]> git.ipfire.org Git - thirdparty/linux.git/blame - kernel/rcu/tree.c
Merge tag 'vfs-5.8-merge-2' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux
[thirdparty/linux.git] / kernel / rcu / tree.c
CommitLineData
22e40925 1// SPDX-License-Identifier: GPL-2.0+
64db4cff 2/*
65bb0dc4 3 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
64db4cff 4 *
64db4cff
PM
5 * Copyright IBM Corporation, 2008
6 *
7 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
8 * Manfred Spraul <manfred@colorfullife.com>
65bb0dc4 9 * Paul E. McKenney <paulmck@linux.ibm.com>
64db4cff 10 *
22e40925 11 * Based on the original work by Paul McKenney <paulmck@linux.ibm.com>
64db4cff
PM
12 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
13 *
14 * For detailed explanation of Read-Copy Update mechanism see -
a71fca58 15 * Documentation/RCU
64db4cff 16 */
a7538352
JP
17
18#define pr_fmt(fmt) "rcu: " fmt
19
64db4cff
PM
20#include <linux/types.h>
21#include <linux/kernel.h>
22#include <linux/init.h>
23#include <linux/spinlock.h>
24#include <linux/smp.h>
f9411ebe 25#include <linux/rcupdate_wait.h>
64db4cff
PM
26#include <linux/interrupt.h>
27#include <linux/sched.h>
b17b0153 28#include <linux/sched/debug.h>
c1dc0b9c 29#include <linux/nmi.h>
8826f3b0 30#include <linux/atomic.h>
64db4cff 31#include <linux/bitops.h>
9984de1a 32#include <linux/export.h>
64db4cff
PM
33#include <linux/completion.h>
34#include <linux/moduleparam.h>
35#include <linux/percpu.h>
36#include <linux/notifier.h>
37#include <linux/cpu.h>
38#include <linux/mutex.h>
39#include <linux/time.h>
bbad9379 40#include <linux/kernel_stat.h>
a26ac245
PM
41#include <linux/wait.h>
42#include <linux/kthread.h>
ae7e81c0 43#include <uapi/linux/sched/types.h>
268bb0ce 44#include <linux/prefetch.h>
3d3b7db0 45#include <linux/delay.h>
661a85dc 46#include <linux/random.h>
af658dca 47#include <linux/trace_events.h>
d1d74d14 48#include <linux/suspend.h>
a278d471 49#include <linux/ftrace.h>
d3052109 50#include <linux/tick.h>
2ccaff10 51#include <linux/sysrq.h>
c13324a5 52#include <linux/kprobes.h>
48d07c04
SAS
53#include <linux/gfp.h>
54#include <linux/oom.h>
55#include <linux/smpboot.h>
56#include <linux/jiffies.h>
77a40f97 57#include <linux/slab.h>
48d07c04 58#include <linux/sched/isolation.h>
cfcdef5e 59#include <linux/sched/clock.h>
48d07c04 60#include "../time/tick-internal.h"
64db4cff 61
4102adab 62#include "tree.h"
29c00b4a 63#include "rcu.h"
9f77da9f 64
4102adab
PM
65#ifdef MODULE_PARAM_PREFIX
66#undef MODULE_PARAM_PREFIX
67#endif
68#define MODULE_PARAM_PREFIX "rcutree."
69
35315936
PM
70#ifndef data_race
71#define data_race(expr) \
72 ({ \
73 expr; \
74 })
75#endif
76#ifndef ASSERT_EXCLUSIVE_WRITER
77#define ASSERT_EXCLUSIVE_WRITER(var) do { } while (0)
78#endif
79#ifndef ASSERT_EXCLUSIVE_ACCESS
80#define ASSERT_EXCLUSIVE_ACCESS(var) do { } while (0)
81#endif
82
64db4cff
PM
83/* Data structures. */
84
f7f7bac9 85/*
dc5a4f29
PM
86 * Steal a bit from the bottom of ->dynticks for idle entry/exit
87 * control. Initially this is for TLB flushing.
f7f7bac9 88 */
dc5a4f29
PM
89#define RCU_DYNTICK_CTRL_MASK 0x1
90#define RCU_DYNTICK_CTRL_CTR (RCU_DYNTICK_CTRL_MASK + 1)
a8a29b3b 91
4c5273bf
PM
92static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, rcu_data) = {
93 .dynticks_nesting = 1,
94 .dynticks_nmi_nesting = DYNTICK_IRQ_NONIDLE,
dc5a4f29 95 .dynticks = ATOMIC_INIT(RCU_DYNTICK_CTRL_CTR),
4c5273bf 96};
c30fe541 97static struct rcu_state rcu_state = {
358be2d3 98 .level = { &rcu_state.node[0] },
358be2d3
PM
99 .gp_state = RCU_GP_IDLE,
100 .gp_seq = (0UL - 300UL) << RCU_SEQ_CTR_SHIFT,
101 .barrier_mutex = __MUTEX_INITIALIZER(rcu_state.barrier_mutex),
102 .name = RCU_NAME,
103 .abbr = RCU_ABBR,
104 .exp_mutex = __MUTEX_INITIALIZER(rcu_state.exp_mutex),
105 .exp_wake_mutex = __MUTEX_INITIALIZER(rcu_state.exp_wake_mutex),
894d45bb 106 .ofl_lock = __RAW_SPIN_LOCK_UNLOCKED(rcu_state.ofl_lock),
358be2d3 107};
27f4d280 108
a3dc2948
PM
109/* Dump rcu_node combining tree at boot to verify correct setup. */
110static bool dump_tree;
111module_param(dump_tree, bool, 0444);
48d07c04 112/* By default, use RCU_SOFTIRQ instead of rcuc kthreads. */
da44cd6c 113static bool use_softirq = true;
48d07c04 114module_param(use_softirq, bool, 0444);
7fa27001
PM
115/* Control rcu_node-tree auto-balancing at boot time. */
116static bool rcu_fanout_exact;
117module_param(rcu_fanout_exact, bool, 0444);
47d631af
PM
118/* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
119static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
7e5c2dfb 120module_param(rcu_fanout_leaf, int, 0444);
f885b7f2 121int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
cb007102 122/* Number of rcu_nodes at specified level. */
e95d68d2 123int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
f885b7f2
PM
124int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
125
b0d30417 126/*
52d7e48b
PM
127 * The rcu_scheduler_active variable is initialized to the value
128 * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the
129 * first task is spawned. So when this variable is RCU_SCHEDULER_INACTIVE,
130 * RCU can assume that there is but one task, allowing RCU to (for example)
0d95092c 131 * optimize synchronize_rcu() to a simple barrier(). When this variable
52d7e48b
PM
132 * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required
133 * to detect real grace periods. This variable is also used to suppress
134 * boot-time false positives from lockdep-RCU error checking. Finally, it
135 * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU
136 * is fully initialized, including all of its kthreads having been spawned.
b0d30417 137 */
bbad9379
PM
138int rcu_scheduler_active __read_mostly;
139EXPORT_SYMBOL_GPL(rcu_scheduler_active);
140
b0d30417
PM
141/*
142 * The rcu_scheduler_fully_active variable transitions from zero to one
143 * during the early_initcall() processing, which is after the scheduler
144 * is capable of creating new tasks. So RCU processing (for example,
145 * creating tasks for RCU priority boosting) must be delayed until after
146 * rcu_scheduler_fully_active transitions from zero to one. We also
147 * currently delay invocation of any RCU callbacks until after this point.
148 *
149 * It might later prove better for people registering RCU callbacks during
150 * early boot to take responsibility for these callbacks, but one step at
151 * a time.
152 */
153static int rcu_scheduler_fully_active __read_mostly;
154
b50912d0
PM
155static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
156 unsigned long gps, unsigned long flags);
0aa04b05
PM
157static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
158static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
5d01bbd1 159static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
a46e0899 160static void invoke_rcu_core(void);
63d4c8c9 161static void rcu_report_exp_rdp(struct rcu_data *rdp);
3549c2bc 162static void sync_sched_exp_online_cleanup(int cpu);
b2b00ddf 163static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp);
a26ac245 164
a94844b2 165/* rcuc/rcub kthread realtime priority */
26730f55 166static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
3ffe3d1a 167module_param(kthread_prio, int, 0444);
a94844b2 168
8d7dc928 169/* Delay in jiffies for grace-period initialization delays, debug only. */
0f41c0dd 170
90040c9e
PM
171static int gp_preinit_delay;
172module_param(gp_preinit_delay, int, 0444);
173static int gp_init_delay;
174module_param(gp_init_delay, int, 0444);
175static int gp_cleanup_delay;
176module_param(gp_cleanup_delay, int, 0444);
0f41c0dd 177
4cf439a2 178/* Retrieve RCU kthreads priority for rcutorture */
4babd855
JFG
179int rcu_get_gp_kthreads_prio(void)
180{
181 return kthread_prio;
182}
183EXPORT_SYMBOL_GPL(rcu_get_gp_kthreads_prio);
184
eab128e8
PM
185/*
186 * Number of grace periods between delays, normalized by the duration of
bfd090be 187 * the delay. The longer the delay, the more the grace periods between
eab128e8
PM
188 * each delay. The reason for this normalization is that it means that,
189 * for non-zero delays, the overall slowdown of grace periods is constant
190 * regardless of the duration of the delay. This arrangement balances
191 * the need for long delays to increase some race probabilities with the
192 * need for fast grace periods to increase other race probabilities.
193 */
194#define PER_RCU_NODE_PERIOD 3 /* Number of grace periods between delays. */
37745d28 195
0aa04b05
PM
196/*
197 * Compute the mask of online CPUs for the specified rcu_node structure.
198 * This will not be stable unless the rcu_node structure's ->lock is
199 * held, but the bit corresponding to the current CPU will be stable
200 * in most contexts.
201 */
c30fe541 202static unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
0aa04b05 203{
7d0ae808 204 return READ_ONCE(rnp->qsmaskinitnext);
0aa04b05
PM
205}
206
fc2219d4 207/*
7d0ae808 208 * Return true if an RCU grace period is in progress. The READ_ONCE()s
fc2219d4
PM
209 * permit this function to be invoked without holding the root rcu_node
210 * structure's ->lock, but of course results can be subject to change.
211 */
de8e8730 212static int rcu_gp_in_progress(void)
fc2219d4 213{
de8e8730 214 return rcu_seq_state(rcu_seq_current(&rcu_state.gp_seq));
b1f77b05
IM
215}
216
903ee83d
PM
217/*
218 * Return the number of callbacks queued on the specified CPU.
219 * Handles both the nocbs and normal cases.
220 */
221static long rcu_get_n_cbs_cpu(int cpu)
222{
223 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
224
c035280f 225 if (rcu_segcblist_is_enabled(&rdp->cblist))
903ee83d 226 return rcu_segcblist_n_cbs(&rdp->cblist);
c035280f 227 return 0;
903ee83d
PM
228}
229
d28139c4 230void rcu_softirq_qs(void)
b1f77b05 231{
45975c7d 232 rcu_qs();
d28139c4 233 rcu_preempt_deferred_qs(current);
b1f77b05 234}
64db4cff 235
2625d469
PM
236/*
237 * Record entry into an extended quiescent state. This is only to be
ac3caf82
PM
238 * called when not already in an extended quiescent state, that is,
239 * RCU is watching prior to the call to this function and is no longer
240 * watching upon return.
2625d469 241 */
ff5c4f5c 242static noinstr void rcu_dynticks_eqs_enter(void)
2625d469 243{
dc5a4f29 244 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
b8c17e66 245 int seq;
2625d469
PM
246
247 /*
b8c17e66 248 * CPUs seeing atomic_add_return() must see prior RCU read-side
2625d469
PM
249 * critical sections, and we also must force ordering with the
250 * next idle sojourn.
251 */
7d0c9c50 252 rcu_dynticks_task_trace_enter(); // Before ->dynticks update!
dc5a4f29 253 seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks);
ac3caf82 254 // RCU is no longer watching. Better be in extended quiescent state!
b8c17e66
PM
255 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
256 (seq & RCU_DYNTICK_CTRL_CTR));
257 /* Better not have special action (TLB flush) pending! */
258 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
259 (seq & RCU_DYNTICK_CTRL_MASK));
2625d469
PM
260}
261
262/*
263 * Record exit from an extended quiescent state. This is only to be
ac3caf82
PM
264 * called from an extended quiescent state, that is, RCU is not watching
265 * prior to the call to this function and is watching upon return.
2625d469 266 */
ff5c4f5c 267static noinstr void rcu_dynticks_eqs_exit(void)
2625d469 268{
dc5a4f29 269 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
b8c17e66 270 int seq;
2625d469
PM
271
272 /*
b8c17e66 273 * CPUs seeing atomic_add_return() must see prior idle sojourns,
2625d469
PM
274 * and we also must force ordering with the next RCU read-side
275 * critical section.
276 */
dc5a4f29 277 seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks);
ac3caf82 278 // RCU is now watching. Better not be in an extended quiescent state!
7d0c9c50 279 rcu_dynticks_task_trace_exit(); // After ->dynticks update!
b8c17e66
PM
280 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
281 !(seq & RCU_DYNTICK_CTRL_CTR));
282 if (seq & RCU_DYNTICK_CTRL_MASK) {
dc5a4f29 283 atomic_andnot(RCU_DYNTICK_CTRL_MASK, &rdp->dynticks);
b8c17e66 284 smp_mb__after_atomic(); /* _exit after clearing mask. */
b8c17e66 285 }
2625d469
PM
286}
287
288/*
289 * Reset the current CPU's ->dynticks counter to indicate that the
290 * newly onlined CPU is no longer in an extended quiescent state.
291 * This will either leave the counter unchanged, or increment it
292 * to the next non-quiescent value.
293 *
294 * The non-atomic test/increment sequence works because the upper bits
295 * of the ->dynticks counter are manipulated only by the corresponding CPU,
296 * or when the corresponding CPU is offline.
297 */
298static void rcu_dynticks_eqs_online(void)
299{
dc5a4f29 300 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
2625d469 301
dc5a4f29 302 if (atomic_read(&rdp->dynticks) & RCU_DYNTICK_CTRL_CTR)
2625d469 303 return;
dc5a4f29 304 atomic_add(RCU_DYNTICK_CTRL_CTR, &rdp->dynticks);
2625d469
PM
305}
306
02a5c550
PM
307/*
308 * Is the current CPU in an extended quiescent state?
309 *
310 * No ordering, as we are sampling CPU-local information.
311 */
ff5c4f5c 312static __always_inline bool rcu_dynticks_curr_cpu_in_eqs(void)
02a5c550 313{
dc5a4f29 314 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
02a5c550 315
dc5a4f29 316 return !(atomic_read(&rdp->dynticks) & RCU_DYNTICK_CTRL_CTR);
02a5c550
PM
317}
318
8b2f63ab
PM
319/*
320 * Snapshot the ->dynticks counter with full ordering so as to allow
321 * stable comparison of this counter with past and future snapshots.
322 */
c30fe541 323static int rcu_dynticks_snap(struct rcu_data *rdp)
8b2f63ab 324{
dc5a4f29 325 int snap = atomic_add_return(0, &rdp->dynticks);
8b2f63ab 326
b8c17e66 327 return snap & ~RCU_DYNTICK_CTRL_MASK;
8b2f63ab
PM
328}
329
02a5c550
PM
330/*
331 * Return true if the snapshot returned from rcu_dynticks_snap()
332 * indicates that RCU is in an extended quiescent state.
333 */
334static bool rcu_dynticks_in_eqs(int snap)
335{
b8c17e66 336 return !(snap & RCU_DYNTICK_CTRL_CTR);
02a5c550
PM
337}
338
339/*
dc5a4f29 340 * Return true if the CPU corresponding to the specified rcu_data
02a5c550
PM
341 * structure has spent some time in an extended quiescent state since
342 * rcu_dynticks_snap() returned the specified snapshot.
343 */
dc5a4f29 344static bool rcu_dynticks_in_eqs_since(struct rcu_data *rdp, int snap)
02a5c550 345{
dc5a4f29 346 return snap != rcu_dynticks_snap(rdp);
02a5c550
PM
347}
348
7d0c9c50
PM
349/*
350 * Return true if the referenced integer is zero while the specified
351 * CPU remains within a single extended quiescent state.
352 */
353bool rcu_dynticks_zero_in_eqs(int cpu, int *vp)
354{
355 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
356 int snap;
357
358 // If not quiescent, force back to earlier extended quiescent state.
359 snap = atomic_read(&rdp->dynticks) & ~(RCU_DYNTICK_CTRL_MASK |
360 RCU_DYNTICK_CTRL_CTR);
361
362 smp_rmb(); // Order ->dynticks and *vp reads.
363 if (READ_ONCE(*vp))
364 return false; // Non-zero, so report failure;
365 smp_rmb(); // Order *vp read and ->dynticks re-read.
366
367 // If still in the same extended quiescent state, we are good!
368 return snap == (atomic_read(&rdp->dynticks) & ~RCU_DYNTICK_CTRL_MASK);
369}
370
b8c17e66
PM
371/*
372 * Set the special (bottom) bit of the specified CPU so that it
373 * will take special action (such as flushing its TLB) on the
374 * next exit from an extended quiescent state. Returns true if
375 * the bit was successfully set, or false if the CPU was not in
376 * an extended quiescent state.
377 */
378bool rcu_eqs_special_set(int cpu)
379{
380 int old;
381 int new;
faa059c3 382 int new_old;
dc5a4f29 383 struct rcu_data *rdp = &per_cpu(rcu_data, cpu);
b8c17e66 384
faa059c3 385 new_old = atomic_read(&rdp->dynticks);
b8c17e66 386 do {
faa059c3 387 old = new_old;
b8c17e66
PM
388 if (old & RCU_DYNTICK_CTRL_CTR)
389 return false;
390 new = old | RCU_DYNTICK_CTRL_MASK;
faa059c3
PM
391 new_old = atomic_cmpxchg(&rdp->dynticks, old, new);
392 } while (new_old != old);
b8c17e66 393 return true;
6563de9d 394}
5cd37193 395
4a81e832
PM
396/*
397 * Let the RCU core know that this CPU has gone through the scheduler,
398 * which is a quiescent state. This is called when the need for a
399 * quiescent state is urgent, so we burn an atomic operation and full
400 * memory barriers to let the RCU core know about it, regardless of what
401 * this CPU might (or might not) do in the near future.
402 *
0f9be8ca 403 * We inform the RCU core by emulating a zero-duration dyntick-idle period.
46a5d164 404 *
3b57a399 405 * The caller must have disabled interrupts and must not be idle.
4a81e832 406 */
366237e7 407void rcu_momentary_dyntick_idle(void)
4a81e832 408{
3b57a399
PM
409 int special;
410
2dba13f0 411 raw_cpu_write(rcu_data.rcu_need_heavy_qs, false);
dc5a4f29
PM
412 special = atomic_add_return(2 * RCU_DYNTICK_CTRL_CTR,
413 &this_cpu_ptr(&rcu_data)->dynticks);
3b57a399
PM
414 /* It is illegal to call this from idle state. */
415 WARN_ON_ONCE(!(special & RCU_DYNTICK_CTRL_CTR));
3e310098 416 rcu_preempt_deferred_qs(current);
4a81e832 417}
79ba7ff5 418EXPORT_SYMBOL_GPL(rcu_momentary_dyntick_idle);
4a81e832 419
45975c7d 420/**
806f04e9 421 * rcu_is_cpu_rrupt_from_idle - see if 'interrupted' from idle
bb73c52b 422 *
eddded80 423 * If the current CPU is idle and running at a first-level (not nested)
806f04e9
PZ
424 * interrupt, or directly, from idle, return true.
425 *
426 * The caller must have at least disabled IRQs.
5cd37193 427 */
45975c7d 428static int rcu_is_cpu_rrupt_from_idle(void)
5cd37193 429{
806f04e9
PZ
430 long nesting;
431
432 /*
433 * Usually called from the tick; but also used from smp_function_call()
434 * for expedited grace periods. This latter can result in running from
435 * the idle task, instead of an actual IPI.
436 */
437 lockdep_assert_irqs_disabled();
eddded80
JFG
438
439 /* Check for counter underflows */
440 RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nesting) < 0,
441 "RCU dynticks_nesting counter underflow!");
442 RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nmi_nesting) <= 0,
443 "RCU dynticks_nmi_nesting counter underflow/zero!");
444
445 /* Are we at first interrupt nesting level? */
806f04e9
PZ
446 nesting = __this_cpu_read(rcu_data.dynticks_nmi_nesting);
447 if (nesting > 1)
eddded80
JFG
448 return false;
449
806f04e9
PZ
450 /*
451 * If we're not in an interrupt, we must be in the idle task!
452 */
453 WARN_ON_ONCE(!nesting && !is_idle_task(current));
454
eddded80
JFG
455 /* Does CPU appear to be idle from an RCU standpoint? */
456 return __this_cpu_read(rcu_data.dynticks_nesting) == 0;
5cd37193 457}
5cd37193 458
d5a9a8c3
PM
459#define DEFAULT_RCU_BLIMIT 10 /* Maximum callbacks per rcu_do_batch ... */
460#define DEFAULT_MAX_RCU_BLIMIT 10000 /* ... even during callback flood. */
17c7798b
PM
461static long blimit = DEFAULT_RCU_BLIMIT;
462#define DEFAULT_RCU_QHIMARK 10000 /* If this many pending, ignore blimit. */
463static long qhimark = DEFAULT_RCU_QHIMARK;
464#define DEFAULT_RCU_QLOMARK 100 /* Once only this many pending, use blimit. */
465static long qlowmark = DEFAULT_RCU_QLOMARK;
b2b00ddf
PM
466#define DEFAULT_RCU_QOVLD_MULT 2
467#define DEFAULT_RCU_QOVLD (DEFAULT_RCU_QOVLD_MULT * DEFAULT_RCU_QHIMARK)
468static long qovld = DEFAULT_RCU_QOVLD; /* If this many pending, hammer QS. */
469static long qovld_calc = -1; /* No pre-initialization lock acquisitions! */
64db4cff 470
878d7439
ED
471module_param(blimit, long, 0444);
472module_param(qhimark, long, 0444);
473module_param(qlowmark, long, 0444);
b2b00ddf 474module_param(qovld, long, 0444);
3d76c082 475
026ad283
PM
476static ulong jiffies_till_first_fqs = ULONG_MAX;
477static ulong jiffies_till_next_fqs = ULONG_MAX;
8c7c4829 478static bool rcu_kick_kthreads;
cfcdef5e
ED
479static int rcu_divisor = 7;
480module_param(rcu_divisor, int, 0644);
481
482/* Force an exit from rcu_do_batch() after 3 milliseconds. */
483static long rcu_resched_ns = 3 * NSEC_PER_MSEC;
484module_param(rcu_resched_ns, long, 0644);
d40011f6 485
c06aed0e
PM
486/*
487 * How long the grace period must be before we start recruiting
488 * quiescent-state help from rcu_note_context_switch().
489 */
490static ulong jiffies_till_sched_qs = ULONG_MAX;
491module_param(jiffies_till_sched_qs, ulong, 0444);
85f2b60c 492static ulong jiffies_to_sched_qs; /* See adjust_jiffies_till_sched_qs(). */
c06aed0e
PM
493module_param(jiffies_to_sched_qs, ulong, 0444); /* Display only! */
494
495/*
496 * Make sure that we give the grace-period kthread time to detect any
497 * idle CPUs before taking active measures to force quiescent states.
498 * However, don't go below 100 milliseconds, adjusted upwards for really
499 * large systems.
500 */
501static void adjust_jiffies_till_sched_qs(void)
502{
503 unsigned long j;
504
505 /* If jiffies_till_sched_qs was specified, respect the request. */
506 if (jiffies_till_sched_qs != ULONG_MAX) {
507 WRITE_ONCE(jiffies_to_sched_qs, jiffies_till_sched_qs);
508 return;
509 }
85f2b60c 510 /* Otherwise, set to third fqs scan, but bound below on large system. */
c06aed0e
PM
511 j = READ_ONCE(jiffies_till_first_fqs) +
512 2 * READ_ONCE(jiffies_till_next_fqs);
513 if (j < HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV)
514 j = HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
515 pr_info("RCU calculated value of scheduler-enlistment delay is %ld jiffies.\n", j);
516 WRITE_ONCE(jiffies_to_sched_qs, j);
517}
518
67abb96c
BP
519static int param_set_first_fqs_jiffies(const char *val, const struct kernel_param *kp)
520{
521 ulong j;
522 int ret = kstrtoul(val, 0, &j);
523
c06aed0e 524 if (!ret) {
67abb96c 525 WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : j);
c06aed0e
PM
526 adjust_jiffies_till_sched_qs();
527 }
67abb96c
BP
528 return ret;
529}
530
531static int param_set_next_fqs_jiffies(const char *val, const struct kernel_param *kp)
532{
533 ulong j;
534 int ret = kstrtoul(val, 0, &j);
535
c06aed0e 536 if (!ret) {
67abb96c 537 WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : (j ?: 1));
c06aed0e
PM
538 adjust_jiffies_till_sched_qs();
539 }
67abb96c
BP
540 return ret;
541}
542
543static struct kernel_param_ops first_fqs_jiffies_ops = {
544 .set = param_set_first_fqs_jiffies,
545 .get = param_get_ulong,
546};
547
548static struct kernel_param_ops next_fqs_jiffies_ops = {
549 .set = param_set_next_fqs_jiffies,
550 .get = param_get_ulong,
551};
552
553module_param_cb(jiffies_till_first_fqs, &first_fqs_jiffies_ops, &jiffies_till_first_fqs, 0644);
554module_param_cb(jiffies_till_next_fqs, &next_fqs_jiffies_ops, &jiffies_till_next_fqs, 0644);
8c7c4829 555module_param(rcu_kick_kthreads, bool, 0644);
d40011f6 556
8ff0b907 557static void force_qs_rnp(int (*f)(struct rcu_data *rdp));
dd7dafd1 558static int rcu_pending(int user);
64db4cff
PM
559
560/*
17ef2fe9 561 * Return the number of RCU GPs completed thus far for debug & stats.
64db4cff 562 */
17ef2fe9 563unsigned long rcu_get_gp_seq(void)
917963d0 564{
16fc9c60 565 return READ_ONCE(rcu_state.gp_seq);
917963d0 566}
17ef2fe9 567EXPORT_SYMBOL_GPL(rcu_get_gp_seq);
917963d0 568
291783b8
PM
569/*
570 * Return the number of RCU expedited batches completed thus far for
571 * debug & stats. Odd numbers mean that a batch is in progress, even
572 * numbers mean idle. The value returned will thus be roughly double
573 * the cumulative batches since boot.
574 */
575unsigned long rcu_exp_batches_completed(void)
576{
16fc9c60 577 return rcu_state.expedited_sequence;
291783b8
PM
578}
579EXPORT_SYMBOL_GPL(rcu_exp_batches_completed);
580
fd897573
PM
581/*
582 * Return the root node of the rcu_state structure.
583 */
584static struct rcu_node *rcu_get_root(void)
585{
586 return &rcu_state.node[0];
587}
588
ad0dc7f9
PM
589/*
590 * Send along grace-period-related data for rcutorture diagnostics.
591 */
592void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
aebc8264 593 unsigned long *gp_seq)
ad0dc7f9 594{
ad0dc7f9
PM
595 switch (test_type) {
596 case RCU_FLAVOR:
f7dd7d44
PM
597 *flags = READ_ONCE(rcu_state.gp_flags);
598 *gp_seq = rcu_seq_current(&rcu_state.gp_seq);
ad0dc7f9
PM
599 break;
600 default:
601 break;
602 }
ad0dc7f9
PM
603}
604EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
605
9b2e4f18 606/*
215bba9f
PM
607 * Enter an RCU extended quiescent state, which can be either the
608 * idle loop or adaptive-tickless usermode execution.
9b2e4f18 609 *
215bba9f
PM
610 * We crowbar the ->dynticks_nmi_nesting field to zero to allow for
611 * the possibility of usermode upcalls having messed up our count
612 * of interrupt nesting level during the prior busy period.
9b2e4f18 613 */
ff5c4f5c 614static noinstr void rcu_eqs_enter(bool user)
9b2e4f18 615{
4c5273bf 616 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
96d3fd0d 617
4c5273bf
PM
618 WARN_ON_ONCE(rdp->dynticks_nmi_nesting != DYNTICK_IRQ_NONIDLE);
619 WRITE_ONCE(rdp->dynticks_nmi_nesting, 0);
215bba9f 620 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
4c5273bf
PM
621 rdp->dynticks_nesting == 0);
622 if (rdp->dynticks_nesting != 1) {
ac3caf82 623 // RCU will still be watching, so just do accounting and leave.
4c5273bf 624 rdp->dynticks_nesting--;
215bba9f 625 return;
9b2e4f18 626 }
96d3fd0d 627
b04db8e1 628 lockdep_assert_irqs_disabled();
ff5c4f5c 629 instrumentation_begin();
6cf539a8 630 trace_rcu_dyntick(TPS("Start"), rdp->dynticks_nesting, 0, atomic_read(&rdp->dynticks));
e68bbb26 631 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current));
b97d23c5
PM
632 rdp = this_cpu_ptr(&rcu_data);
633 do_nocb_deferred_wakeup(rdp);
198bbf81 634 rcu_prepare_for_idle();
3e310098 635 rcu_preempt_deferred_qs(current);
ff5c4f5c 636 instrumentation_end();
4c5273bf 637 WRITE_ONCE(rdp->dynticks_nesting, 0); /* Avoid irq-access tearing. */
ac3caf82 638 // RCU is watching here ...
844ccdd7 639 rcu_dynticks_eqs_enter();
ac3caf82 640 // ... but is no longer watching here.
176f8f7a 641 rcu_dynticks_task_enter();
64db4cff 642}
adf5091e
FW
643
644/**
645 * rcu_idle_enter - inform RCU that current CPU is entering idle
646 *
647 * Enter idle mode, in other words, -leave- the mode in which RCU
648 * read-side critical sections can occur. (Though RCU read-side
649 * critical sections can occur in irq handlers in idle, a possibility
650 * handled by irq_enter() and irq_exit().)
651 *
c0da313e
PM
652 * If you add or remove a call to rcu_idle_enter(), be sure to test with
653 * CONFIG_RCU_EQS_DEBUG=y.
adf5091e
FW
654 */
655void rcu_idle_enter(void)
656{
b04db8e1 657 lockdep_assert_irqs_disabled();
cb349ca9 658 rcu_eqs_enter(false);
adf5091e 659}
64db4cff 660
d1ec4c34 661#ifdef CONFIG_NO_HZ_FULL
adf5091e
FW
662/**
663 * rcu_user_enter - inform RCU that we are resuming userspace.
664 *
665 * Enter RCU idle mode right before resuming userspace. No use of RCU
666 * is permitted between this call and rcu_user_exit(). This way the
667 * CPU doesn't need to maintain the tick for RCU maintenance purposes
668 * when the CPU runs in userspace.
c0da313e
PM
669 *
670 * If you add or remove a call to rcu_user_enter(), be sure to test with
671 * CONFIG_RCU_EQS_DEBUG=y.
adf5091e 672 */
ff5c4f5c 673noinstr void rcu_user_enter(void)
adf5091e 674{
b04db8e1 675 lockdep_assert_irqs_disabled();
d4db30af 676 rcu_eqs_enter(true);
adf5091e 677}
d1ec4c34 678#endif /* CONFIG_NO_HZ_FULL */
19dd1591 679
9ea366f6
PM
680/**
681 * rcu_nmi_exit - inform RCU of exit from NMI context
682 *
fd581a91 683 * If we are returning from the outermost NMI handler that interrupted an
dc5a4f29 684 * RCU-idle period, update rdp->dynticks and rdp->dynticks_nmi_nesting
fd581a91
PM
685 * to let the RCU grace-period handling know that the CPU is back to
686 * being RCU-idle.
687 *
9ea366f6 688 * If you add or remove a call to rcu_nmi_exit(), be sure to test
fd581a91
PM
689 * with CONFIG_RCU_EQS_DEBUG=y.
690 */
9ea366f6 691noinstr void rcu_nmi_exit(void)
fd581a91 692{
4c5273bf 693 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
fd581a91
PM
694
695 /*
696 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
697 * (We are exiting an NMI handler, so RCU better be paying attention
698 * to us!)
699 */
4c5273bf 700 WARN_ON_ONCE(rdp->dynticks_nmi_nesting <= 0);
fd581a91
PM
701 WARN_ON_ONCE(rcu_dynticks_curr_cpu_in_eqs());
702
703 /*
704 * If the nesting level is not 1, the CPU wasn't RCU-idle, so
705 * leave it in non-RCU-idle state.
706 */
4c5273bf 707 if (rdp->dynticks_nmi_nesting != 1) {
ff5c4f5c 708 instrumentation_begin();
6cf539a8
ME
709 trace_rcu_dyntick(TPS("--="), rdp->dynticks_nmi_nesting, rdp->dynticks_nmi_nesting - 2,
710 atomic_read(&rdp->dynticks));
4c5273bf
PM
711 WRITE_ONCE(rdp->dynticks_nmi_nesting, /* No store tearing. */
712 rdp->dynticks_nmi_nesting - 2);
ff5c4f5c 713 instrumentation_end();
fd581a91
PM
714 return;
715 }
716
ff5c4f5c 717 instrumentation_begin();
fd581a91 718 /* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
6cf539a8 719 trace_rcu_dyntick(TPS("Startirq"), rdp->dynticks_nmi_nesting, 0, atomic_read(&rdp->dynticks));
4c5273bf 720 WRITE_ONCE(rdp->dynticks_nmi_nesting, 0); /* Avoid store tearing. */
cf7614e1 721
9ea366f6 722 if (!in_nmi())
cf7614e1 723 rcu_prepare_for_idle();
ff5c4f5c 724 instrumentation_end();
cf7614e1 725
ac3caf82 726 // RCU is watching here ...
fd581a91 727 rcu_dynticks_eqs_enter();
ac3caf82 728 // ... but is no longer watching here.
cf7614e1 729
9ea366f6 730 if (!in_nmi())
cf7614e1
BP
731 rcu_dynticks_task_enter();
732}
733
9b2e4f18
PM
734/**
735 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
736 *
737 * Exit from an interrupt handler, which might possibly result in entering
738 * idle mode, in other words, leaving the mode in which read-side critical
7c9906ca 739 * sections can occur. The caller must have disabled interrupts.
64db4cff 740 *
9b2e4f18
PM
741 * This code assumes that the idle loop never does anything that might
742 * result in unbalanced calls to irq_enter() and irq_exit(). If your
58721f5d
PM
743 * architecture's idle loop violates this assumption, RCU will give you what
744 * you deserve, good and hard. But very infrequently and irreproducibly.
9b2e4f18
PM
745 *
746 * Use things like work queues to work around this limitation.
747 *
748 * You have been warned.
c0da313e
PM
749 *
750 * If you add or remove a call to rcu_irq_exit(), be sure to test with
751 * CONFIG_RCU_EQS_DEBUG=y.
64db4cff 752 */
ff5c4f5c 753void noinstr rcu_irq_exit(void)
64db4cff 754{
b04db8e1 755 lockdep_assert_irqs_disabled();
9ea366f6 756 rcu_nmi_exit();
7c9906ca
PM
757}
758
8ae0ae67
TG
759/**
760 * rcu_irq_exit_preempt - Inform RCU that current CPU is exiting irq
761 * towards in kernel preemption
762 *
763 * Same as rcu_irq_exit() but has a sanity check that scheduling is safe
764 * from RCU point of view. Invoked from return from interrupt before kernel
765 * preemption.
766 */
767void rcu_irq_exit_preempt(void)
768{
769 lockdep_assert_irqs_disabled();
770 rcu_nmi_exit();
771
772 RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nesting) <= 0,
773 "RCU dynticks_nesting counter underflow/zero!");
774 RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nmi_nesting) !=
775 DYNTICK_IRQ_NONIDLE,
776 "Bad RCU dynticks_nmi_nesting counter\n");
777 RCU_LOCKDEP_WARN(rcu_dynticks_curr_cpu_in_eqs(),
778 "RCU in extended quiescent state!");
779}
780
07325d4a
TG
781#ifdef CONFIG_PROVE_RCU
782/**
783 * rcu_irq_exit_check_preempt - Validate that scheduling is possible
784 */
785void rcu_irq_exit_check_preempt(void)
786{
787 lockdep_assert_irqs_disabled();
788
789 RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nesting) <= 0,
790 "RCU dynticks_nesting counter underflow/zero!");
791 RCU_LOCKDEP_WARN(__this_cpu_read(rcu_data.dynticks_nmi_nesting) !=
792 DYNTICK_IRQ_NONIDLE,
793 "Bad RCU dynticks_nmi_nesting counter\n");
794 RCU_LOCKDEP_WARN(rcu_dynticks_curr_cpu_in_eqs(),
795 "RCU in extended quiescent state!");
796}
797#endif /* #ifdef CONFIG_PROVE_RCU */
798
7c9906ca
PM
799/*
800 * Wrapper for rcu_irq_exit() where interrupts are enabled.
c0da313e
PM
801 *
802 * If you add or remove a call to rcu_irq_exit_irqson(), be sure to test
803 * with CONFIG_RCU_EQS_DEBUG=y.
7c9906ca
PM
804 */
805void rcu_irq_exit_irqson(void)
806{
807 unsigned long flags;
808
809 local_irq_save(flags);
810 rcu_irq_exit();
9b2e4f18
PM
811 local_irq_restore(flags);
812}
813
adf5091e
FW
814/*
815 * Exit an RCU extended quiescent state, which can be either the
816 * idle loop or adaptive-tickless usermode execution.
51a1fd30
PM
817 *
818 * We crowbar the ->dynticks_nmi_nesting field to DYNTICK_IRQ_NONIDLE to
819 * allow for the possibility of usermode upcalls messing up our count of
820 * interrupt nesting level during the busy period that is just now starting.
9b2e4f18 821 */
ff5c4f5c 822static void noinstr rcu_eqs_exit(bool user)
9b2e4f18 823{
4c5273bf 824 struct rcu_data *rdp;
84585aa8 825 long oldval;
9b2e4f18 826
b04db8e1 827 lockdep_assert_irqs_disabled();
4c5273bf
PM
828 rdp = this_cpu_ptr(&rcu_data);
829 oldval = rdp->dynticks_nesting;
1ce46ee5 830 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0);
51a1fd30 831 if (oldval) {
ac3caf82 832 // RCU was already watching, so just do accounting and leave.
4c5273bf 833 rdp->dynticks_nesting++;
9dd238e2 834 return;
3a592405 835 }
9dd238e2 836 rcu_dynticks_task_exit();
ac3caf82 837 // RCU is not watching here ...
9dd238e2 838 rcu_dynticks_eqs_exit();
ac3caf82 839 // ... but is watching here.
ff5c4f5c 840 instrumentation_begin();
9dd238e2 841 rcu_cleanup_after_idle();
6cf539a8 842 trace_rcu_dyntick(TPS("End"), rdp->dynticks_nesting, 1, atomic_read(&rdp->dynticks));
e68bbb26 843 WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current));
4c5273bf
PM
844 WRITE_ONCE(rdp->dynticks_nesting, 1);
845 WARN_ON_ONCE(rdp->dynticks_nmi_nesting);
846 WRITE_ONCE(rdp->dynticks_nmi_nesting, DYNTICK_IRQ_NONIDLE);
ff5c4f5c 847 instrumentation_end();
9b2e4f18 848}
adf5091e
FW
849
850/**
851 * rcu_idle_exit - inform RCU that current CPU is leaving idle
852 *
853 * Exit idle mode, in other words, -enter- the mode in which RCU
854 * read-side critical sections can occur.
855 *
c0da313e
PM
856 * If you add or remove a call to rcu_idle_exit(), be sure to test with
857 * CONFIG_RCU_EQS_DEBUG=y.
adf5091e
FW
858 */
859void rcu_idle_exit(void)
860{
c5d900bf
FW
861 unsigned long flags;
862
863 local_irq_save(flags);
cb349ca9 864 rcu_eqs_exit(false);
c5d900bf 865 local_irq_restore(flags);
adf5091e 866}
9b2e4f18 867
d1ec4c34 868#ifdef CONFIG_NO_HZ_FULL
adf5091e
FW
869/**
870 * rcu_user_exit - inform RCU that we are exiting userspace.
871 *
872 * Exit RCU idle mode while entering the kernel because it can
873 * run a RCU read side critical section anytime.
c0da313e
PM
874 *
875 * If you add or remove a call to rcu_user_exit(), be sure to test with
876 * CONFIG_RCU_EQS_DEBUG=y.
adf5091e 877 */
ff5c4f5c 878void noinstr rcu_user_exit(void)
adf5091e 879{
91d1aa43 880 rcu_eqs_exit(1);
adf5091e 881}
aaf2bc50
PM
882
883/**
884 * __rcu_irq_enter_check_tick - Enable scheduler tick on CPU if RCU needs it.
885 *
886 * The scheduler tick is not normally enabled when CPUs enter the kernel
887 * from nohz_full userspace execution. After all, nohz_full userspace
888 * execution is an RCU quiescent state and the time executing in the kernel
889 * is quite short. Except of course when it isn't. And it is not hard to
890 * cause a large system to spend tens of seconds or even minutes looping
891 * in the kernel, which can cause a number of problems, include RCU CPU
892 * stall warnings.
893 *
894 * Therefore, if a nohz_full CPU fails to report a quiescent state
895 * in a timely manner, the RCU grace-period kthread sets that CPU's
896 * ->rcu_urgent_qs flag with the expectation that the next interrupt or
897 * exception will invoke this function, which will turn on the scheduler
898 * tick, which will enable RCU to detect that CPU's quiescent states,
899 * for example, due to cond_resched() calls in CONFIG_PREEMPT=n kernels.
900 * The tick will be disabled once a quiescent state is reported for
901 * this CPU.
902 *
903 * Of course, in carefully tuned systems, there might never be an
904 * interrupt or exception. In that case, the RCU grace-period kthread
905 * will eventually cause one to happen. However, in less carefully
906 * controlled environments, this function allows RCU to get what it
907 * needs without creating otherwise useless interruptions.
908 */
909void __rcu_irq_enter_check_tick(void)
910{
911 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
912
913 // Enabling the tick is unsafe in NMI handlers.
914 if (WARN_ON_ONCE(in_nmi()))
915 return;
916
917 RCU_LOCKDEP_WARN(rcu_dynticks_curr_cpu_in_eqs(),
918 "Illegal rcu_irq_enter_check_tick() from extended quiescent state");
919
920 if (!tick_nohz_full_cpu(rdp->cpu) ||
921 !READ_ONCE(rdp->rcu_urgent_qs) ||
922 READ_ONCE(rdp->rcu_forced_tick)) {
923 // RCU doesn't need nohz_full help from this CPU, or it is
924 // already getting that help.
925 return;
926 }
927
928 // We get here only when not in an extended quiescent state and
929 // from interrupts (as opposed to NMIs). Therefore, (1) RCU is
930 // already watching and (2) The fact that we are in an interrupt
931 // handler and that the rcu_node lock is an irq-disabled lock
932 // prevents self-deadlock. So we can safely recheck under the lock.
933 // Note that the nohz_full state currently cannot change.
934 raw_spin_lock_rcu_node(rdp->mynode);
935 if (rdp->rcu_urgent_qs && !rdp->rcu_forced_tick) {
936 // A nohz_full CPU is in the kernel and RCU needs a
937 // quiescent state. Turn on the tick!
938 WRITE_ONCE(rdp->rcu_forced_tick, true);
939 tick_dep_set_cpu(rdp->cpu, TICK_DEP_BIT_RCU);
940 }
941 raw_spin_unlock_rcu_node(rdp->mynode);
942}
d1ec4c34 943#endif /* CONFIG_NO_HZ_FULL */
19dd1591 944
64db4cff 945/**
9ea366f6 946 * rcu_nmi_enter - inform RCU of entry to NMI context
cf7614e1 947 * @irq: Is this call from rcu_irq_enter?
64db4cff 948 *
dc5a4f29 949 * If the CPU was idle from RCU's viewpoint, update rdp->dynticks and
4c5273bf 950 * rdp->dynticks_nmi_nesting to let the RCU grace-period handling know
734d1680
PM
951 * that the CPU is active. This implementation permits nested NMIs, as
952 * long as the nesting level does not overflow an int. (You will probably
953 * run out of stack space first.)
c0da313e 954 *
9ea366f6 955 * If you add or remove a call to rcu_nmi_enter(), be sure to test
c0da313e 956 * with CONFIG_RCU_EQS_DEBUG=y.
64db4cff 957 */
9ea366f6 958noinstr void rcu_nmi_enter(void)
64db4cff 959{
84585aa8 960 long incby = 2;
5b14557b 961 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
64db4cff 962
734d1680 963 /* Complain about underflow. */
4c5273bf 964 WARN_ON_ONCE(rdp->dynticks_nmi_nesting < 0);
734d1680
PM
965
966 /*
967 * If idle from RCU viewpoint, atomically increment ->dynticks
968 * to mark non-idle and increment ->dynticks_nmi_nesting by one.
969 * Otherwise, increment ->dynticks_nmi_nesting by two. This means
970 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
971 * to be in the outermost NMI handler that interrupted an RCU-idle
972 * period (observation due to Andy Lutomirski).
973 */
02a5c550 974 if (rcu_dynticks_curr_cpu_in_eqs()) {
cf7614e1 975
9ea366f6 976 if (!in_nmi())
cf7614e1
BP
977 rcu_dynticks_task_exit();
978
ac3caf82 979 // RCU is not watching here ...
2625d469 980 rcu_dynticks_eqs_exit();
ac3caf82 981 // ... but is watching here.
cf7614e1 982
9ea366f6 983 if (!in_nmi())
cf7614e1
BP
984 rcu_cleanup_after_idle();
985
734d1680 986 incby = 1;
9ea366f6 987 } else if (!in_nmi()) {
ff5c4f5c 988 instrumentation_begin();
aaf2bc50 989 rcu_irq_enter_check_tick();
ff5c4f5c 990 instrumentation_end();
734d1680 991 }
ff5c4f5c 992 instrumentation_begin();
bd2b879a 993 trace_rcu_dyntick(incby == 1 ? TPS("Endirq") : TPS("++="),
4c5273bf 994 rdp->dynticks_nmi_nesting,
6cf539a8 995 rdp->dynticks_nmi_nesting + incby, atomic_read(&rdp->dynticks));
ff5c4f5c 996 instrumentation_end();
4c5273bf
PM
997 WRITE_ONCE(rdp->dynticks_nmi_nesting, /* Prevent store tearing. */
998 rdp->dynticks_nmi_nesting + incby);
734d1680 999 barrier();
64db4cff
PM
1000}
1001
1002/**
9b2e4f18 1003 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
64db4cff 1004 *
9b2e4f18
PM
1005 * Enter an interrupt handler, which might possibly result in exiting
1006 * idle mode, in other words, entering the mode in which read-side critical
7c9906ca 1007 * sections can occur. The caller must have disabled interrupts.
c0da313e 1008 *
9b2e4f18 1009 * Note that the Linux kernel is fully capable of entering an interrupt
58721f5d
PM
1010 * handler that it never exits, for example when doing upcalls to user mode!
1011 * This code assumes that the idle loop never does upcalls to user mode.
1012 * If your architecture's idle loop does do upcalls to user mode (or does
1013 * anything else that results in unbalanced calls to the irq_enter() and
1014 * irq_exit() functions), RCU will give you what you deserve, good and hard.
1015 * But very infrequently and irreproducibly.
9b2e4f18
PM
1016 *
1017 * Use things like work queues to work around this limitation.
1018 *
1019 * You have been warned.
c0da313e
PM
1020 *
1021 * If you add or remove a call to rcu_irq_enter(), be sure to test with
1022 * CONFIG_RCU_EQS_DEBUG=y.
64db4cff 1023 */
ff5c4f5c 1024noinstr void rcu_irq_enter(void)
64db4cff 1025{
b04db8e1 1026 lockdep_assert_irqs_disabled();
9ea366f6 1027 rcu_nmi_enter();
7c9906ca 1028}
734d1680 1029
7c9906ca
PM
1030/*
1031 * Wrapper for rcu_irq_enter() where interrupts are enabled.
c0da313e
PM
1032 *
1033 * If you add or remove a call to rcu_irq_enter_irqson(), be sure to test
1034 * with CONFIG_RCU_EQS_DEBUG=y.
7c9906ca
PM
1035 */
1036void rcu_irq_enter_irqson(void)
1037{
1038 unsigned long flags;
734d1680 1039
7c9906ca
PM
1040 local_irq_save(flags);
1041 rcu_irq_enter();
64db4cff 1042 local_irq_restore(flags);
64db4cff
PM
1043}
1044
66e4c33b 1045/*
516e5ae0
JFG
1046 * If any sort of urgency was applied to the current CPU (for example,
1047 * the scheduler-clock interrupt was enabled on a nohz_full CPU) in order
1048 * to get to a quiescent state, disable it.
66e4c33b 1049 */
516e5ae0 1050static void rcu_disable_urgency_upon_qs(struct rcu_data *rdp)
66e4c33b 1051{
5b14557b 1052 raw_lockdep_assert_held_rcu_node(rdp->mynode);
516e5ae0
JFG
1053 WRITE_ONCE(rdp->rcu_urgent_qs, false);
1054 WRITE_ONCE(rdp->rcu_need_heavy_qs, false);
66e4c33b
PM
1055 if (tick_nohz_full_cpu(rdp->cpu) && rdp->rcu_forced_tick) {
1056 tick_dep_clear_cpu(rdp->cpu, TICK_DEP_BIT_RCU);
2a2ae872 1057 WRITE_ONCE(rdp->rcu_forced_tick, false);
66e4c33b
PM
1058 }
1059}
1060
b1fcf9b8
TG
1061noinstr bool __rcu_is_watching(void)
1062{
1063 return !rcu_dynticks_curr_cpu_in_eqs();
1064}
1065
5c173eb8 1066/**
2320bda2 1067 * rcu_is_watching - see if RCU thinks that the current CPU is not idle
64db4cff 1068 *
791875d1
PM
1069 * Return true if RCU is watching the running CPU, which means that this
1070 * CPU can safely enter RCU read-side critical sections. In other words,
2320bda2
ZZ
1071 * if the current CPU is not in its idle loop or is in an interrupt or
1072 * NMI handler, return true.
64db4cff 1073 */
ff5c4f5c 1074bool rcu_is_watching(void)
64db4cff 1075{
f534ed1f 1076 bool ret;
34240697 1077
46f00d18 1078 preempt_disable_notrace();
791875d1 1079 ret = !rcu_dynticks_curr_cpu_in_eqs();
46f00d18 1080 preempt_enable_notrace();
34240697 1081 return ret;
64db4cff 1082}
5c173eb8 1083EXPORT_SYMBOL_GPL(rcu_is_watching);
64db4cff 1084
bcbfdd01
PM
1085/*
1086 * If a holdout task is actually running, request an urgent quiescent
1087 * state from its CPU. This is unsynchronized, so migrations can cause
1088 * the request to go to the wrong CPU. Which is OK, all that will happen
1089 * is that the CPU's next context switch will be a bit slower and next
1090 * time around this task will generate another request.
1091 */
1092void rcu_request_urgent_qs_task(struct task_struct *t)
1093{
1094 int cpu;
1095
1096 barrier();
1097 cpu = task_cpu(t);
1098 if (!task_curr(t))
1099 return; /* This task is not running on that CPU. */
2dba13f0 1100 smp_store_release(per_cpu_ptr(&rcu_data.rcu_urgent_qs, cpu), true);
bcbfdd01
PM
1101}
1102
62fde6ed 1103#if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
c0d6d01b
PM
1104
1105/*
5554788e 1106 * Is the current CPU online as far as RCU is concerned?
2036d94a 1107 *
5554788e
PM
1108 * Disable preemption to avoid false positives that could otherwise
1109 * happen due to the current CPU number being sampled, this task being
1110 * preempted, its old CPU being taken offline, resuming on some other CPU,
49918a54 1111 * then determining that its old CPU is now offline.
c0d6d01b 1112 *
5554788e
PM
1113 * Disable checking if in an NMI handler because we cannot safely
1114 * report errors from NMI handlers anyway. In addition, it is OK to use
1115 * RCU on an offline processor during initial boot, hence the check for
1116 * rcu_scheduler_fully_active.
c0d6d01b
PM
1117 */
1118bool rcu_lockdep_current_cpu_online(void)
1119{
2036d94a
PM
1120 struct rcu_data *rdp;
1121 struct rcu_node *rnp;
b97d23c5 1122 bool ret = false;
c0d6d01b 1123
5554788e 1124 if (in_nmi() || !rcu_scheduler_fully_active)
f6f7ee9a 1125 return true;
ff5c4f5c 1126 preempt_disable_notrace();
b97d23c5
PM
1127 rdp = this_cpu_ptr(&rcu_data);
1128 rnp = rdp->mynode;
1129 if (rdp->grpmask & rcu_rnp_online_cpus(rnp))
1130 ret = true;
ff5c4f5c 1131 preempt_enable_notrace();
b97d23c5 1132 return ret;
c0d6d01b
PM
1133}
1134EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
1135
62fde6ed 1136#endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
9b2e4f18 1137
9b9500da
PM
1138/*
1139 * We are reporting a quiescent state on behalf of some other CPU, so
1140 * it is our responsibility to check for and handle potential overflow
a66ae8ae 1141 * of the rcu_node ->gp_seq counter with respect to the rcu_data counters.
9b9500da
PM
1142 * After all, the CPU might be in deep idle state, and thus executing no
1143 * code whatsoever.
1144 */
1145static void rcu_gpnum_ovf(struct rcu_node *rnp, struct rcu_data *rdp)
1146{
a32e01ee 1147 raw_lockdep_assert_held_rcu_node(rnp);
a66ae8ae
PM
1148 if (ULONG_CMP_LT(rcu_seq_current(&rdp->gp_seq) + ULONG_MAX / 4,
1149 rnp->gp_seq))
9b9500da 1150 WRITE_ONCE(rdp->gpwrap, true);
8aa670cd
PM
1151 if (ULONG_CMP_LT(rdp->rcu_iw_gp_seq + ULONG_MAX / 4, rnp->gp_seq))
1152 rdp->rcu_iw_gp_seq = rnp->gp_seq + ULONG_MAX / 4;
9b9500da
PM
1153}
1154
64db4cff
PM
1155/*
1156 * Snapshot the specified CPU's dynticks counter so that we can later
1157 * credit them with an implicit quiescent state. Return 1 if this CPU
1eba8f84 1158 * is in dynticks idle mode, which is an extended quiescent state.
64db4cff 1159 */
fe5ac724 1160static int dyntick_save_progress_counter(struct rcu_data *rdp)
64db4cff 1161{
dc5a4f29 1162 rdp->dynticks_snap = rcu_dynticks_snap(rdp);
02a5c550 1163 if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) {
88d1bead 1164 trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti"));
9b9500da 1165 rcu_gpnum_ovf(rdp->mynode, rdp);
23a9bacd 1166 return 1;
7941dbde 1167 }
23a9bacd 1168 return 0;
64db4cff
PM
1169}
1170
1171/*
1172 * Return true if the specified CPU has passed through a quiescent
1173 * state by virtue of being in or having passed through an dynticks
1174 * idle state since the last call to dyntick_save_progress_counter()
a82dcc76 1175 * for this same CPU, or by virtue of having been offline.
64db4cff 1176 */
fe5ac724 1177static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
64db4cff 1178{
3a19b46a 1179 unsigned long jtsq;
0f9be8ca 1180 bool *rnhqp;
9226b10d 1181 bool *ruqp;
9b9500da 1182 struct rcu_node *rnp = rdp->mynode;
64db4cff
PM
1183
1184 /*
1185 * If the CPU passed through or entered a dynticks idle phase with
1186 * no active irq/NMI handlers, then we can safely pretend that the CPU
1187 * already acknowledged the request to pass through a quiescent
1188 * state. Either way, that CPU cannot possibly be in an RCU
1189 * read-side critical section that started before the beginning
1190 * of the current RCU grace period.
1191 */
dc5a4f29 1192 if (rcu_dynticks_in_eqs_since(rdp, rdp->dynticks_snap)) {
88d1bead 1193 trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti"));
9b9500da 1194 rcu_gpnum_ovf(rnp, rdp);
3a19b46a
PM
1195 return 1;
1196 }
1197
f2e2df59
PM
1198 /* If waiting too long on an offline CPU, complain. */
1199 if (!(rdp->grpmask & rcu_rnp_online_cpus(rnp)) &&
88d1bead 1200 time_after(jiffies, rcu_state.gp_start + HZ)) {
f2e2df59
PM
1201 bool onl;
1202 struct rcu_node *rnp1;
1203
1204 WARN_ON(1); /* Offline CPUs are supposed to report QS! */
1205 pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n",
1206 __func__, rnp->grplo, rnp->grphi, rnp->level,
1207 (long)rnp->gp_seq, (long)rnp->completedqs);
1208 for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent)
1209 pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx ->rcu_gp_init_mask %#lx\n",
1210 __func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext, rnp1->rcu_gp_init_mask);
1211 onl = !!(rdp->grpmask & rcu_rnp_online_cpus(rnp));
1212 pr_info("%s %d: %c online: %ld(%d) offline: %ld(%d)\n",
1213 __func__, rdp->cpu, ".o"[onl],
1214 (long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags,
1215 (long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags);
1216 return 1; /* Break things loose after complaining. */
1217 }
1218
65d798f0 1219 /*
4a81e832 1220 * A CPU running for an extended time within the kernel can
c06aed0e
PM
1221 * delay RCU grace periods: (1) At age jiffies_to_sched_qs,
1222 * set .rcu_urgent_qs, (2) At age 2*jiffies_to_sched_qs, set
7e28c5af
PM
1223 * both .rcu_need_heavy_qs and .rcu_urgent_qs. Note that the
1224 * unsynchronized assignments to the per-CPU rcu_need_heavy_qs
1225 * variable are safe because the assignments are repeated if this
1226 * CPU failed to pass through a quiescent state. This code
c06aed0e 1227 * also checks .jiffies_resched in case jiffies_to_sched_qs
7e28c5af 1228 * is set way high.
6193c76a 1229 */
c06aed0e 1230 jtsq = READ_ONCE(jiffies_to_sched_qs);
2dba13f0
PM
1231 ruqp = per_cpu_ptr(&rcu_data.rcu_urgent_qs, rdp->cpu);
1232 rnhqp = &per_cpu(rcu_data.rcu_need_heavy_qs, rdp->cpu);
0f9be8ca 1233 if (!READ_ONCE(*rnhqp) &&
7e28c5af 1234 (time_after(jiffies, rcu_state.gp_start + jtsq * 2) ||
b2b00ddf
PM
1235 time_after(jiffies, rcu_state.jiffies_resched) ||
1236 rcu_state.cbovld)) {
0f9be8ca 1237 WRITE_ONCE(*rnhqp, true);
9226b10d
PM
1238 /* Store rcu_need_heavy_qs before rcu_urgent_qs. */
1239 smp_store_release(ruqp, true);
7e28c5af
PM
1240 } else if (time_after(jiffies, rcu_state.gp_start + jtsq)) {
1241 WRITE_ONCE(*ruqp, true);
6193c76a
PM
1242 }
1243
28053bc7 1244 /*
c98cac60 1245 * NO_HZ_FULL CPUs can run in-kernel without rcu_sched_clock_irq!
d3052109
PM
1246 * The above code handles this, but only for straight cond_resched().
1247 * And some in-kernel loops check need_resched() before calling
1248 * cond_resched(), which defeats the above code for CPUs that are
1249 * running in-kernel with scheduling-clock interrupts disabled.
1250 * So hit them over the head with the resched_cpu() hammer!
28053bc7 1251 */
d3052109 1252 if (tick_nohz_full_cpu(rdp->cpu) &&
b2b00ddf
PM
1253 (time_after(jiffies, READ_ONCE(rdp->last_fqs_resched) + jtsq * 3) ||
1254 rcu_state.cbovld)) {
05ef9e9e 1255 WRITE_ONCE(*ruqp, true);
28053bc7 1256 resched_cpu(rdp->cpu);
d3052109
PM
1257 WRITE_ONCE(rdp->last_fqs_resched, jiffies);
1258 }
1259
1260 /*
1261 * If more than halfway to RCU CPU stall-warning time, invoke
1262 * resched_cpu() more frequently to try to loosen things up a bit.
1263 * Also check to see if the CPU is getting hammered with interrupts,
1264 * but only once per grace period, just to keep the IPIs down to
1265 * a dull roar.
1266 */
1267 if (time_after(jiffies, rcu_state.jiffies_resched)) {
1268 if (time_after(jiffies,
1269 READ_ONCE(rdp->last_fqs_resched) + jtsq)) {
1270 resched_cpu(rdp->cpu);
1271 WRITE_ONCE(rdp->last_fqs_resched, jiffies);
1272 }
9b9500da 1273 if (IS_ENABLED(CONFIG_IRQ_WORK) &&
8aa670cd 1274 !rdp->rcu_iw_pending && rdp->rcu_iw_gp_seq != rnp->gp_seq &&
9b9500da
PM
1275 (rnp->ffmask & rdp->grpmask)) {
1276 init_irq_work(&rdp->rcu_iw, rcu_iw_handler);
49915ac3 1277 atomic_set(&rdp->rcu_iw.flags, IRQ_WORK_HARD_IRQ);
9b9500da 1278 rdp->rcu_iw_pending = true;
8aa670cd 1279 rdp->rcu_iw_gp_seq = rnp->gp_seq;
9b9500da
PM
1280 irq_work_queue_on(&rdp->rcu_iw, rdp->cpu);
1281 }
1282 }
4914950a 1283
a82dcc76 1284 return 0;
64db4cff
PM
1285}
1286
41e80595
PM
1287/* Trace-event wrapper function for trace_rcu_future_grace_period. */
1288static void trace_rcu_this_gp(struct rcu_node *rnp, struct rcu_data *rdp,
b73de91d 1289 unsigned long gp_seq_req, const char *s)
0446be48 1290{
0937d045
PM
1291 trace_rcu_future_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq),
1292 gp_seq_req, rnp->level,
1293 rnp->grplo, rnp->grphi, s);
0446be48
PM
1294}
1295
1296/*
b73de91d 1297 * rcu_start_this_gp - Request the start of a particular grace period
df2bf8f7 1298 * @rnp_start: The leaf node of the CPU from which to start.
b73de91d
JF
1299 * @rdp: The rcu_data corresponding to the CPU from which to start.
1300 * @gp_seq_req: The gp_seq of the grace period to start.
1301 *
41e80595 1302 * Start the specified grace period, as needed to handle newly arrived
0446be48 1303 * callbacks. The required future grace periods are recorded in each
7a1d0f23 1304 * rcu_node structure's ->gp_seq_needed field. Returns true if there
48a7639c 1305 * is reason to awaken the grace-period kthread.
0446be48 1306 *
d5cd9685
PM
1307 * The caller must hold the specified rcu_node structure's ->lock, which
1308 * is why the caller is responsible for waking the grace-period kthread.
b73de91d
JF
1309 *
1310 * Returns true if the GP thread needs to be awakened else false.
0446be48 1311 */
df2bf8f7 1312static bool rcu_start_this_gp(struct rcu_node *rnp_start, struct rcu_data *rdp,
b73de91d 1313 unsigned long gp_seq_req)
0446be48 1314{
48a7639c 1315 bool ret = false;
df2bf8f7 1316 struct rcu_node *rnp;
0446be48
PM
1317
1318 /*
360e0da6
PM
1319 * Use funnel locking to either acquire the root rcu_node
1320 * structure's lock or bail out if the need for this grace period
df2bf8f7
JFG
1321 * has already been recorded -- or if that grace period has in
1322 * fact already started. If there is already a grace period in
1323 * progress in a non-leaf node, no recording is needed because the
1324 * end of the grace period will scan the leaf rcu_node structures.
1325 * Note that rnp_start->lock must not be released.
0446be48 1326 */
df2bf8f7
JFG
1327 raw_lockdep_assert_held_rcu_node(rnp_start);
1328 trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, TPS("Startleaf"));
1329 for (rnp = rnp_start; 1; rnp = rnp->parent) {
1330 if (rnp != rnp_start)
1331 raw_spin_lock_rcu_node(rnp);
1332 if (ULONG_CMP_GE(rnp->gp_seq_needed, gp_seq_req) ||
1333 rcu_seq_started(&rnp->gp_seq, gp_seq_req) ||
1334 (rnp != rnp_start &&
1335 rcu_seq_state(rcu_seq_current(&rnp->gp_seq)))) {
1336 trace_rcu_this_gp(rnp, rdp, gp_seq_req,
b73de91d 1337 TPS("Prestarted"));
360e0da6
PM
1338 goto unlock_out;
1339 }
8ff37290 1340 WRITE_ONCE(rnp->gp_seq_needed, gp_seq_req);
226ca5e7 1341 if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq))) {
a2165e41 1342 /*
226ca5e7
JFG
1343 * We just marked the leaf or internal node, and a
1344 * grace period is in progress, which means that
1345 * rcu_gp_cleanup() will see the marking. Bail to
1346 * reduce contention.
a2165e41 1347 */
df2bf8f7 1348 trace_rcu_this_gp(rnp_start, rdp, gp_seq_req,
b73de91d 1349 TPS("Startedleaf"));
a2165e41
PM
1350 goto unlock_out;
1351 }
df2bf8f7
JFG
1352 if (rnp != rnp_start && rnp->parent != NULL)
1353 raw_spin_unlock_rcu_node(rnp);
1354 if (!rnp->parent)
360e0da6 1355 break; /* At root, and perhaps also leaf. */
0446be48
PM
1356 }
1357
360e0da6 1358 /* If GP already in progress, just leave, otherwise start one. */
de8e8730 1359 if (rcu_gp_in_progress()) {
df2bf8f7 1360 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedleafroot"));
0446be48
PM
1361 goto unlock_out;
1362 }
df2bf8f7 1363 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedroot"));
9cbc5b97 1364 WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags | RCU_GP_FLAG_INIT);
2906d215 1365 WRITE_ONCE(rcu_state.gp_req_activity, jiffies);
5648d659 1366 if (!READ_ONCE(rcu_state.gp_kthread)) {
df2bf8f7 1367 trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("NoGPkthread"));
360e0da6 1368 goto unlock_out;
0446be48 1369 }
62ae1951 1370 trace_rcu_grace_period(rcu_state.name, data_race(rcu_state.gp_seq), TPS("newreq"));
360e0da6 1371 ret = true; /* Caller must wake GP kthread. */
0446be48 1372unlock_out:
ab5e869c 1373 /* Push furthest requested GP to leaf node and rcu_data structure. */
df2bf8f7 1374 if (ULONG_CMP_LT(gp_seq_req, rnp->gp_seq_needed)) {
8ff37290
PM
1375 WRITE_ONCE(rnp_start->gp_seq_needed, rnp->gp_seq_needed);
1376 WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed);
ab5e869c 1377 }
df2bf8f7
JFG
1378 if (rnp != rnp_start)
1379 raw_spin_unlock_rcu_node(rnp);
48a7639c 1380 return ret;
0446be48
PM
1381}
1382
1383/*
1384 * Clean up any old requests for the just-ended grace period. Also return
d1e4f01d 1385 * whether any additional grace periods have been requested.
0446be48 1386 */
3481f2ea 1387static bool rcu_future_gp_cleanup(struct rcu_node *rnp)
0446be48 1388{
fb31340f 1389 bool needmore;
da1df50d 1390 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
0446be48 1391
7a1d0f23
PM
1392 needmore = ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed);
1393 if (!needmore)
1394 rnp->gp_seq_needed = rnp->gp_seq; /* Avoid counter wrap. */
b73de91d 1395 trace_rcu_this_gp(rnp, rdp, rnp->gp_seq,
41e80595 1396 needmore ? TPS("CleanupMore") : TPS("Cleanup"));
0446be48
PM
1397 return needmore;
1398}
1399
48a7639c 1400/*
5648d659
PM
1401 * Awaken the grace-period kthread. Don't do a self-awaken (unless in an
1402 * interrupt or softirq handler, in which case we just might immediately
1403 * sleep upon return, resulting in a grace-period hang), and don't bother
1404 * awakening when there is nothing for the grace-period kthread to do
1405 * (as in several CPUs raced to awaken, we lost), and finally don't try
1406 * to awaken a kthread that has not yet been created. If all those checks
1407 * are passed, track some debug information and awaken.
1d1f898d
ZJ
1408 *
1409 * So why do the self-wakeup when in an interrupt or softirq handler
1410 * in the grace-period kthread's context? Because the kthread might have
1411 * been interrupted just as it was going to sleep, and just after the final
1412 * pre-sleep check of the awaken condition. In this case, a wakeup really
1413 * is required, and is therefore supplied.
48a7639c 1414 */
532c00c9 1415static void rcu_gp_kthread_wake(void)
48a7639c 1416{
5648d659
PM
1417 struct task_struct *t = READ_ONCE(rcu_state.gp_kthread);
1418
1419 if ((current == t && !in_irq() && !in_serving_softirq()) ||
1420 !READ_ONCE(rcu_state.gp_flags) || !t)
48a7639c 1421 return;
fd897573
PM
1422 WRITE_ONCE(rcu_state.gp_wake_time, jiffies);
1423 WRITE_ONCE(rcu_state.gp_wake_seq, READ_ONCE(rcu_state.gp_seq));
532c00c9 1424 swake_up_one(&rcu_state.gp_wq);
48a7639c
PM
1425}
1426
dc35c893 1427/*
29365e56
PM
1428 * If there is room, assign a ->gp_seq number to any callbacks on this
1429 * CPU that have not already been assigned. Also accelerate any callbacks
1430 * that were previously assigned a ->gp_seq number that has since proven
1431 * to be too conservative, which can happen if callbacks get assigned a
1432 * ->gp_seq number while RCU is idle, but with reference to a non-root
1433 * rcu_node structure. This function is idempotent, so it does not hurt
1434 * to call it repeatedly. Returns an flag saying that we should awaken
1435 * the RCU grace-period kthread.
dc35c893
PM
1436 *
1437 * The caller must hold rnp->lock with interrupts disabled.
1438 */
02f50142 1439static bool rcu_accelerate_cbs(struct rcu_node *rnp, struct rcu_data *rdp)
dc35c893 1440{
b73de91d 1441 unsigned long gp_seq_req;
15fecf89 1442 bool ret = false;
dc35c893 1443
d1b222c6 1444 rcu_lockdep_assert_cblist_protected(rdp);
a32e01ee 1445 raw_lockdep_assert_held_rcu_node(rnp);
c0b334c5 1446
15fecf89
PM
1447 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1448 if (!rcu_segcblist_pend_cbs(&rdp->cblist))
48a7639c 1449 return false;
dc35c893
PM
1450
1451 /*
15fecf89
PM
1452 * Callbacks are often registered with incomplete grace-period
1453 * information. Something about the fact that getting exact
1454 * information requires acquiring a global lock... RCU therefore
1455 * makes a conservative estimate of the grace period number at which
1456 * a given callback will become ready to invoke. The following
1457 * code checks this estimate and improves it when possible, thus
1458 * accelerating callback invocation to an earlier grace-period
1459 * number.
dc35c893 1460 */
9cbc5b97 1461 gp_seq_req = rcu_seq_snap(&rcu_state.gp_seq);
b73de91d
JF
1462 if (rcu_segcblist_accelerate(&rdp->cblist, gp_seq_req))
1463 ret = rcu_start_this_gp(rnp, rdp, gp_seq_req);
6d4b418c
PM
1464
1465 /* Trace depending on how much we were able to accelerate. */
15fecf89 1466 if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL))
9cbc5b97 1467 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("AccWaitCB"));
6d4b418c 1468 else
9cbc5b97 1469 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("AccReadyCB"));
48a7639c 1470 return ret;
dc35c893
PM
1471}
1472
e44e73ca
PM
1473/*
1474 * Similar to rcu_accelerate_cbs(), but does not require that the leaf
1475 * rcu_node structure's ->lock be held. It consults the cached value
1476 * of ->gp_seq_needed in the rcu_data structure, and if that indicates
1477 * that a new grace-period request be made, invokes rcu_accelerate_cbs()
1478 * while holding the leaf rcu_node structure's ->lock.
1479 */
c6e09b97 1480static void rcu_accelerate_cbs_unlocked(struct rcu_node *rnp,
e44e73ca
PM
1481 struct rcu_data *rdp)
1482{
1483 unsigned long c;
1484 bool needwake;
1485
d1b222c6 1486 rcu_lockdep_assert_cblist_protected(rdp);
c6e09b97 1487 c = rcu_seq_snap(&rcu_state.gp_seq);
a5b89501 1488 if (!READ_ONCE(rdp->gpwrap) && ULONG_CMP_GE(rdp->gp_seq_needed, c)) {
e44e73ca
PM
1489 /* Old request still live, so mark recent callbacks. */
1490 (void)rcu_segcblist_accelerate(&rdp->cblist, c);
1491 return;
1492 }
1493 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
02f50142 1494 needwake = rcu_accelerate_cbs(rnp, rdp);
e44e73ca
PM
1495 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
1496 if (needwake)
532c00c9 1497 rcu_gp_kthread_wake();
e44e73ca
PM
1498}
1499
dc35c893
PM
1500/*
1501 * Move any callbacks whose grace period has completed to the
1502 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
29365e56 1503 * assign ->gp_seq numbers to any callbacks in the RCU_NEXT_TAIL
dc35c893
PM
1504 * sublist. This function is idempotent, so it does not hurt to
1505 * invoke it repeatedly. As long as it is not invoked -too- often...
48a7639c 1506 * Returns true if the RCU grace-period kthread needs to be awakened.
dc35c893
PM
1507 *
1508 * The caller must hold rnp->lock with interrupts disabled.
1509 */
834f56bf 1510static bool rcu_advance_cbs(struct rcu_node *rnp, struct rcu_data *rdp)
dc35c893 1511{
d1b222c6 1512 rcu_lockdep_assert_cblist_protected(rdp);
a32e01ee 1513 raw_lockdep_assert_held_rcu_node(rnp);
c0b334c5 1514
15fecf89
PM
1515 /* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1516 if (!rcu_segcblist_pend_cbs(&rdp->cblist))
48a7639c 1517 return false;
dc35c893
PM
1518
1519 /*
29365e56 1520 * Find all callbacks whose ->gp_seq numbers indicate that they
dc35c893
PM
1521 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1522 */
29365e56 1523 rcu_segcblist_advance(&rdp->cblist, rnp->gp_seq);
dc35c893
PM
1524
1525 /* Classify any remaining callbacks. */
02f50142 1526 return rcu_accelerate_cbs(rnp, rdp);
dc35c893
PM
1527}
1528
7f36ef82
PM
1529/*
1530 * Move and classify callbacks, but only if doing so won't require
1531 * that the RCU grace-period kthread be awakened.
1532 */
1533static void __maybe_unused rcu_advance_cbs_nowake(struct rcu_node *rnp,
1534 struct rcu_data *rdp)
1535{
d1b222c6 1536 rcu_lockdep_assert_cblist_protected(rdp);
6608c3a0
PM
1537 if (!rcu_seq_state(rcu_seq_current(&rnp->gp_seq)) ||
1538 !raw_spin_trylock_rcu_node(rnp))
7f36ef82
PM
1539 return;
1540 WARN_ON_ONCE(rcu_advance_cbs(rnp, rdp));
6608c3a0 1541 raw_spin_unlock_rcu_node(rnp);
7f36ef82
PM
1542}
1543
d09b62df 1544/*
ba9fbe95
PM
1545 * Update CPU-local rcu_data state to record the beginnings and ends of
1546 * grace periods. The caller must hold the ->lock of the leaf rcu_node
1547 * structure corresponding to the current CPU, and must have irqs disabled.
48a7639c 1548 * Returns true if the grace-period kthread needs to be awakened.
d09b62df 1549 */
c7e48f7b 1550static bool __note_gp_changes(struct rcu_node *rnp, struct rcu_data *rdp)
d09b62df 1551{
5d6742b3 1552 bool ret = false;
b5ea0370 1553 bool need_qs;
5d6742b3
PM
1554 const bool offloaded = IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
1555 rcu_segcblist_is_offloaded(&rdp->cblist);
48a7639c 1556
a32e01ee 1557 raw_lockdep_assert_held_rcu_node(rnp);
c0b334c5 1558
67e14c1e
PM
1559 if (rdp->gp_seq == rnp->gp_seq)
1560 return false; /* Nothing to do. */
d09b62df 1561
67e14c1e
PM
1562 /* Handle the ends of any preceding grace periods first. */
1563 if (rcu_seq_completed_gp(rdp->gp_seq, rnp->gp_seq) ||
1564 unlikely(READ_ONCE(rdp->gpwrap))) {
5d6742b3
PM
1565 if (!offloaded)
1566 ret = rcu_advance_cbs(rnp, rdp); /* Advance CBs. */
b5ea0370 1567 rdp->core_needs_qs = false;
9cbc5b97 1568 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuend"));
67e14c1e 1569 } else {
5d6742b3
PM
1570 if (!offloaded)
1571 ret = rcu_accelerate_cbs(rnp, rdp); /* Recent CBs. */
b5ea0370
PM
1572 if (rdp->core_needs_qs)
1573 rdp->core_needs_qs = !!(rnp->qsmask & rdp->grpmask);
d09b62df 1574 }
398ebe60 1575
67e14c1e
PM
1576 /* Now handle the beginnings of any new-to-this-CPU grace periods. */
1577 if (rcu_seq_new_gp(rdp->gp_seq, rnp->gp_seq) ||
1578 unlikely(READ_ONCE(rdp->gpwrap))) {
6eaef633
PM
1579 /*
1580 * If the current grace period is waiting for this CPU,
1581 * set up to detect a quiescent state, otherwise don't
1582 * go looking for one.
1583 */
9cbc5b97 1584 trace_rcu_grace_period(rcu_state.name, rnp->gp_seq, TPS("cpustart"));
b5ea0370
PM
1585 need_qs = !!(rnp->qsmask & rdp->grpmask);
1586 rdp->cpu_no_qs.b.norm = need_qs;
1587 rdp->core_needs_qs = need_qs;
6eaef633
PM
1588 zero_cpu_stall_ticks(rdp);
1589 }
67e14c1e 1590 rdp->gp_seq = rnp->gp_seq; /* Remember new grace-period state. */
13dc7d0c 1591 if (ULONG_CMP_LT(rdp->gp_seq_needed, rnp->gp_seq_needed) || rdp->gpwrap)
8ff37290 1592 WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed);
3d18469a
PM
1593 WRITE_ONCE(rdp->gpwrap, false);
1594 rcu_gpnum_ovf(rnp, rdp);
48a7639c 1595 return ret;
6eaef633
PM
1596}
1597
15cabdff 1598static void note_gp_changes(struct rcu_data *rdp)
6eaef633
PM
1599{
1600 unsigned long flags;
48a7639c 1601 bool needwake;
6eaef633
PM
1602 struct rcu_node *rnp;
1603
1604 local_irq_save(flags);
1605 rnp = rdp->mynode;
67e14c1e 1606 if ((rdp->gp_seq == rcu_seq_current(&rnp->gp_seq) &&
7d0ae808 1607 !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
2a67e741 1608 !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */
6eaef633
PM
1609 local_irq_restore(flags);
1610 return;
1611 }
c7e48f7b 1612 needwake = __note_gp_changes(rnp, rdp);
67c583a7 1613 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
48a7639c 1614 if (needwake)
532c00c9 1615 rcu_gp_kthread_wake();
6eaef633
PM
1616}
1617
22212332 1618static void rcu_gp_slow(int delay)
0f41c0dd
PM
1619{
1620 if (delay > 0 &&
22212332 1621 !(rcu_seq_ctr(rcu_state.gp_seq) %
dee4f422 1622 (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
0f41c0dd
PM
1623 schedule_timeout_uninterruptible(delay);
1624}
1625
55b2dcf5
PM
1626static unsigned long sleep_duration;
1627
1628/* Allow rcutorture to stall the grace-period kthread. */
1629void rcu_gp_set_torture_wait(int duration)
1630{
1631 if (IS_ENABLED(CONFIG_RCU_TORTURE_TEST) && duration > 0)
1632 WRITE_ONCE(sleep_duration, duration);
1633}
1634EXPORT_SYMBOL_GPL(rcu_gp_set_torture_wait);
1635
1636/* Actually implement the aforementioned wait. */
1637static void rcu_gp_torture_wait(void)
1638{
1639 unsigned long duration;
1640
1641 if (!IS_ENABLED(CONFIG_RCU_TORTURE_TEST))
1642 return;
1643 duration = xchg(&sleep_duration, 0UL);
1644 if (duration > 0) {
1645 pr_alert("%s: Waiting %lu jiffies\n", __func__, duration);
1646 schedule_timeout_uninterruptible(duration);
1647 pr_alert("%s: Wait complete\n", __func__);
1648 }
1649}
1650
b3dbec76 1651/*
45fed3e7 1652 * Initialize a new grace period. Return false if no grace period required.
b3dbec76 1653 */
0854a05c 1654static bool rcu_gp_init(void)
b3dbec76 1655{
ec2c2976 1656 unsigned long flags;
0aa04b05 1657 unsigned long oldmask;
ec2c2976 1658 unsigned long mask;
b3dbec76 1659 struct rcu_data *rdp;
336a4f6c 1660 struct rcu_node *rnp = rcu_get_root();
b3dbec76 1661
9cbc5b97 1662 WRITE_ONCE(rcu_state.gp_activity, jiffies);
2a67e741 1663 raw_spin_lock_irq_rcu_node(rnp);
9cbc5b97 1664 if (!READ_ONCE(rcu_state.gp_flags)) {
f7be8209 1665 /* Spurious wakeup, tell caller to go back to sleep. */
67c583a7 1666 raw_spin_unlock_irq_rcu_node(rnp);
45fed3e7 1667 return false;
f7be8209 1668 }
9cbc5b97 1669 WRITE_ONCE(rcu_state.gp_flags, 0); /* Clear all flags: New GP. */
b3dbec76 1670
de8e8730 1671 if (WARN_ON_ONCE(rcu_gp_in_progress())) {
f7be8209
PM
1672 /*
1673 * Grace period already in progress, don't start another.
1674 * Not supposed to be able to happen.
1675 */
67c583a7 1676 raw_spin_unlock_irq_rcu_node(rnp);
45fed3e7 1677 return false;
7fdefc10
PM
1678 }
1679
7fdefc10 1680 /* Advance to a new grace period and initialize state. */
ad3832e9 1681 record_gp_stall_check_time();
ff3bb6f4 1682 /* Record GP times before starting GP, hence rcu_seq_start(). */
9cbc5b97 1683 rcu_seq_start(&rcu_state.gp_seq);
62ae1951 1684 ASSERT_EXCLUSIVE_WRITER(rcu_state.gp_seq);
9cbc5b97 1685 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("start"));
67c583a7 1686 raw_spin_unlock_irq_rcu_node(rnp);
7fdefc10 1687
0aa04b05
PM
1688 /*
1689 * Apply per-leaf buffered online and offline operations to the
1690 * rcu_node tree. Note that this new grace period need not wait
1691 * for subsequent online CPUs, and that quiescent-state forcing
1692 * will handle subsequent offline CPUs.
1693 */
9cbc5b97 1694 rcu_state.gp_state = RCU_GP_ONOFF;
aedf4ba9 1695 rcu_for_each_leaf_node(rnp) {
894d45bb 1696 raw_spin_lock(&rcu_state.ofl_lock);
2a67e741 1697 raw_spin_lock_irq_rcu_node(rnp);
0aa04b05
PM
1698 if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
1699 !rnp->wait_blkd_tasks) {
1700 /* Nothing to do on this leaf rcu_node structure. */
67c583a7 1701 raw_spin_unlock_irq_rcu_node(rnp);
894d45bb 1702 raw_spin_unlock(&rcu_state.ofl_lock);
0aa04b05
PM
1703 continue;
1704 }
1705
1706 /* Record old state, apply changes to ->qsmaskinit field. */
1707 oldmask = rnp->qsmaskinit;
1708 rnp->qsmaskinit = rnp->qsmaskinitnext;
1709
1710 /* If zero-ness of ->qsmaskinit changed, propagate up tree. */
1711 if (!oldmask != !rnp->qsmaskinit) {
962aff03
PM
1712 if (!oldmask) { /* First online CPU for rcu_node. */
1713 if (!rnp->wait_blkd_tasks) /* Ever offline? */
1714 rcu_init_new_rnp(rnp);
1715 } else if (rcu_preempt_has_tasks(rnp)) {
1716 rnp->wait_blkd_tasks = true; /* blocked tasks */
1717 } else { /* Last offline CPU and can propagate. */
0aa04b05 1718 rcu_cleanup_dead_rnp(rnp);
962aff03 1719 }
0aa04b05
PM
1720 }
1721
1722 /*
1723 * If all waited-on tasks from prior grace period are
1724 * done, and if all this rcu_node structure's CPUs are
1725 * still offline, propagate up the rcu_node tree and
1726 * clear ->wait_blkd_tasks. Otherwise, if one of this
1727 * rcu_node structure's CPUs has since come back online,
962aff03 1728 * simply clear ->wait_blkd_tasks.
0aa04b05
PM
1729 */
1730 if (rnp->wait_blkd_tasks &&
962aff03 1731 (!rcu_preempt_has_tasks(rnp) || rnp->qsmaskinit)) {
0aa04b05 1732 rnp->wait_blkd_tasks = false;
962aff03
PM
1733 if (!rnp->qsmaskinit)
1734 rcu_cleanup_dead_rnp(rnp);
0aa04b05
PM
1735 }
1736
67c583a7 1737 raw_spin_unlock_irq_rcu_node(rnp);
894d45bb 1738 raw_spin_unlock(&rcu_state.ofl_lock);
0aa04b05 1739 }
22212332 1740 rcu_gp_slow(gp_preinit_delay); /* Races with CPU hotplug. */
7fdefc10
PM
1741
1742 /*
1743 * Set the quiescent-state-needed bits in all the rcu_node
9cbc5b97
PM
1744 * structures for all currently online CPUs in breadth-first
1745 * order, starting from the root rcu_node structure, relying on the
1746 * layout of the tree within the rcu_state.node[] array. Note that
1747 * other CPUs will access only the leaves of the hierarchy, thus
1748 * seeing that no grace period is in progress, at least until the
1749 * corresponding leaf node has been initialized.
7fdefc10
PM
1750 *
1751 * The grace period cannot complete until the initialization
1752 * process finishes, because this kthread handles both.
1753 */
9cbc5b97 1754 rcu_state.gp_state = RCU_GP_INIT;
aedf4ba9 1755 rcu_for_each_node_breadth_first(rnp) {
22212332 1756 rcu_gp_slow(gp_init_delay);
ec2c2976 1757 raw_spin_lock_irqsave_rcu_node(rnp, flags);
da1df50d 1758 rdp = this_cpu_ptr(&rcu_data);
81ab59a3 1759 rcu_preempt_check_blocked_tasks(rnp);
7fdefc10 1760 rnp->qsmask = rnp->qsmaskinit;
9cbc5b97 1761 WRITE_ONCE(rnp->gp_seq, rcu_state.gp_seq);
7fdefc10 1762 if (rnp == rdp->mynode)
c7e48f7b 1763 (void)__note_gp_changes(rnp, rdp);
7fdefc10 1764 rcu_preempt_boost_start_gp(rnp);
9cbc5b97 1765 trace_rcu_grace_period_init(rcu_state.name, rnp->gp_seq,
7fdefc10
PM
1766 rnp->level, rnp->grplo,
1767 rnp->grphi, rnp->qsmask);
ec2c2976
PM
1768 /* Quiescent states for tasks on any now-offline CPUs. */
1769 mask = rnp->qsmask & ~rnp->qsmaskinitnext;
f2e2df59 1770 rnp->rcu_gp_init_mask = mask;
ec2c2976 1771 if ((mask || rnp->wait_blkd_tasks) && rcu_is_leaf_node(rnp))
b50912d0 1772 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
ec2c2976
PM
1773 else
1774 raw_spin_unlock_irq_rcu_node(rnp);
cee43939 1775 cond_resched_tasks_rcu_qs();
9cbc5b97 1776 WRITE_ONCE(rcu_state.gp_activity, jiffies);
7fdefc10 1777 }
b3dbec76 1778
45fed3e7 1779 return true;
7fdefc10 1780}
b3dbec76 1781
b9a425cf 1782/*
b3dae109 1783 * Helper function for swait_event_idle_exclusive() wakeup at force-quiescent-state
d5374226 1784 * time.
b9a425cf 1785 */
0854a05c 1786static bool rcu_gp_fqs_check_wake(int *gfp)
b9a425cf 1787{
336a4f6c 1788 struct rcu_node *rnp = rcu_get_root();
b9a425cf 1789
1fca4d12
PM
1790 // If under overload conditions, force an immediate FQS scan.
1791 if (*gfp & RCU_GP_FLAG_OVLD)
1792 return true;
1793
1794 // Someone like call_rcu() requested a force-quiescent-state scan.
0854a05c 1795 *gfp = READ_ONCE(rcu_state.gp_flags);
b9a425cf
PM
1796 if (*gfp & RCU_GP_FLAG_FQS)
1797 return true;
1798
1fca4d12 1799 // The current grace period has completed.
b9a425cf
PM
1800 if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
1801 return true;
1802
1803 return false;
1804}
1805
4cdfc175
PM
1806/*
1807 * Do one round of quiescent-state forcing.
1808 */
0854a05c 1809static void rcu_gp_fqs(bool first_time)
4cdfc175 1810{
336a4f6c 1811 struct rcu_node *rnp = rcu_get_root();
4cdfc175 1812
9cbc5b97
PM
1813 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1814 rcu_state.n_force_qs++;
77f81fe0 1815 if (first_time) {
4cdfc175 1816 /* Collect dyntick-idle snapshots. */
e9ecb780 1817 force_qs_rnp(dyntick_save_progress_counter);
4cdfc175
PM
1818 } else {
1819 /* Handle dyntick-idle and offline CPUs. */
e9ecb780 1820 force_qs_rnp(rcu_implicit_dynticks_qs);
4cdfc175
PM
1821 }
1822 /* Clear flag to prevent immediate re-entry. */
9cbc5b97 1823 if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) {
2a67e741 1824 raw_spin_lock_irq_rcu_node(rnp);
9cbc5b97
PM
1825 WRITE_ONCE(rcu_state.gp_flags,
1826 READ_ONCE(rcu_state.gp_flags) & ~RCU_GP_FLAG_FQS);
67c583a7 1827 raw_spin_unlock_irq_rcu_node(rnp);
4cdfc175 1828 }
4cdfc175
PM
1829}
1830
c3854a05
PM
1831/*
1832 * Loop doing repeated quiescent-state forcing until the grace period ends.
1833 */
1834static void rcu_gp_fqs_loop(void)
1835{
1836 bool first_gp_fqs;
1fca4d12 1837 int gf = 0;
c3854a05
PM
1838 unsigned long j;
1839 int ret;
1840 struct rcu_node *rnp = rcu_get_root();
1841
1842 first_gp_fqs = true;
c06aed0e 1843 j = READ_ONCE(jiffies_till_first_fqs);
1fca4d12
PM
1844 if (rcu_state.cbovld)
1845 gf = RCU_GP_FLAG_OVLD;
c3854a05
PM
1846 ret = 0;
1847 for (;;) {
1848 if (!ret) {
1849 rcu_state.jiffies_force_qs = jiffies + j;
1850 WRITE_ONCE(rcu_state.jiffies_kick_kthreads,
9cf422a8 1851 jiffies + (j ? 3 * j : 2));
c3854a05 1852 }
0f11ad32 1853 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
c3854a05
PM
1854 TPS("fqswait"));
1855 rcu_state.gp_state = RCU_GP_WAIT_FQS;
1856 ret = swait_event_idle_timeout_exclusive(
1857 rcu_state.gp_wq, rcu_gp_fqs_check_wake(&gf), j);
55b2dcf5 1858 rcu_gp_torture_wait();
c3854a05
PM
1859 rcu_state.gp_state = RCU_GP_DOING_FQS;
1860 /* Locking provides needed memory barriers. */
1861 /* If grace period done, leave loop. */
1862 if (!READ_ONCE(rnp->qsmask) &&
1863 !rcu_preempt_blocked_readers_cgp(rnp))
1864 break;
1865 /* If time for quiescent-state forcing, do it. */
29ffebc5 1866 if (!time_after(rcu_state.jiffies_force_qs, jiffies) ||
c3854a05 1867 (gf & RCU_GP_FLAG_FQS)) {
0f11ad32 1868 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
c3854a05
PM
1869 TPS("fqsstart"));
1870 rcu_gp_fqs(first_gp_fqs);
1fca4d12
PM
1871 gf = 0;
1872 if (first_gp_fqs) {
1873 first_gp_fqs = false;
1874 gf = rcu_state.cbovld ? RCU_GP_FLAG_OVLD : 0;
1875 }
0f11ad32 1876 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
c3854a05
PM
1877 TPS("fqsend"));
1878 cond_resched_tasks_rcu_qs();
1879 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1880 ret = 0; /* Force full wait till next FQS. */
c06aed0e 1881 j = READ_ONCE(jiffies_till_next_fqs);
c3854a05
PM
1882 } else {
1883 /* Deal with stray signal. */
1884 cond_resched_tasks_rcu_qs();
1885 WRITE_ONCE(rcu_state.gp_activity, jiffies);
1886 WARN_ON(signal_pending(current));
0f11ad32 1887 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
c3854a05
PM
1888 TPS("fqswaitsig"));
1889 ret = 1; /* Keep old FQS timing. */
1890 j = jiffies;
1891 if (time_after(jiffies, rcu_state.jiffies_force_qs))
1892 j = 1;
1893 else
1894 j = rcu_state.jiffies_force_qs - j;
1fca4d12 1895 gf = 0;
c3854a05
PM
1896 }
1897 }
1898}
1899
7fdefc10
PM
1900/*
1901 * Clean up after the old grace period.
1902 */
0854a05c 1903static void rcu_gp_cleanup(void)
7fdefc10 1904{
b2b00ddf 1905 int cpu;
48a7639c 1906 bool needgp = false;
b2b00ddf 1907 unsigned long gp_duration;
de30ad51 1908 unsigned long new_gp_seq;
5d6742b3 1909 bool offloaded;
7fdefc10 1910 struct rcu_data *rdp;
336a4f6c 1911 struct rcu_node *rnp = rcu_get_root();
abedf8e2 1912 struct swait_queue_head *sq;
b3dbec76 1913
9cbc5b97 1914 WRITE_ONCE(rcu_state.gp_activity, jiffies);
2a67e741 1915 raw_spin_lock_irq_rcu_node(rnp);
c51d7b5e
PM
1916 rcu_state.gp_end = jiffies;
1917 gp_duration = rcu_state.gp_end - rcu_state.gp_start;
9cbc5b97
PM
1918 if (gp_duration > rcu_state.gp_max)
1919 rcu_state.gp_max = gp_duration;
b3dbec76 1920
7fdefc10
PM
1921 /*
1922 * We know the grace period is complete, but to everyone else
1923 * it appears to still be ongoing. But it is also the case
1924 * that to everyone else it looks like there is nothing that
1925 * they can do to advance the grace period. It is therefore
1926 * safe for us to drop the lock in order to mark the grace
1927 * period as completed in all of the rcu_node structures.
7fdefc10 1928 */
67c583a7 1929 raw_spin_unlock_irq_rcu_node(rnp);
b3dbec76 1930
5d4b8659 1931 /*
ff3bb6f4
PM
1932 * Propagate new ->gp_seq value to rcu_node structures so that
1933 * other CPUs don't have to wait until the start of the next grace
1934 * period to process their callbacks. This also avoids some nasty
1935 * RCU grace-period initialization races by forcing the end of
1936 * the current grace period to be completely recorded in all of
1937 * the rcu_node structures before the beginning of the next grace
1938 * period is recorded in any of the rcu_node structures.
5d4b8659 1939 */
9cbc5b97 1940 new_gp_seq = rcu_state.gp_seq;
de30ad51 1941 rcu_seq_end(&new_gp_seq);
aedf4ba9 1942 rcu_for_each_node_breadth_first(rnp) {
2a67e741 1943 raw_spin_lock_irq_rcu_node(rnp);
4bc8d555 1944 if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)))
81ab59a3 1945 dump_blkd_tasks(rnp, 10);
5c60d25f 1946 WARN_ON_ONCE(rnp->qsmask);
de30ad51 1947 WRITE_ONCE(rnp->gp_seq, new_gp_seq);
da1df50d 1948 rdp = this_cpu_ptr(&rcu_data);
b11cc576 1949 if (rnp == rdp->mynode)
c7e48f7b 1950 needgp = __note_gp_changes(rnp, rdp) || needgp;
78e4bc34 1951 /* smp_mb() provided by prior unlock-lock pair. */
3481f2ea 1952 needgp = rcu_future_gp_cleanup(rnp) || needgp;
b2b00ddf
PM
1953 // Reset overload indication for CPUs no longer overloaded
1954 if (rcu_is_leaf_node(rnp))
1955 for_each_leaf_node_cpu_mask(rnp, cpu, rnp->cbovldmask) {
1956 rdp = per_cpu_ptr(&rcu_data, cpu);
1957 check_cb_ovld_locked(rdp, rnp);
1958 }
065bb78c 1959 sq = rcu_nocb_gp_get(rnp);
67c583a7 1960 raw_spin_unlock_irq_rcu_node(rnp);
065bb78c 1961 rcu_nocb_gp_cleanup(sq);
cee43939 1962 cond_resched_tasks_rcu_qs();
9cbc5b97 1963 WRITE_ONCE(rcu_state.gp_activity, jiffies);
22212332 1964 rcu_gp_slow(gp_cleanup_delay);
7fdefc10 1965 }
336a4f6c 1966 rnp = rcu_get_root();
9cbc5b97 1967 raw_spin_lock_irq_rcu_node(rnp); /* GP before ->gp_seq update. */
7fdefc10 1968
0a89e5a4 1969 /* Declare grace period done, trace first to use old GP number. */
9cbc5b97 1970 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("end"));
0a89e5a4 1971 rcu_seq_end(&rcu_state.gp_seq);
62ae1951 1972 ASSERT_EXCLUSIVE_WRITER(rcu_state.gp_seq);
9cbc5b97 1973 rcu_state.gp_state = RCU_GP_IDLE;
fb31340f 1974 /* Check for GP requests since above loop. */
da1df50d 1975 rdp = this_cpu_ptr(&rcu_data);
5b55072f 1976 if (!needgp && ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed)) {
abd13fdd 1977 trace_rcu_this_gp(rnp, rdp, rnp->gp_seq_needed,
41e80595 1978 TPS("CleanupMore"));
fb31340f
PM
1979 needgp = true;
1980 }
48a7639c 1981 /* Advance CBs to reduce false positives below. */
5d6742b3
PM
1982 offloaded = IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
1983 rcu_segcblist_is_offloaded(&rdp->cblist);
1984 if ((offloaded || !rcu_accelerate_cbs(rnp, rdp)) && needgp) {
9cbc5b97 1985 WRITE_ONCE(rcu_state.gp_flags, RCU_GP_FLAG_INIT);
2906d215 1986 WRITE_ONCE(rcu_state.gp_req_activity, jiffies);
9cbc5b97 1987 trace_rcu_grace_period(rcu_state.name,
0f11ad32 1988 rcu_state.gp_seq,
bb311ecc 1989 TPS("newreq"));
18390aea 1990 } else {
9cbc5b97
PM
1991 WRITE_ONCE(rcu_state.gp_flags,
1992 rcu_state.gp_flags & RCU_GP_FLAG_INIT);
bb311ecc 1993 }
67c583a7 1994 raw_spin_unlock_irq_rcu_node(rnp);
7fdefc10
PM
1995}
1996
1997/*
1998 * Body of kthread that handles grace periods.
1999 */
0854a05c 2000static int __noreturn rcu_gp_kthread(void *unused)
7fdefc10 2001{
5871968d 2002 rcu_bind_gp_kthread();
7fdefc10
PM
2003 for (;;) {
2004
2005 /* Handle grace-period start. */
2006 for (;;) {
0f11ad32 2007 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
63c4db78 2008 TPS("reqwait"));
9cbc5b97
PM
2009 rcu_state.gp_state = RCU_GP_WAIT_GPS;
2010 swait_event_idle_exclusive(rcu_state.gp_wq,
2011 READ_ONCE(rcu_state.gp_flags) &
2012 RCU_GP_FLAG_INIT);
55b2dcf5 2013 rcu_gp_torture_wait();
9cbc5b97 2014 rcu_state.gp_state = RCU_GP_DONE_GPS;
78e4bc34 2015 /* Locking provides needed memory barrier. */
0854a05c 2016 if (rcu_gp_init())
7fdefc10 2017 break;
cee43939 2018 cond_resched_tasks_rcu_qs();
9cbc5b97 2019 WRITE_ONCE(rcu_state.gp_activity, jiffies);
73a860cd 2020 WARN_ON(signal_pending(current));
0f11ad32 2021 trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
63c4db78 2022 TPS("reqwaitsig"));
7fdefc10 2023 }
cabc49c1 2024
4cdfc175 2025 /* Handle quiescent-state forcing. */
c3854a05 2026 rcu_gp_fqs_loop();
4cdfc175
PM
2027
2028 /* Handle grace-period end. */
9cbc5b97 2029 rcu_state.gp_state = RCU_GP_CLEANUP;
0854a05c 2030 rcu_gp_cleanup();
9cbc5b97 2031 rcu_state.gp_state = RCU_GP_CLEANED;
b3dbec76 2032 }
b3dbec76
PM
2033}
2034
f41d911f 2035/*
49918a54
PM
2036 * Report a full set of quiescent states to the rcu_state data structure.
2037 * Invoke rcu_gp_kthread_wake() to awaken the grace-period kthread if
2038 * another grace period is required. Whether we wake the grace-period
2039 * kthread or it awakens itself for the next round of quiescent-state
2040 * forcing, that kthread will clean up after the just-completed grace
2041 * period. Note that the caller must hold rnp->lock, which is released
2042 * before return.
f41d911f 2043 */
aff4e9ed 2044static void rcu_report_qs_rsp(unsigned long flags)
336a4f6c 2045 __releases(rcu_get_root()->lock)
f41d911f 2046{
336a4f6c 2047 raw_lockdep_assert_held_rcu_node(rcu_get_root());
de8e8730 2048 WARN_ON_ONCE(!rcu_gp_in_progress());
9cbc5b97
PM
2049 WRITE_ONCE(rcu_state.gp_flags,
2050 READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS);
336a4f6c 2051 raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(), flags);
532c00c9 2052 rcu_gp_kthread_wake();
f41d911f
PM
2053}
2054
64db4cff 2055/*
d3f6bad3
PM
2056 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
2057 * Allows quiescent states for a group of CPUs to be reported at one go
2058 * to the specified rcu_node structure, though all the CPUs in the group
654e9533
PM
2059 * must be represented by the same rcu_node structure (which need not be a
2060 * leaf rcu_node structure, though it often will be). The gps parameter
2061 * is the grace-period snapshot, which means that the quiescent states
c9a24e2d 2062 * are valid only if rnp->gp_seq is equal to gps. That structure's lock
654e9533 2063 * must be held upon entry, and it is released before return.
ec2c2976
PM
2064 *
2065 * As a special case, if mask is zero, the bit-already-cleared check is
2066 * disabled. This allows propagating quiescent state due to resumed tasks
2067 * during grace-period initialization.
64db4cff 2068 */
b50912d0
PM
2069static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
2070 unsigned long gps, unsigned long flags)
64db4cff
PM
2071 __releases(rnp->lock)
2072{
654e9533 2073 unsigned long oldmask = 0;
28ecd580
PM
2074 struct rcu_node *rnp_c;
2075
a32e01ee 2076 raw_lockdep_assert_held_rcu_node(rnp);
c0b334c5 2077
64db4cff
PM
2078 /* Walk up the rcu_node hierarchy. */
2079 for (;;) {
ec2c2976 2080 if ((!(rnp->qsmask & mask) && mask) || rnp->gp_seq != gps) {
64db4cff 2081
654e9533
PM
2082 /*
2083 * Our bit has already been cleared, or the
2084 * relevant grace period is already over, so done.
2085 */
67c583a7 2086 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff
PM
2087 return;
2088 }
654e9533 2089 WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
5b4c11d5 2090 WARN_ON_ONCE(!rcu_is_leaf_node(rnp) &&
2dee9404 2091 rcu_preempt_blocked_readers_cgp(rnp));
7672d647 2092 WRITE_ONCE(rnp->qsmask, rnp->qsmask & ~mask);
67a0edbf 2093 trace_rcu_quiescent_state_report(rcu_state.name, rnp->gp_seq,
d4c08f2a
PM
2094 mask, rnp->qsmask, rnp->level,
2095 rnp->grplo, rnp->grphi,
2096 !!rnp->gp_tasks);
27f4d280 2097 if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
64db4cff
PM
2098
2099 /* Other bits still set at this level, so done. */
67c583a7 2100 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff
PM
2101 return;
2102 }
d43a5d32 2103 rnp->completedqs = rnp->gp_seq;
64db4cff
PM
2104 mask = rnp->grpmask;
2105 if (rnp->parent == NULL) {
2106
2107 /* No more levels. Exit loop holding root lock. */
2108
2109 break;
2110 }
67c583a7 2111 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
28ecd580 2112 rnp_c = rnp;
64db4cff 2113 rnp = rnp->parent;
2a67e741 2114 raw_spin_lock_irqsave_rcu_node(rnp, flags);
0937d045 2115 oldmask = READ_ONCE(rnp_c->qsmask);
64db4cff
PM
2116 }
2117
2118 /*
2119 * Get here if we are the last CPU to pass through a quiescent
d3f6bad3 2120 * state for this grace period. Invoke rcu_report_qs_rsp()
f41d911f 2121 * to clean up and start the next grace period if one is needed.
64db4cff 2122 */
aff4e9ed 2123 rcu_report_qs_rsp(flags); /* releases rnp->lock. */
64db4cff
PM
2124}
2125
cc99a310
PM
2126/*
2127 * Record a quiescent state for all tasks that were previously queued
2128 * on the specified rcu_node structure and that were blocking the current
49918a54 2129 * RCU grace period. The caller must hold the corresponding rnp->lock with
cc99a310
PM
2130 * irqs disabled, and this lock is released upon return, but irqs remain
2131 * disabled.
2132 */
17a8212b 2133static void __maybe_unused
139ad4da 2134rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
cc99a310
PM
2135 __releases(rnp->lock)
2136{
654e9533 2137 unsigned long gps;
cc99a310
PM
2138 unsigned long mask;
2139 struct rcu_node *rnp_p;
2140
a32e01ee 2141 raw_lockdep_assert_held_rcu_node(rnp);
c130d2dc 2142 if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT_RCU)) ||
c74859d1
PM
2143 WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)) ||
2144 rnp->qsmask != 0) {
67c583a7 2145 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
cc99a310
PM
2146 return; /* Still need more quiescent states! */
2147 }
2148
77cfc7bf 2149 rnp->completedqs = rnp->gp_seq;
cc99a310
PM
2150 rnp_p = rnp->parent;
2151 if (rnp_p == NULL) {
2152 /*
a77da14c
PM
2153 * Only one rcu_node structure in the tree, so don't
2154 * try to report up to its nonexistent parent!
cc99a310 2155 */
aff4e9ed 2156 rcu_report_qs_rsp(flags);
cc99a310
PM
2157 return;
2158 }
2159
c9a24e2d
PM
2160 /* Report up the rest of the hierarchy, tracking current ->gp_seq. */
2161 gps = rnp->gp_seq;
cc99a310 2162 mask = rnp->grpmask;
67c583a7 2163 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2a67e741 2164 raw_spin_lock_rcu_node(rnp_p); /* irqs already disabled. */
b50912d0 2165 rcu_report_qs_rnp(mask, rnp_p, gps, flags);
cc99a310
PM
2166}
2167
64db4cff 2168/*
d3f6bad3 2169 * Record a quiescent state for the specified CPU to that CPU's rcu_data
4b455dc3 2170 * structure. This must be called from the specified CPU.
64db4cff
PM
2171 */
2172static void
33085c46 2173rcu_report_qs_rdp(int cpu, struct rcu_data *rdp)
64db4cff
PM
2174{
2175 unsigned long flags;
2176 unsigned long mask;
5d6742b3
PM
2177 bool needwake = false;
2178 const bool offloaded = IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
2179 rcu_segcblist_is_offloaded(&rdp->cblist);
64db4cff
PM
2180 struct rcu_node *rnp;
2181
2182 rnp = rdp->mynode;
2a67e741 2183 raw_spin_lock_irqsave_rcu_node(rnp, flags);
c9a24e2d
PM
2184 if (rdp->cpu_no_qs.b.norm || rdp->gp_seq != rnp->gp_seq ||
2185 rdp->gpwrap) {
64db4cff
PM
2186
2187 /*
e4cc1f22
PM
2188 * The grace period in which this quiescent state was
2189 * recorded has ended, so don't report it upwards.
2190 * We will instead need a new quiescent state that lies
2191 * within the current grace period.
64db4cff 2192 */
5b74c458 2193 rdp->cpu_no_qs.b.norm = true; /* need qs for new gp. */
67c583a7 2194 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff
PM
2195 return;
2196 }
2197 mask = rdp->grpmask;
b5ea0370
PM
2198 if (rdp->cpu == smp_processor_id())
2199 rdp->core_needs_qs = false;
64db4cff 2200 if ((rnp->qsmask & mask) == 0) {
67c583a7 2201 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff 2202 } else {
64db4cff
PM
2203 /*
2204 * This GP can't end until cpu checks in, so all of our
2205 * callbacks can be processed during the next GP.
2206 */
5d6742b3
PM
2207 if (!offloaded)
2208 needwake = rcu_accelerate_cbs(rnp, rdp);
64db4cff 2209
516e5ae0 2210 rcu_disable_urgency_upon_qs(rdp);
b50912d0 2211 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
654e9533 2212 /* ^^^ Released rnp->lock */
48a7639c 2213 if (needwake)
532c00c9 2214 rcu_gp_kthread_wake();
64db4cff
PM
2215 }
2216}
2217
2218/*
2219 * Check to see if there is a new grace period of which this CPU
2220 * is not yet aware, and if so, set up local rcu_data state for it.
2221 * Otherwise, see if this CPU has just passed through its first
2222 * quiescent state for this grace period, and record that fact if so.
2223 */
2224static void
8087d3e3 2225rcu_check_quiescent_state(struct rcu_data *rdp)
64db4cff 2226{
05eb552b 2227 /* Check for grace-period ends and beginnings. */
15cabdff 2228 note_gp_changes(rdp);
64db4cff
PM
2229
2230 /*
2231 * Does this CPU still need to do its part for current grace period?
2232 * If no, return and let the other CPUs do their part as well.
2233 */
97c668b8 2234 if (!rdp->core_needs_qs)
64db4cff
PM
2235 return;
2236
2237 /*
2238 * Was there a quiescent state since the beginning of the grace
2239 * period? If no, then exit and wait for the next call.
2240 */
3a19b46a 2241 if (rdp->cpu_no_qs.b.norm)
64db4cff
PM
2242 return;
2243
d3f6bad3
PM
2244 /*
2245 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2246 * judge of that).
2247 */
33085c46 2248 rcu_report_qs_rdp(rdp->cpu, rdp);
64db4cff
PM
2249}
2250
b1420f1c 2251/*
780cd590
PM
2252 * Near the end of the offline process. Trace the fact that this CPU
2253 * is going offline.
b1420f1c 2254 */
780cd590 2255int rcutree_dying_cpu(unsigned int cpu)
b1420f1c 2256{
4f5fbd78
YS
2257 bool blkd;
2258 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
2259 struct rcu_node *rnp = rdp->mynode;
b1420f1c 2260
ea46351c 2261 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
780cd590 2262 return 0;
ea46351c 2263
4f5fbd78 2264 blkd = !!(rnp->qsmask & rdp->grpmask);
0937d045 2265 trace_rcu_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq),
477351f7 2266 blkd ? TPS("cpuofl") : TPS("cpuofl-bgp"));
780cd590 2267 return 0;
64db4cff
PM
2268}
2269
8af3a5e7
PM
2270/*
2271 * All CPUs for the specified rcu_node structure have gone offline,
2272 * and all tasks that were preempted within an RCU read-side critical
2273 * section while running on one of those CPUs have since exited their RCU
2274 * read-side critical section. Some other CPU is reporting this fact with
2275 * the specified rcu_node structure's ->lock held and interrupts disabled.
2276 * This function therefore goes up the tree of rcu_node structures,
2277 * clearing the corresponding bits in the ->qsmaskinit fields. Note that
2278 * the leaf rcu_node structure's ->qsmaskinit field has already been
c50cbe53 2279 * updated.
8af3a5e7
PM
2280 *
2281 * This function does check that the specified rcu_node structure has
2282 * all CPUs offline and no blocked tasks, so it is OK to invoke it
2283 * prematurely. That said, invoking it after the fact will cost you
2284 * a needless lock acquisition. So once it has done its work, don't
2285 * invoke it again.
2286 */
2287static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
2288{
2289 long mask;
2290 struct rcu_node *rnp = rnp_leaf;
2291
962aff03 2292 raw_lockdep_assert_held_rcu_node(rnp_leaf);
ea46351c 2293 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
962aff03
PM
2294 WARN_ON_ONCE(rnp_leaf->qsmaskinit) ||
2295 WARN_ON_ONCE(rcu_preempt_has_tasks(rnp_leaf)))
8af3a5e7
PM
2296 return;
2297 for (;;) {
2298 mask = rnp->grpmask;
2299 rnp = rnp->parent;
2300 if (!rnp)
2301 break;
2a67e741 2302 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
8af3a5e7 2303 rnp->qsmaskinit &= ~mask;
962aff03
PM
2304 /* Between grace periods, so better already be zero! */
2305 WARN_ON_ONCE(rnp->qsmask);
8af3a5e7 2306 if (rnp->qsmaskinit) {
67c583a7
BF
2307 raw_spin_unlock_rcu_node(rnp);
2308 /* irqs remain disabled. */
8af3a5e7
PM
2309 return;
2310 }
67c583a7 2311 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
8af3a5e7
PM
2312 }
2313}
2314
64db4cff 2315/*
e5601400 2316 * The CPU has been completely removed, and some other CPU is reporting
a58163d8
PM
2317 * this fact from process context. Do the remainder of the cleanup.
2318 * There can only be one CPU hotplug operation at a time, so no need for
2319 * explicit locking.
64db4cff 2320 */
780cd590 2321int rcutree_dead_cpu(unsigned int cpu)
64db4cff 2322{
da1df50d 2323 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
b1420f1c 2324 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
e5601400 2325
ea46351c 2326 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
780cd590 2327 return 0;
ea46351c 2328
2036d94a 2329 /* Adjust any no-longer-needed kthreads. */
5d01bbd1 2330 rcu_boost_kthread_setaffinity(rnp, -1);
780cd590
PM
2331 /* Do any needed no-CB deferred wakeups from this CPU. */
2332 do_nocb_deferred_wakeup(per_cpu_ptr(&rcu_data, cpu));
96926686
PM
2333
2334 // Stop-machine done, so allow nohz_full to disable tick.
2335 tick_dep_clear(TICK_DEP_BIT_RCU);
780cd590 2336 return 0;
64db4cff
PM
2337}
2338
64db4cff
PM
2339/*
2340 * Invoke any RCU callbacks that have made it to the end of their grace
2341 * period. Thottle as specified by rdp->blimit.
2342 */
5bb5d09c 2343static void rcu_do_batch(struct rcu_data *rdp)
64db4cff
PM
2344{
2345 unsigned long flags;
ec5ef87b
PM
2346 const bool offloaded = IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
2347 rcu_segcblist_is_offloaded(&rdp->cblist);
15fecf89
PM
2348 struct rcu_head *rhp;
2349 struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl);
2350 long bl, count;
cfcdef5e 2351 long pending, tlimit = 0;
64db4cff 2352
dc35c893 2353 /* If no callbacks are ready, just return. */
15fecf89 2354 if (!rcu_segcblist_ready_cbs(&rdp->cblist)) {
3c779dfe 2355 trace_rcu_batch_start(rcu_state.name,
15fecf89 2356 rcu_segcblist_n_cbs(&rdp->cblist), 0);
3c779dfe 2357 trace_rcu_batch_end(rcu_state.name, 0,
15fecf89 2358 !rcu_segcblist_empty(&rdp->cblist),
4968c300
PM
2359 need_resched(), is_idle_task(current),
2360 rcu_is_callbacks_kthread());
64db4cff 2361 return;
29c00b4a 2362 }
64db4cff
PM
2363
2364 /*
2365 * Extract the list of ready callbacks, disabling to prevent
15fecf89
PM
2366 * races with call_rcu() from interrupt handlers. Leave the
2367 * callback counts, as rcu_barrier() needs to be conservative.
64db4cff
PM
2368 */
2369 local_irq_save(flags);
5d6742b3 2370 rcu_nocb_lock(rdp);
8146c4e2 2371 WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
cfcdef5e
ED
2372 pending = rcu_segcblist_n_cbs(&rdp->cblist);
2373 bl = max(rdp->blimit, pending >> rcu_divisor);
2374 if (unlikely(bl > 100))
2375 tlimit = local_clock() + rcu_resched_ns;
3c779dfe 2376 trace_rcu_batch_start(rcu_state.name,
15fecf89
PM
2377 rcu_segcblist_n_cbs(&rdp->cblist), bl);
2378 rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl);
7f36ef82
PM
2379 if (offloaded)
2380 rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
5d6742b3 2381 rcu_nocb_unlock_irqrestore(rdp, flags);
64db4cff
PM
2382
2383 /* Invoke callbacks. */
6a949b7a 2384 tick_dep_set_task(current, TICK_DEP_BIT_RCU);
15fecf89
PM
2385 rhp = rcu_cblist_dequeue(&rcl);
2386 for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) {
77a40f97
JFG
2387 rcu_callback_t f;
2388
15fecf89 2389 debug_rcu_head_unqueue(rhp);
77a40f97
JFG
2390
2391 rcu_lock_acquire(&rcu_callback_map);
2392 trace_rcu_invoke_callback(rcu_state.name, rhp);
2393
2394 f = rhp->func;
2395 WRITE_ONCE(rhp->func, (rcu_callback_t)0L);
2396 f(rhp);
2397
2398 rcu_lock_release(&rcu_callback_map);
2399
15fecf89
PM
2400 /*
2401 * Stop only if limit reached and CPU has something to do.
2402 * Note: The rcl structure counts down from zero.
2403 */
ec5ef87b 2404 if (-rcl.len >= bl && !offloaded &&
dff1672d
PM
2405 (need_resched() ||
2406 (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
64db4cff 2407 break;
cfcdef5e
ED
2408 if (unlikely(tlimit)) {
2409 /* only call local_clock() every 32 callbacks */
2410 if (likely((-rcl.len & 31) || local_clock() < tlimit))
2411 continue;
2412 /* Exceeded the time limit, so leave. */
2413 break;
2414 }
ec5ef87b 2415 if (offloaded) {
5d6742b3
PM
2416 WARN_ON_ONCE(in_serving_softirq());
2417 local_bh_enable();
2418 lockdep_assert_irqs_enabled();
2419 cond_resched_tasks_rcu_qs();
2420 lockdep_assert_irqs_enabled();
2421 local_bh_disable();
2422 }
64db4cff
PM
2423 }
2424
2425 local_irq_save(flags);
5d6742b3 2426 rcu_nocb_lock(rdp);
4b27f20b 2427 count = -rcl.len;
3c779dfe 2428 trace_rcu_batch_end(rcu_state.name, count, !!rcl.head, need_resched(),
8ef0f37e 2429 is_idle_task(current), rcu_is_callbacks_kthread());
64db4cff 2430
15fecf89
PM
2431 /* Update counts and requeue any remaining callbacks. */
2432 rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl);
b1420f1c 2433 smp_mb(); /* List handling before counting for rcu_barrier(). */
15fecf89 2434 rcu_segcblist_insert_count(&rdp->cblist, &rcl);
64db4cff
PM
2435
2436 /* Reinstate batch limit if we have worked down the excess. */
15fecf89 2437 count = rcu_segcblist_n_cbs(&rdp->cblist);
d5a9a8c3 2438 if (rdp->blimit >= DEFAULT_MAX_RCU_BLIMIT && count <= qlowmark)
64db4cff
PM
2439 rdp->blimit = blimit;
2440
37c72e56 2441 /* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
15fecf89 2442 if (count == 0 && rdp->qlen_last_fqs_check != 0) {
37c72e56 2443 rdp->qlen_last_fqs_check = 0;
3c779dfe 2444 rdp->n_force_qs_snap = rcu_state.n_force_qs;
15fecf89
PM
2445 } else if (count < rdp->qlen_last_fqs_check - qhimark)
2446 rdp->qlen_last_fqs_check = count;
efd88b02
PM
2447
2448 /*
2449 * The following usually indicates a double call_rcu(). To track
2450 * this down, try building with CONFIG_DEBUG_OBJECTS_RCU_HEAD=y.
2451 */
d1b222c6
PM
2452 WARN_ON_ONCE(count == 0 && !rcu_segcblist_empty(&rdp->cblist));
2453 WARN_ON_ONCE(!IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
2454 count != 0 && rcu_segcblist_empty(&rdp->cblist));
37c72e56 2455
5d6742b3 2456 rcu_nocb_unlock_irqrestore(rdp, flags);
64db4cff 2457
e0f23060 2458 /* Re-invoke RCU core processing if there are callbacks remaining. */
ec5ef87b 2459 if (!offloaded && rcu_segcblist_ready_cbs(&rdp->cblist))
a46e0899 2460 invoke_rcu_core();
6a949b7a 2461 tick_dep_clear_task(current, TICK_DEP_BIT_RCU);
64db4cff
PM
2462}
2463
2464/*
c98cac60
PM
2465 * This function is invoked from each scheduling-clock interrupt,
2466 * and checks to see if this CPU is in a non-context-switch quiescent
2467 * state, for example, user mode or idle loop. It also schedules RCU
2468 * core processing. If the current grace period has gone on too long,
2469 * it will ask the scheduler to manufacture a context switch for the sole
2470 * purpose of providing a providing the needed quiescent state.
64db4cff 2471 */
c98cac60 2472void rcu_sched_clock_irq(int user)
64db4cff 2473{
f7f7bac9 2474 trace_rcu_utilization(TPS("Start scheduler-tick"));
4e95020c 2475 raw_cpu_inc(rcu_data.ticks_this_gp);
92aa39e9 2476 /* The load-acquire pairs with the store-release setting to true. */
2dba13f0 2477 if (smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) {
92aa39e9 2478 /* Idle and userspace execution already are quiescent states. */
a0ef9ec2 2479 if (!rcu_is_cpu_rrupt_from_idle() && !user) {
92aa39e9
PM
2480 set_tsk_need_resched(current);
2481 set_preempt_need_resched();
2482 }
2dba13f0 2483 __this_cpu_write(rcu_data.rcu_urgent_qs, false);
64db4cff 2484 }
c98cac60 2485 rcu_flavor_sched_clock_irq(user);
dd7dafd1 2486 if (rcu_pending(user))
a46e0899 2487 invoke_rcu_core();
07f27570 2488
f7f7bac9 2489 trace_rcu_utilization(TPS("End scheduler-tick"));
64db4cff
PM
2490}
2491
64db4cff 2492/*
5d8a752e
ZZ
2493 * Scan the leaf rcu_node structures. For each structure on which all
2494 * CPUs have reported a quiescent state and on which there are tasks
2495 * blocking the current grace period, initiate RCU priority boosting.
2496 * Otherwise, invoke the specified function to check dyntick state for
2497 * each CPU that has not yet reported a quiescent state.
64db4cff 2498 */
8ff0b907 2499static void force_qs_rnp(int (*f)(struct rcu_data *rdp))
64db4cff 2500{
64db4cff
PM
2501 int cpu;
2502 unsigned long flags;
2503 unsigned long mask;
66e4c33b 2504 struct rcu_data *rdp;
a0b6c9a7 2505 struct rcu_node *rnp;
64db4cff 2506
b2b00ddf
PM
2507 rcu_state.cbovld = rcu_state.cbovldnext;
2508 rcu_state.cbovldnext = false;
aedf4ba9 2509 rcu_for_each_leaf_node(rnp) {
cee43939 2510 cond_resched_tasks_rcu_qs();
64db4cff 2511 mask = 0;
2a67e741 2512 raw_spin_lock_irqsave_rcu_node(rnp, flags);
b2b00ddf 2513 rcu_state.cbovldnext |= !!rnp->cbovldmask;
a0b6c9a7 2514 if (rnp->qsmask == 0) {
c130d2dc 2515 if (!IS_ENABLED(CONFIG_PREEMPT_RCU) ||
a77da14c
PM
2516 rcu_preempt_blocked_readers_cgp(rnp)) {
2517 /*
2518 * No point in scanning bits because they
2519 * are all zero. But we might need to
2520 * priority-boost blocked readers.
2521 */
2522 rcu_initiate_boost(rnp, flags);
2523 /* rcu_initiate_boost() releases rnp->lock */
2524 continue;
2525 }
92816435
PM
2526 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2527 continue;
64db4cff 2528 }
7441e766
PM
2529 for_each_leaf_node_cpu_mask(rnp, cpu, rnp->qsmask) {
2530 rdp = per_cpu_ptr(&rcu_data, cpu);
2531 if (f(rdp)) {
2532 mask |= rdp->grpmask;
2533 rcu_disable_urgency_upon_qs(rdp);
0edd1b17 2534 }
64db4cff 2535 }
45f014c5 2536 if (mask != 0) {
c9a24e2d 2537 /* Idle/offline CPUs, report (releases rnp->lock). */
b50912d0 2538 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
0aa04b05
PM
2539 } else {
2540 /* Nothing to do here, so just drop the lock. */
67c583a7 2541 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
64db4cff 2542 }
64db4cff 2543 }
64db4cff
PM
2544}
2545
2546/*
2547 * Force quiescent states on reluctant CPUs, and also detect which
2548 * CPUs are in dyntick-idle mode.
2549 */
cd920e5a 2550void rcu_force_quiescent_state(void)
64db4cff
PM
2551{
2552 unsigned long flags;
394f2769
PM
2553 bool ret;
2554 struct rcu_node *rnp;
2555 struct rcu_node *rnp_old = NULL;
2556
2557 /* Funnel through hierarchy to reduce memory contention. */
da1df50d 2558 rnp = __this_cpu_read(rcu_data.mynode);
394f2769 2559 for (; rnp != NULL; rnp = rnp->parent) {
67a0edbf 2560 ret = (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) ||
66e4c33b 2561 !raw_spin_trylock(&rnp->fqslock);
394f2769
PM
2562 if (rnp_old != NULL)
2563 raw_spin_unlock(&rnp_old->fqslock);
d62df573 2564 if (ret)
394f2769 2565 return;
394f2769
PM
2566 rnp_old = rnp;
2567 }
336a4f6c 2568 /* rnp_old == rcu_get_root(), rnp == NULL. */
64db4cff 2569
394f2769 2570 /* Reached the root of the rcu_node tree, acquire lock. */
2a67e741 2571 raw_spin_lock_irqsave_rcu_node(rnp_old, flags);
394f2769 2572 raw_spin_unlock(&rnp_old->fqslock);
67a0edbf 2573 if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) {
67c583a7 2574 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
4cdfc175 2575 return; /* Someone beat us to it. */
46a1e34e 2576 }
67a0edbf
PM
2577 WRITE_ONCE(rcu_state.gp_flags,
2578 READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS);
67c583a7 2579 raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
532c00c9 2580 rcu_gp_kthread_wake();
64db4cff 2581}
cd920e5a 2582EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
64db4cff 2583
fb60e533 2584/* Perform RCU core processing work for the current CPU. */
48d07c04 2585static __latent_entropy void rcu_core(void)
64db4cff
PM
2586{
2587 unsigned long flags;
da1df50d 2588 struct rcu_data *rdp = raw_cpu_ptr(&rcu_data);
26d950a9 2589 struct rcu_node *rnp = rdp->mynode;
c1ab99d6
PM
2590 const bool offloaded = IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
2591 rcu_segcblist_is_offloaded(&rdp->cblist);
64db4cff 2592
b049fdf8
PM
2593 if (cpu_is_offline(smp_processor_id()))
2594 return;
2595 trace_rcu_utilization(TPS("Start RCU core"));
50dc7def 2596 WARN_ON_ONCE(!rdp->beenonline);
2e597558 2597
3e310098 2598 /* Report any deferred quiescent states if preemption enabled. */
fced9c8c 2599 if (!(preempt_count() & PREEMPT_MASK)) {
3e310098 2600 rcu_preempt_deferred_qs(current);
fced9c8c
PM
2601 } else if (rcu_preempt_need_deferred_qs(current)) {
2602 set_tsk_need_resched(current);
2603 set_preempt_need_resched();
2604 }
3e310098 2605
64db4cff 2606 /* Update RCU state based on any recent quiescent states. */
8087d3e3 2607 rcu_check_quiescent_state(rdp);
64db4cff 2608
bd7af846 2609 /* No grace period and unregistered callbacks? */
de8e8730 2610 if (!rcu_gp_in_progress() &&
c1ab99d6 2611 rcu_segcblist_is_enabled(&rdp->cblist) && !offloaded) {
bd7af846 2612 local_irq_save(flags);
e44e73ca 2613 if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
c6e09b97 2614 rcu_accelerate_cbs_unlocked(rnp, rdp);
e44e73ca 2615 local_irq_restore(flags);
64db4cff
PM
2616 }
2617
791416c4 2618 rcu_check_gp_start_stall(rnp, rdp, rcu_jiffies_till_stall_check());
26d950a9 2619
64db4cff 2620 /* If there are callbacks ready, invoke them. */
c1ab99d6 2621 if (!offloaded && rcu_segcblist_ready_cbs(&rdp->cblist) &&
43e903ad
PM
2622 likely(READ_ONCE(rcu_scheduler_fully_active)))
2623 rcu_do_batch(rdp);
96d3fd0d
PM
2624
2625 /* Do any needed deferred wakeups of rcuo kthreads. */
2626 do_nocb_deferred_wakeup(rdp);
f7f7bac9 2627 trace_rcu_utilization(TPS("End RCU core"));
64db4cff
PM
2628}
2629
48d07c04
SAS
2630static void rcu_core_si(struct softirq_action *h)
2631{
2632 rcu_core();
2633}
2634
2635static void rcu_wake_cond(struct task_struct *t, int status)
2636{
2637 /*
2638 * If the thread is yielding, only wake it when this
2639 * is invoked from idle
2640 */
2641 if (t && (status != RCU_KTHREAD_YIELDING || is_idle_task(current)))
2642 wake_up_process(t);
2643}
2644
2645static void invoke_rcu_core_kthread(void)
2646{
2647 struct task_struct *t;
2648 unsigned long flags;
2649
2650 local_irq_save(flags);
2651 __this_cpu_write(rcu_data.rcu_cpu_has_work, 1);
2652 t = __this_cpu_read(rcu_data.rcu_cpu_kthread_task);
2653 if (t != NULL && t != current)
2654 rcu_wake_cond(t, __this_cpu_read(rcu_data.rcu_cpu_kthread_status));
2655 local_irq_restore(flags);
2656}
2657
48d07c04
SAS
2658/*
2659 * Wake up this CPU's rcuc kthread to do RCU core processing.
2660 */
a46e0899 2661static void invoke_rcu_core(void)
09223371 2662{
48d07c04
SAS
2663 if (!cpu_online(smp_processor_id()))
2664 return;
2665 if (use_softirq)
b0f74036 2666 raise_softirq(RCU_SOFTIRQ);
48d07c04
SAS
2667 else
2668 invoke_rcu_core_kthread();
2669}
2670
2671static void rcu_cpu_kthread_park(unsigned int cpu)
2672{
2673 per_cpu(rcu_data.rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
2674}
2675
2676static int rcu_cpu_kthread_should_run(unsigned int cpu)
2677{
2678 return __this_cpu_read(rcu_data.rcu_cpu_has_work);
2679}
2680
2681/*
2682 * Per-CPU kernel thread that invokes RCU callbacks. This replaces
2683 * the RCU softirq used in configurations of RCU that do not support RCU
2684 * priority boosting.
2685 */
2686static void rcu_cpu_kthread(unsigned int cpu)
2687{
2688 unsigned int *statusp = this_cpu_ptr(&rcu_data.rcu_cpu_kthread_status);
2689 char work, *workp = this_cpu_ptr(&rcu_data.rcu_cpu_has_work);
2690 int spincnt;
2691
2488a5e6 2692 trace_rcu_utilization(TPS("Start CPU kthread@rcu_run"));
48d07c04 2693 for (spincnt = 0; spincnt < 10; spincnt++) {
48d07c04
SAS
2694 local_bh_disable();
2695 *statusp = RCU_KTHREAD_RUNNING;
2696 local_irq_disable();
2697 work = *workp;
2698 *workp = 0;
2699 local_irq_enable();
2700 if (work)
2701 rcu_core();
2702 local_bh_enable();
2703 if (*workp == 0) {
2704 trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
2705 *statusp = RCU_KTHREAD_WAITING;
2706 return;
2707 }
2708 }
2709 *statusp = RCU_KTHREAD_YIELDING;
2710 trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
2711 schedule_timeout_interruptible(2);
2712 trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
2713 *statusp = RCU_KTHREAD_WAITING;
2714}
2715
2716static struct smp_hotplug_thread rcu_cpu_thread_spec = {
2717 .store = &rcu_data.rcu_cpu_kthread_task,
2718 .thread_should_run = rcu_cpu_kthread_should_run,
2719 .thread_fn = rcu_cpu_kthread,
2720 .thread_comm = "rcuc/%u",
2721 .setup = rcu_cpu_kthread_setup,
2722 .park = rcu_cpu_kthread_park,
2723};
2724
2725/*
2726 * Spawn per-CPU RCU core processing kthreads.
2727 */
2728static int __init rcu_spawn_core_kthreads(void)
2729{
2730 int cpu;
2731
2732 for_each_possible_cpu(cpu)
2733 per_cpu(rcu_data.rcu_cpu_has_work, cpu) = 0;
2734 if (!IS_ENABLED(CONFIG_RCU_BOOST) && use_softirq)
2735 return 0;
2736 WARN_ONCE(smpboot_register_percpu_thread(&rcu_cpu_thread_spec),
2737 "%s: Could not start rcuc kthread, OOM is now expected behavior\n", __func__);
2738 return 0;
09223371 2739}
48d07c04 2740early_initcall(rcu_spawn_core_kthreads);
09223371 2741
29154c57
PM
2742/*
2743 * Handle any core-RCU processing required by a call_rcu() invocation.
2744 */
5c7d8967
PM
2745static void __call_rcu_core(struct rcu_data *rdp, struct rcu_head *head,
2746 unsigned long flags)
64db4cff 2747{
62fde6ed
PM
2748 /*
2749 * If called from an extended quiescent state, invoke the RCU
2750 * core in order to force a re-evaluation of RCU's idleness.
2751 */
9910affa 2752 if (!rcu_is_watching())
62fde6ed
PM
2753 invoke_rcu_core();
2754
a16b7a69 2755 /* If interrupts were disabled or CPU offline, don't invoke RCU core. */
29154c57 2756 if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2655d57e 2757 return;
64db4cff 2758
37c72e56
PM
2759 /*
2760 * Force the grace period if too many callbacks or too long waiting.
cd920e5a 2761 * Enforce hysteresis, and don't invoke rcu_force_quiescent_state()
37c72e56 2762 * if some other CPU has recently done so. Also, don't bother
cd920e5a 2763 * invoking rcu_force_quiescent_state() if the newly enqueued callback
37c72e56
PM
2764 * is the only one waiting for a grace period to complete.
2765 */
15fecf89
PM
2766 if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) >
2767 rdp->qlen_last_fqs_check + qhimark)) {
b52573d2
PM
2768
2769 /* Are we ignoring a completed grace period? */
15cabdff 2770 note_gp_changes(rdp);
b52573d2
PM
2771
2772 /* Start a new grace period if one not already started. */
de8e8730 2773 if (!rcu_gp_in_progress()) {
c6e09b97 2774 rcu_accelerate_cbs_unlocked(rdp->mynode, rdp);
b52573d2
PM
2775 } else {
2776 /* Give the grace period a kick. */
d5a9a8c3 2777 rdp->blimit = DEFAULT_MAX_RCU_BLIMIT;
5c7d8967 2778 if (rcu_state.n_force_qs == rdp->n_force_qs_snap &&
15fecf89 2779 rcu_segcblist_first_pend_cb(&rdp->cblist) != head)
cd920e5a 2780 rcu_force_quiescent_state();
5c7d8967 2781 rdp->n_force_qs_snap = rcu_state.n_force_qs;
15fecf89 2782 rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
b52573d2 2783 }
4cdfc175 2784 }
29154c57
PM
2785}
2786
ae150184
PM
2787/*
2788 * RCU callback function to leak a callback.
2789 */
2790static void rcu_leak_callback(struct rcu_head *rhp)
2791{
2792}
2793
3fbfbf7a 2794/*
b2b00ddf
PM
2795 * Check and if necessary update the leaf rcu_node structure's
2796 * ->cbovldmask bit corresponding to the current CPU based on that CPU's
2797 * number of queued RCU callbacks. The caller must hold the leaf rcu_node
2798 * structure's ->lock.
3fbfbf7a 2799 */
b2b00ddf
PM
2800static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp)
2801{
2802 raw_lockdep_assert_held_rcu_node(rnp);
2803 if (qovld_calc <= 0)
2804 return; // Early boot and wildcard value set.
2805 if (rcu_segcblist_n_cbs(&rdp->cblist) >= qovld_calc)
2806 WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask | rdp->grpmask);
2807 else
2808 WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask & ~rdp->grpmask);
2809}
2810
2811/*
2812 * Check and if necessary update the leaf rcu_node structure's
2813 * ->cbovldmask bit corresponding to the current CPU based on that CPU's
2814 * number of queued RCU callbacks. No locks need be held, but the
2815 * caller must have disabled interrupts.
2816 *
2817 * Note that this function ignores the possibility that there are a lot
2818 * of callbacks all of which have already seen the end of their respective
2819 * grace periods. This omission is due to the need for no-CBs CPUs to
2820 * be holding ->nocb_lock to do this check, which is too heavy for a
2821 * common-case operation.
3fbfbf7a 2822 */
b2b00ddf
PM
2823static void check_cb_ovld(struct rcu_data *rdp)
2824{
2825 struct rcu_node *const rnp = rdp->mynode;
2826
2827 if (qovld_calc <= 0 ||
2828 ((rcu_segcblist_n_cbs(&rdp->cblist) >= qovld_calc) ==
2829 !!(READ_ONCE(rnp->cbovldmask) & rdp->grpmask)))
2830 return; // Early boot wildcard value or already set correctly.
2831 raw_spin_lock_rcu_node(rnp);
2832 check_cb_ovld_locked(rdp, rnp);
2833 raw_spin_unlock_rcu_node(rnp);
2834}
2835
b692dc4a 2836/* Helper function for call_rcu() and friends. */
64db4cff 2837static void
77a40f97 2838__call_rcu(struct rcu_head *head, rcu_callback_t func)
64db4cff
PM
2839{
2840 unsigned long flags;
2841 struct rcu_data *rdp;
5d6742b3 2842 bool was_alldone;
64db4cff 2843
b8f2ed53
PM
2844 /* Misaligned rcu_head! */
2845 WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1));
2846
ae150184 2847 if (debug_rcu_head_queue(head)) {
fa3c6647
PM
2848 /*
2849 * Probable double call_rcu(), so leak the callback.
2850 * Use rcu:rcu_callback trace event to find the previous
2851 * time callback was passed to __call_rcu().
2852 */
d75f773c 2853 WARN_ONCE(1, "__call_rcu(): Double-freed CB %p->%pS()!!!\n",
fa3c6647 2854 head, head->func);
7d0ae808 2855 WRITE_ONCE(head->func, rcu_leak_callback);
ae150184
PM
2856 return;
2857 }
64db4cff
PM
2858 head->func = func;
2859 head->next = NULL;
64db4cff 2860 local_irq_save(flags);
da1df50d 2861 rdp = this_cpu_ptr(&rcu_data);
64db4cff
PM
2862
2863 /* Add the callback to our list. */
5d6742b3
PM
2864 if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist))) {
2865 // This can trigger due to call_rcu() from offline CPU:
2866 WARN_ON_ONCE(rcu_scheduler_active != RCU_SCHEDULER_INACTIVE);
34404ca8 2867 WARN_ON_ONCE(!rcu_is_watching());
5d6742b3
PM
2868 // Very early boot, before rcu_init(). Initialize if needed
2869 // and then drop through to queue the callback.
15fecf89
PM
2870 if (rcu_segcblist_empty(&rdp->cblist))
2871 rcu_segcblist_init(&rdp->cblist);
0d8ee37e 2872 }
77a40f97 2873
b2b00ddf 2874 check_cb_ovld(rdp);
d1b222c6
PM
2875 if (rcu_nocb_try_bypass(rdp, head, &was_alldone, flags))
2876 return; // Enqueued onto ->nocb_bypass, so just leave.
b692dc4a 2877 // If no-CBs CPU gets here, rcu_nocb_try_bypass() acquired ->nocb_lock.
77a40f97 2878 rcu_segcblist_enqueue(&rdp->cblist, head);
d4c08f2a 2879 if (__is_kfree_rcu_offset((unsigned long)func))
3c779dfe
PM
2880 trace_rcu_kfree_callback(rcu_state.name, head,
2881 (unsigned long)func,
15fecf89 2882 rcu_segcblist_n_cbs(&rdp->cblist));
d4c08f2a 2883 else
3c779dfe 2884 trace_rcu_callback(rcu_state.name, head,
15fecf89 2885 rcu_segcblist_n_cbs(&rdp->cblist));
d4c08f2a 2886
29154c57 2887 /* Go handle any RCU core processing required. */
5d6742b3
PM
2888 if (IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
2889 unlikely(rcu_segcblist_is_offloaded(&rdp->cblist))) {
2890 __call_rcu_nocb_wake(rdp, was_alldone, flags); /* unlocks */
2891 } else {
2892 __call_rcu_core(rdp, head, flags);
2893 local_irq_restore(flags);
2894 }
64db4cff
PM
2895}
2896
a68a2bb2 2897/**
45975c7d 2898 * call_rcu() - Queue an RCU callback for invocation after a grace period.
a68a2bb2
PM
2899 * @head: structure to be used for queueing the RCU updates.
2900 * @func: actual callback function to be invoked after the grace period
2901 *
2902 * The callback function will be invoked some time after a full grace
45975c7d
PM
2903 * period elapses, in other words after all pre-existing RCU read-side
2904 * critical sections have completed. However, the callback function
2905 * might well execute concurrently with RCU read-side critical sections
2906 * that started after call_rcu() was invoked. RCU read-side critical
2907 * sections are delimited by rcu_read_lock() and rcu_read_unlock(), and
2908 * may be nested. In addition, regions of code across which interrupts,
2909 * preemption, or softirqs have been disabled also serve as RCU read-side
2910 * critical sections. This includes hardware interrupt handlers, softirq
2911 * handlers, and NMI handlers.
2912 *
2913 * Note that all CPUs must agree that the grace period extended beyond
2914 * all pre-existing RCU read-side critical section. On systems with more
2915 * than one CPU, this means that when "func()" is invoked, each CPU is
2916 * guaranteed to have executed a full memory barrier since the end of its
2917 * last RCU read-side critical section whose beginning preceded the call
2918 * to call_rcu(). It also means that each CPU executing an RCU read-side
2919 * critical section that continues beyond the start of "func()" must have
2920 * executed a memory barrier after the call_rcu() but before the beginning
2921 * of that RCU read-side critical section. Note that these guarantees
2922 * include CPUs that are offline, idle, or executing in user mode, as
2923 * well as CPUs that are executing in the kernel.
2924 *
2925 * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
2926 * resulting RCU callback function "func()", then both CPU A and CPU B are
2927 * guaranteed to execute a full memory barrier during the time interval
2928 * between the call to call_rcu() and the invocation of "func()" -- even
2929 * if CPU A and CPU B are the same CPU (but again only if the system has
2930 * more than one CPU).
2931 */
2932void call_rcu(struct rcu_head *head, rcu_callback_t func)
2933{
77a40f97 2934 __call_rcu(head, func);
45975c7d
PM
2935}
2936EXPORT_SYMBOL_GPL(call_rcu);
64db4cff 2937
a35d1690
BP
2938
2939/* Maximum number of jiffies to wait before draining a batch. */
2940#define KFREE_DRAIN_JIFFIES (HZ / 50)
0392bebe 2941#define KFREE_N_BATCHES 2
a35d1690 2942
34c88174
URS
2943/*
2944 * This macro defines how many entries the "records" array
2945 * will contain. It is based on the fact that the size of
2946 * kfree_rcu_bulk_data structure becomes exactly one page.
2947 */
2948#define KFREE_BULK_MAX_ENTR ((PAGE_SIZE / sizeof(void *)) - 3)
2949
2950/**
2951 * struct kfree_rcu_bulk_data - single block to store kfree_rcu() pointers
2952 * @nr_records: Number of active pointers in the array
2953 * @records: Array of the kfree_rcu() pointers
2954 * @next: Next bulk object in the block chain
2955 * @head_free_debug: For debug, when CONFIG_DEBUG_OBJECTS_RCU_HEAD is set
2956 */
2957struct kfree_rcu_bulk_data {
2958 unsigned long nr_records;
2959 void *records[KFREE_BULK_MAX_ENTR];
2960 struct kfree_rcu_bulk_data *next;
2961 struct rcu_head *head_free_debug;
2962};
2963
a35d1690 2964/**
0392bebe 2965 * struct kfree_rcu_cpu_work - single batch of kfree_rcu() requests
a35d1690 2966 * @rcu_work: Let queue_rcu_work() invoke workqueue handler after grace period
0392bebe 2967 * @head_free: List of kfree_rcu() objects waiting for a grace period
34c88174 2968 * @bhead_free: Bulk-List of kfree_rcu() objects waiting for a grace period
0392bebe
JFG
2969 * @krcp: Pointer to @kfree_rcu_cpu structure
2970 */
2971
2972struct kfree_rcu_cpu_work {
2973 struct rcu_work rcu_work;
2974 struct rcu_head *head_free;
34c88174 2975 struct kfree_rcu_bulk_data *bhead_free;
0392bebe
JFG
2976 struct kfree_rcu_cpu *krcp;
2977};
2978
2979/**
2980 * struct kfree_rcu_cpu - batch up kfree_rcu() requests for RCU grace period
a35d1690 2981 * @head: List of kfree_rcu() objects not yet waiting for a grace period
34c88174
URS
2982 * @bhead: Bulk-List of kfree_rcu() objects not yet waiting for a grace period
2983 * @bcached: Keeps at most one object for later reuse when build chain blocks
0392bebe 2984 * @krw_arr: Array of batches of kfree_rcu() objects waiting for a grace period
a35d1690
BP
2985 * @lock: Synchronize access to this structure
2986 * @monitor_work: Promote @head to @head_free after KFREE_DRAIN_JIFFIES
2987 * @monitor_todo: Tracks whether a @monitor_work delayed work is pending
2988 * @initialized: The @lock and @rcu_work fields have been initialized
2989 *
2990 * This is a per-CPU structure. The reason that it is not included in
2991 * the rcu_data structure is to permit this code to be extracted from
2992 * the RCU files. Such extraction could allow further optimization of
2993 * the interactions with the slab allocators.
2994 */
2995struct kfree_rcu_cpu {
a35d1690 2996 struct rcu_head *head;
34c88174
URS
2997 struct kfree_rcu_bulk_data *bhead;
2998 struct kfree_rcu_bulk_data *bcached;
0392bebe 2999 struct kfree_rcu_cpu_work krw_arr[KFREE_N_BATCHES];
a35d1690
BP
3000 spinlock_t lock;
3001 struct delayed_work monitor_work;
569d7670 3002 bool monitor_todo;
a35d1690 3003 bool initialized;
9154244c
JFG
3004 // Number of objects for which GP not started
3005 int count;
a35d1690
BP
3006};
3007
3008static DEFINE_PER_CPU(struct kfree_rcu_cpu, krc);
3009
34c88174
URS
3010static __always_inline void
3011debug_rcu_head_unqueue_bulk(struct rcu_head *head)
3012{
3013#ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
3014 for (; head; head = head->next)
3015 debug_rcu_head_unqueue(head);
3016#endif
3017}
3018
495aa969 3019/*
a35d1690 3020 * This function is invoked in workqueue context after a grace period.
34c88174 3021 * It frees all the objects queued on ->bhead_free or ->head_free.
495aa969 3022 */
a35d1690
BP
3023static void kfree_rcu_work(struct work_struct *work)
3024{
3025 unsigned long flags;
3026 struct rcu_head *head, *next;
34c88174 3027 struct kfree_rcu_bulk_data *bhead, *bnext;
a35d1690 3028 struct kfree_rcu_cpu *krcp;
0392bebe 3029 struct kfree_rcu_cpu_work *krwp;
a35d1690 3030
0392bebe
JFG
3031 krwp = container_of(to_rcu_work(work),
3032 struct kfree_rcu_cpu_work, rcu_work);
3033 krcp = krwp->krcp;
a35d1690 3034 spin_lock_irqsave(&krcp->lock, flags);
0392bebe
JFG
3035 head = krwp->head_free;
3036 krwp->head_free = NULL;
34c88174
URS
3037 bhead = krwp->bhead_free;
3038 krwp->bhead_free = NULL;
a35d1690
BP
3039 spin_unlock_irqrestore(&krcp->lock, flags);
3040
34c88174
URS
3041 /* "bhead" is now private, so traverse locklessly. */
3042 for (; bhead; bhead = bnext) {
3043 bnext = bhead->next;
3044
3045 debug_rcu_head_unqueue_bulk(bhead->head_free_debug);
3046
3047 rcu_lock_acquire(&rcu_callback_map);
61370792
URS
3048 trace_rcu_invoke_kfree_bulk_callback(rcu_state.name,
3049 bhead->nr_records, bhead->records);
3050
34c88174
URS
3051 kfree_bulk(bhead->nr_records, bhead->records);
3052 rcu_lock_release(&rcu_callback_map);
3053
3054 if (cmpxchg(&krcp->bcached, NULL, bhead))
3055 free_page((unsigned long) bhead);
3056
3057 cond_resched_tasks_rcu_qs();
3058 }
3059
3060 /*
3061 * Emergency case only. It can happen under low memory
3062 * condition when an allocation gets failed, so the "bulk"
3063 * path can not be temporary maintained.
3064 */
a35d1690 3065 for (; head; head = next) {
77a40f97
JFG
3066 unsigned long offset = (unsigned long)head->func;
3067
a35d1690 3068 next = head->next;
e99637be 3069 debug_rcu_head_unqueue(head);
77a40f97
JFG
3070 rcu_lock_acquire(&rcu_callback_map);
3071 trace_rcu_invoke_kfree_callback(rcu_state.name, head, offset);
3072
34c88174 3073 if (!WARN_ON_ONCE(!__is_kfree_rcu_offset(offset)))
189a6883 3074 kfree((void *)head - offset);
77a40f97
JFG
3075
3076 rcu_lock_release(&rcu_callback_map);
a35d1690
BP
3077 cond_resched_tasks_rcu_qs();
3078 }
3079}
3080
495aa969 3081/*
a35d1690
BP
3082 * Schedule the kfree batch RCU work to run in workqueue context after a GP.
3083 *
3084 * This function is invoked by kfree_rcu_monitor() when the KFREE_DRAIN_JIFFIES
3085 * timeout has been reached.
3086 */
3087static inline bool queue_kfree_rcu_work(struct kfree_rcu_cpu *krcp)
3088{
34c88174
URS
3089 struct kfree_rcu_cpu_work *krwp;
3090 bool queued = false;
0392bebe 3091 int i;
0392bebe 3092
a35d1690
BP
3093 lockdep_assert_held(&krcp->lock);
3094
34c88174
URS
3095 for (i = 0; i < KFREE_N_BATCHES; i++) {
3096 krwp = &(krcp->krw_arr[i]);
a35d1690 3097
34c88174
URS
3098 /*
3099 * Try to detach bhead or head and attach it over any
3100 * available corresponding free channel. It can be that
3101 * a previous RCU batch is in progress, it means that
3102 * immediately to queue another one is not possible so
3103 * return false to tell caller to retry.
3104 */
3105 if ((krcp->bhead && !krwp->bhead_free) ||
3106 (krcp->head && !krwp->head_free)) {
3107 /* Channel 1. */
3108 if (!krwp->bhead_free) {
3109 krwp->bhead_free = krcp->bhead;
3110 krcp->bhead = NULL;
3111 }
3112
3113 /* Channel 2. */
3114 if (!krwp->head_free) {
3115 krwp->head_free = krcp->head;
3116 krcp->head = NULL;
3117 }
3118
a6a82ce1 3119 WRITE_ONCE(krcp->count, 0);
9154244c 3120
34c88174
URS
3121 /*
3122 * One work is per one batch, so there are two "free channels",
3123 * "bhead_free" and "head_free" the batch can handle. It can be
3124 * that the work is in the pending state when two channels have
3125 * been detached following each other, one by one.
3126 */
3127 queue_rcu_work(system_wq, &krwp->rcu_work);
3128 queued = true;
3129 }
3130 }
3131
3132 return queued;
a35d1690
BP
3133}
3134
3135static inline void kfree_rcu_drain_unlock(struct kfree_rcu_cpu *krcp,
3136 unsigned long flags)
3137{
3138 // Attempt to start a new batch.
569d7670 3139 krcp->monitor_todo = false;
a35d1690
BP
3140 if (queue_kfree_rcu_work(krcp)) {
3141 // Success! Our job is done here.
3142 spin_unlock_irqrestore(&krcp->lock, flags);
3143 return;
3144 }
3145
3146 // Previous RCU batch still in progress, try again later.
569d7670
JF
3147 krcp->monitor_todo = true;
3148 schedule_delayed_work(&krcp->monitor_work, KFREE_DRAIN_JIFFIES);
a35d1690
BP
3149 spin_unlock_irqrestore(&krcp->lock, flags);
3150}
3151
495aa969 3152/*
a35d1690
BP
3153 * This function is invoked after the KFREE_DRAIN_JIFFIES timeout.
3154 * It invokes kfree_rcu_drain_unlock() to attempt to start another batch.
3155 */
3156static void kfree_rcu_monitor(struct work_struct *work)
3157{
3158 unsigned long flags;
3159 struct kfree_rcu_cpu *krcp = container_of(work, struct kfree_rcu_cpu,
3160 monitor_work.work);
3161
3162 spin_lock_irqsave(&krcp->lock, flags);
569d7670 3163 if (krcp->monitor_todo)
a35d1690
BP
3164 kfree_rcu_drain_unlock(krcp, flags);
3165 else
3166 spin_unlock_irqrestore(&krcp->lock, flags);
3167}
3168
34c88174
URS
3169static inline bool
3170kfree_call_rcu_add_ptr_to_bulk(struct kfree_rcu_cpu *krcp,
3171 struct rcu_head *head, rcu_callback_t func)
3172{
3173 struct kfree_rcu_bulk_data *bnode;
3174
3175 if (unlikely(!krcp->initialized))
3176 return false;
3177
3178 lockdep_assert_held(&krcp->lock);
3179
3180 /* Check if a new block is required. */
3181 if (!krcp->bhead ||
3182 krcp->bhead->nr_records == KFREE_BULK_MAX_ENTR) {
3183 bnode = xchg(&krcp->bcached, NULL);
3184 if (!bnode) {
3185 WARN_ON_ONCE(sizeof(struct kfree_rcu_bulk_data) > PAGE_SIZE);
3186
3187 bnode = (struct kfree_rcu_bulk_data *)
3188 __get_free_page(GFP_NOWAIT | __GFP_NOWARN);
3189 }
3190
3191 /* Switch to emergency path. */
3192 if (unlikely(!bnode))
3193 return false;
3194
3195 /* Initialize the new block. */
3196 bnode->nr_records = 0;
3197 bnode->next = krcp->bhead;
3198 bnode->head_free_debug = NULL;
3199
3200 /* Attach it to the head. */
3201 krcp->bhead = bnode;
3202 }
3203
3204#ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
3205 head->func = func;
3206 head->next = krcp->bhead->head_free_debug;
3207 krcp->bhead->head_free_debug = head;
3208#endif
3209
3210 /* Finally insert. */
3211 krcp->bhead->records[krcp->bhead->nr_records++] =
3212 (void *) head - (unsigned long) func;
3213
3214 return true;
3215}
3216
a35d1690 3217/*
34c88174
URS
3218 * Queue a request for lazy invocation of kfree_bulk()/kfree() after a grace
3219 * period. Please note there are two paths are maintained, one is the main one
3220 * that uses kfree_bulk() interface and second one is emergency one, that is
3221 * used only when the main path can not be maintained temporary, due to memory
3222 * pressure.
a35d1690
BP
3223 *
3224 * Each kfree_call_rcu() request is added to a batch. The batch will be drained
34c88174
URS
3225 * every KFREE_DRAIN_JIFFIES number of jiffies. All the objects in the batch will
3226 * be free'd in workqueue context. This allows us to: batch requests together to
3227 * reduce the number of grace periods during heavy kfree_rcu() load.
495aa969 3228 */
98ece508 3229void kfree_call_rcu(struct rcu_head *head, rcu_callback_t func)
495aa969 3230{
a35d1690
BP
3231 unsigned long flags;
3232 struct kfree_rcu_cpu *krcp;
3233
a35d1690
BP
3234 local_irq_save(flags); // For safely calling this_cpu_ptr().
3235 krcp = this_cpu_ptr(&krc);
3236 if (krcp->initialized)
3237 spin_lock(&krcp->lock);
3238
3239 // Queue the object but don't yet schedule the batch.
e99637be
JFG
3240 if (debug_rcu_head_queue(head)) {
3241 // Probable double kfree_rcu(), just leak.
3242 WARN_ONCE(1, "%s(): Double-freed call. rcu_head %p\n",
3243 __func__, head);
3244 goto unlock_return;
3245 }
34c88174
URS
3246
3247 /*
3248 * Under high memory pressure GFP_NOWAIT can fail,
3249 * in that case the emergency path is maintained.
3250 */
3251 if (unlikely(!kfree_call_rcu_add_ptr_to_bulk(krcp, head, func))) {
3252 head->func = func;
3253 head->next = krcp->head;
3254 krcp->head = head;
3255 }
a35d1690 3256
a6a82ce1 3257 WRITE_ONCE(krcp->count, krcp->count + 1);
9154244c 3258
a35d1690
BP
3259 // Set timer to drain after KFREE_DRAIN_JIFFIES.
3260 if (rcu_scheduler_active == RCU_SCHEDULER_RUNNING &&
569d7670
JF
3261 !krcp->monitor_todo) {
3262 krcp->monitor_todo = true;
a35d1690 3263 schedule_delayed_work(&krcp->monitor_work, KFREE_DRAIN_JIFFIES);
569d7670 3264 }
a35d1690 3265
e99637be 3266unlock_return:
a35d1690
BP
3267 if (krcp->initialized)
3268 spin_unlock(&krcp->lock);
3269 local_irq_restore(flags);
495aa969
ACB
3270}
3271EXPORT_SYMBOL_GPL(kfree_call_rcu);
3272
9154244c
JFG
3273static unsigned long
3274kfree_rcu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
3275{
3276 int cpu;
a6a82ce1 3277 unsigned long count = 0;
9154244c
JFG
3278
3279 /* Snapshot count of all CPUs */
3280 for_each_online_cpu(cpu) {
3281 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
3282
a6a82ce1 3283 count += READ_ONCE(krcp->count);
9154244c
JFG
3284 }
3285
3286 return count;
3287}
3288
3289static unsigned long
3290kfree_rcu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
3291{
3292 int cpu, freed = 0;
3293 unsigned long flags;
3294
3295 for_each_online_cpu(cpu) {
3296 int count;
3297 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
3298
3299 count = krcp->count;
3300 spin_lock_irqsave(&krcp->lock, flags);
3301 if (krcp->monitor_todo)
3302 kfree_rcu_drain_unlock(krcp, flags);
3303 else
3304 spin_unlock_irqrestore(&krcp->lock, flags);
3305
3306 sc->nr_to_scan -= count;
3307 freed += count;
3308
3309 if (sc->nr_to_scan <= 0)
3310 break;
3311 }
3312
3313 return freed;
3314}
3315
3316static struct shrinker kfree_rcu_shrinker = {
3317 .count_objects = kfree_rcu_shrink_count,
3318 .scan_objects = kfree_rcu_shrink_scan,
3319 .batch = 0,
3320 .seeks = DEFAULT_SEEKS,
3321};
3322
a35d1690
BP
3323void __init kfree_rcu_scheduler_running(void)
3324{
3325 int cpu;
3326 unsigned long flags;
3327
3328 for_each_online_cpu(cpu) {
3329 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
3330
3331 spin_lock_irqsave(&krcp->lock, flags);
569d7670 3332 if (!krcp->head || krcp->monitor_todo) {
a35d1690
BP
3333 spin_unlock_irqrestore(&krcp->lock, flags);
3334 continue;
3335 }
569d7670 3336 krcp->monitor_todo = true;
0392bebe
JFG
3337 schedule_delayed_work_on(cpu, &krcp->monitor_work,
3338 KFREE_DRAIN_JIFFIES);
a35d1690
BP
3339 spin_unlock_irqrestore(&krcp->lock, flags);
3340 }
3341}
3342
e5bc3af7
PM
3343/*
3344 * During early boot, any blocking grace-period wait automatically
90326f05 3345 * implies a grace period. Later on, this is never the case for PREEMPTION.
e5bc3af7 3346 *
90326f05 3347 * Howevr, because a context switch is a grace period for !PREEMPTION, any
e5bc3af7
PM
3348 * blocking grace-period wait automatically implies a grace period if
3349 * there is only one CPU online at any point time during execution of
3350 * either synchronize_rcu() or synchronize_rcu_expedited(). It is OK to
3351 * occasionally incorrectly indicate that there are multiple CPUs online
3352 * when there was in fact only one the whole time, as this just adds some
3353 * overhead: RCU still operates correctly.
3354 */
3355static int rcu_blocking_is_gp(void)
3356{
3357 int ret;
3358
01b1d88b 3359 if (IS_ENABLED(CONFIG_PREEMPTION))
e5bc3af7
PM
3360 return rcu_scheduler_active == RCU_SCHEDULER_INACTIVE;
3361 might_sleep(); /* Check for RCU read-side critical section. */
3362 preempt_disable();
3363 ret = num_online_cpus() <= 1;
3364 preempt_enable();
3365 return ret;
3366}
3367
3368/**
3369 * synchronize_rcu - wait until a grace period has elapsed.
3370 *
3371 * Control will return to the caller some time after a full grace
3372 * period has elapsed, in other words after all currently executing RCU
3373 * read-side critical sections have completed. Note, however, that
3374 * upon return from synchronize_rcu(), the caller might well be executing
3375 * concurrently with new RCU read-side critical sections that began while
3376 * synchronize_rcu() was waiting. RCU read-side critical sections are
3377 * delimited by rcu_read_lock() and rcu_read_unlock(), and may be nested.
3378 * In addition, regions of code across which interrupts, preemption, or
3379 * softirqs have been disabled also serve as RCU read-side critical
3380 * sections. This includes hardware interrupt handlers, softirq handlers,
3381 * and NMI handlers.
3382 *
3383 * Note that this guarantee implies further memory-ordering guarantees.
3384 * On systems with more than one CPU, when synchronize_rcu() returns,
3385 * each CPU is guaranteed to have executed a full memory barrier since
3386 * the end of its last RCU read-side critical section whose beginning
3387 * preceded the call to synchronize_rcu(). In addition, each CPU having
3388 * an RCU read-side critical section that extends beyond the return from
3389 * synchronize_rcu() is guaranteed to have executed a full memory barrier
3390 * after the beginning of synchronize_rcu() and before the beginning of
3391 * that RCU read-side critical section. Note that these guarantees include
3392 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
3393 * that are executing in the kernel.
3394 *
3395 * Furthermore, if CPU A invoked synchronize_rcu(), which returned
3396 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
3397 * to have executed a full memory barrier during the execution of
3398 * synchronize_rcu() -- even if CPU A and CPU B are the same CPU (but
3399 * again only if the system has more than one CPU).
3400 */
3401void synchronize_rcu(void)
3402{
3403 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3404 lock_is_held(&rcu_lock_map) ||
3405 lock_is_held(&rcu_sched_lock_map),
3406 "Illegal synchronize_rcu() in RCU read-side critical section");
3407 if (rcu_blocking_is_gp())
3408 return;
3409 if (rcu_gp_is_expedited())
3410 synchronize_rcu_expedited();
3411 else
3412 wait_rcu_gp(call_rcu);
3413}
3414EXPORT_SYMBOL_GPL(synchronize_rcu);
3415
765a3f4f
PM
3416/**
3417 * get_state_synchronize_rcu - Snapshot current RCU state
3418 *
3419 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3420 * to determine whether or not a full grace period has elapsed in the
3421 * meantime.
3422 */
3423unsigned long get_state_synchronize_rcu(void)
3424{
3425 /*
3426 * Any prior manipulation of RCU-protected data must happen
e4be81a2 3427 * before the load from ->gp_seq.
765a3f4f
PM
3428 */
3429 smp_mb(); /* ^^^ */
16fc9c60 3430 return rcu_seq_snap(&rcu_state.gp_seq);
765a3f4f
PM
3431}
3432EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
3433
3434/**
3435 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
3436 *
3437 * @oldstate: return value from earlier call to get_state_synchronize_rcu()
3438 *
3439 * If a full RCU grace period has elapsed since the earlier call to
3440 * get_state_synchronize_rcu(), just return. Otherwise, invoke
3441 * synchronize_rcu() to wait for a full grace period.
3442 *
3443 * Yes, this function does not take counter wrap into account. But
3444 * counter wrap is harmless. If the counter wraps, we have waited for
3445 * more than 2 billion grace periods (and way more on a 64-bit system!),
3446 * so waiting for one additional grace period should be just fine.
3447 */
3448void cond_synchronize_rcu(unsigned long oldstate)
3449{
16fc9c60 3450 if (!rcu_seq_done(&rcu_state.gp_seq, oldstate))
765a3f4f 3451 synchronize_rcu();
e4be81a2
PM
3452 else
3453 smp_mb(); /* Ensure GP ends before subsequent accesses. */
765a3f4f
PM
3454}
3455EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
3456
64db4cff 3457/*
98ece508 3458 * Check to see if there is any immediate RCU-related work to be done by
49918a54
PM
3459 * the current CPU, returning 1 if so and zero otherwise. The checks are
3460 * in order of increasing expense: checks that can be carried out against
3461 * CPU-local state are performed first. However, we must check for CPU
3462 * stalls first, else we might not get a chance.
64db4cff 3463 */
dd7dafd1 3464static int rcu_pending(int user)
64db4cff 3465{
ed93dfc6 3466 bool gp_in_progress;
98ece508 3467 struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
2f51f988
PM
3468 struct rcu_node *rnp = rdp->mynode;
3469
64db4cff 3470 /* Check for CPU stalls, if enabled. */
ea12ff2b 3471 check_cpu_stall(rdp);
64db4cff 3472
85f69b32
PM
3473 /* Does this CPU need a deferred NOCB wakeup? */
3474 if (rcu_nocb_need_deferred_wakeup(rdp))
3475 return 1;
3476
dd7dafd1
PM
3477 /* Is this a nohz_full CPU in userspace or idle? (Ignore RCU if so.) */
3478 if ((user || rcu_is_cpu_rrupt_from_idle()) && rcu_nohz_full_cpu())
a096932f
PM
3479 return 0;
3480
64db4cff 3481 /* Is the RCU core waiting for a quiescent state from this CPU? */
ed93dfc6
PM
3482 gp_in_progress = rcu_gp_in_progress();
3483 if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm && gp_in_progress)
64db4cff
PM
3484 return 1;
3485
3486 /* Does this CPU have callbacks ready to invoke? */
01c495f7 3487 if (rcu_segcblist_ready_cbs(&rdp->cblist))
64db4cff
PM
3488 return 1;
3489
3490 /* Has RCU gone idle with this CPU needing another grace period? */
ed93dfc6 3491 if (!gp_in_progress && rcu_segcblist_is_enabled(&rdp->cblist) &&
921bb5fa
PM
3492 (!IS_ENABLED(CONFIG_RCU_NOCB_CPU) ||
3493 !rcu_segcblist_is_offloaded(&rdp->cblist)) &&
c1935209 3494 !rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
64db4cff
PM
3495 return 1;
3496
67e14c1e
PM
3497 /* Have RCU grace period completed or started? */
3498 if (rcu_seq_current(&rnp->gp_seq) != rdp->gp_seq ||
01c495f7 3499 unlikely(READ_ONCE(rdp->gpwrap))) /* outside lock */
64db4cff
PM
3500 return 1;
3501
64db4cff
PM
3502 /* nothing to do */
3503 return 0;
3504}
3505
a83eff0a 3506/*
dd46a788 3507 * Helper function for rcu_barrier() tracing. If tracing is disabled,
a83eff0a
PM
3508 * the compiler is expected to optimize this away.
3509 */
dd46a788 3510static void rcu_barrier_trace(const char *s, int cpu, unsigned long done)
a83eff0a 3511{
8344b871
PM
3512 trace_rcu_barrier(rcu_state.name, s, cpu,
3513 atomic_read(&rcu_state.barrier_cpu_count), done);
a83eff0a
PM
3514}
3515
b1420f1c 3516/*
dd46a788
PM
3517 * RCU callback function for rcu_barrier(). If we are last, wake
3518 * up the task executing rcu_barrier().
aa24f937
PM
3519 *
3520 * Note that the value of rcu_state.barrier_sequence must be captured
3521 * before the atomic_dec_and_test(). Otherwise, if this CPU is not last,
3522 * other CPUs might count the value down to zero before this CPU gets
3523 * around to invoking rcu_barrier_trace(), which might result in bogus
3524 * data from the next instance of rcu_barrier().
b1420f1c 3525 */
24ebbca8 3526static void rcu_barrier_callback(struct rcu_head *rhp)
d0ec774c 3527{
aa24f937
PM
3528 unsigned long __maybe_unused s = rcu_state.barrier_sequence;
3529
ec9f5835 3530 if (atomic_dec_and_test(&rcu_state.barrier_cpu_count)) {
aa24f937 3531 rcu_barrier_trace(TPS("LastCB"), -1, s);
ec9f5835 3532 complete(&rcu_state.barrier_completion);
a83eff0a 3533 } else {
aa24f937 3534 rcu_barrier_trace(TPS("CB"), -1, s);
a83eff0a 3535 }
d0ec774c
PM
3536}
3537
3538/*
3539 * Called with preemption disabled, and from cross-cpu IRQ context.
3540 */
127e2981 3541static void rcu_barrier_func(void *cpu_in)
d0ec774c 3542{
127e2981
PM
3543 uintptr_t cpu = (uintptr_t)cpu_in;
3544 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
d0ec774c 3545
dd46a788 3546 rcu_barrier_trace(TPS("IRQ"), -1, rcu_state.barrier_sequence);
f92c734f
PM
3547 rdp->barrier_head.func = rcu_barrier_callback;
3548 debug_rcu_head_queue(&rdp->barrier_head);
5d6742b3 3549 rcu_nocb_lock(rdp);
d1b222c6 3550 WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, jiffies));
77a40f97 3551 if (rcu_segcblist_entrain(&rdp->cblist, &rdp->barrier_head)) {
ec9f5835 3552 atomic_inc(&rcu_state.barrier_cpu_count);
f92c734f
PM
3553 } else {
3554 debug_rcu_head_unqueue(&rdp->barrier_head);
dd46a788 3555 rcu_barrier_trace(TPS("IRQNQ"), -1,
66e4c33b 3556 rcu_state.barrier_sequence);
f92c734f 3557 }
5d6742b3 3558 rcu_nocb_unlock(rdp);
d0ec774c
PM
3559}
3560
dd46a788
PM
3561/**
3562 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
3563 *
3564 * Note that this primitive does not necessarily wait for an RCU grace period
3565 * to complete. For example, if there are no RCU callbacks queued anywhere
3566 * in the system, then rcu_barrier() is within its rights to return
3567 * immediately, without waiting for anything, much less an RCU grace period.
d0ec774c 3568 */
dd46a788 3569void rcu_barrier(void)
d0ec774c 3570{
127e2981 3571 uintptr_t cpu;
b1420f1c 3572 struct rcu_data *rdp;
ec9f5835 3573 unsigned long s = rcu_seq_snap(&rcu_state.barrier_sequence);
b1420f1c 3574
dd46a788 3575 rcu_barrier_trace(TPS("Begin"), -1, s);
b1420f1c 3576
e74f4c45 3577 /* Take mutex to serialize concurrent rcu_barrier() requests. */
ec9f5835 3578 mutex_lock(&rcu_state.barrier_mutex);
b1420f1c 3579
4f525a52 3580 /* Did someone else do our work for us? */
ec9f5835 3581 if (rcu_seq_done(&rcu_state.barrier_sequence, s)) {
dd46a788 3582 rcu_barrier_trace(TPS("EarlyExit"), -1,
66e4c33b 3583 rcu_state.barrier_sequence);
cf3a9c48 3584 smp_mb(); /* caller's subsequent code after above check. */
ec9f5835 3585 mutex_unlock(&rcu_state.barrier_mutex);
cf3a9c48
PM
3586 return;
3587 }
3588
4f525a52 3589 /* Mark the start of the barrier operation. */
ec9f5835 3590 rcu_seq_start(&rcu_state.barrier_sequence);
dd46a788 3591 rcu_barrier_trace(TPS("Inc1"), -1, rcu_state.barrier_sequence);
b1420f1c 3592
d0ec774c 3593 /*
127e2981
PM
3594 * Initialize the count to two rather than to zero in order
3595 * to avoid a too-soon return to zero in case of an immediate
3596 * invocation of the just-enqueued callback (or preemption of
3597 * this task). Exclude CPU-hotplug operations to ensure that no
3598 * offline non-offloaded CPU has callbacks queued.
d0ec774c 3599 */
ec9f5835 3600 init_completion(&rcu_state.barrier_completion);
127e2981 3601 atomic_set(&rcu_state.barrier_cpu_count, 2);
1331e7a1 3602 get_online_cpus();
b1420f1c
PM
3603
3604 /*
1331e7a1
PM
3605 * Force each CPU with callbacks to register a new callback.
3606 * When that callback is invoked, we will know that all of the
3607 * corresponding CPU's preceding callbacks have been invoked.
b1420f1c 3608 */
3fbfbf7a 3609 for_each_possible_cpu(cpu) {
da1df50d 3610 rdp = per_cpu_ptr(&rcu_data, cpu);
127e2981 3611 if (cpu_is_offline(cpu) &&
ce5215c1
PM
3612 !rcu_segcblist_is_offloaded(&rdp->cblist))
3613 continue;
127e2981 3614 if (rcu_segcblist_n_cbs(&rdp->cblist) && cpu_online(cpu)) {
dd46a788 3615 rcu_barrier_trace(TPS("OnlineQ"), cpu,
66e4c33b 3616 rcu_state.barrier_sequence);
127e2981
PM
3617 smp_call_function_single(cpu, rcu_barrier_func, (void *)cpu, 1);
3618 } else if (rcu_segcblist_n_cbs(&rdp->cblist) &&
3619 cpu_is_offline(cpu)) {
3620 rcu_barrier_trace(TPS("OfflineNoCBQ"), cpu,
3621 rcu_state.barrier_sequence);
3622 local_irq_disable();
3623 rcu_barrier_func((void *)cpu);
3624 local_irq_enable();
3625 } else if (cpu_is_offline(cpu)) {
3626 rcu_barrier_trace(TPS("OfflineNoCBNoQ"), cpu,
3627 rcu_state.barrier_sequence);
b1420f1c 3628 } else {
dd46a788 3629 rcu_barrier_trace(TPS("OnlineNQ"), cpu,
66e4c33b 3630 rcu_state.barrier_sequence);
b1420f1c
PM
3631 }
3632 }
1331e7a1 3633 put_online_cpus();
b1420f1c
PM
3634
3635 /*
3636 * Now that we have an rcu_barrier_callback() callback on each
3637 * CPU, and thus each counted, remove the initial count.
3638 */
127e2981 3639 if (atomic_sub_and_test(2, &rcu_state.barrier_cpu_count))
ec9f5835 3640 complete(&rcu_state.barrier_completion);
b1420f1c
PM
3641
3642 /* Wait for all rcu_barrier_callback() callbacks to be invoked. */
ec9f5835 3643 wait_for_completion(&rcu_state.barrier_completion);
b1420f1c 3644
4f525a52 3645 /* Mark the end of the barrier operation. */
dd46a788 3646 rcu_barrier_trace(TPS("Inc2"), -1, rcu_state.barrier_sequence);
ec9f5835 3647 rcu_seq_end(&rcu_state.barrier_sequence);
4f525a52 3648
b1420f1c 3649 /* Other rcu_barrier() invocations can now safely proceed. */
ec9f5835 3650 mutex_unlock(&rcu_state.barrier_mutex);
d0ec774c 3651}
45975c7d 3652EXPORT_SYMBOL_GPL(rcu_barrier);
d0ec774c 3653
0aa04b05
PM
3654/*
3655 * Propagate ->qsinitmask bits up the rcu_node tree to account for the
3656 * first CPU in a given leaf rcu_node structure coming online. The caller
3657 * must hold the corresponding leaf rcu_node ->lock with interrrupts
3658 * disabled.
3659 */
3660static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
3661{
3662 long mask;
8d672fa6 3663 long oldmask;
0aa04b05
PM
3664 struct rcu_node *rnp = rnp_leaf;
3665
8d672fa6 3666 raw_lockdep_assert_held_rcu_node(rnp_leaf);
962aff03 3667 WARN_ON_ONCE(rnp->wait_blkd_tasks);
0aa04b05
PM
3668 for (;;) {
3669 mask = rnp->grpmask;
3670 rnp = rnp->parent;
3671 if (rnp == NULL)
3672 return;
6cf10081 3673 raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */
8d672fa6 3674 oldmask = rnp->qsmaskinit;
0aa04b05 3675 rnp->qsmaskinit |= mask;
67c583a7 3676 raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */
8d672fa6
PM
3677 if (oldmask)
3678 return;
0aa04b05
PM
3679 }
3680}
3681
64db4cff 3682/*
27569620 3683 * Do boot-time initialization of a CPU's per-CPU RCU data.
64db4cff 3684 */
27569620 3685static void __init
53b46303 3686rcu_boot_init_percpu_data(int cpu)
64db4cff 3687{
da1df50d 3688 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
27569620
PM
3689
3690 /* Set up local state, ensuring consistent view of global state. */
bc75e999 3691 rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu);
4c5273bf 3692 WARN_ON_ONCE(rdp->dynticks_nesting != 1);
dc5a4f29 3693 WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(rdp)));
53b46303 3694 rdp->rcu_ofl_gp_seq = rcu_state.gp_seq;
57738942 3695 rdp->rcu_ofl_gp_flags = RCU_GP_CLEANED;
53b46303 3696 rdp->rcu_onl_gp_seq = rcu_state.gp_seq;
57738942 3697 rdp->rcu_onl_gp_flags = RCU_GP_CLEANED;
27569620 3698 rdp->cpu = cpu;
3fbfbf7a 3699 rcu_boot_init_nocb_percpu_data(rdp);
27569620
PM
3700}
3701
3702/*
53b46303
PM
3703 * Invoked early in the CPU-online process, when pretty much all services
3704 * are available. The incoming CPU is not present.
3705 *
3706 * Initializes a CPU's per-CPU RCU data. Note that only one online or
ff3bb6f4
PM
3707 * offline event can be happening at a given time. Note also that we can
3708 * accept some slop in the rsp->gp_seq access due to the fact that this
e83e73f5
PM
3709 * CPU cannot possibly have any non-offloaded RCU callbacks in flight yet.
3710 * And any offloaded callbacks are being numbered elsewhere.
64db4cff 3711 */
53b46303 3712int rcutree_prepare_cpu(unsigned int cpu)
64db4cff
PM
3713{
3714 unsigned long flags;
da1df50d 3715 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
336a4f6c 3716 struct rcu_node *rnp = rcu_get_root();
64db4cff
PM
3717
3718 /* Set up local state, ensuring consistent view of global state. */
6cf10081 3719 raw_spin_lock_irqsave_rcu_node(rnp, flags);
37c72e56 3720 rdp->qlen_last_fqs_check = 0;
53b46303 3721 rdp->n_force_qs_snap = rcu_state.n_force_qs;
64db4cff 3722 rdp->blimit = blimit;
15fecf89 3723 if (rcu_segcblist_empty(&rdp->cblist) && /* No early-boot CBs? */
e83e73f5 3724 !rcu_segcblist_is_offloaded(&rdp->cblist))
15fecf89 3725 rcu_segcblist_init(&rdp->cblist); /* Re-enable callbacks. */
4c5273bf 3726 rdp->dynticks_nesting = 1; /* CPU not up, no tearing. */
2625d469 3727 rcu_dynticks_eqs_online();
67c583a7 3728 raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
64db4cff 3729
0aa04b05
PM
3730 /*
3731 * Add CPU to leaf rcu_node pending-online bitmask. Any needed
3732 * propagation up the rcu_node tree will happen at the beginning
3733 * of the next grace period.
3734 */
64db4cff 3735 rnp = rdp->mynode;
2a67e741 3736 raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
b9585e94 3737 rdp->beenonline = true; /* We have now been online. */
8ff37290
PM
3738 rdp->gp_seq = READ_ONCE(rnp->gp_seq);
3739 rdp->gp_seq_needed = rdp->gp_seq;
5b74c458 3740 rdp->cpu_no_qs.b.norm = true;
97c668b8 3741 rdp->core_needs_qs = false;
9b9500da 3742 rdp->rcu_iw_pending = false;
8ff37290 3743 rdp->rcu_iw_gp_seq = rdp->gp_seq - 1;
53b46303 3744 trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuonl"));
67c583a7 3745 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4df83742 3746 rcu_prepare_kthreads(cpu);
ad368d15 3747 rcu_spawn_cpu_nocb_kthread(cpu);
4df83742
TG
3748
3749 return 0;
3750}
3751
deb34f36
PM
3752/*
3753 * Update RCU priority boot kthread affinity for CPU-hotplug changes.
3754 */
4df83742
TG
3755static void rcutree_affinity_setting(unsigned int cpu, int outgoing)
3756{
da1df50d 3757 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4df83742
TG
3758
3759 rcu_boost_kthread_setaffinity(rdp->mynode, outgoing);
3760}
3761
deb34f36
PM
3762/*
3763 * Near the end of the CPU-online process. Pretty much all services
3764 * enabled, and the CPU is now very much alive.
3765 */
4df83742
TG
3766int rcutree_online_cpu(unsigned int cpu)
3767{
9b9500da
PM
3768 unsigned long flags;
3769 struct rcu_data *rdp;
3770 struct rcu_node *rnp;
9b9500da 3771
b97d23c5
PM
3772 rdp = per_cpu_ptr(&rcu_data, cpu);
3773 rnp = rdp->mynode;
3774 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3775 rnp->ffmask |= rdp->grpmask;
3776 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
9b9500da
PM
3777 if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
3778 return 0; /* Too early in boot for scheduler work. */
3779 sync_sched_exp_online_cleanup(cpu);
3780 rcutree_affinity_setting(cpu, -1);
96926686
PM
3781
3782 // Stop-machine done, so allow nohz_full to disable tick.
3783 tick_dep_clear(TICK_DEP_BIT_RCU);
4df83742
TG
3784 return 0;
3785}
3786
deb34f36
PM
3787/*
3788 * Near the beginning of the process. The CPU is still very much alive
3789 * with pretty much all services enabled.
3790 */
4df83742
TG
3791int rcutree_offline_cpu(unsigned int cpu)
3792{
9b9500da
PM
3793 unsigned long flags;
3794 struct rcu_data *rdp;
3795 struct rcu_node *rnp;
9b9500da 3796
b97d23c5
PM
3797 rdp = per_cpu_ptr(&rcu_data, cpu);
3798 rnp = rdp->mynode;
3799 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3800 rnp->ffmask &= ~rdp->grpmask;
3801 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
9b9500da 3802
4df83742 3803 rcutree_affinity_setting(cpu, cpu);
96926686
PM
3804
3805 // nohz_full CPUs need the tick for stop-machine to work quickly
3806 tick_dep_set(TICK_DEP_BIT_RCU);
4df83742
TG
3807 return 0;
3808}
3809
f64c6013
PZ
3810static DEFINE_PER_CPU(int, rcu_cpu_started);
3811
7ec99de3
PM
3812/*
3813 * Mark the specified CPU as being online so that subsequent grace periods
3814 * (both expedited and normal) will wait on it. Note that this means that
3815 * incoming CPUs are not allowed to use RCU read-side critical sections
3816 * until this function is called. Failing to observe this restriction
3817 * will result in lockdep splats.
deb34f36
PM
3818 *
3819 * Note that this function is special in that it is invoked directly
3820 * from the incoming CPU rather than from the cpuhp_step mechanism.
3821 * This is because this function must be invoked at a precise location.
7ec99de3
PM
3822 */
3823void rcu_cpu_starting(unsigned int cpu)
3824{
3825 unsigned long flags;
3826 unsigned long mask;
313517fc
PM
3827 int nbits;
3828 unsigned long oldmask;
7ec99de3
PM
3829 struct rcu_data *rdp;
3830 struct rcu_node *rnp;
7ec99de3 3831
f64c6013
PZ
3832 if (per_cpu(rcu_cpu_started, cpu))
3833 return;
3834
3835 per_cpu(rcu_cpu_started, cpu) = 1;
3836
b97d23c5
PM
3837 rdp = per_cpu_ptr(&rcu_data, cpu);
3838 rnp = rdp->mynode;
3839 mask = rdp->grpmask;
3840 raw_spin_lock_irqsave_rcu_node(rnp, flags);
105abf82 3841 WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext | mask);
b97d23c5
PM
3842 oldmask = rnp->expmaskinitnext;
3843 rnp->expmaskinitnext |= mask;
3844 oldmask ^= rnp->expmaskinitnext;
3845 nbits = bitmap_weight(&oldmask, BITS_PER_LONG);
3846 /* Allow lockless access for expedited grace periods. */
eb7a6653 3847 smp_store_release(&rcu_state.ncpus, rcu_state.ncpus + nbits); /* ^^^ */
2f084695 3848 ASSERT_EXCLUSIVE_WRITER(rcu_state.ncpus);
b97d23c5 3849 rcu_gpnum_ovf(rnp, rdp); /* Offline-induced counter wrap? */
eb7a6653
PM
3850 rdp->rcu_onl_gp_seq = READ_ONCE(rcu_state.gp_seq);
3851 rdp->rcu_onl_gp_flags = READ_ONCE(rcu_state.gp_flags);
b97d23c5 3852 if (rnp->qsmask & mask) { /* RCU waiting on incoming CPU? */
516e5ae0 3853 rcu_disable_urgency_upon_qs(rdp);
b97d23c5
PM
3854 /* Report QS -after- changing ->qsmaskinitnext! */
3855 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
3856 } else {
3857 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
7ec99de3 3858 }
313517fc 3859 smp_mb(); /* Ensure RCU read-side usage follows above initialization. */
7ec99de3
PM
3860}
3861
27d50c7e
TG
3862#ifdef CONFIG_HOTPLUG_CPU
3863/*
53b46303
PM
3864 * The outgoing function has no further need of RCU, so remove it from
3865 * the rcu_node tree's ->qsmaskinitnext bit masks.
3866 *
3867 * Note that this function is special in that it is invoked directly
3868 * from the outgoing CPU rather than from the cpuhp_step mechanism.
3869 * This is because this function must be invoked at a precise location.
27d50c7e 3870 */
53b46303 3871void rcu_report_dead(unsigned int cpu)
27d50c7e
TG
3872{
3873 unsigned long flags;
3874 unsigned long mask;
da1df50d 3875 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
27d50c7e
TG
3876 struct rcu_node *rnp = rdp->mynode; /* Outgoing CPU's rdp & rnp. */
3877
49918a54 3878 /* QS for any half-done expedited grace period. */
53b46303 3879 preempt_disable();
63d4c8c9 3880 rcu_report_exp_rdp(this_cpu_ptr(&rcu_data));
53b46303
PM
3881 preempt_enable();
3882 rcu_preempt_deferred_qs(current);
3883
27d50c7e
TG
3884 /* Remove outgoing CPU from mask in the leaf rcu_node structure. */
3885 mask = rdp->grpmask;
894d45bb 3886 raw_spin_lock(&rcu_state.ofl_lock);
27d50c7e 3887 raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
53b46303
PM
3888 rdp->rcu_ofl_gp_seq = READ_ONCE(rcu_state.gp_seq);
3889 rdp->rcu_ofl_gp_flags = READ_ONCE(rcu_state.gp_flags);
fece2776
PM
3890 if (rnp->qsmask & mask) { /* RCU waiting on outgoing CPU? */
3891 /* Report quiescent state -before- changing ->qsmaskinitnext! */
b50912d0 3892 rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
fece2776
PM
3893 raw_spin_lock_irqsave_rcu_node(rnp, flags);
3894 }
105abf82 3895 WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext & ~mask);
710d60cb 3896 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
894d45bb 3897 raw_spin_unlock(&rcu_state.ofl_lock);
f64c6013
PZ
3898
3899 per_cpu(rcu_cpu_started, cpu) = 0;
27d50c7e 3900}
a58163d8 3901
53b46303
PM
3902/*
3903 * The outgoing CPU has just passed through the dying-idle state, and we
3904 * are being invoked from the CPU that was IPIed to continue the offline
3905 * operation. Migrate the outgoing CPU's callbacks to the current CPU.
3906 */
3907void rcutree_migrate_callbacks(int cpu)
a58163d8
PM
3908{
3909 unsigned long flags;
b1a2d79f 3910 struct rcu_data *my_rdp;
c00045be 3911 struct rcu_node *my_rnp;
da1df50d 3912 struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
ec4eacce 3913 bool needwake;
a58163d8 3914
ce5215c1
PM
3915 if (rcu_segcblist_is_offloaded(&rdp->cblist) ||
3916 rcu_segcblist_empty(&rdp->cblist))
95335c03
PM
3917 return; /* No callbacks to migrate. */
3918
b1a2d79f 3919 local_irq_save(flags);
da1df50d 3920 my_rdp = this_cpu_ptr(&rcu_data);
c00045be 3921 my_rnp = my_rdp->mynode;
5d6742b3 3922 rcu_nocb_lock(my_rdp); /* irqs already disabled. */
d1b222c6 3923 WARN_ON_ONCE(!rcu_nocb_flush_bypass(my_rdp, NULL, jiffies));
c00045be 3924 raw_spin_lock_rcu_node(my_rnp); /* irqs already disabled. */
ec4eacce 3925 /* Leverage recent GPs and set GP for new callbacks. */
c00045be
PM
3926 needwake = rcu_advance_cbs(my_rnp, rdp) ||
3927 rcu_advance_cbs(my_rnp, my_rdp);
f2dbe4a5 3928 rcu_segcblist_merge(&my_rdp->cblist, &rdp->cblist);
23651d9b 3929 needwake = needwake || rcu_advance_cbs(my_rnp, my_rdp);
c035280f 3930 rcu_segcblist_disable(&rdp->cblist);
09efeeee
PM
3931 WARN_ON_ONCE(rcu_segcblist_empty(&my_rdp->cblist) !=
3932 !rcu_segcblist_n_cbs(&my_rdp->cblist));
5d6742b3
PM
3933 if (rcu_segcblist_is_offloaded(&my_rdp->cblist)) {
3934 raw_spin_unlock_rcu_node(my_rnp); /* irqs remain disabled. */
3935 __call_rcu_nocb_wake(my_rdp, true, flags);
3936 } else {
3937 rcu_nocb_unlock(my_rdp); /* irqs remain disabled. */
3938 raw_spin_unlock_irqrestore_rcu_node(my_rnp, flags);
3939 }
ec4eacce 3940 if (needwake)
532c00c9 3941 rcu_gp_kthread_wake();
5d6742b3 3942 lockdep_assert_irqs_enabled();
a58163d8
PM
3943 WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 ||
3944 !rcu_segcblist_empty(&rdp->cblist),
3945 "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n",
3946 cpu, rcu_segcblist_n_cbs(&rdp->cblist),
3947 rcu_segcblist_first_cb(&rdp->cblist));
3948}
27d50c7e
TG
3949#endif
3950
deb34f36
PM
3951/*
3952 * On non-huge systems, use expedited RCU grace periods to make suspend
3953 * and hibernation run faster.
3954 */
d1d74d14
BP
3955static int rcu_pm_notify(struct notifier_block *self,
3956 unsigned long action, void *hcpu)
3957{
3958 switch (action) {
3959 case PM_HIBERNATION_PREPARE:
3960 case PM_SUSPEND_PREPARE:
e85e6a21 3961 rcu_expedite_gp();
d1d74d14
BP
3962 break;
3963 case PM_POST_HIBERNATION:
3964 case PM_POST_SUSPEND:
e85e6a21 3965 rcu_unexpedite_gp();
d1d74d14
BP
3966 break;
3967 default:
3968 break;
3969 }
3970 return NOTIFY_OK;
3971}
3972
b3dbec76 3973/*
49918a54 3974 * Spawn the kthreads that handle RCU's grace periods.
b3dbec76
PM
3975 */
3976static int __init rcu_spawn_gp_kthread(void)
3977{
3978 unsigned long flags;
a94844b2 3979 int kthread_prio_in = kthread_prio;
b3dbec76 3980 struct rcu_node *rnp;
a94844b2 3981 struct sched_param sp;
b3dbec76
PM
3982 struct task_struct *t;
3983
a94844b2 3984 /* Force priority into range. */
c7cd161e
JFG
3985 if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 2
3986 && IS_BUILTIN(CONFIG_RCU_TORTURE_TEST))
3987 kthread_prio = 2;
3988 else if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
a94844b2
PM
3989 kthread_prio = 1;
3990 else if (kthread_prio < 0)
3991 kthread_prio = 0;
3992 else if (kthread_prio > 99)
3993 kthread_prio = 99;
c7cd161e 3994
a94844b2
PM
3995 if (kthread_prio != kthread_prio_in)
3996 pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
3997 kthread_prio, kthread_prio_in);
3998
9386c0b7 3999 rcu_scheduler_fully_active = 1;
b97d23c5 4000 t = kthread_create(rcu_gp_kthread, NULL, "%s", rcu_state.name);
08543bda
PM
4001 if (WARN_ONCE(IS_ERR(t), "%s: Could not start grace-period kthread, OOM is now expected behavior\n", __func__))
4002 return 0;
b97d23c5
PM
4003 if (kthread_prio) {
4004 sp.sched_priority = kthread_prio;
4005 sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
b3dbec76 4006 }
b97d23c5
PM
4007 rnp = rcu_get_root();
4008 raw_spin_lock_irqsave_rcu_node(rnp, flags);
5648d659
PM
4009 WRITE_ONCE(rcu_state.gp_activity, jiffies);
4010 WRITE_ONCE(rcu_state.gp_req_activity, jiffies);
4011 // Reset .gp_activity and .gp_req_activity before setting .gp_kthread.
4012 smp_store_release(&rcu_state.gp_kthread, t); /* ^^^ */
b97d23c5
PM
4013 raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4014 wake_up_process(t);
35ce7f29 4015 rcu_spawn_nocb_kthreads();
9386c0b7 4016 rcu_spawn_boost_kthreads();
b3dbec76
PM
4017 return 0;
4018}
4019early_initcall(rcu_spawn_gp_kthread);
4020
bbad9379 4021/*
52d7e48b
PM
4022 * This function is invoked towards the end of the scheduler's
4023 * initialization process. Before this is called, the idle task might
4024 * contain synchronous grace-period primitives (during which time, this idle
4025 * task is booting the system, and such primitives are no-ops). After this
4026 * function is called, any synchronous grace-period primitives are run as
4027 * expedited, with the requesting task driving the grace period forward.
900b1028 4028 * A later core_initcall() rcu_set_runtime_mode() will switch to full
52d7e48b 4029 * runtime RCU functionality.
bbad9379
PM
4030 */
4031void rcu_scheduler_starting(void)
4032{
4033 WARN_ON(num_online_cpus() != 1);
4034 WARN_ON(nr_context_switches() > 0);
52d7e48b
PM
4035 rcu_test_sync_prims();
4036 rcu_scheduler_active = RCU_SCHEDULER_INIT;
4037 rcu_test_sync_prims();
bbad9379
PM
4038}
4039
64db4cff 4040/*
49918a54 4041 * Helper function for rcu_init() that initializes the rcu_state structure.
64db4cff 4042 */
b8bb1f63 4043static void __init rcu_init_one(void)
64db4cff 4044{
cb007102
AG
4045 static const char * const buf[] = RCU_NODE_NAME_INIT;
4046 static const char * const fqs[] = RCU_FQS_NAME_INIT;
3dc5dbe9
PM
4047 static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
4048 static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
199977bf 4049
199977bf 4050 int levelspread[RCU_NUM_LVLS]; /* kids/node in each level. */
64db4cff
PM
4051 int cpustride = 1;
4052 int i;
4053 int j;
4054 struct rcu_node *rnp;
4055
05b84aec 4056 BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf)); /* Fix buf[] init! */
b6407e86 4057
3eaaaf6c
PM
4058 /* Silence gcc 4.8 false positive about array index out of range. */
4059 if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
4060 panic("rcu_init_one: rcu_num_lvls out of range");
4930521a 4061
64db4cff
PM
4062 /* Initialize the level-tracking arrays. */
4063
f885b7f2 4064 for (i = 1; i < rcu_num_lvls; i++)
eb7a6653
PM
4065 rcu_state.level[i] =
4066 rcu_state.level[i - 1] + num_rcu_lvl[i - 1];
41f5c631 4067 rcu_init_levelspread(levelspread, num_rcu_lvl);
64db4cff
PM
4068
4069 /* Initialize the elements themselves, starting from the leaves. */
4070
f885b7f2 4071 for (i = rcu_num_lvls - 1; i >= 0; i--) {
199977bf 4072 cpustride *= levelspread[i];
eb7a6653 4073 rnp = rcu_state.level[i];
41f5c631 4074 for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) {
67c583a7
BF
4075 raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock));
4076 lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock),
b6407e86 4077 &rcu_node_class[i], buf[i]);
394f2769
PM
4078 raw_spin_lock_init(&rnp->fqslock);
4079 lockdep_set_class_and_name(&rnp->fqslock,
4080 &rcu_fqs_class[i], fqs[i]);
eb7a6653
PM
4081 rnp->gp_seq = rcu_state.gp_seq;
4082 rnp->gp_seq_needed = rcu_state.gp_seq;
4083 rnp->completedqs = rcu_state.gp_seq;
64db4cff
PM
4084 rnp->qsmask = 0;
4085 rnp->qsmaskinit = 0;
4086 rnp->grplo = j * cpustride;
4087 rnp->grphi = (j + 1) * cpustride - 1;
595f3900
HS
4088 if (rnp->grphi >= nr_cpu_ids)
4089 rnp->grphi = nr_cpu_ids - 1;
64db4cff
PM
4090 if (i == 0) {
4091 rnp->grpnum = 0;
4092 rnp->grpmask = 0;
4093 rnp->parent = NULL;
4094 } else {
199977bf 4095 rnp->grpnum = j % levelspread[i - 1];
df63fa5b 4096 rnp->grpmask = BIT(rnp->grpnum);
eb7a6653 4097 rnp->parent = rcu_state.level[i - 1] +
199977bf 4098 j / levelspread[i - 1];
64db4cff
PM
4099 }
4100 rnp->level = i;
12f5f524 4101 INIT_LIST_HEAD(&rnp->blkd_tasks);
dae6e64d 4102 rcu_init_one_nocb(rnp);
f6a12f34
PM
4103 init_waitqueue_head(&rnp->exp_wq[0]);
4104 init_waitqueue_head(&rnp->exp_wq[1]);
3b5f668e
PM
4105 init_waitqueue_head(&rnp->exp_wq[2]);
4106 init_waitqueue_head(&rnp->exp_wq[3]);
f6a12f34 4107 spin_lock_init(&rnp->exp_lock);
64db4cff
PM
4108 }
4109 }
0c34029a 4110
eb7a6653
PM
4111 init_swait_queue_head(&rcu_state.gp_wq);
4112 init_swait_queue_head(&rcu_state.expedited_wq);
aedf4ba9 4113 rnp = rcu_first_leaf_node();
0c34029a 4114 for_each_possible_cpu(i) {
4a90a068 4115 while (i > rnp->grphi)
0c34029a 4116 rnp++;
da1df50d 4117 per_cpu_ptr(&rcu_data, i)->mynode = rnp;
53b46303 4118 rcu_boot_init_percpu_data(i);
0c34029a 4119 }
64db4cff
PM
4120}
4121
f885b7f2
PM
4122/*
4123 * Compute the rcu_node tree geometry from kernel parameters. This cannot
4102adab 4124 * replace the definitions in tree.h because those are needed to size
f885b7f2
PM
4125 * the ->node array in the rcu_state structure.
4126 */
4127static void __init rcu_init_geometry(void)
4128{
026ad283 4129 ulong d;
f885b7f2 4130 int i;
05b84aec 4131 int rcu_capacity[RCU_NUM_LVLS];
f885b7f2 4132
026ad283
PM
4133 /*
4134 * Initialize any unspecified boot parameters.
4135 * The default values of jiffies_till_first_fqs and
4136 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
4137 * value, which is a function of HZ, then adding one for each
4138 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
4139 */
4140 d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
4141 if (jiffies_till_first_fqs == ULONG_MAX)
4142 jiffies_till_first_fqs = d;
4143 if (jiffies_till_next_fqs == ULONG_MAX)
4144 jiffies_till_next_fqs = d;
6973032a 4145 adjust_jiffies_till_sched_qs();
026ad283 4146
f885b7f2 4147 /* If the compile-time values are accurate, just leave. */
47d631af 4148 if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
b17c7035 4149 nr_cpu_ids == NR_CPUS)
f885b7f2 4150 return;
a7538352 4151 pr_info("Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%u\n",
39479098 4152 rcu_fanout_leaf, nr_cpu_ids);
f885b7f2 4153
f885b7f2 4154 /*
ee968ac6
PM
4155 * The boot-time rcu_fanout_leaf parameter must be at least two
4156 * and cannot exceed the number of bits in the rcu_node masks.
4157 * Complain and fall back to the compile-time values if this
4158 * limit is exceeded.
f885b7f2 4159 */
ee968ac6 4160 if (rcu_fanout_leaf < 2 ||
75cf15a4 4161 rcu_fanout_leaf > sizeof(unsigned long) * 8) {
13bd6494 4162 rcu_fanout_leaf = RCU_FANOUT_LEAF;
f885b7f2
PM
4163 WARN_ON(1);
4164 return;
4165 }
4166
f885b7f2
PM
4167 /*
4168 * Compute number of nodes that can be handled an rcu_node tree
9618138b 4169 * with the given number of levels.
f885b7f2 4170 */
9618138b 4171 rcu_capacity[0] = rcu_fanout_leaf;
05b84aec 4172 for (i = 1; i < RCU_NUM_LVLS; i++)
05c5df31 4173 rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
f885b7f2
PM
4174
4175 /*
75cf15a4 4176 * The tree must be able to accommodate the configured number of CPUs.
ee968ac6 4177 * If this limit is exceeded, fall back to the compile-time values.
f885b7f2 4178 */
ee968ac6
PM
4179 if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
4180 rcu_fanout_leaf = RCU_FANOUT_LEAF;
4181 WARN_ON(1);
4182 return;
4183 }
f885b7f2 4184
679f9858 4185 /* Calculate the number of levels in the tree. */
9618138b 4186 for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
679f9858 4187 }
9618138b 4188 rcu_num_lvls = i + 1;
679f9858 4189
f885b7f2 4190 /* Calculate the number of rcu_nodes at each level of the tree. */
679f9858 4191 for (i = 0; i < rcu_num_lvls; i++) {
9618138b 4192 int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
679f9858
AG
4193 num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
4194 }
f885b7f2
PM
4195
4196 /* Calculate the total number of rcu_node structures. */
4197 rcu_num_nodes = 0;
679f9858 4198 for (i = 0; i < rcu_num_lvls; i++)
f885b7f2 4199 rcu_num_nodes += num_rcu_lvl[i];
f885b7f2
PM
4200}
4201
a3dc2948
PM
4202/*
4203 * Dump out the structure of the rcu_node combining tree associated
49918a54 4204 * with the rcu_state structure.
a3dc2948 4205 */
b8bb1f63 4206static void __init rcu_dump_rcu_node_tree(void)
a3dc2948
PM
4207{
4208 int level = 0;
4209 struct rcu_node *rnp;
4210
4211 pr_info("rcu_node tree layout dump\n");
4212 pr_info(" ");
aedf4ba9 4213 rcu_for_each_node_breadth_first(rnp) {
a3dc2948
PM
4214 if (rnp->level != level) {
4215 pr_cont("\n");
4216 pr_info(" ");
4217 level = rnp->level;
4218 }
4219 pr_cont("%d:%d ^%d ", rnp->grplo, rnp->grphi, rnp->grpnum);
4220 }
4221 pr_cont("\n");
4222}
4223
ad7c946b 4224struct workqueue_struct *rcu_gp_wq;
25f3d7ef 4225struct workqueue_struct *rcu_par_gp_wq;
ad7c946b 4226
a35d1690
BP
4227static void __init kfree_rcu_batch_init(void)
4228{
4229 int cpu;
0392bebe 4230 int i;
a35d1690
BP
4231
4232 for_each_possible_cpu(cpu) {
4233 struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
4234
4235 spin_lock_init(&krcp->lock);
34c88174
URS
4236 for (i = 0; i < KFREE_N_BATCHES; i++) {
4237 INIT_RCU_WORK(&krcp->krw_arr[i].rcu_work, kfree_rcu_work);
0392bebe 4238 krcp->krw_arr[i].krcp = krcp;
34c88174
URS
4239 }
4240
a35d1690
BP
4241 INIT_DELAYED_WORK(&krcp->monitor_work, kfree_rcu_monitor);
4242 krcp->initialized = true;
4243 }
9154244c
JFG
4244 if (register_shrinker(&kfree_rcu_shrinker))
4245 pr_err("Failed to register kfree_rcu() shrinker!\n");
a35d1690
BP
4246}
4247
9f680ab4 4248void __init rcu_init(void)
64db4cff 4249{
017c4261 4250 int cpu;
9f680ab4 4251
47627678
PM
4252 rcu_early_boot_tests();
4253
a35d1690 4254 kfree_rcu_batch_init();
f41d911f 4255 rcu_bootup_announce();
f885b7f2 4256 rcu_init_geometry();
b8bb1f63 4257 rcu_init_one();
a3dc2948 4258 if (dump_tree)
b8bb1f63 4259 rcu_dump_rcu_node_tree();
48d07c04
SAS
4260 if (use_softirq)
4261 open_softirq(RCU_SOFTIRQ, rcu_core_si);
9f680ab4
PM
4262
4263 /*
4264 * We don't need protection against CPU-hotplug here because
4265 * this is called early in boot, before either interrupts
4266 * or the scheduler are operational.
4267 */
d1d74d14 4268 pm_notifier(rcu_pm_notify, 0);
7ec99de3 4269 for_each_online_cpu(cpu) {
4df83742 4270 rcutree_prepare_cpu(cpu);
7ec99de3 4271 rcu_cpu_starting(cpu);
9b9500da 4272 rcutree_online_cpu(cpu);
7ec99de3 4273 }
ad7c946b
PM
4274
4275 /* Create workqueue for expedited GPs and for Tree SRCU. */
4276 rcu_gp_wq = alloc_workqueue("rcu_gp", WQ_MEM_RECLAIM, 0);
4277 WARN_ON(!rcu_gp_wq);
25f3d7ef
PM
4278 rcu_par_gp_wq = alloc_workqueue("rcu_par_gp", WQ_MEM_RECLAIM, 0);
4279 WARN_ON(!rcu_par_gp_wq);
e0fcba9a 4280 srcu_init();
b2b00ddf
PM
4281
4282 /* Fill in default value for rcutree.qovld boot parameter. */
4283 /* -After- the rcu_node ->lock fields are initialized! */
4284 if (qovld < 0)
4285 qovld_calc = DEFAULT_RCU_QOVLD_MULT * qhimark;
4286 else
4287 qovld_calc = qovld;
64db4cff
PM
4288}
4289
10462d6f 4290#include "tree_stall.h"
3549c2bc 4291#include "tree_exp.h"
4102adab 4292#include "tree_plugin.h"