]> git.ipfire.org Git - thirdparty/linux.git/blame - kernel/rcu/srcutree.c
Merge tag 'drm-misc-next-fixes-2020-05-27' of git://anongit.freedesktop.org/drm/drm...
[thirdparty/linux.git] / kernel / rcu / srcutree.c
CommitLineData
e7ee1501 1// SPDX-License-Identifier: GPL-2.0+
dad81a20
PM
2/*
3 * Sleepable Read-Copy Update mechanism for mutual exclusion.
4 *
dad81a20
PM
5 * Copyright (C) IBM Corporation, 2006
6 * Copyright (C) Fujitsu, 2012
7 *
65bb0dc4 8 * Authors: Paul McKenney <paulmck@linux.ibm.com>
dad81a20
PM
9 * Lai Jiangshan <laijs@cn.fujitsu.com>
10 *
11 * For detailed explanation of Read-Copy Update mechanism see -
12 * Documentation/RCU/ *.txt
13 *
14 */
15
a7538352
JP
16#define pr_fmt(fmt) "rcu: " fmt
17
dad81a20
PM
18#include <linux/export.h>
19#include <linux/mutex.h>
20#include <linux/percpu.h>
21#include <linux/preempt.h>
22#include <linux/rcupdate_wait.h>
23#include <linux/sched.h>
24#include <linux/smp.h>
25#include <linux/delay.h>
22607d66 26#include <linux/module.h>
dad81a20
PM
27#include <linux/srcu.h>
28
dad81a20 29#include "rcu.h"
45753c5f 30#include "rcu_segcblist.h"
dad81a20 31
0c8e0e3c
PM
32/* Holdoff in nanoseconds for auto-expediting. */
33#define DEFAULT_SRCU_EXP_HOLDOFF (25 * 1000)
34static ulong exp_holdoff = DEFAULT_SRCU_EXP_HOLDOFF;
22607d66
PM
35module_param(exp_holdoff, ulong, 0444);
36
c350c008
PM
37/* Overflow-check frequency. N bits roughly says every 2**N grace periods. */
38static ulong counter_wrap_check = (ULONG_MAX >> 2);
39module_param(counter_wrap_check, ulong, 0444);
40
e0fcba9a
PM
41/* Early-boot callback-management, so early that no lock is required! */
42static LIST_HEAD(srcu_boot_list);
43static bool __read_mostly srcu_init_done;
44
da915ad5 45static void srcu_invoke_callbacks(struct work_struct *work);
aacb5d91 46static void srcu_reschedule(struct srcu_struct *ssp, unsigned long delay);
0d8a1e83 47static void process_srcu(struct work_struct *work);
e81baf4c 48static void srcu_delay_timer(struct timer_list *t);
da915ad5 49
d6331980
PM
50/* Wrappers for lock acquisition and release, see raw_spin_lock_rcu_node(). */
51#define spin_lock_rcu_node(p) \
52do { \
53 spin_lock(&ACCESS_PRIVATE(p, lock)); \
54 smp_mb__after_unlock_lock(); \
55} while (0)
56
57#define spin_unlock_rcu_node(p) spin_unlock(&ACCESS_PRIVATE(p, lock))
58
59#define spin_lock_irq_rcu_node(p) \
60do { \
61 spin_lock_irq(&ACCESS_PRIVATE(p, lock)); \
62 smp_mb__after_unlock_lock(); \
63} while (0)
64
65#define spin_unlock_irq_rcu_node(p) \
66 spin_unlock_irq(&ACCESS_PRIVATE(p, lock))
67
68#define spin_lock_irqsave_rcu_node(p, flags) \
69do { \
70 spin_lock_irqsave(&ACCESS_PRIVATE(p, lock), flags); \
71 smp_mb__after_unlock_lock(); \
72} while (0)
73
74#define spin_unlock_irqrestore_rcu_node(p, flags) \
75 spin_unlock_irqrestore(&ACCESS_PRIVATE(p, lock), flags) \
76
da915ad5
PM
77/*
78 * Initialize SRCU combining tree. Note that statically allocated
79 * srcu_struct structures might already have srcu_read_lock() and
80 * srcu_read_unlock() running against them. So if the is_static parameter
81 * is set, don't initialize ->srcu_lock_count[] and ->srcu_unlock_count[].
82 */
aacb5d91 83static void init_srcu_struct_nodes(struct srcu_struct *ssp, bool is_static)
dad81a20 84{
da915ad5
PM
85 int cpu;
86 int i;
87 int level = 0;
88 int levelspread[RCU_NUM_LVLS];
89 struct srcu_data *sdp;
90 struct srcu_node *snp;
91 struct srcu_node *snp_first;
92
93 /* Work out the overall tree geometry. */
aacb5d91 94 ssp->level[0] = &ssp->node[0];
da915ad5 95 for (i = 1; i < rcu_num_lvls; i++)
aacb5d91 96 ssp->level[i] = ssp->level[i - 1] + num_rcu_lvl[i - 1];
da915ad5
PM
97 rcu_init_levelspread(levelspread, num_rcu_lvl);
98
99 /* Each pass through this loop initializes one srcu_node structure. */
aacb5d91 100 srcu_for_each_node_breadth_first(ssp, snp) {
d6331980 101 spin_lock_init(&ACCESS_PRIVATE(snp, lock));
c7e88067
PM
102 WARN_ON_ONCE(ARRAY_SIZE(snp->srcu_have_cbs) !=
103 ARRAY_SIZE(snp->srcu_data_have_cbs));
104 for (i = 0; i < ARRAY_SIZE(snp->srcu_have_cbs); i++) {
da915ad5 105 snp->srcu_have_cbs[i] = 0;
c7e88067
PM
106 snp->srcu_data_have_cbs[i] = 0;
107 }
1e9a038b 108 snp->srcu_gp_seq_needed_exp = 0;
da915ad5
PM
109 snp->grplo = -1;
110 snp->grphi = -1;
aacb5d91 111 if (snp == &ssp->node[0]) {
da915ad5
PM
112 /* Root node, special case. */
113 snp->srcu_parent = NULL;
114 continue;
115 }
116
117 /* Non-root node. */
aacb5d91 118 if (snp == ssp->level[level + 1])
da915ad5 119 level++;
aacb5d91
PM
120 snp->srcu_parent = ssp->level[level - 1] +
121 (snp - ssp->level[level]) /
da915ad5
PM
122 levelspread[level - 1];
123 }
124
125 /*
126 * Initialize the per-CPU srcu_data array, which feeds into the
127 * leaves of the srcu_node tree.
128 */
129 WARN_ON_ONCE(ARRAY_SIZE(sdp->srcu_lock_count) !=
130 ARRAY_SIZE(sdp->srcu_unlock_count));
131 level = rcu_num_lvls - 1;
aacb5d91 132 snp_first = ssp->level[level];
da915ad5 133 for_each_possible_cpu(cpu) {
aacb5d91 134 sdp = per_cpu_ptr(ssp->sda, cpu);
d6331980 135 spin_lock_init(&ACCESS_PRIVATE(sdp, lock));
da915ad5
PM
136 rcu_segcblist_init(&sdp->srcu_cblist);
137 sdp->srcu_cblist_invoking = false;
aacb5d91
PM
138 sdp->srcu_gp_seq_needed = ssp->srcu_gp_seq;
139 sdp->srcu_gp_seq_needed_exp = ssp->srcu_gp_seq;
da915ad5
PM
140 sdp->mynode = &snp_first[cpu / levelspread[level]];
141 for (snp = sdp->mynode; snp != NULL; snp = snp->srcu_parent) {
142 if (snp->grplo < 0)
143 snp->grplo = cpu;
144 snp->grphi = cpu;
145 }
146 sdp->cpu = cpu;
e81baf4c
SAS
147 INIT_WORK(&sdp->work, srcu_invoke_callbacks);
148 timer_setup(&sdp->delay_work, srcu_delay_timer, 0);
aacb5d91 149 sdp->ssp = ssp;
c7e88067 150 sdp->grpmask = 1 << (cpu - sdp->mynode->grplo);
da915ad5
PM
151 if (is_static)
152 continue;
153
154 /* Dynamically allocated, better be no srcu_read_locks()! */
155 for (i = 0; i < ARRAY_SIZE(sdp->srcu_lock_count); i++) {
156 sdp->srcu_lock_count[i] = 0;
157 sdp->srcu_unlock_count[i] = 0;
158 }
159 }
160}
161
162/*
163 * Initialize non-compile-time initialized fields, including the
164 * associated srcu_node and srcu_data structures. The is_static
165 * parameter is passed through to init_srcu_struct_nodes(), and
166 * also tells us that ->sda has already been wired up to srcu_data.
167 */
aacb5d91 168static int init_srcu_struct_fields(struct srcu_struct *ssp, bool is_static)
da915ad5 169{
aacb5d91
PM
170 mutex_init(&ssp->srcu_cb_mutex);
171 mutex_init(&ssp->srcu_gp_mutex);
172 ssp->srcu_idx = 0;
173 ssp->srcu_gp_seq = 0;
174 ssp->srcu_barrier_seq = 0;
175 mutex_init(&ssp->srcu_barrier_mutex);
176 atomic_set(&ssp->srcu_barrier_cpu_cnt, 0);
177 INIT_DELAYED_WORK(&ssp->work, process_srcu);
da915ad5 178 if (!is_static)
aacb5d91
PM
179 ssp->sda = alloc_percpu(struct srcu_data);
180 init_srcu_struct_nodes(ssp, is_static);
181 ssp->srcu_gp_seq_needed_exp = 0;
182 ssp->srcu_last_gp_end = ktime_get_mono_fast_ns();
183 smp_store_release(&ssp->srcu_gp_seq_needed, 0); /* Init done. */
184 return ssp->sda ? 0 : -ENOMEM;
dad81a20
PM
185}
186
187#ifdef CONFIG_DEBUG_LOCK_ALLOC
188
aacb5d91 189int __init_srcu_struct(struct srcu_struct *ssp, const char *name,
dad81a20
PM
190 struct lock_class_key *key)
191{
192 /* Don't re-initialize a lock while it is held. */
aacb5d91
PM
193 debug_check_no_locks_freed((void *)ssp, sizeof(*ssp));
194 lockdep_init_map(&ssp->dep_map, name, key, 0);
195 spin_lock_init(&ACCESS_PRIVATE(ssp, lock));
196 return init_srcu_struct_fields(ssp, false);
dad81a20
PM
197}
198EXPORT_SYMBOL_GPL(__init_srcu_struct);
199
200#else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
201
202/**
203 * init_srcu_struct - initialize a sleep-RCU structure
aacb5d91 204 * @ssp: structure to initialize.
dad81a20
PM
205 *
206 * Must invoke this on a given srcu_struct before passing that srcu_struct
207 * to any other function. Each srcu_struct represents a separate domain
208 * of SRCU protection.
209 */
aacb5d91 210int init_srcu_struct(struct srcu_struct *ssp)
dad81a20 211{
aacb5d91
PM
212 spin_lock_init(&ACCESS_PRIVATE(ssp, lock));
213 return init_srcu_struct_fields(ssp, false);
dad81a20
PM
214}
215EXPORT_SYMBOL_GPL(init_srcu_struct);
216
217#endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */
218
219/*
da915ad5
PM
220 * First-use initialization of statically allocated srcu_struct
221 * structure. Wiring up the combining tree is more than can be
222 * done with compile-time initialization, so this check is added
aacb5d91 223 * to each update-side SRCU primitive. Use ssp->lock, which -is-
da915ad5
PM
224 * compile-time initialized, to resolve races involving multiple
225 * CPUs trying to garner first-use privileges.
226 */
aacb5d91 227static void check_init_srcu_struct(struct srcu_struct *ssp)
da915ad5
PM
228{
229 unsigned long flags;
230
da915ad5 231 /* The smp_load_acquire() pairs with the smp_store_release(). */
aacb5d91 232 if (!rcu_seq_state(smp_load_acquire(&ssp->srcu_gp_seq_needed))) /*^^^*/
da915ad5 233 return; /* Already initialized. */
aacb5d91
PM
234 spin_lock_irqsave_rcu_node(ssp, flags);
235 if (!rcu_seq_state(ssp->srcu_gp_seq_needed)) {
236 spin_unlock_irqrestore_rcu_node(ssp, flags);
da915ad5
PM
237 return;
238 }
aacb5d91
PM
239 init_srcu_struct_fields(ssp, true);
240 spin_unlock_irqrestore_rcu_node(ssp, flags);
da915ad5
PM
241}
242
243/*
244 * Returns approximate total of the readers' ->srcu_lock_count[] values
245 * for the rank of per-CPU counters specified by idx.
dad81a20 246 */
aacb5d91 247static unsigned long srcu_readers_lock_idx(struct srcu_struct *ssp, int idx)
dad81a20
PM
248{
249 int cpu;
250 unsigned long sum = 0;
251
252 for_each_possible_cpu(cpu) {
aacb5d91 253 struct srcu_data *cpuc = per_cpu_ptr(ssp->sda, cpu);
dad81a20 254
da915ad5 255 sum += READ_ONCE(cpuc->srcu_lock_count[idx]);
dad81a20
PM
256 }
257 return sum;
258}
259
260/*
da915ad5
PM
261 * Returns approximate total of the readers' ->srcu_unlock_count[] values
262 * for the rank of per-CPU counters specified by idx.
dad81a20 263 */
aacb5d91 264static unsigned long srcu_readers_unlock_idx(struct srcu_struct *ssp, int idx)
dad81a20
PM
265{
266 int cpu;
267 unsigned long sum = 0;
268
269 for_each_possible_cpu(cpu) {
aacb5d91 270 struct srcu_data *cpuc = per_cpu_ptr(ssp->sda, cpu);
dad81a20 271
da915ad5 272 sum += READ_ONCE(cpuc->srcu_unlock_count[idx]);
dad81a20
PM
273 }
274 return sum;
275}
276
277/*
278 * Return true if the number of pre-existing readers is determined to
279 * be zero.
280 */
aacb5d91 281static bool srcu_readers_active_idx_check(struct srcu_struct *ssp, int idx)
dad81a20
PM
282{
283 unsigned long unlocks;
284
aacb5d91 285 unlocks = srcu_readers_unlock_idx(ssp, idx);
dad81a20
PM
286
287 /*
288 * Make sure that a lock is always counted if the corresponding
289 * unlock is counted. Needs to be a smp_mb() as the read side may
290 * contain a read from a variable that is written to before the
291 * synchronize_srcu() in the write side. In this case smp_mb()s
292 * A and B act like the store buffering pattern.
293 *
294 * This smp_mb() also pairs with smp_mb() C to prevent accesses
295 * after the synchronize_srcu() from being executed before the
296 * grace period ends.
297 */
298 smp_mb(); /* A */
299
300 /*
301 * If the locks are the same as the unlocks, then there must have
302 * been no readers on this index at some time in between. This does
303 * not mean that there are no more readers, as one could have read
304 * the current index but not have incremented the lock counter yet.
305 *
881ec9d2
PM
306 * So suppose that the updater is preempted here for so long
307 * that more than ULONG_MAX non-nested readers come and go in
308 * the meantime. It turns out that this cannot result in overflow
309 * because if a reader modifies its unlock count after we read it
310 * above, then that reader's next load of ->srcu_idx is guaranteed
311 * to get the new value, which will cause it to operate on the
312 * other bank of counters, where it cannot contribute to the
313 * overflow of these counters. This means that there is a maximum
314 * of 2*NR_CPUS increments, which cannot overflow given current
315 * systems, especially not on 64-bit systems.
316 *
317 * OK, how about nesting? This does impose a limit on nesting
318 * of floor(ULONG_MAX/NR_CPUS/2), which should be sufficient,
319 * especially on 64-bit systems.
dad81a20 320 */
aacb5d91 321 return srcu_readers_lock_idx(ssp, idx) == unlocks;
dad81a20
PM
322}
323
324/**
325 * srcu_readers_active - returns true if there are readers. and false
326 * otherwise
aacb5d91 327 * @ssp: which srcu_struct to count active readers (holding srcu_read_lock).
dad81a20
PM
328 *
329 * Note that this is not an atomic primitive, and can therefore suffer
330 * severe errors when invoked on an active srcu_struct. That said, it
331 * can be useful as an error check at cleanup time.
332 */
aacb5d91 333static bool srcu_readers_active(struct srcu_struct *ssp)
dad81a20
PM
334{
335 int cpu;
336 unsigned long sum = 0;
337
338 for_each_possible_cpu(cpu) {
aacb5d91 339 struct srcu_data *cpuc = per_cpu_ptr(ssp->sda, cpu);
dad81a20 340
da915ad5
PM
341 sum += READ_ONCE(cpuc->srcu_lock_count[0]);
342 sum += READ_ONCE(cpuc->srcu_lock_count[1]);
343 sum -= READ_ONCE(cpuc->srcu_unlock_count[0]);
344 sum -= READ_ONCE(cpuc->srcu_unlock_count[1]);
dad81a20
PM
345 }
346 return sum;
347}
348
349#define SRCU_INTERVAL 1
350
1e9a038b
PM
351/*
352 * Return grace-period delay, zero if there are expedited grace
353 * periods pending, SRCU_INTERVAL otherwise.
354 */
aacb5d91 355static unsigned long srcu_get_delay(struct srcu_struct *ssp)
1e9a038b 356{
aacb5d91
PM
357 if (ULONG_CMP_LT(READ_ONCE(ssp->srcu_gp_seq),
358 READ_ONCE(ssp->srcu_gp_seq_needed_exp)))
1e9a038b
PM
359 return 0;
360 return SRCU_INTERVAL;
361}
362
f5ad3991
PM
363/**
364 * cleanup_srcu_struct - deconstruct a sleep-RCU structure
365 * @ssp: structure to clean up.
366 *
367 * Must invoke this after you are finished using a given srcu_struct that
368 * was initialized via init_srcu_struct(), else you leak memory.
369 */
370void cleanup_srcu_struct(struct srcu_struct *ssp)
dad81a20 371{
da915ad5
PM
372 int cpu;
373
aacb5d91 374 if (WARN_ON(!srcu_get_delay(ssp)))
f7194ac3 375 return; /* Just leak it! */
aacb5d91 376 if (WARN_ON(srcu_readers_active(ssp)))
f7194ac3 377 return; /* Just leak it! */
f5ad3991 378 flush_delayed_work(&ssp->work);
e81baf4c
SAS
379 for_each_possible_cpu(cpu) {
380 struct srcu_data *sdp = per_cpu_ptr(ssp->sda, cpu);
381
f5ad3991
PM
382 del_timer_sync(&sdp->delay_work);
383 flush_work(&sdp->work);
5cdfd174
PM
384 if (WARN_ON(rcu_segcblist_n_cbs(&sdp->srcu_cblist)))
385 return; /* Forgot srcu_barrier(), so just leak it! */
e81baf4c 386 }
aacb5d91
PM
387 if (WARN_ON(rcu_seq_state(READ_ONCE(ssp->srcu_gp_seq)) != SRCU_STATE_IDLE) ||
388 WARN_ON(srcu_readers_active(ssp))) {
a7538352 389 pr_info("%s: Active srcu_struct %p state: %d\n",
aacb5d91 390 __func__, ssp, rcu_seq_state(READ_ONCE(ssp->srcu_gp_seq)));
dad81a20
PM
391 return; /* Caller forgot to stop doing call_srcu()? */
392 }
aacb5d91
PM
393 free_percpu(ssp->sda);
394 ssp->sda = NULL;
dad81a20 395}
f5ad3991 396EXPORT_SYMBOL_GPL(cleanup_srcu_struct);
dad81a20
PM
397
398/*
399 * Counts the new reader in the appropriate per-CPU element of the
cdf7abc4 400 * srcu_struct.
dad81a20
PM
401 * Returns an index that must be passed to the matching srcu_read_unlock().
402 */
aacb5d91 403int __srcu_read_lock(struct srcu_struct *ssp)
dad81a20
PM
404{
405 int idx;
406
aacb5d91
PM
407 idx = READ_ONCE(ssp->srcu_idx) & 0x1;
408 this_cpu_inc(ssp->sda->srcu_lock_count[idx]);
dad81a20
PM
409 smp_mb(); /* B */ /* Avoid leaking the critical section. */
410 return idx;
411}
412EXPORT_SYMBOL_GPL(__srcu_read_lock);
413
414/*
415 * Removes the count for the old reader from the appropriate per-CPU
416 * element of the srcu_struct. Note that this may well be a different
417 * CPU than that which was incremented by the corresponding srcu_read_lock().
dad81a20 418 */
aacb5d91 419void __srcu_read_unlock(struct srcu_struct *ssp, int idx)
dad81a20
PM
420{
421 smp_mb(); /* C */ /* Avoid leaking the critical section. */
aacb5d91 422 this_cpu_inc(ssp->sda->srcu_unlock_count[idx]);
dad81a20
PM
423}
424EXPORT_SYMBOL_GPL(__srcu_read_unlock);
425
426/*
427 * We use an adaptive strategy for synchronize_srcu() and especially for
428 * synchronize_srcu_expedited(). We spin for a fixed time period
429 * (defined below) to allow SRCU readers to exit their read-side critical
430 * sections. If there are still some readers after a few microseconds,
431 * we repeatedly block for 1-millisecond time periods.
432 */
433#define SRCU_RETRY_CHECK_DELAY 5
434
435/*
436 * Start an SRCU grace period.
437 */
aacb5d91 438static void srcu_gp_start(struct srcu_struct *ssp)
dad81a20 439{
aacb5d91 440 struct srcu_data *sdp = this_cpu_ptr(ssp->sda);
dad81a20
PM
441 int state;
442
aacb5d91
PM
443 lockdep_assert_held(&ACCESS_PRIVATE(ssp, lock));
444 WARN_ON_ONCE(ULONG_CMP_GE(ssp->srcu_gp_seq, ssp->srcu_gp_seq_needed));
eb4c2382 445 spin_lock_rcu_node(sdp); /* Interrupts already disabled. */
da915ad5 446 rcu_segcblist_advance(&sdp->srcu_cblist,
aacb5d91 447 rcu_seq_current(&ssp->srcu_gp_seq));
da915ad5 448 (void)rcu_segcblist_accelerate(&sdp->srcu_cblist,
aacb5d91 449 rcu_seq_snap(&ssp->srcu_gp_seq));
eb4c2382 450 spin_unlock_rcu_node(sdp); /* Interrupts remain disabled. */
2da4b2a7 451 smp_mb(); /* Order prior store to ->srcu_gp_seq_needed vs. GP start. */
aacb5d91 452 rcu_seq_start(&ssp->srcu_gp_seq);
71042606 453 state = rcu_seq_state(ssp->srcu_gp_seq);
dad81a20
PM
454 WARN_ON_ONCE(state != SRCU_STATE_SCAN1);
455}
456
da915ad5 457
e81baf4c 458static void srcu_delay_timer(struct timer_list *t)
da915ad5 459{
e81baf4c 460 struct srcu_data *sdp = container_of(t, struct srcu_data, delay_work);
da915ad5 461
e81baf4c 462 queue_work_on(sdp->cpu, rcu_gp_wq, &sdp->work);
da915ad5
PM
463}
464
e81baf4c 465static void srcu_queue_delayed_work_on(struct srcu_data *sdp,
da915ad5
PM
466 unsigned long delay)
467{
e81baf4c
SAS
468 if (!delay) {
469 queue_work_on(sdp->cpu, rcu_gp_wq, &sdp->work);
470 return;
471 }
da915ad5 472
e81baf4c 473 timer_reduce(&sdp->delay_work, jiffies + delay);
da915ad5
PM
474}
475
476/*
477 * Schedule callback invocation for the specified srcu_data structure,
478 * if possible, on the corresponding CPU.
479 */
480static void srcu_schedule_cbs_sdp(struct srcu_data *sdp, unsigned long delay)
481{
e81baf4c 482 srcu_queue_delayed_work_on(sdp, delay);
da915ad5
PM
483}
484
485/*
486 * Schedule callback invocation for all srcu_data structures associated
c7e88067
PM
487 * with the specified srcu_node structure that have callbacks for the
488 * just-completed grace period, the one corresponding to idx. If possible,
489 * schedule this invocation on the corresponding CPUs.
da915ad5 490 */
aacb5d91 491static void srcu_schedule_cbs_snp(struct srcu_struct *ssp, struct srcu_node *snp,
1e9a038b 492 unsigned long mask, unsigned long delay)
da915ad5
PM
493{
494 int cpu;
495
c7e88067
PM
496 for (cpu = snp->grplo; cpu <= snp->grphi; cpu++) {
497 if (!(mask & (1 << (cpu - snp->grplo))))
498 continue;
aacb5d91 499 srcu_schedule_cbs_sdp(per_cpu_ptr(ssp->sda, cpu), delay);
c7e88067 500 }
da915ad5
PM
501}
502
503/*
504 * Note the end of an SRCU grace period. Initiates callback invocation
505 * and starts a new grace period if needed.
506 *
507 * The ->srcu_cb_mutex acquisition does not protect any data, but
508 * instead prevents more than one grace period from starting while we
509 * are initiating callback invocation. This allows the ->srcu_have_cbs[]
510 * array to have a finite number of elements.
511 */
aacb5d91 512static void srcu_gp_end(struct srcu_struct *ssp)
da915ad5 513{
1e9a038b 514 unsigned long cbdelay;
da915ad5 515 bool cbs;
8ddbd883 516 bool last_lvl;
c350c008
PM
517 int cpu;
518 unsigned long flags;
da915ad5
PM
519 unsigned long gpseq;
520 int idx;
c7e88067 521 unsigned long mask;
c350c008 522 struct srcu_data *sdp;
da915ad5
PM
523 struct srcu_node *snp;
524
525 /* Prevent more than one additional grace period. */
aacb5d91 526 mutex_lock(&ssp->srcu_cb_mutex);
da915ad5
PM
527
528 /* End the current grace period. */
aacb5d91
PM
529 spin_lock_irq_rcu_node(ssp);
530 idx = rcu_seq_state(ssp->srcu_gp_seq);
da915ad5 531 WARN_ON_ONCE(idx != SRCU_STATE_SCAN2);
aacb5d91 532 cbdelay = srcu_get_delay(ssp);
844a378d 533 WRITE_ONCE(ssp->srcu_last_gp_end, ktime_get_mono_fast_ns());
aacb5d91
PM
534 rcu_seq_end(&ssp->srcu_gp_seq);
535 gpseq = rcu_seq_current(&ssp->srcu_gp_seq);
536 if (ULONG_CMP_LT(ssp->srcu_gp_seq_needed_exp, gpseq))
8c9e0cb3 537 WRITE_ONCE(ssp->srcu_gp_seq_needed_exp, gpseq);
aacb5d91
PM
538 spin_unlock_irq_rcu_node(ssp);
539 mutex_unlock(&ssp->srcu_gp_mutex);
da915ad5
PM
540 /* A new grace period can start at this point. But only one. */
541
542 /* Initiate callback invocation as needed. */
543 idx = rcu_seq_ctr(gpseq) % ARRAY_SIZE(snp->srcu_have_cbs);
aacb5d91 544 srcu_for_each_node_breadth_first(ssp, snp) {
d6331980 545 spin_lock_irq_rcu_node(snp);
da915ad5 546 cbs = false;
aacb5d91 547 last_lvl = snp >= ssp->level[rcu_num_lvls - 1];
8ddbd883 548 if (last_lvl)
da915ad5
PM
549 cbs = snp->srcu_have_cbs[idx] == gpseq;
550 snp->srcu_have_cbs[idx] = gpseq;
551 rcu_seq_set_state(&snp->srcu_have_cbs[idx], 1);
1e9a038b 552 if (ULONG_CMP_LT(snp->srcu_gp_seq_needed_exp, gpseq))
7ff8b450 553 WRITE_ONCE(snp->srcu_gp_seq_needed_exp, gpseq);
c7e88067
PM
554 mask = snp->srcu_data_have_cbs[idx];
555 snp->srcu_data_have_cbs[idx] = 0;
d6331980 556 spin_unlock_irq_rcu_node(snp);
a3883df3 557 if (cbs)
aacb5d91 558 srcu_schedule_cbs_snp(ssp, snp, mask, cbdelay);
c350c008
PM
559
560 /* Occasionally prevent srcu_data counter wrap. */
8ddbd883 561 if (!(gpseq & counter_wrap_check) && last_lvl)
c350c008 562 for (cpu = snp->grplo; cpu <= snp->grphi; cpu++) {
aacb5d91 563 sdp = per_cpu_ptr(ssp->sda, cpu);
d6331980 564 spin_lock_irqsave_rcu_node(sdp, flags);
c350c008
PM
565 if (ULONG_CMP_GE(gpseq,
566 sdp->srcu_gp_seq_needed + 100))
567 sdp->srcu_gp_seq_needed = gpseq;
a35d13ec
II
568 if (ULONG_CMP_GE(gpseq,
569 sdp->srcu_gp_seq_needed_exp + 100))
570 sdp->srcu_gp_seq_needed_exp = gpseq;
d6331980 571 spin_unlock_irqrestore_rcu_node(sdp, flags);
c350c008 572 }
da915ad5
PM
573 }
574
575 /* Callback initiation done, allow grace periods after next. */
aacb5d91 576 mutex_unlock(&ssp->srcu_cb_mutex);
da915ad5
PM
577
578 /* Start a new grace period if needed. */
aacb5d91
PM
579 spin_lock_irq_rcu_node(ssp);
580 gpseq = rcu_seq_current(&ssp->srcu_gp_seq);
da915ad5 581 if (!rcu_seq_state(gpseq) &&
aacb5d91
PM
582 ULONG_CMP_LT(gpseq, ssp->srcu_gp_seq_needed)) {
583 srcu_gp_start(ssp);
584 spin_unlock_irq_rcu_node(ssp);
585 srcu_reschedule(ssp, 0);
da915ad5 586 } else {
aacb5d91 587 spin_unlock_irq_rcu_node(ssp);
da915ad5
PM
588 }
589}
590
1e9a038b
PM
591/*
592 * Funnel-locking scheme to scalably mediate many concurrent expedited
593 * grace-period requests. This function is invoked for the first known
594 * expedited request for a grace period that has already been requested,
595 * but without expediting. To start a completely new grace period,
596 * whether expedited or not, use srcu_funnel_gp_start() instead.
597 */
aacb5d91 598static void srcu_funnel_exp_start(struct srcu_struct *ssp, struct srcu_node *snp,
1e9a038b
PM
599 unsigned long s)
600{
601 unsigned long flags;
602
603 for (; snp != NULL; snp = snp->srcu_parent) {
aacb5d91 604 if (rcu_seq_done(&ssp->srcu_gp_seq, s) ||
1e9a038b
PM
605 ULONG_CMP_GE(READ_ONCE(snp->srcu_gp_seq_needed_exp), s))
606 return;
d6331980 607 spin_lock_irqsave_rcu_node(snp, flags);
1e9a038b 608 if (ULONG_CMP_GE(snp->srcu_gp_seq_needed_exp, s)) {
d6331980 609 spin_unlock_irqrestore_rcu_node(snp, flags);
1e9a038b
PM
610 return;
611 }
612 WRITE_ONCE(snp->srcu_gp_seq_needed_exp, s);
d6331980 613 spin_unlock_irqrestore_rcu_node(snp, flags);
1e9a038b 614 }
aacb5d91
PM
615 spin_lock_irqsave_rcu_node(ssp, flags);
616 if (ULONG_CMP_LT(ssp->srcu_gp_seq_needed_exp, s))
8c9e0cb3 617 WRITE_ONCE(ssp->srcu_gp_seq_needed_exp, s);
aacb5d91 618 spin_unlock_irqrestore_rcu_node(ssp, flags);
1e9a038b
PM
619}
620
da915ad5
PM
621/*
622 * Funnel-locking scheme to scalably mediate many concurrent grace-period
623 * requests. The winner has to do the work of actually starting grace
624 * period s. Losers must either ensure that their desired grace-period
625 * number is recorded on at least their leaf srcu_node structure, or they
626 * must take steps to invoke their own callbacks.
17294ce6
PM
627 *
628 * Note that this function also does the work of srcu_funnel_exp_start(),
629 * in some cases by directly invoking it.
da915ad5 630 */
aacb5d91 631static void srcu_funnel_gp_start(struct srcu_struct *ssp, struct srcu_data *sdp,
1e9a038b 632 unsigned long s, bool do_norm)
da915ad5
PM
633{
634 unsigned long flags;
635 int idx = rcu_seq_ctr(s) % ARRAY_SIZE(sdp->mynode->srcu_have_cbs);
636 struct srcu_node *snp = sdp->mynode;
637 unsigned long snp_seq;
638
639 /* Each pass through the loop does one level of the srcu_node tree. */
640 for (; snp != NULL; snp = snp->srcu_parent) {
aacb5d91 641 if (rcu_seq_done(&ssp->srcu_gp_seq, s) && snp != sdp->mynode)
da915ad5 642 return; /* GP already done and CBs recorded. */
d6331980 643 spin_lock_irqsave_rcu_node(snp, flags);
da915ad5
PM
644 if (ULONG_CMP_GE(snp->srcu_have_cbs[idx], s)) {
645 snp_seq = snp->srcu_have_cbs[idx];
c7e88067
PM
646 if (snp == sdp->mynode && snp_seq == s)
647 snp->srcu_data_have_cbs[idx] |= sdp->grpmask;
d6331980 648 spin_unlock_irqrestore_rcu_node(snp, flags);
da915ad5 649 if (snp == sdp->mynode && snp_seq != s) {
1e9a038b
PM
650 srcu_schedule_cbs_sdp(sdp, do_norm
651 ? SRCU_INTERVAL
652 : 0);
653 return;
da915ad5 654 }
1e9a038b 655 if (!do_norm)
aacb5d91 656 srcu_funnel_exp_start(ssp, snp, s);
da915ad5
PM
657 return;
658 }
659 snp->srcu_have_cbs[idx] = s;
c7e88067
PM
660 if (snp == sdp->mynode)
661 snp->srcu_data_have_cbs[idx] |= sdp->grpmask;
1e9a038b 662 if (!do_norm && ULONG_CMP_LT(snp->srcu_gp_seq_needed_exp, s))
7ff8b450 663 WRITE_ONCE(snp->srcu_gp_seq_needed_exp, s);
d6331980 664 spin_unlock_irqrestore_rcu_node(snp, flags);
da915ad5
PM
665 }
666
667 /* Top of tree, must ensure the grace period will be started. */
aacb5d91
PM
668 spin_lock_irqsave_rcu_node(ssp, flags);
669 if (ULONG_CMP_LT(ssp->srcu_gp_seq_needed, s)) {
da915ad5
PM
670 /*
671 * Record need for grace period s. Pair with load
672 * acquire setting up for initialization.
673 */
aacb5d91 674 smp_store_release(&ssp->srcu_gp_seq_needed, s); /*^^^*/
da915ad5 675 }
aacb5d91 676 if (!do_norm && ULONG_CMP_LT(ssp->srcu_gp_seq_needed_exp, s))
8c9e0cb3 677 WRITE_ONCE(ssp->srcu_gp_seq_needed_exp, s);
da915ad5
PM
678
679 /* If grace period not already done and none in progress, start it. */
aacb5d91
PM
680 if (!rcu_seq_done(&ssp->srcu_gp_seq, s) &&
681 rcu_seq_state(ssp->srcu_gp_seq) == SRCU_STATE_IDLE) {
682 WARN_ON_ONCE(ULONG_CMP_GE(ssp->srcu_gp_seq, ssp->srcu_gp_seq_needed));
683 srcu_gp_start(ssp);
e0fcba9a 684 if (likely(srcu_init_done))
aacb5d91
PM
685 queue_delayed_work(rcu_gp_wq, &ssp->work,
686 srcu_get_delay(ssp));
687 else if (list_empty(&ssp->work.work.entry))
688 list_add(&ssp->work.work.entry, &srcu_boot_list);
da915ad5 689 }
aacb5d91 690 spin_unlock_irqrestore_rcu_node(ssp, flags);
da915ad5
PM
691}
692
dad81a20
PM
693/*
694 * Wait until all readers counted by array index idx complete, but
695 * loop an additional time if there is an expedited grace period pending.
da915ad5 696 * The caller must ensure that ->srcu_idx is not changed while checking.
dad81a20 697 */
aacb5d91 698static bool try_check_zero(struct srcu_struct *ssp, int idx, int trycount)
dad81a20
PM
699{
700 for (;;) {
aacb5d91 701 if (srcu_readers_active_idx_check(ssp, idx))
dad81a20 702 return true;
aacb5d91 703 if (--trycount + !srcu_get_delay(ssp) <= 0)
dad81a20
PM
704 return false;
705 udelay(SRCU_RETRY_CHECK_DELAY);
706 }
707}
708
709/*
da915ad5
PM
710 * Increment the ->srcu_idx counter so that future SRCU readers will
711 * use the other rank of the ->srcu_(un)lock_count[] arrays. This allows
dad81a20
PM
712 * us to wait for pre-existing readers in a starvation-free manner.
713 */
aacb5d91 714static void srcu_flip(struct srcu_struct *ssp)
dad81a20 715{
881ec9d2
PM
716 /*
717 * Ensure that if this updater saw a given reader's increment
718 * from __srcu_read_lock(), that reader was using an old value
719 * of ->srcu_idx. Also ensure that if a given reader sees the
720 * new value of ->srcu_idx, this updater's earlier scans cannot
721 * have seen that reader's increments (which is OK, because this
722 * grace period need not wait on that reader).
723 */
724 smp_mb(); /* E */ /* Pairs with B and C. */
725
aacb5d91 726 WRITE_ONCE(ssp->srcu_idx, ssp->srcu_idx + 1);
dad81a20
PM
727
728 /*
729 * Ensure that if the updater misses an __srcu_read_unlock()
730 * increment, that task's next __srcu_read_lock() will see the
731 * above counter update. Note that both this memory barrier
732 * and the one in srcu_readers_active_idx_check() provide the
733 * guarantee for __srcu_read_lock().
734 */
735 smp_mb(); /* D */ /* Pairs with C. */
736}
737
2da4b2a7
PM
738/*
739 * If SRCU is likely idle, return true, otherwise return false.
740 *
741 * Note that it is OK for several current from-idle requests for a new
742 * grace period from idle to specify expediting because they will all end
743 * up requesting the same grace period anyhow. So no loss.
744 *
745 * Note also that if any CPU (including the current one) is still invoking
746 * callbacks, this function will nevertheless say "idle". This is not
747 * ideal, but the overhead of checking all CPUs' callback lists is even
748 * less ideal, especially on large systems. Furthermore, the wakeup
749 * can happen before the callback is fully removed, so we have no choice
750 * but to accept this type of error.
751 *
752 * This function is also subject to counter-wrap errors, but let's face
753 * it, if this function was preempted for enough time for the counters
754 * to wrap, it really doesn't matter whether or not we expedite the grace
755 * period. The extra overhead of a needlessly expedited grace period is
756 * negligible when amoritized over that time period, and the extra latency
757 * of a needlessly non-expedited grace period is similarly negligible.
758 */
aacb5d91 759static bool srcu_might_be_idle(struct srcu_struct *ssp)
2da4b2a7 760{
22607d66 761 unsigned long curseq;
2da4b2a7
PM
762 unsigned long flags;
763 struct srcu_data *sdp;
22607d66 764 unsigned long t;
844a378d 765 unsigned long tlast;
2da4b2a7
PM
766
767 /* If the local srcu_data structure has callbacks, not idle. */
768 local_irq_save(flags);
aacb5d91 769 sdp = this_cpu_ptr(ssp->sda);
2da4b2a7
PM
770 if (rcu_segcblist_pend_cbs(&sdp->srcu_cblist)) {
771 local_irq_restore(flags);
772 return false; /* Callbacks already present, so not idle. */
773 }
774 local_irq_restore(flags);
775
776 /*
777 * No local callbacks, so probabalistically probe global state.
778 * Exact information would require acquiring locks, which would
779 * kill scalability, hence the probabalistic nature of the probe.
780 */
22607d66
PM
781
782 /* First, see if enough time has passed since the last GP. */
783 t = ktime_get_mono_fast_ns();
844a378d 784 tlast = READ_ONCE(ssp->srcu_last_gp_end);
22607d66 785 if (exp_holdoff == 0 ||
844a378d 786 time_in_range_open(t, tlast, tlast + exp_holdoff))
22607d66
PM
787 return false; /* Too soon after last GP. */
788
789 /* Next, check for probable idleness. */
aacb5d91 790 curseq = rcu_seq_current(&ssp->srcu_gp_seq);
2da4b2a7 791 smp_mb(); /* Order ->srcu_gp_seq with ->srcu_gp_seq_needed. */
aacb5d91 792 if (ULONG_CMP_LT(curseq, READ_ONCE(ssp->srcu_gp_seq_needed)))
2da4b2a7
PM
793 return false; /* Grace period in progress, so not idle. */
794 smp_mb(); /* Order ->srcu_gp_seq with prior access. */
aacb5d91 795 if (curseq != rcu_seq_current(&ssp->srcu_gp_seq))
2da4b2a7
PM
796 return false; /* GP # changed, so not idle. */
797 return true; /* With reasonable probability, idle! */
798}
799
a602538e
PM
800/*
801 * SRCU callback function to leak a callback.
802 */
803static void srcu_leak_callback(struct rcu_head *rhp)
804{
805}
806
dad81a20 807/*
da915ad5
PM
808 * Enqueue an SRCU callback on the srcu_data structure associated with
809 * the current CPU and the specified srcu_struct structure, initiating
810 * grace-period processing if it is not already running.
dad81a20
PM
811 *
812 * Note that all CPUs must agree that the grace period extended beyond
813 * all pre-existing SRCU read-side critical section. On systems with
814 * more than one CPU, this means that when "func()" is invoked, each CPU
815 * is guaranteed to have executed a full memory barrier since the end of
816 * its last corresponding SRCU read-side critical section whose beginning
5ef98a63 817 * preceded the call to call_srcu(). It also means that each CPU executing
dad81a20 818 * an SRCU read-side critical section that continues beyond the start of
5ef98a63 819 * "func()" must have executed a memory barrier after the call_srcu()
dad81a20
PM
820 * but before the beginning of that SRCU read-side critical section.
821 * Note that these guarantees include CPUs that are offline, idle, or
822 * executing in user mode, as well as CPUs that are executing in the kernel.
823 *
5ef98a63 824 * Furthermore, if CPU A invoked call_srcu() and CPU B invoked the
dad81a20
PM
825 * resulting SRCU callback function "func()", then both CPU A and CPU
826 * B are guaranteed to execute a full memory barrier during the time
5ef98a63 827 * interval between the call to call_srcu() and the invocation of "func()".
dad81a20
PM
828 * This guarantee applies even if CPU A and CPU B are the same CPU (but
829 * again only if the system has more than one CPU).
830 *
831 * Of course, these guarantees apply only for invocations of call_srcu(),
832 * srcu_read_lock(), and srcu_read_unlock() that are all passed the same
833 * srcu_struct structure.
834 */
11b00045
JB
835static void __call_srcu(struct srcu_struct *ssp, struct rcu_head *rhp,
836 rcu_callback_t func, bool do_norm)
dad81a20
PM
837{
838 unsigned long flags;
0607ba84 839 int idx;
1e9a038b 840 bool needexp = false;
da915ad5
PM
841 bool needgp = false;
842 unsigned long s;
843 struct srcu_data *sdp;
844
aacb5d91 845 check_init_srcu_struct(ssp);
a602538e
PM
846 if (debug_rcu_head_queue(rhp)) {
847 /* Probable double call_srcu(), so leak the callback. */
848 WRITE_ONCE(rhp->func, srcu_leak_callback);
849 WARN_ONCE(1, "call_srcu(): Leaked duplicate callback\n");
850 return;
851 }
da915ad5 852 rhp->func = func;
aacb5d91 853 idx = srcu_read_lock(ssp);
da915ad5 854 local_irq_save(flags);
aacb5d91 855 sdp = this_cpu_ptr(ssp->sda);
d6331980 856 spin_lock_rcu_node(sdp);
77a40f97 857 rcu_segcblist_enqueue(&sdp->srcu_cblist, rhp);
da915ad5 858 rcu_segcblist_advance(&sdp->srcu_cblist,
aacb5d91
PM
859 rcu_seq_current(&ssp->srcu_gp_seq));
860 s = rcu_seq_snap(&ssp->srcu_gp_seq);
da915ad5
PM
861 (void)rcu_segcblist_accelerate(&sdp->srcu_cblist, s);
862 if (ULONG_CMP_LT(sdp->srcu_gp_seq_needed, s)) {
863 sdp->srcu_gp_seq_needed = s;
864 needgp = true;
dad81a20 865 }
1e9a038b
PM
866 if (!do_norm && ULONG_CMP_LT(sdp->srcu_gp_seq_needed_exp, s)) {
867 sdp->srcu_gp_seq_needed_exp = s;
868 needexp = true;
869 }
d6331980 870 spin_unlock_irqrestore_rcu_node(sdp, flags);
da915ad5 871 if (needgp)
aacb5d91 872 srcu_funnel_gp_start(ssp, sdp, s, do_norm);
1e9a038b 873 else if (needexp)
aacb5d91
PM
874 srcu_funnel_exp_start(ssp, sdp->mynode, s);
875 srcu_read_unlock(ssp, idx);
1e9a038b
PM
876}
877
5a0465e1
PM
878/**
879 * call_srcu() - Queue a callback for invocation after an SRCU grace period
aacb5d91 880 * @ssp: srcu_struct in queue the callback
27fdb35f 881 * @rhp: structure to be used for queueing the SRCU callback.
5a0465e1
PM
882 * @func: function to be invoked after the SRCU grace period
883 *
884 * The callback function will be invoked some time after a full SRCU
885 * grace period elapses, in other words after all pre-existing SRCU
886 * read-side critical sections have completed. However, the callback
887 * function might well execute concurrently with other SRCU read-side
888 * critical sections that started after call_srcu() was invoked. SRCU
889 * read-side critical sections are delimited by srcu_read_lock() and
890 * srcu_read_unlock(), and may be nested.
891 *
892 * The callback will be invoked from process context, but must nevertheless
893 * be fast and must not block.
894 */
aacb5d91 895void call_srcu(struct srcu_struct *ssp, struct rcu_head *rhp,
1e9a038b
PM
896 rcu_callback_t func)
897{
aacb5d91 898 __call_srcu(ssp, rhp, func, true);
dad81a20
PM
899}
900EXPORT_SYMBOL_GPL(call_srcu);
901
dad81a20
PM
902/*
903 * Helper function for synchronize_srcu() and synchronize_srcu_expedited().
904 */
aacb5d91 905static void __synchronize_srcu(struct srcu_struct *ssp, bool do_norm)
dad81a20
PM
906{
907 struct rcu_synchronize rcu;
dad81a20 908
aacb5d91 909 RCU_LOCKDEP_WARN(lock_is_held(&ssp->dep_map) ||
dad81a20
PM
910 lock_is_held(&rcu_bh_lock_map) ||
911 lock_is_held(&rcu_lock_map) ||
912 lock_is_held(&rcu_sched_lock_map),
913 "Illegal synchronize_srcu() in same-type SRCU (or in RCU) read-side critical section");
914
915 if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
916 return;
917 might_sleep();
aacb5d91 918 check_init_srcu_struct(ssp);
dad81a20 919 init_completion(&rcu.completion);
da915ad5 920 init_rcu_head_on_stack(&rcu.head);
aacb5d91 921 __call_srcu(ssp, &rcu.head, wakeme_after_rcu, do_norm);
dad81a20 922 wait_for_completion(&rcu.completion);
da915ad5 923 destroy_rcu_head_on_stack(&rcu.head);
35732cf9
PM
924
925 /*
926 * Make sure that later code is ordered after the SRCU grace
d6331980 927 * period. This pairs with the spin_lock_irq_rcu_node()
35732cf9
PM
928 * in srcu_invoke_callbacks(). Unlike Tree RCU, this is needed
929 * because the current CPU might have been totally uninvolved with
930 * (and thus unordered against) that grace period.
931 */
932 smp_mb();
dad81a20
PM
933}
934
935/**
936 * synchronize_srcu_expedited - Brute-force SRCU grace period
aacb5d91 937 * @ssp: srcu_struct with which to synchronize.
dad81a20
PM
938 *
939 * Wait for an SRCU grace period to elapse, but be more aggressive about
940 * spinning rather than blocking when waiting.
941 *
942 * Note that synchronize_srcu_expedited() has the same deadlock and
943 * memory-ordering properties as does synchronize_srcu().
944 */
aacb5d91 945void synchronize_srcu_expedited(struct srcu_struct *ssp)
dad81a20 946{
aacb5d91 947 __synchronize_srcu(ssp, rcu_gp_is_normal());
dad81a20
PM
948}
949EXPORT_SYMBOL_GPL(synchronize_srcu_expedited);
950
951/**
952 * synchronize_srcu - wait for prior SRCU read-side critical-section completion
aacb5d91 953 * @ssp: srcu_struct with which to synchronize.
dad81a20
PM
954 *
955 * Wait for the count to drain to zero of both indexes. To avoid the
956 * possible starvation of synchronize_srcu(), it waits for the count of
da915ad5
PM
957 * the index=((->srcu_idx & 1) ^ 1) to drain to zero at first,
958 * and then flip the srcu_idx and wait for the count of the other index.
dad81a20
PM
959 *
960 * Can block; must be called from process context.
961 *
962 * Note that it is illegal to call synchronize_srcu() from the corresponding
963 * SRCU read-side critical section; doing so will result in deadlock.
964 * However, it is perfectly legal to call synchronize_srcu() on one
965 * srcu_struct from some other srcu_struct's read-side critical section,
966 * as long as the resulting graph of srcu_structs is acyclic.
967 *
968 * There are memory-ordering constraints implied by synchronize_srcu().
969 * On systems with more than one CPU, when synchronize_srcu() returns,
970 * each CPU is guaranteed to have executed a full memory barrier since
6eb95cc4 971 * the end of its last corresponding SRCU read-side critical section
dad81a20
PM
972 * whose beginning preceded the call to synchronize_srcu(). In addition,
973 * each CPU having an SRCU read-side critical section that extends beyond
974 * the return from synchronize_srcu() is guaranteed to have executed a
975 * full memory barrier after the beginning of synchronize_srcu() and before
976 * the beginning of that SRCU read-side critical section. Note that these
977 * guarantees include CPUs that are offline, idle, or executing in user mode,
978 * as well as CPUs that are executing in the kernel.
979 *
980 * Furthermore, if CPU A invoked synchronize_srcu(), which returned
981 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
982 * to have executed a full memory barrier during the execution of
983 * synchronize_srcu(). This guarantee applies even if CPU A and CPU B
984 * are the same CPU, but again only if the system has more than one CPU.
985 *
986 * Of course, these memory-ordering guarantees apply only when
987 * synchronize_srcu(), srcu_read_lock(), and srcu_read_unlock() are
988 * passed the same srcu_struct structure.
2da4b2a7
PM
989 *
990 * If SRCU is likely idle, expedite the first request. This semantic
991 * was provided by Classic SRCU, and is relied upon by its users, so TREE
992 * SRCU must also provide it. Note that detecting idleness is heuristic
993 * and subject to both false positives and negatives.
dad81a20 994 */
aacb5d91 995void synchronize_srcu(struct srcu_struct *ssp)
dad81a20 996{
aacb5d91
PM
997 if (srcu_might_be_idle(ssp) || rcu_gp_is_expedited())
998 synchronize_srcu_expedited(ssp);
dad81a20 999 else
aacb5d91 1000 __synchronize_srcu(ssp, true);
dad81a20
PM
1001}
1002EXPORT_SYMBOL_GPL(synchronize_srcu);
1003
da915ad5
PM
1004/*
1005 * Callback function for srcu_barrier() use.
1006 */
1007static void srcu_barrier_cb(struct rcu_head *rhp)
1008{
1009 struct srcu_data *sdp;
aacb5d91 1010 struct srcu_struct *ssp;
da915ad5
PM
1011
1012 sdp = container_of(rhp, struct srcu_data, srcu_barrier_head);
aacb5d91
PM
1013 ssp = sdp->ssp;
1014 if (atomic_dec_and_test(&ssp->srcu_barrier_cpu_cnt))
1015 complete(&ssp->srcu_barrier_completion);
da915ad5
PM
1016}
1017
dad81a20
PM
1018/**
1019 * srcu_barrier - Wait until all in-flight call_srcu() callbacks complete.
aacb5d91 1020 * @ssp: srcu_struct on which to wait for in-flight callbacks.
dad81a20 1021 */
aacb5d91 1022void srcu_barrier(struct srcu_struct *ssp)
dad81a20 1023{
da915ad5
PM
1024 int cpu;
1025 struct srcu_data *sdp;
aacb5d91 1026 unsigned long s = rcu_seq_snap(&ssp->srcu_barrier_seq);
da915ad5 1027
aacb5d91
PM
1028 check_init_srcu_struct(ssp);
1029 mutex_lock(&ssp->srcu_barrier_mutex);
1030 if (rcu_seq_done(&ssp->srcu_barrier_seq, s)) {
da915ad5 1031 smp_mb(); /* Force ordering following return. */
aacb5d91 1032 mutex_unlock(&ssp->srcu_barrier_mutex);
da915ad5
PM
1033 return; /* Someone else did our work for us. */
1034 }
aacb5d91
PM
1035 rcu_seq_start(&ssp->srcu_barrier_seq);
1036 init_completion(&ssp->srcu_barrier_completion);
da915ad5
PM
1037
1038 /* Initial count prevents reaching zero until all CBs are posted. */
aacb5d91 1039 atomic_set(&ssp->srcu_barrier_cpu_cnt, 1);
da915ad5
PM
1040
1041 /*
1042 * Each pass through this loop enqueues a callback, but only
1043 * on CPUs already having callbacks enqueued. Note that if
1044 * a CPU already has callbacks enqueue, it must have already
1045 * registered the need for a future grace period, so all we
1046 * need do is enqueue a callback that will use the same
1047 * grace period as the last callback already in the queue.
1048 */
1049 for_each_possible_cpu(cpu) {
aacb5d91 1050 sdp = per_cpu_ptr(ssp->sda, cpu);
d6331980 1051 spin_lock_irq_rcu_node(sdp);
aacb5d91 1052 atomic_inc(&ssp->srcu_barrier_cpu_cnt);
da915ad5 1053 sdp->srcu_barrier_head.func = srcu_barrier_cb;
a602538e 1054 debug_rcu_head_queue(&sdp->srcu_barrier_head);
da915ad5 1055 if (!rcu_segcblist_entrain(&sdp->srcu_cblist,
77a40f97 1056 &sdp->srcu_barrier_head)) {
a602538e 1057 debug_rcu_head_unqueue(&sdp->srcu_barrier_head);
aacb5d91 1058 atomic_dec(&ssp->srcu_barrier_cpu_cnt);
a602538e 1059 }
d6331980 1060 spin_unlock_irq_rcu_node(sdp);
da915ad5
PM
1061 }
1062
1063 /* Remove the initial count, at which point reaching zero can happen. */
aacb5d91
PM
1064 if (atomic_dec_and_test(&ssp->srcu_barrier_cpu_cnt))
1065 complete(&ssp->srcu_barrier_completion);
1066 wait_for_completion(&ssp->srcu_barrier_completion);
da915ad5 1067
aacb5d91
PM
1068 rcu_seq_end(&ssp->srcu_barrier_seq);
1069 mutex_unlock(&ssp->srcu_barrier_mutex);
dad81a20
PM
1070}
1071EXPORT_SYMBOL_GPL(srcu_barrier);
1072
1073/**
1074 * srcu_batches_completed - return batches completed.
aacb5d91 1075 * @ssp: srcu_struct on which to report batch completion.
dad81a20
PM
1076 *
1077 * Report the number of batches, correlated with, but not necessarily
1078 * precisely the same as, the number of grace periods that have elapsed.
1079 */
aacb5d91 1080unsigned long srcu_batches_completed(struct srcu_struct *ssp)
dad81a20 1081{
39f91504 1082 return READ_ONCE(ssp->srcu_idx);
dad81a20
PM
1083}
1084EXPORT_SYMBOL_GPL(srcu_batches_completed);
1085
1086/*
da915ad5
PM
1087 * Core SRCU state machine. Push state bits of ->srcu_gp_seq
1088 * to SRCU_STATE_SCAN2, and invoke srcu_gp_end() when scan has
1089 * completed in that state.
dad81a20 1090 */
aacb5d91 1091static void srcu_advance_state(struct srcu_struct *ssp)
dad81a20
PM
1092{
1093 int idx;
1094
aacb5d91 1095 mutex_lock(&ssp->srcu_gp_mutex);
da915ad5 1096
dad81a20
PM
1097 /*
1098 * Because readers might be delayed for an extended period after
da915ad5 1099 * fetching ->srcu_idx for their index, at any point in time there
dad81a20
PM
1100 * might well be readers using both idx=0 and idx=1. We therefore
1101 * need to wait for readers to clear from both index values before
1102 * invoking a callback.
1103 *
1104 * The load-acquire ensures that we see the accesses performed
1105 * by the prior grace period.
1106 */
aacb5d91 1107 idx = rcu_seq_state(smp_load_acquire(&ssp->srcu_gp_seq)); /* ^^^ */
dad81a20 1108 if (idx == SRCU_STATE_IDLE) {
aacb5d91
PM
1109 spin_lock_irq_rcu_node(ssp);
1110 if (ULONG_CMP_GE(ssp->srcu_gp_seq, ssp->srcu_gp_seq_needed)) {
1111 WARN_ON_ONCE(rcu_seq_state(ssp->srcu_gp_seq));
1112 spin_unlock_irq_rcu_node(ssp);
1113 mutex_unlock(&ssp->srcu_gp_mutex);
dad81a20
PM
1114 return;
1115 }
aacb5d91 1116 idx = rcu_seq_state(READ_ONCE(ssp->srcu_gp_seq));
dad81a20 1117 if (idx == SRCU_STATE_IDLE)
aacb5d91
PM
1118 srcu_gp_start(ssp);
1119 spin_unlock_irq_rcu_node(ssp);
da915ad5 1120 if (idx != SRCU_STATE_IDLE) {
aacb5d91 1121 mutex_unlock(&ssp->srcu_gp_mutex);
dad81a20 1122 return; /* Someone else started the grace period. */
da915ad5 1123 }
dad81a20
PM
1124 }
1125
aacb5d91
PM
1126 if (rcu_seq_state(READ_ONCE(ssp->srcu_gp_seq)) == SRCU_STATE_SCAN1) {
1127 idx = 1 ^ (ssp->srcu_idx & 1);
1128 if (!try_check_zero(ssp, idx, 1)) {
1129 mutex_unlock(&ssp->srcu_gp_mutex);
dad81a20 1130 return; /* readers present, retry later. */
da915ad5 1131 }
aacb5d91 1132 srcu_flip(ssp);
71042606 1133 spin_lock_irq_rcu_node(ssp);
aacb5d91 1134 rcu_seq_set_state(&ssp->srcu_gp_seq, SRCU_STATE_SCAN2);
71042606 1135 spin_unlock_irq_rcu_node(ssp);
dad81a20
PM
1136 }
1137
aacb5d91 1138 if (rcu_seq_state(READ_ONCE(ssp->srcu_gp_seq)) == SRCU_STATE_SCAN2) {
dad81a20
PM
1139
1140 /*
1141 * SRCU read-side critical sections are normally short,
1142 * so check at least twice in quick succession after a flip.
1143 */
aacb5d91
PM
1144 idx = 1 ^ (ssp->srcu_idx & 1);
1145 if (!try_check_zero(ssp, idx, 2)) {
1146 mutex_unlock(&ssp->srcu_gp_mutex);
da915ad5
PM
1147 return; /* readers present, retry later. */
1148 }
aacb5d91 1149 srcu_gp_end(ssp); /* Releases ->srcu_gp_mutex. */
dad81a20
PM
1150 }
1151}
1152
1153/*
1154 * Invoke a limited number of SRCU callbacks that have passed through
1155 * their grace period. If there are more to do, SRCU will reschedule
1156 * the workqueue. Note that needed memory barriers have been executed
1157 * in this task's context by srcu_readers_active_idx_check().
1158 */
da915ad5 1159static void srcu_invoke_callbacks(struct work_struct *work)
dad81a20 1160{
da915ad5 1161 bool more;
dad81a20
PM
1162 struct rcu_cblist ready_cbs;
1163 struct rcu_head *rhp;
da915ad5 1164 struct srcu_data *sdp;
aacb5d91 1165 struct srcu_struct *ssp;
dad81a20 1166
e81baf4c
SAS
1167 sdp = container_of(work, struct srcu_data, work);
1168
aacb5d91 1169 ssp = sdp->ssp;
dad81a20 1170 rcu_cblist_init(&ready_cbs);
d6331980 1171 spin_lock_irq_rcu_node(sdp);
da915ad5 1172 rcu_segcblist_advance(&sdp->srcu_cblist,
aacb5d91 1173 rcu_seq_current(&ssp->srcu_gp_seq));
da915ad5
PM
1174 if (sdp->srcu_cblist_invoking ||
1175 !rcu_segcblist_ready_cbs(&sdp->srcu_cblist)) {
d6331980 1176 spin_unlock_irq_rcu_node(sdp);
da915ad5
PM
1177 return; /* Someone else on the job or nothing to do. */
1178 }
1179
1180 /* We are on the job! Extract and invoke ready callbacks. */
1181 sdp->srcu_cblist_invoking = true;
1182 rcu_segcblist_extract_done_cbs(&sdp->srcu_cblist, &ready_cbs);
d6331980 1183 spin_unlock_irq_rcu_node(sdp);
dad81a20
PM
1184 rhp = rcu_cblist_dequeue(&ready_cbs);
1185 for (; rhp != NULL; rhp = rcu_cblist_dequeue(&ready_cbs)) {
a602538e 1186 debug_rcu_head_unqueue(rhp);
dad81a20
PM
1187 local_bh_disable();
1188 rhp->func(rhp);
1189 local_bh_enable();
1190 }
da915ad5
PM
1191
1192 /*
1193 * Update counts, accelerate new callbacks, and if needed,
1194 * schedule another round of callback invocation.
1195 */
d6331980 1196 spin_lock_irq_rcu_node(sdp);
da915ad5
PM
1197 rcu_segcblist_insert_count(&sdp->srcu_cblist, &ready_cbs);
1198 (void)rcu_segcblist_accelerate(&sdp->srcu_cblist,
aacb5d91 1199 rcu_seq_snap(&ssp->srcu_gp_seq));
da915ad5
PM
1200 sdp->srcu_cblist_invoking = false;
1201 more = rcu_segcblist_ready_cbs(&sdp->srcu_cblist);
d6331980 1202 spin_unlock_irq_rcu_node(sdp);
da915ad5
PM
1203 if (more)
1204 srcu_schedule_cbs_sdp(sdp, 0);
dad81a20
PM
1205}
1206
1207/*
1208 * Finished one round of SRCU grace period. Start another if there are
1209 * more SRCU callbacks queued, otherwise put SRCU into not-running state.
1210 */
aacb5d91 1211static void srcu_reschedule(struct srcu_struct *ssp, unsigned long delay)
dad81a20 1212{
da915ad5 1213 bool pushgp = true;
dad81a20 1214
aacb5d91
PM
1215 spin_lock_irq_rcu_node(ssp);
1216 if (ULONG_CMP_GE(ssp->srcu_gp_seq, ssp->srcu_gp_seq_needed)) {
1217 if (!WARN_ON_ONCE(rcu_seq_state(ssp->srcu_gp_seq))) {
da915ad5
PM
1218 /* All requests fulfilled, time to go idle. */
1219 pushgp = false;
1220 }
aacb5d91 1221 } else if (!rcu_seq_state(ssp->srcu_gp_seq)) {
da915ad5 1222 /* Outstanding request and no GP. Start one. */
aacb5d91 1223 srcu_gp_start(ssp);
dad81a20 1224 }
aacb5d91 1225 spin_unlock_irq_rcu_node(ssp);
dad81a20 1226
da915ad5 1227 if (pushgp)
aacb5d91 1228 queue_delayed_work(rcu_gp_wq, &ssp->work, delay);
dad81a20
PM
1229}
1230
1231/*
1232 * This is the work-queue function that handles SRCU grace periods.
1233 */
0d8a1e83 1234static void process_srcu(struct work_struct *work)
dad81a20 1235{
aacb5d91 1236 struct srcu_struct *ssp;
dad81a20 1237
aacb5d91 1238 ssp = container_of(work, struct srcu_struct, work.work);
dad81a20 1239
aacb5d91
PM
1240 srcu_advance_state(ssp);
1241 srcu_reschedule(ssp, srcu_get_delay(ssp));
dad81a20 1242}
7f6733c3
PM
1243
1244void srcutorture_get_gp_data(enum rcutorture_type test_type,
aacb5d91 1245 struct srcu_struct *ssp, int *flags,
aebc8264 1246 unsigned long *gp_seq)
7f6733c3
PM
1247{
1248 if (test_type != SRCU_FLAVOR)
1249 return;
1250 *flags = 0;
aacb5d91 1251 *gp_seq = rcu_seq_current(&ssp->srcu_gp_seq);
7f6733c3
PM
1252}
1253EXPORT_SYMBOL_GPL(srcutorture_get_gp_data);
1f4f6da1 1254
aacb5d91 1255void srcu_torture_stats_print(struct srcu_struct *ssp, char *tt, char *tf)
115a1a52
PM
1256{
1257 int cpu;
1258 int idx;
ac3748c6 1259 unsigned long s0 = 0, s1 = 0;
115a1a52 1260
aacb5d91 1261 idx = ssp->srcu_idx & 0x1;
52e17ba1 1262 pr_alert("%s%s Tree SRCU g%ld per-CPU(idx=%d):",
aacb5d91 1263 tt, tf, rcu_seq_current(&ssp->srcu_gp_seq), idx);
115a1a52
PM
1264 for_each_possible_cpu(cpu) {
1265 unsigned long l0, l1;
1266 unsigned long u0, u1;
1267 long c0, c1;
5ab07a8d 1268 struct srcu_data *sdp;
115a1a52 1269
aacb5d91 1270 sdp = per_cpu_ptr(ssp->sda, cpu);
5ab07a8d
PM
1271 u0 = sdp->srcu_unlock_count[!idx];
1272 u1 = sdp->srcu_unlock_count[idx];
115a1a52
PM
1273
1274 /*
1275 * Make sure that a lock is always counted if the corresponding
1276 * unlock is counted.
1277 */
1278 smp_rmb();
1279
5ab07a8d
PM
1280 l0 = sdp->srcu_lock_count[!idx];
1281 l1 = sdp->srcu_lock_count[idx];
115a1a52
PM
1282
1283 c0 = l0 - u0;
1284 c1 = l1 - u1;
7e210a65
PM
1285 pr_cont(" %d(%ld,%ld %c)",
1286 cpu, c0, c1,
1287 "C."[rcu_segcblist_empty(&sdp->srcu_cblist)]);
ac3748c6
PM
1288 s0 += c0;
1289 s1 += c1;
115a1a52 1290 }
ac3748c6 1291 pr_cont(" T(%ld,%ld)\n", s0, s1);
115a1a52
PM
1292}
1293EXPORT_SYMBOL_GPL(srcu_torture_stats_print);
1294
1f4f6da1
PM
1295static int __init srcu_bootup_announce(void)
1296{
1297 pr_info("Hierarchical SRCU implementation.\n");
0c8e0e3c
PM
1298 if (exp_holdoff != DEFAULT_SRCU_EXP_HOLDOFF)
1299 pr_info("\tNon-default auto-expedite holdoff of %lu ns.\n", exp_holdoff);
1f4f6da1
PM
1300 return 0;
1301}
1302early_initcall(srcu_bootup_announce);
e0fcba9a
PM
1303
1304void __init srcu_init(void)
1305{
aacb5d91 1306 struct srcu_struct *ssp;
e0fcba9a
PM
1307
1308 srcu_init_done = true;
1309 while (!list_empty(&srcu_boot_list)) {
aacb5d91 1310 ssp = list_first_entry(&srcu_boot_list, struct srcu_struct,
4e6ea4ef 1311 work.work.entry);
aacb5d91
PM
1312 check_init_srcu_struct(ssp);
1313 list_del_init(&ssp->work.work.entry);
1314 queue_work(rcu_gp_wq, &ssp->work.work);
e0fcba9a
PM
1315 }
1316}
fe15b50c
PM
1317
1318#ifdef CONFIG_MODULES
1319
1320/* Initialize any global-scope srcu_struct structures used by this module. */
1321static int srcu_module_coming(struct module *mod)
1322{
1323 int i;
1324 struct srcu_struct **sspp = mod->srcu_struct_ptrs;
1325 int ret;
1326
1327 for (i = 0; i < mod->num_srcu_structs; i++) {
1328 ret = init_srcu_struct(*(sspp++));
1329 if (WARN_ON_ONCE(ret))
1330 return ret;
1331 }
1332 return 0;
1333}
1334
1335/* Clean up any global-scope srcu_struct structures used by this module. */
1336static void srcu_module_going(struct module *mod)
1337{
1338 int i;
1339 struct srcu_struct **sspp = mod->srcu_struct_ptrs;
1340
1341 for (i = 0; i < mod->num_srcu_structs; i++)
1342 cleanup_srcu_struct(*(sspp++));
1343}
1344
1345/* Handle one module, either coming or going. */
1346static int srcu_module_notify(struct notifier_block *self,
1347 unsigned long val, void *data)
1348{
1349 struct module *mod = data;
1350 int ret = 0;
1351
1352 switch (val) {
1353 case MODULE_STATE_COMING:
1354 ret = srcu_module_coming(mod);
1355 break;
1356 case MODULE_STATE_GOING:
1357 srcu_module_going(mod);
1358 break;
1359 default:
1360 break;
1361 }
1362 return ret;
1363}
1364
1365static struct notifier_block srcu_module_nb = {
1366 .notifier_call = srcu_module_notify,
1367 .priority = 0,
1368};
1369
1370static __init int init_srcu_module_notifier(void)
1371{
1372 int ret;
1373
1374 ret = register_module_notifier(&srcu_module_nb);
1375 if (ret)
1376 pr_warn("Failed to register srcu module notifier\n");
1377 return ret;
1378}
1379late_initcall(init_srcu_module_notifier);
1380
1381#endif /* #ifdef CONFIG_MODULES */