]> git.ipfire.org Git - thirdparty/linux.git/blame - kernel/fork.c
Merge tag 'io_uring-5.7-2020-05-22' of git://git.kernel.dk/linux-block
[thirdparty/linux.git] / kernel / fork.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/kernel/fork.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
8/*
9 * 'fork.c' contains the help-routines for the 'fork' system call
10 * (see also entry.S and others).
11 * Fork is rather simple, once you get the hang of it, but the memory
12 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
13 */
14
b3e58382 15#include <linux/anon_inodes.h>
1da177e4 16#include <linux/slab.h>
4eb5aaa3 17#include <linux/sched/autogroup.h>
6e84f315 18#include <linux/sched/mm.h>
f7ccbae4 19#include <linux/sched/coredump.h>
8703e8a4 20#include <linux/sched/user.h>
6a3827d7 21#include <linux/sched/numa_balancing.h>
03441a34 22#include <linux/sched/stat.h>
29930025 23#include <linux/sched/task.h>
68db0cf1 24#include <linux/sched/task_stack.h>
32ef5517 25#include <linux/sched/cputime.h>
b3e58382 26#include <linux/seq_file.h>
037741a6 27#include <linux/rtmutex.h>
1da177e4
LT
28#include <linux/init.h>
29#include <linux/unistd.h>
1da177e4
LT
30#include <linux/module.h>
31#include <linux/vmalloc.h>
32#include <linux/completion.h>
1da177e4
LT
33#include <linux/personality.h>
34#include <linux/mempolicy.h>
35#include <linux/sem.h>
36#include <linux/file.h>
9f3acc31 37#include <linux/fdtable.h>
da9cbc87 38#include <linux/iocontext.h>
1da177e4
LT
39#include <linux/key.h>
40#include <linux/binfmts.h>
41#include <linux/mman.h>
cddb8a5c 42#include <linux/mmu_notifier.h>
1da177e4 43#include <linux/fs.h>
615d6e87
DB
44#include <linux/mm.h>
45#include <linux/vmacache.h>
ab516013 46#include <linux/nsproxy.h>
c59ede7b 47#include <linux/capability.h>
1da177e4 48#include <linux/cpu.h>
b4f48b63 49#include <linux/cgroup.h>
1da177e4 50#include <linux/security.h>
a1e78772 51#include <linux/hugetlb.h>
e2cfabdf 52#include <linux/seccomp.h>
1da177e4
LT
53#include <linux/swap.h>
54#include <linux/syscalls.h>
55#include <linux/jiffies.h>
56#include <linux/futex.h>
8141c7f3 57#include <linux/compat.h>
207205a2 58#include <linux/kthread.h>
7c3ab738 59#include <linux/task_io_accounting_ops.h>
ab2af1f5 60#include <linux/rcupdate.h>
1da177e4
LT
61#include <linux/ptrace.h>
62#include <linux/mount.h>
63#include <linux/audit.h>
78fb7466 64#include <linux/memcontrol.h>
f201ae23 65#include <linux/ftrace.h>
5e2bf014 66#include <linux/proc_fs.h>
1da177e4
LT
67#include <linux/profile.h>
68#include <linux/rmap.h>
f8af4da3 69#include <linux/ksm.h>
1da177e4 70#include <linux/acct.h>
893e26e6 71#include <linux/userfaultfd_k.h>
8f0ab514 72#include <linux/tsacct_kern.h>
9f46080c 73#include <linux/cn_proc.h>
ba96a0c8 74#include <linux/freezer.h>
ca74e92b 75#include <linux/delayacct.h>
ad4ecbcb 76#include <linux/taskstats_kern.h>
0a425405 77#include <linux/random.h>
522ed776 78#include <linux/tty.h>
fd0928df 79#include <linux/blkdev.h>
5ad4e53b 80#include <linux/fs_struct.h>
7c9f8861 81#include <linux/magic.h>
cdd6c482 82#include <linux/perf_event.h>
42c4ab41 83#include <linux/posix-timers.h>
8e7cac79 84#include <linux/user-return-notifier.h>
3d5992d2 85#include <linux/oom.h>
ba76149f 86#include <linux/khugepaged.h>
d80e731e 87#include <linux/signalfd.h>
0326f5a9 88#include <linux/uprobes.h>
a27bb332 89#include <linux/aio.h>
52f5684c 90#include <linux/compiler.h>
16db3d3f 91#include <linux/sysctl.h>
5c9a8750 92#include <linux/kcov.h>
d83a7cb3 93#include <linux/livepatch.h>
48ac3c18 94#include <linux/thread_info.h>
afaef01c 95#include <linux/stackleak.h>
eafb149e 96#include <linux/kasan.h>
1da177e4
LT
97
98#include <asm/pgtable.h>
99#include <asm/pgalloc.h>
7c0f6ba6 100#include <linux/uaccess.h>
1da177e4
LT
101#include <asm/mmu_context.h>
102#include <asm/cacheflush.h>
103#include <asm/tlbflush.h>
104
ad8d75ff
SR
105#include <trace/events/sched.h>
106
43d2b113
KH
107#define CREATE_TRACE_POINTS
108#include <trace/events/task.h>
109
ac1b398d
HS
110/*
111 * Minimum number of threads to boot the kernel
112 */
113#define MIN_THREADS 20
114
115/*
116 * Maximum number of threads
117 */
118#define MAX_THREADS FUTEX_TID_MASK
119
1da177e4
LT
120/*
121 * Protected counters by write_lock_irq(&tasklist_lock)
122 */
123unsigned long total_forks; /* Handle normal Linux uptimes. */
fb0a685c 124int nr_threads; /* The idle threads do not count.. */
1da177e4 125
8856ae4d 126static int max_threads; /* tunable limit on nr_threads */
1da177e4 127
8495f7e6
SPP
128#define NAMED_ARRAY_INDEX(x) [x] = __stringify(x)
129
130static const char * const resident_page_types[] = {
131 NAMED_ARRAY_INDEX(MM_FILEPAGES),
132 NAMED_ARRAY_INDEX(MM_ANONPAGES),
133 NAMED_ARRAY_INDEX(MM_SWAPENTS),
134 NAMED_ARRAY_INDEX(MM_SHMEMPAGES),
135};
136
1da177e4
LT
137DEFINE_PER_CPU(unsigned long, process_counts) = 0;
138
c59923a1 139__cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
db1466b3
PM
140
141#ifdef CONFIG_PROVE_RCU
142int lockdep_tasklist_lock_is_held(void)
143{
144 return lockdep_is_held(&tasklist_lock);
145}
146EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
147#endif /* #ifdef CONFIG_PROVE_RCU */
1da177e4
LT
148
149int nr_processes(void)
150{
151 int cpu;
152 int total = 0;
153
1d510750 154 for_each_possible_cpu(cpu)
1da177e4
LT
155 total += per_cpu(process_counts, cpu);
156
157 return total;
158}
159
f19b9f74
AM
160void __weak arch_release_task_struct(struct task_struct *tsk)
161{
162}
163
f5e10287 164#ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
e18b890b 165static struct kmem_cache *task_struct_cachep;
41101809
TG
166
167static inline struct task_struct *alloc_task_struct_node(int node)
168{
169 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
170}
171
41101809
TG
172static inline void free_task_struct(struct task_struct *tsk)
173{
41101809
TG
174 kmem_cache_free(task_struct_cachep, tsk);
175}
1da177e4
LT
176#endif
177
b235beea 178#ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
41101809 179
0d15d74a
TG
180/*
181 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
182 * kmemcache based allocator.
183 */
ba14a194 184# if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
ac496bf4
AL
185
186#ifdef CONFIG_VMAP_STACK
187/*
188 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
189 * flush. Try to minimize the number of calls by caching stacks.
190 */
191#define NR_CACHED_STACKS 2
192static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
19659c59
HR
193
194static int free_vm_stack_cache(unsigned int cpu)
195{
196 struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
197 int i;
198
199 for (i = 0; i < NR_CACHED_STACKS; i++) {
200 struct vm_struct *vm_stack = cached_vm_stacks[i];
201
202 if (!vm_stack)
203 continue;
204
205 vfree(vm_stack->addr);
206 cached_vm_stacks[i] = NULL;
207 }
208
209 return 0;
210}
ac496bf4
AL
211#endif
212
ba14a194 213static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node)
b69c49b7 214{
ba14a194 215#ifdef CONFIG_VMAP_STACK
ac496bf4
AL
216 void *stack;
217 int i;
218
ac496bf4 219 for (i = 0; i < NR_CACHED_STACKS; i++) {
112166f8
CL
220 struct vm_struct *s;
221
222 s = this_cpu_xchg(cached_stacks[i], NULL);
ac496bf4
AL
223
224 if (!s)
225 continue;
ac496bf4 226
eafb149e
DA
227 /* Clear the KASAN shadow of the stack. */
228 kasan_unpoison_shadow(s->addr, THREAD_SIZE);
229
ca182551
KK
230 /* Clear stale pointers from reused stack. */
231 memset(s->addr, 0, THREAD_SIZE);
e01e8063 232
ac496bf4 233 tsk->stack_vm_area = s;
ba4a4574 234 tsk->stack = s->addr;
ac496bf4
AL
235 return s->addr;
236 }
ac496bf4 237
9b6f7e16
RG
238 /*
239 * Allocated stacks are cached and later reused by new threads,
240 * so memcg accounting is performed manually on assigning/releasing
241 * stacks to tasks. Drop __GFP_ACCOUNT.
242 */
48ac3c18 243 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
ac496bf4 244 VMALLOC_START, VMALLOC_END,
9b6f7e16 245 THREADINFO_GFP & ~__GFP_ACCOUNT,
ac496bf4
AL
246 PAGE_KERNEL,
247 0, node, __builtin_return_address(0));
ba14a194
AL
248
249 /*
250 * We can't call find_vm_area() in interrupt context, and
251 * free_thread_stack() can be called in interrupt context,
252 * so cache the vm_struct.
253 */
5eed6f1d 254 if (stack) {
ba14a194 255 tsk->stack_vm_area = find_vm_area(stack);
5eed6f1d
RR
256 tsk->stack = stack;
257 }
ba14a194
AL
258 return stack;
259#else
4949148a
VD
260 struct page *page = alloc_pages_node(node, THREADINFO_GFP,
261 THREAD_SIZE_ORDER);
b6a84016 262
1bf4580e
AA
263 if (likely(page)) {
264 tsk->stack = page_address(page);
265 return tsk->stack;
266 }
267 return NULL;
ba14a194 268#endif
b69c49b7
FT
269}
270
ba14a194 271static inline void free_thread_stack(struct task_struct *tsk)
b69c49b7 272{
ac496bf4 273#ifdef CONFIG_VMAP_STACK
9b6f7e16
RG
274 struct vm_struct *vm = task_stack_vm_area(tsk);
275
276 if (vm) {
ac496bf4
AL
277 int i;
278
9b6f7e16
RG
279 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
280 mod_memcg_page_state(vm->pages[i],
281 MEMCG_KERNEL_STACK_KB,
282 -(int)(PAGE_SIZE / 1024));
283
f4b00eab 284 memcg_kmem_uncharge_page(vm->pages[i], 0);
9b6f7e16
RG
285 }
286
ac496bf4 287 for (i = 0; i < NR_CACHED_STACKS; i++) {
112166f8
CL
288 if (this_cpu_cmpxchg(cached_stacks[i],
289 NULL, tsk->stack_vm_area) != NULL)
ac496bf4
AL
290 continue;
291
ac496bf4
AL
292 return;
293 }
ac496bf4 294
0f110a9b 295 vfree_atomic(tsk->stack);
ac496bf4
AL
296 return;
297 }
298#endif
299
300 __free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER);
b69c49b7 301}
0d15d74a 302# else
b235beea 303static struct kmem_cache *thread_stack_cache;
0d15d74a 304
9521d399 305static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
0d15d74a
TG
306 int node)
307{
5eed6f1d
RR
308 unsigned long *stack;
309 stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
310 tsk->stack = stack;
311 return stack;
0d15d74a
TG
312}
313
ba14a194 314static void free_thread_stack(struct task_struct *tsk)
0d15d74a 315{
ba14a194 316 kmem_cache_free(thread_stack_cache, tsk->stack);
0d15d74a
TG
317}
318
b235beea 319void thread_stack_cache_init(void)
0d15d74a 320{
f9d29946
DW
321 thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
322 THREAD_SIZE, THREAD_SIZE, 0, 0,
323 THREAD_SIZE, NULL);
b235beea 324 BUG_ON(thread_stack_cache == NULL);
0d15d74a
TG
325}
326# endif
b69c49b7
FT
327#endif
328
1da177e4 329/* SLAB cache for signal_struct structures (tsk->signal) */
e18b890b 330static struct kmem_cache *signal_cachep;
1da177e4
LT
331
332/* SLAB cache for sighand_struct structures (tsk->sighand) */
e18b890b 333struct kmem_cache *sighand_cachep;
1da177e4
LT
334
335/* SLAB cache for files_struct structures (tsk->files) */
e18b890b 336struct kmem_cache *files_cachep;
1da177e4
LT
337
338/* SLAB cache for fs_struct structures (tsk->fs) */
e18b890b 339struct kmem_cache *fs_cachep;
1da177e4
LT
340
341/* SLAB cache for vm_area_struct structures */
3928d4f5 342static struct kmem_cache *vm_area_cachep;
1da177e4
LT
343
344/* SLAB cache for mm_struct structures (tsk->mm) */
e18b890b 345static struct kmem_cache *mm_cachep;
1da177e4 346
490fc053 347struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
3928d4f5 348{
a670468f 349 struct vm_area_struct *vma;
490fc053 350
a670468f 351 vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
027232da
KS
352 if (vma)
353 vma_init(vma, mm);
490fc053 354 return vma;
3928d4f5
LT
355}
356
357struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
358{
95faf699
LT
359 struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
360
361 if (new) {
362 *new = *orig;
363 INIT_LIST_HEAD(&new->anon_vma_chain);
e39a4b33 364 new->vm_next = new->vm_prev = NULL;
95faf699
LT
365 }
366 return new;
3928d4f5
LT
367}
368
369void vm_area_free(struct vm_area_struct *vma)
370{
371 kmem_cache_free(vm_area_cachep, vma);
372}
373
ba14a194 374static void account_kernel_stack(struct task_struct *tsk, int account)
c6a7f572 375{
ba14a194
AL
376 void *stack = task_stack_page(tsk);
377 struct vm_struct *vm = task_stack_vm_area(tsk);
378
379 BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
380
381 if (vm) {
382 int i;
383
384 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
385
386 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
387 mod_zone_page_state(page_zone(vm->pages[i]),
388 NR_KERNEL_STACK_KB,
389 PAGE_SIZE / 1024 * account);
390 }
ba14a194
AL
391 } else {
392 /*
393 * All stack pages are in the same zone and belong to the
394 * same memcg.
395 */
396 struct page *first_page = virt_to_page(stack);
397
398 mod_zone_page_state(page_zone(first_page), NR_KERNEL_STACK_KB,
399 THREAD_SIZE / 1024 * account);
400
8380ce47
RG
401 mod_memcg_obj_state(stack, MEMCG_KERNEL_STACK_KB,
402 account * (THREAD_SIZE / 1024));
ba14a194 403 }
c6a7f572
KM
404}
405
9b6f7e16
RG
406static int memcg_charge_kernel_stack(struct task_struct *tsk)
407{
408#ifdef CONFIG_VMAP_STACK
409 struct vm_struct *vm = task_stack_vm_area(tsk);
410 int ret;
411
412 if (vm) {
413 int i;
414
415 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
416 /*
f4b00eab
RG
417 * If memcg_kmem_charge_page() fails, page->mem_cgroup
418 * pointer is NULL, and both memcg_kmem_uncharge_page()
9b6f7e16
RG
419 * and mod_memcg_page_state() in free_thread_stack()
420 * will ignore this page. So it's safe.
421 */
f4b00eab
RG
422 ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL,
423 0);
9b6f7e16
RG
424 if (ret)
425 return ret;
426
427 mod_memcg_page_state(vm->pages[i],
428 MEMCG_KERNEL_STACK_KB,
429 PAGE_SIZE / 1024);
430 }
431 }
432#endif
433 return 0;
434}
435
68f24b08 436static void release_task_stack(struct task_struct *tsk)
1da177e4 437{
405c0759
AL
438 if (WARN_ON(tsk->state != TASK_DEAD))
439 return; /* Better to leak the stack than to free prematurely */
440
ba14a194 441 account_kernel_stack(tsk, -1);
ba14a194 442 free_thread_stack(tsk);
68f24b08
AL
443 tsk->stack = NULL;
444#ifdef CONFIG_VMAP_STACK
445 tsk->stack_vm_area = NULL;
446#endif
447}
448
449#ifdef CONFIG_THREAD_INFO_IN_TASK
450void put_task_stack(struct task_struct *tsk)
451{
f0b89d39 452 if (refcount_dec_and_test(&tsk->stack_refcount))
68f24b08
AL
453 release_task_stack(tsk);
454}
455#endif
456
457void free_task(struct task_struct *tsk)
458{
459#ifndef CONFIG_THREAD_INFO_IN_TASK
460 /*
461 * The task is finally done with both the stack and thread_info,
462 * so free both.
463 */
464 release_task_stack(tsk);
465#else
466 /*
467 * If the task had a separate stack allocation, it should be gone
468 * by now.
469 */
f0b89d39 470 WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
68f24b08 471#endif
23f78d4a 472 rt_mutex_debug_task_free(tsk);
fb52607a 473 ftrace_graph_exit_task(tsk);
e2cfabdf 474 put_seccomp_filter(tsk);
f19b9f74 475 arch_release_task_struct(tsk);
1da5c46f
ON
476 if (tsk->flags & PF_KTHREAD)
477 free_kthread_struct(tsk);
1da177e4
LT
478 free_task_struct(tsk);
479}
480EXPORT_SYMBOL(free_task);
481
d70f2a14
AM
482#ifdef CONFIG_MMU
483static __latent_entropy int dup_mmap(struct mm_struct *mm,
484 struct mm_struct *oldmm)
485{
486 struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
487 struct rb_node **rb_link, *rb_parent;
488 int retval;
489 unsigned long charge;
490 LIST_HEAD(uf);
491
492 uprobe_start_dup_mmap();
493 if (down_write_killable(&oldmm->mmap_sem)) {
494 retval = -EINTR;
495 goto fail_uprobe_end;
496 }
497 flush_cache_dup_mm(oldmm);
498 uprobe_dup_mmap(oldmm, mm);
499 /*
500 * Not linked in yet - no deadlock potential:
501 */
502 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
503
504 /* No ordering required: file already has been exposed. */
505 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
506
507 mm->total_vm = oldmm->total_vm;
508 mm->data_vm = oldmm->data_vm;
509 mm->exec_vm = oldmm->exec_vm;
510 mm->stack_vm = oldmm->stack_vm;
511
512 rb_link = &mm->mm_rb.rb_node;
513 rb_parent = NULL;
514 pprev = &mm->mmap;
515 retval = ksm_fork(mm, oldmm);
516 if (retval)
517 goto out;
518 retval = khugepaged_fork(mm, oldmm);
519 if (retval)
520 goto out;
521
522 prev = NULL;
523 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
524 struct file *file;
525
526 if (mpnt->vm_flags & VM_DONTCOPY) {
527 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
528 continue;
529 }
530 charge = 0;
655c79bb
TH
531 /*
532 * Don't duplicate many vmas if we've been oom-killed (for
533 * example)
534 */
535 if (fatal_signal_pending(current)) {
536 retval = -EINTR;
537 goto out;
538 }
d70f2a14
AM
539 if (mpnt->vm_flags & VM_ACCOUNT) {
540 unsigned long len = vma_pages(mpnt);
541
542 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
543 goto fail_nomem;
544 charge = len;
545 }
3928d4f5 546 tmp = vm_area_dup(mpnt);
d70f2a14
AM
547 if (!tmp)
548 goto fail_nomem;
d70f2a14
AM
549 retval = vma_dup_policy(mpnt, tmp);
550 if (retval)
551 goto fail_nomem_policy;
552 tmp->vm_mm = mm;
553 retval = dup_userfaultfd(tmp, &uf);
554 if (retval)
555 goto fail_nomem_anon_vma_fork;
556 if (tmp->vm_flags & VM_WIPEONFORK) {
93949bb2
LX
557 /*
558 * VM_WIPEONFORK gets a clean slate in the child.
559 * Don't prepare anon_vma until fault since we don't
560 * copy page for current vma.
561 */
d70f2a14 562 tmp->anon_vma = NULL;
d70f2a14
AM
563 } else if (anon_vma_fork(tmp, mpnt))
564 goto fail_nomem_anon_vma_fork;
565 tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT);
d70f2a14
AM
566 file = tmp->vm_file;
567 if (file) {
568 struct inode *inode = file_inode(file);
569 struct address_space *mapping = file->f_mapping;
570
571 get_file(file);
572 if (tmp->vm_flags & VM_DENYWRITE)
573 atomic_dec(&inode->i_writecount);
574 i_mmap_lock_write(mapping);
575 if (tmp->vm_flags & VM_SHARED)
576 atomic_inc(&mapping->i_mmap_writable);
577 flush_dcache_mmap_lock(mapping);
578 /* insert tmp into the share list, just after mpnt */
579 vma_interval_tree_insert_after(tmp, mpnt,
580 &mapping->i_mmap);
581 flush_dcache_mmap_unlock(mapping);
582 i_mmap_unlock_write(mapping);
583 }
584
585 /*
586 * Clear hugetlb-related page reserves for children. This only
587 * affects MAP_PRIVATE mappings. Faults generated by the child
588 * are not guaranteed to succeed, even if read-only
589 */
590 if (is_vm_hugetlb_page(tmp))
591 reset_vma_resv_huge_pages(tmp);
592
593 /*
594 * Link in the new vma and copy the page table entries.
595 */
596 *pprev = tmp;
597 pprev = &tmp->vm_next;
598 tmp->vm_prev = prev;
599 prev = tmp;
600
601 __vma_link_rb(mm, tmp, rb_link, rb_parent);
602 rb_link = &tmp->vm_rb.rb_right;
603 rb_parent = &tmp->vm_rb;
604
605 mm->map_count++;
606 if (!(tmp->vm_flags & VM_WIPEONFORK))
607 retval = copy_page_range(mm, oldmm, mpnt);
608
609 if (tmp->vm_ops && tmp->vm_ops->open)
610 tmp->vm_ops->open(tmp);
611
612 if (retval)
613 goto out;
614 }
615 /* a new mm has just been created */
1ed0cc5a 616 retval = arch_dup_mmap(oldmm, mm);
d70f2a14
AM
617out:
618 up_write(&mm->mmap_sem);
619 flush_tlb_mm(oldmm);
620 up_write(&oldmm->mmap_sem);
621 dup_userfaultfd_complete(&uf);
622fail_uprobe_end:
623 uprobe_end_dup_mmap();
624 return retval;
625fail_nomem_anon_vma_fork:
626 mpol_put(vma_policy(tmp));
627fail_nomem_policy:
3928d4f5 628 vm_area_free(tmp);
d70f2a14
AM
629fail_nomem:
630 retval = -ENOMEM;
631 vm_unacct_memory(charge);
632 goto out;
633}
634
635static inline int mm_alloc_pgd(struct mm_struct *mm)
636{
637 mm->pgd = pgd_alloc(mm);
638 if (unlikely(!mm->pgd))
639 return -ENOMEM;
640 return 0;
641}
642
643static inline void mm_free_pgd(struct mm_struct *mm)
644{
645 pgd_free(mm, mm->pgd);
646}
647#else
648static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
649{
650 down_write(&oldmm->mmap_sem);
651 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
652 up_write(&oldmm->mmap_sem);
653 return 0;
654}
655#define mm_alloc_pgd(mm) (0)
656#define mm_free_pgd(mm)
657#endif /* CONFIG_MMU */
658
659static void check_mm(struct mm_struct *mm)
660{
661 int i;
662
8495f7e6
SPP
663 BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS,
664 "Please make sure 'struct resident_page_types[]' is updated as well");
665
d70f2a14
AM
666 for (i = 0; i < NR_MM_COUNTERS; i++) {
667 long x = atomic_long_read(&mm->rss_stat.count[i]);
668
669 if (unlikely(x))
8495f7e6
SPP
670 pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n",
671 mm, resident_page_types[i], x);
d70f2a14
AM
672 }
673
674 if (mm_pgtables_bytes(mm))
675 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
676 mm_pgtables_bytes(mm));
677
678#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
679 VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
680#endif
681}
682
683#define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
684#define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
685
686/*
687 * Called when the last reference to the mm
688 * is dropped: either by a lazy thread or by
689 * mmput. Free the page directory and the mm.
690 */
d34bc48f 691void __mmdrop(struct mm_struct *mm)
d70f2a14
AM
692{
693 BUG_ON(mm == &init_mm);
3eda69c9
MR
694 WARN_ON_ONCE(mm == current->mm);
695 WARN_ON_ONCE(mm == current->active_mm);
d70f2a14
AM
696 mm_free_pgd(mm);
697 destroy_context(mm);
984cfe4e 698 mmu_notifier_subscriptions_destroy(mm);
d70f2a14
AM
699 check_mm(mm);
700 put_user_ns(mm->user_ns);
701 free_mm(mm);
702}
d34bc48f 703EXPORT_SYMBOL_GPL(__mmdrop);
d70f2a14
AM
704
705static void mmdrop_async_fn(struct work_struct *work)
706{
707 struct mm_struct *mm;
708
709 mm = container_of(work, struct mm_struct, async_put_work);
710 __mmdrop(mm);
711}
712
713static void mmdrop_async(struct mm_struct *mm)
714{
715 if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
716 INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
717 schedule_work(&mm->async_put_work);
718 }
719}
720
ea6d290c
ON
721static inline void free_signal_struct(struct signal_struct *sig)
722{
97101eb4 723 taskstats_tgid_free(sig);
1c5354de 724 sched_autogroup_exit(sig);
7283094e
MH
725 /*
726 * __mmdrop is not safe to call from softirq context on x86 due to
727 * pgd_dtor so postpone it to the async context
728 */
26db62f1 729 if (sig->oom_mm)
7283094e 730 mmdrop_async(sig->oom_mm);
ea6d290c
ON
731 kmem_cache_free(signal_cachep, sig);
732}
733
734static inline void put_signal_struct(struct signal_struct *sig)
735{
60d4de3f 736 if (refcount_dec_and_test(&sig->sigcnt))
ea6d290c
ON
737 free_signal_struct(sig);
738}
739
158d9ebd 740void __put_task_struct(struct task_struct *tsk)
1da177e4 741{
270f722d 742 WARN_ON(!tsk->exit_state);
ec1d2819 743 WARN_ON(refcount_read(&tsk->usage));
1da177e4
LT
744 WARN_ON(tsk == current);
745
2e91fa7f 746 cgroup_free(tsk);
16d51a59 747 task_numa_free(tsk, true);
1a2a4d06 748 security_task_free(tsk);
e0e81739 749 exit_creds(tsk);
35df17c5 750 delayacct_tsk_free(tsk);
ea6d290c 751 put_signal_struct(tsk->signal);
1da177e4
LT
752
753 if (!profile_handoff_task(tsk))
754 free_task(tsk);
755}
77c100c8 756EXPORT_SYMBOL_GPL(__put_task_struct);
1da177e4 757
6c0a9fa6 758void __init __weak arch_task_cache_init(void) { }
61c4628b 759
ff691f6e
HS
760/*
761 * set_max_threads
762 */
16db3d3f 763static void set_max_threads(unsigned int max_threads_suggested)
ff691f6e 764{
ac1b398d 765 u64 threads;
ca79b0c2 766 unsigned long nr_pages = totalram_pages();
ff691f6e
HS
767
768 /*
ac1b398d
HS
769 * The number of threads shall be limited such that the thread
770 * structures may only consume a small part of the available memory.
ff691f6e 771 */
3d6357de 772 if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
ac1b398d
HS
773 threads = MAX_THREADS;
774 else
3d6357de 775 threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
ac1b398d
HS
776 (u64) THREAD_SIZE * 8UL);
777
16db3d3f
HS
778 if (threads > max_threads_suggested)
779 threads = max_threads_suggested;
780
ac1b398d 781 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
ff691f6e
HS
782}
783
5aaeb5c0
IM
784#ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
785/* Initialized by the architecture: */
786int arch_task_struct_size __read_mostly;
787#endif
0c8c0f03 788
4189ff23 789#ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
5905429a
KC
790static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
791{
792 /* Fetch thread_struct whitelist for the architecture. */
793 arch_thread_struct_whitelist(offset, size);
794
795 /*
796 * Handle zero-sized whitelist or empty thread_struct, otherwise
797 * adjust offset to position of thread_struct in task_struct.
798 */
799 if (unlikely(*size == 0))
800 *offset = 0;
801 else
802 *offset += offsetof(struct task_struct, thread);
803}
4189ff23 804#endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */
5905429a 805
ff691f6e 806void __init fork_init(void)
1da177e4 807{
25f9c081 808 int i;
f5e10287 809#ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
1da177e4 810#ifndef ARCH_MIN_TASKALIGN
e274795e 811#define ARCH_MIN_TASKALIGN 0
1da177e4 812#endif
95cb64c1 813 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
5905429a 814 unsigned long useroffset, usersize;
e274795e 815
1da177e4 816 /* create a slab on which task_structs can be allocated */
5905429a
KC
817 task_struct_whitelist(&useroffset, &usersize);
818 task_struct_cachep = kmem_cache_create_usercopy("task_struct",
e274795e 819 arch_task_struct_size, align,
5905429a
KC
820 SLAB_PANIC|SLAB_ACCOUNT,
821 useroffset, usersize, NULL);
1da177e4
LT
822#endif
823
61c4628b
SS
824 /* do the arch specific task caches init */
825 arch_task_cache_init();
826
16db3d3f 827 set_max_threads(MAX_THREADS);
1da177e4
LT
828
829 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
830 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
831 init_task.signal->rlim[RLIMIT_SIGPENDING] =
832 init_task.signal->rlim[RLIMIT_NPROC];
b376c3e1 833
25f9c081
EB
834 for (i = 0; i < UCOUNT_COUNTS; i++) {
835 init_user_ns.ucount_max[i] = max_threads/2;
836 }
19659c59
HR
837
838#ifdef CONFIG_VMAP_STACK
839 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
840 NULL, free_vm_stack_cache);
841#endif
b09be676
BP
842
843 lockdep_init_task(&init_task);
aad42dd4 844 uprobes_init();
1da177e4
LT
845}
846
52f5684c 847int __weak arch_dup_task_struct(struct task_struct *dst,
61c4628b
SS
848 struct task_struct *src)
849{
850 *dst = *src;
851 return 0;
852}
853
d4311ff1
AT
854void set_task_stack_end_magic(struct task_struct *tsk)
855{
856 unsigned long *stackend;
857
858 stackend = end_of_stack(tsk);
859 *stackend = STACK_END_MAGIC; /* for overflow detection */
860}
861
725fc629 862static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
1da177e4
LT
863{
864 struct task_struct *tsk;
b235beea 865 unsigned long *stack;
0f4991e8 866 struct vm_struct *stack_vm_area __maybe_unused;
3e26c149 867 int err;
1da177e4 868
725fc629
AK
869 if (node == NUMA_NO_NODE)
870 node = tsk_fork_get_node(orig);
504f52b5 871 tsk = alloc_task_struct_node(node);
1da177e4
LT
872 if (!tsk)
873 return NULL;
874
b235beea
LT
875 stack = alloc_thread_stack_node(tsk, node);
876 if (!stack)
f19b9f74 877 goto free_tsk;
1da177e4 878
9b6f7e16
RG
879 if (memcg_charge_kernel_stack(tsk))
880 goto free_stack;
881
ba14a194
AL
882 stack_vm_area = task_stack_vm_area(tsk);
883
fb0a685c 884 err = arch_dup_task_struct(tsk, orig);
ba14a194
AL
885
886 /*
887 * arch_dup_task_struct() clobbers the stack-related fields. Make
888 * sure they're properly initialized before using any stack-related
889 * functions again.
890 */
891 tsk->stack = stack;
892#ifdef CONFIG_VMAP_STACK
893 tsk->stack_vm_area = stack_vm_area;
894#endif
68f24b08 895#ifdef CONFIG_THREAD_INFO_IN_TASK
f0b89d39 896 refcount_set(&tsk->stack_refcount, 1);
68f24b08 897#endif
ba14a194 898
164c33c6 899 if (err)
b235beea 900 goto free_stack;
164c33c6 901
dbd95212
KC
902#ifdef CONFIG_SECCOMP
903 /*
904 * We must handle setting up seccomp filters once we're under
905 * the sighand lock in case orig has changed between now and
906 * then. Until then, filter must be NULL to avoid messing up
907 * the usage counts on the error path calling free_task.
908 */
909 tsk->seccomp.filter = NULL;
910#endif
87bec58a
AM
911
912 setup_thread_stack(tsk, orig);
8e7cac79 913 clear_user_return_notifier(tsk);
f26f9aff 914 clear_tsk_need_resched(tsk);
d4311ff1 915 set_task_stack_end_magic(tsk);
1da177e4 916
050e9baa 917#ifdef CONFIG_STACKPROTECTOR
7cd815bc 918 tsk->stack_canary = get_random_canary();
0a425405 919#endif
3bd37062
SAS
920 if (orig->cpus_ptr == &orig->cpus_mask)
921 tsk->cpus_ptr = &tsk->cpus_mask;
0a425405 922
fb0a685c 923 /*
0ff7b2cf
EB
924 * One for the user space visible state that goes away when reaped.
925 * One for the scheduler.
fb0a685c 926 */
0ff7b2cf
EB
927 refcount_set(&tsk->rcu_users, 2);
928 /* One for the rcu users */
929 refcount_set(&tsk->usage, 1);
6c5c9341 930#ifdef CONFIG_BLK_DEV_IO_TRACE
2056a782 931 tsk->btrace_seq = 0;
6c5c9341 932#endif
a0aa7f68 933 tsk->splice_pipe = NULL;
5640f768 934 tsk->task_frag.page = NULL;
093e5840 935 tsk->wake_q.next = NULL;
c6a7f572 936
ba14a194 937 account_kernel_stack(tsk, 1);
c6a7f572 938
5c9a8750
DV
939 kcov_task_init(tsk);
940
e41d5818
DV
941#ifdef CONFIG_FAULT_INJECTION
942 tsk->fail_nth = 0;
943#endif
944
2c323017
JB
945#ifdef CONFIG_BLK_CGROUP
946 tsk->throttle_queue = NULL;
947 tsk->use_memdelay = 0;
948#endif
949
d46eb14b
SB
950#ifdef CONFIG_MEMCG
951 tsk->active_memcg = NULL;
952#endif
1da177e4 953 return tsk;
61c4628b 954
b235beea 955free_stack:
ba14a194 956 free_thread_stack(tsk);
f19b9f74 957free_tsk:
61c4628b
SS
958 free_task_struct(tsk);
959 return NULL;
1da177e4
LT
960}
961
23ff4440 962__cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
1da177e4 963
4cb0e11b
HK
964static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
965
966static int __init coredump_filter_setup(char *s)
967{
968 default_dump_filter =
969 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
970 MMF_DUMP_FILTER_MASK;
971 return 1;
972}
973
974__setup("coredump_filter=", coredump_filter_setup);
975
1da177e4
LT
976#include <linux/init_task.h>
977
858f0993
AD
978static void mm_init_aio(struct mm_struct *mm)
979{
980#ifdef CONFIG_AIO
981 spin_lock_init(&mm->ioctx_lock);
db446a08 982 mm->ioctx_table = NULL;
858f0993
AD
983#endif
984}
985
c3f3ce04
AA
986static __always_inline void mm_clear_owner(struct mm_struct *mm,
987 struct task_struct *p)
988{
989#ifdef CONFIG_MEMCG
990 if (mm->owner == p)
991 WRITE_ONCE(mm->owner, NULL);
992#endif
993}
994
33144e84
VD
995static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
996{
997#ifdef CONFIG_MEMCG
998 mm->owner = p;
999#endif
1000}
1001
355627f5
EB
1002static void mm_init_uprobes_state(struct mm_struct *mm)
1003{
1004#ifdef CONFIG_UPROBES
1005 mm->uprobes_state.xol_area = NULL;
1006#endif
1007}
1008
bfedb589
EB
1009static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
1010 struct user_namespace *user_ns)
1da177e4 1011{
41f727fd
VD
1012 mm->mmap = NULL;
1013 mm->mm_rb = RB_ROOT;
1014 mm->vmacache_seqnum = 0;
1da177e4
LT
1015 atomic_set(&mm->mm_users, 1);
1016 atomic_set(&mm->mm_count, 1);
1017 init_rwsem(&mm->mmap_sem);
1018 INIT_LIST_HEAD(&mm->mmlist);
999d9fc1 1019 mm->core_state = NULL;
af5b0f6a 1020 mm_pgtables_bytes_init(mm);
41f727fd
VD
1021 mm->map_count = 0;
1022 mm->locked_vm = 0;
70f8a3ca 1023 atomic64_set(&mm->pinned_vm, 0);
d559db08 1024 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1da177e4 1025 spin_lock_init(&mm->page_table_lock);
88aa7cc6 1026 spin_lock_init(&mm->arg_lock);
41f727fd 1027 mm_init_cpumask(mm);
858f0993 1028 mm_init_aio(mm);
cf475ad2 1029 mm_init_owner(mm, p);
2b7e8665 1030 RCU_INIT_POINTER(mm->exe_file, NULL);
984cfe4e 1031 mmu_notifier_subscriptions_init(mm);
16af97dc 1032 init_tlb_flush_pending(mm);
41f727fd
VD
1033#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
1034 mm->pmd_huge_pte = NULL;
1035#endif
355627f5 1036 mm_init_uprobes_state(mm);
1da177e4 1037
a0715cc2
AT
1038 if (current->mm) {
1039 mm->flags = current->mm->flags & MMF_INIT_MASK;
1040 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1041 } else {
1042 mm->flags = default_dump_filter;
1da177e4 1043 mm->def_flags = 0;
a0715cc2
AT
1044 }
1045
41f727fd
VD
1046 if (mm_alloc_pgd(mm))
1047 goto fail_nopgd;
1048
1049 if (init_new_context(p, mm))
1050 goto fail_nocontext;
78fb7466 1051
bfedb589 1052 mm->user_ns = get_user_ns(user_ns);
41f727fd
VD
1053 return mm;
1054
1055fail_nocontext:
1056 mm_free_pgd(mm);
1057fail_nopgd:
1da177e4
LT
1058 free_mm(mm);
1059 return NULL;
1060}
1061
1062/*
1063 * Allocate and initialize an mm_struct.
1064 */
fb0a685c 1065struct mm_struct *mm_alloc(void)
1da177e4 1066{
fb0a685c 1067 struct mm_struct *mm;
1da177e4
LT
1068
1069 mm = allocate_mm();
de03c72c
KM
1070 if (!mm)
1071 return NULL;
1072
1073 memset(mm, 0, sizeof(*mm));
bfedb589 1074 return mm_init(mm, current, current_user_ns());
1da177e4
LT
1075}
1076
ec8d7c14
MH
1077static inline void __mmput(struct mm_struct *mm)
1078{
1079 VM_BUG_ON(atomic_read(&mm->mm_users));
1080
1081 uprobe_clear_state(mm);
1082 exit_aio(mm);
1083 ksm_exit(mm);
1084 khugepaged_exit(mm); /* must run before exit_mmap */
1085 exit_mmap(mm);
6fcb52a5 1086 mm_put_huge_zero_page(mm);
ec8d7c14
MH
1087 set_mm_exe_file(mm, NULL);
1088 if (!list_empty(&mm->mmlist)) {
1089 spin_lock(&mmlist_lock);
1090 list_del(&mm->mmlist);
1091 spin_unlock(&mmlist_lock);
1092 }
1093 if (mm->binfmt)
1094 module_put(mm->binfmt->module);
1095 mmdrop(mm);
1096}
1097
1da177e4
LT
1098/*
1099 * Decrement the use count and release all resources for an mm.
1100 */
1101void mmput(struct mm_struct *mm)
1102{
0ae26f1b
AM
1103 might_sleep();
1104
ec8d7c14
MH
1105 if (atomic_dec_and_test(&mm->mm_users))
1106 __mmput(mm);
1107}
1108EXPORT_SYMBOL_GPL(mmput);
1109
a1b2289c
SY
1110#ifdef CONFIG_MMU
1111static void mmput_async_fn(struct work_struct *work)
1112{
1113 struct mm_struct *mm = container_of(work, struct mm_struct,
1114 async_put_work);
1115
1116 __mmput(mm);
1117}
1118
1119void mmput_async(struct mm_struct *mm)
1120{
1121 if (atomic_dec_and_test(&mm->mm_users)) {
1122 INIT_WORK(&mm->async_put_work, mmput_async_fn);
1123 schedule_work(&mm->async_put_work);
1124 }
1125}
1126#endif
1127
90f31d0e
KK
1128/**
1129 * set_mm_exe_file - change a reference to the mm's executable file
1130 *
1131 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1132 *
6e399cd1
DB
1133 * Main users are mmput() and sys_execve(). Callers prevent concurrent
1134 * invocations: in mmput() nobody alive left, in execve task is single
1135 * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
1136 * mm->exe_file, but does so without using set_mm_exe_file() in order
1137 * to do avoid the need for any locks.
90f31d0e 1138 */
38646013
JS
1139void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1140{
6e399cd1
DB
1141 struct file *old_exe_file;
1142
1143 /*
1144 * It is safe to dereference the exe_file without RCU as
1145 * this function is only called if nobody else can access
1146 * this mm -- see comment above for justification.
1147 */
1148 old_exe_file = rcu_dereference_raw(mm->exe_file);
90f31d0e 1149
38646013
JS
1150 if (new_exe_file)
1151 get_file(new_exe_file);
90f31d0e
KK
1152 rcu_assign_pointer(mm->exe_file, new_exe_file);
1153 if (old_exe_file)
1154 fput(old_exe_file);
38646013
JS
1155}
1156
90f31d0e
KK
1157/**
1158 * get_mm_exe_file - acquire a reference to the mm's executable file
1159 *
1160 * Returns %NULL if mm has no associated executable file.
1161 * User must release file via fput().
1162 */
38646013
JS
1163struct file *get_mm_exe_file(struct mm_struct *mm)
1164{
1165 struct file *exe_file;
1166
90f31d0e
KK
1167 rcu_read_lock();
1168 exe_file = rcu_dereference(mm->exe_file);
1169 if (exe_file && !get_file_rcu(exe_file))
1170 exe_file = NULL;
1171 rcu_read_unlock();
38646013
JS
1172 return exe_file;
1173}
11163348 1174EXPORT_SYMBOL(get_mm_exe_file);
38646013 1175
cd81a917
MG
1176/**
1177 * get_task_exe_file - acquire a reference to the task's executable file
1178 *
1179 * Returns %NULL if task's mm (if any) has no associated executable file or
1180 * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1181 * User must release file via fput().
1182 */
1183struct file *get_task_exe_file(struct task_struct *task)
1184{
1185 struct file *exe_file = NULL;
1186 struct mm_struct *mm;
1187
1188 task_lock(task);
1189 mm = task->mm;
1190 if (mm) {
1191 if (!(task->flags & PF_KTHREAD))
1192 exe_file = get_mm_exe_file(mm);
1193 }
1194 task_unlock(task);
1195 return exe_file;
1196}
1197EXPORT_SYMBOL(get_task_exe_file);
38646013 1198
1da177e4
LT
1199/**
1200 * get_task_mm - acquire a reference to the task's mm
1201 *
246bb0b1 1202 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
1da177e4
LT
1203 * this kernel workthread has transiently adopted a user mm with use_mm,
1204 * to do its AIO) is not set and if so returns a reference to it, after
1205 * bumping up the use count. User must release the mm via mmput()
1206 * after use. Typically used by /proc and ptrace.
1207 */
1208struct mm_struct *get_task_mm(struct task_struct *task)
1209{
1210 struct mm_struct *mm;
1211
1212 task_lock(task);
1213 mm = task->mm;
1214 if (mm) {
246bb0b1 1215 if (task->flags & PF_KTHREAD)
1da177e4
LT
1216 mm = NULL;
1217 else
3fce371b 1218 mmget(mm);
1da177e4
LT
1219 }
1220 task_unlock(task);
1221 return mm;
1222}
1223EXPORT_SYMBOL_GPL(get_task_mm);
1224
8cdb878d
CY
1225struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1226{
1227 struct mm_struct *mm;
1228 int err;
1229
3e74fabd 1230 err = mutex_lock_killable(&task->signal->exec_update_mutex);
8cdb878d
CY
1231 if (err)
1232 return ERR_PTR(err);
1233
1234 mm = get_task_mm(task);
1235 if (mm && mm != current->mm &&
1236 !ptrace_may_access(task, mode)) {
1237 mmput(mm);
1238 mm = ERR_PTR(-EACCES);
1239 }
3e74fabd 1240 mutex_unlock(&task->signal->exec_update_mutex);
8cdb878d
CY
1241
1242 return mm;
1243}
1244
57b59c4a 1245static void complete_vfork_done(struct task_struct *tsk)
c415c3b4 1246{
d68b46fe 1247 struct completion *vfork;
c415c3b4 1248
d68b46fe
ON
1249 task_lock(tsk);
1250 vfork = tsk->vfork_done;
1251 if (likely(vfork)) {
1252 tsk->vfork_done = NULL;
1253 complete(vfork);
1254 }
1255 task_unlock(tsk);
1256}
1257
1258static int wait_for_vfork_done(struct task_struct *child,
1259 struct completion *vfork)
1260{
1261 int killed;
1262
1263 freezer_do_not_count();
76f969e8 1264 cgroup_enter_frozen();
d68b46fe 1265 killed = wait_for_completion_killable(vfork);
76f969e8 1266 cgroup_leave_frozen(false);
d68b46fe
ON
1267 freezer_count();
1268
1269 if (killed) {
1270 task_lock(child);
1271 child->vfork_done = NULL;
1272 task_unlock(child);
1273 }
1274
1275 put_task_struct(child);
1276 return killed;
c415c3b4
ON
1277}
1278
1da177e4
LT
1279/* Please note the differences between mmput and mm_release.
1280 * mmput is called whenever we stop holding onto a mm_struct,
1281 * error success whatever.
1282 *
1283 * mm_release is called after a mm_struct has been removed
1284 * from the current process.
1285 *
1286 * This difference is important for error handling, when we
1287 * only half set up a mm_struct for a new process and need to restore
1288 * the old one. Because we mmput the new mm_struct before
1289 * restoring the old one. . .
1290 * Eric Biederman 10 January 1998
1291 */
4610ba7a 1292static void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1da177e4 1293{
0326f5a9
SD
1294 uprobe_free_utask(tsk);
1295
1da177e4
LT
1296 /* Get rid of any cached register state */
1297 deactivate_mm(tsk, mm);
1298
fec1d011 1299 /*
735f2770
MH
1300 * Signal userspace if we're not exiting with a core dump
1301 * because we want to leave the value intact for debugging
1302 * purposes.
fec1d011 1303 */
9c8a8228 1304 if (tsk->clear_child_tid) {
735f2770 1305 if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
9c8a8228
ED
1306 atomic_read(&mm->mm_users) > 1) {
1307 /*
1308 * We don't check the error code - if userspace has
1309 * not set up a proper pointer then tough luck.
1310 */
1311 put_user(0, tsk->clear_child_tid);
2de0db99
DB
1312 do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1313 1, NULL, NULL, 0, 0);
9c8a8228 1314 }
1da177e4 1315 tsk->clear_child_tid = NULL;
1da177e4 1316 }
f7505d64
KK
1317
1318 /*
1319 * All done, finally we can wake up parent and return this mm to him.
1320 * Also kthread_stop() uses this completion for synchronization.
1321 */
1322 if (tsk->vfork_done)
1323 complete_vfork_done(tsk);
1da177e4
LT
1324}
1325
4610ba7a
TG
1326void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1327{
150d7158 1328 futex_exit_release(tsk);
4610ba7a
TG
1329 mm_release(tsk, mm);
1330}
1331
1332void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1333{
150d7158 1334 futex_exec_release(tsk);
4610ba7a
TG
1335 mm_release(tsk, mm);
1336}
1337
13585fa0
NA
1338/**
1339 * dup_mm() - duplicates an existing mm structure
1340 * @tsk: the task_struct with which the new mm will be associated.
1341 * @oldmm: the mm to duplicate.
1342 *
1343 * Allocates a new mm structure and duplicates the provided @oldmm structure
1344 * content into it.
1345 *
1346 * Return: the duplicated mm or NULL on failure.
a0a7ec30 1347 */
13585fa0
NA
1348static struct mm_struct *dup_mm(struct task_struct *tsk,
1349 struct mm_struct *oldmm)
a0a7ec30 1350{
13585fa0 1351 struct mm_struct *mm;
a0a7ec30
JD
1352 int err;
1353
a0a7ec30
JD
1354 mm = allocate_mm();
1355 if (!mm)
1356 goto fail_nomem;
1357
1358 memcpy(mm, oldmm, sizeof(*mm));
1359
bfedb589 1360 if (!mm_init(mm, tsk, mm->user_ns))
a0a7ec30
JD
1361 goto fail_nomem;
1362
a0a7ec30
JD
1363 err = dup_mmap(mm, oldmm);
1364 if (err)
1365 goto free_pt;
1366
1367 mm->hiwater_rss = get_mm_rss(mm);
1368 mm->hiwater_vm = mm->total_vm;
1369
801460d0
HS
1370 if (mm->binfmt && !try_module_get(mm->binfmt->module))
1371 goto free_pt;
1372
a0a7ec30
JD
1373 return mm;
1374
1375free_pt:
801460d0
HS
1376 /* don't put binfmt in mmput, we haven't got module yet */
1377 mm->binfmt = NULL;
c3f3ce04 1378 mm_init_owner(mm, NULL);
a0a7ec30
JD
1379 mmput(mm);
1380
1381fail_nomem:
1382 return NULL;
a0a7ec30
JD
1383}
1384
fb0a685c 1385static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1da177e4 1386{
fb0a685c 1387 struct mm_struct *mm, *oldmm;
1da177e4
LT
1388 int retval;
1389
1390 tsk->min_flt = tsk->maj_flt = 0;
1391 tsk->nvcsw = tsk->nivcsw = 0;
17406b82
MSB
1392#ifdef CONFIG_DETECT_HUNG_TASK
1393 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
a2e51445 1394 tsk->last_switch_time = 0;
17406b82 1395#endif
1da177e4
LT
1396
1397 tsk->mm = NULL;
1398 tsk->active_mm = NULL;
1399
1400 /*
1401 * Are we cloning a kernel thread?
1402 *
1403 * We need to steal a active VM for that..
1404 */
1405 oldmm = current->mm;
1406 if (!oldmm)
1407 return 0;
1408
615d6e87
DB
1409 /* initialize the new vmacache entries */
1410 vmacache_flush(tsk);
1411
1da177e4 1412 if (clone_flags & CLONE_VM) {
3fce371b 1413 mmget(oldmm);
1da177e4 1414 mm = oldmm;
1da177e4
LT
1415 goto good_mm;
1416 }
1417
1418 retval = -ENOMEM;
13585fa0 1419 mm = dup_mm(tsk, current->mm);
1da177e4
LT
1420 if (!mm)
1421 goto fail_nomem;
1422
1da177e4
LT
1423good_mm:
1424 tsk->mm = mm;
1425 tsk->active_mm = mm;
1426 return 0;
1427
1da177e4
LT
1428fail_nomem:
1429 return retval;
1da177e4
LT
1430}
1431
a39bc516 1432static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1da177e4 1433{
498052bb 1434 struct fs_struct *fs = current->fs;
1da177e4 1435 if (clone_flags & CLONE_FS) {
498052bb 1436 /* tsk->fs is already what we want */
2a4419b5 1437 spin_lock(&fs->lock);
498052bb 1438 if (fs->in_exec) {
2a4419b5 1439 spin_unlock(&fs->lock);
498052bb
AV
1440 return -EAGAIN;
1441 }
1442 fs->users++;
2a4419b5 1443 spin_unlock(&fs->lock);
1da177e4
LT
1444 return 0;
1445 }
498052bb 1446 tsk->fs = copy_fs_struct(fs);
1da177e4
LT
1447 if (!tsk->fs)
1448 return -ENOMEM;
1449 return 0;
1450}
1451
fb0a685c 1452static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
a016f338
JD
1453{
1454 struct files_struct *oldf, *newf;
1455 int error = 0;
1456
1457 /*
1458 * A background process may not have any files ...
1459 */
1460 oldf = current->files;
1461 if (!oldf)
1462 goto out;
1463
1464 if (clone_flags & CLONE_FILES) {
1465 atomic_inc(&oldf->count);
1466 goto out;
1467 }
1468
a016f338
JD
1469 newf = dup_fd(oldf, &error);
1470 if (!newf)
1471 goto out;
1472
1473 tsk->files = newf;
1474 error = 0;
1475out:
1476 return error;
1477}
1478
fadad878 1479static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
fd0928df
JA
1480{
1481#ifdef CONFIG_BLOCK
1482 struct io_context *ioc = current->io_context;
6e736be7 1483 struct io_context *new_ioc;
fd0928df
JA
1484
1485 if (!ioc)
1486 return 0;
fadad878
JA
1487 /*
1488 * Share io context with parent, if CLONE_IO is set
1489 */
1490 if (clone_flags & CLONE_IO) {
3d48749d
TH
1491 ioc_task_link(ioc);
1492 tsk->io_context = ioc;
fadad878 1493 } else if (ioprio_valid(ioc->ioprio)) {
6e736be7
TH
1494 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1495 if (unlikely(!new_ioc))
fd0928df
JA
1496 return -ENOMEM;
1497
6e736be7 1498 new_ioc->ioprio = ioc->ioprio;
11a3122f 1499 put_io_context(new_ioc);
fd0928df
JA
1500 }
1501#endif
1502 return 0;
1503}
1504
a39bc516 1505static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1da177e4
LT
1506{
1507 struct sighand_struct *sig;
1508
60348802 1509 if (clone_flags & CLONE_SIGHAND) {
d036bda7 1510 refcount_inc(&current->sighand->count);
1da177e4
LT
1511 return 0;
1512 }
1513 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
0c282b06 1514 RCU_INIT_POINTER(tsk->sighand, sig);
1da177e4
LT
1515 if (!sig)
1516 return -ENOMEM;
9d7fb042 1517
d036bda7 1518 refcount_set(&sig->count, 1);
06e62a46 1519 spin_lock_irq(&current->sighand->siglock);
1da177e4 1520 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
06e62a46 1521 spin_unlock_irq(&current->sighand->siglock);
b612e5df
CB
1522
1523 /* Reset all signal handler not set to SIG_IGN to SIG_DFL. */
1524 if (clone_flags & CLONE_CLEAR_SIGHAND)
1525 flush_signal_handlers(tsk, 0);
1526
1da177e4
LT
1527 return 0;
1528}
1529
a7e5328a 1530void __cleanup_sighand(struct sighand_struct *sighand)
c81addc9 1531{
d036bda7 1532 if (refcount_dec_and_test(&sighand->count)) {
d80e731e 1533 signalfd_cleanup(sighand);
392809b2 1534 /*
5f0d5a3a 1535 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
392809b2
ON
1536 * without an RCU grace period, see __lock_task_sighand().
1537 */
c81addc9 1538 kmem_cache_free(sighand_cachep, sighand);
d80e731e 1539 }
c81addc9
ON
1540}
1541
f06febc9
FM
1542/*
1543 * Initialize POSIX timer handling for a thread group.
1544 */
1545static void posix_cpu_timers_init_group(struct signal_struct *sig)
1546{
2b69942f 1547 struct posix_cputimers *pct = &sig->posix_cputimers;
78d7d407
JS
1548 unsigned long cpu_limit;
1549
316c1608 1550 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
3a245c0f 1551 posix_cputimers_group_init(pct, cpu_limit);
f06febc9
FM
1552}
1553
a39bc516 1554static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1da177e4
LT
1555{
1556 struct signal_struct *sig;
1da177e4 1557
4ab6c083 1558 if (clone_flags & CLONE_THREAD)
490dea45 1559 return 0;
490dea45 1560
a56704ef 1561 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1da177e4
LT
1562 tsk->signal = sig;
1563 if (!sig)
1564 return -ENOMEM;
1565
b3ac022c 1566 sig->nr_threads = 1;
1da177e4 1567 atomic_set(&sig->live, 1);
60d4de3f 1568 refcount_set(&sig->sigcnt, 1);
0c740d0a
ON
1569
1570 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1571 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1572 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1573
1da177e4 1574 init_waitqueue_head(&sig->wait_chldexit);
db51aecc 1575 sig->curr_target = tsk;
1da177e4 1576 init_sigpending(&sig->shared_pending);
c3ad2c3b 1577 INIT_HLIST_HEAD(&sig->multiprocess);
e78c3496 1578 seqlock_init(&sig->stats_lock);
9d7fb042 1579 prev_cputime_init(&sig->prev_cputime);
1da177e4 1580
baa73d9e 1581#ifdef CONFIG_POSIX_TIMERS
b18b6a9c 1582 INIT_LIST_HEAD(&sig->posix_timers);
c9cb2e3d 1583 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1da177e4 1584 sig->real_timer.function = it_real_fn;
baa73d9e 1585#endif
1da177e4 1586
1da177e4
LT
1587 task_lock(current->group_leader);
1588 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1589 task_unlock(current->group_leader);
1590
6279a751
ON
1591 posix_cpu_timers_init_group(sig);
1592
522ed776 1593 tty_audit_fork(sig);
5091faa4 1594 sched_autogroup_fork(sig);
522ed776 1595
a63d83f4 1596 sig->oom_score_adj = current->signal->oom_score_adj;
dabb16f6 1597 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
28b83c51 1598
9b1bf12d 1599 mutex_init(&sig->cred_guard_mutex);
eea96732 1600 mutex_init(&sig->exec_update_mutex);
9b1bf12d 1601
1da177e4
LT
1602 return 0;
1603}
1604
dbd95212
KC
1605static void copy_seccomp(struct task_struct *p)
1606{
1607#ifdef CONFIG_SECCOMP
1608 /*
1609 * Must be called with sighand->lock held, which is common to
1610 * all threads in the group. Holding cred_guard_mutex is not
1611 * needed because this new task is not yet running and cannot
1612 * be racing exec.
1613 */
69f6a34b 1614 assert_spin_locked(&current->sighand->siglock);
dbd95212
KC
1615
1616 /* Ref-count the new filter user, and assign it. */
1617 get_seccomp_filter(current);
1618 p->seccomp = current->seccomp;
1619
1620 /*
1621 * Explicitly enable no_new_privs here in case it got set
1622 * between the task_struct being duplicated and holding the
1623 * sighand lock. The seccomp state and nnp must be in sync.
1624 */
1625 if (task_no_new_privs(current))
1626 task_set_no_new_privs(p);
1627
1628 /*
1629 * If the parent gained a seccomp mode after copying thread
1630 * flags and between before we held the sighand lock, we have
1631 * to manually enable the seccomp thread flag here.
1632 */
1633 if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1634 set_tsk_thread_flag(p, TIF_SECCOMP);
1635#endif
1636}
1637
17da2bd9 1638SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1da177e4
LT
1639{
1640 current->clear_child_tid = tidptr;
1641
b488893a 1642 return task_pid_vnr(current);
1da177e4
LT
1643}
1644
a39bc516 1645static void rt_mutex_init_task(struct task_struct *p)
23f78d4a 1646{
1d615482 1647 raw_spin_lock_init(&p->pi_lock);
e29e175b 1648#ifdef CONFIG_RT_MUTEXES
a23ba907 1649 p->pi_waiters = RB_ROOT_CACHED;
e96a7705 1650 p->pi_top_task = NULL;
23f78d4a 1651 p->pi_blocked_on = NULL;
23f78d4a
IM
1652#endif
1653}
1654
2c470475
EB
1655static inline void init_task_pid_links(struct task_struct *task)
1656{
1657 enum pid_type type;
1658
1659 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1660 INIT_HLIST_NODE(&task->pid_links[type]);
1661 }
1662}
1663
81907739
ON
1664static inline void
1665init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1666{
2c470475
EB
1667 if (type == PIDTYPE_PID)
1668 task->thread_pid = pid;
1669 else
1670 task->signal->pids[type] = pid;
81907739
ON
1671}
1672
6bfbaa51
IM
1673static inline void rcu_copy_process(struct task_struct *p)
1674{
1675#ifdef CONFIG_PREEMPT_RCU
1676 p->rcu_read_lock_nesting = 0;
1677 p->rcu_read_unlock_special.s = 0;
1678 p->rcu_blocked_node = NULL;
1679 INIT_LIST_HEAD(&p->rcu_node_entry);
1680#endif /* #ifdef CONFIG_PREEMPT_RCU */
1681#ifdef CONFIG_TASKS_RCU
1682 p->rcu_tasks_holdout = false;
1683 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1684 p->rcu_tasks_idle_cpu = -1;
1685#endif /* #ifdef CONFIG_TASKS_RCU */
1686}
1687
3695eae5
CB
1688struct pid *pidfd_pid(const struct file *file)
1689{
1690 if (file->f_op == &pidfd_fops)
1691 return file->private_data;
1692
1693 return ERR_PTR(-EBADF);
1694}
1695
b3e58382
CB
1696static int pidfd_release(struct inode *inode, struct file *file)
1697{
1698 struct pid *pid = file->private_data;
1699
1700 file->private_data = NULL;
1701 put_pid(pid);
1702 return 0;
1703}
1704
1705#ifdef CONFIG_PROC_FS
15d42eb2
CK
1706/**
1707 * pidfd_show_fdinfo - print information about a pidfd
1708 * @m: proc fdinfo file
1709 * @f: file referencing a pidfd
1710 *
1711 * Pid:
1712 * This function will print the pid that a given pidfd refers to in the
1713 * pid namespace of the procfs instance.
1714 * If the pid namespace of the process is not a descendant of the pid
1715 * namespace of the procfs instance 0 will be shown as its pid. This is
1716 * similar to calling getppid() on a process whose parent is outside of
1717 * its pid namespace.
1718 *
1719 * NSpid:
1720 * If pid namespaces are supported then this function will also print
1721 * the pid of a given pidfd refers to for all descendant pid namespaces
1722 * starting from the current pid namespace of the instance, i.e. the
1723 * Pid field and the first entry in the NSpid field will be identical.
1724 * If the pid namespace of the process is not a descendant of the pid
1725 * namespace of the procfs instance 0 will be shown as its first NSpid
1726 * entry and no others will be shown.
1727 * Note that this differs from the Pid and NSpid fields in
1728 * /proc/<pid>/status where Pid and NSpid are always shown relative to
1729 * the pid namespace of the procfs instance. The difference becomes
1730 * obvious when sending around a pidfd between pid namespaces from a
1731 * different branch of the tree, i.e. where no ancestoral relation is
1732 * present between the pid namespaces:
1733 * - create two new pid namespaces ns1 and ns2 in the initial pid
1734 * namespace (also take care to create new mount namespaces in the
1735 * new pid namespace and mount procfs)
1736 * - create a process with a pidfd in ns1
1737 * - send pidfd from ns1 to ns2
1738 * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid
1739 * have exactly one entry, which is 0
1740 */
b3e58382
CB
1741static void pidfd_show_fdinfo(struct seq_file *m, struct file *f)
1742{
b3e58382 1743 struct pid *pid = f->private_data;
3d6d8da4
CB
1744 struct pid_namespace *ns;
1745 pid_t nr = -1;
15d42eb2 1746
3d6d8da4
CB
1747 if (likely(pid_has_task(pid, PIDTYPE_PID))) {
1748 ns = proc_pid_ns(file_inode(m->file));
1749 nr = pid_nr_ns(pid, ns);
1750 }
1751
1752 seq_put_decimal_ll(m, "Pid:\t", nr);
b3e58382 1753
15d42eb2 1754#ifdef CONFIG_PID_NS
3d6d8da4
CB
1755 seq_put_decimal_ll(m, "\nNSpid:\t", nr);
1756 if (nr > 0) {
15d42eb2 1757 int i;
b3e58382 1758
15d42eb2
CK
1759 /* If nr is non-zero it means that 'pid' is valid and that
1760 * ns, i.e. the pid namespace associated with the procfs
1761 * instance, is in the pid namespace hierarchy of pid.
1762 * Start at one below the already printed level.
1763 */
1764 for (i = ns->level + 1; i <= pid->level; i++)
3d6d8da4 1765 seq_put_decimal_ll(m, "\t", pid->numbers[i].nr);
15d42eb2
CK
1766 }
1767#endif
b3e58382
CB
1768 seq_putc(m, '\n');
1769}
1770#endif
1771
b53b0b9d
JFG
1772/*
1773 * Poll support for process exit notification.
1774 */
9e77716a 1775static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts)
b53b0b9d
JFG
1776{
1777 struct task_struct *task;
1778 struct pid *pid = file->private_data;
9e77716a 1779 __poll_t poll_flags = 0;
b53b0b9d
JFG
1780
1781 poll_wait(file, &pid->wait_pidfd, pts);
1782
1783 rcu_read_lock();
1784 task = pid_task(pid, PIDTYPE_PID);
1785 /*
1786 * Inform pollers only when the whole thread group exits.
1787 * If the thread group leader exits before all other threads in the
1788 * group, then poll(2) should block, similar to the wait(2) family.
1789 */
1790 if (!task || (task->exit_state && thread_group_empty(task)))
9e77716a 1791 poll_flags = EPOLLIN | EPOLLRDNORM;
b53b0b9d
JFG
1792 rcu_read_unlock();
1793
1794 return poll_flags;
1795}
1796
b3e58382
CB
1797const struct file_operations pidfd_fops = {
1798 .release = pidfd_release,
b53b0b9d 1799 .poll = pidfd_poll,
b3e58382
CB
1800#ifdef CONFIG_PROC_FS
1801 .show_fdinfo = pidfd_show_fdinfo,
1802#endif
1803};
1804
c3f3ce04
AA
1805static void __delayed_free_task(struct rcu_head *rhp)
1806{
1807 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
1808
1809 free_task(tsk);
1810}
1811
1812static __always_inline void delayed_free_task(struct task_struct *tsk)
1813{
1814 if (IS_ENABLED(CONFIG_MEMCG))
1815 call_rcu(&tsk->rcu, __delayed_free_task);
1816 else
1817 free_task(tsk);
1818}
1819
1da177e4
LT
1820/*
1821 * This creates a new process as a copy of the old one,
1822 * but does not actually start it yet.
1823 *
1824 * It copies the registers, and all the appropriate
1825 * parts of the process environment (as per the clone
1826 * flags). The actual kick-off is left to the caller.
1827 */
0766f788 1828static __latent_entropy struct task_struct *copy_process(
09a05394 1829 struct pid *pid,
3033f14a 1830 int trace,
7f192e3c
CB
1831 int node,
1832 struct kernel_clone_args *args)
1da177e4 1833{
b3e58382 1834 int pidfd = -1, retval;
a24efe62 1835 struct task_struct *p;
c3ad2c3b 1836 struct multiprocess_signals delayed;
6fd2fe49 1837 struct file *pidfile = NULL;
7f192e3c 1838 u64 clone_flags = args->flags;
769071ac 1839 struct nsproxy *nsp = current->nsproxy;
1da177e4 1840
667b6094
MPS
1841 /*
1842 * Don't allow sharing the root directory with processes in a different
1843 * namespace
1844 */
1da177e4
LT
1845 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1846 return ERR_PTR(-EINVAL);
1847
e66eded8
EB
1848 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1849 return ERR_PTR(-EINVAL);
1850
1da177e4
LT
1851 /*
1852 * Thread groups must share signals as well, and detached threads
1853 * can only be started up within the thread group.
1854 */
1855 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1856 return ERR_PTR(-EINVAL);
1857
1858 /*
1859 * Shared signal handlers imply shared VM. By way of the above,
1860 * thread groups also imply shared VM. Blocking this case allows
1861 * for various simplifications in other code.
1862 */
1863 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1864 return ERR_PTR(-EINVAL);
1865
123be07b
SB
1866 /*
1867 * Siblings of global init remain as zombies on exit since they are
1868 * not reaped by their parent (swapper). To solve this and to avoid
1869 * multi-rooted process trees, prevent global and container-inits
1870 * from creating siblings.
1871 */
1872 if ((clone_flags & CLONE_PARENT) &&
1873 current->signal->flags & SIGNAL_UNKILLABLE)
1874 return ERR_PTR(-EINVAL);
1875
8382fcac 1876 /*
40a0d32d 1877 * If the new process will be in a different pid or user namespace
faf00da5 1878 * do not allow it to share a thread group with the forking task.
8382fcac 1879 */
faf00da5 1880 if (clone_flags & CLONE_THREAD) {
40a0d32d 1881 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
769071ac
AV
1882 (task_active_pid_ns(current) != nsp->pid_ns_for_children))
1883 return ERR_PTR(-EINVAL);
1884 }
1885
1886 /*
1887 * If the new process will be in a different time namespace
1888 * do not allow it to share VM or a thread group with the forking task.
1889 */
1890 if (clone_flags & (CLONE_THREAD | CLONE_VM)) {
1891 if (nsp->time_ns != nsp->time_ns_for_children)
40a0d32d
ON
1892 return ERR_PTR(-EINVAL);
1893 }
8382fcac 1894
b3e58382 1895 if (clone_flags & CLONE_PIDFD) {
b3e58382 1896 /*
b3e58382
CB
1897 * - CLONE_DETACHED is blocked so that we can potentially
1898 * reuse it later for CLONE_PIDFD.
1899 * - CLONE_THREAD is blocked until someone really needs it.
1900 */
7f192e3c 1901 if (clone_flags & (CLONE_DETACHED | CLONE_THREAD))
b3e58382 1902 return ERR_PTR(-EINVAL);
b3e58382
CB
1903 }
1904
c3ad2c3b
EB
1905 /*
1906 * Force any signals received before this point to be delivered
1907 * before the fork happens. Collect up signals sent to multiple
1908 * processes that happen during the fork and delay them so that
1909 * they appear to happen after the fork.
1910 */
1911 sigemptyset(&delayed.signal);
1912 INIT_HLIST_NODE(&delayed.node);
1913
1914 spin_lock_irq(&current->sighand->siglock);
1915 if (!(clone_flags & CLONE_THREAD))
1916 hlist_add_head(&delayed.node, &current->signal->multiprocess);
1917 recalc_sigpending();
1918 spin_unlock_irq(&current->sighand->siglock);
1919 retval = -ERESTARTNOINTR;
1920 if (signal_pending(current))
1921 goto fork_out;
1922
1da177e4 1923 retval = -ENOMEM;
725fc629 1924 p = dup_task_struct(current, node);
1da177e4
LT
1925 if (!p)
1926 goto fork_out;
1927
4d6501dc
VN
1928 /*
1929 * This _must_ happen before we call free_task(), i.e. before we jump
1930 * to any of the bad_fork_* labels. This is to avoid freeing
1931 * p->set_child_tid which is (ab)used as a kthread's data pointer for
1932 * kernel threads (PF_KTHREAD).
1933 */
7f192e3c 1934 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
4d6501dc
VN
1935 /*
1936 * Clear TID on mm_release()?
1937 */
7f192e3c 1938 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
4d6501dc 1939
f7e8b616
SR
1940 ftrace_graph_init_task(p);
1941
bea493a0
PZ
1942 rt_mutex_init_task(p);
1943
d12c1a37 1944#ifdef CONFIG_PROVE_LOCKING
de30a2b3
IM
1945 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1946 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1947#endif
1da177e4 1948 retval = -EAGAIN;
3b11a1de 1949 if (atomic_read(&p->real_cred->user->processes) >=
78d7d407 1950 task_rlimit(p, RLIMIT_NPROC)) {
b57922b6
EP
1951 if (p->real_cred->user != INIT_USER &&
1952 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1da177e4
LT
1953 goto bad_fork_free;
1954 }
72fa5997 1955 current->flags &= ~PF_NPROC_EXCEEDED;
1da177e4 1956
f1752eec
DH
1957 retval = copy_creds(p, clone_flags);
1958 if (retval < 0)
1959 goto bad_fork_free;
1da177e4
LT
1960
1961 /*
1962 * If multiple threads are within copy_process(), then this check
1963 * triggers too late. This doesn't hurt, the check is only there
1964 * to stop root fork bombs.
1965 */
04ec93fe 1966 retval = -EAGAIN;
1da177e4
LT
1967 if (nr_threads >= max_threads)
1968 goto bad_fork_cleanup_count;
1969
ca74e92b 1970 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
c1de45ca 1971 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE);
514ddb44 1972 p->flags |= PF_FORKNOEXEC;
1da177e4
LT
1973 INIT_LIST_HEAD(&p->children);
1974 INIT_LIST_HEAD(&p->sibling);
f41d911f 1975 rcu_copy_process(p);
1da177e4
LT
1976 p->vfork_done = NULL;
1977 spin_lock_init(&p->alloc_lock);
1da177e4 1978
1da177e4
LT
1979 init_sigpending(&p->pending);
1980
64861634 1981 p->utime = p->stime = p->gtime = 0;
40565b5a 1982#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
64861634 1983 p->utimescaled = p->stimescaled = 0;
40565b5a 1984#endif
9d7fb042
PZ
1985 prev_cputime_init(&p->prev_cputime);
1986
6a61671b 1987#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
bac5b6b6
FW
1988 seqcount_init(&p->vtime.seqcount);
1989 p->vtime.starttime = 0;
1990 p->vtime.state = VTIME_INACTIVE;
6a61671b
FW
1991#endif
1992
a3a2e76c
KH
1993#if defined(SPLIT_RSS_COUNTING)
1994 memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1995#endif
172ba844 1996
6976675d
AV
1997 p->default_timer_slack_ns = current->timer_slack_ns;
1998
eb414681
JW
1999#ifdef CONFIG_PSI
2000 p->psi_flags = 0;
2001#endif
2002
5995477a 2003 task_io_accounting_init(&p->ioac);
1da177e4
LT
2004 acct_clear_integrals(p);
2005
3a245c0f 2006 posix_cputimers_init(&p->posix_cputimers);
1da177e4 2007
1da177e4 2008 p->io_context = NULL;
c0b0ae8a 2009 audit_set_context(p, NULL);
b4f48b63 2010 cgroup_fork(p);
1da177e4 2011#ifdef CONFIG_NUMA
846a16bf 2012 p->mempolicy = mpol_dup(p->mempolicy);
fb0a685c
DRO
2013 if (IS_ERR(p->mempolicy)) {
2014 retval = PTR_ERR(p->mempolicy);
2015 p->mempolicy = NULL;
e8604cb4 2016 goto bad_fork_cleanup_threadgroup_lock;
fb0a685c 2017 }
1da177e4 2018#endif
778d3b0f
MH
2019#ifdef CONFIG_CPUSETS
2020 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
2021 p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
cc9a6c87 2022 seqcount_init(&p->mems_allowed_seq);
778d3b0f 2023#endif
de30a2b3
IM
2024#ifdef CONFIG_TRACE_IRQFLAGS
2025 p->irq_events = 0;
2026 p->hardirqs_enabled = 0;
2027 p->hardirq_enable_ip = 0;
2028 p->hardirq_enable_event = 0;
2029 p->hardirq_disable_ip = _THIS_IP_;
2030 p->hardirq_disable_event = 0;
2031 p->softirqs_enabled = 1;
2032 p->softirq_enable_ip = _THIS_IP_;
2033 p->softirq_enable_event = 0;
2034 p->softirq_disable_ip = 0;
2035 p->softirq_disable_event = 0;
2036 p->hardirq_context = 0;
2037 p->softirq_context = 0;
2038#endif
8bcbde54
DH
2039
2040 p->pagefault_disabled = 0;
2041
fbb9ce95 2042#ifdef CONFIG_LOCKDEP
b09be676 2043 lockdep_init_task(p);
fbb9ce95 2044#endif
1da177e4 2045
408894ee
IM
2046#ifdef CONFIG_DEBUG_MUTEXES
2047 p->blocked_on = NULL; /* not blocked yet */
2048#endif
cafe5635
KO
2049#ifdef CONFIG_BCACHE
2050 p->sequential_io = 0;
2051 p->sequential_io_avg = 0;
2052#endif
0f481406 2053
3c90e6e9 2054 /* Perform scheduler related setup. Assign this task to a CPU. */
aab03e05
DF
2055 retval = sched_fork(clone_flags, p);
2056 if (retval)
2057 goto bad_fork_cleanup_policy;
6ab423e0 2058
cdd6c482 2059 retval = perf_event_init_task(p);
6ab423e0
PZ
2060 if (retval)
2061 goto bad_fork_cleanup_policy;
fb0a685c
DRO
2062 retval = audit_alloc(p);
2063 if (retval)
6c72e350 2064 goto bad_fork_cleanup_perf;
1da177e4 2065 /* copy all the process information */
ab602f79 2066 shm_init_task(p);
e4e55b47 2067 retval = security_task_alloc(p, clone_flags);
fb0a685c 2068 if (retval)
1da177e4 2069 goto bad_fork_cleanup_audit;
e4e55b47
TH
2070 retval = copy_semundo(clone_flags, p);
2071 if (retval)
2072 goto bad_fork_cleanup_security;
fb0a685c
DRO
2073 retval = copy_files(clone_flags, p);
2074 if (retval)
1da177e4 2075 goto bad_fork_cleanup_semundo;
fb0a685c
DRO
2076 retval = copy_fs(clone_flags, p);
2077 if (retval)
1da177e4 2078 goto bad_fork_cleanup_files;
fb0a685c
DRO
2079 retval = copy_sighand(clone_flags, p);
2080 if (retval)
1da177e4 2081 goto bad_fork_cleanup_fs;
fb0a685c
DRO
2082 retval = copy_signal(clone_flags, p);
2083 if (retval)
1da177e4 2084 goto bad_fork_cleanup_sighand;
fb0a685c
DRO
2085 retval = copy_mm(clone_flags, p);
2086 if (retval)
1da177e4 2087 goto bad_fork_cleanup_signal;
fb0a685c
DRO
2088 retval = copy_namespaces(clone_flags, p);
2089 if (retval)
d84f4f99 2090 goto bad_fork_cleanup_mm;
fb0a685c
DRO
2091 retval = copy_io(clone_flags, p);
2092 if (retval)
fd0928df 2093 goto bad_fork_cleanup_namespaces;
7f192e3c
CB
2094 retval = copy_thread_tls(clone_flags, args->stack, args->stack_size, p,
2095 args->tls);
1da177e4 2096 if (retval)
fd0928df 2097 goto bad_fork_cleanup_io;
1da177e4 2098
afaef01c
AP
2099 stackleak_task_init(p);
2100
425fb2b4 2101 if (pid != &init_struct_pid) {
49cb2fc4
AR
2102 pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid,
2103 args->set_tid_size);
35f71bc0
MH
2104 if (IS_ERR(pid)) {
2105 retval = PTR_ERR(pid);
0740aa5f 2106 goto bad_fork_cleanup_thread;
35f71bc0 2107 }
425fb2b4
PE
2108 }
2109
b3e58382
CB
2110 /*
2111 * This has to happen after we've potentially unshared the file
2112 * descriptor table (so that the pidfd doesn't leak into the child
2113 * if the fd table isn't shared).
2114 */
2115 if (clone_flags & CLONE_PIDFD) {
6fd2fe49 2116 retval = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
b3e58382
CB
2117 if (retval < 0)
2118 goto bad_fork_free_pid;
2119
2120 pidfd = retval;
6fd2fe49
AV
2121
2122 pidfile = anon_inode_getfile("[pidfd]", &pidfd_fops, pid,
2123 O_RDWR | O_CLOEXEC);
2124 if (IS_ERR(pidfile)) {
2125 put_unused_fd(pidfd);
28dd29c0 2126 retval = PTR_ERR(pidfile);
6fd2fe49
AV
2127 goto bad_fork_free_pid;
2128 }
2129 get_pid(pid); /* held by pidfile now */
2130
7f192e3c 2131 retval = put_user(pidfd, args->pidfd);
b3e58382
CB
2132 if (retval)
2133 goto bad_fork_put_pidfd;
2134 }
2135
73c10101
JA
2136#ifdef CONFIG_BLOCK
2137 p->plug = NULL;
2138#endif
ba31c1a4
TG
2139 futex_init_task(p);
2140
f9a3879a
GM
2141 /*
2142 * sigaltstack should be cleared when sharing the same VM
2143 */
2144 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2a742138 2145 sas_ss_reset(p);
f9a3879a 2146
1da177e4 2147 /*
6580807d
ON
2148 * Syscall tracing and stepping should be turned off in the
2149 * child regardless of CLONE_PTRACE.
1da177e4 2150 */
6580807d 2151 user_disable_single_step(p);
1da177e4 2152 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
ed75e8d5
LV
2153#ifdef TIF_SYSCALL_EMU
2154 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
2155#endif
e02c9b0d 2156 clear_tsk_latency_tracing(p);
1da177e4 2157
1da177e4 2158 /* ok, now we should be set up.. */
18c830df
ON
2159 p->pid = pid_nr(pid);
2160 if (clone_flags & CLONE_THREAD) {
5f8aadd8 2161 p->exit_signal = -1;
18c830df
ON
2162 p->group_leader = current->group_leader;
2163 p->tgid = current->tgid;
2164 } else {
2165 if (clone_flags & CLONE_PARENT)
2166 p->exit_signal = current->group_leader->exit_signal;
2167 else
7f192e3c 2168 p->exit_signal = args->exit_signal;
18c830df
ON
2169 p->group_leader = p;
2170 p->tgid = p->pid;
2171 }
5f8aadd8 2172
9d823e8f
WF
2173 p->nr_dirtied = 0;
2174 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
83712358 2175 p->dirty_paused_when = 0;
9d823e8f 2176
bb8cbbfe 2177 p->pdeath_signal = 0;
47e65328 2178 INIT_LIST_HEAD(&p->thread_group);
158e1645 2179 p->task_works = NULL;
1da177e4 2180
7e47682e
AS
2181 /*
2182 * Ensure that the cgroup subsystem policies allow the new process to be
2183 * forked. It should be noted the the new process's css_set can be changed
2184 * between here and cgroup_post_fork() if an organisation operation is in
2185 * progress.
2186 */
ef2c41cf 2187 retval = cgroup_can_fork(p, args);
7e47682e 2188 if (retval)
5a5cf5cb 2189 goto bad_fork_put_pidfd;
7e47682e 2190
7b558513
DR
2191 /*
2192 * From this point on we must avoid any synchronous user-space
2193 * communication until we take the tasklist-lock. In particular, we do
2194 * not want user-space to be able to predict the process start-time by
2195 * stalling fork(2) after we recorded the start_time but before it is
2196 * visible to the system.
2197 */
2198
2199 p->start_time = ktime_get_ns();
cf25e24d 2200 p->start_boottime = ktime_get_boottime_ns();
7b558513 2201
18c830df
ON
2202 /*
2203 * Make it visible to the rest of the system, but dont wake it up yet.
2204 * Need tasklist lock for parent etc handling!
2205 */
1da177e4
LT
2206 write_lock_irq(&tasklist_lock);
2207
1da177e4 2208 /* CLONE_PARENT re-uses the old parent */
2d5516cb 2209 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1da177e4 2210 p->real_parent = current->real_parent;
2d5516cb
ON
2211 p->parent_exec_id = current->parent_exec_id;
2212 } else {
1da177e4 2213 p->real_parent = current;
2d5516cb
ON
2214 p->parent_exec_id = current->self_exec_id;
2215 }
1da177e4 2216
d83a7cb3
JP
2217 klp_copy_process(p);
2218
3f17da69 2219 spin_lock(&current->sighand->siglock);
4a2c7a78 2220
dbd95212
KC
2221 /*
2222 * Copy seccomp details explicitly here, in case they were changed
2223 * before holding sighand lock.
2224 */
2225 copy_seccomp(p);
2226
d7822b1e
MD
2227 rseq_fork(p, clone_flags);
2228
4ca1d3ee 2229 /* Don't start children in a dying pid namespace */
e8cfbc24 2230 if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
3fd37226
KT
2231 retval = -ENOMEM;
2232 goto bad_fork_cancel_cgroup;
2233 }
4a2c7a78 2234
7673bf55
EB
2235 /* Let kill terminate clone/fork in the middle */
2236 if (fatal_signal_pending(current)) {
2237 retval = -EINTR;
2238 goto bad_fork_cancel_cgroup;
2239 }
2240
6fd2fe49
AV
2241 /* past the last point of failure */
2242 if (pidfile)
2243 fd_install(pidfd, pidfile);
4a2c7a78 2244
2c470475 2245 init_task_pid_links(p);
73b9ebfe 2246 if (likely(p->pid)) {
4b9d33e6 2247 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
73b9ebfe 2248
81907739 2249 init_task_pid(p, PIDTYPE_PID, pid);
73b9ebfe 2250 if (thread_group_leader(p)) {
6883f81a 2251 init_task_pid(p, PIDTYPE_TGID, pid);
81907739
ON
2252 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2253 init_task_pid(p, PIDTYPE_SID, task_session(current));
2254
1c4042c2 2255 if (is_child_reaper(pid)) {
17cf22c3 2256 ns_of_pid(pid)->child_reaper = p;
1c4042c2
EB
2257 p->signal->flags |= SIGNAL_UNKILLABLE;
2258 }
c3ad2c3b 2259 p->signal->shared_pending.signal = delayed.signal;
9c9f4ded 2260 p->signal->tty = tty_kref_get(current->signal->tty);
749860ce
PT
2261 /*
2262 * Inherit has_child_subreaper flag under the same
2263 * tasklist_lock with adding child to the process tree
2264 * for propagate_has_child_subreaper optimization.
2265 */
2266 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2267 p->real_parent->signal->is_child_subreaper;
9cd80bbb 2268 list_add_tail(&p->sibling, &p->real_parent->children);
5e85d4ab 2269 list_add_tail_rcu(&p->tasks, &init_task.tasks);
6883f81a 2270 attach_pid(p, PIDTYPE_TGID);
81907739
ON
2271 attach_pid(p, PIDTYPE_PGID);
2272 attach_pid(p, PIDTYPE_SID);
909ea964 2273 __this_cpu_inc(process_counts);
80628ca0
ON
2274 } else {
2275 current->signal->nr_threads++;
2276 atomic_inc(&current->signal->live);
60d4de3f 2277 refcount_inc(&current->signal->sigcnt);
924de3b8 2278 task_join_group_stop(p);
80628ca0
ON
2279 list_add_tail_rcu(&p->thread_group,
2280 &p->group_leader->thread_group);
0c740d0a
ON
2281 list_add_tail_rcu(&p->thread_node,
2282 &p->signal->thread_head);
73b9ebfe 2283 }
81907739 2284 attach_pid(p, PIDTYPE_PID);
73b9ebfe 2285 nr_threads++;
1da177e4 2286 }
1da177e4 2287 total_forks++;
c3ad2c3b 2288 hlist_del_init(&delayed.node);
3f17da69 2289 spin_unlock(&current->sighand->siglock);
4af4206b 2290 syscall_tracepoint_update(p);
1da177e4 2291 write_unlock_irq(&tasklist_lock);
4af4206b 2292
c13cf856 2293 proc_fork_connector(p);
ef2c41cf 2294 cgroup_post_fork(p, args);
cdd6c482 2295 perf_event_fork(p);
43d2b113
KH
2296
2297 trace_task_newtask(p, clone_flags);
3ab67966 2298 uprobe_copy_process(p, clone_flags);
43d2b113 2299
1da177e4
LT
2300 return p;
2301
7e47682e 2302bad_fork_cancel_cgroup:
3fd37226
KT
2303 spin_unlock(&current->sighand->siglock);
2304 write_unlock_irq(&tasklist_lock);
ef2c41cf 2305 cgroup_cancel_fork(p, args);
b3e58382 2306bad_fork_put_pidfd:
6fd2fe49
AV
2307 if (clone_flags & CLONE_PIDFD) {
2308 fput(pidfile);
2309 put_unused_fd(pidfd);
2310 }
425fb2b4
PE
2311bad_fork_free_pid:
2312 if (pid != &init_struct_pid)
2313 free_pid(pid);
0740aa5f
JS
2314bad_fork_cleanup_thread:
2315 exit_thread(p);
fd0928df 2316bad_fork_cleanup_io:
b69f2292
LR
2317 if (p->io_context)
2318 exit_io_context(p);
ab516013 2319bad_fork_cleanup_namespaces:
444f378b 2320 exit_task_namespaces(p);
1da177e4 2321bad_fork_cleanup_mm:
c3f3ce04
AA
2322 if (p->mm) {
2323 mm_clear_owner(p->mm, p);
1da177e4 2324 mmput(p->mm);
c3f3ce04 2325 }
1da177e4 2326bad_fork_cleanup_signal:
4ab6c083 2327 if (!(clone_flags & CLONE_THREAD))
1c5354de 2328 free_signal_struct(p->signal);
1da177e4 2329bad_fork_cleanup_sighand:
a7e5328a 2330 __cleanup_sighand(p->sighand);
1da177e4
LT
2331bad_fork_cleanup_fs:
2332 exit_fs(p); /* blocking */
2333bad_fork_cleanup_files:
2334 exit_files(p); /* blocking */
2335bad_fork_cleanup_semundo:
2336 exit_sem(p);
e4e55b47
TH
2337bad_fork_cleanup_security:
2338 security_task_free(p);
1da177e4
LT
2339bad_fork_cleanup_audit:
2340 audit_free(p);
6c72e350 2341bad_fork_cleanup_perf:
cdd6c482 2342 perf_event_free_task(p);
6c72e350 2343bad_fork_cleanup_policy:
b09be676 2344 lockdep_free_task(p);
1da177e4 2345#ifdef CONFIG_NUMA
f0be3d32 2346 mpol_put(p->mempolicy);
e8604cb4 2347bad_fork_cleanup_threadgroup_lock:
1da177e4 2348#endif
35df17c5 2349 delayacct_tsk_free(p);
1da177e4 2350bad_fork_cleanup_count:
d84f4f99 2351 atomic_dec(&p->cred->user->processes);
e0e81739 2352 exit_creds(p);
1da177e4 2353bad_fork_free:
405c0759 2354 p->state = TASK_DEAD;
68f24b08 2355 put_task_stack(p);
c3f3ce04 2356 delayed_free_task(p);
fe7d37d1 2357fork_out:
c3ad2c3b
EB
2358 spin_lock_irq(&current->sighand->siglock);
2359 hlist_del_init(&delayed.node);
2360 spin_unlock_irq(&current->sighand->siglock);
fe7d37d1 2361 return ERR_PTR(retval);
1da177e4
LT
2362}
2363
2c470475 2364static inline void init_idle_pids(struct task_struct *idle)
f106eee1
ON
2365{
2366 enum pid_type type;
2367
2368 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2c470475
EB
2369 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2370 init_task_pid(idle, type, &init_struct_pid);
f106eee1
ON
2371 }
2372}
2373
0db0628d 2374struct task_struct *fork_idle(int cpu)
1da177e4 2375{
36c8b586 2376 struct task_struct *task;
7f192e3c
CB
2377 struct kernel_clone_args args = {
2378 .flags = CLONE_VM,
2379 };
2380
2381 task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
f106eee1 2382 if (!IS_ERR(task)) {
2c470475 2383 init_idle_pids(task);
753ca4f3 2384 init_idle(task, cpu);
f106eee1 2385 }
73b9ebfe 2386
1da177e4
LT
2387 return task;
2388}
2389
13585fa0
NA
2390struct mm_struct *copy_init_mm(void)
2391{
2392 return dup_mm(NULL, &init_mm);
2393}
2394
1da177e4
LT
2395/*
2396 * Ok, this is the main fork-routine.
2397 *
2398 * It copies the process, and if successful kick-starts
2399 * it and waits for it to finish using the VM if required.
a0eb9abd
ES
2400 *
2401 * args->exit_signal is expected to be checked for sanity by the caller.
1da177e4 2402 */
7f192e3c 2403long _do_fork(struct kernel_clone_args *args)
1da177e4 2404{
7f192e3c 2405 u64 clone_flags = args->flags;
9f5325aa
MPS
2406 struct completion vfork;
2407 struct pid *pid;
1da177e4
LT
2408 struct task_struct *p;
2409 int trace = 0;
92476d7f 2410 long nr;
1da177e4 2411
09a05394 2412 /*
4b9d33e6
TH
2413 * Determine whether and which event to report to ptracer. When
2414 * called from kernel_thread or CLONE_UNTRACED is explicitly
2415 * requested, no event is reported; otherwise, report if the event
2416 * for the type of forking is enabled.
09a05394 2417 */
e80d6661 2418 if (!(clone_flags & CLONE_UNTRACED)) {
4b9d33e6
TH
2419 if (clone_flags & CLONE_VFORK)
2420 trace = PTRACE_EVENT_VFORK;
7f192e3c 2421 else if (args->exit_signal != SIGCHLD)
4b9d33e6
TH
2422 trace = PTRACE_EVENT_CLONE;
2423 else
2424 trace = PTRACE_EVENT_FORK;
2425
2426 if (likely(!ptrace_event_enabled(current, trace)))
2427 trace = 0;
2428 }
1da177e4 2429
7f192e3c 2430 p = copy_process(NULL, trace, NUMA_NO_NODE, args);
38addce8 2431 add_latent_entropy();
9f5325aa
MPS
2432
2433 if (IS_ERR(p))
2434 return PTR_ERR(p);
2435
1da177e4
LT
2436 /*
2437 * Do this prior waking up the new thread - the thread pointer
2438 * might get invalid after that point, if the thread exits quickly.
2439 */
9f5325aa 2440 trace_sched_process_fork(current, p);
0a16b607 2441
9f5325aa
MPS
2442 pid = get_task_pid(p, PIDTYPE_PID);
2443 nr = pid_vnr(pid);
30e49c26 2444
9f5325aa 2445 if (clone_flags & CLONE_PARENT_SETTID)
7f192e3c 2446 put_user(nr, args->parent_tid);
a6f5e063 2447
9f5325aa
MPS
2448 if (clone_flags & CLONE_VFORK) {
2449 p->vfork_done = &vfork;
2450 init_completion(&vfork);
2451 get_task_struct(p);
2452 }
1da177e4 2453
9f5325aa 2454 wake_up_new_task(p);
09a05394 2455
9f5325aa
MPS
2456 /* forking complete and child started to run, tell ptracer */
2457 if (unlikely(trace))
2458 ptrace_event_pid(trace, pid);
4e52365f 2459
9f5325aa
MPS
2460 if (clone_flags & CLONE_VFORK) {
2461 if (!wait_for_vfork_done(p, &vfork))
2462 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
1da177e4 2463 }
9f5325aa
MPS
2464
2465 put_pid(pid);
92476d7f 2466 return nr;
1da177e4
LT
2467}
2468
028b6e8a
DL
2469bool legacy_clone_args_valid(const struct kernel_clone_args *kargs)
2470{
2471 /* clone(CLONE_PIDFD) uses parent_tidptr to return a pidfd */
2472 if ((kargs->flags & CLONE_PIDFD) &&
2473 (kargs->flags & CLONE_PARENT_SETTID))
2474 return false;
2475
2476 return true;
2477}
2478
3033f14a
JT
2479#ifndef CONFIG_HAVE_COPY_THREAD_TLS
2480/* For compatibility with architectures that call do_fork directly rather than
2481 * using the syscall entry points below. */
2482long do_fork(unsigned long clone_flags,
2483 unsigned long stack_start,
2484 unsigned long stack_size,
2485 int __user *parent_tidptr,
2486 int __user *child_tidptr)
2487{
7f192e3c 2488 struct kernel_clone_args args = {
3f2c788a 2489 .flags = (lower_32_bits(clone_flags) & ~CSIGNAL),
028b6e8a 2490 .pidfd = parent_tidptr,
7f192e3c
CB
2491 .child_tid = child_tidptr,
2492 .parent_tid = parent_tidptr,
3f2c788a 2493 .exit_signal = (lower_32_bits(clone_flags) & CSIGNAL),
7f192e3c
CB
2494 .stack = stack_start,
2495 .stack_size = stack_size,
2496 };
2497
028b6e8a
DL
2498 if (!legacy_clone_args_valid(&args))
2499 return -EINVAL;
2500
7f192e3c 2501 return _do_fork(&args);
3033f14a
JT
2502}
2503#endif
2504
2aa3a7f8
AV
2505/*
2506 * Create a kernel thread.
2507 */
2508pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2509{
7f192e3c 2510 struct kernel_clone_args args = {
3f2c788a
CB
2511 .flags = ((lower_32_bits(flags) | CLONE_VM |
2512 CLONE_UNTRACED) & ~CSIGNAL),
2513 .exit_signal = (lower_32_bits(flags) & CSIGNAL),
7f192e3c
CB
2514 .stack = (unsigned long)fn,
2515 .stack_size = (unsigned long)arg,
2516 };
2517
2518 return _do_fork(&args);
2aa3a7f8 2519}
2aa3a7f8 2520
d2125043
AV
2521#ifdef __ARCH_WANT_SYS_FORK
2522SYSCALL_DEFINE0(fork)
2523{
2524#ifdef CONFIG_MMU
7f192e3c
CB
2525 struct kernel_clone_args args = {
2526 .exit_signal = SIGCHLD,
2527 };
2528
2529 return _do_fork(&args);
d2125043
AV
2530#else
2531 /* can not support in nommu mode */
5d59e182 2532 return -EINVAL;
d2125043
AV
2533#endif
2534}
2535#endif
2536
2537#ifdef __ARCH_WANT_SYS_VFORK
2538SYSCALL_DEFINE0(vfork)
2539{
7f192e3c
CB
2540 struct kernel_clone_args args = {
2541 .flags = CLONE_VFORK | CLONE_VM,
2542 .exit_signal = SIGCHLD,
2543 };
2544
2545 return _do_fork(&args);
d2125043
AV
2546}
2547#endif
2548
2549#ifdef __ARCH_WANT_SYS_CLONE
2550#ifdef CONFIG_CLONE_BACKWARDS
2551SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2552 int __user *, parent_tidptr,
3033f14a 2553 unsigned long, tls,
d2125043
AV
2554 int __user *, child_tidptr)
2555#elif defined(CONFIG_CLONE_BACKWARDS2)
2556SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2557 int __user *, parent_tidptr,
2558 int __user *, child_tidptr,
3033f14a 2559 unsigned long, tls)
dfa9771a
MS
2560#elif defined(CONFIG_CLONE_BACKWARDS3)
2561SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2562 int, stack_size,
2563 int __user *, parent_tidptr,
2564 int __user *, child_tidptr,
3033f14a 2565 unsigned long, tls)
d2125043
AV
2566#else
2567SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2568 int __user *, parent_tidptr,
2569 int __user *, child_tidptr,
3033f14a 2570 unsigned long, tls)
d2125043
AV
2571#endif
2572{
7f192e3c 2573 struct kernel_clone_args args = {
3f2c788a 2574 .flags = (lower_32_bits(clone_flags) & ~CSIGNAL),
7f192e3c
CB
2575 .pidfd = parent_tidptr,
2576 .child_tid = child_tidptr,
2577 .parent_tid = parent_tidptr,
3f2c788a 2578 .exit_signal = (lower_32_bits(clone_flags) & CSIGNAL),
7f192e3c
CB
2579 .stack = newsp,
2580 .tls = tls,
2581 };
2582
028b6e8a 2583 if (!legacy_clone_args_valid(&args))
7f192e3c
CB
2584 return -EINVAL;
2585
2586 return _do_fork(&args);
2587}
d68dbb0c 2588#endif
7f192e3c 2589
d68dbb0c 2590#ifdef __ARCH_WANT_SYS_CLONE3
dd499f7a
AA
2591
2592/*
2593 * copy_thread implementations handle CLONE_SETTLS by reading the TLS value from
2594 * the registers containing the syscall arguments for clone. This doesn't work
2595 * with clone3 since the TLS value is passed in clone_args instead.
2596 */
2597#ifndef CONFIG_HAVE_COPY_THREAD_TLS
2598#error clone3 requires copy_thread_tls support in arch
2599#endif
2600
7f192e3c
CB
2601noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs,
2602 struct clone_args __user *uargs,
f14c234b 2603 size_t usize)
7f192e3c 2604{
f14c234b 2605 int err;
7f192e3c 2606 struct clone_args args;
49cb2fc4 2607 pid_t *kset_tid = kargs->set_tid;
7f192e3c 2608
a966dcfe
ES
2609 BUILD_BUG_ON(offsetofend(struct clone_args, tls) !=
2610 CLONE_ARGS_SIZE_VER0);
2611 BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) !=
2612 CLONE_ARGS_SIZE_VER1);
2613 BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) !=
2614 CLONE_ARGS_SIZE_VER2);
2615 BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2);
2616
f14c234b 2617 if (unlikely(usize > PAGE_SIZE))
7f192e3c 2618 return -E2BIG;
f14c234b 2619 if (unlikely(usize < CLONE_ARGS_SIZE_VER0))
7f192e3c
CB
2620 return -EINVAL;
2621
f14c234b
AS
2622 err = copy_struct_from_user(&args, sizeof(args), uargs, usize);
2623 if (err)
2624 return err;
7f192e3c 2625
49cb2fc4
AR
2626 if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL))
2627 return -EINVAL;
2628
2629 if (unlikely(!args.set_tid && args.set_tid_size > 0))
2630 return -EINVAL;
2631
2632 if (unlikely(args.set_tid && args.set_tid_size == 0))
2633 return -EINVAL;
2634
a0eb9abd
ES
2635 /*
2636 * Verify that higher 32bits of exit_signal are unset and that
2637 * it is a valid signal
2638 */
2639 if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
2640 !valid_signal(args.exit_signal)))
2641 return -EINVAL;
2642
62173872
ES
2643 if ((args.flags & CLONE_INTO_CGROUP) &&
2644 (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2))
ef2c41cf
CB
2645 return -EINVAL;
2646
7f192e3c
CB
2647 *kargs = (struct kernel_clone_args){
2648 .flags = args.flags,
2649 .pidfd = u64_to_user_ptr(args.pidfd),
2650 .child_tid = u64_to_user_ptr(args.child_tid),
2651 .parent_tid = u64_to_user_ptr(args.parent_tid),
2652 .exit_signal = args.exit_signal,
2653 .stack = args.stack,
2654 .stack_size = args.stack_size,
2655 .tls = args.tls,
49cb2fc4 2656 .set_tid_size = args.set_tid_size,
ef2c41cf 2657 .cgroup = args.cgroup,
7f192e3c
CB
2658 };
2659
49cb2fc4
AR
2660 if (args.set_tid &&
2661 copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid),
2662 (kargs->set_tid_size * sizeof(pid_t))))
2663 return -EFAULT;
2664
2665 kargs->set_tid = kset_tid;
2666
7f192e3c
CB
2667 return 0;
2668}
2669
fa729c4d
CB
2670/**
2671 * clone3_stack_valid - check and prepare stack
2672 * @kargs: kernel clone args
2673 *
2674 * Verify that the stack arguments userspace gave us are sane.
2675 * In addition, set the stack direction for userspace since it's easy for us to
2676 * determine.
2677 */
2678static inline bool clone3_stack_valid(struct kernel_clone_args *kargs)
2679{
2680 if (kargs->stack == 0) {
2681 if (kargs->stack_size > 0)
2682 return false;
2683 } else {
2684 if (kargs->stack_size == 0)
2685 return false;
2686
2687 if (!access_ok((void __user *)kargs->stack, kargs->stack_size))
2688 return false;
2689
2690#if !defined(CONFIG_STACK_GROWSUP) && !defined(CONFIG_IA64)
2691 kargs->stack += kargs->stack_size;
2692#endif
2693 }
2694
2695 return true;
2696}
2697
2698static bool clone3_args_valid(struct kernel_clone_args *kargs)
7f192e3c 2699{
b612e5df 2700 /* Verify that no unknown flags are passed along. */
ef2c41cf
CB
2701 if (kargs->flags &
2702 ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP))
7f192e3c
CB
2703 return false;
2704
2705 /*
2706 * - make the CLONE_DETACHED bit reuseable for clone3
2707 * - make the CSIGNAL bits reuseable for clone3
2708 */
2709 if (kargs->flags & (CLONE_DETACHED | CSIGNAL))
2710 return false;
2711
b612e5df
CB
2712 if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) ==
2713 (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND))
2714 return false;
2715
7f192e3c
CB
2716 if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
2717 kargs->exit_signal)
2718 return false;
2719
fa729c4d
CB
2720 if (!clone3_stack_valid(kargs))
2721 return false;
2722
7f192e3c
CB
2723 return true;
2724}
2725
501bd016
CB
2726/**
2727 * clone3 - create a new process with specific properties
2728 * @uargs: argument structure
2729 * @size: size of @uargs
2730 *
2731 * clone3() is the extensible successor to clone()/clone2().
2732 * It takes a struct as argument that is versioned by its size.
2733 *
2734 * Return: On success, a positive PID for the child process.
2735 * On error, a negative errno number.
2736 */
7f192e3c
CB
2737SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
2738{
2739 int err;
2740
2741 struct kernel_clone_args kargs;
49cb2fc4
AR
2742 pid_t set_tid[MAX_PID_NS_LEVEL];
2743
2744 kargs.set_tid = set_tid;
7f192e3c
CB
2745
2746 err = copy_clone_args_from_user(&kargs, uargs, size);
2747 if (err)
2748 return err;
2749
2750 if (!clone3_args_valid(&kargs))
2751 return -EINVAL;
2752
2753 return _do_fork(&kargs);
d2125043
AV
2754}
2755#endif
2756
0f1b92cb
ON
2757void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2758{
2759 struct task_struct *leader, *parent, *child;
2760 int res;
2761
2762 read_lock(&tasklist_lock);
2763 leader = top = top->group_leader;
2764down:
2765 for_each_thread(leader, parent) {
2766 list_for_each_entry(child, &parent->children, sibling) {
2767 res = visitor(child, data);
2768 if (res) {
2769 if (res < 0)
2770 goto out;
2771 leader = child;
2772 goto down;
2773 }
2774up:
2775 ;
2776 }
2777 }
2778
2779 if (leader != top) {
2780 child = leader;
2781 parent = child->real_parent;
2782 leader = parent->group_leader;
2783 goto up;
2784 }
2785out:
2786 read_unlock(&tasklist_lock);
2787}
2788
5fd63b30
RT
2789#ifndef ARCH_MIN_MMSTRUCT_ALIGN
2790#define ARCH_MIN_MMSTRUCT_ALIGN 0
2791#endif
2792
51cc5068 2793static void sighand_ctor(void *data)
aa1757f9
ON
2794{
2795 struct sighand_struct *sighand = data;
2796
a35afb83 2797 spin_lock_init(&sighand->siglock);
b8fceee1 2798 init_waitqueue_head(&sighand->signalfd_wqh);
aa1757f9
ON
2799}
2800
1da177e4
LT
2801void __init proc_caches_init(void)
2802{
c1a2f7f0
RR
2803 unsigned int mm_size;
2804
1da177e4
LT
2805 sighand_cachep = kmem_cache_create("sighand_cache",
2806 sizeof(struct sighand_struct), 0,
5f0d5a3a 2807 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
75f296d9 2808 SLAB_ACCOUNT, sighand_ctor);
1da177e4
LT
2809 signal_cachep = kmem_cache_create("signal_cache",
2810 sizeof(struct signal_struct), 0,
75f296d9 2811 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
5d097056 2812 NULL);
20c2df83 2813 files_cachep = kmem_cache_create("files_cache",
1da177e4 2814 sizeof(struct files_struct), 0,
75f296d9 2815 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
5d097056 2816 NULL);
20c2df83 2817 fs_cachep = kmem_cache_create("fs_cache",
1da177e4 2818 sizeof(struct fs_struct), 0,
75f296d9 2819 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
5d097056 2820 NULL);
c1a2f7f0 2821
6345d24d 2822 /*
c1a2f7f0
RR
2823 * The mm_cpumask is located at the end of mm_struct, and is
2824 * dynamically sized based on the maximum CPU number this system
2825 * can have, taking hotplug into account (nr_cpu_ids).
6345d24d 2826 */
c1a2f7f0
RR
2827 mm_size = sizeof(struct mm_struct) + cpumask_size();
2828
07dcd7fe 2829 mm_cachep = kmem_cache_create_usercopy("mm_struct",
c1a2f7f0 2830 mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
75f296d9 2831 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
07dcd7fe
DW
2832 offsetof(struct mm_struct, saved_auxv),
2833 sizeof_field(struct mm_struct, saved_auxv),
5d097056
VD
2834 NULL);
2835 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
8feae131 2836 mmap_init();
66577193 2837 nsproxy_cache_init();
1da177e4 2838}
cf2e340f 2839
cf2e340f 2840/*
9bfb23fc 2841 * Check constraints on flags passed to the unshare system call.
cf2e340f 2842 */
9bfb23fc 2843static int check_unshare_flags(unsigned long unshare_flags)
cf2e340f 2844{
9bfb23fc
ON
2845 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
2846 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
50804fe3 2847 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
769071ac
AV
2848 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP|
2849 CLONE_NEWTIME))
9bfb23fc 2850 return -EINVAL;
cf2e340f 2851 /*
12c641ab
EB
2852 * Not implemented, but pretend it works if there is nothing
2853 * to unshare. Note that unsharing the address space or the
2854 * signal handlers also need to unshare the signal queues (aka
2855 * CLONE_THREAD).
cf2e340f 2856 */
9bfb23fc 2857 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
12c641ab
EB
2858 if (!thread_group_empty(current))
2859 return -EINVAL;
2860 }
2861 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
d036bda7 2862 if (refcount_read(&current->sighand->count) > 1)
12c641ab
EB
2863 return -EINVAL;
2864 }
2865 if (unshare_flags & CLONE_VM) {
2866 if (!current_is_single_threaded())
9bfb23fc
ON
2867 return -EINVAL;
2868 }
cf2e340f
JD
2869
2870 return 0;
2871}
2872
2873/*
99d1419d 2874 * Unshare the filesystem structure if it is being shared
cf2e340f
JD
2875 */
2876static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
2877{
2878 struct fs_struct *fs = current->fs;
2879
498052bb
AV
2880 if (!(unshare_flags & CLONE_FS) || !fs)
2881 return 0;
2882
2883 /* don't need lock here; in the worst case we'll do useless copy */
2884 if (fs->users == 1)
2885 return 0;
2886
2887 *new_fsp = copy_fs_struct(fs);
2888 if (!*new_fsp)
2889 return -ENOMEM;
cf2e340f
JD
2890
2891 return 0;
2892}
2893
cf2e340f 2894/*
a016f338 2895 * Unshare file descriptor table if it is being shared
cf2e340f
JD
2896 */
2897static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
2898{
2899 struct files_struct *fd = current->files;
a016f338 2900 int error = 0;
cf2e340f
JD
2901
2902 if ((unshare_flags & CLONE_FILES) &&
a016f338
JD
2903 (fd && atomic_read(&fd->count) > 1)) {
2904 *new_fdp = dup_fd(fd, &error);
2905 if (!*new_fdp)
2906 return error;
2907 }
cf2e340f
JD
2908
2909 return 0;
2910}
2911
cf2e340f
JD
2912/*
2913 * unshare allows a process to 'unshare' part of the process
2914 * context which was originally shared using clone. copy_*
2915 * functions used by do_fork() cannot be used here directly
2916 * because they modify an inactive task_struct that is being
2917 * constructed. Here we are modifying the current, active,
2918 * task_struct.
2919 */
9b32105e 2920int ksys_unshare(unsigned long unshare_flags)
cf2e340f 2921{
cf2e340f 2922 struct fs_struct *fs, *new_fs = NULL;
cf2e340f 2923 struct files_struct *fd, *new_fd = NULL;
b2e0d987 2924 struct cred *new_cred = NULL;
cf7b708c 2925 struct nsproxy *new_nsproxy = NULL;
9edff4ab 2926 int do_sysvsem = 0;
9bfb23fc 2927 int err;
cf2e340f 2928
b2e0d987 2929 /*
faf00da5
EB
2930 * If unsharing a user namespace must also unshare the thread group
2931 * and unshare the filesystem root and working directories.
b2e0d987
EB
2932 */
2933 if (unshare_flags & CLONE_NEWUSER)
e66eded8 2934 unshare_flags |= CLONE_THREAD | CLONE_FS;
50804fe3
EB
2935 /*
2936 * If unsharing vm, must also unshare signal handlers.
2937 */
2938 if (unshare_flags & CLONE_VM)
2939 unshare_flags |= CLONE_SIGHAND;
12c641ab
EB
2940 /*
2941 * If unsharing a signal handlers, must also unshare the signal queues.
2942 */
2943 if (unshare_flags & CLONE_SIGHAND)
2944 unshare_flags |= CLONE_THREAD;
9bfb23fc
ON
2945 /*
2946 * If unsharing namespace, must also unshare filesystem information.
2947 */
2948 if (unshare_flags & CLONE_NEWNS)
2949 unshare_flags |= CLONE_FS;
50804fe3
EB
2950
2951 err = check_unshare_flags(unshare_flags);
2952 if (err)
2953 goto bad_unshare_out;
6013f67f
MS
2954 /*
2955 * CLONE_NEWIPC must also detach from the undolist: after switching
2956 * to a new ipc namespace, the semaphore arrays from the old
2957 * namespace are unreachable.
2958 */
2959 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
9edff4ab 2960 do_sysvsem = 1;
fb0a685c
DRO
2961 err = unshare_fs(unshare_flags, &new_fs);
2962 if (err)
9bfb23fc 2963 goto bad_unshare_out;
fb0a685c
DRO
2964 err = unshare_fd(unshare_flags, &new_fd);
2965 if (err)
9bfb23fc 2966 goto bad_unshare_cleanup_fs;
b2e0d987 2967 err = unshare_userns(unshare_flags, &new_cred);
fb0a685c 2968 if (err)
9edff4ab 2969 goto bad_unshare_cleanup_fd;
b2e0d987
EB
2970 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
2971 new_cred, new_fs);
2972 if (err)
2973 goto bad_unshare_cleanup_cred;
c0b2fc31 2974
b2e0d987 2975 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
9edff4ab
MS
2976 if (do_sysvsem) {
2977 /*
2978 * CLONE_SYSVSEM is equivalent to sys_exit().
2979 */
2980 exit_sem(current);
2981 }
ab602f79
JM
2982 if (unshare_flags & CLONE_NEWIPC) {
2983 /* Orphan segments in old ns (see sem above). */
2984 exit_shm(current);
2985 shm_init_task(current);
2986 }
ab516013 2987
6f977e6b 2988 if (new_nsproxy)
cf7b708c 2989 switch_task_namespaces(current, new_nsproxy);
cf2e340f 2990
cf7b708c
PE
2991 task_lock(current);
2992
cf2e340f
JD
2993 if (new_fs) {
2994 fs = current->fs;
2a4419b5 2995 spin_lock(&fs->lock);
cf2e340f 2996 current->fs = new_fs;
498052bb
AV
2997 if (--fs->users)
2998 new_fs = NULL;
2999 else
3000 new_fs = fs;
2a4419b5 3001 spin_unlock(&fs->lock);
cf2e340f
JD
3002 }
3003
cf2e340f
JD
3004 if (new_fd) {
3005 fd = current->files;
3006 current->files = new_fd;
3007 new_fd = fd;
3008 }
3009
3010 task_unlock(current);
b2e0d987
EB
3011
3012 if (new_cred) {
3013 /* Install the new user namespace */
3014 commit_creds(new_cred);
3015 new_cred = NULL;
3016 }
cf2e340f
JD
3017 }
3018
e4222673
HB
3019 perf_event_namespaces(current);
3020
b2e0d987
EB
3021bad_unshare_cleanup_cred:
3022 if (new_cred)
3023 put_cred(new_cred);
cf2e340f
JD
3024bad_unshare_cleanup_fd:
3025 if (new_fd)
3026 put_files_struct(new_fd);
3027
cf2e340f
JD
3028bad_unshare_cleanup_fs:
3029 if (new_fs)
498052bb 3030 free_fs_struct(new_fs);
cf2e340f 3031
cf2e340f
JD
3032bad_unshare_out:
3033 return err;
3034}
3b125388 3035
9b32105e
DB
3036SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
3037{
3038 return ksys_unshare(unshare_flags);
3039}
3040
3b125388
AV
3041/*
3042 * Helper to unshare the files of the current task.
3043 * We don't want to expose copy_files internals to
3044 * the exec layer of the kernel.
3045 */
3046
3047int unshare_files(struct files_struct **displaced)
3048{
3049 struct task_struct *task = current;
50704516 3050 struct files_struct *copy = NULL;
3b125388
AV
3051 int error;
3052
3053 error = unshare_fd(CLONE_FILES, &copy);
3054 if (error || !copy) {
3055 *displaced = NULL;
3056 return error;
3057 }
3058 *displaced = task->files;
3059 task_lock(task);
3060 task->files = copy;
3061 task_unlock(task);
3062 return 0;
3063}
16db3d3f
HS
3064
3065int sysctl_max_threads(struct ctl_table *table, int write,
3066 void __user *buffer, size_t *lenp, loff_t *ppos)
3067{
3068 struct ctl_table t;
3069 int ret;
3070 int threads = max_threads;
b0f53dbc 3071 int min = 1;
16db3d3f
HS
3072 int max = MAX_THREADS;
3073
3074 t = *table;
3075 t.data = &threads;
3076 t.extra1 = &min;
3077 t.extra2 = &max;
3078
3079 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3080 if (ret || !write)
3081 return ret;
3082
b0f53dbc 3083 max_threads = threads;
16db3d3f
HS
3084
3085 return 0;
3086}