]> git.ipfire.org Git - thirdparty/linux.git/blame - kernel/time/hrtimer.c
Merge branch 'for-arm-soc' of git://git.armlinux.org.uk/~rmk/linux-arm into arm/soc
[thirdparty/linux.git] / kernel / time / hrtimer.c
CommitLineData
35728b82 1// SPDX-License-Identifier: GPL-2.0
c0a31329 2/*
3c8aa39d 3 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
79bf2bb3 4 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
54cdfdb4 5 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
c0a31329
TG
6 *
7 * High-resolution kernel timers
8 *
58c5fc2b
TG
9 * In contrast to the low-resolution timeout API, aka timer wheel,
10 * hrtimers provide finer resolution and accuracy depending on system
11 * configuration and capabilities.
c0a31329
TG
12 *
13 * Started by: Thomas Gleixner and Ingo Molnar
14 *
15 * Credits:
58c5fc2b 16 * Based on the original timer wheel code
c0a31329 17 *
66188fae
TG
18 * Help, testing, suggestions, bugfixes, improvements were
19 * provided by:
20 *
21 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
22 * et. al.
c0a31329
TG
23 */
24
25#include <linux/cpu.h>
9984de1a 26#include <linux/export.h>
c0a31329
TG
27#include <linux/percpu.h>
28#include <linux/hrtimer.h>
29#include <linux/notifier.h>
30#include <linux/syscalls.h>
31#include <linux/interrupt.h>
79bf2bb3 32#include <linux/tick.h>
54cdfdb4
TG
33#include <linux/seq_file.h>
34#include <linux/err.h>
237fc6e7 35#include <linux/debugobjects.h>
174cd4b1 36#include <linux/sched/signal.h>
cf4aebc2 37#include <linux/sched/sysctl.h>
8bd75c77 38#include <linux/sched/rt.h>
aab03e05 39#include <linux/sched/deadline.h>
370c9135 40#include <linux/sched/nohz.h>
b17b0153 41#include <linux/sched/debug.h>
eea08f32 42#include <linux/timer.h>
b0f8c44f 43#include <linux/freezer.h>
edbeda46 44#include <linux/compat.h>
c0a31329 45
7c0f6ba6 46#include <linux/uaccess.h>
c0a31329 47
c6a2a177
XG
48#include <trace/events/timer.h>
49
c1797baf 50#include "tick-internal.h"
8b094cd0 51
c458b1d1
AMG
52/*
53 * Masks for selecting the soft and hard context timers from
54 * cpu_base->active
55 */
56#define MASK_SHIFT (HRTIMER_BASE_MONOTONIC_SOFT)
57#define HRTIMER_ACTIVE_HARD ((1U << MASK_SHIFT) - 1)
58#define HRTIMER_ACTIVE_SOFT (HRTIMER_ACTIVE_HARD << MASK_SHIFT)
59#define HRTIMER_ACTIVE_ALL (HRTIMER_ACTIVE_SOFT | HRTIMER_ACTIVE_HARD)
60
c0a31329
TG
61/*
62 * The timer bases:
7978672c 63 *
571af55a 64 * There are more clockids than hrtimer bases. Thus, we index
e06383db
JS
65 * into the timer bases by the hrtimer_base_type enum. When trying
66 * to reach a base using a clockid, hrtimer_clockid_to_base()
67 * is used to convert from clockid to the proper hrtimer_base_type.
c0a31329 68 */
54cdfdb4 69DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
c0a31329 70{
84cc8fd2 71 .lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
3c8aa39d 72 .clock_base =
c0a31329 73 {
3c8aa39d 74 {
ab8177bc
TG
75 .index = HRTIMER_BASE_MONOTONIC,
76 .clockid = CLOCK_MONOTONIC,
3c8aa39d 77 .get_time = &ktime_get,
3c8aa39d 78 },
68fa61c0
TG
79 {
80 .index = HRTIMER_BASE_REALTIME,
81 .clockid = CLOCK_REALTIME,
82 .get_time = &ktime_get_real,
68fa61c0 83 },
a3ed0e43
TG
84 {
85 .index = HRTIMER_BASE_BOOTTIME,
86 .clockid = CLOCK_BOOTTIME,
87 .get_time = &ktime_get_boottime,
88 },
90adda98
JS
89 {
90 .index = HRTIMER_BASE_TAI,
91 .clockid = CLOCK_TAI,
92 .get_time = &ktime_get_clocktai,
90adda98 93 },
98ecadd4
AMG
94 {
95 .index = HRTIMER_BASE_MONOTONIC_SOFT,
96 .clockid = CLOCK_MONOTONIC,
97 .get_time = &ktime_get,
98 },
99 {
100 .index = HRTIMER_BASE_REALTIME_SOFT,
101 .clockid = CLOCK_REALTIME,
102 .get_time = &ktime_get_real,
103 },
a3ed0e43
TG
104 {
105 .index = HRTIMER_BASE_BOOTTIME_SOFT,
106 .clockid = CLOCK_BOOTTIME,
107 .get_time = &ktime_get_boottime,
108 },
98ecadd4
AMG
109 {
110 .index = HRTIMER_BASE_TAI_SOFT,
111 .clockid = CLOCK_TAI,
112 .get_time = &ktime_get_clocktai,
113 },
3c8aa39d 114 }
c0a31329
TG
115};
116
942c3c5c 117static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
336a9cde
MZ
118 /* Make sure we catch unsupported clockids */
119 [0 ... MAX_CLOCKS - 1] = HRTIMER_MAX_CLOCK_BASES,
120
ce31332d
TG
121 [CLOCK_REALTIME] = HRTIMER_BASE_REALTIME,
122 [CLOCK_MONOTONIC] = HRTIMER_BASE_MONOTONIC,
a3ed0e43 123 [CLOCK_BOOTTIME] = HRTIMER_BASE_BOOTTIME,
90adda98 124 [CLOCK_TAI] = HRTIMER_BASE_TAI,
ce31332d 125};
e06383db 126
c0a31329
TG
127/*
128 * Functions and macros which are different for UP/SMP systems are kept in a
129 * single place
130 */
131#ifdef CONFIG_SMP
132
887d9dc9
PZ
133/*
134 * We require the migration_base for lock_hrtimer_base()/switch_hrtimer_base()
135 * such that hrtimer_callback_running() can unconditionally dereference
136 * timer->base->cpu_base
137 */
138static struct hrtimer_cpu_base migration_cpu_base = {
887d9dc9
PZ
139 .clock_base = { { .cpu_base = &migration_cpu_base, }, },
140};
141
142#define migration_base migration_cpu_base.clock_base[0]
143
c0a31329
TG
144/*
145 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
146 * means that all timers which are tied to this base via timer->base are
147 * locked, and the base itself is locked too.
148 *
149 * So __run_timers/migrate_timers can safely modify all timers which could
150 * be found on the lists/queues.
151 *
152 * When the timer's base is locked, and the timer removed from list, it is
887d9dc9
PZ
153 * possible to set timer->base = &migration_base and drop the lock: the timer
154 * remains locked.
c0a31329 155 */
3c8aa39d
TG
156static
157struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
158 unsigned long *flags)
c0a31329 159{
3c8aa39d 160 struct hrtimer_clock_base *base;
c0a31329
TG
161
162 for (;;) {
163 base = timer->base;
887d9dc9 164 if (likely(base != &migration_base)) {
ecb49d1a 165 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
c0a31329
TG
166 if (likely(base == timer->base))
167 return base;
168 /* The timer has migrated to another CPU: */
ecb49d1a 169 raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
c0a31329
TG
170 }
171 cpu_relax();
172 }
173}
174
6ff7041d 175/*
07a9a7ea
AMG
176 * We do not migrate the timer when it is expiring before the next
177 * event on the target cpu. When high resolution is enabled, we cannot
178 * reprogram the target cpu hardware and we would cause it to fire
179 * late. To keep it simple, we handle the high resolution enabled and
180 * disabled case similar.
6ff7041d
TG
181 *
182 * Called with cpu_base->lock of target cpu held.
183 */
184static int
185hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
186{
6ff7041d
TG
187 ktime_t expires;
188
6ff7041d 189 expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
2ac2dccc 190 return expires < new_base->cpu_base->expires_next;
6ff7041d
TG
191}
192
bc7a34b8
TG
193static inline
194struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base,
195 int pinned)
196{
ae67bada
TG
197#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
198 if (static_branch_likely(&timers_migration_enabled) && !pinned)
199 return &per_cpu(hrtimer_bases, get_nohz_timer_target());
200#endif
662b3e19 201 return base;
bc7a34b8 202}
bc7a34b8 203
c0a31329 204/*
b48362d8
FW
205 * We switch the timer base to a power-optimized selected CPU target,
206 * if:
207 * - NO_HZ_COMMON is enabled
208 * - timer migration is enabled
209 * - the timer callback is not running
210 * - the timer is not the first expiring timer on the new target
211 *
212 * If one of the above requirements is not fulfilled we move the timer
213 * to the current CPU or leave it on the previously assigned CPU if
214 * the timer callback is currently running.
c0a31329 215 */
3c8aa39d 216static inline struct hrtimer_clock_base *
597d0275
AB
217switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
218 int pinned)
c0a31329 219{
b48362d8 220 struct hrtimer_cpu_base *new_cpu_base, *this_cpu_base;
3c8aa39d 221 struct hrtimer_clock_base *new_base;
ab8177bc 222 int basenum = base->index;
c0a31329 223
b48362d8
FW
224 this_cpu_base = this_cpu_ptr(&hrtimer_bases);
225 new_cpu_base = get_target_base(this_cpu_base, pinned);
eea08f32 226again:
e06383db 227 new_base = &new_cpu_base->clock_base[basenum];
c0a31329
TG
228
229 if (base != new_base) {
230 /*
6ff7041d 231 * We are trying to move timer to new_base.
c0a31329
TG
232 * However we can't change timer's base while it is running,
233 * so we keep it on the same CPU. No hassle vs. reprogramming
234 * the event source in the high resolution case. The softirq
235 * code will take care of this when the timer function has
236 * completed. There is no conflict as we hold the lock until
237 * the timer is enqueued.
238 */
54cdfdb4 239 if (unlikely(hrtimer_callback_running(timer)))
c0a31329
TG
240 return base;
241
887d9dc9
PZ
242 /* See the comment in lock_hrtimer_base() */
243 timer->base = &migration_base;
ecb49d1a
TG
244 raw_spin_unlock(&base->cpu_base->lock);
245 raw_spin_lock(&new_base->cpu_base->lock);
eea08f32 246
b48362d8 247 if (new_cpu_base != this_cpu_base &&
bc7a34b8 248 hrtimer_check_target(timer, new_base)) {
ecb49d1a
TG
249 raw_spin_unlock(&new_base->cpu_base->lock);
250 raw_spin_lock(&base->cpu_base->lock);
b48362d8 251 new_cpu_base = this_cpu_base;
6ff7041d
TG
252 timer->base = base;
253 goto again;
eea08f32 254 }
c0a31329 255 timer->base = new_base;
012a45e3 256 } else {
b48362d8 257 if (new_cpu_base != this_cpu_base &&
bc7a34b8 258 hrtimer_check_target(timer, new_base)) {
b48362d8 259 new_cpu_base = this_cpu_base;
012a45e3
LM
260 goto again;
261 }
c0a31329
TG
262 }
263 return new_base;
264}
265
266#else /* CONFIG_SMP */
267
3c8aa39d 268static inline struct hrtimer_clock_base *
c0a31329
TG
269lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
270{
3c8aa39d 271 struct hrtimer_clock_base *base = timer->base;
c0a31329 272
ecb49d1a 273 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
c0a31329
TG
274
275 return base;
276}
277
eea08f32 278# define switch_hrtimer_base(t, b, p) (b)
c0a31329
TG
279
280#endif /* !CONFIG_SMP */
281
282/*
283 * Functions for the union type storage format of ktime_t which are
284 * too large for inlining:
285 */
286#if BITS_PER_LONG < 64
c0a31329
TG
287/*
288 * Divide a ktime value by a nanosecond value
289 */
f7bcb70e 290s64 __ktime_divns(const ktime_t kt, s64 div)
c0a31329 291{
c0a31329 292 int sft = 0;
f7bcb70e
JS
293 s64 dclc;
294 u64 tmp;
c0a31329 295
900cfa46 296 dclc = ktime_to_ns(kt);
f7bcb70e
JS
297 tmp = dclc < 0 ? -dclc : dclc;
298
c0a31329
TG
299 /* Make sure the divisor is less than 2^32: */
300 while (div >> 32) {
301 sft++;
302 div >>= 1;
303 }
f7bcb70e
JS
304 tmp >>= sft;
305 do_div(tmp, (unsigned long) div);
306 return dclc < 0 ? -tmp : tmp;
c0a31329 307}
8b618628 308EXPORT_SYMBOL_GPL(__ktime_divns);
c0a31329
TG
309#endif /* BITS_PER_LONG >= 64 */
310
5a7780e7
TG
311/*
312 * Add two ktime values and do a safety check for overflow:
313 */
314ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
315{
979515c5 316 ktime_t res = ktime_add_unsafe(lhs, rhs);
5a7780e7
TG
317
318 /*
319 * We use KTIME_SEC_MAX here, the maximum timeout which we can
320 * return to user space in a timespec:
321 */
2456e855 322 if (res < 0 || res < lhs || res < rhs)
5a7780e7
TG
323 res = ktime_set(KTIME_SEC_MAX, 0);
324
325 return res;
326}
327
8daa21e6
AB
328EXPORT_SYMBOL_GPL(ktime_add_safe);
329
237fc6e7
TG
330#ifdef CONFIG_DEBUG_OBJECTS_TIMERS
331
332static struct debug_obj_descr hrtimer_debug_descr;
333
99777288
SG
334static void *hrtimer_debug_hint(void *addr)
335{
336 return ((struct hrtimer *) addr)->function;
337}
338
237fc6e7
TG
339/*
340 * fixup_init is called when:
341 * - an active object is initialized
342 */
e3252464 343static bool hrtimer_fixup_init(void *addr, enum debug_obj_state state)
237fc6e7
TG
344{
345 struct hrtimer *timer = addr;
346
347 switch (state) {
348 case ODEBUG_STATE_ACTIVE:
349 hrtimer_cancel(timer);
350 debug_object_init(timer, &hrtimer_debug_descr);
e3252464 351 return true;
237fc6e7 352 default:
e3252464 353 return false;
237fc6e7
TG
354 }
355}
356
357/*
358 * fixup_activate is called when:
359 * - an active object is activated
b9fdac7f 360 * - an unknown non-static object is activated
237fc6e7 361 */
e3252464 362static bool hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
237fc6e7
TG
363{
364 switch (state) {
237fc6e7
TG
365 case ODEBUG_STATE_ACTIVE:
366 WARN_ON(1);
75b710af 367 /* fall through */
237fc6e7 368 default:
e3252464 369 return false;
237fc6e7
TG
370 }
371}
372
373/*
374 * fixup_free is called when:
375 * - an active object is freed
376 */
e3252464 377static bool hrtimer_fixup_free(void *addr, enum debug_obj_state state)
237fc6e7
TG
378{
379 struct hrtimer *timer = addr;
380
381 switch (state) {
382 case ODEBUG_STATE_ACTIVE:
383 hrtimer_cancel(timer);
384 debug_object_free(timer, &hrtimer_debug_descr);
e3252464 385 return true;
237fc6e7 386 default:
e3252464 387 return false;
237fc6e7
TG
388 }
389}
390
391static struct debug_obj_descr hrtimer_debug_descr = {
392 .name = "hrtimer",
99777288 393 .debug_hint = hrtimer_debug_hint,
237fc6e7
TG
394 .fixup_init = hrtimer_fixup_init,
395 .fixup_activate = hrtimer_fixup_activate,
396 .fixup_free = hrtimer_fixup_free,
397};
398
399static inline void debug_hrtimer_init(struct hrtimer *timer)
400{
401 debug_object_init(timer, &hrtimer_debug_descr);
402}
403
5da70160
AMG
404static inline void debug_hrtimer_activate(struct hrtimer *timer,
405 enum hrtimer_mode mode)
237fc6e7
TG
406{
407 debug_object_activate(timer, &hrtimer_debug_descr);
408}
409
410static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
411{
412 debug_object_deactivate(timer, &hrtimer_debug_descr);
413}
414
415static inline void debug_hrtimer_free(struct hrtimer *timer)
416{
417 debug_object_free(timer, &hrtimer_debug_descr);
418}
419
420static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
421 enum hrtimer_mode mode);
422
423void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
424 enum hrtimer_mode mode)
425{
426 debug_object_init_on_stack(timer, &hrtimer_debug_descr);
427 __hrtimer_init(timer, clock_id, mode);
428}
2bc481cf 429EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
237fc6e7
TG
430
431void destroy_hrtimer_on_stack(struct hrtimer *timer)
432{
433 debug_object_free(timer, &hrtimer_debug_descr);
434}
c08376ac 435EXPORT_SYMBOL_GPL(destroy_hrtimer_on_stack);
237fc6e7
TG
436
437#else
5da70160 438
237fc6e7 439static inline void debug_hrtimer_init(struct hrtimer *timer) { }
5da70160
AMG
440static inline void debug_hrtimer_activate(struct hrtimer *timer,
441 enum hrtimer_mode mode) { }
237fc6e7
TG
442static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
443#endif
444
c6a2a177
XG
445static inline void
446debug_init(struct hrtimer *timer, clockid_t clockid,
447 enum hrtimer_mode mode)
448{
449 debug_hrtimer_init(timer);
450 trace_hrtimer_init(timer, clockid, mode);
451}
452
63e2ed36
AMG
453static inline void debug_activate(struct hrtimer *timer,
454 enum hrtimer_mode mode)
c6a2a177 455{
5da70160 456 debug_hrtimer_activate(timer, mode);
63e2ed36 457 trace_hrtimer_start(timer, mode);
c6a2a177
XG
458}
459
460static inline void debug_deactivate(struct hrtimer *timer)
461{
462 debug_hrtimer_deactivate(timer);
463 trace_hrtimer_cancel(timer);
464}
465
c272ca58
AMG
466static struct hrtimer_clock_base *
467__next_base(struct hrtimer_cpu_base *cpu_base, unsigned int *active)
468{
469 unsigned int idx;
470
471 if (!*active)
472 return NULL;
473
474 idx = __ffs(*active);
475 *active &= ~(1U << idx);
476
477 return &cpu_base->clock_base[idx];
478}
479
480#define for_each_active_base(base, cpu_base, active) \
481 while ((base = __next_base((cpu_base), &(active))))
482
ad38f596 483static ktime_t __hrtimer_next_event_base(struct hrtimer_cpu_base *cpu_base,
a59855cd 484 const struct hrtimer *exclude,
ad38f596
AMG
485 unsigned int active,
486 ktime_t expires_next)
9bc74919 487{
c272ca58 488 struct hrtimer_clock_base *base;
ad38f596 489 ktime_t expires;
9bc74919 490
c272ca58 491 for_each_active_base(base, cpu_base, active) {
9bc74919
TG
492 struct timerqueue_node *next;
493 struct hrtimer *timer;
494
34aee88a 495 next = timerqueue_getnext(&base->active);
9bc74919 496 timer = container_of(next, struct hrtimer, node);
a59855cd
RW
497 if (timer == exclude) {
498 /* Get to the next timer in the queue. */
7d2f6abb 499 next = timerqueue_iterate_next(next);
a59855cd
RW
500 if (!next)
501 continue;
502
503 timer = container_of(next, struct hrtimer, node);
504 }
9bc74919 505 expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
2456e855 506 if (expires < expires_next) {
9bc74919 507 expires_next = expires;
a59855cd
RW
508
509 /* Skip cpu_base update if a timer is being excluded. */
510 if (exclude)
511 continue;
512
5da70160
AMG
513 if (timer->is_soft)
514 cpu_base->softirq_next_timer = timer;
515 else
516 cpu_base->next_timer = timer;
895bdfa7 517 }
9bc74919
TG
518 }
519 /*
520 * clock_was_set() might have changed base->offset of any of
521 * the clock bases so the result might be negative. Fix it up
522 * to prevent a false positive in clockevents_program_event().
523 */
2456e855
TG
524 if (expires_next < 0)
525 expires_next = 0;
9bc74919
TG
526 return expires_next;
527}
9bc74919 528
c458b1d1
AMG
529/*
530 * Recomputes cpu_base::*next_timer and returns the earliest expires_next but
531 * does not set cpu_base::*expires_next, that is done by hrtimer_reprogram.
532 *
5da70160
AMG
533 * When a softirq is pending, we can ignore the HRTIMER_ACTIVE_SOFT bases,
534 * those timers will get run whenever the softirq gets handled, at the end of
535 * hrtimer_run_softirq(), hrtimer_update_softirq_timer() will re-add these bases.
536 *
537 * Therefore softirq values are those from the HRTIMER_ACTIVE_SOFT clock bases.
538 * The !softirq values are the minima across HRTIMER_ACTIVE_ALL, unless an actual
539 * softirq is pending, in which case they're the minima of HRTIMER_ACTIVE_HARD.
540 *
c458b1d1 541 * @active_mask must be one of:
5da70160 542 * - HRTIMER_ACTIVE_ALL,
c458b1d1
AMG
543 * - HRTIMER_ACTIVE_SOFT, or
544 * - HRTIMER_ACTIVE_HARD.
545 */
5da70160
AMG
546static ktime_t
547__hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base, unsigned int active_mask)
ad38f596 548{
c458b1d1 549 unsigned int active;
5da70160 550 struct hrtimer *next_timer = NULL;
ad38f596
AMG
551 ktime_t expires_next = KTIME_MAX;
552
5da70160
AMG
553 if (!cpu_base->softirq_activated && (active_mask & HRTIMER_ACTIVE_SOFT)) {
554 active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT;
555 cpu_base->softirq_next_timer = NULL;
a59855cd
RW
556 expires_next = __hrtimer_next_event_base(cpu_base, NULL,
557 active, KTIME_MAX);
5da70160
AMG
558
559 next_timer = cpu_base->softirq_next_timer;
560 }
ad38f596 561
5da70160
AMG
562 if (active_mask & HRTIMER_ACTIVE_HARD) {
563 active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD;
564 cpu_base->next_timer = next_timer;
a59855cd
RW
565 expires_next = __hrtimer_next_event_base(cpu_base, NULL, active,
566 expires_next);
5da70160 567 }
ad38f596
AMG
568
569 return expires_next;
570}
571
21d6d52a
TG
572static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
573{
574 ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
a3ed0e43 575 ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
21d6d52a
TG
576 ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;
577
5da70160 578 ktime_t now = ktime_get_update_offsets_now(&base->clock_was_set_seq,
a3ed0e43 579 offs_real, offs_boot, offs_tai);
5da70160
AMG
580
581 base->clock_base[HRTIMER_BASE_REALTIME_SOFT].offset = *offs_real;
a3ed0e43 582 base->clock_base[HRTIMER_BASE_BOOTTIME_SOFT].offset = *offs_boot;
5da70160
AMG
583 base->clock_base[HRTIMER_BASE_TAI_SOFT].offset = *offs_tai;
584
585 return now;
21d6d52a
TG
586}
587
28bfd18b
AMG
588/*
589 * Is the high resolution mode active ?
590 */
591static inline int __hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base)
592{
593 return IS_ENABLED(CONFIG_HIGH_RES_TIMERS) ?
594 cpu_base->hres_active : 0;
595}
596
597static inline int hrtimer_hres_active(void)
598{
599 return __hrtimer_hres_active(this_cpu_ptr(&hrtimer_bases));
600}
601
54cdfdb4
TG
602/*
603 * Reprogram the event source with checking both queues for the
604 * next event
605 * Called with interrupts disabled and base->lock held
606 */
7403f41f
AC
607static void
608hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
54cdfdb4 609{
21d6d52a
TG
610 ktime_t expires_next;
611
5da70160
AMG
612 /*
613 * Find the current next expiration time.
614 */
615 expires_next = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL);
616
617 if (cpu_base->next_timer && cpu_base->next_timer->is_soft) {
618 /*
619 * When the softirq is activated, hrtimer has to be
620 * programmed with the first hard hrtimer because soft
621 * timer interrupt could occur too late.
622 */
623 if (cpu_base->softirq_activated)
624 expires_next = __hrtimer_get_next_event(cpu_base,
625 HRTIMER_ACTIVE_HARD);
626 else
627 cpu_base->softirq_expires_next = expires_next;
628 }
54cdfdb4 629
2456e855 630 if (skip_equal && expires_next == cpu_base->expires_next)
7403f41f
AC
631 return;
632
2456e855 633 cpu_base->expires_next = expires_next;
7403f41f 634
6c6c0d5a 635 /*
61bb4bcb
AMG
636 * If hres is not active, hardware does not have to be
637 * reprogrammed yet.
638 *
6c6c0d5a
SH
639 * If a hang was detected in the last timer interrupt then we
640 * leave the hang delay active in the hardware. We want the
641 * system to make progress. That also prevents the following
642 * scenario:
643 * T1 expires 50ms from now
644 * T2 expires 5s from now
645 *
646 * T1 is removed, so this code is called and would reprogram
647 * the hardware to 5s from now. Any hrtimer_start after that
648 * will not reprogram the hardware due to hang_detected being
649 * set. So we'd effectivly block all timers until the T2 event
650 * fires.
651 */
61bb4bcb 652 if (!__hrtimer_hres_active(cpu_base) || cpu_base->hang_detected)
6c6c0d5a
SH
653 return;
654
d2540875 655 tick_program_event(cpu_base->expires_next, 1);
54cdfdb4
TG
656}
657
ebba2c72
AMG
658/* High resolution timer related functions */
659#ifdef CONFIG_HIGH_RES_TIMERS
660
661/*
662 * High resolution timer enabled ?
663 */
664static bool hrtimer_hres_enabled __read_mostly = true;
665unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC;
666EXPORT_SYMBOL_GPL(hrtimer_resolution);
667
668/*
669 * Enable / Disable high resolution mode
670 */
671static int __init setup_hrtimer_hres(char *str)
672{
673 return (kstrtobool(str, &hrtimer_hres_enabled) == 0);
674}
675
676__setup("highres=", setup_hrtimer_hres);
677
678/*
679 * hrtimer_high_res_enabled - query, if the highres mode is enabled
680 */
681static inline int hrtimer_is_hres_enabled(void)
682{
683 return hrtimer_hres_enabled;
684}
685
9ec26907
TG
686/*
687 * Retrigger next event is called after clock was set
688 *
689 * Called with interrupts disabled via on_each_cpu()
690 */
691static void retrigger_next_event(void *arg)
692{
dc5df73b 693 struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
9ec26907 694
851cff8c 695 if (!__hrtimer_hres_active(base))
9ec26907
TG
696 return;
697
9ec26907 698 raw_spin_lock(&base->lock);
5baefd6d 699 hrtimer_update_base(base);
9ec26907
TG
700 hrtimer_force_reprogram(base, 0);
701 raw_spin_unlock(&base->lock);
702}
b12a03ce 703
54cdfdb4
TG
704/*
705 * Switch to high resolution mode
706 */
75e3b37d 707static void hrtimer_switch_to_hres(void)
54cdfdb4 708{
c6eb3f70 709 struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases);
54cdfdb4
TG
710
711 if (tick_init_highres()) {
7a6e5537
GU
712 pr_warn("Could not switch to high resolution mode on CPU %u\n",
713 base->cpu);
85e1cd6e 714 return;
54cdfdb4
TG
715 }
716 base->hres_active = 1;
398ca17f 717 hrtimer_resolution = HIGH_RES_NSEC;
54cdfdb4
TG
718
719 tick_setup_sched_timer();
54cdfdb4
TG
720 /* "Retrigger" the interrupt to get things going */
721 retrigger_next_event(NULL);
54cdfdb4
TG
722}
723
5ec2481b
TG
724static void clock_was_set_work(struct work_struct *work)
725{
726 clock_was_set();
727}
728
729static DECLARE_WORK(hrtimer_work, clock_was_set_work);
730
f55a6faa 731/*
b4d90e9f 732 * Called from timekeeping and resume code to reprogram the hrtimer
5ec2481b 733 * interrupt device on all cpus.
f55a6faa
JS
734 */
735void clock_was_set_delayed(void)
736{
5ec2481b 737 schedule_work(&hrtimer_work);
f55a6faa
JS
738}
739
54cdfdb4
TG
740#else
741
54cdfdb4 742static inline int hrtimer_is_hres_enabled(void) { return 0; }
75e3b37d 743static inline void hrtimer_switch_to_hres(void) { }
9ec26907 744static inline void retrigger_next_event(void *arg) { }
54cdfdb4
TG
745
746#endif /* CONFIG_HIGH_RES_TIMERS */
747
11a9fe06
AMG
748/*
749 * When a timer is enqueued and expires earlier than the already enqueued
750 * timers, we have to check, whether it expires earlier than the timer for
751 * which the clock event device was armed.
752 *
753 * Called with interrupts disabled and base->cpu_base.lock held
754 */
5da70160 755static void hrtimer_reprogram(struct hrtimer *timer, bool reprogram)
11a9fe06
AMG
756{
757 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
3ec7a3ee 758 struct hrtimer_clock_base *base = timer->base;
11a9fe06
AMG
759 ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
760
761 WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
762
5da70160
AMG
763 /*
764 * CLOCK_REALTIME timer might be requested with an absolute
765 * expiry time which is less than base->offset. Set it to 0.
766 */
767 if (expires < 0)
768 expires = 0;
769
770 if (timer->is_soft) {
771 /*
772 * soft hrtimer could be started on a remote CPU. In this
773 * case softirq_expires_next needs to be updated on the
774 * remote CPU. The soft hrtimer will not expire before the
775 * first hard hrtimer on the remote CPU -
776 * hrtimer_check_target() prevents this case.
777 */
778 struct hrtimer_cpu_base *timer_cpu_base = base->cpu_base;
779
780 if (timer_cpu_base->softirq_activated)
781 return;
782
783 if (!ktime_before(expires, timer_cpu_base->softirq_expires_next))
784 return;
785
786 timer_cpu_base->softirq_next_timer = timer;
787 timer_cpu_base->softirq_expires_next = expires;
788
789 if (!ktime_before(expires, timer_cpu_base->expires_next) ||
790 !reprogram)
791 return;
792 }
793
11a9fe06
AMG
794 /*
795 * If the timer is not on the current cpu, we cannot reprogram
796 * the other cpus clock event device.
797 */
798 if (base->cpu_base != cpu_base)
799 return;
800
801 /*
802 * If the hrtimer interrupt is running, then it will
803 * reevaluate the clock bases and reprogram the clock event
804 * device. The callbacks are always executed in hard interrupt
805 * context so we don't need an extra check for a running
806 * callback.
807 */
808 if (cpu_base->in_hrtirq)
809 return;
810
11a9fe06
AMG
811 if (expires >= cpu_base->expires_next)
812 return;
813
814 /* Update the pointer to the next expiring timer */
815 cpu_base->next_timer = timer;
14c80341 816 cpu_base->expires_next = expires;
11a9fe06
AMG
817
818 /*
14c80341
AMG
819 * If hres is not active, hardware does not have to be
820 * programmed yet.
821 *
11a9fe06
AMG
822 * If a hang was detected in the last timer interrupt then we
823 * do not schedule a timer which is earlier than the expiry
824 * which we enforced in the hang detection. We want the system
825 * to make progress.
826 */
14c80341 827 if (!__hrtimer_hres_active(cpu_base) || cpu_base->hang_detected)
11a9fe06
AMG
828 return;
829
830 /*
831 * Program the timer hardware. We enforce the expiry for
832 * events which are already in the past.
833 */
11a9fe06
AMG
834 tick_program_event(expires, 1);
835}
836
b12a03ce
TG
837/*
838 * Clock realtime was set
839 *
840 * Change the offset of the realtime clock vs. the monotonic
841 * clock.
842 *
843 * We might have to reprogram the high resolution timer interrupt. On
844 * SMP we call the architecture specific code to retrigger _all_ high
845 * resolution timer interrupts. On UP we just disable interrupts and
846 * call the high resolution interrupt code.
847 */
848void clock_was_set(void)
849{
90ff1f30 850#ifdef CONFIG_HIGH_RES_TIMERS
b12a03ce
TG
851 /* Retrigger the CPU local events everywhere */
852 on_each_cpu(retrigger_next_event, NULL, 1);
9ec26907
TG
853#endif
854 timerfd_clock_was_set();
b12a03ce
TG
855}
856
857/*
858 * During resume we might have to reprogram the high resolution timer
7c4c3a0f
DV
859 * interrupt on all online CPUs. However, all other CPUs will be
860 * stopped with IRQs interrupts disabled so the clock_was_set() call
5ec2481b 861 * must be deferred.
b12a03ce
TG
862 */
863void hrtimers_resume(void)
864{
53bef3fd 865 lockdep_assert_irqs_disabled();
5ec2481b 866 /* Retrigger on the local CPU */
b12a03ce 867 retrigger_next_event(NULL);
5ec2481b
TG
868 /* And schedule a retrigger for all others */
869 clock_was_set_delayed();
b12a03ce
TG
870}
871
c0a31329 872/*
6506f2aa 873 * Counterpart to lock_hrtimer_base above:
c0a31329
TG
874 */
875static inline
876void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
877{
ecb49d1a 878 raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
c0a31329
TG
879}
880
881/**
882 * hrtimer_forward - forward the timer expiry
c0a31329 883 * @timer: hrtimer to forward
44f21475 884 * @now: forward past this time
c0a31329
TG
885 * @interval: the interval to forward
886 *
887 * Forward the timer expiry so it will expire in the future.
8dca6f33 888 * Returns the number of overruns.
91e5a217
TG
889 *
890 * Can be safely called from the callback function of @timer. If
891 * called from other contexts @timer must neither be enqueued nor
892 * running the callback and the caller needs to take care of
893 * serialization.
894 *
895 * Note: This only updates the timer expiry value and does not requeue
896 * the timer.
c0a31329 897 */
4d672e7a 898u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
c0a31329 899{
4d672e7a 900 u64 orun = 1;
44f21475 901 ktime_t delta;
c0a31329 902
cc584b21 903 delta = ktime_sub(now, hrtimer_get_expires(timer));
c0a31329 904
2456e855 905 if (delta < 0)
c0a31329
TG
906 return 0;
907
5de2755c
PZ
908 if (WARN_ON(timer->state & HRTIMER_STATE_ENQUEUED))
909 return 0;
910
2456e855
TG
911 if (interval < hrtimer_resolution)
912 interval = hrtimer_resolution;
c9db4fa1 913
2456e855 914 if (unlikely(delta >= interval)) {
df869b63 915 s64 incr = ktime_to_ns(interval);
c0a31329
TG
916
917 orun = ktime_divns(delta, incr);
cc584b21 918 hrtimer_add_expires_ns(timer, incr * orun);
2456e855 919 if (hrtimer_get_expires_tv64(timer) > now)
c0a31329
TG
920 return orun;
921 /*
922 * This (and the ktime_add() below) is the
923 * correction for exact:
924 */
925 orun++;
926 }
cc584b21 927 hrtimer_add_expires(timer, interval);
c0a31329
TG
928
929 return orun;
930}
6bdb6b62 931EXPORT_SYMBOL_GPL(hrtimer_forward);
c0a31329
TG
932
933/*
934 * enqueue_hrtimer - internal function to (re)start a timer
935 *
936 * The timer is inserted in expiry order. Insertion into the
937 * red black tree is O(log(n)). Must hold the base lock.
a6037b61
PZ
938 *
939 * Returns 1 when the new timer is the leftmost timer in the tree.
c0a31329 940 */
a6037b61 941static int enqueue_hrtimer(struct hrtimer *timer,
63e2ed36
AMG
942 struct hrtimer_clock_base *base,
943 enum hrtimer_mode mode)
c0a31329 944{
63e2ed36 945 debug_activate(timer, mode);
237fc6e7 946
ab8177bc 947 base->cpu_base->active_bases |= 1 << base->index;
54cdfdb4 948
887d9dc9 949 timer->state = HRTIMER_STATE_ENQUEUED;
a6037b61 950
b97f44c9 951 return timerqueue_add(&base->active, &timer->node);
288867ec 952}
c0a31329
TG
953
954/*
955 * __remove_hrtimer - internal function to remove a timer
956 *
957 * Caller must hold the base lock.
54cdfdb4
TG
958 *
959 * High resolution timer mode reprograms the clock event device when the
960 * timer is the one which expires next. The caller can disable this by setting
961 * reprogram to zero. This is useful, when the context does a reprogramming
962 * anyway (e.g. timer interrupt)
c0a31329 963 */
3c8aa39d 964static void __remove_hrtimer(struct hrtimer *timer,
303e967f 965 struct hrtimer_clock_base *base,
203cbf77 966 u8 newstate, int reprogram)
c0a31329 967{
e19ffe8b 968 struct hrtimer_cpu_base *cpu_base = base->cpu_base;
203cbf77 969 u8 state = timer->state;
e19ffe8b 970
895bdfa7
TG
971 timer->state = newstate;
972 if (!(state & HRTIMER_STATE_ENQUEUED))
973 return;
7403f41f 974
b97f44c9 975 if (!timerqueue_del(&base->active, &timer->node))
e19ffe8b 976 cpu_base->active_bases &= ~(1 << base->index);
7403f41f 977
895bdfa7
TG
978 /*
979 * Note: If reprogram is false we do not update
980 * cpu_base->next_timer. This happens when we remove the first
981 * timer on a remote cpu. No harm as we never dereference
982 * cpu_base->next_timer. So the worst thing what can happen is
983 * an superflous call to hrtimer_force_reprogram() on the
984 * remote cpu later on if the same timer gets enqueued again.
985 */
986 if (reprogram && timer == cpu_base->next_timer)
987 hrtimer_force_reprogram(cpu_base, 1);
c0a31329
TG
988}
989
990/*
991 * remove hrtimer, called with base lock held
992 */
993static inline int
8edfb036 994remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base, bool restart)
c0a31329 995{
303e967f 996 if (hrtimer_is_queued(timer)) {
203cbf77 997 u8 state = timer->state;
54cdfdb4
TG
998 int reprogram;
999
1000 /*
1001 * Remove the timer and force reprogramming when high
1002 * resolution mode is active and the timer is on the current
1003 * CPU. If we remove a timer on another CPU, reprogramming is
1004 * skipped. The interrupt event on this CPU is fired and
1005 * reprogramming happens in the interrupt handler. This is a
1006 * rare case and less expensive than a smp call.
1007 */
c6a2a177 1008 debug_deactivate(timer);
dc5df73b 1009 reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases);
8edfb036 1010
887d9dc9
PZ
1011 if (!restart)
1012 state = HRTIMER_STATE_INACTIVE;
1013
f13d4f97 1014 __remove_hrtimer(timer, base, state, reprogram);
c0a31329
TG
1015 return 1;
1016 }
1017 return 0;
1018}
1019
203cbf77
TG
1020static inline ktime_t hrtimer_update_lowres(struct hrtimer *timer, ktime_t tim,
1021 const enum hrtimer_mode mode)
1022{
1023#ifdef CONFIG_TIME_LOW_RES
1024 /*
1025 * CONFIG_TIME_LOW_RES indicates that the system has no way to return
1026 * granular time values. For relative timers we add hrtimer_resolution
1027 * (i.e. one jiffie) to prevent short timeouts.
1028 */
1029 timer->is_rel = mode & HRTIMER_MODE_REL;
1030 if (timer->is_rel)
8b0e1953 1031 tim = ktime_add_safe(tim, hrtimer_resolution);
203cbf77
TG
1032#endif
1033 return tim;
1034}
1035
5da70160
AMG
1036static void
1037hrtimer_update_softirq_timer(struct hrtimer_cpu_base *cpu_base, bool reprogram)
1038{
1039 ktime_t expires;
1040
1041 /*
1042 * Find the next SOFT expiration.
1043 */
1044 expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_SOFT);
1045
1046 /*
1047 * reprogramming needs to be triggered, even if the next soft
1048 * hrtimer expires at the same time than the next hard
1049 * hrtimer. cpu_base->softirq_expires_next needs to be updated!
1050 */
1051 if (expires == KTIME_MAX)
1052 return;
1053
1054 /*
1055 * cpu_base->*next_timer is recomputed by __hrtimer_get_next_event()
1056 * cpu_base->*expires_next is only set by hrtimer_reprogram()
1057 */
1058 hrtimer_reprogram(cpu_base->softirq_next_timer, reprogram);
1059}
1060
138a6b7a
AMG
1061static int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
1062 u64 delta_ns, const enum hrtimer_mode mode,
1063 struct hrtimer_clock_base *base)
c0a31329 1064{
138a6b7a 1065 struct hrtimer_clock_base *new_base;
c0a31329
TG
1066
1067 /* Remove an active timer from the queue: */
8edfb036 1068 remove_hrtimer(timer, base, true);
c0a31329 1069
203cbf77 1070 if (mode & HRTIMER_MODE_REL)
84ea7fe3 1071 tim = ktime_add_safe(tim, base->get_time());
203cbf77
TG
1072
1073 tim = hrtimer_update_lowres(timer, tim, mode);
237fc6e7 1074
da8f2e17 1075 hrtimer_set_expires_range_ns(timer, tim, delta_ns);
c0a31329 1076
84ea7fe3
VK
1077 /* Switch the timer base, if necessary: */
1078 new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
1079
138a6b7a
AMG
1080 return enqueue_hrtimer(timer, new_base, mode);
1081}
5da70160 1082
138a6b7a
AMG
1083/**
1084 * hrtimer_start_range_ns - (re)start an hrtimer
1085 * @timer: the timer to be added
1086 * @tim: expiry time
1087 * @delta_ns: "slack" range for the timer
1088 * @mode: timer mode: absolute (HRTIMER_MODE_ABS) or
5da70160
AMG
1089 * relative (HRTIMER_MODE_REL), and pinned (HRTIMER_MODE_PINNED);
1090 * softirq based mode is considered for debug purpose only!
138a6b7a
AMG
1091 */
1092void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
1093 u64 delta_ns, const enum hrtimer_mode mode)
1094{
1095 struct hrtimer_clock_base *base;
1096 unsigned long flags;
1097
5da70160
AMG
1098 /*
1099 * Check whether the HRTIMER_MODE_SOFT bit and hrtimer.is_soft
1100 * match.
1101 */
1102 WARN_ON_ONCE(!(mode & HRTIMER_MODE_SOFT) ^ !timer->is_soft);
1103
138a6b7a
AMG
1104 base = lock_hrtimer_base(timer, &flags);
1105
1106 if (__hrtimer_start_range_ns(timer, tim, delta_ns, mode, base))
5da70160 1107 hrtimer_reprogram(timer, true);
49a2a075 1108
c0a31329 1109 unlock_hrtimer_base(timer, &flags);
7f1e2ca9 1110}
da8f2e17
AV
1111EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
1112
c0a31329
TG
1113/**
1114 * hrtimer_try_to_cancel - try to deactivate a timer
c0a31329
TG
1115 * @timer: hrtimer to stop
1116 *
1117 * Returns:
1118 * 0 when the timer was not active
1119 * 1 when the timer was active
0ba42a59 1120 * -1 when the timer is currently executing the callback function and
fa9799e3 1121 * cannot be stopped
c0a31329
TG
1122 */
1123int hrtimer_try_to_cancel(struct hrtimer *timer)
1124{
3c8aa39d 1125 struct hrtimer_clock_base *base;
c0a31329
TG
1126 unsigned long flags;
1127 int ret = -1;
1128
19d9f422
TG
1129 /*
1130 * Check lockless first. If the timer is not active (neither
1131 * enqueued nor running the callback, nothing to do here. The
1132 * base lock does not serialize against a concurrent enqueue,
1133 * so we can avoid taking it.
1134 */
1135 if (!hrtimer_active(timer))
1136 return 0;
1137
c0a31329
TG
1138 base = lock_hrtimer_base(timer, &flags);
1139
303e967f 1140 if (!hrtimer_callback_running(timer))
8edfb036 1141 ret = remove_hrtimer(timer, base, false);
c0a31329
TG
1142
1143 unlock_hrtimer_base(timer, &flags);
1144
1145 return ret;
1146
1147}
8d16b764 1148EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
c0a31329
TG
1149
1150/**
1151 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
c0a31329
TG
1152 * @timer: the timer to be cancelled
1153 *
1154 * Returns:
1155 * 0 when the timer was not active
1156 * 1 when the timer was active
1157 */
1158int hrtimer_cancel(struct hrtimer *timer)
1159{
1160 for (;;) {
1161 int ret = hrtimer_try_to_cancel(timer);
1162
1163 if (ret >= 0)
1164 return ret;
5ef37b19 1165 cpu_relax();
c0a31329
TG
1166 }
1167}
8d16b764 1168EXPORT_SYMBOL_GPL(hrtimer_cancel);
c0a31329
TG
1169
1170/**
1171 * hrtimer_get_remaining - get remaining time for the timer
c0a31329 1172 * @timer: the timer to read
203cbf77 1173 * @adjust: adjust relative timers when CONFIG_TIME_LOW_RES=y
c0a31329 1174 */
203cbf77 1175ktime_t __hrtimer_get_remaining(const struct hrtimer *timer, bool adjust)
c0a31329 1176{
c0a31329
TG
1177 unsigned long flags;
1178 ktime_t rem;
1179
b3bd3de6 1180 lock_hrtimer_base(timer, &flags);
203cbf77
TG
1181 if (IS_ENABLED(CONFIG_TIME_LOW_RES) && adjust)
1182 rem = hrtimer_expires_remaining_adjusted(timer);
1183 else
1184 rem = hrtimer_expires_remaining(timer);
c0a31329
TG
1185 unlock_hrtimer_base(timer, &flags);
1186
1187 return rem;
1188}
203cbf77 1189EXPORT_SYMBOL_GPL(__hrtimer_get_remaining);
c0a31329 1190
3451d024 1191#ifdef CONFIG_NO_HZ_COMMON
69239749
TL
1192/**
1193 * hrtimer_get_next_event - get the time until next expiry event
1194 *
c1ad348b 1195 * Returns the next expiry time or KTIME_MAX if no timer is pending.
69239749 1196 */
c1ad348b 1197u64 hrtimer_get_next_event(void)
69239749 1198{
dc5df73b 1199 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
c1ad348b 1200 u64 expires = KTIME_MAX;
69239749 1201 unsigned long flags;
69239749 1202
ecb49d1a 1203 raw_spin_lock_irqsave(&cpu_base->lock, flags);
3c8aa39d 1204
e19ffe8b 1205 if (!__hrtimer_hres_active(cpu_base))
5da70160 1206 expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL);
3c8aa39d 1207
ecb49d1a 1208 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
3c8aa39d 1209
c1ad348b 1210 return expires;
69239749 1211}
a59855cd
RW
1212
1213/**
1214 * hrtimer_next_event_without - time until next expiry event w/o one timer
1215 * @exclude: timer to exclude
1216 *
1217 * Returns the next expiry time over all timers except for the @exclude one or
1218 * KTIME_MAX if none of them is pending.
1219 */
1220u64 hrtimer_next_event_without(const struct hrtimer *exclude)
1221{
1222 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1223 u64 expires = KTIME_MAX;
1224 unsigned long flags;
1225
1226 raw_spin_lock_irqsave(&cpu_base->lock, flags);
1227
1228 if (__hrtimer_hres_active(cpu_base)) {
1229 unsigned int active;
1230
1231 if (!cpu_base->softirq_activated) {
1232 active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT;
1233 expires = __hrtimer_next_event_base(cpu_base, exclude,
1234 active, KTIME_MAX);
1235 }
1236 active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD;
1237 expires = __hrtimer_next_event_base(cpu_base, exclude, active,
1238 expires);
1239 }
1240
1241 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1242
1243 return expires;
1244}
69239749
TL
1245#endif
1246
336a9cde
MZ
1247static inline int hrtimer_clockid_to_base(clockid_t clock_id)
1248{
1249 if (likely(clock_id < MAX_CLOCKS)) {
1250 int base = hrtimer_clock_to_base_table[clock_id];
1251
1252 if (likely(base != HRTIMER_MAX_CLOCK_BASES))
1253 return base;
1254 }
1255 WARN(1, "Invalid clockid %d. Using MONOTONIC\n", clock_id);
1256 return HRTIMER_BASE_MONOTONIC;
1257}
1258
237fc6e7
TG
1259static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1260 enum hrtimer_mode mode)
c0a31329 1261{
42f42da4
AMG
1262 bool softtimer = !!(mode & HRTIMER_MODE_SOFT);
1263 int base = softtimer ? HRTIMER_MAX_CLOCK_BASES / 2 : 0;
3c8aa39d 1264 struct hrtimer_cpu_base *cpu_base;
c0a31329 1265
7978672c
GA
1266 memset(timer, 0, sizeof(struct hrtimer));
1267
22127e93 1268 cpu_base = raw_cpu_ptr(&hrtimer_bases);
c0a31329 1269
48d0c9be
AMG
1270 /*
1271 * POSIX magic: Relative CLOCK_REALTIME timers are not affected by
1272 * clock modifications, so they needs to become CLOCK_MONOTONIC to
1273 * ensure POSIX compliance.
1274 */
1275 if (clock_id == CLOCK_REALTIME && mode & HRTIMER_MODE_REL)
7978672c
GA
1276 clock_id = CLOCK_MONOTONIC;
1277
42f42da4
AMG
1278 base += hrtimer_clockid_to_base(clock_id);
1279 timer->is_soft = softtimer;
e06383db 1280 timer->base = &cpu_base->clock_base[base];
998adc3d 1281 timerqueue_init(&timer->node);
c0a31329 1282}
237fc6e7
TG
1283
1284/**
1285 * hrtimer_init - initialize a timer to the given clock
1286 * @timer: the timer to be initialized
1287 * @clock_id: the clock to be used
42f42da4
AMG
1288 * @mode: The modes which are relevant for intitialization:
1289 * HRTIMER_MODE_ABS, HRTIMER_MODE_REL, HRTIMER_MODE_ABS_SOFT,
1290 * HRTIMER_MODE_REL_SOFT
1291 *
1292 * The PINNED variants of the above can be handed in,
1293 * but the PINNED bit is ignored as pinning happens
1294 * when the hrtimer is started
237fc6e7
TG
1295 */
1296void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1297 enum hrtimer_mode mode)
1298{
c6a2a177 1299 debug_init(timer, clock_id, mode);
237fc6e7
TG
1300 __hrtimer_init(timer, clock_id, mode);
1301}
8d16b764 1302EXPORT_SYMBOL_GPL(hrtimer_init);
c0a31329 1303
887d9dc9
PZ
1304/*
1305 * A timer is active, when it is enqueued into the rbtree or the
1306 * callback function is running or it's in the state of being migrated
1307 * to another cpu.
c0a31329 1308 *
887d9dc9 1309 * It is important for this function to not return a false negative.
c0a31329 1310 */
887d9dc9 1311bool hrtimer_active(const struct hrtimer *timer)
c0a31329 1312{
3f0b9e8e 1313 struct hrtimer_clock_base *base;
887d9dc9 1314 unsigned int seq;
c0a31329 1315
887d9dc9 1316 do {
3f0b9e8e
AMG
1317 base = READ_ONCE(timer->base);
1318 seq = raw_read_seqcount_begin(&base->seq);
c0a31329 1319
887d9dc9 1320 if (timer->state != HRTIMER_STATE_INACTIVE ||
3f0b9e8e 1321 base->running == timer)
887d9dc9
PZ
1322 return true;
1323
3f0b9e8e
AMG
1324 } while (read_seqcount_retry(&base->seq, seq) ||
1325 base != READ_ONCE(timer->base));
887d9dc9
PZ
1326
1327 return false;
c0a31329 1328}
887d9dc9 1329EXPORT_SYMBOL_GPL(hrtimer_active);
c0a31329 1330
887d9dc9
PZ
1331/*
1332 * The write_seqcount_barrier()s in __run_hrtimer() split the thing into 3
1333 * distinct sections:
1334 *
1335 * - queued: the timer is queued
1336 * - callback: the timer is being ran
1337 * - post: the timer is inactive or (re)queued
1338 *
1339 * On the read side we ensure we observe timer->state and cpu_base->running
1340 * from the same section, if anything changed while we looked at it, we retry.
1341 * This includes timer->base changing because sequence numbers alone are
1342 * insufficient for that.
1343 *
1344 * The sequence numbers are required because otherwise we could still observe
1345 * a false negative if the read side got smeared over multiple consequtive
1346 * __run_hrtimer() invocations.
1347 */
1348
21d6d52a
TG
1349static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base,
1350 struct hrtimer_clock_base *base,
dd934aa8
AMG
1351 struct hrtimer *timer, ktime_t *now,
1352 unsigned long flags)
d3d74453 1353{
d3d74453
PZ
1354 enum hrtimer_restart (*fn)(struct hrtimer *);
1355 int restart;
1356
887d9dc9 1357 lockdep_assert_held(&cpu_base->lock);
ca109491 1358
c6a2a177 1359 debug_deactivate(timer);
3f0b9e8e 1360 base->running = timer;
887d9dc9
PZ
1361
1362 /*
1363 * Separate the ->running assignment from the ->state assignment.
1364 *
1365 * As with a regular write barrier, this ensures the read side in
3f0b9e8e 1366 * hrtimer_active() cannot observe base->running == NULL &&
887d9dc9
PZ
1367 * timer->state == INACTIVE.
1368 */
3f0b9e8e 1369 raw_write_seqcount_barrier(&base->seq);
887d9dc9
PZ
1370
1371 __remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, 0);
d3d74453 1372 fn = timer->function;
ca109491 1373
203cbf77
TG
1374 /*
1375 * Clear the 'is relative' flag for the TIME_LOW_RES case. If the
1376 * timer is restarted with a period then it becomes an absolute
1377 * timer. If its not restarted it does not matter.
1378 */
1379 if (IS_ENABLED(CONFIG_TIME_LOW_RES))
1380 timer->is_rel = false;
1381
ca109491 1382 /*
d05ca13b
TG
1383 * The timer is marked as running in the CPU base, so it is
1384 * protected against migration to a different CPU even if the lock
1385 * is dropped.
ca109491 1386 */
dd934aa8 1387 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
c6a2a177 1388 trace_hrtimer_expire_entry(timer, now);
ca109491 1389 restart = fn(timer);
c6a2a177 1390 trace_hrtimer_expire_exit(timer);
dd934aa8 1391 raw_spin_lock_irq(&cpu_base->lock);
d3d74453
PZ
1392
1393 /*
887d9dc9 1394 * Note: We clear the running state after enqueue_hrtimer and
b4d90e9f 1395 * we do not reprogram the event hardware. Happens either in
e3f1d883 1396 * hrtimer_start_range_ns() or in hrtimer_interrupt()
5de2755c
PZ
1397 *
1398 * Note: Because we dropped the cpu_base->lock above,
1399 * hrtimer_start_range_ns() can have popped in and enqueued the timer
1400 * for us already.
d3d74453 1401 */
5de2755c
PZ
1402 if (restart != HRTIMER_NORESTART &&
1403 !(timer->state & HRTIMER_STATE_ENQUEUED))
63e2ed36 1404 enqueue_hrtimer(timer, base, HRTIMER_MODE_ABS);
f13d4f97 1405
887d9dc9
PZ
1406 /*
1407 * Separate the ->running assignment from the ->state assignment.
1408 *
1409 * As with a regular write barrier, this ensures the read side in
3f0b9e8e 1410 * hrtimer_active() cannot observe base->running.timer == NULL &&
887d9dc9
PZ
1411 * timer->state == INACTIVE.
1412 */
3f0b9e8e 1413 raw_write_seqcount_barrier(&base->seq);
f13d4f97 1414
3f0b9e8e
AMG
1415 WARN_ON_ONCE(base->running != timer);
1416 base->running = NULL;
d3d74453
PZ
1417}
1418
dd934aa8 1419static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now,
c458b1d1 1420 unsigned long flags, unsigned int active_mask)
54cdfdb4 1421{
c272ca58 1422 struct hrtimer_clock_base *base;
c458b1d1 1423 unsigned int active = cpu_base->active_bases & active_mask;
6ff7041d 1424
c272ca58 1425 for_each_active_base(base, cpu_base, active) {
998adc3d 1426 struct timerqueue_node *node;
ab8177bc
TG
1427 ktime_t basenow;
1428
54cdfdb4
TG
1429 basenow = ktime_add(now, base->offset);
1430
998adc3d 1431 while ((node = timerqueue_getnext(&base->active))) {
54cdfdb4
TG
1432 struct hrtimer *timer;
1433
998adc3d 1434 timer = container_of(node, struct hrtimer, node);
54cdfdb4 1435
654c8e0b
AV
1436 /*
1437 * The immediate goal for using the softexpires is
1438 * minimizing wakeups, not running timers at the
1439 * earliest interrupt after their soft expiration.
1440 * This allows us to avoid using a Priority Search
1441 * Tree, which can answer a stabbing querry for
1442 * overlapping intervals and instead use the simple
1443 * BST we already have.
1444 * We don't add extra wakeups by delaying timers that
1445 * are right-of a not yet expired timer, because that
1446 * timer will have to trigger a wakeup anyway.
1447 */
2456e855 1448 if (basenow < hrtimer_get_softexpires_tv64(timer))
54cdfdb4 1449 break;
54cdfdb4 1450
dd934aa8 1451 __run_hrtimer(cpu_base, base, timer, &basenow, flags);
54cdfdb4 1452 }
54cdfdb4 1453 }
21d6d52a
TG
1454}
1455
5da70160
AMG
1456static __latent_entropy void hrtimer_run_softirq(struct softirq_action *h)
1457{
1458 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1459 unsigned long flags;
1460 ktime_t now;
1461
1462 raw_spin_lock_irqsave(&cpu_base->lock, flags);
1463
1464 now = hrtimer_update_base(cpu_base);
1465 __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_SOFT);
1466
1467 cpu_base->softirq_activated = 0;
1468 hrtimer_update_softirq_timer(cpu_base, true);
1469
1470 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1471}
1472
21d6d52a
TG
1473#ifdef CONFIG_HIGH_RES_TIMERS
1474
1475/*
1476 * High resolution timer interrupt
1477 * Called with interrupts disabled
1478 */
1479void hrtimer_interrupt(struct clock_event_device *dev)
1480{
1481 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
1482 ktime_t expires_next, now, entry_time, delta;
dd934aa8 1483 unsigned long flags;
21d6d52a
TG
1484 int retries = 0;
1485
1486 BUG_ON(!cpu_base->hres_active);
1487 cpu_base->nr_events++;
2456e855 1488 dev->next_event = KTIME_MAX;
21d6d52a 1489
dd934aa8 1490 raw_spin_lock_irqsave(&cpu_base->lock, flags);
21d6d52a
TG
1491 entry_time = now = hrtimer_update_base(cpu_base);
1492retry:
1493 cpu_base->in_hrtirq = 1;
1494 /*
1495 * We set expires_next to KTIME_MAX here with cpu_base->lock
1496 * held to prevent that a timer is enqueued in our queue via
1497 * the migration code. This does not affect enqueueing of
1498 * timers which run their callback and need to be requeued on
1499 * this CPU.
1500 */
2456e855 1501 cpu_base->expires_next = KTIME_MAX;
21d6d52a 1502
5da70160
AMG
1503 if (!ktime_before(now, cpu_base->softirq_expires_next)) {
1504 cpu_base->softirq_expires_next = KTIME_MAX;
1505 cpu_base->softirq_activated = 1;
1506 raise_softirq_irqoff(HRTIMER_SOFTIRQ);
1507 }
1508
c458b1d1 1509 __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD);
21d6d52a 1510
9bc74919 1511 /* Reevaluate the clock bases for the next expiry */
5da70160 1512 expires_next = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL);
6ff7041d
TG
1513 /*
1514 * Store the new expiry value so the migration code can verify
1515 * against it.
1516 */
54cdfdb4 1517 cpu_base->expires_next = expires_next;
9bc74919 1518 cpu_base->in_hrtirq = 0;
dd934aa8 1519 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
54cdfdb4
TG
1520
1521 /* Reprogramming necessary ? */
d2540875 1522 if (!tick_program_event(expires_next, 0)) {
41d2e494
TG
1523 cpu_base->hang_detected = 0;
1524 return;
54cdfdb4 1525 }
41d2e494
TG
1526
1527 /*
1528 * The next timer was already expired due to:
1529 * - tracing
1530 * - long lasting callbacks
1531 * - being scheduled away when running in a VM
1532 *
1533 * We need to prevent that we loop forever in the hrtimer
1534 * interrupt routine. We give it 3 attempts to avoid
1535 * overreacting on some spurious event.
5baefd6d
JS
1536 *
1537 * Acquire base lock for updating the offsets and retrieving
1538 * the current time.
41d2e494 1539 */
dd934aa8 1540 raw_spin_lock_irqsave(&cpu_base->lock, flags);
5baefd6d 1541 now = hrtimer_update_base(cpu_base);
41d2e494
TG
1542 cpu_base->nr_retries++;
1543 if (++retries < 3)
1544 goto retry;
1545 /*
1546 * Give the system a chance to do something else than looping
1547 * here. We stored the entry time, so we know exactly how long
1548 * we spent here. We schedule the next event this amount of
1549 * time away.
1550 */
1551 cpu_base->nr_hangs++;
1552 cpu_base->hang_detected = 1;
dd934aa8
AMG
1553 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1554
41d2e494 1555 delta = ktime_sub(now, entry_time);
2456e855
TG
1556 if ((unsigned int)delta > cpu_base->max_hang_time)
1557 cpu_base->max_hang_time = (unsigned int) delta;
41d2e494
TG
1558 /*
1559 * Limit it to a sensible value as we enforce a longer
1560 * delay. Give the CPU at least 100ms to catch up.
1561 */
2456e855 1562 if (delta > 100 * NSEC_PER_MSEC)
41d2e494
TG
1563 expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
1564 else
1565 expires_next = ktime_add(now, delta);
1566 tick_program_event(expires_next, 1);
7a6e5537 1567 pr_warn_once("hrtimer: interrupt took %llu ns\n", ktime_to_ns(delta));
54cdfdb4
TG
1568}
1569
016da201 1570/* called with interrupts disabled */
c6eb3f70 1571static inline void __hrtimer_peek_ahead_timers(void)
8bdec955
TG
1572{
1573 struct tick_device *td;
1574
1575 if (!hrtimer_hres_active())
1576 return;
1577
22127e93 1578 td = this_cpu_ptr(&tick_cpu_device);
8bdec955
TG
1579 if (td && td->evtdev)
1580 hrtimer_interrupt(td->evtdev);
1581}
1582
82c5b7b5
IM
1583#else /* CONFIG_HIGH_RES_TIMERS */
1584
1585static inline void __hrtimer_peek_ahead_timers(void) { }
1586
1587#endif /* !CONFIG_HIGH_RES_TIMERS */
82f67cd9 1588
d3d74453 1589/*
c6eb3f70 1590 * Called from run_local_timers in hardirq context every jiffy
d3d74453 1591 */
833883d9 1592void hrtimer_run_queues(void)
d3d74453 1593{
dc5df73b 1594 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases);
dd934aa8 1595 unsigned long flags;
21d6d52a 1596 ktime_t now;
c0a31329 1597
e19ffe8b 1598 if (__hrtimer_hres_active(cpu_base))
d3d74453 1599 return;
54cdfdb4 1600
d3d74453 1601 /*
c6eb3f70
TG
1602 * This _is_ ugly: We have to check periodically, whether we
1603 * can switch to highres and / or nohz mode. The clocksource
1604 * switch happens with xtime_lock held. Notification from
1605 * there only sets the check bit in the tick_oneshot code,
1606 * otherwise we might deadlock vs. xtime_lock.
d3d74453 1607 */
c6eb3f70 1608 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) {
d3d74453 1609 hrtimer_switch_to_hres();
3055adda 1610 return;
833883d9 1611 }
c6eb3f70 1612
dd934aa8 1613 raw_spin_lock_irqsave(&cpu_base->lock, flags);
21d6d52a 1614 now = hrtimer_update_base(cpu_base);
5da70160
AMG
1615
1616 if (!ktime_before(now, cpu_base->softirq_expires_next)) {
1617 cpu_base->softirq_expires_next = KTIME_MAX;
1618 cpu_base->softirq_activated = 1;
1619 raise_softirq_irqoff(HRTIMER_SOFTIRQ);
1620 }
1621
c458b1d1 1622 __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD);
dd934aa8 1623 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
c0a31329
TG
1624}
1625
10c94ec1
TG
1626/*
1627 * Sleep related functions:
1628 */
c9cb2e3d 1629static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
00362e33
TG
1630{
1631 struct hrtimer_sleeper *t =
1632 container_of(timer, struct hrtimer_sleeper, timer);
1633 struct task_struct *task = t->task;
1634
1635 t->task = NULL;
1636 if (task)
1637 wake_up_process(task);
1638
1639 return HRTIMER_NORESTART;
1640}
1641
36c8b586 1642void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
00362e33
TG
1643{
1644 sl->timer.function = hrtimer_wakeup;
1645 sl->task = task;
1646}
2bc481cf 1647EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
00362e33 1648
c0edd7c9 1649int nanosleep_copyout(struct restart_block *restart, struct timespec64 *ts)
ce41aaf4
AV
1650{
1651 switch(restart->nanosleep.type) {
0fe27955 1652#ifdef CONFIG_COMPAT_32BIT_TIME
ce41aaf4 1653 case TT_COMPAT:
9afc5eee 1654 if (put_old_timespec32(ts, restart->nanosleep.compat_rmtp))
ce41aaf4
AV
1655 return -EFAULT;
1656 break;
1657#endif
1658 case TT_NATIVE:
c0edd7c9 1659 if (put_timespec64(ts, restart->nanosleep.rmtp))
ce41aaf4
AV
1660 return -EFAULT;
1661 break;
1662 default:
1663 BUG();
1664 }
1665 return -ERESTART_RESTARTBLOCK;
1666}
1667
669d7868 1668static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
432569bb 1669{
edbeda46
AV
1670 struct restart_block *restart;
1671
669d7868 1672 hrtimer_init_sleeper(t, current);
10c94ec1 1673
432569bb
RZ
1674 do {
1675 set_current_state(TASK_INTERRUPTIBLE);
cc584b21 1676 hrtimer_start_expires(&t->timer, mode);
432569bb 1677
54cdfdb4 1678 if (likely(t->task))
b0f8c44f 1679 freezable_schedule();
432569bb 1680
669d7868 1681 hrtimer_cancel(&t->timer);
c9cb2e3d 1682 mode = HRTIMER_MODE_ABS;
669d7868
TG
1683
1684 } while (t->task && !signal_pending(current));
432569bb 1685
3588a085
PZ
1686 __set_current_state(TASK_RUNNING);
1687
a7602681 1688 if (!t->task)
080344b9 1689 return 0;
080344b9 1690
edbeda46
AV
1691 restart = &current->restart_block;
1692 if (restart->nanosleep.type != TT_NONE) {
a7602681 1693 ktime_t rem = hrtimer_expires_remaining(&t->timer);
c0edd7c9 1694 struct timespec64 rmt;
edbeda46 1695
a7602681
AV
1696 if (rem <= 0)
1697 return 0;
c0edd7c9 1698 rmt = ktime_to_timespec64(rem);
a7602681 1699
ce41aaf4 1700 return nanosleep_copyout(restart, &rmt);
a7602681
AV
1701 }
1702 return -ERESTART_RESTARTBLOCK;
080344b9
ON
1703}
1704
fb923c4a 1705static long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
10c94ec1 1706{
669d7868 1707 struct hrtimer_sleeper t;
a7602681 1708 int ret;
10c94ec1 1709
ab8177bc 1710 hrtimer_init_on_stack(&t.timer, restart->nanosleep.clockid,
237fc6e7 1711 HRTIMER_MODE_ABS);
cc584b21 1712 hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
10c94ec1 1713
a7602681 1714 ret = do_nanosleep(&t, HRTIMER_MODE_ABS);
237fc6e7
TG
1715 destroy_hrtimer_on_stack(&t.timer);
1716 return ret;
10c94ec1
TG
1717}
1718
938e7cf2 1719long hrtimer_nanosleep(const struct timespec64 *rqtp,
10c94ec1
TG
1720 const enum hrtimer_mode mode, const clockid_t clockid)
1721{
a7602681 1722 struct restart_block *restart;
669d7868 1723 struct hrtimer_sleeper t;
237fc6e7 1724 int ret = 0;
da8b44d5 1725 u64 slack;
3bd01206
AV
1726
1727 slack = current->timer_slack_ns;
aab03e05 1728 if (dl_task(current) || rt_task(current))
3bd01206 1729 slack = 0;
10c94ec1 1730
237fc6e7 1731 hrtimer_init_on_stack(&t.timer, clockid, mode);
ad196384 1732 hrtimer_set_expires_range_ns(&t.timer, timespec64_to_ktime(*rqtp), slack);
a7602681
AV
1733 ret = do_nanosleep(&t, mode);
1734 if (ret != -ERESTART_RESTARTBLOCK)
237fc6e7 1735 goto out;
10c94ec1 1736
7978672c 1737 /* Absolute timers do not update the rmtp value and restart: */
237fc6e7
TG
1738 if (mode == HRTIMER_MODE_ABS) {
1739 ret = -ERESTARTNOHAND;
1740 goto out;
1741 }
10c94ec1 1742
a7602681 1743 restart = &current->restart_block;
1711ef38 1744 restart->fn = hrtimer_nanosleep_restart;
ab8177bc 1745 restart->nanosleep.clockid = t.timer.base->clockid;
cc584b21 1746 restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
237fc6e7
TG
1747out:
1748 destroy_hrtimer_on_stack(&t.timer);
1749 return ret;
10c94ec1
TG
1750}
1751
01909974
DD
1752#if !defined(CONFIG_64BIT_TIME) || defined(CONFIG_64BIT)
1753
1754SYSCALL_DEFINE2(nanosleep, struct __kernel_timespec __user *, rqtp,
1755 struct __kernel_timespec __user *, rmtp)
6ba1b912 1756{
c0edd7c9 1757 struct timespec64 tu;
6ba1b912 1758
c0edd7c9 1759 if (get_timespec64(&tu, rqtp))
6ba1b912
TG
1760 return -EFAULT;
1761
c0edd7c9 1762 if (!timespec64_valid(&tu))
6ba1b912
TG
1763 return -EINVAL;
1764
edbeda46 1765 current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE;
192a82f9 1766 current->restart_block.nanosleep.rmtp = rmtp;
c0edd7c9 1767 return hrtimer_nanosleep(&tu, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
6ba1b912
TG
1768}
1769
01909974
DD
1770#endif
1771
b5793b0d 1772#ifdef CONFIG_COMPAT_32BIT_TIME
edbeda46 1773
8dabe724 1774SYSCALL_DEFINE2(nanosleep_time32, struct old_timespec32 __user *, rqtp,
9afc5eee 1775 struct old_timespec32 __user *, rmtp)
edbeda46 1776{
c0edd7c9 1777 struct timespec64 tu;
edbeda46 1778
9afc5eee 1779 if (get_old_timespec32(&tu, rqtp))
edbeda46
AV
1780 return -EFAULT;
1781
c0edd7c9 1782 if (!timespec64_valid(&tu))
edbeda46
AV
1783 return -EINVAL;
1784
1785 current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE;
1786 current->restart_block.nanosleep.compat_rmtp = rmtp;
c0edd7c9 1787 return hrtimer_nanosleep(&tu, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
edbeda46
AV
1788}
1789#endif
1790
c0a31329
TG
1791/*
1792 * Functions related to boot-time initialization:
1793 */
27590dc1 1794int hrtimers_prepare_cpu(unsigned int cpu)
c0a31329 1795{
3c8aa39d 1796 struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
c0a31329
TG
1797 int i;
1798
998adc3d 1799 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
3c8aa39d 1800 cpu_base->clock_base[i].cpu_base = cpu_base;
998adc3d
JS
1801 timerqueue_init_head(&cpu_base->clock_base[i].active);
1802 }
3c8aa39d 1803
cddd0248 1804 cpu_base->cpu = cpu;
303c146d 1805 cpu_base->active_bases = 0;
28bfd18b 1806 cpu_base->hres_active = 0;
303c146d
TG
1807 cpu_base->hang_detected = 0;
1808 cpu_base->next_timer = NULL;
1809 cpu_base->softirq_next_timer = NULL;
07a9a7ea 1810 cpu_base->expires_next = KTIME_MAX;
5da70160 1811 cpu_base->softirq_expires_next = KTIME_MAX;
27590dc1 1812 return 0;
c0a31329
TG
1813}
1814
1815#ifdef CONFIG_HOTPLUG_CPU
1816
ca109491 1817static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
37810659 1818 struct hrtimer_clock_base *new_base)
c0a31329
TG
1819{
1820 struct hrtimer *timer;
998adc3d 1821 struct timerqueue_node *node;
c0a31329 1822
998adc3d
JS
1823 while ((node = timerqueue_getnext(&old_base->active))) {
1824 timer = container_of(node, struct hrtimer, node);
54cdfdb4 1825 BUG_ON(hrtimer_callback_running(timer));
c6a2a177 1826 debug_deactivate(timer);
b00c1a99
TG
1827
1828 /*
c04dca02 1829 * Mark it as ENQUEUED not INACTIVE otherwise the
b00c1a99
TG
1830 * timer could be seen as !active and just vanish away
1831 * under us on another CPU
1832 */
c04dca02 1833 __remove_hrtimer(timer, old_base, HRTIMER_STATE_ENQUEUED, 0);
c0a31329 1834 timer->base = new_base;
54cdfdb4 1835 /*
e3f1d883
TG
1836 * Enqueue the timers on the new cpu. This does not
1837 * reprogram the event device in case the timer
1838 * expires before the earliest on this CPU, but we run
1839 * hrtimer_interrupt after we migrated everything to
1840 * sort out already expired timers and reprogram the
1841 * event device.
54cdfdb4 1842 */
63e2ed36 1843 enqueue_hrtimer(timer, new_base, HRTIMER_MODE_ABS);
c0a31329
TG
1844 }
1845}
1846
27590dc1 1847int hrtimers_dead_cpu(unsigned int scpu)
c0a31329 1848{
3c8aa39d 1849 struct hrtimer_cpu_base *old_base, *new_base;
731a55ba 1850 int i;
c0a31329 1851
37810659 1852 BUG_ON(cpu_online(scpu));
37810659 1853 tick_cancel_sched_timer(scpu);
731a55ba 1854
5da70160
AMG
1855 /*
1856 * this BH disable ensures that raise_softirq_irqoff() does
1857 * not wakeup ksoftirqd (and acquire the pi-lock) while
1858 * holding the cpu_base lock
1859 */
1860 local_bh_disable();
731a55ba
TG
1861 local_irq_disable();
1862 old_base = &per_cpu(hrtimer_bases, scpu);
dc5df73b 1863 new_base = this_cpu_ptr(&hrtimer_bases);
d82f0b0f
ON
1864 /*
1865 * The caller is globally serialized and nobody else
1866 * takes two locks at once, deadlock is not possible.
1867 */
ecb49d1a
TG
1868 raw_spin_lock(&new_base->lock);
1869 raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
c0a31329 1870
3c8aa39d 1871 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
ca109491 1872 migrate_hrtimer_list(&old_base->clock_base[i],
37810659 1873 &new_base->clock_base[i]);
c0a31329
TG
1874 }
1875
5da70160
AMG
1876 /*
1877 * The migration might have changed the first expiring softirq
1878 * timer on this CPU. Update it.
1879 */
1880 hrtimer_update_softirq_timer(new_base, false);
1881
ecb49d1a
TG
1882 raw_spin_unlock(&old_base->lock);
1883 raw_spin_unlock(&new_base->lock);
37810659 1884
731a55ba
TG
1885 /* Check, if we got expired work to do */
1886 __hrtimer_peek_ahead_timers();
1887 local_irq_enable();
5da70160 1888 local_bh_enable();
27590dc1 1889 return 0;
c0a31329 1890}
37810659 1891
c0a31329
TG
1892#endif /* CONFIG_HOTPLUG_CPU */
1893
c0a31329
TG
1894void __init hrtimers_init(void)
1895{
27590dc1 1896 hrtimers_prepare_cpu(smp_processor_id());
5da70160 1897 open_softirq(HRTIMER_SOFTIRQ, hrtimer_run_softirq);
c0a31329
TG
1898}
1899
7bb67439 1900/**
351b3f7a 1901 * schedule_hrtimeout_range_clock - sleep until timeout
7bb67439 1902 * @expires: timeout value (ktime_t)
654c8e0b 1903 * @delta: slack in expires timeout (ktime_t)
90777713
AMG
1904 * @mode: timer mode
1905 * @clock_id: timer clock to be used
7bb67439 1906 */
351b3f7a 1907int __sched
da8b44d5 1908schedule_hrtimeout_range_clock(ktime_t *expires, u64 delta,
90777713 1909 const enum hrtimer_mode mode, clockid_t clock_id)
7bb67439
AV
1910{
1911 struct hrtimer_sleeper t;
1912
1913 /*
1914 * Optimize when a zero timeout value is given. It does not
1915 * matter whether this is an absolute or a relative time.
1916 */
2456e855 1917 if (expires && *expires == 0) {
7bb67439
AV
1918 __set_current_state(TASK_RUNNING);
1919 return 0;
1920 }
1921
1922 /*
43b21013 1923 * A NULL parameter means "infinite"
7bb67439
AV
1924 */
1925 if (!expires) {
1926 schedule();
7bb67439
AV
1927 return -EINTR;
1928 }
1929
90777713 1930 hrtimer_init_on_stack(&t.timer, clock_id, mode);
654c8e0b 1931 hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
7bb67439
AV
1932
1933 hrtimer_init_sleeper(&t, current);
1934
cc584b21 1935 hrtimer_start_expires(&t.timer, mode);
7bb67439
AV
1936
1937 if (likely(t.task))
1938 schedule();
1939
1940 hrtimer_cancel(&t.timer);
1941 destroy_hrtimer_on_stack(&t.timer);
1942
1943 __set_current_state(TASK_RUNNING);
1944
1945 return !t.task ? 0 : -EINTR;
1946}
351b3f7a
CE
1947
1948/**
1949 * schedule_hrtimeout_range - sleep until timeout
1950 * @expires: timeout value (ktime_t)
1951 * @delta: slack in expires timeout (ktime_t)
90777713 1952 * @mode: timer mode
351b3f7a
CE
1953 *
1954 * Make the current task sleep until the given expiry time has
1955 * elapsed. The routine will return immediately unless
1956 * the current task state has been set (see set_current_state()).
1957 *
1958 * The @delta argument gives the kernel the freedom to schedule the
1959 * actual wakeup to a time that is both power and performance friendly.
1960 * The kernel give the normal best effort behavior for "@expires+@delta",
1961 * but may decide to fire the timer earlier, but no earlier than @expires.
1962 *
1963 * You can set the task state as follows -
1964 *
1965 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
4b7e9cf9
DA
1966 * pass before the routine returns unless the current task is explicitly
1967 * woken up, (e.g. by wake_up_process()).
351b3f7a
CE
1968 *
1969 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
4b7e9cf9
DA
1970 * delivered to the current task or the current task is explicitly woken
1971 * up.
351b3f7a
CE
1972 *
1973 * The current task state is guaranteed to be TASK_RUNNING when this
1974 * routine returns.
1975 *
4b7e9cf9
DA
1976 * Returns 0 when the timer has expired. If the task was woken before the
1977 * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
1978 * by an explicit wakeup, it returns -EINTR.
351b3f7a 1979 */
da8b44d5 1980int __sched schedule_hrtimeout_range(ktime_t *expires, u64 delta,
351b3f7a
CE
1981 const enum hrtimer_mode mode)
1982{
1983 return schedule_hrtimeout_range_clock(expires, delta, mode,
1984 CLOCK_MONOTONIC);
1985}
654c8e0b
AV
1986EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
1987
1988/**
1989 * schedule_hrtimeout - sleep until timeout
1990 * @expires: timeout value (ktime_t)
90777713 1991 * @mode: timer mode
654c8e0b
AV
1992 *
1993 * Make the current task sleep until the given expiry time has
1994 * elapsed. The routine will return immediately unless
1995 * the current task state has been set (see set_current_state()).
1996 *
1997 * You can set the task state as follows -
1998 *
1999 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
4b7e9cf9
DA
2000 * pass before the routine returns unless the current task is explicitly
2001 * woken up, (e.g. by wake_up_process()).
654c8e0b
AV
2002 *
2003 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
4b7e9cf9
DA
2004 * delivered to the current task or the current task is explicitly woken
2005 * up.
654c8e0b
AV
2006 *
2007 * The current task state is guaranteed to be TASK_RUNNING when this
2008 * routine returns.
2009 *
4b7e9cf9
DA
2010 * Returns 0 when the timer has expired. If the task was woken before the
2011 * timer expired by a signal (only possible in state TASK_INTERRUPTIBLE) or
2012 * by an explicit wakeup, it returns -EINTR.
654c8e0b
AV
2013 */
2014int __sched schedule_hrtimeout(ktime_t *expires,
2015 const enum hrtimer_mode mode)
2016{
2017 return schedule_hrtimeout_range(expires, 0, mode);
2018}
7bb67439 2019EXPORT_SYMBOL_GPL(schedule_hrtimeout);