]> git.ipfire.org Git - thirdparty/linux.git/blame - kernel/trace/trace_events_user.c
Merge tag 'ovl-update-6.7' of git://git.kernel.org/pub/scm/linux/kernel/git/overlayfs/vfs
[thirdparty/linux.git] / kernel / trace / trace_events_user.c
CommitLineData
7f5a08c7
BB
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (c) 2021, Microsoft Corporation.
4 *
5 * Authors:
6 * Beau Belgrave <beaub@linux.microsoft.com>
7 */
8
9#include <linux/bitmap.h>
10#include <linux/cdev.h>
11#include <linux/hashtable.h>
12#include <linux/list.h>
13#include <linux/io.h>
14#include <linux/uio.h>
15#include <linux/ioctl.h>
16#include <linux/jhash.h>
d401b724 17#include <linux/refcount.h>
7f5a08c7
BB
18#include <linux/trace_events.h>
19#include <linux/tracefs.h>
20#include <linux/types.h>
21#include <linux/uaccess.h>
72357590 22#include <linux/highmem.h>
ce58e96e 23#include <linux/init.h>
5cfff569 24#include <linux/user_events.h>
7f5a08c7 25#include "trace_dynevent.h"
4bec284c
SRG
26#include "trace_output.h"
27#include "trace.h"
7f5a08c7
BB
28
29#define USER_EVENTS_PREFIX_LEN (sizeof(USER_EVENTS_PREFIX)-1)
30
31#define FIELD_DEPTH_TYPE 0
32#define FIELD_DEPTH_NAME 1
33#define FIELD_DEPTH_SIZE 2
34
7f5a08c7
BB
35/* Limit how long of an event name plus args within the subsystem. */
36#define MAX_EVENT_DESC 512
37#define EVENT_NAME(user_event) ((user_event)->tracepoint.name)
38#define MAX_FIELD_ARRAY_SIZE 1024
39
39d6d08b
BB
40/*
41 * Internal bits (kernel side only) to keep track of connected probes:
42 * These are used when status is requested in text form about an event. These
43 * bits are compared against an internal byte on the event to determine which
44 * probes to print out to the user.
45 *
46 * These do not reflect the mapped bytes between the user and kernel space.
47 */
48#define EVENT_STATUS_FTRACE BIT(0)
49#define EVENT_STATUS_PERF BIT(1)
50#define EVENT_STATUS_OTHER BIT(7)
51
e5d27181 52/*
72357590
BB
53 * Stores the system name, tables, and locks for a group of events. This
54 * allows isolation for events by various means.
e5d27181
BB
55 */
56struct user_event_group {
a4c40c13
BB
57 char *system_name;
58 struct hlist_node node;
59 struct mutex reg_mutex;
e5d27181 60 DECLARE_HASHTABLE(register_table, 8);
e5d27181 61};
7f5a08c7 62
e5d27181
BB
63/* Group for init_user_ns mapping, top-most group */
64static struct user_event_group *init_group;
7f5a08c7 65
ce58e96e
BB
66/* Max allowed events for the whole system */
67static unsigned int max_user_events = 32768;
68
69/* Current number of events on the whole system */
70static unsigned int current_user_events;
71
7f5a08c7
BB
72/*
73 * Stores per-event properties, as users register events
74 * within a file a user_event might be created if it does not
75 * already exist. These are globally used and their lifetime
76 * is tied to the refcnt member. These cannot go away until the
d401b724 77 * refcnt reaches one.
7f5a08c7
BB
78 */
79struct user_event {
a4c40c13
BB
80 struct user_event_group *group;
81 struct tracepoint tracepoint;
82 struct trace_event_call call;
83 struct trace_event_class class;
84 struct dyn_event devent;
85 struct hlist_node node;
86 struct list_head fields;
87 struct list_head validators;
a65442ed 88 struct work_struct put_work;
a4c40c13
BB
89 refcount_t refcnt;
90 int min_size;
b08d7258 91 int reg_flags;
a4c40c13 92 char status;
7f5a08c7
BB
93};
94
72357590
BB
95/*
96 * Stores per-mm/event properties that enable an address to be
97 * updated properly for each task. As tasks are forked, we use
98 * these to track enablement sites that are tied to an event.
99 */
100struct user_event_enabler {
dcbd1ac2 101 struct list_head mm_enablers_link;
a4c40c13
BB
102 struct user_event *event;
103 unsigned long addr;
72357590
BB
104
105 /* Track enable bit, flags, etc. Aligned for bitops. */
ee7751b5 106 unsigned long values;
72357590
BB
107};
108
109/* Bits 0-5 are for the bit to update upon enable/disable (0-63 allowed) */
110#define ENABLE_VAL_BIT_MASK 0x3F
111
81f8fb65
BB
112/* Bit 6 is for faulting status of enablement */
113#define ENABLE_VAL_FAULTING_BIT 6
114
dcb8177c
BB
115/* Bit 7 is for freeing status of enablement */
116#define ENABLE_VAL_FREEING_BIT 7
117
2de9ee94
BB
118/* Bit 8 is for marking 32-bit on 64-bit */
119#define ENABLE_VAL_32_ON_64_BIT 8
120
121#define ENABLE_VAL_COMPAT_MASK (1 << ENABLE_VAL_32_ON_64_BIT)
122
123/* Only duplicate the bit and compat values */
124#define ENABLE_VAL_DUP_MASK (ENABLE_VAL_BIT_MASK | ENABLE_VAL_COMPAT_MASK)
72357590 125
ee7751b5
BB
126#define ENABLE_BITOPS(e) (&(e)->values)
127
128#define ENABLE_BIT(e) ((int)((e)->values & ENABLE_VAL_BIT_MASK))
81f8fb65
BB
129
130/* Used for asynchronous faulting in of pages */
131struct user_event_enabler_fault {
a4c40c13
BB
132 struct work_struct work;
133 struct user_event_mm *mm;
134 struct user_event_enabler *enabler;
41d8fba1 135 int attempt;
81f8fb65
BB
136};
137
138static struct kmem_cache *fault_cache;
139
72357590
BB
140/* Global list of memory descriptors using user_events */
141static LIST_HEAD(user_event_mms);
142static DEFINE_SPINLOCK(user_event_mms_lock);
143
7f5a08c7
BB
144/*
145 * Stores per-file events references, as users register events
146 * within a file this structure is modified and freed via RCU.
147 * The lifetime of this struct is tied to the lifetime of the file.
148 * These are not shared and only accessible by the file that created it.
149 */
150struct user_event_refs {
a4c40c13
BB
151 struct rcu_head rcu;
152 int count;
153 struct user_event *events[];
7f5a08c7
BB
154};
155
e5d27181 156struct user_event_file_info {
a4c40c13
BB
157 struct user_event_group *group;
158 struct user_event_refs *refs;
e5d27181
BB
159};
160
2467cda1
BB
161#define VALIDATOR_ENSURE_NULL (1 << 0)
162#define VALIDATOR_REL (1 << 1)
163
164struct user_event_validator {
dcbd1ac2 165 struct list_head user_event_link;
a4c40c13
BB
166 int offset;
167 int flags;
2467cda1
BB
168};
169
2de9ee94
BB
170static inline void align_addr_bit(unsigned long *addr, int *bit,
171 unsigned long *flags)
172{
173 if (IS_ALIGNED(*addr, sizeof(long))) {
174#ifdef __BIG_ENDIAN
175 /* 32 bit on BE 64 bit requires a 32 bit offset when aligned. */
176 if (test_bit(ENABLE_VAL_32_ON_64_BIT, flags))
177 *bit += 32;
178#endif
179 return;
180 }
181
182 *addr = ALIGN_DOWN(*addr, sizeof(long));
183
184 /*
185 * We only support 32 and 64 bit values. The only time we need
186 * to align is a 32 bit value on a 64 bit kernel, which on LE
187 * is always 32 bits, and on BE requires no change when unaligned.
188 */
189#ifdef __LITTLE_ENDIAN
190 *bit += 32;
191#endif
192}
193
0279400a 194typedef void (*user_event_func_t) (struct user_event *user, struct iov_iter *i,
2467cda1 195 void *tpdata, bool *faulted);
7f5a08c7 196
e5d27181
BB
197static int user_event_parse(struct user_event_group *group, char *name,
198 char *args, char *flags,
b08d7258 199 struct user_event **newuser, int reg_flags);
7f5a08c7 200
72357590
BB
201static struct user_event_mm *user_event_mm_get(struct user_event_mm *mm);
202static struct user_event_mm *user_event_mm_get_all(struct user_event *user);
203static void user_event_mm_put(struct user_event_mm *mm);
a65442ed 204static int destroy_user_event(struct user_event *user);
72357590 205
7f5a08c7
BB
206static u32 user_event_key(char *name)
207{
208 return jhash(name, strlen(name), 0);
209}
210
5dbd04ed
BB
211static bool user_event_capable(u16 reg_flags)
212{
213 /* Persistent events require CAP_PERFMON / CAP_SYS_ADMIN */
214 if (reg_flags & USER_EVENT_REG_PERSIST) {
215 if (!perfmon_capable())
216 return false;
217 }
218
219 return true;
220}
221
f0dbf6fd
BB
222static struct user_event *user_event_get(struct user_event *user)
223{
224 refcount_inc(&user->refcnt);
225
226 return user;
227}
228
a65442ed
BB
229static void delayed_destroy_user_event(struct work_struct *work)
230{
231 struct user_event *user = container_of(
232 work, struct user_event, put_work);
233
234 mutex_lock(&event_mutex);
235
236 if (!refcount_dec_and_test(&user->refcnt))
237 goto out;
238
239 if (destroy_user_event(user)) {
240 /*
241 * The only reason this would fail here is if we cannot
242 * update the visibility of the event. In this case the
243 * event stays in the hashtable, waiting for someone to
244 * attempt to delete it later.
245 */
246 pr_warn("user_events: Unable to delete event\n");
247 refcount_set(&user->refcnt, 1);
248 }
249out:
250 mutex_unlock(&event_mutex);
251}
252
f0dbf6fd
BB
253static void user_event_put(struct user_event *user, bool locked)
254{
a65442ed 255 bool delete;
f0dbf6fd
BB
256
257 if (unlikely(!user))
258 return;
259
a65442ed
BB
260 /*
261 * When the event is not enabled for auto-delete there will always
262 * be at least 1 reference to the event. During the event creation
263 * we initially set the refcnt to 2 to achieve this. In those cases
264 * the caller must acquire event_mutex and after decrement check if
265 * the refcnt is 1, meaning this is the last reference. When auto
266 * delete is enabled, there will only be 1 ref, IE: refcnt will be
267 * only set to 1 during creation to allow the below checks to go
268 * through upon the last put. The last put must always be done with
269 * the event mutex held.
270 */
271 if (!locked) {
272 lockdep_assert_not_held(&event_mutex);
273 delete = refcount_dec_and_mutex_lock(&user->refcnt, &event_mutex);
274 } else {
275 lockdep_assert_held(&event_mutex);
276 delete = refcount_dec_and_test(&user->refcnt);
277 }
278
279 if (!delete)
280 return;
281
282 /*
283 * We now have the event_mutex in all cases, which ensures that
284 * no new references will be taken until event_mutex is released.
285 * New references come through find_user_event(), which requires
286 * the event_mutex to be held.
287 */
288
289 if (user->reg_flags & USER_EVENT_REG_PERSIST) {
290 /* We should not get here when persist flag is set */
291 pr_alert("BUG: Auto-delete engaged on persistent event\n");
292 goto out;
293 }
294
295 /*
296 * Unfortunately we have to attempt the actual destroy in a work
297 * queue. This is because not all cases handle a trace_event_call
298 * being removed within the class->reg() operation for unregister.
299 */
300 INIT_WORK(&user->put_work, delayed_destroy_user_event);
301
302 /*
303 * Since the event is still in the hashtable, we have to re-inc
304 * the ref count to 1. This count will be decremented and checked
305 * in the work queue to ensure it's still the last ref. This is
306 * needed because a user-process could register the same event in
307 * between the time of event_mutex release and the work queue
308 * running the delayed destroy. If we removed the item now from
309 * the hashtable, this would result in a timing window where a
310 * user process would fail a register because the trace_event_call
311 * register would fail in the tracing layers.
312 */
313 refcount_set(&user->refcnt, 1);
314
315 if (WARN_ON_ONCE(!schedule_work(&user->put_work))) {
316 /*
317 * If we fail we must wait for an admin to attempt delete or
318 * another register/close of the event, whichever is first.
319 */
320 pr_warn("user_events: Unable to queue delayed destroy\n");
321 }
322out:
323 /* Ensure if we didn't have event_mutex before we unlock it */
324 if (!locked)
325 mutex_unlock(&event_mutex);
f0dbf6fd
BB
326}
327
e5d27181
BB
328static void user_event_group_destroy(struct user_event_group *group)
329{
e5d27181
BB
330 kfree(group->system_name);
331 kfree(group);
332}
333
ed0e0ae0 334static char *user_event_group_system_name(void)
e5d27181
BB
335{
336 char *system_name;
337 int len = sizeof(USER_EVENTS_SYSTEM) + 1;
338
e5d27181
BB
339 system_name = kmalloc(len, GFP_KERNEL);
340
341 if (!system_name)
342 return NULL;
343
344 snprintf(system_name, len, "%s", USER_EVENTS_SYSTEM);
345
346 return system_name;
347}
348
e5d27181
BB
349static struct user_event_group *current_user_event_group(void)
350{
ed0e0ae0 351 return init_group;
e5d27181
BB
352}
353
ed0e0ae0 354static struct user_event_group *user_event_group_create(void)
e5d27181
BB
355{
356 struct user_event_group *group;
357
358 group = kzalloc(sizeof(*group), GFP_KERNEL);
359
360 if (!group)
361 return NULL;
362
ed0e0ae0 363 group->system_name = user_event_group_system_name();
e5d27181
BB
364
365 if (!group->system_name)
366 goto error;
367
e5d27181
BB
368 mutex_init(&group->reg_mutex);
369 hash_init(group->register_table);
370
371 return group;
372error:
373 if (group)
374 user_event_group_destroy(group);
375
376 return NULL;
377};
378
f0dbf6fd
BB
379static void user_event_enabler_destroy(struct user_event_enabler *enabler,
380 bool locked)
72357590 381{
dcbd1ac2 382 list_del_rcu(&enabler->mm_enablers_link);
72357590
BB
383
384 /* No longer tracking the event via the enabler */
f0dbf6fd 385 user_event_put(enabler->event, locked);
72357590
BB
386
387 kfree(enabler);
388}
389
41d8fba1
BB
390static int user_event_mm_fault_in(struct user_event_mm *mm, unsigned long uaddr,
391 int attempt)
72357590
BB
392{
393 bool unlocked;
394 int ret;
395
41d8fba1
BB
396 /*
397 * Normally this is low, ensure that it cannot be taken advantage of by
398 * bad user processes to cause excessive looping.
399 */
400 if (attempt > 10)
401 return -EFAULT;
402
72357590
BB
403 mmap_read_lock(mm->mm);
404
405 /* Ensure MM has tasks, cannot use after exit_mm() */
406 if (refcount_read(&mm->tasks) == 0) {
407 ret = -ENOENT;
408 goto out;
409 }
410
411 ret = fixup_user_fault(mm->mm, uaddr, FAULT_FLAG_WRITE | FAULT_FLAG_REMOTE,
412 &unlocked);
413out:
414 mmap_read_unlock(mm->mm);
415
416 return ret;
417}
418
419static int user_event_enabler_write(struct user_event_mm *mm,
81f8fb65 420 struct user_event_enabler *enabler,
41d8fba1 421 bool fixup_fault, int *attempt);
81f8fb65
BB
422
423static void user_event_enabler_fault_fixup(struct work_struct *work)
424{
425 struct user_event_enabler_fault *fault = container_of(
426 work, struct user_event_enabler_fault, work);
427 struct user_event_enabler *enabler = fault->enabler;
428 struct user_event_mm *mm = fault->mm;
429 unsigned long uaddr = enabler->addr;
41d8fba1 430 int attempt = fault->attempt;
81f8fb65
BB
431 int ret;
432
41d8fba1 433 ret = user_event_mm_fault_in(mm, uaddr, attempt);
81f8fb65
BB
434
435 if (ret && ret != -ENOENT) {
436 struct user_event *user = enabler->event;
437
438 pr_warn("user_events: Fault for mm: 0x%pK @ 0x%llx event: %s\n",
439 mm->mm, (unsigned long long)uaddr, EVENT_NAME(user));
440 }
441
442 /* Prevent state changes from racing */
443 mutex_lock(&event_mutex);
444
dcb8177c
BB
445 /* User asked for enabler to be removed during fault */
446 if (test_bit(ENABLE_VAL_FREEING_BIT, ENABLE_BITOPS(enabler))) {
f0dbf6fd 447 user_event_enabler_destroy(enabler, true);
dcb8177c
BB
448 goto out;
449 }
450
81f8fb65
BB
451 /*
452 * If we managed to get the page, re-issue the write. We do not
453 * want to get into a possible infinite loop, which is why we only
454 * attempt again directly if the page came in. If we couldn't get
455 * the page here, then we will try again the next time the event is
456 * enabled/disabled.
457 */
458 clear_bit(ENABLE_VAL_FAULTING_BIT, ENABLE_BITOPS(enabler));
459
460 if (!ret) {
461 mmap_read_lock(mm->mm);
41d8fba1 462 user_event_enabler_write(mm, enabler, true, &attempt);
81f8fb65
BB
463 mmap_read_unlock(mm->mm);
464 }
dcb8177c 465out:
81f8fb65
BB
466 mutex_unlock(&event_mutex);
467
468 /* In all cases we no longer need the mm or fault */
469 user_event_mm_put(mm);
470 kmem_cache_free(fault_cache, fault);
471}
472
473static bool user_event_enabler_queue_fault(struct user_event_mm *mm,
41d8fba1
BB
474 struct user_event_enabler *enabler,
475 int attempt)
81f8fb65
BB
476{
477 struct user_event_enabler_fault *fault;
478
479 fault = kmem_cache_zalloc(fault_cache, GFP_NOWAIT | __GFP_NOWARN);
480
481 if (!fault)
482 return false;
483
484 INIT_WORK(&fault->work, user_event_enabler_fault_fixup);
485 fault->mm = user_event_mm_get(mm);
486 fault->enabler = enabler;
41d8fba1 487 fault->attempt = attempt;
81f8fb65
BB
488
489 /* Don't try to queue in again while we have a pending fault */
490 set_bit(ENABLE_VAL_FAULTING_BIT, ENABLE_BITOPS(enabler));
491
492 if (!schedule_work(&fault->work)) {
493 /* Allow another attempt later */
494 clear_bit(ENABLE_VAL_FAULTING_BIT, ENABLE_BITOPS(enabler));
495
496 user_event_mm_put(mm);
497 kmem_cache_free(fault_cache, fault);
498
499 return false;
500 }
501
502 return true;
503}
504
505static int user_event_enabler_write(struct user_event_mm *mm,
506 struct user_event_enabler *enabler,
41d8fba1 507 bool fixup_fault, int *attempt)
72357590
BB
508{
509 unsigned long uaddr = enabler->addr;
510 unsigned long *ptr;
511 struct page *page;
512 void *kaddr;
2de9ee94 513 int bit = ENABLE_BIT(enabler);
72357590
BB
514 int ret;
515
516 lockdep_assert_held(&event_mutex);
517 mmap_assert_locked(mm->mm);
518
41d8fba1
BB
519 *attempt += 1;
520
72357590
BB
521 /* Ensure MM has tasks, cannot use after exit_mm() */
522 if (refcount_read(&mm->tasks) == 0)
523 return -ENOENT;
524
dcb8177c
BB
525 if (unlikely(test_bit(ENABLE_VAL_FAULTING_BIT, ENABLE_BITOPS(enabler)) ||
526 test_bit(ENABLE_VAL_FREEING_BIT, ENABLE_BITOPS(enabler))))
81f8fb65
BB
527 return -EBUSY;
528
2de9ee94
BB
529 align_addr_bit(&uaddr, &bit, ENABLE_BITOPS(enabler));
530
72357590 531 ret = pin_user_pages_remote(mm->mm, uaddr, 1, FOLL_WRITE | FOLL_NOFAULT,
0b295316 532 &page, NULL);
72357590 533
81f8fb65
BB
534 if (unlikely(ret <= 0)) {
535 if (!fixup_fault)
536 return -EFAULT;
537
41d8fba1 538 if (!user_event_enabler_queue_fault(mm, enabler, *attempt))
81f8fb65
BB
539 pr_warn("user_events: Unable to queue fault handler\n");
540
72357590
BB
541 return -EFAULT;
542 }
543
544 kaddr = kmap_local_page(page);
545 ptr = kaddr + (uaddr & ~PAGE_MASK);
546
547 /* Update bit atomically, user tracers must be atomic as well */
548 if (enabler->event && enabler->event->status)
2de9ee94 549 set_bit(bit, ptr);
72357590 550 else
2de9ee94 551 clear_bit(bit, ptr);
72357590
BB
552
553 kunmap_local(kaddr);
554 unpin_user_pages_dirty_lock(&page, 1, true);
555
556 return 0;
557}
558
97bbce89
BB
559static bool user_event_enabler_exists(struct user_event_mm *mm,
560 unsigned long uaddr, unsigned char bit)
561{
562 struct user_event_enabler *enabler;
97bbce89 563
dcbd1ac2 564 list_for_each_entry(enabler, &mm->enablers, mm_enablers_link) {
ee7751b5 565 if (enabler->addr == uaddr && ENABLE_BIT(enabler) == bit)
97bbce89
BB
566 return true;
567 }
568
569 return false;
570}
571
72357590
BB
572static void user_event_enabler_update(struct user_event *user)
573{
574 struct user_event_enabler *enabler;
72357590 575 struct user_event_mm *next;
ff9e1632 576 struct user_event_mm *mm;
41d8fba1 577 int attempt;
72357590 578
aaecdaf9
LT
579 lockdep_assert_held(&event_mutex);
580
ff9e1632
BB
581 /*
582 * We need to build a one-shot list of all the mms that have an
583 * enabler for the user_event passed in. This list is only valid
584 * while holding the event_mutex. The only reason for this is due
585 * to the global mm list being RCU protected and we use methods
586 * which can wait (mmap_read_lock and pin_user_pages_remote).
587 *
588 * NOTE: user_event_mm_get_all() increments the ref count of each
589 * mm that is added to the list to prevent removal timing windows.
590 * We must always put each mm after they are used, which may wait.
591 */
592 mm = user_event_mm_get_all(user);
593
72357590
BB
594 while (mm) {
595 next = mm->next;
596 mmap_read_lock(mm->mm);
72357590 597
dcbd1ac2 598 list_for_each_entry(enabler, &mm->enablers, mm_enablers_link) {
41d8fba1
BB
599 if (enabler->event == user) {
600 attempt = 0;
601 user_event_enabler_write(mm, enabler, true, &attempt);
602 }
603 }
72357590 604
72357590
BB
605 mmap_read_unlock(mm->mm);
606 user_event_mm_put(mm);
607 mm = next;
608 }
609}
610
611static bool user_event_enabler_dup(struct user_event_enabler *orig,
612 struct user_event_mm *mm)
613{
614 struct user_event_enabler *enabler;
615
dcb8177c
BB
616 /* Skip pending frees */
617 if (unlikely(test_bit(ENABLE_VAL_FREEING_BIT, ENABLE_BITOPS(orig))))
618 return true;
619
f9cce238 620 enabler = kzalloc(sizeof(*enabler), GFP_NOWAIT | __GFP_ACCOUNT);
72357590
BB
621
622 if (!enabler)
623 return false;
624
f0dbf6fd 625 enabler->event = user_event_get(orig->event);
72357590
BB
626 enabler->addr = orig->addr;
627
628 /* Only dup part of value (ignore future flags, etc) */
629 enabler->values = orig->values & ENABLE_VAL_DUP_MASK;
630
aaecdaf9 631 /* Enablers not exposed yet, RCU not required */
dcbd1ac2 632 list_add(&enabler->mm_enablers_link, &mm->enablers);
72357590
BB
633
634 return true;
635}
636
637static struct user_event_mm *user_event_mm_get(struct user_event_mm *mm)
638{
639 refcount_inc(&mm->refcnt);
640
641 return mm;
642}
643
644static struct user_event_mm *user_event_mm_get_all(struct user_event *user)
645{
646 struct user_event_mm *found = NULL;
647 struct user_event_enabler *enabler;
648 struct user_event_mm *mm;
649
ff9e1632
BB
650 /*
651 * We use the mm->next field to build a one-shot list from the global
652 * RCU protected list. To build this list the event_mutex must be held.
653 * This lets us build a list without requiring allocs that could fail
654 * when user based events are most wanted for diagnostics.
655 */
656 lockdep_assert_held(&event_mutex);
657
72357590
BB
658 /*
659 * We do not want to block fork/exec while enablements are being
660 * updated, so we use RCU to walk the current tasks that have used
661 * user_events ABI for 1 or more events. Each enabler found in each
662 * task that matches the event being updated has a write to reflect
663 * the kernel state back into the process. Waits/faults must not occur
664 * during this. So we scan the list under RCU for all the mm that have
665 * the event within it. This is needed because mm_read_lock() can wait.
666 * Each user mm returned has a ref inc to handle remove RCU races.
667 */
668 rcu_read_lock();
669
dcbd1ac2
BB
670 list_for_each_entry_rcu(mm, &user_event_mms, mms_link) {
671 list_for_each_entry_rcu(enabler, &mm->enablers, mm_enablers_link) {
72357590
BB
672 if (enabler->event == user) {
673 mm->next = found;
674 found = user_event_mm_get(mm);
675 break;
676 }
dcbd1ac2
BB
677 }
678 }
72357590
BB
679
680 rcu_read_unlock();
681
682 return found;
683}
684
3e0fea09 685static struct user_event_mm *user_event_mm_alloc(struct task_struct *t)
72357590
BB
686{
687 struct user_event_mm *user_mm;
72357590 688
f9cce238 689 user_mm = kzalloc(sizeof(*user_mm), GFP_KERNEL_ACCOUNT);
72357590
BB
690
691 if (!user_mm)
692 return NULL;
693
694 user_mm->mm = t->mm;
695 INIT_LIST_HEAD(&user_mm->enablers);
696 refcount_set(&user_mm->refcnt, 1);
697 refcount_set(&user_mm->tasks, 1);
698
72357590
BB
699 /*
700 * The lifetime of the memory descriptor can slightly outlast
701 * the task lifetime if a ref to the user_event_mm is taken
702 * between list_del_rcu() and call_rcu(). Therefore we need
703 * to take a reference to it to ensure it can live this long
704 * under this corner case. This can also occur in clones that
705 * outlast the parent.
706 */
707 mmgrab(user_mm->mm);
708
709 return user_mm;
710}
711
3e0fea09
LT
712static void user_event_mm_attach(struct user_event_mm *user_mm, struct task_struct *t)
713{
714 unsigned long flags;
715
716 spin_lock_irqsave(&user_event_mms_lock, flags);
dcbd1ac2 717 list_add_rcu(&user_mm->mms_link, &user_event_mms);
3e0fea09
LT
718 spin_unlock_irqrestore(&user_event_mms_lock, flags);
719
720 t->user_event_mm = user_mm;
721}
722
72357590
BB
723static struct user_event_mm *current_user_event_mm(void)
724{
725 struct user_event_mm *user_mm = current->user_event_mm;
726
727 if (user_mm)
728 goto inc;
729
3e0fea09 730 user_mm = user_event_mm_alloc(current);
72357590
BB
731
732 if (!user_mm)
733 goto error;
3e0fea09
LT
734
735 user_event_mm_attach(user_mm, current);
72357590
BB
736inc:
737 refcount_inc(&user_mm->refcnt);
738error:
739 return user_mm;
740}
741
742static void user_event_mm_destroy(struct user_event_mm *mm)
743{
744 struct user_event_enabler *enabler, *next;
745
dcbd1ac2 746 list_for_each_entry_safe(enabler, next, &mm->enablers, mm_enablers_link)
f0dbf6fd 747 user_event_enabler_destroy(enabler, false);
72357590
BB
748
749 mmdrop(mm->mm);
750 kfree(mm);
751}
752
753static void user_event_mm_put(struct user_event_mm *mm)
754{
755 if (mm && refcount_dec_and_test(&mm->refcnt))
756 user_event_mm_destroy(mm);
757}
758
759static void delayed_user_event_mm_put(struct work_struct *work)
760{
761 struct user_event_mm *mm;
762
763 mm = container_of(to_rcu_work(work), struct user_event_mm, put_rwork);
764 user_event_mm_put(mm);
765}
766
767void user_event_mm_remove(struct task_struct *t)
39d6d08b 768{
72357590
BB
769 struct user_event_mm *mm;
770 unsigned long flags;
771
772 might_sleep();
773
774 mm = t->user_event_mm;
775 t->user_event_mm = NULL;
776
777 /* Clone will increment the tasks, only remove if last clone */
778 if (!refcount_dec_and_test(&mm->tasks))
779 return;
780
781 /* Remove the mm from the list, so it can no longer be enabled */
782 spin_lock_irqsave(&user_event_mms_lock, flags);
dcbd1ac2 783 list_del_rcu(&mm->mms_link);
72357590
BB
784 spin_unlock_irqrestore(&user_event_mms_lock, flags);
785
786 /*
787 * We need to wait for currently occurring writes to stop within
788 * the mm. This is required since exit_mm() snaps the current rss
789 * stats and clears them. On the final mmdrop(), check_mm() will
790 * report a bug if these increment.
791 *
792 * All writes/pins are done under mmap_read lock, take the write
793 * lock to ensure in-progress faults have completed. Faults that
794 * are pending but yet to run will check the task count and skip
795 * the fault since the mm is going away.
796 */
797 mmap_write_lock(mm->mm);
798 mmap_write_unlock(mm->mm);
39d6d08b 799
72357590
BB
800 /*
801 * Put for mm must be done after RCU delay to handle new refs in
802 * between the list_del_rcu() and now. This ensures any get refs
803 * during rcu_read_lock() are accounted for during list removal.
804 *
805 * CPU A | CPU B
806 * ---------------------------------------------------------------
807 * user_event_mm_remove() | rcu_read_lock();
808 * list_del_rcu() | list_for_each_entry_rcu();
809 * call_rcu() | refcount_inc();
810 * . | rcu_read_unlock();
811 * schedule_work() | .
812 * user_event_mm_put() | .
813 *
814 * mmdrop() cannot be called in the softirq context of call_rcu()
815 * so we use a work queue after call_rcu() to run within.
816 */
817 INIT_RCU_WORK(&mm->put_rwork, delayed_user_event_mm_put);
818 queue_rcu_work(system_wq, &mm->put_rwork);
39d6d08b
BB
819}
820
72357590 821void user_event_mm_dup(struct task_struct *t, struct user_event_mm *old_mm)
39d6d08b 822{
3e0fea09 823 struct user_event_mm *mm = user_event_mm_alloc(t);
72357590 824 struct user_event_enabler *enabler;
39d6d08b 825
72357590
BB
826 if (!mm)
827 return;
828
829 rcu_read_lock();
830
dcbd1ac2 831 list_for_each_entry_rcu(enabler, &old_mm->enablers, mm_enablers_link) {
72357590
BB
832 if (!user_event_enabler_dup(enabler, mm))
833 goto error;
dcbd1ac2 834 }
72357590
BB
835
836 rcu_read_unlock();
837
3e0fea09 838 user_event_mm_attach(mm, t);
72357590
BB
839 return;
840error:
841 rcu_read_unlock();
3e0fea09 842 user_event_mm_destroy(mm);
72357590
BB
843}
844
97bbce89
BB
845static bool current_user_event_enabler_exists(unsigned long uaddr,
846 unsigned char bit)
847{
848 struct user_event_mm *user_mm = current_user_event_mm();
849 bool exists;
850
851 if (!user_mm)
852 return false;
853
854 exists = user_event_enabler_exists(user_mm, uaddr, bit);
855
856 user_event_mm_put(user_mm);
857
858 return exists;
859}
860
72357590
BB
861static struct user_event_enabler
862*user_event_enabler_create(struct user_reg *reg, struct user_event *user,
863 int *write_result)
864{
865 struct user_event_enabler *enabler;
866 struct user_event_mm *user_mm;
867 unsigned long uaddr = (unsigned long)reg->enable_addr;
41d8fba1 868 int attempt = 0;
72357590
BB
869
870 user_mm = current_user_event_mm();
871
872 if (!user_mm)
873 return NULL;
874
f9cce238 875 enabler = kzalloc(sizeof(*enabler), GFP_KERNEL_ACCOUNT);
72357590
BB
876
877 if (!enabler)
878 goto out;
879
880 enabler->event = user;
881 enabler->addr = uaddr;
882 enabler->values = reg->enable_bit;
2de9ee94
BB
883
884#if BITS_PER_LONG >= 64
885 if (reg->enable_size == 4)
886 set_bit(ENABLE_VAL_32_ON_64_BIT, ENABLE_BITOPS(enabler));
887#endif
888
72357590
BB
889retry:
890 /* Prevents state changes from racing with new enablers */
891 mutex_lock(&event_mutex);
892
893 /* Attempt to reflect the current state within the process */
894 mmap_read_lock(user_mm->mm);
41d8fba1
BB
895 *write_result = user_event_enabler_write(user_mm, enabler, false,
896 &attempt);
72357590
BB
897 mmap_read_unlock(user_mm->mm);
898
899 /*
900 * If the write works, then we will track the enabler. A ref to the
901 * underlying user_event is held by the enabler to prevent it going
902 * away while the enabler is still in use by a process. The ref is
903 * removed when the enabler is destroyed. This means a event cannot
904 * be forcefully deleted from the system until all tasks using it
905 * exit or run exec(), which includes forks and clones.
906 */
907 if (!*write_result) {
f0dbf6fd 908 user_event_get(user);
dcbd1ac2 909 list_add_rcu(&enabler->mm_enablers_link, &user_mm->enablers);
72357590
BB
910 }
911
912 mutex_unlock(&event_mutex);
913
914 if (*write_result) {
915 /* Attempt to fault-in and retry if it worked */
41d8fba1 916 if (!user_event_mm_fault_in(user_mm, uaddr, attempt))
72357590
BB
917 goto retry;
918
919 kfree(enabler);
920 enabler = NULL;
921 }
922out:
923 user_event_mm_put(user_mm);
924
925 return enabler;
39d6d08b
BB
926}
927
d401b724
BB
928static __always_inline __must_check
929bool user_event_last_ref(struct user_event *user)
930{
a65442ed
BB
931 int last = 0;
932
933 if (user->reg_flags & USER_EVENT_REG_PERSIST)
934 last = 1;
935
936 return refcount_read(&user->refcnt) == last;
d401b724
BB
937}
938
0279400a
BB
939static __always_inline __must_check
940size_t copy_nofault(void *addr, size_t bytes, struct iov_iter *i)
941{
942 size_t ret;
943
944 pagefault_disable();
945
946 ret = copy_from_iter_nocache(addr, bytes, i);
947
948 pagefault_enable();
949
950 return ret;
951}
952
7f5a08c7
BB
953static struct list_head *user_event_get_fields(struct trace_event_call *call)
954{
955 struct user_event *user = (struct user_event *)call->data;
956
957 return &user->fields;
958}
959
960/*
961 * Parses a register command for user_events
962 * Format: event_name[:FLAG1[,FLAG2...]] [field1[;field2...]]
963 *
964 * Example event named 'test' with a 20 char 'msg' field with an unsigned int
965 * 'id' field after:
966 * test char[20] msg;unsigned int id
967 *
968 * NOTE: Offsets are from the user data perspective, they are not from the
969 * trace_entry/buffer perspective. We automatically add the common properties
970 * sizes to the offset for the user.
7e348b32
BB
971 *
972 * Upon success user_event has its ref count increased by 1.
7f5a08c7 973 */
e5d27181 974static int user_event_parse_cmd(struct user_event_group *group,
b08d7258
BB
975 char *raw_command, struct user_event **newuser,
976 int reg_flags)
7f5a08c7
BB
977{
978 char *name = raw_command;
979 char *args = strpbrk(name, " ");
980 char *flags;
981
982 if (args)
983 *args++ = '\0';
984
985 flags = strpbrk(name, ":");
986
987 if (flags)
988 *flags++ = '\0';
989
b08d7258 990 return user_event_parse(group, name, args, flags, newuser, reg_flags);
7f5a08c7
BB
991}
992
993static int user_field_array_size(const char *type)
994{
995 const char *start = strchr(type, '[');
996 char val[8];
997 char *bracket;
998 int size = 0;
999
1000 if (start == NULL)
1001 return -EINVAL;
1002
1003 if (strscpy(val, start + 1, sizeof(val)) <= 0)
1004 return -EINVAL;
1005
1006 bracket = strchr(val, ']');
1007
1008 if (!bracket)
1009 return -EINVAL;
1010
1011 *bracket = '\0';
1012
1013 if (kstrtouint(val, 0, &size))
1014 return -EINVAL;
1015
1016 if (size > MAX_FIELD_ARRAY_SIZE)
1017 return -EINVAL;
1018
1019 return size;
1020}
1021
1022static int user_field_size(const char *type)
1023{
1024 /* long is not allowed from a user, since it's ambigious in size */
1025 if (strcmp(type, "s64") == 0)
1026 return sizeof(s64);
1027 if (strcmp(type, "u64") == 0)
1028 return sizeof(u64);
1029 if (strcmp(type, "s32") == 0)
1030 return sizeof(s32);
1031 if (strcmp(type, "u32") == 0)
1032 return sizeof(u32);
1033 if (strcmp(type, "int") == 0)
1034 return sizeof(int);
1035 if (strcmp(type, "unsigned int") == 0)
1036 return sizeof(unsigned int);
1037 if (strcmp(type, "s16") == 0)
1038 return sizeof(s16);
1039 if (strcmp(type, "u16") == 0)
1040 return sizeof(u16);
1041 if (strcmp(type, "short") == 0)
1042 return sizeof(short);
1043 if (strcmp(type, "unsigned short") == 0)
1044 return sizeof(unsigned short);
1045 if (strcmp(type, "s8") == 0)
1046 return sizeof(s8);
1047 if (strcmp(type, "u8") == 0)
1048 return sizeof(u8);
1049 if (strcmp(type, "char") == 0)
1050 return sizeof(char);
1051 if (strcmp(type, "unsigned char") == 0)
1052 return sizeof(unsigned char);
1053 if (str_has_prefix(type, "char["))
1054 return user_field_array_size(type);
1055 if (str_has_prefix(type, "unsigned char["))
1056 return user_field_array_size(type);
1057 if (str_has_prefix(type, "__data_loc "))
1058 return sizeof(u32);
1059 if (str_has_prefix(type, "__rel_loc "))
1060 return sizeof(u32);
1061
1062 /* Uknown basic type, error */
1063 return -EINVAL;
1064}
1065
2467cda1
BB
1066static void user_event_destroy_validators(struct user_event *user)
1067{
1068 struct user_event_validator *validator, *next;
1069 struct list_head *head = &user->validators;
1070
dcbd1ac2
BB
1071 list_for_each_entry_safe(validator, next, head, user_event_link) {
1072 list_del(&validator->user_event_link);
2467cda1
BB
1073 kfree(validator);
1074 }
1075}
1076
7f5a08c7
BB
1077static void user_event_destroy_fields(struct user_event *user)
1078{
1079 struct ftrace_event_field *field, *next;
1080 struct list_head *head = &user->fields;
1081
1082 list_for_each_entry_safe(field, next, head, link) {
1083 list_del(&field->link);
1084 kfree(field);
1085 }
1086}
1087
1088static int user_event_add_field(struct user_event *user, const char *type,
1089 const char *name, int offset, int size,
1090 int is_signed, int filter_type)
1091{
2467cda1 1092 struct user_event_validator *validator;
7f5a08c7 1093 struct ftrace_event_field *field;
2467cda1 1094 int validator_flags = 0;
7f5a08c7 1095
f9cce238 1096 field = kmalloc(sizeof(*field), GFP_KERNEL_ACCOUNT);
7f5a08c7
BB
1097
1098 if (!field)
1099 return -ENOMEM;
1100
2467cda1
BB
1101 if (str_has_prefix(type, "__data_loc "))
1102 goto add_validator;
1103
1104 if (str_has_prefix(type, "__rel_loc ")) {
1105 validator_flags |= VALIDATOR_REL;
1106 goto add_validator;
1107 }
1108
1109 goto add_field;
1110
1111add_validator:
9cbf1234 1112 if (strstr(type, "char") != NULL)
2467cda1
BB
1113 validator_flags |= VALIDATOR_ENSURE_NULL;
1114
f9cce238 1115 validator = kmalloc(sizeof(*validator), GFP_KERNEL_ACCOUNT);
2467cda1
BB
1116
1117 if (!validator) {
1118 kfree(field);
1119 return -ENOMEM;
1120 }
1121
1122 validator->flags = validator_flags;
1123 validator->offset = offset;
1124
1125 /* Want sequential access when validating */
dcbd1ac2 1126 list_add_tail(&validator->user_event_link, &user->validators);
2467cda1
BB
1127
1128add_field:
7f5a08c7
BB
1129 field->type = type;
1130 field->name = name;
1131 field->offset = offset;
1132 field->size = size;
1133 field->is_signed = is_signed;
1134 field->filter_type = filter_type;
1135
9872c07b
BB
1136 if (filter_type == FILTER_OTHER)
1137 field->filter_type = filter_assign_type(type);
1138
7f5a08c7
BB
1139 list_add(&field->link, &user->fields);
1140
2467cda1
BB
1141 /*
1142 * Min size from user writes that are required, this does not include
1143 * the size of trace_entry (common fields).
1144 */
1145 user->min_size = (offset + size) - sizeof(struct trace_entry);
1146
7f5a08c7
BB
1147 return 0;
1148}
1149
1150/*
1151 * Parses the values of a field within the description
1152 * Format: type name [size]
1153 */
1154static int user_event_parse_field(char *field, struct user_event *user,
1155 u32 *offset)
1156{
1157 char *part, *type, *name;
1158 u32 depth = 0, saved_offset = *offset;
1159 int len, size = -EINVAL;
1160 bool is_struct = false;
1161
1162 field = skip_spaces(field);
1163
1164 if (*field == '\0')
1165 return 0;
1166
1167 /* Handle types that have a space within */
1168 len = str_has_prefix(field, "unsigned ");
1169 if (len)
1170 goto skip_next;
1171
1172 len = str_has_prefix(field, "struct ");
1173 if (len) {
1174 is_struct = true;
1175 goto skip_next;
1176 }
1177
1178 len = str_has_prefix(field, "__data_loc unsigned ");
1179 if (len)
1180 goto skip_next;
1181
1182 len = str_has_prefix(field, "__data_loc ");
1183 if (len)
1184 goto skip_next;
1185
1186 len = str_has_prefix(field, "__rel_loc unsigned ");
1187 if (len)
1188 goto skip_next;
1189
1190 len = str_has_prefix(field, "__rel_loc ");
1191 if (len)
1192 goto skip_next;
1193
1194 goto parse;
1195skip_next:
1196 type = field;
1197 field = strpbrk(field + len, " ");
1198
1199 if (field == NULL)
1200 return -EINVAL;
1201
1202 *field++ = '\0';
1203 depth++;
1204parse:
173c2049
BB
1205 name = NULL;
1206
7f5a08c7
BB
1207 while ((part = strsep(&field, " ")) != NULL) {
1208 switch (depth++) {
1209 case FIELD_DEPTH_TYPE:
1210 type = part;
1211 break;
1212 case FIELD_DEPTH_NAME:
1213 name = part;
1214 break;
1215 case FIELD_DEPTH_SIZE:
1216 if (!is_struct)
1217 return -EINVAL;
1218
1219 if (kstrtou32(part, 10, &size))
1220 return -EINVAL;
1221 break;
1222 default:
1223 return -EINVAL;
1224 }
1225 }
1226
173c2049 1227 if (depth < FIELD_DEPTH_SIZE || !name)
7f5a08c7
BB
1228 return -EINVAL;
1229
1230 if (depth == FIELD_DEPTH_SIZE)
1231 size = user_field_size(type);
1232
1233 if (size == 0)
1234 return -EINVAL;
1235
1236 if (size < 0)
1237 return size;
1238
1239 *offset = saved_offset + size;
1240
1241 return user_event_add_field(user, type, name, saved_offset, size,
1242 type[0] != 'u', FILTER_OTHER);
1243}
1244
7f5a08c7
BB
1245static int user_event_parse_fields(struct user_event *user, char *args)
1246{
1247 char *field;
1248 u32 offset = sizeof(struct trace_entry);
1249 int ret = -EINVAL;
1250
1251 if (args == NULL)
1252 return 0;
1253
1254 while ((field = strsep(&args, ";")) != NULL) {
1255 ret = user_event_parse_field(field, user, &offset);
1256
1257 if (ret)
1258 break;
1259 }
1260
1261 return ret;
1262}
1263
1264static struct trace_event_fields user_event_fields_array[1];
1265
aa3b2b4c
BB
1266static const char *user_field_format(const char *type)
1267{
1268 if (strcmp(type, "s64") == 0)
1269 return "%lld";
1270 if (strcmp(type, "u64") == 0)
1271 return "%llu";
1272 if (strcmp(type, "s32") == 0)
1273 return "%d";
1274 if (strcmp(type, "u32") == 0)
1275 return "%u";
1276 if (strcmp(type, "int") == 0)
1277 return "%d";
1278 if (strcmp(type, "unsigned int") == 0)
1279 return "%u";
1280 if (strcmp(type, "s16") == 0)
1281 return "%d";
1282 if (strcmp(type, "u16") == 0)
1283 return "%u";
1284 if (strcmp(type, "short") == 0)
1285 return "%d";
1286 if (strcmp(type, "unsigned short") == 0)
1287 return "%u";
1288 if (strcmp(type, "s8") == 0)
1289 return "%d";
1290 if (strcmp(type, "u8") == 0)
1291 return "%u";
1292 if (strcmp(type, "char") == 0)
1293 return "%d";
1294 if (strcmp(type, "unsigned char") == 0)
1295 return "%u";
9cbf1234 1296 if (strstr(type, "char[") != NULL)
aa3b2b4c
BB
1297 return "%s";
1298
1299 /* Unknown, likely struct, allowed treat as 64-bit */
1300 return "%llu";
1301}
1302
1303static bool user_field_is_dyn_string(const char *type, const char **str_func)
1304{
1305 if (str_has_prefix(type, "__data_loc ")) {
1306 *str_func = "__get_str";
1307 goto check;
1308 }
1309
1310 if (str_has_prefix(type, "__rel_loc ")) {
1311 *str_func = "__get_rel_str";
1312 goto check;
1313 }
1314
1315 return false;
1316check:
9cbf1234 1317 return strstr(type, "char") != NULL;
aa3b2b4c
BB
1318}
1319
1320#define LEN_OR_ZERO (len ? len - pos : 0)
e6f89a14
BB
1321static int user_dyn_field_set_string(int argc, const char **argv, int *iout,
1322 char *buf, int len, bool *colon)
1323{
1324 int pos = 0, i = *iout;
1325
1326 *colon = false;
1327
1328 for (; i < argc; ++i) {
1329 if (i != *iout)
1330 pos += snprintf(buf + pos, LEN_OR_ZERO, " ");
1331
1332 pos += snprintf(buf + pos, LEN_OR_ZERO, "%s", argv[i]);
1333
1334 if (strchr(argv[i], ';')) {
1335 ++i;
1336 *colon = true;
1337 break;
1338 }
1339 }
1340
1341 /* Actual set, advance i */
1342 if (len != 0)
1343 *iout = i;
1344
1345 return pos + 1;
1346}
1347
1348static int user_field_set_string(struct ftrace_event_field *field,
1349 char *buf, int len, bool colon)
1350{
1351 int pos = 0;
1352
1353 pos += snprintf(buf + pos, LEN_OR_ZERO, "%s", field->type);
1354 pos += snprintf(buf + pos, LEN_OR_ZERO, " ");
1355 pos += snprintf(buf + pos, LEN_OR_ZERO, "%s", field->name);
1356
d0a3022f
BB
1357 if (str_has_prefix(field->type, "struct "))
1358 pos += snprintf(buf + pos, LEN_OR_ZERO, " %d", field->size);
1359
e6f89a14
BB
1360 if (colon)
1361 pos += snprintf(buf + pos, LEN_OR_ZERO, ";");
1362
1363 return pos + 1;
1364}
1365
aa3b2b4c
BB
1366static int user_event_set_print_fmt(struct user_event *user, char *buf, int len)
1367{
a943188d 1368 struct ftrace_event_field *field;
aa3b2b4c
BB
1369 struct list_head *head = &user->fields;
1370 int pos = 0, depth = 0;
1371 const char *str_func;
1372
1373 pos += snprintf(buf + pos, LEN_OR_ZERO, "\"");
1374
a943188d 1375 list_for_each_entry_reverse(field, head, link) {
aa3b2b4c
BB
1376 if (depth != 0)
1377 pos += snprintf(buf + pos, LEN_OR_ZERO, " ");
1378
1379 pos += snprintf(buf + pos, LEN_OR_ZERO, "%s=%s",
1380 field->name, user_field_format(field->type));
1381
1382 depth++;
1383 }
1384
1385 pos += snprintf(buf + pos, LEN_OR_ZERO, "\"");
1386
a943188d 1387 list_for_each_entry_reverse(field, head, link) {
aa3b2b4c
BB
1388 if (user_field_is_dyn_string(field->type, &str_func))
1389 pos += snprintf(buf + pos, LEN_OR_ZERO,
1390 ", %s(%s)", str_func, field->name);
1391 else
1392 pos += snprintf(buf + pos, LEN_OR_ZERO,
1393 ", REC->%s", field->name);
1394 }
1395
1396 return pos + 1;
1397}
1398#undef LEN_OR_ZERO
1399
1400static int user_event_create_print_fmt(struct user_event *user)
1401{
1402 char *print_fmt;
1403 int len;
1404
1405 len = user_event_set_print_fmt(user, NULL, 0);
1406
f9cce238 1407 print_fmt = kmalloc(len, GFP_KERNEL_ACCOUNT);
aa3b2b4c
BB
1408
1409 if (!print_fmt)
1410 return -ENOMEM;
1411
1412 user_event_set_print_fmt(user, print_fmt, len);
1413
1414 user->call.print_fmt = print_fmt;
1415
1416 return 0;
1417}
1418
7f5a08c7
BB
1419static enum print_line_t user_event_print_trace(struct trace_iterator *iter,
1420 int flags,
1421 struct trace_event *event)
1422{
4bec284c 1423 return print_event_fields(iter, event);
7f5a08c7
BB
1424}
1425
1426static struct trace_event_functions user_event_funcs = {
1427 .trace = user_event_print_trace,
1428};
1429
089331d4
BB
1430static int user_event_set_call_visible(struct user_event *user, bool visible)
1431{
1432 int ret;
1433 const struct cred *old_cred;
1434 struct cred *cred;
1435
1436 cred = prepare_creds();
1437
1438 if (!cred)
1439 return -ENOMEM;
1440
1441 /*
1442 * While by default tracefs is locked down, systems can be configured
1443 * to allow user_event files to be less locked down. The extreme case
1444 * being "other" has read/write access to user_events_data/status.
1445 *
94c255ac 1446 * When not locked down, processes may not have permissions to
089331d4
BB
1447 * add/remove calls themselves to tracefs. We need to temporarily
1448 * switch to root file permission to allow for this scenario.
1449 */
1450 cred->fsuid = GLOBAL_ROOT_UID;
1451
1452 old_cred = override_creds(cred);
1453
1454 if (visible)
1455 ret = trace_add_event_call(&user->call);
1456 else
1457 ret = trace_remove_event_call(&user->call);
1458
1459 revert_creds(old_cred);
1460 put_cred(cred);
1461
1462 return ret;
1463}
1464
7f5a08c7
BB
1465static int destroy_user_event(struct user_event *user)
1466{
1467 int ret = 0;
1468
ce58e96e
BB
1469 lockdep_assert_held(&event_mutex);
1470
7f5a08c7
BB
1471 /* Must destroy fields before call removal */
1472 user_event_destroy_fields(user);
1473
089331d4 1474 ret = user_event_set_call_visible(user, false);
7f5a08c7
BB
1475
1476 if (ret)
1477 return ret;
1478
1479 dyn_event_remove(&user->devent);
7f5a08c7
BB
1480 hash_del(&user->node);
1481
2467cda1 1482 user_event_destroy_validators(user);
aa3b2b4c 1483 kfree(user->call.print_fmt);
7f5a08c7
BB
1484 kfree(EVENT_NAME(user));
1485 kfree(user);
1486
ce58e96e
BB
1487 if (current_user_events > 0)
1488 current_user_events--;
1489 else
1490 pr_alert("BUG: Bad current_user_events\n");
1491
7f5a08c7
BB
1492 return ret;
1493}
1494
e5d27181
BB
1495static struct user_event *find_user_event(struct user_event_group *group,
1496 char *name, u32 *outkey)
7f5a08c7
BB
1497{
1498 struct user_event *user;
1499 u32 key = user_event_key(name);
1500
1501 *outkey = key;
1502
e5d27181 1503 hash_for_each_possible(group->register_table, user, node, key)
f0dbf6fd
BB
1504 if (!strcmp(EVENT_NAME(user), name))
1505 return user_event_get(user);
7f5a08c7
BB
1506
1507 return NULL;
1508}
1509
2467cda1
BB
1510static int user_event_validate(struct user_event *user, void *data, int len)
1511{
1512 struct list_head *head = &user->validators;
1513 struct user_event_validator *validator;
1514 void *pos, *end = data + len;
1515 u32 loc, offset, size;
1516
dcbd1ac2 1517 list_for_each_entry(validator, head, user_event_link) {
2467cda1
BB
1518 pos = data + validator->offset;
1519
1520 /* Already done min_size check, no bounds check here */
1521 loc = *(u32 *)pos;
1522 offset = loc & 0xffff;
1523 size = loc >> 16;
1524
1525 if (likely(validator->flags & VALIDATOR_REL))
1526 pos += offset + sizeof(loc);
1527 else
1528 pos = data + offset;
1529
1530 pos += size;
1531
1532 if (unlikely(pos > end))
1533 return -EFAULT;
1534
1535 if (likely(validator->flags & VALIDATOR_ENSURE_NULL))
1536 if (unlikely(*(char *)(pos - 1) != '\0'))
1537 return -EFAULT;
1538 }
1539
1540 return 0;
1541}
1542
7f5a08c7
BB
1543/*
1544 * Writes the user supplied payload out to a trace file.
1545 */
0279400a 1546static void user_event_ftrace(struct user_event *user, struct iov_iter *i,
2467cda1 1547 void *tpdata, bool *faulted)
7f5a08c7
BB
1548{
1549 struct trace_event_file *file;
1550 struct trace_entry *entry;
1551 struct trace_event_buffer event_buffer;
2467cda1 1552 size_t size = sizeof(*entry) + i->count;
7f5a08c7
BB
1553
1554 file = (struct trace_event_file *)tpdata;
1555
1556 if (!file ||
1557 !(file->flags & EVENT_FILE_FL_ENABLED) ||
1558 trace_trigger_soft_disabled(file))
1559 return;
1560
1561 /* Allocates and fills trace_entry, + 1 of this is data payload */
2467cda1 1562 entry = trace_event_buffer_reserve(&event_buffer, file, size);
7f5a08c7
BB
1563
1564 if (unlikely(!entry))
1565 return;
1566
6f05dcab 1567 if (unlikely(i->count != 0 && !copy_nofault(entry + 1, i->count, i)))
2467cda1
BB
1568 goto discard;
1569
1570 if (!list_empty(&user->validators) &&
1571 unlikely(user_event_validate(user, entry, size)))
1572 goto discard;
1573
1574 trace_event_buffer_commit(&event_buffer);
1575
1576 return;
1577discard:
1578 *faulted = true;
1579 __trace_event_discard_commit(event_buffer.buffer,
1580 event_buffer.event);
7f5a08c7
BB
1581}
1582
3207d045
BB
1583#ifdef CONFIG_PERF_EVENTS
1584/*
768c1e7f 1585 * Writes the user supplied payload out to perf ring buffer.
3207d045 1586 */
0279400a 1587static void user_event_perf(struct user_event *user, struct iov_iter *i,
2467cda1 1588 void *tpdata, bool *faulted)
3207d045
BB
1589{
1590 struct hlist_head *perf_head;
1591
3207d045
BB
1592 perf_head = this_cpu_ptr(user->call.perf_events);
1593
1594 if (perf_head && !hlist_empty(perf_head)) {
1595 struct trace_entry *perf_entry;
1596 struct pt_regs *regs;
0279400a 1597 size_t size = sizeof(*perf_entry) + i->count;
3207d045
BB
1598 int context;
1599
1600 perf_entry = perf_trace_buf_alloc(ALIGN(size, 8),
1601 &regs, &context);
1602
1603 if (unlikely(!perf_entry))
1604 return;
1605
1606 perf_fetch_caller_regs(regs);
1607
6f05dcab 1608 if (unlikely(i->count != 0 && !copy_nofault(perf_entry + 1, i->count, i)))
2467cda1
BB
1609 goto discard;
1610
1611 if (!list_empty(&user->validators) &&
1612 unlikely(user_event_validate(user, perf_entry, size)))
1613 goto discard;
3207d045
BB
1614
1615 perf_trace_buf_submit(perf_entry, size, context,
1616 user->call.event.type, 1, regs,
1617 perf_head, NULL);
2467cda1
BB
1618
1619 return;
1620discard:
1621 *faulted = true;
1622 perf_swevent_put_recursion_context(context);
3207d045
BB
1623 }
1624}
1625#endif
1626
7f5a08c7 1627/*
72357590 1628 * Update the enabled bit among all user processes.
7f5a08c7 1629 */
72357590 1630static void update_enable_bit_for(struct user_event *user)
7f5a08c7
BB
1631{
1632 struct tracepoint *tp = &user->tracepoint;
1633 char status = 0;
1634
1635 if (atomic_read(&tp->key.enabled) > 0) {
1636 struct tracepoint_func *probe_func_ptr;
1637 user_event_func_t probe_func;
1638
1639 rcu_read_lock_sched();
1640
1641 probe_func_ptr = rcu_dereference_sched(tp->funcs);
1642
1643 if (probe_func_ptr) {
1644 do {
1645 probe_func = probe_func_ptr->func;
1646
1647 if (probe_func == user_event_ftrace)
1648 status |= EVENT_STATUS_FTRACE;
3207d045
BB
1649#ifdef CONFIG_PERF_EVENTS
1650 else if (probe_func == user_event_perf)
1651 status |= EVENT_STATUS_PERF;
1652#endif
7f5a08c7
BB
1653 else
1654 status |= EVENT_STATUS_OTHER;
1655 } while ((++probe_func_ptr)->func);
1656 }
1657
1658 rcu_read_unlock_sched();
1659 }
1660
39d6d08b 1661 user->status = status;
72357590
BB
1662
1663 user_event_enabler_update(user);
7f5a08c7
BB
1664}
1665
1666/*
1667 * Register callback for our events from tracing sub-systems.
1668 */
1669static int user_event_reg(struct trace_event_call *call,
1670 enum trace_reg type,
1671 void *data)
1672{
1673 struct user_event *user = (struct user_event *)call->data;
1674 int ret = 0;
1675
1676 if (!user)
1677 return -ENOENT;
1678
1679 switch (type) {
1680 case TRACE_REG_REGISTER:
1681 ret = tracepoint_probe_register(call->tp,
1682 call->class->probe,
1683 data);
1684 if (!ret)
1685 goto inc;
1686 break;
1687
1688 case TRACE_REG_UNREGISTER:
1689 tracepoint_probe_unregister(call->tp,
1690 call->class->probe,
1691 data);
1692 goto dec;
1693
3207d045
BB
1694#ifdef CONFIG_PERF_EVENTS
1695 case TRACE_REG_PERF_REGISTER:
1696 ret = tracepoint_probe_register(call->tp,
1697 call->class->perf_probe,
1698 data);
1699 if (!ret)
1700 goto inc;
1701 break;
1702
1703 case TRACE_REG_PERF_UNREGISTER:
1704 tracepoint_probe_unregister(call->tp,
1705 call->class->perf_probe,
1706 data);
1707 goto dec;
1708
1709 case TRACE_REG_PERF_OPEN:
1710 case TRACE_REG_PERF_CLOSE:
1711 case TRACE_REG_PERF_ADD:
1712 case TRACE_REG_PERF_DEL:
7f5a08c7 1713 break;
3207d045 1714#endif
7f5a08c7
BB
1715 }
1716
1717 return ret;
1718inc:
f0dbf6fd 1719 user_event_get(user);
72357590 1720 update_enable_bit_for(user);
7f5a08c7
BB
1721 return 0;
1722dec:
72357590 1723 update_enable_bit_for(user);
f0dbf6fd 1724 user_event_put(user, true);
7f5a08c7
BB
1725 return 0;
1726}
1727
1728static int user_event_create(const char *raw_command)
1729{
e5d27181 1730 struct user_event_group *group;
7f5a08c7
BB
1731 struct user_event *user;
1732 char *name;
1733 int ret;
1734
1735 if (!str_has_prefix(raw_command, USER_EVENTS_PREFIX))
1736 return -ECANCELED;
1737
1738 raw_command += USER_EVENTS_PREFIX_LEN;
1739 raw_command = skip_spaces(raw_command);
1740
f9cce238 1741 name = kstrdup(raw_command, GFP_KERNEL_ACCOUNT);
7f5a08c7
BB
1742
1743 if (!name)
1744 return -ENOMEM;
1745
e5d27181
BB
1746 group = current_user_event_group();
1747
ccc6e590
XJ
1748 if (!group) {
1749 kfree(name);
e5d27181 1750 return -ENOENT;
ccc6e590 1751 }
e5d27181
BB
1752
1753 mutex_lock(&group->reg_mutex);
7e348b32 1754
a65442ed
BB
1755 /* Dyn events persist, otherwise they would cleanup immediately */
1756 ret = user_event_parse_cmd(group, name, &user, USER_EVENT_REG_PERSIST);
7e348b32
BB
1757
1758 if (!ret)
f0dbf6fd 1759 user_event_put(user, false);
7e348b32 1760
e5d27181 1761 mutex_unlock(&group->reg_mutex);
7f5a08c7
BB
1762
1763 if (ret)
1764 kfree(name);
1765
1766 return ret;
1767}
1768
1769static int user_event_show(struct seq_file *m, struct dyn_event *ev)
1770{
1771 struct user_event *user = container_of(ev, struct user_event, devent);
a943188d 1772 struct ftrace_event_field *field;
7f5a08c7
BB
1773 struct list_head *head;
1774 int depth = 0;
1775
1776 seq_printf(m, "%s%s", USER_EVENTS_PREFIX, EVENT_NAME(user));
1777
1778 head = trace_get_fields(&user->call);
1779
a943188d 1780 list_for_each_entry_reverse(field, head, link) {
7f5a08c7
BB
1781 if (depth == 0)
1782 seq_puts(m, " ");
1783 else
1784 seq_puts(m, "; ");
1785
1786 seq_printf(m, "%s %s", field->type, field->name);
1787
1788 if (str_has_prefix(field->type, "struct "))
1789 seq_printf(m, " %d", field->size);
1790
1791 depth++;
1792 }
1793
1794 seq_puts(m, "\n");
1795
1796 return 0;
1797}
1798
1799static bool user_event_is_busy(struct dyn_event *ev)
1800{
1801 struct user_event *user = container_of(ev, struct user_event, devent);
1802
d401b724 1803 return !user_event_last_ref(user);
7f5a08c7
BB
1804}
1805
1806static int user_event_free(struct dyn_event *ev)
1807{
1808 struct user_event *user = container_of(ev, struct user_event, devent);
1809
d401b724 1810 if (!user_event_last_ref(user))
7f5a08c7
BB
1811 return -EBUSY;
1812
5dbd04ed
BB
1813 if (!user_event_capable(user->reg_flags))
1814 return -EPERM;
1815
7f5a08c7
BB
1816 return destroy_user_event(user);
1817}
1818
9aed4e15
BB
1819static bool user_field_match(struct ftrace_event_field *field, int argc,
1820 const char **argv, int *iout)
1821{
e6f89a14 1822 char *field_name = NULL, *dyn_field_name = NULL;
9aed4e15 1823 bool colon = false, match = false;
e6f89a14 1824 int dyn_len, len;
9aed4e15 1825
e6f89a14 1826 if (*iout >= argc)
9aed4e15
BB
1827 return false;
1828
e6f89a14
BB
1829 dyn_len = user_dyn_field_set_string(argc, argv, iout, dyn_field_name,
1830 0, &colon);
9aed4e15 1831
e6f89a14 1832 len = user_field_set_string(field, field_name, 0, colon);
9aed4e15 1833
e6f89a14
BB
1834 if (dyn_len != len)
1835 return false;
9aed4e15 1836
e6f89a14
BB
1837 dyn_field_name = kmalloc(dyn_len, GFP_KERNEL);
1838 field_name = kmalloc(len, GFP_KERNEL);
9aed4e15 1839
e6f89a14
BB
1840 if (!dyn_field_name || !field_name)
1841 goto out;
9aed4e15 1842
e6f89a14
BB
1843 user_dyn_field_set_string(argc, argv, iout, dyn_field_name,
1844 dyn_len, &colon);
9aed4e15 1845
e6f89a14 1846 user_field_set_string(field, field_name, len, colon);
9aed4e15 1847
e6f89a14 1848 match = strcmp(dyn_field_name, field_name) == 0;
9aed4e15 1849out:
e6f89a14 1850 kfree(dyn_field_name);
9aed4e15
BB
1851 kfree(field_name);
1852
1853 return match;
1854}
1855
1856static bool user_fields_match(struct user_event *user, int argc,
1857 const char **argv)
1858{
a943188d 1859 struct ftrace_event_field *field;
9aed4e15
BB
1860 struct list_head *head = &user->fields;
1861 int i = 0;
1862
a943188d 1863 list_for_each_entry_reverse(field, head, link) {
9aed4e15
BB
1864 if (!user_field_match(field, argc, argv, &i))
1865 return false;
a943188d 1866 }
9aed4e15
BB
1867
1868 if (i != argc)
1869 return false;
1870
1871 return true;
1872}
1873
7f5a08c7
BB
1874static bool user_event_match(const char *system, const char *event,
1875 int argc, const char **argv, struct dyn_event *ev)
1876{
1877 struct user_event *user = container_of(ev, struct user_event, devent);
9aed4e15 1878 bool match;
7f5a08c7 1879
9aed4e15 1880 match = strcmp(EVENT_NAME(user), event) == 0 &&
7f5a08c7 1881 (!system || strcmp(system, USER_EVENTS_SYSTEM) == 0);
9aed4e15
BB
1882
1883 if (match && argc > 0)
1884 match = user_fields_match(user, argc, argv);
cfac4ed7 1885 else if (match && argc == 0)
1886 match = list_empty(&user->fields);
9aed4e15
BB
1887
1888 return match;
7f5a08c7
BB
1889}
1890
1891static struct dyn_event_operations user_event_dops = {
1892 .create = user_event_create,
1893 .show = user_event_show,
1894 .is_busy = user_event_is_busy,
1895 .free = user_event_free,
1896 .match = user_event_match,
1897};
1898
1899static int user_event_trace_register(struct user_event *user)
1900{
1901 int ret;
1902
1903 ret = register_trace_event(&user->call.event);
1904
1905 if (!ret)
1906 return -ENODEV;
1907
089331d4 1908 ret = user_event_set_call_visible(user, true);
7f5a08c7
BB
1909
1910 if (ret)
1911 unregister_trace_event(&user->call.event);
1912
1913 return ret;
1914}
1915
1916/*
1917 * Parses the event name, arguments and flags then registers if successful.
1918 * The name buffer lifetime is owned by this method for success cases only.
7e348b32 1919 * Upon success the returned user_event has its ref count increased by 1.
7f5a08c7 1920 */
e5d27181
BB
1921static int user_event_parse(struct user_event_group *group, char *name,
1922 char *args, char *flags,
b08d7258 1923 struct user_event **newuser, int reg_flags)
7f5a08c7
BB
1924{
1925 int ret;
7f5a08c7 1926 u32 key;
7e348b32 1927 struct user_event *user;
ba470eeb 1928 int argc = 0;
1929 char **argv;
7e348b32 1930
5dbd04ed
BB
1931 /* Currently don't support any text based flags */
1932 if (flags != NULL)
a65442ed
BB
1933 return -EINVAL;
1934
5dbd04ed
BB
1935 if (!user_event_capable(reg_flags))
1936 return -EPERM;
1937
7e348b32
BB
1938 /* Prevent dyn_event from racing */
1939 mutex_lock(&event_mutex);
e5d27181 1940 user = find_user_event(group, name, &key);
7e348b32 1941 mutex_unlock(&event_mutex);
7f5a08c7
BB
1942
1943 if (user) {
ba470eeb 1944 if (args) {
1945 argv = argv_split(GFP_KERNEL, args, &argc);
1946 if (!argv) {
1947 ret = -ENOMEM;
1948 goto error;
1949 }
1950
1951 ret = user_fields_match(user, argc, (const char **)argv);
1952 argv_free(argv);
1953
1954 } else
1955 ret = list_empty(&user->fields);
1956
1957 if (ret) {
1958 *newuser = user;
1959 /*
1960 * Name is allocated by caller, free it since it already exists.
1961 * Caller only worries about failure cases for freeing.
1962 */
1963 kfree(name);
1964 } else {
1965 ret = -EADDRINUSE;
1966 goto error;
1967 }
1968
7f5a08c7 1969 return 0;
ba470eeb 1970error:
f0dbf6fd 1971 user_event_put(user, false);
ba470eeb 1972 return ret;
7f5a08c7
BB
1973 }
1974
f9cce238 1975 user = kzalloc(sizeof(*user), GFP_KERNEL_ACCOUNT);
7f5a08c7
BB
1976
1977 if (!user)
1978 return -ENOMEM;
1979
1980 INIT_LIST_HEAD(&user->class.fields);
1981 INIT_LIST_HEAD(&user->fields);
2467cda1 1982 INIT_LIST_HEAD(&user->validators);
7f5a08c7 1983
e5d27181 1984 user->group = group;
7f5a08c7
BB
1985 user->tracepoint.name = name;
1986
7f5a08c7
BB
1987 ret = user_event_parse_fields(user, args);
1988
1989 if (ret)
1990 goto put_user;
1991
aa3b2b4c
BB
1992 ret = user_event_create_print_fmt(user);
1993
1994 if (ret)
1995 goto put_user;
7f5a08c7
BB
1996
1997 user->call.data = user;
1998 user->call.class = &user->class;
1999 user->call.name = name;
2000 user->call.flags = TRACE_EVENT_FL_TRACEPOINT;
2001 user->call.tp = &user->tracepoint;
2002 user->call.event.funcs = &user_event_funcs;
e5d27181 2003 user->class.system = group->system_name;
7f5a08c7 2004
7f5a08c7
BB
2005 user->class.fields_array = user_event_fields_array;
2006 user->class.get_fields = user_event_get_fields;
2007 user->class.reg = user_event_reg;
2008 user->class.probe = user_event_ftrace;
3207d045
BB
2009#ifdef CONFIG_PERF_EVENTS
2010 user->class.perf_probe = user_event_perf;
2011#endif
7f5a08c7
BB
2012
2013 mutex_lock(&event_mutex);
efe34e99 2014
ce58e96e
BB
2015 if (current_user_events >= max_user_events) {
2016 ret = -EMFILE;
2017 goto put_user_lock;
2018 }
2019
7f5a08c7 2020 ret = user_event_trace_register(user);
7f5a08c7
BB
2021
2022 if (ret)
efe34e99 2023 goto put_user_lock;
7f5a08c7 2024
b08d7258
BB
2025 user->reg_flags = reg_flags;
2026
a65442ed
BB
2027 if (user->reg_flags & USER_EVENT_REG_PERSIST) {
2028 /* Ensure we track self ref and caller ref (2) */
2029 refcount_set(&user->refcnt, 2);
2030 } else {
2031 /* Ensure we track only caller ref (1) */
2032 refcount_set(&user->refcnt, 1);
2033 }
7e348b32 2034
7f5a08c7
BB
2035 dyn_event_init(&user->devent, &user_event_dops);
2036 dyn_event_add(&user->devent, &user->call);
e5d27181 2037 hash_add(group->register_table, &user->node, key);
ce58e96e 2038 current_user_events++;
7f5a08c7 2039
efe34e99
BB
2040 mutex_unlock(&event_mutex);
2041
7f5a08c7
BB
2042 *newuser = user;
2043 return 0;
efe34e99
BB
2044put_user_lock:
2045 mutex_unlock(&event_mutex);
7f5a08c7
BB
2046put_user:
2047 user_event_destroy_fields(user);
2467cda1 2048 user_event_destroy_validators(user);
4bded7af 2049 kfree(user->call.print_fmt);
7f5a08c7
BB
2050 kfree(user);
2051 return ret;
2052}
2053
2054/*
2055 * Deletes a previously created event if it is no longer being used.
2056 */
e5d27181 2057static int delete_user_event(struct user_event_group *group, char *name)
7f5a08c7
BB
2058{
2059 u32 key;
e5d27181 2060 struct user_event *user = find_user_event(group, name, &key);
7f5a08c7
BB
2061
2062 if (!user)
2063 return -ENOENT;
2064
f0dbf6fd 2065 user_event_put(user, true);
7e348b32 2066
d401b724
BB
2067 if (!user_event_last_ref(user))
2068 return -EBUSY;
7f5a08c7 2069
5dbd04ed
BB
2070 if (!user_event_capable(user->reg_flags))
2071 return -EPERM;
2072
d401b724 2073 return destroy_user_event(user);
7f5a08c7
BB
2074}
2075
2076/*
2077 * Validates the user payload and writes via iterator.
2078 */
2079static ssize_t user_events_write_core(struct file *file, struct iov_iter *i)
2080{
e5d27181 2081 struct user_event_file_info *info = file->private_data;
7f5a08c7
BB
2082 struct user_event_refs *refs;
2083 struct user_event *user = NULL;
2084 struct tracepoint *tp;
2085 ssize_t ret = i->count;
2086 int idx;
2087
2088 if (unlikely(copy_from_iter(&idx, sizeof(idx), i) != sizeof(idx)))
2089 return -EFAULT;
2090
cd98c932
BB
2091 if (idx < 0)
2092 return -EINVAL;
2093
7f5a08c7
BB
2094 rcu_read_lock_sched();
2095
e5d27181 2096 refs = rcu_dereference_sched(info->refs);
7f5a08c7
BB
2097
2098 /*
2099 * The refs->events array is protected by RCU, and new items may be
2100 * added. But the user retrieved from indexing into the events array
2101 * shall be immutable while the file is opened.
2102 */
2103 if (likely(refs && idx < refs->count))
2104 user = refs->events[idx];
2105
2106 rcu_read_unlock_sched();
2107
2108 if (unlikely(user == NULL))
2109 return -ENOENT;
2110
2467cda1
BB
2111 if (unlikely(i->count < user->min_size))
2112 return -EINVAL;
2113
7f5a08c7
BB
2114 tp = &user->tracepoint;
2115
2116 /*
2117 * It's possible key.enabled disables after this check, however
2118 * we don't mind if a few events are included in this condition.
2119 */
2120 if (likely(atomic_read(&tp->key.enabled) > 0)) {
2121 struct tracepoint_func *probe_func_ptr;
2122 user_event_func_t probe_func;
0279400a 2123 struct iov_iter copy;
7f5a08c7 2124 void *tpdata;
2467cda1 2125 bool faulted;
7f5a08c7 2126
0279400a
BB
2127 if (unlikely(fault_in_iov_iter_readable(i, i->count)))
2128 return -EFAULT;
7f5a08c7 2129
2467cda1
BB
2130 faulted = false;
2131
7f5a08c7
BB
2132 rcu_read_lock_sched();
2133
2134 probe_func_ptr = rcu_dereference_sched(tp->funcs);
2135
2136 if (probe_func_ptr) {
2137 do {
0279400a 2138 copy = *i;
7f5a08c7
BB
2139 probe_func = probe_func_ptr->func;
2140 tpdata = probe_func_ptr->data;
2467cda1 2141 probe_func(user, &copy, tpdata, &faulted);
7f5a08c7
BB
2142 } while ((++probe_func_ptr)->func);
2143 }
2144
2145 rcu_read_unlock_sched();
2467cda1
BB
2146
2147 if (unlikely(faulted))
2148 return -EFAULT;
f6d026ee 2149 } else
2150 return -EBADF;
7f5a08c7
BB
2151
2152 return ret;
2153}
2154
e5d27181
BB
2155static int user_events_open(struct inode *node, struct file *file)
2156{
2157 struct user_event_group *group;
2158 struct user_event_file_info *info;
2159
2160 group = current_user_event_group();
2161
2162 if (!group)
2163 return -ENOENT;
2164
f9cce238 2165 info = kzalloc(sizeof(*info), GFP_KERNEL_ACCOUNT);
e5d27181
BB
2166
2167 if (!info)
2168 return -ENOMEM;
2169
2170 info->group = group;
2171
2172 file->private_data = info;
2173
2174 return 0;
2175}
2176
7f5a08c7
BB
2177static ssize_t user_events_write(struct file *file, const char __user *ubuf,
2178 size_t count, loff_t *ppos)
2179{
2180 struct iovec iov;
2181 struct iov_iter i;
2182
2183 if (unlikely(*ppos != 0))
2184 return -EFAULT;
2185
de4eda9d 2186 if (unlikely(import_single_range(ITER_SOURCE, (char __user *)ubuf,
95f18760 2187 count, &iov, &i)))
7f5a08c7
BB
2188 return -EFAULT;
2189
2190 return user_events_write_core(file, &i);
2191}
2192
2193static ssize_t user_events_write_iter(struct kiocb *kp, struct iov_iter *i)
2194{
2195 return user_events_write_core(kp->ki_filp, i);
2196}
2197
e5d27181
BB
2198static int user_events_ref_add(struct user_event_file_info *info,
2199 struct user_event *user)
7f5a08c7 2200{
e5d27181 2201 struct user_event_group *group = info->group;
7f5a08c7
BB
2202 struct user_event_refs *refs, *new_refs;
2203 int i, size, count = 0;
2204
e5d27181
BB
2205 refs = rcu_dereference_protected(info->refs,
2206 lockdep_is_held(&group->reg_mutex));
7f5a08c7
BB
2207
2208 if (refs) {
2209 count = refs->count;
2210
2211 for (i = 0; i < count; ++i)
2212 if (refs->events[i] == user)
2213 return i;
2214 }
2215
2216 size = struct_size(refs, events, count + 1);
2217
f9cce238 2218 new_refs = kzalloc(size, GFP_KERNEL_ACCOUNT);
7f5a08c7
BB
2219
2220 if (!new_refs)
2221 return -ENOMEM;
2222
2223 new_refs->count = count + 1;
2224
2225 for (i = 0; i < count; ++i)
2226 new_refs->events[i] = refs->events[i];
2227
f0dbf6fd 2228 new_refs->events[i] = user_event_get(user);
7f5a08c7 2229
e5d27181 2230 rcu_assign_pointer(info->refs, new_refs);
7f5a08c7
BB
2231
2232 if (refs)
2233 kfree_rcu(refs, rcu);
2234
2235 return i;
2236}
2237
2238static long user_reg_get(struct user_reg __user *ureg, struct user_reg *kreg)
2239{
2240 u32 size;
2241 long ret;
2242
2243 ret = get_user(size, &ureg->size);
2244
2245 if (ret)
2246 return ret;
2247
2248 if (size > PAGE_SIZE)
2249 return -E2BIG;
2250
39d6d08b
BB
2251 if (size < offsetofend(struct user_reg, write_index))
2252 return -EINVAL;
2253
2254 ret = copy_struct_from_user(kreg, sizeof(*kreg), ureg, size);
2255
2256 if (ret)
2257 return ret;
2258
a65442ed
BB
2259 /* Ensure only valid flags */
2260 if (kreg->flags & ~(USER_EVENT_REG_MAX-1))
72357590
BB
2261 return -EINVAL;
2262
2263 /* Ensure supported size */
2264 switch (kreg->enable_size) {
2265 case 4:
2266 /* 32-bit */
2267 break;
2268#if BITS_PER_LONG >= 64
2269 case 8:
2270 /* 64-bit */
2271 break;
2272#endif
2273 default:
2274 return -EINVAL;
2275 }
2276
2277 /* Ensure natural alignment */
2278 if (kreg->enable_addr % kreg->enable_size)
2279 return -EINVAL;
2280
2281 /* Ensure bit range for size */
2282 if (kreg->enable_bit > (kreg->enable_size * BITS_PER_BYTE) - 1)
2283 return -EINVAL;
2284
2285 /* Ensure accessible */
2286 if (!access_ok((const void __user *)(uintptr_t)kreg->enable_addr,
2287 kreg->enable_size))
2288 return -EFAULT;
2289
39d6d08b
BB
2290 kreg->size = size;
2291
2292 return 0;
7f5a08c7
BB
2293}
2294
2295/*
2296 * Registers a user_event on behalf of a user process.
2297 */
e5d27181
BB
2298static long user_events_ioctl_reg(struct user_event_file_info *info,
2299 unsigned long uarg)
7f5a08c7
BB
2300{
2301 struct user_reg __user *ureg = (struct user_reg __user *)uarg;
2302 struct user_reg reg;
2303 struct user_event *user;
72357590 2304 struct user_event_enabler *enabler;
7f5a08c7
BB
2305 char *name;
2306 long ret;
72357590 2307 int write_result;
7f5a08c7
BB
2308
2309 ret = user_reg_get(ureg, &reg);
2310
2311 if (ret)
2312 return ret;
2313
97bbce89
BB
2314 /*
2315 * Prevent users from using the same address and bit multiple times
2316 * within the same mm address space. This can cause unexpected behavior
2317 * for user processes that is far easier to debug if this is explictly
2318 * an error upon registering.
2319 */
2320 if (current_user_event_enabler_exists((unsigned long)reg.enable_addr,
2321 reg.enable_bit))
2322 return -EADDRINUSE;
2323
7f5a08c7
BB
2324 name = strndup_user((const char __user *)(uintptr_t)reg.name_args,
2325 MAX_EVENT_DESC);
2326
2327 if (IS_ERR(name)) {
2328 ret = PTR_ERR(name);
2329 return ret;
2330 }
2331
b08d7258 2332 ret = user_event_parse_cmd(info->group, name, &user, reg.flags);
7f5a08c7
BB
2333
2334 if (ret) {
2335 kfree(name);
2336 return ret;
2337 }
2338
e5d27181 2339 ret = user_events_ref_add(info, user);
7f5a08c7 2340
7e348b32 2341 /* No longer need parse ref, ref_add either worked or not */
f0dbf6fd 2342 user_event_put(user, false);
7e348b32 2343
7f5a08c7
BB
2344 /* Positive number is index and valid */
2345 if (ret < 0)
2346 return ret;
2347
72357590
BB
2348 /*
2349 * user_events_ref_add succeeded:
2350 * At this point we have a user_event, it's lifetime is bound by the
2351 * reference count, not this file. If anything fails, the user_event
2352 * still has a reference until the file is released. During release
2353 * any remaining references (from user_events_ref_add) are decremented.
2354 *
2355 * Attempt to create an enabler, which too has a lifetime tied in the
2356 * same way for the event. Once the task that caused the enabler to be
2357 * created exits or issues exec() then the enablers it has created
2358 * will be destroyed and the ref to the event will be decremented.
2359 */
2360 enabler = user_event_enabler_create(&reg, user, &write_result);
2361
2362 if (!enabler)
2363 return -ENOMEM;
2364
2365 /* Write failed/faulted, give error back to caller */
2366 if (write_result)
2367 return write_result;
2368
7f5a08c7 2369 put_user((u32)ret, &ureg->write_index);
7f5a08c7
BB
2370
2371 return 0;
2372}
2373
2374/*
2375 * Deletes a user_event on behalf of a user process.
2376 */
e5d27181
BB
2377static long user_events_ioctl_del(struct user_event_file_info *info,
2378 unsigned long uarg)
7f5a08c7
BB
2379{
2380 void __user *ubuf = (void __user *)uarg;
2381 char *name;
2382 long ret;
2383
2384 name = strndup_user(ubuf, MAX_EVENT_DESC);
2385
2386 if (IS_ERR(name))
2387 return PTR_ERR(name);
2388
7e348b32
BB
2389 /* event_mutex prevents dyn_event from racing */
2390 mutex_lock(&event_mutex);
e5d27181 2391 ret = delete_user_event(info->group, name);
7e348b32 2392 mutex_unlock(&event_mutex);
7f5a08c7
BB
2393
2394 kfree(name);
2395
2396 return ret;
2397}
2398
dcb8177c
BB
2399static long user_unreg_get(struct user_unreg __user *ureg,
2400 struct user_unreg *kreg)
2401{
2402 u32 size;
2403 long ret;
2404
2405 ret = get_user(size, &ureg->size);
2406
2407 if (ret)
2408 return ret;
2409
2410 if (size > PAGE_SIZE)
2411 return -E2BIG;
2412
2413 if (size < offsetofend(struct user_unreg, disable_addr))
2414 return -EINVAL;
2415
2416 ret = copy_struct_from_user(kreg, sizeof(*kreg), ureg, size);
2417
2418 /* Ensure no reserved values, since we don't support any yet */
2419 if (kreg->__reserved || kreg->__reserved2)
2420 return -EINVAL;
2421
2422 return ret;
2423}
2424
17b439db 2425static int user_event_mm_clear_bit(struct user_event_mm *user_mm,
2de9ee94
BB
2426 unsigned long uaddr, unsigned char bit,
2427 unsigned long flags)
17b439db
BB
2428{
2429 struct user_event_enabler enabler;
2430 int result;
41d8fba1 2431 int attempt = 0;
17b439db
BB
2432
2433 memset(&enabler, 0, sizeof(enabler));
2434 enabler.addr = uaddr;
2de9ee94 2435 enabler.values = bit | flags;
17b439db
BB
2436retry:
2437 /* Prevents state changes from racing with new enablers */
2438 mutex_lock(&event_mutex);
2439
2440 /* Force the bit to be cleared, since no event is attached */
2441 mmap_read_lock(user_mm->mm);
41d8fba1 2442 result = user_event_enabler_write(user_mm, &enabler, false, &attempt);
17b439db
BB
2443 mmap_read_unlock(user_mm->mm);
2444
2445 mutex_unlock(&event_mutex);
2446
2447 if (result) {
2448 /* Attempt to fault-in and retry if it worked */
41d8fba1 2449 if (!user_event_mm_fault_in(user_mm, uaddr, attempt))
17b439db
BB
2450 goto retry;
2451 }
2452
2453 return result;
2454}
2455
dcb8177c
BB
2456/*
2457 * Unregisters an enablement address/bit within a task/user mm.
2458 */
2459static long user_events_ioctl_unreg(unsigned long uarg)
2460{
2461 struct user_unreg __user *ureg = (struct user_unreg __user *)uarg;
2462 struct user_event_mm *mm = current->user_event_mm;
2463 struct user_event_enabler *enabler, *next;
2464 struct user_unreg reg;
2de9ee94 2465 unsigned long flags;
dcb8177c
BB
2466 long ret;
2467
2468 ret = user_unreg_get(ureg, &reg);
2469
2470 if (ret)
2471 return ret;
2472
2473 if (!mm)
2474 return -ENOENT;
2475
2de9ee94 2476 flags = 0;
dcb8177c
BB
2477 ret = -ENOENT;
2478
2479 /*
2480 * Flags freeing and faulting are used to indicate if the enabler is in
2481 * use at all. When faulting is set a page-fault is occurring asyncly.
2482 * During async fault if freeing is set, the enabler will be destroyed.
2483 * If no async fault is happening, we can destroy it now since we hold
2484 * the event_mutex during these checks.
2485 */
2486 mutex_lock(&event_mutex);
2487
dcbd1ac2 2488 list_for_each_entry_safe(enabler, next, &mm->enablers, mm_enablers_link) {
dcb8177c 2489 if (enabler->addr == reg.disable_addr &&
ee7751b5 2490 ENABLE_BIT(enabler) == reg.disable_bit) {
dcb8177c
BB
2491 set_bit(ENABLE_VAL_FREEING_BIT, ENABLE_BITOPS(enabler));
2492
2de9ee94
BB
2493 /* We must keep compat flags for the clear */
2494 flags |= enabler->values & ENABLE_VAL_COMPAT_MASK;
2495
dcb8177c 2496 if (!test_bit(ENABLE_VAL_FAULTING_BIT, ENABLE_BITOPS(enabler)))
f0dbf6fd 2497 user_event_enabler_destroy(enabler, true);
dcb8177c
BB
2498
2499 /* Removed at least one */
2500 ret = 0;
2501 }
dcbd1ac2 2502 }
dcb8177c
BB
2503
2504 mutex_unlock(&event_mutex);
2505
17b439db
BB
2506 /* Ensure bit is now cleared for user, regardless of event status */
2507 if (!ret)
2508 ret = user_event_mm_clear_bit(mm, reg.disable_addr,
2de9ee94 2509 reg.disable_bit, flags);
17b439db 2510
dcb8177c
BB
2511 return ret;
2512}
2513
7f5a08c7
BB
2514/*
2515 * Handles the ioctl from user mode to register or alter operations.
2516 */
2517static long user_events_ioctl(struct file *file, unsigned int cmd,
2518 unsigned long uarg)
2519{
e5d27181
BB
2520 struct user_event_file_info *info = file->private_data;
2521 struct user_event_group *group = info->group;
7f5a08c7
BB
2522 long ret = -ENOTTY;
2523
2524 switch (cmd) {
2525 case DIAG_IOCSREG:
e5d27181
BB
2526 mutex_lock(&group->reg_mutex);
2527 ret = user_events_ioctl_reg(info, uarg);
2528 mutex_unlock(&group->reg_mutex);
7f5a08c7
BB
2529 break;
2530
2531 case DIAG_IOCSDEL:
e5d27181
BB
2532 mutex_lock(&group->reg_mutex);
2533 ret = user_events_ioctl_del(info, uarg);
2534 mutex_unlock(&group->reg_mutex);
7f5a08c7 2535 break;
dcb8177c
BB
2536
2537 case DIAG_IOCSUNREG:
2538 mutex_lock(&group->reg_mutex);
2539 ret = user_events_ioctl_unreg(uarg);
2540 mutex_unlock(&group->reg_mutex);
2541 break;
7f5a08c7
BB
2542 }
2543
2544 return ret;
2545}
2546
2547/*
2548 * Handles the final close of the file from user mode.
2549 */
2550static int user_events_release(struct inode *node, struct file *file)
2551{
e5d27181
BB
2552 struct user_event_file_info *info = file->private_data;
2553 struct user_event_group *group;
7f5a08c7 2554 struct user_event_refs *refs;
7f5a08c7
BB
2555 int i;
2556
e5d27181
BB
2557 if (!info)
2558 return -EINVAL;
2559
2560 group = info->group;
2561
7f5a08c7
BB
2562 /*
2563 * Ensure refs cannot change under any situation by taking the
2564 * register mutex during the final freeing of the references.
2565 */
e5d27181 2566 mutex_lock(&group->reg_mutex);
7f5a08c7 2567
e5d27181 2568 refs = info->refs;
7f5a08c7
BB
2569
2570 if (!refs)
2571 goto out;
2572
2573 /*
2574 * The lifetime of refs has reached an end, it's tied to this file.
2575 * The underlying user_events are ref counted, and cannot be freed.
2576 * After this decrement, the user_events may be freed elsewhere.
2577 */
f0dbf6fd
BB
2578 for (i = 0; i < refs->count; ++i)
2579 user_event_put(refs->events[i], false);
7f5a08c7 2580
7f5a08c7
BB
2581out:
2582 file->private_data = NULL;
2583
e5d27181 2584 mutex_unlock(&group->reg_mutex);
7f5a08c7
BB
2585
2586 kfree(refs);
e5d27181 2587 kfree(info);
7f5a08c7
BB
2588
2589 return 0;
2590}
2591
2592static const struct file_operations user_data_fops = {
a4c40c13
BB
2593 .open = user_events_open,
2594 .write = user_events_write,
2595 .write_iter = user_events_write_iter,
7f5a08c7 2596 .unlocked_ioctl = user_events_ioctl,
a4c40c13 2597 .release = user_events_release,
7f5a08c7
BB
2598};
2599
7f5a08c7
BB
2600static void *user_seq_start(struct seq_file *m, loff_t *pos)
2601{
2602 if (*pos)
2603 return NULL;
2604
2605 return (void *)1;
2606}
2607
2608static void *user_seq_next(struct seq_file *m, void *p, loff_t *pos)
2609{
2610 ++*pos;
2611 return NULL;
2612}
2613
2614static void user_seq_stop(struct seq_file *m, void *p)
2615{
2616}
2617
2618static int user_seq_show(struct seq_file *m, void *p)
2619{
e5d27181 2620 struct user_event_group *group = m->private;
7f5a08c7
BB
2621 struct user_event *user;
2622 char status;
72357590 2623 int i, active = 0, busy = 0;
7f5a08c7 2624
e5d27181
BB
2625 if (!group)
2626 return -EINVAL;
2627
2628 mutex_lock(&group->reg_mutex);
7f5a08c7 2629
e5d27181 2630 hash_for_each(group->register_table, i, user, node) {
39d6d08b 2631 status = user->status;
7f5a08c7 2632
72357590 2633 seq_printf(m, "%s", EVENT_NAME(user));
7f5a08c7 2634
72357590 2635 if (status != 0)
7f5a08c7
BB
2636 seq_puts(m, " #");
2637
2638 if (status != 0) {
2639 seq_puts(m, " Used by");
2640 if (status & EVENT_STATUS_FTRACE)
2641 seq_puts(m, " ftrace");
2642 if (status & EVENT_STATUS_PERF)
2643 seq_puts(m, " perf");
2644 if (status & EVENT_STATUS_OTHER)
2645 seq_puts(m, " other");
2646 busy++;
2647 }
2648
7f5a08c7
BB
2649 seq_puts(m, "\n");
2650 active++;
2651 }
2652
e5d27181 2653 mutex_unlock(&group->reg_mutex);
7f5a08c7
BB
2654
2655 seq_puts(m, "\n");
2656 seq_printf(m, "Active: %d\n", active);
2657 seq_printf(m, "Busy: %d\n", busy);
7f5a08c7
BB
2658
2659 return 0;
2660}
2661
2662static const struct seq_operations user_seq_ops = {
a4c40c13
BB
2663 .start = user_seq_start,
2664 .next = user_seq_next,
2665 .stop = user_seq_stop,
2666 .show = user_seq_show,
7f5a08c7
BB
2667};
2668
2669static int user_status_open(struct inode *node, struct file *file)
2670{
e5d27181
BB
2671 struct user_event_group *group;
2672 int ret;
2673
2674 group = current_user_event_group();
2675
2676 if (!group)
2677 return -ENOENT;
2678
2679 ret = seq_open(file, &user_seq_ops);
2680
2681 if (!ret) {
2682 /* Chain group to seq_file */
2683 struct seq_file *m = file->private_data;
2684
2685 m->private = group;
2686 }
2687
2688 return ret;
7f5a08c7
BB
2689}
2690
2691static const struct file_operations user_status_fops = {
a4c40c13
BB
2692 .open = user_status_open,
2693 .read = seq_read,
2694 .llseek = seq_lseek,
2695 .release = seq_release,
7f5a08c7
BB
2696};
2697
2698/*
2699 * Creates a set of tracefs files to allow user mode interactions.
2700 */
2701static int create_user_tracefs(void)
2702{
2703 struct dentry *edata, *emmap;
2704
2705 edata = tracefs_create_file("user_events_data", TRACE_MODE_WRITE,
2706 NULL, NULL, &user_data_fops);
2707
2708 if (!edata) {
2709 pr_warn("Could not create tracefs 'user_events_data' entry\n");
2710 goto err;
2711 }
2712
72357590 2713 emmap = tracefs_create_file("user_events_status", TRACE_MODE_READ,
7f5a08c7
BB
2714 NULL, NULL, &user_status_fops);
2715
2716 if (!emmap) {
2717 tracefs_remove(edata);
2718 pr_warn("Could not create tracefs 'user_events_mmap' entry\n");
2719 goto err;
2720 }
2721
2722 return 0;
2723err:
2724 return -ENODEV;
2725}
2726
ce58e96e
BB
2727static int set_max_user_events_sysctl(struct ctl_table *table, int write,
2728 void *buffer, size_t *lenp, loff_t *ppos)
2729{
2730 int ret;
2731
2732 mutex_lock(&event_mutex);
2733
2734 ret = proc_douintvec(table, write, buffer, lenp, ppos);
2735
2736 mutex_unlock(&event_mutex);
2737
2738 return ret;
2739}
2740
2741static struct ctl_table user_event_sysctls[] = {
2742 {
2743 .procname = "user_events_max",
2744 .data = &max_user_events,
2745 .maxlen = sizeof(unsigned int),
2746 .mode = 0644,
2747 .proc_handler = set_max_user_events_sysctl,
2748 },
2749 {}
2750};
2751
7f5a08c7
BB
2752static int __init trace_events_user_init(void)
2753{
2754 int ret;
2755
81f8fb65
BB
2756 fault_cache = KMEM_CACHE(user_event_enabler_fault, 0);
2757
2758 if (!fault_cache)
2759 return -ENOMEM;
2760
ed0e0ae0 2761 init_group = user_event_group_create();
7f5a08c7 2762
81f8fb65
BB
2763 if (!init_group) {
2764 kmem_cache_destroy(fault_cache);
7f5a08c7 2765 return -ENOMEM;
81f8fb65 2766 }
7f5a08c7
BB
2767
2768 ret = create_user_tracefs();
2769
2770 if (ret) {
2771 pr_warn("user_events could not register with tracefs\n");
e5d27181 2772 user_event_group_destroy(init_group);
81f8fb65 2773 kmem_cache_destroy(fault_cache);
e5d27181 2774 init_group = NULL;
7f5a08c7
BB
2775 return ret;
2776 }
2777
2778 if (dyn_event_register(&user_event_dops))
2779 pr_warn("user_events could not register with dyn_events\n");
2780
ce58e96e
BB
2781 register_sysctl_init("kernel", user_event_sysctls);
2782
7f5a08c7
BB
2783 return 0;
2784}
2785
2786fs_initcall(trace_events_user_init);