]> git.ipfire.org Git - people/arne_f/kernel.git/blame - kernel/perf_counter.c
perf counters: hw driver API
[people/arne_f/kernel.git] / kernel / perf_counter.c
CommitLineData
0793a61d
TG
1/*
2 * Performance counter core code
3 *
4 * Copyright(C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2008 Red Hat, Inc., Ingo Molnar
6 *
7 * For licencing details see kernel-base/COPYING
8 */
9
10#include <linux/fs.h>
11#include <linux/cpu.h>
12#include <linux/smp.h>
04289bb9 13#include <linux/file.h>
0793a61d
TG
14#include <linux/poll.h>
15#include <linux/sysfs.h>
16#include <linux/ptrace.h>
17#include <linux/percpu.h>
18#include <linux/uaccess.h>
19#include <linux/syscalls.h>
20#include <linux/anon_inodes.h>
21#include <linux/perf_counter.h>
22
23/*
24 * Each CPU has a list of per CPU counters:
25 */
26DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
27
28int perf_max_counters __read_mostly;
29static int perf_reserved_percpu __read_mostly;
30static int perf_overcommit __read_mostly = 1;
31
32/*
33 * Mutex for (sysadmin-configurable) counter reservations:
34 */
35static DEFINE_MUTEX(perf_resource_mutex);
36
37/*
38 * Architecture provided APIs - weak aliases:
39 */
621a01ea
IM
40extern __weak struct hw_perf_counter_ops *
41hw_perf_counter_init(struct perf_counter *counter)
0793a61d 42{
621a01ea 43 return ERR_PTR(-EINVAL);
0793a61d
TG
44}
45
621a01ea
IM
46void __weak hw_perf_disable_all(void) { }
47void __weak hw_perf_enable_all(void) { }
48void __weak hw_perf_counter_setup(void) { }
0793a61d
TG
49
50#if BITS_PER_LONG == 64
51
52/*
53 * Read the cached counter in counter safe against cross CPU / NMI
54 * modifications. 64 bit version - no complications.
55 */
04289bb9 56static inline u64 perf_counter_read_safe(struct perf_counter *counter)
0793a61d
TG
57{
58 return (u64) atomic64_read(&counter->count);
59}
60
61#else
62
63/*
64 * Read the cached counter in counter safe against cross CPU / NMI
65 * modifications. 32 bit version.
66 */
04289bb9 67static u64 perf_counter_read_safe(struct perf_counter *counter)
0793a61d
TG
68{
69 u32 cntl, cnth;
70
71 local_irq_disable();
72 do {
73 cnth = atomic_read(&counter->count32[1]);
74 cntl = atomic_read(&counter->count32[0]);
75 } while (cnth != atomic_read(&counter->count32[1]));
76
77 local_irq_enable();
78
79 return cntl | ((u64) cnth) << 32;
80}
81
82#endif
83
04289bb9
IM
84static void
85list_add_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
86{
87 struct perf_counter *group_leader = counter->group_leader;
88
89 /*
90 * Depending on whether it is a standalone or sibling counter,
91 * add it straight to the context's counter list, or to the group
92 * leader's sibling list:
93 */
94 if (counter->group_leader == counter)
95 list_add_tail(&counter->list_entry, &ctx->counter_list);
96 else
97 list_add_tail(&counter->list_entry, &group_leader->sibling_list);
98}
99
100static void
101list_del_counter(struct perf_counter *counter, struct perf_counter_context *ctx)
102{
103 struct perf_counter *sibling, *tmp;
104
105 list_del_init(&counter->list_entry);
106
04289bb9
IM
107 /*
108 * If this was a group counter with sibling counters then
109 * upgrade the siblings to singleton counters by adding them
110 * to the context list directly:
111 */
112 list_for_each_entry_safe(sibling, tmp,
113 &counter->sibling_list, list_entry) {
114
115 list_del_init(&sibling->list_entry);
116 list_add_tail(&sibling->list_entry, &ctx->counter_list);
117 WARN_ON_ONCE(!sibling->group_leader);
118 WARN_ON_ONCE(sibling->group_leader == sibling);
119 sibling->group_leader = sibling;
120 }
121}
122
0793a61d
TG
123/*
124 * Cross CPU call to remove a performance counter
125 *
126 * We disable the counter on the hardware level first. After that we
127 * remove it from the context list.
128 */
04289bb9 129static void __perf_counter_remove_from_context(void *info)
0793a61d
TG
130{
131 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
132 struct perf_counter *counter = info;
133 struct perf_counter_context *ctx = counter->ctx;
134
135 /*
136 * If this is a task context, we need to check whether it is
137 * the current task context of this cpu. If not it has been
138 * scheduled out before the smp call arrived.
139 */
140 if (ctx->task && cpuctx->task_ctx != ctx)
141 return;
142
143 spin_lock(&ctx->lock);
144
145 if (counter->active) {
621a01ea 146 counter->hw_ops->hw_perf_counter_disable(counter);
0793a61d
TG
147 counter->active = 0;
148 ctx->nr_active--;
149 cpuctx->active_oncpu--;
150 counter->task = NULL;
151 }
152 ctx->nr_counters--;
153
154 /*
155 * Protect the list operation against NMI by disabling the
156 * counters on a global level. NOP for non NMI based counters.
157 */
158 hw_perf_disable_all();
04289bb9 159 list_del_counter(counter, ctx);
0793a61d
TG
160 hw_perf_enable_all();
161
162 if (!ctx->task) {
163 /*
164 * Allow more per task counters with respect to the
165 * reservation:
166 */
167 cpuctx->max_pertask =
168 min(perf_max_counters - ctx->nr_counters,
169 perf_max_counters - perf_reserved_percpu);
170 }
171
172 spin_unlock(&ctx->lock);
173}
174
175
176/*
177 * Remove the counter from a task's (or a CPU's) list of counters.
178 *
179 * Must be called with counter->mutex held.
180 *
181 * CPU counters are removed with a smp call. For task counters we only
182 * call when the task is on a CPU.
183 */
04289bb9 184static void perf_counter_remove_from_context(struct perf_counter *counter)
0793a61d
TG
185{
186 struct perf_counter_context *ctx = counter->ctx;
187 struct task_struct *task = ctx->task;
188
189 if (!task) {
190 /*
191 * Per cpu counters are removed via an smp call and
192 * the removal is always sucessful.
193 */
194 smp_call_function_single(counter->cpu,
04289bb9 195 __perf_counter_remove_from_context,
0793a61d
TG
196 counter, 1);
197 return;
198 }
199
200retry:
04289bb9 201 task_oncpu_function_call(task, __perf_counter_remove_from_context,
0793a61d
TG
202 counter);
203
204 spin_lock_irq(&ctx->lock);
205 /*
206 * If the context is active we need to retry the smp call.
207 */
04289bb9 208 if (ctx->nr_active && !list_empty(&counter->list_entry)) {
0793a61d
TG
209 spin_unlock_irq(&ctx->lock);
210 goto retry;
211 }
212
213 /*
214 * The lock prevents that this context is scheduled in so we
04289bb9 215 * can remove the counter safely, if the call above did not
0793a61d
TG
216 * succeed.
217 */
04289bb9 218 if (!list_empty(&counter->list_entry)) {
0793a61d 219 ctx->nr_counters--;
04289bb9 220 list_del_counter(counter, ctx);
0793a61d
TG
221 counter->task = NULL;
222 }
223 spin_unlock_irq(&ctx->lock);
224}
225
226/*
227 * Cross CPU call to install and enable a preformance counter
228 */
229static void __perf_install_in_context(void *info)
230{
231 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
232 struct perf_counter *counter = info;
233 struct perf_counter_context *ctx = counter->ctx;
234 int cpu = smp_processor_id();
235
236 /*
237 * If this is a task context, we need to check whether it is
238 * the current task context of this cpu. If not it has been
239 * scheduled out before the smp call arrived.
240 */
241 if (ctx->task && cpuctx->task_ctx != ctx)
242 return;
243
244 spin_lock(&ctx->lock);
245
246 /*
247 * Protect the list operation against NMI by disabling the
248 * counters on a global level. NOP for non NMI based counters.
249 */
250 hw_perf_disable_all();
04289bb9 251 list_add_counter(counter, ctx);
0793a61d
TG
252 hw_perf_enable_all();
253
254 ctx->nr_counters++;
255
256 if (cpuctx->active_oncpu < perf_max_counters) {
621a01ea 257 counter->hw_ops->hw_perf_counter_enable(counter);
0793a61d
TG
258 counter->active = 1;
259 counter->oncpu = cpu;
260 ctx->nr_active++;
261 cpuctx->active_oncpu++;
262 }
263
264 if (!ctx->task && cpuctx->max_pertask)
265 cpuctx->max_pertask--;
266
267 spin_unlock(&ctx->lock);
268}
269
270/*
271 * Attach a performance counter to a context
272 *
273 * First we add the counter to the list with the hardware enable bit
274 * in counter->hw_config cleared.
275 *
276 * If the counter is attached to a task which is on a CPU we use a smp
277 * call to enable it in the task context. The task might have been
278 * scheduled away, but we check this in the smp call again.
279 */
280static void
281perf_install_in_context(struct perf_counter_context *ctx,
282 struct perf_counter *counter,
283 int cpu)
284{
285 struct task_struct *task = ctx->task;
286
287 counter->ctx = ctx;
288 if (!task) {
289 /*
290 * Per cpu counters are installed via an smp call and
291 * the install is always sucessful.
292 */
293 smp_call_function_single(cpu, __perf_install_in_context,
294 counter, 1);
295 return;
296 }
297
298 counter->task = task;
299retry:
300 task_oncpu_function_call(task, __perf_install_in_context,
301 counter);
302
303 spin_lock_irq(&ctx->lock);
304 /*
305 * If the context is active and the counter has not been added
306 * we need to retry the smp call.
307 */
04289bb9 308 if (ctx->nr_active && list_empty(&counter->list_entry)) {
0793a61d
TG
309 spin_unlock_irq(&ctx->lock);
310 goto retry;
311 }
312
313 /*
314 * The lock prevents that this context is scheduled in so we
315 * can add the counter safely, if it the call above did not
316 * succeed.
317 */
04289bb9
IM
318 if (list_empty(&counter->list_entry)) {
319 list_add_counter(counter, ctx);
0793a61d
TG
320 ctx->nr_counters++;
321 }
322 spin_unlock_irq(&ctx->lock);
323}
324
04289bb9
IM
325static void
326counter_sched_out(struct perf_counter *counter,
327 struct perf_cpu_context *cpuctx,
328 struct perf_counter_context *ctx)
329{
330 if (!counter->active)
331 return;
332
621a01ea 333 counter->hw_ops->hw_perf_counter_disable(counter);
04289bb9
IM
334 counter->active = 0;
335 counter->oncpu = -1;
336
337 cpuctx->active_oncpu--;
338 ctx->nr_active--;
339}
340
341static void
342group_sched_out(struct perf_counter *group_counter,
343 struct perf_cpu_context *cpuctx,
344 struct perf_counter_context *ctx)
345{
346 struct perf_counter *counter;
347
348 counter_sched_out(group_counter, cpuctx, ctx);
349
350 /*
351 * Schedule out siblings (if any):
352 */
353 list_for_each_entry(counter, &group_counter->sibling_list, list_entry)
354 counter_sched_out(counter, cpuctx, ctx);
355}
356
0793a61d
TG
357/*
358 * Called from scheduler to remove the counters of the current task,
359 * with interrupts disabled.
360 *
361 * We stop each counter and update the counter value in counter->count.
362 *
363 * This does not protect us against NMI, but hw_perf_counter_disable()
364 * sets the disabled bit in the control field of counter _before_
365 * accessing the counter control register. If a NMI hits, then it will
366 * not restart the counter.
367 */
368void perf_counter_task_sched_out(struct task_struct *task, int cpu)
369{
370 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
371 struct perf_counter_context *ctx = &task->perf_counter_ctx;
372 struct perf_counter *counter;
373
374 if (likely(!cpuctx->task_ctx))
375 return;
376
377 spin_lock(&ctx->lock);
04289bb9
IM
378 if (ctx->nr_active) {
379 list_for_each_entry(counter, &ctx->counter_list, list_entry)
380 group_sched_out(counter, cpuctx, ctx);
0793a61d
TG
381 }
382 spin_unlock(&ctx->lock);
383 cpuctx->task_ctx = NULL;
384}
385
04289bb9
IM
386static void
387counter_sched_in(struct perf_counter *counter,
388 struct perf_cpu_context *cpuctx,
389 struct perf_counter_context *ctx,
390 int cpu)
391{
621a01ea 392 counter->hw_ops->hw_perf_counter_enable(counter);
04289bb9
IM
393 counter->active = 1;
394 counter->oncpu = cpu; /* TODO: put 'cpu' into cpuctx->cpu */
395
396 cpuctx->active_oncpu++;
397 ctx->nr_active++;
398}
399
400static void
401group_sched_in(struct perf_counter *group_counter,
402 struct perf_cpu_context *cpuctx,
403 struct perf_counter_context *ctx,
404 int cpu)
405{
406 struct perf_counter *counter;
407
408 counter_sched_in(group_counter, cpuctx, ctx, cpu);
409
410 /*
411 * Schedule in siblings as one group (if any):
412 */
413 list_for_each_entry(counter, &group_counter->sibling_list, list_entry)
414 counter_sched_in(counter, cpuctx, ctx, cpu);
415}
416
0793a61d
TG
417/*
418 * Called from scheduler to add the counters of the current task
419 * with interrupts disabled.
420 *
421 * We restore the counter value and then enable it.
422 *
423 * This does not protect us against NMI, but hw_perf_counter_enable()
424 * sets the enabled bit in the control field of counter _before_
425 * accessing the counter control register. If a NMI hits, then it will
426 * keep the counter running.
427 */
428void perf_counter_task_sched_in(struct task_struct *task, int cpu)
429{
430 struct perf_cpu_context *cpuctx = &per_cpu(perf_cpu_context, cpu);
431 struct perf_counter_context *ctx = &task->perf_counter_ctx;
432 struct perf_counter *counter;
433
434 if (likely(!ctx->nr_counters))
435 return;
436
437 spin_lock(&ctx->lock);
04289bb9 438 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
0793a61d
TG
439 if (ctx->nr_active == cpuctx->max_pertask)
440 break;
04289bb9
IM
441
442 /*
443 * Listen to the 'cpu' scheduling filter constraint
444 * of counters:
445 */
0793a61d
TG
446 if (counter->cpu != -1 && counter->cpu != cpu)
447 continue;
448
04289bb9 449 group_sched_in(counter, cpuctx, ctx, cpu);
0793a61d
TG
450 }
451 spin_unlock(&ctx->lock);
04289bb9 452
0793a61d
TG
453 cpuctx->task_ctx = ctx;
454}
455
456void perf_counter_task_tick(struct task_struct *curr, int cpu)
457{
458 struct perf_counter_context *ctx = &curr->perf_counter_ctx;
459 struct perf_counter *counter;
460
461 if (likely(!ctx->nr_counters))
462 return;
463
464 perf_counter_task_sched_out(curr, cpu);
465
466 spin_lock(&ctx->lock);
467
468 /*
04289bb9 469 * Rotate the first entry last (works just fine for group counters too):
0793a61d
TG
470 */
471 hw_perf_disable_all();
04289bb9
IM
472 list_for_each_entry(counter, &ctx->counter_list, list_entry) {
473 list_del(&counter->list_entry);
474 list_add_tail(&counter->list_entry, &ctx->counter_list);
0793a61d
TG
475 break;
476 }
477 hw_perf_enable_all();
478
479 spin_unlock(&ctx->lock);
480
481 perf_counter_task_sched_in(curr, cpu);
482}
483
04289bb9
IM
484/*
485 * Initialize the perf_counter context in a task_struct:
486 */
487static void
488__perf_counter_init_context(struct perf_counter_context *ctx,
489 struct task_struct *task)
490{
491 spin_lock_init(&ctx->lock);
492 INIT_LIST_HEAD(&ctx->counter_list);
493 ctx->nr_counters = 0;
494 ctx->task = task;
495}
0793a61d
TG
496/*
497 * Initialize the perf_counter context in task_struct
498 */
499void perf_counter_init_task(struct task_struct *task)
500{
04289bb9 501 __perf_counter_init_context(&task->perf_counter_ctx, task);
0793a61d
TG
502}
503
504/*
505 * Cross CPU call to read the hardware counter
506 */
507static void __hw_perf_counter_read(void *info)
508{
621a01ea
IM
509 struct perf_counter *counter = info;
510
511 counter->hw_ops->hw_perf_counter_read(counter);
0793a61d
TG
512}
513
04289bb9 514static u64 perf_counter_read(struct perf_counter *counter)
0793a61d
TG
515{
516 /*
517 * If counter is enabled and currently active on a CPU, update the
518 * value in the counter structure:
519 */
520 if (counter->active) {
521 smp_call_function_single(counter->oncpu,
522 __hw_perf_counter_read, counter, 1);
523 }
524
04289bb9 525 return perf_counter_read_safe(counter);
0793a61d
TG
526}
527
528/*
529 * Cross CPU call to switch performance data pointers
530 */
531static void __perf_switch_irq_data(void *info)
532{
533 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
534 struct perf_counter *counter = info;
535 struct perf_counter_context *ctx = counter->ctx;
536 struct perf_data *oldirqdata = counter->irqdata;
537
538 /*
539 * If this is a task context, we need to check whether it is
540 * the current task context of this cpu. If not it has been
541 * scheduled out before the smp call arrived.
542 */
543 if (ctx->task) {
544 if (cpuctx->task_ctx != ctx)
545 return;
546 spin_lock(&ctx->lock);
547 }
548
549 /* Change the pointer NMI safe */
550 atomic_long_set((atomic_long_t *)&counter->irqdata,
551 (unsigned long) counter->usrdata);
552 counter->usrdata = oldirqdata;
553
554 if (ctx->task)
555 spin_unlock(&ctx->lock);
556}
557
558static struct perf_data *perf_switch_irq_data(struct perf_counter *counter)
559{
560 struct perf_counter_context *ctx = counter->ctx;
561 struct perf_data *oldirqdata = counter->irqdata;
562 struct task_struct *task = ctx->task;
563
564 if (!task) {
565 smp_call_function_single(counter->cpu,
566 __perf_switch_irq_data,
567 counter, 1);
568 return counter->usrdata;
569 }
570
571retry:
572 spin_lock_irq(&ctx->lock);
573 if (!counter->active) {
574 counter->irqdata = counter->usrdata;
575 counter->usrdata = oldirqdata;
576 spin_unlock_irq(&ctx->lock);
577 return oldirqdata;
578 }
579 spin_unlock_irq(&ctx->lock);
580 task_oncpu_function_call(task, __perf_switch_irq_data, counter);
581 /* Might have failed, because task was scheduled out */
582 if (counter->irqdata == oldirqdata)
583 goto retry;
584
585 return counter->usrdata;
586}
587
588static void put_context(struct perf_counter_context *ctx)
589{
590 if (ctx->task)
591 put_task_struct(ctx->task);
592}
593
594static struct perf_counter_context *find_get_context(pid_t pid, int cpu)
595{
596 struct perf_cpu_context *cpuctx;
597 struct perf_counter_context *ctx;
598 struct task_struct *task;
599
600 /*
601 * If cpu is not a wildcard then this is a percpu counter:
602 */
603 if (cpu != -1) {
604 /* Must be root to operate on a CPU counter: */
605 if (!capable(CAP_SYS_ADMIN))
606 return ERR_PTR(-EACCES);
607
608 if (cpu < 0 || cpu > num_possible_cpus())
609 return ERR_PTR(-EINVAL);
610
611 /*
612 * We could be clever and allow to attach a counter to an
613 * offline CPU and activate it when the CPU comes up, but
614 * that's for later.
615 */
616 if (!cpu_isset(cpu, cpu_online_map))
617 return ERR_PTR(-ENODEV);
618
619 cpuctx = &per_cpu(perf_cpu_context, cpu);
620 ctx = &cpuctx->ctx;
621
622 WARN_ON_ONCE(ctx->task);
623 return ctx;
624 }
625
626 rcu_read_lock();
627 if (!pid)
628 task = current;
629 else
630 task = find_task_by_vpid(pid);
631 if (task)
632 get_task_struct(task);
633 rcu_read_unlock();
634
635 if (!task)
636 return ERR_PTR(-ESRCH);
637
638 ctx = &task->perf_counter_ctx;
639 ctx->task = task;
640
641 /* Reuse ptrace permission checks for now. */
642 if (!ptrace_may_access(task, PTRACE_MODE_READ)) {
643 put_context(ctx);
644 return ERR_PTR(-EACCES);
645 }
646
647 return ctx;
648}
649
650/*
651 * Called when the last reference to the file is gone.
652 */
653static int perf_release(struct inode *inode, struct file *file)
654{
655 struct perf_counter *counter = file->private_data;
656 struct perf_counter_context *ctx = counter->ctx;
657
658 file->private_data = NULL;
659
660 mutex_lock(&counter->mutex);
661
04289bb9 662 perf_counter_remove_from_context(counter);
0793a61d
TG
663 put_context(ctx);
664
665 mutex_unlock(&counter->mutex);
666
667 kfree(counter);
668
669 return 0;
670}
671
672/*
673 * Read the performance counter - simple non blocking version for now
674 */
675static ssize_t
676perf_read_hw(struct perf_counter *counter, char __user *buf, size_t count)
677{
678 u64 cntval;
679
680 if (count != sizeof(cntval))
681 return -EINVAL;
682
683 mutex_lock(&counter->mutex);
04289bb9 684 cntval = perf_counter_read(counter);
0793a61d
TG
685 mutex_unlock(&counter->mutex);
686
687 return put_user(cntval, (u64 __user *) buf) ? -EFAULT : sizeof(cntval);
688}
689
690static ssize_t
691perf_copy_usrdata(struct perf_data *usrdata, char __user *buf, size_t count)
692{
693 if (!usrdata->len)
694 return 0;
695
696 count = min(count, (size_t)usrdata->len);
697 if (copy_to_user(buf, usrdata->data + usrdata->rd_idx, count))
698 return -EFAULT;
699
700 /* Adjust the counters */
701 usrdata->len -= count;
702 if (!usrdata->len)
703 usrdata->rd_idx = 0;
704 else
705 usrdata->rd_idx += count;
706
707 return count;
708}
709
710static ssize_t
711perf_read_irq_data(struct perf_counter *counter,
712 char __user *buf,
713 size_t count,
714 int nonblocking)
715{
716 struct perf_data *irqdata, *usrdata;
717 DECLARE_WAITQUEUE(wait, current);
718 ssize_t res;
719
720 irqdata = counter->irqdata;
721 usrdata = counter->usrdata;
722
723 if (usrdata->len + irqdata->len >= count)
724 goto read_pending;
725
726 if (nonblocking)
727 return -EAGAIN;
728
729 spin_lock_irq(&counter->waitq.lock);
730 __add_wait_queue(&counter->waitq, &wait);
731 for (;;) {
732 set_current_state(TASK_INTERRUPTIBLE);
733 if (usrdata->len + irqdata->len >= count)
734 break;
735
736 if (signal_pending(current))
737 break;
738
739 spin_unlock_irq(&counter->waitq.lock);
740 schedule();
741 spin_lock_irq(&counter->waitq.lock);
742 }
743 __remove_wait_queue(&counter->waitq, &wait);
744 __set_current_state(TASK_RUNNING);
745 spin_unlock_irq(&counter->waitq.lock);
746
747 if (usrdata->len + irqdata->len < count)
748 return -ERESTARTSYS;
749read_pending:
750 mutex_lock(&counter->mutex);
751
752 /* Drain pending data first: */
753 res = perf_copy_usrdata(usrdata, buf, count);
754 if (res < 0 || res == count)
755 goto out;
756
757 /* Switch irq buffer: */
758 usrdata = perf_switch_irq_data(counter);
759 if (perf_copy_usrdata(usrdata, buf + res, count - res) < 0) {
760 if (!res)
761 res = -EFAULT;
762 } else {
763 res = count;
764 }
765out:
766 mutex_unlock(&counter->mutex);
767
768 return res;
769}
770
771static ssize_t
772perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
773{
774 struct perf_counter *counter = file->private_data;
775
9f66a381 776 switch (counter->hw_event.record_type) {
0793a61d
TG
777 case PERF_RECORD_SIMPLE:
778 return perf_read_hw(counter, buf, count);
779
780 case PERF_RECORD_IRQ:
781 case PERF_RECORD_GROUP:
782 return perf_read_irq_data(counter, buf, count,
783 file->f_flags & O_NONBLOCK);
784 }
785 return -EINVAL;
786}
787
788static unsigned int perf_poll(struct file *file, poll_table *wait)
789{
790 struct perf_counter *counter = file->private_data;
791 unsigned int events = 0;
792 unsigned long flags;
793
794 poll_wait(file, &counter->waitq, wait);
795
796 spin_lock_irqsave(&counter->waitq.lock, flags);
797 if (counter->usrdata->len || counter->irqdata->len)
798 events |= POLLIN;
799 spin_unlock_irqrestore(&counter->waitq.lock, flags);
800
801 return events;
802}
803
804static const struct file_operations perf_fops = {
805 .release = perf_release,
806 .read = perf_read,
807 .poll = perf_poll,
808};
809
810/*
811 * Allocate and initialize a counter structure
812 */
813static struct perf_counter *
04289bb9
IM
814perf_counter_alloc(struct perf_counter_hw_event *hw_event,
815 int cpu,
816 struct perf_counter *group_leader)
0793a61d 817{
621a01ea
IM
818 struct hw_perf_counter_ops *hw_ops;
819 struct perf_counter *counter;
0793a61d 820
621a01ea 821 counter = kzalloc(sizeof(*counter), GFP_KERNEL);
0793a61d
TG
822 if (!counter)
823 return NULL;
824
04289bb9
IM
825 /*
826 * Single counters are their own group leaders, with an
827 * empty sibling list:
828 */
829 if (!group_leader)
830 group_leader = counter;
831
0793a61d 832 mutex_init(&counter->mutex);
04289bb9
IM
833 INIT_LIST_HEAD(&counter->list_entry);
834 INIT_LIST_HEAD(&counter->sibling_list);
0793a61d
TG
835 init_waitqueue_head(&counter->waitq);
836
9f66a381
IM
837 counter->irqdata = &counter->data[0];
838 counter->usrdata = &counter->data[1];
839 counter->cpu = cpu;
840 counter->hw_event = *hw_event;
841 counter->wakeup_pending = 0;
04289bb9 842 counter->group_leader = group_leader;
621a01ea
IM
843 counter->hw_ops = NULL;
844
845 hw_ops = hw_perf_counter_init(counter);
846 if (!hw_ops) {
847 kfree(counter);
848 return NULL;
849 }
850 counter->hw_ops = hw_ops;
0793a61d
TG
851
852 return counter;
853}
854
855/**
9f66a381
IM
856 * sys_perf_task_open - open a performance counter, associate it to a task/cpu
857 *
858 * @hw_event_uptr: event type attributes for monitoring/sampling
0793a61d 859 * @pid: target pid
9f66a381
IM
860 * @cpu: target cpu
861 * @group_fd: group leader counter fd
0793a61d 862 */
9f66a381
IM
863asmlinkage int sys_perf_counter_open(
864
865 struct perf_counter_hw_event *hw_event_uptr __user,
866 pid_t pid,
867 int cpu,
868 int group_fd)
869
0793a61d 870{
04289bb9 871 struct perf_counter *counter, *group_leader;
9f66a381 872 struct perf_counter_hw_event hw_event;
04289bb9
IM
873 struct perf_counter_context *ctx;
874 struct file *group_file = NULL;
875 int fput_needed = 0;
0793a61d
TG
876 int ret;
877
9f66a381 878 if (copy_from_user(&hw_event, hw_event_uptr, sizeof(hw_event)) != 0)
eab656ae
TG
879 return -EFAULT;
880
04289bb9 881 /*
ccff286d
IM
882 * Get the target context (task or percpu):
883 */
884 ctx = find_get_context(pid, cpu);
885 if (IS_ERR(ctx))
886 return PTR_ERR(ctx);
887
888 /*
889 * Look up the group leader (we will attach this counter to it):
04289bb9
IM
890 */
891 group_leader = NULL;
892 if (group_fd != -1) {
893 ret = -EINVAL;
894 group_file = fget_light(group_fd, &fput_needed);
895 if (!group_file)
ccff286d 896 goto err_put_context;
04289bb9 897 if (group_file->f_op != &perf_fops)
ccff286d 898 goto err_put_context;
04289bb9
IM
899
900 group_leader = group_file->private_data;
901 /*
ccff286d
IM
902 * Do not allow a recursive hierarchy (this new sibling
903 * becoming part of another group-sibling):
904 */
905 if (group_leader->group_leader != group_leader)
906 goto err_put_context;
907 /*
908 * Do not allow to attach to a group in a different
909 * task or CPU context:
04289bb9 910 */
ccff286d
IM
911 if (group_leader->ctx != ctx)
912 goto err_put_context;
04289bb9
IM
913 }
914
0793a61d 915 ret = -ENOMEM;
04289bb9 916 counter = perf_counter_alloc(&hw_event, cpu, group_leader);
0793a61d
TG
917 if (!counter)
918 goto err_put_context;
919
0793a61d
TG
920 perf_install_in_context(ctx, counter, cpu);
921
922 ret = anon_inode_getfd("[perf_counter]", &perf_fops, counter, 0);
923 if (ret < 0)
924 goto err_remove_free_put_context;
925
04289bb9
IM
926out_fput:
927 fput_light(group_file, fput_needed);
928
0793a61d
TG
929 return ret;
930
931err_remove_free_put_context:
932 mutex_lock(&counter->mutex);
04289bb9 933 perf_counter_remove_from_context(counter);
0793a61d 934 mutex_unlock(&counter->mutex);
0793a61d
TG
935 kfree(counter);
936
937err_put_context:
938 put_context(ctx);
939
04289bb9 940 goto out_fput;
0793a61d
TG
941}
942
04289bb9 943static void __cpuinit perf_counter_init_cpu(int cpu)
0793a61d 944{
04289bb9 945 struct perf_cpu_context *cpuctx;
0793a61d 946
04289bb9
IM
947 cpuctx = &per_cpu(perf_cpu_context, cpu);
948 __perf_counter_init_context(&cpuctx->ctx, NULL);
0793a61d
TG
949
950 mutex_lock(&perf_resource_mutex);
04289bb9 951 cpuctx->max_pertask = perf_max_counters - perf_reserved_percpu;
0793a61d 952 mutex_unlock(&perf_resource_mutex);
04289bb9 953
0793a61d
TG
954 hw_perf_counter_setup();
955}
956
957#ifdef CONFIG_HOTPLUG_CPU
04289bb9 958static void __perf_counter_exit_cpu(void *info)
0793a61d
TG
959{
960 struct perf_cpu_context *cpuctx = &__get_cpu_var(perf_cpu_context);
961 struct perf_counter_context *ctx = &cpuctx->ctx;
962 struct perf_counter *counter, *tmp;
963
04289bb9
IM
964 list_for_each_entry_safe(counter, tmp, &ctx->counter_list, list_entry)
965 __perf_counter_remove_from_context(counter);
0793a61d
TG
966
967}
04289bb9 968static void perf_counter_exit_cpu(int cpu)
0793a61d 969{
04289bb9 970 smp_call_function_single(cpu, __perf_counter_exit_cpu, NULL, 1);
0793a61d
TG
971}
972#else
04289bb9 973static inline void perf_counter_exit_cpu(int cpu) { }
0793a61d
TG
974#endif
975
976static int __cpuinit
977perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
978{
979 unsigned int cpu = (long)hcpu;
980
981 switch (action) {
982
983 case CPU_UP_PREPARE:
984 case CPU_UP_PREPARE_FROZEN:
04289bb9 985 perf_counter_init_cpu(cpu);
0793a61d
TG
986 break;
987
988 case CPU_DOWN_PREPARE:
989 case CPU_DOWN_PREPARE_FROZEN:
04289bb9 990 perf_counter_exit_cpu(cpu);
0793a61d
TG
991 break;
992
993 default:
994 break;
995 }
996
997 return NOTIFY_OK;
998}
999
1000static struct notifier_block __cpuinitdata perf_cpu_nb = {
1001 .notifier_call = perf_cpu_notify,
1002};
1003
1004static int __init perf_counter_init(void)
1005{
1006 perf_cpu_notify(&perf_cpu_nb, (unsigned long)CPU_UP_PREPARE,
1007 (void *)(long)smp_processor_id());
1008 register_cpu_notifier(&perf_cpu_nb);
1009
1010 return 0;
1011}
1012early_initcall(perf_counter_init);
1013
1014static ssize_t perf_show_reserve_percpu(struct sysdev_class *class, char *buf)
1015{
1016 return sprintf(buf, "%d\n", perf_reserved_percpu);
1017}
1018
1019static ssize_t
1020perf_set_reserve_percpu(struct sysdev_class *class,
1021 const char *buf,
1022 size_t count)
1023{
1024 struct perf_cpu_context *cpuctx;
1025 unsigned long val;
1026 int err, cpu, mpt;
1027
1028 err = strict_strtoul(buf, 10, &val);
1029 if (err)
1030 return err;
1031 if (val > perf_max_counters)
1032 return -EINVAL;
1033
1034 mutex_lock(&perf_resource_mutex);
1035 perf_reserved_percpu = val;
1036 for_each_online_cpu(cpu) {
1037 cpuctx = &per_cpu(perf_cpu_context, cpu);
1038 spin_lock_irq(&cpuctx->ctx.lock);
1039 mpt = min(perf_max_counters - cpuctx->ctx.nr_counters,
1040 perf_max_counters - perf_reserved_percpu);
1041 cpuctx->max_pertask = mpt;
1042 spin_unlock_irq(&cpuctx->ctx.lock);
1043 }
1044 mutex_unlock(&perf_resource_mutex);
1045
1046 return count;
1047}
1048
1049static ssize_t perf_show_overcommit(struct sysdev_class *class, char *buf)
1050{
1051 return sprintf(buf, "%d\n", perf_overcommit);
1052}
1053
1054static ssize_t
1055perf_set_overcommit(struct sysdev_class *class, const char *buf, size_t count)
1056{
1057 unsigned long val;
1058 int err;
1059
1060 err = strict_strtoul(buf, 10, &val);
1061 if (err)
1062 return err;
1063 if (val > 1)
1064 return -EINVAL;
1065
1066 mutex_lock(&perf_resource_mutex);
1067 perf_overcommit = val;
1068 mutex_unlock(&perf_resource_mutex);
1069
1070 return count;
1071}
1072
1073static SYSDEV_CLASS_ATTR(
1074 reserve_percpu,
1075 0644,
1076 perf_show_reserve_percpu,
1077 perf_set_reserve_percpu
1078 );
1079
1080static SYSDEV_CLASS_ATTR(
1081 overcommit,
1082 0644,
1083 perf_show_overcommit,
1084 perf_set_overcommit
1085 );
1086
1087static struct attribute *perfclass_attrs[] = {
1088 &attr_reserve_percpu.attr,
1089 &attr_overcommit.attr,
1090 NULL
1091};
1092
1093static struct attribute_group perfclass_attr_group = {
1094 .attrs = perfclass_attrs,
1095 .name = "perf_counters",
1096};
1097
1098static int __init perf_counter_sysfs_init(void)
1099{
1100 return sysfs_create_group(&cpu_sysdev_class.kset.kobj,
1101 &perfclass_attr_group);
1102}
1103device_initcall(perf_counter_sysfs_init);
1104