]> git.ipfire.org Git - people/arne_f/kernel.git/blame - kernel/events/core.c
perf: Fix race in perf_event_exec()
[people/arne_f/kernel.git] / kernel / events / core.c
CommitLineData
0793a61d 1/*
57c0c15b 2 * Performance events core code:
0793a61d 3 *
98144511 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
e7e7ee2e 5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
90eec103 6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
d36b6910 7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
7b732a75 8 *
57c0c15b 9 * For licensing details see kernel-base/COPYING
0793a61d
TG
10 */
11
12#include <linux/fs.h>
b9cacc7b 13#include <linux/mm.h>
0793a61d
TG
14#include <linux/cpu.h>
15#include <linux/smp.h>
2e80a82a 16#include <linux/idr.h>
04289bb9 17#include <linux/file.h>
0793a61d 18#include <linux/poll.h>
5a0e3ad6 19#include <linux/slab.h>
76e1d904 20#include <linux/hash.h>
12351ef8 21#include <linux/tick.h>
0793a61d 22#include <linux/sysfs.h>
22a4f650 23#include <linux/dcache.h>
0793a61d 24#include <linux/percpu.h>
22a4f650 25#include <linux/ptrace.h>
c277443c 26#include <linux/reboot.h>
b9cacc7b 27#include <linux/vmstat.h>
abe43400 28#include <linux/device.h>
6e5fdeed 29#include <linux/export.h>
906010b2 30#include <linux/vmalloc.h>
b9cacc7b
PZ
31#include <linux/hardirq.h>
32#include <linux/rculist.h>
0793a61d
TG
33#include <linux/uaccess.h>
34#include <linux/syscalls.h>
35#include <linux/anon_inodes.h>
aa9c4c0f 36#include <linux/kernel_stat.h>
39bed6cb 37#include <linux/cgroup.h>
cdd6c482 38#include <linux/perf_event.h>
af658dca 39#include <linux/trace_events.h>
3c502e7a 40#include <linux/hw_breakpoint.h>
c5ebcedb 41#include <linux/mm_types.h>
c464c76e 42#include <linux/module.h>
f972eb63 43#include <linux/mman.h>
b3f20785 44#include <linux/compat.h>
2541517c
AS
45#include <linux/bpf.h>
46#include <linux/filter.h>
0793a61d 47
76369139
FW
48#include "internal.h"
49
4e193bd4
TB
50#include <asm/irq_regs.h>
51
fadfe7be
JO
52static struct workqueue_struct *perf_wq;
53
272325c4
PZ
54typedef int (*remote_function_f)(void *);
55
fe4b04fa 56struct remote_function_call {
e7e7ee2e 57 struct task_struct *p;
272325c4 58 remote_function_f func;
e7e7ee2e
IM
59 void *info;
60 int ret;
fe4b04fa
PZ
61};
62
63static void remote_function(void *data)
64{
65 struct remote_function_call *tfc = data;
66 struct task_struct *p = tfc->p;
67
68 if (p) {
69 tfc->ret = -EAGAIN;
70 if (task_cpu(p) != smp_processor_id() || !task_curr(p))
71 return;
72 }
73
74 tfc->ret = tfc->func(tfc->info);
75}
76
77/**
78 * task_function_call - call a function on the cpu on which a task runs
79 * @p: the task to evaluate
80 * @func: the function to be called
81 * @info: the function call argument
82 *
83 * Calls the function @func when the task is currently running. This might
84 * be on the current CPU, which just calls the function directly
85 *
86 * returns: @func return value, or
87 * -ESRCH - when the process isn't running
88 * -EAGAIN - when the process moved away
89 */
90static int
272325c4 91task_function_call(struct task_struct *p, remote_function_f func, void *info)
fe4b04fa
PZ
92{
93 struct remote_function_call data = {
e7e7ee2e
IM
94 .p = p,
95 .func = func,
96 .info = info,
97 .ret = -ESRCH, /* No such (running) process */
fe4b04fa
PZ
98 };
99
100 if (task_curr(p))
101 smp_call_function_single(task_cpu(p), remote_function, &data, 1);
102
103 return data.ret;
104}
105
106/**
107 * cpu_function_call - call a function on the cpu
108 * @func: the function to be called
109 * @info: the function call argument
110 *
111 * Calls the function @func on the remote cpu.
112 *
113 * returns: @func return value or -ENXIO when the cpu is offline
114 */
272325c4 115static int cpu_function_call(int cpu, remote_function_f func, void *info)
fe4b04fa
PZ
116{
117 struct remote_function_call data = {
e7e7ee2e
IM
118 .p = NULL,
119 .func = func,
120 .info = info,
121 .ret = -ENXIO, /* No such CPU */
fe4b04fa
PZ
122 };
123
124 smp_call_function_single(cpu, remote_function, &data, 1);
125
126 return data.ret;
127}
128
f8697762
JO
129#define EVENT_OWNER_KERNEL ((void *) -1)
130
131static bool is_kernel_event(struct perf_event *event)
132{
133 return event->owner == EVENT_OWNER_KERNEL;
134}
135
e5d1367f
SE
136#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
137 PERF_FLAG_FD_OUTPUT |\
a21b0b35
YD
138 PERF_FLAG_PID_CGROUP |\
139 PERF_FLAG_FD_CLOEXEC)
e5d1367f 140
bce38cd5
SE
141/*
142 * branch priv levels that need permission checks
143 */
144#define PERF_SAMPLE_BRANCH_PERM_PLM \
145 (PERF_SAMPLE_BRANCH_KERNEL |\
146 PERF_SAMPLE_BRANCH_HV)
147
0b3fcf17
SE
148enum event_type_t {
149 EVENT_FLEXIBLE = 0x1,
150 EVENT_PINNED = 0x2,
151 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
152};
153
e5d1367f
SE
154/*
155 * perf_sched_events : >0 events exist
156 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
157 */
c5905afb 158struct static_key_deferred perf_sched_events __read_mostly;
e5d1367f 159static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
ba532500 160static DEFINE_PER_CPU(int, perf_sched_cb_usages);
e5d1367f 161
cdd6c482
IM
162static atomic_t nr_mmap_events __read_mostly;
163static atomic_t nr_comm_events __read_mostly;
164static atomic_t nr_task_events __read_mostly;
948b26b6 165static atomic_t nr_freq_events __read_mostly;
45ac1403 166static atomic_t nr_switch_events __read_mostly;
9ee318a7 167
108b02cf
PZ
168static LIST_HEAD(pmus);
169static DEFINE_MUTEX(pmus_lock);
170static struct srcu_struct pmus_srcu;
171
0764771d 172/*
cdd6c482 173 * perf event paranoia level:
0fbdea19
IM
174 * -1 - not paranoid at all
175 * 0 - disallow raw tracepoint access for unpriv
cdd6c482 176 * 1 - disallow cpu events for unpriv
0fbdea19 177 * 2 - disallow kernel profiling for unpriv
0764771d 178 */
cdd6c482 179int sysctl_perf_event_paranoid __read_mostly = 1;
0764771d 180
20443384
FW
181/* Minimum for 512 kiB + 1 user control page */
182int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
df58ab24
PZ
183
184/*
cdd6c482 185 * max perf event sample rate
df58ab24 186 */
14c63f17
DH
187#define DEFAULT_MAX_SAMPLE_RATE 100000
188#define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
189#define DEFAULT_CPU_TIME_MAX_PERCENT 25
190
191int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
192
193static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
194static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
195
d9494cb4
PZ
196static int perf_sample_allowed_ns __read_mostly =
197 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
14c63f17 198
18ab2cd3 199static void update_perf_cpu_limits(void)
14c63f17
DH
200{
201 u64 tmp = perf_sample_period_ns;
202
203 tmp *= sysctl_perf_cpu_time_max_percent;
e5302920 204 do_div(tmp, 100);
d9494cb4 205 ACCESS_ONCE(perf_sample_allowed_ns) = tmp;
14c63f17 206}
163ec435 207
9e630205
SE
208static int perf_rotate_context(struct perf_cpu_context *cpuctx);
209
163ec435
PZ
210int perf_proc_update_handler(struct ctl_table *table, int write,
211 void __user *buffer, size_t *lenp,
212 loff_t *ppos)
213{
723478c8 214 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
163ec435
PZ
215
216 if (ret || !write)
217 return ret;
218
219 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
14c63f17
DH
220 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
221 update_perf_cpu_limits();
222
223 return 0;
224}
225
226int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
227
228int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
229 void __user *buffer, size_t *lenp,
230 loff_t *ppos)
231{
232 int ret = proc_dointvec(table, write, buffer, lenp, ppos);
233
234 if (ret || !write)
235 return ret;
236
237 update_perf_cpu_limits();
163ec435
PZ
238
239 return 0;
240}
1ccd1549 241
14c63f17
DH
242/*
243 * perf samples are done in some very critical code paths (NMIs).
244 * If they take too much CPU time, the system can lock up and not
245 * get any real work done. This will drop the sample rate when
246 * we detect that events are taking too long.
247 */
248#define NR_ACCUMULATED_SAMPLES 128
d9494cb4 249static DEFINE_PER_CPU(u64, running_sample_length);
14c63f17 250
6a02ad66 251static void perf_duration_warn(struct irq_work *w)
14c63f17 252{
6a02ad66 253 u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
14c63f17 254 u64 avg_local_sample_len;
e5302920 255 u64 local_samples_len;
6a02ad66 256
4a32fea9 257 local_samples_len = __this_cpu_read(running_sample_length);
6a02ad66
PZ
258 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
259
260 printk_ratelimited(KERN_WARNING
261 "perf interrupt took too long (%lld > %lld), lowering "
262 "kernel.perf_event_max_sample_rate to %d\n",
cd578abb 263 avg_local_sample_len, allowed_ns >> 1,
6a02ad66
PZ
264 sysctl_perf_event_sample_rate);
265}
266
267static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
268
269void perf_sample_event_took(u64 sample_len_ns)
270{
d9494cb4 271 u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
6a02ad66
PZ
272 u64 avg_local_sample_len;
273 u64 local_samples_len;
14c63f17 274
d9494cb4 275 if (allowed_ns == 0)
14c63f17
DH
276 return;
277
278 /* decay the counter by 1 average sample */
4a32fea9 279 local_samples_len = __this_cpu_read(running_sample_length);
14c63f17
DH
280 local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
281 local_samples_len += sample_len_ns;
4a32fea9 282 __this_cpu_write(running_sample_length, local_samples_len);
14c63f17
DH
283
284 /*
285 * note: this will be biased artifically low until we have
286 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
287 * from having to maintain a count.
288 */
289 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
290
d9494cb4 291 if (avg_local_sample_len <= allowed_ns)
14c63f17
DH
292 return;
293
294 if (max_samples_per_tick <= 1)
295 return;
296
297 max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
298 sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
299 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
300
14c63f17 301 update_perf_cpu_limits();
6a02ad66 302
cd578abb
PZ
303 if (!irq_work_queue(&perf_duration_work)) {
304 early_printk("perf interrupt took too long (%lld > %lld), lowering "
305 "kernel.perf_event_max_sample_rate to %d\n",
306 avg_local_sample_len, allowed_ns >> 1,
307 sysctl_perf_event_sample_rate);
308 }
14c63f17
DH
309}
310
cdd6c482 311static atomic64_t perf_event_id;
a96bbc16 312
0b3fcf17
SE
313static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
314 enum event_type_t event_type);
315
316static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
317 enum event_type_t event_type,
318 struct task_struct *task);
319
320static void update_context_time(struct perf_event_context *ctx);
321static u64 perf_event_time(struct perf_event *event);
0b3fcf17 322
cdd6c482 323void __weak perf_event_print_debug(void) { }
0793a61d 324
84c79910 325extern __weak const char *perf_pmu_name(void)
0793a61d 326{
84c79910 327 return "pmu";
0793a61d
TG
328}
329
0b3fcf17
SE
330static inline u64 perf_clock(void)
331{
332 return local_clock();
333}
334
34f43927
PZ
335static inline u64 perf_event_clock(struct perf_event *event)
336{
337 return event->clock();
338}
339
e5d1367f
SE
340static inline struct perf_cpu_context *
341__get_cpu_context(struct perf_event_context *ctx)
342{
343 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
344}
345
facc4307
PZ
346static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
347 struct perf_event_context *ctx)
348{
349 raw_spin_lock(&cpuctx->ctx.lock);
350 if (ctx)
351 raw_spin_lock(&ctx->lock);
352}
353
354static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
355 struct perf_event_context *ctx)
356{
357 if (ctx)
358 raw_spin_unlock(&ctx->lock);
359 raw_spin_unlock(&cpuctx->ctx.lock);
360}
361
e5d1367f
SE
362#ifdef CONFIG_CGROUP_PERF
363
e5d1367f
SE
364static inline bool
365perf_cgroup_match(struct perf_event *event)
366{
367 struct perf_event_context *ctx = event->ctx;
368 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
369
ef824fa1
TH
370 /* @event doesn't care about cgroup */
371 if (!event->cgrp)
372 return true;
373
374 /* wants specific cgroup scope but @cpuctx isn't associated with any */
375 if (!cpuctx->cgrp)
376 return false;
377
378 /*
379 * Cgroup scoping is recursive. An event enabled for a cgroup is
380 * also enabled for all its descendant cgroups. If @cpuctx's
381 * cgroup is a descendant of @event's (the test covers identity
382 * case), it's a match.
383 */
384 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
385 event->cgrp->css.cgroup);
e5d1367f
SE
386}
387
e5d1367f
SE
388static inline void perf_detach_cgroup(struct perf_event *event)
389{
4e2ba650 390 css_put(&event->cgrp->css);
e5d1367f
SE
391 event->cgrp = NULL;
392}
393
394static inline int is_cgroup_event(struct perf_event *event)
395{
396 return event->cgrp != NULL;
397}
398
399static inline u64 perf_cgroup_event_time(struct perf_event *event)
400{
401 struct perf_cgroup_info *t;
402
403 t = per_cpu_ptr(event->cgrp->info, event->cpu);
404 return t->time;
405}
406
407static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
408{
409 struct perf_cgroup_info *info;
410 u64 now;
411
412 now = perf_clock();
413
414 info = this_cpu_ptr(cgrp->info);
415
416 info->time += now - info->timestamp;
417 info->timestamp = now;
418}
419
420static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
421{
422 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
423 if (cgrp_out)
424 __update_cgrp_time(cgrp_out);
425}
426
427static inline void update_cgrp_time_from_event(struct perf_event *event)
428{
3f7cce3c
SE
429 struct perf_cgroup *cgrp;
430
e5d1367f 431 /*
3f7cce3c
SE
432 * ensure we access cgroup data only when needed and
433 * when we know the cgroup is pinned (css_get)
e5d1367f 434 */
3f7cce3c 435 if (!is_cgroup_event(event))
e5d1367f
SE
436 return;
437
614e4c4e 438 cgrp = perf_cgroup_from_task(current, event->ctx);
3f7cce3c
SE
439 /*
440 * Do not update time when cgroup is not active
441 */
442 if (cgrp == event->cgrp)
443 __update_cgrp_time(event->cgrp);
e5d1367f
SE
444}
445
446static inline void
3f7cce3c
SE
447perf_cgroup_set_timestamp(struct task_struct *task,
448 struct perf_event_context *ctx)
e5d1367f
SE
449{
450 struct perf_cgroup *cgrp;
451 struct perf_cgroup_info *info;
452
3f7cce3c
SE
453 /*
454 * ctx->lock held by caller
455 * ensure we do not access cgroup data
456 * unless we have the cgroup pinned (css_get)
457 */
458 if (!task || !ctx->nr_cgroups)
e5d1367f
SE
459 return;
460
614e4c4e 461 cgrp = perf_cgroup_from_task(task, ctx);
e5d1367f 462 info = this_cpu_ptr(cgrp->info);
3f7cce3c 463 info->timestamp = ctx->timestamp;
e5d1367f
SE
464}
465
466#define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
467#define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
468
469/*
470 * reschedule events based on the cgroup constraint of task.
471 *
472 * mode SWOUT : schedule out everything
473 * mode SWIN : schedule in based on cgroup for next
474 */
18ab2cd3 475static void perf_cgroup_switch(struct task_struct *task, int mode)
e5d1367f
SE
476{
477 struct perf_cpu_context *cpuctx;
478 struct pmu *pmu;
479 unsigned long flags;
480
481 /*
482 * disable interrupts to avoid geting nr_cgroup
483 * changes via __perf_event_disable(). Also
484 * avoids preemption.
485 */
486 local_irq_save(flags);
487
488 /*
489 * we reschedule only in the presence of cgroup
490 * constrained events.
491 */
e5d1367f
SE
492
493 list_for_each_entry_rcu(pmu, &pmus, entry) {
e5d1367f 494 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
95cf59ea
PZ
495 if (cpuctx->unique_pmu != pmu)
496 continue; /* ensure we process each cpuctx once */
e5d1367f 497
e5d1367f
SE
498 /*
499 * perf_cgroup_events says at least one
500 * context on this CPU has cgroup events.
501 *
502 * ctx->nr_cgroups reports the number of cgroup
503 * events for a context.
504 */
505 if (cpuctx->ctx.nr_cgroups > 0) {
facc4307
PZ
506 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
507 perf_pmu_disable(cpuctx->ctx.pmu);
e5d1367f
SE
508
509 if (mode & PERF_CGROUP_SWOUT) {
510 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
511 /*
512 * must not be done before ctxswout due
513 * to event_filter_match() in event_sched_out()
514 */
515 cpuctx->cgrp = NULL;
516 }
517
518 if (mode & PERF_CGROUP_SWIN) {
e566b76e 519 WARN_ON_ONCE(cpuctx->cgrp);
95cf59ea
PZ
520 /*
521 * set cgrp before ctxsw in to allow
522 * event_filter_match() to not have to pass
523 * task around
614e4c4e
SE
524 * we pass the cpuctx->ctx to perf_cgroup_from_task()
525 * because cgorup events are only per-cpu
e5d1367f 526 */
614e4c4e 527 cpuctx->cgrp = perf_cgroup_from_task(task, &cpuctx->ctx);
e5d1367f
SE
528 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
529 }
facc4307
PZ
530 perf_pmu_enable(cpuctx->ctx.pmu);
531 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
e5d1367f 532 }
e5d1367f
SE
533 }
534
e5d1367f
SE
535 local_irq_restore(flags);
536}
537
a8d757ef
SE
538static inline void perf_cgroup_sched_out(struct task_struct *task,
539 struct task_struct *next)
e5d1367f 540{
a8d757ef
SE
541 struct perf_cgroup *cgrp1;
542 struct perf_cgroup *cgrp2 = NULL;
543
ddaaf4e2 544 rcu_read_lock();
a8d757ef
SE
545 /*
546 * we come here when we know perf_cgroup_events > 0
614e4c4e
SE
547 * we do not need to pass the ctx here because we know
548 * we are holding the rcu lock
a8d757ef 549 */
614e4c4e 550 cgrp1 = perf_cgroup_from_task(task, NULL);
a8d757ef
SE
551
552 /*
553 * next is NULL when called from perf_event_enable_on_exec()
554 * that will systematically cause a cgroup_switch()
555 */
556 if (next)
614e4c4e 557 cgrp2 = perf_cgroup_from_task(next, NULL);
a8d757ef
SE
558
559 /*
560 * only schedule out current cgroup events if we know
561 * that we are switching to a different cgroup. Otherwise,
562 * do no touch the cgroup events.
563 */
564 if (cgrp1 != cgrp2)
565 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
ddaaf4e2
SE
566
567 rcu_read_unlock();
e5d1367f
SE
568}
569
a8d757ef
SE
570static inline void perf_cgroup_sched_in(struct task_struct *prev,
571 struct task_struct *task)
e5d1367f 572{
a8d757ef
SE
573 struct perf_cgroup *cgrp1;
574 struct perf_cgroup *cgrp2 = NULL;
575
ddaaf4e2 576 rcu_read_lock();
a8d757ef
SE
577 /*
578 * we come here when we know perf_cgroup_events > 0
614e4c4e
SE
579 * we do not need to pass the ctx here because we know
580 * we are holding the rcu lock
a8d757ef 581 */
614e4c4e 582 cgrp1 = perf_cgroup_from_task(task, NULL);
a8d757ef
SE
583
584 /* prev can never be NULL */
614e4c4e 585 cgrp2 = perf_cgroup_from_task(prev, NULL);
a8d757ef
SE
586
587 /*
588 * only need to schedule in cgroup events if we are changing
589 * cgroup during ctxsw. Cgroup events were not scheduled
590 * out of ctxsw out if that was not the case.
591 */
592 if (cgrp1 != cgrp2)
593 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
ddaaf4e2
SE
594
595 rcu_read_unlock();
e5d1367f
SE
596}
597
598static inline int perf_cgroup_connect(int fd, struct perf_event *event,
599 struct perf_event_attr *attr,
600 struct perf_event *group_leader)
601{
602 struct perf_cgroup *cgrp;
603 struct cgroup_subsys_state *css;
2903ff01
AV
604 struct fd f = fdget(fd);
605 int ret = 0;
e5d1367f 606
2903ff01 607 if (!f.file)
e5d1367f
SE
608 return -EBADF;
609
b583043e 610 css = css_tryget_online_from_dir(f.file->f_path.dentry,
ec903c0c 611 &perf_event_cgrp_subsys);
3db272c0
LZ
612 if (IS_ERR(css)) {
613 ret = PTR_ERR(css);
614 goto out;
615 }
e5d1367f
SE
616
617 cgrp = container_of(css, struct perf_cgroup, css);
618 event->cgrp = cgrp;
619
620 /*
621 * all events in a group must monitor
622 * the same cgroup because a task belongs
623 * to only one perf cgroup at a time
624 */
625 if (group_leader && group_leader->cgrp != cgrp) {
626 perf_detach_cgroup(event);
627 ret = -EINVAL;
e5d1367f 628 }
3db272c0 629out:
2903ff01 630 fdput(f);
e5d1367f
SE
631 return ret;
632}
633
634static inline void
635perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
636{
637 struct perf_cgroup_info *t;
638 t = per_cpu_ptr(event->cgrp->info, event->cpu);
639 event->shadow_ctx_time = now - t->timestamp;
640}
641
642static inline void
643perf_cgroup_defer_enabled(struct perf_event *event)
644{
645 /*
646 * when the current task's perf cgroup does not match
647 * the event's, we need to remember to call the
648 * perf_mark_enable() function the first time a task with
649 * a matching perf cgroup is scheduled in.
650 */
651 if (is_cgroup_event(event) && !perf_cgroup_match(event))
652 event->cgrp_defer_enabled = 1;
653}
654
655static inline void
656perf_cgroup_mark_enabled(struct perf_event *event,
657 struct perf_event_context *ctx)
658{
659 struct perf_event *sub;
660 u64 tstamp = perf_event_time(event);
661
662 if (!event->cgrp_defer_enabled)
663 return;
664
665 event->cgrp_defer_enabled = 0;
666
667 event->tstamp_enabled = tstamp - event->total_time_enabled;
668 list_for_each_entry(sub, &event->sibling_list, group_entry) {
669 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
670 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
671 sub->cgrp_defer_enabled = 0;
672 }
673 }
674}
675#else /* !CONFIG_CGROUP_PERF */
676
677static inline bool
678perf_cgroup_match(struct perf_event *event)
679{
680 return true;
681}
682
683static inline void perf_detach_cgroup(struct perf_event *event)
684{}
685
686static inline int is_cgroup_event(struct perf_event *event)
687{
688 return 0;
689}
690
691static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
692{
693 return 0;
694}
695
696static inline void update_cgrp_time_from_event(struct perf_event *event)
697{
698}
699
700static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
701{
702}
703
a8d757ef
SE
704static inline void perf_cgroup_sched_out(struct task_struct *task,
705 struct task_struct *next)
e5d1367f
SE
706{
707}
708
a8d757ef
SE
709static inline void perf_cgroup_sched_in(struct task_struct *prev,
710 struct task_struct *task)
e5d1367f
SE
711{
712}
713
714static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
715 struct perf_event_attr *attr,
716 struct perf_event *group_leader)
717{
718 return -EINVAL;
719}
720
721static inline void
3f7cce3c
SE
722perf_cgroup_set_timestamp(struct task_struct *task,
723 struct perf_event_context *ctx)
e5d1367f
SE
724{
725}
726
727void
728perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
729{
730}
731
732static inline void
733perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
734{
735}
736
737static inline u64 perf_cgroup_event_time(struct perf_event *event)
738{
739 return 0;
740}
741
742static inline void
743perf_cgroup_defer_enabled(struct perf_event *event)
744{
745}
746
747static inline void
748perf_cgroup_mark_enabled(struct perf_event *event,
749 struct perf_event_context *ctx)
750{
751}
752#endif
753
9e630205
SE
754/*
755 * set default to be dependent on timer tick just
756 * like original code
757 */
758#define PERF_CPU_HRTIMER (1000 / HZ)
759/*
760 * function must be called with interrupts disbled
761 */
272325c4 762static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
9e630205
SE
763{
764 struct perf_cpu_context *cpuctx;
9e630205
SE
765 int rotations = 0;
766
767 WARN_ON(!irqs_disabled());
768
769 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
9e630205
SE
770 rotations = perf_rotate_context(cpuctx);
771
4cfafd30
PZ
772 raw_spin_lock(&cpuctx->hrtimer_lock);
773 if (rotations)
9e630205 774 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
4cfafd30
PZ
775 else
776 cpuctx->hrtimer_active = 0;
777 raw_spin_unlock(&cpuctx->hrtimer_lock);
9e630205 778
4cfafd30 779 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
9e630205
SE
780}
781
272325c4 782static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
9e630205 783{
272325c4 784 struct hrtimer *timer = &cpuctx->hrtimer;
9e630205 785 struct pmu *pmu = cpuctx->ctx.pmu;
272325c4 786 u64 interval;
9e630205
SE
787
788 /* no multiplexing needed for SW PMU */
789 if (pmu->task_ctx_nr == perf_sw_context)
790 return;
791
62b85639
SE
792 /*
793 * check default is sane, if not set then force to
794 * default interval (1/tick)
795 */
272325c4
PZ
796 interval = pmu->hrtimer_interval_ms;
797 if (interval < 1)
798 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
62b85639 799
272325c4 800 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
9e630205 801
4cfafd30
PZ
802 raw_spin_lock_init(&cpuctx->hrtimer_lock);
803 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
272325c4 804 timer->function = perf_mux_hrtimer_handler;
9e630205
SE
805}
806
272325c4 807static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
9e630205 808{
272325c4 809 struct hrtimer *timer = &cpuctx->hrtimer;
9e630205 810 struct pmu *pmu = cpuctx->ctx.pmu;
4cfafd30 811 unsigned long flags;
9e630205
SE
812
813 /* not for SW PMU */
814 if (pmu->task_ctx_nr == perf_sw_context)
272325c4 815 return 0;
9e630205 816
4cfafd30
PZ
817 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
818 if (!cpuctx->hrtimer_active) {
819 cpuctx->hrtimer_active = 1;
820 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
821 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
822 }
823 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
9e630205 824
272325c4 825 return 0;
9e630205
SE
826}
827
33696fc0 828void perf_pmu_disable(struct pmu *pmu)
9e35ad38 829{
33696fc0
PZ
830 int *count = this_cpu_ptr(pmu->pmu_disable_count);
831 if (!(*count)++)
832 pmu->pmu_disable(pmu);
9e35ad38 833}
9e35ad38 834
33696fc0 835void perf_pmu_enable(struct pmu *pmu)
9e35ad38 836{
33696fc0
PZ
837 int *count = this_cpu_ptr(pmu->pmu_disable_count);
838 if (!--(*count))
839 pmu->pmu_enable(pmu);
9e35ad38 840}
9e35ad38 841
2fde4f94 842static DEFINE_PER_CPU(struct list_head, active_ctx_list);
e9d2b064
PZ
843
844/*
2fde4f94
MR
845 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
846 * perf_event_task_tick() are fully serialized because they're strictly cpu
847 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
848 * disabled, while perf_event_task_tick is called from IRQ context.
e9d2b064 849 */
2fde4f94 850static void perf_event_ctx_activate(struct perf_event_context *ctx)
9e35ad38 851{
2fde4f94 852 struct list_head *head = this_cpu_ptr(&active_ctx_list);
b5ab4cd5 853
e9d2b064 854 WARN_ON(!irqs_disabled());
b5ab4cd5 855
2fde4f94
MR
856 WARN_ON(!list_empty(&ctx->active_ctx_list));
857
858 list_add(&ctx->active_ctx_list, head);
859}
860
861static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
862{
863 WARN_ON(!irqs_disabled());
864
865 WARN_ON(list_empty(&ctx->active_ctx_list));
866
867 list_del_init(&ctx->active_ctx_list);
9e35ad38 868}
9e35ad38 869
cdd6c482 870static void get_ctx(struct perf_event_context *ctx)
a63eaf34 871{
e5289d4a 872 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
a63eaf34
PM
873}
874
4af57ef2
YZ
875static void free_ctx(struct rcu_head *head)
876{
877 struct perf_event_context *ctx;
878
879 ctx = container_of(head, struct perf_event_context, rcu_head);
880 kfree(ctx->task_ctx_data);
881 kfree(ctx);
882}
883
cdd6c482 884static void put_ctx(struct perf_event_context *ctx)
a63eaf34 885{
564c2b21
PM
886 if (atomic_dec_and_test(&ctx->refcount)) {
887 if (ctx->parent_ctx)
888 put_ctx(ctx->parent_ctx);
c93f7669
PM
889 if (ctx->task)
890 put_task_struct(ctx->task);
4af57ef2 891 call_rcu(&ctx->rcu_head, free_ctx);
564c2b21 892 }
a63eaf34
PM
893}
894
f63a8daa
PZ
895/*
896 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
897 * perf_pmu_migrate_context() we need some magic.
898 *
899 * Those places that change perf_event::ctx will hold both
900 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
901 *
8b10c5e2
PZ
902 * Lock ordering is by mutex address. There are two other sites where
903 * perf_event_context::mutex nests and those are:
904 *
905 * - perf_event_exit_task_context() [ child , 0 ]
906 * __perf_event_exit_task()
907 * sync_child_event()
908 * put_event() [ parent, 1 ]
909 *
910 * - perf_event_init_context() [ parent, 0 ]
911 * inherit_task_group()
912 * inherit_group()
913 * inherit_event()
914 * perf_event_alloc()
915 * perf_init_event()
916 * perf_try_init_event() [ child , 1 ]
917 *
918 * While it appears there is an obvious deadlock here -- the parent and child
919 * nesting levels are inverted between the two. This is in fact safe because
920 * life-time rules separate them. That is an exiting task cannot fork, and a
921 * spawning task cannot (yet) exit.
922 *
923 * But remember that that these are parent<->child context relations, and
924 * migration does not affect children, therefore these two orderings should not
925 * interact.
f63a8daa
PZ
926 *
927 * The change in perf_event::ctx does not affect children (as claimed above)
928 * because the sys_perf_event_open() case will install a new event and break
929 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
930 * concerned with cpuctx and that doesn't have children.
931 *
932 * The places that change perf_event::ctx will issue:
933 *
934 * perf_remove_from_context();
935 * synchronize_rcu();
936 * perf_install_in_context();
937 *
938 * to affect the change. The remove_from_context() + synchronize_rcu() should
939 * quiesce the event, after which we can install it in the new location. This
940 * means that only external vectors (perf_fops, prctl) can perturb the event
941 * while in transit. Therefore all such accessors should also acquire
942 * perf_event_context::mutex to serialize against this.
943 *
944 * However; because event->ctx can change while we're waiting to acquire
945 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
946 * function.
947 *
948 * Lock order:
949 * task_struct::perf_event_mutex
950 * perf_event_context::mutex
951 * perf_event_context::lock
952 * perf_event::child_mutex;
953 * perf_event::mmap_mutex
954 * mmap_sem
955 */
a83fe28e
PZ
956static struct perf_event_context *
957perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
f63a8daa
PZ
958{
959 struct perf_event_context *ctx;
960
961again:
962 rcu_read_lock();
963 ctx = ACCESS_ONCE(event->ctx);
964 if (!atomic_inc_not_zero(&ctx->refcount)) {
965 rcu_read_unlock();
966 goto again;
967 }
968 rcu_read_unlock();
969
a83fe28e 970 mutex_lock_nested(&ctx->mutex, nesting);
f63a8daa
PZ
971 if (event->ctx != ctx) {
972 mutex_unlock(&ctx->mutex);
973 put_ctx(ctx);
974 goto again;
975 }
976
977 return ctx;
978}
979
a83fe28e
PZ
980static inline struct perf_event_context *
981perf_event_ctx_lock(struct perf_event *event)
982{
983 return perf_event_ctx_lock_nested(event, 0);
984}
985
f63a8daa
PZ
986static void perf_event_ctx_unlock(struct perf_event *event,
987 struct perf_event_context *ctx)
988{
989 mutex_unlock(&ctx->mutex);
990 put_ctx(ctx);
991}
992
211de6eb
PZ
993/*
994 * This must be done under the ctx->lock, such as to serialize against
995 * context_equiv(), therefore we cannot call put_ctx() since that might end up
996 * calling scheduler related locks and ctx->lock nests inside those.
997 */
998static __must_check struct perf_event_context *
999unclone_ctx(struct perf_event_context *ctx)
71a851b4 1000{
211de6eb
PZ
1001 struct perf_event_context *parent_ctx = ctx->parent_ctx;
1002
1003 lockdep_assert_held(&ctx->lock);
1004
1005 if (parent_ctx)
71a851b4 1006 ctx->parent_ctx = NULL;
5a3126d4 1007 ctx->generation++;
211de6eb
PZ
1008
1009 return parent_ctx;
71a851b4
PZ
1010}
1011
6844c09d
ACM
1012static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1013{
1014 /*
1015 * only top level events have the pid namespace they were created in
1016 */
1017 if (event->parent)
1018 event = event->parent;
1019
1020 return task_tgid_nr_ns(p, event->ns);
1021}
1022
1023static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1024{
1025 /*
1026 * only top level events have the pid namespace they were created in
1027 */
1028 if (event->parent)
1029 event = event->parent;
1030
1031 return task_pid_nr_ns(p, event->ns);
1032}
1033
7f453c24 1034/*
cdd6c482 1035 * If we inherit events we want to return the parent event id
7f453c24
PZ
1036 * to userspace.
1037 */
cdd6c482 1038static u64 primary_event_id(struct perf_event *event)
7f453c24 1039{
cdd6c482 1040 u64 id = event->id;
7f453c24 1041
cdd6c482
IM
1042 if (event->parent)
1043 id = event->parent->id;
7f453c24
PZ
1044
1045 return id;
1046}
1047
25346b93 1048/*
cdd6c482 1049 * Get the perf_event_context for a task and lock it.
25346b93
PM
1050 * This has to cope with with the fact that until it is locked,
1051 * the context could get moved to another task.
1052 */
cdd6c482 1053static struct perf_event_context *
8dc85d54 1054perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
25346b93 1055{
cdd6c482 1056 struct perf_event_context *ctx;
25346b93 1057
9ed6060d 1058retry:
058ebd0e
PZ
1059 /*
1060 * One of the few rules of preemptible RCU is that one cannot do
1061 * rcu_read_unlock() while holding a scheduler (or nested) lock when
2fd59077 1062 * part of the read side critical section was irqs-enabled -- see
058ebd0e
PZ
1063 * rcu_read_unlock_special().
1064 *
1065 * Since ctx->lock nests under rq->lock we must ensure the entire read
2fd59077 1066 * side critical section has interrupts disabled.
058ebd0e 1067 */
2fd59077 1068 local_irq_save(*flags);
058ebd0e 1069 rcu_read_lock();
8dc85d54 1070 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
25346b93
PM
1071 if (ctx) {
1072 /*
1073 * If this context is a clone of another, it might
1074 * get swapped for another underneath us by
cdd6c482 1075 * perf_event_task_sched_out, though the
25346b93
PM
1076 * rcu_read_lock() protects us from any context
1077 * getting freed. Lock the context and check if it
1078 * got swapped before we could get the lock, and retry
1079 * if so. If we locked the right context, then it
1080 * can't get swapped on us any more.
1081 */
2fd59077 1082 raw_spin_lock(&ctx->lock);
8dc85d54 1083 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
2fd59077 1084 raw_spin_unlock(&ctx->lock);
058ebd0e 1085 rcu_read_unlock();
2fd59077 1086 local_irq_restore(*flags);
25346b93
PM
1087 goto retry;
1088 }
b49a9e7e
PZ
1089
1090 if (!atomic_inc_not_zero(&ctx->refcount)) {
2fd59077 1091 raw_spin_unlock(&ctx->lock);
b49a9e7e
PZ
1092 ctx = NULL;
1093 }
25346b93
PM
1094 }
1095 rcu_read_unlock();
2fd59077
PM
1096 if (!ctx)
1097 local_irq_restore(*flags);
25346b93
PM
1098 return ctx;
1099}
1100
1101/*
1102 * Get the context for a task and increment its pin_count so it
1103 * can't get swapped to another task. This also increments its
1104 * reference count so that the context can't get freed.
1105 */
8dc85d54
PZ
1106static struct perf_event_context *
1107perf_pin_task_context(struct task_struct *task, int ctxn)
25346b93 1108{
cdd6c482 1109 struct perf_event_context *ctx;
25346b93
PM
1110 unsigned long flags;
1111
8dc85d54 1112 ctx = perf_lock_task_context(task, ctxn, &flags);
25346b93
PM
1113 if (ctx) {
1114 ++ctx->pin_count;
e625cce1 1115 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1116 }
1117 return ctx;
1118}
1119
cdd6c482 1120static void perf_unpin_context(struct perf_event_context *ctx)
25346b93
PM
1121{
1122 unsigned long flags;
1123
e625cce1 1124 raw_spin_lock_irqsave(&ctx->lock, flags);
25346b93 1125 --ctx->pin_count;
e625cce1 1126 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1127}
1128
f67218c3
PZ
1129/*
1130 * Update the record of the current time in a context.
1131 */
1132static void update_context_time(struct perf_event_context *ctx)
1133{
1134 u64 now = perf_clock();
1135
1136 ctx->time += now - ctx->timestamp;
1137 ctx->timestamp = now;
1138}
1139
4158755d
SE
1140static u64 perf_event_time(struct perf_event *event)
1141{
1142 struct perf_event_context *ctx = event->ctx;
e5d1367f
SE
1143
1144 if (is_cgroup_event(event))
1145 return perf_cgroup_event_time(event);
1146
4158755d
SE
1147 return ctx ? ctx->time : 0;
1148}
1149
f67218c3
PZ
1150/*
1151 * Update the total_time_enabled and total_time_running fields for a event.
b7526f0c 1152 * The caller of this function needs to hold the ctx->lock.
f67218c3
PZ
1153 */
1154static void update_event_times(struct perf_event *event)
1155{
1156 struct perf_event_context *ctx = event->ctx;
1157 u64 run_end;
1158
1159 if (event->state < PERF_EVENT_STATE_INACTIVE ||
1160 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1161 return;
e5d1367f
SE
1162 /*
1163 * in cgroup mode, time_enabled represents
1164 * the time the event was enabled AND active
1165 * tasks were in the monitored cgroup. This is
1166 * independent of the activity of the context as
1167 * there may be a mix of cgroup and non-cgroup events.
1168 *
1169 * That is why we treat cgroup events differently
1170 * here.
1171 */
1172 if (is_cgroup_event(event))
46cd6a7f 1173 run_end = perf_cgroup_event_time(event);
e5d1367f
SE
1174 else if (ctx->is_active)
1175 run_end = ctx->time;
acd1d7c1
PZ
1176 else
1177 run_end = event->tstamp_stopped;
1178
1179 event->total_time_enabled = run_end - event->tstamp_enabled;
f67218c3
PZ
1180
1181 if (event->state == PERF_EVENT_STATE_INACTIVE)
1182 run_end = event->tstamp_stopped;
1183 else
4158755d 1184 run_end = perf_event_time(event);
f67218c3
PZ
1185
1186 event->total_time_running = run_end - event->tstamp_running;
e5d1367f 1187
f67218c3
PZ
1188}
1189
96c21a46
PZ
1190/*
1191 * Update total_time_enabled and total_time_running for all events in a group.
1192 */
1193static void update_group_times(struct perf_event *leader)
1194{
1195 struct perf_event *event;
1196
1197 update_event_times(leader);
1198 list_for_each_entry(event, &leader->sibling_list, group_entry)
1199 update_event_times(event);
1200}
1201
889ff015
FW
1202static struct list_head *
1203ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1204{
1205 if (event->attr.pinned)
1206 return &ctx->pinned_groups;
1207 else
1208 return &ctx->flexible_groups;
1209}
1210
fccc714b 1211/*
cdd6c482 1212 * Add a event from the lists for its context.
fccc714b
PZ
1213 * Must be called with ctx->mutex and ctx->lock held.
1214 */
04289bb9 1215static void
cdd6c482 1216list_add_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1217{
8a49542c
PZ
1218 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1219 event->attach_state |= PERF_ATTACH_CONTEXT;
04289bb9
IM
1220
1221 /*
8a49542c
PZ
1222 * If we're a stand alone event or group leader, we go to the context
1223 * list, group events are kept attached to the group so that
1224 * perf_group_detach can, at all times, locate all siblings.
04289bb9 1225 */
8a49542c 1226 if (event->group_leader == event) {
889ff015
FW
1227 struct list_head *list;
1228
d6f962b5
FW
1229 if (is_software_event(event))
1230 event->group_flags |= PERF_GROUP_SOFTWARE;
1231
889ff015
FW
1232 list = ctx_group_list(event, ctx);
1233 list_add_tail(&event->group_entry, list);
5c148194 1234 }
592903cd 1235
08309379 1236 if (is_cgroup_event(event))
e5d1367f 1237 ctx->nr_cgroups++;
e5d1367f 1238
cdd6c482
IM
1239 list_add_rcu(&event->event_entry, &ctx->event_list);
1240 ctx->nr_events++;
1241 if (event->attr.inherit_stat)
bfbd3381 1242 ctx->nr_stat++;
5a3126d4
PZ
1243
1244 ctx->generation++;
04289bb9
IM
1245}
1246
0231bb53
JO
1247/*
1248 * Initialize event state based on the perf_event_attr::disabled.
1249 */
1250static inline void perf_event__state_init(struct perf_event *event)
1251{
1252 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1253 PERF_EVENT_STATE_INACTIVE;
1254}
1255
a723968c 1256static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
c320c7b7
ACM
1257{
1258 int entry = sizeof(u64); /* value */
1259 int size = 0;
1260 int nr = 1;
1261
1262 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1263 size += sizeof(u64);
1264
1265 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1266 size += sizeof(u64);
1267
1268 if (event->attr.read_format & PERF_FORMAT_ID)
1269 entry += sizeof(u64);
1270
1271 if (event->attr.read_format & PERF_FORMAT_GROUP) {
a723968c 1272 nr += nr_siblings;
c320c7b7
ACM
1273 size += sizeof(u64);
1274 }
1275
1276 size += entry * nr;
1277 event->read_size = size;
1278}
1279
a723968c 1280static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
c320c7b7
ACM
1281{
1282 struct perf_sample_data *data;
c320c7b7
ACM
1283 u16 size = 0;
1284
c320c7b7
ACM
1285 if (sample_type & PERF_SAMPLE_IP)
1286 size += sizeof(data->ip);
1287
6844c09d
ACM
1288 if (sample_type & PERF_SAMPLE_ADDR)
1289 size += sizeof(data->addr);
1290
1291 if (sample_type & PERF_SAMPLE_PERIOD)
1292 size += sizeof(data->period);
1293
c3feedf2
AK
1294 if (sample_type & PERF_SAMPLE_WEIGHT)
1295 size += sizeof(data->weight);
1296
6844c09d
ACM
1297 if (sample_type & PERF_SAMPLE_READ)
1298 size += event->read_size;
1299
d6be9ad6
SE
1300 if (sample_type & PERF_SAMPLE_DATA_SRC)
1301 size += sizeof(data->data_src.val);
1302
fdfbbd07
AK
1303 if (sample_type & PERF_SAMPLE_TRANSACTION)
1304 size += sizeof(data->txn);
1305
6844c09d
ACM
1306 event->header_size = size;
1307}
1308
a723968c
PZ
1309/*
1310 * Called at perf_event creation and when events are attached/detached from a
1311 * group.
1312 */
1313static void perf_event__header_size(struct perf_event *event)
1314{
1315 __perf_event_read_size(event,
1316 event->group_leader->nr_siblings);
1317 __perf_event_header_size(event, event->attr.sample_type);
1318}
1319
6844c09d
ACM
1320static void perf_event__id_header_size(struct perf_event *event)
1321{
1322 struct perf_sample_data *data;
1323 u64 sample_type = event->attr.sample_type;
1324 u16 size = 0;
1325
c320c7b7
ACM
1326 if (sample_type & PERF_SAMPLE_TID)
1327 size += sizeof(data->tid_entry);
1328
1329 if (sample_type & PERF_SAMPLE_TIME)
1330 size += sizeof(data->time);
1331
ff3d527c
AH
1332 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1333 size += sizeof(data->id);
1334
c320c7b7
ACM
1335 if (sample_type & PERF_SAMPLE_ID)
1336 size += sizeof(data->id);
1337
1338 if (sample_type & PERF_SAMPLE_STREAM_ID)
1339 size += sizeof(data->stream_id);
1340
1341 if (sample_type & PERF_SAMPLE_CPU)
1342 size += sizeof(data->cpu_entry);
1343
6844c09d 1344 event->id_header_size = size;
c320c7b7
ACM
1345}
1346
a723968c
PZ
1347static bool perf_event_validate_size(struct perf_event *event)
1348{
1349 /*
1350 * The values computed here will be over-written when we actually
1351 * attach the event.
1352 */
1353 __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1354 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1355 perf_event__id_header_size(event);
1356
1357 /*
1358 * Sum the lot; should not exceed the 64k limit we have on records.
1359 * Conservative limit to allow for callchains and other variable fields.
1360 */
1361 if (event->read_size + event->header_size +
1362 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1363 return false;
1364
1365 return true;
1366}
1367
8a49542c
PZ
1368static void perf_group_attach(struct perf_event *event)
1369{
c320c7b7 1370 struct perf_event *group_leader = event->group_leader, *pos;
8a49542c 1371
74c3337c
PZ
1372 /*
1373 * We can have double attach due to group movement in perf_event_open.
1374 */
1375 if (event->attach_state & PERF_ATTACH_GROUP)
1376 return;
1377
8a49542c
PZ
1378 event->attach_state |= PERF_ATTACH_GROUP;
1379
1380 if (group_leader == event)
1381 return;
1382
652884fe
PZ
1383 WARN_ON_ONCE(group_leader->ctx != event->ctx);
1384
8a49542c
PZ
1385 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1386 !is_software_event(event))
1387 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1388
1389 list_add_tail(&event->group_entry, &group_leader->sibling_list);
1390 group_leader->nr_siblings++;
c320c7b7
ACM
1391
1392 perf_event__header_size(group_leader);
1393
1394 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1395 perf_event__header_size(pos);
8a49542c
PZ
1396}
1397
a63eaf34 1398/*
cdd6c482 1399 * Remove a event from the lists for its context.
fccc714b 1400 * Must be called with ctx->mutex and ctx->lock held.
a63eaf34 1401 */
04289bb9 1402static void
cdd6c482 1403list_del_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1404{
68cacd29 1405 struct perf_cpu_context *cpuctx;
652884fe
PZ
1406
1407 WARN_ON_ONCE(event->ctx != ctx);
1408 lockdep_assert_held(&ctx->lock);
1409
8a49542c
PZ
1410 /*
1411 * We can have double detach due to exit/hot-unplug + close.
1412 */
1413 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
a63eaf34 1414 return;
8a49542c
PZ
1415
1416 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1417
68cacd29 1418 if (is_cgroup_event(event)) {
e5d1367f 1419 ctx->nr_cgroups--;
68cacd29
SE
1420 cpuctx = __get_cpu_context(ctx);
1421 /*
1422 * if there are no more cgroup events
1423 * then cler cgrp to avoid stale pointer
1424 * in update_cgrp_time_from_cpuctx()
1425 */
1426 if (!ctx->nr_cgroups)
1427 cpuctx->cgrp = NULL;
1428 }
e5d1367f 1429
cdd6c482
IM
1430 ctx->nr_events--;
1431 if (event->attr.inherit_stat)
bfbd3381 1432 ctx->nr_stat--;
8bc20959 1433
cdd6c482 1434 list_del_rcu(&event->event_entry);
04289bb9 1435
8a49542c
PZ
1436 if (event->group_leader == event)
1437 list_del_init(&event->group_entry);
5c148194 1438
96c21a46 1439 update_group_times(event);
b2e74a26
SE
1440
1441 /*
1442 * If event was in error state, then keep it
1443 * that way, otherwise bogus counts will be
1444 * returned on read(). The only way to get out
1445 * of error state is by explicit re-enabling
1446 * of the event
1447 */
1448 if (event->state > PERF_EVENT_STATE_OFF)
1449 event->state = PERF_EVENT_STATE_OFF;
5a3126d4
PZ
1450
1451 ctx->generation++;
050735b0
PZ
1452}
1453
8a49542c 1454static void perf_group_detach(struct perf_event *event)
050735b0
PZ
1455{
1456 struct perf_event *sibling, *tmp;
8a49542c
PZ
1457 struct list_head *list = NULL;
1458
1459 /*
1460 * We can have double detach due to exit/hot-unplug + close.
1461 */
1462 if (!(event->attach_state & PERF_ATTACH_GROUP))
1463 return;
1464
1465 event->attach_state &= ~PERF_ATTACH_GROUP;
1466
1467 /*
1468 * If this is a sibling, remove it from its group.
1469 */
1470 if (event->group_leader != event) {
1471 list_del_init(&event->group_entry);
1472 event->group_leader->nr_siblings--;
c320c7b7 1473 goto out;
8a49542c
PZ
1474 }
1475
1476 if (!list_empty(&event->group_entry))
1477 list = &event->group_entry;
2e2af50b 1478
04289bb9 1479 /*
cdd6c482
IM
1480 * If this was a group event with sibling events then
1481 * upgrade the siblings to singleton events by adding them
8a49542c 1482 * to whatever list we are on.
04289bb9 1483 */
cdd6c482 1484 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
8a49542c
PZ
1485 if (list)
1486 list_move_tail(&sibling->group_entry, list);
04289bb9 1487 sibling->group_leader = sibling;
d6f962b5
FW
1488
1489 /* Inherit group flags from the previous leader */
1490 sibling->group_flags = event->group_flags;
652884fe
PZ
1491
1492 WARN_ON_ONCE(sibling->ctx != event->ctx);
04289bb9 1493 }
c320c7b7
ACM
1494
1495out:
1496 perf_event__header_size(event->group_leader);
1497
1498 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1499 perf_event__header_size(tmp);
04289bb9
IM
1500}
1501
fadfe7be
JO
1502/*
1503 * User event without the task.
1504 */
1505static bool is_orphaned_event(struct perf_event *event)
1506{
1507 return event && !is_kernel_event(event) && !event->owner;
1508}
1509
1510/*
1511 * Event has a parent but parent's task finished and it's
1512 * alive only because of children holding refference.
1513 */
1514static bool is_orphaned_child(struct perf_event *event)
1515{
1516 return is_orphaned_event(event->parent);
1517}
1518
1519static void orphans_remove_work(struct work_struct *work);
1520
1521static void schedule_orphans_remove(struct perf_event_context *ctx)
1522{
1523 if (!ctx->task || ctx->orphans_remove_sched || !perf_wq)
1524 return;
1525
1526 if (queue_delayed_work(perf_wq, &ctx->orphans_remove, 1)) {
1527 get_ctx(ctx);
1528 ctx->orphans_remove_sched = true;
1529 }
1530}
1531
1532static int __init perf_workqueue_init(void)
1533{
1534 perf_wq = create_singlethread_workqueue("perf");
1535 WARN(!perf_wq, "failed to create perf workqueue\n");
1536 return perf_wq ? 0 : -1;
1537}
1538
1539core_initcall(perf_workqueue_init);
1540
66eb579e
MR
1541static inline int pmu_filter_match(struct perf_event *event)
1542{
1543 struct pmu *pmu = event->pmu;
1544 return pmu->filter_match ? pmu->filter_match(event) : 1;
1545}
1546
fa66f07a
SE
1547static inline int
1548event_filter_match(struct perf_event *event)
1549{
e5d1367f 1550 return (event->cpu == -1 || event->cpu == smp_processor_id())
66eb579e 1551 && perf_cgroup_match(event) && pmu_filter_match(event);
fa66f07a
SE
1552}
1553
9ffcfa6f
SE
1554static void
1555event_sched_out(struct perf_event *event,
3b6f9e5c 1556 struct perf_cpu_context *cpuctx,
cdd6c482 1557 struct perf_event_context *ctx)
3b6f9e5c 1558{
4158755d 1559 u64 tstamp = perf_event_time(event);
fa66f07a 1560 u64 delta;
652884fe
PZ
1561
1562 WARN_ON_ONCE(event->ctx != ctx);
1563 lockdep_assert_held(&ctx->lock);
1564
fa66f07a
SE
1565 /*
1566 * An event which could not be activated because of
1567 * filter mismatch still needs to have its timings
1568 * maintained, otherwise bogus information is return
1569 * via read() for time_enabled, time_running:
1570 */
1571 if (event->state == PERF_EVENT_STATE_INACTIVE
1572 && !event_filter_match(event)) {
e5d1367f 1573 delta = tstamp - event->tstamp_stopped;
fa66f07a 1574 event->tstamp_running += delta;
4158755d 1575 event->tstamp_stopped = tstamp;
fa66f07a
SE
1576 }
1577
cdd6c482 1578 if (event->state != PERF_EVENT_STATE_ACTIVE)
9ffcfa6f 1579 return;
3b6f9e5c 1580
44377277
AS
1581 perf_pmu_disable(event->pmu);
1582
cdd6c482
IM
1583 event->state = PERF_EVENT_STATE_INACTIVE;
1584 if (event->pending_disable) {
1585 event->pending_disable = 0;
1586 event->state = PERF_EVENT_STATE_OFF;
970892a9 1587 }
4158755d 1588 event->tstamp_stopped = tstamp;
a4eaf7f1 1589 event->pmu->del(event, 0);
cdd6c482 1590 event->oncpu = -1;
3b6f9e5c 1591
cdd6c482 1592 if (!is_software_event(event))
3b6f9e5c 1593 cpuctx->active_oncpu--;
2fde4f94
MR
1594 if (!--ctx->nr_active)
1595 perf_event_ctx_deactivate(ctx);
0f5a2601
PZ
1596 if (event->attr.freq && event->attr.sample_freq)
1597 ctx->nr_freq--;
cdd6c482 1598 if (event->attr.exclusive || !cpuctx->active_oncpu)
3b6f9e5c 1599 cpuctx->exclusive = 0;
44377277 1600
fadfe7be
JO
1601 if (is_orphaned_child(event))
1602 schedule_orphans_remove(ctx);
1603
44377277 1604 perf_pmu_enable(event->pmu);
3b6f9e5c
PM
1605}
1606
d859e29f 1607static void
cdd6c482 1608group_sched_out(struct perf_event *group_event,
d859e29f 1609 struct perf_cpu_context *cpuctx,
cdd6c482 1610 struct perf_event_context *ctx)
d859e29f 1611{
cdd6c482 1612 struct perf_event *event;
fa66f07a 1613 int state = group_event->state;
d859e29f 1614
cdd6c482 1615 event_sched_out(group_event, cpuctx, ctx);
d859e29f
PM
1616
1617 /*
1618 * Schedule out siblings (if any):
1619 */
cdd6c482
IM
1620 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1621 event_sched_out(event, cpuctx, ctx);
d859e29f 1622
fa66f07a 1623 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
d859e29f
PM
1624 cpuctx->exclusive = 0;
1625}
1626
46ce0fe9
PZ
1627struct remove_event {
1628 struct perf_event *event;
1629 bool detach_group;
1630};
1631
0793a61d 1632/*
cdd6c482 1633 * Cross CPU call to remove a performance event
0793a61d 1634 *
cdd6c482 1635 * We disable the event on the hardware level first. After that we
0793a61d
TG
1636 * remove it from the context list.
1637 */
fe4b04fa 1638static int __perf_remove_from_context(void *info)
0793a61d 1639{
46ce0fe9
PZ
1640 struct remove_event *re = info;
1641 struct perf_event *event = re->event;
cdd6c482 1642 struct perf_event_context *ctx = event->ctx;
108b02cf 1643 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
0793a61d 1644
e625cce1 1645 raw_spin_lock(&ctx->lock);
cdd6c482 1646 event_sched_out(event, cpuctx, ctx);
46ce0fe9
PZ
1647 if (re->detach_group)
1648 perf_group_detach(event);
cdd6c482 1649 list_del_event(event, ctx);
64ce3126
PZ
1650 if (!ctx->nr_events && cpuctx->task_ctx == ctx) {
1651 ctx->is_active = 0;
1652 cpuctx->task_ctx = NULL;
1653 }
e625cce1 1654 raw_spin_unlock(&ctx->lock);
fe4b04fa
PZ
1655
1656 return 0;
0793a61d
TG
1657}
1658
1659
1660/*
cdd6c482 1661 * Remove the event from a task's (or a CPU's) list of events.
0793a61d 1662 *
cdd6c482 1663 * CPU events are removed with a smp call. For task events we only
0793a61d 1664 * call when the task is on a CPU.
c93f7669 1665 *
cdd6c482
IM
1666 * If event->ctx is a cloned context, callers must make sure that
1667 * every task struct that event->ctx->task could possibly point to
c93f7669
PM
1668 * remains valid. This is OK when called from perf_release since
1669 * that only calls us on the top-level context, which can't be a clone.
cdd6c482 1670 * When called from perf_event_exit_task, it's OK because the
c93f7669 1671 * context has been detached from its task.
0793a61d 1672 */
46ce0fe9 1673static void perf_remove_from_context(struct perf_event *event, bool detach_group)
0793a61d 1674{
cdd6c482 1675 struct perf_event_context *ctx = event->ctx;
0793a61d 1676 struct task_struct *task = ctx->task;
46ce0fe9
PZ
1677 struct remove_event re = {
1678 .event = event,
1679 .detach_group = detach_group,
1680 };
0793a61d 1681
fe4b04fa
PZ
1682 lockdep_assert_held(&ctx->mutex);
1683
0793a61d
TG
1684 if (!task) {
1685 /*
226424ee
MR
1686 * Per cpu events are removed via an smp call. The removal can
1687 * fail if the CPU is currently offline, but in that case we
1688 * already called __perf_remove_from_context from
1689 * perf_event_exit_cpu.
0793a61d 1690 */
46ce0fe9 1691 cpu_function_call(event->cpu, __perf_remove_from_context, &re);
0793a61d
TG
1692 return;
1693 }
1694
1695retry:
46ce0fe9 1696 if (!task_function_call(task, __perf_remove_from_context, &re))
fe4b04fa 1697 return;
0793a61d 1698
e625cce1 1699 raw_spin_lock_irq(&ctx->lock);
0793a61d 1700 /*
fe4b04fa
PZ
1701 * If we failed to find a running task, but find the context active now
1702 * that we've acquired the ctx->lock, retry.
0793a61d 1703 */
fe4b04fa 1704 if (ctx->is_active) {
e625cce1 1705 raw_spin_unlock_irq(&ctx->lock);
3577af70
CW
1706 /*
1707 * Reload the task pointer, it might have been changed by
1708 * a concurrent perf_event_context_sched_out().
1709 */
1710 task = ctx->task;
0793a61d
TG
1711 goto retry;
1712 }
1713
1714 /*
fe4b04fa
PZ
1715 * Since the task isn't running, its safe to remove the event, us
1716 * holding the ctx->lock ensures the task won't get scheduled in.
0793a61d 1717 */
46ce0fe9
PZ
1718 if (detach_group)
1719 perf_group_detach(event);
fe4b04fa 1720 list_del_event(event, ctx);
e625cce1 1721 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
1722}
1723
d859e29f 1724/*
cdd6c482 1725 * Cross CPU call to disable a performance event
d859e29f 1726 */
500ad2d8 1727int __perf_event_disable(void *info)
d859e29f 1728{
cdd6c482 1729 struct perf_event *event = info;
cdd6c482 1730 struct perf_event_context *ctx = event->ctx;
108b02cf 1731 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
d859e29f
PM
1732
1733 /*
cdd6c482
IM
1734 * If this is a per-task event, need to check whether this
1735 * event's task is the current task on this cpu.
fe4b04fa
PZ
1736 *
1737 * Can trigger due to concurrent perf_event_context_sched_out()
1738 * flipping contexts around.
d859e29f 1739 */
665c2142 1740 if (ctx->task && cpuctx->task_ctx != ctx)
fe4b04fa 1741 return -EINVAL;
d859e29f 1742
e625cce1 1743 raw_spin_lock(&ctx->lock);
d859e29f
PM
1744
1745 /*
cdd6c482 1746 * If the event is on, turn it off.
d859e29f
PM
1747 * If it is in error state, leave it in error state.
1748 */
cdd6c482 1749 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
4af4998b 1750 update_context_time(ctx);
e5d1367f 1751 update_cgrp_time_from_event(event);
cdd6c482
IM
1752 update_group_times(event);
1753 if (event == event->group_leader)
1754 group_sched_out(event, cpuctx, ctx);
d859e29f 1755 else
cdd6c482
IM
1756 event_sched_out(event, cpuctx, ctx);
1757 event->state = PERF_EVENT_STATE_OFF;
d859e29f
PM
1758 }
1759
e625cce1 1760 raw_spin_unlock(&ctx->lock);
fe4b04fa
PZ
1761
1762 return 0;
d859e29f
PM
1763}
1764
1765/*
cdd6c482 1766 * Disable a event.
c93f7669 1767 *
cdd6c482
IM
1768 * If event->ctx is a cloned context, callers must make sure that
1769 * every task struct that event->ctx->task could possibly point to
c93f7669 1770 * remains valid. This condition is satisifed when called through
cdd6c482
IM
1771 * perf_event_for_each_child or perf_event_for_each because they
1772 * hold the top-level event's child_mutex, so any descendant that
1773 * goes to exit will block in sync_child_event.
1774 * When called from perf_pending_event it's OK because event->ctx
c93f7669 1775 * is the current context on this CPU and preemption is disabled,
cdd6c482 1776 * hence we can't get into perf_event_task_sched_out for this context.
d859e29f 1777 */
f63a8daa 1778static void _perf_event_disable(struct perf_event *event)
d859e29f 1779{
cdd6c482 1780 struct perf_event_context *ctx = event->ctx;
d859e29f
PM
1781 struct task_struct *task = ctx->task;
1782
1783 if (!task) {
1784 /*
cdd6c482 1785 * Disable the event on the cpu that it's on
d859e29f 1786 */
fe4b04fa 1787 cpu_function_call(event->cpu, __perf_event_disable, event);
d859e29f
PM
1788 return;
1789 }
1790
9ed6060d 1791retry:
fe4b04fa
PZ
1792 if (!task_function_call(task, __perf_event_disable, event))
1793 return;
d859e29f 1794
e625cce1 1795 raw_spin_lock_irq(&ctx->lock);
d859e29f 1796 /*
cdd6c482 1797 * If the event is still active, we need to retry the cross-call.
d859e29f 1798 */
cdd6c482 1799 if (event->state == PERF_EVENT_STATE_ACTIVE) {
e625cce1 1800 raw_spin_unlock_irq(&ctx->lock);
fe4b04fa
PZ
1801 /*
1802 * Reload the task pointer, it might have been changed by
1803 * a concurrent perf_event_context_sched_out().
1804 */
1805 task = ctx->task;
d859e29f
PM
1806 goto retry;
1807 }
1808
1809 /*
1810 * Since we have the lock this context can't be scheduled
1811 * in, so we can change the state safely.
1812 */
cdd6c482
IM
1813 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1814 update_group_times(event);
1815 event->state = PERF_EVENT_STATE_OFF;
53cfbf59 1816 }
e625cce1 1817 raw_spin_unlock_irq(&ctx->lock);
d859e29f 1818}
f63a8daa
PZ
1819
1820/*
1821 * Strictly speaking kernel users cannot create groups and therefore this
1822 * interface does not need the perf_event_ctx_lock() magic.
1823 */
1824void perf_event_disable(struct perf_event *event)
1825{
1826 struct perf_event_context *ctx;
1827
1828 ctx = perf_event_ctx_lock(event);
1829 _perf_event_disable(event);
1830 perf_event_ctx_unlock(event, ctx);
1831}
dcfce4a0 1832EXPORT_SYMBOL_GPL(perf_event_disable);
d859e29f 1833
e5d1367f
SE
1834static void perf_set_shadow_time(struct perf_event *event,
1835 struct perf_event_context *ctx,
1836 u64 tstamp)
1837{
1838 /*
1839 * use the correct time source for the time snapshot
1840 *
1841 * We could get by without this by leveraging the
1842 * fact that to get to this function, the caller
1843 * has most likely already called update_context_time()
1844 * and update_cgrp_time_xx() and thus both timestamp
1845 * are identical (or very close). Given that tstamp is,
1846 * already adjusted for cgroup, we could say that:
1847 * tstamp - ctx->timestamp
1848 * is equivalent to
1849 * tstamp - cgrp->timestamp.
1850 *
1851 * Then, in perf_output_read(), the calculation would
1852 * work with no changes because:
1853 * - event is guaranteed scheduled in
1854 * - no scheduled out in between
1855 * - thus the timestamp would be the same
1856 *
1857 * But this is a bit hairy.
1858 *
1859 * So instead, we have an explicit cgroup call to remain
1860 * within the time time source all along. We believe it
1861 * is cleaner and simpler to understand.
1862 */
1863 if (is_cgroup_event(event))
1864 perf_cgroup_set_shadow_time(event, tstamp);
1865 else
1866 event->shadow_ctx_time = tstamp - ctx->timestamp;
1867}
1868
4fe757dd
PZ
1869#define MAX_INTERRUPTS (~0ULL)
1870
1871static void perf_log_throttle(struct perf_event *event, int enable);
ec0d7729 1872static void perf_log_itrace_start(struct perf_event *event);
4fe757dd 1873
235c7fc7 1874static int
9ffcfa6f 1875event_sched_in(struct perf_event *event,
235c7fc7 1876 struct perf_cpu_context *cpuctx,
6e37738a 1877 struct perf_event_context *ctx)
235c7fc7 1878{
4158755d 1879 u64 tstamp = perf_event_time(event);
44377277 1880 int ret = 0;
4158755d 1881
63342411
PZ
1882 lockdep_assert_held(&ctx->lock);
1883
cdd6c482 1884 if (event->state <= PERF_EVENT_STATE_OFF)
235c7fc7
IM
1885 return 0;
1886
cdd6c482 1887 event->state = PERF_EVENT_STATE_ACTIVE;
6e37738a 1888 event->oncpu = smp_processor_id();
4fe757dd
PZ
1889
1890 /*
1891 * Unthrottle events, since we scheduled we might have missed several
1892 * ticks already, also for a heavily scheduling task there is little
1893 * guarantee it'll get a tick in a timely manner.
1894 */
1895 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1896 perf_log_throttle(event, 1);
1897 event->hw.interrupts = 0;
1898 }
1899
235c7fc7
IM
1900 /*
1901 * The new state must be visible before we turn it on in the hardware:
1902 */
1903 smp_wmb();
1904
44377277
AS
1905 perf_pmu_disable(event->pmu);
1906
72f669c0
SL
1907 perf_set_shadow_time(event, ctx, tstamp);
1908
ec0d7729
AS
1909 perf_log_itrace_start(event);
1910
a4eaf7f1 1911 if (event->pmu->add(event, PERF_EF_START)) {
cdd6c482
IM
1912 event->state = PERF_EVENT_STATE_INACTIVE;
1913 event->oncpu = -1;
44377277
AS
1914 ret = -EAGAIN;
1915 goto out;
235c7fc7
IM
1916 }
1917
00a2916f
PZ
1918 event->tstamp_running += tstamp - event->tstamp_stopped;
1919
cdd6c482 1920 if (!is_software_event(event))
3b6f9e5c 1921 cpuctx->active_oncpu++;
2fde4f94
MR
1922 if (!ctx->nr_active++)
1923 perf_event_ctx_activate(ctx);
0f5a2601
PZ
1924 if (event->attr.freq && event->attr.sample_freq)
1925 ctx->nr_freq++;
235c7fc7 1926
cdd6c482 1927 if (event->attr.exclusive)
3b6f9e5c
PM
1928 cpuctx->exclusive = 1;
1929
fadfe7be
JO
1930 if (is_orphaned_child(event))
1931 schedule_orphans_remove(ctx);
1932
44377277
AS
1933out:
1934 perf_pmu_enable(event->pmu);
1935
1936 return ret;
235c7fc7
IM
1937}
1938
6751b71e 1939static int
cdd6c482 1940group_sched_in(struct perf_event *group_event,
6751b71e 1941 struct perf_cpu_context *cpuctx,
6e37738a 1942 struct perf_event_context *ctx)
6751b71e 1943{
6bde9b6c 1944 struct perf_event *event, *partial_group = NULL;
4a234593 1945 struct pmu *pmu = ctx->pmu;
d7842da4
SE
1946 u64 now = ctx->time;
1947 bool simulate = false;
6751b71e 1948
cdd6c482 1949 if (group_event->state == PERF_EVENT_STATE_OFF)
6751b71e
PM
1950 return 0;
1951
fbbe0701 1952 pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
6bde9b6c 1953
9ffcfa6f 1954 if (event_sched_in(group_event, cpuctx, ctx)) {
ad5133b7 1955 pmu->cancel_txn(pmu);
272325c4 1956 perf_mux_hrtimer_restart(cpuctx);
6751b71e 1957 return -EAGAIN;
90151c35 1958 }
6751b71e
PM
1959
1960 /*
1961 * Schedule in siblings as one group (if any):
1962 */
cdd6c482 1963 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
9ffcfa6f 1964 if (event_sched_in(event, cpuctx, ctx)) {
cdd6c482 1965 partial_group = event;
6751b71e
PM
1966 goto group_error;
1967 }
1968 }
1969
9ffcfa6f 1970 if (!pmu->commit_txn(pmu))
6e85158c 1971 return 0;
9ffcfa6f 1972
6751b71e
PM
1973group_error:
1974 /*
1975 * Groups can be scheduled in as one unit only, so undo any
1976 * partial group before returning:
d7842da4
SE
1977 * The events up to the failed event are scheduled out normally,
1978 * tstamp_stopped will be updated.
1979 *
1980 * The failed events and the remaining siblings need to have
1981 * their timings updated as if they had gone thru event_sched_in()
1982 * and event_sched_out(). This is required to get consistent timings
1983 * across the group. This also takes care of the case where the group
1984 * could never be scheduled by ensuring tstamp_stopped is set to mark
1985 * the time the event was actually stopped, such that time delta
1986 * calculation in update_event_times() is correct.
6751b71e 1987 */
cdd6c482
IM
1988 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1989 if (event == partial_group)
d7842da4
SE
1990 simulate = true;
1991
1992 if (simulate) {
1993 event->tstamp_running += now - event->tstamp_stopped;
1994 event->tstamp_stopped = now;
1995 } else {
1996 event_sched_out(event, cpuctx, ctx);
1997 }
6751b71e 1998 }
9ffcfa6f 1999 event_sched_out(group_event, cpuctx, ctx);
6751b71e 2000
ad5133b7 2001 pmu->cancel_txn(pmu);
90151c35 2002
272325c4 2003 perf_mux_hrtimer_restart(cpuctx);
9e630205 2004
6751b71e
PM
2005 return -EAGAIN;
2006}
2007
3b6f9e5c 2008/*
cdd6c482 2009 * Work out whether we can put this event group on the CPU now.
3b6f9e5c 2010 */
cdd6c482 2011static int group_can_go_on(struct perf_event *event,
3b6f9e5c
PM
2012 struct perf_cpu_context *cpuctx,
2013 int can_add_hw)
2014{
2015 /*
cdd6c482 2016 * Groups consisting entirely of software events can always go on.
3b6f9e5c 2017 */
d6f962b5 2018 if (event->group_flags & PERF_GROUP_SOFTWARE)
3b6f9e5c
PM
2019 return 1;
2020 /*
2021 * If an exclusive group is already on, no other hardware
cdd6c482 2022 * events can go on.
3b6f9e5c
PM
2023 */
2024 if (cpuctx->exclusive)
2025 return 0;
2026 /*
2027 * If this group is exclusive and there are already
cdd6c482 2028 * events on the CPU, it can't go on.
3b6f9e5c 2029 */
cdd6c482 2030 if (event->attr.exclusive && cpuctx->active_oncpu)
3b6f9e5c
PM
2031 return 0;
2032 /*
2033 * Otherwise, try to add it if all previous groups were able
2034 * to go on.
2035 */
2036 return can_add_hw;
2037}
2038
cdd6c482
IM
2039static void add_event_to_ctx(struct perf_event *event,
2040 struct perf_event_context *ctx)
53cfbf59 2041{
4158755d
SE
2042 u64 tstamp = perf_event_time(event);
2043
cdd6c482 2044 list_add_event(event, ctx);
8a49542c 2045 perf_group_attach(event);
4158755d
SE
2046 event->tstamp_enabled = tstamp;
2047 event->tstamp_running = tstamp;
2048 event->tstamp_stopped = tstamp;
53cfbf59
PM
2049}
2050
2c29ef0f
PZ
2051static void task_ctx_sched_out(struct perf_event_context *ctx);
2052static void
2053ctx_sched_in(struct perf_event_context *ctx,
2054 struct perf_cpu_context *cpuctx,
2055 enum event_type_t event_type,
2056 struct task_struct *task);
fe4b04fa 2057
dce5855b
PZ
2058static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2059 struct perf_event_context *ctx,
2060 struct task_struct *task)
2061{
2062 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2063 if (ctx)
2064 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2065 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2066 if (ctx)
2067 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2068}
2069
0793a61d 2070/*
cdd6c482 2071 * Cross CPU call to install and enable a performance event
682076ae
PZ
2072 *
2073 * Must be called with ctx->mutex held
0793a61d 2074 */
fe4b04fa 2075static int __perf_install_in_context(void *info)
0793a61d 2076{
cdd6c482
IM
2077 struct perf_event *event = info;
2078 struct perf_event_context *ctx = event->ctx;
108b02cf 2079 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2c29ef0f
PZ
2080 struct perf_event_context *task_ctx = cpuctx->task_ctx;
2081 struct task_struct *task = current;
2082
b58f6b0d 2083 perf_ctx_lock(cpuctx, task_ctx);
2c29ef0f 2084 perf_pmu_disable(cpuctx->ctx.pmu);
0793a61d
TG
2085
2086 /*
2c29ef0f 2087 * If there was an active task_ctx schedule it out.
0793a61d 2088 */
b58f6b0d 2089 if (task_ctx)
2c29ef0f 2090 task_ctx_sched_out(task_ctx);
b58f6b0d
PZ
2091
2092 /*
2093 * If the context we're installing events in is not the
2094 * active task_ctx, flip them.
2095 */
2096 if (ctx->task && task_ctx != ctx) {
2097 if (task_ctx)
2098 raw_spin_unlock(&task_ctx->lock);
2099 raw_spin_lock(&ctx->lock);
2100 task_ctx = ctx;
2101 }
2102
2103 if (task_ctx) {
2104 cpuctx->task_ctx = task_ctx;
2c29ef0f
PZ
2105 task = task_ctx->task;
2106 }
b58f6b0d 2107
2c29ef0f 2108 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
0793a61d 2109
4af4998b 2110 update_context_time(ctx);
e5d1367f
SE
2111 /*
2112 * update cgrp time only if current cgrp
2113 * matches event->cgrp. Must be done before
2114 * calling add_event_to_ctx()
2115 */
2116 update_cgrp_time_from_event(event);
0793a61d 2117
cdd6c482 2118 add_event_to_ctx(event, ctx);
0793a61d 2119
d859e29f 2120 /*
2c29ef0f 2121 * Schedule everything back in
d859e29f 2122 */
dce5855b 2123 perf_event_sched_in(cpuctx, task_ctx, task);
2c29ef0f
PZ
2124
2125 perf_pmu_enable(cpuctx->ctx.pmu);
2126 perf_ctx_unlock(cpuctx, task_ctx);
fe4b04fa
PZ
2127
2128 return 0;
0793a61d
TG
2129}
2130
2131/*
cdd6c482 2132 * Attach a performance event to a context
0793a61d 2133 *
cdd6c482
IM
2134 * First we add the event to the list with the hardware enable bit
2135 * in event->hw_config cleared.
0793a61d 2136 *
cdd6c482 2137 * If the event is attached to a task which is on a CPU we use a smp
0793a61d
TG
2138 * call to enable it in the task context. The task might have been
2139 * scheduled away, but we check this in the smp call again.
2140 */
2141static void
cdd6c482
IM
2142perf_install_in_context(struct perf_event_context *ctx,
2143 struct perf_event *event,
0793a61d
TG
2144 int cpu)
2145{
2146 struct task_struct *task = ctx->task;
2147
fe4b04fa
PZ
2148 lockdep_assert_held(&ctx->mutex);
2149
c3f00c70 2150 event->ctx = ctx;
0cda4c02
YZ
2151 if (event->cpu != -1)
2152 event->cpu = cpu;
c3f00c70 2153
0793a61d
TG
2154 if (!task) {
2155 /*
cdd6c482 2156 * Per cpu events are installed via an smp call and
af901ca1 2157 * the install is always successful.
0793a61d 2158 */
fe4b04fa 2159 cpu_function_call(cpu, __perf_install_in_context, event);
0793a61d
TG
2160 return;
2161 }
2162
0793a61d 2163retry:
fe4b04fa
PZ
2164 if (!task_function_call(task, __perf_install_in_context, event))
2165 return;
0793a61d 2166
e625cce1 2167 raw_spin_lock_irq(&ctx->lock);
0793a61d 2168 /*
fe4b04fa
PZ
2169 * If we failed to find a running task, but find the context active now
2170 * that we've acquired the ctx->lock, retry.
0793a61d 2171 */
fe4b04fa 2172 if (ctx->is_active) {
e625cce1 2173 raw_spin_unlock_irq(&ctx->lock);
3577af70
CW
2174 /*
2175 * Reload the task pointer, it might have been changed by
2176 * a concurrent perf_event_context_sched_out().
2177 */
2178 task = ctx->task;
0793a61d
TG
2179 goto retry;
2180 }
2181
2182 /*
fe4b04fa
PZ
2183 * Since the task isn't running, its safe to add the event, us holding
2184 * the ctx->lock ensures the task won't get scheduled in.
0793a61d 2185 */
fe4b04fa 2186 add_event_to_ctx(event, ctx);
e625cce1 2187 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
2188}
2189
fa289bec 2190/*
cdd6c482 2191 * Put a event into inactive state and update time fields.
fa289bec
PM
2192 * Enabling the leader of a group effectively enables all
2193 * the group members that aren't explicitly disabled, so we
2194 * have to update their ->tstamp_enabled also.
2195 * Note: this works for group members as well as group leaders
2196 * since the non-leader members' sibling_lists will be empty.
2197 */
1d9b482e 2198static void __perf_event_mark_enabled(struct perf_event *event)
fa289bec 2199{
cdd6c482 2200 struct perf_event *sub;
4158755d 2201 u64 tstamp = perf_event_time(event);
fa289bec 2202
cdd6c482 2203 event->state = PERF_EVENT_STATE_INACTIVE;
4158755d 2204 event->tstamp_enabled = tstamp - event->total_time_enabled;
9ed6060d 2205 list_for_each_entry(sub, &event->sibling_list, group_entry) {
4158755d
SE
2206 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2207 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
9ed6060d 2208 }
fa289bec
PM
2209}
2210
d859e29f 2211/*
cdd6c482 2212 * Cross CPU call to enable a performance event
d859e29f 2213 */
fe4b04fa 2214static int __perf_event_enable(void *info)
04289bb9 2215{
cdd6c482 2216 struct perf_event *event = info;
cdd6c482
IM
2217 struct perf_event_context *ctx = event->ctx;
2218 struct perf_event *leader = event->group_leader;
108b02cf 2219 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
d859e29f 2220 int err;
04289bb9 2221
06f41796
JO
2222 /*
2223 * There's a time window between 'ctx->is_active' check
2224 * in perf_event_enable function and this place having:
2225 * - IRQs on
2226 * - ctx->lock unlocked
2227 *
2228 * where the task could be killed and 'ctx' deactivated
2229 * by perf_event_exit_task.
2230 */
2231 if (!ctx->is_active)
fe4b04fa 2232 return -EINVAL;
3cbed429 2233
e625cce1 2234 raw_spin_lock(&ctx->lock);
4af4998b 2235 update_context_time(ctx);
d859e29f 2236
cdd6c482 2237 if (event->state >= PERF_EVENT_STATE_INACTIVE)
d859e29f 2238 goto unlock;
e5d1367f
SE
2239
2240 /*
2241 * set current task's cgroup time reference point
2242 */
3f7cce3c 2243 perf_cgroup_set_timestamp(current, ctx);
e5d1367f 2244
1d9b482e 2245 __perf_event_mark_enabled(event);
04289bb9 2246
e5d1367f
SE
2247 if (!event_filter_match(event)) {
2248 if (is_cgroup_event(event))
2249 perf_cgroup_defer_enabled(event);
f4c4176f 2250 goto unlock;
e5d1367f 2251 }
f4c4176f 2252
04289bb9 2253 /*
cdd6c482 2254 * If the event is in a group and isn't the group leader,
d859e29f 2255 * then don't put it on unless the group is on.
04289bb9 2256 */
cdd6c482 2257 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
d859e29f 2258 goto unlock;
3b6f9e5c 2259
cdd6c482 2260 if (!group_can_go_on(event, cpuctx, 1)) {
d859e29f 2261 err = -EEXIST;
e758a33d 2262 } else {
cdd6c482 2263 if (event == leader)
6e37738a 2264 err = group_sched_in(event, cpuctx, ctx);
e758a33d 2265 else
6e37738a 2266 err = event_sched_in(event, cpuctx, ctx);
e758a33d 2267 }
d859e29f
PM
2268
2269 if (err) {
2270 /*
cdd6c482 2271 * If this event can't go on and it's part of a
d859e29f
PM
2272 * group, then the whole group has to come off.
2273 */
9e630205 2274 if (leader != event) {
d859e29f 2275 group_sched_out(leader, cpuctx, ctx);
272325c4 2276 perf_mux_hrtimer_restart(cpuctx);
9e630205 2277 }
0d48696f 2278 if (leader->attr.pinned) {
53cfbf59 2279 update_group_times(leader);
cdd6c482 2280 leader->state = PERF_EVENT_STATE_ERROR;
53cfbf59 2281 }
d859e29f
PM
2282 }
2283
9ed6060d 2284unlock:
e625cce1 2285 raw_spin_unlock(&ctx->lock);
fe4b04fa
PZ
2286
2287 return 0;
d859e29f
PM
2288}
2289
2290/*
cdd6c482 2291 * Enable a event.
c93f7669 2292 *
cdd6c482
IM
2293 * If event->ctx is a cloned context, callers must make sure that
2294 * every task struct that event->ctx->task could possibly point to
c93f7669 2295 * remains valid. This condition is satisfied when called through
cdd6c482
IM
2296 * perf_event_for_each_child or perf_event_for_each as described
2297 * for perf_event_disable.
d859e29f 2298 */
f63a8daa 2299static void _perf_event_enable(struct perf_event *event)
d859e29f 2300{
cdd6c482 2301 struct perf_event_context *ctx = event->ctx;
d859e29f
PM
2302 struct task_struct *task = ctx->task;
2303
2304 if (!task) {
2305 /*
cdd6c482 2306 * Enable the event on the cpu that it's on
d859e29f 2307 */
fe4b04fa 2308 cpu_function_call(event->cpu, __perf_event_enable, event);
d859e29f
PM
2309 return;
2310 }
2311
e625cce1 2312 raw_spin_lock_irq(&ctx->lock);
cdd6c482 2313 if (event->state >= PERF_EVENT_STATE_INACTIVE)
d859e29f
PM
2314 goto out;
2315
2316 /*
cdd6c482
IM
2317 * If the event is in error state, clear that first.
2318 * That way, if we see the event in error state below, we
d859e29f
PM
2319 * know that it has gone back into error state, as distinct
2320 * from the task having been scheduled away before the
2321 * cross-call arrived.
2322 */
cdd6c482
IM
2323 if (event->state == PERF_EVENT_STATE_ERROR)
2324 event->state = PERF_EVENT_STATE_OFF;
d859e29f 2325
9ed6060d 2326retry:
fe4b04fa 2327 if (!ctx->is_active) {
1d9b482e 2328 __perf_event_mark_enabled(event);
fe4b04fa
PZ
2329 goto out;
2330 }
2331
e625cce1 2332 raw_spin_unlock_irq(&ctx->lock);
fe4b04fa
PZ
2333
2334 if (!task_function_call(task, __perf_event_enable, event))
2335 return;
d859e29f 2336
e625cce1 2337 raw_spin_lock_irq(&ctx->lock);
d859e29f
PM
2338
2339 /*
cdd6c482 2340 * If the context is active and the event is still off,
d859e29f
PM
2341 * we need to retry the cross-call.
2342 */
fe4b04fa
PZ
2343 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
2344 /*
2345 * task could have been flipped by a concurrent
2346 * perf_event_context_sched_out()
2347 */
2348 task = ctx->task;
d859e29f 2349 goto retry;
fe4b04fa 2350 }
fa289bec 2351
9ed6060d 2352out:
e625cce1 2353 raw_spin_unlock_irq(&ctx->lock);
d859e29f 2354}
f63a8daa
PZ
2355
2356/*
2357 * See perf_event_disable();
2358 */
2359void perf_event_enable(struct perf_event *event)
2360{
2361 struct perf_event_context *ctx;
2362
2363 ctx = perf_event_ctx_lock(event);
2364 _perf_event_enable(event);
2365 perf_event_ctx_unlock(event, ctx);
2366}
dcfce4a0 2367EXPORT_SYMBOL_GPL(perf_event_enable);
d859e29f 2368
f63a8daa 2369static int _perf_event_refresh(struct perf_event *event, int refresh)
79f14641 2370{
2023b359 2371 /*
cdd6c482 2372 * not supported on inherited events
2023b359 2373 */
2e939d1d 2374 if (event->attr.inherit || !is_sampling_event(event))
2023b359
PZ
2375 return -EINVAL;
2376
cdd6c482 2377 atomic_add(refresh, &event->event_limit);
f63a8daa 2378 _perf_event_enable(event);
2023b359
PZ
2379
2380 return 0;
79f14641 2381}
f63a8daa
PZ
2382
2383/*
2384 * See perf_event_disable()
2385 */
2386int perf_event_refresh(struct perf_event *event, int refresh)
2387{
2388 struct perf_event_context *ctx;
2389 int ret;
2390
2391 ctx = perf_event_ctx_lock(event);
2392 ret = _perf_event_refresh(event, refresh);
2393 perf_event_ctx_unlock(event, ctx);
2394
2395 return ret;
2396}
26ca5c11 2397EXPORT_SYMBOL_GPL(perf_event_refresh);
79f14641 2398
5b0311e1
FW
2399static void ctx_sched_out(struct perf_event_context *ctx,
2400 struct perf_cpu_context *cpuctx,
2401 enum event_type_t event_type)
235c7fc7 2402{
cdd6c482 2403 struct perf_event *event;
db24d33e 2404 int is_active = ctx->is_active;
235c7fc7 2405
db24d33e 2406 ctx->is_active &= ~event_type;
cdd6c482 2407 if (likely(!ctx->nr_events))
facc4307
PZ
2408 return;
2409
4af4998b 2410 update_context_time(ctx);
e5d1367f 2411 update_cgrp_time_from_cpuctx(cpuctx);
5b0311e1 2412 if (!ctx->nr_active)
facc4307 2413 return;
5b0311e1 2414
075e0b00 2415 perf_pmu_disable(ctx->pmu);
db24d33e 2416 if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
889ff015
FW
2417 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2418 group_sched_out(event, cpuctx, ctx);
9ed6060d 2419 }
889ff015 2420
db24d33e 2421 if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
889ff015 2422 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
8c9ed8e1 2423 group_sched_out(event, cpuctx, ctx);
9ed6060d 2424 }
1b9a644f 2425 perf_pmu_enable(ctx->pmu);
235c7fc7
IM
2426}
2427
564c2b21 2428/*
5a3126d4
PZ
2429 * Test whether two contexts are equivalent, i.e. whether they have both been
2430 * cloned from the same version of the same context.
2431 *
2432 * Equivalence is measured using a generation number in the context that is
2433 * incremented on each modification to it; see unclone_ctx(), list_add_event()
2434 * and list_del_event().
564c2b21 2435 */
cdd6c482
IM
2436static int context_equiv(struct perf_event_context *ctx1,
2437 struct perf_event_context *ctx2)
564c2b21 2438{
211de6eb
PZ
2439 lockdep_assert_held(&ctx1->lock);
2440 lockdep_assert_held(&ctx2->lock);
2441
5a3126d4
PZ
2442 /* Pinning disables the swap optimization */
2443 if (ctx1->pin_count || ctx2->pin_count)
2444 return 0;
2445
2446 /* If ctx1 is the parent of ctx2 */
2447 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2448 return 1;
2449
2450 /* If ctx2 is the parent of ctx1 */
2451 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2452 return 1;
2453
2454 /*
2455 * If ctx1 and ctx2 have the same parent; we flatten the parent
2456 * hierarchy, see perf_event_init_context().
2457 */
2458 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2459 ctx1->parent_gen == ctx2->parent_gen)
2460 return 1;
2461
2462 /* Unmatched */
2463 return 0;
564c2b21
PM
2464}
2465
cdd6c482
IM
2466static void __perf_event_sync_stat(struct perf_event *event,
2467 struct perf_event *next_event)
bfbd3381
PZ
2468{
2469 u64 value;
2470
cdd6c482 2471 if (!event->attr.inherit_stat)
bfbd3381
PZ
2472 return;
2473
2474 /*
cdd6c482 2475 * Update the event value, we cannot use perf_event_read()
bfbd3381
PZ
2476 * because we're in the middle of a context switch and have IRQs
2477 * disabled, which upsets smp_call_function_single(), however
cdd6c482 2478 * we know the event must be on the current CPU, therefore we
bfbd3381
PZ
2479 * don't need to use it.
2480 */
cdd6c482
IM
2481 switch (event->state) {
2482 case PERF_EVENT_STATE_ACTIVE:
3dbebf15
PZ
2483 event->pmu->read(event);
2484 /* fall-through */
bfbd3381 2485
cdd6c482
IM
2486 case PERF_EVENT_STATE_INACTIVE:
2487 update_event_times(event);
bfbd3381
PZ
2488 break;
2489
2490 default:
2491 break;
2492 }
2493
2494 /*
cdd6c482 2495 * In order to keep per-task stats reliable we need to flip the event
bfbd3381
PZ
2496 * values when we flip the contexts.
2497 */
e7850595
PZ
2498 value = local64_read(&next_event->count);
2499 value = local64_xchg(&event->count, value);
2500 local64_set(&next_event->count, value);
bfbd3381 2501
cdd6c482
IM
2502 swap(event->total_time_enabled, next_event->total_time_enabled);
2503 swap(event->total_time_running, next_event->total_time_running);
19d2e755 2504
bfbd3381 2505 /*
19d2e755 2506 * Since we swizzled the values, update the user visible data too.
bfbd3381 2507 */
cdd6c482
IM
2508 perf_event_update_userpage(event);
2509 perf_event_update_userpage(next_event);
bfbd3381
PZ
2510}
2511
cdd6c482
IM
2512static void perf_event_sync_stat(struct perf_event_context *ctx,
2513 struct perf_event_context *next_ctx)
bfbd3381 2514{
cdd6c482 2515 struct perf_event *event, *next_event;
bfbd3381
PZ
2516
2517 if (!ctx->nr_stat)
2518 return;
2519
02ffdbc8
PZ
2520 update_context_time(ctx);
2521
cdd6c482
IM
2522 event = list_first_entry(&ctx->event_list,
2523 struct perf_event, event_entry);
bfbd3381 2524
cdd6c482
IM
2525 next_event = list_first_entry(&next_ctx->event_list,
2526 struct perf_event, event_entry);
bfbd3381 2527
cdd6c482
IM
2528 while (&event->event_entry != &ctx->event_list &&
2529 &next_event->event_entry != &next_ctx->event_list) {
bfbd3381 2530
cdd6c482 2531 __perf_event_sync_stat(event, next_event);
bfbd3381 2532
cdd6c482
IM
2533 event = list_next_entry(event, event_entry);
2534 next_event = list_next_entry(next_event, event_entry);
bfbd3381
PZ
2535 }
2536}
2537
fe4b04fa
PZ
2538static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2539 struct task_struct *next)
0793a61d 2540{
8dc85d54 2541 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
cdd6c482 2542 struct perf_event_context *next_ctx;
5a3126d4 2543 struct perf_event_context *parent, *next_parent;
108b02cf 2544 struct perf_cpu_context *cpuctx;
c93f7669 2545 int do_switch = 1;
0793a61d 2546
108b02cf
PZ
2547 if (likely(!ctx))
2548 return;
10989fb2 2549
108b02cf
PZ
2550 cpuctx = __get_cpu_context(ctx);
2551 if (!cpuctx->task_ctx)
0793a61d
TG
2552 return;
2553
c93f7669 2554 rcu_read_lock();
8dc85d54 2555 next_ctx = next->perf_event_ctxp[ctxn];
5a3126d4
PZ
2556 if (!next_ctx)
2557 goto unlock;
2558
2559 parent = rcu_dereference(ctx->parent_ctx);
2560 next_parent = rcu_dereference(next_ctx->parent_ctx);
2561
2562 /* If neither context have a parent context; they cannot be clones. */
802c8a61 2563 if (!parent && !next_parent)
5a3126d4
PZ
2564 goto unlock;
2565
2566 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
c93f7669
PM
2567 /*
2568 * Looks like the two contexts are clones, so we might be
2569 * able to optimize the context switch. We lock both
2570 * contexts and check that they are clones under the
2571 * lock (including re-checking that neither has been
2572 * uncloned in the meantime). It doesn't matter which
2573 * order we take the locks because no other cpu could
2574 * be trying to lock both of these tasks.
2575 */
e625cce1
TG
2576 raw_spin_lock(&ctx->lock);
2577 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
c93f7669 2578 if (context_equiv(ctx, next_ctx)) {
665c2142
PZ
2579 /*
2580 * XXX do we need a memory barrier of sorts
cdd6c482 2581 * wrt to rcu_dereference() of perf_event_ctxp
665c2142 2582 */
8dc85d54
PZ
2583 task->perf_event_ctxp[ctxn] = next_ctx;
2584 next->perf_event_ctxp[ctxn] = ctx;
c93f7669
PM
2585 ctx->task = next;
2586 next_ctx->task = task;
5a158c3c
YZ
2587
2588 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2589
c93f7669 2590 do_switch = 0;
bfbd3381 2591
cdd6c482 2592 perf_event_sync_stat(ctx, next_ctx);
c93f7669 2593 }
e625cce1
TG
2594 raw_spin_unlock(&next_ctx->lock);
2595 raw_spin_unlock(&ctx->lock);
564c2b21 2596 }
5a3126d4 2597unlock:
c93f7669 2598 rcu_read_unlock();
564c2b21 2599
c93f7669 2600 if (do_switch) {
facc4307 2601 raw_spin_lock(&ctx->lock);
5b0311e1 2602 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
c93f7669 2603 cpuctx->task_ctx = NULL;
facc4307 2604 raw_spin_unlock(&ctx->lock);
c93f7669 2605 }
0793a61d
TG
2606}
2607
ba532500
YZ
2608void perf_sched_cb_dec(struct pmu *pmu)
2609{
2610 this_cpu_dec(perf_sched_cb_usages);
2611}
2612
2613void perf_sched_cb_inc(struct pmu *pmu)
2614{
2615 this_cpu_inc(perf_sched_cb_usages);
2616}
2617
2618/*
2619 * This function provides the context switch callback to the lower code
2620 * layer. It is invoked ONLY when the context switch callback is enabled.
2621 */
2622static void perf_pmu_sched_task(struct task_struct *prev,
2623 struct task_struct *next,
2624 bool sched_in)
2625{
2626 struct perf_cpu_context *cpuctx;
2627 struct pmu *pmu;
2628 unsigned long flags;
2629
2630 if (prev == next)
2631 return;
2632
2633 local_irq_save(flags);
2634
2635 rcu_read_lock();
2636
2637 list_for_each_entry_rcu(pmu, &pmus, entry) {
2638 if (pmu->sched_task) {
2639 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2640
2641 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2642
2643 perf_pmu_disable(pmu);
2644
2645 pmu->sched_task(cpuctx->task_ctx, sched_in);
2646
2647 perf_pmu_enable(pmu);
2648
2649 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2650 }
2651 }
2652
2653 rcu_read_unlock();
2654
2655 local_irq_restore(flags);
2656}
2657
45ac1403
AH
2658static void perf_event_switch(struct task_struct *task,
2659 struct task_struct *next_prev, bool sched_in);
2660
8dc85d54
PZ
2661#define for_each_task_context_nr(ctxn) \
2662 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2663
2664/*
2665 * Called from scheduler to remove the events of the current task,
2666 * with interrupts disabled.
2667 *
2668 * We stop each event and update the event value in event->count.
2669 *
2670 * This does not protect us against NMI, but disable()
2671 * sets the disabled bit in the control field of event _before_
2672 * accessing the event control register. If a NMI hits, then it will
2673 * not restart the event.
2674 */
ab0cce56
JO
2675void __perf_event_task_sched_out(struct task_struct *task,
2676 struct task_struct *next)
8dc85d54
PZ
2677{
2678 int ctxn;
2679
ba532500
YZ
2680 if (__this_cpu_read(perf_sched_cb_usages))
2681 perf_pmu_sched_task(task, next, false);
2682
45ac1403
AH
2683 if (atomic_read(&nr_switch_events))
2684 perf_event_switch(task, next, false);
2685
8dc85d54
PZ
2686 for_each_task_context_nr(ctxn)
2687 perf_event_context_sched_out(task, ctxn, next);
e5d1367f
SE
2688
2689 /*
2690 * if cgroup events exist on this CPU, then we need
2691 * to check if we have to switch out PMU state.
2692 * cgroup event are system-wide mode only
2693 */
4a32fea9 2694 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
a8d757ef 2695 perf_cgroup_sched_out(task, next);
8dc85d54
PZ
2696}
2697
04dc2dbb 2698static void task_ctx_sched_out(struct perf_event_context *ctx)
a08b159f 2699{
108b02cf 2700 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
a08b159f 2701
a63eaf34
PM
2702 if (!cpuctx->task_ctx)
2703 return;
012b84da
IM
2704
2705 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2706 return;
2707
04dc2dbb 2708 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
a08b159f
PM
2709 cpuctx->task_ctx = NULL;
2710}
2711
5b0311e1
FW
2712/*
2713 * Called with IRQs disabled
2714 */
2715static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2716 enum event_type_t event_type)
2717{
2718 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
04289bb9
IM
2719}
2720
235c7fc7 2721static void
5b0311e1 2722ctx_pinned_sched_in(struct perf_event_context *ctx,
6e37738a 2723 struct perf_cpu_context *cpuctx)
0793a61d 2724{
cdd6c482 2725 struct perf_event *event;
0793a61d 2726
889ff015
FW
2727 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2728 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 2729 continue;
5632ab12 2730 if (!event_filter_match(event))
3b6f9e5c
PM
2731 continue;
2732
e5d1367f
SE
2733 /* may need to reset tstamp_enabled */
2734 if (is_cgroup_event(event))
2735 perf_cgroup_mark_enabled(event, ctx);
2736
8c9ed8e1 2737 if (group_can_go_on(event, cpuctx, 1))
6e37738a 2738 group_sched_in(event, cpuctx, ctx);
3b6f9e5c
PM
2739
2740 /*
2741 * If this pinned group hasn't been scheduled,
2742 * put it in error state.
2743 */
cdd6c482
IM
2744 if (event->state == PERF_EVENT_STATE_INACTIVE) {
2745 update_group_times(event);
2746 event->state = PERF_EVENT_STATE_ERROR;
53cfbf59 2747 }
3b6f9e5c 2748 }
5b0311e1
FW
2749}
2750
2751static void
2752ctx_flexible_sched_in(struct perf_event_context *ctx,
6e37738a 2753 struct perf_cpu_context *cpuctx)
5b0311e1
FW
2754{
2755 struct perf_event *event;
2756 int can_add_hw = 1;
3b6f9e5c 2757
889ff015
FW
2758 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2759 /* Ignore events in OFF or ERROR state */
2760 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 2761 continue;
04289bb9
IM
2762 /*
2763 * Listen to the 'cpu' scheduling filter constraint
cdd6c482 2764 * of events:
04289bb9 2765 */
5632ab12 2766 if (!event_filter_match(event))
0793a61d
TG
2767 continue;
2768
e5d1367f
SE
2769 /* may need to reset tstamp_enabled */
2770 if (is_cgroup_event(event))
2771 perf_cgroup_mark_enabled(event, ctx);
2772
9ed6060d 2773 if (group_can_go_on(event, cpuctx, can_add_hw)) {
6e37738a 2774 if (group_sched_in(event, cpuctx, ctx))
dd0e6ba2 2775 can_add_hw = 0;
9ed6060d 2776 }
0793a61d 2777 }
5b0311e1
FW
2778}
2779
2780static void
2781ctx_sched_in(struct perf_event_context *ctx,
2782 struct perf_cpu_context *cpuctx,
e5d1367f
SE
2783 enum event_type_t event_type,
2784 struct task_struct *task)
5b0311e1 2785{
e5d1367f 2786 u64 now;
db24d33e 2787 int is_active = ctx->is_active;
e5d1367f 2788
db24d33e 2789 ctx->is_active |= event_type;
5b0311e1 2790 if (likely(!ctx->nr_events))
facc4307 2791 return;
5b0311e1 2792
e5d1367f
SE
2793 now = perf_clock();
2794 ctx->timestamp = now;
3f7cce3c 2795 perf_cgroup_set_timestamp(task, ctx);
5b0311e1
FW
2796 /*
2797 * First go through the list and put on any pinned groups
2798 * in order to give them the best chance of going on.
2799 */
db24d33e 2800 if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
6e37738a 2801 ctx_pinned_sched_in(ctx, cpuctx);
5b0311e1
FW
2802
2803 /* Then walk through the lower prio flexible groups */
db24d33e 2804 if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
6e37738a 2805 ctx_flexible_sched_in(ctx, cpuctx);
235c7fc7
IM
2806}
2807
329c0e01 2808static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
2809 enum event_type_t event_type,
2810 struct task_struct *task)
329c0e01
FW
2811{
2812 struct perf_event_context *ctx = &cpuctx->ctx;
2813
e5d1367f 2814 ctx_sched_in(ctx, cpuctx, event_type, task);
329c0e01
FW
2815}
2816
e5d1367f
SE
2817static void perf_event_context_sched_in(struct perf_event_context *ctx,
2818 struct task_struct *task)
235c7fc7 2819{
108b02cf 2820 struct perf_cpu_context *cpuctx;
235c7fc7 2821
108b02cf 2822 cpuctx = __get_cpu_context(ctx);
329c0e01
FW
2823 if (cpuctx->task_ctx == ctx)
2824 return;
2825
facc4307 2826 perf_ctx_lock(cpuctx, ctx);
1b9a644f 2827 perf_pmu_disable(ctx->pmu);
329c0e01
FW
2828 /*
2829 * We want to keep the following priority order:
2830 * cpu pinned (that don't need to move), task pinned,
2831 * cpu flexible, task flexible.
2832 */
2833 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2834
1d5f003f
GN
2835 if (ctx->nr_events)
2836 cpuctx->task_ctx = ctx;
9b33fa6b 2837
86b47c25
GN
2838 perf_event_sched_in(cpuctx, cpuctx->task_ctx, task);
2839
facc4307
PZ
2840 perf_pmu_enable(ctx->pmu);
2841 perf_ctx_unlock(cpuctx, ctx);
235c7fc7
IM
2842}
2843
8dc85d54
PZ
2844/*
2845 * Called from scheduler to add the events of the current task
2846 * with interrupts disabled.
2847 *
2848 * We restore the event value and then enable it.
2849 *
2850 * This does not protect us against NMI, but enable()
2851 * sets the enabled bit in the control field of event _before_
2852 * accessing the event control register. If a NMI hits, then it will
2853 * keep the event running.
2854 */
ab0cce56
JO
2855void __perf_event_task_sched_in(struct task_struct *prev,
2856 struct task_struct *task)
8dc85d54
PZ
2857{
2858 struct perf_event_context *ctx;
2859 int ctxn;
2860
2861 for_each_task_context_nr(ctxn) {
2862 ctx = task->perf_event_ctxp[ctxn];
2863 if (likely(!ctx))
2864 continue;
2865
e5d1367f 2866 perf_event_context_sched_in(ctx, task);
8dc85d54 2867 }
e5d1367f
SE
2868 /*
2869 * if cgroup events exist on this CPU, then we need
2870 * to check if we have to switch in PMU state.
2871 * cgroup event are system-wide mode only
2872 */
4a32fea9 2873 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
a8d757ef 2874 perf_cgroup_sched_in(prev, task);
d010b332 2875
45ac1403
AH
2876 if (atomic_read(&nr_switch_events))
2877 perf_event_switch(task, prev, true);
2878
ba532500
YZ
2879 if (__this_cpu_read(perf_sched_cb_usages))
2880 perf_pmu_sched_task(prev, task, true);
235c7fc7
IM
2881}
2882
abd50713
PZ
2883static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2884{
2885 u64 frequency = event->attr.sample_freq;
2886 u64 sec = NSEC_PER_SEC;
2887 u64 divisor, dividend;
2888
2889 int count_fls, nsec_fls, frequency_fls, sec_fls;
2890
2891 count_fls = fls64(count);
2892 nsec_fls = fls64(nsec);
2893 frequency_fls = fls64(frequency);
2894 sec_fls = 30;
2895
2896 /*
2897 * We got @count in @nsec, with a target of sample_freq HZ
2898 * the target period becomes:
2899 *
2900 * @count * 10^9
2901 * period = -------------------
2902 * @nsec * sample_freq
2903 *
2904 */
2905
2906 /*
2907 * Reduce accuracy by one bit such that @a and @b converge
2908 * to a similar magnitude.
2909 */
fe4b04fa 2910#define REDUCE_FLS(a, b) \
abd50713
PZ
2911do { \
2912 if (a##_fls > b##_fls) { \
2913 a >>= 1; \
2914 a##_fls--; \
2915 } else { \
2916 b >>= 1; \
2917 b##_fls--; \
2918 } \
2919} while (0)
2920
2921 /*
2922 * Reduce accuracy until either term fits in a u64, then proceed with
2923 * the other, so that finally we can do a u64/u64 division.
2924 */
2925 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2926 REDUCE_FLS(nsec, frequency);
2927 REDUCE_FLS(sec, count);
2928 }
2929
2930 if (count_fls + sec_fls > 64) {
2931 divisor = nsec * frequency;
2932
2933 while (count_fls + sec_fls > 64) {
2934 REDUCE_FLS(count, sec);
2935 divisor >>= 1;
2936 }
2937
2938 dividend = count * sec;
2939 } else {
2940 dividend = count * sec;
2941
2942 while (nsec_fls + frequency_fls > 64) {
2943 REDUCE_FLS(nsec, frequency);
2944 dividend >>= 1;
2945 }
2946
2947 divisor = nsec * frequency;
2948 }
2949
f6ab91ad
PZ
2950 if (!divisor)
2951 return dividend;
2952
abd50713
PZ
2953 return div64_u64(dividend, divisor);
2954}
2955
e050e3f0
SE
2956static DEFINE_PER_CPU(int, perf_throttled_count);
2957static DEFINE_PER_CPU(u64, perf_throttled_seq);
2958
f39d47ff 2959static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
bd2b5b12 2960{
cdd6c482 2961 struct hw_perf_event *hwc = &event->hw;
f6ab91ad 2962 s64 period, sample_period;
bd2b5b12
PZ
2963 s64 delta;
2964
abd50713 2965 period = perf_calculate_period(event, nsec, count);
bd2b5b12
PZ
2966
2967 delta = (s64)(period - hwc->sample_period);
2968 delta = (delta + 7) / 8; /* low pass filter */
2969
2970 sample_period = hwc->sample_period + delta;
2971
2972 if (!sample_period)
2973 sample_period = 1;
2974
bd2b5b12 2975 hwc->sample_period = sample_period;
abd50713 2976
e7850595 2977 if (local64_read(&hwc->period_left) > 8*sample_period) {
f39d47ff
SE
2978 if (disable)
2979 event->pmu->stop(event, PERF_EF_UPDATE);
2980
e7850595 2981 local64_set(&hwc->period_left, 0);
f39d47ff
SE
2982
2983 if (disable)
2984 event->pmu->start(event, PERF_EF_RELOAD);
abd50713 2985 }
bd2b5b12
PZ
2986}
2987
e050e3f0
SE
2988/*
2989 * combine freq adjustment with unthrottling to avoid two passes over the
2990 * events. At the same time, make sure, having freq events does not change
2991 * the rate of unthrottling as that would introduce bias.
2992 */
2993static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
2994 int needs_unthr)
60db5e09 2995{
cdd6c482
IM
2996 struct perf_event *event;
2997 struct hw_perf_event *hwc;
e050e3f0 2998 u64 now, period = TICK_NSEC;
abd50713 2999 s64 delta;
60db5e09 3000
e050e3f0
SE
3001 /*
3002 * only need to iterate over all events iff:
3003 * - context have events in frequency mode (needs freq adjust)
3004 * - there are events to unthrottle on this cpu
3005 */
3006 if (!(ctx->nr_freq || needs_unthr))
0f5a2601
PZ
3007 return;
3008
e050e3f0 3009 raw_spin_lock(&ctx->lock);
f39d47ff 3010 perf_pmu_disable(ctx->pmu);
e050e3f0 3011
03541f8b 3012 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
cdd6c482 3013 if (event->state != PERF_EVENT_STATE_ACTIVE)
60db5e09
PZ
3014 continue;
3015
5632ab12 3016 if (!event_filter_match(event))
5d27c23d
PZ
3017 continue;
3018
44377277
AS
3019 perf_pmu_disable(event->pmu);
3020
cdd6c482 3021 hwc = &event->hw;
6a24ed6c 3022
ae23bff1 3023 if (hwc->interrupts == MAX_INTERRUPTS) {
e050e3f0 3024 hwc->interrupts = 0;
cdd6c482 3025 perf_log_throttle(event, 1);
a4eaf7f1 3026 event->pmu->start(event, 0);
a78ac325
PZ
3027 }
3028
cdd6c482 3029 if (!event->attr.freq || !event->attr.sample_freq)
44377277 3030 goto next;
60db5e09 3031
e050e3f0
SE
3032 /*
3033 * stop the event and update event->count
3034 */
3035 event->pmu->stop(event, PERF_EF_UPDATE);
3036
e7850595 3037 now = local64_read(&event->count);
abd50713
PZ
3038 delta = now - hwc->freq_count_stamp;
3039 hwc->freq_count_stamp = now;
60db5e09 3040
e050e3f0
SE
3041 /*
3042 * restart the event
3043 * reload only if value has changed
f39d47ff
SE
3044 * we have stopped the event so tell that
3045 * to perf_adjust_period() to avoid stopping it
3046 * twice.
e050e3f0 3047 */
abd50713 3048 if (delta > 0)
f39d47ff 3049 perf_adjust_period(event, period, delta, false);
e050e3f0
SE
3050
3051 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
44377277
AS
3052 next:
3053 perf_pmu_enable(event->pmu);
60db5e09 3054 }
e050e3f0 3055
f39d47ff 3056 perf_pmu_enable(ctx->pmu);
e050e3f0 3057 raw_spin_unlock(&ctx->lock);
60db5e09
PZ
3058}
3059
235c7fc7 3060/*
cdd6c482 3061 * Round-robin a context's events:
235c7fc7 3062 */
cdd6c482 3063static void rotate_ctx(struct perf_event_context *ctx)
0793a61d 3064{
dddd3379
TG
3065 /*
3066 * Rotate the first entry last of non-pinned groups. Rotation might be
3067 * disabled by the inheritance code.
3068 */
3069 if (!ctx->rotate_disable)
3070 list_rotate_left(&ctx->flexible_groups);
235c7fc7
IM
3071}
3072
9e630205 3073static int perf_rotate_context(struct perf_cpu_context *cpuctx)
235c7fc7 3074{
8dc85d54 3075 struct perf_event_context *ctx = NULL;
2fde4f94 3076 int rotate = 0;
7fc23a53 3077
b5ab4cd5 3078 if (cpuctx->ctx.nr_events) {
b5ab4cd5
PZ
3079 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3080 rotate = 1;
3081 }
235c7fc7 3082
8dc85d54 3083 ctx = cpuctx->task_ctx;
b5ab4cd5 3084 if (ctx && ctx->nr_events) {
b5ab4cd5
PZ
3085 if (ctx->nr_events != ctx->nr_active)
3086 rotate = 1;
3087 }
9717e6cd 3088
e050e3f0 3089 if (!rotate)
0f5a2601
PZ
3090 goto done;
3091
facc4307 3092 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
1b9a644f 3093 perf_pmu_disable(cpuctx->ctx.pmu);
60db5e09 3094
e050e3f0
SE
3095 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3096 if (ctx)
3097 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
0793a61d 3098
e050e3f0
SE
3099 rotate_ctx(&cpuctx->ctx);
3100 if (ctx)
3101 rotate_ctx(ctx);
235c7fc7 3102
e050e3f0 3103 perf_event_sched_in(cpuctx, ctx, current);
235c7fc7 3104
0f5a2601
PZ
3105 perf_pmu_enable(cpuctx->ctx.pmu);
3106 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
b5ab4cd5 3107done:
9e630205
SE
3108
3109 return rotate;
e9d2b064
PZ
3110}
3111
026249ef
FW
3112#ifdef CONFIG_NO_HZ_FULL
3113bool perf_event_can_stop_tick(void)
3114{
948b26b6 3115 if (atomic_read(&nr_freq_events) ||
d84153d6 3116 __this_cpu_read(perf_throttled_count))
026249ef 3117 return false;
d84153d6
FW
3118 else
3119 return true;
026249ef
FW
3120}
3121#endif
3122
e9d2b064
PZ
3123void perf_event_task_tick(void)
3124{
2fde4f94
MR
3125 struct list_head *head = this_cpu_ptr(&active_ctx_list);
3126 struct perf_event_context *ctx, *tmp;
e050e3f0 3127 int throttled;
b5ab4cd5 3128
e9d2b064
PZ
3129 WARN_ON(!irqs_disabled());
3130
e050e3f0
SE
3131 __this_cpu_inc(perf_throttled_seq);
3132 throttled = __this_cpu_xchg(perf_throttled_count, 0);
3133
2fde4f94 3134 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
e050e3f0 3135 perf_adjust_freq_unthr_context(ctx, throttled);
0793a61d
TG
3136}
3137
889ff015
FW
3138static int event_enable_on_exec(struct perf_event *event,
3139 struct perf_event_context *ctx)
3140{
3141 if (!event->attr.enable_on_exec)
3142 return 0;
3143
3144 event->attr.enable_on_exec = 0;
3145 if (event->state >= PERF_EVENT_STATE_INACTIVE)
3146 return 0;
3147
1d9b482e 3148 __perf_event_mark_enabled(event);
889ff015
FW
3149
3150 return 1;
3151}
3152
57e7986e 3153/*
cdd6c482 3154 * Enable all of a task's events that have been marked enable-on-exec.
57e7986e
PM
3155 * This expects task == current.
3156 */
c1274499 3157static void perf_event_enable_on_exec(int ctxn)
57e7986e 3158{
c1274499 3159 struct perf_event_context *ctx, *clone_ctx = NULL;
cdd6c482 3160 struct perf_event *event;
57e7986e
PM
3161 unsigned long flags;
3162 int enabled = 0;
889ff015 3163 int ret;
57e7986e
PM
3164
3165 local_irq_save(flags);
c1274499 3166 ctx = current->perf_event_ctxp[ctxn];
cdd6c482 3167 if (!ctx || !ctx->nr_events)
57e7986e
PM
3168 goto out;
3169
e566b76e
SE
3170 /*
3171 * We must ctxsw out cgroup events to avoid conflict
3172 * when invoking perf_task_event_sched_in() later on
3173 * in this function. Otherwise we end up trying to
3174 * ctxswin cgroup events which are already scheduled
3175 * in.
3176 */
a8d757ef 3177 perf_cgroup_sched_out(current, NULL);
57e7986e 3178
e625cce1 3179 raw_spin_lock(&ctx->lock);
04dc2dbb 3180 task_ctx_sched_out(ctx);
57e7986e 3181
b79387ef 3182 list_for_each_entry(event, &ctx->event_list, event_entry) {
889ff015
FW
3183 ret = event_enable_on_exec(event, ctx);
3184 if (ret)
3185 enabled = 1;
57e7986e
PM
3186 }
3187
3188 /*
cdd6c482 3189 * Unclone this context if we enabled any event.
57e7986e 3190 */
71a851b4 3191 if (enabled)
211de6eb 3192 clone_ctx = unclone_ctx(ctx);
57e7986e 3193
e625cce1 3194 raw_spin_unlock(&ctx->lock);
57e7986e 3195
e566b76e
SE
3196 /*
3197 * Also calls ctxswin for cgroup events, if any:
3198 */
e5d1367f 3199 perf_event_context_sched_in(ctx, ctx->task);
9ed6060d 3200out:
57e7986e 3201 local_irq_restore(flags);
211de6eb
PZ
3202
3203 if (clone_ctx)
3204 put_ctx(clone_ctx);
57e7986e
PM
3205}
3206
e041e328
PZ
3207void perf_event_exec(void)
3208{
e041e328
PZ
3209 int ctxn;
3210
3211 rcu_read_lock();
c1274499
PZ
3212 for_each_task_context_nr(ctxn)
3213 perf_event_enable_on_exec(ctxn);
e041e328
PZ
3214 rcu_read_unlock();
3215}
3216
0492d4c5
PZ
3217struct perf_read_data {
3218 struct perf_event *event;
3219 bool group;
7d88962e 3220 int ret;
0492d4c5
PZ
3221};
3222
0793a61d 3223/*
cdd6c482 3224 * Cross CPU call to read the hardware event
0793a61d 3225 */
cdd6c482 3226static void __perf_event_read(void *info)
0793a61d 3227{
0492d4c5
PZ
3228 struct perf_read_data *data = info;
3229 struct perf_event *sub, *event = data->event;
cdd6c482 3230 struct perf_event_context *ctx = event->ctx;
108b02cf 3231 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
4a00c16e 3232 struct pmu *pmu = event->pmu;
621a01ea 3233
e1ac3614
PM
3234 /*
3235 * If this is a task context, we need to check whether it is
3236 * the current task context of this cpu. If not it has been
3237 * scheduled out before the smp call arrived. In that case
cdd6c482
IM
3238 * event->count would have been updated to a recent sample
3239 * when the event was scheduled out.
e1ac3614
PM
3240 */
3241 if (ctx->task && cpuctx->task_ctx != ctx)
3242 return;
3243
e625cce1 3244 raw_spin_lock(&ctx->lock);
e5d1367f 3245 if (ctx->is_active) {
542e72fc 3246 update_context_time(ctx);
e5d1367f
SE
3247 update_cgrp_time_from_event(event);
3248 }
0492d4c5 3249
cdd6c482 3250 update_event_times(event);
4a00c16e
SB
3251 if (event->state != PERF_EVENT_STATE_ACTIVE)
3252 goto unlock;
0492d4c5 3253
4a00c16e
SB
3254 if (!data->group) {
3255 pmu->read(event);
3256 data->ret = 0;
0492d4c5 3257 goto unlock;
4a00c16e
SB
3258 }
3259
3260 pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3261
3262 pmu->read(event);
0492d4c5
PZ
3263
3264 list_for_each_entry(sub, &event->sibling_list, group_entry) {
3265 update_event_times(sub);
4a00c16e
SB
3266 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3267 /*
3268 * Use sibling's PMU rather than @event's since
3269 * sibling could be on different (eg: software) PMU.
3270 */
0492d4c5 3271 sub->pmu->read(sub);
4a00c16e 3272 }
0492d4c5 3273 }
4a00c16e
SB
3274
3275 data->ret = pmu->commit_txn(pmu);
0492d4c5
PZ
3276
3277unlock:
e625cce1 3278 raw_spin_unlock(&ctx->lock);
0793a61d
TG
3279}
3280
b5e58793
PZ
3281static inline u64 perf_event_count(struct perf_event *event)
3282{
eacd3ecc
MF
3283 if (event->pmu->count)
3284 return event->pmu->count(event);
3285
3286 return __perf_event_count(event);
b5e58793
PZ
3287}
3288
ffe8690c
KX
3289/*
3290 * NMI-safe method to read a local event, that is an event that
3291 * is:
3292 * - either for the current task, or for this CPU
3293 * - does not have inherit set, for inherited task events
3294 * will not be local and we cannot read them atomically
3295 * - must not have a pmu::count method
3296 */
3297u64 perf_event_read_local(struct perf_event *event)
3298{
3299 unsigned long flags;
3300 u64 val;
3301
3302 /*
3303 * Disabling interrupts avoids all counter scheduling (context
3304 * switches, timer based rotation and IPIs).
3305 */
3306 local_irq_save(flags);
3307
3308 /* If this is a per-task event, it must be for current */
3309 WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) &&
3310 event->hw.target != current);
3311
3312 /* If this is a per-CPU event, it must be for this CPU */
3313 WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) &&
3314 event->cpu != smp_processor_id());
3315
3316 /*
3317 * It must not be an event with inherit set, we cannot read
3318 * all child counters from atomic context.
3319 */
3320 WARN_ON_ONCE(event->attr.inherit);
3321
3322 /*
3323 * It must not have a pmu::count method, those are not
3324 * NMI safe.
3325 */
3326 WARN_ON_ONCE(event->pmu->count);
3327
3328 /*
3329 * If the event is currently on this CPU, its either a per-task event,
3330 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3331 * oncpu == -1).
3332 */
3333 if (event->oncpu == smp_processor_id())
3334 event->pmu->read(event);
3335
3336 val = local64_read(&event->count);
3337 local_irq_restore(flags);
3338
3339 return val;
3340}
3341
7d88962e 3342static int perf_event_read(struct perf_event *event, bool group)
0793a61d 3343{
7d88962e
SB
3344 int ret = 0;
3345
0793a61d 3346 /*
cdd6c482
IM
3347 * If event is enabled and currently active on a CPU, update the
3348 * value in the event structure:
0793a61d 3349 */
cdd6c482 3350 if (event->state == PERF_EVENT_STATE_ACTIVE) {
0492d4c5
PZ
3351 struct perf_read_data data = {
3352 .event = event,
3353 .group = group,
7d88962e 3354 .ret = 0,
0492d4c5 3355 };
cdd6c482 3356 smp_call_function_single(event->oncpu,
0492d4c5 3357 __perf_event_read, &data, 1);
7d88962e 3358 ret = data.ret;
cdd6c482 3359 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
2b8988c9
PZ
3360 struct perf_event_context *ctx = event->ctx;
3361 unsigned long flags;
3362
e625cce1 3363 raw_spin_lock_irqsave(&ctx->lock, flags);
c530ccd9
SE
3364 /*
3365 * may read while context is not active
3366 * (e.g., thread is blocked), in that case
3367 * we cannot update context time
3368 */
e5d1367f 3369 if (ctx->is_active) {
c530ccd9 3370 update_context_time(ctx);
e5d1367f
SE
3371 update_cgrp_time_from_event(event);
3372 }
0492d4c5
PZ
3373 if (group)
3374 update_group_times(event);
3375 else
3376 update_event_times(event);
e625cce1 3377 raw_spin_unlock_irqrestore(&ctx->lock, flags);
0793a61d 3378 }
7d88962e
SB
3379
3380 return ret;
0793a61d
TG
3381}
3382
a63eaf34 3383/*
cdd6c482 3384 * Initialize the perf_event context in a task_struct:
a63eaf34 3385 */
eb184479 3386static void __perf_event_init_context(struct perf_event_context *ctx)
a63eaf34 3387{
e625cce1 3388 raw_spin_lock_init(&ctx->lock);
a63eaf34 3389 mutex_init(&ctx->mutex);
2fde4f94 3390 INIT_LIST_HEAD(&ctx->active_ctx_list);
889ff015
FW
3391 INIT_LIST_HEAD(&ctx->pinned_groups);
3392 INIT_LIST_HEAD(&ctx->flexible_groups);
a63eaf34
PM
3393 INIT_LIST_HEAD(&ctx->event_list);
3394 atomic_set(&ctx->refcount, 1);
fadfe7be 3395 INIT_DELAYED_WORK(&ctx->orphans_remove, orphans_remove_work);
eb184479
PZ
3396}
3397
3398static struct perf_event_context *
3399alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3400{
3401 struct perf_event_context *ctx;
3402
3403 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3404 if (!ctx)
3405 return NULL;
3406
3407 __perf_event_init_context(ctx);
3408 if (task) {
3409 ctx->task = task;
3410 get_task_struct(task);
0793a61d 3411 }
eb184479
PZ
3412 ctx->pmu = pmu;
3413
3414 return ctx;
a63eaf34
PM
3415}
3416
2ebd4ffb
MH
3417static struct task_struct *
3418find_lively_task_by_vpid(pid_t vpid)
3419{
3420 struct task_struct *task;
3421 int err;
0793a61d
TG
3422
3423 rcu_read_lock();
2ebd4ffb 3424 if (!vpid)
0793a61d
TG
3425 task = current;
3426 else
2ebd4ffb 3427 task = find_task_by_vpid(vpid);
0793a61d
TG
3428 if (task)
3429 get_task_struct(task);
3430 rcu_read_unlock();
3431
3432 if (!task)
3433 return ERR_PTR(-ESRCH);
3434
0793a61d 3435 /* Reuse ptrace permission checks for now. */
c93f7669
PM
3436 err = -EACCES;
3437 if (!ptrace_may_access(task, PTRACE_MODE_READ))
3438 goto errout;
3439
2ebd4ffb
MH
3440 return task;
3441errout:
3442 put_task_struct(task);
3443 return ERR_PTR(err);
3444
3445}
3446
fe4b04fa
PZ
3447/*
3448 * Returns a matching context with refcount and pincount.
3449 */
108b02cf 3450static struct perf_event_context *
4af57ef2
YZ
3451find_get_context(struct pmu *pmu, struct task_struct *task,
3452 struct perf_event *event)
0793a61d 3453{
211de6eb 3454 struct perf_event_context *ctx, *clone_ctx = NULL;
22a4f650 3455 struct perf_cpu_context *cpuctx;
4af57ef2 3456 void *task_ctx_data = NULL;
25346b93 3457 unsigned long flags;
8dc85d54 3458 int ctxn, err;
4af57ef2 3459 int cpu = event->cpu;
0793a61d 3460
22a4ec72 3461 if (!task) {
cdd6c482 3462 /* Must be root to operate on a CPU event: */
0764771d 3463 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
0793a61d
TG
3464 return ERR_PTR(-EACCES);
3465
0793a61d 3466 /*
cdd6c482 3467 * We could be clever and allow to attach a event to an
0793a61d
TG
3468 * offline CPU and activate it when the CPU comes up, but
3469 * that's for later.
3470 */
f6325e30 3471 if (!cpu_online(cpu))
0793a61d
TG
3472 return ERR_PTR(-ENODEV);
3473
108b02cf 3474 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
0793a61d 3475 ctx = &cpuctx->ctx;
c93f7669 3476 get_ctx(ctx);
fe4b04fa 3477 ++ctx->pin_count;
0793a61d 3478
0793a61d
TG
3479 return ctx;
3480 }
3481
8dc85d54
PZ
3482 err = -EINVAL;
3483 ctxn = pmu->task_ctx_nr;
3484 if (ctxn < 0)
3485 goto errout;
3486
4af57ef2
YZ
3487 if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3488 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3489 if (!task_ctx_data) {
3490 err = -ENOMEM;
3491 goto errout;
3492 }
3493 }
3494
9ed6060d 3495retry:
8dc85d54 3496 ctx = perf_lock_task_context(task, ctxn, &flags);
c93f7669 3497 if (ctx) {
211de6eb 3498 clone_ctx = unclone_ctx(ctx);
fe4b04fa 3499 ++ctx->pin_count;
4af57ef2
YZ
3500
3501 if (task_ctx_data && !ctx->task_ctx_data) {
3502 ctx->task_ctx_data = task_ctx_data;
3503 task_ctx_data = NULL;
3504 }
e625cce1 3505 raw_spin_unlock_irqrestore(&ctx->lock, flags);
211de6eb
PZ
3506
3507 if (clone_ctx)
3508 put_ctx(clone_ctx);
9137fb28 3509 } else {
eb184479 3510 ctx = alloc_perf_context(pmu, task);
c93f7669
PM
3511 err = -ENOMEM;
3512 if (!ctx)
3513 goto errout;
eb184479 3514
4af57ef2
YZ
3515 if (task_ctx_data) {
3516 ctx->task_ctx_data = task_ctx_data;
3517 task_ctx_data = NULL;
3518 }
3519
dbe08d82
ON
3520 err = 0;
3521 mutex_lock(&task->perf_event_mutex);
3522 /*
3523 * If it has already passed perf_event_exit_task().
3524 * we must see PF_EXITING, it takes this mutex too.
3525 */
3526 if (task->flags & PF_EXITING)
3527 err = -ESRCH;
3528 else if (task->perf_event_ctxp[ctxn])
3529 err = -EAGAIN;
fe4b04fa 3530 else {
9137fb28 3531 get_ctx(ctx);
fe4b04fa 3532 ++ctx->pin_count;
dbe08d82 3533 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
fe4b04fa 3534 }
dbe08d82
ON
3535 mutex_unlock(&task->perf_event_mutex);
3536
3537 if (unlikely(err)) {
9137fb28 3538 put_ctx(ctx);
dbe08d82
ON
3539
3540 if (err == -EAGAIN)
3541 goto retry;
3542 goto errout;
a63eaf34
PM
3543 }
3544 }
3545
4af57ef2 3546 kfree(task_ctx_data);
0793a61d 3547 return ctx;
c93f7669 3548
9ed6060d 3549errout:
4af57ef2 3550 kfree(task_ctx_data);
c93f7669 3551 return ERR_PTR(err);
0793a61d
TG
3552}
3553
6fb2915d 3554static void perf_event_free_filter(struct perf_event *event);
2541517c 3555static void perf_event_free_bpf_prog(struct perf_event *event);
6fb2915d 3556
cdd6c482 3557static void free_event_rcu(struct rcu_head *head)
592903cd 3558{
cdd6c482 3559 struct perf_event *event;
592903cd 3560
cdd6c482
IM
3561 event = container_of(head, struct perf_event, rcu_head);
3562 if (event->ns)
3563 put_pid_ns(event->ns);
6fb2915d 3564 perf_event_free_filter(event);
cdd6c482 3565 kfree(event);
592903cd
PZ
3566}
3567
b69cf536
PZ
3568static void ring_buffer_attach(struct perf_event *event,
3569 struct ring_buffer *rb);
925d519a 3570
4beb31f3 3571static void unaccount_event_cpu(struct perf_event *event, int cpu)
f1600952 3572{
4beb31f3
FW
3573 if (event->parent)
3574 return;
3575
4beb31f3
FW
3576 if (is_cgroup_event(event))
3577 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3578}
925d519a 3579
4beb31f3
FW
3580static void unaccount_event(struct perf_event *event)
3581{
3582 if (event->parent)
3583 return;
3584
3585 if (event->attach_state & PERF_ATTACH_TASK)
3586 static_key_slow_dec_deferred(&perf_sched_events);
3587 if (event->attr.mmap || event->attr.mmap_data)
3588 atomic_dec(&nr_mmap_events);
3589 if (event->attr.comm)
3590 atomic_dec(&nr_comm_events);
3591 if (event->attr.task)
3592 atomic_dec(&nr_task_events);
948b26b6
FW
3593 if (event->attr.freq)
3594 atomic_dec(&nr_freq_events);
45ac1403
AH
3595 if (event->attr.context_switch) {
3596 static_key_slow_dec_deferred(&perf_sched_events);
3597 atomic_dec(&nr_switch_events);
3598 }
4beb31f3
FW
3599 if (is_cgroup_event(event))
3600 static_key_slow_dec_deferred(&perf_sched_events);
3601 if (has_branch_stack(event))
3602 static_key_slow_dec_deferred(&perf_sched_events);
3603
3604 unaccount_event_cpu(event, event->cpu);
3605}
925d519a 3606
bed5b25a
AS
3607/*
3608 * The following implement mutual exclusion of events on "exclusive" pmus
3609 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
3610 * at a time, so we disallow creating events that might conflict, namely:
3611 *
3612 * 1) cpu-wide events in the presence of per-task events,
3613 * 2) per-task events in the presence of cpu-wide events,
3614 * 3) two matching events on the same context.
3615 *
3616 * The former two cases are handled in the allocation path (perf_event_alloc(),
3617 * __free_event()), the latter -- before the first perf_install_in_context().
3618 */
3619static int exclusive_event_init(struct perf_event *event)
3620{
3621 struct pmu *pmu = event->pmu;
3622
3623 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3624 return 0;
3625
3626 /*
3627 * Prevent co-existence of per-task and cpu-wide events on the
3628 * same exclusive pmu.
3629 *
3630 * Negative pmu::exclusive_cnt means there are cpu-wide
3631 * events on this "exclusive" pmu, positive means there are
3632 * per-task events.
3633 *
3634 * Since this is called in perf_event_alloc() path, event::ctx
3635 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
3636 * to mean "per-task event", because unlike other attach states it
3637 * never gets cleared.
3638 */
3639 if (event->attach_state & PERF_ATTACH_TASK) {
3640 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
3641 return -EBUSY;
3642 } else {
3643 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
3644 return -EBUSY;
3645 }
3646
3647 return 0;
3648}
3649
3650static void exclusive_event_destroy(struct perf_event *event)
3651{
3652 struct pmu *pmu = event->pmu;
3653
3654 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3655 return;
3656
3657 /* see comment in exclusive_event_init() */
3658 if (event->attach_state & PERF_ATTACH_TASK)
3659 atomic_dec(&pmu->exclusive_cnt);
3660 else
3661 atomic_inc(&pmu->exclusive_cnt);
3662}
3663
3664static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
3665{
3666 if ((e1->pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) &&
3667 (e1->cpu == e2->cpu ||
3668 e1->cpu == -1 ||
3669 e2->cpu == -1))
3670 return true;
3671 return false;
3672}
3673
3674/* Called under the same ctx::mutex as perf_install_in_context() */
3675static bool exclusive_event_installable(struct perf_event *event,
3676 struct perf_event_context *ctx)
3677{
3678 struct perf_event *iter_event;
3679 struct pmu *pmu = event->pmu;
3680
3681 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3682 return true;
3683
3684 list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
3685 if (exclusive_event_match(iter_event, event))
3686 return false;
3687 }
3688
3689 return true;
3690}
3691
766d6c07
FW
3692static void __free_event(struct perf_event *event)
3693{
cdd6c482 3694 if (!event->parent) {
927c7a9e
FW
3695 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3696 put_callchain_buffers();
f344011c 3697 }
9ee318a7 3698
dead9f29
AS
3699 perf_event_free_bpf_prog(event);
3700
766d6c07
FW
3701 if (event->destroy)
3702 event->destroy(event);
3703
3704 if (event->ctx)
3705 put_ctx(event->ctx);
3706
bed5b25a
AS
3707 if (event->pmu) {
3708 exclusive_event_destroy(event);
c464c76e 3709 module_put(event->pmu->module);
bed5b25a 3710 }
c464c76e 3711
766d6c07
FW
3712 call_rcu(&event->rcu_head, free_event_rcu);
3713}
683ede43
PZ
3714
3715static void _free_event(struct perf_event *event)
f1600952 3716{
e360adbe 3717 irq_work_sync(&event->pending);
925d519a 3718
4beb31f3 3719 unaccount_event(event);
9ee318a7 3720
76369139 3721 if (event->rb) {
9bb5d40c
PZ
3722 /*
3723 * Can happen when we close an event with re-directed output.
3724 *
3725 * Since we have a 0 refcount, perf_mmap_close() will skip
3726 * over us; possibly making our ring_buffer_put() the last.
3727 */
3728 mutex_lock(&event->mmap_mutex);
b69cf536 3729 ring_buffer_attach(event, NULL);
9bb5d40c 3730 mutex_unlock(&event->mmap_mutex);
a4be7c27
PZ
3731 }
3732
e5d1367f
SE
3733 if (is_cgroup_event(event))
3734 perf_detach_cgroup(event);
3735
766d6c07 3736 __free_event(event);
f1600952
PZ
3737}
3738
683ede43
PZ
3739/*
3740 * Used to free events which have a known refcount of 1, such as in error paths
3741 * where the event isn't exposed yet and inherited events.
3742 */
3743static void free_event(struct perf_event *event)
0793a61d 3744{
683ede43
PZ
3745 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
3746 "unexpected event refcount: %ld; ptr=%p\n",
3747 atomic_long_read(&event->refcount), event)) {
3748 /* leak to avoid use-after-free */
3749 return;
3750 }
0793a61d 3751
683ede43 3752 _free_event(event);
0793a61d
TG
3753}
3754
a66a3052 3755/*
f8697762 3756 * Remove user event from the owner task.
a66a3052 3757 */
f8697762 3758static void perf_remove_from_owner(struct perf_event *event)
fb0459d7 3759{
8882135b 3760 struct task_struct *owner;
fb0459d7 3761
8882135b
PZ
3762 rcu_read_lock();
3763 owner = ACCESS_ONCE(event->owner);
3764 /*
3765 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
3766 * !owner it means the list deletion is complete and we can indeed
3767 * free this event, otherwise we need to serialize on
3768 * owner->perf_event_mutex.
3769 */
3770 smp_read_barrier_depends();
3771 if (owner) {
3772 /*
3773 * Since delayed_put_task_struct() also drops the last
3774 * task reference we can safely take a new reference
3775 * while holding the rcu_read_lock().
3776 */
3777 get_task_struct(owner);
3778 }
3779 rcu_read_unlock();
3780
3781 if (owner) {
f63a8daa
PZ
3782 /*
3783 * If we're here through perf_event_exit_task() we're already
3784 * holding ctx->mutex which would be an inversion wrt. the
3785 * normal lock order.
3786 *
3787 * However we can safely take this lock because its the child
3788 * ctx->mutex.
3789 */
3790 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
3791
8882135b
PZ
3792 /*
3793 * We have to re-check the event->owner field, if it is cleared
3794 * we raced with perf_event_exit_task(), acquiring the mutex
3795 * ensured they're done, and we can proceed with freeing the
3796 * event.
3797 */
3798 if (event->owner)
3799 list_del_init(&event->owner_entry);
3800 mutex_unlock(&owner->perf_event_mutex);
3801 put_task_struct(owner);
3802 }
f8697762
JO
3803}
3804
f8697762
JO
3805static void put_event(struct perf_event *event)
3806{
a83fe28e 3807 struct perf_event_context *ctx;
f8697762
JO
3808
3809 if (!atomic_long_dec_and_test(&event->refcount))
3810 return;
3811
3812 if (!is_kernel_event(event))
3813 perf_remove_from_owner(event);
8882135b 3814
683ede43
PZ
3815 /*
3816 * There are two ways this annotation is useful:
3817 *
3818 * 1) there is a lock recursion from perf_event_exit_task
3819 * see the comment there.
3820 *
3821 * 2) there is a lock-inversion with mmap_sem through
b15f495b 3822 * perf_read_group(), which takes faults while
683ede43
PZ
3823 * holding ctx->mutex, however this is called after
3824 * the last filedesc died, so there is no possibility
3825 * to trigger the AB-BA case.
3826 */
a83fe28e
PZ
3827 ctx = perf_event_ctx_lock_nested(event, SINGLE_DEPTH_NESTING);
3828 WARN_ON_ONCE(ctx->parent_ctx);
683ede43 3829 perf_remove_from_context(event, true);
d415a7f1 3830 perf_event_ctx_unlock(event, ctx);
683ede43
PZ
3831
3832 _free_event(event);
a6fa941d
AV
3833}
3834
683ede43
PZ
3835int perf_event_release_kernel(struct perf_event *event)
3836{
3837 put_event(event);
3838 return 0;
3839}
3840EXPORT_SYMBOL_GPL(perf_event_release_kernel);
3841
8b10c5e2
PZ
3842/*
3843 * Called when the last reference to the file is gone.
3844 */
a6fa941d
AV
3845static int perf_release(struct inode *inode, struct file *file)
3846{
3847 put_event(file->private_data);
3848 return 0;
fb0459d7 3849}
fb0459d7 3850
fadfe7be
JO
3851/*
3852 * Remove all orphanes events from the context.
3853 */
3854static void orphans_remove_work(struct work_struct *work)
3855{
3856 struct perf_event_context *ctx;
3857 struct perf_event *event, *tmp;
3858
3859 ctx = container_of(work, struct perf_event_context,
3860 orphans_remove.work);
3861
3862 mutex_lock(&ctx->mutex);
3863 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) {
3864 struct perf_event *parent_event = event->parent;
3865
3866 if (!is_orphaned_child(event))
3867 continue;
3868
3869 perf_remove_from_context(event, true);
3870
3871 mutex_lock(&parent_event->child_mutex);
3872 list_del_init(&event->child_list);
3873 mutex_unlock(&parent_event->child_mutex);
3874
3875 free_event(event);
3876 put_event(parent_event);
3877 }
3878
3879 raw_spin_lock_irq(&ctx->lock);
3880 ctx->orphans_remove_sched = false;
3881 raw_spin_unlock_irq(&ctx->lock);
3882 mutex_unlock(&ctx->mutex);
3883
3884 put_ctx(ctx);
3885}
3886
59ed446f 3887u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
e53c0994 3888{
cdd6c482 3889 struct perf_event *child;
e53c0994
PZ
3890 u64 total = 0;
3891
59ed446f
PZ
3892 *enabled = 0;
3893 *running = 0;
3894
6f10581a 3895 mutex_lock(&event->child_mutex);
01add3ea 3896
7d88962e 3897 (void)perf_event_read(event, false);
01add3ea
SB
3898 total += perf_event_count(event);
3899
59ed446f
PZ
3900 *enabled += event->total_time_enabled +
3901 atomic64_read(&event->child_total_time_enabled);
3902 *running += event->total_time_running +
3903 atomic64_read(&event->child_total_time_running);
3904
3905 list_for_each_entry(child, &event->child_list, child_list) {
7d88962e 3906 (void)perf_event_read(child, false);
01add3ea 3907 total += perf_event_count(child);
59ed446f
PZ
3908 *enabled += child->total_time_enabled;
3909 *running += child->total_time_running;
3910 }
6f10581a 3911 mutex_unlock(&event->child_mutex);
e53c0994
PZ
3912
3913 return total;
3914}
fb0459d7 3915EXPORT_SYMBOL_GPL(perf_event_read_value);
e53c0994 3916
7d88962e 3917static int __perf_read_group_add(struct perf_event *leader,
fa8c2693 3918 u64 read_format, u64 *values)
3dab77fb 3919{
fa8c2693
PZ
3920 struct perf_event *sub;
3921 int n = 1; /* skip @nr */
7d88962e 3922 int ret;
f63a8daa 3923
7d88962e
SB
3924 ret = perf_event_read(leader, true);
3925 if (ret)
3926 return ret;
abf4868b 3927
fa8c2693
PZ
3928 /*
3929 * Since we co-schedule groups, {enabled,running} times of siblings
3930 * will be identical to those of the leader, so we only publish one
3931 * set.
3932 */
3933 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3934 values[n++] += leader->total_time_enabled +
3935 atomic64_read(&leader->child_total_time_enabled);
3936 }
3dab77fb 3937
fa8c2693
PZ
3938 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3939 values[n++] += leader->total_time_running +
3940 atomic64_read(&leader->child_total_time_running);
3941 }
3942
3943 /*
3944 * Write {count,id} tuples for every sibling.
3945 */
3946 values[n++] += perf_event_count(leader);
abf4868b
PZ
3947 if (read_format & PERF_FORMAT_ID)
3948 values[n++] = primary_event_id(leader);
3dab77fb 3949
fa8c2693
PZ
3950 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3951 values[n++] += perf_event_count(sub);
3952 if (read_format & PERF_FORMAT_ID)
3953 values[n++] = primary_event_id(sub);
3954 }
7d88962e
SB
3955
3956 return 0;
fa8c2693 3957}
3dab77fb 3958
fa8c2693
PZ
3959static int perf_read_group(struct perf_event *event,
3960 u64 read_format, char __user *buf)
3961{
3962 struct perf_event *leader = event->group_leader, *child;
3963 struct perf_event_context *ctx = leader->ctx;
7d88962e 3964 int ret;
fa8c2693 3965 u64 *values;
3dab77fb 3966
fa8c2693 3967 lockdep_assert_held(&ctx->mutex);
3dab77fb 3968
fa8c2693
PZ
3969 values = kzalloc(event->read_size, GFP_KERNEL);
3970 if (!values)
3971 return -ENOMEM;
3dab77fb 3972
fa8c2693
PZ
3973 values[0] = 1 + leader->nr_siblings;
3974
3975 /*
3976 * By locking the child_mutex of the leader we effectively
3977 * lock the child list of all siblings.. XXX explain how.
3978 */
3979 mutex_lock(&leader->child_mutex);
abf4868b 3980
7d88962e
SB
3981 ret = __perf_read_group_add(leader, read_format, values);
3982 if (ret)
3983 goto unlock;
3984
3985 list_for_each_entry(child, &leader->child_list, child_list) {
3986 ret = __perf_read_group_add(child, read_format, values);
3987 if (ret)
3988 goto unlock;
3989 }
abf4868b 3990
fa8c2693 3991 mutex_unlock(&leader->child_mutex);
abf4868b 3992
7d88962e 3993 ret = event->read_size;
fa8c2693
PZ
3994 if (copy_to_user(buf, values, event->read_size))
3995 ret = -EFAULT;
7d88962e 3996 goto out;
fa8c2693 3997
7d88962e
SB
3998unlock:
3999 mutex_unlock(&leader->child_mutex);
4000out:
fa8c2693 4001 kfree(values);
abf4868b 4002 return ret;
3dab77fb
PZ
4003}
4004
b15f495b 4005static int perf_read_one(struct perf_event *event,
3dab77fb
PZ
4006 u64 read_format, char __user *buf)
4007{
59ed446f 4008 u64 enabled, running;
3dab77fb
PZ
4009 u64 values[4];
4010 int n = 0;
4011
59ed446f
PZ
4012 values[n++] = perf_event_read_value(event, &enabled, &running);
4013 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4014 values[n++] = enabled;
4015 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4016 values[n++] = running;
3dab77fb 4017 if (read_format & PERF_FORMAT_ID)
cdd6c482 4018 values[n++] = primary_event_id(event);
3dab77fb
PZ
4019
4020 if (copy_to_user(buf, values, n * sizeof(u64)))
4021 return -EFAULT;
4022
4023 return n * sizeof(u64);
4024}
4025
dc633982
JO
4026static bool is_event_hup(struct perf_event *event)
4027{
4028 bool no_children;
4029
4030 if (event->state != PERF_EVENT_STATE_EXIT)
4031 return false;
4032
4033 mutex_lock(&event->child_mutex);
4034 no_children = list_empty(&event->child_list);
4035 mutex_unlock(&event->child_mutex);
4036 return no_children;
4037}
4038
0793a61d 4039/*
cdd6c482 4040 * Read the performance event - simple non blocking version for now
0793a61d
TG
4041 */
4042static ssize_t
b15f495b 4043__perf_read(struct perf_event *event, char __user *buf, size_t count)
0793a61d 4044{
cdd6c482 4045 u64 read_format = event->attr.read_format;
3dab77fb 4046 int ret;
0793a61d 4047
3b6f9e5c 4048 /*
cdd6c482 4049 * Return end-of-file for a read on a event that is in
3b6f9e5c
PM
4050 * error state (i.e. because it was pinned but it couldn't be
4051 * scheduled on to the CPU at some point).
4052 */
cdd6c482 4053 if (event->state == PERF_EVENT_STATE_ERROR)
3b6f9e5c
PM
4054 return 0;
4055
c320c7b7 4056 if (count < event->read_size)
3dab77fb
PZ
4057 return -ENOSPC;
4058
cdd6c482 4059 WARN_ON_ONCE(event->ctx->parent_ctx);
3dab77fb 4060 if (read_format & PERF_FORMAT_GROUP)
b15f495b 4061 ret = perf_read_group(event, read_format, buf);
3dab77fb 4062 else
b15f495b 4063 ret = perf_read_one(event, read_format, buf);
0793a61d 4064
3dab77fb 4065 return ret;
0793a61d
TG
4066}
4067
0793a61d
TG
4068static ssize_t
4069perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4070{
cdd6c482 4071 struct perf_event *event = file->private_data;
f63a8daa
PZ
4072 struct perf_event_context *ctx;
4073 int ret;
0793a61d 4074
f63a8daa 4075 ctx = perf_event_ctx_lock(event);
b15f495b 4076 ret = __perf_read(event, buf, count);
f63a8daa
PZ
4077 perf_event_ctx_unlock(event, ctx);
4078
4079 return ret;
0793a61d
TG
4080}
4081
4082static unsigned int perf_poll(struct file *file, poll_table *wait)
4083{
cdd6c482 4084 struct perf_event *event = file->private_data;
76369139 4085 struct ring_buffer *rb;
61b67684 4086 unsigned int events = POLLHUP;
c7138f37 4087
e708d7ad 4088 poll_wait(file, &event->waitq, wait);
179033b3 4089
dc633982 4090 if (is_event_hup(event))
179033b3 4091 return events;
c7138f37 4092
10c6db11 4093 /*
9bb5d40c
PZ
4094 * Pin the event->rb by taking event->mmap_mutex; otherwise
4095 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
10c6db11
PZ
4096 */
4097 mutex_lock(&event->mmap_mutex);
9bb5d40c
PZ
4098 rb = event->rb;
4099 if (rb)
76369139 4100 events = atomic_xchg(&rb->poll, 0);
10c6db11 4101 mutex_unlock(&event->mmap_mutex);
0793a61d
TG
4102 return events;
4103}
4104
f63a8daa 4105static void _perf_event_reset(struct perf_event *event)
6de6a7b9 4106{
7d88962e 4107 (void)perf_event_read(event, false);
e7850595 4108 local64_set(&event->count, 0);
cdd6c482 4109 perf_event_update_userpage(event);
3df5edad
PZ
4110}
4111
c93f7669 4112/*
cdd6c482
IM
4113 * Holding the top-level event's child_mutex means that any
4114 * descendant process that has inherited this event will block
4115 * in sync_child_event if it goes to exit, thus satisfying the
4116 * task existence requirements of perf_event_enable/disable.
c93f7669 4117 */
cdd6c482
IM
4118static void perf_event_for_each_child(struct perf_event *event,
4119 void (*func)(struct perf_event *))
3df5edad 4120{
cdd6c482 4121 struct perf_event *child;
3df5edad 4122
cdd6c482 4123 WARN_ON_ONCE(event->ctx->parent_ctx);
f63a8daa 4124
cdd6c482
IM
4125 mutex_lock(&event->child_mutex);
4126 func(event);
4127 list_for_each_entry(child, &event->child_list, child_list)
3df5edad 4128 func(child);
cdd6c482 4129 mutex_unlock(&event->child_mutex);
3df5edad
PZ
4130}
4131
cdd6c482
IM
4132static void perf_event_for_each(struct perf_event *event,
4133 void (*func)(struct perf_event *))
3df5edad 4134{
cdd6c482
IM
4135 struct perf_event_context *ctx = event->ctx;
4136 struct perf_event *sibling;
3df5edad 4137
f63a8daa
PZ
4138 lockdep_assert_held(&ctx->mutex);
4139
cdd6c482 4140 event = event->group_leader;
75f937f2 4141
cdd6c482 4142 perf_event_for_each_child(event, func);
cdd6c482 4143 list_for_each_entry(sibling, &event->sibling_list, group_entry)
724b6daa 4144 perf_event_for_each_child(sibling, func);
6de6a7b9
PZ
4145}
4146
c7999c6f
PZ
4147struct period_event {
4148 struct perf_event *event;
08247e31 4149 u64 value;
c7999c6f 4150};
08247e31 4151
c7999c6f
PZ
4152static int __perf_event_period(void *info)
4153{
4154 struct period_event *pe = info;
4155 struct perf_event *event = pe->event;
4156 struct perf_event_context *ctx = event->ctx;
4157 u64 value = pe->value;
4158 bool active;
08247e31 4159
c7999c6f 4160 raw_spin_lock(&ctx->lock);
cdd6c482 4161 if (event->attr.freq) {
cdd6c482 4162 event->attr.sample_freq = value;
08247e31 4163 } else {
cdd6c482
IM
4164 event->attr.sample_period = value;
4165 event->hw.sample_period = value;
08247e31 4166 }
bad7192b
PZ
4167
4168 active = (event->state == PERF_EVENT_STATE_ACTIVE);
4169 if (active) {
4170 perf_pmu_disable(ctx->pmu);
4171 event->pmu->stop(event, PERF_EF_UPDATE);
4172 }
4173
4174 local64_set(&event->hw.period_left, 0);
4175
4176 if (active) {
4177 event->pmu->start(event, PERF_EF_RELOAD);
4178 perf_pmu_enable(ctx->pmu);
4179 }
c7999c6f 4180 raw_spin_unlock(&ctx->lock);
bad7192b 4181
c7999c6f
PZ
4182 return 0;
4183}
4184
4185static int perf_event_period(struct perf_event *event, u64 __user *arg)
4186{
4187 struct period_event pe = { .event = event, };
4188 struct perf_event_context *ctx = event->ctx;
4189 struct task_struct *task;
4190 u64 value;
4191
4192 if (!is_sampling_event(event))
4193 return -EINVAL;
4194
4195 if (copy_from_user(&value, arg, sizeof(value)))
4196 return -EFAULT;
4197
4198 if (!value)
4199 return -EINVAL;
4200
4201 if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4202 return -EINVAL;
4203
4204 task = ctx->task;
4205 pe.value = value;
4206
4207 if (!task) {
4208 cpu_function_call(event->cpu, __perf_event_period, &pe);
4209 return 0;
4210 }
4211
4212retry:
4213 if (!task_function_call(task, __perf_event_period, &pe))
4214 return 0;
4215
4216 raw_spin_lock_irq(&ctx->lock);
4217 if (ctx->is_active) {
4218 raw_spin_unlock_irq(&ctx->lock);
4219 task = ctx->task;
4220 goto retry;
4221 }
4222
642c2d67
PZ
4223 if (event->attr.freq) {
4224 event->attr.sample_freq = value;
4225 } else {
4226 event->attr.sample_period = value;
4227 event->hw.sample_period = value;
4228 }
4229
4230 local64_set(&event->hw.period_left, 0);
e625cce1 4231 raw_spin_unlock_irq(&ctx->lock);
08247e31 4232
c7999c6f 4233 return 0;
08247e31
PZ
4234}
4235
ac9721f3
PZ
4236static const struct file_operations perf_fops;
4237
2903ff01 4238static inline int perf_fget_light(int fd, struct fd *p)
ac9721f3 4239{
2903ff01
AV
4240 struct fd f = fdget(fd);
4241 if (!f.file)
4242 return -EBADF;
ac9721f3 4243
2903ff01
AV
4244 if (f.file->f_op != &perf_fops) {
4245 fdput(f);
4246 return -EBADF;
ac9721f3 4247 }
2903ff01
AV
4248 *p = f;
4249 return 0;
ac9721f3
PZ
4250}
4251
4252static int perf_event_set_output(struct perf_event *event,
4253 struct perf_event *output_event);
6fb2915d 4254static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2541517c 4255static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
a4be7c27 4256
f63a8daa 4257static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
d859e29f 4258{
cdd6c482 4259 void (*func)(struct perf_event *);
3df5edad 4260 u32 flags = arg;
d859e29f
PM
4261
4262 switch (cmd) {
cdd6c482 4263 case PERF_EVENT_IOC_ENABLE:
f63a8daa 4264 func = _perf_event_enable;
d859e29f 4265 break;
cdd6c482 4266 case PERF_EVENT_IOC_DISABLE:
f63a8daa 4267 func = _perf_event_disable;
79f14641 4268 break;
cdd6c482 4269 case PERF_EVENT_IOC_RESET:
f63a8daa 4270 func = _perf_event_reset;
6de6a7b9 4271 break;
3df5edad 4272
cdd6c482 4273 case PERF_EVENT_IOC_REFRESH:
f63a8daa 4274 return _perf_event_refresh(event, arg);
08247e31 4275
cdd6c482
IM
4276 case PERF_EVENT_IOC_PERIOD:
4277 return perf_event_period(event, (u64 __user *)arg);
08247e31 4278
cf4957f1
JO
4279 case PERF_EVENT_IOC_ID:
4280 {
4281 u64 id = primary_event_id(event);
4282
4283 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4284 return -EFAULT;
4285 return 0;
4286 }
4287
cdd6c482 4288 case PERF_EVENT_IOC_SET_OUTPUT:
ac9721f3 4289 {
ac9721f3 4290 int ret;
ac9721f3 4291 if (arg != -1) {
2903ff01
AV
4292 struct perf_event *output_event;
4293 struct fd output;
4294 ret = perf_fget_light(arg, &output);
4295 if (ret)
4296 return ret;
4297 output_event = output.file->private_data;
4298 ret = perf_event_set_output(event, output_event);
4299 fdput(output);
4300 } else {
4301 ret = perf_event_set_output(event, NULL);
ac9721f3 4302 }
ac9721f3
PZ
4303 return ret;
4304 }
a4be7c27 4305
6fb2915d
LZ
4306 case PERF_EVENT_IOC_SET_FILTER:
4307 return perf_event_set_filter(event, (void __user *)arg);
4308
2541517c
AS
4309 case PERF_EVENT_IOC_SET_BPF:
4310 return perf_event_set_bpf_prog(event, arg);
4311
d859e29f 4312 default:
3df5edad 4313 return -ENOTTY;
d859e29f 4314 }
3df5edad
PZ
4315
4316 if (flags & PERF_IOC_FLAG_GROUP)
cdd6c482 4317 perf_event_for_each(event, func);
3df5edad 4318 else
cdd6c482 4319 perf_event_for_each_child(event, func);
3df5edad
PZ
4320
4321 return 0;
d859e29f
PM
4322}
4323
f63a8daa
PZ
4324static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4325{
4326 struct perf_event *event = file->private_data;
4327 struct perf_event_context *ctx;
4328 long ret;
4329
4330 ctx = perf_event_ctx_lock(event);
4331 ret = _perf_ioctl(event, cmd, arg);
4332 perf_event_ctx_unlock(event, ctx);
4333
4334 return ret;
4335}
4336
b3f20785
PM
4337#ifdef CONFIG_COMPAT
4338static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4339 unsigned long arg)
4340{
4341 switch (_IOC_NR(cmd)) {
4342 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4343 case _IOC_NR(PERF_EVENT_IOC_ID):
4344 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4345 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4346 cmd &= ~IOCSIZE_MASK;
4347 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4348 }
4349 break;
4350 }
4351 return perf_ioctl(file, cmd, arg);
4352}
4353#else
4354# define perf_compat_ioctl NULL
4355#endif
4356
cdd6c482 4357int perf_event_task_enable(void)
771d7cde 4358{
f63a8daa 4359 struct perf_event_context *ctx;
cdd6c482 4360 struct perf_event *event;
771d7cde 4361
cdd6c482 4362 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
4363 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4364 ctx = perf_event_ctx_lock(event);
4365 perf_event_for_each_child(event, _perf_event_enable);
4366 perf_event_ctx_unlock(event, ctx);
4367 }
cdd6c482 4368 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
4369
4370 return 0;
4371}
4372
cdd6c482 4373int perf_event_task_disable(void)
771d7cde 4374{
f63a8daa 4375 struct perf_event_context *ctx;
cdd6c482 4376 struct perf_event *event;
771d7cde 4377
cdd6c482 4378 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
4379 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4380 ctx = perf_event_ctx_lock(event);
4381 perf_event_for_each_child(event, _perf_event_disable);
4382 perf_event_ctx_unlock(event, ctx);
4383 }
cdd6c482 4384 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
4385
4386 return 0;
4387}
4388
cdd6c482 4389static int perf_event_index(struct perf_event *event)
194002b2 4390{
a4eaf7f1
PZ
4391 if (event->hw.state & PERF_HES_STOPPED)
4392 return 0;
4393
cdd6c482 4394 if (event->state != PERF_EVENT_STATE_ACTIVE)
194002b2
PZ
4395 return 0;
4396
35edc2a5 4397 return event->pmu->event_idx(event);
194002b2
PZ
4398}
4399
c4794295 4400static void calc_timer_values(struct perf_event *event,
e3f3541c 4401 u64 *now,
7f310a5d
EM
4402 u64 *enabled,
4403 u64 *running)
c4794295 4404{
e3f3541c 4405 u64 ctx_time;
c4794295 4406
e3f3541c
PZ
4407 *now = perf_clock();
4408 ctx_time = event->shadow_ctx_time + *now;
c4794295
EM
4409 *enabled = ctx_time - event->tstamp_enabled;
4410 *running = ctx_time - event->tstamp_running;
4411}
4412
fa731587
PZ
4413static void perf_event_init_userpage(struct perf_event *event)
4414{
4415 struct perf_event_mmap_page *userpg;
4416 struct ring_buffer *rb;
4417
4418 rcu_read_lock();
4419 rb = rcu_dereference(event->rb);
4420 if (!rb)
4421 goto unlock;
4422
4423 userpg = rb->user_page;
4424
4425 /* Allow new userspace to detect that bit 0 is deprecated */
4426 userpg->cap_bit0_is_deprecated = 1;
4427 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
e8c6deac
AS
4428 userpg->data_offset = PAGE_SIZE;
4429 userpg->data_size = perf_data_size(rb);
fa731587
PZ
4430
4431unlock:
4432 rcu_read_unlock();
4433}
4434
c1317ec2
AL
4435void __weak arch_perf_update_userpage(
4436 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
e3f3541c
PZ
4437{
4438}
4439
38ff667b
PZ
4440/*
4441 * Callers need to ensure there can be no nesting of this function, otherwise
4442 * the seqlock logic goes bad. We can not serialize this because the arch
4443 * code calls this from NMI context.
4444 */
cdd6c482 4445void perf_event_update_userpage(struct perf_event *event)
37d81828 4446{
cdd6c482 4447 struct perf_event_mmap_page *userpg;
76369139 4448 struct ring_buffer *rb;
e3f3541c 4449 u64 enabled, running, now;
38ff667b
PZ
4450
4451 rcu_read_lock();
5ec4c599
PZ
4452 rb = rcu_dereference(event->rb);
4453 if (!rb)
4454 goto unlock;
4455
0d641208
EM
4456 /*
4457 * compute total_time_enabled, total_time_running
4458 * based on snapshot values taken when the event
4459 * was last scheduled in.
4460 *
4461 * we cannot simply called update_context_time()
4462 * because of locking issue as we can be called in
4463 * NMI context
4464 */
e3f3541c 4465 calc_timer_values(event, &now, &enabled, &running);
38ff667b 4466
76369139 4467 userpg = rb->user_page;
7b732a75
PZ
4468 /*
4469 * Disable preemption so as to not let the corresponding user-space
4470 * spin too long if we get preempted.
4471 */
4472 preempt_disable();
37d81828 4473 ++userpg->lock;
92f22a38 4474 barrier();
cdd6c482 4475 userpg->index = perf_event_index(event);
b5e58793 4476 userpg->offset = perf_event_count(event);
365a4038 4477 if (userpg->index)
e7850595 4478 userpg->offset -= local64_read(&event->hw.prev_count);
7b732a75 4479
0d641208 4480 userpg->time_enabled = enabled +
cdd6c482 4481 atomic64_read(&event->child_total_time_enabled);
7f8b4e4e 4482
0d641208 4483 userpg->time_running = running +
cdd6c482 4484 atomic64_read(&event->child_total_time_running);
7f8b4e4e 4485
c1317ec2 4486 arch_perf_update_userpage(event, userpg, now);
e3f3541c 4487
92f22a38 4488 barrier();
37d81828 4489 ++userpg->lock;
7b732a75 4490 preempt_enable();
38ff667b 4491unlock:
7b732a75 4492 rcu_read_unlock();
37d81828
PM
4493}
4494
906010b2
PZ
4495static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
4496{
4497 struct perf_event *event = vma->vm_file->private_data;
76369139 4498 struct ring_buffer *rb;
906010b2
PZ
4499 int ret = VM_FAULT_SIGBUS;
4500
4501 if (vmf->flags & FAULT_FLAG_MKWRITE) {
4502 if (vmf->pgoff == 0)
4503 ret = 0;
4504 return ret;
4505 }
4506
4507 rcu_read_lock();
76369139
FW
4508 rb = rcu_dereference(event->rb);
4509 if (!rb)
906010b2
PZ
4510 goto unlock;
4511
4512 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4513 goto unlock;
4514
76369139 4515 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
906010b2
PZ
4516 if (!vmf->page)
4517 goto unlock;
4518
4519 get_page(vmf->page);
4520 vmf->page->mapping = vma->vm_file->f_mapping;
4521 vmf->page->index = vmf->pgoff;
4522
4523 ret = 0;
4524unlock:
4525 rcu_read_unlock();
4526
4527 return ret;
4528}
4529
10c6db11
PZ
4530static void ring_buffer_attach(struct perf_event *event,
4531 struct ring_buffer *rb)
4532{
b69cf536 4533 struct ring_buffer *old_rb = NULL;
10c6db11
PZ
4534 unsigned long flags;
4535
b69cf536
PZ
4536 if (event->rb) {
4537 /*
4538 * Should be impossible, we set this when removing
4539 * event->rb_entry and wait/clear when adding event->rb_entry.
4540 */
4541 WARN_ON_ONCE(event->rcu_pending);
10c6db11 4542
b69cf536 4543 old_rb = event->rb;
b69cf536
PZ
4544 spin_lock_irqsave(&old_rb->event_lock, flags);
4545 list_del_rcu(&event->rb_entry);
4546 spin_unlock_irqrestore(&old_rb->event_lock, flags);
10c6db11 4547
2f993cf0
ON
4548 event->rcu_batches = get_state_synchronize_rcu();
4549 event->rcu_pending = 1;
b69cf536 4550 }
10c6db11 4551
b69cf536 4552 if (rb) {
2f993cf0
ON
4553 if (event->rcu_pending) {
4554 cond_synchronize_rcu(event->rcu_batches);
4555 event->rcu_pending = 0;
4556 }
4557
b69cf536
PZ
4558 spin_lock_irqsave(&rb->event_lock, flags);
4559 list_add_rcu(&event->rb_entry, &rb->event_list);
4560 spin_unlock_irqrestore(&rb->event_lock, flags);
4561 }
4562
4563 rcu_assign_pointer(event->rb, rb);
4564
4565 if (old_rb) {
4566 ring_buffer_put(old_rb);
4567 /*
4568 * Since we detached before setting the new rb, so that we
4569 * could attach the new rb, we could have missed a wakeup.
4570 * Provide it now.
4571 */
4572 wake_up_all(&event->waitq);
4573 }
10c6db11
PZ
4574}
4575
4576static void ring_buffer_wakeup(struct perf_event *event)
4577{
4578 struct ring_buffer *rb;
4579
4580 rcu_read_lock();
4581 rb = rcu_dereference(event->rb);
9bb5d40c
PZ
4582 if (rb) {
4583 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
4584 wake_up_all(&event->waitq);
4585 }
10c6db11
PZ
4586 rcu_read_unlock();
4587}
4588
fdc26706 4589struct ring_buffer *ring_buffer_get(struct perf_event *event)
7b732a75 4590{
76369139 4591 struct ring_buffer *rb;
7b732a75 4592
ac9721f3 4593 rcu_read_lock();
76369139
FW
4594 rb = rcu_dereference(event->rb);
4595 if (rb) {
4596 if (!atomic_inc_not_zero(&rb->refcount))
4597 rb = NULL;
ac9721f3
PZ
4598 }
4599 rcu_read_unlock();
4600
76369139 4601 return rb;
ac9721f3
PZ
4602}
4603
fdc26706 4604void ring_buffer_put(struct ring_buffer *rb)
ac9721f3 4605{
76369139 4606 if (!atomic_dec_and_test(&rb->refcount))
ac9721f3 4607 return;
7b732a75 4608
9bb5d40c 4609 WARN_ON_ONCE(!list_empty(&rb->event_list));
10c6db11 4610
76369139 4611 call_rcu(&rb->rcu_head, rb_free_rcu);
7b732a75
PZ
4612}
4613
4614static void perf_mmap_open(struct vm_area_struct *vma)
4615{
cdd6c482 4616 struct perf_event *event = vma->vm_file->private_data;
7b732a75 4617
cdd6c482 4618 atomic_inc(&event->mmap_count);
9bb5d40c 4619 atomic_inc(&event->rb->mmap_count);
1e0fb9ec 4620
45bfb2e5
PZ
4621 if (vma->vm_pgoff)
4622 atomic_inc(&event->rb->aux_mmap_count);
4623
1e0fb9ec
AL
4624 if (event->pmu->event_mapped)
4625 event->pmu->event_mapped(event);
7b732a75
PZ
4626}
4627
9bb5d40c
PZ
4628/*
4629 * A buffer can be mmap()ed multiple times; either directly through the same
4630 * event, or through other events by use of perf_event_set_output().
4631 *
4632 * In order to undo the VM accounting done by perf_mmap() we need to destroy
4633 * the buffer here, where we still have a VM context. This means we need
4634 * to detach all events redirecting to us.
4635 */
7b732a75
PZ
4636static void perf_mmap_close(struct vm_area_struct *vma)
4637{
cdd6c482 4638 struct perf_event *event = vma->vm_file->private_data;
7b732a75 4639
b69cf536 4640 struct ring_buffer *rb = ring_buffer_get(event);
9bb5d40c
PZ
4641 struct user_struct *mmap_user = rb->mmap_user;
4642 int mmap_locked = rb->mmap_locked;
4643 unsigned long size = perf_data_size(rb);
789f90fc 4644
1e0fb9ec
AL
4645 if (event->pmu->event_unmapped)
4646 event->pmu->event_unmapped(event);
4647
45bfb2e5
PZ
4648 /*
4649 * rb->aux_mmap_count will always drop before rb->mmap_count and
4650 * event->mmap_count, so it is ok to use event->mmap_mutex to
4651 * serialize with perf_mmap here.
4652 */
4653 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
4654 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
4655 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
4656 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
4657
4658 rb_free_aux(rb);
4659 mutex_unlock(&event->mmap_mutex);
4660 }
4661
9bb5d40c
PZ
4662 atomic_dec(&rb->mmap_count);
4663
4664 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
b69cf536 4665 goto out_put;
9bb5d40c 4666
b69cf536 4667 ring_buffer_attach(event, NULL);
9bb5d40c
PZ
4668 mutex_unlock(&event->mmap_mutex);
4669
4670 /* If there's still other mmap()s of this buffer, we're done. */
b69cf536
PZ
4671 if (atomic_read(&rb->mmap_count))
4672 goto out_put;
ac9721f3 4673
9bb5d40c
PZ
4674 /*
4675 * No other mmap()s, detach from all other events that might redirect
4676 * into the now unreachable buffer. Somewhat complicated by the
4677 * fact that rb::event_lock otherwise nests inside mmap_mutex.
4678 */
4679again:
4680 rcu_read_lock();
4681 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
4682 if (!atomic_long_inc_not_zero(&event->refcount)) {
4683 /*
4684 * This event is en-route to free_event() which will
4685 * detach it and remove it from the list.
4686 */
4687 continue;
4688 }
4689 rcu_read_unlock();
789f90fc 4690
9bb5d40c
PZ
4691 mutex_lock(&event->mmap_mutex);
4692 /*
4693 * Check we didn't race with perf_event_set_output() which can
4694 * swizzle the rb from under us while we were waiting to
4695 * acquire mmap_mutex.
4696 *
4697 * If we find a different rb; ignore this event, a next
4698 * iteration will no longer find it on the list. We have to
4699 * still restart the iteration to make sure we're not now
4700 * iterating the wrong list.
4701 */
b69cf536
PZ
4702 if (event->rb == rb)
4703 ring_buffer_attach(event, NULL);
4704
cdd6c482 4705 mutex_unlock(&event->mmap_mutex);
9bb5d40c 4706 put_event(event);
ac9721f3 4707
9bb5d40c
PZ
4708 /*
4709 * Restart the iteration; either we're on the wrong list or
4710 * destroyed its integrity by doing a deletion.
4711 */
4712 goto again;
7b732a75 4713 }
9bb5d40c
PZ
4714 rcu_read_unlock();
4715
4716 /*
4717 * It could be there's still a few 0-ref events on the list; they'll
4718 * get cleaned up by free_event() -- they'll also still have their
4719 * ref on the rb and will free it whenever they are done with it.
4720 *
4721 * Aside from that, this buffer is 'fully' detached and unmapped,
4722 * undo the VM accounting.
4723 */
4724
4725 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
4726 vma->vm_mm->pinned_vm -= mmap_locked;
4727 free_uid(mmap_user);
4728
b69cf536 4729out_put:
9bb5d40c 4730 ring_buffer_put(rb); /* could be last */
37d81828
PM
4731}
4732
f0f37e2f 4733static const struct vm_operations_struct perf_mmap_vmops = {
43a21ea8 4734 .open = perf_mmap_open,
45bfb2e5 4735 .close = perf_mmap_close, /* non mergable */
43a21ea8
PZ
4736 .fault = perf_mmap_fault,
4737 .page_mkwrite = perf_mmap_fault,
37d81828
PM
4738};
4739
4740static int perf_mmap(struct file *file, struct vm_area_struct *vma)
4741{
cdd6c482 4742 struct perf_event *event = file->private_data;
22a4f650 4743 unsigned long user_locked, user_lock_limit;
789f90fc 4744 struct user_struct *user = current_user();
22a4f650 4745 unsigned long locked, lock_limit;
45bfb2e5 4746 struct ring_buffer *rb = NULL;
7b732a75
PZ
4747 unsigned long vma_size;
4748 unsigned long nr_pages;
45bfb2e5 4749 long user_extra = 0, extra = 0;
d57e34fd 4750 int ret = 0, flags = 0;
37d81828 4751
c7920614
PZ
4752 /*
4753 * Don't allow mmap() of inherited per-task counters. This would
4754 * create a performance issue due to all children writing to the
76369139 4755 * same rb.
c7920614
PZ
4756 */
4757 if (event->cpu == -1 && event->attr.inherit)
4758 return -EINVAL;
4759
43a21ea8 4760 if (!(vma->vm_flags & VM_SHARED))
37d81828 4761 return -EINVAL;
7b732a75
PZ
4762
4763 vma_size = vma->vm_end - vma->vm_start;
45bfb2e5
PZ
4764
4765 if (vma->vm_pgoff == 0) {
4766 nr_pages = (vma_size / PAGE_SIZE) - 1;
4767 } else {
4768 /*
4769 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
4770 * mapped, all subsequent mappings should have the same size
4771 * and offset. Must be above the normal perf buffer.
4772 */
4773 u64 aux_offset, aux_size;
4774
4775 if (!event->rb)
4776 return -EINVAL;
4777
4778 nr_pages = vma_size / PAGE_SIZE;
4779
4780 mutex_lock(&event->mmap_mutex);
4781 ret = -EINVAL;
4782
4783 rb = event->rb;
4784 if (!rb)
4785 goto aux_unlock;
4786
4787 aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
4788 aux_size = ACCESS_ONCE(rb->user_page->aux_size);
4789
4790 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
4791 goto aux_unlock;
4792
4793 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
4794 goto aux_unlock;
4795
4796 /* already mapped with a different offset */
4797 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
4798 goto aux_unlock;
4799
4800 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
4801 goto aux_unlock;
4802
4803 /* already mapped with a different size */
4804 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
4805 goto aux_unlock;
4806
4807 if (!is_power_of_2(nr_pages))
4808 goto aux_unlock;
4809
4810 if (!atomic_inc_not_zero(&rb->mmap_count))
4811 goto aux_unlock;
4812
4813 if (rb_has_aux(rb)) {
4814 atomic_inc(&rb->aux_mmap_count);
4815 ret = 0;
4816 goto unlock;
4817 }
4818
4819 atomic_set(&rb->aux_mmap_count, 1);
4820 user_extra = nr_pages;
4821
4822 goto accounting;
4823 }
7b732a75 4824
7730d865 4825 /*
76369139 4826 * If we have rb pages ensure they're a power-of-two number, so we
7730d865
PZ
4827 * can do bitmasks instead of modulo.
4828 */
2ed11312 4829 if (nr_pages != 0 && !is_power_of_2(nr_pages))
37d81828
PM
4830 return -EINVAL;
4831
7b732a75 4832 if (vma_size != PAGE_SIZE * (1 + nr_pages))
37d81828
PM
4833 return -EINVAL;
4834
cdd6c482 4835 WARN_ON_ONCE(event->ctx->parent_ctx);
9bb5d40c 4836again:
cdd6c482 4837 mutex_lock(&event->mmap_mutex);
76369139 4838 if (event->rb) {
9bb5d40c 4839 if (event->rb->nr_pages != nr_pages) {
ebb3c4c4 4840 ret = -EINVAL;
9bb5d40c
PZ
4841 goto unlock;
4842 }
4843
4844 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
4845 /*
4846 * Raced against perf_mmap_close() through
4847 * perf_event_set_output(). Try again, hope for better
4848 * luck.
4849 */
4850 mutex_unlock(&event->mmap_mutex);
4851 goto again;
4852 }
4853
ebb3c4c4
PZ
4854 goto unlock;
4855 }
4856
789f90fc 4857 user_extra = nr_pages + 1;
45bfb2e5
PZ
4858
4859accounting:
cdd6c482 4860 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
a3862d3f
IM
4861
4862 /*
4863 * Increase the limit linearly with more CPUs:
4864 */
4865 user_lock_limit *= num_online_cpus();
4866
789f90fc 4867 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
c5078f78 4868
789f90fc
PZ
4869 if (user_locked > user_lock_limit)
4870 extra = user_locked - user_lock_limit;
7b732a75 4871
78d7d407 4872 lock_limit = rlimit(RLIMIT_MEMLOCK);
7b732a75 4873 lock_limit >>= PAGE_SHIFT;
bc3e53f6 4874 locked = vma->vm_mm->pinned_vm + extra;
7b732a75 4875
459ec28a
IM
4876 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
4877 !capable(CAP_IPC_LOCK)) {
ebb3c4c4
PZ
4878 ret = -EPERM;
4879 goto unlock;
4880 }
7b732a75 4881
45bfb2e5 4882 WARN_ON(!rb && event->rb);
906010b2 4883
d57e34fd 4884 if (vma->vm_flags & VM_WRITE)
76369139 4885 flags |= RING_BUFFER_WRITABLE;
d57e34fd 4886
76369139 4887 if (!rb) {
45bfb2e5
PZ
4888 rb = rb_alloc(nr_pages,
4889 event->attr.watermark ? event->attr.wakeup_watermark : 0,
4890 event->cpu, flags);
26cb63ad 4891
45bfb2e5
PZ
4892 if (!rb) {
4893 ret = -ENOMEM;
4894 goto unlock;
4895 }
43a21ea8 4896
45bfb2e5
PZ
4897 atomic_set(&rb->mmap_count, 1);
4898 rb->mmap_user = get_current_user();
4899 rb->mmap_locked = extra;
26cb63ad 4900
45bfb2e5 4901 ring_buffer_attach(event, rb);
ac9721f3 4902
45bfb2e5
PZ
4903 perf_event_init_userpage(event);
4904 perf_event_update_userpage(event);
4905 } else {
1a594131
AS
4906 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
4907 event->attr.aux_watermark, flags);
45bfb2e5
PZ
4908 if (!ret)
4909 rb->aux_mmap_locked = extra;
4910 }
9a0f05cb 4911
ebb3c4c4 4912unlock:
45bfb2e5
PZ
4913 if (!ret) {
4914 atomic_long_add(user_extra, &user->locked_vm);
4915 vma->vm_mm->pinned_vm += extra;
4916
ac9721f3 4917 atomic_inc(&event->mmap_count);
45bfb2e5
PZ
4918 } else if (rb) {
4919 atomic_dec(&rb->mmap_count);
4920 }
4921aux_unlock:
cdd6c482 4922 mutex_unlock(&event->mmap_mutex);
37d81828 4923
9bb5d40c
PZ
4924 /*
4925 * Since pinned accounting is per vm we cannot allow fork() to copy our
4926 * vma.
4927 */
26cb63ad 4928 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
37d81828 4929 vma->vm_ops = &perf_mmap_vmops;
7b732a75 4930
1e0fb9ec
AL
4931 if (event->pmu->event_mapped)
4932 event->pmu->event_mapped(event);
4933
7b732a75 4934 return ret;
37d81828
PM
4935}
4936
3c446b3d
PZ
4937static int perf_fasync(int fd, struct file *filp, int on)
4938{
496ad9aa 4939 struct inode *inode = file_inode(filp);
cdd6c482 4940 struct perf_event *event = filp->private_data;
3c446b3d
PZ
4941 int retval;
4942
4943 mutex_lock(&inode->i_mutex);
cdd6c482 4944 retval = fasync_helper(fd, filp, on, &event->fasync);
3c446b3d
PZ
4945 mutex_unlock(&inode->i_mutex);
4946
4947 if (retval < 0)
4948 return retval;
4949
4950 return 0;
4951}
4952
0793a61d 4953static const struct file_operations perf_fops = {
3326c1ce 4954 .llseek = no_llseek,
0793a61d
TG
4955 .release = perf_release,
4956 .read = perf_read,
4957 .poll = perf_poll,
d859e29f 4958 .unlocked_ioctl = perf_ioctl,
b3f20785 4959 .compat_ioctl = perf_compat_ioctl,
37d81828 4960 .mmap = perf_mmap,
3c446b3d 4961 .fasync = perf_fasync,
0793a61d
TG
4962};
4963
925d519a 4964/*
cdd6c482 4965 * Perf event wakeup
925d519a
PZ
4966 *
4967 * If there's data, ensure we set the poll() state and publish everything
4968 * to user-space before waking everybody up.
4969 */
4970
fed66e2c
PZ
4971static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
4972{
4973 /* only the parent has fasync state */
4974 if (event->parent)
4975 event = event->parent;
4976 return &event->fasync;
4977}
4978
cdd6c482 4979void perf_event_wakeup(struct perf_event *event)
925d519a 4980{
10c6db11 4981 ring_buffer_wakeup(event);
4c9e2542 4982
cdd6c482 4983 if (event->pending_kill) {
fed66e2c 4984 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
cdd6c482 4985 event->pending_kill = 0;
4c9e2542 4986 }
925d519a
PZ
4987}
4988
e360adbe 4989static void perf_pending_event(struct irq_work *entry)
79f14641 4990{
cdd6c482
IM
4991 struct perf_event *event = container_of(entry,
4992 struct perf_event, pending);
d525211f
PZ
4993 int rctx;
4994
4995 rctx = perf_swevent_get_recursion_context();
4996 /*
4997 * If we 'fail' here, that's OK, it means recursion is already disabled
4998 * and we won't recurse 'further'.
4999 */
79f14641 5000
cdd6c482
IM
5001 if (event->pending_disable) {
5002 event->pending_disable = 0;
5003 __perf_event_disable(event);
79f14641
PZ
5004 }
5005
cdd6c482
IM
5006 if (event->pending_wakeup) {
5007 event->pending_wakeup = 0;
5008 perf_event_wakeup(event);
79f14641 5009 }
d525211f
PZ
5010
5011 if (rctx >= 0)
5012 perf_swevent_put_recursion_context(rctx);
79f14641
PZ
5013}
5014
39447b38
ZY
5015/*
5016 * We assume there is only KVM supporting the callbacks.
5017 * Later on, we might change it to a list if there is
5018 * another virtualization implementation supporting the callbacks.
5019 */
5020struct perf_guest_info_callbacks *perf_guest_cbs;
5021
5022int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5023{
5024 perf_guest_cbs = cbs;
5025 return 0;
5026}
5027EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5028
5029int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5030{
5031 perf_guest_cbs = NULL;
5032 return 0;
5033}
5034EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5035
4018994f
JO
5036static void
5037perf_output_sample_regs(struct perf_output_handle *handle,
5038 struct pt_regs *regs, u64 mask)
5039{
5040 int bit;
5041
5042 for_each_set_bit(bit, (const unsigned long *) &mask,
5043 sizeof(mask) * BITS_PER_BYTE) {
5044 u64 val;
5045
5046 val = perf_reg_value(regs, bit);
5047 perf_output_put(handle, val);
5048 }
5049}
5050
60e2364e 5051static void perf_sample_regs_user(struct perf_regs *regs_user,
88a7c26a
AL
5052 struct pt_regs *regs,
5053 struct pt_regs *regs_user_copy)
4018994f 5054{
88a7c26a
AL
5055 if (user_mode(regs)) {
5056 regs_user->abi = perf_reg_abi(current);
2565711f 5057 regs_user->regs = regs;
88a7c26a
AL
5058 } else if (current->mm) {
5059 perf_get_regs_user(regs_user, regs, regs_user_copy);
2565711f
PZ
5060 } else {
5061 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5062 regs_user->regs = NULL;
4018994f
JO
5063 }
5064}
5065
60e2364e
SE
5066static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5067 struct pt_regs *regs)
5068{
5069 regs_intr->regs = regs;
5070 regs_intr->abi = perf_reg_abi(current);
5071}
5072
5073
c5ebcedb
JO
5074/*
5075 * Get remaining task size from user stack pointer.
5076 *
5077 * It'd be better to take stack vma map and limit this more
5078 * precisly, but there's no way to get it safely under interrupt,
5079 * so using TASK_SIZE as limit.
5080 */
5081static u64 perf_ustack_task_size(struct pt_regs *regs)
5082{
5083 unsigned long addr = perf_user_stack_pointer(regs);
5084
5085 if (!addr || addr >= TASK_SIZE)
5086 return 0;
5087
5088 return TASK_SIZE - addr;
5089}
5090
5091static u16
5092perf_sample_ustack_size(u16 stack_size, u16 header_size,
5093 struct pt_regs *regs)
5094{
5095 u64 task_size;
5096
5097 /* No regs, no stack pointer, no dump. */
5098 if (!regs)
5099 return 0;
5100
5101 /*
5102 * Check if we fit in with the requested stack size into the:
5103 * - TASK_SIZE
5104 * If we don't, we limit the size to the TASK_SIZE.
5105 *
5106 * - remaining sample size
5107 * If we don't, we customize the stack size to
5108 * fit in to the remaining sample size.
5109 */
5110
5111 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5112 stack_size = min(stack_size, (u16) task_size);
5113
5114 /* Current header size plus static size and dynamic size. */
5115 header_size += 2 * sizeof(u64);
5116
5117 /* Do we fit in with the current stack dump size? */
5118 if ((u16) (header_size + stack_size) < header_size) {
5119 /*
5120 * If we overflow the maximum size for the sample,
5121 * we customize the stack dump size to fit in.
5122 */
5123 stack_size = USHRT_MAX - header_size - sizeof(u64);
5124 stack_size = round_up(stack_size, sizeof(u64));
5125 }
5126
5127 return stack_size;
5128}
5129
5130static void
5131perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5132 struct pt_regs *regs)
5133{
5134 /* Case of a kernel thread, nothing to dump */
5135 if (!regs) {
5136 u64 size = 0;
5137 perf_output_put(handle, size);
5138 } else {
5139 unsigned long sp;
5140 unsigned int rem;
5141 u64 dyn_size;
5142
5143 /*
5144 * We dump:
5145 * static size
5146 * - the size requested by user or the best one we can fit
5147 * in to the sample max size
5148 * data
5149 * - user stack dump data
5150 * dynamic size
5151 * - the actual dumped size
5152 */
5153
5154 /* Static size. */
5155 perf_output_put(handle, dump_size);
5156
5157 /* Data. */
5158 sp = perf_user_stack_pointer(regs);
5159 rem = __output_copy_user(handle, (void *) sp, dump_size);
5160 dyn_size = dump_size - rem;
5161
5162 perf_output_skip(handle, rem);
5163
5164 /* Dynamic size. */
5165 perf_output_put(handle, dyn_size);
5166 }
5167}
5168
c980d109
ACM
5169static void __perf_event_header__init_id(struct perf_event_header *header,
5170 struct perf_sample_data *data,
5171 struct perf_event *event)
6844c09d
ACM
5172{
5173 u64 sample_type = event->attr.sample_type;
5174
5175 data->type = sample_type;
5176 header->size += event->id_header_size;
5177
5178 if (sample_type & PERF_SAMPLE_TID) {
5179 /* namespace issues */
5180 data->tid_entry.pid = perf_event_pid(event, current);
5181 data->tid_entry.tid = perf_event_tid(event, current);
5182 }
5183
5184 if (sample_type & PERF_SAMPLE_TIME)
34f43927 5185 data->time = perf_event_clock(event);
6844c09d 5186
ff3d527c 5187 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6844c09d
ACM
5188 data->id = primary_event_id(event);
5189
5190 if (sample_type & PERF_SAMPLE_STREAM_ID)
5191 data->stream_id = event->id;
5192
5193 if (sample_type & PERF_SAMPLE_CPU) {
5194 data->cpu_entry.cpu = raw_smp_processor_id();
5195 data->cpu_entry.reserved = 0;
5196 }
5197}
5198
76369139
FW
5199void perf_event_header__init_id(struct perf_event_header *header,
5200 struct perf_sample_data *data,
5201 struct perf_event *event)
c980d109
ACM
5202{
5203 if (event->attr.sample_id_all)
5204 __perf_event_header__init_id(header, data, event);
5205}
5206
5207static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5208 struct perf_sample_data *data)
5209{
5210 u64 sample_type = data->type;
5211
5212 if (sample_type & PERF_SAMPLE_TID)
5213 perf_output_put(handle, data->tid_entry);
5214
5215 if (sample_type & PERF_SAMPLE_TIME)
5216 perf_output_put(handle, data->time);
5217
5218 if (sample_type & PERF_SAMPLE_ID)
5219 perf_output_put(handle, data->id);
5220
5221 if (sample_type & PERF_SAMPLE_STREAM_ID)
5222 perf_output_put(handle, data->stream_id);
5223
5224 if (sample_type & PERF_SAMPLE_CPU)
5225 perf_output_put(handle, data->cpu_entry);
ff3d527c
AH
5226
5227 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5228 perf_output_put(handle, data->id);
c980d109
ACM
5229}
5230
76369139
FW
5231void perf_event__output_id_sample(struct perf_event *event,
5232 struct perf_output_handle *handle,
5233 struct perf_sample_data *sample)
c980d109
ACM
5234{
5235 if (event->attr.sample_id_all)
5236 __perf_event__output_id_sample(handle, sample);
5237}
5238
3dab77fb 5239static void perf_output_read_one(struct perf_output_handle *handle,
eed01528
SE
5240 struct perf_event *event,
5241 u64 enabled, u64 running)
3dab77fb 5242{
cdd6c482 5243 u64 read_format = event->attr.read_format;
3dab77fb
PZ
5244 u64 values[4];
5245 int n = 0;
5246
b5e58793 5247 values[n++] = perf_event_count(event);
3dab77fb 5248 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
eed01528 5249 values[n++] = enabled +
cdd6c482 5250 atomic64_read(&event->child_total_time_enabled);
3dab77fb
PZ
5251 }
5252 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
eed01528 5253 values[n++] = running +
cdd6c482 5254 atomic64_read(&event->child_total_time_running);
3dab77fb
PZ
5255 }
5256 if (read_format & PERF_FORMAT_ID)
cdd6c482 5257 values[n++] = primary_event_id(event);
3dab77fb 5258
76369139 5259 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
5260}
5261
5262/*
cdd6c482 5263 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3dab77fb
PZ
5264 */
5265static void perf_output_read_group(struct perf_output_handle *handle,
eed01528
SE
5266 struct perf_event *event,
5267 u64 enabled, u64 running)
3dab77fb 5268{
cdd6c482
IM
5269 struct perf_event *leader = event->group_leader, *sub;
5270 u64 read_format = event->attr.read_format;
3dab77fb
PZ
5271 u64 values[5];
5272 int n = 0;
5273
5274 values[n++] = 1 + leader->nr_siblings;
5275
5276 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
eed01528 5277 values[n++] = enabled;
3dab77fb
PZ
5278
5279 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
eed01528 5280 values[n++] = running;
3dab77fb 5281
cdd6c482 5282 if (leader != event)
3dab77fb
PZ
5283 leader->pmu->read(leader);
5284
b5e58793 5285 values[n++] = perf_event_count(leader);
3dab77fb 5286 if (read_format & PERF_FORMAT_ID)
cdd6c482 5287 values[n++] = primary_event_id(leader);
3dab77fb 5288
76369139 5289 __output_copy(handle, values, n * sizeof(u64));
3dab77fb 5290
65abc865 5291 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3dab77fb
PZ
5292 n = 0;
5293
6f5ab001
JO
5294 if ((sub != event) &&
5295 (sub->state == PERF_EVENT_STATE_ACTIVE))
3dab77fb
PZ
5296 sub->pmu->read(sub);
5297
b5e58793 5298 values[n++] = perf_event_count(sub);
3dab77fb 5299 if (read_format & PERF_FORMAT_ID)
cdd6c482 5300 values[n++] = primary_event_id(sub);
3dab77fb 5301
76369139 5302 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
5303 }
5304}
5305
eed01528
SE
5306#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5307 PERF_FORMAT_TOTAL_TIME_RUNNING)
5308
3dab77fb 5309static void perf_output_read(struct perf_output_handle *handle,
cdd6c482 5310 struct perf_event *event)
3dab77fb 5311{
e3f3541c 5312 u64 enabled = 0, running = 0, now;
eed01528
SE
5313 u64 read_format = event->attr.read_format;
5314
5315 /*
5316 * compute total_time_enabled, total_time_running
5317 * based on snapshot values taken when the event
5318 * was last scheduled in.
5319 *
5320 * we cannot simply called update_context_time()
5321 * because of locking issue as we are called in
5322 * NMI context
5323 */
c4794295 5324 if (read_format & PERF_FORMAT_TOTAL_TIMES)
e3f3541c 5325 calc_timer_values(event, &now, &enabled, &running);
eed01528 5326
cdd6c482 5327 if (event->attr.read_format & PERF_FORMAT_GROUP)
eed01528 5328 perf_output_read_group(handle, event, enabled, running);
3dab77fb 5329 else
eed01528 5330 perf_output_read_one(handle, event, enabled, running);
3dab77fb
PZ
5331}
5332
5622f295
MM
5333void perf_output_sample(struct perf_output_handle *handle,
5334 struct perf_event_header *header,
5335 struct perf_sample_data *data,
cdd6c482 5336 struct perf_event *event)
5622f295
MM
5337{
5338 u64 sample_type = data->type;
5339
5340 perf_output_put(handle, *header);
5341
ff3d527c
AH
5342 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5343 perf_output_put(handle, data->id);
5344
5622f295
MM
5345 if (sample_type & PERF_SAMPLE_IP)
5346 perf_output_put(handle, data->ip);
5347
5348 if (sample_type & PERF_SAMPLE_TID)
5349 perf_output_put(handle, data->tid_entry);
5350
5351 if (sample_type & PERF_SAMPLE_TIME)
5352 perf_output_put(handle, data->time);
5353
5354 if (sample_type & PERF_SAMPLE_ADDR)
5355 perf_output_put(handle, data->addr);
5356
5357 if (sample_type & PERF_SAMPLE_ID)
5358 perf_output_put(handle, data->id);
5359
5360 if (sample_type & PERF_SAMPLE_STREAM_ID)
5361 perf_output_put(handle, data->stream_id);
5362
5363 if (sample_type & PERF_SAMPLE_CPU)
5364 perf_output_put(handle, data->cpu_entry);
5365
5366 if (sample_type & PERF_SAMPLE_PERIOD)
5367 perf_output_put(handle, data->period);
5368
5369 if (sample_type & PERF_SAMPLE_READ)
cdd6c482 5370 perf_output_read(handle, event);
5622f295
MM
5371
5372 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5373 if (data->callchain) {
5374 int size = 1;
5375
5376 if (data->callchain)
5377 size += data->callchain->nr;
5378
5379 size *= sizeof(u64);
5380
76369139 5381 __output_copy(handle, data->callchain, size);
5622f295
MM
5382 } else {
5383 u64 nr = 0;
5384 perf_output_put(handle, nr);
5385 }
5386 }
5387
5388 if (sample_type & PERF_SAMPLE_RAW) {
5389 if (data->raw) {
fa128e6a
AS
5390 u32 raw_size = data->raw->size;
5391 u32 real_size = round_up(raw_size + sizeof(u32),
5392 sizeof(u64)) - sizeof(u32);
5393 u64 zero = 0;
5394
5395 perf_output_put(handle, real_size);
5396 __output_copy(handle, data->raw->data, raw_size);
5397 if (real_size - raw_size)
5398 __output_copy(handle, &zero, real_size - raw_size);
5622f295
MM
5399 } else {
5400 struct {
5401 u32 size;
5402 u32 data;
5403 } raw = {
5404 .size = sizeof(u32),
5405 .data = 0,
5406 };
5407 perf_output_put(handle, raw);
5408 }
5409 }
a7ac67ea 5410
bce38cd5
SE
5411 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5412 if (data->br_stack) {
5413 size_t size;
5414
5415 size = data->br_stack->nr
5416 * sizeof(struct perf_branch_entry);
5417
5418 perf_output_put(handle, data->br_stack->nr);
5419 perf_output_copy(handle, data->br_stack->entries, size);
5420 } else {
5421 /*
5422 * we always store at least the value of nr
5423 */
5424 u64 nr = 0;
5425 perf_output_put(handle, nr);
5426 }
5427 }
4018994f
JO
5428
5429 if (sample_type & PERF_SAMPLE_REGS_USER) {
5430 u64 abi = data->regs_user.abi;
5431
5432 /*
5433 * If there are no regs to dump, notice it through
5434 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5435 */
5436 perf_output_put(handle, abi);
5437
5438 if (abi) {
5439 u64 mask = event->attr.sample_regs_user;
5440 perf_output_sample_regs(handle,
5441 data->regs_user.regs,
5442 mask);
5443 }
5444 }
c5ebcedb 5445
a5cdd40c 5446 if (sample_type & PERF_SAMPLE_STACK_USER) {
c5ebcedb
JO
5447 perf_output_sample_ustack(handle,
5448 data->stack_user_size,
5449 data->regs_user.regs);
a5cdd40c 5450 }
c3feedf2
AK
5451
5452 if (sample_type & PERF_SAMPLE_WEIGHT)
5453 perf_output_put(handle, data->weight);
d6be9ad6
SE
5454
5455 if (sample_type & PERF_SAMPLE_DATA_SRC)
5456 perf_output_put(handle, data->data_src.val);
a5cdd40c 5457
fdfbbd07
AK
5458 if (sample_type & PERF_SAMPLE_TRANSACTION)
5459 perf_output_put(handle, data->txn);
5460
60e2364e
SE
5461 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5462 u64 abi = data->regs_intr.abi;
5463 /*
5464 * If there are no regs to dump, notice it through
5465 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5466 */
5467 perf_output_put(handle, abi);
5468
5469 if (abi) {
5470 u64 mask = event->attr.sample_regs_intr;
5471
5472 perf_output_sample_regs(handle,
5473 data->regs_intr.regs,
5474 mask);
5475 }
5476 }
5477
a5cdd40c
PZ
5478 if (!event->attr.watermark) {
5479 int wakeup_events = event->attr.wakeup_events;
5480
5481 if (wakeup_events) {
5482 struct ring_buffer *rb = handle->rb;
5483 int events = local_inc_return(&rb->events);
5484
5485 if (events >= wakeup_events) {
5486 local_sub(wakeup_events, &rb->events);
5487 local_inc(&rb->wakeup);
5488 }
5489 }
5490 }
5622f295
MM
5491}
5492
5493void perf_prepare_sample(struct perf_event_header *header,
5494 struct perf_sample_data *data,
cdd6c482 5495 struct perf_event *event,
5622f295 5496 struct pt_regs *regs)
7b732a75 5497{
cdd6c482 5498 u64 sample_type = event->attr.sample_type;
7b732a75 5499
cdd6c482 5500 header->type = PERF_RECORD_SAMPLE;
c320c7b7 5501 header->size = sizeof(*header) + event->header_size;
5622f295
MM
5502
5503 header->misc = 0;
5504 header->misc |= perf_misc_flags(regs);
6fab0192 5505
c980d109 5506 __perf_event_header__init_id(header, data, event);
6844c09d 5507
c320c7b7 5508 if (sample_type & PERF_SAMPLE_IP)
5622f295
MM
5509 data->ip = perf_instruction_pointer(regs);
5510
b23f3325 5511 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5622f295 5512 int size = 1;
394ee076 5513
e6dab5ff 5514 data->callchain = perf_callchain(event, regs);
5622f295
MM
5515
5516 if (data->callchain)
5517 size += data->callchain->nr;
5518
5519 header->size += size * sizeof(u64);
394ee076
PZ
5520 }
5521
3a43ce68 5522 if (sample_type & PERF_SAMPLE_RAW) {
a044560c
PZ
5523 int size = sizeof(u32);
5524
5525 if (data->raw)
5526 size += data->raw->size;
5527 else
5528 size += sizeof(u32);
5529
fa128e6a 5530 header->size += round_up(size, sizeof(u64));
7f453c24 5531 }
bce38cd5
SE
5532
5533 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5534 int size = sizeof(u64); /* nr */
5535 if (data->br_stack) {
5536 size += data->br_stack->nr
5537 * sizeof(struct perf_branch_entry);
5538 }
5539 header->size += size;
5540 }
4018994f 5541
2565711f 5542 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
88a7c26a
AL
5543 perf_sample_regs_user(&data->regs_user, regs,
5544 &data->regs_user_copy);
2565711f 5545
4018994f
JO
5546 if (sample_type & PERF_SAMPLE_REGS_USER) {
5547 /* regs dump ABI info */
5548 int size = sizeof(u64);
5549
4018994f
JO
5550 if (data->regs_user.regs) {
5551 u64 mask = event->attr.sample_regs_user;
5552 size += hweight64(mask) * sizeof(u64);
5553 }
5554
5555 header->size += size;
5556 }
c5ebcedb
JO
5557
5558 if (sample_type & PERF_SAMPLE_STACK_USER) {
5559 /*
5560 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
5561 * processed as the last one or have additional check added
5562 * in case new sample type is added, because we could eat
5563 * up the rest of the sample size.
5564 */
c5ebcedb
JO
5565 u16 stack_size = event->attr.sample_stack_user;
5566 u16 size = sizeof(u64);
5567
c5ebcedb 5568 stack_size = perf_sample_ustack_size(stack_size, header->size,
2565711f 5569 data->regs_user.regs);
c5ebcedb
JO
5570
5571 /*
5572 * If there is something to dump, add space for the dump
5573 * itself and for the field that tells the dynamic size,
5574 * which is how many have been actually dumped.
5575 */
5576 if (stack_size)
5577 size += sizeof(u64) + stack_size;
5578
5579 data->stack_user_size = stack_size;
5580 header->size += size;
5581 }
60e2364e
SE
5582
5583 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5584 /* regs dump ABI info */
5585 int size = sizeof(u64);
5586
5587 perf_sample_regs_intr(&data->regs_intr, regs);
5588
5589 if (data->regs_intr.regs) {
5590 u64 mask = event->attr.sample_regs_intr;
5591
5592 size += hweight64(mask) * sizeof(u64);
5593 }
5594
5595 header->size += size;
5596 }
5622f295 5597}
7f453c24 5598
21509084
YZ
5599void perf_event_output(struct perf_event *event,
5600 struct perf_sample_data *data,
5601 struct pt_regs *regs)
5622f295
MM
5602{
5603 struct perf_output_handle handle;
5604 struct perf_event_header header;
689802b2 5605
927c7a9e
FW
5606 /* protect the callchain buffers */
5607 rcu_read_lock();
5608
cdd6c482 5609 perf_prepare_sample(&header, data, event, regs);
5c148194 5610
a7ac67ea 5611 if (perf_output_begin(&handle, event, header.size))
927c7a9e 5612 goto exit;
0322cd6e 5613
cdd6c482 5614 perf_output_sample(&handle, &header, data, event);
f413cdb8 5615
8a057d84 5616 perf_output_end(&handle);
927c7a9e
FW
5617
5618exit:
5619 rcu_read_unlock();
0322cd6e
PZ
5620}
5621
38b200d6 5622/*
cdd6c482 5623 * read event_id
38b200d6
PZ
5624 */
5625
5626struct perf_read_event {
5627 struct perf_event_header header;
5628
5629 u32 pid;
5630 u32 tid;
38b200d6
PZ
5631};
5632
5633static void
cdd6c482 5634perf_event_read_event(struct perf_event *event,
38b200d6
PZ
5635 struct task_struct *task)
5636{
5637 struct perf_output_handle handle;
c980d109 5638 struct perf_sample_data sample;
dfc65094 5639 struct perf_read_event read_event = {
38b200d6 5640 .header = {
cdd6c482 5641 .type = PERF_RECORD_READ,
38b200d6 5642 .misc = 0,
c320c7b7 5643 .size = sizeof(read_event) + event->read_size,
38b200d6 5644 },
cdd6c482
IM
5645 .pid = perf_event_pid(event, task),
5646 .tid = perf_event_tid(event, task),
38b200d6 5647 };
3dab77fb 5648 int ret;
38b200d6 5649
c980d109 5650 perf_event_header__init_id(&read_event.header, &sample, event);
a7ac67ea 5651 ret = perf_output_begin(&handle, event, read_event.header.size);
38b200d6
PZ
5652 if (ret)
5653 return;
5654
dfc65094 5655 perf_output_put(&handle, read_event);
cdd6c482 5656 perf_output_read(&handle, event);
c980d109 5657 perf_event__output_id_sample(event, &handle, &sample);
3dab77fb 5658
38b200d6
PZ
5659 perf_output_end(&handle);
5660}
5661
52d857a8
JO
5662typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);
5663
5664static void
5665perf_event_aux_ctx(struct perf_event_context *ctx,
52d857a8
JO
5666 perf_event_aux_output_cb output,
5667 void *data)
5668{
5669 struct perf_event *event;
5670
5671 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
5672 if (event->state < PERF_EVENT_STATE_INACTIVE)
5673 continue;
5674 if (!event_filter_match(event))
5675 continue;
67516844 5676 output(event, data);
52d857a8
JO
5677 }
5678}
5679
4e93ad60
JO
5680static void
5681perf_event_aux_task_ctx(perf_event_aux_output_cb output, void *data,
5682 struct perf_event_context *task_ctx)
5683{
5684 rcu_read_lock();
5685 preempt_disable();
5686 perf_event_aux_ctx(task_ctx, output, data);
5687 preempt_enable();
5688 rcu_read_unlock();
5689}
5690
52d857a8 5691static void
67516844 5692perf_event_aux(perf_event_aux_output_cb output, void *data,
52d857a8
JO
5693 struct perf_event_context *task_ctx)
5694{
5695 struct perf_cpu_context *cpuctx;
5696 struct perf_event_context *ctx;
5697 struct pmu *pmu;
5698 int ctxn;
5699
4e93ad60
JO
5700 /*
5701 * If we have task_ctx != NULL we only notify
5702 * the task context itself. The task_ctx is set
5703 * only for EXIT events before releasing task
5704 * context.
5705 */
5706 if (task_ctx) {
5707 perf_event_aux_task_ctx(output, data, task_ctx);
5708 return;
5709 }
5710
52d857a8
JO
5711 rcu_read_lock();
5712 list_for_each_entry_rcu(pmu, &pmus, entry) {
5713 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
5714 if (cpuctx->unique_pmu != pmu)
5715 goto next;
67516844 5716 perf_event_aux_ctx(&cpuctx->ctx, output, data);
52d857a8
JO
5717 ctxn = pmu->task_ctx_nr;
5718 if (ctxn < 0)
5719 goto next;
5720 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
5721 if (ctx)
67516844 5722 perf_event_aux_ctx(ctx, output, data);
52d857a8
JO
5723next:
5724 put_cpu_ptr(pmu->pmu_cpu_context);
5725 }
52d857a8
JO
5726 rcu_read_unlock();
5727}
5728
60313ebe 5729/*
9f498cc5
PZ
5730 * task tracking -- fork/exit
5731 *
13d7a241 5732 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
60313ebe
PZ
5733 */
5734
9f498cc5 5735struct perf_task_event {
3a80b4a3 5736 struct task_struct *task;
cdd6c482 5737 struct perf_event_context *task_ctx;
60313ebe
PZ
5738
5739 struct {
5740 struct perf_event_header header;
5741
5742 u32 pid;
5743 u32 ppid;
9f498cc5
PZ
5744 u32 tid;
5745 u32 ptid;
393b2ad8 5746 u64 time;
cdd6c482 5747 } event_id;
60313ebe
PZ
5748};
5749
67516844
JO
5750static int perf_event_task_match(struct perf_event *event)
5751{
13d7a241
SE
5752 return event->attr.comm || event->attr.mmap ||
5753 event->attr.mmap2 || event->attr.mmap_data ||
5754 event->attr.task;
67516844
JO
5755}
5756
cdd6c482 5757static void perf_event_task_output(struct perf_event *event,
52d857a8 5758 void *data)
60313ebe 5759{
52d857a8 5760 struct perf_task_event *task_event = data;
60313ebe 5761 struct perf_output_handle handle;
c980d109 5762 struct perf_sample_data sample;
9f498cc5 5763 struct task_struct *task = task_event->task;
c980d109 5764 int ret, size = task_event->event_id.header.size;
8bb39f9a 5765
67516844
JO
5766 if (!perf_event_task_match(event))
5767 return;
5768
c980d109 5769 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
60313ebe 5770
c980d109 5771 ret = perf_output_begin(&handle, event,
a7ac67ea 5772 task_event->event_id.header.size);
ef60777c 5773 if (ret)
c980d109 5774 goto out;
60313ebe 5775
cdd6c482
IM
5776 task_event->event_id.pid = perf_event_pid(event, task);
5777 task_event->event_id.ppid = perf_event_pid(event, current);
60313ebe 5778
cdd6c482
IM
5779 task_event->event_id.tid = perf_event_tid(event, task);
5780 task_event->event_id.ptid = perf_event_tid(event, current);
9f498cc5 5781
34f43927
PZ
5782 task_event->event_id.time = perf_event_clock(event);
5783
cdd6c482 5784 perf_output_put(&handle, task_event->event_id);
393b2ad8 5785
c980d109
ACM
5786 perf_event__output_id_sample(event, &handle, &sample);
5787
60313ebe 5788 perf_output_end(&handle);
c980d109
ACM
5789out:
5790 task_event->event_id.header.size = size;
60313ebe
PZ
5791}
5792
cdd6c482
IM
5793static void perf_event_task(struct task_struct *task,
5794 struct perf_event_context *task_ctx,
3a80b4a3 5795 int new)
60313ebe 5796{
9f498cc5 5797 struct perf_task_event task_event;
60313ebe 5798
cdd6c482
IM
5799 if (!atomic_read(&nr_comm_events) &&
5800 !atomic_read(&nr_mmap_events) &&
5801 !atomic_read(&nr_task_events))
60313ebe
PZ
5802 return;
5803
9f498cc5 5804 task_event = (struct perf_task_event){
3a80b4a3
PZ
5805 .task = task,
5806 .task_ctx = task_ctx,
cdd6c482 5807 .event_id = {
60313ebe 5808 .header = {
cdd6c482 5809 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
573402db 5810 .misc = 0,
cdd6c482 5811 .size = sizeof(task_event.event_id),
60313ebe 5812 },
573402db
PZ
5813 /* .pid */
5814 /* .ppid */
9f498cc5
PZ
5815 /* .tid */
5816 /* .ptid */
34f43927 5817 /* .time */
60313ebe
PZ
5818 },
5819 };
5820
67516844 5821 perf_event_aux(perf_event_task_output,
52d857a8
JO
5822 &task_event,
5823 task_ctx);
9f498cc5
PZ
5824}
5825
cdd6c482 5826void perf_event_fork(struct task_struct *task)
9f498cc5 5827{
cdd6c482 5828 perf_event_task(task, NULL, 1);
60313ebe
PZ
5829}
5830
8d1b2d93
PZ
5831/*
5832 * comm tracking
5833 */
5834
5835struct perf_comm_event {
22a4f650
IM
5836 struct task_struct *task;
5837 char *comm;
8d1b2d93
PZ
5838 int comm_size;
5839
5840 struct {
5841 struct perf_event_header header;
5842
5843 u32 pid;
5844 u32 tid;
cdd6c482 5845 } event_id;
8d1b2d93
PZ
5846};
5847
67516844
JO
5848static int perf_event_comm_match(struct perf_event *event)
5849{
5850 return event->attr.comm;
5851}
5852
cdd6c482 5853static void perf_event_comm_output(struct perf_event *event,
52d857a8 5854 void *data)
8d1b2d93 5855{
52d857a8 5856 struct perf_comm_event *comm_event = data;
8d1b2d93 5857 struct perf_output_handle handle;
c980d109 5858 struct perf_sample_data sample;
cdd6c482 5859 int size = comm_event->event_id.header.size;
c980d109
ACM
5860 int ret;
5861
67516844
JO
5862 if (!perf_event_comm_match(event))
5863 return;
5864
c980d109
ACM
5865 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
5866 ret = perf_output_begin(&handle, event,
a7ac67ea 5867 comm_event->event_id.header.size);
8d1b2d93
PZ
5868
5869 if (ret)
c980d109 5870 goto out;
8d1b2d93 5871
cdd6c482
IM
5872 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
5873 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
709e50cf 5874
cdd6c482 5875 perf_output_put(&handle, comm_event->event_id);
76369139 5876 __output_copy(&handle, comm_event->comm,
8d1b2d93 5877 comm_event->comm_size);
c980d109
ACM
5878
5879 perf_event__output_id_sample(event, &handle, &sample);
5880
8d1b2d93 5881 perf_output_end(&handle);
c980d109
ACM
5882out:
5883 comm_event->event_id.header.size = size;
8d1b2d93
PZ
5884}
5885
cdd6c482 5886static void perf_event_comm_event(struct perf_comm_event *comm_event)
8d1b2d93 5887{
413ee3b4 5888 char comm[TASK_COMM_LEN];
8d1b2d93 5889 unsigned int size;
8d1b2d93 5890
413ee3b4 5891 memset(comm, 0, sizeof(comm));
96b02d78 5892 strlcpy(comm, comm_event->task->comm, sizeof(comm));
888fcee0 5893 size = ALIGN(strlen(comm)+1, sizeof(u64));
8d1b2d93
PZ
5894
5895 comm_event->comm = comm;
5896 comm_event->comm_size = size;
5897
cdd6c482 5898 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
8dc85d54 5899
67516844 5900 perf_event_aux(perf_event_comm_output,
52d857a8
JO
5901 comm_event,
5902 NULL);
8d1b2d93
PZ
5903}
5904
82b89778 5905void perf_event_comm(struct task_struct *task, bool exec)
8d1b2d93 5906{
9ee318a7
PZ
5907 struct perf_comm_event comm_event;
5908
cdd6c482 5909 if (!atomic_read(&nr_comm_events))
9ee318a7 5910 return;
a63eaf34 5911
9ee318a7 5912 comm_event = (struct perf_comm_event){
8d1b2d93 5913 .task = task,
573402db
PZ
5914 /* .comm */
5915 /* .comm_size */
cdd6c482 5916 .event_id = {
573402db 5917 .header = {
cdd6c482 5918 .type = PERF_RECORD_COMM,
82b89778 5919 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
573402db
PZ
5920 /* .size */
5921 },
5922 /* .pid */
5923 /* .tid */
8d1b2d93
PZ
5924 },
5925 };
5926
cdd6c482 5927 perf_event_comm_event(&comm_event);
8d1b2d93
PZ
5928}
5929
0a4a9391
PZ
5930/*
5931 * mmap tracking
5932 */
5933
5934struct perf_mmap_event {
089dd79d
PZ
5935 struct vm_area_struct *vma;
5936
5937 const char *file_name;
5938 int file_size;
13d7a241
SE
5939 int maj, min;
5940 u64 ino;
5941 u64 ino_generation;
f972eb63 5942 u32 prot, flags;
0a4a9391
PZ
5943
5944 struct {
5945 struct perf_event_header header;
5946
5947 u32 pid;
5948 u32 tid;
5949 u64 start;
5950 u64 len;
5951 u64 pgoff;
cdd6c482 5952 } event_id;
0a4a9391
PZ
5953};
5954
67516844
JO
5955static int perf_event_mmap_match(struct perf_event *event,
5956 void *data)
5957{
5958 struct perf_mmap_event *mmap_event = data;
5959 struct vm_area_struct *vma = mmap_event->vma;
5960 int executable = vma->vm_flags & VM_EXEC;
5961
5962 return (!executable && event->attr.mmap_data) ||
13d7a241 5963 (executable && (event->attr.mmap || event->attr.mmap2));
67516844
JO
5964}
5965
cdd6c482 5966static void perf_event_mmap_output(struct perf_event *event,
52d857a8 5967 void *data)
0a4a9391 5968{
52d857a8 5969 struct perf_mmap_event *mmap_event = data;
0a4a9391 5970 struct perf_output_handle handle;
c980d109 5971 struct perf_sample_data sample;
cdd6c482 5972 int size = mmap_event->event_id.header.size;
c980d109 5973 int ret;
0a4a9391 5974
67516844
JO
5975 if (!perf_event_mmap_match(event, data))
5976 return;
5977
13d7a241
SE
5978 if (event->attr.mmap2) {
5979 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
5980 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
5981 mmap_event->event_id.header.size += sizeof(mmap_event->min);
5982 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
d008d525 5983 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
f972eb63
PZ
5984 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
5985 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
13d7a241
SE
5986 }
5987
c980d109
ACM
5988 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
5989 ret = perf_output_begin(&handle, event,
a7ac67ea 5990 mmap_event->event_id.header.size);
0a4a9391 5991 if (ret)
c980d109 5992 goto out;
0a4a9391 5993
cdd6c482
IM
5994 mmap_event->event_id.pid = perf_event_pid(event, current);
5995 mmap_event->event_id.tid = perf_event_tid(event, current);
709e50cf 5996
cdd6c482 5997 perf_output_put(&handle, mmap_event->event_id);
13d7a241
SE
5998
5999 if (event->attr.mmap2) {
6000 perf_output_put(&handle, mmap_event->maj);
6001 perf_output_put(&handle, mmap_event->min);
6002 perf_output_put(&handle, mmap_event->ino);
6003 perf_output_put(&handle, mmap_event->ino_generation);
f972eb63
PZ
6004 perf_output_put(&handle, mmap_event->prot);
6005 perf_output_put(&handle, mmap_event->flags);
13d7a241
SE
6006 }
6007
76369139 6008 __output_copy(&handle, mmap_event->file_name,
0a4a9391 6009 mmap_event->file_size);
c980d109
ACM
6010
6011 perf_event__output_id_sample(event, &handle, &sample);
6012
78d613eb 6013 perf_output_end(&handle);
c980d109
ACM
6014out:
6015 mmap_event->event_id.header.size = size;
0a4a9391
PZ
6016}
6017
cdd6c482 6018static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
0a4a9391 6019{
089dd79d
PZ
6020 struct vm_area_struct *vma = mmap_event->vma;
6021 struct file *file = vma->vm_file;
13d7a241
SE
6022 int maj = 0, min = 0;
6023 u64 ino = 0, gen = 0;
f972eb63 6024 u32 prot = 0, flags = 0;
0a4a9391
PZ
6025 unsigned int size;
6026 char tmp[16];
6027 char *buf = NULL;
2c42cfbf 6028 char *name;
413ee3b4 6029
0a4a9391 6030 if (file) {
13d7a241
SE
6031 struct inode *inode;
6032 dev_t dev;
3ea2f2b9 6033
2c42cfbf 6034 buf = kmalloc(PATH_MAX, GFP_KERNEL);
0a4a9391 6035 if (!buf) {
c7e548b4
ON
6036 name = "//enomem";
6037 goto cpy_name;
0a4a9391 6038 }
413ee3b4 6039 /*
3ea2f2b9 6040 * d_path() works from the end of the rb backwards, so we
413ee3b4
AB
6041 * need to add enough zero bytes after the string to handle
6042 * the 64bit alignment we do later.
6043 */
9bf39ab2 6044 name = file_path(file, buf, PATH_MAX - sizeof(u64));
0a4a9391 6045 if (IS_ERR(name)) {
c7e548b4
ON
6046 name = "//toolong";
6047 goto cpy_name;
0a4a9391 6048 }
13d7a241
SE
6049 inode = file_inode(vma->vm_file);
6050 dev = inode->i_sb->s_dev;
6051 ino = inode->i_ino;
6052 gen = inode->i_generation;
6053 maj = MAJOR(dev);
6054 min = MINOR(dev);
f972eb63
PZ
6055
6056 if (vma->vm_flags & VM_READ)
6057 prot |= PROT_READ;
6058 if (vma->vm_flags & VM_WRITE)
6059 prot |= PROT_WRITE;
6060 if (vma->vm_flags & VM_EXEC)
6061 prot |= PROT_EXEC;
6062
6063 if (vma->vm_flags & VM_MAYSHARE)
6064 flags = MAP_SHARED;
6065 else
6066 flags = MAP_PRIVATE;
6067
6068 if (vma->vm_flags & VM_DENYWRITE)
6069 flags |= MAP_DENYWRITE;
6070 if (vma->vm_flags & VM_MAYEXEC)
6071 flags |= MAP_EXECUTABLE;
6072 if (vma->vm_flags & VM_LOCKED)
6073 flags |= MAP_LOCKED;
6074 if (vma->vm_flags & VM_HUGETLB)
6075 flags |= MAP_HUGETLB;
6076
c7e548b4 6077 goto got_name;
0a4a9391 6078 } else {
fbe26abe
JO
6079 if (vma->vm_ops && vma->vm_ops->name) {
6080 name = (char *) vma->vm_ops->name(vma);
6081 if (name)
6082 goto cpy_name;
6083 }
6084
2c42cfbf 6085 name = (char *)arch_vma_name(vma);
c7e548b4
ON
6086 if (name)
6087 goto cpy_name;
089dd79d 6088
32c5fb7e 6089 if (vma->vm_start <= vma->vm_mm->start_brk &&
3af9e859 6090 vma->vm_end >= vma->vm_mm->brk) {
c7e548b4
ON
6091 name = "[heap]";
6092 goto cpy_name;
32c5fb7e
ON
6093 }
6094 if (vma->vm_start <= vma->vm_mm->start_stack &&
3af9e859 6095 vma->vm_end >= vma->vm_mm->start_stack) {
c7e548b4
ON
6096 name = "[stack]";
6097 goto cpy_name;
089dd79d
PZ
6098 }
6099
c7e548b4
ON
6100 name = "//anon";
6101 goto cpy_name;
0a4a9391
PZ
6102 }
6103
c7e548b4
ON
6104cpy_name:
6105 strlcpy(tmp, name, sizeof(tmp));
6106 name = tmp;
0a4a9391 6107got_name:
2c42cfbf
PZ
6108 /*
6109 * Since our buffer works in 8 byte units we need to align our string
6110 * size to a multiple of 8. However, we must guarantee the tail end is
6111 * zero'd out to avoid leaking random bits to userspace.
6112 */
6113 size = strlen(name)+1;
6114 while (!IS_ALIGNED(size, sizeof(u64)))
6115 name[size++] = '\0';
0a4a9391
PZ
6116
6117 mmap_event->file_name = name;
6118 mmap_event->file_size = size;
13d7a241
SE
6119 mmap_event->maj = maj;
6120 mmap_event->min = min;
6121 mmap_event->ino = ino;
6122 mmap_event->ino_generation = gen;
f972eb63
PZ
6123 mmap_event->prot = prot;
6124 mmap_event->flags = flags;
0a4a9391 6125
2fe85427
SE
6126 if (!(vma->vm_flags & VM_EXEC))
6127 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
6128
cdd6c482 6129 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
0a4a9391 6130
67516844 6131 perf_event_aux(perf_event_mmap_output,
52d857a8
JO
6132 mmap_event,
6133 NULL);
665c2142 6134
0a4a9391
PZ
6135 kfree(buf);
6136}
6137
3af9e859 6138void perf_event_mmap(struct vm_area_struct *vma)
0a4a9391 6139{
9ee318a7
PZ
6140 struct perf_mmap_event mmap_event;
6141
cdd6c482 6142 if (!atomic_read(&nr_mmap_events))
9ee318a7
PZ
6143 return;
6144
6145 mmap_event = (struct perf_mmap_event){
089dd79d 6146 .vma = vma,
573402db
PZ
6147 /* .file_name */
6148 /* .file_size */
cdd6c482 6149 .event_id = {
573402db 6150 .header = {
cdd6c482 6151 .type = PERF_RECORD_MMAP,
39447b38 6152 .misc = PERF_RECORD_MISC_USER,
573402db
PZ
6153 /* .size */
6154 },
6155 /* .pid */
6156 /* .tid */
089dd79d
PZ
6157 .start = vma->vm_start,
6158 .len = vma->vm_end - vma->vm_start,
3a0304e9 6159 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
0a4a9391 6160 },
13d7a241
SE
6161 /* .maj (attr_mmap2 only) */
6162 /* .min (attr_mmap2 only) */
6163 /* .ino (attr_mmap2 only) */
6164 /* .ino_generation (attr_mmap2 only) */
f972eb63
PZ
6165 /* .prot (attr_mmap2 only) */
6166 /* .flags (attr_mmap2 only) */
0a4a9391
PZ
6167 };
6168
cdd6c482 6169 perf_event_mmap_event(&mmap_event);
0a4a9391
PZ
6170}
6171
68db7e98
AS
6172void perf_event_aux_event(struct perf_event *event, unsigned long head,
6173 unsigned long size, u64 flags)
6174{
6175 struct perf_output_handle handle;
6176 struct perf_sample_data sample;
6177 struct perf_aux_event {
6178 struct perf_event_header header;
6179 u64 offset;
6180 u64 size;
6181 u64 flags;
6182 } rec = {
6183 .header = {
6184 .type = PERF_RECORD_AUX,
6185 .misc = 0,
6186 .size = sizeof(rec),
6187 },
6188 .offset = head,
6189 .size = size,
6190 .flags = flags,
6191 };
6192 int ret;
6193
6194 perf_event_header__init_id(&rec.header, &sample, event);
6195 ret = perf_output_begin(&handle, event, rec.header.size);
6196
6197 if (ret)
6198 return;
6199
6200 perf_output_put(&handle, rec);
6201 perf_event__output_id_sample(event, &handle, &sample);
6202
6203 perf_output_end(&handle);
6204}
6205
f38b0dbb
KL
6206/*
6207 * Lost/dropped samples logging
6208 */
6209void perf_log_lost_samples(struct perf_event *event, u64 lost)
6210{
6211 struct perf_output_handle handle;
6212 struct perf_sample_data sample;
6213 int ret;
6214
6215 struct {
6216 struct perf_event_header header;
6217 u64 lost;
6218 } lost_samples_event = {
6219 .header = {
6220 .type = PERF_RECORD_LOST_SAMPLES,
6221 .misc = 0,
6222 .size = sizeof(lost_samples_event),
6223 },
6224 .lost = lost,
6225 };
6226
6227 perf_event_header__init_id(&lost_samples_event.header, &sample, event);
6228
6229 ret = perf_output_begin(&handle, event,
6230 lost_samples_event.header.size);
6231 if (ret)
6232 return;
6233
6234 perf_output_put(&handle, lost_samples_event);
6235 perf_event__output_id_sample(event, &handle, &sample);
6236 perf_output_end(&handle);
6237}
6238
45ac1403
AH
6239/*
6240 * context_switch tracking
6241 */
6242
6243struct perf_switch_event {
6244 struct task_struct *task;
6245 struct task_struct *next_prev;
6246
6247 struct {
6248 struct perf_event_header header;
6249 u32 next_prev_pid;
6250 u32 next_prev_tid;
6251 } event_id;
6252};
6253
6254static int perf_event_switch_match(struct perf_event *event)
6255{
6256 return event->attr.context_switch;
6257}
6258
6259static void perf_event_switch_output(struct perf_event *event, void *data)
6260{
6261 struct perf_switch_event *se = data;
6262 struct perf_output_handle handle;
6263 struct perf_sample_data sample;
6264 int ret;
6265
6266 if (!perf_event_switch_match(event))
6267 return;
6268
6269 /* Only CPU-wide events are allowed to see next/prev pid/tid */
6270 if (event->ctx->task) {
6271 se->event_id.header.type = PERF_RECORD_SWITCH;
6272 se->event_id.header.size = sizeof(se->event_id.header);
6273 } else {
6274 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
6275 se->event_id.header.size = sizeof(se->event_id);
6276 se->event_id.next_prev_pid =
6277 perf_event_pid(event, se->next_prev);
6278 se->event_id.next_prev_tid =
6279 perf_event_tid(event, se->next_prev);
6280 }
6281
6282 perf_event_header__init_id(&se->event_id.header, &sample, event);
6283
6284 ret = perf_output_begin(&handle, event, se->event_id.header.size);
6285 if (ret)
6286 return;
6287
6288 if (event->ctx->task)
6289 perf_output_put(&handle, se->event_id.header);
6290 else
6291 perf_output_put(&handle, se->event_id);
6292
6293 perf_event__output_id_sample(event, &handle, &sample);
6294
6295 perf_output_end(&handle);
6296}
6297
6298static void perf_event_switch(struct task_struct *task,
6299 struct task_struct *next_prev, bool sched_in)
6300{
6301 struct perf_switch_event switch_event;
6302
6303 /* N.B. caller checks nr_switch_events != 0 */
6304
6305 switch_event = (struct perf_switch_event){
6306 .task = task,
6307 .next_prev = next_prev,
6308 .event_id = {
6309 .header = {
6310 /* .type */
6311 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
6312 /* .size */
6313 },
6314 /* .next_prev_pid */
6315 /* .next_prev_tid */
6316 },
6317 };
6318
6319 perf_event_aux(perf_event_switch_output,
6320 &switch_event,
6321 NULL);
6322}
6323
a78ac325
PZ
6324/*
6325 * IRQ throttle logging
6326 */
6327
cdd6c482 6328static void perf_log_throttle(struct perf_event *event, int enable)
a78ac325
PZ
6329{
6330 struct perf_output_handle handle;
c980d109 6331 struct perf_sample_data sample;
a78ac325
PZ
6332 int ret;
6333
6334 struct {
6335 struct perf_event_header header;
6336 u64 time;
cca3f454 6337 u64 id;
7f453c24 6338 u64 stream_id;
a78ac325
PZ
6339 } throttle_event = {
6340 .header = {
cdd6c482 6341 .type = PERF_RECORD_THROTTLE,
a78ac325
PZ
6342 .misc = 0,
6343 .size = sizeof(throttle_event),
6344 },
34f43927 6345 .time = perf_event_clock(event),
cdd6c482
IM
6346 .id = primary_event_id(event),
6347 .stream_id = event->id,
a78ac325
PZ
6348 };
6349
966ee4d6 6350 if (enable)
cdd6c482 6351 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
966ee4d6 6352
c980d109
ACM
6353 perf_event_header__init_id(&throttle_event.header, &sample, event);
6354
6355 ret = perf_output_begin(&handle, event,
a7ac67ea 6356 throttle_event.header.size);
a78ac325
PZ
6357 if (ret)
6358 return;
6359
6360 perf_output_put(&handle, throttle_event);
c980d109 6361 perf_event__output_id_sample(event, &handle, &sample);
a78ac325
PZ
6362 perf_output_end(&handle);
6363}
6364
ec0d7729
AS
6365static void perf_log_itrace_start(struct perf_event *event)
6366{
6367 struct perf_output_handle handle;
6368 struct perf_sample_data sample;
6369 struct perf_aux_event {
6370 struct perf_event_header header;
6371 u32 pid;
6372 u32 tid;
6373 } rec;
6374 int ret;
6375
6376 if (event->parent)
6377 event = event->parent;
6378
6379 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
6380 event->hw.itrace_started)
6381 return;
6382
ec0d7729
AS
6383 rec.header.type = PERF_RECORD_ITRACE_START;
6384 rec.header.misc = 0;
6385 rec.header.size = sizeof(rec);
6386 rec.pid = perf_event_pid(event, current);
6387 rec.tid = perf_event_tid(event, current);
6388
6389 perf_event_header__init_id(&rec.header, &sample, event);
6390 ret = perf_output_begin(&handle, event, rec.header.size);
6391
6392 if (ret)
6393 return;
6394
6395 perf_output_put(&handle, rec);
6396 perf_event__output_id_sample(event, &handle, &sample);
6397
6398 perf_output_end(&handle);
6399}
6400
f6c7d5fe 6401/*
cdd6c482 6402 * Generic event overflow handling, sampling.
f6c7d5fe
PZ
6403 */
6404
a8b0ca17 6405static int __perf_event_overflow(struct perf_event *event,
5622f295
MM
6406 int throttle, struct perf_sample_data *data,
6407 struct pt_regs *regs)
f6c7d5fe 6408{
cdd6c482
IM
6409 int events = atomic_read(&event->event_limit);
6410 struct hw_perf_event *hwc = &event->hw;
e050e3f0 6411 u64 seq;
79f14641
PZ
6412 int ret = 0;
6413
96398826
PZ
6414 /*
6415 * Non-sampling counters might still use the PMI to fold short
6416 * hardware counters, ignore those.
6417 */
6418 if (unlikely(!is_sampling_event(event)))
6419 return 0;
6420
e050e3f0
SE
6421 seq = __this_cpu_read(perf_throttled_seq);
6422 if (seq != hwc->interrupts_seq) {
6423 hwc->interrupts_seq = seq;
6424 hwc->interrupts = 1;
6425 } else {
6426 hwc->interrupts++;
6427 if (unlikely(throttle
6428 && hwc->interrupts >= max_samples_per_tick)) {
6429 __this_cpu_inc(perf_throttled_count);
163ec435
PZ
6430 hwc->interrupts = MAX_INTERRUPTS;
6431 perf_log_throttle(event, 0);
d84153d6 6432 tick_nohz_full_kick();
a78ac325
PZ
6433 ret = 1;
6434 }
e050e3f0 6435 }
60db5e09 6436
cdd6c482 6437 if (event->attr.freq) {
def0a9b2 6438 u64 now = perf_clock();
abd50713 6439 s64 delta = now - hwc->freq_time_stamp;
bd2b5b12 6440
abd50713 6441 hwc->freq_time_stamp = now;
bd2b5b12 6442
abd50713 6443 if (delta > 0 && delta < 2*TICK_NSEC)
f39d47ff 6444 perf_adjust_period(event, delta, hwc->last_period, true);
bd2b5b12
PZ
6445 }
6446
2023b359
PZ
6447 /*
6448 * XXX event_limit might not quite work as expected on inherited
cdd6c482 6449 * events
2023b359
PZ
6450 */
6451
cdd6c482
IM
6452 event->pending_kill = POLL_IN;
6453 if (events && atomic_dec_and_test(&event->event_limit)) {
79f14641 6454 ret = 1;
cdd6c482 6455 event->pending_kill = POLL_HUP;
a8b0ca17
PZ
6456 event->pending_disable = 1;
6457 irq_work_queue(&event->pending);
79f14641
PZ
6458 }
6459
453f19ee 6460 if (event->overflow_handler)
a8b0ca17 6461 event->overflow_handler(event, data, regs);
453f19ee 6462 else
a8b0ca17 6463 perf_event_output(event, data, regs);
453f19ee 6464
fed66e2c 6465 if (*perf_event_fasync(event) && event->pending_kill) {
a8b0ca17
PZ
6466 event->pending_wakeup = 1;
6467 irq_work_queue(&event->pending);
f506b3dc
PZ
6468 }
6469
79f14641 6470 return ret;
f6c7d5fe
PZ
6471}
6472
a8b0ca17 6473int perf_event_overflow(struct perf_event *event,
5622f295
MM
6474 struct perf_sample_data *data,
6475 struct pt_regs *regs)
850bc73f 6476{
a8b0ca17 6477 return __perf_event_overflow(event, 1, data, regs);
850bc73f
PZ
6478}
6479
15dbf27c 6480/*
cdd6c482 6481 * Generic software event infrastructure
15dbf27c
PZ
6482 */
6483
b28ab83c
PZ
6484struct swevent_htable {
6485 struct swevent_hlist *swevent_hlist;
6486 struct mutex hlist_mutex;
6487 int hlist_refcount;
6488
6489 /* Recursion avoidance in each contexts */
6490 int recursion[PERF_NR_CONTEXTS];
39af6b16
JO
6491
6492 /* Keeps track of cpu being initialized/exited */
6493 bool online;
b28ab83c
PZ
6494};
6495
6496static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
6497
7b4b6658 6498/*
cdd6c482
IM
6499 * We directly increment event->count and keep a second value in
6500 * event->hw.period_left to count intervals. This period event
7b4b6658
PZ
6501 * is kept in the range [-sample_period, 0] so that we can use the
6502 * sign as trigger.
6503 */
6504
ab573844 6505u64 perf_swevent_set_period(struct perf_event *event)
15dbf27c 6506{
cdd6c482 6507 struct hw_perf_event *hwc = &event->hw;
7b4b6658
PZ
6508 u64 period = hwc->last_period;
6509 u64 nr, offset;
6510 s64 old, val;
6511
6512 hwc->last_period = hwc->sample_period;
15dbf27c
PZ
6513
6514again:
e7850595 6515 old = val = local64_read(&hwc->period_left);
7b4b6658
PZ
6516 if (val < 0)
6517 return 0;
15dbf27c 6518
7b4b6658
PZ
6519 nr = div64_u64(period + val, period);
6520 offset = nr * period;
6521 val -= offset;
e7850595 6522 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7b4b6658 6523 goto again;
15dbf27c 6524
7b4b6658 6525 return nr;
15dbf27c
PZ
6526}
6527
0cff784a 6528static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
a8b0ca17 6529 struct perf_sample_data *data,
5622f295 6530 struct pt_regs *regs)
15dbf27c 6531{
cdd6c482 6532 struct hw_perf_event *hwc = &event->hw;
850bc73f 6533 int throttle = 0;
15dbf27c 6534
0cff784a
PZ
6535 if (!overflow)
6536 overflow = perf_swevent_set_period(event);
15dbf27c 6537
7b4b6658
PZ
6538 if (hwc->interrupts == MAX_INTERRUPTS)
6539 return;
15dbf27c 6540
7b4b6658 6541 for (; overflow; overflow--) {
a8b0ca17 6542 if (__perf_event_overflow(event, throttle,
5622f295 6543 data, regs)) {
7b4b6658
PZ
6544 /*
6545 * We inhibit the overflow from happening when
6546 * hwc->interrupts == MAX_INTERRUPTS.
6547 */
6548 break;
6549 }
cf450a73 6550 throttle = 1;
7b4b6658 6551 }
15dbf27c
PZ
6552}
6553
a4eaf7f1 6554static void perf_swevent_event(struct perf_event *event, u64 nr,
a8b0ca17 6555 struct perf_sample_data *data,
5622f295 6556 struct pt_regs *regs)
7b4b6658 6557{
cdd6c482 6558 struct hw_perf_event *hwc = &event->hw;
d6d020e9 6559
e7850595 6560 local64_add(nr, &event->count);
d6d020e9 6561
0cff784a
PZ
6562 if (!regs)
6563 return;
6564
6c7e550f 6565 if (!is_sampling_event(event))
7b4b6658 6566 return;
d6d020e9 6567
5d81e5cf
AV
6568 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
6569 data->period = nr;
6570 return perf_swevent_overflow(event, 1, data, regs);
6571 } else
6572 data->period = event->hw.last_period;
6573
0cff784a 6574 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
a8b0ca17 6575 return perf_swevent_overflow(event, 1, data, regs);
0cff784a 6576
e7850595 6577 if (local64_add_negative(nr, &hwc->period_left))
7b4b6658 6578 return;
df1a132b 6579
a8b0ca17 6580 perf_swevent_overflow(event, 0, data, regs);
d6d020e9
PZ
6581}
6582
f5ffe02e
FW
6583static int perf_exclude_event(struct perf_event *event,
6584 struct pt_regs *regs)
6585{
a4eaf7f1 6586 if (event->hw.state & PERF_HES_STOPPED)
91b2f482 6587 return 1;
a4eaf7f1 6588
f5ffe02e
FW
6589 if (regs) {
6590 if (event->attr.exclude_user && user_mode(regs))
6591 return 1;
6592
6593 if (event->attr.exclude_kernel && !user_mode(regs))
6594 return 1;
6595 }
6596
6597 return 0;
6598}
6599
cdd6c482 6600static int perf_swevent_match(struct perf_event *event,
1c432d89 6601 enum perf_type_id type,
6fb2915d
LZ
6602 u32 event_id,
6603 struct perf_sample_data *data,
6604 struct pt_regs *regs)
15dbf27c 6605{
cdd6c482 6606 if (event->attr.type != type)
a21ca2ca 6607 return 0;
f5ffe02e 6608
cdd6c482 6609 if (event->attr.config != event_id)
15dbf27c
PZ
6610 return 0;
6611
f5ffe02e
FW
6612 if (perf_exclude_event(event, regs))
6613 return 0;
15dbf27c
PZ
6614
6615 return 1;
6616}
6617
76e1d904
FW
6618static inline u64 swevent_hash(u64 type, u32 event_id)
6619{
6620 u64 val = event_id | (type << 32);
6621
6622 return hash_64(val, SWEVENT_HLIST_BITS);
6623}
6624
49f135ed
FW
6625static inline struct hlist_head *
6626__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
76e1d904 6627{
49f135ed
FW
6628 u64 hash = swevent_hash(type, event_id);
6629
6630 return &hlist->heads[hash];
6631}
76e1d904 6632
49f135ed
FW
6633/* For the read side: events when they trigger */
6634static inline struct hlist_head *
b28ab83c 6635find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
49f135ed
FW
6636{
6637 struct swevent_hlist *hlist;
76e1d904 6638
b28ab83c 6639 hlist = rcu_dereference(swhash->swevent_hlist);
76e1d904
FW
6640 if (!hlist)
6641 return NULL;
6642
49f135ed
FW
6643 return __find_swevent_head(hlist, type, event_id);
6644}
6645
6646/* For the event head insertion and removal in the hlist */
6647static inline struct hlist_head *
b28ab83c 6648find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
49f135ed
FW
6649{
6650 struct swevent_hlist *hlist;
6651 u32 event_id = event->attr.config;
6652 u64 type = event->attr.type;
6653
6654 /*
6655 * Event scheduling is always serialized against hlist allocation
6656 * and release. Which makes the protected version suitable here.
6657 * The context lock guarantees that.
6658 */
b28ab83c 6659 hlist = rcu_dereference_protected(swhash->swevent_hlist,
49f135ed
FW
6660 lockdep_is_held(&event->ctx->lock));
6661 if (!hlist)
6662 return NULL;
6663
6664 return __find_swevent_head(hlist, type, event_id);
76e1d904
FW
6665}
6666
6667static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
a8b0ca17 6668 u64 nr,
76e1d904
FW
6669 struct perf_sample_data *data,
6670 struct pt_regs *regs)
15dbf27c 6671{
4a32fea9 6672 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 6673 struct perf_event *event;
76e1d904 6674 struct hlist_head *head;
15dbf27c 6675
76e1d904 6676 rcu_read_lock();
b28ab83c 6677 head = find_swevent_head_rcu(swhash, type, event_id);
76e1d904
FW
6678 if (!head)
6679 goto end;
6680
b67bfe0d 6681 hlist_for_each_entry_rcu(event, head, hlist_entry) {
6fb2915d 6682 if (perf_swevent_match(event, type, event_id, data, regs))
a8b0ca17 6683 perf_swevent_event(event, nr, data, regs);
15dbf27c 6684 }
76e1d904
FW
6685end:
6686 rcu_read_unlock();
15dbf27c
PZ
6687}
6688
86038c5e
PZI
6689DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
6690
4ed7c92d 6691int perf_swevent_get_recursion_context(void)
96f6d444 6692{
4a32fea9 6693 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
96f6d444 6694
b28ab83c 6695 return get_recursion_context(swhash->recursion);
96f6d444 6696}
645e8cc0 6697EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
96f6d444 6698
fa9f90be 6699inline void perf_swevent_put_recursion_context(int rctx)
15dbf27c 6700{
4a32fea9 6701 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
927c7a9e 6702
b28ab83c 6703 put_recursion_context(swhash->recursion, rctx);
ce71b9df 6704}
15dbf27c 6705
86038c5e 6706void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
b8e83514 6707{
a4234bfc 6708 struct perf_sample_data data;
4ed7c92d 6709
86038c5e 6710 if (WARN_ON_ONCE(!regs))
4ed7c92d 6711 return;
a4234bfc 6712
fd0d000b 6713 perf_sample_data_init(&data, addr, 0);
a8b0ca17 6714 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
86038c5e
PZI
6715}
6716
6717void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6718{
6719 int rctx;
6720
6721 preempt_disable_notrace();
6722 rctx = perf_swevent_get_recursion_context();
6723 if (unlikely(rctx < 0))
6724 goto fail;
6725
6726 ___perf_sw_event(event_id, nr, regs, addr);
4ed7c92d
PZ
6727
6728 perf_swevent_put_recursion_context(rctx);
86038c5e 6729fail:
1c024eca 6730 preempt_enable_notrace();
b8e83514
PZ
6731}
6732
cdd6c482 6733static void perf_swevent_read(struct perf_event *event)
15dbf27c 6734{
15dbf27c
PZ
6735}
6736
a4eaf7f1 6737static int perf_swevent_add(struct perf_event *event, int flags)
15dbf27c 6738{
4a32fea9 6739 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 6740 struct hw_perf_event *hwc = &event->hw;
76e1d904
FW
6741 struct hlist_head *head;
6742
6c7e550f 6743 if (is_sampling_event(event)) {
7b4b6658 6744 hwc->last_period = hwc->sample_period;
cdd6c482 6745 perf_swevent_set_period(event);
7b4b6658 6746 }
76e1d904 6747
a4eaf7f1
PZ
6748 hwc->state = !(flags & PERF_EF_START);
6749
b28ab83c 6750 head = find_swevent_head(swhash, event);
39af6b16
JO
6751 if (!head) {
6752 /*
6753 * We can race with cpu hotplug code. Do not
6754 * WARN if the cpu just got unplugged.
6755 */
6756 WARN_ON_ONCE(swhash->online);
76e1d904 6757 return -EINVAL;
39af6b16 6758 }
76e1d904
FW
6759
6760 hlist_add_head_rcu(&event->hlist_entry, head);
6a694a60 6761 perf_event_update_userpage(event);
76e1d904 6762
15dbf27c
PZ
6763 return 0;
6764}
6765
a4eaf7f1 6766static void perf_swevent_del(struct perf_event *event, int flags)
15dbf27c 6767{
76e1d904 6768 hlist_del_rcu(&event->hlist_entry);
15dbf27c
PZ
6769}
6770
a4eaf7f1 6771static void perf_swevent_start(struct perf_event *event, int flags)
5c92d124 6772{
a4eaf7f1 6773 event->hw.state = 0;
d6d020e9 6774}
aa9c4c0f 6775
a4eaf7f1 6776static void perf_swevent_stop(struct perf_event *event, int flags)
d6d020e9 6777{
a4eaf7f1 6778 event->hw.state = PERF_HES_STOPPED;
bae43c99
IM
6779}
6780
49f135ed
FW
6781/* Deref the hlist from the update side */
6782static inline struct swevent_hlist *
b28ab83c 6783swevent_hlist_deref(struct swevent_htable *swhash)
49f135ed 6784{
b28ab83c
PZ
6785 return rcu_dereference_protected(swhash->swevent_hlist,
6786 lockdep_is_held(&swhash->hlist_mutex));
49f135ed
FW
6787}
6788
b28ab83c 6789static void swevent_hlist_release(struct swevent_htable *swhash)
76e1d904 6790{
b28ab83c 6791 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
76e1d904 6792
49f135ed 6793 if (!hlist)
76e1d904
FW
6794 return;
6795
70691d4a 6796 RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
fa4bbc4c 6797 kfree_rcu(hlist, rcu_head);
76e1d904
FW
6798}
6799
6800static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
6801{
b28ab83c 6802 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904 6803
b28ab83c 6804 mutex_lock(&swhash->hlist_mutex);
76e1d904 6805
b28ab83c
PZ
6806 if (!--swhash->hlist_refcount)
6807 swevent_hlist_release(swhash);
76e1d904 6808
b28ab83c 6809 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
6810}
6811
6812static void swevent_hlist_put(struct perf_event *event)
6813{
6814 int cpu;
6815
76e1d904
FW
6816 for_each_possible_cpu(cpu)
6817 swevent_hlist_put_cpu(event, cpu);
6818}
6819
6820static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
6821{
b28ab83c 6822 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904
FW
6823 int err = 0;
6824
b28ab83c 6825 mutex_lock(&swhash->hlist_mutex);
76e1d904 6826
b28ab83c 6827 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
76e1d904
FW
6828 struct swevent_hlist *hlist;
6829
6830 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
6831 if (!hlist) {
6832 err = -ENOMEM;
6833 goto exit;
6834 }
b28ab83c 6835 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 6836 }
b28ab83c 6837 swhash->hlist_refcount++;
9ed6060d 6838exit:
b28ab83c 6839 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
6840
6841 return err;
6842}
6843
6844static int swevent_hlist_get(struct perf_event *event)
6845{
6846 int err;
6847 int cpu, failed_cpu;
6848
76e1d904
FW
6849 get_online_cpus();
6850 for_each_possible_cpu(cpu) {
6851 err = swevent_hlist_get_cpu(event, cpu);
6852 if (err) {
6853 failed_cpu = cpu;
6854 goto fail;
6855 }
6856 }
6857 put_online_cpus();
6858
6859 return 0;
9ed6060d 6860fail:
76e1d904
FW
6861 for_each_possible_cpu(cpu) {
6862 if (cpu == failed_cpu)
6863 break;
6864 swevent_hlist_put_cpu(event, cpu);
6865 }
6866
6867 put_online_cpus();
6868 return err;
6869}
6870
c5905afb 6871struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
95476b64 6872
b0a873eb
PZ
6873static void sw_perf_event_destroy(struct perf_event *event)
6874{
6875 u64 event_id = event->attr.config;
95476b64 6876
b0a873eb
PZ
6877 WARN_ON(event->parent);
6878
c5905afb 6879 static_key_slow_dec(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
6880 swevent_hlist_put(event);
6881}
6882
6883static int perf_swevent_init(struct perf_event *event)
6884{
8176cced 6885 u64 event_id = event->attr.config;
b0a873eb
PZ
6886
6887 if (event->attr.type != PERF_TYPE_SOFTWARE)
6888 return -ENOENT;
6889
2481c5fa
SE
6890 /*
6891 * no branch sampling for software events
6892 */
6893 if (has_branch_stack(event))
6894 return -EOPNOTSUPP;
6895
b0a873eb
PZ
6896 switch (event_id) {
6897 case PERF_COUNT_SW_CPU_CLOCK:
6898 case PERF_COUNT_SW_TASK_CLOCK:
6899 return -ENOENT;
6900
6901 default:
6902 break;
6903 }
6904
ce677831 6905 if (event_id >= PERF_COUNT_SW_MAX)
b0a873eb
PZ
6906 return -ENOENT;
6907
6908 if (!event->parent) {
6909 int err;
6910
6911 err = swevent_hlist_get(event);
6912 if (err)
6913 return err;
6914
c5905afb 6915 static_key_slow_inc(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
6916 event->destroy = sw_perf_event_destroy;
6917 }
6918
6919 return 0;
6920}
6921
6922static struct pmu perf_swevent = {
89a1e187 6923 .task_ctx_nr = perf_sw_context,
95476b64 6924
34f43927
PZ
6925 .capabilities = PERF_PMU_CAP_NO_NMI,
6926
b0a873eb 6927 .event_init = perf_swevent_init,
a4eaf7f1
PZ
6928 .add = perf_swevent_add,
6929 .del = perf_swevent_del,
6930 .start = perf_swevent_start,
6931 .stop = perf_swevent_stop,
1c024eca 6932 .read = perf_swevent_read,
1c024eca
PZ
6933};
6934
b0a873eb
PZ
6935#ifdef CONFIG_EVENT_TRACING
6936
1c024eca
PZ
6937static int perf_tp_filter_match(struct perf_event *event,
6938 struct perf_sample_data *data)
6939{
6940 void *record = data->raw->data;
6941
b71b437e
PZ
6942 /* only top level events have filters set */
6943 if (event->parent)
6944 event = event->parent;
6945
1c024eca
PZ
6946 if (likely(!event->filter) || filter_match_preds(event->filter, record))
6947 return 1;
6948 return 0;
6949}
6950
6951static int perf_tp_event_match(struct perf_event *event,
6952 struct perf_sample_data *data,
6953 struct pt_regs *regs)
6954{
a0f7d0f7
FW
6955 if (event->hw.state & PERF_HES_STOPPED)
6956 return 0;
580d607c
PZ
6957 /*
6958 * All tracepoints are from kernel-space.
6959 */
6960 if (event->attr.exclude_kernel)
1c024eca
PZ
6961 return 0;
6962
6963 if (!perf_tp_filter_match(event, data))
6964 return 0;
6965
6966 return 1;
6967}
6968
6969void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
e6dab5ff
AV
6970 struct pt_regs *regs, struct hlist_head *head, int rctx,
6971 struct task_struct *task)
95476b64
FW
6972{
6973 struct perf_sample_data data;
1c024eca 6974 struct perf_event *event;
1c024eca 6975
95476b64
FW
6976 struct perf_raw_record raw = {
6977 .size = entry_size,
6978 .data = record,
6979 };
6980
fd0d000b 6981 perf_sample_data_init(&data, addr, 0);
95476b64
FW
6982 data.raw = &raw;
6983
b67bfe0d 6984 hlist_for_each_entry_rcu(event, head, hlist_entry) {
1c024eca 6985 if (perf_tp_event_match(event, &data, regs))
a8b0ca17 6986 perf_swevent_event(event, count, &data, regs);
4f41c013 6987 }
ecc55f84 6988
e6dab5ff
AV
6989 /*
6990 * If we got specified a target task, also iterate its context and
6991 * deliver this event there too.
6992 */
6993 if (task && task != current) {
6994 struct perf_event_context *ctx;
6995 struct trace_entry *entry = record;
6996
6997 rcu_read_lock();
6998 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
6999 if (!ctx)
7000 goto unlock;
7001
7002 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7003 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7004 continue;
7005 if (event->attr.config != entry->type)
7006 continue;
7007 if (perf_tp_event_match(event, &data, regs))
7008 perf_swevent_event(event, count, &data, regs);
7009 }
7010unlock:
7011 rcu_read_unlock();
7012 }
7013
ecc55f84 7014 perf_swevent_put_recursion_context(rctx);
95476b64
FW
7015}
7016EXPORT_SYMBOL_GPL(perf_tp_event);
7017
cdd6c482 7018static void tp_perf_event_destroy(struct perf_event *event)
e077df4f 7019{
1c024eca 7020 perf_trace_destroy(event);
e077df4f
PZ
7021}
7022
b0a873eb 7023static int perf_tp_event_init(struct perf_event *event)
e077df4f 7024{
76e1d904
FW
7025 int err;
7026
b0a873eb
PZ
7027 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7028 return -ENOENT;
7029
2481c5fa
SE
7030 /*
7031 * no branch sampling for tracepoint events
7032 */
7033 if (has_branch_stack(event))
7034 return -EOPNOTSUPP;
7035
1c024eca
PZ
7036 err = perf_trace_init(event);
7037 if (err)
b0a873eb 7038 return err;
e077df4f 7039
cdd6c482 7040 event->destroy = tp_perf_event_destroy;
e077df4f 7041
b0a873eb
PZ
7042 return 0;
7043}
7044
7045static struct pmu perf_tracepoint = {
89a1e187
PZ
7046 .task_ctx_nr = perf_sw_context,
7047
b0a873eb 7048 .event_init = perf_tp_event_init,
a4eaf7f1
PZ
7049 .add = perf_trace_add,
7050 .del = perf_trace_del,
7051 .start = perf_swevent_start,
7052 .stop = perf_swevent_stop,
b0a873eb 7053 .read = perf_swevent_read,
b0a873eb
PZ
7054};
7055
7056static inline void perf_tp_register(void)
7057{
2e80a82a 7058 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
e077df4f 7059}
6fb2915d
LZ
7060
7061static int perf_event_set_filter(struct perf_event *event, void __user *arg)
7062{
7063 char *filter_str;
7064 int ret;
7065
7066 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7067 return -EINVAL;
7068
7069 filter_str = strndup_user(arg, PAGE_SIZE);
7070 if (IS_ERR(filter_str))
7071 return PTR_ERR(filter_str);
7072
7073 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
7074
7075 kfree(filter_str);
7076 return ret;
7077}
7078
7079static void perf_event_free_filter(struct perf_event *event)
7080{
7081 ftrace_profile_free_filter(event);
7082}
7083
2541517c
AS
7084static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7085{
7086 struct bpf_prog *prog;
7087
7088 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7089 return -EINVAL;
7090
7091 if (event->tp_event->prog)
7092 return -EEXIST;
7093
04a22fae
WN
7094 if (!(event->tp_event->flags & TRACE_EVENT_FL_UKPROBE))
7095 /* bpf programs can only be attached to u/kprobes */
2541517c
AS
7096 return -EINVAL;
7097
7098 prog = bpf_prog_get(prog_fd);
7099 if (IS_ERR(prog))
7100 return PTR_ERR(prog);
7101
6c373ca8 7102 if (prog->type != BPF_PROG_TYPE_KPROBE) {
2541517c
AS
7103 /* valid fd, but invalid bpf program type */
7104 bpf_prog_put(prog);
7105 return -EINVAL;
7106 }
7107
7108 event->tp_event->prog = prog;
7109
7110 return 0;
7111}
7112
7113static void perf_event_free_bpf_prog(struct perf_event *event)
7114{
7115 struct bpf_prog *prog;
7116
7117 if (!event->tp_event)
7118 return;
7119
7120 prog = event->tp_event->prog;
7121 if (prog) {
7122 event->tp_event->prog = NULL;
7123 bpf_prog_put(prog);
7124 }
7125}
7126
e077df4f 7127#else
6fb2915d 7128
b0a873eb 7129static inline void perf_tp_register(void)
e077df4f 7130{
e077df4f 7131}
6fb2915d
LZ
7132
7133static int perf_event_set_filter(struct perf_event *event, void __user *arg)
7134{
7135 return -ENOENT;
7136}
7137
7138static void perf_event_free_filter(struct perf_event *event)
7139{
7140}
7141
2541517c
AS
7142static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7143{
7144 return -ENOENT;
7145}
7146
7147static void perf_event_free_bpf_prog(struct perf_event *event)
7148{
7149}
07b139c8 7150#endif /* CONFIG_EVENT_TRACING */
e077df4f 7151
24f1e32c 7152#ifdef CONFIG_HAVE_HW_BREAKPOINT
f5ffe02e 7153void perf_bp_event(struct perf_event *bp, void *data)
24f1e32c 7154{
f5ffe02e
FW
7155 struct perf_sample_data sample;
7156 struct pt_regs *regs = data;
7157
fd0d000b 7158 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
f5ffe02e 7159
a4eaf7f1 7160 if (!bp->hw.state && !perf_exclude_event(bp, regs))
a8b0ca17 7161 perf_swevent_event(bp, 1, &sample, regs);
24f1e32c
FW
7162}
7163#endif
7164
b0a873eb
PZ
7165/*
7166 * hrtimer based swevent callback
7167 */
f29ac756 7168
b0a873eb 7169static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
f29ac756 7170{
b0a873eb
PZ
7171 enum hrtimer_restart ret = HRTIMER_RESTART;
7172 struct perf_sample_data data;
7173 struct pt_regs *regs;
7174 struct perf_event *event;
7175 u64 period;
f29ac756 7176
b0a873eb 7177 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
ba3dd36c
PZ
7178
7179 if (event->state != PERF_EVENT_STATE_ACTIVE)
7180 return HRTIMER_NORESTART;
7181
b0a873eb 7182 event->pmu->read(event);
f344011c 7183
fd0d000b 7184 perf_sample_data_init(&data, 0, event->hw.last_period);
b0a873eb
PZ
7185 regs = get_irq_regs();
7186
7187 if (regs && !perf_exclude_event(event, regs)) {
77aeeebd 7188 if (!(event->attr.exclude_idle && is_idle_task(current)))
33b07b8b 7189 if (__perf_event_overflow(event, 1, &data, regs))
b0a873eb
PZ
7190 ret = HRTIMER_NORESTART;
7191 }
24f1e32c 7192
b0a873eb
PZ
7193 period = max_t(u64, 10000, event->hw.sample_period);
7194 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
24f1e32c 7195
b0a873eb 7196 return ret;
f29ac756
PZ
7197}
7198
b0a873eb 7199static void perf_swevent_start_hrtimer(struct perf_event *event)
5c92d124 7200{
b0a873eb 7201 struct hw_perf_event *hwc = &event->hw;
5d508e82
FBH
7202 s64 period;
7203
7204 if (!is_sampling_event(event))
7205 return;
f5ffe02e 7206
5d508e82
FBH
7207 period = local64_read(&hwc->period_left);
7208 if (period) {
7209 if (period < 0)
7210 period = 10000;
fa407f35 7211
5d508e82
FBH
7212 local64_set(&hwc->period_left, 0);
7213 } else {
7214 period = max_t(u64, 10000, hwc->sample_period);
7215 }
3497d206
TG
7216 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
7217 HRTIMER_MODE_REL_PINNED);
24f1e32c 7218}
b0a873eb
PZ
7219
7220static void perf_swevent_cancel_hrtimer(struct perf_event *event)
24f1e32c 7221{
b0a873eb
PZ
7222 struct hw_perf_event *hwc = &event->hw;
7223
6c7e550f 7224 if (is_sampling_event(event)) {
b0a873eb 7225 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
fa407f35 7226 local64_set(&hwc->period_left, ktime_to_ns(remaining));
b0a873eb
PZ
7227
7228 hrtimer_cancel(&hwc->hrtimer);
7229 }
24f1e32c
FW
7230}
7231
ba3dd36c
PZ
7232static void perf_swevent_init_hrtimer(struct perf_event *event)
7233{
7234 struct hw_perf_event *hwc = &event->hw;
7235
7236 if (!is_sampling_event(event))
7237 return;
7238
7239 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
7240 hwc->hrtimer.function = perf_swevent_hrtimer;
7241
7242 /*
7243 * Since hrtimers have a fixed rate, we can do a static freq->period
7244 * mapping and avoid the whole period adjust feedback stuff.
7245 */
7246 if (event->attr.freq) {
7247 long freq = event->attr.sample_freq;
7248
7249 event->attr.sample_period = NSEC_PER_SEC / freq;
7250 hwc->sample_period = event->attr.sample_period;
7251 local64_set(&hwc->period_left, hwc->sample_period);
778141e3 7252 hwc->last_period = hwc->sample_period;
ba3dd36c
PZ
7253 event->attr.freq = 0;
7254 }
7255}
7256
b0a873eb
PZ
7257/*
7258 * Software event: cpu wall time clock
7259 */
7260
7261static void cpu_clock_event_update(struct perf_event *event)
24f1e32c 7262{
b0a873eb
PZ
7263 s64 prev;
7264 u64 now;
7265
a4eaf7f1 7266 now = local_clock();
b0a873eb
PZ
7267 prev = local64_xchg(&event->hw.prev_count, now);
7268 local64_add(now - prev, &event->count);
24f1e32c 7269}
24f1e32c 7270
a4eaf7f1 7271static void cpu_clock_event_start(struct perf_event *event, int flags)
b0a873eb 7272{
a4eaf7f1 7273 local64_set(&event->hw.prev_count, local_clock());
b0a873eb 7274 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
7275}
7276
a4eaf7f1 7277static void cpu_clock_event_stop(struct perf_event *event, int flags)
f29ac756 7278{
b0a873eb
PZ
7279 perf_swevent_cancel_hrtimer(event);
7280 cpu_clock_event_update(event);
7281}
f29ac756 7282
a4eaf7f1
PZ
7283static int cpu_clock_event_add(struct perf_event *event, int flags)
7284{
7285 if (flags & PERF_EF_START)
7286 cpu_clock_event_start(event, flags);
6a694a60 7287 perf_event_update_userpage(event);
a4eaf7f1
PZ
7288
7289 return 0;
7290}
7291
7292static void cpu_clock_event_del(struct perf_event *event, int flags)
7293{
7294 cpu_clock_event_stop(event, flags);
7295}
7296
b0a873eb
PZ
7297static void cpu_clock_event_read(struct perf_event *event)
7298{
7299 cpu_clock_event_update(event);
7300}
f344011c 7301
b0a873eb
PZ
7302static int cpu_clock_event_init(struct perf_event *event)
7303{
7304 if (event->attr.type != PERF_TYPE_SOFTWARE)
7305 return -ENOENT;
7306
7307 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
7308 return -ENOENT;
7309
2481c5fa
SE
7310 /*
7311 * no branch sampling for software events
7312 */
7313 if (has_branch_stack(event))
7314 return -EOPNOTSUPP;
7315
ba3dd36c
PZ
7316 perf_swevent_init_hrtimer(event);
7317
b0a873eb 7318 return 0;
f29ac756
PZ
7319}
7320
b0a873eb 7321static struct pmu perf_cpu_clock = {
89a1e187
PZ
7322 .task_ctx_nr = perf_sw_context,
7323
34f43927
PZ
7324 .capabilities = PERF_PMU_CAP_NO_NMI,
7325
b0a873eb 7326 .event_init = cpu_clock_event_init,
a4eaf7f1
PZ
7327 .add = cpu_clock_event_add,
7328 .del = cpu_clock_event_del,
7329 .start = cpu_clock_event_start,
7330 .stop = cpu_clock_event_stop,
b0a873eb
PZ
7331 .read = cpu_clock_event_read,
7332};
7333
7334/*
7335 * Software event: task time clock
7336 */
7337
7338static void task_clock_event_update(struct perf_event *event, u64 now)
5c92d124 7339{
b0a873eb
PZ
7340 u64 prev;
7341 s64 delta;
5c92d124 7342
b0a873eb
PZ
7343 prev = local64_xchg(&event->hw.prev_count, now);
7344 delta = now - prev;
7345 local64_add(delta, &event->count);
7346}
5c92d124 7347
a4eaf7f1 7348static void task_clock_event_start(struct perf_event *event, int flags)
b0a873eb 7349{
a4eaf7f1 7350 local64_set(&event->hw.prev_count, event->ctx->time);
b0a873eb 7351 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
7352}
7353
a4eaf7f1 7354static void task_clock_event_stop(struct perf_event *event, int flags)
b0a873eb
PZ
7355{
7356 perf_swevent_cancel_hrtimer(event);
7357 task_clock_event_update(event, event->ctx->time);
a4eaf7f1
PZ
7358}
7359
7360static int task_clock_event_add(struct perf_event *event, int flags)
7361{
7362 if (flags & PERF_EF_START)
7363 task_clock_event_start(event, flags);
6a694a60 7364 perf_event_update_userpage(event);
b0a873eb 7365
a4eaf7f1
PZ
7366 return 0;
7367}
7368
7369static void task_clock_event_del(struct perf_event *event, int flags)
7370{
7371 task_clock_event_stop(event, PERF_EF_UPDATE);
b0a873eb
PZ
7372}
7373
7374static void task_clock_event_read(struct perf_event *event)
7375{
768a06e2
PZ
7376 u64 now = perf_clock();
7377 u64 delta = now - event->ctx->timestamp;
7378 u64 time = event->ctx->time + delta;
b0a873eb
PZ
7379
7380 task_clock_event_update(event, time);
7381}
7382
7383static int task_clock_event_init(struct perf_event *event)
6fb2915d 7384{
b0a873eb
PZ
7385 if (event->attr.type != PERF_TYPE_SOFTWARE)
7386 return -ENOENT;
7387
7388 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
7389 return -ENOENT;
7390
2481c5fa
SE
7391 /*
7392 * no branch sampling for software events
7393 */
7394 if (has_branch_stack(event))
7395 return -EOPNOTSUPP;
7396
ba3dd36c
PZ
7397 perf_swevent_init_hrtimer(event);
7398
b0a873eb 7399 return 0;
6fb2915d
LZ
7400}
7401
b0a873eb 7402static struct pmu perf_task_clock = {
89a1e187
PZ
7403 .task_ctx_nr = perf_sw_context,
7404
34f43927
PZ
7405 .capabilities = PERF_PMU_CAP_NO_NMI,
7406
b0a873eb 7407 .event_init = task_clock_event_init,
a4eaf7f1
PZ
7408 .add = task_clock_event_add,
7409 .del = task_clock_event_del,
7410 .start = task_clock_event_start,
7411 .stop = task_clock_event_stop,
b0a873eb
PZ
7412 .read = task_clock_event_read,
7413};
6fb2915d 7414
ad5133b7 7415static void perf_pmu_nop_void(struct pmu *pmu)
e077df4f 7416{
e077df4f 7417}
6fb2915d 7418
fbbe0701
SB
7419static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
7420{
7421}
7422
ad5133b7 7423static int perf_pmu_nop_int(struct pmu *pmu)
6fb2915d 7424{
ad5133b7 7425 return 0;
6fb2915d
LZ
7426}
7427
18ab2cd3 7428static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
fbbe0701
SB
7429
7430static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
6fb2915d 7431{
fbbe0701
SB
7432 __this_cpu_write(nop_txn_flags, flags);
7433
7434 if (flags & ~PERF_PMU_TXN_ADD)
7435 return;
7436
ad5133b7 7437 perf_pmu_disable(pmu);
6fb2915d
LZ
7438}
7439
ad5133b7
PZ
7440static int perf_pmu_commit_txn(struct pmu *pmu)
7441{
fbbe0701
SB
7442 unsigned int flags = __this_cpu_read(nop_txn_flags);
7443
7444 __this_cpu_write(nop_txn_flags, 0);
7445
7446 if (flags & ~PERF_PMU_TXN_ADD)
7447 return 0;
7448
ad5133b7
PZ
7449 perf_pmu_enable(pmu);
7450 return 0;
7451}
e077df4f 7452
ad5133b7 7453static void perf_pmu_cancel_txn(struct pmu *pmu)
24f1e32c 7454{
fbbe0701
SB
7455 unsigned int flags = __this_cpu_read(nop_txn_flags);
7456
7457 __this_cpu_write(nop_txn_flags, 0);
7458
7459 if (flags & ~PERF_PMU_TXN_ADD)
7460 return;
7461
ad5133b7 7462 perf_pmu_enable(pmu);
24f1e32c
FW
7463}
7464
35edc2a5
PZ
7465static int perf_event_idx_default(struct perf_event *event)
7466{
c719f560 7467 return 0;
35edc2a5
PZ
7468}
7469
8dc85d54
PZ
7470/*
7471 * Ensures all contexts with the same task_ctx_nr have the same
7472 * pmu_cpu_context too.
7473 */
9e317041 7474static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
24f1e32c 7475{
8dc85d54 7476 struct pmu *pmu;
b326e956 7477
8dc85d54
PZ
7478 if (ctxn < 0)
7479 return NULL;
24f1e32c 7480
8dc85d54
PZ
7481 list_for_each_entry(pmu, &pmus, entry) {
7482 if (pmu->task_ctx_nr == ctxn)
7483 return pmu->pmu_cpu_context;
7484 }
24f1e32c 7485
8dc85d54 7486 return NULL;
24f1e32c
FW
7487}
7488
51676957 7489static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
24f1e32c 7490{
51676957
PZ
7491 int cpu;
7492
7493 for_each_possible_cpu(cpu) {
7494 struct perf_cpu_context *cpuctx;
7495
7496 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7497
3f1f3320
PZ
7498 if (cpuctx->unique_pmu == old_pmu)
7499 cpuctx->unique_pmu = pmu;
51676957
PZ
7500 }
7501}
7502
7503static void free_pmu_context(struct pmu *pmu)
7504{
7505 struct pmu *i;
f5ffe02e 7506
8dc85d54 7507 mutex_lock(&pmus_lock);
0475f9ea 7508 /*
8dc85d54 7509 * Like a real lame refcount.
0475f9ea 7510 */
51676957
PZ
7511 list_for_each_entry(i, &pmus, entry) {
7512 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
7513 update_pmu_context(i, pmu);
8dc85d54 7514 goto out;
51676957 7515 }
8dc85d54 7516 }
d6d020e9 7517
51676957 7518 free_percpu(pmu->pmu_cpu_context);
8dc85d54
PZ
7519out:
7520 mutex_unlock(&pmus_lock);
24f1e32c 7521}
2e80a82a 7522static struct idr pmu_idr;
d6d020e9 7523
abe43400
PZ
7524static ssize_t
7525type_show(struct device *dev, struct device_attribute *attr, char *page)
7526{
7527 struct pmu *pmu = dev_get_drvdata(dev);
7528
7529 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
7530}
90826ca7 7531static DEVICE_ATTR_RO(type);
abe43400 7532
62b85639
SE
7533static ssize_t
7534perf_event_mux_interval_ms_show(struct device *dev,
7535 struct device_attribute *attr,
7536 char *page)
7537{
7538 struct pmu *pmu = dev_get_drvdata(dev);
7539
7540 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
7541}
7542
272325c4
PZ
7543static DEFINE_MUTEX(mux_interval_mutex);
7544
62b85639
SE
7545static ssize_t
7546perf_event_mux_interval_ms_store(struct device *dev,
7547 struct device_attribute *attr,
7548 const char *buf, size_t count)
7549{
7550 struct pmu *pmu = dev_get_drvdata(dev);
7551 int timer, cpu, ret;
7552
7553 ret = kstrtoint(buf, 0, &timer);
7554 if (ret)
7555 return ret;
7556
7557 if (timer < 1)
7558 return -EINVAL;
7559
7560 /* same value, noting to do */
7561 if (timer == pmu->hrtimer_interval_ms)
7562 return count;
7563
272325c4 7564 mutex_lock(&mux_interval_mutex);
62b85639
SE
7565 pmu->hrtimer_interval_ms = timer;
7566
7567 /* update all cpuctx for this PMU */
272325c4
PZ
7568 get_online_cpus();
7569 for_each_online_cpu(cpu) {
62b85639
SE
7570 struct perf_cpu_context *cpuctx;
7571 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7572 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
7573
272325c4
PZ
7574 cpu_function_call(cpu,
7575 (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
62b85639 7576 }
272325c4
PZ
7577 put_online_cpus();
7578 mutex_unlock(&mux_interval_mutex);
62b85639
SE
7579
7580 return count;
7581}
90826ca7 7582static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
62b85639 7583
90826ca7
GKH
7584static struct attribute *pmu_dev_attrs[] = {
7585 &dev_attr_type.attr,
7586 &dev_attr_perf_event_mux_interval_ms.attr,
7587 NULL,
abe43400 7588};
90826ca7 7589ATTRIBUTE_GROUPS(pmu_dev);
abe43400
PZ
7590
7591static int pmu_bus_running;
7592static struct bus_type pmu_bus = {
7593 .name = "event_source",
90826ca7 7594 .dev_groups = pmu_dev_groups,
abe43400
PZ
7595};
7596
7597static void pmu_dev_release(struct device *dev)
7598{
7599 kfree(dev);
7600}
7601
7602static int pmu_dev_alloc(struct pmu *pmu)
7603{
7604 int ret = -ENOMEM;
7605
7606 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
7607 if (!pmu->dev)
7608 goto out;
7609
0c9d42ed 7610 pmu->dev->groups = pmu->attr_groups;
abe43400
PZ
7611 device_initialize(pmu->dev);
7612 ret = dev_set_name(pmu->dev, "%s", pmu->name);
7613 if (ret)
7614 goto free_dev;
7615
7616 dev_set_drvdata(pmu->dev, pmu);
7617 pmu->dev->bus = &pmu_bus;
7618 pmu->dev->release = pmu_dev_release;
7619 ret = device_add(pmu->dev);
7620 if (ret)
7621 goto free_dev;
7622
7623out:
7624 return ret;
7625
7626free_dev:
7627 put_device(pmu->dev);
7628 goto out;
7629}
7630
547e9fd7 7631static struct lock_class_key cpuctx_mutex;
facc4307 7632static struct lock_class_key cpuctx_lock;
547e9fd7 7633
03d8e80b 7634int perf_pmu_register(struct pmu *pmu, const char *name, int type)
24f1e32c 7635{
108b02cf 7636 int cpu, ret;
24f1e32c 7637
b0a873eb 7638 mutex_lock(&pmus_lock);
33696fc0
PZ
7639 ret = -ENOMEM;
7640 pmu->pmu_disable_count = alloc_percpu(int);
7641 if (!pmu->pmu_disable_count)
7642 goto unlock;
f29ac756 7643
2e80a82a
PZ
7644 pmu->type = -1;
7645 if (!name)
7646 goto skip_type;
7647 pmu->name = name;
7648
7649 if (type < 0) {
0e9c3be2
TH
7650 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
7651 if (type < 0) {
7652 ret = type;
2e80a82a
PZ
7653 goto free_pdc;
7654 }
7655 }
7656 pmu->type = type;
7657
abe43400
PZ
7658 if (pmu_bus_running) {
7659 ret = pmu_dev_alloc(pmu);
7660 if (ret)
7661 goto free_idr;
7662 }
7663
2e80a82a 7664skip_type:
8dc85d54
PZ
7665 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
7666 if (pmu->pmu_cpu_context)
7667 goto got_cpu_context;
f29ac756 7668
c4814202 7669 ret = -ENOMEM;
108b02cf
PZ
7670 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
7671 if (!pmu->pmu_cpu_context)
abe43400 7672 goto free_dev;
f344011c 7673
108b02cf
PZ
7674 for_each_possible_cpu(cpu) {
7675 struct perf_cpu_context *cpuctx;
7676
7677 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
eb184479 7678 __perf_event_init_context(&cpuctx->ctx);
547e9fd7 7679 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
facc4307 7680 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
108b02cf 7681 cpuctx->ctx.pmu = pmu;
9e630205 7682
272325c4 7683 __perf_mux_hrtimer_init(cpuctx, cpu);
9e630205 7684
3f1f3320 7685 cpuctx->unique_pmu = pmu;
108b02cf 7686 }
76e1d904 7687
8dc85d54 7688got_cpu_context:
ad5133b7
PZ
7689 if (!pmu->start_txn) {
7690 if (pmu->pmu_enable) {
7691 /*
7692 * If we have pmu_enable/pmu_disable calls, install
7693 * transaction stubs that use that to try and batch
7694 * hardware accesses.
7695 */
7696 pmu->start_txn = perf_pmu_start_txn;
7697 pmu->commit_txn = perf_pmu_commit_txn;
7698 pmu->cancel_txn = perf_pmu_cancel_txn;
7699 } else {
fbbe0701 7700 pmu->start_txn = perf_pmu_nop_txn;
ad5133b7
PZ
7701 pmu->commit_txn = perf_pmu_nop_int;
7702 pmu->cancel_txn = perf_pmu_nop_void;
f344011c 7703 }
5c92d124 7704 }
15dbf27c 7705
ad5133b7
PZ
7706 if (!pmu->pmu_enable) {
7707 pmu->pmu_enable = perf_pmu_nop_void;
7708 pmu->pmu_disable = perf_pmu_nop_void;
7709 }
7710
35edc2a5
PZ
7711 if (!pmu->event_idx)
7712 pmu->event_idx = perf_event_idx_default;
7713
b0a873eb 7714 list_add_rcu(&pmu->entry, &pmus);
bed5b25a 7715 atomic_set(&pmu->exclusive_cnt, 0);
33696fc0
PZ
7716 ret = 0;
7717unlock:
b0a873eb
PZ
7718 mutex_unlock(&pmus_lock);
7719
33696fc0 7720 return ret;
108b02cf 7721
abe43400
PZ
7722free_dev:
7723 device_del(pmu->dev);
7724 put_device(pmu->dev);
7725
2e80a82a
PZ
7726free_idr:
7727 if (pmu->type >= PERF_TYPE_MAX)
7728 idr_remove(&pmu_idr, pmu->type);
7729
108b02cf
PZ
7730free_pdc:
7731 free_percpu(pmu->pmu_disable_count);
7732 goto unlock;
f29ac756 7733}
c464c76e 7734EXPORT_SYMBOL_GPL(perf_pmu_register);
f29ac756 7735
b0a873eb 7736void perf_pmu_unregister(struct pmu *pmu)
5c92d124 7737{
b0a873eb
PZ
7738 mutex_lock(&pmus_lock);
7739 list_del_rcu(&pmu->entry);
7740 mutex_unlock(&pmus_lock);
5c92d124 7741
0475f9ea 7742 /*
cde8e884
PZ
7743 * We dereference the pmu list under both SRCU and regular RCU, so
7744 * synchronize against both of those.
0475f9ea 7745 */
b0a873eb 7746 synchronize_srcu(&pmus_srcu);
cde8e884 7747 synchronize_rcu();
d6d020e9 7748
33696fc0 7749 free_percpu(pmu->pmu_disable_count);
2e80a82a
PZ
7750 if (pmu->type >= PERF_TYPE_MAX)
7751 idr_remove(&pmu_idr, pmu->type);
abe43400
PZ
7752 device_del(pmu->dev);
7753 put_device(pmu->dev);
51676957 7754 free_pmu_context(pmu);
b0a873eb 7755}
c464c76e 7756EXPORT_SYMBOL_GPL(perf_pmu_unregister);
d6d020e9 7757
cc34b98b
MR
7758static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
7759{
ccd41c86 7760 struct perf_event_context *ctx = NULL;
cc34b98b
MR
7761 int ret;
7762
7763 if (!try_module_get(pmu->module))
7764 return -ENODEV;
ccd41c86
PZ
7765
7766 if (event->group_leader != event) {
8b10c5e2
PZ
7767 /*
7768 * This ctx->mutex can nest when we're called through
7769 * inheritance. See the perf_event_ctx_lock_nested() comment.
7770 */
7771 ctx = perf_event_ctx_lock_nested(event->group_leader,
7772 SINGLE_DEPTH_NESTING);
ccd41c86
PZ
7773 BUG_ON(!ctx);
7774 }
7775
cc34b98b
MR
7776 event->pmu = pmu;
7777 ret = pmu->event_init(event);
ccd41c86
PZ
7778
7779 if (ctx)
7780 perf_event_ctx_unlock(event->group_leader, ctx);
7781
cc34b98b
MR
7782 if (ret)
7783 module_put(pmu->module);
7784
7785 return ret;
7786}
7787
18ab2cd3 7788static struct pmu *perf_init_event(struct perf_event *event)
b0a873eb
PZ
7789{
7790 struct pmu *pmu = NULL;
7791 int idx;
940c5b29 7792 int ret;
b0a873eb
PZ
7793
7794 idx = srcu_read_lock(&pmus_srcu);
2e80a82a
PZ
7795
7796 rcu_read_lock();
7797 pmu = idr_find(&pmu_idr, event->attr.type);
7798 rcu_read_unlock();
940c5b29 7799 if (pmu) {
cc34b98b 7800 ret = perf_try_init_event(pmu, event);
940c5b29
LM
7801 if (ret)
7802 pmu = ERR_PTR(ret);
2e80a82a 7803 goto unlock;
940c5b29 7804 }
2e80a82a 7805
b0a873eb 7806 list_for_each_entry_rcu(pmu, &pmus, entry) {
cc34b98b 7807 ret = perf_try_init_event(pmu, event);
b0a873eb 7808 if (!ret)
e5f4d339 7809 goto unlock;
76e1d904 7810
b0a873eb
PZ
7811 if (ret != -ENOENT) {
7812 pmu = ERR_PTR(ret);
e5f4d339 7813 goto unlock;
f344011c 7814 }
5c92d124 7815 }
e5f4d339
PZ
7816 pmu = ERR_PTR(-ENOENT);
7817unlock:
b0a873eb 7818 srcu_read_unlock(&pmus_srcu, idx);
15dbf27c 7819
4aeb0b42 7820 return pmu;
5c92d124
IM
7821}
7822
4beb31f3
FW
7823static void account_event_cpu(struct perf_event *event, int cpu)
7824{
7825 if (event->parent)
7826 return;
7827
4beb31f3
FW
7828 if (is_cgroup_event(event))
7829 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
7830}
7831
766d6c07
FW
7832static void account_event(struct perf_event *event)
7833{
4beb31f3
FW
7834 if (event->parent)
7835 return;
7836
766d6c07
FW
7837 if (event->attach_state & PERF_ATTACH_TASK)
7838 static_key_slow_inc(&perf_sched_events.key);
7839 if (event->attr.mmap || event->attr.mmap_data)
7840 atomic_inc(&nr_mmap_events);
7841 if (event->attr.comm)
7842 atomic_inc(&nr_comm_events);
7843 if (event->attr.task)
7844 atomic_inc(&nr_task_events);
948b26b6
FW
7845 if (event->attr.freq) {
7846 if (atomic_inc_return(&nr_freq_events) == 1)
7847 tick_nohz_full_kick_all();
7848 }
45ac1403
AH
7849 if (event->attr.context_switch) {
7850 atomic_inc(&nr_switch_events);
7851 static_key_slow_inc(&perf_sched_events.key);
7852 }
4beb31f3 7853 if (has_branch_stack(event))
766d6c07 7854 static_key_slow_inc(&perf_sched_events.key);
4beb31f3 7855 if (is_cgroup_event(event))
766d6c07 7856 static_key_slow_inc(&perf_sched_events.key);
4beb31f3
FW
7857
7858 account_event_cpu(event, event->cpu);
766d6c07
FW
7859}
7860
0793a61d 7861/*
cdd6c482 7862 * Allocate and initialize a event structure
0793a61d 7863 */
cdd6c482 7864static struct perf_event *
c3f00c70 7865perf_event_alloc(struct perf_event_attr *attr, int cpu,
d580ff86
PZ
7866 struct task_struct *task,
7867 struct perf_event *group_leader,
7868 struct perf_event *parent_event,
4dc0da86 7869 perf_overflow_handler_t overflow_handler,
79dff51e 7870 void *context, int cgroup_fd)
0793a61d 7871{
51b0fe39 7872 struct pmu *pmu;
cdd6c482
IM
7873 struct perf_event *event;
7874 struct hw_perf_event *hwc;
90983b16 7875 long err = -EINVAL;
0793a61d 7876
66832eb4
ON
7877 if ((unsigned)cpu >= nr_cpu_ids) {
7878 if (!task || cpu != -1)
7879 return ERR_PTR(-EINVAL);
7880 }
7881
c3f00c70 7882 event = kzalloc(sizeof(*event), GFP_KERNEL);
cdd6c482 7883 if (!event)
d5d2bc0d 7884 return ERR_PTR(-ENOMEM);
0793a61d 7885
04289bb9 7886 /*
cdd6c482 7887 * Single events are their own group leaders, with an
04289bb9
IM
7888 * empty sibling list:
7889 */
7890 if (!group_leader)
cdd6c482 7891 group_leader = event;
04289bb9 7892
cdd6c482
IM
7893 mutex_init(&event->child_mutex);
7894 INIT_LIST_HEAD(&event->child_list);
fccc714b 7895
cdd6c482
IM
7896 INIT_LIST_HEAD(&event->group_entry);
7897 INIT_LIST_HEAD(&event->event_entry);
7898 INIT_LIST_HEAD(&event->sibling_list);
10c6db11 7899 INIT_LIST_HEAD(&event->rb_entry);
71ad88ef 7900 INIT_LIST_HEAD(&event->active_entry);
f3ae75de
SE
7901 INIT_HLIST_NODE(&event->hlist_entry);
7902
10c6db11 7903
cdd6c482 7904 init_waitqueue_head(&event->waitq);
e360adbe 7905 init_irq_work(&event->pending, perf_pending_event);
0793a61d 7906
cdd6c482 7907 mutex_init(&event->mmap_mutex);
7b732a75 7908
a6fa941d 7909 atomic_long_set(&event->refcount, 1);
cdd6c482
IM
7910 event->cpu = cpu;
7911 event->attr = *attr;
7912 event->group_leader = group_leader;
7913 event->pmu = NULL;
cdd6c482 7914 event->oncpu = -1;
a96bbc16 7915
cdd6c482 7916 event->parent = parent_event;
b84fbc9f 7917
17cf22c3 7918 event->ns = get_pid_ns(task_active_pid_ns(current));
cdd6c482 7919 event->id = atomic64_inc_return(&perf_event_id);
a96bbc16 7920
cdd6c482 7921 event->state = PERF_EVENT_STATE_INACTIVE;
329d876d 7922
d580ff86
PZ
7923 if (task) {
7924 event->attach_state = PERF_ATTACH_TASK;
d580ff86 7925 /*
50f16a8b
PZ
7926 * XXX pmu::event_init needs to know what task to account to
7927 * and we cannot use the ctx information because we need the
7928 * pmu before we get a ctx.
d580ff86 7929 */
50f16a8b 7930 event->hw.target = task;
d580ff86
PZ
7931 }
7932
34f43927
PZ
7933 event->clock = &local_clock;
7934 if (parent_event)
7935 event->clock = parent_event->clock;
7936
4dc0da86 7937 if (!overflow_handler && parent_event) {
b326e956 7938 overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
7939 context = parent_event->overflow_handler_context;
7940 }
66832eb4 7941
b326e956 7942 event->overflow_handler = overflow_handler;
4dc0da86 7943 event->overflow_handler_context = context;
97eaf530 7944
0231bb53 7945 perf_event__state_init(event);
a86ed508 7946
4aeb0b42 7947 pmu = NULL;
b8e83514 7948
cdd6c482 7949 hwc = &event->hw;
bd2b5b12 7950 hwc->sample_period = attr->sample_period;
0d48696f 7951 if (attr->freq && attr->sample_freq)
bd2b5b12 7952 hwc->sample_period = 1;
eced1dfc 7953 hwc->last_period = hwc->sample_period;
bd2b5b12 7954
e7850595 7955 local64_set(&hwc->period_left, hwc->sample_period);
60db5e09 7956
2023b359 7957 /*
cdd6c482 7958 * we currently do not support PERF_FORMAT_GROUP on inherited events
2023b359 7959 */
3dab77fb 7960 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
90983b16 7961 goto err_ns;
a46a2300
YZ
7962
7963 if (!has_branch_stack(event))
7964 event->attr.branch_sample_type = 0;
2023b359 7965
79dff51e
MF
7966 if (cgroup_fd != -1) {
7967 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
7968 if (err)
7969 goto err_ns;
7970 }
7971
b0a873eb 7972 pmu = perf_init_event(event);
4aeb0b42 7973 if (!pmu)
90983b16
FW
7974 goto err_ns;
7975 else if (IS_ERR(pmu)) {
4aeb0b42 7976 err = PTR_ERR(pmu);
90983b16 7977 goto err_ns;
621a01ea 7978 }
d5d2bc0d 7979
bed5b25a
AS
7980 err = exclusive_event_init(event);
7981 if (err)
7982 goto err_pmu;
7983
cdd6c482 7984 if (!event->parent) {
927c7a9e
FW
7985 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
7986 err = get_callchain_buffers();
90983b16 7987 if (err)
bed5b25a 7988 goto err_per_task;
d010b332 7989 }
f344011c 7990 }
9ee318a7 7991
cdd6c482 7992 return event;
90983b16 7993
bed5b25a
AS
7994err_per_task:
7995 exclusive_event_destroy(event);
7996
90983b16
FW
7997err_pmu:
7998 if (event->destroy)
7999 event->destroy(event);
c464c76e 8000 module_put(pmu->module);
90983b16 8001err_ns:
79dff51e
MF
8002 if (is_cgroup_event(event))
8003 perf_detach_cgroup(event);
90983b16
FW
8004 if (event->ns)
8005 put_pid_ns(event->ns);
8006 kfree(event);
8007
8008 return ERR_PTR(err);
0793a61d
TG
8009}
8010
cdd6c482
IM
8011static int perf_copy_attr(struct perf_event_attr __user *uattr,
8012 struct perf_event_attr *attr)
974802ea 8013{
974802ea 8014 u32 size;
cdf8073d 8015 int ret;
974802ea
PZ
8016
8017 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
8018 return -EFAULT;
8019
8020 /*
8021 * zero the full structure, so that a short copy will be nice.
8022 */
8023 memset(attr, 0, sizeof(*attr));
8024
8025 ret = get_user(size, &uattr->size);
8026 if (ret)
8027 return ret;
8028
8029 if (size > PAGE_SIZE) /* silly large */
8030 goto err_size;
8031
8032 if (!size) /* abi compat */
8033 size = PERF_ATTR_SIZE_VER0;
8034
8035 if (size < PERF_ATTR_SIZE_VER0)
8036 goto err_size;
8037
8038 /*
8039 * If we're handed a bigger struct than we know of,
cdf8073d
IS
8040 * ensure all the unknown bits are 0 - i.e. new
8041 * user-space does not rely on any kernel feature
8042 * extensions we dont know about yet.
974802ea
PZ
8043 */
8044 if (size > sizeof(*attr)) {
cdf8073d
IS
8045 unsigned char __user *addr;
8046 unsigned char __user *end;
8047 unsigned char val;
974802ea 8048
cdf8073d
IS
8049 addr = (void __user *)uattr + sizeof(*attr);
8050 end = (void __user *)uattr + size;
974802ea 8051
cdf8073d 8052 for (; addr < end; addr++) {
974802ea
PZ
8053 ret = get_user(val, addr);
8054 if (ret)
8055 return ret;
8056 if (val)
8057 goto err_size;
8058 }
b3e62e35 8059 size = sizeof(*attr);
974802ea
PZ
8060 }
8061
8062 ret = copy_from_user(attr, uattr, size);
8063 if (ret)
8064 return -EFAULT;
8065
cd757645 8066 if (attr->__reserved_1)
974802ea
PZ
8067 return -EINVAL;
8068
8069 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
8070 return -EINVAL;
8071
8072 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
8073 return -EINVAL;
8074
bce38cd5
SE
8075 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
8076 u64 mask = attr->branch_sample_type;
8077
8078 /* only using defined bits */
8079 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
8080 return -EINVAL;
8081
8082 /* at least one branch bit must be set */
8083 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
8084 return -EINVAL;
8085
bce38cd5
SE
8086 /* propagate priv level, when not set for branch */
8087 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
8088
8089 /* exclude_kernel checked on syscall entry */
8090 if (!attr->exclude_kernel)
8091 mask |= PERF_SAMPLE_BRANCH_KERNEL;
8092
8093 if (!attr->exclude_user)
8094 mask |= PERF_SAMPLE_BRANCH_USER;
8095
8096 if (!attr->exclude_hv)
8097 mask |= PERF_SAMPLE_BRANCH_HV;
8098 /*
8099 * adjust user setting (for HW filter setup)
8100 */
8101 attr->branch_sample_type = mask;
8102 }
e712209a
SE
8103 /* privileged levels capture (kernel, hv): check permissions */
8104 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
2b923c8f
SE
8105 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
8106 return -EACCES;
bce38cd5 8107 }
4018994f 8108
c5ebcedb 8109 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
4018994f 8110 ret = perf_reg_validate(attr->sample_regs_user);
c5ebcedb
JO
8111 if (ret)
8112 return ret;
8113 }
8114
8115 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
8116 if (!arch_perf_have_user_stack_dump())
8117 return -ENOSYS;
8118
8119 /*
8120 * We have __u32 type for the size, but so far
8121 * we can only use __u16 as maximum due to the
8122 * __u16 sample size limit.
8123 */
8124 if (attr->sample_stack_user >= USHRT_MAX)
8125 ret = -EINVAL;
8126 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
8127 ret = -EINVAL;
8128 }
4018994f 8129
60e2364e
SE
8130 if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
8131 ret = perf_reg_validate(attr->sample_regs_intr);
974802ea
PZ
8132out:
8133 return ret;
8134
8135err_size:
8136 put_user(sizeof(*attr), &uattr->size);
8137 ret = -E2BIG;
8138 goto out;
8139}
8140
ac9721f3
PZ
8141static int
8142perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
a4be7c27 8143{
b69cf536 8144 struct ring_buffer *rb = NULL;
a4be7c27
PZ
8145 int ret = -EINVAL;
8146
ac9721f3 8147 if (!output_event)
a4be7c27
PZ
8148 goto set;
8149
ac9721f3
PZ
8150 /* don't allow circular references */
8151 if (event == output_event)
a4be7c27
PZ
8152 goto out;
8153
0f139300
PZ
8154 /*
8155 * Don't allow cross-cpu buffers
8156 */
8157 if (output_event->cpu != event->cpu)
8158 goto out;
8159
8160 /*
76369139 8161 * If its not a per-cpu rb, it must be the same task.
0f139300
PZ
8162 */
8163 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
8164 goto out;
8165
34f43927
PZ
8166 /*
8167 * Mixing clocks in the same buffer is trouble you don't need.
8168 */
8169 if (output_event->clock != event->clock)
8170 goto out;
8171
45bfb2e5
PZ
8172 /*
8173 * If both events generate aux data, they must be on the same PMU
8174 */
8175 if (has_aux(event) && has_aux(output_event) &&
8176 event->pmu != output_event->pmu)
8177 goto out;
8178
a4be7c27 8179set:
cdd6c482 8180 mutex_lock(&event->mmap_mutex);
ac9721f3
PZ
8181 /* Can't redirect output if we've got an active mmap() */
8182 if (atomic_read(&event->mmap_count))
8183 goto unlock;
a4be7c27 8184
ac9721f3 8185 if (output_event) {
76369139
FW
8186 /* get the rb we want to redirect to */
8187 rb = ring_buffer_get(output_event);
8188 if (!rb)
ac9721f3 8189 goto unlock;
a4be7c27
PZ
8190 }
8191
b69cf536 8192 ring_buffer_attach(event, rb);
9bb5d40c 8193
a4be7c27 8194 ret = 0;
ac9721f3
PZ
8195unlock:
8196 mutex_unlock(&event->mmap_mutex);
8197
a4be7c27 8198out:
a4be7c27
PZ
8199 return ret;
8200}
8201
f63a8daa
PZ
8202static void mutex_lock_double(struct mutex *a, struct mutex *b)
8203{
8204 if (b < a)
8205 swap(a, b);
8206
8207 mutex_lock(a);
8208 mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
8209}
8210
34f43927
PZ
8211static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
8212{
8213 bool nmi_safe = false;
8214
8215 switch (clk_id) {
8216 case CLOCK_MONOTONIC:
8217 event->clock = &ktime_get_mono_fast_ns;
8218 nmi_safe = true;
8219 break;
8220
8221 case CLOCK_MONOTONIC_RAW:
8222 event->clock = &ktime_get_raw_fast_ns;
8223 nmi_safe = true;
8224 break;
8225
8226 case CLOCK_REALTIME:
8227 event->clock = &ktime_get_real_ns;
8228 break;
8229
8230 case CLOCK_BOOTTIME:
8231 event->clock = &ktime_get_boot_ns;
8232 break;
8233
8234 case CLOCK_TAI:
8235 event->clock = &ktime_get_tai_ns;
8236 break;
8237
8238 default:
8239 return -EINVAL;
8240 }
8241
8242 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
8243 return -EINVAL;
8244
8245 return 0;
8246}
8247
0793a61d 8248/**
cdd6c482 8249 * sys_perf_event_open - open a performance event, associate it to a task/cpu
9f66a381 8250 *
cdd6c482 8251 * @attr_uptr: event_id type attributes for monitoring/sampling
0793a61d 8252 * @pid: target pid
9f66a381 8253 * @cpu: target cpu
cdd6c482 8254 * @group_fd: group leader event fd
0793a61d 8255 */
cdd6c482
IM
8256SYSCALL_DEFINE5(perf_event_open,
8257 struct perf_event_attr __user *, attr_uptr,
2743a5b0 8258 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
0793a61d 8259{
b04243ef
PZ
8260 struct perf_event *group_leader = NULL, *output_event = NULL;
8261 struct perf_event *event, *sibling;
cdd6c482 8262 struct perf_event_attr attr;
f63a8daa 8263 struct perf_event_context *ctx, *uninitialized_var(gctx);
cdd6c482 8264 struct file *event_file = NULL;
2903ff01 8265 struct fd group = {NULL, 0};
38a81da2 8266 struct task_struct *task = NULL;
89a1e187 8267 struct pmu *pmu;
ea635c64 8268 int event_fd;
b04243ef 8269 int move_group = 0;
dc86cabe 8270 int err;
a21b0b35 8271 int f_flags = O_RDWR;
79dff51e 8272 int cgroup_fd = -1;
0793a61d 8273
2743a5b0 8274 /* for future expandability... */
e5d1367f 8275 if (flags & ~PERF_FLAG_ALL)
2743a5b0
PM
8276 return -EINVAL;
8277
dc86cabe
IM
8278 err = perf_copy_attr(attr_uptr, &attr);
8279 if (err)
8280 return err;
eab656ae 8281
0764771d
PZ
8282 if (!attr.exclude_kernel) {
8283 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
8284 return -EACCES;
8285 }
8286
df58ab24 8287 if (attr.freq) {
cdd6c482 8288 if (attr.sample_freq > sysctl_perf_event_sample_rate)
df58ab24 8289 return -EINVAL;
0819b2e3
PZ
8290 } else {
8291 if (attr.sample_period & (1ULL << 63))
8292 return -EINVAL;
df58ab24
PZ
8293 }
8294
e5d1367f
SE
8295 /*
8296 * In cgroup mode, the pid argument is used to pass the fd
8297 * opened to the cgroup directory in cgroupfs. The cpu argument
8298 * designates the cpu on which to monitor threads from that
8299 * cgroup.
8300 */
8301 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
8302 return -EINVAL;
8303
a21b0b35
YD
8304 if (flags & PERF_FLAG_FD_CLOEXEC)
8305 f_flags |= O_CLOEXEC;
8306
8307 event_fd = get_unused_fd_flags(f_flags);
ea635c64
AV
8308 if (event_fd < 0)
8309 return event_fd;
8310
ac9721f3 8311 if (group_fd != -1) {
2903ff01
AV
8312 err = perf_fget_light(group_fd, &group);
8313 if (err)
d14b12d7 8314 goto err_fd;
2903ff01 8315 group_leader = group.file->private_data;
ac9721f3
PZ
8316 if (flags & PERF_FLAG_FD_OUTPUT)
8317 output_event = group_leader;
8318 if (flags & PERF_FLAG_FD_NO_GROUP)
8319 group_leader = NULL;
8320 }
8321
e5d1367f 8322 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
c6be5a5c
PZ
8323 task = find_lively_task_by_vpid(pid);
8324 if (IS_ERR(task)) {
8325 err = PTR_ERR(task);
8326 goto err_group_fd;
8327 }
8328 }
8329
1f4ee503
PZ
8330 if (task && group_leader &&
8331 group_leader->attr.inherit != attr.inherit) {
8332 err = -EINVAL;
8333 goto err_task;
8334 }
8335
fbfc623f
YZ
8336 get_online_cpus();
8337
79dff51e
MF
8338 if (flags & PERF_FLAG_PID_CGROUP)
8339 cgroup_fd = pid;
8340
4dc0da86 8341 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
79dff51e 8342 NULL, NULL, cgroup_fd);
d14b12d7
SE
8343 if (IS_ERR(event)) {
8344 err = PTR_ERR(event);
1f4ee503 8345 goto err_cpus;
d14b12d7
SE
8346 }
8347
53b25335
VW
8348 if (is_sampling_event(event)) {
8349 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
8350 err = -ENOTSUPP;
8351 goto err_alloc;
8352 }
8353 }
8354
766d6c07
FW
8355 account_event(event);
8356
89a1e187
PZ
8357 /*
8358 * Special case software events and allow them to be part of
8359 * any hardware group.
8360 */
8361 pmu = event->pmu;
b04243ef 8362
34f43927
PZ
8363 if (attr.use_clockid) {
8364 err = perf_event_set_clock(event, attr.clockid);
8365 if (err)
8366 goto err_alloc;
8367 }
8368
b04243ef
PZ
8369 if (group_leader &&
8370 (is_software_event(event) != is_software_event(group_leader))) {
8371 if (is_software_event(event)) {
8372 /*
8373 * If event and group_leader are not both a software
8374 * event, and event is, then group leader is not.
8375 *
8376 * Allow the addition of software events to !software
8377 * groups, this is safe because software events never
8378 * fail to schedule.
8379 */
8380 pmu = group_leader->pmu;
8381 } else if (is_software_event(group_leader) &&
8382 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
8383 /*
8384 * In case the group is a pure software group, and we
8385 * try to add a hardware event, move the whole group to
8386 * the hardware context.
8387 */
8388 move_group = 1;
8389 }
8390 }
89a1e187
PZ
8391
8392 /*
8393 * Get the target context (task or percpu):
8394 */
4af57ef2 8395 ctx = find_get_context(pmu, task, event);
89a1e187
PZ
8396 if (IS_ERR(ctx)) {
8397 err = PTR_ERR(ctx);
c6be5a5c 8398 goto err_alloc;
89a1e187
PZ
8399 }
8400
bed5b25a
AS
8401 if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
8402 err = -EBUSY;
8403 goto err_context;
8404 }
8405
fd1edb3a
PZ
8406 if (task) {
8407 put_task_struct(task);
8408 task = NULL;
8409 }
8410
ccff286d 8411 /*
cdd6c482 8412 * Look up the group leader (we will attach this event to it):
04289bb9 8413 */
ac9721f3 8414 if (group_leader) {
dc86cabe 8415 err = -EINVAL;
04289bb9 8416
04289bb9 8417 /*
ccff286d
IM
8418 * Do not allow a recursive hierarchy (this new sibling
8419 * becoming part of another group-sibling):
8420 */
8421 if (group_leader->group_leader != group_leader)
c3f00c70 8422 goto err_context;
34f43927
PZ
8423
8424 /* All events in a group should have the same clock */
8425 if (group_leader->clock != event->clock)
8426 goto err_context;
8427
ccff286d
IM
8428 /*
8429 * Do not allow to attach to a group in a different
8430 * task or CPU context:
04289bb9 8431 */
b04243ef 8432 if (move_group) {
c3c87e77
PZ
8433 /*
8434 * Make sure we're both on the same task, or both
8435 * per-cpu events.
8436 */
8437 if (group_leader->ctx->task != ctx->task)
8438 goto err_context;
8439
8440 /*
8441 * Make sure we're both events for the same CPU;
8442 * grouping events for different CPUs is broken; since
8443 * you can never concurrently schedule them anyhow.
8444 */
8445 if (group_leader->cpu != event->cpu)
b04243ef
PZ
8446 goto err_context;
8447 } else {
8448 if (group_leader->ctx != ctx)
8449 goto err_context;
8450 }
8451
3b6f9e5c
PM
8452 /*
8453 * Only a group leader can be exclusive or pinned
8454 */
0d48696f 8455 if (attr.exclusive || attr.pinned)
c3f00c70 8456 goto err_context;
ac9721f3
PZ
8457 }
8458
8459 if (output_event) {
8460 err = perf_event_set_output(event, output_event);
8461 if (err)
c3f00c70 8462 goto err_context;
ac9721f3 8463 }
0793a61d 8464
a21b0b35
YD
8465 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
8466 f_flags);
ea635c64
AV
8467 if (IS_ERR(event_file)) {
8468 err = PTR_ERR(event_file);
c3f00c70 8469 goto err_context;
ea635c64 8470 }
9b51f66d 8471
b04243ef 8472 if (move_group) {
f63a8daa 8473 gctx = group_leader->ctx;
f55fc2a5
PZ
8474 mutex_lock_double(&gctx->mutex, &ctx->mutex);
8475 } else {
8476 mutex_lock(&ctx->mutex);
8477 }
8478
a723968c
PZ
8479 if (!perf_event_validate_size(event)) {
8480 err = -E2BIG;
8481 goto err_locked;
8482 }
8483
f55fc2a5
PZ
8484 /*
8485 * Must be under the same ctx::mutex as perf_install_in_context(),
8486 * because we need to serialize with concurrent event creation.
8487 */
8488 if (!exclusive_event_installable(event, ctx)) {
8489 /* exclusive and group stuff are assumed mutually exclusive */
8490 WARN_ON_ONCE(move_group);
f63a8daa 8491
f55fc2a5
PZ
8492 err = -EBUSY;
8493 goto err_locked;
8494 }
f63a8daa 8495
f55fc2a5
PZ
8496 WARN_ON_ONCE(ctx->parent_ctx);
8497
8498 if (move_group) {
f63a8daa
PZ
8499 /*
8500 * See perf_event_ctx_lock() for comments on the details
8501 * of swizzling perf_event::ctx.
8502 */
46ce0fe9 8503 perf_remove_from_context(group_leader, false);
0231bb53 8504
b04243ef
PZ
8505 list_for_each_entry(sibling, &group_leader->sibling_list,
8506 group_entry) {
46ce0fe9 8507 perf_remove_from_context(sibling, false);
b04243ef
PZ
8508 put_ctx(gctx);
8509 }
b04243ef 8510
f63a8daa
PZ
8511 /*
8512 * Wait for everybody to stop referencing the events through
8513 * the old lists, before installing it on new lists.
8514 */
0cda4c02 8515 synchronize_rcu();
f63a8daa 8516
8f95b435
PZI
8517 /*
8518 * Install the group siblings before the group leader.
8519 *
8520 * Because a group leader will try and install the entire group
8521 * (through the sibling list, which is still in-tact), we can
8522 * end up with siblings installed in the wrong context.
8523 *
8524 * By installing siblings first we NO-OP because they're not
8525 * reachable through the group lists.
8526 */
b04243ef
PZ
8527 list_for_each_entry(sibling, &group_leader->sibling_list,
8528 group_entry) {
8f95b435 8529 perf_event__state_init(sibling);
9fc81d87 8530 perf_install_in_context(ctx, sibling, sibling->cpu);
b04243ef
PZ
8531 get_ctx(ctx);
8532 }
8f95b435
PZI
8533
8534 /*
8535 * Removing from the context ends up with disabled
8536 * event. What we want here is event in the initial
8537 * startup state, ready to be add into new context.
8538 */
8539 perf_event__state_init(group_leader);
8540 perf_install_in_context(ctx, group_leader, group_leader->cpu);
8541 get_ctx(ctx);
b04243ef 8542
f55fc2a5
PZ
8543 /*
8544 * Now that all events are installed in @ctx, nothing
8545 * references @gctx anymore, so drop the last reference we have
8546 * on it.
8547 */
8548 put_ctx(gctx);
bed5b25a
AS
8549 }
8550
f73e22ab
PZ
8551 /*
8552 * Precalculate sample_data sizes; do while holding ctx::mutex such
8553 * that we're serialized against further additions and before
8554 * perf_install_in_context() which is the point the event is active and
8555 * can use these values.
8556 */
8557 perf_event__header_size(event);
8558 perf_event__id_header_size(event);
8559
e2d37cd2 8560 perf_install_in_context(ctx, event, event->cpu);
fe4b04fa 8561 perf_unpin_context(ctx);
f63a8daa 8562
f55fc2a5 8563 if (move_group)
f63a8daa 8564 mutex_unlock(&gctx->mutex);
d859e29f 8565 mutex_unlock(&ctx->mutex);
9b51f66d 8566
fbfc623f
YZ
8567 put_online_cpus();
8568
cdd6c482 8569 event->owner = current;
8882135b 8570
cdd6c482
IM
8571 mutex_lock(&current->perf_event_mutex);
8572 list_add_tail(&event->owner_entry, &current->perf_event_list);
8573 mutex_unlock(&current->perf_event_mutex);
082ff5a2 8574
8a49542c
PZ
8575 /*
8576 * Drop the reference on the group_event after placing the
8577 * new event on the sibling_list. This ensures destruction
8578 * of the group leader will find the pointer to itself in
8579 * perf_group_detach().
8580 */
2903ff01 8581 fdput(group);
ea635c64
AV
8582 fd_install(event_fd, event_file);
8583 return event_fd;
0793a61d 8584
f55fc2a5
PZ
8585err_locked:
8586 if (move_group)
8587 mutex_unlock(&gctx->mutex);
8588 mutex_unlock(&ctx->mutex);
8589/* err_file: */
8590 fput(event_file);
c3f00c70 8591err_context:
fe4b04fa 8592 perf_unpin_context(ctx);
ea635c64 8593 put_ctx(ctx);
c6be5a5c 8594err_alloc:
ea635c64 8595 free_event(event);
1f4ee503 8596err_cpus:
fbfc623f 8597 put_online_cpus();
1f4ee503 8598err_task:
e7d0bc04
PZ
8599 if (task)
8600 put_task_struct(task);
89a1e187 8601err_group_fd:
2903ff01 8602 fdput(group);
ea635c64
AV
8603err_fd:
8604 put_unused_fd(event_fd);
dc86cabe 8605 return err;
0793a61d
TG
8606}
8607
fb0459d7
AV
8608/**
8609 * perf_event_create_kernel_counter
8610 *
8611 * @attr: attributes of the counter to create
8612 * @cpu: cpu in which the counter is bound
38a81da2 8613 * @task: task to profile (NULL for percpu)
fb0459d7
AV
8614 */
8615struct perf_event *
8616perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
38a81da2 8617 struct task_struct *task,
4dc0da86
AK
8618 perf_overflow_handler_t overflow_handler,
8619 void *context)
fb0459d7 8620{
fb0459d7 8621 struct perf_event_context *ctx;
c3f00c70 8622 struct perf_event *event;
fb0459d7 8623 int err;
d859e29f 8624
fb0459d7
AV
8625 /*
8626 * Get the target context (task or percpu):
8627 */
d859e29f 8628
4dc0da86 8629 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
79dff51e 8630 overflow_handler, context, -1);
c3f00c70
PZ
8631 if (IS_ERR(event)) {
8632 err = PTR_ERR(event);
8633 goto err;
8634 }
d859e29f 8635
f8697762
JO
8636 /* Mark owner so we could distinguish it from user events. */
8637 event->owner = EVENT_OWNER_KERNEL;
8638
766d6c07
FW
8639 account_event(event);
8640
4af57ef2 8641 ctx = find_get_context(event->pmu, task, event);
c6567f64
FW
8642 if (IS_ERR(ctx)) {
8643 err = PTR_ERR(ctx);
c3f00c70 8644 goto err_free;
d859e29f 8645 }
fb0459d7 8646
fb0459d7
AV
8647 WARN_ON_ONCE(ctx->parent_ctx);
8648 mutex_lock(&ctx->mutex);
bed5b25a
AS
8649 if (!exclusive_event_installable(event, ctx)) {
8650 mutex_unlock(&ctx->mutex);
8651 perf_unpin_context(ctx);
8652 put_ctx(ctx);
8653 err = -EBUSY;
8654 goto err_free;
8655 }
8656
fb0459d7 8657 perf_install_in_context(ctx, event, cpu);
fe4b04fa 8658 perf_unpin_context(ctx);
fb0459d7
AV
8659 mutex_unlock(&ctx->mutex);
8660
fb0459d7
AV
8661 return event;
8662
c3f00c70
PZ
8663err_free:
8664 free_event(event);
8665err:
c6567f64 8666 return ERR_PTR(err);
9b51f66d 8667}
fb0459d7 8668EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
9b51f66d 8669
0cda4c02
YZ
8670void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
8671{
8672 struct perf_event_context *src_ctx;
8673 struct perf_event_context *dst_ctx;
8674 struct perf_event *event, *tmp;
8675 LIST_HEAD(events);
8676
8677 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
8678 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
8679
f63a8daa
PZ
8680 /*
8681 * See perf_event_ctx_lock() for comments on the details
8682 * of swizzling perf_event::ctx.
8683 */
8684 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
0cda4c02
YZ
8685 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
8686 event_entry) {
46ce0fe9 8687 perf_remove_from_context(event, false);
9a545de0 8688 unaccount_event_cpu(event, src_cpu);
0cda4c02 8689 put_ctx(src_ctx);
9886167d 8690 list_add(&event->migrate_entry, &events);
0cda4c02 8691 }
0cda4c02 8692
8f95b435
PZI
8693 /*
8694 * Wait for the events to quiesce before re-instating them.
8695 */
0cda4c02
YZ
8696 synchronize_rcu();
8697
8f95b435
PZI
8698 /*
8699 * Re-instate events in 2 passes.
8700 *
8701 * Skip over group leaders and only install siblings on this first
8702 * pass, siblings will not get enabled without a leader, however a
8703 * leader will enable its siblings, even if those are still on the old
8704 * context.
8705 */
8706 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
8707 if (event->group_leader == event)
8708 continue;
8709
8710 list_del(&event->migrate_entry);
8711 if (event->state >= PERF_EVENT_STATE_OFF)
8712 event->state = PERF_EVENT_STATE_INACTIVE;
8713 account_event_cpu(event, dst_cpu);
8714 perf_install_in_context(dst_ctx, event, dst_cpu);
8715 get_ctx(dst_ctx);
8716 }
8717
8718 /*
8719 * Once all the siblings are setup properly, install the group leaders
8720 * to make it go.
8721 */
9886167d
PZ
8722 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
8723 list_del(&event->migrate_entry);
0cda4c02
YZ
8724 if (event->state >= PERF_EVENT_STATE_OFF)
8725 event->state = PERF_EVENT_STATE_INACTIVE;
9a545de0 8726 account_event_cpu(event, dst_cpu);
0cda4c02
YZ
8727 perf_install_in_context(dst_ctx, event, dst_cpu);
8728 get_ctx(dst_ctx);
8729 }
8730 mutex_unlock(&dst_ctx->mutex);
f63a8daa 8731 mutex_unlock(&src_ctx->mutex);
0cda4c02
YZ
8732}
8733EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
8734
cdd6c482 8735static void sync_child_event(struct perf_event *child_event,
38b200d6 8736 struct task_struct *child)
d859e29f 8737{
cdd6c482 8738 struct perf_event *parent_event = child_event->parent;
8bc20959 8739 u64 child_val;
d859e29f 8740
cdd6c482
IM
8741 if (child_event->attr.inherit_stat)
8742 perf_event_read_event(child_event, child);
38b200d6 8743
b5e58793 8744 child_val = perf_event_count(child_event);
d859e29f
PM
8745
8746 /*
8747 * Add back the child's count to the parent's count:
8748 */
a6e6dea6 8749 atomic64_add(child_val, &parent_event->child_count);
cdd6c482
IM
8750 atomic64_add(child_event->total_time_enabled,
8751 &parent_event->child_total_time_enabled);
8752 atomic64_add(child_event->total_time_running,
8753 &parent_event->child_total_time_running);
d859e29f
PM
8754
8755 /*
cdd6c482 8756 * Remove this event from the parent's list
d859e29f 8757 */
cdd6c482
IM
8758 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
8759 mutex_lock(&parent_event->child_mutex);
8760 list_del_init(&child_event->child_list);
8761 mutex_unlock(&parent_event->child_mutex);
d859e29f 8762
dc633982
JO
8763 /*
8764 * Make sure user/parent get notified, that we just
8765 * lost one event.
8766 */
8767 perf_event_wakeup(parent_event);
8768
d859e29f 8769 /*
cdd6c482 8770 * Release the parent event, if this was the last
d859e29f
PM
8771 * reference to it.
8772 */
a6fa941d 8773 put_event(parent_event);
d859e29f
PM
8774}
8775
9b51f66d 8776static void
cdd6c482
IM
8777__perf_event_exit_task(struct perf_event *child_event,
8778 struct perf_event_context *child_ctx,
38b200d6 8779 struct task_struct *child)
9b51f66d 8780{
1903d50c
PZ
8781 /*
8782 * Do not destroy the 'original' grouping; because of the context
8783 * switch optimization the original events could've ended up in a
8784 * random child task.
8785 *
8786 * If we were to destroy the original group, all group related
8787 * operations would cease to function properly after this random
8788 * child dies.
8789 *
8790 * Do destroy all inherited groups, we don't care about those
8791 * and being thorough is better.
8792 */
8793 perf_remove_from_context(child_event, !!child_event->parent);
0cc0c027 8794
9b51f66d 8795 /*
38b435b1 8796 * It can happen that the parent exits first, and has events
9b51f66d 8797 * that are still around due to the child reference. These
38b435b1 8798 * events need to be zapped.
9b51f66d 8799 */
38b435b1 8800 if (child_event->parent) {
cdd6c482
IM
8801 sync_child_event(child_event, child);
8802 free_event(child_event);
179033b3
JO
8803 } else {
8804 child_event->state = PERF_EVENT_STATE_EXIT;
8805 perf_event_wakeup(child_event);
4bcf349a 8806 }
9b51f66d
IM
8807}
8808
8dc85d54 8809static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
9b51f66d 8810{
ebf905fc 8811 struct perf_event *child_event, *next;
211de6eb 8812 struct perf_event_context *child_ctx, *clone_ctx = NULL;
a63eaf34 8813 unsigned long flags;
9b51f66d 8814
4e93ad60 8815 if (likely(!child->perf_event_ctxp[ctxn]))
9b51f66d
IM
8816 return;
8817
a63eaf34 8818 local_irq_save(flags);
ad3a37de
PM
8819 /*
8820 * We can't reschedule here because interrupts are disabled,
8821 * and either child is current or it is a task that can't be
8822 * scheduled, so we are now safe from rescheduling changing
8823 * our context.
8824 */
806839b2 8825 child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
c93f7669
PM
8826
8827 /*
8828 * Take the context lock here so that if find_get_context is
cdd6c482 8829 * reading child->perf_event_ctxp, we wait until it has
c93f7669
PM
8830 * incremented the context's refcount before we do put_ctx below.
8831 */
e625cce1 8832 raw_spin_lock(&child_ctx->lock);
04dc2dbb 8833 task_ctx_sched_out(child_ctx);
8dc85d54 8834 child->perf_event_ctxp[ctxn] = NULL;
4a1c0f26 8835
71a851b4
PZ
8836 /*
8837 * If this context is a clone; unclone it so it can't get
8838 * swapped to another process while we're removing all
cdd6c482 8839 * the events from it.
71a851b4 8840 */
211de6eb 8841 clone_ctx = unclone_ctx(child_ctx);
5e942bb3 8842 update_context_time(child_ctx);
e625cce1 8843 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
9f498cc5 8844
211de6eb
PZ
8845 if (clone_ctx)
8846 put_ctx(clone_ctx);
4a1c0f26 8847
9f498cc5 8848 /*
cdd6c482
IM
8849 * Report the task dead after unscheduling the events so that we
8850 * won't get any samples after PERF_RECORD_EXIT. We can however still
8851 * get a few PERF_RECORD_READ events.
9f498cc5 8852 */
cdd6c482 8853 perf_event_task(child, child_ctx, 0);
a63eaf34 8854
66fff224
PZ
8855 /*
8856 * We can recurse on the same lock type through:
8857 *
cdd6c482
IM
8858 * __perf_event_exit_task()
8859 * sync_child_event()
a6fa941d
AV
8860 * put_event()
8861 * mutex_lock(&ctx->mutex)
66fff224
PZ
8862 *
8863 * But since its the parent context it won't be the same instance.
8864 */
a0507c84 8865 mutex_lock(&child_ctx->mutex);
a63eaf34 8866
ebf905fc 8867 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
cdd6c482 8868 __perf_event_exit_task(child_event, child_ctx, child);
8bc20959 8869
a63eaf34
PM
8870 mutex_unlock(&child_ctx->mutex);
8871
8872 put_ctx(child_ctx);
9b51f66d
IM
8873}
8874
8dc85d54
PZ
8875/*
8876 * When a child task exits, feed back event values to parent events.
8877 */
8878void perf_event_exit_task(struct task_struct *child)
8879{
8882135b 8880 struct perf_event *event, *tmp;
8dc85d54
PZ
8881 int ctxn;
8882
8882135b
PZ
8883 mutex_lock(&child->perf_event_mutex);
8884 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
8885 owner_entry) {
8886 list_del_init(&event->owner_entry);
8887
8888 /*
8889 * Ensure the list deletion is visible before we clear
8890 * the owner, closes a race against perf_release() where
8891 * we need to serialize on the owner->perf_event_mutex.
8892 */
8893 smp_wmb();
8894 event->owner = NULL;
8895 }
8896 mutex_unlock(&child->perf_event_mutex);
8897
8dc85d54
PZ
8898 for_each_task_context_nr(ctxn)
8899 perf_event_exit_task_context(child, ctxn);
4e93ad60
JO
8900
8901 /*
8902 * The perf_event_exit_task_context calls perf_event_task
8903 * with child's task_ctx, which generates EXIT events for
8904 * child contexts and sets child->perf_event_ctxp[] to NULL.
8905 * At this point we need to send EXIT events to cpu contexts.
8906 */
8907 perf_event_task(child, NULL, 0);
8dc85d54
PZ
8908}
8909
889ff015
FW
8910static void perf_free_event(struct perf_event *event,
8911 struct perf_event_context *ctx)
8912{
8913 struct perf_event *parent = event->parent;
8914
8915 if (WARN_ON_ONCE(!parent))
8916 return;
8917
8918 mutex_lock(&parent->child_mutex);
8919 list_del_init(&event->child_list);
8920 mutex_unlock(&parent->child_mutex);
8921
a6fa941d 8922 put_event(parent);
889ff015 8923
652884fe 8924 raw_spin_lock_irq(&ctx->lock);
8a49542c 8925 perf_group_detach(event);
889ff015 8926 list_del_event(event, ctx);
652884fe 8927 raw_spin_unlock_irq(&ctx->lock);
889ff015
FW
8928 free_event(event);
8929}
8930
bbbee908 8931/*
652884fe 8932 * Free an unexposed, unused context as created by inheritance by
8dc85d54 8933 * perf_event_init_task below, used by fork() in case of fail.
652884fe
PZ
8934 *
8935 * Not all locks are strictly required, but take them anyway to be nice and
8936 * help out with the lockdep assertions.
bbbee908 8937 */
cdd6c482 8938void perf_event_free_task(struct task_struct *task)
bbbee908 8939{
8dc85d54 8940 struct perf_event_context *ctx;
cdd6c482 8941 struct perf_event *event, *tmp;
8dc85d54 8942 int ctxn;
bbbee908 8943
8dc85d54
PZ
8944 for_each_task_context_nr(ctxn) {
8945 ctx = task->perf_event_ctxp[ctxn];
8946 if (!ctx)
8947 continue;
bbbee908 8948
8dc85d54 8949 mutex_lock(&ctx->mutex);
bbbee908 8950again:
8dc85d54
PZ
8951 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
8952 group_entry)
8953 perf_free_event(event, ctx);
bbbee908 8954
8dc85d54
PZ
8955 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
8956 group_entry)
8957 perf_free_event(event, ctx);
bbbee908 8958
8dc85d54
PZ
8959 if (!list_empty(&ctx->pinned_groups) ||
8960 !list_empty(&ctx->flexible_groups))
8961 goto again;
bbbee908 8962
8dc85d54 8963 mutex_unlock(&ctx->mutex);
bbbee908 8964
8dc85d54
PZ
8965 put_ctx(ctx);
8966 }
889ff015
FW
8967}
8968
4e231c79
PZ
8969void perf_event_delayed_put(struct task_struct *task)
8970{
8971 int ctxn;
8972
8973 for_each_task_context_nr(ctxn)
8974 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
8975}
8976
ffe8690c
KX
8977struct perf_event *perf_event_get(unsigned int fd)
8978{
8979 int err;
8980 struct fd f;
8981 struct perf_event *event;
8982
8983 err = perf_fget_light(fd, &f);
8984 if (err)
8985 return ERR_PTR(err);
8986
8987 event = f.file->private_data;
8988 atomic_long_inc(&event->refcount);
8989 fdput(f);
8990
8991 return event;
8992}
8993
8994const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
8995{
8996 if (!event)
8997 return ERR_PTR(-EINVAL);
8998
8999 return &event->attr;
9000}
9001
97dee4f3
PZ
9002/*
9003 * inherit a event from parent task to child task:
9004 */
9005static struct perf_event *
9006inherit_event(struct perf_event *parent_event,
9007 struct task_struct *parent,
9008 struct perf_event_context *parent_ctx,
9009 struct task_struct *child,
9010 struct perf_event *group_leader,
9011 struct perf_event_context *child_ctx)
9012{
1929def9 9013 enum perf_event_active_state parent_state = parent_event->state;
97dee4f3 9014 struct perf_event *child_event;
cee010ec 9015 unsigned long flags;
97dee4f3
PZ
9016
9017 /*
9018 * Instead of creating recursive hierarchies of events,
9019 * we link inherited events back to the original parent,
9020 * which has a filp for sure, which we use as the reference
9021 * count:
9022 */
9023 if (parent_event->parent)
9024 parent_event = parent_event->parent;
9025
9026 child_event = perf_event_alloc(&parent_event->attr,
9027 parent_event->cpu,
d580ff86 9028 child,
97dee4f3 9029 group_leader, parent_event,
79dff51e 9030 NULL, NULL, -1);
97dee4f3
PZ
9031 if (IS_ERR(child_event))
9032 return child_event;
a6fa941d 9033
fadfe7be
JO
9034 if (is_orphaned_event(parent_event) ||
9035 !atomic_long_inc_not_zero(&parent_event->refcount)) {
a6fa941d
AV
9036 free_event(child_event);
9037 return NULL;
9038 }
9039
97dee4f3
PZ
9040 get_ctx(child_ctx);
9041
9042 /*
9043 * Make the child state follow the state of the parent event,
9044 * not its attr.disabled bit. We hold the parent's mutex,
9045 * so we won't race with perf_event_{en, dis}able_family.
9046 */
1929def9 9047 if (parent_state >= PERF_EVENT_STATE_INACTIVE)
97dee4f3
PZ
9048 child_event->state = PERF_EVENT_STATE_INACTIVE;
9049 else
9050 child_event->state = PERF_EVENT_STATE_OFF;
9051
9052 if (parent_event->attr.freq) {
9053 u64 sample_period = parent_event->hw.sample_period;
9054 struct hw_perf_event *hwc = &child_event->hw;
9055
9056 hwc->sample_period = sample_period;
9057 hwc->last_period = sample_period;
9058
9059 local64_set(&hwc->period_left, sample_period);
9060 }
9061
9062 child_event->ctx = child_ctx;
9063 child_event->overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
9064 child_event->overflow_handler_context
9065 = parent_event->overflow_handler_context;
97dee4f3 9066
614b6780
TG
9067 /*
9068 * Precalculate sample_data sizes
9069 */
9070 perf_event__header_size(child_event);
6844c09d 9071 perf_event__id_header_size(child_event);
614b6780 9072
97dee4f3
PZ
9073 /*
9074 * Link it up in the child's context:
9075 */
cee010ec 9076 raw_spin_lock_irqsave(&child_ctx->lock, flags);
97dee4f3 9077 add_event_to_ctx(child_event, child_ctx);
cee010ec 9078 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
97dee4f3 9079
97dee4f3
PZ
9080 /*
9081 * Link this into the parent event's child list
9082 */
9083 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
9084 mutex_lock(&parent_event->child_mutex);
9085 list_add_tail(&child_event->child_list, &parent_event->child_list);
9086 mutex_unlock(&parent_event->child_mutex);
9087
9088 return child_event;
9089}
9090
9091static int inherit_group(struct perf_event *parent_event,
9092 struct task_struct *parent,
9093 struct perf_event_context *parent_ctx,
9094 struct task_struct *child,
9095 struct perf_event_context *child_ctx)
9096{
9097 struct perf_event *leader;
9098 struct perf_event *sub;
9099 struct perf_event *child_ctr;
9100
9101 leader = inherit_event(parent_event, parent, parent_ctx,
9102 child, NULL, child_ctx);
9103 if (IS_ERR(leader))
9104 return PTR_ERR(leader);
9105 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
9106 child_ctr = inherit_event(sub, parent, parent_ctx,
9107 child, leader, child_ctx);
9108 if (IS_ERR(child_ctr))
9109 return PTR_ERR(child_ctr);
9110 }
9111 return 0;
889ff015
FW
9112}
9113
9114static int
9115inherit_task_group(struct perf_event *event, struct task_struct *parent,
9116 struct perf_event_context *parent_ctx,
8dc85d54 9117 struct task_struct *child, int ctxn,
889ff015
FW
9118 int *inherited_all)
9119{
9120 int ret;
8dc85d54 9121 struct perf_event_context *child_ctx;
889ff015
FW
9122
9123 if (!event->attr.inherit) {
9124 *inherited_all = 0;
9125 return 0;
bbbee908
PZ
9126 }
9127
fe4b04fa 9128 child_ctx = child->perf_event_ctxp[ctxn];
889ff015
FW
9129 if (!child_ctx) {
9130 /*
9131 * This is executed from the parent task context, so
9132 * inherit events that have been marked for cloning.
9133 * First allocate and initialize a context for the
9134 * child.
9135 */
bbbee908 9136
734df5ab 9137 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
889ff015
FW
9138 if (!child_ctx)
9139 return -ENOMEM;
bbbee908 9140
8dc85d54 9141 child->perf_event_ctxp[ctxn] = child_ctx;
889ff015
FW
9142 }
9143
9144 ret = inherit_group(event, parent, parent_ctx,
9145 child, child_ctx);
9146
9147 if (ret)
9148 *inherited_all = 0;
9149
9150 return ret;
bbbee908
PZ
9151}
9152
9b51f66d 9153/*
cdd6c482 9154 * Initialize the perf_event context in task_struct
9b51f66d 9155 */
985c8dcb 9156static int perf_event_init_context(struct task_struct *child, int ctxn)
9b51f66d 9157{
889ff015 9158 struct perf_event_context *child_ctx, *parent_ctx;
cdd6c482
IM
9159 struct perf_event_context *cloned_ctx;
9160 struct perf_event *event;
9b51f66d 9161 struct task_struct *parent = current;
564c2b21 9162 int inherited_all = 1;
dddd3379 9163 unsigned long flags;
6ab423e0 9164 int ret = 0;
9b51f66d 9165
8dc85d54 9166 if (likely(!parent->perf_event_ctxp[ctxn]))
6ab423e0
PZ
9167 return 0;
9168
ad3a37de 9169 /*
25346b93
PM
9170 * If the parent's context is a clone, pin it so it won't get
9171 * swapped under us.
ad3a37de 9172 */
8dc85d54 9173 parent_ctx = perf_pin_task_context(parent, ctxn);
ffb4ef21
PZ
9174 if (!parent_ctx)
9175 return 0;
25346b93 9176
ad3a37de
PM
9177 /*
9178 * No need to check if parent_ctx != NULL here; since we saw
9179 * it non-NULL earlier, the only reason for it to become NULL
9180 * is if we exit, and since we're currently in the middle of
9181 * a fork we can't be exiting at the same time.
9182 */
ad3a37de 9183
9b51f66d
IM
9184 /*
9185 * Lock the parent list. No need to lock the child - not PID
9186 * hashed yet and not running, so nobody can access it.
9187 */
d859e29f 9188 mutex_lock(&parent_ctx->mutex);
9b51f66d
IM
9189
9190 /*
9191 * We dont have to disable NMIs - we are only looking at
9192 * the list, not manipulating it:
9193 */
889ff015 9194 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
8dc85d54
PZ
9195 ret = inherit_task_group(event, parent, parent_ctx,
9196 child, ctxn, &inherited_all);
889ff015
FW
9197 if (ret)
9198 break;
9199 }
b93f7978 9200
dddd3379
TG
9201 /*
9202 * We can't hold ctx->lock when iterating the ->flexible_group list due
9203 * to allocations, but we need to prevent rotation because
9204 * rotate_ctx() will change the list from interrupt context.
9205 */
9206 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
9207 parent_ctx->rotate_disable = 1;
9208 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
9209
889ff015 9210 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
8dc85d54
PZ
9211 ret = inherit_task_group(event, parent, parent_ctx,
9212 child, ctxn, &inherited_all);
889ff015 9213 if (ret)
9b51f66d 9214 break;
564c2b21
PM
9215 }
9216
dddd3379
TG
9217 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
9218 parent_ctx->rotate_disable = 0;
dddd3379 9219
8dc85d54 9220 child_ctx = child->perf_event_ctxp[ctxn];
889ff015 9221
05cbaa28 9222 if (child_ctx && inherited_all) {
564c2b21
PM
9223 /*
9224 * Mark the child context as a clone of the parent
9225 * context, or of whatever the parent is a clone of.
c5ed5145
PZ
9226 *
9227 * Note that if the parent is a clone, the holding of
9228 * parent_ctx->lock avoids it from being uncloned.
564c2b21 9229 */
c5ed5145 9230 cloned_ctx = parent_ctx->parent_ctx;
ad3a37de
PM
9231 if (cloned_ctx) {
9232 child_ctx->parent_ctx = cloned_ctx;
25346b93 9233 child_ctx->parent_gen = parent_ctx->parent_gen;
564c2b21
PM
9234 } else {
9235 child_ctx->parent_ctx = parent_ctx;
9236 child_ctx->parent_gen = parent_ctx->generation;
9237 }
9238 get_ctx(child_ctx->parent_ctx);
9b51f66d
IM
9239 }
9240
c5ed5145 9241 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
d859e29f 9242 mutex_unlock(&parent_ctx->mutex);
6ab423e0 9243
25346b93 9244 perf_unpin_context(parent_ctx);
fe4b04fa 9245 put_ctx(parent_ctx);
ad3a37de 9246
6ab423e0 9247 return ret;
9b51f66d
IM
9248}
9249
8dc85d54
PZ
9250/*
9251 * Initialize the perf_event context in task_struct
9252 */
9253int perf_event_init_task(struct task_struct *child)
9254{
9255 int ctxn, ret;
9256
8550d7cb
ON
9257 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
9258 mutex_init(&child->perf_event_mutex);
9259 INIT_LIST_HEAD(&child->perf_event_list);
9260
8dc85d54
PZ
9261 for_each_task_context_nr(ctxn) {
9262 ret = perf_event_init_context(child, ctxn);
6c72e350
PZ
9263 if (ret) {
9264 perf_event_free_task(child);
8dc85d54 9265 return ret;
6c72e350 9266 }
8dc85d54
PZ
9267 }
9268
9269 return 0;
9270}
9271
220b140b
PM
9272static void __init perf_event_init_all_cpus(void)
9273{
b28ab83c 9274 struct swevent_htable *swhash;
220b140b 9275 int cpu;
220b140b
PM
9276
9277 for_each_possible_cpu(cpu) {
b28ab83c
PZ
9278 swhash = &per_cpu(swevent_htable, cpu);
9279 mutex_init(&swhash->hlist_mutex);
2fde4f94 9280 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
220b140b
PM
9281 }
9282}
9283
0db0628d 9284static void perf_event_init_cpu(int cpu)
0793a61d 9285{
108b02cf 9286 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
0793a61d 9287
b28ab83c 9288 mutex_lock(&swhash->hlist_mutex);
39af6b16 9289 swhash->online = true;
4536e4d1 9290 if (swhash->hlist_refcount > 0) {
76e1d904
FW
9291 struct swevent_hlist *hlist;
9292
b28ab83c
PZ
9293 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
9294 WARN_ON(!hlist);
9295 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 9296 }
b28ab83c 9297 mutex_unlock(&swhash->hlist_mutex);
0793a61d
TG
9298}
9299
2965faa5 9300#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
108b02cf 9301static void __perf_event_exit_context(void *__info)
0793a61d 9302{
226424ee 9303 struct remove_event re = { .detach_group = true };
108b02cf 9304 struct perf_event_context *ctx = __info;
0793a61d 9305
e3703f8c 9306 rcu_read_lock();
46ce0fe9
PZ
9307 list_for_each_entry_rcu(re.event, &ctx->event_list, event_entry)
9308 __perf_remove_from_context(&re);
e3703f8c 9309 rcu_read_unlock();
0793a61d 9310}
108b02cf
PZ
9311
9312static void perf_event_exit_cpu_context(int cpu)
9313{
9314 struct perf_event_context *ctx;
9315 struct pmu *pmu;
9316 int idx;
9317
9318 idx = srcu_read_lock(&pmus_srcu);
9319 list_for_each_entry_rcu(pmu, &pmus, entry) {
917bdd1c 9320 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
108b02cf
PZ
9321
9322 mutex_lock(&ctx->mutex);
9323 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
9324 mutex_unlock(&ctx->mutex);
9325 }
9326 srcu_read_unlock(&pmus_srcu, idx);
108b02cf
PZ
9327}
9328
cdd6c482 9329static void perf_event_exit_cpu(int cpu)
0793a61d 9330{
b28ab83c 9331 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
d859e29f 9332
e3703f8c
PZ
9333 perf_event_exit_cpu_context(cpu);
9334
b28ab83c 9335 mutex_lock(&swhash->hlist_mutex);
39af6b16 9336 swhash->online = false;
b28ab83c
PZ
9337 swevent_hlist_release(swhash);
9338 mutex_unlock(&swhash->hlist_mutex);
0793a61d
TG
9339}
9340#else
cdd6c482 9341static inline void perf_event_exit_cpu(int cpu) { }
0793a61d
TG
9342#endif
9343
c277443c
PZ
9344static int
9345perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
9346{
9347 int cpu;
9348
9349 for_each_online_cpu(cpu)
9350 perf_event_exit_cpu(cpu);
9351
9352 return NOTIFY_OK;
9353}
9354
9355/*
9356 * Run the perf reboot notifier at the very last possible moment so that
9357 * the generic watchdog code runs as long as possible.
9358 */
9359static struct notifier_block perf_reboot_notifier = {
9360 .notifier_call = perf_reboot,
9361 .priority = INT_MIN,
9362};
9363
0db0628d 9364static int
0793a61d
TG
9365perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
9366{
9367 unsigned int cpu = (long)hcpu;
9368
4536e4d1 9369 switch (action & ~CPU_TASKS_FROZEN) {
0793a61d
TG
9370
9371 case CPU_UP_PREPARE:
5e11637e 9372 case CPU_DOWN_FAILED:
cdd6c482 9373 perf_event_init_cpu(cpu);
0793a61d
TG
9374 break;
9375
5e11637e 9376 case CPU_UP_CANCELED:
0793a61d 9377 case CPU_DOWN_PREPARE:
cdd6c482 9378 perf_event_exit_cpu(cpu);
0793a61d 9379 break;
0793a61d
TG
9380 default:
9381 break;
9382 }
9383
9384 return NOTIFY_OK;
9385}
9386
cdd6c482 9387void __init perf_event_init(void)
0793a61d 9388{
3c502e7a
JW
9389 int ret;
9390
2e80a82a
PZ
9391 idr_init(&pmu_idr);
9392
220b140b 9393 perf_event_init_all_cpus();
b0a873eb 9394 init_srcu_struct(&pmus_srcu);
2e80a82a
PZ
9395 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
9396 perf_pmu_register(&perf_cpu_clock, NULL, -1);
9397 perf_pmu_register(&perf_task_clock, NULL, -1);
b0a873eb
PZ
9398 perf_tp_register();
9399 perf_cpu_notifier(perf_cpu_notify);
c277443c 9400 register_reboot_notifier(&perf_reboot_notifier);
3c502e7a
JW
9401
9402 ret = init_hw_breakpoint();
9403 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
b2029520
GN
9404
9405 /* do not patch jump label more than once per second */
9406 jump_label_rate_limit(&perf_sched_events, HZ);
b01c3a00
JO
9407
9408 /*
9409 * Build time assertion that we keep the data_head at the intended
9410 * location. IOW, validation we got the __reserved[] size right.
9411 */
9412 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
9413 != 1024);
0793a61d 9414}
abe43400 9415
fd979c01
CS
9416ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
9417 char *page)
9418{
9419 struct perf_pmu_events_attr *pmu_attr =
9420 container_of(attr, struct perf_pmu_events_attr, attr);
9421
9422 if (pmu_attr->event_str)
9423 return sprintf(page, "%s\n", pmu_attr->event_str);
9424
9425 return 0;
9426}
9427
abe43400
PZ
9428static int __init perf_event_sysfs_init(void)
9429{
9430 struct pmu *pmu;
9431 int ret;
9432
9433 mutex_lock(&pmus_lock);
9434
9435 ret = bus_register(&pmu_bus);
9436 if (ret)
9437 goto unlock;
9438
9439 list_for_each_entry(pmu, &pmus, entry) {
9440 if (!pmu->name || pmu->type < 0)
9441 continue;
9442
9443 ret = pmu_dev_alloc(pmu);
9444 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
9445 }
9446 pmu_bus_running = 1;
9447 ret = 0;
9448
9449unlock:
9450 mutex_unlock(&pmus_lock);
9451
9452 return ret;
9453}
9454device_initcall(perf_event_sysfs_init);
e5d1367f
SE
9455
9456#ifdef CONFIG_CGROUP_PERF
eb95419b
TH
9457static struct cgroup_subsys_state *
9458perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
e5d1367f
SE
9459{
9460 struct perf_cgroup *jc;
e5d1367f 9461
1b15d055 9462 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
e5d1367f
SE
9463 if (!jc)
9464 return ERR_PTR(-ENOMEM);
9465
e5d1367f
SE
9466 jc->info = alloc_percpu(struct perf_cgroup_info);
9467 if (!jc->info) {
9468 kfree(jc);
9469 return ERR_PTR(-ENOMEM);
9470 }
9471
e5d1367f
SE
9472 return &jc->css;
9473}
9474
eb95419b 9475static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
e5d1367f 9476{
eb95419b
TH
9477 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
9478
e5d1367f
SE
9479 free_percpu(jc->info);
9480 kfree(jc);
9481}
9482
9483static int __perf_cgroup_move(void *info)
9484{
9485 struct task_struct *task = info;
ddaaf4e2 9486 rcu_read_lock();
e5d1367f 9487 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
ddaaf4e2 9488 rcu_read_unlock();
e5d1367f
SE
9489 return 0;
9490}
9491
eb95419b
TH
9492static void perf_cgroup_attach(struct cgroup_subsys_state *css,
9493 struct cgroup_taskset *tset)
e5d1367f 9494{
bb9d97b6
TH
9495 struct task_struct *task;
9496
924f0d9a 9497 cgroup_taskset_for_each(task, tset)
bb9d97b6 9498 task_function_call(task, __perf_cgroup_move, task);
e5d1367f
SE
9499}
9500
073219e9 9501struct cgroup_subsys perf_event_cgrp_subsys = {
92fb9748
TH
9502 .css_alloc = perf_cgroup_css_alloc,
9503 .css_free = perf_cgroup_css_free,
bb9d97b6 9504 .attach = perf_cgroup_attach,
e5d1367f
SE
9505};
9506#endif /* CONFIG_CGROUP_PERF */