]> git.ipfire.org Git - thirdparty/linux.git/blame - kernel/fork.c
pid: add pidfd_prepare()
[thirdparty/linux.git] / kernel / fork.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/kernel/fork.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
8/*
9 * 'fork.c' contains the help-routines for the 'fork' system call
10 * (see also entry.S and others).
11 * Fork is rather simple, once you get the hang of it, but the memory
12 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
13 */
14
b3e58382 15#include <linux/anon_inodes.h>
1da177e4 16#include <linux/slab.h>
4eb5aaa3 17#include <linux/sched/autogroup.h>
6e84f315 18#include <linux/sched/mm.h>
f7ccbae4 19#include <linux/sched/coredump.h>
8703e8a4 20#include <linux/sched/user.h>
6a3827d7 21#include <linux/sched/numa_balancing.h>
03441a34 22#include <linux/sched/stat.h>
29930025 23#include <linux/sched/task.h>
68db0cf1 24#include <linux/sched/task_stack.h>
32ef5517 25#include <linux/sched/cputime.h>
b3e58382 26#include <linux/seq_file.h>
037741a6 27#include <linux/rtmutex.h>
1da177e4
LT
28#include <linux/init.h>
29#include <linux/unistd.h>
1da177e4
LT
30#include <linux/module.h>
31#include <linux/vmalloc.h>
32#include <linux/completion.h>
1da177e4
LT
33#include <linux/personality.h>
34#include <linux/mempolicy.h>
35#include <linux/sem.h>
36#include <linux/file.h>
9f3acc31 37#include <linux/fdtable.h>
da9cbc87 38#include <linux/iocontext.h>
1da177e4 39#include <linux/key.h>
50b5e49c 40#include <linux/kmsan.h>
1da177e4
LT
41#include <linux/binfmts.h>
42#include <linux/mman.h>
cddb8a5c 43#include <linux/mmu_notifier.h>
1da177e4 44#include <linux/fs.h>
615d6e87 45#include <linux/mm.h>
17fca131 46#include <linux/mm_inline.h>
ab516013 47#include <linux/nsproxy.h>
c59ede7b 48#include <linux/capability.h>
1da177e4 49#include <linux/cpu.h>
b4f48b63 50#include <linux/cgroup.h>
1da177e4 51#include <linux/security.h>
a1e78772 52#include <linux/hugetlb.h>
e2cfabdf 53#include <linux/seccomp.h>
1da177e4
LT
54#include <linux/swap.h>
55#include <linux/syscalls.h>
56#include <linux/jiffies.h>
57#include <linux/futex.h>
8141c7f3 58#include <linux/compat.h>
207205a2 59#include <linux/kthread.h>
7c3ab738 60#include <linux/task_io_accounting_ops.h>
ab2af1f5 61#include <linux/rcupdate.h>
1da177e4
LT
62#include <linux/ptrace.h>
63#include <linux/mount.h>
64#include <linux/audit.h>
78fb7466 65#include <linux/memcontrol.h>
f201ae23 66#include <linux/ftrace.h>
5e2bf014 67#include <linux/proc_fs.h>
1da177e4
LT
68#include <linux/profile.h>
69#include <linux/rmap.h>
f8af4da3 70#include <linux/ksm.h>
1da177e4 71#include <linux/acct.h>
893e26e6 72#include <linux/userfaultfd_k.h>
8f0ab514 73#include <linux/tsacct_kern.h>
9f46080c 74#include <linux/cn_proc.h>
ba96a0c8 75#include <linux/freezer.h>
ca74e92b 76#include <linux/delayacct.h>
ad4ecbcb 77#include <linux/taskstats_kern.h>
522ed776 78#include <linux/tty.h>
5ad4e53b 79#include <linux/fs_struct.h>
7c9f8861 80#include <linux/magic.h>
cdd6c482 81#include <linux/perf_event.h>
42c4ab41 82#include <linux/posix-timers.h>
8e7cac79 83#include <linux/user-return-notifier.h>
3d5992d2 84#include <linux/oom.h>
ba76149f 85#include <linux/khugepaged.h>
d80e731e 86#include <linux/signalfd.h>
0326f5a9 87#include <linux/uprobes.h>
a27bb332 88#include <linux/aio.h>
52f5684c 89#include <linux/compiler.h>
16db3d3f 90#include <linux/sysctl.h>
5c9a8750 91#include <linux/kcov.h>
d83a7cb3 92#include <linux/livepatch.h>
48ac3c18 93#include <linux/thread_info.h>
afaef01c 94#include <linux/stackleak.h>
eafb149e 95#include <linux/kasan.h>
d08b9f0c 96#include <linux/scs.h>
0f212204 97#include <linux/io_uring.h>
a10787e6 98#include <linux/bpf.h>
b3883a9a 99#include <linux/stackprotector.h>
1da177e4 100
1da177e4 101#include <asm/pgalloc.h>
7c0f6ba6 102#include <linux/uaccess.h>
1da177e4
LT
103#include <asm/mmu_context.h>
104#include <asm/cacheflush.h>
105#include <asm/tlbflush.h>
106
ad8d75ff
SR
107#include <trace/events/sched.h>
108
43d2b113
KH
109#define CREATE_TRACE_POINTS
110#include <trace/events/task.h>
111
ac1b398d
HS
112/*
113 * Minimum number of threads to boot the kernel
114 */
115#define MIN_THREADS 20
116
117/*
118 * Maximum number of threads
119 */
120#define MAX_THREADS FUTEX_TID_MASK
121
1da177e4
LT
122/*
123 * Protected counters by write_lock_irq(&tasklist_lock)
124 */
125unsigned long total_forks; /* Handle normal Linux uptimes. */
fb0a685c 126int nr_threads; /* The idle threads do not count.. */
1da177e4 127
8856ae4d 128static int max_threads; /* tunable limit on nr_threads */
1da177e4 129
8495f7e6
SPP
130#define NAMED_ARRAY_INDEX(x) [x] = __stringify(x)
131
132static const char * const resident_page_types[] = {
133 NAMED_ARRAY_INDEX(MM_FILEPAGES),
134 NAMED_ARRAY_INDEX(MM_ANONPAGES),
135 NAMED_ARRAY_INDEX(MM_SWAPENTS),
136 NAMED_ARRAY_INDEX(MM_SHMEMPAGES),
137};
138
1da177e4
LT
139DEFINE_PER_CPU(unsigned long, process_counts) = 0;
140
c59923a1 141__cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
db1466b3
PM
142
143#ifdef CONFIG_PROVE_RCU
144int lockdep_tasklist_lock_is_held(void)
145{
146 return lockdep_is_held(&tasklist_lock);
147}
148EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
149#endif /* #ifdef CONFIG_PROVE_RCU */
1da177e4
LT
150
151int nr_processes(void)
152{
153 int cpu;
154 int total = 0;
155
1d510750 156 for_each_possible_cpu(cpu)
1da177e4
LT
157 total += per_cpu(process_counts, cpu);
158
159 return total;
160}
161
f19b9f74
AM
162void __weak arch_release_task_struct(struct task_struct *tsk)
163{
164}
165
f5e10287 166#ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
e18b890b 167static struct kmem_cache *task_struct_cachep;
41101809
TG
168
169static inline struct task_struct *alloc_task_struct_node(int node)
170{
171 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
172}
173
41101809
TG
174static inline void free_task_struct(struct task_struct *tsk)
175{
41101809
TG
176 kmem_cache_free(task_struct_cachep, tsk);
177}
1da177e4
LT
178#endif
179
b235beea 180#ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
41101809 181
0d15d74a
TG
182/*
183 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
184 * kmemcache based allocator.
185 */
ba14a194 186# if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
ac496bf4 187
be9a2277 188# ifdef CONFIG_VMAP_STACK
ac496bf4
AL
189/*
190 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
191 * flush. Try to minimize the number of calls by caching stacks.
192 */
193#define NR_CACHED_STACKS 2
194static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
19659c59 195
e540bf31
SAS
196struct vm_stack {
197 struct rcu_head rcu;
198 struct vm_struct *stack_vm_area;
199};
200
201static bool try_release_thread_stack_to_cache(struct vm_struct *vm)
202{
203 unsigned int i;
204
205 for (i = 0; i < NR_CACHED_STACKS; i++) {
206 if (this_cpu_cmpxchg(cached_stacks[i], NULL, vm) != NULL)
207 continue;
208 return true;
209 }
210 return false;
211}
212
213static void thread_stack_free_rcu(struct rcu_head *rh)
214{
215 struct vm_stack *vm_stack = container_of(rh, struct vm_stack, rcu);
216
217 if (try_release_thread_stack_to_cache(vm_stack->stack_vm_area))
218 return;
219
220 vfree(vm_stack);
221}
222
223static void thread_stack_delayed_free(struct task_struct *tsk)
224{
225 struct vm_stack *vm_stack = tsk->stack;
226
227 vm_stack->stack_vm_area = tsk->stack_vm_area;
228 call_rcu(&vm_stack->rcu, thread_stack_free_rcu);
229}
230
19659c59
HR
231static int free_vm_stack_cache(unsigned int cpu)
232{
233 struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
234 int i;
235
236 for (i = 0; i < NR_CACHED_STACKS; i++) {
237 struct vm_struct *vm_stack = cached_vm_stacks[i];
238
239 if (!vm_stack)
240 continue;
241
242 vfree(vm_stack->addr);
243 cached_vm_stacks[i] = NULL;
244 }
245
246 return 0;
247}
ac496bf4 248
1a03d3f1 249static int memcg_charge_kernel_stack(struct vm_struct *vm)
b69c49b7 250{
f1c1a9ee
SAS
251 int i;
252 int ret;
253
254 BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
255 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
256
257 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
258 ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL, 0);
259 if (ret)
260 goto err;
261 }
262 return 0;
263err:
264 /*
265 * If memcg_kmem_charge_page() fails, page's memory cgroup pointer is
266 * NULL, and memcg_kmem_uncharge_page() in free_thread_stack() will
267 * ignore this page.
268 */
269 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
270 memcg_kmem_uncharge_page(vm->pages[i], 0);
271 return ret;
272}
273
7865aba3 274static int alloc_thread_stack_node(struct task_struct *tsk, int node)
b69c49b7 275{
1a03d3f1 276 struct vm_struct *vm;
ac496bf4
AL
277 void *stack;
278 int i;
279
ac496bf4 280 for (i = 0; i < NR_CACHED_STACKS; i++) {
112166f8
CL
281 struct vm_struct *s;
282
283 s = this_cpu_xchg(cached_stacks[i], NULL);
ac496bf4
AL
284
285 if (!s)
286 continue;
ac496bf4 287
51fb34de 288 /* Reset stack metadata. */
cebd0eb2 289 kasan_unpoison_range(s->addr, THREAD_SIZE);
eafb149e 290
51fb34de
AK
291 stack = kasan_reset_tag(s->addr);
292
ca182551 293 /* Clear stale pointers from reused stack. */
51fb34de 294 memset(stack, 0, THREAD_SIZE);
e01e8063 295
1a03d3f1 296 if (memcg_charge_kernel_stack(s)) {
f1c1a9ee
SAS
297 vfree(s->addr);
298 return -ENOMEM;
299 }
300
ac496bf4 301 tsk->stack_vm_area = s;
51fb34de 302 tsk->stack = stack;
7865aba3 303 return 0;
ac496bf4 304 }
ac496bf4 305
9b6f7e16
RG
306 /*
307 * Allocated stacks are cached and later reused by new threads,
308 * so memcg accounting is performed manually on assigning/releasing
309 * stacks to tasks. Drop __GFP_ACCOUNT.
310 */
48ac3c18 311 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
ac496bf4 312 VMALLOC_START, VMALLOC_END,
9b6f7e16 313 THREADINFO_GFP & ~__GFP_ACCOUNT,
ac496bf4
AL
314 PAGE_KERNEL,
315 0, node, __builtin_return_address(0));
7865aba3
SAS
316 if (!stack)
317 return -ENOMEM;
ba14a194 318
1a03d3f1
SAS
319 vm = find_vm_area(stack);
320 if (memcg_charge_kernel_stack(vm)) {
f1c1a9ee
SAS
321 vfree(stack);
322 return -ENOMEM;
323 }
ba14a194
AL
324 /*
325 * We can't call find_vm_area() in interrupt context, and
326 * free_thread_stack() can be called in interrupt context,
327 * so cache the vm_struct.
328 */
1a03d3f1 329 tsk->stack_vm_area = vm;
51fb34de 330 stack = kasan_reset_tag(stack);
7865aba3
SAS
331 tsk->stack = stack;
332 return 0;
b69c49b7
FT
333}
334
be9a2277 335static void free_thread_stack(struct task_struct *tsk)
b69c49b7 336{
e540bf31
SAS
337 if (!try_release_thread_stack_to_cache(tsk->stack_vm_area))
338 thread_stack_delayed_free(tsk);
9b6f7e16 339
be9a2277
SAS
340 tsk->stack = NULL;
341 tsk->stack_vm_area = NULL;
342}
ac496bf4 343
be9a2277 344# else /* !CONFIG_VMAP_STACK */
ac496bf4 345
e540bf31
SAS
346static void thread_stack_free_rcu(struct rcu_head *rh)
347{
348 __free_pages(virt_to_page(rh), THREAD_SIZE_ORDER);
349}
350
351static void thread_stack_delayed_free(struct task_struct *tsk)
352{
353 struct rcu_head *rh = tsk->stack;
354
355 call_rcu(rh, thread_stack_free_rcu);
356}
357
7865aba3 358static int alloc_thread_stack_node(struct task_struct *tsk, int node)
be9a2277 359{
4949148a
VD
360 struct page *page = alloc_pages_node(node, THREADINFO_GFP,
361 THREAD_SIZE_ORDER);
b6a84016 362
1bf4580e 363 if (likely(page)) {
8dcc1d34 364 tsk->stack = kasan_reset_tag(page_address(page));
7865aba3 365 return 0;
1bf4580e 366 }
7865aba3 367 return -ENOMEM;
b69c49b7
FT
368}
369
be9a2277 370static void free_thread_stack(struct task_struct *tsk)
b69c49b7 371{
e540bf31 372 thread_stack_delayed_free(tsk);
be9a2277 373 tsk->stack = NULL;
b69c49b7 374}
ac496bf4 375
be9a2277
SAS
376# endif /* CONFIG_VMAP_STACK */
377# else /* !(THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)) */
9b6f7e16 378
b235beea 379static struct kmem_cache *thread_stack_cache;
ac496bf4 380
e540bf31
SAS
381static void thread_stack_free_rcu(struct rcu_head *rh)
382{
383 kmem_cache_free(thread_stack_cache, rh);
384}
ac496bf4 385
e540bf31
SAS
386static void thread_stack_delayed_free(struct task_struct *tsk)
387{
388 struct rcu_head *rh = tsk->stack;
ac496bf4 389
e540bf31 390 call_rcu(rh, thread_stack_free_rcu);
b69c49b7 391}
0d15d74a 392
7865aba3 393static int alloc_thread_stack_node(struct task_struct *tsk, int node)
0d15d74a 394{
5eed6f1d
RR
395 unsigned long *stack;
396 stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
8dcc1d34 397 stack = kasan_reset_tag(stack);
5eed6f1d 398 tsk->stack = stack;
7865aba3 399 return stack ? 0 : -ENOMEM;
0d15d74a
TG
400}
401
ba14a194 402static void free_thread_stack(struct task_struct *tsk)
0d15d74a 403{
e540bf31 404 thread_stack_delayed_free(tsk);
be9a2277 405 tsk->stack = NULL;
0d15d74a
TG
406}
407
b235beea 408void thread_stack_cache_init(void)
0d15d74a 409{
f9d29946
DW
410 thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
411 THREAD_SIZE, THREAD_SIZE, 0, 0,
412 THREAD_SIZE, NULL);
b235beea 413 BUG_ON(thread_stack_cache == NULL);
0d15d74a 414}
be9a2277
SAS
415
416# endif /* THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) */
2bb0529c
SAS
417#else /* CONFIG_ARCH_THREAD_STACK_ALLOCATOR */
418
7865aba3 419static int alloc_thread_stack_node(struct task_struct *tsk, int node)
2bb0529c
SAS
420{
421 unsigned long *stack;
422
423 stack = arch_alloc_thread_stack_node(tsk, node);
424 tsk->stack = stack;
7865aba3 425 return stack ? 0 : -ENOMEM;
2bb0529c
SAS
426}
427
428static void free_thread_stack(struct task_struct *tsk)
429{
430 arch_free_thread_stack(tsk);
431 tsk->stack = NULL;
432}
433
be9a2277 434#endif /* !CONFIG_ARCH_THREAD_STACK_ALLOCATOR */
b69c49b7 435
1da177e4 436/* SLAB cache for signal_struct structures (tsk->signal) */
e18b890b 437static struct kmem_cache *signal_cachep;
1da177e4
LT
438
439/* SLAB cache for sighand_struct structures (tsk->sighand) */
e18b890b 440struct kmem_cache *sighand_cachep;
1da177e4
LT
441
442/* SLAB cache for files_struct structures (tsk->files) */
e18b890b 443struct kmem_cache *files_cachep;
1da177e4
LT
444
445/* SLAB cache for fs_struct structures (tsk->fs) */
e18b890b 446struct kmem_cache *fs_cachep;
1da177e4
LT
447
448/* SLAB cache for vm_area_struct structures */
3928d4f5 449static struct kmem_cache *vm_area_cachep;
1da177e4
LT
450
451/* SLAB cache for mm_struct structures (tsk->mm) */
e18b890b 452static struct kmem_cache *mm_cachep;
1da177e4 453
490fc053 454struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
3928d4f5 455{
a670468f 456 struct vm_area_struct *vma;
490fc053 457
a670468f 458 vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
027232da
KS
459 if (vma)
460 vma_init(vma, mm);
490fc053 461 return vma;
3928d4f5
LT
462}
463
464struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
465{
95faf699
LT
466 struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
467
468 if (new) {
cda099b3
QC
469 ASSERT_EXCLUSIVE_WRITER(orig->vm_flags);
470 ASSERT_EXCLUSIVE_WRITER(orig->vm_file);
471 /*
472 * orig->shared.rb may be modified concurrently, but the clone
473 * will be reinitialized.
474 */
06e78b61 475 data_race(memcpy(new, orig, sizeof(*new)));
95faf699 476 INIT_LIST_HEAD(&new->anon_vma_chain);
5c26f6ac 477 dup_anon_vma_name(orig, new);
95faf699
LT
478 }
479 return new;
3928d4f5
LT
480}
481
482void vm_area_free(struct vm_area_struct *vma)
483{
5c26f6ac 484 free_anon_vma_name(vma);
3928d4f5
LT
485 kmem_cache_free(vm_area_cachep, vma);
486}
487
ba14a194 488static void account_kernel_stack(struct task_struct *tsk, int account)
c6a7f572 489{
0ce055f8
SAS
490 if (IS_ENABLED(CONFIG_VMAP_STACK)) {
491 struct vm_struct *vm = task_stack_vm_area(tsk);
27faca83 492 int i;
ba14a194 493
27faca83
MS
494 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
495 mod_lruvec_page_state(vm->pages[i], NR_KERNEL_STACK_KB,
496 account * (PAGE_SIZE / 1024));
497 } else {
0ce055f8
SAS
498 void *stack = task_stack_page(tsk);
499
27faca83 500 /* All stack pages are in the same node. */
da3ceeff 501 mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB,
991e7673 502 account * (THREAD_SIZE / 1024));
27faca83 503 }
c6a7f572
KM
504}
505
1a03d3f1 506void exit_task_stack_account(struct task_struct *tsk)
9b6f7e16 507{
1a03d3f1 508 account_kernel_stack(tsk, -1);
991e7673 509
1a03d3f1
SAS
510 if (IS_ENABLED(CONFIG_VMAP_STACK)) {
511 struct vm_struct *vm;
9b6f7e16
RG
512 int i;
513
1a03d3f1
SAS
514 vm = task_stack_vm_area(tsk);
515 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
516 memcg_kmem_uncharge_page(vm->pages[i], 0);
9b6f7e16 517 }
9b6f7e16
RG
518}
519
68f24b08 520static void release_task_stack(struct task_struct *tsk)
1da177e4 521{
2f064a59 522 if (WARN_ON(READ_ONCE(tsk->__state) != TASK_DEAD))
405c0759
AL
523 return; /* Better to leak the stack than to free prematurely */
524
ba14a194 525 free_thread_stack(tsk);
68f24b08
AL
526}
527
528#ifdef CONFIG_THREAD_INFO_IN_TASK
529void put_task_stack(struct task_struct *tsk)
530{
f0b89d39 531 if (refcount_dec_and_test(&tsk->stack_refcount))
68f24b08
AL
532 release_task_stack(tsk);
533}
534#endif
535
536void free_task(struct task_struct *tsk)
537{
a1140cb2
KI
538#ifdef CONFIG_SECCOMP
539 WARN_ON_ONCE(tsk->seccomp.filter);
540#endif
b90ca8ba 541 release_user_cpus_ptr(tsk);
d08b9f0c
ST
542 scs_release(tsk);
543
68f24b08
AL
544#ifndef CONFIG_THREAD_INFO_IN_TASK
545 /*
546 * The task is finally done with both the stack and thread_info,
547 * so free both.
548 */
549 release_task_stack(tsk);
550#else
551 /*
552 * If the task had a separate stack allocation, it should be gone
553 * by now.
554 */
f0b89d39 555 WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
68f24b08 556#endif
23f78d4a 557 rt_mutex_debug_task_free(tsk);
fb52607a 558 ftrace_graph_exit_task(tsk);
f19b9f74 559 arch_release_task_struct(tsk);
1da5c46f
ON
560 if (tsk->flags & PF_KTHREAD)
561 free_kthread_struct(tsk);
1da177e4
LT
562 free_task_struct(tsk);
563}
564EXPORT_SYMBOL(free_task);
565
fe69d560
DH
566static void dup_mm_exe_file(struct mm_struct *mm, struct mm_struct *oldmm)
567{
568 struct file *exe_file;
569
570 exe_file = get_mm_exe_file(oldmm);
571 RCU_INIT_POINTER(mm->exe_file, exe_file);
572 /*
573 * We depend on the oldmm having properly denied write access to the
574 * exe_file already.
575 */
576 if (exe_file && deny_write_access(exe_file))
577 pr_warn_once("deny_write_access() failed in %s\n", __func__);
578}
579
d70f2a14
AM
580#ifdef CONFIG_MMU
581static __latent_entropy int dup_mmap(struct mm_struct *mm,
582 struct mm_struct *oldmm)
583{
763ecb03 584 struct vm_area_struct *mpnt, *tmp;
d70f2a14 585 int retval;
c9dbe82c 586 unsigned long charge = 0;
d70f2a14 587 LIST_HEAD(uf);
3b9dbd5e
LH
588 VMA_ITERATOR(old_vmi, oldmm, 0);
589 VMA_ITERATOR(vmi, mm, 0);
d70f2a14
AM
590
591 uprobe_start_dup_mmap();
d8ed45c5 592 if (mmap_write_lock_killable(oldmm)) {
d70f2a14
AM
593 retval = -EINTR;
594 goto fail_uprobe_end;
595 }
596 flush_cache_dup_mm(oldmm);
597 uprobe_dup_mmap(oldmm, mm);
598 /*
599 * Not linked in yet - no deadlock potential:
600 */
aaa2cc56 601 mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING);
d70f2a14
AM
602
603 /* No ordering required: file already has been exposed. */
fe69d560 604 dup_mm_exe_file(mm, oldmm);
d70f2a14
AM
605
606 mm->total_vm = oldmm->total_vm;
607 mm->data_vm = oldmm->data_vm;
608 mm->exec_vm = oldmm->exec_vm;
609 mm->stack_vm = oldmm->stack_vm;
610
d70f2a14
AM
611 retval = ksm_fork(mm, oldmm);
612 if (retval)
613 goto out;
d2081b2b 614 khugepaged_fork(mm, oldmm);
d70f2a14 615
3b9dbd5e 616 retval = vma_iter_bulk_alloc(&vmi, oldmm->map_count);
c9dbe82c
LH
617 if (retval)
618 goto out;
619
3b9dbd5e 620 for_each_vma(old_vmi, mpnt) {
d70f2a14
AM
621 struct file *file;
622
623 if (mpnt->vm_flags & VM_DONTCOPY) {
624 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
625 continue;
626 }
627 charge = 0;
655c79bb
TH
628 /*
629 * Don't duplicate many vmas if we've been oom-killed (for
630 * example)
631 */
632 if (fatal_signal_pending(current)) {
633 retval = -EINTR;
d4af56c5 634 goto loop_out;
655c79bb 635 }
d70f2a14
AM
636 if (mpnt->vm_flags & VM_ACCOUNT) {
637 unsigned long len = vma_pages(mpnt);
638
639 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
640 goto fail_nomem;
641 charge = len;
642 }
3928d4f5 643 tmp = vm_area_dup(mpnt);
d70f2a14
AM
644 if (!tmp)
645 goto fail_nomem;
d70f2a14
AM
646 retval = vma_dup_policy(mpnt, tmp);
647 if (retval)
648 goto fail_nomem_policy;
649 tmp->vm_mm = mm;
650 retval = dup_userfaultfd(tmp, &uf);
651 if (retval)
652 goto fail_nomem_anon_vma_fork;
653 if (tmp->vm_flags & VM_WIPEONFORK) {
93949bb2
LX
654 /*
655 * VM_WIPEONFORK gets a clean slate in the child.
656 * Don't prepare anon_vma until fault since we don't
657 * copy page for current vma.
658 */
d70f2a14 659 tmp->anon_vma = NULL;
d70f2a14
AM
660 } else if (anon_vma_fork(tmp, mpnt))
661 goto fail_nomem_anon_vma_fork;
e430a95a 662 vm_flags_clear(tmp, VM_LOCKED_MASK);
d70f2a14
AM
663 file = tmp->vm_file;
664 if (file) {
d70f2a14
AM
665 struct address_space *mapping = file->f_mapping;
666
667 get_file(file);
d70f2a14
AM
668 i_mmap_lock_write(mapping);
669 if (tmp->vm_flags & VM_SHARED)
cf508b58 670 mapping_allow_writable(mapping);
d70f2a14
AM
671 flush_dcache_mmap_lock(mapping);
672 /* insert tmp into the share list, just after mpnt */
673 vma_interval_tree_insert_after(tmp, mpnt,
674 &mapping->i_mmap);
675 flush_dcache_mmap_unlock(mapping);
676 i_mmap_unlock_write(mapping);
677 }
678
679 /*
8d9bfb26 680 * Copy/update hugetlb private vma information.
d70f2a14
AM
681 */
682 if (is_vm_hugetlb_page(tmp))
8d9bfb26 683 hugetlb_dup_vma_private(tmp);
d70f2a14 684
d4af56c5 685 /* Link the vma into the MT */
3b9dbd5e
LH
686 if (vma_iter_bulk_store(&vmi, tmp))
687 goto fail_nomem_vmi_store;
d70f2a14
AM
688
689 mm->map_count++;
690 if (!(tmp->vm_flags & VM_WIPEONFORK))
c78f4636 691 retval = copy_page_range(tmp, mpnt);
d70f2a14
AM
692
693 if (tmp->vm_ops && tmp->vm_ops->open)
694 tmp->vm_ops->open(tmp);
695
696 if (retval)
d4af56c5 697 goto loop_out;
d70f2a14
AM
698 }
699 /* a new mm has just been created */
1ed0cc5a 700 retval = arch_dup_mmap(oldmm, mm);
d4af56c5 701loop_out:
3b9dbd5e 702 vma_iter_free(&vmi);
d70f2a14 703out:
d8ed45c5 704 mmap_write_unlock(mm);
d70f2a14 705 flush_tlb_mm(oldmm);
d8ed45c5 706 mmap_write_unlock(oldmm);
d70f2a14
AM
707 dup_userfaultfd_complete(&uf);
708fail_uprobe_end:
709 uprobe_end_dup_mmap();
710 return retval;
c9dbe82c 711
3b9dbd5e 712fail_nomem_vmi_store:
c9dbe82c 713 unlink_anon_vmas(tmp);
d70f2a14
AM
714fail_nomem_anon_vma_fork:
715 mpol_put(vma_policy(tmp));
716fail_nomem_policy:
3928d4f5 717 vm_area_free(tmp);
d70f2a14
AM
718fail_nomem:
719 retval = -ENOMEM;
720 vm_unacct_memory(charge);
d4af56c5 721 goto loop_out;
d70f2a14
AM
722}
723
724static inline int mm_alloc_pgd(struct mm_struct *mm)
725{
726 mm->pgd = pgd_alloc(mm);
727 if (unlikely(!mm->pgd))
728 return -ENOMEM;
729 return 0;
730}
731
732static inline void mm_free_pgd(struct mm_struct *mm)
733{
734 pgd_free(mm, mm->pgd);
735}
736#else
737static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
738{
d8ed45c5 739 mmap_write_lock(oldmm);
fe69d560 740 dup_mm_exe_file(mm, oldmm);
d8ed45c5 741 mmap_write_unlock(oldmm);
d70f2a14
AM
742 return 0;
743}
744#define mm_alloc_pgd(mm) (0)
745#define mm_free_pgd(mm)
746#endif /* CONFIG_MMU */
747
748static void check_mm(struct mm_struct *mm)
749{
750 int i;
751
8495f7e6
SPP
752 BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS,
753 "Please make sure 'struct resident_page_types[]' is updated as well");
754
d70f2a14 755 for (i = 0; i < NR_MM_COUNTERS; i++) {
f1a79412 756 long x = percpu_counter_sum(&mm->rss_stat[i]);
d70f2a14
AM
757
758 if (unlikely(x))
8495f7e6
SPP
759 pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n",
760 mm, resident_page_types[i], x);
d70f2a14
AM
761 }
762
763 if (mm_pgtables_bytes(mm))
764 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
765 mm_pgtables_bytes(mm));
766
767#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
768 VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
769#endif
770}
771
772#define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
773#define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
774
775/*
776 * Called when the last reference to the mm
777 * is dropped: either by a lazy thread or by
778 * mmput. Free the page directory and the mm.
779 */
d34bc48f 780void __mmdrop(struct mm_struct *mm)
d70f2a14 781{
f1a79412
SB
782 int i;
783
d70f2a14 784 BUG_ON(mm == &init_mm);
3eda69c9
MR
785 WARN_ON_ONCE(mm == current->mm);
786 WARN_ON_ONCE(mm == current->active_mm);
d70f2a14
AM
787 mm_free_pgd(mm);
788 destroy_context(mm);
984cfe4e 789 mmu_notifier_subscriptions_destroy(mm);
d70f2a14
AM
790 check_mm(mm);
791 put_user_ns(mm->user_ns);
2667ed10 792 mm_pasid_drop(mm);
f1a79412
SB
793
794 for (i = 0; i < NR_MM_COUNTERS; i++)
795 percpu_counter_destroy(&mm->rss_stat[i]);
d70f2a14
AM
796 free_mm(mm);
797}
d34bc48f 798EXPORT_SYMBOL_GPL(__mmdrop);
d70f2a14
AM
799
800static void mmdrop_async_fn(struct work_struct *work)
801{
802 struct mm_struct *mm;
803
804 mm = container_of(work, struct mm_struct, async_put_work);
805 __mmdrop(mm);
806}
807
808static void mmdrop_async(struct mm_struct *mm)
809{
810 if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
811 INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
812 schedule_work(&mm->async_put_work);
813 }
814}
815
ea6d290c
ON
816static inline void free_signal_struct(struct signal_struct *sig)
817{
97101eb4 818 taskstats_tgid_free(sig);
1c5354de 819 sched_autogroup_exit(sig);
7283094e
MH
820 /*
821 * __mmdrop is not safe to call from softirq context on x86 due to
822 * pgd_dtor so postpone it to the async context
823 */
26db62f1 824 if (sig->oom_mm)
7283094e 825 mmdrop_async(sig->oom_mm);
ea6d290c
ON
826 kmem_cache_free(signal_cachep, sig);
827}
828
829static inline void put_signal_struct(struct signal_struct *sig)
830{
60d4de3f 831 if (refcount_dec_and_test(&sig->sigcnt))
ea6d290c
ON
832 free_signal_struct(sig);
833}
834
158d9ebd 835void __put_task_struct(struct task_struct *tsk)
1da177e4 836{
270f722d 837 WARN_ON(!tsk->exit_state);
ec1d2819 838 WARN_ON(refcount_read(&tsk->usage));
1da177e4
LT
839 WARN_ON(tsk == current);
840
0f212204 841 io_uring_free(tsk);
2e91fa7f 842 cgroup_free(tsk);
16d51a59 843 task_numa_free(tsk, true);
1a2a4d06 844 security_task_free(tsk);
a10787e6 845 bpf_task_storage_free(tsk);
e0e81739 846 exit_creds(tsk);
35df17c5 847 delayacct_tsk_free(tsk);
ea6d290c 848 put_signal_struct(tsk->signal);
6e33cad0 849 sched_core_free(tsk);
2873cd31 850 free_task(tsk);
1da177e4 851}
77c100c8 852EXPORT_SYMBOL_GPL(__put_task_struct);
1da177e4 853
6c0a9fa6 854void __init __weak arch_task_cache_init(void) { }
61c4628b 855
ff691f6e
HS
856/*
857 * set_max_threads
858 */
16db3d3f 859static void set_max_threads(unsigned int max_threads_suggested)
ff691f6e 860{
ac1b398d 861 u64 threads;
ca79b0c2 862 unsigned long nr_pages = totalram_pages();
ff691f6e
HS
863
864 /*
ac1b398d
HS
865 * The number of threads shall be limited such that the thread
866 * structures may only consume a small part of the available memory.
ff691f6e 867 */
3d6357de 868 if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
ac1b398d
HS
869 threads = MAX_THREADS;
870 else
3d6357de 871 threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
ac1b398d
HS
872 (u64) THREAD_SIZE * 8UL);
873
16db3d3f
HS
874 if (threads > max_threads_suggested)
875 threads = max_threads_suggested;
876
ac1b398d 877 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
ff691f6e
HS
878}
879
5aaeb5c0
IM
880#ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
881/* Initialized by the architecture: */
882int arch_task_struct_size __read_mostly;
883#endif
0c8c0f03 884
4189ff23 885#ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
5905429a
KC
886static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
887{
888 /* Fetch thread_struct whitelist for the architecture. */
889 arch_thread_struct_whitelist(offset, size);
890
891 /*
892 * Handle zero-sized whitelist or empty thread_struct, otherwise
893 * adjust offset to position of thread_struct in task_struct.
894 */
895 if (unlikely(*size == 0))
896 *offset = 0;
897 else
898 *offset += offsetof(struct task_struct, thread);
899}
4189ff23 900#endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */
5905429a 901
ff691f6e 902void __init fork_init(void)
1da177e4 903{
25f9c081 904 int i;
f5e10287 905#ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
1da177e4 906#ifndef ARCH_MIN_TASKALIGN
e274795e 907#define ARCH_MIN_TASKALIGN 0
1da177e4 908#endif
95cb64c1 909 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
5905429a 910 unsigned long useroffset, usersize;
e274795e 911
1da177e4 912 /* create a slab on which task_structs can be allocated */
5905429a
KC
913 task_struct_whitelist(&useroffset, &usersize);
914 task_struct_cachep = kmem_cache_create_usercopy("task_struct",
e274795e 915 arch_task_struct_size, align,
5905429a
KC
916 SLAB_PANIC|SLAB_ACCOUNT,
917 useroffset, usersize, NULL);
1da177e4
LT
918#endif
919
61c4628b
SS
920 /* do the arch specific task caches init */
921 arch_task_cache_init();
922
16db3d3f 923 set_max_threads(MAX_THREADS);
1da177e4
LT
924
925 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
926 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
927 init_task.signal->rlim[RLIMIT_SIGPENDING] =
928 init_task.signal->rlim[RLIMIT_NPROC];
b376c3e1 929
de399236 930 for (i = 0; i < UCOUNT_COUNTS; i++)
25f9c081 931 init_user_ns.ucount_max[i] = max_threads/2;
19659c59 932
de399236
AG
933 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_NPROC, RLIM_INFINITY);
934 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MSGQUEUE, RLIM_INFINITY);
935 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_SIGPENDING, RLIM_INFINITY);
936 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MEMLOCK, RLIM_INFINITY);
21d1c5e3 937
19659c59
HR
938#ifdef CONFIG_VMAP_STACK
939 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
940 NULL, free_vm_stack_cache);
941#endif
b09be676 942
d08b9f0c
ST
943 scs_init();
944
b09be676 945 lockdep_init_task(&init_task);
aad42dd4 946 uprobes_init();
1da177e4
LT
947}
948
52f5684c 949int __weak arch_dup_task_struct(struct task_struct *dst,
61c4628b
SS
950 struct task_struct *src)
951{
952 *dst = *src;
953 return 0;
954}
955
d4311ff1
AT
956void set_task_stack_end_magic(struct task_struct *tsk)
957{
958 unsigned long *stackend;
959
960 stackend = end_of_stack(tsk);
961 *stackend = STACK_END_MAGIC; /* for overflow detection */
962}
963
725fc629 964static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
1da177e4
LT
965{
966 struct task_struct *tsk;
3e26c149 967 int err;
1da177e4 968
725fc629
AK
969 if (node == NUMA_NO_NODE)
970 node = tsk_fork_get_node(orig);
504f52b5 971 tsk = alloc_task_struct_node(node);
1da177e4
LT
972 if (!tsk)
973 return NULL;
974
546c42b2
SAS
975 err = arch_dup_task_struct(tsk, orig);
976 if (err)
f19b9f74 977 goto free_tsk;
1da177e4 978
7865aba3
SAS
979 err = alloc_thread_stack_node(tsk, node);
980 if (err)
f19b9f74 981 goto free_tsk;
ba14a194 982
68f24b08 983#ifdef CONFIG_THREAD_INFO_IN_TASK
f0b89d39 984 refcount_set(&tsk->stack_refcount, 1);
68f24b08 985#endif
1a03d3f1 986 account_kernel_stack(tsk, 1);
164c33c6 987
d08b9f0c
ST
988 err = scs_prepare(tsk, node);
989 if (err)
990 goto free_stack;
991
dbd95212
KC
992#ifdef CONFIG_SECCOMP
993 /*
994 * We must handle setting up seccomp filters once we're under
995 * the sighand lock in case orig has changed between now and
996 * then. Until then, filter must be NULL to avoid messing up
997 * the usage counts on the error path calling free_task.
998 */
999 tsk->seccomp.filter = NULL;
1000#endif
87bec58a
AM
1001
1002 setup_thread_stack(tsk, orig);
8e7cac79 1003 clear_user_return_notifier(tsk);
f26f9aff 1004 clear_tsk_need_resched(tsk);
d4311ff1 1005 set_task_stack_end_magic(tsk);
1446e1df 1006 clear_syscall_work_syscall_user_dispatch(tsk);
1da177e4 1007
050e9baa 1008#ifdef CONFIG_STACKPROTECTOR
7cd815bc 1009 tsk->stack_canary = get_random_canary();
0a425405 1010#endif
3bd37062
SAS
1011 if (orig->cpus_ptr == &orig->cpus_mask)
1012 tsk->cpus_ptr = &tsk->cpus_mask;
b90ca8ba 1013 dup_user_cpus_ptr(tsk, orig, node);
0a425405 1014
fb0a685c 1015 /*
0ff7b2cf
EB
1016 * One for the user space visible state that goes away when reaped.
1017 * One for the scheduler.
fb0a685c 1018 */
0ff7b2cf
EB
1019 refcount_set(&tsk->rcu_users, 2);
1020 /* One for the rcu users */
1021 refcount_set(&tsk->usage, 1);
6c5c9341 1022#ifdef CONFIG_BLK_DEV_IO_TRACE
2056a782 1023 tsk->btrace_seq = 0;
6c5c9341 1024#endif
a0aa7f68 1025 tsk->splice_pipe = NULL;
5640f768 1026 tsk->task_frag.page = NULL;
093e5840 1027 tsk->wake_q.next = NULL;
e32cf5df 1028 tsk->worker_private = NULL;
c6a7f572 1029
5c9a8750 1030 kcov_task_init(tsk);
50b5e49c 1031 kmsan_task_create(tsk);
5fbda3ec 1032 kmap_local_fork(tsk);
5c9a8750 1033
e41d5818
DV
1034#ifdef CONFIG_FAULT_INJECTION
1035 tsk->fail_nth = 0;
1036#endif
1037
2c323017 1038#ifdef CONFIG_BLK_CGROUP
f05837ed 1039 tsk->throttle_disk = NULL;
2c323017
JB
1040 tsk->use_memdelay = 0;
1041#endif
1042
a3d29e82
PZ
1043#ifdef CONFIG_IOMMU_SVA
1044 tsk->pasid_activated = 0;
1045#endif
1046
d46eb14b
SB
1047#ifdef CONFIG_MEMCG
1048 tsk->active_memcg = NULL;
1049#endif
b041b525
TL
1050
1051#ifdef CONFIG_CPU_SUP_INTEL
1052 tsk->reported_split_lock = 0;
1053#endif
1054
af7f588d
MD
1055#ifdef CONFIG_SCHED_MM_CID
1056 tsk->mm_cid = -1;
1057 tsk->mm_cid_active = 0;
1058#endif
1da177e4 1059 return tsk;
61c4628b 1060
b235beea 1061free_stack:
1a03d3f1 1062 exit_task_stack_account(tsk);
ba14a194 1063 free_thread_stack(tsk);
f19b9f74 1064free_tsk:
61c4628b
SS
1065 free_task_struct(tsk);
1066 return NULL;
1da177e4
LT
1067}
1068
23ff4440 1069__cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
1da177e4 1070
4cb0e11b
HK
1071static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
1072
1073static int __init coredump_filter_setup(char *s)
1074{
1075 default_dump_filter =
1076 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
1077 MMF_DUMP_FILTER_MASK;
1078 return 1;
1079}
1080
1081__setup("coredump_filter=", coredump_filter_setup);
1082
1da177e4
LT
1083#include <linux/init_task.h>
1084
858f0993
AD
1085static void mm_init_aio(struct mm_struct *mm)
1086{
1087#ifdef CONFIG_AIO
1088 spin_lock_init(&mm->ioctx_lock);
db446a08 1089 mm->ioctx_table = NULL;
858f0993
AD
1090#endif
1091}
1092
c3f3ce04
AA
1093static __always_inline void mm_clear_owner(struct mm_struct *mm,
1094 struct task_struct *p)
1095{
1096#ifdef CONFIG_MEMCG
1097 if (mm->owner == p)
1098 WRITE_ONCE(mm->owner, NULL);
1099#endif
1100}
1101
33144e84
VD
1102static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1103{
1104#ifdef CONFIG_MEMCG
1105 mm->owner = p;
1106#endif
1107}
1108
355627f5
EB
1109static void mm_init_uprobes_state(struct mm_struct *mm)
1110{
1111#ifdef CONFIG_UPROBES
1112 mm->uprobes_state.xol_area = NULL;
1113#endif
1114}
1115
bfedb589
EB
1116static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
1117 struct user_namespace *user_ns)
1da177e4 1118{
f1a79412
SB
1119 int i;
1120
d4af56c5
LH
1121 mt_init_flags(&mm->mm_mt, MM_MT_FLAGS);
1122 mt_set_external_lock(&mm->mm_mt, &mm->mmap_lock);
1da177e4
LT
1123 atomic_set(&mm->mm_users, 1);
1124 atomic_set(&mm->mm_count, 1);
57efa1fe 1125 seqcount_init(&mm->write_protect_seq);
d8ed45c5 1126 mmap_init_lock(mm);
1da177e4 1127 INIT_LIST_HEAD(&mm->mmlist);
af5b0f6a 1128 mm_pgtables_bytes_init(mm);
41f727fd
VD
1129 mm->map_count = 0;
1130 mm->locked_vm = 0;
70f8a3ca 1131 atomic64_set(&mm->pinned_vm, 0);
d559db08 1132 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1da177e4 1133 spin_lock_init(&mm->page_table_lock);
88aa7cc6 1134 spin_lock_init(&mm->arg_lock);
41f727fd 1135 mm_init_cpumask(mm);
858f0993 1136 mm_init_aio(mm);
cf475ad2 1137 mm_init_owner(mm, p);
a6cbd440 1138 mm_pasid_init(mm);
2b7e8665 1139 RCU_INIT_POINTER(mm->exe_file, NULL);
984cfe4e 1140 mmu_notifier_subscriptions_init(mm);
16af97dc 1141 init_tlb_flush_pending(mm);
41f727fd
VD
1142#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
1143 mm->pmd_huge_pte = NULL;
1144#endif
355627f5 1145 mm_init_uprobes_state(mm);
13db8c50 1146 hugetlb_count_init(mm);
1da177e4 1147
a0715cc2
AT
1148 if (current->mm) {
1149 mm->flags = current->mm->flags & MMF_INIT_MASK;
1150 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1151 } else {
1152 mm->flags = default_dump_filter;
1da177e4 1153 mm->def_flags = 0;
a0715cc2
AT
1154 }
1155
41f727fd
VD
1156 if (mm_alloc_pgd(mm))
1157 goto fail_nopgd;
1158
1159 if (init_new_context(p, mm))
1160 goto fail_nocontext;
78fb7466 1161
f1a79412
SB
1162 for (i = 0; i < NR_MM_COUNTERS; i++)
1163 if (percpu_counter_init(&mm->rss_stat[i], 0, GFP_KERNEL_ACCOUNT))
1164 goto fail_pcpu;
1165
bfedb589 1166 mm->user_ns = get_user_ns(user_ns);
bd74fdae 1167 lru_gen_init_mm(mm);
af7f588d 1168 mm_init_cid(mm);
41f727fd
VD
1169 return mm;
1170
f1a79412
SB
1171fail_pcpu:
1172 while (i > 0)
1173 percpu_counter_destroy(&mm->rss_stat[--i]);
41f727fd
VD
1174fail_nocontext:
1175 mm_free_pgd(mm);
1176fail_nopgd:
1da177e4
LT
1177 free_mm(mm);
1178 return NULL;
1179}
1180
1181/*
1182 * Allocate and initialize an mm_struct.
1183 */
fb0a685c 1184struct mm_struct *mm_alloc(void)
1da177e4 1185{
fb0a685c 1186 struct mm_struct *mm;
1da177e4
LT
1187
1188 mm = allocate_mm();
de03c72c
KM
1189 if (!mm)
1190 return NULL;
1191
1192 memset(mm, 0, sizeof(*mm));
bfedb589 1193 return mm_init(mm, current, current_user_ns());
1da177e4
LT
1194}
1195
ec8d7c14
MH
1196static inline void __mmput(struct mm_struct *mm)
1197{
1198 VM_BUG_ON(atomic_read(&mm->mm_users));
1199
1200 uprobe_clear_state(mm);
1201 exit_aio(mm);
1202 ksm_exit(mm);
1203 khugepaged_exit(mm); /* must run before exit_mmap */
1204 exit_mmap(mm);
6fcb52a5 1205 mm_put_huge_zero_page(mm);
ec8d7c14
MH
1206 set_mm_exe_file(mm, NULL);
1207 if (!list_empty(&mm->mmlist)) {
1208 spin_lock(&mmlist_lock);
1209 list_del(&mm->mmlist);
1210 spin_unlock(&mmlist_lock);
1211 }
1212 if (mm->binfmt)
1213 module_put(mm->binfmt->module);
bd74fdae 1214 lru_gen_del_mm(mm);
ec8d7c14
MH
1215 mmdrop(mm);
1216}
1217
1da177e4
LT
1218/*
1219 * Decrement the use count and release all resources for an mm.
1220 */
1221void mmput(struct mm_struct *mm)
1222{
0ae26f1b
AM
1223 might_sleep();
1224
ec8d7c14
MH
1225 if (atomic_dec_and_test(&mm->mm_users))
1226 __mmput(mm);
1227}
1228EXPORT_SYMBOL_GPL(mmput);
1229
a1b2289c
SY
1230#ifdef CONFIG_MMU
1231static void mmput_async_fn(struct work_struct *work)
1232{
1233 struct mm_struct *mm = container_of(work, struct mm_struct,
1234 async_put_work);
1235
1236 __mmput(mm);
1237}
1238
1239void mmput_async(struct mm_struct *mm)
1240{
1241 if (atomic_dec_and_test(&mm->mm_users)) {
1242 INIT_WORK(&mm->async_put_work, mmput_async_fn);
1243 schedule_work(&mm->async_put_work);
1244 }
1245}
85eaeb50 1246EXPORT_SYMBOL_GPL(mmput_async);
a1b2289c
SY
1247#endif
1248
90f31d0e
KK
1249/**
1250 * set_mm_exe_file - change a reference to the mm's executable file
1251 *
1252 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1253 *
6e399cd1
DB
1254 * Main users are mmput() and sys_execve(). Callers prevent concurrent
1255 * invocations: in mmput() nobody alive left, in execve task is single
35d7bdc8 1256 * threaded.
fe69d560
DH
1257 *
1258 * Can only fail if new_exe_file != NULL.
90f31d0e 1259 */
fe69d560 1260int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
38646013 1261{
6e399cd1
DB
1262 struct file *old_exe_file;
1263
1264 /*
1265 * It is safe to dereference the exe_file without RCU as
1266 * this function is only called if nobody else can access
1267 * this mm -- see comment above for justification.
1268 */
1269 old_exe_file = rcu_dereference_raw(mm->exe_file);
90f31d0e 1270
fe69d560
DH
1271 if (new_exe_file) {
1272 /*
1273 * We expect the caller (i.e., sys_execve) to already denied
1274 * write access, so this is unlikely to fail.
1275 */
1276 if (unlikely(deny_write_access(new_exe_file)))
1277 return -EACCES;
38646013 1278 get_file(new_exe_file);
fe69d560 1279 }
90f31d0e 1280 rcu_assign_pointer(mm->exe_file, new_exe_file);
fe69d560
DH
1281 if (old_exe_file) {
1282 allow_write_access(old_exe_file);
90f31d0e 1283 fput(old_exe_file);
fe69d560
DH
1284 }
1285 return 0;
38646013
JS
1286}
1287
35d7bdc8
DH
1288/**
1289 * replace_mm_exe_file - replace a reference to the mm's executable file
1290 *
1291 * This changes mm's executable file (shown as symlink /proc/[pid]/exe),
1292 * dealing with concurrent invocation and without grabbing the mmap lock in
1293 * write mode.
1294 *
1295 * Main user is sys_prctl(PR_SET_MM_MAP/EXE_FILE).
1296 */
1297int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1298{
1299 struct vm_area_struct *vma;
1300 struct file *old_exe_file;
1301 int ret = 0;
1302
1303 /* Forbid mm->exe_file change if old file still mapped. */
1304 old_exe_file = get_mm_exe_file(mm);
1305 if (old_exe_file) {
fa5e5876 1306 VMA_ITERATOR(vmi, mm, 0);
35d7bdc8 1307 mmap_read_lock(mm);
fa5e5876 1308 for_each_vma(vmi, vma) {
35d7bdc8
DH
1309 if (!vma->vm_file)
1310 continue;
1311 if (path_equal(&vma->vm_file->f_path,
fa5e5876 1312 &old_exe_file->f_path)) {
35d7bdc8 1313 ret = -EBUSY;
fa5e5876
MWO
1314 break;
1315 }
35d7bdc8
DH
1316 }
1317 mmap_read_unlock(mm);
1318 fput(old_exe_file);
1319 if (ret)
1320 return ret;
1321 }
1322
1323 /* set the new file, lockless */
fe69d560
DH
1324 ret = deny_write_access(new_exe_file);
1325 if (ret)
1326 return -EACCES;
35d7bdc8 1327 get_file(new_exe_file);
fe69d560 1328
35d7bdc8 1329 old_exe_file = xchg(&mm->exe_file, new_exe_file);
fe69d560
DH
1330 if (old_exe_file) {
1331 /*
1332 * Don't race with dup_mmap() getting the file and disallowing
1333 * write access while someone might open the file writable.
1334 */
1335 mmap_read_lock(mm);
1336 allow_write_access(old_exe_file);
35d7bdc8 1337 fput(old_exe_file);
fe69d560
DH
1338 mmap_read_unlock(mm);
1339 }
35d7bdc8 1340 return 0;
38646013
JS
1341}
1342
90f31d0e
KK
1343/**
1344 * get_mm_exe_file - acquire a reference to the mm's executable file
1345 *
1346 * Returns %NULL if mm has no associated executable file.
1347 * User must release file via fput().
1348 */
38646013
JS
1349struct file *get_mm_exe_file(struct mm_struct *mm)
1350{
1351 struct file *exe_file;
1352
90f31d0e
KK
1353 rcu_read_lock();
1354 exe_file = rcu_dereference(mm->exe_file);
1355 if (exe_file && !get_file_rcu(exe_file))
1356 exe_file = NULL;
1357 rcu_read_unlock();
38646013
JS
1358 return exe_file;
1359}
1360
cd81a917
MG
1361/**
1362 * get_task_exe_file - acquire a reference to the task's executable file
1363 *
1364 * Returns %NULL if task's mm (if any) has no associated executable file or
1365 * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1366 * User must release file via fput().
1367 */
1368struct file *get_task_exe_file(struct task_struct *task)
1369{
1370 struct file *exe_file = NULL;
1371 struct mm_struct *mm;
1372
1373 task_lock(task);
1374 mm = task->mm;
1375 if (mm) {
1376 if (!(task->flags & PF_KTHREAD))
1377 exe_file = get_mm_exe_file(mm);
1378 }
1379 task_unlock(task);
1380 return exe_file;
1381}
38646013 1382
1da177e4
LT
1383/**
1384 * get_task_mm - acquire a reference to the task's mm
1385 *
246bb0b1 1386 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
1da177e4
LT
1387 * this kernel workthread has transiently adopted a user mm with use_mm,
1388 * to do its AIO) is not set and if so returns a reference to it, after
1389 * bumping up the use count. User must release the mm via mmput()
1390 * after use. Typically used by /proc and ptrace.
1391 */
1392struct mm_struct *get_task_mm(struct task_struct *task)
1393{
1394 struct mm_struct *mm;
1395
1396 task_lock(task);
1397 mm = task->mm;
1398 if (mm) {
246bb0b1 1399 if (task->flags & PF_KTHREAD)
1da177e4
LT
1400 mm = NULL;
1401 else
3fce371b 1402 mmget(mm);
1da177e4
LT
1403 }
1404 task_unlock(task);
1405 return mm;
1406}
1407EXPORT_SYMBOL_GPL(get_task_mm);
1408
8cdb878d
CY
1409struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1410{
1411 struct mm_struct *mm;
1412 int err;
1413
f7cfd871 1414 err = down_read_killable(&task->signal->exec_update_lock);
8cdb878d
CY
1415 if (err)
1416 return ERR_PTR(err);
1417
1418 mm = get_task_mm(task);
1419 if (mm && mm != current->mm &&
1420 !ptrace_may_access(task, mode)) {
1421 mmput(mm);
1422 mm = ERR_PTR(-EACCES);
1423 }
f7cfd871 1424 up_read(&task->signal->exec_update_lock);
8cdb878d
CY
1425
1426 return mm;
1427}
1428
57b59c4a 1429static void complete_vfork_done(struct task_struct *tsk)
c415c3b4 1430{
d68b46fe 1431 struct completion *vfork;
c415c3b4 1432
d68b46fe
ON
1433 task_lock(tsk);
1434 vfork = tsk->vfork_done;
1435 if (likely(vfork)) {
1436 tsk->vfork_done = NULL;
1437 complete(vfork);
1438 }
1439 task_unlock(tsk);
1440}
1441
1442static int wait_for_vfork_done(struct task_struct *child,
1443 struct completion *vfork)
1444{
f5d39b02 1445 unsigned int state = TASK_UNINTERRUPTIBLE|TASK_KILLABLE|TASK_FREEZABLE;
d68b46fe
ON
1446 int killed;
1447
76f969e8 1448 cgroup_enter_frozen();
f5d39b02 1449 killed = wait_for_completion_state(vfork, state);
76f969e8 1450 cgroup_leave_frozen(false);
d68b46fe
ON
1451
1452 if (killed) {
1453 task_lock(child);
1454 child->vfork_done = NULL;
1455 task_unlock(child);
1456 }
1457
1458 put_task_struct(child);
1459 return killed;
c415c3b4
ON
1460}
1461
1da177e4
LT
1462/* Please note the differences between mmput and mm_release.
1463 * mmput is called whenever we stop holding onto a mm_struct,
1464 * error success whatever.
1465 *
1466 * mm_release is called after a mm_struct has been removed
1467 * from the current process.
1468 *
1469 * This difference is important for error handling, when we
1470 * only half set up a mm_struct for a new process and need to restore
1471 * the old one. Because we mmput the new mm_struct before
1472 * restoring the old one. . .
1473 * Eric Biederman 10 January 1998
1474 */
4610ba7a 1475static void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1da177e4 1476{
0326f5a9
SD
1477 uprobe_free_utask(tsk);
1478
1da177e4
LT
1479 /* Get rid of any cached register state */
1480 deactivate_mm(tsk, mm);
1481
fec1d011 1482 /*
735f2770
MH
1483 * Signal userspace if we're not exiting with a core dump
1484 * because we want to leave the value intact for debugging
1485 * purposes.
fec1d011 1486 */
9c8a8228 1487 if (tsk->clear_child_tid) {
92307383 1488 if (atomic_read(&mm->mm_users) > 1) {
9c8a8228
ED
1489 /*
1490 * We don't check the error code - if userspace has
1491 * not set up a proper pointer then tough luck.
1492 */
1493 put_user(0, tsk->clear_child_tid);
2de0db99
DB
1494 do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1495 1, NULL, NULL, 0, 0);
9c8a8228 1496 }
1da177e4 1497 tsk->clear_child_tid = NULL;
1da177e4 1498 }
f7505d64
KK
1499
1500 /*
1501 * All done, finally we can wake up parent and return this mm to him.
1502 * Also kthread_stop() uses this completion for synchronization.
1503 */
1504 if (tsk->vfork_done)
1505 complete_vfork_done(tsk);
1da177e4
LT
1506}
1507
4610ba7a
TG
1508void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1509{
150d7158 1510 futex_exit_release(tsk);
4610ba7a
TG
1511 mm_release(tsk, mm);
1512}
1513
1514void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1515{
150d7158 1516 futex_exec_release(tsk);
4610ba7a
TG
1517 mm_release(tsk, mm);
1518}
1519
13585fa0
NA
1520/**
1521 * dup_mm() - duplicates an existing mm structure
1522 * @tsk: the task_struct with which the new mm will be associated.
1523 * @oldmm: the mm to duplicate.
1524 *
1525 * Allocates a new mm structure and duplicates the provided @oldmm structure
1526 * content into it.
1527 *
1528 * Return: the duplicated mm or NULL on failure.
a0a7ec30 1529 */
13585fa0
NA
1530static struct mm_struct *dup_mm(struct task_struct *tsk,
1531 struct mm_struct *oldmm)
a0a7ec30 1532{
13585fa0 1533 struct mm_struct *mm;
a0a7ec30
JD
1534 int err;
1535
a0a7ec30
JD
1536 mm = allocate_mm();
1537 if (!mm)
1538 goto fail_nomem;
1539
1540 memcpy(mm, oldmm, sizeof(*mm));
1541
bfedb589 1542 if (!mm_init(mm, tsk, mm->user_ns))
a0a7ec30
JD
1543 goto fail_nomem;
1544
a0a7ec30
JD
1545 err = dup_mmap(mm, oldmm);
1546 if (err)
1547 goto free_pt;
1548
1549 mm->hiwater_rss = get_mm_rss(mm);
1550 mm->hiwater_vm = mm->total_vm;
1551
801460d0
HS
1552 if (mm->binfmt && !try_module_get(mm->binfmt->module))
1553 goto free_pt;
1554
a0a7ec30
JD
1555 return mm;
1556
1557free_pt:
801460d0
HS
1558 /* don't put binfmt in mmput, we haven't got module yet */
1559 mm->binfmt = NULL;
c3f3ce04 1560 mm_init_owner(mm, NULL);
a0a7ec30
JD
1561 mmput(mm);
1562
1563fail_nomem:
1564 return NULL;
a0a7ec30
JD
1565}
1566
fb0a685c 1567static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1da177e4 1568{
fb0a685c 1569 struct mm_struct *mm, *oldmm;
1da177e4
LT
1570
1571 tsk->min_flt = tsk->maj_flt = 0;
1572 tsk->nvcsw = tsk->nivcsw = 0;
17406b82
MSB
1573#ifdef CONFIG_DETECT_HUNG_TASK
1574 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
a2e51445 1575 tsk->last_switch_time = 0;
17406b82 1576#endif
1da177e4
LT
1577
1578 tsk->mm = NULL;
1579 tsk->active_mm = NULL;
1580
1581 /*
1582 * Are we cloning a kernel thread?
1583 *
1584 * We need to steal a active VM for that..
1585 */
1586 oldmm = current->mm;
1587 if (!oldmm)
1588 return 0;
1589
1590 if (clone_flags & CLONE_VM) {
3fce371b 1591 mmget(oldmm);
1da177e4 1592 mm = oldmm;
a6895399
REB
1593 } else {
1594 mm = dup_mm(tsk, current->mm);
1595 if (!mm)
1596 return -ENOMEM;
1da177e4
LT
1597 }
1598
1da177e4
LT
1599 tsk->mm = mm;
1600 tsk->active_mm = mm;
af7f588d 1601 sched_mm_cid_fork(tsk);
1da177e4 1602 return 0;
1da177e4
LT
1603}
1604
a39bc516 1605static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1da177e4 1606{
498052bb 1607 struct fs_struct *fs = current->fs;
1da177e4 1608 if (clone_flags & CLONE_FS) {
498052bb 1609 /* tsk->fs is already what we want */
2a4419b5 1610 spin_lock(&fs->lock);
498052bb 1611 if (fs->in_exec) {
2a4419b5 1612 spin_unlock(&fs->lock);
498052bb
AV
1613 return -EAGAIN;
1614 }
1615 fs->users++;
2a4419b5 1616 spin_unlock(&fs->lock);
1da177e4
LT
1617 return 0;
1618 }
498052bb 1619 tsk->fs = copy_fs_struct(fs);
1da177e4
LT
1620 if (!tsk->fs)
1621 return -ENOMEM;
1622 return 0;
1623}
1624
fb0a685c 1625static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
a016f338
JD
1626{
1627 struct files_struct *oldf, *newf;
1628 int error = 0;
1629
1630 /*
1631 * A background process may not have any files ...
1632 */
1633 oldf = current->files;
1634 if (!oldf)
1635 goto out;
1636
1637 if (clone_flags & CLONE_FILES) {
1638 atomic_inc(&oldf->count);
1639 goto out;
1640 }
1641
60997c3d 1642 newf = dup_fd(oldf, NR_OPEN_MAX, &error);
a016f338
JD
1643 if (!newf)
1644 goto out;
1645
1646 tsk->files = newf;
1647 error = 0;
1648out:
1649 return error;
1650}
1651
a39bc516 1652static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1da177e4
LT
1653{
1654 struct sighand_struct *sig;
1655
60348802 1656 if (clone_flags & CLONE_SIGHAND) {
d036bda7 1657 refcount_inc(&current->sighand->count);
1da177e4
LT
1658 return 0;
1659 }
1660 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
0c282b06 1661 RCU_INIT_POINTER(tsk->sighand, sig);
1da177e4
LT
1662 if (!sig)
1663 return -ENOMEM;
9d7fb042 1664
d036bda7 1665 refcount_set(&sig->count, 1);
06e62a46 1666 spin_lock_irq(&current->sighand->siglock);
1da177e4 1667 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
06e62a46 1668 spin_unlock_irq(&current->sighand->siglock);
b612e5df
CB
1669
1670 /* Reset all signal handler not set to SIG_IGN to SIG_DFL. */
1671 if (clone_flags & CLONE_CLEAR_SIGHAND)
1672 flush_signal_handlers(tsk, 0);
1673
1da177e4
LT
1674 return 0;
1675}
1676
a7e5328a 1677void __cleanup_sighand(struct sighand_struct *sighand)
c81addc9 1678{
d036bda7 1679 if (refcount_dec_and_test(&sighand->count)) {
d80e731e 1680 signalfd_cleanup(sighand);
392809b2 1681 /*
5f0d5a3a 1682 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
392809b2
ON
1683 * without an RCU grace period, see __lock_task_sighand().
1684 */
c81addc9 1685 kmem_cache_free(sighand_cachep, sighand);
d80e731e 1686 }
c81addc9
ON
1687}
1688
f06febc9
FM
1689/*
1690 * Initialize POSIX timer handling for a thread group.
1691 */
1692static void posix_cpu_timers_init_group(struct signal_struct *sig)
1693{
2b69942f 1694 struct posix_cputimers *pct = &sig->posix_cputimers;
78d7d407
JS
1695 unsigned long cpu_limit;
1696
316c1608 1697 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
3a245c0f 1698 posix_cputimers_group_init(pct, cpu_limit);
f06febc9
FM
1699}
1700
a39bc516 1701static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1da177e4
LT
1702{
1703 struct signal_struct *sig;
1da177e4 1704
4ab6c083 1705 if (clone_flags & CLONE_THREAD)
490dea45 1706 return 0;
490dea45 1707
a56704ef 1708 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1da177e4
LT
1709 tsk->signal = sig;
1710 if (!sig)
1711 return -ENOMEM;
1712
b3ac022c 1713 sig->nr_threads = 1;
d80f7d7b 1714 sig->quick_threads = 1;
1da177e4 1715 atomic_set(&sig->live, 1);
60d4de3f 1716 refcount_set(&sig->sigcnt, 1);
0c740d0a
ON
1717
1718 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1719 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1720 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1721
1da177e4 1722 init_waitqueue_head(&sig->wait_chldexit);
db51aecc 1723 sig->curr_target = tsk;
1da177e4 1724 init_sigpending(&sig->shared_pending);
c3ad2c3b 1725 INIT_HLIST_HEAD(&sig->multiprocess);
e78c3496 1726 seqlock_init(&sig->stats_lock);
9d7fb042 1727 prev_cputime_init(&sig->prev_cputime);
1da177e4 1728
baa73d9e 1729#ifdef CONFIG_POSIX_TIMERS
b18b6a9c 1730 INIT_LIST_HEAD(&sig->posix_timers);
c9cb2e3d 1731 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1da177e4 1732 sig->real_timer.function = it_real_fn;
baa73d9e 1733#endif
1da177e4 1734
1da177e4
LT
1735 task_lock(current->group_leader);
1736 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1737 task_unlock(current->group_leader);
1738
6279a751
ON
1739 posix_cpu_timers_init_group(sig);
1740
522ed776 1741 tty_audit_fork(sig);
5091faa4 1742 sched_autogroup_fork(sig);
522ed776 1743
a63d83f4 1744 sig->oom_score_adj = current->signal->oom_score_adj;
dabb16f6 1745 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
28b83c51 1746
9b1bf12d 1747 mutex_init(&sig->cred_guard_mutex);
f7cfd871 1748 init_rwsem(&sig->exec_update_lock);
9b1bf12d 1749
1da177e4
LT
1750 return 0;
1751}
1752
dbd95212
KC
1753static void copy_seccomp(struct task_struct *p)
1754{
1755#ifdef CONFIG_SECCOMP
1756 /*
1757 * Must be called with sighand->lock held, which is common to
1758 * all threads in the group. Holding cred_guard_mutex is not
1759 * needed because this new task is not yet running and cannot
1760 * be racing exec.
1761 */
69f6a34b 1762 assert_spin_locked(&current->sighand->siglock);
dbd95212
KC
1763
1764 /* Ref-count the new filter user, and assign it. */
1765 get_seccomp_filter(current);
1766 p->seccomp = current->seccomp;
1767
1768 /*
1769 * Explicitly enable no_new_privs here in case it got set
1770 * between the task_struct being duplicated and holding the
1771 * sighand lock. The seccomp state and nnp must be in sync.
1772 */
1773 if (task_no_new_privs(current))
1774 task_set_no_new_privs(p);
1775
1776 /*
1777 * If the parent gained a seccomp mode after copying thread
1778 * flags and between before we held the sighand lock, we have
1779 * to manually enable the seccomp thread flag here.
1780 */
1781 if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
23d67a54 1782 set_task_syscall_work(p, SECCOMP);
dbd95212
KC
1783#endif
1784}
1785
17da2bd9 1786SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1da177e4
LT
1787{
1788 current->clear_child_tid = tidptr;
1789
b488893a 1790 return task_pid_vnr(current);
1da177e4
LT
1791}
1792
a39bc516 1793static void rt_mutex_init_task(struct task_struct *p)
23f78d4a 1794{
1d615482 1795 raw_spin_lock_init(&p->pi_lock);
e29e175b 1796#ifdef CONFIG_RT_MUTEXES
a23ba907 1797 p->pi_waiters = RB_ROOT_CACHED;
e96a7705 1798 p->pi_top_task = NULL;
23f78d4a 1799 p->pi_blocked_on = NULL;
23f78d4a
IM
1800#endif
1801}
1802
2c470475
EB
1803static inline void init_task_pid_links(struct task_struct *task)
1804{
1805 enum pid_type type;
1806
96e1e984 1807 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type)
2c470475 1808 INIT_HLIST_NODE(&task->pid_links[type]);
2c470475
EB
1809}
1810
81907739
ON
1811static inline void
1812init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1813{
2c470475
EB
1814 if (type == PIDTYPE_PID)
1815 task->thread_pid = pid;
1816 else
1817 task->signal->pids[type] = pid;
81907739
ON
1818}
1819
6bfbaa51
IM
1820static inline void rcu_copy_process(struct task_struct *p)
1821{
1822#ifdef CONFIG_PREEMPT_RCU
1823 p->rcu_read_lock_nesting = 0;
1824 p->rcu_read_unlock_special.s = 0;
1825 p->rcu_blocked_node = NULL;
1826 INIT_LIST_HEAD(&p->rcu_node_entry);
1827#endif /* #ifdef CONFIG_PREEMPT_RCU */
1828#ifdef CONFIG_TASKS_RCU
1829 p->rcu_tasks_holdout = false;
1830 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1831 p->rcu_tasks_idle_cpu = -1;
1832#endif /* #ifdef CONFIG_TASKS_RCU */
d5f177d3
PM
1833#ifdef CONFIG_TASKS_TRACE_RCU
1834 p->trc_reader_nesting = 0;
276c4104 1835 p->trc_reader_special.s = 0;
d5f177d3 1836 INIT_LIST_HEAD(&p->trc_holdout_list);
434c9eef 1837 INIT_LIST_HEAD(&p->trc_blkd_node);
d5f177d3 1838#endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
6bfbaa51
IM
1839}
1840
3695eae5
CB
1841struct pid *pidfd_pid(const struct file *file)
1842{
1843 if (file->f_op == &pidfd_fops)
1844 return file->private_data;
1845
1846 return ERR_PTR(-EBADF);
1847}
1848
b3e58382
CB
1849static int pidfd_release(struct inode *inode, struct file *file)
1850{
1851 struct pid *pid = file->private_data;
1852
1853 file->private_data = NULL;
1854 put_pid(pid);
1855 return 0;
1856}
1857
1858#ifdef CONFIG_PROC_FS
15d42eb2
CK
1859/**
1860 * pidfd_show_fdinfo - print information about a pidfd
1861 * @m: proc fdinfo file
1862 * @f: file referencing a pidfd
1863 *
1864 * Pid:
1865 * This function will print the pid that a given pidfd refers to in the
1866 * pid namespace of the procfs instance.
1867 * If the pid namespace of the process is not a descendant of the pid
1868 * namespace of the procfs instance 0 will be shown as its pid. This is
1869 * similar to calling getppid() on a process whose parent is outside of
1870 * its pid namespace.
1871 *
1872 * NSpid:
1873 * If pid namespaces are supported then this function will also print
1874 * the pid of a given pidfd refers to for all descendant pid namespaces
1875 * starting from the current pid namespace of the instance, i.e. the
1876 * Pid field and the first entry in the NSpid field will be identical.
1877 * If the pid namespace of the process is not a descendant of the pid
1878 * namespace of the procfs instance 0 will be shown as its first NSpid
1879 * entry and no others will be shown.
1880 * Note that this differs from the Pid and NSpid fields in
1881 * /proc/<pid>/status where Pid and NSpid are always shown relative to
1882 * the pid namespace of the procfs instance. The difference becomes
1883 * obvious when sending around a pidfd between pid namespaces from a
a8ca6b13 1884 * different branch of the tree, i.e. where no ancestral relation is
15d42eb2
CK
1885 * present between the pid namespaces:
1886 * - create two new pid namespaces ns1 and ns2 in the initial pid
1887 * namespace (also take care to create new mount namespaces in the
1888 * new pid namespace and mount procfs)
1889 * - create a process with a pidfd in ns1
1890 * - send pidfd from ns1 to ns2
1891 * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid
1892 * have exactly one entry, which is 0
1893 */
b3e58382
CB
1894static void pidfd_show_fdinfo(struct seq_file *m, struct file *f)
1895{
b3e58382 1896 struct pid *pid = f->private_data;
3d6d8da4
CB
1897 struct pid_namespace *ns;
1898 pid_t nr = -1;
15d42eb2 1899
3d6d8da4 1900 if (likely(pid_has_task(pid, PIDTYPE_PID))) {
9d78edea 1901 ns = proc_pid_ns(file_inode(m->file)->i_sb);
3d6d8da4
CB
1902 nr = pid_nr_ns(pid, ns);
1903 }
1904
1905 seq_put_decimal_ll(m, "Pid:\t", nr);
b3e58382 1906
15d42eb2 1907#ifdef CONFIG_PID_NS
3d6d8da4
CB
1908 seq_put_decimal_ll(m, "\nNSpid:\t", nr);
1909 if (nr > 0) {
15d42eb2 1910 int i;
b3e58382 1911
15d42eb2
CK
1912 /* If nr is non-zero it means that 'pid' is valid and that
1913 * ns, i.e. the pid namespace associated with the procfs
1914 * instance, is in the pid namespace hierarchy of pid.
1915 * Start at one below the already printed level.
1916 */
1917 for (i = ns->level + 1; i <= pid->level; i++)
3d6d8da4 1918 seq_put_decimal_ll(m, "\t", pid->numbers[i].nr);
15d42eb2
CK
1919 }
1920#endif
b3e58382
CB
1921 seq_putc(m, '\n');
1922}
1923#endif
1924
b53b0b9d
JFG
1925/*
1926 * Poll support for process exit notification.
1927 */
9e77716a 1928static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts)
b53b0b9d 1929{
b53b0b9d 1930 struct pid *pid = file->private_data;
9e77716a 1931 __poll_t poll_flags = 0;
b53b0b9d
JFG
1932
1933 poll_wait(file, &pid->wait_pidfd, pts);
1934
b53b0b9d
JFG
1935 /*
1936 * Inform pollers only when the whole thread group exits.
1937 * If the thread group leader exits before all other threads in the
1938 * group, then poll(2) should block, similar to the wait(2) family.
1939 */
38fd525a 1940 if (thread_group_exited(pid))
9e77716a 1941 poll_flags = EPOLLIN | EPOLLRDNORM;
b53b0b9d
JFG
1942
1943 return poll_flags;
1944}
1945
b3e58382
CB
1946const struct file_operations pidfd_fops = {
1947 .release = pidfd_release,
b53b0b9d 1948 .poll = pidfd_poll,
b3e58382
CB
1949#ifdef CONFIG_PROC_FS
1950 .show_fdinfo = pidfd_show_fdinfo,
1951#endif
1952};
1953
6ae930d9
CB
1954/**
1955 * __pidfd_prepare - allocate a new pidfd_file and reserve a pidfd
1956 * @pid: the struct pid for which to create a pidfd
1957 * @flags: flags of the new @pidfd
1958 * @pidfd: the pidfd to return
1959 *
1960 * Allocate a new file that stashes @pid and reserve a new pidfd number in the
1961 * caller's file descriptor table. The pidfd is reserved but not installed yet.
1962
1963 * The helper doesn't perform checks on @pid which makes it useful for pidfds
1964 * created via CLONE_PIDFD where @pid has no task attached when the pidfd and
1965 * pidfd file are prepared.
1966 *
1967 * If this function returns successfully the caller is responsible to either
1968 * call fd_install() passing the returned pidfd and pidfd file as arguments in
1969 * order to install the pidfd into its file descriptor table or they must use
1970 * put_unused_fd() and fput() on the returned pidfd and pidfd file
1971 * respectively.
1972 *
1973 * This function is useful when a pidfd must already be reserved but there
1974 * might still be points of failure afterwards and the caller wants to ensure
1975 * that no pidfd is leaked into its file descriptor table.
1976 *
1977 * Return: On success, a reserved pidfd is returned from the function and a new
1978 * pidfd file is returned in the last argument to the function. On
1979 * error, a negative error code is returned from the function and the
1980 * last argument remains unchanged.
1981 */
1982static int __pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret)
1983{
1984 int pidfd;
1985 struct file *pidfd_file;
1986
1987 if (flags & ~(O_NONBLOCK | O_RDWR | O_CLOEXEC))
1988 return -EINVAL;
1989
1990 pidfd = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
1991 if (pidfd < 0)
1992 return pidfd;
1993
1994 pidfd_file = anon_inode_getfile("[pidfd]", &pidfd_fops, pid,
1995 flags | O_RDWR | O_CLOEXEC);
1996 if (IS_ERR(pidfd_file)) {
1997 put_unused_fd(pidfd);
1998 return PTR_ERR(pidfd_file);
1999 }
2000 get_pid(pid); /* held by pidfd_file now */
2001 *ret = pidfd_file;
2002 return pidfd;
2003}
2004
2005/**
2006 * pidfd_prepare - allocate a new pidfd_file and reserve a pidfd
2007 * @pid: the struct pid for which to create a pidfd
2008 * @flags: flags of the new @pidfd
2009 * @pidfd: the pidfd to return
2010 *
2011 * Allocate a new file that stashes @pid and reserve a new pidfd number in the
2012 * caller's file descriptor table. The pidfd is reserved but not installed yet.
2013 *
2014 * The helper verifies that @pid is used as a thread group leader.
2015 *
2016 * If this function returns successfully the caller is responsible to either
2017 * call fd_install() passing the returned pidfd and pidfd file as arguments in
2018 * order to install the pidfd into its file descriptor table or they must use
2019 * put_unused_fd() and fput() on the returned pidfd and pidfd file
2020 * respectively.
2021 *
2022 * This function is useful when a pidfd must already be reserved but there
2023 * might still be points of failure afterwards and the caller wants to ensure
2024 * that no pidfd is leaked into its file descriptor table.
2025 *
2026 * Return: On success, a reserved pidfd is returned from the function and a new
2027 * pidfd file is returned in the last argument to the function. On
2028 * error, a negative error code is returned from the function and the
2029 * last argument remains unchanged.
2030 */
2031int pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret)
2032{
2033 if (!pid || !pid_has_task(pid, PIDTYPE_TGID))
2034 return -EINVAL;
2035
2036 return __pidfd_prepare(pid, flags, ret);
2037}
2038
c3f3ce04
AA
2039static void __delayed_free_task(struct rcu_head *rhp)
2040{
2041 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
2042
2043 free_task(tsk);
2044}
2045
2046static __always_inline void delayed_free_task(struct task_struct *tsk)
2047{
2048 if (IS_ENABLED(CONFIG_MEMCG))
2049 call_rcu(&tsk->rcu, __delayed_free_task);
2050 else
2051 free_task(tsk);
2052}
2053
67197a4f
SB
2054static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk)
2055{
2056 /* Skip if kernel thread */
2057 if (!tsk->mm)
2058 return;
2059
2060 /* Skip if spawning a thread or using vfork */
2061 if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM)
2062 return;
2063
2064 /* We need to synchronize with __set_oom_adj */
2065 mutex_lock(&oom_adj_mutex);
2066 set_bit(MMF_MULTIPROCESS, &tsk->mm->flags);
2067 /* Update the values in case they were changed after copy_signal */
2068 tsk->signal->oom_score_adj = current->signal->oom_score_adj;
2069 tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min;
2070 mutex_unlock(&oom_adj_mutex);
2071}
2072
79257534
DBO
2073#ifdef CONFIG_RV
2074static void rv_task_fork(struct task_struct *p)
2075{
2076 int i;
2077
2078 for (i = 0; i < RV_PER_TASK_MONITORS; i++)
2079 p->rv[i].da_mon.monitoring = false;
2080}
2081#else
2082#define rv_task_fork(p) do {} while (0)
2083#endif
2084
1da177e4
LT
2085/*
2086 * This creates a new process as a copy of the old one,
2087 * but does not actually start it yet.
2088 *
2089 * It copies the registers, and all the appropriate
2090 * parts of the process environment (as per the clone
2091 * flags). The actual kick-off is left to the caller.
2092 */
0766f788 2093static __latent_entropy struct task_struct *copy_process(
09a05394 2094 struct pid *pid,
3033f14a 2095 int trace,
7f192e3c
CB
2096 int node,
2097 struct kernel_clone_args *args)
1da177e4 2098{
b3e58382 2099 int pidfd = -1, retval;
a24efe62 2100 struct task_struct *p;
c3ad2c3b 2101 struct multiprocess_signals delayed;
6fd2fe49 2102 struct file *pidfile = NULL;
c5febea0 2103 const u64 clone_flags = args->flags;
769071ac 2104 struct nsproxy *nsp = current->nsproxy;
1da177e4 2105
667b6094
MPS
2106 /*
2107 * Don't allow sharing the root directory with processes in a different
2108 * namespace
2109 */
1da177e4
LT
2110 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
2111 return ERR_PTR(-EINVAL);
2112
e66eded8
EB
2113 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
2114 return ERR_PTR(-EINVAL);
2115
1da177e4
LT
2116 /*
2117 * Thread groups must share signals as well, and detached threads
2118 * can only be started up within the thread group.
2119 */
2120 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
2121 return ERR_PTR(-EINVAL);
2122
2123 /*
2124 * Shared signal handlers imply shared VM. By way of the above,
2125 * thread groups also imply shared VM. Blocking this case allows
2126 * for various simplifications in other code.
2127 */
2128 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
2129 return ERR_PTR(-EINVAL);
2130
123be07b
SB
2131 /*
2132 * Siblings of global init remain as zombies on exit since they are
2133 * not reaped by their parent (swapper). To solve this and to avoid
2134 * multi-rooted process trees, prevent global and container-inits
2135 * from creating siblings.
2136 */
2137 if ((clone_flags & CLONE_PARENT) &&
2138 current->signal->flags & SIGNAL_UNKILLABLE)
2139 return ERR_PTR(-EINVAL);
2140
8382fcac 2141 /*
40a0d32d 2142 * If the new process will be in a different pid or user namespace
faf00da5 2143 * do not allow it to share a thread group with the forking task.
8382fcac 2144 */
faf00da5 2145 if (clone_flags & CLONE_THREAD) {
40a0d32d 2146 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
769071ac
AV
2147 (task_active_pid_ns(current) != nsp->pid_ns_for_children))
2148 return ERR_PTR(-EINVAL);
2149 }
2150
b3e58382 2151 if (clone_flags & CLONE_PIDFD) {
b3e58382 2152 /*
b3e58382
CB
2153 * - CLONE_DETACHED is blocked so that we can potentially
2154 * reuse it later for CLONE_PIDFD.
2155 * - CLONE_THREAD is blocked until someone really needs it.
2156 */
7f192e3c 2157 if (clone_flags & (CLONE_DETACHED | CLONE_THREAD))
b3e58382 2158 return ERR_PTR(-EINVAL);
b3e58382
CB
2159 }
2160
c3ad2c3b
EB
2161 /*
2162 * Force any signals received before this point to be delivered
2163 * before the fork happens. Collect up signals sent to multiple
2164 * processes that happen during the fork and delay them so that
2165 * they appear to happen after the fork.
2166 */
2167 sigemptyset(&delayed.signal);
2168 INIT_HLIST_NODE(&delayed.node);
2169
2170 spin_lock_irq(&current->sighand->siglock);
2171 if (!(clone_flags & CLONE_THREAD))
2172 hlist_add_head(&delayed.node, &current->signal->multiprocess);
2173 recalc_sigpending();
2174 spin_unlock_irq(&current->sighand->siglock);
2175 retval = -ERESTARTNOINTR;
66ae0d1e 2176 if (task_sigpending(current))
c3ad2c3b
EB
2177 goto fork_out;
2178
1da177e4 2179 retval = -ENOMEM;
725fc629 2180 p = dup_task_struct(current, node);
1da177e4
LT
2181 if (!p)
2182 goto fork_out;
753550eb
EB
2183 p->flags &= ~PF_KTHREAD;
2184 if (args->kthread)
2185 p->flags |= PF_KTHREAD;
b16b3855
JA
2186 if (args->io_thread) {
2187 /*
2188 * Mark us an IO worker, and block any signal that isn't
2189 * fatal or STOP
2190 */
cc440e87 2191 p->flags |= PF_IO_WORKER;
b16b3855
JA
2192 siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP));
2193 }
1da177e4 2194
7f192e3c 2195 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
4d6501dc
VN
2196 /*
2197 * Clear TID on mm_release()?
2198 */
7f192e3c 2199 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
4d6501dc 2200
f7e8b616
SR
2201 ftrace_graph_init_task(p);
2202
bea493a0
PZ
2203 rt_mutex_init_task(p);
2204
a21ee605 2205 lockdep_assert_irqs_enabled();
d12c1a37 2206#ifdef CONFIG_PROVE_LOCKING
de30a2b3
IM
2207 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
2208#endif
8f2f9c4d
EB
2209 retval = copy_creds(p, clone_flags);
2210 if (retval < 0)
2211 goto bad_fork_free;
2212
1da177e4 2213 retval = -EAGAIN;
de399236 2214 if (is_rlimit_overlimit(task_ucounts(p), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
b57922b6
EP
2215 if (p->real_cred->user != INIT_USER &&
2216 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
8f2f9c4d 2217 goto bad_fork_cleanup_count;
1da177e4 2218 }
72fa5997 2219 current->flags &= ~PF_NPROC_EXCEEDED;
1da177e4 2220
1da177e4
LT
2221 /*
2222 * If multiple threads are within copy_process(), then this check
2223 * triggers too late. This doesn't hurt, the check is only there
2224 * to stop root fork bombs.
2225 */
04ec93fe 2226 retval = -EAGAIN;
c17d1a3a 2227 if (data_race(nr_threads >= max_threads))
1da177e4
LT
2228 goto bad_fork_cleanup_count;
2229
ca74e92b 2230 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
a8ea6fc9 2231 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE | PF_NO_SETAFFINITY);
514ddb44 2232 p->flags |= PF_FORKNOEXEC;
1da177e4
LT
2233 INIT_LIST_HEAD(&p->children);
2234 INIT_LIST_HEAD(&p->sibling);
f41d911f 2235 rcu_copy_process(p);
1da177e4
LT
2236 p->vfork_done = NULL;
2237 spin_lock_init(&p->alloc_lock);
1da177e4 2238
1da177e4
LT
2239 init_sigpending(&p->pending);
2240
64861634 2241 p->utime = p->stime = p->gtime = 0;
40565b5a 2242#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
64861634 2243 p->utimescaled = p->stimescaled = 0;
40565b5a 2244#endif
9d7fb042
PZ
2245 prev_cputime_init(&p->prev_cputime);
2246
6a61671b 2247#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
bac5b6b6
FW
2248 seqcount_init(&p->vtime.seqcount);
2249 p->vtime.starttime = 0;
2250 p->vtime.state = VTIME_INACTIVE;
6a61671b
FW
2251#endif
2252
0f212204
JA
2253#ifdef CONFIG_IO_URING
2254 p->io_uring = NULL;
2255#endif
2256
a3a2e76c
KH
2257#if defined(SPLIT_RSS_COUNTING)
2258 memset(&p->rss_stat, 0, sizeof(p->rss_stat));
2259#endif
172ba844 2260
6976675d
AV
2261 p->default_timer_slack_ns = current->timer_slack_ns;
2262
eb414681
JW
2263#ifdef CONFIG_PSI
2264 p->psi_flags = 0;
2265#endif
2266
5995477a 2267 task_io_accounting_init(&p->ioac);
1da177e4
LT
2268 acct_clear_integrals(p);
2269
3a245c0f 2270 posix_cputimers_init(&p->posix_cputimers);
1da177e4 2271
1da177e4 2272 p->io_context = NULL;
c0b0ae8a 2273 audit_set_context(p, NULL);
b4f48b63 2274 cgroup_fork(p);
343f4c49 2275 if (args->kthread) {
40966e31 2276 if (!set_kthread_struct(p))
ff8288ff 2277 goto bad_fork_cleanup_delayacct;
40966e31 2278 }
1da177e4 2279#ifdef CONFIG_NUMA
846a16bf 2280 p->mempolicy = mpol_dup(p->mempolicy);
fb0a685c
DRO
2281 if (IS_ERR(p->mempolicy)) {
2282 retval = PTR_ERR(p->mempolicy);
2283 p->mempolicy = NULL;
ff8288ff 2284 goto bad_fork_cleanup_delayacct;
fb0a685c 2285 }
1da177e4 2286#endif
778d3b0f
MH
2287#ifdef CONFIG_CPUSETS
2288 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
2289 p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
b7505861 2290 seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock);
778d3b0f 2291#endif
de30a2b3 2292#ifdef CONFIG_TRACE_IRQFLAGS
0584df9c
ME
2293 memset(&p->irqtrace, 0, sizeof(p->irqtrace));
2294 p->irqtrace.hardirq_disable_ip = _THIS_IP_;
2295 p->irqtrace.softirq_enable_ip = _THIS_IP_;
2296 p->softirqs_enabled = 1;
2297 p->softirq_context = 0;
de30a2b3 2298#endif
8bcbde54
DH
2299
2300 p->pagefault_disabled = 0;
2301
fbb9ce95 2302#ifdef CONFIG_LOCKDEP
b09be676 2303 lockdep_init_task(p);
fbb9ce95 2304#endif
1da177e4 2305
408894ee
IM
2306#ifdef CONFIG_DEBUG_MUTEXES
2307 p->blocked_on = NULL; /* not blocked yet */
2308#endif
cafe5635
KO
2309#ifdef CONFIG_BCACHE
2310 p->sequential_io = 0;
2311 p->sequential_io_avg = 0;
2312#endif
a10787e6
SL
2313#ifdef CONFIG_BPF_SYSCALL
2314 RCU_INIT_POINTER(p->bpf_storage, NULL);
c7603cfa 2315 p->bpf_ctx = NULL;
a10787e6 2316#endif
0f481406 2317
3c90e6e9 2318 /* Perform scheduler related setup. Assign this task to a CPU. */
aab03e05
DF
2319 retval = sched_fork(clone_flags, p);
2320 if (retval)
2321 goto bad_fork_cleanup_policy;
6ab423e0 2322
2b26f0aa 2323 retval = perf_event_init_task(p, clone_flags);
6ab423e0
PZ
2324 if (retval)
2325 goto bad_fork_cleanup_policy;
fb0a685c
DRO
2326 retval = audit_alloc(p);
2327 if (retval)
6c72e350 2328 goto bad_fork_cleanup_perf;
1da177e4 2329 /* copy all the process information */
ab602f79 2330 shm_init_task(p);
e4e55b47 2331 retval = security_task_alloc(p, clone_flags);
fb0a685c 2332 if (retval)
1da177e4 2333 goto bad_fork_cleanup_audit;
e4e55b47
TH
2334 retval = copy_semundo(clone_flags, p);
2335 if (retval)
2336 goto bad_fork_cleanup_security;
fb0a685c
DRO
2337 retval = copy_files(clone_flags, p);
2338 if (retval)
1da177e4 2339 goto bad_fork_cleanup_semundo;
fb0a685c
DRO
2340 retval = copy_fs(clone_flags, p);
2341 if (retval)
1da177e4 2342 goto bad_fork_cleanup_files;
fb0a685c
DRO
2343 retval = copy_sighand(clone_flags, p);
2344 if (retval)
1da177e4 2345 goto bad_fork_cleanup_fs;
fb0a685c
DRO
2346 retval = copy_signal(clone_flags, p);
2347 if (retval)
1da177e4 2348 goto bad_fork_cleanup_sighand;
fb0a685c
DRO
2349 retval = copy_mm(clone_flags, p);
2350 if (retval)
1da177e4 2351 goto bad_fork_cleanup_signal;
fb0a685c
DRO
2352 retval = copy_namespaces(clone_flags, p);
2353 if (retval)
d84f4f99 2354 goto bad_fork_cleanup_mm;
fb0a685c
DRO
2355 retval = copy_io(clone_flags, p);
2356 if (retval)
fd0928df 2357 goto bad_fork_cleanup_namespaces;
c5febea0 2358 retval = copy_thread(p, args);
1da177e4 2359 if (retval)
fd0928df 2360 goto bad_fork_cleanup_io;
1da177e4 2361
afaef01c
AP
2362 stackleak_task_init(p);
2363
425fb2b4 2364 if (pid != &init_struct_pid) {
49cb2fc4
AR
2365 pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid,
2366 args->set_tid_size);
35f71bc0
MH
2367 if (IS_ERR(pid)) {
2368 retval = PTR_ERR(pid);
0740aa5f 2369 goto bad_fork_cleanup_thread;
35f71bc0 2370 }
425fb2b4
PE
2371 }
2372
b3e58382
CB
2373 /*
2374 * This has to happen after we've potentially unshared the file
2375 * descriptor table (so that the pidfd doesn't leak into the child
2376 * if the fd table isn't shared).
2377 */
2378 if (clone_flags & CLONE_PIDFD) {
6fd2fe49 2379 retval = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
b3e58382
CB
2380 if (retval < 0)
2381 goto bad_fork_free_pid;
2382
2383 pidfd = retval;
6fd2fe49
AV
2384
2385 pidfile = anon_inode_getfile("[pidfd]", &pidfd_fops, pid,
2386 O_RDWR | O_CLOEXEC);
2387 if (IS_ERR(pidfile)) {
2388 put_unused_fd(pidfd);
28dd29c0 2389 retval = PTR_ERR(pidfile);
6fd2fe49
AV
2390 goto bad_fork_free_pid;
2391 }
2392 get_pid(pid); /* held by pidfile now */
2393
7f192e3c 2394 retval = put_user(pidfd, args->pidfd);
b3e58382
CB
2395 if (retval)
2396 goto bad_fork_put_pidfd;
2397 }
2398
73c10101
JA
2399#ifdef CONFIG_BLOCK
2400 p->plug = NULL;
2401#endif
ba31c1a4
TG
2402 futex_init_task(p);
2403
f9a3879a
GM
2404 /*
2405 * sigaltstack should be cleared when sharing the same VM
2406 */
2407 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2a742138 2408 sas_ss_reset(p);
f9a3879a 2409
1da177e4 2410 /*
6580807d
ON
2411 * Syscall tracing and stepping should be turned off in the
2412 * child regardless of CLONE_PTRACE.
1da177e4 2413 */
6580807d 2414 user_disable_single_step(p);
64c19ba2 2415 clear_task_syscall_work(p, SYSCALL_TRACE);
64eb35f7
GKB
2416#if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU)
2417 clear_task_syscall_work(p, SYSCALL_EMU);
ed75e8d5 2418#endif
e02c9b0d 2419 clear_tsk_latency_tracing(p);
1da177e4 2420
1da177e4 2421 /* ok, now we should be set up.. */
18c830df
ON
2422 p->pid = pid_nr(pid);
2423 if (clone_flags & CLONE_THREAD) {
18c830df
ON
2424 p->group_leader = current->group_leader;
2425 p->tgid = current->tgid;
2426 } else {
18c830df
ON
2427 p->group_leader = p;
2428 p->tgid = p->pid;
2429 }
5f8aadd8 2430
9d823e8f
WF
2431 p->nr_dirtied = 0;
2432 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
83712358 2433 p->dirty_paused_when = 0;
9d823e8f 2434
bb8cbbfe 2435 p->pdeath_signal = 0;
47e65328 2436 INIT_LIST_HEAD(&p->thread_group);
158e1645 2437 p->task_works = NULL;
ca7752ca 2438 clear_posix_cputimers_work(p);
1da177e4 2439
d741bf41
PZ
2440#ifdef CONFIG_KRETPROBES
2441 p->kretprobe_instances.first = NULL;
2442#endif
54ecbe6f
MH
2443#ifdef CONFIG_RETHOOK
2444 p->rethooks.first = NULL;
2445#endif
d741bf41 2446
7e47682e
AS
2447 /*
2448 * Ensure that the cgroup subsystem policies allow the new process to be
7b7b8a2c 2449 * forked. It should be noted that the new process's css_set can be changed
7e47682e
AS
2450 * between here and cgroup_post_fork() if an organisation operation is in
2451 * progress.
2452 */
ef2c41cf 2453 retval = cgroup_can_fork(p, args);
7e47682e 2454 if (retval)
5a5cf5cb 2455 goto bad_fork_put_pidfd;
7e47682e 2456
b1e82065
PZ
2457 /*
2458 * Now that the cgroups are pinned, re-clone the parent cgroup and put
2459 * the new task on the correct runqueue. All this *before* the task
2460 * becomes visible.
2461 *
2462 * This isn't part of ->can_fork() because while the re-cloning is
2463 * cgroup specific, it unconditionally needs to place the task on a
2464 * runqueue.
2465 */
2466 sched_cgroup_fork(p, args);
2467
7b558513
DR
2468 /*
2469 * From this point on we must avoid any synchronous user-space
2470 * communication until we take the tasklist-lock. In particular, we do
2471 * not want user-space to be able to predict the process start-time by
2472 * stalling fork(2) after we recorded the start_time but before it is
2473 * visible to the system.
2474 */
2475
2476 p->start_time = ktime_get_ns();
cf25e24d 2477 p->start_boottime = ktime_get_boottime_ns();
7b558513 2478
18c830df
ON
2479 /*
2480 * Make it visible to the rest of the system, but dont wake it up yet.
2481 * Need tasklist lock for parent etc handling!
2482 */
1da177e4
LT
2483 write_lock_irq(&tasklist_lock);
2484
1da177e4 2485 /* CLONE_PARENT re-uses the old parent */
2d5516cb 2486 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1da177e4 2487 p->real_parent = current->real_parent;
2d5516cb 2488 p->parent_exec_id = current->parent_exec_id;
b4e00444
EW
2489 if (clone_flags & CLONE_THREAD)
2490 p->exit_signal = -1;
2491 else
2492 p->exit_signal = current->group_leader->exit_signal;
2d5516cb 2493 } else {
1da177e4 2494 p->real_parent = current;
2d5516cb 2495 p->parent_exec_id = current->self_exec_id;
b4e00444 2496 p->exit_signal = args->exit_signal;
2d5516cb 2497 }
1da177e4 2498
d83a7cb3
JP
2499 klp_copy_process(p);
2500
85dd3f61
PZ
2501 sched_core_fork(p);
2502
3f17da69 2503 spin_lock(&current->sighand->siglock);
4a2c7a78 2504
79257534
DBO
2505 rv_task_fork(p);
2506
d7822b1e
MD
2507 rseq_fork(p, clone_flags);
2508
4ca1d3ee 2509 /* Don't start children in a dying pid namespace */
e8cfbc24 2510 if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
3fd37226
KT
2511 retval = -ENOMEM;
2512 goto bad_fork_cancel_cgroup;
2513 }
4a2c7a78 2514
7673bf55
EB
2515 /* Let kill terminate clone/fork in the middle */
2516 if (fatal_signal_pending(current)) {
2517 retval = -EINTR;
2518 goto bad_fork_cancel_cgroup;
2519 }
2520
a1140cb2
KI
2521 /* No more failure paths after this point. */
2522
2523 /*
2524 * Copy seccomp details explicitly here, in case they were changed
2525 * before holding sighand lock.
2526 */
2527 copy_seccomp(p);
2528
2c470475 2529 init_task_pid_links(p);
73b9ebfe 2530 if (likely(p->pid)) {
4b9d33e6 2531 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
73b9ebfe 2532
81907739 2533 init_task_pid(p, PIDTYPE_PID, pid);
73b9ebfe 2534 if (thread_group_leader(p)) {
6883f81a 2535 init_task_pid(p, PIDTYPE_TGID, pid);
81907739
ON
2536 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2537 init_task_pid(p, PIDTYPE_SID, task_session(current));
2538
1c4042c2 2539 if (is_child_reaper(pid)) {
17cf22c3 2540 ns_of_pid(pid)->child_reaper = p;
1c4042c2
EB
2541 p->signal->flags |= SIGNAL_UNKILLABLE;
2542 }
c3ad2c3b 2543 p->signal->shared_pending.signal = delayed.signal;
9c9f4ded 2544 p->signal->tty = tty_kref_get(current->signal->tty);
749860ce
PT
2545 /*
2546 * Inherit has_child_subreaper flag under the same
2547 * tasklist_lock with adding child to the process tree
2548 * for propagate_has_child_subreaper optimization.
2549 */
2550 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2551 p->real_parent->signal->is_child_subreaper;
9cd80bbb 2552 list_add_tail(&p->sibling, &p->real_parent->children);
5e85d4ab 2553 list_add_tail_rcu(&p->tasks, &init_task.tasks);
6883f81a 2554 attach_pid(p, PIDTYPE_TGID);
81907739
ON
2555 attach_pid(p, PIDTYPE_PGID);
2556 attach_pid(p, PIDTYPE_SID);
909ea964 2557 __this_cpu_inc(process_counts);
80628ca0
ON
2558 } else {
2559 current->signal->nr_threads++;
d80f7d7b 2560 current->signal->quick_threads++;
80628ca0 2561 atomic_inc(&current->signal->live);
60d4de3f 2562 refcount_inc(&current->signal->sigcnt);
924de3b8 2563 task_join_group_stop(p);
80628ca0
ON
2564 list_add_tail_rcu(&p->thread_group,
2565 &p->group_leader->thread_group);
0c740d0a
ON
2566 list_add_tail_rcu(&p->thread_node,
2567 &p->signal->thread_head);
73b9ebfe 2568 }
81907739 2569 attach_pid(p, PIDTYPE_PID);
73b9ebfe 2570 nr_threads++;
1da177e4 2571 }
1da177e4 2572 total_forks++;
c3ad2c3b 2573 hlist_del_init(&delayed.node);
3f17da69 2574 spin_unlock(&current->sighand->siglock);
4af4206b 2575 syscall_tracepoint_update(p);
1da177e4 2576 write_unlock_irq(&tasklist_lock);
4af4206b 2577
ddc204b5
WL
2578 if (pidfile)
2579 fd_install(pidfd, pidfile);
2580
c13cf856 2581 proc_fork_connector(p);
b1e82065 2582 sched_post_fork(p);
ef2c41cf 2583 cgroup_post_fork(p, args);
cdd6c482 2584 perf_event_fork(p);
43d2b113
KH
2585
2586 trace_task_newtask(p, clone_flags);
3ab67966 2587 uprobe_copy_process(p, clone_flags);
43d2b113 2588
67197a4f
SB
2589 copy_oom_score_adj(clone_flags, p);
2590
1da177e4
LT
2591 return p;
2592
7e47682e 2593bad_fork_cancel_cgroup:
85dd3f61 2594 sched_core_free(p);
3fd37226
KT
2595 spin_unlock(&current->sighand->siglock);
2596 write_unlock_irq(&tasklist_lock);
ef2c41cf 2597 cgroup_cancel_fork(p, args);
b3e58382 2598bad_fork_put_pidfd:
6fd2fe49
AV
2599 if (clone_flags & CLONE_PIDFD) {
2600 fput(pidfile);
2601 put_unused_fd(pidfd);
2602 }
425fb2b4
PE
2603bad_fork_free_pid:
2604 if (pid != &init_struct_pid)
2605 free_pid(pid);
0740aa5f
JS
2606bad_fork_cleanup_thread:
2607 exit_thread(p);
fd0928df 2608bad_fork_cleanup_io:
b69f2292
LR
2609 if (p->io_context)
2610 exit_io_context(p);
ab516013 2611bad_fork_cleanup_namespaces:
444f378b 2612 exit_task_namespaces(p);
1da177e4 2613bad_fork_cleanup_mm:
c3f3ce04
AA
2614 if (p->mm) {
2615 mm_clear_owner(p->mm, p);
1da177e4 2616 mmput(p->mm);
c3f3ce04 2617 }
1da177e4 2618bad_fork_cleanup_signal:
4ab6c083 2619 if (!(clone_flags & CLONE_THREAD))
1c5354de 2620 free_signal_struct(p->signal);
1da177e4 2621bad_fork_cleanup_sighand:
a7e5328a 2622 __cleanup_sighand(p->sighand);
1da177e4
LT
2623bad_fork_cleanup_fs:
2624 exit_fs(p); /* blocking */
2625bad_fork_cleanup_files:
2626 exit_files(p); /* blocking */
2627bad_fork_cleanup_semundo:
2628 exit_sem(p);
e4e55b47
TH
2629bad_fork_cleanup_security:
2630 security_task_free(p);
1da177e4
LT
2631bad_fork_cleanup_audit:
2632 audit_free(p);
6c72e350 2633bad_fork_cleanup_perf:
cdd6c482 2634 perf_event_free_task(p);
6c72e350 2635bad_fork_cleanup_policy:
b09be676 2636 lockdep_free_task(p);
1da177e4 2637#ifdef CONFIG_NUMA
f0be3d32 2638 mpol_put(p->mempolicy);
1da177e4 2639#endif
ff8288ff 2640bad_fork_cleanup_delayacct:
35df17c5 2641 delayacct_tsk_free(p);
1da177e4 2642bad_fork_cleanup_count:
21d1c5e3 2643 dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
e0e81739 2644 exit_creds(p);
1da177e4 2645bad_fork_free:
2f064a59 2646 WRITE_ONCE(p->__state, TASK_DEAD);
1a03d3f1 2647 exit_task_stack_account(p);
68f24b08 2648 put_task_stack(p);
c3f3ce04 2649 delayed_free_task(p);
fe7d37d1 2650fork_out:
c3ad2c3b
EB
2651 spin_lock_irq(&current->sighand->siglock);
2652 hlist_del_init(&delayed.node);
2653 spin_unlock_irq(&current->sighand->siglock);
fe7d37d1 2654 return ERR_PTR(retval);
1da177e4
LT
2655}
2656
2c470475 2657static inline void init_idle_pids(struct task_struct *idle)
f106eee1
ON
2658{
2659 enum pid_type type;
2660
2661 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2c470475
EB
2662 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2663 init_task_pid(idle, type, &init_struct_pid);
f106eee1
ON
2664 }
2665}
2666
36cb0e1c
EB
2667static int idle_dummy(void *dummy)
2668{
2669 /* This function is never called */
2670 return 0;
2671}
2672
f1a0a376 2673struct task_struct * __init fork_idle(int cpu)
1da177e4 2674{
36c8b586 2675 struct task_struct *task;
7f192e3c 2676 struct kernel_clone_args args = {
343f4c49 2677 .flags = CLONE_VM,
5bd2e97c
EB
2678 .fn = &idle_dummy,
2679 .fn_arg = NULL,
343f4c49 2680 .kthread = 1,
36cb0e1c 2681 .idle = 1,
7f192e3c
CB
2682 };
2683
2684 task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
f106eee1 2685 if (!IS_ERR(task)) {
2c470475 2686 init_idle_pids(task);
753ca4f3 2687 init_idle(task, cpu);
f106eee1 2688 }
73b9ebfe 2689
1da177e4
LT
2690 return task;
2691}
2692
cc440e87
JA
2693/*
2694 * This is like kernel_clone(), but shaved down and tailored to just
2695 * creating io_uring workers. It returns a created task, or an error pointer.
2696 * The returned task is inactive, and the caller must fire it up through
2697 * wake_up_new_task(p). All signals are blocked in the created task.
2698 */
2699struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node)
2700{
2701 unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD|
2702 CLONE_IO;
2703 struct kernel_clone_args args = {
2704 .flags = ((lower_32_bits(flags) | CLONE_VM |
2705 CLONE_UNTRACED) & ~CSIGNAL),
2706 .exit_signal = (lower_32_bits(flags) & CSIGNAL),
5bd2e97c
EB
2707 .fn = fn,
2708 .fn_arg = arg,
cc440e87
JA
2709 .io_thread = 1,
2710 };
cc440e87 2711
b16b3855 2712 return copy_process(NULL, 0, node, &args);
cc440e87
JA
2713}
2714
1da177e4
LT
2715/*
2716 * Ok, this is the main fork-routine.
2717 *
2718 * It copies the process, and if successful kick-starts
2719 * it and waits for it to finish using the VM if required.
a0eb9abd
ES
2720 *
2721 * args->exit_signal is expected to be checked for sanity by the caller.
1da177e4 2722 */
cad6967a 2723pid_t kernel_clone(struct kernel_clone_args *args)
1da177e4 2724{
7f192e3c 2725 u64 clone_flags = args->flags;
9f5325aa
MPS
2726 struct completion vfork;
2727 struct pid *pid;
1da177e4
LT
2728 struct task_struct *p;
2729 int trace = 0;
cad6967a 2730 pid_t nr;
1da177e4 2731
3af8588c
CB
2732 /*
2733 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument
2734 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are
2735 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate
2736 * field in struct clone_args and it still doesn't make sense to have
2737 * them both point at the same memory location. Performing this check
2738 * here has the advantage that we don't need to have a separate helper
2739 * to check for legacy clone().
2740 */
2741 if ((args->flags & CLONE_PIDFD) &&
2742 (args->flags & CLONE_PARENT_SETTID) &&
2743 (args->pidfd == args->parent_tid))
2744 return -EINVAL;
2745
09a05394 2746 /*
4b9d33e6
TH
2747 * Determine whether and which event to report to ptracer. When
2748 * called from kernel_thread or CLONE_UNTRACED is explicitly
2749 * requested, no event is reported; otherwise, report if the event
2750 * for the type of forking is enabled.
09a05394 2751 */
e80d6661 2752 if (!(clone_flags & CLONE_UNTRACED)) {
4b9d33e6
TH
2753 if (clone_flags & CLONE_VFORK)
2754 trace = PTRACE_EVENT_VFORK;
7f192e3c 2755 else if (args->exit_signal != SIGCHLD)
4b9d33e6
TH
2756 trace = PTRACE_EVENT_CLONE;
2757 else
2758 trace = PTRACE_EVENT_FORK;
2759
2760 if (likely(!ptrace_event_enabled(current, trace)))
2761 trace = 0;
2762 }
1da177e4 2763
7f192e3c 2764 p = copy_process(NULL, trace, NUMA_NO_NODE, args);
38addce8 2765 add_latent_entropy();
9f5325aa
MPS
2766
2767 if (IS_ERR(p))
2768 return PTR_ERR(p);
2769
1da177e4
LT
2770 /*
2771 * Do this prior waking up the new thread - the thread pointer
2772 * might get invalid after that point, if the thread exits quickly.
2773 */
9f5325aa 2774 trace_sched_process_fork(current, p);
0a16b607 2775
9f5325aa
MPS
2776 pid = get_task_pid(p, PIDTYPE_PID);
2777 nr = pid_vnr(pid);
30e49c26 2778
9f5325aa 2779 if (clone_flags & CLONE_PARENT_SETTID)
7f192e3c 2780 put_user(nr, args->parent_tid);
a6f5e063 2781
9f5325aa
MPS
2782 if (clone_flags & CLONE_VFORK) {
2783 p->vfork_done = &vfork;
2784 init_completion(&vfork);
2785 get_task_struct(p);
2786 }
1da177e4 2787
bd74fdae
YZ
2788 if (IS_ENABLED(CONFIG_LRU_GEN) && !(clone_flags & CLONE_VM)) {
2789 /* lock the task to synchronize with memcg migration */
2790 task_lock(p);
2791 lru_gen_add_mm(p->mm);
2792 task_unlock(p);
2793 }
2794
9f5325aa 2795 wake_up_new_task(p);
09a05394 2796
9f5325aa
MPS
2797 /* forking complete and child started to run, tell ptracer */
2798 if (unlikely(trace))
2799 ptrace_event_pid(trace, pid);
4e52365f 2800
9f5325aa
MPS
2801 if (clone_flags & CLONE_VFORK) {
2802 if (!wait_for_vfork_done(p, &vfork))
2803 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
1da177e4 2804 }
9f5325aa
MPS
2805
2806 put_pid(pid);
92476d7f 2807 return nr;
1da177e4
LT
2808}
2809
2aa3a7f8
AV
2810/*
2811 * Create a kernel thread.
2812 */
2813pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2814{
7f192e3c 2815 struct kernel_clone_args args = {
3f2c788a
CB
2816 .flags = ((lower_32_bits(flags) | CLONE_VM |
2817 CLONE_UNTRACED) & ~CSIGNAL),
2818 .exit_signal = (lower_32_bits(flags) & CSIGNAL),
5bd2e97c
EB
2819 .fn = fn,
2820 .fn_arg = arg,
343f4c49
EB
2821 .kthread = 1,
2822 };
2823
2824 return kernel_clone(&args);
2825}
2826
2827/*
2828 * Create a user mode thread.
2829 */
2830pid_t user_mode_thread(int (*fn)(void *), void *arg, unsigned long flags)
2aa3a7f8 2831{
7f192e3c 2832 struct kernel_clone_args args = {
3f2c788a
CB
2833 .flags = ((lower_32_bits(flags) | CLONE_VM |
2834 CLONE_UNTRACED) & ~CSIGNAL),
2835 .exit_signal = (lower_32_bits(flags) & CSIGNAL),
5bd2e97c
EB
2836 .fn = fn,
2837 .fn_arg = arg,
7f192e3c
CB
2838 };
2839
cad6967a 2840 return kernel_clone(&args);
2aa3a7f8 2841}
2aa3a7f8 2842
d2125043
AV
2843#ifdef __ARCH_WANT_SYS_FORK
2844SYSCALL_DEFINE0(fork)
2845{
2846#ifdef CONFIG_MMU
7f192e3c
CB
2847 struct kernel_clone_args args = {
2848 .exit_signal = SIGCHLD,
2849 };
2850
cad6967a 2851 return kernel_clone(&args);
d2125043
AV
2852#else
2853 /* can not support in nommu mode */
5d59e182 2854 return -EINVAL;
d2125043
AV
2855#endif
2856}
2857#endif
2858
2859#ifdef __ARCH_WANT_SYS_VFORK
2860SYSCALL_DEFINE0(vfork)
2861{
7f192e3c
CB
2862 struct kernel_clone_args args = {
2863 .flags = CLONE_VFORK | CLONE_VM,
2864 .exit_signal = SIGCHLD,
2865 };
2866
cad6967a 2867 return kernel_clone(&args);
d2125043
AV
2868}
2869#endif
2870
2871#ifdef __ARCH_WANT_SYS_CLONE
2872#ifdef CONFIG_CLONE_BACKWARDS
2873SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2874 int __user *, parent_tidptr,
3033f14a 2875 unsigned long, tls,
d2125043
AV
2876 int __user *, child_tidptr)
2877#elif defined(CONFIG_CLONE_BACKWARDS2)
2878SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2879 int __user *, parent_tidptr,
2880 int __user *, child_tidptr,
3033f14a 2881 unsigned long, tls)
dfa9771a
MS
2882#elif defined(CONFIG_CLONE_BACKWARDS3)
2883SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2884 int, stack_size,
2885 int __user *, parent_tidptr,
2886 int __user *, child_tidptr,
3033f14a 2887 unsigned long, tls)
d2125043
AV
2888#else
2889SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2890 int __user *, parent_tidptr,
2891 int __user *, child_tidptr,
3033f14a 2892 unsigned long, tls)
d2125043
AV
2893#endif
2894{
7f192e3c 2895 struct kernel_clone_args args = {
3f2c788a 2896 .flags = (lower_32_bits(clone_flags) & ~CSIGNAL),
7f192e3c
CB
2897 .pidfd = parent_tidptr,
2898 .child_tid = child_tidptr,
2899 .parent_tid = parent_tidptr,
3f2c788a 2900 .exit_signal = (lower_32_bits(clone_flags) & CSIGNAL),
7f192e3c
CB
2901 .stack = newsp,
2902 .tls = tls,
2903 };
2904
cad6967a 2905 return kernel_clone(&args);
7f192e3c 2906}
d68dbb0c 2907#endif
7f192e3c 2908
d68dbb0c 2909#ifdef __ARCH_WANT_SYS_CLONE3
dd499f7a 2910
7f192e3c
CB
2911noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs,
2912 struct clone_args __user *uargs,
f14c234b 2913 size_t usize)
7f192e3c 2914{
f14c234b 2915 int err;
7f192e3c 2916 struct clone_args args;
49cb2fc4 2917 pid_t *kset_tid = kargs->set_tid;
7f192e3c 2918
a966dcfe
ES
2919 BUILD_BUG_ON(offsetofend(struct clone_args, tls) !=
2920 CLONE_ARGS_SIZE_VER0);
2921 BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) !=
2922 CLONE_ARGS_SIZE_VER1);
2923 BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) !=
2924 CLONE_ARGS_SIZE_VER2);
2925 BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2);
2926
f14c234b 2927 if (unlikely(usize > PAGE_SIZE))
7f192e3c 2928 return -E2BIG;
f14c234b 2929 if (unlikely(usize < CLONE_ARGS_SIZE_VER0))
7f192e3c
CB
2930 return -EINVAL;
2931
f14c234b
AS
2932 err = copy_struct_from_user(&args, sizeof(args), uargs, usize);
2933 if (err)
2934 return err;
7f192e3c 2935
49cb2fc4
AR
2936 if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL))
2937 return -EINVAL;
2938
2939 if (unlikely(!args.set_tid && args.set_tid_size > 0))
2940 return -EINVAL;
2941
2942 if (unlikely(args.set_tid && args.set_tid_size == 0))
2943 return -EINVAL;
2944
a0eb9abd
ES
2945 /*
2946 * Verify that higher 32bits of exit_signal are unset and that
2947 * it is a valid signal
2948 */
2949 if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
2950 !valid_signal(args.exit_signal)))
2951 return -EINVAL;
2952
62173872
ES
2953 if ((args.flags & CLONE_INTO_CGROUP) &&
2954 (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2))
ef2c41cf
CB
2955 return -EINVAL;
2956
7f192e3c
CB
2957 *kargs = (struct kernel_clone_args){
2958 .flags = args.flags,
2959 .pidfd = u64_to_user_ptr(args.pidfd),
2960 .child_tid = u64_to_user_ptr(args.child_tid),
2961 .parent_tid = u64_to_user_ptr(args.parent_tid),
2962 .exit_signal = args.exit_signal,
2963 .stack = args.stack,
2964 .stack_size = args.stack_size,
2965 .tls = args.tls,
49cb2fc4 2966 .set_tid_size = args.set_tid_size,
ef2c41cf 2967 .cgroup = args.cgroup,
7f192e3c
CB
2968 };
2969
49cb2fc4
AR
2970 if (args.set_tid &&
2971 copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid),
2972 (kargs->set_tid_size * sizeof(pid_t))))
2973 return -EFAULT;
2974
2975 kargs->set_tid = kset_tid;
2976
7f192e3c
CB
2977 return 0;
2978}
2979
fa729c4d
CB
2980/**
2981 * clone3_stack_valid - check and prepare stack
2982 * @kargs: kernel clone args
2983 *
2984 * Verify that the stack arguments userspace gave us are sane.
2985 * In addition, set the stack direction for userspace since it's easy for us to
2986 * determine.
2987 */
2988static inline bool clone3_stack_valid(struct kernel_clone_args *kargs)
2989{
2990 if (kargs->stack == 0) {
2991 if (kargs->stack_size > 0)
2992 return false;
2993 } else {
2994 if (kargs->stack_size == 0)
2995 return false;
2996
2997 if (!access_ok((void __user *)kargs->stack, kargs->stack_size))
2998 return false;
2999
3000#if !defined(CONFIG_STACK_GROWSUP) && !defined(CONFIG_IA64)
3001 kargs->stack += kargs->stack_size;
3002#endif
3003 }
3004
3005 return true;
3006}
3007
3008static bool clone3_args_valid(struct kernel_clone_args *kargs)
7f192e3c 3009{
b612e5df 3010 /* Verify that no unknown flags are passed along. */
ef2c41cf
CB
3011 if (kargs->flags &
3012 ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP))
7f192e3c
CB
3013 return false;
3014
3015 /*
a8ca6b13
XC
3016 * - make the CLONE_DETACHED bit reusable for clone3
3017 * - make the CSIGNAL bits reusable for clone3
7f192e3c 3018 */
a402f1e3 3019 if (kargs->flags & (CLONE_DETACHED | (CSIGNAL & (~CLONE_NEWTIME))))
7f192e3c
CB
3020 return false;
3021
b612e5df
CB
3022 if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) ==
3023 (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND))
3024 return false;
3025
7f192e3c
CB
3026 if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
3027 kargs->exit_signal)
3028 return false;
3029
fa729c4d
CB
3030 if (!clone3_stack_valid(kargs))
3031 return false;
3032
7f192e3c
CB
3033 return true;
3034}
3035
501bd016
CB
3036/**
3037 * clone3 - create a new process with specific properties
3038 * @uargs: argument structure
3039 * @size: size of @uargs
3040 *
3041 * clone3() is the extensible successor to clone()/clone2().
3042 * It takes a struct as argument that is versioned by its size.
3043 *
3044 * Return: On success, a positive PID for the child process.
3045 * On error, a negative errno number.
3046 */
7f192e3c
CB
3047SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
3048{
3049 int err;
3050
3051 struct kernel_clone_args kargs;
49cb2fc4
AR
3052 pid_t set_tid[MAX_PID_NS_LEVEL];
3053
3054 kargs.set_tid = set_tid;
7f192e3c
CB
3055
3056 err = copy_clone_args_from_user(&kargs, uargs, size);
3057 if (err)
3058 return err;
3059
3060 if (!clone3_args_valid(&kargs))
3061 return -EINVAL;
3062
cad6967a 3063 return kernel_clone(&kargs);
d2125043
AV
3064}
3065#endif
3066
0f1b92cb
ON
3067void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
3068{
3069 struct task_struct *leader, *parent, *child;
3070 int res;
3071
3072 read_lock(&tasklist_lock);
3073 leader = top = top->group_leader;
3074down:
3075 for_each_thread(leader, parent) {
3076 list_for_each_entry(child, &parent->children, sibling) {
3077 res = visitor(child, data);
3078 if (res) {
3079 if (res < 0)
3080 goto out;
3081 leader = child;
3082 goto down;
3083 }
3084up:
3085 ;
3086 }
3087 }
3088
3089 if (leader != top) {
3090 child = leader;
3091 parent = child->real_parent;
3092 leader = parent->group_leader;
3093 goto up;
3094 }
3095out:
3096 read_unlock(&tasklist_lock);
3097}
3098
5fd63b30
RT
3099#ifndef ARCH_MIN_MMSTRUCT_ALIGN
3100#define ARCH_MIN_MMSTRUCT_ALIGN 0
3101#endif
3102
51cc5068 3103static void sighand_ctor(void *data)
aa1757f9
ON
3104{
3105 struct sighand_struct *sighand = data;
3106
a35afb83 3107 spin_lock_init(&sighand->siglock);
b8fceee1 3108 init_waitqueue_head(&sighand->signalfd_wqh);
aa1757f9
ON
3109}
3110
af806027 3111void __init mm_cache_init(void)
1da177e4 3112{
c1a2f7f0
RR
3113 unsigned int mm_size;
3114
af806027
PZ
3115 /*
3116 * The mm_cpumask is located at the end of mm_struct, and is
3117 * dynamically sized based on the maximum CPU number this system
3118 * can have, taking hotplug into account (nr_cpu_ids).
3119 */
af7f588d 3120 mm_size = sizeof(struct mm_struct) + cpumask_size() + mm_cid_size();
af806027
PZ
3121
3122 mm_cachep = kmem_cache_create_usercopy("mm_struct",
3123 mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
3124 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3125 offsetof(struct mm_struct, saved_auxv),
3126 sizeof_field(struct mm_struct, saved_auxv),
3127 NULL);
3128}
3129
3130void __init proc_caches_init(void)
3131{
1da177e4
LT
3132 sighand_cachep = kmem_cache_create("sighand_cache",
3133 sizeof(struct sighand_struct), 0,
5f0d5a3a 3134 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
75f296d9 3135 SLAB_ACCOUNT, sighand_ctor);
1da177e4
LT
3136 signal_cachep = kmem_cache_create("signal_cache",
3137 sizeof(struct signal_struct), 0,
75f296d9 3138 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
5d097056 3139 NULL);
20c2df83 3140 files_cachep = kmem_cache_create("files_cache",
1da177e4 3141 sizeof(struct files_struct), 0,
75f296d9 3142 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
5d097056 3143 NULL);
20c2df83 3144 fs_cachep = kmem_cache_create("fs_cache",
1da177e4 3145 sizeof(struct fs_struct), 0,
75f296d9 3146 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
5d097056 3147 NULL);
c1a2f7f0 3148
5d097056 3149 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
8feae131 3150 mmap_init();
66577193 3151 nsproxy_cache_init();
1da177e4 3152}
cf2e340f 3153
cf2e340f 3154/*
9bfb23fc 3155 * Check constraints on flags passed to the unshare system call.
cf2e340f 3156 */
9bfb23fc 3157static int check_unshare_flags(unsigned long unshare_flags)
cf2e340f 3158{
9bfb23fc
ON
3159 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
3160 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
50804fe3 3161 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
769071ac
AV
3162 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP|
3163 CLONE_NEWTIME))
9bfb23fc 3164 return -EINVAL;
cf2e340f 3165 /*
12c641ab
EB
3166 * Not implemented, but pretend it works if there is nothing
3167 * to unshare. Note that unsharing the address space or the
3168 * signal handlers also need to unshare the signal queues (aka
3169 * CLONE_THREAD).
cf2e340f 3170 */
9bfb23fc 3171 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
12c641ab
EB
3172 if (!thread_group_empty(current))
3173 return -EINVAL;
3174 }
3175 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
d036bda7 3176 if (refcount_read(&current->sighand->count) > 1)
12c641ab
EB
3177 return -EINVAL;
3178 }
3179 if (unshare_flags & CLONE_VM) {
3180 if (!current_is_single_threaded())
9bfb23fc
ON
3181 return -EINVAL;
3182 }
cf2e340f
JD
3183
3184 return 0;
3185}
3186
3187/*
99d1419d 3188 * Unshare the filesystem structure if it is being shared
cf2e340f
JD
3189 */
3190static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
3191{
3192 struct fs_struct *fs = current->fs;
3193
498052bb
AV
3194 if (!(unshare_flags & CLONE_FS) || !fs)
3195 return 0;
3196
3197 /* don't need lock here; in the worst case we'll do useless copy */
3198 if (fs->users == 1)
3199 return 0;
3200
3201 *new_fsp = copy_fs_struct(fs);
3202 if (!*new_fsp)
3203 return -ENOMEM;
cf2e340f
JD
3204
3205 return 0;
3206}
3207
cf2e340f 3208/*
a016f338 3209 * Unshare file descriptor table if it is being shared
cf2e340f 3210 */
60997c3d
CB
3211int unshare_fd(unsigned long unshare_flags, unsigned int max_fds,
3212 struct files_struct **new_fdp)
cf2e340f
JD
3213{
3214 struct files_struct *fd = current->files;
a016f338 3215 int error = 0;
cf2e340f
JD
3216
3217 if ((unshare_flags & CLONE_FILES) &&
a016f338 3218 (fd && atomic_read(&fd->count) > 1)) {
60997c3d 3219 *new_fdp = dup_fd(fd, max_fds, &error);
a016f338
JD
3220 if (!*new_fdp)
3221 return error;
3222 }
cf2e340f
JD
3223
3224 return 0;
3225}
3226
cf2e340f
JD
3227/*
3228 * unshare allows a process to 'unshare' part of the process
3229 * context which was originally shared using clone. copy_*
cad6967a 3230 * functions used by kernel_clone() cannot be used here directly
cf2e340f
JD
3231 * because they modify an inactive task_struct that is being
3232 * constructed. Here we are modifying the current, active,
3233 * task_struct.
3234 */
9b32105e 3235int ksys_unshare(unsigned long unshare_flags)
cf2e340f 3236{
cf2e340f 3237 struct fs_struct *fs, *new_fs = NULL;
ba1f70dd 3238 struct files_struct *new_fd = NULL;
b2e0d987 3239 struct cred *new_cred = NULL;
cf7b708c 3240 struct nsproxy *new_nsproxy = NULL;
9edff4ab 3241 int do_sysvsem = 0;
9bfb23fc 3242 int err;
cf2e340f 3243
b2e0d987 3244 /*
faf00da5
EB
3245 * If unsharing a user namespace must also unshare the thread group
3246 * and unshare the filesystem root and working directories.
b2e0d987
EB
3247 */
3248 if (unshare_flags & CLONE_NEWUSER)
e66eded8 3249 unshare_flags |= CLONE_THREAD | CLONE_FS;
50804fe3
EB
3250 /*
3251 * If unsharing vm, must also unshare signal handlers.
3252 */
3253 if (unshare_flags & CLONE_VM)
3254 unshare_flags |= CLONE_SIGHAND;
12c641ab
EB
3255 /*
3256 * If unsharing a signal handlers, must also unshare the signal queues.
3257 */
3258 if (unshare_flags & CLONE_SIGHAND)
3259 unshare_flags |= CLONE_THREAD;
9bfb23fc
ON
3260 /*
3261 * If unsharing namespace, must also unshare filesystem information.
3262 */
3263 if (unshare_flags & CLONE_NEWNS)
3264 unshare_flags |= CLONE_FS;
50804fe3
EB
3265
3266 err = check_unshare_flags(unshare_flags);
3267 if (err)
3268 goto bad_unshare_out;
6013f67f
MS
3269 /*
3270 * CLONE_NEWIPC must also detach from the undolist: after switching
3271 * to a new ipc namespace, the semaphore arrays from the old
3272 * namespace are unreachable.
3273 */
3274 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
9edff4ab 3275 do_sysvsem = 1;
fb0a685c
DRO
3276 err = unshare_fs(unshare_flags, &new_fs);
3277 if (err)
9bfb23fc 3278 goto bad_unshare_out;
60997c3d 3279 err = unshare_fd(unshare_flags, NR_OPEN_MAX, &new_fd);
fb0a685c 3280 if (err)
9bfb23fc 3281 goto bad_unshare_cleanup_fs;
b2e0d987 3282 err = unshare_userns(unshare_flags, &new_cred);
fb0a685c 3283 if (err)
9edff4ab 3284 goto bad_unshare_cleanup_fd;
b2e0d987
EB
3285 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
3286 new_cred, new_fs);
3287 if (err)
3288 goto bad_unshare_cleanup_cred;
c0b2fc31 3289
905ae01c
AG
3290 if (new_cred) {
3291 err = set_cred_ucounts(new_cred);
3292 if (err)
3293 goto bad_unshare_cleanup_cred;
3294 }
3295
b2e0d987 3296 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
9edff4ab
MS
3297 if (do_sysvsem) {
3298 /*
3299 * CLONE_SYSVSEM is equivalent to sys_exit().
3300 */
3301 exit_sem(current);
3302 }
ab602f79
JM
3303 if (unshare_flags & CLONE_NEWIPC) {
3304 /* Orphan segments in old ns (see sem above). */
3305 exit_shm(current);
3306 shm_init_task(current);
3307 }
ab516013 3308
6f977e6b 3309 if (new_nsproxy)
cf7b708c 3310 switch_task_namespaces(current, new_nsproxy);
cf2e340f 3311
cf7b708c
PE
3312 task_lock(current);
3313
cf2e340f
JD
3314 if (new_fs) {
3315 fs = current->fs;
2a4419b5 3316 spin_lock(&fs->lock);
cf2e340f 3317 current->fs = new_fs;
498052bb
AV
3318 if (--fs->users)
3319 new_fs = NULL;
3320 else
3321 new_fs = fs;
2a4419b5 3322 spin_unlock(&fs->lock);
cf2e340f
JD
3323 }
3324
ba1f70dd
RX
3325 if (new_fd)
3326 swap(current->files, new_fd);
cf2e340f
JD
3327
3328 task_unlock(current);
b2e0d987
EB
3329
3330 if (new_cred) {
3331 /* Install the new user namespace */
3332 commit_creds(new_cred);
3333 new_cred = NULL;
3334 }
cf2e340f
JD
3335 }
3336
e4222673
HB
3337 perf_event_namespaces(current);
3338
b2e0d987
EB
3339bad_unshare_cleanup_cred:
3340 if (new_cred)
3341 put_cred(new_cred);
cf2e340f
JD
3342bad_unshare_cleanup_fd:
3343 if (new_fd)
3344 put_files_struct(new_fd);
3345
cf2e340f
JD
3346bad_unshare_cleanup_fs:
3347 if (new_fs)
498052bb 3348 free_fs_struct(new_fs);
cf2e340f 3349
cf2e340f
JD
3350bad_unshare_out:
3351 return err;
3352}
3b125388 3353
9b32105e
DB
3354SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
3355{
3356 return ksys_unshare(unshare_flags);
3357}
3358
3b125388
AV
3359/*
3360 * Helper to unshare the files of the current task.
3361 * We don't want to expose copy_files internals to
3362 * the exec layer of the kernel.
3363 */
3364
1f702603 3365int unshare_files(void)
3b125388
AV
3366{
3367 struct task_struct *task = current;
1f702603 3368 struct files_struct *old, *copy = NULL;
3b125388
AV
3369 int error;
3370
60997c3d 3371 error = unshare_fd(CLONE_FILES, NR_OPEN_MAX, &copy);
1f702603 3372 if (error || !copy)
3b125388 3373 return error;
1f702603
EB
3374
3375 old = task->files;
3b125388
AV
3376 task_lock(task);
3377 task->files = copy;
3378 task_unlock(task);
1f702603 3379 put_files_struct(old);
3b125388
AV
3380 return 0;
3381}
16db3d3f
HS
3382
3383int sysctl_max_threads(struct ctl_table *table, int write,
b0daa2c7 3384 void *buffer, size_t *lenp, loff_t *ppos)
16db3d3f
HS
3385{
3386 struct ctl_table t;
3387 int ret;
3388 int threads = max_threads;
b0f53dbc 3389 int min = 1;
16db3d3f
HS
3390 int max = MAX_THREADS;
3391
3392 t = *table;
3393 t.data = &threads;
3394 t.extra1 = &min;
3395 t.extra2 = &max;
3396
3397 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3398 if (ret || !write)
3399 return ret;
3400
b0f53dbc 3401 max_threads = threads;
16db3d3f
HS
3402
3403 return 0;
3404}