]> git.ipfire.org Git - thirdparty/linux.git/blame - kernel/time/sched_clock.c
Merge tag 'ecryptfs-5.3-rc1-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git...
[thirdparty/linux.git] / kernel / time / sched_clock.c
CommitLineData
35728b82 1// SPDX-License-Identifier: GPL-2.0
112f38a4 2/*
58c5fc2b
TG
3 * Generic sched_clock() support, to extend low level hardware time
4 * counters to full 64-bit ns values.
112f38a4
RK
5 */
6#include <linux/clocksource.h>
7#include <linux/init.h>
8#include <linux/jiffies.h>
a08ca5d1 9#include <linux/ktime.h>
112f38a4 10#include <linux/kernel.h>
a42c3629 11#include <linux/moduleparam.h>
112f38a4 12#include <linux/sched.h>
e6017571 13#include <linux/sched/clock.h>
f153d017 14#include <linux/syscore_ops.h>
a08ca5d1 15#include <linux/hrtimer.h>
38ff87f7 16#include <linux/sched_clock.h>
85c3d2dd 17#include <linux/seqlock.h>
e7e3ff1b 18#include <linux/bitops.h>
112f38a4 19
cf7c9c17 20/**
32fea568 21 * struct clock_read_data - data required to read from sched_clock()
cf7c9c17 22 *
32fea568
IM
23 * @epoch_ns: sched_clock() value at last update
24 * @epoch_cyc: Clock cycle value at last update.
cf7c9c17 25 * @sched_clock_mask: Bitmask for two's complement subtraction of non 64bit
32fea568
IM
26 * clocks.
27 * @read_sched_clock: Current clock source (or dummy source when suspended).
28 * @mult: Multipler for scaled math conversion.
29 * @shift: Shift value for scaled math conversion.
cf7c9c17
DT
30 *
31 * Care must be taken when updating this structure; it is read by
13dbeb38 32 * some very hot code paths. It occupies <=40 bytes and, when combined
cf7c9c17
DT
33 * with the seqcount used to synchronize access, comfortably fits into
34 * a 64 byte cache line.
35 */
36struct clock_read_data {
2f0778af 37 u64 epoch_ns;
e7e3ff1b 38 u64 epoch_cyc;
cf7c9c17
DT
39 u64 sched_clock_mask;
40 u64 (*read_sched_clock)(void);
2f0778af
MZ
41 u32 mult;
42 u32 shift;
43};
44
cf7c9c17 45/**
32fea568 46 * struct clock_data - all data needed for sched_clock() (including
cf7c9c17
DT
47 * registration of a new clock source)
48 *
1809bfa4
DT
49 * @seq: Sequence counter for protecting updates. The lowest
50 * bit is the index for @read_data.
cf7c9c17 51 * @read_data: Data required to read from sched_clock.
32fea568
IM
52 * @wrap_kt: Duration for which clock can run before wrapping.
53 * @rate: Tick rate of the registered clock.
54 * @actual_read_sched_clock: Registered hardware level clock read function.
cf7c9c17
DT
55 *
56 * The ordering of this structure has been chosen to optimize cache
32fea568
IM
57 * performance. In particular 'seq' and 'read_data[0]' (combined) should fit
58 * into a single 64-byte cache line.
cf7c9c17
DT
59 */
60struct clock_data {
32fea568
IM
61 seqcount_t seq;
62 struct clock_read_data read_data[2];
63 ktime_t wrap_kt;
64 unsigned long rate;
65
13dbeb38 66 u64 (*actual_read_sched_clock)(void);
cf7c9c17
DT
67};
68
a08ca5d1 69static struct hrtimer sched_clock_timer;
a42c3629
RK
70static int irqtime = -1;
71
72core_param(irqtime, irqtime, int, 0400);
2f0778af 73
e7e3ff1b 74static u64 notrace jiffy_sched_clock_read(void)
2f0778af 75{
e7e3ff1b
SB
76 /*
77 * We don't need to use get_jiffies_64 on 32-bit arches here
78 * because we register with BITS_PER_LONG
79 */
80 return (u64)(jiffies - INITIAL_JIFFIES);
81}
82
cf7c9c17 83static struct clock_data cd ____cacheline_aligned = {
1809bfa4
DT
84 .read_data[0] = { .mult = NSEC_PER_SEC / HZ,
85 .read_sched_clock = jiffy_sched_clock_read, },
13dbeb38 86 .actual_read_sched_clock = jiffy_sched_clock_read,
cf7c9c17 87};
2f0778af 88
cea15092 89static inline u64 notrace cyc_to_ns(u64 cyc, u32 mult, u32 shift)
2f0778af
MZ
90{
91 return (cyc * mult) >> shift;
92}
93
b4042cea 94unsigned long long notrace sched_clock(void)
2f0778af 95{
8710e914 96 u64 cyc, res;
e1e41b6c 97 unsigned int seq;
1809bfa4 98 struct clock_read_data *rd;
336ae118 99
2f0778af 100 do {
1809bfa4
DT
101 seq = raw_read_seqcount(&cd.seq);
102 rd = cd.read_data + (seq & 1);
8710e914 103
13dbeb38
DT
104 cyc = (rd->read_sched_clock() - rd->epoch_cyc) &
105 rd->sched_clock_mask;
106 res = rd->epoch_ns + cyc_to_ns(cyc, rd->mult, rd->shift);
85c3d2dd 107 } while (read_seqcount_retry(&cd.seq, seq));
2f0778af 108
8710e914 109 return res;
2f0778af
MZ
110}
111
1809bfa4
DT
112/*
113 * Updating the data required to read the clock.
114 *
32fea568 115 * sched_clock() will never observe mis-matched data even if called from
1809bfa4 116 * an NMI. We do this by maintaining an odd/even copy of the data and
32fea568
IM
117 * steering sched_clock() to one or the other using a sequence counter.
118 * In order to preserve the data cache profile of sched_clock() as much
1809bfa4
DT
119 * as possible the system reverts back to the even copy when the update
120 * completes; the odd copy is used *only* during an update.
121 */
122static void update_clock_read_data(struct clock_read_data *rd)
123{
124 /* update the backup (odd) copy with the new data */
125 cd.read_data[1] = *rd;
126
127 /* steer readers towards the odd copy */
128 raw_write_seqcount_latch(&cd.seq);
129
130 /* now its safe for us to update the normal (even) copy */
131 cd.read_data[0] = *rd;
132
133 /* switch readers back to the even copy */
134 raw_write_seqcount_latch(&cd.seq);
135}
136
2f0778af 137/*
32fea568 138 * Atomically update the sched_clock() epoch.
2f0778af 139 */
9fee69a8 140static void update_sched_clock(void)
2f0778af 141{
e7e3ff1b 142 u64 cyc;
2f0778af 143 u64 ns;
1809bfa4
DT
144 struct clock_read_data rd;
145
146 rd = cd.read_data[0];
2f0778af 147
13dbeb38 148 cyc = cd.actual_read_sched_clock();
32fea568 149 ns = rd.epoch_ns + cyc_to_ns((cyc - rd.epoch_cyc) & rd.sched_clock_mask, rd.mult, rd.shift);
1809bfa4
DT
150
151 rd.epoch_ns = ns;
152 rd.epoch_cyc = cyc;
153
154 update_clock_read_data(&rd);
2f0778af 155}
112f38a4 156
a08ca5d1 157static enum hrtimer_restart sched_clock_poll(struct hrtimer *hrt)
112f38a4 158{
2f0778af 159 update_sched_clock();
a08ca5d1 160 hrtimer_forward_now(hrt, cd.wrap_kt);
32fea568 161
a08ca5d1 162 return HRTIMER_RESTART;
112f38a4
RK
163}
164
32fea568
IM
165void __init
166sched_clock_register(u64 (*read)(void), int bits, unsigned long rate)
112f38a4 167{
5ae8aabe
SB
168 u64 res, wrap, new_mask, new_epoch, cyc, ns;
169 u32 new_mult, new_shift;
a08ca5d1 170 unsigned long r;
112f38a4 171 char r_unit;
1809bfa4 172 struct clock_read_data rd;
112f38a4 173
c115739d
RH
174 if (cd.rate > rate)
175 return;
176
2f0778af 177 WARN_ON(!irqs_disabled());
112f38a4 178
32fea568 179 /* Calculate the mult/shift to convert counter ticks to ns. */
5ae8aabe
SB
180 clocks_calc_mult_shift(&new_mult, &new_shift, rate, NSEC_PER_SEC, 3600);
181
182 new_mask = CLOCKSOURCE_MASK(bits);
8710e914 183 cd.rate = rate;
5ae8aabe 184
32fea568 185 /* Calculate how many nanosecs until we risk wrapping */
fb82fe2f 186 wrap = clocks_calc_max_nsecs(new_mult, new_shift, 0, new_mask, NULL);
8710e914 187 cd.wrap_kt = ns_to_ktime(wrap);
5ae8aabe 188
1809bfa4
DT
189 rd = cd.read_data[0];
190
32fea568 191 /* Update epoch for new counter and update 'epoch_ns' from old counter*/
5ae8aabe 192 new_epoch = read();
13dbeb38 193 cyc = cd.actual_read_sched_clock();
32fea568 194 ns = rd.epoch_ns + cyc_to_ns((cyc - rd.epoch_cyc) & rd.sched_clock_mask, rd.mult, rd.shift);
13dbeb38 195 cd.actual_read_sched_clock = read;
5ae8aabe 196
32fea568
IM
197 rd.read_sched_clock = read;
198 rd.sched_clock_mask = new_mask;
199 rd.mult = new_mult;
200 rd.shift = new_shift;
201 rd.epoch_cyc = new_epoch;
202 rd.epoch_ns = ns;
203
1809bfa4 204 update_clock_read_data(&rd);
112f38a4 205
1b8955bc
DE
206 if (sched_clock_timer.function != NULL) {
207 /* update timeout for clock wrap */
208 hrtimer_start(&sched_clock_timer, cd.wrap_kt, HRTIMER_MODE_REL);
209 }
210
112f38a4
RK
211 r = rate;
212 if (r >= 4000000) {
213 r /= 1000000;
214 r_unit = 'M';
32fea568
IM
215 } else {
216 if (r >= 1000) {
217 r /= 1000;
218 r_unit = 'k';
219 } else {
220 r_unit = ' ';
221 }
222 }
223
224 /* Calculate the ns resolution of this counter */
5ae8aabe
SB
225 res = cyc_to_ns(1ULL, new_mult, new_shift);
226
a08ca5d1
SB
227 pr_info("sched_clock: %u bits at %lu%cHz, resolution %lluns, wraps every %lluns\n",
228 bits, r, r_unit, res, wrap);
112f38a4 229
32fea568 230 /* Enable IRQ time accounting if we have a fast enough sched_clock() */
a42c3629
RK
231 if (irqtime > 0 || (irqtime == -1 && rate >= 1000000))
232 enable_sched_clock_irqtime();
233
d75f773c 234 pr_debug("Registered %pS as sched_clock source\n", read);
2f0778af
MZ
235}
236
5d2a4e91 237void __init generic_sched_clock_init(void)
211baa70 238{
2f0778af 239 /*
32fea568 240 * If no sched_clock() function has been provided at that point,
2f0778af
MZ
241 * make it the final one one.
242 */
13dbeb38 243 if (cd.actual_read_sched_clock == jiffy_sched_clock_read)
e7e3ff1b 244 sched_clock_register(jiffy_sched_clock_read, BITS_PER_LONG, HZ);
2f0778af 245
a08ca5d1
SB
246 update_sched_clock();
247
248 /*
249 * Start the timer to keep sched_clock() properly updated and
250 * sets the initial epoch.
251 */
252 hrtimer_init(&sched_clock_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
253 sched_clock_timer.function = sched_clock_poll;
254 hrtimer_start(&sched_clock_timer, cd.wrap_kt, HRTIMER_MODE_REL);
211baa70 255}
f153d017 256
13dbeb38
DT
257/*
258 * Clock read function for use when the clock is suspended.
259 *
260 * This function makes it appear to sched_clock() as if the clock
261 * stopped counting at its last update.
1809bfa4
DT
262 *
263 * This function must only be called from the critical
264 * section in sched_clock(). It relies on the read_seqcount_retry()
265 * at the end of the critical section to be sure we observe the
32fea568 266 * correct copy of 'epoch_cyc'.
13dbeb38
DT
267 */
268static u64 notrace suspended_sched_clock_read(void)
269{
e1e41b6c 270 unsigned int seq = raw_read_seqcount(&cd.seq);
1809bfa4
DT
271
272 return cd.read_data[seq & 1].epoch_cyc;
13dbeb38
DT
273}
274
3f2552f7 275int sched_clock_suspend(void)
f153d017 276{
1809bfa4 277 struct clock_read_data *rd = &cd.read_data[0];
cf7c9c17 278
f723aa18
SB
279 update_sched_clock();
280 hrtimer_cancel(&sched_clock_timer);
13dbeb38 281 rd->read_sched_clock = suspended_sched_clock_read;
32fea568 282
f153d017
RK
283 return 0;
284}
285
3f2552f7 286void sched_clock_resume(void)
237ec6f2 287{
1809bfa4 288 struct clock_read_data *rd = &cd.read_data[0];
cf7c9c17 289
13dbeb38 290 rd->epoch_cyc = cd.actual_read_sched_clock();
f723aa18 291 hrtimer_start(&sched_clock_timer, cd.wrap_kt, HRTIMER_MODE_REL);
13dbeb38 292 rd->read_sched_clock = cd.actual_read_sched_clock;
237ec6f2
CC
293}
294
f153d017 295static struct syscore_ops sched_clock_ops = {
32fea568
IM
296 .suspend = sched_clock_suspend,
297 .resume = sched_clock_resume,
f153d017
RK
298};
299
300static int __init sched_clock_syscore_init(void)
301{
302 register_syscore_ops(&sched_clock_ops);
32fea568 303
f153d017
RK
304 return 0;
305}
306device_initcall(sched_clock_syscore_init);