]> git.ipfire.org Git - thirdparty/kernel/stable.git/blame - kernel/fork.c
Merge tag 'kvm-x86-mmu-6.8' of https://github.com/kvm-x86/linux into HEAD
[thirdparty/kernel/stable.git] / kernel / fork.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/kernel/fork.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
8/*
9 * 'fork.c' contains the help-routines for the 'fork' system call
10 * (see also entry.S and others).
11 * Fork is rather simple, once you get the hang of it, but the memory
12 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
13 */
14
b3e58382 15#include <linux/anon_inodes.h>
1da177e4 16#include <linux/slab.h>
4eb5aaa3 17#include <linux/sched/autogroup.h>
6e84f315 18#include <linux/sched/mm.h>
f7ccbae4 19#include <linux/sched/coredump.h>
8703e8a4 20#include <linux/sched/user.h>
6a3827d7 21#include <linux/sched/numa_balancing.h>
03441a34 22#include <linux/sched/stat.h>
29930025 23#include <linux/sched/task.h>
68db0cf1 24#include <linux/sched/task_stack.h>
32ef5517 25#include <linux/sched/cputime.h>
b3e58382 26#include <linux/seq_file.h>
037741a6 27#include <linux/rtmutex.h>
1da177e4
LT
28#include <linux/init.h>
29#include <linux/unistd.h>
1da177e4
LT
30#include <linux/module.h>
31#include <linux/vmalloc.h>
32#include <linux/completion.h>
1da177e4
LT
33#include <linux/personality.h>
34#include <linux/mempolicy.h>
35#include <linux/sem.h>
36#include <linux/file.h>
9f3acc31 37#include <linux/fdtable.h>
da9cbc87 38#include <linux/iocontext.h>
1da177e4 39#include <linux/key.h>
50b5e49c 40#include <linux/kmsan.h>
1da177e4
LT
41#include <linux/binfmts.h>
42#include <linux/mman.h>
cddb8a5c 43#include <linux/mmu_notifier.h>
1da177e4 44#include <linux/fs.h>
615d6e87 45#include <linux/mm.h>
17fca131 46#include <linux/mm_inline.h>
ab516013 47#include <linux/nsproxy.h>
c59ede7b 48#include <linux/capability.h>
1da177e4 49#include <linux/cpu.h>
b4f48b63 50#include <linux/cgroup.h>
1da177e4 51#include <linux/security.h>
a1e78772 52#include <linux/hugetlb.h>
e2cfabdf 53#include <linux/seccomp.h>
1da177e4
LT
54#include <linux/swap.h>
55#include <linux/syscalls.h>
56#include <linux/jiffies.h>
57#include <linux/futex.h>
8141c7f3 58#include <linux/compat.h>
207205a2 59#include <linux/kthread.h>
7c3ab738 60#include <linux/task_io_accounting_ops.h>
ab2af1f5 61#include <linux/rcupdate.h>
1da177e4
LT
62#include <linux/ptrace.h>
63#include <linux/mount.h>
64#include <linux/audit.h>
78fb7466 65#include <linux/memcontrol.h>
f201ae23 66#include <linux/ftrace.h>
5e2bf014 67#include <linux/proc_fs.h>
1da177e4
LT
68#include <linux/profile.h>
69#include <linux/rmap.h>
f8af4da3 70#include <linux/ksm.h>
1da177e4 71#include <linux/acct.h>
893e26e6 72#include <linux/userfaultfd_k.h>
8f0ab514 73#include <linux/tsacct_kern.h>
9f46080c 74#include <linux/cn_proc.h>
ba96a0c8 75#include <linux/freezer.h>
ca74e92b 76#include <linux/delayacct.h>
ad4ecbcb 77#include <linux/taskstats_kern.h>
522ed776 78#include <linux/tty.h>
5ad4e53b 79#include <linux/fs_struct.h>
7c9f8861 80#include <linux/magic.h>
cdd6c482 81#include <linux/perf_event.h>
42c4ab41 82#include <linux/posix-timers.h>
8e7cac79 83#include <linux/user-return-notifier.h>
3d5992d2 84#include <linux/oom.h>
ba76149f 85#include <linux/khugepaged.h>
d80e731e 86#include <linux/signalfd.h>
0326f5a9 87#include <linux/uprobes.h>
a27bb332 88#include <linux/aio.h>
52f5684c 89#include <linux/compiler.h>
16db3d3f 90#include <linux/sysctl.h>
5c9a8750 91#include <linux/kcov.h>
d83a7cb3 92#include <linux/livepatch.h>
48ac3c18 93#include <linux/thread_info.h>
afaef01c 94#include <linux/stackleak.h>
eafb149e 95#include <linux/kasan.h>
d08b9f0c 96#include <linux/scs.h>
0f212204 97#include <linux/io_uring.h>
a10787e6 98#include <linux/bpf.h>
b3883a9a 99#include <linux/stackprotector.h>
fd593511 100#include <linux/user_events.h>
cd389115 101#include <linux/iommu.h>
1da177e4 102
1da177e4 103#include <asm/pgalloc.h>
7c0f6ba6 104#include <linux/uaccess.h>
1da177e4
LT
105#include <asm/mmu_context.h>
106#include <asm/cacheflush.h>
107#include <asm/tlbflush.h>
108
ad8d75ff
SR
109#include <trace/events/sched.h>
110
43d2b113
KH
111#define CREATE_TRACE_POINTS
112#include <trace/events/task.h>
113
ac1b398d
HS
114/*
115 * Minimum number of threads to boot the kernel
116 */
117#define MIN_THREADS 20
118
119/*
120 * Maximum number of threads
121 */
122#define MAX_THREADS FUTEX_TID_MASK
123
1da177e4
LT
124/*
125 * Protected counters by write_lock_irq(&tasklist_lock)
126 */
127unsigned long total_forks; /* Handle normal Linux uptimes. */
fb0a685c 128int nr_threads; /* The idle threads do not count.. */
1da177e4 129
8856ae4d 130static int max_threads; /* tunable limit on nr_threads */
1da177e4 131
8495f7e6
SPP
132#define NAMED_ARRAY_INDEX(x) [x] = __stringify(x)
133
134static const char * const resident_page_types[] = {
135 NAMED_ARRAY_INDEX(MM_FILEPAGES),
136 NAMED_ARRAY_INDEX(MM_ANONPAGES),
137 NAMED_ARRAY_INDEX(MM_SWAPENTS),
138 NAMED_ARRAY_INDEX(MM_SHMEMPAGES),
139};
140
1da177e4
LT
141DEFINE_PER_CPU(unsigned long, process_counts) = 0;
142
c59923a1 143__cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
db1466b3
PM
144
145#ifdef CONFIG_PROVE_RCU
146int lockdep_tasklist_lock_is_held(void)
147{
148 return lockdep_is_held(&tasklist_lock);
149}
150EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
151#endif /* #ifdef CONFIG_PROVE_RCU */
1da177e4
LT
152
153int nr_processes(void)
154{
155 int cpu;
156 int total = 0;
157
1d510750 158 for_each_possible_cpu(cpu)
1da177e4
LT
159 total += per_cpu(process_counts, cpu);
160
161 return total;
162}
163
f19b9f74
AM
164void __weak arch_release_task_struct(struct task_struct *tsk)
165{
166}
167
f5e10287 168#ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
e18b890b 169static struct kmem_cache *task_struct_cachep;
41101809
TG
170
171static inline struct task_struct *alloc_task_struct_node(int node)
172{
173 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
174}
175
41101809
TG
176static inline void free_task_struct(struct task_struct *tsk)
177{
41101809
TG
178 kmem_cache_free(task_struct_cachep, tsk);
179}
1da177e4
LT
180#endif
181
b235beea 182#ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
41101809 183
0d15d74a
TG
184/*
185 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
186 * kmemcache based allocator.
187 */
ba14a194 188# if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
ac496bf4 189
be9a2277 190# ifdef CONFIG_VMAP_STACK
ac496bf4
AL
191/*
192 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
193 * flush. Try to minimize the number of calls by caching stacks.
194 */
195#define NR_CACHED_STACKS 2
196static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
19659c59 197
e540bf31
SAS
198struct vm_stack {
199 struct rcu_head rcu;
200 struct vm_struct *stack_vm_area;
201};
202
203static bool try_release_thread_stack_to_cache(struct vm_struct *vm)
204{
205 unsigned int i;
206
207 for (i = 0; i < NR_CACHED_STACKS; i++) {
208 if (this_cpu_cmpxchg(cached_stacks[i], NULL, vm) != NULL)
209 continue;
210 return true;
211 }
212 return false;
213}
214
215static void thread_stack_free_rcu(struct rcu_head *rh)
216{
217 struct vm_stack *vm_stack = container_of(rh, struct vm_stack, rcu);
218
219 if (try_release_thread_stack_to_cache(vm_stack->stack_vm_area))
220 return;
221
222 vfree(vm_stack);
223}
224
225static void thread_stack_delayed_free(struct task_struct *tsk)
226{
227 struct vm_stack *vm_stack = tsk->stack;
228
229 vm_stack->stack_vm_area = tsk->stack_vm_area;
230 call_rcu(&vm_stack->rcu, thread_stack_free_rcu);
231}
232
19659c59
HR
233static int free_vm_stack_cache(unsigned int cpu)
234{
235 struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
236 int i;
237
238 for (i = 0; i < NR_CACHED_STACKS; i++) {
239 struct vm_struct *vm_stack = cached_vm_stacks[i];
240
241 if (!vm_stack)
242 continue;
243
244 vfree(vm_stack->addr);
245 cached_vm_stacks[i] = NULL;
246 }
247
248 return 0;
249}
ac496bf4 250
1a03d3f1 251static int memcg_charge_kernel_stack(struct vm_struct *vm)
b69c49b7 252{
f1c1a9ee
SAS
253 int i;
254 int ret;
4e2f6342 255 int nr_charged = 0;
f1c1a9ee 256
f1c1a9ee
SAS
257 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
258
259 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
260 ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL, 0);
261 if (ret)
262 goto err;
4e2f6342 263 nr_charged++;
f1c1a9ee
SAS
264 }
265 return 0;
266err:
4e2f6342 267 for (i = 0; i < nr_charged; i++)
f1c1a9ee
SAS
268 memcg_kmem_uncharge_page(vm->pages[i], 0);
269 return ret;
270}
271
7865aba3 272static int alloc_thread_stack_node(struct task_struct *tsk, int node)
b69c49b7 273{
1a03d3f1 274 struct vm_struct *vm;
ac496bf4
AL
275 void *stack;
276 int i;
277
ac496bf4 278 for (i = 0; i < NR_CACHED_STACKS; i++) {
112166f8
CL
279 struct vm_struct *s;
280
281 s = this_cpu_xchg(cached_stacks[i], NULL);
ac496bf4
AL
282
283 if (!s)
284 continue;
ac496bf4 285
51fb34de 286 /* Reset stack metadata. */
cebd0eb2 287 kasan_unpoison_range(s->addr, THREAD_SIZE);
eafb149e 288
51fb34de
AK
289 stack = kasan_reset_tag(s->addr);
290
ca182551 291 /* Clear stale pointers from reused stack. */
51fb34de 292 memset(stack, 0, THREAD_SIZE);
e01e8063 293
1a03d3f1 294 if (memcg_charge_kernel_stack(s)) {
f1c1a9ee
SAS
295 vfree(s->addr);
296 return -ENOMEM;
297 }
298
ac496bf4 299 tsk->stack_vm_area = s;
51fb34de 300 tsk->stack = stack;
7865aba3 301 return 0;
ac496bf4 302 }
ac496bf4 303
9b6f7e16
RG
304 /*
305 * Allocated stacks are cached and later reused by new threads,
306 * so memcg accounting is performed manually on assigning/releasing
307 * stacks to tasks. Drop __GFP_ACCOUNT.
308 */
48ac3c18 309 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
ac496bf4 310 VMALLOC_START, VMALLOC_END,
9b6f7e16 311 THREADINFO_GFP & ~__GFP_ACCOUNT,
ac496bf4
AL
312 PAGE_KERNEL,
313 0, node, __builtin_return_address(0));
7865aba3
SAS
314 if (!stack)
315 return -ENOMEM;
ba14a194 316
1a03d3f1
SAS
317 vm = find_vm_area(stack);
318 if (memcg_charge_kernel_stack(vm)) {
f1c1a9ee
SAS
319 vfree(stack);
320 return -ENOMEM;
321 }
ba14a194
AL
322 /*
323 * We can't call find_vm_area() in interrupt context, and
324 * free_thread_stack() can be called in interrupt context,
325 * so cache the vm_struct.
326 */
1a03d3f1 327 tsk->stack_vm_area = vm;
51fb34de 328 stack = kasan_reset_tag(stack);
7865aba3
SAS
329 tsk->stack = stack;
330 return 0;
b69c49b7
FT
331}
332
be9a2277 333static void free_thread_stack(struct task_struct *tsk)
b69c49b7 334{
e540bf31
SAS
335 if (!try_release_thread_stack_to_cache(tsk->stack_vm_area))
336 thread_stack_delayed_free(tsk);
9b6f7e16 337
be9a2277
SAS
338 tsk->stack = NULL;
339 tsk->stack_vm_area = NULL;
340}
ac496bf4 341
be9a2277 342# else /* !CONFIG_VMAP_STACK */
ac496bf4 343
e540bf31
SAS
344static void thread_stack_free_rcu(struct rcu_head *rh)
345{
346 __free_pages(virt_to_page(rh), THREAD_SIZE_ORDER);
347}
348
349static void thread_stack_delayed_free(struct task_struct *tsk)
350{
351 struct rcu_head *rh = tsk->stack;
352
353 call_rcu(rh, thread_stack_free_rcu);
354}
355
7865aba3 356static int alloc_thread_stack_node(struct task_struct *tsk, int node)
be9a2277 357{
4949148a
VD
358 struct page *page = alloc_pages_node(node, THREADINFO_GFP,
359 THREAD_SIZE_ORDER);
b6a84016 360
1bf4580e 361 if (likely(page)) {
8dcc1d34 362 tsk->stack = kasan_reset_tag(page_address(page));
7865aba3 363 return 0;
1bf4580e 364 }
7865aba3 365 return -ENOMEM;
b69c49b7
FT
366}
367
be9a2277 368static void free_thread_stack(struct task_struct *tsk)
b69c49b7 369{
e540bf31 370 thread_stack_delayed_free(tsk);
be9a2277 371 tsk->stack = NULL;
b69c49b7 372}
ac496bf4 373
be9a2277
SAS
374# endif /* CONFIG_VMAP_STACK */
375# else /* !(THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)) */
9b6f7e16 376
b235beea 377static struct kmem_cache *thread_stack_cache;
ac496bf4 378
e540bf31
SAS
379static void thread_stack_free_rcu(struct rcu_head *rh)
380{
381 kmem_cache_free(thread_stack_cache, rh);
382}
ac496bf4 383
e540bf31
SAS
384static void thread_stack_delayed_free(struct task_struct *tsk)
385{
386 struct rcu_head *rh = tsk->stack;
ac496bf4 387
e540bf31 388 call_rcu(rh, thread_stack_free_rcu);
b69c49b7 389}
0d15d74a 390
7865aba3 391static int alloc_thread_stack_node(struct task_struct *tsk, int node)
0d15d74a 392{
5eed6f1d
RR
393 unsigned long *stack;
394 stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
8dcc1d34 395 stack = kasan_reset_tag(stack);
5eed6f1d 396 tsk->stack = stack;
7865aba3 397 return stack ? 0 : -ENOMEM;
0d15d74a
TG
398}
399
ba14a194 400static void free_thread_stack(struct task_struct *tsk)
0d15d74a 401{
e540bf31 402 thread_stack_delayed_free(tsk);
be9a2277 403 tsk->stack = NULL;
0d15d74a
TG
404}
405
b235beea 406void thread_stack_cache_init(void)
0d15d74a 407{
f9d29946
DW
408 thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
409 THREAD_SIZE, THREAD_SIZE, 0, 0,
410 THREAD_SIZE, NULL);
b235beea 411 BUG_ON(thread_stack_cache == NULL);
0d15d74a 412}
be9a2277
SAS
413
414# endif /* THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) */
2bb0529c
SAS
415#else /* CONFIG_ARCH_THREAD_STACK_ALLOCATOR */
416
7865aba3 417static int alloc_thread_stack_node(struct task_struct *tsk, int node)
2bb0529c
SAS
418{
419 unsigned long *stack;
420
421 stack = arch_alloc_thread_stack_node(tsk, node);
422 tsk->stack = stack;
7865aba3 423 return stack ? 0 : -ENOMEM;
2bb0529c
SAS
424}
425
426static void free_thread_stack(struct task_struct *tsk)
427{
428 arch_free_thread_stack(tsk);
429 tsk->stack = NULL;
430}
431
be9a2277 432#endif /* !CONFIG_ARCH_THREAD_STACK_ALLOCATOR */
b69c49b7 433
1da177e4 434/* SLAB cache for signal_struct structures (tsk->signal) */
e18b890b 435static struct kmem_cache *signal_cachep;
1da177e4
LT
436
437/* SLAB cache for sighand_struct structures (tsk->sighand) */
e18b890b 438struct kmem_cache *sighand_cachep;
1da177e4
LT
439
440/* SLAB cache for files_struct structures (tsk->files) */
e18b890b 441struct kmem_cache *files_cachep;
1da177e4
LT
442
443/* SLAB cache for fs_struct structures (tsk->fs) */
e18b890b 444struct kmem_cache *fs_cachep;
1da177e4
LT
445
446/* SLAB cache for vm_area_struct structures */
3928d4f5 447static struct kmem_cache *vm_area_cachep;
1da177e4
LT
448
449/* SLAB cache for mm_struct structures (tsk->mm) */
e18b890b 450static struct kmem_cache *mm_cachep;
1da177e4 451
c7f8f31c
SB
452#ifdef CONFIG_PER_VMA_LOCK
453
454/* SLAB cache for vm_area_struct.lock */
455static struct kmem_cache *vma_lock_cachep;
456
457static bool vma_lock_alloc(struct vm_area_struct *vma)
458{
459 vma->vm_lock = kmem_cache_alloc(vma_lock_cachep, GFP_KERNEL);
460 if (!vma->vm_lock)
461 return false;
462
463 init_rwsem(&vma->vm_lock->lock);
464 vma->vm_lock_seq = -1;
465
466 return true;
467}
468
469static inline void vma_lock_free(struct vm_area_struct *vma)
470{
471 kmem_cache_free(vma_lock_cachep, vma->vm_lock);
472}
473
474#else /* CONFIG_PER_VMA_LOCK */
475
476static inline bool vma_lock_alloc(struct vm_area_struct *vma) { return true; }
477static inline void vma_lock_free(struct vm_area_struct *vma) {}
478
479#endif /* CONFIG_PER_VMA_LOCK */
480
490fc053 481struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
3928d4f5 482{
a670468f 483 struct vm_area_struct *vma;
490fc053 484
a670468f 485 vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
c7f8f31c
SB
486 if (!vma)
487 return NULL;
488
489 vma_init(vma, mm);
490 if (!vma_lock_alloc(vma)) {
491 kmem_cache_free(vm_area_cachep, vma);
492 return NULL;
493 }
494
490fc053 495 return vma;
3928d4f5
LT
496}
497
498struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
499{
95faf699
LT
500 struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
501
c7f8f31c
SB
502 if (!new)
503 return NULL;
504
505 ASSERT_EXCLUSIVE_WRITER(orig->vm_flags);
506 ASSERT_EXCLUSIVE_WRITER(orig->vm_file);
507 /*
508 * orig->shared.rb may be modified concurrently, but the clone
509 * will be reinitialized.
510 */
511 data_race(memcpy(new, orig, sizeof(*new)));
512 if (!vma_lock_alloc(new)) {
513 kmem_cache_free(vm_area_cachep, new);
514 return NULL;
95faf699 515 }
c7f8f31c 516 INIT_LIST_HEAD(&new->anon_vma_chain);
ef6a22b7 517 vma_numab_state_init(new);
c7f8f31c
SB
518 dup_anon_vma_name(orig, new);
519
95faf699 520 return new;
3928d4f5
LT
521}
522
0d2ebf9c 523void __vm_area_free(struct vm_area_struct *vma)
3928d4f5 524{
ef6a22b7 525 vma_numab_state_free(vma);
5c26f6ac 526 free_anon_vma_name(vma);
c7f8f31c 527 vma_lock_free(vma);
3928d4f5
LT
528 kmem_cache_free(vm_area_cachep, vma);
529}
530
20cce633
ML
531#ifdef CONFIG_PER_VMA_LOCK
532static void vm_area_free_rcu_cb(struct rcu_head *head)
533{
534 struct vm_area_struct *vma = container_of(head, struct vm_area_struct,
535 vm_rcu);
f2e13784
SB
536
537 /* The vma should not be locked while being destroyed. */
c7f8f31c 538 VM_BUG_ON_VMA(rwsem_is_locked(&vma->vm_lock->lock), vma);
20cce633
ML
539 __vm_area_free(vma);
540}
541#endif
542
543void vm_area_free(struct vm_area_struct *vma)
544{
545#ifdef CONFIG_PER_VMA_LOCK
546 call_rcu(&vma->vm_rcu, vm_area_free_rcu_cb);
547#else
548 __vm_area_free(vma);
549#endif
550}
551
ba14a194 552static void account_kernel_stack(struct task_struct *tsk, int account)
c6a7f572 553{
0ce055f8
SAS
554 if (IS_ENABLED(CONFIG_VMAP_STACK)) {
555 struct vm_struct *vm = task_stack_vm_area(tsk);
27faca83 556 int i;
ba14a194 557
27faca83
MS
558 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
559 mod_lruvec_page_state(vm->pages[i], NR_KERNEL_STACK_KB,
560 account * (PAGE_SIZE / 1024));
561 } else {
0ce055f8
SAS
562 void *stack = task_stack_page(tsk);
563
27faca83 564 /* All stack pages are in the same node. */
da3ceeff 565 mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB,
991e7673 566 account * (THREAD_SIZE / 1024));
27faca83 567 }
c6a7f572
KM
568}
569
1a03d3f1 570void exit_task_stack_account(struct task_struct *tsk)
9b6f7e16 571{
1a03d3f1 572 account_kernel_stack(tsk, -1);
991e7673 573
1a03d3f1
SAS
574 if (IS_ENABLED(CONFIG_VMAP_STACK)) {
575 struct vm_struct *vm;
9b6f7e16
RG
576 int i;
577
1a03d3f1
SAS
578 vm = task_stack_vm_area(tsk);
579 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
580 memcg_kmem_uncharge_page(vm->pages[i], 0);
9b6f7e16 581 }
9b6f7e16
RG
582}
583
68f24b08 584static void release_task_stack(struct task_struct *tsk)
1da177e4 585{
2f064a59 586 if (WARN_ON(READ_ONCE(tsk->__state) != TASK_DEAD))
405c0759
AL
587 return; /* Better to leak the stack than to free prematurely */
588
ba14a194 589 free_thread_stack(tsk);
68f24b08
AL
590}
591
592#ifdef CONFIG_THREAD_INFO_IN_TASK
593void put_task_stack(struct task_struct *tsk)
594{
f0b89d39 595 if (refcount_dec_and_test(&tsk->stack_refcount))
68f24b08
AL
596 release_task_stack(tsk);
597}
598#endif
599
600void free_task(struct task_struct *tsk)
601{
a1140cb2
KI
602#ifdef CONFIG_SECCOMP
603 WARN_ON_ONCE(tsk->seccomp.filter);
604#endif
b90ca8ba 605 release_user_cpus_ptr(tsk);
d08b9f0c
ST
606 scs_release(tsk);
607
68f24b08
AL
608#ifndef CONFIG_THREAD_INFO_IN_TASK
609 /*
610 * The task is finally done with both the stack and thread_info,
611 * so free both.
612 */
613 release_task_stack(tsk);
614#else
615 /*
616 * If the task had a separate stack allocation, it should be gone
617 * by now.
618 */
f0b89d39 619 WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
68f24b08 620#endif
23f78d4a 621 rt_mutex_debug_task_free(tsk);
fb52607a 622 ftrace_graph_exit_task(tsk);
f19b9f74 623 arch_release_task_struct(tsk);
1da5c46f
ON
624 if (tsk->flags & PF_KTHREAD)
625 free_kthread_struct(tsk);
b0fd1852 626 bpf_task_storage_free(tsk);
1da177e4
LT
627 free_task_struct(tsk);
628}
629EXPORT_SYMBOL(free_task);
630
fe69d560
DH
631static void dup_mm_exe_file(struct mm_struct *mm, struct mm_struct *oldmm)
632{
633 struct file *exe_file;
634
635 exe_file = get_mm_exe_file(oldmm);
636 RCU_INIT_POINTER(mm->exe_file, exe_file);
637 /*
638 * We depend on the oldmm having properly denied write access to the
639 * exe_file already.
640 */
641 if (exe_file && deny_write_access(exe_file))
642 pr_warn_once("deny_write_access() failed in %s\n", __func__);
643}
644
d70f2a14
AM
645#ifdef CONFIG_MMU
646static __latent_entropy int dup_mmap(struct mm_struct *mm,
647 struct mm_struct *oldmm)
648{
763ecb03 649 struct vm_area_struct *mpnt, *tmp;
d70f2a14 650 int retval;
c9dbe82c 651 unsigned long charge = 0;
d70f2a14 652 LIST_HEAD(uf);
3b9dbd5e
LH
653 VMA_ITERATOR(old_vmi, oldmm, 0);
654 VMA_ITERATOR(vmi, mm, 0);
d70f2a14
AM
655
656 uprobe_start_dup_mmap();
d8ed45c5 657 if (mmap_write_lock_killable(oldmm)) {
d70f2a14
AM
658 retval = -EINTR;
659 goto fail_uprobe_end;
660 }
661 flush_cache_dup_mm(oldmm);
662 uprobe_dup_mmap(oldmm, mm);
663 /*
664 * Not linked in yet - no deadlock potential:
665 */
aaa2cc56 666 mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING);
d70f2a14
AM
667
668 /* No ordering required: file already has been exposed. */
fe69d560 669 dup_mm_exe_file(mm, oldmm);
d70f2a14
AM
670
671 mm->total_vm = oldmm->total_vm;
672 mm->data_vm = oldmm->data_vm;
673 mm->exec_vm = oldmm->exec_vm;
674 mm->stack_vm = oldmm->stack_vm;
675
d70f2a14
AM
676 retval = ksm_fork(mm, oldmm);
677 if (retval)
678 goto out;
d2081b2b 679 khugepaged_fork(mm, oldmm);
d70f2a14 680
3b9dbd5e 681 retval = vma_iter_bulk_alloc(&vmi, oldmm->map_count);
c9dbe82c
LH
682 if (retval)
683 goto out;
684
3dd44325 685 mt_clear_in_rcu(vmi.mas.tree);
3b9dbd5e 686 for_each_vma(old_vmi, mpnt) {
d70f2a14
AM
687 struct file *file;
688
fb49c455 689 vma_start_write(mpnt);
d70f2a14
AM
690 if (mpnt->vm_flags & VM_DONTCOPY) {
691 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
692 continue;
693 }
694 charge = 0;
655c79bb
TH
695 /*
696 * Don't duplicate many vmas if we've been oom-killed (for
697 * example)
698 */
699 if (fatal_signal_pending(current)) {
700 retval = -EINTR;
d4af56c5 701 goto loop_out;
655c79bb 702 }
d70f2a14
AM
703 if (mpnt->vm_flags & VM_ACCOUNT) {
704 unsigned long len = vma_pages(mpnt);
705
706 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
707 goto fail_nomem;
708 charge = len;
709 }
3928d4f5 710 tmp = vm_area_dup(mpnt);
d70f2a14
AM
711 if (!tmp)
712 goto fail_nomem;
d70f2a14
AM
713 retval = vma_dup_policy(mpnt, tmp);
714 if (retval)
715 goto fail_nomem_policy;
716 tmp->vm_mm = mm;
717 retval = dup_userfaultfd(tmp, &uf);
718 if (retval)
719 goto fail_nomem_anon_vma_fork;
720 if (tmp->vm_flags & VM_WIPEONFORK) {
93949bb2
LX
721 /*
722 * VM_WIPEONFORK gets a clean slate in the child.
723 * Don't prepare anon_vma until fault since we don't
724 * copy page for current vma.
725 */
d70f2a14 726 tmp->anon_vma = NULL;
d70f2a14
AM
727 } else if (anon_vma_fork(tmp, mpnt))
728 goto fail_nomem_anon_vma_fork;
e430a95a 729 vm_flags_clear(tmp, VM_LOCKED_MASK);
d70f2a14
AM
730 file = tmp->vm_file;
731 if (file) {
d70f2a14
AM
732 struct address_space *mapping = file->f_mapping;
733
734 get_file(file);
d70f2a14 735 i_mmap_lock_write(mapping);
e8e17ee9 736 if (vma_is_shared_maywrite(tmp))
cf508b58 737 mapping_allow_writable(mapping);
d70f2a14
AM
738 flush_dcache_mmap_lock(mapping);
739 /* insert tmp into the share list, just after mpnt */
740 vma_interval_tree_insert_after(tmp, mpnt,
741 &mapping->i_mmap);
742 flush_dcache_mmap_unlock(mapping);
743 i_mmap_unlock_write(mapping);
744 }
745
746 /*
8d9bfb26 747 * Copy/update hugetlb private vma information.
d70f2a14
AM
748 */
749 if (is_vm_hugetlb_page(tmp))
8d9bfb26 750 hugetlb_dup_vma_private(tmp);
d70f2a14 751
d4af56c5 752 /* Link the vma into the MT */
3b9dbd5e
LH
753 if (vma_iter_bulk_store(&vmi, tmp))
754 goto fail_nomem_vmi_store;
d70f2a14
AM
755
756 mm->map_count++;
757 if (!(tmp->vm_flags & VM_WIPEONFORK))
c78f4636 758 retval = copy_page_range(tmp, mpnt);
d70f2a14
AM
759
760 if (tmp->vm_ops && tmp->vm_ops->open)
761 tmp->vm_ops->open(tmp);
762
763 if (retval)
d4af56c5 764 goto loop_out;
d70f2a14
AM
765 }
766 /* a new mm has just been created */
1ed0cc5a 767 retval = arch_dup_mmap(oldmm, mm);
d4af56c5 768loop_out:
3b9dbd5e 769 vma_iter_free(&vmi);
3dd44325
LH
770 if (!retval)
771 mt_set_in_rcu(vmi.mas.tree);
d70f2a14 772out:
d8ed45c5 773 mmap_write_unlock(mm);
d70f2a14 774 flush_tlb_mm(oldmm);
d8ed45c5 775 mmap_write_unlock(oldmm);
d70f2a14
AM
776 dup_userfaultfd_complete(&uf);
777fail_uprobe_end:
778 uprobe_end_dup_mmap();
779 return retval;
c9dbe82c 780
3b9dbd5e 781fail_nomem_vmi_store:
c9dbe82c 782 unlink_anon_vmas(tmp);
d70f2a14
AM
783fail_nomem_anon_vma_fork:
784 mpol_put(vma_policy(tmp));
785fail_nomem_policy:
3928d4f5 786 vm_area_free(tmp);
d70f2a14
AM
787fail_nomem:
788 retval = -ENOMEM;
789 vm_unacct_memory(charge);
d4af56c5 790 goto loop_out;
d70f2a14
AM
791}
792
793static inline int mm_alloc_pgd(struct mm_struct *mm)
794{
795 mm->pgd = pgd_alloc(mm);
796 if (unlikely(!mm->pgd))
797 return -ENOMEM;
798 return 0;
799}
800
801static inline void mm_free_pgd(struct mm_struct *mm)
802{
803 pgd_free(mm, mm->pgd);
804}
805#else
806static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
807{
d8ed45c5 808 mmap_write_lock(oldmm);
fe69d560 809 dup_mm_exe_file(mm, oldmm);
d8ed45c5 810 mmap_write_unlock(oldmm);
d70f2a14
AM
811 return 0;
812}
813#define mm_alloc_pgd(mm) (0)
814#define mm_free_pgd(mm)
815#endif /* CONFIG_MMU */
816
817static void check_mm(struct mm_struct *mm)
818{
819 int i;
820
8495f7e6
SPP
821 BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS,
822 "Please make sure 'struct resident_page_types[]' is updated as well");
823
d70f2a14 824 for (i = 0; i < NR_MM_COUNTERS; i++) {
f1a79412 825 long x = percpu_counter_sum(&mm->rss_stat[i]);
d70f2a14
AM
826
827 if (unlikely(x))
8495f7e6
SPP
828 pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n",
829 mm, resident_page_types[i], x);
d70f2a14
AM
830 }
831
832 if (mm_pgtables_bytes(mm))
833 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
834 mm_pgtables_bytes(mm));
835
836#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
837 VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
838#endif
839}
840
841#define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
842#define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
843
2655421a
NP
844static void do_check_lazy_tlb(void *arg)
845{
846 struct mm_struct *mm = arg;
847
848 WARN_ON_ONCE(current->active_mm == mm);
849}
850
851static void do_shoot_lazy_tlb(void *arg)
852{
853 struct mm_struct *mm = arg;
854
855 if (current->active_mm == mm) {
856 WARN_ON_ONCE(current->mm);
857 current->active_mm = &init_mm;
858 switch_mm(mm, &init_mm, current);
859 }
860}
861
862static void cleanup_lazy_tlbs(struct mm_struct *mm)
863{
864 if (!IS_ENABLED(CONFIG_MMU_LAZY_TLB_SHOOTDOWN)) {
865 /*
866 * In this case, lazy tlb mms are refounted and would not reach
867 * __mmdrop until all CPUs have switched away and mmdrop()ed.
868 */
869 return;
870 }
871
872 /*
873 * Lazy mm shootdown does not refcount "lazy tlb mm" usage, rather it
874 * requires lazy mm users to switch to another mm when the refcount
875 * drops to zero, before the mm is freed. This requires IPIs here to
876 * switch kernel threads to init_mm.
877 *
878 * archs that use IPIs to flush TLBs can piggy-back that lazy tlb mm
879 * switch with the final userspace teardown TLB flush which leaves the
880 * mm lazy on this CPU but no others, reducing the need for additional
881 * IPIs here. There are cases where a final IPI is still required here,
882 * such as the final mmdrop being performed on a different CPU than the
883 * one exiting, or kernel threads using the mm when userspace exits.
884 *
885 * IPI overheads have not found to be expensive, but they could be
886 * reduced in a number of possible ways, for example (roughly
887 * increasing order of complexity):
888 * - The last lazy reference created by exit_mm() could instead switch
889 * to init_mm, however it's probable this will run on the same CPU
890 * immediately afterwards, so this may not reduce IPIs much.
891 * - A batch of mms requiring IPIs could be gathered and freed at once.
892 * - CPUs store active_mm where it can be remotely checked without a
893 * lock, to filter out false-positives in the cpumask.
894 * - After mm_users or mm_count reaches zero, switching away from the
895 * mm could clear mm_cpumask to reduce some IPIs, perhaps together
896 * with some batching or delaying of the final IPIs.
897 * - A delayed freeing and RCU-like quiescing sequence based on mm
898 * switching to avoid IPIs completely.
899 */
900 on_each_cpu_mask(mm_cpumask(mm), do_shoot_lazy_tlb, (void *)mm, 1);
901 if (IS_ENABLED(CONFIG_DEBUG_VM_SHOOT_LAZIES))
902 on_each_cpu(do_check_lazy_tlb, (void *)mm, 1);
903}
904
d70f2a14
AM
905/*
906 * Called when the last reference to the mm
907 * is dropped: either by a lazy thread or by
908 * mmput. Free the page directory and the mm.
909 */
d34bc48f 910void __mmdrop(struct mm_struct *mm)
d70f2a14
AM
911{
912 BUG_ON(mm == &init_mm);
3eda69c9 913 WARN_ON_ONCE(mm == current->mm);
2655421a
NP
914
915 /* Ensure no CPUs are using this as their lazy tlb mm */
916 cleanup_lazy_tlbs(mm);
917
3eda69c9 918 WARN_ON_ONCE(mm == current->active_mm);
d70f2a14
AM
919 mm_free_pgd(mm);
920 destroy_context(mm);
984cfe4e 921 mmu_notifier_subscriptions_destroy(mm);
d70f2a14
AM
922 check_mm(mm);
923 put_user_ns(mm->user_ns);
2667ed10 924 mm_pasid_drop(mm);
223baf9d 925 mm_destroy_cid(mm);
14ef95be 926 percpu_counter_destroy_many(mm->rss_stat, NR_MM_COUNTERS);
f1a79412 927
d70f2a14
AM
928 free_mm(mm);
929}
d34bc48f 930EXPORT_SYMBOL_GPL(__mmdrop);
d70f2a14
AM
931
932static void mmdrop_async_fn(struct work_struct *work)
933{
934 struct mm_struct *mm;
935
936 mm = container_of(work, struct mm_struct, async_put_work);
937 __mmdrop(mm);
938}
939
940static void mmdrop_async(struct mm_struct *mm)
941{
942 if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
943 INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
944 schedule_work(&mm->async_put_work);
945 }
946}
947
ea6d290c
ON
948static inline void free_signal_struct(struct signal_struct *sig)
949{
97101eb4 950 taskstats_tgid_free(sig);
1c5354de 951 sched_autogroup_exit(sig);
7283094e
MH
952 /*
953 * __mmdrop is not safe to call from softirq context on x86 due to
954 * pgd_dtor so postpone it to the async context
955 */
26db62f1 956 if (sig->oom_mm)
7283094e 957 mmdrop_async(sig->oom_mm);
ea6d290c
ON
958 kmem_cache_free(signal_cachep, sig);
959}
960
961static inline void put_signal_struct(struct signal_struct *sig)
962{
60d4de3f 963 if (refcount_dec_and_test(&sig->sigcnt))
ea6d290c
ON
964 free_signal_struct(sig);
965}
966
158d9ebd 967void __put_task_struct(struct task_struct *tsk)
1da177e4 968{
270f722d 969 WARN_ON(!tsk->exit_state);
ec1d2819 970 WARN_ON(refcount_read(&tsk->usage));
1da177e4
LT
971 WARN_ON(tsk == current);
972
0f212204 973 io_uring_free(tsk);
2e91fa7f 974 cgroup_free(tsk);
16d51a59 975 task_numa_free(tsk, true);
1a2a4d06 976 security_task_free(tsk);
e0e81739 977 exit_creds(tsk);
35df17c5 978 delayacct_tsk_free(tsk);
ea6d290c 979 put_signal_struct(tsk->signal);
6e33cad0 980 sched_core_free(tsk);
2873cd31 981 free_task(tsk);
1da177e4 982}
77c100c8 983EXPORT_SYMBOL_GPL(__put_task_struct);
1da177e4 984
d243b344
WLC
985void __put_task_struct_rcu_cb(struct rcu_head *rhp)
986{
987 struct task_struct *task = container_of(rhp, struct task_struct, rcu);
988
989 __put_task_struct(task);
990}
991EXPORT_SYMBOL_GPL(__put_task_struct_rcu_cb);
992
6c0a9fa6 993void __init __weak arch_task_cache_init(void) { }
61c4628b 994
ff691f6e
HS
995/*
996 * set_max_threads
997 */
16db3d3f 998static void set_max_threads(unsigned int max_threads_suggested)
ff691f6e 999{
ac1b398d 1000 u64 threads;
ca79b0c2 1001 unsigned long nr_pages = totalram_pages();
ff691f6e
HS
1002
1003 /*
ac1b398d
HS
1004 * The number of threads shall be limited such that the thread
1005 * structures may only consume a small part of the available memory.
ff691f6e 1006 */
3d6357de 1007 if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
ac1b398d
HS
1008 threads = MAX_THREADS;
1009 else
3d6357de 1010 threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
ac1b398d
HS
1011 (u64) THREAD_SIZE * 8UL);
1012
16db3d3f
HS
1013 if (threads > max_threads_suggested)
1014 threads = max_threads_suggested;
1015
ac1b398d 1016 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
ff691f6e
HS
1017}
1018
5aaeb5c0
IM
1019#ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
1020/* Initialized by the architecture: */
1021int arch_task_struct_size __read_mostly;
1022#endif
0c8c0f03 1023
4189ff23 1024#ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
5905429a
KC
1025static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
1026{
1027 /* Fetch thread_struct whitelist for the architecture. */
1028 arch_thread_struct_whitelist(offset, size);
1029
1030 /*
1031 * Handle zero-sized whitelist or empty thread_struct, otherwise
1032 * adjust offset to position of thread_struct in task_struct.
1033 */
1034 if (unlikely(*size == 0))
1035 *offset = 0;
1036 else
1037 *offset += offsetof(struct task_struct, thread);
1038}
4189ff23 1039#endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */
5905429a 1040
ff691f6e 1041void __init fork_init(void)
1da177e4 1042{
25f9c081 1043 int i;
f5e10287 1044#ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
1da177e4 1045#ifndef ARCH_MIN_TASKALIGN
e274795e 1046#define ARCH_MIN_TASKALIGN 0
1da177e4 1047#endif
95cb64c1 1048 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
5905429a 1049 unsigned long useroffset, usersize;
e274795e 1050
1da177e4 1051 /* create a slab on which task_structs can be allocated */
5905429a
KC
1052 task_struct_whitelist(&useroffset, &usersize);
1053 task_struct_cachep = kmem_cache_create_usercopy("task_struct",
e274795e 1054 arch_task_struct_size, align,
5905429a
KC
1055 SLAB_PANIC|SLAB_ACCOUNT,
1056 useroffset, usersize, NULL);
1da177e4
LT
1057#endif
1058
61c4628b
SS
1059 /* do the arch specific task caches init */
1060 arch_task_cache_init();
1061
16db3d3f 1062 set_max_threads(MAX_THREADS);
1da177e4
LT
1063
1064 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
1065 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
1066 init_task.signal->rlim[RLIMIT_SIGPENDING] =
1067 init_task.signal->rlim[RLIMIT_NPROC];
b376c3e1 1068
de399236 1069 for (i = 0; i < UCOUNT_COUNTS; i++)
25f9c081 1070 init_user_ns.ucount_max[i] = max_threads/2;
19659c59 1071
de399236
AG
1072 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_NPROC, RLIM_INFINITY);
1073 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MSGQUEUE, RLIM_INFINITY);
1074 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_SIGPENDING, RLIM_INFINITY);
1075 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MEMLOCK, RLIM_INFINITY);
21d1c5e3 1076
19659c59
HR
1077#ifdef CONFIG_VMAP_STACK
1078 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
1079 NULL, free_vm_stack_cache);
1080#endif
b09be676 1081
d08b9f0c
ST
1082 scs_init();
1083
b09be676 1084 lockdep_init_task(&init_task);
aad42dd4 1085 uprobes_init();
1da177e4
LT
1086}
1087
52f5684c 1088int __weak arch_dup_task_struct(struct task_struct *dst,
61c4628b
SS
1089 struct task_struct *src)
1090{
1091 *dst = *src;
1092 return 0;
1093}
1094
d4311ff1
AT
1095void set_task_stack_end_magic(struct task_struct *tsk)
1096{
1097 unsigned long *stackend;
1098
1099 stackend = end_of_stack(tsk);
1100 *stackend = STACK_END_MAGIC; /* for overflow detection */
1101}
1102
725fc629 1103static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
1da177e4
LT
1104{
1105 struct task_struct *tsk;
3e26c149 1106 int err;
1da177e4 1107
725fc629
AK
1108 if (node == NUMA_NO_NODE)
1109 node = tsk_fork_get_node(orig);
504f52b5 1110 tsk = alloc_task_struct_node(node);
1da177e4
LT
1111 if (!tsk)
1112 return NULL;
1113
546c42b2
SAS
1114 err = arch_dup_task_struct(tsk, orig);
1115 if (err)
f19b9f74 1116 goto free_tsk;
1da177e4 1117
7865aba3
SAS
1118 err = alloc_thread_stack_node(tsk, node);
1119 if (err)
f19b9f74 1120 goto free_tsk;
ba14a194 1121
68f24b08 1122#ifdef CONFIG_THREAD_INFO_IN_TASK
f0b89d39 1123 refcount_set(&tsk->stack_refcount, 1);
68f24b08 1124#endif
1a03d3f1 1125 account_kernel_stack(tsk, 1);
164c33c6 1126
d08b9f0c
ST
1127 err = scs_prepare(tsk, node);
1128 if (err)
1129 goto free_stack;
1130
dbd95212
KC
1131#ifdef CONFIG_SECCOMP
1132 /*
1133 * We must handle setting up seccomp filters once we're under
1134 * the sighand lock in case orig has changed between now and
1135 * then. Until then, filter must be NULL to avoid messing up
1136 * the usage counts on the error path calling free_task.
1137 */
1138 tsk->seccomp.filter = NULL;
1139#endif
87bec58a
AM
1140
1141 setup_thread_stack(tsk, orig);
8e7cac79 1142 clear_user_return_notifier(tsk);
f26f9aff 1143 clear_tsk_need_resched(tsk);
d4311ff1 1144 set_task_stack_end_magic(tsk);
1446e1df 1145 clear_syscall_work_syscall_user_dispatch(tsk);
1da177e4 1146
050e9baa 1147#ifdef CONFIG_STACKPROTECTOR
7cd815bc 1148 tsk->stack_canary = get_random_canary();
0a425405 1149#endif
3bd37062
SAS
1150 if (orig->cpus_ptr == &orig->cpus_mask)
1151 tsk->cpus_ptr = &tsk->cpus_mask;
b90ca8ba 1152 dup_user_cpus_ptr(tsk, orig, node);
0a425405 1153
fb0a685c 1154 /*
0ff7b2cf
EB
1155 * One for the user space visible state that goes away when reaped.
1156 * One for the scheduler.
fb0a685c 1157 */
0ff7b2cf
EB
1158 refcount_set(&tsk->rcu_users, 2);
1159 /* One for the rcu users */
1160 refcount_set(&tsk->usage, 1);
6c5c9341 1161#ifdef CONFIG_BLK_DEV_IO_TRACE
2056a782 1162 tsk->btrace_seq = 0;
6c5c9341 1163#endif
a0aa7f68 1164 tsk->splice_pipe = NULL;
5640f768 1165 tsk->task_frag.page = NULL;
093e5840 1166 tsk->wake_q.next = NULL;
e32cf5df 1167 tsk->worker_private = NULL;
c6a7f572 1168
5c9a8750 1169 kcov_task_init(tsk);
50b5e49c 1170 kmsan_task_create(tsk);
5fbda3ec 1171 kmap_local_fork(tsk);
5c9a8750 1172
e41d5818
DV
1173#ifdef CONFIG_FAULT_INJECTION
1174 tsk->fail_nth = 0;
1175#endif
1176
2c323017 1177#ifdef CONFIG_BLK_CGROUP
f05837ed 1178 tsk->throttle_disk = NULL;
2c323017
JB
1179 tsk->use_memdelay = 0;
1180#endif
1181
a3d29e82
PZ
1182#ifdef CONFIG_IOMMU_SVA
1183 tsk->pasid_activated = 0;
1184#endif
1185
d46eb14b
SB
1186#ifdef CONFIG_MEMCG
1187 tsk->active_memcg = NULL;
1188#endif
b041b525
TL
1189
1190#ifdef CONFIG_CPU_SUP_INTEL
1191 tsk->reported_split_lock = 0;
1192#endif
1193
af7f588d
MD
1194#ifdef CONFIG_SCHED_MM_CID
1195 tsk->mm_cid = -1;
223baf9d 1196 tsk->last_mm_cid = -1;
af7f588d 1197 tsk->mm_cid_active = 0;
223baf9d 1198 tsk->migrate_from_cpu = -1;
af7f588d 1199#endif
1da177e4 1200 return tsk;
61c4628b 1201
b235beea 1202free_stack:
1a03d3f1 1203 exit_task_stack_account(tsk);
ba14a194 1204 free_thread_stack(tsk);
f19b9f74 1205free_tsk:
61c4628b
SS
1206 free_task_struct(tsk);
1207 return NULL;
1da177e4
LT
1208}
1209
23ff4440 1210__cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
1da177e4 1211
4cb0e11b
HK
1212static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
1213
1214static int __init coredump_filter_setup(char *s)
1215{
1216 default_dump_filter =
1217 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
1218 MMF_DUMP_FILTER_MASK;
1219 return 1;
1220}
1221
1222__setup("coredump_filter=", coredump_filter_setup);
1223
1da177e4
LT
1224#include <linux/init_task.h>
1225
858f0993
AD
1226static void mm_init_aio(struct mm_struct *mm)
1227{
1228#ifdef CONFIG_AIO
1229 spin_lock_init(&mm->ioctx_lock);
db446a08 1230 mm->ioctx_table = NULL;
858f0993
AD
1231#endif
1232}
1233
c3f3ce04
AA
1234static __always_inline void mm_clear_owner(struct mm_struct *mm,
1235 struct task_struct *p)
1236{
1237#ifdef CONFIG_MEMCG
1238 if (mm->owner == p)
1239 WRITE_ONCE(mm->owner, NULL);
1240#endif
1241}
1242
33144e84
VD
1243static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1244{
1245#ifdef CONFIG_MEMCG
1246 mm->owner = p;
1247#endif
1248}
1249
355627f5
EB
1250static void mm_init_uprobes_state(struct mm_struct *mm)
1251{
1252#ifdef CONFIG_UPROBES
1253 mm->uprobes_state.xol_area = NULL;
1254#endif
1255}
1256
bfedb589
EB
1257static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
1258 struct user_namespace *user_ns)
1da177e4 1259{
d4af56c5
LH
1260 mt_init_flags(&mm->mm_mt, MM_MT_FLAGS);
1261 mt_set_external_lock(&mm->mm_mt, &mm->mmap_lock);
1da177e4
LT
1262 atomic_set(&mm->mm_users, 1);
1263 atomic_set(&mm->mm_count, 1);
57efa1fe 1264 seqcount_init(&mm->write_protect_seq);
d8ed45c5 1265 mmap_init_lock(mm);
1da177e4 1266 INIT_LIST_HEAD(&mm->mmlist);
5e31275c
SB
1267#ifdef CONFIG_PER_VMA_LOCK
1268 mm->mm_lock_seq = 0;
1269#endif
af5b0f6a 1270 mm_pgtables_bytes_init(mm);
41f727fd
VD
1271 mm->map_count = 0;
1272 mm->locked_vm = 0;
70f8a3ca 1273 atomic64_set(&mm->pinned_vm, 0);
d559db08 1274 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1da177e4 1275 spin_lock_init(&mm->page_table_lock);
88aa7cc6 1276 spin_lock_init(&mm->arg_lock);
41f727fd 1277 mm_init_cpumask(mm);
858f0993 1278 mm_init_aio(mm);
cf475ad2 1279 mm_init_owner(mm, p);
a6cbd440 1280 mm_pasid_init(mm);
2b7e8665 1281 RCU_INIT_POINTER(mm->exe_file, NULL);
984cfe4e 1282 mmu_notifier_subscriptions_init(mm);
16af97dc 1283 init_tlb_flush_pending(mm);
41f727fd
VD
1284#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
1285 mm->pmd_huge_pte = NULL;
1286#endif
355627f5 1287 mm_init_uprobes_state(mm);
13db8c50 1288 hugetlb_count_init(mm);
1da177e4 1289
a0715cc2 1290 if (current->mm) {
24e41bf8 1291 mm->flags = mmf_init_flags(current->mm->flags);
a0715cc2
AT
1292 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1293 } else {
1294 mm->flags = default_dump_filter;
1da177e4 1295 mm->def_flags = 0;
a0715cc2
AT
1296 }
1297
41f727fd
VD
1298 if (mm_alloc_pgd(mm))
1299 goto fail_nopgd;
1300
1301 if (init_new_context(p, mm))
1302 goto fail_nocontext;
78fb7466 1303
223baf9d
MD
1304 if (mm_alloc_cid(mm))
1305 goto fail_cid;
1306
14ef95be
MG
1307 if (percpu_counter_init_many(mm->rss_stat, 0, GFP_KERNEL_ACCOUNT,
1308 NR_MM_COUNTERS))
1309 goto fail_pcpu;
f1a79412 1310
bfedb589 1311 mm->user_ns = get_user_ns(user_ns);
bd74fdae 1312 lru_gen_init_mm(mm);
41f727fd
VD
1313 return mm;
1314
f1a79412 1315fail_pcpu:
223baf9d
MD
1316 mm_destroy_cid(mm);
1317fail_cid:
b20b0368 1318 destroy_context(mm);
41f727fd
VD
1319fail_nocontext:
1320 mm_free_pgd(mm);
1321fail_nopgd:
1da177e4
LT
1322 free_mm(mm);
1323 return NULL;
1324}
1325
1326/*
1327 * Allocate and initialize an mm_struct.
1328 */
fb0a685c 1329struct mm_struct *mm_alloc(void)
1da177e4 1330{
fb0a685c 1331 struct mm_struct *mm;
1da177e4
LT
1332
1333 mm = allocate_mm();
de03c72c
KM
1334 if (!mm)
1335 return NULL;
1336
1337 memset(mm, 0, sizeof(*mm));
bfedb589 1338 return mm_init(mm, current, current_user_ns());
1da177e4
LT
1339}
1340
ec8d7c14
MH
1341static inline void __mmput(struct mm_struct *mm)
1342{
1343 VM_BUG_ON(atomic_read(&mm->mm_users));
1344
1345 uprobe_clear_state(mm);
1346 exit_aio(mm);
1347 ksm_exit(mm);
1348 khugepaged_exit(mm); /* must run before exit_mmap */
1349 exit_mmap(mm);
6fcb52a5 1350 mm_put_huge_zero_page(mm);
ec8d7c14
MH
1351 set_mm_exe_file(mm, NULL);
1352 if (!list_empty(&mm->mmlist)) {
1353 spin_lock(&mmlist_lock);
1354 list_del(&mm->mmlist);
1355 spin_unlock(&mmlist_lock);
1356 }
1357 if (mm->binfmt)
1358 module_put(mm->binfmt->module);
bd74fdae 1359 lru_gen_del_mm(mm);
ec8d7c14
MH
1360 mmdrop(mm);
1361}
1362
1da177e4
LT
1363/*
1364 * Decrement the use count and release all resources for an mm.
1365 */
1366void mmput(struct mm_struct *mm)
1367{
0ae26f1b
AM
1368 might_sleep();
1369
ec8d7c14
MH
1370 if (atomic_dec_and_test(&mm->mm_users))
1371 __mmput(mm);
1372}
1373EXPORT_SYMBOL_GPL(mmput);
1374
a1b2289c
SY
1375#ifdef CONFIG_MMU
1376static void mmput_async_fn(struct work_struct *work)
1377{
1378 struct mm_struct *mm = container_of(work, struct mm_struct,
1379 async_put_work);
1380
1381 __mmput(mm);
1382}
1383
1384void mmput_async(struct mm_struct *mm)
1385{
1386 if (atomic_dec_and_test(&mm->mm_users)) {
1387 INIT_WORK(&mm->async_put_work, mmput_async_fn);
1388 schedule_work(&mm->async_put_work);
1389 }
1390}
85eaeb50 1391EXPORT_SYMBOL_GPL(mmput_async);
a1b2289c
SY
1392#endif
1393
90f31d0e
KK
1394/**
1395 * set_mm_exe_file - change a reference to the mm's executable file
ff0712ea
MWO
1396 * @mm: The mm to change.
1397 * @new_exe_file: The new file to use.
90f31d0e
KK
1398 *
1399 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1400 *
6e399cd1 1401 * Main users are mmput() and sys_execve(). Callers prevent concurrent
a7031f14
MG
1402 * invocations: in mmput() nobody alive left, in execve it happens before
1403 * the new mm is made visible to anyone.
fe69d560
DH
1404 *
1405 * Can only fail if new_exe_file != NULL.
90f31d0e 1406 */
fe69d560 1407int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
38646013 1408{
6e399cd1
DB
1409 struct file *old_exe_file;
1410
1411 /*
1412 * It is safe to dereference the exe_file without RCU as
1413 * this function is only called if nobody else can access
1414 * this mm -- see comment above for justification.
1415 */
1416 old_exe_file = rcu_dereference_raw(mm->exe_file);
90f31d0e 1417
fe69d560
DH
1418 if (new_exe_file) {
1419 /*
1420 * We expect the caller (i.e., sys_execve) to already denied
1421 * write access, so this is unlikely to fail.
1422 */
1423 if (unlikely(deny_write_access(new_exe_file)))
1424 return -EACCES;
38646013 1425 get_file(new_exe_file);
fe69d560 1426 }
90f31d0e 1427 rcu_assign_pointer(mm->exe_file, new_exe_file);
fe69d560
DH
1428 if (old_exe_file) {
1429 allow_write_access(old_exe_file);
90f31d0e 1430 fput(old_exe_file);
fe69d560
DH
1431 }
1432 return 0;
38646013
JS
1433}
1434
35d7bdc8
DH
1435/**
1436 * replace_mm_exe_file - replace a reference to the mm's executable file
ff0712ea
MWO
1437 * @mm: The mm to change.
1438 * @new_exe_file: The new file to use.
35d7bdc8 1439 *
a7031f14 1440 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
35d7bdc8
DH
1441 *
1442 * Main user is sys_prctl(PR_SET_MM_MAP/EXE_FILE).
1443 */
1444int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1445{
1446 struct vm_area_struct *vma;
1447 struct file *old_exe_file;
1448 int ret = 0;
1449
1450 /* Forbid mm->exe_file change if old file still mapped. */
1451 old_exe_file = get_mm_exe_file(mm);
1452 if (old_exe_file) {
fa5e5876 1453 VMA_ITERATOR(vmi, mm, 0);
35d7bdc8 1454 mmap_read_lock(mm);
fa5e5876 1455 for_each_vma(vmi, vma) {
35d7bdc8
DH
1456 if (!vma->vm_file)
1457 continue;
1458 if (path_equal(&vma->vm_file->f_path,
fa5e5876 1459 &old_exe_file->f_path)) {
35d7bdc8 1460 ret = -EBUSY;
fa5e5876
MWO
1461 break;
1462 }
35d7bdc8
DH
1463 }
1464 mmap_read_unlock(mm);
1465 fput(old_exe_file);
1466 if (ret)
1467 return ret;
1468 }
1469
fe69d560
DH
1470 ret = deny_write_access(new_exe_file);
1471 if (ret)
1472 return -EACCES;
35d7bdc8 1473 get_file(new_exe_file);
fe69d560 1474
a7031f14
MG
1475 /* set the new file */
1476 mmap_write_lock(mm);
1477 old_exe_file = rcu_dereference_raw(mm->exe_file);
1478 rcu_assign_pointer(mm->exe_file, new_exe_file);
1479 mmap_write_unlock(mm);
1480
fe69d560 1481 if (old_exe_file) {
fe69d560 1482 allow_write_access(old_exe_file);
35d7bdc8 1483 fput(old_exe_file);
fe69d560 1484 }
35d7bdc8 1485 return 0;
38646013
JS
1486}
1487
90f31d0e
KK
1488/**
1489 * get_mm_exe_file - acquire a reference to the mm's executable file
ff0712ea 1490 * @mm: The mm of interest.
90f31d0e
KK
1491 *
1492 * Returns %NULL if mm has no associated executable file.
1493 * User must release file via fput().
1494 */
38646013
JS
1495struct file *get_mm_exe_file(struct mm_struct *mm)
1496{
1497 struct file *exe_file;
1498
90f31d0e 1499 rcu_read_lock();
0ede61d8 1500 exe_file = get_file_rcu(&mm->exe_file);
90f31d0e 1501 rcu_read_unlock();
38646013
JS
1502 return exe_file;
1503}
1504
cd81a917
MG
1505/**
1506 * get_task_exe_file - acquire a reference to the task's executable file
ff0712ea 1507 * @task: The task.
cd81a917
MG
1508 *
1509 * Returns %NULL if task's mm (if any) has no associated executable file or
1510 * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1511 * User must release file via fput().
1512 */
1513struct file *get_task_exe_file(struct task_struct *task)
1514{
1515 struct file *exe_file = NULL;
1516 struct mm_struct *mm;
1517
1518 task_lock(task);
1519 mm = task->mm;
1520 if (mm) {
1521 if (!(task->flags & PF_KTHREAD))
1522 exe_file = get_mm_exe_file(mm);
1523 }
1524 task_unlock(task);
1525 return exe_file;
1526}
38646013 1527
1da177e4
LT
1528/**
1529 * get_task_mm - acquire a reference to the task's mm
ff0712ea 1530 * @task: The task.
1da177e4 1531 *
246bb0b1 1532 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
1da177e4
LT
1533 * this kernel workthread has transiently adopted a user mm with use_mm,
1534 * to do its AIO) is not set and if so returns a reference to it, after
1535 * bumping up the use count. User must release the mm via mmput()
1536 * after use. Typically used by /proc and ptrace.
1537 */
1538struct mm_struct *get_task_mm(struct task_struct *task)
1539{
1540 struct mm_struct *mm;
1541
1542 task_lock(task);
1543 mm = task->mm;
1544 if (mm) {
246bb0b1 1545 if (task->flags & PF_KTHREAD)
1da177e4
LT
1546 mm = NULL;
1547 else
3fce371b 1548 mmget(mm);
1da177e4
LT
1549 }
1550 task_unlock(task);
1551 return mm;
1552}
1553EXPORT_SYMBOL_GPL(get_task_mm);
1554
8cdb878d
CY
1555struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1556{
1557 struct mm_struct *mm;
1558 int err;
1559
f7cfd871 1560 err = down_read_killable(&task->signal->exec_update_lock);
8cdb878d
CY
1561 if (err)
1562 return ERR_PTR(err);
1563
1564 mm = get_task_mm(task);
1565 if (mm && mm != current->mm &&
1566 !ptrace_may_access(task, mode)) {
1567 mmput(mm);
1568 mm = ERR_PTR(-EACCES);
1569 }
f7cfd871 1570 up_read(&task->signal->exec_update_lock);
8cdb878d
CY
1571
1572 return mm;
1573}
1574
57b59c4a 1575static void complete_vfork_done(struct task_struct *tsk)
c415c3b4 1576{
d68b46fe 1577 struct completion *vfork;
c415c3b4 1578
d68b46fe
ON
1579 task_lock(tsk);
1580 vfork = tsk->vfork_done;
1581 if (likely(vfork)) {
1582 tsk->vfork_done = NULL;
1583 complete(vfork);
1584 }
1585 task_unlock(tsk);
1586}
1587
1588static int wait_for_vfork_done(struct task_struct *child,
1589 struct completion *vfork)
1590{
f5d39b02 1591 unsigned int state = TASK_UNINTERRUPTIBLE|TASK_KILLABLE|TASK_FREEZABLE;
d68b46fe
ON
1592 int killed;
1593
76f969e8 1594 cgroup_enter_frozen();
f5d39b02 1595 killed = wait_for_completion_state(vfork, state);
76f969e8 1596 cgroup_leave_frozen(false);
d68b46fe
ON
1597
1598 if (killed) {
1599 task_lock(child);
1600 child->vfork_done = NULL;
1601 task_unlock(child);
1602 }
1603
1604 put_task_struct(child);
1605 return killed;
c415c3b4
ON
1606}
1607
1da177e4
LT
1608/* Please note the differences between mmput and mm_release.
1609 * mmput is called whenever we stop holding onto a mm_struct,
1610 * error success whatever.
1611 *
1612 * mm_release is called after a mm_struct has been removed
1613 * from the current process.
1614 *
1615 * This difference is important for error handling, when we
1616 * only half set up a mm_struct for a new process and need to restore
1617 * the old one. Because we mmput the new mm_struct before
1618 * restoring the old one. . .
1619 * Eric Biederman 10 January 1998
1620 */
4610ba7a 1621static void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1da177e4 1622{
0326f5a9
SD
1623 uprobe_free_utask(tsk);
1624
1da177e4
LT
1625 /* Get rid of any cached register state */
1626 deactivate_mm(tsk, mm);
1627
fec1d011 1628 /*
735f2770
MH
1629 * Signal userspace if we're not exiting with a core dump
1630 * because we want to leave the value intact for debugging
1631 * purposes.
fec1d011 1632 */
9c8a8228 1633 if (tsk->clear_child_tid) {
92307383 1634 if (atomic_read(&mm->mm_users) > 1) {
9c8a8228
ED
1635 /*
1636 * We don't check the error code - if userspace has
1637 * not set up a proper pointer then tough luck.
1638 */
1639 put_user(0, tsk->clear_child_tid);
2de0db99
DB
1640 do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1641 1, NULL, NULL, 0, 0);
9c8a8228 1642 }
1da177e4 1643 tsk->clear_child_tid = NULL;
1da177e4 1644 }
f7505d64
KK
1645
1646 /*
1647 * All done, finally we can wake up parent and return this mm to him.
1648 * Also kthread_stop() uses this completion for synchronization.
1649 */
1650 if (tsk->vfork_done)
1651 complete_vfork_done(tsk);
1da177e4
LT
1652}
1653
4610ba7a
TG
1654void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1655{
150d7158 1656 futex_exit_release(tsk);
4610ba7a
TG
1657 mm_release(tsk, mm);
1658}
1659
1660void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1661{
150d7158 1662 futex_exec_release(tsk);
4610ba7a
TG
1663 mm_release(tsk, mm);
1664}
1665
13585fa0
NA
1666/**
1667 * dup_mm() - duplicates an existing mm structure
1668 * @tsk: the task_struct with which the new mm will be associated.
1669 * @oldmm: the mm to duplicate.
1670 *
1671 * Allocates a new mm structure and duplicates the provided @oldmm structure
1672 * content into it.
1673 *
1674 * Return: the duplicated mm or NULL on failure.
a0a7ec30 1675 */
13585fa0
NA
1676static struct mm_struct *dup_mm(struct task_struct *tsk,
1677 struct mm_struct *oldmm)
a0a7ec30 1678{
13585fa0 1679 struct mm_struct *mm;
a0a7ec30
JD
1680 int err;
1681
a0a7ec30
JD
1682 mm = allocate_mm();
1683 if (!mm)
1684 goto fail_nomem;
1685
1686 memcpy(mm, oldmm, sizeof(*mm));
1687
bfedb589 1688 if (!mm_init(mm, tsk, mm->user_ns))
a0a7ec30
JD
1689 goto fail_nomem;
1690
a0a7ec30
JD
1691 err = dup_mmap(mm, oldmm);
1692 if (err)
1693 goto free_pt;
1694
1695 mm->hiwater_rss = get_mm_rss(mm);
1696 mm->hiwater_vm = mm->total_vm;
1697
801460d0
HS
1698 if (mm->binfmt && !try_module_get(mm->binfmt->module))
1699 goto free_pt;
1700
a0a7ec30
JD
1701 return mm;
1702
1703free_pt:
801460d0
HS
1704 /* don't put binfmt in mmput, we haven't got module yet */
1705 mm->binfmt = NULL;
c3f3ce04 1706 mm_init_owner(mm, NULL);
a0a7ec30
JD
1707 mmput(mm);
1708
1709fail_nomem:
1710 return NULL;
a0a7ec30
JD
1711}
1712
fb0a685c 1713static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1da177e4 1714{
fb0a685c 1715 struct mm_struct *mm, *oldmm;
1da177e4
LT
1716
1717 tsk->min_flt = tsk->maj_flt = 0;
1718 tsk->nvcsw = tsk->nivcsw = 0;
17406b82
MSB
1719#ifdef CONFIG_DETECT_HUNG_TASK
1720 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
a2e51445 1721 tsk->last_switch_time = 0;
17406b82 1722#endif
1da177e4
LT
1723
1724 tsk->mm = NULL;
1725 tsk->active_mm = NULL;
1726
1727 /*
1728 * Are we cloning a kernel thread?
1729 *
1730 * We need to steal a active VM for that..
1731 */
1732 oldmm = current->mm;
1733 if (!oldmm)
1734 return 0;
1735
1736 if (clone_flags & CLONE_VM) {
3fce371b 1737 mmget(oldmm);
1da177e4 1738 mm = oldmm;
a6895399
REB
1739 } else {
1740 mm = dup_mm(tsk, current->mm);
1741 if (!mm)
1742 return -ENOMEM;
1da177e4
LT
1743 }
1744
1da177e4
LT
1745 tsk->mm = mm;
1746 tsk->active_mm = mm;
af7f588d 1747 sched_mm_cid_fork(tsk);
1da177e4 1748 return 0;
1da177e4
LT
1749}
1750
a39bc516 1751static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1da177e4 1752{
498052bb 1753 struct fs_struct *fs = current->fs;
1da177e4 1754 if (clone_flags & CLONE_FS) {
498052bb 1755 /* tsk->fs is already what we want */
2a4419b5 1756 spin_lock(&fs->lock);
498052bb 1757 if (fs->in_exec) {
2a4419b5 1758 spin_unlock(&fs->lock);
498052bb
AV
1759 return -EAGAIN;
1760 }
1761 fs->users++;
2a4419b5 1762 spin_unlock(&fs->lock);
1da177e4
LT
1763 return 0;
1764 }
498052bb 1765 tsk->fs = copy_fs_struct(fs);
1da177e4
LT
1766 if (!tsk->fs)
1767 return -ENOMEM;
1768 return 0;
1769}
1770
11f3f500
MC
1771static int copy_files(unsigned long clone_flags, struct task_struct *tsk,
1772 int no_files)
a016f338
JD
1773{
1774 struct files_struct *oldf, *newf;
1775 int error = 0;
1776
1777 /*
1778 * A background process may not have any files ...
1779 */
1780 oldf = current->files;
1781 if (!oldf)
1782 goto out;
1783
11f3f500
MC
1784 if (no_files) {
1785 tsk->files = NULL;
1786 goto out;
1787 }
1788
a016f338
JD
1789 if (clone_flags & CLONE_FILES) {
1790 atomic_inc(&oldf->count);
1791 goto out;
1792 }
1793
60997c3d 1794 newf = dup_fd(oldf, NR_OPEN_MAX, &error);
a016f338
JD
1795 if (!newf)
1796 goto out;
1797
1798 tsk->files = newf;
1799 error = 0;
1800out:
1801 return error;
1802}
1803
a39bc516 1804static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1da177e4
LT
1805{
1806 struct sighand_struct *sig;
1807
60348802 1808 if (clone_flags & CLONE_SIGHAND) {
d036bda7 1809 refcount_inc(&current->sighand->count);
1da177e4
LT
1810 return 0;
1811 }
1812 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
0c282b06 1813 RCU_INIT_POINTER(tsk->sighand, sig);
1da177e4
LT
1814 if (!sig)
1815 return -ENOMEM;
9d7fb042 1816
d036bda7 1817 refcount_set(&sig->count, 1);
06e62a46 1818 spin_lock_irq(&current->sighand->siglock);
1da177e4 1819 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
06e62a46 1820 spin_unlock_irq(&current->sighand->siglock);
b612e5df
CB
1821
1822 /* Reset all signal handler not set to SIG_IGN to SIG_DFL. */
1823 if (clone_flags & CLONE_CLEAR_SIGHAND)
1824 flush_signal_handlers(tsk, 0);
1825
1da177e4
LT
1826 return 0;
1827}
1828
a7e5328a 1829void __cleanup_sighand(struct sighand_struct *sighand)
c81addc9 1830{
d036bda7 1831 if (refcount_dec_and_test(&sighand->count)) {
d80e731e 1832 signalfd_cleanup(sighand);
392809b2 1833 /*
5f0d5a3a 1834 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
392809b2
ON
1835 * without an RCU grace period, see __lock_task_sighand().
1836 */
c81addc9 1837 kmem_cache_free(sighand_cachep, sighand);
d80e731e 1838 }
c81addc9
ON
1839}
1840
f06febc9
FM
1841/*
1842 * Initialize POSIX timer handling for a thread group.
1843 */
1844static void posix_cpu_timers_init_group(struct signal_struct *sig)
1845{
2b69942f 1846 struct posix_cputimers *pct = &sig->posix_cputimers;
78d7d407
JS
1847 unsigned long cpu_limit;
1848
316c1608 1849 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
3a245c0f 1850 posix_cputimers_group_init(pct, cpu_limit);
f06febc9
FM
1851}
1852
a39bc516 1853static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1da177e4
LT
1854{
1855 struct signal_struct *sig;
1da177e4 1856
4ab6c083 1857 if (clone_flags & CLONE_THREAD)
490dea45 1858 return 0;
490dea45 1859
a56704ef 1860 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1da177e4
LT
1861 tsk->signal = sig;
1862 if (!sig)
1863 return -ENOMEM;
1864
b3ac022c 1865 sig->nr_threads = 1;
d80f7d7b 1866 sig->quick_threads = 1;
1da177e4 1867 atomic_set(&sig->live, 1);
60d4de3f 1868 refcount_set(&sig->sigcnt, 1);
0c740d0a
ON
1869
1870 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1871 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1872 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1873
1da177e4 1874 init_waitqueue_head(&sig->wait_chldexit);
db51aecc 1875 sig->curr_target = tsk;
1da177e4 1876 init_sigpending(&sig->shared_pending);
c3ad2c3b 1877 INIT_HLIST_HEAD(&sig->multiprocess);
e78c3496 1878 seqlock_init(&sig->stats_lock);
9d7fb042 1879 prev_cputime_init(&sig->prev_cputime);
1da177e4 1880
baa73d9e 1881#ifdef CONFIG_POSIX_TIMERS
b18b6a9c 1882 INIT_LIST_HEAD(&sig->posix_timers);
c9cb2e3d 1883 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1da177e4 1884 sig->real_timer.function = it_real_fn;
baa73d9e 1885#endif
1da177e4 1886
1da177e4
LT
1887 task_lock(current->group_leader);
1888 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1889 task_unlock(current->group_leader);
1890
6279a751
ON
1891 posix_cpu_timers_init_group(sig);
1892
522ed776 1893 tty_audit_fork(sig);
5091faa4 1894 sched_autogroup_fork(sig);
522ed776 1895
a63d83f4 1896 sig->oom_score_adj = current->signal->oom_score_adj;
dabb16f6 1897 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
28b83c51 1898
9b1bf12d 1899 mutex_init(&sig->cred_guard_mutex);
f7cfd871 1900 init_rwsem(&sig->exec_update_lock);
9b1bf12d 1901
1da177e4
LT
1902 return 0;
1903}
1904
dbd95212
KC
1905static void copy_seccomp(struct task_struct *p)
1906{
1907#ifdef CONFIG_SECCOMP
1908 /*
1909 * Must be called with sighand->lock held, which is common to
1910 * all threads in the group. Holding cred_guard_mutex is not
1911 * needed because this new task is not yet running and cannot
1912 * be racing exec.
1913 */
69f6a34b 1914 assert_spin_locked(&current->sighand->siglock);
dbd95212
KC
1915
1916 /* Ref-count the new filter user, and assign it. */
1917 get_seccomp_filter(current);
1918 p->seccomp = current->seccomp;
1919
1920 /*
1921 * Explicitly enable no_new_privs here in case it got set
1922 * between the task_struct being duplicated and holding the
1923 * sighand lock. The seccomp state and nnp must be in sync.
1924 */
1925 if (task_no_new_privs(current))
1926 task_set_no_new_privs(p);
1927
1928 /*
1929 * If the parent gained a seccomp mode after copying thread
1930 * flags and between before we held the sighand lock, we have
1931 * to manually enable the seccomp thread flag here.
1932 */
1933 if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
23d67a54 1934 set_task_syscall_work(p, SECCOMP);
dbd95212
KC
1935#endif
1936}
1937
17da2bd9 1938SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1da177e4
LT
1939{
1940 current->clear_child_tid = tidptr;
1941
b488893a 1942 return task_pid_vnr(current);
1da177e4
LT
1943}
1944
a39bc516 1945static void rt_mutex_init_task(struct task_struct *p)
23f78d4a 1946{
1d615482 1947 raw_spin_lock_init(&p->pi_lock);
e29e175b 1948#ifdef CONFIG_RT_MUTEXES
a23ba907 1949 p->pi_waiters = RB_ROOT_CACHED;
e96a7705 1950 p->pi_top_task = NULL;
23f78d4a 1951 p->pi_blocked_on = NULL;
23f78d4a
IM
1952#endif
1953}
1954
2c470475
EB
1955static inline void init_task_pid_links(struct task_struct *task)
1956{
1957 enum pid_type type;
1958
96e1e984 1959 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type)
2c470475 1960 INIT_HLIST_NODE(&task->pid_links[type]);
2c470475
EB
1961}
1962
81907739
ON
1963static inline void
1964init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1965{
2c470475
EB
1966 if (type == PIDTYPE_PID)
1967 task->thread_pid = pid;
1968 else
1969 task->signal->pids[type] = pid;
81907739
ON
1970}
1971
6bfbaa51
IM
1972static inline void rcu_copy_process(struct task_struct *p)
1973{
1974#ifdef CONFIG_PREEMPT_RCU
1975 p->rcu_read_lock_nesting = 0;
1976 p->rcu_read_unlock_special.s = 0;
1977 p->rcu_blocked_node = NULL;
1978 INIT_LIST_HEAD(&p->rcu_node_entry);
1979#endif /* #ifdef CONFIG_PREEMPT_RCU */
1980#ifdef CONFIG_TASKS_RCU
1981 p->rcu_tasks_holdout = false;
1982 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1983 p->rcu_tasks_idle_cpu = -1;
1984#endif /* #ifdef CONFIG_TASKS_RCU */
d5f177d3
PM
1985#ifdef CONFIG_TASKS_TRACE_RCU
1986 p->trc_reader_nesting = 0;
276c4104 1987 p->trc_reader_special.s = 0;
d5f177d3 1988 INIT_LIST_HEAD(&p->trc_holdout_list);
434c9eef 1989 INIT_LIST_HEAD(&p->trc_blkd_node);
d5f177d3 1990#endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
6bfbaa51
IM
1991}
1992
3695eae5
CB
1993struct pid *pidfd_pid(const struct file *file)
1994{
1995 if (file->f_op == &pidfd_fops)
1996 return file->private_data;
1997
1998 return ERR_PTR(-EBADF);
1999}
2000
b3e58382
CB
2001static int pidfd_release(struct inode *inode, struct file *file)
2002{
2003 struct pid *pid = file->private_data;
2004
2005 file->private_data = NULL;
2006 put_pid(pid);
2007 return 0;
2008}
2009
2010#ifdef CONFIG_PROC_FS
15d42eb2
CK
2011/**
2012 * pidfd_show_fdinfo - print information about a pidfd
2013 * @m: proc fdinfo file
2014 * @f: file referencing a pidfd
2015 *
2016 * Pid:
2017 * This function will print the pid that a given pidfd refers to in the
2018 * pid namespace of the procfs instance.
2019 * If the pid namespace of the process is not a descendant of the pid
2020 * namespace of the procfs instance 0 will be shown as its pid. This is
2021 * similar to calling getppid() on a process whose parent is outside of
2022 * its pid namespace.
2023 *
2024 * NSpid:
2025 * If pid namespaces are supported then this function will also print
2026 * the pid of a given pidfd refers to for all descendant pid namespaces
2027 * starting from the current pid namespace of the instance, i.e. the
2028 * Pid field and the first entry in the NSpid field will be identical.
2029 * If the pid namespace of the process is not a descendant of the pid
2030 * namespace of the procfs instance 0 will be shown as its first NSpid
2031 * entry and no others will be shown.
2032 * Note that this differs from the Pid and NSpid fields in
2033 * /proc/<pid>/status where Pid and NSpid are always shown relative to
2034 * the pid namespace of the procfs instance. The difference becomes
2035 * obvious when sending around a pidfd between pid namespaces from a
a8ca6b13 2036 * different branch of the tree, i.e. where no ancestral relation is
15d42eb2
CK
2037 * present between the pid namespaces:
2038 * - create two new pid namespaces ns1 and ns2 in the initial pid
2039 * namespace (also take care to create new mount namespaces in the
2040 * new pid namespace and mount procfs)
2041 * - create a process with a pidfd in ns1
2042 * - send pidfd from ns1 to ns2
2043 * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid
2044 * have exactly one entry, which is 0
2045 */
b3e58382
CB
2046static void pidfd_show_fdinfo(struct seq_file *m, struct file *f)
2047{
b3e58382 2048 struct pid *pid = f->private_data;
3d6d8da4
CB
2049 struct pid_namespace *ns;
2050 pid_t nr = -1;
15d42eb2 2051
3d6d8da4 2052 if (likely(pid_has_task(pid, PIDTYPE_PID))) {
9d78edea 2053 ns = proc_pid_ns(file_inode(m->file)->i_sb);
3d6d8da4
CB
2054 nr = pid_nr_ns(pid, ns);
2055 }
2056
2057 seq_put_decimal_ll(m, "Pid:\t", nr);
b3e58382 2058
15d42eb2 2059#ifdef CONFIG_PID_NS
3d6d8da4
CB
2060 seq_put_decimal_ll(m, "\nNSpid:\t", nr);
2061 if (nr > 0) {
15d42eb2 2062 int i;
b3e58382 2063
15d42eb2
CK
2064 /* If nr is non-zero it means that 'pid' is valid and that
2065 * ns, i.e. the pid namespace associated with the procfs
2066 * instance, is in the pid namespace hierarchy of pid.
2067 * Start at one below the already printed level.
2068 */
2069 for (i = ns->level + 1; i <= pid->level; i++)
3d6d8da4 2070 seq_put_decimal_ll(m, "\t", pid->numbers[i].nr);
15d42eb2
CK
2071 }
2072#endif
b3e58382
CB
2073 seq_putc(m, '\n');
2074}
2075#endif
2076
b53b0b9d
JFG
2077/*
2078 * Poll support for process exit notification.
2079 */
9e77716a 2080static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts)
b53b0b9d 2081{
b53b0b9d 2082 struct pid *pid = file->private_data;
9e77716a 2083 __poll_t poll_flags = 0;
b53b0b9d
JFG
2084
2085 poll_wait(file, &pid->wait_pidfd, pts);
2086
b53b0b9d
JFG
2087 /*
2088 * Inform pollers only when the whole thread group exits.
2089 * If the thread group leader exits before all other threads in the
2090 * group, then poll(2) should block, similar to the wait(2) family.
2091 */
38fd525a 2092 if (thread_group_exited(pid))
9e77716a 2093 poll_flags = EPOLLIN | EPOLLRDNORM;
b53b0b9d
JFG
2094
2095 return poll_flags;
2096}
2097
b3e58382
CB
2098const struct file_operations pidfd_fops = {
2099 .release = pidfd_release,
b53b0b9d 2100 .poll = pidfd_poll,
b3e58382
CB
2101#ifdef CONFIG_PROC_FS
2102 .show_fdinfo = pidfd_show_fdinfo,
2103#endif
2104};
2105
6ae930d9
CB
2106/**
2107 * __pidfd_prepare - allocate a new pidfd_file and reserve a pidfd
2108 * @pid: the struct pid for which to create a pidfd
2109 * @flags: flags of the new @pidfd
ff0712ea 2110 * @ret: Where to return the file for the pidfd.
6ae930d9
CB
2111 *
2112 * Allocate a new file that stashes @pid and reserve a new pidfd number in the
2113 * caller's file descriptor table. The pidfd is reserved but not installed yet.
ff0712ea 2114 *
6ae930d9
CB
2115 * The helper doesn't perform checks on @pid which makes it useful for pidfds
2116 * created via CLONE_PIDFD where @pid has no task attached when the pidfd and
2117 * pidfd file are prepared.
2118 *
2119 * If this function returns successfully the caller is responsible to either
2120 * call fd_install() passing the returned pidfd and pidfd file as arguments in
2121 * order to install the pidfd into its file descriptor table or they must use
2122 * put_unused_fd() and fput() on the returned pidfd and pidfd file
2123 * respectively.
2124 *
2125 * This function is useful when a pidfd must already be reserved but there
2126 * might still be points of failure afterwards and the caller wants to ensure
2127 * that no pidfd is leaked into its file descriptor table.
2128 *
2129 * Return: On success, a reserved pidfd is returned from the function and a new
2130 * pidfd file is returned in the last argument to the function. On
2131 * error, a negative error code is returned from the function and the
2132 * last argument remains unchanged.
2133 */
2134static int __pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret)
2135{
2136 int pidfd;
2137 struct file *pidfd_file;
2138
2139 if (flags & ~(O_NONBLOCK | O_RDWR | O_CLOEXEC))
2140 return -EINVAL;
2141
2142 pidfd = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
2143 if (pidfd < 0)
2144 return pidfd;
2145
2146 pidfd_file = anon_inode_getfile("[pidfd]", &pidfd_fops, pid,
2147 flags | O_RDWR | O_CLOEXEC);
2148 if (IS_ERR(pidfd_file)) {
2149 put_unused_fd(pidfd);
2150 return PTR_ERR(pidfd_file);
2151 }
2152 get_pid(pid); /* held by pidfd_file now */
2153 *ret = pidfd_file;
2154 return pidfd;
2155}
2156
2157/**
2158 * pidfd_prepare - allocate a new pidfd_file and reserve a pidfd
2159 * @pid: the struct pid for which to create a pidfd
2160 * @flags: flags of the new @pidfd
ff0712ea 2161 * @ret: Where to return the pidfd.
6ae930d9
CB
2162 *
2163 * Allocate a new file that stashes @pid and reserve a new pidfd number in the
2164 * caller's file descriptor table. The pidfd is reserved but not installed yet.
2165 *
2166 * The helper verifies that @pid is used as a thread group leader.
2167 *
2168 * If this function returns successfully the caller is responsible to either
2169 * call fd_install() passing the returned pidfd and pidfd file as arguments in
2170 * order to install the pidfd into its file descriptor table or they must use
2171 * put_unused_fd() and fput() on the returned pidfd and pidfd file
2172 * respectively.
2173 *
2174 * This function is useful when a pidfd must already be reserved but there
2175 * might still be points of failure afterwards and the caller wants to ensure
2176 * that no pidfd is leaked into its file descriptor table.
2177 *
2178 * Return: On success, a reserved pidfd is returned from the function and a new
2179 * pidfd file is returned in the last argument to the function. On
2180 * error, a negative error code is returned from the function and the
2181 * last argument remains unchanged.
2182 */
2183int pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret)
2184{
2185 if (!pid || !pid_has_task(pid, PIDTYPE_TGID))
2186 return -EINVAL;
2187
2188 return __pidfd_prepare(pid, flags, ret);
2189}
2190
c3f3ce04
AA
2191static void __delayed_free_task(struct rcu_head *rhp)
2192{
2193 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
2194
2195 free_task(tsk);
2196}
2197
2198static __always_inline void delayed_free_task(struct task_struct *tsk)
2199{
2200 if (IS_ENABLED(CONFIG_MEMCG))
2201 call_rcu(&tsk->rcu, __delayed_free_task);
2202 else
2203 free_task(tsk);
2204}
2205
67197a4f
SB
2206static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk)
2207{
2208 /* Skip if kernel thread */
2209 if (!tsk->mm)
2210 return;
2211
2212 /* Skip if spawning a thread or using vfork */
2213 if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM)
2214 return;
2215
2216 /* We need to synchronize with __set_oom_adj */
2217 mutex_lock(&oom_adj_mutex);
2218 set_bit(MMF_MULTIPROCESS, &tsk->mm->flags);
2219 /* Update the values in case they were changed after copy_signal */
2220 tsk->signal->oom_score_adj = current->signal->oom_score_adj;
2221 tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min;
2222 mutex_unlock(&oom_adj_mutex);
2223}
2224
79257534
DBO
2225#ifdef CONFIG_RV
2226static void rv_task_fork(struct task_struct *p)
2227{
2228 int i;
2229
2230 for (i = 0; i < RV_PER_TASK_MONITORS; i++)
2231 p->rv[i].da_mon.monitoring = false;
2232}
2233#else
2234#define rv_task_fork(p) do {} while (0)
2235#endif
2236
1da177e4
LT
2237/*
2238 * This creates a new process as a copy of the old one,
2239 * but does not actually start it yet.
2240 *
2241 * It copies the registers, and all the appropriate
2242 * parts of the process environment (as per the clone
2243 * flags). The actual kick-off is left to the caller.
2244 */
89c8e98d 2245__latent_entropy struct task_struct *copy_process(
09a05394 2246 struct pid *pid,
3033f14a 2247 int trace,
7f192e3c
CB
2248 int node,
2249 struct kernel_clone_args *args)
1da177e4 2250{
b3e58382 2251 int pidfd = -1, retval;
a24efe62 2252 struct task_struct *p;
c3ad2c3b 2253 struct multiprocess_signals delayed;
6fd2fe49 2254 struct file *pidfile = NULL;
c5febea0 2255 const u64 clone_flags = args->flags;
769071ac 2256 struct nsproxy *nsp = current->nsproxy;
1da177e4 2257
667b6094
MPS
2258 /*
2259 * Don't allow sharing the root directory with processes in a different
2260 * namespace
2261 */
1da177e4
LT
2262 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
2263 return ERR_PTR(-EINVAL);
2264
e66eded8
EB
2265 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
2266 return ERR_PTR(-EINVAL);
2267
1da177e4
LT
2268 /*
2269 * Thread groups must share signals as well, and detached threads
2270 * can only be started up within the thread group.
2271 */
2272 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
2273 return ERR_PTR(-EINVAL);
2274
2275 /*
2276 * Shared signal handlers imply shared VM. By way of the above,
2277 * thread groups also imply shared VM. Blocking this case allows
2278 * for various simplifications in other code.
2279 */
2280 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
2281 return ERR_PTR(-EINVAL);
2282
123be07b
SB
2283 /*
2284 * Siblings of global init remain as zombies on exit since they are
2285 * not reaped by their parent (swapper). To solve this and to avoid
2286 * multi-rooted process trees, prevent global and container-inits
2287 * from creating siblings.
2288 */
2289 if ((clone_flags & CLONE_PARENT) &&
2290 current->signal->flags & SIGNAL_UNKILLABLE)
2291 return ERR_PTR(-EINVAL);
2292
8382fcac 2293 /*
40a0d32d 2294 * If the new process will be in a different pid or user namespace
faf00da5 2295 * do not allow it to share a thread group with the forking task.
8382fcac 2296 */
faf00da5 2297 if (clone_flags & CLONE_THREAD) {
40a0d32d 2298 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
769071ac
AV
2299 (task_active_pid_ns(current) != nsp->pid_ns_for_children))
2300 return ERR_PTR(-EINVAL);
2301 }
2302
b3e58382 2303 if (clone_flags & CLONE_PIDFD) {
b3e58382 2304 /*
b3e58382
CB
2305 * - CLONE_DETACHED is blocked so that we can potentially
2306 * reuse it later for CLONE_PIDFD.
2307 * - CLONE_THREAD is blocked until someone really needs it.
2308 */
7f192e3c 2309 if (clone_flags & (CLONE_DETACHED | CLONE_THREAD))
b3e58382 2310 return ERR_PTR(-EINVAL);
b3e58382
CB
2311 }
2312
c3ad2c3b
EB
2313 /*
2314 * Force any signals received before this point to be delivered
2315 * before the fork happens. Collect up signals sent to multiple
2316 * processes that happen during the fork and delay them so that
2317 * they appear to happen after the fork.
2318 */
2319 sigemptyset(&delayed.signal);
2320 INIT_HLIST_NODE(&delayed.node);
2321
2322 spin_lock_irq(&current->sighand->siglock);
2323 if (!(clone_flags & CLONE_THREAD))
2324 hlist_add_head(&delayed.node, &current->signal->multiprocess);
2325 recalc_sigpending();
2326 spin_unlock_irq(&current->sighand->siglock);
2327 retval = -ERESTARTNOINTR;
66ae0d1e 2328 if (task_sigpending(current))
c3ad2c3b
EB
2329 goto fork_out;
2330
1da177e4 2331 retval = -ENOMEM;
725fc629 2332 p = dup_task_struct(current, node);
1da177e4
LT
2333 if (!p)
2334 goto fork_out;
753550eb
EB
2335 p->flags &= ~PF_KTHREAD;
2336 if (args->kthread)
2337 p->flags |= PF_KTHREAD;
f9010dbd 2338 if (args->user_worker) {
b16b3855 2339 /*
f9010dbd 2340 * Mark us a user worker, and block any signal that isn't
b16b3855
JA
2341 * fatal or STOP
2342 */
f9010dbd 2343 p->flags |= PF_USER_WORKER;
b16b3855
JA
2344 siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP));
2345 }
f9010dbd
MC
2346 if (args->io_thread)
2347 p->flags |= PF_IO_WORKER;
1da177e4 2348
cf587db2
MC
2349 if (args->name)
2350 strscpy_pad(p->comm, args->name, sizeof(p->comm));
2351
7f192e3c 2352 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
4d6501dc
VN
2353 /*
2354 * Clear TID on mm_release()?
2355 */
7f192e3c 2356 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
4d6501dc 2357
f7e8b616
SR
2358 ftrace_graph_init_task(p);
2359
bea493a0
PZ
2360 rt_mutex_init_task(p);
2361
a21ee605 2362 lockdep_assert_irqs_enabled();
d12c1a37 2363#ifdef CONFIG_PROVE_LOCKING
de30a2b3
IM
2364 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
2365#endif
8f2f9c4d
EB
2366 retval = copy_creds(p, clone_flags);
2367 if (retval < 0)
2368 goto bad_fork_free;
2369
1da177e4 2370 retval = -EAGAIN;
de399236 2371 if (is_rlimit_overlimit(task_ucounts(p), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
b57922b6
EP
2372 if (p->real_cred->user != INIT_USER &&
2373 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
8f2f9c4d 2374 goto bad_fork_cleanup_count;
1da177e4 2375 }
72fa5997 2376 current->flags &= ~PF_NPROC_EXCEEDED;
1da177e4 2377
1da177e4
LT
2378 /*
2379 * If multiple threads are within copy_process(), then this check
2380 * triggers too late. This doesn't hurt, the check is only there
2381 * to stop root fork bombs.
2382 */
04ec93fe 2383 retval = -EAGAIN;
c17d1a3a 2384 if (data_race(nr_threads >= max_threads))
1da177e4
LT
2385 goto bad_fork_cleanup_count;
2386
ca74e92b 2387 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
a8ea6fc9 2388 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE | PF_NO_SETAFFINITY);
514ddb44 2389 p->flags |= PF_FORKNOEXEC;
1da177e4
LT
2390 INIT_LIST_HEAD(&p->children);
2391 INIT_LIST_HEAD(&p->sibling);
f41d911f 2392 rcu_copy_process(p);
1da177e4
LT
2393 p->vfork_done = NULL;
2394 spin_lock_init(&p->alloc_lock);
1da177e4 2395
1da177e4
LT
2396 init_sigpending(&p->pending);
2397
64861634 2398 p->utime = p->stime = p->gtime = 0;
40565b5a 2399#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
64861634 2400 p->utimescaled = p->stimescaled = 0;
40565b5a 2401#endif
9d7fb042
PZ
2402 prev_cputime_init(&p->prev_cputime);
2403
6a61671b 2404#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
bac5b6b6
FW
2405 seqcount_init(&p->vtime.seqcount);
2406 p->vtime.starttime = 0;
2407 p->vtime.state = VTIME_INACTIVE;
6a61671b
FW
2408#endif
2409
0f212204
JA
2410#ifdef CONFIG_IO_URING
2411 p->io_uring = NULL;
2412#endif
2413
6976675d
AV
2414 p->default_timer_slack_ns = current->timer_slack_ns;
2415
eb414681
JW
2416#ifdef CONFIG_PSI
2417 p->psi_flags = 0;
2418#endif
2419
5995477a 2420 task_io_accounting_init(&p->ioac);
1da177e4
LT
2421 acct_clear_integrals(p);
2422
3a245c0f 2423 posix_cputimers_init(&p->posix_cputimers);
1da177e4 2424
1da177e4 2425 p->io_context = NULL;
c0b0ae8a 2426 audit_set_context(p, NULL);
b4f48b63 2427 cgroup_fork(p);
343f4c49 2428 if (args->kthread) {
40966e31 2429 if (!set_kthread_struct(p))
ff8288ff 2430 goto bad_fork_cleanup_delayacct;
40966e31 2431 }
1da177e4 2432#ifdef CONFIG_NUMA
846a16bf 2433 p->mempolicy = mpol_dup(p->mempolicy);
fb0a685c
DRO
2434 if (IS_ERR(p->mempolicy)) {
2435 retval = PTR_ERR(p->mempolicy);
2436 p->mempolicy = NULL;
ff8288ff 2437 goto bad_fork_cleanup_delayacct;
fb0a685c 2438 }
1da177e4 2439#endif
778d3b0f
MH
2440#ifdef CONFIG_CPUSETS
2441 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
2442 p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
b7505861 2443 seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock);
778d3b0f 2444#endif
de30a2b3 2445#ifdef CONFIG_TRACE_IRQFLAGS
0584df9c
ME
2446 memset(&p->irqtrace, 0, sizeof(p->irqtrace));
2447 p->irqtrace.hardirq_disable_ip = _THIS_IP_;
2448 p->irqtrace.softirq_enable_ip = _THIS_IP_;
2449 p->softirqs_enabled = 1;
2450 p->softirq_context = 0;
de30a2b3 2451#endif
8bcbde54
DH
2452
2453 p->pagefault_disabled = 0;
2454
fbb9ce95 2455#ifdef CONFIG_LOCKDEP
b09be676 2456 lockdep_init_task(p);
fbb9ce95 2457#endif
1da177e4 2458
408894ee
IM
2459#ifdef CONFIG_DEBUG_MUTEXES
2460 p->blocked_on = NULL; /* not blocked yet */
2461#endif
cafe5635
KO
2462#ifdef CONFIG_BCACHE
2463 p->sequential_io = 0;
2464 p->sequential_io_avg = 0;
2465#endif
a10787e6
SL
2466#ifdef CONFIG_BPF_SYSCALL
2467 RCU_INIT_POINTER(p->bpf_storage, NULL);
c7603cfa 2468 p->bpf_ctx = NULL;
a10787e6 2469#endif
0f481406 2470
3c90e6e9 2471 /* Perform scheduler related setup. Assign this task to a CPU. */
aab03e05
DF
2472 retval = sched_fork(clone_flags, p);
2473 if (retval)
2474 goto bad_fork_cleanup_policy;
6ab423e0 2475
2b26f0aa 2476 retval = perf_event_init_task(p, clone_flags);
6ab423e0
PZ
2477 if (retval)
2478 goto bad_fork_cleanup_policy;
fb0a685c
DRO
2479 retval = audit_alloc(p);
2480 if (retval)
6c72e350 2481 goto bad_fork_cleanup_perf;
1da177e4 2482 /* copy all the process information */
ab602f79 2483 shm_init_task(p);
e4e55b47 2484 retval = security_task_alloc(p, clone_flags);
fb0a685c 2485 if (retval)
1da177e4 2486 goto bad_fork_cleanup_audit;
e4e55b47
TH
2487 retval = copy_semundo(clone_flags, p);
2488 if (retval)
2489 goto bad_fork_cleanup_security;
11f3f500 2490 retval = copy_files(clone_flags, p, args->no_files);
fb0a685c 2491 if (retval)
1da177e4 2492 goto bad_fork_cleanup_semundo;
fb0a685c
DRO
2493 retval = copy_fs(clone_flags, p);
2494 if (retval)
1da177e4 2495 goto bad_fork_cleanup_files;
fb0a685c
DRO
2496 retval = copy_sighand(clone_flags, p);
2497 if (retval)
1da177e4 2498 goto bad_fork_cleanup_fs;
fb0a685c
DRO
2499 retval = copy_signal(clone_flags, p);
2500 if (retval)
1da177e4 2501 goto bad_fork_cleanup_sighand;
fb0a685c
DRO
2502 retval = copy_mm(clone_flags, p);
2503 if (retval)
1da177e4 2504 goto bad_fork_cleanup_signal;
fb0a685c
DRO
2505 retval = copy_namespaces(clone_flags, p);
2506 if (retval)
d84f4f99 2507 goto bad_fork_cleanup_mm;
fb0a685c
DRO
2508 retval = copy_io(clone_flags, p);
2509 if (retval)
fd0928df 2510 goto bad_fork_cleanup_namespaces;
c5febea0 2511 retval = copy_thread(p, args);
1da177e4 2512 if (retval)
fd0928df 2513 goto bad_fork_cleanup_io;
1da177e4 2514
afaef01c
AP
2515 stackleak_task_init(p);
2516
425fb2b4 2517 if (pid != &init_struct_pid) {
49cb2fc4
AR
2518 pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid,
2519 args->set_tid_size);
35f71bc0
MH
2520 if (IS_ERR(pid)) {
2521 retval = PTR_ERR(pid);
0740aa5f 2522 goto bad_fork_cleanup_thread;
35f71bc0 2523 }
425fb2b4
PE
2524 }
2525
b3e58382
CB
2526 /*
2527 * This has to happen after we've potentially unshared the file
2528 * descriptor table (so that the pidfd doesn't leak into the child
2529 * if the fd table isn't shared).
2530 */
2531 if (clone_flags & CLONE_PIDFD) {
ca7707f5
CB
2532 /* Note that no task has been attached to @pid yet. */
2533 retval = __pidfd_prepare(pid, O_RDWR | O_CLOEXEC, &pidfile);
b3e58382
CB
2534 if (retval < 0)
2535 goto bad_fork_free_pid;
b3e58382 2536 pidfd = retval;
6fd2fe49 2537
7f192e3c 2538 retval = put_user(pidfd, args->pidfd);
b3e58382
CB
2539 if (retval)
2540 goto bad_fork_put_pidfd;
2541 }
2542
73c10101
JA
2543#ifdef CONFIG_BLOCK
2544 p->plug = NULL;
2545#endif
ba31c1a4
TG
2546 futex_init_task(p);
2547
f9a3879a
GM
2548 /*
2549 * sigaltstack should be cleared when sharing the same VM
2550 */
2551 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2a742138 2552 sas_ss_reset(p);
f9a3879a 2553
1da177e4 2554 /*
6580807d
ON
2555 * Syscall tracing and stepping should be turned off in the
2556 * child regardless of CLONE_PTRACE.
1da177e4 2557 */
6580807d 2558 user_disable_single_step(p);
64c19ba2 2559 clear_task_syscall_work(p, SYSCALL_TRACE);
64eb35f7
GKB
2560#if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU)
2561 clear_task_syscall_work(p, SYSCALL_EMU);
ed75e8d5 2562#endif
e02c9b0d 2563 clear_tsk_latency_tracing(p);
1da177e4 2564
1da177e4 2565 /* ok, now we should be set up.. */
18c830df
ON
2566 p->pid = pid_nr(pid);
2567 if (clone_flags & CLONE_THREAD) {
18c830df
ON
2568 p->group_leader = current->group_leader;
2569 p->tgid = current->tgid;
2570 } else {
18c830df
ON
2571 p->group_leader = p;
2572 p->tgid = p->pid;
2573 }
5f8aadd8 2574
9d823e8f
WF
2575 p->nr_dirtied = 0;
2576 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
83712358 2577 p->dirty_paused_when = 0;
9d823e8f 2578
bb8cbbfe 2579 p->pdeath_signal = 0;
158e1645 2580 p->task_works = NULL;
ca7752ca 2581 clear_posix_cputimers_work(p);
1da177e4 2582
d741bf41
PZ
2583#ifdef CONFIG_KRETPROBES
2584 p->kretprobe_instances.first = NULL;
2585#endif
54ecbe6f
MH
2586#ifdef CONFIG_RETHOOK
2587 p->rethooks.first = NULL;
2588#endif
d741bf41 2589
7e47682e
AS
2590 /*
2591 * Ensure that the cgroup subsystem policies allow the new process to be
7b7b8a2c 2592 * forked. It should be noted that the new process's css_set can be changed
7e47682e
AS
2593 * between here and cgroup_post_fork() if an organisation operation is in
2594 * progress.
2595 */
ef2c41cf 2596 retval = cgroup_can_fork(p, args);
7e47682e 2597 if (retval)
5a5cf5cb 2598 goto bad_fork_put_pidfd;
7e47682e 2599
b1e82065
PZ
2600 /*
2601 * Now that the cgroups are pinned, re-clone the parent cgroup and put
2602 * the new task on the correct runqueue. All this *before* the task
2603 * becomes visible.
2604 *
2605 * This isn't part of ->can_fork() because while the re-cloning is
2606 * cgroup specific, it unconditionally needs to place the task on a
2607 * runqueue.
2608 */
2609 sched_cgroup_fork(p, args);
2610
7b558513
DR
2611 /*
2612 * From this point on we must avoid any synchronous user-space
2613 * communication until we take the tasklist-lock. In particular, we do
2614 * not want user-space to be able to predict the process start-time by
2615 * stalling fork(2) after we recorded the start_time but before it is
2616 * visible to the system.
2617 */
2618
2619 p->start_time = ktime_get_ns();
cf25e24d 2620 p->start_boottime = ktime_get_boottime_ns();
7b558513 2621
18c830df
ON
2622 /*
2623 * Make it visible to the rest of the system, but dont wake it up yet.
2624 * Need tasklist lock for parent etc handling!
2625 */
1da177e4
LT
2626 write_lock_irq(&tasklist_lock);
2627
1da177e4 2628 /* CLONE_PARENT re-uses the old parent */
2d5516cb 2629 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1da177e4 2630 p->real_parent = current->real_parent;
2d5516cb 2631 p->parent_exec_id = current->parent_exec_id;
b4e00444
EW
2632 if (clone_flags & CLONE_THREAD)
2633 p->exit_signal = -1;
2634 else
2635 p->exit_signal = current->group_leader->exit_signal;
2d5516cb 2636 } else {
1da177e4 2637 p->real_parent = current;
2d5516cb 2638 p->parent_exec_id = current->self_exec_id;
b4e00444 2639 p->exit_signal = args->exit_signal;
2d5516cb 2640 }
1da177e4 2641
d83a7cb3
JP
2642 klp_copy_process(p);
2643
85dd3f61
PZ
2644 sched_core_fork(p);
2645
3f17da69 2646 spin_lock(&current->sighand->siglock);
4a2c7a78 2647
79257534
DBO
2648 rv_task_fork(p);
2649
d7822b1e
MD
2650 rseq_fork(p, clone_flags);
2651
4ca1d3ee 2652 /* Don't start children in a dying pid namespace */
e8cfbc24 2653 if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
3fd37226
KT
2654 retval = -ENOMEM;
2655 goto bad_fork_cancel_cgroup;
2656 }
4a2c7a78 2657
7673bf55
EB
2658 /* Let kill terminate clone/fork in the middle */
2659 if (fatal_signal_pending(current)) {
2660 retval = -EINTR;
2661 goto bad_fork_cancel_cgroup;
2662 }
2663
a1140cb2
KI
2664 /* No more failure paths after this point. */
2665
2666 /*
2667 * Copy seccomp details explicitly here, in case they were changed
2668 * before holding sighand lock.
2669 */
2670 copy_seccomp(p);
2671
2c470475 2672 init_task_pid_links(p);
73b9ebfe 2673 if (likely(p->pid)) {
4b9d33e6 2674 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
73b9ebfe 2675
81907739 2676 init_task_pid(p, PIDTYPE_PID, pid);
73b9ebfe 2677 if (thread_group_leader(p)) {
6883f81a 2678 init_task_pid(p, PIDTYPE_TGID, pid);
81907739
ON
2679 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2680 init_task_pid(p, PIDTYPE_SID, task_session(current));
2681
1c4042c2 2682 if (is_child_reaper(pid)) {
17cf22c3 2683 ns_of_pid(pid)->child_reaper = p;
1c4042c2
EB
2684 p->signal->flags |= SIGNAL_UNKILLABLE;
2685 }
c3ad2c3b 2686 p->signal->shared_pending.signal = delayed.signal;
9c9f4ded 2687 p->signal->tty = tty_kref_get(current->signal->tty);
749860ce
PT
2688 /*
2689 * Inherit has_child_subreaper flag under the same
2690 * tasklist_lock with adding child to the process tree
2691 * for propagate_has_child_subreaper optimization.
2692 */
2693 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2694 p->real_parent->signal->is_child_subreaper;
9cd80bbb 2695 list_add_tail(&p->sibling, &p->real_parent->children);
5e85d4ab 2696 list_add_tail_rcu(&p->tasks, &init_task.tasks);
6883f81a 2697 attach_pid(p, PIDTYPE_TGID);
81907739
ON
2698 attach_pid(p, PIDTYPE_PGID);
2699 attach_pid(p, PIDTYPE_SID);
909ea964 2700 __this_cpu_inc(process_counts);
80628ca0
ON
2701 } else {
2702 current->signal->nr_threads++;
d80f7d7b 2703 current->signal->quick_threads++;
80628ca0 2704 atomic_inc(&current->signal->live);
60d4de3f 2705 refcount_inc(&current->signal->sigcnt);
924de3b8 2706 task_join_group_stop(p);
0c740d0a
ON
2707 list_add_tail_rcu(&p->thread_node,
2708 &p->signal->thread_head);
73b9ebfe 2709 }
81907739 2710 attach_pid(p, PIDTYPE_PID);
73b9ebfe 2711 nr_threads++;
1da177e4 2712 }
1da177e4 2713 total_forks++;
c3ad2c3b 2714 hlist_del_init(&delayed.node);
3f17da69 2715 spin_unlock(&current->sighand->siglock);
4af4206b 2716 syscall_tracepoint_update(p);
1da177e4 2717 write_unlock_irq(&tasklist_lock);
4af4206b 2718
ddc204b5
WL
2719 if (pidfile)
2720 fd_install(pidfd, pidfile);
2721
c13cf856 2722 proc_fork_connector(p);
b1e82065 2723 sched_post_fork(p);
ef2c41cf 2724 cgroup_post_fork(p, args);
cdd6c482 2725 perf_event_fork(p);
43d2b113
KH
2726
2727 trace_task_newtask(p, clone_flags);
3ab67966 2728 uprobe_copy_process(p, clone_flags);
fd593511 2729 user_events_fork(p, clone_flags);
43d2b113 2730
67197a4f
SB
2731 copy_oom_score_adj(clone_flags, p);
2732
1da177e4
LT
2733 return p;
2734
7e47682e 2735bad_fork_cancel_cgroup:
85dd3f61 2736 sched_core_free(p);
3fd37226
KT
2737 spin_unlock(&current->sighand->siglock);
2738 write_unlock_irq(&tasklist_lock);
ef2c41cf 2739 cgroup_cancel_fork(p, args);
b3e58382 2740bad_fork_put_pidfd:
6fd2fe49
AV
2741 if (clone_flags & CLONE_PIDFD) {
2742 fput(pidfile);
2743 put_unused_fd(pidfd);
2744 }
425fb2b4
PE
2745bad_fork_free_pid:
2746 if (pid != &init_struct_pid)
2747 free_pid(pid);
0740aa5f
JS
2748bad_fork_cleanup_thread:
2749 exit_thread(p);
fd0928df 2750bad_fork_cleanup_io:
b69f2292
LR
2751 if (p->io_context)
2752 exit_io_context(p);
ab516013 2753bad_fork_cleanup_namespaces:
444f378b 2754 exit_task_namespaces(p);
1da177e4 2755bad_fork_cleanup_mm:
c3f3ce04
AA
2756 if (p->mm) {
2757 mm_clear_owner(p->mm, p);
1da177e4 2758 mmput(p->mm);
c3f3ce04 2759 }
1da177e4 2760bad_fork_cleanup_signal:
4ab6c083 2761 if (!(clone_flags & CLONE_THREAD))
1c5354de 2762 free_signal_struct(p->signal);
1da177e4 2763bad_fork_cleanup_sighand:
a7e5328a 2764 __cleanup_sighand(p->sighand);
1da177e4
LT
2765bad_fork_cleanup_fs:
2766 exit_fs(p); /* blocking */
2767bad_fork_cleanup_files:
2768 exit_files(p); /* blocking */
2769bad_fork_cleanup_semundo:
2770 exit_sem(p);
e4e55b47
TH
2771bad_fork_cleanup_security:
2772 security_task_free(p);
1da177e4
LT
2773bad_fork_cleanup_audit:
2774 audit_free(p);
6c72e350 2775bad_fork_cleanup_perf:
cdd6c482 2776 perf_event_free_task(p);
6c72e350 2777bad_fork_cleanup_policy:
b09be676 2778 lockdep_free_task(p);
1da177e4 2779#ifdef CONFIG_NUMA
f0be3d32 2780 mpol_put(p->mempolicy);
1da177e4 2781#endif
ff8288ff 2782bad_fork_cleanup_delayacct:
35df17c5 2783 delayacct_tsk_free(p);
1da177e4 2784bad_fork_cleanup_count:
21d1c5e3 2785 dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
e0e81739 2786 exit_creds(p);
1da177e4 2787bad_fork_free:
2f064a59 2788 WRITE_ONCE(p->__state, TASK_DEAD);
1a03d3f1 2789 exit_task_stack_account(p);
68f24b08 2790 put_task_stack(p);
c3f3ce04 2791 delayed_free_task(p);
fe7d37d1 2792fork_out:
c3ad2c3b
EB
2793 spin_lock_irq(&current->sighand->siglock);
2794 hlist_del_init(&delayed.node);
2795 spin_unlock_irq(&current->sighand->siglock);
fe7d37d1 2796 return ERR_PTR(retval);
1da177e4
LT
2797}
2798
2c470475 2799static inline void init_idle_pids(struct task_struct *idle)
f106eee1
ON
2800{
2801 enum pid_type type;
2802
2803 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2c470475
EB
2804 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2805 init_task_pid(idle, type, &init_struct_pid);
f106eee1
ON
2806 }
2807}
2808
36cb0e1c
EB
2809static int idle_dummy(void *dummy)
2810{
2811 /* This function is never called */
2812 return 0;
2813}
2814
f1a0a376 2815struct task_struct * __init fork_idle(int cpu)
1da177e4 2816{
36c8b586 2817 struct task_struct *task;
7f192e3c 2818 struct kernel_clone_args args = {
343f4c49 2819 .flags = CLONE_VM,
5bd2e97c
EB
2820 .fn = &idle_dummy,
2821 .fn_arg = NULL,
343f4c49 2822 .kthread = 1,
36cb0e1c 2823 .idle = 1,
7f192e3c
CB
2824 };
2825
2826 task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
f106eee1 2827 if (!IS_ERR(task)) {
2c470475 2828 init_idle_pids(task);
753ca4f3 2829 init_idle(task, cpu);
f106eee1 2830 }
73b9ebfe 2831
1da177e4
LT
2832 return task;
2833}
2834
cc440e87
JA
2835/*
2836 * This is like kernel_clone(), but shaved down and tailored to just
2837 * creating io_uring workers. It returns a created task, or an error pointer.
2838 * The returned task is inactive, and the caller must fire it up through
2839 * wake_up_new_task(p). All signals are blocked in the created task.
2840 */
2841struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node)
2842{
2843 unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD|
2844 CLONE_IO;
2845 struct kernel_clone_args args = {
2846 .flags = ((lower_32_bits(flags) | CLONE_VM |
2847 CLONE_UNTRACED) & ~CSIGNAL),
2848 .exit_signal = (lower_32_bits(flags) & CSIGNAL),
5bd2e97c
EB
2849 .fn = fn,
2850 .fn_arg = arg,
cc440e87 2851 .io_thread = 1,
54e6842d 2852 .user_worker = 1,
cc440e87 2853 };
cc440e87 2854
b16b3855 2855 return copy_process(NULL, 0, node, &args);
cc440e87
JA
2856}
2857
1da177e4
LT
2858/*
2859 * Ok, this is the main fork-routine.
2860 *
2861 * It copies the process, and if successful kick-starts
2862 * it and waits for it to finish using the VM if required.
a0eb9abd
ES
2863 *
2864 * args->exit_signal is expected to be checked for sanity by the caller.
1da177e4 2865 */
cad6967a 2866pid_t kernel_clone(struct kernel_clone_args *args)
1da177e4 2867{
7f192e3c 2868 u64 clone_flags = args->flags;
9f5325aa
MPS
2869 struct completion vfork;
2870 struct pid *pid;
1da177e4
LT
2871 struct task_struct *p;
2872 int trace = 0;
cad6967a 2873 pid_t nr;
1da177e4 2874
3af8588c
CB
2875 /*
2876 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument
2877 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are
2878 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate
2879 * field in struct clone_args and it still doesn't make sense to have
2880 * them both point at the same memory location. Performing this check
2881 * here has the advantage that we don't need to have a separate helper
2882 * to check for legacy clone().
2883 */
2884 if ((args->flags & CLONE_PIDFD) &&
2885 (args->flags & CLONE_PARENT_SETTID) &&
2886 (args->pidfd == args->parent_tid))
2887 return -EINVAL;
2888
09a05394 2889 /*
4b9d33e6
TH
2890 * Determine whether and which event to report to ptracer. When
2891 * called from kernel_thread or CLONE_UNTRACED is explicitly
2892 * requested, no event is reported; otherwise, report if the event
2893 * for the type of forking is enabled.
09a05394 2894 */
e80d6661 2895 if (!(clone_flags & CLONE_UNTRACED)) {
4b9d33e6
TH
2896 if (clone_flags & CLONE_VFORK)
2897 trace = PTRACE_EVENT_VFORK;
7f192e3c 2898 else if (args->exit_signal != SIGCHLD)
4b9d33e6
TH
2899 trace = PTRACE_EVENT_CLONE;
2900 else
2901 trace = PTRACE_EVENT_FORK;
2902
2903 if (likely(!ptrace_event_enabled(current, trace)))
2904 trace = 0;
2905 }
1da177e4 2906
7f192e3c 2907 p = copy_process(NULL, trace, NUMA_NO_NODE, args);
38addce8 2908 add_latent_entropy();
9f5325aa
MPS
2909
2910 if (IS_ERR(p))
2911 return PTR_ERR(p);
2912
1da177e4
LT
2913 /*
2914 * Do this prior waking up the new thread - the thread pointer
2915 * might get invalid after that point, if the thread exits quickly.
2916 */
9f5325aa 2917 trace_sched_process_fork(current, p);
0a16b607 2918
9f5325aa
MPS
2919 pid = get_task_pid(p, PIDTYPE_PID);
2920 nr = pid_vnr(pid);
30e49c26 2921
9f5325aa 2922 if (clone_flags & CLONE_PARENT_SETTID)
7f192e3c 2923 put_user(nr, args->parent_tid);
a6f5e063 2924
9f5325aa
MPS
2925 if (clone_flags & CLONE_VFORK) {
2926 p->vfork_done = &vfork;
2927 init_completion(&vfork);
2928 get_task_struct(p);
2929 }
1da177e4 2930
bd74fdae
YZ
2931 if (IS_ENABLED(CONFIG_LRU_GEN) && !(clone_flags & CLONE_VM)) {
2932 /* lock the task to synchronize with memcg migration */
2933 task_lock(p);
2934 lru_gen_add_mm(p->mm);
2935 task_unlock(p);
2936 }
2937
9f5325aa 2938 wake_up_new_task(p);
09a05394 2939
9f5325aa
MPS
2940 /* forking complete and child started to run, tell ptracer */
2941 if (unlikely(trace))
2942 ptrace_event_pid(trace, pid);
4e52365f 2943
9f5325aa
MPS
2944 if (clone_flags & CLONE_VFORK) {
2945 if (!wait_for_vfork_done(p, &vfork))
2946 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
1da177e4 2947 }
9f5325aa
MPS
2948
2949 put_pid(pid);
92476d7f 2950 return nr;
1da177e4
LT
2951}
2952
2aa3a7f8
AV
2953/*
2954 * Create a kernel thread.
2955 */
cf587db2
MC
2956pid_t kernel_thread(int (*fn)(void *), void *arg, const char *name,
2957 unsigned long flags)
2aa3a7f8 2958{
7f192e3c 2959 struct kernel_clone_args args = {
3f2c788a
CB
2960 .flags = ((lower_32_bits(flags) | CLONE_VM |
2961 CLONE_UNTRACED) & ~CSIGNAL),
2962 .exit_signal = (lower_32_bits(flags) & CSIGNAL),
5bd2e97c
EB
2963 .fn = fn,
2964 .fn_arg = arg,
cf587db2 2965 .name = name,
343f4c49
EB
2966 .kthread = 1,
2967 };
2968
2969 return kernel_clone(&args);
2970}
2971
2972/*
2973 * Create a user mode thread.
2974 */
2975pid_t user_mode_thread(int (*fn)(void *), void *arg, unsigned long flags)
2aa3a7f8 2976{
7f192e3c 2977 struct kernel_clone_args args = {
3f2c788a
CB
2978 .flags = ((lower_32_bits(flags) | CLONE_VM |
2979 CLONE_UNTRACED) & ~CSIGNAL),
2980 .exit_signal = (lower_32_bits(flags) & CSIGNAL),
5bd2e97c
EB
2981 .fn = fn,
2982 .fn_arg = arg,
7f192e3c
CB
2983 };
2984
cad6967a 2985 return kernel_clone(&args);
2aa3a7f8 2986}
2aa3a7f8 2987
d2125043
AV
2988#ifdef __ARCH_WANT_SYS_FORK
2989SYSCALL_DEFINE0(fork)
2990{
2991#ifdef CONFIG_MMU
7f192e3c
CB
2992 struct kernel_clone_args args = {
2993 .exit_signal = SIGCHLD,
2994 };
2995
cad6967a 2996 return kernel_clone(&args);
d2125043
AV
2997#else
2998 /* can not support in nommu mode */
5d59e182 2999 return -EINVAL;
d2125043
AV
3000#endif
3001}
3002#endif
3003
3004#ifdef __ARCH_WANT_SYS_VFORK
3005SYSCALL_DEFINE0(vfork)
3006{
7f192e3c
CB
3007 struct kernel_clone_args args = {
3008 .flags = CLONE_VFORK | CLONE_VM,
3009 .exit_signal = SIGCHLD,
3010 };
3011
cad6967a 3012 return kernel_clone(&args);
d2125043
AV
3013}
3014#endif
3015
3016#ifdef __ARCH_WANT_SYS_CLONE
3017#ifdef CONFIG_CLONE_BACKWARDS
3018SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
3019 int __user *, parent_tidptr,
3033f14a 3020 unsigned long, tls,
d2125043
AV
3021 int __user *, child_tidptr)
3022#elif defined(CONFIG_CLONE_BACKWARDS2)
3023SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
3024 int __user *, parent_tidptr,
3025 int __user *, child_tidptr,
3033f14a 3026 unsigned long, tls)
dfa9771a
MS
3027#elif defined(CONFIG_CLONE_BACKWARDS3)
3028SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
3029 int, stack_size,
3030 int __user *, parent_tidptr,
3031 int __user *, child_tidptr,
3033f14a 3032 unsigned long, tls)
d2125043
AV
3033#else
3034SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
3035 int __user *, parent_tidptr,
3036 int __user *, child_tidptr,
3033f14a 3037 unsigned long, tls)
d2125043
AV
3038#endif
3039{
7f192e3c 3040 struct kernel_clone_args args = {
3f2c788a 3041 .flags = (lower_32_bits(clone_flags) & ~CSIGNAL),
7f192e3c
CB
3042 .pidfd = parent_tidptr,
3043 .child_tid = child_tidptr,
3044 .parent_tid = parent_tidptr,
3f2c788a 3045 .exit_signal = (lower_32_bits(clone_flags) & CSIGNAL),
7f192e3c
CB
3046 .stack = newsp,
3047 .tls = tls,
3048 };
3049
cad6967a 3050 return kernel_clone(&args);
7f192e3c 3051}
d68dbb0c 3052#endif
7f192e3c 3053
d68dbb0c 3054#ifdef __ARCH_WANT_SYS_CLONE3
dd499f7a 3055
7f192e3c
CB
3056noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs,
3057 struct clone_args __user *uargs,
f14c234b 3058 size_t usize)
7f192e3c 3059{
f14c234b 3060 int err;
7f192e3c 3061 struct clone_args args;
49cb2fc4 3062 pid_t *kset_tid = kargs->set_tid;
7f192e3c 3063
a966dcfe
ES
3064 BUILD_BUG_ON(offsetofend(struct clone_args, tls) !=
3065 CLONE_ARGS_SIZE_VER0);
3066 BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) !=
3067 CLONE_ARGS_SIZE_VER1);
3068 BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) !=
3069 CLONE_ARGS_SIZE_VER2);
3070 BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2);
3071
f14c234b 3072 if (unlikely(usize > PAGE_SIZE))
7f192e3c 3073 return -E2BIG;
f14c234b 3074 if (unlikely(usize < CLONE_ARGS_SIZE_VER0))
7f192e3c
CB
3075 return -EINVAL;
3076
f14c234b
AS
3077 err = copy_struct_from_user(&args, sizeof(args), uargs, usize);
3078 if (err)
3079 return err;
7f192e3c 3080
49cb2fc4
AR
3081 if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL))
3082 return -EINVAL;
3083
3084 if (unlikely(!args.set_tid && args.set_tid_size > 0))
3085 return -EINVAL;
3086
3087 if (unlikely(args.set_tid && args.set_tid_size == 0))
3088 return -EINVAL;
3089
a0eb9abd
ES
3090 /*
3091 * Verify that higher 32bits of exit_signal are unset and that
3092 * it is a valid signal
3093 */
3094 if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
3095 !valid_signal(args.exit_signal)))
3096 return -EINVAL;
3097
62173872
ES
3098 if ((args.flags & CLONE_INTO_CGROUP) &&
3099 (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2))
ef2c41cf
CB
3100 return -EINVAL;
3101
7f192e3c
CB
3102 *kargs = (struct kernel_clone_args){
3103 .flags = args.flags,
3104 .pidfd = u64_to_user_ptr(args.pidfd),
3105 .child_tid = u64_to_user_ptr(args.child_tid),
3106 .parent_tid = u64_to_user_ptr(args.parent_tid),
3107 .exit_signal = args.exit_signal,
3108 .stack = args.stack,
3109 .stack_size = args.stack_size,
3110 .tls = args.tls,
49cb2fc4 3111 .set_tid_size = args.set_tid_size,
ef2c41cf 3112 .cgroup = args.cgroup,
7f192e3c
CB
3113 };
3114
49cb2fc4
AR
3115 if (args.set_tid &&
3116 copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid),
3117 (kargs->set_tid_size * sizeof(pid_t))))
3118 return -EFAULT;
3119
3120 kargs->set_tid = kset_tid;
3121
7f192e3c
CB
3122 return 0;
3123}
3124
fa729c4d
CB
3125/**
3126 * clone3_stack_valid - check and prepare stack
3127 * @kargs: kernel clone args
3128 *
3129 * Verify that the stack arguments userspace gave us are sane.
3130 * In addition, set the stack direction for userspace since it's easy for us to
3131 * determine.
3132 */
3133static inline bool clone3_stack_valid(struct kernel_clone_args *kargs)
3134{
3135 if (kargs->stack == 0) {
3136 if (kargs->stack_size > 0)
3137 return false;
3138 } else {
3139 if (kargs->stack_size == 0)
3140 return false;
3141
3142 if (!access_ok((void __user *)kargs->stack, kargs->stack_size))
3143 return false;
3144
cf8e8658 3145#if !defined(CONFIG_STACK_GROWSUP)
fa729c4d
CB
3146 kargs->stack += kargs->stack_size;
3147#endif
3148 }
3149
3150 return true;
3151}
3152
3153static bool clone3_args_valid(struct kernel_clone_args *kargs)
7f192e3c 3154{
b612e5df 3155 /* Verify that no unknown flags are passed along. */
ef2c41cf
CB
3156 if (kargs->flags &
3157 ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP))
7f192e3c
CB
3158 return false;
3159
3160 /*
a8ca6b13
XC
3161 * - make the CLONE_DETACHED bit reusable for clone3
3162 * - make the CSIGNAL bits reusable for clone3
7f192e3c 3163 */
a402f1e3 3164 if (kargs->flags & (CLONE_DETACHED | (CSIGNAL & (~CLONE_NEWTIME))))
7f192e3c
CB
3165 return false;
3166
b612e5df
CB
3167 if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) ==
3168 (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND))
3169 return false;
3170
7f192e3c
CB
3171 if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
3172 kargs->exit_signal)
3173 return false;
3174
fa729c4d
CB
3175 if (!clone3_stack_valid(kargs))
3176 return false;
3177
7f192e3c
CB
3178 return true;
3179}
3180
501bd016 3181/**
ff0712ea 3182 * sys_clone3 - create a new process with specific properties
501bd016
CB
3183 * @uargs: argument structure
3184 * @size: size of @uargs
3185 *
3186 * clone3() is the extensible successor to clone()/clone2().
3187 * It takes a struct as argument that is versioned by its size.
3188 *
3189 * Return: On success, a positive PID for the child process.
3190 * On error, a negative errno number.
3191 */
7f192e3c
CB
3192SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
3193{
3194 int err;
3195
3196 struct kernel_clone_args kargs;
49cb2fc4
AR
3197 pid_t set_tid[MAX_PID_NS_LEVEL];
3198
3199 kargs.set_tid = set_tid;
7f192e3c
CB
3200
3201 err = copy_clone_args_from_user(&kargs, uargs, size);
3202 if (err)
3203 return err;
3204
3205 if (!clone3_args_valid(&kargs))
3206 return -EINVAL;
3207
cad6967a 3208 return kernel_clone(&kargs);
d2125043
AV
3209}
3210#endif
3211
0f1b92cb
ON
3212void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
3213{
3214 struct task_struct *leader, *parent, *child;
3215 int res;
3216
3217 read_lock(&tasklist_lock);
3218 leader = top = top->group_leader;
3219down:
3220 for_each_thread(leader, parent) {
3221 list_for_each_entry(child, &parent->children, sibling) {
3222 res = visitor(child, data);
3223 if (res) {
3224 if (res < 0)
3225 goto out;
3226 leader = child;
3227 goto down;
3228 }
3229up:
3230 ;
3231 }
3232 }
3233
3234 if (leader != top) {
3235 child = leader;
3236 parent = child->real_parent;
3237 leader = parent->group_leader;
3238 goto up;
3239 }
3240out:
3241 read_unlock(&tasklist_lock);
3242}
3243
5fd63b30
RT
3244#ifndef ARCH_MIN_MMSTRUCT_ALIGN
3245#define ARCH_MIN_MMSTRUCT_ALIGN 0
3246#endif
3247
51cc5068 3248static void sighand_ctor(void *data)
aa1757f9
ON
3249{
3250 struct sighand_struct *sighand = data;
3251
a35afb83 3252 spin_lock_init(&sighand->siglock);
b8fceee1 3253 init_waitqueue_head(&sighand->signalfd_wqh);
aa1757f9
ON
3254}
3255
af806027 3256void __init mm_cache_init(void)
1da177e4 3257{
c1a2f7f0
RR
3258 unsigned int mm_size;
3259
af806027
PZ
3260 /*
3261 * The mm_cpumask is located at the end of mm_struct, and is
3262 * dynamically sized based on the maximum CPU number this system
3263 * can have, taking hotplug into account (nr_cpu_ids).
3264 */
af7f588d 3265 mm_size = sizeof(struct mm_struct) + cpumask_size() + mm_cid_size();
af806027
PZ
3266
3267 mm_cachep = kmem_cache_create_usercopy("mm_struct",
3268 mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
3269 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3270 offsetof(struct mm_struct, saved_auxv),
3271 sizeof_field(struct mm_struct, saved_auxv),
3272 NULL);
3273}
3274
3275void __init proc_caches_init(void)
3276{
1da177e4
LT
3277 sighand_cachep = kmem_cache_create("sighand_cache",
3278 sizeof(struct sighand_struct), 0,
5f0d5a3a 3279 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
75f296d9 3280 SLAB_ACCOUNT, sighand_ctor);
1da177e4
LT
3281 signal_cachep = kmem_cache_create("signal_cache",
3282 sizeof(struct signal_struct), 0,
75f296d9 3283 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
5d097056 3284 NULL);
20c2df83 3285 files_cachep = kmem_cache_create("files_cache",
1da177e4 3286 sizeof(struct files_struct), 0,
75f296d9 3287 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
5d097056 3288 NULL);
20c2df83 3289 fs_cachep = kmem_cache_create("fs_cache",
1da177e4 3290 sizeof(struct fs_struct), 0,
75f296d9 3291 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
5d097056 3292 NULL);
c1a2f7f0 3293
5d097056 3294 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
c7f8f31c
SB
3295#ifdef CONFIG_PER_VMA_LOCK
3296 vma_lock_cachep = KMEM_CACHE(vma_lock, SLAB_PANIC|SLAB_ACCOUNT);
3297#endif
8feae131 3298 mmap_init();
66577193 3299 nsproxy_cache_init();
1da177e4 3300}
cf2e340f 3301
cf2e340f 3302/*
9bfb23fc 3303 * Check constraints on flags passed to the unshare system call.
cf2e340f 3304 */
9bfb23fc 3305static int check_unshare_flags(unsigned long unshare_flags)
cf2e340f 3306{
9bfb23fc
ON
3307 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
3308 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
50804fe3 3309 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
769071ac
AV
3310 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP|
3311 CLONE_NEWTIME))
9bfb23fc 3312 return -EINVAL;
cf2e340f 3313 /*
12c641ab
EB
3314 * Not implemented, but pretend it works if there is nothing
3315 * to unshare. Note that unsharing the address space or the
3316 * signal handlers also need to unshare the signal queues (aka
3317 * CLONE_THREAD).
cf2e340f 3318 */
9bfb23fc 3319 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
12c641ab
EB
3320 if (!thread_group_empty(current))
3321 return -EINVAL;
3322 }
3323 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
d036bda7 3324 if (refcount_read(&current->sighand->count) > 1)
12c641ab
EB
3325 return -EINVAL;
3326 }
3327 if (unshare_flags & CLONE_VM) {
3328 if (!current_is_single_threaded())
9bfb23fc
ON
3329 return -EINVAL;
3330 }
cf2e340f
JD
3331
3332 return 0;
3333}
3334
3335/*
99d1419d 3336 * Unshare the filesystem structure if it is being shared
cf2e340f
JD
3337 */
3338static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
3339{
3340 struct fs_struct *fs = current->fs;
3341
498052bb
AV
3342 if (!(unshare_flags & CLONE_FS) || !fs)
3343 return 0;
3344
3345 /* don't need lock here; in the worst case we'll do useless copy */
3346 if (fs->users == 1)
3347 return 0;
3348
3349 *new_fsp = copy_fs_struct(fs);
3350 if (!*new_fsp)
3351 return -ENOMEM;
cf2e340f
JD
3352
3353 return 0;
3354}
3355
cf2e340f 3356/*
a016f338 3357 * Unshare file descriptor table if it is being shared
cf2e340f 3358 */
60997c3d
CB
3359int unshare_fd(unsigned long unshare_flags, unsigned int max_fds,
3360 struct files_struct **new_fdp)
cf2e340f
JD
3361{
3362 struct files_struct *fd = current->files;
a016f338 3363 int error = 0;
cf2e340f
JD
3364
3365 if ((unshare_flags & CLONE_FILES) &&
a016f338 3366 (fd && atomic_read(&fd->count) > 1)) {
60997c3d 3367 *new_fdp = dup_fd(fd, max_fds, &error);
a016f338
JD
3368 if (!*new_fdp)
3369 return error;
3370 }
cf2e340f
JD
3371
3372 return 0;
3373}
3374
cf2e340f
JD
3375/*
3376 * unshare allows a process to 'unshare' part of the process
3377 * context which was originally shared using clone. copy_*
cad6967a 3378 * functions used by kernel_clone() cannot be used here directly
cf2e340f
JD
3379 * because they modify an inactive task_struct that is being
3380 * constructed. Here we are modifying the current, active,
3381 * task_struct.
3382 */
9b32105e 3383int ksys_unshare(unsigned long unshare_flags)
cf2e340f 3384{
cf2e340f 3385 struct fs_struct *fs, *new_fs = NULL;
ba1f70dd 3386 struct files_struct *new_fd = NULL;
b2e0d987 3387 struct cred *new_cred = NULL;
cf7b708c 3388 struct nsproxy *new_nsproxy = NULL;
9edff4ab 3389 int do_sysvsem = 0;
9bfb23fc 3390 int err;
cf2e340f 3391
b2e0d987 3392 /*
faf00da5
EB
3393 * If unsharing a user namespace must also unshare the thread group
3394 * and unshare the filesystem root and working directories.
b2e0d987
EB
3395 */
3396 if (unshare_flags & CLONE_NEWUSER)
e66eded8 3397 unshare_flags |= CLONE_THREAD | CLONE_FS;
50804fe3
EB
3398 /*
3399 * If unsharing vm, must also unshare signal handlers.
3400 */
3401 if (unshare_flags & CLONE_VM)
3402 unshare_flags |= CLONE_SIGHAND;
12c641ab
EB
3403 /*
3404 * If unsharing a signal handlers, must also unshare the signal queues.
3405 */
3406 if (unshare_flags & CLONE_SIGHAND)
3407 unshare_flags |= CLONE_THREAD;
9bfb23fc
ON
3408 /*
3409 * If unsharing namespace, must also unshare filesystem information.
3410 */
3411 if (unshare_flags & CLONE_NEWNS)
3412 unshare_flags |= CLONE_FS;
50804fe3
EB
3413
3414 err = check_unshare_flags(unshare_flags);
3415 if (err)
3416 goto bad_unshare_out;
6013f67f
MS
3417 /*
3418 * CLONE_NEWIPC must also detach from the undolist: after switching
3419 * to a new ipc namespace, the semaphore arrays from the old
3420 * namespace are unreachable.
3421 */
3422 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
9edff4ab 3423 do_sysvsem = 1;
fb0a685c
DRO
3424 err = unshare_fs(unshare_flags, &new_fs);
3425 if (err)
9bfb23fc 3426 goto bad_unshare_out;
60997c3d 3427 err = unshare_fd(unshare_flags, NR_OPEN_MAX, &new_fd);
fb0a685c 3428 if (err)
9bfb23fc 3429 goto bad_unshare_cleanup_fs;
b2e0d987 3430 err = unshare_userns(unshare_flags, &new_cred);
fb0a685c 3431 if (err)
9edff4ab 3432 goto bad_unshare_cleanup_fd;
b2e0d987
EB
3433 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
3434 new_cred, new_fs);
3435 if (err)
3436 goto bad_unshare_cleanup_cred;
c0b2fc31 3437
905ae01c
AG
3438 if (new_cred) {
3439 err = set_cred_ucounts(new_cred);
3440 if (err)
3441 goto bad_unshare_cleanup_cred;
3442 }
3443
b2e0d987 3444 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
9edff4ab
MS
3445 if (do_sysvsem) {
3446 /*
3447 * CLONE_SYSVSEM is equivalent to sys_exit().
3448 */
3449 exit_sem(current);
3450 }
ab602f79
JM
3451 if (unshare_flags & CLONE_NEWIPC) {
3452 /* Orphan segments in old ns (see sem above). */
3453 exit_shm(current);
3454 shm_init_task(current);
3455 }
ab516013 3456
6f977e6b 3457 if (new_nsproxy)
cf7b708c 3458 switch_task_namespaces(current, new_nsproxy);
cf2e340f 3459
cf7b708c
PE
3460 task_lock(current);
3461
cf2e340f
JD
3462 if (new_fs) {
3463 fs = current->fs;
2a4419b5 3464 spin_lock(&fs->lock);
cf2e340f 3465 current->fs = new_fs;
498052bb
AV
3466 if (--fs->users)
3467 new_fs = NULL;
3468 else
3469 new_fs = fs;
2a4419b5 3470 spin_unlock(&fs->lock);
cf2e340f
JD
3471 }
3472
ba1f70dd
RX
3473 if (new_fd)
3474 swap(current->files, new_fd);
cf2e340f
JD
3475
3476 task_unlock(current);
b2e0d987
EB
3477
3478 if (new_cred) {
3479 /* Install the new user namespace */
3480 commit_creds(new_cred);
3481 new_cred = NULL;
3482 }
cf2e340f
JD
3483 }
3484
e4222673
HB
3485 perf_event_namespaces(current);
3486
b2e0d987
EB
3487bad_unshare_cleanup_cred:
3488 if (new_cred)
3489 put_cred(new_cred);
cf2e340f
JD
3490bad_unshare_cleanup_fd:
3491 if (new_fd)
3492 put_files_struct(new_fd);
3493
cf2e340f
JD
3494bad_unshare_cleanup_fs:
3495 if (new_fs)
498052bb 3496 free_fs_struct(new_fs);
cf2e340f 3497
cf2e340f
JD
3498bad_unshare_out:
3499 return err;
3500}
3b125388 3501
9b32105e
DB
3502SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
3503{
3504 return ksys_unshare(unshare_flags);
3505}
3506
3b125388
AV
3507/*
3508 * Helper to unshare the files of the current task.
3509 * We don't want to expose copy_files internals to
3510 * the exec layer of the kernel.
3511 */
3512
1f702603 3513int unshare_files(void)
3b125388
AV
3514{
3515 struct task_struct *task = current;
1f702603 3516 struct files_struct *old, *copy = NULL;
3b125388
AV
3517 int error;
3518
60997c3d 3519 error = unshare_fd(CLONE_FILES, NR_OPEN_MAX, &copy);
1f702603 3520 if (error || !copy)
3b125388 3521 return error;
1f702603
EB
3522
3523 old = task->files;
3b125388
AV
3524 task_lock(task);
3525 task->files = copy;
3526 task_unlock(task);
1f702603 3527 put_files_struct(old);
3b125388
AV
3528 return 0;
3529}
16db3d3f
HS
3530
3531int sysctl_max_threads(struct ctl_table *table, int write,
b0daa2c7 3532 void *buffer, size_t *lenp, loff_t *ppos)
16db3d3f
HS
3533{
3534 struct ctl_table t;
3535 int ret;
3536 int threads = max_threads;
b0f53dbc 3537 int min = 1;
16db3d3f
HS
3538 int max = MAX_THREADS;
3539
3540 t = *table;
3541 t.data = &threads;
3542 t.extra1 = &min;
3543 t.extra2 = &max;
3544
3545 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3546 if (ret || !write)
3547 return ret;
3548
b0f53dbc 3549 max_threads = threads;
16db3d3f
HS
3550
3551 return 0;
3552}