]> git.ipfire.org Git - thirdparty/linux.git/blame - kernel/sched/sched.h
Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net
[thirdparty/linux.git] / kernel / sched / sched.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
97fb7a0a
IM
2/*
3 * Scheduler internal types and methods:
4 */
029632fb 5#include <linux/sched.h>
325ea10c 6
dfc3401a 7#include <linux/sched/autogroup.h>
e6017571 8#include <linux/sched/clock.h>
325ea10c 9#include <linux/sched/coredump.h>
55687da1 10#include <linux/sched/cpufreq.h>
325ea10c
IM
11#include <linux/sched/cputime.h>
12#include <linux/sched/deadline.h>
b17b0153 13#include <linux/sched/debug.h>
ef8bd77f 14#include <linux/sched/hotplug.h>
325ea10c
IM
15#include <linux/sched/idle.h>
16#include <linux/sched/init.h>
17#include <linux/sched/isolation.h>
18#include <linux/sched/jobctl.h>
19#include <linux/sched/loadavg.h>
20#include <linux/sched/mm.h>
21#include <linux/sched/nohz.h>
22#include <linux/sched/numa_balancing.h>
23#include <linux/sched/prio.h>
24#include <linux/sched/rt.h>
25#include <linux/sched/signal.h>
321a874a 26#include <linux/sched/smt.h>
325ea10c
IM
27#include <linux/sched/stat.h>
28#include <linux/sched/sysctl.h>
29930025 29#include <linux/sched/task.h>
68db0cf1 30#include <linux/sched/task_stack.h>
325ea10c
IM
31#include <linux/sched/topology.h>
32#include <linux/sched/user.h>
33#include <linux/sched/wake_q.h>
34#include <linux/sched/xacct.h>
35
36#include <uapi/linux/sched/types.h>
ef8bd77f 37
3866e845 38#include <linux/binfmts.h>
325ea10c
IM
39#include <linux/blkdev.h>
40#include <linux/compat.h>
41#include <linux/context_tracking.h>
42#include <linux/cpufreq.h>
43#include <linux/cpuidle.h>
44#include <linux/cpuset.h>
45#include <linux/ctype.h>
46#include <linux/debugfs.h>
47#include <linux/delayacct.h>
48#include <linux/init_task.h>
49#include <linux/kprobes.h>
50#include <linux/kthread.h>
51#include <linux/membarrier.h>
52#include <linux/migrate.h>
53#include <linux/mmu_context.h>
54#include <linux/nmi.h>
55#include <linux/proc_fs.h>
56#include <linux/prefetch.h>
57#include <linux/profile.h>
eb414681 58#include <linux/psi.h>
325ea10c
IM
59#include <linux/rcupdate_wait.h>
60#include <linux/security.h>
029632fb 61#include <linux/stop_machine.h>
325ea10c
IM
62#include <linux/suspend.h>
63#include <linux/swait.h>
64#include <linux/syscalls.h>
65#include <linux/task_work.h>
66#include <linux/tsacct_kern.h>
67
68#include <asm/tlb.h>
029632fb 69
7fce777c 70#ifdef CONFIG_PARAVIRT
325ea10c 71# include <asm/paravirt.h>
7fce777c
IM
72#endif
73
391e43da 74#include "cpupri.h"
6bfd6d72 75#include "cpudeadline.h"
029632fb 76
9148a3a1 77#ifdef CONFIG_SCHED_DEBUG
6d3aed3d 78# define SCHED_WARN_ON(x) WARN_ONCE(x, #x)
9148a3a1 79#else
6d3aed3d 80# define SCHED_WARN_ON(x) ({ (void)(x), 0; })
9148a3a1
PZ
81#endif
82
45ceebf7 83struct rq;
442bf3aa 84struct cpuidle_state;
45ceebf7 85
da0c1e65
KT
86/* task_struct::on_rq states: */
87#define TASK_ON_RQ_QUEUED 1
cca26e80 88#define TASK_ON_RQ_MIGRATING 2
da0c1e65 89
029632fb
PZ
90extern __read_mostly int scheduler_running;
91
45ceebf7
PG
92extern unsigned long calc_load_update;
93extern atomic_long_t calc_load_tasks;
94
3289bdb4 95extern void calc_global_load_tick(struct rq *this_rq);
d60585c5 96extern long calc_load_fold_active(struct rq *this_rq, long adjust);
3289bdb4
PZ
97
98#ifdef CONFIG_SMP
cee1afce 99extern void cpu_load_update_active(struct rq *this_rq);
3289bdb4 100#else
cee1afce 101static inline void cpu_load_update_active(struct rq *this_rq) { }
3289bdb4 102#endif
45ceebf7 103
029632fb
PZ
104/*
105 * Helpers for converting nanosecond timing to jiffy resolution
106 */
107#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
108
cc1f4b1f
LZ
109/*
110 * Increase resolution of nice-level calculations for 64-bit architectures.
111 * The extra resolution improves shares distribution and load balancing of
112 * low-weight task groups (eg. nice +19 on an autogroup), deeper taskgroup
113 * hierarchies, especially on larger systems. This is not a user-visible change
114 * and does not change the user-interface for setting shares/weights.
115 *
116 * We increase resolution only if we have enough bits to allow this increased
97fb7a0a
IM
117 * resolution (i.e. 64-bit). The costs for increasing resolution when 32-bit
118 * are pretty high and the returns do not justify the increased costs.
2159197d 119 *
97fb7a0a
IM
120 * Really only required when CONFIG_FAIR_GROUP_SCHED=y is also set, but to
121 * increase coverage and consistency always enable it on 64-bit platforms.
cc1f4b1f 122 */
2159197d 123#ifdef CONFIG_64BIT
172895e6 124# define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT + SCHED_FIXEDPOINT_SHIFT)
6ecdd749
YD
125# define scale_load(w) ((w) << SCHED_FIXEDPOINT_SHIFT)
126# define scale_load_down(w) ((w) >> SCHED_FIXEDPOINT_SHIFT)
cc1f4b1f 127#else
172895e6 128# define NICE_0_LOAD_SHIFT (SCHED_FIXEDPOINT_SHIFT)
cc1f4b1f
LZ
129# define scale_load(w) (w)
130# define scale_load_down(w) (w)
131#endif
132
6ecdd749 133/*
172895e6
YD
134 * Task weight (visible to users) and its load (invisible to users) have
135 * independent resolution, but they should be well calibrated. We use
136 * scale_load() and scale_load_down(w) to convert between them. The
137 * following must be true:
138 *
139 * scale_load(sched_prio_to_weight[USER_PRIO(NICE_TO_PRIO(0))]) == NICE_0_LOAD
140 *
6ecdd749 141 */
172895e6 142#define NICE_0_LOAD (1L << NICE_0_LOAD_SHIFT)
029632fb 143
332ac17e
DF
144/*
145 * Single value that decides SCHED_DEADLINE internal math precision.
146 * 10 -> just above 1us
147 * 9 -> just above 0.5us
148 */
97fb7a0a 149#define DL_SCALE 10
029632fb
PZ
150
151/*
97fb7a0a 152 * Single value that denotes runtime == period, ie unlimited time.
029632fb 153 */
97fb7a0a 154#define RUNTIME_INF ((u64)~0ULL)
029632fb 155
20f9cd2a
HA
156static inline int idle_policy(int policy)
157{
158 return policy == SCHED_IDLE;
159}
d50dde5a
DF
160static inline int fair_policy(int policy)
161{
162 return policy == SCHED_NORMAL || policy == SCHED_BATCH;
163}
164
029632fb
PZ
165static inline int rt_policy(int policy)
166{
d50dde5a 167 return policy == SCHED_FIFO || policy == SCHED_RR;
029632fb
PZ
168}
169
aab03e05
DF
170static inline int dl_policy(int policy)
171{
172 return policy == SCHED_DEADLINE;
173}
20f9cd2a
HA
174static inline bool valid_policy(int policy)
175{
176 return idle_policy(policy) || fair_policy(policy) ||
177 rt_policy(policy) || dl_policy(policy);
178}
aab03e05 179
029632fb
PZ
180static inline int task_has_rt_policy(struct task_struct *p)
181{
182 return rt_policy(p->policy);
183}
184
aab03e05
DF
185static inline int task_has_dl_policy(struct task_struct *p)
186{
187 return dl_policy(p->policy);
188}
189
07881166
JL
190#define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
191
794a56eb
JL
192/*
193 * !! For sched_setattr_nocheck() (kernel) only !!
194 *
195 * This is actually gross. :(
196 *
197 * It is used to make schedutil kworker(s) higher priority than SCHED_DEADLINE
198 * tasks, but still be able to sleep. We need this on platforms that cannot
199 * atomically change clock frequency. Remove once fast switching will be
200 * available on such platforms.
201 *
202 * SUGOV stands for SchedUtil GOVernor.
203 */
204#define SCHED_FLAG_SUGOV 0x10000000
205
206static inline bool dl_entity_is_special(struct sched_dl_entity *dl_se)
207{
208#ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
209 return unlikely(dl_se->flags & SCHED_FLAG_SUGOV);
210#else
211 return false;
212#endif
213}
214
2d3d891d
DF
215/*
216 * Tells if entity @a should preempt entity @b.
217 */
332ac17e
DF
218static inline bool
219dl_entity_preempt(struct sched_dl_entity *a, struct sched_dl_entity *b)
2d3d891d 220{
794a56eb
JL
221 return dl_entity_is_special(a) ||
222 dl_time_before(a->deadline, b->deadline);
2d3d891d
DF
223}
224
029632fb
PZ
225/*
226 * This is the priority-queue data structure of the RT scheduling class:
227 */
228struct rt_prio_array {
229 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
230 struct list_head queue[MAX_RT_PRIO];
231};
232
233struct rt_bandwidth {
234 /* nests inside the rq lock: */
235 raw_spinlock_t rt_runtime_lock;
236 ktime_t rt_period;
237 u64 rt_runtime;
238 struct hrtimer rt_period_timer;
4cfafd30 239 unsigned int rt_period_active;
029632fb 240};
a5e7be3b
JL
241
242void __dl_clear_params(struct task_struct *p);
243
332ac17e
DF
244/*
245 * To keep the bandwidth of -deadline tasks and groups under control
246 * we need some place where:
247 * - store the maximum -deadline bandwidth of the system (the group);
248 * - cache the fraction of that bandwidth that is currently allocated.
249 *
250 * This is all done in the data structure below. It is similar to the
251 * one used for RT-throttling (rt_bandwidth), with the main difference
252 * that, since here we are only interested in admission control, we
253 * do not decrease any runtime while the group "executes", neither we
254 * need a timer to replenish it.
255 *
256 * With respect to SMP, the bandwidth is given on a per-CPU basis,
257 * meaning that:
258 * - dl_bw (< 100%) is the bandwidth of the system (group) on each CPU;
259 * - dl_total_bw array contains, in the i-eth element, the currently
260 * allocated bandwidth on the i-eth CPU.
261 * Moreover, groups consume bandwidth on each CPU, while tasks only
262 * consume bandwidth on the CPU they're running on.
263 * Finally, dl_total_bw_cpu is used to cache the index of dl_total_bw
264 * that will be shown the next time the proc or cgroup controls will
265 * be red. It on its turn can be changed by writing on its own
266 * control.
267 */
268struct dl_bandwidth {
97fb7a0a
IM
269 raw_spinlock_t dl_runtime_lock;
270 u64 dl_runtime;
271 u64 dl_period;
332ac17e
DF
272};
273
274static inline int dl_bandwidth_enabled(void)
275{
1724813d 276 return sysctl_sched_rt_runtime >= 0;
332ac17e
DF
277}
278
332ac17e 279struct dl_bw {
97fb7a0a
IM
280 raw_spinlock_t lock;
281 u64 bw;
282 u64 total_bw;
332ac17e
DF
283};
284
daec5798
LA
285static inline void __dl_update(struct dl_bw *dl_b, s64 bw);
286
7f51412a 287static inline
8c0944ce 288void __dl_sub(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
7f51412a
JL
289{
290 dl_b->total_bw -= tsk_bw;
daec5798 291 __dl_update(dl_b, (s32)tsk_bw / cpus);
7f51412a
JL
292}
293
294static inline
daec5798 295void __dl_add(struct dl_bw *dl_b, u64 tsk_bw, int cpus)
7f51412a
JL
296{
297 dl_b->total_bw += tsk_bw;
daec5798 298 __dl_update(dl_b, -((s32)tsk_bw / cpus));
7f51412a
JL
299}
300
301static inline
302bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw)
303{
304 return dl_b->bw != -1 &&
305 dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw;
306}
307
97fb7a0a 308extern void dl_change_utilization(struct task_struct *p, u64 new_bw);
f2cb1360 309extern void init_dl_bw(struct dl_bw *dl_b);
97fb7a0a 310extern int sched_dl_global_validate(void);
06a76fe0 311extern void sched_dl_do_global(void);
97fb7a0a 312extern int sched_dl_overflow(struct task_struct *p, int policy, const struct sched_attr *attr);
06a76fe0
NP
313extern void __setparam_dl(struct task_struct *p, const struct sched_attr *attr);
314extern void __getparam_dl(struct task_struct *p, struct sched_attr *attr);
315extern bool __checkparam_dl(const struct sched_attr *attr);
06a76fe0 316extern bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr);
97fb7a0a
IM
317extern int dl_task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed);
318extern int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial);
06a76fe0 319extern bool dl_cpu_busy(unsigned int cpu);
029632fb
PZ
320
321#ifdef CONFIG_CGROUP_SCHED
322
323#include <linux/cgroup.h>
eb414681 324#include <linux/psi.h>
029632fb
PZ
325
326struct cfs_rq;
327struct rt_rq;
328
35cf4e50 329extern struct list_head task_groups;
029632fb
PZ
330
331struct cfs_bandwidth {
332#ifdef CONFIG_CFS_BANDWIDTH
97fb7a0a
IM
333 raw_spinlock_t lock;
334 ktime_t period;
335 u64 quota;
336 u64 runtime;
337 s64 hierarchical_quota;
338 u64 runtime_expires;
512ac999 339 int expires_seq;
97fb7a0a 340
512ac999
XP
341 short idle;
342 short period_active;
97fb7a0a
IM
343 struct hrtimer period_timer;
344 struct hrtimer slack_timer;
345 struct list_head throttled_cfs_rq;
346
347 /* Statistics: */
348 int nr_periods;
349 int nr_throttled;
350 u64 throttled_time;
baa9be4f
PA
351
352 bool distribute_running;
029632fb
PZ
353#endif
354};
355
97fb7a0a 356/* Task group related information */
029632fb
PZ
357struct task_group {
358 struct cgroup_subsys_state css;
359
360#ifdef CONFIG_FAIR_GROUP_SCHED
97fb7a0a
IM
361 /* schedulable entities of this group on each CPU */
362 struct sched_entity **se;
363 /* runqueue "owned" by this group on each CPU */
364 struct cfs_rq **cfs_rq;
365 unsigned long shares;
029632fb 366
fa6bddeb 367#ifdef CONFIG_SMP
b0367629
WL
368 /*
369 * load_avg can be heavily contended at clock tick time, so put
370 * it in its own cacheline separated from the fields above which
371 * will also be accessed at each tick.
372 */
97fb7a0a 373 atomic_long_t load_avg ____cacheline_aligned;
029632fb 374#endif
fa6bddeb 375#endif
029632fb
PZ
376
377#ifdef CONFIG_RT_GROUP_SCHED
97fb7a0a
IM
378 struct sched_rt_entity **rt_se;
379 struct rt_rq **rt_rq;
029632fb 380
97fb7a0a 381 struct rt_bandwidth rt_bandwidth;
029632fb
PZ
382#endif
383
97fb7a0a
IM
384 struct rcu_head rcu;
385 struct list_head list;
029632fb 386
97fb7a0a
IM
387 struct task_group *parent;
388 struct list_head siblings;
389 struct list_head children;
029632fb
PZ
390
391#ifdef CONFIG_SCHED_AUTOGROUP
97fb7a0a 392 struct autogroup *autogroup;
029632fb
PZ
393#endif
394
97fb7a0a 395 struct cfs_bandwidth cfs_bandwidth;
029632fb
PZ
396};
397
398#ifdef CONFIG_FAIR_GROUP_SCHED
399#define ROOT_TASK_GROUP_LOAD NICE_0_LOAD
400
401/*
402 * A weight of 0 or 1 can cause arithmetics problems.
403 * A weight of a cfs_rq is the sum of weights of which entities
404 * are queued on this cfs_rq, so a weight of a entity should not be
405 * too large, so as the shares value of a task group.
406 * (The default weight is 1024 - so there's no practical
407 * limitation from this.)
408 */
97fb7a0a
IM
409#define MIN_SHARES (1UL << 1)
410#define MAX_SHARES (1UL << 18)
029632fb
PZ
411#endif
412
029632fb
PZ
413typedef int (*tg_visitor)(struct task_group *, void *);
414
415extern int walk_tg_tree_from(struct task_group *from,
416 tg_visitor down, tg_visitor up, void *data);
417
418/*
419 * Iterate the full tree, calling @down when first entering a node and @up when
420 * leaving it for the final time.
421 *
422 * Caller must hold rcu_lock or sufficient equivalent.
423 */
424static inline int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
425{
426 return walk_tg_tree_from(&root_task_group, down, up, data);
427}
428
429extern int tg_nop(struct task_group *tg, void *data);
430
431extern void free_fair_sched_group(struct task_group *tg);
432extern int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent);
8663e24d 433extern void online_fair_sched_group(struct task_group *tg);
6fe1f348 434extern void unregister_fair_sched_group(struct task_group *tg);
029632fb
PZ
435extern void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
436 struct sched_entity *se, int cpu,
437 struct sched_entity *parent);
438extern void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
029632fb
PZ
439
440extern void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b);
77a4d1a1 441extern void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b);
029632fb
PZ
442extern void unthrottle_cfs_rq(struct cfs_rq *cfs_rq);
443
444extern void free_rt_sched_group(struct task_group *tg);
445extern int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent);
446extern void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
447 struct sched_rt_entity *rt_se, int cpu,
448 struct sched_rt_entity *parent);
8887cd99
NP
449extern int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us);
450extern int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us);
451extern long sched_group_rt_runtime(struct task_group *tg);
452extern long sched_group_rt_period(struct task_group *tg);
453extern int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk);
029632fb 454
25cc7da7
LZ
455extern struct task_group *sched_create_group(struct task_group *parent);
456extern void sched_online_group(struct task_group *tg,
457 struct task_group *parent);
458extern void sched_destroy_group(struct task_group *tg);
459extern void sched_offline_group(struct task_group *tg);
460
461extern void sched_move_task(struct task_struct *tsk);
462
463#ifdef CONFIG_FAIR_GROUP_SCHED
464extern int sched_group_set_shares(struct task_group *tg, unsigned long shares);
ad936d86
BP
465
466#ifdef CONFIG_SMP
467extern void set_task_rq_fair(struct sched_entity *se,
468 struct cfs_rq *prev, struct cfs_rq *next);
469#else /* !CONFIG_SMP */
470static inline void set_task_rq_fair(struct sched_entity *se,
471 struct cfs_rq *prev, struct cfs_rq *next) { }
472#endif /* CONFIG_SMP */
473#endif /* CONFIG_FAIR_GROUP_SCHED */
25cc7da7 474
029632fb
PZ
475#else /* CONFIG_CGROUP_SCHED */
476
477struct cfs_bandwidth { };
478
479#endif /* CONFIG_CGROUP_SCHED */
480
481/* CFS-related fields in a runqueue */
482struct cfs_rq {
97fb7a0a
IM
483 struct load_weight load;
484 unsigned long runnable_weight;
485 unsigned int nr_running;
486 unsigned int h_nr_running;
029632fb 487
97fb7a0a
IM
488 u64 exec_clock;
489 u64 min_vruntime;
029632fb 490#ifndef CONFIG_64BIT
97fb7a0a 491 u64 min_vruntime_copy;
029632fb
PZ
492#endif
493
97fb7a0a 494 struct rb_root_cached tasks_timeline;
029632fb 495
029632fb
PZ
496 /*
497 * 'curr' points to currently running entity on this cfs_rq.
498 * It is set to NULL otherwise (i.e when none are currently running).
499 */
97fb7a0a
IM
500 struct sched_entity *curr;
501 struct sched_entity *next;
502 struct sched_entity *last;
503 struct sched_entity *skip;
029632fb
PZ
504
505#ifdef CONFIG_SCHED_DEBUG
97fb7a0a 506 unsigned int nr_spread_over;
029632fb
PZ
507#endif
508
2dac754e
PT
509#ifdef CONFIG_SMP
510 /*
9d89c257 511 * CFS load tracking
2dac754e 512 */
97fb7a0a 513 struct sched_avg avg;
2a2f5d4e 514#ifndef CONFIG_64BIT
97fb7a0a 515 u64 load_last_update_time_copy;
9d89c257 516#endif
2a2f5d4e
PZ
517 struct {
518 raw_spinlock_t lock ____cacheline_aligned;
519 int nr;
520 unsigned long load_avg;
521 unsigned long util_avg;
0e2d2aaa 522 unsigned long runnable_sum;
2a2f5d4e 523 } removed;
82958366 524
9d89c257 525#ifdef CONFIG_FAIR_GROUP_SCHED
97fb7a0a
IM
526 unsigned long tg_load_avg_contrib;
527 long propagate;
528 long prop_runnable_sum;
0e2d2aaa 529
82958366
PT
530 /*
531 * h_load = weight * f(tg)
532 *
533 * Where f(tg) is the recursive weight fraction assigned to
534 * this group.
535 */
97fb7a0a
IM
536 unsigned long h_load;
537 u64 last_h_load_update;
538 struct sched_entity *h_load_next;
68520796 539#endif /* CONFIG_FAIR_GROUP_SCHED */
82958366
PT
540#endif /* CONFIG_SMP */
541
029632fb 542#ifdef CONFIG_FAIR_GROUP_SCHED
97fb7a0a 543 struct rq *rq; /* CPU runqueue to which this cfs_rq is attached */
029632fb
PZ
544
545 /*
546 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
547 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
548 * (like users, containers etc.)
549 *
97fb7a0a
IM
550 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a CPU.
551 * This list is used during load balance.
029632fb 552 */
97fb7a0a
IM
553 int on_list;
554 struct list_head leaf_cfs_rq_list;
555 struct task_group *tg; /* group that "owns" this runqueue */
029632fb 556
029632fb 557#ifdef CONFIG_CFS_BANDWIDTH
97fb7a0a 558 int runtime_enabled;
512ac999 559 int expires_seq;
97fb7a0a
IM
560 u64 runtime_expires;
561 s64 runtime_remaining;
562
563 u64 throttled_clock;
564 u64 throttled_clock_task;
565 u64 throttled_clock_task_time;
566 int throttled;
567 int throttle_count;
568 struct list_head throttled_list;
029632fb
PZ
569#endif /* CONFIG_CFS_BANDWIDTH */
570#endif /* CONFIG_FAIR_GROUP_SCHED */
571};
572
573static inline int rt_bandwidth_enabled(void)
574{
575 return sysctl_sched_rt_runtime >= 0;
576}
577
b6366f04 578/* RT IPI pull logic requires IRQ_WORK */
4bdced5c 579#if defined(CONFIG_IRQ_WORK) && defined(CONFIG_SMP)
b6366f04
SR
580# define HAVE_RT_PUSH_IPI
581#endif
582
029632fb
PZ
583/* Real-Time classes' related field in a runqueue: */
584struct rt_rq {
97fb7a0a
IM
585 struct rt_prio_array active;
586 unsigned int rt_nr_running;
587 unsigned int rr_nr_running;
029632fb
PZ
588#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
589 struct {
97fb7a0a 590 int curr; /* highest queued rt task prio */
029632fb 591#ifdef CONFIG_SMP
97fb7a0a 592 int next; /* next highest */
029632fb
PZ
593#endif
594 } highest_prio;
595#endif
596#ifdef CONFIG_SMP
97fb7a0a
IM
597 unsigned long rt_nr_migratory;
598 unsigned long rt_nr_total;
599 int overloaded;
600 struct plist_head pushable_tasks;
371bf427 601
b6366f04 602#endif /* CONFIG_SMP */
97fb7a0a 603 int rt_queued;
f4ebcbc0 604
97fb7a0a
IM
605 int rt_throttled;
606 u64 rt_time;
607 u64 rt_runtime;
029632fb 608 /* Nests inside the rq lock: */
97fb7a0a 609 raw_spinlock_t rt_runtime_lock;
029632fb
PZ
610
611#ifdef CONFIG_RT_GROUP_SCHED
97fb7a0a 612 unsigned long rt_nr_boosted;
029632fb 613
97fb7a0a
IM
614 struct rq *rq;
615 struct task_group *tg;
029632fb
PZ
616#endif
617};
618
296b2ffe
VG
619static inline bool rt_rq_is_runnable(struct rt_rq *rt_rq)
620{
621 return rt_rq->rt_queued && rt_rq->rt_nr_running;
622}
623
aab03e05
DF
624/* Deadline class' related fields in a runqueue */
625struct dl_rq {
626 /* runqueue is an rbtree, ordered by deadline */
97fb7a0a 627 struct rb_root_cached root;
aab03e05 628
97fb7a0a 629 unsigned long dl_nr_running;
1baca4ce
JL
630
631#ifdef CONFIG_SMP
632 /*
633 * Deadline values of the currently executing and the
634 * earliest ready task on this rq. Caching these facilitates
635 * the decision wether or not a ready but not running task
636 * should migrate somewhere else.
637 */
638 struct {
97fb7a0a
IM
639 u64 curr;
640 u64 next;
1baca4ce
JL
641 } earliest_dl;
642
97fb7a0a
IM
643 unsigned long dl_nr_migratory;
644 int overloaded;
1baca4ce
JL
645
646 /*
647 * Tasks on this rq that can be pushed away. They are kept in
648 * an rb-tree, ordered by tasks' deadlines, with caching
649 * of the leftmost (earliest deadline) element.
650 */
97fb7a0a 651 struct rb_root_cached pushable_dl_tasks_root;
332ac17e 652#else
97fb7a0a 653 struct dl_bw dl_bw;
1baca4ce 654#endif
e36d8677
LA
655 /*
656 * "Active utilization" for this runqueue: increased when a
657 * task wakes up (becomes TASK_RUNNING) and decreased when a
658 * task blocks
659 */
97fb7a0a 660 u64 running_bw;
4da3abce 661
8fd27231
LA
662 /*
663 * Utilization of the tasks "assigned" to this runqueue (including
664 * the tasks that are in runqueue and the tasks that executed on this
665 * CPU and blocked). Increased when a task moves to this runqueue, and
666 * decreased when the task moves away (migrates, changes scheduling
667 * policy, or terminates).
668 * This is needed to compute the "inactive utilization" for the
669 * runqueue (inactive utilization = this_bw - running_bw).
670 */
97fb7a0a
IM
671 u64 this_bw;
672 u64 extra_bw;
8fd27231 673
4da3abce
LA
674 /*
675 * Inverse of the fraction of CPU utilization that can be reclaimed
676 * by the GRUB algorithm.
677 */
97fb7a0a 678 u64 bw_ratio;
aab03e05
DF
679};
680
c0796298
VG
681#ifdef CONFIG_FAIR_GROUP_SCHED
682/* An entity is a task if it doesn't "own" a runqueue */
683#define entity_is_task(se) (!se->my_q)
684#else
685#define entity_is_task(se) 1
686#endif
687
029632fb 688#ifdef CONFIG_SMP
c0796298
VG
689/*
690 * XXX we want to get rid of these helpers and use the full load resolution.
691 */
692static inline long se_weight(struct sched_entity *se)
693{
694 return scale_load_down(se->load.weight);
695}
696
697static inline long se_runnable(struct sched_entity *se)
698{
699 return scale_load_down(se->runnable_weight);
700}
029632fb 701
afe06efd
TC
702static inline bool sched_asym_prefer(int a, int b)
703{
704 return arch_asym_cpu_priority(a) > arch_asym_cpu_priority(b);
705}
706
029632fb
PZ
707/*
708 * We add the notion of a root-domain which will be used to define per-domain
709 * variables. Each exclusive cpuset essentially defines an island domain by
97fb7a0a 710 * fully partitioning the member CPUs from any other cpuset. Whenever a new
029632fb
PZ
711 * exclusive cpuset is created, we also create and attach a new root-domain
712 * object.
713 *
714 */
715struct root_domain {
97fb7a0a
IM
716 atomic_t refcount;
717 atomic_t rto_count;
718 struct rcu_head rcu;
719 cpumask_var_t span;
720 cpumask_var_t online;
029632fb 721
757ffdd7
VS
722 /*
723 * Indicate pullable load on at least one CPU, e.g:
724 * - More than one runnable task
725 * - Running task is misfit
726 */
575638d1 727 int overload;
4486edd1 728
1baca4ce
JL
729 /*
730 * The bit corresponding to a CPU gets set here if such CPU has more
731 * than one runnable -deadline task (as it is below for RT tasks).
732 */
97fb7a0a
IM
733 cpumask_var_t dlo_mask;
734 atomic_t dlo_count;
735 struct dl_bw dl_bw;
736 struct cpudl cpudl;
1baca4ce 737
4bdced5c
SRRH
738#ifdef HAVE_RT_PUSH_IPI
739 /*
740 * For IPI pull requests, loop across the rto_mask.
741 */
97fb7a0a
IM
742 struct irq_work rto_push_work;
743 raw_spinlock_t rto_lock;
4bdced5c 744 /* These are only updated and read within rto_lock */
97fb7a0a
IM
745 int rto_loop;
746 int rto_cpu;
4bdced5c 747 /* These atomics are updated outside of a lock */
97fb7a0a
IM
748 atomic_t rto_loop_next;
749 atomic_t rto_loop_start;
4bdced5c 750#endif
029632fb
PZ
751 /*
752 * The "RT overload" flag: it gets set if a CPU has more than
753 * one runnable RT task.
754 */
97fb7a0a
IM
755 cpumask_var_t rto_mask;
756 struct cpupri cpupri;
cd92bfd3 757
97fb7a0a 758 unsigned long max_cpu_capacity;
029632fb
PZ
759};
760
761extern struct root_domain def_root_domain;
f2cb1360 762extern struct mutex sched_domains_mutex;
f2cb1360
IM
763
764extern void init_defrootdomain(void);
8d5dc512 765extern int sched_init_domains(const struct cpumask *cpu_map);
f2cb1360 766extern void rq_attach_root(struct rq *rq, struct root_domain *rd);
364f5665
SRV
767extern void sched_get_rd(struct root_domain *rd);
768extern void sched_put_rd(struct root_domain *rd);
029632fb 769
4bdced5c
SRRH
770#ifdef HAVE_RT_PUSH_IPI
771extern void rto_push_irq_work_func(struct irq_work *work);
772#endif
029632fb
PZ
773#endif /* CONFIG_SMP */
774
775/*
776 * This is the main, per-CPU runqueue data structure.
777 *
778 * Locking rule: those places that want to lock multiple runqueues
779 * (such as the load balancing or the thread migration code), lock
780 * acquire operations must be ordered by ascending &runqueue.
781 */
782struct rq {
783 /* runqueue lock: */
97fb7a0a 784 raw_spinlock_t lock;
029632fb
PZ
785
786 /*
787 * nr_running and cpu_load should be in the same cacheline because
788 * remote CPUs use both these fields when doing load calculation.
789 */
97fb7a0a 790 unsigned int nr_running;
0ec8aa00 791#ifdef CONFIG_NUMA_BALANCING
97fb7a0a
IM
792 unsigned int nr_numa_running;
793 unsigned int nr_preferred_running;
a4739eca 794 unsigned int numa_migrate_on;
0ec8aa00 795#endif
029632fb 796 #define CPU_LOAD_IDX_MAX 5
97fb7a0a 797 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
3451d024 798#ifdef CONFIG_NO_HZ_COMMON
9fd81dd5 799#ifdef CONFIG_SMP
97fb7a0a 800 unsigned long last_load_update_tick;
e022e0d3 801 unsigned long last_blocked_load_update_tick;
f643ea22 802 unsigned int has_blocked_load;
9fd81dd5 803#endif /* CONFIG_SMP */
00357f5e 804 unsigned int nohz_tick_stopped;
a22e47a4 805 atomic_t nohz_flags;
9fd81dd5 806#endif /* CONFIG_NO_HZ_COMMON */
dcdedb24 807
97fb7a0a
IM
808 /* capture load from *all* tasks on this CPU: */
809 struct load_weight load;
810 unsigned long nr_load_updates;
811 u64 nr_switches;
029632fb 812
97fb7a0a
IM
813 struct cfs_rq cfs;
814 struct rt_rq rt;
815 struct dl_rq dl;
029632fb
PZ
816
817#ifdef CONFIG_FAIR_GROUP_SCHED
97fb7a0a
IM
818 /* list of leaf cfs_rq on this CPU: */
819 struct list_head leaf_cfs_rq_list;
820 struct list_head *tmp_alone_branch;
a35b6466
PZ
821#endif /* CONFIG_FAIR_GROUP_SCHED */
822
029632fb
PZ
823 /*
824 * This is part of a global counter where only the total sum
825 * over all CPUs matters. A task can increase this counter on
826 * one CPU and if it got migrated afterwards it may decrease
827 * it on another CPU. Always updated under the runqueue lock:
828 */
97fb7a0a 829 unsigned long nr_uninterruptible;
029632fb 830
97fb7a0a
IM
831 struct task_struct *curr;
832 struct task_struct *idle;
833 struct task_struct *stop;
834 unsigned long next_balance;
835 struct mm_struct *prev_mm;
029632fb 836
97fb7a0a
IM
837 unsigned int clock_update_flags;
838 u64 clock;
839 u64 clock_task;
029632fb 840
97fb7a0a 841 atomic_t nr_iowait;
029632fb
PZ
842
843#ifdef CONFIG_SMP
97fb7a0a
IM
844 struct root_domain *rd;
845 struct sched_domain *sd;
846
847 unsigned long cpu_capacity;
848 unsigned long cpu_capacity_orig;
029632fb 849
97fb7a0a 850 struct callback_head *balance_callback;
029632fb 851
97fb7a0a 852 unsigned char idle_balance;
e3fca9e7 853
3b1baa64
MR
854 unsigned long misfit_task_load;
855
029632fb 856 /* For active balancing */
97fb7a0a
IM
857 int active_balance;
858 int push_cpu;
859 struct cpu_stop_work active_balance_work;
860
861 /* CPU of this runqueue: */
862 int cpu;
863 int online;
029632fb 864
367456c7
PZ
865 struct list_head cfs_tasks;
866
371bf427 867 struct sched_avg avg_rt;
3727e0e1 868 struct sched_avg avg_dl;
11d4afd4 869#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
91c27493
VG
870 struct sched_avg avg_irq;
871#endif
97fb7a0a
IM
872 u64 idle_stamp;
873 u64 avg_idle;
9bd721c5
JL
874
875 /* This is used to determine avg_idle's max value */
97fb7a0a 876 u64 max_idle_balance_cost;
029632fb
PZ
877#endif
878
879#ifdef CONFIG_IRQ_TIME_ACCOUNTING
97fb7a0a 880 u64 prev_irq_time;
029632fb
PZ
881#endif
882#ifdef CONFIG_PARAVIRT
97fb7a0a 883 u64 prev_steal_time;
029632fb
PZ
884#endif
885#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
97fb7a0a 886 u64 prev_steal_time_rq;
029632fb
PZ
887#endif
888
889 /* calc_load related fields */
97fb7a0a
IM
890 unsigned long calc_load_update;
891 long calc_load_active;
029632fb
PZ
892
893#ifdef CONFIG_SCHED_HRTICK
894#ifdef CONFIG_SMP
97fb7a0a
IM
895 int hrtick_csd_pending;
896 call_single_data_t hrtick_csd;
029632fb 897#endif
97fb7a0a 898 struct hrtimer hrtick_timer;
029632fb
PZ
899#endif
900
901#ifdef CONFIG_SCHEDSTATS
902 /* latency stats */
97fb7a0a
IM
903 struct sched_info rq_sched_info;
904 unsigned long long rq_cpu_time;
029632fb
PZ
905 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
906
907 /* sys_sched_yield() stats */
97fb7a0a 908 unsigned int yld_count;
029632fb
PZ
909
910 /* schedule() stats */
97fb7a0a
IM
911 unsigned int sched_count;
912 unsigned int sched_goidle;
029632fb
PZ
913
914 /* try_to_wake_up() stats */
97fb7a0a
IM
915 unsigned int ttwu_count;
916 unsigned int ttwu_local;
029632fb
PZ
917#endif
918
919#ifdef CONFIG_SMP
97fb7a0a 920 struct llist_head wake_list;
029632fb 921#endif
442bf3aa
DL
922
923#ifdef CONFIG_CPU_IDLE
924 /* Must be inspected within a rcu lock section */
97fb7a0a 925 struct cpuidle_state *idle_state;
442bf3aa 926#endif
029632fb
PZ
927};
928
929static inline int cpu_of(struct rq *rq)
930{
931#ifdef CONFIG_SMP
932 return rq->cpu;
933#else
934 return 0;
935#endif
936}
937
1b568f0a
PZ
938
939#ifdef CONFIG_SCHED_SMT
1b568f0a
PZ
940extern void __update_idle_core(struct rq *rq);
941
942static inline void update_idle_core(struct rq *rq)
943{
944 if (static_branch_unlikely(&sched_smt_present))
945 __update_idle_core(rq);
946}
947
948#else
949static inline void update_idle_core(struct rq *rq) { }
950#endif
951
8b06c55b 952DECLARE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
029632fb 953
518cd623 954#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
4a32fea9 955#define this_rq() this_cpu_ptr(&runqueues)
518cd623
PZ
956#define task_rq(p) cpu_rq(task_cpu(p))
957#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
4a32fea9 958#define raw_rq() raw_cpu_ptr(&runqueues)
518cd623 959
1f351d7f
JW
960extern void update_rq_clock(struct rq *rq);
961
cebde6d6
PZ
962static inline u64 __rq_clock_broken(struct rq *rq)
963{
316c1608 964 return READ_ONCE(rq->clock);
cebde6d6
PZ
965}
966
cb42c9a3
MF
967/*
968 * rq::clock_update_flags bits
969 *
970 * %RQCF_REQ_SKIP - will request skipping of clock update on the next
971 * call to __schedule(). This is an optimisation to avoid
972 * neighbouring rq clock updates.
973 *
974 * %RQCF_ACT_SKIP - is set from inside of __schedule() when skipping is
975 * in effect and calls to update_rq_clock() are being ignored.
976 *
977 * %RQCF_UPDATED - is a debug flag that indicates whether a call has been
978 * made to update_rq_clock() since the last time rq::lock was pinned.
979 *
980 * If inside of __schedule(), clock_update_flags will have been
981 * shifted left (a left shift is a cheap operation for the fast path
982 * to promote %RQCF_REQ_SKIP to %RQCF_ACT_SKIP), so you must use,
983 *
984 * if (rq-clock_update_flags >= RQCF_UPDATED)
985 *
986 * to check if %RQCF_UPADTED is set. It'll never be shifted more than
987 * one position though, because the next rq_unpin_lock() will shift it
988 * back.
989 */
97fb7a0a
IM
990#define RQCF_REQ_SKIP 0x01
991#define RQCF_ACT_SKIP 0x02
992#define RQCF_UPDATED 0x04
cb42c9a3
MF
993
994static inline void assert_clock_updated(struct rq *rq)
995{
996 /*
997 * The only reason for not seeing a clock update since the
998 * last rq_pin_lock() is if we're currently skipping updates.
999 */
1000 SCHED_WARN_ON(rq->clock_update_flags < RQCF_ACT_SKIP);
1001}
1002
78becc27
FW
1003static inline u64 rq_clock(struct rq *rq)
1004{
cebde6d6 1005 lockdep_assert_held(&rq->lock);
cb42c9a3
MF
1006 assert_clock_updated(rq);
1007
78becc27
FW
1008 return rq->clock;
1009}
1010
1011static inline u64 rq_clock_task(struct rq *rq)
1012{
cebde6d6 1013 lockdep_assert_held(&rq->lock);
cb42c9a3
MF
1014 assert_clock_updated(rq);
1015
78becc27
FW
1016 return rq->clock_task;
1017}
1018
adcc8da8 1019static inline void rq_clock_skip_update(struct rq *rq)
9edfbfed
PZ
1020{
1021 lockdep_assert_held(&rq->lock);
adcc8da8
DB
1022 rq->clock_update_flags |= RQCF_REQ_SKIP;
1023}
1024
1025/*
595058b6 1026 * See rt task throttling, which is the only time a skip
adcc8da8
DB
1027 * request is cancelled.
1028 */
1029static inline void rq_clock_cancel_skipupdate(struct rq *rq)
1030{
1031 lockdep_assert_held(&rq->lock);
1032 rq->clock_update_flags &= ~RQCF_REQ_SKIP;
9edfbfed
PZ
1033}
1034
d8ac8971
MF
1035struct rq_flags {
1036 unsigned long flags;
1037 struct pin_cookie cookie;
cb42c9a3
MF
1038#ifdef CONFIG_SCHED_DEBUG
1039 /*
1040 * A copy of (rq::clock_update_flags & RQCF_UPDATED) for the
1041 * current pin context is stashed here in case it needs to be
1042 * restored in rq_repin_lock().
1043 */
1044 unsigned int clock_update_flags;
1045#endif
d8ac8971
MF
1046};
1047
1048static inline void rq_pin_lock(struct rq *rq, struct rq_flags *rf)
1049{
1050 rf->cookie = lockdep_pin_lock(&rq->lock);
cb42c9a3
MF
1051
1052#ifdef CONFIG_SCHED_DEBUG
1053 rq->clock_update_flags &= (RQCF_REQ_SKIP|RQCF_ACT_SKIP);
1054 rf->clock_update_flags = 0;
1055#endif
d8ac8971
MF
1056}
1057
1058static inline void rq_unpin_lock(struct rq *rq, struct rq_flags *rf)
1059{
cb42c9a3
MF
1060#ifdef CONFIG_SCHED_DEBUG
1061 if (rq->clock_update_flags > RQCF_ACT_SKIP)
1062 rf->clock_update_flags = RQCF_UPDATED;
1063#endif
1064
d8ac8971
MF
1065 lockdep_unpin_lock(&rq->lock, rf->cookie);
1066}
1067
1068static inline void rq_repin_lock(struct rq *rq, struct rq_flags *rf)
1069{
1070 lockdep_repin_lock(&rq->lock, rf->cookie);
cb42c9a3
MF
1071
1072#ifdef CONFIG_SCHED_DEBUG
1073 /*
1074 * Restore the value we stashed in @rf for this pin context.
1075 */
1076 rq->clock_update_flags |= rf->clock_update_flags;
1077#endif
d8ac8971
MF
1078}
1079
1f351d7f
JW
1080struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1081 __acquires(rq->lock);
1082
1083struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
1084 __acquires(p->pi_lock)
1085 __acquires(rq->lock);
1086
1087static inline void __task_rq_unlock(struct rq *rq, struct rq_flags *rf)
1088 __releases(rq->lock)
1089{
1090 rq_unpin_lock(rq, rf);
1091 raw_spin_unlock(&rq->lock);
1092}
1093
1094static inline void
1095task_rq_unlock(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1096 __releases(rq->lock)
1097 __releases(p->pi_lock)
1098{
1099 rq_unpin_lock(rq, rf);
1100 raw_spin_unlock(&rq->lock);
1101 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
1102}
1103
1104static inline void
1105rq_lock_irqsave(struct rq *rq, struct rq_flags *rf)
1106 __acquires(rq->lock)
1107{
1108 raw_spin_lock_irqsave(&rq->lock, rf->flags);
1109 rq_pin_lock(rq, rf);
1110}
1111
1112static inline void
1113rq_lock_irq(struct rq *rq, struct rq_flags *rf)
1114 __acquires(rq->lock)
1115{
1116 raw_spin_lock_irq(&rq->lock);
1117 rq_pin_lock(rq, rf);
1118}
1119
1120static inline void
1121rq_lock(struct rq *rq, struct rq_flags *rf)
1122 __acquires(rq->lock)
1123{
1124 raw_spin_lock(&rq->lock);
1125 rq_pin_lock(rq, rf);
1126}
1127
1128static inline void
1129rq_relock(struct rq *rq, struct rq_flags *rf)
1130 __acquires(rq->lock)
1131{
1132 raw_spin_lock(&rq->lock);
1133 rq_repin_lock(rq, rf);
1134}
1135
1136static inline void
1137rq_unlock_irqrestore(struct rq *rq, struct rq_flags *rf)
1138 __releases(rq->lock)
1139{
1140 rq_unpin_lock(rq, rf);
1141 raw_spin_unlock_irqrestore(&rq->lock, rf->flags);
1142}
1143
1144static inline void
1145rq_unlock_irq(struct rq *rq, struct rq_flags *rf)
1146 __releases(rq->lock)
1147{
1148 rq_unpin_lock(rq, rf);
1149 raw_spin_unlock_irq(&rq->lock);
1150}
1151
1152static inline void
1153rq_unlock(struct rq *rq, struct rq_flags *rf)
1154 __releases(rq->lock)
1155{
1156 rq_unpin_lock(rq, rf);
1157 raw_spin_unlock(&rq->lock);
1158}
1159
246b3b33
JW
1160static inline struct rq *
1161this_rq_lock_irq(struct rq_flags *rf)
1162 __acquires(rq->lock)
1163{
1164 struct rq *rq;
1165
1166 local_irq_disable();
1167 rq = this_rq();
1168 rq_lock(rq, rf);
1169 return rq;
1170}
1171
9942f79b 1172#ifdef CONFIG_NUMA
e3fe70b1
RR
1173enum numa_topology_type {
1174 NUMA_DIRECT,
1175 NUMA_GLUELESS_MESH,
1176 NUMA_BACKPLANE,
1177};
1178extern enum numa_topology_type sched_numa_topology_type;
9942f79b
RR
1179extern int sched_max_numa_distance;
1180extern bool find_numa_distance(int distance);
1181#endif
1182
f2cb1360
IM
1183#ifdef CONFIG_NUMA
1184extern void sched_init_numa(void);
1185extern void sched_domains_numa_masks_set(unsigned int cpu);
1186extern void sched_domains_numa_masks_clear(unsigned int cpu);
1187#else
1188static inline void sched_init_numa(void) { }
1189static inline void sched_domains_numa_masks_set(unsigned int cpu) { }
1190static inline void sched_domains_numa_masks_clear(unsigned int cpu) { }
1191#endif
1192
f809ca9a 1193#ifdef CONFIG_NUMA_BALANCING
44dba3d5
IM
1194/* The regions in numa_faults array from task_struct */
1195enum numa_faults_stats {
1196 NUMA_MEM = 0,
1197 NUMA_CPU,
1198 NUMA_MEMBUF,
1199 NUMA_CPUBUF
1200};
0ec8aa00 1201extern void sched_setnuma(struct task_struct *p, int node);
e6628d5b 1202extern int migrate_task_to(struct task_struct *p, int cpu);
0ad4e3df
SD
1203extern int migrate_swap(struct task_struct *p, struct task_struct *t,
1204 int cpu, int scpu);
13784475
MG
1205extern void init_numa_balancing(unsigned long clone_flags, struct task_struct *p);
1206#else
1207static inline void
1208init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
1209{
1210}
f809ca9a
MG
1211#endif /* CONFIG_NUMA_BALANCING */
1212
518cd623
PZ
1213#ifdef CONFIG_SMP
1214
e3fca9e7
PZ
1215static inline void
1216queue_balance_callback(struct rq *rq,
1217 struct callback_head *head,
1218 void (*func)(struct rq *rq))
1219{
1220 lockdep_assert_held(&rq->lock);
1221
1222 if (unlikely(head->next))
1223 return;
1224
1225 head->func = (void (*)(struct callback_head *))func;
1226 head->next = rq->balance_callback;
1227 rq->balance_callback = head;
1228}
1229
e3baac47
PZ
1230extern void sched_ttwu_pending(void);
1231
029632fb
PZ
1232#define rcu_dereference_check_sched_domain(p) \
1233 rcu_dereference_check((p), \
1234 lockdep_is_held(&sched_domains_mutex))
1235
1236/*
1237 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1238 * See detach_destroy_domains: synchronize_sched for details.
1239 *
1240 * The domain tree of any CPU may only be accessed from within
1241 * preempt-disabled sections.
1242 */
1243#define for_each_domain(cpu, __sd) \
518cd623
PZ
1244 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); \
1245 __sd; __sd = __sd->parent)
029632fb 1246
77e81365
SS
1247#define for_each_lower_domain(sd) for (; sd; sd = sd->child)
1248
518cd623
PZ
1249/**
1250 * highest_flag_domain - Return highest sched_domain containing flag.
97fb7a0a 1251 * @cpu: The CPU whose highest level of sched domain is to
518cd623
PZ
1252 * be returned.
1253 * @flag: The flag to check for the highest sched_domain
97fb7a0a 1254 * for the given CPU.
518cd623 1255 *
97fb7a0a 1256 * Returns the highest sched_domain of a CPU which contains the given flag.
518cd623
PZ
1257 */
1258static inline struct sched_domain *highest_flag_domain(int cpu, int flag)
1259{
1260 struct sched_domain *sd, *hsd = NULL;
1261
1262 for_each_domain(cpu, sd) {
1263 if (!(sd->flags & flag))
1264 break;
1265 hsd = sd;
1266 }
1267
1268 return hsd;
1269}
1270
fb13c7ee
MG
1271static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
1272{
1273 struct sched_domain *sd;
1274
1275 for_each_domain(cpu, sd) {
1276 if (sd->flags & flag)
1277 break;
1278 }
1279
1280 return sd;
1281}
1282
518cd623 1283DECLARE_PER_CPU(struct sched_domain *, sd_llc);
7d9ffa89 1284DECLARE_PER_CPU(int, sd_llc_size);
518cd623 1285DECLARE_PER_CPU(int, sd_llc_id);
0e369d75 1286DECLARE_PER_CPU(struct sched_domain_shared *, sd_llc_shared);
fb13c7ee 1287DECLARE_PER_CPU(struct sched_domain *, sd_numa);
37dc6b50 1288DECLARE_PER_CPU(struct sched_domain *, sd_asym);
df054e84 1289extern struct static_key_false sched_asym_cpucapacity;
518cd623 1290
63b2ca30 1291struct sched_group_capacity {
97fb7a0a 1292 atomic_t ref;
5e6521ea 1293 /*
172895e6 1294 * CPU capacity of this group, SCHED_CAPACITY_SCALE being max capacity
63b2ca30 1295 * for a single CPU.
5e6521ea 1296 */
97fb7a0a
IM
1297 unsigned long capacity;
1298 unsigned long min_capacity; /* Min per-CPU capacity in group */
e3d6d0cb 1299 unsigned long max_capacity; /* Max per-CPU capacity in group */
97fb7a0a
IM
1300 unsigned long next_update;
1301 int imbalance; /* XXX unrelated to capacity but shared group state */
5e6521ea 1302
005f874d 1303#ifdef CONFIG_SCHED_DEBUG
97fb7a0a 1304 int id;
005f874d
PZ
1305#endif
1306
97fb7a0a 1307 unsigned long cpumask[0]; /* Balance mask */
5e6521ea
LZ
1308};
1309
1310struct sched_group {
97fb7a0a
IM
1311 struct sched_group *next; /* Must be a circular list */
1312 atomic_t ref;
5e6521ea 1313
97fb7a0a 1314 unsigned int group_weight;
63b2ca30 1315 struct sched_group_capacity *sgc;
97fb7a0a 1316 int asym_prefer_cpu; /* CPU of highest priority in group */
5e6521ea
LZ
1317
1318 /*
1319 * The CPUs this group covers.
1320 *
1321 * NOTE: this field is variable length. (Allocated dynamically
1322 * by attaching extra space to the end of the structure,
1323 * depending on how many CPUs the kernel has booted up with)
1324 */
97fb7a0a 1325 unsigned long cpumask[0];
5e6521ea
LZ
1326};
1327
ae4df9d6 1328static inline struct cpumask *sched_group_span(struct sched_group *sg)
5e6521ea
LZ
1329{
1330 return to_cpumask(sg->cpumask);
1331}
1332
1333/*
e5c14b1f 1334 * See build_balance_mask().
5e6521ea 1335 */
e5c14b1f 1336static inline struct cpumask *group_balance_mask(struct sched_group *sg)
5e6521ea 1337{
63b2ca30 1338 return to_cpumask(sg->sgc->cpumask);
5e6521ea
LZ
1339}
1340
1341/**
97fb7a0a
IM
1342 * group_first_cpu - Returns the first CPU in the cpumask of a sched_group.
1343 * @group: The group whose first CPU is to be returned.
5e6521ea
LZ
1344 */
1345static inline unsigned int group_first_cpu(struct sched_group *group)
1346{
ae4df9d6 1347 return cpumask_first(sched_group_span(group));
5e6521ea
LZ
1348}
1349
c1174876
PZ
1350extern int group_balance_cpu(struct sched_group *sg);
1351
3866e845
SRRH
1352#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
1353void register_sched_domain_sysctl(void);
bbdacdfe 1354void dirty_sched_domain_sysctl(int cpu);
3866e845
SRRH
1355void unregister_sched_domain_sysctl(void);
1356#else
1357static inline void register_sched_domain_sysctl(void)
1358{
1359}
bbdacdfe
PZ
1360static inline void dirty_sched_domain_sysctl(int cpu)
1361{
1362}
3866e845
SRRH
1363static inline void unregister_sched_domain_sysctl(void)
1364{
1365}
1366#endif
1367
e3baac47
PZ
1368#else
1369
1370static inline void sched_ttwu_pending(void) { }
1371
518cd623 1372#endif /* CONFIG_SMP */
029632fb 1373
391e43da 1374#include "stats.h"
1051408f 1375#include "autogroup.h"
029632fb
PZ
1376
1377#ifdef CONFIG_CGROUP_SCHED
1378
1379/*
1380 * Return the group to which this tasks belongs.
1381 *
8af01f56
TH
1382 * We cannot use task_css() and friends because the cgroup subsystem
1383 * changes that value before the cgroup_subsys::attach() method is called,
1384 * therefore we cannot pin it and might observe the wrong value.
8323f26c
PZ
1385 *
1386 * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
1387 * core changes this before calling sched_move_task().
1388 *
1389 * Instead we use a 'copy' which is updated from sched_move_task() while
1390 * holding both task_struct::pi_lock and rq::lock.
029632fb
PZ
1391 */
1392static inline struct task_group *task_group(struct task_struct *p)
1393{
8323f26c 1394 return p->sched_task_group;
029632fb
PZ
1395}
1396
1397/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
1398static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
1399{
1400#if defined(CONFIG_FAIR_GROUP_SCHED) || defined(CONFIG_RT_GROUP_SCHED)
1401 struct task_group *tg = task_group(p);
1402#endif
1403
1404#ifdef CONFIG_FAIR_GROUP_SCHED
ad936d86 1405 set_task_rq_fair(&p->se, p->se.cfs_rq, tg->cfs_rq[cpu]);
029632fb
PZ
1406 p->se.cfs_rq = tg->cfs_rq[cpu];
1407 p->se.parent = tg->se[cpu];
1408#endif
1409
1410#ifdef CONFIG_RT_GROUP_SCHED
1411 p->rt.rt_rq = tg->rt_rq[cpu];
1412 p->rt.parent = tg->rt_se[cpu];
1413#endif
1414}
1415
1416#else /* CONFIG_CGROUP_SCHED */
1417
1418static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
1419static inline struct task_group *task_group(struct task_struct *p)
1420{
1421 return NULL;
1422}
1423
1424#endif /* CONFIG_CGROUP_SCHED */
1425
1426static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1427{
1428 set_task_rq(p, cpu);
1429#ifdef CONFIG_SMP
1430 /*
1431 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1432 * successfuly executed on another CPU. We must ensure that updates of
1433 * per-task data have been completed by this moment.
1434 */
1435 smp_wmb();
c65eacbe
AL
1436#ifdef CONFIG_THREAD_INFO_IN_TASK
1437 p->cpu = cpu;
1438#else
029632fb 1439 task_thread_info(p)->cpu = cpu;
c65eacbe 1440#endif
ac66f547 1441 p->wake_cpu = cpu;
029632fb
PZ
1442#endif
1443}
1444
1445/*
1446 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
1447 */
1448#ifdef CONFIG_SCHED_DEBUG
c5905afb 1449# include <linux/static_key.h>
029632fb
PZ
1450# define const_debug __read_mostly
1451#else
1452# define const_debug const
1453#endif
1454
029632fb
PZ
1455#define SCHED_FEAT(name, enabled) \
1456 __SCHED_FEAT_##name ,
1457
1458enum {
391e43da 1459#include "features.h"
f8b6d1cc 1460 __SCHED_FEAT_NR,
029632fb
PZ
1461};
1462
1463#undef SCHED_FEAT
1464
f8b6d1cc 1465#if defined(CONFIG_SCHED_DEBUG) && defined(HAVE_JUMP_LABEL)
765cc3a4
PB
1466
1467/*
1468 * To support run-time toggling of sched features, all the translation units
1469 * (but core.c) reference the sysctl_sched_features defined in core.c.
1470 */
1471extern const_debug unsigned int sysctl_sched_features;
1472
f8b6d1cc 1473#define SCHED_FEAT(name, enabled) \
c5905afb 1474static __always_inline bool static_branch_##name(struct static_key *key) \
f8b6d1cc 1475{ \
6e76ea8a 1476 return static_key_##enabled(key); \
f8b6d1cc
PZ
1477}
1478
1479#include "features.h"
f8b6d1cc
PZ
1480#undef SCHED_FEAT
1481
c5905afb 1482extern struct static_key sched_feat_keys[__SCHED_FEAT_NR];
f8b6d1cc 1483#define sched_feat(x) (static_branch_##x(&sched_feat_keys[__SCHED_FEAT_##x]))
765cc3a4 1484
f8b6d1cc 1485#else /* !(SCHED_DEBUG && HAVE_JUMP_LABEL) */
765cc3a4
PB
1486
1487/*
1488 * Each translation unit has its own copy of sysctl_sched_features to allow
1489 * constants propagation at compile time and compiler optimization based on
1490 * features default.
1491 */
1492#define SCHED_FEAT(name, enabled) \
1493 (1UL << __SCHED_FEAT_##name) * enabled |
1494static const_debug __maybe_unused unsigned int sysctl_sched_features =
1495#include "features.h"
1496 0;
1497#undef SCHED_FEAT
1498
7e6f4c5d 1499#define sched_feat(x) !!(sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
765cc3a4 1500
f8b6d1cc 1501#endif /* SCHED_DEBUG && HAVE_JUMP_LABEL */
029632fb 1502
2a595721 1503extern struct static_key_false sched_numa_balancing;
cb251765 1504extern struct static_key_false sched_schedstats;
cbee9f88 1505
029632fb
PZ
1506static inline u64 global_rt_period(void)
1507{
1508 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
1509}
1510
1511static inline u64 global_rt_runtime(void)
1512{
1513 if (sysctl_sched_rt_runtime < 0)
1514 return RUNTIME_INF;
1515
1516 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
1517}
1518
029632fb
PZ
1519static inline int task_current(struct rq *rq, struct task_struct *p)
1520{
1521 return rq->curr == p;
1522}
1523
1524static inline int task_running(struct rq *rq, struct task_struct *p)
1525{
1526#ifdef CONFIG_SMP
1527 return p->on_cpu;
1528#else
1529 return task_current(rq, p);
1530#endif
1531}
1532
da0c1e65
KT
1533static inline int task_on_rq_queued(struct task_struct *p)
1534{
1535 return p->on_rq == TASK_ON_RQ_QUEUED;
1536}
029632fb 1537
cca26e80
KT
1538static inline int task_on_rq_migrating(struct task_struct *p)
1539{
1540 return p->on_rq == TASK_ON_RQ_MIGRATING;
1541}
1542
b13095f0
LZ
1543/*
1544 * wake flags
1545 */
97fb7a0a
IM
1546#define WF_SYNC 0x01 /* Waker goes to sleep after wakeup */
1547#define WF_FORK 0x02 /* Child wakeup after fork */
1548#define WF_MIGRATED 0x4 /* Internal use, task got migrated */
b13095f0 1549
029632fb
PZ
1550/*
1551 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1552 * of tasks with abnormal "nice" values across CPUs the contribution that
1553 * each task makes to its run queue's load is weighted according to its
1554 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1555 * scaled version of the new time slice allocation that they receive on time
1556 * slice expiry etc.
1557 */
1558
97fb7a0a
IM
1559#define WEIGHT_IDLEPRIO 3
1560#define WMULT_IDLEPRIO 1431655765
029632fb 1561
97fb7a0a
IM
1562extern const int sched_prio_to_weight[40];
1563extern const u32 sched_prio_to_wmult[40];
029632fb 1564
ff77e468
PZ
1565/*
1566 * {de,en}queue flags:
1567 *
1568 * DEQUEUE_SLEEP - task is no longer runnable
1569 * ENQUEUE_WAKEUP - task just became runnable
1570 *
1571 * SAVE/RESTORE - an otherwise spurious dequeue/enqueue, done to ensure tasks
1572 * are in a known state which allows modification. Such pairs
1573 * should preserve as much state as possible.
1574 *
1575 * MOVE - paired with SAVE/RESTORE, explicitly does not preserve the location
1576 * in the runqueue.
1577 *
1578 * ENQUEUE_HEAD - place at front of runqueue (tail if not specified)
1579 * ENQUEUE_REPLENISH - CBS (replenish runtime and postpone deadline)
59efa0ba 1580 * ENQUEUE_MIGRATED - the task was migrated during wakeup
ff77e468
PZ
1581 *
1582 */
1583
1584#define DEQUEUE_SLEEP 0x01
97fb7a0a
IM
1585#define DEQUEUE_SAVE 0x02 /* Matches ENQUEUE_RESTORE */
1586#define DEQUEUE_MOVE 0x04 /* Matches ENQUEUE_MOVE */
1587#define DEQUEUE_NOCLOCK 0x08 /* Matches ENQUEUE_NOCLOCK */
ff77e468 1588
1de64443 1589#define ENQUEUE_WAKEUP 0x01
ff77e468
PZ
1590#define ENQUEUE_RESTORE 0x02
1591#define ENQUEUE_MOVE 0x04
0a67d1ee 1592#define ENQUEUE_NOCLOCK 0x08
ff77e468 1593
0a67d1ee
PZ
1594#define ENQUEUE_HEAD 0x10
1595#define ENQUEUE_REPLENISH 0x20
c82ba9fa 1596#ifdef CONFIG_SMP
0a67d1ee 1597#define ENQUEUE_MIGRATED 0x40
c82ba9fa 1598#else
59efa0ba 1599#define ENQUEUE_MIGRATED 0x00
c82ba9fa 1600#endif
c82ba9fa 1601
37e117c0
PZ
1602#define RETRY_TASK ((void *)-1UL)
1603
c82ba9fa
LZ
1604struct sched_class {
1605 const struct sched_class *next;
1606
1607 void (*enqueue_task) (struct rq *rq, struct task_struct *p, int flags);
1608 void (*dequeue_task) (struct rq *rq, struct task_struct *p, int flags);
97fb7a0a
IM
1609 void (*yield_task) (struct rq *rq);
1610 bool (*yield_to_task)(struct rq *rq, struct task_struct *p, bool preempt);
c82ba9fa 1611
97fb7a0a 1612 void (*check_preempt_curr)(struct rq *rq, struct task_struct *p, int flags);
c82ba9fa 1613
606dba2e
PZ
1614 /*
1615 * It is the responsibility of the pick_next_task() method that will
1616 * return the next task to call put_prev_task() on the @prev task or
1617 * something equivalent.
37e117c0
PZ
1618 *
1619 * May return RETRY_TASK when it finds a higher prio class has runnable
1620 * tasks.
606dba2e 1621 */
97fb7a0a
IM
1622 struct task_struct * (*pick_next_task)(struct rq *rq,
1623 struct task_struct *prev,
1624 struct rq_flags *rf);
1625 void (*put_prev_task)(struct rq *rq, struct task_struct *p);
c82ba9fa
LZ
1626
1627#ifdef CONFIG_SMP
ac66f547 1628 int (*select_task_rq)(struct task_struct *p, int task_cpu, int sd_flag, int flags);
1327237a 1629 void (*migrate_task_rq)(struct task_struct *p, int new_cpu);
c82ba9fa 1630
97fb7a0a 1631 void (*task_woken)(struct rq *this_rq, struct task_struct *task);
c82ba9fa
LZ
1632
1633 void (*set_cpus_allowed)(struct task_struct *p,
1634 const struct cpumask *newmask);
1635
1636 void (*rq_online)(struct rq *rq);
1637 void (*rq_offline)(struct rq *rq);
1638#endif
1639
97fb7a0a
IM
1640 void (*set_curr_task)(struct rq *rq);
1641 void (*task_tick)(struct rq *rq, struct task_struct *p, int queued);
1642 void (*task_fork)(struct task_struct *p);
1643 void (*task_dead)(struct task_struct *p);
c82ba9fa 1644
67dfa1b7
KT
1645 /*
1646 * The switched_from() call is allowed to drop rq->lock, therefore we
1647 * cannot assume the switched_from/switched_to pair is serliazed by
1648 * rq->lock. They are however serialized by p->pi_lock.
1649 */
97fb7a0a
IM
1650 void (*switched_from)(struct rq *this_rq, struct task_struct *task);
1651 void (*switched_to) (struct rq *this_rq, struct task_struct *task);
c82ba9fa 1652 void (*prio_changed) (struct rq *this_rq, struct task_struct *task,
97fb7a0a 1653 int oldprio);
c82ba9fa 1654
97fb7a0a
IM
1655 unsigned int (*get_rr_interval)(struct rq *rq,
1656 struct task_struct *task);
c82ba9fa 1657
97fb7a0a 1658 void (*update_curr)(struct rq *rq);
6e998916 1659
97fb7a0a
IM
1660#define TASK_SET_GROUP 0
1661#define TASK_MOVE_GROUP 1
ea86cb4b 1662
c82ba9fa 1663#ifdef CONFIG_FAIR_GROUP_SCHED
97fb7a0a 1664 void (*task_change_group)(struct task_struct *p, int type);
c82ba9fa
LZ
1665#endif
1666};
029632fb 1667
3f1d2a31
PZ
1668static inline void put_prev_task(struct rq *rq, struct task_struct *prev)
1669{
1670 prev->sched_class->put_prev_task(rq, prev);
1671}
1672
b2bf6c31
PZ
1673static inline void set_curr_task(struct rq *rq, struct task_struct *curr)
1674{
1675 curr->sched_class->set_curr_task(rq);
1676}
1677
f5832c19 1678#ifdef CONFIG_SMP
029632fb 1679#define sched_class_highest (&stop_sched_class)
f5832c19
NP
1680#else
1681#define sched_class_highest (&dl_sched_class)
1682#endif
029632fb
PZ
1683#define for_each_class(class) \
1684 for (class = sched_class_highest; class; class = class->next)
1685
1686extern const struct sched_class stop_sched_class;
aab03e05 1687extern const struct sched_class dl_sched_class;
029632fb
PZ
1688extern const struct sched_class rt_sched_class;
1689extern const struct sched_class fair_sched_class;
1690extern const struct sched_class idle_sched_class;
1691
1692
1693#ifdef CONFIG_SMP
1694
63b2ca30 1695extern void update_group_capacity(struct sched_domain *sd, int cpu);
b719203b 1696
7caff66f 1697extern void trigger_load_balance(struct rq *rq);
029632fb 1698
c5b28038
PZ
1699extern void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask);
1700
029632fb
PZ
1701#endif
1702
442bf3aa
DL
1703#ifdef CONFIG_CPU_IDLE
1704static inline void idle_set_state(struct rq *rq,
1705 struct cpuidle_state *idle_state)
1706{
1707 rq->idle_state = idle_state;
1708}
1709
1710static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1711{
9148a3a1 1712 SCHED_WARN_ON(!rcu_read_lock_held());
97fb7a0a 1713
442bf3aa
DL
1714 return rq->idle_state;
1715}
1716#else
1717static inline void idle_set_state(struct rq *rq,
1718 struct cpuidle_state *idle_state)
1719{
1720}
1721
1722static inline struct cpuidle_state *idle_get_state(struct rq *rq)
1723{
1724 return NULL;
1725}
1726#endif
1727
8663effb
SRV
1728extern void schedule_idle(void);
1729
029632fb
PZ
1730extern void sysrq_sched_debug_show(void);
1731extern void sched_init_granularity(void);
1732extern void update_max_interval(void);
1baca4ce
JL
1733
1734extern void init_sched_dl_class(void);
029632fb
PZ
1735extern void init_sched_rt_class(void);
1736extern void init_sched_fair_class(void);
1737
9059393e
VG
1738extern void reweight_task(struct task_struct *p, int prio);
1739
8875125e 1740extern void resched_curr(struct rq *rq);
029632fb
PZ
1741extern void resched_cpu(int cpu);
1742
1743extern struct rt_bandwidth def_rt_bandwidth;
1744extern void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime);
1745
332ac17e
DF
1746extern struct dl_bandwidth def_dl_bandwidth;
1747extern void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime);
aab03e05 1748extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
209a0cbd 1749extern void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se);
4da3abce 1750extern void init_dl_rq_bw_ratio(struct dl_rq *dl_rq);
aab03e05 1751
97fb7a0a
IM
1752#define BW_SHIFT 20
1753#define BW_UNIT (1 << BW_SHIFT)
1754#define RATIO_SHIFT 8
332ac17e
DF
1755unsigned long to_ratio(u64 period, u64 runtime);
1756
540247fb 1757extern void init_entity_runnable_average(struct sched_entity *se);
2b8c41da 1758extern void post_init_entity_util_avg(struct sched_entity *se);
a75cdaa9 1759
76d92ac3
FW
1760#ifdef CONFIG_NO_HZ_FULL
1761extern bool sched_can_stop_tick(struct rq *rq);
d84b3131 1762extern int __init sched_tick_offload_init(void);
76d92ac3
FW
1763
1764/*
1765 * Tick may be needed by tasks in the runqueue depending on their policy and
1766 * requirements. If tick is needed, lets send the target an IPI to kick it out of
1767 * nohz mode if necessary.
1768 */
1769static inline void sched_update_tick_dependency(struct rq *rq)
1770{
1771 int cpu;
1772
1773 if (!tick_nohz_full_enabled())
1774 return;
1775
1776 cpu = cpu_of(rq);
1777
1778 if (!tick_nohz_full_cpu(cpu))
1779 return;
1780
1781 if (sched_can_stop_tick(rq))
1782 tick_nohz_dep_clear_cpu(cpu, TICK_DEP_BIT_SCHED);
1783 else
1784 tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
1785}
1786#else
d84b3131 1787static inline int sched_tick_offload_init(void) { return 0; }
76d92ac3
FW
1788static inline void sched_update_tick_dependency(struct rq *rq) { }
1789#endif
1790
72465447 1791static inline void add_nr_running(struct rq *rq, unsigned count)
029632fb 1792{
72465447
KT
1793 unsigned prev_nr = rq->nr_running;
1794
1795 rq->nr_running = prev_nr + count;
9f3660c2 1796
72465447 1797 if (prev_nr < 2 && rq->nr_running >= 2) {
4486edd1 1798#ifdef CONFIG_SMP
e90c8fe1
VS
1799 if (!READ_ONCE(rq->rd->overload))
1800 WRITE_ONCE(rq->rd->overload, 1);
4486edd1 1801#endif
4486edd1 1802 }
76d92ac3
FW
1803
1804 sched_update_tick_dependency(rq);
029632fb
PZ
1805}
1806
72465447 1807static inline void sub_nr_running(struct rq *rq, unsigned count)
029632fb 1808{
72465447 1809 rq->nr_running -= count;
76d92ac3
FW
1810 /* Check if we still need preemption */
1811 sched_update_tick_dependency(rq);
029632fb
PZ
1812}
1813
029632fb
PZ
1814extern void activate_task(struct rq *rq, struct task_struct *p, int flags);
1815extern void deactivate_task(struct rq *rq, struct task_struct *p, int flags);
1816
1817extern void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags);
1818
029632fb
PZ
1819extern const_debug unsigned int sysctl_sched_nr_migrate;
1820extern const_debug unsigned int sysctl_sched_migration_cost;
1821
029632fb
PZ
1822#ifdef CONFIG_SCHED_HRTICK
1823
1824/*
1825 * Use hrtick when:
1826 * - enabled by features
1827 * - hrtimer is actually high res
1828 */
1829static inline int hrtick_enabled(struct rq *rq)
1830{
1831 if (!sched_feat(HRTICK))
1832 return 0;
1833 if (!cpu_active(cpu_of(rq)))
1834 return 0;
1835 return hrtimer_is_hres_active(&rq->hrtick_timer);
1836}
1837
1838void hrtick_start(struct rq *rq, u64 delay);
1839
b39e66ea
MG
1840#else
1841
1842static inline int hrtick_enabled(struct rq *rq)
1843{
1844 return 0;
1845}
1846
029632fb
PZ
1847#endif /* CONFIG_SCHED_HRTICK */
1848
dfbca41f
PZ
1849#ifndef arch_scale_freq_capacity
1850static __always_inline
7673c8a4 1851unsigned long arch_scale_freq_capacity(int cpu)
dfbca41f
PZ
1852{
1853 return SCHED_CAPACITY_SCALE;
1854}
1855#endif
b5b4860d 1856
7e1a9208 1857#ifdef CONFIG_SMP
8cd5601c
MR
1858#ifndef arch_scale_cpu_capacity
1859static __always_inline
1860unsigned long arch_scale_cpu_capacity(struct sched_domain *sd, int cpu)
1861{
e3279a2e 1862 if (sd && (sd->flags & SD_SHARE_CPUCAPACITY) && (sd->span_weight > 1))
8cd5601c
MR
1863 return sd->smt_gain / sd->span_weight;
1864
1865 return SCHED_CAPACITY_SCALE;
1866}
1867#endif
029632fb 1868#else
7e1a9208
JL
1869#ifndef arch_scale_cpu_capacity
1870static __always_inline
1871unsigned long arch_scale_cpu_capacity(void __always_unused *sd, int cpu)
1872{
1873 return SCHED_CAPACITY_SCALE;
1874}
1875#endif
029632fb
PZ
1876#endif
1877
029632fb
PZ
1878#ifdef CONFIG_SMP
1879#ifdef CONFIG_PREEMPT
1880
1881static inline void double_rq_lock(struct rq *rq1, struct rq *rq2);
1882
1883/*
1884 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1885 * way at the expense of forcing extra atomic operations in all
1886 * invocations. This assures that the double_lock is acquired using the
1887 * same underlying policy as the spinlock_t on this architecture, which
1888 * reduces latency compared to the unfair variant below. However, it
1889 * also adds more overhead and therefore may reduce throughput.
1890 */
1891static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1892 __releases(this_rq->lock)
1893 __acquires(busiest->lock)
1894 __acquires(this_rq->lock)
1895{
1896 raw_spin_unlock(&this_rq->lock);
1897 double_rq_lock(this_rq, busiest);
1898
1899 return 1;
1900}
1901
1902#else
1903/*
1904 * Unfair double_lock_balance: Optimizes throughput at the expense of
1905 * latency by eliminating extra atomic operations when the locks are
97fb7a0a
IM
1906 * already in proper order on entry. This favors lower CPU-ids and will
1907 * grant the double lock to lower CPUs over higher ids under contention,
029632fb
PZ
1908 * regardless of entry order into the function.
1909 */
1910static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1911 __releases(this_rq->lock)
1912 __acquires(busiest->lock)
1913 __acquires(this_rq->lock)
1914{
1915 int ret = 0;
1916
1917 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1918 if (busiest < this_rq) {
1919 raw_spin_unlock(&this_rq->lock);
1920 raw_spin_lock(&busiest->lock);
1921 raw_spin_lock_nested(&this_rq->lock,
1922 SINGLE_DEPTH_NESTING);
1923 ret = 1;
1924 } else
1925 raw_spin_lock_nested(&busiest->lock,
1926 SINGLE_DEPTH_NESTING);
1927 }
1928 return ret;
1929}
1930
1931#endif /* CONFIG_PREEMPT */
1932
1933/*
1934 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1935 */
1936static inline int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1937{
1938 if (unlikely(!irqs_disabled())) {
97fb7a0a 1939 /* printk() doesn't work well under rq->lock */
029632fb
PZ
1940 raw_spin_unlock(&this_rq->lock);
1941 BUG_ON(1);
1942 }
1943
1944 return _double_lock_balance(this_rq, busiest);
1945}
1946
1947static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1948 __releases(busiest->lock)
1949{
1950 raw_spin_unlock(&busiest->lock);
1951 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1952}
1953
74602315
PZ
1954static inline void double_lock(spinlock_t *l1, spinlock_t *l2)
1955{
1956 if (l1 > l2)
1957 swap(l1, l2);
1958
1959 spin_lock(l1);
1960 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1961}
1962
60e69eed
MG
1963static inline void double_lock_irq(spinlock_t *l1, spinlock_t *l2)
1964{
1965 if (l1 > l2)
1966 swap(l1, l2);
1967
1968 spin_lock_irq(l1);
1969 spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1970}
1971
74602315
PZ
1972static inline void double_raw_lock(raw_spinlock_t *l1, raw_spinlock_t *l2)
1973{
1974 if (l1 > l2)
1975 swap(l1, l2);
1976
1977 raw_spin_lock(l1);
1978 raw_spin_lock_nested(l2, SINGLE_DEPTH_NESTING);
1979}
1980
029632fb
PZ
1981/*
1982 * double_rq_lock - safely lock two runqueues
1983 *
1984 * Note this does not disable interrupts like task_rq_lock,
1985 * you need to do so manually before calling.
1986 */
1987static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
1988 __acquires(rq1->lock)
1989 __acquires(rq2->lock)
1990{
1991 BUG_ON(!irqs_disabled());
1992 if (rq1 == rq2) {
1993 raw_spin_lock(&rq1->lock);
1994 __acquire(rq2->lock); /* Fake it out ;) */
1995 } else {
1996 if (rq1 < rq2) {
1997 raw_spin_lock(&rq1->lock);
1998 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1999 } else {
2000 raw_spin_lock(&rq2->lock);
2001 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
2002 }
2003 }
2004}
2005
2006/*
2007 * double_rq_unlock - safely unlock two runqueues
2008 *
2009 * Note this does not restore interrupts like task_rq_unlock,
2010 * you need to do so manually after calling.
2011 */
2012static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2013 __releases(rq1->lock)
2014 __releases(rq2->lock)
2015{
2016 raw_spin_unlock(&rq1->lock);
2017 if (rq1 != rq2)
2018 raw_spin_unlock(&rq2->lock);
2019 else
2020 __release(rq2->lock);
2021}
2022
f2cb1360
IM
2023extern void set_rq_online (struct rq *rq);
2024extern void set_rq_offline(struct rq *rq);
2025extern bool sched_smp_initialized;
2026
029632fb
PZ
2027#else /* CONFIG_SMP */
2028
2029/*
2030 * double_rq_lock - safely lock two runqueues
2031 *
2032 * Note this does not disable interrupts like task_rq_lock,
2033 * you need to do so manually before calling.
2034 */
2035static inline void double_rq_lock(struct rq *rq1, struct rq *rq2)
2036 __acquires(rq1->lock)
2037 __acquires(rq2->lock)
2038{
2039 BUG_ON(!irqs_disabled());
2040 BUG_ON(rq1 != rq2);
2041 raw_spin_lock(&rq1->lock);
2042 __acquire(rq2->lock); /* Fake it out ;) */
2043}
2044
2045/*
2046 * double_rq_unlock - safely unlock two runqueues
2047 *
2048 * Note this does not restore interrupts like task_rq_unlock,
2049 * you need to do so manually after calling.
2050 */
2051static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2)
2052 __releases(rq1->lock)
2053 __releases(rq2->lock)
2054{
2055 BUG_ON(rq1 != rq2);
2056 raw_spin_unlock(&rq1->lock);
2057 __release(rq2->lock);
2058}
2059
2060#endif
2061
2062extern struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq);
2063extern struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq);
6b55c965
SD
2064
2065#ifdef CONFIG_SCHED_DEBUG
9469eb01
PZ
2066extern bool sched_debug_enabled;
2067
029632fb
PZ
2068extern void print_cfs_stats(struct seq_file *m, int cpu);
2069extern void print_rt_stats(struct seq_file *m, int cpu);
acb32132 2070extern void print_dl_stats(struct seq_file *m, int cpu);
f6a34630
MM
2071extern void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq);
2072extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
2073extern void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq);
397f2378
SD
2074#ifdef CONFIG_NUMA_BALANCING
2075extern void
2076show_numa_stats(struct task_struct *p, struct seq_file *m);
2077extern void
2078print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
2079 unsigned long tpf, unsigned long gsf, unsigned long gpf);
2080#endif /* CONFIG_NUMA_BALANCING */
2081#endif /* CONFIG_SCHED_DEBUG */
029632fb
PZ
2082
2083extern void init_cfs_rq(struct cfs_rq *cfs_rq);
07c54f7a
AV
2084extern void init_rt_rq(struct rt_rq *rt_rq);
2085extern void init_dl_rq(struct dl_rq *dl_rq);
029632fb 2086
1ee14e6c
BS
2087extern void cfs_bandwidth_usage_inc(void);
2088extern void cfs_bandwidth_usage_dec(void);
1c792db7 2089
3451d024 2090#ifdef CONFIG_NO_HZ_COMMON
00357f5e
PZ
2091#define NOHZ_BALANCE_KICK_BIT 0
2092#define NOHZ_STATS_KICK_BIT 1
a22e47a4 2093
a22e47a4 2094#define NOHZ_BALANCE_KICK BIT(NOHZ_BALANCE_KICK_BIT)
b7031a02
PZ
2095#define NOHZ_STATS_KICK BIT(NOHZ_STATS_KICK_BIT)
2096
2097#define NOHZ_KICK_MASK (NOHZ_BALANCE_KICK | NOHZ_STATS_KICK)
1c792db7
SS
2098
2099#define nohz_flags(cpu) (&cpu_rq(cpu)->nohz_flags)
20a5c8cc 2100
00357f5e 2101extern void nohz_balance_exit_idle(struct rq *rq);
20a5c8cc 2102#else
00357f5e 2103static inline void nohz_balance_exit_idle(struct rq *rq) { }
1c792db7 2104#endif
73fbec60 2105
daec5798
LA
2106
2107#ifdef CONFIG_SMP
2108static inline
2109void __dl_update(struct dl_bw *dl_b, s64 bw)
2110{
2111 struct root_domain *rd = container_of(dl_b, struct root_domain, dl_bw);
2112 int i;
2113
2114 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2115 "sched RCU must be held");
2116 for_each_cpu_and(i, rd->span, cpu_active_mask) {
2117 struct rq *rq = cpu_rq(i);
2118
2119 rq->dl.extra_bw += bw;
2120 }
2121}
2122#else
2123static inline
2124void __dl_update(struct dl_bw *dl_b, s64 bw)
2125{
2126 struct dl_rq *dl = container_of(dl_b, struct dl_rq, dl_bw);
2127
2128 dl->extra_bw += bw;
2129}
2130#endif
2131
2132
73fbec60 2133#ifdef CONFIG_IRQ_TIME_ACCOUNTING
19d23dbf 2134struct irqtime {
25e2d8c1 2135 u64 total;
a499a5a1 2136 u64 tick_delta;
19d23dbf
FW
2137 u64 irq_start_time;
2138 struct u64_stats_sync sync;
2139};
73fbec60 2140
19d23dbf 2141DECLARE_PER_CPU(struct irqtime, cpu_irqtime);
73fbec60 2142
25e2d8c1
FW
2143/*
2144 * Returns the irqtime minus the softirq time computed by ksoftirqd.
2145 * Otherwise ksoftirqd's sum_exec_runtime is substracted its own runtime
2146 * and never move forward.
2147 */
73fbec60
FW
2148static inline u64 irq_time_read(int cpu)
2149{
19d23dbf
FW
2150 struct irqtime *irqtime = &per_cpu(cpu_irqtime, cpu);
2151 unsigned int seq;
2152 u64 total;
73fbec60
FW
2153
2154 do {
19d23dbf 2155 seq = __u64_stats_fetch_begin(&irqtime->sync);
25e2d8c1 2156 total = irqtime->total;
19d23dbf 2157 } while (__u64_stats_fetch_retry(&irqtime->sync, seq));
73fbec60 2158
19d23dbf 2159 return total;
73fbec60 2160}
73fbec60 2161#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
adaf9fcd
RW
2162
2163#ifdef CONFIG_CPU_FREQ
2164DECLARE_PER_CPU(struct update_util_data *, cpufreq_update_util_data);
2165
2166/**
2167 * cpufreq_update_util - Take a note about CPU utilization changes.
12bde33d 2168 * @rq: Runqueue to carry out the update for.
58919e83 2169 * @flags: Update reason flags.
adaf9fcd 2170 *
58919e83
RW
2171 * This function is called by the scheduler on the CPU whose utilization is
2172 * being updated.
adaf9fcd
RW
2173 *
2174 * It can only be called from RCU-sched read-side critical sections.
adaf9fcd
RW
2175 *
2176 * The way cpufreq is currently arranged requires it to evaluate the CPU
2177 * performance state (frequency/voltage) on a regular basis to prevent it from
2178 * being stuck in a completely inadequate performance level for too long.
e0367b12
JL
2179 * That is not guaranteed to happen if the updates are only triggered from CFS
2180 * and DL, though, because they may not be coming in if only RT tasks are
2181 * active all the time (or there are RT tasks only).
adaf9fcd 2182 *
e0367b12
JL
2183 * As a workaround for that issue, this function is called periodically by the
2184 * RT sched class to trigger extra cpufreq updates to prevent it from stalling,
adaf9fcd 2185 * but that really is a band-aid. Going forward it should be replaced with
e0367b12 2186 * solutions targeted more specifically at RT tasks.
adaf9fcd 2187 */
12bde33d 2188static inline void cpufreq_update_util(struct rq *rq, unsigned int flags)
adaf9fcd 2189{
58919e83
RW
2190 struct update_util_data *data;
2191
674e7541
VK
2192 data = rcu_dereference_sched(*per_cpu_ptr(&cpufreq_update_util_data,
2193 cpu_of(rq)));
58919e83 2194 if (data)
12bde33d
RW
2195 data->func(data, rq_clock(rq), flags);
2196}
adaf9fcd 2197#else
12bde33d 2198static inline void cpufreq_update_util(struct rq *rq, unsigned int flags) {}
adaf9fcd 2199#endif /* CONFIG_CPU_FREQ */
be53f58f 2200
9bdcb44e 2201#ifdef arch_scale_freq_capacity
97fb7a0a
IM
2202# ifndef arch_scale_freq_invariant
2203# define arch_scale_freq_invariant() true
2204# endif
2205#else
2206# define arch_scale_freq_invariant() false
9bdcb44e 2207#endif
d4edd662 2208
794a56eb 2209#ifdef CONFIG_CPU_FREQ_GOV_SCHEDUTIL
8cc90515 2210static inline unsigned long cpu_bw_dl(struct rq *rq)
d4edd662
JL
2211{
2212 return (rq->dl.running_bw * SCHED_CAPACITY_SCALE) >> BW_SHIFT;
2213}
2214
8cc90515
VG
2215static inline unsigned long cpu_util_dl(struct rq *rq)
2216{
2217 return READ_ONCE(rq->avg_dl.util_avg);
2218}
2219
d4edd662
JL
2220static inline unsigned long cpu_util_cfs(struct rq *rq)
2221{
a07630b8
PB
2222 unsigned long util = READ_ONCE(rq->cfs.avg.util_avg);
2223
2224 if (sched_feat(UTIL_EST)) {
2225 util = max_t(unsigned long, util,
2226 READ_ONCE(rq->cfs.avg.util_est.enqueued));
2227 }
2228
2229 return util;
d4edd662 2230}
371bf427
VG
2231
2232static inline unsigned long cpu_util_rt(struct rq *rq)
2233{
dfa444dc 2234 return READ_ONCE(rq->avg_rt.util_avg);
371bf427 2235}
2e62c474 2236#endif
9033ea11 2237
11d4afd4 2238#ifdef CONFIG_HAVE_SCHED_AVG_IRQ
9033ea11
VG
2239static inline unsigned long cpu_util_irq(struct rq *rq)
2240{
2241 return rq->avg_irq.util_avg;
2242}
2e62c474
VG
2243
2244static inline
2245unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
2246{
2247 util *= (max - irq);
2248 util /= max;
2249
2250 return util;
2251
2252}
9033ea11
VG
2253#else
2254static inline unsigned long cpu_util_irq(struct rq *rq)
2255{
2256 return 0;
2257}
2258
2e62c474
VG
2259static inline
2260unsigned long scale_irq_capacity(unsigned long util, unsigned long irq, unsigned long max)
2261{
2262 return util;
2263}
794a56eb 2264#endif