ
1658 WARN_ON_ONCE(event->ctx != ctx);
1659 lockdep_assert_held(&ctx->lock);
1660
8a49542c
PZ
1661 /*
1662 * We can have double detach due to exit/hot-unplug + close.
1663 */
1664 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
a63eaf34 1665 return;
8a49542c
PZ
1666
1667 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1668
db4a8356 1669 list_update_cgroup_event(event, ctx, false);
e5d1367f 1670
cdd6c482
IM
1671 ctx->nr_events--;
1672 if (event->attr.inherit_stat)
bfbd3381 1673 ctx->nr_stat--;
8bc20959 1674
cdd6c482 1675 list_del_rcu(&event->event_entry);
04289bb9 1676
8a49542c
PZ
1677 if (event->group_leader == event)
1678 list_del_init(&event->group_entry);
5c148194 1679
96c21a46 1680 update_group_times(event);
b2e74a26
SE
1681
1682 /*
1683 * If event was in error state, then keep it
1684 * that way, otherwise bogus counts will be
1685 * returned on read(). The only way to get out
1686 * of error state is by explicit re-enabling
1687 * of the event
1688 */
1689 if (event->state > PERF_EVENT_STATE_OFF)
1690 event->state = PERF_EVENT_STATE_OFF;
5a3126d4
PZ
1691
1692 ctx->generation++;
050735b0
PZ
1693}
1694
8a49542c 1695static void perf_group_detach(struct perf_event *event)
050735b0
PZ
1696{
1697 struct perf_event *sibling, *tmp;
8a49542c
PZ
1698 struct list_head *list = NULL;
1699
1700 /*
1701 * We can have double detach due to exit/hot-unplug + close.
1702 */
1703 if (!(event->attach_state & PERF_ATTACH_GROUP))
1704 return;
1705
1706 event->attach_state &= ~PERF_ATTACH_GROUP;
1707
1708 /*
1709 * If this is a sibling, remove it from its group.
1710 */
1711 if (event->group_leader != event) {
1712 list_del_init(&event->group_entry);
1713 event->group_leader->nr_siblings--;
c320c7b7 1714 goto out;
8a49542c
PZ
1715 }
1716
1717 if (!list_empty(&event->group_entry))
1718 list = &event->group_entry;
2e2af50b 1719
04289bb9 1720 /*
cdd6c482
IM
1721 * If this was a group event with sibling events then
1722 * upgrade the siblings to singleton events by adding them
8a49542c 1723 * to whatever list we are on.
04289bb9 1724 */
cdd6c482 1725 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
8a49542c
PZ
1726 if (list)
1727 list_move_tail(&sibling->group_entry, list);
04289bb9 1728 sibling->group_leader = sibling;
d6f962b5
FW
1729
1730 /* Inherit group flags from the previous leader */
4ff6a8de 1731 sibling->group_caps = event->group_caps;
652884fe
PZ
1732
1733 WARN_ON_ONCE(sibling->ctx != event->ctx);
04289bb9 1734 }
c320c7b7
ACM
1735
1736out:
1737 perf_event__header_size(event->group_leader);
1738
1739 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1740 perf_event__header_size(tmp);
04289bb9
IM
1741}
1742
fadfe7be
JO
1743static bool is_orphaned_event(struct perf_event *event)
1744{
a69b0ca4 1745 return event->state == PERF_EVENT_STATE_DEAD;
fadfe7be
JO
1746}
1747
2c81a647 1748static inline int __pmu_filter_match(struct perf_event *event)
66eb579e
MR
1749{
1750 struct pmu *pmu = event->pmu;
1751 return pmu->filter_match ? pmu->filter_match(event) : 1;
1752}
1753
2c81a647
MR
1754/*
1755 * Check whether we should attempt to schedule an event group based on
1756 * PMU-specific filtering. An event group can consist of HW and SW events,
1757 * potentially with a SW leader, so we must check all the filters, to
1758 * determine whether a group is schedulable:
1759 */
1760static inline int pmu_filter_match(struct perf_event *event)
1761{
1762 struct perf_event *child;
1763
1764 if (!__pmu_filter_match(event))
1765 return 0;
1766
1767 list_for_each_entry(child, &event->sibling_list, group_entry) {
1768 if (!__pmu_filter_match(child))
1769 return 0;
1770 }
1771
1772 return 1;
1773}
1774
fa66f07a
SE
1775static inline int
1776event_filter_match(struct perf_event *event)
1777{
0b8f1e2e
PZ
1778 return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
1779 perf_cgroup_match(event) && pmu_filter_match(event);
fa66f07a
SE
1780}
1781
9ffcfa6f
SE
1782static void
1783event_sched_out(struct perf_event *event,
3b6f9e5c 1784 struct perf_cpu_context *cpuctx,
cdd6c482 1785 struct perf_event_context *ctx)
3b6f9e5c 1786{
4158755d 1787 u64 tstamp = perf_event_time(event);
fa66f07a 1788 u64 delta;
652884fe
PZ
1789
1790 WARN_ON_ONCE(event->ctx != ctx);
1791 lockdep_assert_held(&ctx->lock);
1792
fa66f07a
SE
1793 /*
1794 * An event which could not be activated because of
1795 * filter mismatch still needs to have its timings
1796 * maintained, otherwise bogus information is return
1797 * via read() for time_enabled, time_running:
1798 */
0b8f1e2e
PZ
1799 if (event->state == PERF_EVENT_STATE_INACTIVE &&
1800 !event_filter_match(event)) {
e5d1367f 1801 delta = tstamp - event->tstamp_stopped;
fa66f07a 1802 event->tstamp_running += delta;
4158755d 1803 event->tstamp_stopped = tstamp;
fa66f07a
SE
1804 }
1805
cdd6c482 1806 if (event->state != PERF_EVENT_STATE_ACTIVE)
9ffcfa6f 1807 return;
3b6f9e5c 1808
44377277
AS
1809 perf_pmu_disable(event->pmu);
1810
28a967c3
PZ
1811 event->tstamp_stopped = tstamp;
1812 event->pmu->del(event, 0);
1813 event->oncpu = -1;
cdd6c482
IM
1814 event->state = PERF_EVENT_STATE_INACTIVE;
1815 if (event->pending_disable) {
1816 event->pending_disable = 0;
1817 event->state = PERF_EVENT_STATE_OFF;
970892a9 1818 }
3b6f9e5c 1819
cdd6c482 1820 if (!is_software_event(event))
3b6f9e5c 1821 cpuctx->active_oncpu--;
2fde4f94
MR
1822 if (!--ctx->nr_active)
1823 perf_event_ctx_deactivate(ctx);
0f5a2601
PZ
1824 if (event->attr.freq && event->attr.sample_freq)
1825 ctx->nr_freq--;
cdd6c482 1826 if (event->attr.exclusive || !cpuctx->active_oncpu)
3b6f9e5c 1827 cpuctx->exclusive = 0;
44377277
AS
1828
1829 perf_pmu_enable(event->pmu);
3b6f9e5c
PM
1830}
1831
d859e29f 1832static void
cdd6c482 1833group_sched_out(struct perf_event *group_event,
d859e29f 1834 struct perf_cpu_context *cpuctx,
cdd6c482 1835 struct perf_event_context *ctx)
d859e29f 1836{
cdd6c482 1837 struct perf_event *event;
fa66f07a 1838 int state = group_event->state;
d859e29f 1839
3f005e7d
MR
1840 perf_pmu_disable(ctx->pmu);
1841
cdd6c482 1842 event_sched_out(group_event, cpuctx, ctx);
d859e29f
PM
1843
1844 /*
1845 * Schedule out siblings (if any):
1846 */
cdd6c482
IM
1847 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1848 event_sched_out(event, cpuctx, ctx);
d859e29f 1849
3f005e7d
MR
1850 perf_pmu_enable(ctx->pmu);
1851
fa66f07a 1852 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
d859e29f
PM
1853 cpuctx->exclusive = 0;
1854}
1855
45a0e07a 1856#define DETACH_GROUP 0x01UL
0017960f 1857
0793a61d 1858/*
cdd6c482 1859 * Cross CPU call to remove a performance event
0793a61d 1860 *
cdd6c482 1861 * We disable the event on the hardware level first. After that we
0793a61d
TG
1862 * remove it from the context list.
1863 */
fae3fde6
PZ
1864static void
1865__perf_remove_from_context(struct perf_event *event,
1866 struct perf_cpu_context *cpuctx,
1867 struct perf_event_context *ctx,
1868 void *info)
0793a61d 1869{
45a0e07a 1870 unsigned long flags = (unsigned long)info;
0793a61d 1871
cdd6c482 1872 event_sched_out(event, cpuctx, ctx);
45a0e07a 1873 if (flags & DETACH_GROUP)
46ce0fe9 1874 perf_group_detach(event);
cdd6c482 1875 list_del_event(event, ctx);
39a43640
PZ
1876
1877 if (!ctx->nr_events && ctx->is_active) {
64ce3126 1878 ctx->is_active = 0;
39a43640
PZ
1879 if (ctx->task) {
1880 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
1881 cpuctx->task_ctx = NULL;
1882 }
64ce3126 1883 }
0793a61d
TG
1884}
1885
0793a61d 1886/*
cdd6c482 1887 * Remove the event from a task's (or a CPU's) list of events.
0793a61d 1888 *
cdd6c482
IM
1889 * If event->ctx is a cloned context, callers must make sure that
1890 * every task struct that event->ctx->task could possibly point to
c93f7669
PM
1891 * remains valid. This is OK when called from perf_release since
1892 * that only calls us on the top-level context, which can't be a clone.
cdd6c482 1893 * When called from perf_event_exit_task, it's OK because the
c93f7669 1894 * context has been detached from its task.
0793a61d 1895 */
45a0e07a 1896static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
0793a61d 1897{
fae3fde6 1898 lockdep_assert_held(&event->ctx->mutex);
0793a61d 1899
45a0e07a 1900 event_function_call(event, __perf_remove_from_context, (void *)flags);
0793a61d
TG
1901}
1902
d859e29f 1903/*
cdd6c482 1904 * Cross CPU call to disable a performance event
d859e29f 1905 */
fae3fde6
PZ
1906static void __perf_event_disable(struct perf_event *event,
1907 struct perf_cpu_context *cpuctx,
1908 struct perf_event_context *ctx,
1909 void *info)
7b648018 1910{
fae3fde6
PZ
1911 if (event->state < PERF_EVENT_STATE_INACTIVE)
1912 return;
7b648018 1913
fae3fde6
PZ
1914 update_context_time(ctx);
1915 update_cgrp_time_from_event(event);
1916 update_group_times(event);
1917 if (event == event->group_leader)
1918 group_sched_out(event, cpuctx, ctx);
1919 else
1920 event_sched_out(event, cpuctx, ctx);
1921 event->state = PERF_EVENT_STATE_OFF;
7b648018
PZ
1922}
1923
d859e29f 1924/*
cdd6c482 1925 * Disable a event.
c93f7669 1926 *
cdd6c482
IM
1927 * If event->ctx is a cloned context, callers must make sure that
1928 * every task struct that event->ctx->task could possibly point to
c93f7669 1929 * remains valid. This condition is satisifed when called through
cdd6c482
IM
1930 * perf_event_for_each_child or perf_event_for_each because they
1931 * hold the top-level event's child_mutex, so any descendant that
8ba289b8
PZ
1932 * goes to exit will block in perf_event_exit_event().
1933 *
cdd6c482 1934 * When called from perf_pending_event it's OK because event->ctx
c93f7669 1935 * is the current context on this CPU and preemption is disabled,
cdd6c482 1936 * hence we can't get into perf_event_task_sched_out for this context.
d859e29f 1937 */
f63a8daa 1938static void _perf_event_disable(struct perf_event *event)
d859e29f 1939{
cdd6c482 1940 struct perf_event_context *ctx = event->ctx;
d859e29f 1941
e625cce1 1942 raw_spin_lock_irq(&ctx->lock);
7b648018 1943 if (event->state <= PERF_EVENT_STATE_OFF) {
e625cce1 1944 raw_spin_unlock_irq(&ctx->lock);
7b648018 1945 return;
53cfbf59 1946 }
e625cce1 1947 raw_spin_unlock_irq(&ctx->lock);
7b648018 1948
fae3fde6
PZ
1949 event_function_call(event, __perf_event_disable, NULL);
1950}
1951
1952void perf_event_disable_local(struct perf_event *event)
1953{
1954 event_function_local(event, __perf_event_disable, NULL);
d859e29f 1955}
f63a8daa
PZ
1956
1957/*
1958 * Strictly speaking kernel users cannot create groups and therefore this
1959 * interface does not need the perf_event_ctx_lock() magic.
1960 */
1961void perf_event_disable(struct perf_event *event)
1962{
1963 struct perf_event_context *ctx;
1964
1965 ctx = perf_event_ctx_lock(event);
1966 _perf_event_disable(event);
1967 perf_event_ctx_unlock(event, ctx);
1968}
dcfce4a0 1969EXPORT_SYMBOL_GPL(perf_event_disable);
d859e29f 1970
5aab90ce
JO
1971void perf_event_disable_inatomic(struct perf_event *event)
1972{
1973 event->pending_disable = 1;
1974 irq_work_queue(&event->pending);
1975}
1976
e5d1367f
SE
1977static void perf_set_shadow_time(struct perf_event *event,
1978 struct perf_event_context *ctx,
1979 u64 tstamp)
1980{
1981 /*
1982 * use the correct time source for the time snapshot
1983 *
1984 * We could get by without this by leveraging the
1985 * fact that to get to this function, the caller
1986 * has most likely already called update_context_time()
1987 * and update_cgrp_time_xx() and thus both timestamp
1988 * are identical (or very close). Given that tstamp is,
1989 * already adjusted for cgroup, we could say that:
1990 * tstamp - ctx->timestamp
1991 * is equivalent to
1992 * tstamp - cgrp->timestamp.
1993 *
1994 * Then, in perf_output_read(), the calculation would
1995 * work with no changes because:
1996 * - event is guaranteed scheduled in
1997 * - no scheduled out in between
1998 * - thus the timestamp would be the same
1999 *
2000 * But this is a bit hairy.
2001 *
2002 * So instead, we have an explicit cgroup call to remain
2003 * within the time time source all along. We believe it
2004 * is cleaner and simpler to understand.
2005 */
2006 if (is_cgroup_event(event))
2007 perf_cgroup_set_shadow_time(event, tstamp);
2008 else
2009 event->shadow_ctx_time = tstamp - ctx->timestamp;
2010}
2011
4fe757dd
PZ
2012#define MAX_INTERRUPTS (~0ULL)
2013
2014static void perf_log_throttle(struct perf_event *event, int enable);
ec0d7729 2015static void perf_log_itrace_start(struct perf_event *event);
4fe757dd 2016
235c7fc7 2017static int
9ffcfa6f 2018event_sched_in(struct perf_event *event,
235c7fc7 2019 struct perf_cpu_context *cpuctx,
6e37738a 2020 struct perf_event_context *ctx)
235c7fc7 2021{
4158755d 2022 u64 tstamp = perf_event_time(event);
44377277 2023 int ret = 0;
4158755d 2024
63342411
PZ
2025 lockdep_assert_held(&ctx->lock);
2026
cdd6c482 2027 if (event->state <= PERF_EVENT_STATE_OFF)
235c7fc7
IM
2028 return 0;
2029
95ff4ca2
AS
2030 WRITE_ONCE(event->oncpu, smp_processor_id());
2031 /*
2032 * Order event::oncpu write to happen before the ACTIVE state
2033 * is visible.
2034 */
2035 smp_wmb();
2036 WRITE_ONCE(event->state, PERF_EVENT_STATE_ACTIVE);
4fe757dd
PZ
2037
2038 /*
2039 * Unthrottle events, since we scheduled we might have missed several
2040 * ticks already, also for a heavily scheduling task there is little
2041 * guarantee it'll get a tick in a timely manner.
2042 */
2043 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2044 perf_log_throttle(event, 1);
2045 event->hw.interrupts = 0;
2046 }
2047
235c7fc7
IM
2048 /*
2049 * The new state must be visible before we turn it on in the hardware:
2050 */
2051 smp_wmb();
2052
44377277
AS
2053 perf_pmu_disable(event->pmu);
2054
72f669c0
SL
2055 perf_set_shadow_time(event, ctx, tstamp);
2056
ec0d7729
AS
2057 perf_log_itrace_start(event);
2058
a4eaf7f1 2059 if (event->pmu->add(event, PERF_EF_START)) {
cdd6c482
IM
2060 event->state = PERF_EVENT_STATE_INACTIVE;
2061 event->oncpu = -1;
44377277
AS
2062 ret = -EAGAIN;
2063 goto out;
235c7fc7
IM
2064 }
2065
00a2916f
PZ
2066 event->tstamp_running += tstamp - event->tstamp_stopped;
2067
cdd6c482 2068 if (!is_software_event(event))
3b6f9e5c 2069 cpuctx->active_oncpu++;
2fde4f94
MR
2070 if (!ctx->nr_active++)
2071 perf_event_ctx_activate(ctx);
0f5a2601
PZ
2072 if (event->attr.freq && event->attr.sample_freq)
2073 ctx->nr_freq++;
235c7fc7 2074
cdd6c482 2075 if (event->attr.exclusive)
3b6f9e5c
PM
2076 cpuctx->exclusive = 1;
2077
44377277
AS
2078out:
2079 perf_pmu_enable(event->pmu);
2080
2081 return ret;
235c7fc7
IM
2082}
2083
6751b71e 2084static int
cdd6c482 2085group_sched_in(struct perf_event *group_event,
6751b71e 2086 struct perf_cpu_context *cpuctx,
6e37738a 2087 struct perf_event_context *ctx)
6751b71e 2088{
6bde9b6c 2089 struct perf_event *event, *partial_group = NULL;
4a234593 2090 struct pmu *pmu = ctx->pmu;
d7842da4
SE
2091 u64 now = ctx->time;
2092 bool simulate = false;
6751b71e 2093
cdd6c482 2094 if (group_event->state == PERF_EVENT_STATE_OFF)
6751b71e
PM
2095 return 0;
2096
fbbe0701 2097 pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
6bde9b6c 2098
9ffcfa6f 2099 if (event_sched_in(group_event, cpuctx, ctx)) {
ad5133b7 2100 pmu->cancel_txn(pmu);
272325c4 2101 perf_mux_hrtimer_restart(cpuctx);
6751b71e 2102 return -EAGAIN;
90151c35 2103 }
6751b71e
PM
2104
2105 /*
2106 * Schedule in siblings as one group (if any):
2107 */
cdd6c482 2108 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
9ffcfa6f 2109 if (event_sched_in(event, cpuctx, ctx)) {
cdd6c482 2110 partial_group = event;
6751b71e
PM
2111 goto group_error;
2112 }
2113 }
2114
9ffcfa6f 2115 if (!pmu->commit_txn(pmu))
6e85158c 2116 return 0;
9ffcfa6f 2117
6751b71e
PM
2118group_error:
2119 /*
2120 * Groups can be scheduled in as one unit only, so undo any
2121 * partial group before returning:
d7842da4
SE
2122 * The events up to the failed event are scheduled out normally,
2123 * tstamp_stopped will be updated.
2124 *
2125 * The failed events and the remaining siblings need to have
2126 * their timings updated as if they had gone thru event_sched_in()
2127 * and event_sched_out(). This is required to get consistent timings
2128 * across the group. This also takes care of the case where the group
2129 * could never be scheduled by ensuring tstamp_stopped is set to mark
2130 * the time the event was actually stopped, such that time delta
2131 * calculation in update_event_times() is correct.
6751b71e 2132 */
cdd6c482
IM
2133 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2134 if (event == partial_group)
d7842da4
SE
2135 simulate = true;
2136
2137 if (simulate) {
2138 event->tstamp_running += now - event->tstamp_stopped;
2139 event->tstamp_stopped = now;
2140 } else {
2141 event_sched_out(event, cpuctx, ctx);
2142 }
6751b71e 2143 }
9ffcfa6f 2144 event_sched_out(group_event, cpuctx, ctx);
6751b71e 2145
ad5133b7 2146 pmu->cancel_txn(pmu);
90151c35 2147
272325c4 2148 perf_mux_hrtimer_restart(cpuctx);
9e630205 2149
6751b71e
PM
2150 return -EAGAIN;
2151}
2152
3b6f9e5c 2153/*
cdd6c482 2154 * Work out whether we can put this event group on the CPU now.
3b6f9e5c 2155 */
cdd6c482 2156static int group_can_go_on(struct perf_event *event,
3b6f9e5c
PM
2157 struct perf_cpu_context *cpuctx,
2158 int can_add_hw)
2159{
2160 /*
cdd6c482 2161 * Groups consisting entirely of software events can always go on.
3b6f9e5c 2162 */
4ff6a8de 2163 if (event->group_caps & PERF_EV_CAP_SOFTWARE)
3b6f9e5c
PM
2164 return 1;
2165 /*
2166 * If an exclusive group is already on, no other hardware
cdd6c482 2167 * events can go on.
3b6f9e5c
PM
2168 */
2169 if (cpuctx->exclusive)
2170 return 0;
2171 /*
2172 * If this group is exclusive and there are already
cdd6c482 2173 * events on the CPU, it can't go on.
3b6f9e5c 2174 */
cdd6c482 2175 if (event->attr.exclusive && cpuctx->active_oncpu)
3b6f9e5c
PM
2176 return 0;
2177 /*
2178 * Otherwise, try to add it if all previous groups were able
2179 * to go on.
2180 */
2181 return can_add_hw;
2182}
2183
cdd6c482
IM
2184static void add_event_to_ctx(struct perf_event *event,
2185 struct perf_event_context *ctx)
53cfbf59 2186{
4158755d
SE
2187 u64 tstamp = perf_event_time(event);
2188
cdd6c482 2189 list_add_event(event, ctx);
8a49542c 2190 perf_group_attach(event);
4158755d
SE
2191 event->tstamp_enabled = tstamp;
2192 event->tstamp_running = tstamp;
2193 event->tstamp_stopped = tstamp;
53cfbf59
PM
2194}
2195
bd2afa49
PZ
2196static void ctx_sched_out(struct perf_event_context *ctx,
2197 struct perf_cpu_context *cpuctx,
2198 enum event_type_t event_type);
2c29ef0f
PZ
2199static void
2200ctx_sched_in(struct perf_event_context *ctx,
2201 struct perf_cpu_context *cpuctx,
2202 enum event_type_t event_type,
2203 struct task_struct *task);
fe4b04fa 2204
bd2afa49
PZ
2205static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2206 struct perf_event_context *ctx)
2207{
2208 if (!cpuctx->task_ctx)
2209 return;
2210
2211 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2212 return;
2213
2214 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
2215}
2216
dce5855b
PZ
2217static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2218 struct perf_event_context *ctx,
2219 struct task_struct *task)
2220{
2221 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2222 if (ctx)
2223 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2224 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2225 if (ctx)
2226 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2227}
2228
3e349507
PZ
2229static void ctx_resched(struct perf_cpu_context *cpuctx,
2230 struct perf_event_context *task_ctx)
0017960f 2231{
3e349507
PZ
2232 perf_pmu_disable(cpuctx->ctx.pmu);
2233 if (task_ctx)
2234 task_ctx_sched_out(cpuctx, task_ctx);
2235 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
2236 perf_event_sched_in(cpuctx, task_ctx, current);
2237 perf_pmu_enable(cpuctx->ctx.pmu);
0017960f
PZ
2238}
2239
0793a61d 2240/*
cdd6c482 2241 * Cross CPU call to install and enable a performance event
682076ae 2242 *
a096309b
PZ
2243 * Very similar to remote_function() + event_function() but cannot assume that
2244 * things like ctx->is_active and cpuctx->task_ctx are set.
0793a61d 2245 */
fe4b04fa 2246static int __perf_install_in_context(void *info)
0793a61d 2247{
a096309b
PZ
2248 struct perf_event *event = info;
2249 struct perf_event_context *ctx = event->ctx;
108b02cf 2250 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2c29ef0f 2251 struct perf_event_context *task_ctx = cpuctx->task_ctx;
a096309b
PZ
2252 bool activate = true;
2253 int ret = 0;
0793a61d 2254
63b6da39 2255 raw_spin_lock(&cpuctx->ctx.lock);
39a43640 2256 if (ctx->task) {
b58f6b0d
PZ
2257 raw_spin_lock(&ctx->lock);
2258 task_ctx = ctx;
a096309b
PZ
2259
2260 /* If we're on the wrong CPU, try again */
2261 if (task_cpu(ctx->task) != smp_processor_id()) {
2262 ret = -ESRCH;
63b6da39 2263 goto unlock;
a096309b 2264 }
b58f6b0d 2265
39a43640 2266 /*
a096309b
PZ
2267 * If we're on the right CPU, see if the task we target is
2268 * current, if not we don't have to activate the ctx, a future
2269 * context switch will do that for us.
39a43640 2270 */
a096309b
PZ
2271 if (ctx->task != current)
2272 activate = false;
2273 else
2274 WARN_ON_ONCE(cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2275
63b6da39
PZ
2276 } else if (task_ctx) {
2277 raw_spin_lock(&task_ctx->lock);
2c29ef0f 2278 }
b58f6b0d 2279
a096309b
PZ
2280 if (activate) {
2281 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2282 add_event_to_ctx(event, ctx);
2283 ctx_resched(cpuctx, task_ctx);
2284 } else {
2285 add_event_to_ctx(event, ctx);
2286 }
2287
63b6da39 2288unlock:
2c29ef0f 2289 perf_ctx_unlock(cpuctx, task_ctx);
fe4b04fa 2290
a096309b 2291 return ret;
0793a61d
TG
2292}
2293
2294/*
a096309b
PZ
2295 * Attach a performance event to a context.
2296 *
2297 * Very similar to event_function_call, see comment there.
0793a61d
TG
2298 */
2299static void
cdd6c482
IM
2300perf_install_in_context(struct perf_event_context *ctx,
2301 struct perf_event *event,
0793a61d
TG
2302 int cpu)
2303{
a096309b 2304 struct task_struct *task = READ_ONCE(ctx->task);
39a43640 2305
fe4b04fa
PZ
2306 lockdep_assert_held(&ctx->mutex);
2307
0cda4c02
YZ
2308 if (event->cpu != -1)
2309 event->cpu = cpu;
c3f00c70 2310
0b8f1e2e
PZ
2311 /*
2312 * Ensures that if we can observe event->ctx, both the event and ctx
2313 * will be 'complete'. See perf_iterate_sb_cpu().
2314 */
2315 smp_store_release(&event->ctx, ctx);
2316
a096309b
PZ
2317 if (!task) {
2318 cpu_function_call(cpu, __perf_install_in_context, event);
2319 return;
2320 }
2321
2322 /*
2323 * Should not happen, we validate the ctx is still alive before calling.
2324 */
2325 if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2326 return;
2327
39a43640
PZ
2328 /*
2329 * Installing events is tricky because we cannot rely on ctx->is_active
2330 * to be set in case this is the nr_events 0 -> 1 transition.
39a43640 2331 */
a096309b 2332again:
63b6da39 2333 /*
a096309b
PZ
2334 * Cannot use task_function_call() because we need to run on the task's
2335 * CPU regardless of whether its current or not.
63b6da39 2336 */
a096309b
PZ
2337 if (!cpu_function_call(task_cpu(task), __perf_install_in_context, event))
2338 return;
2339
2340 raw_spin_lock_irq(&ctx->lock);
2341 task = ctx->task;
84c4e620 2342 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
a096309b
PZ
2343 /*
2344 * Cannot happen because we already checked above (which also
2345 * cannot happen), and we hold ctx->mutex, which serializes us
2346 * against perf_event_exit_task_context().
2347 */
63b6da39
PZ
2348 raw_spin_unlock_irq(&ctx->lock);
2349 return;
2350 }
39a43640 2351 raw_spin_unlock_irq(&ctx->lock);
39a43640 2352 /*
a096309b
PZ
2353 * Since !ctx->is_active doesn't mean anything, we must IPI
2354 * unconditionally.
39a43640 2355 */
a096309b 2356 goto again;
0793a61d
TG
2357}
2358
fa289bec 2359/*
cdd6c482 2360 * Put a event into inactive state and update time fields.
fa289bec
PM
2361 * Enabling the leader of a group effectively enables all
2362 * the group members that aren't explicitly disabled, so we
2363 * have to update their ->tstamp_enabled also.
2364 * Note: this works for group members as well as group leaders
2365 * since the non-leader members' sibling_lists will be empty.
2366 */
1d9b482e 2367static void __perf_event_mark_enabled(struct perf_event *event)
fa289bec 2368{
cdd6c482 2369 struct perf_event *sub;
4158755d 2370 u64 tstamp = perf_event_time(event);
fa289bec 2371
cdd6c482 2372 event->state = PERF_EVENT_STATE_INACTIVE;
4158755d 2373 event->tstamp_enabled = tstamp - event->total_time_enabled;
9ed6060d 2374 list_for_each_entry(sub, &event->sibling_list, group_entry) {
4158755d
SE
2375 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2376 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
9ed6060d 2377 }
fa289bec
PM
2378}
2379
d859e29f 2380/*
cdd6c482 2381 * Cross CPU call to enable a performance event
d859e29f 2382 */
fae3fde6
PZ
2383static void __perf_event_enable(struct perf_event *event,
2384 struct perf_cpu_context *cpuctx,
2385 struct perf_event_context *ctx,
2386 void *info)
04289bb9 2387{
cdd6c482 2388 struct perf_event *leader = event->group_leader;
fae3fde6 2389 struct perf_event_context *task_ctx;
04289bb9 2390
6e801e01
PZ
2391 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2392 event->state <= PERF_EVENT_STATE_ERROR)
fae3fde6 2393 return;
3cbed429 2394
bd2afa49
PZ
2395 if (ctx->is_active)
2396 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2397
1d9b482e 2398 __perf_event_mark_enabled(event);
04289bb9 2399
fae3fde6
PZ
2400 if (!ctx->is_active)
2401 return;
2402
e5d1367f 2403 if (!event_filter_match(event)) {
bd2afa49 2404 if (is_cgroup_event(event))
e5d1367f 2405 perf_cgroup_defer_enabled(event);
bd2afa49 2406 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
fae3fde6 2407 return;
e5d1367f 2408 }
f4c4176f 2409
04289bb9 2410 /*
cdd6c482 2411 * If the event is in a group and isn't the group leader,
d859e29f 2412 * then don't put it on unless the group is on.
04289bb9 2413 */
bd2afa49
PZ
2414 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2415 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
fae3fde6 2416 return;
bd2afa49 2417 }
fe4b04fa 2418
fae3fde6
PZ
2419 task_ctx = cpuctx->task_ctx;
2420 if (ctx->task)
2421 WARN_ON_ONCE(task_ctx != ctx);
d859e29f 2422
fae3fde6 2423 ctx_resched(cpuctx, task_ctx);
7b648018
PZ
2424}
2425
d859e29f 2426/*
cdd6c482 2427 * Enable a event.
c93f7669 2428 *
cdd6c482
IM
2429 * If event->ctx is a cloned context, callers must make sure that
2430 * every task struct that event->ctx->task could possibly point to
c93f7669 2431 * remains valid. This condition is satisfied when called through
cdd6c482
IM
2432 * perf_event_for_each_child or perf_event_for_each as described
2433 * for perf_event_disable.
d859e29f 2434 */
f63a8daa 2435static void _perf_event_enable(struct perf_event *event)
d859e29f 2436{
cdd6c482 2437 struct perf_event_context *ctx = event->ctx;
d859e29f 2438
7b648018 2439 raw_spin_lock_irq(&ctx->lock);
6e801e01
PZ
2440 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2441 event->state < PERF_EVENT_STATE_ERROR) {
7b648018 2442 raw_spin_unlock_irq(&ctx->lock);
d859e29f
PM
2443 return;
2444 }
2445
d859e29f 2446 /*
cdd6c482 2447 * If the event is in error state, clear that first.
7b648018
PZ
2448 *
2449 * That way, if we see the event in error state below, we know that it
2450 * has gone back into error state, as distinct from the task having
2451 * been scheduled away before the cross-call arrived.
d859e29f 2452 */
cdd6c482
IM
2453 if (event->state == PERF_EVENT_STATE_ERROR)
2454 event->state = PERF_EVENT_STATE_OFF;
e625cce1 2455 raw_spin_unlock_irq(&ctx->lock);
fe4b04fa 2456
fae3fde6 2457 event_function_call(event, __perf_event_enable, NULL);
d859e29f 2458}
f63a8daa
PZ
2459
2460/*
2461 * See perf_event_disable();
2462 */
2463void perf_event_enable(struct perf_event *event)
2464{
2465 struct perf_event_context *ctx;
2466
2467 ctx = perf_event_ctx_lock(event);
2468 _perf_event_enable(event);
2469 perf_event_ctx_unlock(event, ctx);
2470}
dcfce4a0 2471EXPORT_SYMBOL_GPL(perf_event_enable);
d859e29f 2472
375637bc
AS
2473struct stop_event_data {
2474 struct perf_event *event;
2475 unsigned int restart;
2476};
2477
95ff4ca2
AS
2478static int __perf_event_stop(void *info)
2479{
375637bc
AS
2480 struct stop_event_data *sd = info;
2481 struct perf_event *event = sd->event;
95ff4ca2 2482
375637bc 2483 /* if it's already INACTIVE, do nothing */
95ff4ca2
AS
2484 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2485 return 0;
2486
2487 /* matches smp_wmb() in event_sched_in() */
2488 smp_rmb();
2489
2490 /*
2491 * There is a window with interrupts enabled before we get here,
2492 * so we need to check again lest we try to stop another CPU's event.
2493 */
2494 if (READ_ONCE(event->oncpu) != smp_processor_id())
2495 return -EAGAIN;
2496
2497 event->pmu->stop(event, PERF_EF_UPDATE);
2498
375637bc
AS
2499 /*
2500 * May race with the actual stop (through perf_pmu_output_stop()),
2501 * but it is only used for events with AUX ring buffer, and such
2502 * events will refuse to restart because of rb::aux_mmap_count==0,
2503 * see comments in perf_aux_output_begin().
2504 *
2505 * Since this is happening on a event-local CPU, no trace is lost
2506 * while restarting.
2507 */
2508 if (sd->restart)
c9bbdd48 2509 event->pmu->start(event, 0);
375637bc 2510
95ff4ca2
AS
2511 return 0;
2512}
2513
767ae086 2514static int perf_event_stop(struct perf_event *event, int restart)
375637bc
AS
2515{
2516 struct stop_event_data sd = {
2517 .event = event,
767ae086 2518 .restart = restart,
375637bc
AS
2519 };
2520 int ret = 0;
2521
2522 do {
2523 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2524 return 0;
2525
2526 /* matches smp_wmb() in event_sched_in() */
2527 smp_rmb();
2528
2529 /*
2530 * We only want to restart ACTIVE events, so if the event goes
2531 * inactive here (event->oncpu==-1), there's nothing more to do;
2532 * fall through with ret==-ENXIO.
2533 */
2534 ret = cpu_function_call(READ_ONCE(event->oncpu),
2535 __perf_event_stop, &sd);
2536 } while (ret == -EAGAIN);
2537
2538 return ret;
2539}
2540
2541/*
2542 * In order to contain the amount of racy and tricky in the address filter
2543 * configuration management, it is a two part process:
2544 *
2545 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2546 * we update the addresses of corresponding vmas in
2547 * event::addr_filters_offs array and bump the event::addr_filters_gen;
2548 * (p2) when an event is scheduled in (pmu::add), it calls
2549 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2550 * if the generation has changed since the previous call.
2551 *
2552 * If (p1) happens while the event is active, we restart it to force (p2).
2553 *
2554 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2555 * pre-existing mappings, called once when new filters arrive via SET_FILTER
2556 * ioctl;
2557 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2558 * registered mapping, called for every new mmap(), with mm::mmap_sem down
2559 * for reading;
2560 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2561 * of exec.
2562 */
2563void perf_event_addr_filters_sync(struct perf_event *event)
2564{
2565 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2566
2567 if (!has_addr_filter(event))
2568 return;
2569
2570 raw_spin_lock(&ifh->lock);
2571 if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2572 event->pmu->addr_filters_sync(event);
2573 event->hw.addr_filters_gen = event->addr_filters_gen;
2574 }
2575 raw_spin_unlock(&ifh->lock);
2576}
2577EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2578
f63a8daa 2579static int _perf_event_refresh(struct perf_event *event, int refresh)
79f14641 2580{
2023b359 2581 /*
cdd6c482 2582 * not supported on inherited events
2023b359 2583 */
2e939d1d 2584 if (event->attr.inherit || !is_sampling_event(event))
2023b359
PZ
2585 return -EINVAL;
2586
cdd6c482 2587 atomic_add(refresh, &event->event_limit);
f63a8daa 2588 _perf_event_enable(event);
2023b359
PZ
2589
2590 return 0;
79f14641 2591}
f63a8daa
PZ
2592
2593/*
2594 * See perf_event_disable()
2595 */
2596int perf_event_refresh(struct perf_event *event, int refresh)
2597{
2598 struct perf_event_context *ctx;
2599 int ret;
2600
2601 ctx = perf_event_ctx_lock(event);
2602 ret = _perf_event_refresh(event, refresh);
2603 perf_event_ctx_unlock(event, ctx);
2604
2605 return ret;
2606}
26ca5c11 2607EXPORT_SYMBOL_GPL(perf_event_refresh);
79f14641 2608
5b0311e1
FW
2609static void ctx_sched_out(struct perf_event_context *ctx,
2610 struct perf_cpu_context *cpuctx,
2611 enum event_type_t event_type)
235c7fc7 2612{
db24d33e 2613 int is_active = ctx->is_active;
c994d613 2614 struct perf_event *event;
235c7fc7 2615
c994d613 2616 lockdep_assert_held(&ctx->lock);
235c7fc7 2617
39a43640
PZ
2618 if (likely(!ctx->nr_events)) {
2619 /*
2620 * See __perf_remove_from_context().
2621 */
2622 WARN_ON_ONCE(ctx->is_active);
2623 if (ctx->task)
2624 WARN_ON_ONCE(cpuctx->task_ctx);
facc4307 2625 return;
39a43640
PZ
2626 }
2627
db24d33e 2628 ctx->is_active &= ~event_type;
3cbaa590
PZ
2629 if (!(ctx->is_active & EVENT_ALL))
2630 ctx->is_active = 0;
2631
63e30d3e
PZ
2632 if (ctx->task) {
2633 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2634 if (!ctx->is_active)
2635 cpuctx->task_ctx = NULL;
2636 }
facc4307 2637
8fdc6539
PZ
2638 /*
2639 * Always update time if it was set; not only when it changes.
2640 * Otherwise we can 'forget' to update time for any but the last
2641 * context we sched out. For example:
2642 *
2643 * ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2644 * ctx_sched_out(.event_type = EVENT_PINNED)
2645 *
2646 * would only update time for the pinned events.
2647 */
3cbaa590
PZ
2648 if (is_active & EVENT_TIME) {
2649 /* update (and stop) ctx time */
2650 update_context_time(ctx);
2651 update_cgrp_time_from_cpuctx(cpuctx);
2652 }
2653
8fdc6539
PZ
2654 is_active ^= ctx->is_active; /* changed bits */
2655
3cbaa590 2656 if (!ctx->nr_active || !(is_active & EVENT_ALL))
facc4307 2657 return;
5b0311e1 2658
075e0b00 2659 perf_pmu_disable(ctx->pmu);
3cbaa590 2660 if (is_active & EVENT_PINNED) {
889ff015
FW
2661 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2662 group_sched_out(event, cpuctx, ctx);
9ed6060d 2663 }
889ff015 2664
3cbaa590 2665 if (is_active & EVENT_FLEXIBLE) {
889ff015 2666 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
8c9ed8e1 2667 group_sched_out(event, cpuctx, ctx);
9ed6060d 2668 }
1b9a644f 2669 perf_pmu_enable(ctx->pmu);
235c7fc7
IM
2670}
2671
564c2b21 2672/*
5a3126d4
PZ
2673 * Test whether two contexts are equivalent, i.e. whether they have both been
2674 * cloned from the same version of the same context.
2675 *
2676 * Equivalence is measured using a generation number in the context that is
2677 * incremented on each modification to it; see unclone_ctx(), list_add_event()
2678 * and list_del_event().
564c2b21 2679 */
cdd6c482
IM
2680static int context_equiv(struct perf_event_context *ctx1,
2681 struct perf_event_context *ctx2)
564c2b21 2682{
211de6eb
PZ
2683 lockdep_assert_held(&ctx1->lock);
2684 lockdep_assert_held(&ctx2->lock);
2685
5a3126d4
PZ
2686 /* Pinning disables the swap optimization */
2687 if (ctx1->pin_count || ctx2->pin_count)
2688 return 0;
2689
2690 /* If ctx1 is the parent of ctx2 */
2691 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2692 return 1;
2693
2694 /* If ctx2 is the parent of ctx1 */
2695 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2696 return 1;
2697
2698 /*
2699 * If ctx1 and ctx2 have the same parent; we flatten the parent
2700 * hierarchy, see perf_event_init_context().
2701 */
2702 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2703 ctx1->parent_gen == ctx2->parent_gen)
2704 return 1;
2705
2706 /* Unmatched */
2707 return 0;
564c2b21
PM
2708}
2709
cdd6c482
IM
2710static void __perf_event_sync_stat(struct perf_event *event,
2711 struct perf_event *next_event)
bfbd3381
PZ
2712{
2713 u64 value;
2714
cdd6c482 2715 if (!event->attr.inherit_stat)
bfbd3381
PZ
2716 return;
2717
2718 /*
cdd6c482 2719 * Update the event value, we cannot use perf_event_read()
bfbd3381
PZ
2720 * because we're in the middle of a context switch and have IRQs
2721 * disabled, which upsets smp_call_function_single(), however
cdd6c482 2722 * we know the event must be on the current CPU, therefore we
bfbd3381
PZ
2723 * don't need to use it.
2724 */
cdd6c482
IM
2725 switch (event->state) {
2726 case PERF_EVENT_STATE_ACTIVE:
3dbebf15
PZ
2727 event->pmu->read(event);
2728 /* fall-through */
bfbd3381 2729
cdd6c482
IM
2730 case PERF_EVENT_STATE_INACTIVE:
2731 update_event_times(event);
bfbd3381
PZ
2732 break;
2733
2734 default:
2735 break;
2736 }
2737
2738 /*
cdd6c482 2739 * In order to keep per-task stats reliable we need to flip the event
bfbd3381
PZ
2740 * values when we flip the contexts.
2741 */
e7850595
PZ
2742 value = local64_read(&next_event->count);
2743 value = local64_xchg(&event->count, value);
2744 local64_set(&next_event->count, value);
bfbd3381 2745
cdd6c482
IM
2746 swap(event->total_time_enabled, next_event->total_time_enabled);
2747 swap(event->total_time_running, next_event->total_time_running);
19d2e755 2748
bfbd3381 2749 /*
19d2e755 2750 * Since we swizzled the values, update the user visible data too.
bfbd3381 2751 */
cdd6c482
IM
2752 perf_event_update_userpage(event);
2753 perf_event_update_userpage(next_event);
bfbd3381
PZ
2754}
2755
cdd6c482
IM
2756static void perf_event_sync_stat(struct perf_event_context *ctx,
2757 struct perf_event_context *next_ctx)
bfbd3381 2758{
cdd6c482 2759 struct perf_event *event, *next_event;
bfbd3381
PZ
2760
2761 if (!ctx->nr_stat)
2762 return;
2763
02ffdbc8
PZ
2764 update_context_time(ctx);
2765
cdd6c482
IM
2766 event = list_first_entry(&ctx->event_list,
2767 struct perf_event, event_entry);
bfbd3381 2768
cdd6c482
IM
2769 next_event = list_first_entry(&next_ctx->event_list,
2770 struct perf_event, event_entry);
bfbd3381 2771
cdd6c482
IM
2772 while (&event->event_entry != &ctx->event_list &&
2773 &next_event->event_entry != &next_ctx->event_list) {
bfbd3381 2774
cdd6c482 2775 __perf_event_sync_stat(event, next_event);
bfbd3381 2776
cdd6c482
IM
2777 event = list_next_entry(event, event_entry);
2778 next_event = list_next_entry(next_event, event_entry);
bfbd3381
PZ
2779 }
2780}
2781
fe4b04fa
PZ
2782static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2783 struct task_struct *next)
0793a61d 2784{
8dc85d54 2785 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
cdd6c482 2786 struct perf_event_context *next_ctx;
5a3126d4 2787 struct perf_event_context *parent, *next_parent;
108b02cf 2788 struct perf_cpu_context *cpuctx;
c93f7669 2789 int do_switch = 1;
0793a61d 2790
108b02cf
PZ
2791 if (likely(!ctx))
2792 return;
10989fb2 2793
108b02cf
PZ
2794 cpuctx = __get_cpu_context(ctx);
2795 if (!cpuctx->task_ctx)
0793a61d
TG
2796 return;
2797
c93f7669 2798 rcu_read_lock();
8dc85d54 2799 next_ctx = next->perf_event_ctxp[ctxn];
5a3126d4
PZ
2800 if (!next_ctx)
2801 goto unlock;
2802
2803 parent = rcu_dereference(ctx->parent_ctx);
2804 next_parent = rcu_dereference(next_ctx->parent_ctx);
2805
2806 /* If neither context have a parent context; they cannot be clones. */
802c8a61 2807 if (!parent && !next_parent)
5a3126d4
PZ
2808 goto unlock;
2809
2810 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
c93f7669
PM
2811 /*
2812 * Looks like the two contexts are clones, so we might be
2813 * able to optimize the context switch. We lock both
2814 * contexts and check that they are clones under the
2815 * lock (including re-checking that neither has been
2816 * uncloned in the meantime). It doesn't matter which
2817 * order we take the locks because no other cpu could
2818 * be trying to lock both of these tasks.
2819 */
e625cce1
TG
2820 raw_spin_lock(&ctx->lock);
2821 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
c93f7669 2822 if (context_equiv(ctx, next_ctx)) {
63b6da39
PZ
2823 WRITE_ONCE(ctx->task, next);
2824 WRITE_ONCE(next_ctx->task, task);
5a158c3c
YZ
2825
2826 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2827
63b6da39
PZ
2828 /*
2829 * RCU_INIT_POINTER here is safe because we've not
2830 * modified the ctx and the above modification of
2831 * ctx->task and ctx->task_ctx_data are immaterial
2832 * since those values are always verified under
2833 * ctx->lock which we're now holding.
2834 */
2835 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
2836 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
2837
c93f7669 2838 do_switch = 0;
bfbd3381 2839
cdd6c482 2840 perf_event_sync_stat(ctx, next_ctx);
c93f7669 2841 }
e625cce1
TG
2842 raw_spin_unlock(&next_ctx->lock);
2843 raw_spin_unlock(&ctx->lock);
564c2b21 2844 }
5a3126d4 2845unlock:
c93f7669 2846 rcu_read_unlock();
564c2b21 2847
c93f7669 2848 if (do_switch) {
facc4307 2849 raw_spin_lock(&ctx->lock);
8833d0e2 2850 task_ctx_sched_out(cpuctx, ctx);
facc4307 2851 raw_spin_unlock(&ctx->lock);
c93f7669 2852 }
0793a61d
TG
2853}
2854
e48c1788
PZ
2855static DEFINE_PER_CPU(struct list_head, sched_cb_list);
2856
ba532500
YZ
2857void perf_sched_cb_dec(struct pmu *pmu)
2858{
e48c1788
PZ
2859 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2860
ba532500 2861 this_cpu_dec(perf_sched_cb_usages);
e48c1788
PZ
2862
2863 if (!--cpuctx->sched_cb_usage)
2864 list_del(&cpuctx->sched_cb_entry);
ba532500
YZ
2865}
2866
e48c1788 2867
ba532500
YZ
2868void perf_sched_cb_inc(struct pmu *pmu)
2869{
e48c1788
PZ
2870 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2871
2872 if (!cpuctx->sched_cb_usage++)
2873 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
2874
ba532500
YZ
2875 this_cpu_inc(perf_sched_cb_usages);
2876}
2877
2878/*
2879 * This function provides the context switch callback to the lower code
2880 * layer. It is invoked ONLY when the context switch callback is enabled.
09e61b4f
PZ
2881 *
2882 * This callback is relevant even to per-cpu events; for example multi event
2883 * PEBS requires this to provide PID/TID information. This requires we flush
2884 * all queued PEBS records before we context switch to a new task.
ba532500
YZ
2885 */
2886static void perf_pmu_sched_task(struct task_struct *prev,
2887 struct task_struct *next,
2888 bool sched_in)
2889{
2890 struct perf_cpu_context *cpuctx;
2891 struct pmu *pmu;
ba532500
YZ
2892
2893 if (prev == next)
2894 return;
2895
e48c1788
PZ
2896 list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
2897 pmu = cpuctx->unique_pmu; /* software PMUs will not have sched_task */
ba532500 2898
e48c1788
PZ
2899 if (WARN_ON_ONCE(!pmu->sched_task))
2900 continue;
ba532500 2901
e48c1788
PZ
2902 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2903 perf_pmu_disable(pmu);
ba532500 2904
e48c1788 2905 pmu->sched_task(cpuctx->task_ctx, sched_in);
ba532500 2906
e48c1788
PZ
2907 perf_pmu_enable(pmu);
2908 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
ba532500 2909 }
ba532500
YZ
2910}
2911
45ac1403
AH
2912static void perf_event_switch(struct task_struct *task,
2913 struct task_struct *next_prev, bool sched_in);
2914
8dc85d54
PZ
2915#define for_each_task_context_nr(ctxn) \
2916 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2917
2918/*
2919 * Called from scheduler to remove the events of the current task,
2920 * with interrupts disabled.
2921 *
2922 * We stop each event and update the event value in event->count.
2923 *
2924 * This does not protect us against NMI, but disable()
2925 * sets the disabled bit in the control field of event _before_
2926 * accessing the event control register. If a NMI hits, then it will
2927 * not restart the event.
2928 */
ab0cce56
JO
2929void __perf_event_task_sched_out(struct task_struct *task,
2930 struct task_struct *next)
8dc85d54
PZ
2931{
2932 int ctxn;
2933
ba532500
YZ
2934 if (__this_cpu_read(perf_sched_cb_usages))
2935 perf_pmu_sched_task(task, next, false);
2936
45ac1403
AH
2937 if (atomic_read(&nr_switch_events))
2938 perf_event_switch(task, next, false);
2939
8dc85d54
PZ
2940 for_each_task_context_nr(ctxn)
2941 perf_event_context_sched_out(task, ctxn, next);
e5d1367f
SE
2942
2943 /*
2944 * if cgroup events exist on this CPU, then we need
2945 * to check if we have to switch out PMU state.
2946 * cgroup event are system-wide mode only
2947 */
4a32fea9 2948 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
a8d757ef 2949 perf_cgroup_sched_out(task, next);
8dc85d54
PZ
2950}
2951
5b0311e1
FW
2952/*
2953 * Called with IRQs disabled
2954 */
2955static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2956 enum event_type_t event_type)
2957{
2958 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
04289bb9
IM
2959}
2960
235c7fc7 2961static void
5b0311e1 2962ctx_pinned_sched_in(struct perf_event_context *ctx,
6e37738a 2963 struct perf_cpu_context *cpuctx)
0793a61d 2964{
cdd6c482 2965 struct perf_event *event;
0793a61d 2966
889ff015
FW
2967 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2968 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 2969 continue;
5632ab12 2970 if (!event_filter_match(event))
3b6f9e5c
PM
2971 continue;
2972
e5d1367f
SE
2973 /* may need to reset tstamp_enabled */
2974 if (is_cgroup_event(event))
2975 perf_cgroup_mark_enabled(event, ctx);
2976
8c9ed8e1 2977 if (group_can_go_on(event, cpuctx, 1))
6e37738a 2978 group_sched_in(event, cpuctx, ctx);
3b6f9e5c
PM
2979
2980 /*
2981 * If this pinned group hasn't been scheduled,
2982 * put it in error state.
2983 */
cdd6c482
IM
2984 if (event->state == PERF_EVENT_STATE_INACTIVE) {
2985 update_group_times(event);
2986 event->state = PERF_EVENT_STATE_ERROR;
53cfbf59 2987 }
3b6f9e5c 2988 }
5b0311e1
FW
2989}
2990
2991static void
2992ctx_flexible_sched_in(struct perf_event_context *ctx,
6e37738a 2993 struct perf_cpu_context *cpuctx)
5b0311e1
FW
2994{
2995 struct perf_event *event;
2996 int can_add_hw = 1;
3b6f9e5c 2997
889ff015
FW
2998 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2999 /* Ignore events in OFF or ERROR state */
3000 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 3001 continue;
04289bb9
IM
3002 /*
3003 * Listen to the 'cpu' scheduling filter constraint
cdd6c482 3004 * of events:
04289bb9 3005 */
5632ab12 3006 if (!event_filter_match(event))
0793a61d
TG
3007 continue;
3008
e5d1367f
SE
3009 /* may need to reset tstamp_enabled */
3010 if (is_cgroup_event(event))
3011 perf_cgroup_mark_enabled(event, ctx);
3012
9ed6060d 3013 if (group_can_go_on(event, cpuctx, can_add_hw)) {
6e37738a 3014 if (group_sched_in(event, cpuctx, ctx))
dd0e6ba2 3015 can_add_hw = 0;
9ed6060d 3016 }
0793a61d 3017 }
5b0311e1
FW
3018}
3019
3020static void
3021ctx_sched_in(struct perf_event_context *ctx,
3022 struct perf_cpu_context *cpuctx,
e5d1367f
SE
3023 enum event_type_t event_type,
3024 struct task_struct *task)
5b0311e1 3025{
db24d33e 3026 int is_active = ctx->is_active;
c994d613
PZ
3027 u64 now;
3028
3029 lockdep_assert_held(&ctx->lock);
e5d1367f 3030
5b0311e1 3031 if (likely(!ctx->nr_events))
facc4307 3032 return;
5b0311e1 3033
3cbaa590 3034 ctx->is_active |= (event_type | EVENT_TIME);
63e30d3e
PZ
3035 if (ctx->task) {
3036 if (!is_active)
3037 cpuctx->task_ctx = ctx;
3038 else
3039 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3040 }
3041
3cbaa590
PZ
3042 is_active ^= ctx->is_active; /* changed bits */
3043
3044 if (is_active & EVENT_TIME) {
3045 /* start ctx time */
3046 now = perf_clock();
3047 ctx->timestamp = now;
3048 perf_cgroup_set_timestamp(task, ctx);
3049 }
3050
5b0311e1
FW
3051 /*
3052 * First go through the list and put on any pinned groups
3053 * in order to give them the best chance of going on.
3054 */
3cbaa590 3055 if (is_active & EVENT_PINNED)
6e37738a 3056 ctx_pinned_sched_in(ctx, cpuctx);
5b0311e1
FW
3057
3058 /* Then walk through the lower prio flexible groups */
3cbaa590 3059 if (is_active & EVENT_FLEXIBLE)
6e37738a 3060 ctx_flexible_sched_in(ctx, cpuctx);
235c7fc7
IM
3061}
3062
329c0e01 3063static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
3064 enum event_type_t event_type,
3065 struct task_struct *task)
329c0e01
FW
3066{
3067 struct perf_event_context *ctx = &cpuctx->ctx;
3068
e5d1367f 3069 ctx_sched_in(ctx, cpuctx, event_type, task);
329c0e01
FW
3070}
3071
e5d1367f
SE
3072static void perf_event_context_sched_in(struct perf_event_context *ctx,
3073 struct task_struct *task)
235c7fc7 3074{
108b02cf 3075 struct perf_cpu_context *cpuctx;
235c7fc7 3076
108b02cf 3077 cpuctx = __get_cpu_context(ctx);
329c0e01
FW
3078 if (cpuctx->task_ctx == ctx)
3079 return;
3080
facc4307 3081 perf_ctx_lock(cpuctx, ctx);
1b9a644f 3082 perf_pmu_disable(ctx->pmu);
329c0e01
FW
3083 /*
3084 * We want to keep the following priority order:
3085 * cpu pinned (that don't need to move), task pinned,
3086 * cpu flexible, task flexible.
3087 */
3088 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
63e30d3e 3089 perf_event_sched_in(cpuctx, ctx, task);
facc4307
PZ
3090 perf_pmu_enable(ctx->pmu);
3091 perf_ctx_unlock(cpuctx, ctx);
235c7fc7
IM
3092}
3093
8dc85d54
PZ
3094/*
3095 * Called from scheduler to add the events of the current task
3096 * with interrupts disabled.
3097 *
3098 * We restore the event value and then enable it.
3099 *
3100 * This does not protect us against NMI, but enable()
3101 * sets the enabled bit in the control field of event _before_
3102 * accessing the event control register. If a NMI hits, then it will
3103 * keep the event running.
3104 */
ab0cce56
JO
3105void __perf_event_task_sched_in(struct task_struct *prev,
3106 struct task_struct *task)
8dc85d54
PZ
3107{
3108 struct perf_event_context *ctx;
3109 int ctxn;
3110
7e41d177
PZ
3111 /*
3112 * If cgroup events exist on this CPU, then we need to check if we have
3113 * to switch in PMU state; cgroup event are system-wide mode only.
3114 *
3115 * Since cgroup events are CPU events, we must schedule these in before
3116 * we schedule in the task events.
3117 */
3118 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3119 perf_cgroup_sched_in(prev, task);
3120
8dc85d54
PZ
3121 for_each_task_context_nr(ctxn) {
3122 ctx = task->perf_event_ctxp[ctxn];
3123 if (likely(!ctx))
3124 continue;
3125
e5d1367f 3126 perf_event_context_sched_in(ctx, task);
8dc85d54 3127 }
d010b332 3128
45ac1403
AH
3129 if (atomic_read(&nr_switch_events))
3130 perf_event_switch(task, prev, true);
3131
ba532500
YZ
3132 if (__this_cpu_read(perf_sched_cb_usages))
3133 perf_pmu_sched_task(prev, task, true);
235c7fc7
IM
3134}
3135
abd50713
PZ
3136static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3137{
3138 u64 frequency = event->attr.sample_freq;
3139 u64 sec = NSEC_PER_SEC;
3140 u64 divisor, dividend;
3141
3142 int count_fls, nsec_fls, frequency_fls, sec_fls;
3143
3144 count_fls = fls64(count);
3145 nsec_fls = fls64(nsec);
3146 frequency_fls = fls64(frequency);
3147 sec_fls = 30;
3148
3149 /*
3150 * We got @count in @nsec, with a target of sample_freq HZ
3151 * the target period becomes:
3152 *
3153 * @count * 10^9
3154 * period = -------------------
3155 * @nsec * sample_freq
3156 *
3157 */
3158
3159 /*
3160 * Reduce accuracy by one bit such that @a and @b converge
3161 * to a similar magnitude.
3162 */
fe4b04fa 3163#define REDUCE_FLS(a, b) \
abd50713
PZ
3164do { \
3165 if (a##_fls > b##_fls) { \
3166 a >>= 1; \
3167 a##_fls--; \
3168 } else { \
3169 b >>= 1; \
3170 b##_fls--; \
3171 } \
3172} while (0)
3173
3174 /*
3175 * Reduce accuracy until either term fits in a u64, then proceed with
3176 * the other, so that finally we can do a u64/u64 division.
3177 */
3178 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3179 REDUCE_FLS(nsec, frequency);
3180 REDUCE_FLS(sec, count);
3181 }
3182
3183 if (count_fls + sec_fls > 64) {
3184 divisor = nsec * frequency;
3185
3186 while (count_fls + sec_fls > 64) {
3187 REDUCE_FLS(count, sec);
3188 divisor >>= 1;
3189 }
3190
3191 dividend = count * sec;
3192 } else {
3193 dividend = count * sec;
3194
3195 while (nsec_fls + frequency_fls > 64) {
3196 REDUCE_FLS(nsec, frequency);
3197 dividend >>= 1;
3198 }
3199
3200 divisor = nsec * frequency;
3201 }
3202
f6ab91ad
PZ
3203 if (!divisor)
3204 return dividend;
3205
abd50713
PZ
3206 return div64_u64(dividend, divisor);
3207}
3208
e050e3f0
SE
3209static DEFINE_PER_CPU(int, perf_throttled_count);
3210static DEFINE_PER_CPU(u64, perf_throttled_seq);
3211
f39d47ff 3212static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
bd2b5b12 3213{
cdd6c482 3214 struct hw_perf_event *hwc = &event->hw;
f6ab91ad 3215 s64 period, sample_period;
bd2b5b12
PZ
3216 s64 delta;
3217
abd50713 3218 period = perf_calculate_period(event, nsec, count);
bd2b5b12
PZ
3219
3220 delta = (s64)(period - hwc->sample_period);
3221 delta = (delta + 7) / 8; /* low pass filter */
3222
3223 sample_period = hwc->sample_period + delta;
3224
3225 if (!sample_period)
3226 sample_period = 1;
3227
bd2b5b12 3228 hwc->sample_period = sample_period;
abd50713 3229
e7850595 3230 if (local64_read(&hwc->period_left) > 8*sample_period) {
f39d47ff
SE
3231 if (disable)
3232 event->pmu->stop(event, PERF_EF_UPDATE);
3233
e7850595 3234 local64_set(&hwc->period_left, 0);
f39d47ff
SE
3235
3236 if (disable)
3237 event->pmu->start(event, PERF_EF_RELOAD);
abd50713 3238 }
bd2b5b12
PZ
3239}
3240
e050e3f0
SE
3241/*
3242 * combine freq adjustment with unthrottling to avoid two passes over the
3243 * events. At the same time, make sure, having freq events does not change
3244 * the rate of unthrottling as that would introduce bias.
3245 */
3246static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3247 int needs_unthr)
60db5e09 3248{
cdd6c482
IM
3249 struct perf_event *event;
3250 struct hw_perf_event *hwc;
e050e3f0 3251 u64 now, period = TICK_NSEC;
abd50713 3252 s64 delta;
60db5e09 3253
e050e3f0
SE
3254 /*
3255 * only need to iterate over all events iff:
3256 * - context have events in frequency mode (needs freq adjust)
3257 * - there are events to unthrottle on this cpu
3258 */
3259 if (!(ctx->nr_freq || needs_unthr))
0f5a2601
PZ
3260 return;
3261
e050e3f0 3262 raw_spin_lock(&ctx->lock);
f39d47ff 3263 perf_pmu_disable(ctx->pmu);
e050e3f0 3264
03541f8b 3265 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
cdd6c482 3266 if (event->state != PERF_EVENT_STATE_ACTIVE)
60db5e09
PZ
3267 continue;
3268
5632ab12 3269 if (!event_filter_match(event))
5d27c23d
PZ
3270 continue;
3271
44377277
AS
3272 perf_pmu_disable(event->pmu);
3273
cdd6c482 3274 hwc = &event->hw;
6a24ed6c 3275
ae23bff1 3276 if (hwc->interrupts == MAX_INTERRUPTS) {
e050e3f0 3277 hwc->interrupts = 0;
cdd6c482 3278 perf_log_throttle(event, 1);
a4eaf7f1 3279 event->pmu->start(event, 0);
a78ac325
PZ
3280 }
3281
cdd6c482 3282 if (!event->attr.freq || !event->attr.sample_freq)
44377277 3283 goto next;
60db5e09 3284
e050e3f0
SE
3285 /*
3286 * stop the event and update event->count
3287 */
3288 event->pmu->stop(event, PERF_EF_UPDATE);
3289
e7850595 3290 now = local64_read(&event->count);
abd50713
PZ
3291 delta = now - hwc->freq_count_stamp;
3292 hwc->freq_count_stamp = now;
60db5e09 3293
e050e3f0
SE
3294 /*
3295 * restart the event
3296 * reload only if value has changed
f39d47ff
SE
3297 * we have stopped the event so tell that
3298 * to perf_adjust_period() to avoid stopping it
3299 * twice.
e050e3f0 3300 */
abd50713 3301 if (delta > 0)
f39d47ff 3302 perf_adjust_period(event, period, delta, false);
e050e3f0
SE
3303
3304 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
44377277
AS
3305 next:
3306 perf_pmu_enable(event->pmu);
60db5e09 3307 }
e050e3f0 3308
f39d47ff 3309 perf_pmu_enable(ctx->pmu);
e050e3f0 3310 raw_spin_unlock(&ctx->lock);
60db5e09
PZ
3311}
3312
235c7fc7 3313/*
cdd6c482 3314 * Round-robin a context's events:
235c7fc7 3315 */
cdd6c482 3316static void rotate_ctx(struct perf_event_context *ctx)
0793a61d 3317{
dddd3379
TG
3318 /*
3319 * Rotate the first entry last of non-pinned groups. Rotation might be
3320 * disabled by the inheritance code.
3321 */
3322 if (!ctx->rotate_disable)
3323 list_rotate_left(&ctx->flexible_groups);
235c7fc7
IM
3324}
3325
9e630205 3326static int perf_rotate_context(struct perf_cpu_context *cpuctx)
235c7fc7 3327{
8dc85d54 3328 struct perf_event_context *ctx = NULL;
2fde4f94 3329 int rotate = 0;
7fc23a53 3330
b5ab4cd5 3331 if (cpuctx->ctx.nr_events) {
b5ab4cd5
PZ
3332 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3333 rotate = 1;
3334 }
235c7fc7 3335
8dc85d54 3336 ctx = cpuctx->task_ctx;
b5ab4cd5 3337 if (ctx && ctx->nr_events) {
b5ab4cd5
PZ
3338 if (ctx->nr_events != ctx->nr_active)
3339 rotate = 1;
3340 }
9717e6cd 3341
e050e3f0 3342 if (!rotate)
0f5a2601
PZ
3343 goto done;
3344
facc4307 3345 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
1b9a644f 3346 perf_pmu_disable(cpuctx->ctx.pmu);
60db5e09 3347
e050e3f0
SE
3348 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3349 if (ctx)
3350 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
0793a61d 3351
e050e3f0
SE
3352 rotate_ctx(&cpuctx->ctx);
3353 if (ctx)
3354 rotate_ctx(ctx);
235c7fc7 3355
e050e3f0 3356 perf_event_sched_in(cpuctx, ctx, current);
235c7fc7 3357
0f5a2601
PZ
3358 perf_pmu_enable(cpuctx->ctx.pmu);
3359 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
b5ab4cd5 3360done:
9e630205
SE
3361
3362 return rotate;
e9d2b064
PZ
3363}
3364
3365void perf_event_task_tick(void)
3366{
2fde4f94
MR
3367 struct list_head *head = this_cpu_ptr(&active_ctx_list);
3368 struct perf_event_context *ctx, *tmp;
e050e3f0 3369 int throttled;
b5ab4cd5 3370
e9d2b064
PZ
3371 WARN_ON(!irqs_disabled());
3372
e050e3f0
SE
3373 __this_cpu_inc(perf_throttled_seq);
3374 throttled = __this_cpu_xchg(perf_throttled_count, 0);
555e0c1e 3375 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
e050e3f0 3376
2fde4f94 3377 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
e050e3f0 3378 perf_adjust_freq_unthr_context(ctx, throttled);
0793a61d
TG
3379}
3380
889ff015
FW
3381static int event_enable_on_exec(struct perf_event *event,
3382 struct perf_event_context *ctx)
3383{
3384 if (!event->attr.enable_on_exec)
3385 return 0;
3386
3387 event->attr.enable_on_exec = 0;
3388 if (event->state >= PERF_EVENT_STATE_INACTIVE)
3389 return 0;
3390
1d9b482e 3391 __perf_event_mark_enabled(event);
889ff015
FW
3392
3393 return 1;
3394}
3395
57e7986e 3396/*
cdd6c482 3397 * Enable all of a task's events that have been marked enable-on-exec.
57e7986e
PM
3398 * This expects task == current.
3399 */
c1274499 3400static void perf_event_enable_on_exec(int ctxn)
57e7986e 3401{
c1274499 3402 struct perf_event_context *ctx, *clone_ctx = NULL;
3e349507 3403 struct perf_cpu_context *cpuctx;
cdd6c482 3404 struct perf_event *event;
57e7986e
PM
3405 unsigned long flags;
3406 int enabled = 0;
3407
3408 local_irq_save(flags);
c1274499 3409 ctx = current->perf_event_ctxp[ctxn];
cdd6c482 3410 if (!ctx || !ctx->nr_events)
57e7986e
PM
3411 goto out;
3412
3e349507
PZ
3413 cpuctx = __get_cpu_context(ctx);
3414 perf_ctx_lock(cpuctx, ctx);
7fce2509 3415 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3e349507
PZ
3416 list_for_each_entry(event, &ctx->event_list, event_entry)
3417 enabled |= event_enable_on_exec(event, ctx);
57e7986e
PM
3418
3419 /*
3e349507 3420 * Unclone and reschedule this context if we enabled any event.
57e7986e 3421 */
3e349507 3422 if (enabled) {
211de6eb 3423 clone_ctx = unclone_ctx(ctx);
3e349507
PZ
3424 ctx_resched(cpuctx, ctx);
3425 }
3426 perf_ctx_unlock(cpuctx, ctx);
57e7986e 3427
9ed6060d 3428out:
57e7986e 3429 local_irq_restore(flags);
211de6eb
PZ
3430
3431 if (clone_ctx)
3432 put_ctx(clone_ctx);
57e7986e
PM
3433}
3434
0492d4c5
PZ
3435struct perf_read_data {
3436 struct perf_event *event;
3437 bool group;
7d88962e 3438 int ret;
0492d4c5
PZ
3439};
3440
d6a2f903
DCC
3441static int find_cpu_to_read(struct perf_event *event, int local_cpu)
3442{
3443 int event_cpu = event->oncpu;
3444 u16 local_pkg, event_pkg;
3445
3446 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
3447 event_pkg = topology_physical_package_id(event_cpu);
3448 local_pkg = topology_physical_package_id(local_cpu);
3449
3450 if (event_pkg == local_pkg)
3451 return local_cpu;
3452 }
3453
3454 return event_cpu;
3455}
3456
0793a61d 3457/*
cdd6c482 3458 * Cross CPU call to read the hardware event
0793a61d 3459 */
cdd6c482 3460static void __perf_event_read(void *info)
0793a61d 3461{
0492d4c5
PZ
3462 struct perf_read_data *data = info;
3463 struct perf_event *sub, *event = data->event;
cdd6c482 3464 struct perf_event_context *ctx = event->ctx;
108b02cf 3465 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
4a00c16e 3466 struct pmu *pmu = event->pmu;
621a01ea 3467
e1ac3614
PM
3468 /*
3469 * If this is a task context, we need to check whether it is
3470 * the current task context of this cpu. If not it has been
3471 * scheduled out before the smp call arrived. In that case
cdd6c482
IM
3472 * event->count would have been updated to a recent sample
3473 * when the event was scheduled out.
e1ac3614
PM
3474 */
3475 if (ctx->task && cpuctx->task_ctx != ctx)
3476 return;
3477
e625cce1 3478 raw_spin_lock(&ctx->lock);
e5d1367f 3479 if (ctx->is_active) {
542e72fc 3480 update_context_time(ctx);
e5d1367f
SE
3481 update_cgrp_time_from_event(event);
3482 }
0492d4c5 3483
cdd6c482 3484 update_event_times(event);
4a00c16e
SB
3485 if (event->state != PERF_EVENT_STATE_ACTIVE)
3486 goto unlock;
0492d4c5 3487
4a00c16e
SB
3488 if (!data->group) {
3489 pmu->read(event);
3490 data->ret = 0;
0492d4c5 3491 goto unlock;
4a00c16e
SB
3492 }
3493
3494 pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3495
3496 pmu->read(event);
0492d4c5
PZ
3497
3498 list_for_each_entry(sub, &event->sibling_list, group_entry) {
3499 update_event_times(sub);
4a00c16e
SB
3500 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3501 /*
3502 * Use sibling's PMU rather than @event's since
3503 * sibling could be on different (eg: software) PMU.
3504 */
0492d4c5 3505 sub->pmu->read(sub);
4a00c16e 3506 }
0492d4c5 3507 }
4a00c16e
SB
3508
3509 data->ret = pmu->commit_txn(pmu);
0492d4c5
PZ
3510
3511unlock:
e625cce1 3512 raw_spin_unlock(&ctx->lock);
0793a61d
TG
3513}
3514
b5e58793
PZ
3515static inline u64 perf_event_count(struct perf_event *event)
3516{
eacd3ecc
MF
3517 if (event->pmu->count)
3518 return event->pmu->count(event);
3519
3520 return __perf_event_count(event);
b5e58793
PZ
3521}
3522
ffe8690c
KX
3523/*
3524 * NMI-safe method to read a local event, that is an event that
3525 * is:
3526 * - either for the current task, or for this CPU
3527 * - does not have inherit set, for inherited task events
3528 * will not be local and we cannot read them atomically
3529 * - must not have a pmu::count method
3530 */
3531u64 perf_event_read_local(struct perf_event *event)
3532{
3533 unsigned long flags;
3534 u64 val;
3535
3536 /*
3537 * Disabling interrupts avoids all counter scheduling (context
3538 * switches, timer based rotation and IPIs).
3539 */
3540 local_irq_save(flags);
3541
3542 /* If this is a per-task event, it must be for current */
3543 WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) &&
3544 event->hw.target != current);
3545
3546 /* If this is a per-CPU event, it must be for this CPU */
3547 WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) &&
3548 event->cpu != smp_processor_id());
3549
3550 /*
3551 * It must not be an event with inherit set, we cannot read
3552 * all child counters from atomic context.
3553 */
3554 WARN_ON_ONCE(event->attr.inherit);
3555
3556 /*
3557 * It must not have a pmu::count method, those are not
3558 * NMI safe.
3559 */
3560 WARN_ON_ONCE(event->pmu->count);
3561
3562 /*
3563 * If the event is currently on this CPU, its either a per-task event,
3564 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3565 * oncpu == -1).
3566 */
3567 if (event->oncpu == smp_processor_id())
3568 event->pmu->read(event);
3569
3570 val = local64_read(&event->count);
3571 local_irq_restore(flags);
3572
3573 return val;
3574}
3575
7d88962e 3576static int perf_event_read(struct perf_event *event, bool group)
0793a61d 3577{
d6a2f903 3578 int ret = 0, cpu_to_read, local_cpu;
7d88962e 3579
0793a61d 3580 /*
cdd6c482
IM
3581 * If event is enabled and currently active on a CPU, update the
3582 * value in the event structure:
0793a61d 3583 */
cdd6c482 3584 if (event->state == PERF_EVENT_STATE_ACTIVE) {
0492d4c5
PZ
3585 struct perf_read_data data = {
3586 .event = event,
3587 .group = group,
7d88962e 3588 .ret = 0,
0492d4c5 3589 };
d6a2f903
DCC
3590
3591 local_cpu = get_cpu();
3592 cpu_to_read = find_cpu_to_read(event, local_cpu);
3593 put_cpu();
3594
58763148
PZ
3595 /*
3596 * Purposely ignore the smp_call_function_single() return
3597 * value.
3598 *
3599 * If event->oncpu isn't a valid CPU it means the event got
3600 * scheduled out and that will have updated the event count.
3601 *
3602 * Therefore, either way, we'll have an up-to-date event count
3603 * after this.
3604 */
2cc53841 3605 (void)smp_call_function_single(cpu_to_read, __perf_event_read, &data, 1);
58763148 3606 ret = data.ret;
cdd6c482 3607 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
2b8988c9
PZ
3608 struct perf_event_context *ctx = event->ctx;
3609 unsigned long flags;
3610
e625cce1 3611 raw_spin_lock_irqsave(&ctx->lock, flags);
c530ccd9
SE
3612 /*
3613 * may read while context is not active
3614 * (e.g., thread is blocked), in that case
3615 * we cannot update context time
3616 */
e5d1367f 3617 if (ctx->is_active) {
c530ccd9 3618 update_context_time(ctx);
e5d1367f
SE
3619 update_cgrp_time_from_event(event);
3620 }
0492d4c5
PZ
3621 if (group)
3622 update_group_times(event);
3623 else
3624 update_event_times(event);
e625cce1 3625 raw_spin_unlock_irqrestore(&ctx->lock, flags);
0793a61d 3626 }
7d88962e
SB
3627
3628 return ret;
0793a61d
TG
3629}
3630
a63eaf34 3631/*
cdd6c482 3632 * Initialize the perf_event context in a task_struct:
a63eaf34 3633 */
eb184479 3634static void __perf_event_init_context(struct perf_event_context *ctx)
a63eaf34 3635{
e625cce1 3636 raw_spin_lock_init(&ctx->lock);
a63eaf34 3637 mutex_init(&ctx->mutex);
2fde4f94 3638 INIT_LIST_HEAD(&ctx->active_ctx_list);
889ff015
FW
3639 INIT_LIST_HEAD(&ctx->pinned_groups);
3640 INIT_LIST_HEAD(&ctx->flexible_groups);
a63eaf34
PM
3641 INIT_LIST_HEAD(&ctx->event_list);
3642 atomic_set(&ctx->refcount, 1);
eb184479
PZ
3643}
3644
3645static struct perf_event_context *
3646alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3647{
3648 struct perf_event_context *ctx;
3649
3650 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3651 if (!ctx)
3652 return NULL;
3653
3654 __perf_event_init_context(ctx);
3655 if (task) {
3656 ctx->task = task;
3657 get_task_struct(task);
0793a61d 3658 }
eb184479
PZ
3659 ctx->pmu = pmu;
3660
3661 return ctx;
a63eaf34
PM
3662}
3663
2ebd4ffb
MH
3664static struct task_struct *
3665find_lively_task_by_vpid(pid_t vpid)
3666{
3667 struct task_struct *task;
0793a61d
TG
3668
3669 rcu_read_lock();
2ebd4ffb 3670 if (!vpid)
0793a61d
TG
3671 task = current;
3672 else
2ebd4ffb 3673 task = find_task_by_vpid(vpid);
0793a61d
TG
3674 if (task)
3675 get_task_struct(task);
3676 rcu_read_unlock();
3677
3678 if (!task)
3679 return ERR_PTR(-ESRCH);
3680
2ebd4ffb 3681 return task;
2ebd4ffb
MH
3682}
3683
fe4b04fa
PZ
3684/*
3685 * Returns a matching context with refcount and pincount.
3686 */
108b02cf 3687static struct perf_event_context *
4af57ef2
YZ
3688find_get_context(struct pmu *pmu, struct task_struct *task,
3689 struct perf_event *event)
0793a61d 3690{
211de6eb 3691 struct perf_event_context *ctx, *clone_ctx = NULL;
22a4f650 3692 struct perf_cpu_context *cpuctx;
4af57ef2 3693 void *task_ctx_data = NULL;
25346b93 3694 unsigned long flags;
8dc85d54 3695 int ctxn, err;
4af57ef2 3696 int cpu = event->cpu;
0793a61d 3697
22a4ec72 3698 if (!task) {
cdd6c482 3699 /* Must be root to operate on a CPU event: */
0764771d 3700 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
0793a61d
TG
3701 return ERR_PTR(-EACCES);
3702
0793a61d 3703 /*
cdd6c482 3704 * We could be clever and allow to attach a event to an
0793a61d
TG
3705 * offline CPU and activate it when the CPU comes up, but
3706 * that's for later.
3707 */
f6325e30 3708 if (!cpu_online(cpu))
0793a61d
TG
3709 return ERR_PTR(-ENODEV);
3710
108b02cf 3711 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
0793a61d 3712 ctx = &cpuctx->ctx;
c93f7669 3713 get_ctx(ctx);
fe4b04fa 3714 ++ctx->pin_count;
0793a61d 3715
0793a61d
TG
3716 return ctx;
3717 }
3718
8dc85d54
PZ
3719 err = -EINVAL;
3720 ctxn = pmu->task_ctx_nr;
3721 if (ctxn < 0)
3722 goto errout;
3723
4af57ef2
YZ
3724 if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3725 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3726 if (!task_ctx_data) {
3727 err = -ENOMEM;
3728 goto errout;
3729 }
3730 }
3731
9ed6060d 3732retry:
8dc85d54 3733 ctx = perf_lock_task_context(task, ctxn, &flags);
c93f7669 3734 if (ctx) {
211de6eb 3735 clone_ctx = unclone_ctx(ctx);
fe4b04fa 3736 ++ctx->pin_count;
4af57ef2
YZ
3737
3738 if (task_ctx_data && !ctx->task_ctx_data) {
3739 ctx->task_ctx_data = task_ctx_data;
3740 task_ctx_data = NULL;
3741 }
e625cce1 3742 raw_spin_unlock_irqrestore(&ctx->lock, flags);
211de6eb
PZ
3743
3744 if (clone_ctx)
3745 put_ctx(clone_ctx);
9137fb28 3746 } else {
eb184479 3747 ctx = alloc_perf_context(pmu, task);
c93f7669
PM
3748 err = -ENOMEM;
3749 if (!ctx)
3750 goto errout;
eb184479 3751
4af57ef2
YZ
3752 if (task_ctx_data) {
3753 ctx->task_ctx_data = task_ctx_data;
3754 task_ctx_data = NULL;
3755 }
3756
dbe08d82
ON
3757 err = 0;
3758 mutex_lock(&task->perf_event_mutex);
3759 /*
3760 * If it has already passed perf_event_exit_task().
3761 * we must see PF_EXITING, it takes this mutex too.
3762 */
3763 if (task->flags & PF_EXITING)
3764 err = -ESRCH;
3765 else if (task->perf_event_ctxp[ctxn])
3766 err = -EAGAIN;
fe4b04fa 3767 else {
9137fb28 3768 get_ctx(ctx);
fe4b04fa 3769 ++ctx->pin_count;
dbe08d82 3770 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
fe4b04fa 3771 }
dbe08d82
ON
3772 mutex_unlock(&task->perf_event_mutex);
3773
3774 if (unlikely(err)) {
9137fb28 3775 put_ctx(ctx);
dbe08d82
ON
3776
3777 if (err == -EAGAIN)
3778 goto retry;
3779 goto errout;
a63eaf34
PM
3780 }
3781 }
3782
4af57ef2 3783 kfree(task_ctx_data);
0793a61d 3784 return ctx;
c93f7669 3785
9ed6060d 3786errout:
4af57ef2 3787 kfree(task_ctx_data);
c93f7669 3788 return ERR_PTR(err);
0793a61d
TG
3789}
3790
6fb2915d 3791static void perf_event_free_filter(struct perf_event *event);
2541517c 3792static void perf_event_free_bpf_prog(struct perf_event *event);
6fb2915d 3793
cdd6c482 3794static void free_event_rcu(struct rcu_head *head)
592903cd 3795{
cdd6c482 3796 struct perf_event *event;
592903cd 3797
cdd6c482
IM
3798 event = container_of(head, struct perf_event, rcu_head);
3799 if (event->ns)
3800 put_pid_ns(event->ns);
6fb2915d 3801 perf_event_free_filter(event);
cdd6c482 3802 kfree(event);
592903cd
PZ
3803}
3804
b69cf536
PZ
3805static void ring_buffer_attach(struct perf_event *event,
3806 struct ring_buffer *rb);
925d519a 3807
f2fb6bef
KL
3808static void detach_sb_event(struct perf_event *event)
3809{
3810 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
3811
3812 raw_spin_lock(&pel->lock);
3813 list_del_rcu(&event->sb_list);
3814 raw_spin_unlock(&pel->lock);
3815}
3816
a4f144eb 3817static bool is_sb_event(struct perf_event *event)
f2fb6bef 3818{
a4f144eb
DCC
3819 struct perf_event_attr *attr = &event->attr;
3820
f2fb6bef 3821 if (event->parent)
a4f144eb 3822 return false;
f2fb6bef
KL
3823
3824 if (event->attach_state & PERF_ATTACH_TASK)
a4f144eb 3825 return false;
f2fb6bef 3826
a4f144eb
DCC
3827 if (attr->mmap || attr->mmap_data || attr->mmap2 ||
3828 attr->comm || attr->comm_exec ||
3829 attr->task ||
3830 attr->context_switch)
3831 return true;
3832 return false;
3833}
3834
3835static void unaccount_pmu_sb_event(struct perf_event *event)
3836{
3837 if (is_sb_event(event))
3838 detach_sb_event(event);
f2fb6bef
KL
3839}
3840
4beb31f3 3841static void unaccount_event_cpu(struct perf_event *event, int cpu)
f1600952 3842{
4beb31f3
FW
3843 if (event->parent)
3844 return;
3845
4beb31f3
FW
3846 if (is_cgroup_event(event))
3847 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3848}
925d519a 3849
555e0c1e
FW
3850#ifdef CONFIG_NO_HZ_FULL
3851static DEFINE_SPINLOCK(nr_freq_lock);
3852#endif
3853
3854static void unaccount_freq_event_nohz(void)
3855{
3856#ifdef CONFIG_NO_HZ_FULL
3857 spin_lock(&nr_freq_lock);
3858 if (atomic_dec_and_test(&nr_freq_events))
3859 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
3860 spin_unlock(&nr_freq_lock);
3861#endif
3862}
3863
3864static void unaccount_freq_event(void)
3865{
3866 if (tick_nohz_full_enabled())
3867 unaccount_freq_event_nohz();
3868 else
3869 atomic_dec(&nr_freq_events);
3870}
3871
4beb31f3
FW
3872static void unaccount_event(struct perf_event *event)
3873{
25432ae9
PZ
3874 bool dec = false;
3875
4beb31f3
FW
3876 if (event->parent)
3877 return;
3878
3879 if (event->attach_state & PERF_ATTACH_TASK)
25432ae9 3880 dec = true;
4beb31f3
FW
3881 if (event->attr.mmap || event->attr.mmap_data)
3882 atomic_dec(&nr_mmap_events);
3883 if (event->attr.comm)
3884 atomic_dec(&nr_comm_events);
3885 if (event->attr.task)
3886 atomic_dec(&nr_task_events);
948b26b6 3887 if (event->attr.freq)
555e0c1e 3888 unaccount_freq_event();
45ac1403 3889 if (event->attr.context_switch) {
25432ae9 3890 dec = true;
45ac1403
AH
3891 atomic_dec(&nr_switch_events);
3892 }
4beb31f3 3893 if (is_cgroup_event(event))
25432ae9 3894 dec = true;
4beb31f3 3895 if (has_branch_stack(event))
25432ae9
PZ
3896 dec = true;
3897
9107c89e
PZ
3898 if (dec) {
3899 if (!atomic_add_unless(&perf_sched_count, -1, 1))
3900 schedule_delayed_work(&perf_sched_work, HZ);
3901 }
4beb31f3
FW
3902
3903 unaccount_event_cpu(event, event->cpu);
f2fb6bef
KL
3904
3905 unaccount_pmu_sb_event(event);
4beb31f3 3906}
925d519a 3907
9107c89e
PZ
3908static void perf_sched_delayed(struct work_struct *work)
3909{
3910 mutex_lock(&perf_sched_mutex);
3911 if (atomic_dec_and_test(&perf_sched_count))
3912 static_branch_disable(&perf_sched_events);
3913 mutex_unlock(&perf_sched_mutex);
3914}
3915
bed5b25a
AS
3916/*
3917 * The following implement mutual exclusion of events on "exclusive" pmus
3918 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
3919 * at a time, so we disallow creating events that might conflict, namely:
3920 *
3921 * 1) cpu-wide events in the presence of per-task events,
3922 * 2) per-task events in the presence of cpu-wide events,
3923 * 3) two matching events on the same context.
3924 *
3925 * The former two cases are handled in the allocation path (perf_event_alloc(),
a0733e69 3926 * _free_event()), the latter -- before the first perf_install_in_context().
bed5b25a
AS
3927 */
3928static int exclusive_event_init(struct perf_event *event)
3929{
3930 struct pmu *pmu = event->pmu;
3931
3932 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3933 return 0;
3934
3935 /*
3936 * Prevent co-existence of per-task and cpu-wide events on the
3937 * same exclusive pmu.
3938 *
3939 * Negative pmu::exclusive_cnt means there are cpu-wide
3940 * events on this "exclusive" pmu, positive means there are
3941 * per-task events.
3942 *
3943 * Since this is called in perf_event_alloc() path, event::ctx
3944 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
3945 * to mean "per-task event", because unlike other attach states it
3946 * never gets cleared.
3947 */
3948 if (event->attach_state & PERF_ATTACH_TASK) {
3949 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
3950 return -EBUSY;
3951 } else {
3952 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
3953 return -EBUSY;
3954 }
3955
3956 return 0;
3957}
3958
3959static void exclusive_event_destroy(struct perf_event *event)
3960{
3961 struct pmu *pmu = event->pmu;
3962
3963 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3964 return;
3965
3966 /* see comment in exclusive_event_init() */
3967 if (event->attach_state & PERF_ATTACH_TASK)
3968 atomic_dec(&pmu->exclusive_cnt);
3969 else
3970 atomic_inc(&pmu->exclusive_cnt);
3971}
3972
3973static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
3974{
3bf6215a 3975 if ((e1->pmu == e2->pmu) &&
bed5b25a
AS
3976 (e1->cpu == e2->cpu ||
3977 e1->cpu == -1 ||
3978 e2->cpu == -1))
3979 return true;
3980 return false;
3981}
3982
3983/* Called under the same ctx::mutex as perf_install_in_context() */
3984static bool exclusive_event_installable(struct perf_event *event,
3985 struct perf_event_context *ctx)
3986{
3987 struct perf_event *iter_event;
3988 struct pmu *pmu = event->pmu;
3989
3990 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3991 return true;
3992
3993 list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
3994 if (exclusive_event_match(iter_event, event))
3995 return false;
3996 }
3997
3998 return true;
3999}
4000
375637bc
AS
4001static void perf_addr_filters_splice(struct perf_event *event,
4002 struct list_head *head);
4003
683ede43 4004static void _free_event(struct perf_event *event)
f1600952 4005{
e360adbe 4006 irq_work_sync(&event->pending);
925d519a 4007
4beb31f3 4008 unaccount_event(event);
9ee318a7 4009
76369139 4010 if (event->rb) {
9bb5d40c
PZ
4011 /*
4012 * Can happen when we close an event with re-directed output.
4013 *
4014 * Since we have a 0 refcount, perf_mmap_close() will skip
4015 * over us; possibly making our ring_buffer_put() the last.
4016 */
4017 mutex_lock(&event->mmap_mutex);
b69cf536 4018 ring_buffer_attach(event, NULL);
9bb5d40c 4019 mutex_unlock(&event->mmap_mutex);
a4be7c27
PZ
4020 }
4021
e5d1367f
SE
4022 if (is_cgroup_event(event))
4023 perf_detach_cgroup(event);
4024
a0733e69
PZ
4025 if (!event->parent) {
4026 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4027 put_callchain_buffers();
4028 }
4029
4030 perf_event_free_bpf_prog(event);
375637bc
AS
4031 perf_addr_filters_splice(event, NULL);
4032 kfree(event->addr_filters_offs);
a0733e69
PZ
4033
4034 if (event->destroy)
4035 event->destroy(event);
4036
4037 if (event->ctx)
4038 put_ctx(event->ctx);
4039
62a92c8f
AS
4040 exclusive_event_destroy(event);
4041 module_put(event->pmu->module);
a0733e69
PZ
4042
4043 call_rcu(&event->rcu_head, free_event_rcu);
f1600952
PZ
4044}
4045
683ede43
PZ
4046/*
4047 * Used to free events which have a known refcount of 1, such as in error paths
4048 * where the event isn't exposed yet and inherited events.
4049 */
4050static void free_event(struct perf_event *event)
0793a61d 4051{
683ede43
PZ
4052 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4053 "unexpected event refcount: %ld; ptr=%p\n",
4054 atomic_long_read(&event->refcount), event)) {
4055 /* leak to avoid use-after-free */
4056 return;
4057 }
0793a61d 4058
683ede43 4059 _free_event(event);
0793a61d
TG
4060}
4061
a66a3052 4062/*
f8697762 4063 * Remove user event from the owner task.
a66a3052 4064 */
f8697762 4065static void perf_remove_from_owner(struct perf_event *event)
fb0459d7 4066{
8882135b 4067 struct task_struct *owner;
fb0459d7 4068
8882135b 4069 rcu_read_lock();
8882135b 4070 /*
f47c02c0
PZ
4071 * Matches the smp_store_release() in perf_event_exit_task(). If we
4072 * observe !owner it means the list deletion is complete and we can
4073 * indeed free this event, otherwise we need to serialize on
8882135b
PZ
4074 * owner->perf_event_mutex.
4075 */
f47c02c0 4076 owner = lockless_dereference(event->owner);
8882135b
PZ
4077 if (owner) {
4078 /*
4079 * Since delayed_put_task_struct() also drops the last
4080 * task reference we can safely take a new reference
4081 * while holding the rcu_read_lock().
4082 */
4083 get_task_struct(owner);
4084 }
4085 rcu_read_unlock();
4086
4087 if (owner) {
f63a8daa
PZ
4088 /*
4089 * If we're here through perf_event_exit_task() we're already
4090 * holding ctx->mutex which would be an inversion wrt. the
4091 * normal lock order.
4092 *
4093 * However we can safely take this lock because its the child
4094 * ctx->mutex.
4095 */
4096 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4097
8882135b
PZ
4098 /*
4099 * We have to re-check the event->owner field, if it is cleared
4100 * we raced with perf_event_exit_task(), acquiring the mutex
4101 * ensured they're done, and we can proceed with freeing the
4102 * event.
4103 */
f47c02c0 4104 if (event->owner) {
8882135b 4105 list_del_init(&event->owner_entry);
f47c02c0
PZ
4106 smp_store_release(&event->owner, NULL);
4107 }
8882135b
PZ
4108 mutex_unlock(&owner->perf_event_mutex);
4109 put_task_struct(owner);
4110 }
f8697762
JO
4111}
4112
f8697762
JO
4113static void put_event(struct perf_event *event)
4114{
f8697762
JO
4115 if (!atomic_long_dec_and_test(&event->refcount))
4116 return;
4117
c6e5b732
PZ
4118 _free_event(event);
4119}
4120
4121/*
4122 * Kill an event dead; while event:refcount will preserve the event
4123 * object, it will not preserve its functionality. Once the last 'user'
4124 * gives up the object, we'll destroy the thing.
4125 */
4126int perf_event_release_kernel(struct perf_event *event)
4127{
a4f4bb6d 4128 struct perf_event_context *ctx = event->ctx;
c6e5b732
PZ
4129 struct perf_event *child, *tmp;
4130
a4f4bb6d
PZ
4131 /*
4132 * If we got here through err_file: fput(event_file); we will not have
4133 * attached to a context yet.
4134 */
4135 if (!ctx) {
4136 WARN_ON_ONCE(event->attach_state &
4137 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4138 goto no_ctx;
4139 }
4140
f8697762
JO
4141 if (!is_kernel_event(event))
4142 perf_remove_from_owner(event);
8882135b 4143
5fa7c8ec 4144 ctx = perf_event_ctx_lock(event);
a83fe28e 4145 WARN_ON_ONCE(ctx->parent_ctx);
a69b0ca4 4146 perf_remove_from_context(event, DETACH_GROUP);
683ede43 4147
a69b0ca4 4148 raw_spin_lock_irq(&ctx->lock);
683ede43 4149 /*
a69b0ca4
PZ
4150 * Mark this even as STATE_DEAD, there is no external reference to it
4151 * anymore.
683ede43 4152 *
a69b0ca4
PZ
4153 * Anybody acquiring event->child_mutex after the below loop _must_
4154 * also see this, most importantly inherit_event() which will avoid
4155 * placing more children on the list.
683ede43 4156 *
c6e5b732
PZ
4157 * Thus this guarantees that we will in fact observe and kill _ALL_
4158 * child events.
683ede43 4159 */
a69b0ca4
PZ
4160 event->state = PERF_EVENT_STATE_DEAD;
4161 raw_spin_unlock_irq(&ctx->lock);
4162
4163 perf_event_ctx_unlock(event, ctx);
683ede43 4164
c6e5b732
PZ
4165again:
4166 mutex_lock(&event->child_mutex);
4167 list_for_each_entry(child, &event->child_list, child_list) {
a6fa941d 4168
c6e5b732
PZ
4169 /*
4170 * Cannot change, child events are not migrated, see the
4171 * comment with perf_event_ctx_lock_nested().
4172 */
4173 ctx = lockless_dereference(child->ctx);
4174 /*
4175 * Since child_mutex nests inside ctx::mutex, we must jump
4176 * through hoops. We start by grabbing a reference on the ctx.
4177 *
4178 * Since the event cannot get freed while we hold the
4179 * child_mutex, the context must also exist and have a !0
4180 * reference count.
4181 */
4182 get_ctx(ctx);
4183
4184 /*
4185 * Now that we have a ctx ref, we can drop child_mutex, and
4186 * acquire ctx::mutex without fear of it going away. Then we
4187 * can re-acquire child_mutex.
4188 */
4189 mutex_unlock(&event->child_mutex);
4190 mutex_lock(&ctx->mutex);
4191 mutex_lock(&event->child_mutex);
4192
4193 /*
4194 * Now that we hold ctx::mutex and child_mutex, revalidate our
4195 * state, if child is still the first entry, it didn't get freed
4196 * and we can continue doing so.
4197 */
4198 tmp = list_first_entry_or_null(&event->child_list,
4199 struct perf_event, child_list);
4200 if (tmp == child) {
4201 perf_remove_from_context(child, DETACH_GROUP);
4202 list_del(&child->child_list);
4203 free_event(child);
4204 /*
4205 * This matches the refcount bump in inherit_event();
4206 * this can't be the last reference.
4207 */
4208 put_event(event);
4209 }
4210
4211 mutex_unlock(&event->child_mutex);
4212 mutex_unlock(&ctx->mutex);
4213 put_ctx(ctx);
4214 goto again;
4215 }
4216 mutex_unlock(&event->child_mutex);
4217
a4f4bb6d
PZ
4218no_ctx:
4219 put_event(event); /* Must be the 'last' reference */
683ede43
PZ
4220 return 0;
4221}
4222EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4223
8b10c5e2
PZ
4224/*
4225 * Called when the last reference to the file is gone.
4226 */
a6fa941d
AV
4227static int perf_release(struct inode *inode, struct file *file)
4228{
c6e5b732 4229 perf_event_release_kernel(file->private_data);
a6fa941d 4230 return 0;
fb0459d7 4231}
fb0459d7 4232
59ed446f 4233u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
e53c0994 4234{
cdd6c482 4235 struct perf_event *child;
e53c0994
PZ
4236 u64 total = 0;
4237
59ed446f
PZ
4238 *enabled = 0;
4239 *running = 0;
4240
6f10581a 4241 mutex_lock(&event->child_mutex);
01add3ea 4242
7d88962e 4243 (void)perf_event_read(event, false);
01add3ea
SB
4244 total += perf_event_count(event);
4245
59ed446f
PZ
4246 *enabled += event->total_time_enabled +
4247 atomic64_read(&event->child_total_time_enabled);
4248 *running += event->total_time_running +
4249 atomic64_read(&event->child_total_time_running);
4250
4251 list_for_each_entry(child, &event->child_list, child_list) {
7d88962e 4252 (void)perf_event_read(child, false);
01add3ea 4253 total += perf_event_count(child);
59ed446f
PZ
4254 *enabled += child->total_time_enabled;
4255 *running += child->total_time_running;
4256 }
6f10581a 4257 mutex_unlock(&event->child_mutex);
e53c0994
PZ
4258
4259 return total;
4260}
fb0459d7 4261EXPORT_SYMBOL_GPL(perf_event_read_value);
e53c0994 4262
7d88962e 4263static int __perf_read_group_add(struct perf_event *leader,
fa8c2693 4264 u64 read_format, u64 *values)
3dab77fb 4265{
fa8c2693
PZ
4266 struct perf_event *sub;
4267 int n = 1; /* skip @nr */
7d88962e 4268 int ret;
f63a8daa 4269
7d88962e
SB
4270 ret = perf_event_read(leader, true);
4271 if (ret)
4272 return ret;
abf4868b 4273
fa8c2693
PZ
4274 /*
4275 * Since we co-schedule groups, {enabled,running} times of siblings
4276 * will be identical to those of the leader, so we only publish one
4277 * set.
4278 */
4279 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4280 values[n++] += leader->total_time_enabled +
4281 atomic64_read(&leader->child_total_time_enabled);
4282 }
3dab77fb 4283
fa8c2693
PZ
4284 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4285 values[n++] += leader->total_time_running +
4286 atomic64_read(&leader->child_total_time_running);
4287 }
4288
4289 /*
4290 * Write {count,id} tuples for every sibling.
4291 */
4292 values[n++] += perf_event_count(leader);
abf4868b
PZ
4293 if (read_format & PERF_FORMAT_ID)
4294 values[n++] = primary_event_id(leader);
3dab77fb 4295
fa8c2693
PZ
4296 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4297 values[n++] += perf_event_count(sub);
4298 if (read_format & PERF_FORMAT_ID)
4299 values[n++] = primary_event_id(sub);
4300 }
7d88962e
SB
4301
4302 return 0;
fa8c2693 4303}
3dab77fb 4304
fa8c2693
PZ
4305static int perf_read_group(struct perf_event *event,
4306 u64 read_format, char __user *buf)
4307{
4308 struct perf_event *leader = event->group_leader, *child;
4309 struct perf_event_context *ctx = leader->ctx;
7d88962e 4310 int ret;
fa8c2693 4311 u64 *values;
3dab77fb 4312
fa8c2693 4313 lockdep_assert_held(&ctx->mutex);
3dab77fb 4314
fa8c2693
PZ
4315 values = kzalloc(event->read_size, GFP_KERNEL);
4316 if (!values)
4317 return -ENOMEM;
3dab77fb 4318
fa8c2693
PZ
4319 values[0] = 1 + leader->nr_siblings;
4320
4321 /*
4322 * By locking the child_mutex of the leader we effectively
4323 * lock the child list of all siblings.. XXX explain how.
4324 */
4325 mutex_lock(&leader->child_mutex);
abf4868b 4326
7d88962e
SB
4327 ret = __perf_read_group_add(leader, read_format, values);
4328 if (ret)
4329 goto unlock;
4330
4331 list_for_each_entry(child, &leader->child_list, child_list) {
4332 ret = __perf_read_group_add(child, read_format, values);
4333 if (ret)
4334 goto unlock;
4335 }
abf4868b 4336
fa8c2693 4337 mutex_unlock(&leader->child_mutex);
abf4868b 4338
7d88962e 4339 ret = event->read_size;
fa8c2693
PZ
4340 if (copy_to_user(buf, values, event->read_size))
4341 ret = -EFAULT;
7d88962e 4342 goto out;
fa8c2693 4343
7d88962e
SB
4344unlock:
4345 mutex_unlock(&leader->child_mutex);
4346out:
fa8c2693 4347 kfree(values);
abf4868b 4348 return ret;
3dab77fb
PZ
4349}
4350
b15f495b 4351static int perf_read_one(struct perf_event *event,
3dab77fb
PZ
4352 u64 read_format, char __user *buf)
4353{
59ed446f 4354 u64 enabled, running;
3dab77fb
PZ
4355 u64 values[4];
4356 int n = 0;
4357
59ed446f
PZ
4358 values[n++] = perf_event_read_value(event, &enabled, &running);
4359 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4360 values[n++] = enabled;
4361 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4362 values[n++] = running;
3dab77fb 4363 if (read_format & PERF_FORMAT_ID)
cdd6c482 4364 values[n++] = primary_event_id(event);
3dab77fb
PZ
4365
4366 if (copy_to_user(buf, values, n * sizeof(u64)))
4367 return -EFAULT;
4368
4369 return n * sizeof(u64);
4370}
4371
dc633982
JO
4372static bool is_event_hup(struct perf_event *event)
4373{
4374 bool no_children;
4375
a69b0ca4 4376 if (event->state > PERF_EVENT_STATE_EXIT)
dc633982
JO
4377 return false;
4378
4379 mutex_lock(&event->child_mutex);
4380 no_children = list_empty(&event->child_list);
4381 mutex_unlock(&event->child_mutex);
4382 return no_children;
4383}
4384
0793a61d 4385/*
cdd6c482 4386 * Read the performance event - simple non blocking version for now
0793a61d
TG
4387 */
4388static ssize_t
b15f495b 4389__perf_read(struct perf_event *event, char __user *buf, size_t count)
0793a61d 4390{
cdd6c482 4391 u64 read_format = event->attr.read_format;
3dab77fb 4392 int ret;
0793a61d 4393
3b6f9e5c 4394 /*
cdd6c482 4395 * Return end-of-file for a read on a event that is in
3b6f9e5c
PM
4396 * error state (i.e. because it was pinned but it couldn't be
4397 * scheduled on to the CPU at some point).
4398 */
cdd6c482 4399 if (event->state == PERF_EVENT_STATE_ERROR)
3b6f9e5c
PM
4400 return 0;
4401
c320c7b7 4402 if (count < event->read_size)
3dab77fb
PZ
4403 return -ENOSPC;
4404
cdd6c482 4405 WARN_ON_ONCE(event->ctx->parent_ctx);
3dab77fb 4406 if (read_format & PERF_FORMAT_GROUP)
b15f495b 4407 ret = perf_read_group(event, read_format, buf);
3dab77fb 4408 else
b15f495b 4409 ret = perf_read_one(event, read_format, buf);
0793a61d 4410
3dab77fb 4411 return ret;
0793a61d
TG
4412}
4413
0793a61d
TG
4414static ssize_t
4415perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4416{
cdd6c482 4417 struct perf_event *event = file->private_data;
f63a8daa
PZ
4418 struct perf_event_context *ctx;
4419 int ret;
0793a61d 4420
f63a8daa 4421 ctx = perf_event_ctx_lock(event);
b15f495b 4422 ret = __perf_read(event, buf, count);
f63a8daa
PZ
4423 perf_event_ctx_unlock(event, ctx);
4424
4425 return ret;
0793a61d
TG
4426}
4427
4428static unsigned int perf_poll(struct file *file, poll_table *wait)
4429{
cdd6c482 4430 struct perf_event *event = file->private_data;
76369139 4431 struct ring_buffer *rb;
61b67684 4432 unsigned int events = POLLHUP;
c7138f37 4433
e708d7ad 4434 poll_wait(file, &event->waitq, wait);
179033b3 4435
dc633982 4436 if (is_event_hup(event))
179033b3 4437 return events;
c7138f37 4438
10c6db11 4439 /*
9bb5d40c
PZ
4440 * Pin the event->rb by taking event->mmap_mutex; otherwise
4441 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
10c6db11
PZ
4442 */
4443 mutex_lock(&event->mmap_mutex);
9bb5d40c
PZ
4444 rb = event->rb;
4445 if (rb)
76369139 4446 events = atomic_xchg(&rb->poll, 0);
10c6db11 4447 mutex_unlock(&event->mmap_mutex);
0793a61d
TG
4448 return events;
4449}
4450
f63a8daa 4451static void _perf_event_reset(struct perf_event *event)
6de6a7b9 4452{
7d88962e 4453 (void)perf_event_read(event, false);
e7850595 4454 local64_set(&event->count, 0);
cdd6c482 4455 perf_event_update_userpage(event);
3df5edad
PZ
4456}
4457
c93f7669 4458/*
cdd6c482
IM
4459 * Holding the top-level event's child_mutex means that any
4460 * descendant process that has inherited this event will block
8ba289b8 4461 * in perf_event_exit_event() if it goes to exit, thus satisfying the
cdd6c482 4462 * task existence requirements of perf_event_enable/disable.
c93f7669 4463 */
cdd6c482
IM
4464static void perf_event_for_each_child(struct perf_event *event,
4465 void (*func)(struct perf_event *))
3df5edad 4466{
cdd6c482 4467 struct perf_event *child;
3df5edad 4468
cdd6c482 4469 WARN_ON_ONCE(event->ctx->parent_ctx);
f63a8daa 4470
cdd6c482
IM
4471 mutex_lock(&event->child_mutex);
4472 func(event);
4473 list_for_each_entry(child, &event->child_list, child_list)
3df5edad 4474 func(child);
cdd6c482 4475 mutex_unlock(&event->child_mutex);
3df5edad
PZ
4476}
4477
cdd6c482
IM
4478static void perf_event_for_each(struct perf_event *event,
4479 void (*func)(struct perf_event *))
3df5edad 4480{
cdd6c482
IM
4481 struct perf_event_context *ctx = event->ctx;
4482 struct perf_event *sibling;
3df5edad 4483
f63a8daa
PZ
4484 lockdep_assert_held(&ctx->mutex);
4485
cdd6c482 4486 event = event->group_leader;
75f937f2 4487
cdd6c482 4488 perf_event_for_each_child(event, func);
cdd6c482 4489 list_for_each_entry(sibling, &event->sibling_list, group_entry)
724b6daa 4490 perf_event_for_each_child(sibling, func);
6de6a7b9
PZ
4491}
4492
fae3fde6
PZ
4493static void __perf_event_period(struct perf_event *event,
4494 struct perf_cpu_context *cpuctx,
4495 struct perf_event_context *ctx,
4496 void *info)
c7999c6f 4497{
fae3fde6 4498 u64 value = *((u64 *)info);
c7999c6f 4499 bool active;
08247e31 4500
cdd6c482 4501 if (event->attr.freq) {
cdd6c482 4502 event->attr.sample_freq = value;
08247e31 4503 } else {
cdd6c482
IM
4504 event->attr.sample_period = value;
4505 event->hw.sample_period = value;
08247e31 4506 }
bad7192b
PZ
4507
4508 active = (event->state == PERF_EVENT_STATE_ACTIVE);
4509 if (active) {
4510 perf_pmu_disable(ctx->pmu);
1e02cd40
PZ
4511 /*
4512 * We could be throttled; unthrottle now to avoid the tick
4513 * trying to unthrottle while we already re-started the event.
4514 */
4515 if (event->hw.interrupts == MAX_INTERRUPTS) {
4516 event->hw.interrupts = 0;
4517 perf_log_throttle(event, 1);
4518 }
bad7192b
PZ
4519 event->pmu->stop(event, PERF_EF_UPDATE);
4520 }
4521
4522 local64_set(&event->hw.period_left, 0);
4523
4524 if (active) {
4525 event->pmu->start(event, PERF_EF_RELOAD);
4526 perf_pmu_enable(ctx->pmu);
4527 }
c7999c6f
PZ
4528}
4529
4530static int perf_event_period(struct perf_event *event, u64 __user *arg)
4531{
c7999c6f
PZ
4532 u64 value;
4533
4534 if (!is_sampling_event(event))
4535 return -EINVAL;
4536
4537 if (copy_from_user(&value, arg, sizeof(value)))
4538 return -EFAULT;
4539
4540 if (!value)
4541 return -EINVAL;
4542
4543 if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4544 return -EINVAL;
4545
fae3fde6 4546 event_function_call(event, __perf_event_period, &value);
08247e31 4547
c7999c6f 4548 return 0;
08247e31
PZ
4549}
4550
ac9721f3
PZ
4551static const struct file_operations perf_fops;
4552
2903ff01 4553static inline int perf_fget_light(int fd, struct fd *p)
ac9721f3 4554{
2903ff01
AV
4555 struct fd f = fdget(fd);
4556 if (!f.file)
4557 return -EBADF;
ac9721f3 4558
2903ff01
AV
4559 if (f.file->f_op != &perf_fops) {
4560 fdput(f);
4561 return -EBADF;
ac9721f3 4562 }
2903ff01
AV
4563 *p = f;
4564 return 0;
ac9721f3
PZ
4565}
4566
4567static int perf_event_set_output(struct perf_event *event,
4568 struct perf_event *output_event);
6fb2915d 4569static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2541517c 4570static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
a4be7c27 4571
f63a8daa 4572static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
d859e29f 4573{
cdd6c482 4574 void (*func)(struct perf_event *);
3df5edad 4575 u32 flags = arg;
d859e29f
PM
4576
4577 switch (cmd) {
cdd6c482 4578 case PERF_EVENT_IOC_ENABLE:
f63a8daa 4579 func = _perf_event_enable;
d859e29f 4580 break;
cdd6c482 4581 case PERF_EVENT_IOC_DISABLE:
f63a8daa 4582 func = _perf_event_disable;
79f14641 4583 break;
cdd6c482 4584 case PERF_EVENT_IOC_RESET:
f63a8daa 4585 func = _perf_event_reset;
6de6a7b9 4586 break;
3df5edad 4587
cdd6c482 4588 case PERF_EVENT_IOC_REFRESH:
f63a8daa 4589 return _perf_event_refresh(event, arg);
08247e31 4590
cdd6c482
IM
4591 case PERF_EVENT_IOC_PERIOD:
4592 return perf_event_period(event, (u64 __user *)arg);
08247e31 4593
cf4957f1
JO
4594 case PERF_EVENT_IOC_ID:
4595 {
4596 u64 id = primary_event_id(event);
4597
4598 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4599 return -EFAULT;
4600 return 0;
4601 }
4602
cdd6c482 4603 case PERF_EVENT_IOC_SET_OUTPUT:
ac9721f3 4604 {
ac9721f3 4605 int ret;
ac9721f3 4606 if (arg != -1) {
2903ff01
AV
4607 struct perf_event *output_event;
4608 struct fd output;
4609 ret = perf_fget_light(arg, &output);
4610 if (ret)
4611 return ret;
4612 output_event = output.file->private_data;
4613 ret = perf_event_set_output(event, output_event);
4614 fdput(output);
4615 } else {
4616 ret = perf_event_set_output(event, NULL);
ac9721f3 4617 }
ac9721f3
PZ
4618 return ret;
4619 }
a4be7c27 4620
6fb2915d
LZ
4621 case PERF_EVENT_IOC_SET_FILTER:
4622 return perf_event_set_filter(event, (void __user *)arg);
4623
2541517c
AS
4624 case PERF_EVENT_IOC_SET_BPF:
4625 return perf_event_set_bpf_prog(event, arg);
4626
86e7972f
WN
4627 case PERF_EVENT_IOC_PAUSE_OUTPUT: {
4628 struct ring_buffer *rb;
4629
4630 rcu_read_lock();
4631 rb = rcu_dereference(event->rb);
4632 if (!rb || !rb->nr_pages) {
4633 rcu_read_unlock();
4634 return -EINVAL;
4635 }
4636 rb_toggle_paused(rb, !!arg);
4637 rcu_read_unlock();
4638 return 0;
4639 }
d859e29f 4640 default:
3df5edad 4641 return -ENOTTY;
d859e29f 4642 }
3df5edad
PZ
4643
4644 if (flags & PERF_IOC_FLAG_GROUP)
cdd6c482 4645 perf_event_for_each(event, func);
3df5edad 4646 else
cdd6c482 4647 perf_event_for_each_child(event, func);
3df5edad
PZ
4648
4649 return 0;
d859e29f
PM
4650}
4651
f63a8daa
PZ
4652static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4653{
4654 struct perf_event *event = file->private_data;
4655 struct perf_event_context *ctx;
4656 long ret;
4657
4658 ctx = perf_event_ctx_lock(event);
4659 ret = _perf_ioctl(event, cmd, arg);
4660 perf_event_ctx_unlock(event, ctx);
4661
4662 return ret;
4663}
4664
b3f20785
PM
4665#ifdef CONFIG_COMPAT
4666static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4667 unsigned long arg)
4668{
4669 switch (_IOC_NR(cmd)) {
4670 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4671 case _IOC_NR(PERF_EVENT_IOC_ID):
4672 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4673 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4674 cmd &= ~IOCSIZE_MASK;
4675 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4676 }
4677 break;
4678 }
4679 return perf_ioctl(file, cmd, arg);
4680}
4681#else
4682# define perf_compat_ioctl NULL
4683#endif
4684
cdd6c482 4685int perf_event_task_enable(void)
771d7cde 4686{
f63a8daa 4687 struct perf_event_context *ctx;
cdd6c482 4688 struct perf_event *event;
771d7cde 4689
cdd6c482 4690 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
4691 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4692 ctx = perf_event_ctx_lock(event);
4693 perf_event_for_each_child(event, _perf_event_enable);
4694 perf_event_ctx_unlock(event, ctx);
4695 }
cdd6c482 4696 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
4697
4698 return 0;
4699}
4700
cdd6c482 4701int perf_event_task_disable(void)
771d7cde 4702{
f63a8daa 4703 struct perf_event_context *ctx;
cdd6c482 4704 struct perf_event *event;
771d7cde 4705
cdd6c482 4706 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
4707 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4708 ctx = perf_event_ctx_lock(event);
4709 perf_event_for_each_child(event, _perf_event_disable);
4710 perf_event_ctx_unlock(event, ctx);
4711 }
cdd6c482 4712 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
4713
4714 return 0;
4715}
4716
cdd6c482 4717static int perf_event_index(struct perf_event *event)
194002b2 4718{
a4eaf7f1
PZ
4719 if (event->hw.state & PERF_HES_STOPPED)
4720 return 0;
4721
cdd6c482 4722 if (event->state != PERF_EVENT_STATE_ACTIVE)
194002b2
PZ
4723 return 0;
4724
35edc2a5 4725 return event->pmu->event_idx(event);
194002b2
PZ
4726}
4727
c4794295 4728static void calc_timer_values(struct perf_event *event,
e3f3541c 4729 u64 *now,
7f310a5d
EM
4730 u64 *enabled,
4731 u64 *running)
c4794295 4732{
e3f3541c 4733 u64 ctx_time;
c4794295 4734
e3f3541c
PZ
4735 *now = perf_clock();
4736 ctx_time = event->shadow_ctx_time + *now;
c4794295
EM
4737 *enabled = ctx_time - event->tstamp_enabled;
4738 *running = ctx_time - event->tstamp_running;
4739}
4740
fa731587
PZ
4741static void perf_event_init_userpage(struct perf_event *event)
4742{
4743 struct perf_event_mmap_page *userpg;
4744 struct ring_buffer *rb;
4745
4746 rcu_read_lock();
4747 rb = rcu_dereference(event->rb);
4748 if (!rb)
4749 goto unlock;
4750
4751 userpg = rb->user_page;
4752
4753 /* Allow new userspace to detect that bit 0 is deprecated */
4754 userpg->cap_bit0_is_deprecated = 1;
4755 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
e8c6deac
AS
4756 userpg->data_offset = PAGE_SIZE;
4757 userpg->data_size = perf_data_size(rb);
fa731587
PZ
4758
4759unlock:
4760 rcu_read_unlock();
4761}
4762
c1317ec2
AL
4763void __weak arch_perf_update_userpage(
4764 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
e3f3541c
PZ
4765{
4766}
4767
38ff667b
PZ
4768/*
4769 * Callers need to ensure there can be no nesting of this function, otherwise
4770 * the seqlock logic goes bad. We can not serialize this because the arch
4771 * code calls this from NMI context.
4772 */
cdd6c482 4773void perf_event_update_userpage(struct perf_event *event)
37d81828 4774{
cdd6c482 4775 struct perf_event_mmap_page *userpg;
76369139 4776 struct ring_buffer *rb;
e3f3541c 4777 u64 enabled, running, now;
38ff667b
PZ
4778
4779 rcu_read_lock();
5ec4c599
PZ
4780 rb = rcu_dereference(event->rb);
4781 if (!rb)
4782 goto unlock;
4783
0d641208
EM
4784 /*
4785 * compute total_time_enabled, total_time_running
4786 * based on snapshot values taken when the event
4787 * was last scheduled in.
4788 *
4789 * we cannot simply called update_context_time()
4790 * because of locking issue as we can be called in
4791 * NMI context
4792 */
e3f3541c 4793 calc_timer_values(event, &now, &enabled, &running);
38ff667b 4794
76369139 4795 userpg = rb->user_page;
7b732a75
PZ
4796 /*
4797 * Disable preemption so as to not let the corresponding user-space
4798 * spin too long if we get preempted.
4799 */
4800 preempt_disable();
37d81828 4801 ++userpg->lock;
92f22a38 4802 barrier();
cdd6c482 4803 userpg->index = perf_event_index(event);
b5e58793 4804 userpg->offset = perf_event_count(event);
365a4038 4805 if (userpg->index)
e7850595 4806 userpg->offset -= local64_read(&event->hw.prev_count);
7b732a75 4807
0d641208 4808 userpg->time_enabled = enabled +
cdd6c482 4809 atomic64_read(&event->child_total_time_enabled);
7f8b4e4e 4810
0d641208 4811 userpg->time_running = running +
cdd6c482 4812 atomic64_read(&event->child_total_time_running);
7f8b4e4e 4813
c1317ec2 4814 arch_perf_update_userpage(event, userpg, now);
e3f3541c 4815
92f22a38 4816 barrier();
37d81828 4817 ++userpg->lock;
7b732a75 4818 preempt_enable();
38ff667b 4819unlock:
7b732a75 4820 rcu_read_unlock();
37d81828
PM
4821}
4822
906010b2
PZ
4823static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
4824{
4825 struct perf_event *event = vma->vm_file->private_data;
76369139 4826 struct ring_buffer *rb;
906010b2
PZ
4827 int ret = VM_FAULT_SIGBUS;
4828
4829 if (vmf->flags & FAULT_FLAG_MKWRITE) {
4830 if (vmf->pgoff == 0)
4831 ret = 0;
4832 return ret;
4833 }
4834
4835 rcu_read_lock();
76369139
FW
4836 rb = rcu_dereference(event->rb);
4837 if (!rb)
906010b2
PZ
4838 goto unlock;
4839
4840 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4841 goto unlock;
4842
76369139 4843 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
906010b2
PZ
4844 if (!vmf->page)
4845 goto unlock;
4846
4847 get_page(vmf->page);
4848 vmf->page->mapping = vma->vm_file->f_mapping;
4849 vmf->page->index = vmf->pgoff;
4850
4851 ret = 0;
4852unlock:
4853 rcu_read_unlock();
4854
4855 return ret;
4856}
4857
10c6db11
PZ
4858static void ring_buffer_attach(struct perf_event *event,
4859 struct ring_buffer *rb)
4860{
b69cf536 4861 struct ring_buffer *old_rb = NULL;
10c6db11
PZ
4862 unsigned long flags;
4863
b69cf536
PZ
4864 if (event->rb) {
4865 /*
4866 * Should be impossible, we set this when removing
4867 * event->rb_entry and wait/clear when adding event->rb_entry.
4868 */
4869 WARN_ON_ONCE(event->rcu_pending);
10c6db11 4870
b69cf536 4871 old_rb = event->rb;
b69cf536
PZ
4872 spin_lock_irqsave(&old_rb->event_lock, flags);
4873 list_del_rcu(&event->rb_entry);
4874 spin_unlock_irqrestore(&old_rb->event_lock, flags);
10c6db11 4875
2f993cf0
ON
4876 event->rcu_batches = get_state_synchronize_rcu();
4877 event->rcu_pending = 1;
b69cf536 4878 }
10c6db11 4879
b69cf536 4880 if (rb) {
2f993cf0
ON
4881 if (event->rcu_pending) {
4882 cond_synchronize_rcu(event->rcu_batches);
4883 event->rcu_pending = 0;
4884 }
4885
b69cf536
PZ
4886 spin_lock_irqsave(&rb->event_lock, flags);
4887 list_add_rcu(&event->rb_entry, &rb->event_list);
4888 spin_unlock_irqrestore(&rb->event_lock, flags);
4889 }
4890
767ae086
AS
4891 /*
4892 * Avoid racing with perf_mmap_close(AUX): stop the event
4893 * before swizzling the event::rb pointer; if it's getting
4894 * unmapped, its aux_mmap_count will be 0 and it won't
4895 * restart. See the comment in __perf_pmu_output_stop().
4896 *
4897 * Data will inevitably be lost when set_output is done in
4898 * mid-air, but then again, whoever does it like this is
4899 * not in for the data anyway.
4900 */
4901 if (has_aux(event))
4902 perf_event_stop(event, 0);
4903
b69cf536
PZ
4904 rcu_assign_pointer(event->rb, rb);
4905
4906 if (old_rb) {
4907 ring_buffer_put(old_rb);
4908 /*
4909 * Since we detached before setting the new rb, so that we
4910 * could attach the new rb, we could have missed a wakeup.
4911 * Provide it now.
4912 */
4913 wake_up_all(&event->waitq);
4914 }
10c6db11
PZ
4915}
4916
4917static void ring_buffer_wakeup(struct perf_event *event)
4918{
4919 struct ring_buffer *rb;
4920
4921 rcu_read_lock();
4922 rb = rcu_dereference(event->rb);
9bb5d40c
PZ
4923 if (rb) {
4924 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
4925 wake_up_all(&event->waitq);
4926 }
10c6db11
PZ
4927 rcu_read_unlock();
4928}
4929
fdc26706 4930struct ring_buffer *ring_buffer_get(struct perf_event *event)
7b732a75 4931{
76369139 4932 struct ring_buffer *rb;
7b732a75 4933
ac9721f3 4934 rcu_read_lock();
76369139
FW
4935 rb = rcu_dereference(event->rb);
4936 if (rb) {
4937 if (!atomic_inc_not_zero(&rb->refcount))
4938 rb = NULL;
ac9721f3
PZ
4939 }
4940 rcu_read_unlock();
4941
76369139 4942 return rb;
ac9721f3
PZ
4943}
4944
fdc26706 4945void ring_buffer_put(struct ring_buffer *rb)
ac9721f3 4946{
76369139 4947 if (!atomic_dec_and_test(&rb->refcount))
ac9721f3 4948 return;
7b732a75 4949
9bb5d40c 4950 WARN_ON_ONCE(!list_empty(&rb->event_list));
10c6db11 4951
76369139 4952 call_rcu(&rb->rcu_head, rb_free_rcu);
7b732a75
PZ
4953}
4954
4955static void perf_mmap_open(struct vm_area_struct *vma)
4956{
cdd6c482 4957 struct perf_event *event = vma->vm_file->private_data;
7b732a75 4958
cdd6c482 4959 atomic_inc(&event->mmap_count);
9bb5d40c 4960 atomic_inc(&event->rb->mmap_count);
1e0fb9ec 4961
45bfb2e5
PZ
4962 if (vma->vm_pgoff)
4963 atomic_inc(&event->rb->aux_mmap_count);
4964
1e0fb9ec
AL
4965 if (event->pmu->event_mapped)
4966 event->pmu->event_mapped(event);
7b732a75
PZ
4967}
4968
95ff4ca2
AS
4969static void perf_pmu_output_stop(struct perf_event *event);
4970
9bb5d40c
PZ
4971/*
4972 * A buffer can be mmap()ed multiple times; either directly through the same
4973 * event, or through other events by use of perf_event_set_output().
4974 *
4975 * In order to undo the VM accounting done by perf_mmap() we need to destroy
4976 * the buffer here, where we still have a VM context. This means we need
4977 * to detach all events redirecting to us.
4978 */
7b732a75
PZ
4979static void perf_mmap_close(struct vm_area_struct *vma)
4980{
cdd6c482 4981 struct perf_event *event = vma->vm_file->private_data;
7b732a75 4982
b69cf536 4983 struct ring_buffer *rb = ring_buffer_get(event);
9bb5d40c
PZ
4984 struct user_struct *mmap_user = rb->mmap_user;
4985 int mmap_locked = rb->mmap_locked;
4986 unsigned long size = perf_data_size(rb);
789f90fc 4987
1e0fb9ec
AL
4988 if (event->pmu->event_unmapped)
4989 event->pmu->event_unmapped(event);
4990
45bfb2e5
PZ
4991 /*
4992 * rb->aux_mmap_count will always drop before rb->mmap_count and
4993 * event->mmap_count, so it is ok to use event->mmap_mutex to
4994 * serialize with perf_mmap here.
4995 */
4996 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
4997 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
95ff4ca2
AS
4998 /*
4999 * Stop all AUX events that are writing to this buffer,
5000 * so that we can free its AUX pages and corresponding PMU
5001 * data. Note that after rb::aux_mmap_count dropped to zero,
5002 * they won't start any more (see perf_aux_output_begin()).
5003 */
5004 perf_pmu_output_stop(event);
5005
5006 /* now it's safe to free the pages */
45bfb2e5
PZ
5007 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
5008 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
5009
95ff4ca2 5010 /* this has to be the last one */
45bfb2e5 5011 rb_free_aux(rb);
95ff4ca2
AS
5012 WARN_ON_ONCE(atomic_read(&rb->aux_refcount));
5013
45bfb2e5
PZ
5014 mutex_unlock(&event->mmap_mutex);
5015 }
5016
9bb5d40c
PZ
5017 atomic_dec(&rb->mmap_count);
5018
5019 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
b69cf536 5020 goto out_put;
9bb5d40c 5021
b69cf536 5022 ring_buffer_attach(event, NULL);
9bb5d40c
PZ
5023 mutex_unlock(&event->mmap_mutex);
5024
5025 /* If there's still other mmap()s of this buffer, we're done. */
b69cf536
PZ
5026 if (atomic_read(&rb->mmap_count))
5027 goto out_put;
ac9721f3 5028
9bb5d40c
PZ
5029 /*
5030 * No other mmap()s, detach from all other events that might redirect
5031 * into the now unreachable buffer. Somewhat complicated by the
5032 * fact that rb::event_lock otherwise nests inside mmap_mutex.
5033 */
5034again:
5035 rcu_read_lock();
5036 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5037 if (!atomic_long_inc_not_zero(&event->refcount)) {
5038 /*
5039 * This event is en-route to free_event() which will
5040 * detach it and remove it from the list.
5041 */
5042 continue;
5043 }
5044 rcu_read_unlock();
789f90fc 5045
9bb5d40c
PZ
5046 mutex_lock(&event->mmap_mutex);
5047 /*
5048 * Check we didn't race with perf_event_set_output() which can
5049 * swizzle the rb from under us while we were waiting to
5050 * acquire mmap_mutex.
5051 *
5052 * If we find a different rb; ignore this event, a next
5053 * iteration will no longer find it on the list. We have to
5054 * still restart the iteration to make sure we're not now
5055 * iterating the wrong list.
5056 */
b69cf536
PZ
5057 if (event->rb == rb)
5058 ring_buffer_attach(event, NULL);
5059
cdd6c482 5060 mutex_unlock(&event->mmap_mutex);
9bb5d40c 5061 put_event(event);
ac9721f3 5062
9bb5d40c
PZ
5063 /*
5064 * Restart the iteration; either we're on the wrong list or
5065 * destroyed its integrity by doing a deletion.
5066 */
5067 goto again;
7b732a75 5068 }
9bb5d40c
PZ
5069 rcu_read_unlock();
5070
5071 /*
5072 * It could be there's still a few 0-ref events on the list; they'll
5073 * get cleaned up by free_event() -- they'll also still have their
5074 * ref on the rb and will free it whenever they are done with it.
5075 *
5076 * Aside from that, this buffer is 'fully' detached and unmapped,
5077 * undo the VM accounting.
5078 */
5079
5080 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
5081 vma->vm_mm->pinned_vm -= mmap_locked;
5082 free_uid(mmap_user);
5083
b69cf536 5084out_put:
9bb5d40c 5085 ring_buffer_put(rb); /* could be last */
37d81828
PM
5086}
5087
f0f37e2f 5088static const struct vm_operations_struct perf_mmap_vmops = {
43a21ea8 5089 .open = perf_mmap_open,
45bfb2e5 5090 .close = perf_mmap_close, /* non mergable */
43a21ea8
PZ
5091 .fault = perf_mmap_fault,
5092 .page_mkwrite = perf_mmap_fault,
37d81828
PM
5093};
5094
5095static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5096{
cdd6c482 5097 struct perf_event *event = file->private_data;
22a4f650 5098 unsigned long user_locked, user_lock_limit;
789f90fc 5099 struct user_struct *user = current_user();
22a4f650 5100 unsigned long locked, lock_limit;
45bfb2e5 5101 struct ring_buffer *rb = NULL;
7b732a75
PZ
5102 unsigned long vma_size;
5103 unsigned long nr_pages;
45bfb2e5 5104 long user_extra = 0, extra = 0;
d57e34fd 5105 int ret = 0, flags = 0;
37d81828 5106
c7920614
PZ
5107 /*
5108 * Don't allow mmap() of inherited per-task counters. This would
5109 * create a performance issue due to all children writing to the
76369139 5110 * same rb.
c7920614
PZ
5111 */
5112 if (event->cpu == -1 && event->attr.inherit)
5113 return -EINVAL;
5114
43a21ea8 5115 if (!(vma->vm_flags & VM_SHARED))
37d81828 5116 return -EINVAL;
7b732a75
PZ
5117
5118 vma_size = vma->vm_end - vma->vm_start;
45bfb2e5
PZ
5119
5120 if (vma->vm_pgoff == 0) {
5121 nr_pages = (vma_size / PAGE_SIZE) - 1;
5122 } else {
5123 /*
5124 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5125 * mapped, all subsequent mappings should have the same size
5126 * and offset. Must be above the normal perf buffer.
5127 */
5128 u64 aux_offset, aux_size;
5129
5130 if (!event->rb)
5131 return -EINVAL;
5132
5133 nr_pages = vma_size / PAGE_SIZE;
5134
5135 mutex_lock(&event->mmap_mutex);
5136 ret = -EINVAL;
5137
5138 rb = event->rb;
5139 if (!rb)
5140 goto aux_unlock;
5141
5142 aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
5143 aux_size = ACCESS_ONCE(rb->user_page->aux_size);
5144
5145 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5146 goto aux_unlock;
5147
5148 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5149 goto aux_unlock;
5150
5151 /* already mapped with a different offset */
5152 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5153 goto aux_unlock;
5154
5155 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5156 goto aux_unlock;
5157
5158 /* already mapped with a different size */
5159 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5160 goto aux_unlock;
5161
5162 if (!is_power_of_2(nr_pages))
5163 goto aux_unlock;
5164
5165 if (!atomic_inc_not_zero(&rb->mmap_count))
5166 goto aux_unlock;
5167
5168 if (rb_has_aux(rb)) {
5169 atomic_inc(&rb->aux_mmap_count);
5170 ret = 0;
5171 goto unlock;
5172 }
5173
5174 atomic_set(&rb->aux_mmap_count, 1);
5175 user_extra = nr_pages;
5176
5177 goto accounting;
5178 }
7b732a75 5179
7730d865 5180 /*
76369139 5181 * If we have rb pages ensure they're a power-of-two number, so we
7730d865
PZ
5182 * can do bitmasks instead of modulo.
5183 */
2ed11312 5184 if (nr_pages != 0 && !is_power_of_2(nr_pages))
37d81828
PM
5185 return -EINVAL;
5186
7b732a75 5187 if (vma_size != PAGE_SIZE * (1 + nr_pages))
37d81828
PM
5188 return -EINVAL;
5189
cdd6c482 5190 WARN_ON_ONCE(event->ctx->parent_ctx);
9bb5d40c 5191again:
cdd6c482 5192 mutex_lock(&event->mmap_mutex);
76369139 5193 if (event->rb) {
9bb5d40c 5194 if (event->rb->nr_pages != nr_pages) {
ebb3c4c4 5195 ret = -EINVAL;
9bb5d40c
PZ
5196 goto unlock;
5197 }
5198
5199 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5200 /*
5201 * Raced against perf_mmap_close() through
5202 * perf_event_set_output(). Try again, hope for better
5203 * luck.
5204 */
5205 mutex_unlock(&event->mmap_mutex);
5206 goto again;
5207 }
5208
ebb3c4c4
PZ
5209 goto unlock;
5210 }
5211
789f90fc 5212 user_extra = nr_pages + 1;
45bfb2e5
PZ
5213
5214accounting:
cdd6c482 5215 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
a3862d3f
IM
5216
5217 /*
5218 * Increase the limit linearly with more CPUs:
5219 */
5220 user_lock_limit *= num_online_cpus();
5221
789f90fc 5222 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
c5078f78 5223
789f90fc
PZ
5224 if (user_locked > user_lock_limit)
5225 extra = user_locked - user_lock_limit;
7b732a75 5226
78d7d407 5227 lock_limit = rlimit(RLIMIT_MEMLOCK);
7b732a75 5228 lock_limit >>= PAGE_SHIFT;
bc3e53f6 5229 locked = vma->vm_mm->pinned_vm + extra;
7b732a75 5230
459ec28a
IM
5231 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5232 !capable(CAP_IPC_LOCK)) {
ebb3c4c4
PZ
5233 ret = -EPERM;
5234 goto unlock;
5235 }
7b732a75 5236
45bfb2e5 5237 WARN_ON(!rb && event->rb);
906010b2 5238
d57e34fd 5239 if (vma->vm_flags & VM_WRITE)
76369139 5240 flags |= RING_BUFFER_WRITABLE;
d57e34fd 5241
76369139 5242 if (!rb) {
45bfb2e5
PZ
5243 rb = rb_alloc(nr_pages,
5244 event->attr.watermark ? event->attr.wakeup_watermark : 0,
5245 event->cpu, flags);
26cb63ad 5246
45bfb2e5
PZ
5247 if (!rb) {
5248 ret = -ENOMEM;
5249 goto unlock;
5250 }
43a21ea8 5251
45bfb2e5
PZ
5252 atomic_set(&rb->mmap_count, 1);
5253 rb->mmap_user = get_current_user();
5254 rb->mmap_locked = extra;
26cb63ad 5255
45bfb2e5 5256 ring_buffer_attach(event, rb);
ac9721f3 5257
45bfb2e5
PZ
5258 perf_event_init_userpage(event);
5259 perf_event_update_userpage(event);
5260 } else {
1a594131
AS
5261 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5262 event->attr.aux_watermark, flags);
45bfb2e5
PZ
5263 if (!ret)
5264 rb->aux_mmap_locked = extra;
5265 }
9a0f05cb 5266
ebb3c4c4 5267unlock:
45bfb2e5
PZ
5268 if (!ret) {
5269 atomic_long_add(user_extra, &user->locked_vm);
5270 vma->vm_mm->pinned_vm += extra;
5271
ac9721f3 5272 atomic_inc(&event->mmap_count);
45bfb2e5
PZ
5273 } else if (rb) {
5274 atomic_dec(&rb->mmap_count);
5275 }
5276aux_unlock:
cdd6c482 5277 mutex_unlock(&event->mmap_mutex);
37d81828 5278
9bb5d40c
PZ
5279 /*
5280 * Since pinned accounting is per vm we cannot allow fork() to copy our
5281 * vma.
5282 */
26cb63ad 5283 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
37d81828 5284 vma->vm_ops = &perf_mmap_vmops;
7b732a75 5285
1e0fb9ec
AL
5286 if (event->pmu->event_mapped)
5287 event->pmu->event_mapped(event);
5288
7b732a75 5289 return ret;
37d81828
PM
5290}
5291
3c446b3d
PZ
5292static int perf_fasync(int fd, struct file *filp, int on)
5293{
496ad9aa 5294 struct inode *inode = file_inode(filp);
cdd6c482 5295 struct perf_event *event = filp->private_data;
3c446b3d
PZ
5296 int retval;
5297
5955102c 5298 inode_lock(inode);
cdd6c482 5299 retval = fasync_helper(fd, filp, on, &event->fasync);
5955102c 5300 inode_unlock(inode);
3c446b3d
PZ
5301
5302 if (retval < 0)
5303 return retval;
5304
5305 return 0;
5306}
5307
0793a61d 5308static const struct file_operations perf_fops = {
3326c1ce 5309 .llseek = no_llseek,
0793a61d
TG
5310 .release = perf_release,
5311 .read = perf_read,
5312 .poll = perf_poll,
d859e29f 5313 .unlocked_ioctl = perf_ioctl,
b3f20785 5314 .compat_ioctl = perf_compat_ioctl,
37d81828 5315 .mmap = perf_mmap,
3c446b3d 5316 .fasync = perf_fasync,
0793a61d
TG
5317};
5318
925d519a 5319/*
cdd6c482 5320 * Perf event wakeup
925d519a
PZ
5321 *
5322 * If there's data, ensure we set the poll() state and publish everything
5323 * to user-space before waking everybody up.
5324 */
5325
fed66e2c
PZ
5326static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5327{
5328 /* only the parent has fasync state */
5329 if (event->parent)
5330 event = event->parent;
5331 return &event->fasync;
5332}
5333
cdd6c482 5334void perf_event_wakeup(struct perf_event *event)
925d519a 5335{
10c6db11 5336 ring_buffer_wakeup(event);
4c9e2542 5337
cdd6c482 5338 if (event->pending_kill) {
fed66e2c 5339 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
cdd6c482 5340 event->pending_kill = 0;
4c9e2542 5341 }
925d519a
PZ
5342}
5343
e360adbe 5344static void perf_pending_event(struct irq_work *entry)
79f14641 5345{
cdd6c482
IM
5346 struct perf_event *event = container_of(entry,
5347 struct perf_event, pending);
d525211f
PZ
5348 int rctx;
5349
5350 rctx = perf_swevent_get_recursion_context();
5351 /*
5352 * If we 'fail' here, that's OK, it means recursion is already disabled
5353 * and we won't recurse 'further'.
5354 */
79f14641 5355
cdd6c482
IM
5356 if (event->pending_disable) {
5357 event->pending_disable = 0;
fae3fde6 5358 perf_event_disable_local(event);
79f14641
PZ
5359 }
5360
cdd6c482
IM
5361 if (event->pending_wakeup) {
5362 event->pending_wakeup = 0;
5363 perf_event_wakeup(event);
79f14641 5364 }
d525211f
PZ
5365
5366 if (rctx >= 0)
5367 perf_swevent_put_recursion_context(rctx);
79f14641
PZ
5368}
5369
39447b38
ZY
5370/*
5371 * We assume there is only KVM supporting the callbacks.
5372 * Later on, we might change it to a list if there is
5373 * another virtualization implementation supporting the callbacks.
5374 */
5375struct perf_guest_info_callbacks *perf_guest_cbs;
5376
5377int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5378{
5379 perf_guest_cbs = cbs;
5380 return 0;
5381}
5382EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5383
5384int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5385{
5386 perf_guest_cbs = NULL;
5387 return 0;
5388}
5389EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5390
4018994f
JO
5391static void
5392perf_output_sample_regs(struct perf_output_handle *handle,
5393 struct pt_regs *regs, u64 mask)
5394{
5395 int bit;
29dd3288 5396 DECLARE_BITMAP(_mask, 64);
4018994f 5397
29dd3288
MS
5398 bitmap_from_u64(_mask, mask);
5399 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
4018994f
JO
5400 u64 val;
5401
5402 val = perf_reg_value(regs, bit);
5403 perf_output_put(handle, val);
5404 }
5405}
5406
60e2364e 5407static void perf_sample_regs_user(struct perf_regs *regs_user,
88a7c26a
AL
5408 struct pt_regs *regs,
5409 struct pt_regs *regs_user_copy)
4018994f 5410{
88a7c26a
AL
5411 if (user_mode(regs)) {
5412 regs_user->abi = perf_reg_abi(current);
2565711f 5413 regs_user->regs = regs;
88a7c26a
AL
5414 } else if (current->mm) {
5415 perf_get_regs_user(regs_user, regs, regs_user_copy);
2565711f
PZ
5416 } else {
5417 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5418 regs_user->regs = NULL;
4018994f
JO
5419 }
5420}
5421
60e2364e
SE
5422static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5423 struct pt_regs *regs)
5424{
5425 regs_intr->regs = regs;
5426 regs_intr->abi = perf_reg_abi(current);
5427}
5428
5429
c5ebcedb
JO
5430/*
5431 * Get remaining task size from user stack pointer.
5432 *
5433 * It'd be better to take stack vma map and limit this more
5434 * precisly, but there's no way to get it safely under interrupt,
5435 * so using TASK_SIZE as limit.
5436 */
5437static u64 perf_ustack_task_size(struct pt_regs *regs)
5438{
5439 unsigned long addr = perf_user_stack_pointer(regs);
5440
5441 if (!addr || addr >= TASK_SIZE)
5442 return 0;
5443
5444 return TASK_SIZE - addr;
5445}
5446
5447static u16
5448perf_sample_ustack_size(u16 stack_size, u16 header_size,
5449 struct pt_regs *regs)
5450{
5451 u64 task_size;
5452
5453 /* No regs, no stack pointer, no dump. */
5454 if (!regs)
5455 return 0;
5456
5457 /*
5458 * Check if we fit in with the requested stack size into the:
5459 * - TASK_SIZE
5460 * If we don't, we limit the size to the TASK_SIZE.
5461 *
5462 * - remaining sample size
5463 * If we don't, we customize the stack size to
5464 * fit in to the remaining sample size.
5465 */
5466
5467 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5468 stack_size = min(stack_size, (u16) task_size);
5469
5470 /* Current header size plus static size and dynamic size. */
5471 header_size += 2 * sizeof(u64);
5472
5473 /* Do we fit in with the current stack dump size? */
5474 if ((u16) (header_size + stack_size) < header_size) {
5475 /*
5476 * If we overflow the maximum size for the sample,
5477 * we customize the stack dump size to fit in.
5478 */
5479 stack_size = USHRT_MAX - header_size - sizeof(u64);
5480 stack_size = round_up(stack_size, sizeof(u64));
5481 }
5482
5483 return stack_size;
5484}
5485
5486static void
5487perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5488 struct pt_regs *regs)
5489{
5490 /* Case of a kernel thread, nothing to dump */
5491 if (!regs) {
5492 u64 size = 0;
5493 perf_output_put(handle, size);
5494 } else {
5495 unsigned long sp;
5496 unsigned int rem;
5497 u64 dyn_size;
5498
5499 /*
5500 * We dump:
5501 * static size
5502 * - the size requested by user or the best one we can fit
5503 * in to the sample max size
5504 * data
5505 * - user stack dump data
5506 * dynamic size
5507 * - the actual dumped size
5508 */
5509
5510 /* Static size. */
5511 perf_output_put(handle, dump_size);
5512
5513 /* Data. */
5514 sp = perf_user_stack_pointer(regs);
5515 rem = __output_copy_user(handle, (void *) sp, dump_size);
5516 dyn_size = dump_size - rem;
5517
5518 perf_output_skip(handle, rem);
5519
5520 /* Dynamic size. */
5521 perf_output_put(handle, dyn_size);
5522 }
5523}
5524
c980d109
ACM
5525static void __perf_event_header__init_id(struct perf_event_header *header,
5526 struct perf_sample_data *data,
5527 struct perf_event *event)
6844c09d
ACM
5528{
5529 u64 sample_type = event->attr.sample_type;
5530
5531 data->type = sample_type;
5532 header->size += event->id_header_size;
5533
5534 if (sample_type & PERF_SAMPLE_TID) {
5535 /* namespace issues */
5536 data->tid_entry.pid = perf_event_pid(event, current);
5537 data->tid_entry.tid = perf_event_tid(event, current);
5538 }
5539
5540 if (sample_type & PERF_SAMPLE_TIME)
34f43927 5541 data->time = perf_event_clock(event);
6844c09d 5542
ff3d527c 5543 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6844c09d
ACM
5544 data->id = primary_event_id(event);
5545
5546 if (sample_type & PERF_SAMPLE_STREAM_ID)
5547 data->stream_id = event->id;
5548
5549 if (sample_type & PERF_SAMPLE_CPU) {
5550 data->cpu_entry.cpu = raw_smp_processor_id();
5551 data->cpu_entry.reserved = 0;
5552 }
5553}
5554
76369139
FW
5555void perf_event_header__init_id(struct perf_event_header *header,
5556 struct perf_sample_data *data,
5557 struct perf_event *event)
c980d109
ACM
5558{
5559 if (event->attr.sample_id_all)
5560 __perf_event_header__init_id(header, data, event);
5561}
5562
5563static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5564 struct perf_sample_data *data)
5565{
5566 u64 sample_type = data->type;
5567
5568 if (sample_type & PERF_SAMPLE_TID)
5569 perf_output_put(handle, data->tid_entry);
5570
5571 if (sample_type & PERF_SAMPLE_TIME)
5572 perf_output_put(handle, data->time);
5573
5574 if (sample_type & PERF_SAMPLE_ID)
5575 perf_output_put(handle, data->id);
5576
5577 if (sample_type & PERF_SAMPLE_STREAM_ID)
5578 perf_output_put(handle, data->stream_id);
5579
5580 if (sample_type & PERF_SAMPLE_CPU)
5581 perf_output_put(handle, data->cpu_entry);
ff3d527c
AH
5582
5583 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5584 perf_output_put(handle, data->id);
c980d109
ACM
5585}
5586
76369139
FW
5587void perf_event__output_id_sample(struct perf_event *event,
5588 struct perf_output_handle *handle,
5589 struct perf_sample_data *sample)
c980d109
ACM
5590{
5591 if (event->attr.sample_id_all)
5592 __perf_event__output_id_sample(handle, sample);
5593}
5594
3dab77fb 5595static void perf_output_read_one(struct perf_output_handle *handle,
eed01528
SE
5596 struct perf_event *event,
5597 u64 enabled, u64 running)
3dab77fb 5598{
cdd6c482 5599 u64 read_format = event->attr.read_format;
3dab77fb
PZ
5600 u64 values[4];
5601 int n = 0;
5602
b5e58793 5603 values[n++] = perf_event_count(event);
3dab77fb 5604 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
eed01528 5605 values[n++] = enabled +
cdd6c482 5606 atomic64_read(&event->child_total_time_enabled);
3dab77fb
PZ
5607 }
5608 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
eed01528 5609 values[n++] = running +
cdd6c482 5610 atomic64_read(&event->child_total_time_running);
3dab77fb
PZ
5611 }
5612 if (read_format & PERF_FORMAT_ID)
cdd6c482 5613 values[n++] = primary_event_id(event);
3dab77fb 5614
76369139 5615 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
5616}
5617
5618/*
cdd6c482 5619 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3dab77fb
PZ
5620 */
5621static void perf_output_read_group(struct perf_output_handle *handle,
eed01528
SE
5622 struct perf_event *event,
5623 u64 enabled, u64 running)
3dab77fb 5624{
cdd6c482
IM
5625 struct perf_event *leader = event->group_leader, *sub;
5626 u64 read_format = event->attr.read_format;
3dab77fb
PZ
5627 u64 values[5];
5628 int n = 0;
5629
5630 values[n++] = 1 + leader->nr_siblings;
5631
5632 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
eed01528 5633 values[n++] = enabled;
3dab77fb
PZ
5634
5635 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
eed01528 5636 values[n++] = running;
3dab77fb 5637
cdd6c482 5638 if (leader != event)
3dab77fb
PZ
5639 leader->pmu->read(leader);
5640
b5e58793 5641 values[n++] = perf_event_count(leader);
3dab77fb 5642 if (read_format & PERF_FORMAT_ID)
cdd6c482 5643 values[n++] = primary_event_id(leader);
3dab77fb 5644
76369139 5645 __output_copy(handle, values, n * sizeof(u64));
3dab77fb 5646
65abc865 5647 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3dab77fb
PZ
5648 n = 0;
5649
6f5ab001
JO
5650 if ((sub != event) &&
5651 (sub->state == PERF_EVENT_STATE_ACTIVE))
3dab77fb
PZ
5652 sub->pmu->read(sub);
5653
b5e58793 5654 values[n++] = perf_event_count(sub);
3dab77fb 5655 if (read_format & PERF_FORMAT_ID)
cdd6c482 5656 values[n++] = primary_event_id(sub);
3dab77fb 5657
76369139 5658 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
5659 }
5660}
5661
eed01528
SE
5662#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5663 PERF_FORMAT_TOTAL_TIME_RUNNING)
5664
3dab77fb 5665static void perf_output_read(struct perf_output_handle *handle,
cdd6c482 5666 struct perf_event *event)
3dab77fb 5667{
e3f3541c 5668 u64 enabled = 0, running = 0, now;
eed01528
SE
5669 u64 read_format = event->attr.read_format;
5670
5671 /*
5672 * compute total_time_enabled, total_time_running
5673 * based on snapshot values taken when the event
5674 * was last scheduled in.
5675 *
5676 * we cannot simply called update_context_time()
5677 * because of locking issue as we are called in
5678 * NMI context
5679 */
c4794295 5680 if (read_format & PERF_FORMAT_TOTAL_TIMES)
e3f3541c 5681 calc_timer_values(event, &now, &enabled, &running);
eed01528 5682
cdd6c482 5683 if (event->attr.read_format & PERF_FORMAT_GROUP)
eed01528 5684 perf_output_read_group(handle, event, enabled, running);
3dab77fb 5685 else
eed01528 5686 perf_output_read_one(handle, event, enabled, running);
3dab77fb
PZ
5687}
5688
5622f295
MM
5689void perf_output_sample(struct perf_output_handle *handle,
5690 struct perf_event_header *header,
5691 struct perf_sample_data *data,
cdd6c482 5692 struct perf_event *event)
5622f295
MM
5693{
5694 u64 sample_type = data->type;
5695
5696 perf_output_put(handle, *header);
5697
ff3d527c
AH
5698 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5699 perf_output_put(handle, data->id);
5700
5622f295
MM
5701 if (sample_type & PERF_SAMPLE_IP)
5702 perf_output_put(handle, data->ip);
5703
5704 if (sample_type & PERF_SAMPLE_TID)
5705 perf_output_put(handle, data->tid_entry);
5706
5707 if (sample_type & PERF_SAMPLE_TIME)
5708 perf_output_put(handle, data->time);
5709
5710 if (sample_type & PERF_SAMPLE_ADDR)
5711 perf_output_put(handle, data->addr);
5712
5713 if (sample_type & PERF_SAMPLE_ID)
5714 perf_output_put(handle, data->id);
5715
5716 if (sample_type & PERF_SAMPLE_STREAM_ID)
5717 perf_output_put(handle, data->stream_id);
5718
5719 if (sample_type & PERF_SAMPLE_CPU)
5720 perf_output_put(handle, data->cpu_entry);
5721
5722 if (sample_type & PERF_SAMPLE_PERIOD)
5723 perf_output_put(handle, data->period);
5724
5725 if (sample_type & PERF_SAMPLE_READ)
cdd6c482 5726 perf_output_read(handle, event);
5622f295
MM
5727
5728 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5729 if (data->callchain) {
5730 int size = 1;
5731
5732 if (data->callchain)
5733 size += data->callchain->nr;
5734
5735 size *= sizeof(u64);
5736
76369139 5737 __output_copy(handle, data->callchain, size);
5622f295
MM
5738 } else {
5739 u64 nr = 0;
5740 perf_output_put(handle, nr);
5741 }
5742 }
5743
5744 if (sample_type & PERF_SAMPLE_RAW) {
7e3f977e
DB
5745 struct perf_raw_record *raw = data->raw;
5746
5747 if (raw) {
5748 struct perf_raw_frag *frag = &raw->frag;
5749
5750 perf_output_put(handle, raw->size);
5751 do {
5752 if (frag->copy) {
5753 __output_custom(handle, frag->copy,
5754 frag->data, frag->size);
5755 } else {
5756 __output_copy(handle, frag->data,
5757 frag->size);
5758 }
5759 if (perf_raw_frag_last(frag))
5760 break;
5761 frag = frag->next;
5762 } while (1);
5763 if (frag->pad)
5764 __output_skip(handle, NULL, frag->pad);
5622f295
MM
5765 } else {
5766 struct {
5767 u32 size;
5768 u32 data;
5769 } raw = {
5770 .size = sizeof(u32),
5771 .data = 0,
5772 };
5773 perf_output_put(handle, raw);
5774 }
5775 }
a7ac67ea 5776
bce38cd5
SE
5777 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5778 if (data->br_stack) {
5779 size_t size;
5780
5781 size = data->br_stack->nr
5782 * sizeof(struct perf_branch_entry);
5783
5784 perf_output_put(handle, data->br_stack->nr);
5785 perf_output_copy(handle, data->br_stack->entries, size);
5786 } else {
5787 /*
5788 * we always store at least the value of nr
5789 */
5790 u64 nr = 0;
5791 perf_output_put(handle, nr);
5792 }
5793 }
4018994f
JO
5794
5795 if (sample_type & PERF_SAMPLE_REGS_USER) {
5796 u64 abi = data->regs_user.abi;
5797
5798 /*
5799 * If there are no regs to dump, notice it through
5800 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5801 */
5802 perf_output_put(handle, abi);
5803
5804 if (abi) {
5805 u64 mask = event->attr.sample_regs_user;
5806 perf_output_sample_regs(handle,
5807 data->regs_user.regs,
5808 mask);
5809 }
5810 }
c5ebcedb 5811
a5cdd40c 5812 if (sample_type & PERF_SAMPLE_STACK_USER) {
c5ebcedb
JO
5813 perf_output_sample_ustack(handle,
5814 data->stack_user_size,
5815 data->regs_user.regs);
a5cdd40c 5816 }
c3feedf2
AK
5817
5818 if (sample_type & PERF_SAMPLE_WEIGHT)
5819 perf_output_put(handle, data->weight);
d6be9ad6
SE
5820
5821 if (sample_type & PERF_SAMPLE_DATA_SRC)
5822 perf_output_put(handle, data->data_src.val);
a5cdd40c 5823
fdfbbd07
AK
5824 if (sample_type & PERF_SAMPLE_TRANSACTION)
5825 perf_output_put(handle, data->txn);
5826
60e2364e
SE
5827 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5828 u64 abi = data->regs_intr.abi;
5829 /*
5830 * If there are no regs to dump, notice it through
5831 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5832 */
5833 perf_output_put(handle, abi);
5834
5835 if (abi) {
5836 u64 mask = event->attr.sample_regs_intr;
5837
5838 perf_output_sample_regs(handle,
5839 data->regs_intr.regs,
5840 mask);
5841 }
5842 }
5843
a5cdd40c
PZ
5844 if (!event->attr.watermark) {
5845 int wakeup_events = event->attr.wakeup_events;
5846
5847 if (wakeup_events) {
5848 struct ring_buffer *rb = handle->rb;
5849 int events = local_inc_return(&rb->events);
5850
5851 if (events >= wakeup_events) {
5852 local_sub(wakeup_events, &rb->events);
5853 local_inc(&rb->wakeup);
5854 }
5855 }
5856 }
5622f295
MM
5857}
5858
5859void perf_prepare_sample(struct perf_event_header *header,
5860 struct perf_sample_data *data,
cdd6c482 5861 struct perf_event *event,
5622f295 5862 struct pt_regs *regs)
7b732a75 5863{
cdd6c482 5864 u64 sample_type = event->attr.sample_type;
7b732a75 5865
cdd6c482 5866 header->type = PERF_RECORD_SAMPLE;
c320c7b7 5867 header->size = sizeof(*header) + event->header_size;
5622f295
MM
5868
5869 header->misc = 0;
5870 header->misc |= perf_misc_flags(regs);
6fab0192 5871
c980d109 5872 __perf_event_header__init_id(header, data, event);
6844c09d 5873
c320c7b7 5874 if (sample_type & PERF_SAMPLE_IP)
5622f295
MM
5875 data->ip = perf_instruction_pointer(regs);
5876
b23f3325 5877 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5622f295 5878 int size = 1;
394ee076 5879
e6dab5ff 5880 data->callchain = perf_callchain(event, regs);
5622f295
MM
5881
5882 if (data->callchain)
5883 size += data->callchain->nr;
5884
5885 header->size += size * sizeof(u64);
394ee076
PZ
5886 }
5887
3a43ce68 5888 if (sample_type & PERF_SAMPLE_RAW) {
7e3f977e
DB
5889 struct perf_raw_record *raw = data->raw;
5890 int size;
5891
5892 if (raw) {
5893 struct perf_raw_frag *frag = &raw->frag;
5894 u32 sum = 0;
5895
5896 do {
5897 sum += frag->size;
5898 if (perf_raw_frag_last(frag))
5899 break;
5900 frag = frag->next;
5901 } while (1);
5902
5903 size = round_up(sum + sizeof(u32), sizeof(u64));
5904 raw->size = size - sizeof(u32);
5905 frag->pad = raw->size - sum;
5906 } else {
5907 size = sizeof(u64);
5908 }
a044560c 5909
7e3f977e 5910 header->size += size;
7f453c24 5911 }
bce38cd5
SE
5912
5913 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5914 int size = sizeof(u64); /* nr */
5915 if (data->br_stack) {
5916 size += data->br_stack->nr
5917 * sizeof(struct perf_branch_entry);
5918 }
5919 header->size += size;
5920 }
4018994f 5921
2565711f 5922 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
88a7c26a
AL
5923 perf_sample_regs_user(&data->regs_user, regs,
5924 &data->regs_user_copy);
2565711f 5925
4018994f
JO
5926 if (sample_type & PERF_SAMPLE_REGS_USER) {
5927 /* regs dump ABI info */
5928 int size = sizeof(u64);
5929
4018994f
JO
5930 if (data->regs_user.regs) {
5931 u64 mask = event->attr.sample_regs_user;
5932 size += hweight64(mask) * sizeof(u64);
5933 }
5934
5935 header->size += size;
5936 }
c5ebcedb
JO
5937
5938 if (sample_type & PERF_SAMPLE_STACK_USER) {
5939 /*
5940 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
5941 * processed as the last one or have additional check added
5942 * in case new sample type is added, because we could eat
5943 * up the rest of the sample size.
5944 */
c5ebcedb
JO
5945 u16 stack_size = event->attr.sample_stack_user;
5946 u16 size = sizeof(u64);
5947
c5ebcedb 5948 stack_size = perf_sample_ustack_size(stack_size, header->size,
2565711f 5949 data->regs_user.regs);
c5ebcedb
JO
5950
5951 /*
5952 * If there is something to dump, add space for the dump
5953 * itself and for the field that tells the dynamic size,
5954 * which is how many have been actually dumped.
5955 */
5956 if (stack_size)
5957 size += sizeof(u64) + stack_size;
5958
5959 data->stack_user_size = stack_size;
5960 header->size += size;
5961 }
60e2364e
SE
5962
5963 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5964 /* regs dump ABI info */
5965 int size = sizeof(u64);
5966
5967 perf_sample_regs_intr(&data->regs_intr, regs);
5968
5969 if (data->regs_intr.regs) {
5970 u64 mask = event->attr.sample_regs_intr;
5971
5972 size += hweight64(mask) * sizeof(u64);
5973 }
5974
5975 header->size += size;
5976 }
5622f295 5977}
7f453c24 5978
9ecda41a
WN
5979static void __always_inline
5980__perf_event_output(struct perf_event *event,
5981 struct perf_sample_data *data,
5982 struct pt_regs *regs,
5983 int (*output_begin)(struct perf_output_handle *,
5984 struct perf_event *,
5985 unsigned int))
5622f295
MM
5986{
5987 struct perf_output_handle handle;
5988 struct perf_event_header header;
689802b2 5989
927c7a9e
FW
5990 /* protect the callchain buffers */
5991 rcu_read_lock();
5992
cdd6c482 5993 perf_prepare_sample(&header, data, event, regs);
5c148194 5994
9ecda41a 5995 if (output_begin(&handle, event, header.size))
927c7a9e 5996 goto exit;
0322cd6e 5997
cdd6c482 5998 perf_output_sample(&handle, &header, data, event);
f413cdb8 5999
8a057d84 6000 perf_output_end(&handle);
927c7a9e
FW
6001
6002exit:
6003 rcu_read_unlock();
0322cd6e
PZ
6004}
6005
9ecda41a
WN
6006void
6007perf_event_output_forward(struct perf_event *event,
6008 struct perf_sample_data *data,
6009 struct pt_regs *regs)
6010{
6011 __perf_event_output(event, data, regs, perf_output_begin_forward);
6012}
6013
6014void
6015perf_event_output_backward(struct perf_event *event,
6016 struct perf_sample_data *data,
6017 struct pt_regs *regs)
6018{
6019 __perf_event_output(event, data, regs, perf_output_begin_backward);
6020}
6021
6022void
6023perf_event_output(struct perf_event *event,
6024 struct perf_sample_data *data,
6025 struct pt_regs *regs)
6026{
6027 __perf_event_output(event, data, regs, perf_output_begin);
6028}
6029
38b200d6 6030/*
cdd6c482 6031 * read event_id
38b200d6
PZ
6032 */
6033
6034struct perf_read_event {
6035 struct perf_event_header header;
6036
6037 u32 pid;
6038 u32 tid;
38b200d6
PZ
6039};
6040
6041static void
cdd6c482 6042perf_event_read_event(struct perf_event *event,
38b200d6
PZ
6043 struct task_struct *task)
6044{
6045 struct perf_output_handle handle;
c980d109 6046 struct perf_sample_data sample;
dfc65094 6047 struct perf_read_event read_event = {
38b200d6 6048 .header = {
cdd6c482 6049 .type = PERF_RECORD_READ,
38b200d6 6050 .misc = 0,
c320c7b7 6051 .size = sizeof(read_event) + event->read_size,
38b200d6 6052 },
cdd6c482
IM
6053 .pid = perf_event_pid(event, task),
6054 .tid = perf_event_tid(event, task),
38b200d6 6055 };
3dab77fb 6056 int ret;
38b200d6 6057
c980d109 6058 perf_event_header__init_id(&read_event.header, &sample, event);
a7ac67ea 6059 ret = perf_output_begin(&handle, event, read_event.header.size);
38b200d6
PZ
6060 if (ret)
6061 return;
6062
dfc65094 6063 perf_output_put(&handle, read_event);
cdd6c482 6064 perf_output_read(&handle, event);
c980d109 6065 perf_event__output_id_sample(event, &handle, &sample);
3dab77fb 6066
38b200d6
PZ
6067 perf_output_end(&handle);
6068}
6069
aab5b71e 6070typedef void (perf_iterate_f)(struct perf_event *event, void *data);
52d857a8
JO
6071
6072static void
aab5b71e
PZ
6073perf_iterate_ctx(struct perf_event_context *ctx,
6074 perf_iterate_f output,
b73e4fef 6075 void *data, bool all)
52d857a8
JO
6076{
6077 struct perf_event *event;
6078
6079 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
b73e4fef
AS
6080 if (!all) {
6081 if (event->state < PERF_EVENT_STATE_INACTIVE)
6082 continue;
6083 if (!event_filter_match(event))
6084 continue;
6085 }
6086
67516844 6087 output(event, data);
52d857a8
JO
6088 }
6089}
6090
aab5b71e 6091static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
f2fb6bef
KL
6092{
6093 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
6094 struct perf_event *event;
6095
6096 list_for_each_entry_rcu(event, &pel->list, sb_list) {
0b8f1e2e
PZ
6097 /*
6098 * Skip events that are not fully formed yet; ensure that
6099 * if we observe event->ctx, both event and ctx will be
6100 * complete enough. See perf_install_in_context().
6101 */
6102 if (!smp_load_acquire(&event->ctx))
6103 continue;
6104
f2fb6bef
KL
6105 if (event->state < PERF_EVENT_STATE_INACTIVE)
6106 continue;
6107 if (!event_filter_match(event))
6108 continue;
6109 output(event, data);
6110 }
6111}
6112
aab5b71e
PZ
6113/*
6114 * Iterate all events that need to receive side-band events.
6115 *
6116 * For new callers; ensure that account_pmu_sb_event() includes
6117 * your event, otherwise it might not get delivered.
6118 */
52d857a8 6119static void
aab5b71e 6120perf_iterate_sb(perf_iterate_f output, void *data,
52d857a8
JO
6121 struct perf_event_context *task_ctx)
6122{
52d857a8 6123 struct perf_event_context *ctx;
52d857a8
JO
6124 int ctxn;
6125
aab5b71e
PZ
6126 rcu_read_lock();
6127 preempt_disable();
6128
4e93ad60 6129 /*
aab5b71e
PZ
6130 * If we have task_ctx != NULL we only notify the task context itself.
6131 * The task_ctx is set only for EXIT events before releasing task
4e93ad60
JO
6132 * context.
6133 */
6134 if (task_ctx) {
aab5b71e
PZ
6135 perf_iterate_ctx(task_ctx, output, data, false);
6136 goto done;
4e93ad60
JO
6137 }
6138
aab5b71e 6139 perf_iterate_sb_cpu(output, data);
f2fb6bef
KL
6140
6141 for_each_task_context_nr(ctxn) {
52d857a8
JO
6142 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6143 if (ctx)
aab5b71e 6144 perf_iterate_ctx(ctx, output, data, false);
52d857a8 6145 }
aab5b71e 6146done:
f2fb6bef 6147 preempt_enable();
52d857a8 6148 rcu_read_unlock();
95ff4ca2
AS
6149}
6150
375637bc
AS
6151/*
6152 * Clear all file-based filters at exec, they'll have to be
6153 * re-instated when/if these objects are mmapped again.
6154 */
6155static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
6156{
6157 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6158 struct perf_addr_filter *filter;
6159 unsigned int restart = 0, count = 0;
6160 unsigned long flags;
6161
6162 if (!has_addr_filter(event))
6163 return;
6164
6165 raw_spin_lock_irqsave(&ifh->lock, flags);
6166 list_for_each_entry(filter, &ifh->list, entry) {
6167 if (filter->inode) {
6168 event->addr_filters_offs[count] = 0;
6169 restart++;
6170 }
6171
6172 count++;
6173 }
6174
6175 if (restart)
6176 event->addr_filters_gen++;
6177 raw_spin_unlock_irqrestore(&ifh->lock, flags);
6178
6179 if (restart)
767ae086 6180 perf_event_stop(event, 1);
375637bc
AS
6181}
6182
6183void perf_event_exec(void)
6184{
6185 struct perf_event_context *ctx;
6186 int ctxn;
6187
6188 rcu_read_lock();
6189 for_each_task_context_nr(ctxn) {
6190 ctx = current->perf_event_ctxp[ctxn];
6191 if (!ctx)
6192 continue;
6193
6194 perf_event_enable_on_exec(ctxn);
6195
aab5b71e 6196 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
375637bc
AS
6197 true);
6198 }
6199 rcu_read_unlock();
6200}
6201
95ff4ca2
AS
6202struct remote_output {
6203 struct ring_buffer *rb;
6204 int err;
6205};
6206
6207static void __perf_event_output_stop(struct perf_event *event, void *data)
6208{
6209 struct perf_event *parent = event->parent;
6210 struct remote_output *ro = data;
6211 struct ring_buffer *rb = ro->rb;
375637bc
AS
6212 struct stop_event_data sd = {
6213 .event = event,
6214 };
95ff4ca2
AS
6215
6216 if (!has_aux(event))
6217 return;
6218
6219 if (!parent)
6220 parent = event;
6221
6222 /*
6223 * In case of inheritance, it will be the parent that links to the
767ae086
AS
6224 * ring-buffer, but it will be the child that's actually using it.
6225 *
6226 * We are using event::rb to determine if the event should be stopped,
6227 * however this may race with ring_buffer_attach() (through set_output),
6228 * which will make us skip the event that actually needs to be stopped.
6229 * So ring_buffer_attach() has to stop an aux event before re-assigning
6230 * its rb pointer.
95ff4ca2
AS
6231 */
6232 if (rcu_dereference(parent->rb) == rb)
375637bc 6233 ro->err = __perf_event_stop(&sd);
95ff4ca2
AS
6234}
6235
6236static int __perf_pmu_output_stop(void *info)
6237{
6238 struct perf_event *event = info;
6239 struct pmu *pmu = event->pmu;
8b6a3fe8 6240 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
95ff4ca2
AS
6241 struct remote_output ro = {
6242 .rb = event->rb,
6243 };
6244
6245 rcu_read_lock();
aab5b71e 6246 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
95ff4ca2 6247 if (cpuctx->task_ctx)
aab5b71e 6248 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
b73e4fef 6249 &ro, false);
95ff4ca2
AS
6250 rcu_read_unlock();
6251
6252 return ro.err;
6253}
6254
6255static void perf_pmu_output_stop(struct perf_event *event)
6256{
6257 struct perf_event *iter;
6258 int err, cpu;
6259
6260restart:
6261 rcu_read_lock();
6262 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6263 /*
6264 * For per-CPU events, we need to make sure that neither they
6265 * nor their children are running; for cpu==-1 events it's
6266 * sufficient to stop the event itself if it's active, since
6267 * it can't have children.
6268 */
6269 cpu = iter->cpu;
6270 if (cpu == -1)
6271 cpu = READ_ONCE(iter->oncpu);
6272
6273 if (cpu == -1)
6274 continue;
6275
6276 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6277 if (err == -EAGAIN) {
6278 rcu_read_unlock();
6279 goto restart;
6280 }
6281 }
6282 rcu_read_unlock();
52d857a8
JO
6283}
6284
60313ebe 6285/*
9f498cc5
PZ
6286 * task tracking -- fork/exit
6287 *
13d7a241 6288 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
60313ebe
PZ
6289 */
6290
9f498cc5 6291struct perf_task_event {
3a80b4a3 6292 struct task_struct *task;
cdd6c482 6293 struct perf_event_context *task_ctx;
60313ebe
PZ
6294
6295 struct {
6296 struct perf_event_header header;
6297
6298 u32 pid;
6299 u32 ppid;
9f498cc5
PZ
6300 u32 tid;
6301 u32 ptid;
393b2ad8 6302 u64 time;
cdd6c482 6303 } event_id;
60313ebe
PZ
6304};
6305
67516844
JO
6306static int perf_event_task_match(struct perf_event *event)
6307{
13d7a241
SE
6308 return event->attr.comm || event->attr.mmap ||
6309 event->attr.mmap2 || event->attr.mmap_data ||
6310 event->attr.task;
67516844
JO
6311}
6312
cdd6c482 6313static void perf_event_task_output(struct perf_event *event,
52d857a8 6314 void *data)
60313ebe 6315{
52d857a8 6316 struct perf_task_event *task_event = data;
60313ebe 6317 struct perf_output_handle handle;
c980d109 6318 struct perf_sample_data sample;
9f498cc5 6319 struct task_struct *task = task_event->task;
c980d109 6320 int ret, size = task_event->event_id.header.size;
8bb39f9a 6321
67516844
JO
6322 if (!perf_event_task_match(event))
6323 return;
6324
c980d109 6325 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
60313ebe 6326
c980d109 6327 ret = perf_output_begin(&handle, event,
a7ac67ea 6328 task_event->event_id.header.size);
ef60777c 6329 if (ret)
c980d109 6330 goto out;
60313ebe 6331
cdd6c482
IM
6332 task_event->event_id.pid = perf_event_pid(event, task);
6333 task_event->event_id.ppid = perf_event_pid(event, current);
60313ebe 6334
cdd6c482
IM
6335 task_event->event_id.tid = perf_event_tid(event, task);
6336 task_event->event_id.ptid = perf_event_tid(event, current);
9f498cc5 6337
34f43927
PZ
6338 task_event->event_id.time = perf_event_clock(event);
6339
cdd6c482 6340 perf_output_put(&handle, task_event->event_id);
393b2ad8 6341
c980d109
ACM
6342 perf_event__output_id_sample(event, &handle, &sample);
6343
60313ebe 6344 perf_output_end(&handle);
c980d109
ACM
6345out:
6346 task_event->event_id.header.size = size;
60313ebe
PZ
6347}
6348
cdd6c482
IM
6349static void perf_event_task(struct task_struct *task,
6350 struct perf_event_context *task_ctx,
3a80b4a3 6351 int new)
60313ebe 6352{
9f498cc5 6353 struct perf_task_event task_event;
60313ebe 6354
cdd6c482
IM
6355 if (!atomic_read(&nr_comm_events) &&
6356 !atomic_read(&nr_mmap_events) &&
6357 !atomic_read(&nr_task_events))
60313ebe
PZ
6358 return;
6359
9f498cc5 6360 task_event = (struct perf_task_event){
3a80b4a3
PZ
6361 .task = task,
6362 .task_ctx = task_ctx,
cdd6c482 6363 .event_id = {
60313ebe 6364 .header = {
cdd6c482 6365 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
573402db 6366 .misc = 0,
cdd6c482 6367 .size = sizeof(task_event.event_id),
60313ebe 6368 },
573402db
PZ
6369 /* .pid */
6370 /* .ppid */
9f498cc5
PZ
6371 /* .tid */
6372 /* .ptid */
34f43927 6373 /* .time */
60313ebe
PZ
6374 },
6375 };
6376
aab5b71e 6377 perf_iterate_sb(perf_event_task_output,
52d857a8
JO
6378 &task_event,
6379 task_ctx);
9f498cc5
PZ
6380}
6381
cdd6c482 6382void perf_event_fork(struct task_struct *task)
9f498cc5 6383{
cdd6c482 6384 perf_event_task(task, NULL, 1);
60313ebe
PZ
6385}
6386
8d1b2d93
PZ
6387/*
6388 * comm tracking
6389 */
6390
6391struct perf_comm_event {
22a4f650
IM
6392 struct task_struct *task;
6393 char *comm;
8d1b2d93
PZ
6394 int comm_size;
6395
6396 struct {
6397 struct perf_event_header header;
6398
6399 u32 pid;
6400 u32 tid;
cdd6c482 6401 } event_id;
8d1b2d93
PZ
6402};
6403
67516844
JO
6404static int perf_event_comm_match(struct perf_event *event)
6405{
6406 return event->attr.comm;
6407}
6408
cdd6c482 6409static void perf_event_comm_output(struct perf_event *event,
52d857a8 6410 void *data)
8d1b2d93 6411{
52d857a8 6412 struct perf_comm_event *comm_event = data;
8d1b2d93 6413 struct perf_output_handle handle;
c980d109 6414 struct perf_sample_data sample;
cdd6c482 6415 int size = comm_event->event_id.header.size;
c980d109
ACM
6416 int ret;
6417
67516844
JO
6418 if (!perf_event_comm_match(event))
6419 return;
6420
c980d109
ACM
6421 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
6422 ret = perf_output_begin(&handle, event,
a7ac67ea 6423 comm_event->event_id.header.size);
8d1b2d93
PZ
6424
6425 if (ret)
c980d109 6426 goto out;
8d1b2d93 6427
cdd6c482
IM
6428 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
6429 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
709e50cf 6430
cdd6c482 6431 perf_output_put(&handle, comm_event->event_id);
76369139 6432 __output_copy(&handle, comm_event->comm,
8d1b2d93 6433 comm_event->comm_size);
c980d109
ACM
6434
6435 perf_event__output_id_sample(event, &handle, &sample);
6436
8d1b2d93 6437 perf_output_end(&handle);
c980d109
ACM
6438out:
6439 comm_event->event_id.header.size = size;
8d1b2d93
PZ
6440}
6441
cdd6c482 6442static void perf_event_comm_event(struct perf_comm_event *comm_event)
8d1b2d93 6443{
413ee3b4 6444 char comm[TASK_COMM_LEN];
8d1b2d93 6445 unsigned int size;
8d1b2d93 6446
413ee3b4 6447 memset(comm, 0, sizeof(comm));
96b02d78 6448 strlcpy(comm, comm_event->task->comm, sizeof(comm));
888fcee0 6449 size = ALIGN(strlen(comm)+1, sizeof(u64));
8d1b2d93
PZ
6450
6451 comm_event->comm = comm;
6452 comm_event->comm_size = size;
6453
cdd6c482 6454 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
8dc85d54 6455
aab5b71e 6456 perf_iterate_sb(perf_event_comm_output,
52d857a8
JO
6457 comm_event,
6458 NULL);
8d1b2d93
PZ
6459}
6460
82b89778 6461void perf_event_comm(struct task_struct *task, bool exec)
8d1b2d93 6462{
9ee318a7
PZ
6463 struct perf_comm_event comm_event;
6464
cdd6c482 6465 if (!atomic_read(&nr_comm_events))
9ee318a7 6466 return;
a63eaf34 6467
9ee318a7 6468 comm_event = (struct perf_comm_event){
8d1b2d93 6469 .task = task,
573402db
PZ
6470 /* .comm */
6471 /* .comm_size */
cdd6c482 6472 .event_id = {
573402db 6473 .header = {
cdd6c482 6474 .type = PERF_RECORD_COMM,
82b89778 6475 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
573402db
PZ
6476 /* .size */
6477 },
6478 /* .pid */
6479 /* .tid */
8d1b2d93
PZ
6480 },
6481 };
6482
cdd6c482 6483 perf_event_comm_event(&comm_event);
8d1b2d93
PZ
6484}
6485
0a4a9391
PZ
6486/*
6487 * mmap tracking
6488 */
6489
6490struct perf_mmap_event {
089dd79d
PZ
6491 struct vm_area_struct *vma;
6492
6493 const char *file_name;
6494 int file_size;
13d7a241
SE
6495 int maj, min;
6496 u64 ino;
6497 u64 ino_generation;
f972eb63 6498 u32 prot, flags;
0a4a9391
PZ
6499
6500 struct {
6501 struct perf_event_header header;
6502
6503 u32 pid;
6504 u32 tid;
6505 u64 start;
6506 u64 len;
6507 u64 pgoff;
cdd6c482 6508 } event_id;
0a4a9391
PZ
6509};
6510
67516844
JO
6511static int perf_event_mmap_match(struct perf_event *event,
6512 void *data)
6513{
6514 struct perf_mmap_event *mmap_event = data;
6515 struct vm_area_struct *vma = mmap_event->vma;
6516 int executable = vma->vm_flags & VM_EXEC;
6517
6518 return (!executable && event->attr.mmap_data) ||
13d7a241 6519 (executable && (event->attr.mmap || event->attr.mmap2));
67516844
JO
6520}
6521
cdd6c482 6522static void perf_event_mmap_output(struct perf_event *event,
52d857a8 6523 void *data)
0a4a9391 6524{
52d857a8 6525 struct perf_mmap_event *mmap_event = data;
0a4a9391 6526 struct perf_output_handle handle;
c980d109 6527 struct perf_sample_data sample;
cdd6c482 6528 int size = mmap_event->event_id.header.size;
c980d109 6529 int ret;
0a4a9391 6530
67516844
JO
6531 if (!perf_event_mmap_match(event, data))
6532 return;
6533
13d7a241
SE
6534 if (event->attr.mmap2) {
6535 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
6536 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
6537 mmap_event->event_id.header.size += sizeof(mmap_event->min);
6538 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
d008d525 6539 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
f972eb63
PZ
6540 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
6541 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
13d7a241
SE
6542 }
6543
c980d109
ACM
6544 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
6545 ret = perf_output_begin(&handle, event,
a7ac67ea 6546 mmap_event->event_id.header.size);
0a4a9391 6547 if (ret)
c980d109 6548 goto out;
0a4a9391 6549
cdd6c482
IM
6550 mmap_event->event_id.pid = perf_event_pid(event, current);
6551 mmap_event->event_id.tid = perf_event_tid(event, current);
709e50cf 6552
cdd6c482 6553 perf_output_put(&handle, mmap_event->event_id);
13d7a241
SE
6554
6555 if (event->attr.mmap2) {
6556 perf_output_put(&handle, mmap_event->maj);
6557 perf_output_put(&handle, mmap_event->min);
6558 perf_output_put(&handle, mmap_event->ino);
6559 perf_output_put(&handle, mmap_event->ino_generation);
f972eb63
PZ
6560 perf_output_put(&handle, mmap_event->prot);
6561 perf_output_put(&handle, mmap_event->flags);
13d7a241
SE
6562 }
6563
76369139 6564 __output_copy(&handle, mmap_event->file_name,
0a4a9391 6565 mmap_event->file_size);
c980d109
ACM
6566
6567 perf_event__output_id_sample(event, &handle, &sample);
6568
78d613eb 6569 perf_output_end(&handle);
c980d109
ACM
6570out:
6571 mmap_event->event_id.header.size = size;
0a4a9391
PZ
6572}
6573
cdd6c482 6574static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
0a4a9391 6575{
089dd79d
PZ
6576 struct vm_area_struct *vma = mmap_event->vma;
6577 struct file *file = vma->vm_file;
13d7a241
SE
6578 int maj = 0, min = 0;
6579 u64 ino = 0, gen = 0;
f972eb63 6580 u32 prot = 0, flags = 0;
0a4a9391
PZ
6581 unsigned int size;
6582 char tmp[16];
6583 char *buf = NULL;
2c42cfbf 6584 char *name;
413ee3b4 6585
0a4a9391 6586 if (file) {
13d7a241
SE
6587 struct inode *inode;
6588 dev_t dev;
3ea2f2b9 6589
2c42cfbf 6590 buf = kmalloc(PATH_MAX, GFP_KERNEL);
0a4a9391 6591 if (!buf) {
c7e548b4
ON
6592 name = "//enomem";
6593 goto cpy_name;
0a4a9391 6594 }
413ee3b4 6595 /*
3ea2f2b9 6596 * d_path() works from the end of the rb backwards, so we
413ee3b4
AB
6597 * need to add enough zero bytes after the string to handle
6598 * the 64bit alignment we do later.
6599 */
9bf39ab2 6600 name = file_path(file, buf, PATH_MAX - sizeof(u64));
0a4a9391 6601 if (IS_ERR(name)) {
c7e548b4
ON
6602 name = "//toolong";
6603 goto cpy_name;
0a4a9391 6604 }
13d7a241
SE
6605 inode = file_inode(vma->vm_file);
6606 dev = inode->i_sb->s_dev;
6607 ino = inode->i_ino;
6608 gen = inode->i_generation;
6609 maj = MAJOR(dev);
6610 min = MINOR(dev);
f972eb63
PZ
6611
6612 if (vma->vm_flags & VM_READ)
6613 prot |= PROT_READ;
6614 if (vma->vm_flags & VM_WRITE)
6615 prot |= PROT_WRITE;
6616 if (vma->vm_flags & VM_EXEC)
6617 prot |= PROT_EXEC;
6618
6619 if (vma->vm_flags & VM_MAYSHARE)
6620 flags = MAP_SHARED;
6621 else
6622 flags = MAP_PRIVATE;
6623
6624 if (vma->vm_flags & VM_DENYWRITE)
6625 flags |= MAP_DENYWRITE;
6626 if (vma->vm_flags & VM_MAYEXEC)
6627 flags |= MAP_EXECUTABLE;
6628 if (vma->vm_flags & VM_LOCKED)
6629 flags |= MAP_LOCKED;
6630 if (vma->vm_flags & VM_HUGETLB)
6631 flags |= MAP_HUGETLB;
6632
c7e548b4 6633 goto got_name;
0a4a9391 6634 } else {
fbe26abe
JO
6635 if (vma->vm_ops && vma->vm_ops->name) {
6636 name = (char *) vma->vm_ops->name(vma);
6637 if (name)
6638 goto cpy_name;
6639 }
6640
2c42cfbf 6641 name = (char *)arch_vma_name(vma);
c7e548b4
ON
6642 if (name)
6643 goto cpy_name;
089dd79d 6644
32c5fb7e 6645 if (vma->vm_start <= vma->vm_mm->start_brk &&
3af9e859 6646 vma->vm_end >= vma->vm_mm->brk) {
c7e548b4
ON
6647 name = "[heap]";
6648 goto cpy_name;
32c5fb7e
ON
6649 }
6650 if (vma->vm_start <= vma->vm_mm->start_stack &&
3af9e859 6651 vma->vm_end >= vma->vm_mm->start_stack) {
c7e548b4
ON
6652 name = "[stack]";
6653 goto cpy_name;
089dd79d
PZ
6654 }
6655
c7e548b4
ON
6656 name = "//anon";
6657 goto cpy_name;
0a4a9391
PZ
6658 }
6659
c7e548b4
ON
6660cpy_name:
6661 strlcpy(tmp, name, sizeof(tmp));
6662 name = tmp;
0a4a9391 6663got_name:
2c42cfbf
PZ
6664 /*
6665 * Since our buffer works in 8 byte units we need to align our string
6666 * size to a multiple of 8. However, we must guarantee the tail end is
6667 * zero'd out to avoid leaking random bits to userspace.
6668 */
6669 size = strlen(name)+1;
6670 while (!IS_ALIGNED(size, sizeof(u64)))
6671 name[size++] = '\0';
0a4a9391
PZ
6672
6673 mmap_event->file_name = name;
6674 mmap_event->file_size = size;
13d7a241
SE
6675 mmap_event->maj = maj;
6676 mmap_event->min = min;
6677 mmap_event->ino = ino;
6678 mmap_event->ino_generation = gen;
f972eb63
PZ
6679 mmap_event->prot = prot;
6680 mmap_event->flags = flags;
0a4a9391 6681
2fe85427
SE
6682 if (!(vma->vm_flags & VM_EXEC))
6683 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
6684
cdd6c482 6685 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
0a4a9391 6686
aab5b71e 6687 perf_iterate_sb(perf_event_mmap_output,
52d857a8
JO
6688 mmap_event,
6689 NULL);
665c2142 6690
0a4a9391
PZ
6691 kfree(buf);
6692}
6693
375637bc
AS
6694/*
6695 * Check whether inode and address range match filter criteria.
6696 */
6697static bool perf_addr_filter_match(struct perf_addr_filter *filter,
6698 struct file *file, unsigned long offset,
6699 unsigned long size)
6700{
45063097 6701 if (filter->inode != file_inode(file))
375637bc
AS
6702 return false;
6703
6704 if (filter->offset > offset + size)
6705 return false;
6706
6707 if (filter->offset + filter->size < offset)
6708 return false;
6709
6710 return true;
6711}
6712
6713static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
6714{
6715 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6716 struct vm_area_struct *vma = data;
6717 unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags;
6718 struct file *file = vma->vm_file;
6719 struct perf_addr_filter *filter;
6720 unsigned int restart = 0, count = 0;
6721
6722 if (!has_addr_filter(event))
6723 return;
6724
6725 if (!file)
6726 return;
6727
6728 raw_spin_lock_irqsave(&ifh->lock, flags);
6729 list_for_each_entry(filter, &ifh->list, entry) {
6730 if (perf_addr_filter_match(filter, file, off,
6731 vma->vm_end - vma->vm_start)) {
6732 event->addr_filters_offs[count] = vma->vm_start;
6733 restart++;
6734 }
6735
6736 count++;
6737 }
6738
6739 if (restart)
6740 event->addr_filters_gen++;
6741 raw_spin_unlock_irqrestore(&ifh->lock, flags);
6742
6743 if (restart)
767ae086 6744 perf_event_stop(event, 1);
375637bc
AS
6745}
6746
6747/*
6748 * Adjust all task's events' filters to the new vma
6749 */
6750static void perf_addr_filters_adjust(struct vm_area_struct *vma)
6751{
6752 struct perf_event_context *ctx;
6753 int ctxn;
6754
12b40a23
MP
6755 /*
6756 * Data tracing isn't supported yet and as such there is no need
6757 * to keep track of anything that isn't related to executable code:
6758 */
6759 if (!(vma->vm_flags & VM_EXEC))
6760 return;
6761
375637bc
AS
6762 rcu_read_lock();
6763 for_each_task_context_nr(ctxn) {
6764 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6765 if (!ctx)
6766 continue;
6767
aab5b71e 6768 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
375637bc
AS
6769 }
6770 rcu_read_unlock();
6771}
6772
3af9e859 6773void perf_event_mmap(struct vm_area_struct *vma)
0a4a9391 6774{
9ee318a7
PZ
6775 struct perf_mmap_event mmap_event;
6776
cdd6c482 6777 if (!atomic_read(&nr_mmap_events))
9ee318a7
PZ
6778 return;
6779
6780 mmap_event = (struct perf_mmap_event){
089dd79d 6781 .vma = vma,
573402db
PZ
6782 /* .file_name */
6783 /* .file_size */
cdd6c482 6784 .event_id = {
573402db 6785 .header = {
cdd6c482 6786 .type = PERF_RECORD_MMAP,
39447b38 6787 .misc = PERF_RECORD_MISC_USER,
573402db
PZ
6788 /* .size */
6789 },
6790 /* .pid */
6791 /* .tid */
089dd79d
PZ
6792 .start = vma->vm_start,
6793 .len = vma->vm_end - vma->vm_start,
3a0304e9 6794 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
0a4a9391 6795 },
13d7a241
SE
6796 /* .maj (attr_mmap2 only) */
6797 /* .min (attr_mmap2 only) */
6798 /* .ino (attr_mmap2 only) */
6799 /* .ino_generation (attr_mmap2 only) */
f972eb63
PZ
6800 /* .prot (attr_mmap2 only) */
6801 /* .flags (attr_mmap2 only) */
0a4a9391
PZ
6802 };
6803
375637bc 6804 perf_addr_filters_adjust(vma);
cdd6c482 6805 perf_event_mmap_event(&mmap_event);
0a4a9391
PZ
6806}
6807
68db7e98
AS
6808void perf_event_aux_event(struct perf_event *event, unsigned long head,
6809 unsigned long size, u64 flags)
6810{
6811 struct perf_output_handle handle;
6812 struct perf_sample_data sample;
6813 struct perf_aux_event {
6814 struct perf_event_header header;
6815 u64 offset;
6816 u64 size;
6817 u64 flags;
6818 } rec = {
6819 .header = {
6820 .type = PERF_RECORD_AUX,
6821 .misc = 0,
6822 .size = sizeof(rec),
6823 },
6824 .offset = head,
6825 .size = size,
6826 .flags = flags,
6827 };
6828 int ret;
6829
6830 perf_event_header__init_id(&rec.header, &sample, event);
6831 ret = perf_output_begin(&handle, event, rec.header.size);
6832
6833 if (ret)
6834 return;
6835
6836 perf_output_put(&handle, rec);
6837 perf_event__output_id_sample(event, &handle, &sample);
6838
6839 perf_output_end(&handle);
6840}
6841
f38b0dbb
KL
6842/*
6843 * Lost/dropped samples logging
6844 */
6845void perf_log_lost_samples(struct perf_event *event, u64 lost)
6846{
6847 struct perf_output_handle handle;
6848 struct perf_sample_data sample;
6849 int ret;
6850
6851 struct {
6852 struct perf_event_header header;
6853 u64 lost;
6854 } lost_samples_event = {
6855 .header = {
6856 .type = PERF_RECORD_LOST_SAMPLES,
6857 .misc = 0,
6858 .size = sizeof(lost_samples_event),
6859 },
6860 .lost = lost,
6861 };
6862
6863 perf_event_header__init_id(&lost_samples_event.header, &sample, event);
6864
6865 ret = perf_output_begin(&handle, event,
6866 lost_samples_event.header.size);
6867 if (ret)
6868 return;
6869
6870 perf_output_put(&handle, lost_samples_event);
6871 perf_event__output_id_sample(event, &handle, &sample);
6872 perf_output_end(&handle);
6873}
6874
45ac1403
AH
6875/*
6876 * context_switch tracking
6877 */
6878
6879struct perf_switch_event {
6880 struct task_struct *task;
6881 struct task_struct *next_prev;
6882
6883 struct {
6884 struct perf_event_header header;
6885 u32 next_prev_pid;
6886 u32 next_prev_tid;
6887 } event_id;
6888};
6889
6890static int perf_event_switch_match(struct perf_event *event)
6891{
6892 return event->attr.context_switch;
6893}
6894
6895static void perf_event_switch_output(struct perf_event *event, void *data)
6896{
6897 struct perf_switch_event *se = data;
6898 struct perf_output_handle handle;
6899 struct perf_sample_data sample;
6900 int ret;
6901
6902 if (!perf_event_switch_match(event))
6903 return;
6904
6905 /* Only CPU-wide events are allowed to see next/prev pid/tid */
6906 if (event->ctx->task) {
6907 se->event_id.header.type = PERF_RECORD_SWITCH;
6908 se->event_id.header.size = sizeof(se->event_id.header);
6909 } else {
6910 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
6911 se->event_id.header.size = sizeof(se->event_id);
6912 se->event_id.next_prev_pid =
6913 perf_event_pid(event, se->next_prev);
6914 se->event_id.next_prev_tid =
6915 perf_event_tid(event, se->next_prev);
6916 }
6917
6918 perf_event_header__init_id(&se->event_id.header, &sample, event);
6919
6920 ret = perf_output_begin(&handle, event, se->event_id.header.size);
6921 if (ret)
6922 return;
6923
6924 if (event->ctx->task)
6925 perf_output_put(&handle, se->event_id.header);
6926 else
6927 perf_output_put(&handle, se->event_id);
6928
6929 perf_event__output_id_sample(event, &handle, &sample);
6930
6931 perf_output_end(&handle);
6932}
6933
6934static void perf_event_switch(struct task_struct *task,
6935 struct task_struct *next_prev, bool sched_in)
6936{
6937 struct perf_switch_event switch_event;
6938
6939 /* N.B. caller checks nr_switch_events != 0 */
6940
6941 switch_event = (struct perf_switch_event){
6942 .task = task,
6943 .next_prev = next_prev,
6944 .event_id = {
6945 .header = {
6946 /* .type */
6947 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
6948 /* .size */
6949 },
6950 /* .next_prev_pid */
6951 /* .next_prev_tid */
6952 },
6953 };
6954
aab5b71e 6955 perf_iterate_sb(perf_event_switch_output,
45ac1403
AH
6956 &switch_event,
6957 NULL);
6958}
6959
a78ac325
PZ
6960/*
6961 * IRQ throttle logging
6962 */
6963
cdd6c482 6964static void perf_log_throttle(struct perf_event *event, int enable)
a78ac325
PZ
6965{
6966 struct perf_output_handle handle;
c980d109 6967 struct perf_sample_data sample;
a78ac325
PZ
6968 int ret;
6969
6970 struct {
6971 struct perf_event_header header;
6972 u64 time;
cca3f454 6973 u64 id;
7f453c24 6974 u64 stream_id;
a78ac325
PZ
6975 } throttle_event = {
6976 .header = {
cdd6c482 6977 .type = PERF_RECORD_THROTTLE,
a78ac325
PZ
6978 .misc = 0,
6979 .size = sizeof(throttle_event),
6980 },
34f43927 6981 .time = perf_event_clock(event),
cdd6c482
IM
6982 .id = primary_event_id(event),
6983 .stream_id = event->id,
a78ac325
PZ
6984 };
6985
966ee4d6 6986 if (enable)
cdd6c482 6987 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
966ee4d6 6988
c980d109
ACM
6989 perf_event_header__init_id(&throttle_event.header, &sample, event);
6990
6991 ret = perf_output_begin(&handle, event,
a7ac67ea 6992 throttle_event.header.size);
a78ac325
PZ
6993 if (ret)
6994 return;
6995
6996 perf_output_put(&handle, throttle_event);
c980d109 6997 perf_event__output_id_sample(event, &handle, &sample);
a78ac325
PZ
6998 perf_output_end(&handle);
6999}
7000
ec0d7729
AS
7001static void perf_log_itrace_start(struct perf_event *event)
7002{
7003 struct perf_output_handle handle;
7004 struct perf_sample_data sample;
7005 struct perf_aux_event {
7006 struct perf_event_header header;
7007 u32 pid;
7008 u32 tid;
7009 } rec;
7010 int ret;
7011
7012 if (event->parent)
7013 event = event->parent;
7014
7015 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
7016 event->hw.itrace_started)
7017 return;
7018
ec0d7729
AS
7019 rec.header.type = PERF_RECORD_ITRACE_START;
7020 rec.header.misc = 0;
7021 rec.header.size = sizeof(rec);
7022 rec.pid = perf_event_pid(event, current);
7023 rec.tid = perf_event_tid(event, current);
7024
7025 perf_event_header__init_id(&rec.header, &sample, event);
7026 ret = perf_output_begin(&handle, event, rec.header.size);
7027
7028 if (ret)
7029 return;
7030
7031 perf_output_put(&handle, rec);
7032 perf_event__output_id_sample(event, &handle, &sample);
7033
7034 perf_output_end(&handle);
7035}
7036
f6c7d5fe 7037/*
cdd6c482 7038 * Generic event overflow handling, sampling.
f6c7d5fe
PZ
7039 */
7040
a8b0ca17 7041static int __perf_event_overflow(struct perf_event *event,
5622f295
MM
7042 int throttle, struct perf_sample_data *data,
7043 struct pt_regs *regs)
f6c7d5fe 7044{
cdd6c482
IM
7045 int events = atomic_read(&event->event_limit);
7046 struct hw_perf_event *hwc = &event->hw;
e050e3f0 7047 u64 seq;
79f14641
PZ
7048 int ret = 0;
7049
96398826
PZ
7050 /*
7051 * Non-sampling counters might still use the PMI to fold short
7052 * hardware counters, ignore those.
7053 */
7054 if (unlikely(!is_sampling_event(event)))
7055 return 0;
7056
e050e3f0
SE
7057 seq = __this_cpu_read(perf_throttled_seq);
7058 if (seq != hwc->interrupts_seq) {
7059 hwc->interrupts_seq = seq;
7060 hwc->interrupts = 1;
7061 } else {
7062 hwc->interrupts++;
7063 if (unlikely(throttle
7064 && hwc->interrupts >= max_samples_per_tick)) {
7065 __this_cpu_inc(perf_throttled_count);
555e0c1e 7066 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
163ec435
PZ
7067 hwc->interrupts = MAX_INTERRUPTS;
7068 perf_log_throttle(event, 0);
a78ac325
PZ
7069 ret = 1;
7070 }
e050e3f0 7071 }
60db5e09 7072
cdd6c482 7073 if (event->attr.freq) {
def0a9b2 7074 u64 now = perf_clock();
abd50713 7075 s64 delta = now - hwc->freq_time_stamp;
bd2b5b12 7076
abd50713 7077 hwc->freq_time_stamp = now;
bd2b5b12 7078
abd50713 7079 if (delta > 0 && delta < 2*TICK_NSEC)
f39d47ff 7080 perf_adjust_period(event, delta, hwc->last_period, true);
bd2b5b12
PZ
7081 }
7082
2023b359
PZ
7083 /*
7084 * XXX event_limit might not quite work as expected on inherited
cdd6c482 7085 * events
2023b359
PZ
7086 */
7087
cdd6c482
IM
7088 event->pending_kill = POLL_IN;
7089 if (events && atomic_dec_and_test(&event->event_limit)) {
79f14641 7090 ret = 1;
cdd6c482 7091 event->pending_kill = POLL_HUP;
5aab90ce
JO
7092
7093 perf_event_disable_inatomic(event);
79f14641
PZ
7094 }
7095
aa6a5f3c 7096 READ_ONCE(event->overflow_handler)(event, data, regs);
453f19ee 7097
fed66e2c 7098 if (*perf_event_fasync(event) && event->pending_kill) {
a8b0ca17
PZ
7099 event->pending_wakeup = 1;
7100 irq_work_queue(&event->pending);
f506b3dc
PZ
7101 }
7102
79f14641 7103 return ret;
f6c7d5fe
PZ
7104}
7105
a8b0ca17 7106int perf_event_overflow(struct perf_event *event,
5622f295
MM
7107 struct perf_sample_data *data,
7108 struct pt_regs *regs)
850bc73f 7109{
a8b0ca17 7110 return __perf_event_overflow(event, 1, data, regs);
850bc73f
PZ
7111}
7112
15dbf27c 7113/*
cdd6c482 7114 * Generic software event infrastructure
15dbf27c
PZ
7115 */
7116
b28ab83c
PZ
7117struct swevent_htable {
7118 struct swevent_hlist *swevent_hlist;
7119 struct mutex hlist_mutex;
7120 int hlist_refcount;
7121
7122 /* Recursion avoidance in each contexts */
7123 int recursion[PERF_NR_CONTEXTS];
7124};
7125
7126static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
7127
7b4b6658 7128/*
cdd6c482
IM
7129 * We directly increment event->count and keep a second value in
7130 * event->hw.period_left to count intervals. This period event
7b4b6658
PZ
7131 * is kept in the range [-sample_period, 0] so that we can use the
7132 * sign as trigger.
7133 */
7134
ab573844 7135u64 perf_swevent_set_period(struct perf_event *event)
15dbf27c 7136{
cdd6c482 7137 struct hw_perf_event *hwc = &event->hw;
7b4b6658
PZ
7138 u64 period = hwc->last_period;
7139 u64 nr, offset;
7140 s64 old, val;
7141
7142 hwc->last_period = hwc->sample_period;
15dbf27c
PZ
7143
7144again:
e7850595 7145 old = val = local64_read(&hwc->period_left);
7b4b6658
PZ
7146 if (val < 0)
7147 return 0;
15dbf27c 7148
7b4b6658
PZ
7149 nr = div64_u64(period + val, period);
7150 offset = nr * period;
7151 val -= offset;
e7850595 7152 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7b4b6658 7153 goto again;
15dbf27c 7154
7b4b6658 7155 return nr;
15dbf27c
PZ
7156}
7157
0cff784a 7158static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
a8b0ca17 7159 struct perf_sample_data *data,
5622f295 7160 struct pt_regs *regs)
15dbf27c 7161{
cdd6c482 7162 struct hw_perf_event *hwc = &event->hw;
850bc73f 7163 int throttle = 0;
15dbf27c 7164
0cff784a
PZ
7165 if (!overflow)
7166 overflow = perf_swevent_set_period(event);
15dbf27c 7167
7b4b6658
PZ
7168 if (hwc->interrupts == MAX_INTERRUPTS)
7169 return;
15dbf27c 7170
7b4b6658 7171 for (; overflow; overflow--) {
a8b0ca17 7172 if (__perf_event_overflow(event, throttle,
5622f295 7173 data, regs)) {
7b4b6658
PZ
7174 /*
7175 * We inhibit the overflow from happening when
7176 * hwc->interrupts == MAX_INTERRUPTS.
7177 */
7178 break;
7179 }
cf450a73 7180 throttle = 1;
7b4b6658 7181 }
15dbf27c
PZ
7182}
7183
a4eaf7f1 7184static void perf_swevent_event(struct perf_event *event, u64 nr,
a8b0ca17 7185 struct perf_sample_data *data,
5622f295 7186 struct pt_regs *regs)
7b4b6658 7187{
cdd6c482 7188 struct hw_perf_event *hwc = &event->hw;
d6d020e9 7189
e7850595 7190 local64_add(nr, &event->count);
d6d020e9 7191
0cff784a
PZ
7192 if (!regs)
7193 return;
7194
6c7e550f 7195 if (!is_sampling_event(event))
7b4b6658 7196 return;
d6d020e9 7197
5d81e5cf
AV
7198 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
7199 data->period = nr;
7200 return perf_swevent_overflow(event, 1, data, regs);
7201 } else
7202 data->period = event->hw.last_period;
7203
0cff784a 7204 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
a8b0ca17 7205 return perf_swevent_overflow(event, 1, data, regs);
0cff784a 7206
e7850595 7207 if (local64_add_negative(nr, &hwc->period_left))
7b4b6658 7208 return;
df1a132b 7209
a8b0ca17 7210 perf_swevent_overflow(event, 0, data, regs);
d6d020e9
PZ
7211}
7212
f5ffe02e
FW
7213static int perf_exclude_event(struct perf_event *event,
7214 struct pt_regs *regs)
7215{
a4eaf7f1 7216 if (event->hw.state & PERF_HES_STOPPED)
91b2f482 7217 return 1;
a4eaf7f1 7218
f5ffe02e
FW
7219 if (regs) {
7220 if (event->attr.exclude_user && user_mode(regs))
7221 return 1;
7222
7223 if (event->attr.exclude_kernel && !user_mode(regs))
7224 return 1;
7225 }
7226
7227 return 0;
7228}
7229
cdd6c482 7230static int perf_swevent_match(struct perf_event *event,
1c432d89 7231 enum perf_type_id type,
6fb2915d
LZ
7232 u32 event_id,
7233 struct perf_sample_data *data,
7234 struct pt_regs *regs)
15dbf27c 7235{
cdd6c482 7236 if (event->attr.type != type)
a21ca2ca 7237 return 0;
f5ffe02e 7238
cdd6c482 7239 if (event->attr.config != event_id)
15dbf27c
PZ
7240 return 0;
7241
f5ffe02e
FW
7242 if (perf_exclude_event(event, regs))
7243 return 0;
15dbf27c
PZ
7244
7245 return 1;
7246}
7247
76e1d904
FW
7248static inline u64 swevent_hash(u64 type, u32 event_id)
7249{
7250 u64 val = event_id | (type << 32);
7251
7252 return hash_64(val, SWEVENT_HLIST_BITS);
7253}
7254
49f135ed
FW
7255static inline struct hlist_head *
7256__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
76e1d904 7257{
49f135ed
FW
7258 u64 hash = swevent_hash(type, event_id);
7259
7260 return &hlist->heads[hash];
7261}
76e1d904 7262
49f135ed
FW
7263/* For the read side: events when they trigger */
7264static inline struct hlist_head *
b28ab83c 7265find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
49f135ed
FW
7266{
7267 struct swevent_hlist *hlist;
76e1d904 7268
b28ab83c 7269 hlist = rcu_dereference(swhash->swevent_hlist);
76e1d904
FW
7270 if (!hlist)
7271 return NULL;
7272
49f135ed
FW
7273 return __find_swevent_head(hlist, type, event_id);
7274}
7275
7276/* For the event head insertion and removal in the hlist */
7277static inline struct hlist_head *
b28ab83c 7278find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
49f135ed
FW
7279{
7280 struct swevent_hlist *hlist;
7281 u32 event_id = event->attr.config;
7282 u64 type = event->attr.type;
7283
7284 /*
7285 * Event scheduling is always serialized against hlist allocation
7286 * and release. Which makes the protected version suitable here.
7287 * The context lock guarantees that.
7288 */
b28ab83c 7289 hlist = rcu_dereference_protected(swhash->swevent_hlist,
49f135ed
FW
7290 lockdep_is_held(&event->ctx->lock));
7291 if (!hlist)
7292 return NULL;
7293
7294 return __find_swevent_head(hlist, type, event_id);
76e1d904
FW
7295}
7296
7297static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
a8b0ca17 7298 u64 nr,
76e1d904
FW
7299 struct perf_sample_data *data,
7300 struct pt_regs *regs)
15dbf27c 7301{
4a32fea9 7302 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 7303 struct perf_event *event;
76e1d904 7304 struct hlist_head *head;
15dbf27c 7305
76e1d904 7306 rcu_read_lock();
b28ab83c 7307 head = find_swevent_head_rcu(swhash, type, event_id);
76e1d904
FW
7308 if (!head)
7309 goto end;
7310
b67bfe0d 7311 hlist_for_each_entry_rcu(event, head, hlist_entry) {
6fb2915d 7312 if (perf_swevent_match(event, type, event_id, data, regs))
a8b0ca17 7313 perf_swevent_event(event, nr, data, regs);
15dbf27c 7314 }
76e1d904
FW
7315end:
7316 rcu_read_unlock();
15dbf27c
PZ
7317}
7318
86038c5e
PZI
7319DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
7320
4ed7c92d 7321int perf_swevent_get_recursion_context(void)
96f6d444 7322{
4a32fea9 7323 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
96f6d444 7324
b28ab83c 7325 return get_recursion_context(swhash->recursion);
96f6d444 7326}
645e8cc0 7327EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
96f6d444 7328
98b5c2c6 7329void perf_swevent_put_recursion_context(int rctx)
15dbf27c 7330{
4a32fea9 7331 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
927c7a9e 7332
b28ab83c 7333 put_recursion_context(swhash->recursion, rctx);
ce71b9df 7334}
15dbf27c 7335
86038c5e 7336void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
b8e83514 7337{
a4234bfc 7338 struct perf_sample_data data;
4ed7c92d 7339
86038c5e 7340 if (WARN_ON_ONCE(!regs))
4ed7c92d 7341 return;
a4234bfc 7342
fd0d000b 7343 perf_sample_data_init(&data, addr, 0);
a8b0ca17 7344 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
86038c5e
PZI
7345}
7346
7347void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7348{
7349 int rctx;
7350
7351 preempt_disable_notrace();
7352 rctx = perf_swevent_get_recursion_context();
7353 if (unlikely(rctx < 0))
7354 goto fail;
7355
7356 ___perf_sw_event(event_id, nr, regs, addr);
4ed7c92d
PZ
7357
7358 perf_swevent_put_recursion_context(rctx);
86038c5e 7359fail:
1c024eca 7360 preempt_enable_notrace();
b8e83514
PZ
7361}
7362
cdd6c482 7363static void perf_swevent_read(struct perf_event *event)
15dbf27c 7364{
15dbf27c
PZ
7365}
7366
a4eaf7f1 7367static int perf_swevent_add(struct perf_event *event, int flags)
15dbf27c 7368{
4a32fea9 7369 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 7370 struct hw_perf_event *hwc = &event->hw;
76e1d904
FW
7371 struct hlist_head *head;
7372
6c7e550f 7373 if (is_sampling_event(event)) {
7b4b6658 7374 hwc->last_period = hwc->sample_period;
cdd6c482 7375 perf_swevent_set_period(event);
7b4b6658 7376 }
76e1d904 7377
a4eaf7f1
PZ
7378 hwc->state = !(flags & PERF_EF_START);
7379
b28ab83c 7380 head = find_swevent_head(swhash, event);
12ca6ad2 7381 if (WARN_ON_ONCE(!head))
76e1d904
FW
7382 return -EINVAL;
7383
7384 hlist_add_head_rcu(&event->hlist_entry, head);
6a694a60 7385 perf_event_update_userpage(event);
76e1d904 7386
15dbf27c
PZ
7387 return 0;
7388}
7389
a4eaf7f1 7390static void perf_swevent_del(struct perf_event *event, int flags)
15dbf27c 7391{
76e1d904 7392 hlist_del_rcu(&event->hlist_entry);
15dbf27c
PZ
7393}
7394
a4eaf7f1 7395static void perf_swevent_start(struct perf_event *event, int flags)
5c92d124 7396{
a4eaf7f1 7397 event->hw.state = 0;
d6d020e9 7398}
aa9c4c0f 7399
a4eaf7f1 7400static void perf_swevent_stop(struct perf_event *event, int flags)
d6d020e9 7401{
a4eaf7f1 7402 event->hw.state = PERF_HES_STOPPED;
bae43c99
IM
7403}
7404
49f135ed
FW
7405/* Deref the hlist from the update side */
7406static inline struct swevent_hlist *
b28ab83c 7407swevent_hlist_deref(struct swevent_htable *swhash)
49f135ed 7408{
b28ab83c
PZ
7409 return rcu_dereference_protected(swhash->swevent_hlist,
7410 lockdep_is_held(&swhash->hlist_mutex));
49f135ed
FW
7411}
7412
b28ab83c 7413static void swevent_hlist_release(struct swevent_htable *swhash)
76e1d904 7414{
b28ab83c 7415 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
76e1d904 7416
49f135ed 7417 if (!hlist)
76e1d904
FW
7418 return;
7419
70691d4a 7420 RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
fa4bbc4c 7421 kfree_rcu(hlist, rcu_head);
76e1d904
FW
7422}
7423
3b364d7b 7424static void swevent_hlist_put_cpu(int cpu)
76e1d904 7425{
b28ab83c 7426 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904 7427
b28ab83c 7428 mutex_lock(&swhash->hlist_mutex);
76e1d904 7429
b28ab83c
PZ
7430 if (!--swhash->hlist_refcount)
7431 swevent_hlist_release(swhash);
76e1d904 7432
b28ab83c 7433 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
7434}
7435
3b364d7b 7436static void swevent_hlist_put(void)
76e1d904
FW
7437{
7438 int cpu;
7439
76e1d904 7440 for_each_possible_cpu(cpu)
3b364d7b 7441 swevent_hlist_put_cpu(cpu);
76e1d904
FW
7442}
7443
3b364d7b 7444static int swevent_hlist_get_cpu(int cpu)
76e1d904 7445{
b28ab83c 7446 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904
FW
7447 int err = 0;
7448
b28ab83c 7449 mutex_lock(&swhash->hlist_mutex);
b28ab83c 7450 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
76e1d904
FW
7451 struct swevent_hlist *hlist;
7452
7453 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
7454 if (!hlist) {
7455 err = -ENOMEM;
7456 goto exit;
7457 }
b28ab83c 7458 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 7459 }
b28ab83c 7460 swhash->hlist_refcount++;
9ed6060d 7461exit:
b28ab83c 7462 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
7463
7464 return err;
7465}
7466
3b364d7b 7467static int swevent_hlist_get(void)
76e1d904 7468{
3b364d7b 7469 int err, cpu, failed_cpu;
76e1d904 7470
76e1d904
FW
7471 get_online_cpus();
7472 for_each_possible_cpu(cpu) {
3b364d7b 7473 err = swevent_hlist_get_cpu(cpu);
76e1d904
FW
7474 if (err) {
7475 failed_cpu = cpu;
7476 goto fail;
7477 }
7478 }
7479 put_online_cpus();
7480
7481 return 0;
9ed6060d 7482fail:
76e1d904
FW
7483 for_each_possible_cpu(cpu) {
7484 if (cpu == failed_cpu)
7485 break;
3b364d7b 7486 swevent_hlist_put_cpu(cpu);
76e1d904
FW
7487 }
7488
7489 put_online_cpus();
7490 return err;
7491}
7492
c5905afb 7493struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
95476b64 7494
b0a873eb
PZ
7495static void sw_perf_event_destroy(struct perf_event *event)
7496{
7497 u64 event_id = event->attr.config;
95476b64 7498
b0a873eb
PZ
7499 WARN_ON(event->parent);
7500
c5905afb 7501 static_key_slow_dec(&perf_swevent_enabled[event_id]);
3b364d7b 7502 swevent_hlist_put();
b0a873eb
PZ
7503}
7504
7505static int perf_swevent_init(struct perf_event *event)
7506{
8176cced 7507 u64 event_id = event->attr.config;
b0a873eb
PZ
7508
7509 if (event->attr.type != PERF_TYPE_SOFTWARE)
7510 return -ENOENT;
7511
2481c5fa
SE
7512 /*
7513 * no branch sampling for software events
7514 */
7515 if (has_branch_stack(event))
7516 return -EOPNOTSUPP;
7517
b0a873eb
PZ
7518 switch (event_id) {
7519 case PERF_COUNT_SW_CPU_CLOCK:
7520 case PERF_COUNT_SW_TASK_CLOCK:
7521 return -ENOENT;
7522
7523 default:
7524 break;
7525 }
7526
ce677831 7527 if (event_id >= PERF_COUNT_SW_MAX)
b0a873eb
PZ
7528 return -ENOENT;
7529
7530 if (!event->parent) {
7531 int err;
7532
3b364d7b 7533 err = swevent_hlist_get();
b0a873eb
PZ
7534 if (err)
7535 return err;
7536
c5905afb 7537 static_key_slow_inc(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
7538 event->destroy = sw_perf_event_destroy;
7539 }
7540
7541 return 0;
7542}
7543
7544static struct pmu perf_swevent = {
89a1e187 7545 .task_ctx_nr = perf_sw_context,
95476b64 7546
34f43927
PZ
7547 .capabilities = PERF_PMU_CAP_NO_NMI,
7548
b0a873eb 7549 .event_init = perf_swevent_init,
a4eaf7f1
PZ
7550 .add = perf_swevent_add,
7551 .del = perf_swevent_del,
7552 .start = perf_swevent_start,
7553 .stop = perf_swevent_stop,
1c024eca 7554 .read = perf_swevent_read,
1c024eca
PZ
7555};
7556
b0a873eb
PZ
7557#ifdef CONFIG_EVENT_TRACING
7558
1c024eca
PZ
7559static int perf_tp_filter_match(struct perf_event *event,
7560 struct perf_sample_data *data)
7561{
7e3f977e 7562 void *record = data->raw->frag.data;
1c024eca 7563
b71b437e
PZ
7564 /* only top level events have filters set */
7565 if (event->parent)
7566 event = event->parent;
7567
1c024eca
PZ
7568 if (likely(!event->filter) || filter_match_preds(event->filter, record))
7569 return 1;
7570 return 0;
7571}
7572
7573static int perf_tp_event_match(struct perf_event *event,
7574 struct perf_sample_data *data,
7575 struct pt_regs *regs)
7576{
a0f7d0f7
FW
7577 if (event->hw.state & PERF_HES_STOPPED)
7578 return 0;
580d607c
PZ
7579 /*
7580 * All tracepoints are from kernel-space.
7581 */
7582 if (event->attr.exclude_kernel)
1c024eca
PZ
7583 return 0;
7584
7585 if (!perf_tp_filter_match(event, data))
7586 return 0;
7587
7588 return 1;
7589}
7590
85b67bcb
AS
7591void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
7592 struct trace_event_call *call, u64 count,
7593 struct pt_regs *regs, struct hlist_head *head,
7594 struct task_struct *task)
7595{
7596 struct bpf_prog *prog = call->prog;
7597
7598 if (prog) {
7599 *(struct pt_regs **)raw_data = regs;
7600 if (!trace_call_bpf(prog, raw_data) || hlist_empty(head)) {
7601 perf_swevent_put_recursion_context(rctx);
7602 return;
7603 }
7604 }
7605 perf_tp_event(call->event.type, count, raw_data, size, regs, head,
7606 rctx, task);
7607}
7608EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
7609
1e1dcd93 7610void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
e6dab5ff
AV
7611 struct pt_regs *regs, struct hlist_head *head, int rctx,
7612 struct task_struct *task)
95476b64
FW
7613{
7614 struct perf_sample_data data;
1c024eca 7615 struct perf_event *event;
1c024eca 7616
95476b64 7617 struct perf_raw_record raw = {
7e3f977e
DB
7618 .frag = {
7619 .size = entry_size,
7620 .data = record,
7621 },
95476b64
FW
7622 };
7623
1e1dcd93 7624 perf_sample_data_init(&data, 0, 0);
95476b64
FW
7625 data.raw = &raw;
7626
1e1dcd93
AS
7627 perf_trace_buf_update(record, event_type);
7628
b67bfe0d 7629 hlist_for_each_entry_rcu(event, head, hlist_entry) {
1c024eca 7630 if (perf_tp_event_match(event, &data, regs))
a8b0ca17 7631 perf_swevent_event(event, count, &data, regs);
4f41c013 7632 }
ecc55f84 7633
e6dab5ff
AV
7634 /*
7635 * If we got specified a target task, also iterate its context and
7636 * deliver this event there too.
7637 */
7638 if (task && task != current) {
7639 struct perf_event_context *ctx;
7640 struct trace_entry *entry = record;
7641
7642 rcu_read_lock();
7643 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
7644 if (!ctx)
7645 goto unlock;
7646
7647 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7648 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7649 continue;
7650 if (event->attr.config != entry->type)
7651 continue;
7652 if (perf_tp_event_match(event, &data, regs))
7653 perf_swevent_event(event, count, &data, regs);
7654 }
7655unlock:
7656 rcu_read_unlock();
7657 }
7658
ecc55f84 7659 perf_swevent_put_recursion_context(rctx);
95476b64
FW
7660}
7661EXPORT_SYMBOL_GPL(perf_tp_event);
7662
cdd6c482 7663static void tp_perf_event_destroy(struct perf_event *event)
e077df4f 7664{
1c024eca 7665 perf_trace_destroy(event);
e077df4f
PZ
7666}
7667
b0a873eb 7668static int perf_tp_event_init(struct perf_event *event)
e077df4f 7669{
76e1d904
FW
7670 int err;
7671
b0a873eb
PZ
7672 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7673 return -ENOENT;
7674
2481c5fa
SE
7675 /*
7676 * no branch sampling for tracepoint events
7677 */
7678 if (has_branch_stack(event))
7679 return -EOPNOTSUPP;
7680
1c024eca
PZ
7681 err = perf_trace_init(event);
7682 if (err)
b0a873eb 7683 return err;
e077df4f 7684
cdd6c482 7685 event->destroy = tp_perf_event_destroy;
e077df4f 7686
b0a873eb
PZ
7687 return 0;
7688}
7689
7690static struct pmu perf_tracepoint = {
89a1e187
PZ
7691 .task_ctx_nr = perf_sw_context,
7692
b0a873eb 7693 .event_init = perf_tp_event_init,
a4eaf7f1
PZ
7694 .add = perf_trace_add,
7695 .del = perf_trace_del,
7696 .start = perf_swevent_start,
7697 .stop = perf_swevent_stop,
b0a873eb 7698 .read = perf_swevent_read,
b0a873eb
PZ
7699};
7700
7701static inline void perf_tp_register(void)
7702{
2e80a82a 7703 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
e077df4f 7704}
6fb2915d 7705
6fb2915d
LZ
7706static void perf_event_free_filter(struct perf_event *event)
7707{
7708 ftrace_profile_free_filter(event);
7709}
7710
aa6a5f3c
AS
7711#ifdef CONFIG_BPF_SYSCALL
7712static void bpf_overflow_handler(struct perf_event *event,
7713 struct perf_sample_data *data,
7714 struct pt_regs *regs)
7715{
7716 struct bpf_perf_event_data_kern ctx = {
7717 .data = data,
7718 .regs = regs,
7719 };
7720 int ret = 0;
7721
7722 preempt_disable();
7723 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
7724 goto out;
7725 rcu_read_lock();
88575199 7726 ret = BPF_PROG_RUN(event->prog, &ctx);
aa6a5f3c
AS
7727 rcu_read_unlock();
7728out:
7729 __this_cpu_dec(bpf_prog_active);
7730 preempt_enable();
7731 if (!ret)
7732 return;
7733
7734 event->orig_overflow_handler(event, data, regs);
7735}
7736
7737static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
7738{
7739 struct bpf_prog *prog;
7740
7741 if (event->overflow_handler_context)
7742 /* hw breakpoint or kernel counter */
7743 return -EINVAL;
7744
7745 if (event->prog)
7746 return -EEXIST;
7747
7748 prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
7749 if (IS_ERR(prog))
7750 return PTR_ERR(prog);
7751
7752 event->prog = prog;
7753 event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
7754 WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
7755 return 0;
7756}
7757
7758static void perf_event_free_bpf_handler(struct perf_event *event)
7759{
7760 struct bpf_prog *prog = event->prog;
7761
7762 if (!prog)
7763 return;
7764
7765 WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
7766 event->prog = NULL;
7767 bpf_prog_put(prog);
7768}
7769#else
7770static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
7771{
7772 return -EOPNOTSUPP;
7773}
7774static void perf_event_free_bpf_handler(struct perf_event *event)
7775{
7776}
7777#endif
7778
2541517c
AS
7779static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7780{
98b5c2c6 7781 bool is_kprobe, is_tracepoint;
2541517c
AS
7782 struct bpf_prog *prog;
7783
aa6a5f3c
AS
7784 if (event->attr.type == PERF_TYPE_HARDWARE ||
7785 event->attr.type == PERF_TYPE_SOFTWARE)
7786 return perf_event_set_bpf_handler(event, prog_fd);
7787
2541517c
AS
7788 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7789 return -EINVAL;
7790
7791 if (event->tp_event->prog)
7792 return -EEXIST;
7793
98b5c2c6
AS
7794 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
7795 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
7796 if (!is_kprobe && !is_tracepoint)
7797 /* bpf programs can only be attached to u/kprobe or tracepoint */
2541517c
AS
7798 return -EINVAL;
7799
7800 prog = bpf_prog_get(prog_fd);
7801 if (IS_ERR(prog))
7802 return PTR_ERR(prog);
7803
98b5c2c6
AS
7804 if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
7805 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
2541517c
AS
7806 /* valid fd, but invalid bpf program type */
7807 bpf_prog_put(prog);
7808 return -EINVAL;
7809 }
7810
32bbe007
AS
7811 if (is_tracepoint) {
7812 int off = trace_event_get_offsets(event->tp_event);
7813
7814 if (prog->aux->max_ctx_offset > off) {
7815 bpf_prog_put(prog);
7816 return -EACCES;
7817 }
7818 }
2541517c
AS
7819 event->tp_event->prog = prog;
7820
7821 return 0;
7822}
7823
7824static void perf_event_free_bpf_prog(struct perf_event *event)
7825{
7826 struct bpf_prog *prog;
7827
aa6a5f3c
AS
7828 perf_event_free_bpf_handler(event);
7829
2541517c
AS
7830 if (!event->tp_event)
7831 return;
7832
7833 prog = event->tp_event->prog;
7834 if (prog) {
7835 event->tp_event->prog = NULL;
1aacde3d 7836 bpf_prog_put(prog);
2541517c
AS
7837 }
7838}
7839
e077df4f 7840#else
6fb2915d 7841
b0a873eb 7842static inline void perf_tp_register(void)
e077df4f 7843{
e077df4f 7844}
6fb2915d 7845
6fb2915d
LZ
7846static void perf_event_free_filter(struct perf_event *event)
7847{
7848}
7849
2541517c
AS
7850static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7851{
7852 return -ENOENT;
7853}
7854
7855static void perf_event_free_bpf_prog(struct perf_event *event)
7856{
7857}
07b139c8 7858#endif /* CONFIG_EVENT_TRACING */
e077df4f 7859
24f1e32c 7860#ifdef CONFIG_HAVE_HW_BREAKPOINT
f5ffe02e 7861void perf_bp_event(struct perf_event *bp, void *data)
24f1e32c 7862{
f5ffe02e
FW
7863 struct perf_sample_data sample;
7864 struct pt_regs *regs = data;
7865
fd0d000b 7866 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
f5ffe02e 7867
a4eaf7f1 7868 if (!bp->hw.state && !perf_exclude_event(bp, regs))
a8b0ca17 7869 perf_swevent_event(bp, 1, &sample, regs);
24f1e32c
FW
7870}
7871#endif
7872
375637bc
AS
7873/*
7874 * Allocate a new address filter
7875 */
7876static struct perf_addr_filter *
7877perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
7878{
7879 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
7880 struct perf_addr_filter *filter;
7881
7882 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
7883 if (!filter)
7884 return NULL;
7885
7886 INIT_LIST_HEAD(&filter->entry);
7887 list_add_tail(&filter->entry, filters);
7888
7889 return filter;
7890}
7891
7892static void free_filters_list(struct list_head *filters)
7893{
7894 struct perf_addr_filter *filter, *iter;
7895
7896 list_for_each_entry_safe(filter, iter, filters, entry) {
7897 if (filter->inode)
7898 iput(filter->inode);
7899 list_del(&filter->entry);
7900 kfree(filter);
7901 }
7902}
7903
7904/*
7905 * Free existing address filters and optionally install new ones
7906 */
7907static void perf_addr_filters_splice(struct perf_event *event,
7908 struct list_head *head)
7909{
7910 unsigned long flags;
7911 LIST_HEAD(list);
7912
7913 if (!has_addr_filter(event))
7914 return;
7915
7916 /* don't bother with children, they don't have their own filters */
7917 if (event->parent)
7918 return;
7919
7920 raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
7921
7922 list_splice_init(&event->addr_filters.list, &list);
7923 if (head)
7924 list_splice(head, &event->addr_filters.list);
7925
7926 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
7927
7928 free_filters_list(&list);
7929}
7930
7931/*
7932 * Scan through mm's vmas and see if one of them matches the
7933 * @filter; if so, adjust filter's address range.
7934 * Called with mm::mmap_sem down for reading.
7935 */
7936static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter,
7937 struct mm_struct *mm)
7938{
7939 struct vm_area_struct *vma;
7940
7941 for (vma = mm->mmap; vma; vma = vma->vm_next) {
7942 struct file *file = vma->vm_file;
7943 unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
7944 unsigned long vma_size = vma->vm_end - vma->vm_start;
7945
7946 if (!file)
7947 continue;
7948
7949 if (!perf_addr_filter_match(filter, file, off, vma_size))
7950 continue;
7951
7952 return vma->vm_start;
7953 }
7954
7955 return 0;
7956}
7957
7958/*
7959 * Update event's address range filters based on the
7960 * task's existing mappings, if any.
7961 */
7962static void perf_event_addr_filters_apply(struct perf_event *event)
7963{
7964 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7965 struct task_struct *task = READ_ONCE(event->ctx->task);
7966 struct perf_addr_filter *filter;
7967 struct mm_struct *mm = NULL;
7968 unsigned int count = 0;
7969 unsigned long flags;
7970
7971 /*
7972 * We may observe TASK_TOMBSTONE, which means that the event tear-down
7973 * will stop on the parent's child_mutex that our caller is also holding
7974 */
7975 if (task == TASK_TOMBSTONE)
7976 return;
7977
7978 mm = get_task_mm(event->ctx->task);
7979 if (!mm)
7980 goto restart;
7981
7982 down_read(&mm->mmap_sem);
7983
7984 raw_spin_lock_irqsave(&ifh->lock, flags);
7985 list_for_each_entry(filter, &ifh->list, entry) {
7986 event->addr_filters_offs[count] = 0;
7987
99f5bc9b
MP
7988 /*
7989 * Adjust base offset if the filter is associated to a binary
7990 * that needs to be mapped:
7991 */
7992 if (filter->inode)
375637bc
AS
7993 event->addr_filters_offs[count] =
7994 perf_addr_filter_apply(filter, mm);
7995
7996 count++;
7997 }
7998
7999 event->addr_filters_gen++;
8000 raw_spin_unlock_irqrestore(&ifh->lock, flags);
8001
8002 up_read(&mm->mmap_sem);
8003
8004 mmput(mm);
8005
8006restart:
767ae086 8007 perf_event_stop(event, 1);
375637bc
AS
8008}
8009
8010/*
8011 * Address range filtering: limiting the data to certain
8012 * instruction address ranges. Filters are ioctl()ed to us from
8013 * userspace as ascii strings.
8014 *
8015 * Filter string format:
8016 *
8017 * ACTION RANGE_SPEC
8018 * where ACTION is one of the
8019 * * "filter": limit the trace to this region
8020 * * "start": start tracing from this address
8021 * * "stop": stop tracing at this address/region;
8022 * RANGE_SPEC is
8023 * * for kernel addresses: <start address>[/<size>]
8024 * * for object files: <start address>[/<size>]@</path/to/object/file>
8025 *
8026 * if <size> is not specified, the range is treated as a single address.
8027 */
8028enum {
e96271f3 8029 IF_ACT_NONE = -1,
375637bc
AS
8030 IF_ACT_FILTER,
8031 IF_ACT_START,
8032 IF_ACT_STOP,
8033 IF_SRC_FILE,
8034 IF_SRC_KERNEL,
8035 IF_SRC_FILEADDR,
8036 IF_SRC_KERNELADDR,
8037};
8038
8039enum {
8040 IF_STATE_ACTION = 0,
8041 IF_STATE_SOURCE,
8042 IF_STATE_END,
8043};
8044
8045static const match_table_t if_tokens = {
8046 { IF_ACT_FILTER, "filter" },
8047 { IF_ACT_START, "start" },
8048 { IF_ACT_STOP, "stop" },
8049 { IF_SRC_FILE, "%u/%u@%s" },
8050 { IF_SRC_KERNEL, "%u/%u" },
8051 { IF_SRC_FILEADDR, "%u@%s" },
8052 { IF_SRC_KERNELADDR, "%u" },
e96271f3 8053 { IF_ACT_NONE, NULL },
375637bc
AS
8054};
8055
8056/*
8057 * Address filter string parser
8058 */
8059static int
8060perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
8061 struct list_head *filters)
8062{
8063 struct perf_addr_filter *filter = NULL;
8064 char *start, *orig, *filename = NULL;
8065 struct path path;
8066 substring_t args[MAX_OPT_ARGS];
8067 int state = IF_STATE_ACTION, token;
8068 unsigned int kernel = 0;
8069 int ret = -EINVAL;
8070
8071 orig = fstr = kstrdup(fstr, GFP_KERNEL);
8072 if (!fstr)
8073 return -ENOMEM;
8074
8075 while ((start = strsep(&fstr, " ,\n")) != NULL) {
8076 ret = -EINVAL;
8077
8078 if (!*start)
8079 continue;
8080
8081 /* filter definition begins */
8082 if (state == IF_STATE_ACTION) {
8083 filter = perf_addr_filter_new(event, filters);
8084 if (!filter)
8085 goto fail;
8086 }
8087
8088 token = match_token(start, if_tokens, args);
8089 switch (token) {
8090 case IF_ACT_FILTER:
8091 case IF_ACT_START:
8092 filter->filter = 1;
8093
8094 case IF_ACT_STOP:
8095 if (state != IF_STATE_ACTION)
8096 goto fail;
8097
8098 state = IF_STATE_SOURCE;
8099 break;
8100
8101 case IF_SRC_KERNELADDR:
8102 case IF_SRC_KERNEL:
8103 kernel = 1;
8104
8105 case IF_SRC_FILEADDR:
8106 case IF_SRC_FILE:
8107 if (state != IF_STATE_SOURCE)
8108 goto fail;
8109
8110 if (token == IF_SRC_FILE || token == IF_SRC_KERNEL)
8111 filter->range = 1;
8112
8113 *args[0].to = 0;
8114 ret = kstrtoul(args[0].from, 0, &filter->offset);
8115 if (ret)
8116 goto fail;
8117
8118 if (filter->range) {
8119 *args[1].to = 0;
8120 ret = kstrtoul(args[1].from, 0, &filter->size);
8121 if (ret)
8122 goto fail;
8123 }
8124
4059ffd0
MP
8125 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
8126 int fpos = filter->range ? 2 : 1;
8127
8128 filename = match_strdup(&args[fpos]);
375637bc
AS
8129 if (!filename) {
8130 ret = -ENOMEM;
8131 goto fail;
8132 }
8133 }
8134
8135 state = IF_STATE_END;
8136 break;
8137
8138 default:
8139 goto fail;
8140 }
8141
8142 /*
8143 * Filter definition is fully parsed, validate and install it.
8144 * Make sure that it doesn't contradict itself or the event's
8145 * attribute.
8146 */
8147 if (state == IF_STATE_END) {
8148 if (kernel && event->attr.exclude_kernel)
8149 goto fail;
8150
8151 if (!kernel) {
8152 if (!filename)
8153 goto fail;
8154
8155 /* look up the path and grab its inode */
8156 ret = kern_path(filename, LOOKUP_FOLLOW, &path);
8157 if (ret)
8158 goto fail_free_name;
8159
8160 filter->inode = igrab(d_inode(path.dentry));
8161 path_put(&path);
8162 kfree(filename);
8163 filename = NULL;
8164
8165 ret = -EINVAL;
8166 if (!filter->inode ||
8167 !S_ISREG(filter->inode->i_mode))
8168 /* free_filters_list() will iput() */
8169 goto fail;
8170 }
8171
8172 /* ready to consume more filters */
8173 state = IF_STATE_ACTION;
8174 filter = NULL;
8175 }
8176 }
8177
8178 if (state != IF_STATE_ACTION)
8179 goto fail;
8180
8181 kfree(orig);
8182
8183 return 0;
8184
8185fail_free_name:
8186 kfree(filename);
8187fail:
8188 free_filters_list(filters);
8189 kfree(orig);
8190
8191 return ret;
8192}
8193
8194static int
8195perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
8196{
8197 LIST_HEAD(filters);
8198 int ret;
8199
8200 /*
8201 * Since this is called in perf_ioctl() path, we're already holding
8202 * ctx::mutex.
8203 */
8204 lockdep_assert_held(&event->ctx->mutex);
8205
8206 if (WARN_ON_ONCE(event->parent))
8207 return -EINVAL;
8208
8209 /*
8210 * For now, we only support filtering in per-task events; doing so
8211 * for CPU-wide events requires additional context switching trickery,
8212 * since same object code will be mapped at different virtual
8213 * addresses in different processes.
8214 */
8215 if (!event->ctx->task)
8216 return -EOPNOTSUPP;
8217
8218 ret = perf_event_parse_addr_filter(event, filter_str, &filters);
8219 if (ret)
8220 return ret;
8221
8222 ret = event->pmu->addr_filters_validate(&filters);
8223 if (ret) {
8224 free_filters_list(&filters);
8225 return ret;
8226 }
8227
8228 /* remove existing filters, if any */
8229 perf_addr_filters_splice(event, &filters);
8230
8231 /* install new filters */
8232 perf_event_for_each_child(event, perf_event_addr_filters_apply);
8233
8234 return ret;
8235}
8236
c796bbbe
AS
8237static int perf_event_set_filter(struct perf_event *event, void __user *arg)
8238{
8239 char *filter_str;
8240 int ret = -EINVAL;
8241
375637bc
AS
8242 if ((event->attr.type != PERF_TYPE_TRACEPOINT ||
8243 !IS_ENABLED(CONFIG_EVENT_TRACING)) &&
8244 !has_addr_filter(event))
c796bbbe
AS
8245 return -EINVAL;
8246
8247 filter_str = strndup_user(arg, PAGE_SIZE);
8248 if (IS_ERR(filter_str))
8249 return PTR_ERR(filter_str);
8250
8251 if (IS_ENABLED(CONFIG_EVENT_TRACING) &&
8252 event->attr.type == PERF_TYPE_TRACEPOINT)
8253 ret = ftrace_profile_set_filter(event, event->attr.config,
8254 filter_str);
375637bc
AS
8255 else if (has_addr_filter(event))
8256 ret = perf_event_set_addr_filter(event, filter_str);
c796bbbe
AS
8257
8258 kfree(filter_str);
8259 return ret;
8260}
8261
b0a873eb
PZ
8262/*
8263 * hrtimer based swevent callback
8264 */
f29ac756 8265
b0a873eb 8266static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
f29ac756 8267{
b0a873eb
PZ
8268 enum hrtimer_restart ret = HRTIMER_RESTART;
8269 struct perf_sample_data data;
8270 struct pt_regs *regs;
8271 struct perf_event *event;
8272 u64 period;
f29ac756 8273
b0a873eb 8274 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
ba3dd36c
PZ
8275
8276 if (event->state != PERF_EVENT_STATE_ACTIVE)
8277 return HRTIMER_NORESTART;
8278
b0a873eb 8279 event->pmu->read(event);
f344011c 8280
fd0d000b 8281 perf_sample_data_init(&data, 0, event->hw.last_period);
b0a873eb
PZ
8282 regs = get_irq_regs();
8283
8284 if (regs && !perf_exclude_event(event, regs)) {
77aeeebd 8285 if (!(event->attr.exclude_idle && is_idle_task(current)))
33b07b8b 8286 if (__perf_event_overflow(event, 1, &data, regs))
b0a873eb
PZ
8287 ret = HRTIMER_NORESTART;
8288 }
24f1e32c 8289
b0a873eb
PZ
8290 period = max_t(u64, 10000, event->hw.sample_period);
8291 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
24f1e32c 8292
b0a873eb 8293 return ret;
f29ac756
PZ
8294}
8295
b0a873eb 8296static void perf_swevent_start_hrtimer(struct perf_event *event)
5c92d124 8297{
b0a873eb 8298 struct hw_perf_event *hwc = &event->hw;
5d508e82
FBH
8299 s64 period;
8300
8301 if (!is_sampling_event(event))
8302 return;
f5ffe02e 8303
5d508e82
FBH
8304 period = local64_read(&hwc->period_left);
8305 if (period) {
8306 if (period < 0)
8307 period = 10000;
fa407f35 8308
5d508e82
FBH
8309 local64_set(&hwc->period_left, 0);
8310 } else {
8311 period = max_t(u64, 10000, hwc->sample_period);
8312 }
3497d206
TG
8313 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
8314 HRTIMER_MODE_REL_PINNED);
24f1e32c 8315}
b0a873eb
PZ
8316
8317static void perf_swevent_cancel_hrtimer(struct perf_event *event)
24f1e32c 8318{
b0a873eb
PZ
8319 struct hw_perf_event *hwc = &event->hw;
8320
6c7e550f 8321 if (is_sampling_event(event)) {
b0a873eb 8322 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
fa407f35 8323 local64_set(&hwc->period_left, ktime_to_ns(remaining));
b0a873eb
PZ
8324
8325 hrtimer_cancel(&hwc->hrtimer);
8326 }
24f1e32c
FW
8327}
8328
ba3dd36c
PZ
8329static void perf_swevent_init_hrtimer(struct perf_event *event)
8330{
8331 struct hw_perf_event *hwc = &event->hw;
8332
8333 if (!is_sampling_event(event))
8334 return;
8335
8336 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
8337 hwc->hrtimer.function = perf_swevent_hrtimer;
8338
8339 /*
8340 * Since hrtimers have a fixed rate, we can do a static freq->period
8341 * mapping and avoid the whole period adjust feedback stuff.
8342 */
8343 if (event->attr.freq) {
8344 long freq = event->attr.sample_freq;
8345
8346 event->attr.sample_period = NSEC_PER_SEC / freq;
8347 hwc->sample_period = event->attr.sample_period;
8348 local64_set(&hwc->period_left, hwc->sample_period);
778141e3 8349 hwc->last_period = hwc->sample_period;
ba3dd36c
PZ
8350 event->attr.freq = 0;
8351 }
8352}
8353
b0a873eb
PZ
8354/*
8355 * Software event: cpu wall time clock
8356 */
8357
8358static void cpu_clock_event_update(struct perf_event *event)
24f1e32c 8359{
b0a873eb
PZ
8360 s64 prev;
8361 u64 now;
8362
a4eaf7f1 8363 now = local_clock();
b0a873eb
PZ
8364 prev = local64_xchg(&event->hw.prev_count, now);
8365 local64_add(now - prev, &event->count);
24f1e32c 8366}
24f1e32c 8367
a4eaf7f1 8368static void cpu_clock_event_start(struct perf_event *event, int flags)
b0a873eb 8369{
a4eaf7f1 8370 local64_set(&event->hw.prev_count, local_clock());
b0a873eb 8371 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
8372}
8373
a4eaf7f1 8374static void cpu_clock_event_stop(struct perf_event *event, int flags)
f29ac756 8375{
b0a873eb
PZ
8376 perf_swevent_cancel_hrtimer(event);
8377 cpu_clock_event_update(event);
8378}
f29ac756 8379
a4eaf7f1
PZ
8380static int cpu_clock_event_add(struct perf_event *event, int flags)
8381{
8382 if (flags & PERF_EF_START)
8383 cpu_clock_event_start(event, flags);
6a694a60 8384 perf_event_update_userpage(event);
a4eaf7f1
PZ
8385
8386 return 0;
8387}
8388
8389static void cpu_clock_event_del(struct perf_event *event, int flags)
8390{
8391 cpu_clock_event_stop(event, flags);
8392}
8393
b0a873eb
PZ
8394static void cpu_clock_event_read(struct perf_event *event)
8395{
8396 cpu_clock_event_update(event);
8397}
f344011c 8398
b0a873eb
PZ
8399static int cpu_clock_event_init(struct perf_event *event)
8400{
8401 if (event->attr.type != PERF_TYPE_SOFTWARE)
8402 return -ENOENT;
8403
8404 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
8405 return -ENOENT;
8406
2481c5fa
SE
8407 /*
8408 * no branch sampling for software events
8409 */
8410 if (has_branch_stack(event))
8411 return -EOPNOTSUPP;
8412
ba3dd36c
PZ
8413 perf_swevent_init_hrtimer(event);
8414
b0a873eb 8415 return 0;
f29ac756
PZ
8416}
8417
b0a873eb 8418static struct pmu perf_cpu_clock = {
89a1e187
PZ
8419 .task_ctx_nr = perf_sw_context,
8420
34f43927
PZ
8421 .capabilities = PERF_PMU_CAP_NO_NMI,
8422
b0a873eb 8423 .event_init = cpu_clock_event_init,
a4eaf7f1
PZ
8424 .add = cpu_clock_event_add,
8425 .del = cpu_clock_event_del,
8426 .start = cpu_clock_event_start,
8427 .stop = cpu_clock_event_stop,
b0a873eb
PZ
8428 .read = cpu_clock_event_read,
8429};
8430
8431/*
8432 * Software event: task time clock
8433 */
8434
8435static void task_clock_event_update(struct perf_event *event, u64 now)
5c92d124 8436{
b0a873eb
PZ
8437 u64 prev;
8438 s64 delta;
5c92d124 8439
b0a873eb
PZ
8440 prev = local64_xchg(&event->hw.prev_count, now);
8441 delta = now - prev;
8442 local64_add(delta, &event->count);
8443}
5c92d124 8444
a4eaf7f1 8445static void task_clock_event_start(struct perf_event *event, int flags)
b0a873eb 8446{
a4eaf7f1 8447 local64_set(&event->hw.prev_count, event->ctx->time);
b0a873eb 8448 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
8449}
8450
a4eaf7f1 8451static void task_clock_event_stop(struct perf_event *event, int flags)
b0a873eb
PZ
8452{
8453 perf_swevent_cancel_hrtimer(event);
8454 task_clock_event_update(event, event->ctx->time);
a4eaf7f1
PZ
8455}
8456
8457static int task_clock_event_add(struct perf_event *event, int flags)
8458{
8459 if (flags & PERF_EF_START)
8460 task_clock_event_start(event, flags);
6a694a60 8461 perf_event_update_userpage(event);
b0a873eb 8462
a4eaf7f1
PZ
8463 return 0;
8464}
8465
8466static void task_clock_event_del(struct perf_event *event, int flags)
8467{
8468 task_clock_event_stop(event, PERF_EF_UPDATE);
b0a873eb
PZ
8469}
8470
8471static void task_clock_event_read(struct perf_event *event)
8472{
768a06e2
PZ
8473 u64 now = perf_clock();
8474 u64 delta = now - event->ctx->timestamp;
8475 u64 time = event->ctx->time + delta;
b0a873eb
PZ
8476
8477 task_clock_event_update(event, time);
8478}
8479
8480static int task_clock_event_init(struct perf_event *event)
6fb2915d 8481{
b0a873eb
PZ
8482 if (event->attr.type != PERF_TYPE_SOFTWARE)
8483 return -ENOENT;
8484
8485 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
8486 return -ENOENT;
8487
2481c5fa
SE
8488 /*
8489 * no branch sampling for software events
8490 */
8491 if (has_branch_stack(event))
8492 return -EOPNOTSUPP;
8493
ba3dd36c
PZ
8494 perf_swevent_init_hrtimer(event);
8495
b0a873eb 8496 return 0;
6fb2915d
LZ
8497}
8498
b0a873eb 8499static struct pmu perf_task_clock = {
89a1e187
PZ
8500 .task_ctx_nr = perf_sw_context,
8501
34f43927
PZ
8502 .capabilities = PERF_PMU_CAP_NO_NMI,
8503
b0a873eb 8504 .event_init = task_clock_event_init,
a4eaf7f1
PZ
8505 .add = task_clock_event_add,
8506 .del = task_clock_event_del,
8507 .start = task_clock_event_start,
8508 .stop = task_clock_event_stop,
b0a873eb
PZ
8509 .read = task_clock_event_read,
8510};
6fb2915d 8511
ad5133b7 8512static void perf_pmu_nop_void(struct pmu *pmu)
e077df4f 8513{
e077df4f 8514}
6fb2915d 8515
fbbe0701
SB
8516static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
8517{
8518}
8519
ad5133b7 8520static int perf_pmu_nop_int(struct pmu *pmu)
6fb2915d 8521{
ad5133b7 8522 return 0;
6fb2915d
LZ
8523}
8524
18ab2cd3 8525static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
fbbe0701
SB
8526
8527static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
6fb2915d 8528{
fbbe0701
SB
8529 __this_cpu_write(nop_txn_flags, flags);
8530
8531 if (flags & ~PERF_PMU_TXN_ADD)
8532 return;
8533
ad5133b7 8534 perf_pmu_disable(pmu);
6fb2915d
LZ
8535}
8536
ad5133b7
PZ
8537static int perf_pmu_commit_txn(struct pmu *pmu)
8538{
fbbe0701
SB
8539 unsigned int flags = __this_cpu_read(nop_txn_flags);
8540
8541 __this_cpu_write(nop_txn_flags, 0);
8542
8543 if (flags & ~PERF_PMU_TXN_ADD)
8544 return 0;
8545
ad5133b7
PZ
8546 perf_pmu_enable(pmu);
8547 return 0;
8548}
e077df4f 8549
ad5133b7 8550static void perf_pmu_cancel_txn(struct pmu *pmu)
24f1e32c 8551{
fbbe0701
SB
8552 unsigned int flags = __this_cpu_read(nop_txn_flags);
8553
8554 __this_cpu_write(nop_txn_flags, 0);
8555
8556 if (flags & ~PERF_PMU_TXN_ADD)
8557 return;
8558
ad5133b7 8559 perf_pmu_enable(pmu);
24f1e32c
FW
8560}
8561
35edc2a5
PZ
8562static int perf_event_idx_default(struct perf_event *event)
8563{
c719f560 8564 return 0;
35edc2a5
PZ
8565}
8566
8dc85d54
PZ
8567/*
8568 * Ensures all contexts with the same task_ctx_nr have the same
8569 * pmu_cpu_context too.
8570 */
9e317041 8571static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
24f1e32c 8572{
8dc85d54 8573 struct pmu *pmu;
b326e956 8574
8dc85d54
PZ
8575 if (ctxn < 0)
8576 return NULL;
24f1e32c 8577
8dc85d54
PZ
8578 list_for_each_entry(pmu, &pmus, entry) {
8579 if (pmu->task_ctx_nr == ctxn)
8580 return pmu->pmu_cpu_context;
8581 }
24f1e32c 8582
8dc85d54 8583 return NULL;
24f1e32c
FW
8584}
8585
51676957 8586static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
24f1e32c 8587{
51676957
PZ
8588 int cpu;
8589
8590 for_each_possible_cpu(cpu) {
8591 struct perf_cpu_context *cpuctx;
8592
8593 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8594
3f1f3320
PZ
8595 if (cpuctx->unique_pmu == old_pmu)
8596 cpuctx->unique_pmu = pmu;
51676957
PZ
8597 }
8598}
8599
8600static void free_pmu_context(struct pmu *pmu)
8601{
8602 struct pmu *i;
f5ffe02e 8603
8dc85d54 8604 mutex_lock(&pmus_lock);
0475f9ea 8605 /*
8dc85d54 8606 * Like a real lame refcount.
0475f9ea 8607 */
51676957
PZ
8608 list_for_each_entry(i, &pmus, entry) {
8609 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
8610 update_pmu_context(i, pmu);
8dc85d54 8611 goto out;
51676957 8612 }
8dc85d54 8613 }
d6d020e9 8614
51676957 8615 free_percpu(pmu->pmu_cpu_context);
8dc85d54
PZ
8616out:
8617 mutex_unlock(&pmus_lock);
24f1e32c 8618}
6e855cd4
AS
8619
8620/*
8621 * Let userspace know that this PMU supports address range filtering:
8622 */
8623static ssize_t nr_addr_filters_show(struct device *dev,
8624 struct device_attribute *attr,
8625 char *page)
8626{
8627 struct pmu *pmu = dev_get_drvdata(dev);
8628
8629 return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
8630}
8631DEVICE_ATTR_RO(nr_addr_filters);
8632
2e80a82a 8633static struct idr pmu_idr;
d6d020e9 8634
abe43400
PZ
8635static ssize_t
8636type_show(struct device *dev, struct device_attribute *attr, char *page)
8637{
8638 struct pmu *pmu = dev_get_drvdata(dev);
8639
8640 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
8641}
90826ca7 8642static DEVICE_ATTR_RO(type);
abe43400 8643
62b85639
SE
8644static ssize_t
8645perf_event_mux_interval_ms_show(struct device *dev,
8646 struct device_attribute *attr,
8647 char *page)
8648{
8649 struct pmu *pmu = dev_get_drvdata(dev);
8650
8651 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
8652}
8653
272325c4
PZ
8654static DEFINE_MUTEX(mux_interval_mutex);
8655
62b85639
SE
8656static ssize_t
8657perf_event_mux_interval_ms_store(struct device *dev,
8658 struct device_attribute *attr,
8659 const char *buf, size_t count)
8660{
8661 struct pmu *pmu = dev_get_drvdata(dev);
8662 int timer, cpu, ret;
8663
8664 ret = kstrtoint(buf, 0, &timer);
8665 if (ret)
8666 return ret;
8667
8668 if (timer < 1)
8669 return -EINVAL;
8670
8671 /* same value, noting to do */
8672 if (timer == pmu->hrtimer_interval_ms)
8673 return count;
8674
272325c4 8675 mutex_lock(&mux_interval_mutex);
62b85639
SE
8676 pmu->hrtimer_interval_ms = timer;
8677
8678 /* update all cpuctx for this PMU */
272325c4
PZ
8679 get_online_cpus();
8680 for_each_online_cpu(cpu) {
62b85639
SE
8681 struct perf_cpu_context *cpuctx;
8682 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
8683 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
8684
272325c4
PZ
8685 cpu_function_call(cpu,
8686 (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
62b85639 8687 }
272325c4
PZ
8688 put_online_cpus();
8689 mutex_unlock(&mux_interval_mutex);
62b85639
SE
8690
8691 return count;
8692}
90826ca7 8693static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
62b85639 8694
90826ca7
GKH
8695static struct attribute *pmu_dev_attrs[] = {
8696 &dev_attr_type.attr,
8697 &dev_attr_perf_event_mux_interval_ms.attr,
8698 NULL,
abe43400 8699};
90826ca7 8700ATTRIBUTE_GROUPS(pmu_dev);
abe43400
PZ
8701
8702static int pmu_bus_running;
8703static struct bus_type pmu_bus = {
8704 .name = "event_source",
90826ca7 8705 .dev_groups = pmu_dev_groups,
abe43400
PZ
8706};
8707
8708static void pmu_dev_release(struct device *dev)
8709{
8710 kfree(dev);
8711}
8712
8713static int pmu_dev_alloc(struct pmu *pmu)
8714{
8715 int ret = -ENOMEM;
8716
8717 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
8718 if (!pmu->dev)
8719 goto out;
8720
0c9d42ed 8721 pmu->dev->groups = pmu->attr_groups;
abe43400
PZ
8722 device_initialize(pmu->dev);
8723 ret = dev_set_name(pmu->dev, "%s", pmu->name);
8724 if (ret)
8725 goto free_dev;
8726
8727 dev_set_drvdata(pmu->dev, pmu);
8728 pmu->dev->bus = &pmu_bus;
8729 pmu->dev->release = pmu_dev_release;
8730 ret = device_add(pmu->dev);
8731 if (ret)
8732 goto free_dev;
8733
6e855cd4
AS
8734 /* For PMUs with address filters, throw in an extra attribute: */
8735 if (pmu->nr_addr_filters)
8736 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
8737
8738 if (ret)
8739 goto del_dev;
8740
abe43400
PZ
8741out:
8742 return ret;
8743
6e855cd4
AS
8744del_dev:
8745 device_del(pmu->dev);
8746
abe43400
PZ
8747free_dev:
8748 put_device(pmu->dev);
8749 goto out;
8750}
8751
547e9fd7 8752static struct lock_class_key cpuctx_mutex;
facc4307 8753static struct lock_class_key cpuctx_lock;
547e9fd7 8754
03d8e80b 8755int perf_pmu_register(struct pmu *pmu, const char *name, int type)
24f1e32c 8756{
108b02cf 8757 int cpu, ret;
24f1e32c 8758
b0a873eb 8759 mutex_lock(&pmus_lock);
33696fc0
PZ
8760 ret = -ENOMEM;
8761 pmu->pmu_disable_count = alloc_percpu(int);
8762 if (!pmu->pmu_disable_count)
8763 goto unlock;
f29ac756 8764
2e80a82a
PZ
8765 pmu->type = -1;
8766 if (!name)
8767 goto skip_type;
8768 pmu->name = name;
8769
8770 if (type < 0) {
0e9c3be2
TH
8771 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
8772 if (type < 0) {
8773 ret = type;
2e80a82a
PZ
8774 goto free_pdc;
8775 }
8776 }
8777 pmu->type = type;
8778
abe43400
PZ
8779 if (pmu_bus_running) {
8780 ret = pmu_dev_alloc(pmu);
8781 if (ret)
8782 goto free_idr;
8783 }
8784
2e80a82a 8785skip_type:
26657848
PZ
8786 if (pmu->task_ctx_nr == perf_hw_context) {
8787 static int hw_context_taken = 0;
8788
5101ef20
MR
8789 /*
8790 * Other than systems with heterogeneous CPUs, it never makes
8791 * sense for two PMUs to share perf_hw_context. PMUs which are
8792 * uncore must use perf_invalid_context.
8793 */
8794 if (WARN_ON_ONCE(hw_context_taken &&
8795 !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
26657848
PZ
8796 pmu->task_ctx_nr = perf_invalid_context;
8797
8798 hw_context_taken = 1;
8799 }
8800
8dc85d54
PZ
8801 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
8802 if (pmu->pmu_cpu_context)
8803 goto got_cpu_context;
f29ac756 8804
c4814202 8805 ret = -ENOMEM;
108b02cf
PZ
8806 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
8807 if (!pmu->pmu_cpu_context)
abe43400 8808 goto free_dev;
f344011c 8809
108b02cf
PZ
8810 for_each_possible_cpu(cpu) {
8811 struct perf_cpu_context *cpuctx;
8812
8813 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
eb184479 8814 __perf_event_init_context(&cpuctx->ctx);
547e9fd7 8815 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
facc4307 8816 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
108b02cf 8817 cpuctx->ctx.pmu = pmu;
9e630205 8818
272325c4 8819 __perf_mux_hrtimer_init(cpuctx, cpu);
9e630205 8820
3f1f3320 8821 cpuctx->unique_pmu = pmu;
108b02cf 8822 }
76e1d904 8823
8dc85d54 8824got_cpu_context:
ad5133b7
PZ
8825 if (!pmu->start_txn) {
8826 if (pmu->pmu_enable) {
8827 /*
8828 * If we have pmu_enable/pmu_disable calls, install
8829 * transaction stubs that use that to try and batch
8830 * hardware accesses.
8831 */
8832 pmu->start_txn = perf_pmu_start_txn;
8833 pmu->commit_txn = perf_pmu_commit_txn;
8834 pmu->cancel_txn = perf_pmu_cancel_txn;
8835 } else {
fbbe0701 8836 pmu->start_txn = perf_pmu_nop_txn;
ad5133b7
PZ
8837 pmu->commit_txn = perf_pmu_nop_int;
8838 pmu->cancel_txn = perf_pmu_nop_void;
f344011c 8839 }
5c92d124 8840 }
15dbf27c 8841
ad5133b7
PZ
8842 if (!pmu->pmu_enable) {
8843 pmu->pmu_enable = perf_pmu_nop_void;
8844 pmu->pmu_disable = perf_pmu_nop_void;
8845 }
8846
35edc2a5
PZ
8847 if (!pmu->event_idx)
8848 pmu->event_idx = perf_event_idx_default;
8849
b0a873eb 8850 list_add_rcu(&pmu->entry, &pmus);
bed5b25a 8851 atomic_set(&pmu->exclusive_cnt, 0);
33696fc0
PZ
8852 ret = 0;
8853unlock:
b0a873eb
PZ
8854 mutex_unlock(&pmus_lock);
8855
33696fc0 8856 return ret;
108b02cf 8857
abe43400
PZ
8858free_dev:
8859 device_del(pmu->dev);
8860 put_device(pmu->dev);
8861
2e80a82a
PZ
8862free_idr:
8863 if (pmu->type >= PERF_TYPE_MAX)
8864 idr_remove(&pmu_idr, pmu->type);
8865
108b02cf
PZ
8866free_pdc:
8867 free_percpu(pmu->pmu_disable_count);
8868 goto unlock;
f29ac756 8869}
c464c76e 8870EXPORT_SYMBOL_GPL(perf_pmu_register);
f29ac756 8871
b0a873eb 8872void perf_pmu_unregister(struct pmu *pmu)
5c92d124 8873{
0933840a
JO
8874 int remove_device;
8875
b0a873eb 8876 mutex_lock(&pmus_lock);
0933840a 8877 remove_device = pmu_bus_running;
b0a873eb
PZ
8878 list_del_rcu(&pmu->entry);
8879 mutex_unlock(&pmus_lock);
5c92d124 8880
0475f9ea 8881 /*
cde8e884
PZ
8882 * We dereference the pmu list under both SRCU and regular RCU, so
8883 * synchronize against both of those.
0475f9ea 8884 */
b0a873eb 8885 synchronize_srcu(&pmus_srcu);
cde8e884 8886 synchronize_rcu();
d6d020e9 8887
33696fc0 8888 free_percpu(pmu->pmu_disable_count);
2e80a82a
PZ
8889 if (pmu->type >= PERF_TYPE_MAX)
8890 idr_remove(&pmu_idr, pmu->type);
0933840a
JO
8891 if (remove_device) {
8892 if (pmu->nr_addr_filters)
8893 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
8894 device_del(pmu->dev);
8895 put_device(pmu->dev);
8896 }
51676957 8897 free_pmu_context(pmu);
b0a873eb 8898}
c464c76e 8899EXPORT_SYMBOL_GPL(perf_pmu_unregister);
d6d020e9 8900
cc34b98b
MR
8901static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
8902{
ccd41c86 8903 struct perf_event_context *ctx = NULL;
cc34b98b
MR
8904 int ret;
8905
8906 if (!try_module_get(pmu->module))
8907 return -ENODEV;
ccd41c86
PZ
8908
8909 if (event->group_leader != event) {
8b10c5e2
PZ
8910 /*
8911 * This ctx->mutex can nest when we're called through
8912 * inheritance. See the perf_event_ctx_lock_nested() comment.
8913 */
8914 ctx = perf_event_ctx_lock_nested(event->group_leader,
8915 SINGLE_DEPTH_NESTING);
ccd41c86
PZ
8916 BUG_ON(!ctx);
8917 }
8918
cc34b98b
MR
8919 event->pmu = pmu;
8920 ret = pmu->event_init(event);
ccd41c86
PZ
8921
8922 if (ctx)
8923 perf_event_ctx_unlock(event->group_leader, ctx);
8924
cc34b98b
MR
8925 if (ret)
8926 module_put(pmu->module);
8927
8928 return ret;
8929}
8930
18ab2cd3 8931static struct pmu *perf_init_event(struct perf_event *event)
b0a873eb
PZ
8932{
8933 struct pmu *pmu = NULL;
8934 int idx;
940c5b29 8935 int ret;
b0a873eb
PZ
8936
8937 idx = srcu_read_lock(&pmus_srcu);
2e80a82a
PZ
8938
8939 rcu_read_lock();
8940 pmu = idr_find(&pmu_idr, event->attr.type);
8941 rcu_read_unlock();
940c5b29 8942 if (pmu) {
cc34b98b 8943 ret = perf_try_init_event(pmu, event);
940c5b29
LM
8944 if (ret)
8945 pmu = ERR_PTR(ret);
2e80a82a 8946 goto unlock;
940c5b29 8947 }
2e80a82a 8948
b0a873eb 8949 list_for_each_entry_rcu(pmu, &pmus, entry) {
cc34b98b 8950 ret = perf_try_init_event(pmu, event);
b0a873eb 8951 if (!ret)
e5f4d339 8952 goto unlock;
76e1d904 8953
b0a873eb
PZ
8954 if (ret != -ENOENT) {
8955 pmu = ERR_PTR(ret);
e5f4d339 8956 goto unlock;
f344011c 8957 }
5c92d124 8958 }
e5f4d339
PZ
8959 pmu = ERR_PTR(-ENOENT);
8960unlock:
b0a873eb 8961 srcu_read_unlock(&pmus_srcu, idx);
15dbf27c 8962
4aeb0b42 8963 return pmu;
5c92d124
IM
8964}
8965
f2fb6bef
KL
8966static void attach_sb_event(struct perf_event *event)
8967{
8968 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
8969
8970 raw_spin_lock(&pel->lock);
8971 list_add_rcu(&event->sb_list, &pel->list);
8972 raw_spin_unlock(&pel->lock);
8973}
8974
aab5b71e
PZ
8975/*
8976 * We keep a list of all !task (and therefore per-cpu) events
8977 * that need to receive side-band records.
8978 *
8979 * This avoids having to scan all the various PMU per-cpu contexts
8980 * looking for them.
8981 */
f2fb6bef
KL
8982static void account_pmu_sb_event(struct perf_event *event)
8983{
a4f144eb 8984 if (is_sb_event(event))
f2fb6bef
KL
8985 attach_sb_event(event);
8986}
8987
4beb31f3
FW
8988static void account_event_cpu(struct perf_event *event, int cpu)
8989{
8990 if (event->parent)
8991 return;
8992
4beb31f3
FW
8993 if (is_cgroup_event(event))
8994 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
8995}
8996
555e0c1e
FW
8997/* Freq events need the tick to stay alive (see perf_event_task_tick). */
8998static void account_freq_event_nohz(void)
8999{
9000#ifdef CONFIG_NO_HZ_FULL
9001 /* Lock so we don't race with concurrent unaccount */
9002 spin_lock(&nr_freq_lock);
9003 if (atomic_inc_return(&nr_freq_events) == 1)
9004 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
9005 spin_unlock(&nr_freq_lock);
9006#endif
9007}
9008
9009static void account_freq_event(void)
9010{
9011 if (tick_nohz_full_enabled())
9012 account_freq_event_nohz();
9013 else
9014 atomic_inc(&nr_freq_events);
9015}
9016
9017
766d6c07
FW
9018static void account_event(struct perf_event *event)
9019{
25432ae9
PZ
9020 bool inc = false;
9021
4beb31f3
FW
9022 if (event->parent)
9023 return;
9024
766d6c07 9025 if (event->attach_state & PERF_ATTACH_TASK)
25432ae9 9026 inc = true;
766d6c07
FW
9027 if (event->attr.mmap || event->attr.mmap_data)
9028 atomic_inc(&nr_mmap_events);
9029 if (event->attr.comm)
9030 atomic_inc(&nr_comm_events);
9031 if (event->attr.task)
9032 atomic_inc(&nr_task_events);
555e0c1e
FW
9033 if (event->attr.freq)
9034 account_freq_event();
45ac1403
AH
9035 if (event->attr.context_switch) {
9036 atomic_inc(&nr_switch_events);
25432ae9 9037 inc = true;
45ac1403 9038 }
4beb31f3 9039 if (has_branch_stack(event))
25432ae9 9040 inc = true;
4beb31f3 9041 if (is_cgroup_event(event))
25432ae9
PZ
9042 inc = true;
9043
9107c89e
PZ
9044 if (inc) {
9045 if (atomic_inc_not_zero(&perf_sched_count))
9046 goto enabled;
9047
9048 mutex_lock(&perf_sched_mutex);
9049 if (!atomic_read(&perf_sched_count)) {
9050 static_branch_enable(&perf_sched_events);
9051 /*
9052 * Guarantee that all CPUs observe they key change and
9053 * call the perf scheduling hooks before proceeding to
9054 * install events that need them.
9055 */
9056 synchronize_sched();
9057 }
9058 /*
9059 * Now that we have waited for the sync_sched(), allow further
9060 * increments to by-pass the mutex.
9061 */
9062 atomic_inc(&perf_sched_count);
9063 mutex_unlock(&perf_sched_mutex);
9064 }
9065enabled:
4beb31f3
FW
9066
9067 account_event_cpu(event, event->cpu);
f2fb6bef
KL
9068
9069 account_pmu_sb_event(event);
766d6c07
FW
9070}
9071
0793a61d 9072/*
cdd6c482 9073 * Allocate and initialize a event structure
0793a61d 9074 */
cdd6c482 9075static struct perf_event *
c3f00c70 9076perf_event_alloc(struct perf_event_attr *attr, int cpu,
d580ff86
PZ
9077 struct task_struct *task,
9078 struct perf_event *group_leader,
9079 struct perf_event *parent_event,
4dc0da86 9080 perf_overflow_handler_t overflow_handler,
79dff51e 9081 void *context, int cgroup_fd)
0793a61d 9082{
51b0fe39 9083 struct pmu *pmu;
cdd6c482
IM
9084 struct perf_event *event;
9085 struct hw_perf_event *hwc;
90983b16 9086 long err = -EINVAL;
0793a61d 9087
66832eb4
ON
9088 if ((unsigned)cpu >= nr_cpu_ids) {
9089 if (!task || cpu != -1)
9090 return ERR_PTR(-EINVAL);
9091 }
9092
c3f00c70 9093 event = kzalloc(sizeof(*event), GFP_KERNEL);
cdd6c482 9094 if (!event)
d5d2bc0d 9095 return ERR_PTR(-ENOMEM);
0793a61d 9096
04289bb9 9097 /*
cdd6c482 9098 * Single events are their own group leaders, with an
04289bb9
IM
9099 * empty sibling list:
9100 */
9101 if (!group_leader)
cdd6c482 9102 group_leader = event;
04289bb9 9103
cdd6c482
IM
9104 mutex_init(&event->child_mutex);
9105 INIT_LIST_HEAD(&event->child_list);
fccc714b 9106
cdd6c482
IM
9107 INIT_LIST_HEAD(&event->group_entry);
9108 INIT_LIST_HEAD(&event->event_entry);
9109 INIT_LIST_HEAD(&event->sibling_list);
10c6db11 9110 INIT_LIST_HEAD(&event->rb_entry);
71ad88ef 9111 INIT_LIST_HEAD(&event->active_entry);
375637bc 9112 INIT_LIST_HEAD(&event->addr_filters.list);
f3ae75de
SE
9113 INIT_HLIST_NODE(&event->hlist_entry);
9114
10c6db11 9115
cdd6c482 9116 init_waitqueue_head(&event->waitq);
e360adbe 9117 init_irq_work(&event->pending, perf_pending_event);
0793a61d 9118
cdd6c482 9119 mutex_init(&event->mmap_mutex);
375637bc 9120 raw_spin_lock_init(&event->addr_filters.lock);
7b732a75 9121
a6fa941d 9122 atomic_long_set(&event->refcount, 1);
cdd6c482
IM
9123 event->cpu = cpu;
9124 event->attr = *attr;
9125 event->group_leader = group_leader;
9126 event->pmu = NULL;
cdd6c482 9127 event->oncpu = -1;
a96bbc16 9128
cdd6c482 9129 event->parent = parent_event;
b84fbc9f 9130
17cf22c3 9131 event->ns = get_pid_ns(task_active_pid_ns(current));
cdd6c482 9132 event->id = atomic64_inc_return(&perf_event_id);
a96bbc16 9133
cdd6c482 9134 event->state = PERF_EVENT_STATE_INACTIVE;
329d876d 9135
d580ff86
PZ
9136 if (task) {
9137 event->attach_state = PERF_ATTACH_TASK;
d580ff86 9138 /*
50f16a8b
PZ
9139 * XXX pmu::event_init needs to know what task to account to
9140 * and we cannot use the ctx information because we need the
9141 * pmu before we get a ctx.
d580ff86 9142 */
50f16a8b 9143 event->hw.target = task;
d580ff86
PZ
9144 }
9145
34f43927
PZ
9146 event->clock = &local_clock;
9147 if (parent_event)
9148 event->clock = parent_event->clock;
9149
4dc0da86 9150 if (!overflow_handler && parent_event) {
b326e956 9151 overflow_handler = parent_event->overflow_handler;
4dc0da86 9152 context = parent_event->overflow_handler_context;
f1e4ba5b 9153#if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
aa6a5f3c
AS
9154 if (overflow_handler == bpf_overflow_handler) {
9155 struct bpf_prog *prog = bpf_prog_inc(parent_event->prog);
9156
9157 if (IS_ERR(prog)) {
9158 err = PTR_ERR(prog);
9159 goto err_ns;
9160 }
9161 event->prog = prog;
9162 event->orig_overflow_handler =
9163 parent_event->orig_overflow_handler;
9164 }
9165#endif
4dc0da86 9166 }
66832eb4 9167
1879445d
WN
9168 if (overflow_handler) {
9169 event->overflow_handler = overflow_handler;
9170 event->overflow_handler_context = context;
9ecda41a
WN
9171 } else if (is_write_backward(event)){
9172 event->overflow_handler = perf_event_output_backward;
9173 event->overflow_handler_context = NULL;
1879445d 9174 } else {
9ecda41a 9175 event->overflow_handler = perf_event_output_forward;
1879445d
WN
9176 event->overflow_handler_context = NULL;
9177 }
97eaf530 9178
0231bb53 9179 perf_event__state_init(event);
a86ed508 9180
4aeb0b42 9181 pmu = NULL;
b8e83514 9182
cdd6c482 9183 hwc = &event->hw;
bd2b5b12 9184 hwc->sample_period = attr->sample_period;
0d48696f 9185 if (attr->freq && attr->sample_freq)
bd2b5b12 9186 hwc->sample_period = 1;
eced1dfc 9187 hwc->last_period = hwc->sample_period;
bd2b5b12 9188
e7850595 9189 local64_set(&hwc->period_left, hwc->sample_period);
60db5e09 9190
2023b359 9191 /*
cdd6c482 9192 * we currently do not support PERF_FORMAT_GROUP on inherited events
2023b359 9193 */
3dab77fb 9194 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
90983b16 9195 goto err_ns;
a46a2300
YZ
9196
9197 if (!has_branch_stack(event))
9198 event->attr.branch_sample_type = 0;
2023b359 9199
79dff51e
MF
9200 if (cgroup_fd != -1) {
9201 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
9202 if (err)
9203 goto err_ns;
9204 }
9205
b0a873eb 9206 pmu = perf_init_event(event);
4aeb0b42 9207 if (!pmu)
90983b16
FW
9208 goto err_ns;
9209 else if (IS_ERR(pmu)) {
4aeb0b42 9210 err = PTR_ERR(pmu);
90983b16 9211 goto err_ns;
621a01ea 9212 }
d5d2bc0d 9213
bed5b25a
AS
9214 err = exclusive_event_init(event);
9215 if (err)
9216 goto err_pmu;
9217
375637bc
AS
9218 if (has_addr_filter(event)) {
9219 event->addr_filters_offs = kcalloc(pmu->nr_addr_filters,
9220 sizeof(unsigned long),
9221 GFP_KERNEL);
9222 if (!event->addr_filters_offs)
9223 goto err_per_task;
9224
9225 /* force hw sync on the address filters */
9226 event->addr_filters_gen = 1;
9227 }
9228
cdd6c482 9229 if (!event->parent) {
927c7a9e 9230 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
97c79a38 9231 err = get_callchain_buffers(attr->sample_max_stack);
90983b16 9232 if (err)
375637bc 9233 goto err_addr_filters;
d010b332 9234 }
f344011c 9235 }
9ee318a7 9236
927a5570
AS
9237 /* symmetric to unaccount_event() in _free_event() */
9238 account_event(event);
9239
cdd6c482 9240 return event;
90983b16 9241
375637bc
AS
9242err_addr_filters:
9243 kfree(event->addr_filters_offs);
9244
bed5b25a
AS
9245err_per_task:
9246 exclusive_event_destroy(event);
9247
90983b16
FW
9248err_pmu:
9249 if (event->destroy)
9250 event->destroy(event);
c464c76e 9251 module_put(pmu->module);
90983b16 9252err_ns:
79dff51e
MF
9253 if (is_cgroup_event(event))
9254 perf_detach_cgroup(event);
90983b16
FW
9255 if (event->ns)
9256 put_pid_ns(event->ns);
9257 kfree(event);
9258
9259 return ERR_PTR(err);
0793a61d
TG
9260}
9261
cdd6c482
IM
9262static int perf_copy_attr(struct perf_event_attr __user *uattr,
9263 struct perf_event_attr *attr)
974802ea 9264{
974802ea 9265 u32 size;
cdf8073d 9266 int ret;
974802ea
PZ
9267
9268 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
9269 return -EFAULT;
9270
9271 /*
9272 * zero the full structure, so that a short copy will be nice.
9273 */
9274 memset(attr, 0, sizeof(*attr));
9275
9276 ret = get_user(size, &uattr->size);
9277 if (ret)
9278 return ret;
9279
9280 if (size > PAGE_SIZE) /* silly large */
9281 goto err_size;
9282
9283 if (!size) /* abi compat */
9284 size = PERF_ATTR_SIZE_VER0;
9285
9286 if (size < PERF_ATTR_SIZE_VER0)
9287 goto err_size;
9288
9289 /*
9290 * If we're handed a bigger struct than we know of,
cdf8073d
IS
9291 * ensure all the unknown bits are 0 - i.e. new
9292 * user-space does not rely on any kernel feature
9293 * extensions we dont know about yet.
974802ea
PZ
9294 */
9295 if (size > sizeof(*attr)) {
cdf8073d
IS
9296 unsigned char __user *addr;
9297 unsigned char __user *end;
9298 unsigned char val;
974802ea 9299
cdf8073d
IS
9300 addr = (void __user *)uattr + sizeof(*attr);
9301 end = (void __user *)uattr + size;
974802ea 9302
cdf8073d 9303 for (; addr < end; addr++) {
974802ea
PZ
9304 ret = get_user(val, addr);
9305 if (ret)
9306 return ret;
9307 if (val)
9308 goto err_size;
9309 }
b3e62e35 9310 size = sizeof(*attr);
974802ea
PZ
9311 }
9312
9313 ret = copy_from_user(attr, uattr, size);
9314 if (ret)
9315 return -EFAULT;
9316
cd757645 9317 if (attr->__reserved_1)
974802ea
PZ
9318 return -EINVAL;
9319
9320 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
9321 return -EINVAL;
9322
9323 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
9324 return -EINVAL;
9325
bce38cd5
SE
9326 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
9327 u64 mask = attr->branch_sample_type;
9328
9329 /* only using defined bits */
9330 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
9331 return -EINVAL;
9332
9333 /* at least one branch bit must be set */
9334 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
9335 return -EINVAL;
9336
bce38cd5
SE
9337 /* propagate priv level, when not set for branch */
9338 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
9339
9340 /* exclude_kernel checked on syscall entry */
9341 if (!attr->exclude_kernel)
9342 mask |= PERF_SAMPLE_BRANCH_KERNEL;
9343
9344 if (!attr->exclude_user)
9345 mask |= PERF_SAMPLE_BRANCH_USER;
9346
9347 if (!attr->exclude_hv)
9348 mask |= PERF_SAMPLE_BRANCH_HV;
9349 /*
9350 * adjust user setting (for HW filter setup)
9351 */
9352 attr->branch_sample_type = mask;
9353 }
e712209a
SE
9354 /* privileged levels capture (kernel, hv): check permissions */
9355 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
2b923c8f
SE
9356 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9357 return -EACCES;
bce38cd5 9358 }
4018994f 9359
c5ebcedb 9360 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
4018994f 9361 ret = perf_reg_validate(attr->sample_regs_user);
c5ebcedb
JO
9362 if (ret)
9363 return ret;
9364 }
9365
9366 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
9367 if (!arch_perf_have_user_stack_dump())
9368 return -ENOSYS;
9369
9370 /*
9371 * We have __u32 type for the size, but so far
9372 * we can only use __u16 as maximum due to the
9373 * __u16 sample size limit.
9374 */
9375 if (attr->sample_stack_user >= USHRT_MAX)
9376 ret = -EINVAL;
9377 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
9378 ret = -EINVAL;
9379 }
4018994f 9380
60e2364e
SE
9381 if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
9382 ret = perf_reg_validate(attr->sample_regs_intr);
974802ea
PZ
9383out:
9384 return ret;
9385
9386err_size:
9387 put_user(sizeof(*attr), &uattr->size);
9388 ret = -E2BIG;
9389 goto out;
9390}
9391
ac9721f3
PZ
9392static int
9393perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
a4be7c27 9394{
b69cf536 9395 struct ring_buffer *rb = NULL;
a4be7c27
PZ
9396 int ret = -EINVAL;
9397
ac9721f3 9398 if (!output_event)
a4be7c27
PZ
9399 goto set;
9400
ac9721f3
PZ
9401 /* don't allow circular references */
9402 if (event == output_event)
a4be7c27
PZ
9403 goto out;
9404
0f139300
PZ
9405 /*
9406 * Don't allow cross-cpu buffers
9407 */
9408 if (output_event->cpu != event->cpu)
9409 goto out;
9410
9411 /*
76369139 9412 * If its not a per-cpu rb, it must be the same task.
0f139300
PZ
9413 */
9414 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
9415 goto out;
9416
34f43927
PZ
9417 /*
9418 * Mixing clocks in the same buffer is trouble you don't need.
9419 */
9420 if (output_event->clock != event->clock)
9421 goto out;
9422
9ecda41a
WN
9423 /*
9424 * Either writing ring buffer from beginning or from end.
9425 * Mixing is not allowed.
9426 */
9427 if (is_write_backward(output_event) != is_write_backward(event))
9428 goto out;
9429
45bfb2e5
PZ
9430 /*
9431 * If both events generate aux data, they must be on the same PMU
9432 */
9433 if (has_aux(event) && has_aux(output_event) &&
9434 event->pmu != output_event->pmu)
9435 goto out;
9436
a4be7c27 9437set:
cdd6c482 9438 mutex_lock(&event->mmap_mutex);
ac9721f3
PZ
9439 /* Can't redirect output if we've got an active mmap() */
9440 if (atomic_read(&event->mmap_count))
9441 goto unlock;
a4be7c27 9442
ac9721f3 9443 if (output_event) {
76369139
FW
9444 /* get the rb we want to redirect to */
9445 rb = ring_buffer_get(output_event);
9446 if (!rb)
ac9721f3 9447 goto unlock;
a4be7c27
PZ
9448 }
9449
b69cf536 9450 ring_buffer_attach(event, rb);
9bb5d40c 9451
a4be7c27 9452 ret = 0;
ac9721f3
PZ
9453unlock:
9454 mutex_unlock(&event->mmap_mutex);
9455
a4be7c27 9456out:
a4be7c27
PZ
9457 return ret;
9458}
9459
f63a8daa
PZ
9460static void mutex_lock_double(struct mutex *a, struct mutex *b)
9461{
9462 if (b < a)
9463 swap(a, b);
9464
9465 mutex_lock(a);
9466 mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
9467}
9468
34f43927
PZ
9469static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
9470{
9471 bool nmi_safe = false;
9472
9473 switch (clk_id) {
9474 case CLOCK_MONOTONIC:
9475 event->clock = &ktime_get_mono_fast_ns;
9476 nmi_safe = true;
9477 break;
9478
9479 case CLOCK_MONOTONIC_RAW:
9480 event->clock = &ktime_get_raw_fast_ns;
9481 nmi_safe = true;
9482 break;
9483
9484 case CLOCK_REALTIME:
9485 event->clock = &ktime_get_real_ns;
9486 break;
9487
9488 case CLOCK_BOOTTIME:
9489 event->clock = &ktime_get_boot_ns;
9490 break;
9491
9492 case CLOCK_TAI:
9493 event->clock = &ktime_get_tai_ns;
9494 break;
9495
9496 default:
9497 return -EINVAL;
9498 }
9499
9500 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
9501 return -EINVAL;
9502
9503 return 0;
9504}
9505
0793a61d 9506/**
cdd6c482 9507 * sys_perf_event_open - open a performance event, associate it to a task/cpu
9f66a381 9508 *
cdd6c482 9509 * @attr_uptr: event_id type attributes for monitoring/sampling
0793a61d 9510 * @pid: target pid
9f66a381 9511 * @cpu: target cpu
cdd6c482 9512 * @group_fd: group leader event fd
0793a61d 9513 */
cdd6c482
IM
9514SYSCALL_DEFINE5(perf_event_open,
9515 struct perf_event_attr __user *, attr_uptr,
2743a5b0 9516 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
0793a61d 9517{
b04243ef
PZ
9518 struct perf_event *group_leader = NULL, *output_event = NULL;
9519 struct perf_event *event, *sibling;
cdd6c482 9520 struct perf_event_attr attr;
f63a8daa 9521 struct perf_event_context *ctx, *uninitialized_var(gctx);
cdd6c482 9522 struct file *event_file = NULL;
2903ff01 9523 struct fd group = {NULL, 0};
38a81da2 9524 struct task_struct *task = NULL;
89a1e187 9525 struct pmu *pmu;
ea635c64 9526 int event_fd;
b04243ef 9527 int move_group = 0;
dc86cabe 9528 int err;
a21b0b35 9529 int f_flags = O_RDWR;
79dff51e 9530 int cgroup_fd = -1;
0793a61d 9531
2743a5b0 9532 /* for future expandability... */
e5d1367f 9533 if (flags & ~PERF_FLAG_ALL)
2743a5b0
PM
9534 return -EINVAL;
9535
dc86cabe
IM
9536 err = perf_copy_attr(attr_uptr, &attr);
9537 if (err)
9538 return err;
eab656ae 9539
0764771d
PZ
9540 if (!attr.exclude_kernel) {
9541 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9542 return -EACCES;
9543 }
9544
df58ab24 9545 if (attr.freq) {
cdd6c482 9546 if (attr.sample_freq > sysctl_perf_event_sample_rate)
df58ab24 9547 return -EINVAL;
0819b2e3
PZ
9548 } else {
9549 if (attr.sample_period & (1ULL << 63))
9550 return -EINVAL;
df58ab24
PZ
9551 }
9552
97c79a38
ACM
9553 if (!attr.sample_max_stack)
9554 attr.sample_max_stack = sysctl_perf_event_max_stack;
9555
e5d1367f
SE
9556 /*
9557 * In cgroup mode, the pid argument is used to pass the fd
9558 * opened to the cgroup directory in cgroupfs. The cpu argument
9559 * designates the cpu on which to monitor threads from that
9560 * cgroup.
9561 */
9562 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
9563 return -EINVAL;
9564
a21b0b35
YD
9565 if (flags & PERF_FLAG_FD_CLOEXEC)
9566 f_flags |= O_CLOEXEC;
9567
9568 event_fd = get_unused_fd_flags(f_flags);
ea635c64
AV
9569 if (event_fd < 0)
9570 return event_fd;
9571
ac9721f3 9572 if (group_fd != -1) {
2903ff01
AV
9573 err = perf_fget_light(group_fd, &group);
9574 if (err)
d14b12d7 9575 goto err_fd;
2903ff01 9576 group_leader = group.file->private_data;
ac9721f3
PZ
9577 if (flags & PERF_FLAG_FD_OUTPUT)
9578 output_event = group_leader;
9579 if (flags & PERF_FLAG_FD_NO_GROUP)
9580 group_leader = NULL;
9581 }
9582
e5d1367f 9583 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
c6be5a5c
PZ
9584 task = find_lively_task_by_vpid(pid);
9585 if (IS_ERR(task)) {
9586 err = PTR_ERR(task);
9587 goto err_group_fd;
9588 }
9589 }
9590
1f4ee503
PZ
9591 if (task && group_leader &&
9592 group_leader->attr.inherit != attr.inherit) {
9593 err = -EINVAL;
9594 goto err_task;
9595 }
9596
fbfc623f
YZ
9597 get_online_cpus();
9598
79c9ce57
PZ
9599 if (task) {
9600 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
9601 if (err)
9602 goto err_cpus;
9603
9604 /*
9605 * Reuse ptrace permission checks for now.
9606 *
9607 * We must hold cred_guard_mutex across this and any potential
9608 * perf_install_in_context() call for this new event to
9609 * serialize against exec() altering our credentials (and the
9610 * perf_event_exit_task() that could imply).
9611 */
9612 err = -EACCES;
9613 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
9614 goto err_cred;
9615 }
9616
79dff51e
MF
9617 if (flags & PERF_FLAG_PID_CGROUP)
9618 cgroup_fd = pid;
9619
4dc0da86 9620 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
79dff51e 9621 NULL, NULL, cgroup_fd);
d14b12d7
SE
9622 if (IS_ERR(event)) {
9623 err = PTR_ERR(event);
79c9ce57 9624 goto err_cred;
d14b12d7
SE
9625 }
9626
53b25335
VW
9627 if (is_sampling_event(event)) {
9628 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
a1396555 9629 err = -EOPNOTSUPP;
53b25335
VW
9630 goto err_alloc;
9631 }
9632 }
9633
89a1e187
PZ
9634 /*
9635 * Special case software events and allow them to be part of
9636 * any hardware group.
9637 */
9638 pmu = event->pmu;
b04243ef 9639
34f43927
PZ
9640 if (attr.use_clockid) {
9641 err = perf_event_set_clock(event, attr.clockid);
9642 if (err)
9643 goto err_alloc;
9644 }
9645
4ff6a8de
DCC
9646 if (pmu->task_ctx_nr == perf_sw_context)
9647 event->event_caps |= PERF_EV_CAP_SOFTWARE;
9648
b04243ef
PZ
9649 if (group_leader &&
9650 (is_software_event(event) != is_software_event(group_leader))) {
9651 if (is_software_event(event)) {
9652 /*
9653 * If event and group_leader are not both a software
9654 * event, and event is, then group leader is not.
9655 *
9656 * Allow the addition of software events to !software
9657 * groups, this is safe because software events never
9658 * fail to schedule.
9659 */
9660 pmu = group_leader->pmu;
9661 } else if (is_software_event(group_leader) &&
4ff6a8de 9662 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
b04243ef
PZ
9663 /*
9664 * In case the group is a pure software group, and we
9665 * try to add a hardware event, move the whole group to
9666 * the hardware context.
9667 */
9668 move_group = 1;
9669 }
9670 }
89a1e187
PZ
9671
9672 /*
9673 * Get the target context (task or percpu):
9674 */
4af57ef2 9675 ctx = find_get_context(pmu, task, event);
89a1e187
PZ
9676 if (IS_ERR(ctx)) {
9677 err = PTR_ERR(ctx);
c6be5a5c 9678 goto err_alloc;
89a1e187
PZ
9679 }
9680
bed5b25a
AS
9681 if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
9682 err = -EBUSY;
9683 goto err_context;
9684 }
9685
ccff286d 9686 /*
cdd6c482 9687 * Look up the group leader (we will attach this event to it):
04289bb9 9688 */
ac9721f3 9689 if (group_leader) {
dc86cabe 9690 err = -EINVAL;
04289bb9 9691
04289bb9 9692 /*
ccff286d
IM
9693 * Do not allow a recursive hierarchy (this new sibling
9694 * becoming part of another group-sibling):
9695 */
9696 if (group_leader->group_leader != group_leader)
c3f00c70 9697 goto err_context;
34f43927
PZ
9698
9699 /* All events in a group should have the same clock */
9700 if (group_leader->clock != event->clock)
9701 goto err_context;
9702
ccff286d
IM
9703 /*
9704 * Do not allow to attach to a group in a different
9705 * task or CPU context:
04289bb9 9706 */
b04243ef 9707 if (move_group) {
c3c87e77
PZ
9708 /*
9709 * Make sure we're both on the same task, or both
9710 * per-cpu events.
9711 */
9712 if (group_leader->ctx->task != ctx->task)
9713 goto err_context;
9714
9715 /*
9716 * Make sure we're both events for the same CPU;
9717 * grouping events for different CPUs is broken; since
9718 * you can never concurrently schedule them anyhow.
9719 */
9720 if (group_leader->cpu != event->cpu)
b04243ef
PZ
9721 goto err_context;
9722 } else {
9723 if (group_leader->ctx != ctx)
9724 goto err_context;
9725 }
9726
3b6f9e5c
PM
9727 /*
9728 * Only a group leader can be exclusive or pinned
9729 */
0d48696f 9730 if (attr.exclusive || attr.pinned)
c3f00c70 9731 goto err_context;
ac9721f3
PZ
9732 }
9733
9734 if (output_event) {
9735 err = perf_event_set_output(event, output_event);
9736 if (err)
c3f00c70 9737 goto err_context;
ac9721f3 9738 }
0793a61d 9739
a21b0b35
YD
9740 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
9741 f_flags);
ea635c64
AV
9742 if (IS_ERR(event_file)) {
9743 err = PTR_ERR(event_file);
201c2f85 9744 event_file = NULL;
c3f00c70 9745 goto err_context;
ea635c64 9746 }
9b51f66d 9747
b04243ef 9748 if (move_group) {
f63a8daa 9749 gctx = group_leader->ctx;
f55fc2a5 9750 mutex_lock_double(&gctx->mutex, &ctx->mutex);
84c4e620
PZ
9751 if (gctx->task == TASK_TOMBSTONE) {
9752 err = -ESRCH;
9753 goto err_locked;
9754 }
f55fc2a5
PZ
9755 } else {
9756 mutex_lock(&ctx->mutex);
9757 }
9758
84c4e620
PZ
9759 if (ctx->task == TASK_TOMBSTONE) {
9760 err = -ESRCH;
9761 goto err_locked;
9762 }
9763
a723968c
PZ
9764 if (!perf_event_validate_size(event)) {
9765 err = -E2BIG;
9766 goto err_locked;
9767 }
9768
f55fc2a5
PZ
9769 /*
9770 * Must be under the same ctx::mutex as perf_install_in_context(),
9771 * because we need to serialize with concurrent event creation.
9772 */
9773 if (!exclusive_event_installable(event, ctx)) {
9774 /* exclusive and group stuff are assumed mutually exclusive */
9775 WARN_ON_ONCE(move_group);
f63a8daa 9776
f55fc2a5
PZ
9777 err = -EBUSY;
9778 goto err_locked;
9779 }
f63a8daa 9780
f55fc2a5
PZ
9781 WARN_ON_ONCE(ctx->parent_ctx);
9782
79c9ce57
PZ
9783 /*
9784 * This is the point on no return; we cannot fail hereafter. This is
9785 * where we start modifying current state.
9786 */
9787
f55fc2a5 9788 if (move_group) {
f63a8daa
PZ
9789 /*
9790 * See perf_event_ctx_lock() for comments on the details
9791 * of swizzling perf_event::ctx.
9792 */
45a0e07a 9793 perf_remove_from_context(group_leader, 0);
0231bb53 9794
b04243ef
PZ
9795 list_for_each_entry(sibling, &group_leader->sibling_list,
9796 group_entry) {
45a0e07a 9797 perf_remove_from_context(sibling, 0);
b04243ef
PZ
9798 put_ctx(gctx);
9799 }
b04243ef 9800
f63a8daa
PZ
9801 /*
9802 * Wait for everybody to stop referencing the events through
9803 * the old lists, before installing it on new lists.
9804 */
0cda4c02 9805 synchronize_rcu();
f63a8daa 9806
8f95b435
PZI
9807 /*
9808 * Install the group siblings before the group leader.
9809 *
9810 * Because a group leader will try and install the entire group
9811 * (through the sibling list, which is still in-tact), we can
9812 * end up with siblings installed in the wrong context.
9813 *
9814 * By installing siblings first we NO-OP because they're not
9815 * reachable through the group lists.
9816 */
b04243ef
PZ
9817 list_for_each_entry(sibling, &group_leader->sibling_list,
9818 group_entry) {
8f95b435 9819 perf_event__state_init(sibling);
9fc81d87 9820 perf_install_in_context(ctx, sibling, sibling->cpu);
b04243ef
PZ
9821 get_ctx(ctx);
9822 }
8f95b435
PZI
9823
9824 /*
9825 * Removing from the context ends up with disabled
9826 * event. What we want here is event in the initial
9827 * startup state, ready to be add into new context.
9828 */
9829 perf_event__state_init(group_leader);
9830 perf_install_in_context(ctx, group_leader, group_leader->cpu);
9831 get_ctx(ctx);
b04243ef 9832
f55fc2a5
PZ
9833 /*
9834 * Now that all events are installed in @ctx, nothing
9835 * references @gctx anymore, so drop the last reference we have
9836 * on it.
9837 */
9838 put_ctx(gctx);
bed5b25a
AS
9839 }
9840
f73e22ab
PZ
9841 /*
9842 * Precalculate sample_data sizes; do while holding ctx::mutex such
9843 * that we're serialized against further additions and before
9844 * perf_install_in_context() which is the point the event is active and
9845 * can use these values.
9846 */
9847 perf_event__header_size(event);
9848 perf_event__id_header_size(event);
9849
78cd2c74
PZ
9850 event->owner = current;
9851
e2d37cd2 9852 perf_install_in_context(ctx, event, event->cpu);
fe4b04fa 9853 perf_unpin_context(ctx);
f63a8daa 9854
f55fc2a5 9855 if (move_group)
f63a8daa 9856 mutex_unlock(&gctx->mutex);
d859e29f 9857 mutex_unlock(&ctx->mutex);
9b51f66d 9858
79c9ce57
PZ
9859 if (task) {
9860 mutex_unlock(&task->signal->cred_guard_mutex);
9861 put_task_struct(task);
9862 }
9863
fbfc623f
YZ
9864 put_online_cpus();
9865
cdd6c482
IM
9866 mutex_lock(&current->perf_event_mutex);
9867 list_add_tail(&event->owner_entry, &current->perf_event_list);
9868 mutex_unlock(&current->perf_event_mutex);
082ff5a2 9869
8a49542c
PZ
9870 /*
9871 * Drop the reference on the group_event after placing the
9872 * new event on the sibling_list. This ensures destruction
9873 * of the group leader will find the pointer to itself in
9874 * perf_group_detach().
9875 */
2903ff01 9876 fdput(group);
ea635c64
AV
9877 fd_install(event_fd, event_file);
9878 return event_fd;
0793a61d 9879
f55fc2a5
PZ
9880err_locked:
9881 if (move_group)
9882 mutex_unlock(&gctx->mutex);
9883 mutex_unlock(&ctx->mutex);
9884/* err_file: */
9885 fput(event_file);
c3f00c70 9886err_context:
fe4b04fa 9887 perf_unpin_context(ctx);
ea635c64 9888 put_ctx(ctx);
c6be5a5c 9889err_alloc:
13005627
PZ
9890 /*
9891 * If event_file is set, the fput() above will have called ->release()
9892 * and that will take care of freeing the event.
9893 */
9894 if (!event_file)
9895 free_event(event);
79c9ce57
PZ
9896err_cred:
9897 if (task)
9898 mutex_unlock(&task->signal->cred_guard_mutex);
1f4ee503 9899err_cpus:
fbfc623f 9900 put_online_cpus();
1f4ee503 9901err_task:
e7d0bc04
PZ
9902 if (task)
9903 put_task_struct(task);
89a1e187 9904err_group_fd:
2903ff01 9905 fdput(group);
ea635c64
AV
9906err_fd:
9907 put_unused_fd(event_fd);
dc86cabe 9908 return err;
0793a61d
TG
9909}
9910
fb0459d7
AV
9911/**
9912 * perf_event_create_kernel_counter
9913 *
9914 * @attr: attributes of the counter to create
9915 * @cpu: cpu in which the counter is bound
38a81da2 9916 * @task: task to profile (NULL for percpu)
fb0459d7
AV
9917 */
9918struct perf_event *
9919perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
38a81da2 9920 struct task_struct *task,
4dc0da86
AK
9921 perf_overflow_handler_t overflow_handler,
9922 void *context)
fb0459d7 9923{
fb0459d7 9924 struct perf_event_context *ctx;
c3f00c70 9925 struct perf_event *event;
fb0459d7 9926 int err;
d859e29f 9927
fb0459d7
AV
9928 /*
9929 * Get the target context (task or percpu):
9930 */
d859e29f 9931
4dc0da86 9932 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
79dff51e 9933 overflow_handler, context, -1);
c3f00c70
PZ
9934 if (IS_ERR(event)) {
9935 err = PTR_ERR(event);
9936 goto err;
9937 }
d859e29f 9938
f8697762 9939 /* Mark owner so we could distinguish it from user events. */
63b6da39 9940 event->owner = TASK_TOMBSTONE;
f8697762 9941
4af57ef2 9942 ctx = find_get_context(event->pmu, task, event);
c6567f64
FW
9943 if (IS_ERR(ctx)) {
9944 err = PTR_ERR(ctx);
c3f00c70 9945 goto err_free;
d859e29f 9946 }
fb0459d7 9947
fb0459d7
AV
9948 WARN_ON_ONCE(ctx->parent_ctx);
9949 mutex_lock(&ctx->mutex);
84c4e620
PZ
9950 if (ctx->task == TASK_TOMBSTONE) {
9951 err = -ESRCH;
9952 goto err_unlock;
9953 }
9954
bed5b25a 9955 if (!exclusive_event_installable(event, ctx)) {
bed5b25a 9956 err = -EBUSY;
84c4e620 9957 goto err_unlock;
bed5b25a
AS
9958 }
9959
fb0459d7 9960 perf_install_in_context(ctx, event, cpu);
fe4b04fa 9961 perf_unpin_context(ctx);
fb0459d7
AV
9962 mutex_unlock(&ctx->mutex);
9963
fb0459d7
AV
9964 return event;
9965
84c4e620
PZ
9966err_unlock:
9967 mutex_unlock(&ctx->mutex);
9968 perf_unpin_context(ctx);
9969 put_ctx(ctx);
c3f00c70
PZ
9970err_free:
9971 free_event(event);
9972err:
c6567f64 9973 return ERR_PTR(err);
9b51f66d 9974}
fb0459d7 9975EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
9b51f66d 9976
0cda4c02
YZ
9977void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
9978{
9979 struct perf_event_context *src_ctx;
9980 struct perf_event_context *dst_ctx;
9981 struct perf_event *event, *tmp;
9982 LIST_HEAD(events);
9983
9984 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
9985 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
9986
f63a8daa
PZ
9987 /*
9988 * See perf_event_ctx_lock() for comments on the details
9989 * of swizzling perf_event::ctx.
9990 */
9991 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
0cda4c02
YZ
9992 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
9993 event_entry) {
45a0e07a 9994 perf_remove_from_context(event, 0);
9a545de0 9995 unaccount_event_cpu(event, src_cpu);
0cda4c02 9996 put_ctx(src_ctx);
9886167d 9997 list_add(&event->migrate_entry, &events);
0cda4c02 9998 }
0cda4c02 9999
8f95b435
PZI
10000 /*
10001 * Wait for the events to quiesce before re-instating them.
10002 */
0cda4c02
YZ
10003 synchronize_rcu();
10004
8f95b435
PZI
10005 /*
10006 * Re-instate events in 2 passes.
10007 *
10008 * Skip over group leaders and only install siblings on this first
10009 * pass, siblings will not get enabled without a leader, however a
10010 * leader will enable its siblings, even if those are still on the old
10011 * context.
10012 */
10013 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10014 if (event->group_leader == event)
10015 continue;
10016
10017 list_del(&event->migrate_entry);
10018 if (event->state >= PERF_EVENT_STATE_OFF)
10019 event->state = PERF_EVENT_STATE_INACTIVE;
10020 account_event_cpu(event, dst_cpu);
10021 perf_install_in_context(dst_ctx, event, dst_cpu);
10022 get_ctx(dst_ctx);
10023 }
10024
10025 /*
10026 * Once all the siblings are setup properly, install the group leaders
10027 * to make it go.
10028 */
9886167d
PZ
10029 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10030 list_del(&event->migrate_entry);
0cda4c02
YZ
10031 if (event->state >= PERF_EVENT_STATE_OFF)
10032 event->state = PERF_EVENT_STATE_INACTIVE;
9a545de0 10033 account_event_cpu(event, dst_cpu);
0cda4c02
YZ
10034 perf_install_in_context(dst_ctx, event, dst_cpu);
10035 get_ctx(dst_ctx);
10036 }
10037 mutex_unlock(&dst_ctx->mutex);
f63a8daa 10038 mutex_unlock(&src_ctx->mutex);
0cda4c02
YZ
10039}
10040EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
10041
cdd6c482 10042static void sync_child_event(struct perf_event *child_event,
38b200d6 10043 struct task_struct *child)
d859e29f 10044{
cdd6c482 10045 struct perf_event *parent_event = child_event->parent;
8bc20959 10046 u64 child_val;
d859e29f 10047
cdd6c482
IM
10048 if (child_event->attr.inherit_stat)
10049 perf_event_read_event(child_event, child);
38b200d6 10050
b5e58793 10051 child_val = perf_event_count(child_event);
d859e29f
PM
10052
10053 /*
10054 * Add back the child's count to the parent's count:
10055 */
a6e6dea6 10056 atomic64_add(child_val, &parent_event->child_count);
cdd6c482
IM
10057 atomic64_add(child_event->total_time_enabled,
10058 &parent_event->child_total_time_enabled);
10059 atomic64_add(child_event->total_time_running,
10060 &parent_event->child_total_time_running);
d859e29f
PM
10061}
10062
9b51f66d 10063static void
8ba289b8
PZ
10064perf_event_exit_event(struct perf_event *child_event,
10065 struct perf_event_context *child_ctx,
10066 struct task_struct *child)
9b51f66d 10067{
8ba289b8
PZ
10068 struct perf_event *parent_event = child_event->parent;
10069
1903d50c
PZ
10070 /*
10071 * Do not destroy the 'original' grouping; because of the context
10072 * switch optimization the original events could've ended up in a
10073 * random child task.
10074 *
10075 * If we were to destroy the original group, all group related
10076 * operations would cease to function properly after this random
10077 * child dies.
10078 *
10079 * Do destroy all inherited groups, we don't care about those
10080 * and being thorough is better.
10081 */
32132a3d
PZ
10082 raw_spin_lock_irq(&child_ctx->lock);
10083 WARN_ON_ONCE(child_ctx->is_active);
10084
8ba289b8 10085 if (parent_event)
32132a3d
PZ
10086 perf_group_detach(child_event);
10087 list_del_event(child_event, child_ctx);
a69b0ca4 10088 child_event->state = PERF_EVENT_STATE_EXIT; /* is_event_hup() */
32132a3d 10089 raw_spin_unlock_irq(&child_ctx->lock);
0cc0c027 10090
9b51f66d 10091 /*
8ba289b8 10092 * Parent events are governed by their filedesc, retain them.
9b51f66d 10093 */
8ba289b8 10094 if (!parent_event) {
179033b3 10095 perf_event_wakeup(child_event);
8ba289b8 10096 return;
4bcf349a 10097 }
8ba289b8
PZ
10098 /*
10099 * Child events can be cleaned up.
10100 */
10101
10102 sync_child_event(child_event, child);
10103
10104 /*
10105 * Remove this event from the parent's list
10106 */
10107 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
10108 mutex_lock(&parent_event->child_mutex);
10109 list_del_init(&child_event->child_list);
10110 mutex_unlock(&parent_event->child_mutex);
10111
10112 /*
10113 * Kick perf_poll() for is_event_hup().
10114 */
10115 perf_event_wakeup(parent_event);
10116 free_event(child_event);
10117 put_event(parent_event);
9b51f66d
IM
10118}
10119
8dc85d54 10120static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
9b51f66d 10121{
211de6eb 10122 struct perf_event_context *child_ctx, *clone_ctx = NULL;
63b6da39 10123 struct perf_event *child_event, *next;
63b6da39
PZ
10124
10125 WARN_ON_ONCE(child != current);
9b51f66d 10126
6a3351b6 10127 child_ctx = perf_pin_task_context(child, ctxn);
63b6da39 10128 if (!child_ctx)
9b51f66d
IM
10129 return;
10130
ad3a37de 10131 /*
6a3351b6
PZ
10132 * In order to reduce the amount of tricky in ctx tear-down, we hold
10133 * ctx::mutex over the entire thing. This serializes against almost
10134 * everything that wants to access the ctx.
10135 *
10136 * The exception is sys_perf_event_open() /
10137 * perf_event_create_kernel_count() which does find_get_context()
10138 * without ctx::mutex (it cannot because of the move_group double mutex
10139 * lock thing). See the comments in perf_install_in_context().
ad3a37de 10140 */
6a3351b6 10141 mutex_lock(&child_ctx->mutex);
c93f7669
PM
10142
10143 /*
6a3351b6
PZ
10144 * In a single ctx::lock section, de-schedule the events and detach the
10145 * context from the task such that we cannot ever get it scheduled back
10146 * in.
c93f7669 10147 */
6a3351b6 10148 raw_spin_lock_irq(&child_ctx->lock);
63b6da39 10149 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx);
4a1c0f26 10150
71a851b4 10151 /*
63b6da39
PZ
10152 * Now that the context is inactive, destroy the task <-> ctx relation
10153 * and mark the context dead.
71a851b4 10154 */
63b6da39
PZ
10155 RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
10156 put_ctx(child_ctx); /* cannot be last */
10157 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
10158 put_task_struct(current); /* cannot be last */
4a1c0f26 10159
211de6eb 10160 clone_ctx = unclone_ctx(child_ctx);
6a3351b6 10161 raw_spin_unlock_irq(&child_ctx->lock);
9f498cc5 10162
211de6eb
PZ
10163 if (clone_ctx)
10164 put_ctx(clone_ctx);
4a1c0f26 10165
9f498cc5 10166 /*
cdd6c482
IM
10167 * Report the task dead after unscheduling the events so that we
10168 * won't get any samples after PERF_RECORD_EXIT. We can however still
10169 * get a few PERF_RECORD_READ events.
9f498cc5 10170 */
cdd6c482 10171 perf_event_task(child, child_ctx, 0);
a63eaf34 10172
ebf905fc 10173 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
8ba289b8 10174 perf_event_exit_event(child_event, child_ctx, child);
8bc20959 10175
a63eaf34
PM
10176 mutex_unlock(&child_ctx->mutex);
10177
10178 put_ctx(child_ctx);
9b51f66d
IM
10179}
10180
8dc85d54
PZ
10181/*
10182 * When a child task exits, feed back event values to parent events.
79c9ce57
PZ
10183 *
10184 * Can be called with cred_guard_mutex held when called from
10185 * install_exec_creds().
8dc85d54
PZ
10186 */
10187void perf_event_exit_task(struct task_struct *child)
10188{
8882135b 10189 struct perf_event *event, *tmp;
8dc85d54
PZ
10190 int ctxn;
10191
8882135b
PZ
10192 mutex_lock(&child->perf_event_mutex);
10193 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
10194 owner_entry) {
10195 list_del_init(&event->owner_entry);
10196
10197 /*
10198 * Ensure the list deletion is visible before we clear
10199 * the owner, closes a race against perf_release() where
10200 * we need to serialize on the owner->perf_event_mutex.
10201 */
f47c02c0 10202 smp_store_release(&event->owner, NULL);
8882135b
PZ
10203 }
10204 mutex_unlock(&child->perf_event_mutex);
10205
8dc85d54
PZ
10206 for_each_task_context_nr(ctxn)
10207 perf_event_exit_task_context(child, ctxn);
4e93ad60
JO
10208
10209 /*
10210 * The perf_event_exit_task_context calls perf_event_task
10211 * with child's task_ctx, which generates EXIT events for
10212 * child contexts and sets child->perf_event_ctxp[] to NULL.
10213 * At this point we need to send EXIT events to cpu contexts.
10214 */
10215 perf_event_task(child, NULL, 0);
8dc85d54
PZ
10216}
10217
889ff015
FW
10218static void perf_free_event(struct perf_event *event,
10219 struct perf_event_context *ctx)
10220{
10221 struct perf_event *parent = event->parent;
10222
10223 if (WARN_ON_ONCE(!parent))
10224 return;
10225
10226 mutex_lock(&parent->child_mutex);
10227 list_del_init(&event->child_list);
10228 mutex_unlock(&parent->child_mutex);
10229
a6fa941d 10230 put_event(parent);
889ff015 10231
652884fe 10232 raw_spin_lock_irq(&ctx->lock);
8a49542c 10233 perf_group_detach(event);
889ff015 10234 list_del_event(event, ctx);
652884fe 10235 raw_spin_unlock_irq(&ctx->lock);
889ff015
FW
10236 free_event(event);
10237}
10238
bbbee908 10239/*
652884fe 10240 * Free an unexposed, unused context as created by inheritance by
8dc85d54 10241 * perf_event_init_task below, used by fork() in case of fail.
652884fe
PZ
10242 *
10243 * Not all locks are strictly required, but take them anyway to be nice and
10244 * help out with the lockdep assertions.
bbbee908 10245 */
cdd6c482 10246void perf_event_free_task(struct task_struct *task)
bbbee908 10247{
8dc85d54 10248 struct perf_event_context *ctx;
cdd6c482 10249 struct perf_event *event, *tmp;
8dc85d54 10250 int ctxn;
bbbee908 10251
8dc85d54
PZ
10252 for_each_task_context_nr(ctxn) {
10253 ctx = task->perf_event_ctxp[ctxn];
10254 if (!ctx)
10255 continue;
bbbee908 10256
8dc85d54 10257 mutex_lock(&ctx->mutex);
bbbee908 10258again:
8dc85d54
PZ
10259 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
10260 group_entry)
10261 perf_free_event(event, ctx);
bbbee908 10262
8dc85d54
PZ
10263 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
10264 group_entry)
10265 perf_free_event(event, ctx);
bbbee908 10266
8dc85d54
PZ
10267 if (!list_empty(&ctx->pinned_groups) ||
10268 !list_empty(&ctx->flexible_groups))
10269 goto again;
bbbee908 10270
8dc85d54 10271 mutex_unlock(&ctx->mutex);
bbbee908 10272
8dc85d54
PZ
10273 put_ctx(ctx);
10274 }
889ff015
FW
10275}
10276
4e231c79
PZ
10277void perf_event_delayed_put(struct task_struct *task)
10278{
10279 int ctxn;
10280
10281 for_each_task_context_nr(ctxn)
10282 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
10283}
10284
e03e7ee3 10285struct file *perf_event_get(unsigned int fd)
ffe8690c 10286{
e03e7ee3 10287 struct file *file;
ffe8690c 10288
e03e7ee3
AS
10289 file = fget_raw(fd);
10290 if (!file)
10291 return ERR_PTR(-EBADF);
ffe8690c 10292
e03e7ee3
AS
10293 if (file->f_op != &perf_fops) {
10294 fput(file);
10295 return ERR_PTR(-EBADF);
10296 }
ffe8690c 10297
e03e7ee3 10298 return file;
ffe8690c
KX
10299}
10300
10301const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
10302{
10303 if (!event)
10304 return ERR_PTR(-EINVAL);
10305
10306 return &event->attr;
10307}
10308
97dee4f3
PZ
10309/*
10310 * inherit a event from parent task to child task:
10311 */
10312static struct perf_event *
10313inherit_event(struct perf_event *parent_event,
10314 struct task_struct *parent,
10315 struct perf_event_context *parent_ctx,
10316 struct task_struct *child,
10317 struct perf_event *group_leader,
10318 struct perf_event_context *child_ctx)
10319{
1929def9 10320 enum perf_event_active_state parent_state = parent_event->state;
97dee4f3 10321 struct perf_event *child_event;
cee010ec 10322 unsigned long flags;
97dee4f3
PZ
10323
10324 /*
10325 * Instead of creating recursive hierarchies of events,
10326 * we link inherited events back to the original parent,
10327 * which has a filp for sure, which we use as the reference
10328 * count:
10329 */
10330 if (parent_event->parent)
10331 parent_event = parent_event->parent;
10332
10333 child_event = perf_event_alloc(&parent_event->attr,
10334 parent_event->cpu,
d580ff86 10335 child,
97dee4f3 10336 group_leader, parent_event,
79dff51e 10337 NULL, NULL, -1);
97dee4f3
PZ
10338 if (IS_ERR(child_event))
10339 return child_event;
a6fa941d 10340
c6e5b732
PZ
10341 /*
10342 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
10343 * must be under the same lock in order to serialize against
10344 * perf_event_release_kernel(), such that either we must observe
10345 * is_orphaned_event() or they will observe us on the child_list.
10346 */
10347 mutex_lock(&parent_event->child_mutex);
fadfe7be
JO
10348 if (is_orphaned_event(parent_event) ||
10349 !atomic_long_inc_not_zero(&parent_event->refcount)) {
c6e5b732 10350 mutex_unlock(&parent_event->child_mutex);
a6fa941d
AV
10351 free_event(child_event);
10352 return NULL;
10353 }
10354
97dee4f3
PZ
10355 get_ctx(child_ctx);
10356
10357 /*
10358 * Make the child state follow the state of the parent event,
10359 * not its attr.disabled bit. We hold the parent's mutex,
10360 * so we won't race with perf_event_{en, dis}able_family.
10361 */
1929def9 10362 if (parent_state >= PERF_EVENT_STATE_INACTIVE)
97dee4f3
PZ
10363 child_event->state = PERF_EVENT_STATE_INACTIVE;
10364 else
10365 child_event->state = PERF_EVENT_STATE_OFF;
10366
10367 if (parent_event->attr.freq) {
10368 u64 sample_period = parent_event->hw.sample_period;
10369 struct hw_perf_event *hwc = &child_event->hw;
10370
10371 hwc->sample_period = sample_period;
10372 hwc->last_period = sample_period;
10373
10374 local64_set(&hwc->period_left, sample_period);
10375 }
10376
10377 child_event->ctx = child_ctx;
10378 child_event->overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
10379 child_event->overflow_handler_context
10380 = parent_event->overflow_handler_context;
97dee4f3 10381
614b6780
TG
10382 /*
10383 * Precalculate sample_data sizes
10384 */
10385 perf_event__header_size(child_event);
6844c09d 10386 perf_event__id_header_size(child_event);
614b6780 10387
97dee4f3
PZ
10388 /*
10389 * Link it up in the child's context:
10390 */
cee010ec 10391 raw_spin_lock_irqsave(&child_ctx->lock, flags);
97dee4f3 10392 add_event_to_ctx(child_event, child_ctx);
cee010ec 10393 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
97dee4f3 10394
97dee4f3
PZ
10395 /*
10396 * Link this into the parent event's child list
10397 */
97dee4f3
PZ
10398 list_add_tail(&child_event->child_list, &parent_event->child_list);
10399 mutex_unlock(&parent_event->child_mutex);
10400
10401 return child_event;
10402}
10403
10404static int inherit_group(struct perf_event *parent_event,
10405 struct task_struct *parent,
10406 struct perf_event_context *parent_ctx,
10407 struct task_struct *child,
10408 struct perf_event_context *child_ctx)
10409{
10410 struct perf_event *leader;
10411 struct perf_event *sub;
10412 struct perf_event *child_ctr;
10413
10414 leader = inherit_event(parent_event, parent, parent_ctx,
10415 child, NULL, child_ctx);
10416 if (IS_ERR(leader))
10417 return PTR_ERR(leader);
10418 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
10419 child_ctr = inherit_event(sub, parent, parent_ctx,
10420 child, leader, child_ctx);
10421 if (IS_ERR(child_ctr))
10422 return PTR_ERR(child_ctr);
10423 }
10424 return 0;
889ff015
FW
10425}
10426
10427static int
10428inherit_task_group(struct perf_event *event, struct task_struct *parent,
10429 struct perf_event_context *parent_ctx,
8dc85d54 10430 struct task_struct *child, int ctxn,
889ff015
FW
10431 int *inherited_all)
10432{
10433 int ret;
8dc85d54 10434 struct perf_event_context *child_ctx;
889ff015
FW
10435
10436 if (!event->attr.inherit) {
10437 *inherited_all = 0;
10438 return 0;
bbbee908
PZ
10439 }
10440
fe4b04fa 10441 child_ctx = child->perf_event_ctxp[ctxn];
889ff015
FW
10442 if (!child_ctx) {
10443 /*
10444 * This is executed from the parent task context, so
10445 * inherit events that have been marked for cloning.
10446 * First allocate and initialize a context for the
10447 * child.
10448 */
bbbee908 10449
734df5ab 10450 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
889ff015
FW
10451 if (!child_ctx)
10452 return -ENOMEM;
bbbee908 10453
8dc85d54 10454 child->perf_event_ctxp[ctxn] = child_ctx;
889ff015
FW
10455 }
10456
10457 ret = inherit_group(event, parent, parent_ctx,
10458 child, child_ctx);
10459
10460 if (ret)
10461 *inherited_all = 0;
10462
10463 return ret;
bbbee908
PZ
10464}
10465
9b51f66d 10466/*
cdd6c482 10467 * Initialize the perf_event context in task_struct
9b51f66d 10468 */
985c8dcb 10469static int perf_event_init_context(struct task_struct *child, int ctxn)
9b51f66d 10470{
889ff015 10471 struct perf_event_context *child_ctx, *parent_ctx;
cdd6c482
IM
10472 struct perf_event_context *cloned_ctx;
10473 struct perf_event *event;
9b51f66d 10474 struct task_struct *parent = current;
564c2b21 10475 int inherited_all = 1;
dddd3379 10476 unsigned long flags;
6ab423e0 10477 int ret = 0;
9b51f66d 10478
8dc85d54 10479 if (likely(!parent->perf_event_ctxp[ctxn]))
6ab423e0
PZ
10480 return 0;
10481
ad3a37de 10482 /*
25346b93
PM
10483 * If the parent's context is a clone, pin it so it won't get
10484 * swapped under us.
ad3a37de 10485 */
8dc85d54 10486 parent_ctx = perf_pin_task_context(parent, ctxn);
ffb4ef21
PZ
10487 if (!parent_ctx)
10488 return 0;
25346b93 10489
ad3a37de
PM
10490 /*
10491 * No need to check if parent_ctx != NULL here; since we saw
10492 * it non-NULL earlier, the only reason for it to become NULL
10493 * is if we exit, and since we're currently in the middle of
10494 * a fork we can't be exiting at the same time.
10495 */
ad3a37de 10496
9b51f66d
IM
10497 /*
10498 * Lock the parent list. No need to lock the child - not PID
10499 * hashed yet and not running, so nobody can access it.
10500 */
d859e29f 10501 mutex_lock(&parent_ctx->mutex);
9b51f66d
IM
10502
10503 /*
10504 * We dont have to disable NMIs - we are only looking at
10505 * the list, not manipulating it:
10506 */
889ff015 10507 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
8dc85d54
PZ
10508 ret = inherit_task_group(event, parent, parent_ctx,
10509 child, ctxn, &inherited_all);
889ff015
FW
10510 if (ret)
10511 break;
10512 }
b93f7978 10513
dddd3379
TG
10514 /*
10515 * We can't hold ctx->lock when iterating the ->flexible_group list due
10516 * to allocations, but we need to prevent rotation because
10517 * rotate_ctx() will change the list from interrupt context.
10518 */
10519 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10520 parent_ctx->rotate_disable = 1;
10521 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
10522
889ff015 10523 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
8dc85d54
PZ
10524 ret = inherit_task_group(event, parent, parent_ctx,
10525 child, ctxn, &inherited_all);
889ff015 10526 if (ret)
9b51f66d 10527 break;
564c2b21
PM
10528 }
10529
dddd3379
TG
10530 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
10531 parent_ctx->rotate_disable = 0;
dddd3379 10532
8dc85d54 10533 child_ctx = child->perf_event_ctxp[ctxn];
889ff015 10534
05cbaa28 10535 if (child_ctx && inherited_all) {
564c2b21
PM
10536 /*
10537 * Mark the child context as a clone of the parent
10538 * context, or of whatever the parent is a clone of.
c5ed5145
PZ
10539 *
10540 * Note that if the parent is a clone, the holding of
10541 * parent_ctx->lock avoids it from being uncloned.
564c2b21 10542 */
c5ed5145 10543 cloned_ctx = parent_ctx->parent_ctx;
ad3a37de
PM
10544 if (cloned_ctx) {
10545 child_ctx->parent_ctx = cloned_ctx;
25346b93 10546 child_ctx->parent_gen = parent_ctx->parent_gen;
564c2b21
PM
10547 } else {
10548 child_ctx->parent_ctx = parent_ctx;
10549 child_ctx->parent_gen = parent_ctx->generation;
10550 }
10551 get_ctx(child_ctx->parent_ctx);
9b51f66d
IM
10552 }
10553
c5ed5145 10554 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
d859e29f 10555 mutex_unlock(&parent_ctx->mutex);
6ab423e0 10556
25346b93 10557 perf_unpin_context(parent_ctx);
fe4b04fa 10558 put_ctx(parent_ctx);
ad3a37de 10559
6ab423e0 10560 return ret;
9b51f66d
IM
10561}
10562
8dc85d54
PZ
10563/*
10564 * Initialize the perf_event context in task_struct
10565 */
10566int perf_event_init_task(struct task_struct *child)
10567{
10568 int ctxn, ret;
10569
8550d7cb
ON
10570 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
10571 mutex_init(&child->perf_event_mutex);
10572 INIT_LIST_HEAD(&child->perf_event_list);
10573
8dc85d54
PZ
10574 for_each_task_context_nr(ctxn) {
10575 ret = perf_event_init_context(child, ctxn);
6c72e350
PZ
10576 if (ret) {
10577 perf_event_free_task(child);
8dc85d54 10578 return ret;
6c72e350 10579 }
8dc85d54
PZ
10580 }
10581
10582 return 0;
10583}
10584
220b140b
PM
10585static void __init perf_event_init_all_cpus(void)
10586{
b28ab83c 10587 struct swevent_htable *swhash;
220b140b 10588 int cpu;
220b140b
PM
10589
10590 for_each_possible_cpu(cpu) {
b28ab83c
PZ
10591 swhash = &per_cpu(swevent_htable, cpu);
10592 mutex_init(&swhash->hlist_mutex);
2fde4f94 10593 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
f2fb6bef
KL
10594
10595 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
10596 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
e48c1788
PZ
10597
10598 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
220b140b
PM
10599 }
10600}
10601
00e16c3d 10602int perf_event_init_cpu(unsigned int cpu)
0793a61d 10603{
108b02cf 10604 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
0793a61d 10605
b28ab83c 10606 mutex_lock(&swhash->hlist_mutex);
059fcd8c 10607 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
76e1d904
FW
10608 struct swevent_hlist *hlist;
10609
b28ab83c
PZ
10610 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
10611 WARN_ON(!hlist);
10612 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 10613 }
b28ab83c 10614 mutex_unlock(&swhash->hlist_mutex);
00e16c3d 10615 return 0;
0793a61d
TG
10616}
10617
2965faa5 10618#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
108b02cf 10619static void __perf_event_exit_context(void *__info)
0793a61d 10620{
108b02cf 10621 struct perf_event_context *ctx = __info;
fae3fde6
PZ
10622 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
10623 struct perf_event *event;
0793a61d 10624
fae3fde6
PZ
10625 raw_spin_lock(&ctx->lock);
10626 list_for_each_entry(event, &ctx->event_list, event_entry)
45a0e07a 10627 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
fae3fde6 10628 raw_spin_unlock(&ctx->lock);
0793a61d 10629}
108b02cf
PZ
10630
10631static void perf_event_exit_cpu_context(int cpu)
10632{
10633 struct perf_event_context *ctx;
10634 struct pmu *pmu;
10635 int idx;
10636
10637 idx = srcu_read_lock(&pmus_srcu);
10638 list_for_each_entry_rcu(pmu, &pmus, entry) {
917bdd1c 10639 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
108b02cf
PZ
10640
10641 mutex_lock(&ctx->mutex);
10642 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
10643 mutex_unlock(&ctx->mutex);
10644 }
10645 srcu_read_unlock(&pmus_srcu, idx);
108b02cf 10646}
00e16c3d
TG
10647#else
10648
10649static void perf_event_exit_cpu_context(int cpu) { }
10650
10651#endif
108b02cf 10652
00e16c3d 10653int perf_event_exit_cpu(unsigned int cpu)
0793a61d 10654{
e3703f8c 10655 perf_event_exit_cpu_context(cpu);
00e16c3d 10656 return 0;
0793a61d 10657}
0793a61d 10658
c277443c
PZ
10659static int
10660perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
10661{
10662 int cpu;
10663
10664 for_each_online_cpu(cpu)
10665 perf_event_exit_cpu(cpu);
10666
10667 return NOTIFY_OK;
10668}
10669
10670/*
10671 * Run the perf reboot notifier at the very last possible moment so that
10672 * the generic watchdog code runs as long as possible.
10673 */
10674static struct notifier_block perf_reboot_notifier = {
10675 .notifier_call = perf_reboot,
10676 .priority = INT_MIN,
10677};
10678
cdd6c482 10679void __init perf_event_init(void)
0793a61d 10680{
3c502e7a
JW
10681 int ret;
10682
2e80a82a
PZ
10683 idr_init(&pmu_idr);
10684
220b140b 10685 perf_event_init_all_cpus();
b0a873eb 10686 init_srcu_struct(&pmus_srcu);
2e80a82a
PZ
10687 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
10688 perf_pmu_register(&perf_cpu_clock, NULL, -1);
10689 perf_pmu_register(&perf_task_clock, NULL, -1);
b0a873eb 10690 perf_tp_register();
00e16c3d 10691 perf_event_init_cpu(smp_processor_id());
c277443c 10692 register_reboot_notifier(&perf_reboot_notifier);
3c502e7a
JW
10693
10694 ret = init_hw_breakpoint();
10695 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
b2029520 10696
b01c3a00
JO
10697 /*
10698 * Build time assertion that we keep the data_head at the intended
10699 * location. IOW, validation we got the __reserved[] size right.
10700 */
10701 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
10702 != 1024);
0793a61d 10703}
abe43400 10704
fd979c01
CS
10705ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
10706 char *page)
10707{
10708 struct perf_pmu_events_attr *pmu_attr =
10709 container_of(attr, struct perf_pmu_events_attr, attr);
10710
10711 if (pmu_attr->event_str)
10712 return sprintf(page, "%s\n", pmu_attr->event_str);
10713
10714 return 0;
10715}
675965b0 10716EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
fd979c01 10717
abe43400
PZ
10718static int __init perf_event_sysfs_init(void)
10719{
10720 struct pmu *pmu;
10721 int ret;
10722
10723 mutex_lock(&pmus_lock);
10724
10725 ret = bus_register(&pmu_bus);
10726 if (ret)
10727 goto unlock;
10728
10729 list_for_each_entry(pmu, &pmus, entry) {
10730 if (!pmu->name || pmu->type < 0)
10731 continue;
10732
10733 ret = pmu_dev_alloc(pmu);
10734 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
10735 }
10736 pmu_bus_running = 1;
10737 ret = 0;
10738
10739unlock:
10740 mutex_unlock(&pmus_lock);
10741
10742 return ret;
10743}
10744device_initcall(perf_event_sysfs_init);
e5d1367f
SE
10745
10746#ifdef CONFIG_CGROUP_PERF
eb95419b
TH
10747static struct cgroup_subsys_state *
10748perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
e5d1367f
SE
10749{
10750 struct perf_cgroup *jc;
e5d1367f 10751
1b15d055 10752 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
e5d1367f
SE
10753 if (!jc)
10754 return ERR_PTR(-ENOMEM);
10755
e5d1367f
SE
10756 jc->info = alloc_percpu(struct perf_cgroup_info);
10757 if (!jc->info) {
10758 kfree(jc);
10759 return ERR_PTR(-ENOMEM);
10760 }
10761
e5d1367f
SE
10762 return &jc->css;
10763}
10764
eb95419b 10765static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
e5d1367f 10766{
eb95419b
TH
10767 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
10768
e5d1367f
SE
10769 free_percpu(jc->info);
10770 kfree(jc);
10771}
10772
10773static int __perf_cgroup_move(void *info)
10774{
10775 struct task_struct *task = info;
ddaaf4e2 10776 rcu_read_lock();
e5d1367f 10777 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
ddaaf4e2 10778 rcu_read_unlock();
e5d1367f
SE
10779 return 0;
10780}
10781
1f7dd3e5 10782static void perf_cgroup_attach(struct cgroup_taskset *tset)
e5d1367f 10783{
bb9d97b6 10784 struct task_struct *task;
1f7dd3e5 10785 struct cgroup_subsys_state *css;
bb9d97b6 10786
1f7dd3e5 10787 cgroup_taskset_for_each(task, css, tset)
bb9d97b6 10788 task_function_call(task, __perf_cgroup_move, task);
e5d1367f
SE
10789}
10790
073219e9 10791struct cgroup_subsys perf_event_cgrp_subsys = {
92fb9748
TH
10792 .css_alloc = perf_cgroup_css_alloc,
10793 .css_free = perf_cgroup_css_free,
bb9d97b6 10794 .attach = perf_cgroup_attach,
e5d1367f
SE
10795};
10796#endif /* CONFIG_CGROUP_PERF */