]> git.ipfire.org Git - thirdparty/linux.git/blame - kernel/events/core.c
Merge tag 'perf-core-for-mingo-5.1-20190225' of git://git.kernel.org/pub/scm/linux...
[thirdparty/linux.git] / kernel / events / core.c
CommitLineData
8e86e015 1// SPDX-License-Identifier: GPL-2.0
0793a61d 2/*
57c0c15b 3 * Performance events core code:
0793a61d 4 *
98144511 5 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
e7e7ee2e 6 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
90eec103 7 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
d36b6910 8 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
0793a61d
TG
9 */
10
11#include <linux/fs.h>
b9cacc7b 12#include <linux/mm.h>
0793a61d
TG
13#include <linux/cpu.h>
14#include <linux/smp.h>
2e80a82a 15#include <linux/idr.h>
04289bb9 16#include <linux/file.h>
0793a61d 17#include <linux/poll.h>
5a0e3ad6 18#include <linux/slab.h>
76e1d904 19#include <linux/hash.h>
12351ef8 20#include <linux/tick.h>
0793a61d 21#include <linux/sysfs.h>
22a4f650 22#include <linux/dcache.h>
0793a61d 23#include <linux/percpu.h>
22a4f650 24#include <linux/ptrace.h>
c277443c 25#include <linux/reboot.h>
b9cacc7b 26#include <linux/vmstat.h>
abe43400 27#include <linux/device.h>
6e5fdeed 28#include <linux/export.h>
906010b2 29#include <linux/vmalloc.h>
b9cacc7b
PZ
30#include <linux/hardirq.h>
31#include <linux/rculist.h>
0793a61d
TG
32#include <linux/uaccess.h>
33#include <linux/syscalls.h>
34#include <linux/anon_inodes.h>
aa9c4c0f 35#include <linux/kernel_stat.h>
39bed6cb 36#include <linux/cgroup.h>
cdd6c482 37#include <linux/perf_event.h>
af658dca 38#include <linux/trace_events.h>
3c502e7a 39#include <linux/hw_breakpoint.h>
c5ebcedb 40#include <linux/mm_types.h>
c464c76e 41#include <linux/module.h>
f972eb63 42#include <linux/mman.h>
b3f20785 43#include <linux/compat.h>
2541517c
AS
44#include <linux/bpf.h>
45#include <linux/filter.h>
375637bc
AS
46#include <linux/namei.h>
47#include <linux/parser.h>
e6017571 48#include <linux/sched/clock.h>
6e84f315 49#include <linux/sched/mm.h>
e4222673
HB
50#include <linux/proc_ns.h>
51#include <linux/mount.h>
0793a61d 52
76369139
FW
53#include "internal.h"
54
4e193bd4
TB
55#include <asm/irq_regs.h>
56
272325c4
PZ
57typedef int (*remote_function_f)(void *);
58
fe4b04fa 59struct remote_function_call {
e7e7ee2e 60 struct task_struct *p;
272325c4 61 remote_function_f func;
e7e7ee2e
IM
62 void *info;
63 int ret;
fe4b04fa
PZ
64};
65
66static void remote_function(void *data)
67{
68 struct remote_function_call *tfc = data;
69 struct task_struct *p = tfc->p;
70
71 if (p) {
0da4cf3e
PZ
72 /* -EAGAIN */
73 if (task_cpu(p) != smp_processor_id())
74 return;
75
76 /*
77 * Now that we're on right CPU with IRQs disabled, we can test
78 * if we hit the right task without races.
79 */
80
81 tfc->ret = -ESRCH; /* No such (running) process */
82 if (p != current)
fe4b04fa
PZ
83 return;
84 }
85
86 tfc->ret = tfc->func(tfc->info);
87}
88
89/**
90 * task_function_call - call a function on the cpu on which a task runs
91 * @p: the task to evaluate
92 * @func: the function to be called
93 * @info: the function call argument
94 *
95 * Calls the function @func when the task is currently running. This might
96 * be on the current CPU, which just calls the function directly
97 *
98 * returns: @func return value, or
99 * -ESRCH - when the process isn't running
100 * -EAGAIN - when the process moved away
101 */
102static int
272325c4 103task_function_call(struct task_struct *p, remote_function_f func, void *info)
fe4b04fa
PZ
104{
105 struct remote_function_call data = {
e7e7ee2e
IM
106 .p = p,
107 .func = func,
108 .info = info,
0da4cf3e 109 .ret = -EAGAIN,
fe4b04fa 110 };
0da4cf3e 111 int ret;
fe4b04fa 112
0da4cf3e
PZ
113 do {
114 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
115 if (!ret)
116 ret = data.ret;
117 } while (ret == -EAGAIN);
fe4b04fa 118
0da4cf3e 119 return ret;
fe4b04fa
PZ
120}
121
122/**
123 * cpu_function_call - call a function on the cpu
124 * @func: the function to be called
125 * @info: the function call argument
126 *
127 * Calls the function @func on the remote cpu.
128 *
129 * returns: @func return value or -ENXIO when the cpu is offline
130 */
272325c4 131static int cpu_function_call(int cpu, remote_function_f func, void *info)
fe4b04fa
PZ
132{
133 struct remote_function_call data = {
e7e7ee2e
IM
134 .p = NULL,
135 .func = func,
136 .info = info,
137 .ret = -ENXIO, /* No such CPU */
fe4b04fa
PZ
138 };
139
140 smp_call_function_single(cpu, remote_function, &data, 1);
141
142 return data.ret;
143}
144
fae3fde6
PZ
145static inline struct perf_cpu_context *
146__get_cpu_context(struct perf_event_context *ctx)
147{
148 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
149}
150
151static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
152 struct perf_event_context *ctx)
0017960f 153{
fae3fde6
PZ
154 raw_spin_lock(&cpuctx->ctx.lock);
155 if (ctx)
156 raw_spin_lock(&ctx->lock);
157}
158
159static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
160 struct perf_event_context *ctx)
161{
162 if (ctx)
163 raw_spin_unlock(&ctx->lock);
164 raw_spin_unlock(&cpuctx->ctx.lock);
165}
166
63b6da39
PZ
167#define TASK_TOMBSTONE ((void *)-1L)
168
169static bool is_kernel_event(struct perf_event *event)
170{
f47c02c0 171 return READ_ONCE(event->owner) == TASK_TOMBSTONE;
63b6da39
PZ
172}
173
39a43640
PZ
174/*
175 * On task ctx scheduling...
176 *
177 * When !ctx->nr_events a task context will not be scheduled. This means
178 * we can disable the scheduler hooks (for performance) without leaving
179 * pending task ctx state.
180 *
181 * This however results in two special cases:
182 *
183 * - removing the last event from a task ctx; this is relatively straight
184 * forward and is done in __perf_remove_from_context.
185 *
186 * - adding the first event to a task ctx; this is tricky because we cannot
187 * rely on ctx->is_active and therefore cannot use event_function_call().
188 * See perf_install_in_context().
189 *
39a43640
PZ
190 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
191 */
192
fae3fde6
PZ
193typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
194 struct perf_event_context *, void *);
195
196struct event_function_struct {
197 struct perf_event *event;
198 event_f func;
199 void *data;
200};
201
202static int event_function(void *info)
203{
204 struct event_function_struct *efs = info;
205 struct perf_event *event = efs->event;
0017960f 206 struct perf_event_context *ctx = event->ctx;
fae3fde6
PZ
207 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
208 struct perf_event_context *task_ctx = cpuctx->task_ctx;
63b6da39 209 int ret = 0;
fae3fde6 210
16444645 211 lockdep_assert_irqs_disabled();
fae3fde6 212
63b6da39 213 perf_ctx_lock(cpuctx, task_ctx);
fae3fde6
PZ
214 /*
215 * Since we do the IPI call without holding ctx->lock things can have
216 * changed, double check we hit the task we set out to hit.
fae3fde6
PZ
217 */
218 if (ctx->task) {
63b6da39 219 if (ctx->task != current) {
0da4cf3e 220 ret = -ESRCH;
63b6da39
PZ
221 goto unlock;
222 }
fae3fde6 223
fae3fde6
PZ
224 /*
225 * We only use event_function_call() on established contexts,
226 * and event_function() is only ever called when active (or
227 * rather, we'll have bailed in task_function_call() or the
228 * above ctx->task != current test), therefore we must have
229 * ctx->is_active here.
230 */
231 WARN_ON_ONCE(!ctx->is_active);
232 /*
233 * And since we have ctx->is_active, cpuctx->task_ctx must
234 * match.
235 */
63b6da39
PZ
236 WARN_ON_ONCE(task_ctx != ctx);
237 } else {
238 WARN_ON_ONCE(&cpuctx->ctx != ctx);
fae3fde6 239 }
63b6da39 240
fae3fde6 241 efs->func(event, cpuctx, ctx, efs->data);
63b6da39 242unlock:
fae3fde6
PZ
243 perf_ctx_unlock(cpuctx, task_ctx);
244
63b6da39 245 return ret;
fae3fde6
PZ
246}
247
fae3fde6 248static void event_function_call(struct perf_event *event, event_f func, void *data)
0017960f
PZ
249{
250 struct perf_event_context *ctx = event->ctx;
63b6da39 251 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
fae3fde6
PZ
252 struct event_function_struct efs = {
253 .event = event,
254 .func = func,
255 .data = data,
256 };
0017960f 257
c97f4736
PZ
258 if (!event->parent) {
259 /*
260 * If this is a !child event, we must hold ctx::mutex to
261 * stabilize the the event->ctx relation. See
262 * perf_event_ctx_lock().
263 */
264 lockdep_assert_held(&ctx->mutex);
265 }
0017960f
PZ
266
267 if (!task) {
fae3fde6 268 cpu_function_call(event->cpu, event_function, &efs);
0017960f
PZ
269 return;
270 }
271
63b6da39
PZ
272 if (task == TASK_TOMBSTONE)
273 return;
274
a096309b 275again:
fae3fde6 276 if (!task_function_call(task, event_function, &efs))
0017960f
PZ
277 return;
278
279 raw_spin_lock_irq(&ctx->lock);
63b6da39
PZ
280 /*
281 * Reload the task pointer, it might have been changed by
282 * a concurrent perf_event_context_sched_out().
283 */
284 task = ctx->task;
a096309b
PZ
285 if (task == TASK_TOMBSTONE) {
286 raw_spin_unlock_irq(&ctx->lock);
287 return;
0017960f 288 }
a096309b
PZ
289 if (ctx->is_active) {
290 raw_spin_unlock_irq(&ctx->lock);
291 goto again;
292 }
293 func(event, NULL, ctx, data);
0017960f
PZ
294 raw_spin_unlock_irq(&ctx->lock);
295}
296
cca20946
PZ
297/*
298 * Similar to event_function_call() + event_function(), but hard assumes IRQs
299 * are already disabled and we're on the right CPU.
300 */
301static void event_function_local(struct perf_event *event, event_f func, void *data)
302{
303 struct perf_event_context *ctx = event->ctx;
304 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
305 struct task_struct *task = READ_ONCE(ctx->task);
306 struct perf_event_context *task_ctx = NULL;
307
16444645 308 lockdep_assert_irqs_disabled();
cca20946
PZ
309
310 if (task) {
311 if (task == TASK_TOMBSTONE)
312 return;
313
314 task_ctx = ctx;
315 }
316
317 perf_ctx_lock(cpuctx, task_ctx);
318
319 task = ctx->task;
320 if (task == TASK_TOMBSTONE)
321 goto unlock;
322
323 if (task) {
324 /*
325 * We must be either inactive or active and the right task,
326 * otherwise we're screwed, since we cannot IPI to somewhere
327 * else.
328 */
329 if (ctx->is_active) {
330 if (WARN_ON_ONCE(task != current))
331 goto unlock;
332
333 if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
334 goto unlock;
335 }
336 } else {
337 WARN_ON_ONCE(&cpuctx->ctx != ctx);
338 }
339
340 func(event, cpuctx, ctx, data);
341unlock:
342 perf_ctx_unlock(cpuctx, task_ctx);
343}
344
e5d1367f
SE
345#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
346 PERF_FLAG_FD_OUTPUT |\
a21b0b35
YD
347 PERF_FLAG_PID_CGROUP |\
348 PERF_FLAG_FD_CLOEXEC)
e5d1367f 349
bce38cd5
SE
350/*
351 * branch priv levels that need permission checks
352 */
353#define PERF_SAMPLE_BRANCH_PERM_PLM \
354 (PERF_SAMPLE_BRANCH_KERNEL |\
355 PERF_SAMPLE_BRANCH_HV)
356
0b3fcf17
SE
357enum event_type_t {
358 EVENT_FLEXIBLE = 0x1,
359 EVENT_PINNED = 0x2,
3cbaa590 360 EVENT_TIME = 0x4,
487f05e1
AS
361 /* see ctx_resched() for details */
362 EVENT_CPU = 0x8,
0b3fcf17
SE
363 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
364};
365
e5d1367f
SE
366/*
367 * perf_sched_events : >0 events exist
368 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
369 */
9107c89e
PZ
370
371static void perf_sched_delayed(struct work_struct *work);
372DEFINE_STATIC_KEY_FALSE(perf_sched_events);
373static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
374static DEFINE_MUTEX(perf_sched_mutex);
375static atomic_t perf_sched_count;
376
e5d1367f 377static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
ba532500 378static DEFINE_PER_CPU(int, perf_sched_cb_usages);
f2fb6bef 379static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
e5d1367f 380
cdd6c482
IM
381static atomic_t nr_mmap_events __read_mostly;
382static atomic_t nr_comm_events __read_mostly;
e4222673 383static atomic_t nr_namespaces_events __read_mostly;
cdd6c482 384static atomic_t nr_task_events __read_mostly;
948b26b6 385static atomic_t nr_freq_events __read_mostly;
45ac1403 386static atomic_t nr_switch_events __read_mostly;
76193a94 387static atomic_t nr_ksymbol_events __read_mostly;
6ee52e2a 388static atomic_t nr_bpf_events __read_mostly;
9ee318a7 389
108b02cf
PZ
390static LIST_HEAD(pmus);
391static DEFINE_MUTEX(pmus_lock);
392static struct srcu_struct pmus_srcu;
a63fbed7 393static cpumask_var_t perf_online_mask;
108b02cf 394
0764771d 395/*
cdd6c482 396 * perf event paranoia level:
0fbdea19
IM
397 * -1 - not paranoid at all
398 * 0 - disallow raw tracepoint access for unpriv
cdd6c482 399 * 1 - disallow cpu events for unpriv
0fbdea19 400 * 2 - disallow kernel profiling for unpriv
0764771d 401 */
0161028b 402int sysctl_perf_event_paranoid __read_mostly = 2;
0764771d 403
20443384
FW
404/* Minimum for 512 kiB + 1 user control page */
405int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
df58ab24
PZ
406
407/*
cdd6c482 408 * max perf event sample rate
df58ab24 409 */
14c63f17
DH
410#define DEFAULT_MAX_SAMPLE_RATE 100000
411#define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
412#define DEFAULT_CPU_TIME_MAX_PERCENT 25
413
414int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
415
416static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
417static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
418
d9494cb4
PZ
419static int perf_sample_allowed_ns __read_mostly =
420 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
14c63f17 421
18ab2cd3 422static void update_perf_cpu_limits(void)
14c63f17
DH
423{
424 u64 tmp = perf_sample_period_ns;
425
426 tmp *= sysctl_perf_cpu_time_max_percent;
91a612ee
PZ
427 tmp = div_u64(tmp, 100);
428 if (!tmp)
429 tmp = 1;
430
431 WRITE_ONCE(perf_sample_allowed_ns, tmp);
14c63f17 432}
163ec435 433
8d5bce0c 434static bool perf_rotate_context(struct perf_cpu_context *cpuctx);
9e630205 435
163ec435
PZ
436int perf_proc_update_handler(struct ctl_table *table, int write,
437 void __user *buffer, size_t *lenp,
438 loff_t *ppos)
439{
1a51c5da
SE
440 int ret;
441 int perf_cpu = sysctl_perf_cpu_time_max_percent;
ab7fdefb
KL
442 /*
443 * If throttling is disabled don't allow the write:
444 */
1a51c5da 445 if (write && (perf_cpu == 100 || perf_cpu == 0))
ab7fdefb
KL
446 return -EINVAL;
447
1a51c5da
SE
448 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
449 if (ret || !write)
450 return ret;
451
163ec435 452 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
14c63f17
DH
453 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
454 update_perf_cpu_limits();
455
456 return 0;
457}
458
459int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
460
461int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
462 void __user *buffer, size_t *lenp,
463 loff_t *ppos)
464{
1572e45a 465 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
14c63f17
DH
466
467 if (ret || !write)
468 return ret;
469
b303e7c1
PZ
470 if (sysctl_perf_cpu_time_max_percent == 100 ||
471 sysctl_perf_cpu_time_max_percent == 0) {
91a612ee
PZ
472 printk(KERN_WARNING
473 "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
474 WRITE_ONCE(perf_sample_allowed_ns, 0);
475 } else {
476 update_perf_cpu_limits();
477 }
163ec435
PZ
478
479 return 0;
480}
1ccd1549 481
14c63f17
DH
482/*
483 * perf samples are done in some very critical code paths (NMIs).
484 * If they take too much CPU time, the system can lock up and not
485 * get any real work done. This will drop the sample rate when
486 * we detect that events are taking too long.
487 */
488#define NR_ACCUMULATED_SAMPLES 128
d9494cb4 489static DEFINE_PER_CPU(u64, running_sample_length);
14c63f17 490
91a612ee
PZ
491static u64 __report_avg;
492static u64 __report_allowed;
493
6a02ad66 494static void perf_duration_warn(struct irq_work *w)
14c63f17 495{
0d87d7ec 496 printk_ratelimited(KERN_INFO
91a612ee
PZ
497 "perf: interrupt took too long (%lld > %lld), lowering "
498 "kernel.perf_event_max_sample_rate to %d\n",
499 __report_avg, __report_allowed,
500 sysctl_perf_event_sample_rate);
6a02ad66
PZ
501}
502
503static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
504
505void perf_sample_event_took(u64 sample_len_ns)
506{
91a612ee
PZ
507 u64 max_len = READ_ONCE(perf_sample_allowed_ns);
508 u64 running_len;
509 u64 avg_len;
510 u32 max;
14c63f17 511
91a612ee 512 if (max_len == 0)
14c63f17
DH
513 return;
514
91a612ee
PZ
515 /* Decay the counter by 1 average sample. */
516 running_len = __this_cpu_read(running_sample_length);
517 running_len -= running_len/NR_ACCUMULATED_SAMPLES;
518 running_len += sample_len_ns;
519 __this_cpu_write(running_sample_length, running_len);
14c63f17
DH
520
521 /*
91a612ee
PZ
522 * Note: this will be biased artifically low until we have
523 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
14c63f17
DH
524 * from having to maintain a count.
525 */
91a612ee
PZ
526 avg_len = running_len/NR_ACCUMULATED_SAMPLES;
527 if (avg_len <= max_len)
14c63f17
DH
528 return;
529
91a612ee
PZ
530 __report_avg = avg_len;
531 __report_allowed = max_len;
14c63f17 532
91a612ee
PZ
533 /*
534 * Compute a throttle threshold 25% below the current duration.
535 */
536 avg_len += avg_len / 4;
537 max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
538 if (avg_len < max)
539 max /= (u32)avg_len;
540 else
541 max = 1;
14c63f17 542
91a612ee
PZ
543 WRITE_ONCE(perf_sample_allowed_ns, avg_len);
544 WRITE_ONCE(max_samples_per_tick, max);
545
546 sysctl_perf_event_sample_rate = max * HZ;
547 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
6a02ad66 548
cd578abb 549 if (!irq_work_queue(&perf_duration_work)) {
91a612ee 550 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
cd578abb 551 "kernel.perf_event_max_sample_rate to %d\n",
91a612ee 552 __report_avg, __report_allowed,
cd578abb
PZ
553 sysctl_perf_event_sample_rate);
554 }
14c63f17
DH
555}
556
cdd6c482 557static atomic64_t perf_event_id;
a96bbc16 558
0b3fcf17
SE
559static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
560 enum event_type_t event_type);
561
562static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
563 enum event_type_t event_type,
564 struct task_struct *task);
565
566static void update_context_time(struct perf_event_context *ctx);
567static u64 perf_event_time(struct perf_event *event);
0b3fcf17 568
cdd6c482 569void __weak perf_event_print_debug(void) { }
0793a61d 570
84c79910 571extern __weak const char *perf_pmu_name(void)
0793a61d 572{
84c79910 573 return "pmu";
0793a61d
TG
574}
575
0b3fcf17
SE
576static inline u64 perf_clock(void)
577{
578 return local_clock();
579}
580
34f43927
PZ
581static inline u64 perf_event_clock(struct perf_event *event)
582{
583 return event->clock();
584}
585
0d3d73aa
PZ
586/*
587 * State based event timekeeping...
588 *
589 * The basic idea is to use event->state to determine which (if any) time
590 * fields to increment with the current delta. This means we only need to
591 * update timestamps when we change state or when they are explicitly requested
592 * (read).
593 *
594 * Event groups make things a little more complicated, but not terribly so. The
595 * rules for a group are that if the group leader is OFF the entire group is
596 * OFF, irrespecive of what the group member states are. This results in
597 * __perf_effective_state().
598 *
599 * A futher ramification is that when a group leader flips between OFF and
600 * !OFF, we need to update all group member times.
601 *
602 *
603 * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
604 * need to make sure the relevant context time is updated before we try and
605 * update our timestamps.
606 */
607
608static __always_inline enum perf_event_state
609__perf_effective_state(struct perf_event *event)
610{
611 struct perf_event *leader = event->group_leader;
612
613 if (leader->state <= PERF_EVENT_STATE_OFF)
614 return leader->state;
615
616 return event->state;
617}
618
619static __always_inline void
620__perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
621{
622 enum perf_event_state state = __perf_effective_state(event);
623 u64 delta = now - event->tstamp;
624
625 *enabled = event->total_time_enabled;
626 if (state >= PERF_EVENT_STATE_INACTIVE)
627 *enabled += delta;
628
629 *running = event->total_time_running;
630 if (state >= PERF_EVENT_STATE_ACTIVE)
631 *running += delta;
632}
633
634static void perf_event_update_time(struct perf_event *event)
635{
636 u64 now = perf_event_time(event);
637
638 __perf_update_times(event, now, &event->total_time_enabled,
639 &event->total_time_running);
640 event->tstamp = now;
641}
642
643static void perf_event_update_sibling_time(struct perf_event *leader)
644{
645 struct perf_event *sibling;
646
edb39592 647 for_each_sibling_event(sibling, leader)
0d3d73aa
PZ
648 perf_event_update_time(sibling);
649}
650
651static void
652perf_event_set_state(struct perf_event *event, enum perf_event_state state)
653{
654 if (event->state == state)
655 return;
656
657 perf_event_update_time(event);
658 /*
659 * If a group leader gets enabled/disabled all its siblings
660 * are affected too.
661 */
662 if ((event->state < 0) ^ (state < 0))
663 perf_event_update_sibling_time(event);
664
665 WRITE_ONCE(event->state, state);
666}
667
e5d1367f
SE
668#ifdef CONFIG_CGROUP_PERF
669
e5d1367f
SE
670static inline bool
671perf_cgroup_match(struct perf_event *event)
672{
673 struct perf_event_context *ctx = event->ctx;
674 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
675
ef824fa1
TH
676 /* @event doesn't care about cgroup */
677 if (!event->cgrp)
678 return true;
679
680 /* wants specific cgroup scope but @cpuctx isn't associated with any */
681 if (!cpuctx->cgrp)
682 return false;
683
684 /*
685 * Cgroup scoping is recursive. An event enabled for a cgroup is
686 * also enabled for all its descendant cgroups. If @cpuctx's
687 * cgroup is a descendant of @event's (the test covers identity
688 * case), it's a match.
689 */
690 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
691 event->cgrp->css.cgroup);
e5d1367f
SE
692}
693
e5d1367f
SE
694static inline void perf_detach_cgroup(struct perf_event *event)
695{
4e2ba650 696 css_put(&event->cgrp->css);
e5d1367f
SE
697 event->cgrp = NULL;
698}
699
700static inline int is_cgroup_event(struct perf_event *event)
701{
702 return event->cgrp != NULL;
703}
704
705static inline u64 perf_cgroup_event_time(struct perf_event *event)
706{
707 struct perf_cgroup_info *t;
708
709 t = per_cpu_ptr(event->cgrp->info, event->cpu);
710 return t->time;
711}
712
713static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
714{
715 struct perf_cgroup_info *info;
716 u64 now;
717
718 now = perf_clock();
719
720 info = this_cpu_ptr(cgrp->info);
721
722 info->time += now - info->timestamp;
723 info->timestamp = now;
724}
725
726static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
727{
c917e0f2
SL
728 struct perf_cgroup *cgrp = cpuctx->cgrp;
729 struct cgroup_subsys_state *css;
730
731 if (cgrp) {
732 for (css = &cgrp->css; css; css = css->parent) {
733 cgrp = container_of(css, struct perf_cgroup, css);
734 __update_cgrp_time(cgrp);
735 }
736 }
e5d1367f
SE
737}
738
739static inline void update_cgrp_time_from_event(struct perf_event *event)
740{
3f7cce3c
SE
741 struct perf_cgroup *cgrp;
742
e5d1367f 743 /*
3f7cce3c
SE
744 * ensure we access cgroup data only when needed and
745 * when we know the cgroup is pinned (css_get)
e5d1367f 746 */
3f7cce3c 747 if (!is_cgroup_event(event))
e5d1367f
SE
748 return;
749
614e4c4e 750 cgrp = perf_cgroup_from_task(current, event->ctx);
3f7cce3c
SE
751 /*
752 * Do not update time when cgroup is not active
753 */
28fa741c 754 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
3f7cce3c 755 __update_cgrp_time(event->cgrp);
e5d1367f
SE
756}
757
758static inline void
3f7cce3c
SE
759perf_cgroup_set_timestamp(struct task_struct *task,
760 struct perf_event_context *ctx)
e5d1367f
SE
761{
762 struct perf_cgroup *cgrp;
763 struct perf_cgroup_info *info;
c917e0f2 764 struct cgroup_subsys_state *css;
e5d1367f 765
3f7cce3c
SE
766 /*
767 * ctx->lock held by caller
768 * ensure we do not access cgroup data
769 * unless we have the cgroup pinned (css_get)
770 */
771 if (!task || !ctx->nr_cgroups)
e5d1367f
SE
772 return;
773
614e4c4e 774 cgrp = perf_cgroup_from_task(task, ctx);
c917e0f2
SL
775
776 for (css = &cgrp->css; css; css = css->parent) {
777 cgrp = container_of(css, struct perf_cgroup, css);
778 info = this_cpu_ptr(cgrp->info);
779 info->timestamp = ctx->timestamp;
780 }
e5d1367f
SE
781}
782
058fe1c0
DCC
783static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
784
e5d1367f
SE
785#define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
786#define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
787
788/*
789 * reschedule events based on the cgroup constraint of task.
790 *
791 * mode SWOUT : schedule out everything
792 * mode SWIN : schedule in based on cgroup for next
793 */
18ab2cd3 794static void perf_cgroup_switch(struct task_struct *task, int mode)
e5d1367f
SE
795{
796 struct perf_cpu_context *cpuctx;
058fe1c0 797 struct list_head *list;
e5d1367f
SE
798 unsigned long flags;
799
800 /*
058fe1c0
DCC
801 * Disable interrupts and preemption to avoid this CPU's
802 * cgrp_cpuctx_entry to change under us.
e5d1367f
SE
803 */
804 local_irq_save(flags);
805
058fe1c0
DCC
806 list = this_cpu_ptr(&cgrp_cpuctx_list);
807 list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
808 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
e5d1367f 809
058fe1c0
DCC
810 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
811 perf_pmu_disable(cpuctx->ctx.pmu);
e5d1367f 812
058fe1c0
DCC
813 if (mode & PERF_CGROUP_SWOUT) {
814 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
815 /*
816 * must not be done before ctxswout due
817 * to event_filter_match() in event_sched_out()
818 */
819 cpuctx->cgrp = NULL;
820 }
e5d1367f 821
058fe1c0
DCC
822 if (mode & PERF_CGROUP_SWIN) {
823 WARN_ON_ONCE(cpuctx->cgrp);
824 /*
825 * set cgrp before ctxsw in to allow
826 * event_filter_match() to not have to pass
827 * task around
828 * we pass the cpuctx->ctx to perf_cgroup_from_task()
829 * because cgorup events are only per-cpu
830 */
831 cpuctx->cgrp = perf_cgroup_from_task(task,
832 &cpuctx->ctx);
833 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
e5d1367f 834 }
058fe1c0
DCC
835 perf_pmu_enable(cpuctx->ctx.pmu);
836 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
e5d1367f
SE
837 }
838
e5d1367f
SE
839 local_irq_restore(flags);
840}
841
a8d757ef
SE
842static inline void perf_cgroup_sched_out(struct task_struct *task,
843 struct task_struct *next)
e5d1367f 844{
a8d757ef
SE
845 struct perf_cgroup *cgrp1;
846 struct perf_cgroup *cgrp2 = NULL;
847
ddaaf4e2 848 rcu_read_lock();
a8d757ef
SE
849 /*
850 * we come here when we know perf_cgroup_events > 0
614e4c4e
SE
851 * we do not need to pass the ctx here because we know
852 * we are holding the rcu lock
a8d757ef 853 */
614e4c4e 854 cgrp1 = perf_cgroup_from_task(task, NULL);
70a01657 855 cgrp2 = perf_cgroup_from_task(next, NULL);
a8d757ef
SE
856
857 /*
858 * only schedule out current cgroup events if we know
859 * that we are switching to a different cgroup. Otherwise,
860 * do no touch the cgroup events.
861 */
862 if (cgrp1 != cgrp2)
863 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
ddaaf4e2
SE
864
865 rcu_read_unlock();
e5d1367f
SE
866}
867
a8d757ef
SE
868static inline void perf_cgroup_sched_in(struct task_struct *prev,
869 struct task_struct *task)
e5d1367f 870{
a8d757ef
SE
871 struct perf_cgroup *cgrp1;
872 struct perf_cgroup *cgrp2 = NULL;
873
ddaaf4e2 874 rcu_read_lock();
a8d757ef
SE
875 /*
876 * we come here when we know perf_cgroup_events > 0
614e4c4e
SE
877 * we do not need to pass the ctx here because we know
878 * we are holding the rcu lock
a8d757ef 879 */
614e4c4e 880 cgrp1 = perf_cgroup_from_task(task, NULL);
614e4c4e 881 cgrp2 = perf_cgroup_from_task(prev, NULL);
a8d757ef
SE
882
883 /*
884 * only need to schedule in cgroup events if we are changing
885 * cgroup during ctxsw. Cgroup events were not scheduled
886 * out of ctxsw out if that was not the case.
887 */
888 if (cgrp1 != cgrp2)
889 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
ddaaf4e2
SE
890
891 rcu_read_unlock();
e5d1367f
SE
892}
893
894static inline int perf_cgroup_connect(int fd, struct perf_event *event,
895 struct perf_event_attr *attr,
896 struct perf_event *group_leader)
897{
898 struct perf_cgroup *cgrp;
899 struct cgroup_subsys_state *css;
2903ff01
AV
900 struct fd f = fdget(fd);
901 int ret = 0;
e5d1367f 902
2903ff01 903 if (!f.file)
e5d1367f
SE
904 return -EBADF;
905
b583043e 906 css = css_tryget_online_from_dir(f.file->f_path.dentry,
ec903c0c 907 &perf_event_cgrp_subsys);
3db272c0
LZ
908 if (IS_ERR(css)) {
909 ret = PTR_ERR(css);
910 goto out;
911 }
e5d1367f
SE
912
913 cgrp = container_of(css, struct perf_cgroup, css);
914 event->cgrp = cgrp;
915
916 /*
917 * all events in a group must monitor
918 * the same cgroup because a task belongs
919 * to only one perf cgroup at a time
920 */
921 if (group_leader && group_leader->cgrp != cgrp) {
922 perf_detach_cgroup(event);
923 ret = -EINVAL;
e5d1367f 924 }
3db272c0 925out:
2903ff01 926 fdput(f);
e5d1367f
SE
927 return ret;
928}
929
930static inline void
931perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
932{
933 struct perf_cgroup_info *t;
934 t = per_cpu_ptr(event->cgrp->info, event->cpu);
935 event->shadow_ctx_time = now - t->timestamp;
936}
937
db4a8356
DCC
938/*
939 * Update cpuctx->cgrp so that it is set when first cgroup event is added and
940 * cleared when last cgroup event is removed.
941 */
942static inline void
943list_update_cgroup_event(struct perf_event *event,
944 struct perf_event_context *ctx, bool add)
945{
946 struct perf_cpu_context *cpuctx;
058fe1c0 947 struct list_head *cpuctx_entry;
db4a8356
DCC
948
949 if (!is_cgroup_event(event))
950 return;
951
db4a8356
DCC
952 /*
953 * Because cgroup events are always per-cpu events,
954 * this will always be called from the right CPU.
955 */
956 cpuctx = __get_cpu_context(ctx);
33801b94 957
958 /*
959 * Since setting cpuctx->cgrp is conditional on the current @cgrp
960 * matching the event's cgroup, we must do this for every new event,
961 * because if the first would mismatch, the second would not try again
962 * and we would leave cpuctx->cgrp unset.
963 */
964 if (add && !cpuctx->cgrp) {
be96b316
TH
965 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
966
be96b316
TH
967 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
968 cpuctx->cgrp = cgrp;
058fe1c0 969 }
33801b94 970
971 if (add && ctx->nr_cgroups++)
972 return;
973 else if (!add && --ctx->nr_cgroups)
974 return;
975
976 /* no cgroup running */
977 if (!add)
978 cpuctx->cgrp = NULL;
979
980 cpuctx_entry = &cpuctx->cgrp_cpuctx_entry;
981 if (add)
982 list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list));
983 else
984 list_del(cpuctx_entry);
db4a8356
DCC
985}
986
e5d1367f
SE
987#else /* !CONFIG_CGROUP_PERF */
988
989static inline bool
990perf_cgroup_match(struct perf_event *event)
991{
992 return true;
993}
994
995static inline void perf_detach_cgroup(struct perf_event *event)
996{}
997
998static inline int is_cgroup_event(struct perf_event *event)
999{
1000 return 0;
1001}
1002
e5d1367f
SE
1003static inline void update_cgrp_time_from_event(struct perf_event *event)
1004{
1005}
1006
1007static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
1008{
1009}
1010
a8d757ef
SE
1011static inline void perf_cgroup_sched_out(struct task_struct *task,
1012 struct task_struct *next)
e5d1367f
SE
1013{
1014}
1015
a8d757ef
SE
1016static inline void perf_cgroup_sched_in(struct task_struct *prev,
1017 struct task_struct *task)
e5d1367f
SE
1018{
1019}
1020
1021static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1022 struct perf_event_attr *attr,
1023 struct perf_event *group_leader)
1024{
1025 return -EINVAL;
1026}
1027
1028static inline void
3f7cce3c
SE
1029perf_cgroup_set_timestamp(struct task_struct *task,
1030 struct perf_event_context *ctx)
e5d1367f
SE
1031{
1032}
1033
1034void
1035perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
1036{
1037}
1038
1039static inline void
1040perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
1041{
1042}
1043
1044static inline u64 perf_cgroup_event_time(struct perf_event *event)
1045{
1046 return 0;
1047}
1048
db4a8356
DCC
1049static inline void
1050list_update_cgroup_event(struct perf_event *event,
1051 struct perf_event_context *ctx, bool add)
1052{
1053}
1054
e5d1367f
SE
1055#endif
1056
9e630205
SE
1057/*
1058 * set default to be dependent on timer tick just
1059 * like original code
1060 */
1061#define PERF_CPU_HRTIMER (1000 / HZ)
1062/*
8a1115ff 1063 * function must be called with interrupts disabled
9e630205 1064 */
272325c4 1065static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
9e630205
SE
1066{
1067 struct perf_cpu_context *cpuctx;
8d5bce0c 1068 bool rotations;
9e630205 1069
16444645 1070 lockdep_assert_irqs_disabled();
9e630205
SE
1071
1072 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
9e630205
SE
1073 rotations = perf_rotate_context(cpuctx);
1074
4cfafd30
PZ
1075 raw_spin_lock(&cpuctx->hrtimer_lock);
1076 if (rotations)
9e630205 1077 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
4cfafd30
PZ
1078 else
1079 cpuctx->hrtimer_active = 0;
1080 raw_spin_unlock(&cpuctx->hrtimer_lock);
9e630205 1081
4cfafd30 1082 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
9e630205
SE
1083}
1084
272325c4 1085static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
9e630205 1086{
272325c4 1087 struct hrtimer *timer = &cpuctx->hrtimer;
9e630205 1088 struct pmu *pmu = cpuctx->ctx.pmu;
272325c4 1089 u64 interval;
9e630205
SE
1090
1091 /* no multiplexing needed for SW PMU */
1092 if (pmu->task_ctx_nr == perf_sw_context)
1093 return;
1094
62b85639
SE
1095 /*
1096 * check default is sane, if not set then force to
1097 * default interval (1/tick)
1098 */
272325c4
PZ
1099 interval = pmu->hrtimer_interval_ms;
1100 if (interval < 1)
1101 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
62b85639 1102
272325c4 1103 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
9e630205 1104
4cfafd30
PZ
1105 raw_spin_lock_init(&cpuctx->hrtimer_lock);
1106 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
272325c4 1107 timer->function = perf_mux_hrtimer_handler;
9e630205
SE
1108}
1109
272325c4 1110static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
9e630205 1111{
272325c4 1112 struct hrtimer *timer = &cpuctx->hrtimer;
9e630205 1113 struct pmu *pmu = cpuctx->ctx.pmu;
4cfafd30 1114 unsigned long flags;
9e630205
SE
1115
1116 /* not for SW PMU */
1117 if (pmu->task_ctx_nr == perf_sw_context)
272325c4 1118 return 0;
9e630205 1119
4cfafd30
PZ
1120 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1121 if (!cpuctx->hrtimer_active) {
1122 cpuctx->hrtimer_active = 1;
1123 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1124 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
1125 }
1126 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
9e630205 1127
272325c4 1128 return 0;
9e630205
SE
1129}
1130
33696fc0 1131void perf_pmu_disable(struct pmu *pmu)
9e35ad38 1132{
33696fc0
PZ
1133 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1134 if (!(*count)++)
1135 pmu->pmu_disable(pmu);
9e35ad38 1136}
9e35ad38 1137
33696fc0 1138void perf_pmu_enable(struct pmu *pmu)
9e35ad38 1139{
33696fc0
PZ
1140 int *count = this_cpu_ptr(pmu->pmu_disable_count);
1141 if (!--(*count))
1142 pmu->pmu_enable(pmu);
9e35ad38 1143}
9e35ad38 1144
2fde4f94 1145static DEFINE_PER_CPU(struct list_head, active_ctx_list);
e9d2b064
PZ
1146
1147/*
2fde4f94
MR
1148 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1149 * perf_event_task_tick() are fully serialized because they're strictly cpu
1150 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1151 * disabled, while perf_event_task_tick is called from IRQ context.
e9d2b064 1152 */
2fde4f94 1153static void perf_event_ctx_activate(struct perf_event_context *ctx)
9e35ad38 1154{
2fde4f94 1155 struct list_head *head = this_cpu_ptr(&active_ctx_list);
b5ab4cd5 1156
16444645 1157 lockdep_assert_irqs_disabled();
b5ab4cd5 1158
2fde4f94
MR
1159 WARN_ON(!list_empty(&ctx->active_ctx_list));
1160
1161 list_add(&ctx->active_ctx_list, head);
1162}
1163
1164static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1165{
16444645 1166 lockdep_assert_irqs_disabled();
2fde4f94
MR
1167
1168 WARN_ON(list_empty(&ctx->active_ctx_list));
1169
1170 list_del_init(&ctx->active_ctx_list);
9e35ad38 1171}
9e35ad38 1172
cdd6c482 1173static void get_ctx(struct perf_event_context *ctx)
a63eaf34 1174{
8c94abbb 1175 refcount_inc(&ctx->refcount);
a63eaf34
PM
1176}
1177
4af57ef2
YZ
1178static void free_ctx(struct rcu_head *head)
1179{
1180 struct perf_event_context *ctx;
1181
1182 ctx = container_of(head, struct perf_event_context, rcu_head);
1183 kfree(ctx->task_ctx_data);
1184 kfree(ctx);
1185}
1186
cdd6c482 1187static void put_ctx(struct perf_event_context *ctx)
a63eaf34 1188{
8c94abbb 1189 if (refcount_dec_and_test(&ctx->refcount)) {
564c2b21
PM
1190 if (ctx->parent_ctx)
1191 put_ctx(ctx->parent_ctx);
63b6da39 1192 if (ctx->task && ctx->task != TASK_TOMBSTONE)
c93f7669 1193 put_task_struct(ctx->task);
4af57ef2 1194 call_rcu(&ctx->rcu_head, free_ctx);
564c2b21 1195 }
a63eaf34
PM
1196}
1197
f63a8daa
PZ
1198/*
1199 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1200 * perf_pmu_migrate_context() we need some magic.
1201 *
1202 * Those places that change perf_event::ctx will hold both
1203 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1204 *
8b10c5e2
PZ
1205 * Lock ordering is by mutex address. There are two other sites where
1206 * perf_event_context::mutex nests and those are:
1207 *
1208 * - perf_event_exit_task_context() [ child , 0 ]
8ba289b8
PZ
1209 * perf_event_exit_event()
1210 * put_event() [ parent, 1 ]
8b10c5e2
PZ
1211 *
1212 * - perf_event_init_context() [ parent, 0 ]
1213 * inherit_task_group()
1214 * inherit_group()
1215 * inherit_event()
1216 * perf_event_alloc()
1217 * perf_init_event()
1218 * perf_try_init_event() [ child , 1 ]
1219 *
1220 * While it appears there is an obvious deadlock here -- the parent and child
1221 * nesting levels are inverted between the two. This is in fact safe because
1222 * life-time rules separate them. That is an exiting task cannot fork, and a
1223 * spawning task cannot (yet) exit.
1224 *
1225 * But remember that that these are parent<->child context relations, and
1226 * migration does not affect children, therefore these two orderings should not
1227 * interact.
f63a8daa
PZ
1228 *
1229 * The change in perf_event::ctx does not affect children (as claimed above)
1230 * because the sys_perf_event_open() case will install a new event and break
1231 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1232 * concerned with cpuctx and that doesn't have children.
1233 *
1234 * The places that change perf_event::ctx will issue:
1235 *
1236 * perf_remove_from_context();
1237 * synchronize_rcu();
1238 * perf_install_in_context();
1239 *
1240 * to affect the change. The remove_from_context() + synchronize_rcu() should
1241 * quiesce the event, after which we can install it in the new location. This
1242 * means that only external vectors (perf_fops, prctl) can perturb the event
1243 * while in transit. Therefore all such accessors should also acquire
1244 * perf_event_context::mutex to serialize against this.
1245 *
1246 * However; because event->ctx can change while we're waiting to acquire
1247 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1248 * function.
1249 *
1250 * Lock order:
79c9ce57 1251 * cred_guard_mutex
f63a8daa
PZ
1252 * task_struct::perf_event_mutex
1253 * perf_event_context::mutex
f63a8daa 1254 * perf_event::child_mutex;
07c4a776 1255 * perf_event_context::lock
f63a8daa
PZ
1256 * perf_event::mmap_mutex
1257 * mmap_sem
18736eef 1258 * perf_addr_filters_head::lock
82d94856
PZ
1259 *
1260 * cpu_hotplug_lock
1261 * pmus_lock
1262 * cpuctx->mutex / perf_event_context::mutex
f63a8daa 1263 */
a83fe28e
PZ
1264static struct perf_event_context *
1265perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
f63a8daa
PZ
1266{
1267 struct perf_event_context *ctx;
1268
1269again:
1270 rcu_read_lock();
6aa7de05 1271 ctx = READ_ONCE(event->ctx);
8c94abbb 1272 if (!refcount_inc_not_zero(&ctx->refcount)) {
f63a8daa
PZ
1273 rcu_read_unlock();
1274 goto again;
1275 }
1276 rcu_read_unlock();
1277
a83fe28e 1278 mutex_lock_nested(&ctx->mutex, nesting);
f63a8daa
PZ
1279 if (event->ctx != ctx) {
1280 mutex_unlock(&ctx->mutex);
1281 put_ctx(ctx);
1282 goto again;
1283 }
1284
1285 return ctx;
1286}
1287
a83fe28e
PZ
1288static inline struct perf_event_context *
1289perf_event_ctx_lock(struct perf_event *event)
1290{
1291 return perf_event_ctx_lock_nested(event, 0);
1292}
1293
f63a8daa
PZ
1294static void perf_event_ctx_unlock(struct perf_event *event,
1295 struct perf_event_context *ctx)
1296{
1297 mutex_unlock(&ctx->mutex);
1298 put_ctx(ctx);
1299}
1300
211de6eb
PZ
1301/*
1302 * This must be done under the ctx->lock, such as to serialize against
1303 * context_equiv(), therefore we cannot call put_ctx() since that might end up
1304 * calling scheduler related locks and ctx->lock nests inside those.
1305 */
1306static __must_check struct perf_event_context *
1307unclone_ctx(struct perf_event_context *ctx)
71a851b4 1308{
211de6eb
PZ
1309 struct perf_event_context *parent_ctx = ctx->parent_ctx;
1310
1311 lockdep_assert_held(&ctx->lock);
1312
1313 if (parent_ctx)
71a851b4 1314 ctx->parent_ctx = NULL;
5a3126d4 1315 ctx->generation++;
211de6eb
PZ
1316
1317 return parent_ctx;
71a851b4
PZ
1318}
1319
1d953111
ON
1320static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1321 enum pid_type type)
6844c09d 1322{
1d953111 1323 u32 nr;
6844c09d
ACM
1324 /*
1325 * only top level events have the pid namespace they were created in
1326 */
1327 if (event->parent)
1328 event = event->parent;
1329
1d953111
ON
1330 nr = __task_pid_nr_ns(p, type, event->ns);
1331 /* avoid -1 if it is idle thread or runs in another ns */
1332 if (!nr && !pid_alive(p))
1333 nr = -1;
1334 return nr;
6844c09d
ACM
1335}
1336
1d953111 1337static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
6844c09d 1338{
6883f81a 1339 return perf_event_pid_type(event, p, PIDTYPE_TGID);
1d953111 1340}
6844c09d 1341
1d953111
ON
1342static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1343{
1344 return perf_event_pid_type(event, p, PIDTYPE_PID);
6844c09d
ACM
1345}
1346
7f453c24 1347/*
cdd6c482 1348 * If we inherit events we want to return the parent event id
7f453c24
PZ
1349 * to userspace.
1350 */
cdd6c482 1351static u64 primary_event_id(struct perf_event *event)
7f453c24 1352{
cdd6c482 1353 u64 id = event->id;
7f453c24 1354
cdd6c482
IM
1355 if (event->parent)
1356 id = event->parent->id;
7f453c24
PZ
1357
1358 return id;
1359}
1360
25346b93 1361/*
cdd6c482 1362 * Get the perf_event_context for a task and lock it.
63b6da39 1363 *
25346b93
PM
1364 * This has to cope with with the fact that until it is locked,
1365 * the context could get moved to another task.
1366 */
cdd6c482 1367static struct perf_event_context *
8dc85d54 1368perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
25346b93 1369{
cdd6c482 1370 struct perf_event_context *ctx;
25346b93 1371
9ed6060d 1372retry:
058ebd0e
PZ
1373 /*
1374 * One of the few rules of preemptible RCU is that one cannot do
1375 * rcu_read_unlock() while holding a scheduler (or nested) lock when
2fd59077 1376 * part of the read side critical section was irqs-enabled -- see
058ebd0e
PZ
1377 * rcu_read_unlock_special().
1378 *
1379 * Since ctx->lock nests under rq->lock we must ensure the entire read
2fd59077 1380 * side critical section has interrupts disabled.
058ebd0e 1381 */
2fd59077 1382 local_irq_save(*flags);
058ebd0e 1383 rcu_read_lock();
8dc85d54 1384 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
25346b93
PM
1385 if (ctx) {
1386 /*
1387 * If this context is a clone of another, it might
1388 * get swapped for another underneath us by
cdd6c482 1389 * perf_event_task_sched_out, though the
25346b93
PM
1390 * rcu_read_lock() protects us from any context
1391 * getting freed. Lock the context and check if it
1392 * got swapped before we could get the lock, and retry
1393 * if so. If we locked the right context, then it
1394 * can't get swapped on us any more.
1395 */
2fd59077 1396 raw_spin_lock(&ctx->lock);
8dc85d54 1397 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
2fd59077 1398 raw_spin_unlock(&ctx->lock);
058ebd0e 1399 rcu_read_unlock();
2fd59077 1400 local_irq_restore(*flags);
25346b93
PM
1401 goto retry;
1402 }
b49a9e7e 1403
63b6da39 1404 if (ctx->task == TASK_TOMBSTONE ||
8c94abbb 1405 !refcount_inc_not_zero(&ctx->refcount)) {
2fd59077 1406 raw_spin_unlock(&ctx->lock);
b49a9e7e 1407 ctx = NULL;
828b6f0e
PZ
1408 } else {
1409 WARN_ON_ONCE(ctx->task != task);
b49a9e7e 1410 }
25346b93
PM
1411 }
1412 rcu_read_unlock();
2fd59077
PM
1413 if (!ctx)
1414 local_irq_restore(*flags);
25346b93
PM
1415 return ctx;
1416}
1417
1418/*
1419 * Get the context for a task and increment its pin_count so it
1420 * can't get swapped to another task. This also increments its
1421 * reference count so that the context can't get freed.
1422 */
8dc85d54
PZ
1423static struct perf_event_context *
1424perf_pin_task_context(struct task_struct *task, int ctxn)
25346b93 1425{
cdd6c482 1426 struct perf_event_context *ctx;
25346b93
PM
1427 unsigned long flags;
1428
8dc85d54 1429 ctx = perf_lock_task_context(task, ctxn, &flags);
25346b93
PM
1430 if (ctx) {
1431 ++ctx->pin_count;
e625cce1 1432 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1433 }
1434 return ctx;
1435}
1436
cdd6c482 1437static void perf_unpin_context(struct perf_event_context *ctx)
25346b93
PM
1438{
1439 unsigned long flags;
1440
e625cce1 1441 raw_spin_lock_irqsave(&ctx->lock, flags);
25346b93 1442 --ctx->pin_count;
e625cce1 1443 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1444}
1445
f67218c3
PZ
1446/*
1447 * Update the record of the current time in a context.
1448 */
1449static void update_context_time(struct perf_event_context *ctx)
1450{
1451 u64 now = perf_clock();
1452
1453 ctx->time += now - ctx->timestamp;
1454 ctx->timestamp = now;
1455}
1456
4158755d
SE
1457static u64 perf_event_time(struct perf_event *event)
1458{
1459 struct perf_event_context *ctx = event->ctx;
e5d1367f
SE
1460
1461 if (is_cgroup_event(event))
1462 return perf_cgroup_event_time(event);
1463
4158755d
SE
1464 return ctx ? ctx->time : 0;
1465}
1466
487f05e1
AS
1467static enum event_type_t get_event_type(struct perf_event *event)
1468{
1469 struct perf_event_context *ctx = event->ctx;
1470 enum event_type_t event_type;
1471
1472 lockdep_assert_held(&ctx->lock);
1473
3bda69c1
AS
1474 /*
1475 * It's 'group type', really, because if our group leader is
1476 * pinned, so are we.
1477 */
1478 if (event->group_leader != event)
1479 event = event->group_leader;
1480
487f05e1
AS
1481 event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1482 if (!ctx->task)
1483 event_type |= EVENT_CPU;
1484
1485 return event_type;
1486}
1487
8e1a2031 1488/*
161c85fa 1489 * Helper function to initialize event group nodes.
8e1a2031 1490 */
161c85fa 1491static void init_event_group(struct perf_event *event)
8e1a2031
AB
1492{
1493 RB_CLEAR_NODE(&event->group_node);
1494 event->group_index = 0;
1495}
1496
1497/*
1498 * Extract pinned or flexible groups from the context
161c85fa 1499 * based on event attrs bits.
8e1a2031
AB
1500 */
1501static struct perf_event_groups *
1502get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
889ff015
FW
1503{
1504 if (event->attr.pinned)
1505 return &ctx->pinned_groups;
1506 else
1507 return &ctx->flexible_groups;
1508}
1509
8e1a2031 1510/*
161c85fa 1511 * Helper function to initializes perf_event_group trees.
8e1a2031 1512 */
161c85fa 1513static void perf_event_groups_init(struct perf_event_groups *groups)
8e1a2031
AB
1514{
1515 groups->tree = RB_ROOT;
1516 groups->index = 0;
1517}
1518
1519/*
1520 * Compare function for event groups;
161c85fa
PZ
1521 *
1522 * Implements complex key that first sorts by CPU and then by virtual index
1523 * which provides ordering when rotating groups for the same CPU.
8e1a2031 1524 */
161c85fa
PZ
1525static bool
1526perf_event_groups_less(struct perf_event *left, struct perf_event *right)
8e1a2031 1527{
161c85fa
PZ
1528 if (left->cpu < right->cpu)
1529 return true;
1530 if (left->cpu > right->cpu)
1531 return false;
1532
1533 if (left->group_index < right->group_index)
1534 return true;
1535 if (left->group_index > right->group_index)
1536 return false;
1537
1538 return false;
8e1a2031
AB
1539}
1540
1541/*
161c85fa
PZ
1542 * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for
1543 * key (see perf_event_groups_less). This places it last inside the CPU
1544 * subtree.
8e1a2031
AB
1545 */
1546static void
1547perf_event_groups_insert(struct perf_event_groups *groups,
161c85fa 1548 struct perf_event *event)
8e1a2031
AB
1549{
1550 struct perf_event *node_event;
1551 struct rb_node *parent;
1552 struct rb_node **node;
1553
1554 event->group_index = ++groups->index;
1555
1556 node = &groups->tree.rb_node;
1557 parent = *node;
1558
1559 while (*node) {
1560 parent = *node;
161c85fa 1561 node_event = container_of(*node, struct perf_event, group_node);
8e1a2031
AB
1562
1563 if (perf_event_groups_less(event, node_event))
1564 node = &parent->rb_left;
1565 else
1566 node = &parent->rb_right;
1567 }
1568
1569 rb_link_node(&event->group_node, parent, node);
1570 rb_insert_color(&event->group_node, &groups->tree);
1571}
1572
1573/*
161c85fa 1574 * Helper function to insert event into the pinned or flexible groups.
8e1a2031
AB
1575 */
1576static void
1577add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1578{
1579 struct perf_event_groups *groups;
1580
1581 groups = get_event_groups(event, ctx);
1582 perf_event_groups_insert(groups, event);
1583}
1584
1585/*
161c85fa 1586 * Delete a group from a tree.
8e1a2031
AB
1587 */
1588static void
1589perf_event_groups_delete(struct perf_event_groups *groups,
161c85fa 1590 struct perf_event *event)
8e1a2031 1591{
161c85fa
PZ
1592 WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1593 RB_EMPTY_ROOT(&groups->tree));
8e1a2031 1594
161c85fa 1595 rb_erase(&event->group_node, &groups->tree);
8e1a2031
AB
1596 init_event_group(event);
1597}
1598
1599/*
161c85fa 1600 * Helper function to delete event from its groups.
8e1a2031
AB
1601 */
1602static void
1603del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1604{
1605 struct perf_event_groups *groups;
1606
1607 groups = get_event_groups(event, ctx);
1608 perf_event_groups_delete(groups, event);
1609}
1610
1611/*
161c85fa 1612 * Get the leftmost event in the @cpu subtree.
8e1a2031
AB
1613 */
1614static struct perf_event *
1615perf_event_groups_first(struct perf_event_groups *groups, int cpu)
1616{
1617 struct perf_event *node_event = NULL, *match = NULL;
1618 struct rb_node *node = groups->tree.rb_node;
1619
1620 while (node) {
161c85fa 1621 node_event = container_of(node, struct perf_event, group_node);
8e1a2031
AB
1622
1623 if (cpu < node_event->cpu) {
1624 node = node->rb_left;
1625 } else if (cpu > node_event->cpu) {
1626 node = node->rb_right;
1627 } else {
1628 match = node_event;
1629 node = node->rb_left;
1630 }
1631 }
1632
1633 return match;
1634}
1635
1cac7b1a
PZ
1636/*
1637 * Like rb_entry_next_safe() for the @cpu subtree.
1638 */
1639static struct perf_event *
1640perf_event_groups_next(struct perf_event *event)
1641{
1642 struct perf_event *next;
1643
1644 next = rb_entry_safe(rb_next(&event->group_node), typeof(*event), group_node);
1645 if (next && next->cpu == event->cpu)
1646 return next;
1647
1648 return NULL;
1649}
1650
8e1a2031 1651/*
161c85fa 1652 * Iterate through the whole groups tree.
8e1a2031 1653 */
6e6804d2
PZ
1654#define perf_event_groups_for_each(event, groups) \
1655 for (event = rb_entry_safe(rb_first(&((groups)->tree)), \
1656 typeof(*event), group_node); event; \
1657 event = rb_entry_safe(rb_next(&event->group_node), \
1658 typeof(*event), group_node))
8e1a2031 1659
fccc714b 1660/*
788faab7 1661 * Add an event from the lists for its context.
fccc714b
PZ
1662 * Must be called with ctx->mutex and ctx->lock held.
1663 */
04289bb9 1664static void
cdd6c482 1665list_add_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1666{
c994d613
PZ
1667 lockdep_assert_held(&ctx->lock);
1668
8a49542c
PZ
1669 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1670 event->attach_state |= PERF_ATTACH_CONTEXT;
04289bb9 1671
0d3d73aa
PZ
1672 event->tstamp = perf_event_time(event);
1673
04289bb9 1674 /*
8a49542c
PZ
1675 * If we're a stand alone event or group leader, we go to the context
1676 * list, group events are kept attached to the group so that
1677 * perf_group_detach can, at all times, locate all siblings.
04289bb9 1678 */
8a49542c 1679 if (event->group_leader == event) {
4ff6a8de 1680 event->group_caps = event->event_caps;
8e1a2031 1681 add_event_to_groups(event, ctx);
5c148194 1682 }
592903cd 1683
db4a8356 1684 list_update_cgroup_event(event, ctx, true);
e5d1367f 1685
cdd6c482
IM
1686 list_add_rcu(&event->event_entry, &ctx->event_list);
1687 ctx->nr_events++;
1688 if (event->attr.inherit_stat)
bfbd3381 1689 ctx->nr_stat++;
5a3126d4
PZ
1690
1691 ctx->generation++;
04289bb9
IM
1692}
1693
0231bb53
JO
1694/*
1695 * Initialize event state based on the perf_event_attr::disabled.
1696 */
1697static inline void perf_event__state_init(struct perf_event *event)
1698{
1699 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1700 PERF_EVENT_STATE_INACTIVE;
1701}
1702
a723968c 1703static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
c320c7b7
ACM
1704{
1705 int entry = sizeof(u64); /* value */
1706 int size = 0;
1707 int nr = 1;
1708
1709 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1710 size += sizeof(u64);
1711
1712 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1713 size += sizeof(u64);
1714
1715 if (event->attr.read_format & PERF_FORMAT_ID)
1716 entry += sizeof(u64);
1717
1718 if (event->attr.read_format & PERF_FORMAT_GROUP) {
a723968c 1719 nr += nr_siblings;
c320c7b7
ACM
1720 size += sizeof(u64);
1721 }
1722
1723 size += entry * nr;
1724 event->read_size = size;
1725}
1726
a723968c 1727static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
c320c7b7
ACM
1728{
1729 struct perf_sample_data *data;
c320c7b7
ACM
1730 u16 size = 0;
1731
c320c7b7
ACM
1732 if (sample_type & PERF_SAMPLE_IP)
1733 size += sizeof(data->ip);
1734
6844c09d
ACM
1735 if (sample_type & PERF_SAMPLE_ADDR)
1736 size += sizeof(data->addr);
1737
1738 if (sample_type & PERF_SAMPLE_PERIOD)
1739 size += sizeof(data->period);
1740
c3feedf2
AK
1741 if (sample_type & PERF_SAMPLE_WEIGHT)
1742 size += sizeof(data->weight);
1743
6844c09d
ACM
1744 if (sample_type & PERF_SAMPLE_READ)
1745 size += event->read_size;
1746
d6be9ad6
SE
1747 if (sample_type & PERF_SAMPLE_DATA_SRC)
1748 size += sizeof(data->data_src.val);
1749
fdfbbd07
AK
1750 if (sample_type & PERF_SAMPLE_TRANSACTION)
1751 size += sizeof(data->txn);
1752
fc7ce9c7
KL
1753 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1754 size += sizeof(data->phys_addr);
1755
6844c09d
ACM
1756 event->header_size = size;
1757}
1758
a723968c
PZ
1759/*
1760 * Called at perf_event creation and when events are attached/detached from a
1761 * group.
1762 */
1763static void perf_event__header_size(struct perf_event *event)
1764{
1765 __perf_event_read_size(event,
1766 event->group_leader->nr_siblings);
1767 __perf_event_header_size(event, event->attr.sample_type);
1768}
1769
6844c09d
ACM
1770static void perf_event__id_header_size(struct perf_event *event)
1771{
1772 struct perf_sample_data *data;
1773 u64 sample_type = event->attr.sample_type;
1774 u16 size = 0;
1775
c320c7b7
ACM
1776 if (sample_type & PERF_SAMPLE_TID)
1777 size += sizeof(data->tid_entry);
1778
1779 if (sample_type & PERF_SAMPLE_TIME)
1780 size += sizeof(data->time);
1781
ff3d527c
AH
1782 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1783 size += sizeof(data->id);
1784
c320c7b7
ACM
1785 if (sample_type & PERF_SAMPLE_ID)
1786 size += sizeof(data->id);
1787
1788 if (sample_type & PERF_SAMPLE_STREAM_ID)
1789 size += sizeof(data->stream_id);
1790
1791 if (sample_type & PERF_SAMPLE_CPU)
1792 size += sizeof(data->cpu_entry);
1793
6844c09d 1794 event->id_header_size = size;
c320c7b7
ACM
1795}
1796
a723968c
PZ
1797static bool perf_event_validate_size(struct perf_event *event)
1798{
1799 /*
1800 * The values computed here will be over-written when we actually
1801 * attach the event.
1802 */
1803 __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1804 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1805 perf_event__id_header_size(event);
1806
1807 /*
1808 * Sum the lot; should not exceed the 64k limit we have on records.
1809 * Conservative limit to allow for callchains and other variable fields.
1810 */
1811 if (event->read_size + event->header_size +
1812 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1813 return false;
1814
1815 return true;
1816}
1817
8a49542c
PZ
1818static void perf_group_attach(struct perf_event *event)
1819{
c320c7b7 1820 struct perf_event *group_leader = event->group_leader, *pos;
8a49542c 1821
a76a82a3
PZ
1822 lockdep_assert_held(&event->ctx->lock);
1823
74c3337c
PZ
1824 /*
1825 * We can have double attach due to group movement in perf_event_open.
1826 */
1827 if (event->attach_state & PERF_ATTACH_GROUP)
1828 return;
1829
8a49542c
PZ
1830 event->attach_state |= PERF_ATTACH_GROUP;
1831
1832 if (group_leader == event)
1833 return;
1834
652884fe
PZ
1835 WARN_ON_ONCE(group_leader->ctx != event->ctx);
1836
4ff6a8de 1837 group_leader->group_caps &= event->event_caps;
8a49542c 1838
8343aae6 1839 list_add_tail(&event->sibling_list, &group_leader->sibling_list);
8a49542c 1840 group_leader->nr_siblings++;
c320c7b7
ACM
1841
1842 perf_event__header_size(group_leader);
1843
edb39592 1844 for_each_sibling_event(pos, group_leader)
c320c7b7 1845 perf_event__header_size(pos);
8a49542c
PZ
1846}
1847
a63eaf34 1848/*
788faab7 1849 * Remove an event from the lists for its context.
fccc714b 1850 * Must be called with ctx->mutex and ctx->lock held.
a63eaf34 1851 */
04289bb9 1852static void
cdd6c482 1853list_del_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1854{
652884fe
PZ
1855 WARN_ON_ONCE(event->ctx != ctx);
1856 lockdep_assert_held(&ctx->lock);
1857
8a49542c
PZ
1858 /*
1859 * We can have double detach due to exit/hot-unplug + close.
1860 */
1861 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
a63eaf34 1862 return;
8a49542c
PZ
1863
1864 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1865
db4a8356 1866 list_update_cgroup_event(event, ctx, false);
e5d1367f 1867
cdd6c482
IM
1868 ctx->nr_events--;
1869 if (event->attr.inherit_stat)
bfbd3381 1870 ctx->nr_stat--;
8bc20959 1871
cdd6c482 1872 list_del_rcu(&event->event_entry);
04289bb9 1873
8a49542c 1874 if (event->group_leader == event)
8e1a2031 1875 del_event_from_groups(event, ctx);
5c148194 1876
b2e74a26
SE
1877 /*
1878 * If event was in error state, then keep it
1879 * that way, otherwise bogus counts will be
1880 * returned on read(). The only way to get out
1881 * of error state is by explicit re-enabling
1882 * of the event
1883 */
1884 if (event->state > PERF_EVENT_STATE_OFF)
0d3d73aa 1885 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
5a3126d4
PZ
1886
1887 ctx->generation++;
050735b0
PZ
1888}
1889
8a49542c 1890static void perf_group_detach(struct perf_event *event)
050735b0
PZ
1891{
1892 struct perf_event *sibling, *tmp;
6668128a 1893 struct perf_event_context *ctx = event->ctx;
8a49542c 1894
6668128a 1895 lockdep_assert_held(&ctx->lock);
a76a82a3 1896
8a49542c
PZ
1897 /*
1898 * We can have double detach due to exit/hot-unplug + close.
1899 */
1900 if (!(event->attach_state & PERF_ATTACH_GROUP))
1901 return;
1902
1903 event->attach_state &= ~PERF_ATTACH_GROUP;
1904
1905 /*
1906 * If this is a sibling, remove it from its group.
1907 */
1908 if (event->group_leader != event) {
8343aae6 1909 list_del_init(&event->sibling_list);
8a49542c 1910 event->group_leader->nr_siblings--;
c320c7b7 1911 goto out;
8a49542c
PZ
1912 }
1913
04289bb9 1914 /*
cdd6c482
IM
1915 * If this was a group event with sibling events then
1916 * upgrade the siblings to singleton events by adding them
8a49542c 1917 * to whatever list we are on.
04289bb9 1918 */
8343aae6 1919 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
8e1a2031 1920
04289bb9 1921 sibling->group_leader = sibling;
24868367 1922 list_del_init(&sibling->sibling_list);
d6f962b5
FW
1923
1924 /* Inherit group flags from the previous leader */
4ff6a8de 1925 sibling->group_caps = event->group_caps;
652884fe 1926
8e1a2031 1927 if (!RB_EMPTY_NODE(&event->group_node)) {
8e1a2031 1928 add_event_to_groups(sibling, event->ctx);
6668128a
PZ
1929
1930 if (sibling->state == PERF_EVENT_STATE_ACTIVE) {
1931 struct list_head *list = sibling->attr.pinned ?
1932 &ctx->pinned_active : &ctx->flexible_active;
1933
1934 list_add_tail(&sibling->active_list, list);
1935 }
8e1a2031
AB
1936 }
1937
652884fe 1938 WARN_ON_ONCE(sibling->ctx != event->ctx);
04289bb9 1939 }
c320c7b7
ACM
1940
1941out:
1942 perf_event__header_size(event->group_leader);
1943
edb39592 1944 for_each_sibling_event(tmp, event->group_leader)
c320c7b7 1945 perf_event__header_size(tmp);
04289bb9
IM
1946}
1947
fadfe7be
JO
1948static bool is_orphaned_event(struct perf_event *event)
1949{
a69b0ca4 1950 return event->state == PERF_EVENT_STATE_DEAD;
fadfe7be
JO
1951}
1952
2c81a647 1953static inline int __pmu_filter_match(struct perf_event *event)
66eb579e
MR
1954{
1955 struct pmu *pmu = event->pmu;
1956 return pmu->filter_match ? pmu->filter_match(event) : 1;
1957}
1958
2c81a647
MR
1959/*
1960 * Check whether we should attempt to schedule an event group based on
1961 * PMU-specific filtering. An event group can consist of HW and SW events,
1962 * potentially with a SW leader, so we must check all the filters, to
1963 * determine whether a group is schedulable:
1964 */
1965static inline int pmu_filter_match(struct perf_event *event)
1966{
edb39592 1967 struct perf_event *sibling;
2c81a647
MR
1968
1969 if (!__pmu_filter_match(event))
1970 return 0;
1971
edb39592
PZ
1972 for_each_sibling_event(sibling, event) {
1973 if (!__pmu_filter_match(sibling))
2c81a647
MR
1974 return 0;
1975 }
1976
1977 return 1;
1978}
1979
fa66f07a
SE
1980static inline int
1981event_filter_match(struct perf_event *event)
1982{
0b8f1e2e
PZ
1983 return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
1984 perf_cgroup_match(event) && pmu_filter_match(event);
fa66f07a
SE
1985}
1986
9ffcfa6f
SE
1987static void
1988event_sched_out(struct perf_event *event,
3b6f9e5c 1989 struct perf_cpu_context *cpuctx,
cdd6c482 1990 struct perf_event_context *ctx)
3b6f9e5c 1991{
0d3d73aa 1992 enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
652884fe
PZ
1993
1994 WARN_ON_ONCE(event->ctx != ctx);
1995 lockdep_assert_held(&ctx->lock);
1996
cdd6c482 1997 if (event->state != PERF_EVENT_STATE_ACTIVE)
9ffcfa6f 1998 return;
3b6f9e5c 1999
6668128a
PZ
2000 /*
2001 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2002 * we can schedule events _OUT_ individually through things like
2003 * __perf_remove_from_context().
2004 */
2005 list_del_init(&event->active_list);
2006
44377277
AS
2007 perf_pmu_disable(event->pmu);
2008
28a967c3
PZ
2009 event->pmu->del(event, 0);
2010 event->oncpu = -1;
0d3d73aa 2011
cdd6c482
IM
2012 if (event->pending_disable) {
2013 event->pending_disable = 0;
0d3d73aa 2014 state = PERF_EVENT_STATE_OFF;
970892a9 2015 }
0d3d73aa 2016 perf_event_set_state(event, state);
3b6f9e5c 2017
cdd6c482 2018 if (!is_software_event(event))
3b6f9e5c 2019 cpuctx->active_oncpu--;
2fde4f94
MR
2020 if (!--ctx->nr_active)
2021 perf_event_ctx_deactivate(ctx);
0f5a2601
PZ
2022 if (event->attr.freq && event->attr.sample_freq)
2023 ctx->nr_freq--;
cdd6c482 2024 if (event->attr.exclusive || !cpuctx->active_oncpu)
3b6f9e5c 2025 cpuctx->exclusive = 0;
44377277
AS
2026
2027 perf_pmu_enable(event->pmu);
3b6f9e5c
PM
2028}
2029
d859e29f 2030static void
cdd6c482 2031group_sched_out(struct perf_event *group_event,
d859e29f 2032 struct perf_cpu_context *cpuctx,
cdd6c482 2033 struct perf_event_context *ctx)
d859e29f 2034{
cdd6c482 2035 struct perf_event *event;
0d3d73aa
PZ
2036
2037 if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2038 return;
d859e29f 2039
3f005e7d
MR
2040 perf_pmu_disable(ctx->pmu);
2041
cdd6c482 2042 event_sched_out(group_event, cpuctx, ctx);
d859e29f
PM
2043
2044 /*
2045 * Schedule out siblings (if any):
2046 */
edb39592 2047 for_each_sibling_event(event, group_event)
cdd6c482 2048 event_sched_out(event, cpuctx, ctx);
d859e29f 2049
3f005e7d
MR
2050 perf_pmu_enable(ctx->pmu);
2051
0d3d73aa 2052 if (group_event->attr.exclusive)
d859e29f
PM
2053 cpuctx->exclusive = 0;
2054}
2055
45a0e07a 2056#define DETACH_GROUP 0x01UL
0017960f 2057
0793a61d 2058/*
cdd6c482 2059 * Cross CPU call to remove a performance event
0793a61d 2060 *
cdd6c482 2061 * We disable the event on the hardware level first. After that we
0793a61d
TG
2062 * remove it from the context list.
2063 */
fae3fde6
PZ
2064static void
2065__perf_remove_from_context(struct perf_event *event,
2066 struct perf_cpu_context *cpuctx,
2067 struct perf_event_context *ctx,
2068 void *info)
0793a61d 2069{
45a0e07a 2070 unsigned long flags = (unsigned long)info;
0793a61d 2071
3c5c8711
PZ
2072 if (ctx->is_active & EVENT_TIME) {
2073 update_context_time(ctx);
2074 update_cgrp_time_from_cpuctx(cpuctx);
2075 }
2076
cdd6c482 2077 event_sched_out(event, cpuctx, ctx);
45a0e07a 2078 if (flags & DETACH_GROUP)
46ce0fe9 2079 perf_group_detach(event);
cdd6c482 2080 list_del_event(event, ctx);
39a43640
PZ
2081
2082 if (!ctx->nr_events && ctx->is_active) {
64ce3126 2083 ctx->is_active = 0;
39a43640
PZ
2084 if (ctx->task) {
2085 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2086 cpuctx->task_ctx = NULL;
2087 }
64ce3126 2088 }
0793a61d
TG
2089}
2090
0793a61d 2091/*
cdd6c482 2092 * Remove the event from a task's (or a CPU's) list of events.
0793a61d 2093 *
cdd6c482
IM
2094 * If event->ctx is a cloned context, callers must make sure that
2095 * every task struct that event->ctx->task could possibly point to
c93f7669
PM
2096 * remains valid. This is OK when called from perf_release since
2097 * that only calls us on the top-level context, which can't be a clone.
cdd6c482 2098 * When called from perf_event_exit_task, it's OK because the
c93f7669 2099 * context has been detached from its task.
0793a61d 2100 */
45a0e07a 2101static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
0793a61d 2102{
a76a82a3
PZ
2103 struct perf_event_context *ctx = event->ctx;
2104
2105 lockdep_assert_held(&ctx->mutex);
0793a61d 2106
45a0e07a 2107 event_function_call(event, __perf_remove_from_context, (void *)flags);
a76a82a3
PZ
2108
2109 /*
2110 * The above event_function_call() can NO-OP when it hits
2111 * TASK_TOMBSTONE. In that case we must already have been detached
2112 * from the context (by perf_event_exit_event()) but the grouping
2113 * might still be in-tact.
2114 */
2115 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
2116 if ((flags & DETACH_GROUP) &&
2117 (event->attach_state & PERF_ATTACH_GROUP)) {
2118 /*
2119 * Since in that case we cannot possibly be scheduled, simply
2120 * detach now.
2121 */
2122 raw_spin_lock_irq(&ctx->lock);
2123 perf_group_detach(event);
2124 raw_spin_unlock_irq(&ctx->lock);
2125 }
0793a61d
TG
2126}
2127
d859e29f 2128/*
cdd6c482 2129 * Cross CPU call to disable a performance event
d859e29f 2130 */
fae3fde6
PZ
2131static void __perf_event_disable(struct perf_event *event,
2132 struct perf_cpu_context *cpuctx,
2133 struct perf_event_context *ctx,
2134 void *info)
7b648018 2135{
fae3fde6
PZ
2136 if (event->state < PERF_EVENT_STATE_INACTIVE)
2137 return;
7b648018 2138
3c5c8711
PZ
2139 if (ctx->is_active & EVENT_TIME) {
2140 update_context_time(ctx);
2141 update_cgrp_time_from_event(event);
2142 }
2143
fae3fde6
PZ
2144 if (event == event->group_leader)
2145 group_sched_out(event, cpuctx, ctx);
2146 else
2147 event_sched_out(event, cpuctx, ctx);
0d3d73aa
PZ
2148
2149 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
7b648018
PZ
2150}
2151
d859e29f 2152/*
788faab7 2153 * Disable an event.
c93f7669 2154 *
cdd6c482
IM
2155 * If event->ctx is a cloned context, callers must make sure that
2156 * every task struct that event->ctx->task could possibly point to
c93f7669 2157 * remains valid. This condition is satisifed when called through
cdd6c482
IM
2158 * perf_event_for_each_child or perf_event_for_each because they
2159 * hold the top-level event's child_mutex, so any descendant that
8ba289b8
PZ
2160 * goes to exit will block in perf_event_exit_event().
2161 *
cdd6c482 2162 * When called from perf_pending_event it's OK because event->ctx
c93f7669 2163 * is the current context on this CPU and preemption is disabled,
cdd6c482 2164 * hence we can't get into perf_event_task_sched_out for this context.
d859e29f 2165 */
f63a8daa 2166static void _perf_event_disable(struct perf_event *event)
d859e29f 2167{
cdd6c482 2168 struct perf_event_context *ctx = event->ctx;
d859e29f 2169
e625cce1 2170 raw_spin_lock_irq(&ctx->lock);
7b648018 2171 if (event->state <= PERF_EVENT_STATE_OFF) {
e625cce1 2172 raw_spin_unlock_irq(&ctx->lock);
7b648018 2173 return;
53cfbf59 2174 }
e625cce1 2175 raw_spin_unlock_irq(&ctx->lock);
7b648018 2176
fae3fde6
PZ
2177 event_function_call(event, __perf_event_disable, NULL);
2178}
2179
2180void perf_event_disable_local(struct perf_event *event)
2181{
2182 event_function_local(event, __perf_event_disable, NULL);
d859e29f 2183}
f63a8daa
PZ
2184
2185/*
2186 * Strictly speaking kernel users cannot create groups and therefore this
2187 * interface does not need the perf_event_ctx_lock() magic.
2188 */
2189void perf_event_disable(struct perf_event *event)
2190{
2191 struct perf_event_context *ctx;
2192
2193 ctx = perf_event_ctx_lock(event);
2194 _perf_event_disable(event);
2195 perf_event_ctx_unlock(event, ctx);
2196}
dcfce4a0 2197EXPORT_SYMBOL_GPL(perf_event_disable);
d859e29f 2198
5aab90ce
JO
2199void perf_event_disable_inatomic(struct perf_event *event)
2200{
2201 event->pending_disable = 1;
2202 irq_work_queue(&event->pending);
2203}
2204
e5d1367f 2205static void perf_set_shadow_time(struct perf_event *event,
0d3d73aa 2206 struct perf_event_context *ctx)
e5d1367f
SE
2207{
2208 /*
2209 * use the correct time source for the time snapshot
2210 *
2211 * We could get by without this by leveraging the
2212 * fact that to get to this function, the caller
2213 * has most likely already called update_context_time()
2214 * and update_cgrp_time_xx() and thus both timestamp
2215 * are identical (or very close). Given that tstamp is,
2216 * already adjusted for cgroup, we could say that:
2217 * tstamp - ctx->timestamp
2218 * is equivalent to
2219 * tstamp - cgrp->timestamp.
2220 *
2221 * Then, in perf_output_read(), the calculation would
2222 * work with no changes because:
2223 * - event is guaranteed scheduled in
2224 * - no scheduled out in between
2225 * - thus the timestamp would be the same
2226 *
2227 * But this is a bit hairy.
2228 *
2229 * So instead, we have an explicit cgroup call to remain
2230 * within the time time source all along. We believe it
2231 * is cleaner and simpler to understand.
2232 */
2233 if (is_cgroup_event(event))
0d3d73aa 2234 perf_cgroup_set_shadow_time(event, event->tstamp);
e5d1367f 2235 else
0d3d73aa 2236 event->shadow_ctx_time = event->tstamp - ctx->timestamp;
e5d1367f
SE
2237}
2238
4fe757dd
PZ
2239#define MAX_INTERRUPTS (~0ULL)
2240
2241static void perf_log_throttle(struct perf_event *event, int enable);
ec0d7729 2242static void perf_log_itrace_start(struct perf_event *event);
4fe757dd 2243
235c7fc7 2244static int
9ffcfa6f 2245event_sched_in(struct perf_event *event,
235c7fc7 2246 struct perf_cpu_context *cpuctx,
6e37738a 2247 struct perf_event_context *ctx)
235c7fc7 2248{
44377277 2249 int ret = 0;
4158755d 2250
63342411
PZ
2251 lockdep_assert_held(&ctx->lock);
2252
cdd6c482 2253 if (event->state <= PERF_EVENT_STATE_OFF)
235c7fc7
IM
2254 return 0;
2255
95ff4ca2
AS
2256 WRITE_ONCE(event->oncpu, smp_processor_id());
2257 /*
0c1cbc18
PZ
2258 * Order event::oncpu write to happen before the ACTIVE state is
2259 * visible. This allows perf_event_{stop,read}() to observe the correct
2260 * ->oncpu if it sees ACTIVE.
95ff4ca2
AS
2261 */
2262 smp_wmb();
0d3d73aa 2263 perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
4fe757dd
PZ
2264
2265 /*
2266 * Unthrottle events, since we scheduled we might have missed several
2267 * ticks already, also for a heavily scheduling task there is little
2268 * guarantee it'll get a tick in a timely manner.
2269 */
2270 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2271 perf_log_throttle(event, 1);
2272 event->hw.interrupts = 0;
2273 }
2274
44377277
AS
2275 perf_pmu_disable(event->pmu);
2276
0d3d73aa 2277 perf_set_shadow_time(event, ctx);
72f669c0 2278
ec0d7729
AS
2279 perf_log_itrace_start(event);
2280
a4eaf7f1 2281 if (event->pmu->add(event, PERF_EF_START)) {
0d3d73aa 2282 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
cdd6c482 2283 event->oncpu = -1;
44377277
AS
2284 ret = -EAGAIN;
2285 goto out;
235c7fc7
IM
2286 }
2287
cdd6c482 2288 if (!is_software_event(event))
3b6f9e5c 2289 cpuctx->active_oncpu++;
2fde4f94
MR
2290 if (!ctx->nr_active++)
2291 perf_event_ctx_activate(ctx);
0f5a2601
PZ
2292 if (event->attr.freq && event->attr.sample_freq)
2293 ctx->nr_freq++;
235c7fc7 2294
cdd6c482 2295 if (event->attr.exclusive)
3b6f9e5c
PM
2296 cpuctx->exclusive = 1;
2297
44377277
AS
2298out:
2299 perf_pmu_enable(event->pmu);
2300
2301 return ret;
235c7fc7
IM
2302}
2303
6751b71e 2304static int
cdd6c482 2305group_sched_in(struct perf_event *group_event,
6751b71e 2306 struct perf_cpu_context *cpuctx,
6e37738a 2307 struct perf_event_context *ctx)
6751b71e 2308{
6bde9b6c 2309 struct perf_event *event, *partial_group = NULL;
4a234593 2310 struct pmu *pmu = ctx->pmu;
6751b71e 2311
cdd6c482 2312 if (group_event->state == PERF_EVENT_STATE_OFF)
6751b71e
PM
2313 return 0;
2314
fbbe0701 2315 pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
6bde9b6c 2316
9ffcfa6f 2317 if (event_sched_in(group_event, cpuctx, ctx)) {
ad5133b7 2318 pmu->cancel_txn(pmu);
272325c4 2319 perf_mux_hrtimer_restart(cpuctx);
6751b71e 2320 return -EAGAIN;
90151c35 2321 }
6751b71e
PM
2322
2323 /*
2324 * Schedule in siblings as one group (if any):
2325 */
edb39592 2326 for_each_sibling_event(event, group_event) {
9ffcfa6f 2327 if (event_sched_in(event, cpuctx, ctx)) {
cdd6c482 2328 partial_group = event;
6751b71e
PM
2329 goto group_error;
2330 }
2331 }
2332
9ffcfa6f 2333 if (!pmu->commit_txn(pmu))
6e85158c 2334 return 0;
9ffcfa6f 2335
6751b71e
PM
2336group_error:
2337 /*
2338 * Groups can be scheduled in as one unit only, so undo any
2339 * partial group before returning:
0d3d73aa 2340 * The events up to the failed event are scheduled out normally.
6751b71e 2341 */
edb39592 2342 for_each_sibling_event(event, group_event) {
cdd6c482 2343 if (event == partial_group)
0d3d73aa 2344 break;
d7842da4 2345
0d3d73aa 2346 event_sched_out(event, cpuctx, ctx);
6751b71e 2347 }
9ffcfa6f 2348 event_sched_out(group_event, cpuctx, ctx);
6751b71e 2349
ad5133b7 2350 pmu->cancel_txn(pmu);
90151c35 2351
272325c4 2352 perf_mux_hrtimer_restart(cpuctx);
9e630205 2353
6751b71e
PM
2354 return -EAGAIN;
2355}
2356
3b6f9e5c 2357/*
cdd6c482 2358 * Work out whether we can put this event group on the CPU now.
3b6f9e5c 2359 */
cdd6c482 2360static int group_can_go_on(struct perf_event *event,
3b6f9e5c
PM
2361 struct perf_cpu_context *cpuctx,
2362 int can_add_hw)
2363{
2364 /*
cdd6c482 2365 * Groups consisting entirely of software events can always go on.
3b6f9e5c 2366 */
4ff6a8de 2367 if (event->group_caps & PERF_EV_CAP_SOFTWARE)
3b6f9e5c
PM
2368 return 1;
2369 /*
2370 * If an exclusive group is already on, no other hardware
cdd6c482 2371 * events can go on.
3b6f9e5c
PM
2372 */
2373 if (cpuctx->exclusive)
2374 return 0;
2375 /*
2376 * If this group is exclusive and there are already
cdd6c482 2377 * events on the CPU, it can't go on.
3b6f9e5c 2378 */
cdd6c482 2379 if (event->attr.exclusive && cpuctx->active_oncpu)
3b6f9e5c
PM
2380 return 0;
2381 /*
2382 * Otherwise, try to add it if all previous groups were able
2383 * to go on.
2384 */
2385 return can_add_hw;
2386}
2387
cdd6c482
IM
2388static void add_event_to_ctx(struct perf_event *event,
2389 struct perf_event_context *ctx)
53cfbf59 2390{
cdd6c482 2391 list_add_event(event, ctx);
8a49542c 2392 perf_group_attach(event);
53cfbf59
PM
2393}
2394
bd2afa49
PZ
2395static void ctx_sched_out(struct perf_event_context *ctx,
2396 struct perf_cpu_context *cpuctx,
2397 enum event_type_t event_type);
2c29ef0f
PZ
2398static void
2399ctx_sched_in(struct perf_event_context *ctx,
2400 struct perf_cpu_context *cpuctx,
2401 enum event_type_t event_type,
2402 struct task_struct *task);
fe4b04fa 2403
bd2afa49 2404static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
487f05e1
AS
2405 struct perf_event_context *ctx,
2406 enum event_type_t event_type)
bd2afa49
PZ
2407{
2408 if (!cpuctx->task_ctx)
2409 return;
2410
2411 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2412 return;
2413
487f05e1 2414 ctx_sched_out(ctx, cpuctx, event_type);
bd2afa49
PZ
2415}
2416
dce5855b
PZ
2417static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2418 struct perf_event_context *ctx,
2419 struct task_struct *task)
2420{
2421 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2422 if (ctx)
2423 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2424 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2425 if (ctx)
2426 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2427}
2428
487f05e1
AS
2429/*
2430 * We want to maintain the following priority of scheduling:
2431 * - CPU pinned (EVENT_CPU | EVENT_PINNED)
2432 * - task pinned (EVENT_PINNED)
2433 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2434 * - task flexible (EVENT_FLEXIBLE).
2435 *
2436 * In order to avoid unscheduling and scheduling back in everything every
2437 * time an event is added, only do it for the groups of equal priority and
2438 * below.
2439 *
2440 * This can be called after a batch operation on task events, in which case
2441 * event_type is a bit mask of the types of events involved. For CPU events,
2442 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2443 */
3e349507 2444static void ctx_resched(struct perf_cpu_context *cpuctx,
487f05e1
AS
2445 struct perf_event_context *task_ctx,
2446 enum event_type_t event_type)
0017960f 2447{
bd903afe 2448 enum event_type_t ctx_event_type;
487f05e1
AS
2449 bool cpu_event = !!(event_type & EVENT_CPU);
2450
2451 /*
2452 * If pinned groups are involved, flexible groups also need to be
2453 * scheduled out.
2454 */
2455 if (event_type & EVENT_PINNED)
2456 event_type |= EVENT_FLEXIBLE;
2457
bd903afe
SL
2458 ctx_event_type = event_type & EVENT_ALL;
2459
3e349507
PZ
2460 perf_pmu_disable(cpuctx->ctx.pmu);
2461 if (task_ctx)
487f05e1
AS
2462 task_ctx_sched_out(cpuctx, task_ctx, event_type);
2463
2464 /*
2465 * Decide which cpu ctx groups to schedule out based on the types
2466 * of events that caused rescheduling:
2467 * - EVENT_CPU: schedule out corresponding groups;
2468 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2469 * - otherwise, do nothing more.
2470 */
2471 if (cpu_event)
2472 cpu_ctx_sched_out(cpuctx, ctx_event_type);
2473 else if (ctx_event_type & EVENT_PINNED)
2474 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2475
3e349507
PZ
2476 perf_event_sched_in(cpuctx, task_ctx, current);
2477 perf_pmu_enable(cpuctx->ctx.pmu);
0017960f
PZ
2478}
2479
0793a61d 2480/*
cdd6c482 2481 * Cross CPU call to install and enable a performance event
682076ae 2482 *
a096309b
PZ
2483 * Very similar to remote_function() + event_function() but cannot assume that
2484 * things like ctx->is_active and cpuctx->task_ctx are set.
0793a61d 2485 */
fe4b04fa 2486static int __perf_install_in_context(void *info)
0793a61d 2487{
a096309b
PZ
2488 struct perf_event *event = info;
2489 struct perf_event_context *ctx = event->ctx;
108b02cf 2490 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2c29ef0f 2491 struct perf_event_context *task_ctx = cpuctx->task_ctx;
63cae12b 2492 bool reprogram = true;
a096309b 2493 int ret = 0;
0793a61d 2494
63b6da39 2495 raw_spin_lock(&cpuctx->ctx.lock);
39a43640 2496 if (ctx->task) {
b58f6b0d
PZ
2497 raw_spin_lock(&ctx->lock);
2498 task_ctx = ctx;
a096309b 2499
63cae12b 2500 reprogram = (ctx->task == current);
b58f6b0d 2501
39a43640 2502 /*
63cae12b
PZ
2503 * If the task is running, it must be running on this CPU,
2504 * otherwise we cannot reprogram things.
2505 *
2506 * If its not running, we don't care, ctx->lock will
2507 * serialize against it becoming runnable.
39a43640 2508 */
63cae12b
PZ
2509 if (task_curr(ctx->task) && !reprogram) {
2510 ret = -ESRCH;
2511 goto unlock;
2512 }
a096309b 2513
63cae12b 2514 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
63b6da39
PZ
2515 } else if (task_ctx) {
2516 raw_spin_lock(&task_ctx->lock);
2c29ef0f 2517 }
b58f6b0d 2518
33801b94 2519#ifdef CONFIG_CGROUP_PERF
2520 if (is_cgroup_event(event)) {
2521 /*
2522 * If the current cgroup doesn't match the event's
2523 * cgroup, we should not try to schedule it.
2524 */
2525 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2526 reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2527 event->cgrp->css.cgroup);
2528 }
2529#endif
2530
63cae12b 2531 if (reprogram) {
a096309b
PZ
2532 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2533 add_event_to_ctx(event, ctx);
487f05e1 2534 ctx_resched(cpuctx, task_ctx, get_event_type(event));
a096309b
PZ
2535 } else {
2536 add_event_to_ctx(event, ctx);
2537 }
2538
63b6da39 2539unlock:
2c29ef0f 2540 perf_ctx_unlock(cpuctx, task_ctx);
fe4b04fa 2541
a096309b 2542 return ret;
0793a61d
TG
2543}
2544
2545/*
a096309b
PZ
2546 * Attach a performance event to a context.
2547 *
2548 * Very similar to event_function_call, see comment there.
0793a61d
TG
2549 */
2550static void
cdd6c482
IM
2551perf_install_in_context(struct perf_event_context *ctx,
2552 struct perf_event *event,
0793a61d
TG
2553 int cpu)
2554{
a096309b 2555 struct task_struct *task = READ_ONCE(ctx->task);
39a43640 2556
fe4b04fa
PZ
2557 lockdep_assert_held(&ctx->mutex);
2558
0cda4c02
YZ
2559 if (event->cpu != -1)
2560 event->cpu = cpu;
c3f00c70 2561
0b8f1e2e
PZ
2562 /*
2563 * Ensures that if we can observe event->ctx, both the event and ctx
2564 * will be 'complete'. See perf_iterate_sb_cpu().
2565 */
2566 smp_store_release(&event->ctx, ctx);
2567
a096309b
PZ
2568 if (!task) {
2569 cpu_function_call(cpu, __perf_install_in_context, event);
2570 return;
2571 }
2572
2573 /*
2574 * Should not happen, we validate the ctx is still alive before calling.
2575 */
2576 if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2577 return;
2578
39a43640
PZ
2579 /*
2580 * Installing events is tricky because we cannot rely on ctx->is_active
2581 * to be set in case this is the nr_events 0 -> 1 transition.
63cae12b
PZ
2582 *
2583 * Instead we use task_curr(), which tells us if the task is running.
2584 * However, since we use task_curr() outside of rq::lock, we can race
2585 * against the actual state. This means the result can be wrong.
2586 *
2587 * If we get a false positive, we retry, this is harmless.
2588 *
2589 * If we get a false negative, things are complicated. If we are after
2590 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2591 * value must be correct. If we're before, it doesn't matter since
2592 * perf_event_context_sched_in() will program the counter.
2593 *
2594 * However, this hinges on the remote context switch having observed
2595 * our task->perf_event_ctxp[] store, such that it will in fact take
2596 * ctx::lock in perf_event_context_sched_in().
2597 *
2598 * We do this by task_function_call(), if the IPI fails to hit the task
2599 * we know any future context switch of task must see the
2600 * perf_event_ctpx[] store.
39a43640 2601 */
63cae12b 2602
63b6da39 2603 /*
63cae12b
PZ
2604 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2605 * task_cpu() load, such that if the IPI then does not find the task
2606 * running, a future context switch of that task must observe the
2607 * store.
63b6da39 2608 */
63cae12b
PZ
2609 smp_mb();
2610again:
2611 if (!task_function_call(task, __perf_install_in_context, event))
a096309b
PZ
2612 return;
2613
2614 raw_spin_lock_irq(&ctx->lock);
2615 task = ctx->task;
84c4e620 2616 if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
a096309b
PZ
2617 /*
2618 * Cannot happen because we already checked above (which also
2619 * cannot happen), and we hold ctx->mutex, which serializes us
2620 * against perf_event_exit_task_context().
2621 */
63b6da39
PZ
2622 raw_spin_unlock_irq(&ctx->lock);
2623 return;
2624 }
39a43640 2625 /*
63cae12b
PZ
2626 * If the task is not running, ctx->lock will avoid it becoming so,
2627 * thus we can safely install the event.
39a43640 2628 */
63cae12b
PZ
2629 if (task_curr(task)) {
2630 raw_spin_unlock_irq(&ctx->lock);
2631 goto again;
2632 }
2633 add_event_to_ctx(event, ctx);
2634 raw_spin_unlock_irq(&ctx->lock);
0793a61d
TG
2635}
2636
d859e29f 2637/*
cdd6c482 2638 * Cross CPU call to enable a performance event
d859e29f 2639 */
fae3fde6
PZ
2640static void __perf_event_enable(struct perf_event *event,
2641 struct perf_cpu_context *cpuctx,
2642 struct perf_event_context *ctx,
2643 void *info)
04289bb9 2644{
cdd6c482 2645 struct perf_event *leader = event->group_leader;
fae3fde6 2646 struct perf_event_context *task_ctx;
04289bb9 2647
6e801e01
PZ
2648 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2649 event->state <= PERF_EVENT_STATE_ERROR)
fae3fde6 2650 return;
3cbed429 2651
bd2afa49
PZ
2652 if (ctx->is_active)
2653 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2654
0d3d73aa 2655 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
04289bb9 2656
fae3fde6
PZ
2657 if (!ctx->is_active)
2658 return;
2659
e5d1367f 2660 if (!event_filter_match(event)) {
bd2afa49 2661 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
fae3fde6 2662 return;
e5d1367f 2663 }
f4c4176f 2664
04289bb9 2665 /*
cdd6c482 2666 * If the event is in a group and isn't the group leader,
d859e29f 2667 * then don't put it on unless the group is on.
04289bb9 2668 */
bd2afa49
PZ
2669 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2670 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
fae3fde6 2671 return;
bd2afa49 2672 }
fe4b04fa 2673
fae3fde6
PZ
2674 task_ctx = cpuctx->task_ctx;
2675 if (ctx->task)
2676 WARN_ON_ONCE(task_ctx != ctx);
d859e29f 2677
487f05e1 2678 ctx_resched(cpuctx, task_ctx, get_event_type(event));
7b648018
PZ
2679}
2680
d859e29f 2681/*
788faab7 2682 * Enable an event.
c93f7669 2683 *
cdd6c482
IM
2684 * If event->ctx is a cloned context, callers must make sure that
2685 * every task struct that event->ctx->task could possibly point to
c93f7669 2686 * remains valid. This condition is satisfied when called through
cdd6c482
IM
2687 * perf_event_for_each_child or perf_event_for_each as described
2688 * for perf_event_disable.
d859e29f 2689 */
f63a8daa 2690static void _perf_event_enable(struct perf_event *event)
d859e29f 2691{
cdd6c482 2692 struct perf_event_context *ctx = event->ctx;
d859e29f 2693
7b648018 2694 raw_spin_lock_irq(&ctx->lock);
6e801e01
PZ
2695 if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2696 event->state < PERF_EVENT_STATE_ERROR) {
7b648018 2697 raw_spin_unlock_irq(&ctx->lock);
d859e29f
PM
2698 return;
2699 }
2700
d859e29f 2701 /*
cdd6c482 2702 * If the event is in error state, clear that first.
7b648018
PZ
2703 *
2704 * That way, if we see the event in error state below, we know that it
2705 * has gone back into error state, as distinct from the task having
2706 * been scheduled away before the cross-call arrived.
d859e29f 2707 */
cdd6c482
IM
2708 if (event->state == PERF_EVENT_STATE_ERROR)
2709 event->state = PERF_EVENT_STATE_OFF;
e625cce1 2710 raw_spin_unlock_irq(&ctx->lock);
fe4b04fa 2711
fae3fde6 2712 event_function_call(event, __perf_event_enable, NULL);
d859e29f 2713}
f63a8daa
PZ
2714
2715/*
2716 * See perf_event_disable();
2717 */
2718void perf_event_enable(struct perf_event *event)
2719{
2720 struct perf_event_context *ctx;
2721
2722 ctx = perf_event_ctx_lock(event);
2723 _perf_event_enable(event);
2724 perf_event_ctx_unlock(event, ctx);
2725}
dcfce4a0 2726EXPORT_SYMBOL_GPL(perf_event_enable);
d859e29f 2727
375637bc
AS
2728struct stop_event_data {
2729 struct perf_event *event;
2730 unsigned int restart;
2731};
2732
95ff4ca2
AS
2733static int __perf_event_stop(void *info)
2734{
375637bc
AS
2735 struct stop_event_data *sd = info;
2736 struct perf_event *event = sd->event;
95ff4ca2 2737
375637bc 2738 /* if it's already INACTIVE, do nothing */
95ff4ca2
AS
2739 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2740 return 0;
2741
2742 /* matches smp_wmb() in event_sched_in() */
2743 smp_rmb();
2744
2745 /*
2746 * There is a window with interrupts enabled before we get here,
2747 * so we need to check again lest we try to stop another CPU's event.
2748 */
2749 if (READ_ONCE(event->oncpu) != smp_processor_id())
2750 return -EAGAIN;
2751
2752 event->pmu->stop(event, PERF_EF_UPDATE);
2753
375637bc
AS
2754 /*
2755 * May race with the actual stop (through perf_pmu_output_stop()),
2756 * but it is only used for events with AUX ring buffer, and such
2757 * events will refuse to restart because of rb::aux_mmap_count==0,
2758 * see comments in perf_aux_output_begin().
2759 *
788faab7 2760 * Since this is happening on an event-local CPU, no trace is lost
375637bc
AS
2761 * while restarting.
2762 */
2763 if (sd->restart)
c9bbdd48 2764 event->pmu->start(event, 0);
375637bc 2765
95ff4ca2
AS
2766 return 0;
2767}
2768
767ae086 2769static int perf_event_stop(struct perf_event *event, int restart)
375637bc
AS
2770{
2771 struct stop_event_data sd = {
2772 .event = event,
767ae086 2773 .restart = restart,
375637bc
AS
2774 };
2775 int ret = 0;
2776
2777 do {
2778 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2779 return 0;
2780
2781 /* matches smp_wmb() in event_sched_in() */
2782 smp_rmb();
2783
2784 /*
2785 * We only want to restart ACTIVE events, so if the event goes
2786 * inactive here (event->oncpu==-1), there's nothing more to do;
2787 * fall through with ret==-ENXIO.
2788 */
2789 ret = cpu_function_call(READ_ONCE(event->oncpu),
2790 __perf_event_stop, &sd);
2791 } while (ret == -EAGAIN);
2792
2793 return ret;
2794}
2795
2796/*
2797 * In order to contain the amount of racy and tricky in the address filter
2798 * configuration management, it is a two part process:
2799 *
2800 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2801 * we update the addresses of corresponding vmas in
c60f83b8 2802 * event::addr_filter_ranges array and bump the event::addr_filters_gen;
375637bc
AS
2803 * (p2) when an event is scheduled in (pmu::add), it calls
2804 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2805 * if the generation has changed since the previous call.
2806 *
2807 * If (p1) happens while the event is active, we restart it to force (p2).
2808 *
2809 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2810 * pre-existing mappings, called once when new filters arrive via SET_FILTER
2811 * ioctl;
2812 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2813 * registered mapping, called for every new mmap(), with mm::mmap_sem down
2814 * for reading;
2815 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2816 * of exec.
2817 */
2818void perf_event_addr_filters_sync(struct perf_event *event)
2819{
2820 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2821
2822 if (!has_addr_filter(event))
2823 return;
2824
2825 raw_spin_lock(&ifh->lock);
2826 if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2827 event->pmu->addr_filters_sync(event);
2828 event->hw.addr_filters_gen = event->addr_filters_gen;
2829 }
2830 raw_spin_unlock(&ifh->lock);
2831}
2832EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2833
f63a8daa 2834static int _perf_event_refresh(struct perf_event *event, int refresh)
79f14641 2835{
2023b359 2836 /*
cdd6c482 2837 * not supported on inherited events
2023b359 2838 */
2e939d1d 2839 if (event->attr.inherit || !is_sampling_event(event))
2023b359
PZ
2840 return -EINVAL;
2841
cdd6c482 2842 atomic_add(refresh, &event->event_limit);
f63a8daa 2843 _perf_event_enable(event);
2023b359
PZ
2844
2845 return 0;
79f14641 2846}
f63a8daa
PZ
2847
2848/*
2849 * See perf_event_disable()
2850 */
2851int perf_event_refresh(struct perf_event *event, int refresh)
2852{
2853 struct perf_event_context *ctx;
2854 int ret;
2855
2856 ctx = perf_event_ctx_lock(event);
2857 ret = _perf_event_refresh(event, refresh);
2858 perf_event_ctx_unlock(event, ctx);
2859
2860 return ret;
2861}
26ca5c11 2862EXPORT_SYMBOL_GPL(perf_event_refresh);
79f14641 2863
32ff77e8
MC
2864static int perf_event_modify_breakpoint(struct perf_event *bp,
2865 struct perf_event_attr *attr)
2866{
2867 int err;
2868
2869 _perf_event_disable(bp);
2870
2871 err = modify_user_hw_breakpoint_check(bp, attr, true);
32ff77e8 2872
bf06278c 2873 if (!bp->attr.disabled)
32ff77e8 2874 _perf_event_enable(bp);
bf06278c
JO
2875
2876 return err;
32ff77e8
MC
2877}
2878
2879static int perf_event_modify_attr(struct perf_event *event,
2880 struct perf_event_attr *attr)
2881{
2882 if (event->attr.type != attr->type)
2883 return -EINVAL;
2884
2885 switch (event->attr.type) {
2886 case PERF_TYPE_BREAKPOINT:
2887 return perf_event_modify_breakpoint(event, attr);
2888 default:
2889 /* Place holder for future additions. */
2890 return -EOPNOTSUPP;
2891 }
2892}
2893
5b0311e1
FW
2894static void ctx_sched_out(struct perf_event_context *ctx,
2895 struct perf_cpu_context *cpuctx,
2896 enum event_type_t event_type)
235c7fc7 2897{
6668128a 2898 struct perf_event *event, *tmp;
db24d33e 2899 int is_active = ctx->is_active;
235c7fc7 2900
c994d613 2901 lockdep_assert_held(&ctx->lock);
235c7fc7 2902
39a43640
PZ
2903 if (likely(!ctx->nr_events)) {
2904 /*
2905 * See __perf_remove_from_context().
2906 */
2907 WARN_ON_ONCE(ctx->is_active);
2908 if (ctx->task)
2909 WARN_ON_ONCE(cpuctx->task_ctx);
facc4307 2910 return;
39a43640
PZ
2911 }
2912
db24d33e 2913 ctx->is_active &= ~event_type;
3cbaa590
PZ
2914 if (!(ctx->is_active & EVENT_ALL))
2915 ctx->is_active = 0;
2916
63e30d3e
PZ
2917 if (ctx->task) {
2918 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2919 if (!ctx->is_active)
2920 cpuctx->task_ctx = NULL;
2921 }
facc4307 2922
8fdc6539
PZ
2923 /*
2924 * Always update time if it was set; not only when it changes.
2925 * Otherwise we can 'forget' to update time for any but the last
2926 * context we sched out. For example:
2927 *
2928 * ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2929 * ctx_sched_out(.event_type = EVENT_PINNED)
2930 *
2931 * would only update time for the pinned events.
2932 */
3cbaa590
PZ
2933 if (is_active & EVENT_TIME) {
2934 /* update (and stop) ctx time */
2935 update_context_time(ctx);
2936 update_cgrp_time_from_cpuctx(cpuctx);
2937 }
2938
8fdc6539
PZ
2939 is_active ^= ctx->is_active; /* changed bits */
2940
3cbaa590 2941 if (!ctx->nr_active || !(is_active & EVENT_ALL))
facc4307 2942 return;
5b0311e1 2943
075e0b00 2944 perf_pmu_disable(ctx->pmu);
3cbaa590 2945 if (is_active & EVENT_PINNED) {
6668128a 2946 list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list)
889ff015 2947 group_sched_out(event, cpuctx, ctx);
9ed6060d 2948 }
889ff015 2949
3cbaa590 2950 if (is_active & EVENT_FLEXIBLE) {
6668128a 2951 list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list)
8c9ed8e1 2952 group_sched_out(event, cpuctx, ctx);
9ed6060d 2953 }
1b9a644f 2954 perf_pmu_enable(ctx->pmu);
235c7fc7
IM
2955}
2956
564c2b21 2957/*
5a3126d4
PZ
2958 * Test whether two contexts are equivalent, i.e. whether they have both been
2959 * cloned from the same version of the same context.
2960 *
2961 * Equivalence is measured using a generation number in the context that is
2962 * incremented on each modification to it; see unclone_ctx(), list_add_event()
2963 * and list_del_event().
564c2b21 2964 */
cdd6c482
IM
2965static int context_equiv(struct perf_event_context *ctx1,
2966 struct perf_event_context *ctx2)
564c2b21 2967{
211de6eb
PZ
2968 lockdep_assert_held(&ctx1->lock);
2969 lockdep_assert_held(&ctx2->lock);
2970
5a3126d4
PZ
2971 /* Pinning disables the swap optimization */
2972 if (ctx1->pin_count || ctx2->pin_count)
2973 return 0;
2974
2975 /* If ctx1 is the parent of ctx2 */
2976 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2977 return 1;
2978
2979 /* If ctx2 is the parent of ctx1 */
2980 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2981 return 1;
2982
2983 /*
2984 * If ctx1 and ctx2 have the same parent; we flatten the parent
2985 * hierarchy, see perf_event_init_context().
2986 */
2987 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2988 ctx1->parent_gen == ctx2->parent_gen)
2989 return 1;
2990
2991 /* Unmatched */
2992 return 0;
564c2b21
PM
2993}
2994
cdd6c482
IM
2995static void __perf_event_sync_stat(struct perf_event *event,
2996 struct perf_event *next_event)
bfbd3381
PZ
2997{
2998 u64 value;
2999
cdd6c482 3000 if (!event->attr.inherit_stat)
bfbd3381
PZ
3001 return;
3002
3003 /*
cdd6c482 3004 * Update the event value, we cannot use perf_event_read()
bfbd3381
PZ
3005 * because we're in the middle of a context switch and have IRQs
3006 * disabled, which upsets smp_call_function_single(), however
cdd6c482 3007 * we know the event must be on the current CPU, therefore we
bfbd3381
PZ
3008 * don't need to use it.
3009 */
0d3d73aa 3010 if (event->state == PERF_EVENT_STATE_ACTIVE)
3dbebf15 3011 event->pmu->read(event);
bfbd3381 3012
0d3d73aa 3013 perf_event_update_time(event);
bfbd3381
PZ
3014
3015 /*
cdd6c482 3016 * In order to keep per-task stats reliable we need to flip the event
bfbd3381
PZ
3017 * values when we flip the contexts.
3018 */
e7850595
PZ
3019 value = local64_read(&next_event->count);
3020 value = local64_xchg(&event->count, value);
3021 local64_set(&next_event->count, value);
bfbd3381 3022
cdd6c482
IM
3023 swap(event->total_time_enabled, next_event->total_time_enabled);
3024 swap(event->total_time_running, next_event->total_time_running);
19d2e755 3025
bfbd3381 3026 /*
19d2e755 3027 * Since we swizzled the values, update the user visible data too.
bfbd3381 3028 */
cdd6c482
IM
3029 perf_event_update_userpage(event);
3030 perf_event_update_userpage(next_event);
bfbd3381
PZ
3031}
3032
cdd6c482
IM
3033static void perf_event_sync_stat(struct perf_event_context *ctx,
3034 struct perf_event_context *next_ctx)
bfbd3381 3035{
cdd6c482 3036 struct perf_event *event, *next_event;
bfbd3381
PZ
3037
3038 if (!ctx->nr_stat)
3039 return;
3040
02ffdbc8
PZ
3041 update_context_time(ctx);
3042
cdd6c482
IM
3043 event = list_first_entry(&ctx->event_list,
3044 struct perf_event, event_entry);
bfbd3381 3045
cdd6c482
IM
3046 next_event = list_first_entry(&next_ctx->event_list,
3047 struct perf_event, event_entry);
bfbd3381 3048
cdd6c482
IM
3049 while (&event->event_entry != &ctx->event_list &&
3050 &next_event->event_entry != &next_ctx->event_list) {
bfbd3381 3051
cdd6c482 3052 __perf_event_sync_stat(event, next_event);
bfbd3381 3053
cdd6c482
IM
3054 event = list_next_entry(event, event_entry);
3055 next_event = list_next_entry(next_event, event_entry);
bfbd3381
PZ
3056 }
3057}
3058
fe4b04fa
PZ
3059static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
3060 struct task_struct *next)
0793a61d 3061{
8dc85d54 3062 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
cdd6c482 3063 struct perf_event_context *next_ctx;
5a3126d4 3064 struct perf_event_context *parent, *next_parent;
108b02cf 3065 struct perf_cpu_context *cpuctx;
c93f7669 3066 int do_switch = 1;
0793a61d 3067
108b02cf
PZ
3068 if (likely(!ctx))
3069 return;
10989fb2 3070
108b02cf
PZ
3071 cpuctx = __get_cpu_context(ctx);
3072 if (!cpuctx->task_ctx)
0793a61d
TG
3073 return;
3074
c93f7669 3075 rcu_read_lock();
8dc85d54 3076 next_ctx = next->perf_event_ctxp[ctxn];
5a3126d4
PZ
3077 if (!next_ctx)
3078 goto unlock;
3079
3080 parent = rcu_dereference(ctx->parent_ctx);
3081 next_parent = rcu_dereference(next_ctx->parent_ctx);
3082
3083 /* If neither context have a parent context; they cannot be clones. */
802c8a61 3084 if (!parent && !next_parent)
5a3126d4
PZ
3085 goto unlock;
3086
3087 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
c93f7669
PM
3088 /*
3089 * Looks like the two contexts are clones, so we might be
3090 * able to optimize the context switch. We lock both
3091 * contexts and check that they are clones under the
3092 * lock (including re-checking that neither has been
3093 * uncloned in the meantime). It doesn't matter which
3094 * order we take the locks because no other cpu could
3095 * be trying to lock both of these tasks.
3096 */
e625cce1
TG
3097 raw_spin_lock(&ctx->lock);
3098 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
c93f7669 3099 if (context_equiv(ctx, next_ctx)) {
63b6da39
PZ
3100 WRITE_ONCE(ctx->task, next);
3101 WRITE_ONCE(next_ctx->task, task);
5a158c3c
YZ
3102
3103 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
3104
63b6da39
PZ
3105 /*
3106 * RCU_INIT_POINTER here is safe because we've not
3107 * modified the ctx and the above modification of
3108 * ctx->task and ctx->task_ctx_data are immaterial
3109 * since those values are always verified under
3110 * ctx->lock which we're now holding.
3111 */
3112 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
3113 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
3114
c93f7669 3115 do_switch = 0;
bfbd3381 3116
cdd6c482 3117 perf_event_sync_stat(ctx, next_ctx);
c93f7669 3118 }
e625cce1
TG
3119 raw_spin_unlock(&next_ctx->lock);
3120 raw_spin_unlock(&ctx->lock);
564c2b21 3121 }
5a3126d4 3122unlock:
c93f7669 3123 rcu_read_unlock();
564c2b21 3124
c93f7669 3125 if (do_switch) {
facc4307 3126 raw_spin_lock(&ctx->lock);
487f05e1 3127 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
facc4307 3128 raw_spin_unlock(&ctx->lock);
c93f7669 3129 }
0793a61d
TG
3130}
3131
e48c1788
PZ
3132static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3133
ba532500
YZ
3134void perf_sched_cb_dec(struct pmu *pmu)
3135{
e48c1788
PZ
3136 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3137
ba532500 3138 this_cpu_dec(perf_sched_cb_usages);
e48c1788
PZ
3139
3140 if (!--cpuctx->sched_cb_usage)
3141 list_del(&cpuctx->sched_cb_entry);
ba532500
YZ
3142}
3143
e48c1788 3144
ba532500
YZ
3145void perf_sched_cb_inc(struct pmu *pmu)
3146{
e48c1788
PZ
3147 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3148
3149 if (!cpuctx->sched_cb_usage++)
3150 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3151
ba532500
YZ
3152 this_cpu_inc(perf_sched_cb_usages);
3153}
3154
3155/*
3156 * This function provides the context switch callback to the lower code
3157 * layer. It is invoked ONLY when the context switch callback is enabled.
09e61b4f
PZ
3158 *
3159 * This callback is relevant even to per-cpu events; for example multi event
3160 * PEBS requires this to provide PID/TID information. This requires we flush
3161 * all queued PEBS records before we context switch to a new task.
ba532500
YZ
3162 */
3163static void perf_pmu_sched_task(struct task_struct *prev,
3164 struct task_struct *next,
3165 bool sched_in)
3166{
3167 struct perf_cpu_context *cpuctx;
3168 struct pmu *pmu;
ba532500
YZ
3169
3170 if (prev == next)
3171 return;
3172
e48c1788 3173 list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
1fd7e416 3174 pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
ba532500 3175
e48c1788
PZ
3176 if (WARN_ON_ONCE(!pmu->sched_task))
3177 continue;
ba532500 3178
e48c1788
PZ
3179 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3180 perf_pmu_disable(pmu);
ba532500 3181
e48c1788 3182 pmu->sched_task(cpuctx->task_ctx, sched_in);
ba532500 3183
e48c1788
PZ
3184 perf_pmu_enable(pmu);
3185 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
ba532500 3186 }
ba532500
YZ
3187}
3188
45ac1403
AH
3189static void perf_event_switch(struct task_struct *task,
3190 struct task_struct *next_prev, bool sched_in);
3191
8dc85d54
PZ
3192#define for_each_task_context_nr(ctxn) \
3193 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3194
3195/*
3196 * Called from scheduler to remove the events of the current task,
3197 * with interrupts disabled.
3198 *
3199 * We stop each event and update the event value in event->count.
3200 *
3201 * This does not protect us against NMI, but disable()
3202 * sets the disabled bit in the control field of event _before_
3203 * accessing the event control register. If a NMI hits, then it will
3204 * not restart the event.
3205 */
ab0cce56
JO
3206void __perf_event_task_sched_out(struct task_struct *task,
3207 struct task_struct *next)
8dc85d54
PZ
3208{
3209 int ctxn;
3210
ba532500
YZ
3211 if (__this_cpu_read(perf_sched_cb_usages))
3212 perf_pmu_sched_task(task, next, false);
3213
45ac1403
AH
3214 if (atomic_read(&nr_switch_events))
3215 perf_event_switch(task, next, false);
3216
8dc85d54
PZ
3217 for_each_task_context_nr(ctxn)
3218 perf_event_context_sched_out(task, ctxn, next);
e5d1367f
SE
3219
3220 /*
3221 * if cgroup events exist on this CPU, then we need
3222 * to check if we have to switch out PMU state.
3223 * cgroup event are system-wide mode only
3224 */
4a32fea9 3225 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
a8d757ef 3226 perf_cgroup_sched_out(task, next);
8dc85d54
PZ
3227}
3228
5b0311e1
FW
3229/*
3230 * Called with IRQs disabled
3231 */
3232static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3233 enum event_type_t event_type)
3234{
3235 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
04289bb9
IM
3236}
3237
1cac7b1a
PZ
3238static int visit_groups_merge(struct perf_event_groups *groups, int cpu,
3239 int (*func)(struct perf_event *, void *), void *data)
0793a61d 3240{
1cac7b1a
PZ
3241 struct perf_event **evt, *evt1, *evt2;
3242 int ret;
8e1a2031 3243
1cac7b1a
PZ
3244 evt1 = perf_event_groups_first(groups, -1);
3245 evt2 = perf_event_groups_first(groups, cpu);
3246
3247 while (evt1 || evt2) {
3248 if (evt1 && evt2) {
3249 if (evt1->group_index < evt2->group_index)
3250 evt = &evt1;
3251 else
3252 evt = &evt2;
3253 } else if (evt1) {
3254 evt = &evt1;
3255 } else {
3256 evt = &evt2;
8e1a2031 3257 }
1cac7b1a
PZ
3258
3259 ret = func(*evt, data);
3260 if (ret)
3261 return ret;
3262
3263 *evt = perf_event_groups_next(*evt);
8e1a2031 3264 }
0793a61d 3265
1cac7b1a
PZ
3266 return 0;
3267}
3268
3269struct sched_in_data {
3270 struct perf_event_context *ctx;
3271 struct perf_cpu_context *cpuctx;
3272 int can_add_hw;
3273};
3274
3275static int pinned_sched_in(struct perf_event *event, void *data)
3276{
3277 struct sched_in_data *sid = data;
3278
3279 if (event->state <= PERF_EVENT_STATE_OFF)
3280 return 0;
3281
3282 if (!event_filter_match(event))
3283 return 0;
3284
6668128a
PZ
3285 if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) {
3286 if (!group_sched_in(event, sid->cpuctx, sid->ctx))
3287 list_add_tail(&event->active_list, &sid->ctx->pinned_active);
3288 }
1cac7b1a
PZ
3289
3290 /*
3291 * If this pinned group hasn't been scheduled,
3292 * put it in error state.
3293 */
3294 if (event->state == PERF_EVENT_STATE_INACTIVE)
3295 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3296
3297 return 0;
3298}
3299
3300static int flexible_sched_in(struct perf_event *event, void *data)
3301{
3302 struct sched_in_data *sid = data;
3303
3304 if (event->state <= PERF_EVENT_STATE_OFF)
3305 return 0;
3306
3307 if (!event_filter_match(event))
3308 return 0;
3309
3310 if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) {
6668128a
PZ
3311 if (!group_sched_in(event, sid->cpuctx, sid->ctx))
3312 list_add_tail(&event->active_list, &sid->ctx->flexible_active);
3313 else
1cac7b1a 3314 sid->can_add_hw = 0;
3b6f9e5c 3315 }
1cac7b1a
PZ
3316
3317 return 0;
5b0311e1
FW
3318}
3319
3320static void
1cac7b1a
PZ
3321ctx_pinned_sched_in(struct perf_event_context *ctx,
3322 struct perf_cpu_context *cpuctx)
5b0311e1 3323{
1cac7b1a
PZ
3324 struct sched_in_data sid = {
3325 .ctx = ctx,
3326 .cpuctx = cpuctx,
3327 .can_add_hw = 1,
3328 };
3b6f9e5c 3329
1cac7b1a
PZ
3330 visit_groups_merge(&ctx->pinned_groups,
3331 smp_processor_id(),
3332 pinned_sched_in, &sid);
3333}
8e1a2031 3334
1cac7b1a
PZ
3335static void
3336ctx_flexible_sched_in(struct perf_event_context *ctx,
3337 struct perf_cpu_context *cpuctx)
3338{
3339 struct sched_in_data sid = {
3340 .ctx = ctx,
3341 .cpuctx = cpuctx,
3342 .can_add_hw = 1,
3343 };
0793a61d 3344
1cac7b1a
PZ
3345 visit_groups_merge(&ctx->flexible_groups,
3346 smp_processor_id(),
3347 flexible_sched_in, &sid);
5b0311e1
FW
3348}
3349
3350static void
3351ctx_sched_in(struct perf_event_context *ctx,
3352 struct perf_cpu_context *cpuctx,
e5d1367f
SE
3353 enum event_type_t event_type,
3354 struct task_struct *task)
5b0311e1 3355{
db24d33e 3356 int is_active = ctx->is_active;
c994d613
PZ
3357 u64 now;
3358
3359 lockdep_assert_held(&ctx->lock);
e5d1367f 3360
5b0311e1 3361 if (likely(!ctx->nr_events))
facc4307 3362 return;
5b0311e1 3363
3cbaa590 3364 ctx->is_active |= (event_type | EVENT_TIME);
63e30d3e
PZ
3365 if (ctx->task) {
3366 if (!is_active)
3367 cpuctx->task_ctx = ctx;
3368 else
3369 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3370 }
3371
3cbaa590
PZ
3372 is_active ^= ctx->is_active; /* changed bits */
3373
3374 if (is_active & EVENT_TIME) {
3375 /* start ctx time */
3376 now = perf_clock();
3377 ctx->timestamp = now;
3378 perf_cgroup_set_timestamp(task, ctx);
3379 }
3380
5b0311e1
FW
3381 /*
3382 * First go through the list and put on any pinned groups
3383 * in order to give them the best chance of going on.
3384 */
3cbaa590 3385 if (is_active & EVENT_PINNED)
6e37738a 3386 ctx_pinned_sched_in(ctx, cpuctx);
5b0311e1
FW
3387
3388 /* Then walk through the lower prio flexible groups */
3cbaa590 3389 if (is_active & EVENT_FLEXIBLE)
6e37738a 3390 ctx_flexible_sched_in(ctx, cpuctx);
235c7fc7
IM
3391}
3392
329c0e01 3393static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
3394 enum event_type_t event_type,
3395 struct task_struct *task)
329c0e01
FW
3396{
3397 struct perf_event_context *ctx = &cpuctx->ctx;
3398
e5d1367f 3399 ctx_sched_in(ctx, cpuctx, event_type, task);
329c0e01
FW
3400}
3401
e5d1367f
SE
3402static void perf_event_context_sched_in(struct perf_event_context *ctx,
3403 struct task_struct *task)
235c7fc7 3404{
108b02cf 3405 struct perf_cpu_context *cpuctx;
235c7fc7 3406
108b02cf 3407 cpuctx = __get_cpu_context(ctx);
329c0e01
FW
3408 if (cpuctx->task_ctx == ctx)
3409 return;
3410
facc4307 3411 perf_ctx_lock(cpuctx, ctx);
fdccc3fb 3412 /*
3413 * We must check ctx->nr_events while holding ctx->lock, such
3414 * that we serialize against perf_install_in_context().
3415 */
3416 if (!ctx->nr_events)
3417 goto unlock;
3418
1b9a644f 3419 perf_pmu_disable(ctx->pmu);
329c0e01
FW
3420 /*
3421 * We want to keep the following priority order:
3422 * cpu pinned (that don't need to move), task pinned,
3423 * cpu flexible, task flexible.
fe45bafb
AS
3424 *
3425 * However, if task's ctx is not carrying any pinned
3426 * events, no need to flip the cpuctx's events around.
329c0e01 3427 */
8e1a2031 3428 if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
fe45bafb 3429 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
63e30d3e 3430 perf_event_sched_in(cpuctx, ctx, task);
facc4307 3431 perf_pmu_enable(ctx->pmu);
fdccc3fb 3432
3433unlock:
facc4307 3434 perf_ctx_unlock(cpuctx, ctx);
235c7fc7
IM
3435}
3436
8dc85d54
PZ
3437/*
3438 * Called from scheduler to add the events of the current task
3439 * with interrupts disabled.
3440 *
3441 * We restore the event value and then enable it.
3442 *
3443 * This does not protect us against NMI, but enable()
3444 * sets the enabled bit in the control field of event _before_
3445 * accessing the event control register. If a NMI hits, then it will
3446 * keep the event running.
3447 */
ab0cce56
JO
3448void __perf_event_task_sched_in(struct task_struct *prev,
3449 struct task_struct *task)
8dc85d54
PZ
3450{
3451 struct perf_event_context *ctx;
3452 int ctxn;
3453
7e41d177
PZ
3454 /*
3455 * If cgroup events exist on this CPU, then we need to check if we have
3456 * to switch in PMU state; cgroup event are system-wide mode only.
3457 *
3458 * Since cgroup events are CPU events, we must schedule these in before
3459 * we schedule in the task events.
3460 */
3461 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3462 perf_cgroup_sched_in(prev, task);
3463
8dc85d54
PZ
3464 for_each_task_context_nr(ctxn) {
3465 ctx = task->perf_event_ctxp[ctxn];
3466 if (likely(!ctx))
3467 continue;
3468
e5d1367f 3469 perf_event_context_sched_in(ctx, task);
8dc85d54 3470 }
d010b332 3471
45ac1403
AH
3472 if (atomic_read(&nr_switch_events))
3473 perf_event_switch(task, prev, true);
3474
ba532500
YZ
3475 if (__this_cpu_read(perf_sched_cb_usages))
3476 perf_pmu_sched_task(prev, task, true);
235c7fc7
IM
3477}
3478
abd50713
PZ
3479static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3480{
3481 u64 frequency = event->attr.sample_freq;
3482 u64 sec = NSEC_PER_SEC;
3483 u64 divisor, dividend;
3484
3485 int count_fls, nsec_fls, frequency_fls, sec_fls;
3486
3487 count_fls = fls64(count);
3488 nsec_fls = fls64(nsec);
3489 frequency_fls = fls64(frequency);
3490 sec_fls = 30;
3491
3492 /*
3493 * We got @count in @nsec, with a target of sample_freq HZ
3494 * the target period becomes:
3495 *
3496 * @count * 10^9
3497 * period = -------------------
3498 * @nsec * sample_freq
3499 *
3500 */
3501
3502 /*
3503 * Reduce accuracy by one bit such that @a and @b converge
3504 * to a similar magnitude.
3505 */
fe4b04fa 3506#define REDUCE_FLS(a, b) \
abd50713
PZ
3507do { \
3508 if (a##_fls > b##_fls) { \
3509 a >>= 1; \
3510 a##_fls--; \
3511 } else { \
3512 b >>= 1; \
3513 b##_fls--; \
3514 } \
3515} while (0)
3516
3517 /*
3518 * Reduce accuracy until either term fits in a u64, then proceed with
3519 * the other, so that finally we can do a u64/u64 division.
3520 */
3521 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3522 REDUCE_FLS(nsec, frequency);
3523 REDUCE_FLS(sec, count);
3524 }
3525
3526 if (count_fls + sec_fls > 64) {
3527 divisor = nsec * frequency;
3528
3529 while (count_fls + sec_fls > 64) {
3530 REDUCE_FLS(count, sec);
3531 divisor >>= 1;
3532 }
3533
3534 dividend = count * sec;
3535 } else {
3536 dividend = count * sec;
3537
3538 while (nsec_fls + frequency_fls > 64) {
3539 REDUCE_FLS(nsec, frequency);
3540 dividend >>= 1;
3541 }
3542
3543 divisor = nsec * frequency;
3544 }
3545
f6ab91ad
PZ
3546 if (!divisor)
3547 return dividend;
3548
abd50713
PZ
3549 return div64_u64(dividend, divisor);
3550}
3551
e050e3f0
SE
3552static DEFINE_PER_CPU(int, perf_throttled_count);
3553static DEFINE_PER_CPU(u64, perf_throttled_seq);
3554
f39d47ff 3555static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
bd2b5b12 3556{
cdd6c482 3557 struct hw_perf_event *hwc = &event->hw;
f6ab91ad 3558 s64 period, sample_period;
bd2b5b12
PZ
3559 s64 delta;
3560
abd50713 3561 period = perf_calculate_period(event, nsec, count);
bd2b5b12
PZ
3562
3563 delta = (s64)(period - hwc->sample_period);
3564 delta = (delta + 7) / 8; /* low pass filter */
3565
3566 sample_period = hwc->sample_period + delta;
3567
3568 if (!sample_period)
3569 sample_period = 1;
3570
bd2b5b12 3571 hwc->sample_period = sample_period;
abd50713 3572
e7850595 3573 if (local64_read(&hwc->period_left) > 8*sample_period) {
f39d47ff
SE
3574 if (disable)
3575 event->pmu->stop(event, PERF_EF_UPDATE);
3576
e7850595 3577 local64_set(&hwc->period_left, 0);
f39d47ff
SE
3578
3579 if (disable)
3580 event->pmu->start(event, PERF_EF_RELOAD);
abd50713 3581 }
bd2b5b12
PZ
3582}
3583
e050e3f0
SE
3584/*
3585 * combine freq adjustment with unthrottling to avoid two passes over the
3586 * events. At the same time, make sure, having freq events does not change
3587 * the rate of unthrottling as that would introduce bias.
3588 */
3589static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3590 int needs_unthr)
60db5e09 3591{
cdd6c482
IM
3592 struct perf_event *event;
3593 struct hw_perf_event *hwc;
e050e3f0 3594 u64 now, period = TICK_NSEC;
abd50713 3595 s64 delta;
60db5e09 3596
e050e3f0
SE
3597 /*
3598 * only need to iterate over all events iff:
3599 * - context have events in frequency mode (needs freq adjust)
3600 * - there are events to unthrottle on this cpu
3601 */
3602 if (!(ctx->nr_freq || needs_unthr))
0f5a2601
PZ
3603 return;
3604
e050e3f0 3605 raw_spin_lock(&ctx->lock);
f39d47ff 3606 perf_pmu_disable(ctx->pmu);
e050e3f0 3607
03541f8b 3608 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
cdd6c482 3609 if (event->state != PERF_EVENT_STATE_ACTIVE)
60db5e09
PZ
3610 continue;
3611
5632ab12 3612 if (!event_filter_match(event))
5d27c23d
PZ
3613 continue;
3614
44377277
AS
3615 perf_pmu_disable(event->pmu);
3616
cdd6c482 3617 hwc = &event->hw;
6a24ed6c 3618
ae23bff1 3619 if (hwc->interrupts == MAX_INTERRUPTS) {
e050e3f0 3620 hwc->interrupts = 0;
cdd6c482 3621 perf_log_throttle(event, 1);
a4eaf7f1 3622 event->pmu->start(event, 0);
a78ac325
PZ
3623 }
3624
cdd6c482 3625 if (!event->attr.freq || !event->attr.sample_freq)
44377277 3626 goto next;
60db5e09 3627
e050e3f0
SE
3628 /*
3629 * stop the event and update event->count
3630 */
3631 event->pmu->stop(event, PERF_EF_UPDATE);
3632
e7850595 3633 now = local64_read(&event->count);
abd50713
PZ
3634 delta = now - hwc->freq_count_stamp;
3635 hwc->freq_count_stamp = now;
60db5e09 3636
e050e3f0
SE
3637 /*
3638 * restart the event
3639 * reload only if value has changed
f39d47ff
SE
3640 * we have stopped the event so tell that
3641 * to perf_adjust_period() to avoid stopping it
3642 * twice.
e050e3f0 3643 */
abd50713 3644 if (delta > 0)
f39d47ff 3645 perf_adjust_period(event, period, delta, false);
e050e3f0
SE
3646
3647 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
44377277
AS
3648 next:
3649 perf_pmu_enable(event->pmu);
60db5e09 3650 }
e050e3f0 3651
f39d47ff 3652 perf_pmu_enable(ctx->pmu);
e050e3f0 3653 raw_spin_unlock(&ctx->lock);
60db5e09
PZ
3654}
3655
235c7fc7 3656/*
8703a7cf 3657 * Move @event to the tail of the @ctx's elegible events.
235c7fc7 3658 */
8703a7cf 3659static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
0793a61d 3660{
dddd3379
TG
3661 /*
3662 * Rotate the first entry last of non-pinned groups. Rotation might be
3663 * disabled by the inheritance code.
3664 */
8703a7cf
PZ
3665 if (ctx->rotate_disable)
3666 return;
8e1a2031 3667
8703a7cf
PZ
3668 perf_event_groups_delete(&ctx->flexible_groups, event);
3669 perf_event_groups_insert(&ctx->flexible_groups, event);
235c7fc7
IM
3670}
3671
8d5bce0c
PZ
3672static inline struct perf_event *
3673ctx_first_active(struct perf_event_context *ctx)
235c7fc7 3674{
8d5bce0c
PZ
3675 return list_first_entry_or_null(&ctx->flexible_active,
3676 struct perf_event, active_list);
3677}
3678
3679static bool perf_rotate_context(struct perf_cpu_context *cpuctx)
3680{
3681 struct perf_event *cpu_event = NULL, *task_event = NULL;
3682 bool cpu_rotate = false, task_rotate = false;
8dc85d54 3683 struct perf_event_context *ctx = NULL;
8d5bce0c
PZ
3684
3685 /*
3686 * Since we run this from IRQ context, nobody can install new
3687 * events, thus the event count values are stable.
3688 */
7fc23a53 3689
b5ab4cd5 3690 if (cpuctx->ctx.nr_events) {
b5ab4cd5 3691 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
8d5bce0c 3692 cpu_rotate = true;
b5ab4cd5 3693 }
235c7fc7 3694
8dc85d54 3695 ctx = cpuctx->task_ctx;
b5ab4cd5 3696 if (ctx && ctx->nr_events) {
b5ab4cd5 3697 if (ctx->nr_events != ctx->nr_active)
8d5bce0c 3698 task_rotate = true;
b5ab4cd5 3699 }
9717e6cd 3700
8d5bce0c
PZ
3701 if (!(cpu_rotate || task_rotate))
3702 return false;
0f5a2601 3703
facc4307 3704 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
1b9a644f 3705 perf_pmu_disable(cpuctx->ctx.pmu);
60db5e09 3706
8d5bce0c
PZ
3707 if (task_rotate)
3708 task_event = ctx_first_active(ctx);
3709 if (cpu_rotate)
3710 cpu_event = ctx_first_active(&cpuctx->ctx);
8703a7cf 3711
8d5bce0c
PZ
3712 /*
3713 * As per the order given at ctx_resched() first 'pop' task flexible
3714 * and then, if needed CPU flexible.
3715 */
3716 if (task_event || (ctx && cpu_event))
e050e3f0 3717 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
8d5bce0c
PZ
3718 if (cpu_event)
3719 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
0793a61d 3720
8d5bce0c
PZ
3721 if (task_event)
3722 rotate_ctx(ctx, task_event);
3723 if (cpu_event)
3724 rotate_ctx(&cpuctx->ctx, cpu_event);
235c7fc7 3725
e050e3f0 3726 perf_event_sched_in(cpuctx, ctx, current);
235c7fc7 3727
0f5a2601
PZ
3728 perf_pmu_enable(cpuctx->ctx.pmu);
3729 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
9e630205 3730
8d5bce0c 3731 return true;
e9d2b064
PZ
3732}
3733
3734void perf_event_task_tick(void)
3735{
2fde4f94
MR
3736 struct list_head *head = this_cpu_ptr(&active_ctx_list);
3737 struct perf_event_context *ctx, *tmp;
e050e3f0 3738 int throttled;
b5ab4cd5 3739
16444645 3740 lockdep_assert_irqs_disabled();
e9d2b064 3741
e050e3f0
SE
3742 __this_cpu_inc(perf_throttled_seq);
3743 throttled = __this_cpu_xchg(perf_throttled_count, 0);
555e0c1e 3744 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
e050e3f0 3745
2fde4f94 3746 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
e050e3f0 3747 perf_adjust_freq_unthr_context(ctx, throttled);
0793a61d
TG
3748}
3749
889ff015
FW
3750static int event_enable_on_exec(struct perf_event *event,
3751 struct perf_event_context *ctx)
3752{
3753 if (!event->attr.enable_on_exec)
3754 return 0;
3755
3756 event->attr.enable_on_exec = 0;
3757 if (event->state >= PERF_EVENT_STATE_INACTIVE)
3758 return 0;
3759
0d3d73aa 3760 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
889ff015
FW
3761
3762 return 1;
3763}
3764
57e7986e 3765/*
cdd6c482 3766 * Enable all of a task's events that have been marked enable-on-exec.
57e7986e
PM
3767 * This expects task == current.
3768 */
c1274499 3769static void perf_event_enable_on_exec(int ctxn)
57e7986e 3770{
c1274499 3771 struct perf_event_context *ctx, *clone_ctx = NULL;
487f05e1 3772 enum event_type_t event_type = 0;
3e349507 3773 struct perf_cpu_context *cpuctx;
cdd6c482 3774 struct perf_event *event;
57e7986e
PM
3775 unsigned long flags;
3776 int enabled = 0;
3777
3778 local_irq_save(flags);
c1274499 3779 ctx = current->perf_event_ctxp[ctxn];
cdd6c482 3780 if (!ctx || !ctx->nr_events)
57e7986e
PM
3781 goto out;
3782
3e349507
PZ
3783 cpuctx = __get_cpu_context(ctx);
3784 perf_ctx_lock(cpuctx, ctx);
7fce2509 3785 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
487f05e1 3786 list_for_each_entry(event, &ctx->event_list, event_entry) {
3e349507 3787 enabled |= event_enable_on_exec(event, ctx);
487f05e1
AS
3788 event_type |= get_event_type(event);
3789 }
57e7986e
PM
3790
3791 /*
3e349507 3792 * Unclone and reschedule this context if we enabled any event.
57e7986e 3793 */
3e349507 3794 if (enabled) {
211de6eb 3795 clone_ctx = unclone_ctx(ctx);
487f05e1 3796 ctx_resched(cpuctx, ctx, event_type);
7bbba0eb
PZ
3797 } else {
3798 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
3e349507
PZ
3799 }
3800 perf_ctx_unlock(cpuctx, ctx);
57e7986e 3801
9ed6060d 3802out:
57e7986e 3803 local_irq_restore(flags);
211de6eb
PZ
3804
3805 if (clone_ctx)
3806 put_ctx(clone_ctx);
57e7986e
PM
3807}
3808
0492d4c5
PZ
3809struct perf_read_data {
3810 struct perf_event *event;
3811 bool group;
7d88962e 3812 int ret;
0492d4c5
PZ
3813};
3814
451d24d1 3815static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
d6a2f903 3816{
d6a2f903
DCC
3817 u16 local_pkg, event_pkg;
3818
3819 if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
451d24d1
PZ
3820 int local_cpu = smp_processor_id();
3821
3822 event_pkg = topology_physical_package_id(event_cpu);
3823 local_pkg = topology_physical_package_id(local_cpu);
d6a2f903
DCC
3824
3825 if (event_pkg == local_pkg)
3826 return local_cpu;
3827 }
3828
3829 return event_cpu;
3830}
3831
0793a61d 3832/*
cdd6c482 3833 * Cross CPU call to read the hardware event
0793a61d 3834 */
cdd6c482 3835static void __perf_event_read(void *info)
0793a61d 3836{
0492d4c5
PZ
3837 struct perf_read_data *data = info;
3838 struct perf_event *sub, *event = data->event;
cdd6c482 3839 struct perf_event_context *ctx = event->ctx;
108b02cf 3840 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
4a00c16e 3841 struct pmu *pmu = event->pmu;
621a01ea 3842
e1ac3614
PM
3843 /*
3844 * If this is a task context, we need to check whether it is
3845 * the current task context of this cpu. If not it has been
3846 * scheduled out before the smp call arrived. In that case
cdd6c482
IM
3847 * event->count would have been updated to a recent sample
3848 * when the event was scheduled out.
e1ac3614
PM
3849 */
3850 if (ctx->task && cpuctx->task_ctx != ctx)
3851 return;
3852
e625cce1 3853 raw_spin_lock(&ctx->lock);
0c1cbc18 3854 if (ctx->is_active & EVENT_TIME) {
542e72fc 3855 update_context_time(ctx);
e5d1367f
SE
3856 update_cgrp_time_from_event(event);
3857 }
0492d4c5 3858
0d3d73aa
PZ
3859 perf_event_update_time(event);
3860 if (data->group)
3861 perf_event_update_sibling_time(event);
0c1cbc18 3862
4a00c16e
SB
3863 if (event->state != PERF_EVENT_STATE_ACTIVE)
3864 goto unlock;
0492d4c5 3865
4a00c16e
SB
3866 if (!data->group) {
3867 pmu->read(event);
3868 data->ret = 0;
0492d4c5 3869 goto unlock;
4a00c16e
SB
3870 }
3871
3872 pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3873
3874 pmu->read(event);
0492d4c5 3875
edb39592 3876 for_each_sibling_event(sub, event) {
4a00c16e
SB
3877 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3878 /*
3879 * Use sibling's PMU rather than @event's since
3880 * sibling could be on different (eg: software) PMU.
3881 */
0492d4c5 3882 sub->pmu->read(sub);
4a00c16e 3883 }
0492d4c5 3884 }
4a00c16e
SB
3885
3886 data->ret = pmu->commit_txn(pmu);
0492d4c5
PZ
3887
3888unlock:
e625cce1 3889 raw_spin_unlock(&ctx->lock);
0793a61d
TG
3890}
3891
b5e58793
PZ
3892static inline u64 perf_event_count(struct perf_event *event)
3893{
c39a0e2c 3894 return local64_read(&event->count) + atomic64_read(&event->child_count);
b5e58793
PZ
3895}
3896
ffe8690c
KX
3897/*
3898 * NMI-safe method to read a local event, that is an event that
3899 * is:
3900 * - either for the current task, or for this CPU
3901 * - does not have inherit set, for inherited task events
3902 * will not be local and we cannot read them atomically
3903 * - must not have a pmu::count method
3904 */
7d9285e8
YS
3905int perf_event_read_local(struct perf_event *event, u64 *value,
3906 u64 *enabled, u64 *running)
ffe8690c
KX
3907{
3908 unsigned long flags;
f91840a3 3909 int ret = 0;
ffe8690c
KX
3910
3911 /*
3912 * Disabling interrupts avoids all counter scheduling (context
3913 * switches, timer based rotation and IPIs).
3914 */
3915 local_irq_save(flags);
3916
ffe8690c
KX
3917 /*
3918 * It must not be an event with inherit set, we cannot read
3919 * all child counters from atomic context.
3920 */
f91840a3
AS
3921 if (event->attr.inherit) {
3922 ret = -EOPNOTSUPP;
3923 goto out;
3924 }
ffe8690c 3925
f91840a3
AS
3926 /* If this is a per-task event, it must be for current */
3927 if ((event->attach_state & PERF_ATTACH_TASK) &&
3928 event->hw.target != current) {
3929 ret = -EINVAL;
3930 goto out;
3931 }
3932
3933 /* If this is a per-CPU event, it must be for this CPU */
3934 if (!(event->attach_state & PERF_ATTACH_TASK) &&
3935 event->cpu != smp_processor_id()) {
3936 ret = -EINVAL;
3937 goto out;
3938 }
ffe8690c 3939
befb1b3c
RC
3940 /* If this is a pinned event it must be running on this CPU */
3941 if (event->attr.pinned && event->oncpu != smp_processor_id()) {
3942 ret = -EBUSY;
3943 goto out;
3944 }
3945
ffe8690c
KX
3946 /*
3947 * If the event is currently on this CPU, its either a per-task event,
3948 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3949 * oncpu == -1).
3950 */
3951 if (event->oncpu == smp_processor_id())
3952 event->pmu->read(event);
3953
f91840a3 3954 *value = local64_read(&event->count);
0d3d73aa
PZ
3955 if (enabled || running) {
3956 u64 now = event->shadow_ctx_time + perf_clock();
3957 u64 __enabled, __running;
3958
3959 __perf_update_times(event, now, &__enabled, &__running);
3960 if (enabled)
3961 *enabled = __enabled;
3962 if (running)
3963 *running = __running;
3964 }
f91840a3 3965out:
ffe8690c
KX
3966 local_irq_restore(flags);
3967
f91840a3 3968 return ret;
ffe8690c
KX
3969}
3970
7d88962e 3971static int perf_event_read(struct perf_event *event, bool group)
0793a61d 3972{
0c1cbc18 3973 enum perf_event_state state = READ_ONCE(event->state);
451d24d1 3974 int event_cpu, ret = 0;
7d88962e 3975
0793a61d 3976 /*
cdd6c482
IM
3977 * If event is enabled and currently active on a CPU, update the
3978 * value in the event structure:
0793a61d 3979 */
0c1cbc18
PZ
3980again:
3981 if (state == PERF_EVENT_STATE_ACTIVE) {
3982 struct perf_read_data data;
3983
3984 /*
3985 * Orders the ->state and ->oncpu loads such that if we see
3986 * ACTIVE we must also see the right ->oncpu.
3987 *
3988 * Matches the smp_wmb() from event_sched_in().
3989 */
3990 smp_rmb();
d6a2f903 3991
451d24d1
PZ
3992 event_cpu = READ_ONCE(event->oncpu);
3993 if ((unsigned)event_cpu >= nr_cpu_ids)
3994 return 0;
3995
0c1cbc18
PZ
3996 data = (struct perf_read_data){
3997 .event = event,
3998 .group = group,
3999 .ret = 0,
4000 };
4001
451d24d1
PZ
4002 preempt_disable();
4003 event_cpu = __perf_event_read_cpu(event, event_cpu);
d6a2f903 4004
58763148
PZ
4005 /*
4006 * Purposely ignore the smp_call_function_single() return
4007 * value.
4008 *
451d24d1 4009 * If event_cpu isn't a valid CPU it means the event got
58763148
PZ
4010 * scheduled out and that will have updated the event count.
4011 *
4012 * Therefore, either way, we'll have an up-to-date event count
4013 * after this.
4014 */
451d24d1
PZ
4015 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4016 preempt_enable();
58763148 4017 ret = data.ret;
0c1cbc18
PZ
4018
4019 } else if (state == PERF_EVENT_STATE_INACTIVE) {
2b8988c9
PZ
4020 struct perf_event_context *ctx = event->ctx;
4021 unsigned long flags;
4022
e625cce1 4023 raw_spin_lock_irqsave(&ctx->lock, flags);
0c1cbc18
PZ
4024 state = event->state;
4025 if (state != PERF_EVENT_STATE_INACTIVE) {
4026 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4027 goto again;
4028 }
4029
c530ccd9 4030 /*
0c1cbc18
PZ
4031 * May read while context is not active (e.g., thread is
4032 * blocked), in that case we cannot update context time
c530ccd9 4033 */
0c1cbc18 4034 if (ctx->is_active & EVENT_TIME) {
c530ccd9 4035 update_context_time(ctx);
e5d1367f
SE
4036 update_cgrp_time_from_event(event);
4037 }
0c1cbc18 4038
0d3d73aa 4039 perf_event_update_time(event);
0492d4c5 4040 if (group)
0d3d73aa 4041 perf_event_update_sibling_time(event);
e625cce1 4042 raw_spin_unlock_irqrestore(&ctx->lock, flags);
0793a61d 4043 }
7d88962e
SB
4044
4045 return ret;
0793a61d
TG
4046}
4047
a63eaf34 4048/*
cdd6c482 4049 * Initialize the perf_event context in a task_struct:
a63eaf34 4050 */
eb184479 4051static void __perf_event_init_context(struct perf_event_context *ctx)
a63eaf34 4052{
e625cce1 4053 raw_spin_lock_init(&ctx->lock);
a63eaf34 4054 mutex_init(&ctx->mutex);
2fde4f94 4055 INIT_LIST_HEAD(&ctx->active_ctx_list);
8e1a2031
AB
4056 perf_event_groups_init(&ctx->pinned_groups);
4057 perf_event_groups_init(&ctx->flexible_groups);
a63eaf34 4058 INIT_LIST_HEAD(&ctx->event_list);
6668128a
PZ
4059 INIT_LIST_HEAD(&ctx->pinned_active);
4060 INIT_LIST_HEAD(&ctx->flexible_active);
8c94abbb 4061 refcount_set(&ctx->refcount, 1);
eb184479
PZ
4062}
4063
4064static struct perf_event_context *
4065alloc_perf_context(struct pmu *pmu, struct task_struct *task)
4066{
4067 struct perf_event_context *ctx;
4068
4069 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4070 if (!ctx)
4071 return NULL;
4072
4073 __perf_event_init_context(ctx);
4074 if (task) {
4075 ctx->task = task;
4076 get_task_struct(task);
0793a61d 4077 }
eb184479
PZ
4078 ctx->pmu = pmu;
4079
4080 return ctx;
a63eaf34
PM
4081}
4082
2ebd4ffb
MH
4083static struct task_struct *
4084find_lively_task_by_vpid(pid_t vpid)
4085{
4086 struct task_struct *task;
0793a61d
TG
4087
4088 rcu_read_lock();
2ebd4ffb 4089 if (!vpid)
0793a61d
TG
4090 task = current;
4091 else
2ebd4ffb 4092 task = find_task_by_vpid(vpid);
0793a61d
TG
4093 if (task)
4094 get_task_struct(task);
4095 rcu_read_unlock();
4096
4097 if (!task)
4098 return ERR_PTR(-ESRCH);
4099
2ebd4ffb 4100 return task;
2ebd4ffb
MH
4101}
4102
fe4b04fa
PZ
4103/*
4104 * Returns a matching context with refcount and pincount.
4105 */
108b02cf 4106static struct perf_event_context *
4af57ef2
YZ
4107find_get_context(struct pmu *pmu, struct task_struct *task,
4108 struct perf_event *event)
0793a61d 4109{
211de6eb 4110 struct perf_event_context *ctx, *clone_ctx = NULL;
22a4f650 4111 struct perf_cpu_context *cpuctx;
4af57ef2 4112 void *task_ctx_data = NULL;
25346b93 4113 unsigned long flags;
8dc85d54 4114 int ctxn, err;
4af57ef2 4115 int cpu = event->cpu;
0793a61d 4116
22a4ec72 4117 if (!task) {
cdd6c482 4118 /* Must be root to operate on a CPU event: */
0764771d 4119 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
0793a61d
TG
4120 return ERR_PTR(-EACCES);
4121
108b02cf 4122 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
0793a61d 4123 ctx = &cpuctx->ctx;
c93f7669 4124 get_ctx(ctx);
fe4b04fa 4125 ++ctx->pin_count;
0793a61d 4126
0793a61d
TG
4127 return ctx;
4128 }
4129
8dc85d54
PZ
4130 err = -EINVAL;
4131 ctxn = pmu->task_ctx_nr;
4132 if (ctxn < 0)
4133 goto errout;
4134
4af57ef2
YZ
4135 if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4136 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
4137 if (!task_ctx_data) {
4138 err = -ENOMEM;
4139 goto errout;
4140 }
4141 }
4142
9ed6060d 4143retry:
8dc85d54 4144 ctx = perf_lock_task_context(task, ctxn, &flags);
c93f7669 4145 if (ctx) {
211de6eb 4146 clone_ctx = unclone_ctx(ctx);
fe4b04fa 4147 ++ctx->pin_count;
4af57ef2
YZ
4148
4149 if (task_ctx_data && !ctx->task_ctx_data) {
4150 ctx->task_ctx_data = task_ctx_data;
4151 task_ctx_data = NULL;
4152 }
e625cce1 4153 raw_spin_unlock_irqrestore(&ctx->lock, flags);
211de6eb
PZ
4154
4155 if (clone_ctx)
4156 put_ctx(clone_ctx);
9137fb28 4157 } else {
eb184479 4158 ctx = alloc_perf_context(pmu, task);
c93f7669
PM
4159 err = -ENOMEM;
4160 if (!ctx)
4161 goto errout;
eb184479 4162
4af57ef2
YZ
4163 if (task_ctx_data) {
4164 ctx->task_ctx_data = task_ctx_data;
4165 task_ctx_data = NULL;
4166 }
4167
dbe08d82
ON
4168 err = 0;
4169 mutex_lock(&task->perf_event_mutex);
4170 /*
4171 * If it has already passed perf_event_exit_task().
4172 * we must see PF_EXITING, it takes this mutex too.
4173 */
4174 if (task->flags & PF_EXITING)
4175 err = -ESRCH;
4176 else if (task->perf_event_ctxp[ctxn])
4177 err = -EAGAIN;
fe4b04fa 4178 else {
9137fb28 4179 get_ctx(ctx);
fe4b04fa 4180 ++ctx->pin_count;
dbe08d82 4181 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
fe4b04fa 4182 }
dbe08d82
ON
4183 mutex_unlock(&task->perf_event_mutex);
4184
4185 if (unlikely(err)) {
9137fb28 4186 put_ctx(ctx);
dbe08d82
ON
4187
4188 if (err == -EAGAIN)
4189 goto retry;
4190 goto errout;
a63eaf34
PM
4191 }
4192 }
4193
4af57ef2 4194 kfree(task_ctx_data);
0793a61d 4195 return ctx;
c93f7669 4196
9ed6060d 4197errout:
4af57ef2 4198 kfree(task_ctx_data);
c93f7669 4199 return ERR_PTR(err);
0793a61d
TG
4200}
4201
6fb2915d 4202static void perf_event_free_filter(struct perf_event *event);
2541517c 4203static void perf_event_free_bpf_prog(struct perf_event *event);
6fb2915d 4204
cdd6c482 4205static void free_event_rcu(struct rcu_head *head)
592903cd 4206{
cdd6c482 4207 struct perf_event *event;
592903cd 4208
cdd6c482
IM
4209 event = container_of(head, struct perf_event, rcu_head);
4210 if (event->ns)
4211 put_pid_ns(event->ns);
6fb2915d 4212 perf_event_free_filter(event);
cdd6c482 4213 kfree(event);
592903cd
PZ
4214}
4215
b69cf536
PZ
4216static void ring_buffer_attach(struct perf_event *event,
4217 struct ring_buffer *rb);
925d519a 4218
f2fb6bef
KL
4219static void detach_sb_event(struct perf_event *event)
4220{
4221 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
4222
4223 raw_spin_lock(&pel->lock);
4224 list_del_rcu(&event->sb_list);
4225 raw_spin_unlock(&pel->lock);
4226}
4227
a4f144eb 4228static bool is_sb_event(struct perf_event *event)
f2fb6bef 4229{
a4f144eb
DCC
4230 struct perf_event_attr *attr = &event->attr;
4231
f2fb6bef 4232 if (event->parent)
a4f144eb 4233 return false;
f2fb6bef
KL
4234
4235 if (event->attach_state & PERF_ATTACH_TASK)
a4f144eb 4236 return false;
f2fb6bef 4237
a4f144eb
DCC
4238 if (attr->mmap || attr->mmap_data || attr->mmap2 ||
4239 attr->comm || attr->comm_exec ||
76193a94 4240 attr->task || attr->ksymbol ||
a4f144eb
DCC
4241 attr->context_switch)
4242 return true;
4243 return false;
4244}
4245
4246static void unaccount_pmu_sb_event(struct perf_event *event)
4247{
4248 if (is_sb_event(event))
4249 detach_sb_event(event);
f2fb6bef
KL
4250}
4251
4beb31f3 4252static void unaccount_event_cpu(struct perf_event *event, int cpu)
f1600952 4253{
4beb31f3
FW
4254 if (event->parent)
4255 return;
4256
4beb31f3
FW
4257 if (is_cgroup_event(event))
4258 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
4259}
925d519a 4260
555e0c1e
FW
4261#ifdef CONFIG_NO_HZ_FULL
4262static DEFINE_SPINLOCK(nr_freq_lock);
4263#endif
4264
4265static void unaccount_freq_event_nohz(void)
4266{
4267#ifdef CONFIG_NO_HZ_FULL
4268 spin_lock(&nr_freq_lock);
4269 if (atomic_dec_and_test(&nr_freq_events))
4270 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
4271 spin_unlock(&nr_freq_lock);
4272#endif
4273}
4274
4275static void unaccount_freq_event(void)
4276{
4277 if (tick_nohz_full_enabled())
4278 unaccount_freq_event_nohz();
4279 else
4280 atomic_dec(&nr_freq_events);
4281}
4282
4beb31f3
FW
4283static void unaccount_event(struct perf_event *event)
4284{
25432ae9
PZ
4285 bool dec = false;
4286
4beb31f3
FW
4287 if (event->parent)
4288 return;
4289
4290 if (event->attach_state & PERF_ATTACH_TASK)
25432ae9 4291 dec = true;
4beb31f3
FW
4292 if (event->attr.mmap || event->attr.mmap_data)
4293 atomic_dec(&nr_mmap_events);
4294 if (event->attr.comm)
4295 atomic_dec(&nr_comm_events);
e4222673
HB
4296 if (event->attr.namespaces)
4297 atomic_dec(&nr_namespaces_events);
4beb31f3
FW
4298 if (event->attr.task)
4299 atomic_dec(&nr_task_events);
948b26b6 4300 if (event->attr.freq)
555e0c1e 4301 unaccount_freq_event();
45ac1403 4302 if (event->attr.context_switch) {
25432ae9 4303 dec = true;
45ac1403
AH
4304 atomic_dec(&nr_switch_events);
4305 }
4beb31f3 4306 if (is_cgroup_event(event))
25432ae9 4307 dec = true;
4beb31f3 4308 if (has_branch_stack(event))
25432ae9 4309 dec = true;
76193a94
SL
4310 if (event->attr.ksymbol)
4311 atomic_dec(&nr_ksymbol_events);
6ee52e2a
SL
4312 if (event->attr.bpf_event)
4313 atomic_dec(&nr_bpf_events);
25432ae9 4314
9107c89e
PZ
4315 if (dec) {
4316 if (!atomic_add_unless(&perf_sched_count, -1, 1))
4317 schedule_delayed_work(&perf_sched_work, HZ);
4318 }
4beb31f3
FW
4319
4320 unaccount_event_cpu(event, event->cpu);
f2fb6bef
KL
4321
4322 unaccount_pmu_sb_event(event);
4beb31f3 4323}
925d519a 4324
9107c89e
PZ
4325static void perf_sched_delayed(struct work_struct *work)
4326{
4327 mutex_lock(&perf_sched_mutex);
4328 if (atomic_dec_and_test(&perf_sched_count))
4329 static_branch_disable(&perf_sched_events);
4330 mutex_unlock(&perf_sched_mutex);
4331}
4332
bed5b25a
AS
4333/*
4334 * The following implement mutual exclusion of events on "exclusive" pmus
4335 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4336 * at a time, so we disallow creating events that might conflict, namely:
4337 *
4338 * 1) cpu-wide events in the presence of per-task events,
4339 * 2) per-task events in the presence of cpu-wide events,
4340 * 3) two matching events on the same context.
4341 *
4342 * The former two cases are handled in the allocation path (perf_event_alloc(),
a0733e69 4343 * _free_event()), the latter -- before the first perf_install_in_context().
bed5b25a
AS
4344 */
4345static int exclusive_event_init(struct perf_event *event)
4346{
4347 struct pmu *pmu = event->pmu;
4348
4349 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4350 return 0;
4351
4352 /*
4353 * Prevent co-existence of per-task and cpu-wide events on the
4354 * same exclusive pmu.
4355 *
4356 * Negative pmu::exclusive_cnt means there are cpu-wide
4357 * events on this "exclusive" pmu, positive means there are
4358 * per-task events.
4359 *
4360 * Since this is called in perf_event_alloc() path, event::ctx
4361 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4362 * to mean "per-task event", because unlike other attach states it
4363 * never gets cleared.
4364 */
4365 if (event->attach_state & PERF_ATTACH_TASK) {
4366 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4367 return -EBUSY;
4368 } else {
4369 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4370 return -EBUSY;
4371 }
4372
4373 return 0;
4374}
4375
4376static void exclusive_event_destroy(struct perf_event *event)
4377{
4378 struct pmu *pmu = event->pmu;
4379
4380 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4381 return;
4382
4383 /* see comment in exclusive_event_init() */
4384 if (event->attach_state & PERF_ATTACH_TASK)
4385 atomic_dec(&pmu->exclusive_cnt);
4386 else
4387 atomic_inc(&pmu->exclusive_cnt);
4388}
4389
4390static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4391{
3bf6215a 4392 if ((e1->pmu == e2->pmu) &&
bed5b25a
AS
4393 (e1->cpu == e2->cpu ||
4394 e1->cpu == -1 ||
4395 e2->cpu == -1))
4396 return true;
4397 return false;
4398}
4399
4400/* Called under the same ctx::mutex as perf_install_in_context() */
4401static bool exclusive_event_installable(struct perf_event *event,
4402 struct perf_event_context *ctx)
4403{
4404 struct perf_event *iter_event;
4405 struct pmu *pmu = event->pmu;
4406
4407 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4408 return true;
4409
4410 list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4411 if (exclusive_event_match(iter_event, event))
4412 return false;
4413 }
4414
4415 return true;
4416}
4417
375637bc
AS
4418static void perf_addr_filters_splice(struct perf_event *event,
4419 struct list_head *head);
4420
683ede43 4421static void _free_event(struct perf_event *event)
f1600952 4422{
e360adbe 4423 irq_work_sync(&event->pending);
925d519a 4424
4beb31f3 4425 unaccount_event(event);
9ee318a7 4426
76369139 4427 if (event->rb) {
9bb5d40c
PZ
4428 /*
4429 * Can happen when we close an event with re-directed output.
4430 *
4431 * Since we have a 0 refcount, perf_mmap_close() will skip
4432 * over us; possibly making our ring_buffer_put() the last.
4433 */
4434 mutex_lock(&event->mmap_mutex);
b69cf536 4435 ring_buffer_attach(event, NULL);
9bb5d40c 4436 mutex_unlock(&event->mmap_mutex);
a4be7c27
PZ
4437 }
4438
e5d1367f
SE
4439 if (is_cgroup_event(event))
4440 perf_detach_cgroup(event);
4441
a0733e69
PZ
4442 if (!event->parent) {
4443 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4444 put_callchain_buffers();
4445 }
4446
4447 perf_event_free_bpf_prog(event);
375637bc 4448 perf_addr_filters_splice(event, NULL);
c60f83b8 4449 kfree(event->addr_filter_ranges);
a0733e69
PZ
4450
4451 if (event->destroy)
4452 event->destroy(event);
4453
4454 if (event->ctx)
4455 put_ctx(event->ctx);
4456
621b6d2e
PB
4457 if (event->hw.target)
4458 put_task_struct(event->hw.target);
4459
62a92c8f
AS
4460 exclusive_event_destroy(event);
4461 module_put(event->pmu->module);
a0733e69
PZ
4462
4463 call_rcu(&event->rcu_head, free_event_rcu);
f1600952
PZ
4464}
4465
683ede43
PZ
4466/*
4467 * Used to free events which have a known refcount of 1, such as in error paths
4468 * where the event isn't exposed yet and inherited events.
4469 */
4470static void free_event(struct perf_event *event)
0793a61d 4471{
683ede43
PZ
4472 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4473 "unexpected event refcount: %ld; ptr=%p\n",
4474 atomic_long_read(&event->refcount), event)) {
4475 /* leak to avoid use-after-free */
4476 return;
4477 }
0793a61d 4478
683ede43 4479 _free_event(event);
0793a61d
TG
4480}
4481
a66a3052 4482/*
f8697762 4483 * Remove user event from the owner task.
a66a3052 4484 */
f8697762 4485static void perf_remove_from_owner(struct perf_event *event)
fb0459d7 4486{
8882135b 4487 struct task_struct *owner;
fb0459d7 4488
8882135b 4489 rcu_read_lock();
8882135b 4490 /*
f47c02c0
PZ
4491 * Matches the smp_store_release() in perf_event_exit_task(). If we
4492 * observe !owner it means the list deletion is complete and we can
4493 * indeed free this event, otherwise we need to serialize on
8882135b
PZ
4494 * owner->perf_event_mutex.
4495 */
506458ef 4496 owner = READ_ONCE(event->owner);
8882135b
PZ
4497 if (owner) {
4498 /*
4499 * Since delayed_put_task_struct() also drops the last
4500 * task reference we can safely take a new reference
4501 * while holding the rcu_read_lock().
4502 */
4503 get_task_struct(owner);
4504 }
4505 rcu_read_unlock();
4506
4507 if (owner) {
f63a8daa
PZ
4508 /*
4509 * If we're here through perf_event_exit_task() we're already
4510 * holding ctx->mutex which would be an inversion wrt. the
4511 * normal lock order.
4512 *
4513 * However we can safely take this lock because its the child
4514 * ctx->mutex.
4515 */
4516 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4517
8882135b
PZ
4518 /*
4519 * We have to re-check the event->owner field, if it is cleared
4520 * we raced with perf_event_exit_task(), acquiring the mutex
4521 * ensured they're done, and we can proceed with freeing the
4522 * event.
4523 */
f47c02c0 4524 if (event->owner) {
8882135b 4525 list_del_init(&event->owner_entry);
f47c02c0
PZ
4526 smp_store_release(&event->owner, NULL);
4527 }
8882135b
PZ
4528 mutex_unlock(&owner->perf_event_mutex);
4529 put_task_struct(owner);
4530 }
f8697762
JO
4531}
4532
f8697762
JO
4533static void put_event(struct perf_event *event)
4534{
f8697762
JO
4535 if (!atomic_long_dec_and_test(&event->refcount))
4536 return;
4537
c6e5b732
PZ
4538 _free_event(event);
4539}
4540
4541/*
4542 * Kill an event dead; while event:refcount will preserve the event
4543 * object, it will not preserve its functionality. Once the last 'user'
4544 * gives up the object, we'll destroy the thing.
4545 */
4546int perf_event_release_kernel(struct perf_event *event)
4547{
a4f4bb6d 4548 struct perf_event_context *ctx = event->ctx;
c6e5b732 4549 struct perf_event *child, *tmp;
82d94856 4550 LIST_HEAD(free_list);
c6e5b732 4551
a4f4bb6d
PZ
4552 /*
4553 * If we got here through err_file: fput(event_file); we will not have
4554 * attached to a context yet.
4555 */
4556 if (!ctx) {
4557 WARN_ON_ONCE(event->attach_state &
4558 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4559 goto no_ctx;
4560 }
4561
f8697762
JO
4562 if (!is_kernel_event(event))
4563 perf_remove_from_owner(event);
8882135b 4564
5fa7c8ec 4565 ctx = perf_event_ctx_lock(event);
a83fe28e 4566 WARN_ON_ONCE(ctx->parent_ctx);
a69b0ca4 4567 perf_remove_from_context(event, DETACH_GROUP);
683ede43 4568
a69b0ca4 4569 raw_spin_lock_irq(&ctx->lock);
683ede43 4570 /*
d8a8cfc7 4571 * Mark this event as STATE_DEAD, there is no external reference to it
a69b0ca4 4572 * anymore.
683ede43 4573 *
a69b0ca4
PZ
4574 * Anybody acquiring event->child_mutex after the below loop _must_
4575 * also see this, most importantly inherit_event() which will avoid
4576 * placing more children on the list.
683ede43 4577 *
c6e5b732
PZ
4578 * Thus this guarantees that we will in fact observe and kill _ALL_
4579 * child events.
683ede43 4580 */
a69b0ca4
PZ
4581 event->state = PERF_EVENT_STATE_DEAD;
4582 raw_spin_unlock_irq(&ctx->lock);
4583
4584 perf_event_ctx_unlock(event, ctx);
683ede43 4585
c6e5b732
PZ
4586again:
4587 mutex_lock(&event->child_mutex);
4588 list_for_each_entry(child, &event->child_list, child_list) {
a6fa941d 4589
c6e5b732
PZ
4590 /*
4591 * Cannot change, child events are not migrated, see the
4592 * comment with perf_event_ctx_lock_nested().
4593 */
506458ef 4594 ctx = READ_ONCE(child->ctx);
c6e5b732
PZ
4595 /*
4596 * Since child_mutex nests inside ctx::mutex, we must jump
4597 * through hoops. We start by grabbing a reference on the ctx.
4598 *
4599 * Since the event cannot get freed while we hold the
4600 * child_mutex, the context must also exist and have a !0
4601 * reference count.
4602 */
4603 get_ctx(ctx);
4604
4605 /*
4606 * Now that we have a ctx ref, we can drop child_mutex, and
4607 * acquire ctx::mutex without fear of it going away. Then we
4608 * can re-acquire child_mutex.
4609 */
4610 mutex_unlock(&event->child_mutex);
4611 mutex_lock(&ctx->mutex);
4612 mutex_lock(&event->child_mutex);
4613
4614 /*
4615 * Now that we hold ctx::mutex and child_mutex, revalidate our
4616 * state, if child is still the first entry, it didn't get freed
4617 * and we can continue doing so.
4618 */
4619 tmp = list_first_entry_or_null(&event->child_list,
4620 struct perf_event, child_list);
4621 if (tmp == child) {
4622 perf_remove_from_context(child, DETACH_GROUP);
82d94856 4623 list_move(&child->child_list, &free_list);
c6e5b732
PZ
4624 /*
4625 * This matches the refcount bump in inherit_event();
4626 * this can't be the last reference.
4627 */
4628 put_event(event);
4629 }
4630
4631 mutex_unlock(&event->child_mutex);
4632 mutex_unlock(&ctx->mutex);
4633 put_ctx(ctx);
4634 goto again;
4635 }
4636 mutex_unlock(&event->child_mutex);
4637
82d94856
PZ
4638 list_for_each_entry_safe(child, tmp, &free_list, child_list) {
4639 list_del(&child->child_list);
4640 free_event(child);
4641 }
4642
a4f4bb6d
PZ
4643no_ctx:
4644 put_event(event); /* Must be the 'last' reference */
683ede43
PZ
4645 return 0;
4646}
4647EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4648
8b10c5e2
PZ
4649/*
4650 * Called when the last reference to the file is gone.
4651 */
a6fa941d
AV
4652static int perf_release(struct inode *inode, struct file *file)
4653{
c6e5b732 4654 perf_event_release_kernel(file->private_data);
a6fa941d 4655 return 0;
fb0459d7 4656}
fb0459d7 4657
ca0dd44c 4658static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
e53c0994 4659{
cdd6c482 4660 struct perf_event *child;
e53c0994
PZ
4661 u64 total = 0;
4662
59ed446f
PZ
4663 *enabled = 0;
4664 *running = 0;
4665
6f10581a 4666 mutex_lock(&event->child_mutex);
01add3ea 4667
7d88962e 4668 (void)perf_event_read(event, false);
01add3ea
SB
4669 total += perf_event_count(event);
4670
59ed446f
PZ
4671 *enabled += event->total_time_enabled +
4672 atomic64_read(&event->child_total_time_enabled);
4673 *running += event->total_time_running +
4674 atomic64_read(&event->child_total_time_running);
4675
4676 list_for_each_entry(child, &event->child_list, child_list) {
7d88962e 4677 (void)perf_event_read(child, false);
01add3ea 4678 total += perf_event_count(child);
59ed446f
PZ
4679 *enabled += child->total_time_enabled;
4680 *running += child->total_time_running;
4681 }
6f10581a 4682 mutex_unlock(&event->child_mutex);
e53c0994
PZ
4683
4684 return total;
4685}
ca0dd44c
PZ
4686
4687u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4688{
4689 struct perf_event_context *ctx;
4690 u64 count;
4691
4692 ctx = perf_event_ctx_lock(event);
4693 count = __perf_event_read_value(event, enabled, running);
4694 perf_event_ctx_unlock(event, ctx);
4695
4696 return count;
4697}
fb0459d7 4698EXPORT_SYMBOL_GPL(perf_event_read_value);
e53c0994 4699
7d88962e 4700static int __perf_read_group_add(struct perf_event *leader,
fa8c2693 4701 u64 read_format, u64 *values)
3dab77fb 4702{
2aeb1883 4703 struct perf_event_context *ctx = leader->ctx;
fa8c2693 4704 struct perf_event *sub;
2aeb1883 4705 unsigned long flags;
fa8c2693 4706 int n = 1; /* skip @nr */
7d88962e 4707 int ret;
f63a8daa 4708
7d88962e
SB
4709 ret = perf_event_read(leader, true);
4710 if (ret)
4711 return ret;
abf4868b 4712
a9cd8194
PZ
4713 raw_spin_lock_irqsave(&ctx->lock, flags);
4714
fa8c2693
PZ
4715 /*
4716 * Since we co-schedule groups, {enabled,running} times of siblings
4717 * will be identical to those of the leader, so we only publish one
4718 * set.
4719 */
4720 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4721 values[n++] += leader->total_time_enabled +
4722 atomic64_read(&leader->child_total_time_enabled);
4723 }
3dab77fb 4724
fa8c2693
PZ
4725 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4726 values[n++] += leader->total_time_running +
4727 atomic64_read(&leader->child_total_time_running);
4728 }
4729
4730 /*
4731 * Write {count,id} tuples for every sibling.
4732 */
4733 values[n++] += perf_event_count(leader);
abf4868b
PZ
4734 if (read_format & PERF_FORMAT_ID)
4735 values[n++] = primary_event_id(leader);
3dab77fb 4736
edb39592 4737 for_each_sibling_event(sub, leader) {
fa8c2693
PZ
4738 values[n++] += perf_event_count(sub);
4739 if (read_format & PERF_FORMAT_ID)
4740 values[n++] = primary_event_id(sub);
4741 }
7d88962e 4742
2aeb1883 4743 raw_spin_unlock_irqrestore(&ctx->lock, flags);
7d88962e 4744 return 0;
fa8c2693 4745}
3dab77fb 4746
fa8c2693
PZ
4747static int perf_read_group(struct perf_event *event,
4748 u64 read_format, char __user *buf)
4749{
4750 struct perf_event *leader = event->group_leader, *child;
4751 struct perf_event_context *ctx = leader->ctx;
7d88962e 4752 int ret;
fa8c2693 4753 u64 *values;
3dab77fb 4754
fa8c2693 4755 lockdep_assert_held(&ctx->mutex);
3dab77fb 4756
fa8c2693
PZ
4757 values = kzalloc(event->read_size, GFP_KERNEL);
4758 if (!values)
4759 return -ENOMEM;
3dab77fb 4760
fa8c2693
PZ
4761 values[0] = 1 + leader->nr_siblings;
4762
4763 /*
4764 * By locking the child_mutex of the leader we effectively
4765 * lock the child list of all siblings.. XXX explain how.
4766 */
4767 mutex_lock(&leader->child_mutex);
abf4868b 4768
7d88962e
SB
4769 ret = __perf_read_group_add(leader, read_format, values);
4770 if (ret)
4771 goto unlock;
4772
4773 list_for_each_entry(child, &leader->child_list, child_list) {
4774 ret = __perf_read_group_add(child, read_format, values);
4775 if (ret)
4776 goto unlock;
4777 }
abf4868b 4778
fa8c2693 4779 mutex_unlock(&leader->child_mutex);
abf4868b 4780
7d88962e 4781 ret = event->read_size;
fa8c2693
PZ
4782 if (copy_to_user(buf, values, event->read_size))
4783 ret = -EFAULT;
7d88962e 4784 goto out;
fa8c2693 4785
7d88962e
SB
4786unlock:
4787 mutex_unlock(&leader->child_mutex);
4788out:
fa8c2693 4789 kfree(values);
abf4868b 4790 return ret;
3dab77fb
PZ
4791}
4792
b15f495b 4793static int perf_read_one(struct perf_event *event,
3dab77fb
PZ
4794 u64 read_format, char __user *buf)
4795{
59ed446f 4796 u64 enabled, running;
3dab77fb
PZ
4797 u64 values[4];
4798 int n = 0;
4799
ca0dd44c 4800 values[n++] = __perf_event_read_value(event, &enabled, &running);
59ed446f
PZ
4801 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4802 values[n++] = enabled;
4803 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4804 values[n++] = running;
3dab77fb 4805 if (read_format & PERF_FORMAT_ID)
cdd6c482 4806 values[n++] = primary_event_id(event);
3dab77fb
PZ
4807
4808 if (copy_to_user(buf, values, n * sizeof(u64)))
4809 return -EFAULT;
4810
4811 return n * sizeof(u64);
4812}
4813
dc633982
JO
4814static bool is_event_hup(struct perf_event *event)
4815{
4816 bool no_children;
4817
a69b0ca4 4818 if (event->state > PERF_EVENT_STATE_EXIT)
dc633982
JO
4819 return false;
4820
4821 mutex_lock(&event->child_mutex);
4822 no_children = list_empty(&event->child_list);
4823 mutex_unlock(&event->child_mutex);
4824 return no_children;
4825}
4826
0793a61d 4827/*
cdd6c482 4828 * Read the performance event - simple non blocking version for now
0793a61d
TG
4829 */
4830static ssize_t
b15f495b 4831__perf_read(struct perf_event *event, char __user *buf, size_t count)
0793a61d 4832{
cdd6c482 4833 u64 read_format = event->attr.read_format;
3dab77fb 4834 int ret;
0793a61d 4835
3b6f9e5c 4836 /*
788faab7 4837 * Return end-of-file for a read on an event that is in
3b6f9e5c
PM
4838 * error state (i.e. because it was pinned but it couldn't be
4839 * scheduled on to the CPU at some point).
4840 */
cdd6c482 4841 if (event->state == PERF_EVENT_STATE_ERROR)
3b6f9e5c
PM
4842 return 0;
4843
c320c7b7 4844 if (count < event->read_size)
3dab77fb
PZ
4845 return -ENOSPC;
4846
cdd6c482 4847 WARN_ON_ONCE(event->ctx->parent_ctx);
3dab77fb 4848 if (read_format & PERF_FORMAT_GROUP)
b15f495b 4849 ret = perf_read_group(event, read_format, buf);
3dab77fb 4850 else
b15f495b 4851 ret = perf_read_one(event, read_format, buf);
0793a61d 4852
3dab77fb 4853 return ret;
0793a61d
TG
4854}
4855
0793a61d
TG
4856static ssize_t
4857perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4858{
cdd6c482 4859 struct perf_event *event = file->private_data;
f63a8daa
PZ
4860 struct perf_event_context *ctx;
4861 int ret;
0793a61d 4862
f63a8daa 4863 ctx = perf_event_ctx_lock(event);
b15f495b 4864 ret = __perf_read(event, buf, count);
f63a8daa
PZ
4865 perf_event_ctx_unlock(event, ctx);
4866
4867 return ret;
0793a61d
TG
4868}
4869
9dd95748 4870static __poll_t perf_poll(struct file *file, poll_table *wait)
0793a61d 4871{
cdd6c482 4872 struct perf_event *event = file->private_data;
76369139 4873 struct ring_buffer *rb;
a9a08845 4874 __poll_t events = EPOLLHUP;
c7138f37 4875
e708d7ad 4876 poll_wait(file, &event->waitq, wait);
179033b3 4877
dc633982 4878 if (is_event_hup(event))
179033b3 4879 return events;
c7138f37 4880
10c6db11 4881 /*
9bb5d40c
PZ
4882 * Pin the event->rb by taking event->mmap_mutex; otherwise
4883 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
10c6db11
PZ
4884 */
4885 mutex_lock(&event->mmap_mutex);
9bb5d40c
PZ
4886 rb = event->rb;
4887 if (rb)
76369139 4888 events = atomic_xchg(&rb->poll, 0);
10c6db11 4889 mutex_unlock(&event->mmap_mutex);
0793a61d
TG
4890 return events;
4891}
4892
f63a8daa 4893static void _perf_event_reset(struct perf_event *event)
6de6a7b9 4894{
7d88962e 4895 (void)perf_event_read(event, false);
e7850595 4896 local64_set(&event->count, 0);
cdd6c482 4897 perf_event_update_userpage(event);
3df5edad
PZ
4898}
4899
c93f7669 4900/*
cdd6c482
IM
4901 * Holding the top-level event's child_mutex means that any
4902 * descendant process that has inherited this event will block
8ba289b8 4903 * in perf_event_exit_event() if it goes to exit, thus satisfying the
cdd6c482 4904 * task existence requirements of perf_event_enable/disable.
c93f7669 4905 */
cdd6c482
IM
4906static void perf_event_for_each_child(struct perf_event *event,
4907 void (*func)(struct perf_event *))
3df5edad 4908{
cdd6c482 4909 struct perf_event *child;
3df5edad 4910
cdd6c482 4911 WARN_ON_ONCE(event->ctx->parent_ctx);
f63a8daa 4912
cdd6c482
IM
4913 mutex_lock(&event->child_mutex);
4914 func(event);
4915 list_for_each_entry(child, &event->child_list, child_list)
3df5edad 4916 func(child);
cdd6c482 4917 mutex_unlock(&event->child_mutex);
3df5edad
PZ
4918}
4919
cdd6c482
IM
4920static void perf_event_for_each(struct perf_event *event,
4921 void (*func)(struct perf_event *))
3df5edad 4922{
cdd6c482
IM
4923 struct perf_event_context *ctx = event->ctx;
4924 struct perf_event *sibling;
3df5edad 4925
f63a8daa
PZ
4926 lockdep_assert_held(&ctx->mutex);
4927
cdd6c482 4928 event = event->group_leader;
75f937f2 4929
cdd6c482 4930 perf_event_for_each_child(event, func);
edb39592 4931 for_each_sibling_event(sibling, event)
724b6daa 4932 perf_event_for_each_child(sibling, func);
6de6a7b9
PZ
4933}
4934
fae3fde6
PZ
4935static void __perf_event_period(struct perf_event *event,
4936 struct perf_cpu_context *cpuctx,
4937 struct perf_event_context *ctx,
4938 void *info)
c7999c6f 4939{
fae3fde6 4940 u64 value = *((u64 *)info);
c7999c6f 4941 bool active;
08247e31 4942
cdd6c482 4943 if (event->attr.freq) {
cdd6c482 4944 event->attr.sample_freq = value;
08247e31 4945 } else {
cdd6c482
IM
4946 event->attr.sample_period = value;
4947 event->hw.sample_period = value;
08247e31 4948 }
bad7192b
PZ
4949
4950 active = (event->state == PERF_EVENT_STATE_ACTIVE);
4951 if (active) {
4952 perf_pmu_disable(ctx->pmu);
1e02cd40
PZ
4953 /*
4954 * We could be throttled; unthrottle now to avoid the tick
4955 * trying to unthrottle while we already re-started the event.
4956 */
4957 if (event->hw.interrupts == MAX_INTERRUPTS) {
4958 event->hw.interrupts = 0;
4959 perf_log_throttle(event, 1);
4960 }
bad7192b
PZ
4961 event->pmu->stop(event, PERF_EF_UPDATE);
4962 }
4963
4964 local64_set(&event->hw.period_left, 0);
4965
4966 if (active) {
4967 event->pmu->start(event, PERF_EF_RELOAD);
4968 perf_pmu_enable(ctx->pmu);
4969 }
c7999c6f
PZ
4970}
4971
81ec3f3c
JO
4972static int perf_event_check_period(struct perf_event *event, u64 value)
4973{
4974 return event->pmu->check_period(event, value);
4975}
4976
c7999c6f
PZ
4977static int perf_event_period(struct perf_event *event, u64 __user *arg)
4978{
c7999c6f
PZ
4979 u64 value;
4980
4981 if (!is_sampling_event(event))
4982 return -EINVAL;
4983
4984 if (copy_from_user(&value, arg, sizeof(value)))
4985 return -EFAULT;
4986
4987 if (!value)
4988 return -EINVAL;
4989
4990 if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4991 return -EINVAL;
4992
81ec3f3c
JO
4993 if (perf_event_check_period(event, value))
4994 return -EINVAL;
4995
fae3fde6 4996 event_function_call(event, __perf_event_period, &value);
08247e31 4997
c7999c6f 4998 return 0;
08247e31
PZ
4999}
5000
ac9721f3
PZ
5001static const struct file_operations perf_fops;
5002
2903ff01 5003static inline int perf_fget_light(int fd, struct fd *p)
ac9721f3 5004{
2903ff01
AV
5005 struct fd f = fdget(fd);
5006 if (!f.file)
5007 return -EBADF;
ac9721f3 5008
2903ff01
AV
5009 if (f.file->f_op != &perf_fops) {
5010 fdput(f);
5011 return -EBADF;
ac9721f3 5012 }
2903ff01
AV
5013 *p = f;
5014 return 0;
ac9721f3
PZ
5015}
5016
5017static int perf_event_set_output(struct perf_event *event,
5018 struct perf_event *output_event);
6fb2915d 5019static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2541517c 5020static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
32ff77e8
MC
5021static int perf_copy_attr(struct perf_event_attr __user *uattr,
5022 struct perf_event_attr *attr);
a4be7c27 5023
f63a8daa 5024static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
d859e29f 5025{
cdd6c482 5026 void (*func)(struct perf_event *);
3df5edad 5027 u32 flags = arg;
d859e29f
PM
5028
5029 switch (cmd) {
cdd6c482 5030 case PERF_EVENT_IOC_ENABLE:
f63a8daa 5031 func = _perf_event_enable;
d859e29f 5032 break;
cdd6c482 5033 case PERF_EVENT_IOC_DISABLE:
f63a8daa 5034 func = _perf_event_disable;
79f14641 5035 break;
cdd6c482 5036 case PERF_EVENT_IOC_RESET:
f63a8daa 5037 func = _perf_event_reset;
6de6a7b9 5038 break;
3df5edad 5039
cdd6c482 5040 case PERF_EVENT_IOC_REFRESH:
f63a8daa 5041 return _perf_event_refresh(event, arg);
08247e31 5042
cdd6c482
IM
5043 case PERF_EVENT_IOC_PERIOD:
5044 return perf_event_period(event, (u64 __user *)arg);
08247e31 5045
cf4957f1
JO
5046 case PERF_EVENT_IOC_ID:
5047 {
5048 u64 id = primary_event_id(event);
5049
5050 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
5051 return -EFAULT;
5052 return 0;
5053 }
5054
cdd6c482 5055 case PERF_EVENT_IOC_SET_OUTPUT:
ac9721f3 5056 {
ac9721f3 5057 int ret;
ac9721f3 5058 if (arg != -1) {
2903ff01
AV
5059 struct perf_event *output_event;
5060 struct fd output;
5061 ret = perf_fget_light(arg, &output);
5062 if (ret)
5063 return ret;
5064 output_event = output.file->private_data;
5065 ret = perf_event_set_output(event, output_event);
5066 fdput(output);
5067 } else {
5068 ret = perf_event_set_output(event, NULL);
ac9721f3 5069 }
ac9721f3
PZ
5070 return ret;
5071 }
a4be7c27 5072
6fb2915d
LZ
5073 case PERF_EVENT_IOC_SET_FILTER:
5074 return perf_event_set_filter(event, (void __user *)arg);
5075
2541517c
AS
5076 case PERF_EVENT_IOC_SET_BPF:
5077 return perf_event_set_bpf_prog(event, arg);
5078
86e7972f
WN
5079 case PERF_EVENT_IOC_PAUSE_OUTPUT: {
5080 struct ring_buffer *rb;
5081
5082 rcu_read_lock();
5083 rb = rcu_dereference(event->rb);
5084 if (!rb || !rb->nr_pages) {
5085 rcu_read_unlock();
5086 return -EINVAL;
5087 }
5088 rb_toggle_paused(rb, !!arg);
5089 rcu_read_unlock();
5090 return 0;
5091 }
f371b304
YS
5092
5093 case PERF_EVENT_IOC_QUERY_BPF:
f4e2298e 5094 return perf_event_query_prog_array(event, (void __user *)arg);
32ff77e8
MC
5095
5096 case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
5097 struct perf_event_attr new_attr;
5098 int err = perf_copy_attr((struct perf_event_attr __user *)arg,
5099 &new_attr);
5100
5101 if (err)
5102 return err;
5103
5104 return perf_event_modify_attr(event, &new_attr);
5105 }
d859e29f 5106 default:
3df5edad 5107 return -ENOTTY;
d859e29f 5108 }
3df5edad
PZ
5109
5110 if (flags & PERF_IOC_FLAG_GROUP)
cdd6c482 5111 perf_event_for_each(event, func);
3df5edad 5112 else
cdd6c482 5113 perf_event_for_each_child(event, func);
3df5edad
PZ
5114
5115 return 0;
d859e29f
PM
5116}
5117
f63a8daa
PZ
5118static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5119{
5120 struct perf_event *event = file->private_data;
5121 struct perf_event_context *ctx;
5122 long ret;
5123
5124 ctx = perf_event_ctx_lock(event);
5125 ret = _perf_ioctl(event, cmd, arg);
5126 perf_event_ctx_unlock(event, ctx);
5127
5128 return ret;
5129}
5130
b3f20785
PM
5131#ifdef CONFIG_COMPAT
5132static long perf_compat_ioctl(struct file *file, unsigned int cmd,
5133 unsigned long arg)
5134{
5135 switch (_IOC_NR(cmd)) {
5136 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
5137 case _IOC_NR(PERF_EVENT_IOC_ID):
82489c5f
ES
5138 case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
5139 case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
b3f20785
PM
5140 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
5141 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
5142 cmd &= ~IOCSIZE_MASK;
5143 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
5144 }
5145 break;
5146 }
5147 return perf_ioctl(file, cmd, arg);
5148}
5149#else
5150# define perf_compat_ioctl NULL
5151#endif
5152
cdd6c482 5153int perf_event_task_enable(void)
771d7cde 5154{
f63a8daa 5155 struct perf_event_context *ctx;
cdd6c482 5156 struct perf_event *event;
771d7cde 5157
cdd6c482 5158 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
5159 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5160 ctx = perf_event_ctx_lock(event);
5161 perf_event_for_each_child(event, _perf_event_enable);
5162 perf_event_ctx_unlock(event, ctx);
5163 }
cdd6c482 5164 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
5165
5166 return 0;
5167}
5168
cdd6c482 5169int perf_event_task_disable(void)
771d7cde 5170{
f63a8daa 5171 struct perf_event_context *ctx;
cdd6c482 5172 struct perf_event *event;
771d7cde 5173
cdd6c482 5174 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
5175 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5176 ctx = perf_event_ctx_lock(event);
5177 perf_event_for_each_child(event, _perf_event_disable);
5178 perf_event_ctx_unlock(event, ctx);
5179 }
cdd6c482 5180 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
5181
5182 return 0;
5183}
5184
cdd6c482 5185static int perf_event_index(struct perf_event *event)
194002b2 5186{
a4eaf7f1
PZ
5187 if (event->hw.state & PERF_HES_STOPPED)
5188 return 0;
5189
cdd6c482 5190 if (event->state != PERF_EVENT_STATE_ACTIVE)
194002b2
PZ
5191 return 0;
5192
35edc2a5 5193 return event->pmu->event_idx(event);
194002b2
PZ
5194}
5195
c4794295 5196static void calc_timer_values(struct perf_event *event,
e3f3541c 5197 u64 *now,
7f310a5d
EM
5198 u64 *enabled,
5199 u64 *running)
c4794295 5200{
e3f3541c 5201 u64 ctx_time;
c4794295 5202
e3f3541c
PZ
5203 *now = perf_clock();
5204 ctx_time = event->shadow_ctx_time + *now;
0d3d73aa 5205 __perf_update_times(event, ctx_time, enabled, running);
c4794295
EM
5206}
5207
fa731587
PZ
5208static void perf_event_init_userpage(struct perf_event *event)
5209{
5210 struct perf_event_mmap_page *userpg;
5211 struct ring_buffer *rb;
5212
5213 rcu_read_lock();
5214 rb = rcu_dereference(event->rb);
5215 if (!rb)
5216 goto unlock;
5217
5218 userpg = rb->user_page;
5219
5220 /* Allow new userspace to detect that bit 0 is deprecated */
5221 userpg->cap_bit0_is_deprecated = 1;
5222 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
e8c6deac
AS
5223 userpg->data_offset = PAGE_SIZE;
5224 userpg->data_size = perf_data_size(rb);
fa731587
PZ
5225
5226unlock:
5227 rcu_read_unlock();
5228}
5229
c1317ec2
AL
5230void __weak arch_perf_update_userpage(
5231 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
e3f3541c
PZ
5232{
5233}
5234
38ff667b
PZ
5235/*
5236 * Callers need to ensure there can be no nesting of this function, otherwise
5237 * the seqlock logic goes bad. We can not serialize this because the arch
5238 * code calls this from NMI context.
5239 */
cdd6c482 5240void perf_event_update_userpage(struct perf_event *event)
37d81828 5241{
cdd6c482 5242 struct perf_event_mmap_page *userpg;
76369139 5243 struct ring_buffer *rb;
e3f3541c 5244 u64 enabled, running, now;
38ff667b
PZ
5245
5246 rcu_read_lock();
5ec4c599
PZ
5247 rb = rcu_dereference(event->rb);
5248 if (!rb)
5249 goto unlock;
5250
0d641208
EM
5251 /*
5252 * compute total_time_enabled, total_time_running
5253 * based on snapshot values taken when the event
5254 * was last scheduled in.
5255 *
5256 * we cannot simply called update_context_time()
5257 * because of locking issue as we can be called in
5258 * NMI context
5259 */
e3f3541c 5260 calc_timer_values(event, &now, &enabled, &running);
38ff667b 5261
76369139 5262 userpg = rb->user_page;
7b732a75 5263 /*
9d2dcc8f
MF
5264 * Disable preemption to guarantee consistent time stamps are stored to
5265 * the user page.
7b732a75
PZ
5266 */
5267 preempt_disable();
37d81828 5268 ++userpg->lock;
92f22a38 5269 barrier();
cdd6c482 5270 userpg->index = perf_event_index(event);
b5e58793 5271 userpg->offset = perf_event_count(event);
365a4038 5272 if (userpg->index)
e7850595 5273 userpg->offset -= local64_read(&event->hw.prev_count);
7b732a75 5274
0d641208 5275 userpg->time_enabled = enabled +
cdd6c482 5276 atomic64_read(&event->child_total_time_enabled);
7f8b4e4e 5277
0d641208 5278 userpg->time_running = running +
cdd6c482 5279 atomic64_read(&event->child_total_time_running);
7f8b4e4e 5280
c1317ec2 5281 arch_perf_update_userpage(event, userpg, now);
e3f3541c 5282
92f22a38 5283 barrier();
37d81828 5284 ++userpg->lock;
7b732a75 5285 preempt_enable();
38ff667b 5286unlock:
7b732a75 5287 rcu_read_unlock();
37d81828 5288}
82975c46 5289EXPORT_SYMBOL_GPL(perf_event_update_userpage);
37d81828 5290
9e3ed2d7 5291static vm_fault_t perf_mmap_fault(struct vm_fault *vmf)
906010b2 5292{
11bac800 5293 struct perf_event *event = vmf->vma->vm_file->private_data;
76369139 5294 struct ring_buffer *rb;
9e3ed2d7 5295 vm_fault_t ret = VM_FAULT_SIGBUS;
906010b2
PZ
5296
5297 if (vmf->flags & FAULT_FLAG_MKWRITE) {
5298 if (vmf->pgoff == 0)
5299 ret = 0;
5300 return ret;
5301 }
5302
5303 rcu_read_lock();
76369139
FW
5304 rb = rcu_dereference(event->rb);
5305 if (!rb)
906010b2
PZ
5306 goto unlock;
5307
5308 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
5309 goto unlock;
5310
76369139 5311 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
906010b2
PZ
5312 if (!vmf->page)
5313 goto unlock;
5314
5315 get_page(vmf->page);
11bac800 5316 vmf->page->mapping = vmf->vma->vm_file->f_mapping;
906010b2
PZ
5317 vmf->page->index = vmf->pgoff;
5318
5319 ret = 0;
5320unlock:
5321 rcu_read_unlock();
5322
5323 return ret;
5324}
5325
10c6db11
PZ
5326static void ring_buffer_attach(struct perf_event *event,
5327 struct ring_buffer *rb)
5328{
b69cf536 5329 struct ring_buffer *old_rb = NULL;
10c6db11
PZ
5330 unsigned long flags;
5331
b69cf536
PZ
5332 if (event->rb) {
5333 /*
5334 * Should be impossible, we set this when removing
5335 * event->rb_entry and wait/clear when adding event->rb_entry.
5336 */
5337 WARN_ON_ONCE(event->rcu_pending);
10c6db11 5338
b69cf536 5339 old_rb = event->rb;
b69cf536
PZ
5340 spin_lock_irqsave(&old_rb->event_lock, flags);
5341 list_del_rcu(&event->rb_entry);
5342 spin_unlock_irqrestore(&old_rb->event_lock, flags);
10c6db11 5343
2f993cf0
ON
5344 event->rcu_batches = get_state_synchronize_rcu();
5345 event->rcu_pending = 1;
b69cf536 5346 }
10c6db11 5347
b69cf536 5348 if (rb) {
2f993cf0
ON
5349 if (event->rcu_pending) {
5350 cond_synchronize_rcu(event->rcu_batches);
5351 event->rcu_pending = 0;
5352 }
5353
b69cf536
PZ
5354 spin_lock_irqsave(&rb->event_lock, flags);
5355 list_add_rcu(&event->rb_entry, &rb->event_list);
5356 spin_unlock_irqrestore(&rb->event_lock, flags);
5357 }
5358
767ae086
AS
5359 /*
5360 * Avoid racing with perf_mmap_close(AUX): stop the event
5361 * before swizzling the event::rb pointer; if it's getting
5362 * unmapped, its aux_mmap_count will be 0 and it won't
5363 * restart. See the comment in __perf_pmu_output_stop().
5364 *
5365 * Data will inevitably be lost when set_output is done in
5366 * mid-air, but then again, whoever does it like this is
5367 * not in for the data anyway.
5368 */
5369 if (has_aux(event))
5370 perf_event_stop(event, 0);
5371
b69cf536
PZ
5372 rcu_assign_pointer(event->rb, rb);
5373
5374 if (old_rb) {
5375 ring_buffer_put(old_rb);
5376 /*
5377 * Since we detached before setting the new rb, so that we
5378 * could attach the new rb, we could have missed a wakeup.
5379 * Provide it now.
5380 */
5381 wake_up_all(&event->waitq);
5382 }
10c6db11
PZ
5383}
5384
5385static void ring_buffer_wakeup(struct perf_event *event)
5386{
5387 struct ring_buffer *rb;
5388
5389 rcu_read_lock();
5390 rb = rcu_dereference(event->rb);
9bb5d40c
PZ
5391 if (rb) {
5392 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5393 wake_up_all(&event->waitq);
5394 }
10c6db11
PZ
5395 rcu_read_unlock();
5396}
5397
fdc26706 5398struct ring_buffer *ring_buffer_get(struct perf_event *event)
7b732a75 5399{
76369139 5400 struct ring_buffer *rb;
7b732a75 5401
ac9721f3 5402 rcu_read_lock();
76369139
FW
5403 rb = rcu_dereference(event->rb);
5404 if (rb) {
fecb8ed2 5405 if (!refcount_inc_not_zero(&rb->refcount))
76369139 5406 rb = NULL;
ac9721f3
PZ
5407 }
5408 rcu_read_unlock();
5409
76369139 5410 return rb;
ac9721f3
PZ
5411}
5412
fdc26706 5413void ring_buffer_put(struct ring_buffer *rb)
ac9721f3 5414{
fecb8ed2 5415 if (!refcount_dec_and_test(&rb->refcount))
ac9721f3 5416 return;
7b732a75 5417
9bb5d40c 5418 WARN_ON_ONCE(!list_empty(&rb->event_list));
10c6db11 5419
76369139 5420 call_rcu(&rb->rcu_head, rb_free_rcu);
7b732a75
PZ
5421}
5422
5423static void perf_mmap_open(struct vm_area_struct *vma)
5424{
cdd6c482 5425 struct perf_event *event = vma->vm_file->private_data;
7b732a75 5426
cdd6c482 5427 atomic_inc(&event->mmap_count);
9bb5d40c 5428 atomic_inc(&event->rb->mmap_count);
1e0fb9ec 5429
45bfb2e5
PZ
5430 if (vma->vm_pgoff)
5431 atomic_inc(&event->rb->aux_mmap_count);
5432
1e0fb9ec 5433 if (event->pmu->event_mapped)
bfe33492 5434 event->pmu->event_mapped(event, vma->vm_mm);
7b732a75
PZ
5435}
5436
95ff4ca2
AS
5437static void perf_pmu_output_stop(struct perf_event *event);
5438
9bb5d40c
PZ
5439/*
5440 * A buffer can be mmap()ed multiple times; either directly through the same
5441 * event, or through other events by use of perf_event_set_output().
5442 *
5443 * In order to undo the VM accounting done by perf_mmap() we need to destroy
5444 * the buffer here, where we still have a VM context. This means we need
5445 * to detach all events redirecting to us.
5446 */
7b732a75
PZ
5447static void perf_mmap_close(struct vm_area_struct *vma)
5448{
cdd6c482 5449 struct perf_event *event = vma->vm_file->private_data;
7b732a75 5450
b69cf536 5451 struct ring_buffer *rb = ring_buffer_get(event);
9bb5d40c
PZ
5452 struct user_struct *mmap_user = rb->mmap_user;
5453 int mmap_locked = rb->mmap_locked;
5454 unsigned long size = perf_data_size(rb);
789f90fc 5455
1e0fb9ec 5456 if (event->pmu->event_unmapped)
bfe33492 5457 event->pmu->event_unmapped(event, vma->vm_mm);
1e0fb9ec 5458
45bfb2e5
PZ
5459 /*
5460 * rb->aux_mmap_count will always drop before rb->mmap_count and
5461 * event->mmap_count, so it is ok to use event->mmap_mutex to
5462 * serialize with perf_mmap here.
5463 */
5464 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5465 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
95ff4ca2
AS
5466 /*
5467 * Stop all AUX events that are writing to this buffer,
5468 * so that we can free its AUX pages and corresponding PMU
5469 * data. Note that after rb::aux_mmap_count dropped to zero,
5470 * they won't start any more (see perf_aux_output_begin()).
5471 */
5472 perf_pmu_output_stop(event);
5473
5474 /* now it's safe to free the pages */
45bfb2e5
PZ
5475 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
5476 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
5477
95ff4ca2 5478 /* this has to be the last one */
45bfb2e5 5479 rb_free_aux(rb);
ca3bb3d0 5480 WARN_ON_ONCE(refcount_read(&rb->aux_refcount));
95ff4ca2 5481
45bfb2e5
PZ
5482 mutex_unlock(&event->mmap_mutex);
5483 }
5484
9bb5d40c
PZ
5485 atomic_dec(&rb->mmap_count);
5486
5487 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
b69cf536 5488 goto out_put;
9bb5d40c 5489
b69cf536 5490 ring_buffer_attach(event, NULL);
9bb5d40c
PZ
5491 mutex_unlock(&event->mmap_mutex);
5492
5493 /* If there's still other mmap()s of this buffer, we're done. */
b69cf536
PZ
5494 if (atomic_read(&rb->mmap_count))
5495 goto out_put;
ac9721f3 5496
9bb5d40c
PZ
5497 /*
5498 * No other mmap()s, detach from all other events that might redirect
5499 * into the now unreachable buffer. Somewhat complicated by the
5500 * fact that rb::event_lock otherwise nests inside mmap_mutex.
5501 */
5502again:
5503 rcu_read_lock();
5504 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5505 if (!atomic_long_inc_not_zero(&event->refcount)) {
5506 /*
5507 * This event is en-route to free_event() which will
5508 * detach it and remove it from the list.
5509 */
5510 continue;
5511 }
5512 rcu_read_unlock();
789f90fc 5513
9bb5d40c
PZ
5514 mutex_lock(&event->mmap_mutex);
5515 /*
5516 * Check we didn't race with perf_event_set_output() which can
5517 * swizzle the rb from under us while we were waiting to
5518 * acquire mmap_mutex.
5519 *
5520 * If we find a different rb; ignore this event, a next
5521 * iteration will no longer find it on the list. We have to
5522 * still restart the iteration to make sure we're not now
5523 * iterating the wrong list.
5524 */
b69cf536
PZ
5525 if (event->rb == rb)
5526 ring_buffer_attach(event, NULL);
5527
cdd6c482 5528 mutex_unlock(&event->mmap_mutex);
9bb5d40c 5529 put_event(event);
ac9721f3 5530
9bb5d40c
PZ
5531 /*
5532 * Restart the iteration; either we're on the wrong list or
5533 * destroyed its integrity by doing a deletion.
5534 */
5535 goto again;
7b732a75 5536 }
9bb5d40c
PZ
5537 rcu_read_unlock();
5538
5539 /*
5540 * It could be there's still a few 0-ref events on the list; they'll
5541 * get cleaned up by free_event() -- they'll also still have their
5542 * ref on the rb and will free it whenever they are done with it.
5543 *
5544 * Aside from that, this buffer is 'fully' detached and unmapped,
5545 * undo the VM accounting.
5546 */
5547
5548 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
5549 vma->vm_mm->pinned_vm -= mmap_locked;
5550 free_uid(mmap_user);
5551
b69cf536 5552out_put:
9bb5d40c 5553 ring_buffer_put(rb); /* could be last */
37d81828
PM
5554}
5555
f0f37e2f 5556static const struct vm_operations_struct perf_mmap_vmops = {
43a21ea8 5557 .open = perf_mmap_open,
fca0c116 5558 .close = perf_mmap_close, /* non mergeable */
43a21ea8
PZ
5559 .fault = perf_mmap_fault,
5560 .page_mkwrite = perf_mmap_fault,
37d81828
PM
5561};
5562
5563static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5564{
cdd6c482 5565 struct perf_event *event = file->private_data;
22a4f650 5566 unsigned long user_locked, user_lock_limit;
789f90fc 5567 struct user_struct *user = current_user();
22a4f650 5568 unsigned long locked, lock_limit;
45bfb2e5 5569 struct ring_buffer *rb = NULL;
7b732a75
PZ
5570 unsigned long vma_size;
5571 unsigned long nr_pages;
45bfb2e5 5572 long user_extra = 0, extra = 0;
d57e34fd 5573 int ret = 0, flags = 0;
37d81828 5574
c7920614
PZ
5575 /*
5576 * Don't allow mmap() of inherited per-task counters. This would
5577 * create a performance issue due to all children writing to the
76369139 5578 * same rb.
c7920614
PZ
5579 */
5580 if (event->cpu == -1 && event->attr.inherit)
5581 return -EINVAL;
5582
43a21ea8 5583 if (!(vma->vm_flags & VM_SHARED))
37d81828 5584 return -EINVAL;
7b732a75
PZ
5585
5586 vma_size = vma->vm_end - vma->vm_start;
45bfb2e5
PZ
5587
5588 if (vma->vm_pgoff == 0) {
5589 nr_pages = (vma_size / PAGE_SIZE) - 1;
5590 } else {
5591 /*
5592 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5593 * mapped, all subsequent mappings should have the same size
5594 * and offset. Must be above the normal perf buffer.
5595 */
5596 u64 aux_offset, aux_size;
5597
5598 if (!event->rb)
5599 return -EINVAL;
5600
5601 nr_pages = vma_size / PAGE_SIZE;
5602
5603 mutex_lock(&event->mmap_mutex);
5604 ret = -EINVAL;
5605
5606 rb = event->rb;
5607 if (!rb)
5608 goto aux_unlock;
5609
6aa7de05
MR
5610 aux_offset = READ_ONCE(rb->user_page->aux_offset);
5611 aux_size = READ_ONCE(rb->user_page->aux_size);
45bfb2e5
PZ
5612
5613 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5614 goto aux_unlock;
5615
5616 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5617 goto aux_unlock;
5618
5619 /* already mapped with a different offset */
5620 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5621 goto aux_unlock;
5622
5623 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5624 goto aux_unlock;
5625
5626 /* already mapped with a different size */
5627 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5628 goto aux_unlock;
5629
5630 if (!is_power_of_2(nr_pages))
5631 goto aux_unlock;
5632
5633 if (!atomic_inc_not_zero(&rb->mmap_count))
5634 goto aux_unlock;
5635
5636 if (rb_has_aux(rb)) {
5637 atomic_inc(&rb->aux_mmap_count);
5638 ret = 0;
5639 goto unlock;
5640 }
5641
5642 atomic_set(&rb->aux_mmap_count, 1);
5643 user_extra = nr_pages;
5644
5645 goto accounting;
5646 }
7b732a75 5647
7730d865 5648 /*
76369139 5649 * If we have rb pages ensure they're a power-of-two number, so we
7730d865
PZ
5650 * can do bitmasks instead of modulo.
5651 */
2ed11312 5652 if (nr_pages != 0 && !is_power_of_2(nr_pages))
37d81828
PM
5653 return -EINVAL;
5654
7b732a75 5655 if (vma_size != PAGE_SIZE * (1 + nr_pages))
37d81828
PM
5656 return -EINVAL;
5657
cdd6c482 5658 WARN_ON_ONCE(event->ctx->parent_ctx);
9bb5d40c 5659again:
cdd6c482 5660 mutex_lock(&event->mmap_mutex);
76369139 5661 if (event->rb) {
9bb5d40c 5662 if (event->rb->nr_pages != nr_pages) {
ebb3c4c4 5663 ret = -EINVAL;
9bb5d40c
PZ
5664 goto unlock;
5665 }
5666
5667 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5668 /*
5669 * Raced against perf_mmap_close() through
5670 * perf_event_set_output(). Try again, hope for better
5671 * luck.
5672 */
5673 mutex_unlock(&event->mmap_mutex);
5674 goto again;
5675 }
5676
ebb3c4c4
PZ
5677 goto unlock;
5678 }
5679
789f90fc 5680 user_extra = nr_pages + 1;
45bfb2e5
PZ
5681
5682accounting:
cdd6c482 5683 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
a3862d3f
IM
5684
5685 /*
5686 * Increase the limit linearly with more CPUs:
5687 */
5688 user_lock_limit *= num_online_cpus();
5689
789f90fc 5690 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
c5078f78 5691
789f90fc
PZ
5692 if (user_locked > user_lock_limit)
5693 extra = user_locked - user_lock_limit;
7b732a75 5694
78d7d407 5695 lock_limit = rlimit(RLIMIT_MEMLOCK);
7b732a75 5696 lock_limit >>= PAGE_SHIFT;
bc3e53f6 5697 locked = vma->vm_mm->pinned_vm + extra;
7b732a75 5698
459ec28a
IM
5699 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5700 !capable(CAP_IPC_LOCK)) {
ebb3c4c4
PZ
5701 ret = -EPERM;
5702 goto unlock;
5703 }
7b732a75 5704
45bfb2e5 5705 WARN_ON(!rb && event->rb);
906010b2 5706
d57e34fd 5707 if (vma->vm_flags & VM_WRITE)
76369139 5708 flags |= RING_BUFFER_WRITABLE;
d57e34fd 5709
76369139 5710 if (!rb) {
45bfb2e5
PZ
5711 rb = rb_alloc(nr_pages,
5712 event->attr.watermark ? event->attr.wakeup_watermark : 0,
5713 event->cpu, flags);
26cb63ad 5714
45bfb2e5
PZ
5715 if (!rb) {
5716 ret = -ENOMEM;
5717 goto unlock;
5718 }
43a21ea8 5719
45bfb2e5
PZ
5720 atomic_set(&rb->mmap_count, 1);
5721 rb->mmap_user = get_current_user();
5722 rb->mmap_locked = extra;
26cb63ad 5723
45bfb2e5 5724 ring_buffer_attach(event, rb);
ac9721f3 5725
45bfb2e5
PZ
5726 perf_event_init_userpage(event);
5727 perf_event_update_userpage(event);
5728 } else {
1a594131
AS
5729 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5730 event->attr.aux_watermark, flags);
45bfb2e5
PZ
5731 if (!ret)
5732 rb->aux_mmap_locked = extra;
5733 }
9a0f05cb 5734
ebb3c4c4 5735unlock:
45bfb2e5
PZ
5736 if (!ret) {
5737 atomic_long_add(user_extra, &user->locked_vm);
5738 vma->vm_mm->pinned_vm += extra;
5739
ac9721f3 5740 atomic_inc(&event->mmap_count);
45bfb2e5
PZ
5741 } else if (rb) {
5742 atomic_dec(&rb->mmap_count);
5743 }
5744aux_unlock:
cdd6c482 5745 mutex_unlock(&event->mmap_mutex);
37d81828 5746
9bb5d40c
PZ
5747 /*
5748 * Since pinned accounting is per vm we cannot allow fork() to copy our
5749 * vma.
5750 */
26cb63ad 5751 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
37d81828 5752 vma->vm_ops = &perf_mmap_vmops;
7b732a75 5753
1e0fb9ec 5754 if (event->pmu->event_mapped)
bfe33492 5755 event->pmu->event_mapped(event, vma->vm_mm);
1e0fb9ec 5756
7b732a75 5757 return ret;
37d81828
PM
5758}
5759
3c446b3d
PZ
5760static int perf_fasync(int fd, struct file *filp, int on)
5761{
496ad9aa 5762 struct inode *inode = file_inode(filp);
cdd6c482 5763 struct perf_event *event = filp->private_data;
3c446b3d
PZ
5764 int retval;
5765
5955102c 5766 inode_lock(inode);
cdd6c482 5767 retval = fasync_helper(fd, filp, on, &event->fasync);
5955102c 5768 inode_unlock(inode);
3c446b3d
PZ
5769
5770 if (retval < 0)
5771 return retval;
5772
5773 return 0;
5774}
5775
0793a61d 5776static const struct file_operations perf_fops = {
3326c1ce 5777 .llseek = no_llseek,
0793a61d
TG
5778 .release = perf_release,
5779 .read = perf_read,
5780 .poll = perf_poll,
d859e29f 5781 .unlocked_ioctl = perf_ioctl,
b3f20785 5782 .compat_ioctl = perf_compat_ioctl,
37d81828 5783 .mmap = perf_mmap,
3c446b3d 5784 .fasync = perf_fasync,
0793a61d
TG
5785};
5786
925d519a 5787/*
cdd6c482 5788 * Perf event wakeup
925d519a
PZ
5789 *
5790 * If there's data, ensure we set the poll() state and publish everything
5791 * to user-space before waking everybody up.
5792 */
5793
fed66e2c
PZ
5794static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5795{
5796 /* only the parent has fasync state */
5797 if (event->parent)
5798 event = event->parent;
5799 return &event->fasync;
5800}
5801
cdd6c482 5802void perf_event_wakeup(struct perf_event *event)
925d519a 5803{
10c6db11 5804 ring_buffer_wakeup(event);
4c9e2542 5805
cdd6c482 5806 if (event->pending_kill) {
fed66e2c 5807 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
cdd6c482 5808 event->pending_kill = 0;
4c9e2542 5809 }
925d519a
PZ
5810}
5811
e360adbe 5812static void perf_pending_event(struct irq_work *entry)
79f14641 5813{
cdd6c482
IM
5814 struct perf_event *event = container_of(entry,
5815 struct perf_event, pending);
d525211f
PZ
5816 int rctx;
5817
5818 rctx = perf_swevent_get_recursion_context();
5819 /*
5820 * If we 'fail' here, that's OK, it means recursion is already disabled
5821 * and we won't recurse 'further'.
5822 */
79f14641 5823
cdd6c482
IM
5824 if (event->pending_disable) {
5825 event->pending_disable = 0;
fae3fde6 5826 perf_event_disable_local(event);
79f14641
PZ
5827 }
5828
cdd6c482
IM
5829 if (event->pending_wakeup) {
5830 event->pending_wakeup = 0;
5831 perf_event_wakeup(event);
79f14641 5832 }
d525211f
PZ
5833
5834 if (rctx >= 0)
5835 perf_swevent_put_recursion_context(rctx);
79f14641
PZ
5836}
5837
39447b38
ZY
5838/*
5839 * We assume there is only KVM supporting the callbacks.
5840 * Later on, we might change it to a list if there is
5841 * another virtualization implementation supporting the callbacks.
5842 */
5843struct perf_guest_info_callbacks *perf_guest_cbs;
5844
5845int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5846{
5847 perf_guest_cbs = cbs;
5848 return 0;
5849}
5850EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5851
5852int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5853{
5854 perf_guest_cbs = NULL;
5855 return 0;
5856}
5857EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5858
4018994f
JO
5859static void
5860perf_output_sample_regs(struct perf_output_handle *handle,
5861 struct pt_regs *regs, u64 mask)
5862{
5863 int bit;
29dd3288 5864 DECLARE_BITMAP(_mask, 64);
4018994f 5865
29dd3288
MS
5866 bitmap_from_u64(_mask, mask);
5867 for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
4018994f
JO
5868 u64 val;
5869
5870 val = perf_reg_value(regs, bit);
5871 perf_output_put(handle, val);
5872 }
5873}
5874
60e2364e 5875static void perf_sample_regs_user(struct perf_regs *regs_user,
88a7c26a
AL
5876 struct pt_regs *regs,
5877 struct pt_regs *regs_user_copy)
4018994f 5878{
88a7c26a
AL
5879 if (user_mode(regs)) {
5880 regs_user->abi = perf_reg_abi(current);
2565711f 5881 regs_user->regs = regs;
88a7c26a
AL
5882 } else if (current->mm) {
5883 perf_get_regs_user(regs_user, regs, regs_user_copy);
2565711f
PZ
5884 } else {
5885 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5886 regs_user->regs = NULL;
4018994f
JO
5887 }
5888}
5889
60e2364e
SE
5890static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5891 struct pt_regs *regs)
5892{
5893 regs_intr->regs = regs;
5894 regs_intr->abi = perf_reg_abi(current);
5895}
5896
5897
c5ebcedb
JO
5898/*
5899 * Get remaining task size from user stack pointer.
5900 *
5901 * It'd be better to take stack vma map and limit this more
5902 * precisly, but there's no way to get it safely under interrupt,
5903 * so using TASK_SIZE as limit.
5904 */
5905static u64 perf_ustack_task_size(struct pt_regs *regs)
5906{
5907 unsigned long addr = perf_user_stack_pointer(regs);
5908
5909 if (!addr || addr >= TASK_SIZE)
5910 return 0;
5911
5912 return TASK_SIZE - addr;
5913}
5914
5915static u16
5916perf_sample_ustack_size(u16 stack_size, u16 header_size,
5917 struct pt_regs *regs)
5918{
5919 u64 task_size;
5920
5921 /* No regs, no stack pointer, no dump. */
5922 if (!regs)
5923 return 0;
5924
5925 /*
5926 * Check if we fit in with the requested stack size into the:
5927 * - TASK_SIZE
5928 * If we don't, we limit the size to the TASK_SIZE.
5929 *
5930 * - remaining sample size
5931 * If we don't, we customize the stack size to
5932 * fit in to the remaining sample size.
5933 */
5934
5935 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5936 stack_size = min(stack_size, (u16) task_size);
5937
5938 /* Current header size plus static size and dynamic size. */
5939 header_size += 2 * sizeof(u64);
5940
5941 /* Do we fit in with the current stack dump size? */
5942 if ((u16) (header_size + stack_size) < header_size) {
5943 /*
5944 * If we overflow the maximum size for the sample,
5945 * we customize the stack dump size to fit in.
5946 */
5947 stack_size = USHRT_MAX - header_size - sizeof(u64);
5948 stack_size = round_up(stack_size, sizeof(u64));
5949 }
5950
5951 return stack_size;
5952}
5953
5954static void
5955perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5956 struct pt_regs *regs)
5957{
5958 /* Case of a kernel thread, nothing to dump */
5959 if (!regs) {
5960 u64 size = 0;
5961 perf_output_put(handle, size);
5962 } else {
5963 unsigned long sp;
5964 unsigned int rem;
5965 u64 dyn_size;
02e18447 5966 mm_segment_t fs;
c5ebcedb
JO
5967
5968 /*
5969 * We dump:
5970 * static size
5971 * - the size requested by user or the best one we can fit
5972 * in to the sample max size
5973 * data
5974 * - user stack dump data
5975 * dynamic size
5976 * - the actual dumped size
5977 */
5978
5979 /* Static size. */
5980 perf_output_put(handle, dump_size);
5981
5982 /* Data. */
5983 sp = perf_user_stack_pointer(regs);
02e18447
YC
5984 fs = get_fs();
5985 set_fs(USER_DS);
c5ebcedb 5986 rem = __output_copy_user(handle, (void *) sp, dump_size);
02e18447 5987 set_fs(fs);
c5ebcedb
JO
5988 dyn_size = dump_size - rem;
5989
5990 perf_output_skip(handle, rem);
5991
5992 /* Dynamic size. */
5993 perf_output_put(handle, dyn_size);
5994 }
5995}
5996
c980d109
ACM
5997static void __perf_event_header__init_id(struct perf_event_header *header,
5998 struct perf_sample_data *data,
5999 struct perf_event *event)
6844c09d
ACM
6000{
6001 u64 sample_type = event->attr.sample_type;
6002
6003 data->type = sample_type;
6004 header->size += event->id_header_size;
6005
6006 if (sample_type & PERF_SAMPLE_TID) {
6007 /* namespace issues */
6008 data->tid_entry.pid = perf_event_pid(event, current);
6009 data->tid_entry.tid = perf_event_tid(event, current);
6010 }
6011
6012 if (sample_type & PERF_SAMPLE_TIME)
34f43927 6013 data->time = perf_event_clock(event);
6844c09d 6014
ff3d527c 6015 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6844c09d
ACM
6016 data->id = primary_event_id(event);
6017
6018 if (sample_type & PERF_SAMPLE_STREAM_ID)
6019 data->stream_id = event->id;
6020
6021 if (sample_type & PERF_SAMPLE_CPU) {
6022 data->cpu_entry.cpu = raw_smp_processor_id();
6023 data->cpu_entry.reserved = 0;
6024 }
6025}
6026
76369139
FW
6027void perf_event_header__init_id(struct perf_event_header *header,
6028 struct perf_sample_data *data,
6029 struct perf_event *event)
c980d109
ACM
6030{
6031 if (event->attr.sample_id_all)
6032 __perf_event_header__init_id(header, data, event);
6033}
6034
6035static void __perf_event__output_id_sample(struct perf_output_handle *handle,
6036 struct perf_sample_data *data)
6037{
6038 u64 sample_type = data->type;
6039
6040 if (sample_type & PERF_SAMPLE_TID)
6041 perf_output_put(handle, data->tid_entry);
6042
6043 if (sample_type & PERF_SAMPLE_TIME)
6044 perf_output_put(handle, data->time);
6045
6046 if (sample_type & PERF_SAMPLE_ID)
6047 perf_output_put(handle, data->id);
6048
6049 if (sample_type & PERF_SAMPLE_STREAM_ID)
6050 perf_output_put(handle, data->stream_id);
6051
6052 if (sample_type & PERF_SAMPLE_CPU)
6053 perf_output_put(handle, data->cpu_entry);
ff3d527c
AH
6054
6055 if (sample_type & PERF_SAMPLE_IDENTIFIER)
6056 perf_output_put(handle, data->id);
c980d109
ACM
6057}
6058
76369139
FW
6059void perf_event__output_id_sample(struct perf_event *event,
6060 struct perf_output_handle *handle,
6061 struct perf_sample_data *sample)
c980d109
ACM
6062{
6063 if (event->attr.sample_id_all)
6064 __perf_event__output_id_sample(handle, sample);
6065}
6066
3dab77fb 6067static void perf_output_read_one(struct perf_output_handle *handle,
eed01528
SE
6068 struct perf_event *event,
6069 u64 enabled, u64 running)
3dab77fb 6070{
cdd6c482 6071 u64 read_format = event->attr.read_format;
3dab77fb
PZ
6072 u64 values[4];
6073 int n = 0;
6074
b5e58793 6075 values[n++] = perf_event_count(event);
3dab77fb 6076 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
eed01528 6077 values[n++] = enabled +
cdd6c482 6078 atomic64_read(&event->child_total_time_enabled);
3dab77fb
PZ
6079 }
6080 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
eed01528 6081 values[n++] = running +
cdd6c482 6082 atomic64_read(&event->child_total_time_running);
3dab77fb
PZ
6083 }
6084 if (read_format & PERF_FORMAT_ID)
cdd6c482 6085 values[n++] = primary_event_id(event);
3dab77fb 6086
76369139 6087 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
6088}
6089
3dab77fb 6090static void perf_output_read_group(struct perf_output_handle *handle,
eed01528
SE
6091 struct perf_event *event,
6092 u64 enabled, u64 running)
3dab77fb 6093{
cdd6c482
IM
6094 struct perf_event *leader = event->group_leader, *sub;
6095 u64 read_format = event->attr.read_format;
3dab77fb
PZ
6096 u64 values[5];
6097 int n = 0;
6098
6099 values[n++] = 1 + leader->nr_siblings;
6100
6101 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
eed01528 6102 values[n++] = enabled;
3dab77fb
PZ
6103
6104 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
eed01528 6105 values[n++] = running;
3dab77fb 6106
9e5b127d
PZ
6107 if ((leader != event) &&
6108 (leader->state == PERF_EVENT_STATE_ACTIVE))
3dab77fb
PZ
6109 leader->pmu->read(leader);
6110
b5e58793 6111 values[n++] = perf_event_count(leader);
3dab77fb 6112 if (read_format & PERF_FORMAT_ID)
cdd6c482 6113 values[n++] = primary_event_id(leader);
3dab77fb 6114
76369139 6115 __output_copy(handle, values, n * sizeof(u64));
3dab77fb 6116
edb39592 6117 for_each_sibling_event(sub, leader) {
3dab77fb
PZ
6118 n = 0;
6119
6f5ab001
JO
6120 if ((sub != event) &&
6121 (sub->state == PERF_EVENT_STATE_ACTIVE))
3dab77fb
PZ
6122 sub->pmu->read(sub);
6123
b5e58793 6124 values[n++] = perf_event_count(sub);
3dab77fb 6125 if (read_format & PERF_FORMAT_ID)
cdd6c482 6126 values[n++] = primary_event_id(sub);
3dab77fb 6127
76369139 6128 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
6129 }
6130}
6131
eed01528
SE
6132#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
6133 PERF_FORMAT_TOTAL_TIME_RUNNING)
6134
ba5213ae
PZ
6135/*
6136 * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
6137 *
6138 * The problem is that its both hard and excessively expensive to iterate the
6139 * child list, not to mention that its impossible to IPI the children running
6140 * on another CPU, from interrupt/NMI context.
6141 */
3dab77fb 6142static void perf_output_read(struct perf_output_handle *handle,
cdd6c482 6143 struct perf_event *event)
3dab77fb 6144{
e3f3541c 6145 u64 enabled = 0, running = 0, now;
eed01528
SE
6146 u64 read_format = event->attr.read_format;
6147
6148 /*
6149 * compute total_time_enabled, total_time_running
6150 * based on snapshot values taken when the event
6151 * was last scheduled in.
6152 *
6153 * we cannot simply called update_context_time()
6154 * because of locking issue as we are called in
6155 * NMI context
6156 */
c4794295 6157 if (read_format & PERF_FORMAT_TOTAL_TIMES)
e3f3541c 6158 calc_timer_values(event, &now, &enabled, &running);
eed01528 6159
cdd6c482 6160 if (event->attr.read_format & PERF_FORMAT_GROUP)
eed01528 6161 perf_output_read_group(handle, event, enabled, running);
3dab77fb 6162 else
eed01528 6163 perf_output_read_one(handle, event, enabled, running);
3dab77fb
PZ
6164}
6165
5622f295
MM
6166void perf_output_sample(struct perf_output_handle *handle,
6167 struct perf_event_header *header,
6168 struct perf_sample_data *data,
cdd6c482 6169 struct perf_event *event)
5622f295
MM
6170{
6171 u64 sample_type = data->type;
6172
6173 perf_output_put(handle, *header);
6174
ff3d527c
AH
6175 if (sample_type & PERF_SAMPLE_IDENTIFIER)
6176 perf_output_put(handle, data->id);
6177
5622f295
MM
6178 if (sample_type & PERF_SAMPLE_IP)
6179 perf_output_put(handle, data->ip);
6180
6181 if (sample_type & PERF_SAMPLE_TID)
6182 perf_output_put(handle, data->tid_entry);
6183
6184 if (sample_type & PERF_SAMPLE_TIME)
6185 perf_output_put(handle, data->time);
6186
6187 if (sample_type & PERF_SAMPLE_ADDR)
6188 perf_output_put(handle, data->addr);
6189
6190 if (sample_type & PERF_SAMPLE_ID)
6191 perf_output_put(handle, data->id);
6192
6193 if (sample_type & PERF_SAMPLE_STREAM_ID)
6194 perf_output_put(handle, data->stream_id);
6195
6196 if (sample_type & PERF_SAMPLE_CPU)
6197 perf_output_put(handle, data->cpu_entry);
6198
6199 if (sample_type & PERF_SAMPLE_PERIOD)
6200 perf_output_put(handle, data->period);
6201
6202 if (sample_type & PERF_SAMPLE_READ)
cdd6c482 6203 perf_output_read(handle, event);
5622f295
MM
6204
6205 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
99e818cc 6206 int size = 1;
5622f295 6207
99e818cc
JO
6208 size += data->callchain->nr;
6209 size *= sizeof(u64);
6210 __output_copy(handle, data->callchain, size);
5622f295
MM
6211 }
6212
6213 if (sample_type & PERF_SAMPLE_RAW) {
7e3f977e
DB
6214 struct perf_raw_record *raw = data->raw;
6215
6216 if (raw) {
6217 struct perf_raw_frag *frag = &raw->frag;
6218
6219 perf_output_put(handle, raw->size);
6220 do {
6221 if (frag->copy) {
6222 __output_custom(handle, frag->copy,
6223 frag->data, frag->size);
6224 } else {
6225 __output_copy(handle, frag->data,
6226 frag->size);
6227 }
6228 if (perf_raw_frag_last(frag))
6229 break;
6230 frag = frag->next;
6231 } while (1);
6232 if (frag->pad)
6233 __output_skip(handle, NULL, frag->pad);
5622f295
MM
6234 } else {
6235 struct {
6236 u32 size;
6237 u32 data;
6238 } raw = {
6239 .size = sizeof(u32),
6240 .data = 0,
6241 };
6242 perf_output_put(handle, raw);
6243 }
6244 }
a7ac67ea 6245
bce38cd5
SE
6246 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6247 if (data->br_stack) {
6248 size_t size;
6249
6250 size = data->br_stack->nr
6251 * sizeof(struct perf_branch_entry);
6252
6253 perf_output_put(handle, data->br_stack->nr);
6254 perf_output_copy(handle, data->br_stack->entries, size);
6255 } else {
6256 /*
6257 * we always store at least the value of nr
6258 */
6259 u64 nr = 0;
6260 perf_output_put(handle, nr);
6261 }
6262 }
4018994f
JO
6263
6264 if (sample_type & PERF_SAMPLE_REGS_USER) {
6265 u64 abi = data->regs_user.abi;
6266
6267 /*
6268 * If there are no regs to dump, notice it through
6269 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6270 */
6271 perf_output_put(handle, abi);
6272
6273 if (abi) {
6274 u64 mask = event->attr.sample_regs_user;
6275 perf_output_sample_regs(handle,
6276 data->regs_user.regs,
6277 mask);
6278 }
6279 }
c5ebcedb 6280
a5cdd40c 6281 if (sample_type & PERF_SAMPLE_STACK_USER) {
c5ebcedb
JO
6282 perf_output_sample_ustack(handle,
6283 data->stack_user_size,
6284 data->regs_user.regs);
a5cdd40c 6285 }
c3feedf2
AK
6286
6287 if (sample_type & PERF_SAMPLE_WEIGHT)
6288 perf_output_put(handle, data->weight);
d6be9ad6
SE
6289
6290 if (sample_type & PERF_SAMPLE_DATA_SRC)
6291 perf_output_put(handle, data->data_src.val);
a5cdd40c 6292
fdfbbd07
AK
6293 if (sample_type & PERF_SAMPLE_TRANSACTION)
6294 perf_output_put(handle, data->txn);
6295
60e2364e
SE
6296 if (sample_type & PERF_SAMPLE_REGS_INTR) {
6297 u64 abi = data->regs_intr.abi;
6298 /*
6299 * If there are no regs to dump, notice it through
6300 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6301 */
6302 perf_output_put(handle, abi);
6303
6304 if (abi) {
6305 u64 mask = event->attr.sample_regs_intr;
6306
6307 perf_output_sample_regs(handle,
6308 data->regs_intr.regs,
6309 mask);
6310 }
6311 }
6312
fc7ce9c7
KL
6313 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6314 perf_output_put(handle, data->phys_addr);
6315
a5cdd40c
PZ
6316 if (!event->attr.watermark) {
6317 int wakeup_events = event->attr.wakeup_events;
6318
6319 if (wakeup_events) {
6320 struct ring_buffer *rb = handle->rb;
6321 int events = local_inc_return(&rb->events);
6322
6323 if (events >= wakeup_events) {
6324 local_sub(wakeup_events, &rb->events);
6325 local_inc(&rb->wakeup);
6326 }
6327 }
6328 }
5622f295
MM
6329}
6330
fc7ce9c7
KL
6331static u64 perf_virt_to_phys(u64 virt)
6332{
6333 u64 phys_addr = 0;
6334 struct page *p = NULL;
6335
6336 if (!virt)
6337 return 0;
6338
6339 if (virt >= TASK_SIZE) {
6340 /* If it's vmalloc()d memory, leave phys_addr as 0 */
6341 if (virt_addr_valid((void *)(uintptr_t)virt) &&
6342 !(virt >= VMALLOC_START && virt < VMALLOC_END))
6343 phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
6344 } else {
6345 /*
6346 * Walking the pages tables for user address.
6347 * Interrupts are disabled, so it prevents any tear down
6348 * of the page tables.
6349 * Try IRQ-safe __get_user_pages_fast first.
6350 * If failed, leave phys_addr as 0.
6351 */
6352 if ((current->mm != NULL) &&
6353 (__get_user_pages_fast(virt, 1, 0, &p) == 1))
6354 phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
6355
6356 if (p)
6357 put_page(p);
6358 }
6359
6360 return phys_addr;
6361}
6362
99e818cc
JO
6363static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
6364
6cbc304f 6365struct perf_callchain_entry *
8cf7e0e2
JO
6366perf_callchain(struct perf_event *event, struct pt_regs *regs)
6367{
6368 bool kernel = !event->attr.exclude_callchain_kernel;
6369 bool user = !event->attr.exclude_callchain_user;
6370 /* Disallow cross-task user callchains. */
6371 bool crosstask = event->ctx->task && event->ctx->task != current;
6372 const u32 max_stack = event->attr.sample_max_stack;
99e818cc 6373 struct perf_callchain_entry *callchain;
8cf7e0e2
JO
6374
6375 if (!kernel && !user)
99e818cc 6376 return &__empty_callchain;
8cf7e0e2 6377
99e818cc
JO
6378 callchain = get_perf_callchain(regs, 0, kernel, user,
6379 max_stack, crosstask, true);
6380 return callchain ?: &__empty_callchain;
8cf7e0e2
JO
6381}
6382
5622f295
MM
6383void perf_prepare_sample(struct perf_event_header *header,
6384 struct perf_sample_data *data,
cdd6c482 6385 struct perf_event *event,
5622f295 6386 struct pt_regs *regs)
7b732a75 6387{
cdd6c482 6388 u64 sample_type = event->attr.sample_type;
7b732a75 6389
cdd6c482 6390 header->type = PERF_RECORD_SAMPLE;
c320c7b7 6391 header->size = sizeof(*header) + event->header_size;
5622f295
MM
6392
6393 header->misc = 0;
6394 header->misc |= perf_misc_flags(regs);
6fab0192 6395
c980d109 6396 __perf_event_header__init_id(header, data, event);
6844c09d 6397
c320c7b7 6398 if (sample_type & PERF_SAMPLE_IP)
5622f295
MM
6399 data->ip = perf_instruction_pointer(regs);
6400
b23f3325 6401 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5622f295 6402 int size = 1;
394ee076 6403
6cbc304f
PZ
6404 if (!(sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY))
6405 data->callchain = perf_callchain(event, regs);
6406
99e818cc 6407 size += data->callchain->nr;
5622f295
MM
6408
6409 header->size += size * sizeof(u64);
394ee076
PZ
6410 }
6411
3a43ce68 6412 if (sample_type & PERF_SAMPLE_RAW) {
7e3f977e
DB
6413 struct perf_raw_record *raw = data->raw;
6414 int size;
6415
6416 if (raw) {
6417 struct perf_raw_frag *frag = &raw->frag;
6418 u32 sum = 0;
6419
6420 do {
6421 sum += frag->size;
6422 if (perf_raw_frag_last(frag))
6423 break;
6424 frag = frag->next;
6425 } while (1);
6426
6427 size = round_up(sum + sizeof(u32), sizeof(u64));
6428 raw->size = size - sizeof(u32);
6429 frag->pad = raw->size - sum;
6430 } else {
6431 size = sizeof(u64);
6432 }
a044560c 6433
7e3f977e 6434 header->size += size;
7f453c24 6435 }
bce38cd5
SE
6436
6437 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6438 int size = sizeof(u64); /* nr */
6439 if (data->br_stack) {
6440 size += data->br_stack->nr
6441 * sizeof(struct perf_branch_entry);
6442 }
6443 header->size += size;
6444 }
4018994f 6445
2565711f 6446 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
88a7c26a
AL
6447 perf_sample_regs_user(&data->regs_user, regs,
6448 &data->regs_user_copy);
2565711f 6449
4018994f
JO
6450 if (sample_type & PERF_SAMPLE_REGS_USER) {
6451 /* regs dump ABI info */
6452 int size = sizeof(u64);
6453
4018994f
JO
6454 if (data->regs_user.regs) {
6455 u64 mask = event->attr.sample_regs_user;
6456 size += hweight64(mask) * sizeof(u64);
6457 }
6458
6459 header->size += size;
6460 }
c5ebcedb
JO
6461
6462 if (sample_type & PERF_SAMPLE_STACK_USER) {
6463 /*
6464 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
6465 * processed as the last one or have additional check added
6466 * in case new sample type is added, because we could eat
6467 * up the rest of the sample size.
6468 */
c5ebcedb
JO
6469 u16 stack_size = event->attr.sample_stack_user;
6470 u16 size = sizeof(u64);
6471
c5ebcedb 6472 stack_size = perf_sample_ustack_size(stack_size, header->size,
2565711f 6473 data->regs_user.regs);
c5ebcedb
JO
6474
6475 /*
6476 * If there is something to dump, add space for the dump
6477 * itself and for the field that tells the dynamic size,
6478 * which is how many have been actually dumped.
6479 */
6480 if (stack_size)
6481 size += sizeof(u64) + stack_size;
6482
6483 data->stack_user_size = stack_size;
6484 header->size += size;
6485 }
60e2364e
SE
6486
6487 if (sample_type & PERF_SAMPLE_REGS_INTR) {
6488 /* regs dump ABI info */
6489 int size = sizeof(u64);
6490
6491 perf_sample_regs_intr(&data->regs_intr, regs);
6492
6493 if (data->regs_intr.regs) {
6494 u64 mask = event->attr.sample_regs_intr;
6495
6496 size += hweight64(mask) * sizeof(u64);
6497 }
6498
6499 header->size += size;
6500 }
fc7ce9c7
KL
6501
6502 if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6503 data->phys_addr = perf_virt_to_phys(data->addr);
5622f295 6504}
7f453c24 6505
56201969 6506static __always_inline int
9ecda41a
WN
6507__perf_event_output(struct perf_event *event,
6508 struct perf_sample_data *data,
6509 struct pt_regs *regs,
6510 int (*output_begin)(struct perf_output_handle *,
6511 struct perf_event *,
6512 unsigned int))
5622f295
MM
6513{
6514 struct perf_output_handle handle;
6515 struct perf_event_header header;
56201969 6516 int err;
689802b2 6517
927c7a9e
FW
6518 /* protect the callchain buffers */
6519 rcu_read_lock();
6520
cdd6c482 6521 perf_prepare_sample(&header, data, event, regs);
5c148194 6522
56201969
ACM
6523 err = output_begin(&handle, event, header.size);
6524 if (err)
927c7a9e 6525 goto exit;
0322cd6e 6526
cdd6c482 6527 perf_output_sample(&handle, &header, data, event);
f413cdb8 6528
8a057d84 6529 perf_output_end(&handle);
927c7a9e
FW
6530
6531exit:
6532 rcu_read_unlock();
56201969 6533 return err;
0322cd6e
PZ
6534}
6535
9ecda41a
WN
6536void
6537perf_event_output_forward(struct perf_event *event,
6538 struct perf_sample_data *data,
6539 struct pt_regs *regs)
6540{
6541 __perf_event_output(event, data, regs, perf_output_begin_forward);
6542}
6543
6544void
6545perf_event_output_backward(struct perf_event *event,
6546 struct perf_sample_data *data,
6547 struct pt_regs *regs)
6548{
6549 __perf_event_output(event, data, regs, perf_output_begin_backward);
6550}
6551
56201969 6552int
9ecda41a
WN
6553perf_event_output(struct perf_event *event,
6554 struct perf_sample_data *data,
6555 struct pt_regs *regs)
6556{
56201969 6557 return __perf_event_output(event, data, regs, perf_output_begin);
9ecda41a
WN
6558}
6559
38b200d6 6560/*
cdd6c482 6561 * read event_id
38b200d6
PZ
6562 */
6563
6564struct perf_read_event {
6565 struct perf_event_header header;
6566
6567 u32 pid;
6568 u32 tid;
38b200d6
PZ
6569};
6570
6571static void
cdd6c482 6572perf_event_read_event(struct perf_event *event,
38b200d6
PZ
6573 struct task_struct *task)
6574{
6575 struct perf_output_handle handle;
c980d109 6576 struct perf_sample_data sample;
dfc65094 6577 struct perf_read_event read_event = {
38b200d6 6578 .header = {
cdd6c482 6579 .type = PERF_RECORD_READ,
38b200d6 6580 .misc = 0,
c320c7b7 6581 .size = sizeof(read_event) + event->read_size,
38b200d6 6582 },
cdd6c482
IM
6583 .pid = perf_event_pid(event, task),
6584 .tid = perf_event_tid(event, task),
38b200d6 6585 };
3dab77fb 6586 int ret;
38b200d6 6587
c980d109 6588 perf_event_header__init_id(&read_event.header, &sample, event);
a7ac67ea 6589 ret = perf_output_begin(&handle, event, read_event.header.size);
38b200d6
PZ
6590 if (ret)
6591 return;
6592
dfc65094 6593 perf_output_put(&handle, read_event);
cdd6c482 6594 perf_output_read(&handle, event);
c980d109 6595 perf_event__output_id_sample(event, &handle, &sample);
3dab77fb 6596
38b200d6
PZ
6597 perf_output_end(&handle);
6598}
6599
aab5b71e 6600typedef void (perf_iterate_f)(struct perf_event *event, void *data);
52d857a8
JO
6601
6602static void
aab5b71e
PZ
6603perf_iterate_ctx(struct perf_event_context *ctx,
6604 perf_iterate_f output,
b73e4fef 6605 void *data, bool all)
52d857a8
JO
6606{
6607 struct perf_event *event;
6608
6609 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
b73e4fef
AS
6610 if (!all) {
6611 if (event->state < PERF_EVENT_STATE_INACTIVE)
6612 continue;
6613 if (!event_filter_match(event))
6614 continue;
6615 }
6616
67516844 6617 output(event, data);
52d857a8
JO
6618 }
6619}
6620
aab5b71e 6621static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
f2fb6bef
KL
6622{
6623 struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
6624 struct perf_event *event;
6625
6626 list_for_each_entry_rcu(event, &pel->list, sb_list) {
0b8f1e2e
PZ
6627 /*
6628 * Skip events that are not fully formed yet; ensure that
6629 * if we observe event->ctx, both event and ctx will be
6630 * complete enough. See perf_install_in_context().
6631 */
6632 if (!smp_load_acquire(&event->ctx))
6633 continue;
6634
f2fb6bef
KL
6635 if (event->state < PERF_EVENT_STATE_INACTIVE)
6636 continue;
6637 if (!event_filter_match(event))
6638 continue;
6639 output(event, data);
6640 }
6641}
6642
aab5b71e
PZ
6643/*
6644 * Iterate all events that need to receive side-band events.
6645 *
6646 * For new callers; ensure that account_pmu_sb_event() includes
6647 * your event, otherwise it might not get delivered.
6648 */
52d857a8 6649static void
aab5b71e 6650perf_iterate_sb(perf_iterate_f output, void *data,
52d857a8
JO
6651 struct perf_event_context *task_ctx)
6652{
52d857a8 6653 struct perf_event_context *ctx;
52d857a8
JO
6654 int ctxn;
6655
aab5b71e
PZ
6656 rcu_read_lock();
6657 preempt_disable();
6658
4e93ad60 6659 /*
aab5b71e
PZ
6660 * If we have task_ctx != NULL we only notify the task context itself.
6661 * The task_ctx is set only for EXIT events before releasing task
4e93ad60
JO
6662 * context.
6663 */
6664 if (task_ctx) {
aab5b71e
PZ
6665 perf_iterate_ctx(task_ctx, output, data, false);
6666 goto done;
4e93ad60
JO
6667 }
6668
aab5b71e 6669 perf_iterate_sb_cpu(output, data);
f2fb6bef
KL
6670
6671 for_each_task_context_nr(ctxn) {
52d857a8
JO
6672 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6673 if (ctx)
aab5b71e 6674 perf_iterate_ctx(ctx, output, data, false);
52d857a8 6675 }
aab5b71e 6676done:
f2fb6bef 6677 preempt_enable();
52d857a8 6678 rcu_read_unlock();
95ff4ca2
AS
6679}
6680
375637bc
AS
6681/*
6682 * Clear all file-based filters at exec, they'll have to be
6683 * re-instated when/if these objects are mmapped again.
6684 */
6685static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
6686{
6687 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6688 struct perf_addr_filter *filter;
6689 unsigned int restart = 0, count = 0;
6690 unsigned long flags;
6691
6692 if (!has_addr_filter(event))
6693 return;
6694
6695 raw_spin_lock_irqsave(&ifh->lock, flags);
6696 list_for_each_entry(filter, &ifh->list, entry) {
9511bce9 6697 if (filter->path.dentry) {
c60f83b8
AS
6698 event->addr_filter_ranges[count].start = 0;
6699 event->addr_filter_ranges[count].size = 0;
375637bc
AS
6700 restart++;
6701 }
6702
6703 count++;
6704 }
6705
6706 if (restart)
6707 event->addr_filters_gen++;
6708 raw_spin_unlock_irqrestore(&ifh->lock, flags);
6709
6710 if (restart)
767ae086 6711 perf_event_stop(event, 1);
375637bc
AS
6712}
6713
6714void perf_event_exec(void)
6715{
6716 struct perf_event_context *ctx;
6717 int ctxn;
6718
6719 rcu_read_lock();
6720 for_each_task_context_nr(ctxn) {
6721 ctx = current->perf_event_ctxp[ctxn];
6722 if (!ctx)
6723 continue;
6724
6725 perf_event_enable_on_exec(ctxn);
6726
aab5b71e 6727 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
375637bc
AS
6728 true);
6729 }
6730 rcu_read_unlock();
6731}
6732
95ff4ca2
AS
6733struct remote_output {
6734 struct ring_buffer *rb;
6735 int err;
6736};
6737
6738static void __perf_event_output_stop(struct perf_event *event, void *data)
6739{
6740 struct perf_event *parent = event->parent;
6741 struct remote_output *ro = data;
6742 struct ring_buffer *rb = ro->rb;
375637bc
AS
6743 struct stop_event_data sd = {
6744 .event = event,
6745 };
95ff4ca2
AS
6746
6747 if (!has_aux(event))
6748 return;
6749
6750 if (!parent)
6751 parent = event;
6752
6753 /*
6754 * In case of inheritance, it will be the parent that links to the
767ae086
AS
6755 * ring-buffer, but it will be the child that's actually using it.
6756 *
6757 * We are using event::rb to determine if the event should be stopped,
6758 * however this may race with ring_buffer_attach() (through set_output),
6759 * which will make us skip the event that actually needs to be stopped.
6760 * So ring_buffer_attach() has to stop an aux event before re-assigning
6761 * its rb pointer.
95ff4ca2
AS
6762 */
6763 if (rcu_dereference(parent->rb) == rb)
375637bc 6764 ro->err = __perf_event_stop(&sd);
95ff4ca2
AS
6765}
6766
6767static int __perf_pmu_output_stop(void *info)
6768{
6769 struct perf_event *event = info;
6770 struct pmu *pmu = event->pmu;
8b6a3fe8 6771 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
95ff4ca2
AS
6772 struct remote_output ro = {
6773 .rb = event->rb,
6774 };
6775
6776 rcu_read_lock();
aab5b71e 6777 perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
95ff4ca2 6778 if (cpuctx->task_ctx)
aab5b71e 6779 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
b73e4fef 6780 &ro, false);
95ff4ca2
AS
6781 rcu_read_unlock();
6782
6783 return ro.err;
6784}
6785
6786static void perf_pmu_output_stop(struct perf_event *event)
6787{
6788 struct perf_event *iter;
6789 int err, cpu;
6790
6791restart:
6792 rcu_read_lock();
6793 list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6794 /*
6795 * For per-CPU events, we need to make sure that neither they
6796 * nor their children are running; for cpu==-1 events it's
6797 * sufficient to stop the event itself if it's active, since
6798 * it can't have children.
6799 */
6800 cpu = iter->cpu;
6801 if (cpu == -1)
6802 cpu = READ_ONCE(iter->oncpu);
6803
6804 if (cpu == -1)
6805 continue;
6806
6807 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6808 if (err == -EAGAIN) {
6809 rcu_read_unlock();
6810 goto restart;
6811 }
6812 }
6813 rcu_read_unlock();
52d857a8
JO
6814}
6815
60313ebe 6816/*
9f498cc5
PZ
6817 * task tracking -- fork/exit
6818 *
13d7a241 6819 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
60313ebe
PZ
6820 */
6821
9f498cc5 6822struct perf_task_event {
3a80b4a3 6823 struct task_struct *task;
cdd6c482 6824 struct perf_event_context *task_ctx;
60313ebe
PZ
6825
6826 struct {
6827 struct perf_event_header header;
6828
6829 u32 pid;
6830 u32 ppid;
9f498cc5
PZ
6831 u32 tid;
6832 u32 ptid;
393b2ad8 6833 u64 time;
cdd6c482 6834 } event_id;
60313ebe
PZ
6835};
6836
67516844
JO
6837static int perf_event_task_match(struct perf_event *event)
6838{
13d7a241
SE
6839 return event->attr.comm || event->attr.mmap ||
6840 event->attr.mmap2 || event->attr.mmap_data ||
6841 event->attr.task;
67516844
JO
6842}
6843
cdd6c482 6844static void perf_event_task_output(struct perf_event *event,
52d857a8 6845 void *data)
60313ebe 6846{
52d857a8 6847 struct perf_task_event *task_event = data;
60313ebe 6848 struct perf_output_handle handle;
c980d109 6849 struct perf_sample_data sample;
9f498cc5 6850 struct task_struct *task = task_event->task;
c980d109 6851 int ret, size = task_event->event_id.header.size;
8bb39f9a 6852
67516844
JO
6853 if (!perf_event_task_match(event))
6854 return;
6855
c980d109 6856 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
60313ebe 6857
c980d109 6858 ret = perf_output_begin(&handle, event,
a7ac67ea 6859 task_event->event_id.header.size);
ef60777c 6860 if (ret)
c980d109 6861 goto out;
60313ebe 6862
cdd6c482
IM
6863 task_event->event_id.pid = perf_event_pid(event, task);
6864 task_event->event_id.ppid = perf_event_pid(event, current);
60313ebe 6865
cdd6c482
IM
6866 task_event->event_id.tid = perf_event_tid(event, task);
6867 task_event->event_id.ptid = perf_event_tid(event, current);
9f498cc5 6868
34f43927
PZ
6869 task_event->event_id.time = perf_event_clock(event);
6870
cdd6c482 6871 perf_output_put(&handle, task_event->event_id);
393b2ad8 6872
c980d109
ACM
6873 perf_event__output_id_sample(event, &handle, &sample);
6874
60313ebe 6875 perf_output_end(&handle);
c980d109
ACM
6876out:
6877 task_event->event_id.header.size = size;
60313ebe
PZ
6878}
6879
cdd6c482
IM
6880static void perf_event_task(struct task_struct *task,
6881 struct perf_event_context *task_ctx,
3a80b4a3 6882 int new)
60313ebe 6883{
9f498cc5 6884 struct perf_task_event task_event;
60313ebe 6885
cdd6c482
IM
6886 if (!atomic_read(&nr_comm_events) &&
6887 !atomic_read(&nr_mmap_events) &&
6888 !atomic_read(&nr_task_events))
60313ebe
PZ
6889 return;
6890
9f498cc5 6891 task_event = (struct perf_task_event){
3a80b4a3
PZ
6892 .task = task,
6893 .task_ctx = task_ctx,
cdd6c482 6894 .event_id = {
60313ebe 6895 .header = {
cdd6c482 6896 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
573402db 6897 .misc = 0,
cdd6c482 6898 .size = sizeof(task_event.event_id),
60313ebe 6899 },
573402db
PZ
6900 /* .pid */
6901 /* .ppid */
9f498cc5
PZ
6902 /* .tid */
6903 /* .ptid */
34f43927 6904 /* .time */
60313ebe
PZ
6905 },
6906 };
6907
aab5b71e 6908 perf_iterate_sb(perf_event_task_output,
52d857a8
JO
6909 &task_event,
6910 task_ctx);
9f498cc5
PZ
6911}
6912
cdd6c482 6913void perf_event_fork(struct task_struct *task)
9f498cc5 6914{
cdd6c482 6915 perf_event_task(task, NULL, 1);
e4222673 6916 perf_event_namespaces(task);
60313ebe
PZ
6917}
6918
8d1b2d93
PZ
6919/*
6920 * comm tracking
6921 */
6922
6923struct perf_comm_event {
22a4f650
IM
6924 struct task_struct *task;
6925 char *comm;
8d1b2d93
PZ
6926 int comm_size;
6927
6928 struct {
6929 struct perf_event_header header;
6930
6931 u32 pid;
6932 u32 tid;
cdd6c482 6933 } event_id;
8d1b2d93
PZ
6934};
6935
67516844
JO
6936static int perf_event_comm_match(struct perf_event *event)
6937{
6938 return event->attr.comm;
6939}
6940
cdd6c482 6941static void perf_event_comm_output(struct perf_event *event,
52d857a8 6942 void *data)
8d1b2d93 6943{
52d857a8 6944 struct perf_comm_event *comm_event = data;
8d1b2d93 6945 struct perf_output_handle handle;
c980d109 6946 struct perf_sample_data sample;
cdd6c482 6947 int size = comm_event->event_id.header.size;
c980d109
ACM
6948 int ret;
6949
67516844
JO
6950 if (!perf_event_comm_match(event))
6951 return;
6952
c980d109
ACM
6953 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
6954 ret = perf_output_begin(&handle, event,
a7ac67ea 6955 comm_event->event_id.header.size);
8d1b2d93
PZ
6956
6957 if (ret)
c980d109 6958 goto out;
8d1b2d93 6959
cdd6c482
IM
6960 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
6961 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
709e50cf 6962
cdd6c482 6963 perf_output_put(&handle, comm_event->event_id);
76369139 6964 __output_copy(&handle, comm_event->comm,
8d1b2d93 6965 comm_event->comm_size);
c980d109
ACM
6966
6967 perf_event__output_id_sample(event, &handle, &sample);
6968
8d1b2d93 6969 perf_output_end(&handle);
c980d109
ACM
6970out:
6971 comm_event->event_id.header.size = size;
8d1b2d93
PZ
6972}
6973
cdd6c482 6974static void perf_event_comm_event(struct perf_comm_event *comm_event)
8d1b2d93 6975{
413ee3b4 6976 char comm[TASK_COMM_LEN];
8d1b2d93 6977 unsigned int size;
8d1b2d93 6978
413ee3b4 6979 memset(comm, 0, sizeof(comm));
96b02d78 6980 strlcpy(comm, comm_event->task->comm, sizeof(comm));
888fcee0 6981 size = ALIGN(strlen(comm)+1, sizeof(u64));
8d1b2d93
PZ
6982
6983 comm_event->comm = comm;
6984 comm_event->comm_size = size;
6985
cdd6c482 6986 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
8dc85d54 6987
aab5b71e 6988 perf_iterate_sb(perf_event_comm_output,
52d857a8
JO
6989 comm_event,
6990 NULL);
8d1b2d93
PZ
6991}
6992
82b89778 6993void perf_event_comm(struct task_struct *task, bool exec)
8d1b2d93 6994{
9ee318a7
PZ
6995 struct perf_comm_event comm_event;
6996
cdd6c482 6997 if (!atomic_read(&nr_comm_events))
9ee318a7 6998 return;
a63eaf34 6999
9ee318a7 7000 comm_event = (struct perf_comm_event){
8d1b2d93 7001 .task = task,
573402db
PZ
7002 /* .comm */
7003 /* .comm_size */
cdd6c482 7004 .event_id = {
573402db 7005 .header = {
cdd6c482 7006 .type = PERF_RECORD_COMM,
82b89778 7007 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
573402db
PZ
7008 /* .size */
7009 },
7010 /* .pid */
7011 /* .tid */
8d1b2d93
PZ
7012 },
7013 };
7014
cdd6c482 7015 perf_event_comm_event(&comm_event);
8d1b2d93
PZ
7016}
7017
e4222673
HB
7018/*
7019 * namespaces tracking
7020 */
7021
7022struct perf_namespaces_event {
7023 struct task_struct *task;
7024
7025 struct {
7026 struct perf_event_header header;
7027
7028 u32 pid;
7029 u32 tid;
7030 u64 nr_namespaces;
7031 struct perf_ns_link_info link_info[NR_NAMESPACES];
7032 } event_id;
7033};
7034
7035static int perf_event_namespaces_match(struct perf_event *event)
7036{
7037 return event->attr.namespaces;
7038}
7039
7040static void perf_event_namespaces_output(struct perf_event *event,
7041 void *data)
7042{
7043 struct perf_namespaces_event *namespaces_event = data;
7044 struct perf_output_handle handle;
7045 struct perf_sample_data sample;
34900ec5 7046 u16 header_size = namespaces_event->event_id.header.size;
e4222673
HB
7047 int ret;
7048
7049 if (!perf_event_namespaces_match(event))
7050 return;
7051
7052 perf_event_header__init_id(&namespaces_event->event_id.header,
7053 &sample, event);
7054 ret = perf_output_begin(&handle, event,
7055 namespaces_event->event_id.header.size);
7056 if (ret)
34900ec5 7057 goto out;
e4222673
HB
7058
7059 namespaces_event->event_id.pid = perf_event_pid(event,
7060 namespaces_event->task);
7061 namespaces_event->event_id.tid = perf_event_tid(event,
7062 namespaces_event->task);
7063
7064 perf_output_put(&handle, namespaces_event->event_id);
7065
7066 perf_event__output_id_sample(event, &handle, &sample);
7067
7068 perf_output_end(&handle);
34900ec5
JO
7069out:
7070 namespaces_event->event_id.header.size = header_size;
e4222673
HB
7071}
7072
7073static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
7074 struct task_struct *task,
7075 const struct proc_ns_operations *ns_ops)
7076{
7077 struct path ns_path;
7078 struct inode *ns_inode;
7079 void *error;
7080
7081 error = ns_get_path(&ns_path, task, ns_ops);
7082 if (!error) {
7083 ns_inode = ns_path.dentry->d_inode;
7084 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
7085 ns_link_info->ino = ns_inode->i_ino;
0e18dd12 7086 path_put(&ns_path);
e4222673
HB
7087 }
7088}
7089
7090void perf_event_namespaces(struct task_struct *task)
7091{
7092 struct perf_namespaces_event namespaces_event;
7093 struct perf_ns_link_info *ns_link_info;
7094
7095 if (!atomic_read(&nr_namespaces_events))
7096 return;
7097
7098 namespaces_event = (struct perf_namespaces_event){
7099 .task = task,
7100 .event_id = {
7101 .header = {
7102 .type = PERF_RECORD_NAMESPACES,
7103 .misc = 0,
7104 .size = sizeof(namespaces_event.event_id),
7105 },
7106 /* .pid */
7107 /* .tid */
7108 .nr_namespaces = NR_NAMESPACES,
7109 /* .link_info[NR_NAMESPACES] */
7110 },
7111 };
7112
7113 ns_link_info = namespaces_event.event_id.link_info;
7114
7115 perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
7116 task, &mntns_operations);
7117
7118#ifdef CONFIG_USER_NS
7119 perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
7120 task, &userns_operations);
7121#endif
7122#ifdef CONFIG_NET_NS
7123 perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
7124 task, &netns_operations);
7125#endif
7126#ifdef CONFIG_UTS_NS
7127 perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
7128 task, &utsns_operations);
7129#endif
7130#ifdef CONFIG_IPC_NS
7131 perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
7132 task, &ipcns_operations);
7133#endif
7134#ifdef CONFIG_PID_NS
7135 perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
7136 task, &pidns_operations);
7137#endif
7138#ifdef CONFIG_CGROUPS
7139 perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
7140 task, &cgroupns_operations);
7141#endif
7142
7143 perf_iterate_sb(perf_event_namespaces_output,
7144 &namespaces_event,
7145 NULL);
7146}
7147
0a4a9391
PZ
7148/*
7149 * mmap tracking
7150 */
7151
7152struct perf_mmap_event {
089dd79d
PZ
7153 struct vm_area_struct *vma;
7154
7155 const char *file_name;
7156 int file_size;
13d7a241
SE
7157 int maj, min;
7158 u64 ino;
7159 u64 ino_generation;
f972eb63 7160 u32 prot, flags;
0a4a9391
PZ
7161
7162 struct {
7163 struct perf_event_header header;
7164
7165 u32 pid;
7166 u32 tid;
7167 u64 start;
7168 u64 len;
7169 u64 pgoff;
cdd6c482 7170 } event_id;
0a4a9391
PZ
7171};
7172
67516844
JO
7173static int perf_event_mmap_match(struct perf_event *event,
7174 void *data)
7175{
7176 struct perf_mmap_event *mmap_event = data;
7177 struct vm_area_struct *vma = mmap_event->vma;
7178 int executable = vma->vm_flags & VM_EXEC;
7179
7180 return (!executable && event->attr.mmap_data) ||
13d7a241 7181 (executable && (event->attr.mmap || event->attr.mmap2));
67516844
JO
7182}
7183
cdd6c482 7184static void perf_event_mmap_output(struct perf_event *event,
52d857a8 7185 void *data)
0a4a9391 7186{
52d857a8 7187 struct perf_mmap_event *mmap_event = data;
0a4a9391 7188 struct perf_output_handle handle;
c980d109 7189 struct perf_sample_data sample;
cdd6c482 7190 int size = mmap_event->event_id.header.size;
c980d109 7191 int ret;
0a4a9391 7192
67516844
JO
7193 if (!perf_event_mmap_match(event, data))
7194 return;
7195
13d7a241
SE
7196 if (event->attr.mmap2) {
7197 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
7198 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
7199 mmap_event->event_id.header.size += sizeof(mmap_event->min);
7200 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
d008d525 7201 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
f972eb63
PZ
7202 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
7203 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
13d7a241
SE
7204 }
7205
c980d109
ACM
7206 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
7207 ret = perf_output_begin(&handle, event,
a7ac67ea 7208 mmap_event->event_id.header.size);
0a4a9391 7209 if (ret)
c980d109 7210 goto out;
0a4a9391 7211
cdd6c482
IM
7212 mmap_event->event_id.pid = perf_event_pid(event, current);
7213 mmap_event->event_id.tid = perf_event_tid(event, current);
709e50cf 7214
cdd6c482 7215 perf_output_put(&handle, mmap_event->event_id);
13d7a241
SE
7216
7217 if (event->attr.mmap2) {
7218 perf_output_put(&handle, mmap_event->maj);
7219 perf_output_put(&handle, mmap_event->min);
7220 perf_output_put(&handle, mmap_event->ino);
7221 perf_output_put(&handle, mmap_event->ino_generation);
f972eb63
PZ
7222 perf_output_put(&handle, mmap_event->prot);
7223 perf_output_put(&handle, mmap_event->flags);
13d7a241
SE
7224 }
7225
76369139 7226 __output_copy(&handle, mmap_event->file_name,
0a4a9391 7227 mmap_event->file_size);
c980d109
ACM
7228
7229 perf_event__output_id_sample(event, &handle, &sample);
7230
78d613eb 7231 perf_output_end(&handle);
c980d109
ACM
7232out:
7233 mmap_event->event_id.header.size = size;
0a4a9391
PZ
7234}
7235
cdd6c482 7236static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
0a4a9391 7237{
089dd79d
PZ
7238 struct vm_area_struct *vma = mmap_event->vma;
7239 struct file *file = vma->vm_file;
13d7a241
SE
7240 int maj = 0, min = 0;
7241 u64 ino = 0, gen = 0;
f972eb63 7242 u32 prot = 0, flags = 0;
0a4a9391
PZ
7243 unsigned int size;
7244 char tmp[16];
7245 char *buf = NULL;
2c42cfbf 7246 char *name;
413ee3b4 7247
0b3589be
PZ
7248 if (vma->vm_flags & VM_READ)
7249 prot |= PROT_READ;
7250 if (vma->vm_flags & VM_WRITE)
7251 prot |= PROT_WRITE;
7252 if (vma->vm_flags & VM_EXEC)
7253 prot |= PROT_EXEC;
7254
7255 if (vma->vm_flags & VM_MAYSHARE)
7256 flags = MAP_SHARED;
7257 else
7258 flags = MAP_PRIVATE;
7259
7260 if (vma->vm_flags & VM_DENYWRITE)
7261 flags |= MAP_DENYWRITE;
7262 if (vma->vm_flags & VM_MAYEXEC)
7263 flags |= MAP_EXECUTABLE;
7264 if (vma->vm_flags & VM_LOCKED)
7265 flags |= MAP_LOCKED;
7266 if (vma->vm_flags & VM_HUGETLB)
7267 flags |= MAP_HUGETLB;
7268
0a4a9391 7269 if (file) {
13d7a241
SE
7270 struct inode *inode;
7271 dev_t dev;
3ea2f2b9 7272
2c42cfbf 7273 buf = kmalloc(PATH_MAX, GFP_KERNEL);
0a4a9391 7274 if (!buf) {
c7e548b4
ON
7275 name = "//enomem";
7276 goto cpy_name;
0a4a9391 7277 }
413ee3b4 7278 /*
3ea2f2b9 7279 * d_path() works from the end of the rb backwards, so we
413ee3b4
AB
7280 * need to add enough zero bytes after the string to handle
7281 * the 64bit alignment we do later.
7282 */
9bf39ab2 7283 name = file_path(file, buf, PATH_MAX - sizeof(u64));
0a4a9391 7284 if (IS_ERR(name)) {
c7e548b4
ON
7285 name = "//toolong";
7286 goto cpy_name;
0a4a9391 7287 }
13d7a241
SE
7288 inode = file_inode(vma->vm_file);
7289 dev = inode->i_sb->s_dev;
7290 ino = inode->i_ino;
7291 gen = inode->i_generation;
7292 maj = MAJOR(dev);
7293 min = MINOR(dev);
f972eb63 7294
c7e548b4 7295 goto got_name;
0a4a9391 7296 } else {
fbe26abe
JO
7297 if (vma->vm_ops && vma->vm_ops->name) {
7298 name = (char *) vma->vm_ops->name(vma);
7299 if (name)
7300 goto cpy_name;
7301 }
7302
2c42cfbf 7303 name = (char *)arch_vma_name(vma);
c7e548b4
ON
7304 if (name)
7305 goto cpy_name;
089dd79d 7306
32c5fb7e 7307 if (vma->vm_start <= vma->vm_mm->start_brk &&
3af9e859 7308 vma->vm_end >= vma->vm_mm->brk) {
c7e548b4
ON
7309 name = "[heap]";
7310 goto cpy_name;
32c5fb7e
ON
7311 }
7312 if (vma->vm_start <= vma->vm_mm->start_stack &&
3af9e859 7313 vma->vm_end >= vma->vm_mm->start_stack) {
c7e548b4
ON
7314 name = "[stack]";
7315 goto cpy_name;
089dd79d
PZ
7316 }
7317
c7e548b4
ON
7318 name = "//anon";
7319 goto cpy_name;
0a4a9391
PZ
7320 }
7321
c7e548b4
ON
7322cpy_name:
7323 strlcpy(tmp, name, sizeof(tmp));
7324 name = tmp;
0a4a9391 7325got_name:
2c42cfbf
PZ
7326 /*
7327 * Since our buffer works in 8 byte units we need to align our string
7328 * size to a multiple of 8. However, we must guarantee the tail end is
7329 * zero'd out to avoid leaking random bits to userspace.
7330 */
7331 size = strlen(name)+1;
7332 while (!IS_ALIGNED(size, sizeof(u64)))
7333 name[size++] = '\0';
0a4a9391
PZ
7334
7335 mmap_event->file_name = name;
7336 mmap_event->file_size = size;
13d7a241
SE
7337 mmap_event->maj = maj;
7338 mmap_event->min = min;
7339 mmap_event->ino = ino;
7340 mmap_event->ino_generation = gen;
f972eb63
PZ
7341 mmap_event->prot = prot;
7342 mmap_event->flags = flags;
0a4a9391 7343
2fe85427
SE
7344 if (!(vma->vm_flags & VM_EXEC))
7345 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
7346
cdd6c482 7347 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
0a4a9391 7348
aab5b71e 7349 perf_iterate_sb(perf_event_mmap_output,
52d857a8
JO
7350 mmap_event,
7351 NULL);
665c2142 7352
0a4a9391
PZ
7353 kfree(buf);
7354}
7355
375637bc
AS
7356/*
7357 * Check whether inode and address range match filter criteria.
7358 */
7359static bool perf_addr_filter_match(struct perf_addr_filter *filter,
7360 struct file *file, unsigned long offset,
7361 unsigned long size)
7362{
7f635ff1
MP
7363 /* d_inode(NULL) won't be equal to any mapped user-space file */
7364 if (!filter->path.dentry)
7365 return false;
7366
9511bce9 7367 if (d_inode(filter->path.dentry) != file_inode(file))
375637bc
AS
7368 return false;
7369
7370 if (filter->offset > offset + size)
7371 return false;
7372
7373 if (filter->offset + filter->size < offset)
7374 return false;
7375
7376 return true;
7377}
7378
c60f83b8
AS
7379static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter,
7380 struct vm_area_struct *vma,
7381 struct perf_addr_filter_range *fr)
7382{
7383 unsigned long vma_size = vma->vm_end - vma->vm_start;
7384 unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
7385 struct file *file = vma->vm_file;
7386
7387 if (!perf_addr_filter_match(filter, file, off, vma_size))
7388 return false;
7389
7390 if (filter->offset < off) {
7391 fr->start = vma->vm_start;
7392 fr->size = min(vma_size, filter->size - (off - filter->offset));
7393 } else {
7394 fr->start = vma->vm_start + filter->offset - off;
7395 fr->size = min(vma->vm_end - fr->start, filter->size);
7396 }
7397
7398 return true;
7399}
7400
375637bc
AS
7401static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
7402{
7403 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7404 struct vm_area_struct *vma = data;
375637bc
AS
7405 struct perf_addr_filter *filter;
7406 unsigned int restart = 0, count = 0;
c60f83b8 7407 unsigned long flags;
375637bc
AS
7408
7409 if (!has_addr_filter(event))
7410 return;
7411
c60f83b8 7412 if (!vma->vm_file)
375637bc
AS
7413 return;
7414
7415 raw_spin_lock_irqsave(&ifh->lock, flags);
7416 list_for_each_entry(filter, &ifh->list, entry) {
c60f83b8
AS
7417 if (perf_addr_filter_vma_adjust(filter, vma,
7418 &event->addr_filter_ranges[count]))
375637bc 7419 restart++;
375637bc
AS
7420
7421 count++;
7422 }
7423
7424 if (restart)
7425 event->addr_filters_gen++;
7426 raw_spin_unlock_irqrestore(&ifh->lock, flags);
7427
7428 if (restart)
767ae086 7429 perf_event_stop(event, 1);
375637bc
AS
7430}
7431
7432/*
7433 * Adjust all task's events' filters to the new vma
7434 */
7435static void perf_addr_filters_adjust(struct vm_area_struct *vma)
7436{
7437 struct perf_event_context *ctx;
7438 int ctxn;
7439
12b40a23
MP
7440 /*
7441 * Data tracing isn't supported yet and as such there is no need
7442 * to keep track of anything that isn't related to executable code:
7443 */
7444 if (!(vma->vm_flags & VM_EXEC))
7445 return;
7446
375637bc
AS
7447 rcu_read_lock();
7448 for_each_task_context_nr(ctxn) {
7449 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7450 if (!ctx)
7451 continue;
7452
aab5b71e 7453 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
375637bc
AS
7454 }
7455 rcu_read_unlock();
7456}
7457
3af9e859 7458void perf_event_mmap(struct vm_area_struct *vma)
0a4a9391 7459{
9ee318a7
PZ
7460 struct perf_mmap_event mmap_event;
7461
cdd6c482 7462 if (!atomic_read(&nr_mmap_events))
9ee318a7
PZ
7463 return;
7464
7465 mmap_event = (struct perf_mmap_event){
089dd79d 7466 .vma = vma,
573402db
PZ
7467 /* .file_name */
7468 /* .file_size */
cdd6c482 7469 .event_id = {
573402db 7470 .header = {
cdd6c482 7471 .type = PERF_RECORD_MMAP,
39447b38 7472 .misc = PERF_RECORD_MISC_USER,
573402db
PZ
7473 /* .size */
7474 },
7475 /* .pid */
7476 /* .tid */
089dd79d
PZ
7477 .start = vma->vm_start,
7478 .len = vma->vm_end - vma->vm_start,
3a0304e9 7479 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
0a4a9391 7480 },
13d7a241
SE
7481 /* .maj (attr_mmap2 only) */
7482 /* .min (attr_mmap2 only) */
7483 /* .ino (attr_mmap2 only) */
7484 /* .ino_generation (attr_mmap2 only) */
f972eb63
PZ
7485 /* .prot (attr_mmap2 only) */
7486 /* .flags (attr_mmap2 only) */
0a4a9391
PZ
7487 };
7488
375637bc 7489 perf_addr_filters_adjust(vma);
cdd6c482 7490 perf_event_mmap_event(&mmap_event);
0a4a9391
PZ
7491}
7492
68db7e98
AS
7493void perf_event_aux_event(struct perf_event *event, unsigned long head,
7494 unsigned long size, u64 flags)
7495{
7496 struct perf_output_handle handle;
7497 struct perf_sample_data sample;
7498 struct perf_aux_event {
7499 struct perf_event_header header;
7500 u64 offset;
7501 u64 size;
7502 u64 flags;
7503 } rec = {
7504 .header = {
7505 .type = PERF_RECORD_AUX,
7506 .misc = 0,
7507 .size = sizeof(rec),
7508 },
7509 .offset = head,
7510 .size = size,
7511 .flags = flags,
7512 };
7513 int ret;
7514
7515 perf_event_header__init_id(&rec.header, &sample, event);
7516 ret = perf_output_begin(&handle, event, rec.header.size);
7517
7518 if (ret)
7519 return;
7520
7521 perf_output_put(&handle, rec);
7522 perf_event__output_id_sample(event, &handle, &sample);
7523
7524 perf_output_end(&handle);
7525}
7526
f38b0dbb
KL
7527/*
7528 * Lost/dropped samples logging
7529 */
7530void perf_log_lost_samples(struct perf_event *event, u64 lost)
7531{
7532 struct perf_output_handle handle;
7533 struct perf_sample_data sample;
7534 int ret;
7535
7536 struct {
7537 struct perf_event_header header;
7538 u64 lost;
7539 } lost_samples_event = {
7540 .header = {
7541 .type = PERF_RECORD_LOST_SAMPLES,
7542 .misc = 0,
7543 .size = sizeof(lost_samples_event),
7544 },
7545 .lost = lost,
7546 };
7547
7548 perf_event_header__init_id(&lost_samples_event.header, &sample, event);
7549
7550 ret = perf_output_begin(&handle, event,
7551 lost_samples_event.header.size);
7552 if (ret)
7553 return;
7554
7555 perf_output_put(&handle, lost_samples_event);
7556 perf_event__output_id_sample(event, &handle, &sample);
7557 perf_output_end(&handle);
7558}
7559
45ac1403
AH
7560/*
7561 * context_switch tracking
7562 */
7563
7564struct perf_switch_event {
7565 struct task_struct *task;
7566 struct task_struct *next_prev;
7567
7568 struct {
7569 struct perf_event_header header;
7570 u32 next_prev_pid;
7571 u32 next_prev_tid;
7572 } event_id;
7573};
7574
7575static int perf_event_switch_match(struct perf_event *event)
7576{
7577 return event->attr.context_switch;
7578}
7579
7580static void perf_event_switch_output(struct perf_event *event, void *data)
7581{
7582 struct perf_switch_event *se = data;
7583 struct perf_output_handle handle;
7584 struct perf_sample_data sample;
7585 int ret;
7586
7587 if (!perf_event_switch_match(event))
7588 return;
7589
7590 /* Only CPU-wide events are allowed to see next/prev pid/tid */
7591 if (event->ctx->task) {
7592 se->event_id.header.type = PERF_RECORD_SWITCH;
7593 se->event_id.header.size = sizeof(se->event_id.header);
7594 } else {
7595 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
7596 se->event_id.header.size = sizeof(se->event_id);
7597 se->event_id.next_prev_pid =
7598 perf_event_pid(event, se->next_prev);
7599 se->event_id.next_prev_tid =
7600 perf_event_tid(event, se->next_prev);
7601 }
7602
7603 perf_event_header__init_id(&se->event_id.header, &sample, event);
7604
7605 ret = perf_output_begin(&handle, event, se->event_id.header.size);
7606 if (ret)
7607 return;
7608
7609 if (event->ctx->task)
7610 perf_output_put(&handle, se->event_id.header);
7611 else
7612 perf_output_put(&handle, se->event_id);
7613
7614 perf_event__output_id_sample(event, &handle, &sample);
7615
7616 perf_output_end(&handle);
7617}
7618
7619static void perf_event_switch(struct task_struct *task,
7620 struct task_struct *next_prev, bool sched_in)
7621{
7622 struct perf_switch_event switch_event;
7623
7624 /* N.B. caller checks nr_switch_events != 0 */
7625
7626 switch_event = (struct perf_switch_event){
7627 .task = task,
7628 .next_prev = next_prev,
7629 .event_id = {
7630 .header = {
7631 /* .type */
7632 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
7633 /* .size */
7634 },
7635 /* .next_prev_pid */
7636 /* .next_prev_tid */
7637 },
7638 };
7639
101592b4
AB
7640 if (!sched_in && task->state == TASK_RUNNING)
7641 switch_event.event_id.header.misc |=
7642 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
7643
aab5b71e 7644 perf_iterate_sb(perf_event_switch_output,
45ac1403
AH
7645 &switch_event,
7646 NULL);
7647}
7648
a78ac325
PZ
7649/*
7650 * IRQ throttle logging
7651 */
7652
cdd6c482 7653static void perf_log_throttle(struct perf_event *event, int enable)
a78ac325
PZ
7654{
7655 struct perf_output_handle handle;
c980d109 7656 struct perf_sample_data sample;
a78ac325
PZ
7657 int ret;
7658
7659 struct {
7660 struct perf_event_header header;
7661 u64 time;
cca3f454 7662 u64 id;
7f453c24 7663 u64 stream_id;
a78ac325
PZ
7664 } throttle_event = {
7665 .header = {
cdd6c482 7666 .type = PERF_RECORD_THROTTLE,
a78ac325
PZ
7667 .misc = 0,
7668 .size = sizeof(throttle_event),
7669 },
34f43927 7670 .time = perf_event_clock(event),
cdd6c482
IM
7671 .id = primary_event_id(event),
7672 .stream_id = event->id,
a78ac325
PZ
7673 };
7674
966ee4d6 7675 if (enable)
cdd6c482 7676 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
966ee4d6 7677
c980d109
ACM
7678 perf_event_header__init_id(&throttle_event.header, &sample, event);
7679
7680 ret = perf_output_begin(&handle, event,
a7ac67ea 7681 throttle_event.header.size);
a78ac325
PZ
7682 if (ret)
7683 return;
7684
7685 perf_output_put(&handle, throttle_event);
c980d109 7686 perf_event__output_id_sample(event, &handle, &sample);
a78ac325
PZ
7687 perf_output_end(&handle);
7688}
7689
76193a94
SL
7690/*
7691 * ksymbol register/unregister tracking
7692 */
7693
7694struct perf_ksymbol_event {
7695 const char *name;
7696 int name_len;
7697 struct {
7698 struct perf_event_header header;
7699 u64 addr;
7700 u32 len;
7701 u16 ksym_type;
7702 u16 flags;
7703 } event_id;
7704};
7705
7706static int perf_event_ksymbol_match(struct perf_event *event)
7707{
7708 return event->attr.ksymbol;
7709}
7710
7711static void perf_event_ksymbol_output(struct perf_event *event, void *data)
7712{
7713 struct perf_ksymbol_event *ksymbol_event = data;
7714 struct perf_output_handle handle;
7715 struct perf_sample_data sample;
7716 int ret;
7717
7718 if (!perf_event_ksymbol_match(event))
7719 return;
7720
7721 perf_event_header__init_id(&ksymbol_event->event_id.header,
7722 &sample, event);
7723 ret = perf_output_begin(&handle, event,
7724 ksymbol_event->event_id.header.size);
7725 if (ret)
7726 return;
7727
7728 perf_output_put(&handle, ksymbol_event->event_id);
7729 __output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len);
7730 perf_event__output_id_sample(event, &handle, &sample);
7731
7732 perf_output_end(&handle);
7733}
7734
7735void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister,
7736 const char *sym)
7737{
7738 struct perf_ksymbol_event ksymbol_event;
7739 char name[KSYM_NAME_LEN];
7740 u16 flags = 0;
7741 int name_len;
7742
7743 if (!atomic_read(&nr_ksymbol_events))
7744 return;
7745
7746 if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX ||
7747 ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN)
7748 goto err;
7749
7750 strlcpy(name, sym, KSYM_NAME_LEN);
7751 name_len = strlen(name) + 1;
7752 while (!IS_ALIGNED(name_len, sizeof(u64)))
7753 name[name_len++] = '\0';
7754 BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64));
7755
7756 if (unregister)
7757 flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER;
7758
7759 ksymbol_event = (struct perf_ksymbol_event){
7760 .name = name,
7761 .name_len = name_len,
7762 .event_id = {
7763 .header = {
7764 .type = PERF_RECORD_KSYMBOL,
7765 .size = sizeof(ksymbol_event.event_id) +
7766 name_len,
7767 },
7768 .addr = addr,
7769 .len = len,
7770 .ksym_type = ksym_type,
7771 .flags = flags,
7772 },
7773 };
7774
7775 perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL);
7776 return;
7777err:
7778 WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type);
7779}
7780
6ee52e2a
SL
7781/*
7782 * bpf program load/unload tracking
7783 */
7784
7785struct perf_bpf_event {
7786 struct bpf_prog *prog;
7787 struct {
7788 struct perf_event_header header;
7789 u16 type;
7790 u16 flags;
7791 u32 id;
7792 u8 tag[BPF_TAG_SIZE];
7793 } event_id;
7794};
7795
7796static int perf_event_bpf_match(struct perf_event *event)
7797{
7798 return event->attr.bpf_event;
7799}
7800
7801static void perf_event_bpf_output(struct perf_event *event, void *data)
7802{
7803 struct perf_bpf_event *bpf_event = data;
7804 struct perf_output_handle handle;
7805 struct perf_sample_data sample;
7806 int ret;
7807
7808 if (!perf_event_bpf_match(event))
7809 return;
7810
7811 perf_event_header__init_id(&bpf_event->event_id.header,
7812 &sample, event);
7813 ret = perf_output_begin(&handle, event,
7814 bpf_event->event_id.header.size);
7815 if (ret)
7816 return;
7817
7818 perf_output_put(&handle, bpf_event->event_id);
7819 perf_event__output_id_sample(event, &handle, &sample);
7820
7821 perf_output_end(&handle);
7822}
7823
7824static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog,
7825 enum perf_bpf_event_type type)
7826{
7827 bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD;
7828 char sym[KSYM_NAME_LEN];
7829 int i;
7830
7831 if (prog->aux->func_cnt == 0) {
7832 bpf_get_prog_name(prog, sym);
7833 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF,
7834 (u64)(unsigned long)prog->bpf_func,
7835 prog->jited_len, unregister, sym);
7836 } else {
7837 for (i = 0; i < prog->aux->func_cnt; i++) {
7838 struct bpf_prog *subprog = prog->aux->func[i];
7839
7840 bpf_get_prog_name(subprog, sym);
7841 perf_event_ksymbol(
7842 PERF_RECORD_KSYMBOL_TYPE_BPF,
7843 (u64)(unsigned long)subprog->bpf_func,
7844 subprog->jited_len, unregister, sym);
7845 }
7846 }
7847}
7848
7849void perf_event_bpf_event(struct bpf_prog *prog,
7850 enum perf_bpf_event_type type,
7851 u16 flags)
7852{
7853 struct perf_bpf_event bpf_event;
7854
7855 if (type <= PERF_BPF_EVENT_UNKNOWN ||
7856 type >= PERF_BPF_EVENT_MAX)
7857 return;
7858
7859 switch (type) {
7860 case PERF_BPF_EVENT_PROG_LOAD:
7861 case PERF_BPF_EVENT_PROG_UNLOAD:
7862 if (atomic_read(&nr_ksymbol_events))
7863 perf_event_bpf_emit_ksymbols(prog, type);
7864 break;
7865 default:
7866 break;
7867 }
7868
7869 if (!atomic_read(&nr_bpf_events))
7870 return;
7871
7872 bpf_event = (struct perf_bpf_event){
7873 .prog = prog,
7874 .event_id = {
7875 .header = {
7876 .type = PERF_RECORD_BPF_EVENT,
7877 .size = sizeof(bpf_event.event_id),
7878 },
7879 .type = type,
7880 .flags = flags,
7881 .id = prog->aux->id,
7882 },
7883 };
7884
7885 BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64));
7886
7887 memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE);
7888 perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL);
7889}
7890
8d4e6c4c
AS
7891void perf_event_itrace_started(struct perf_event *event)
7892{
7893 event->attach_state |= PERF_ATTACH_ITRACE;
7894}
7895
ec0d7729
AS
7896static void perf_log_itrace_start(struct perf_event *event)
7897{
7898 struct perf_output_handle handle;
7899 struct perf_sample_data sample;
7900 struct perf_aux_event {
7901 struct perf_event_header header;
7902 u32 pid;
7903 u32 tid;
7904 } rec;
7905 int ret;
7906
7907 if (event->parent)
7908 event = event->parent;
7909
7910 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
8d4e6c4c 7911 event->attach_state & PERF_ATTACH_ITRACE)
ec0d7729
AS
7912 return;
7913
ec0d7729
AS
7914 rec.header.type = PERF_RECORD_ITRACE_START;
7915 rec.header.misc = 0;
7916 rec.header.size = sizeof(rec);
7917 rec.pid = perf_event_pid(event, current);
7918 rec.tid = perf_event_tid(event, current);
7919
7920 perf_event_header__init_id(&rec.header, &sample, event);
7921 ret = perf_output_begin(&handle, event, rec.header.size);
7922
7923 if (ret)
7924 return;
7925
7926 perf_output_put(&handle, rec);
7927 perf_event__output_id_sample(event, &handle, &sample);
7928
7929 perf_output_end(&handle);
7930}
7931
475113d9
JO
7932static int
7933__perf_event_account_interrupt(struct perf_event *event, int throttle)
f6c7d5fe 7934{
cdd6c482 7935 struct hw_perf_event *hwc = &event->hw;
79f14641 7936 int ret = 0;
475113d9 7937 u64 seq;
96398826 7938
e050e3f0
SE
7939 seq = __this_cpu_read(perf_throttled_seq);
7940 if (seq != hwc->interrupts_seq) {
7941 hwc->interrupts_seq = seq;
7942 hwc->interrupts = 1;
7943 } else {
7944 hwc->interrupts++;
7945 if (unlikely(throttle
7946 && hwc->interrupts >= max_samples_per_tick)) {
7947 __this_cpu_inc(perf_throttled_count);
555e0c1e 7948 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
163ec435
PZ
7949 hwc->interrupts = MAX_INTERRUPTS;
7950 perf_log_throttle(event, 0);
a78ac325
PZ
7951 ret = 1;
7952 }
e050e3f0 7953 }
60db5e09 7954
cdd6c482 7955 if (event->attr.freq) {
def0a9b2 7956 u64 now = perf_clock();
abd50713 7957 s64 delta = now - hwc->freq_time_stamp;
bd2b5b12 7958
abd50713 7959 hwc->freq_time_stamp = now;
bd2b5b12 7960
abd50713 7961 if (delta > 0 && delta < 2*TICK_NSEC)
f39d47ff 7962 perf_adjust_period(event, delta, hwc->last_period, true);
bd2b5b12
PZ
7963 }
7964
475113d9
JO
7965 return ret;
7966}
7967
7968int perf_event_account_interrupt(struct perf_event *event)
7969{
7970 return __perf_event_account_interrupt(event, 1);
7971}
7972
7973/*
7974 * Generic event overflow handling, sampling.
7975 */
7976
7977static int __perf_event_overflow(struct perf_event *event,
7978 int throttle, struct perf_sample_data *data,
7979 struct pt_regs *regs)
7980{
7981 int events = atomic_read(&event->event_limit);
7982 int ret = 0;
7983
7984 /*
7985 * Non-sampling counters might still use the PMI to fold short
7986 * hardware counters, ignore those.
7987 */
7988 if (unlikely(!is_sampling_event(event)))
7989 return 0;
7990
7991 ret = __perf_event_account_interrupt(event, throttle);
cc1582c2 7992
2023b359
PZ
7993 /*
7994 * XXX event_limit might not quite work as expected on inherited
cdd6c482 7995 * events
2023b359
PZ
7996 */
7997
cdd6c482
IM
7998 event->pending_kill = POLL_IN;
7999 if (events && atomic_dec_and_test(&event->event_limit)) {
79f14641 8000 ret = 1;
cdd6c482 8001 event->pending_kill = POLL_HUP;
5aab90ce
JO
8002
8003 perf_event_disable_inatomic(event);
79f14641
PZ
8004 }
8005
aa6a5f3c 8006 READ_ONCE(event->overflow_handler)(event, data, regs);
453f19ee 8007
fed66e2c 8008 if (*perf_event_fasync(event) && event->pending_kill) {
a8b0ca17
PZ
8009 event->pending_wakeup = 1;
8010 irq_work_queue(&event->pending);
f506b3dc
PZ
8011 }
8012
79f14641 8013 return ret;
f6c7d5fe
PZ
8014}
8015
a8b0ca17 8016int perf_event_overflow(struct perf_event *event,
5622f295
MM
8017 struct perf_sample_data *data,
8018 struct pt_regs *regs)
850bc73f 8019{
a8b0ca17 8020 return __perf_event_overflow(event, 1, data, regs);
850bc73f
PZ
8021}
8022
15dbf27c 8023/*
cdd6c482 8024 * Generic software event infrastructure
15dbf27c
PZ
8025 */
8026
b28ab83c
PZ
8027struct swevent_htable {
8028 struct swevent_hlist *swevent_hlist;
8029 struct mutex hlist_mutex;
8030 int hlist_refcount;
8031
8032 /* Recursion avoidance in each contexts */
8033 int recursion[PERF_NR_CONTEXTS];
8034};
8035
8036static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
8037
7b4b6658 8038/*
cdd6c482
IM
8039 * We directly increment event->count and keep a second value in
8040 * event->hw.period_left to count intervals. This period event
7b4b6658
PZ
8041 * is kept in the range [-sample_period, 0] so that we can use the
8042 * sign as trigger.
8043 */
8044
ab573844 8045u64 perf_swevent_set_period(struct perf_event *event)
15dbf27c 8046{
cdd6c482 8047 struct hw_perf_event *hwc = &event->hw;
7b4b6658
PZ
8048 u64 period = hwc->last_period;
8049 u64 nr, offset;
8050 s64 old, val;
8051
8052 hwc->last_period = hwc->sample_period;
15dbf27c
PZ
8053
8054again:
e7850595 8055 old = val = local64_read(&hwc->period_left);
7b4b6658
PZ
8056 if (val < 0)
8057 return 0;
15dbf27c 8058
7b4b6658
PZ
8059 nr = div64_u64(period + val, period);
8060 offset = nr * period;
8061 val -= offset;
e7850595 8062 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7b4b6658 8063 goto again;
15dbf27c 8064
7b4b6658 8065 return nr;
15dbf27c
PZ
8066}
8067
0cff784a 8068static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
a8b0ca17 8069 struct perf_sample_data *data,
5622f295 8070 struct pt_regs *regs)
15dbf27c 8071{
cdd6c482 8072 struct hw_perf_event *hwc = &event->hw;
850bc73f 8073 int throttle = 0;
15dbf27c 8074
0cff784a
PZ
8075 if (!overflow)
8076 overflow = perf_swevent_set_period(event);
15dbf27c 8077
7b4b6658
PZ
8078 if (hwc->interrupts == MAX_INTERRUPTS)
8079 return;
15dbf27c 8080
7b4b6658 8081 for (; overflow; overflow--) {
a8b0ca17 8082 if (__perf_event_overflow(event, throttle,
5622f295 8083 data, regs)) {
7b4b6658
PZ
8084 /*
8085 * We inhibit the overflow from happening when
8086 * hwc->interrupts == MAX_INTERRUPTS.
8087 */
8088 break;
8089 }
cf450a73 8090 throttle = 1;
7b4b6658 8091 }
15dbf27c
PZ
8092}
8093
a4eaf7f1 8094static void perf_swevent_event(struct perf_event *event, u64 nr,
a8b0ca17 8095 struct perf_sample_data *data,
5622f295 8096 struct pt_regs *regs)
7b4b6658 8097{
cdd6c482 8098 struct hw_perf_event *hwc = &event->hw;
d6d020e9 8099
e7850595 8100 local64_add(nr, &event->count);
d6d020e9 8101
0cff784a
PZ
8102 if (!regs)
8103 return;
8104
6c7e550f 8105 if (!is_sampling_event(event))
7b4b6658 8106 return;
d6d020e9 8107
5d81e5cf
AV
8108 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
8109 data->period = nr;
8110 return perf_swevent_overflow(event, 1, data, regs);
8111 } else
8112 data->period = event->hw.last_period;
8113
0cff784a 8114 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
a8b0ca17 8115 return perf_swevent_overflow(event, 1, data, regs);
0cff784a 8116
e7850595 8117 if (local64_add_negative(nr, &hwc->period_left))
7b4b6658 8118 return;
df1a132b 8119
a8b0ca17 8120 perf_swevent_overflow(event, 0, data, regs);
d6d020e9
PZ
8121}
8122
f5ffe02e
FW
8123static int perf_exclude_event(struct perf_event *event,
8124 struct pt_regs *regs)
8125{
a4eaf7f1 8126 if (event->hw.state & PERF_HES_STOPPED)
91b2f482 8127 return 1;
a4eaf7f1 8128
f5ffe02e
FW
8129 if (regs) {
8130 if (event->attr.exclude_user && user_mode(regs))
8131 return 1;
8132
8133 if (event->attr.exclude_kernel && !user_mode(regs))
8134 return 1;
8135 }
8136
8137 return 0;
8138}
8139
cdd6c482 8140static int perf_swevent_match(struct perf_event *event,
1c432d89 8141 enum perf_type_id type,
6fb2915d
LZ
8142 u32 event_id,
8143 struct perf_sample_data *data,
8144 struct pt_regs *regs)
15dbf27c 8145{
cdd6c482 8146 if (event->attr.type != type)
a21ca2ca 8147 return 0;
f5ffe02e 8148
cdd6c482 8149 if (event->attr.config != event_id)
15dbf27c
PZ
8150 return 0;
8151
f5ffe02e
FW
8152 if (perf_exclude_event(event, regs))
8153 return 0;
15dbf27c
PZ
8154
8155 return 1;
8156}
8157
76e1d904
FW
8158static inline u64 swevent_hash(u64 type, u32 event_id)
8159{
8160 u64 val = event_id | (type << 32);
8161
8162 return hash_64(val, SWEVENT_HLIST_BITS);
8163}
8164
49f135ed
FW
8165static inline struct hlist_head *
8166__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
76e1d904 8167{
49f135ed
FW
8168 u64 hash = swevent_hash(type, event_id);
8169
8170 return &hlist->heads[hash];
8171}
76e1d904 8172
49f135ed
FW
8173/* For the read side: events when they trigger */
8174static inline struct hlist_head *
b28ab83c 8175find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
49f135ed
FW
8176{
8177 struct swevent_hlist *hlist;
76e1d904 8178
b28ab83c 8179 hlist = rcu_dereference(swhash->swevent_hlist);
76e1d904
FW
8180 if (!hlist)
8181 return NULL;
8182
49f135ed
FW
8183 return __find_swevent_head(hlist, type, event_id);
8184}
8185
8186/* For the event head insertion and removal in the hlist */
8187static inline struct hlist_head *
b28ab83c 8188find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
49f135ed
FW
8189{
8190 struct swevent_hlist *hlist;
8191 u32 event_id = event->attr.config;
8192 u64 type = event->attr.type;
8193
8194 /*
8195 * Event scheduling is always serialized against hlist allocation
8196 * and release. Which makes the protected version suitable here.
8197 * The context lock guarantees that.
8198 */
b28ab83c 8199 hlist = rcu_dereference_protected(swhash->swevent_hlist,
49f135ed
FW
8200 lockdep_is_held(&event->ctx->lock));
8201 if (!hlist)
8202 return NULL;
8203
8204 return __find_swevent_head(hlist, type, event_id);
76e1d904
FW
8205}
8206
8207static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
a8b0ca17 8208 u64 nr,
76e1d904
FW
8209 struct perf_sample_data *data,
8210 struct pt_regs *regs)
15dbf27c 8211{
4a32fea9 8212 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 8213 struct perf_event *event;
76e1d904 8214 struct hlist_head *head;
15dbf27c 8215
76e1d904 8216 rcu_read_lock();
b28ab83c 8217 head = find_swevent_head_rcu(swhash, type, event_id);
76e1d904
FW
8218 if (!head)
8219 goto end;
8220
b67bfe0d 8221 hlist_for_each_entry_rcu(event, head, hlist_entry) {
6fb2915d 8222 if (perf_swevent_match(event, type, event_id, data, regs))
a8b0ca17 8223 perf_swevent_event(event, nr, data, regs);
15dbf27c 8224 }
76e1d904
FW
8225end:
8226 rcu_read_unlock();
15dbf27c
PZ
8227}
8228
86038c5e
PZI
8229DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
8230
4ed7c92d 8231int perf_swevent_get_recursion_context(void)
96f6d444 8232{
4a32fea9 8233 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
96f6d444 8234
b28ab83c 8235 return get_recursion_context(swhash->recursion);
96f6d444 8236}
645e8cc0 8237EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
96f6d444 8238
98b5c2c6 8239void perf_swevent_put_recursion_context(int rctx)
15dbf27c 8240{
4a32fea9 8241 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
927c7a9e 8242
b28ab83c 8243 put_recursion_context(swhash->recursion, rctx);
ce71b9df 8244}
15dbf27c 8245
86038c5e 8246void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
b8e83514 8247{
a4234bfc 8248 struct perf_sample_data data;
4ed7c92d 8249
86038c5e 8250 if (WARN_ON_ONCE(!regs))
4ed7c92d 8251 return;
a4234bfc 8252
fd0d000b 8253 perf_sample_data_init(&data, addr, 0);
a8b0ca17 8254 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
86038c5e
PZI
8255}
8256
8257void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
8258{
8259 int rctx;
8260
8261 preempt_disable_notrace();
8262 rctx = perf_swevent_get_recursion_context();
8263 if (unlikely(rctx < 0))
8264 goto fail;
8265
8266 ___perf_sw_event(event_id, nr, regs, addr);
4ed7c92d
PZ
8267
8268 perf_swevent_put_recursion_context(rctx);
86038c5e 8269fail:
1c024eca 8270 preempt_enable_notrace();
b8e83514
PZ
8271}
8272
cdd6c482 8273static void perf_swevent_read(struct perf_event *event)
15dbf27c 8274{
15dbf27c
PZ
8275}
8276
a4eaf7f1 8277static int perf_swevent_add(struct perf_event *event, int flags)
15dbf27c 8278{
4a32fea9 8279 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 8280 struct hw_perf_event *hwc = &event->hw;
76e1d904
FW
8281 struct hlist_head *head;
8282
6c7e550f 8283 if (is_sampling_event(event)) {
7b4b6658 8284 hwc->last_period = hwc->sample_period;
cdd6c482 8285 perf_swevent_set_period(event);
7b4b6658 8286 }
76e1d904 8287
a4eaf7f1
PZ
8288 hwc->state = !(flags & PERF_EF_START);
8289
b28ab83c 8290 head = find_swevent_head(swhash, event);
12ca6ad2 8291 if (WARN_ON_ONCE(!head))
76e1d904
FW
8292 return -EINVAL;
8293
8294 hlist_add_head_rcu(&event->hlist_entry, head);
6a694a60 8295 perf_event_update_userpage(event);
76e1d904 8296
15dbf27c
PZ
8297 return 0;
8298}
8299
a4eaf7f1 8300static void perf_swevent_del(struct perf_event *event, int flags)
15dbf27c 8301{
76e1d904 8302 hlist_del_rcu(&event->hlist_entry);
15dbf27c
PZ
8303}
8304
a4eaf7f1 8305static void perf_swevent_start(struct perf_event *event, int flags)
5c92d124 8306{
a4eaf7f1 8307 event->hw.state = 0;
d6d020e9 8308}
aa9c4c0f 8309
a4eaf7f1 8310static void perf_swevent_stop(struct perf_event *event, int flags)
d6d020e9 8311{
a4eaf7f1 8312 event->hw.state = PERF_HES_STOPPED;
bae43c99
IM
8313}
8314
49f135ed
FW
8315/* Deref the hlist from the update side */
8316static inline struct swevent_hlist *
b28ab83c 8317swevent_hlist_deref(struct swevent_htable *swhash)
49f135ed 8318{
b28ab83c
PZ
8319 return rcu_dereference_protected(swhash->swevent_hlist,
8320 lockdep_is_held(&swhash->hlist_mutex));
49f135ed
FW
8321}
8322
b28ab83c 8323static void swevent_hlist_release(struct swevent_htable *swhash)
76e1d904 8324{
b28ab83c 8325 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
76e1d904 8326
49f135ed 8327 if (!hlist)
76e1d904
FW
8328 return;
8329
70691d4a 8330 RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
fa4bbc4c 8331 kfree_rcu(hlist, rcu_head);
76e1d904
FW
8332}
8333
3b364d7b 8334static void swevent_hlist_put_cpu(int cpu)
76e1d904 8335{
b28ab83c 8336 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904 8337
b28ab83c 8338 mutex_lock(&swhash->hlist_mutex);
76e1d904 8339
b28ab83c
PZ
8340 if (!--swhash->hlist_refcount)
8341 swevent_hlist_release(swhash);
76e1d904 8342
b28ab83c 8343 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
8344}
8345
3b364d7b 8346static void swevent_hlist_put(void)
76e1d904
FW
8347{
8348 int cpu;
8349
76e1d904 8350 for_each_possible_cpu(cpu)
3b364d7b 8351 swevent_hlist_put_cpu(cpu);
76e1d904
FW
8352}
8353
3b364d7b 8354static int swevent_hlist_get_cpu(int cpu)
76e1d904 8355{
b28ab83c 8356 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904
FW
8357 int err = 0;
8358
b28ab83c 8359 mutex_lock(&swhash->hlist_mutex);
a63fbed7
TG
8360 if (!swevent_hlist_deref(swhash) &&
8361 cpumask_test_cpu(cpu, perf_online_mask)) {
76e1d904
FW
8362 struct swevent_hlist *hlist;
8363
8364 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
8365 if (!hlist) {
8366 err = -ENOMEM;
8367 goto exit;
8368 }
b28ab83c 8369 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 8370 }
b28ab83c 8371 swhash->hlist_refcount++;
9ed6060d 8372exit:
b28ab83c 8373 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
8374
8375 return err;
8376}
8377
3b364d7b 8378static int swevent_hlist_get(void)
76e1d904 8379{
3b364d7b 8380 int err, cpu, failed_cpu;
76e1d904 8381
a63fbed7 8382 mutex_lock(&pmus_lock);
76e1d904 8383 for_each_possible_cpu(cpu) {
3b364d7b 8384 err = swevent_hlist_get_cpu(cpu);
76e1d904
FW
8385 if (err) {
8386 failed_cpu = cpu;
8387 goto fail;
8388 }
8389 }
a63fbed7 8390 mutex_unlock(&pmus_lock);
76e1d904 8391 return 0;
9ed6060d 8392fail:
76e1d904
FW
8393 for_each_possible_cpu(cpu) {
8394 if (cpu == failed_cpu)
8395 break;
3b364d7b 8396 swevent_hlist_put_cpu(cpu);
76e1d904 8397 }
a63fbed7 8398 mutex_unlock(&pmus_lock);
76e1d904
FW
8399 return err;
8400}
8401
c5905afb 8402struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
95476b64 8403
b0a873eb
PZ
8404static void sw_perf_event_destroy(struct perf_event *event)
8405{
8406 u64 event_id = event->attr.config;
95476b64 8407
b0a873eb
PZ
8408 WARN_ON(event->parent);
8409
c5905afb 8410 static_key_slow_dec(&perf_swevent_enabled[event_id]);
3b364d7b 8411 swevent_hlist_put();
b0a873eb
PZ
8412}
8413
8414static int perf_swevent_init(struct perf_event *event)
8415{
8176cced 8416 u64 event_id = event->attr.config;
b0a873eb
PZ
8417
8418 if (event->attr.type != PERF_TYPE_SOFTWARE)
8419 return -ENOENT;
8420
2481c5fa
SE
8421 /*
8422 * no branch sampling for software events
8423 */
8424 if (has_branch_stack(event))
8425 return -EOPNOTSUPP;
8426
b0a873eb
PZ
8427 switch (event_id) {
8428 case PERF_COUNT_SW_CPU_CLOCK:
8429 case PERF_COUNT_SW_TASK_CLOCK:
8430 return -ENOENT;
8431
8432 default:
8433 break;
8434 }
8435
ce677831 8436 if (event_id >= PERF_COUNT_SW_MAX)
b0a873eb
PZ
8437 return -ENOENT;
8438
8439 if (!event->parent) {
8440 int err;
8441
3b364d7b 8442 err = swevent_hlist_get();
b0a873eb
PZ
8443 if (err)
8444 return err;
8445
c5905afb 8446 static_key_slow_inc(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
8447 event->destroy = sw_perf_event_destroy;
8448 }
8449
8450 return 0;
8451}
8452
8453static struct pmu perf_swevent = {
89a1e187 8454 .task_ctx_nr = perf_sw_context,
95476b64 8455
34f43927
PZ
8456 .capabilities = PERF_PMU_CAP_NO_NMI,
8457
b0a873eb 8458 .event_init = perf_swevent_init,
a4eaf7f1
PZ
8459 .add = perf_swevent_add,
8460 .del = perf_swevent_del,
8461 .start = perf_swevent_start,
8462 .stop = perf_swevent_stop,
1c024eca 8463 .read = perf_swevent_read,
1c024eca
PZ
8464};
8465
b0a873eb
PZ
8466#ifdef CONFIG_EVENT_TRACING
8467
1c024eca
PZ
8468static int perf_tp_filter_match(struct perf_event *event,
8469 struct perf_sample_data *data)
8470{
7e3f977e 8471 void *record = data->raw->frag.data;
1c024eca 8472
b71b437e
PZ
8473 /* only top level events have filters set */
8474 if (event->parent)
8475 event = event->parent;
8476
1c024eca
PZ
8477 if (likely(!event->filter) || filter_match_preds(event->filter, record))
8478 return 1;
8479 return 0;
8480}
8481
8482static int perf_tp_event_match(struct perf_event *event,
8483 struct perf_sample_data *data,
8484 struct pt_regs *regs)
8485{
a0f7d0f7
FW
8486 if (event->hw.state & PERF_HES_STOPPED)
8487 return 0;
580d607c
PZ
8488 /*
8489 * All tracepoints are from kernel-space.
8490 */
8491 if (event->attr.exclude_kernel)
1c024eca
PZ
8492 return 0;
8493
8494 if (!perf_tp_filter_match(event, data))
8495 return 0;
8496
8497 return 1;
8498}
8499
85b67bcb
AS
8500void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
8501 struct trace_event_call *call, u64 count,
8502 struct pt_regs *regs, struct hlist_head *head,
8503 struct task_struct *task)
8504{
e87c6bc3 8505 if (bpf_prog_array_valid(call)) {
85b67bcb 8506 *(struct pt_regs **)raw_data = regs;
e87c6bc3 8507 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
85b67bcb
AS
8508 perf_swevent_put_recursion_context(rctx);
8509 return;
8510 }
8511 }
8512 perf_tp_event(call->event.type, count, raw_data, size, regs, head,
8fd0fbbe 8513 rctx, task);
85b67bcb
AS
8514}
8515EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
8516
1e1dcd93 8517void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
e6dab5ff 8518 struct pt_regs *regs, struct hlist_head *head, int rctx,
8fd0fbbe 8519 struct task_struct *task)
95476b64
FW
8520{
8521 struct perf_sample_data data;
8fd0fbbe 8522 struct perf_event *event;
1c024eca 8523
95476b64 8524 struct perf_raw_record raw = {
7e3f977e
DB
8525 .frag = {
8526 .size = entry_size,
8527 .data = record,
8528 },
95476b64
FW
8529 };
8530
1e1dcd93 8531 perf_sample_data_init(&data, 0, 0);
95476b64
FW
8532 data.raw = &raw;
8533
1e1dcd93
AS
8534 perf_trace_buf_update(record, event_type);
8535
8fd0fbbe 8536 hlist_for_each_entry_rcu(event, head, hlist_entry) {
1c024eca 8537 if (perf_tp_event_match(event, &data, regs))
a8b0ca17 8538 perf_swevent_event(event, count, &data, regs);
4f41c013 8539 }
ecc55f84 8540
e6dab5ff
AV
8541 /*
8542 * If we got specified a target task, also iterate its context and
8543 * deliver this event there too.
8544 */
8545 if (task && task != current) {
8546 struct perf_event_context *ctx;
8547 struct trace_entry *entry = record;
8548
8549 rcu_read_lock();
8550 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
8551 if (!ctx)
8552 goto unlock;
8553
8554 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
cd6fb677
JO
8555 if (event->cpu != smp_processor_id())
8556 continue;
e6dab5ff
AV
8557 if (event->attr.type != PERF_TYPE_TRACEPOINT)
8558 continue;
8559 if (event->attr.config != entry->type)
8560 continue;
8561 if (perf_tp_event_match(event, &data, regs))
8562 perf_swevent_event(event, count, &data, regs);
8563 }
8564unlock:
8565 rcu_read_unlock();
8566 }
8567
ecc55f84 8568 perf_swevent_put_recursion_context(rctx);
95476b64
FW
8569}
8570EXPORT_SYMBOL_GPL(perf_tp_event);
8571
cdd6c482 8572static void tp_perf_event_destroy(struct perf_event *event)
e077df4f 8573{
1c024eca 8574 perf_trace_destroy(event);
e077df4f
PZ
8575}
8576
b0a873eb 8577static int perf_tp_event_init(struct perf_event *event)
e077df4f 8578{
76e1d904
FW
8579 int err;
8580
b0a873eb
PZ
8581 if (event->attr.type != PERF_TYPE_TRACEPOINT)
8582 return -ENOENT;
8583
2481c5fa
SE
8584 /*
8585 * no branch sampling for tracepoint events
8586 */
8587 if (has_branch_stack(event))
8588 return -EOPNOTSUPP;
8589
1c024eca
PZ
8590 err = perf_trace_init(event);
8591 if (err)
b0a873eb 8592 return err;
e077df4f 8593
cdd6c482 8594 event->destroy = tp_perf_event_destroy;
e077df4f 8595
b0a873eb
PZ
8596 return 0;
8597}
8598
8599static struct pmu perf_tracepoint = {
89a1e187
PZ
8600 .task_ctx_nr = perf_sw_context,
8601
b0a873eb 8602 .event_init = perf_tp_event_init,
a4eaf7f1
PZ
8603 .add = perf_trace_add,
8604 .del = perf_trace_del,
8605 .start = perf_swevent_start,
8606 .stop = perf_swevent_stop,
b0a873eb 8607 .read = perf_swevent_read,
b0a873eb
PZ
8608};
8609
33ea4b24 8610#if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
e12f03d7
SL
8611/*
8612 * Flags in config, used by dynamic PMU kprobe and uprobe
8613 * The flags should match following PMU_FORMAT_ATTR().
8614 *
8615 * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
8616 * if not set, create kprobe/uprobe
a6ca88b2
SL
8617 *
8618 * The following values specify a reference counter (or semaphore in the
8619 * terminology of tools like dtrace, systemtap, etc.) Userspace Statically
8620 * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset.
8621 *
8622 * PERF_UPROBE_REF_CTR_OFFSET_BITS # of bits in config as th offset
8623 * PERF_UPROBE_REF_CTR_OFFSET_SHIFT # of bits to shift left
e12f03d7
SL
8624 */
8625enum perf_probe_config {
8626 PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0, /* [k,u]retprobe */
a6ca88b2
SL
8627 PERF_UPROBE_REF_CTR_OFFSET_BITS = 32,
8628 PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS,
e12f03d7
SL
8629};
8630
8631PMU_FORMAT_ATTR(retprobe, "config:0");
a6ca88b2 8632#endif
e12f03d7 8633
a6ca88b2
SL
8634#ifdef CONFIG_KPROBE_EVENTS
8635static struct attribute *kprobe_attrs[] = {
e12f03d7
SL
8636 &format_attr_retprobe.attr,
8637 NULL,
8638};
8639
a6ca88b2 8640static struct attribute_group kprobe_format_group = {
e12f03d7 8641 .name = "format",
a6ca88b2 8642 .attrs = kprobe_attrs,
e12f03d7
SL
8643};
8644
a6ca88b2
SL
8645static const struct attribute_group *kprobe_attr_groups[] = {
8646 &kprobe_format_group,
e12f03d7
SL
8647 NULL,
8648};
8649
8650static int perf_kprobe_event_init(struct perf_event *event);
8651static struct pmu perf_kprobe = {
8652 .task_ctx_nr = perf_sw_context,
8653 .event_init = perf_kprobe_event_init,
8654 .add = perf_trace_add,
8655 .del = perf_trace_del,
8656 .start = perf_swevent_start,
8657 .stop = perf_swevent_stop,
8658 .read = perf_swevent_read,
a6ca88b2 8659 .attr_groups = kprobe_attr_groups,
e12f03d7
SL
8660};
8661
8662static int perf_kprobe_event_init(struct perf_event *event)
8663{
8664 int err;
8665 bool is_retprobe;
8666
8667 if (event->attr.type != perf_kprobe.type)
8668 return -ENOENT;
32e6e967
SL
8669
8670 if (!capable(CAP_SYS_ADMIN))
8671 return -EACCES;
8672
e12f03d7
SL
8673 /*
8674 * no branch sampling for probe events
8675 */
8676 if (has_branch_stack(event))
8677 return -EOPNOTSUPP;
8678
8679 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
8680 err = perf_kprobe_init(event, is_retprobe);
8681 if (err)
8682 return err;
8683
8684 event->destroy = perf_kprobe_destroy;
8685
8686 return 0;
8687}
8688#endif /* CONFIG_KPROBE_EVENTS */
8689
33ea4b24 8690#ifdef CONFIG_UPROBE_EVENTS
a6ca88b2
SL
8691PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63");
8692
8693static struct attribute *uprobe_attrs[] = {
8694 &format_attr_retprobe.attr,
8695 &format_attr_ref_ctr_offset.attr,
8696 NULL,
8697};
8698
8699static struct attribute_group uprobe_format_group = {
8700 .name = "format",
8701 .attrs = uprobe_attrs,
8702};
8703
8704static const struct attribute_group *uprobe_attr_groups[] = {
8705 &uprobe_format_group,
8706 NULL,
8707};
8708
33ea4b24
SL
8709static int perf_uprobe_event_init(struct perf_event *event);
8710static struct pmu perf_uprobe = {
8711 .task_ctx_nr = perf_sw_context,
8712 .event_init = perf_uprobe_event_init,
8713 .add = perf_trace_add,
8714 .del = perf_trace_del,
8715 .start = perf_swevent_start,
8716 .stop = perf_swevent_stop,
8717 .read = perf_swevent_read,
a6ca88b2 8718 .attr_groups = uprobe_attr_groups,
33ea4b24
SL
8719};
8720
8721static int perf_uprobe_event_init(struct perf_event *event)
8722{
8723 int err;
a6ca88b2 8724 unsigned long ref_ctr_offset;
33ea4b24
SL
8725 bool is_retprobe;
8726
8727 if (event->attr.type != perf_uprobe.type)
8728 return -ENOENT;
32e6e967
SL
8729
8730 if (!capable(CAP_SYS_ADMIN))
8731 return -EACCES;
8732
33ea4b24
SL
8733 /*
8734 * no branch sampling for probe events
8735 */
8736 if (has_branch_stack(event))
8737 return -EOPNOTSUPP;
8738
8739 is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
a6ca88b2
SL
8740 ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
8741 err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe);
33ea4b24
SL
8742 if (err)
8743 return err;
8744
8745 event->destroy = perf_uprobe_destroy;
8746
8747 return 0;
8748}
8749#endif /* CONFIG_UPROBE_EVENTS */
8750
b0a873eb
PZ
8751static inline void perf_tp_register(void)
8752{
2e80a82a 8753 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
e12f03d7
SL
8754#ifdef CONFIG_KPROBE_EVENTS
8755 perf_pmu_register(&perf_kprobe, "kprobe", -1);
8756#endif
33ea4b24
SL
8757#ifdef CONFIG_UPROBE_EVENTS
8758 perf_pmu_register(&perf_uprobe, "uprobe", -1);
8759#endif
e077df4f 8760}
6fb2915d 8761
6fb2915d
LZ
8762static void perf_event_free_filter(struct perf_event *event)
8763{
8764 ftrace_profile_free_filter(event);
8765}
8766
aa6a5f3c
AS
8767#ifdef CONFIG_BPF_SYSCALL
8768static void bpf_overflow_handler(struct perf_event *event,
8769 struct perf_sample_data *data,
8770 struct pt_regs *regs)
8771{
8772 struct bpf_perf_event_data_kern ctx = {
8773 .data = data,
7d9285e8 8774 .event = event,
aa6a5f3c
AS
8775 };
8776 int ret = 0;
8777
c895f6f7 8778 ctx.regs = perf_arch_bpf_user_pt_regs(regs);
aa6a5f3c
AS
8779 preempt_disable();
8780 if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
8781 goto out;
8782 rcu_read_lock();
88575199 8783 ret = BPF_PROG_RUN(event->prog, &ctx);
aa6a5f3c
AS
8784 rcu_read_unlock();
8785out:
8786 __this_cpu_dec(bpf_prog_active);
8787 preempt_enable();
8788 if (!ret)
8789 return;
8790
8791 event->orig_overflow_handler(event, data, regs);
8792}
8793
8794static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8795{
8796 struct bpf_prog *prog;
8797
8798 if (event->overflow_handler_context)
8799 /* hw breakpoint or kernel counter */
8800 return -EINVAL;
8801
8802 if (event->prog)
8803 return -EEXIST;
8804
8805 prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
8806 if (IS_ERR(prog))
8807 return PTR_ERR(prog);
8808
8809 event->prog = prog;
8810 event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
8811 WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
8812 return 0;
8813}
8814
8815static void perf_event_free_bpf_handler(struct perf_event *event)
8816{
8817 struct bpf_prog *prog = event->prog;
8818
8819 if (!prog)
8820 return;
8821
8822 WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
8823 event->prog = NULL;
8824 bpf_prog_put(prog);
8825}
8826#else
8827static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8828{
8829 return -EOPNOTSUPP;
8830}
8831static void perf_event_free_bpf_handler(struct perf_event *event)
8832{
8833}
8834#endif
8835
e12f03d7
SL
8836/*
8837 * returns true if the event is a tracepoint, or a kprobe/upprobe created
8838 * with perf_event_open()
8839 */
8840static inline bool perf_event_is_tracing(struct perf_event *event)
8841{
8842 if (event->pmu == &perf_tracepoint)
8843 return true;
8844#ifdef CONFIG_KPROBE_EVENTS
8845 if (event->pmu == &perf_kprobe)
8846 return true;
33ea4b24
SL
8847#endif
8848#ifdef CONFIG_UPROBE_EVENTS
8849 if (event->pmu == &perf_uprobe)
8850 return true;
e12f03d7
SL
8851#endif
8852 return false;
8853}
8854
2541517c
AS
8855static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8856{
cf5f5cea 8857 bool is_kprobe, is_tracepoint, is_syscall_tp;
2541517c 8858 struct bpf_prog *prog;
e87c6bc3 8859 int ret;
2541517c 8860
e12f03d7 8861 if (!perf_event_is_tracing(event))
f91840a3 8862 return perf_event_set_bpf_handler(event, prog_fd);
2541517c 8863
98b5c2c6
AS
8864 is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
8865 is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
cf5f5cea
YS
8866 is_syscall_tp = is_syscall_trace_event(event->tp_event);
8867 if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
98b5c2c6 8868 /* bpf programs can only be attached to u/kprobe or tracepoint */
2541517c
AS
8869 return -EINVAL;
8870
8871 prog = bpf_prog_get(prog_fd);
8872 if (IS_ERR(prog))
8873 return PTR_ERR(prog);
8874
98b5c2c6 8875 if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
cf5f5cea
YS
8876 (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
8877 (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
2541517c
AS
8878 /* valid fd, but invalid bpf program type */
8879 bpf_prog_put(prog);
8880 return -EINVAL;
8881 }
8882
9802d865
JB
8883 /* Kprobe override only works for kprobes, not uprobes. */
8884 if (prog->kprobe_override &&
8885 !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE)) {
8886 bpf_prog_put(prog);
8887 return -EINVAL;
8888 }
8889
cf5f5cea 8890 if (is_tracepoint || is_syscall_tp) {
32bbe007
AS
8891 int off = trace_event_get_offsets(event->tp_event);
8892
8893 if (prog->aux->max_ctx_offset > off) {
8894 bpf_prog_put(prog);
8895 return -EACCES;
8896 }
8897 }
2541517c 8898
e87c6bc3
YS
8899 ret = perf_event_attach_bpf_prog(event, prog);
8900 if (ret)
8901 bpf_prog_put(prog);
8902 return ret;
2541517c
AS
8903}
8904
8905static void perf_event_free_bpf_prog(struct perf_event *event)
8906{
e12f03d7 8907 if (!perf_event_is_tracing(event)) {
0b4c6841 8908 perf_event_free_bpf_handler(event);
2541517c 8909 return;
2541517c 8910 }
e87c6bc3 8911 perf_event_detach_bpf_prog(event);
2541517c
AS
8912}
8913
e077df4f 8914#else
6fb2915d 8915
b0a873eb 8916static inline void perf_tp_register(void)
e077df4f 8917{
e077df4f 8918}
6fb2915d 8919
6fb2915d
LZ
8920static void perf_event_free_filter(struct perf_event *event)
8921{
8922}
8923
2541517c
AS
8924static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8925{
8926 return -ENOENT;
8927}
8928
8929static void perf_event_free_bpf_prog(struct perf_event *event)
8930{
8931}
07b139c8 8932#endif /* CONFIG_EVENT_TRACING */
e077df4f 8933
24f1e32c 8934#ifdef CONFIG_HAVE_HW_BREAKPOINT
f5ffe02e 8935void perf_bp_event(struct perf_event *bp, void *data)
24f1e32c 8936{
f5ffe02e
FW
8937 struct perf_sample_data sample;
8938 struct pt_regs *regs = data;
8939
fd0d000b 8940 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
f5ffe02e 8941
a4eaf7f1 8942 if (!bp->hw.state && !perf_exclude_event(bp, regs))
a8b0ca17 8943 perf_swevent_event(bp, 1, &sample, regs);
24f1e32c
FW
8944}
8945#endif
8946
375637bc
AS
8947/*
8948 * Allocate a new address filter
8949 */
8950static struct perf_addr_filter *
8951perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
8952{
8953 int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
8954 struct perf_addr_filter *filter;
8955
8956 filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
8957 if (!filter)
8958 return NULL;
8959
8960 INIT_LIST_HEAD(&filter->entry);
8961 list_add_tail(&filter->entry, filters);
8962
8963 return filter;
8964}
8965
8966static void free_filters_list(struct list_head *filters)
8967{
8968 struct perf_addr_filter *filter, *iter;
8969
8970 list_for_each_entry_safe(filter, iter, filters, entry) {
9511bce9 8971 path_put(&filter->path);
375637bc
AS
8972 list_del(&filter->entry);
8973 kfree(filter);
8974 }
8975}
8976
8977/*
8978 * Free existing address filters and optionally install new ones
8979 */
8980static void perf_addr_filters_splice(struct perf_event *event,
8981 struct list_head *head)
8982{
8983 unsigned long flags;
8984 LIST_HEAD(list);
8985
8986 if (!has_addr_filter(event))
8987 return;
8988
8989 /* don't bother with children, they don't have their own filters */
8990 if (event->parent)
8991 return;
8992
8993 raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
8994
8995 list_splice_init(&event->addr_filters.list, &list);
8996 if (head)
8997 list_splice(head, &event->addr_filters.list);
8998
8999 raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
9000
9001 free_filters_list(&list);
9002}
9003
9004/*
9005 * Scan through mm's vmas and see if one of them matches the
9006 * @filter; if so, adjust filter's address range.
9007 * Called with mm::mmap_sem down for reading.
9008 */
c60f83b8
AS
9009static void perf_addr_filter_apply(struct perf_addr_filter *filter,
9010 struct mm_struct *mm,
9011 struct perf_addr_filter_range *fr)
375637bc
AS
9012{
9013 struct vm_area_struct *vma;
9014
9015 for (vma = mm->mmap; vma; vma = vma->vm_next) {
c60f83b8 9016 if (!vma->vm_file)
375637bc
AS
9017 continue;
9018
c60f83b8
AS
9019 if (perf_addr_filter_vma_adjust(filter, vma, fr))
9020 return;
375637bc 9021 }
375637bc
AS
9022}
9023
9024/*
9025 * Update event's address range filters based on the
9026 * task's existing mappings, if any.
9027 */
9028static void perf_event_addr_filters_apply(struct perf_event *event)
9029{
9030 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
9031 struct task_struct *task = READ_ONCE(event->ctx->task);
9032 struct perf_addr_filter *filter;
9033 struct mm_struct *mm = NULL;
9034 unsigned int count = 0;
9035 unsigned long flags;
9036
9037 /*
9038 * We may observe TASK_TOMBSTONE, which means that the event tear-down
9039 * will stop on the parent's child_mutex that our caller is also holding
9040 */
9041 if (task == TASK_TOMBSTONE)
9042 return;
9043
6ce77bfd
AS
9044 if (!ifh->nr_file_filters)
9045 return;
9046
375637bc
AS
9047 mm = get_task_mm(event->ctx->task);
9048 if (!mm)
9049 goto restart;
9050
9051 down_read(&mm->mmap_sem);
9052
9053 raw_spin_lock_irqsave(&ifh->lock, flags);
9054 list_for_each_entry(filter, &ifh->list, entry) {
c60f83b8
AS
9055 event->addr_filter_ranges[count].start = 0;
9056 event->addr_filter_ranges[count].size = 0;
375637bc 9057
99f5bc9b
MP
9058 /*
9059 * Adjust base offset if the filter is associated to a binary
9060 * that needs to be mapped:
9061 */
9511bce9 9062 if (filter->path.dentry)
c60f83b8 9063 perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]);
375637bc
AS
9064
9065 count++;
9066 }
9067
9068 event->addr_filters_gen++;
9069 raw_spin_unlock_irqrestore(&ifh->lock, flags);
9070
9071 up_read(&mm->mmap_sem);
9072
9073 mmput(mm);
9074
9075restart:
767ae086 9076 perf_event_stop(event, 1);
375637bc
AS
9077}
9078
9079/*
9080 * Address range filtering: limiting the data to certain
9081 * instruction address ranges. Filters are ioctl()ed to us from
9082 * userspace as ascii strings.
9083 *
9084 * Filter string format:
9085 *
9086 * ACTION RANGE_SPEC
9087 * where ACTION is one of the
9088 * * "filter": limit the trace to this region
9089 * * "start": start tracing from this address
9090 * * "stop": stop tracing at this address/region;
9091 * RANGE_SPEC is
9092 * * for kernel addresses: <start address>[/<size>]
9093 * * for object files: <start address>[/<size>]@</path/to/object/file>
9094 *
6ed70cf3
AS
9095 * if <size> is not specified or is zero, the range is treated as a single
9096 * address; not valid for ACTION=="filter".
375637bc
AS
9097 */
9098enum {
e96271f3 9099 IF_ACT_NONE = -1,
375637bc
AS
9100 IF_ACT_FILTER,
9101 IF_ACT_START,
9102 IF_ACT_STOP,
9103 IF_SRC_FILE,
9104 IF_SRC_KERNEL,
9105 IF_SRC_FILEADDR,
9106 IF_SRC_KERNELADDR,
9107};
9108
9109enum {
9110 IF_STATE_ACTION = 0,
9111 IF_STATE_SOURCE,
9112 IF_STATE_END,
9113};
9114
9115static const match_table_t if_tokens = {
9116 { IF_ACT_FILTER, "filter" },
9117 { IF_ACT_START, "start" },
9118 { IF_ACT_STOP, "stop" },
9119 { IF_SRC_FILE, "%u/%u@%s" },
9120 { IF_SRC_KERNEL, "%u/%u" },
9121 { IF_SRC_FILEADDR, "%u@%s" },
9122 { IF_SRC_KERNELADDR, "%u" },
e96271f3 9123 { IF_ACT_NONE, NULL },
375637bc
AS
9124};
9125
9126/*
9127 * Address filter string parser
9128 */
9129static int
9130perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
9131 struct list_head *filters)
9132{
9133 struct perf_addr_filter *filter = NULL;
9134 char *start, *orig, *filename = NULL;
375637bc
AS
9135 substring_t args[MAX_OPT_ARGS];
9136 int state = IF_STATE_ACTION, token;
9137 unsigned int kernel = 0;
9138 int ret = -EINVAL;
9139
9140 orig = fstr = kstrdup(fstr, GFP_KERNEL);
9141 if (!fstr)
9142 return -ENOMEM;
9143
9144 while ((start = strsep(&fstr, " ,\n")) != NULL) {
6ed70cf3
AS
9145 static const enum perf_addr_filter_action_t actions[] = {
9146 [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER,
9147 [IF_ACT_START] = PERF_ADDR_FILTER_ACTION_START,
9148 [IF_ACT_STOP] = PERF_ADDR_FILTER_ACTION_STOP,
9149 };
375637bc
AS
9150 ret = -EINVAL;
9151
9152 if (!*start)
9153 continue;
9154
9155 /* filter definition begins */
9156 if (state == IF_STATE_ACTION) {
9157 filter = perf_addr_filter_new(event, filters);
9158 if (!filter)
9159 goto fail;
9160 }
9161
9162 token = match_token(start, if_tokens, args);
9163 switch (token) {
9164 case IF_ACT_FILTER:
9165 case IF_ACT_START:
375637bc
AS
9166 case IF_ACT_STOP:
9167 if (state != IF_STATE_ACTION)
9168 goto fail;
9169
6ed70cf3 9170 filter->action = actions[token];
375637bc
AS
9171 state = IF_STATE_SOURCE;
9172 break;
9173
9174 case IF_SRC_KERNELADDR:
9175 case IF_SRC_KERNEL:
9176 kernel = 1;
9177
9178 case IF_SRC_FILEADDR:
9179 case IF_SRC_FILE:
9180 if (state != IF_STATE_SOURCE)
9181 goto fail;
9182
375637bc
AS
9183 *args[0].to = 0;
9184 ret = kstrtoul(args[0].from, 0, &filter->offset);
9185 if (ret)
9186 goto fail;
9187
6ed70cf3 9188 if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
375637bc
AS
9189 *args[1].to = 0;
9190 ret = kstrtoul(args[1].from, 0, &filter->size);
9191 if (ret)
9192 goto fail;
9193 }
9194
4059ffd0 9195 if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
6ed70cf3 9196 int fpos = token == IF_SRC_FILE ? 2 : 1;
4059ffd0
MP
9197
9198 filename = match_strdup(&args[fpos]);
375637bc
AS
9199 if (!filename) {
9200 ret = -ENOMEM;
9201 goto fail;
9202 }
9203 }
9204
9205 state = IF_STATE_END;
9206 break;
9207
9208 default:
9209 goto fail;
9210 }
9211
9212 /*
9213 * Filter definition is fully parsed, validate and install it.
9214 * Make sure that it doesn't contradict itself or the event's
9215 * attribute.
9216 */
9217 if (state == IF_STATE_END) {
9ccbfbb1 9218 ret = -EINVAL;
375637bc
AS
9219 if (kernel && event->attr.exclude_kernel)
9220 goto fail;
9221
6ed70cf3
AS
9222 /*
9223 * ACTION "filter" must have a non-zero length region
9224 * specified.
9225 */
9226 if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
9227 !filter->size)
9228 goto fail;
9229
375637bc
AS
9230 if (!kernel) {
9231 if (!filename)
9232 goto fail;
9233
6ce77bfd
AS
9234 /*
9235 * For now, we only support file-based filters
9236 * in per-task events; doing so for CPU-wide
9237 * events requires additional context switching
9238 * trickery, since same object code will be
9239 * mapped at different virtual addresses in
9240 * different processes.
9241 */
9242 ret = -EOPNOTSUPP;
9243 if (!event->ctx->task)
9244 goto fail_free_name;
9245
375637bc 9246 /* look up the path and grab its inode */
9511bce9
SL
9247 ret = kern_path(filename, LOOKUP_FOLLOW,
9248 &filter->path);
375637bc
AS
9249 if (ret)
9250 goto fail_free_name;
9251
375637bc
AS
9252 kfree(filename);
9253 filename = NULL;
9254
9255 ret = -EINVAL;
9511bce9
SL
9256 if (!filter->path.dentry ||
9257 !S_ISREG(d_inode(filter->path.dentry)
9258 ->i_mode))
375637bc 9259 goto fail;
6ce77bfd
AS
9260
9261 event->addr_filters.nr_file_filters++;
375637bc
AS
9262 }
9263
9264 /* ready to consume more filters */
9265 state = IF_STATE_ACTION;
9266 filter = NULL;
9267 }
9268 }
9269
9270 if (state != IF_STATE_ACTION)
9271 goto fail;
9272
9273 kfree(orig);
9274
9275 return 0;
9276
9277fail_free_name:
9278 kfree(filename);
9279fail:
9280 free_filters_list(filters);
9281 kfree(orig);
9282
9283 return ret;
9284}
9285
9286static int
9287perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
9288{
9289 LIST_HEAD(filters);
9290 int ret;
9291
9292 /*
9293 * Since this is called in perf_ioctl() path, we're already holding
9294 * ctx::mutex.
9295 */
9296 lockdep_assert_held(&event->ctx->mutex);
9297
9298 if (WARN_ON_ONCE(event->parent))
9299 return -EINVAL;
9300
375637bc
AS
9301 ret = perf_event_parse_addr_filter(event, filter_str, &filters);
9302 if (ret)
6ce77bfd 9303 goto fail_clear_files;
375637bc
AS
9304
9305 ret = event->pmu->addr_filters_validate(&filters);
6ce77bfd
AS
9306 if (ret)
9307 goto fail_free_filters;
375637bc
AS
9308
9309 /* remove existing filters, if any */
9310 perf_addr_filters_splice(event, &filters);
9311
9312 /* install new filters */
9313 perf_event_for_each_child(event, perf_event_addr_filters_apply);
9314
6ce77bfd
AS
9315 return ret;
9316
9317fail_free_filters:
9318 free_filters_list(&filters);
9319
9320fail_clear_files:
9321 event->addr_filters.nr_file_filters = 0;
9322
375637bc
AS
9323 return ret;
9324}
9325
c796bbbe
AS
9326static int perf_event_set_filter(struct perf_event *event, void __user *arg)
9327{
c796bbbe 9328 int ret = -EINVAL;
e12f03d7 9329 char *filter_str;
c796bbbe
AS
9330
9331 filter_str = strndup_user(arg, PAGE_SIZE);
9332 if (IS_ERR(filter_str))
9333 return PTR_ERR(filter_str);
9334
e12f03d7
SL
9335#ifdef CONFIG_EVENT_TRACING
9336 if (perf_event_is_tracing(event)) {
9337 struct perf_event_context *ctx = event->ctx;
9338
9339 /*
9340 * Beware, here be dragons!!
9341 *
9342 * the tracepoint muck will deadlock against ctx->mutex, but
9343 * the tracepoint stuff does not actually need it. So
9344 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
9345 * already have a reference on ctx.
9346 *
9347 * This can result in event getting moved to a different ctx,
9348 * but that does not affect the tracepoint state.
9349 */
9350 mutex_unlock(&ctx->mutex);
9351 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
9352 mutex_lock(&ctx->mutex);
9353 } else
9354#endif
9355 if (has_addr_filter(event))
375637bc 9356 ret = perf_event_set_addr_filter(event, filter_str);
c796bbbe
AS
9357
9358 kfree(filter_str);
9359 return ret;
9360}
9361
b0a873eb
PZ
9362/*
9363 * hrtimer based swevent callback
9364 */
f29ac756 9365
b0a873eb 9366static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
f29ac756 9367{
b0a873eb
PZ
9368 enum hrtimer_restart ret = HRTIMER_RESTART;
9369 struct perf_sample_data data;
9370 struct pt_regs *regs;
9371 struct perf_event *event;
9372 u64 period;
f29ac756 9373
b0a873eb 9374 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
ba3dd36c
PZ
9375
9376 if (event->state != PERF_EVENT_STATE_ACTIVE)
9377 return HRTIMER_NORESTART;
9378
b0a873eb 9379 event->pmu->read(event);
f344011c 9380
fd0d000b 9381 perf_sample_data_init(&data, 0, event->hw.last_period);
b0a873eb
PZ
9382 regs = get_irq_regs();
9383
9384 if (regs && !perf_exclude_event(event, regs)) {
77aeeebd 9385 if (!(event->attr.exclude_idle && is_idle_task(current)))
33b07b8b 9386 if (__perf_event_overflow(event, 1, &data, regs))
b0a873eb
PZ
9387 ret = HRTIMER_NORESTART;
9388 }
24f1e32c 9389
b0a873eb
PZ
9390 period = max_t(u64, 10000, event->hw.sample_period);
9391 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
24f1e32c 9392
b0a873eb 9393 return ret;
f29ac756
PZ
9394}
9395
b0a873eb 9396static void perf_swevent_start_hrtimer(struct perf_event *event)
5c92d124 9397{
b0a873eb 9398 struct hw_perf_event *hwc = &event->hw;
5d508e82
FBH
9399 s64 period;
9400
9401 if (!is_sampling_event(event))
9402 return;
f5ffe02e 9403
5d508e82
FBH
9404 period = local64_read(&hwc->period_left);
9405 if (period) {
9406 if (period < 0)
9407 period = 10000;
fa407f35 9408
5d508e82
FBH
9409 local64_set(&hwc->period_left, 0);
9410 } else {
9411 period = max_t(u64, 10000, hwc->sample_period);
9412 }
3497d206
TG
9413 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
9414 HRTIMER_MODE_REL_PINNED);
24f1e32c 9415}
b0a873eb
PZ
9416
9417static void perf_swevent_cancel_hrtimer(struct perf_event *event)
24f1e32c 9418{
b0a873eb
PZ
9419 struct hw_perf_event *hwc = &event->hw;
9420
6c7e550f 9421 if (is_sampling_event(event)) {
b0a873eb 9422 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
fa407f35 9423 local64_set(&hwc->period_left, ktime_to_ns(remaining));
b0a873eb
PZ
9424
9425 hrtimer_cancel(&hwc->hrtimer);
9426 }
24f1e32c
FW
9427}
9428
ba3dd36c
PZ
9429static void perf_swevent_init_hrtimer(struct perf_event *event)
9430{
9431 struct hw_perf_event *hwc = &event->hw;
9432
9433 if (!is_sampling_event(event))
9434 return;
9435
9436 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
9437 hwc->hrtimer.function = perf_swevent_hrtimer;
9438
9439 /*
9440 * Since hrtimers have a fixed rate, we can do a static freq->period
9441 * mapping and avoid the whole period adjust feedback stuff.
9442 */
9443 if (event->attr.freq) {
9444 long freq = event->attr.sample_freq;
9445
9446 event->attr.sample_period = NSEC_PER_SEC / freq;
9447 hwc->sample_period = event->attr.sample_period;
9448 local64_set(&hwc->period_left, hwc->sample_period);
778141e3 9449 hwc->last_period = hwc->sample_period;
ba3dd36c
PZ
9450 event->attr.freq = 0;
9451 }
9452}
9453
b0a873eb
PZ
9454/*
9455 * Software event: cpu wall time clock
9456 */
9457
9458static void cpu_clock_event_update(struct perf_event *event)
24f1e32c 9459{
b0a873eb
PZ
9460 s64 prev;
9461 u64 now;
9462
a4eaf7f1 9463 now = local_clock();
b0a873eb
PZ
9464 prev = local64_xchg(&event->hw.prev_count, now);
9465 local64_add(now - prev, &event->count);
24f1e32c 9466}
24f1e32c 9467
a4eaf7f1 9468static void cpu_clock_event_start(struct perf_event *event, int flags)
b0a873eb 9469{
a4eaf7f1 9470 local64_set(&event->hw.prev_count, local_clock());
b0a873eb 9471 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
9472}
9473
a4eaf7f1 9474static void cpu_clock_event_stop(struct perf_event *event, int flags)
f29ac756 9475{
b0a873eb
PZ
9476 perf_swevent_cancel_hrtimer(event);
9477 cpu_clock_event_update(event);
9478}
f29ac756 9479
a4eaf7f1
PZ
9480static int cpu_clock_event_add(struct perf_event *event, int flags)
9481{
9482 if (flags & PERF_EF_START)
9483 cpu_clock_event_start(event, flags);
6a694a60 9484 perf_event_update_userpage(event);
a4eaf7f1
PZ
9485
9486 return 0;
9487}
9488
9489static void cpu_clock_event_del(struct perf_event *event, int flags)
9490{
9491 cpu_clock_event_stop(event, flags);
9492}
9493
b0a873eb
PZ
9494static void cpu_clock_event_read(struct perf_event *event)
9495{
9496 cpu_clock_event_update(event);
9497}
f344011c 9498
b0a873eb
PZ
9499static int cpu_clock_event_init(struct perf_event *event)
9500{
9501 if (event->attr.type != PERF_TYPE_SOFTWARE)
9502 return -ENOENT;
9503
9504 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
9505 return -ENOENT;
9506
2481c5fa
SE
9507 /*
9508 * no branch sampling for software events
9509 */
9510 if (has_branch_stack(event))
9511 return -EOPNOTSUPP;
9512
ba3dd36c
PZ
9513 perf_swevent_init_hrtimer(event);
9514
b0a873eb 9515 return 0;
f29ac756
PZ
9516}
9517
b0a873eb 9518static struct pmu perf_cpu_clock = {
89a1e187
PZ
9519 .task_ctx_nr = perf_sw_context,
9520
34f43927
PZ
9521 .capabilities = PERF_PMU_CAP_NO_NMI,
9522
b0a873eb 9523 .event_init = cpu_clock_event_init,
a4eaf7f1
PZ
9524 .add = cpu_clock_event_add,
9525 .del = cpu_clock_event_del,
9526 .start = cpu_clock_event_start,
9527 .stop = cpu_clock_event_stop,
b0a873eb
PZ
9528 .read = cpu_clock_event_read,
9529};
9530
9531/*
9532 * Software event: task time clock
9533 */
9534
9535static void task_clock_event_update(struct perf_event *event, u64 now)
5c92d124 9536{
b0a873eb
PZ
9537 u64 prev;
9538 s64 delta;
5c92d124 9539
b0a873eb
PZ
9540 prev = local64_xchg(&event->hw.prev_count, now);
9541 delta = now - prev;
9542 local64_add(delta, &event->count);
9543}
5c92d124 9544
a4eaf7f1 9545static void task_clock_event_start(struct perf_event *event, int flags)
b0a873eb 9546{
a4eaf7f1 9547 local64_set(&event->hw.prev_count, event->ctx->time);
b0a873eb 9548 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
9549}
9550
a4eaf7f1 9551static void task_clock_event_stop(struct perf_event *event, int flags)
b0a873eb
PZ
9552{
9553 perf_swevent_cancel_hrtimer(event);
9554 task_clock_event_update(event, event->ctx->time);
a4eaf7f1
PZ
9555}
9556
9557static int task_clock_event_add(struct perf_event *event, int flags)
9558{
9559 if (flags & PERF_EF_START)
9560 task_clock_event_start(event, flags);
6a694a60 9561 perf_event_update_userpage(event);
b0a873eb 9562
a4eaf7f1
PZ
9563 return 0;
9564}
9565
9566static void task_clock_event_del(struct perf_event *event, int flags)
9567{
9568 task_clock_event_stop(event, PERF_EF_UPDATE);
b0a873eb
PZ
9569}
9570
9571static void task_clock_event_read(struct perf_event *event)
9572{
768a06e2
PZ
9573 u64 now = perf_clock();
9574 u64 delta = now - event->ctx->timestamp;
9575 u64 time = event->ctx->time + delta;
b0a873eb
PZ
9576
9577 task_clock_event_update(event, time);
9578}
9579
9580static int task_clock_event_init(struct perf_event *event)
6fb2915d 9581{
b0a873eb
PZ
9582 if (event->attr.type != PERF_TYPE_SOFTWARE)
9583 return -ENOENT;
9584
9585 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
9586 return -ENOENT;
9587
2481c5fa
SE
9588 /*
9589 * no branch sampling for software events
9590 */
9591 if (has_branch_stack(event))
9592 return -EOPNOTSUPP;
9593
ba3dd36c
PZ
9594 perf_swevent_init_hrtimer(event);
9595
b0a873eb 9596 return 0;
6fb2915d
LZ
9597}
9598
b0a873eb 9599static struct pmu perf_task_clock = {
89a1e187
PZ
9600 .task_ctx_nr = perf_sw_context,
9601
34f43927
PZ
9602 .capabilities = PERF_PMU_CAP_NO_NMI,
9603
b0a873eb 9604 .event_init = task_clock_event_init,
a4eaf7f1
PZ
9605 .add = task_clock_event_add,
9606 .del = task_clock_event_del,
9607 .start = task_clock_event_start,
9608 .stop = task_clock_event_stop,
b0a873eb
PZ
9609 .read = task_clock_event_read,
9610};
6fb2915d 9611
ad5133b7 9612static void perf_pmu_nop_void(struct pmu *pmu)
e077df4f 9613{
e077df4f 9614}
6fb2915d 9615
fbbe0701
SB
9616static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
9617{
9618}
9619
ad5133b7 9620static int perf_pmu_nop_int(struct pmu *pmu)
6fb2915d 9621{
ad5133b7 9622 return 0;
6fb2915d
LZ
9623}
9624
81ec3f3c
JO
9625static int perf_event_nop_int(struct perf_event *event, u64 value)
9626{
9627 return 0;
9628}
9629
18ab2cd3 9630static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
fbbe0701
SB
9631
9632static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
6fb2915d 9633{
fbbe0701
SB
9634 __this_cpu_write(nop_txn_flags, flags);
9635
9636 if (flags & ~PERF_PMU_TXN_ADD)
9637 return;
9638
ad5133b7 9639 perf_pmu_disable(pmu);
6fb2915d
LZ
9640}
9641
ad5133b7
PZ
9642static int perf_pmu_commit_txn(struct pmu *pmu)
9643{
fbbe0701
SB
9644 unsigned int flags = __this_cpu_read(nop_txn_flags);
9645
9646 __this_cpu_write(nop_txn_flags, 0);
9647
9648 if (flags & ~PERF_PMU_TXN_ADD)
9649 return 0;
9650
ad5133b7
PZ
9651 perf_pmu_enable(pmu);
9652 return 0;
9653}
e077df4f 9654
ad5133b7 9655static void perf_pmu_cancel_txn(struct pmu *pmu)
24f1e32c 9656{
fbbe0701
SB
9657 unsigned int flags = __this_cpu_read(nop_txn_flags);
9658
9659 __this_cpu_write(nop_txn_flags, 0);
9660
9661 if (flags & ~PERF_PMU_TXN_ADD)
9662 return;
9663
ad5133b7 9664 perf_pmu_enable(pmu);
24f1e32c
FW
9665}
9666
35edc2a5
PZ
9667static int perf_event_idx_default(struct perf_event *event)
9668{
c719f560 9669 return 0;
35edc2a5
PZ
9670}
9671
8dc85d54
PZ
9672/*
9673 * Ensures all contexts with the same task_ctx_nr have the same
9674 * pmu_cpu_context too.
9675 */
9e317041 9676static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
24f1e32c 9677{
8dc85d54 9678 struct pmu *pmu;
b326e956 9679
8dc85d54
PZ
9680 if (ctxn < 0)
9681 return NULL;
24f1e32c 9682
8dc85d54
PZ
9683 list_for_each_entry(pmu, &pmus, entry) {
9684 if (pmu->task_ctx_nr == ctxn)
9685 return pmu->pmu_cpu_context;
9686 }
24f1e32c 9687
8dc85d54 9688 return NULL;
24f1e32c
FW
9689}
9690
51676957
PZ
9691static void free_pmu_context(struct pmu *pmu)
9692{
df0062b2
WD
9693 /*
9694 * Static contexts such as perf_sw_context have a global lifetime
9695 * and may be shared between different PMUs. Avoid freeing them
9696 * when a single PMU is going away.
9697 */
9698 if (pmu->task_ctx_nr > perf_invalid_context)
9699 return;
9700
51676957 9701 free_percpu(pmu->pmu_cpu_context);
24f1e32c 9702}
6e855cd4
AS
9703
9704/*
9705 * Let userspace know that this PMU supports address range filtering:
9706 */
9707static ssize_t nr_addr_filters_show(struct device *dev,
9708 struct device_attribute *attr,
9709 char *page)
9710{
9711 struct pmu *pmu = dev_get_drvdata(dev);
9712
9713 return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
9714}
9715DEVICE_ATTR_RO(nr_addr_filters);
9716
2e80a82a 9717static struct idr pmu_idr;
d6d020e9 9718
abe43400
PZ
9719static ssize_t
9720type_show(struct device *dev, struct device_attribute *attr, char *page)
9721{
9722 struct pmu *pmu = dev_get_drvdata(dev);
9723
9724 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
9725}
90826ca7 9726static DEVICE_ATTR_RO(type);
abe43400 9727
62b85639
SE
9728static ssize_t
9729perf_event_mux_interval_ms_show(struct device *dev,
9730 struct device_attribute *attr,
9731 char *page)
9732{
9733 struct pmu *pmu = dev_get_drvdata(dev);
9734
9735 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
9736}
9737
272325c4
PZ
9738static DEFINE_MUTEX(mux_interval_mutex);
9739
62b85639
SE
9740static ssize_t
9741perf_event_mux_interval_ms_store(struct device *dev,
9742 struct device_attribute *attr,
9743 const char *buf, size_t count)
9744{
9745 struct pmu *pmu = dev_get_drvdata(dev);
9746 int timer, cpu, ret;
9747
9748 ret = kstrtoint(buf, 0, &timer);
9749 if (ret)
9750 return ret;
9751
9752 if (timer < 1)
9753 return -EINVAL;
9754
9755 /* same value, noting to do */
9756 if (timer == pmu->hrtimer_interval_ms)
9757 return count;
9758
272325c4 9759 mutex_lock(&mux_interval_mutex);
62b85639
SE
9760 pmu->hrtimer_interval_ms = timer;
9761
9762 /* update all cpuctx for this PMU */
a63fbed7 9763 cpus_read_lock();
272325c4 9764 for_each_online_cpu(cpu) {
62b85639
SE
9765 struct perf_cpu_context *cpuctx;
9766 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
9767 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
9768
272325c4
PZ
9769 cpu_function_call(cpu,
9770 (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
62b85639 9771 }
a63fbed7 9772 cpus_read_unlock();
272325c4 9773 mutex_unlock(&mux_interval_mutex);
62b85639
SE
9774
9775 return count;
9776}
90826ca7 9777static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
62b85639 9778
90826ca7
GKH
9779static struct attribute *pmu_dev_attrs[] = {
9780 &dev_attr_type.attr,
9781 &dev_attr_perf_event_mux_interval_ms.attr,
9782 NULL,
abe43400 9783};
90826ca7 9784ATTRIBUTE_GROUPS(pmu_dev);
abe43400
PZ
9785
9786static int pmu_bus_running;
9787static struct bus_type pmu_bus = {
9788 .name = "event_source",
90826ca7 9789 .dev_groups = pmu_dev_groups,
abe43400
PZ
9790};
9791
9792static void pmu_dev_release(struct device *dev)
9793{
9794 kfree(dev);
9795}
9796
9797static int pmu_dev_alloc(struct pmu *pmu)
9798{
9799 int ret = -ENOMEM;
9800
9801 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
9802 if (!pmu->dev)
9803 goto out;
9804
0c9d42ed 9805 pmu->dev->groups = pmu->attr_groups;
abe43400
PZ
9806 device_initialize(pmu->dev);
9807 ret = dev_set_name(pmu->dev, "%s", pmu->name);
9808 if (ret)
9809 goto free_dev;
9810
9811 dev_set_drvdata(pmu->dev, pmu);
9812 pmu->dev->bus = &pmu_bus;
9813 pmu->dev->release = pmu_dev_release;
9814 ret = device_add(pmu->dev);
9815 if (ret)
9816 goto free_dev;
9817
6e855cd4
AS
9818 /* For PMUs with address filters, throw in an extra attribute: */
9819 if (pmu->nr_addr_filters)
9820 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
9821
9822 if (ret)
9823 goto del_dev;
9824
abe43400
PZ
9825out:
9826 return ret;
9827
6e855cd4
AS
9828del_dev:
9829 device_del(pmu->dev);
9830
abe43400
PZ
9831free_dev:
9832 put_device(pmu->dev);
9833 goto out;
9834}
9835
547e9fd7 9836static struct lock_class_key cpuctx_mutex;
facc4307 9837static struct lock_class_key cpuctx_lock;
547e9fd7 9838
03d8e80b 9839int perf_pmu_register(struct pmu *pmu, const char *name, int type)
24f1e32c 9840{
108b02cf 9841 int cpu, ret;
24f1e32c 9842
b0a873eb 9843 mutex_lock(&pmus_lock);
33696fc0
PZ
9844 ret = -ENOMEM;
9845 pmu->pmu_disable_count = alloc_percpu(int);
9846 if (!pmu->pmu_disable_count)
9847 goto unlock;
f29ac756 9848
2e80a82a
PZ
9849 pmu->type = -1;
9850 if (!name)
9851 goto skip_type;
9852 pmu->name = name;
9853
9854 if (type < 0) {
0e9c3be2
TH
9855 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
9856 if (type < 0) {
9857 ret = type;
2e80a82a
PZ
9858 goto free_pdc;
9859 }
9860 }
9861 pmu->type = type;
9862
abe43400
PZ
9863 if (pmu_bus_running) {
9864 ret = pmu_dev_alloc(pmu);
9865 if (ret)
9866 goto free_idr;
9867 }
9868
2e80a82a 9869skip_type:
26657848
PZ
9870 if (pmu->task_ctx_nr == perf_hw_context) {
9871 static int hw_context_taken = 0;
9872
5101ef20
MR
9873 /*
9874 * Other than systems with heterogeneous CPUs, it never makes
9875 * sense for two PMUs to share perf_hw_context. PMUs which are
9876 * uncore must use perf_invalid_context.
9877 */
9878 if (WARN_ON_ONCE(hw_context_taken &&
9879 !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
26657848
PZ
9880 pmu->task_ctx_nr = perf_invalid_context;
9881
9882 hw_context_taken = 1;
9883 }
9884
8dc85d54
PZ
9885 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
9886 if (pmu->pmu_cpu_context)
9887 goto got_cpu_context;
f29ac756 9888
c4814202 9889 ret = -ENOMEM;
108b02cf
PZ
9890 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
9891 if (!pmu->pmu_cpu_context)
abe43400 9892 goto free_dev;
f344011c 9893
108b02cf
PZ
9894 for_each_possible_cpu(cpu) {
9895 struct perf_cpu_context *cpuctx;
9896
9897 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
eb184479 9898 __perf_event_init_context(&cpuctx->ctx);
547e9fd7 9899 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
facc4307 9900 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
108b02cf 9901 cpuctx->ctx.pmu = pmu;
a63fbed7 9902 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
9e630205 9903
272325c4 9904 __perf_mux_hrtimer_init(cpuctx, cpu);
108b02cf 9905 }
76e1d904 9906
8dc85d54 9907got_cpu_context:
ad5133b7
PZ
9908 if (!pmu->start_txn) {
9909 if (pmu->pmu_enable) {
9910 /*
9911 * If we have pmu_enable/pmu_disable calls, install
9912 * transaction stubs that use that to try and batch
9913 * hardware accesses.
9914 */
9915 pmu->start_txn = perf_pmu_start_txn;
9916 pmu->commit_txn = perf_pmu_commit_txn;
9917 pmu->cancel_txn = perf_pmu_cancel_txn;
9918 } else {
fbbe0701 9919 pmu->start_txn = perf_pmu_nop_txn;
ad5133b7
PZ
9920 pmu->commit_txn = perf_pmu_nop_int;
9921 pmu->cancel_txn = perf_pmu_nop_void;
f344011c 9922 }
5c92d124 9923 }
15dbf27c 9924
ad5133b7
PZ
9925 if (!pmu->pmu_enable) {
9926 pmu->pmu_enable = perf_pmu_nop_void;
9927 pmu->pmu_disable = perf_pmu_nop_void;
9928 }
9929
81ec3f3c
JO
9930 if (!pmu->check_period)
9931 pmu->check_period = perf_event_nop_int;
9932
35edc2a5
PZ
9933 if (!pmu->event_idx)
9934 pmu->event_idx = perf_event_idx_default;
9935
b0a873eb 9936 list_add_rcu(&pmu->entry, &pmus);
bed5b25a 9937 atomic_set(&pmu->exclusive_cnt, 0);
33696fc0
PZ
9938 ret = 0;
9939unlock:
b0a873eb
PZ
9940 mutex_unlock(&pmus_lock);
9941
33696fc0 9942 return ret;
108b02cf 9943
abe43400
PZ
9944free_dev:
9945 device_del(pmu->dev);
9946 put_device(pmu->dev);
9947
2e80a82a
PZ
9948free_idr:
9949 if (pmu->type >= PERF_TYPE_MAX)
9950 idr_remove(&pmu_idr, pmu->type);
9951
108b02cf
PZ
9952free_pdc:
9953 free_percpu(pmu->pmu_disable_count);
9954 goto unlock;
f29ac756 9955}
c464c76e 9956EXPORT_SYMBOL_GPL(perf_pmu_register);
f29ac756 9957
b0a873eb 9958void perf_pmu_unregister(struct pmu *pmu)
5c92d124 9959{
b0a873eb
PZ
9960 mutex_lock(&pmus_lock);
9961 list_del_rcu(&pmu->entry);
5c92d124 9962
0475f9ea 9963 /*
cde8e884
PZ
9964 * We dereference the pmu list under both SRCU and regular RCU, so
9965 * synchronize against both of those.
0475f9ea 9966 */
b0a873eb 9967 synchronize_srcu(&pmus_srcu);
cde8e884 9968 synchronize_rcu();
d6d020e9 9969
33696fc0 9970 free_percpu(pmu->pmu_disable_count);
2e80a82a
PZ
9971 if (pmu->type >= PERF_TYPE_MAX)
9972 idr_remove(&pmu_idr, pmu->type);
a9f97721 9973 if (pmu_bus_running) {
0933840a
JO
9974 if (pmu->nr_addr_filters)
9975 device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
9976 device_del(pmu->dev);
9977 put_device(pmu->dev);
9978 }
51676957 9979 free_pmu_context(pmu);
a9f97721 9980 mutex_unlock(&pmus_lock);
b0a873eb 9981}
c464c76e 9982EXPORT_SYMBOL_GPL(perf_pmu_unregister);
d6d020e9 9983
cc34b98b
MR
9984static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
9985{
ccd41c86 9986 struct perf_event_context *ctx = NULL;
cc34b98b
MR
9987 int ret;
9988
9989 if (!try_module_get(pmu->module))
9990 return -ENODEV;
ccd41c86 9991
0c7296ca
PZ
9992 /*
9993 * A number of pmu->event_init() methods iterate the sibling_list to,
9994 * for example, validate if the group fits on the PMU. Therefore,
9995 * if this is a sibling event, acquire the ctx->mutex to protect
9996 * the sibling_list.
9997 */
9998 if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
8b10c5e2
PZ
9999 /*
10000 * This ctx->mutex can nest when we're called through
10001 * inheritance. See the perf_event_ctx_lock_nested() comment.
10002 */
10003 ctx = perf_event_ctx_lock_nested(event->group_leader,
10004 SINGLE_DEPTH_NESTING);
ccd41c86
PZ
10005 BUG_ON(!ctx);
10006 }
10007
cc34b98b
MR
10008 event->pmu = pmu;
10009 ret = pmu->event_init(event);
ccd41c86
PZ
10010
10011 if (ctx)
10012 perf_event_ctx_unlock(event->group_leader, ctx);
10013
cc6795ae
AM
10014 if (!ret) {
10015 if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE &&
10016 event_has_any_exclude_flag(event)) {
10017 if (event->destroy)
10018 event->destroy(event);
10019 ret = -EINVAL;
10020 }
10021 }
10022
cc34b98b
MR
10023 if (ret)
10024 module_put(pmu->module);
10025
10026 return ret;
10027}
10028
18ab2cd3 10029static struct pmu *perf_init_event(struct perf_event *event)
b0a873eb 10030{
85c617ab 10031 struct pmu *pmu;
b0a873eb 10032 int idx;
940c5b29 10033 int ret;
b0a873eb
PZ
10034
10035 idx = srcu_read_lock(&pmus_srcu);
2e80a82a 10036
40999312
KL
10037 /* Try parent's PMU first: */
10038 if (event->parent && event->parent->pmu) {
10039 pmu = event->parent->pmu;
10040 ret = perf_try_init_event(pmu, event);
10041 if (!ret)
10042 goto unlock;
10043 }
10044
2e80a82a
PZ
10045 rcu_read_lock();
10046 pmu = idr_find(&pmu_idr, event->attr.type);
10047 rcu_read_unlock();
940c5b29 10048 if (pmu) {
cc34b98b 10049 ret = perf_try_init_event(pmu, event);
940c5b29
LM
10050 if (ret)
10051 pmu = ERR_PTR(ret);
2e80a82a 10052 goto unlock;
940c5b29 10053 }
2e80a82a 10054
b0a873eb 10055 list_for_each_entry_rcu(pmu, &pmus, entry) {
cc34b98b 10056 ret = perf_try_init_event(pmu, event);
b0a873eb 10057 if (!ret)
e5f4d339 10058 goto unlock;
76e1d904 10059
b0a873eb
PZ
10060 if (ret != -ENOENT) {
10061 pmu = ERR_PTR(ret);
e5f4d339 10062 goto unlock;
f344011c 10063 }
5c92d124 10064 }
e5f4d339
PZ
10065 pmu = ERR_PTR(-ENOENT);
10066unlock:
b0a873eb 10067 srcu_read_unlock(&pmus_srcu, idx);
15dbf27c 10068
4aeb0b42 10069 return pmu;
5c92d124
IM
10070}
10071
f2fb6bef
KL
10072static void attach_sb_event(struct perf_event *event)
10073{
10074 struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
10075
10076 raw_spin_lock(&pel->lock);
10077 list_add_rcu(&event->sb_list, &pel->list);
10078 raw_spin_unlock(&pel->lock);
10079}
10080
aab5b71e
PZ
10081/*
10082 * We keep a list of all !task (and therefore per-cpu) events
10083 * that need to receive side-band records.
10084 *
10085 * This avoids having to scan all the various PMU per-cpu contexts
10086 * looking for them.
10087 */
f2fb6bef
KL
10088static void account_pmu_sb_event(struct perf_event *event)
10089{
a4f144eb 10090 if (is_sb_event(event))
f2fb6bef
KL
10091 attach_sb_event(event);
10092}
10093
4beb31f3
FW
10094static void account_event_cpu(struct perf_event *event, int cpu)
10095{
10096 if (event->parent)
10097 return;
10098
4beb31f3
FW
10099 if (is_cgroup_event(event))
10100 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
10101}
10102
555e0c1e
FW
10103/* Freq events need the tick to stay alive (see perf_event_task_tick). */
10104static void account_freq_event_nohz(void)
10105{
10106#ifdef CONFIG_NO_HZ_FULL
10107 /* Lock so we don't race with concurrent unaccount */
10108 spin_lock(&nr_freq_lock);
10109 if (atomic_inc_return(&nr_freq_events) == 1)
10110 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
10111 spin_unlock(&nr_freq_lock);
10112#endif
10113}
10114
10115static void account_freq_event(void)
10116{
10117 if (tick_nohz_full_enabled())
10118 account_freq_event_nohz();
10119 else
10120 atomic_inc(&nr_freq_events);
10121}
10122
10123
766d6c07
FW
10124static void account_event(struct perf_event *event)
10125{
25432ae9
PZ
10126 bool inc = false;
10127
4beb31f3
FW
10128 if (event->parent)
10129 return;
10130
766d6c07 10131 if (event->attach_state & PERF_ATTACH_TASK)
25432ae9 10132 inc = true;
766d6c07
FW
10133 if (event->attr.mmap || event->attr.mmap_data)
10134 atomic_inc(&nr_mmap_events);
10135 if (event->attr.comm)
10136 atomic_inc(&nr_comm_events);
e4222673
HB
10137 if (event->attr.namespaces)
10138 atomic_inc(&nr_namespaces_events);
766d6c07
FW
10139 if (event->attr.task)
10140 atomic_inc(&nr_task_events);
555e0c1e
FW
10141 if (event->attr.freq)
10142 account_freq_event();
45ac1403
AH
10143 if (event->attr.context_switch) {
10144 atomic_inc(&nr_switch_events);
25432ae9 10145 inc = true;
45ac1403 10146 }
4beb31f3 10147 if (has_branch_stack(event))
25432ae9 10148 inc = true;
4beb31f3 10149 if (is_cgroup_event(event))
25432ae9 10150 inc = true;
76193a94
SL
10151 if (event->attr.ksymbol)
10152 atomic_inc(&nr_ksymbol_events);
6ee52e2a
SL
10153 if (event->attr.bpf_event)
10154 atomic_inc(&nr_bpf_events);
25432ae9 10155
9107c89e 10156 if (inc) {
5bce9db1
AS
10157 /*
10158 * We need the mutex here because static_branch_enable()
10159 * must complete *before* the perf_sched_count increment
10160 * becomes visible.
10161 */
9107c89e
PZ
10162 if (atomic_inc_not_zero(&perf_sched_count))
10163 goto enabled;
10164
10165 mutex_lock(&perf_sched_mutex);
10166 if (!atomic_read(&perf_sched_count)) {
10167 static_branch_enable(&perf_sched_events);
10168 /*
10169 * Guarantee that all CPUs observe they key change and
10170 * call the perf scheduling hooks before proceeding to
10171 * install events that need them.
10172 */
0809d954 10173 synchronize_rcu();
9107c89e
PZ
10174 }
10175 /*
10176 * Now that we have waited for the sync_sched(), allow further
10177 * increments to by-pass the mutex.
10178 */
10179 atomic_inc(&perf_sched_count);
10180 mutex_unlock(&perf_sched_mutex);
10181 }
10182enabled:
4beb31f3
FW
10183
10184 account_event_cpu(event, event->cpu);
f2fb6bef
KL
10185
10186 account_pmu_sb_event(event);
766d6c07
FW
10187}
10188
0793a61d 10189/*
788faab7 10190 * Allocate and initialize an event structure
0793a61d 10191 */
cdd6c482 10192static struct perf_event *
c3f00c70 10193perf_event_alloc(struct perf_event_attr *attr, int cpu,
d580ff86
PZ
10194 struct task_struct *task,
10195 struct perf_event *group_leader,
10196 struct perf_event *parent_event,
4dc0da86 10197 perf_overflow_handler_t overflow_handler,
79dff51e 10198 void *context, int cgroup_fd)
0793a61d 10199{
51b0fe39 10200 struct pmu *pmu;
cdd6c482
IM
10201 struct perf_event *event;
10202 struct hw_perf_event *hwc;
90983b16 10203 long err = -EINVAL;
0793a61d 10204
66832eb4
ON
10205 if ((unsigned)cpu >= nr_cpu_ids) {
10206 if (!task || cpu != -1)
10207 return ERR_PTR(-EINVAL);
10208 }
10209
c3f00c70 10210 event = kzalloc(sizeof(*event), GFP_KERNEL);
cdd6c482 10211 if (!event)
d5d2bc0d 10212 return ERR_PTR(-ENOMEM);
0793a61d 10213
04289bb9 10214 /*
cdd6c482 10215 * Single events are their own group leaders, with an
04289bb9
IM
10216 * empty sibling list:
10217 */
10218 if (!group_leader)
cdd6c482 10219 group_leader = event;
04289bb9 10220
cdd6c482
IM
10221 mutex_init(&event->child_mutex);
10222 INIT_LIST_HEAD(&event->child_list);
fccc714b 10223
cdd6c482
IM
10224 INIT_LIST_HEAD(&event->event_entry);
10225 INIT_LIST_HEAD(&event->sibling_list);
6668128a 10226 INIT_LIST_HEAD(&event->active_list);
8e1a2031 10227 init_event_group(event);
10c6db11 10228 INIT_LIST_HEAD(&event->rb_entry);
71ad88ef 10229 INIT_LIST_HEAD(&event->active_entry);
375637bc 10230 INIT_LIST_HEAD(&event->addr_filters.list);
f3ae75de
SE
10231 INIT_HLIST_NODE(&event->hlist_entry);
10232
10c6db11 10233
cdd6c482 10234 init_waitqueue_head(&event->waitq);
e360adbe 10235 init_irq_work(&event->pending, perf_pending_event);
0793a61d 10236
cdd6c482 10237 mutex_init(&event->mmap_mutex);
375637bc 10238 raw_spin_lock_init(&event->addr_filters.lock);
7b732a75 10239
a6fa941d 10240 atomic_long_set(&event->refcount, 1);
cdd6c482
IM
10241 event->cpu = cpu;
10242 event->attr = *attr;
10243 event->group_leader = group_leader;
10244 event->pmu = NULL;
cdd6c482 10245 event->oncpu = -1;
a96bbc16 10246
cdd6c482 10247 event->parent = parent_event;
b84fbc9f 10248
17cf22c3 10249 event->ns = get_pid_ns(task_active_pid_ns(current));
cdd6c482 10250 event->id = atomic64_inc_return(&perf_event_id);
a96bbc16 10251
cdd6c482 10252 event->state = PERF_EVENT_STATE_INACTIVE;
329d876d 10253
d580ff86
PZ
10254 if (task) {
10255 event->attach_state = PERF_ATTACH_TASK;
d580ff86 10256 /*
50f16a8b
PZ
10257 * XXX pmu::event_init needs to know what task to account to
10258 * and we cannot use the ctx information because we need the
10259 * pmu before we get a ctx.
d580ff86 10260 */
621b6d2e 10261 get_task_struct(task);
50f16a8b 10262 event->hw.target = task;
d580ff86
PZ
10263 }
10264
34f43927
PZ
10265 event->clock = &local_clock;
10266 if (parent_event)
10267 event->clock = parent_event->clock;
10268
4dc0da86 10269 if (!overflow_handler && parent_event) {
b326e956 10270 overflow_handler = parent_event->overflow_handler;
4dc0da86 10271 context = parent_event->overflow_handler_context;
f1e4ba5b 10272#if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
aa6a5f3c
AS
10273 if (overflow_handler == bpf_overflow_handler) {
10274 struct bpf_prog *prog = bpf_prog_inc(parent_event->prog);
10275
10276 if (IS_ERR(prog)) {
10277 err = PTR_ERR(prog);
10278 goto err_ns;
10279 }
10280 event->prog = prog;
10281 event->orig_overflow_handler =
10282 parent_event->orig_overflow_handler;
10283 }
10284#endif
4dc0da86 10285 }
66832eb4 10286
1879445d
WN
10287 if (overflow_handler) {
10288 event->overflow_handler = overflow_handler;
10289 event->overflow_handler_context = context;
9ecda41a
WN
10290 } else if (is_write_backward(event)){
10291 event->overflow_handler = perf_event_output_backward;
10292 event->overflow_handler_context = NULL;
1879445d 10293 } else {
9ecda41a 10294 event->overflow_handler = perf_event_output_forward;
1879445d
WN
10295 event->overflow_handler_context = NULL;
10296 }
97eaf530 10297
0231bb53 10298 perf_event__state_init(event);
a86ed508 10299
4aeb0b42 10300 pmu = NULL;
b8e83514 10301
cdd6c482 10302 hwc = &event->hw;
bd2b5b12 10303 hwc->sample_period = attr->sample_period;
0d48696f 10304 if (attr->freq && attr->sample_freq)
bd2b5b12 10305 hwc->sample_period = 1;
eced1dfc 10306 hwc->last_period = hwc->sample_period;
bd2b5b12 10307
e7850595 10308 local64_set(&hwc->period_left, hwc->sample_period);
60db5e09 10309
2023b359 10310 /*
ba5213ae
PZ
10311 * We currently do not support PERF_SAMPLE_READ on inherited events.
10312 * See perf_output_read().
2023b359 10313 */
ba5213ae 10314 if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
90983b16 10315 goto err_ns;
a46a2300
YZ
10316
10317 if (!has_branch_stack(event))
10318 event->attr.branch_sample_type = 0;
2023b359 10319
79dff51e
MF
10320 if (cgroup_fd != -1) {
10321 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
10322 if (err)
10323 goto err_ns;
10324 }
10325
b0a873eb 10326 pmu = perf_init_event(event);
85c617ab 10327 if (IS_ERR(pmu)) {
4aeb0b42 10328 err = PTR_ERR(pmu);
90983b16 10329 goto err_ns;
621a01ea 10330 }
d5d2bc0d 10331
bed5b25a
AS
10332 err = exclusive_event_init(event);
10333 if (err)
10334 goto err_pmu;
10335
375637bc 10336 if (has_addr_filter(event)) {
c60f83b8
AS
10337 event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters,
10338 sizeof(struct perf_addr_filter_range),
10339 GFP_KERNEL);
10340 if (!event->addr_filter_ranges) {
36cc2b92 10341 err = -ENOMEM;
375637bc 10342 goto err_per_task;
36cc2b92 10343 }
375637bc 10344
18736eef
AS
10345 /*
10346 * Clone the parent's vma offsets: they are valid until exec()
10347 * even if the mm is not shared with the parent.
10348 */
10349 if (event->parent) {
10350 struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
10351
10352 raw_spin_lock_irq(&ifh->lock);
c60f83b8
AS
10353 memcpy(event->addr_filter_ranges,
10354 event->parent->addr_filter_ranges,
10355 pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range));
18736eef
AS
10356 raw_spin_unlock_irq(&ifh->lock);
10357 }
10358
375637bc
AS
10359 /* force hw sync on the address filters */
10360 event->addr_filters_gen = 1;
10361 }
10362
cdd6c482 10363 if (!event->parent) {
927c7a9e 10364 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
97c79a38 10365 err = get_callchain_buffers(attr->sample_max_stack);
90983b16 10366 if (err)
375637bc 10367 goto err_addr_filters;
d010b332 10368 }
f344011c 10369 }
9ee318a7 10370
927a5570
AS
10371 /* symmetric to unaccount_event() in _free_event() */
10372 account_event(event);
10373
cdd6c482 10374 return event;
90983b16 10375
375637bc 10376err_addr_filters:
c60f83b8 10377 kfree(event->addr_filter_ranges);
375637bc 10378
bed5b25a
AS
10379err_per_task:
10380 exclusive_event_destroy(event);
10381
90983b16
FW
10382err_pmu:
10383 if (event->destroy)
10384 event->destroy(event);
c464c76e 10385 module_put(pmu->module);
90983b16 10386err_ns:
79dff51e
MF
10387 if (is_cgroup_event(event))
10388 perf_detach_cgroup(event);
90983b16
FW
10389 if (event->ns)
10390 put_pid_ns(event->ns);
621b6d2e
PB
10391 if (event->hw.target)
10392 put_task_struct(event->hw.target);
90983b16
FW
10393 kfree(event);
10394
10395 return ERR_PTR(err);
0793a61d
TG
10396}
10397
cdd6c482
IM
10398static int perf_copy_attr(struct perf_event_attr __user *uattr,
10399 struct perf_event_attr *attr)
974802ea 10400{
974802ea 10401 u32 size;
cdf8073d 10402 int ret;
974802ea 10403
96d4f267 10404 if (!access_ok(uattr, PERF_ATTR_SIZE_VER0))
974802ea
PZ
10405 return -EFAULT;
10406
10407 /*
10408 * zero the full structure, so that a short copy will be nice.
10409 */
10410 memset(attr, 0, sizeof(*attr));
10411
10412 ret = get_user(size, &uattr->size);
10413 if (ret)
10414 return ret;
10415
10416 if (size > PAGE_SIZE) /* silly large */
10417 goto err_size;
10418
10419 if (!size) /* abi compat */
10420 size = PERF_ATTR_SIZE_VER0;
10421
10422 if (size < PERF_ATTR_SIZE_VER0)
10423 goto err_size;
10424
10425 /*
10426 * If we're handed a bigger struct than we know of,
cdf8073d
IS
10427 * ensure all the unknown bits are 0 - i.e. new
10428 * user-space does not rely on any kernel feature
10429 * extensions we dont know about yet.
974802ea
PZ
10430 */
10431 if (size > sizeof(*attr)) {
cdf8073d
IS
10432 unsigned char __user *addr;
10433 unsigned char __user *end;
10434 unsigned char val;
974802ea 10435
cdf8073d
IS
10436 addr = (void __user *)uattr + sizeof(*attr);
10437 end = (void __user *)uattr + size;
974802ea 10438
cdf8073d 10439 for (; addr < end; addr++) {
974802ea
PZ
10440 ret = get_user(val, addr);
10441 if (ret)
10442 return ret;
10443 if (val)
10444 goto err_size;
10445 }
b3e62e35 10446 size = sizeof(*attr);
974802ea
PZ
10447 }
10448
10449 ret = copy_from_user(attr, uattr, size);
10450 if (ret)
10451 return -EFAULT;
10452
f12f42ac
MX
10453 attr->size = size;
10454
cd757645 10455 if (attr->__reserved_1)
974802ea
PZ
10456 return -EINVAL;
10457
10458 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
10459 return -EINVAL;
10460
10461 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
10462 return -EINVAL;
10463
bce38cd5
SE
10464 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
10465 u64 mask = attr->branch_sample_type;
10466
10467 /* only using defined bits */
10468 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
10469 return -EINVAL;
10470
10471 /* at least one branch bit must be set */
10472 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
10473 return -EINVAL;
10474
bce38cd5
SE
10475 /* propagate priv level, when not set for branch */
10476 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
10477
10478 /* exclude_kernel checked on syscall entry */
10479 if (!attr->exclude_kernel)
10480 mask |= PERF_SAMPLE_BRANCH_KERNEL;
10481
10482 if (!attr->exclude_user)
10483 mask |= PERF_SAMPLE_BRANCH_USER;
10484
10485 if (!attr->exclude_hv)
10486 mask |= PERF_SAMPLE_BRANCH_HV;
10487 /*
10488 * adjust user setting (for HW filter setup)
10489 */
10490 attr->branch_sample_type = mask;
10491 }
e712209a
SE
10492 /* privileged levels capture (kernel, hv): check permissions */
10493 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
2b923c8f
SE
10494 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10495 return -EACCES;
bce38cd5 10496 }
4018994f 10497
c5ebcedb 10498 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
4018994f 10499 ret = perf_reg_validate(attr->sample_regs_user);
c5ebcedb
JO
10500 if (ret)
10501 return ret;
10502 }
10503
10504 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
10505 if (!arch_perf_have_user_stack_dump())
10506 return -ENOSYS;
10507
10508 /*
10509 * We have __u32 type for the size, but so far
10510 * we can only use __u16 as maximum due to the
10511 * __u16 sample size limit.
10512 */
10513 if (attr->sample_stack_user >= USHRT_MAX)
78b562fb 10514 return -EINVAL;
c5ebcedb 10515 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
78b562fb 10516 return -EINVAL;
c5ebcedb 10517 }
4018994f 10518
5f970521
JO
10519 if (!attr->sample_max_stack)
10520 attr->sample_max_stack = sysctl_perf_event_max_stack;
10521
60e2364e
SE
10522 if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
10523 ret = perf_reg_validate(attr->sample_regs_intr);
974802ea
PZ
10524out:
10525 return ret;
10526
10527err_size:
10528 put_user(sizeof(*attr), &uattr->size);
10529 ret = -E2BIG;
10530 goto out;
10531}
10532
ac9721f3
PZ
10533static int
10534perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
a4be7c27 10535{
b69cf536 10536 struct ring_buffer *rb = NULL;
a4be7c27
PZ
10537 int ret = -EINVAL;
10538
ac9721f3 10539 if (!output_event)
a4be7c27
PZ
10540 goto set;
10541
ac9721f3
PZ
10542 /* don't allow circular references */
10543 if (event == output_event)
a4be7c27
PZ
10544 goto out;
10545
0f139300
PZ
10546 /*
10547 * Don't allow cross-cpu buffers
10548 */
10549 if (output_event->cpu != event->cpu)
10550 goto out;
10551
10552 /*
76369139 10553 * If its not a per-cpu rb, it must be the same task.
0f139300
PZ
10554 */
10555 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
10556 goto out;
10557
34f43927
PZ
10558 /*
10559 * Mixing clocks in the same buffer is trouble you don't need.
10560 */
10561 if (output_event->clock != event->clock)
10562 goto out;
10563
9ecda41a
WN
10564 /*
10565 * Either writing ring buffer from beginning or from end.
10566 * Mixing is not allowed.
10567 */
10568 if (is_write_backward(output_event) != is_write_backward(event))
10569 goto out;
10570
45bfb2e5
PZ
10571 /*
10572 * If both events generate aux data, they must be on the same PMU
10573 */
10574 if (has_aux(event) && has_aux(output_event) &&
10575 event->pmu != output_event->pmu)
10576 goto out;
10577
a4be7c27 10578set:
cdd6c482 10579 mutex_lock(&event->mmap_mutex);
ac9721f3
PZ
10580 /* Can't redirect output if we've got an active mmap() */
10581 if (atomic_read(&event->mmap_count))
10582 goto unlock;
a4be7c27 10583
ac9721f3 10584 if (output_event) {
76369139
FW
10585 /* get the rb we want to redirect to */
10586 rb = ring_buffer_get(output_event);
10587 if (!rb)
ac9721f3 10588 goto unlock;
a4be7c27
PZ
10589 }
10590
b69cf536 10591 ring_buffer_attach(event, rb);
9bb5d40c 10592
a4be7c27 10593 ret = 0;
ac9721f3
PZ
10594unlock:
10595 mutex_unlock(&event->mmap_mutex);
10596
a4be7c27 10597out:
a4be7c27
PZ
10598 return ret;
10599}
10600
f63a8daa
PZ
10601static void mutex_lock_double(struct mutex *a, struct mutex *b)
10602{
10603 if (b < a)
10604 swap(a, b);
10605
10606 mutex_lock(a);
10607 mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
10608}
10609
34f43927
PZ
10610static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
10611{
10612 bool nmi_safe = false;
10613
10614 switch (clk_id) {
10615 case CLOCK_MONOTONIC:
10616 event->clock = &ktime_get_mono_fast_ns;
10617 nmi_safe = true;
10618 break;
10619
10620 case CLOCK_MONOTONIC_RAW:
10621 event->clock = &ktime_get_raw_fast_ns;
10622 nmi_safe = true;
10623 break;
10624
10625 case CLOCK_REALTIME:
10626 event->clock = &ktime_get_real_ns;
10627 break;
10628
10629 case CLOCK_BOOTTIME:
10630 event->clock = &ktime_get_boot_ns;
10631 break;
10632
10633 case CLOCK_TAI:
10634 event->clock = &ktime_get_tai_ns;
10635 break;
10636
10637 default:
10638 return -EINVAL;
10639 }
10640
10641 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
10642 return -EINVAL;
10643
10644 return 0;
10645}
10646
321027c1
PZ
10647/*
10648 * Variation on perf_event_ctx_lock_nested(), except we take two context
10649 * mutexes.
10650 */
10651static struct perf_event_context *
10652__perf_event_ctx_lock_double(struct perf_event *group_leader,
10653 struct perf_event_context *ctx)
10654{
10655 struct perf_event_context *gctx;
10656
10657again:
10658 rcu_read_lock();
10659 gctx = READ_ONCE(group_leader->ctx);
8c94abbb 10660 if (!refcount_inc_not_zero(&gctx->refcount)) {
321027c1
PZ
10661 rcu_read_unlock();
10662 goto again;
10663 }
10664 rcu_read_unlock();
10665
10666 mutex_lock_double(&gctx->mutex, &ctx->mutex);
10667
10668 if (group_leader->ctx != gctx) {
10669 mutex_unlock(&ctx->mutex);
10670 mutex_unlock(&gctx->mutex);
10671 put_ctx(gctx);
10672 goto again;
10673 }
10674
10675 return gctx;
10676}
10677
0793a61d 10678/**
cdd6c482 10679 * sys_perf_event_open - open a performance event, associate it to a task/cpu
9f66a381 10680 *
cdd6c482 10681 * @attr_uptr: event_id type attributes for monitoring/sampling
0793a61d 10682 * @pid: target pid
9f66a381 10683 * @cpu: target cpu
cdd6c482 10684 * @group_fd: group leader event fd
0793a61d 10685 */
cdd6c482
IM
10686SYSCALL_DEFINE5(perf_event_open,
10687 struct perf_event_attr __user *, attr_uptr,
2743a5b0 10688 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
0793a61d 10689{
b04243ef
PZ
10690 struct perf_event *group_leader = NULL, *output_event = NULL;
10691 struct perf_event *event, *sibling;
cdd6c482 10692 struct perf_event_attr attr;
f63a8daa 10693 struct perf_event_context *ctx, *uninitialized_var(gctx);
cdd6c482 10694 struct file *event_file = NULL;
2903ff01 10695 struct fd group = {NULL, 0};
38a81da2 10696 struct task_struct *task = NULL;
89a1e187 10697 struct pmu *pmu;
ea635c64 10698 int event_fd;
b04243ef 10699 int move_group = 0;
dc86cabe 10700 int err;
a21b0b35 10701 int f_flags = O_RDWR;
79dff51e 10702 int cgroup_fd = -1;
0793a61d 10703
2743a5b0 10704 /* for future expandability... */
e5d1367f 10705 if (flags & ~PERF_FLAG_ALL)
2743a5b0
PM
10706 return -EINVAL;
10707
dc86cabe
IM
10708 err = perf_copy_attr(attr_uptr, &attr);
10709 if (err)
10710 return err;
eab656ae 10711
0764771d
PZ
10712 if (!attr.exclude_kernel) {
10713 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10714 return -EACCES;
10715 }
10716
e4222673
HB
10717 if (attr.namespaces) {
10718 if (!capable(CAP_SYS_ADMIN))
10719 return -EACCES;
10720 }
10721
df58ab24 10722 if (attr.freq) {
cdd6c482 10723 if (attr.sample_freq > sysctl_perf_event_sample_rate)
df58ab24 10724 return -EINVAL;
0819b2e3
PZ
10725 } else {
10726 if (attr.sample_period & (1ULL << 63))
10727 return -EINVAL;
df58ab24
PZ
10728 }
10729
fc7ce9c7
KL
10730 /* Only privileged users can get physical addresses */
10731 if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR) &&
10732 perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10733 return -EACCES;
10734
e5d1367f
SE
10735 /*
10736 * In cgroup mode, the pid argument is used to pass the fd
10737 * opened to the cgroup directory in cgroupfs. The cpu argument
10738 * designates the cpu on which to monitor threads from that
10739 * cgroup.
10740 */
10741 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
10742 return -EINVAL;
10743
a21b0b35
YD
10744 if (flags & PERF_FLAG_FD_CLOEXEC)
10745 f_flags |= O_CLOEXEC;
10746
10747 event_fd = get_unused_fd_flags(f_flags);
ea635c64
AV
10748 if (event_fd < 0)
10749 return event_fd;
10750
ac9721f3 10751 if (group_fd != -1) {
2903ff01
AV
10752 err = perf_fget_light(group_fd, &group);
10753 if (err)
d14b12d7 10754 goto err_fd;
2903ff01 10755 group_leader = group.file->private_data;
ac9721f3
PZ
10756 if (flags & PERF_FLAG_FD_OUTPUT)
10757 output_event = group_leader;
10758 if (flags & PERF_FLAG_FD_NO_GROUP)
10759 group_leader = NULL;
10760 }
10761
e5d1367f 10762 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
c6be5a5c
PZ
10763 task = find_lively_task_by_vpid(pid);
10764 if (IS_ERR(task)) {
10765 err = PTR_ERR(task);
10766 goto err_group_fd;
10767 }
10768 }
10769
1f4ee503
PZ
10770 if (task && group_leader &&
10771 group_leader->attr.inherit != attr.inherit) {
10772 err = -EINVAL;
10773 goto err_task;
10774 }
10775
79c9ce57
PZ
10776 if (task) {
10777 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
10778 if (err)
e5aeee51 10779 goto err_task;
79c9ce57
PZ
10780
10781 /*
10782 * Reuse ptrace permission checks for now.
10783 *
10784 * We must hold cred_guard_mutex across this and any potential
10785 * perf_install_in_context() call for this new event to
10786 * serialize against exec() altering our credentials (and the
10787 * perf_event_exit_task() that could imply).
10788 */
10789 err = -EACCES;
10790 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
10791 goto err_cred;
10792 }
10793
79dff51e
MF
10794 if (flags & PERF_FLAG_PID_CGROUP)
10795 cgroup_fd = pid;
10796
4dc0da86 10797 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
79dff51e 10798 NULL, NULL, cgroup_fd);
d14b12d7
SE
10799 if (IS_ERR(event)) {
10800 err = PTR_ERR(event);
79c9ce57 10801 goto err_cred;
d14b12d7
SE
10802 }
10803
53b25335
VW
10804 if (is_sampling_event(event)) {
10805 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
a1396555 10806 err = -EOPNOTSUPP;
53b25335
VW
10807 goto err_alloc;
10808 }
10809 }
10810
89a1e187
PZ
10811 /*
10812 * Special case software events and allow them to be part of
10813 * any hardware group.
10814 */
10815 pmu = event->pmu;
b04243ef 10816
34f43927
PZ
10817 if (attr.use_clockid) {
10818 err = perf_event_set_clock(event, attr.clockid);
10819 if (err)
10820 goto err_alloc;
10821 }
10822
4ff6a8de
DCC
10823 if (pmu->task_ctx_nr == perf_sw_context)
10824 event->event_caps |= PERF_EV_CAP_SOFTWARE;
10825
a1150c20
SL
10826 if (group_leader) {
10827 if (is_software_event(event) &&
10828 !in_software_context(group_leader)) {
b04243ef 10829 /*
a1150c20
SL
10830 * If the event is a sw event, but the group_leader
10831 * is on hw context.
b04243ef 10832 *
a1150c20
SL
10833 * Allow the addition of software events to hw
10834 * groups, this is safe because software events
10835 * never fail to schedule.
b04243ef 10836 */
a1150c20
SL
10837 pmu = group_leader->ctx->pmu;
10838 } else if (!is_software_event(event) &&
10839 is_software_event(group_leader) &&
4ff6a8de 10840 (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
b04243ef
PZ
10841 /*
10842 * In case the group is a pure software group, and we
10843 * try to add a hardware event, move the whole group to
10844 * the hardware context.
10845 */
10846 move_group = 1;
10847 }
10848 }
89a1e187
PZ
10849
10850 /*
10851 * Get the target context (task or percpu):
10852 */
4af57ef2 10853 ctx = find_get_context(pmu, task, event);
89a1e187
PZ
10854 if (IS_ERR(ctx)) {
10855 err = PTR_ERR(ctx);
c6be5a5c 10856 goto err_alloc;
89a1e187
PZ
10857 }
10858
bed5b25a
AS
10859 if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
10860 err = -EBUSY;
10861 goto err_context;
10862 }
10863
ccff286d 10864 /*
cdd6c482 10865 * Look up the group leader (we will attach this event to it):
04289bb9 10866 */
ac9721f3 10867 if (group_leader) {
dc86cabe 10868 err = -EINVAL;
04289bb9 10869
04289bb9 10870 /*
ccff286d
IM
10871 * Do not allow a recursive hierarchy (this new sibling
10872 * becoming part of another group-sibling):
10873 */
10874 if (group_leader->group_leader != group_leader)
c3f00c70 10875 goto err_context;
34f43927
PZ
10876
10877 /* All events in a group should have the same clock */
10878 if (group_leader->clock != event->clock)
10879 goto err_context;
10880
ccff286d 10881 /*
64aee2a9
MR
10882 * Make sure we're both events for the same CPU;
10883 * grouping events for different CPUs is broken; since
10884 * you can never concurrently schedule them anyhow.
04289bb9 10885 */
64aee2a9
MR
10886 if (group_leader->cpu != event->cpu)
10887 goto err_context;
c3c87e77 10888
64aee2a9
MR
10889 /*
10890 * Make sure we're both on the same task, or both
10891 * per-CPU events.
10892 */
10893 if (group_leader->ctx->task != ctx->task)
10894 goto err_context;
10895
10896 /*
10897 * Do not allow to attach to a group in a different task
10898 * or CPU context. If we're moving SW events, we'll fix
10899 * this up later, so allow that.
10900 */
10901 if (!move_group && group_leader->ctx != ctx)
10902 goto err_context;
b04243ef 10903
3b6f9e5c
PM
10904 /*
10905 * Only a group leader can be exclusive or pinned
10906 */
0d48696f 10907 if (attr.exclusive || attr.pinned)
c3f00c70 10908 goto err_context;
ac9721f3
PZ
10909 }
10910
10911 if (output_event) {
10912 err = perf_event_set_output(event, output_event);
10913 if (err)
c3f00c70 10914 goto err_context;
ac9721f3 10915 }
0793a61d 10916
a21b0b35
YD
10917 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
10918 f_flags);
ea635c64
AV
10919 if (IS_ERR(event_file)) {
10920 err = PTR_ERR(event_file);
201c2f85 10921 event_file = NULL;
c3f00c70 10922 goto err_context;
ea635c64 10923 }
9b51f66d 10924
b04243ef 10925 if (move_group) {
321027c1
PZ
10926 gctx = __perf_event_ctx_lock_double(group_leader, ctx);
10927
84c4e620
PZ
10928 if (gctx->task == TASK_TOMBSTONE) {
10929 err = -ESRCH;
10930 goto err_locked;
10931 }
321027c1
PZ
10932
10933 /*
10934 * Check if we raced against another sys_perf_event_open() call
10935 * moving the software group underneath us.
10936 */
10937 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
10938 /*
10939 * If someone moved the group out from under us, check
10940 * if this new event wound up on the same ctx, if so
10941 * its the regular !move_group case, otherwise fail.
10942 */
10943 if (gctx != ctx) {
10944 err = -EINVAL;
10945 goto err_locked;
10946 } else {
10947 perf_event_ctx_unlock(group_leader, gctx);
10948 move_group = 0;
10949 }
10950 }
f55fc2a5
PZ
10951 } else {
10952 mutex_lock(&ctx->mutex);
10953 }
10954
84c4e620
PZ
10955 if (ctx->task == TASK_TOMBSTONE) {
10956 err = -ESRCH;
10957 goto err_locked;
10958 }
10959
a723968c
PZ
10960 if (!perf_event_validate_size(event)) {
10961 err = -E2BIG;
10962 goto err_locked;
10963 }
10964
a63fbed7
TG
10965 if (!task) {
10966 /*
10967 * Check if the @cpu we're creating an event for is online.
10968 *
10969 * We use the perf_cpu_context::ctx::mutex to serialize against
10970 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
10971 */
10972 struct perf_cpu_context *cpuctx =
10973 container_of(ctx, struct perf_cpu_context, ctx);
10974
10975 if (!cpuctx->online) {
10976 err = -ENODEV;
10977 goto err_locked;
10978 }
10979 }
10980
10981
f55fc2a5
PZ
10982 /*
10983 * Must be under the same ctx::mutex as perf_install_in_context(),
10984 * because we need to serialize with concurrent event creation.
10985 */
10986 if (!exclusive_event_installable(event, ctx)) {
10987 /* exclusive and group stuff are assumed mutually exclusive */
10988 WARN_ON_ONCE(move_group);
f63a8daa 10989
f55fc2a5
PZ
10990 err = -EBUSY;
10991 goto err_locked;
10992 }
f63a8daa 10993
f55fc2a5
PZ
10994 WARN_ON_ONCE(ctx->parent_ctx);
10995
79c9ce57
PZ
10996 /*
10997 * This is the point on no return; we cannot fail hereafter. This is
10998 * where we start modifying current state.
10999 */
11000
f55fc2a5 11001 if (move_group) {
f63a8daa
PZ
11002 /*
11003 * See perf_event_ctx_lock() for comments on the details
11004 * of swizzling perf_event::ctx.
11005 */
45a0e07a 11006 perf_remove_from_context(group_leader, 0);
279b5165 11007 put_ctx(gctx);
0231bb53 11008
edb39592 11009 for_each_sibling_event(sibling, group_leader) {
45a0e07a 11010 perf_remove_from_context(sibling, 0);
b04243ef
PZ
11011 put_ctx(gctx);
11012 }
b04243ef 11013
f63a8daa
PZ
11014 /*
11015 * Wait for everybody to stop referencing the events through
11016 * the old lists, before installing it on new lists.
11017 */
0cda4c02 11018 synchronize_rcu();
f63a8daa 11019
8f95b435
PZI
11020 /*
11021 * Install the group siblings before the group leader.
11022 *
11023 * Because a group leader will try and install the entire group
11024 * (through the sibling list, which is still in-tact), we can
11025 * end up with siblings installed in the wrong context.
11026 *
11027 * By installing siblings first we NO-OP because they're not
11028 * reachable through the group lists.
11029 */
edb39592 11030 for_each_sibling_event(sibling, group_leader) {
8f95b435 11031 perf_event__state_init(sibling);
9fc81d87 11032 perf_install_in_context(ctx, sibling, sibling->cpu);
b04243ef
PZ
11033 get_ctx(ctx);
11034 }
8f95b435
PZI
11035
11036 /*
11037 * Removing from the context ends up with disabled
11038 * event. What we want here is event in the initial
11039 * startup state, ready to be add into new context.
11040 */
11041 perf_event__state_init(group_leader);
11042 perf_install_in_context(ctx, group_leader, group_leader->cpu);
11043 get_ctx(ctx);
bed5b25a
AS
11044 }
11045
f73e22ab
PZ
11046 /*
11047 * Precalculate sample_data sizes; do while holding ctx::mutex such
11048 * that we're serialized against further additions and before
11049 * perf_install_in_context() which is the point the event is active and
11050 * can use these values.
11051 */
11052 perf_event__header_size(event);
11053 perf_event__id_header_size(event);
11054
78cd2c74
PZ
11055 event->owner = current;
11056
e2d37cd2 11057 perf_install_in_context(ctx, event, event->cpu);
fe4b04fa 11058 perf_unpin_context(ctx);
f63a8daa 11059
f55fc2a5 11060 if (move_group)
321027c1 11061 perf_event_ctx_unlock(group_leader, gctx);
d859e29f 11062 mutex_unlock(&ctx->mutex);
9b51f66d 11063
79c9ce57
PZ
11064 if (task) {
11065 mutex_unlock(&task->signal->cred_guard_mutex);
11066 put_task_struct(task);
11067 }
11068
cdd6c482
IM
11069 mutex_lock(&current->perf_event_mutex);
11070 list_add_tail(&event->owner_entry, &current->perf_event_list);
11071 mutex_unlock(&current->perf_event_mutex);
082ff5a2 11072
8a49542c
PZ
11073 /*
11074 * Drop the reference on the group_event after placing the
11075 * new event on the sibling_list. This ensures destruction
11076 * of the group leader will find the pointer to itself in
11077 * perf_group_detach().
11078 */
2903ff01 11079 fdput(group);
ea635c64
AV
11080 fd_install(event_fd, event_file);
11081 return event_fd;
0793a61d 11082
f55fc2a5
PZ
11083err_locked:
11084 if (move_group)
321027c1 11085 perf_event_ctx_unlock(group_leader, gctx);
f55fc2a5
PZ
11086 mutex_unlock(&ctx->mutex);
11087/* err_file: */
11088 fput(event_file);
c3f00c70 11089err_context:
fe4b04fa 11090 perf_unpin_context(ctx);
ea635c64 11091 put_ctx(ctx);
c6be5a5c 11092err_alloc:
13005627
PZ
11093 /*
11094 * If event_file is set, the fput() above will have called ->release()
11095 * and that will take care of freeing the event.
11096 */
11097 if (!event_file)
11098 free_event(event);
79c9ce57
PZ
11099err_cred:
11100 if (task)
11101 mutex_unlock(&task->signal->cred_guard_mutex);
1f4ee503 11102err_task:
e7d0bc04
PZ
11103 if (task)
11104 put_task_struct(task);
89a1e187 11105err_group_fd:
2903ff01 11106 fdput(group);
ea635c64
AV
11107err_fd:
11108 put_unused_fd(event_fd);
dc86cabe 11109 return err;
0793a61d
TG
11110}
11111
fb0459d7
AV
11112/**
11113 * perf_event_create_kernel_counter
11114 *
11115 * @attr: attributes of the counter to create
11116 * @cpu: cpu in which the counter is bound
38a81da2 11117 * @task: task to profile (NULL for percpu)
fb0459d7
AV
11118 */
11119struct perf_event *
11120perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
38a81da2 11121 struct task_struct *task,
4dc0da86
AK
11122 perf_overflow_handler_t overflow_handler,
11123 void *context)
fb0459d7 11124{
fb0459d7 11125 struct perf_event_context *ctx;
c3f00c70 11126 struct perf_event *event;
fb0459d7 11127 int err;
d859e29f 11128
fb0459d7
AV
11129 /*
11130 * Get the target context (task or percpu):
11131 */
d859e29f 11132
4dc0da86 11133 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
79dff51e 11134 overflow_handler, context, -1);
c3f00c70
PZ
11135 if (IS_ERR(event)) {
11136 err = PTR_ERR(event);
11137 goto err;
11138 }
d859e29f 11139
f8697762 11140 /* Mark owner so we could distinguish it from user events. */
63b6da39 11141 event->owner = TASK_TOMBSTONE;
f8697762 11142
4af57ef2 11143 ctx = find_get_context(event->pmu, task, event);
c6567f64
FW
11144 if (IS_ERR(ctx)) {
11145 err = PTR_ERR(ctx);
c3f00c70 11146 goto err_free;
d859e29f 11147 }
fb0459d7 11148
fb0459d7
AV
11149 WARN_ON_ONCE(ctx->parent_ctx);
11150 mutex_lock(&ctx->mutex);
84c4e620
PZ
11151 if (ctx->task == TASK_TOMBSTONE) {
11152 err = -ESRCH;
11153 goto err_unlock;
11154 }
11155
a63fbed7
TG
11156 if (!task) {
11157 /*
11158 * Check if the @cpu we're creating an event for is online.
11159 *
11160 * We use the perf_cpu_context::ctx::mutex to serialize against
11161 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
11162 */
11163 struct perf_cpu_context *cpuctx =
11164 container_of(ctx, struct perf_cpu_context, ctx);
11165 if (!cpuctx->online) {
11166 err = -ENODEV;
11167 goto err_unlock;
11168 }
11169 }
11170
bed5b25a 11171 if (!exclusive_event_installable(event, ctx)) {
bed5b25a 11172 err = -EBUSY;
84c4e620 11173 goto err_unlock;
bed5b25a
AS
11174 }
11175
fb0459d7 11176 perf_install_in_context(ctx, event, cpu);
fe4b04fa 11177 perf_unpin_context(ctx);
fb0459d7
AV
11178 mutex_unlock(&ctx->mutex);
11179
fb0459d7
AV
11180 return event;
11181
84c4e620
PZ
11182err_unlock:
11183 mutex_unlock(&ctx->mutex);
11184 perf_unpin_context(ctx);
11185 put_ctx(ctx);
c3f00c70
PZ
11186err_free:
11187 free_event(event);
11188err:
c6567f64 11189 return ERR_PTR(err);
9b51f66d 11190}
fb0459d7 11191EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
9b51f66d 11192
0cda4c02
YZ
11193void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
11194{
11195 struct perf_event_context *src_ctx;
11196 struct perf_event_context *dst_ctx;
11197 struct perf_event *event, *tmp;
11198 LIST_HEAD(events);
11199
11200 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
11201 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
11202
f63a8daa
PZ
11203 /*
11204 * See perf_event_ctx_lock() for comments on the details
11205 * of swizzling perf_event::ctx.
11206 */
11207 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
0cda4c02
YZ
11208 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
11209 event_entry) {
45a0e07a 11210 perf_remove_from_context(event, 0);
9a545de0 11211 unaccount_event_cpu(event, src_cpu);
0cda4c02 11212 put_ctx(src_ctx);
9886167d 11213 list_add(&event->migrate_entry, &events);
0cda4c02 11214 }
0cda4c02 11215
8f95b435
PZI
11216 /*
11217 * Wait for the events to quiesce before re-instating them.
11218 */
0cda4c02
YZ
11219 synchronize_rcu();
11220
8f95b435
PZI
11221 /*
11222 * Re-instate events in 2 passes.
11223 *
11224 * Skip over group leaders and only install siblings on this first
11225 * pass, siblings will not get enabled without a leader, however a
11226 * leader will enable its siblings, even if those are still on the old
11227 * context.
11228 */
11229 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
11230 if (event->group_leader == event)
11231 continue;
11232
11233 list_del(&event->migrate_entry);
11234 if (event->state >= PERF_EVENT_STATE_OFF)
11235 event->state = PERF_EVENT_STATE_INACTIVE;
11236 account_event_cpu(event, dst_cpu);
11237 perf_install_in_context(dst_ctx, event, dst_cpu);
11238 get_ctx(dst_ctx);
11239 }
11240
11241 /*
11242 * Once all the siblings are setup properly, install the group leaders
11243 * to make it go.
11244 */
9886167d
PZ
11245 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
11246 list_del(&event->migrate_entry);
0cda4c02
YZ
11247 if (event->state >= PERF_EVENT_STATE_OFF)
11248 event->state = PERF_EVENT_STATE_INACTIVE;
9a545de0 11249 account_event_cpu(event, dst_cpu);
0cda4c02
YZ
11250 perf_install_in_context(dst_ctx, event, dst_cpu);
11251 get_ctx(dst_ctx);
11252 }
11253 mutex_unlock(&dst_ctx->mutex);
f63a8daa 11254 mutex_unlock(&src_ctx->mutex);
0cda4c02
YZ
11255}
11256EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
11257
cdd6c482 11258static void sync_child_event(struct perf_event *child_event,
38b200d6 11259 struct task_struct *child)
d859e29f 11260{
cdd6c482 11261 struct perf_event *parent_event = child_event->parent;
8bc20959 11262 u64 child_val;
d859e29f 11263
cdd6c482
IM
11264 if (child_event->attr.inherit_stat)
11265 perf_event_read_event(child_event, child);
38b200d6 11266
b5e58793 11267 child_val = perf_event_count(child_event);
d859e29f
PM
11268
11269 /*
11270 * Add back the child's count to the parent's count:
11271 */
a6e6dea6 11272 atomic64_add(child_val, &parent_event->child_count);
cdd6c482
IM
11273 atomic64_add(child_event->total_time_enabled,
11274 &parent_event->child_total_time_enabled);
11275 atomic64_add(child_event->total_time_running,
11276 &parent_event->child_total_time_running);
d859e29f
PM
11277}
11278
9b51f66d 11279static void
8ba289b8
PZ
11280perf_event_exit_event(struct perf_event *child_event,
11281 struct perf_event_context *child_ctx,
11282 struct task_struct *child)
9b51f66d 11283{
8ba289b8
PZ
11284 struct perf_event *parent_event = child_event->parent;
11285
1903d50c
PZ
11286 /*
11287 * Do not destroy the 'original' grouping; because of the context
11288 * switch optimization the original events could've ended up in a
11289 * random child task.
11290 *
11291 * If we were to destroy the original group, all group related
11292 * operations would cease to function properly after this random
11293 * child dies.
11294 *
11295 * Do destroy all inherited groups, we don't care about those
11296 * and being thorough is better.
11297 */
32132a3d
PZ
11298 raw_spin_lock_irq(&child_ctx->lock);
11299 WARN_ON_ONCE(child_ctx->is_active);
11300
8ba289b8 11301 if (parent_event)
32132a3d
PZ
11302 perf_group_detach(child_event);
11303 list_del_event(child_event, child_ctx);
0d3d73aa 11304 perf_event_set_state(child_event, PERF_EVENT_STATE_EXIT); /* is_event_hup() */
32132a3d 11305 raw_spin_unlock_irq(&child_ctx->lock);
0cc0c027 11306
9b51f66d 11307 /*
8ba289b8 11308 * Parent events are governed by their filedesc, retain them.
9b51f66d 11309 */
8ba289b8 11310 if (!parent_event) {
179033b3 11311 perf_event_wakeup(child_event);
8ba289b8 11312 return;
4bcf349a 11313 }
8ba289b8
PZ
11314 /*
11315 * Child events can be cleaned up.
11316 */
11317
11318 sync_child_event(child_event, child);
11319
11320 /*
11321 * Remove this event from the parent's list
11322 */
11323 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
11324 mutex_lock(&parent_event->child_mutex);
11325 list_del_init(&child_event->child_list);
11326 mutex_unlock(&parent_event->child_mutex);
11327
11328 /*
11329 * Kick perf_poll() for is_event_hup().
11330 */
11331 perf_event_wakeup(parent_event);
11332 free_event(child_event);
11333 put_event(parent_event);
9b51f66d
IM
11334}
11335
8dc85d54 11336static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
9b51f66d 11337{
211de6eb 11338 struct perf_event_context *child_ctx, *clone_ctx = NULL;
63b6da39 11339 struct perf_event *child_event, *next;
63b6da39
PZ
11340
11341 WARN_ON_ONCE(child != current);
9b51f66d 11342
6a3351b6 11343 child_ctx = perf_pin_task_context(child, ctxn);
63b6da39 11344 if (!child_ctx)
9b51f66d
IM
11345 return;
11346
ad3a37de 11347 /*
6a3351b6
PZ
11348 * In order to reduce the amount of tricky in ctx tear-down, we hold
11349 * ctx::mutex over the entire thing. This serializes against almost
11350 * everything that wants to access the ctx.
11351 *
11352 * The exception is sys_perf_event_open() /
11353 * perf_event_create_kernel_count() which does find_get_context()
11354 * without ctx::mutex (it cannot because of the move_group double mutex
11355 * lock thing). See the comments in perf_install_in_context().
ad3a37de 11356 */
6a3351b6 11357 mutex_lock(&child_ctx->mutex);
c93f7669
PM
11358
11359 /*
6a3351b6
PZ
11360 * In a single ctx::lock section, de-schedule the events and detach the
11361 * context from the task such that we cannot ever get it scheduled back
11362 * in.
c93f7669 11363 */
6a3351b6 11364 raw_spin_lock_irq(&child_ctx->lock);
487f05e1 11365 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
4a1c0f26 11366
71a851b4 11367 /*
63b6da39
PZ
11368 * Now that the context is inactive, destroy the task <-> ctx relation
11369 * and mark the context dead.
71a851b4 11370 */
63b6da39
PZ
11371 RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
11372 put_ctx(child_ctx); /* cannot be last */
11373 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
11374 put_task_struct(current); /* cannot be last */
4a1c0f26 11375
211de6eb 11376 clone_ctx = unclone_ctx(child_ctx);
6a3351b6 11377 raw_spin_unlock_irq(&child_ctx->lock);
9f498cc5 11378
211de6eb
PZ
11379 if (clone_ctx)
11380 put_ctx(clone_ctx);
4a1c0f26 11381
9f498cc5 11382 /*
cdd6c482
IM
11383 * Report the task dead after unscheduling the events so that we
11384 * won't get any samples after PERF_RECORD_EXIT. We can however still
11385 * get a few PERF_RECORD_READ events.
9f498cc5 11386 */
cdd6c482 11387 perf_event_task(child, child_ctx, 0);
a63eaf34 11388
ebf905fc 11389 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
8ba289b8 11390 perf_event_exit_event(child_event, child_ctx, child);
8bc20959 11391
a63eaf34
PM
11392 mutex_unlock(&child_ctx->mutex);
11393
11394 put_ctx(child_ctx);
9b51f66d
IM
11395}
11396
8dc85d54
PZ
11397/*
11398 * When a child task exits, feed back event values to parent events.
79c9ce57
PZ
11399 *
11400 * Can be called with cred_guard_mutex held when called from
11401 * install_exec_creds().
8dc85d54
PZ
11402 */
11403void perf_event_exit_task(struct task_struct *child)
11404{
8882135b 11405 struct perf_event *event, *tmp;
8dc85d54
PZ
11406 int ctxn;
11407
8882135b
PZ
11408 mutex_lock(&child->perf_event_mutex);
11409 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
11410 owner_entry) {
11411 list_del_init(&event->owner_entry);
11412
11413 /*
11414 * Ensure the list deletion is visible before we clear
11415 * the owner, closes a race against perf_release() where
11416 * we need to serialize on the owner->perf_event_mutex.
11417 */
f47c02c0 11418 smp_store_release(&event->owner, NULL);
8882135b
PZ
11419 }
11420 mutex_unlock(&child->perf_event_mutex);
11421
8dc85d54
PZ
11422 for_each_task_context_nr(ctxn)
11423 perf_event_exit_task_context(child, ctxn);
4e93ad60
JO
11424
11425 /*
11426 * The perf_event_exit_task_context calls perf_event_task
11427 * with child's task_ctx, which generates EXIT events for
11428 * child contexts and sets child->perf_event_ctxp[] to NULL.
11429 * At this point we need to send EXIT events to cpu contexts.
11430 */
11431 perf_event_task(child, NULL, 0);
8dc85d54
PZ
11432}
11433
889ff015
FW
11434static void perf_free_event(struct perf_event *event,
11435 struct perf_event_context *ctx)
11436{
11437 struct perf_event *parent = event->parent;
11438
11439 if (WARN_ON_ONCE(!parent))
11440 return;
11441
11442 mutex_lock(&parent->child_mutex);
11443 list_del_init(&event->child_list);
11444 mutex_unlock(&parent->child_mutex);
11445
a6fa941d 11446 put_event(parent);
889ff015 11447
652884fe 11448 raw_spin_lock_irq(&ctx->lock);
8a49542c 11449 perf_group_detach(event);
889ff015 11450 list_del_event(event, ctx);
652884fe 11451 raw_spin_unlock_irq(&ctx->lock);
889ff015
FW
11452 free_event(event);
11453}
11454
bbbee908 11455/*
652884fe 11456 * Free an unexposed, unused context as created by inheritance by
8dc85d54 11457 * perf_event_init_task below, used by fork() in case of fail.
652884fe
PZ
11458 *
11459 * Not all locks are strictly required, but take them anyway to be nice and
11460 * help out with the lockdep assertions.
bbbee908 11461 */
cdd6c482 11462void perf_event_free_task(struct task_struct *task)
bbbee908 11463{
8dc85d54 11464 struct perf_event_context *ctx;
cdd6c482 11465 struct perf_event *event, *tmp;
8dc85d54 11466 int ctxn;
bbbee908 11467
8dc85d54
PZ
11468 for_each_task_context_nr(ctxn) {
11469 ctx = task->perf_event_ctxp[ctxn];
11470 if (!ctx)
11471 continue;
bbbee908 11472
8dc85d54 11473 mutex_lock(&ctx->mutex);
e552a838
PZ
11474 raw_spin_lock_irq(&ctx->lock);
11475 /*
11476 * Destroy the task <-> ctx relation and mark the context dead.
11477 *
11478 * This is important because even though the task hasn't been
11479 * exposed yet the context has been (through child_list).
11480 */
11481 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
11482 WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
11483 put_task_struct(task); /* cannot be last */
11484 raw_spin_unlock_irq(&ctx->lock);
bbbee908 11485
15121c78 11486 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
8dc85d54 11487 perf_free_event(event, ctx);
bbbee908 11488
8dc85d54 11489 mutex_unlock(&ctx->mutex);
8dc85d54
PZ
11490 put_ctx(ctx);
11491 }
889ff015
FW
11492}
11493
4e231c79
PZ
11494void perf_event_delayed_put(struct task_struct *task)
11495{
11496 int ctxn;
11497
11498 for_each_task_context_nr(ctxn)
11499 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
11500}
11501
e03e7ee3 11502struct file *perf_event_get(unsigned int fd)
ffe8690c 11503{
e03e7ee3 11504 struct file *file;
ffe8690c 11505
e03e7ee3
AS
11506 file = fget_raw(fd);
11507 if (!file)
11508 return ERR_PTR(-EBADF);
ffe8690c 11509
e03e7ee3
AS
11510 if (file->f_op != &perf_fops) {
11511 fput(file);
11512 return ERR_PTR(-EBADF);
11513 }
ffe8690c 11514
e03e7ee3 11515 return file;
ffe8690c
KX
11516}
11517
f8d959a5
YS
11518const struct perf_event *perf_get_event(struct file *file)
11519{
11520 if (file->f_op != &perf_fops)
11521 return ERR_PTR(-EINVAL);
11522
11523 return file->private_data;
11524}
11525
ffe8690c
KX
11526const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
11527{
11528 if (!event)
11529 return ERR_PTR(-EINVAL);
11530
11531 return &event->attr;
11532}
11533
97dee4f3 11534/*
788faab7 11535 * Inherit an event from parent task to child task.
d8a8cfc7
PZ
11536 *
11537 * Returns:
11538 * - valid pointer on success
11539 * - NULL for orphaned events
11540 * - IS_ERR() on error
97dee4f3
PZ
11541 */
11542static struct perf_event *
11543inherit_event(struct perf_event *parent_event,
11544 struct task_struct *parent,
11545 struct perf_event_context *parent_ctx,
11546 struct task_struct *child,
11547 struct perf_event *group_leader,
11548 struct perf_event_context *child_ctx)
11549{
8ca2bd41 11550 enum perf_event_state parent_state = parent_event->state;
97dee4f3 11551 struct perf_event *child_event;
cee010ec 11552 unsigned long flags;
97dee4f3
PZ
11553
11554 /*
11555 * Instead of creating recursive hierarchies of events,
11556 * we link inherited events back to the original parent,
11557 * which has a filp for sure, which we use as the reference
11558 * count:
11559 */
11560 if (parent_event->parent)
11561 parent_event = parent_event->parent;
11562
11563 child_event = perf_event_alloc(&parent_event->attr,
11564 parent_event->cpu,
d580ff86 11565 child,
97dee4f3 11566 group_leader, parent_event,
79dff51e 11567 NULL, NULL, -1);
97dee4f3
PZ
11568 if (IS_ERR(child_event))
11569 return child_event;
a6fa941d 11570
313ccb96
JO
11571
11572 if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) &&
11573 !child_ctx->task_ctx_data) {
11574 struct pmu *pmu = child_event->pmu;
11575
11576 child_ctx->task_ctx_data = kzalloc(pmu->task_ctx_size,
11577 GFP_KERNEL);
11578 if (!child_ctx->task_ctx_data) {
11579 free_event(child_event);
11580 return NULL;
11581 }
11582 }
11583
c6e5b732
PZ
11584 /*
11585 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
11586 * must be under the same lock in order to serialize against
11587 * perf_event_release_kernel(), such that either we must observe
11588 * is_orphaned_event() or they will observe us on the child_list.
11589 */
11590 mutex_lock(&parent_event->child_mutex);
fadfe7be
JO
11591 if (is_orphaned_event(parent_event) ||
11592 !atomic_long_inc_not_zero(&parent_event->refcount)) {
c6e5b732 11593 mutex_unlock(&parent_event->child_mutex);
313ccb96 11594 /* task_ctx_data is freed with child_ctx */
a6fa941d
AV
11595 free_event(child_event);
11596 return NULL;
11597 }
11598
97dee4f3
PZ
11599 get_ctx(child_ctx);
11600
11601 /*
11602 * Make the child state follow the state of the parent event,
11603 * not its attr.disabled bit. We hold the parent's mutex,
11604 * so we won't race with perf_event_{en, dis}able_family.
11605 */
1929def9 11606 if (parent_state >= PERF_EVENT_STATE_INACTIVE)
97dee4f3
PZ
11607 child_event->state = PERF_EVENT_STATE_INACTIVE;
11608 else
11609 child_event->state = PERF_EVENT_STATE_OFF;
11610
11611 if (parent_event->attr.freq) {
11612 u64 sample_period = parent_event->hw.sample_period;
11613 struct hw_perf_event *hwc = &child_event->hw;
11614
11615 hwc->sample_period = sample_period;
11616 hwc->last_period = sample_period;
11617
11618 local64_set(&hwc->period_left, sample_period);
11619 }
11620
11621 child_event->ctx = child_ctx;
11622 child_event->overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
11623 child_event->overflow_handler_context
11624 = parent_event->overflow_handler_context;
97dee4f3 11625
614b6780
TG
11626 /*
11627 * Precalculate sample_data sizes
11628 */
11629 perf_event__header_size(child_event);
6844c09d 11630 perf_event__id_header_size(child_event);
614b6780 11631
97dee4f3
PZ
11632 /*
11633 * Link it up in the child's context:
11634 */
cee010ec 11635 raw_spin_lock_irqsave(&child_ctx->lock, flags);
97dee4f3 11636 add_event_to_ctx(child_event, child_ctx);
cee010ec 11637 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
97dee4f3 11638
97dee4f3
PZ
11639 /*
11640 * Link this into the parent event's child list
11641 */
97dee4f3
PZ
11642 list_add_tail(&child_event->child_list, &parent_event->child_list);
11643 mutex_unlock(&parent_event->child_mutex);
11644
11645 return child_event;
11646}
11647
d8a8cfc7
PZ
11648/*
11649 * Inherits an event group.
11650 *
11651 * This will quietly suppress orphaned events; !inherit_event() is not an error.
11652 * This matches with perf_event_release_kernel() removing all child events.
11653 *
11654 * Returns:
11655 * - 0 on success
11656 * - <0 on error
11657 */
97dee4f3
PZ
11658static int inherit_group(struct perf_event *parent_event,
11659 struct task_struct *parent,
11660 struct perf_event_context *parent_ctx,
11661 struct task_struct *child,
11662 struct perf_event_context *child_ctx)
11663{
11664 struct perf_event *leader;
11665 struct perf_event *sub;
11666 struct perf_event *child_ctr;
11667
11668 leader = inherit_event(parent_event, parent, parent_ctx,
11669 child, NULL, child_ctx);
11670 if (IS_ERR(leader))
11671 return PTR_ERR(leader);
d8a8cfc7
PZ
11672 /*
11673 * @leader can be NULL here because of is_orphaned_event(). In this
11674 * case inherit_event() will create individual events, similar to what
11675 * perf_group_detach() would do anyway.
11676 */
edb39592 11677 for_each_sibling_event(sub, parent_event) {
97dee4f3
PZ
11678 child_ctr = inherit_event(sub, parent, parent_ctx,
11679 child, leader, child_ctx);
11680 if (IS_ERR(child_ctr))
11681 return PTR_ERR(child_ctr);
11682 }
11683 return 0;
889ff015
FW
11684}
11685
d8a8cfc7
PZ
11686/*
11687 * Creates the child task context and tries to inherit the event-group.
11688 *
11689 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
11690 * inherited_all set when we 'fail' to inherit an orphaned event; this is
11691 * consistent with perf_event_release_kernel() removing all child events.
11692 *
11693 * Returns:
11694 * - 0 on success
11695 * - <0 on error
11696 */
889ff015
FW
11697static int
11698inherit_task_group(struct perf_event *event, struct task_struct *parent,
11699 struct perf_event_context *parent_ctx,
8dc85d54 11700 struct task_struct *child, int ctxn,
889ff015
FW
11701 int *inherited_all)
11702{
11703 int ret;
8dc85d54 11704 struct perf_event_context *child_ctx;
889ff015
FW
11705
11706 if (!event->attr.inherit) {
11707 *inherited_all = 0;
11708 return 0;
bbbee908
PZ
11709 }
11710
fe4b04fa 11711 child_ctx = child->perf_event_ctxp[ctxn];
889ff015
FW
11712 if (!child_ctx) {
11713 /*
11714 * This is executed from the parent task context, so
11715 * inherit events that have been marked for cloning.
11716 * First allocate and initialize a context for the
11717 * child.
11718 */
734df5ab 11719 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
889ff015
FW
11720 if (!child_ctx)
11721 return -ENOMEM;
bbbee908 11722
8dc85d54 11723 child->perf_event_ctxp[ctxn] = child_ctx;
889ff015
FW
11724 }
11725
11726 ret = inherit_group(event, parent, parent_ctx,
11727 child, child_ctx);
11728
11729 if (ret)
11730 *inherited_all = 0;
11731
11732 return ret;
bbbee908
PZ
11733}
11734
9b51f66d 11735/*
cdd6c482 11736 * Initialize the perf_event context in task_struct
9b51f66d 11737 */
985c8dcb 11738static int perf_event_init_context(struct task_struct *child, int ctxn)
9b51f66d 11739{
889ff015 11740 struct perf_event_context *child_ctx, *parent_ctx;
cdd6c482
IM
11741 struct perf_event_context *cloned_ctx;
11742 struct perf_event *event;
9b51f66d 11743 struct task_struct *parent = current;
564c2b21 11744 int inherited_all = 1;
dddd3379 11745 unsigned long flags;
6ab423e0 11746 int ret = 0;
9b51f66d 11747
8dc85d54 11748 if (likely(!parent->perf_event_ctxp[ctxn]))
6ab423e0
PZ
11749 return 0;
11750
ad3a37de 11751 /*
25346b93
PM
11752 * If the parent's context is a clone, pin it so it won't get
11753 * swapped under us.
ad3a37de 11754 */
8dc85d54 11755 parent_ctx = perf_pin_task_context(parent, ctxn);
ffb4ef21
PZ
11756 if (!parent_ctx)
11757 return 0;
25346b93 11758
ad3a37de
PM
11759 /*
11760 * No need to check if parent_ctx != NULL here; since we saw
11761 * it non-NULL earlier, the only reason for it to become NULL
11762 * is if we exit, and since we're currently in the middle of
11763 * a fork we can't be exiting at the same time.
11764 */
ad3a37de 11765
9b51f66d
IM
11766 /*
11767 * Lock the parent list. No need to lock the child - not PID
11768 * hashed yet and not running, so nobody can access it.
11769 */
d859e29f 11770 mutex_lock(&parent_ctx->mutex);
9b51f66d
IM
11771
11772 /*
11773 * We dont have to disable NMIs - we are only looking at
11774 * the list, not manipulating it:
11775 */
6e6804d2 11776 perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
8dc85d54
PZ
11777 ret = inherit_task_group(event, parent, parent_ctx,
11778 child, ctxn, &inherited_all);
889ff015 11779 if (ret)
e7cc4865 11780 goto out_unlock;
889ff015 11781 }
b93f7978 11782
dddd3379
TG
11783 /*
11784 * We can't hold ctx->lock when iterating the ->flexible_group list due
11785 * to allocations, but we need to prevent rotation because
11786 * rotate_ctx() will change the list from interrupt context.
11787 */
11788 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
11789 parent_ctx->rotate_disable = 1;
11790 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
11791
6e6804d2 11792 perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
8dc85d54
PZ
11793 ret = inherit_task_group(event, parent, parent_ctx,
11794 child, ctxn, &inherited_all);
889ff015 11795 if (ret)
e7cc4865 11796 goto out_unlock;
564c2b21
PM
11797 }
11798
dddd3379
TG
11799 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
11800 parent_ctx->rotate_disable = 0;
dddd3379 11801
8dc85d54 11802 child_ctx = child->perf_event_ctxp[ctxn];
889ff015 11803
05cbaa28 11804 if (child_ctx && inherited_all) {
564c2b21
PM
11805 /*
11806 * Mark the child context as a clone of the parent
11807 * context, or of whatever the parent is a clone of.
c5ed5145
PZ
11808 *
11809 * Note that if the parent is a clone, the holding of
11810 * parent_ctx->lock avoids it from being uncloned.
564c2b21 11811 */
c5ed5145 11812 cloned_ctx = parent_ctx->parent_ctx;
ad3a37de
PM
11813 if (cloned_ctx) {
11814 child_ctx->parent_ctx = cloned_ctx;
25346b93 11815 child_ctx->parent_gen = parent_ctx->parent_gen;
564c2b21
PM
11816 } else {
11817 child_ctx->parent_ctx = parent_ctx;
11818 child_ctx->parent_gen = parent_ctx->generation;
11819 }
11820 get_ctx(child_ctx->parent_ctx);
9b51f66d
IM
11821 }
11822
c5ed5145 11823 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
e7cc4865 11824out_unlock:
d859e29f 11825 mutex_unlock(&parent_ctx->mutex);
6ab423e0 11826
25346b93 11827 perf_unpin_context(parent_ctx);
fe4b04fa 11828 put_ctx(parent_ctx);
ad3a37de 11829
6ab423e0 11830 return ret;
9b51f66d
IM
11831}
11832
8dc85d54
PZ
11833/*
11834 * Initialize the perf_event context in task_struct
11835 */
11836int perf_event_init_task(struct task_struct *child)
11837{
11838 int ctxn, ret;
11839
8550d7cb
ON
11840 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
11841 mutex_init(&child->perf_event_mutex);
11842 INIT_LIST_HEAD(&child->perf_event_list);
11843
8dc85d54
PZ
11844 for_each_task_context_nr(ctxn) {
11845 ret = perf_event_init_context(child, ctxn);
6c72e350
PZ
11846 if (ret) {
11847 perf_event_free_task(child);
8dc85d54 11848 return ret;
6c72e350 11849 }
8dc85d54
PZ
11850 }
11851
11852 return 0;
11853}
11854
220b140b
PM
11855static void __init perf_event_init_all_cpus(void)
11856{
b28ab83c 11857 struct swevent_htable *swhash;
220b140b 11858 int cpu;
220b140b 11859
a63fbed7
TG
11860 zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
11861
220b140b 11862 for_each_possible_cpu(cpu) {
b28ab83c
PZ
11863 swhash = &per_cpu(swevent_htable, cpu);
11864 mutex_init(&swhash->hlist_mutex);
2fde4f94 11865 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
f2fb6bef
KL
11866
11867 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
11868 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
e48c1788 11869
058fe1c0
DCC
11870#ifdef CONFIG_CGROUP_PERF
11871 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
11872#endif
e48c1788 11873 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
220b140b
PM
11874 }
11875}
11876
a63fbed7 11877void perf_swevent_init_cpu(unsigned int cpu)
0793a61d 11878{
108b02cf 11879 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
0793a61d 11880
b28ab83c 11881 mutex_lock(&swhash->hlist_mutex);
059fcd8c 11882 if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
76e1d904
FW
11883 struct swevent_hlist *hlist;
11884
b28ab83c
PZ
11885 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
11886 WARN_ON(!hlist);
11887 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 11888 }
b28ab83c 11889 mutex_unlock(&swhash->hlist_mutex);
0793a61d
TG
11890}
11891
2965faa5 11892#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
108b02cf 11893static void __perf_event_exit_context(void *__info)
0793a61d 11894{
108b02cf 11895 struct perf_event_context *ctx = __info;
fae3fde6
PZ
11896 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
11897 struct perf_event *event;
0793a61d 11898
fae3fde6 11899 raw_spin_lock(&ctx->lock);
0ee098c9 11900 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
fae3fde6 11901 list_for_each_entry(event, &ctx->event_list, event_entry)
45a0e07a 11902 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
fae3fde6 11903 raw_spin_unlock(&ctx->lock);
0793a61d 11904}
108b02cf
PZ
11905
11906static void perf_event_exit_cpu_context(int cpu)
11907{
a63fbed7 11908 struct perf_cpu_context *cpuctx;
108b02cf
PZ
11909 struct perf_event_context *ctx;
11910 struct pmu *pmu;
108b02cf 11911
a63fbed7
TG
11912 mutex_lock(&pmus_lock);
11913 list_for_each_entry(pmu, &pmus, entry) {
11914 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11915 ctx = &cpuctx->ctx;
108b02cf
PZ
11916
11917 mutex_lock(&ctx->mutex);
11918 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
a63fbed7 11919 cpuctx->online = 0;
108b02cf
PZ
11920 mutex_unlock(&ctx->mutex);
11921 }
a63fbed7
TG
11922 cpumask_clear_cpu(cpu, perf_online_mask);
11923 mutex_unlock(&pmus_lock);
108b02cf 11924}
00e16c3d
TG
11925#else
11926
11927static void perf_event_exit_cpu_context(int cpu) { }
11928
11929#endif
108b02cf 11930
a63fbed7
TG
11931int perf_event_init_cpu(unsigned int cpu)
11932{
11933 struct perf_cpu_context *cpuctx;
11934 struct perf_event_context *ctx;
11935 struct pmu *pmu;
11936
11937 perf_swevent_init_cpu(cpu);
11938
11939 mutex_lock(&pmus_lock);
11940 cpumask_set_cpu(cpu, perf_online_mask);
11941 list_for_each_entry(pmu, &pmus, entry) {
11942 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11943 ctx = &cpuctx->ctx;
11944
11945 mutex_lock(&ctx->mutex);
11946 cpuctx->online = 1;
11947 mutex_unlock(&ctx->mutex);
11948 }
11949 mutex_unlock(&pmus_lock);
11950
11951 return 0;
11952}
11953
00e16c3d 11954int perf_event_exit_cpu(unsigned int cpu)
0793a61d 11955{
e3703f8c 11956 perf_event_exit_cpu_context(cpu);
00e16c3d 11957 return 0;
0793a61d 11958}
0793a61d 11959
c277443c
PZ
11960static int
11961perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
11962{
11963 int cpu;
11964
11965 for_each_online_cpu(cpu)
11966 perf_event_exit_cpu(cpu);
11967
11968 return NOTIFY_OK;
11969}
11970
11971/*
11972 * Run the perf reboot notifier at the very last possible moment so that
11973 * the generic watchdog code runs as long as possible.
11974 */
11975static struct notifier_block perf_reboot_notifier = {
11976 .notifier_call = perf_reboot,
11977 .priority = INT_MIN,
11978};
11979
cdd6c482 11980void __init perf_event_init(void)
0793a61d 11981{
3c502e7a
JW
11982 int ret;
11983
2e80a82a
PZ
11984 idr_init(&pmu_idr);
11985
220b140b 11986 perf_event_init_all_cpus();
b0a873eb 11987 init_srcu_struct(&pmus_srcu);
2e80a82a
PZ
11988 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
11989 perf_pmu_register(&perf_cpu_clock, NULL, -1);
11990 perf_pmu_register(&perf_task_clock, NULL, -1);
b0a873eb 11991 perf_tp_register();
00e16c3d 11992 perf_event_init_cpu(smp_processor_id());
c277443c 11993 register_reboot_notifier(&perf_reboot_notifier);
3c502e7a
JW
11994
11995 ret = init_hw_breakpoint();
11996 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
b2029520 11997
b01c3a00
JO
11998 /*
11999 * Build time assertion that we keep the data_head at the intended
12000 * location. IOW, validation we got the __reserved[] size right.
12001 */
12002 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
12003 != 1024);
0793a61d 12004}
abe43400 12005
fd979c01
CS
12006ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
12007 char *page)
12008{
12009 struct perf_pmu_events_attr *pmu_attr =
12010 container_of(attr, struct perf_pmu_events_attr, attr);
12011
12012 if (pmu_attr->event_str)
12013 return sprintf(page, "%s\n", pmu_attr->event_str);
12014
12015 return 0;
12016}
675965b0 12017EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
fd979c01 12018
abe43400
PZ
12019static int __init perf_event_sysfs_init(void)
12020{
12021 struct pmu *pmu;
12022 int ret;
12023
12024 mutex_lock(&pmus_lock);
12025
12026 ret = bus_register(&pmu_bus);
12027 if (ret)
12028 goto unlock;
12029
12030 list_for_each_entry(pmu, &pmus, entry) {
12031 if (!pmu->name || pmu->type < 0)
12032 continue;
12033
12034 ret = pmu_dev_alloc(pmu);
12035 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
12036 }
12037 pmu_bus_running = 1;
12038 ret = 0;
12039
12040unlock:
12041 mutex_unlock(&pmus_lock);
12042
12043 return ret;
12044}
12045device_initcall(perf_event_sysfs_init);
e5d1367f
SE
12046
12047#ifdef CONFIG_CGROUP_PERF
eb95419b
TH
12048static struct cgroup_subsys_state *
12049perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
e5d1367f
SE
12050{
12051 struct perf_cgroup *jc;
e5d1367f 12052
1b15d055 12053 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
e5d1367f
SE
12054 if (!jc)
12055 return ERR_PTR(-ENOMEM);
12056
e5d1367f
SE
12057 jc->info = alloc_percpu(struct perf_cgroup_info);
12058 if (!jc->info) {
12059 kfree(jc);
12060 return ERR_PTR(-ENOMEM);
12061 }
12062
e5d1367f
SE
12063 return &jc->css;
12064}
12065
eb95419b 12066static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
e5d1367f 12067{
eb95419b
TH
12068 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
12069
e5d1367f
SE
12070 free_percpu(jc->info);
12071 kfree(jc);
12072}
12073
12074static int __perf_cgroup_move(void *info)
12075{
12076 struct task_struct *task = info;
ddaaf4e2 12077 rcu_read_lock();
e5d1367f 12078 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
ddaaf4e2 12079 rcu_read_unlock();
e5d1367f
SE
12080 return 0;
12081}
12082
1f7dd3e5 12083static void perf_cgroup_attach(struct cgroup_taskset *tset)
e5d1367f 12084{
bb9d97b6 12085 struct task_struct *task;
1f7dd3e5 12086 struct cgroup_subsys_state *css;
bb9d97b6 12087
1f7dd3e5 12088 cgroup_taskset_for_each(task, css, tset)
bb9d97b6 12089 task_function_call(task, __perf_cgroup_move, task);
e5d1367f
SE
12090}
12091
073219e9 12092struct cgroup_subsys perf_event_cgrp_subsys = {
92fb9748
TH
12093 .css_alloc = perf_cgroup_css_alloc,
12094 .css_free = perf_cgroup_css_free,
bb9d97b6 12095 .attach = perf_cgroup_attach,
968ebff1
TH
12096 /*
12097 * Implicitly enable on dfl hierarchy so that perf events can
12098 * always be filtered by cgroup2 path as long as perf_event
12099 * controller is not mounted on a legacy hierarchy.
12100 */
12101 .implicit_on_dfl = true,
8cfd8147 12102 .threaded = true,
e5d1367f
SE
12103};
12104#endif /* CONFIG_CGROUP_PERF */