]> git.ipfire.org Git - thirdparty/linux.git/blame - kernel/irq/affinity.c
genirq/affinity: Pass affinity managed mask array to irq_build_affinity_masks
[thirdparty/linux.git] / kernel / irq / affinity.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
9a0ef98e
CH
2/*
3 * Copyright (C) 2016 Thomas Gleixner.
4 * Copyright (C) 2016-2017 Christoph Hellwig.
5 */
5e385a6e
CH
6#include <linux/interrupt.h>
7#include <linux/kernel.h>
8#include <linux/slab.h>
9#include <linux/cpu.h>
b1a5a73e 10#include <linux/sort.h>
5e385a6e 11
34c3d981 12static void irq_spread_init_one(struct cpumask *irqmsk, struct cpumask *nmsk,
0145c30e 13 unsigned int cpus_per_vec)
34c3d981
TG
14{
15 const struct cpumask *siblmsk;
16 int cpu, sibl;
17
18 for ( ; cpus_per_vec > 0; ) {
19 cpu = cpumask_first(nmsk);
20
21 /* Should not happen, but I'm too lazy to think about it */
22 if (cpu >= nr_cpu_ids)
23 return;
24
25 cpumask_clear_cpu(cpu, nmsk);
26 cpumask_set_cpu(cpu, irqmsk);
27 cpus_per_vec--;
28
29 /* If the cpu has siblings, use them first */
30 siblmsk = topology_sibling_cpumask(cpu);
31 for (sibl = -1; cpus_per_vec > 0; ) {
32 sibl = cpumask_next(sibl, siblmsk);
33 if (sibl >= nr_cpu_ids)
34 break;
35 if (!cpumask_test_and_clear_cpu(sibl, nmsk))
36 continue;
37 cpumask_set_cpu(sibl, irqmsk);
38 cpus_per_vec--;
39 }
40 }
41}
42
47778f33 43static cpumask_var_t *alloc_node_to_cpumask(void)
9a0ef98e
CH
44{
45 cpumask_var_t *masks;
46 int node;
47
48 masks = kcalloc(nr_node_ids, sizeof(cpumask_var_t), GFP_KERNEL);
49 if (!masks)
50 return NULL;
51
52 for (node = 0; node < nr_node_ids; node++) {
53 if (!zalloc_cpumask_var(&masks[node], GFP_KERNEL))
54 goto out_unwind;
55 }
56
57 return masks;
58
59out_unwind:
60 while (--node >= 0)
61 free_cpumask_var(masks[node]);
62 kfree(masks);
63 return NULL;
64}
65
47778f33 66static void free_node_to_cpumask(cpumask_var_t *masks)
9a0ef98e
CH
67{
68 int node;
69
70 for (node = 0; node < nr_node_ids; node++)
71 free_cpumask_var(masks[node]);
72 kfree(masks);
73}
74
47778f33 75static void build_node_to_cpumask(cpumask_var_t *masks)
9a0ef98e
CH
76{
77 int cpu;
78
84676c1f 79 for_each_possible_cpu(cpu)
9a0ef98e
CH
80 cpumask_set_cpu(cpu, masks[cpu_to_node(cpu)]);
81}
82
47778f33 83static int get_nodes_in_cpumask(cpumask_var_t *node_to_cpumask,
9a0ef98e 84 const struct cpumask *mask, nodemask_t *nodemsk)
34c3d981 85{
c0af5243 86 int n, nodes = 0;
34c3d981
TG
87
88 /* Calculate the number of nodes in the supplied affinity mask */
9a0ef98e 89 for_each_node(n) {
47778f33 90 if (cpumask_intersects(mask, node_to_cpumask[n])) {
34c3d981
TG
91 node_set(n, *nodemsk);
92 nodes++;
93 }
94 }
95 return nodes;
96}
97
b1a5a73e
ML
98struct node_vectors {
99 unsigned id;
100
101 union {
102 unsigned nvectors;
103 unsigned ncpus;
104 };
105};
106
107static int ncpus_cmp_func(const void *l, const void *r)
108{
109 const struct node_vectors *ln = l;
110 const struct node_vectors *rn = r;
111
112 return ln->ncpus - rn->ncpus;
113}
114
115/*
116 * Allocate vector number for each node, so that for each node:
117 *
118 * 1) the allocated number is >= 1
119 *
120 * 2) the allocated numbver is <= active CPU number of this node
121 *
122 * The actual allocated total vectors may be less than @numvecs when
123 * active total CPU number is less than @numvecs.
124 *
125 * Active CPUs means the CPUs in '@cpu_mask AND @node_to_cpumask[]'
126 * for each node.
127 */
128static void alloc_nodes_vectors(unsigned int numvecs,
101f85b5 129 cpumask_var_t *node_to_cpumask,
b1a5a73e
ML
130 const struct cpumask *cpu_mask,
131 const nodemask_t nodemsk,
132 struct cpumask *nmsk,
133 struct node_vectors *node_vectors)
134{
135 unsigned n, remaining_ncpus = 0;
136
137 for (n = 0; n < nr_node_ids; n++) {
138 node_vectors[n].id = n;
139 node_vectors[n].ncpus = UINT_MAX;
140 }
141
142 for_each_node_mask(n, nodemsk) {
143 unsigned ncpus;
144
145 cpumask_and(nmsk, cpu_mask, node_to_cpumask[n]);
146 ncpus = cpumask_weight(nmsk);
147
148 if (!ncpus)
149 continue;
150 remaining_ncpus += ncpus;
151 node_vectors[n].ncpus = ncpus;
152 }
153
154 numvecs = min_t(unsigned, remaining_ncpus, numvecs);
155
156 sort(node_vectors, nr_node_ids, sizeof(node_vectors[0]),
157 ncpus_cmp_func, NULL);
158
159 /*
160 * Allocate vectors for each node according to the ratio of this
161 * node's nr_cpus to remaining un-assigned ncpus. 'numvecs' is
162 * bigger than number of active numa nodes. Always start the
163 * allocation from the node with minimized nr_cpus.
164 *
165 * This way guarantees that each active node gets allocated at
166 * least one vector, and the theory is simple: over-allocation
167 * is only done when this node is assigned by one vector, so
168 * other nodes will be allocated >= 1 vector, since 'numvecs' is
169 * bigger than number of numa nodes.
170 *
171 * One perfect invariant is that number of allocated vectors for
172 * each node is <= CPU count of this node:
173 *
174 * 1) suppose there are two nodes: A and B
175 * ncpu(X) is CPU count of node X
176 * vecs(X) is the vector count allocated to node X via this
177 * algorithm
178 *
179 * ncpu(A) <= ncpu(B)
180 * ncpu(A) + ncpu(B) = N
181 * vecs(A) + vecs(B) = V
182 *
183 * vecs(A) = max(1, round_down(V * ncpu(A) / N))
184 * vecs(B) = V - vecs(A)
185 *
186 * both N and V are integer, and 2 <= V <= N, suppose
187 * V = N - delta, and 0 <= delta <= N - 2
188 *
189 * 2) obviously vecs(A) <= ncpu(A) because:
190 *
191 * if vecs(A) is 1, then vecs(A) <= ncpu(A) given
192 * ncpu(A) >= 1
193 *
194 * otherwise,
195 * vecs(A) <= V * ncpu(A) / N <= ncpu(A), given V <= N
196 *
197 * 3) prove how vecs(B) <= ncpu(B):
198 *
199 * if round_down(V * ncpu(A) / N) == 0, vecs(B) won't be
200 * over-allocated, so vecs(B) <= ncpu(B),
201 *
202 * otherwise:
203 *
204 * vecs(A) =
205 * round_down(V * ncpu(A) / N) =
206 * round_down((N - delta) * ncpu(A) / N) =
207 * round_down((N * ncpu(A) - delta * ncpu(A)) / N) >=
208 * round_down((N * ncpu(A) - delta * N) / N) =
209 * cpu(A) - delta
210 *
211 * then:
212 *
213 * vecs(A) - V >= ncpu(A) - delta - V
214 * =>
215 * V - vecs(A) <= V + delta - ncpu(A)
216 * =>
217 * vecs(B) <= N - ncpu(A)
218 * =>
219 * vecs(B) <= cpu(B)
220 *
221 * For nodes >= 3, it can be thought as one node and another big
222 * node given that is exactly what this algorithm is implemented,
223 * and we always re-calculate 'remaining_ncpus' & 'numvecs', and
224 * finally for each node X: vecs(X) <= ncpu(X).
225 *
226 */
227 for (n = 0; n < nr_node_ids; n++) {
228 unsigned nvectors, ncpus;
229
230 if (node_vectors[n].ncpus == UINT_MAX)
231 continue;
232
233 WARN_ON_ONCE(numvecs == 0);
234
235 ncpus = node_vectors[n].ncpus;
236 nvectors = max_t(unsigned, 1,
237 numvecs * ncpus / remaining_ncpus);
238 WARN_ON_ONCE(nvectors > ncpus);
239
240 node_vectors[n].nvectors = nvectors;
241
242 remaining_ncpus -= ncpus;
243 numvecs -= nvectors;
244 }
245}
246
0e518330 247static int __irq_build_affinity_masks(unsigned int startvec,
0145c30e 248 unsigned int numvecs,
c2899c34
TG
249 cpumask_var_t *node_to_cpumask,
250 const struct cpumask *cpu_mask,
251 struct cpumask *nmsk,
bec04037 252 struct irq_affinity_desc *masks)
34c3d981 253{
b1a5a73e 254 unsigned int i, n, nodes, cpus_per_vec, extra_vecs, done = 0;
1f962d91 255 unsigned int last_affv = numvecs;
0145c30e 256 unsigned int curvec = startvec;
34c3d981 257 nodemask_t nodemsk = NODE_MASK_NONE;
b1a5a73e 258 struct node_vectors *node_vectors;
34c3d981 259
911488de 260 if (cpumask_empty(cpu_mask))
d3056812
ML
261 return 0;
262
b3e6aaa8 263 nodes = get_nodes_in_cpumask(node_to_cpumask, cpu_mask, &nodemsk);
34c3d981
TG
264
265 /*
c0af5243 266 * If the number of nodes in the mask is greater than or equal the
34c3d981
TG
267 * number of vectors we just spread the vectors across the nodes.
268 */
1a2d0914 269 if (numvecs <= nodes) {
34c3d981 270 for_each_node_mask(n, nodemsk) {
08d835df
RY
271 /* Ensure that only CPUs which are in both masks are set */
272 cpumask_and(nmsk, cpu_mask, node_to_cpumask[n]);
273 cpumask_or(&masks[curvec].mask, &masks[curvec].mask, nmsk);
1a2d0914 274 if (++curvec == last_affv)
1f962d91 275 curvec = 0;
34c3d981 276 }
0145c30e 277 return numvecs;
34c3d981
TG
278 }
279
b1a5a73e
ML
280 node_vectors = kcalloc(nr_node_ids,
281 sizeof(struct node_vectors),
282 GFP_KERNEL);
283 if (!node_vectors)
284 return -ENOMEM;
285
286 /* allocate vector number for each node */
287 alloc_nodes_vectors(numvecs, node_to_cpumask, cpu_mask,
288 nodemsk, nmsk, node_vectors);
289
290 for (i = 0; i < nr_node_ids; i++) {
291 unsigned int ncpus, v;
292 struct node_vectors *nv = &node_vectors[i];
293
294 if (nv->nvectors == UINT_MAX)
295 continue;
7bf8222b 296
34c3d981 297 /* Get the cpus on this node which are in the mask */
b1a5a73e 298 cpumask_and(nmsk, cpu_mask, node_to_cpumask[nv->id]);
34c3d981 299 ncpus = cpumask_weight(nmsk);
53c1788b
ML
300 if (!ncpus)
301 continue;
302
b1a5a73e 303 WARN_ON_ONCE(nv->nvectors > ncpus);
7bf8222b
KB
304
305 /* Account for rounding errors */
b1a5a73e 306 extra_vecs = ncpus - nv->nvectors * (ncpus / nv->nvectors);
34c3d981 307
b1a5a73e
ML
308 /* Spread allocated vectors on CPUs of the current node */
309 for (v = 0; v < nv->nvectors; v++, curvec++) {
310 cpus_per_vec = ncpus / nv->nvectors;
34c3d981
TG
311
312 /* Account for extra vectors to compensate rounding errors */
313 if (extra_vecs) {
314 cpus_per_vec++;
7bf8222b 315 --extra_vecs;
34c3d981 316 }
b1a5a73e
ML
317
318 /*
319 * wrapping has to be considered given 'startvec'
320 * may start anywhere
321 */
322 if (curvec >= last_affv)
1f962d91 323 curvec = 0;
bec04037
DL
324 irq_spread_init_one(&masks[curvec].mask, nmsk,
325 cpus_per_vec);
34c3d981 326 }
b1a5a73e 327 done += nv->nvectors;
34c3d981 328 }
b1a5a73e
ML
329 kfree(node_vectors);
330 return done;
b3e6aaa8
ML
331}
332
5c903e10
ML
333/*
334 * build affinity in two stages:
335 * 1) spread present CPU on these vectors
336 * 2) spread other possible CPUs on these vectors
337 */
1f962d91 338static int irq_build_affinity_masks(unsigned int numvecs,
bec04037 339 struct irq_affinity_desc *masks)
5c903e10 340{
1f962d91 341 unsigned int curvec = 0, nr_present = 0, nr_others = 0;
347253c4 342 cpumask_var_t *node_to_cpumask;
0145c30e
TG
343 cpumask_var_t nmsk, npresmsk;
344 int ret = -ENOMEM;
5c903e10
ML
345
346 if (!zalloc_cpumask_var(&nmsk, GFP_KERNEL))
c2899c34 347 return ret;
5c903e10
ML
348
349 if (!zalloc_cpumask_var(&npresmsk, GFP_KERNEL))
347253c4
ML
350 goto fail_nmsk;
351
352 node_to_cpumask = alloc_node_to_cpumask();
353 if (!node_to_cpumask)
354 goto fail_npresmsk;
5c903e10
ML
355
356 /* Stabilize the cpumasks */
428e2116 357 cpus_read_lock();
5c903e10
ML
358 build_node_to_cpumask(node_to_cpumask);
359
360 /* Spread on present CPUs starting from affd->pre_vectors */
1f962d91
ML
361 ret = __irq_build_affinity_masks(curvec, numvecs, node_to_cpumask,
362 cpu_present_mask, nmsk, masks);
b1a5a73e
ML
363 if (ret < 0)
364 goto fail_build_affinity;
365 nr_present = ret;
5c903e10
ML
366
367 /*
368 * Spread on non present CPUs starting from the next vector to be
369 * handled. If the spreading of present CPUs already exhausted the
370 * vector space, assign the non present CPUs to the already spread
371 * out vectors.
372 */
6da4b3ab 373 if (nr_present >= numvecs)
1f962d91 374 curvec = 0;
5c903e10 375 else
1f962d91 376 curvec = nr_present;
5c903e10 377 cpumask_andnot(npresmsk, cpu_possible_mask, cpu_present_mask);
1f962d91
ML
378 ret = __irq_build_affinity_masks(curvec, numvecs, node_to_cpumask,
379 npresmsk, nmsk, masks);
b1a5a73e
ML
380 if (ret >= 0)
381 nr_others = ret;
382
383 fail_build_affinity:
428e2116 384 cpus_read_unlock();
5c903e10 385
b1a5a73e 386 if (ret >= 0)
c2899c34 387 WARN_ON(nr_present + nr_others < numvecs);
6da4b3ab 388
347253c4
ML
389 free_node_to_cpumask(node_to_cpumask);
390
391 fail_npresmsk:
5c903e10
ML
392 free_cpumask_var(npresmsk);
393
347253c4 394 fail_nmsk:
5c903e10 395 free_cpumask_var(nmsk);
b1a5a73e 396 return ret < 0 ? ret : 0;
5c903e10
ML
397}
398
c66d4bd1
ML
399static void default_calc_sets(struct irq_affinity *affd, unsigned int affvecs)
400{
401 affd->nr_sets = 1;
402 affd->set_size[0] = affvecs;
403}
404
b3e6aaa8
ML
405/**
406 * irq_create_affinity_masks - Create affinity masks for multiqueue spreading
407 * @nvecs: The total number of vectors
408 * @affd: Description of the affinity requirements
409 *
bec04037 410 * Returns the irq_affinity_desc pointer or NULL if allocation failed.
b3e6aaa8 411 */
bec04037 412struct irq_affinity_desc *
9cfef55b 413irq_create_affinity_masks(unsigned int nvecs, struct irq_affinity *affd)
b3e6aaa8 414{
c66d4bd1 415 unsigned int affvecs, curvec, usedvecs, i;
bec04037 416 struct irq_affinity_desc *masks = NULL;
b3e6aaa8
ML
417
418 /*
c66d4bd1
ML
419 * Determine the number of vectors which need interrupt affinities
420 * assigned. If the pre/post request exhausts the available vectors
421 * then nothing to do here except for invoking the calc_sets()
491beed3 422 * callback so the device driver can adjust to the situation.
b3e6aaa8 423 */
491beed3 424 if (nvecs > affd->pre_vectors + affd->post_vectors)
c66d4bd1
ML
425 affvecs = nvecs - affd->pre_vectors - affd->post_vectors;
426 else
427 affvecs = 0;
428
429 /*
430 * Simple invocations do not provide a calc_sets() callback. Install
a6a309ed 431 * the generic one.
c66d4bd1 432 */
a6a309ed 433 if (!affd->calc_sets)
c66d4bd1
ML
434 affd->calc_sets = default_calc_sets;
435
a6a309ed
TG
436 /* Recalculate the sets */
437 affd->calc_sets(affd, affvecs);
b3e6aaa8 438
9cfef55b
ML
439 if (WARN_ON_ONCE(affd->nr_sets > IRQ_AFFINITY_MAX_SETS))
440 return NULL;
441
c66d4bd1
ML
442 /* Nothing to assign? */
443 if (!affvecs)
444 return NULL;
445
b3e6aaa8
ML
446 masks = kcalloc(nvecs, sizeof(*masks), GFP_KERNEL);
447 if (!masks)
347253c4 448 return NULL;
b3e6aaa8
ML
449
450 /* Fill out vectors at the beginning that don't need affinity */
451 for (curvec = 0; curvec < affd->pre_vectors; curvec++)
bec04037 452 cpumask_copy(&masks[curvec].mask, irq_default_affinity);
c66d4bd1 453
6da4b3ab
JA
454 /*
455 * Spread on present CPUs starting from affd->pre_vectors. If we
456 * have multiple sets, build each sets affinity mask separately.
457 */
c66d4bd1
ML
458 for (i = 0, usedvecs = 0; i < affd->nr_sets; i++) {
459 unsigned int this_vecs = affd->set_size[i];
6da4b3ab
JA
460 int ret;
461
1f962d91 462 ret = irq_build_affinity_masks(this_vecs, &masks[curvec]);
6da4b3ab 463 if (ret) {
c2899c34 464 kfree(masks);
347253c4 465 return NULL;
6da4b3ab
JA
466 }
467 curvec += this_vecs;
468 usedvecs += this_vecs;
469 }
67c93c21
CH
470
471 /* Fill out vectors at the end that don't need affinity */
d3056812
ML
472 if (usedvecs >= affvecs)
473 curvec = affd->pre_vectors + affvecs;
474 else
475 curvec = affd->pre_vectors + usedvecs;
67c93c21 476 for (; curvec < nvecs; curvec++)
bec04037 477 cpumask_copy(&masks[curvec].mask, irq_default_affinity);
d3056812 478
c410abbb
DL
479 /* Mark the managed interrupts */
480 for (i = affd->pre_vectors; i < nvecs - affd->post_vectors; i++)
481 masks[i].is_managed = 1;
482
34c3d981
TG
483 return masks;
484}
485
486/**
212bd846 487 * irq_calc_affinity_vectors - Calculate the optimal number of vectors
6f9a22bc 488 * @minvec: The minimum number of vectors available
212bd846
CH
489 * @maxvec: The maximum number of vectors available
490 * @affd: Description of the affinity requirements
34c3d981 491 */
0145c30e
TG
492unsigned int irq_calc_affinity_vectors(unsigned int minvec, unsigned int maxvec,
493 const struct irq_affinity *affd)
34c3d981 494{
0145c30e
TG
495 unsigned int resv = affd->pre_vectors + affd->post_vectors;
496 unsigned int set_vecs;
34c3d981 497
6f9a22bc
MH
498 if (resv > minvec)
499 return 0;
500
c66d4bd1
ML
501 if (affd->calc_sets) {
502 set_vecs = maxvec - resv;
6da4b3ab 503 } else {
428e2116 504 cpus_read_lock();
6da4b3ab 505 set_vecs = cpumask_weight(cpu_possible_mask);
428e2116 506 cpus_read_unlock();
6da4b3ab
JA
507 }
508
0145c30e 509 return resv + min(set_vecs, maxvec - resv);
34c3d981 510}