]> git.ipfire.org Git - thirdparty/linux.git/blame - kernel/time/timekeeping.c
time: Refactor accumulation of nsecs to secs
[thirdparty/linux.git] / kernel / time / timekeeping.c
CommitLineData
8524070b
JS
1/*
2 * linux/kernel/time/timekeeping.c
3 *
4 * Kernel timekeeping code and accessor functions
5 *
6 * This code was moved from linux/kernel/timer.c.
7 * Please see that file for copyright and history logs.
8 *
9 */
10
11#include <linux/module.h>
12#include <linux/interrupt.h>
13#include <linux/percpu.h>
14#include <linux/init.h>
15#include <linux/mm.h>
d43c36dc 16#include <linux/sched.h>
e1a85b2c 17#include <linux/syscore_ops.h>
8524070b
JS
18#include <linux/clocksource.h>
19#include <linux/jiffies.h>
20#include <linux/time.h>
21#include <linux/tick.h>
75c5158f 22#include <linux/stop_machine.h>
8524070b 23
155ec602
MS
24/* Structure holding internal timekeeping values. */
25struct timekeeper {
26 /* Current clocksource used for timekeeping. */
42e71e81 27 struct clocksource *clock;
058892e6 28 /* NTP adjusted clock multiplier */
42e71e81 29 u32 mult;
23ce7211 30 /* The shift value of the current clocksource. */
fee84c43 31 u32 shift;
155ec602 32 /* Number of clock cycles in one NTP interval. */
42e71e81 33 cycle_t cycle_interval;
155ec602 34 /* Number of clock shifted nano seconds in one NTP interval. */
42e71e81 35 u64 xtime_interval;
a386b5af 36 /* shifted nano seconds left over when rounding cycle_interval */
42e71e81 37 s64 xtime_remainder;
155ec602 38 /* Raw nano seconds accumulated per NTP interval. */
42e71e81 39 u32 raw_interval;
155ec602 40
1e75fa8b
JS
41 /* Current CLOCK_REALTIME time in seconds */
42 u64 xtime_sec;
43 /* Clock shifted nano seconds */
42e71e81 44 u64 xtime_nsec;
1e75fa8b 45
155ec602
MS
46 /* Difference between accumulated time and NTP time in ntp
47 * shifted nano seconds. */
42e71e81 48 s64 ntp_error;
23ce7211
MS
49 /* Shift conversion between clock shifted nano seconds and
50 * ntp shifted nano seconds. */
fee84c43 51 u32 ntp_error_shift;
00c5fb77 52
d9f7217a
JS
53 /*
54 * wall_to_monotonic is what we need to add to xtime (or xtime corrected
55 * for sub jiffie times) to get to monotonic time. Monotonic is pegged
56 * at zero at system boot time, so wall_to_monotonic will be negative,
57 * however, we will ALWAYS keep the tv_nsec part positive so we can use
58 * the usual normalization.
59 *
60 * wall_to_monotonic is moved after resume from suspend for the
61 * monotonic time not to jump. We need to add total_sleep_time to
62 * wall_to_monotonic to get the real boot based time offset.
63 *
64 * - wall_to_monotonic is no longer the boot time, getboottime must be
65 * used instead.
66 */
42e71e81 67 struct timespec wall_to_monotonic;
00c5fb77 68 /* time spent in suspend */
42e71e81 69 struct timespec total_sleep_time;
01f71b47 70 /* The raw monotonic time for the CLOCK_MONOTONIC_RAW posix clock. */
42e71e81 71 struct timespec raw_time;
5b9fe759 72 /* Offset clock monotonic -> clock realtime */
42e71e81 73 ktime_t offs_real;
5b9fe759 74 /* Offset clock monotonic -> clock boottime */
42e71e81 75 ktime_t offs_boot;
70471f2f 76 /* Seqlock for all timekeeper values */
42e71e81 77 seqlock_t lock;
155ec602
MS
78};
79
afa14e7c 80static struct timekeeper timekeeper;
155ec602 81
8fcce546
JS
82/*
83 * This read-write spinlock protects us from races in SMP while
84 * playing with xtime.
85 */
86__cacheline_aligned_in_smp DEFINE_SEQLOCK(xtime_lock);
87
8fcce546
JS
88/* flag for if timekeeping is suspended */
89int __read_mostly timekeeping_suspended;
90
1e75fa8b
JS
91static inline void tk_normalize_xtime(struct timekeeper *tk)
92{
93 while (tk->xtime_nsec >= ((u64)NSEC_PER_SEC << tk->shift)) {
94 tk->xtime_nsec -= (u64)NSEC_PER_SEC << tk->shift;
95 tk->xtime_sec++;
96 }
97}
98
99static struct timespec tk_xtime(struct timekeeper *tk)
100{
101 struct timespec ts;
102
103 ts.tv_sec = tk->xtime_sec;
104 ts.tv_nsec = (long)(tk->xtime_nsec >> tk->shift);
105 return ts;
106}
8fcce546 107
1e75fa8b
JS
108static void tk_set_xtime(struct timekeeper *tk, const struct timespec *ts)
109{
110 tk->xtime_sec = ts->tv_sec;
111 tk->xtime_nsec = ts->tv_nsec << tk->shift;
112}
113
114static void tk_xtime_add(struct timekeeper *tk, const struct timespec *ts)
115{
116 tk->xtime_sec += ts->tv_sec;
117 tk->xtime_nsec += ts->tv_nsec << tk->shift;
118}
8fcce546 119
155ec602
MS
120/**
121 * timekeeper_setup_internals - Set up internals to use clocksource clock.
122 *
123 * @clock: Pointer to clocksource.
124 *
125 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
126 * pair and interval request.
127 *
128 * Unless you're the timekeeping code, you should not be using this!
129 */
130static void timekeeper_setup_internals(struct clocksource *clock)
131{
132 cycle_t interval;
a386b5af 133 u64 tmp, ntpinterval;
1e75fa8b 134 struct clocksource *old_clock;
155ec602 135
1e75fa8b 136 old_clock = timekeeper.clock;
155ec602
MS
137 timekeeper.clock = clock;
138 clock->cycle_last = clock->read(clock);
139
140 /* Do the ns -> cycle conversion first, using original mult */
141 tmp = NTP_INTERVAL_LENGTH;
142 tmp <<= clock->shift;
a386b5af 143 ntpinterval = tmp;
0a544198
MS
144 tmp += clock->mult/2;
145 do_div(tmp, clock->mult);
155ec602
MS
146 if (tmp == 0)
147 tmp = 1;
148
149 interval = (cycle_t) tmp;
150 timekeeper.cycle_interval = interval;
151
152 /* Go back from cycles -> shifted ns */
153 timekeeper.xtime_interval = (u64) interval * clock->mult;
a386b5af 154 timekeeper.xtime_remainder = ntpinterval - timekeeper.xtime_interval;
155ec602 155 timekeeper.raw_interval =
0a544198 156 ((u64) interval * clock->mult) >> clock->shift;
155ec602 157
1e75fa8b
JS
158 /* if changing clocks, convert xtime_nsec shift units */
159 if (old_clock) {
160 int shift_change = clock->shift - old_clock->shift;
161 if (shift_change < 0)
162 timekeeper.xtime_nsec >>= -shift_change;
163 else
164 timekeeper.xtime_nsec <<= shift_change;
165 }
23ce7211 166 timekeeper.shift = clock->shift;
155ec602
MS
167
168 timekeeper.ntp_error = 0;
23ce7211 169 timekeeper.ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
0a544198
MS
170
171 /*
172 * The timekeeper keeps its own mult values for the currently
173 * active clocksource. These value will be adjusted via NTP
174 * to counteract clock drifting.
175 */
176 timekeeper.mult = clock->mult;
155ec602 177}
8524070b 178
2ba2a305
MS
179/* Timekeeper helper functions. */
180static inline s64 timekeeping_get_ns(void)
181{
182 cycle_t cycle_now, cycle_delta;
183 struct clocksource *clock;
1e75fa8b 184 s64 nsec;
2ba2a305
MS
185
186 /* read clocksource: */
187 clock = timekeeper.clock;
188 cycle_now = clock->read(clock);
189
190 /* calculate the delta since the last update_wall_time: */
191 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
192
1e75fa8b
JS
193 nsec = cycle_delta * timekeeper.mult + timekeeper.xtime_nsec;
194 return nsec >> timekeeper.shift;
2ba2a305
MS
195}
196
197static inline s64 timekeeping_get_ns_raw(void)
198{
199 cycle_t cycle_now, cycle_delta;
200 struct clocksource *clock;
201
202 /* read clocksource: */
203 clock = timekeeper.clock;
204 cycle_now = clock->read(clock);
205
206 /* calculate the delta since the last update_wall_time: */
207 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
208
c9fad429 209 /* return delta convert to nanoseconds. */
2ba2a305
MS
210 return clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
211}
212
5b9fe759
TG
213static void update_rt_offset(void)
214{
215 struct timespec tmp, *wtm = &timekeeper.wall_to_monotonic;
216
217 set_normalized_timespec(&tmp, -wtm->tv_sec, -wtm->tv_nsec);
218 timekeeper.offs_real = timespec_to_ktime(tmp);
219}
220
cc06268c
TG
221/* must hold write on timekeeper.lock */
222static void timekeeping_update(bool clearntp)
223{
1e75fa8b
JS
224 struct timespec xt;
225
cc06268c
TG
226 if (clearntp) {
227 timekeeper.ntp_error = 0;
228 ntp_clear();
229 }
5b9fe759 230 update_rt_offset();
1e75fa8b
JS
231 xt = tk_xtime(&timekeeper);
232 update_vsyscall(&xt, &timekeeper.wall_to_monotonic,
cc06268c
TG
233 timekeeper.clock, timekeeper.mult);
234}
235
236
8524070b 237/**
155ec602 238 * timekeeping_forward_now - update clock to the current time
8524070b 239 *
9a055117
RZ
240 * Forward the current clock to update its state since the last call to
241 * update_wall_time(). This is useful before significant clock changes,
242 * as it avoids having to deal with this time offset explicitly.
8524070b 243 */
155ec602 244static void timekeeping_forward_now(void)
8524070b
JS
245{
246 cycle_t cycle_now, cycle_delta;
155ec602 247 struct clocksource *clock;
9a055117 248 s64 nsec;
8524070b 249
155ec602 250 clock = timekeeper.clock;
a0f7d48b 251 cycle_now = clock->read(clock);
8524070b 252 cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
9a055117 253 clock->cycle_last = cycle_now;
8524070b 254
1e75fa8b 255 timekeeper.xtime_nsec += cycle_delta * timekeeper.mult;
7d27558c
JS
256
257 /* If arch requires, add in gettimeoffset() */
1e75fa8b 258 timekeeper.xtime_nsec += arch_gettimeoffset() << timekeeper.shift;
7d27558c 259
1e75fa8b 260 tk_normalize_xtime(&timekeeper);
2d42244a 261
0a544198 262 nsec = clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
01f71b47 263 timespec_add_ns(&timekeeper.raw_time, nsec);
8524070b
JS
264}
265
266/**
efd9ac86 267 * getnstimeofday - Returns the time of day in a timespec
8524070b
JS
268 * @ts: pointer to the timespec to be set
269 *
efd9ac86 270 * Returns the time of day in a timespec.
8524070b 271 */
efd9ac86 272void getnstimeofday(struct timespec *ts)
8524070b
JS
273{
274 unsigned long seq;
1e75fa8b 275 s64 nsecs = 0;
8524070b 276
1c5745aa
TG
277 WARN_ON(timekeeping_suspended);
278
8524070b 279 do {
70471f2f 280 seq = read_seqbegin(&timekeeper.lock);
8524070b 281
1e75fa8b
JS
282 ts->tv_sec = timekeeper.xtime_sec;
283 ts->tv_nsec = timekeeping_get_ns();
8524070b 284
7d27558c
JS
285 /* If arch requires, add in gettimeoffset() */
286 nsecs += arch_gettimeoffset();
287
70471f2f 288 } while (read_seqretry(&timekeeper.lock, seq));
8524070b
JS
289
290 timespec_add_ns(ts, nsecs);
291}
8524070b
JS
292EXPORT_SYMBOL(getnstimeofday);
293
951ed4d3
MS
294ktime_t ktime_get(void)
295{
951ed4d3
MS
296 unsigned int seq;
297 s64 secs, nsecs;
298
299 WARN_ON(timekeeping_suspended);
300
301 do {
70471f2f 302 seq = read_seqbegin(&timekeeper.lock);
1e75fa8b 303 secs = timekeeper.xtime_sec +
8ff2cb92 304 timekeeper.wall_to_monotonic.tv_sec;
1e75fa8b 305 nsecs = timekeeping_get_ns() +
8ff2cb92 306 timekeeper.wall_to_monotonic.tv_nsec;
d004e024
HP
307 /* If arch requires, add in gettimeoffset() */
308 nsecs += arch_gettimeoffset();
951ed4d3 309
70471f2f 310 } while (read_seqretry(&timekeeper.lock, seq));
951ed4d3
MS
311 /*
312 * Use ktime_set/ktime_add_ns to create a proper ktime on
313 * 32-bit architectures without CONFIG_KTIME_SCALAR.
314 */
315 return ktime_add_ns(ktime_set(secs, 0), nsecs);
316}
317EXPORT_SYMBOL_GPL(ktime_get);
318
319/**
320 * ktime_get_ts - get the monotonic clock in timespec format
321 * @ts: pointer to timespec variable
322 *
323 * The function calculates the monotonic clock from the realtime
324 * clock and the wall_to_monotonic offset and stores the result
325 * in normalized timespec format in the variable pointed to by @ts.
326 */
327void ktime_get_ts(struct timespec *ts)
328{
951ed4d3
MS
329 struct timespec tomono;
330 unsigned int seq;
951ed4d3
MS
331
332 WARN_ON(timekeeping_suspended);
333
334 do {
70471f2f 335 seq = read_seqbegin(&timekeeper.lock);
1e75fa8b
JS
336 ts->tv_sec = timekeeper.xtime_sec;
337 ts->tv_nsec = timekeeping_get_ns();
d9f7217a 338 tomono = timekeeper.wall_to_monotonic;
d004e024 339 /* If arch requires, add in gettimeoffset() */
1e75fa8b 340 ts->tv_nsec += arch_gettimeoffset();
951ed4d3 341
70471f2f 342 } while (read_seqretry(&timekeeper.lock, seq));
951ed4d3
MS
343
344 set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec,
1e75fa8b 345 ts->tv_nsec + tomono.tv_nsec);
951ed4d3
MS
346}
347EXPORT_SYMBOL_GPL(ktime_get_ts);
348
e2c18e49
AG
349#ifdef CONFIG_NTP_PPS
350
351/**
352 * getnstime_raw_and_real - get day and raw monotonic time in timespec format
353 * @ts_raw: pointer to the timespec to be set to raw monotonic time
354 * @ts_real: pointer to the timespec to be set to the time of day
355 *
356 * This function reads both the time of day and raw monotonic time at the
357 * same time atomically and stores the resulting timestamps in timespec
358 * format.
359 */
360void getnstime_raw_and_real(struct timespec *ts_raw, struct timespec *ts_real)
361{
362 unsigned long seq;
363 s64 nsecs_raw, nsecs_real;
364
365 WARN_ON_ONCE(timekeeping_suspended);
366
367 do {
368 u32 arch_offset;
369
70471f2f 370 seq = read_seqbegin(&timekeeper.lock);
e2c18e49 371
01f71b47 372 *ts_raw = timekeeper.raw_time;
1e75fa8b
JS
373 ts_real->tv_sec = timekeeper.xtime_sec;
374 ts_real->tv_nsec = 0;
e2c18e49
AG
375
376 nsecs_raw = timekeeping_get_ns_raw();
377 nsecs_real = timekeeping_get_ns();
378
379 /* If arch requires, add in gettimeoffset() */
380 arch_offset = arch_gettimeoffset();
381 nsecs_raw += arch_offset;
382 nsecs_real += arch_offset;
383
70471f2f 384 } while (read_seqretry(&timekeeper.lock, seq));
e2c18e49
AG
385
386 timespec_add_ns(ts_raw, nsecs_raw);
387 timespec_add_ns(ts_real, nsecs_real);
388}
389EXPORT_SYMBOL(getnstime_raw_and_real);
390
391#endif /* CONFIG_NTP_PPS */
392
8524070b
JS
393/**
394 * do_gettimeofday - Returns the time of day in a timeval
395 * @tv: pointer to the timeval to be set
396 *
efd9ac86 397 * NOTE: Users should be converted to using getnstimeofday()
8524070b
JS
398 */
399void do_gettimeofday(struct timeval *tv)
400{
401 struct timespec now;
402
efd9ac86 403 getnstimeofday(&now);
8524070b
JS
404 tv->tv_sec = now.tv_sec;
405 tv->tv_usec = now.tv_nsec/1000;
406}
8524070b 407EXPORT_SYMBOL(do_gettimeofday);
d239f49d 408
8524070b
JS
409/**
410 * do_settimeofday - Sets the time of day
411 * @tv: pointer to the timespec variable containing the new time
412 *
413 * Sets the time of day to the new time and update NTP and notify hrtimers
414 */
1e6d7679 415int do_settimeofday(const struct timespec *tv)
8524070b 416{
1e75fa8b 417 struct timespec ts_delta, xt;
92c1d3ed 418 unsigned long flags;
8524070b
JS
419
420 if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
421 return -EINVAL;
422
92c1d3ed 423 write_seqlock_irqsave(&timekeeper.lock, flags);
8524070b 424
155ec602 425 timekeeping_forward_now();
9a055117 426
1e75fa8b
JS
427 xt = tk_xtime(&timekeeper);
428 ts_delta.tv_sec = tv->tv_sec - xt.tv_sec;
429 ts_delta.tv_nsec = tv->tv_nsec - xt.tv_nsec;
430
d9f7217a
JS
431 timekeeper.wall_to_monotonic =
432 timespec_sub(timekeeper.wall_to_monotonic, ts_delta);
8524070b 433
1e75fa8b
JS
434 tk_set_xtime(&timekeeper, tv);
435
cc06268c 436 timekeeping_update(true);
8524070b 437
92c1d3ed 438 write_sequnlock_irqrestore(&timekeeper.lock, flags);
8524070b
JS
439
440 /* signal hrtimers about time change */
441 clock_was_set();
442
443 return 0;
444}
8524070b
JS
445EXPORT_SYMBOL(do_settimeofday);
446
c528f7c6
JS
447
448/**
449 * timekeeping_inject_offset - Adds or subtracts from the current time.
450 * @tv: pointer to the timespec variable containing the offset
451 *
452 * Adds or subtracts an offset value from the current time.
453 */
454int timekeeping_inject_offset(struct timespec *ts)
455{
92c1d3ed 456 unsigned long flags;
c528f7c6
JS
457
458 if ((unsigned long)ts->tv_nsec >= NSEC_PER_SEC)
459 return -EINVAL;
460
92c1d3ed 461 write_seqlock_irqsave(&timekeeper.lock, flags);
c528f7c6
JS
462
463 timekeeping_forward_now();
464
1e75fa8b
JS
465
466 tk_xtime_add(&timekeeper, ts);
d9f7217a
JS
467 timekeeper.wall_to_monotonic =
468 timespec_sub(timekeeper.wall_to_monotonic, *ts);
c528f7c6 469
cc06268c 470 timekeeping_update(true);
c528f7c6 471
92c1d3ed 472 write_sequnlock_irqrestore(&timekeeper.lock, flags);
c528f7c6
JS
473
474 /* signal hrtimers about time change */
475 clock_was_set();
476
477 return 0;
478}
479EXPORT_SYMBOL(timekeeping_inject_offset);
480
8524070b
JS
481/**
482 * change_clocksource - Swaps clocksources if a new one is available
483 *
484 * Accumulates current time interval and initializes new clocksource
485 */
75c5158f 486static int change_clocksource(void *data)
8524070b 487{
4614e6ad 488 struct clocksource *new, *old;
f695cf94 489 unsigned long flags;
8524070b 490
75c5158f 491 new = (struct clocksource *) data;
8524070b 492
f695cf94
JS
493 write_seqlock_irqsave(&timekeeper.lock, flags);
494
155ec602 495 timekeeping_forward_now();
75c5158f
MS
496 if (!new->enable || new->enable(new) == 0) {
497 old = timekeeper.clock;
498 timekeeper_setup_internals(new);
499 if (old->disable)
500 old->disable(old);
501 }
f695cf94
JS
502 timekeeping_update(true);
503
504 write_sequnlock_irqrestore(&timekeeper.lock, flags);
505
75c5158f
MS
506 return 0;
507}
8524070b 508
75c5158f
MS
509/**
510 * timekeeping_notify - Install a new clock source
511 * @clock: pointer to the clock source
512 *
513 * This function is called from clocksource.c after a new, better clock
514 * source has been registered. The caller holds the clocksource_mutex.
515 */
516void timekeeping_notify(struct clocksource *clock)
517{
518 if (timekeeper.clock == clock)
4614e6ad 519 return;
75c5158f 520 stop_machine(change_clocksource, clock, NULL);
8524070b 521 tick_clock_notify();
8524070b 522}
75c5158f 523
a40f262c
TG
524/**
525 * ktime_get_real - get the real (wall-) time in ktime_t format
526 *
527 * returns the time in ktime_t format
528 */
529ktime_t ktime_get_real(void)
530{
531 struct timespec now;
532
533 getnstimeofday(&now);
534
535 return timespec_to_ktime(now);
536}
537EXPORT_SYMBOL_GPL(ktime_get_real);
8524070b 538
2d42244a
JS
539/**
540 * getrawmonotonic - Returns the raw monotonic time in a timespec
541 * @ts: pointer to the timespec to be set
542 *
543 * Returns the raw monotonic time (completely un-modified by ntp)
544 */
545void getrawmonotonic(struct timespec *ts)
546{
547 unsigned long seq;
548 s64 nsecs;
2d42244a
JS
549
550 do {
70471f2f 551 seq = read_seqbegin(&timekeeper.lock);
2ba2a305 552 nsecs = timekeeping_get_ns_raw();
01f71b47 553 *ts = timekeeper.raw_time;
2d42244a 554
70471f2f 555 } while (read_seqretry(&timekeeper.lock, seq));
2d42244a
JS
556
557 timespec_add_ns(ts, nsecs);
558}
559EXPORT_SYMBOL(getrawmonotonic);
560
561
8524070b 562/**
cf4fc6cb 563 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
8524070b 564 */
cf4fc6cb 565int timekeeping_valid_for_hres(void)
8524070b
JS
566{
567 unsigned long seq;
568 int ret;
569
570 do {
70471f2f 571 seq = read_seqbegin(&timekeeper.lock);
8524070b 572
155ec602 573 ret = timekeeper.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
8524070b 574
70471f2f 575 } while (read_seqretry(&timekeeper.lock, seq));
8524070b
JS
576
577 return ret;
578}
579
98962465
JH
580/**
581 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
98962465
JH
582 */
583u64 timekeeping_max_deferment(void)
584{
70471f2f
JS
585 unsigned long seq;
586 u64 ret;
42e71e81 587
70471f2f
JS
588 do {
589 seq = read_seqbegin(&timekeeper.lock);
590
591 ret = timekeeper.clock->max_idle_ns;
592
593 } while (read_seqretry(&timekeeper.lock, seq));
594
595 return ret;
98962465
JH
596}
597
8524070b 598/**
d4f587c6 599 * read_persistent_clock - Return time from the persistent clock.
8524070b
JS
600 *
601 * Weak dummy function for arches that do not yet support it.
d4f587c6
MS
602 * Reads the time from the battery backed persistent clock.
603 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
8524070b
JS
604 *
605 * XXX - Do be sure to remove it once all arches implement it.
606 */
d4f587c6 607void __attribute__((weak)) read_persistent_clock(struct timespec *ts)
8524070b 608{
d4f587c6
MS
609 ts->tv_sec = 0;
610 ts->tv_nsec = 0;
8524070b
JS
611}
612
23970e38
MS
613/**
614 * read_boot_clock - Return time of the system start.
615 *
616 * Weak dummy function for arches that do not yet support it.
617 * Function to read the exact time the system has been started.
618 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
619 *
620 * XXX - Do be sure to remove it once all arches implement it.
621 */
622void __attribute__((weak)) read_boot_clock(struct timespec *ts)
623{
624 ts->tv_sec = 0;
625 ts->tv_nsec = 0;
626}
627
8524070b
JS
628/*
629 * timekeeping_init - Initializes the clocksource and common timekeeping values
630 */
631void __init timekeeping_init(void)
632{
155ec602 633 struct clocksource *clock;
8524070b 634 unsigned long flags;
23970e38 635 struct timespec now, boot;
d4f587c6
MS
636
637 read_persistent_clock(&now);
23970e38 638 read_boot_clock(&boot);
8524070b 639
70471f2f 640 seqlock_init(&timekeeper.lock);
8524070b 641
7dffa3c6 642 ntp_init();
8524070b 643
70471f2f 644 write_seqlock_irqsave(&timekeeper.lock, flags);
f1b82746 645 clock = clocksource_default_clock();
a0f7d48b
MS
646 if (clock->enable)
647 clock->enable(clock);
155ec602 648 timekeeper_setup_internals(clock);
8524070b 649
1e75fa8b 650 tk_set_xtime(&timekeeper, &now);
01f71b47
JS
651 timekeeper.raw_time.tv_sec = 0;
652 timekeeper.raw_time.tv_nsec = 0;
1e75fa8b
JS
653 if (boot.tv_sec == 0 && boot.tv_nsec == 0)
654 boot = tk_xtime(&timekeeper);
655
d9f7217a 656 set_normalized_timespec(&timekeeper.wall_to_monotonic,
23970e38 657 -boot.tv_sec, -boot.tv_nsec);
5b9fe759 658 update_rt_offset();
00c5fb77
JS
659 timekeeper.total_sleep_time.tv_sec = 0;
660 timekeeper.total_sleep_time.tv_nsec = 0;
70471f2f 661 write_sequnlock_irqrestore(&timekeeper.lock, flags);
8524070b
JS
662}
663
8524070b 664/* time in seconds when suspend began */
d4f587c6 665static struct timespec timekeeping_suspend_time;
8524070b 666
5b9fe759
TG
667static void update_sleep_time(struct timespec t)
668{
669 timekeeper.total_sleep_time = t;
670 timekeeper.offs_boot = timespec_to_ktime(t);
671}
672
304529b1
JS
673/**
674 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
675 * @delta: pointer to a timespec delta value
676 *
677 * Takes a timespec offset measuring a suspend interval and properly
678 * adds the sleep offset to the timekeeping variables.
679 */
680static void __timekeeping_inject_sleeptime(struct timespec *delta)
681{
cb5de2f8 682 if (!timespec_valid(delta)) {
cbaa5152 683 printk(KERN_WARNING "__timekeeping_inject_sleeptime: Invalid "
cb5de2f8
JS
684 "sleep delta value!\n");
685 return;
686 }
687
1e75fa8b 688 tk_xtime_add(&timekeeper, delta);
d9f7217a
JS
689 timekeeper.wall_to_monotonic =
690 timespec_sub(timekeeper.wall_to_monotonic, *delta);
5b9fe759 691 update_sleep_time(timespec_add(timekeeper.total_sleep_time, *delta));
304529b1
JS
692}
693
694
695/**
696 * timekeeping_inject_sleeptime - Adds suspend interval to timeekeeping values
697 * @delta: pointer to a timespec delta value
698 *
699 * This hook is for architectures that cannot support read_persistent_clock
700 * because their RTC/persistent clock is only accessible when irqs are enabled.
701 *
702 * This function should only be called by rtc_resume(), and allows
703 * a suspend offset to be injected into the timekeeping values.
704 */
705void timekeeping_inject_sleeptime(struct timespec *delta)
706{
92c1d3ed 707 unsigned long flags;
304529b1
JS
708 struct timespec ts;
709
710 /* Make sure we don't set the clock twice */
711 read_persistent_clock(&ts);
712 if (!(ts.tv_sec == 0 && ts.tv_nsec == 0))
713 return;
714
92c1d3ed 715 write_seqlock_irqsave(&timekeeper.lock, flags);
70471f2f 716
304529b1
JS
717 timekeeping_forward_now();
718
719 __timekeeping_inject_sleeptime(delta);
720
cc06268c 721 timekeeping_update(true);
304529b1 722
92c1d3ed 723 write_sequnlock_irqrestore(&timekeeper.lock, flags);
304529b1
JS
724
725 /* signal hrtimers about time change */
726 clock_was_set();
727}
728
729
8524070b
JS
730/**
731 * timekeeping_resume - Resumes the generic timekeeping subsystem.
8524070b
JS
732 *
733 * This is for the generic clocksource timekeeping.
734 * xtime/wall_to_monotonic/jiffies/etc are
735 * still managed by arch specific suspend/resume code.
736 */
e1a85b2c 737static void timekeeping_resume(void)
8524070b 738{
92c1d3ed 739 unsigned long flags;
d4f587c6
MS
740 struct timespec ts;
741
742 read_persistent_clock(&ts);
8524070b 743
d10ff3fb
TG
744 clocksource_resume();
745
92c1d3ed 746 write_seqlock_irqsave(&timekeeper.lock, flags);
8524070b 747
d4f587c6
MS
748 if (timespec_compare(&ts, &timekeeping_suspend_time) > 0) {
749 ts = timespec_sub(ts, timekeeping_suspend_time);
304529b1 750 __timekeeping_inject_sleeptime(&ts);
8524070b
JS
751 }
752 /* re-base the last cycle value */
155ec602
MS
753 timekeeper.clock->cycle_last = timekeeper.clock->read(timekeeper.clock);
754 timekeeper.ntp_error = 0;
8524070b 755 timekeeping_suspended = 0;
92c1d3ed 756 write_sequnlock_irqrestore(&timekeeper.lock, flags);
8524070b
JS
757
758 touch_softlockup_watchdog();
759
760 clockevents_notify(CLOCK_EVT_NOTIFY_RESUME, NULL);
761
762 /* Resume hrtimers */
b12a03ce 763 hrtimers_resume();
8524070b
JS
764}
765
e1a85b2c 766static int timekeeping_suspend(void)
8524070b 767{
92c1d3ed 768 unsigned long flags;
cb33217b
JS
769 struct timespec delta, delta_delta;
770 static struct timespec old_delta;
8524070b 771
d4f587c6 772 read_persistent_clock(&timekeeping_suspend_time);
3be90950 773
92c1d3ed 774 write_seqlock_irqsave(&timekeeper.lock, flags);
155ec602 775 timekeeping_forward_now();
8524070b 776 timekeeping_suspended = 1;
cb33217b
JS
777
778 /*
779 * To avoid drift caused by repeated suspend/resumes,
780 * which each can add ~1 second drift error,
781 * try to compensate so the difference in system time
782 * and persistent_clock time stays close to constant.
783 */
1e75fa8b 784 delta = timespec_sub(tk_xtime(&timekeeper), timekeeping_suspend_time);
cb33217b
JS
785 delta_delta = timespec_sub(delta, old_delta);
786 if (abs(delta_delta.tv_sec) >= 2) {
787 /*
788 * if delta_delta is too large, assume time correction
789 * has occured and set old_delta to the current delta.
790 */
791 old_delta = delta;
792 } else {
793 /* Otherwise try to adjust old_system to compensate */
794 timekeeping_suspend_time =
795 timespec_add(timekeeping_suspend_time, delta_delta);
796 }
92c1d3ed 797 write_sequnlock_irqrestore(&timekeeper.lock, flags);
8524070b
JS
798
799 clockevents_notify(CLOCK_EVT_NOTIFY_SUSPEND, NULL);
c54a42b1 800 clocksource_suspend();
8524070b
JS
801
802 return 0;
803}
804
805/* sysfs resume/suspend bits for timekeeping */
e1a85b2c 806static struct syscore_ops timekeeping_syscore_ops = {
8524070b
JS
807 .resume = timekeeping_resume,
808 .suspend = timekeeping_suspend,
8524070b
JS
809};
810
e1a85b2c 811static int __init timekeeping_init_ops(void)
8524070b 812{
e1a85b2c
RW
813 register_syscore_ops(&timekeeping_syscore_ops);
814 return 0;
8524070b
JS
815}
816
e1a85b2c 817device_initcall(timekeeping_init_ops);
8524070b
JS
818
819/*
820 * If the error is already larger, we look ahead even further
821 * to compensate for late or lost adjustments.
822 */
155ec602 823static __always_inline int timekeeping_bigadjust(s64 error, s64 *interval,
8524070b
JS
824 s64 *offset)
825{
826 s64 tick_error, i;
827 u32 look_ahead, adj;
828 s32 error2, mult;
829
830 /*
831 * Use the current error value to determine how much to look ahead.
832 * The larger the error the slower we adjust for it to avoid problems
833 * with losing too many ticks, otherwise we would overadjust and
834 * produce an even larger error. The smaller the adjustment the
835 * faster we try to adjust for it, as lost ticks can do less harm
3eb05676 836 * here. This is tuned so that an error of about 1 msec is adjusted
8524070b
JS
837 * within about 1 sec (or 2^20 nsec in 2^SHIFT_HZ ticks).
838 */
155ec602 839 error2 = timekeeper.ntp_error >> (NTP_SCALE_SHIFT + 22 - 2 * SHIFT_HZ);
8524070b
JS
840 error2 = abs(error2);
841 for (look_ahead = 0; error2 > 0; look_ahead++)
842 error2 >>= 2;
843
844 /*
845 * Now calculate the error in (1 << look_ahead) ticks, but first
846 * remove the single look ahead already included in the error.
847 */
ea7cf49a 848 tick_error = ntp_tick_length() >> (timekeeper.ntp_error_shift + 1);
155ec602 849 tick_error -= timekeeper.xtime_interval >> 1;
8524070b
JS
850 error = ((error - tick_error) >> look_ahead) + tick_error;
851
852 /* Finally calculate the adjustment shift value. */
853 i = *interval;
854 mult = 1;
855 if (error < 0) {
856 error = -error;
857 *interval = -*interval;
858 *offset = -*offset;
859 mult = -1;
860 }
861 for (adj = 0; error > i; adj++)
862 error >>= 1;
863
864 *interval <<= adj;
865 *offset <<= adj;
866 return mult << adj;
867}
868
869/*
870 * Adjust the multiplier to reduce the error value,
871 * this is optimized for the most common adjustments of -1,0,1,
872 * for other values we can do a bit more work.
873 */
155ec602 874static void timekeeping_adjust(s64 offset)
8524070b 875{
155ec602 876 s64 error, interval = timekeeper.cycle_interval;
8524070b
JS
877 int adj;
878
c2bc1111 879 /*
88b28adf 880 * The point of this is to check if the error is greater than half
c2bc1111
JS
881 * an interval.
882 *
883 * First we shift it down from NTP_SHIFT to clocksource->shifted nsecs.
884 *
885 * Note we subtract one in the shift, so that error is really error*2.
3f86f28f
JS
886 * This "saves" dividing(shifting) interval twice, but keeps the
887 * (error > interval) comparison as still measuring if error is
88b28adf 888 * larger than half an interval.
c2bc1111 889 *
3f86f28f 890 * Note: It does not "save" on aggravation when reading the code.
c2bc1111 891 */
23ce7211 892 error = timekeeper.ntp_error >> (timekeeper.ntp_error_shift - 1);
8524070b 893 if (error > interval) {
c2bc1111
JS
894 /*
895 * We now divide error by 4(via shift), which checks if
88b28adf 896 * the error is greater than twice the interval.
c2bc1111
JS
897 * If it is greater, we need a bigadjust, if its smaller,
898 * we can adjust by 1.
899 */
8524070b 900 error >>= 2;
c2bc1111
JS
901 /*
902 * XXX - In update_wall_time, we round up to the next
903 * nanosecond, and store the amount rounded up into
904 * the error. This causes the likely below to be unlikely.
905 *
3f86f28f 906 * The proper fix is to avoid rounding up by using
c2bc1111
JS
907 * the high precision timekeeper.xtime_nsec instead of
908 * xtime.tv_nsec everywhere. Fixing this will take some
909 * time.
910 */
8524070b
JS
911 if (likely(error <= interval))
912 adj = 1;
913 else
155ec602 914 adj = timekeeping_bigadjust(error, &interval, &offset);
8524070b 915 } else if (error < -interval) {
c2bc1111 916 /* See comment above, this is just switched for the negative */
8524070b
JS
917 error >>= 2;
918 if (likely(error >= -interval)) {
919 adj = -1;
920 interval = -interval;
921 offset = -offset;
922 } else
155ec602 923 adj = timekeeping_bigadjust(error, &interval, &offset);
c2bc1111 924 } else /* No adjustment needed */
8524070b
JS
925 return;
926
e919cfd4
JS
927 if (unlikely(timekeeper.clock->maxadj &&
928 (timekeeper.mult + adj >
929 timekeeper.clock->mult + timekeeper.clock->maxadj))) {
930 printk_once(KERN_WARNING
931 "Adjusting %s more than 11%% (%ld vs %ld)\n",
d65670a7
JS
932 timekeeper.clock->name, (long)timekeeper.mult + adj,
933 (long)timekeeper.clock->mult +
934 timekeeper.clock->maxadj);
e919cfd4 935 }
c2bc1111
JS
936 /*
937 * So the following can be confusing.
938 *
939 * To keep things simple, lets assume adj == 1 for now.
940 *
941 * When adj != 1, remember that the interval and offset values
942 * have been appropriately scaled so the math is the same.
943 *
944 * The basic idea here is that we're increasing the multiplier
945 * by one, this causes the xtime_interval to be incremented by
946 * one cycle_interval. This is because:
947 * xtime_interval = cycle_interval * mult
948 * So if mult is being incremented by one:
949 * xtime_interval = cycle_interval * (mult + 1)
950 * Its the same as:
951 * xtime_interval = (cycle_interval * mult) + cycle_interval
952 * Which can be shortened to:
953 * xtime_interval += cycle_interval
954 *
955 * So offset stores the non-accumulated cycles. Thus the current
956 * time (in shifted nanoseconds) is:
957 * now = (offset * adj) + xtime_nsec
958 * Now, even though we're adjusting the clock frequency, we have
959 * to keep time consistent. In other words, we can't jump back
960 * in time, and we also want to avoid jumping forward in time.
961 *
962 * So given the same offset value, we need the time to be the same
963 * both before and after the freq adjustment.
964 * now = (offset * adj_1) + xtime_nsec_1
965 * now = (offset * adj_2) + xtime_nsec_2
966 * So:
967 * (offset * adj_1) + xtime_nsec_1 =
968 * (offset * adj_2) + xtime_nsec_2
969 * And we know:
970 * adj_2 = adj_1 + 1
971 * So:
972 * (offset * adj_1) + xtime_nsec_1 =
973 * (offset * (adj_1+1)) + xtime_nsec_2
974 * (offset * adj_1) + xtime_nsec_1 =
975 * (offset * adj_1) + offset + xtime_nsec_2
976 * Canceling the sides:
977 * xtime_nsec_1 = offset + xtime_nsec_2
978 * Which gives us:
979 * xtime_nsec_2 = xtime_nsec_1 - offset
980 * Which simplfies to:
981 * xtime_nsec -= offset
982 *
983 * XXX - TODO: Doc ntp_error calculation.
984 */
0a544198 985 timekeeper.mult += adj;
155ec602
MS
986 timekeeper.xtime_interval += interval;
987 timekeeper.xtime_nsec -= offset;
988 timekeeper.ntp_error -= (interval - offset) <<
23ce7211 989 timekeeper.ntp_error_shift;
8524070b
JS
990}
991
83f57a11 992
1f4f9487
JS
993/**
994 * accumulate_nsecs_to_secs - Accumulates nsecs into secs
995 *
996 * Helper function that accumulates a the nsecs greater then a second
997 * from the xtime_nsec field to the xtime_secs field.
998 * It also calls into the NTP code to handle leapsecond processing.
999 *
1000 */
1001static inline void accumulate_nsecs_to_secs(struct timekeeper *tk)
1002{
1003 u64 nsecps = (u64)NSEC_PER_SEC << tk->shift;
1004
1005 while (tk->xtime_nsec >= nsecps) {
1006 int leap;
1007
1008 tk->xtime_nsec -= nsecps;
1009 tk->xtime_sec++;
1010
1011 /* Figure out if its a leap sec and apply if needed */
1012 leap = second_overflow(tk->xtime_sec);
1013 tk->xtime_sec += leap;
1014 tk->wall_to_monotonic.tv_sec -= leap;
1015 if (leap)
1016 clock_was_set_delayed();
1017
1018 }
1019}
1020
1021
a092ff0f
JS
1022/**
1023 * logarithmic_accumulation - shifted accumulation of cycles
1024 *
1025 * This functions accumulates a shifted interval of cycles into
1026 * into a shifted interval nanoseconds. Allows for O(log) accumulation
1027 * loop.
1028 *
1029 * Returns the unconsumed cycles.
1030 */
fee84c43 1031static cycle_t logarithmic_accumulation(cycle_t offset, u32 shift)
a092ff0f 1032{
deda2e81 1033 u64 raw_nsecs;
a092ff0f 1034
88b28adf 1035 /* If the offset is smaller than a shifted interval, do nothing */
a092ff0f
JS
1036 if (offset < timekeeper.cycle_interval<<shift)
1037 return offset;
1038
1039 /* Accumulate one shifted interval */
1040 offset -= timekeeper.cycle_interval << shift;
1041 timekeeper.clock->cycle_last += timekeeper.cycle_interval << shift;
1042
1043 timekeeper.xtime_nsec += timekeeper.xtime_interval << shift;
1f4f9487
JS
1044
1045 accumulate_nsecs_to_secs(&timekeeper);
a092ff0f 1046
deda2e81
JW
1047 /* Accumulate raw time */
1048 raw_nsecs = timekeeper.raw_interval << shift;
01f71b47 1049 raw_nsecs += timekeeper.raw_time.tv_nsec;
c7dcf87a
JS
1050 if (raw_nsecs >= NSEC_PER_SEC) {
1051 u64 raw_secs = raw_nsecs;
1052 raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
01f71b47 1053 timekeeper.raw_time.tv_sec += raw_secs;
a092ff0f 1054 }
01f71b47 1055 timekeeper.raw_time.tv_nsec = raw_nsecs;
a092ff0f
JS
1056
1057 /* Accumulate error between NTP and clock interval */
ea7cf49a 1058 timekeeper.ntp_error += ntp_tick_length() << shift;
a386b5af
KP
1059 timekeeper.ntp_error -=
1060 (timekeeper.xtime_interval + timekeeper.xtime_remainder) <<
a092ff0f
JS
1061 (timekeeper.ntp_error_shift + shift);
1062
1063 return offset;
1064}
1065
83f57a11 1066
8524070b
JS
1067/**
1068 * update_wall_time - Uses the current clocksource to increment the wall time
1069 *
8524070b 1070 */
871cf1e5 1071static void update_wall_time(void)
8524070b 1072{
155ec602 1073 struct clocksource *clock;
8524070b 1074 cycle_t offset;
a092ff0f 1075 int shift = 0, maxshift;
70471f2f 1076 unsigned long flags;
1e75fa8b 1077 s64 remainder;
70471f2f
JS
1078
1079 write_seqlock_irqsave(&timekeeper.lock, flags);
8524070b
JS
1080
1081 /* Make sure we're fully resumed: */
1082 if (unlikely(timekeeping_suspended))
70471f2f 1083 goto out;
8524070b 1084
155ec602 1085 clock = timekeeper.clock;
592913ec
JS
1086
1087#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
155ec602 1088 offset = timekeeper.cycle_interval;
592913ec
JS
1089#else
1090 offset = (clock->read(clock) - clock->cycle_last) & clock->mask;
8524070b 1091#endif
8524070b 1092
a092ff0f
JS
1093 /*
1094 * With NO_HZ we may have to accumulate many cycle_intervals
1095 * (think "ticks") worth of time at once. To do this efficiently,
1096 * we calculate the largest doubling multiple of cycle_intervals
88b28adf 1097 * that is smaller than the offset. We then accumulate that
a092ff0f
JS
1098 * chunk in one go, and then try to consume the next smaller
1099 * doubled multiple.
8524070b 1100 */
a092ff0f
JS
1101 shift = ilog2(offset) - ilog2(timekeeper.cycle_interval);
1102 shift = max(0, shift);
88b28adf 1103 /* Bound shift to one less than what overflows tick_length */
ea7cf49a 1104 maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
a092ff0f 1105 shift = min(shift, maxshift);
155ec602 1106 while (offset >= timekeeper.cycle_interval) {
a092ff0f 1107 offset = logarithmic_accumulation(offset, shift);
830ec045
JS
1108 if(offset < timekeeper.cycle_interval<<shift)
1109 shift--;
8524070b
JS
1110 }
1111
1112 /* correct the clock when NTP error is too big */
155ec602 1113 timekeeping_adjust(offset);
8524070b 1114
6c9bacb4
JS
1115 /*
1116 * Since in the loop above, we accumulate any amount of time
1117 * in xtime_nsec over a second into xtime.tv_sec, its possible for
1118 * xtime_nsec to be fairly small after the loop. Further, if we're
155ec602 1119 * slightly speeding the clocksource up in timekeeping_adjust(),
6c9bacb4
JS
1120 * its possible the required corrective factor to xtime_nsec could
1121 * cause it to underflow.
1122 *
1123 * Now, we cannot simply roll the accumulated second back, since
1124 * the NTP subsystem has been notified via second_overflow. So
1125 * instead we push xtime_nsec forward by the amount we underflowed,
1126 * and add that amount into the error.
1127 *
1128 * We'll correct this error next time through this function, when
1129 * xtime_nsec is not as small.
1130 */
155ec602
MS
1131 if (unlikely((s64)timekeeper.xtime_nsec < 0)) {
1132 s64 neg = -(s64)timekeeper.xtime_nsec;
1133 timekeeper.xtime_nsec = 0;
23ce7211 1134 timekeeper.ntp_error += neg << timekeeper.ntp_error_shift;
6c9bacb4
JS
1135 }
1136
6a867a39 1137 /*
1e75fa8b
JS
1138 * Store only full nanoseconds into xtime_nsec after rounding
1139 * it up and add the remainder to the error difference.
1140 * XXX - This is necessary to avoid small 1ns inconsistnecies caused
1141 * by truncating the remainder in vsyscalls. However, it causes
1142 * additional work to be done in timekeeping_adjust(). Once
1143 * the vsyscall implementations are converted to use xtime_nsec
1144 * (shifted nanoseconds), this can be killed.
1145 */
1146 remainder = timekeeper.xtime_nsec & ((1 << timekeeper.shift) - 1);
1147 timekeeper.xtime_nsec -= remainder;
1148 timekeeper.xtime_nsec += 1 << timekeeper.shift;
1149 timekeeper.ntp_error += remainder << timekeeper.ntp_error_shift;
8524070b 1150
6a867a39
JS
1151 /*
1152 * Finally, make sure that after the rounding
1e75fa8b 1153 * xtime_nsec isn't larger than NSEC_PER_SEC
6a867a39 1154 */
1f4f9487 1155 accumulate_nsecs_to_secs(&timekeeper);
83f57a11 1156
cc06268c 1157 timekeeping_update(false);
70471f2f
JS
1158
1159out:
1160 write_sequnlock_irqrestore(&timekeeper.lock, flags);
1161
8524070b 1162}
7c3f1a57
TJ
1163
1164/**
1165 * getboottime - Return the real time of system boot.
1166 * @ts: pointer to the timespec to be set
1167 *
abb3a4ea 1168 * Returns the wall-time of boot in a timespec.
7c3f1a57
TJ
1169 *
1170 * This is based on the wall_to_monotonic offset and the total suspend
1171 * time. Calls to settimeofday will affect the value returned (which
1172 * basically means that however wrong your real time clock is at boot time,
1173 * you get the right time here).
1174 */
1175void getboottime(struct timespec *ts)
1176{
36d47481 1177 struct timespec boottime = {
d9f7217a 1178 .tv_sec = timekeeper.wall_to_monotonic.tv_sec +
00c5fb77 1179 timekeeper.total_sleep_time.tv_sec,
d9f7217a 1180 .tv_nsec = timekeeper.wall_to_monotonic.tv_nsec +
00c5fb77 1181 timekeeper.total_sleep_time.tv_nsec
36d47481 1182 };
d4f587c6 1183
d4f587c6 1184 set_normalized_timespec(ts, -boottime.tv_sec, -boottime.tv_nsec);
7c3f1a57 1185}
c93d89f3 1186EXPORT_SYMBOL_GPL(getboottime);
7c3f1a57 1187
abb3a4ea
JS
1188
1189/**
1190 * get_monotonic_boottime - Returns monotonic time since boot
1191 * @ts: pointer to the timespec to be set
1192 *
1193 * Returns the monotonic time since boot in a timespec.
1194 *
1195 * This is similar to CLOCK_MONTONIC/ktime_get_ts, but also
1196 * includes the time spent in suspend.
1197 */
1198void get_monotonic_boottime(struct timespec *ts)
1199{
1200 struct timespec tomono, sleep;
1201 unsigned int seq;
abb3a4ea
JS
1202
1203 WARN_ON(timekeeping_suspended);
1204
1205 do {
70471f2f 1206 seq = read_seqbegin(&timekeeper.lock);
1e75fa8b
JS
1207 ts->tv_sec = timekeeper.xtime_sec;
1208 ts->tv_nsec = timekeeping_get_ns();
d9f7217a 1209 tomono = timekeeper.wall_to_monotonic;
00c5fb77 1210 sleep = timekeeper.total_sleep_time;
abb3a4ea 1211
70471f2f 1212 } while (read_seqretry(&timekeeper.lock, seq));
abb3a4ea
JS
1213
1214 set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec + sleep.tv_sec,
1e75fa8b 1215 ts->tv_nsec + tomono.tv_nsec + sleep.tv_nsec);
abb3a4ea
JS
1216}
1217EXPORT_SYMBOL_GPL(get_monotonic_boottime);
1218
1219/**
1220 * ktime_get_boottime - Returns monotonic time since boot in a ktime
1221 *
1222 * Returns the monotonic time since boot in a ktime
1223 *
1224 * This is similar to CLOCK_MONTONIC/ktime_get, but also
1225 * includes the time spent in suspend.
1226 */
1227ktime_t ktime_get_boottime(void)
1228{
1229 struct timespec ts;
1230
1231 get_monotonic_boottime(&ts);
1232 return timespec_to_ktime(ts);
1233}
1234EXPORT_SYMBOL_GPL(ktime_get_boottime);
1235
7c3f1a57
TJ
1236/**
1237 * monotonic_to_bootbased - Convert the monotonic time to boot based.
1238 * @ts: pointer to the timespec to be converted
1239 */
1240void monotonic_to_bootbased(struct timespec *ts)
1241{
00c5fb77 1242 *ts = timespec_add(*ts, timekeeper.total_sleep_time);
7c3f1a57 1243}
c93d89f3 1244EXPORT_SYMBOL_GPL(monotonic_to_bootbased);
2c6b47de 1245
17c38b74
JS
1246unsigned long get_seconds(void)
1247{
1e75fa8b 1248 return timekeeper.xtime_sec;
17c38b74
JS
1249}
1250EXPORT_SYMBOL(get_seconds);
1251
da15cfda
JS
1252struct timespec __current_kernel_time(void)
1253{
1e75fa8b 1254 return tk_xtime(&timekeeper);
da15cfda 1255}
17c38b74 1256
2c6b47de
JS
1257struct timespec current_kernel_time(void)
1258{
1259 struct timespec now;
1260 unsigned long seq;
1261
1262 do {
70471f2f 1263 seq = read_seqbegin(&timekeeper.lock);
83f57a11 1264
1e75fa8b 1265 now = tk_xtime(&timekeeper);
70471f2f 1266 } while (read_seqretry(&timekeeper.lock, seq));
2c6b47de
JS
1267
1268 return now;
1269}
2c6b47de 1270EXPORT_SYMBOL(current_kernel_time);
da15cfda
JS
1271
1272struct timespec get_monotonic_coarse(void)
1273{
1274 struct timespec now, mono;
1275 unsigned long seq;
1276
1277 do {
70471f2f 1278 seq = read_seqbegin(&timekeeper.lock);
83f57a11 1279
1e75fa8b 1280 now = tk_xtime(&timekeeper);
d9f7217a 1281 mono = timekeeper.wall_to_monotonic;
70471f2f 1282 } while (read_seqretry(&timekeeper.lock, seq));
da15cfda
JS
1283
1284 set_normalized_timespec(&now, now.tv_sec + mono.tv_sec,
1285 now.tv_nsec + mono.tv_nsec);
1286 return now;
1287}
871cf1e5
TH
1288
1289/*
1290 * The 64-bit jiffies value is not atomic - you MUST NOT read it
1291 * without sampling the sequence number in xtime_lock.
1292 * jiffies is defined in the linker script...
1293 */
1294void do_timer(unsigned long ticks)
1295{
1296 jiffies_64 += ticks;
1297 update_wall_time();
1298 calc_global_load(ticks);
1299}
48cf76f7
TH
1300
1301/**
314ac371
JS
1302 * get_xtime_and_monotonic_and_sleep_offset() - get xtime, wall_to_monotonic,
1303 * and sleep offsets.
48cf76f7
TH
1304 * @xtim: pointer to timespec to be set with xtime
1305 * @wtom: pointer to timespec to be set with wall_to_monotonic
314ac371 1306 * @sleep: pointer to timespec to be set with time in suspend
48cf76f7 1307 */
314ac371
JS
1308void get_xtime_and_monotonic_and_sleep_offset(struct timespec *xtim,
1309 struct timespec *wtom, struct timespec *sleep)
48cf76f7
TH
1310{
1311 unsigned long seq;
1312
1313 do {
70471f2f 1314 seq = read_seqbegin(&timekeeper.lock);
1e75fa8b 1315 *xtim = tk_xtime(&timekeeper);
d9f7217a 1316 *wtom = timekeeper.wall_to_monotonic;
00c5fb77 1317 *sleep = timekeeper.total_sleep_time;
70471f2f 1318 } while (read_seqretry(&timekeeper.lock, seq));
48cf76f7 1319}
f0af911a 1320
f6c06abf
TG
1321#ifdef CONFIG_HIGH_RES_TIMERS
1322/**
1323 * ktime_get_update_offsets - hrtimer helper
1324 * @offs_real: pointer to storage for monotonic -> realtime offset
1325 * @offs_boot: pointer to storage for monotonic -> boottime offset
1326 *
1327 * Returns current monotonic time and updates the offsets
1328 * Called from hrtimer_interupt() or retrigger_next_event()
1329 */
1330ktime_t ktime_get_update_offsets(ktime_t *offs_real, ktime_t *offs_boot)
1331{
1332 ktime_t now;
1333 unsigned int seq;
1334 u64 secs, nsecs;
1335
1336 do {
1337 seq = read_seqbegin(&timekeeper.lock);
1338
1e75fa8b
JS
1339 secs = timekeeper.xtime_sec;
1340 nsecs = timekeeping_get_ns();
f6c06abf
TG
1341 /* If arch requires, add in gettimeoffset() */
1342 nsecs += arch_gettimeoffset();
1343
1344 *offs_real = timekeeper.offs_real;
1345 *offs_boot = timekeeper.offs_boot;
1346 } while (read_seqretry(&timekeeper.lock, seq));
1347
1348 now = ktime_add_ns(ktime_set(secs, 0), nsecs);
1349 now = ktime_sub(now, *offs_real);
1350 return now;
1351}
1352#endif
1353
99ee5315
TG
1354/**
1355 * ktime_get_monotonic_offset() - get wall_to_monotonic in ktime_t format
1356 */
1357ktime_t ktime_get_monotonic_offset(void)
1358{
1359 unsigned long seq;
1360 struct timespec wtom;
1361
1362 do {
70471f2f 1363 seq = read_seqbegin(&timekeeper.lock);
d9f7217a 1364 wtom = timekeeper.wall_to_monotonic;
70471f2f
JS
1365 } while (read_seqretry(&timekeeper.lock, seq));
1366
99ee5315
TG
1367 return timespec_to_ktime(wtom);
1368}
a80b83b7
JS
1369EXPORT_SYMBOL_GPL(ktime_get_monotonic_offset);
1370
99ee5315 1371
f0af911a
TH
1372/**
1373 * xtime_update() - advances the timekeeping infrastructure
1374 * @ticks: number of ticks, that have elapsed since the last call.
1375 *
1376 * Must be called with interrupts disabled.
1377 */
1378void xtime_update(unsigned long ticks)
1379{
1380 write_seqlock(&xtime_lock);
1381 do_timer(ticks);
1382 write_sequnlock(&xtime_lock);
1383}