]> git.ipfire.org Git - thirdparty/linux.git/blame - kernel/time/posix-timers.c
Merge tag 'mips_5.3' of git://git.kernel.org/pub/scm/linux/kernel/git/mips/linux
[thirdparty/linux.git] / kernel / time / posix-timers.c
CommitLineData
35728b82 1// SPDX-License-Identifier: GPL-2.0+
1da177e4 2/*
1da177e4
LT
3 * 2002-10-15 Posix Clocks & timers
4 * by George Anzinger george@mvista.com
1da177e4
LT
5 * Copyright (C) 2002 2003 by MontaVista Software.
6 *
7 * 2004-06-01 Fix CLOCK_REALTIME clock/timer TIMER_ABSTIME bug.
8 * Copyright (C) 2004 Boris Hu
9 *
0141de74 10 * These are all the functions necessary to implement POSIX clocks & timers
1da177e4
LT
11 */
12#include <linux/mm.h>
1da177e4
LT
13#include <linux/interrupt.h>
14#include <linux/slab.h>
15#include <linux/time.h>
97d1f15b 16#include <linux/mutex.h>
61855b6b 17#include <linux/sched/task.h>
1da177e4 18
7c0f6ba6 19#include <linux/uaccess.h>
1da177e4
LT
20#include <linux/list.h>
21#include <linux/init.h>
22#include <linux/compiler.h>
5ed67f05 23#include <linux/hash.h>
0606f422 24#include <linux/posix-clock.h>
1da177e4
LT
25#include <linux/posix-timers.h>
26#include <linux/syscalls.h>
27#include <linux/wait.h>
28#include <linux/workqueue.h>
9984de1a 29#include <linux/export.h>
5ed67f05 30#include <linux/hashtable.h>
edbeda46 31#include <linux/compat.h>
19b558db 32#include <linux/nospec.h>
1da177e4 33
8b094cd0 34#include "timekeeping.h"
bab0aae9 35#include "posix-timers.h"
8b094cd0 36
1da177e4 37/*
5ed67f05
PE
38 * Management arrays for POSIX timers. Timers are now kept in static hash table
39 * with 512 entries.
40 * Timer ids are allocated by local routine, which selects proper hash head by
41 * key, constructed from current->signal address and per signal struct counter.
42 * This keeps timer ids unique per process, but now they can intersect between
43 * processes.
1da177e4
LT
44 */
45
46/*
47 * Lets keep our timers in a slab cache :-)
48 */
e18b890b 49static struct kmem_cache *posix_timers_cache;
5ed67f05
PE
50
51static DEFINE_HASHTABLE(posix_timers_hashtable, 9);
52static DEFINE_SPINLOCK(hash_lock);
1da177e4 53
6631fa12
TG
54static const struct k_clock * const posix_clocks[];
55static const struct k_clock *clockid_to_kclock(const clockid_t id);
67edab48 56static const struct k_clock clock_realtime, clock_monotonic;
6631fa12 57
1da177e4
LT
58/*
59 * we assume that the new SIGEV_THREAD_ID shares no bits with the other
60 * SIGEV values. Here we put out an error if this assumption fails.
61 */
62#if SIGEV_THREAD_ID != (SIGEV_THREAD_ID & \
63 ~(SIGEV_SIGNAL | SIGEV_NONE | SIGEV_THREAD))
64#error "SIGEV_THREAD_ID must not share bit with other SIGEV values!"
65#endif
66
1da177e4
LT
67/*
68 * The timer ID is turned into a timer address by idr_find().
69 * Verifying a valid ID consists of:
70 *
71 * a) checking that idr_find() returns other than -1.
72 * b) checking that the timer id matches the one in the timer itself.
73 * c) that the timer owner is in the callers thread group.
74 */
75
76/*
77 * CLOCKs: The POSIX standard calls for a couple of clocks and allows us
78 * to implement others. This structure defines the various
0061748d 79 * clocks.
1da177e4
LT
80 *
81 * RESOLUTION: Clock resolution is used to round up timer and interval
82 * times, NOT to report clock times, which are reported with as
83 * much resolution as the system can muster. In some cases this
84 * resolution may depend on the underlying clock hardware and
85 * may not be quantifiable until run time, and only then is the
86 * necessary code is written. The standard says we should say
87 * something about this issue in the documentation...
88 *
0061748d
RC
89 * FUNCTIONS: The CLOCKs structure defines possible functions to
90 * handle various clock functions.
1da177e4 91 *
0061748d
RC
92 * The standard POSIX timer management code assumes the
93 * following: 1.) The k_itimer struct (sched.h) is used for
94 * the timer. 2.) The list, it_lock, it_clock, it_id and
95 * it_pid fields are not modified by timer code.
1da177e4
LT
96 *
97 * Permissions: It is assumed that the clock_settime() function defined
98 * for each clock will take care of permission checks. Some
99 * clocks may be set able by any user (i.e. local process
100 * clocks) others not. Currently the only set able clock we
101 * have is CLOCK_REALTIME and its high res counter part, both of
102 * which we beg off on and pass to do_sys_settimeofday().
103 */
20f33a03
NK
104static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags);
105
106#define lock_timer(tid, flags) \
107({ struct k_itimer *__timr; \
108 __cond_lock(&__timr->it_lock, __timr = __lock_timer(tid, flags)); \
109 __timr; \
110})
1da177e4 111
5ed67f05
PE
112static int hash(struct signal_struct *sig, unsigned int nr)
113{
114 return hash_32(hash32_ptr(sig) ^ nr, HASH_BITS(posix_timers_hashtable));
115}
116
117static struct k_itimer *__posix_timers_find(struct hlist_head *head,
118 struct signal_struct *sig,
119 timer_t id)
120{
5ed67f05
PE
121 struct k_itimer *timer;
122
123 hlist_for_each_entry_rcu(timer, head, t_hash) {
124 if ((timer->it_signal == sig) && (timer->it_id == id))
125 return timer;
126 }
127 return NULL;
128}
129
130static struct k_itimer *posix_timer_by_id(timer_t id)
131{
132 struct signal_struct *sig = current->signal;
133 struct hlist_head *head = &posix_timers_hashtable[hash(sig, id)];
134
135 return __posix_timers_find(head, sig, id);
136}
137
138static int posix_timer_add(struct k_itimer *timer)
139{
140 struct signal_struct *sig = current->signal;
141 int first_free_id = sig->posix_timer_id;
142 struct hlist_head *head;
143 int ret = -ENOENT;
144
145 do {
146 spin_lock(&hash_lock);
147 head = &posix_timers_hashtable[hash(sig, sig->posix_timer_id)];
148 if (!__posix_timers_find(head, sig, sig->posix_timer_id)) {
149 hlist_add_head_rcu(&timer->t_hash, head);
150 ret = sig->posix_timer_id;
151 }
152 if (++sig->posix_timer_id < 0)
153 sig->posix_timer_id = 0;
154 if ((sig->posix_timer_id == first_free_id) && (ret == -ENOENT))
155 /* Loop over all possible ids completed */
156 ret = -EAGAIN;
157 spin_unlock(&hash_lock);
158 } while (ret == -ENOENT);
159 return ret;
160}
161
1da177e4
LT
162static inline void unlock_timer(struct k_itimer *timr, unsigned long flags)
163{
164 spin_unlock_irqrestore(&timr->it_lock, flags);
165}
166
42285777 167/* Get clock_realtime */
3c9c12f4 168static int posix_clock_realtime_get(clockid_t which_clock, struct timespec64 *tp)
42285777 169{
3c9c12f4 170 ktime_get_real_ts64(tp);
42285777
TG
171 return 0;
172}
173
26f9a479
TG
174/* Set clock_realtime */
175static int posix_clock_realtime_set(const clockid_t which_clock,
0fe6afe3 176 const struct timespec64 *tp)
26f9a479 177{
0fe6afe3 178 return do_sys_settimeofday64(tp, NULL);
26f9a479
TG
179}
180
f1f1d5eb 181static int posix_clock_realtime_adj(const clockid_t which_clock,
ead25417 182 struct __kernel_timex *t)
f1f1d5eb
RC
183{
184 return do_adjtimex(t);
185}
186
becf8b5d
TG
187/*
188 * Get monotonic time for posix timers
189 */
3c9c12f4 190static int posix_ktime_get_ts(clockid_t which_clock, struct timespec64 *tp)
becf8b5d 191{
3c9c12f4 192 ktime_get_ts64(tp);
becf8b5d
TG
193 return 0;
194}
1da177e4 195
2d42244a 196/*
7fdd7f89 197 * Get monotonic-raw time for posix timers
2d42244a 198 */
3c9c12f4 199static int posix_get_monotonic_raw(clockid_t which_clock, struct timespec64 *tp)
2d42244a 200{
58a10456 201 ktime_get_raw_ts64(tp);
2d42244a
JS
202 return 0;
203}
204
da15cfda 205
3c9c12f4 206static int posix_get_realtime_coarse(clockid_t which_clock, struct timespec64 *tp)
da15cfda 207{
58a10456 208 ktime_get_coarse_real_ts64(tp);
da15cfda
JS
209 return 0;
210}
211
212static int posix_get_monotonic_coarse(clockid_t which_clock,
3c9c12f4 213 struct timespec64 *tp)
da15cfda 214{
58a10456 215 ktime_get_coarse_ts64(tp);
da15cfda
JS
216 return 0;
217}
218
d2e3e0ca 219static int posix_get_coarse_res(const clockid_t which_clock, struct timespec64 *tp)
da15cfda 220{
d2e3e0ca 221 *tp = ktime_to_timespec64(KTIME_LOW_RES);
da15cfda
JS
222 return 0;
223}
7fdd7f89 224
a3ed0e43 225static int posix_get_boottime(const clockid_t which_clock, struct timespec64 *tp)
7fdd7f89 226{
58a10456 227 ktime_get_boottime_ts64(tp);
7fdd7f89
JS
228 return 0;
229}
230
a3ed0e43 231static int posix_get_tai(clockid_t which_clock, struct timespec64 *tp)
1ff3c967 232{
58a10456 233 ktime_get_clocktai_ts64(tp);
1ff3c967
JS
234 return 0;
235}
7fdd7f89 236
d2e3e0ca 237static int posix_get_hrtimer_res(clockid_t which_clock, struct timespec64 *tp)
056a3cac
TG
238{
239 tp->tv_sec = 0;
240 tp->tv_nsec = hrtimer_resolution;
241 return 0;
242}
243
1da177e4
LT
244/*
245 * Initialize everything, well, just everything in Posix clocks/timers ;)
246 */
247static __init int init_posix_timers(void)
248{
1da177e4 249 posix_timers_cache = kmem_cache_create("posix_timers_cache",
040b5c6f
AD
250 sizeof (struct k_itimer), 0, SLAB_PANIC,
251 NULL);
1da177e4
LT
252 return 0;
253}
1da177e4
LT
254__initcall(init_posix_timers);
255
78c9c4df
TG
256/*
257 * The siginfo si_overrun field and the return value of timer_getoverrun(2)
258 * are of type int. Clamp the overrun value to INT_MAX
259 */
260static inline int timer_overrun_to_int(struct k_itimer *timr, int baseval)
261{
262 s64 sum = timr->it_overrun_last + (s64)baseval;
263
264 return sum > (s64)INT_MAX ? INT_MAX : (int)sum;
265}
266
f37fb0aa 267static void common_hrtimer_rearm(struct k_itimer *timr)
1da177e4 268{
44f21475
RZ
269 struct hrtimer *timer = &timr->it.real.timer;
270
78c9c4df
TG
271 timr->it_overrun += hrtimer_forward(timer, timer->base->get_time(),
272 timr->it_interval);
44f21475 273 hrtimer_restart(timer);
1da177e4
LT
274}
275
276/*
277 * This function is exported for use by the signal deliver code. It is
278 * called just prior to the info block being released and passes that
279 * block to us. It's function is to update the overrun entry AND to
280 * restart the timer. It should only be called if the timer is to be
281 * restarted (i.e. we have flagged this in the sys_private entry of the
282 * info block).
283 *
25985edc 284 * To protect against the timer going away while the interrupt is queued,
1da177e4
LT
285 * we require that the it_requeue_pending flag be set.
286 */
ae7795bc 287void posixtimer_rearm(struct kernel_siginfo *info)
1da177e4
LT
288{
289 struct k_itimer *timr;
290 unsigned long flags;
291
292 timr = lock_timer(info->si_tid, &flags);
af888d67
TG
293 if (!timr)
294 return;
1da177e4 295
0e334db6 296 if (timr->it_interval && timr->it_requeue_pending == info->si_sys_private) {
f37fb0aa 297 timr->kclock->timer_rearm(timr);
1da177e4 298
21e55c1f 299 timr->it_active = 1;
af888d67 300 timr->it_overrun_last = timr->it_overrun;
78c9c4df 301 timr->it_overrun = -1LL;
af888d67
TG
302 ++timr->it_requeue_pending;
303
78c9c4df 304 info->si_overrun = timer_overrun_to_int(timr, info->si_overrun);
becf8b5d
TG
305 }
306
af888d67 307 unlock_timer(timr, flags);
1da177e4
LT
308}
309
ba661292 310int posix_timer_event(struct k_itimer *timr, int si_private)
1da177e4 311{
24122c7f
EB
312 enum pid_type type;
313 int ret = -1;
ba661292
ON
314 /*
315 * FIXME: if ->sigq is queued we can race with
96fe3b07 316 * dequeue_signal()->posixtimer_rearm().
ba661292
ON
317 *
318 * If dequeue_signal() sees the "right" value of
96fe3b07 319 * si_sys_private it calls posixtimer_rearm().
ba661292 320 * We re-queue ->sigq and drop ->it_lock().
96fe3b07 321 * posixtimer_rearm() locks the timer
ba661292
ON
322 * and re-schedules it while ->sigq is pending.
323 * Not really bad, but not that we want.
324 */
1da177e4 325 timr->sigq->info.si_sys_private = si_private;
1da177e4 326
24122c7f
EB
327 type = !(timr->it_sigev_notify & SIGEV_THREAD_ID) ? PIDTYPE_TGID : PIDTYPE_PID;
328 ret = send_sigqueue(timr->sigq, timr->it_pid, type);
4aa73611
ON
329 /* If we failed to send the signal the timer stops. */
330 return ret > 0;
1da177e4 331}
1da177e4
LT
332
333/*
334 * This function gets called when a POSIX.1b interval timer expires. It
335 * is used as a callback from the kernel internal timer. The
336 * run_timer_list code ALWAYS calls with interrupts on.
337
338 * This code is for CLOCK_REALTIME* and CLOCK_MONOTONIC* timers.
339 */
c9cb2e3d 340static enum hrtimer_restart posix_timer_fn(struct hrtimer *timer)
1da177e4 341{
05cfb614 342 struct k_itimer *timr;
1da177e4 343 unsigned long flags;
becf8b5d 344 int si_private = 0;
c9cb2e3d 345 enum hrtimer_restart ret = HRTIMER_NORESTART;
1da177e4 346
05cfb614 347 timr = container_of(timer, struct k_itimer, it.real.timer);
1da177e4 348 spin_lock_irqsave(&timr->it_lock, flags);
1da177e4 349
21e55c1f 350 timr->it_active = 0;
80105cd0 351 if (timr->it_interval != 0)
becf8b5d 352 si_private = ++timr->it_requeue_pending;
1da177e4 353
becf8b5d
TG
354 if (posix_timer_event(timr, si_private)) {
355 /*
356 * signal was not sent because of sig_ignor
357 * we will not get a call back to restart it AND
358 * it should be restarted.
359 */
80105cd0 360 if (timr->it_interval != 0) {
58229a18
TG
361 ktime_t now = hrtimer_cb_get_time(timer);
362
363 /*
364 * FIXME: What we really want, is to stop this
365 * timer completely and restart it in case the
366 * SIG_IGN is removed. This is a non trivial
367 * change which involves sighand locking
368 * (sigh !), which we don't want to do late in
369 * the release cycle.
370 *
371 * For now we just let timers with an interval
372 * less than a jiffie expire every jiffie to
373 * avoid softirq starvation in case of SIG_IGN
374 * and a very small interval, which would put
375 * the timer right back on the softirq pending
376 * list. By moving now ahead of time we trick
377 * hrtimer_forward() to expire the timer
378 * later, while we still maintain the overrun
379 * accuracy, but have some inconsistency in
380 * the timer_gettime() case. This is at least
381 * better than a starved softirq. A more
382 * complex fix which solves also another related
383 * inconsistency is already in the pipeline.
384 */
385#ifdef CONFIG_HIGH_RES_TIMERS
386 {
8b0e1953 387 ktime_t kj = NSEC_PER_SEC / HZ;
58229a18 388
80105cd0 389 if (timr->it_interval < kj)
58229a18
TG
390 now = ktime_add(now, kj);
391 }
392#endif
78c9c4df
TG
393 timr->it_overrun += hrtimer_forward(timer, now,
394 timr->it_interval);
becf8b5d 395 ret = HRTIMER_RESTART;
a0a0c28c 396 ++timr->it_requeue_pending;
21e55c1f 397 timr->it_active = 1;
1da177e4 398 }
1da177e4 399 }
1da177e4 400
becf8b5d
TG
401 unlock_timer(timr, flags);
402 return ret;
403}
1da177e4 404
27af4245 405static struct pid *good_sigevent(sigevent_t * event)
1da177e4 406{
2118e1f5
EB
407 struct pid *pid = task_tgid(current);
408 struct task_struct *rtn;
1da177e4 409
cef31d9a
TG
410 switch (event->sigev_notify) {
411 case SIGEV_SIGNAL | SIGEV_THREAD_ID:
2118e1f5
EB
412 pid = find_vpid(event->sigev_notify_thread_id);
413 rtn = pid_task(pid, PIDTYPE_PID);
cef31d9a
TG
414 if (!rtn || !same_thread_group(rtn, current))
415 return NULL;
416 /* FALLTHRU */
417 case SIGEV_SIGNAL:
418 case SIGEV_THREAD:
419 if (event->sigev_signo <= 0 || event->sigev_signo > SIGRTMAX)
420 return NULL;
421 /* FALLTHRU */
422 case SIGEV_NONE:
2118e1f5 423 return pid;
cef31d9a 424 default:
1da177e4 425 return NULL;
cef31d9a 426 }
1da177e4
LT
427}
428
1da177e4
LT
429static struct k_itimer * alloc_posix_timer(void)
430{
431 struct k_itimer *tmr;
c3762229 432 tmr = kmem_cache_zalloc(posix_timers_cache, GFP_KERNEL);
1da177e4
LT
433 if (!tmr)
434 return tmr;
1da177e4
LT
435 if (unlikely(!(tmr->sigq = sigqueue_alloc()))) {
436 kmem_cache_free(posix_timers_cache, tmr);
aa94fbd5 437 return NULL;
1da177e4 438 }
3b10db2b 439 clear_siginfo(&tmr->sigq->info);
1da177e4
LT
440 return tmr;
441}
442
8af08871
ED
443static void k_itimer_rcu_free(struct rcu_head *head)
444{
445 struct k_itimer *tmr = container_of(head, struct k_itimer, it.rcu);
446
447 kmem_cache_free(posix_timers_cache, tmr);
448}
449
1da177e4
LT
450#define IT_ID_SET 1
451#define IT_ID_NOT_SET 0
452static void release_posix_timer(struct k_itimer *tmr, int it_id_set)
453{
454 if (it_id_set) {
455 unsigned long flags;
5ed67f05
PE
456 spin_lock_irqsave(&hash_lock, flags);
457 hlist_del_rcu(&tmr->t_hash);
458 spin_unlock_irqrestore(&hash_lock, flags);
1da177e4 459 }
89992102 460 put_pid(tmr->it_pid);
1da177e4 461 sigqueue_free(tmr->sigq);
8af08871 462 call_rcu(&tmr->it.rcu, k_itimer_rcu_free);
1da177e4
LT
463}
464
838394fb
TG
465static int common_timer_create(struct k_itimer *new_timer)
466{
467 hrtimer_init(&new_timer->it.real.timer, new_timer->it_clock, 0);
468 return 0;
469}
470
1da177e4 471/* Create a POSIX.1b interval timer. */
2482097c
AV
472static int do_timer_create(clockid_t which_clock, struct sigevent *event,
473 timer_t __user *created_timer_id)
1da177e4 474{
d3ba5a9a 475 const struct k_clock *kc = clockid_to_kclock(which_clock);
2cd499e3 476 struct k_itimer *new_timer;
ef864c95 477 int error, new_timer_id;
1da177e4
LT
478 int it_id_set = IT_ID_NOT_SET;
479
838394fb 480 if (!kc)
1da177e4 481 return -EINVAL;
838394fb
TG
482 if (!kc->timer_create)
483 return -EOPNOTSUPP;
1da177e4
LT
484
485 new_timer = alloc_posix_timer();
486 if (unlikely(!new_timer))
487 return -EAGAIN;
488
489 spin_lock_init(&new_timer->it_lock);
5ed67f05
PE
490 new_timer_id = posix_timer_add(new_timer);
491 if (new_timer_id < 0) {
492 error = new_timer_id;
1da177e4
LT
493 goto out;
494 }
495
496 it_id_set = IT_ID_SET;
497 new_timer->it_id = (timer_t) new_timer_id;
498 new_timer->it_clock = which_clock;
d97bb75d 499 new_timer->kclock = kc;
78c9c4df 500 new_timer->it_overrun = -1LL;
1da177e4 501
2482097c 502 if (event) {
36b2f046 503 rcu_read_lock();
2482097c 504 new_timer->it_pid = get_pid(good_sigevent(event));
36b2f046 505 rcu_read_unlock();
89992102 506 if (!new_timer->it_pid) {
1da177e4
LT
507 error = -EINVAL;
508 goto out;
509 }
2482097c
AV
510 new_timer->it_sigev_notify = event->sigev_notify;
511 new_timer->sigq->info.si_signo = event->sigev_signo;
512 new_timer->sigq->info.si_value = event->sigev_value;
1da177e4 513 } else {
2482097c
AV
514 new_timer->it_sigev_notify = SIGEV_SIGNAL;
515 new_timer->sigq->info.si_signo = SIGALRM;
516 memset(&new_timer->sigq->info.si_value, 0, sizeof(sigval_t));
517 new_timer->sigq->info.si_value.sival_int = new_timer->it_id;
89992102 518 new_timer->it_pid = get_pid(task_tgid(current));
1da177e4
LT
519 }
520
717835d9 521 new_timer->sigq->info.si_tid = new_timer->it_id;
5a9fa730 522 new_timer->sigq->info.si_code = SI_TIMER;
717835d9 523
2b08de00
AV
524 if (copy_to_user(created_timer_id,
525 &new_timer_id, sizeof (new_timer_id))) {
526 error = -EFAULT;
527 goto out;
528 }
529
838394fb 530 error = kc->timer_create(new_timer);
45e0fffc
AV
531 if (error)
532 goto out;
533
36b2f046 534 spin_lock_irq(&current->sighand->siglock);
27af4245 535 new_timer->it_signal = current->signal;
36b2f046
ON
536 list_add(&new_timer->list, &current->signal->posix_timers);
537 spin_unlock_irq(&current->sighand->siglock);
ef864c95
ON
538
539 return 0;
838394fb 540 /*
1da177e4
LT
541 * In the case of the timer belonging to another task, after
542 * the task is unlocked, the timer is owned by the other task
543 * and may cease to exist at any time. Don't use or modify
544 * new_timer after the unlock call.
545 */
1da177e4 546out:
ef864c95 547 release_posix_timer(new_timer, it_id_set);
1da177e4
LT
548 return error;
549}
550
2482097c
AV
551SYSCALL_DEFINE3(timer_create, const clockid_t, which_clock,
552 struct sigevent __user *, timer_event_spec,
553 timer_t __user *, created_timer_id)
554{
555 if (timer_event_spec) {
556 sigevent_t event;
557
558 if (copy_from_user(&event, timer_event_spec, sizeof (event)))
559 return -EFAULT;
560 return do_timer_create(which_clock, &event, created_timer_id);
561 }
562 return do_timer_create(which_clock, NULL, created_timer_id);
563}
564
565#ifdef CONFIG_COMPAT
566COMPAT_SYSCALL_DEFINE3(timer_create, clockid_t, which_clock,
567 struct compat_sigevent __user *, timer_event_spec,
568 timer_t __user *, created_timer_id)
569{
570 if (timer_event_spec) {
571 sigevent_t event;
572
573 if (get_compat_sigevent(&event, timer_event_spec))
574 return -EFAULT;
575 return do_timer_create(which_clock, &event, created_timer_id);
576 }
577 return do_timer_create(which_clock, NULL, created_timer_id);
578}
579#endif
580
1da177e4
LT
581/*
582 * Locking issues: We need to protect the result of the id look up until
583 * we get the timer locked down so it is not deleted under us. The
584 * removal is done under the idr spinlock so we use that here to bridge
585 * the find to the timer lock. To avoid a dead lock, the timer id MUST
586 * be release with out holding the timer lock.
587 */
20f33a03 588static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags)
1da177e4
LT
589{
590 struct k_itimer *timr;
8af08871 591
e182bb38
TH
592 /*
593 * timer_t could be any type >= int and we want to make sure any
594 * @timer_id outside positive int range fails lookup.
595 */
596 if ((unsigned long long)timer_id > INT_MAX)
597 return NULL;
598
8af08871 599 rcu_read_lock();
5ed67f05 600 timr = posix_timer_by_id(timer_id);
1da177e4 601 if (timr) {
8af08871 602 spin_lock_irqsave(&timr->it_lock, *flags);
89992102 603 if (timr->it_signal == current->signal) {
8af08871 604 rcu_read_unlock();
31d92845
ON
605 return timr;
606 }
8af08871 607 spin_unlock_irqrestore(&timr->it_lock, *flags);
31d92845 608 }
8af08871 609 rcu_read_unlock();
1da177e4 610
31d92845 611 return NULL;
1da177e4
LT
612}
613
91d57bae
TG
614static ktime_t common_hrtimer_remaining(struct k_itimer *timr, ktime_t now)
615{
616 struct hrtimer *timer = &timr->it.real.timer;
617
618 return __hrtimer_expires_remaining_adjusted(timer, now);
619}
620
6fec64e1 621static s64 common_hrtimer_forward(struct k_itimer *timr, ktime_t now)
91d57bae
TG
622{
623 struct hrtimer *timer = &timr->it.real.timer;
624
6fec64e1 625 return hrtimer_forward(timer, now, timr->it_interval);
91d57bae
TG
626}
627
1da177e4
LT
628/*
629 * Get the time remaining on a POSIX.1b interval timer. This function
630 * is ALWAYS called with spin_lock_irq on the timer, thus it must not
631 * mess with irq.
632 *
633 * We have a couple of messes to clean up here. First there is the case
634 * of a timer that has a requeue pending. These timers should appear to
635 * be in the timer list with an expiry as if we were to requeue them
636 * now.
637 *
638 * The second issue is the SIGEV_NONE timer which may be active but is
639 * not really ever put in the timer list (to save system resources).
640 * This timer may be expired, and if so, we will do it here. Otherwise
641 * it is the same as a requeue pending timer WRT to what we should
642 * report.
643 */
f2c45807 644void common_timer_get(struct k_itimer *timr, struct itimerspec64 *cur_setting)
1da177e4 645{
91d57bae 646 const struct k_clock *kc = timr->kclock;
3b98a532 647 ktime_t now, remaining, iv;
91d57bae
TG
648 struct timespec64 ts64;
649 bool sig_none;
1da177e4 650
cef31d9a 651 sig_none = timr->it_sigev_notify == SIGEV_NONE;
80105cd0 652 iv = timr->it_interval;
3b98a532 653
becf8b5d 654 /* interval timer ? */
91d57bae 655 if (iv) {
5f252b32 656 cur_setting->it_interval = ktime_to_timespec64(iv);
91d57bae
TG
657 } else if (!timr->it_active) {
658 /*
659 * SIGEV_NONE oneshot timers are never queued. Check them
660 * below.
661 */
662 if (!sig_none)
663 return;
664 }
3b98a532 665
91d57bae
TG
666 /*
667 * The timespec64 based conversion is suboptimal, but it's not
668 * worth to implement yet another callback.
669 */
670 kc->clock_get(timr->it_clock, &ts64);
671 now = timespec64_to_ktime(ts64);
3b98a532 672
becf8b5d 673 /*
91d57bae
TG
674 * When a requeue is pending or this is a SIGEV_NONE timer move the
675 * expiry time forward by intervals, so expiry is > now.
becf8b5d 676 */
91d57bae 677 if (iv && (timr->it_requeue_pending & REQUEUE_PENDING || sig_none))
78c9c4df 678 timr->it_overrun += kc->timer_forward(timr, now);
3b98a532 679
91d57bae 680 remaining = kc->timer_remaining(timr, now);
becf8b5d 681 /* Return 0 only, when the timer is expired and not pending */
2456e855 682 if (remaining <= 0) {
3b98a532
RZ
683 /*
684 * A single shot SIGEV_NONE timer must return 0, when
685 * it is expired !
686 */
91d57bae 687 if (!sig_none)
3b98a532 688 cur_setting->it_value.tv_nsec = 1;
91d57bae 689 } else {
5f252b32 690 cur_setting->it_value = ktime_to_timespec64(remaining);
91d57bae 691 }
1da177e4
LT
692}
693
694/* Get the time remaining on a POSIX.1b interval timer. */
b0dc1242 695static int do_timer_gettime(timer_t timer_id, struct itimerspec64 *setting)
1da177e4 696{
a7319fa2 697 struct k_itimer *timr;
d3ba5a9a 698 const struct k_clock *kc;
1da177e4 699 unsigned long flags;
a7319fa2 700 int ret = 0;
1da177e4
LT
701
702 timr = lock_timer(timer_id, &flags);
703 if (!timr)
704 return -EINVAL;
705
b0dc1242 706 memset(setting, 0, sizeof(*setting));
d97bb75d 707 kc = timr->kclock;
a7319fa2
TG
708 if (WARN_ON_ONCE(!kc || !kc->timer_get))
709 ret = -EINVAL;
710 else
b0dc1242 711 kc->timer_get(timr, setting);
1da177e4
LT
712
713 unlock_timer(timr, flags);
b0dc1242
AV
714 return ret;
715}
1da177e4 716
b0dc1242
AV
717/* Get the time remaining on a POSIX.1b interval timer. */
718SYSCALL_DEFINE2(timer_gettime, timer_t, timer_id,
6ff84735 719 struct __kernel_itimerspec __user *, setting)
b0dc1242 720{
725816e8 721 struct itimerspec64 cur_setting;
1da177e4 722
725816e8 723 int ret = do_timer_gettime(timer_id, &cur_setting);
b0dc1242 724 if (!ret) {
725816e8 725 if (put_itimerspec64(&cur_setting, setting))
b0dc1242
AV
726 ret = -EFAULT;
727 }
a7319fa2 728 return ret;
1da177e4 729}
becf8b5d 730
6ff84735
DD
731#ifdef CONFIG_COMPAT_32BIT_TIME
732
8dabe724
AB
733SYSCALL_DEFINE2(timer_gettime32, timer_t, timer_id,
734 struct old_itimerspec32 __user *, setting)
b0dc1242 735{
725816e8 736 struct itimerspec64 cur_setting;
b0dc1242 737
725816e8 738 int ret = do_timer_gettime(timer_id, &cur_setting);
b0dc1242 739 if (!ret) {
9afc5eee 740 if (put_old_itimerspec32(&cur_setting, setting))
b0dc1242
AV
741 ret = -EFAULT;
742 }
743 return ret;
744}
6ff84735 745
b0dc1242
AV
746#endif
747
1da177e4
LT
748/*
749 * Get the number of overruns of a POSIX.1b interval timer. This is to
750 * be the overrun of the timer last delivered. At the same time we are
751 * accumulating overruns on the next timer. The overrun is frozen when
752 * the signal is delivered, either at the notify time (if the info block
753 * is not queued) or at the actual delivery time (as we are informed by
96fe3b07 754 * the call back to posixtimer_rearm(). So all we need to do is
1da177e4
LT
755 * to pick up the frozen overrun.
756 */
362e9c07 757SYSCALL_DEFINE1(timer_getoverrun, timer_t, timer_id)
1da177e4
LT
758{
759 struct k_itimer *timr;
760 int overrun;
5ba25331 761 unsigned long flags;
1da177e4
LT
762
763 timr = lock_timer(timer_id, &flags);
764 if (!timr)
765 return -EINVAL;
766
78c9c4df 767 overrun = timer_overrun_to_int(timr, 0);
1da177e4
LT
768 unlock_timer(timr, flags);
769
770 return overrun;
771}
1da177e4 772
eae1c4ae
TG
773static void common_hrtimer_arm(struct k_itimer *timr, ktime_t expires,
774 bool absolute, bool sigev_none)
775{
776 struct hrtimer *timer = &timr->it.real.timer;
777 enum hrtimer_mode mode;
778
779 mode = absolute ? HRTIMER_MODE_ABS : HRTIMER_MODE_REL;
67edab48
TG
780 /*
781 * Posix magic: Relative CLOCK_REALTIME timers are not affected by
782 * clock modifications, so they become CLOCK_MONOTONIC based under the
783 * hood. See hrtimer_init(). Update timr->kclock, so the generic
784 * functions which use timr->kclock->clock_get() work.
785 *
786 * Note: it_clock stays unmodified, because the next timer_set() might
787 * use ABSTIME, so it needs to switch back.
788 */
789 if (timr->it_clock == CLOCK_REALTIME)
790 timr->kclock = absolute ? &clock_realtime : &clock_monotonic;
791
eae1c4ae
TG
792 hrtimer_init(&timr->it.real.timer, timr->it_clock, mode);
793 timr->it.real.timer.function = posix_timer_fn;
794
795 if (!absolute)
796 expires = ktime_add_safe(expires, timer->base->get_time());
797 hrtimer_set_expires(timer, expires);
798
799 if (!sigev_none)
800 hrtimer_start_expires(timer, HRTIMER_MODE_ABS);
801}
802
803static int common_hrtimer_try_to_cancel(struct k_itimer *timr)
804{
805 return hrtimer_try_to_cancel(&timr->it.real.timer);
806}
807
1da177e4 808/* Set a POSIX.1b interval timer. */
f2c45807
TG
809int common_timer_set(struct k_itimer *timr, int flags,
810 struct itimerspec64 *new_setting,
811 struct itimerspec64 *old_setting)
1da177e4 812{
eae1c4ae
TG
813 const struct k_clock *kc = timr->kclock;
814 bool sigev_none;
815 ktime_t expires;
1da177e4
LT
816
817 if (old_setting)
818 common_timer_get(timr, old_setting);
819
eae1c4ae 820 /* Prevent rearming by clearing the interval */
80105cd0 821 timr->it_interval = 0;
1da177e4 822 /*
eae1c4ae
TG
823 * Careful here. On SMP systems the timer expiry function could be
824 * active and spinning on timr->it_lock.
1da177e4 825 */
eae1c4ae 826 if (kc->timer_try_to_cancel(timr) < 0)
1da177e4 827 return TIMER_RETRY;
1da177e4 828
21e55c1f
TG
829 timr->it_active = 0;
830 timr->it_requeue_pending = (timr->it_requeue_pending + 2) &
1da177e4
LT
831 ~REQUEUE_PENDING;
832 timr->it_overrun_last = 0;
1da177e4 833
eae1c4ae 834 /* Switch off the timer when it_value is zero */
becf8b5d
TG
835 if (!new_setting->it_value.tv_sec && !new_setting->it_value.tv_nsec)
836 return 0;
1da177e4 837
80105cd0 838 timr->it_interval = timespec64_to_ktime(new_setting->it_interval);
eae1c4ae 839 expires = timespec64_to_ktime(new_setting->it_value);
cef31d9a 840 sigev_none = timr->it_sigev_notify == SIGEV_NONE;
becf8b5d 841
eae1c4ae
TG
842 kc->timer_arm(timr, expires, flags & TIMER_ABSTIME, sigev_none);
843 timr->it_active = !sigev_none;
1da177e4
LT
844 return 0;
845}
846
1acbe770
AV
847static int do_timer_settime(timer_t timer_id, int flags,
848 struct itimerspec64 *new_spec64,
849 struct itimerspec64 *old_spec64)
1da177e4 850{
1acbe770 851 const struct k_clock *kc;
5f252b32 852 struct k_itimer *timr;
5ba25331 853 unsigned long flag;
5f252b32 854 int error = 0;
1da177e4 855
1acbe770
AV
856 if (!timespec64_valid(&new_spec64->it_interval) ||
857 !timespec64_valid(&new_spec64->it_value))
1da177e4
LT
858 return -EINVAL;
859
1acbe770
AV
860 if (old_spec64)
861 memset(old_spec64, 0, sizeof(*old_spec64));
1da177e4
LT
862retry:
863 timr = lock_timer(timer_id, &flag);
864 if (!timr)
865 return -EINVAL;
866
d97bb75d 867 kc = timr->kclock;
27722df1
TG
868 if (WARN_ON_ONCE(!kc || !kc->timer_set))
869 error = -EINVAL;
870 else
1acbe770 871 error = kc->timer_set(timr, flags, new_spec64, old_spec64);
1da177e4
LT
872
873 unlock_timer(timr, flag);
874 if (error == TIMER_RETRY) {
1acbe770 875 old_spec64 = NULL; // We already got the old time...
1da177e4
LT
876 goto retry;
877 }
878
1acbe770
AV
879 return error;
880}
1da177e4 881
1acbe770
AV
882/* Set a POSIX.1b interval timer */
883SYSCALL_DEFINE4(timer_settime, timer_t, timer_id, int, flags,
6ff84735
DD
884 const struct __kernel_itimerspec __user *, new_setting,
885 struct __kernel_itimerspec __user *, old_setting)
1acbe770 886{
725816e8
DD
887 struct itimerspec64 new_spec, old_spec;
888 struct itimerspec64 *rtn = old_setting ? &old_spec : NULL;
1acbe770
AV
889 int error = 0;
890
891 if (!new_setting)
892 return -EINVAL;
893
725816e8 894 if (get_itimerspec64(&new_spec, new_setting))
1acbe770 895 return -EFAULT;
1acbe770 896
725816e8 897 error = do_timer_settime(timer_id, flags, &new_spec, rtn);
1acbe770 898 if (!error && old_setting) {
725816e8 899 if (put_itimerspec64(&old_spec, old_setting))
1acbe770
AV
900 error = -EFAULT;
901 }
902 return error;
903}
904
6ff84735 905#ifdef CONFIG_COMPAT_32BIT_TIME
8dabe724
AB
906SYSCALL_DEFINE4(timer_settime32, timer_t, timer_id, int, flags,
907 struct old_itimerspec32 __user *, new,
908 struct old_itimerspec32 __user *, old)
1acbe770 909{
725816e8
DD
910 struct itimerspec64 new_spec, old_spec;
911 struct itimerspec64 *rtn = old ? &old_spec : NULL;
1acbe770
AV
912 int error = 0;
913
914 if (!new)
915 return -EINVAL;
9afc5eee 916 if (get_old_itimerspec32(&new_spec, new))
1acbe770
AV
917 return -EFAULT;
918
725816e8 919 error = do_timer_settime(timer_id, flags, &new_spec, rtn);
1acbe770 920 if (!error && old) {
9afc5eee 921 if (put_old_itimerspec32(&old_spec, old))
1acbe770
AV
922 error = -EFAULT;
923 }
1da177e4
LT
924 return error;
925}
1acbe770 926#endif
1da177e4 927
f2c45807 928int common_timer_del(struct k_itimer *timer)
1da177e4 929{
eae1c4ae 930 const struct k_clock *kc = timer->kclock;
f972be33 931
eae1c4ae
TG
932 timer->it_interval = 0;
933 if (kc->timer_try_to_cancel(timer) < 0)
1da177e4 934 return TIMER_RETRY;
21e55c1f 935 timer->it_active = 0;
1da177e4
LT
936 return 0;
937}
938
939static inline int timer_delete_hook(struct k_itimer *timer)
940{
d97bb75d 941 const struct k_clock *kc = timer->kclock;
6761c670
TG
942
943 if (WARN_ON_ONCE(!kc || !kc->timer_del))
944 return -EINVAL;
945 return kc->timer_del(timer);
1da177e4
LT
946}
947
948/* Delete a POSIX.1b interval timer. */
362e9c07 949SYSCALL_DEFINE1(timer_delete, timer_t, timer_id)
1da177e4
LT
950{
951 struct k_itimer *timer;
5ba25331 952 unsigned long flags;
1da177e4 953
1da177e4 954retry_delete:
1da177e4
LT
955 timer = lock_timer(timer_id, &flags);
956 if (!timer)
957 return -EINVAL;
958
becf8b5d 959 if (timer_delete_hook(timer) == TIMER_RETRY) {
1da177e4
LT
960 unlock_timer(timer, flags);
961 goto retry_delete;
962 }
becf8b5d 963
1da177e4
LT
964 spin_lock(&current->sighand->siglock);
965 list_del(&timer->list);
966 spin_unlock(&current->sighand->siglock);
967 /*
968 * This keeps any tasks waiting on the spin lock from thinking
969 * they got something (see the lock code above).
970 */
89992102 971 timer->it_signal = NULL;
4b7a1304 972
1da177e4
LT
973 unlock_timer(timer, flags);
974 release_posix_timer(timer, IT_ID_SET);
975 return 0;
976}
becf8b5d 977
1da177e4
LT
978/*
979 * return timer owned by the process, used by exit_itimers
980 */
858119e1 981static void itimer_delete(struct k_itimer *timer)
1da177e4 982{
1da177e4 983retry_delete:
7586addb 984 spin_lock_irq(&timer->it_lock);
1da177e4 985
becf8b5d 986 if (timer_delete_hook(timer) == TIMER_RETRY) {
7586addb 987 spin_unlock_irq(&timer->it_lock);
1da177e4
LT
988 goto retry_delete;
989 }
1da177e4 990 list_del(&timer->list);
4b7a1304 991
7586addb 992 spin_unlock_irq(&timer->it_lock);
1da177e4
LT
993 release_posix_timer(timer, IT_ID_SET);
994}
995
996/*
25f407f0 997 * This is called by do_exit or de_thread, only when there are no more
1da177e4
LT
998 * references to the shared signal_struct.
999 */
1000void exit_itimers(struct signal_struct *sig)
1001{
1002 struct k_itimer *tmr;
1003
1004 while (!list_empty(&sig->posix_timers)) {
1005 tmr = list_entry(sig->posix_timers.next, struct k_itimer, list);
1006 itimer_delete(tmr);
1007 }
1008}
1009
362e9c07 1010SYSCALL_DEFINE2(clock_settime, const clockid_t, which_clock,
6d5b8413 1011 const struct __kernel_timespec __user *, tp)
1da177e4 1012{
d3ba5a9a 1013 const struct k_clock *kc = clockid_to_kclock(which_clock);
5c499410 1014 struct timespec64 new_tp;
1da177e4 1015
26f9a479 1016 if (!kc || !kc->clock_set)
1da177e4 1017 return -EINVAL;
26f9a479 1018
5c499410 1019 if (get_timespec64(&new_tp, tp))
1da177e4
LT
1020 return -EFAULT;
1021
5c499410 1022 return kc->clock_set(which_clock, &new_tp);
1da177e4
LT
1023}
1024
362e9c07 1025SYSCALL_DEFINE2(clock_gettime, const clockid_t, which_clock,
6d5b8413 1026 struct __kernel_timespec __user *, tp)
1da177e4 1027{
d3ba5a9a 1028 const struct k_clock *kc = clockid_to_kclock(which_clock);
5c499410 1029 struct timespec64 kernel_tp;
1da177e4
LT
1030 int error;
1031
42285777 1032 if (!kc)
1da177e4 1033 return -EINVAL;
42285777 1034
5c499410 1035 error = kc->clock_get(which_clock, &kernel_tp);
42285777 1036
5c499410 1037 if (!error && put_timespec64(&kernel_tp, tp))
1da177e4
LT
1038 error = -EFAULT;
1039
1040 return error;
1da177e4
LT
1041}
1042
ead25417 1043int do_clock_adjtime(const clockid_t which_clock, struct __kernel_timex * ktx)
f1f1d5eb 1044{
d3ba5a9a 1045 const struct k_clock *kc = clockid_to_kclock(which_clock);
f1f1d5eb
RC
1046
1047 if (!kc)
1048 return -EINVAL;
1049 if (!kc->clock_adj)
1050 return -EOPNOTSUPP;
1051
1a596398
AB
1052 return kc->clock_adj(which_clock, ktx);
1053}
1054
1055SYSCALL_DEFINE2(clock_adjtime, const clockid_t, which_clock,
3876ced4 1056 struct __kernel_timex __user *, utx)
1a596398 1057{
ead25417 1058 struct __kernel_timex ktx;
1a596398
AB
1059 int err;
1060
f1f1d5eb
RC
1061 if (copy_from_user(&ktx, utx, sizeof(ktx)))
1062 return -EFAULT;
1063
1a596398 1064 err = do_clock_adjtime(which_clock, &ktx);
f1f1d5eb 1065
f0dbe81f 1066 if (err >= 0 && copy_to_user(utx, &ktx, sizeof(ktx)))
f1f1d5eb
RC
1067 return -EFAULT;
1068
1069 return err;
1070}
1071
d822cdcc 1072SYSCALL_DEFINE2(clock_getres, const clockid_t, which_clock,
6d5b8413 1073 struct __kernel_timespec __user *, tp)
d822cdcc
AV
1074{
1075 const struct k_clock *kc = clockid_to_kclock(which_clock);
5c499410 1076 struct timespec64 rtn_tp;
d822cdcc
AV
1077 int error;
1078
1079 if (!kc)
1080 return -EINVAL;
1081
5c499410 1082 error = kc->clock_getres(which_clock, &rtn_tp);
d822cdcc 1083
5c499410 1084 if (!error && tp && put_timespec64(&rtn_tp, tp))
d822cdcc
AV
1085 error = -EFAULT;
1086
1087 return error;
1088}
1089
b5793b0d 1090#ifdef CONFIG_COMPAT_32BIT_TIME
3a4d44b6 1091
8dabe724
AB
1092SYSCALL_DEFINE2(clock_settime32, clockid_t, which_clock,
1093 struct old_timespec32 __user *, tp)
d822cdcc
AV
1094{
1095 const struct k_clock *kc = clockid_to_kclock(which_clock);
5c499410 1096 struct timespec64 ts;
d822cdcc
AV
1097
1098 if (!kc || !kc->clock_set)
1099 return -EINVAL;
1100
9afc5eee 1101 if (get_old_timespec32(&ts, tp))
d822cdcc
AV
1102 return -EFAULT;
1103
5c499410 1104 return kc->clock_set(which_clock, &ts);
d822cdcc
AV
1105}
1106
8dabe724
AB
1107SYSCALL_DEFINE2(clock_gettime32, clockid_t, which_clock,
1108 struct old_timespec32 __user *, tp)
d822cdcc
AV
1109{
1110 const struct k_clock *kc = clockid_to_kclock(which_clock);
5c499410
DD
1111 struct timespec64 ts;
1112 int err;
d822cdcc
AV
1113
1114 if (!kc)
1115 return -EINVAL;
1116
5c499410 1117 err = kc->clock_get(which_clock, &ts);
d822cdcc 1118
9afc5eee 1119 if (!err && put_old_timespec32(&ts, tp))
5c499410 1120 err = -EFAULT;
d822cdcc 1121
5c499410 1122 return err;
d822cdcc
AV
1123}
1124
8dabe724
AB
1125SYSCALL_DEFINE2(clock_adjtime32, clockid_t, which_clock,
1126 struct old_timex32 __user *, utp)
3a4d44b6 1127{
ead25417 1128 struct __kernel_timex ktx;
3a4d44b6
AV
1129 int err;
1130
4d5f007e 1131 err = get_old_timex32(&ktx, utp);
3a4d44b6
AV
1132 if (err)
1133 return err;
1134
1a596398 1135 err = do_clock_adjtime(which_clock, &ktx);
3a4d44b6
AV
1136
1137 if (err >= 0)
4d5f007e 1138 err = put_old_timex32(utp, &ktx);
3a4d44b6
AV
1139
1140 return err;
1141}
3a4d44b6 1142
8dabe724
AB
1143SYSCALL_DEFINE2(clock_getres_time32, clockid_t, which_clock,
1144 struct old_timespec32 __user *, tp)
1da177e4 1145{
d3ba5a9a 1146 const struct k_clock *kc = clockid_to_kclock(which_clock);
5c499410
DD
1147 struct timespec64 ts;
1148 int err;
1da177e4 1149
e5e542ee 1150 if (!kc)
1da177e4
LT
1151 return -EINVAL;
1152
5c499410 1153 err = kc->clock_getres(which_clock, &ts);
9afc5eee 1154 if (!err && tp && put_old_timespec32(&ts, tp))
5c499410 1155 return -EFAULT;
1da177e4 1156
5c499410 1157 return err;
1da177e4 1158}
5c499410 1159
d822cdcc 1160#endif
1da177e4 1161
97735f25
TG
1162/*
1163 * nanosleep for monotonic and realtime clocks
1164 */
1165static int common_nsleep(const clockid_t which_clock, int flags,
938e7cf2 1166 const struct timespec64 *rqtp)
97735f25 1167{
938e7cf2 1168 return hrtimer_nanosleep(rqtp, flags & TIMER_ABSTIME ?
080344b9
ON
1169 HRTIMER_MODE_ABS : HRTIMER_MODE_REL,
1170 which_clock);
97735f25 1171}
1da177e4 1172
362e9c07 1173SYSCALL_DEFINE4(clock_nanosleep, const clockid_t, which_clock, int, flags,
01909974
DD
1174 const struct __kernel_timespec __user *, rqtp,
1175 struct __kernel_timespec __user *, rmtp)
1da177e4 1176{
d3ba5a9a 1177 const struct k_clock *kc = clockid_to_kclock(which_clock);
c0edd7c9 1178 struct timespec64 t;
1da177e4 1179
a5cd2880 1180 if (!kc)
1da177e4 1181 return -EINVAL;
a5cd2880 1182 if (!kc->nsleep)
93cb8e20 1183 return -EOPNOTSUPP;
1da177e4 1184
c0edd7c9 1185 if (get_timespec64(&t, rqtp))
1da177e4
LT
1186 return -EFAULT;
1187
c0edd7c9 1188 if (!timespec64_valid(&t))
1da177e4 1189 return -EINVAL;
99e6c0e6
AV
1190 if (flags & TIMER_ABSTIME)
1191 rmtp = NULL;
edbeda46 1192 current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE;
99e6c0e6 1193 current->restart_block.nanosleep.rmtp = rmtp;
1da177e4 1194
c0edd7c9 1195 return kc->nsleep(which_clock, flags, &t);
1da177e4 1196}
1711ef38 1197
b5793b0d
DD
1198#ifdef CONFIG_COMPAT_32BIT_TIME
1199
8dabe724
AB
1200SYSCALL_DEFINE4(clock_nanosleep_time32, clockid_t, which_clock, int, flags,
1201 struct old_timespec32 __user *, rqtp,
1202 struct old_timespec32 __user *, rmtp)
1711ef38 1203{
d3ba5a9a 1204 const struct k_clock *kc = clockid_to_kclock(which_clock);
c0edd7c9 1205 struct timespec64 t;
59bd5bc2 1206
edbeda46 1207 if (!kc)
59bd5bc2 1208 return -EINVAL;
edbeda46 1209 if (!kc->nsleep)
93cb8e20 1210 return -EOPNOTSUPP;
edbeda46 1211
9afc5eee 1212 if (get_old_timespec32(&t, rqtp))
edbeda46 1213 return -EFAULT;
1711ef38 1214
c0edd7c9 1215 if (!timespec64_valid(&t))
edbeda46
AV
1216 return -EINVAL;
1217 if (flags & TIMER_ABSTIME)
1218 rmtp = NULL;
1219 current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE;
1220 current->restart_block.nanosleep.compat_rmtp = rmtp;
1221
c0edd7c9 1222 return kc->nsleep(which_clock, flags, &t);
1711ef38 1223}
b5793b0d 1224
edbeda46 1225#endif
6631fa12
TG
1226
1227static const struct k_clock clock_realtime = {
eae1c4ae
TG
1228 .clock_getres = posix_get_hrtimer_res,
1229 .clock_get = posix_clock_realtime_get,
1230 .clock_set = posix_clock_realtime_set,
1231 .clock_adj = posix_clock_realtime_adj,
1232 .nsleep = common_nsleep,
eae1c4ae
TG
1233 .timer_create = common_timer_create,
1234 .timer_set = common_timer_set,
1235 .timer_get = common_timer_get,
1236 .timer_del = common_timer_del,
1237 .timer_rearm = common_hrtimer_rearm,
1238 .timer_forward = common_hrtimer_forward,
1239 .timer_remaining = common_hrtimer_remaining,
1240 .timer_try_to_cancel = common_hrtimer_try_to_cancel,
1241 .timer_arm = common_hrtimer_arm,
6631fa12
TG
1242};
1243
1244static const struct k_clock clock_monotonic = {
eae1c4ae
TG
1245 .clock_getres = posix_get_hrtimer_res,
1246 .clock_get = posix_ktime_get_ts,
1247 .nsleep = common_nsleep,
eae1c4ae
TG
1248 .timer_create = common_timer_create,
1249 .timer_set = common_timer_set,
1250 .timer_get = common_timer_get,
1251 .timer_del = common_timer_del,
1252 .timer_rearm = common_hrtimer_rearm,
1253 .timer_forward = common_hrtimer_forward,
1254 .timer_remaining = common_hrtimer_remaining,
1255 .timer_try_to_cancel = common_hrtimer_try_to_cancel,
1256 .timer_arm = common_hrtimer_arm,
6631fa12
TG
1257};
1258
1259static const struct k_clock clock_monotonic_raw = {
eae1c4ae
TG
1260 .clock_getres = posix_get_hrtimer_res,
1261 .clock_get = posix_get_monotonic_raw,
6631fa12
TG
1262};
1263
1264static const struct k_clock clock_realtime_coarse = {
eae1c4ae
TG
1265 .clock_getres = posix_get_coarse_res,
1266 .clock_get = posix_get_realtime_coarse,
6631fa12
TG
1267};
1268
1269static const struct k_clock clock_monotonic_coarse = {
eae1c4ae
TG
1270 .clock_getres = posix_get_coarse_res,
1271 .clock_get = posix_get_monotonic_coarse,
6631fa12
TG
1272};
1273
1274static const struct k_clock clock_tai = {
eae1c4ae
TG
1275 .clock_getres = posix_get_hrtimer_res,
1276 .clock_get = posix_get_tai,
1277 .nsleep = common_nsleep,
eae1c4ae
TG
1278 .timer_create = common_timer_create,
1279 .timer_set = common_timer_set,
1280 .timer_get = common_timer_get,
1281 .timer_del = common_timer_del,
1282 .timer_rearm = common_hrtimer_rearm,
1283 .timer_forward = common_hrtimer_forward,
1284 .timer_remaining = common_hrtimer_remaining,
1285 .timer_try_to_cancel = common_hrtimer_try_to_cancel,
1286 .timer_arm = common_hrtimer_arm,
6631fa12
TG
1287};
1288
a3ed0e43 1289static const struct k_clock clock_boottime = {
eae1c4ae 1290 .clock_getres = posix_get_hrtimer_res,
a3ed0e43
TG
1291 .clock_get = posix_get_boottime,
1292 .nsleep = common_nsleep,
1293 .timer_create = common_timer_create,
1294 .timer_set = common_timer_set,
1295 .timer_get = common_timer_get,
1296 .timer_del = common_timer_del,
1297 .timer_rearm = common_hrtimer_rearm,
1298 .timer_forward = common_hrtimer_forward,
1299 .timer_remaining = common_hrtimer_remaining,
1300 .timer_try_to_cancel = common_hrtimer_try_to_cancel,
1301 .timer_arm = common_hrtimer_arm,
6631fa12
TG
1302};
1303
1304static const struct k_clock * const posix_clocks[] = {
1305 [CLOCK_REALTIME] = &clock_realtime,
1306 [CLOCK_MONOTONIC] = &clock_monotonic,
1307 [CLOCK_PROCESS_CPUTIME_ID] = &clock_process,
1308 [CLOCK_THREAD_CPUTIME_ID] = &clock_thread,
1309 [CLOCK_MONOTONIC_RAW] = &clock_monotonic_raw,
1310 [CLOCK_REALTIME_COARSE] = &clock_realtime_coarse,
1311 [CLOCK_MONOTONIC_COARSE] = &clock_monotonic_coarse,
a3ed0e43 1312 [CLOCK_BOOTTIME] = &clock_boottime,
6631fa12
TG
1313 [CLOCK_REALTIME_ALARM] = &alarm_clock,
1314 [CLOCK_BOOTTIME_ALARM] = &alarm_clock,
1315 [CLOCK_TAI] = &clock_tai,
1316};
1317
1318static const struct k_clock *clockid_to_kclock(const clockid_t id)
1319{
19b558db
TG
1320 clockid_t idx = id;
1321
1322 if (id < 0) {
6631fa12
TG
1323 return (id & CLOCKFD_MASK) == CLOCKFD ?
1324 &clock_posix_dynamic : &clock_posix_cpu;
19b558db 1325 }
6631fa12 1326
19b558db 1327 if (id >= ARRAY_SIZE(posix_clocks))
6631fa12 1328 return NULL;
19b558db
TG
1329
1330 return posix_clocks[array_index_nospec(idx, ARRAY_SIZE(posix_clocks))];
6631fa12 1331}