]> git.ipfire.org Git - thirdparty/kernel/stable.git/blame - kernel/workqueue.c
net: sched: ife: fix potential use-after-free
[thirdparty/kernel/stable.git] / kernel / workqueue.c
CommitLineData
1da177e4 1/*
c54fce6e 2 * kernel/workqueue.c - generic async execution with shared worker pool
1da177e4 3 *
c54fce6e 4 * Copyright (C) 2002 Ingo Molnar
1da177e4 5 *
c54fce6e
TH
6 * Derived from the taskqueue/keventd code by:
7 * David Woodhouse <dwmw2@infradead.org>
8 * Andrew Morton
9 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
10 * Theodore Ts'o <tytso@mit.edu>
1da177e4 11 *
c54fce6e 12 * Made to use alloc_percpu by Christoph Lameter.
1da177e4 13 *
c54fce6e
TH
14 * Copyright (C) 2010 SUSE Linux Products GmbH
15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
89ada679 16 *
c54fce6e
TH
17 * This is the generic async execution mechanism. Work items as are
18 * executed in process context. The worker pool is shared and
b11895c4
L
19 * automatically managed. There are two worker pools for each CPU (one for
20 * normal work items and the other for high priority ones) and some extra
21 * pools for workqueues which are not bound to any specific CPU - the
22 * number of these backing pools is dynamic.
c54fce6e 23 *
9a261491 24 * Please read Documentation/core-api/workqueue.rst for details.
1da177e4
LT
25 */
26
9984de1a 27#include <linux/export.h>
1da177e4
LT
28#include <linux/kernel.h>
29#include <linux/sched.h>
30#include <linux/init.h>
31#include <linux/signal.h>
32#include <linux/completion.h>
33#include <linux/workqueue.h>
34#include <linux/slab.h>
35#include <linux/cpu.h>
36#include <linux/notifier.h>
37#include <linux/kthread.h>
1fa44eca 38#include <linux/hardirq.h>
46934023 39#include <linux/mempolicy.h>
341a5958 40#include <linux/freezer.h>
d5abe669
PZ
41#include <linux/kallsyms.h>
42#include <linux/debug_locks.h>
4e6045f1 43#include <linux/lockdep.h>
c34056a3 44#include <linux/idr.h>
29c91e99 45#include <linux/jhash.h>
42f8570f 46#include <linux/hashtable.h>
76af4d93 47#include <linux/rculist.h>
bce90380 48#include <linux/nodemask.h>
4c16bd32 49#include <linux/moduleparam.h>
3d1cb205 50#include <linux/uaccess.h>
a6d5930c 51#include <linux/nmi.h>
ec32c8ae 52#include <linux/kvm_para.h>
e22bee78 53
ea138446 54#include "workqueue_internal.h"
1da177e4 55
c8e55f36 56enum {
24647570
TH
57 /*
58 * worker_pool flags
bc2ae0f5 59 *
24647570 60 * A bound pool is either associated or disassociated with its CPU.
bc2ae0f5
TH
61 * While associated (!DISASSOCIATED), all workers are bound to the
62 * CPU and none has %WORKER_UNBOUND set and concurrency management
63 * is in effect.
64 *
65 * While DISASSOCIATED, the cpu may be offline and all workers have
66 * %WORKER_UNBOUND set and concurrency management disabled, and may
24647570 67 * be executing on any CPU. The pool behaves as an unbound one.
bc2ae0f5 68 *
bc3a1afc 69 * Note that DISASSOCIATED should be flipped only while holding
92f9c5c4 70 * attach_mutex to avoid changing binding state while
4736cbf7 71 * worker_attach_to_pool() is in progress.
bc2ae0f5 72 */
692b4825 73 POOL_MANAGER_ACTIVE = 1 << 0, /* being managed */
24647570 74 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
db7bccf4 75
c8e55f36 76 /* worker flags */
c8e55f36
TH
77 WORKER_DIE = 1 << 1, /* die die die */
78 WORKER_IDLE = 1 << 2, /* is idle */
e22bee78 79 WORKER_PREP = 1 << 3, /* preparing to run works */
fb0e7beb 80 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
f3421797 81 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
a9ab775b 82 WORKER_REBOUND = 1 << 8, /* worker was rebound */
e22bee78 83
a9ab775b
TH
84 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE |
85 WORKER_UNBOUND | WORKER_REBOUND,
db7bccf4 86
e34cdddb 87 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
4ce62e9e 88
29c91e99 89 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */
c8e55f36 90 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
db7bccf4 91
e22bee78
TH
92 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
93 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
94
3233cdbd
TH
95 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
96 /* call for help after 10ms
97 (min two ticks) */
e22bee78
TH
98 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
99 CREATE_COOLDOWN = HZ, /* time to breath after fail */
e22bee78
TH
100
101 /*
102 * Rescue workers are used only on emergencies and shared by
8698a745 103 * all cpus. Give MIN_NICE.
e22bee78 104 */
8698a745
DY
105 RESCUER_NICE_LEVEL = MIN_NICE,
106 HIGHPRI_NICE_LEVEL = MIN_NICE,
ecf6881f
TH
107
108 WQ_NAME_LEN = 24,
c8e55f36 109};
1da177e4
LT
110
111/*
4690c4ab
TH
112 * Structure fields follow one of the following exclusion rules.
113 *
e41e704b
TH
114 * I: Modifiable by initialization/destruction paths and read-only for
115 * everyone else.
4690c4ab 116 *
e22bee78
TH
117 * P: Preemption protected. Disabling preemption is enough and should
118 * only be modified and accessed from the local cpu.
119 *
d565ed63 120 * L: pool->lock protected. Access with pool->lock held.
4690c4ab 121 *
d565ed63
TH
122 * X: During normal operation, modification requires pool->lock and should
123 * be done only from local cpu. Either disabling preemption on local
124 * cpu or grabbing pool->lock is enough for read access. If
125 * POOL_DISASSOCIATED is set, it's identical to L.
e22bee78 126 *
92f9c5c4 127 * A: pool->attach_mutex protected.
822d8405 128 *
68e13a67 129 * PL: wq_pool_mutex protected.
5bcab335 130 *
68e13a67 131 * PR: wq_pool_mutex protected for writes. Sched-RCU protected for reads.
76af4d93 132 *
5b95e1af
LJ
133 * PW: wq_pool_mutex and wq->mutex protected for writes. Either for reads.
134 *
135 * PWR: wq_pool_mutex and wq->mutex protected for writes. Either or
136 * sched-RCU for reads.
137 *
3c25a55d
LJ
138 * WQ: wq->mutex protected.
139 *
b5927605 140 * WR: wq->mutex protected for writes. Sched-RCU protected for reads.
2e109a28
TH
141 *
142 * MD: wq_mayday_lock protected.
1da177e4 143 */
1da177e4 144
2eaebdb3 145/* struct worker is defined in workqueue_internal.h */
c34056a3 146
bd7bdd43 147struct worker_pool {
d565ed63 148 spinlock_t lock; /* the pool lock */
d84ff051 149 int cpu; /* I: the associated cpu */
f3f90ad4 150 int node; /* I: the associated node ID */
9daf9e67 151 int id; /* I: pool ID */
11ebea50 152 unsigned int flags; /* X: flags */
bd7bdd43 153
82607adc
TH
154 unsigned long watchdog_ts; /* L: watchdog timestamp */
155
bd7bdd43
TH
156 struct list_head worklist; /* L: list of pending works */
157 int nr_workers; /* L: total number of workers */
ea1abd61
LJ
158
159 /* nr_idle includes the ones off idle_list for rebinding */
bd7bdd43
TH
160 int nr_idle; /* L: currently idle ones */
161
162 struct list_head idle_list; /* X: list of idle workers */
163 struct timer_list idle_timer; /* L: worker idle timeout */
164 struct timer_list mayday_timer; /* L: SOS timer for workers */
165
c5aa87bb 166 /* a workers is either on busy_hash or idle_list, or the manager */
c9e7cf27
TH
167 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
168 /* L: hash of busy workers */
169
bc3a1afc 170 /* see manage_workers() for details on the two manager mutexes */
2607d7a6 171 struct worker *manager; /* L: purely informational */
92f9c5c4
LJ
172 struct mutex attach_mutex; /* attach/detach exclusion */
173 struct list_head workers; /* A: attached workers */
60f5a4bc 174 struct completion *detach_completion; /* all workers detached */
e19e397a 175
7cda9aae 176 struct ida worker_ida; /* worker IDs for task name */
e19e397a 177
7a4e344c 178 struct workqueue_attrs *attrs; /* I: worker attributes */
68e13a67
LJ
179 struct hlist_node hash_node; /* PL: unbound_pool_hash node */
180 int refcnt; /* PL: refcnt for unbound pools */
7a4e344c 181
e19e397a
TH
182 /*
183 * The current concurrency level. As it's likely to be accessed
184 * from other CPUs during try_to_wake_up(), put it in a separate
185 * cacheline.
186 */
187 atomic_t nr_running ____cacheline_aligned_in_smp;
29c91e99
TH
188
189 /*
190 * Destruction of pool is sched-RCU protected to allow dereferences
191 * from get_work_pool().
192 */
193 struct rcu_head rcu;
8b03ae3c
TH
194} ____cacheline_aligned_in_smp;
195
1da177e4 196/*
112202d9
TH
197 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS
198 * of work_struct->data are used for flags and the remaining high bits
199 * point to the pwq; thus, pwqs need to be aligned at two's power of the
200 * number of flag bits.
1da177e4 201 */
112202d9 202struct pool_workqueue {
bd7bdd43 203 struct worker_pool *pool; /* I: the associated pool */
4690c4ab 204 struct workqueue_struct *wq; /* I: the owning workqueue */
73f53c4a
TH
205 int work_color; /* L: current color */
206 int flush_color; /* L: flushing color */
8864b4e5 207 int refcnt; /* L: reference count */
73f53c4a
TH
208 int nr_in_flight[WORK_NR_COLORS];
209 /* L: nr of in_flight works */
1e19ffc6 210 int nr_active; /* L: nr of active works */
a0a1a5fd 211 int max_active; /* L: max active works */
1e19ffc6 212 struct list_head delayed_works; /* L: delayed works */
3c25a55d 213 struct list_head pwqs_node; /* WR: node on wq->pwqs */
2e109a28 214 struct list_head mayday_node; /* MD: node on wq->maydays */
8864b4e5
TH
215
216 /*
217 * Release of unbound pwq is punted to system_wq. See put_pwq()
218 * and pwq_unbound_release_workfn() for details. pool_workqueue
219 * itself is also sched-RCU protected so that the first pwq can be
b09f4fd3 220 * determined without grabbing wq->mutex.
8864b4e5
TH
221 */
222 struct work_struct unbound_release_work;
223 struct rcu_head rcu;
e904e6c2 224} __aligned(1 << WORK_STRUCT_FLAG_BITS);
1da177e4 225
73f53c4a
TH
226/*
227 * Structure used to wait for workqueue flush.
228 */
229struct wq_flusher {
3c25a55d
LJ
230 struct list_head list; /* WQ: list of flushers */
231 int flush_color; /* WQ: flush color waiting for */
73f53c4a
TH
232 struct completion done; /* flush completion */
233};
234
226223ab
TH
235struct wq_device;
236
1da177e4 237/*
c5aa87bb
TH
238 * The externally visible workqueue. It relays the issued work items to
239 * the appropriate worker_pool through its pool_workqueues.
1da177e4
LT
240 */
241struct workqueue_struct {
3c25a55d 242 struct list_head pwqs; /* WR: all pwqs of this wq */
e2dca7ad 243 struct list_head list; /* PR: list of all workqueues */
73f53c4a 244
3c25a55d
LJ
245 struct mutex mutex; /* protects this wq */
246 int work_color; /* WQ: current work color */
247 int flush_color; /* WQ: current flush color */
112202d9 248 atomic_t nr_pwqs_to_flush; /* flush in progress */
3c25a55d
LJ
249 struct wq_flusher *first_flusher; /* WQ: first flusher */
250 struct list_head flusher_queue; /* WQ: flush waiters */
251 struct list_head flusher_overflow; /* WQ: flush overflow list */
73f53c4a 252
2e109a28 253 struct list_head maydays; /* MD: pwqs requesting rescue */
e22bee78
TH
254 struct worker *rescuer; /* I: rescue worker */
255
87fc741e 256 int nr_drainers; /* WQ: drain in progress */
a357fc03 257 int saved_max_active; /* WQ: saved pwq max_active */
226223ab 258
5b95e1af
LJ
259 struct workqueue_attrs *unbound_attrs; /* PW: only for unbound wqs */
260 struct pool_workqueue *dfl_pwq; /* PW: only for unbound wqs */
6029a918 261
226223ab
TH
262#ifdef CONFIG_SYSFS
263 struct wq_device *wq_dev; /* I: for sysfs interface */
264#endif
4e6045f1 265#ifdef CONFIG_LOCKDEP
4690c4ab 266 struct lockdep_map lockdep_map;
4e6045f1 267#endif
ecf6881f 268 char name[WQ_NAME_LEN]; /* I: workqueue name */
2728fd2f 269
e2dca7ad
TH
270 /*
271 * Destruction of workqueue_struct is sched-RCU protected to allow
272 * walking the workqueues list without grabbing wq_pool_mutex.
273 * This is used to dump all workqueues from sysrq.
274 */
275 struct rcu_head rcu;
276
2728fd2f
TH
277 /* hot fields used during command issue, aligned to cacheline */
278 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */
279 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
5b95e1af 280 struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */
1da177e4
LT
281};
282
e904e6c2
TH
283static struct kmem_cache *pwq_cache;
284
bce90380
TH
285static cpumask_var_t *wq_numa_possible_cpumask;
286 /* possible CPUs of each node */
287
d55262c4
TH
288static bool wq_disable_numa;
289module_param_named(disable_numa, wq_disable_numa, bool, 0444);
290
cee22a15 291/* see the comment above the definition of WQ_POWER_EFFICIENT */
552f530c 292static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
cee22a15
VK
293module_param_named(power_efficient, wq_power_efficient, bool, 0444);
294
863b710b 295static bool wq_online; /* can kworkers be created yet? */
3347fa09 296
bce90380
TH
297static bool wq_numa_enabled; /* unbound NUMA affinity enabled */
298
4c16bd32
TH
299/* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
300static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
301
68e13a67 302static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */
2e109a28 303static DEFINE_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */
692b4825 304static DECLARE_WAIT_QUEUE_HEAD(wq_manager_wait); /* wait for manager to go away */
5bcab335 305
e2dca7ad 306static LIST_HEAD(workqueues); /* PR: list of all workqueues */
68e13a67 307static bool workqueue_freezing; /* PL: have wqs started freezing? */
7d19c5ce 308
ef557180
MG
309/* PL: allowable cpus for unbound wqs and work items */
310static cpumask_var_t wq_unbound_cpumask;
311
312/* CPU where unbound work was last round robin scheduled from this CPU */
313static DEFINE_PER_CPU(int, wq_rr_cpu_last);
b05a7928 314
f303fccb
TH
315/*
316 * Local execution of unbound work items is no longer guaranteed. The
317 * following always forces round-robin CPU selection on unbound work items
318 * to uncover usages which depend on it.
319 */
320#ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
321static bool wq_debug_force_rr_cpu = true;
322#else
323static bool wq_debug_force_rr_cpu = false;
324#endif
325module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
326
7d19c5ce 327/* the per-cpu worker pools */
25528213 328static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools);
7d19c5ce 329
68e13a67 330static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */
7d19c5ce 331
68e13a67 332/* PL: hash of all unbound pools keyed by pool->attrs */
29c91e99
TH
333static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
334
c5aa87bb 335/* I: attributes used when instantiating standard unbound pools on demand */
29c91e99
TH
336static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
337
8a2b7538
TH
338/* I: attributes used when instantiating ordered pools on demand */
339static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
340
d320c038 341struct workqueue_struct *system_wq __read_mostly;
ad7b1f84 342EXPORT_SYMBOL(system_wq);
044c782c 343struct workqueue_struct *system_highpri_wq __read_mostly;
1aabe902 344EXPORT_SYMBOL_GPL(system_highpri_wq);
044c782c 345struct workqueue_struct *system_long_wq __read_mostly;
d320c038 346EXPORT_SYMBOL_GPL(system_long_wq);
044c782c 347struct workqueue_struct *system_unbound_wq __read_mostly;
f3421797 348EXPORT_SYMBOL_GPL(system_unbound_wq);
044c782c 349struct workqueue_struct *system_freezable_wq __read_mostly;
24d51add 350EXPORT_SYMBOL_GPL(system_freezable_wq);
0668106c
VK
351struct workqueue_struct *system_power_efficient_wq __read_mostly;
352EXPORT_SYMBOL_GPL(system_power_efficient_wq);
353struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
354EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
d320c038 355
7d19c5ce 356static int worker_thread(void *__worker);
6ba94429 357static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
7d19c5ce 358
97bd2347
TH
359#define CREATE_TRACE_POINTS
360#include <trace/events/workqueue.h>
361
68e13a67 362#define assert_rcu_or_pool_mutex() \
f78f5b90
PM
363 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \
364 !lockdep_is_held(&wq_pool_mutex), \
365 "sched RCU or wq_pool_mutex should be held")
5bcab335 366
b09f4fd3 367#define assert_rcu_or_wq_mutex(wq) \
f78f5b90
PM
368 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \
369 !lockdep_is_held(&wq->mutex), \
370 "sched RCU or wq->mutex should be held")
76af4d93 371
5b95e1af 372#define assert_rcu_or_wq_mutex_or_pool_mutex(wq) \
f78f5b90
PM
373 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \
374 !lockdep_is_held(&wq->mutex) && \
375 !lockdep_is_held(&wq_pool_mutex), \
376 "sched RCU, wq->mutex or wq_pool_mutex should be held")
5b95e1af 377
f02ae73a
TH
378#define for_each_cpu_worker_pool(pool, cpu) \
379 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \
380 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
7a62c2c8 381 (pool)++)
4ce62e9e 382
17116969
TH
383/**
384 * for_each_pool - iterate through all worker_pools in the system
385 * @pool: iteration cursor
611c92a0 386 * @pi: integer used for iteration
fa1b54e6 387 *
68e13a67
LJ
388 * This must be called either with wq_pool_mutex held or sched RCU read
389 * locked. If the pool needs to be used beyond the locking in effect, the
390 * caller is responsible for guaranteeing that the pool stays online.
fa1b54e6
TH
391 *
392 * The if/else clause exists only for the lockdep assertion and can be
393 * ignored.
17116969 394 */
611c92a0
TH
395#define for_each_pool(pool, pi) \
396 idr_for_each_entry(&worker_pool_idr, pool, pi) \
68e13a67 397 if (({ assert_rcu_or_pool_mutex(); false; })) { } \
fa1b54e6 398 else
17116969 399
822d8405
TH
400/**
401 * for_each_pool_worker - iterate through all workers of a worker_pool
402 * @worker: iteration cursor
822d8405
TH
403 * @pool: worker_pool to iterate workers of
404 *
92f9c5c4 405 * This must be called with @pool->attach_mutex.
822d8405
TH
406 *
407 * The if/else clause exists only for the lockdep assertion and can be
408 * ignored.
409 */
da028469
LJ
410#define for_each_pool_worker(worker, pool) \
411 list_for_each_entry((worker), &(pool)->workers, node) \
92f9c5c4 412 if (({ lockdep_assert_held(&pool->attach_mutex); false; })) { } \
822d8405
TH
413 else
414
49e3cf44
TH
415/**
416 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
417 * @pwq: iteration cursor
418 * @wq: the target workqueue
76af4d93 419 *
b09f4fd3 420 * This must be called either with wq->mutex held or sched RCU read locked.
794b18bc
TH
421 * If the pwq needs to be used beyond the locking in effect, the caller is
422 * responsible for guaranteeing that the pwq stays online.
76af4d93
TH
423 *
424 * The if/else clause exists only for the lockdep assertion and can be
425 * ignored.
49e3cf44
TH
426 */
427#define for_each_pwq(pwq, wq) \
76af4d93 428 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node) \
b09f4fd3 429 if (({ assert_rcu_or_wq_mutex(wq); false; })) { } \
76af4d93 430 else
f3421797 431
dc186ad7
TG
432#ifdef CONFIG_DEBUG_OBJECTS_WORK
433
434static struct debug_obj_descr work_debug_descr;
435
99777288
SG
436static void *work_debug_hint(void *addr)
437{
438 return ((struct work_struct *) addr)->func;
439}
440
b9fdac7f
CD
441static bool work_is_static_object(void *addr)
442{
443 struct work_struct *work = addr;
444
445 return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work));
446}
447
dc186ad7
TG
448/*
449 * fixup_init is called when:
450 * - an active object is initialized
451 */
02a982a6 452static bool work_fixup_init(void *addr, enum debug_obj_state state)
dc186ad7
TG
453{
454 struct work_struct *work = addr;
455
456 switch (state) {
457 case ODEBUG_STATE_ACTIVE:
458 cancel_work_sync(work);
459 debug_object_init(work, &work_debug_descr);
02a982a6 460 return true;
dc186ad7 461 default:
02a982a6 462 return false;
dc186ad7
TG
463 }
464}
465
dc186ad7
TG
466/*
467 * fixup_free is called when:
468 * - an active object is freed
469 */
02a982a6 470static bool work_fixup_free(void *addr, enum debug_obj_state state)
dc186ad7
TG
471{
472 struct work_struct *work = addr;
473
474 switch (state) {
475 case ODEBUG_STATE_ACTIVE:
476 cancel_work_sync(work);
477 debug_object_free(work, &work_debug_descr);
02a982a6 478 return true;
dc186ad7 479 default:
02a982a6 480 return false;
dc186ad7
TG
481 }
482}
483
484static struct debug_obj_descr work_debug_descr = {
485 .name = "work_struct",
99777288 486 .debug_hint = work_debug_hint,
b9fdac7f 487 .is_static_object = work_is_static_object,
dc186ad7 488 .fixup_init = work_fixup_init,
dc186ad7
TG
489 .fixup_free = work_fixup_free,
490};
491
492static inline void debug_work_activate(struct work_struct *work)
493{
494 debug_object_activate(work, &work_debug_descr);
495}
496
497static inline void debug_work_deactivate(struct work_struct *work)
498{
499 debug_object_deactivate(work, &work_debug_descr);
500}
501
502void __init_work(struct work_struct *work, int onstack)
503{
504 if (onstack)
505 debug_object_init_on_stack(work, &work_debug_descr);
506 else
507 debug_object_init(work, &work_debug_descr);
508}
509EXPORT_SYMBOL_GPL(__init_work);
510
511void destroy_work_on_stack(struct work_struct *work)
512{
513 debug_object_free(work, &work_debug_descr);
514}
515EXPORT_SYMBOL_GPL(destroy_work_on_stack);
516
ea2e64f2
TG
517void destroy_delayed_work_on_stack(struct delayed_work *work)
518{
519 destroy_timer_on_stack(&work->timer);
520 debug_object_free(&work->work, &work_debug_descr);
521}
522EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
523
dc186ad7
TG
524#else
525static inline void debug_work_activate(struct work_struct *work) { }
526static inline void debug_work_deactivate(struct work_struct *work) { }
527#endif
528
4e8b22bd
LB
529/**
530 * worker_pool_assign_id - allocate ID and assing it to @pool
531 * @pool: the pool pointer of interest
532 *
533 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
534 * successfully, -errno on failure.
535 */
9daf9e67
TH
536static int worker_pool_assign_id(struct worker_pool *pool)
537{
538 int ret;
539
68e13a67 540 lockdep_assert_held(&wq_pool_mutex);
5bcab335 541
4e8b22bd
LB
542 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
543 GFP_KERNEL);
229641a6 544 if (ret >= 0) {
e68035fb 545 pool->id = ret;
229641a6
TH
546 return 0;
547 }
fa1b54e6 548 return ret;
7c3eed5c
TH
549}
550
df2d5ae4
TH
551/**
552 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
553 * @wq: the target workqueue
554 * @node: the node ID
555 *
5b95e1af
LJ
556 * This must be called with any of wq_pool_mutex, wq->mutex or sched RCU
557 * read locked.
df2d5ae4
TH
558 * If the pwq needs to be used beyond the locking in effect, the caller is
559 * responsible for guaranteeing that the pwq stays online.
d185af30
YB
560 *
561 * Return: The unbound pool_workqueue for @node.
df2d5ae4
TH
562 */
563static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
564 int node)
565{
5b95e1af 566 assert_rcu_or_wq_mutex_or_pool_mutex(wq);
d6e022f1
TH
567
568 /*
569 * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a
570 * delayed item is pending. The plan is to keep CPU -> NODE
571 * mapping valid and stable across CPU on/offlines. Once that
572 * happens, this workaround can be removed.
573 */
574 if (unlikely(node == NUMA_NO_NODE))
575 return wq->dfl_pwq;
576
df2d5ae4
TH
577 return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
578}
579
73f53c4a
TH
580static unsigned int work_color_to_flags(int color)
581{
582 return color << WORK_STRUCT_COLOR_SHIFT;
583}
584
585static int get_work_color(struct work_struct *work)
586{
587 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
588 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
589}
590
591static int work_next_color(int color)
592{
593 return (color + 1) % WORK_NR_COLORS;
594}
1da177e4 595
14441960 596/*
112202d9
TH
597 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
598 * contain the pointer to the queued pwq. Once execution starts, the flag
7c3eed5c 599 * is cleared and the high bits contain OFFQ flags and pool ID.
7a22ad75 600 *
112202d9
TH
601 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
602 * and clear_work_data() can be used to set the pwq, pool or clear
bbb68dfa
TH
603 * work->data. These functions should only be called while the work is
604 * owned - ie. while the PENDING bit is set.
7a22ad75 605 *
112202d9 606 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
7c3eed5c 607 * corresponding to a work. Pool is available once the work has been
112202d9 608 * queued anywhere after initialization until it is sync canceled. pwq is
7c3eed5c 609 * available only while the work item is queued.
7a22ad75 610 *
bbb68dfa
TH
611 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
612 * canceled. While being canceled, a work item may have its PENDING set
613 * but stay off timer and worklist for arbitrarily long and nobody should
614 * try to steal the PENDING bit.
14441960 615 */
7a22ad75
TH
616static inline void set_work_data(struct work_struct *work, unsigned long data,
617 unsigned long flags)
365970a1 618{
6183c009 619 WARN_ON_ONCE(!work_pending(work));
7a22ad75
TH
620 atomic_long_set(&work->data, data | flags | work_static(work));
621}
365970a1 622
112202d9 623static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
7a22ad75
TH
624 unsigned long extra_flags)
625{
112202d9
TH
626 set_work_data(work, (unsigned long)pwq,
627 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
365970a1
DH
628}
629
4468a00f
LJ
630static void set_work_pool_and_keep_pending(struct work_struct *work,
631 int pool_id)
632{
633 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
634 WORK_STRUCT_PENDING);
635}
636
7c3eed5c
TH
637static void set_work_pool_and_clear_pending(struct work_struct *work,
638 int pool_id)
7a22ad75 639{
23657bb1
TH
640 /*
641 * The following wmb is paired with the implied mb in
642 * test_and_set_bit(PENDING) and ensures all updates to @work made
643 * here are visible to and precede any updates by the next PENDING
644 * owner.
645 */
646 smp_wmb();
7c3eed5c 647 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
346c09f8
RP
648 /*
649 * The following mb guarantees that previous clear of a PENDING bit
650 * will not be reordered with any speculative LOADS or STORES from
651 * work->current_func, which is executed afterwards. This possible
652 * reordering can lead to a missed execution on attempt to qeueue
653 * the same @work. E.g. consider this case:
654 *
655 * CPU#0 CPU#1
656 * ---------------------------- --------------------------------
657 *
658 * 1 STORE event_indicated
659 * 2 queue_work_on() {
660 * 3 test_and_set_bit(PENDING)
661 * 4 } set_..._and_clear_pending() {
662 * 5 set_work_data() # clear bit
663 * 6 smp_mb()
664 * 7 work->current_func() {
665 * 8 LOAD event_indicated
666 * }
667 *
668 * Without an explicit full barrier speculative LOAD on line 8 can
669 * be executed before CPU#0 does STORE on line 1. If that happens,
670 * CPU#0 observes the PENDING bit is still set and new execution of
671 * a @work is not queued in a hope, that CPU#1 will eventually
672 * finish the queued @work. Meanwhile CPU#1 does not see
673 * event_indicated is set, because speculative LOAD was executed
674 * before actual STORE.
675 */
676 smp_mb();
7a22ad75 677}
f756d5e2 678
7a22ad75 679static void clear_work_data(struct work_struct *work)
1da177e4 680{
7c3eed5c
TH
681 smp_wmb(); /* see set_work_pool_and_clear_pending() */
682 set_work_data(work, WORK_STRUCT_NO_POOL, 0);
1da177e4
LT
683}
684
fca48fd3
LT
685static inline struct pool_workqueue *work_struct_pwq(unsigned long data)
686{
687 return (struct pool_workqueue *)(data & WORK_STRUCT_WQ_DATA_MASK);
688}
689
112202d9 690static struct pool_workqueue *get_work_pwq(struct work_struct *work)
b1f4ec17 691{
e120153d 692 unsigned long data = atomic_long_read(&work->data);
7a22ad75 693
112202d9 694 if (data & WORK_STRUCT_PWQ)
fca48fd3 695 return work_struct_pwq(data);
e120153d
TH
696 else
697 return NULL;
4d707b9f
ON
698}
699
7c3eed5c
TH
700/**
701 * get_work_pool - return the worker_pool a given work was associated with
702 * @work: the work item of interest
703 *
68e13a67
LJ
704 * Pools are created and destroyed under wq_pool_mutex, and allows read
705 * access under sched-RCU read lock. As such, this function should be
706 * called under wq_pool_mutex or with preemption disabled.
fa1b54e6
TH
707 *
708 * All fields of the returned pool are accessible as long as the above
709 * mentioned locking is in effect. If the returned pool needs to be used
710 * beyond the critical section, the caller is responsible for ensuring the
711 * returned pool is and stays online.
d185af30
YB
712 *
713 * Return: The worker_pool @work was last associated with. %NULL if none.
7c3eed5c
TH
714 */
715static struct worker_pool *get_work_pool(struct work_struct *work)
365970a1 716{
e120153d 717 unsigned long data = atomic_long_read(&work->data);
7c3eed5c 718 int pool_id;
7a22ad75 719
68e13a67 720 assert_rcu_or_pool_mutex();
fa1b54e6 721
112202d9 722 if (data & WORK_STRUCT_PWQ)
fca48fd3 723 return work_struct_pwq(data)->pool;
7a22ad75 724
7c3eed5c
TH
725 pool_id = data >> WORK_OFFQ_POOL_SHIFT;
726 if (pool_id == WORK_OFFQ_POOL_NONE)
7a22ad75
TH
727 return NULL;
728
fa1b54e6 729 return idr_find(&worker_pool_idr, pool_id);
7c3eed5c
TH
730}
731
732/**
733 * get_work_pool_id - return the worker pool ID a given work is associated with
734 * @work: the work item of interest
735 *
d185af30 736 * Return: The worker_pool ID @work was last associated with.
7c3eed5c
TH
737 * %WORK_OFFQ_POOL_NONE if none.
738 */
739static int get_work_pool_id(struct work_struct *work)
740{
54d5b7d0
LJ
741 unsigned long data = atomic_long_read(&work->data);
742
112202d9 743 if (data & WORK_STRUCT_PWQ)
fca48fd3 744 return work_struct_pwq(data)->pool->id;
7c3eed5c 745
54d5b7d0 746 return data >> WORK_OFFQ_POOL_SHIFT;
7c3eed5c
TH
747}
748
bbb68dfa
TH
749static void mark_work_canceling(struct work_struct *work)
750{
7c3eed5c 751 unsigned long pool_id = get_work_pool_id(work);
bbb68dfa 752
7c3eed5c
TH
753 pool_id <<= WORK_OFFQ_POOL_SHIFT;
754 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
bbb68dfa
TH
755}
756
757static bool work_is_canceling(struct work_struct *work)
758{
759 unsigned long data = atomic_long_read(&work->data);
760
112202d9 761 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
bbb68dfa
TH
762}
763
e22bee78 764/*
3270476a
TH
765 * Policy functions. These define the policies on how the global worker
766 * pools are managed. Unless noted otherwise, these functions assume that
d565ed63 767 * they're being called with pool->lock held.
e22bee78
TH
768 */
769
63d95a91 770static bool __need_more_worker(struct worker_pool *pool)
a848e3b6 771{
e19e397a 772 return !atomic_read(&pool->nr_running);
a848e3b6
ON
773}
774
4594bf15 775/*
e22bee78
TH
776 * Need to wake up a worker? Called from anything but currently
777 * running workers.
974271c4
TH
778 *
779 * Note that, because unbound workers never contribute to nr_running, this
706026c2 780 * function will always return %true for unbound pools as long as the
974271c4 781 * worklist isn't empty.
4594bf15 782 */
63d95a91 783static bool need_more_worker(struct worker_pool *pool)
365970a1 784{
63d95a91 785 return !list_empty(&pool->worklist) && __need_more_worker(pool);
e22bee78 786}
4594bf15 787
e22bee78 788/* Can I start working? Called from busy but !running workers. */
63d95a91 789static bool may_start_working(struct worker_pool *pool)
e22bee78 790{
63d95a91 791 return pool->nr_idle;
e22bee78
TH
792}
793
794/* Do I need to keep working? Called from currently running workers. */
63d95a91 795static bool keep_working(struct worker_pool *pool)
e22bee78 796{
e19e397a
TH
797 return !list_empty(&pool->worklist) &&
798 atomic_read(&pool->nr_running) <= 1;
e22bee78
TH
799}
800
801/* Do we need a new worker? Called from manager. */
63d95a91 802static bool need_to_create_worker(struct worker_pool *pool)
e22bee78 803{
63d95a91 804 return need_more_worker(pool) && !may_start_working(pool);
e22bee78 805}
365970a1 806
e22bee78 807/* Do we have too many workers and should some go away? */
63d95a91 808static bool too_many_workers(struct worker_pool *pool)
e22bee78 809{
692b4825 810 bool managing = pool->flags & POOL_MANAGER_ACTIVE;
63d95a91
TH
811 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
812 int nr_busy = pool->nr_workers - nr_idle;
e22bee78
TH
813
814 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
365970a1
DH
815}
816
4d707b9f 817/*
e22bee78
TH
818 * Wake up functions.
819 */
820
1037de36
LJ
821/* Return the first idle worker. Safe with preemption disabled */
822static struct worker *first_idle_worker(struct worker_pool *pool)
7e11629d 823{
63d95a91 824 if (unlikely(list_empty(&pool->idle_list)))
7e11629d
TH
825 return NULL;
826
63d95a91 827 return list_first_entry(&pool->idle_list, struct worker, entry);
7e11629d
TH
828}
829
830/**
831 * wake_up_worker - wake up an idle worker
63d95a91 832 * @pool: worker pool to wake worker from
7e11629d 833 *
63d95a91 834 * Wake up the first idle worker of @pool.
7e11629d
TH
835 *
836 * CONTEXT:
d565ed63 837 * spin_lock_irq(pool->lock).
7e11629d 838 */
63d95a91 839static void wake_up_worker(struct worker_pool *pool)
7e11629d 840{
1037de36 841 struct worker *worker = first_idle_worker(pool);
7e11629d
TH
842
843 if (likely(worker))
844 wake_up_process(worker->task);
845}
846
d302f017 847/**
e22bee78
TH
848 * wq_worker_waking_up - a worker is waking up
849 * @task: task waking up
850 * @cpu: CPU @task is waking up to
851 *
852 * This function is called during try_to_wake_up() when a worker is
853 * being awoken.
854 *
855 * CONTEXT:
856 * spin_lock_irq(rq->lock)
857 */
d84ff051 858void wq_worker_waking_up(struct task_struct *task, int cpu)
e22bee78
TH
859{
860 struct worker *worker = kthread_data(task);
861
36576000 862 if (!(worker->flags & WORKER_NOT_RUNNING)) {
ec22ca5e 863 WARN_ON_ONCE(worker->pool->cpu != cpu);
e19e397a 864 atomic_inc(&worker->pool->nr_running);
36576000 865 }
e22bee78
TH
866}
867
868/**
869 * wq_worker_sleeping - a worker is going to sleep
870 * @task: task going to sleep
e22bee78
TH
871 *
872 * This function is called during schedule() when a busy worker is
873 * going to sleep. Worker on the same cpu can be woken up by
874 * returning pointer to its task.
875 *
876 * CONTEXT:
877 * spin_lock_irq(rq->lock)
878 *
d185af30 879 * Return:
e22bee78
TH
880 * Worker task on @cpu to wake up, %NULL if none.
881 */
9b7f6597 882struct task_struct *wq_worker_sleeping(struct task_struct *task)
e22bee78
TH
883{
884 struct worker *worker = kthread_data(task), *to_wakeup = NULL;
111c225a 885 struct worker_pool *pool;
e22bee78 886
111c225a
TH
887 /*
888 * Rescuers, which may not have all the fields set up like normal
889 * workers, also reach here, let's not access anything before
890 * checking NOT_RUNNING.
891 */
2d64672e 892 if (worker->flags & WORKER_NOT_RUNNING)
e22bee78
TH
893 return NULL;
894
111c225a 895 pool = worker->pool;
111c225a 896
e22bee78 897 /* this can only happen on the local cpu */
9b7f6597 898 if (WARN_ON_ONCE(pool->cpu != raw_smp_processor_id()))
6183c009 899 return NULL;
e22bee78
TH
900
901 /*
902 * The counterpart of the following dec_and_test, implied mb,
903 * worklist not empty test sequence is in insert_work().
904 * Please read comment there.
905 *
628c78e7
TH
906 * NOT_RUNNING is clear. This means that we're bound to and
907 * running on the local cpu w/ rq lock held and preemption
908 * disabled, which in turn means that none else could be
d565ed63 909 * manipulating idle_list, so dereferencing idle_list without pool
628c78e7 910 * lock is safe.
e22bee78 911 */
e19e397a
TH
912 if (atomic_dec_and_test(&pool->nr_running) &&
913 !list_empty(&pool->worklist))
1037de36 914 to_wakeup = first_idle_worker(pool);
e22bee78
TH
915 return to_wakeup ? to_wakeup->task : NULL;
916}
917
918/**
919 * worker_set_flags - set worker flags and adjust nr_running accordingly
cb444766 920 * @worker: self
d302f017 921 * @flags: flags to set
d302f017 922 *
228f1d00 923 * Set @flags in @worker->flags and adjust nr_running accordingly.
d302f017 924 *
cb444766 925 * CONTEXT:
d565ed63 926 * spin_lock_irq(pool->lock)
d302f017 927 */
228f1d00 928static inline void worker_set_flags(struct worker *worker, unsigned int flags)
d302f017 929{
bd7bdd43 930 struct worker_pool *pool = worker->pool;
e22bee78 931
cb444766
TH
932 WARN_ON_ONCE(worker->task != current);
933
228f1d00 934 /* If transitioning into NOT_RUNNING, adjust nr_running. */
e22bee78
TH
935 if ((flags & WORKER_NOT_RUNNING) &&
936 !(worker->flags & WORKER_NOT_RUNNING)) {
228f1d00 937 atomic_dec(&pool->nr_running);
e22bee78
TH
938 }
939
d302f017
TH
940 worker->flags |= flags;
941}
942
943/**
e22bee78 944 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
cb444766 945 * @worker: self
d302f017
TH
946 * @flags: flags to clear
947 *
e22bee78 948 * Clear @flags in @worker->flags and adjust nr_running accordingly.
d302f017 949 *
cb444766 950 * CONTEXT:
d565ed63 951 * spin_lock_irq(pool->lock)
d302f017
TH
952 */
953static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
954{
63d95a91 955 struct worker_pool *pool = worker->pool;
e22bee78
TH
956 unsigned int oflags = worker->flags;
957
cb444766
TH
958 WARN_ON_ONCE(worker->task != current);
959
d302f017 960 worker->flags &= ~flags;
e22bee78 961
42c025f3
TH
962 /*
963 * If transitioning out of NOT_RUNNING, increment nr_running. Note
964 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
965 * of multiple flags, not a single flag.
966 */
e22bee78
TH
967 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
968 if (!(worker->flags & WORKER_NOT_RUNNING))
e19e397a 969 atomic_inc(&pool->nr_running);
d302f017
TH
970}
971
8cca0eea
TH
972/**
973 * find_worker_executing_work - find worker which is executing a work
c9e7cf27 974 * @pool: pool of interest
8cca0eea
TH
975 * @work: work to find worker for
976 *
c9e7cf27
TH
977 * Find a worker which is executing @work on @pool by searching
978 * @pool->busy_hash which is keyed by the address of @work. For a worker
a2c1c57b
TH
979 * to match, its current execution should match the address of @work and
980 * its work function. This is to avoid unwanted dependency between
981 * unrelated work executions through a work item being recycled while still
982 * being executed.
983 *
984 * This is a bit tricky. A work item may be freed once its execution
985 * starts and nothing prevents the freed area from being recycled for
986 * another work item. If the same work item address ends up being reused
987 * before the original execution finishes, workqueue will identify the
988 * recycled work item as currently executing and make it wait until the
989 * current execution finishes, introducing an unwanted dependency.
990 *
c5aa87bb
TH
991 * This function checks the work item address and work function to avoid
992 * false positives. Note that this isn't complete as one may construct a
993 * work function which can introduce dependency onto itself through a
994 * recycled work item. Well, if somebody wants to shoot oneself in the
995 * foot that badly, there's only so much we can do, and if such deadlock
996 * actually occurs, it should be easy to locate the culprit work function.
8cca0eea
TH
997 *
998 * CONTEXT:
d565ed63 999 * spin_lock_irq(pool->lock).
8cca0eea 1000 *
d185af30
YB
1001 * Return:
1002 * Pointer to worker which is executing @work if found, %NULL
8cca0eea 1003 * otherwise.
4d707b9f 1004 */
c9e7cf27 1005static struct worker *find_worker_executing_work(struct worker_pool *pool,
8cca0eea 1006 struct work_struct *work)
4d707b9f 1007{
42f8570f 1008 struct worker *worker;
42f8570f 1009
b67bfe0d 1010 hash_for_each_possible(pool->busy_hash, worker, hentry,
a2c1c57b
TH
1011 (unsigned long)work)
1012 if (worker->current_work == work &&
1013 worker->current_func == work->func)
42f8570f
SL
1014 return worker;
1015
1016 return NULL;
4d707b9f
ON
1017}
1018
bf4ede01
TH
1019/**
1020 * move_linked_works - move linked works to a list
1021 * @work: start of series of works to be scheduled
1022 * @head: target list to append @work to
402dd89d 1023 * @nextp: out parameter for nested worklist walking
bf4ede01
TH
1024 *
1025 * Schedule linked works starting from @work to @head. Work series to
1026 * be scheduled starts at @work and includes any consecutive work with
1027 * WORK_STRUCT_LINKED set in its predecessor.
1028 *
1029 * If @nextp is not NULL, it's updated to point to the next work of
1030 * the last scheduled work. This allows move_linked_works() to be
1031 * nested inside outer list_for_each_entry_safe().
1032 *
1033 * CONTEXT:
d565ed63 1034 * spin_lock_irq(pool->lock).
bf4ede01
TH
1035 */
1036static void move_linked_works(struct work_struct *work, struct list_head *head,
1037 struct work_struct **nextp)
1038{
1039 struct work_struct *n;
1040
1041 /*
1042 * Linked worklist will always end before the end of the list,
1043 * use NULL for list head.
1044 */
1045 list_for_each_entry_safe_from(work, n, NULL, entry) {
1046 list_move_tail(&work->entry, head);
1047 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1048 break;
1049 }
1050
1051 /*
1052 * If we're already inside safe list traversal and have moved
1053 * multiple works to the scheduled queue, the next position
1054 * needs to be updated.
1055 */
1056 if (nextp)
1057 *nextp = n;
1058}
1059
8864b4e5
TH
1060/**
1061 * get_pwq - get an extra reference on the specified pool_workqueue
1062 * @pwq: pool_workqueue to get
1063 *
1064 * Obtain an extra reference on @pwq. The caller should guarantee that
1065 * @pwq has positive refcnt and be holding the matching pool->lock.
1066 */
1067static void get_pwq(struct pool_workqueue *pwq)
1068{
1069 lockdep_assert_held(&pwq->pool->lock);
1070 WARN_ON_ONCE(pwq->refcnt <= 0);
1071 pwq->refcnt++;
1072}
1073
1074/**
1075 * put_pwq - put a pool_workqueue reference
1076 * @pwq: pool_workqueue to put
1077 *
1078 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its
1079 * destruction. The caller should be holding the matching pool->lock.
1080 */
1081static void put_pwq(struct pool_workqueue *pwq)
1082{
1083 lockdep_assert_held(&pwq->pool->lock);
1084 if (likely(--pwq->refcnt))
1085 return;
1086 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1087 return;
1088 /*
1089 * @pwq can't be released under pool->lock, bounce to
1090 * pwq_unbound_release_workfn(). This never recurses on the same
1091 * pool->lock as this path is taken only for unbound workqueues and
1092 * the release work item is scheduled on a per-cpu workqueue. To
1093 * avoid lockdep warning, unbound pool->locks are given lockdep
1094 * subclass of 1 in get_unbound_pool().
1095 */
1096 schedule_work(&pwq->unbound_release_work);
1097}
1098
dce90d47
TH
1099/**
1100 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1101 * @pwq: pool_workqueue to put (can be %NULL)
1102 *
1103 * put_pwq() with locking. This function also allows %NULL @pwq.
1104 */
1105static void put_pwq_unlocked(struct pool_workqueue *pwq)
1106{
1107 if (pwq) {
1108 /*
1109 * As both pwqs and pools are sched-RCU protected, the
1110 * following lock operations are safe.
1111 */
1112 spin_lock_irq(&pwq->pool->lock);
1113 put_pwq(pwq);
1114 spin_unlock_irq(&pwq->pool->lock);
1115 }
1116}
1117
112202d9 1118static void pwq_activate_delayed_work(struct work_struct *work)
bf4ede01 1119{
112202d9 1120 struct pool_workqueue *pwq = get_work_pwq(work);
bf4ede01
TH
1121
1122 trace_workqueue_activate_work(work);
82607adc
TH
1123 if (list_empty(&pwq->pool->worklist))
1124 pwq->pool->watchdog_ts = jiffies;
112202d9 1125 move_linked_works(work, &pwq->pool->worklist, NULL);
bf4ede01 1126 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
112202d9 1127 pwq->nr_active++;
bf4ede01
TH
1128}
1129
112202d9 1130static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
3aa62497 1131{
112202d9 1132 struct work_struct *work = list_first_entry(&pwq->delayed_works,
3aa62497
LJ
1133 struct work_struct, entry);
1134
112202d9 1135 pwq_activate_delayed_work(work);
3aa62497
LJ
1136}
1137
bf4ede01 1138/**
112202d9
TH
1139 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1140 * @pwq: pwq of interest
bf4ede01 1141 * @color: color of work which left the queue
bf4ede01
TH
1142 *
1143 * A work either has completed or is removed from pending queue,
112202d9 1144 * decrement nr_in_flight of its pwq and handle workqueue flushing.
bf4ede01
TH
1145 *
1146 * CONTEXT:
d565ed63 1147 * spin_lock_irq(pool->lock).
bf4ede01 1148 */
112202d9 1149static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
bf4ede01 1150{
8864b4e5 1151 /* uncolored work items don't participate in flushing or nr_active */
bf4ede01 1152 if (color == WORK_NO_COLOR)
8864b4e5 1153 goto out_put;
bf4ede01 1154
112202d9 1155 pwq->nr_in_flight[color]--;
bf4ede01 1156
112202d9
TH
1157 pwq->nr_active--;
1158 if (!list_empty(&pwq->delayed_works)) {
b3f9f405 1159 /* one down, submit a delayed one */
112202d9
TH
1160 if (pwq->nr_active < pwq->max_active)
1161 pwq_activate_first_delayed(pwq);
bf4ede01
TH
1162 }
1163
1164 /* is flush in progress and are we at the flushing tip? */
112202d9 1165 if (likely(pwq->flush_color != color))
8864b4e5 1166 goto out_put;
bf4ede01
TH
1167
1168 /* are there still in-flight works? */
112202d9 1169 if (pwq->nr_in_flight[color])
8864b4e5 1170 goto out_put;
bf4ede01 1171
112202d9
TH
1172 /* this pwq is done, clear flush_color */
1173 pwq->flush_color = -1;
bf4ede01
TH
1174
1175 /*
112202d9 1176 * If this was the last pwq, wake up the first flusher. It
bf4ede01
TH
1177 * will handle the rest.
1178 */
112202d9
TH
1179 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1180 complete(&pwq->wq->first_flusher->done);
8864b4e5
TH
1181out_put:
1182 put_pwq(pwq);
bf4ede01
TH
1183}
1184
36e227d2 1185/**
bbb68dfa 1186 * try_to_grab_pending - steal work item from worklist and disable irq
36e227d2
TH
1187 * @work: work item to steal
1188 * @is_dwork: @work is a delayed_work
bbb68dfa 1189 * @flags: place to store irq state
36e227d2
TH
1190 *
1191 * Try to grab PENDING bit of @work. This function can handle @work in any
d185af30 1192 * stable state - idle, on timer or on worklist.
36e227d2 1193 *
d185af30 1194 * Return:
36e227d2
TH
1195 * 1 if @work was pending and we successfully stole PENDING
1196 * 0 if @work was idle and we claimed PENDING
1197 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
bbb68dfa
TH
1198 * -ENOENT if someone else is canceling @work, this state may persist
1199 * for arbitrarily long
36e227d2 1200 *
d185af30 1201 * Note:
bbb68dfa 1202 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
e0aecdd8
TH
1203 * interrupted while holding PENDING and @work off queue, irq must be
1204 * disabled on entry. This, combined with delayed_work->timer being
1205 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
bbb68dfa
TH
1206 *
1207 * On successful return, >= 0, irq is disabled and the caller is
1208 * responsible for releasing it using local_irq_restore(*@flags).
1209 *
e0aecdd8 1210 * This function is safe to call from any context including IRQ handler.
bf4ede01 1211 */
bbb68dfa
TH
1212static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1213 unsigned long *flags)
bf4ede01 1214{
d565ed63 1215 struct worker_pool *pool;
112202d9 1216 struct pool_workqueue *pwq;
bf4ede01 1217
bbb68dfa
TH
1218 local_irq_save(*flags);
1219
36e227d2
TH
1220 /* try to steal the timer if it exists */
1221 if (is_dwork) {
1222 struct delayed_work *dwork = to_delayed_work(work);
1223
e0aecdd8
TH
1224 /*
1225 * dwork->timer is irqsafe. If del_timer() fails, it's
1226 * guaranteed that the timer is not queued anywhere and not
1227 * running on the local CPU.
1228 */
36e227d2
TH
1229 if (likely(del_timer(&dwork->timer)))
1230 return 1;
1231 }
1232
1233 /* try to claim PENDING the normal way */
bf4ede01
TH
1234 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1235 return 0;
1236
1237 /*
1238 * The queueing is in progress, or it is already queued. Try to
1239 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1240 */
d565ed63
TH
1241 pool = get_work_pool(work);
1242 if (!pool)
bbb68dfa 1243 goto fail;
bf4ede01 1244
d565ed63 1245 spin_lock(&pool->lock);
0b3dae68 1246 /*
112202d9
TH
1247 * work->data is guaranteed to point to pwq only while the work
1248 * item is queued on pwq->wq, and both updating work->data to point
1249 * to pwq on queueing and to pool on dequeueing are done under
1250 * pwq->pool->lock. This in turn guarantees that, if work->data
1251 * points to pwq which is associated with a locked pool, the work
0b3dae68
LJ
1252 * item is currently queued on that pool.
1253 */
112202d9
TH
1254 pwq = get_work_pwq(work);
1255 if (pwq && pwq->pool == pool) {
16062836
TH
1256 debug_work_deactivate(work);
1257
1258 /*
1259 * A delayed work item cannot be grabbed directly because
1260 * it might have linked NO_COLOR work items which, if left
112202d9 1261 * on the delayed_list, will confuse pwq->nr_active
16062836
TH
1262 * management later on and cause stall. Make sure the work
1263 * item is activated before grabbing.
1264 */
1265 if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
112202d9 1266 pwq_activate_delayed_work(work);
16062836
TH
1267
1268 list_del_init(&work->entry);
9c34a704 1269 pwq_dec_nr_in_flight(pwq, get_work_color(work));
16062836 1270
112202d9 1271 /* work->data points to pwq iff queued, point to pool */
16062836
TH
1272 set_work_pool_and_keep_pending(work, pool->id);
1273
1274 spin_unlock(&pool->lock);
1275 return 1;
bf4ede01 1276 }
d565ed63 1277 spin_unlock(&pool->lock);
bbb68dfa
TH
1278fail:
1279 local_irq_restore(*flags);
1280 if (work_is_canceling(work))
1281 return -ENOENT;
1282 cpu_relax();
36e227d2 1283 return -EAGAIN;
bf4ede01
TH
1284}
1285
4690c4ab 1286/**
706026c2 1287 * insert_work - insert a work into a pool
112202d9 1288 * @pwq: pwq @work belongs to
4690c4ab
TH
1289 * @work: work to insert
1290 * @head: insertion point
1291 * @extra_flags: extra WORK_STRUCT_* flags to set
1292 *
112202d9 1293 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
706026c2 1294 * work_struct flags.
4690c4ab
TH
1295 *
1296 * CONTEXT:
d565ed63 1297 * spin_lock_irq(pool->lock).
4690c4ab 1298 */
112202d9
TH
1299static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1300 struct list_head *head, unsigned int extra_flags)
b89deed3 1301{
112202d9 1302 struct worker_pool *pool = pwq->pool;
e22bee78 1303
4690c4ab 1304 /* we own @work, set data and link */
112202d9 1305 set_work_pwq(work, pwq, extra_flags);
1a4d9b0a 1306 list_add_tail(&work->entry, head);
8864b4e5 1307 get_pwq(pwq);
e22bee78
TH
1308
1309 /*
c5aa87bb
TH
1310 * Ensure either wq_worker_sleeping() sees the above
1311 * list_add_tail() or we see zero nr_running to avoid workers lying
1312 * around lazily while there are works to be processed.
e22bee78
TH
1313 */
1314 smp_mb();
1315
63d95a91
TH
1316 if (__need_more_worker(pool))
1317 wake_up_worker(pool);
b89deed3
ON
1318}
1319
c8efcc25
TH
1320/*
1321 * Test whether @work is being queued from another work executing on the
8d03ecfe 1322 * same workqueue.
c8efcc25
TH
1323 */
1324static bool is_chained_work(struct workqueue_struct *wq)
1325{
8d03ecfe
TH
1326 struct worker *worker;
1327
1328 worker = current_wq_worker();
1329 /*
1330 * Return %true iff I'm a worker execuing a work item on @wq. If
1331 * I'm @worker, it's safe to dereference it without locking.
1332 */
112202d9 1333 return worker && worker->current_pwq->wq == wq;
c8efcc25
TH
1334}
1335
ef557180
MG
1336/*
1337 * When queueing an unbound work item to a wq, prefer local CPU if allowed
1338 * by wq_unbound_cpumask. Otherwise, round robin among the allowed ones to
1339 * avoid perturbing sensitive tasks.
1340 */
1341static int wq_select_unbound_cpu(int cpu)
1342{
f303fccb 1343 static bool printed_dbg_warning;
ef557180
MG
1344 int new_cpu;
1345
f303fccb
TH
1346 if (likely(!wq_debug_force_rr_cpu)) {
1347 if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
1348 return cpu;
1349 } else if (!printed_dbg_warning) {
1350 pr_warn("workqueue: round-robin CPU selection forced, expect performance impact\n");
1351 printed_dbg_warning = true;
1352 }
1353
ef557180
MG
1354 if (cpumask_empty(wq_unbound_cpumask))
1355 return cpu;
1356
1357 new_cpu = __this_cpu_read(wq_rr_cpu_last);
1358 new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
1359 if (unlikely(new_cpu >= nr_cpu_ids)) {
1360 new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
1361 if (unlikely(new_cpu >= nr_cpu_ids))
1362 return cpu;
1363 }
1364 __this_cpu_write(wq_rr_cpu_last, new_cpu);
1365
1366 return new_cpu;
1367}
1368
d84ff051 1369static void __queue_work(int cpu, struct workqueue_struct *wq,
1da177e4
LT
1370 struct work_struct *work)
1371{
112202d9 1372 struct pool_workqueue *pwq;
c9178087 1373 struct worker_pool *last_pool;
1e19ffc6 1374 struct list_head *worklist;
8a2e8e5d 1375 unsigned int work_flags;
b75cac93 1376 unsigned int req_cpu = cpu;
8930caba
TH
1377
1378 /*
1379 * While a work item is PENDING && off queue, a task trying to
1380 * steal the PENDING will busy-loop waiting for it to either get
1381 * queued or lose PENDING. Grabbing PENDING and queueing should
1382 * happen with IRQ disabled.
1383 */
1384 WARN_ON_ONCE(!irqs_disabled());
1da177e4 1385
1e19ffc6 1386
9ef28a73 1387 /* if draining, only works from the same workqueue are allowed */
618b01eb 1388 if (unlikely(wq->flags & __WQ_DRAINING) &&
c8efcc25 1389 WARN_ON_ONCE(!is_chained_work(wq)))
e41e704b 1390 return;
9e8cd2f5 1391retry:
c9178087 1392 /* pwq which will be used unless @work is executing elsewhere */
48c33625
HD
1393 if (wq->flags & WQ_UNBOUND) {
1394 if (req_cpu == WORK_CPU_UNBOUND)
1395 cpu = wq_select_unbound_cpu(raw_smp_processor_id());
df2d5ae4 1396 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
48c33625
HD
1397 } else {
1398 if (req_cpu == WORK_CPU_UNBOUND)
1399 cpu = raw_smp_processor_id();
1400 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1401 }
dbf2576e 1402
c9178087
TH
1403 /*
1404 * If @work was previously on a different pool, it might still be
1405 * running there, in which case the work needs to be queued on that
1406 * pool to guarantee non-reentrancy.
1407 */
1408 last_pool = get_work_pool(work);
1409 if (last_pool && last_pool != pwq->pool) {
1410 struct worker *worker;
18aa9eff 1411
c9178087 1412 spin_lock(&last_pool->lock);
18aa9eff 1413
c9178087 1414 worker = find_worker_executing_work(last_pool, work);
18aa9eff 1415
c9178087
TH
1416 if (worker && worker->current_pwq->wq == wq) {
1417 pwq = worker->current_pwq;
8930caba 1418 } else {
c9178087
TH
1419 /* meh... not running there, queue here */
1420 spin_unlock(&last_pool->lock);
112202d9 1421 spin_lock(&pwq->pool->lock);
8930caba 1422 }
f3421797 1423 } else {
112202d9 1424 spin_lock(&pwq->pool->lock);
502ca9d8
TH
1425 }
1426
9e8cd2f5
TH
1427 /*
1428 * pwq is determined and locked. For unbound pools, we could have
1429 * raced with pwq release and it could already be dead. If its
1430 * refcnt is zero, repeat pwq selection. Note that pwqs never die
df2d5ae4
TH
1431 * without another pwq replacing it in the numa_pwq_tbl or while
1432 * work items are executing on it, so the retrying is guaranteed to
9e8cd2f5
TH
1433 * make forward-progress.
1434 */
1435 if (unlikely(!pwq->refcnt)) {
1436 if (wq->flags & WQ_UNBOUND) {
1437 spin_unlock(&pwq->pool->lock);
1438 cpu_relax();
1439 goto retry;
1440 }
1441 /* oops */
1442 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1443 wq->name, cpu);
1444 }
1445
112202d9
TH
1446 /* pwq determined, queue */
1447 trace_workqueue_queue_work(req_cpu, pwq, work);
502ca9d8 1448
f5b2552b 1449 if (WARN_ON(!list_empty(&work->entry))) {
112202d9 1450 spin_unlock(&pwq->pool->lock);
f5b2552b
DC
1451 return;
1452 }
1e19ffc6 1453
112202d9
TH
1454 pwq->nr_in_flight[pwq->work_color]++;
1455 work_flags = work_color_to_flags(pwq->work_color);
1e19ffc6 1456
112202d9 1457 if (likely(pwq->nr_active < pwq->max_active)) {
cdadf009 1458 trace_workqueue_activate_work(work);
112202d9
TH
1459 pwq->nr_active++;
1460 worklist = &pwq->pool->worklist;
82607adc
TH
1461 if (list_empty(worklist))
1462 pwq->pool->watchdog_ts = jiffies;
8a2e8e5d
TH
1463 } else {
1464 work_flags |= WORK_STRUCT_DELAYED;
112202d9 1465 worklist = &pwq->delayed_works;
8a2e8e5d 1466 }
1e19ffc6 1467
9948ff55 1468 debug_work_activate(work);
112202d9 1469 insert_work(pwq, work, worklist, work_flags);
1e19ffc6 1470
112202d9 1471 spin_unlock(&pwq->pool->lock);
1da177e4
LT
1472}
1473
0fcb78c2 1474/**
c1a220e7
ZR
1475 * queue_work_on - queue work on specific cpu
1476 * @cpu: CPU number to execute work on
0fcb78c2
REB
1477 * @wq: workqueue to use
1478 * @work: work to queue
1479 *
c1a220e7
ZR
1480 * We queue the work to a specific CPU, the caller must ensure it
1481 * can't go away.
d185af30
YB
1482 *
1483 * Return: %false if @work was already on a queue, %true otherwise.
1da177e4 1484 */
d4283e93
TH
1485bool queue_work_on(int cpu, struct workqueue_struct *wq,
1486 struct work_struct *work)
1da177e4 1487{
d4283e93 1488 bool ret = false;
8930caba 1489 unsigned long flags;
ef1ca236 1490
8930caba 1491 local_irq_save(flags);
c1a220e7 1492
22df02bb 1493 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
4690c4ab 1494 __queue_work(cpu, wq, work);
d4283e93 1495 ret = true;
c1a220e7 1496 }
ef1ca236 1497
8930caba 1498 local_irq_restore(flags);
1da177e4
LT
1499 return ret;
1500}
ad7b1f84 1501EXPORT_SYMBOL(queue_work_on);
1da177e4 1502
d8e794df 1503void delayed_work_timer_fn(unsigned long __data)
1da177e4 1504{
52bad64d 1505 struct delayed_work *dwork = (struct delayed_work *)__data;
1da177e4 1506
e0aecdd8 1507 /* should have been called from irqsafe timer with irq already off */
60c057bc 1508 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
1da177e4 1509}
1438ade5 1510EXPORT_SYMBOL(delayed_work_timer_fn);
1da177e4 1511
7beb2edf
TH
1512static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1513 struct delayed_work *dwork, unsigned long delay)
1da177e4 1514{
7beb2edf
TH
1515 struct timer_list *timer = &dwork->timer;
1516 struct work_struct *work = &dwork->work;
7beb2edf 1517
637fdbae 1518 WARN_ON_ONCE(!wq);
7beb2edf
TH
1519 WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
1520 timer->data != (unsigned long)dwork);
fc4b514f
TH
1521 WARN_ON_ONCE(timer_pending(timer));
1522 WARN_ON_ONCE(!list_empty(&work->entry));
7beb2edf 1523
8852aac2
TH
1524 /*
1525 * If @delay is 0, queue @dwork->work immediately. This is for
1526 * both optimization and correctness. The earliest @timer can
1527 * expire is on the closest next tick and delayed_work users depend
1528 * on that there's no such delay when @delay is 0.
1529 */
1530 if (!delay) {
1531 __queue_work(cpu, wq, &dwork->work);
1532 return;
1533 }
1534
60c057bc 1535 dwork->wq = wq;
1265057f 1536 dwork->cpu = cpu;
7beb2edf
TH
1537 timer->expires = jiffies + delay;
1538
041bd12e
TH
1539 if (unlikely(cpu != WORK_CPU_UNBOUND))
1540 add_timer_on(timer, cpu);
1541 else
1542 add_timer(timer);
1da177e4
LT
1543}
1544
0fcb78c2
REB
1545/**
1546 * queue_delayed_work_on - queue work on specific CPU after delay
1547 * @cpu: CPU number to execute work on
1548 * @wq: workqueue to use
af9997e4 1549 * @dwork: work to queue
0fcb78c2
REB
1550 * @delay: number of jiffies to wait before queueing
1551 *
d185af30 1552 * Return: %false if @work was already on a queue, %true otherwise. If
715f1300
TH
1553 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1554 * execution.
0fcb78c2 1555 */
d4283e93
TH
1556bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1557 struct delayed_work *dwork, unsigned long delay)
7a6bc1cd 1558{
52bad64d 1559 struct work_struct *work = &dwork->work;
d4283e93 1560 bool ret = false;
8930caba 1561 unsigned long flags;
7a6bc1cd 1562
8930caba
TH
1563 /* read the comment in __queue_work() */
1564 local_irq_save(flags);
7a6bc1cd 1565
22df02bb 1566 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
7beb2edf 1567 __queue_delayed_work(cpu, wq, dwork, delay);
d4283e93 1568 ret = true;
7a6bc1cd 1569 }
8a3e77cc 1570
8930caba 1571 local_irq_restore(flags);
7a6bc1cd
VP
1572 return ret;
1573}
ad7b1f84 1574EXPORT_SYMBOL(queue_delayed_work_on);
c7fc77f7 1575
8376fe22
TH
1576/**
1577 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1578 * @cpu: CPU number to execute work on
1579 * @wq: workqueue to use
1580 * @dwork: work to queue
1581 * @delay: number of jiffies to wait before queueing
1582 *
1583 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1584 * modify @dwork's timer so that it expires after @delay. If @delay is
1585 * zero, @work is guaranteed to be scheduled immediately regardless of its
1586 * current state.
1587 *
d185af30 1588 * Return: %false if @dwork was idle and queued, %true if @dwork was
8376fe22
TH
1589 * pending and its timer was modified.
1590 *
e0aecdd8 1591 * This function is safe to call from any context including IRQ handler.
8376fe22
TH
1592 * See try_to_grab_pending() for details.
1593 */
1594bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1595 struct delayed_work *dwork, unsigned long delay)
1596{
1597 unsigned long flags;
1598 int ret;
c7fc77f7 1599
8376fe22
TH
1600 do {
1601 ret = try_to_grab_pending(&dwork->work, true, &flags);
1602 } while (unlikely(ret == -EAGAIN));
63bc0362 1603
8376fe22
TH
1604 if (likely(ret >= 0)) {
1605 __queue_delayed_work(cpu, wq, dwork, delay);
1606 local_irq_restore(flags);
7a6bc1cd 1607 }
8376fe22
TH
1608
1609 /* -ENOENT from try_to_grab_pending() becomes %true */
7a6bc1cd
VP
1610 return ret;
1611}
8376fe22
TH
1612EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1613
c8e55f36
TH
1614/**
1615 * worker_enter_idle - enter idle state
1616 * @worker: worker which is entering idle state
1617 *
1618 * @worker is entering idle state. Update stats and idle timer if
1619 * necessary.
1620 *
1621 * LOCKING:
d565ed63 1622 * spin_lock_irq(pool->lock).
c8e55f36
TH
1623 */
1624static void worker_enter_idle(struct worker *worker)
1da177e4 1625{
bd7bdd43 1626 struct worker_pool *pool = worker->pool;
c8e55f36 1627
6183c009
TH
1628 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1629 WARN_ON_ONCE(!list_empty(&worker->entry) &&
1630 (worker->hentry.next || worker->hentry.pprev)))
1631 return;
c8e55f36 1632
051e1850 1633 /* can't use worker_set_flags(), also called from create_worker() */
cb444766 1634 worker->flags |= WORKER_IDLE;
bd7bdd43 1635 pool->nr_idle++;
e22bee78 1636 worker->last_active = jiffies;
c8e55f36
TH
1637
1638 /* idle_list is LIFO */
bd7bdd43 1639 list_add(&worker->entry, &pool->idle_list);
db7bccf4 1640
628c78e7
TH
1641 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1642 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
cb444766 1643
544ecf31 1644 /*
706026c2 1645 * Sanity check nr_running. Because wq_unbind_fn() releases
d565ed63 1646 * pool->lock between setting %WORKER_UNBOUND and zapping
628c78e7
TH
1647 * nr_running, the warning may trigger spuriously. Check iff
1648 * unbind is not in progress.
544ecf31 1649 */
24647570 1650 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
bd7bdd43 1651 pool->nr_workers == pool->nr_idle &&
e19e397a 1652 atomic_read(&pool->nr_running));
c8e55f36
TH
1653}
1654
1655/**
1656 * worker_leave_idle - leave idle state
1657 * @worker: worker which is leaving idle state
1658 *
1659 * @worker is leaving idle state. Update stats.
1660 *
1661 * LOCKING:
d565ed63 1662 * spin_lock_irq(pool->lock).
c8e55f36
TH
1663 */
1664static void worker_leave_idle(struct worker *worker)
1665{
bd7bdd43 1666 struct worker_pool *pool = worker->pool;
c8e55f36 1667
6183c009
TH
1668 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1669 return;
d302f017 1670 worker_clr_flags(worker, WORKER_IDLE);
bd7bdd43 1671 pool->nr_idle--;
c8e55f36
TH
1672 list_del_init(&worker->entry);
1673}
1674
f7537df5 1675static struct worker *alloc_worker(int node)
c34056a3
TH
1676{
1677 struct worker *worker;
1678
f7537df5 1679 worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
c8e55f36
TH
1680 if (worker) {
1681 INIT_LIST_HEAD(&worker->entry);
affee4b2 1682 INIT_LIST_HEAD(&worker->scheduled);
da028469 1683 INIT_LIST_HEAD(&worker->node);
e22bee78
TH
1684 /* on creation a worker is in !idle && prep state */
1685 worker->flags = WORKER_PREP;
c8e55f36 1686 }
c34056a3
TH
1687 return worker;
1688}
1689
4736cbf7
LJ
1690/**
1691 * worker_attach_to_pool() - attach a worker to a pool
1692 * @worker: worker to be attached
1693 * @pool: the target pool
1694 *
1695 * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and
1696 * cpu-binding of @worker are kept coordinated with the pool across
1697 * cpu-[un]hotplugs.
1698 */
1699static void worker_attach_to_pool(struct worker *worker,
1700 struct worker_pool *pool)
1701{
1702 mutex_lock(&pool->attach_mutex);
1703
1704 /*
1705 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
1706 * online CPUs. It'll be re-applied when any of the CPUs come up.
1707 */
1708 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1709
1710 /*
1711 * The pool->attach_mutex ensures %POOL_DISASSOCIATED remains
1712 * stable across this function. See the comments above the
1713 * flag definition for details.
1714 */
1715 if (pool->flags & POOL_DISASSOCIATED)
1716 worker->flags |= WORKER_UNBOUND;
1717
1718 list_add_tail(&worker->node, &pool->workers);
1719
1720 mutex_unlock(&pool->attach_mutex);
1721}
1722
60f5a4bc
LJ
1723/**
1724 * worker_detach_from_pool() - detach a worker from its pool
1725 * @worker: worker which is attached to its pool
1726 * @pool: the pool @worker is attached to
1727 *
4736cbf7
LJ
1728 * Undo the attaching which had been done in worker_attach_to_pool(). The
1729 * caller worker shouldn't access to the pool after detached except it has
1730 * other reference to the pool.
60f5a4bc
LJ
1731 */
1732static void worker_detach_from_pool(struct worker *worker,
1733 struct worker_pool *pool)
1734{
1735 struct completion *detach_completion = NULL;
1736
92f9c5c4 1737 mutex_lock(&pool->attach_mutex);
da028469
LJ
1738 list_del(&worker->node);
1739 if (list_empty(&pool->workers))
60f5a4bc 1740 detach_completion = pool->detach_completion;
92f9c5c4 1741 mutex_unlock(&pool->attach_mutex);
60f5a4bc 1742
b62c0751
LJ
1743 /* clear leftover flags without pool->lock after it is detached */
1744 worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
1745
60f5a4bc
LJ
1746 if (detach_completion)
1747 complete(detach_completion);
1748}
1749
c34056a3
TH
1750/**
1751 * create_worker - create a new workqueue worker
63d95a91 1752 * @pool: pool the new worker will belong to
c34056a3 1753 *
051e1850 1754 * Create and start a new worker which is attached to @pool.
c34056a3
TH
1755 *
1756 * CONTEXT:
1757 * Might sleep. Does GFP_KERNEL allocations.
1758 *
d185af30 1759 * Return:
c34056a3
TH
1760 * Pointer to the newly created worker.
1761 */
bc2ae0f5 1762static struct worker *create_worker(struct worker_pool *pool)
c34056a3 1763{
c34056a3 1764 struct worker *worker = NULL;
f3421797 1765 int id = -1;
e3c916a4 1766 char id_buf[16];
c34056a3 1767
7cda9aae
LJ
1768 /* ID is needed to determine kthread name */
1769 id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL);
822d8405
TH
1770 if (id < 0)
1771 goto fail;
c34056a3 1772
f7537df5 1773 worker = alloc_worker(pool->node);
c34056a3
TH
1774 if (!worker)
1775 goto fail;
1776
bd7bdd43 1777 worker->pool = pool;
c34056a3
TH
1778 worker->id = id;
1779
29c91e99 1780 if (pool->cpu >= 0)
e3c916a4
TH
1781 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1782 pool->attrs->nice < 0 ? "H" : "");
f3421797 1783 else
e3c916a4
TH
1784 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1785
f3f90ad4 1786 worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
e3c916a4 1787 "kworker/%s", id_buf);
c34056a3
TH
1788 if (IS_ERR(worker->task))
1789 goto fail;
1790
91151228 1791 set_user_nice(worker->task, pool->attrs->nice);
25834c73 1792 kthread_bind_mask(worker->task, pool->attrs->cpumask);
91151228 1793
da028469 1794 /* successful, attach the worker to the pool */
4736cbf7 1795 worker_attach_to_pool(worker, pool);
822d8405 1796
051e1850
LJ
1797 /* start the newly created worker */
1798 spin_lock_irq(&pool->lock);
1799 worker->pool->nr_workers++;
1800 worker_enter_idle(worker);
1801 wake_up_process(worker->task);
1802 spin_unlock_irq(&pool->lock);
1803
c34056a3 1804 return worker;
822d8405 1805
c34056a3 1806fail:
9625ab17 1807 if (id >= 0)
7cda9aae 1808 ida_simple_remove(&pool->worker_ida, id);
c34056a3
TH
1809 kfree(worker);
1810 return NULL;
1811}
1812
c34056a3
TH
1813/**
1814 * destroy_worker - destroy a workqueue worker
1815 * @worker: worker to be destroyed
1816 *
73eb7fe7
LJ
1817 * Destroy @worker and adjust @pool stats accordingly. The worker should
1818 * be idle.
c8e55f36
TH
1819 *
1820 * CONTEXT:
60f5a4bc 1821 * spin_lock_irq(pool->lock).
c34056a3
TH
1822 */
1823static void destroy_worker(struct worker *worker)
1824{
bd7bdd43 1825 struct worker_pool *pool = worker->pool;
c34056a3 1826
cd549687
TH
1827 lockdep_assert_held(&pool->lock);
1828
c34056a3 1829 /* sanity check frenzy */
6183c009 1830 if (WARN_ON(worker->current_work) ||
73eb7fe7
LJ
1831 WARN_ON(!list_empty(&worker->scheduled)) ||
1832 WARN_ON(!(worker->flags & WORKER_IDLE)))
6183c009 1833 return;
c34056a3 1834
73eb7fe7
LJ
1835 pool->nr_workers--;
1836 pool->nr_idle--;
5bdfff96 1837
c8e55f36 1838 list_del_init(&worker->entry);
cb444766 1839 worker->flags |= WORKER_DIE;
60f5a4bc 1840 wake_up_process(worker->task);
c34056a3
TH
1841}
1842
63d95a91 1843static void idle_worker_timeout(unsigned long __pool)
e22bee78 1844{
63d95a91 1845 struct worker_pool *pool = (void *)__pool;
e22bee78 1846
d565ed63 1847 spin_lock_irq(&pool->lock);
e22bee78 1848
3347fc9f 1849 while (too_many_workers(pool)) {
e22bee78
TH
1850 struct worker *worker;
1851 unsigned long expires;
1852
1853 /* idle_list is kept in LIFO order, check the last one */
63d95a91 1854 worker = list_entry(pool->idle_list.prev, struct worker, entry);
e22bee78
TH
1855 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1856
3347fc9f 1857 if (time_before(jiffies, expires)) {
63d95a91 1858 mod_timer(&pool->idle_timer, expires);
3347fc9f 1859 break;
d5abe669 1860 }
3347fc9f
LJ
1861
1862 destroy_worker(worker);
e22bee78
TH
1863 }
1864
d565ed63 1865 spin_unlock_irq(&pool->lock);
e22bee78 1866}
d5abe669 1867
493a1724 1868static void send_mayday(struct work_struct *work)
e22bee78 1869{
112202d9
TH
1870 struct pool_workqueue *pwq = get_work_pwq(work);
1871 struct workqueue_struct *wq = pwq->wq;
493a1724 1872
2e109a28 1873 lockdep_assert_held(&wq_mayday_lock);
e22bee78 1874
493008a8 1875 if (!wq->rescuer)
493a1724 1876 return;
e22bee78
TH
1877
1878 /* mayday mayday mayday */
493a1724 1879 if (list_empty(&pwq->mayday_node)) {
77668c8b
LJ
1880 /*
1881 * If @pwq is for an unbound wq, its base ref may be put at
1882 * any time due to an attribute change. Pin @pwq until the
1883 * rescuer is done with it.
1884 */
1885 get_pwq(pwq);
493a1724 1886 list_add_tail(&pwq->mayday_node, &wq->maydays);
e22bee78 1887 wake_up_process(wq->rescuer->task);
493a1724 1888 }
e22bee78
TH
1889}
1890
706026c2 1891static void pool_mayday_timeout(unsigned long __pool)
e22bee78 1892{
63d95a91 1893 struct worker_pool *pool = (void *)__pool;
e22bee78
TH
1894 struct work_struct *work;
1895
b2d82909
TH
1896 spin_lock_irq(&pool->lock);
1897 spin_lock(&wq_mayday_lock); /* for wq->maydays */
e22bee78 1898
63d95a91 1899 if (need_to_create_worker(pool)) {
e22bee78
TH
1900 /*
1901 * We've been trying to create a new worker but
1902 * haven't been successful. We might be hitting an
1903 * allocation deadlock. Send distress signals to
1904 * rescuers.
1905 */
63d95a91 1906 list_for_each_entry(work, &pool->worklist, entry)
e22bee78 1907 send_mayday(work);
1da177e4 1908 }
e22bee78 1909
b2d82909
TH
1910 spin_unlock(&wq_mayday_lock);
1911 spin_unlock_irq(&pool->lock);
e22bee78 1912
63d95a91 1913 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1da177e4
LT
1914}
1915
e22bee78
TH
1916/**
1917 * maybe_create_worker - create a new worker if necessary
63d95a91 1918 * @pool: pool to create a new worker for
e22bee78 1919 *
63d95a91 1920 * Create a new worker for @pool if necessary. @pool is guaranteed to
e22bee78
TH
1921 * have at least one idle worker on return from this function. If
1922 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
63d95a91 1923 * sent to all rescuers with works scheduled on @pool to resolve
e22bee78
TH
1924 * possible allocation deadlock.
1925 *
c5aa87bb
TH
1926 * On return, need_to_create_worker() is guaranteed to be %false and
1927 * may_start_working() %true.
e22bee78
TH
1928 *
1929 * LOCKING:
d565ed63 1930 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
1931 * multiple times. Does GFP_KERNEL allocations. Called only from
1932 * manager.
e22bee78 1933 */
29187a9e 1934static void maybe_create_worker(struct worker_pool *pool)
d565ed63
TH
1935__releases(&pool->lock)
1936__acquires(&pool->lock)
1da177e4 1937{
e22bee78 1938restart:
d565ed63 1939 spin_unlock_irq(&pool->lock);
9f9c2364 1940
e22bee78 1941 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
63d95a91 1942 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
e22bee78
TH
1943
1944 while (true) {
051e1850 1945 if (create_worker(pool) || !need_to_create_worker(pool))
e22bee78 1946 break;
1da177e4 1947
e212f361 1948 schedule_timeout_interruptible(CREATE_COOLDOWN);
9f9c2364 1949
63d95a91 1950 if (!need_to_create_worker(pool))
e22bee78
TH
1951 break;
1952 }
1953
63d95a91 1954 del_timer_sync(&pool->mayday_timer);
d565ed63 1955 spin_lock_irq(&pool->lock);
051e1850
LJ
1956 /*
1957 * This is necessary even after a new worker was just successfully
1958 * created as @pool->lock was dropped and the new worker might have
1959 * already become busy.
1960 */
63d95a91 1961 if (need_to_create_worker(pool))
e22bee78 1962 goto restart;
e22bee78
TH
1963}
1964
73f53c4a 1965/**
e22bee78
TH
1966 * manage_workers - manage worker pool
1967 * @worker: self
73f53c4a 1968 *
706026c2 1969 * Assume the manager role and manage the worker pool @worker belongs
e22bee78 1970 * to. At any given time, there can be only zero or one manager per
706026c2 1971 * pool. The exclusion is handled automatically by this function.
e22bee78
TH
1972 *
1973 * The caller can safely start processing works on false return. On
1974 * true return, it's guaranteed that need_to_create_worker() is false
1975 * and may_start_working() is true.
73f53c4a
TH
1976 *
1977 * CONTEXT:
d565ed63 1978 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
1979 * multiple times. Does GFP_KERNEL allocations.
1980 *
d185af30 1981 * Return:
29187a9e
TH
1982 * %false if the pool doesn't need management and the caller can safely
1983 * start processing works, %true if management function was performed and
1984 * the conditions that the caller verified before calling the function may
1985 * no longer be true.
73f53c4a 1986 */
e22bee78 1987static bool manage_workers(struct worker *worker)
73f53c4a 1988{
63d95a91 1989 struct worker_pool *pool = worker->pool;
73f53c4a 1990
692b4825 1991 if (pool->flags & POOL_MANAGER_ACTIVE)
29187a9e 1992 return false;
692b4825
TH
1993
1994 pool->flags |= POOL_MANAGER_ACTIVE;
2607d7a6 1995 pool->manager = worker;
1e19ffc6 1996
29187a9e 1997 maybe_create_worker(pool);
e22bee78 1998
2607d7a6 1999 pool->manager = NULL;
692b4825
TH
2000 pool->flags &= ~POOL_MANAGER_ACTIVE;
2001 wake_up(&wq_manager_wait);
29187a9e 2002 return true;
73f53c4a
TH
2003}
2004
a62428c0
TH
2005/**
2006 * process_one_work - process single work
c34056a3 2007 * @worker: self
a62428c0
TH
2008 * @work: work to process
2009 *
2010 * Process @work. This function contains all the logics necessary to
2011 * process a single work including synchronization against and
2012 * interaction with other workers on the same cpu, queueing and
2013 * flushing. As long as context requirement is met, any worker can
2014 * call this function to process a work.
2015 *
2016 * CONTEXT:
d565ed63 2017 * spin_lock_irq(pool->lock) which is released and regrabbed.
a62428c0 2018 */
c34056a3 2019static void process_one_work(struct worker *worker, struct work_struct *work)
d565ed63
TH
2020__releases(&pool->lock)
2021__acquires(&pool->lock)
a62428c0 2022{
112202d9 2023 struct pool_workqueue *pwq = get_work_pwq(work);
bd7bdd43 2024 struct worker_pool *pool = worker->pool;
112202d9 2025 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
73f53c4a 2026 int work_color;
7e11629d 2027 struct worker *collision;
a62428c0
TH
2028#ifdef CONFIG_LOCKDEP
2029 /*
2030 * It is permissible to free the struct work_struct from
2031 * inside the function that is called from it, this we need to
2032 * take into account for lockdep too. To avoid bogus "held
2033 * lock freed" warnings as well as problems when looking into
2034 * work->lockdep_map, make a copy and use that here.
2035 */
4d82a1de
PZ
2036 struct lockdep_map lockdep_map;
2037
2038 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
a62428c0 2039#endif
807407c0 2040 /* ensure we're on the correct CPU */
85327af6 2041 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
ec22ca5e 2042 raw_smp_processor_id() != pool->cpu);
25511a47 2043
7e11629d
TH
2044 /*
2045 * A single work shouldn't be executed concurrently by
2046 * multiple workers on a single cpu. Check whether anyone is
2047 * already processing the work. If so, defer the work to the
2048 * currently executing one.
2049 */
c9e7cf27 2050 collision = find_worker_executing_work(pool, work);
7e11629d
TH
2051 if (unlikely(collision)) {
2052 move_linked_works(work, &collision->scheduled, NULL);
2053 return;
2054 }
2055
8930caba 2056 /* claim and dequeue */
a62428c0 2057 debug_work_deactivate(work);
c9e7cf27 2058 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
c34056a3 2059 worker->current_work = work;
a2c1c57b 2060 worker->current_func = work->func;
112202d9 2061 worker->current_pwq = pwq;
73f53c4a 2062 work_color = get_work_color(work);
7a22ad75 2063
a62428c0
TH
2064 list_del_init(&work->entry);
2065
fb0e7beb 2066 /*
228f1d00
LJ
2067 * CPU intensive works don't participate in concurrency management.
2068 * They're the scheduler's responsibility. This takes @worker out
2069 * of concurrency management and the next code block will chain
2070 * execution of the pending work items.
fb0e7beb
TH
2071 */
2072 if (unlikely(cpu_intensive))
228f1d00 2073 worker_set_flags(worker, WORKER_CPU_INTENSIVE);
fb0e7beb 2074
974271c4 2075 /*
a489a03e
LJ
2076 * Wake up another worker if necessary. The condition is always
2077 * false for normal per-cpu workers since nr_running would always
2078 * be >= 1 at this point. This is used to chain execution of the
2079 * pending work items for WORKER_NOT_RUNNING workers such as the
228f1d00 2080 * UNBOUND and CPU_INTENSIVE ones.
974271c4 2081 */
a489a03e 2082 if (need_more_worker(pool))
63d95a91 2083 wake_up_worker(pool);
974271c4 2084
8930caba 2085 /*
7c3eed5c 2086 * Record the last pool and clear PENDING which should be the last
d565ed63 2087 * update to @work. Also, do this inside @pool->lock so that
23657bb1
TH
2088 * PENDING and queued state changes happen together while IRQ is
2089 * disabled.
8930caba 2090 */
7c3eed5c 2091 set_work_pool_and_clear_pending(work, pool->id);
a62428c0 2092
d565ed63 2093 spin_unlock_irq(&pool->lock);
a62428c0 2094
a1d14934 2095 lock_map_acquire(&pwq->wq->lockdep_map);
a62428c0 2096 lock_map_acquire(&lockdep_map);
e6f3faa7 2097 /*
f52be570
PZ
2098 * Strictly speaking we should mark the invariant state without holding
2099 * any locks, that is, before these two lock_map_acquire()'s.
e6f3faa7
PZ
2100 *
2101 * However, that would result in:
2102 *
2103 * A(W1)
2104 * WFC(C)
2105 * A(W1)
2106 * C(C)
2107 *
2108 * Which would create W1->C->W1 dependencies, even though there is no
2109 * actual deadlock possible. There are two solutions, using a
2110 * read-recursive acquire on the work(queue) 'locks', but this will then
f52be570 2111 * hit the lockdep limitation on recursive locks, or simply discard
e6f3faa7
PZ
2112 * these locks.
2113 *
2114 * AFAICT there is no possible deadlock scenario between the
2115 * flush_work() and complete() primitives (except for single-threaded
2116 * workqueues), so hiding them isn't a problem.
2117 */
f52be570 2118 lockdep_invariant_state(true);
e36c886a 2119 trace_workqueue_execute_start(work);
a2c1c57b 2120 worker->current_func(work);
e36c886a
AV
2121 /*
2122 * While we must be careful to not use "work" after this, the trace
2123 * point will only record its address.
2124 */
2125 trace_workqueue_execute_end(work);
a62428c0 2126 lock_map_release(&lockdep_map);
112202d9 2127 lock_map_release(&pwq->wq->lockdep_map);
a62428c0
TH
2128
2129 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
044c782c
VI
2130 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2131 " last function: %pf\n",
a2c1c57b
TH
2132 current->comm, preempt_count(), task_pid_nr(current),
2133 worker->current_func);
a62428c0
TH
2134 debug_show_held_locks(current);
2135 dump_stack();
2136 }
2137
b22ce278
TH
2138 /*
2139 * The following prevents a kworker from hogging CPU on !PREEMPT
2140 * kernels, where a requeueing work item waiting for something to
2141 * happen could deadlock with stop_machine as such work item could
2142 * indefinitely requeue itself while all other CPUs are trapped in
789cbbec
JL
2143 * stop_machine. At the same time, report a quiescent RCU state so
2144 * the same condition doesn't freeze RCU.
b22ce278 2145 */
3e28e377 2146 cond_resched_rcu_qs();
b22ce278 2147
d565ed63 2148 spin_lock_irq(&pool->lock);
a62428c0 2149
fb0e7beb
TH
2150 /* clear cpu intensive status */
2151 if (unlikely(cpu_intensive))
2152 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2153
a62428c0 2154 /* we're done with it, release */
42f8570f 2155 hash_del(&worker->hentry);
c34056a3 2156 worker->current_work = NULL;
a2c1c57b 2157 worker->current_func = NULL;
112202d9 2158 worker->current_pwq = NULL;
3d1cb205 2159 worker->desc_valid = false;
112202d9 2160 pwq_dec_nr_in_flight(pwq, work_color);
a62428c0
TH
2161}
2162
affee4b2
TH
2163/**
2164 * process_scheduled_works - process scheduled works
2165 * @worker: self
2166 *
2167 * Process all scheduled works. Please note that the scheduled list
2168 * may change while processing a work, so this function repeatedly
2169 * fetches a work from the top and executes it.
2170 *
2171 * CONTEXT:
d565ed63 2172 * spin_lock_irq(pool->lock) which may be released and regrabbed
affee4b2
TH
2173 * multiple times.
2174 */
2175static void process_scheduled_works(struct worker *worker)
1da177e4 2176{
affee4b2
TH
2177 while (!list_empty(&worker->scheduled)) {
2178 struct work_struct *work = list_first_entry(&worker->scheduled,
1da177e4 2179 struct work_struct, entry);
c34056a3 2180 process_one_work(worker, work);
1da177e4 2181 }
1da177e4
LT
2182}
2183
4690c4ab
TH
2184/**
2185 * worker_thread - the worker thread function
c34056a3 2186 * @__worker: self
4690c4ab 2187 *
c5aa87bb
TH
2188 * The worker thread function. All workers belong to a worker_pool -
2189 * either a per-cpu one or dynamic unbound one. These workers process all
2190 * work items regardless of their specific target workqueue. The only
2191 * exception is work items which belong to workqueues with a rescuer which
2192 * will be explained in rescuer_thread().
d185af30
YB
2193 *
2194 * Return: 0
4690c4ab 2195 */
c34056a3 2196static int worker_thread(void *__worker)
1da177e4 2197{
c34056a3 2198 struct worker *worker = __worker;
bd7bdd43 2199 struct worker_pool *pool = worker->pool;
1da177e4 2200
e22bee78
TH
2201 /* tell the scheduler that this is a workqueue worker */
2202 worker->task->flags |= PF_WQ_WORKER;
c8e55f36 2203woke_up:
d565ed63 2204 spin_lock_irq(&pool->lock);
1da177e4 2205
a9ab775b
TH
2206 /* am I supposed to die? */
2207 if (unlikely(worker->flags & WORKER_DIE)) {
d565ed63 2208 spin_unlock_irq(&pool->lock);
a9ab775b
TH
2209 WARN_ON_ONCE(!list_empty(&worker->entry));
2210 worker->task->flags &= ~PF_WQ_WORKER;
60f5a4bc
LJ
2211
2212 set_task_comm(worker->task, "kworker/dying");
7cda9aae 2213 ida_simple_remove(&pool->worker_ida, worker->id);
60f5a4bc
LJ
2214 worker_detach_from_pool(worker, pool);
2215 kfree(worker);
a9ab775b 2216 return 0;
c8e55f36 2217 }
affee4b2 2218
c8e55f36 2219 worker_leave_idle(worker);
db7bccf4 2220recheck:
e22bee78 2221 /* no more worker necessary? */
63d95a91 2222 if (!need_more_worker(pool))
e22bee78
TH
2223 goto sleep;
2224
2225 /* do we need to manage? */
63d95a91 2226 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
e22bee78
TH
2227 goto recheck;
2228
c8e55f36
TH
2229 /*
2230 * ->scheduled list can only be filled while a worker is
2231 * preparing to process a work or actually processing it.
2232 * Make sure nobody diddled with it while I was sleeping.
2233 */
6183c009 2234 WARN_ON_ONCE(!list_empty(&worker->scheduled));
c8e55f36 2235
e22bee78 2236 /*
a9ab775b
TH
2237 * Finish PREP stage. We're guaranteed to have at least one idle
2238 * worker or that someone else has already assumed the manager
2239 * role. This is where @worker starts participating in concurrency
2240 * management if applicable and concurrency management is restored
2241 * after being rebound. See rebind_workers() for details.
e22bee78 2242 */
a9ab775b 2243 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
e22bee78
TH
2244
2245 do {
c8e55f36 2246 struct work_struct *work =
bd7bdd43 2247 list_first_entry(&pool->worklist,
c8e55f36
TH
2248 struct work_struct, entry);
2249
82607adc
TH
2250 pool->watchdog_ts = jiffies;
2251
c8e55f36
TH
2252 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2253 /* optimization path, not strictly necessary */
2254 process_one_work(worker, work);
2255 if (unlikely(!list_empty(&worker->scheduled)))
affee4b2 2256 process_scheduled_works(worker);
c8e55f36
TH
2257 } else {
2258 move_linked_works(work, &worker->scheduled, NULL);
2259 process_scheduled_works(worker);
affee4b2 2260 }
63d95a91 2261 } while (keep_working(pool));
e22bee78 2262
228f1d00 2263 worker_set_flags(worker, WORKER_PREP);
d313dd85 2264sleep:
c8e55f36 2265 /*
d565ed63
TH
2266 * pool->lock is held and there's no work to process and no need to
2267 * manage, sleep. Workers are woken up only while holding
2268 * pool->lock or from local cpu, so setting the current state
2269 * before releasing pool->lock is enough to prevent losing any
2270 * event.
c8e55f36
TH
2271 */
2272 worker_enter_idle(worker);
c5a94a61 2273 __set_current_state(TASK_IDLE);
d565ed63 2274 spin_unlock_irq(&pool->lock);
c8e55f36
TH
2275 schedule();
2276 goto woke_up;
1da177e4
LT
2277}
2278
e22bee78
TH
2279/**
2280 * rescuer_thread - the rescuer thread function
111c225a 2281 * @__rescuer: self
e22bee78
TH
2282 *
2283 * Workqueue rescuer thread function. There's one rescuer for each
493008a8 2284 * workqueue which has WQ_MEM_RECLAIM set.
e22bee78 2285 *
706026c2 2286 * Regular work processing on a pool may block trying to create a new
e22bee78
TH
2287 * worker which uses GFP_KERNEL allocation which has slight chance of
2288 * developing into deadlock if some works currently on the same queue
2289 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2290 * the problem rescuer solves.
2291 *
706026c2
TH
2292 * When such condition is possible, the pool summons rescuers of all
2293 * workqueues which have works queued on the pool and let them process
e22bee78
TH
2294 * those works so that forward progress can be guaranteed.
2295 *
2296 * This should happen rarely.
d185af30
YB
2297 *
2298 * Return: 0
e22bee78 2299 */
111c225a 2300static int rescuer_thread(void *__rescuer)
e22bee78 2301{
111c225a
TH
2302 struct worker *rescuer = __rescuer;
2303 struct workqueue_struct *wq = rescuer->rescue_wq;
e22bee78 2304 struct list_head *scheduled = &rescuer->scheduled;
4d595b86 2305 bool should_stop;
e22bee78
TH
2306
2307 set_user_nice(current, RESCUER_NICE_LEVEL);
111c225a
TH
2308
2309 /*
2310 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
2311 * doesn't participate in concurrency management.
2312 */
2313 rescuer->task->flags |= PF_WQ_WORKER;
e22bee78 2314repeat:
c5a94a61 2315 set_current_state(TASK_IDLE);
e22bee78 2316
4d595b86
LJ
2317 /*
2318 * By the time the rescuer is requested to stop, the workqueue
2319 * shouldn't have any work pending, but @wq->maydays may still have
2320 * pwq(s) queued. This can happen by non-rescuer workers consuming
2321 * all the work items before the rescuer got to them. Go through
2322 * @wq->maydays processing before acting on should_stop so that the
2323 * list is always empty on exit.
2324 */
2325 should_stop = kthread_should_stop();
e22bee78 2326
493a1724 2327 /* see whether any pwq is asking for help */
2e109a28 2328 spin_lock_irq(&wq_mayday_lock);
493a1724
TH
2329
2330 while (!list_empty(&wq->maydays)) {
2331 struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2332 struct pool_workqueue, mayday_node);
112202d9 2333 struct worker_pool *pool = pwq->pool;
e22bee78 2334 struct work_struct *work, *n;
82607adc 2335 bool first = true;
e22bee78
TH
2336
2337 __set_current_state(TASK_RUNNING);
493a1724
TH
2338 list_del_init(&pwq->mayday_node);
2339
2e109a28 2340 spin_unlock_irq(&wq_mayday_lock);
e22bee78 2341
51697d39
LJ
2342 worker_attach_to_pool(rescuer, pool);
2343
2344 spin_lock_irq(&pool->lock);
b3104104 2345 rescuer->pool = pool;
e22bee78
TH
2346
2347 /*
2348 * Slurp in all works issued via this workqueue and
2349 * process'em.
2350 */
0479c8c5 2351 WARN_ON_ONCE(!list_empty(scheduled));
82607adc
TH
2352 list_for_each_entry_safe(work, n, &pool->worklist, entry) {
2353 if (get_work_pwq(work) == pwq) {
2354 if (first)
2355 pool->watchdog_ts = jiffies;
e22bee78 2356 move_linked_works(work, scheduled, &n);
82607adc
TH
2357 }
2358 first = false;
2359 }
e22bee78 2360
008847f6
N
2361 if (!list_empty(scheduled)) {
2362 process_scheduled_works(rescuer);
2363
2364 /*
2365 * The above execution of rescued work items could
2366 * have created more to rescue through
2367 * pwq_activate_first_delayed() or chained
2368 * queueing. Let's put @pwq back on mayday list so
2369 * that such back-to-back work items, which may be
2370 * being used to relieve memory pressure, don't
2371 * incur MAYDAY_INTERVAL delay inbetween.
2372 */
2373 if (need_to_create_worker(pool)) {
2374 spin_lock(&wq_mayday_lock);
9e0f33da
TH
2375 /*
2376 * Queue iff we aren't racing destruction
2377 * and somebody else hasn't queued it already.
2378 */
2379 if (wq->rescuer && list_empty(&pwq->mayday_node)) {
2380 get_pwq(pwq);
2381 list_add_tail(&pwq->mayday_node, &wq->maydays);
2382 }
008847f6
N
2383 spin_unlock(&wq_mayday_lock);
2384 }
2385 }
7576958a 2386
77668c8b
LJ
2387 /*
2388 * Put the reference grabbed by send_mayday(). @pool won't
13b1d625 2389 * go away while we're still attached to it.
77668c8b
LJ
2390 */
2391 put_pwq(pwq);
2392
7576958a 2393 /*
d8ca83e6 2394 * Leave this pool. If need_more_worker() is %true, notify a
7576958a
TH
2395 * regular worker; otherwise, we end up with 0 concurrency
2396 * and stalling the execution.
2397 */
d8ca83e6 2398 if (need_more_worker(pool))
63d95a91 2399 wake_up_worker(pool);
7576958a 2400
b3104104 2401 rescuer->pool = NULL;
13b1d625
LJ
2402 spin_unlock_irq(&pool->lock);
2403
2404 worker_detach_from_pool(rescuer, pool);
2405
2406 spin_lock_irq(&wq_mayday_lock);
e22bee78
TH
2407 }
2408
2e109a28 2409 spin_unlock_irq(&wq_mayday_lock);
493a1724 2410
4d595b86
LJ
2411 if (should_stop) {
2412 __set_current_state(TASK_RUNNING);
2413 rescuer->task->flags &= ~PF_WQ_WORKER;
2414 return 0;
2415 }
2416
111c225a
TH
2417 /* rescuers should never participate in concurrency management */
2418 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
e22bee78
TH
2419 schedule();
2420 goto repeat;
1da177e4
LT
2421}
2422
fca839c0
TH
2423/**
2424 * check_flush_dependency - check for flush dependency sanity
2425 * @target_wq: workqueue being flushed
2426 * @target_work: work item being flushed (NULL for workqueue flushes)
2427 *
2428 * %current is trying to flush the whole @target_wq or @target_work on it.
2429 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
2430 * reclaiming memory or running on a workqueue which doesn't have
2431 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
2432 * a deadlock.
2433 */
2434static void check_flush_dependency(struct workqueue_struct *target_wq,
2435 struct work_struct *target_work)
2436{
2437 work_func_t target_func = target_work ? target_work->func : NULL;
2438 struct worker *worker;
2439
2440 if (target_wq->flags & WQ_MEM_RECLAIM)
2441 return;
2442
2443 worker = current_wq_worker();
2444
2445 WARN_ONCE(current->flags & PF_MEMALLOC,
2446 "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%pf",
2447 current->pid, current->comm, target_wq->name, target_func);
23d11a58
TH
2448 WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
2449 (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
fca839c0
TH
2450 "workqueue: WQ_MEM_RECLAIM %s:%pf is flushing !WQ_MEM_RECLAIM %s:%pf",
2451 worker->current_pwq->wq->name, worker->current_func,
2452 target_wq->name, target_func);
2453}
2454
fc2e4d70
ON
2455struct wq_barrier {
2456 struct work_struct work;
2457 struct completion done;
2607d7a6 2458 struct task_struct *task; /* purely informational */
fc2e4d70
ON
2459};
2460
2461static void wq_barrier_func(struct work_struct *work)
2462{
2463 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2464 complete(&barr->done);
2465}
2466
4690c4ab
TH
2467/**
2468 * insert_wq_barrier - insert a barrier work
112202d9 2469 * @pwq: pwq to insert barrier into
4690c4ab 2470 * @barr: wq_barrier to insert
affee4b2
TH
2471 * @target: target work to attach @barr to
2472 * @worker: worker currently executing @target, NULL if @target is not executing
4690c4ab 2473 *
affee4b2
TH
2474 * @barr is linked to @target such that @barr is completed only after
2475 * @target finishes execution. Please note that the ordering
2476 * guarantee is observed only with respect to @target and on the local
2477 * cpu.
2478 *
2479 * Currently, a queued barrier can't be canceled. This is because
2480 * try_to_grab_pending() can't determine whether the work to be
2481 * grabbed is at the head of the queue and thus can't clear LINKED
2482 * flag of the previous work while there must be a valid next work
2483 * after a work with LINKED flag set.
2484 *
2485 * Note that when @worker is non-NULL, @target may be modified
112202d9 2486 * underneath us, so we can't reliably determine pwq from @target.
4690c4ab
TH
2487 *
2488 * CONTEXT:
d565ed63 2489 * spin_lock_irq(pool->lock).
4690c4ab 2490 */
112202d9 2491static void insert_wq_barrier(struct pool_workqueue *pwq,
affee4b2
TH
2492 struct wq_barrier *barr,
2493 struct work_struct *target, struct worker *worker)
fc2e4d70 2494{
affee4b2
TH
2495 struct list_head *head;
2496 unsigned int linked = 0;
2497
dc186ad7 2498 /*
d565ed63 2499 * debugobject calls are safe here even with pool->lock locked
dc186ad7
TG
2500 * as we know for sure that this will not trigger any of the
2501 * checks and call back into the fixup functions where we
2502 * might deadlock.
2503 */
ca1cab37 2504 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
22df02bb 2505 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
52fa5bc5
BF
2506
2507 /*
2508 * Explicitly init the crosslock for wq_barrier::done, make its lock
2509 * key a subkey of the corresponding work. As a result we won't
2510 * build a dependency between wq_barrier::done and unrelated work.
2511 */
2512 lockdep_init_map_crosslock((struct lockdep_map *)&barr->done.map,
2513 "(complete)wq_barr::done",
2514 target->lockdep_map.key, 1);
2515 __init_completion(&barr->done);
2607d7a6 2516 barr->task = current;
83c22520 2517
affee4b2
TH
2518 /*
2519 * If @target is currently being executed, schedule the
2520 * barrier to the worker; otherwise, put it after @target.
2521 */
2522 if (worker)
2523 head = worker->scheduled.next;
2524 else {
2525 unsigned long *bits = work_data_bits(target);
2526
2527 head = target->entry.next;
2528 /* there can already be other linked works, inherit and set */
2529 linked = *bits & WORK_STRUCT_LINKED;
2530 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2531 }
2532
dc186ad7 2533 debug_work_activate(&barr->work);
112202d9 2534 insert_work(pwq, &barr->work, head,
affee4b2 2535 work_color_to_flags(WORK_NO_COLOR) | linked);
fc2e4d70
ON
2536}
2537
73f53c4a 2538/**
112202d9 2539 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
73f53c4a
TH
2540 * @wq: workqueue being flushed
2541 * @flush_color: new flush color, < 0 for no-op
2542 * @work_color: new work color, < 0 for no-op
2543 *
112202d9 2544 * Prepare pwqs for workqueue flushing.
73f53c4a 2545 *
112202d9
TH
2546 * If @flush_color is non-negative, flush_color on all pwqs should be
2547 * -1. If no pwq has in-flight commands at the specified color, all
2548 * pwq->flush_color's stay at -1 and %false is returned. If any pwq
2549 * has in flight commands, its pwq->flush_color is set to
2550 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
73f53c4a
TH
2551 * wakeup logic is armed and %true is returned.
2552 *
2553 * The caller should have initialized @wq->first_flusher prior to
2554 * calling this function with non-negative @flush_color. If
2555 * @flush_color is negative, no flush color update is done and %false
2556 * is returned.
2557 *
112202d9 2558 * If @work_color is non-negative, all pwqs should have the same
73f53c4a
TH
2559 * work_color which is previous to @work_color and all will be
2560 * advanced to @work_color.
2561 *
2562 * CONTEXT:
3c25a55d 2563 * mutex_lock(wq->mutex).
73f53c4a 2564 *
d185af30 2565 * Return:
73f53c4a
TH
2566 * %true if @flush_color >= 0 and there's something to flush. %false
2567 * otherwise.
2568 */
112202d9 2569static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
73f53c4a 2570 int flush_color, int work_color)
1da177e4 2571{
73f53c4a 2572 bool wait = false;
49e3cf44 2573 struct pool_workqueue *pwq;
1da177e4 2574
73f53c4a 2575 if (flush_color >= 0) {
6183c009 2576 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
112202d9 2577 atomic_set(&wq->nr_pwqs_to_flush, 1);
1da177e4 2578 }
2355b70f 2579
49e3cf44 2580 for_each_pwq(pwq, wq) {
112202d9 2581 struct worker_pool *pool = pwq->pool;
fc2e4d70 2582
b09f4fd3 2583 spin_lock_irq(&pool->lock);
83c22520 2584
73f53c4a 2585 if (flush_color >= 0) {
6183c009 2586 WARN_ON_ONCE(pwq->flush_color != -1);
fc2e4d70 2587
112202d9
TH
2588 if (pwq->nr_in_flight[flush_color]) {
2589 pwq->flush_color = flush_color;
2590 atomic_inc(&wq->nr_pwqs_to_flush);
73f53c4a
TH
2591 wait = true;
2592 }
2593 }
1da177e4 2594
73f53c4a 2595 if (work_color >= 0) {
6183c009 2596 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
112202d9 2597 pwq->work_color = work_color;
73f53c4a 2598 }
1da177e4 2599
b09f4fd3 2600 spin_unlock_irq(&pool->lock);
1da177e4 2601 }
2355b70f 2602
112202d9 2603 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
73f53c4a 2604 complete(&wq->first_flusher->done);
14441960 2605
73f53c4a 2606 return wait;
1da177e4
LT
2607}
2608
0fcb78c2 2609/**
1da177e4 2610 * flush_workqueue - ensure that any scheduled work has run to completion.
0fcb78c2 2611 * @wq: workqueue to flush
1da177e4 2612 *
c5aa87bb
TH
2613 * This function sleeps until all work items which were queued on entry
2614 * have finished execution, but it is not livelocked by new incoming ones.
1da177e4 2615 */
7ad5b3a5 2616void flush_workqueue(struct workqueue_struct *wq)
1da177e4 2617{
73f53c4a
TH
2618 struct wq_flusher this_flusher = {
2619 .list = LIST_HEAD_INIT(this_flusher.list),
2620 .flush_color = -1,
2621 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2622 };
2623 int next_color;
1da177e4 2624
3347fa09
TH
2625 if (WARN_ON(!wq_online))
2626 return;
2627
3295f0ef
IM
2628 lock_map_acquire(&wq->lockdep_map);
2629 lock_map_release(&wq->lockdep_map);
73f53c4a 2630
3c25a55d 2631 mutex_lock(&wq->mutex);
73f53c4a
TH
2632
2633 /*
2634 * Start-to-wait phase
2635 */
2636 next_color = work_next_color(wq->work_color);
2637
2638 if (next_color != wq->flush_color) {
2639 /*
2640 * Color space is not full. The current work_color
2641 * becomes our flush_color and work_color is advanced
2642 * by one.
2643 */
6183c009 2644 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
73f53c4a
TH
2645 this_flusher.flush_color = wq->work_color;
2646 wq->work_color = next_color;
2647
2648 if (!wq->first_flusher) {
2649 /* no flush in progress, become the first flusher */
6183c009 2650 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
73f53c4a
TH
2651
2652 wq->first_flusher = &this_flusher;
2653
112202d9 2654 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
73f53c4a
TH
2655 wq->work_color)) {
2656 /* nothing to flush, done */
2657 wq->flush_color = next_color;
2658 wq->first_flusher = NULL;
2659 goto out_unlock;
2660 }
2661 } else {
2662 /* wait in queue */
6183c009 2663 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
73f53c4a 2664 list_add_tail(&this_flusher.list, &wq->flusher_queue);
112202d9 2665 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
73f53c4a
TH
2666 }
2667 } else {
2668 /*
2669 * Oops, color space is full, wait on overflow queue.
2670 * The next flush completion will assign us
2671 * flush_color and transfer to flusher_queue.
2672 */
2673 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2674 }
2675
fca839c0
TH
2676 check_flush_dependency(wq, NULL);
2677
3c25a55d 2678 mutex_unlock(&wq->mutex);
73f53c4a
TH
2679
2680 wait_for_completion(&this_flusher.done);
2681
2682 /*
2683 * Wake-up-and-cascade phase
2684 *
2685 * First flushers are responsible for cascading flushes and
2686 * handling overflow. Non-first flushers can simply return.
2687 */
2688 if (wq->first_flusher != &this_flusher)
2689 return;
2690
3c25a55d 2691 mutex_lock(&wq->mutex);
73f53c4a 2692
4ce48b37
TH
2693 /* we might have raced, check again with mutex held */
2694 if (wq->first_flusher != &this_flusher)
2695 goto out_unlock;
2696
73f53c4a
TH
2697 wq->first_flusher = NULL;
2698
6183c009
TH
2699 WARN_ON_ONCE(!list_empty(&this_flusher.list));
2700 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
73f53c4a
TH
2701
2702 while (true) {
2703 struct wq_flusher *next, *tmp;
2704
2705 /* complete all the flushers sharing the current flush color */
2706 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2707 if (next->flush_color != wq->flush_color)
2708 break;
2709 list_del_init(&next->list);
2710 complete(&next->done);
2711 }
2712
6183c009
TH
2713 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2714 wq->flush_color != work_next_color(wq->work_color));
73f53c4a
TH
2715
2716 /* this flush_color is finished, advance by one */
2717 wq->flush_color = work_next_color(wq->flush_color);
2718
2719 /* one color has been freed, handle overflow queue */
2720 if (!list_empty(&wq->flusher_overflow)) {
2721 /*
2722 * Assign the same color to all overflowed
2723 * flushers, advance work_color and append to
2724 * flusher_queue. This is the start-to-wait
2725 * phase for these overflowed flushers.
2726 */
2727 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2728 tmp->flush_color = wq->work_color;
2729
2730 wq->work_color = work_next_color(wq->work_color);
2731
2732 list_splice_tail_init(&wq->flusher_overflow,
2733 &wq->flusher_queue);
112202d9 2734 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
73f53c4a
TH
2735 }
2736
2737 if (list_empty(&wq->flusher_queue)) {
6183c009 2738 WARN_ON_ONCE(wq->flush_color != wq->work_color);
73f53c4a
TH
2739 break;
2740 }
2741
2742 /*
2743 * Need to flush more colors. Make the next flusher
112202d9 2744 * the new first flusher and arm pwqs.
73f53c4a 2745 */
6183c009
TH
2746 WARN_ON_ONCE(wq->flush_color == wq->work_color);
2747 WARN_ON_ONCE(wq->flush_color != next->flush_color);
73f53c4a
TH
2748
2749 list_del_init(&next->list);
2750 wq->first_flusher = next;
2751
112202d9 2752 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
73f53c4a
TH
2753 break;
2754
2755 /*
2756 * Meh... this color is already done, clear first
2757 * flusher and repeat cascading.
2758 */
2759 wq->first_flusher = NULL;
2760 }
2761
2762out_unlock:
3c25a55d 2763 mutex_unlock(&wq->mutex);
1da177e4 2764}
1dadafa8 2765EXPORT_SYMBOL(flush_workqueue);
1da177e4 2766
9c5a2ba7
TH
2767/**
2768 * drain_workqueue - drain a workqueue
2769 * @wq: workqueue to drain
2770 *
2771 * Wait until the workqueue becomes empty. While draining is in progress,
2772 * only chain queueing is allowed. IOW, only currently pending or running
2773 * work items on @wq can queue further work items on it. @wq is flushed
b749b1b6 2774 * repeatedly until it becomes empty. The number of flushing is determined
9c5a2ba7
TH
2775 * by the depth of chaining and should be relatively short. Whine if it
2776 * takes too long.
2777 */
2778void drain_workqueue(struct workqueue_struct *wq)
2779{
2780 unsigned int flush_cnt = 0;
49e3cf44 2781 struct pool_workqueue *pwq;
9c5a2ba7
TH
2782
2783 /*
2784 * __queue_work() needs to test whether there are drainers, is much
2785 * hotter than drain_workqueue() and already looks at @wq->flags.
618b01eb 2786 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
9c5a2ba7 2787 */
87fc741e 2788 mutex_lock(&wq->mutex);
9c5a2ba7 2789 if (!wq->nr_drainers++)
618b01eb 2790 wq->flags |= __WQ_DRAINING;
87fc741e 2791 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
2792reflush:
2793 flush_workqueue(wq);
2794
b09f4fd3 2795 mutex_lock(&wq->mutex);
76af4d93 2796
49e3cf44 2797 for_each_pwq(pwq, wq) {
fa2563e4 2798 bool drained;
9c5a2ba7 2799
b09f4fd3 2800 spin_lock_irq(&pwq->pool->lock);
112202d9 2801 drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
b09f4fd3 2802 spin_unlock_irq(&pwq->pool->lock);
fa2563e4
TT
2803
2804 if (drained)
9c5a2ba7
TH
2805 continue;
2806
2807 if (++flush_cnt == 10 ||
2808 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
c5aa87bb 2809 pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
044c782c 2810 wq->name, flush_cnt);
76af4d93 2811
b09f4fd3 2812 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
2813 goto reflush;
2814 }
2815
9c5a2ba7 2816 if (!--wq->nr_drainers)
618b01eb 2817 wq->flags &= ~__WQ_DRAINING;
87fc741e 2818 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
2819}
2820EXPORT_SYMBOL_GPL(drain_workqueue);
2821
606a5020 2822static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
db700897 2823{
affee4b2 2824 struct worker *worker = NULL;
c9e7cf27 2825 struct worker_pool *pool;
112202d9 2826 struct pool_workqueue *pwq;
db700897
ON
2827
2828 might_sleep();
fa1b54e6
TH
2829
2830 local_irq_disable();
c9e7cf27 2831 pool = get_work_pool(work);
fa1b54e6
TH
2832 if (!pool) {
2833 local_irq_enable();
baf59022 2834 return false;
fa1b54e6 2835 }
db700897 2836
fa1b54e6 2837 spin_lock(&pool->lock);
0b3dae68 2838 /* see the comment in try_to_grab_pending() with the same code */
112202d9
TH
2839 pwq = get_work_pwq(work);
2840 if (pwq) {
2841 if (unlikely(pwq->pool != pool))
4690c4ab 2842 goto already_gone;
606a5020 2843 } else {
c9e7cf27 2844 worker = find_worker_executing_work(pool, work);
affee4b2 2845 if (!worker)
4690c4ab 2846 goto already_gone;
112202d9 2847 pwq = worker->current_pwq;
606a5020 2848 }
db700897 2849
fca839c0
TH
2850 check_flush_dependency(pwq->wq, work);
2851
112202d9 2852 insert_wq_barrier(pwq, barr, work, worker);
d565ed63 2853 spin_unlock_irq(&pool->lock);
7a22ad75 2854
e159489b 2855 /*
a1d14934
PZ
2856 * Force a lock recursion deadlock when using flush_work() inside a
2857 * single-threaded or rescuer equipped workqueue.
2858 *
2859 * For single threaded workqueues the deadlock happens when the work
2860 * is after the work issuing the flush_work(). For rescuer equipped
2861 * workqueues the deadlock happens when the rescuer stalls, blocking
2862 * forward progress.
e159489b 2863 */
a1d14934 2864 if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer) {
112202d9 2865 lock_map_acquire(&pwq->wq->lockdep_map);
a1d14934
PZ
2866 lock_map_release(&pwq->wq->lockdep_map);
2867 }
e159489b 2868
401a8d04 2869 return true;
4690c4ab 2870already_gone:
d565ed63 2871 spin_unlock_irq(&pool->lock);
401a8d04 2872 return false;
db700897 2873}
baf59022
TH
2874
2875/**
2876 * flush_work - wait for a work to finish executing the last queueing instance
2877 * @work: the work to flush
2878 *
606a5020
TH
2879 * Wait until @work has finished execution. @work is guaranteed to be idle
2880 * on return if it hasn't been requeued since flush started.
baf59022 2881 *
d185af30 2882 * Return:
baf59022
TH
2883 * %true if flush_work() waited for the work to finish execution,
2884 * %false if it was already idle.
2885 */
2886bool flush_work(struct work_struct *work)
2887{
12997d1a
BH
2888 struct wq_barrier barr;
2889
3347fa09
TH
2890 if (WARN_ON(!wq_online))
2891 return false;
2892
0976dfc1
SB
2893 lock_map_acquire(&work->lockdep_map);
2894 lock_map_release(&work->lockdep_map);
2895
12997d1a
BH
2896 if (start_flush_work(work, &barr)) {
2897 wait_for_completion(&barr.done);
2898 destroy_work_on_stack(&barr.work);
2899 return true;
2900 } else {
2901 return false;
2902 }
6e84d644 2903}
606a5020 2904EXPORT_SYMBOL_GPL(flush_work);
6e84d644 2905
8603e1b3 2906struct cwt_wait {
ac6424b9 2907 wait_queue_entry_t wait;
8603e1b3
TH
2908 struct work_struct *work;
2909};
2910
ac6424b9 2911static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
8603e1b3
TH
2912{
2913 struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
2914
2915 if (cwait->work != key)
2916 return 0;
2917 return autoremove_wake_function(wait, mode, sync, key);
2918}
2919
36e227d2 2920static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
1f1f642e 2921{
8603e1b3 2922 static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
bbb68dfa 2923 unsigned long flags;
1f1f642e
ON
2924 int ret;
2925
2926 do {
bbb68dfa
TH
2927 ret = try_to_grab_pending(work, is_dwork, &flags);
2928 /*
8603e1b3
TH
2929 * If someone else is already canceling, wait for it to
2930 * finish. flush_work() doesn't work for PREEMPT_NONE
2931 * because we may get scheduled between @work's completion
2932 * and the other canceling task resuming and clearing
2933 * CANCELING - flush_work() will return false immediately
2934 * as @work is no longer busy, try_to_grab_pending() will
2935 * return -ENOENT as @work is still being canceled and the
2936 * other canceling task won't be able to clear CANCELING as
2937 * we're hogging the CPU.
2938 *
2939 * Let's wait for completion using a waitqueue. As this
2940 * may lead to the thundering herd problem, use a custom
2941 * wake function which matches @work along with exclusive
2942 * wait and wakeup.
bbb68dfa 2943 */
8603e1b3
TH
2944 if (unlikely(ret == -ENOENT)) {
2945 struct cwt_wait cwait;
2946
2947 init_wait(&cwait.wait);
2948 cwait.wait.func = cwt_wakefn;
2949 cwait.work = work;
2950
2951 prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
2952 TASK_UNINTERRUPTIBLE);
2953 if (work_is_canceling(work))
2954 schedule();
2955 finish_wait(&cancel_waitq, &cwait.wait);
2956 }
1f1f642e
ON
2957 } while (unlikely(ret < 0));
2958
bbb68dfa
TH
2959 /* tell other tasks trying to grab @work to back off */
2960 mark_work_canceling(work);
2961 local_irq_restore(flags);
2962
3347fa09
TH
2963 /*
2964 * This allows canceling during early boot. We know that @work
2965 * isn't executing.
2966 */
2967 if (wq_online)
2968 flush_work(work);
2969
7a22ad75 2970 clear_work_data(work);
8603e1b3
TH
2971
2972 /*
2973 * Paired with prepare_to_wait() above so that either
2974 * waitqueue_active() is visible here or !work_is_canceling() is
2975 * visible there.
2976 */
2977 smp_mb();
2978 if (waitqueue_active(&cancel_waitq))
2979 __wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
2980
1f1f642e
ON
2981 return ret;
2982}
2983
6e84d644 2984/**
401a8d04
TH
2985 * cancel_work_sync - cancel a work and wait for it to finish
2986 * @work: the work to cancel
6e84d644 2987 *
401a8d04
TH
2988 * Cancel @work and wait for its execution to finish. This function
2989 * can be used even if the work re-queues itself or migrates to
2990 * another workqueue. On return from this function, @work is
2991 * guaranteed to be not pending or executing on any CPU.
1f1f642e 2992 *
401a8d04
TH
2993 * cancel_work_sync(&delayed_work->work) must not be used for
2994 * delayed_work's. Use cancel_delayed_work_sync() instead.
6e84d644 2995 *
401a8d04 2996 * The caller must ensure that the workqueue on which @work was last
6e84d644 2997 * queued can't be destroyed before this function returns.
401a8d04 2998 *
d185af30 2999 * Return:
401a8d04 3000 * %true if @work was pending, %false otherwise.
6e84d644 3001 */
401a8d04 3002bool cancel_work_sync(struct work_struct *work)
6e84d644 3003{
36e227d2 3004 return __cancel_work_timer(work, false);
b89deed3 3005}
28e53bdd 3006EXPORT_SYMBOL_GPL(cancel_work_sync);
b89deed3 3007
6e84d644 3008/**
401a8d04
TH
3009 * flush_delayed_work - wait for a dwork to finish executing the last queueing
3010 * @dwork: the delayed work to flush
6e84d644 3011 *
401a8d04
TH
3012 * Delayed timer is cancelled and the pending work is queued for
3013 * immediate execution. Like flush_work(), this function only
3014 * considers the last queueing instance of @dwork.
1f1f642e 3015 *
d185af30 3016 * Return:
401a8d04
TH
3017 * %true if flush_work() waited for the work to finish execution,
3018 * %false if it was already idle.
6e84d644 3019 */
401a8d04
TH
3020bool flush_delayed_work(struct delayed_work *dwork)
3021{
8930caba 3022 local_irq_disable();
401a8d04 3023 if (del_timer_sync(&dwork->timer))
60c057bc 3024 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
8930caba 3025 local_irq_enable();
401a8d04
TH
3026 return flush_work(&dwork->work);
3027}
3028EXPORT_SYMBOL(flush_delayed_work);
3029
f72b8792
JA
3030static bool __cancel_work(struct work_struct *work, bool is_dwork)
3031{
3032 unsigned long flags;
3033 int ret;
3034
3035 do {
3036 ret = try_to_grab_pending(work, is_dwork, &flags);
3037 } while (unlikely(ret == -EAGAIN));
3038
3039 if (unlikely(ret < 0))
3040 return false;
3041
3042 set_work_pool_and_clear_pending(work, get_work_pool_id(work));
3043 local_irq_restore(flags);
3044 return ret;
3045}
3046
3047/*
3048 * See cancel_delayed_work()
3049 */
3050bool cancel_work(struct work_struct *work)
3051{
3052 return __cancel_work(work, false);
3053}
3054
09383498 3055/**
57b30ae7
TH
3056 * cancel_delayed_work - cancel a delayed work
3057 * @dwork: delayed_work to cancel
09383498 3058 *
d185af30
YB
3059 * Kill off a pending delayed_work.
3060 *
3061 * Return: %true if @dwork was pending and canceled; %false if it wasn't
3062 * pending.
3063 *
3064 * Note:
3065 * The work callback function may still be running on return, unless
3066 * it returns %true and the work doesn't re-arm itself. Explicitly flush or
3067 * use cancel_delayed_work_sync() to wait on it.
09383498 3068 *
57b30ae7 3069 * This function is safe to call from any context including IRQ handler.
09383498 3070 */
57b30ae7 3071bool cancel_delayed_work(struct delayed_work *dwork)
09383498 3072{
f72b8792 3073 return __cancel_work(&dwork->work, true);
09383498 3074}
57b30ae7 3075EXPORT_SYMBOL(cancel_delayed_work);
09383498 3076
401a8d04
TH
3077/**
3078 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
3079 * @dwork: the delayed work cancel
3080 *
3081 * This is cancel_work_sync() for delayed works.
3082 *
d185af30 3083 * Return:
401a8d04
TH
3084 * %true if @dwork was pending, %false otherwise.
3085 */
3086bool cancel_delayed_work_sync(struct delayed_work *dwork)
6e84d644 3087{
36e227d2 3088 return __cancel_work_timer(&dwork->work, true);
6e84d644 3089}
f5a421a4 3090EXPORT_SYMBOL(cancel_delayed_work_sync);
1da177e4 3091
b6136773 3092/**
31ddd871 3093 * schedule_on_each_cpu - execute a function synchronously on each online CPU
b6136773 3094 * @func: the function to call
b6136773 3095 *
31ddd871
TH
3096 * schedule_on_each_cpu() executes @func on each online CPU using the
3097 * system workqueue and blocks until all CPUs have completed.
b6136773 3098 * schedule_on_each_cpu() is very slow.
31ddd871 3099 *
d185af30 3100 * Return:
31ddd871 3101 * 0 on success, -errno on failure.
b6136773 3102 */
65f27f38 3103int schedule_on_each_cpu(work_func_t func)
15316ba8
CL
3104{
3105 int cpu;
38f51568 3106 struct work_struct __percpu *works;
15316ba8 3107
b6136773
AM
3108 works = alloc_percpu(struct work_struct);
3109 if (!works)
15316ba8 3110 return -ENOMEM;
b6136773 3111
93981800
TH
3112 get_online_cpus();
3113
15316ba8 3114 for_each_online_cpu(cpu) {
9bfb1839
IM
3115 struct work_struct *work = per_cpu_ptr(works, cpu);
3116
3117 INIT_WORK(work, func);
b71ab8c2 3118 schedule_work_on(cpu, work);
65a64464 3119 }
93981800
TH
3120
3121 for_each_online_cpu(cpu)
3122 flush_work(per_cpu_ptr(works, cpu));
3123
95402b38 3124 put_online_cpus();
b6136773 3125 free_percpu(works);
15316ba8
CL
3126 return 0;
3127}
3128
1fa44eca
JB
3129/**
3130 * execute_in_process_context - reliably execute the routine with user context
3131 * @fn: the function to execute
1fa44eca
JB
3132 * @ew: guaranteed storage for the execute work structure (must
3133 * be available when the work executes)
3134 *
3135 * Executes the function immediately if process context is available,
3136 * otherwise schedules the function for delayed execution.
3137 *
d185af30 3138 * Return: 0 - function was executed
1fa44eca
JB
3139 * 1 - function was scheduled for execution
3140 */
65f27f38 3141int execute_in_process_context(work_func_t fn, struct execute_work *ew)
1fa44eca
JB
3142{
3143 if (!in_interrupt()) {
65f27f38 3144 fn(&ew->work);
1fa44eca
JB
3145 return 0;
3146 }
3147
65f27f38 3148 INIT_WORK(&ew->work, fn);
1fa44eca
JB
3149 schedule_work(&ew->work);
3150
3151 return 1;
3152}
3153EXPORT_SYMBOL_GPL(execute_in_process_context);
3154
6ba94429
FW
3155/**
3156 * free_workqueue_attrs - free a workqueue_attrs
3157 * @attrs: workqueue_attrs to free
226223ab 3158 *
6ba94429 3159 * Undo alloc_workqueue_attrs().
226223ab 3160 */
6ba94429 3161void free_workqueue_attrs(struct workqueue_attrs *attrs)
226223ab 3162{
6ba94429
FW
3163 if (attrs) {
3164 free_cpumask_var(attrs->cpumask);
3165 kfree(attrs);
3166 }
226223ab
TH
3167}
3168
6ba94429
FW
3169/**
3170 * alloc_workqueue_attrs - allocate a workqueue_attrs
3171 * @gfp_mask: allocation mask to use
3172 *
3173 * Allocate a new workqueue_attrs, initialize with default settings and
3174 * return it.
3175 *
3176 * Return: The allocated new workqueue_attr on success. %NULL on failure.
3177 */
3178struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
226223ab 3179{
6ba94429 3180 struct workqueue_attrs *attrs;
226223ab 3181
6ba94429
FW
3182 attrs = kzalloc(sizeof(*attrs), gfp_mask);
3183 if (!attrs)
3184 goto fail;
3185 if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
3186 goto fail;
3187
3188 cpumask_copy(attrs->cpumask, cpu_possible_mask);
3189 return attrs;
3190fail:
3191 free_workqueue_attrs(attrs);
3192 return NULL;
226223ab
TH
3193}
3194
6ba94429
FW
3195static void copy_workqueue_attrs(struct workqueue_attrs *to,
3196 const struct workqueue_attrs *from)
226223ab 3197{
6ba94429
FW
3198 to->nice = from->nice;
3199 cpumask_copy(to->cpumask, from->cpumask);
3200 /*
3201 * Unlike hash and equality test, this function doesn't ignore
3202 * ->no_numa as it is used for both pool and wq attrs. Instead,
3203 * get_unbound_pool() explicitly clears ->no_numa after copying.
3204 */
3205 to->no_numa = from->no_numa;
226223ab
TH
3206}
3207
6ba94429
FW
3208/* hash value of the content of @attr */
3209static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
226223ab 3210{
6ba94429 3211 u32 hash = 0;
226223ab 3212
6ba94429
FW
3213 hash = jhash_1word(attrs->nice, hash);
3214 hash = jhash(cpumask_bits(attrs->cpumask),
3215 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3216 return hash;
226223ab 3217}
226223ab 3218
6ba94429
FW
3219/* content equality test */
3220static bool wqattrs_equal(const struct workqueue_attrs *a,
3221 const struct workqueue_attrs *b)
226223ab 3222{
6ba94429
FW
3223 if (a->nice != b->nice)
3224 return false;
3225 if (!cpumask_equal(a->cpumask, b->cpumask))
3226 return false;
3227 return true;
226223ab
TH
3228}
3229
6ba94429
FW
3230/**
3231 * init_worker_pool - initialize a newly zalloc'd worker_pool
3232 * @pool: worker_pool to initialize
3233 *
402dd89d 3234 * Initialize a newly zalloc'd @pool. It also allocates @pool->attrs.
6ba94429
FW
3235 *
3236 * Return: 0 on success, -errno on failure. Even on failure, all fields
3237 * inside @pool proper are initialized and put_unbound_pool() can be called
3238 * on @pool safely to release it.
3239 */
3240static int init_worker_pool(struct worker_pool *pool)
226223ab 3241{
6ba94429
FW
3242 spin_lock_init(&pool->lock);
3243 pool->id = -1;
3244 pool->cpu = -1;
3245 pool->node = NUMA_NO_NODE;
3246 pool->flags |= POOL_DISASSOCIATED;
82607adc 3247 pool->watchdog_ts = jiffies;
6ba94429
FW
3248 INIT_LIST_HEAD(&pool->worklist);
3249 INIT_LIST_HEAD(&pool->idle_list);
3250 hash_init(pool->busy_hash);
226223ab 3251
c30fb26b
GT
3252 setup_deferrable_timer(&pool->idle_timer, idle_worker_timeout,
3253 (unsigned long)pool);
226223ab 3254
6ba94429
FW
3255 setup_timer(&pool->mayday_timer, pool_mayday_timeout,
3256 (unsigned long)pool);
226223ab 3257
6ba94429
FW
3258 mutex_init(&pool->attach_mutex);
3259 INIT_LIST_HEAD(&pool->workers);
226223ab 3260
6ba94429
FW
3261 ida_init(&pool->worker_ida);
3262 INIT_HLIST_NODE(&pool->hash_node);
3263 pool->refcnt = 1;
226223ab 3264
6ba94429
FW
3265 /* shouldn't fail above this point */
3266 pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
3267 if (!pool->attrs)
3268 return -ENOMEM;
3269 return 0;
226223ab
TH
3270}
3271
6ba94429 3272static void rcu_free_wq(struct rcu_head *rcu)
226223ab 3273{
6ba94429
FW
3274 struct workqueue_struct *wq =
3275 container_of(rcu, struct workqueue_struct, rcu);
226223ab 3276
6ba94429
FW
3277 if (!(wq->flags & WQ_UNBOUND))
3278 free_percpu(wq->cpu_pwqs);
226223ab 3279 else
6ba94429 3280 free_workqueue_attrs(wq->unbound_attrs);
226223ab 3281
6ba94429
FW
3282 kfree(wq->rescuer);
3283 kfree(wq);
226223ab
TH
3284}
3285
6ba94429 3286static void rcu_free_pool(struct rcu_head *rcu)
226223ab 3287{
6ba94429 3288 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
226223ab 3289
6ba94429
FW
3290 ida_destroy(&pool->worker_ida);
3291 free_workqueue_attrs(pool->attrs);
3292 kfree(pool);
226223ab
TH
3293}
3294
6ba94429
FW
3295/**
3296 * put_unbound_pool - put a worker_pool
3297 * @pool: worker_pool to put
3298 *
3299 * Put @pool. If its refcnt reaches zero, it gets destroyed in sched-RCU
3300 * safe manner. get_unbound_pool() calls this function on its failure path
3301 * and this function should be able to release pools which went through,
3302 * successfully or not, init_worker_pool().
3303 *
3304 * Should be called with wq_pool_mutex held.
3305 */
3306static void put_unbound_pool(struct worker_pool *pool)
226223ab 3307{
6ba94429
FW
3308 DECLARE_COMPLETION_ONSTACK(detach_completion);
3309 struct worker *worker;
226223ab 3310
6ba94429 3311 lockdep_assert_held(&wq_pool_mutex);
226223ab 3312
6ba94429
FW
3313 if (--pool->refcnt)
3314 return;
226223ab 3315
6ba94429
FW
3316 /* sanity checks */
3317 if (WARN_ON(!(pool->cpu < 0)) ||
3318 WARN_ON(!list_empty(&pool->worklist)))
3319 return;
226223ab 3320
6ba94429
FW
3321 /* release id and unhash */
3322 if (pool->id >= 0)
3323 idr_remove(&worker_pool_idr, pool->id);
3324 hash_del(&pool->hash_node);
d55262c4 3325
6ba94429 3326 /*
692b4825
TH
3327 * Become the manager and destroy all workers. This prevents
3328 * @pool's workers from blocking on attach_mutex. We're the last
3329 * manager and @pool gets freed with the flag set.
6ba94429 3330 */
6ba94429 3331 spin_lock_irq(&pool->lock);
692b4825
TH
3332 wait_event_lock_irq(wq_manager_wait,
3333 !(pool->flags & POOL_MANAGER_ACTIVE), pool->lock);
3334 pool->flags |= POOL_MANAGER_ACTIVE;
3335
6ba94429
FW
3336 while ((worker = first_idle_worker(pool)))
3337 destroy_worker(worker);
3338 WARN_ON(pool->nr_workers || pool->nr_idle);
3339 spin_unlock_irq(&pool->lock);
d55262c4 3340
6ba94429
FW
3341 mutex_lock(&pool->attach_mutex);
3342 if (!list_empty(&pool->workers))
3343 pool->detach_completion = &detach_completion;
3344 mutex_unlock(&pool->attach_mutex);
226223ab 3345
6ba94429
FW
3346 if (pool->detach_completion)
3347 wait_for_completion(pool->detach_completion);
226223ab 3348
6ba94429
FW
3349 /* shut down the timers */
3350 del_timer_sync(&pool->idle_timer);
3351 del_timer_sync(&pool->mayday_timer);
226223ab 3352
6ba94429
FW
3353 /* sched-RCU protected to allow dereferences from get_work_pool() */
3354 call_rcu_sched(&pool->rcu, rcu_free_pool);
226223ab
TH
3355}
3356
3357/**
6ba94429
FW
3358 * get_unbound_pool - get a worker_pool with the specified attributes
3359 * @attrs: the attributes of the worker_pool to get
226223ab 3360 *
6ba94429
FW
3361 * Obtain a worker_pool which has the same attributes as @attrs, bump the
3362 * reference count and return it. If there already is a matching
3363 * worker_pool, it will be used; otherwise, this function attempts to
3364 * create a new one.
226223ab 3365 *
6ba94429 3366 * Should be called with wq_pool_mutex held.
226223ab 3367 *
6ba94429
FW
3368 * Return: On success, a worker_pool with the same attributes as @attrs.
3369 * On failure, %NULL.
226223ab 3370 */
6ba94429 3371static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
226223ab 3372{
6ba94429
FW
3373 u32 hash = wqattrs_hash(attrs);
3374 struct worker_pool *pool;
3375 int node;
e2273584 3376 int target_node = NUMA_NO_NODE;
226223ab 3377
6ba94429 3378 lockdep_assert_held(&wq_pool_mutex);
226223ab 3379
6ba94429
FW
3380 /* do we already have a matching pool? */
3381 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3382 if (wqattrs_equal(pool->attrs, attrs)) {
3383 pool->refcnt++;
3384 return pool;
3385 }
3386 }
226223ab 3387
e2273584
XP
3388 /* if cpumask is contained inside a NUMA node, we belong to that node */
3389 if (wq_numa_enabled) {
3390 for_each_node(node) {
3391 if (cpumask_subset(attrs->cpumask,
3392 wq_numa_possible_cpumask[node])) {
3393 target_node = node;
3394 break;
3395 }
3396 }
3397 }
3398
6ba94429 3399 /* nope, create a new one */
e2273584 3400 pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node);
6ba94429
FW
3401 if (!pool || init_worker_pool(pool) < 0)
3402 goto fail;
3403
3404 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */
3405 copy_workqueue_attrs(pool->attrs, attrs);
e2273584 3406 pool->node = target_node;
226223ab
TH
3407
3408 /*
6ba94429
FW
3409 * no_numa isn't a worker_pool attribute, always clear it. See
3410 * 'struct workqueue_attrs' comments for detail.
226223ab 3411 */
6ba94429 3412 pool->attrs->no_numa = false;
226223ab 3413
6ba94429
FW
3414 if (worker_pool_assign_id(pool) < 0)
3415 goto fail;
226223ab 3416
6ba94429 3417 /* create and start the initial worker */
3347fa09 3418 if (wq_online && !create_worker(pool))
6ba94429 3419 goto fail;
226223ab 3420
6ba94429
FW
3421 /* install */
3422 hash_add(unbound_pool_hash, &pool->hash_node, hash);
226223ab 3423
6ba94429
FW
3424 return pool;
3425fail:
3426 if (pool)
3427 put_unbound_pool(pool);
3428 return NULL;
226223ab 3429}
226223ab 3430
6ba94429 3431static void rcu_free_pwq(struct rcu_head *rcu)
7a4e344c 3432{
6ba94429
FW
3433 kmem_cache_free(pwq_cache,
3434 container_of(rcu, struct pool_workqueue, rcu));
7a4e344c
TH
3435}
3436
6ba94429
FW
3437/*
3438 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3439 * and needs to be destroyed.
7a4e344c 3440 */
6ba94429 3441static void pwq_unbound_release_workfn(struct work_struct *work)
7a4e344c 3442{
6ba94429
FW
3443 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3444 unbound_release_work);
3445 struct workqueue_struct *wq = pwq->wq;
3446 struct worker_pool *pool = pwq->pool;
ad7ae9e2 3447 bool is_last = false;
7a4e344c 3448
ad7ae9e2
YY
3449 /*
3450 * when @pwq is not linked, it doesn't hold any reference to the
3451 * @wq, and @wq is invalid to access.
3452 */
3453 if (!list_empty(&pwq->pwqs_node)) {
3454 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3455 return;
7a4e344c 3456
ad7ae9e2
YY
3457 mutex_lock(&wq->mutex);
3458 list_del_rcu(&pwq->pwqs_node);
3459 is_last = list_empty(&wq->pwqs);
3460 mutex_unlock(&wq->mutex);
3461 }
6ba94429
FW
3462
3463 mutex_lock(&wq_pool_mutex);
3464 put_unbound_pool(pool);
3465 mutex_unlock(&wq_pool_mutex);
3466
3467 call_rcu_sched(&pwq->rcu, rcu_free_pwq);
7a4e344c 3468
2865a8fb 3469 /*
6ba94429
FW
3470 * If we're the last pwq going away, @wq is already dead and no one
3471 * is gonna access it anymore. Schedule RCU free.
2865a8fb 3472 */
6ba94429
FW
3473 if (is_last)
3474 call_rcu_sched(&wq->rcu, rcu_free_wq);
29c91e99
TH
3475}
3476
7a4e344c 3477/**
6ba94429
FW
3478 * pwq_adjust_max_active - update a pwq's max_active to the current setting
3479 * @pwq: target pool_workqueue
d185af30 3480 *
6ba94429
FW
3481 * If @pwq isn't freezing, set @pwq->max_active to the associated
3482 * workqueue's saved_max_active and activate delayed work items
3483 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero.
7a4e344c 3484 */
6ba94429 3485static void pwq_adjust_max_active(struct pool_workqueue *pwq)
4e1a1f9a 3486{
6ba94429
FW
3487 struct workqueue_struct *wq = pwq->wq;
3488 bool freezable = wq->flags & WQ_FREEZABLE;
3347fa09 3489 unsigned long flags;
4e1a1f9a 3490
6ba94429
FW
3491 /* for @wq->saved_max_active */
3492 lockdep_assert_held(&wq->mutex);
4e1a1f9a 3493
6ba94429
FW
3494 /* fast exit for non-freezable wqs */
3495 if (!freezable && pwq->max_active == wq->saved_max_active)
3496 return;
7a4e344c 3497
3347fa09
TH
3498 /* this function can be called during early boot w/ irq disabled */
3499 spin_lock_irqsave(&pwq->pool->lock, flags);
29c91e99 3500
6ba94429
FW
3501 /*
3502 * During [un]freezing, the caller is responsible for ensuring that
3503 * this function is called at least once after @workqueue_freezing
3504 * is updated and visible.
3505 */
3506 if (!freezable || !workqueue_freezing) {
f6d739c4
YY
3507 bool kick = false;
3508
6ba94429 3509 pwq->max_active = wq->saved_max_active;
4e1a1f9a 3510
6ba94429 3511 while (!list_empty(&pwq->delayed_works) &&
f6d739c4 3512 pwq->nr_active < pwq->max_active) {
6ba94429 3513 pwq_activate_first_delayed(pwq);
f6d739c4
YY
3514 kick = true;
3515 }
e2dca7ad 3516
6ba94429
FW
3517 /*
3518 * Need to kick a worker after thawed or an unbound wq's
f6d739c4
YY
3519 * max_active is bumped. In realtime scenarios, always kicking a
3520 * worker will cause interference on the isolated cpu cores, so
3521 * let's kick iff work items were activated.
6ba94429 3522 */
f6d739c4
YY
3523 if (kick)
3524 wake_up_worker(pwq->pool);
6ba94429
FW
3525 } else {
3526 pwq->max_active = 0;
3527 }
e2dca7ad 3528
3347fa09 3529 spin_unlock_irqrestore(&pwq->pool->lock, flags);
e2dca7ad
TH
3530}
3531
6ba94429
FW
3532/* initialize newly alloced @pwq which is associated with @wq and @pool */
3533static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3534 struct worker_pool *pool)
29c91e99 3535{
6ba94429 3536 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
29c91e99 3537
6ba94429
FW
3538 memset(pwq, 0, sizeof(*pwq));
3539
3540 pwq->pool = pool;
3541 pwq->wq = wq;
3542 pwq->flush_color = -1;
3543 pwq->refcnt = 1;
3544 INIT_LIST_HEAD(&pwq->delayed_works);
3545 INIT_LIST_HEAD(&pwq->pwqs_node);
3546 INIT_LIST_HEAD(&pwq->mayday_node);
3547 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
29c91e99
TH
3548}
3549
6ba94429
FW
3550/* sync @pwq with the current state of its associated wq and link it */
3551static void link_pwq(struct pool_workqueue *pwq)
29c91e99 3552{
6ba94429 3553 struct workqueue_struct *wq = pwq->wq;
29c91e99 3554
6ba94429 3555 lockdep_assert_held(&wq->mutex);
a892cacc 3556
6ba94429
FW
3557 /* may be called multiple times, ignore if already linked */
3558 if (!list_empty(&pwq->pwqs_node))
29c91e99 3559 return;
29c91e99 3560
6ba94429
FW
3561 /* set the matching work_color */
3562 pwq->work_color = wq->work_color;
29c91e99 3563
6ba94429
FW
3564 /* sync max_active to the current setting */
3565 pwq_adjust_max_active(pwq);
29c91e99 3566
6ba94429
FW
3567 /* link in @pwq */
3568 list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3569}
29c91e99 3570
6ba94429
FW
3571/* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3572static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3573 const struct workqueue_attrs *attrs)
3574{
3575 struct worker_pool *pool;
3576 struct pool_workqueue *pwq;
60f5a4bc 3577
6ba94429 3578 lockdep_assert_held(&wq_pool_mutex);
60f5a4bc 3579
6ba94429
FW
3580 pool = get_unbound_pool(attrs);
3581 if (!pool)
3582 return NULL;
60f5a4bc 3583
6ba94429
FW
3584 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3585 if (!pwq) {
3586 put_unbound_pool(pool);
3587 return NULL;
3588 }
29c91e99 3589
6ba94429
FW
3590 init_pwq(pwq, wq, pool);
3591 return pwq;
3592}
29c91e99 3593
29c91e99 3594/**
30186c6f 3595 * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node
042f7df1 3596 * @attrs: the wq_attrs of the default pwq of the target workqueue
6ba94429
FW
3597 * @node: the target NUMA node
3598 * @cpu_going_down: if >= 0, the CPU to consider as offline
3599 * @cpumask: outarg, the resulting cpumask
29c91e99 3600 *
6ba94429
FW
3601 * Calculate the cpumask a workqueue with @attrs should use on @node. If
3602 * @cpu_going_down is >= 0, that cpu is considered offline during
3603 * calculation. The result is stored in @cpumask.
a892cacc 3604 *
6ba94429
FW
3605 * If NUMA affinity is not enabled, @attrs->cpumask is always used. If
3606 * enabled and @node has online CPUs requested by @attrs, the returned
3607 * cpumask is the intersection of the possible CPUs of @node and
3608 * @attrs->cpumask.
d185af30 3609 *
6ba94429
FW
3610 * The caller is responsible for ensuring that the cpumask of @node stays
3611 * stable.
3612 *
3613 * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3614 * %false if equal.
29c91e99 3615 */
6ba94429
FW
3616static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3617 int cpu_going_down, cpumask_t *cpumask)
29c91e99 3618{
6ba94429
FW
3619 if (!wq_numa_enabled || attrs->no_numa)
3620 goto use_dfl;
29c91e99 3621
6ba94429
FW
3622 /* does @node have any online CPUs @attrs wants? */
3623 cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3624 if (cpu_going_down >= 0)
3625 cpumask_clear_cpu(cpu_going_down, cpumask);
29c91e99 3626
6ba94429
FW
3627 if (cpumask_empty(cpumask))
3628 goto use_dfl;
4c16bd32
TH
3629
3630 /* yeap, return possible CPUs in @node that @attrs wants */
3631 cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
1ad0f0a7
MB
3632
3633 if (cpumask_empty(cpumask)) {
3634 pr_warn_once("WARNING: workqueue cpumask: online intersect > "
3635 "possible intersect\n");
3636 return false;
3637 }
3638
4c16bd32
TH
3639 return !cpumask_equal(cpumask, attrs->cpumask);
3640
3641use_dfl:
3642 cpumask_copy(cpumask, attrs->cpumask);
3643 return false;
3644}
3645
1befcf30
TH
3646/* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
3647static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3648 int node,
3649 struct pool_workqueue *pwq)
3650{
3651 struct pool_workqueue *old_pwq;
3652
5b95e1af 3653 lockdep_assert_held(&wq_pool_mutex);
1befcf30
TH
3654 lockdep_assert_held(&wq->mutex);
3655
3656 /* link_pwq() can handle duplicate calls */
3657 link_pwq(pwq);
3658
3659 old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3660 rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3661 return old_pwq;
3662}
3663
2d5f0764
LJ
3664/* context to store the prepared attrs & pwqs before applying */
3665struct apply_wqattrs_ctx {
3666 struct workqueue_struct *wq; /* target workqueue */
3667 struct workqueue_attrs *attrs; /* attrs to apply */
042f7df1 3668 struct list_head list; /* queued for batching commit */
2d5f0764
LJ
3669 struct pool_workqueue *dfl_pwq;
3670 struct pool_workqueue *pwq_tbl[];
3671};
3672
3673/* free the resources after success or abort */
3674static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
3675{
3676 if (ctx) {
3677 int node;
3678
3679 for_each_node(node)
3680 put_pwq_unlocked(ctx->pwq_tbl[node]);
3681 put_pwq_unlocked(ctx->dfl_pwq);
3682
3683 free_workqueue_attrs(ctx->attrs);
3684
3685 kfree(ctx);
3686 }
3687}
3688
3689/* allocate the attrs and pwqs for later installation */
3690static struct apply_wqattrs_ctx *
3691apply_wqattrs_prepare(struct workqueue_struct *wq,
3692 const struct workqueue_attrs *attrs)
9e8cd2f5 3693{
2d5f0764 3694 struct apply_wqattrs_ctx *ctx;
4c16bd32 3695 struct workqueue_attrs *new_attrs, *tmp_attrs;
2d5f0764 3696 int node;
9e8cd2f5 3697
2d5f0764 3698 lockdep_assert_held(&wq_pool_mutex);
9e8cd2f5 3699
2d5f0764
LJ
3700 ctx = kzalloc(sizeof(*ctx) + nr_node_ids * sizeof(ctx->pwq_tbl[0]),
3701 GFP_KERNEL);
8719dcea 3702
13e2e556 3703 new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
4c16bd32 3704 tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
2d5f0764
LJ
3705 if (!ctx || !new_attrs || !tmp_attrs)
3706 goto out_free;
13e2e556 3707
042f7df1
LJ
3708 /*
3709 * Calculate the attrs of the default pwq.
3710 * If the user configured cpumask doesn't overlap with the
3711 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask.
3712 */
13e2e556 3713 copy_workqueue_attrs(new_attrs, attrs);
b05a7928 3714 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask);
042f7df1
LJ
3715 if (unlikely(cpumask_empty(new_attrs->cpumask)))
3716 cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask);
13e2e556 3717
4c16bd32
TH
3718 /*
3719 * We may create multiple pwqs with differing cpumasks. Make a
3720 * copy of @new_attrs which will be modified and used to obtain
3721 * pools.
3722 */
3723 copy_workqueue_attrs(tmp_attrs, new_attrs);
3724
4c16bd32
TH
3725 /*
3726 * If something goes wrong during CPU up/down, we'll fall back to
3727 * the default pwq covering whole @attrs->cpumask. Always create
3728 * it even if we don't use it immediately.
3729 */
2d5f0764
LJ
3730 ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3731 if (!ctx->dfl_pwq)
3732 goto out_free;
4c16bd32
TH
3733
3734 for_each_node(node) {
042f7df1 3735 if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) {
2d5f0764
LJ
3736 ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
3737 if (!ctx->pwq_tbl[node])
3738 goto out_free;
4c16bd32 3739 } else {
2d5f0764
LJ
3740 ctx->dfl_pwq->refcnt++;
3741 ctx->pwq_tbl[node] = ctx->dfl_pwq;
4c16bd32
TH
3742 }
3743 }
3744
042f7df1
LJ
3745 /* save the user configured attrs and sanitize it. */
3746 copy_workqueue_attrs(new_attrs, attrs);
3747 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
2d5f0764 3748 ctx->attrs = new_attrs;
042f7df1 3749
2d5f0764
LJ
3750 ctx->wq = wq;
3751 free_workqueue_attrs(tmp_attrs);
3752 return ctx;
3753
3754out_free:
3755 free_workqueue_attrs(tmp_attrs);
3756 free_workqueue_attrs(new_attrs);
3757 apply_wqattrs_cleanup(ctx);
3758 return NULL;
3759}
3760
3761/* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
3762static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
3763{
3764 int node;
9e8cd2f5 3765
4c16bd32 3766 /* all pwqs have been created successfully, let's install'em */
2d5f0764 3767 mutex_lock(&ctx->wq->mutex);
a892cacc 3768
2d5f0764 3769 copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
4c16bd32
TH
3770
3771 /* save the previous pwq and install the new one */
f147f29e 3772 for_each_node(node)
2d5f0764
LJ
3773 ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node,
3774 ctx->pwq_tbl[node]);
4c16bd32
TH
3775
3776 /* @dfl_pwq might not have been used, ensure it's linked */
2d5f0764
LJ
3777 link_pwq(ctx->dfl_pwq);
3778 swap(ctx->wq->dfl_pwq, ctx->dfl_pwq);
f147f29e 3779
2d5f0764
LJ
3780 mutex_unlock(&ctx->wq->mutex);
3781}
9e8cd2f5 3782
a0111cf6
LJ
3783static void apply_wqattrs_lock(void)
3784{
3785 /* CPUs should stay stable across pwq creations and installations */
3786 get_online_cpus();
3787 mutex_lock(&wq_pool_mutex);
3788}
3789
3790static void apply_wqattrs_unlock(void)
3791{
3792 mutex_unlock(&wq_pool_mutex);
3793 put_online_cpus();
3794}
3795
3796static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
3797 const struct workqueue_attrs *attrs)
2d5f0764
LJ
3798{
3799 struct apply_wqattrs_ctx *ctx;
4c16bd32 3800
2d5f0764
LJ
3801 /* only unbound workqueues can change attributes */
3802 if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
3803 return -EINVAL;
13e2e556 3804
2d5f0764 3805 /* creating multiple pwqs breaks ordering guarantee */
0a94efb5
TH
3806 if (!list_empty(&wq->pwqs)) {
3807 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
3808 return -EINVAL;
3809
3810 wq->flags &= ~__WQ_ORDERED;
3811 }
2d5f0764 3812
2d5f0764 3813 ctx = apply_wqattrs_prepare(wq, attrs);
6201171e 3814 if (!ctx)
3815 return -ENOMEM;
2d5f0764
LJ
3816
3817 /* the ctx has been prepared successfully, let's commit it */
6201171e 3818 apply_wqattrs_commit(ctx);
2d5f0764
LJ
3819 apply_wqattrs_cleanup(ctx);
3820
6201171e 3821 return 0;
9e8cd2f5
TH
3822}
3823
a0111cf6
LJ
3824/**
3825 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
3826 * @wq: the target workqueue
3827 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
3828 *
3829 * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA
3830 * machines, this function maps a separate pwq to each NUMA node with
3831 * possibles CPUs in @attrs->cpumask so that work items are affine to the
3832 * NUMA node it was issued on. Older pwqs are released as in-flight work
3833 * items finish. Note that a work item which repeatedly requeues itself
3834 * back-to-back will stay on its current pwq.
3835 *
3836 * Performs GFP_KERNEL allocations.
3837 *
3838 * Return: 0 on success and -errno on failure.
3839 */
3840int apply_workqueue_attrs(struct workqueue_struct *wq,
3841 const struct workqueue_attrs *attrs)
3842{
3843 int ret;
3844
3845 apply_wqattrs_lock();
3846 ret = apply_workqueue_attrs_locked(wq, attrs);
3847 apply_wqattrs_unlock();
3848
3849 return ret;
3850}
3851
4c16bd32
TH
3852/**
3853 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
3854 * @wq: the target workqueue
3855 * @cpu: the CPU coming up or going down
3856 * @online: whether @cpu is coming up or going down
3857 *
3858 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
3859 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of
3860 * @wq accordingly.
3861 *
3862 * If NUMA affinity can't be adjusted due to memory allocation failure, it
3863 * falls back to @wq->dfl_pwq which may not be optimal but is always
3864 * correct.
3865 *
3866 * Note that when the last allowed CPU of a NUMA node goes offline for a
3867 * workqueue with a cpumask spanning multiple nodes, the workers which were
3868 * already executing the work items for the workqueue will lose their CPU
3869 * affinity and may execute on any CPU. This is similar to how per-cpu
3870 * workqueues behave on CPU_DOWN. If a workqueue user wants strict
3871 * affinity, it's the user's responsibility to flush the work item from
3872 * CPU_DOWN_PREPARE.
3873 */
3874static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
3875 bool online)
3876{
3877 int node = cpu_to_node(cpu);
3878 int cpu_off = online ? -1 : cpu;
3879 struct pool_workqueue *old_pwq = NULL, *pwq;
3880 struct workqueue_attrs *target_attrs;
3881 cpumask_t *cpumask;
3882
3883 lockdep_assert_held(&wq_pool_mutex);
3884
f7142ed4
LJ
3885 if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) ||
3886 wq->unbound_attrs->no_numa)
4c16bd32
TH
3887 return;
3888
3889 /*
3890 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
3891 * Let's use a preallocated one. The following buf is protected by
3892 * CPU hotplug exclusion.
3893 */
3894 target_attrs = wq_update_unbound_numa_attrs_buf;
3895 cpumask = target_attrs->cpumask;
3896
4c16bd32
TH
3897 copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
3898 pwq = unbound_pwq_by_node(wq, node);
3899
3900 /*
3901 * Let's determine what needs to be done. If the target cpumask is
042f7df1
LJ
3902 * different from the default pwq's, we need to compare it to @pwq's
3903 * and create a new one if they don't match. If the target cpumask
3904 * equals the default pwq's, the default pwq should be used.
4c16bd32 3905 */
042f7df1 3906 if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) {
4c16bd32 3907 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
f7142ed4 3908 return;
4c16bd32 3909 } else {
534a3fbb 3910 goto use_dfl_pwq;
4c16bd32
TH
3911 }
3912
4c16bd32
TH
3913 /* create a new pwq */
3914 pwq = alloc_unbound_pwq(wq, target_attrs);
3915 if (!pwq) {
2d916033
FF
3916 pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
3917 wq->name);
77f300b1 3918 goto use_dfl_pwq;
4c16bd32
TH
3919 }
3920
f7142ed4 3921 /* Install the new pwq. */
4c16bd32
TH
3922 mutex_lock(&wq->mutex);
3923 old_pwq = numa_pwq_tbl_install(wq, node, pwq);
3924 goto out_unlock;
3925
3926use_dfl_pwq:
f7142ed4 3927 mutex_lock(&wq->mutex);
4c16bd32
TH
3928 spin_lock_irq(&wq->dfl_pwq->pool->lock);
3929 get_pwq(wq->dfl_pwq);
3930 spin_unlock_irq(&wq->dfl_pwq->pool->lock);
3931 old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
3932out_unlock:
3933 mutex_unlock(&wq->mutex);
3934 put_pwq_unlocked(old_pwq);
3935}
3936
30cdf249 3937static int alloc_and_link_pwqs(struct workqueue_struct *wq)
0f900049 3938{
49e3cf44 3939 bool highpri = wq->flags & WQ_HIGHPRI;
8a2b7538 3940 int cpu, ret;
30cdf249
TH
3941
3942 if (!(wq->flags & WQ_UNBOUND)) {
420c0ddb
TH
3943 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
3944 if (!wq->cpu_pwqs)
30cdf249
TH
3945 return -ENOMEM;
3946
3947 for_each_possible_cpu(cpu) {
7fb98ea7
TH
3948 struct pool_workqueue *pwq =
3949 per_cpu_ptr(wq->cpu_pwqs, cpu);
7a62c2c8 3950 struct worker_pool *cpu_pools =
f02ae73a 3951 per_cpu(cpu_worker_pools, cpu);
f3421797 3952
f147f29e
TH
3953 init_pwq(pwq, wq, &cpu_pools[highpri]);
3954
3955 mutex_lock(&wq->mutex);
1befcf30 3956 link_pwq(pwq);
f147f29e 3957 mutex_unlock(&wq->mutex);
30cdf249 3958 }
9e8cd2f5 3959 return 0;
8a2b7538
TH
3960 } else if (wq->flags & __WQ_ORDERED) {
3961 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
3962 /* there should only be single pwq for ordering guarantee */
3963 WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
3964 wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
3965 "ordering guarantee broken for workqueue %s\n", wq->name);
3966 return ret;
30cdf249 3967 } else {
9e8cd2f5 3968 return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
30cdf249 3969 }
0f900049
TH
3970}
3971
f3421797
TH
3972static int wq_clamp_max_active(int max_active, unsigned int flags,
3973 const char *name)
b71ab8c2 3974{
f3421797
TH
3975 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
3976
3977 if (max_active < 1 || max_active > lim)
044c782c
VI
3978 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
3979 max_active, name, 1, lim);
b71ab8c2 3980
f3421797 3981 return clamp_val(max_active, 1, lim);
b71ab8c2
TH
3982}
3983
b196be89 3984struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
d320c038
TH
3985 unsigned int flags,
3986 int max_active,
3987 struct lock_class_key *key,
b196be89 3988 const char *lock_name, ...)
1da177e4 3989{
df2d5ae4 3990 size_t tbl_size = 0;
ecf6881f 3991 va_list args;
1da177e4 3992 struct workqueue_struct *wq;
49e3cf44 3993 struct pool_workqueue *pwq;
b196be89 3994
5c0338c6
TH
3995 /*
3996 * Unbound && max_active == 1 used to imply ordered, which is no
3997 * longer the case on NUMA machines due to per-node pools. While
3998 * alloc_ordered_workqueue() is the right way to create an ordered
3999 * workqueue, keep the previous behavior to avoid subtle breakages
4000 * on NUMA.
4001 */
4002 if ((flags & WQ_UNBOUND) && max_active == 1)
4003 flags |= __WQ_ORDERED;
4004
cee22a15
VK
4005 /* see the comment above the definition of WQ_POWER_EFFICIENT */
4006 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
4007 flags |= WQ_UNBOUND;
4008
ecf6881f 4009 /* allocate wq and format name */
df2d5ae4 4010 if (flags & WQ_UNBOUND)
ddcb57e2 4011 tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]);
df2d5ae4
TH
4012
4013 wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
b196be89 4014 if (!wq)
d2c1d404 4015 return NULL;
b196be89 4016
6029a918
TH
4017 if (flags & WQ_UNBOUND) {
4018 wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
4019 if (!wq->unbound_attrs)
4020 goto err_free_wq;
4021 }
4022
ecf6881f
TH
4023 va_start(args, lock_name);
4024 vsnprintf(wq->name, sizeof(wq->name), fmt, args);
b196be89 4025 va_end(args);
1da177e4 4026
d320c038 4027 max_active = max_active ?: WQ_DFL_ACTIVE;
b196be89 4028 max_active = wq_clamp_max_active(max_active, flags, wq->name);
3af24433 4029
b196be89 4030 /* init wq */
97e37d7b 4031 wq->flags = flags;
a0a1a5fd 4032 wq->saved_max_active = max_active;
3c25a55d 4033 mutex_init(&wq->mutex);
112202d9 4034 atomic_set(&wq->nr_pwqs_to_flush, 0);
30cdf249 4035 INIT_LIST_HEAD(&wq->pwqs);
73f53c4a
TH
4036 INIT_LIST_HEAD(&wq->flusher_queue);
4037 INIT_LIST_HEAD(&wq->flusher_overflow);
493a1724 4038 INIT_LIST_HEAD(&wq->maydays);
502ca9d8 4039
eb13ba87 4040 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
cce1a165 4041 INIT_LIST_HEAD(&wq->list);
3af24433 4042
30cdf249 4043 if (alloc_and_link_pwqs(wq) < 0)
d2c1d404 4044 goto err_free_wq;
1537663f 4045
493008a8
TH
4046 /*
4047 * Workqueues which may be used during memory reclaim should
4048 * have a rescuer to guarantee forward progress.
4049 */
4050 if (flags & WQ_MEM_RECLAIM) {
e22bee78
TH
4051 struct worker *rescuer;
4052
f7537df5 4053 rescuer = alloc_worker(NUMA_NO_NODE);
e22bee78 4054 if (!rescuer)
d2c1d404 4055 goto err_destroy;
e22bee78 4056
111c225a
TH
4057 rescuer->rescue_wq = wq;
4058 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
b196be89 4059 wq->name);
d2c1d404
TH
4060 if (IS_ERR(rescuer->task)) {
4061 kfree(rescuer);
4062 goto err_destroy;
4063 }
e22bee78 4064
d2c1d404 4065 wq->rescuer = rescuer;
25834c73 4066 kthread_bind_mask(rescuer->task, cpu_possible_mask);
e22bee78 4067 wake_up_process(rescuer->task);
3af24433
ON
4068 }
4069
226223ab
TH
4070 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
4071 goto err_destroy;
4072
a0a1a5fd 4073 /*
68e13a67
LJ
4074 * wq_pool_mutex protects global freeze state and workqueues list.
4075 * Grab it, adjust max_active and add the new @wq to workqueues
4076 * list.
a0a1a5fd 4077 */
68e13a67 4078 mutex_lock(&wq_pool_mutex);
a0a1a5fd 4079
a357fc03 4080 mutex_lock(&wq->mutex);
699ce097
TH
4081 for_each_pwq(pwq, wq)
4082 pwq_adjust_max_active(pwq);
a357fc03 4083 mutex_unlock(&wq->mutex);
a0a1a5fd 4084
e2dca7ad 4085 list_add_tail_rcu(&wq->list, &workqueues);
a0a1a5fd 4086
68e13a67 4087 mutex_unlock(&wq_pool_mutex);
1537663f 4088
3af24433 4089 return wq;
d2c1d404
TH
4090
4091err_free_wq:
6029a918 4092 free_workqueue_attrs(wq->unbound_attrs);
d2c1d404
TH
4093 kfree(wq);
4094 return NULL;
4095err_destroy:
4096 destroy_workqueue(wq);
4690c4ab 4097 return NULL;
3af24433 4098}
d320c038 4099EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
1da177e4 4100
3af24433
ON
4101/**
4102 * destroy_workqueue - safely terminate a workqueue
4103 * @wq: target workqueue
4104 *
4105 * Safely destroy a workqueue. All work currently pending will be done first.
4106 */
4107void destroy_workqueue(struct workqueue_struct *wq)
4108{
49e3cf44 4109 struct pool_workqueue *pwq;
4c16bd32 4110 int node;
3af24433 4111
05905c2f
TH
4112 /*
4113 * Remove it from sysfs first so that sanity check failure doesn't
4114 * lead to sysfs name conflicts.
4115 */
4116 workqueue_sysfs_unregister(wq);
4117
9c5a2ba7
TH
4118 /* drain it before proceeding with destruction */
4119 drain_workqueue(wq);
c8efcc25 4120
05905c2f
TH
4121 /* kill rescuer, if sanity checks fail, leave it w/o rescuer */
4122 if (wq->rescuer) {
4123 struct worker *rescuer = wq->rescuer;
4124
4125 /* this prevents new queueing */
4126 spin_lock_irq(&wq_mayday_lock);
4127 wq->rescuer = NULL;
4128 spin_unlock_irq(&wq_mayday_lock);
4129
4130 /* rescuer will empty maydays list before exiting */
4131 kthread_stop(rescuer->task);
80797bdc 4132 kfree(rescuer);
05905c2f
TH
4133 }
4134
6183c009 4135 /* sanity checks */
b09f4fd3 4136 mutex_lock(&wq->mutex);
49e3cf44 4137 for_each_pwq(pwq, wq) {
6183c009
TH
4138 int i;
4139
76af4d93
TH
4140 for (i = 0; i < WORK_NR_COLORS; i++) {
4141 if (WARN_ON(pwq->nr_in_flight[i])) {
b09f4fd3 4142 mutex_unlock(&wq->mutex);
fa07fb6a 4143 show_workqueue_state();
6183c009 4144 return;
76af4d93
TH
4145 }
4146 }
4147
5c529597 4148 if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
8864b4e5 4149 WARN_ON(pwq->nr_active) ||
76af4d93 4150 WARN_ON(!list_empty(&pwq->delayed_works))) {
b09f4fd3 4151 mutex_unlock(&wq->mutex);
fa07fb6a 4152 show_workqueue_state();
6183c009 4153 return;
76af4d93 4154 }
6183c009 4155 }
b09f4fd3 4156 mutex_unlock(&wq->mutex);
6183c009 4157
a0a1a5fd
TH
4158 /*
4159 * wq list is used to freeze wq, remove from list after
4160 * flushing is complete in case freeze races us.
4161 */
68e13a67 4162 mutex_lock(&wq_pool_mutex);
e2dca7ad 4163 list_del_rcu(&wq->list);
68e13a67 4164 mutex_unlock(&wq_pool_mutex);
3af24433 4165
8864b4e5
TH
4166 if (!(wq->flags & WQ_UNBOUND)) {
4167 /*
4168 * The base ref is never dropped on per-cpu pwqs. Directly
e2dca7ad 4169 * schedule RCU free.
8864b4e5 4170 */
e2dca7ad 4171 call_rcu_sched(&wq->rcu, rcu_free_wq);
8864b4e5
TH
4172 } else {
4173 /*
4174 * We're the sole accessor of @wq at this point. Directly
4c16bd32
TH
4175 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4176 * @wq will be freed when the last pwq is released.
8864b4e5 4177 */
4c16bd32
TH
4178 for_each_node(node) {
4179 pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4180 RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4181 put_pwq_unlocked(pwq);
4182 }
4183
4184 /*
4185 * Put dfl_pwq. @wq may be freed any time after dfl_pwq is
4186 * put. Don't access it afterwards.
4187 */
4188 pwq = wq->dfl_pwq;
4189 wq->dfl_pwq = NULL;
dce90d47 4190 put_pwq_unlocked(pwq);
29c91e99 4191 }
3af24433
ON
4192}
4193EXPORT_SYMBOL_GPL(destroy_workqueue);
4194
dcd989cb
TH
4195/**
4196 * workqueue_set_max_active - adjust max_active of a workqueue
4197 * @wq: target workqueue
4198 * @max_active: new max_active value.
4199 *
4200 * Set max_active of @wq to @max_active.
4201 *
4202 * CONTEXT:
4203 * Don't call from IRQ context.
4204 */
4205void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4206{
49e3cf44 4207 struct pool_workqueue *pwq;
dcd989cb 4208
8719dcea 4209 /* disallow meddling with max_active for ordered workqueues */
0a94efb5 4210 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
8719dcea
TH
4211 return;
4212
f3421797 4213 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
dcd989cb 4214
a357fc03 4215 mutex_lock(&wq->mutex);
dcd989cb 4216
0a94efb5 4217 wq->flags &= ~__WQ_ORDERED;
dcd989cb
TH
4218 wq->saved_max_active = max_active;
4219
699ce097
TH
4220 for_each_pwq(pwq, wq)
4221 pwq_adjust_max_active(pwq);
93981800 4222
a357fc03 4223 mutex_unlock(&wq->mutex);
15316ba8 4224}
dcd989cb 4225EXPORT_SYMBOL_GPL(workqueue_set_max_active);
15316ba8 4226
363e3fd5
LW
4227/**
4228 * current_work - retrieve %current task's work struct
4229 *
4230 * Determine if %current task is a workqueue worker and what it's working on.
4231 * Useful to find out the context that the %current task is running in.
4232 *
4233 * Return: work struct if %current task is a workqueue worker, %NULL otherwise.
4234 */
4235struct work_struct *current_work(void)
4236{
4237 struct worker *worker = current_wq_worker();
4238
4239 return worker ? worker->current_work : NULL;
4240}
4241EXPORT_SYMBOL(current_work);
4242
e6267616
TH
4243/**
4244 * current_is_workqueue_rescuer - is %current workqueue rescuer?
4245 *
4246 * Determine whether %current is a workqueue rescuer. Can be used from
4247 * work functions to determine whether it's being run off the rescuer task.
d185af30
YB
4248 *
4249 * Return: %true if %current is a workqueue rescuer. %false otherwise.
e6267616
TH
4250 */
4251bool current_is_workqueue_rescuer(void)
4252{
4253 struct worker *worker = current_wq_worker();
4254
6a092dfd 4255 return worker && worker->rescue_wq;
e6267616
TH
4256}
4257
eef6a7d5 4258/**
dcd989cb
TH
4259 * workqueue_congested - test whether a workqueue is congested
4260 * @cpu: CPU in question
4261 * @wq: target workqueue
eef6a7d5 4262 *
dcd989cb
TH
4263 * Test whether @wq's cpu workqueue for @cpu is congested. There is
4264 * no synchronization around this function and the test result is
4265 * unreliable and only useful as advisory hints or for debugging.
eef6a7d5 4266 *
d3251859
TH
4267 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4268 * Note that both per-cpu and unbound workqueues may be associated with
4269 * multiple pool_workqueues which have separate congested states. A
4270 * workqueue being congested on one CPU doesn't mean the workqueue is also
4271 * contested on other CPUs / NUMA nodes.
4272 *
d185af30 4273 * Return:
dcd989cb 4274 * %true if congested, %false otherwise.
eef6a7d5 4275 */
d84ff051 4276bool workqueue_congested(int cpu, struct workqueue_struct *wq)
1da177e4 4277{
7fb98ea7 4278 struct pool_workqueue *pwq;
76af4d93
TH
4279 bool ret;
4280
88109453 4281 rcu_read_lock_sched();
7fb98ea7 4282
d3251859
TH
4283 if (cpu == WORK_CPU_UNBOUND)
4284 cpu = smp_processor_id();
4285
7fb98ea7
TH
4286 if (!(wq->flags & WQ_UNBOUND))
4287 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4288 else
df2d5ae4 4289 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
dcd989cb 4290
76af4d93 4291 ret = !list_empty(&pwq->delayed_works);
88109453 4292 rcu_read_unlock_sched();
76af4d93
TH
4293
4294 return ret;
1da177e4 4295}
dcd989cb 4296EXPORT_SYMBOL_GPL(workqueue_congested);
1da177e4 4297
dcd989cb
TH
4298/**
4299 * work_busy - test whether a work is currently pending or running
4300 * @work: the work to be tested
4301 *
4302 * Test whether @work is currently pending or running. There is no
4303 * synchronization around this function and the test result is
4304 * unreliable and only useful as advisory hints or for debugging.
dcd989cb 4305 *
d185af30 4306 * Return:
dcd989cb
TH
4307 * OR'd bitmask of WORK_BUSY_* bits.
4308 */
4309unsigned int work_busy(struct work_struct *work)
1da177e4 4310{
fa1b54e6 4311 struct worker_pool *pool;
dcd989cb
TH
4312 unsigned long flags;
4313 unsigned int ret = 0;
1da177e4 4314
dcd989cb
TH
4315 if (work_pending(work))
4316 ret |= WORK_BUSY_PENDING;
1da177e4 4317
fa1b54e6
TH
4318 local_irq_save(flags);
4319 pool = get_work_pool(work);
038366c5 4320 if (pool) {
fa1b54e6 4321 spin_lock(&pool->lock);
038366c5
LJ
4322 if (find_worker_executing_work(pool, work))
4323 ret |= WORK_BUSY_RUNNING;
fa1b54e6 4324 spin_unlock(&pool->lock);
038366c5 4325 }
fa1b54e6 4326 local_irq_restore(flags);
1da177e4 4327
dcd989cb 4328 return ret;
1da177e4 4329}
dcd989cb 4330EXPORT_SYMBOL_GPL(work_busy);
1da177e4 4331
3d1cb205
TH
4332/**
4333 * set_worker_desc - set description for the current work item
4334 * @fmt: printf-style format string
4335 * @...: arguments for the format string
4336 *
4337 * This function can be called by a running work function to describe what
4338 * the work item is about. If the worker task gets dumped, this
4339 * information will be printed out together to help debugging. The
4340 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4341 */
4342void set_worker_desc(const char *fmt, ...)
4343{
4344 struct worker *worker = current_wq_worker();
4345 va_list args;
4346
4347 if (worker) {
4348 va_start(args, fmt);
4349 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4350 va_end(args);
4351 worker->desc_valid = true;
4352 }
4353}
4354
4355/**
4356 * print_worker_info - print out worker information and description
4357 * @log_lvl: the log level to use when printing
4358 * @task: target task
4359 *
4360 * If @task is a worker and currently executing a work item, print out the
4361 * name of the workqueue being serviced and worker description set with
4362 * set_worker_desc() by the currently executing work item.
4363 *
4364 * This function can be safely called on any task as long as the
4365 * task_struct itself is accessible. While safe, this function isn't
4366 * synchronized and may print out mixups or garbages of limited length.
4367 */
4368void print_worker_info(const char *log_lvl, struct task_struct *task)
4369{
4370 work_func_t *fn = NULL;
4371 char name[WQ_NAME_LEN] = { };
4372 char desc[WORKER_DESC_LEN] = { };
4373 struct pool_workqueue *pwq = NULL;
4374 struct workqueue_struct *wq = NULL;
4375 bool desc_valid = false;
4376 struct worker *worker;
4377
4378 if (!(task->flags & PF_WQ_WORKER))
4379 return;
4380
4381 /*
4382 * This function is called without any synchronization and @task
4383 * could be in any state. Be careful with dereferences.
4384 */
e700591a 4385 worker = kthread_probe_data(task);
3d1cb205
TH
4386
4387 /*
4388 * Carefully copy the associated workqueue's workfn and name. Keep
4389 * the original last '\0' in case the original contains garbage.
4390 */
4391 probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
4392 probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
4393 probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
4394 probe_kernel_read(name, wq->name, sizeof(name) - 1);
4395
4396 /* copy worker description */
4397 probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid));
4398 if (desc_valid)
4399 probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);
4400
4401 if (fn || name[0] || desc[0]) {
4402 printk("%sWorkqueue: %s %pf", log_lvl, name, fn);
4403 if (desc[0])
4404 pr_cont(" (%s)", desc);
4405 pr_cont("\n");
4406 }
4407}
4408
3494fc30
TH
4409static void pr_cont_pool_info(struct worker_pool *pool)
4410{
4411 pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
4412 if (pool->node != NUMA_NO_NODE)
4413 pr_cont(" node=%d", pool->node);
4414 pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
4415}
4416
4417static void pr_cont_work(bool comma, struct work_struct *work)
4418{
4419 if (work->func == wq_barrier_func) {
4420 struct wq_barrier *barr;
4421
4422 barr = container_of(work, struct wq_barrier, work);
4423
4424 pr_cont("%s BAR(%d)", comma ? "," : "",
4425 task_pid_nr(barr->task));
4426 } else {
4427 pr_cont("%s %pf", comma ? "," : "", work->func);
4428 }
4429}
4430
4431static void show_pwq(struct pool_workqueue *pwq)
4432{
4433 struct worker_pool *pool = pwq->pool;
4434 struct work_struct *work;
4435 struct worker *worker;
4436 bool has_in_flight = false, has_pending = false;
4437 int bkt;
4438
4439 pr_info(" pwq %d:", pool->id);
4440 pr_cont_pool_info(pool);
4441
9e0f33da
TH
4442 pr_cont(" active=%d/%d refcnt=%d%s\n",
4443 pwq->nr_active, pwq->max_active, pwq->refcnt,
3494fc30
TH
4444 !list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
4445
4446 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4447 if (worker->current_pwq == pwq) {
4448 has_in_flight = true;
4449 break;
4450 }
4451 }
4452 if (has_in_flight) {
4453 bool comma = false;
4454
4455 pr_info(" in-flight:");
4456 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4457 if (worker->current_pwq != pwq)
4458 continue;
4459
4460 pr_cont("%s %d%s:%pf", comma ? "," : "",
4461 task_pid_nr(worker->task),
4462 worker == pwq->wq->rescuer ? "(RESCUER)" : "",
4463 worker->current_func);
4464 list_for_each_entry(work, &worker->scheduled, entry)
4465 pr_cont_work(false, work);
4466 comma = true;
4467 }
4468 pr_cont("\n");
4469 }
4470
4471 list_for_each_entry(work, &pool->worklist, entry) {
4472 if (get_work_pwq(work) == pwq) {
4473 has_pending = true;
4474 break;
4475 }
4476 }
4477 if (has_pending) {
4478 bool comma = false;
4479
4480 pr_info(" pending:");
4481 list_for_each_entry(work, &pool->worklist, entry) {
4482 if (get_work_pwq(work) != pwq)
4483 continue;
4484
4485 pr_cont_work(comma, work);
4486 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4487 }
4488 pr_cont("\n");
4489 }
4490
4491 if (!list_empty(&pwq->delayed_works)) {
4492 bool comma = false;
4493
4494 pr_info(" delayed:");
4495 list_for_each_entry(work, &pwq->delayed_works, entry) {
4496 pr_cont_work(comma, work);
4497 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4498 }
4499 pr_cont("\n");
4500 }
4501}
4502
4503/**
4504 * show_workqueue_state - dump workqueue state
4505 *
7b776af6
RL
4506 * Called from a sysrq handler or try_to_freeze_tasks() and prints out
4507 * all busy workqueues and pools.
3494fc30
TH
4508 */
4509void show_workqueue_state(void)
4510{
4511 struct workqueue_struct *wq;
4512 struct worker_pool *pool;
4513 unsigned long flags;
4514 int pi;
4515
4516 rcu_read_lock_sched();
4517
4518 pr_info("Showing busy workqueues and worker pools:\n");
4519
4520 list_for_each_entry_rcu(wq, &workqueues, list) {
4521 struct pool_workqueue *pwq;
4522 bool idle = true;
4523
4524 for_each_pwq(pwq, wq) {
4525 if (pwq->nr_active || !list_empty(&pwq->delayed_works)) {
4526 idle = false;
4527 break;
4528 }
4529 }
4530 if (idle)
4531 continue;
4532
4533 pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
4534
4535 for_each_pwq(pwq, wq) {
4536 spin_lock_irqsave(&pwq->pool->lock, flags);
4537 if (pwq->nr_active || !list_empty(&pwq->delayed_works))
4538 show_pwq(pwq);
4539 spin_unlock_irqrestore(&pwq->pool->lock, flags);
a6d5930c
SS
4540 /*
4541 * We could be printing a lot from atomic context, e.g.
4542 * sysrq-t -> show_workqueue_state(). Avoid triggering
4543 * hard lockup.
4544 */
4545 touch_nmi_watchdog();
3494fc30
TH
4546 }
4547 }
4548
4549 for_each_pool(pool, pi) {
4550 struct worker *worker;
4551 bool first = true;
4552
4553 spin_lock_irqsave(&pool->lock, flags);
4554 if (pool->nr_workers == pool->nr_idle)
4555 goto next_pool;
4556
4557 pr_info("pool %d:", pool->id);
4558 pr_cont_pool_info(pool);
82607adc
TH
4559 pr_cont(" hung=%us workers=%d",
4560 jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000,
4561 pool->nr_workers);
3494fc30
TH
4562 if (pool->manager)
4563 pr_cont(" manager: %d",
4564 task_pid_nr(pool->manager->task));
4565 list_for_each_entry(worker, &pool->idle_list, entry) {
4566 pr_cont(" %s%d", first ? "idle: " : "",
4567 task_pid_nr(worker->task));
4568 first = false;
4569 }
4570 pr_cont("\n");
4571 next_pool:
4572 spin_unlock_irqrestore(&pool->lock, flags);
a6d5930c
SS
4573 /*
4574 * We could be printing a lot from atomic context, e.g.
4575 * sysrq-t -> show_workqueue_state(). Avoid triggering
4576 * hard lockup.
4577 */
4578 touch_nmi_watchdog();
3494fc30
TH
4579 }
4580
4581 rcu_read_unlock_sched();
4582}
4583
db7bccf4
TH
4584/*
4585 * CPU hotplug.
4586 *
e22bee78 4587 * There are two challenges in supporting CPU hotplug. Firstly, there
112202d9 4588 * are a lot of assumptions on strong associations among work, pwq and
706026c2 4589 * pool which make migrating pending and scheduled works very
e22bee78 4590 * difficult to implement without impacting hot paths. Secondly,
94cf58bb 4591 * worker pools serve mix of short, long and very long running works making
e22bee78
TH
4592 * blocked draining impractical.
4593 *
24647570 4594 * This is solved by allowing the pools to be disassociated from the CPU
628c78e7
TH
4595 * running as an unbound one and allowing it to be reattached later if the
4596 * cpu comes back online.
db7bccf4 4597 */
1da177e4 4598
706026c2 4599static void wq_unbind_fn(struct work_struct *work)
3af24433 4600{
38db41d9 4601 int cpu = smp_processor_id();
4ce62e9e 4602 struct worker_pool *pool;
db7bccf4 4603 struct worker *worker;
3af24433 4604
f02ae73a 4605 for_each_cpu_worker_pool(pool, cpu) {
92f9c5c4 4606 mutex_lock(&pool->attach_mutex);
94cf58bb 4607 spin_lock_irq(&pool->lock);
3af24433 4608
94cf58bb 4609 /*
92f9c5c4 4610 * We've blocked all attach/detach operations. Make all workers
94cf58bb
TH
4611 * unbound and set DISASSOCIATED. Before this, all workers
4612 * except for the ones which are still executing works from
4613 * before the last CPU down must be on the cpu. After
4614 * this, they may become diasporas.
4615 */
da028469 4616 for_each_pool_worker(worker, pool)
c9e7cf27 4617 worker->flags |= WORKER_UNBOUND;
06ba38a9 4618
24647570 4619 pool->flags |= POOL_DISASSOCIATED;
f2d5a0ee 4620
94cf58bb 4621 spin_unlock_irq(&pool->lock);
92f9c5c4 4622 mutex_unlock(&pool->attach_mutex);
628c78e7 4623
eb283428
LJ
4624 /*
4625 * Call schedule() so that we cross rq->lock and thus can
4626 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4627 * This is necessary as scheduler callbacks may be invoked
4628 * from other cpus.
4629 */
4630 schedule();
06ba38a9 4631
eb283428
LJ
4632 /*
4633 * Sched callbacks are disabled now. Zap nr_running.
4634 * After this, nr_running stays zero and need_more_worker()
4635 * and keep_working() are always true as long as the
4636 * worklist is not empty. This pool now behaves as an
4637 * unbound (in terms of concurrency management) pool which
4638 * are served by workers tied to the pool.
4639 */
e19e397a 4640 atomic_set(&pool->nr_running, 0);
eb283428
LJ
4641
4642 /*
4643 * With concurrency management just turned off, a busy
4644 * worker blocking could lead to lengthy stalls. Kick off
4645 * unbound chain execution of currently pending work items.
4646 */
4647 spin_lock_irq(&pool->lock);
4648 wake_up_worker(pool);
4649 spin_unlock_irq(&pool->lock);
4650 }
3af24433 4651}
3af24433 4652
bd7c089e
TH
4653/**
4654 * rebind_workers - rebind all workers of a pool to the associated CPU
4655 * @pool: pool of interest
4656 *
a9ab775b 4657 * @pool->cpu is coming online. Rebind all workers to the CPU.
bd7c089e
TH
4658 */
4659static void rebind_workers(struct worker_pool *pool)
4660{
a9ab775b 4661 struct worker *worker;
bd7c089e 4662
92f9c5c4 4663 lockdep_assert_held(&pool->attach_mutex);
bd7c089e 4664
a9ab775b
TH
4665 /*
4666 * Restore CPU affinity of all workers. As all idle workers should
4667 * be on the run-queue of the associated CPU before any local
402dd89d 4668 * wake-ups for concurrency management happen, restore CPU affinity
a9ab775b
TH
4669 * of all workers first and then clear UNBOUND. As we're called
4670 * from CPU_ONLINE, the following shouldn't fail.
4671 */
da028469 4672 for_each_pool_worker(worker, pool)
a9ab775b
TH
4673 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4674 pool->attrs->cpumask) < 0);
bd7c089e 4675
a9ab775b 4676 spin_lock_irq(&pool->lock);
f7c17d26
WL
4677
4678 /*
4679 * XXX: CPU hotplug notifiers are weird and can call DOWN_FAILED
4680 * w/o preceding DOWN_PREPARE. Work around it. CPU hotplug is
4681 * being reworked and this can go away in time.
4682 */
4683 if (!(pool->flags & POOL_DISASSOCIATED)) {
4684 spin_unlock_irq(&pool->lock);
4685 return;
4686 }
4687
3de5e884 4688 pool->flags &= ~POOL_DISASSOCIATED;
bd7c089e 4689
da028469 4690 for_each_pool_worker(worker, pool) {
a9ab775b 4691 unsigned int worker_flags = worker->flags;
bd7c089e
TH
4692
4693 /*
a9ab775b
TH
4694 * A bound idle worker should actually be on the runqueue
4695 * of the associated CPU for local wake-ups targeting it to
4696 * work. Kick all idle workers so that they migrate to the
4697 * associated CPU. Doing this in the same loop as
4698 * replacing UNBOUND with REBOUND is safe as no worker will
4699 * be bound before @pool->lock is released.
bd7c089e 4700 */
a9ab775b
TH
4701 if (worker_flags & WORKER_IDLE)
4702 wake_up_process(worker->task);
bd7c089e 4703
a9ab775b
TH
4704 /*
4705 * We want to clear UNBOUND but can't directly call
4706 * worker_clr_flags() or adjust nr_running. Atomically
4707 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
4708 * @worker will clear REBOUND using worker_clr_flags() when
4709 * it initiates the next execution cycle thus restoring
4710 * concurrency management. Note that when or whether
4711 * @worker clears REBOUND doesn't affect correctness.
4712 *
4713 * ACCESS_ONCE() is necessary because @worker->flags may be
4714 * tested without holding any lock in
4715 * wq_worker_waking_up(). Without it, NOT_RUNNING test may
4716 * fail incorrectly leading to premature concurrency
4717 * management operations.
4718 */
4719 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
4720 worker_flags |= WORKER_REBOUND;
4721 worker_flags &= ~WORKER_UNBOUND;
4722 ACCESS_ONCE(worker->flags) = worker_flags;
bd7c089e 4723 }
a9ab775b
TH
4724
4725 spin_unlock_irq(&pool->lock);
bd7c089e
TH
4726}
4727
7dbc725e
TH
4728/**
4729 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
4730 * @pool: unbound pool of interest
4731 * @cpu: the CPU which is coming up
4732 *
4733 * An unbound pool may end up with a cpumask which doesn't have any online
4734 * CPUs. When a worker of such pool get scheduled, the scheduler resets
4735 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any
4736 * online CPU before, cpus_allowed of all its workers should be restored.
4737 */
4738static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
4739{
4740 static cpumask_t cpumask;
4741 struct worker *worker;
7dbc725e 4742
92f9c5c4 4743 lockdep_assert_held(&pool->attach_mutex);
7dbc725e
TH
4744
4745 /* is @cpu allowed for @pool? */
4746 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
4747 return;
4748
7dbc725e 4749 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
7dbc725e
TH
4750
4751 /* as we're called from CPU_ONLINE, the following shouldn't fail */
da028469 4752 for_each_pool_worker(worker, pool)
d945b5e9 4753 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0);
7dbc725e
TH
4754}
4755
7ee681b2
TG
4756int workqueue_prepare_cpu(unsigned int cpu)
4757{
4758 struct worker_pool *pool;
4759
4760 for_each_cpu_worker_pool(pool, cpu) {
4761 if (pool->nr_workers)
4762 continue;
4763 if (!create_worker(pool))
4764 return -ENOMEM;
4765 }
4766 return 0;
4767}
4768
4769int workqueue_online_cpu(unsigned int cpu)
3af24433 4770{
4ce62e9e 4771 struct worker_pool *pool;
4c16bd32 4772 struct workqueue_struct *wq;
7dbc725e 4773 int pi;
3ce63377 4774
7ee681b2 4775 mutex_lock(&wq_pool_mutex);
7dbc725e 4776
7ee681b2
TG
4777 for_each_pool(pool, pi) {
4778 mutex_lock(&pool->attach_mutex);
94cf58bb 4779
7ee681b2
TG
4780 if (pool->cpu == cpu)
4781 rebind_workers(pool);
4782 else if (pool->cpu < 0)
4783 restore_unbound_workers_cpumask(pool, cpu);
94cf58bb 4784
7ee681b2
TG
4785 mutex_unlock(&pool->attach_mutex);
4786 }
6ba94429 4787
7ee681b2
TG
4788 /* update NUMA affinity of unbound workqueues */
4789 list_for_each_entry(wq, &workqueues, list)
4790 wq_update_unbound_numa(wq, cpu, true);
6ba94429 4791
7ee681b2
TG
4792 mutex_unlock(&wq_pool_mutex);
4793 return 0;
6ba94429
FW
4794}
4795
7ee681b2 4796int workqueue_offline_cpu(unsigned int cpu)
6ba94429 4797{
6ba94429
FW
4798 struct work_struct unbind_work;
4799 struct workqueue_struct *wq;
4800
7ee681b2
TG
4801 /* unbinding per-cpu workers should happen on the local CPU */
4802 INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
4803 queue_work_on(cpu, system_highpri_wq, &unbind_work);
4804
4805 /* update NUMA affinity of unbound workqueues */
4806 mutex_lock(&wq_pool_mutex);
4807 list_for_each_entry(wq, &workqueues, list)
4808 wq_update_unbound_numa(wq, cpu, false);
4809 mutex_unlock(&wq_pool_mutex);
4810
4811 /* wait for per-cpu unbinding to finish */
4812 flush_work(&unbind_work);
4813 destroy_work_on_stack(&unbind_work);
4814 return 0;
6ba94429
FW
4815}
4816
4817#ifdef CONFIG_SMP
4818
4819struct work_for_cpu {
4820 struct work_struct work;
4821 long (*fn)(void *);
4822 void *arg;
4823 long ret;
4824};
4825
4826static void work_for_cpu_fn(struct work_struct *work)
4827{
4828 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
4829
4830 wfc->ret = wfc->fn(wfc->arg);
4831}
4832
4833/**
22aceb31 4834 * work_on_cpu - run a function in thread context on a particular cpu
6ba94429
FW
4835 * @cpu: the cpu to run on
4836 * @fn: the function to run
4837 * @arg: the function arg
4838 *
4839 * It is up to the caller to ensure that the cpu doesn't go offline.
4840 * The caller must not hold any locks which would prevent @fn from completing.
4841 *
4842 * Return: The value @fn returns.
4843 */
4844long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
4845{
4846 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
4847
4848 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
4849 schedule_work_on(cpu, &wfc.work);
4850 flush_work(&wfc.work);
4851 destroy_work_on_stack(&wfc.work);
4852 return wfc.ret;
4853}
4854EXPORT_SYMBOL_GPL(work_on_cpu);
0e8d6a93
TG
4855
4856/**
4857 * work_on_cpu_safe - run a function in thread context on a particular cpu
4858 * @cpu: the cpu to run on
4859 * @fn: the function to run
4860 * @arg: the function argument
4861 *
4862 * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold
4863 * any locks which would prevent @fn from completing.
4864 *
4865 * Return: The value @fn returns.
4866 */
4867long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg)
4868{
4869 long ret = -ENODEV;
4870
4871 get_online_cpus();
4872 if (cpu_online(cpu))
4873 ret = work_on_cpu(cpu, fn, arg);
4874 put_online_cpus();
4875 return ret;
4876}
4877EXPORT_SYMBOL_GPL(work_on_cpu_safe);
6ba94429
FW
4878#endif /* CONFIG_SMP */
4879
4880#ifdef CONFIG_FREEZER
4881
4882/**
4883 * freeze_workqueues_begin - begin freezing workqueues
4884 *
4885 * Start freezing workqueues. After this function returns, all freezable
4886 * workqueues will queue new works to their delayed_works list instead of
4887 * pool->worklist.
4888 *
4889 * CONTEXT:
4890 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4891 */
4892void freeze_workqueues_begin(void)
4893{
4894 struct workqueue_struct *wq;
4895 struct pool_workqueue *pwq;
4896
4897 mutex_lock(&wq_pool_mutex);
4898
4899 WARN_ON_ONCE(workqueue_freezing);
4900 workqueue_freezing = true;
4901
4902 list_for_each_entry(wq, &workqueues, list) {
4903 mutex_lock(&wq->mutex);
4904 for_each_pwq(pwq, wq)
4905 pwq_adjust_max_active(pwq);
4906 mutex_unlock(&wq->mutex);
4907 }
4908
4909 mutex_unlock(&wq_pool_mutex);
4910}
4911
4912/**
4913 * freeze_workqueues_busy - are freezable workqueues still busy?
4914 *
4915 * Check whether freezing is complete. This function must be called
4916 * between freeze_workqueues_begin() and thaw_workqueues().
4917 *
4918 * CONTEXT:
4919 * Grabs and releases wq_pool_mutex.
4920 *
4921 * Return:
4922 * %true if some freezable workqueues are still busy. %false if freezing
4923 * is complete.
4924 */
4925bool freeze_workqueues_busy(void)
4926{
4927 bool busy = false;
4928 struct workqueue_struct *wq;
4929 struct pool_workqueue *pwq;
4930
4931 mutex_lock(&wq_pool_mutex);
4932
4933 WARN_ON_ONCE(!workqueue_freezing);
4934
4935 list_for_each_entry(wq, &workqueues, list) {
4936 if (!(wq->flags & WQ_FREEZABLE))
4937 continue;
4938 /*
4939 * nr_active is monotonically decreasing. It's safe
4940 * to peek without lock.
4941 */
4942 rcu_read_lock_sched();
4943 for_each_pwq(pwq, wq) {
4944 WARN_ON_ONCE(pwq->nr_active < 0);
4945 if (pwq->nr_active) {
4946 busy = true;
4947 rcu_read_unlock_sched();
4948 goto out_unlock;
4949 }
4950 }
4951 rcu_read_unlock_sched();
4952 }
4953out_unlock:
4954 mutex_unlock(&wq_pool_mutex);
4955 return busy;
4956}
4957
4958/**
4959 * thaw_workqueues - thaw workqueues
4960 *
4961 * Thaw workqueues. Normal queueing is restored and all collected
4962 * frozen works are transferred to their respective pool worklists.
4963 *
4964 * CONTEXT:
4965 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4966 */
4967void thaw_workqueues(void)
4968{
4969 struct workqueue_struct *wq;
4970 struct pool_workqueue *pwq;
4971
4972 mutex_lock(&wq_pool_mutex);
4973
4974 if (!workqueue_freezing)
4975 goto out_unlock;
4976
4977 workqueue_freezing = false;
4978
4979 /* restore max_active and repopulate worklist */
4980 list_for_each_entry(wq, &workqueues, list) {
4981 mutex_lock(&wq->mutex);
4982 for_each_pwq(pwq, wq)
4983 pwq_adjust_max_active(pwq);
4984 mutex_unlock(&wq->mutex);
4985 }
4986
4987out_unlock:
4988 mutex_unlock(&wq_pool_mutex);
4989}
4990#endif /* CONFIG_FREEZER */
4991
042f7df1
LJ
4992static int workqueue_apply_unbound_cpumask(void)
4993{
4994 LIST_HEAD(ctxs);
4995 int ret = 0;
4996 struct workqueue_struct *wq;
4997 struct apply_wqattrs_ctx *ctx, *n;
4998
4999 lockdep_assert_held(&wq_pool_mutex);
5000
5001 list_for_each_entry(wq, &workqueues, list) {
5002 if (!(wq->flags & WQ_UNBOUND))
5003 continue;
803e2ea7 5004
042f7df1 5005 /* creating multiple pwqs breaks ordering guarantee */
803e2ea7
WL
5006 if (!list_empty(&wq->pwqs)) {
5007 if (wq->flags & __WQ_ORDERED_EXPLICIT)
5008 continue;
5009 wq->flags &= ~__WQ_ORDERED;
5010 }
042f7df1
LJ
5011
5012 ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs);
5013 if (!ctx) {
5014 ret = -ENOMEM;
5015 break;
5016 }
5017
5018 list_add_tail(&ctx->list, &ctxs);
5019 }
5020
5021 list_for_each_entry_safe(ctx, n, &ctxs, list) {
5022 if (!ret)
5023 apply_wqattrs_commit(ctx);
5024 apply_wqattrs_cleanup(ctx);
5025 }
5026
5027 return ret;
5028}
5029
5030/**
5031 * workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
5032 * @cpumask: the cpumask to set
5033 *
5034 * The low-level workqueues cpumask is a global cpumask that limits
5035 * the affinity of all unbound workqueues. This function check the @cpumask
5036 * and apply it to all unbound workqueues and updates all pwqs of them.
5037 *
5038 * Retun: 0 - Success
5039 * -EINVAL - Invalid @cpumask
5040 * -ENOMEM - Failed to allocate memory for attrs or pwqs.
5041 */
5042int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
5043{
5044 int ret = -EINVAL;
5045 cpumask_var_t saved_cpumask;
5046
5047 if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL))
5048 return -ENOMEM;
5049
042f7df1
LJ
5050 cpumask_and(cpumask, cpumask, cpu_possible_mask);
5051 if (!cpumask_empty(cpumask)) {
a0111cf6 5052 apply_wqattrs_lock();
042f7df1
LJ
5053
5054 /* save the old wq_unbound_cpumask. */
5055 cpumask_copy(saved_cpumask, wq_unbound_cpumask);
5056
5057 /* update wq_unbound_cpumask at first and apply it to wqs. */
5058 cpumask_copy(wq_unbound_cpumask, cpumask);
5059 ret = workqueue_apply_unbound_cpumask();
5060
5061 /* restore the wq_unbound_cpumask when failed. */
5062 if (ret < 0)
5063 cpumask_copy(wq_unbound_cpumask, saved_cpumask);
5064
a0111cf6 5065 apply_wqattrs_unlock();
042f7df1 5066 }
042f7df1
LJ
5067
5068 free_cpumask_var(saved_cpumask);
5069 return ret;
5070}
5071
6ba94429
FW
5072#ifdef CONFIG_SYSFS
5073/*
5074 * Workqueues with WQ_SYSFS flag set is visible to userland via
5075 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the
5076 * following attributes.
5077 *
5078 * per_cpu RO bool : whether the workqueue is per-cpu or unbound
5079 * max_active RW int : maximum number of in-flight work items
5080 *
5081 * Unbound workqueues have the following extra attributes.
5082 *
5083 * id RO int : the associated pool ID
5084 * nice RW int : nice value of the workers
5085 * cpumask RW mask : bitmask of allowed CPUs for the workers
5086 */
5087struct wq_device {
5088 struct workqueue_struct *wq;
5089 struct device dev;
5090};
5091
5092static struct workqueue_struct *dev_to_wq(struct device *dev)
5093{
5094 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5095
5096 return wq_dev->wq;
5097}
5098
5099static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
5100 char *buf)
5101{
5102 struct workqueue_struct *wq = dev_to_wq(dev);
5103
5104 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
5105}
5106static DEVICE_ATTR_RO(per_cpu);
5107
5108static ssize_t max_active_show(struct device *dev,
5109 struct device_attribute *attr, char *buf)
5110{
5111 struct workqueue_struct *wq = dev_to_wq(dev);
5112
5113 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
5114}
5115
5116static ssize_t max_active_store(struct device *dev,
5117 struct device_attribute *attr, const char *buf,
5118 size_t count)
5119{
5120 struct workqueue_struct *wq = dev_to_wq(dev);
5121 int val;
5122
5123 if (sscanf(buf, "%d", &val) != 1 || val <= 0)
5124 return -EINVAL;
5125
5126 workqueue_set_max_active(wq, val);
5127 return count;
5128}
5129static DEVICE_ATTR_RW(max_active);
5130
5131static struct attribute *wq_sysfs_attrs[] = {
5132 &dev_attr_per_cpu.attr,
5133 &dev_attr_max_active.attr,
5134 NULL,
5135};
5136ATTRIBUTE_GROUPS(wq_sysfs);
5137
5138static ssize_t wq_pool_ids_show(struct device *dev,
5139 struct device_attribute *attr, char *buf)
5140{
5141 struct workqueue_struct *wq = dev_to_wq(dev);
5142 const char *delim = "";
5143 int node, written = 0;
5144
5145 rcu_read_lock_sched();
5146 for_each_node(node) {
5147 written += scnprintf(buf + written, PAGE_SIZE - written,
5148 "%s%d:%d", delim, node,
5149 unbound_pwq_by_node(wq, node)->pool->id);
5150 delim = " ";
5151 }
5152 written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
5153 rcu_read_unlock_sched();
5154
5155 return written;
5156}
5157
5158static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
5159 char *buf)
5160{
5161 struct workqueue_struct *wq = dev_to_wq(dev);
5162 int written;
5163
5164 mutex_lock(&wq->mutex);
5165 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
5166 mutex_unlock(&wq->mutex);
5167
5168 return written;
5169}
5170
5171/* prepare workqueue_attrs for sysfs store operations */
5172static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
5173{
5174 struct workqueue_attrs *attrs;
5175
899a94fe
LJ
5176 lockdep_assert_held(&wq_pool_mutex);
5177
6ba94429
FW
5178 attrs = alloc_workqueue_attrs(GFP_KERNEL);
5179 if (!attrs)
5180 return NULL;
5181
6ba94429 5182 copy_workqueue_attrs(attrs, wq->unbound_attrs);
6ba94429
FW
5183 return attrs;
5184}
5185
5186static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
5187 const char *buf, size_t count)
5188{
5189 struct workqueue_struct *wq = dev_to_wq(dev);
5190 struct workqueue_attrs *attrs;
d4d3e257
LJ
5191 int ret = -ENOMEM;
5192
5193 apply_wqattrs_lock();
6ba94429
FW
5194
5195 attrs = wq_sysfs_prep_attrs(wq);
5196 if (!attrs)
d4d3e257 5197 goto out_unlock;
6ba94429
FW
5198
5199 if (sscanf(buf, "%d", &attrs->nice) == 1 &&
5200 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
d4d3e257 5201 ret = apply_workqueue_attrs_locked(wq, attrs);
6ba94429
FW
5202 else
5203 ret = -EINVAL;
5204
d4d3e257
LJ
5205out_unlock:
5206 apply_wqattrs_unlock();
6ba94429
FW
5207 free_workqueue_attrs(attrs);
5208 return ret ?: count;
5209}
5210
5211static ssize_t wq_cpumask_show(struct device *dev,
5212 struct device_attribute *attr, char *buf)
5213{
5214 struct workqueue_struct *wq = dev_to_wq(dev);
5215 int written;
5216
5217 mutex_lock(&wq->mutex);
5218 written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5219 cpumask_pr_args(wq->unbound_attrs->cpumask));
5220 mutex_unlock(&wq->mutex);
5221 return written;
5222}
5223
5224static ssize_t wq_cpumask_store(struct device *dev,
5225 struct device_attribute *attr,
5226 const char *buf, size_t count)
5227{
5228 struct workqueue_struct *wq = dev_to_wq(dev);
5229 struct workqueue_attrs *attrs;
d4d3e257
LJ
5230 int ret = -ENOMEM;
5231
5232 apply_wqattrs_lock();
6ba94429
FW
5233
5234 attrs = wq_sysfs_prep_attrs(wq);
5235 if (!attrs)
d4d3e257 5236 goto out_unlock;
6ba94429
FW
5237
5238 ret = cpumask_parse(buf, attrs->cpumask);
5239 if (!ret)
d4d3e257 5240 ret = apply_workqueue_attrs_locked(wq, attrs);
6ba94429 5241
d4d3e257
LJ
5242out_unlock:
5243 apply_wqattrs_unlock();
6ba94429
FW
5244 free_workqueue_attrs(attrs);
5245 return ret ?: count;
5246}
5247
5248static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
5249 char *buf)
5250{
5251 struct workqueue_struct *wq = dev_to_wq(dev);
5252 int written;
7dbc725e 5253
6ba94429
FW
5254 mutex_lock(&wq->mutex);
5255 written = scnprintf(buf, PAGE_SIZE, "%d\n",
5256 !wq->unbound_attrs->no_numa);
5257 mutex_unlock(&wq->mutex);
4c16bd32 5258
6ba94429 5259 return written;
65758202
TH
5260}
5261
6ba94429
FW
5262static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
5263 const char *buf, size_t count)
65758202 5264{
6ba94429
FW
5265 struct workqueue_struct *wq = dev_to_wq(dev);
5266 struct workqueue_attrs *attrs;
d4d3e257
LJ
5267 int v, ret = -ENOMEM;
5268
5269 apply_wqattrs_lock();
4c16bd32 5270
6ba94429
FW
5271 attrs = wq_sysfs_prep_attrs(wq);
5272 if (!attrs)
d4d3e257 5273 goto out_unlock;
4c16bd32 5274
6ba94429
FW
5275 ret = -EINVAL;
5276 if (sscanf(buf, "%d", &v) == 1) {
5277 attrs->no_numa = !v;
d4d3e257 5278 ret = apply_workqueue_attrs_locked(wq, attrs);
65758202 5279 }
6ba94429 5280
d4d3e257
LJ
5281out_unlock:
5282 apply_wqattrs_unlock();
6ba94429
FW
5283 free_workqueue_attrs(attrs);
5284 return ret ?: count;
65758202
TH
5285}
5286
6ba94429
FW
5287static struct device_attribute wq_sysfs_unbound_attrs[] = {
5288 __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
5289 __ATTR(nice, 0644, wq_nice_show, wq_nice_store),
5290 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
5291 __ATTR(numa, 0644, wq_numa_show, wq_numa_store),
5292 __ATTR_NULL,
5293};
8ccad40d 5294
6ba94429
FW
5295static struct bus_type wq_subsys = {
5296 .name = "workqueue",
5297 .dev_groups = wq_sysfs_groups,
2d3854a3
RR
5298};
5299
b05a7928
FW
5300static ssize_t wq_unbound_cpumask_show(struct device *dev,
5301 struct device_attribute *attr, char *buf)
5302{
5303 int written;
5304
042f7df1 5305 mutex_lock(&wq_pool_mutex);
b05a7928
FW
5306 written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5307 cpumask_pr_args(wq_unbound_cpumask));
042f7df1 5308 mutex_unlock(&wq_pool_mutex);
b05a7928
FW
5309
5310 return written;
5311}
5312
042f7df1
LJ
5313static ssize_t wq_unbound_cpumask_store(struct device *dev,
5314 struct device_attribute *attr, const char *buf, size_t count)
5315{
5316 cpumask_var_t cpumask;
5317 int ret;
5318
5319 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
5320 return -ENOMEM;
5321
5322 ret = cpumask_parse(buf, cpumask);
5323 if (!ret)
5324 ret = workqueue_set_unbound_cpumask(cpumask);
5325
5326 free_cpumask_var(cpumask);
5327 return ret ? ret : count;
5328}
5329
b05a7928 5330static struct device_attribute wq_sysfs_cpumask_attr =
042f7df1
LJ
5331 __ATTR(cpumask, 0644, wq_unbound_cpumask_show,
5332 wq_unbound_cpumask_store);
b05a7928 5333
6ba94429 5334static int __init wq_sysfs_init(void)
2d3854a3 5335{
b05a7928
FW
5336 int err;
5337
5338 err = subsys_virtual_register(&wq_subsys, NULL);
5339 if (err)
5340 return err;
5341
5342 return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr);
2d3854a3 5343}
6ba94429 5344core_initcall(wq_sysfs_init);
2d3854a3 5345
6ba94429 5346static void wq_device_release(struct device *dev)
2d3854a3 5347{
6ba94429 5348 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
6b44003e 5349
6ba94429 5350 kfree(wq_dev);
2d3854a3 5351}
a0a1a5fd
TH
5352
5353/**
6ba94429
FW
5354 * workqueue_sysfs_register - make a workqueue visible in sysfs
5355 * @wq: the workqueue to register
a0a1a5fd 5356 *
6ba94429
FW
5357 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
5358 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
5359 * which is the preferred method.
a0a1a5fd 5360 *
6ba94429
FW
5361 * Workqueue user should use this function directly iff it wants to apply
5362 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
5363 * apply_workqueue_attrs() may race against userland updating the
5364 * attributes.
5365 *
5366 * Return: 0 on success, -errno on failure.
a0a1a5fd 5367 */
6ba94429 5368int workqueue_sysfs_register(struct workqueue_struct *wq)
a0a1a5fd 5369{
6ba94429
FW
5370 struct wq_device *wq_dev;
5371 int ret;
a0a1a5fd 5372
6ba94429 5373 /*
402dd89d 5374 * Adjusting max_active or creating new pwqs by applying
6ba94429
FW
5375 * attributes breaks ordering guarantee. Disallow exposing ordered
5376 * workqueues.
5377 */
0a94efb5 5378 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
6ba94429 5379 return -EINVAL;
a0a1a5fd 5380
6ba94429
FW
5381 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
5382 if (!wq_dev)
5383 return -ENOMEM;
5bcab335 5384
6ba94429
FW
5385 wq_dev->wq = wq;
5386 wq_dev->dev.bus = &wq_subsys;
6ba94429 5387 wq_dev->dev.release = wq_device_release;
23217b44 5388 dev_set_name(&wq_dev->dev, "%s", wq->name);
a0a1a5fd 5389
6ba94429
FW
5390 /*
5391 * unbound_attrs are created separately. Suppress uevent until
5392 * everything is ready.
5393 */
5394 dev_set_uevent_suppress(&wq_dev->dev, true);
a0a1a5fd 5395
6ba94429
FW
5396 ret = device_register(&wq_dev->dev);
5397 if (ret) {
7c84e5e9 5398 put_device(&wq_dev->dev);
6ba94429
FW
5399 wq->wq_dev = NULL;
5400 return ret;
5401 }
a0a1a5fd 5402
6ba94429
FW
5403 if (wq->flags & WQ_UNBOUND) {
5404 struct device_attribute *attr;
a0a1a5fd 5405
6ba94429
FW
5406 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
5407 ret = device_create_file(&wq_dev->dev, attr);
5408 if (ret) {
5409 device_unregister(&wq_dev->dev);
5410 wq->wq_dev = NULL;
5411 return ret;
a0a1a5fd
TH
5412 }
5413 }
5414 }
6ba94429
FW
5415
5416 dev_set_uevent_suppress(&wq_dev->dev, false);
5417 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
5418 return 0;
a0a1a5fd
TH
5419}
5420
5421/**
6ba94429
FW
5422 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
5423 * @wq: the workqueue to unregister
a0a1a5fd 5424 *
6ba94429 5425 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
a0a1a5fd 5426 */
6ba94429 5427static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
a0a1a5fd 5428{
6ba94429 5429 struct wq_device *wq_dev = wq->wq_dev;
8b03ae3c 5430
6ba94429
FW
5431 if (!wq->wq_dev)
5432 return;
a0a1a5fd 5433
6ba94429
FW
5434 wq->wq_dev = NULL;
5435 device_unregister(&wq_dev->dev);
a0a1a5fd 5436}
6ba94429
FW
5437#else /* CONFIG_SYSFS */
5438static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { }
5439#endif /* CONFIG_SYSFS */
a0a1a5fd 5440
82607adc
TH
5441/*
5442 * Workqueue watchdog.
5443 *
5444 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
5445 * flush dependency, a concurrency managed work item which stays RUNNING
5446 * indefinitely. Workqueue stalls can be very difficult to debug as the
5447 * usual warning mechanisms don't trigger and internal workqueue state is
5448 * largely opaque.
5449 *
5450 * Workqueue watchdog monitors all worker pools periodically and dumps
5451 * state if some pools failed to make forward progress for a while where
5452 * forward progress is defined as the first item on ->worklist changing.
5453 *
5454 * This mechanism is controlled through the kernel parameter
5455 * "workqueue.watchdog_thresh" which can be updated at runtime through the
5456 * corresponding sysfs parameter file.
5457 */
5458#ifdef CONFIG_WQ_WATCHDOG
5459
5460static void wq_watchdog_timer_fn(unsigned long data);
5461
5462static unsigned long wq_watchdog_thresh = 30;
5463static struct timer_list wq_watchdog_timer =
5464 TIMER_DEFERRED_INITIALIZER(wq_watchdog_timer_fn, 0, 0);
5465
5466static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
5467static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
5468
5469static void wq_watchdog_reset_touched(void)
5470{
5471 int cpu;
5472
5473 wq_watchdog_touched = jiffies;
5474 for_each_possible_cpu(cpu)
5475 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5476}
5477
5478static void wq_watchdog_timer_fn(unsigned long data)
5479{
5480 unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
5481 bool lockup_detected = false;
ec32c8ae 5482 unsigned long now = jiffies;
82607adc
TH
5483 struct worker_pool *pool;
5484 int pi;
5485
5486 if (!thresh)
5487 return;
5488
5489 rcu_read_lock();
5490
5491 for_each_pool(pool, pi) {
5492 unsigned long pool_ts, touched, ts;
5493
5494 if (list_empty(&pool->worklist))
5495 continue;
5496
ec32c8ae
SS
5497 /*
5498 * If a virtual machine is stopped by the host it can look to
5499 * the watchdog like a stall.
5500 */
5501 kvm_check_and_clear_guest_paused();
5502
82607adc
TH
5503 /* get the latest of pool and touched timestamps */
5504 pool_ts = READ_ONCE(pool->watchdog_ts);
5505 touched = READ_ONCE(wq_watchdog_touched);
5506
5507 if (time_after(pool_ts, touched))
5508 ts = pool_ts;
5509 else
5510 ts = touched;
5511
5512 if (pool->cpu >= 0) {
5513 unsigned long cpu_touched =
5514 READ_ONCE(per_cpu(wq_watchdog_touched_cpu,
5515 pool->cpu));
5516 if (time_after(cpu_touched, ts))
5517 ts = cpu_touched;
5518 }
5519
5520 /* did we stall? */
ec32c8ae 5521 if (time_after(now, ts + thresh)) {
82607adc
TH
5522 lockup_detected = true;
5523 pr_emerg("BUG: workqueue lockup - pool");
5524 pr_cont_pool_info(pool);
5525 pr_cont(" stuck for %us!\n",
ec32c8ae 5526 jiffies_to_msecs(now - pool_ts) / 1000);
82607adc
TH
5527 }
5528 }
5529
5530 rcu_read_unlock();
5531
5532 if (lockup_detected)
5533 show_workqueue_state();
5534
5535 wq_watchdog_reset_touched();
5536 mod_timer(&wq_watchdog_timer, jiffies + thresh);
5537}
5538
63a0f9de 5539notrace void wq_watchdog_touch(int cpu)
82607adc
TH
5540{
5541 if (cpu >= 0)
5542 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5543 else
5544 wq_watchdog_touched = jiffies;
5545}
5546
5547static void wq_watchdog_set_thresh(unsigned long thresh)
5548{
5549 wq_watchdog_thresh = 0;
5550 del_timer_sync(&wq_watchdog_timer);
5551
5552 if (thresh) {
5553 wq_watchdog_thresh = thresh;
5554 wq_watchdog_reset_touched();
5555 mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
5556 }
5557}
5558
5559static int wq_watchdog_param_set_thresh(const char *val,
5560 const struct kernel_param *kp)
5561{
5562 unsigned long thresh;
5563 int ret;
5564
5565 ret = kstrtoul(val, 0, &thresh);
5566 if (ret)
5567 return ret;
5568
5569 if (system_wq)
5570 wq_watchdog_set_thresh(thresh);
5571 else
5572 wq_watchdog_thresh = thresh;
5573
5574 return 0;
5575}
5576
5577static const struct kernel_param_ops wq_watchdog_thresh_ops = {
5578 .set = wq_watchdog_param_set_thresh,
5579 .get = param_get_ulong,
5580};
5581
5582module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
5583 0644);
5584
5585static void wq_watchdog_init(void)
5586{
5587 wq_watchdog_set_thresh(wq_watchdog_thresh);
5588}
5589
5590#else /* CONFIG_WQ_WATCHDOG */
5591
5592static inline void wq_watchdog_init(void) { }
5593
5594#endif /* CONFIG_WQ_WATCHDOG */
5595
bce90380
TH
5596static void __init wq_numa_init(void)
5597{
5598 cpumask_var_t *tbl;
5599 int node, cpu;
5600
bce90380
TH
5601 if (num_possible_nodes() <= 1)
5602 return;
5603
d55262c4
TH
5604 if (wq_disable_numa) {
5605 pr_info("workqueue: NUMA affinity support disabled\n");
5606 return;
5607 }
5608
4c16bd32
TH
5609 wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
5610 BUG_ON(!wq_update_unbound_numa_attrs_buf);
5611
bce90380
TH
5612 /*
5613 * We want masks of possible CPUs of each node which isn't readily
5614 * available. Build one from cpu_to_node() which should have been
5615 * fully initialized by now.
5616 */
ddcb57e2 5617 tbl = kzalloc(nr_node_ids * sizeof(tbl[0]), GFP_KERNEL);
bce90380
TH
5618 BUG_ON(!tbl);
5619
5620 for_each_node(node)
5a6024f1 5621 BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
1be0c25d 5622 node_online(node) ? node : NUMA_NO_NODE));
bce90380
TH
5623
5624 for_each_possible_cpu(cpu) {
5625 node = cpu_to_node(cpu);
5626 if (WARN_ON(node == NUMA_NO_NODE)) {
5627 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
5628 /* happens iff arch is bonkers, let's just proceed */
5629 return;
5630 }
5631 cpumask_set_cpu(cpu, tbl[node]);
5632 }
5633
5634 wq_numa_possible_cpumask = tbl;
5635 wq_numa_enabled = true;
5636}
5637
3347fa09
TH
5638/**
5639 * workqueue_init_early - early init for workqueue subsystem
5640 *
5641 * This is the first half of two-staged workqueue subsystem initialization
5642 * and invoked as soon as the bare basics - memory allocation, cpumasks and
5643 * idr are up. It sets up all the data structures and system workqueues
5644 * and allows early boot code to create workqueues and queue/cancel work
5645 * items. Actual work item execution starts only after kthreads can be
5646 * created and scheduled right before early initcalls.
5647 */
5648int __init workqueue_init_early(void)
1da177e4 5649{
7a4e344c
TH
5650 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
5651 int i, cpu;
c34056a3 5652
e904e6c2
TH
5653 WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
5654
b05a7928
FW
5655 BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
5656 cpumask_copy(wq_unbound_cpumask, cpu_possible_mask);
5657
e904e6c2
TH
5658 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
5659
706026c2 5660 /* initialize CPU pools */
29c91e99 5661 for_each_possible_cpu(cpu) {
4ce62e9e 5662 struct worker_pool *pool;
8b03ae3c 5663
7a4e344c 5664 i = 0;
f02ae73a 5665 for_each_cpu_worker_pool(pool, cpu) {
7a4e344c 5666 BUG_ON(init_worker_pool(pool));
ec22ca5e 5667 pool->cpu = cpu;
29c91e99 5668 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
7a4e344c 5669 pool->attrs->nice = std_nice[i++];
f3f90ad4 5670 pool->node = cpu_to_node(cpu);
7a4e344c 5671
9daf9e67 5672 /* alloc pool ID */
68e13a67 5673 mutex_lock(&wq_pool_mutex);
9daf9e67 5674 BUG_ON(worker_pool_assign_id(pool));
68e13a67 5675 mutex_unlock(&wq_pool_mutex);
4ce62e9e 5676 }
8b03ae3c
TH
5677 }
5678
8a2b7538 5679 /* create default unbound and ordered wq attrs */
29c91e99
TH
5680 for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
5681 struct workqueue_attrs *attrs;
5682
5683 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
29c91e99 5684 attrs->nice = std_nice[i];
29c91e99 5685 unbound_std_wq_attrs[i] = attrs;
8a2b7538
TH
5686
5687 /*
5688 * An ordered wq should have only one pwq as ordering is
5689 * guaranteed by max_active which is enforced by pwqs.
5690 * Turn off NUMA so that dfl_pwq is used for all nodes.
5691 */
5692 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5693 attrs->nice = std_nice[i];
5694 attrs->no_numa = true;
5695 ordered_wq_attrs[i] = attrs;
29c91e99
TH
5696 }
5697
d320c038 5698 system_wq = alloc_workqueue("events", 0, 0);
1aabe902 5699 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
d320c038 5700 system_long_wq = alloc_workqueue("events_long", 0, 0);
f3421797
TH
5701 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
5702 WQ_UNBOUND_MAX_ACTIVE);
24d51add
TH
5703 system_freezable_wq = alloc_workqueue("events_freezable",
5704 WQ_FREEZABLE, 0);
0668106c
VK
5705 system_power_efficient_wq = alloc_workqueue("events_power_efficient",
5706 WQ_POWER_EFFICIENT, 0);
5707 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
5708 WQ_FREEZABLE | WQ_POWER_EFFICIENT,
5709 0);
1aabe902 5710 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
0668106c
VK
5711 !system_unbound_wq || !system_freezable_wq ||
5712 !system_power_efficient_wq ||
5713 !system_freezable_power_efficient_wq);
82607adc 5714
3347fa09
TH
5715 return 0;
5716}
5717
5718/**
5719 * workqueue_init - bring workqueue subsystem fully online
5720 *
5721 * This is the latter half of two-staged workqueue subsystem initialization
5722 * and invoked as soon as kthreads can be created and scheduled.
5723 * Workqueues have been created and work items queued on them, but there
5724 * are no kworkers executing the work items yet. Populate the worker pools
5725 * with the initial workers and enable future kworker creations.
5726 */
5727int __init workqueue_init(void)
5728{
2186d9f9 5729 struct workqueue_struct *wq;
3347fa09
TH
5730 struct worker_pool *pool;
5731 int cpu, bkt;
5732
2186d9f9
TH
5733 /*
5734 * It'd be simpler to initialize NUMA in workqueue_init_early() but
5735 * CPU to node mapping may not be available that early on some
5736 * archs such as power and arm64. As per-cpu pools created
5737 * previously could be missing node hint and unbound pools NUMA
5738 * affinity, fix them up.
5739 */
5740 wq_numa_init();
5741
5742 mutex_lock(&wq_pool_mutex);
5743
5744 for_each_possible_cpu(cpu) {
5745 for_each_cpu_worker_pool(pool, cpu) {
5746 pool->node = cpu_to_node(cpu);
5747 }
5748 }
5749
5750 list_for_each_entry(wq, &workqueues, list)
5751 wq_update_unbound_numa(wq, smp_processor_id(), true);
5752
5753 mutex_unlock(&wq_pool_mutex);
5754
3347fa09
TH
5755 /* create the initial workers */
5756 for_each_online_cpu(cpu) {
5757 for_each_cpu_worker_pool(pool, cpu) {
5758 pool->flags &= ~POOL_DISASSOCIATED;
5759 BUG_ON(!create_worker(pool));
5760 }
5761 }
5762
5763 hash_for_each(unbound_pool_hash, bkt, pool, hash_node)
5764 BUG_ON(!create_worker(pool));
5765
5766 wq_online = true;
82607adc
TH
5767 wq_watchdog_init();
5768
6ee0578b 5769 return 0;
1da177e4 5770}