]> git.ipfire.org Git - thirdparty/linux.git/blame - kernel/events/core.c
Merge tag 'iommu-fixes-v4.19-rc5' of git://git.kernel.org/pub/scm/linux/kernel/git...
[thirdparty/linux.git] / kernel / events / core.c
CommitLineData
0793a61d 1/*
57c0c15b 2 * Performance events core code:
0793a61d 3 *
98144511 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
e7e7ee2e 5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
90eec103 6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
d36b6910 7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
7b732a75 8 *
57c0c15b 9 * For licensing details see kernel-base/COPYING
0793a61d
TG
10 */
11
12#include <linux/fs.h>
b9cacc7b 13#include <linux/mm.h>
0793a61d
TG
14#include <linux/cpu.h>
15#include <linux/smp.h>
2e80a82a 16#include <linux/idr.h>
04289bb9 17#include <linux/file.h>
0793a61d 18#include <linux/poll.h>
5a0e3ad6 19#include <linux/slab.h>
76e1d904 20#include <linux/hash.h>
12351ef8 21#include <linux/tick.h>
0793a61d 22#include <linux/sysfs.h>
22a4f650 23#include <linux/dcache.h>
0793a61d 24#include <linux/percpu.h>
22a4f650 25#include <linux/ptrace.h>
c277443c 26#include <linux/reboot.h>
b9cacc7b 27#include <linux/vmstat.h>
abe43400 28#include <linux/device.h>
6e5fdeed 29#include <linux/export.h>
906010b2 30#include <linux/vmalloc.h>
b9cacc7b
PZ
31#include <linux/hardirq.h>
32#include <linux/rculist.h>
0793a61d
TG
33#include <linux/uaccess.h>
34#include <linux/syscalls.h>
35#include <linux/anon_inodes.h>
aa9c4c0f 36#include <linux/kernel_stat.h>
39bed6cb 37#include <linux/cgroup.h>
cdd6c482 38#include <linux/perf_event.h>
af658dca 39#include <linux/trace_events.h>
3c502e7a 40#include <linux/hw_breakpoint.h>
c5ebcedb 41#include <linux/mm_types.h>
c464c76e 42#include <linux/module.h>
f972eb63 43#include <linux/mman.h>
b3f20785 44#include <linux/compat.h>
2541517c
AS
45#include <linux/bpf.h>
46#include <linux/filter.h>
375637bc
AS
47#include <linux/namei.h>
48#include <linux/parser.h>
e6017571 49#include <linux/sched/clock.h>
6e84f315 50#include <linux/sched/mm.h>
e4222673
HB
51#include <linux/proc_ns.h>
52#include <linux/mount.h>
0793a61d 53
76369139
FW
54#include "internal.h"
55
4e193bd4
TB
56#include <asm/irq_regs.h>
57
272325c4
PZ
58typedef int (*remote_function_f)(void *);
59
fe4b04fa 60struct remote_function_call {
e7e7ee2e 61 struct task_struct *p;
272325c4 62 remote_function_f func;
e7e7ee2e
IM
63 void *info;
64 int ret;
fe4b04fa
PZ
65};
66
67static void remote_function(void *data)
68{
69 struct remote_function_call *tfc = data;
70 struct task_struct *p = tfc->p;
71
72 if (p) {
0da4cf3e
PZ
73 /* -EAGAIN */
74 if (task_cpu(p) != smp_processor_id())
75 return;
76
77 /*
78 * Now that we're on right CPU with IRQs disabled, we can test
79 * if we hit the right task without races.
80 */
81
82 tfc->ret = -ESRCH; /* No such (running) process */
83 if (p != current)
fe4b04fa
PZ
84 return;
85 }
86
87 tfc->ret = tfc->func(tfc->info);
88}
89
90/**
91 * task_function_call - call a function on the cpu on which a task runs
92 * @p: the task to evaluate
93 * @func: the function to be called
94 * @info: the function call argument
95 *
96 * Calls the function @func when the task is currently running. This might
97 * be on the current CPU, which just calls the function directly
98 *
99 * returns: @func return value, or
100 * -ESRCH - when the process isn't running
101 * -EAGAIN - when the process moved away
102 */
103static int
272325c4 104task_function_call(struct task_struct *p, remote_function_f func, void *info)
fe4b04fa
PZ
105{
106 struct remote_function_call data = {
e7e7ee2e
IM
107 .p = p,
108 .func = func,
109 .info = info,
0da4cf3e 110 .ret = -EAGAIN,
fe4b04fa 111 };
0da4cf3e 112 int ret;
fe4b04fa 113
0da4cf3e
PZ
114 do {
115 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
116 if (!ret)
117 ret = data.ret;
118 } while (ret == -EAGAIN);
fe4b04fa 119
0da4cf3e 120 return ret;
fe4b04fa
PZ
121}
122
123/**
124 * cpu_function_call - call a function on the cpu
125 * @func: the function to be called
126 * @info: the function call argument
127 *
128 * Calls the function @func on the remote cpu.
129 *
130 * returns: @func return value or -ENXIO when the cpu is offline
131 */
272325c4 132static int cpu_function_call(int cpu, remote_function_f func, void *info)
fe4b04fa
PZ
133{
134 struct remote_function_call data = {
e7e7ee2e
IM
135 .p = NULL,
136 .func = func,
137 .info = info,
138 .ret = -ENXIO, /* No such CPU */
fe4b04fa
PZ
139 };
140
141 smp_call_function_single(cpu, remote_function, &data, 1);
142
143 return data.ret;
144}
145
fae3fde6
PZ
146static inline struct perf_cpu_context *
147__get_cpu_context(struct perf_event_context *ctx)
148{
149 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
150}
151
152static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
153 struct perf_event_context *ctx)
0017960f 154{
fae3fde6
PZ
155 raw_spin_lock(&cpuctx->ctx.lock);
156 if (ctx)
157 raw_spin_lock(&ctx->lock);
158}
159
160static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
161 struct perf_event_context *ctx)
162{
163 if (ctx)
164 raw_spin_unlock(&ctx->lock);
165 raw_spin_unlock(&cpuctx->ctx.lock);
166}
167
63b6da39
PZ
168#define TASK_TOMBSTONE ((void *)-1L)
169
170static bool is_kernel_event(struct perf_event *event)
171{
f47c02c0 172 return READ_ONCE(event->owner) == TASK_TOMBSTONE;
63b6da39
PZ
173}
174
39a43640
PZ
175/*
176 * On task ctx scheduling...
177 *
178 * When !ctx->nr_events a task context will not be scheduled. This means
179 * we can disable the scheduler hooks (for performance) without leaving
180 * pending task ctx state.
181 *
182 * This however results in two special cases:
183 *
184 * - removing the last event from a task ctx; this is relatively straight
185 * forward and is done in __perf_remove_from_context.
186 *
187 * - adding the first event to a task ctx; this is tricky because we cannot
188 * rely on ctx->is_active and therefore cannot use event_function_call().
189 * See perf_install_in_context().
190 *
39a43640
PZ
191 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
192 */
193
fae3fde6
PZ
194typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
195 struct perf_event_context *, void *);
196
197struct event_function_struct {
198 struct perf_event *event;
199 event_f func;
200 void *data;
201};
202
203static int event_function(void *info)
204{
205 struct event_function_struct *efs = info;
206 struct perf_event *event = efs->event;
0017960f 207 struct perf_event_context *ctx = event->ctx;
fae3fde6
PZ
208 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
209 struct perf_event_context *task_ctx = cpuctx->task_ctx;
63b6da39 210 int ret = 0;
fae3fde6 211
16444645 212 lockdep_assert_irqs_disabled();
fae3fde6 213
63b6da39 214 perf_ctx_lock(cpuctx, task_ctx);
fae3fde6
PZ
215 /*
216 * Since we do the IPI call without holding ctx->lock things can have
217 * changed, double check we hit the task we set out to hit.
fae3fde6
PZ
218 */
219 if (ctx->task) {
63b6da39 220 if (ctx->task != current) {
0da4cf3e 221 ret = -ESRCH;
63b6da39
PZ
222 goto unlock;
223 }
fae3fde6 224
fae3fde6
PZ
225 /*
226 * We only use event_function_call() on established contexts,
227 * and event_function() is only ever called when active (or
228 * rather, we'll have bailed in task_function_call() or the
229 * above ctx->task != current test), therefore we must have
230 * ctx->is_active here.
231 */
232 WARN_ON_ONCE(!ctx->is_active);
233 /*
234 * And since we have ctx->is_active, cpuctx->task_ctx must
235 * match.
236 */
63b6da39
PZ
237 WARN_ON_ONCE(task_ctx != ctx);
238 } else {
239 WARN_ON_ONCE(&cpuctx->ctx != ctx);
fae3fde6 240 }
63b6da39 241
fae3fde6 242 efs->func(event, cpuctx, ctx, efs->data);
63b6da39 243unlock:
fae3fde6
PZ
244 perf_ctx_unlock(cpuctx, task_ctx);
245
63b6da39 246 return ret;
fae3fde6
PZ
247}
248
fae3fde6 249static void event_function_call(struct perf_event *event, event_f func, void *data)
0017960f
PZ
250{
251 struct perf_event_context *ctx = event->ctx;
63b6da39 252 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
fae3fde6
PZ
253 struct event_function_struct efs = {
254 .event = event,
255 .func = func,
256 .data = data,
257 };
0017960f 258
c97f4736
PZ
259 if (!event->parent) {
260 /*
261 * If this is a !child event, we must hold ctx::mutex to
262 * stabilize the the event->ctx relation. See
263 * perf_event_ctx_lock().
264 */
265 lockdep_assert_held(&ctx->mutex);
266 }
0017960f
PZ
267
268 if (!task) {
fae3fde6 269 cpu_function_call(event->cpu, event_function, &efs);
0017960f
PZ
270 return;
271 }
272
63b6da39
PZ
273 if (task == TASK_TOMBSTONE)
274 return;
275
a096309b 276again:
fae3fde6 277 if (!task_function_call(task, event_function, &efs))
0017960f
PZ
278 return;
279
280 raw_spin_lock_irq(&ctx->lock);
63b6da39
PZ
281 /*
282 * Reload the task pointer, it might have been changed by
283 * a concurrent perf_event_context_sched_out().
284 */
285 task = ctx->task;
a096309b
PZ
286 if (task == TASK_TOMBSTONE) {
287 raw_spin_unlock_irq(&ctx->lock);
288 return;
0017960f 289 }
a096309b
PZ
290 if (ctx->is_active) {
291 raw_spin_unlock_irq(&ctx->lock);
292 goto again;
293 }
294 func(event, NULL, ctx, data);
0017960f
PZ
295 raw_spin_unlock_irq(&ctx->lock);
296}
297
cca20946
PZ
298/*
299 * Similar to event_function_call() + event_function(), but hard assumes IRQs
300 * are already disabled and we're on the right CPU.
301 */
302static void event_function_local(struct perf_event *event, event_f func, void *data)
303{
304 struct perf_event_context *ctx = event->ctx;
305 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
306 struct task_struct *task = READ_ONCE(ctx->task);
307 struct perf_event_context *task_ctx = NULL;
308
16444645 309 lockdep_assert_irqs_disabled();
cca20946
PZ
310
311 if (task) {
312 if (task == TASK_TOMBSTONE)
313 return;
314
315 task_ctx = ctx;
316 }
317
318 perf_ctx_lock(cpuctx, task_ctx);
319
320 task = ctx->task;
321 if (task == TASK_TOMBSTONE)
322 goto unlock;
323
324 if (task) {
325 /*
326 * We must be either inactive or active and the right task,
327 * otherwise we're screwed, since we cannot IPI to somewhere
328 * else.
329 */
330 if (ctx->is_active) {
331 if (WARN_ON_ONCE(task != current))
332 goto unlock;
333
334 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
335 goto unlock;
336 }
337 } else {
338 WARN_ON_ONCE(&cpuctx->ctx != ctx);
339 }
340
341 func(event, cpuctx, ctx, data);
342unlock:
343 perf_ctx_unlock(cpuctx, task_ctx);
344}
345
e5d1367f
SE
346#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
347 PERF_FLAG_FD_OUTPUT |\
a21b0b35
YD
348 PERF_FLAG_PID_CGROUP |\
349 PERF_FLAG_FD_CLOEXEC)
e5d1367f 350
bce38cd5
SE
351/*
352 * branch priv levels that need permission checks
353 */
354#define PERF_SAMPLE_BRANCH_PERM_PLM \
355 (PERF_SAMPLE_BRANCH_KERNEL |\
356 PERF_SAMPLE_BRANCH_HV)
357
0b3fcf17
SE
358enum event_type_t {
359 EVENT_FLEXIBLE = 0x1,
360 EVENT_PINNED = 0x2,
3cbaa590 361 EVENT_TIME = 0x4,
487f05e1
AS
362 /* see ctx_resched() for details */
363 EVENT_CPU = 0x8,
0b3fcf17
SE
364 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
365};
366
e5d1367f
SE
367/*
368 * perf_sched_events : >0 events exist
369 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
370 */
9107c89e
PZ
371
372static void perf_sched_delayed(struct work_struct *work);
373DEFINE_STATIC_KEY_FALSE(perf_sched_events);
374static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
375static DEFINE_MUTEX(perf_sched_mutex);
376static atomic_t perf_sched_count;
377
e5d1367f 378static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
ba532500 379static DEFINE_PER_CPU(int, perf_sched_cb_usages);
f2fb6bef 380static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
e5d1367f 381
cdd6c482
IM
382static atomic_t nr_mmap_events __read_mostly;
383static atomic_t nr_comm_events __read_mostly;
e4222673 384static atomic_t nr_namespaces_events __read_mostly;
cdd6c482 385static atomic_t nr_task_events __read_mostly;
948b26b6 386static atomic_t nr_freq_events __read_mostly;
45ac1403 387static atomic_t nr_switch_events __read_mostly;
9ee318a7 388
108b02cf
PZ
389static LIST_HEAD(pmus);
390static DEFINE_MUTEX(pmus_lock);
391static struct srcu_struct pmus_srcu;
a63fbed7 392static cpumask_var_t perf_online_mask;
108b02cf 393
0764771d 394/*
cdd6c482 395 * perf event paranoia level:
0fbdea19
IM
396 * -1 - not paranoid at all
397 * 0 - disallow raw tracepoint access for unpriv
cdd6c482 398 * 1 - disallow cpu events for unpriv
0fbdea19 399 * 2 - disallow kernel profiling for unpriv
0764771d 400 */
0161028b 401int sysctl_perf_event_paranoid __read_mostly = 2;
0764771d 402
20443384
FW
403/* Minimum for 512 kiB + 1 user control page */
404int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
df58ab24
PZ
405
406/*
cdd6c482 407 * max perf event sample rate
df58ab24 408 */
14c63f17
DH
409#define DEFAULT_MAX_SAMPLE_RATE 100000
410#define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
411#define DEFAULT_CPU_TIME_MAX_PERCENT 25
412
413int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
414
415static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
416static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
417
d9494cb4
PZ
418static int perf_sample_allowed_ns __read_mostly =
419 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
14c63f17 420
18ab2cd3 421static void update_perf_cpu_limits(void)
14c63f17
DH
422{
423 u64 tmp = perf_sample_period_ns;
424
425 tmp *= sysctl_perf_cpu_time_max_percent;
91a612ee
PZ
426 tmp = div_u64(tmp, 100);
427 if (!tmp)
428 tmp = 1;
429
430 WRITE_ONCE(perf_sample_allowed_ns, tmp);
14c63f17 431}
163ec435 432
8d5bce0c 433static bool perf_rotate_context(struct perf_cpu_context *cpuctx);
9e630205 434
163ec435
PZ
435int perf_proc_update_handler(struct ctl_table *table, int write,
436 void __user *buffer, size_t *lenp,
437 loff_t *ppos)
438{
723478c8 439 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
163ec435
PZ
440
441 if (ret || !write)
442 return ret;
443
ab7fdefb
KL
444 /*
445 * If throttling is disabled don't allow the write:
446 */
447 if (sysctl_perf_cpu_time_max_percent == 100 ||
448 sysctl_perf_cpu_time_max_percent == 0)
449 return -EINVAL;
450
163ec435 451 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
14c63f17
DH
452 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
453 update_perf_cpu_limits();
454
455 return 0;
456}
457
458int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
459
460int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
461 void __user *buffer, size_t *lenp,
462 loff_t *ppos)
463{
1572e45a 464 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
14c63f17
DH
465
466 if (ret || !write)
467 return ret;
468
b303e7c1
PZ
469 if (sysctl_perf_cpu_time_max_percent == 100 ||
470 sysctl_perf_cpu_time_max_percent == 0) {
91a612ee
PZ
471 printk(KERN_WARNING
472 "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
473 WRITE_ONCE(perf_sample_allowed_ns, 0);
474 } else {
475 update_perf_cpu_limits();
476 }
163ec435
PZ
477
478 return 0;
479}
1ccd1549 480
14c63f17
DH
481/*
482 * perf samples are done in some very critical code paths (NMIs).
483 * If they take too much CPU time, the system can lock up and not
484 * get any real work done. This will drop the sample rate when
485 * we detect that events are taking too long.
486 */
487#define NR_ACCUMULATED_SAMPLES 128
d9494cb4 488static DEFINE_PER_CPU(u64, running_sample_length);
14c63f17 489
91a612ee
PZ
490static u64 __report_avg;
491static u64 __report_allowed;
492
6a02ad66 493static void perf_duration_warn(struct irq_work *w)
14c63f17 494{
0d87d7ec 495 printk_ratelimited(KERN_INFO
91a612ee
PZ
496 "perf: interrupt took too long (%lld > %lld), lowering "
497 "kernel.perf_event_max_sample_rate to %d\n",
498 __report_avg, __report_allowed,
499 sysctl_perf_event_sample_rate);
6a02ad66
PZ
500}
501
502static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
503
504void perf_sample_event_took(u64 sample_len_ns)
505{
91a612ee
PZ
506 u64 max_len = READ_ONCE(perf_sample_allowed_ns);
507 u64 running_len;
508 u64 avg_len;
509 u32 max;
14c63f17 510
91a612ee 511 if (max_len == 0)
14c63f17
DH
512 return;
513
91a612ee
PZ
514 /* Decay the counter by 1 average sample. */
515 running_len = __this_cpu_read(running_sample_length);
516 running_len -= running_len/NR_ACCUMULATED_SAMPLES;
517 running_len += sample_len_ns;
518 __this_cpu_write(running_sample_length, running_len);
14c63f17
DH
519
520 /*
91a612ee
PZ
521 * Note: this will be biased artifically low until we have
522 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
14c63f17
DH
523 * from having to maintain a count.
524 */
91a612ee
PZ
525 avg_len = running_len/NR_ACCUMULATED_SAMPLES;
526 if (avg_len <= max_len)
14c63f17
DH
527 return;
528
91a612ee
PZ
529 __report_avg = avg_len;
530 __report_allowed = max_len;
14c63f17 531
91a612ee
PZ
532 /*
533 * Compute a throttle threshold 25% below the current duration.
534 */
535 avg_len += avg_len / 4;
536 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
537 if (avg_len < max)
538 max /= (u32)avg_len;
539 else
540 max = 1;
14c63f17 541
91a612ee
PZ
542 WRITE_ONCE(perf_sample_allowed_ns, avg_len);
543 WRITE_ONCE(max_samples_per_tick, max);
544
545 sysctl_perf_event_sample_rate = max * HZ;
546 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
6a02ad66 547
cd578abb 548 if (!irq_work_queue(&perf_duration_work)) {
91a612ee 549 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
cd578abb 550 "kernel.perf_event_max_sample_rate to %d\n",
91a612ee 551 __report_avg, __report_allowed,
cd578abb
PZ
552 sysctl_perf_event_sample_rate);
553 }
14c63f17
DH
554}
555
cdd6c482 556static atomic64_t perf_event_id;
a96bbc16 557
0b3fcf17
SE
558static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
559 enum event_type_t event_type);
560
561static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
562 enum event_type_t event_type,
563 struct task_struct *task);
564
565static void update_context_time(struct perf_event_context *ctx);
566static u64 perf_event_time(struct perf_event *event);
0b3fcf17 567
cdd6c482 568void __weak perf_event_print_debug(void) { }
0793a61d 569
84c79910 570extern __weak const char *perf_pmu_name(void)
0793a61d 571{
84c79910 572 return "pmu";
0793a61d
TG
573}
574
0b3fcf17
SE
575static inline u64 perf_clock(void)
576{
577 return local_clock();
578}
579
34f43927
PZ
580static inline u64 perf_event_clock(struct perf_event *event)
581{
582 return event->clock();
583}
584
0d3d73aa
PZ
585/*
586 * State based event timekeeping...
587 *
588 * The basic idea is to use event->state to determine which (if any) time
589 * fields to increment with the current delta. This means we only need to
590 * update timestamps when we change state or when they are explicitly requested
591 * (read).
592 *
593 * Event groups make things a little more complicated, but not terribly so. The
594 * rules for a group are that if the group leader is OFF the entire group is
595 * OFF, irrespecive of what the group member states are. This results in
596 * __perf_effective_state().
597 *
598 * A futher ramification is that when a group leader flips between OFF and
599 * !OFF, we need to update all group member times.
600 *
601 *
602 * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
603 * need to make sure the relevant context time is updated before we try and
604 * update our timestamps.
605 */
606
607static __always_inline enum perf_event_state
608__perf_effective_state(struct perf_event *event)
609{
610 struct perf_event *leader = event->group_leader;
611
612 if (leader->state <= PERF_EVENT_STATE_OFF)
613 return leader->state;
614
615 return event->state;
616}
617
618static __always_inline void
619__perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
620{
621 enum perf_event_state state = __perf_effective_state(event);
622 u64 delta = now - event->tstamp;
623
624 *enabled = event->total_time_enabled;
625 if (state >= PERF_EVENT_STATE_INACTIVE)
626 *enabled += delta;
627
628 *running = event->total_time_running;
629 if (state >= PERF_EVENT_STATE_ACTIVE)
630 *running += delta;
631}
632
633static void perf_event_update_time(struct perf_event *event)
634{
635 u64 now = perf_event_time(event);
636
637 __perf_update_times(event, now, &event->total_time_enabled,
638 &event->total_time_running);
639 event->tstamp = now;
640}
641
642static void perf_event_update_sibling_time(struct perf_event *leader)
643{
644 struct perf_event *sibling;
645
edb39592 646 for_each_sibling_event(sibling, leader)
0d3d73aa
PZ
647 perf_event_update_time(sibling);
648}
649
650static void
651perf_event_set_state(struct perf_event *event, enum perf_event_state state)
652{
653 if (event->state == state)
654 return;
655
656 perf_event_update_time(event);
657 /*
658 * If a group leader gets enabled/disabled all its siblings
659 * are affected too.
660 */
661 if ((event->state < 0) ^ (state < 0))
662 perf_event_update_sibling_time(event);
663
664 WRITE_ONCE(event->state, state);
665}
666
e5d1367f
SE
667#ifdef CONFIG_CGROUP_PERF
668
e5d1367f
SE
669static inline bool
670perf_cgroup_match(struct perf_event *event)
671{
672 struct perf_event_context *ctx = event->ctx;
673 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
674
ef824fa1
TH
675 /* @event doesn't care about cgroup */
676 if (!event->cgrp)
677 return true;
678
679 /* wants specific cgroup scope but @cpuctx isn't associated with any */
680 if (!cpuctx->cgrp)
681 return false;
682
683 /*
684 * Cgroup scoping is recursive. An event enabled for a cgroup is
685 * also enabled for all its descendant cgroups. If @cpuctx's
686 * cgroup is a descendant of @event's (the test covers identity
687 * case), it's a match.
688 */
689 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
690 event->cgrp->css.cgroup);
e5d1367f
SE
691}
692
e5d1367f
SE
693static inline void perf_detach_cgroup(struct perf_event *event)
694{
4e2ba650 695 css_put(&event->cgrp->css);
e5d1367f
SE
696 event->cgrp = NULL;
697}
698
699static inline int is_cgroup_event(struct perf_event *event)
700{
701 return event->cgrp != NULL;
702}
703
704static inline u64 perf_cgroup_event_time(struct perf_event *event)
705{
706 struct perf_cgroup_info *t;
707
708 t = per_cpu_ptr(event->cgrp->info, event->cpu);
709 return t->time;
710}
711
712static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
713{
714 struct perf_cgroup_info *info;
715 u64 now;
716
717 now = perf_clock();
718
719 info = this_cpu_ptr(cgrp->info);
720
721 info->time += now - info->timestamp;
722 info->timestamp = now;
723}
724
725static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
726{
c917e0f2
SL
727 struct perf_cgroup *cgrp = cpuctx->cgrp;
728 struct cgroup_subsys_state *css;
729
730 if (cgrp) {
731 for (css = &cgrp->css; css; css = css->parent) {
732 cgrp = container_of(css, struct perf_cgroup, css);
733 __update_cgrp_time(cgrp);
734 }
735 }
e5d1367f
SE
736}
737
738static inline void update_cgrp_time_from_event(struct perf_event *event)
739{
3f7cce3c
SE
740 struct perf_cgroup *cgrp;
741
e5d1367f 742 /*
3f7cce3c
SE
743 * ensure we access cgroup data only when needed and
744 * when we know the cgroup is pinned (css_get)
e5d1367f 745 */
3f7cce3c 746 if (!is_cgroup_event(event))
e5d1367f
SE
747 return;
748
614e4c4e 749 cgrp = perf_cgroup_from_task(current, event->ctx);
3f7cce3c
SE
750 /*
751 * Do not update time when cgroup is not active
752 */
e6a52033 753 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
3f7cce3c 754 __update_cgrp_time(event->cgrp);
e5d1367f
SE
755}
756
757static inline void
3f7cce3c
SE
758perf_cgroup_set_timestamp(struct task_struct *task,
759 struct perf_event_context *ctx)
e5d1367f
SE
760{
761 struct perf_cgroup *cgrp;
762 struct perf_cgroup_info *info;
c917e0f2 763 struct cgroup_subsys_state *css;
e5d1367f 764
3f7cce3c
SE
765 /*
766 * ctx->lock held by caller
767 * ensure we do not access cgroup data
768 * unless we have the cgroup pinned (css_get)
769 */
770 if (!task || !ctx->nr_cgroups)
e5d1367f
SE
771 return;
772
614e4c4e 773 cgrp = perf_cgroup_from_task(task, ctx);
c917e0f2
SL
774
775 for (css = &cgrp->css; css; css = css->parent) {
776 cgrp = container_of(css, struct perf_cgroup, css);
777 info = this_cpu_ptr(cgrp->info);
778 info->timestamp = ctx->timestamp;
779 }
e5d1367f
SE
780}
781
058fe1c0
DCC
782static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
783
e5d1367f
SE
784#define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
785#define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
786
787/*
788 * reschedule events based on the cgroup constraint of task.
789 *
790 * mode SWOUT : schedule out everything
791 * mode SWIN : schedule in based on cgroup for next
792 */
18ab2cd3 793static void perf_cgroup_switch(struct task_struct *task, int mode)
e5d1367f
SE
794{
795 struct perf_cpu_context *cpuctx;
058fe1c0 796 struct list_head *list;
e5d1367f
SE
797 unsigned long flags;
798
799 /*
058fe1c0
DCC
800 * Disable interrupts and preemption to avoid this CPU's
801 * cgrp_cpuctx_entry to change under us.
e5d1367f
SE
802 */
803 local_irq_save(flags);
804
058fe1c0
DCC
805 list = this_cpu_ptr(&cgrp_cpuctx_list);
806 list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
807 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
e5d1367f 808
058fe1c0
DCC
809 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
810 perf_pmu_disable(cpuctx->ctx.pmu);
e5d1367f 811
058fe1c0
DCC
812 if (mode & PERF_CGROUP_SWOUT) {
813 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
814 /*
815 * must not be done before ctxswout due
816 * to event_filter_match() in event_sched_out()
817 */
818 cpuctx->cgrp = NULL;
819 }
e5d1367f 820
058fe1c0
DCC
821 if (mode & PERF_CGROUP_SWIN) {
822 WARN_ON_ONCE(cpuctx->cgrp);
823 /*
824 * set cgrp before ctxsw in to allow
825 * event_filter_match() to not have to pass
826 * task around
827 * we pass the cpuctx->ctx to perf_cgroup_from_task()
828 * because cgorup events are only per-cpu
829 */
830 cpuctx->cgrp = perf_cgroup_from_task(task,
831 &cpuctx->ctx);
832 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
e5d1367f 833 }
058fe1c0
DCC
834 perf_pmu_enable(cpuctx->ctx.pmu);
835 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
e5d1367f
SE
836 }
837
e5d1367f
SE
838 local_irq_restore(flags);
839}
840
a8d757ef
SE
841static inline void perf_cgroup_sched_out(struct task_struct *task,
842 struct task_struct *next)
e5d1367f 843{
a8d757ef
SE
844 struct perf_cgroup *cgrp1;
845 struct perf_cgroup *cgrp2 = NULL;
846
ddaaf4e2 847 rcu_read_lock();
a8d757ef
SE
848 /*
849 * we come here when we know perf_cgroup_events > 0
614e4c4e
SE
850 * we do not need to pass the ctx here because we know
851 * we are holding the rcu lock
a8d757ef 852 */
614e4c4e 853 cgrp1 = perf_cgroup_from_task(task, NULL);
70a01657 854 cgrp2 = perf_cgroup_from_task(next, NULL);
a8d757ef
SE
855
856 /*
857 * only schedule out current cgroup events if we know
858 * that we are switching to a different cgroup. Otherwise,
859 * do no touch the cgroup events.
860 */
861 if (cgrp1 != cgrp2)
862 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
ddaaf4e2
SE
863
864 rcu_read_unlock();
e5d1367f
SE
865}
866
a8d757ef
SE
867static inline void perf_cgroup_sched_in(struct task_struct *prev,
868 struct task_struct *task)
e5d1367f 869{
a8d757ef
SE
870 struct perf_cgroup *cgrp1;
871 struct perf_cgroup *cgrp2 = NULL;
872
ddaaf4e2 873 rcu_read_lock();
a8d757ef
SE
874 /*
875 * we come here when we know perf_cgroup_events > 0
614e4c4e
SE
876 * we do not need to pass the ctx here because we know
877 * we are holding the rcu lock
a8d757ef 878 */
614e4c4e 879 cgrp1 = perf_cgroup_from_task(task, NULL);
614e4c4e 880 cgrp2 = perf_cgroup_from_task(prev, NULL);
a8d757ef
SE
881
882 /*
883 * only need to schedule in cgroup events if we are changing
884 * cgroup during ctxsw. Cgroup events were not scheduled
885 * out of ctxsw out if that was not the case.
886 */
887 if (cgrp1 != cgrp2)
888 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
ddaaf4e2
SE
889
890 rcu_read_unlock();
e5d1367f
SE
891}
892
893static inline int perf_cgroup_connect(int fd, struct perf_event *event,
894 struct perf_event_attr *attr,
895 struct perf_event *group_leader)
896{
897 struct perf_cgroup *cgrp;
898 struct cgroup_subsys_state *css;
2903ff01
AV
899 struct fd f = fdget(fd);
900 int ret = 0;
e5d1367f 901
2903ff01 902 if (!f.file)
e5d1367f
SE
903 return -EBADF;
904
b583043e 905 css = css_tryget_online_from_dir(f.file->f_path.dentry,
ec903c0c 906 &perf_event_cgrp_subsys);
3db272c0
LZ
907 if (IS_ERR(css)) {
908 ret = PTR_ERR(css);
909 goto out;
910 }
e5d1367f
SE
911
912 cgrp = container_of(css, struct perf_cgroup, css);
913 event->cgrp = cgrp;
914
915 /*
916 * all events in a group must monitor
917 * the same cgroup because a task belongs
918 * to only one perf cgroup at a time
919 */
920 if (group_leader && group_leader->cgrp != cgrp) {
921 perf_detach_cgroup(event);
922 ret = -EINVAL;
e5d1367f 923 }
3db272c0 924out:
2903ff01 925 fdput(f);
e5d1367f
SE
926 return ret;
927}
928
929static inline void
930perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
931{
932 struct perf_cgroup_info *t;
933 t = per_cpu_ptr(event->cgrp->info, event->cpu);
934 event->shadow_ctx_time = now - t->timestamp;
935}
936
db4a8356
DCC
937/*
938 * Update cpuctx->cgrp so that it is set when first cgroup event is added and
939 * cleared when last cgroup event is removed.
940 */
941static inline void
942list_update_cgroup_event(struct perf_event *event,
943 struct perf_event_context *ctx, bool add)
944{
945 struct perf_cpu_context *cpuctx;
058fe1c0 946 struct list_head *cpuctx_entry;
db4a8356
DCC
947
948 if (!is_cgroup_event(event))
949 return;
950
db4a8356
DCC
951 /*
952 * Because cgroup events are always per-cpu events,
953 * this will always be called from the right CPU.
954 */
955 cpuctx = __get_cpu_context(ctx);
33801b94 956
957 /*
958 * Since setting cpuctx->cgrp is conditional on the current @cgrp
959 * matching the event's cgroup, we must do this for every new event,
960 * because if the first would mismatch, the second would not try again
961 * and we would leave cpuctx->cgrp unset.
962 */
963 if (add && !cpuctx->cgrp) {
be96b316
TH
964 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
965
be96b316
TH
966 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
967 cpuctx->cgrp = cgrp;
058fe1c0 968 }
33801b94 969
970 if (add && ctx->nr_cgroups++)
971 return;
972 else if (!add && --ctx->nr_cgroups)
973 return;
974
975 /* no cgroup running */
976 if (!add)
977 cpuctx->cgrp = NULL;
978
979 cpuctx_entry = &cpuctx->cgrp_cpuctx_entry;
980 if (add)
981 list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list));
982 else
983 list_del(cpuctx_entry);
db4a8356
DCC
984}
985
e5d1367f
SE
986#else /* !CONFIG_CGROUP_PERF */
987
988static inline bool
989perf_cgroup_match(struct perf_event *event)
990{
991 return true;
992}
993
994static inline void perf_detach_cgroup(struct perf_event *event)
995{}
996
997static inline int is_cgroup_event(struct perf_event *event)
998{
999 return 0;
1000}
1001
e5d1367f
SE
1002static inline void update_cgrp_time_from_event(struct perf_event *event)
1003{
1004}
1005
1006static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
1007{
1008}
1009
a8d757ef
SE
1010static inline void perf_cgroup_sched_out(struct task_struct *task,
1011 struct task_struct *next)
e5d1367f
SE
1012{
1013}
1014
a8d757ef
SE
1015static inline void perf_cgroup_sched_in(struct task_struct *prev,
1016 struct task_struct *task)
e5d1367f
SE
1017{
1018}
1019
1020static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1021 struct perf_event_attr *attr,
1022 struct perf_event *group_leader)
1023{
1024 return -EINVAL;
1025}
1026
1027static inline void
3f7cce3c
SE
1028perf_cgroup_set_timestamp(struct task_struct *task,
1029 struct perf_event_context *ctx)
e5d1367f
SE
1030{
1031}
1032
1033void
1034perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
1035{
1036}
1037
1038static inline void
1039perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
1040{
1041}
1042
1043static inline u64 perf_cgroup_event_time(struct perf_event *event)
1044{
1045 return 0;
1046}
1047
db4a8356
DCC
1048static inline void
1049list_update_cgroup_event(struct perf_event *event,
1050 struct perf_event_context *ctx, bool add)
1051{
1052}
1053
e5d1367f
SE
1054#endif
1055
9e630205
SE
1056/*
1057 * set default to be dependent on timer tick just
1058 * like original code
1059 */
1060#define PERF_CPU_HRTIMER (1000 / HZ)
1061/*
8a1115ff 1062 * function must be called with interrupts disabled
9e630205 1063 */
272325c4 1064static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
9e630205
SE
1065{
1066 struct perf_cpu_context *cpuctx;
8d5bce0c 1067 bool rotations;
9e630205 1068
16444645 1069 lockdep_assert_irqs_disabled();
9e630205
SE
1070
1071 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
9e630205
SE
1072 rotations = perf_rotate_context(cpuctx);
1073
4cfafd30
PZ
1074 raw_spin_lock(&cpuctx->hrtimer_lock);
1075 if (rotations)
9e630205 1076 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
4cfafd30
PZ
1077 else
1078 cpuctx->hrtimer_active = 0;
1079 raw_spin_unlock(&cpuctx->hrtimer_lock);
9e630205 1080
4cfafd30 1081 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
9e630205
SE
1082}
1083
272325c4 1084static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
9e630205 1085{
272325c4 1086 struct hrtimer *timer = &cpuctx->hrtimer;
9e630205 1087 struct pmu *pmu = cpuctx->ctx.pmu;
272325c4 1088 u64 interval;
9e630205
SE
1089
1090 /* no multiplexing needed for SW PMU */
1091 if (pmu->task_ctx_nr == perf_sw_context)
1092 return;
1093
62b85639
SE
1094 /*
1095 * check default is sane, if not set then force to
1096 * default interval (1/tick)
1097 */
272325c4
PZ
1098 interval = pmu->hrtimer_interval_ms;
1099 if (interval < 1)
1100 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
62b85639 1101
272325c4 1102 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
9e630205 1103
4cfafd30
PZ
1104 raw_spin_lock_init(&cpuctx->hrtimer_lock);
1105 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
272325c4 1106 timer->function = perf_mux_hrtimer_handler;
9e630205
SE
1107}
1108
272325c4 1109static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
9e630205 1110{
272325c4 1111 struct hrtimer *timer = &cpuctx->hrtimer;
9e630205 1112 struct pmu *pmu = cpuctx->ctx.pmu;
4cfafd30 1113 unsigned long flags;
9e630205
SE
1114
1115 /* not for SW PMU */
1116 if (pmu->task_ctx_nr == perf_sw_context)
272325c4 1117 return 0;
9e630205 1118
4cfafd30
PZ
1119 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1120 if (!cpuctx->hrtimer_active) {
1121 cpuctx->hrtimer_active = 1;
1122 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1123 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
1124 }
1125 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
9e630205 1126
272325c4 1127 return 0;
9e630205
SE
1128}
1129
33696fc0 1130void perf_pmu_disable(struct pmu *pmu)
9e35ad38 1131{
33696fc0
PZ
1132 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1133 if (!(*count)++)
1134 pmu->pmu_disable(pmu);
9e35ad38 1135}
9e35ad38 1136
33696fc0 1137void perf_pmu_enable(struct pmu *pmu)
9e35ad38 1138{
33696fc0
PZ
1139 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1140 if (!--(*count))
1141 pmu->pmu_enable(pmu);
9e35ad38 1142}
9e35ad38 1143
2fde4f94 1144static DEFINE_PER_CPU(struct list_head, active_ctx_list);
e9d2b064
PZ
1145
1146/*
2fde4f94
MR
1147 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1148 * perf_event_task_tick() are fully serialized because they're strictly cpu
1149 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1150 * disabled, while perf_event_task_tick is called from IRQ context.
e9d2b064 1151 */
2fde4f94 1152static void perf_event_ctx_activate(struct perf_event_context *ctx)
9e35ad38 1153{
2fde4f94 1154 struct list_head *head = this_cpu_ptr(&active_ctx_list);
b5ab4cd5 1155
16444645 1156 lockdep_assert_irqs_disabled();
b5ab4cd5 1157
2fde4f94
MR
1158 WARN_ON(!list_empty(&ctx->active_ctx_list));
1159
1160 list_add(&ctx->active_ctx_list, head);
1161}
1162
1163static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1164{
16444645 1165 lockdep_assert_irqs_disabled();
2fde4f94
MR
1166
1167 WARN_ON(list_empty(&ctx->active_ctx_list));
1168
1169 list_del_init(&ctx->active_ctx_list);
9e35ad38 1170}
9e35ad38 1171
cdd6c482 1172static void get_ctx(struct perf_event_context *ctx)
a63eaf34 1173{
e5289d4a 1174 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
a63eaf34
PM
1175}
1176
4af57ef2
YZ
1177static void free_ctx(struct rcu_head *head)
1178{
1179 struct perf_event_context *ctx;
1180
1181 ctx = container_of(head, struct perf_event_context, rcu_head);
1182 kfree(ctx->task_ctx_data);
1183 kfree(ctx);
1184}
1185
cdd6c482 1186static void put_ctx(struct perf_event_context *ctx)
a63eaf34 1187{
564c2b21
PM
1188 if (atomic_dec_and_test(&ctx->refcount)) {
1189 if (ctx->parent_ctx)
1190 put_ctx(ctx->parent_ctx);
63b6da39 1191 if (ctx->task && ctx->task != TASK_TOMBSTONE)
c93f7669 1192 put_task_struct(ctx->task);
4af57ef2 1193 call_rcu(&ctx->rcu_head, free_ctx);
564c2b21 1194 }
a63eaf34
PM
1195}
1196
f63a8daa
PZ
1197/*
1198 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1199 * perf_pmu_migrate_context() we need some magic.
1200 *
1201 * Those places that change perf_event::ctx will hold both
1202 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1203 *
8b10c5e2
PZ
1204 * Lock ordering is by mutex address. There are two other sites where
1205 * perf_event_context::mutex nests and those are:
1206 *
1207 * - perf_event_exit_task_context() [ child , 0 ]
8ba289b8
PZ
1208 * perf_event_exit_event()
1209 * put_event() [ parent, 1 ]
8b10c5e2
PZ
1210 *
1211 * - perf_event_init_context() [ parent, 0 ]
1212 * inherit_task_group()
1213 * inherit_group()
1214 * inherit_event()
1215 * perf_event_alloc()
1216 * perf_init_event()
1217 * perf_try_init_event() [ child , 1 ]
1218 *
1219 * While it appears there is an obvious deadlock here -- the parent and child
1220 * nesting levels are inverted between the two. This is in fact safe because
1221 * life-time rules separate them. That is an exiting task cannot fork, and a
1222 * spawning task cannot (yet) exit.
1223 *
1224 * But remember that that these are parent<->child context relations, and
1225 * migration does not affect children, therefore these two orderings should not
1226 * interact.
f63a8daa
PZ
1227 *
1228 * The change in perf_event::ctx does not affect children (as claimed above)
1229 * because the sys_perf_event_open() case will install a new event and break
1230 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1231 * concerned with cpuctx and that doesn't have children.
1232 *
1233 * The places that change perf_event::ctx will issue:
1234 *
1235 * perf_remove_from_context();
1236 * synchronize_rcu();
1237 * perf_install_in_context();
1238 *
1239 * to affect the change. The remove_from_context() + synchronize_rcu() should
1240 * quiesce the event, after which we can install it in the new location. This
1241 * means that only external vectors (perf_fops, prctl) can perturb the event
1242 * while in transit. Therefore all such accessors should also acquire
1243 * perf_event_context::mutex to serialize against this.
1244 *
1245 * However; because event->ctx can change while we're waiting to acquire
1246 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1247 * function.
1248 *
1249 * Lock order:
79c9ce57 1250 * cred_guard_mutex
f63a8daa
PZ
1251 * task_struct::perf_event_mutex
1252 * perf_event_context::mutex
f63a8daa 1253 * perf_event::child_mutex;
07c4a776 1254 * perf_event_context::lock
f63a8daa
PZ
1255 * perf_event::mmap_mutex
1256 * mmap_sem
82d94856
PZ
1257 *
1258 * cpu_hotplug_lock
1259 * pmus_lock
1260 * cpuctx->mutex / perf_event_context::mutex
f63a8daa 1261 */
a83fe28e
PZ
1262static struct perf_event_context *
1263perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
f63a8daa
PZ
1264{
1265 struct perf_event_context *ctx;
1266
1267again:
1268 rcu_read_lock();
6aa7de05 1269 ctx = READ_ONCE(event->ctx);
f63a8daa
PZ
1270 if (!atomic_inc_not_zero(&ctx->refcount)) {
1271 rcu_read_unlock();
1272 goto again;
1273 }
1274 rcu_read_unlock();
1275
a83fe28e 1276 mutex_lock_nested(&ctx->mutex, nesting);
f63a8daa
PZ
1277 if (event->ctx != ctx) {
1278 mutex_unlock(&ctx->mutex);
1279 put_ctx(ctx);
1280 goto again;
1281 }
1282
1283 return ctx;
1284}
1285
a83fe28e
PZ
1286static inline struct perf_event_context *
1287perf_event_ctx_lock(struct perf_event *event)
1288{
1289 return perf_event_ctx_lock_nested(event, 0);
1290}
1291
f63a8daa
PZ
1292static void perf_event_ctx_unlock(struct perf_event *event,
1293 struct perf_event_context *ctx)
1294{
1295 mutex_unlock(&ctx->mutex);
1296 put_ctx(ctx);
1297}
1298
211de6eb
PZ
1299/*
1300 * This must be done under the ctx->lock, such as to serialize against
1301 * context_equiv(), therefore we cannot call put_ctx() since that might end up
1302 * calling scheduler related locks and ctx->lock nests inside those.
1303 */
1304static __must_check struct perf_event_context *
1305unclone_ctx(struct perf_event_context *ctx)
71a851b4 1306{
211de6eb
PZ
1307 struct perf_event_context *parent_ctx = ctx->parent_ctx;
1308
1309 lockdep_assert_held(&ctx->lock);
1310
1311 if (parent_ctx)
71a851b4 1312 ctx->parent_ctx = NULL;
5a3126d4 1313 ctx->generation++;
211de6eb
PZ
1314
1315 return parent_ctx;
71a851b4
PZ
1316}
1317
1d953111
ON
1318static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1319 enum pid_type type)
6844c09d 1320{
1d953111 1321 u32 nr;
6844c09d
ACM
1322 /*
1323 * only top level events have the pid namespace they were created in
1324 */
1325 if (event->parent)
1326 event = event->parent;
1327
1d953111
ON
1328 nr = __task_pid_nr_ns(p, type, event->ns);
1329 /* avoid -1 if it is idle thread or runs in another ns */
1330 if (!nr && !pid_alive(p))
1331 nr = -1;
1332 return nr;
6844c09d
ACM
1333}
1334
1d953111 1335static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
6844c09d 1336{
6883f81a 1337 return perf_event_pid_type(event, p, PIDTYPE_TGID);
1d953111 1338}
6844c09d 1339
1d953111
ON
1340static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1341{
1342 return perf_event_pid_type(event, p, PIDTYPE_PID);
6844c09d
ACM
1343}
1344
7f453c24 1345/*
cdd6c482 1346 * If we inherit events we want to return the parent event id
7f453c24
PZ
1347 * to userspace.
1348 */
cdd6c482 1349static u64 primary_event_id(struct perf_event *event)
7f453c24 1350{
cdd6c482 1351 u64 id = event->id;
7f453c24 1352
cdd6c482
IM
1353 if (event->parent)
1354 id = event->parent->id;
7f453c24
PZ
1355
1356 return id;
1357}
1358
25346b93 1359/*
cdd6c482 1360 * Get the perf_event_context for a task and lock it.
63b6da39 1361 *
25346b93
PM
1362 * This has to cope with with the fact that until it is locked,
1363 * the context could get moved to another task.
1364 */
cdd6c482 1365static struct perf_event_context *
8dc85d54 1366perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
25346b93 1367{
cdd6c482 1368 struct perf_event_context *ctx;
25346b93 1369
9ed6060d 1370retry:
058ebd0e
PZ
1371 /*
1372 * One of the few rules of preemptible RCU is that one cannot do
1373 * rcu_read_unlock() while holding a scheduler (or nested) lock when
2fd59077 1374 * part of the read side critical section was irqs-enabled -- see
058ebd0e
PZ
1375 * rcu_read_unlock_special().
1376 *
1377 * Since ctx->lock nests under rq->lock we must ensure the entire read
2fd59077 1378 * side critical section has interrupts disabled.
058ebd0e 1379 */
2fd59077 1380 local_irq_save(*flags);
058ebd0e 1381 rcu_read_lock();
8dc85d54 1382 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
25346b93
PM
1383 if (ctx) {
1384 /*
1385 * If this context is a clone of another, it might
1386 * get swapped for another underneath us by
cdd6c482 1387 * perf_event_task_sched_out, though the
25346b93
PM
1388 * rcu_read_lock() protects us from any context
1389 * getting freed. Lock the context and check if it
1390 * got swapped before we could get the lock, and retry
1391 * if so. If we locked the right context, then it
1392 * can't get swapped on us any more.
1393 */
2fd59077 1394 raw_spin_lock(&ctx->lock);
8dc85d54 1395 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
2fd59077 1396 raw_spin_unlock(&ctx->lock);
058ebd0e 1397 rcu_read_unlock();
2fd59077 1398 local_irq_restore(*flags);
25346b93
PM
1399 goto retry;
1400 }
b49a9e7e 1401
63b6da39
PZ
1402 if (ctx->task == TASK_TOMBSTONE ||
1403 !atomic_inc_not_zero(&ctx->refcount)) {
2fd59077 1404 raw_spin_unlock(&ctx->lock);
b49a9e7e 1405 ctx = NULL;
828b6f0e
PZ
1406 } else {
1407 WARN_ON_ONCE(ctx->task != task);
b49a9e7e 1408 }
25346b93
PM
1409 }
1410 rcu_read_unlock();
2fd59077
PM
1411 if (!ctx)
1412 local_irq_restore(*flags);
25346b93
PM
1413 return ctx;
1414}
1415
1416/*
1417 * Get the context for a task and increment its pin_count so it
1418 * can't get swapped to another task. This also increments its
1419 * reference count so that the context can't get freed.
1420 */
8dc85d54
PZ
1421static struct perf_event_context *
1422perf_pin_task_context(struct task_struct *task, int ctxn)
25346b93 1423{
cdd6c482 1424 struct perf_event_context *ctx;
25346b93
PM
1425 unsigned long flags;
1426
8dc85d54 1427 ctx = perf_lock_task_context(task, ctxn, &flags);
25346b93
PM
1428 if (ctx) {
1429 ++ctx->pin_count;
e625cce1 1430 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1431 }
1432 return ctx;
1433}
1434
cdd6c482 1435static void perf_unpin_context(struct perf_event_context *ctx)
25346b93
PM
1436{
1437 unsigned long flags;
1438
e625cce1 1439 raw_spin_lock_irqsave(&ctx->lock, flags);
25346b93 1440 --ctx->pin_count;
e625cce1 1441 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1442}
1443
f67218c3
PZ
1444/*
1445 * Update the record of the current time in a context.
1446 */
1447static void update_context_time(struct perf_event_context *ctx)
1448{
1449 u64 now = perf_clock();
1450
1451 ctx->time += now - ctx->timestamp;
1452 ctx->timestamp = now;
1453}
1454
4158755d
SE
1455static u64 perf_event_time(struct perf_event *event)
1456{
1457 struct perf_event_context *ctx = event->ctx;
e5d1367f
SE
1458
1459 if (is_cgroup_event(event))
1460 return perf_cgroup_event_time(event);
1461
4158755d
SE
1462 return ctx ? ctx->time : 0;
1463}
1464
487f05e1
AS
1465static enum event_type_t get_event_type(struct perf_event *event)
1466{
1467 struct perf_event_context *ctx = event->ctx;
1468 enum event_type_t event_type;
1469
1470 lockdep_assert_held(&ctx->lock);
1471
3bda69c1
AS
1472 /*
1473 * It's 'group type', really, because if our group leader is
1474 * pinned, so are we.
1475 */
1476 if (event->group_leader != event)
1477 event = event->group_leader;
1478
487f05e1
AS
1479 event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1480 if (!ctx->task)
1481 event_type |= EVENT_CPU;
1482
1483 return event_type;
1484}
1485
8e1a2031 1486/*
161c85fa 1487 * Helper function to initialize event group nodes.
8e1a2031 1488 */
161c85fa 1489static void init_event_group(struct perf_event *event)
8e1a2031
AB
1490{
1491 RB_CLEAR_NODE(&event->group_node);
1492 event->group_index = 0;
1493}
1494
1495/*
1496 * Extract pinned or flexible groups from the context
161c85fa 1497 * based on event attrs bits.
8e1a2031
AB
1498 */
1499static struct perf_event_groups *
1500get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
889ff015
FW
1501{
1502 if (event->attr.pinned)
1503 return &ctx->pinned_groups;
1504 else
1505 return &ctx->flexible_groups;
1506}
1507
8e1a2031 1508/*
161c85fa 1509 * Helper function to initializes perf_event_group trees.
8e1a2031 1510 */
161c85fa 1511static void perf_event_groups_init(struct perf_event_groups *groups)
8e1a2031
AB
1512{
1513 groups->tree = RB_ROOT;
1514 groups->index = 0;
1515}
1516
1517/*
1518 * Compare function for event groups;
161c85fa
PZ
1519 *
1520 * Implements complex key that first sorts by CPU and then by virtual index
1521 * which provides ordering when rotating groups for the same CPU.
8e1a2031 1522 */
161c85fa
PZ
1523static bool
1524perf_event_groups_less(struct perf_event *left, struct perf_event *right)
8e1a2031 1525{
161c85fa
PZ
1526 if (left->cpu < right->cpu)
1527 return true;
1528 if (left->cpu > right->cpu)
1529 return false;
1530
1531 if (left->group_index < right->group_index)
1532 return true;
1533 if (left->group_index > right->group_index)
1534 return false;
1535
1536 return false;
8e1a2031
AB
1537}
1538
1539/*
161c85fa
PZ
1540 * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for
1541 * key (see perf_event_groups_less). This places it last inside the CPU
1542 * subtree.
8e1a2031
AB
1543 */
1544static void
1545perf_event_groups_insert(struct perf_event_groups *groups,
161c85fa 1546 struct perf_event *event)
8e1a2031
AB
1547{
1548 struct perf_event *node_event;
1549 struct rb_node *parent;
1550 struct rb_node **node;
1551
1552 event->group_index = ++groups->index;
1553
1554 node = &groups->tree.rb_node;
1555 parent = *node;
1556
1557 while (*node) {
1558 parent = *node;
161c85fa 1559 node_event = container_of(*node, struct perf_event, group_node);
8e1a2031
AB
1560
1561 if (perf_event_groups_less(event, node_event))
1562 node = &parent->rb_left;
1563 else
1564 node = &parent->rb_right;
1565 }
1566
1567 rb_link_node(&event->group_node, parent, node);
1568 rb_insert_color(&event->group_node, &groups->tree);
1569}
1570
1571/*
161c85fa 1572 * Helper function to insert event into the pinned or flexible groups.
8e1a2031
AB
1573 */
1574static void
1575add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1576{
1577 struct perf_event_groups *groups;
1578
1579 groups = get_event_groups(event, ctx);
1580 perf_event_groups_insert(groups, event);
1581}
1582
1583/*
161c85fa 1584 * Delete a group from a tree.
8e1a2031
AB
1585 */
1586static void
1587perf_event_groups_delete(struct perf_event_groups *groups,
161c85fa 1588 struct perf_event *event)
8e1a2031 1589{
161c85fa
PZ
1590 WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1591 RB_EMPTY_ROOT(&groups->tree));
8e1a2031 1592
161c85fa 1593 rb_erase(&event->group_node, &groups->tree);
8e1a2031
AB
1594 init_event_group(event);
1595}
1596
1597/*
161c85fa 1598 * Helper function to delete event from its groups.
8e1a2031
AB
1599 */
1600static void
1601del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1602{
1603 struct perf_event_groups *groups;
1604
1605 groups = get_event_groups(event, ctx);
1606 perf_event_groups_delete(groups, event);
1607}
1608
1609/*
161c85fa 1610 * Get the leftmost event in the @cpu subtree.
8e1a2031
AB
1611 */
1612static struct perf_event *
1613perf_event_groups_first(struct perf_event_groups *groups, int cpu)
1614{
1615 struct perf_event *node_event = NULL, *match = NULL;
1616 struct rb_node *node = groups->tree.rb_node;
1617
1618 while (node) {
161c85fa 1619 node_event = container_of(node, struct perf_event, group_node);
8e1a2031
AB
1620
1621 if (cpu < node_event->cpu) {
1622 node = node->rb_left;
1623 } else if (cpu > node_event->cpu) {
1624 node = node->rb_right;
1625 } else {
1626 match = node_event;
1627 node = node->rb_left;
1628 }
1629 }
1630
1631 return match;
1632}
1633
1cac7b1a
PZ
1634/*
1635 * Like rb_entry_next_safe() for the @cpu subtree.
1636 */
1637static struct perf_event *
1638perf_event_groups_next(struct perf_event *event)
1639{
1640 struct perf_event *next;
1641
1642 next = rb_entry_safe(rb_next(&event->group_node), typeof(*event), group_node);
1643 if (next && next->cpu == event->cpu)
1644 return next;
1645
1646 return NULL;
1647}
1648
8e1a2031 1649/*
161c85fa 1650 * Iterate through the whole groups tree.
8e1a2031 1651 */
6e6804d2
PZ
1652#define perf_event_groups_for_each(event, groups) \
1653 for (event = rb_entry_safe(rb_first(&((groups)->tree)), \
1654 typeof(*event), group_node); event; \
1655 event = rb_entry_safe(rb_next(&event->group_node), \
1656 typeof(*event), group_node))
8e1a2031 1657
fccc714b 1658/*
788faab7 1659 * Add an event from the lists for its context.
fccc714b
PZ
1660 * Must be called with ctx->mutex and ctx->lock held.
1661 */
04289bb9 1662static void
cdd6c482 1663list_add_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1664{
c994d613
PZ
1665 lockdep_assert_held(&ctx->lock);
1666
8a49542c
PZ
1667 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1668 event->attach_state |= PERF_ATTACH_CONTEXT;
04289bb9 1669
0d3d73aa
PZ
1670 event->tstamp = perf_event_time(event);
1671
04289bb9 1672 /*
8a49542c
PZ
1673 * If we're a stand alone event or group leader, we go to the context
1674 * list, group events are kept attached to the group so that
1675 * perf_group_detach can, at all times, locate all siblings.
04289bb9 1676 */
8a49542c 1677 if (event->group_leader == event) {
4ff6a8de 1678 event->group_caps = event->event_caps;
8e1a2031 1679 add_event_to_groups(event, ctx);
5c148194 1680 }
592903cd 1681
db4a8356 1682 list_update_cgroup_event(event, ctx, true);
e5d1367f 1683
cdd6c482
IM
1684 list_add_rcu(&event->event_entry, &ctx->event_list);
1685 ctx->nr_events++;
1686 if (event->attr.inherit_stat)
bfbd3381 1687 ctx->nr_stat++;
5a3126d4
PZ
1688
1689 ctx->generation++;
04289bb9
IM
1690}
1691
0231bb53
JO
1692/*
1693 * Initialize event state based on the perf_event_attr::disabled.
1694 */
1695static inline void perf_event__state_init(struct perf_event *event)
1696{
1697 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1698 PERF_EVENT_STATE_INACTIVE;
1699}
1700
a723968c 1701static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
c320c7b7
ACM
1702{
1703 int entry = sizeof(u64); /* value */
1704 int size = 0;
1705 int nr = 1;
1706
1707 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1708 size += sizeof(u64);
1709
1710 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1711 size += sizeof(u64);
1712
1713 if (event->attr.read_format & PERF_FORMAT_ID)
1714 entry += sizeof(u64);
1715
1716 if (event->attr.read_format & PERF_FORMAT_GROUP) {
a723968c 1717 nr += nr_siblings;
c320c7b7
ACM
1718 size += sizeof(u64);
1719 }
1720
1721 size += entry * nr;
1722 event->read_size = size;
1723}
1724
a723968c 1725static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
c320c7b7
ACM
1726{
1727 struct perf_sample_data *data;
c320c7b7
ACM
1728 u16 size = 0;
1729
c320c7b7
ACM
1730 if (sample_type & PERF_SAMPLE_IP)
1731 size += sizeof(data->ip);
1732
6844c09d
ACM
1733 if (sample_type & PERF_SAMPLE_ADDR)
1734 size += sizeof(data->addr);
1735
1736 if (sample_type & PERF_SAMPLE_PERIOD)
1737 size += sizeof(data->period);
1738
c3feedf2
AK
1739 if (sample_type & PERF_SAMPLE_WEIGHT)
1740 size += sizeof(data->weight);
1741
6844c09d
ACM
1742 if (sample_type & PERF_SAMPLE_READ)
1743 size += event->read_size;
1744
d6be9ad6
SE
1745 if (sample_type & PERF_SAMPLE_DATA_SRC)
1746 size += sizeof(data->data_src.val);
1747
fdfbbd07
AK
1748 if (sample_type & PERF_SAMPLE_TRANSACTION)
1749 size += sizeof(data->txn);
1750
fc7ce9c7
KL
1751 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1752 size += sizeof(data->phys_addr);
1753
6844c09d
ACM
1754 event->header_size = size;
1755}
1756
a723968c
PZ
1757/*
1758 * Called at perf_event creation and when events are attached/detached from a
1759 * group.
1760 */
1761static void perf_event__header_size(struct perf_event *event)
1762{
1763 __perf_event_read_size(event,
1764 event->group_leader->nr_siblings);
1765 __perf_event_header_size(event, event->attr.sample_type);
1766}
1767
6844c09d
ACM
1768static void perf_event__id_header_size(struct perf_event *event)
1769{
1770 struct perf_sample_data *data;
1771 u64 sample_type = event->attr.sample_type;
1772 u16 size = 0;
1773
c320c7b7
ACM
1774 if (sample_type & PERF_SAMPLE_TID)
1775 size += sizeof(data->tid_entry);
1776
1777 if (sample_type & PERF_SAMPLE_TIME)
1778 size += sizeof(data->time);
1779
ff3d527c
AH
1780 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1781 size += sizeof(data->id);
1782
c320c7b7
ACM
1783 if (sample_type & PERF_SAMPLE_ID)
1784 size += sizeof(data->id);
1785
1786 if (sample_type & PERF_SAMPLE_STREAM_ID)
1787 size += sizeof(data->stream_id);
1788
1789 if (sample_type & PERF_SAMPLE_CPU)
1790 size += sizeof(data->cpu_entry);
1791
6844c09d 1792 event->id_header_size = size;
c320c7b7
ACM
1793}
1794
a723968c
PZ
1795static bool perf_event_validate_size(struct perf_event *event)
1796{
1797 /*
1798 * The values computed here will be over-written when we actually
1799 * attach the event.
1800 */
1801 __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1802 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1803 perf_event__id_header_size(event);
1804
1805 /*
1806 * Sum the lot; should not exceed the 64k limit we have on records.
1807 * Conservative limit to allow for callchains and other variable fields.
1808 */
1809 if (event->read_size + event->header_size +
1810 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1811 return false;
1812
1813 return true;
1814}
1815
8a49542c
PZ
1816static void perf_group_attach(struct perf_event *event)
1817{
c320c7b7 1818 struct perf_event *group_leader = event->group_leader, *pos;
8a49542c 1819
a76a82a3
PZ
1820 lockdep_assert_held(&event->ctx->lock);
1821
74c3337c
PZ
1822 /*
1823 * We can have double attach due to group movement in perf_event_open.
1824 */
1825 if (event->attach_state & PERF_ATTACH_GROUP)
1826 return;
1827
8a49542c
PZ
1828 event->attach_state |= PERF_ATTACH_GROUP;
1829
1830 if (group_leader == event)
1831 return;
1832
652884fe
PZ
1833 WARN_ON_ONCE(group_leader->ctx != event->ctx);
1834
4ff6a8de 1835 group_leader->group_caps &= event->event_caps;
8a49542c 1836
8343aae6 1837 list_add_tail(&event->sibling_list, &group_leader->sibling_list);
8a49542c 1838 group_leader->nr_siblings++;
c320c7b7
ACM
1839
1840 perf_event__header_size(group_leader);
1841
edb39592 1842 for_each_sibling_event(pos, group_leader)
c320c7b7 1843 perf_event__header_size(pos);
8a49542c
PZ
1844}
1845
a63eaf34 1846/*
788faab7 1847 * Remove an event from the lists for its context.
fccc714b 1848 * Must be called with ctx->mutex and ctx->lock held.
a63eaf34 1849 */
04289bb9 1850static void
cdd6c482 1851list_del_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1852{
652884fe
PZ
1853 WARN_ON_ONCE(event->ctx != ctx);
1854 lockdep_assert_held(&ctx->lock);
1855
8a49542c
PZ
1856 /*
1857 * We can have double detach due to exit/hot-unplug + close.
1858 */
1859 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
a63eaf34 1860 return;
8a49542c
PZ
1861
1862 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1863
db4a8356 1864 list_update_cgroup_event(event, ctx, false);
e5d1367f 1865
cdd6c482
IM
1866 ctx->nr_events--;
1867 if (event->attr.inherit_stat)
bfbd3381 1868 ctx->nr_stat--;
8bc20959 1869
cdd6c482 1870 list_del_rcu(&event->event_entry);
04289bb9 1871
8a49542c 1872 if (event->group_leader == event)
8e1a2031 1873 del_event_from_groups(event, ctx);
5c148194 1874
b2e74a26
SE
1875 /*
1876 * If event was in error state, then keep it
1877 * that way, otherwise bogus counts will be
1878 * returned on read(). The only way to get out
1879 * of error state is by explicit re-enabling
1880 * of the event
1881 */
1882 if (event->state > PERF_EVENT_STATE_OFF)
0d3d73aa 1883 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
5a3126d4
PZ
1884
1885 ctx->generation++;
050735b0
PZ
1886}
1887
8a49542c 1888static void perf_group_detach(struct perf_event *event)
050735b0
PZ
1889{
1890 struct perf_event *sibling, *tmp;
6668128a 1891 struct perf_event_context *ctx = event->ctx;
8a49542c 1892
6668128a 1893 lockdep_assert_held(&ctx->lock);
a76a82a3 1894
8a49542c
PZ
1895 /*
1896 * We can have double detach due to exit/hot-unplug + close.
1897 */
1898 if (!(event->attach_state & PERF_ATTACH_GROUP))
1899 return;
1900
1901 event->attach_state &= ~PERF_ATTACH_GROUP;
1902
1903 /*
1904 * If this is a sibling, remove it from its group.
1905 */
1906 if (event->group_leader != event) {
8343aae6 1907 list_del_init(&event->sibling_list);
8a49542c 1908 event->group_leader->nr_siblings--;
c320c7b7 1909 goto out;
8a49542c
PZ
1910 }
1911
04289bb9 1912 /*
cdd6c482
IM
1913 * If this was a group event with sibling events then
1914 * upgrade the siblings to singleton events by adding them
8a49542c 1915 * to whatever list we are on.
04289bb9 1916 */
8343aae6 1917 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
8e1a2031 1918
04289bb9 1919 sibling->group_leader = sibling;
24868367 1920 list_del_init(&sibling->sibling_list);
d6f962b5
FW
1921
1922 /* Inherit group flags from the previous leader */
4ff6a8de 1923 sibling->group_caps = event->group_caps;
652884fe 1924
8e1a2031 1925 if (!RB_EMPTY_NODE(&event->group_node)) {
8e1a2031 1926 add_event_to_groups(sibling, event->ctx);
6668128a
PZ
1927
1928 if (sibling->state == PERF_EVENT_STATE_ACTIVE) {
1929 struct list_head *list = sibling->attr.pinned ?
1930 &ctx->pinned_active : &ctx->flexible_active;
1931
1932 list_add_tail(&sibling->active_list, list);
1933 }
8e1a2031
AB
1934 }
1935
652884fe 1936 WARN_ON_ONCE(sibling->ctx != event->ctx);
04289bb9 1937 }
c320c7b7
ACM
1938
1939out:
1940 perf_event__header_size(event->group_leader);
1941
edb39592 1942 for_each_sibling_event(tmp, event->group_leader)
c320c7b7 1943 perf_event__header_size(tmp);
04289bb9
IM
1944}
1945
fadfe7be
JO
1946static bool is_orphaned_event(struct perf_event *event)
1947{
a69b0ca4 1948 return event->state == PERF_EVENT_STATE_DEAD;
fadfe7be
JO
1949}
1950
2c81a647 1951static inline int __pmu_filter_match(struct perf_event *event)
66eb579e
MR
1952{
1953 struct pmu *pmu = event->pmu;
1954 return pmu->filter_match ? pmu->filter_match(event) : 1;
1955}
1956
2c81a647
MR
1957/*
1958 * Check whether we should attempt to schedule an event group based on
1959 * PMU-specific filtering. An event group can consist of HW and SW events,
1960 * potentially with a SW leader, so we must check all the filters, to
1961 * determine whether a group is schedulable:
1962 */
1963static inline int pmu_filter_match(struct perf_event *event)
1964{
edb39592 1965 struct perf_event *sibling;
2c81a647
MR
1966
1967 if (!__pmu_filter_match(event))
1968 return 0;
1969
edb39592
PZ
1970 for_each_sibling_event(sibling, event) {
1971 if (!__pmu_filter_match(sibling))
2c81a647
MR
1972 return 0;
1973 }
1974
1975 return 1;
1976}
1977
fa66f07a
SE
1978static inline int
1979event_filter_match(struct perf_event *event)
1980{
0b8f1e2e
PZ
1981 return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
1982 perf_cgroup_match(event) && pmu_filter_match(event);
fa66f07a
SE
1983}
1984
9ffcfa6f
SE
1985static void
1986event_sched_out(struct perf_event *event,
3b6f9e5c 1987 struct perf_cpu_context *cpuctx,
cdd6c482 1988 struct perf_event_context *ctx)
3b6f9e5c 1989{
0d3d73aa 1990 enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
652884fe
PZ
1991
1992 WARN_ON_ONCE(event->ctx != ctx);
1993 lockdep_assert_held(&ctx->lock);
1994
cdd6c482 1995 if (event->state != PERF_EVENT_STATE_ACTIVE)
9ffcfa6f 1996 return;
3b6f9e5c 1997
6668128a
PZ
1998 /*
1999 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2000 * we can schedule events _OUT_ individually through things like
2001 * __perf_remove_from_context().
2002 */
2003 list_del_init(&event->active_list);
2004
44377277
AS
2005 perf_pmu_disable(event->pmu);
2006
28a967c3
PZ
2007 event->pmu->del(event, 0);
2008 event->oncpu = -1;
0d3d73aa 2009
cdd6c482
IM
2010 if (event->pending_disable) {
2011 event->pending_disable = 0;
0d3d73aa 2012 state = PERF_EVENT_STATE_OFF;
970892a9 2013 }
0d3d73aa 2014 perf_event_set_state(event, state);
3b6f9e5c 2015
cdd6c482 2016 if (!is_software_event(event))
3b6f9e5c 2017 cpuctx->active_oncpu--;
2fde4f94
MR
2018 if (!--ctx->nr_active)
2019 perf_event_ctx_deactivate(ctx);
0f5a2601
PZ
2020 if (event->attr.freq && event->attr.sample_freq)
2021 ctx->nr_freq--;
cdd6c482 2022 if (event->attr.exclusive || !cpuctx->active_oncpu)
3b6f9e5c 2023 cpuctx->exclusive = 0;
44377277
AS
2024
2025 perf_pmu_enable(event->pmu);
3b6f9e5c
PM
2026}
2027
d859e29f 2028static void
cdd6c482 2029group_sched_out(struct perf_event *group_event,
d859e29f 2030 struct perf_cpu_context *cpuctx,
cdd6c482 2031 struct perf_event_context *ctx)
d859e29f 2032{
cdd6c482 2033 struct perf_event *event;
0d3d73aa
PZ
2034
2035 if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2036 return;
d859e29f 2037
3f005e7d
MR
2038 perf_pmu_disable(ctx->pmu);
2039
cdd6c482 2040 event_sched_out(group_event, cpuctx, ctx);
d859e29f
PM
2041
2042 /*
2043 * Schedule out siblings (if any):
2044 */
edb39592 2045 for_each_sibling_event(event, group_event)
cdd6c482 2046 event_sched_out(event, cpuctx, ctx);
d859e29f 2047
3f005e7d
MR
2048 perf_pmu_enable(ctx->pmu);
2049
0d3d73aa 2050 if (group_event->attr.exclusive)
d859e29f
PM
2051 cpuctx->exclusive = 0;
2052}
2053
45a0e07a 2054#define DETACH_GROUP 0x01UL
0017960f 2055
0793a61d 2056/*
cdd6c482 2057 * Cross CPU call to remove a performance event
0793a61d 2058 *
cdd6c482 2059 * We disable the event on the hardware level first. After that we
0793a61d
TG
2060 * remove it from the context list.
2061 */
fae3fde6
PZ
2062static void
2063__perf_remove_from_context(struct perf_event *event,
2064 struct perf_cpu_context *cpuctx,
2065 struct perf_event_context *ctx,
2066 void *info)
0793a61d 2067{
45a0e07a 2068 unsigned long flags = (unsigned long)info;
0793a61d 2069
3c5c8711
PZ
2070 if (ctx->is_active & EVENT_TIME) {
2071 update_context_time(ctx);
2072 update_cgrp_time_from_cpuctx(cpuctx);
2073 }
2074
cdd6c482 2075 event_sched_out(event, cpuctx, ctx);
45a0e07a 2076 if (flags & DETACH_GROUP)
46ce0fe9 2077 perf_group_detach(event);
cdd6c482 2078 list_del_event(event, ctx);
39a43640
PZ
2079
2080 if (!ctx->nr_events && ctx->is_active) {
64ce3126 2081 ctx->is_active = 0;
39a43640
PZ
2082 if (ctx->task) {
2083 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2084 cpuctx->task_ctx = NULL;
2085 }
64ce3126 2086 }
0793a61d
TG
2087}
2088
0793a61d 2089/*
cdd6c482 2090 * Remove the event from a task's (or a CPU's) list of events.
0793a61d 2091 *
cdd6c482
IM
2092 * If event->ctx is a cloned context, callers must make sure that
2093 * every task struct that event->ctx->task could possibly point to
c93f7669
PM
2094 * remains valid. This is OK when called from perf_release since
2095 * that only calls us on the top-level context, which can't be a clone.
cdd6c482 2096 * When called from perf_event_exit_task, it's OK because the
c93f7669 2097 * context has been detached from its task.
0793a61d 2098 */
45a0e07a 2099static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
0793a61d 2100{
a76a82a3
PZ
2101 struct perf_event_context *ctx = event->ctx;
2102
2103 lockdep_assert_held(&ctx->mutex);
0793a61d 2104
45a0e07a 2105 event_function_call(event, __perf_remove_from_context, (void *)flags);
a76a82a3
PZ
2106
2107 /*
2108 * The above event_function_call() can NO-OP when it hits
2109 * TASK_TOMBSTONE. In that case we must already have been detached
2110 * from the context (by perf_event_exit_event()) but the grouping
2111 * might still be in-tact.
2112 */
2113 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
2114 if ((flags & DETACH_GROUP) &&
2115 (event->attach_state & PERF_ATTACH_GROUP)) {
2116 /*
2117 * Since in that case we cannot possibly be scheduled, simply
2118 * detach now.
2119 */
2120 raw_spin_lock_irq(&ctx->lock);
2121 perf_group_detach(event);
2122 raw_spin_unlock_irq(&ctx->lock);
2123 }
0793a61d
TG
2124}
2125
d859e29f 2126/*
cdd6c482 2127 * Cross CPU call to disable a performance event
d859e29f 2128 */
fae3fde6
PZ
2129static void __perf_event_disable(struct perf_event *event,
2130 struct perf_cpu_context *cpuctx,
2131 struct perf_event_context *ctx,
2132 void *info)
7b648018 2133{
fae3fde6
PZ
2134 if (event->state < PERF_EVENT_STATE_INACTIVE)
2135 return;
7b648018 2136
3c5c8711
PZ
2137 if (ctx->is_active & EVENT_TIME) {
2138 update_context_time(ctx);
2139 update_cgrp_time_from_event(event);
2140 }
2141
fae3fde6
PZ
2142 if (event == event->group_leader)
2143 group_sched_out(event, cpuctx, ctx);
2144 else
2145 event_sched_out(event, cpuctx, ctx);
0d3d73aa
PZ
2146
2147 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
7b648018
PZ
2148}
2149
d859e29f 2150/*
788faab7 2151 * Disable an event.
c93f7669 2152 *
cdd6c482
IM
2153 * If event->ctx is a cloned context, callers must make sure that
2154 * every task struct that event->ctx->task could possibly point to
c93f7669 2155 * remains valid. This condition is satisifed when called through
cdd6c482
IM
2156 * perf_event_for_each_child or perf_event_for_each because they
2157 * hold the top-level event's child_mutex, so any descendant that
8ba289b8
PZ
2158 * goes to exit will block in perf_event_exit_event().
2159 *
cdd6c482 2160 * When called from perf_pending_event it's OK because event->ctx
c93f7669 2161 * is the current context on this CPU and preemption is disabled,
cdd6c482 2162 * hence we can't get into perf_event_task_sched_out for this context.
d859e29f 2163 */
f63a8daa 2164static void _perf_event_disable(struct perf_event *event)
d859e29f 2165{
cdd6c482 2166 struct perf_event_context *ctx = event->ctx;
d859e29f 2167
e625cce1 2168 raw_spin_lock_irq(&ctx->lock);
7b648018 2169 if (event->state <= PERF_EVENT_STATE_OFF) {
e625cce1 2170 raw_spin_unlock_irq(&ctx->lock);
7b648018 2171 return;
53cfbf59 2172 }
e625cce1 2173 raw_spin_unlock_irq(&ctx->lock);
7b648018 2174
fae3fde6
PZ
2175 event_function_call(event, __perf_event_disable, NULL);
2176}
2177
2178void perf_event_disable_local(struct perf_event *event)
2179{
2180 event_function_local(event, __perf_event_disable, NULL);
d859e29f 2181}
f63a8daa
PZ
2182
2183/*
2184 * Strictly speaking kernel users cannot create groups and therefore this
2185 * interface does not need the perf_event_ctx_lock() magic.
2186 */
2187void perf_event_disable(struct perf_event *event)
2188{
2189 struct perf_event_context *ctx;
2190
2191 ctx = perf_event_ctx_lock(event);
2192 _perf_event_disable(event);
2193 perf_event_ctx_unlock(event, ctx);
2194}
dcfce4a0 2195EXPORT_SYMBOL_GPL(perf_event_disable);
d859e29f 2196
5aab90ce
JO
2197void perf_event_disable_inatomic(struct perf_event *event)
2198{
2199 event->pending_disable = 1;
2200 irq_work_queue(&event->pending);
2201}
2202
e5d1367f 2203static void perf_set_shadow_time(struct perf_event *event,
0d3d73aa 2204 struct perf_event_context *ctx)
e5d1367f
SE
2205{
2206 /*
2207 * use the correct time source for the time snapshot
2208 *
2209 * We could get by without this by leveraging the
2210 * fact that to get to this function, the caller
2211 * has most likely already called update_context_time()
2212 * and update_cgrp_time_xx() and thus both timestamp
2213 * are identical (or very close). Given that tstamp is,
2214 * already adjusted for cgroup, we could say that:
2215 * tstamp - ctx->timestamp
2216 * is equivalent to
2217 * tstamp - cgrp->timestamp.
2218 *
2219 * Then, in perf_output_read(), the calculation would
2220 * work with no changes because:
2221 * - event is guaranteed scheduled in
2222 * - no scheduled out in between
2223 * - thus the timestamp would be the same
2224 *
2225 * But this is a bit hairy.
2226 *
2227 * So instead, we have an explicit cgroup call to remain
2228 * within the time time source all along. We believe it
2229 * is cleaner and simpler to understand.
2230 */
2231 if (is_cgroup_event(event))
0d3d73aa 2232 perf_cgroup_set_shadow_time(event, event->tstamp);
e5d1367f 2233 else
0d3d73aa 2234 event->shadow_ctx_time = event->tstamp - ctx->timestamp;
e5d1367f
SE
2235}
2236
4fe757dd
PZ
2237#define MAX_INTERRUPTS (~0ULL)
2238
2239static void perf_log_throttle(struct perf_event *event, int enable);
ec0d7729 2240static void perf_log_itrace_start(struct perf_event *event);
4fe757dd 2241
235c7fc7 2242static int
9ffcfa6f 2243event_sched_in(struct perf_event *event,
235c7fc7 2244 struct perf_cpu_context *cpuctx,
6e37738a 2245 struct perf_event_context *ctx)
235c7fc7 2246{
44377277 2247 int ret = 0;
4158755d 2248
63342411
PZ
2249 lockdep_assert_held(&ctx->lock);
2250
cdd6c482 2251 if (event->state <= PERF_EVENT_STATE_OFF)
235c7fc7
IM
2252 return 0;
2253
95ff4ca2
AS
2254 WRITE_ONCE(event->oncpu, smp_processor_id());
2255 /*
0c1cbc18
PZ
2256 * Order event::oncpu write to happen before the ACTIVE state is
2257 * visible. This allows perf_event_{stop,read}() to observe the correct
2258 * ->oncpu if it sees ACTIVE.
95ff4ca2
AS
2259 */
2260 smp_wmb();
0d3d73aa 2261 perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
4fe757dd
PZ
2262
2263 /*
2264 * Unthrottle events, since we scheduled we might have missed several
2265 * ticks already, also for a heavily scheduling task there is little
2266 * guarantee it'll get a tick in a timely manner.
2267 */
2268 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2269 perf_log_throttle(event, 1);
2270 event->hw.interrupts = 0;
2271 }
2272
44377277
AS
2273 perf_pmu_disable(event->pmu);
2274
0d3d73aa 2275 perf_set_shadow_time(event, ctx);
72f669c0 2276
ec0d7729
AS
2277 perf_log_itrace_start(event);
2278
a4eaf7f1 2279 if (event->pmu->add(event, PERF_EF_START)) {
0d3d73aa 2280 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
cdd6c482 2281 event->oncpu = -1;
44377277
AS
2282 ret = -EAGAIN;
2283 goto out;
235c7fc7
IM
2284 }
2285
cdd6c482 2286 if (!is_software_event(event))
3b6f9e5c 2287 cpuctx->active_oncpu++;
2fde4f94
MR
2288 if (!ctx->nr_active++)
2289 perf_event_ctx_activate(ctx);
0f5a2601
PZ
2290 if (event->attr.freq && event->attr.sample_freq)
2291 ctx->nr_freq++;
235c7fc7 2292
cdd6c482 2293 if (event->attr.exclusive)
3b6f9e5c
PM
2294 cpuctx->exclusive = 1;
2295
44377277
AS
2296out:
2297 perf_pmu_enable(event->pmu);
2298
2299 return ret;
235c7fc7
IM
2300}
2301
6751b71e 2302static int
cdd6c482 2303group_sched_in(struct perf_event *group_event,
6751b71e 2304 struct perf_cpu_context *cpuctx,
6e37738a 2305 struct perf_event_context *ctx)
6751b71e 2306{
6bde9b6c 2307 struct perf_event *event, *partial_group = NULL;
4a234593 2308 struct pmu *pmu = ctx->pmu;
6751b71e 2309
cdd6c482 2310 if (group_event->state == PERF_EVENT_STATE_OFF)
6751b71e
PM
2311 return 0;
2312
fbbe0701 2313 pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
6bde9b6c 2314
9ffcfa6f 2315 if (event_sched_in(group_event, cpuctx, ctx)) {
ad5133b7 2316 pmu->cancel_txn(pmu);
272325c4 2317 perf_mux_hrtimer_restart(cpuctx);
6751b71e 2318 return -EAGAIN;
90151c35 2319 }
6751b71e
PM
2320
2321 /*
2322 * Schedule in siblings as one group (if any):
2323 */
edb39592 2324 for_each_sibling_event(event, group_event) {
9ffcfa6f 2325 if (event_sched_in(event, cpuctx, ctx)) {
cdd6c482 2326 partial_group = event;
6751b71e
PM
2327 goto group_error;
2328 }
2329 }
2330
9ffcfa6f 2331 if (!pmu->commit_txn(pmu))
6e85158c 2332 return 0;
9ffcfa6f 2333
6751b71e
PM
2334group_error:
2335 /*
2336 * Groups can be scheduled in as one unit only, so undo any
2337 * partial group before returning:
0d3d73aa 2338 * The events up to the failed event are scheduled out normally.
6751b71e 2339 */
edb39592 2340 for_each_sibling_event(event, group_event) {
cdd6c482 2341 if (event == partial_group)
0d3d73aa 2342 break;
d7842da4 2343
0d3d73aa 2344 event_sched_out(event, cpuctx, ctx);
6751b71e 2345 }
9ffcfa6f 2346 event_sched_out(group_event, cpuctx, ctx);
6751b71e 2347
ad5133b7 2348 pmu->cancel_txn(pmu);
90151c35 2349
272325c4 2350 perf_mux_hrtimer_restart(cpuctx);
9e630205 2351
6751b71e
PM
2352 return -EAGAIN;
2353}
2354
3b6f9e5c 2355/*
cdd6c482 2356 * Work out whether we can put this event group on the CPU now.
3b6f9e5c 2357 */
cdd6c482 2358static int group_can_go_on(struct perf_event *event,
3b6f9e5c
PM
2359 struct perf_cpu_context *cpuctx,
2360 int can_add_hw)
2361{
2362 /*
cdd6c482 2363 * Groups consisting entirely of software events can always go on.
3b6f9e5c 2364 */
4ff6a8de 2365 if (event->group_caps & PERF_EV_CAP_SOFTWARE)
3b6f9e5c
PM
2366 return 1;
2367 /*
2368 * If an exclusive group is already on, no other hardware
cdd6c482 2369 * events can go on.
3b6f9e5c
PM
2370 */
2371 if (cpuctx->exclusive)
2372 return 0;
2373 /*
2374 * If this group is exclusive and there are already
cdd6c482 2375 * events on the CPU, it can't go on.
3b6f9e5c 2376 */
cdd6c482 2377 if (event->attr.exclusive && cpuctx->active_oncpu)
3b6f9e5c
PM
2378 return 0;
2379 /*
2380 * Otherwise, try to add it if all previous groups were able
2381 * to go on.
2382 */
2383 return can_add_hw;
2384}
2385
cdd6c482
IM
2386static void add_event_to_ctx(struct perf_event *event,
2387 struct perf_event_context *ctx)
53cfbf59 2388{
cdd6c482 2389 list_add_event(event, ctx);
8a49542c 2390 perf_group_attach(event);
53cfbf59
PM
2391}
2392
bd2afa49
PZ
2393static void ctx_sched_out(struct perf_event_context *ctx,
2394 struct perf_cpu_context *cpuctx,
2395 enum event_type_t event_type);
2c29ef0f
PZ
2396static void
2397ctx_sched_in(struct perf_event_context *ctx,
2398 struct perf_cpu_context *cpuctx,
2399 enum event_type_t event_type,
2400 struct task_struct *task);
fe4b04fa 2401
bd2afa49 2402static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
487f05e1
AS
2403 struct perf_event_context *ctx,
2404 enum event_type_t event_type)
bd2afa49
PZ
2405{
2406 if (!cpuctx->task_ctx)
2407 return;
2408
2409 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2410 return;
2411
487f05e1 2412 ctx_sched_out(ctx, cpuctx, event_type);
bd2afa49
PZ
2413}
2414
dce5855b
PZ
2415static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2416 struct perf_event_context *ctx,
2417 struct task_struct *task)
2418{
2419 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2420 if (ctx)
2421 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2422 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2423 if (ctx)
2424 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2425}
2426
487f05e1
AS
2427/*
2428 * We want to maintain the following priority of scheduling:
2429 * - CPU pinned (EVENT_CPU | EVENT_PINNED)
2430 * - task pinned (EVENT_PINNED)
2431 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2432 * - task flexible (EVENT_FLEXIBLE).
2433 *
2434 * In order to avoid unscheduling and scheduling back in everything every
2435 * time an event is added, only do it for the groups of equal priority and
2436 * below.
2437 *
2438 * This can be called after a batch operation on task events, in which case
2439 * event_type is a bit mask of the types of events involved. For CPU events,
2440 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2441 */
3e349507 2442static void ctx_resched(struct perf_cpu_context *cpuctx,
487f05e1
AS
2443 struct perf_event_context *task_ctx,
2444 enum event_type_t event_type)
0017960f 2445{
bd903afe 2446 enum event_type_t ctx_event_type;
487f05e1
AS
2447 bool cpu_event = !!(event_type & EVENT_CPU);
2448
2449 /*
2450 * If pinned groups are involved, flexible groups also need to be
2451 * scheduled out.
2452 */
2453 if (event_type & EVENT_PINNED)
2454 event_type |= EVENT_FLEXIBLE;
2455
bd903afe
SL
2456 ctx_event_type = event_type & EVENT_ALL;
2457
3e349507
PZ
2458 perf_pmu_disable(cpuctx->ctx.pmu);
2459 if (task_ctx)
487f05e1
AS
2460 task_ctx_sched_out(cpuctx, task_ctx, event_type);
2461
2462 /*
2463 * Decide which cpu ctx groups to schedule out based on the types
2464 * of events that caused rescheduling:
2465 * - EVENT_CPU: schedule out corresponding groups;
2466 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2467 * - otherwise, do nothing more.
2468 */
2469 if (cpu_event)
2470 cpu_ctx_sched_out(cpuctx, ctx_event_type);
2471 else if (ctx_event_type & EVENT_PINNED)
2472 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2473
3e349507
PZ
2474 perf_event_sched_in(cpuctx, task_ctx, current);
2475 perf_pmu_enable(cpuctx->ctx.pmu);
0017960f
PZ
2476}
2477
0793a61d 2478/*
cdd6c482 2479 * Cross CPU call to install and enable a performance event
682076ae 2480 *
a096309b
PZ
2481 * Very similar to remote_function() + event_function() but cannot assume that
2482 * things like ctx->is_active and cpuctx->task_ctx are set.
0793a61d 2483 */
fe4b04fa 2484static int __perf_install_in_context(void *info)
0793a61d 2485{
a096309b
PZ
2486 struct perf_event *event = info;
2487 struct perf_event_context *ctx = event->ctx;
108b02cf 2488 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2c29ef0f 2489 struct perf_event_context *task_ctx = cpuctx->task_ctx;
63cae12b 2490 bool reprogram = true;
a096309b 2491 int ret = 0;
0793a61d 2492
63b6da39 2493 raw_spin_lock(&cpuctx->ctx.lock);
39a43640 2494 if (ctx->task) {
b58f6b0d
PZ
2495 raw_spin_lock(&ctx->lock);
2496 task_ctx = ctx;
a096309b 2497
63cae12b 2498 reprogram = (ctx->task == current);
b58f6b0d 2499
39a43640 2500 /*
63cae12b
PZ
2501 * If the task is running, it must be running on this CPU,
2502 * otherwise we cannot reprogram things.
2503 *
2504 * If its not running, we don't care, ctx->lock will
2505 * serialize against it becoming runnable.
39a43640 2506 */
63cae12b
PZ
2507 if (task_curr(ctx->task) && !reprogram) {
2508 ret = -ESRCH;
2509 goto unlock;
2510 }
a096309b 2511
63cae12b 2512 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
63b6da39
PZ
2513 } else if (task_ctx) {
2514 raw_spin_lock(&task_ctx->lock);
2c29ef0f 2515 }
b58f6b0d 2516
33801b94 2517#ifdef CONFIG_CGROUP_PERF
2518 if (is_cgroup_event(event)) {
2519 /*
2520 * If the current cgroup doesn't match the event's
2521 * cgroup, we should not try to schedule it.
2522 */
2523 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2524 reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2525 event->cgrp->css.cgroup);
2526 }
2527#endif
2528
63cae12b 2529 if (reprogram) {
a096309b
PZ
2530 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2531 add_event_to_ctx(event, ctx);
487f05e1 2532 ctx_resched(cpuctx, task_ctx, get_event_type(event));
a096309b
PZ
2533 } else {
2534 add_event_to_ctx(event, ctx);
2535 }
2536
63b6da39 2537unlock:
2c29ef0f 2538 perf_ctx_unlock(cpuctx, task_ctx);
fe4b04fa 2539
a096309b 2540 return ret;
0793a61d
TG
2541}
2542
2543/*
a096309b
PZ
2544 * Attach a performance event to a context.
2545 *
2546 * Very similar to event_function_call, see comment there.
0793a61d
TG
2547 */
2548static void
cdd6c482
IM
2549perf_install_in_context(struct perf_event_context *ctx,
2550 struct perf_event *event,
0793a61d
TG
2551 int cpu)
2552{
a096309b 2553 struct task_struct *task = READ_ONCE(ctx->task);
39a43640 2554
fe4b04fa
PZ
2555 lockdep_assert_held(&ctx->mutex);
2556
0cda4c02
YZ
2557 if (event->cpu != -1)
2558 event->cpu = cpu;
c3f00c70 2559
0b8f1e2e
PZ
2560 /*
2561 * Ensures that if we can observe event->ctx, both the event and ctx
2562 * will be 'complete'. See perf_iterate_sb_cpu().
2563 */
2564 smp_store_release(&event->ctx, ctx);
2565
a096309b
PZ
2566 if (!task) {
2567 cpu_function_call(cpu, __perf_install_in_context, event);
2568 return;
2569 }
2570
2571 /*
2572 * Should not happen, we validate the ctx is still alive before calling.
2573 */
2574 if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2575 return;
2576
39a43640
PZ
2577 /*
2578 * Installing events is tricky because we cannot rely on ctx->is_active
2579 * to be set in case this is the nr_events 0 -> 1 transition.
63cae12b
PZ
2580 *
2581 * Instead we use task_curr(), which tells us if the task is running.
2582 * However, since we use task_curr() outside of rq::lock, we can race
2583 * against the actual state. This means the result can be wrong.
2584 *
2585 * If we get a false positive, we retry, this is harmless.
2586 *
2587 * If we get a false negative, things are complicated. If we are after
2588 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2589 * value must be correct. If we're before, it doesn't matter since
2590 * perf_event_context_sched_in() will program the counter.
2591 *
2592 * However, this hinges on the remote context switch having observed
2593 * our task->perf_event_ctxp[] store, such that it will in fact take
2594 * ctx::lock in perf_event_context_sched_in().
2595 *
2596 * We do this by task_function_call(), if the IPI fails to hit the task
2597 * we know any future context switch of task must see the
2598 * perf_event_ctpx[] store.
39a43640 2599 */
63cae12b 2600
63b6da39 2601 /*
63cae12b
PZ
2602 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2603 * task_cpu() load, such that if the IPI then does not find the task
2604 * running, a future context switch of that task must observe the
2605 * store.
63b6da39 2606 */
63cae12b
PZ
2607 smp_mb();
2608again:
2609 if (!task_function_call(task, __perf_install_in_context, event))
a096309b
PZ
2610 return;
2611
2612 raw_spin_lock_irq(&ctx->lock);
2613 task = ctx->task;
84c4e620 2614 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
a096309b
PZ
2615 /*
2616 * Cannot happen because we already checked above (which also
2617 * cannot happen), and we hold ctx->mutex, which serializes us
2618 * against perf_event_exit_task_context().
2619 */
63b6da39
PZ
2620 raw_spin_unlock_irq(&ctx->lock);
2621 return;
2622 }
39a43640 2623 /*
63cae12b
PZ
2624 * If the task is not running, ctx->lock will avoid it becoming so,
2625 * thus we can safely install the event.
39a43640 2626 */
63cae12b
PZ
2627 if (task_curr(task)) {
2628 raw_spin_unlock_irq(&ctx->lock);
2629 goto again;
2630 }
2631 add_event_to_ctx(event, ctx);
2632 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
2633}
2634
d859e29f 2635/*
cdd6c482 2636 * Cross CPU call to enable a performance event
d859e29f 2637 */
fae3fde6
PZ
2638static void __perf_event_enable(struct perf_event *event,
2639 struct perf_cpu_context *cpuctx,
2640 struct perf_event_context *ctx,
2641 void *info)
04289bb9 2642{
cdd6c482 2643 struct perf_event *leader = event->group_leader;
fae3fde6 2644 struct perf_event_context *task_ctx;
04289bb9 2645
6e801e01
PZ
2646 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2647 event->state <= PERF_EVENT_STATE_ERROR)
fae3fde6 2648 return;
3cbed429 2649
bd2afa49
PZ
2650 if (ctx->is_active)
2651 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2652
0d3d73aa 2653 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
04289bb9 2654
fae3fde6
PZ
2655 if (!ctx->is_active)
2656 return;
2657
e5d1367f 2658 if (!event_filter_match(event)) {
bd2afa49 2659 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
fae3fde6 2660 return;
e5d1367f 2661 }
f4c4176f 2662
04289bb9 2663 /*
cdd6c482 2664 * If the event is in a group and isn't the group leader,
d859e29f 2665 * then don't put it on unless the group is on.
04289bb9 2666 */
bd2afa49
PZ
2667 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2668 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
fae3fde6 2669 return;
bd2afa49 2670 }
fe4b04fa 2671
fae3fde6
PZ
2672 task_ctx = cpuctx->task_ctx;
2673 if (ctx->task)
2674 WARN_ON_ONCE(task_ctx != ctx);
d859e29f 2675
487f05e1 2676 ctx_resched(cpuctx, task_ctx, get_event_type(event));
7b648018
PZ
2677}
2678
d859e29f 2679/*
788faab7 2680 * Enable an event.
c93f7669 2681 *
cdd6c482
IM
2682 * If event->ctx is a cloned context, callers must make sure that
2683 * every task struct that event->ctx->task could possibly point to
c93f7669 2684 * remains valid. This condition is satisfied when called through
cdd6c482
IM
2685 * perf_event_for_each_child or perf_event_for_each as described
2686 * for perf_event_disable.
d859e29f 2687 */
f63a8daa 2688static void _perf_event_enable(struct perf_event *event)
d859e29f 2689{
cdd6c482 2690 struct perf_event_context *ctx = event->ctx;
d859e29f 2691
7b648018 2692 raw_spin_lock_irq(&ctx->lock);
6e801e01
PZ
2693 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2694 event->state < PERF_EVENT_STATE_ERROR) {
7b648018 2695 raw_spin_unlock_irq(&ctx->lock);
d859e29f
PM
2696 return;
2697 }
2698
d859e29f 2699 /*
cdd6c482 2700 * If the event is in error state, clear that first.
7b648018
PZ
2701 *
2702 * That way, if we see the event in error state below, we know that it
2703 * has gone back into error state, as distinct from the task having
2704 * been scheduled away before the cross-call arrived.
d859e29f 2705 */
cdd6c482
IM
2706 if (event->state == PERF_EVENT_STATE_ERROR)
2707 event->state = PERF_EVENT_STATE_OFF;
e625cce1 2708 raw_spin_unlock_irq(&ctx->lock);
fe4b04fa 2709
fae3fde6 2710 event_function_call(event, __perf_event_enable, NULL);
d859e29f 2711}
f63a8daa
PZ
2712
2713/*
2714 * See perf_event_disable();
2715 */
2716void perf_event_enable(struct perf_event *event)
2717{
2718 struct perf_event_context *ctx;
2719
2720 ctx = perf_event_ctx_lock(event);
2721 _perf_event_enable(event);
2722 perf_event_ctx_unlock(event, ctx);
2723}
dcfce4a0 2724EXPORT_SYMBOL_GPL(perf_event_enable);
d859e29f 2725
375637bc
AS
2726struct stop_event_data {
2727 struct perf_event *event;
2728 unsigned int restart;
2729};
2730
95ff4ca2
AS
2731static int __perf_event_stop(void *info)
2732{
375637bc
AS
2733 struct stop_event_data *sd = info;
2734 struct perf_event *event = sd->event;
95ff4ca2 2735
375637bc 2736 /* if it's already INACTIVE, do nothing */
95ff4ca2
AS
2737 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2738 return 0;
2739
2740 /* matches smp_wmb() in event_sched_in() */
2741 smp_rmb();
2742
2743 /*
2744 * There is a window with interrupts enabled before we get here,
2745 * so we need to check again lest we try to stop another CPU's event.
2746 */
2747 if (READ_ONCE(event->oncpu) != smp_processor_id())
2748 return -EAGAIN;
2749
2750 event->pmu->stop(event, PERF_EF_UPDATE);
2751
375637bc
AS
2752 /*
2753 * May race with the actual stop (through perf_pmu_output_stop()),
2754 * but it is only used for events with AUX ring buffer, and such
2755 * events will refuse to restart because of rb::aux_mmap_count==0,
2756 * see comments in perf_aux_output_begin().
2757 *
788faab7 2758 * Since this is happening on an event-local CPU, no trace is lost
375637bc
AS
2759 * while restarting.
2760 */
2761 if (sd->restart)
c9bbdd48 2762 event->pmu->start(event, 0);
375637bc 2763
95ff4ca2
AS
2764 return 0;
2765}
2766
767ae086 2767static int perf_event_stop(struct perf_event *event, int restart)
375637bc
AS
2768{
2769 struct stop_event_data sd = {
2770 .event = event,
767ae086 2771 .restart = restart,
375637bc
AS
2772 };
2773 int ret = 0;
2774
2775 do {
2776 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2777 return 0;
2778
2779 /* matches smp_wmb() in event_sched_in() */
2780 smp_rmb();
2781
2782 /*
2783 * We only want to restart ACTIVE events, so if the event goes
2784 * inactive here (event->oncpu==-1), there's nothing more to do;
2785 * fall through with ret==-ENXIO.
2786 */
2787 ret = cpu_function_call(READ_ONCE(event->oncpu),
2788 __perf_event_stop, &sd);
2789 } while (ret == -EAGAIN);
2790
2791 return ret;
2792}
2793
2794/*
2795 * In order to contain the amount of racy and tricky in the address filter
2796 * configuration management, it is a two part process:
2797 *
2798 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2799 * we update the addresses of corresponding vmas in
2800 * event::addr_filters_offs array and bump the event::addr_filters_gen;
2801 * (p2) when an event is scheduled in (pmu::add), it calls
2802 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2803 * if the generation has changed since the previous call.
2804 *
2805 * If (p1) happens while the event is active, we restart it to force (p2).
2806 *
2807 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2808 * pre-existing mappings, called once when new filters arrive via SET_FILTER
2809 * ioctl;
2810 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2811 * registered mapping, called for every new mmap(), with mm::mmap_sem down
2812 * for reading;
2813 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2814 * of exec.
2815 */
2816void perf_event_addr_filters_sync(struct perf_event *event)
2817{
2818 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2819
2820 if (!has_addr_filter(event))
2821 return;
2822
2823 raw_spin_lock(&ifh->lock);
2824 if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2825 event->pmu->addr_filters_sync(event);
2826 event->hw.addr_filters_gen = event->addr_filters_gen;
2827 }
2828 raw_spin_unlock(&ifh->lock);
2829}
2830EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2831
f63a8daa 2832static int _perf_event_refresh(struct perf_event *event, int refresh)
79f14641 2833{
2023b359 2834 /*
cdd6c482 2835 * not supported on inherited events
2023b359 2836 */
2e939d1d 2837 if (event->attr.inherit || !is_sampling_event(event))
2023b359
PZ
2838 return -EINVAL;
2839
cdd6c482 2840 atomic_add(refresh, &event->event_limit);
f63a8daa 2841 _perf_event_enable(event);
2023b359
PZ
2842
2843 return 0;
79f14641 2844}
f63a8daa
PZ
2845
2846/*
2847 * See perf_event_disable()
2848 */
2849int perf_event_refresh(struct perf_event *event, int refresh)
2850{
2851 struct perf_event_context *ctx;
2852 int ret;
2853
2854 ctx = perf_event_ctx_lock(event);
2855 ret = _perf_event_refresh(event, refresh);
2856 perf_event_ctx_unlock(event, ctx);
2857
2858 return ret;
2859}
26ca5c11 2860EXPORT_SYMBOL_GPL(perf_event_refresh);
79f14641 2861
32ff77e8
MC
2862static int perf_event_modify_breakpoint(struct perf_event *bp,
2863 struct perf_event_attr *attr)
2864{
2865 int err;
2866
2867 _perf_event_disable(bp);
2868
2869 err = modify_user_hw_breakpoint_check(bp, attr, true);
32ff77e8 2870
bf06278c 2871 if (!bp->attr.disabled)
32ff77e8 2872 _perf_event_enable(bp);
bf06278c
JO
2873
2874 return err;
32ff77e8
MC
2875}
2876
2877static int perf_event_modify_attr(struct perf_event *event,
2878 struct perf_event_attr *attr)
2879{
2880 if (event->attr.type != attr->type)
2881 return -EINVAL;
2882
2883 switch (event->attr.type) {
2884 case PERF_TYPE_BREAKPOINT:
2885 return perf_event_modify_breakpoint(event, attr);
2886 default:
2887 /* Place holder for future additions. */
2888 return -EOPNOTSUPP;
2889 }
2890}
2891
5b0311e1
FW
2892static void ctx_sched_out(struct perf_event_context *ctx,
2893 struct perf_cpu_context *cpuctx,
2894 enum event_type_t event_type)
235c7fc7 2895{
6668128a 2896 struct perf_event *event, *tmp;
db24d33e 2897 int is_active = ctx->is_active;
235c7fc7 2898
c994d613 2899 lockdep_assert_held(&ctx->lock);
235c7fc7 2900
39a43640
PZ
2901 if (likely(!ctx->nr_events)) {
2902 /*
2903 * See __perf_remove_from_context().
2904 */
2905 WARN_ON_ONCE(ctx->is_active);
2906 if (ctx->task)
2907 WARN_ON_ONCE(cpuctx->task_ctx);
facc4307 2908 return;
39a43640
PZ
2909 }
2910
db24d33e 2911 ctx->is_active &= ~event_type;
3cbaa590
PZ
2912 if (!(ctx->is_active & EVENT_ALL))
2913 ctx->is_active = 0;
2914
63e30d3e
PZ
2915 if (ctx->task) {
2916 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2917 if (!ctx->is_active)
2918 cpuctx->task_ctx = NULL;
2919 }
facc4307 2920
8fdc6539
PZ
2921 /*
2922 * Always update time if it was set; not only when it changes.
2923 * Otherwise we can 'forget' to update time for any but the last
2924 * context we sched out. For example:
2925 *
2926 * ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2927 * ctx_sched_out(.event_type = EVENT_PINNED)
2928 *
2929 * would only update time for the pinned events.
2930 */
3cbaa590
PZ
2931 if (is_active & EVENT_TIME) {
2932 /* update (and stop) ctx time */
2933 update_context_time(ctx);
2934 update_cgrp_time_from_cpuctx(cpuctx);
2935 }
2936
8fdc6539
PZ
2937 is_active ^= ctx->is_active; /* changed bits */
2938
3cbaa590 2939 if (!ctx->nr_active || !(is_active & EVENT_ALL))
facc4307 2940 return;
5b0311e1 2941
075e0b00 2942 perf_pmu_disable(ctx->pmu);
3cbaa590 2943 if (is_active & EVENT_PINNED) {
6668128a 2944 list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list)
889ff015 2945 group_sched_out(event, cpuctx, ctx);
9ed6060d 2946 }
889ff015 2947
3cbaa590 2948 if (is_active & EVENT_FLEXIBLE) {
6668128a 2949 list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list)
8c9ed8e1 2950 group_sched_out(event, cpuctx, ctx);
9ed6060d 2951 }
1b9a644f 2952 perf_pmu_enable(ctx->pmu);
235c7fc7
IM
2953}
2954
564c2b21 2955/*
5a3126d4
PZ
2956 * Test whether two contexts are equivalent, i.e. whether they have both been
2957 * cloned from the same version of the same context.
2958 *
2959 * Equivalence is measured using a generation number in the context that is
2960 * incremented on each modification to it; see unclone_ctx(), list_add_event()
2961 * and list_del_event().
564c2b21 2962 */
cdd6c482
IM
2963static int context_equiv(struct perf_event_context *ctx1,
2964 struct perf_event_context *ctx2)
564c2b21 2965{
211de6eb
PZ
2966 lockdep_assert_held(&ctx1->lock);
2967 lockdep_assert_held(&ctx2->lock);
2968
5a3126d4
PZ
2969 /* Pinning disables the swap optimization */
2970 if (ctx1->pin_count || ctx2->pin_count)
2971 return 0;
2972
2973 /* If ctx1 is the parent of ctx2 */
2974 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2975 return 1;
2976
2977 /* If ctx2 is the parent of ctx1 */
2978 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2979 return 1;
2980
2981 /*
2982 * If ctx1 and ctx2 have the same parent; we flatten the parent
2983 * hierarchy, see perf_event_init_context().
2984 */
2985 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2986 ctx1->parent_gen == ctx2->parent_gen)
2987 return 1;
2988
2989 /* Unmatched */
2990 return 0;
564c2b21
PM
2991}
2992
cdd6c482
IM
2993static void __perf_event_sync_stat(struct perf_event *event,
2994 struct perf_event *next_event)
bfbd3381
PZ
2995{
2996 u64 value;
2997
cdd6c482 2998 if (!event->attr.inherit_stat)
bfbd3381
PZ
2999 return;
3000
3001 /*
cdd6c482 3002 * Update the event value, we cannot use perf_event_read()
bfbd3381
PZ
3003 * because we're in the middle of a context switch and have IRQs
3004 * disabled, which upsets smp_call_function_single(), however
cdd6c482 3005 * we know the event must be on the current CPU, therefore we
bfbd3381
PZ
3006 * don't need to use it.
3007 */
0d3d73aa 3008 if (event->state == PERF_EVENT_STATE_ACTIVE)
3dbebf15 3009 event->pmu->read(event);
bfbd3381 3010
0d3d73aa 3011 perf_event_update_time(event);
bfbd3381
PZ
3012
3013 /*
cdd6c482 3014 * In order to keep per-task stats reliable we need to flip the event
bfbd3381
PZ
3015 * values when we flip the contexts.
3016 */
e7850595
PZ
3017 value = local64_read(&next_event->count);
3018 value = local64_xchg(&event->count, value);
3019 local64_set(&next_event->count, value);
bfbd3381 3020
cdd6c482
IM
3021 swap(event->total_time_enabled, next_event->total_time_enabled);
3022 swap(event->total_time_running, next_event->total_time_running);
19d2e755 3023
bfbd3381 3024 /*
19d2e755 3025 * Since we swizzled the values, update the user visible data too.
bfbd3381 3026 */
cdd6c482
IM
3027 perf_event_update_userpage(event);
3028 perf_event_update_userpage(next_event);
bfbd3381
PZ
3029}
3030
cdd6c482
IM
3031static void perf_event_sync_stat(struct perf_event_context *ctx,
3032 struct perf_event_context *next_ctx)
bfbd3381 3033{
cdd6c482 3034 struct perf_event *event, *next_event;
bfbd3381
PZ
3035
3036 if (!ctx->nr_stat)
3037 return;
3038
02ffdbc8
PZ
3039 update_context_time(ctx);
3040
cdd6c482
IM
3041 event = list_first_entry(&ctx->event_list,
3042 struct perf_event, event_entry);
bfbd3381 3043
cdd6c482
IM
3044 next_event = list_first_entry(&next_ctx->event_list,
3045 struct perf_event, event_entry);
bfbd3381 3046
cdd6c482
IM
3047 while (&event->event_entry != &ctx->event_list &&
3048 &next_event->event_entry != &next_ctx->event_list) {
bfbd3381 3049
cdd6c482 3050 __perf_event_sync_stat(event, next_event);
bfbd3381 3051
cdd6c482
IM
3052 event = list_next_entry(event, event_entry);
3053 next_event = list_next_entry(next_event, event_entry);
bfbd3381
PZ
3054 }
3055}
3056
fe4b04fa
PZ
3057static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
3058 struct task_struct *next)
0793a61d 3059{
8dc85d54 3060 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
cdd6c482 3061 struct perf_event_context *next_ctx;
5a3126d4 3062 struct perf_event_context *parent, *next_parent;
108b02cf 3063 struct perf_cpu_context *cpuctx;
c93f7669 3064 int do_switch = 1;
0793a61d 3065
108b02cf
PZ
3066 if (likely(!ctx))
3067 return;
10989fb2 3068
108b02cf
PZ
3069 cpuctx = __get_cpu_context(ctx);
3070 if (!cpuctx->task_ctx)
0793a61d
TG
3071 return;
3072
c93f7669 3073 rcu_read_lock();
8dc85d54 3074 next_ctx = next->perf_event_ctxp[ctxn];
5a3126d4
PZ
3075 if (!next_ctx)
3076 goto unlock;
3077
3078 parent = rcu_dereference(ctx->parent_ctx);
3079 next_parent = rcu_dereference(next_ctx->parent_ctx);
3080
3081 /* If neither context have a parent context; they cannot be clones. */
802c8a61 3082 if (!parent && !next_parent)
5a3126d4
PZ
3083 goto unlock;
3084
3085 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
c93f7669
PM
3086 /*
3087 * Looks like the two contexts are clones, so we might be
3088 * able to optimize the context switch. We lock both
3089 * contexts and check that they are clones under the
3090 * lock (including re-checking that neither has been
3091 * uncloned in the meantime). It doesn't matter which
3092 * order we take the locks because no other cpu could
3093 * be trying to lock both of these tasks.
3094 */
e625cce1
TG
3095 raw_spin_lock(&ctx->lock);
3096 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
c93f7669 3097 if (context_equiv(ctx, next_ctx)) {
63b6da39
PZ
3098 WRITE_ONCE(ctx->task, next);
3099 WRITE_ONCE(next_ctx->task, task);
5a158c3c
YZ
3100
3101 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
3102
63b6da39
PZ
3103 /*
3104 * RCU_INIT_POINTER here is safe because we've not
3105 * modified the ctx and the above modification of
3106 * ctx->task and ctx->task_ctx_data are immaterial
3107 * since those values are always verified under
3108 * ctx->lock which we're now holding.
3109 */
3110 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
3111 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
3112
c93f7669 3113 do_switch = 0;
bfbd3381 3114
cdd6c482 3115 perf_event_sync_stat(ctx, next_ctx);
c93f7669 3116 }
e625cce1
TG
3117 raw_spin_unlock(&next_ctx->lock);
3118 raw_spin_unlock(&ctx->lock);
564c2b21 3119 }
5a3126d4 3120unlock:
c93f7669 3121 rcu_read_unlock();
564c2b21 3122
c93f7669 3123 if (do_switch) {
facc4307 3124 raw_spin_lock(&ctx->lock);
487f05e1 3125 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
facc4307 3126 raw_spin_unlock(&ctx->lock);
c93f7669 3127 }
0793a61d
TG
3128}
3129
e48c1788
PZ
3130static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3131
ba532500
YZ
3132void perf_sched_cb_dec(struct pmu *pmu)
3133{
e48c1788
PZ
3134 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3135
ba532500 3136 this_cpu_dec(perf_sched_cb_usages);
e48c1788
PZ
3137
3138 if (!--cpuctx->sched_cb_usage)
3139 list_del(&cpuctx->sched_cb_entry);
ba532500
YZ
3140}
3141
e48c1788 3142
ba532500
YZ
3143void perf_sched_cb_inc(struct pmu *pmu)
3144{
e48c1788
PZ
3145 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3146
3147 if (!cpuctx->sched_cb_usage++)
3148 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3149
ba532500
YZ
3150 this_cpu_inc(perf_sched_cb_usages);
3151}
3152
3153/*
3154 * This function provides the context switch callback to the lower code
3155 * layer. It is invoked ONLY when the context switch callback is enabled.
09e61b4f
PZ
3156 *
3157 * This callback is relevant even to per-cpu events; for example multi event
3158 * PEBS requires this to provide PID/TID information. This requires we flush
3159 * all queued PEBS records before we context switch to a new task.
ba532500
YZ
3160 */
3161static void perf_pmu_sched_task(struct task_struct *prev,
3162 struct task_struct *next,
3163 bool sched_in)
3164{
3165 struct perf_cpu_context *cpuctx;
3166 struct pmu *pmu;
ba532500
YZ
3167
3168 if (prev == next)
3169 return;
3170
e48c1788 3171 list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
1fd7e416 3172 pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
ba532500 3173
e48c1788
PZ
3174 if (WARN_ON_ONCE(!pmu->sched_task))
3175 continue;
ba532500 3176
e48c1788
PZ
3177 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3178 perf_pmu_disable(pmu);
ba532500 3179
e48c1788 3180 pmu->sched_task(cpuctx->task_ctx, sched_in);
ba532500 3181
e48c1788
PZ
3182 perf_pmu_enable(pmu);
3183 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
ba532500 3184 }
ba532500
YZ
3185}
3186
45ac1403
AH
3187static void perf_event_switch(struct task_struct *task,
3188 struct task_struct *next_prev, bool sched_in);
3189
8dc85d54
PZ
3190#define for_each_task_context_nr(ctxn) \
3191 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3192
3193/*
3194 * Called from scheduler to remove the events of the current task,
3195 * with interrupts disabled.
3196 *
3197 * We stop each event and update the event value in event->count.
3198 *
3199 * This does not protect us against NMI, but disable()
3200 * sets the disabled bit in the control field of event _before_
3201 * accessing the event control register. If a NMI hits, then it will
3202 * not restart the event.
3203 */
ab0cce56
JO
3204void __perf_event_task_sched_out(struct task_struct *task,
3205 struct task_struct *next)
8dc85d54
PZ
3206{
3207 int ctxn;
3208
ba532500
YZ
3209 if (__this_cpu_read(perf_sched_cb_usages))
3210 perf_pmu_sched_task(task, next, false);
3211
45ac1403
AH
3212 if (atomic_read(&nr_switch_events))
3213 perf_event_switch(task, next, false);
3214
8dc85d54
PZ
3215 for_each_task_context_nr(ctxn)
3216 perf_event_context_sched_out(task, ctxn, next);
e5d1367f
SE
3217
3218 /*
3219 * if cgroup events exist on this CPU, then we need
3220 * to check if we have to switch out PMU state.
3221 * cgroup event are system-wide mode only
3222 */
4a32fea9 3223 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
a8d757ef 3224 perf_cgroup_sched_out(task, next);
8dc85d54
PZ
3225}
3226
5b0311e1
FW
3227/*
3228 * Called with IRQs disabled
3229 */
3230static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3231 enum event_type_t event_type)
3232{
3233 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
04289bb9
IM
3234}
3235
1cac7b1a
PZ
3236static int visit_groups_merge(struct perf_event_groups *groups, int cpu,
3237 int (*func)(struct perf_event *, void *), void *data)
0793a61d 3238{
1cac7b1a
PZ
3239 struct perf_event **evt, *evt1, *evt2;
3240 int ret;
8e1a2031 3241
1cac7b1a
PZ
3242 evt1 = perf_event_groups_first(groups, -1);
3243 evt2 = perf_event_groups_first(groups, cpu);
3244
3245 while (evt1 || evt2) {
3246 if (evt1 && evt2) {
3247 if (evt1->group_index < evt2->group_index)
3248 evt = &evt1;
3249 else
3250 evt = &evt2;
3251 } else if (evt1) {
3252 evt = &evt1;
3253 } else {
3254 evt = &evt2;
8e1a2031 3255 }
1cac7b1a
PZ
3256
3257 ret = func(*evt, data);
3258 if (ret)
3259 return ret;
3260
3261 *evt = perf_event_groups_next(*evt);
8e1a2031 3262 }
0793a61d 3263
1cac7b1a
PZ
3264 return 0;
3265}
3266
3267struct sched_in_data {
3268 struct perf_event_context *ctx;
3269 struct perf_cpu_context *cpuctx;
3270 int can_add_hw;
3271};
3272
3273static int pinned_sched_in(struct perf_event *event, void *data)
3274{
3275 struct sched_in_data *sid = data;
3276
3277 if (event->state <= PERF_EVENT_STATE_OFF)
3278 return 0;
3279
3280 if (!event_filter_match(event))
3281 return 0;
3282
6668128a
PZ
3283 if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) {
3284 if (!group_sched_in(event, sid->cpuctx, sid->ctx))
3285 list_add_tail(&event->active_list, &sid->ctx->pinned_active);
3286 }
1cac7b1a
PZ
3287
3288 /*
3289 * If this pinned group hasn't been scheduled,
3290 * put it in error state.
3291 */
3292 if (event->state == PERF_EVENT_STATE_INACTIVE)
3293 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3294
3295 return 0;
3296}
3297
3298static int flexible_sched_in(struct perf_event *event, void *data)
3299{
3300 struct sched_in_data *sid = data;
3301
3302 if (event->state <= PERF_EVENT_STATE_OFF)
3303 return 0;
3304
3305 if (!event_filter_match(event))
3306 return 0;
3307
3308 if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) {
6668128a
PZ
3309 if (!group_sched_in(event, sid->cpuctx, sid->ctx))
3310 list_add_tail(&event->active_list, &sid->ctx->flexible_active);
3311 else
1cac7b1a 3312 sid->can_add_hw = 0;
3b6f9e5c 3313 }
1cac7b1a
PZ
3314
3315 return 0;
5b0311e1
FW
3316}
3317
3318static void
1cac7b1a
PZ
3319ctx_pinned_sched_in(struct perf_event_context *ctx,
3320 struct perf_cpu_context *cpuctx)
5b0311e1 3321{
1cac7b1a
PZ
3322 struct sched_in_data sid = {
3323 .ctx = ctx,
3324 .cpuctx = cpuctx,
3325 .can_add_hw = 1,
3326 };
3b6f9e5c 3327
1cac7b1a
PZ
3328 visit_groups_merge(&ctx->pinned_groups,
3329 smp_processor_id(),
3330 pinned_sched_in, &sid);
3331}
8e1a2031 3332
1cac7b1a
PZ
3333static void
3334ctx_flexible_sched_in(struct perf_event_context *ctx,
3335 struct perf_cpu_context *cpuctx)
3336{
3337 struct sched_in_data sid = {
3338 .ctx = ctx,
3339 .cpuctx = cpuctx,
3340 .can_add_hw = 1,
3341 };
0793a61d 3342
1cac7b1a
PZ
3343 visit_groups_merge(&ctx->flexible_groups,
3344 smp_processor_id(),
3345 flexible_sched_in, &sid);
5b0311e1
FW
3346}
3347
3348static void
3349ctx_sched_in(struct perf_event_context *ctx,
3350 struct perf_cpu_context *cpuctx,
e5d1367f
SE
3351 enum event_type_t event_type,
3352 struct task_struct *task)
5b0311e1 3353{
db24d33e 3354 int is_active = ctx->is_active;
c994d613
PZ
3355 u64 now;
3356
3357 lockdep_assert_held(&ctx->lock);
e5d1367f 3358
5b0311e1 3359 if (likely(!ctx->nr_events))
facc4307 3360 return;
5b0311e1 3361
3cbaa590 3362 ctx->is_active |= (event_type | EVENT_TIME);
63e30d3e
PZ
3363 if (ctx->task) {
3364 if (!is_active)
3365 cpuctx->task_ctx = ctx;
3366 else
3367 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3368 }
3369
3cbaa590
PZ
3370 is_active ^= ctx->is_active; /* changed bits */
3371
3372 if (is_active & EVENT_TIME) {
3373 /* start ctx time */
3374 now = perf_clock();
3375 ctx->timestamp = now;
3376 perf_cgroup_set_timestamp(task, ctx);
3377 }
3378
5b0311e1
FW
3379 /*
3380 * First go through the list and put on any pinned groups
3381 * in order to give them the best chance of going on.
3382 */
3cbaa590 3383 if (is_active & EVENT_PINNED)
6e37738a 3384 ctx_pinned_sched_in(ctx, cpuctx);
5b0311e1
FW
3385
3386 /* Then walk through the lower prio flexible groups */
3cbaa590 3387 if (is_active & EVENT_FLEXIBLE)
6e37738a 3388 ctx_flexible_sched_in(ctx, cpuctx);
235c7fc7
IM
3389}
3390
329c0e01 3391static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
3392 enum event_type_t event_type,
3393 struct task_struct *task)
329c0e01
FW
3394{
3395 struct perf_event_context *ctx = &cpuctx->ctx;
3396
e5d1367f 3397 ctx_sched_in(ctx, cpuctx, event_type, task);
329c0e01
FW
3398}
3399
e5d1367f
SE
3400static void perf_event_context_sched_in(struct perf_event_context *ctx,
3401 struct task_struct *task)
235c7fc7 3402{
108b02cf 3403 struct perf_cpu_context *cpuctx;
235c7fc7 3404
108b02cf 3405 cpuctx = __get_cpu_context(ctx);
329c0e01
FW
3406 if (cpuctx->task_ctx == ctx)
3407 return;
3408
facc4307 3409 perf_ctx_lock(cpuctx, ctx);
fdccc3fb 3410 /*
3411 * We must check ctx->nr_events while holding ctx->lock, such
3412 * that we serialize against perf_install_in_context().
3413 */
3414 if (!ctx->nr_events)
3415 goto unlock;
3416
1b9a644f 3417 perf_pmu_disable(ctx->pmu);
329c0e01
FW
3418 /*
3419 * We want to keep the following priority order:
3420 * cpu pinned (that don't need to move), task pinned,
3421 * cpu flexible, task flexible.
fe45bafb
AS
3422 *
3423 * However, if task's ctx is not carrying any pinned
3424 * events, no need to flip the cpuctx's events around.
329c0e01 3425 */
8e1a2031 3426 if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
fe45bafb 3427 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
63e30d3e 3428 perf_event_sched_in(cpuctx, ctx, task);
facc4307 3429 perf_pmu_enable(ctx->pmu);
fdccc3fb 3430
3431unlock:
facc4307 3432 perf_ctx_unlock(cpuctx, ctx);
235c7fc7
IM
3433}
3434
8dc85d54
PZ
3435/*
3436 * Called from scheduler to add the events of the current task
3437 * with interrupts disabled.
3438 *
3439 * We restore the event value and then enable it.
3440 *
3441 * This does not protect us against NMI, but enable()
3442 * sets the enabled bit in the control field of event _before_
3443 * accessing the event control register. If a NMI hits, then it will
3444 * keep the event running.
3445 */
ab0cce56
JO
3446void __perf_event_task_sched_in(struct task_struct *prev,
3447 struct task_struct *task)
8dc85d54
PZ
3448{
3449 struct perf_event_context *ctx;
3450 int ctxn;
3451
7e41d177
PZ
3452 /*
3453 * If cgroup events exist on this CPU, then we need to check if we have
3454 * to switch in PMU state; cgroup event are system-wide mode only.
3455 *
3456 * Since cgroup events are CPU events, we must schedule these in before
3457 * we schedule in the task events.
3458 */
3459 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3460 perf_cgroup_sched_in(prev, task);
3461
8dc85d54
PZ
3462 for_each_task_context_nr(ctxn) {
3463 ctx = task->perf_event_ctxp[ctxn];
3464 if (likely(!ctx))
3465 continue;
3466
e5d1367f 3467 perf_event_context_sched_in(ctx, task);
8dc85d54 3468 }
d010b332 3469
45ac1403
AH
3470 if (atomic_read(&nr_switch_events))
3471 perf_event_switch(task, prev, true);
3472
ba532500
YZ
3473 if (__this_cpu_read(perf_sched_cb_usages))
3474 perf_pmu_sched_task(prev, task, true);
235c7fc7
IM
3475}
3476
abd50713
PZ
3477static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3478{
3479 u64 frequency = event->attr.sample_freq;
3480 u64 sec = NSEC_PER_SEC;
3481 u64 divisor, dividend;
3482
3483 int count_fls, nsec_fls, frequency_fls, sec_fls;
3484
3485 count_fls = fls64(count);
3486 nsec_fls = fls64(nsec);
3487 frequency_fls = fls64(frequency);
3488 sec_fls = 30;
3489
3490 /*
3491 * We got @count in @nsec, with a target of sample_freq HZ
3492 * the target period becomes:
3493 *
3494 * @count * 10^9
3495 * period = -------------------
3496 * @nsec * sample_freq
3497 *
3498 */
3499
3500 /*
3501 * Reduce accuracy by one bit such that @a and @b converge
3502 * to a similar magnitude.
3503 */
fe4b04fa 3504#define REDUCE_FLS(a, b) \
abd50713
PZ
3505do { \
3506 if (a##_fls > b##_fls) { \
3507 a >>= 1; \
3508 a##_fls--; \
3509 } else { \
3510 b >>= 1; \
3511 b##_fls--; \
3512 } \
3513} while (0)
3514
3515 /*
3516 * Reduce accuracy until either term fits in a u64, then proceed with
3517 * the other, so that finally we can do a u64/u64 division.
3518 */
3519 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3520 REDUCE_FLS(nsec, frequency);
3521 REDUCE_FLS(sec, count);
3522 }
3523
3524 if (count_fls + sec_fls > 64) {
3525 divisor = nsec * frequency;
3526
3527 while (count_fls + sec_fls > 64) {
3528 REDUCE_FLS(count, sec);
3529 divisor >>= 1;
3530 }
3531
3532 dividend = count * sec;
3533 } else {
3534 dividend = count * sec;
3535
3536 while (nsec_fls + frequency_fls > 64) {
3537 REDUCE_FLS(nsec, frequency);
3538 dividend >>= 1;
3539 }
3540
3541 divisor = nsec * frequency;
3542 }
3543
f6ab91ad
PZ
3544 if (!divisor)
3545 return dividend;
3546
abd50713
PZ
3547 return div64_u64(dividend, divisor);
3548}
3549
e050e3f0
SE
3550static DEFINE_PER_CPU(int, perf_throttled_count);
3551static DEFINE_PER_CPU(u64, perf_throttled_seq);
3552
f39d47ff 3553static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
bd2b5b12 3554{
cdd6c482 3555 struct hw_perf_event *hwc = &event->hw;
f6ab91ad 3556 s64 period, sample_period;
bd2b5b12
PZ
3557 s64 delta;
3558
abd50713 3559 period = perf_calculate_period(event, nsec, count);
bd2b5b12
PZ
3560
3561 delta = (s64)(period - hwc->sample_period);
3562 delta = (delta + 7) / 8; /* low pass filter */
3563
3564 sample_period = hwc->sample_period + delta;
3565
3566 if (!sample_period)
3567 sample_period = 1;
3568
bd2b5b12 3569 hwc->sample_period = sample_period;
abd50713 3570
e7850595 3571 if (local64_read(&hwc->period_left) > 8*sample_period) {
f39d47ff
SE
3572 if (disable)
3573 event->pmu->stop(event, PERF_EF_UPDATE);
3574
e7850595 3575 local64_set(&hwc->period_left, 0);
f39d47ff
SE
3576
3577 if (disable)
3578 event->pmu->start(event, PERF_EF_RELOAD);
abd50713 3579 }
bd2b5b12
PZ
3580}
3581
e050e3f0
SE
3582/*
3583 * combine freq adjustment with unthrottling to avoid two passes over the
3584 * events. At the same time, make sure, having freq events does not change
3585 * the rate of unthrottling as that would introduce bias.
3586 */
3587static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3588 int needs_unthr)
60db5e09 3589{
cdd6c482
IM
3590 struct perf_event *event;
3591 struct hw_perf_event *hwc;
e050e3f0 3592 u64 now, period = TICK_NSEC;
abd50713 3593 s64 delta;
60db5e09 3594
e050e3f0
SE
3595 /*
3596 * only need to iterate over all events iff:
3597 * - context have events in frequency mode (needs freq adjust)
3598 * - there are events to unthrottle on this cpu
3599 */
3600 if (!(ctx->nr_freq || needs_unthr))
0f5a2601
PZ
3601 return;
3602
e050e3f0 3603 raw_spin_lock(&ctx->lock);
f39d47ff 3604 perf_pmu_disable(ctx->pmu);
e050e3f0 3605
03541f8b 3606 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
cdd6c482 3607 if (event->state != PERF_EVENT_STATE_ACTIVE)
60db5e09
PZ
3608 continue;
3609
5632ab12 3610 if (!event_filter_match(event))
5d27c23d
PZ
3611 continue;
3612
44377277
AS
3613 perf_pmu_disable(event->pmu);
3614
cdd6c482 3615 hwc = &event->hw;
6a24ed6c 3616
ae23bff1 3617 if (hwc->interrupts == MAX_INTERRUPTS) {
e050e3f0 3618 hwc->interrupts = 0;
cdd6c482 3619 perf_log_throttle(event, 1);
a4eaf7f1 3620 event->pmu->start(event, 0);
a78ac325
PZ
3621 }
3622
cdd6c482 3623 if (!event->attr.freq || !event->attr.sample_freq)
44377277 3624 goto next;
60db5e09 3625
e050e3f0
SE
3626 /*
3627 * stop the event and update event->count
3628 */
3629 event->pmu->stop(event, PERF_EF_UPDATE);
3630
e7850595 3631 now = local64_read(&event->count);
abd50713
PZ
3632 delta = now - hwc->freq_count_stamp;
3633 hwc->freq_count_stamp = now;
60db5e09 3634
e050e3f0
SE
3635 /*
3636 * restart the event
3637 * reload only if value has changed
f39d47ff
SE
3638 * we have stopped the event so tell that
3639 * to perf_adjust_period() to avoid stopping it
3640 * twice.
e050e3f0 3641 */
abd50713 3642 if (delta > 0)
f39d47ff 3643 perf_adjust_period(event, period, delta, false);
e050e3f0
SE
3644
3645 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
44377277
AS
3646 next:
3647 perf_pmu_enable(event->pmu);
60db5e09 3648 }
e050e3f0 3649
f39d47ff 3650 perf_pmu_enable(ctx->pmu);
e050e3f0 3651 raw_spin_unlock(&ctx->lock);
60db5e09
PZ
3652}
3653
235c7fc7 3654/*
8703a7cf 3655 * Move @event to the tail of the @ctx's elegible events.
235c7fc7 3656 */
8703a7cf 3657static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
0793a61d 3658{
dddd3379
TG
3659 /*
3660 * Rotate the first entry last of non-pinned groups. Rotation might be
3661 * disabled by the inheritance code.
3662 */
8703a7cf
PZ
3663 if (ctx->rotate_disable)
3664 return;
8e1a2031 3665
8703a7cf
PZ
3666 perf_event_groups_delete(&ctx->flexible_groups, event);
3667 perf_event_groups_insert(&ctx->flexible_groups, event);
235c7fc7
IM
3668}
3669
8d5bce0c
PZ
3670static inline struct perf_event *
3671ctx_first_active(struct perf_event_context *ctx)
235c7fc7 3672{
8d5bce0c
PZ
3673 return list_first_entry_or_null(&ctx->flexible_active,
3674 struct perf_event, active_list);
3675}
3676
3677static bool perf_rotate_context(struct perf_cpu_context *cpuctx)
3678{
3679 struct perf_event *cpu_event = NULL, *task_event = NULL;
3680 bool cpu_rotate = false, task_rotate = false;
8dc85d54 3681 struct perf_event_context *ctx = NULL;
8d5bce0c
PZ
3682
3683 /*
3684 * Since we run this from IRQ context, nobody can install new
3685 * events, thus the event count values are stable.
3686 */
7fc23a53 3687
b5ab4cd5 3688 if (cpuctx->ctx.nr_events) {
b5ab4cd5 3689 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
8d5bce0c 3690 cpu_rotate = true;
b5ab4cd5 3691 }
235c7fc7 3692
8dc85d54 3693 ctx = cpuctx->task_ctx;
b5ab4cd5 3694 if (ctx && ctx->nr_events) {
b5ab4cd5 3695 if (ctx->nr_events != ctx->nr_active)
8d5bce0c 3696 task_rotate = true;
b5ab4cd5 3697 }
9717e6cd 3698
8d5bce0c
PZ
3699 if (!(cpu_rotate || task_rotate))
3700 return false;
0f5a2601 3701
facc4307 3702 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
1b9a644f 3703 perf_pmu_disable(cpuctx->ctx.pmu);
60db5e09 3704
8d5bce0c
PZ
3705 if (task_rotate)
3706 task_event = ctx_first_active(ctx);
3707 if (cpu_rotate)
3708 cpu_event = ctx_first_active(&cpuctx->ctx);
8703a7cf 3709
8d5bce0c
PZ
3710 /*
3711 * As per the order given at ctx_resched() first 'pop' task flexible
3712 * and then, if needed CPU flexible.
3713 */
3714 if (task_event || (ctx && cpu_event))
e050e3f0 3715 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
8d5bce0c
PZ
3716 if (cpu_event)
3717 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
0793a61d 3718
8d5bce0c
PZ
3719 if (task_event)
3720 rotate_ctx(ctx, task_event);
3721 if (cpu_event)
3722 rotate_ctx(&cpuctx->ctx, cpu_event);
235c7fc7 3723
e050e3f0 3724 perf_event_sched_in(cpuctx, ctx, current);
235c7fc7 3725
0f5a2601
PZ
3726 perf_pmu_enable(cpuctx->ctx.pmu);
3727 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
9e630205 3728
8d5bce0c 3729 return true;
e9d2b064
PZ
3730}
3731
3732void perf_event_task_tick(void)
3733{
2fde4f94
MR
3734 struct list_head *head = this_cpu_ptr(&active_ctx_list);
3735 struct perf_event_context *ctx, *tmp;
e050e3f0 3736 int throttled;
b5ab4cd5 3737
16444645 3738 lockdep_assert_irqs_disabled();
e9d2b064 3739
e050e3f0
SE
3740 __this_cpu_inc(perf_throttled_seq);
3741 throttled = __this_cpu_xchg(perf_throttled_count, 0);
555e0c1e 3742 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
e050e3f0 3743
2fde4f94 3744 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
e050e3f0 3745 perf_adjust_freq_unthr_context(ctx, throttled);
0793a61d
TG
3746}
3747
889ff015
FW
3748static int event_enable_on_exec(struct perf_event *event,
3749 struct perf_event_context *ctx)
3750{
3751 if (!event->attr.enable_on_exec)
3752 return 0;
3753
3754 event->attr.enable_on_exec = 0;
3755 if (event->state >= PERF_EVENT_STATE_INACTIVE)
3756 return 0;
3757
0d3d73aa 3758 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
889ff015
FW
3759
3760 return 1;
3761}
3762
57e7986e 3763/*
cdd6c482 3764 * Enable all of a task's events that have been marked enable-on-exec.
57e7986e
PM
3765 * This expects task == current.
3766 */
c1274499 3767static void perf_event_enable_on_exec(int ctxn)
57e7986e 3768{
c1274499 3769 struct perf_event_context *ctx, *clone_ctx = NULL;
487f05e1 3770 enum event_type_t event_type = 0;
3e349507 3771 struct perf_cpu_context *cpuctx;
cdd6c482 3772 struct perf_event *event;
57e7986e
PM
3773 unsigned long flags;
3774 int enabled = 0;
3775
3776 local_irq_save(flags);
c1274499 3777 ctx = current->perf_event_ctxp[ctxn];
cdd6c482 3778 if (!ctx || !ctx->nr_events)
57e7986e
PM
3779 goto out;
3780
3e349507
PZ
3781 cpuctx = __get_cpu_context(ctx);
3782 perf_ctx_lock(cpuctx, ctx);
7fce2509 3783 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
487f05e1 3784 list_for_each_entry(event, &ctx->event_list, event_entry) {
3e349507 3785 enabled |= event_enable_on_exec(event, ctx);
487f05e1
AS
3786 event_type |= get_event_type(event);
3787 }
57e7986e
PM
3788
3789 /*
3e349507 3790 * Unclone and reschedule this context if we enabled any event.
57e7986e 3791 */
3e349507 3792 if (enabled) {
211de6eb 3793 clone_ctx = unclone_ctx(ctx);
487f05e1 3794 ctx_resched(cpuctx, ctx, event_type);
7bbba0eb
PZ
3795 } else {
3796 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
3e349507
PZ
3797 }
3798 perf_ctx_unlock(cpuctx, ctx);
57e7986e 3799
9ed6060d 3800out:
57e7986e 3801 local_irq_restore(flags);
211de6eb
PZ
3802
3803 if (clone_ctx)
3804 put_ctx(clone_ctx);
57e7986e
PM
3805}
3806
0492d4c5
PZ
3807struct perf_read_data {
3808 struct perf_event *event;
3809 bool group;
7d88962e 3810 int ret;
0492d4c5
PZ
3811};
3812
451d24d1 3813static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
d6a2f903 3814{
d6a2f903
DCC
3815 u16 local_pkg, event_pkg;
3816
3817 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
451d24d1
PZ
3818 int local_cpu = smp_processor_id();
3819
3820 event_pkg = topology_physical_package_id(event_cpu);
3821 local_pkg = topology_physical_package_id(local_cpu);
d6a2f903
DCC
3822
3823 if (event_pkg == local_pkg)
3824 return local_cpu;
3825 }
3826
3827 return event_cpu;
3828}
3829
0793a61d 3830/*
cdd6c482 3831 * Cross CPU call to read the hardware event
0793a61d 3832 */
cdd6c482 3833static void __perf_event_read(void *info)
0793a61d 3834{
0492d4c5
PZ
3835 struct perf_read_data *data = info;
3836 struct perf_event *sub, *event = data->event;
cdd6c482 3837 struct perf_event_context *ctx = event->ctx;
108b02cf 3838 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
4a00c16e 3839 struct pmu *pmu = event->pmu;
621a01ea 3840
e1ac3614
PM
3841 /*
3842 * If this is a task context, we need to check whether it is
3843 * the current task context of this cpu. If not it has been
3844 * scheduled out before the smp call arrived. In that case
cdd6c482
IM
3845 * event->count would have been updated to a recent sample
3846 * when the event was scheduled out.
e1ac3614
PM
3847 */
3848 if (ctx->task && cpuctx->task_ctx != ctx)
3849 return;
3850
e625cce1 3851 raw_spin_lock(&ctx->lock);
0c1cbc18 3852 if (ctx->is_active & EVENT_TIME) {
542e72fc 3853 update_context_time(ctx);
e5d1367f
SE
3854 update_cgrp_time_from_event(event);
3855 }
0492d4c5 3856
0d3d73aa
PZ
3857 perf_event_update_time(event);
3858 if (data->group)
3859 perf_event_update_sibling_time(event);
0c1cbc18 3860
4a00c16e
SB
3861 if (event->state != PERF_EVENT_STATE_ACTIVE)
3862 goto unlock;
0492d4c5 3863
4a00c16e
SB
3864 if (!data->group) {
3865 pmu->read(event);
3866 data->ret = 0;
0492d4c5 3867 goto unlock;
4a00c16e
SB
3868 }
3869
3870 pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3871
3872 pmu->read(event);
0492d4c5 3873
edb39592 3874 for_each_sibling_event(sub, event) {
4a00c16e
SB
3875 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3876 /*
3877 * Use sibling's PMU rather than @event's since
3878 * sibling could be on different (eg: software) PMU.
3879 */
0492d4c5 3880 sub->pmu->read(sub);
4a00c16e 3881 }
0492d4c5 3882 }
4a00c16e
SB
3883
3884 data->ret = pmu->commit_txn(pmu);
0492d4c5
PZ
3885
3886unlock:
e625cce1 3887 raw_spin_unlock(&ctx->lock);
0793a61d
TG
3888}
3889
b5e58793
PZ
3890static inline u64 perf_event_count(struct perf_event *event)
3891{
c39a0e2c 3892 return local64_read(&event->count) + atomic64_read(&event->child_count);
b5e58793
PZ
3893}
3894
ffe8690c
KX
3895/*
3896 * NMI-safe method to read a local event, that is an event that
3897 * is:
3898 * - either for the current task, or for this CPU
3899 * - does not have inherit set, for inherited task events
3900 * will not be local and we cannot read them atomically
3901 * - must not have a pmu::count method
3902 */
7d9285e8
YS
3903int perf_event_read_local(struct perf_event *event, u64 *value,
3904 u64 *enabled, u64 *running)
ffe8690c
KX
3905{
3906 unsigned long flags;
f91840a3 3907 int ret = 0;
ffe8690c
KX
3908
3909 /*
3910 * Disabling interrupts avoids all counter scheduling (context
3911 * switches, timer based rotation and IPIs).
3912 */
3913 local_irq_save(flags);
3914
ffe8690c
KX
3915 /*
3916 * It must not be an event with inherit set, we cannot read
3917 * all child counters from atomic context.
3918 */
f91840a3
AS
3919 if (event->attr.inherit) {
3920 ret = -EOPNOTSUPP;
3921 goto out;
3922 }
ffe8690c 3923
f91840a3
AS
3924 /* If this is a per-task event, it must be for current */
3925 if ((event->attach_state & PERF_ATTACH_TASK) &&
3926 event->hw.target != current) {
3927 ret = -EINVAL;
3928 goto out;
3929 }
3930
3931 /* If this is a per-CPU event, it must be for this CPU */
3932 if (!(event->attach_state & PERF_ATTACH_TASK) &&
3933 event->cpu != smp_processor_id()) {
3934 ret = -EINVAL;
3935 goto out;
3936 }
ffe8690c
KX
3937
3938 /*
3939 * If the event is currently on this CPU, its either a per-task event,
3940 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3941 * oncpu == -1).
3942 */
3943 if (event->oncpu == smp_processor_id())
3944 event->pmu->read(event);
3945
f91840a3 3946 *value = local64_read(&event->count);
0d3d73aa
PZ
3947 if (enabled || running) {
3948 u64 now = event->shadow_ctx_time + perf_clock();
3949 u64 __enabled, __running;
3950
3951 __perf_update_times(event, now, &__enabled, &__running);
3952 if (enabled)
3953 *enabled = __enabled;
3954 if (running)
3955 *running = __running;
3956 }
f91840a3 3957out:
ffe8690c
KX
3958 local_irq_restore(flags);
3959
f91840a3 3960 return ret;
ffe8690c
KX
3961}
3962
7d88962e 3963static int perf_event_read(struct perf_event *event, bool group)
0793a61d 3964{
0c1cbc18 3965 enum perf_event_state state = READ_ONCE(event->state);
451d24d1 3966 int event_cpu, ret = 0;
7d88962e 3967
0793a61d 3968 /*
cdd6c482
IM
3969 * If event is enabled and currently active on a CPU, update the
3970 * value in the event structure:
0793a61d 3971 */
0c1cbc18
PZ
3972again:
3973 if (state == PERF_EVENT_STATE_ACTIVE) {
3974 struct perf_read_data data;
3975
3976 /*
3977 * Orders the ->state and ->oncpu loads such that if we see
3978 * ACTIVE we must also see the right ->oncpu.
3979 *
3980 * Matches the smp_wmb() from event_sched_in().
3981 */
3982 smp_rmb();
d6a2f903 3983
451d24d1
PZ
3984 event_cpu = READ_ONCE(event->oncpu);
3985 if ((unsigned)event_cpu >= nr_cpu_ids)
3986 return 0;
3987
0c1cbc18
PZ
3988 data = (struct perf_read_data){
3989 .event = event,
3990 .group = group,
3991 .ret = 0,
3992 };
3993
451d24d1
PZ
3994 preempt_disable();
3995 event_cpu = __perf_event_read_cpu(event, event_cpu);
d6a2f903 3996
58763148
PZ
3997 /*
3998 * Purposely ignore the smp_call_function_single() return
3999 * value.
4000 *
451d24d1 4001 * If event_cpu isn't a valid CPU it means the event got
58763148
PZ
4002 * scheduled out and that will have updated the event count.
4003 *
4004 * Therefore, either way, we'll have an up-to-date event count
4005 * after this.
4006 */
451d24d1
PZ
4007 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4008 preempt_enable();
58763148 4009 ret = data.ret;
0c1cbc18
PZ
4010
4011 } else if (state == PERF_EVENT_STATE_INACTIVE) {
2b8988c9
PZ
4012 struct perf_event_context *ctx = event->ctx;
4013 unsigned long flags;
4014
e625cce1 4015 raw_spin_lock_irqsave(&ctx->lock, flags);
0c1cbc18
PZ
4016 state = event->state;
4017 if (state != PERF_EVENT_STATE_INACTIVE) {
4018 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4019 goto again;
4020 }
4021
c530ccd9 4022 /*
0c1cbc18
PZ
4023 * May read while context is not active (e.g., thread is
4024 * blocked), in that case we cannot update context time
c530ccd9 4025 */
0c1cbc18 4026 if (ctx->is_active & EVENT_TIME) {
c530ccd9 4027 update_context_time(ctx);
e5d1367f
SE
4028 update_cgrp_time_from_event(event);
4029 }
0c1cbc18 4030
0d3d73aa 4031 perf_event_update_time(event);
0492d4c5 4032 if (group)
0d3d73aa 4033 perf_event_update_sibling_time(event);
e625cce1 4034 raw_spin_unlock_irqrestore(&ctx->lock, flags);
0793a61d 4035 }
7d88962e
SB
4036
4037 return ret;
0793a61d
TG
4038}
4039
a63eaf34 4040/*
cdd6c482 4041 * Initialize the perf_event context in a task_struct:
a63eaf34 4042 */
eb184479 4043static void __perf_event_init_context(struct perf_event_context *ctx)
a63eaf34 4044{
e625cce1 4045 raw_spin_lock_init(&ctx->lock);
a63eaf34 4046 mutex_init(&ctx->mutex);
2fde4f94 4047 INIT_LIST_HEAD(&ctx->active_ctx_list);
8e1a2031
AB
4048 perf_event_groups_init(&ctx->pinned_groups);
4049 perf_event_groups_init(&ctx->flexible_groups);
a63eaf34 4050 INIT_LIST_HEAD(&ctx->event_list);
6668128a
PZ
4051 INIT_LIST_HEAD(&ctx->pinned_active);
4052 INIT_LIST_HEAD(&ctx->flexible_active);
a63eaf34 4053 atomic_set(&ctx->refcount, 1);
eb184479
PZ
4054}
4055
4056static struct perf_event_context *
4057alloc_perf_context(struct pmu *pmu, struct task_struct *task)
4058{
4059 struct perf_event_context *ctx;
4060
4061 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4062 if (!ctx)
4063 return NULL;
4064
4065 __perf_event_init_context(ctx);
4066 if (task) {
4067 ctx->task = task;
4068 get_task_struct(task);
0793a61d 4069 }
eb184479
PZ
4070 ctx->pmu = pmu;
4071
4072 return ctx;
a63eaf34
PM
4073}
4074
2ebd4ffb
MH
4075static struct task_struct *
4076find_lively_task_by_vpid(pid_t vpid)
4077{
4078 struct task_struct *task;
0793a61d
TG
4079
4080 rcu_read_lock();
2ebd4ffb 4081 if (!vpid)
0793a61d
TG
4082 task = current;
4083 else
2ebd4ffb 4084 task = find_task_by_vpid(vpid);
0793a61d
TG
4085 if (task)
4086 get_task_struct(task);
4087 rcu_read_unlock();
4088
4089 if (!task)
4090 return ERR_PTR(-ESRCH);
4091
2ebd4ffb 4092 return task;
2ebd4ffb
MH
4093}
4094
fe4b04fa
PZ
4095/*
4096 * Returns a matching context with refcount and pincount.
4097 */
108b02cf 4098static struct perf_event_context *
4af57ef2
YZ
4099find_get_context(struct pmu *pmu, struct task_struct *task,
4100 struct perf_event *event)
0793a61d 4101{
211de6eb 4102 struct perf_event_context *ctx, *clone_ctx = NULL;
22a4f650 4103 struct perf_cpu_context *cpuctx;
4af57ef2 4104 void *task_ctx_data = NULL;
25346b93 4105 unsigned long flags;
8dc85d54 4106 int ctxn, err;
4af57ef2 4107 int cpu = event->cpu;
0793a61d 4108
22a4ec72 4109 if (!task) {
cdd6c482 4110 /* Must be root to operate on a CPU event: */
0764771d 4111 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
0793a61d
TG
4112 return ERR_PTR(-EACCES);
4113
108b02cf 4114 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
0793a61d 4115 ctx = &cpuctx->ctx;
c93f7669 4116 get_ctx(ctx);
fe4b04fa 4117 ++ctx->pin_count;
0793a61d 4118
0793a61d
TG
4119 return ctx;
4120 }
4121
8dc85d54
PZ
4122 err = -EINVAL;
4123 ctxn = pmu->task_ctx_nr;
4124 if (ctxn < 0)
4125 goto errout;
4126
4af57ef2
YZ
4127 if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4128 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
4129 if (!task_ctx_data) {
4130 err = -ENOMEM;
4131 goto errout;
4132 }
4133 }
4134
9ed6060d 4135retry:
8dc85d54 4136 ctx = perf_lock_task_context(task, ctxn, &flags);
c93f7669 4137 if (ctx) {
211de6eb 4138 clone_ctx = unclone_ctx(ctx);
fe4b04fa 4139 ++ctx->pin_count;
4af57ef2
YZ
4140
4141 if (task_ctx_data && !ctx->task_ctx_data) {
4142 ctx->task_ctx_data = task_ctx_data;
4143 task_ctx_data = NULL;
4144 }
e625cce1 4145 raw_spin_unlock_irqrestore(&ctx->lock, flags);
211de6eb
PZ
4146
4147 if (clone_ctx)
4148 put_ctx(clone_ctx);
9137fb28 4149 } else {
eb184479 4150 ctx = alloc_perf_context(pmu, task);
c93f7669
PM
4151 err = -ENOMEM;
4152 if (!ctx)
4153 goto errout;
eb184479 4154
4af57ef2
YZ
4155 if (task_ctx_data) {
4156 ctx->task_ctx_data = task_ctx_data;
4157 task_ctx_data = NULL;
4158 }
4159
dbe08d82
ON
4160 err = 0;
4161 mutex_lock(&task->perf_event_mutex);
4162 /*
4163 * If it has already passed perf_event_exit_task().
4164 * we must see PF_EXITING, it takes this mutex too.
4165 */
4166 if (task->flags & PF_EXITING)
4167 err = -ESRCH;
4168 else if (task->perf_event_ctxp[ctxn])
4169 err = -EAGAIN;
fe4b04fa 4170 else {
9137fb28 4171 get_ctx(ctx);
fe4b04fa 4172 ++ctx->pin_count;
dbe08d82 4173 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
fe4b04fa 4174 }
dbe08d82
ON
4175 mutex_unlock(&task->perf_event_mutex);
4176
4177 if (unlikely(err)) {
9137fb28 4178 put_ctx(ctx);
dbe08d82
ON
4179
4180 if (err == -EAGAIN)
4181 goto retry;
4182 goto errout;
a63eaf34
PM
4183 }
4184 }
4185
4af57ef2 4186 kfree(task_ctx_data);
0793a61d 4187 return ctx;
c93f7669 4188
9ed6060d 4189errout:
4af57ef2 4190 kfree(task_ctx_data);
c93f7669 4191 return ERR_PTR(err);
0793a61d
TG
4192}
4193
6fb2915d 4194static void perf_event_free_filter(struct perf_event *event);
2541517c 4195static void perf_event_free_bpf_prog(struct perf_event *event);
6fb2915d 4196
cdd6c482 4197static void free_event_rcu(struct rcu_head *head)
592903cd 4198{
cdd6c482 4199 struct perf_event *event;
592903cd 4200
cdd6c482
IM
4201 event = container_of(head, struct perf_event, rcu_head);
4202 if (event->ns)
4203 put_pid_ns(event->ns);
6fb2915d 4204 perf_event_free_filter(event);
cdd6c482 4205 kfree(event);
592903cd
PZ
4206}
4207
b69cf536
PZ
4208static void ring_buffer_attach(struct perf_event *event,
4209 struct ring_buffer *rb);
925d519a 4210
f2fb6bef
KL
4211static void detach_sb_event(struct perf_event *event)
4212{
4213 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
4214
4215 raw_spin_lock(&pel->lock);
4216 list_del_rcu(&event->sb_list);
4217 raw_spin_unlock(&pel->lock);
4218}
4219
a4f144eb 4220static bool is_sb_event(struct perf_event *event)
f2fb6bef 4221{
a4f144eb
DCC
4222 struct perf_event_attr *attr = &event->attr;
4223
f2fb6bef 4224 if (event->parent)
a4f144eb 4225 return false;
f2fb6bef
KL
4226
4227 if (event->attach_state & PERF_ATTACH_TASK)
a4f144eb 4228 return false;
f2fb6bef 4229
a4f144eb
DCC
4230 if (attr->mmap || attr->mmap_data || attr->mmap2 ||
4231 attr->comm || attr->comm_exec ||
4232 attr->task ||
4233 attr->context_switch)
4234 return true;
4235 return false;
4236}
4237
4238static void unaccount_pmu_sb_event(struct perf_event *event)
4239{
4240 if (is_sb_event(event))
4241 detach_sb_event(event);
f2fb6bef
KL
4242}
4243
4beb31f3 4244static void unaccount_event_cpu(struct perf_event *event, int cpu)
f1600952 4245{
4beb31f3
FW
4246 if (event->parent)
4247 return;
4248
4beb31f3
FW
4249 if (is_cgroup_event(event))
4250 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
4251}
925d519a 4252
555e0c1e
FW
4253#ifdef CONFIG_NO_HZ_FULL
4254static DEFINE_SPINLOCK(nr_freq_lock);
4255#endif
4256
4257static void unaccount_freq_event_nohz(void)
4258{
4259#ifdef CONFIG_NO_HZ_FULL
4260 spin_lock(&nr_freq_lock);
4261 if (atomic_dec_and_test(&nr_freq_events))
4262 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
4263 spin_unlock(&nr_freq_lock);
4264#endif
4265}
4266
4267static void unaccount_freq_event(void)
4268{
4269 if (tick_nohz_full_enabled())
4270 unaccount_freq_event_nohz();
4271 else
4272 atomic_dec(&nr_freq_events);
4273}
4274
4beb31f3
FW
4275static void unaccount_event(struct perf_event *event)
4276{
25432ae9
PZ
4277 bool dec = false;
4278
4beb31f3
FW
4279 if (event->parent)
4280 return;
4281
4282 if (event->attach_state & PERF_ATTACH_TASK)
25432ae9 4283 dec = true;
4beb31f3
FW
4284 if (event->attr.mmap || event->attr.mmap_data)
4285 atomic_dec(&nr_mmap_events);
4286 if (event->attr.comm)
4287 atomic_dec(&nr_comm_events);
e4222673
HB
4288 if (event->attr.namespaces)
4289 atomic_dec(&nr_namespaces_events);
4beb31f3
FW
4290 if (event->attr.task)
4291 atomic_dec(&nr_task_events);
948b26b6 4292 if (event->attr.freq)
555e0c1e 4293 unaccount_freq_event();
45ac1403 4294 if (event->attr.context_switch) {
25432ae9 4295 dec = true;
45ac1403
AH
4296 atomic_dec(&nr_switch_events);
4297 }
4beb31f3 4298 if (is_cgroup_event(event))
25432ae9 4299 dec = true;
4beb31f3 4300 if (has_branch_stack(event))
25432ae9
PZ
4301 dec = true;
4302
9107c89e
PZ
4303 if (dec) {
4304 if (!atomic_add_unless(&perf_sched_count, -1, 1))
4305 schedule_delayed_work(&perf_sched_work, HZ);
4306 }
4beb31f3
FW
4307
4308 unaccount_event_cpu(event, event->cpu);
f2fb6bef
KL
4309
4310 unaccount_pmu_sb_event(event);
4beb31f3 4311}
925d519a 4312
9107c89e
PZ
4313static void perf_sched_delayed(struct work_struct *work)
4314{
4315 mutex_lock(&perf_sched_mutex);
4316 if (atomic_dec_and_test(&perf_sched_count))
4317 static_branch_disable(&perf_sched_events);
4318 mutex_unlock(&perf_sched_mutex);
4319}
4320
bed5b25a
AS
4321/*
4322 * The following implement mutual exclusion of events on "exclusive" pmus
4323 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4324 * at a time, so we disallow creating events that might conflict, namely:
4325 *
4326 * 1) cpu-wide events in the presence of per-task events,
4327 * 2) per-task events in the presence of cpu-wide events,
4328 * 3) two matching events on the same context.
4329 *
4330 * The former two cases are handled in the allocation path (perf_event_alloc(),
a0733e69 4331 * _free_event()), the latter -- before the first perf_install_in_context().
bed5b25a
AS
4332 */
4333static int exclusive_event_init(struct perf_event *event)
4334{
4335 struct pmu *pmu = event->pmu;
4336
4337 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4338 return 0;
4339
4340 /*
4341 * Prevent co-existence of per-task and cpu-wide events on the
4342 * same exclusive pmu.
4343 *
4344 * Negative pmu::exclusive_cnt means there are cpu-wide
4345 * events on this "exclusive" pmu, positive means there are
4346 * per-task events.
4347 *
4348 * Since this is called in perf_event_alloc() path, event::ctx
4349 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4350 * to mean "per-task event", because unlike other attach states it
4351 * never gets cleared.
4352 */
4353 if (event->attach_state & PERF_ATTACH_TASK) {
4354 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4355 return -EBUSY;
4356 } else {
4357 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4358 return -EBUSY;
4359 }
4360
4361 return 0;
4362}
4363
4364static void exclusive_event_destroy(struct perf_event *event)
4365{
4366 struct pmu *pmu = event->pmu;
4367
4368 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4369 return;
4370
4371 /* see comment in exclusive_event_init() */
4372 if (event->attach_state & PERF_ATTACH_TASK)
4373 atomic_dec(&pmu->exclusive_cnt);
4374 else
4375 atomic_inc(&pmu->exclusive_cnt);
4376}
4377
4378static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4379{
3bf6215a 4380 if ((e1->pmu == e2->pmu) &&
bed5b25a
AS
4381 (e1->cpu == e2->cpu ||
4382 e1->cpu == -1 ||
4383 e2->cpu == -1))
4384 return true;
4385 return false;
4386}
4387
4388/* Called under the same ctx::mutex as perf_install_in_context() */
4389static bool exclusive_event_installable(struct perf_event *event,
4390 struct perf_event_context *ctx)
4391{
4392 struct perf_event *iter_event;
4393 struct pmu *pmu = event->pmu;
4394
4395 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4396 return true;
4397
4398 list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4399 if (exclusive_event_match(iter_event, event))
4400 return false;
4401 }
4402
4403 return true;
4404}
4405
375637bc
AS
4406static void perf_addr_filters_splice(struct perf_event *event,
4407 struct list_head *head);
4408
683ede43 4409static void _free_event(struct perf_event *event)
f1600952 4410{
e360adbe 4411 irq_work_sync(&event->pending);
925d519a 4412
4beb31f3 4413 unaccount_event(event);
9ee318a7 4414
76369139 4415 if (event->rb) {
9bb5d40c
PZ
4416 /*
4417 * Can happen when we close an event with re-directed output.
4418 *
4419 * Since we have a 0 refcount, perf_mmap_close() will skip
4420 * over us; possibly making our ring_buffer_put() the last.
4421 */
4422 mutex_lock(&event->mmap_mutex);
b69cf536 4423 ring_buffer_attach(event, NULL);
9bb5d40c 4424 mutex_unlock(&event->mmap_mutex);
a4be7c27
PZ
4425 }
4426
e5d1367f
SE
4427 if (is_cgroup_event(event))
4428 perf_detach_cgroup(event);
4429
a0733e69
PZ
4430 if (!event->parent) {
4431 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4432 put_callchain_buffers();
4433 }
4434
4435 perf_event_free_bpf_prog(event);
375637bc
AS
4436 perf_addr_filters_splice(event, NULL);
4437 kfree(event->addr_filters_offs);
a0733e69
PZ
4438
4439 if (event->destroy)
4440 event->destroy(event);
4441
4442 if (event->ctx)
4443 put_ctx(event->ctx);
4444
621b6d2e
PB
4445 if (event->hw.target)
4446 put_task_struct(event->hw.target);
4447
62a92c8f
AS
4448 exclusive_event_destroy(event);
4449 module_put(event->pmu->module);
a0733e69
PZ
4450
4451 call_rcu(&event->rcu_head, free_event_rcu);
f1600952
PZ
4452}
4453
683ede43
PZ
4454/*
4455 * Used to free events which have a known refcount of 1, such as in error paths
4456 * where the event isn't exposed yet and inherited events.
4457 */
4458static void free_event(struct perf_event *event)
0793a61d 4459{
683ede43
PZ
4460 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4461 "unexpected event refcount: %ld; ptr=%p\n",
4462 atomic_long_read(&event->refcount), event)) {
4463 /* leak to avoid use-after-free */
4464 return;
4465 }
0793a61d 4466
683ede43 4467 _free_event(event);
0793a61d
TG
4468}
4469
a66a3052 4470/*
f8697762 4471 * Remove user event from the owner task.
a66a3052 4472 */
f8697762 4473static void perf_remove_from_owner(struct perf_event *event)
fb0459d7 4474{
8882135b 4475 struct task_struct *owner;
fb0459d7 4476
8882135b 4477 rcu_read_lock();
8882135b 4478 /*
f47c02c0
PZ
4479 * Matches the smp_store_release() in perf_event_exit_task(). If we
4480 * observe !owner it means the list deletion is complete and we can
4481 * indeed free this event, otherwise we need to serialize on
8882135b
PZ
4482 * owner->perf_event_mutex.
4483 */
506458ef 4484 owner = READ_ONCE(event->owner);
8882135b
PZ
4485 if (owner) {
4486 /*
4487 * Since delayed_put_task_struct() also drops the last
4488 * task reference we can safely take a new reference
4489 * while holding the rcu_read_lock().
4490 */
4491 get_task_struct(owner);
4492 }
4493 rcu_read_unlock();
4494
4495 if (owner) {
f63a8daa
PZ
4496 /*
4497 * If we're here through perf_event_exit_task() we're already
4498 * holding ctx->mutex which would be an inversion wrt. the
4499 * normal lock order.
4500 *
4501 * However we can safely take this lock because its the child
4502 * ctx->mutex.
4503 */
4504 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4505
8882135b
PZ
4506 /*
4507 * We have to re-check the event->owner field, if it is cleared
4508 * we raced with perf_event_exit_task(), acquiring the mutex
4509 * ensured they're done, and we can proceed with freeing the
4510 * event.
4511 */
f47c02c0 4512 if (event->owner) {
8882135b 4513 list_del_init(&event->owner_entry);
f47c02c0
PZ
4514 smp_store_release(&event->owner, NULL);
4515 }
8882135b
PZ
4516 mutex_unlock(&owner->perf_event_mutex);
4517 put_task_struct(owner);
4518 }
f8697762
JO
4519}
4520
f8697762
JO
4521static void put_event(struct perf_event *event)
4522{
f8697762
JO
4523 if (!atomic_long_dec_and_test(&event->refcount))
4524 return;
4525
c6e5b732
PZ
4526 _free_event(event);
4527}
4528
4529/*
4530 * Kill an event dead; while event:refcount will preserve the event
4531 * object, it will not preserve its functionality. Once the last 'user'
4532 * gives up the object, we'll destroy the thing.
4533 */
4534int perf_event_release_kernel(struct perf_event *event)
4535{
a4f4bb6d 4536 struct perf_event_context *ctx = event->ctx;
c6e5b732 4537 struct perf_event *child, *tmp;
82d94856 4538 LIST_HEAD(free_list);
c6e5b732 4539
a4f4bb6d
PZ
4540 /*
4541 * If we got here through err_file: fput(event_file); we will not have
4542 * attached to a context yet.
4543 */
4544 if (!ctx) {
4545 WARN_ON_ONCE(event->attach_state &
4546 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4547 goto no_ctx;
4548 }
4549
f8697762
JO
4550 if (!is_kernel_event(event))
4551 perf_remove_from_owner(event);
8882135b 4552
5fa7c8ec 4553 ctx = perf_event_ctx_lock(event);
a83fe28e 4554 WARN_ON_ONCE(ctx->parent_ctx);
a69b0ca4 4555 perf_remove_from_context(event, DETACH_GROUP);
683ede43 4556
a69b0ca4 4557 raw_spin_lock_irq(&ctx->lock);
683ede43 4558 /*
d8a8cfc7 4559 * Mark this event as STATE_DEAD, there is no external reference to it
a69b0ca4 4560 * anymore.
683ede43 4561 *
a69b0ca4
PZ
4562 * Anybody acquiring event->child_mutex after the below loop _must_
4563 * also see this, most importantly inherit_event() which will avoid
4564 * placing more children on the list.
683ede43 4565 *
c6e5b732
PZ
4566 * Thus this guarantees that we will in fact observe and kill _ALL_
4567 * child events.
683ede43 4568 */
a69b0ca4
PZ
4569 event->state = PERF_EVENT_STATE_DEAD;
4570 raw_spin_unlock_irq(&ctx->lock);
4571
4572 perf_event_ctx_unlock(event, ctx);
683ede43 4573
c6e5b732
PZ
4574again:
4575 mutex_lock(&event->child_mutex);
4576 list_for_each_entry(child, &event->child_list, child_list) {
a6fa941d 4577
c6e5b732
PZ
4578 /*
4579 * Cannot change, child events are not migrated, see the
4580 * comment with perf_event_ctx_lock_nested().
4581 */
506458ef 4582 ctx = READ_ONCE(child->ctx);
c6e5b732
PZ
4583 /*
4584 * Since child_mutex nests inside ctx::mutex, we must jump
4585 * through hoops. We start by grabbing a reference on the ctx.
4586 *
4587 * Since the event cannot get freed while we hold the
4588 * child_mutex, the context must also exist and have a !0
4589 * reference count.
4590 */
4591 get_ctx(ctx);
4592
4593 /*
4594 * Now that we have a ctx ref, we can drop child_mutex, and
4595 * acquire ctx::mutex without fear of it going away. Then we
4596 * can re-acquire child_mutex.
4597 */
4598 mutex_unlock(&event->child_mutex);
4599 mutex_lock(&ctx->mutex);
4600 mutex_lock(&event->child_mutex);
4601
4602 /*
4603 * Now that we hold ctx::mutex and child_mutex, revalidate our
4604 * state, if child is still the first entry, it didn't get freed
4605 * and we can continue doing so.
4606 */
4607 tmp = list_first_entry_or_null(&event->child_list,
4608 struct perf_event, child_list);
4609 if (tmp == child) {
4610 perf_remove_from_context(child, DETACH_GROUP);
82d94856 4611 list_move(&child->child_list, &free_list);
c6e5b732
PZ
4612 /*
4613 * This matches the refcount bump in inherit_event();
4614 * this can't be the last reference.
4615 */
4616 put_event(event);
4617 }
4618
4619 mutex_unlock(&event->child_mutex);
4620 mutex_unlock(&ctx->mutex);
4621 put_ctx(ctx);
4622 goto again;
4623 }
4624 mutex_unlock(&event->child_mutex);
4625
82d94856
PZ
4626 list_for_each_entry_safe(child, tmp, &free_list, child_list) {
4627 list_del(&child->child_list);
4628 free_event(child);
4629 }
4630
a4f4bb6d
PZ
4631no_ctx:
4632 put_event(event); /* Must be the 'last' reference */
683ede43
PZ
4633 return 0;
4634}
4635EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4636
8b10c5e2
PZ
4637/*
4638 * Called when the last reference to the file is gone.
4639 */
a6fa941d
AV
4640static int perf_release(struct inode *inode, struct file *file)
4641{
c6e5b732 4642 perf_event_release_kernel(file->private_data);
a6fa941d 4643 return 0;
fb0459d7 4644}
fb0459d7 4645
ca0dd44c 4646static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
e53c0994 4647{
cdd6c482 4648 struct perf_event *child;
e53c0994
PZ
4649 u64 total = 0;
4650
59ed446f
PZ
4651 *enabled = 0;
4652 *running = 0;
4653
6f10581a 4654 mutex_lock(&event->child_mutex);
01add3ea 4655
7d88962e 4656 (void)perf_event_read(event, false);
01add3ea
SB
4657 total += perf_event_count(event);
4658
59ed446f
PZ
4659 *enabled += event->total_time_enabled +
4660 atomic64_read(&event->child_total_time_enabled);
4661 *running += event->total_time_running +
4662 atomic64_read(&event->child_total_time_running);
4663
4664 list_for_each_entry(child, &event->child_list, child_list) {
7d88962e 4665 (void)perf_event_read(child, false);
01add3ea 4666 total += perf_event_count(child);
59ed446f
PZ
4667 *enabled += child->total_time_enabled;
4668 *running += child->total_time_running;
4669 }
6f10581a 4670 mutex_unlock(&event->child_mutex);
e53c0994
PZ
4671
4672 return total;
4673}
ca0dd44c
PZ
4674
4675u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4676{
4677 struct perf_event_context *ctx;
4678 u64 count;
4679
4680 ctx = perf_event_ctx_lock(event);
4681 count = __perf_event_read_value(event, enabled, running);
4682 perf_event_ctx_unlock(event, ctx);
4683
4684 return count;
4685}
fb0459d7 4686EXPORT_SYMBOL_GPL(perf_event_read_value);
e53c0994 4687
7d88962e 4688static int __perf_read_group_add(struct perf_event *leader,
fa8c2693 4689 u64 read_format, u64 *values)
3dab77fb 4690{
2aeb1883 4691 struct perf_event_context *ctx = leader->ctx;
fa8c2693 4692 struct perf_event *sub;
2aeb1883 4693 unsigned long flags;
fa8c2693 4694 int n = 1; /* skip @nr */
7d88962e 4695 int ret;
f63a8daa 4696
7d88962e
SB
4697 ret = perf_event_read(leader, true);
4698 if (ret)
4699 return ret;
abf4868b 4700
a9cd8194
PZ
4701 raw_spin_lock_irqsave(&ctx->lock, flags);
4702
fa8c2693
PZ
4703 /*
4704 * Since we co-schedule groups, {enabled,running} times of siblings
4705 * will be identical to those of the leader, so we only publish one
4706 * set.
4707 */
4708 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4709 values[n++] += leader->total_time_enabled +
4710 atomic64_read(&leader->child_total_time_enabled);
4711 }
3dab77fb 4712
fa8c2693
PZ
4713 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4714 values[n++] += leader->total_time_running +
4715 atomic64_read(&leader->child_total_time_running);
4716 }
4717
4718 /*
4719 * Write {count,id} tuples for every sibling.
4720 */
4721 values[n++] += perf_event_count(leader);
abf4868b
PZ
4722 if (read_format & PERF_FORMAT_ID)
4723 values[n++] = primary_event_id(leader);
3dab77fb 4724
edb39592 4725 for_each_sibling_event(sub, leader) {
fa8c2693
PZ
4726 values[n++] += perf_event_count(sub);
4727 if (read_format & PERF_FORMAT_ID)
4728 values[n++] = primary_event_id(sub);
4729 }
7d88962e 4730
2aeb1883 4731 raw_spin_unlock_irqrestore(&ctx->lock, flags);
7d88962e 4732 return 0;
fa8c2693 4733}
3dab77fb 4734
fa8c2693
PZ
4735static int perf_read_group(struct perf_event *event,
4736 u64 read_format, char __user *buf)
4737{
4738 struct perf_event *leader = event->group_leader, *child;
4739 struct perf_event_context *ctx = leader->ctx;
7d88962e 4740 int ret;
fa8c2693 4741 u64 *values;
3dab77fb 4742
fa8c2693 4743 lockdep_assert_held(&ctx->mutex);
3dab77fb 4744
fa8c2693
PZ
4745 values = kzalloc(event->read_size, GFP_KERNEL);
4746 if (!values)
4747 return -ENOMEM;
3dab77fb 4748
fa8c2693
PZ
4749 values[0] = 1 + leader->nr_siblings;
4750
4751 /*
4752 * By locking the child_mutex of the leader we effectively
4753 * lock the child list of all siblings.. XXX explain how.
4754 */
4755 mutex_lock(&leader->child_mutex);
abf4868b 4756
7d88962e
SB
4757 ret = __perf_read_group_add(leader, read_format, values);
4758 if (ret)
4759 goto unlock;
4760
4761 list_for_each_entry(child, &leader->child_list, child_list) {
4762 ret = __perf_read_group_add(child, read_format, values);
4763 if (ret)
4764 goto unlock;
4765 }
abf4868b 4766
fa8c2693 4767 mutex_unlock(&leader->child_mutex);
abf4868b 4768
7d88962e 4769 ret = event->read_size;
fa8c2693
PZ
4770 if (copy_to_user(buf, values, event->read_size))
4771 ret = -EFAULT;
7d88962e 4772 goto out;
fa8c2693 4773
7d88962e
SB
4774unlock:
4775 mutex_unlock(&leader->child_mutex);
4776out:
fa8c2693 4777 kfree(values);
abf4868b 4778 return ret;
3dab77fb
PZ
4779}
4780
b15f495b 4781static int perf_read_one(struct perf_event *event,
3dab77fb
PZ
4782 u64 read_format, char __user *buf)
4783{
59ed446f 4784 u64 enabled, running;
3dab77fb
PZ
4785 u64 values[4];
4786 int n = 0;
4787
ca0dd44c 4788 values[n++] = __perf_event_read_value(event, &enabled, &running);
59ed446f
PZ
4789 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4790 values[n++] = enabled;
4791 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4792 values[n++] = running;
3dab77fb 4793 if (read_format & PERF_FORMAT_ID)
cdd6c482 4794 values[n++] = primary_event_id(event);
3dab77fb
PZ
4795
4796 if (copy_to_user(buf, values, n * sizeof(u64)))
4797 return -EFAULT;
4798
4799 return n * sizeof(u64);
4800}
4801
dc633982
JO
4802static bool is_event_hup(struct perf_event *event)
4803{
4804 bool no_children;
4805
a69b0ca4 4806 if (event->state > PERF_EVENT_STATE_EXIT)
dc633982
JO
4807 return false;
4808
4809 mutex_lock(&event->child_mutex);
4810 no_children = list_empty(&event->child_list);
4811 mutex_unlock(&event->child_mutex);
4812 return no_children;
4813}
4814
0793a61d 4815/*
cdd6c482 4816 * Read the performance event - simple non blocking version for now
0793a61d
TG
4817 */
4818static ssize_t
b15f495b 4819__perf_read(struct perf_event *event, char __user *buf, size_t count)
0793a61d 4820{
cdd6c482 4821 u64 read_format = event->attr.read_format;
3dab77fb 4822 int ret;
0793a61d 4823
3b6f9e5c 4824 /*
788faab7 4825 * Return end-of-file for a read on an event that is in
3b6f9e5c
PM
4826 * error state (i.e. because it was pinned but it couldn't be
4827 * scheduled on to the CPU at some point).
4828 */
cdd6c482 4829 if (event->state == PERF_EVENT_STATE_ERROR)
3b6f9e5c
PM
4830 return 0;
4831
c320c7b7 4832 if (count < event->read_size)
3dab77fb
PZ
4833 return -ENOSPC;
4834
cdd6c482 4835 WARN_ON_ONCE(event->ctx->parent_ctx);
3dab77fb 4836 if (read_format & PERF_FORMAT_GROUP)
b15f495b 4837 ret = perf_read_group(event, read_format, buf);
3dab77fb 4838 else
b15f495b 4839 ret = perf_read_one(event, read_format, buf);
0793a61d 4840
3dab77fb 4841 return ret;
0793a61d
TG
4842}
4843
0793a61d
TG
4844static ssize_t
4845perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4846{
cdd6c482 4847 struct perf_event *event = file->private_data;
f63a8daa
PZ
4848 struct perf_event_context *ctx;
4849 int ret;
0793a61d 4850
f63a8daa 4851 ctx = perf_event_ctx_lock(event);
b15f495b 4852 ret = __perf_read(event, buf, count);
f63a8daa
PZ
4853 perf_event_ctx_unlock(event, ctx);
4854
4855 return ret;
0793a61d
TG
4856}
4857
9dd95748 4858static __poll_t perf_poll(struct file *file, poll_table *wait)
0793a61d 4859{
cdd6c482 4860 struct perf_event *event = file->private_data;
76369139 4861 struct ring_buffer *rb;
a9a08845 4862 __poll_t events = EPOLLHUP;
c7138f37 4863
e708d7ad 4864 poll_wait(file, &event->waitq, wait);
179033b3 4865
dc633982 4866 if (is_event_hup(event))
179033b3 4867 return events;
c7138f37 4868
10c6db11 4869 /*
9bb5d40c
PZ
4870 * Pin the event->rb by taking event->mmap_mutex; otherwise
4871 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
10c6db11
PZ
4872 */
4873 mutex_lock(&event->mmap_mutex);
9bb5d40c
PZ
4874 rb = event->rb;
4875 if (rb)
76369139 4876 events = atomic_xchg(&rb->poll, 0);
10c6db11 4877 mutex_unlock(&event->mmap_mutex);
0793a61d
TG
4878 return events;
4879}
4880
f63a8daa 4881static void _perf_event_reset(struct perf_event *event)
6de6a7b9 4882{
7d88962e 4883 (void)perf_event_read(event, false);
e7850595 4884 local64_set(&event->count, 0);
cdd6c482 4885 perf_event_update_userpage(event);
3df5edad
PZ
4886}
4887
c93f7669 4888/*
cdd6c482
IM
4889 * Holding the top-level event's child_mutex means that any
4890 * descendant process that has inherited this event will block
8ba289b8 4891 * in perf_event_exit_event() if it goes to exit, thus satisfying the
cdd6c482 4892 * task existence requirements of perf_event_enable/disable.
c93f7669 4893 */
cdd6c482
IM
4894static void perf_event_for_each_child(struct perf_event *event,
4895 void (*func)(struct perf_event *))
3df5edad 4896{
cdd6c482 4897 struct perf_event *child;
3df5edad 4898
cdd6c482 4899 WARN_ON_ONCE(event->ctx->parent_ctx);
f63a8daa 4900
cdd6c482
IM
4901 mutex_lock(&event->child_mutex);
4902 func(event);
4903 list_for_each_entry(child, &event->child_list, child_list)
3df5edad 4904 func(child);
cdd6c482 4905 mutex_unlock(&event->child_mutex);
3df5edad
PZ
4906}
4907
cdd6c482
IM
4908static void perf_event_for_each(struct perf_event *event,
4909 void (*func)(struct perf_event *))
3df5edad 4910{
cdd6c482
IM
4911 struct perf_event_context *ctx = event->ctx;
4912 struct perf_event *sibling;
3df5edad 4913
f63a8daa
PZ
4914 lockdep_assert_held(&ctx->mutex);
4915
cdd6c482 4916 event = event->group_leader;
75f937f2 4917
cdd6c482 4918 perf_event_for_each_child(event, func);
edb39592 4919 for_each_sibling_event(sibling, event)
724b6daa 4920 perf_event_for_each_child(sibling, func);
6de6a7b9
PZ
4921}
4922
fae3fde6
PZ
4923static void __perf_event_period(struct perf_event *event,
4924 struct perf_cpu_context *cpuctx,
4925 struct perf_event_context *ctx,
4926 void *info)
c7999c6f 4927{
fae3fde6 4928 u64 value = *((u64 *)info);
c7999c6f 4929 bool active;
08247e31 4930
cdd6c482 4931 if (event->attr.freq) {
cdd6c482 4932 event->attr.sample_freq = value;
08247e31 4933 } else {
cdd6c482
IM
4934 event->attr.sample_period = value;
4935 event->hw.sample_period = value;
08247e31 4936 }
bad7192b
PZ
4937
4938 active = (event->state == PERF_EVENT_STATE_ACTIVE);
4939 if (active) {
4940 perf_pmu_disable(ctx->pmu);
1e02cd40
PZ
4941 /*
4942 * We could be throttled; unthrottle now to avoid the tick
4943 * trying to unthrottle while we already re-started the event.
4944 */
4945 if (event->hw.interrupts == MAX_INTERRUPTS) {
4946 event->hw.interrupts = 0;
4947 perf_log_throttle(event, 1);
4948 }
bad7192b
PZ
4949 event->pmu->stop(event, PERF_EF_UPDATE);
4950 }
4951
4952 local64_set(&event->hw.period_left, 0);
4953
4954 if (active) {
4955 event->pmu->start(event, PERF_EF_RELOAD);
4956 perf_pmu_enable(ctx->pmu);
4957 }
c7999c6f
PZ
4958}
4959
4960static int perf_event_period(struct perf_event *event, u64 __user *arg)
4961{
c7999c6f
PZ
4962 u64 value;
4963
4964 if (!is_sampling_event(event))
4965 return -EINVAL;
4966
4967 if (copy_from_user(&value, arg, sizeof(value)))
4968 return -EFAULT;
4969
4970 if (!value)
4971 return -EINVAL;
4972
4973 if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4974 return -EINVAL;
4975
fae3fde6 4976 event_function_call(event, __perf_event_period, &value);
08247e31 4977
c7999c6f 4978 return 0;
08247e31
PZ
4979}
4980
ac9721f3
PZ
4981static const struct file_operations perf_fops;
4982
2903ff01 4983static inline int perf_fget_light(int fd, struct fd *p)
ac9721f3 4984{
2903ff01
AV
4985 struct fd f = fdget(fd);
4986 if (!f.file)
4987 return -EBADF;
ac9721f3 4988
2903ff01
AV
4989 if (f.file->f_op != &perf_fops) {
4990 fdput(f);
4991 return -EBADF;
ac9721f3 4992 }
2903ff01
AV
4993 *p = f;
4994 return 0;
ac9721f3
PZ
4995}
4996
4997static int perf_event_set_output(struct perf_event *event,
4998 struct perf_event *output_event);
6fb2915d 4999static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2541517c 5000static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
32ff77e8
MC
5001static int perf_copy_attr(struct perf_event_attr __user *uattr,
5002 struct perf_event_attr *attr);
a4be7c27 5003
f63a8daa 5004static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
d859e29f 5005{
cdd6c482 5006 void (*func)(struct perf_event *);
3df5edad 5007 u32 flags = arg;
d859e29f
PM
5008
5009 switch (cmd) {
cdd6c482 5010 case PERF_EVENT_IOC_ENABLE:
f63a8daa 5011 func = _perf_event_enable;
d859e29f 5012 break;
cdd6c482 5013 case PERF_EVENT_IOC_DISABLE:
f63a8daa 5014 func = _perf_event_disable;
79f14641 5015 break;
cdd6c482 5016 case PERF_EVENT_IOC_RESET:
f63a8daa 5017 func = _perf_event_reset;
6de6a7b9 5018 break;
3df5edad 5019
cdd6c482 5020 case PERF_EVENT_IOC_REFRESH:
f63a8daa 5021 return _perf_event_refresh(event, arg);
08247e31 5022
cdd6c482
IM
5023 case PERF_EVENT_IOC_PERIOD:
5024 return perf_event_period(event, (u64 __user *)arg);
08247e31 5025
cf4957f1
JO
5026 case PERF_EVENT_IOC_ID:
5027 {
5028 u64 id = primary_event_id(event);
5029
5030 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
5031 return -EFAULT;
5032 return 0;
5033 }
5034
cdd6c482 5035 case PERF_EVENT_IOC_SET_OUTPUT:
ac9721f3 5036 {
ac9721f3 5037 int ret;
ac9721f3 5038 if (arg != -1) {
2903ff01
AV
5039 struct perf_event *output_event;
5040 struct fd output;
5041 ret = perf_fget_light(arg, &output);
5042 if (ret)
5043 return ret;
5044 output_event = output.file->private_data;
5045 ret = perf_event_set_output(event, output_event);
5046 fdput(output);
5047 } else {
5048 ret = perf_event_set_output(event, NULL);
ac9721f3 5049 }
ac9721f3
PZ
5050 return ret;
5051 }
a4be7c27 5052
6fb2915d
LZ
5053 case PERF_EVENT_IOC_SET_FILTER:
5054 return perf_event_set_filter(event, (void __user *)arg);
5055
2541517c
AS
5056 case PERF_EVENT_IOC_SET_BPF:
5057 return perf_event_set_bpf_prog(event, arg);
5058
86e7972f
WN
5059 case PERF_EVENT_IOC_PAUSE_OUTPUT: {
5060 struct ring_buffer *rb;
5061
5062 rcu_read_lock();
5063 rb = rcu_dereference(event->rb);
5064 if (!rb || !rb->nr_pages) {
5065 rcu_read_unlock();
5066 return -EINVAL;
5067 }
5068 rb_toggle_paused(rb, !!arg);
5069 rcu_read_unlock();
5070 return 0;
5071 }
f371b304
YS
5072
5073 case PERF_EVENT_IOC_QUERY_BPF:
f4e2298e 5074 return perf_event_query_prog_array(event, (void __user *)arg);
32ff77e8
MC
5075
5076 case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
5077 struct perf_event_attr new_attr;
5078 int err = perf_copy_attr((struct perf_event_attr __user *)arg,
5079 &new_attr);
5080
5081 if (err)
5082 return err;
5083
5084 return perf_event_modify_attr(event, &new_attr);
5085 }
d859e29f 5086 default:
3df5edad 5087 return -ENOTTY;
d859e29f 5088 }
3df5edad
PZ
5089
5090 if (flags & PERF_IOC_FLAG_GROUP)
cdd6c482 5091 perf_event_for_each(event, func);
3df5edad 5092 else
cdd6c482 5093 perf_event_for_each_child(event, func);
3df5edad
PZ
5094
5095 return 0;
d859e29f
PM
5096}
5097
f63a8daa
PZ
5098static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5099{
5100 struct perf_event *event = file->private_data;
5101 struct perf_event_context *ctx;
5102 long ret;
5103
5104 ctx = perf_event_ctx_lock(event);
5105 ret = _perf_ioctl(event, cmd, arg);
5106 perf_event_ctx_unlock(event, ctx);
5107
5108 return ret;
5109}
5110
b3f20785
PM
5111#ifdef CONFIG_COMPAT
5112static long perf_compat_ioctl(struct file *file, unsigned int cmd,
5113 unsigned long arg)
5114{
5115 switch (_IOC_NR(cmd)) {
5116 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
5117 case _IOC_NR(PERF_EVENT_IOC_ID):
82489c5f
ES
5118 case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
5119 case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
b3f20785
PM
5120 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
5121 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
5122 cmd &= ~IOCSIZE_MASK;
5123 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
5124 }
5125 break;
5126 }
5127 return perf_ioctl(file, cmd, arg);
5128}
5129#else
5130# define perf_compat_ioctl NULL
5131#endif
5132
cdd6c482 5133int perf_event_task_enable(void)
771d7cde 5134{
f63a8daa 5135 struct perf_event_context *ctx;
cdd6c482 5136 struct perf_event *event;
771d7cde 5137
cdd6c482 5138 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
5139 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5140 ctx = perf_event_ctx_lock(event);
5141 perf_event_for_each_child(event, _perf_event_enable);
5142 perf_event_ctx_unlock(event, ctx);
5143 }
cdd6c482 5144 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
5145
5146 return 0;
5147}
5148
cdd6c482 5149int perf_event_task_disable(void)
771d7cde 5150{
f63a8daa 5151 struct perf_event_context *ctx;
cdd6c482 5152 struct perf_event *event;
771d7cde 5153
cdd6c482 5154 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
5155 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5156 ctx = perf_event_ctx_lock(event);
5157 perf_event_for_each_child(event, _perf_event_disable);
5158 perf_event_ctx_unlock(event, ctx);
5159 }
cdd6c482 5160 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
5161
5162 return 0;
5163}
5164
cdd6c482 5165static int perf_event_index(struct perf_event *event)
194002b2 5166{
a4eaf7f1
PZ
5167 if (event->hw.state & PERF_HES_STOPPED)
5168 return 0;
5169
cdd6c482 5170 if (event->state != PERF_EVENT_STATE_ACTIVE)
194002b2
PZ
5171 return 0;
5172
35edc2a5 5173 return event->pmu->event_idx(event);
194002b2
PZ
5174}
5175
c4794295 5176static void calc_timer_values(struct perf_event *event,
e3f3541c 5177 u64 *now,
7f310a5d
EM
5178 u64 *enabled,
5179 u64 *running)
c4794295 5180{
e3f3541c 5181 u64 ctx_time;
c4794295 5182
e3f3541c
PZ
5183 *now = perf_clock();
5184 ctx_time = event->shadow_ctx_time + *now;
0d3d73aa 5185 __perf_update_times(event, ctx_time, enabled, running);
c4794295
EM
5186}
5187
fa731587
PZ
5188static void perf_event_init_userpage(struct perf_event *event)
5189{
5190 struct perf_event_mmap_page *userpg;
5191 struct ring_buffer *rb;
5192
5193 rcu_read_lock();
5194 rb = rcu_dereference(event->rb);
5195 if (!rb)
5196 goto unlock;
5197
5198 userpg = rb->user_page;
5199
5200 /* Allow new userspace to detect that bit 0 is deprecated */
5201 userpg->cap_bit0_is_deprecated = 1;
5202 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
e8c6deac
AS
5203 userpg->data_offset = PAGE_SIZE;
5204 userpg->data_size = perf_data_size(rb);
fa731587
PZ
5205
5206unlock:
5207 rcu_read_unlock();
5208}
5209
c1317ec2
AL
5210void __weak arch_perf_update_userpage(
5211 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
e3f3541c
PZ
5212{
5213}
5214
38ff667b
PZ
5215/*
5216 * Callers need to ensure there can be no nesting of this function, otherwise
5217 * the seqlock logic goes bad. We can not serialize this because the arch
5218 * code calls this from NMI context.
5219 */
cdd6c482 5220void perf_event_update_userpage(struct perf_event *event)
37d81828 5221{
cdd6c482 5222 struct perf_event_mmap_page *userpg;
76369139 5223 struct ring_buffer *rb;
e3f3541c 5224 u64 enabled, running, now;
38ff667b
PZ
5225
5226 rcu_read_lock();
5ec4c599
PZ
5227 rb = rcu_dereference(event->rb);
5228 if (!rb)
5229 goto unlock;
5230
0d641208
EM
5231 /*
5232 * compute total_time_enabled, total_time_running
5233 * based on snapshot values taken when the event
5234 * was last scheduled in.
5235 *
5236 * we cannot simply called update_context_time()
5237 * because of locking issue as we can be called in
5238 * NMI context
5239 */
e3f3541c 5240 calc_timer_values(event, &now, &enabled, &running);
38ff667b 5241
76369139 5242 userpg = rb->user_page;
7b732a75 5243 /*
9d2dcc8f
MF
5244 * Disable preemption to guarantee consistent time stamps are stored to
5245 * the user page.
7b732a75
PZ
5246 */
5247 preempt_disable();
37d81828 5248 ++userpg->lock;
92f22a38 5249 barrier();
cdd6c482 5250 userpg->index = perf_event_index(event);
b5e58793 5251 userpg->offset = perf_event_count(event);
365a4038 5252 if (userpg->index)
e7850595 5253 userpg->offset -= local64_read(&event->hw.prev_count);
7b732a75 5254
0d641208 5255 userpg->time_enabled = enabled +
cdd6c482 5256 atomic64_read(&event->child_total_time_enabled);
7f8b4e4e 5257
0d641208 5258 userpg->time_running = running +
cdd6c482 5259 atomic64_read(&event->child_total_time_running);
7f8b4e4e 5260
c1317ec2 5261 arch_perf_update_userpage(event, userpg, now);
e3f3541c 5262
92f22a38 5263 barrier();
37d81828 5264 ++userpg->lock;
7b732a75 5265 preempt_enable();
38ff667b 5266unlock:
7b732a75 5267 rcu_read_unlock();
37d81828 5268}
82975c46 5269EXPORT_SYMBOL_GPL(perf_event_update_userpage);
37d81828 5270
9e3ed2d7 5271static vm_fault_t perf_mmap_fault(struct vm_fault *vmf)
906010b2 5272{
11bac800 5273 struct perf_event *event = vmf->vma->vm_file->private_data;
76369139 5274 struct ring_buffer *rb;
9e3ed2d7 5275 vm_fault_t ret = VM_FAULT_SIGBUS;
906010b2
PZ
5276
5277 if (vmf->flags & FAULT_FLAG_MKWRITE) {
5278 if (vmf->pgoff == 0)
5279 ret = 0;
5280 return ret;
5281 }
5282
5283 rcu_read_lock();
76369139
FW
5284 rb = rcu_dereference(event->rb);
5285 if (!rb)
906010b2
PZ
5286 goto unlock;
5287
5288 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
5289 goto unlock;
5290
76369139 5291 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
906010b2
PZ
5292 if (!vmf->page)
5293 goto unlock;
5294
5295 get_page(vmf->page);
11bac800 5296 vmf->page->mapping = vmf->vma->vm_file->f_mapping;
906010b2
PZ
5297 vmf->page->index = vmf->pgoff;
5298
5299 ret = 0;
5300unlock:
5301 rcu_read_unlock();
5302
5303 return ret;
5304}
5305
10c6db11
PZ
5306static void ring_buffer_attach(struct perf_event *event,
5307 struct ring_buffer *rb)
5308{
b69cf536 5309 struct ring_buffer *old_rb = NULL;
10c6db11
PZ
5310 unsigned long flags;
5311
b69cf536
PZ
5312 if (event->rb) {
5313 /*
5314 * Should be impossible, we set this when removing
5315 * event->rb_entry and wait/clear when adding event->rb_entry.
5316 */
5317 WARN_ON_ONCE(event->rcu_pending);
10c6db11 5318
b69cf536 5319 old_rb = event->rb;
b69cf536
PZ
5320 spin_lock_irqsave(&old_rb->event_lock, flags);
5321 list_del_rcu(&event->rb_entry);
5322 spin_unlock_irqrestore(&old_rb->event_lock, flags);
10c6db11 5323
2f993cf0
ON
5324 event->rcu_batches = get_state_synchronize_rcu();
5325 event->rcu_pending = 1;
b69cf536 5326 }
10c6db11 5327
b69cf536 5328 if (rb) {
2f993cf0
ON
5329 if (event->rcu_pending) {
5330 cond_synchronize_rcu(event->rcu_batches);
5331 event->rcu_pending = 0;
5332 }
5333
b69cf536
PZ
5334 spin_lock_irqsave(&rb->event_lock, flags);
5335 list_add_rcu(&event->rb_entry, &rb->event_list);
5336 spin_unlock_irqrestore(&rb->event_lock, flags);
5337 }
5338
767ae086
AS
5339 /*
5340 * Avoid racing with perf_mmap_close(AUX): stop the event
5341 * before swizzling the event::rb pointer; if it's getting
5342 * unmapped, its aux_mmap_count will be 0 and it won't
5343 * restart. See the comment in __perf_pmu_output_stop().
5344 *
5345 * Data will inevitably be lost when set_output is done in
5346 * mid-air, but then again, whoever does it like this is
5347 * not in for the data anyway.
5348 */
5349 if (has_aux(event))
5350 perf_event_stop(event, 0);
5351
b69cf536
PZ
5352 rcu_assign_pointer(event->rb, rb);
5353
5354 if (old_rb) {
5355 ring_buffer_put(old_rb);
5356 /*
5357 * Since we detached before setting the new rb, so that we
5358 * could attach the new rb, we could have missed a wakeup.
5359 * Provide it now.
5360 */
5361 wake_up_all(&event->waitq);
5362 }
10c6db11
PZ
5363}
5364
5365static void ring_buffer_wakeup(struct perf_event *event)
5366{
5367 struct ring_buffer *rb;
5368
5369 rcu_read_lock();
5370 rb = rcu_dereference(event->rb);
9bb5d40c
PZ
5371 if (rb) {
5372 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5373 wake_up_all(&event->waitq);
5374 }
10c6db11
PZ
5375 rcu_read_unlock();
5376}
5377
fdc26706 5378struct ring_buffer *ring_buffer_get(struct perf_event *event)
7b732a75 5379{
76369139 5380 struct ring_buffer *rb;
7b732a75 5381
ac9721f3 5382 rcu_read_lock();
76369139
FW
5383 rb = rcu_dereference(event->rb);
5384 if (rb) {
5385 if (!atomic_inc_not_zero(&rb->refcount))
5386 rb = NULL;
ac9721f3
PZ
5387 }
5388 rcu_read_unlock();
5389
76369139 5390 return rb;
ac9721f3
PZ
5391}
5392
fdc26706 5393void ring_buffer_put(struct ring_buffer *rb)
ac9721f3 5394{
76369139 5395 if (!atomic_dec_and_test(&rb->refcount))
ac9721f3 5396 return;
7b732a75 5397
9bb5d40c 5398 WARN_ON_ONCE(!list_empty(&rb->event_list));
10c6db11 5399
76369139 5400 call_rcu(&rb->rcu_head, rb_free_rcu);
7b732a75
PZ
5401}
5402
5403static void perf_mmap_open(struct vm_area_struct *vma)
5404{
cdd6c482 5405 struct perf_event *event = vma->vm_file->private_data;
7b732a75 5406
cdd6c482 5407 atomic_inc(&event->mmap_count);
9bb5d40c 5408 atomic_inc(&event->rb->mmap_count);
1e0fb9ec 5409
45bfb2e5
PZ
5410 if (vma->vm_pgoff)
5411 atomic_inc(&event->rb->aux_mmap_count);
5412
1e0fb9ec 5413 if (event->pmu->event_mapped)
bfe33492 5414 event->pmu->event_mapped(event, vma->vm_mm);
7b732a75
PZ
5415}
5416
95ff4ca2
AS
5417static void perf_pmu_output_stop(struct perf_event *event);
5418
9bb5d40c
PZ
5419/*
5420 * A buffer can be mmap()ed multiple times; either directly through the same
5421 * event, or through other events by use of perf_event_set_output().
5422 *
5423 * In order to undo the VM accounting done by perf_mmap() we need to destroy
5424 * the buffer here, where we still have a VM context. This means we need
5425 * to detach all events redirecting to us.
5426 */
7b732a75
PZ
5427static void perf_mmap_close(struct vm_area_struct *vma)
5428{
cdd6c482 5429 struct perf_event *event = vma->vm_file->private_data;
7b732a75 5430
b69cf536 5431 struct ring_buffer *rb = ring_buffer_get(event);
9bb5d40c
PZ
5432 struct user_struct *mmap_user = rb->mmap_user;
5433 int mmap_locked = rb->mmap_locked;
5434 unsigned long size = perf_data_size(rb);
789f90fc 5435
1e0fb9ec 5436 if (event->pmu->event_unmapped)
bfe33492 5437 event->pmu->event_unmapped(event, vma->vm_mm);
1e0fb9ec 5438
45bfb2e5
PZ
5439 /*
5440 * rb->aux_mmap_count will always drop before rb->mmap_count and
5441 * event->mmap_count, so it is ok to use event->mmap_mutex to
5442 * serialize with perf_mmap here.
5443 */
5444 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5445 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
95ff4ca2
AS
5446 /*
5447 * Stop all AUX events that are writing to this buffer,
5448 * so that we can free its AUX pages and corresponding PMU
5449 * data. Note that after rb::aux_mmap_count dropped to zero,
5450 * they won't start any more (see perf_aux_output_begin()).
5451 */
5452 perf_pmu_output_stop(event);
5453
5454 /* now it's safe to free the pages */
45bfb2e5
PZ
5455 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
5456 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
5457
95ff4ca2 5458 /* this has to be the last one */
45bfb2e5 5459 rb_free_aux(rb);
95ff4ca2
AS
5460 WARN_ON_ONCE(atomic_read(&rb->aux_refcount));
5461
45bfb2e5
PZ
5462 mutex_unlock(&event->mmap_mutex);
5463 }
5464
9bb5d40c
PZ
5465 atomic_dec(&rb->mmap_count);
5466
5467 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
b69cf536 5468 goto out_put;
9bb5d40c 5469
b69cf536 5470 ring_buffer_attach(event, NULL);
9bb5d40c
PZ
5471 mutex_unlock(&event->mmap_mutex);
5472
5473 /* If there's still other mmap()s of this buffer, we're done. */
b69cf536
PZ
5474 if (atomic_read(&rb->mmap_count))
5475 goto out_put;
ac9721f3 5476
9bb5d40c
PZ
5477 /*
5478 * No other mmap()s, detach from all other events that might redirect
5479 * into the now unreachable buffer. Somewhat complicated by the
5480 * fact that rb::event_lock otherwise nests inside mmap_mutex.
5481 */
5482again:
5483 rcu_read_lock();
5484 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5485 if (!atomic_long_inc_not_zero(&event->refcount)) {
5486 /*
5487 * This event is en-route to free_event() which will
5488 * detach it and remove it from the list.
5489 */
5490 continue;
5491 }
5492 rcu_read_unlock();
789f90fc 5493
9bb5d40c
PZ
5494 mutex_lock(&event->mmap_mutex);
5495 /*
5496 * Check we didn't race with perf_event_set_output() which can
5497 * swizzle the rb from under us while we were waiting to
5498 * acquire mmap_mutex.
5499 *
5500 * If we find a different rb; ignore this event, a next
5501 * iteration will no longer find it on the list. We have to
5502 * still restart the iteration to make sure we're not now
5503 * iterating the wrong list.
5504 */
b69cf536
PZ
5505 if (event->rb == rb)
5506 ring_buffer_attach(event, NULL);
5507
cdd6c482 5508 mutex_unlock(&event->mmap_mutex);
9bb5d40c 5509 put_event(event);
ac9721f3 5510
9bb5d40c
PZ
5511 /*
5512 * Restart the iteration; either we're on the wrong list or
5513 * destroyed its integrity by doing a deletion.
5514 */
5515 goto again;
7b732a75 5516 }
9bb5d40c
PZ
5517 rcu_read_unlock();
5518
5519 /*
5520 * It could be there's still a few 0-ref events on the list; they'll
5521 * get cleaned up by free_event() -- they'll also still have their
5522 * ref on the rb and will free it whenever they are done with it.
5523 *
5524 * Aside from that, this buffer is 'fully' detached and unmapped,
5525 * undo the VM accounting.
5526 */
5527
5528 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
5529 vma->vm_mm->pinned_vm -= mmap_locked;
5530 free_uid(mmap_user);
5531
b69cf536 5532out_put:
9bb5d40c 5533 ring_buffer_put(rb); /* could be last */
37d81828
PM
5534}
5535
f0f37e2f 5536static const struct vm_operations_struct perf_mmap_vmops = {
43a21ea8 5537 .open = perf_mmap_open,
45bfb2e5 5538 .close = perf_mmap_close, /* non mergable */
43a21ea8
PZ
5539 .fault = perf_mmap_fault,
5540 .page_mkwrite = perf_mmap_fault,
37d81828
PM
5541};
5542
5543static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5544{
cdd6c482 5545 struct perf_event *event = file->private_data;
22a4f650 5546 unsigned long user_locked, user_lock_limit;
789f90fc 5547 struct user_struct *user = current_user();
22a4f650 5548 unsigned long locked, lock_limit;
45bfb2e5 5549 struct ring_buffer *rb = NULL;
7b732a75
PZ
5550 unsigned long vma_size;
5551 unsigned long nr_pages;
45bfb2e5 5552 long user_extra = 0, extra = 0;
d57e34fd 5553 int ret = 0, flags = 0;
37d81828 5554
c7920614
PZ
5555 /*
5556 * Don't allow mmap() of inherited per-task counters. This would
5557 * create a performance issue due to all children writing to the
76369139 5558 * same rb.
c7920614
PZ
5559 */
5560 if (event->cpu == -1 && event->attr.inherit)
5561 return -EINVAL;
5562
43a21ea8 5563 if (!(vma->vm_flags & VM_SHARED))
37d81828 5564 return -EINVAL;
7b732a75
PZ
5565
5566 vma_size = vma->vm_end - vma->vm_start;
45bfb2e5
PZ
5567
5568 if (vma->vm_pgoff == 0) {
5569 nr_pages = (vma_size / PAGE_SIZE) - 1;
5570 } else {
5571 /*
5572 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5573 * mapped, all subsequent mappings should have the same size
5574 * and offset. Must be above the normal perf buffer.
5575 */
5576 u64 aux_offset, aux_size;
5577
5578 if (!event->rb)
5579 return -EINVAL;
5580
5581 nr_pages = vma_size / PAGE_SIZE;
5582
5583 mutex_lock(&event->mmap_mutex);
5584 ret = -EINVAL;
5585
5586 rb = event->rb;
5587 if (!rb)
5588 goto aux_unlock;
5589
6aa7de05
MR
5590 aux_offset = READ_ONCE(rb->user_page->aux_offset);
5591 aux_size = READ_ONCE(rb->user_page->aux_size);
45bfb2e5
PZ
5592
5593 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5594 goto aux_unlock;
5595
5596 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5597 goto aux_unlock;
5598
5599 /* already mapped with a different offset */
5600 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5601 goto aux_unlock;
5602
5603 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5604 goto aux_unlock;
5605
5606 /* already mapped with a different size */
5607 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5608 goto aux_unlock;
5609
5610 if (!is_power_of_2(nr_pages))
5611 goto aux_unlock;
5612
5613 if (!atomic_inc_not_zero(&rb->mmap_count))
5614 goto aux_unlock;
5615
5616 if (rb_has_aux(rb)) {
5617 atomic_inc(&rb->aux_mmap_count);
5618 ret = 0;
5619 goto unlock;
5620 }
5621
5622 atomic_set(&rb->aux_mmap_count, 1);
5623 user_extra = nr_pages;
5624
5625 goto accounting;
5626 }
7b732a75 5627
7730d865 5628 /*
76369139 5629 * If we have rb pages ensure they're a power-of-two number, so we
7730d865
PZ
5630 * can do bitmasks instead of modulo.
5631 */
2ed11312 5632 if (nr_pages != 0 && !is_power_of_2(nr_pages))
37d81828
PM
5633 return -EINVAL;
5634
7b732a75 5635 if (vma_size != PAGE_SIZE * (1 + nr_pages))
37d81828
PM
5636 return -EINVAL;
5637
cdd6c482 5638 WARN_ON_ONCE(event->ctx->parent_ctx);
9bb5d40c 5639again:
cdd6c482 5640 mutex_lock(&event->mmap_mutex);
76369139 5641 if (event->rb) {
9bb5d40c 5642 if (event->rb->nr_pages != nr_pages) {
ebb3c4c4 5643 ret = -EINVAL;
9bb5d40c
PZ
5644 goto unlock;
5645 }
5646
5647 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5648 /*
5649 * Raced against perf_mmap_close() through
5650 * perf_event_set_output(). Try again, hope for better
5651 * luck.
5652 */
5653 mutex_unlock(&event->mmap_mutex);
5654 goto again;
5655 }
5656
ebb3c4c4
PZ
5657 goto unlock;
5658 }
5659
789f90fc 5660 user_extra = nr_pages + 1;
45bfb2e5
PZ
5661
5662accounting:
cdd6c482 5663 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
a3862d3f
IM
5664
5665 /*
5666 * Increase the limit linearly with more CPUs:
5667 */
5668 user_lock_limit *= num_online_cpus();
5669
789f90fc 5670 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
c5078f78 5671
789f90fc
PZ
5672 if (user_locked > user_lock_limit)
5673 extra = user_locked - user_lock_limit;
7b732a75 5674
78d7d407 5675 lock_limit = rlimit(RLIMIT_MEMLOCK);
7b732a75 5676 lock_limit >>= PAGE_SHIFT;
bc3e53f6 5677 locked = vma->vm_mm->pinned_vm + extra;
7b732a75 5678
459ec28a
IM
5679 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5680 !capable(CAP_IPC_LOCK)) {
ebb3c4c4
PZ
5681 ret = -EPERM;
5682 goto unlock;
5683 }
7b732a75 5684
45bfb2e5 5685 WARN_ON(!rb && event->rb);
906010b2 5686
d57e34fd 5687 if (vma->vm_flags & VM_WRITE)
76369139 5688 flags |= RING_BUFFER_WRITABLE;
d57e34fd 5689
76369139 5690 if (!rb) {
45bfb2e5
PZ
5691 rb = rb_alloc(nr_pages,
5692 event->attr.watermark ? event->attr.wakeup_watermark : 0,
5693 event->cpu, flags);
26cb63ad 5694
45bfb2e5
PZ
5695 if (!rb) {
5696 ret = -ENOMEM;
5697 goto unlock;
5698 }
43a21ea8 5699
45bfb2e5
PZ
5700 atomic_set(&rb->mmap_count, 1);
5701 rb->mmap_user = get_current_user();
5702 rb->mmap_locked = extra;
26cb63ad 5703
45bfb2e5 5704 ring_buffer_attach(event, rb);
ac9721f3 5705
45bfb2e5
PZ
5706 perf_event_init_userpage(event);
5707 perf_event_update_userpage(event);
5708 } else {
1a594131
AS
5709 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5710 event->attr.aux_watermark, flags);
45bfb2e5
PZ
5711 if (!ret)
5712 rb->aux_mmap_locked = extra;
5713 }
9a0f05cb 5714
ebb3c4c4 5715unlock:
45bfb2e5
PZ
5716 if (!ret) {
5717 atomic_long_add(user_extra, &user->locked_vm);
5718 vma->vm_mm->pinned_vm += extra;
5719
ac9721f3 5720 atomic_inc(&event->mmap_count);
45bfb2e5
PZ
5721 } else if (rb) {
5722 atomic_dec(&rb->mmap_count);
5723 }
5724aux_unlock:
cdd6c482 5725 mutex_unlock(&event->mmap_mutex);
37d81828 5726
9bb5d40c
PZ
5727 /*
5728 * Since pinned accounting is per vm we cannot allow fork() to copy our
5729 * vma.
5730 */
26cb63ad 5731 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
37d81828 5732 vma->vm_ops = &perf_mmap_vmops;
7b732a75 5733
1e0fb9ec 5734 if (event->pmu->event_mapped)
bfe33492 5735 event->pmu->event_mapped(event, vma->vm_mm);
1e0fb9ec 5736
7b732a75 5737 return ret;
37d81828
PM
5738}
5739
3c446b3d
PZ
5740static int perf_fasync(int fd, struct file *filp, int on)
5741{
496ad9aa 5742 struct inode *inode = file_inode(filp);
cdd6c482 5743 struct perf_event *event = filp->private_data;
3c446b3d
PZ
5744 int retval;
5745
5955102c 5746 inode_lock(inode);
cdd6c482 5747 retval = fasync_helper(fd, filp, on, &event->fasync);
5955102c 5748 inode_unlock(inode);
3c446b3d
PZ
5749
5750 if (retval < 0)
5751 return retval;
5752
5753 return 0;
5754}
5755
0793a61d 5756static const struct file_operations perf_fops = {
3326c1ce 5757 .llseek = no_llseek,
0793a61d
TG
5758 .release = perf_release,
5759 .read = perf_read,
5760 .poll = perf_poll,
d859e29f 5761 .unlocked_ioctl = perf_ioctl,
b3f20785 5762 .compat_ioctl = perf_compat_ioctl,
37d81828 5763 .mmap = perf_mmap,
3c446b3d 5764 .fasync = perf_fasync,
0793a61d
TG
5765};
5766
925d519a 5767/*
cdd6c482 5768 * Perf event wakeup
925d519a
PZ
5769 *
5770 * If there's data, ensure we set the poll() state and publish everything
5771 * to user-space before waking everybody up.
5772 */
5773
fed66e2c
PZ
5774static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5775{
5776 /* only the parent has fasync state */
5777 if (event->parent)
5778 event = event->parent;
5779 return &event->fasync;
5780}
5781
cdd6c482 5782void perf_event_wakeup(struct perf_event *event)
925d519a 5783{
10c6db11 5784 ring_buffer_wakeup(event);
4c9e2542 5785
cdd6c482 5786 if (event->pending_kill) {
fed66e2c 5787 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
cdd6c482 5788 event->pending_kill = 0;
4c9e2542 5789 }
925d519a
PZ
5790}
5791
e360adbe 5792static void perf_pending_event(struct irq_work *entry)
79f14641 5793{
cdd6c482
IM
5794 struct perf_event *event = container_of(entry,
5795 struct perf_event, pending);
d525211f
PZ
5796 int rctx;
5797
5798 rctx = perf_swevent_get_recursion_context();
5799 /*
5800 * If we 'fail' here, that's OK, it means recursion is already disabled
5801 * and we won't recurse 'further'.
5802 */
79f14641 5803
cdd6c482
IM
5804 if (event->pending_disable) {
5805 event->pending_disable = 0;
fae3fde6 5806 perf_event_disable_local(event);
79f14641
PZ
5807 }
5808
cdd6c482
IM
5809 if (event->pending_wakeup) {
5810 event->pending_wakeup = 0;
5811 perf_event_wakeup(event);
79f14641 5812 }
d525211f
PZ
5813
5814 if (rctx >= 0)
5815 perf_swevent_put_recursion_context(rctx);
79f14641
PZ
5816}
5817
39447b38
ZY
5818/*
5819 * We assume there is only KVM supporting the callbacks.
5820 * Later on, we might change it to a list if there is
5821 * another virtualization implementation supporting the callbacks.
5822 */
5823struct perf_guest_info_callbacks *perf_guest_cbs;
5824
5825int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5826{
5827 perf_guest_cbs = cbs;
5828 return 0;
5829}
5830EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5831
5832int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5833{
5834 perf_guest_cbs = NULL;
5835 return 0;
5836}
5837EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5838
4018994f
JO
5839static void
5840perf_output_sample_regs(struct perf_output_handle *handle,
5841 struct pt_regs *regs, u64 mask)
5842{
5843 int bit;
29dd3288 5844 DECLARE_BITMAP(_mask, 64);
4018994f 5845
29dd3288
MS
5846 bitmap_from_u64(_mask, mask);
5847 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
4018994f
JO
5848 u64 val;
5849
5850 val = perf_reg_value(regs, bit);
5851 perf_output_put(handle, val);
5852 }
5853}
5854
60e2364e 5855static void perf_sample_regs_user(struct perf_regs *regs_user,
88a7c26a
AL
5856 struct pt_regs *regs,
5857 struct pt_regs *regs_user_copy)
4018994f 5858{
88a7c26a
AL
5859 if (user_mode(regs)) {
5860 regs_user->abi = perf_reg_abi(current);
2565711f 5861 regs_user->regs = regs;
88a7c26a
AL
5862 } else if (current->mm) {
5863 perf_get_regs_user(regs_user, regs, regs_user_copy);
2565711f
PZ
5864 } else {
5865 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5866 regs_user->regs = NULL;
4018994f
JO
5867 }
5868}
5869
60e2364e
SE
5870static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5871 struct pt_regs *regs)
5872{
5873 regs_intr->regs = regs;
5874 regs_intr->abi = perf_reg_abi(current);
5875}
5876
5877
c5ebcedb
JO
5878/*
5879 * Get remaining task size from user stack pointer.
5880 *
5881 * It'd be better to take stack vma map and limit this more
5882 * precisly, but there's no way to get it safely under interrupt,
5883 * so using TASK_SIZE as limit.
5884 */
5885static u64 perf_ustack_task_size(struct pt_regs *regs)
5886{
5887 unsigned long addr = perf_user_stack_pointer(regs);
5888
5889 if (!addr || addr >= TASK_SIZE)
5890 return 0;
5891
5892 return TASK_SIZE - addr;
5893}
5894
5895static u16
5896perf_sample_ustack_size(u16 stack_size, u16 header_size,
5897 struct pt_regs *regs)
5898{
5899 u64 task_size;
5900
5901 /* No regs, no stack pointer, no dump. */
5902 if (!regs)
5903 return 0;
5904
5905 /*
5906 * Check if we fit in with the requested stack size into the:
5907 * - TASK_SIZE
5908 * If we don't, we limit the size to the TASK_SIZE.
5909 *
5910 * - remaining sample size
5911 * If we don't, we customize the stack size to
5912 * fit in to the remaining sample size.
5913 */
5914
5915 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5916 stack_size = min(stack_size, (u16) task_size);
5917
5918 /* Current header size plus static size and dynamic size. */
5919 header_size += 2 * sizeof(u64);
5920
5921 /* Do we fit in with the current stack dump size? */
5922 if ((u16) (header_size + stack_size) < header_size) {
5923 /*
5924 * If we overflow the maximum size for the sample,
5925 * we customize the stack dump size to fit in.
5926 */
5927 stack_size = USHRT_MAX - header_size - sizeof(u64);
5928 stack_size = round_up(stack_size, sizeof(u64));
5929 }
5930
5931 return stack_size;
5932}
5933
5934static void
5935perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5936 struct pt_regs *regs)
5937{
5938 /* Case of a kernel thread, nothing to dump */
5939 if (!regs) {
5940 u64 size = 0;
5941 perf_output_put(handle, size);
5942 } else {
5943 unsigned long sp;
5944 unsigned int rem;
5945 u64 dyn_size;
02e18447 5946 mm_segment_t fs;
c5ebcedb
JO
5947
5948 /*
5949 * We dump:
5950 * static size
5951 * - the size requested by user or the best one we can fit
5952 * in to the sample max size
5953 * data
5954 * - user stack dump data
5955 * dynamic size
5956 * - the actual dumped size
5957 */
5958
5959 /* Static size. */
5960 perf_output_put(handle, dump_size);
5961
5962 /* Data. */
5963 sp = perf_user_stack_pointer(regs);
02e18447
YC
5964 fs = get_fs();
5965 set_fs(USER_DS);
c5ebcedb 5966 rem = __output_copy_user(handle, (void *) sp, dump_size);
02e18447 5967 set_fs(fs);
c5ebcedb
JO
5968 dyn_size = dump_size - rem;
5969
5970 perf_output_skip(handle, rem);
5971
5972 /* Dynamic size. */
5973 perf_output_put(handle, dyn_size);
5974 }
5975}
5976
c980d109
ACM
5977static void __perf_event_header__init_id(struct perf_event_header *header,
5978 struct perf_sample_data *data,
5979 struct perf_event *event)
6844c09d
ACM
5980{
5981 u64 sample_type = event->attr.sample_type;
5982
5983 data->type = sample_type;
5984 header->size += event->id_header_size;
5985
5986 if (sample_type & PERF_SAMPLE_TID) {
5987 /* namespace issues */
5988 data->tid_entry.pid = perf_event_pid(event, current);
5989 data->tid_entry.tid = perf_event_tid(event, current);
5990 }
5991
5992 if (sample_type & PERF_SAMPLE_TIME)
34f43927 5993 data->time = perf_event_clock(event);
6844c09d 5994
ff3d527c 5995 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6844c09d
ACM
5996 data->id = primary_event_id(event);
5997
5998 if (sample_type & PERF_SAMPLE_STREAM_ID)
5999 data->stream_id = event->id;
6000
6001 if (sample_type & PERF_SAMPLE_CPU) {
6002 data->cpu_entry.cpu = raw_smp_processor_id();
6003 data->cpu_entry.reserved = 0;
6004 }
6005}
6006
76369139
FW
6007void perf_event_header__init_id(struct perf_event_header *header,
6008 struct perf_sample_data *data,
6009 struct perf_event *event)
c980d109
ACM
6010{
6011 if (event->attr.sample_id_all)
6012 __perf_event_header__init_id(header, data, event);
6013}
6014
6015static void __perf_event__output_id_sample(struct perf_output_handle *handle,
6016 struct perf_sample_data *data)
6017{
6018 u64 sample_type = data->type;
6019
6020 if (sample_type & PERF_SAMPLE_TID)
6021 perf_output_put(handle, data->tid_entry);
6022
6023 if (sample_type & PERF_SAMPLE_TIME)
6024 perf_output_put(handle, data->time);
6025
6026 if (sample_type & PERF_SAMPLE_ID)
6027 perf_output_put(handle, data->id);
6028
6029 if (sample_type & PERF_SAMPLE_STREAM_ID)
6030 perf_output_put(handle, data->stream_id);
6031
6032 if (sample_type & PERF_SAMPLE_CPU)
6033 perf_output_put(handle, data->cpu_entry);
ff3d527c
AH
6034
6035 if (sample_type & PERF_SAMPLE_IDENTIFIER)
6036 perf_output_put(handle, data->id);
c980d109
ACM
6037}
6038
76369139
FW
6039void perf_event__output_id_sample(struct perf_event *event,
6040 struct perf_output_handle *handle,
6041 struct perf_sample_data *sample)
c980d109
ACM
6042{
6043 if (event->attr.sample_id_all)
6044 __perf_event__output_id_sample(handle, sample);
6045}
6046
3dab77fb 6047static void perf_output_read_one(struct perf_output_handle *handle,
eed01528
SE
6048 struct perf_event *event,
6049 u64 enabled, u64 running)
3dab77fb 6050{
cdd6c482 6051 u64 read_format = event->attr.read_format;
3dab77fb
PZ
6052 u64 values[4];
6053 int n = 0;
6054
b5e58793 6055 values[n++] = perf_event_count(event);
3dab77fb 6056 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
eed01528 6057 values[n++] = enabled +
cdd6c482 6058 atomic64_read(&event->child_total_time_enabled);
3dab77fb
PZ
6059 }
6060 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
eed01528 6061 values[n++] = running +
cdd6c482 6062 atomic64_read(&event->child_total_time_running);
3dab77fb
PZ
6063 }
6064 if (read_format & PERF_FORMAT_ID)
cdd6c482 6065 values[n++] = primary_event_id(event);
3dab77fb 6066
76369139 6067 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
6068}
6069
3dab77fb 6070static void perf_output_read_group(struct perf_output_handle *handle,
eed01528
SE
6071 struct perf_event *event,
6072 u64 enabled, u64 running)
3dab77fb 6073{
cdd6c482
IM
6074 struct perf_event *leader = event->group_leader, *sub;
6075 u64 read_format = event->attr.read_format;
3dab77fb
PZ
6076 u64 values[5];
6077 int n = 0;
6078
6079 values[n++] = 1 + leader->nr_siblings;
6080
6081 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
eed01528 6082 values[n++] = enabled;
3dab77fb
PZ
6083
6084 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
eed01528 6085 values[n++] = running;
3dab77fb 6086
9e5b127d
PZ
6087 if ((leader != event) &&
6088 (leader->state == PERF_EVENT_STATE_ACTIVE))
3dab77fb
PZ
6089 leader->pmu->read(leader);
6090
b5e58793 6091 values[n++] = perf_event_count(leader);
3dab77fb 6092 if (read_format & PERF_FORMAT_ID)
cdd6c482 6093 values[n++] = primary_event_id(leader);
3dab77fb 6094
76369139 6095 __output_copy(handle, values, n * sizeof(u64));
3dab77fb 6096
edb39592 6097 for_each_sibling_event(sub, leader) {
3dab77fb
PZ
6098 n = 0;
6099
6f5ab001
JO
6100 if ((sub != event) &&
6101 (sub->state == PERF_EVENT_STATE_ACTIVE))
3dab77fb
PZ
6102 sub->pmu->read(sub);
6103
b5e58793 6104 values[n++] = perf_event_count(sub);
3dab77fb 6105 if (read_format & PERF_FORMAT_ID)
cdd6c482 6106 values[n++] = primary_event_id(sub);
3dab77fb 6107
76369139 6108 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
6109 }
6110}
6111
eed01528
SE
6112#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
6113 PERF_FORMAT_TOTAL_TIME_RUNNING)
6114
ba5213ae
PZ
6115/*
6116 * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
6117 *
6118 * The problem is that its both hard and excessively expensive to iterate the
6119 * child list, not to mention that its impossible to IPI the children running
6120 * on another CPU, from interrupt/NMI context.
6121 */
3dab77fb 6122static void perf_output_read(struct perf_output_handle *handle,
cdd6c482 6123 struct perf_event *event)
3dab77fb 6124{
e3f3541c 6125 u64 enabled = 0, running = 0, now;
eed01528
SE
6126 u64 read_format = event->attr.read_format;
6127
6128 /*
6129 * compute total_time_enabled, total_time_running
6130 * based on snapshot values taken when the event
6131 * was last scheduled in.
6132 *
6133 * we cannot simply called update_context_time()
6134 * because of locking issue as we are called in
6135 * NMI context
6136 */
c4794295 6137 if (read_format & PERF_FORMAT_TOTAL_TIMES)
e3f3541c 6138 calc_timer_values(event, &now, &enabled, &running);
eed01528 6139
cdd6c482 6140 if (event->attr.read_format & PERF_FORMAT_GROUP)
eed01528 6141 perf_output_read_group(handle, event, enabled, running);
3dab77fb 6142 else
eed01528 6143 perf_output_read_one(handle, event, enabled, running);
3dab77fb
PZ
6144}
6145
5622f295
MM
6146void perf_output_sample(struct perf_output_handle *handle,
6147 struct perf_event_header *header,
6148 struct perf_sample_data *data,
cdd6c482 6149 struct perf_event *event)
5622f295
MM
6150{
6151 u64 sample_type = data->type;
6152
6153 perf_output_put(handle, *header);
6154
ff3d527c
AH
6155 if (sample_type & PERF_SAMPLE_IDENTIFIER)
6156 perf_output_put(handle, data->id);
6157
5622f295
MM
6158 if (sample_type & PERF_SAMPLE_IP)
6159 perf_output_put(handle, data->ip);
6160
6161 if (sample_type & PERF_SAMPLE_TID)
6162 perf_output_put(handle, data->tid_entry);
6163
6164 if (sample_type & PERF_SAMPLE_TIME)
6165 perf_output_put(handle, data->time);
6166
6167 if (sample_type & PERF_SAMPLE_ADDR)
6168 perf_output_put(handle, data->addr);
6169
6170 if (sample_type & PERF_SAMPLE_ID)
6171 perf_output_put(handle, data->id);
6172
6173 if (sample_type & PERF_SAMPLE_STREAM_ID)
6174 perf_output_put(handle, data->stream_id);
6175
6176 if (sample_type & PERF_SAMPLE_CPU)
6177 perf_output_put(handle, data->cpu_entry);
6178
6179 if (sample_type & PERF_SAMPLE_PERIOD)
6180 perf_output_put(handle, data->period);
6181
6182 if (sample_type & PERF_SAMPLE_READ)
cdd6c482 6183 perf_output_read(handle, event);
5622f295
MM
6184
6185 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
99e818cc 6186 int size = 1;
5622f295 6187
99e818cc
JO
6188 size += data->callchain->nr;
6189 size *= sizeof(u64);
6190 __output_copy(handle, data->callchain, size);
5622f295
MM
6191 }
6192
6193 if (sample_type & PERF_SAMPLE_RAW) {
7e3f977e
DB
6194 struct perf_raw_record *raw = data->raw;
6195
6196 if (raw) {
6197 struct perf_raw_frag *frag = &raw->frag;
6198
6199 perf_output_put(handle, raw->size);
6200 do {
6201 if (frag->copy) {
6202 __output_custom(handle, frag->copy,
6203 frag->data, frag->size);
6204 } else {
6205 __output_copy(handle, frag->data,
6206 frag->size);
6207 }
6208 if (perf_raw_frag_last(frag))
6209 break;
6210 frag = frag->next;
6211 } while (1);
6212 if (frag->pad)
6213 __output_skip(handle, NULL, frag->pad);
5622f295
MM
6214 } else {
6215 struct {
6216 u32 size;
6217 u32 data;
6218 } raw = {
6219 .size = sizeof(u32),
6220 .data = 0,
6221 };
6222 perf_output_put(handle, raw);
6223 }
6224 }
a7ac67ea 6225
bce38cd5
SE
6226 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6227 if (data->br_stack) {
6228 size_t size;
6229
6230 size = data->br_stack->nr
6231 * sizeof(struct perf_branch_entry);
6232
6233 perf_output_put(handle, data->br_stack->nr);
6234 perf_output_copy(handle, data->br_stack->entries, size);
6235 } else {
6236 /*
6237 * we always store at least the value of nr
6238 */
6239 u64 nr = 0;
6240 perf_output_put(handle, nr);
6241 }
6242 }
4018994f
JO
6243
6244 if (sample_type & PERF_SAMPLE_REGS_USER) {
6245 u64 abi = data->regs_user.abi;
6246
6247 /*
6248 * If there are no regs to dump, notice it through
6249 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6250 */
6251 perf_output_put(handle, abi);
6252
6253 if (abi) {
6254 u64 mask = event->attr.sample_regs_user;
6255 perf_output_sample_regs(handle,
6256 data->regs_user.regs,
6257 mask);
6258 }
6259 }
c5ebcedb 6260
a5cdd40c 6261 if (sample_type & PERF_SAMPLE_STACK_USER) {
c5ebcedb
JO
6262 perf_output_sample_ustack(handle,
6263 data->stack_user_size,
6264 data->regs_user.regs);
a5cdd40c 6265 }
c3feedf2
AK
6266
6267 if (sample_type & PERF_SAMPLE_WEIGHT)
6268 perf_output_put(handle, data->weight);
d6be9ad6
SE
6269
6270 if (sample_type & PERF_SAMPLE_DATA_SRC)
6271 perf_output_put(handle, data->data_src.val);
a5cdd40c 6272
fdfbbd07
AK
6273 if (sample_type & PERF_SAMPLE_TRANSACTION)
6274 perf_output_put(handle, data->txn);
6275
60e2364e
SE
6276 if (sample_type & PERF_SAMPLE_REGS_INTR) {
6277 u64 abi = data->regs_intr.abi;
6278 /*
6279 * If there are no regs to dump, notice it through
6280 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6281 */
6282 perf_output_put(handle, abi);
6283
6284 if (abi) {
6285 u64 mask = event->attr.sample_regs_intr;
6286
6287 perf_output_sample_regs(handle,
6288 data->regs_intr.regs,
6289 mask);
6290 }
6291 }
6292
fc7ce9c7
KL
6293 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6294 perf_output_put(handle, data->phys_addr);
6295
a5cdd40c
PZ
6296 if (!event->attr.watermark) {
6297 int wakeup_events = event->attr.wakeup_events;
6298
6299 if (wakeup_events) {
6300 struct ring_buffer *rb = handle->rb;
6301 int events = local_inc_return(&rb->events);
6302
6303 if (events >= wakeup_events) {
6304 local_sub(wakeup_events, &rb->events);
6305 local_inc(&rb->wakeup);
6306 }
6307 }
6308 }
5622f295
MM
6309}
6310
fc7ce9c7
KL
6311static u64 perf_virt_to_phys(u64 virt)
6312{
6313 u64 phys_addr = 0;
6314 struct page *p = NULL;
6315
6316 if (!virt)
6317 return 0;
6318
6319 if (virt >= TASK_SIZE) {
6320 /* If it's vmalloc()d memory, leave phys_addr as 0 */
6321 if (virt_addr_valid((void *)(uintptr_t)virt) &&
6322 !(virt >= VMALLOC_START && virt < VMALLOC_END))
6323 phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
6324 } else {
6325 /*
6326 * Walking the pages tables for user address.
6327 * Interrupts are disabled, so it prevents any tear down
6328 * of the page tables.
6329 * Try IRQ-safe __get_user_pages_fast first.
6330 * If failed, leave phys_addr as 0.
6331 */
6332 if ((current->mm != NULL) &&
6333 (__get_user_pages_fast(virt, 1, 0, &p) == 1))
6334 phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
6335
6336 if (p)
6337 put_page(p);
6338 }
6339
6340 return phys_addr;
6341}
6342
99e818cc
JO
6343static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
6344
6cbc304f 6345struct perf_callchain_entry *
8cf7e0e2
JO
6346perf_callchain(struct perf_event *event, struct pt_regs *regs)
6347{
6348 bool kernel = !event->attr.exclude_callchain_kernel;
6349 bool user = !event->attr.exclude_callchain_user;
6350 /* Disallow cross-task user callchains. */
6351 bool crosstask = event->ctx->task && event->ctx->task != current;
6352 const u32 max_stack = event->attr.sample_max_stack;
99e818cc 6353 struct perf_callchain_entry *callchain;
8cf7e0e2
JO
6354
6355 if (!kernel && !user)
99e818cc 6356 return &__empty_callchain;
8cf7e0e2 6357
99e818cc
JO
6358 callchain = get_perf_callchain(regs, 0, kernel, user,
6359 max_stack, crosstask, true);
6360 return callchain ?: &__empty_callchain;
8cf7e0e2
JO
6361}
6362
5622f295
MM
6363void perf_prepare_sample(struct perf_event_header *header,
6364 struct perf_sample_data *data,
cdd6c482 6365 struct perf_event *event,
5622f295 6366 struct pt_regs *regs)
7b732a75 6367{
cdd6c482 6368 u64 sample_type = event->attr.sample_type;
7b732a75 6369
cdd6c482 6370 header->type = PERF_RECORD_SAMPLE;
c320c7b7 6371 header->size = sizeof(*header) + event->header_size;
5622f295
MM
6372
6373 header->misc = 0;
6374 header->misc |= perf_misc_flags(regs);
6fab0192 6375
c980d109 6376 __perf_event_header__init_id(header, data, event);
6844c09d 6377
c320c7b7 6378 if (sample_type & PERF_SAMPLE_IP)
5622f295
MM
6379 data->ip = perf_instruction_pointer(regs);
6380
b23f3325 6381 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5622f295 6382 int size = 1;
394ee076 6383
6cbc304f
PZ
6384 if (!(sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY))
6385 data->callchain = perf_callchain(event, regs);
6386
99e818cc 6387 size += data->callchain->nr;
5622f295
MM
6388
6389 header->size += size * sizeof(u64);
394ee076
PZ
6390 }
6391
3a43ce68 6392 if (sample_type & PERF_SAMPLE_RAW) {
7e3f977e
DB
6393 struct perf_raw_record *raw = data->raw;
6394 int size;
6395
6396 if (raw) {
6397 struct perf_raw_frag *frag = &raw->frag;
6398 u32 sum = 0;
6399
6400 do {
6401 sum += frag->size;
6402 if (perf_raw_frag_last(frag))
6403 break;
6404 frag = frag->next;
6405 } while (1);
6406
6407 size = round_up(sum + sizeof(u32), sizeof(u64));
6408 raw->size = size - sizeof(u32);
6409 frag->pad = raw->size - sum;
6410 } else {
6411 size = sizeof(u64);
6412 }
a044560c 6413
7e3f977e 6414 header->size += size;
7f453c24 6415 }
bce38cd5
SE
6416
6417 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6418 int size = sizeof(u64); /* nr */
6419 if (data->br_stack) {
6420 size += data->br_stack->nr
6421 * sizeof(struct perf_branch_entry);
6422 }
6423 header->size += size;
6424 }
4018994f 6425
2565711f 6426 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
88a7c26a
AL
6427 perf_sample_regs_user(&data->regs_user, regs,
6428 &data->regs_user_copy);
2565711f 6429
4018994f
JO
6430 if (sample_type & PERF_SAMPLE_REGS_USER) {
6431 /* regs dump ABI info */
6432 int size = sizeof(u64);
6433
4018994f
JO
6434 if (data->regs_user.regs) {
6435 u64 mask = event->attr.sample_regs_user;
6436 size += hweight64(mask) * sizeof(u64);
6437 }
6438
6439 header->size += size;
6440 }
c5ebcedb
JO
6441
6442 if (sample_type & PERF_SAMPLE_STACK_USER) {
6443 /*
6444 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
6445 * processed as the last one or have additional check added
6446 * in case new sample type is added, because we could eat
6447 * up the rest of the sample size.
6448 */
c5ebcedb
JO
6449 u16 stack_size = event->attr.sample_stack_user;
6450 u16 size = sizeof(u64);
6451
c5ebcedb 6452 stack_size = perf_sample_ustack_size(stack_size, header->size,
2565711f 6453 data->regs_user.regs);
c5ebcedb
JO
6454
6455 /*
6456 * If there is something to dump, add space for the dump
6457 * itself and for the field that tells the dynamic size,
6458 * which is how many have been actually dumped.
6459 */
6460 if (stack_size)
6461 size += sizeof(u64) + stack_size;
6462
6463 data->stack_user_size = stack_size;
6464 header->size += size;
6465 }
60e2364e
SE
6466
6467 if (sample_type & PERF_SAMPLE_REGS_INTR) {
6468 /* regs dump ABI info */
6469 int size = sizeof(u64);
6470
6471 perf_sample_regs_intr(&data->regs_intr, regs);
6472
6473 if (data->regs_intr.regs) {
6474 u64 mask = event->attr.sample_regs_intr;
6475
6476 size += hweight64(mask) * sizeof(u64);
6477 }
6478
6479 header->size += size;
6480 }
fc7ce9c7
KL
6481
6482 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6483 data->phys_addr = perf_virt_to_phys(data->addr);
5622f295 6484}
7f453c24 6485
93315101 6486static __always_inline void
9ecda41a
WN
6487__perf_event_output(struct perf_event *event,
6488 struct perf_sample_data *data,
6489 struct pt_regs *regs,
6490 int (*output_begin)(struct perf_output_handle *,
6491 struct perf_event *,
6492 unsigned int))
5622f295
MM
6493{
6494 struct perf_output_handle handle;
6495 struct perf_event_header header;
689802b2 6496
927c7a9e
FW
6497 /* protect the callchain buffers */
6498 rcu_read_lock();
6499
cdd6c482 6500 perf_prepare_sample(&header, data, event, regs);
5c148194 6501
9ecda41a 6502 if (output_begin(&handle, event, header.size))
927c7a9e 6503 goto exit;
0322cd6e 6504
cdd6c482 6505 perf_output_sample(&handle, &header, data, event);
f413cdb8 6506
8a057d84 6507 perf_output_end(&handle);
927c7a9e
FW
6508
6509exit:
6510 rcu_read_unlock();
0322cd6e
PZ
6511}
6512
9ecda41a
WN
6513void
6514perf_event_output_forward(struct perf_event *event,
6515 struct perf_sample_data *data,
6516 struct pt_regs *regs)
6517{
6518 __perf_event_output(event, data, regs, perf_output_begin_forward);
6519}
6520
6521void
6522perf_event_output_backward(struct perf_event *event,
6523 struct perf_sample_data *data,
6524 struct pt_regs *regs)
6525{
6526 __perf_event_output(event, data, regs, perf_output_begin_backward);
6527}
6528
6529void
6530perf_event_output(struct perf_event *event,
6531 struct perf_sample_data *data,
6532 struct pt_regs *regs)
6533{
6534 __perf_event_output(event, data, regs, perf_output_begin);
6535}
6536
38b200d6 6537/*
cdd6c482 6538 * read event_id
38b200d6
PZ
6539 */
6540
6541struct perf_read_event {
6542 struct perf_event_header header;
6543
6544 u32 pid;
6545 u32 tid;
38b200d6
PZ
6546};
6547
6548static void
cdd6c482 6549perf_event_read_event(struct perf_event *event,
38b200d6
PZ
6550 struct task_struct *task)
6551{
6552 struct perf_output_handle handle;
c980d109 6553 struct perf_sample_data sample;
dfc65094 6554 struct perf_read_event read_event = {
38b200d6 6555 .header = {
cdd6c482 6556 .type = PERF_RECORD_READ,
38b200d6 6557 .misc = 0,
c320c7b7 6558 .size = sizeof(read_event) + event->read_size,
38b200d6 6559 },
cdd6c482
IM
6560 .pid = perf_event_pid(event, task),
6561 .tid = perf_event_tid(event, task),
38b200d6 6562 };
3dab77fb 6563 int ret;
38b200d6 6564
c980d109 6565 perf_event_header__init_id(&read_event.header, &sample, event);
a7ac67ea 6566 ret = perf_output_begin(&handle, event, read_event.header.size);
38b200d6
PZ
6567 if (ret)
6568 return;
6569
dfc65094 6570 perf_output_put(&handle, read_event);
cdd6c482 6571 perf_output_read(&handle, event);
c980d109 6572 perf_event__output_id_sample(event, &handle, &sample);
3dab77fb 6573
38b200d6
PZ
6574 perf_output_end(&handle);
6575}
6576
aab5b71e 6577typedef void (perf_iterate_f)(struct perf_event *event, void *data);
52d857a8
JO
6578
6579static void
aab5b71e
PZ
6580perf_iterate_ctx(struct perf_event_context *ctx,
6581 perf_iterate_f output,
b73e4fef 6582 void *data, bool all)
52d857a8
JO
6583{
6584 struct perf_event *event;
6585
6586 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
b73e4fef
AS
6587 if (!all) {
6588 if (event->state < PERF_EVENT_STATE_INACTIVE)
6589 continue;
6590 if (!event_filter_match(event))
6591 continue;
6592 }
6593
67516844 6594 output(event, data);
52d857a8
JO
6595 }
6596}
6597
aab5b71e 6598static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
f2fb6bef
KL
6599{
6600 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
6601 struct perf_event *event;
6602
6603 list_for_each_entry_rcu(event, &pel->list, sb_list) {
0b8f1e2e
PZ
6604 /*
6605 * Skip events that are not fully formed yet; ensure that
6606 * if we observe event->ctx, both event and ctx will be
6607 * complete enough. See perf_install_in_context().
6608 */
6609 if (!smp_load_acquire(&event->ctx))
6610 continue;
6611
f2fb6bef
KL
6612 if (event->state < PERF_EVENT_STATE_INACTIVE)
6613 continue;
6614 if (!event_filter_match(event))
6615 continue;
6616 output(event, data);
6617 }
6618}
6619
aab5b71e
PZ
6620/*
6621 * Iterate all events that need to receive side-band events.
6622 *
6623 * For new callers; ensure that account_pmu_sb_event() includes
6624 * your event, otherwise it might not get delivered.
6625 */
52d857a8 6626static void
aab5b71e 6627perf_iterate_sb(perf_iterate_f output, void *data,
52d857a8
JO
6628 struct perf_event_context *task_ctx)
6629{
52d857a8 6630 struct perf_event_context *ctx;
52d857a8
JO
6631 int ctxn;
6632
aab5b71e
PZ
6633 rcu_read_lock();
6634 preempt_disable();
6635
4e93ad60 6636 /*
aab5b71e
PZ
6637 * If we have task_ctx != NULL we only notify the task context itself.
6638 * The task_ctx is set only for EXIT events before releasing task
4e93ad60
JO
6639 * context.
6640 */
6641 if (task_ctx) {
aab5b71e
PZ
6642 perf_iterate_ctx(task_ctx, output, data, false);
6643 goto done;
4e93ad60
JO
6644 }
6645
aab5b71e 6646 perf_iterate_sb_cpu(output, data);
f2fb6bef
KL
6647
6648 for_each_task_context_nr(ctxn) {
52d857a8
JO
6649 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6650 if (ctx)
aab5b71e 6651 perf_iterate_ctx(ctx, output, data, false);
52d857a8 6652 }
aab5b71e 6653done:
f2fb6bef 6654 preempt_enable();
52d857a8 6655 rcu_read_unlock();
95ff4ca2
AS
6656}
6657
375637bc
AS
6658/*
6659 * Clear all file-based filters at exec, they'll have to be
6660 * re-instated when/if these objects are mmapped again.
6661 */
6662static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
6663{
6664 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6665 struct perf_addr_filter *filter;
6666 unsigned int restart = 0, count = 0;
6667 unsigned long flags;
6668
6669 if (!has_addr_filter(event))
6670 return;
6671
6672 raw_spin_lock_irqsave(&ifh->lock, flags);
6673 list_for_each_entry(filter, &ifh->list, entry) {
9511bce9 6674 if (filter->path.dentry) {
375637bc
AS
6675 event->addr_filters_offs[count] = 0;
6676 restart++;
6677 }
6678
6679 count++;
6680 }
6681
6682 if (restart)
6683 event->addr_filters_gen++;
6684 raw_spin_unlock_irqrestore(&ifh->lock, flags);
6685
6686 if (restart)
767ae086 6687 perf_event_stop(event, 1);
375637bc
AS
6688}
6689
6690void perf_event_exec(void)
6691{
6692 struct perf_event_context *ctx;
6693 int ctxn;
6694
6695 rcu_read_lock();
6696 for_each_task_context_nr(ctxn) {
6697 ctx = current->perf_event_ctxp[ctxn];
6698 if (!ctx)
6699 continue;
6700
6701 perf_event_enable_on_exec(ctxn);
6702
aab5b71e 6703 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
375637bc
AS
6704 true);
6705 }
6706 rcu_read_unlock();
6707}
6708
95ff4ca2
AS
6709struct remote_output {
6710 struct ring_buffer *rb;
6711 int err;
6712};
6713
6714static void __perf_event_output_stop(struct perf_event *event, void *data)
6715{
6716 struct perf_event *parent = event->parent;
6717 struct remote_output *ro = data;
6718 struct ring_buffer *rb = ro->rb;
375637bc
AS
6719 struct stop_event_data sd = {
6720 .event = event,
6721 };
95ff4ca2
AS
6722
6723 if (!has_aux(event))
6724 return;
6725
6726 if (!parent)
6727 parent = event;
6728
6729 /*
6730 * In case of inheritance, it will be the parent that links to the
767ae086
AS
6731 * ring-buffer, but it will be the child that's actually using it.
6732 *
6733 * We are using event::rb to determine if the event should be stopped,
6734 * however this may race with ring_buffer_attach() (through set_output),
6735 * which will make us skip the event that actually needs to be stopped.
6736 * So ring_buffer_attach() has to stop an aux event before re-assigning
6737 * its rb pointer.
95ff4ca2
AS
6738 */
6739 if (rcu_dereference(parent->rb) == rb)
375637bc 6740 ro->err = __perf_event_stop(&sd);
95ff4ca2
AS
6741}
6742
6743static int __perf_pmu_output_stop(void *info)
6744{
6745 struct perf_event *event = info;
6746 struct pmu *pmu = event->pmu;
8b6a3fe8 6747 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
95ff4ca2
AS
6748 struct remote_output ro = {
6749 .rb = event->rb,
6750 };
6751
6752 rcu_read_lock();
aab5b71e 6753 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
95ff4ca2 6754 if (cpuctx->task_ctx)
aab5b71e 6755 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
b73e4fef 6756 &ro, false);
95ff4ca2
AS
6757 rcu_read_unlock();
6758
6759 return ro.err;
6760}
6761
6762static void perf_pmu_output_stop(struct perf_event *event)
6763{
6764 struct perf_event *iter;
6765 int err, cpu;
6766
6767restart:
6768 rcu_read_lock();
6769 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6770 /*
6771 * For per-CPU events, we need to make sure that neither they
6772 * nor their children are running; for cpu==-1 events it's
6773 * sufficient to stop the event itself if it's active, since
6774 * it can't have children.
6775 */
6776 cpu = iter->cpu;
6777 if (cpu == -1)
6778 cpu = READ_ONCE(iter->oncpu);
6779
6780 if (cpu == -1)
6781 continue;
6782
6783 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6784 if (err == -EAGAIN) {
6785 rcu_read_unlock();
6786 goto restart;
6787 }
6788 }
6789 rcu_read_unlock();
52d857a8
JO
6790}
6791
60313ebe 6792/*
9f498cc5
PZ
6793 * task tracking -- fork/exit
6794 *
13d7a241 6795 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
60313ebe
PZ
6796 */
6797
9f498cc5 6798struct perf_task_event {
3a80b4a3 6799 struct task_struct *task;
cdd6c482 6800 struct perf_event_context *task_ctx;
60313ebe
PZ
6801
6802 struct {
6803 struct perf_event_header header;
6804
6805 u32 pid;
6806 u32 ppid;
9f498cc5
PZ
6807 u32 tid;
6808 u32 ptid;
393b2ad8 6809 u64 time;
cdd6c482 6810 } event_id;
60313ebe
PZ
6811};
6812
67516844
JO
6813static int perf_event_task_match(struct perf_event *event)
6814{
13d7a241
SE
6815 return event->attr.comm || event->attr.mmap ||
6816 event->attr.mmap2 || event->attr.mmap_data ||
6817 event->attr.task;
67516844
JO
6818}
6819
cdd6c482 6820static void perf_event_task_output(struct perf_event *event,
52d857a8 6821 void *data)
60313ebe 6822{
52d857a8 6823 struct perf_task_event *task_event = data;
60313ebe 6824 struct perf_output_handle handle;
c980d109 6825 struct perf_sample_data sample;
9f498cc5 6826 struct task_struct *task = task_event->task;
c980d109 6827 int ret, size = task_event->event_id.header.size;
8bb39f9a 6828
67516844
JO
6829 if (!perf_event_task_match(event))
6830 return;
6831
c980d109 6832 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
60313ebe 6833
c980d109 6834 ret = perf_output_begin(&handle, event,
a7ac67ea 6835 task_event->event_id.header.size);
ef60777c 6836 if (ret)
c980d109 6837 goto out;
60313ebe 6838
cdd6c482
IM
6839 task_event->event_id.pid = perf_event_pid(event, task);
6840 task_event->event_id.ppid = perf_event_pid(event, current);
60313ebe 6841
cdd6c482
IM
6842 task_event->event_id.tid = perf_event_tid(event, task);
6843 task_event->event_id.ptid = perf_event_tid(event, current);
9f498cc5 6844
34f43927
PZ
6845 task_event->event_id.time = perf_event_clock(event);
6846
cdd6c482 6847 perf_output_put(&handle, task_event->event_id);
393b2ad8 6848
c980d109
ACM
6849 perf_event__output_id_sample(event, &handle, &sample);
6850
60313ebe 6851 perf_output_end(&handle);
c980d109
ACM
6852out:
6853 task_event->event_id.header.size = size;
60313ebe
PZ
6854}
6855
cdd6c482
IM
6856static void perf_event_task(struct task_struct *task,
6857 struct perf_event_context *task_ctx,
3a80b4a3 6858 int new)
60313ebe 6859{
9f498cc5 6860 struct perf_task_event task_event;
60313ebe 6861
cdd6c482
IM
6862 if (!atomic_read(&nr_comm_events) &&
6863 !atomic_read(&nr_mmap_events) &&
6864 !atomic_read(&nr_task_events))
60313ebe
PZ
6865 return;
6866
9f498cc5 6867 task_event = (struct perf_task_event){
3a80b4a3
PZ
6868 .task = task,
6869 .task_ctx = task_ctx,
cdd6c482 6870 .event_id = {
60313ebe 6871 .header = {
cdd6c482 6872 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
573402db 6873 .misc = 0,
cdd6c482 6874 .size = sizeof(task_event.event_id),
60313ebe 6875 },
573402db
PZ
6876 /* .pid */
6877 /* .ppid */
9f498cc5
PZ
6878 /* .tid */
6879 /* .ptid */
34f43927 6880 /* .time */
60313ebe
PZ
6881 },
6882 };
6883
aab5b71e 6884 perf_iterate_sb(perf_event_task_output,
52d857a8
JO
6885 &task_event,
6886 task_ctx);
9f498cc5
PZ
6887}
6888
cdd6c482 6889void perf_event_fork(struct task_struct *task)
9f498cc5 6890{
cdd6c482 6891 perf_event_task(task, NULL, 1);
e4222673 6892 perf_event_namespaces(task);
60313ebe
PZ
6893}
6894
8d1b2d93
PZ
6895/*
6896 * comm tracking
6897 */
6898
6899struct perf_comm_event {
22a4f650
IM
6900 struct task_struct *task;
6901 char *comm;
8d1b2d93
PZ
6902 int comm_size;
6903
6904 struct {
6905 struct perf_event_header header;
6906
6907 u32 pid;
6908 u32 tid;
cdd6c482 6909 } event_id;
8d1b2d93
PZ
6910};
6911
67516844
JO
6912static int perf_event_comm_match(struct perf_event *event)
6913{
6914 return event->attr.comm;
6915}
6916
cdd6c482 6917static void perf_event_comm_output(struct perf_event *event,
52d857a8 6918 void *data)
8d1b2d93 6919{
52d857a8 6920 struct perf_comm_event *comm_event = data;
8d1b2d93 6921 struct perf_output_handle handle;
c980d109 6922 struct perf_sample_data sample;
cdd6c482 6923 int size = comm_event->event_id.header.size;
c980d109
ACM
6924 int ret;
6925
67516844
JO
6926 if (!perf_event_comm_match(event))
6927 return;
6928
c980d109
ACM
6929 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
6930 ret = perf_output_begin(&handle, event,
a7ac67ea 6931 comm_event->event_id.header.size);
8d1b2d93
PZ
6932
6933 if (ret)
c980d109 6934 goto out;
8d1b2d93 6935
cdd6c482
IM
6936 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
6937 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
709e50cf 6938
cdd6c482 6939 perf_output_put(&handle, comm_event->event_id);
76369139 6940 __output_copy(&handle, comm_event->comm,
8d1b2d93 6941 comm_event->comm_size);
c980d109
ACM
6942
6943 perf_event__output_id_sample(event, &handle, &sample);
6944
8d1b2d93 6945 perf_output_end(&handle);
c980d109
ACM
6946out:
6947 comm_event->event_id.header.size = size;
8d1b2d93
PZ
6948}
6949
cdd6c482 6950static void perf_event_comm_event(struct perf_comm_event *comm_event)
8d1b2d93 6951{
413ee3b4 6952 char comm[TASK_COMM_LEN];
8d1b2d93 6953 unsigned int size;
8d1b2d93 6954
413ee3b4 6955 memset(comm, 0, sizeof(comm));
96b02d78 6956 strlcpy(comm, comm_event->task->comm, sizeof(comm));
888fcee0 6957 size = ALIGN(strlen(comm)+1, sizeof(u64));
8d1b2d93
PZ
6958
6959 comm_event->comm = comm;
6960 comm_event->comm_size = size;
6961
cdd6c482 6962 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
8dc85d54 6963
aab5b71e 6964 perf_iterate_sb(perf_event_comm_output,
52d857a8
JO
6965 comm_event,
6966 NULL);
8d1b2d93
PZ
6967}
6968
82b89778 6969void perf_event_comm(struct task_struct *task, bool exec)
8d1b2d93 6970{
9ee318a7
PZ
6971 struct perf_comm_event comm_event;
6972
cdd6c482 6973 if (!atomic_read(&nr_comm_events))
9ee318a7 6974 return;
a63eaf34 6975
9ee318a7 6976 comm_event = (struct perf_comm_event){
8d1b2d93 6977 .task = task,
573402db
PZ
6978 /* .comm */
6979 /* .comm_size */
cdd6c482 6980 .event_id = {
573402db 6981 .header = {
cdd6c482 6982 .type = PERF_RECORD_COMM,
82b89778 6983 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
573402db
PZ
6984 /* .size */
6985 },
6986 /* .pid */
6987 /* .tid */
8d1b2d93
PZ
6988 },
6989 };
6990
cdd6c482 6991 perf_event_comm_event(&comm_event);
8d1b2d93
PZ
6992}
6993
e4222673
HB
6994/*
6995 * namespaces tracking
6996 */
6997
6998struct perf_namespaces_event {
6999 struct task_struct *task;
7000
7001 struct {
7002 struct perf_event_header header;
7003
7004 u32 pid;
7005 u32 tid;
7006 u64 nr_namespaces;
7007 struct perf_ns_link_info link_info[NR_NAMESPACES];
7008 } event_id;
7009};
7010
7011static int perf_event_namespaces_match(struct perf_event *event)
7012{
7013 return event->attr.namespaces;
7014}
7015
7016static void perf_event_namespaces_output(struct perf_event *event,
7017 void *data)
7018{
7019 struct perf_namespaces_event *namespaces_event = data;
7020 struct perf_output_handle handle;
7021 struct perf_sample_data sample;
34900ec5 7022 u16 header_size = namespaces_event->event_id.header.size;
e4222673
HB
7023 int ret;
7024
7025 if (!perf_event_namespaces_match(event))
7026 return;
7027
7028 perf_event_header__init_id(&namespaces_event->event_id.header,
7029 &sample, event);
7030 ret = perf_output_begin(&handle, event,
7031 namespaces_event->event_id.header.size);
7032 if (ret)
34900ec5 7033 goto out;
e4222673
HB
7034
7035 namespaces_event->event_id.pid = perf_event_pid(event,
7036 namespaces_event->task);
7037 namespaces_event->event_id.tid = perf_event_tid(event,
7038 namespaces_event->task);
7039
7040 perf_output_put(&handle, namespaces_event->event_id);
7041
7042 perf_event__output_id_sample(event, &handle, &sample);
7043
7044 perf_output_end(&handle);
34900ec5
JO
7045out:
7046 namespaces_event->event_id.header.size = header_size;
e4222673
HB
7047}
7048
7049static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
7050 struct task_struct *task,
7051 const struct proc_ns_operations *ns_ops)
7052{
7053 struct path ns_path;
7054 struct inode *ns_inode;
7055 void *error;
7056
7057 error = ns_get_path(&ns_path, task, ns_ops);
7058 if (!error) {
7059 ns_inode = ns_path.dentry->d_inode;
7060 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
7061 ns_link_info->ino = ns_inode->i_ino;
0e18dd12 7062 path_put(&ns_path);
e4222673
HB
7063 }
7064}
7065
7066void perf_event_namespaces(struct task_struct *task)
7067{
7068 struct perf_namespaces_event namespaces_event;
7069 struct perf_ns_link_info *ns_link_info;
7070
7071 if (!atomic_read(&nr_namespaces_events))
7072 return;
7073
7074 namespaces_event = (struct perf_namespaces_event){
7075 .task = task,
7076 .event_id = {
7077 .header = {
7078 .type = PERF_RECORD_NAMESPACES,
7079 .misc = 0,
7080 .size = sizeof(namespaces_event.event_id),
7081 },
7082 /* .pid */
7083 /* .tid */
7084 .nr_namespaces = NR_NAMESPACES,
7085 /* .link_info[NR_NAMESPACES] */
7086 },
7087 };
7088
7089 ns_link_info = namespaces_event.event_id.link_info;
7090
7091 perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
7092 task, &mntns_operations);
7093
7094#ifdef CONFIG_USER_NS
7095 perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
7096 task, &userns_operations);
7097#endif
7098#ifdef CONFIG_NET_NS
7099 perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
7100 task, &netns_operations);
7101#endif
7102#ifdef CONFIG_UTS_NS
7103 perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
7104 task, &utsns_operations);
7105#endif
7106#ifdef CONFIG_IPC_NS
7107 perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
7108 task, &ipcns_operations);
7109#endif
7110#ifdef CONFIG_PID_NS
7111 perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
7112 task, &pidns_operations);
7113#endif
7114#ifdef CONFIG_CGROUPS
7115 perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
7116 task, &cgroupns_operations);
7117#endif
7118
7119 perf_iterate_sb(perf_event_namespaces_output,
7120 &namespaces_event,
7121 NULL);
7122}
7123
0a4a9391
PZ
7124/*
7125 * mmap tracking
7126 */
7127
7128struct perf_mmap_event {
089dd79d
PZ
7129 struct vm_area_struct *vma;
7130
7131 const char *file_name;
7132 int file_size;
13d7a241
SE
7133 int maj, min;
7134 u64 ino;
7135 u64 ino_generation;
f972eb63 7136 u32 prot, flags;
0a4a9391
PZ
7137
7138 struct {
7139 struct perf_event_header header;
7140
7141 u32 pid;
7142 u32 tid;
7143 u64 start;
7144 u64 len;
7145 u64 pgoff;
cdd6c482 7146 } event_id;
0a4a9391
PZ
7147};
7148
67516844
JO
7149static int perf_event_mmap_match(struct perf_event *event,
7150 void *data)
7151{
7152 struct perf_mmap_event *mmap_event = data;
7153 struct vm_area_struct *vma = mmap_event->vma;
7154 int executable = vma->vm_flags & VM_EXEC;
7155
7156 return (!executable && event->attr.mmap_data) ||
13d7a241 7157 (executable && (event->attr.mmap || event->attr.mmap2));
67516844
JO
7158}
7159
cdd6c482 7160static void perf_event_mmap_output(struct perf_event *event,
52d857a8 7161 void *data)
0a4a9391 7162{
52d857a8 7163 struct perf_mmap_event *mmap_event = data;
0a4a9391 7164 struct perf_output_handle handle;
c980d109 7165 struct perf_sample_data sample;
cdd6c482 7166 int size = mmap_event->event_id.header.size;
c980d109 7167 int ret;
0a4a9391 7168
67516844
JO
7169 if (!perf_event_mmap_match(event, data))
7170 return;
7171
13d7a241
SE
7172 if (event->attr.mmap2) {
7173 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
7174 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
7175 mmap_event->event_id.header.size += sizeof(mmap_event->min);
7176 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
d008d525 7177 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
f972eb63
PZ
7178 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
7179 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
13d7a241
SE
7180 }
7181
c980d109
ACM
7182 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
7183 ret = perf_output_begin(&handle, event,
a7ac67ea 7184 mmap_event->event_id.header.size);
0a4a9391 7185 if (ret)
c980d109 7186 goto out;
0a4a9391 7187
cdd6c482
IM
7188 mmap_event->event_id.pid = perf_event_pid(event, current);
7189 mmap_event->event_id.tid = perf_event_tid(event, current);
709e50cf 7190
cdd6c482 7191 perf_output_put(&handle, mmap_event->event_id);
13d7a241
SE
7192
7193 if (event->attr.mmap2) {
7194 perf_output_put(&handle, mmap_event->maj);
7195 perf_output_put(&handle, mmap_event->min);
7196 perf_output_put(&handle, mmap_event->ino);
7197 perf_output_put(&handle, mmap_event->ino_generation);
f972eb63
PZ
7198 perf_output_put(&handle, mmap_event->prot);
7199 perf_output_put(&handle, mmap_event->flags);
13d7a241
SE
7200 }
7201
76369139 7202 __output_copy(&handle, mmap_event->file_name,
0a4a9391 7203 mmap_event->file_size);
c980d109
ACM
7204
7205 perf_event__output_id_sample(event, &handle, &sample);
7206
78d613eb 7207 perf_output_end(&handle);
c980d109
ACM
7208out:
7209 mmap_event->event_id.header.size = size;
0a4a9391
PZ
7210}
7211
cdd6c482 7212static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
0a4a9391 7213{
089dd79d
PZ
7214 struct vm_area_struct *vma = mmap_event->vma;
7215 struct file *file = vma->vm_file;
13d7a241
SE
7216 int maj = 0, min = 0;
7217 u64 ino = 0, gen = 0;
f972eb63 7218 u32 prot = 0, flags = 0;
0a4a9391
PZ
7219 unsigned int size;
7220 char tmp[16];
7221 char *buf = NULL;
2c42cfbf 7222 char *name;
413ee3b4 7223
0b3589be
PZ
7224 if (vma->vm_flags & VM_READ)
7225 prot |= PROT_READ;
7226 if (vma->vm_flags & VM_WRITE)
7227 prot |= PROT_WRITE;
7228 if (vma->vm_flags & VM_EXEC)
7229 prot |= PROT_EXEC;
7230
7231 if (vma->vm_flags & VM_MAYSHARE)
7232 flags = MAP_SHARED;
7233 else
7234 flags = MAP_PRIVATE;
7235
7236 if (vma->vm_flags & VM_DENYWRITE)
7237 flags |= MAP_DENYWRITE;
7238 if (vma->vm_flags & VM_MAYEXEC)
7239 flags |= MAP_EXECUTABLE;
7240 if (vma->vm_flags & VM_LOCKED)
7241 flags |= MAP_LOCKED;
7242 if (vma->vm_flags & VM_HUGETLB)
7243 flags |= MAP_HUGETLB;
7244
0a4a9391 7245 if (file) {
13d7a241
SE
7246 struct inode *inode;
7247 dev_t dev;
3ea2f2b9 7248
2c42cfbf 7249 buf = kmalloc(PATH_MAX, GFP_KERNEL);
0a4a9391 7250 if (!buf) {
c7e548b4
ON
7251 name = "//enomem";
7252 goto cpy_name;
0a4a9391 7253 }
413ee3b4 7254 /*
3ea2f2b9 7255 * d_path() works from the end of the rb backwards, so we
413ee3b4
AB
7256 * need to add enough zero bytes after the string to handle
7257 * the 64bit alignment we do later.
7258 */
9bf39ab2 7259 name = file_path(file, buf, PATH_MAX - sizeof(u64));
0a4a9391 7260 if (IS_ERR(name)) {
c7e548b4
ON
7261 name = "//toolong";
7262 goto cpy_name;
0a4a9391 7263 }
13d7a241
SE
7264 inode = file_inode(vma->vm_file);
7265 dev = inode->i_sb->s_dev;
7266 ino = inode->i_ino;
7267 gen = inode->i_generation;
7268 maj = MAJOR(dev);
7269 min = MINOR(dev);
f972eb63 7270
c7e548b4 7271 goto got_name;
0a4a9391 7272 } else {
fbe26abe
JO
7273 if (vma->vm_ops && vma->vm_ops->name) {
7274 name = (char *) vma->vm_ops->name(vma);
7275 if (name)
7276 goto cpy_name;
7277 }
7278
2c42cfbf 7279 name = (char *)arch_vma_name(vma);
c7e548b4
ON
7280 if (name)
7281 goto cpy_name;
089dd79d 7282
32c5fb7e 7283 if (vma->vm_start <= vma->vm_mm->start_brk &&
3af9e859 7284 vma->vm_end >= vma->vm_mm->brk) {
c7e548b4
ON
7285 name = "[heap]";
7286 goto cpy_name;
32c5fb7e
ON
7287 }
7288 if (vma->vm_start <= vma->vm_mm->start_stack &&
3af9e859 7289 vma->vm_end >= vma->vm_mm->start_stack) {
c7e548b4
ON
7290 name = "[stack]";
7291 goto cpy_name;
089dd79d
PZ
7292 }
7293
c7e548b4
ON
7294 name = "//anon";
7295 goto cpy_name;
0a4a9391
PZ
7296 }
7297
c7e548b4
ON
7298cpy_name:
7299 strlcpy(tmp, name, sizeof(tmp));
7300 name = tmp;
0a4a9391 7301got_name:
2c42cfbf
PZ
7302 /*
7303 * Since our buffer works in 8 byte units we need to align our string
7304 * size to a multiple of 8. However, we must guarantee the tail end is
7305 * zero'd out to avoid leaking random bits to userspace.
7306 */
7307 size = strlen(name)+1;
7308 while (!IS_ALIGNED(size, sizeof(u64)))
7309 name[size++] = '\0';
0a4a9391
PZ
7310
7311 mmap_event->file_name = name;
7312 mmap_event->file_size = size;
13d7a241
SE
7313 mmap_event->maj = maj;
7314 mmap_event->min = min;
7315 mmap_event->ino = ino;
7316 mmap_event->ino_generation = gen;
f972eb63
PZ
7317 mmap_event->prot = prot;
7318 mmap_event->flags = flags;
0a4a9391 7319
2fe85427
SE
7320 if (!(vma->vm_flags & VM_EXEC))
7321 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
7322
cdd6c482 7323 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
0a4a9391 7324
aab5b71e 7325 perf_iterate_sb(perf_event_mmap_output,
52d857a8
JO
7326 mmap_event,
7327 NULL);
665c2142 7328
0a4a9391
PZ
7329 kfree(buf);
7330}
7331
375637bc
AS
7332/*
7333 * Check whether inode and address range match filter criteria.
7334 */
7335static bool perf_addr_filter_match(struct perf_addr_filter *filter,
7336 struct file *file, unsigned long offset,
7337 unsigned long size)
7338{
7f635ff1
MP
7339 /* d_inode(NULL) won't be equal to any mapped user-space file */
7340 if (!filter->path.dentry)
7341 return false;
7342
9511bce9 7343 if (d_inode(filter->path.dentry) != file_inode(file))
375637bc
AS
7344 return false;
7345
7346 if (filter->offset > offset + size)
7347 return false;
7348
7349 if (filter->offset + filter->size < offset)
7350 return false;
7351
7352 return true;
7353}
7354
7355static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
7356{
7357 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7358 struct vm_area_struct *vma = data;
7359 unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags;
7360 struct file *file = vma->vm_file;
7361 struct perf_addr_filter *filter;
7362 unsigned int restart = 0, count = 0;
7363
7364 if (!has_addr_filter(event))
7365 return;
7366
7367 if (!file)
7368 return;
7369
7370 raw_spin_lock_irqsave(&ifh->lock, flags);
7371 list_for_each_entry(filter, &ifh->list, entry) {
7372 if (perf_addr_filter_match(filter, file, off,
7373 vma->vm_end - vma->vm_start)) {
7374 event->addr_filters_offs[count] = vma->vm_start;
7375 restart++;
7376 }
7377
7378 count++;
7379 }
7380
7381 if (restart)
7382 event->addr_filters_gen++;
7383 raw_spin_unlock_irqrestore(&ifh->lock, flags);
7384
7385 if (restart)
767ae086 7386 perf_event_stop(event, 1);
375637bc
AS
7387}
7388
7389/*
7390 * Adjust all task's events' filters to the new vma
7391 */
7392static void perf_addr_filters_adjust(struct vm_area_struct *vma)
7393{
7394 struct perf_event_context *ctx;
7395 int ctxn;
7396
12b40a23
MP
7397 /*
7398 * Data tracing isn't supported yet and as such there is no need
7399 * to keep track of anything that isn't related to executable code:
7400 */
7401 if (!(vma->vm_flags & VM_EXEC))
7402 return;
7403
375637bc
AS
7404 rcu_read_lock();
7405 for_each_task_context_nr(ctxn) {
7406 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7407 if (!ctx)
7408 continue;
7409
aab5b71e 7410 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
375637bc
AS
7411 }
7412 rcu_read_unlock();
7413}
7414
3af9e859 7415void perf_event_mmap(struct vm_area_struct *vma)
0a4a9391 7416{
9ee318a7
PZ
7417 struct perf_mmap_event mmap_event;
7418
cdd6c482 7419 if (!atomic_read(&nr_mmap_events))
9ee318a7
PZ
7420 return;
7421
7422 mmap_event = (struct perf_mmap_event){
089dd79d 7423 .vma = vma,
573402db
PZ
7424 /* .file_name */
7425 /* .file_size */
cdd6c482 7426 .event_id = {
573402db 7427 .header = {
cdd6c482 7428 .type = PERF_RECORD_MMAP,
39447b38 7429 .misc = PERF_RECORD_MISC_USER,
573402db
PZ
7430 /* .size */
7431 },
7432 /* .pid */
7433 /* .tid */
089dd79d
PZ
7434 .start = vma->vm_start,
7435 .len = vma->vm_end - vma->vm_start,
3a0304e9 7436 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
0a4a9391 7437 },
13d7a241
SE
7438 /* .maj (attr_mmap2 only) */
7439 /* .min (attr_mmap2 only) */
7440 /* .ino (attr_mmap2 only) */
7441 /* .ino_generation (attr_mmap2 only) */
f972eb63
PZ
7442 /* .prot (attr_mmap2 only) */
7443 /* .flags (attr_mmap2 only) */
0a4a9391
PZ
7444 };
7445
375637bc 7446 perf_addr_filters_adjust(vma);
cdd6c482 7447 perf_event_mmap_event(&mmap_event);
0a4a9391
PZ
7448}
7449
68db7e98
AS
7450void perf_event_aux_event(struct perf_event *event, unsigned long head,
7451 unsigned long size, u64 flags)
7452{
7453 struct perf_output_handle handle;
7454 struct perf_sample_data sample;
7455 struct perf_aux_event {
7456 struct perf_event_header header;
7457 u64 offset;
7458 u64 size;
7459 u64 flags;
7460 } rec = {
7461 .header = {
7462 .type = PERF_RECORD_AUX,
7463 .misc = 0,
7464 .size = sizeof(rec),
7465 },
7466 .offset = head,
7467 .size = size,
7468 .flags = flags,
7469 };
7470 int ret;
7471
7472 perf_event_header__init_id(&rec.header, &sample, event);
7473 ret = perf_output_begin(&handle, event, rec.header.size);
7474
7475 if (ret)
7476 return;
7477
7478 perf_output_put(&handle, rec);
7479 perf_event__output_id_sample(event, &handle, &sample);
7480
7481 perf_output_end(&handle);
7482}
7483
f38b0dbb
KL
7484/*
7485 * Lost/dropped samples logging
7486 */
7487void perf_log_lost_samples(struct perf_event *event, u64 lost)
7488{
7489 struct perf_output_handle handle;
7490 struct perf_sample_data sample;
7491 int ret;
7492
7493 struct {
7494 struct perf_event_header header;
7495 u64 lost;
7496 } lost_samples_event = {
7497 .header = {
7498 .type = PERF_RECORD_LOST_SAMPLES,
7499 .misc = 0,
7500 .size = sizeof(lost_samples_event),
7501 },
7502 .lost = lost,
7503 };
7504
7505 perf_event_header__init_id(&lost_samples_event.header, &sample, event);
7506
7507 ret = perf_output_begin(&handle, event,
7508 lost_samples_event.header.size);
7509 if (ret)
7510 return;
7511
7512 perf_output_put(&handle, lost_samples_event);
7513 perf_event__output_id_sample(event, &handle, &sample);
7514 perf_output_end(&handle);
7515}
7516
45ac1403
AH
7517/*
7518 * context_switch tracking
7519 */
7520
7521struct perf_switch_event {
7522 struct task_struct *task;
7523 struct task_struct *next_prev;
7524
7525 struct {
7526 struct perf_event_header header;
7527 u32 next_prev_pid;
7528 u32 next_prev_tid;
7529 } event_id;
7530};
7531
7532static int perf_event_switch_match(struct perf_event *event)
7533{
7534 return event->attr.context_switch;
7535}
7536
7537static void perf_event_switch_output(struct perf_event *event, void *data)
7538{
7539 struct perf_switch_event *se = data;
7540 struct perf_output_handle handle;
7541 struct perf_sample_data sample;
7542 int ret;
7543
7544 if (!perf_event_switch_match(event))
7545 return;
7546
7547 /* Only CPU-wide events are allowed to see next/prev pid/tid */
7548 if (event->ctx->task) {
7549 se->event_id.header.type = PERF_RECORD_SWITCH;
7550 se->event_id.header.size = sizeof(se->event_id.header);
7551 } else {
7552 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
7553 se->event_id.header.size = sizeof(se->event_id);
7554 se->event_id.next_prev_pid =
7555 perf_event_pid(event, se->next_prev);
7556 se->event_id.next_prev_tid =
7557 perf_event_tid(event, se->next_prev);
7558 }
7559
7560 perf_event_header__init_id(&se->event_id.header, &sample, event);
7561
7562 ret = perf_output_begin(&handle, event, se->event_id.header.size);
7563 if (ret)
7564 return;
7565
7566 if (event->ctx->task)
7567 perf_output_put(&handle, se->event_id.header);
7568 else
7569 perf_output_put(&handle, se->event_id);
7570
7571 perf_event__output_id_sample(event, &handle, &sample);
7572
7573 perf_output_end(&handle);
7574}
7575
7576static void perf_event_switch(struct task_struct *task,
7577 struct task_struct *next_prev, bool sched_in)
7578{
7579 struct perf_switch_event switch_event;
7580
7581 /* N.B. caller checks nr_switch_events != 0 */
7582
7583 switch_event = (struct perf_switch_event){
7584 .task = task,
7585 .next_prev = next_prev,
7586 .event_id = {
7587 .header = {
7588 /* .type */
7589 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
7590 /* .size */
7591 },
7592 /* .next_prev_pid */
7593 /* .next_prev_tid */
7594 },
7595 };
7596
101592b4
AB
7597 if (!sched_in && task->state == TASK_RUNNING)
7598 switch_event.event_id.header.misc |=
7599 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
7600
aab5b71e 7601 perf_iterate_sb(perf_event_switch_output,
45ac1403
AH
7602 &switch_event,
7603 NULL);
7604}
7605
a78ac325
PZ
7606/*
7607 * IRQ throttle logging
7608 */
7609
cdd6c482 7610static void perf_log_throttle(struct perf_event *event, int enable)
a78ac325
PZ
7611{
7612 struct perf_output_handle handle;
c980d109 7613 struct perf_sample_data sample;
a78ac325
PZ
7614 int ret;
7615
7616 struct {
7617 struct perf_event_header header;
7618 u64 time;
cca3f454 7619 u64 id;
7f453c24 7620 u64 stream_id;
a78ac325
PZ
7621 } throttle_event = {
7622 .header = {
cdd6c482 7623 .type = PERF_RECORD_THROTTLE,
a78ac325
PZ
7624 .misc = 0,
7625 .size = sizeof(throttle_event),
7626 },
34f43927 7627 .time = perf_event_clock(event),
cdd6c482
IM
7628 .id = primary_event_id(event),
7629 .stream_id = event->id,
a78ac325
PZ
7630 };
7631
966ee4d6 7632 if (enable)
cdd6c482 7633 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
966ee4d6 7634
c980d109
ACM
7635 perf_event_header__init_id(&throttle_event.header, &sample, event);
7636
7637 ret = perf_output_begin(&handle, event,
a7ac67ea 7638 throttle_event.header.size);
a78ac325
PZ
7639 if (ret)
7640 return;
7641
7642 perf_output_put(&handle, throttle_event);
c980d109 7643 perf_event__output_id_sample(event, &handle, &sample);
a78ac325
PZ
7644 perf_output_end(&handle);
7645}
7646
8d4e6c4c
AS
7647void perf_event_itrace_started(struct perf_event *event)
7648{
7649 event->attach_state |= PERF_ATTACH_ITRACE;
7650}
7651
ec0d7729
AS
7652static void perf_log_itrace_start(struct perf_event *event)
7653{
7654 struct perf_output_handle handle;
7655 struct perf_sample_data sample;
7656 struct perf_aux_event {
7657 struct perf_event_header header;
7658 u32 pid;
7659 u32 tid;
7660 } rec;
7661 int ret;
7662
7663 if (event->parent)
7664 event = event->parent;
7665
7666 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
8d4e6c4c 7667 event->attach_state & PERF_ATTACH_ITRACE)
ec0d7729
AS
7668 return;
7669
ec0d7729
AS
7670 rec.header.type = PERF_RECORD_ITRACE_START;
7671 rec.header.misc = 0;
7672 rec.header.size = sizeof(rec);
7673 rec.pid = perf_event_pid(event, current);
7674 rec.tid = perf_event_tid(event, current);
7675
7676 perf_event_header__init_id(&rec.header, &sample, event);
7677 ret = perf_output_begin(&handle, event, rec.header.size);
7678
7679 if (ret)
7680 return;
7681
7682 perf_output_put(&handle, rec);
7683 perf_event__output_id_sample(event, &handle, &sample);
7684
7685 perf_output_end(&handle);
7686}
7687
475113d9
JO
7688static int
7689__perf_event_account_interrupt(struct perf_event *event, int throttle)
f6c7d5fe 7690{
cdd6c482 7691 struct hw_perf_event *hwc = &event->hw;
79f14641 7692 int ret = 0;
475113d9 7693 u64 seq;
96398826 7694
e050e3f0
SE
7695 seq = __this_cpu_read(perf_throttled_seq);
7696 if (seq != hwc->interrupts_seq) {
7697 hwc->interrupts_seq = seq;
7698 hwc->interrupts = 1;
7699 } else {
7700 hwc->interrupts++;
7701 if (unlikely(throttle
7702 && hwc->interrupts >= max_samples_per_tick)) {
7703 __this_cpu_inc(perf_throttled_count);
555e0c1e 7704 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
163ec435
PZ
7705 hwc->interrupts = MAX_INTERRUPTS;
7706 perf_log_throttle(event, 0);
a78ac325
PZ
7707 ret = 1;
7708 }
e050e3f0 7709 }
60db5e09 7710
cdd6c482 7711 if (event->attr.freq) {
def0a9b2 7712 u64 now = perf_clock();
abd50713 7713 s64 delta = now - hwc->freq_time_stamp;
bd2b5b12 7714
abd50713 7715 hwc->freq_time_stamp = now;
bd2b5b12 7716
abd50713 7717 if (delta > 0 && delta < 2*TICK_NSEC)
f39d47ff 7718 perf_adjust_period(event, delta, hwc->last_period, true);
bd2b5b12
PZ
7719 }
7720
475113d9
JO
7721 return ret;
7722}
7723
7724int perf_event_account_interrupt(struct perf_event *event)
7725{
7726 return __perf_event_account_interrupt(event, 1);
7727}
7728
7729/*
7730 * Generic event overflow handling, sampling.
7731 */
7732
7733static int __perf_event_overflow(struct perf_event *event,
7734 int throttle, struct perf_sample_data *data,
7735 struct pt_regs *regs)
7736{
7737 int events = atomic_read(&event->event_limit);
7738 int ret = 0;
7739
7740 /*
7741 * Non-sampling counters might still use the PMI to fold short
7742 * hardware counters, ignore those.
7743 */
7744 if (unlikely(!is_sampling_event(event)))
7745 return 0;
7746
7747 ret = __perf_event_account_interrupt(event, throttle);
cc1582c2 7748
2023b359
PZ
7749 /*
7750 * XXX event_limit might not quite work as expected on inherited
cdd6c482 7751 * events
2023b359
PZ
7752 */
7753
cdd6c482
IM
7754 event->pending_kill = POLL_IN;
7755 if (events && atomic_dec_and_test(&event->event_limit)) {
79f14641 7756 ret = 1;
cdd6c482 7757 event->pending_kill = POLL_HUP;
5aab90ce
JO
7758
7759 perf_event_disable_inatomic(event);
79f14641
PZ
7760 }
7761
aa6a5f3c 7762 READ_ONCE(event->overflow_handler)(event, data, regs);
453f19ee 7763
fed66e2c 7764 if (*perf_event_fasync(event) && event->pending_kill) {
a8b0ca17
PZ
7765 event->pending_wakeup = 1;
7766 irq_work_queue(&event->pending);
f506b3dc
PZ
7767 }
7768
79f14641 7769 return ret;
f6c7d5fe
PZ
7770}
7771
a8b0ca17 7772int perf_event_overflow(struct perf_event *event,
5622f295
MM
7773 struct perf_sample_data *data,
7774 struct pt_regs *regs)
850bc73f 7775{
a8b0ca17 7776 return __perf_event_overflow(event, 1, data, regs);
850bc73f
PZ
7777}
7778
15dbf27c 7779/*
cdd6c482 7780 * Generic software event infrastructure
15dbf27c
PZ
7781 */
7782
b28ab83c
PZ
7783struct swevent_htable {
7784 struct swevent_hlist *swevent_hlist;
7785 struct mutex hlist_mutex;
7786 int hlist_refcount;
7787
7788 /* Recursion avoidance in each contexts */
7789 int recursion[PERF_NR_CONTEXTS];
7790};
7791
7792static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
7793
7b4b6658 7794/*
cdd6c482
IM
7795 * We directly increment event->count and keep a second value in
7796 * event->hw.period_left to count intervals. This period event
7b4b6658
PZ
7797 * is kept in the range [-sample_period, 0] so that we can use the
7798 * sign as trigger.
7799 */
7800
ab573844 7801u64 perf_swevent_set_period(struct perf_event *event)
15dbf27c 7802{
cdd6c482 7803 struct hw_perf_event *hwc = &event->hw;
7b4b6658
PZ
7804 u64 period = hwc->last_period;
7805 u64 nr, offset;
7806 s64 old, val;
7807
7808 hwc->last_period = hwc->sample_period;
15dbf27c
PZ
7809
7810again:
e7850595 7811 old = val = local64_read(&hwc->period_left);
7b4b6658
PZ
7812 if (val < 0)
7813 return 0;
15dbf27c 7814
7b4b6658
PZ
7815 nr = div64_u64(period + val, period);
7816 offset = nr * period;
7817 val -= offset;
e7850595 7818 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7b4b6658 7819 goto again;
15dbf27c 7820
7b4b6658 7821 return nr;
15dbf27c
PZ
7822}
7823
0cff784a 7824static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
a8b0ca17 7825 struct perf_sample_data *data,
5622f295 7826 struct pt_regs *regs)
15dbf27c 7827{
cdd6c482 7828 struct hw_perf_event *hwc = &event->hw;
850bc73f 7829 int throttle = 0;
15dbf27c 7830
0cff784a
PZ
7831 if (!overflow)
7832 overflow = perf_swevent_set_period(event);
15dbf27c 7833
7b4b6658
PZ
7834 if (hwc->interrupts == MAX_INTERRUPTS)
7835 return;
15dbf27c 7836
7b4b6658 7837 for (; overflow; overflow--) {
a8b0ca17 7838 if (__perf_event_overflow(event, throttle,
5622f295 7839 data, regs)) {
7b4b6658
PZ
7840 /*
7841 * We inhibit the overflow from happening when
7842 * hwc->interrupts == MAX_INTERRUPTS.
7843 */
7844 break;
7845 }
cf450a73 7846 throttle = 1;
7b4b6658 7847 }
15dbf27c
PZ
7848}
7849
a4eaf7f1 7850static void perf_swevent_event(struct perf_event *event, u64 nr,
a8b0ca17 7851 struct perf_sample_data *data,
5622f295 7852 struct pt_regs *regs)
7b4b6658 7853{
cdd6c482 7854 struct hw_perf_event *hwc = &event->hw;
d6d020e9 7855
e7850595 7856 local64_add(nr, &event->count);
d6d020e9 7857
0cff784a
PZ
7858 if (!regs)
7859 return;
7860
6c7e550f 7861 if (!is_sampling_event(event))
7b4b6658 7862 return;
d6d020e9 7863
5d81e5cf
AV
7864 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
7865 data->period = nr;
7866 return perf_swevent_overflow(event, 1, data, regs);
7867 } else
7868 data->period = event->hw.last_period;
7869
0cff784a 7870 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
a8b0ca17 7871 return perf_swevent_overflow(event, 1, data, regs);
0cff784a 7872
e7850595 7873 if (local64_add_negative(nr, &hwc->period_left))
7b4b6658 7874 return;
df1a132b 7875
a8b0ca17 7876 perf_swevent_overflow(event, 0, data, regs);
d6d020e9
PZ
7877}
7878
f5ffe02e
FW
7879static int perf_exclude_event(struct perf_event *event,
7880 struct pt_regs *regs)
7881{
a4eaf7f1 7882 if (event->hw.state & PERF_HES_STOPPED)
91b2f482 7883 return 1;
a4eaf7f1 7884
f5ffe02e
FW
7885 if (regs) {
7886 if (event->attr.exclude_user && user_mode(regs))
7887 return 1;
7888
7889 if (event->attr.exclude_kernel && !user_mode(regs))
7890 return 1;
7891 }
7892
7893 return 0;
7894}
7895
cdd6c482 7896static int perf_swevent_match(struct perf_event *event,
1c432d89 7897 enum perf_type_id type,
6fb2915d
LZ
7898 u32 event_id,
7899 struct perf_sample_data *data,
7900 struct pt_regs *regs)
15dbf27c 7901{
cdd6c482 7902 if (event->attr.type != type)
a21ca2ca 7903 return 0;
f5ffe02e 7904
cdd6c482 7905 if (event->attr.config != event_id)
15dbf27c
PZ
7906 return 0;
7907
f5ffe02e
FW
7908 if (perf_exclude_event(event, regs))
7909 return 0;
15dbf27c
PZ
7910
7911 return 1;
7912}
7913
76e1d904
FW
7914static inline u64 swevent_hash(u64 type, u32 event_id)
7915{
7916 u64 val = event_id | (type << 32);
7917
7918 return hash_64(val, SWEVENT_HLIST_BITS);
7919}
7920
49f135ed
FW
7921static inline struct hlist_head *
7922__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
76e1d904 7923{
49f135ed
FW
7924 u64 hash = swevent_hash(type, event_id);
7925
7926 return &hlist->heads[hash];
7927}
76e1d904 7928
49f135ed
FW
7929/* For the read side: events when they trigger */
7930static inline struct hlist_head *
b28ab83c 7931find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
49f135ed
FW
7932{
7933 struct swevent_hlist *hlist;
76e1d904 7934
b28ab83c 7935 hlist = rcu_dereference(swhash->swevent_hlist);
76e1d904
FW
7936 if (!hlist)
7937 return NULL;
7938
49f135ed
FW
7939 return __find_swevent_head(hlist, type, event_id);
7940}
7941
7942/* For the event head insertion and removal in the hlist */
7943static inline struct hlist_head *
b28ab83c 7944find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
49f135ed
FW
7945{
7946 struct swevent_hlist *hlist;
7947 u32 event_id = event->attr.config;
7948 u64 type = event->attr.type;
7949
7950 /*
7951 * Event scheduling is always serialized against hlist allocation
7952 * and release. Which makes the protected version suitable here.
7953 * The context lock guarantees that.
7954 */
b28ab83c 7955 hlist = rcu_dereference_protected(swhash->swevent_hlist,
49f135ed
FW
7956 lockdep_is_held(&event->ctx->lock));
7957 if (!hlist)
7958 return NULL;
7959
7960 return __find_swevent_head(hlist, type, event_id);
76e1d904
FW
7961}
7962
7963static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
a8b0ca17 7964 u64 nr,
76e1d904
FW
7965 struct perf_sample_data *data,
7966 struct pt_regs *regs)
15dbf27c 7967{
4a32fea9 7968 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 7969 struct perf_event *event;
76e1d904 7970 struct hlist_head *head;
15dbf27c 7971
76e1d904 7972 rcu_read_lock();
b28ab83c 7973 head = find_swevent_head_rcu(swhash, type, event_id);
76e1d904
FW
7974 if (!head)
7975 goto end;
7976
b67bfe0d 7977 hlist_for_each_entry_rcu(event, head, hlist_entry) {
6fb2915d 7978 if (perf_swevent_match(event, type, event_id, data, regs))
a8b0ca17 7979 perf_swevent_event(event, nr, data, regs);
15dbf27c 7980 }
76e1d904
FW
7981end:
7982 rcu_read_unlock();
15dbf27c
PZ
7983}
7984
86038c5e
PZI
7985DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
7986
4ed7c92d 7987int perf_swevent_get_recursion_context(void)
96f6d444 7988{
4a32fea9 7989 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
96f6d444 7990
b28ab83c 7991 return get_recursion_context(swhash->recursion);
96f6d444 7992}
645e8cc0 7993EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
96f6d444 7994
98b5c2c6 7995void perf_swevent_put_recursion_context(int rctx)
15dbf27c 7996{
4a32fea9 7997 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
927c7a9e 7998
b28ab83c 7999 put_recursion_context(swhash->recursion, rctx);
ce71b9df 8000}
15dbf27c 8001
86038c5e 8002void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
b8e83514 8003{
a4234bfc 8004 struct perf_sample_data data;
4ed7c92d 8005
86038c5e 8006 if (WARN_ON_ONCE(!regs))
4ed7c92d 8007 return;
a4234bfc 8008
fd0d000b 8009 perf_sample_data_init(&data, addr, 0);
a8b0ca17 8010 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
86038c5e
PZI
8011}
8012
8013void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
8014{
8015 int rctx;
8016
8017 preempt_disable_notrace();
8018 rctx = perf_swevent_get_recursion_context();
8019 if (unlikely(rctx < 0))
8020 goto fail;
8021
8022 ___perf_sw_event(event_id, nr, regs, addr);
4ed7c92d
PZ
8023
8024 perf_swevent_put_recursion_context(rctx);
86038c5e 8025fail:
1c024eca 8026 preempt_enable_notrace();
b8e83514
PZ
8027}
8028
cdd6c482 8029static void perf_swevent_read(struct perf_event *event)
15dbf27c 8030{
15dbf27c
PZ
8031}
8032
a4eaf7f1 8033static int perf_swevent_add(struct perf_event *event, int flags)
15dbf27c 8034{
4a32fea9 8035 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 8036 struct hw_perf_event *hwc = &event->hw;
76e1d904
FW
8037 struct hlist_head *head;
8038
6c7e550f 8039 if (is_sampling_event(event)) {
7b4b6658 8040 hwc->last_period = hwc->sample_period;
cdd6c482 8041 perf_swevent_set_period(event);
7b4b6658 8042 }
76e1d904 8043
a4eaf7f1
PZ
8044 hwc->state = !(flags & PERF_EF_START);
8045
b28ab83c 8046 head = find_swevent_head(swhash, event);
12ca6ad2 8047 if (WARN_ON_ONCE(!head))
76e1d904
FW
8048 return -EINVAL;
8049
8050 hlist_add_head_rcu(&event->hlist_entry, head);
6a694a60 8051 perf_event_update_userpage(event);
76e1d904 8052
15dbf27c
PZ
8053 return 0;
8054}
8055
a4eaf7f1 8056static void perf_swevent_del(struct perf_event *event, int flags)
15dbf27c 8057{
76e1d904 8058 hlist_del_rcu(&event->hlist_entry);
15dbf27c
PZ
8059}
8060
a4eaf7f1 8061static void perf_swevent_start(struct perf_event *event, int flags)
5c92d124 8062{
a4eaf7f1 8063 event->hw.state = 0;
d6d020e9 8064}
aa9c4c0f 8065
a4eaf7f1 8066static void perf_swevent_stop(struct perf_event *event, int flags)
d6d020e9 8067{
a4eaf7f1 8068 event->hw.state = PERF_HES_STOPPED;
bae43c99
IM
8069}
8070
49f135ed
FW
8071/* Deref the hlist from the update side */
8072static inline struct swevent_hlist *
b28ab83c 8073swevent_hlist_deref(struct swevent_htable *swhash)
49f135ed 8074{
b28ab83c
PZ
8075 return rcu_dereference_protected(swhash->swevent_hlist,
8076 lockdep_is_held(&swhash->hlist_mutex));
49f135ed
FW
8077}
8078
b28ab83c 8079static void swevent_hlist_release(struct swevent_htable *swhash)
76e1d904 8080{
b28ab83c 8081 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
76e1d904 8082
49f135ed 8083 if (!hlist)
76e1d904
FW
8084 return;
8085
70691d4a 8086 RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
fa4bbc4c 8087 kfree_rcu(hlist, rcu_head);
76e1d904
FW
8088}
8089
3b364d7b 8090static void swevent_hlist_put_cpu(int cpu)
76e1d904 8091{
b28ab83c 8092 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904 8093
b28ab83c 8094 mutex_lock(&swhash->hlist_mutex);
76e1d904 8095
b28ab83c
PZ
8096 if (!--swhash->hlist_refcount)
8097 swevent_hlist_release(swhash);
76e1d904 8098
b28ab83c 8099 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
8100}
8101
3b364d7b 8102static void swevent_hlist_put(void)
76e1d904
FW
8103{
8104 int cpu;
8105
76e1d904 8106 for_each_possible_cpu(cpu)
3b364d7b 8107 swevent_hlist_put_cpu(cpu);
76e1d904
FW
8108}
8109
3b364d7b 8110static int swevent_hlist_get_cpu(int cpu)
76e1d904 8111{
b28ab83c 8112 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904
FW
8113 int err = 0;
8114
b28ab83c 8115 mutex_lock(&swhash->hlist_mutex);
a63fbed7
TG
8116 if (!swevent_hlist_deref(swhash) &&
8117 cpumask_test_cpu(cpu, perf_online_mask)) {
76e1d904
FW
8118 struct swevent_hlist *hlist;
8119
8120 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
8121 if (!hlist) {
8122 err = -ENOMEM;
8123 goto exit;
8124 }
b28ab83c 8125 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 8126 }
b28ab83c 8127 swhash->hlist_refcount++;
9ed6060d 8128exit:
b28ab83c 8129 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
8130
8131 return err;
8132}
8133
3b364d7b 8134static int swevent_hlist_get(void)
76e1d904 8135{
3b364d7b 8136 int err, cpu, failed_cpu;
76e1d904 8137
a63fbed7 8138 mutex_lock(&pmus_lock);
76e1d904 8139 for_each_possible_cpu(cpu) {
3b364d7b 8140 err = swevent_hlist_get_cpu(cpu);
76e1d904
FW
8141 if (err) {
8142 failed_cpu = cpu;
8143 goto fail;
8144 }
8145 }
a63fbed7 8146 mutex_unlock(&pmus_lock);
76e1d904 8147 return 0;
9ed6060d 8148fail:
76e1d904
FW
8149 for_each_possible_cpu(cpu) {
8150 if (cpu == failed_cpu)
8151 break;
3b364d7b 8152 swevent_hlist_put_cpu(cpu);
76e1d904 8153 }
a63fbed7 8154 mutex_unlock(&pmus_lock);
76e1d904
FW
8155 return err;
8156}
8157
c5905afb 8158struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
95476b64 8159
b0a873eb
PZ
8160static void sw_perf_event_destroy(struct perf_event *event)
8161{
8162 u64 event_id = event->attr.config;
95476b64 8163
b0a873eb
PZ
8164 WARN_ON(event->parent);
8165
c5905afb 8166 static_key_slow_dec(&perf_swevent_enabled[event_id]);
3b364d7b 8167 swevent_hlist_put();
b0a873eb
PZ
8168}
8169
8170static int perf_swevent_init(struct perf_event *event)
8171{
8176cced 8172 u64 event_id = event->attr.config;
b0a873eb
PZ
8173
8174 if (event->attr.type != PERF_TYPE_SOFTWARE)
8175 return -ENOENT;
8176
2481c5fa
SE
8177 /*
8178 * no branch sampling for software events
8179 */
8180 if (has_branch_stack(event))
8181 return -EOPNOTSUPP;
8182
b0a873eb
PZ
8183 switch (event_id) {
8184 case PERF_COUNT_SW_CPU_CLOCK:
8185 case PERF_COUNT_SW_TASK_CLOCK:
8186 return -ENOENT;
8187
8188 default:
8189 break;
8190 }
8191
ce677831 8192 if (event_id >= PERF_COUNT_SW_MAX)
b0a873eb
PZ
8193 return -ENOENT;
8194
8195 if (!event->parent) {
8196 int err;
8197
3b364d7b 8198 err = swevent_hlist_get();
b0a873eb
PZ
8199 if (err)
8200 return err;
8201
c5905afb 8202 static_key_slow_inc(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
8203 event->destroy = sw_perf_event_destroy;
8204 }
8205
8206 return 0;
8207}
8208
8209static struct pmu perf_swevent = {
89a1e187 8210 .task_ctx_nr = perf_sw_context,
95476b64 8211
34f43927
PZ
8212 .capabilities = PERF_PMU_CAP_NO_NMI,
8213
b0a873eb 8214 .event_init = perf_swevent_init,
a4eaf7f1
PZ
8215 .add = perf_swevent_add,
8216 .del = perf_swevent_del,
8217 .start = perf_swevent_start,
8218 .stop = perf_swevent_stop,
1c024eca 8219 .read = perf_swevent_read,
1c024eca
PZ
8220};
8221
b0a873eb
PZ
8222#ifdef CONFIG_EVENT_TRACING
8223
1c024eca
PZ
8224static int perf_tp_filter_match(struct perf_event *event,
8225 struct perf_sample_data *data)
8226{
7e3f977e 8227 void *record = data->raw->frag.data;
1c024eca 8228
b71b437e
PZ
8229 /* only top level events have filters set */
8230 if (event->parent)
8231 event = event->parent;
8232
1c024eca
PZ
8233 if (likely(!event->filter) || filter_match_preds(event->filter, record))
8234 return 1;
8235 return 0;
8236}
8237
8238static int perf_tp_event_match(struct perf_event *event,
8239 struct perf_sample_data *data,
8240 struct pt_regs *regs)
8241{
a0f7d0f7
FW
8242 if (event->hw.state & PERF_HES_STOPPED)
8243 return 0;
580d607c
PZ
8244 /*
8245 * All tracepoints are from kernel-space.
8246 */
8247 if (event->attr.exclude_kernel)
1c024eca
PZ
8248 return 0;
8249
8250 if (!perf_tp_filter_match(event, data))
8251 return 0;
8252
8253 return 1;
8254}
8255
85b67bcb
AS
8256void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
8257 struct trace_event_call *call, u64 count,
8258 struct pt_regs *regs, struct hlist_head *head,
8259 struct task_struct *task)
8260{
e87c6bc3 8261 if (bpf_prog_array_valid(call)) {
85b67bcb 8262 *(struct pt_regs **)raw_data = regs;
e87c6bc3 8263 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
85b67bcb
AS
8264 perf_swevent_put_recursion_context(rctx);
8265 return;
8266 }
8267 }
8268 perf_tp_event(call->event.type, count, raw_data, size, regs, head,
8fd0fbbe 8269 rctx, task);
85b67bcb
AS
8270}
8271EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
8272
1e1dcd93 8273void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
e6dab5ff 8274 struct pt_regs *regs, struct hlist_head *head, int rctx,
8fd0fbbe 8275 struct task_struct *task)
95476b64
FW
8276{
8277 struct perf_sample_data data;
8fd0fbbe 8278 struct perf_event *event;
1c024eca 8279
95476b64 8280 struct perf_raw_record raw = {
7e3f977e
DB
8281 .frag = {
8282 .size = entry_size,
8283 .data = record,
8284 },
95476b64
FW
8285 };
8286
1e1dcd93 8287 perf_sample_data_init(&data, 0, 0);
95476b64
FW
8288 data.raw = &raw;
8289
1e1dcd93
AS
8290 perf_trace_buf_update(record, event_type);
8291
8fd0fbbe 8292 hlist_for_each_entry_rcu(event, head, hlist_entry) {
1c024eca 8293 if (perf_tp_event_match(event, &data, regs))
a8b0ca17 8294 perf_swevent_event(event, count, &data, regs);
4f41c013 8295 }
ecc55f84 8296
e6dab5ff
AV
8297 /*
8298 * If we got specified a target task, also iterate its context and
8299 * deliver this event there too.
8300 */
8301 if (task && task != current) {
8302 struct perf_event_context *ctx;
8303 struct trace_entry *entry = record;
8304
8305 rcu_read_lock();
8306 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
8307 if (!ctx)
8308 goto unlock;
8309
8310 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
8311 if (event->attr.type != PERF_TYPE_TRACEPOINT)
8312 continue;
8313 if (event->attr.config != entry->type)
8314 continue;
8315 if (perf_tp_event_match(event, &data, regs))
8316 perf_swevent_event(event, count, &data, regs);
8317 }
8318unlock:
8319 rcu_read_unlock();
8320 }
8321
ecc55f84 8322 perf_swevent_put_recursion_context(rctx);
95476b64
FW
8323}
8324EXPORT_SYMBOL_GPL(perf_tp_event);
8325
cdd6c482 8326static void tp_perf_event_destroy(struct perf_event *event)
e077df4f 8327{
1c024eca 8328 perf_trace_destroy(event);
e077df4f
PZ
8329}
8330
b0a873eb 8331static int perf_tp_event_init(struct perf_event *event)
e077df4f 8332{
76e1d904
FW
8333 int err;
8334
b0a873eb
PZ
8335 if (event->attr.type != PERF_TYPE_TRACEPOINT)
8336 return -ENOENT;
8337
2481c5fa
SE
8338 /*
8339 * no branch sampling for tracepoint events
8340 */
8341 if (has_branch_stack(event))
8342 return -EOPNOTSUPP;
8343
1c024eca
PZ
8344 err = perf_trace_init(event);
8345 if (err)
b0a873eb 8346 return err;
e077df4f 8347
cdd6c482 8348 event->destroy = tp_perf_event_destroy;
e077df4f 8349
b0a873eb
PZ
8350 return 0;
8351}
8352
8353static struct pmu perf_tracepoint = {
89a1e187
PZ
8354 .task_ctx_nr = perf_sw_context,
8355
b0a873eb 8356 .event_init = perf_tp_event_init,
a4eaf7f1
PZ
8357 .add = perf_trace_add,
8358 .del = perf_trace_del,
8359 .start = perf_swevent_start,
8360 .stop = perf_swevent_stop,
b0a873eb 8361 .read = perf_swevent_read,
b0a873eb
PZ
8362};
8363
33ea4b24 8364#if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
e12f03d7
SL
8365/*
8366 * Flags in config, used by dynamic PMU kprobe and uprobe
8367 * The flags should match following PMU_FORMAT_ATTR().
8368 *
8369 * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
8370 * if not set, create kprobe/uprobe
8371 */
8372enum perf_probe_config {
8373 PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0, /* [k,u]retprobe */
8374};
8375
8376PMU_FORMAT_ATTR(retprobe, "config:0");
8377
8378static struct attribute *probe_attrs[] = {
8379 &format_attr_retprobe.attr,
8380 NULL,
8381};
8382
8383static struct attribute_group probe_format_group = {
8384 .name = "format",
8385 .attrs = probe_attrs,
8386};
8387
8388static const struct attribute_group *probe_attr_groups[] = {
8389 &probe_format_group,
8390 NULL,
8391};
33ea4b24 8392#endif
e12f03d7 8393
33ea4b24 8394#ifdef CONFIG_KPROBE_EVENTS
e12f03d7
SL
8395static int perf_kprobe_event_init(struct perf_event *event);
8396static struct pmu perf_kprobe = {
8397 .task_ctx_nr = perf_sw_context,
8398 .event_init = perf_kprobe_event_init,
8399 .add = perf_trace_add,
8400 .del = perf_trace_del,
8401 .start = perf_swevent_start,
8402 .stop = perf_swevent_stop,
8403 .read = perf_swevent_read,
8404 .attr_groups = probe_attr_groups,
8405};
8406
8407static int perf_kprobe_event_init(struct perf_event *event)
8408{
8409 int err;
8410 bool is_retprobe;
8411
8412 if (event->attr.type != perf_kprobe.type)
8413 return -ENOENT;
32e6e967
SL
8414
8415 if (!capable(CAP_SYS_ADMIN))
8416 return -EACCES;
8417
e12f03d7
SL
8418 /*
8419 * no branch sampling for probe events
8420 */
8421 if (has_branch_stack(event))
8422 return -EOPNOTSUPP;
8423
8424 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
8425 err = perf_kprobe_init(event, is_retprobe);
8426 if (err)
8427 return err;
8428
8429 event->destroy = perf_kprobe_destroy;
8430
8431 return 0;
8432}
8433#endif /* CONFIG_KPROBE_EVENTS */
8434
33ea4b24
SL
8435#ifdef CONFIG_UPROBE_EVENTS
8436static int perf_uprobe_event_init(struct perf_event *event);
8437static struct pmu perf_uprobe = {
8438 .task_ctx_nr = perf_sw_context,
8439 .event_init = perf_uprobe_event_init,
8440 .add = perf_trace_add,
8441 .del = perf_trace_del,
8442 .start = perf_swevent_start,
8443 .stop = perf_swevent_stop,
8444 .read = perf_swevent_read,
8445 .attr_groups = probe_attr_groups,
8446};
8447
8448static int perf_uprobe_event_init(struct perf_event *event)
8449{
8450 int err;
8451 bool is_retprobe;
8452
8453 if (event->attr.type != perf_uprobe.type)
8454 return -ENOENT;
32e6e967
SL
8455
8456 if (!capable(CAP_SYS_ADMIN))
8457 return -EACCES;
8458
33ea4b24
SL
8459 /*
8460 * no branch sampling for probe events
8461 */
8462 if (has_branch_stack(event))
8463 return -EOPNOTSUPP;
8464
8465 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
8466 err = perf_uprobe_init(event, is_retprobe);
8467 if (err)
8468 return err;
8469
8470 event->destroy = perf_uprobe_destroy;
8471
8472 return 0;
8473}
8474#endif /* CONFIG_UPROBE_EVENTS */
8475
b0a873eb
PZ
8476static inline void perf_tp_register(void)
8477{
2e80a82a 8478 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
e12f03d7
SL
8479#ifdef CONFIG_KPROBE_EVENTS
8480 perf_pmu_register(&perf_kprobe, "kprobe", -1);
8481#endif
33ea4b24
SL
8482#ifdef CONFIG_UPROBE_EVENTS
8483 perf_pmu_register(&perf_uprobe, "uprobe", -1);
8484#endif
e077df4f 8485}
6fb2915d 8486
6fb2915d
LZ
8487static void perf_event_free_filter(struct perf_event *event)
8488{
8489 ftrace_profile_free_filter(event);
8490}
8491
aa6a5f3c
AS
8492#ifdef CONFIG_BPF_SYSCALL
8493static void bpf_overflow_handler(struct perf_event *event,
8494 struct perf_sample_data *data,
8495 struct pt_regs *regs)
8496{
8497 struct bpf_perf_event_data_kern ctx = {
8498 .data = data,
7d9285e8 8499 .event = event,
aa6a5f3c
AS
8500 };
8501 int ret = 0;
8502
c895f6f7 8503 ctx.regs = perf_arch_bpf_user_pt_regs(regs);
aa6a5f3c
AS
8504 preempt_disable();
8505 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
8506 goto out;
8507 rcu_read_lock();
88575199 8508 ret = BPF_PROG_RUN(event->prog, &ctx);
aa6a5f3c
AS
8509 rcu_read_unlock();
8510out:
8511 __this_cpu_dec(bpf_prog_active);
8512 preempt_enable();
8513 if (!ret)
8514 return;
8515
8516 event->orig_overflow_handler(event, data, regs);
8517}
8518
8519static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8520{
8521 struct bpf_prog *prog;
8522
8523 if (event->overflow_handler_context)
8524 /* hw breakpoint or kernel counter */
8525 return -EINVAL;
8526
8527 if (event->prog)
8528 return -EEXIST;
8529
8530 prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
8531 if (IS_ERR(prog))
8532 return PTR_ERR(prog);
8533
8534 event->prog = prog;
8535 event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
8536 WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
8537 return 0;
8538}
8539
8540static void perf_event_free_bpf_handler(struct perf_event *event)
8541{
8542 struct bpf_prog *prog = event->prog;
8543
8544 if (!prog)
8545 return;
8546
8547 WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
8548 event->prog = NULL;
8549 bpf_prog_put(prog);
8550}
8551#else
8552static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8553{
8554 return -EOPNOTSUPP;
8555}
8556static void perf_event_free_bpf_handler(struct perf_event *event)
8557{
8558}
8559#endif
8560
e12f03d7
SL
8561/*
8562 * returns true if the event is a tracepoint, or a kprobe/upprobe created
8563 * with perf_event_open()
8564 */
8565static inline bool perf_event_is_tracing(struct perf_event *event)
8566{
8567 if (event->pmu == &perf_tracepoint)
8568 return true;
8569#ifdef CONFIG_KPROBE_EVENTS
8570 if (event->pmu == &perf_kprobe)
8571 return true;
33ea4b24
SL
8572#endif
8573#ifdef CONFIG_UPROBE_EVENTS
8574 if (event->pmu == &perf_uprobe)
8575 return true;
e12f03d7
SL
8576#endif
8577 return false;
8578}
8579
2541517c
AS
8580static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8581{
cf5f5cea 8582 bool is_kprobe, is_tracepoint, is_syscall_tp;
2541517c 8583 struct bpf_prog *prog;
e87c6bc3 8584 int ret;
2541517c 8585
e12f03d7 8586 if (!perf_event_is_tracing(event))
f91840a3 8587 return perf_event_set_bpf_handler(event, prog_fd);
2541517c 8588
98b5c2c6
AS
8589 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
8590 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
cf5f5cea
YS
8591 is_syscall_tp = is_syscall_trace_event(event->tp_event);
8592 if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
98b5c2c6 8593 /* bpf programs can only be attached to u/kprobe or tracepoint */
2541517c
AS
8594 return -EINVAL;
8595
8596 prog = bpf_prog_get(prog_fd);
8597 if (IS_ERR(prog))
8598 return PTR_ERR(prog);
8599
98b5c2c6 8600 if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
cf5f5cea
YS
8601 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
8602 (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
2541517c
AS
8603 /* valid fd, but invalid bpf program type */
8604 bpf_prog_put(prog);
8605 return -EINVAL;
8606 }
8607
9802d865
JB
8608 /* Kprobe override only works for kprobes, not uprobes. */
8609 if (prog->kprobe_override &&
8610 !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE)) {
8611 bpf_prog_put(prog);
8612 return -EINVAL;
8613 }
8614
cf5f5cea 8615 if (is_tracepoint || is_syscall_tp) {
32bbe007
AS
8616 int off = trace_event_get_offsets(event->tp_event);
8617
8618 if (prog->aux->max_ctx_offset > off) {
8619 bpf_prog_put(prog);
8620 return -EACCES;
8621 }
8622 }
2541517c 8623
e87c6bc3
YS
8624 ret = perf_event_attach_bpf_prog(event, prog);
8625 if (ret)
8626 bpf_prog_put(prog);
8627 return ret;
2541517c
AS
8628}
8629
8630static void perf_event_free_bpf_prog(struct perf_event *event)
8631{
e12f03d7 8632 if (!perf_event_is_tracing(event)) {
0b4c6841 8633 perf_event_free_bpf_handler(event);
2541517c 8634 return;
2541517c 8635 }
e87c6bc3 8636 perf_event_detach_bpf_prog(event);
2541517c
AS
8637}
8638
e077df4f 8639#else
6fb2915d 8640
b0a873eb 8641static inline void perf_tp_register(void)
e077df4f 8642{
e077df4f 8643}
6fb2915d 8644
6fb2915d
LZ
8645static void perf_event_free_filter(struct perf_event *event)
8646{
8647}
8648
2541517c
AS
8649static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8650{
8651 return -ENOENT;
8652}
8653
8654static void perf_event_free_bpf_prog(struct perf_event *event)
8655{
8656}
07b139c8 8657#endif /* CONFIG_EVENT_TRACING */
e077df4f 8658
24f1e32c 8659#ifdef CONFIG_HAVE_HW_BREAKPOINT
f5ffe02e 8660void perf_bp_event(struct perf_event *bp, void *data)
24f1e32c 8661{
f5ffe02e
FW
8662 struct perf_sample_data sample;
8663 struct pt_regs *regs = data;
8664
fd0d000b 8665 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
f5ffe02e 8666
a4eaf7f1 8667 if (!bp->hw.state && !perf_exclude_event(bp, regs))
a8b0ca17 8668 perf_swevent_event(bp, 1, &sample, regs);
24f1e32c
FW
8669}
8670#endif
8671
375637bc
AS
8672/*
8673 * Allocate a new address filter
8674 */
8675static struct perf_addr_filter *
8676perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
8677{
8678 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
8679 struct perf_addr_filter *filter;
8680
8681 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
8682 if (!filter)
8683 return NULL;
8684
8685 INIT_LIST_HEAD(&filter->entry);
8686 list_add_tail(&filter->entry, filters);
8687
8688 return filter;
8689}
8690
8691static void free_filters_list(struct list_head *filters)
8692{
8693 struct perf_addr_filter *filter, *iter;
8694
8695 list_for_each_entry_safe(filter, iter, filters, entry) {
9511bce9 8696 path_put(&filter->path);
375637bc
AS
8697 list_del(&filter->entry);
8698 kfree(filter);
8699 }
8700}
8701
8702/*
8703 * Free existing address filters and optionally install new ones
8704 */
8705static void perf_addr_filters_splice(struct perf_event *event,
8706 struct list_head *head)
8707{
8708 unsigned long flags;
8709 LIST_HEAD(list);
8710
8711 if (!has_addr_filter(event))
8712 return;
8713
8714 /* don't bother with children, they don't have their own filters */
8715 if (event->parent)
8716 return;
8717
8718 raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
8719
8720 list_splice_init(&event->addr_filters.list, &list);
8721 if (head)
8722 list_splice(head, &event->addr_filters.list);
8723
8724 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
8725
8726 free_filters_list(&list);
8727}
8728
8729/*
8730 * Scan through mm's vmas and see if one of them matches the
8731 * @filter; if so, adjust filter's address range.
8732 * Called with mm::mmap_sem down for reading.
8733 */
8734static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter,
8735 struct mm_struct *mm)
8736{
8737 struct vm_area_struct *vma;
8738
8739 for (vma = mm->mmap; vma; vma = vma->vm_next) {
8740 struct file *file = vma->vm_file;
8741 unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8742 unsigned long vma_size = vma->vm_end - vma->vm_start;
8743
8744 if (!file)
8745 continue;
8746
8747 if (!perf_addr_filter_match(filter, file, off, vma_size))
8748 continue;
8749
8750 return vma->vm_start;
8751 }
8752
8753 return 0;
8754}
8755
8756/*
8757 * Update event's address range filters based on the
8758 * task's existing mappings, if any.
8759 */
8760static void perf_event_addr_filters_apply(struct perf_event *event)
8761{
8762 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8763 struct task_struct *task = READ_ONCE(event->ctx->task);
8764 struct perf_addr_filter *filter;
8765 struct mm_struct *mm = NULL;
8766 unsigned int count = 0;
8767 unsigned long flags;
8768
8769 /*
8770 * We may observe TASK_TOMBSTONE, which means that the event tear-down
8771 * will stop on the parent's child_mutex that our caller is also holding
8772 */
8773 if (task == TASK_TOMBSTONE)
8774 return;
8775
6ce77bfd
AS
8776 if (!ifh->nr_file_filters)
8777 return;
8778
375637bc
AS
8779 mm = get_task_mm(event->ctx->task);
8780 if (!mm)
8781 goto restart;
8782
8783 down_read(&mm->mmap_sem);
8784
8785 raw_spin_lock_irqsave(&ifh->lock, flags);
8786 list_for_each_entry(filter, &ifh->list, entry) {
8787 event->addr_filters_offs[count] = 0;
8788
99f5bc9b
MP
8789 /*
8790 * Adjust base offset if the filter is associated to a binary
8791 * that needs to be mapped:
8792 */
9511bce9 8793 if (filter->path.dentry)
375637bc
AS
8794 event->addr_filters_offs[count] =
8795 perf_addr_filter_apply(filter, mm);
8796
8797 count++;
8798 }
8799
8800 event->addr_filters_gen++;
8801 raw_spin_unlock_irqrestore(&ifh->lock, flags);
8802
8803 up_read(&mm->mmap_sem);
8804
8805 mmput(mm);
8806
8807restart:
767ae086 8808 perf_event_stop(event, 1);
375637bc
AS
8809}
8810
8811/*
8812 * Address range filtering: limiting the data to certain
8813 * instruction address ranges. Filters are ioctl()ed to us from
8814 * userspace as ascii strings.
8815 *
8816 * Filter string format:
8817 *
8818 * ACTION RANGE_SPEC
8819 * where ACTION is one of the
8820 * * "filter": limit the trace to this region
8821 * * "start": start tracing from this address
8822 * * "stop": stop tracing at this address/region;
8823 * RANGE_SPEC is
8824 * * for kernel addresses: <start address>[/<size>]
8825 * * for object files: <start address>[/<size>]@</path/to/object/file>
8826 *
6ed70cf3
AS
8827 * if <size> is not specified or is zero, the range is treated as a single
8828 * address; not valid for ACTION=="filter".
375637bc
AS
8829 */
8830enum {
e96271f3 8831 IF_ACT_NONE = -1,
375637bc
AS
8832 IF_ACT_FILTER,
8833 IF_ACT_START,
8834 IF_ACT_STOP,
8835 IF_SRC_FILE,
8836 IF_SRC_KERNEL,
8837 IF_SRC_FILEADDR,
8838 IF_SRC_KERNELADDR,
8839};
8840
8841enum {
8842 IF_STATE_ACTION = 0,
8843 IF_STATE_SOURCE,
8844 IF_STATE_END,
8845};
8846
8847static const match_table_t if_tokens = {
8848 { IF_ACT_FILTER, "filter" },
8849 { IF_ACT_START, "start" },
8850 { IF_ACT_STOP, "stop" },
8851 { IF_SRC_FILE, "%u/%u@%s" },
8852 { IF_SRC_KERNEL, "%u/%u" },
8853 { IF_SRC_FILEADDR, "%u@%s" },
8854 { IF_SRC_KERNELADDR, "%u" },
e96271f3 8855 { IF_ACT_NONE, NULL },
375637bc
AS
8856};
8857
8858/*
8859 * Address filter string parser
8860 */
8861static int
8862perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
8863 struct list_head *filters)
8864{
8865 struct perf_addr_filter *filter = NULL;
8866 char *start, *orig, *filename = NULL;
375637bc
AS
8867 substring_t args[MAX_OPT_ARGS];
8868 int state = IF_STATE_ACTION, token;
8869 unsigned int kernel = 0;
8870 int ret = -EINVAL;
8871
8872 orig = fstr = kstrdup(fstr, GFP_KERNEL);
8873 if (!fstr)
8874 return -ENOMEM;
8875
8876 while ((start = strsep(&fstr, " ,\n")) != NULL) {
6ed70cf3
AS
8877 static const enum perf_addr_filter_action_t actions[] = {
8878 [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER,
8879 [IF_ACT_START] = PERF_ADDR_FILTER_ACTION_START,
8880 [IF_ACT_STOP] = PERF_ADDR_FILTER_ACTION_STOP,
8881 };
375637bc
AS
8882 ret = -EINVAL;
8883
8884 if (!*start)
8885 continue;
8886
8887 /* filter definition begins */
8888 if (state == IF_STATE_ACTION) {
8889 filter = perf_addr_filter_new(event, filters);
8890 if (!filter)
8891 goto fail;
8892 }
8893
8894 token = match_token(start, if_tokens, args);
8895 switch (token) {
8896 case IF_ACT_FILTER:
8897 case IF_ACT_START:
375637bc
AS
8898 case IF_ACT_STOP:
8899 if (state != IF_STATE_ACTION)
8900 goto fail;
8901
6ed70cf3 8902 filter->action = actions[token];
375637bc
AS
8903 state = IF_STATE_SOURCE;
8904 break;
8905
8906 case IF_SRC_KERNELADDR:
8907 case IF_SRC_KERNEL:
8908 kernel = 1;
8909
8910 case IF_SRC_FILEADDR:
8911 case IF_SRC_FILE:
8912 if (state != IF_STATE_SOURCE)
8913 goto fail;
8914
375637bc
AS
8915 *args[0].to = 0;
8916 ret = kstrtoul(args[0].from, 0, &filter->offset);
8917 if (ret)
8918 goto fail;
8919
6ed70cf3 8920 if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
375637bc
AS
8921 *args[1].to = 0;
8922 ret = kstrtoul(args[1].from, 0, &filter->size);
8923 if (ret)
8924 goto fail;
8925 }
8926
4059ffd0 8927 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
6ed70cf3 8928 int fpos = token == IF_SRC_FILE ? 2 : 1;
4059ffd0
MP
8929
8930 filename = match_strdup(&args[fpos]);
375637bc
AS
8931 if (!filename) {
8932 ret = -ENOMEM;
8933 goto fail;
8934 }
8935 }
8936
8937 state = IF_STATE_END;
8938 break;
8939
8940 default:
8941 goto fail;
8942 }
8943
8944 /*
8945 * Filter definition is fully parsed, validate and install it.
8946 * Make sure that it doesn't contradict itself or the event's
8947 * attribute.
8948 */
8949 if (state == IF_STATE_END) {
9ccbfbb1 8950 ret = -EINVAL;
375637bc
AS
8951 if (kernel && event->attr.exclude_kernel)
8952 goto fail;
8953
6ed70cf3
AS
8954 /*
8955 * ACTION "filter" must have a non-zero length region
8956 * specified.
8957 */
8958 if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
8959 !filter->size)
8960 goto fail;
8961
375637bc
AS
8962 if (!kernel) {
8963 if (!filename)
8964 goto fail;
8965
6ce77bfd
AS
8966 /*
8967 * For now, we only support file-based filters
8968 * in per-task events; doing so for CPU-wide
8969 * events requires additional context switching
8970 * trickery, since same object code will be
8971 * mapped at different virtual addresses in
8972 * different processes.
8973 */
8974 ret = -EOPNOTSUPP;
8975 if (!event->ctx->task)
8976 goto fail_free_name;
8977
375637bc 8978 /* look up the path and grab its inode */
9511bce9
SL
8979 ret = kern_path(filename, LOOKUP_FOLLOW,
8980 &filter->path);
375637bc
AS
8981 if (ret)
8982 goto fail_free_name;
8983
375637bc
AS
8984 kfree(filename);
8985 filename = NULL;
8986
8987 ret = -EINVAL;
9511bce9
SL
8988 if (!filter->path.dentry ||
8989 !S_ISREG(d_inode(filter->path.dentry)
8990 ->i_mode))
375637bc 8991 goto fail;
6ce77bfd
AS
8992
8993 event->addr_filters.nr_file_filters++;
375637bc
AS
8994 }
8995
8996 /* ready to consume more filters */
8997 state = IF_STATE_ACTION;
8998 filter = NULL;
8999 }
9000 }
9001
9002 if (state != IF_STATE_ACTION)
9003 goto fail;
9004
9005 kfree(orig);
9006
9007 return 0;
9008
9009fail_free_name:
9010 kfree(filename);
9011fail:
9012 free_filters_list(filters);
9013 kfree(orig);
9014
9015 return ret;
9016}
9017
9018static int
9019perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
9020{
9021 LIST_HEAD(filters);
9022 int ret;
9023
9024 /*
9025 * Since this is called in perf_ioctl() path, we're already holding
9026 * ctx::mutex.
9027 */
9028 lockdep_assert_held(&event->ctx->mutex);
9029
9030 if (WARN_ON_ONCE(event->parent))
9031 return -EINVAL;
9032
375637bc
AS
9033 ret = perf_event_parse_addr_filter(event, filter_str, &filters);
9034 if (ret)
6ce77bfd 9035 goto fail_clear_files;
375637bc
AS
9036
9037 ret = event->pmu->addr_filters_validate(&filters);
6ce77bfd
AS
9038 if (ret)
9039 goto fail_free_filters;
375637bc
AS
9040
9041 /* remove existing filters, if any */
9042 perf_addr_filters_splice(event, &filters);
9043
9044 /* install new filters */
9045 perf_event_for_each_child(event, perf_event_addr_filters_apply);
9046
6ce77bfd
AS
9047 return ret;
9048
9049fail_free_filters:
9050 free_filters_list(&filters);
9051
9052fail_clear_files:
9053 event->addr_filters.nr_file_filters = 0;
9054
375637bc
AS
9055 return ret;
9056}
9057
c796bbbe
AS
9058static int perf_event_set_filter(struct perf_event *event, void __user *arg)
9059{
c796bbbe 9060 int ret = -EINVAL;
e12f03d7 9061 char *filter_str;
c796bbbe
AS
9062
9063 filter_str = strndup_user(arg, PAGE_SIZE);
9064 if (IS_ERR(filter_str))
9065 return PTR_ERR(filter_str);
9066
e12f03d7
SL
9067#ifdef CONFIG_EVENT_TRACING
9068 if (perf_event_is_tracing(event)) {
9069 struct perf_event_context *ctx = event->ctx;
9070
9071 /*
9072 * Beware, here be dragons!!
9073 *
9074 * the tracepoint muck will deadlock against ctx->mutex, but
9075 * the tracepoint stuff does not actually need it. So
9076 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
9077 * already have a reference on ctx.
9078 *
9079 * This can result in event getting moved to a different ctx,
9080 * but that does not affect the tracepoint state.
9081 */
9082 mutex_unlock(&ctx->mutex);
9083 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
9084 mutex_lock(&ctx->mutex);
9085 } else
9086#endif
9087 if (has_addr_filter(event))
375637bc 9088 ret = perf_event_set_addr_filter(event, filter_str);
c796bbbe
AS
9089
9090 kfree(filter_str);
9091 return ret;
9092}
9093
b0a873eb
PZ
9094/*
9095 * hrtimer based swevent callback
9096 */
f29ac756 9097
b0a873eb 9098static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
f29ac756 9099{
b0a873eb
PZ
9100 enum hrtimer_restart ret = HRTIMER_RESTART;
9101 struct perf_sample_data data;
9102 struct pt_regs *regs;
9103 struct perf_event *event;
9104 u64 period;
f29ac756 9105
b0a873eb 9106 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
ba3dd36c
PZ
9107
9108 if (event->state != PERF_EVENT_STATE_ACTIVE)
9109 return HRTIMER_NORESTART;
9110
b0a873eb 9111 event->pmu->read(event);
f344011c 9112
fd0d000b 9113 perf_sample_data_init(&data, 0, event->hw.last_period);
b0a873eb
PZ
9114 regs = get_irq_regs();
9115
9116 if (regs && !perf_exclude_event(event, regs)) {
77aeeebd 9117 if (!(event->attr.exclude_idle && is_idle_task(current)))
33b07b8b 9118 if (__perf_event_overflow(event, 1, &data, regs))
b0a873eb
PZ
9119 ret = HRTIMER_NORESTART;
9120 }
24f1e32c 9121
b0a873eb
PZ
9122 period = max_t(u64, 10000, event->hw.sample_period);
9123 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
24f1e32c 9124
b0a873eb 9125 return ret;
f29ac756
PZ
9126}
9127
b0a873eb 9128static void perf_swevent_start_hrtimer(struct perf_event *event)
5c92d124 9129{
b0a873eb 9130 struct hw_perf_event *hwc = &event->hw;
5d508e82
FBH
9131 s64 period;
9132
9133 if (!is_sampling_event(event))
9134 return;
f5ffe02e 9135
5d508e82
FBH
9136 period = local64_read(&hwc->period_left);
9137 if (period) {
9138 if (period < 0)
9139 period = 10000;
fa407f35 9140
5d508e82
FBH
9141 local64_set(&hwc->period_left, 0);
9142 } else {
9143 period = max_t(u64, 10000, hwc->sample_period);
9144 }
3497d206
TG
9145 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
9146 HRTIMER_MODE_REL_PINNED);
24f1e32c 9147}
b0a873eb
PZ
9148
9149static void perf_swevent_cancel_hrtimer(struct perf_event *event)
24f1e32c 9150{
b0a873eb
PZ
9151 struct hw_perf_event *hwc = &event->hw;
9152
6c7e550f 9153 if (is_sampling_event(event)) {
b0a873eb 9154 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
fa407f35 9155 local64_set(&hwc->period_left, ktime_to_ns(remaining));
b0a873eb
PZ
9156
9157 hrtimer_cancel(&hwc->hrtimer);
9158 }
24f1e32c
FW
9159}
9160
ba3dd36c
PZ
9161static void perf_swevent_init_hrtimer(struct perf_event *event)
9162{
9163 struct hw_perf_event *hwc = &event->hw;
9164
9165 if (!is_sampling_event(event))
9166 return;
9167
9168 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
9169 hwc->hrtimer.function = perf_swevent_hrtimer;
9170
9171 /*
9172 * Since hrtimers have a fixed rate, we can do a static freq->period
9173 * mapping and avoid the whole period adjust feedback stuff.
9174 */
9175 if (event->attr.freq) {
9176 long freq = event->attr.sample_freq;
9177
9178 event->attr.sample_period = NSEC_PER_SEC / freq;
9179 hwc->sample_period = event->attr.sample_period;
9180 local64_set(&hwc->period_left, hwc->sample_period);
778141e3 9181 hwc->last_period = hwc->sample_period;
ba3dd36c
PZ
9182 event->attr.freq = 0;
9183 }
9184}
9185
b0a873eb
PZ
9186/*
9187 * Software event: cpu wall time clock
9188 */
9189
9190static void cpu_clock_event_update(struct perf_event *event)
24f1e32c 9191{
b0a873eb
PZ
9192 s64 prev;
9193 u64 now;
9194
a4eaf7f1 9195 now = local_clock();
b0a873eb
PZ
9196 prev = local64_xchg(&event->hw.prev_count, now);
9197 local64_add(now - prev, &event->count);
24f1e32c 9198}
24f1e32c 9199
a4eaf7f1 9200static void cpu_clock_event_start(struct perf_event *event, int flags)
b0a873eb 9201{
a4eaf7f1 9202 local64_set(&event->hw.prev_count, local_clock());
b0a873eb 9203 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
9204}
9205
a4eaf7f1 9206static void cpu_clock_event_stop(struct perf_event *event, int flags)
f29ac756 9207{
b0a873eb
PZ
9208 perf_swevent_cancel_hrtimer(event);
9209 cpu_clock_event_update(event);
9210}
f29ac756 9211
a4eaf7f1
PZ
9212static int cpu_clock_event_add(struct perf_event *event, int flags)
9213{
9214 if (flags & PERF_EF_START)
9215 cpu_clock_event_start(event, flags);
6a694a60 9216 perf_event_update_userpage(event);
a4eaf7f1
PZ
9217
9218 return 0;
9219}
9220
9221static void cpu_clock_event_del(struct perf_event *event, int flags)
9222{
9223 cpu_clock_event_stop(event, flags);
9224}
9225
b0a873eb
PZ
9226static void cpu_clock_event_read(struct perf_event *event)
9227{
9228 cpu_clock_event_update(event);
9229}
f344011c 9230
b0a873eb
PZ
9231static int cpu_clock_event_init(struct perf_event *event)
9232{
9233 if (event->attr.type != PERF_TYPE_SOFTWARE)
9234 return -ENOENT;
9235
9236 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
9237 return -ENOENT;
9238
2481c5fa
SE
9239 /*
9240 * no branch sampling for software events
9241 */
9242 if (has_branch_stack(event))
9243 return -EOPNOTSUPP;
9244
ba3dd36c
PZ
9245 perf_swevent_init_hrtimer(event);
9246
b0a873eb 9247 return 0;
f29ac756
PZ
9248}
9249
b0a873eb 9250static struct pmu perf_cpu_clock = {
89a1e187
PZ
9251 .task_ctx_nr = perf_sw_context,
9252
34f43927
PZ
9253 .capabilities = PERF_PMU_CAP_NO_NMI,
9254
b0a873eb 9255 .event_init = cpu_clock_event_init,
a4eaf7f1
PZ
9256 .add = cpu_clock_event_add,
9257 .del = cpu_clock_event_del,
9258 .start = cpu_clock_event_start,
9259 .stop = cpu_clock_event_stop,
b0a873eb
PZ
9260 .read = cpu_clock_event_read,
9261};
9262
9263/*
9264 * Software event: task time clock
9265 */
9266
9267static void task_clock_event_update(struct perf_event *event, u64 now)
5c92d124 9268{
b0a873eb
PZ
9269 u64 prev;
9270 s64 delta;
5c92d124 9271
b0a873eb
PZ
9272 prev = local64_xchg(&event->hw.prev_count, now);
9273 delta = now - prev;
9274 local64_add(delta, &event->count);
9275}
5c92d124 9276
a4eaf7f1 9277static void task_clock_event_start(struct perf_event *event, int flags)
b0a873eb 9278{
a4eaf7f1 9279 local64_set(&event->hw.prev_count, event->ctx->time);
b0a873eb 9280 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
9281}
9282
a4eaf7f1 9283static void task_clock_event_stop(struct perf_event *event, int flags)
b0a873eb
PZ
9284{
9285 perf_swevent_cancel_hrtimer(event);
9286 task_clock_event_update(event, event->ctx->time);
a4eaf7f1
PZ
9287}
9288
9289static int task_clock_event_add(struct perf_event *event, int flags)
9290{
9291 if (flags & PERF_EF_START)
9292 task_clock_event_start(event, flags);
6a694a60 9293 perf_event_update_userpage(event);
b0a873eb 9294
a4eaf7f1
PZ
9295 return 0;
9296}
9297
9298static void task_clock_event_del(struct perf_event *event, int flags)
9299{
9300 task_clock_event_stop(event, PERF_EF_UPDATE);
b0a873eb
PZ
9301}
9302
9303static void task_clock_event_read(struct perf_event *event)
9304{
768a06e2
PZ
9305 u64 now = perf_clock();
9306 u64 delta = now - event->ctx->timestamp;
9307 u64 time = event->ctx->time + delta;
b0a873eb
PZ
9308
9309 task_clock_event_update(event, time);
9310}
9311
9312static int task_clock_event_init(struct perf_event *event)
6fb2915d 9313{
b0a873eb
PZ
9314 if (event->attr.type != PERF_TYPE_SOFTWARE)
9315 return -ENOENT;
9316
9317 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
9318 return -ENOENT;
9319
2481c5fa
SE
9320 /*
9321 * no branch sampling for software events
9322 */
9323 if (has_branch_stack(event))
9324 return -EOPNOTSUPP;
9325
ba3dd36c
PZ
9326 perf_swevent_init_hrtimer(event);
9327
b0a873eb 9328 return 0;
6fb2915d
LZ
9329}
9330
b0a873eb 9331static struct pmu perf_task_clock = {
89a1e187
PZ
9332 .task_ctx_nr = perf_sw_context,
9333
34f43927
PZ
9334 .capabilities = PERF_PMU_CAP_NO_NMI,
9335
b0a873eb 9336 .event_init = task_clock_event_init,
a4eaf7f1
PZ
9337 .add = task_clock_event_add,
9338 .del = task_clock_event_del,
9339 .start = task_clock_event_start,
9340 .stop = task_clock_event_stop,
b0a873eb
PZ
9341 .read = task_clock_event_read,
9342};
6fb2915d 9343
ad5133b7 9344static void perf_pmu_nop_void(struct pmu *pmu)
e077df4f 9345{
e077df4f 9346}
6fb2915d 9347
fbbe0701
SB
9348static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
9349{
9350}
9351
ad5133b7 9352static int perf_pmu_nop_int(struct pmu *pmu)
6fb2915d 9353{
ad5133b7 9354 return 0;
6fb2915d
LZ
9355}
9356
18ab2cd3 9357static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
fbbe0701
SB
9358
9359static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
6fb2915d 9360{
fbbe0701
SB
9361 __this_cpu_write(nop_txn_flags, flags);
9362
9363 if (flags & ~PERF_PMU_TXN_ADD)
9364 return;
9365
ad5133b7 9366 perf_pmu_disable(pmu);
6fb2915d
LZ
9367}
9368
ad5133b7
PZ
9369static int perf_pmu_commit_txn(struct pmu *pmu)
9370{
fbbe0701
SB
9371 unsigned int flags = __this_cpu_read(nop_txn_flags);
9372
9373 __this_cpu_write(nop_txn_flags, 0);
9374
9375 if (flags & ~PERF_PMU_TXN_ADD)
9376 return 0;
9377
ad5133b7
PZ
9378 perf_pmu_enable(pmu);
9379 return 0;
9380}
e077df4f 9381
ad5133b7 9382static void perf_pmu_cancel_txn(struct pmu *pmu)
24f1e32c 9383{
fbbe0701
SB
9384 unsigned int flags = __this_cpu_read(nop_txn_flags);
9385
9386 __this_cpu_write(nop_txn_flags, 0);
9387
9388 if (flags & ~PERF_PMU_TXN_ADD)
9389 return;
9390
ad5133b7 9391 perf_pmu_enable(pmu);
24f1e32c
FW
9392}
9393
35edc2a5
PZ
9394static int perf_event_idx_default(struct perf_event *event)
9395{
c719f560 9396 return 0;
35edc2a5
PZ
9397}
9398
8dc85d54
PZ
9399/*
9400 * Ensures all contexts with the same task_ctx_nr have the same
9401 * pmu_cpu_context too.
9402 */
9e317041 9403static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
24f1e32c 9404{
8dc85d54 9405 struct pmu *pmu;
b326e956 9406
8dc85d54
PZ
9407 if (ctxn < 0)
9408 return NULL;
24f1e32c 9409
8dc85d54
PZ
9410 list_for_each_entry(pmu, &pmus, entry) {
9411 if (pmu->task_ctx_nr == ctxn)
9412 return pmu->pmu_cpu_context;
9413 }
24f1e32c 9414
8dc85d54 9415 return NULL;
24f1e32c
FW
9416}
9417
51676957
PZ
9418static void free_pmu_context(struct pmu *pmu)
9419{
df0062b2
WD
9420 /*
9421 * Static contexts such as perf_sw_context have a global lifetime
9422 * and may be shared between different PMUs. Avoid freeing them
9423 * when a single PMU is going away.
9424 */
9425 if (pmu->task_ctx_nr > perf_invalid_context)
9426 return;
9427
8dc85d54 9428 mutex_lock(&pmus_lock);
51676957 9429 free_percpu(pmu->pmu_cpu_context);
8dc85d54 9430 mutex_unlock(&pmus_lock);
24f1e32c 9431}
6e855cd4
AS
9432
9433/*
9434 * Let userspace know that this PMU supports address range filtering:
9435 */
9436static ssize_t nr_addr_filters_show(struct device *dev,
9437 struct device_attribute *attr,
9438 char *page)
9439{
9440 struct pmu *pmu = dev_get_drvdata(dev);
9441
9442 return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
9443}
9444DEVICE_ATTR_RO(nr_addr_filters);
9445
2e80a82a 9446static struct idr pmu_idr;
d6d020e9 9447
abe43400
PZ
9448static ssize_t
9449type_show(struct device *dev, struct device_attribute *attr, char *page)
9450{
9451 struct pmu *pmu = dev_get_drvdata(dev);
9452
9453 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
9454}
90826ca7 9455static DEVICE_ATTR_RO(type);
abe43400 9456
62b85639
SE
9457static ssize_t
9458perf_event_mux_interval_ms_show(struct device *dev,
9459 struct device_attribute *attr,
9460 char *page)
9461{
9462 struct pmu *pmu = dev_get_drvdata(dev);
9463
9464 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
9465}
9466
272325c4
PZ
9467static DEFINE_MUTEX(mux_interval_mutex);
9468
62b85639
SE
9469static ssize_t
9470perf_event_mux_interval_ms_store(struct device *dev,
9471 struct device_attribute *attr,
9472 const char *buf, size_t count)
9473{
9474 struct pmu *pmu = dev_get_drvdata(dev);
9475 int timer, cpu, ret;
9476
9477 ret = kstrtoint(buf, 0, &timer);
9478 if (ret)
9479 return ret;
9480
9481 if (timer < 1)
9482 return -EINVAL;
9483
9484 /* same value, noting to do */
9485 if (timer == pmu->hrtimer_interval_ms)
9486 return count;
9487
272325c4 9488 mutex_lock(&mux_interval_mutex);
62b85639
SE
9489 pmu->hrtimer_interval_ms = timer;
9490
9491 /* update all cpuctx for this PMU */
a63fbed7 9492 cpus_read_lock();
272325c4 9493 for_each_online_cpu(cpu) {
62b85639
SE
9494 struct perf_cpu_context *cpuctx;
9495 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
9496 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
9497
272325c4
PZ
9498 cpu_function_call(cpu,
9499 (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
62b85639 9500 }
a63fbed7 9501 cpus_read_unlock();
272325c4 9502 mutex_unlock(&mux_interval_mutex);
62b85639
SE
9503
9504 return count;
9505}
90826ca7 9506static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
62b85639 9507
90826ca7
GKH
9508static struct attribute *pmu_dev_attrs[] = {
9509 &dev_attr_type.attr,
9510 &dev_attr_perf_event_mux_interval_ms.attr,
9511 NULL,
abe43400 9512};
90826ca7 9513ATTRIBUTE_GROUPS(pmu_dev);
abe43400
PZ
9514
9515static int pmu_bus_running;
9516static struct bus_type pmu_bus = {
9517 .name = "event_source",
90826ca7 9518 .dev_groups = pmu_dev_groups,
abe43400
PZ
9519};
9520
9521static void pmu_dev_release(struct device *dev)
9522{
9523 kfree(dev);
9524}
9525
9526static int pmu_dev_alloc(struct pmu *pmu)
9527{
9528 int ret = -ENOMEM;
9529
9530 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
9531 if (!pmu->dev)
9532 goto out;
9533
0c9d42ed 9534 pmu->dev->groups = pmu->attr_groups;
abe43400
PZ
9535 device_initialize(pmu->dev);
9536 ret = dev_set_name(pmu->dev, "%s", pmu->name);
9537 if (ret)
9538 goto free_dev;
9539
9540 dev_set_drvdata(pmu->dev, pmu);
9541 pmu->dev->bus = &pmu_bus;
9542 pmu->dev->release = pmu_dev_release;
9543 ret = device_add(pmu->dev);
9544 if (ret)
9545 goto free_dev;
9546
6e855cd4
AS
9547 /* For PMUs with address filters, throw in an extra attribute: */
9548 if (pmu->nr_addr_filters)
9549 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
9550
9551 if (ret)
9552 goto del_dev;
9553
abe43400
PZ
9554out:
9555 return ret;
9556
6e855cd4
AS
9557del_dev:
9558 device_del(pmu->dev);
9559
abe43400
PZ
9560free_dev:
9561 put_device(pmu->dev);
9562 goto out;
9563}
9564
547e9fd7 9565static struct lock_class_key cpuctx_mutex;
facc4307 9566static struct lock_class_key cpuctx_lock;
547e9fd7 9567
03d8e80b 9568int perf_pmu_register(struct pmu *pmu, const char *name, int type)
24f1e32c 9569{
108b02cf 9570 int cpu, ret;
24f1e32c 9571
b0a873eb 9572 mutex_lock(&pmus_lock);
33696fc0
PZ
9573 ret = -ENOMEM;
9574 pmu->pmu_disable_count = alloc_percpu(int);
9575 if (!pmu->pmu_disable_count)
9576 goto unlock;
f29ac756 9577
2e80a82a
PZ
9578 pmu->type = -1;
9579 if (!name)
9580 goto skip_type;
9581 pmu->name = name;
9582
9583 if (type < 0) {
0e9c3be2
TH
9584 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
9585 if (type < 0) {
9586 ret = type;
2e80a82a
PZ
9587 goto free_pdc;
9588 }
9589 }
9590 pmu->type = type;
9591
abe43400
PZ
9592 if (pmu_bus_running) {
9593 ret = pmu_dev_alloc(pmu);
9594 if (ret)
9595 goto free_idr;
9596 }
9597
2e80a82a 9598skip_type:
26657848
PZ
9599 if (pmu->task_ctx_nr == perf_hw_context) {
9600 static int hw_context_taken = 0;
9601
5101ef20
MR
9602 /*
9603 * Other than systems with heterogeneous CPUs, it never makes
9604 * sense for two PMUs to share perf_hw_context. PMUs which are
9605 * uncore must use perf_invalid_context.
9606 */
9607 if (WARN_ON_ONCE(hw_context_taken &&
9608 !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
26657848
PZ
9609 pmu->task_ctx_nr = perf_invalid_context;
9610
9611 hw_context_taken = 1;
9612 }
9613
8dc85d54
PZ
9614 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
9615 if (pmu->pmu_cpu_context)
9616 goto got_cpu_context;
f29ac756 9617
c4814202 9618 ret = -ENOMEM;
108b02cf
PZ
9619 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
9620 if (!pmu->pmu_cpu_context)
abe43400 9621 goto free_dev;
f344011c 9622
108b02cf
PZ
9623 for_each_possible_cpu(cpu) {
9624 struct perf_cpu_context *cpuctx;
9625
9626 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
eb184479 9627 __perf_event_init_context(&cpuctx->ctx);
547e9fd7 9628 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
facc4307 9629 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
108b02cf 9630 cpuctx->ctx.pmu = pmu;
a63fbed7 9631 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
9e630205 9632
272325c4 9633 __perf_mux_hrtimer_init(cpuctx, cpu);
108b02cf 9634 }
76e1d904 9635
8dc85d54 9636got_cpu_context:
ad5133b7
PZ
9637 if (!pmu->start_txn) {
9638 if (pmu->pmu_enable) {
9639 /*
9640 * If we have pmu_enable/pmu_disable calls, install
9641 * transaction stubs that use that to try and batch
9642 * hardware accesses.
9643 */
9644 pmu->start_txn = perf_pmu_start_txn;
9645 pmu->commit_txn = perf_pmu_commit_txn;
9646 pmu->cancel_txn = perf_pmu_cancel_txn;
9647 } else {
fbbe0701 9648 pmu->start_txn = perf_pmu_nop_txn;
ad5133b7
PZ
9649 pmu->commit_txn = perf_pmu_nop_int;
9650 pmu->cancel_txn = perf_pmu_nop_void;
f344011c 9651 }
5c92d124 9652 }
15dbf27c 9653
ad5133b7
PZ
9654 if (!pmu->pmu_enable) {
9655 pmu->pmu_enable = perf_pmu_nop_void;
9656 pmu->pmu_disable = perf_pmu_nop_void;
9657 }
9658
35edc2a5
PZ
9659 if (!pmu->event_idx)
9660 pmu->event_idx = perf_event_idx_default;
9661
b0a873eb 9662 list_add_rcu(&pmu->entry, &pmus);
bed5b25a 9663 atomic_set(&pmu->exclusive_cnt, 0);
33696fc0
PZ
9664 ret = 0;
9665unlock:
b0a873eb
PZ
9666 mutex_unlock(&pmus_lock);
9667
33696fc0 9668 return ret;
108b02cf 9669
abe43400
PZ
9670free_dev:
9671 device_del(pmu->dev);
9672 put_device(pmu->dev);
9673
2e80a82a
PZ
9674free_idr:
9675 if (pmu->type >= PERF_TYPE_MAX)
9676 idr_remove(&pmu_idr, pmu->type);
9677
108b02cf
PZ
9678free_pdc:
9679 free_percpu(pmu->pmu_disable_count);
9680 goto unlock;
f29ac756 9681}
c464c76e 9682EXPORT_SYMBOL_GPL(perf_pmu_register);
f29ac756 9683
b0a873eb 9684void perf_pmu_unregister(struct pmu *pmu)
5c92d124 9685{
0933840a
JO
9686 int remove_device;
9687
b0a873eb 9688 mutex_lock(&pmus_lock);
0933840a 9689 remove_device = pmu_bus_running;
b0a873eb
PZ
9690 list_del_rcu(&pmu->entry);
9691 mutex_unlock(&pmus_lock);
5c92d124 9692
0475f9ea 9693 /*
cde8e884
PZ
9694 * We dereference the pmu list under both SRCU and regular RCU, so
9695 * synchronize against both of those.
0475f9ea 9696 */
b0a873eb 9697 synchronize_srcu(&pmus_srcu);
cde8e884 9698 synchronize_rcu();
d6d020e9 9699
33696fc0 9700 free_percpu(pmu->pmu_disable_count);
2e80a82a
PZ
9701 if (pmu->type >= PERF_TYPE_MAX)
9702 idr_remove(&pmu_idr, pmu->type);
0933840a
JO
9703 if (remove_device) {
9704 if (pmu->nr_addr_filters)
9705 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
9706 device_del(pmu->dev);
9707 put_device(pmu->dev);
9708 }
51676957 9709 free_pmu_context(pmu);
b0a873eb 9710}
c464c76e 9711EXPORT_SYMBOL_GPL(perf_pmu_unregister);
d6d020e9 9712
cc34b98b
MR
9713static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
9714{
ccd41c86 9715 struct perf_event_context *ctx = NULL;
cc34b98b
MR
9716 int ret;
9717
9718 if (!try_module_get(pmu->module))
9719 return -ENODEV;
ccd41c86 9720
0c7296ca
PZ
9721 /*
9722 * A number of pmu->event_init() methods iterate the sibling_list to,
9723 * for example, validate if the group fits on the PMU. Therefore,
9724 * if this is a sibling event, acquire the ctx->mutex to protect
9725 * the sibling_list.
9726 */
9727 if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
8b10c5e2
PZ
9728 /*
9729 * This ctx->mutex can nest when we're called through
9730 * inheritance. See the perf_event_ctx_lock_nested() comment.
9731 */
9732 ctx = perf_event_ctx_lock_nested(event->group_leader,
9733 SINGLE_DEPTH_NESTING);
ccd41c86
PZ
9734 BUG_ON(!ctx);
9735 }
9736
cc34b98b
MR
9737 event->pmu = pmu;
9738 ret = pmu->event_init(event);
ccd41c86
PZ
9739
9740 if (ctx)
9741 perf_event_ctx_unlock(event->group_leader, ctx);
9742
cc34b98b
MR
9743 if (ret)
9744 module_put(pmu->module);
9745
9746 return ret;
9747}
9748
18ab2cd3 9749static struct pmu *perf_init_event(struct perf_event *event)
b0a873eb 9750{
85c617ab 9751 struct pmu *pmu;
b0a873eb 9752 int idx;
940c5b29 9753 int ret;
b0a873eb
PZ
9754
9755 idx = srcu_read_lock(&pmus_srcu);
2e80a82a 9756
40999312
KL
9757 /* Try parent's PMU first: */
9758 if (event->parent && event->parent->pmu) {
9759 pmu = event->parent->pmu;
9760 ret = perf_try_init_event(pmu, event);
9761 if (!ret)
9762 goto unlock;
9763 }
9764
2e80a82a
PZ
9765 rcu_read_lock();
9766 pmu = idr_find(&pmu_idr, event->attr.type);
9767 rcu_read_unlock();
940c5b29 9768 if (pmu) {
cc34b98b 9769 ret = perf_try_init_event(pmu, event);
940c5b29
LM
9770 if (ret)
9771 pmu = ERR_PTR(ret);
2e80a82a 9772 goto unlock;
940c5b29 9773 }
2e80a82a 9774
b0a873eb 9775 list_for_each_entry_rcu(pmu, &pmus, entry) {
cc34b98b 9776 ret = perf_try_init_event(pmu, event);
b0a873eb 9777 if (!ret)
e5f4d339 9778 goto unlock;
76e1d904 9779
b0a873eb
PZ
9780 if (ret != -ENOENT) {
9781 pmu = ERR_PTR(ret);
e5f4d339 9782 goto unlock;
f344011c 9783 }
5c92d124 9784 }
e5f4d339
PZ
9785 pmu = ERR_PTR(-ENOENT);
9786unlock:
b0a873eb 9787 srcu_read_unlock(&pmus_srcu, idx);
15dbf27c 9788
4aeb0b42 9789 return pmu;
5c92d124
IM
9790}
9791
f2fb6bef
KL
9792static void attach_sb_event(struct perf_event *event)
9793{
9794 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
9795
9796 raw_spin_lock(&pel->lock);
9797 list_add_rcu(&event->sb_list, &pel->list);
9798 raw_spin_unlock(&pel->lock);
9799}
9800
aab5b71e
PZ
9801/*
9802 * We keep a list of all !task (and therefore per-cpu) events
9803 * that need to receive side-band records.
9804 *
9805 * This avoids having to scan all the various PMU per-cpu contexts
9806 * looking for them.
9807 */
f2fb6bef
KL
9808static void account_pmu_sb_event(struct perf_event *event)
9809{
a4f144eb 9810 if (is_sb_event(event))
f2fb6bef
KL
9811 attach_sb_event(event);
9812}
9813
4beb31f3
FW
9814static void account_event_cpu(struct perf_event *event, int cpu)
9815{
9816 if (event->parent)
9817 return;
9818
4beb31f3
FW
9819 if (is_cgroup_event(event))
9820 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
9821}
9822
555e0c1e
FW
9823/* Freq events need the tick to stay alive (see perf_event_task_tick). */
9824static void account_freq_event_nohz(void)
9825{
9826#ifdef CONFIG_NO_HZ_FULL
9827 /* Lock so we don't race with concurrent unaccount */
9828 spin_lock(&nr_freq_lock);
9829 if (atomic_inc_return(&nr_freq_events) == 1)
9830 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
9831 spin_unlock(&nr_freq_lock);
9832#endif
9833}
9834
9835static void account_freq_event(void)
9836{
9837 if (tick_nohz_full_enabled())
9838 account_freq_event_nohz();
9839 else
9840 atomic_inc(&nr_freq_events);
9841}
9842
9843
766d6c07
FW
9844static void account_event(struct perf_event *event)
9845{
25432ae9
PZ
9846 bool inc = false;
9847
4beb31f3
FW
9848 if (event->parent)
9849 return;
9850
766d6c07 9851 if (event->attach_state & PERF_ATTACH_TASK)
25432ae9 9852 inc = true;
766d6c07
FW
9853 if (event->attr.mmap || event->attr.mmap_data)
9854 atomic_inc(&nr_mmap_events);
9855 if (event->attr.comm)
9856 atomic_inc(&nr_comm_events);
e4222673
HB
9857 if (event->attr.namespaces)
9858 atomic_inc(&nr_namespaces_events);
766d6c07
FW
9859 if (event->attr.task)
9860 atomic_inc(&nr_task_events);
555e0c1e
FW
9861 if (event->attr.freq)
9862 account_freq_event();
45ac1403
AH
9863 if (event->attr.context_switch) {
9864 atomic_inc(&nr_switch_events);
25432ae9 9865 inc = true;
45ac1403 9866 }
4beb31f3 9867 if (has_branch_stack(event))
25432ae9 9868 inc = true;
4beb31f3 9869 if (is_cgroup_event(event))
25432ae9
PZ
9870 inc = true;
9871
9107c89e 9872 if (inc) {
5bce9db1
AS
9873 /*
9874 * We need the mutex here because static_branch_enable()
9875 * must complete *before* the perf_sched_count increment
9876 * becomes visible.
9877 */
9107c89e
PZ
9878 if (atomic_inc_not_zero(&perf_sched_count))
9879 goto enabled;
9880
9881 mutex_lock(&perf_sched_mutex);
9882 if (!atomic_read(&perf_sched_count)) {
9883 static_branch_enable(&perf_sched_events);
9884 /*
9885 * Guarantee that all CPUs observe they key change and
9886 * call the perf scheduling hooks before proceeding to
9887 * install events that need them.
9888 */
9889 synchronize_sched();
9890 }
9891 /*
9892 * Now that we have waited for the sync_sched(), allow further
9893 * increments to by-pass the mutex.
9894 */
9895 atomic_inc(&perf_sched_count);
9896 mutex_unlock(&perf_sched_mutex);
9897 }
9898enabled:
4beb31f3
FW
9899
9900 account_event_cpu(event, event->cpu);
f2fb6bef
KL
9901
9902 account_pmu_sb_event(event);
766d6c07
FW
9903}
9904
0793a61d 9905/*
788faab7 9906 * Allocate and initialize an event structure
0793a61d 9907 */
cdd6c482 9908static struct perf_event *
c3f00c70 9909perf_event_alloc(struct perf_event_attr *attr, int cpu,
d580ff86
PZ
9910 struct task_struct *task,
9911 struct perf_event *group_leader,
9912 struct perf_event *parent_event,
4dc0da86 9913 perf_overflow_handler_t overflow_handler,
79dff51e 9914 void *context, int cgroup_fd)
0793a61d 9915{
51b0fe39 9916 struct pmu *pmu;
cdd6c482
IM
9917 struct perf_event *event;
9918 struct hw_perf_event *hwc;
90983b16 9919 long err = -EINVAL;
0793a61d 9920
66832eb4
ON
9921 if ((unsigned)cpu >= nr_cpu_ids) {
9922 if (!task || cpu != -1)
9923 return ERR_PTR(-EINVAL);
9924 }
9925
c3f00c70 9926 event = kzalloc(sizeof(*event), GFP_KERNEL);
cdd6c482 9927 if (!event)
d5d2bc0d 9928 return ERR_PTR(-ENOMEM);
0793a61d 9929
04289bb9 9930 /*
cdd6c482 9931 * Single events are their own group leaders, with an
04289bb9
IM
9932 * empty sibling list:
9933 */
9934 if (!group_leader)
cdd6c482 9935 group_leader = event;
04289bb9 9936
cdd6c482
IM
9937 mutex_init(&event->child_mutex);
9938 INIT_LIST_HEAD(&event->child_list);
fccc714b 9939
cdd6c482
IM
9940 INIT_LIST_HEAD(&event->event_entry);
9941 INIT_LIST_HEAD(&event->sibling_list);
6668128a 9942 INIT_LIST_HEAD(&event->active_list);
8e1a2031 9943 init_event_group(event);
10c6db11 9944 INIT_LIST_HEAD(&event->rb_entry);
71ad88ef 9945 INIT_LIST_HEAD(&event->active_entry);
375637bc 9946 INIT_LIST_HEAD(&event->addr_filters.list);
f3ae75de
SE
9947 INIT_HLIST_NODE(&event->hlist_entry);
9948
10c6db11 9949
cdd6c482 9950 init_waitqueue_head(&event->waitq);
e360adbe 9951 init_irq_work(&event->pending, perf_pending_event);
0793a61d 9952
cdd6c482 9953 mutex_init(&event->mmap_mutex);
375637bc 9954 raw_spin_lock_init(&event->addr_filters.lock);
7b732a75 9955
a6fa941d 9956 atomic_long_set(&event->refcount, 1);
cdd6c482
IM
9957 event->cpu = cpu;
9958 event->attr = *attr;
9959 event->group_leader = group_leader;
9960 event->pmu = NULL;
cdd6c482 9961 event->oncpu = -1;
a96bbc16 9962
cdd6c482 9963 event->parent = parent_event;
b84fbc9f 9964
17cf22c3 9965 event->ns = get_pid_ns(task_active_pid_ns(current));
cdd6c482 9966 event->id = atomic64_inc_return(&perf_event_id);
a96bbc16 9967
cdd6c482 9968 event->state = PERF_EVENT_STATE_INACTIVE;
329d876d 9969
d580ff86
PZ
9970 if (task) {
9971 event->attach_state = PERF_ATTACH_TASK;
d580ff86 9972 /*
50f16a8b
PZ
9973 * XXX pmu::event_init needs to know what task to account to
9974 * and we cannot use the ctx information because we need the
9975 * pmu before we get a ctx.
d580ff86 9976 */
621b6d2e 9977 get_task_struct(task);
50f16a8b 9978 event->hw.target = task;
d580ff86
PZ
9979 }
9980
34f43927
PZ
9981 event->clock = &local_clock;
9982 if (parent_event)
9983 event->clock = parent_event->clock;
9984
4dc0da86 9985 if (!overflow_handler && parent_event) {
b326e956 9986 overflow_handler = parent_event->overflow_handler;
4dc0da86 9987 context = parent_event->overflow_handler_context;
f1e4ba5b 9988#if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
aa6a5f3c
AS
9989 if (overflow_handler == bpf_overflow_handler) {
9990 struct bpf_prog *prog = bpf_prog_inc(parent_event->prog);
9991
9992 if (IS_ERR(prog)) {
9993 err = PTR_ERR(prog);
9994 goto err_ns;
9995 }
9996 event->prog = prog;
9997 event->orig_overflow_handler =
9998 parent_event->orig_overflow_handler;
9999 }
10000#endif
4dc0da86 10001 }
66832eb4 10002
1879445d
WN
10003 if (overflow_handler) {
10004 event->overflow_handler = overflow_handler;
10005 event->overflow_handler_context = context;
9ecda41a
WN
10006 } else if (is_write_backward(event)){
10007 event->overflow_handler = perf_event_output_backward;
10008 event->overflow_handler_context = NULL;
1879445d 10009 } else {
9ecda41a 10010 event->overflow_handler = perf_event_output_forward;
1879445d
WN
10011 event->overflow_handler_context = NULL;
10012 }
97eaf530 10013
0231bb53 10014 perf_event__state_init(event);
a86ed508 10015
4aeb0b42 10016 pmu = NULL;
b8e83514 10017
cdd6c482 10018 hwc = &event->hw;
bd2b5b12 10019 hwc->sample_period = attr->sample_period;
0d48696f 10020 if (attr->freq && attr->sample_freq)
bd2b5b12 10021 hwc->sample_period = 1;
eced1dfc 10022 hwc->last_period = hwc->sample_period;
bd2b5b12 10023
e7850595 10024 local64_set(&hwc->period_left, hwc->sample_period);
60db5e09 10025
2023b359 10026 /*
ba5213ae
PZ
10027 * We currently do not support PERF_SAMPLE_READ on inherited events.
10028 * See perf_output_read().
2023b359 10029 */
ba5213ae 10030 if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
90983b16 10031 goto err_ns;
a46a2300
YZ
10032
10033 if (!has_branch_stack(event))
10034 event->attr.branch_sample_type = 0;
2023b359 10035
79dff51e
MF
10036 if (cgroup_fd != -1) {
10037 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
10038 if (err)
10039 goto err_ns;
10040 }
10041
b0a873eb 10042 pmu = perf_init_event(event);
85c617ab 10043 if (IS_ERR(pmu)) {
4aeb0b42 10044 err = PTR_ERR(pmu);
90983b16 10045 goto err_ns;
621a01ea 10046 }
d5d2bc0d 10047
bed5b25a
AS
10048 err = exclusive_event_init(event);
10049 if (err)
10050 goto err_pmu;
10051
375637bc
AS
10052 if (has_addr_filter(event)) {
10053 event->addr_filters_offs = kcalloc(pmu->nr_addr_filters,
10054 sizeof(unsigned long),
10055 GFP_KERNEL);
36cc2b92
DC
10056 if (!event->addr_filters_offs) {
10057 err = -ENOMEM;
375637bc 10058 goto err_per_task;
36cc2b92 10059 }
375637bc
AS
10060
10061 /* force hw sync on the address filters */
10062 event->addr_filters_gen = 1;
10063 }
10064
cdd6c482 10065 if (!event->parent) {
927c7a9e 10066 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
97c79a38 10067 err = get_callchain_buffers(attr->sample_max_stack);
90983b16 10068 if (err)
375637bc 10069 goto err_addr_filters;
d010b332 10070 }
f344011c 10071 }
9ee318a7 10072
927a5570
AS
10073 /* symmetric to unaccount_event() in _free_event() */
10074 account_event(event);
10075
cdd6c482 10076 return event;
90983b16 10077
375637bc
AS
10078err_addr_filters:
10079 kfree(event->addr_filters_offs);
10080
bed5b25a
AS
10081err_per_task:
10082 exclusive_event_destroy(event);
10083
90983b16
FW
10084err_pmu:
10085 if (event->destroy)
10086 event->destroy(event);
c464c76e 10087 module_put(pmu->module);
90983b16 10088err_ns:
79dff51e
MF
10089 if (is_cgroup_event(event))
10090 perf_detach_cgroup(event);
90983b16
FW
10091 if (event->ns)
10092 put_pid_ns(event->ns);
621b6d2e
PB
10093 if (event->hw.target)
10094 put_task_struct(event->hw.target);
90983b16
FW
10095 kfree(event);
10096
10097 return ERR_PTR(err);
0793a61d
TG
10098}
10099
cdd6c482
IM
10100static int perf_copy_attr(struct perf_event_attr __user *uattr,
10101 struct perf_event_attr *attr)
974802ea 10102{
974802ea 10103 u32 size;
cdf8073d 10104 int ret;
974802ea
PZ
10105
10106 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
10107 return -EFAULT;
10108
10109 /*
10110 * zero the full structure, so that a short copy will be nice.
10111 */
10112 memset(attr, 0, sizeof(*attr));
10113
10114 ret = get_user(size, &uattr->size);
10115 if (ret)
10116 return ret;
10117
10118 if (size > PAGE_SIZE) /* silly large */
10119 goto err_size;
10120
10121 if (!size) /* abi compat */
10122 size = PERF_ATTR_SIZE_VER0;
10123
10124 if (size < PERF_ATTR_SIZE_VER0)
10125 goto err_size;
10126
10127 /*
10128 * If we're handed a bigger struct than we know of,
cdf8073d
IS
10129 * ensure all the unknown bits are 0 - i.e. new
10130 * user-space does not rely on any kernel feature
10131 * extensions we dont know about yet.
974802ea
PZ
10132 */
10133 if (size > sizeof(*attr)) {
cdf8073d
IS
10134 unsigned char __user *addr;
10135 unsigned char __user *end;
10136 unsigned char val;
974802ea 10137
cdf8073d
IS
10138 addr = (void __user *)uattr + sizeof(*attr);
10139 end = (void __user *)uattr + size;
974802ea 10140
cdf8073d 10141 for (; addr < end; addr++) {
974802ea
PZ
10142 ret = get_user(val, addr);
10143 if (ret)
10144 return ret;
10145 if (val)
10146 goto err_size;
10147 }
b3e62e35 10148 size = sizeof(*attr);
974802ea
PZ
10149 }
10150
10151 ret = copy_from_user(attr, uattr, size);
10152 if (ret)
10153 return -EFAULT;
10154
f12f42ac
MX
10155 attr->size = size;
10156
cd757645 10157 if (attr->__reserved_1)
974802ea
PZ
10158 return -EINVAL;
10159
10160 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
10161 return -EINVAL;
10162
10163 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
10164 return -EINVAL;
10165
bce38cd5
SE
10166 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
10167 u64 mask = attr->branch_sample_type;
10168
10169 /* only using defined bits */
10170 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
10171 return -EINVAL;
10172
10173 /* at least one branch bit must be set */
10174 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
10175 return -EINVAL;
10176
bce38cd5
SE
10177 /* propagate priv level, when not set for branch */
10178 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
10179
10180 /* exclude_kernel checked on syscall entry */
10181 if (!attr->exclude_kernel)
10182 mask |= PERF_SAMPLE_BRANCH_KERNEL;
10183
10184 if (!attr->exclude_user)
10185 mask |= PERF_SAMPLE_BRANCH_USER;
10186
10187 if (!attr->exclude_hv)
10188 mask |= PERF_SAMPLE_BRANCH_HV;
10189 /*
10190 * adjust user setting (for HW filter setup)
10191 */
10192 attr->branch_sample_type = mask;
10193 }
e712209a
SE
10194 /* privileged levels capture (kernel, hv): check permissions */
10195 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
2b923c8f
SE
10196 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10197 return -EACCES;
bce38cd5 10198 }
4018994f 10199
c5ebcedb 10200 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
4018994f 10201 ret = perf_reg_validate(attr->sample_regs_user);
c5ebcedb
JO
10202 if (ret)
10203 return ret;
10204 }
10205
10206 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
10207 if (!arch_perf_have_user_stack_dump())
10208 return -ENOSYS;
10209
10210 /*
10211 * We have __u32 type for the size, but so far
10212 * we can only use __u16 as maximum due to the
10213 * __u16 sample size limit.
10214 */
10215 if (attr->sample_stack_user >= USHRT_MAX)
78b562fb 10216 return -EINVAL;
c5ebcedb 10217 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
78b562fb 10218 return -EINVAL;
c5ebcedb 10219 }
4018994f 10220
5f970521
JO
10221 if (!attr->sample_max_stack)
10222 attr->sample_max_stack = sysctl_perf_event_max_stack;
10223
60e2364e
SE
10224 if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
10225 ret = perf_reg_validate(attr->sample_regs_intr);
974802ea
PZ
10226out:
10227 return ret;
10228
10229err_size:
10230 put_user(sizeof(*attr), &uattr->size);
10231 ret = -E2BIG;
10232 goto out;
10233}
10234
ac9721f3
PZ
10235static int
10236perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
a4be7c27 10237{
b69cf536 10238 struct ring_buffer *rb = NULL;
a4be7c27
PZ
10239 int ret = -EINVAL;
10240
ac9721f3 10241 if (!output_event)
a4be7c27
PZ
10242 goto set;
10243
ac9721f3
PZ
10244 /* don't allow circular references */
10245 if (event == output_event)
a4be7c27
PZ
10246 goto out;
10247
0f139300
PZ
10248 /*
10249 * Don't allow cross-cpu buffers
10250 */
10251 if (output_event->cpu != event->cpu)
10252 goto out;
10253
10254 /*
76369139 10255 * If its not a per-cpu rb, it must be the same task.
0f139300
PZ
10256 */
10257 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
10258 goto out;
10259
34f43927
PZ
10260 /*
10261 * Mixing clocks in the same buffer is trouble you don't need.
10262 */
10263 if (output_event->clock != event->clock)
10264 goto out;
10265
9ecda41a
WN
10266 /*
10267 * Either writing ring buffer from beginning or from end.
10268 * Mixing is not allowed.
10269 */
10270 if (is_write_backward(output_event) != is_write_backward(event))
10271 goto out;
10272
45bfb2e5
PZ
10273 /*
10274 * If both events generate aux data, they must be on the same PMU
10275 */
10276 if (has_aux(event) && has_aux(output_event) &&
10277 event->pmu != output_event->pmu)
10278 goto out;
10279
a4be7c27 10280set:
cdd6c482 10281 mutex_lock(&event->mmap_mutex);
ac9721f3
PZ
10282 /* Can't redirect output if we've got an active mmap() */
10283 if (atomic_read(&event->mmap_count))
10284 goto unlock;
a4be7c27 10285
ac9721f3 10286 if (output_event) {
76369139
FW
10287 /* get the rb we want to redirect to */
10288 rb = ring_buffer_get(output_event);
10289 if (!rb)
ac9721f3 10290 goto unlock;
a4be7c27
PZ
10291 }
10292
b69cf536 10293 ring_buffer_attach(event, rb);
9bb5d40c 10294
a4be7c27 10295 ret = 0;
ac9721f3
PZ
10296unlock:
10297 mutex_unlock(&event->mmap_mutex);
10298
a4be7c27 10299out:
a4be7c27
PZ
10300 return ret;
10301}
10302
f63a8daa
PZ
10303static void mutex_lock_double(struct mutex *a, struct mutex *b)
10304{
10305 if (b < a)
10306 swap(a, b);
10307
10308 mutex_lock(a);
10309 mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
10310}
10311
34f43927
PZ
10312static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
10313{
10314 bool nmi_safe = false;
10315
10316 switch (clk_id) {
10317 case CLOCK_MONOTONIC:
10318 event->clock = &ktime_get_mono_fast_ns;
10319 nmi_safe = true;
10320 break;
10321
10322 case CLOCK_MONOTONIC_RAW:
10323 event->clock = &ktime_get_raw_fast_ns;
10324 nmi_safe = true;
10325 break;
10326
10327 case CLOCK_REALTIME:
10328 event->clock = &ktime_get_real_ns;
10329 break;
10330
10331 case CLOCK_BOOTTIME:
10332 event->clock = &ktime_get_boot_ns;
10333 break;
10334
10335 case CLOCK_TAI:
10336 event->clock = &ktime_get_tai_ns;
10337 break;
10338
10339 default:
10340 return -EINVAL;
10341 }
10342
10343 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
10344 return -EINVAL;
10345
10346 return 0;
10347}
10348
321027c1
PZ
10349/*
10350 * Variation on perf_event_ctx_lock_nested(), except we take two context
10351 * mutexes.
10352 */
10353static struct perf_event_context *
10354__perf_event_ctx_lock_double(struct perf_event *group_leader,
10355 struct perf_event_context *ctx)
10356{
10357 struct perf_event_context *gctx;
10358
10359again:
10360 rcu_read_lock();
10361 gctx = READ_ONCE(group_leader->ctx);
10362 if (!atomic_inc_not_zero(&gctx->refcount)) {
10363 rcu_read_unlock();
10364 goto again;
10365 }
10366 rcu_read_unlock();
10367
10368 mutex_lock_double(&gctx->mutex, &ctx->mutex);
10369
10370 if (group_leader->ctx != gctx) {
10371 mutex_unlock(&ctx->mutex);
10372 mutex_unlock(&gctx->mutex);
10373 put_ctx(gctx);
10374 goto again;
10375 }
10376
10377 return gctx;
10378}
10379
0793a61d 10380/**
cdd6c482 10381 * sys_perf_event_open - open a performance event, associate it to a task/cpu
9f66a381 10382 *
cdd6c482 10383 * @attr_uptr: event_id type attributes for monitoring/sampling
0793a61d 10384 * @pid: target pid
9f66a381 10385 * @cpu: target cpu
cdd6c482 10386 * @group_fd: group leader event fd
0793a61d 10387 */
cdd6c482
IM
10388SYSCALL_DEFINE5(perf_event_open,
10389 struct perf_event_attr __user *, attr_uptr,
2743a5b0 10390 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
0793a61d 10391{
b04243ef
PZ
10392 struct perf_event *group_leader = NULL, *output_event = NULL;
10393 struct perf_event *event, *sibling;
cdd6c482 10394 struct perf_event_attr attr;
f63a8daa 10395 struct perf_event_context *ctx, *uninitialized_var(gctx);
cdd6c482 10396 struct file *event_file = NULL;
2903ff01 10397 struct fd group = {NULL, 0};
38a81da2 10398 struct task_struct *task = NULL;
89a1e187 10399 struct pmu *pmu;
ea635c64 10400 int event_fd;
b04243ef 10401 int move_group = 0;
dc86cabe 10402 int err;
a21b0b35 10403 int f_flags = O_RDWR;
79dff51e 10404 int cgroup_fd = -1;
0793a61d 10405
2743a5b0 10406 /* for future expandability... */
e5d1367f 10407 if (flags & ~PERF_FLAG_ALL)
2743a5b0
PM
10408 return -EINVAL;
10409
dc86cabe
IM
10410 err = perf_copy_attr(attr_uptr, &attr);
10411 if (err)
10412 return err;
eab656ae 10413
0764771d
PZ
10414 if (!attr.exclude_kernel) {
10415 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10416 return -EACCES;
10417 }
10418
e4222673
HB
10419 if (attr.namespaces) {
10420 if (!capable(CAP_SYS_ADMIN))
10421 return -EACCES;
10422 }
10423
df58ab24 10424 if (attr.freq) {
cdd6c482 10425 if (attr.sample_freq > sysctl_perf_event_sample_rate)
df58ab24 10426 return -EINVAL;
0819b2e3
PZ
10427 } else {
10428 if (attr.sample_period & (1ULL << 63))
10429 return -EINVAL;
df58ab24
PZ
10430 }
10431
fc7ce9c7
KL
10432 /* Only privileged users can get physical addresses */
10433 if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR) &&
10434 perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10435 return -EACCES;
10436
e5d1367f
SE
10437 /*
10438 * In cgroup mode, the pid argument is used to pass the fd
10439 * opened to the cgroup directory in cgroupfs. The cpu argument
10440 * designates the cpu on which to monitor threads from that
10441 * cgroup.
10442 */
10443 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
10444 return -EINVAL;
10445
a21b0b35
YD
10446 if (flags & PERF_FLAG_FD_CLOEXEC)
10447 f_flags |= O_CLOEXEC;
10448
10449 event_fd = get_unused_fd_flags(f_flags);
ea635c64
AV
10450 if (event_fd < 0)
10451 return event_fd;
10452
ac9721f3 10453 if (group_fd != -1) {
2903ff01
AV
10454 err = perf_fget_light(group_fd, &group);
10455 if (err)
d14b12d7 10456 goto err_fd;
2903ff01 10457 group_leader = group.file->private_data;
ac9721f3
PZ
10458 if (flags & PERF_FLAG_FD_OUTPUT)
10459 output_event = group_leader;
10460 if (flags & PERF_FLAG_FD_NO_GROUP)
10461 group_leader = NULL;
10462 }
10463
e5d1367f 10464 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
c6be5a5c
PZ
10465 task = find_lively_task_by_vpid(pid);
10466 if (IS_ERR(task)) {
10467 err = PTR_ERR(task);
10468 goto err_group_fd;
10469 }
10470 }
10471
1f4ee503
PZ
10472 if (task && group_leader &&
10473 group_leader->attr.inherit != attr.inherit) {
10474 err = -EINVAL;
10475 goto err_task;
10476 }
10477
79c9ce57
PZ
10478 if (task) {
10479 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
10480 if (err)
e5aeee51 10481 goto err_task;
79c9ce57
PZ
10482
10483 /*
10484 * Reuse ptrace permission checks for now.
10485 *
10486 * We must hold cred_guard_mutex across this and any potential
10487 * perf_install_in_context() call for this new event to
10488 * serialize against exec() altering our credentials (and the
10489 * perf_event_exit_task() that could imply).
10490 */
10491 err = -EACCES;
10492 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
10493 goto err_cred;
10494 }
10495
79dff51e
MF
10496 if (flags & PERF_FLAG_PID_CGROUP)
10497 cgroup_fd = pid;
10498
4dc0da86 10499 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
79dff51e 10500 NULL, NULL, cgroup_fd);
d14b12d7
SE
10501 if (IS_ERR(event)) {
10502 err = PTR_ERR(event);
79c9ce57 10503 goto err_cred;
d14b12d7
SE
10504 }
10505
53b25335
VW
10506 if (is_sampling_event(event)) {
10507 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
a1396555 10508 err = -EOPNOTSUPP;
53b25335
VW
10509 goto err_alloc;
10510 }
10511 }
10512
89a1e187
PZ
10513 /*
10514 * Special case software events and allow them to be part of
10515 * any hardware group.
10516 */
10517 pmu = event->pmu;
b04243ef 10518
34f43927
PZ
10519 if (attr.use_clockid) {
10520 err = perf_event_set_clock(event, attr.clockid);
10521 if (err)
10522 goto err_alloc;
10523 }
10524
4ff6a8de
DCC
10525 if (pmu->task_ctx_nr == perf_sw_context)
10526 event->event_caps |= PERF_EV_CAP_SOFTWARE;
10527
a1150c20
SL
10528 if (group_leader) {
10529 if (is_software_event(event) &&
10530 !in_software_context(group_leader)) {
b04243ef 10531 /*
a1150c20
SL
10532 * If the event is a sw event, but the group_leader
10533 * is on hw context.
b04243ef 10534 *
a1150c20
SL
10535 * Allow the addition of software events to hw
10536 * groups, this is safe because software events
10537 * never fail to schedule.
b04243ef 10538 */
a1150c20
SL
10539 pmu = group_leader->ctx->pmu;
10540 } else if (!is_software_event(event) &&
10541 is_software_event(group_leader) &&
4ff6a8de 10542 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
b04243ef
PZ
10543 /*
10544 * In case the group is a pure software group, and we
10545 * try to add a hardware event, move the whole group to
10546 * the hardware context.
10547 */
10548 move_group = 1;
10549 }
10550 }
89a1e187
PZ
10551
10552 /*
10553 * Get the target context (task or percpu):
10554 */
4af57ef2 10555 ctx = find_get_context(pmu, task, event);
89a1e187
PZ
10556 if (IS_ERR(ctx)) {
10557 err = PTR_ERR(ctx);
c6be5a5c 10558 goto err_alloc;
89a1e187
PZ
10559 }
10560
bed5b25a
AS
10561 if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
10562 err = -EBUSY;
10563 goto err_context;
10564 }
10565
ccff286d 10566 /*
cdd6c482 10567 * Look up the group leader (we will attach this event to it):
04289bb9 10568 */
ac9721f3 10569 if (group_leader) {
dc86cabe 10570 err = -EINVAL;
04289bb9 10571
04289bb9 10572 /*
ccff286d
IM
10573 * Do not allow a recursive hierarchy (this new sibling
10574 * becoming part of another group-sibling):
10575 */
10576 if (group_leader->group_leader != group_leader)
c3f00c70 10577 goto err_context;
34f43927
PZ
10578
10579 /* All events in a group should have the same clock */
10580 if (group_leader->clock != event->clock)
10581 goto err_context;
10582
ccff286d 10583 /*
64aee2a9
MR
10584 * Make sure we're both events for the same CPU;
10585 * grouping events for different CPUs is broken; since
10586 * you can never concurrently schedule them anyhow.
04289bb9 10587 */
64aee2a9
MR
10588 if (group_leader->cpu != event->cpu)
10589 goto err_context;
c3c87e77 10590
64aee2a9
MR
10591 /*
10592 * Make sure we're both on the same task, or both
10593 * per-CPU events.
10594 */
10595 if (group_leader->ctx->task != ctx->task)
10596 goto err_context;
10597
10598 /*
10599 * Do not allow to attach to a group in a different task
10600 * or CPU context. If we're moving SW events, we'll fix
10601 * this up later, so allow that.
10602 */
10603 if (!move_group && group_leader->ctx != ctx)
10604 goto err_context;
b04243ef 10605
3b6f9e5c
PM
10606 /*
10607 * Only a group leader can be exclusive or pinned
10608 */
0d48696f 10609 if (attr.exclusive || attr.pinned)
c3f00c70 10610 goto err_context;
ac9721f3
PZ
10611 }
10612
10613 if (output_event) {
10614 err = perf_event_set_output(event, output_event);
10615 if (err)
c3f00c70 10616 goto err_context;
ac9721f3 10617 }
0793a61d 10618
a21b0b35
YD
10619 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
10620 f_flags);
ea635c64
AV
10621 if (IS_ERR(event_file)) {
10622 err = PTR_ERR(event_file);
201c2f85 10623 event_file = NULL;
c3f00c70 10624 goto err_context;
ea635c64 10625 }
9b51f66d 10626
b04243ef 10627 if (move_group) {
321027c1
PZ
10628 gctx = __perf_event_ctx_lock_double(group_leader, ctx);
10629
84c4e620
PZ
10630 if (gctx->task == TASK_TOMBSTONE) {
10631 err = -ESRCH;
10632 goto err_locked;
10633 }
321027c1
PZ
10634
10635 /*
10636 * Check if we raced against another sys_perf_event_open() call
10637 * moving the software group underneath us.
10638 */
10639 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
10640 /*
10641 * If someone moved the group out from under us, check
10642 * if this new event wound up on the same ctx, if so
10643 * its the regular !move_group case, otherwise fail.
10644 */
10645 if (gctx != ctx) {
10646 err = -EINVAL;
10647 goto err_locked;
10648 } else {
10649 perf_event_ctx_unlock(group_leader, gctx);
10650 move_group = 0;
10651 }
10652 }
f55fc2a5
PZ
10653 } else {
10654 mutex_lock(&ctx->mutex);
10655 }
10656
84c4e620
PZ
10657 if (ctx->task == TASK_TOMBSTONE) {
10658 err = -ESRCH;
10659 goto err_locked;
10660 }
10661
a723968c
PZ
10662 if (!perf_event_validate_size(event)) {
10663 err = -E2BIG;
10664 goto err_locked;
10665 }
10666
a63fbed7
TG
10667 if (!task) {
10668 /*
10669 * Check if the @cpu we're creating an event for is online.
10670 *
10671 * We use the perf_cpu_context::ctx::mutex to serialize against
10672 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
10673 */
10674 struct perf_cpu_context *cpuctx =
10675 container_of(ctx, struct perf_cpu_context, ctx);
10676
10677 if (!cpuctx->online) {
10678 err = -ENODEV;
10679 goto err_locked;
10680 }
10681 }
10682
10683
f55fc2a5
PZ
10684 /*
10685 * Must be under the same ctx::mutex as perf_install_in_context(),
10686 * because we need to serialize with concurrent event creation.
10687 */
10688 if (!exclusive_event_installable(event, ctx)) {
10689 /* exclusive and group stuff are assumed mutually exclusive */
10690 WARN_ON_ONCE(move_group);
f63a8daa 10691
f55fc2a5
PZ
10692 err = -EBUSY;
10693 goto err_locked;
10694 }
f63a8daa 10695
f55fc2a5
PZ
10696 WARN_ON_ONCE(ctx->parent_ctx);
10697
79c9ce57
PZ
10698 /*
10699 * This is the point on no return; we cannot fail hereafter. This is
10700 * where we start modifying current state.
10701 */
10702
f55fc2a5 10703 if (move_group) {
f63a8daa
PZ
10704 /*
10705 * See perf_event_ctx_lock() for comments on the details
10706 * of swizzling perf_event::ctx.
10707 */
45a0e07a 10708 perf_remove_from_context(group_leader, 0);
279b5165 10709 put_ctx(gctx);
0231bb53 10710
edb39592 10711 for_each_sibling_event(sibling, group_leader) {
45a0e07a 10712 perf_remove_from_context(sibling, 0);
b04243ef
PZ
10713 put_ctx(gctx);
10714 }
b04243ef 10715
f63a8daa
PZ
10716 /*
10717 * Wait for everybody to stop referencing the events through
10718 * the old lists, before installing it on new lists.
10719 */
0cda4c02 10720 synchronize_rcu();
f63a8daa 10721
8f95b435
PZI
10722 /*
10723 * Install the group siblings before the group leader.
10724 *
10725 * Because a group leader will try and install the entire group
10726 * (through the sibling list, which is still in-tact), we can
10727 * end up with siblings installed in the wrong context.
10728 *
10729 * By installing siblings first we NO-OP because they're not
10730 * reachable through the group lists.
10731 */
edb39592 10732 for_each_sibling_event(sibling, group_leader) {
8f95b435 10733 perf_event__state_init(sibling);
9fc81d87 10734 perf_install_in_context(ctx, sibling, sibling->cpu);
b04243ef
PZ
10735 get_ctx(ctx);
10736 }
8f95b435
PZI
10737
10738 /*
10739 * Removing from the context ends up with disabled
10740 * event. What we want here is event in the initial
10741 * startup state, ready to be add into new context.
10742 */
10743 perf_event__state_init(group_leader);
10744 perf_install_in_context(ctx, group_leader, group_leader->cpu);
10745 get_ctx(ctx);
bed5b25a
AS
10746 }
10747
f73e22ab
PZ
10748 /*
10749 * Precalculate sample_data sizes; do while holding ctx::mutex such
10750 * that we're serialized against further additions and before
10751 * perf_install_in_context() which is the point the event is active and
10752 * can use these values.
10753 */
10754 perf_event__header_size(event);
10755 perf_event__id_header_size(event);
10756
78cd2c74
PZ
10757 event->owner = current;
10758
e2d37cd2 10759 perf_install_in_context(ctx, event, event->cpu);
fe4b04fa 10760 perf_unpin_context(ctx);
f63a8daa 10761
f55fc2a5 10762 if (move_group)
321027c1 10763 perf_event_ctx_unlock(group_leader, gctx);
d859e29f 10764 mutex_unlock(&ctx->mutex);
9b51f66d 10765
79c9ce57
PZ
10766 if (task) {
10767 mutex_unlock(&task->signal->cred_guard_mutex);
10768 put_task_struct(task);
10769 }
10770
cdd6c482
IM
10771 mutex_lock(&current->perf_event_mutex);
10772 list_add_tail(&event->owner_entry, &current->perf_event_list);
10773 mutex_unlock(&current->perf_event_mutex);
082ff5a2 10774
8a49542c
PZ
10775 /*
10776 * Drop the reference on the group_event after placing the
10777 * new event on the sibling_list. This ensures destruction
10778 * of the group leader will find the pointer to itself in
10779 * perf_group_detach().
10780 */
2903ff01 10781 fdput(group);
ea635c64
AV
10782 fd_install(event_fd, event_file);
10783 return event_fd;
0793a61d 10784
f55fc2a5
PZ
10785err_locked:
10786 if (move_group)
321027c1 10787 perf_event_ctx_unlock(group_leader, gctx);
f55fc2a5
PZ
10788 mutex_unlock(&ctx->mutex);
10789/* err_file: */
10790 fput(event_file);
c3f00c70 10791err_context:
fe4b04fa 10792 perf_unpin_context(ctx);
ea635c64 10793 put_ctx(ctx);
c6be5a5c 10794err_alloc:
13005627
PZ
10795 /*
10796 * If event_file is set, the fput() above will have called ->release()
10797 * and that will take care of freeing the event.
10798 */
10799 if (!event_file)
10800 free_event(event);
79c9ce57
PZ
10801err_cred:
10802 if (task)
10803 mutex_unlock(&task->signal->cred_guard_mutex);
1f4ee503 10804err_task:
e7d0bc04
PZ
10805 if (task)
10806 put_task_struct(task);
89a1e187 10807err_group_fd:
2903ff01 10808 fdput(group);
ea635c64
AV
10809err_fd:
10810 put_unused_fd(event_fd);
dc86cabe 10811 return err;
0793a61d
TG
10812}
10813
fb0459d7
AV
10814/**
10815 * perf_event_create_kernel_counter
10816 *
10817 * @attr: attributes of the counter to create
10818 * @cpu: cpu in which the counter is bound
38a81da2 10819 * @task: task to profile (NULL for percpu)
fb0459d7
AV
10820 */
10821struct perf_event *
10822perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
38a81da2 10823 struct task_struct *task,
4dc0da86
AK
10824 perf_overflow_handler_t overflow_handler,
10825 void *context)
fb0459d7 10826{
fb0459d7 10827 struct perf_event_context *ctx;
c3f00c70 10828 struct perf_event *event;
fb0459d7 10829 int err;
d859e29f 10830
fb0459d7
AV
10831 /*
10832 * Get the target context (task or percpu):
10833 */
d859e29f 10834
4dc0da86 10835 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
79dff51e 10836 overflow_handler, context, -1);
c3f00c70
PZ
10837 if (IS_ERR(event)) {
10838 err = PTR_ERR(event);
10839 goto err;
10840 }
d859e29f 10841
f8697762 10842 /* Mark owner so we could distinguish it from user events. */
63b6da39 10843 event->owner = TASK_TOMBSTONE;
f8697762 10844
4af57ef2 10845 ctx = find_get_context(event->pmu, task, event);
c6567f64
FW
10846 if (IS_ERR(ctx)) {
10847 err = PTR_ERR(ctx);
c3f00c70 10848 goto err_free;
d859e29f 10849 }
fb0459d7 10850
fb0459d7
AV
10851 WARN_ON_ONCE(ctx->parent_ctx);
10852 mutex_lock(&ctx->mutex);
84c4e620
PZ
10853 if (ctx->task == TASK_TOMBSTONE) {
10854 err = -ESRCH;
10855 goto err_unlock;
10856 }
10857
a63fbed7
TG
10858 if (!task) {
10859 /*
10860 * Check if the @cpu we're creating an event for is online.
10861 *
10862 * We use the perf_cpu_context::ctx::mutex to serialize against
10863 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
10864 */
10865 struct perf_cpu_context *cpuctx =
10866 container_of(ctx, struct perf_cpu_context, ctx);
10867 if (!cpuctx->online) {
10868 err = -ENODEV;
10869 goto err_unlock;
10870 }
10871 }
10872
bed5b25a 10873 if (!exclusive_event_installable(event, ctx)) {
bed5b25a 10874 err = -EBUSY;
84c4e620 10875 goto err_unlock;
bed5b25a
AS
10876 }
10877
fb0459d7 10878 perf_install_in_context(ctx, event, cpu);
fe4b04fa 10879 perf_unpin_context(ctx);
fb0459d7
AV
10880 mutex_unlock(&ctx->mutex);
10881
fb0459d7
AV
10882 return event;
10883
84c4e620
PZ
10884err_unlock:
10885 mutex_unlock(&ctx->mutex);
10886 perf_unpin_context(ctx);
10887 put_ctx(ctx);
c3f00c70
PZ
10888err_free:
10889 free_event(event);
10890err:
c6567f64 10891 return ERR_PTR(err);
9b51f66d 10892}
fb0459d7 10893EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
9b51f66d 10894
0cda4c02
YZ
10895void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
10896{
10897 struct perf_event_context *src_ctx;
10898 struct perf_event_context *dst_ctx;
10899 struct perf_event *event, *tmp;
10900 LIST_HEAD(events);
10901
10902 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
10903 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
10904
f63a8daa
PZ
10905 /*
10906 * See perf_event_ctx_lock() for comments on the details
10907 * of swizzling perf_event::ctx.
10908 */
10909 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
0cda4c02
YZ
10910 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
10911 event_entry) {
45a0e07a 10912 perf_remove_from_context(event, 0);
9a545de0 10913 unaccount_event_cpu(event, src_cpu);
0cda4c02 10914 put_ctx(src_ctx);
9886167d 10915 list_add(&event->migrate_entry, &events);
0cda4c02 10916 }
0cda4c02 10917
8f95b435
PZI
10918 /*
10919 * Wait for the events to quiesce before re-instating them.
10920 */
0cda4c02
YZ
10921 synchronize_rcu();
10922
8f95b435
PZI
10923 /*
10924 * Re-instate events in 2 passes.
10925 *
10926 * Skip over group leaders and only install siblings on this first
10927 * pass, siblings will not get enabled without a leader, however a
10928 * leader will enable its siblings, even if those are still on the old
10929 * context.
10930 */
10931 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10932 if (event->group_leader == event)
10933 continue;
10934
10935 list_del(&event->migrate_entry);
10936 if (event->state >= PERF_EVENT_STATE_OFF)
10937 event->state = PERF_EVENT_STATE_INACTIVE;
10938 account_event_cpu(event, dst_cpu);
10939 perf_install_in_context(dst_ctx, event, dst_cpu);
10940 get_ctx(dst_ctx);
10941 }
10942
10943 /*
10944 * Once all the siblings are setup properly, install the group leaders
10945 * to make it go.
10946 */
9886167d
PZ
10947 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10948 list_del(&event->migrate_entry);
0cda4c02
YZ
10949 if (event->state >= PERF_EVENT_STATE_OFF)
10950 event->state = PERF_EVENT_STATE_INACTIVE;
9a545de0 10951 account_event_cpu(event, dst_cpu);
0cda4c02
YZ
10952 perf_install_in_context(dst_ctx, event, dst_cpu);
10953 get_ctx(dst_ctx);
10954 }
10955 mutex_unlock(&dst_ctx->mutex);
f63a8daa 10956 mutex_unlock(&src_ctx->mutex);
0cda4c02
YZ
10957}
10958EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
10959
cdd6c482 10960static void sync_child_event(struct perf_event *child_event,
38b200d6 10961 struct task_struct *child)
d859e29f 10962{
cdd6c482 10963 struct perf_event *parent_event = child_event->parent;
8bc20959 10964 u64 child_val;
d859e29f 10965
cdd6c482
IM
10966 if (child_event->attr.inherit_stat)
10967 perf_event_read_event(child_event, child);
38b200d6 10968
b5e58793 10969 child_val = perf_event_count(child_event);
d859e29f
PM
10970
10971 /*
10972 * Add back the child's count to the parent's count:
10973 */
a6e6dea6 10974 atomic64_add(child_val, &parent_event->child_count);
cdd6c482
IM
10975 atomic64_add(child_event->total_time_enabled,
10976 &parent_event->child_total_time_enabled);
10977 atomic64_add(child_event->total_time_running,
10978 &parent_event->child_total_time_running);
d859e29f
PM
10979}
10980
9b51f66d 10981static void
8ba289b8
PZ
10982perf_event_exit_event(struct perf_event *child_event,
10983 struct perf_event_context *child_ctx,
10984 struct task_struct *child)
9b51f66d 10985{
8ba289b8
PZ
10986 struct perf_event *parent_event = child_event->parent;
10987
1903d50c
PZ
10988 /*
10989 * Do not destroy the 'original' grouping; because of the context
10990 * switch optimization the original events could've ended up in a
10991 * random child task.
10992 *
10993 * If we were to destroy the original group, all group related
10994 * operations would cease to function properly after this random
10995 * child dies.
10996 *
10997 * Do destroy all inherited groups, we don't care about those
10998 * and being thorough is better.
10999 */
32132a3d
PZ
11000 raw_spin_lock_irq(&child_ctx->lock);
11001 WARN_ON_ONCE(child_ctx->is_active);
11002
8ba289b8 11003 if (parent_event)
32132a3d
PZ
11004 perf_group_detach(child_event);
11005 list_del_event(child_event, child_ctx);
0d3d73aa 11006 perf_event_set_state(child_event, PERF_EVENT_STATE_EXIT); /* is_event_hup() */
32132a3d 11007 raw_spin_unlock_irq(&child_ctx->lock);
0cc0c027 11008
9b51f66d 11009 /*
8ba289b8 11010 * Parent events are governed by their filedesc, retain them.
9b51f66d 11011 */
8ba289b8 11012 if (!parent_event) {
179033b3 11013 perf_event_wakeup(child_event);
8ba289b8 11014 return;
4bcf349a 11015 }
8ba289b8
PZ
11016 /*
11017 * Child events can be cleaned up.
11018 */
11019
11020 sync_child_event(child_event, child);
11021
11022 /*
11023 * Remove this event from the parent's list
11024 */
11025 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
11026 mutex_lock(&parent_event->child_mutex);
11027 list_del_init(&child_event->child_list);
11028 mutex_unlock(&parent_event->child_mutex);
11029
11030 /*
11031 * Kick perf_poll() for is_event_hup().
11032 */
11033 perf_event_wakeup(parent_event);
11034 free_event(child_event);
11035 put_event(parent_event);
9b51f66d
IM
11036}
11037
8dc85d54 11038static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
9b51f66d 11039{
211de6eb 11040 struct perf_event_context *child_ctx, *clone_ctx = NULL;
63b6da39 11041 struct perf_event *child_event, *next;
63b6da39
PZ
11042
11043 WARN_ON_ONCE(child != current);
9b51f66d 11044
6a3351b6 11045 child_ctx = perf_pin_task_context(child, ctxn);
63b6da39 11046 if (!child_ctx)
9b51f66d
IM
11047 return;
11048
ad3a37de 11049 /*
6a3351b6
PZ
11050 * In order to reduce the amount of tricky in ctx tear-down, we hold
11051 * ctx::mutex over the entire thing. This serializes against almost
11052 * everything that wants to access the ctx.
11053 *
11054 * The exception is sys_perf_event_open() /
11055 * perf_event_create_kernel_count() which does find_get_context()
11056 * without ctx::mutex (it cannot because of the move_group double mutex
11057 * lock thing). See the comments in perf_install_in_context().
ad3a37de 11058 */
6a3351b6 11059 mutex_lock(&child_ctx->mutex);
c93f7669
PM
11060
11061 /*
6a3351b6
PZ
11062 * In a single ctx::lock section, de-schedule the events and detach the
11063 * context from the task such that we cannot ever get it scheduled back
11064 * in.
c93f7669 11065 */
6a3351b6 11066 raw_spin_lock_irq(&child_ctx->lock);
487f05e1 11067 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
4a1c0f26 11068
71a851b4 11069 /*
63b6da39
PZ
11070 * Now that the context is inactive, destroy the task <-> ctx relation
11071 * and mark the context dead.
71a851b4 11072 */
63b6da39
PZ
11073 RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
11074 put_ctx(child_ctx); /* cannot be last */
11075 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
11076 put_task_struct(current); /* cannot be last */
4a1c0f26 11077
211de6eb 11078 clone_ctx = unclone_ctx(child_ctx);
6a3351b6 11079 raw_spin_unlock_irq(&child_ctx->lock);
9f498cc5 11080
211de6eb
PZ
11081 if (clone_ctx)
11082 put_ctx(clone_ctx);
4a1c0f26 11083
9f498cc5 11084 /*
cdd6c482
IM
11085 * Report the task dead after unscheduling the events so that we
11086 * won't get any samples after PERF_RECORD_EXIT. We can however still
11087 * get a few PERF_RECORD_READ events.
9f498cc5 11088 */
cdd6c482 11089 perf_event_task(child, child_ctx, 0);
a63eaf34 11090
ebf905fc 11091 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
8ba289b8 11092 perf_event_exit_event(child_event, child_ctx, child);
8bc20959 11093
a63eaf34
PM
11094 mutex_unlock(&child_ctx->mutex);
11095
11096 put_ctx(child_ctx);
9b51f66d
IM
11097}
11098
8dc85d54
PZ
11099/*
11100 * When a child task exits, feed back event values to parent events.
79c9ce57
PZ
11101 *
11102 * Can be called with cred_guard_mutex held when called from
11103 * install_exec_creds().
8dc85d54
PZ
11104 */
11105void perf_event_exit_task(struct task_struct *child)
11106{
8882135b 11107 struct perf_event *event, *tmp;
8dc85d54
PZ
11108 int ctxn;
11109
8882135b
PZ
11110 mutex_lock(&child->perf_event_mutex);
11111 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
11112 owner_entry) {
11113 list_del_init(&event->owner_entry);
11114
11115 /*
11116 * Ensure the list deletion is visible before we clear
11117 * the owner, closes a race against perf_release() where
11118 * we need to serialize on the owner->perf_event_mutex.
11119 */
f47c02c0 11120 smp_store_release(&event->owner, NULL);
8882135b
PZ
11121 }
11122 mutex_unlock(&child->perf_event_mutex);
11123
8dc85d54
PZ
11124 for_each_task_context_nr(ctxn)
11125 perf_event_exit_task_context(child, ctxn);
4e93ad60
JO
11126
11127 /*
11128 * The perf_event_exit_task_context calls perf_event_task
11129 * with child's task_ctx, which generates EXIT events for
11130 * child contexts and sets child->perf_event_ctxp[] to NULL.
11131 * At this point we need to send EXIT events to cpu contexts.
11132 */
11133 perf_event_task(child, NULL, 0);
8dc85d54
PZ
11134}
11135
889ff015
FW
11136static void perf_free_event(struct perf_event *event,
11137 struct perf_event_context *ctx)
11138{
11139 struct perf_event *parent = event->parent;
11140
11141 if (WARN_ON_ONCE(!parent))
11142 return;
11143
11144 mutex_lock(&parent->child_mutex);
11145 list_del_init(&event->child_list);
11146 mutex_unlock(&parent->child_mutex);
11147
a6fa941d 11148 put_event(parent);
889ff015 11149
652884fe 11150 raw_spin_lock_irq(&ctx->lock);
8a49542c 11151 perf_group_detach(event);
889ff015 11152 list_del_event(event, ctx);
652884fe 11153 raw_spin_unlock_irq(&ctx->lock);
889ff015
FW
11154 free_event(event);
11155}
11156
bbbee908 11157/*
652884fe 11158 * Free an unexposed, unused context as created by inheritance by
8dc85d54 11159 * perf_event_init_task below, used by fork() in case of fail.
652884fe
PZ
11160 *
11161 * Not all locks are strictly required, but take them anyway to be nice and
11162 * help out with the lockdep assertions.
bbbee908 11163 */
cdd6c482 11164void perf_event_free_task(struct task_struct *task)
bbbee908 11165{
8dc85d54 11166 struct perf_event_context *ctx;
cdd6c482 11167 struct perf_event *event, *tmp;
8dc85d54 11168 int ctxn;
bbbee908 11169
8dc85d54
PZ
11170 for_each_task_context_nr(ctxn) {
11171 ctx = task->perf_event_ctxp[ctxn];
11172 if (!ctx)
11173 continue;
bbbee908 11174
8dc85d54 11175 mutex_lock(&ctx->mutex);
e552a838
PZ
11176 raw_spin_lock_irq(&ctx->lock);
11177 /*
11178 * Destroy the task <-> ctx relation and mark the context dead.
11179 *
11180 * This is important because even though the task hasn't been
11181 * exposed yet the context has been (through child_list).
11182 */
11183 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
11184 WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
11185 put_task_struct(task); /* cannot be last */
11186 raw_spin_unlock_irq(&ctx->lock);
bbbee908 11187
15121c78 11188 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
8dc85d54 11189 perf_free_event(event, ctx);
bbbee908 11190
8dc85d54 11191 mutex_unlock(&ctx->mutex);
8dc85d54
PZ
11192 put_ctx(ctx);
11193 }
889ff015
FW
11194}
11195
4e231c79
PZ
11196void perf_event_delayed_put(struct task_struct *task)
11197{
11198 int ctxn;
11199
11200 for_each_task_context_nr(ctxn)
11201 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
11202}
11203
e03e7ee3 11204struct file *perf_event_get(unsigned int fd)
ffe8690c 11205{
e03e7ee3 11206 struct file *file;
ffe8690c 11207
e03e7ee3
AS
11208 file = fget_raw(fd);
11209 if (!file)
11210 return ERR_PTR(-EBADF);
ffe8690c 11211
e03e7ee3
AS
11212 if (file->f_op != &perf_fops) {
11213 fput(file);
11214 return ERR_PTR(-EBADF);
11215 }
ffe8690c 11216
e03e7ee3 11217 return file;
ffe8690c
KX
11218}
11219
f8d959a5
YS
11220const struct perf_event *perf_get_event(struct file *file)
11221{
11222 if (file->f_op != &perf_fops)
11223 return ERR_PTR(-EINVAL);
11224
11225 return file->private_data;
11226}
11227
ffe8690c
KX
11228const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
11229{
11230 if (!event)
11231 return ERR_PTR(-EINVAL);
11232
11233 return &event->attr;
11234}
11235
97dee4f3 11236/*
788faab7 11237 * Inherit an event from parent task to child task.
d8a8cfc7
PZ
11238 *
11239 * Returns:
11240 * - valid pointer on success
11241 * - NULL for orphaned events
11242 * - IS_ERR() on error
97dee4f3
PZ
11243 */
11244static struct perf_event *
11245inherit_event(struct perf_event *parent_event,
11246 struct task_struct *parent,
11247 struct perf_event_context *parent_ctx,
11248 struct task_struct *child,
11249 struct perf_event *group_leader,
11250 struct perf_event_context *child_ctx)
11251{
8ca2bd41 11252 enum perf_event_state parent_state = parent_event->state;
97dee4f3 11253 struct perf_event *child_event;
cee010ec 11254 unsigned long flags;
97dee4f3
PZ
11255
11256 /*
11257 * Instead of creating recursive hierarchies of events,
11258 * we link inherited events back to the original parent,
11259 * which has a filp for sure, which we use as the reference
11260 * count:
11261 */
11262 if (parent_event->parent)
11263 parent_event = parent_event->parent;
11264
11265 child_event = perf_event_alloc(&parent_event->attr,
11266 parent_event->cpu,
d580ff86 11267 child,
97dee4f3 11268 group_leader, parent_event,
79dff51e 11269 NULL, NULL, -1);
97dee4f3
PZ
11270 if (IS_ERR(child_event))
11271 return child_event;
a6fa941d 11272
313ccb96
JO
11273
11274 if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) &&
11275 !child_ctx->task_ctx_data) {
11276 struct pmu *pmu = child_event->pmu;
11277
11278 child_ctx->task_ctx_data = kzalloc(pmu->task_ctx_size,
11279 GFP_KERNEL);
11280 if (!child_ctx->task_ctx_data) {
11281 free_event(child_event);
11282 return NULL;
11283 }
11284 }
11285
c6e5b732
PZ
11286 /*
11287 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
11288 * must be under the same lock in order to serialize against
11289 * perf_event_release_kernel(), such that either we must observe
11290 * is_orphaned_event() or they will observe us on the child_list.
11291 */
11292 mutex_lock(&parent_event->child_mutex);
fadfe7be
JO
11293 if (is_orphaned_event(parent_event) ||
11294 !atomic_long_inc_not_zero(&parent_event->refcount)) {
c6e5b732 11295 mutex_unlock(&parent_event->child_mutex);
313ccb96 11296 /* task_ctx_data is freed with child_ctx */
a6fa941d
AV
11297 free_event(child_event);
11298 return NULL;
11299 }
11300
97dee4f3
PZ
11301 get_ctx(child_ctx);
11302
11303 /*
11304 * Make the child state follow the state of the parent event,
11305 * not its attr.disabled bit. We hold the parent's mutex,
11306 * so we won't race with perf_event_{en, dis}able_family.
11307 */
1929def9 11308 if (parent_state >= PERF_EVENT_STATE_INACTIVE)
97dee4f3
PZ
11309 child_event->state = PERF_EVENT_STATE_INACTIVE;
11310 else
11311 child_event->state = PERF_EVENT_STATE_OFF;
11312
11313 if (parent_event->attr.freq) {
11314 u64 sample_period = parent_event->hw.sample_period;
11315 struct hw_perf_event *hwc = &child_event->hw;
11316
11317 hwc->sample_period = sample_period;
11318 hwc->last_period = sample_period;
11319
11320 local64_set(&hwc->period_left, sample_period);
11321 }
11322
11323 child_event->ctx = child_ctx;
11324 child_event->overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
11325 child_event->overflow_handler_context
11326 = parent_event->overflow_handler_context;
97dee4f3 11327
614b6780
TG
11328 /*
11329 * Precalculate sample_data sizes
11330 */
11331 perf_event__header_size(child_event);
6844c09d 11332 perf_event__id_header_size(child_event);
614b6780 11333
97dee4f3
PZ
11334 /*
11335 * Link it up in the child's context:
11336 */
cee010ec 11337 raw_spin_lock_irqsave(&child_ctx->lock, flags);
97dee4f3 11338 add_event_to_ctx(child_event, child_ctx);
cee010ec 11339 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
97dee4f3 11340
97dee4f3
PZ
11341 /*
11342 * Link this into the parent event's child list
11343 */
97dee4f3
PZ
11344 list_add_tail(&child_event->child_list, &parent_event->child_list);
11345 mutex_unlock(&parent_event->child_mutex);
11346
11347 return child_event;
11348}
11349
d8a8cfc7
PZ
11350/*
11351 * Inherits an event group.
11352 *
11353 * This will quietly suppress orphaned events; !inherit_event() is not an error.
11354 * This matches with perf_event_release_kernel() removing all child events.
11355 *
11356 * Returns:
11357 * - 0 on success
11358 * - <0 on error
11359 */
97dee4f3
PZ
11360static int inherit_group(struct perf_event *parent_event,
11361 struct task_struct *parent,
11362 struct perf_event_context *parent_ctx,
11363 struct task_struct *child,
11364 struct perf_event_context *child_ctx)
11365{
11366 struct perf_event *leader;
11367 struct perf_event *sub;
11368 struct perf_event *child_ctr;
11369
11370 leader = inherit_event(parent_event, parent, parent_ctx,
11371 child, NULL, child_ctx);
11372 if (IS_ERR(leader))
11373 return PTR_ERR(leader);
d8a8cfc7
PZ
11374 /*
11375 * @leader can be NULL here because of is_orphaned_event(). In this
11376 * case inherit_event() will create individual events, similar to what
11377 * perf_group_detach() would do anyway.
11378 */
edb39592 11379 for_each_sibling_event(sub, parent_event) {
97dee4f3
PZ
11380 child_ctr = inherit_event(sub, parent, parent_ctx,
11381 child, leader, child_ctx);
11382 if (IS_ERR(child_ctr))
11383 return PTR_ERR(child_ctr);
11384 }
11385 return 0;
889ff015
FW
11386}
11387
d8a8cfc7
PZ
11388/*
11389 * Creates the child task context and tries to inherit the event-group.
11390 *
11391 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
11392 * inherited_all set when we 'fail' to inherit an orphaned event; this is
11393 * consistent with perf_event_release_kernel() removing all child events.
11394 *
11395 * Returns:
11396 * - 0 on success
11397 * - <0 on error
11398 */
889ff015
FW
11399static int
11400inherit_task_group(struct perf_event *event, struct task_struct *parent,
11401 struct perf_event_context *parent_ctx,
8dc85d54 11402 struct task_struct *child, int ctxn,
889ff015
FW
11403 int *inherited_all)
11404{
11405 int ret;
8dc85d54 11406 struct perf_event_context *child_ctx;
889ff015
FW
11407
11408 if (!event->attr.inherit) {
11409 *inherited_all = 0;
11410 return 0;
bbbee908
PZ
11411 }
11412
fe4b04fa 11413 child_ctx = child->perf_event_ctxp[ctxn];
889ff015
FW
11414 if (!child_ctx) {
11415 /*
11416 * This is executed from the parent task context, so
11417 * inherit events that have been marked for cloning.
11418 * First allocate and initialize a context for the
11419 * child.
11420 */
734df5ab 11421 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
889ff015
FW
11422 if (!child_ctx)
11423 return -ENOMEM;
bbbee908 11424
8dc85d54 11425 child->perf_event_ctxp[ctxn] = child_ctx;
889ff015
FW
11426 }
11427
11428 ret = inherit_group(event, parent, parent_ctx,
11429 child, child_ctx);
11430
11431 if (ret)
11432 *inherited_all = 0;
11433
11434 return ret;
bbbee908
PZ
11435}
11436
9b51f66d 11437/*
cdd6c482 11438 * Initialize the perf_event context in task_struct
9b51f66d 11439 */
985c8dcb 11440static int perf_event_init_context(struct task_struct *child, int ctxn)
9b51f66d 11441{
889ff015 11442 struct perf_event_context *child_ctx, *parent_ctx;
cdd6c482
IM
11443 struct perf_event_context *cloned_ctx;
11444 struct perf_event *event;
9b51f66d 11445 struct task_struct *parent = current;
564c2b21 11446 int inherited_all = 1;
dddd3379 11447 unsigned long flags;
6ab423e0 11448 int ret = 0;
9b51f66d 11449
8dc85d54 11450 if (likely(!parent->perf_event_ctxp[ctxn]))
6ab423e0
PZ
11451 return 0;
11452
ad3a37de 11453 /*
25346b93
PM
11454 * If the parent's context is a clone, pin it so it won't get
11455 * swapped under us.
ad3a37de 11456 */
8dc85d54 11457 parent_ctx = perf_pin_task_context(parent, ctxn);
ffb4ef21
PZ
11458 if (!parent_ctx)
11459 return 0;
25346b93 11460
ad3a37de
PM
11461 /*
11462 * No need to check if parent_ctx != NULL here; since we saw
11463 * it non-NULL earlier, the only reason for it to become NULL
11464 * is if we exit, and since we're currently in the middle of
11465 * a fork we can't be exiting at the same time.
11466 */
ad3a37de 11467
9b51f66d
IM
11468 /*
11469 * Lock the parent list. No need to lock the child - not PID
11470 * hashed yet and not running, so nobody can access it.
11471 */
d859e29f 11472 mutex_lock(&parent_ctx->mutex);
9b51f66d
IM
11473
11474 /*
11475 * We dont have to disable NMIs - we are only looking at
11476 * the list, not manipulating it:
11477 */
6e6804d2 11478 perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
8dc85d54
PZ
11479 ret = inherit_task_group(event, parent, parent_ctx,
11480 child, ctxn, &inherited_all);
889ff015 11481 if (ret)
e7cc4865 11482 goto out_unlock;
889ff015 11483 }
b93f7978 11484
dddd3379
TG
11485 /*
11486 * We can't hold ctx->lock when iterating the ->flexible_group list due
11487 * to allocations, but we need to prevent rotation because
11488 * rotate_ctx() will change the list from interrupt context.
11489 */
11490 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
11491 parent_ctx->rotate_disable = 1;
11492 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
11493
6e6804d2 11494 perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
8dc85d54
PZ
11495 ret = inherit_task_group(event, parent, parent_ctx,
11496 child, ctxn, &inherited_all);
889ff015 11497 if (ret)
e7cc4865 11498 goto out_unlock;
564c2b21
PM
11499 }
11500
dddd3379
TG
11501 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
11502 parent_ctx->rotate_disable = 0;
dddd3379 11503
8dc85d54 11504 child_ctx = child->perf_event_ctxp[ctxn];
889ff015 11505
05cbaa28 11506 if (child_ctx && inherited_all) {
564c2b21
PM
11507 /*
11508 * Mark the child context as a clone of the parent
11509 * context, or of whatever the parent is a clone of.
c5ed5145
PZ
11510 *
11511 * Note that if the parent is a clone, the holding of
11512 * parent_ctx->lock avoids it from being uncloned.
564c2b21 11513 */
c5ed5145 11514 cloned_ctx = parent_ctx->parent_ctx;
ad3a37de
PM
11515 if (cloned_ctx) {
11516 child_ctx->parent_ctx = cloned_ctx;
25346b93 11517 child_ctx->parent_gen = parent_ctx->parent_gen;
564c2b21
PM
11518 } else {
11519 child_ctx->parent_ctx = parent_ctx;
11520 child_ctx->parent_gen = parent_ctx->generation;
11521 }
11522 get_ctx(child_ctx->parent_ctx);
9b51f66d
IM
11523 }
11524
c5ed5145 11525 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
e7cc4865 11526out_unlock:
d859e29f 11527 mutex_unlock(&parent_ctx->mutex);
6ab423e0 11528
25346b93 11529 perf_unpin_context(parent_ctx);
fe4b04fa 11530 put_ctx(parent_ctx);
ad3a37de 11531
6ab423e0 11532 return ret;
9b51f66d
IM
11533}
11534
8dc85d54
PZ
11535/*
11536 * Initialize the perf_event context in task_struct
11537 */
11538int perf_event_init_task(struct task_struct *child)
11539{
11540 int ctxn, ret;
11541
8550d7cb
ON
11542 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
11543 mutex_init(&child->perf_event_mutex);
11544 INIT_LIST_HEAD(&child->perf_event_list);
11545
8dc85d54
PZ
11546 for_each_task_context_nr(ctxn) {
11547 ret = perf_event_init_context(child, ctxn);
6c72e350
PZ
11548 if (ret) {
11549 perf_event_free_task(child);
8dc85d54 11550 return ret;
6c72e350 11551 }
8dc85d54
PZ
11552 }
11553
11554 return 0;
11555}
11556
220b140b
PM
11557static void __init perf_event_init_all_cpus(void)
11558{
b28ab83c 11559 struct swevent_htable *swhash;
220b140b 11560 int cpu;
220b140b 11561
a63fbed7
TG
11562 zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
11563
220b140b 11564 for_each_possible_cpu(cpu) {
b28ab83c
PZ
11565 swhash = &per_cpu(swevent_htable, cpu);
11566 mutex_init(&swhash->hlist_mutex);
2fde4f94 11567 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
f2fb6bef
KL
11568
11569 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
11570 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
e48c1788 11571
058fe1c0
DCC
11572#ifdef CONFIG_CGROUP_PERF
11573 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
11574#endif
e48c1788 11575 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
220b140b
PM
11576 }
11577}
11578
a63fbed7 11579void perf_swevent_init_cpu(unsigned int cpu)
0793a61d 11580{
108b02cf 11581 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
0793a61d 11582
b28ab83c 11583 mutex_lock(&swhash->hlist_mutex);
059fcd8c 11584 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
76e1d904
FW
11585 struct swevent_hlist *hlist;
11586
b28ab83c
PZ
11587 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
11588 WARN_ON(!hlist);
11589 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 11590 }
b28ab83c 11591 mutex_unlock(&swhash->hlist_mutex);
0793a61d
TG
11592}
11593
2965faa5 11594#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
108b02cf 11595static void __perf_event_exit_context(void *__info)
0793a61d 11596{
108b02cf 11597 struct perf_event_context *ctx = __info;
fae3fde6
PZ
11598 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
11599 struct perf_event *event;
0793a61d 11600
fae3fde6 11601 raw_spin_lock(&ctx->lock);
0ee098c9 11602 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
fae3fde6 11603 list_for_each_entry(event, &ctx->event_list, event_entry)
45a0e07a 11604 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
fae3fde6 11605 raw_spin_unlock(&ctx->lock);
0793a61d 11606}
108b02cf
PZ
11607
11608static void perf_event_exit_cpu_context(int cpu)
11609{
a63fbed7 11610 struct perf_cpu_context *cpuctx;
108b02cf
PZ
11611 struct perf_event_context *ctx;
11612 struct pmu *pmu;
108b02cf 11613
a63fbed7
TG
11614 mutex_lock(&pmus_lock);
11615 list_for_each_entry(pmu, &pmus, entry) {
11616 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11617 ctx = &cpuctx->ctx;
108b02cf
PZ
11618
11619 mutex_lock(&ctx->mutex);
11620 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
a63fbed7 11621 cpuctx->online = 0;
108b02cf
PZ
11622 mutex_unlock(&ctx->mutex);
11623 }
a63fbed7
TG
11624 cpumask_clear_cpu(cpu, perf_online_mask);
11625 mutex_unlock(&pmus_lock);
108b02cf 11626}
00e16c3d
TG
11627#else
11628
11629static void perf_event_exit_cpu_context(int cpu) { }
11630
11631#endif
108b02cf 11632
a63fbed7
TG
11633int perf_event_init_cpu(unsigned int cpu)
11634{
11635 struct perf_cpu_context *cpuctx;
11636 struct perf_event_context *ctx;
11637 struct pmu *pmu;
11638
11639 perf_swevent_init_cpu(cpu);
11640
11641 mutex_lock(&pmus_lock);
11642 cpumask_set_cpu(cpu, perf_online_mask);
11643 list_for_each_entry(pmu, &pmus, entry) {
11644 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11645 ctx = &cpuctx->ctx;
11646
11647 mutex_lock(&ctx->mutex);
11648 cpuctx->online = 1;
11649 mutex_unlock(&ctx->mutex);
11650 }
11651 mutex_unlock(&pmus_lock);
11652
11653 return 0;
11654}
11655
00e16c3d 11656int perf_event_exit_cpu(unsigned int cpu)
0793a61d 11657{
e3703f8c 11658 perf_event_exit_cpu_context(cpu);
00e16c3d 11659 return 0;
0793a61d 11660}
0793a61d 11661
c277443c
PZ
11662static int
11663perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
11664{
11665 int cpu;
11666
11667 for_each_online_cpu(cpu)
11668 perf_event_exit_cpu(cpu);
11669
11670 return NOTIFY_OK;
11671}
11672
11673/*
11674 * Run the perf reboot notifier at the very last possible moment so that
11675 * the generic watchdog code runs as long as possible.
11676 */
11677static struct notifier_block perf_reboot_notifier = {
11678 .notifier_call = perf_reboot,
11679 .priority = INT_MIN,
11680};
11681
cdd6c482 11682void __init perf_event_init(void)
0793a61d 11683{
3c502e7a
JW
11684 int ret;
11685
2e80a82a
PZ
11686 idr_init(&pmu_idr);
11687
220b140b 11688 perf_event_init_all_cpus();
b0a873eb 11689 init_srcu_struct(&pmus_srcu);
2e80a82a
PZ
11690 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
11691 perf_pmu_register(&perf_cpu_clock, NULL, -1);
11692 perf_pmu_register(&perf_task_clock, NULL, -1);
b0a873eb 11693 perf_tp_register();
00e16c3d 11694 perf_event_init_cpu(smp_processor_id());
c277443c 11695 register_reboot_notifier(&perf_reboot_notifier);
3c502e7a
JW
11696
11697 ret = init_hw_breakpoint();
11698 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
b2029520 11699
b01c3a00
JO
11700 /*
11701 * Build time assertion that we keep the data_head at the intended
11702 * location. IOW, validation we got the __reserved[] size right.
11703 */
11704 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
11705 != 1024);
0793a61d 11706}
abe43400 11707
fd979c01
CS
11708ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
11709 char *page)
11710{
11711 struct perf_pmu_events_attr *pmu_attr =
11712 container_of(attr, struct perf_pmu_events_attr, attr);
11713
11714 if (pmu_attr->event_str)
11715 return sprintf(page, "%s\n", pmu_attr->event_str);
11716
11717 return 0;
11718}
675965b0 11719EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
fd979c01 11720
abe43400
PZ
11721static int __init perf_event_sysfs_init(void)
11722{
11723 struct pmu *pmu;
11724 int ret;
11725
11726 mutex_lock(&pmus_lock);
11727
11728 ret = bus_register(&pmu_bus);
11729 if (ret)
11730 goto unlock;
11731
11732 list_for_each_entry(pmu, &pmus, entry) {
11733 if (!pmu->name || pmu->type < 0)
11734 continue;
11735
11736 ret = pmu_dev_alloc(pmu);
11737 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
11738 }
11739 pmu_bus_running = 1;
11740 ret = 0;
11741
11742unlock:
11743 mutex_unlock(&pmus_lock);
11744
11745 return ret;
11746}
11747device_initcall(perf_event_sysfs_init);
e5d1367f
SE
11748
11749#ifdef CONFIG_CGROUP_PERF
eb95419b
TH
11750static struct cgroup_subsys_state *
11751perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
e5d1367f
SE
11752{
11753 struct perf_cgroup *jc;
e5d1367f 11754
1b15d055 11755 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
e5d1367f
SE
11756 if (!jc)
11757 return ERR_PTR(-ENOMEM);
11758
e5d1367f
SE
11759 jc->info = alloc_percpu(struct perf_cgroup_info);
11760 if (!jc->info) {
11761 kfree(jc);
11762 return ERR_PTR(-ENOMEM);
11763 }
11764
e5d1367f
SE
11765 return &jc->css;
11766}
11767
eb95419b 11768static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
e5d1367f 11769{
eb95419b
TH
11770 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
11771
e5d1367f
SE
11772 free_percpu(jc->info);
11773 kfree(jc);
11774}
11775
11776static int __perf_cgroup_move(void *info)
11777{
11778 struct task_struct *task = info;
ddaaf4e2 11779 rcu_read_lock();
e5d1367f 11780 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
ddaaf4e2 11781 rcu_read_unlock();
e5d1367f
SE
11782 return 0;
11783}
11784
1f7dd3e5 11785static void perf_cgroup_attach(struct cgroup_taskset *tset)
e5d1367f 11786{
bb9d97b6 11787 struct task_struct *task;
1f7dd3e5 11788 struct cgroup_subsys_state *css;
bb9d97b6 11789
1f7dd3e5 11790 cgroup_taskset_for_each(task, css, tset)
bb9d97b6 11791 task_function_call(task, __perf_cgroup_move, task);
e5d1367f
SE
11792}
11793
073219e9 11794struct cgroup_subsys perf_event_cgrp_subsys = {
92fb9748
TH
11795 .css_alloc = perf_cgroup_css_alloc,
11796 .css_free = perf_cgroup_css_free,
bb9d97b6 11797 .attach = perf_cgroup_attach,
968ebff1
TH
11798 /*
11799 * Implicitly enable on dfl hierarchy so that perf events can
11800 * always be filtered by cgroup2 path as long as perf_event
11801 * controller is not mounted on a legacy hierarchy.
11802 */
11803 .implicit_on_dfl = true,
8cfd8147 11804 .threaded = true,
e5d1367f
SE
11805};
11806#endif /* CONFIG_CGROUP_PERF */