]> git.ipfire.org Git - thirdparty/linux.git/blame - kernel/workqueue.c
workqueue: Try to catch flush_work() without INIT_WORK().
[thirdparty/linux.git] / kernel / workqueue.c
CommitLineData
1da177e4 1/*
c54fce6e 2 * kernel/workqueue.c - generic async execution with shared worker pool
1da177e4 3 *
c54fce6e 4 * Copyright (C) 2002 Ingo Molnar
1da177e4 5 *
c54fce6e
TH
6 * Derived from the taskqueue/keventd code by:
7 * David Woodhouse <dwmw2@infradead.org>
8 * Andrew Morton
9 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
10 * Theodore Ts'o <tytso@mit.edu>
1da177e4 11 *
c54fce6e 12 * Made to use alloc_percpu by Christoph Lameter.
1da177e4 13 *
c54fce6e
TH
14 * Copyright (C) 2010 SUSE Linux Products GmbH
15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
89ada679 16 *
c54fce6e
TH
17 * This is the generic async execution mechanism. Work items as are
18 * executed in process context. The worker pool is shared and
b11895c4
L
19 * automatically managed. There are two worker pools for each CPU (one for
20 * normal work items and the other for high priority ones) and some extra
21 * pools for workqueues which are not bound to any specific CPU - the
22 * number of these backing pools is dynamic.
c54fce6e 23 *
9a261491 24 * Please read Documentation/core-api/workqueue.rst for details.
1da177e4
LT
25 */
26
9984de1a 27#include <linux/export.h>
1da177e4
LT
28#include <linux/kernel.h>
29#include <linux/sched.h>
30#include <linux/init.h>
31#include <linux/signal.h>
32#include <linux/completion.h>
33#include <linux/workqueue.h>
34#include <linux/slab.h>
35#include <linux/cpu.h>
36#include <linux/notifier.h>
37#include <linux/kthread.h>
1fa44eca 38#include <linux/hardirq.h>
46934023 39#include <linux/mempolicy.h>
341a5958 40#include <linux/freezer.h>
d5abe669 41#include <linux/debug_locks.h>
4e6045f1 42#include <linux/lockdep.h>
c34056a3 43#include <linux/idr.h>
29c91e99 44#include <linux/jhash.h>
42f8570f 45#include <linux/hashtable.h>
76af4d93 46#include <linux/rculist.h>
bce90380 47#include <linux/nodemask.h>
4c16bd32 48#include <linux/moduleparam.h>
3d1cb205 49#include <linux/uaccess.h>
c98a9805 50#include <linux/sched/isolation.h>
62635ea8 51#include <linux/nmi.h>
e22bee78 52
ea138446 53#include "workqueue_internal.h"
1da177e4 54
c8e55f36 55enum {
24647570
TH
56 /*
57 * worker_pool flags
bc2ae0f5 58 *
24647570 59 * A bound pool is either associated or disassociated with its CPU.
bc2ae0f5
TH
60 * While associated (!DISASSOCIATED), all workers are bound to the
61 * CPU and none has %WORKER_UNBOUND set and concurrency management
62 * is in effect.
63 *
64 * While DISASSOCIATED, the cpu may be offline and all workers have
65 * %WORKER_UNBOUND set and concurrency management disabled, and may
24647570 66 * be executing on any CPU. The pool behaves as an unbound one.
bc2ae0f5 67 *
bc3a1afc 68 * Note that DISASSOCIATED should be flipped only while holding
1258fae7 69 * wq_pool_attach_mutex to avoid changing binding state while
4736cbf7 70 * worker_attach_to_pool() is in progress.
bc2ae0f5 71 */
692b4825 72 POOL_MANAGER_ACTIVE = 1 << 0, /* being managed */
24647570 73 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
db7bccf4 74
c8e55f36 75 /* worker flags */
c8e55f36
TH
76 WORKER_DIE = 1 << 1, /* die die die */
77 WORKER_IDLE = 1 << 2, /* is idle */
e22bee78 78 WORKER_PREP = 1 << 3, /* preparing to run works */
fb0e7beb 79 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
f3421797 80 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
a9ab775b 81 WORKER_REBOUND = 1 << 8, /* worker was rebound */
e22bee78 82
a9ab775b
TH
83 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE |
84 WORKER_UNBOUND | WORKER_REBOUND,
db7bccf4 85
e34cdddb 86 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
4ce62e9e 87
29c91e99 88 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */
c8e55f36 89 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
db7bccf4 90
e22bee78
TH
91 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
92 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
93
3233cdbd
TH
94 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
95 /* call for help after 10ms
96 (min two ticks) */
e22bee78
TH
97 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
98 CREATE_COOLDOWN = HZ, /* time to breath after fail */
e22bee78
TH
99
100 /*
101 * Rescue workers are used only on emergencies and shared by
8698a745 102 * all cpus. Give MIN_NICE.
e22bee78 103 */
8698a745
DY
104 RESCUER_NICE_LEVEL = MIN_NICE,
105 HIGHPRI_NICE_LEVEL = MIN_NICE,
ecf6881f
TH
106
107 WQ_NAME_LEN = 24,
c8e55f36 108};
1da177e4
LT
109
110/*
4690c4ab
TH
111 * Structure fields follow one of the following exclusion rules.
112 *
e41e704b
TH
113 * I: Modifiable by initialization/destruction paths and read-only for
114 * everyone else.
4690c4ab 115 *
e22bee78
TH
116 * P: Preemption protected. Disabling preemption is enough and should
117 * only be modified and accessed from the local cpu.
118 *
d565ed63 119 * L: pool->lock protected. Access with pool->lock held.
4690c4ab 120 *
d565ed63
TH
121 * X: During normal operation, modification requires pool->lock and should
122 * be done only from local cpu. Either disabling preemption on local
123 * cpu or grabbing pool->lock is enough for read access. If
124 * POOL_DISASSOCIATED is set, it's identical to L.
e22bee78 125 *
1258fae7 126 * A: wq_pool_attach_mutex protected.
822d8405 127 *
68e13a67 128 * PL: wq_pool_mutex protected.
5bcab335 129 *
68e13a67 130 * PR: wq_pool_mutex protected for writes. Sched-RCU protected for reads.
76af4d93 131 *
5b95e1af
LJ
132 * PW: wq_pool_mutex and wq->mutex protected for writes. Either for reads.
133 *
134 * PWR: wq_pool_mutex and wq->mutex protected for writes. Either or
135 * sched-RCU for reads.
136 *
3c25a55d
LJ
137 * WQ: wq->mutex protected.
138 *
b5927605 139 * WR: wq->mutex protected for writes. Sched-RCU protected for reads.
2e109a28
TH
140 *
141 * MD: wq_mayday_lock protected.
1da177e4 142 */
1da177e4 143
2eaebdb3 144/* struct worker is defined in workqueue_internal.h */
c34056a3 145
bd7bdd43 146struct worker_pool {
d565ed63 147 spinlock_t lock; /* the pool lock */
d84ff051 148 int cpu; /* I: the associated cpu */
f3f90ad4 149 int node; /* I: the associated node ID */
9daf9e67 150 int id; /* I: pool ID */
11ebea50 151 unsigned int flags; /* X: flags */
bd7bdd43 152
82607adc
TH
153 unsigned long watchdog_ts; /* L: watchdog timestamp */
154
bd7bdd43 155 struct list_head worklist; /* L: list of pending works */
ea1abd61 156
5826cc8f
LJ
157 int nr_workers; /* L: total number of workers */
158 int nr_idle; /* L: currently idle workers */
bd7bdd43
TH
159
160 struct list_head idle_list; /* X: list of idle workers */
161 struct timer_list idle_timer; /* L: worker idle timeout */
162 struct timer_list mayday_timer; /* L: SOS timer for workers */
163
c5aa87bb 164 /* a workers is either on busy_hash or idle_list, or the manager */
c9e7cf27
TH
165 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
166 /* L: hash of busy workers */
167
2607d7a6 168 struct worker *manager; /* L: purely informational */
92f9c5c4 169 struct list_head workers; /* A: attached workers */
60f5a4bc 170 struct completion *detach_completion; /* all workers detached */
e19e397a 171
7cda9aae 172 struct ida worker_ida; /* worker IDs for task name */
e19e397a 173
7a4e344c 174 struct workqueue_attrs *attrs; /* I: worker attributes */
68e13a67
LJ
175 struct hlist_node hash_node; /* PL: unbound_pool_hash node */
176 int refcnt; /* PL: refcnt for unbound pools */
7a4e344c 177
e19e397a
TH
178 /*
179 * The current concurrency level. As it's likely to be accessed
180 * from other CPUs during try_to_wake_up(), put it in a separate
181 * cacheline.
182 */
183 atomic_t nr_running ____cacheline_aligned_in_smp;
29c91e99
TH
184
185 /*
186 * Destruction of pool is sched-RCU protected to allow dereferences
187 * from get_work_pool().
188 */
189 struct rcu_head rcu;
8b03ae3c
TH
190} ____cacheline_aligned_in_smp;
191
1da177e4 192/*
112202d9
TH
193 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS
194 * of work_struct->data are used for flags and the remaining high bits
195 * point to the pwq; thus, pwqs need to be aligned at two's power of the
196 * number of flag bits.
1da177e4 197 */
112202d9 198struct pool_workqueue {
bd7bdd43 199 struct worker_pool *pool; /* I: the associated pool */
4690c4ab 200 struct workqueue_struct *wq; /* I: the owning workqueue */
73f53c4a
TH
201 int work_color; /* L: current color */
202 int flush_color; /* L: flushing color */
8864b4e5 203 int refcnt; /* L: reference count */
73f53c4a
TH
204 int nr_in_flight[WORK_NR_COLORS];
205 /* L: nr of in_flight works */
1e19ffc6 206 int nr_active; /* L: nr of active works */
a0a1a5fd 207 int max_active; /* L: max active works */
1e19ffc6 208 struct list_head delayed_works; /* L: delayed works */
3c25a55d 209 struct list_head pwqs_node; /* WR: node on wq->pwqs */
2e109a28 210 struct list_head mayday_node; /* MD: node on wq->maydays */
8864b4e5
TH
211
212 /*
213 * Release of unbound pwq is punted to system_wq. See put_pwq()
214 * and pwq_unbound_release_workfn() for details. pool_workqueue
215 * itself is also sched-RCU protected so that the first pwq can be
b09f4fd3 216 * determined without grabbing wq->mutex.
8864b4e5
TH
217 */
218 struct work_struct unbound_release_work;
219 struct rcu_head rcu;
e904e6c2 220} __aligned(1 << WORK_STRUCT_FLAG_BITS);
1da177e4 221
73f53c4a
TH
222/*
223 * Structure used to wait for workqueue flush.
224 */
225struct wq_flusher {
3c25a55d
LJ
226 struct list_head list; /* WQ: list of flushers */
227 int flush_color; /* WQ: flush color waiting for */
73f53c4a
TH
228 struct completion done; /* flush completion */
229};
230
226223ab
TH
231struct wq_device;
232
1da177e4 233/*
c5aa87bb
TH
234 * The externally visible workqueue. It relays the issued work items to
235 * the appropriate worker_pool through its pool_workqueues.
1da177e4
LT
236 */
237struct workqueue_struct {
3c25a55d 238 struct list_head pwqs; /* WR: all pwqs of this wq */
e2dca7ad 239 struct list_head list; /* PR: list of all workqueues */
73f53c4a 240
3c25a55d
LJ
241 struct mutex mutex; /* protects this wq */
242 int work_color; /* WQ: current work color */
243 int flush_color; /* WQ: current flush color */
112202d9 244 atomic_t nr_pwqs_to_flush; /* flush in progress */
3c25a55d
LJ
245 struct wq_flusher *first_flusher; /* WQ: first flusher */
246 struct list_head flusher_queue; /* WQ: flush waiters */
247 struct list_head flusher_overflow; /* WQ: flush overflow list */
73f53c4a 248
2e109a28 249 struct list_head maydays; /* MD: pwqs requesting rescue */
e22bee78
TH
250 struct worker *rescuer; /* I: rescue worker */
251
87fc741e 252 int nr_drainers; /* WQ: drain in progress */
a357fc03 253 int saved_max_active; /* WQ: saved pwq max_active */
226223ab 254
5b95e1af
LJ
255 struct workqueue_attrs *unbound_attrs; /* PW: only for unbound wqs */
256 struct pool_workqueue *dfl_pwq; /* PW: only for unbound wqs */
6029a918 257
226223ab
TH
258#ifdef CONFIG_SYSFS
259 struct wq_device *wq_dev; /* I: for sysfs interface */
260#endif
4e6045f1 261#ifdef CONFIG_LOCKDEP
4690c4ab 262 struct lockdep_map lockdep_map;
4e6045f1 263#endif
ecf6881f 264 char name[WQ_NAME_LEN]; /* I: workqueue name */
2728fd2f 265
e2dca7ad
TH
266 /*
267 * Destruction of workqueue_struct is sched-RCU protected to allow
268 * walking the workqueues list without grabbing wq_pool_mutex.
269 * This is used to dump all workqueues from sysrq.
270 */
271 struct rcu_head rcu;
272
2728fd2f
TH
273 /* hot fields used during command issue, aligned to cacheline */
274 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */
275 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
5b95e1af 276 struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */
1da177e4
LT
277};
278
e904e6c2
TH
279static struct kmem_cache *pwq_cache;
280
bce90380
TH
281static cpumask_var_t *wq_numa_possible_cpumask;
282 /* possible CPUs of each node */
283
d55262c4
TH
284static bool wq_disable_numa;
285module_param_named(disable_numa, wq_disable_numa, bool, 0444);
286
cee22a15 287/* see the comment above the definition of WQ_POWER_EFFICIENT */
552f530c 288static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
cee22a15
VK
289module_param_named(power_efficient, wq_power_efficient, bool, 0444);
290
863b710b 291static bool wq_online; /* can kworkers be created yet? */
3347fa09 292
bce90380
TH
293static bool wq_numa_enabled; /* unbound NUMA affinity enabled */
294
4c16bd32
TH
295/* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
296static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
297
68e13a67 298static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */
1258fae7 299static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */
2e109a28 300static DEFINE_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */
692b4825 301static DECLARE_WAIT_QUEUE_HEAD(wq_manager_wait); /* wait for manager to go away */
5bcab335 302
e2dca7ad 303static LIST_HEAD(workqueues); /* PR: list of all workqueues */
68e13a67 304static bool workqueue_freezing; /* PL: have wqs started freezing? */
7d19c5ce 305
ef557180
MG
306/* PL: allowable cpus for unbound wqs and work items */
307static cpumask_var_t wq_unbound_cpumask;
308
309/* CPU where unbound work was last round robin scheduled from this CPU */
310static DEFINE_PER_CPU(int, wq_rr_cpu_last);
b05a7928 311
f303fccb
TH
312/*
313 * Local execution of unbound work items is no longer guaranteed. The
314 * following always forces round-robin CPU selection on unbound work items
315 * to uncover usages which depend on it.
316 */
317#ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
318static bool wq_debug_force_rr_cpu = true;
319#else
320static bool wq_debug_force_rr_cpu = false;
321#endif
322module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
323
7d19c5ce 324/* the per-cpu worker pools */
25528213 325static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools);
7d19c5ce 326
68e13a67 327static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */
7d19c5ce 328
68e13a67 329/* PL: hash of all unbound pools keyed by pool->attrs */
29c91e99
TH
330static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
331
c5aa87bb 332/* I: attributes used when instantiating standard unbound pools on demand */
29c91e99
TH
333static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
334
8a2b7538
TH
335/* I: attributes used when instantiating ordered pools on demand */
336static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
337
d320c038 338struct workqueue_struct *system_wq __read_mostly;
ad7b1f84 339EXPORT_SYMBOL(system_wq);
044c782c 340struct workqueue_struct *system_highpri_wq __read_mostly;
1aabe902 341EXPORT_SYMBOL_GPL(system_highpri_wq);
044c782c 342struct workqueue_struct *system_long_wq __read_mostly;
d320c038 343EXPORT_SYMBOL_GPL(system_long_wq);
044c782c 344struct workqueue_struct *system_unbound_wq __read_mostly;
f3421797 345EXPORT_SYMBOL_GPL(system_unbound_wq);
044c782c 346struct workqueue_struct *system_freezable_wq __read_mostly;
24d51add 347EXPORT_SYMBOL_GPL(system_freezable_wq);
0668106c
VK
348struct workqueue_struct *system_power_efficient_wq __read_mostly;
349EXPORT_SYMBOL_GPL(system_power_efficient_wq);
350struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
351EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
d320c038 352
7d19c5ce 353static int worker_thread(void *__worker);
6ba94429 354static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
7d19c5ce 355
97bd2347
TH
356#define CREATE_TRACE_POINTS
357#include <trace/events/workqueue.h>
358
68e13a67 359#define assert_rcu_or_pool_mutex() \
f78f5b90
PM
360 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \
361 !lockdep_is_held(&wq_pool_mutex), \
362 "sched RCU or wq_pool_mutex should be held")
5bcab335 363
b09f4fd3 364#define assert_rcu_or_wq_mutex(wq) \
f78f5b90
PM
365 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \
366 !lockdep_is_held(&wq->mutex), \
367 "sched RCU or wq->mutex should be held")
76af4d93 368
5b95e1af 369#define assert_rcu_or_wq_mutex_or_pool_mutex(wq) \
f78f5b90
PM
370 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \
371 !lockdep_is_held(&wq->mutex) && \
372 !lockdep_is_held(&wq_pool_mutex), \
373 "sched RCU, wq->mutex or wq_pool_mutex should be held")
5b95e1af 374
f02ae73a
TH
375#define for_each_cpu_worker_pool(pool, cpu) \
376 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \
377 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
7a62c2c8 378 (pool)++)
4ce62e9e 379
17116969
TH
380/**
381 * for_each_pool - iterate through all worker_pools in the system
382 * @pool: iteration cursor
611c92a0 383 * @pi: integer used for iteration
fa1b54e6 384 *
68e13a67
LJ
385 * This must be called either with wq_pool_mutex held or sched RCU read
386 * locked. If the pool needs to be used beyond the locking in effect, the
387 * caller is responsible for guaranteeing that the pool stays online.
fa1b54e6
TH
388 *
389 * The if/else clause exists only for the lockdep assertion and can be
390 * ignored.
17116969 391 */
611c92a0
TH
392#define for_each_pool(pool, pi) \
393 idr_for_each_entry(&worker_pool_idr, pool, pi) \
68e13a67 394 if (({ assert_rcu_or_pool_mutex(); false; })) { } \
fa1b54e6 395 else
17116969 396
822d8405
TH
397/**
398 * for_each_pool_worker - iterate through all workers of a worker_pool
399 * @worker: iteration cursor
822d8405
TH
400 * @pool: worker_pool to iterate workers of
401 *
1258fae7 402 * This must be called with wq_pool_attach_mutex.
822d8405
TH
403 *
404 * The if/else clause exists only for the lockdep assertion and can be
405 * ignored.
406 */
da028469
LJ
407#define for_each_pool_worker(worker, pool) \
408 list_for_each_entry((worker), &(pool)->workers, node) \
1258fae7 409 if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \
822d8405
TH
410 else
411
49e3cf44
TH
412/**
413 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
414 * @pwq: iteration cursor
415 * @wq: the target workqueue
76af4d93 416 *
b09f4fd3 417 * This must be called either with wq->mutex held or sched RCU read locked.
794b18bc
TH
418 * If the pwq needs to be used beyond the locking in effect, the caller is
419 * responsible for guaranteeing that the pwq stays online.
76af4d93
TH
420 *
421 * The if/else clause exists only for the lockdep assertion and can be
422 * ignored.
49e3cf44
TH
423 */
424#define for_each_pwq(pwq, wq) \
76af4d93 425 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node) \
b09f4fd3 426 if (({ assert_rcu_or_wq_mutex(wq); false; })) { } \
76af4d93 427 else
f3421797 428
dc186ad7
TG
429#ifdef CONFIG_DEBUG_OBJECTS_WORK
430
431static struct debug_obj_descr work_debug_descr;
432
99777288
SG
433static void *work_debug_hint(void *addr)
434{
435 return ((struct work_struct *) addr)->func;
436}
437
b9fdac7f
CD
438static bool work_is_static_object(void *addr)
439{
440 struct work_struct *work = addr;
441
442 return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work));
443}
444
dc186ad7
TG
445/*
446 * fixup_init is called when:
447 * - an active object is initialized
448 */
02a982a6 449static bool work_fixup_init(void *addr, enum debug_obj_state state)
dc186ad7
TG
450{
451 struct work_struct *work = addr;
452
453 switch (state) {
454 case ODEBUG_STATE_ACTIVE:
455 cancel_work_sync(work);
456 debug_object_init(work, &work_debug_descr);
02a982a6 457 return true;
dc186ad7 458 default:
02a982a6 459 return false;
dc186ad7
TG
460 }
461}
462
dc186ad7
TG
463/*
464 * fixup_free is called when:
465 * - an active object is freed
466 */
02a982a6 467static bool work_fixup_free(void *addr, enum debug_obj_state state)
dc186ad7
TG
468{
469 struct work_struct *work = addr;
470
471 switch (state) {
472 case ODEBUG_STATE_ACTIVE:
473 cancel_work_sync(work);
474 debug_object_free(work, &work_debug_descr);
02a982a6 475 return true;
dc186ad7 476 default:
02a982a6 477 return false;
dc186ad7
TG
478 }
479}
480
481static struct debug_obj_descr work_debug_descr = {
482 .name = "work_struct",
99777288 483 .debug_hint = work_debug_hint,
b9fdac7f 484 .is_static_object = work_is_static_object,
dc186ad7 485 .fixup_init = work_fixup_init,
dc186ad7
TG
486 .fixup_free = work_fixup_free,
487};
488
489static inline void debug_work_activate(struct work_struct *work)
490{
491 debug_object_activate(work, &work_debug_descr);
492}
493
494static inline void debug_work_deactivate(struct work_struct *work)
495{
496 debug_object_deactivate(work, &work_debug_descr);
497}
498
499void __init_work(struct work_struct *work, int onstack)
500{
501 if (onstack)
502 debug_object_init_on_stack(work, &work_debug_descr);
503 else
504 debug_object_init(work, &work_debug_descr);
505}
506EXPORT_SYMBOL_GPL(__init_work);
507
508void destroy_work_on_stack(struct work_struct *work)
509{
510 debug_object_free(work, &work_debug_descr);
511}
512EXPORT_SYMBOL_GPL(destroy_work_on_stack);
513
ea2e64f2
TG
514void destroy_delayed_work_on_stack(struct delayed_work *work)
515{
516 destroy_timer_on_stack(&work->timer);
517 debug_object_free(&work->work, &work_debug_descr);
518}
519EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
520
dc186ad7
TG
521#else
522static inline void debug_work_activate(struct work_struct *work) { }
523static inline void debug_work_deactivate(struct work_struct *work) { }
524#endif
525
4e8b22bd
LB
526/**
527 * worker_pool_assign_id - allocate ID and assing it to @pool
528 * @pool: the pool pointer of interest
529 *
530 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
531 * successfully, -errno on failure.
532 */
9daf9e67
TH
533static int worker_pool_assign_id(struct worker_pool *pool)
534{
535 int ret;
536
68e13a67 537 lockdep_assert_held(&wq_pool_mutex);
5bcab335 538
4e8b22bd
LB
539 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
540 GFP_KERNEL);
229641a6 541 if (ret >= 0) {
e68035fb 542 pool->id = ret;
229641a6
TH
543 return 0;
544 }
fa1b54e6 545 return ret;
7c3eed5c
TH
546}
547
df2d5ae4
TH
548/**
549 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
550 * @wq: the target workqueue
551 * @node: the node ID
552 *
5b95e1af
LJ
553 * This must be called with any of wq_pool_mutex, wq->mutex or sched RCU
554 * read locked.
df2d5ae4
TH
555 * If the pwq needs to be used beyond the locking in effect, the caller is
556 * responsible for guaranteeing that the pwq stays online.
d185af30
YB
557 *
558 * Return: The unbound pool_workqueue for @node.
df2d5ae4
TH
559 */
560static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
561 int node)
562{
5b95e1af 563 assert_rcu_or_wq_mutex_or_pool_mutex(wq);
d6e022f1
TH
564
565 /*
566 * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a
567 * delayed item is pending. The plan is to keep CPU -> NODE
568 * mapping valid and stable across CPU on/offlines. Once that
569 * happens, this workaround can be removed.
570 */
571 if (unlikely(node == NUMA_NO_NODE))
572 return wq->dfl_pwq;
573
df2d5ae4
TH
574 return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
575}
576
73f53c4a
TH
577static unsigned int work_color_to_flags(int color)
578{
579 return color << WORK_STRUCT_COLOR_SHIFT;
580}
581
582static int get_work_color(struct work_struct *work)
583{
584 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
585 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
586}
587
588static int work_next_color(int color)
589{
590 return (color + 1) % WORK_NR_COLORS;
591}
1da177e4 592
14441960 593/*
112202d9
TH
594 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
595 * contain the pointer to the queued pwq. Once execution starts, the flag
7c3eed5c 596 * is cleared and the high bits contain OFFQ flags and pool ID.
7a22ad75 597 *
112202d9
TH
598 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
599 * and clear_work_data() can be used to set the pwq, pool or clear
bbb68dfa
TH
600 * work->data. These functions should only be called while the work is
601 * owned - ie. while the PENDING bit is set.
7a22ad75 602 *
112202d9 603 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
7c3eed5c 604 * corresponding to a work. Pool is available once the work has been
112202d9 605 * queued anywhere after initialization until it is sync canceled. pwq is
7c3eed5c 606 * available only while the work item is queued.
7a22ad75 607 *
bbb68dfa
TH
608 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
609 * canceled. While being canceled, a work item may have its PENDING set
610 * but stay off timer and worklist for arbitrarily long and nobody should
611 * try to steal the PENDING bit.
14441960 612 */
7a22ad75
TH
613static inline void set_work_data(struct work_struct *work, unsigned long data,
614 unsigned long flags)
365970a1 615{
6183c009 616 WARN_ON_ONCE(!work_pending(work));
7a22ad75
TH
617 atomic_long_set(&work->data, data | flags | work_static(work));
618}
365970a1 619
112202d9 620static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
7a22ad75
TH
621 unsigned long extra_flags)
622{
112202d9
TH
623 set_work_data(work, (unsigned long)pwq,
624 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
365970a1
DH
625}
626
4468a00f
LJ
627static void set_work_pool_and_keep_pending(struct work_struct *work,
628 int pool_id)
629{
630 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
631 WORK_STRUCT_PENDING);
632}
633
7c3eed5c
TH
634static void set_work_pool_and_clear_pending(struct work_struct *work,
635 int pool_id)
7a22ad75 636{
23657bb1
TH
637 /*
638 * The following wmb is paired with the implied mb in
639 * test_and_set_bit(PENDING) and ensures all updates to @work made
640 * here are visible to and precede any updates by the next PENDING
641 * owner.
642 */
643 smp_wmb();
7c3eed5c 644 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
346c09f8
RP
645 /*
646 * The following mb guarantees that previous clear of a PENDING bit
647 * will not be reordered with any speculative LOADS or STORES from
648 * work->current_func, which is executed afterwards. This possible
649 * reordering can lead to a missed execution on attempt to qeueue
650 * the same @work. E.g. consider this case:
651 *
652 * CPU#0 CPU#1
653 * ---------------------------- --------------------------------
654 *
655 * 1 STORE event_indicated
656 * 2 queue_work_on() {
657 * 3 test_and_set_bit(PENDING)
658 * 4 } set_..._and_clear_pending() {
659 * 5 set_work_data() # clear bit
660 * 6 smp_mb()
661 * 7 work->current_func() {
662 * 8 LOAD event_indicated
663 * }
664 *
665 * Without an explicit full barrier speculative LOAD on line 8 can
666 * be executed before CPU#0 does STORE on line 1. If that happens,
667 * CPU#0 observes the PENDING bit is still set and new execution of
668 * a @work is not queued in a hope, that CPU#1 will eventually
669 * finish the queued @work. Meanwhile CPU#1 does not see
670 * event_indicated is set, because speculative LOAD was executed
671 * before actual STORE.
672 */
673 smp_mb();
7a22ad75 674}
f756d5e2 675
7a22ad75 676static void clear_work_data(struct work_struct *work)
1da177e4 677{
7c3eed5c
TH
678 smp_wmb(); /* see set_work_pool_and_clear_pending() */
679 set_work_data(work, WORK_STRUCT_NO_POOL, 0);
1da177e4
LT
680}
681
112202d9 682static struct pool_workqueue *get_work_pwq(struct work_struct *work)
b1f4ec17 683{
e120153d 684 unsigned long data = atomic_long_read(&work->data);
7a22ad75 685
112202d9 686 if (data & WORK_STRUCT_PWQ)
e120153d
TH
687 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
688 else
689 return NULL;
4d707b9f
ON
690}
691
7c3eed5c
TH
692/**
693 * get_work_pool - return the worker_pool a given work was associated with
694 * @work: the work item of interest
695 *
68e13a67
LJ
696 * Pools are created and destroyed under wq_pool_mutex, and allows read
697 * access under sched-RCU read lock. As such, this function should be
698 * called under wq_pool_mutex or with preemption disabled.
fa1b54e6
TH
699 *
700 * All fields of the returned pool are accessible as long as the above
701 * mentioned locking is in effect. If the returned pool needs to be used
702 * beyond the critical section, the caller is responsible for ensuring the
703 * returned pool is and stays online.
d185af30
YB
704 *
705 * Return: The worker_pool @work was last associated with. %NULL if none.
7c3eed5c
TH
706 */
707static struct worker_pool *get_work_pool(struct work_struct *work)
365970a1 708{
e120153d 709 unsigned long data = atomic_long_read(&work->data);
7c3eed5c 710 int pool_id;
7a22ad75 711
68e13a67 712 assert_rcu_or_pool_mutex();
fa1b54e6 713
112202d9
TH
714 if (data & WORK_STRUCT_PWQ)
715 return ((struct pool_workqueue *)
7c3eed5c 716 (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
7a22ad75 717
7c3eed5c
TH
718 pool_id = data >> WORK_OFFQ_POOL_SHIFT;
719 if (pool_id == WORK_OFFQ_POOL_NONE)
7a22ad75
TH
720 return NULL;
721
fa1b54e6 722 return idr_find(&worker_pool_idr, pool_id);
7c3eed5c
TH
723}
724
725/**
726 * get_work_pool_id - return the worker pool ID a given work is associated with
727 * @work: the work item of interest
728 *
d185af30 729 * Return: The worker_pool ID @work was last associated with.
7c3eed5c
TH
730 * %WORK_OFFQ_POOL_NONE if none.
731 */
732static int get_work_pool_id(struct work_struct *work)
733{
54d5b7d0
LJ
734 unsigned long data = atomic_long_read(&work->data);
735
112202d9
TH
736 if (data & WORK_STRUCT_PWQ)
737 return ((struct pool_workqueue *)
54d5b7d0 738 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
7c3eed5c 739
54d5b7d0 740 return data >> WORK_OFFQ_POOL_SHIFT;
7c3eed5c
TH
741}
742
bbb68dfa
TH
743static void mark_work_canceling(struct work_struct *work)
744{
7c3eed5c 745 unsigned long pool_id = get_work_pool_id(work);
bbb68dfa 746
7c3eed5c
TH
747 pool_id <<= WORK_OFFQ_POOL_SHIFT;
748 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
bbb68dfa
TH
749}
750
751static bool work_is_canceling(struct work_struct *work)
752{
753 unsigned long data = atomic_long_read(&work->data);
754
112202d9 755 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
bbb68dfa
TH
756}
757
e22bee78 758/*
3270476a
TH
759 * Policy functions. These define the policies on how the global worker
760 * pools are managed. Unless noted otherwise, these functions assume that
d565ed63 761 * they're being called with pool->lock held.
e22bee78
TH
762 */
763
63d95a91 764static bool __need_more_worker(struct worker_pool *pool)
a848e3b6 765{
e19e397a 766 return !atomic_read(&pool->nr_running);
a848e3b6
ON
767}
768
4594bf15 769/*
e22bee78
TH
770 * Need to wake up a worker? Called from anything but currently
771 * running workers.
974271c4
TH
772 *
773 * Note that, because unbound workers never contribute to nr_running, this
706026c2 774 * function will always return %true for unbound pools as long as the
974271c4 775 * worklist isn't empty.
4594bf15 776 */
63d95a91 777static bool need_more_worker(struct worker_pool *pool)
365970a1 778{
63d95a91 779 return !list_empty(&pool->worklist) && __need_more_worker(pool);
e22bee78 780}
4594bf15 781
e22bee78 782/* Can I start working? Called from busy but !running workers. */
63d95a91 783static bool may_start_working(struct worker_pool *pool)
e22bee78 784{
63d95a91 785 return pool->nr_idle;
e22bee78
TH
786}
787
788/* Do I need to keep working? Called from currently running workers. */
63d95a91 789static bool keep_working(struct worker_pool *pool)
e22bee78 790{
e19e397a
TH
791 return !list_empty(&pool->worklist) &&
792 atomic_read(&pool->nr_running) <= 1;
e22bee78
TH
793}
794
795/* Do we need a new worker? Called from manager. */
63d95a91 796static bool need_to_create_worker(struct worker_pool *pool)
e22bee78 797{
63d95a91 798 return need_more_worker(pool) && !may_start_working(pool);
e22bee78 799}
365970a1 800
e22bee78 801/* Do we have too many workers and should some go away? */
63d95a91 802static bool too_many_workers(struct worker_pool *pool)
e22bee78 803{
692b4825 804 bool managing = pool->flags & POOL_MANAGER_ACTIVE;
63d95a91
TH
805 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
806 int nr_busy = pool->nr_workers - nr_idle;
e22bee78
TH
807
808 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
365970a1
DH
809}
810
4d707b9f 811/*
e22bee78
TH
812 * Wake up functions.
813 */
814
1037de36
LJ
815/* Return the first idle worker. Safe with preemption disabled */
816static struct worker *first_idle_worker(struct worker_pool *pool)
7e11629d 817{
63d95a91 818 if (unlikely(list_empty(&pool->idle_list)))
7e11629d
TH
819 return NULL;
820
63d95a91 821 return list_first_entry(&pool->idle_list, struct worker, entry);
7e11629d
TH
822}
823
824/**
825 * wake_up_worker - wake up an idle worker
63d95a91 826 * @pool: worker pool to wake worker from
7e11629d 827 *
63d95a91 828 * Wake up the first idle worker of @pool.
7e11629d
TH
829 *
830 * CONTEXT:
d565ed63 831 * spin_lock_irq(pool->lock).
7e11629d 832 */
63d95a91 833static void wake_up_worker(struct worker_pool *pool)
7e11629d 834{
1037de36 835 struct worker *worker = first_idle_worker(pool);
7e11629d
TH
836
837 if (likely(worker))
838 wake_up_process(worker->task);
839}
840
d302f017 841/**
e22bee78
TH
842 * wq_worker_waking_up - a worker is waking up
843 * @task: task waking up
844 * @cpu: CPU @task is waking up to
845 *
846 * This function is called during try_to_wake_up() when a worker is
847 * being awoken.
848 *
849 * CONTEXT:
850 * spin_lock_irq(rq->lock)
851 */
d84ff051 852void wq_worker_waking_up(struct task_struct *task, int cpu)
e22bee78
TH
853{
854 struct worker *worker = kthread_data(task);
855
36576000 856 if (!(worker->flags & WORKER_NOT_RUNNING)) {
ec22ca5e 857 WARN_ON_ONCE(worker->pool->cpu != cpu);
e19e397a 858 atomic_inc(&worker->pool->nr_running);
36576000 859 }
e22bee78
TH
860}
861
862/**
863 * wq_worker_sleeping - a worker is going to sleep
864 * @task: task going to sleep
e22bee78
TH
865 *
866 * This function is called during schedule() when a busy worker is
867 * going to sleep. Worker on the same cpu can be woken up by
868 * returning pointer to its task.
869 *
870 * CONTEXT:
871 * spin_lock_irq(rq->lock)
872 *
d185af30 873 * Return:
e22bee78
TH
874 * Worker task on @cpu to wake up, %NULL if none.
875 */
9b7f6597 876struct task_struct *wq_worker_sleeping(struct task_struct *task)
e22bee78
TH
877{
878 struct worker *worker = kthread_data(task), *to_wakeup = NULL;
111c225a 879 struct worker_pool *pool;
e22bee78 880
111c225a
TH
881 /*
882 * Rescuers, which may not have all the fields set up like normal
883 * workers, also reach here, let's not access anything before
884 * checking NOT_RUNNING.
885 */
2d64672e 886 if (worker->flags & WORKER_NOT_RUNNING)
e22bee78
TH
887 return NULL;
888
111c225a 889 pool = worker->pool;
111c225a 890
e22bee78 891 /* this can only happen on the local cpu */
9b7f6597 892 if (WARN_ON_ONCE(pool->cpu != raw_smp_processor_id()))
6183c009 893 return NULL;
e22bee78
TH
894
895 /*
896 * The counterpart of the following dec_and_test, implied mb,
897 * worklist not empty test sequence is in insert_work().
898 * Please read comment there.
899 *
628c78e7
TH
900 * NOT_RUNNING is clear. This means that we're bound to and
901 * running on the local cpu w/ rq lock held and preemption
902 * disabled, which in turn means that none else could be
d565ed63 903 * manipulating idle_list, so dereferencing idle_list without pool
628c78e7 904 * lock is safe.
e22bee78 905 */
e19e397a
TH
906 if (atomic_dec_and_test(&pool->nr_running) &&
907 !list_empty(&pool->worklist))
1037de36 908 to_wakeup = first_idle_worker(pool);
e22bee78
TH
909 return to_wakeup ? to_wakeup->task : NULL;
910}
911
912/**
913 * worker_set_flags - set worker flags and adjust nr_running accordingly
cb444766 914 * @worker: self
d302f017 915 * @flags: flags to set
d302f017 916 *
228f1d00 917 * Set @flags in @worker->flags and adjust nr_running accordingly.
d302f017 918 *
cb444766 919 * CONTEXT:
d565ed63 920 * spin_lock_irq(pool->lock)
d302f017 921 */
228f1d00 922static inline void worker_set_flags(struct worker *worker, unsigned int flags)
d302f017 923{
bd7bdd43 924 struct worker_pool *pool = worker->pool;
e22bee78 925
cb444766
TH
926 WARN_ON_ONCE(worker->task != current);
927
228f1d00 928 /* If transitioning into NOT_RUNNING, adjust nr_running. */
e22bee78
TH
929 if ((flags & WORKER_NOT_RUNNING) &&
930 !(worker->flags & WORKER_NOT_RUNNING)) {
228f1d00 931 atomic_dec(&pool->nr_running);
e22bee78
TH
932 }
933
d302f017
TH
934 worker->flags |= flags;
935}
936
937/**
e22bee78 938 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
cb444766 939 * @worker: self
d302f017
TH
940 * @flags: flags to clear
941 *
e22bee78 942 * Clear @flags in @worker->flags and adjust nr_running accordingly.
d302f017 943 *
cb444766 944 * CONTEXT:
d565ed63 945 * spin_lock_irq(pool->lock)
d302f017
TH
946 */
947static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
948{
63d95a91 949 struct worker_pool *pool = worker->pool;
e22bee78
TH
950 unsigned int oflags = worker->flags;
951
cb444766
TH
952 WARN_ON_ONCE(worker->task != current);
953
d302f017 954 worker->flags &= ~flags;
e22bee78 955
42c025f3
TH
956 /*
957 * If transitioning out of NOT_RUNNING, increment nr_running. Note
958 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
959 * of multiple flags, not a single flag.
960 */
e22bee78
TH
961 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
962 if (!(worker->flags & WORKER_NOT_RUNNING))
e19e397a 963 atomic_inc(&pool->nr_running);
d302f017
TH
964}
965
8cca0eea
TH
966/**
967 * find_worker_executing_work - find worker which is executing a work
c9e7cf27 968 * @pool: pool of interest
8cca0eea
TH
969 * @work: work to find worker for
970 *
c9e7cf27
TH
971 * Find a worker which is executing @work on @pool by searching
972 * @pool->busy_hash which is keyed by the address of @work. For a worker
a2c1c57b
TH
973 * to match, its current execution should match the address of @work and
974 * its work function. This is to avoid unwanted dependency between
975 * unrelated work executions through a work item being recycled while still
976 * being executed.
977 *
978 * This is a bit tricky. A work item may be freed once its execution
979 * starts and nothing prevents the freed area from being recycled for
980 * another work item. If the same work item address ends up being reused
981 * before the original execution finishes, workqueue will identify the
982 * recycled work item as currently executing and make it wait until the
983 * current execution finishes, introducing an unwanted dependency.
984 *
c5aa87bb
TH
985 * This function checks the work item address and work function to avoid
986 * false positives. Note that this isn't complete as one may construct a
987 * work function which can introduce dependency onto itself through a
988 * recycled work item. Well, if somebody wants to shoot oneself in the
989 * foot that badly, there's only so much we can do, and if such deadlock
990 * actually occurs, it should be easy to locate the culprit work function.
8cca0eea
TH
991 *
992 * CONTEXT:
d565ed63 993 * spin_lock_irq(pool->lock).
8cca0eea 994 *
d185af30
YB
995 * Return:
996 * Pointer to worker which is executing @work if found, %NULL
8cca0eea 997 * otherwise.
4d707b9f 998 */
c9e7cf27 999static struct worker *find_worker_executing_work(struct worker_pool *pool,
8cca0eea 1000 struct work_struct *work)
4d707b9f 1001{
42f8570f 1002 struct worker *worker;
42f8570f 1003
b67bfe0d 1004 hash_for_each_possible(pool->busy_hash, worker, hentry,
a2c1c57b
TH
1005 (unsigned long)work)
1006 if (worker->current_work == work &&
1007 worker->current_func == work->func)
42f8570f
SL
1008 return worker;
1009
1010 return NULL;
4d707b9f
ON
1011}
1012
bf4ede01
TH
1013/**
1014 * move_linked_works - move linked works to a list
1015 * @work: start of series of works to be scheduled
1016 * @head: target list to append @work to
402dd89d 1017 * @nextp: out parameter for nested worklist walking
bf4ede01
TH
1018 *
1019 * Schedule linked works starting from @work to @head. Work series to
1020 * be scheduled starts at @work and includes any consecutive work with
1021 * WORK_STRUCT_LINKED set in its predecessor.
1022 *
1023 * If @nextp is not NULL, it's updated to point to the next work of
1024 * the last scheduled work. This allows move_linked_works() to be
1025 * nested inside outer list_for_each_entry_safe().
1026 *
1027 * CONTEXT:
d565ed63 1028 * spin_lock_irq(pool->lock).
bf4ede01
TH
1029 */
1030static void move_linked_works(struct work_struct *work, struct list_head *head,
1031 struct work_struct **nextp)
1032{
1033 struct work_struct *n;
1034
1035 /*
1036 * Linked worklist will always end before the end of the list,
1037 * use NULL for list head.
1038 */
1039 list_for_each_entry_safe_from(work, n, NULL, entry) {
1040 list_move_tail(&work->entry, head);
1041 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1042 break;
1043 }
1044
1045 /*
1046 * If we're already inside safe list traversal and have moved
1047 * multiple works to the scheduled queue, the next position
1048 * needs to be updated.
1049 */
1050 if (nextp)
1051 *nextp = n;
1052}
1053
8864b4e5
TH
1054/**
1055 * get_pwq - get an extra reference on the specified pool_workqueue
1056 * @pwq: pool_workqueue to get
1057 *
1058 * Obtain an extra reference on @pwq. The caller should guarantee that
1059 * @pwq has positive refcnt and be holding the matching pool->lock.
1060 */
1061static void get_pwq(struct pool_workqueue *pwq)
1062{
1063 lockdep_assert_held(&pwq->pool->lock);
1064 WARN_ON_ONCE(pwq->refcnt <= 0);
1065 pwq->refcnt++;
1066}
1067
1068/**
1069 * put_pwq - put a pool_workqueue reference
1070 * @pwq: pool_workqueue to put
1071 *
1072 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its
1073 * destruction. The caller should be holding the matching pool->lock.
1074 */
1075static void put_pwq(struct pool_workqueue *pwq)
1076{
1077 lockdep_assert_held(&pwq->pool->lock);
1078 if (likely(--pwq->refcnt))
1079 return;
1080 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1081 return;
1082 /*
1083 * @pwq can't be released under pool->lock, bounce to
1084 * pwq_unbound_release_workfn(). This never recurses on the same
1085 * pool->lock as this path is taken only for unbound workqueues and
1086 * the release work item is scheduled on a per-cpu workqueue. To
1087 * avoid lockdep warning, unbound pool->locks are given lockdep
1088 * subclass of 1 in get_unbound_pool().
1089 */
1090 schedule_work(&pwq->unbound_release_work);
1091}
1092
dce90d47
TH
1093/**
1094 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1095 * @pwq: pool_workqueue to put (can be %NULL)
1096 *
1097 * put_pwq() with locking. This function also allows %NULL @pwq.
1098 */
1099static void put_pwq_unlocked(struct pool_workqueue *pwq)
1100{
1101 if (pwq) {
1102 /*
1103 * As both pwqs and pools are sched-RCU protected, the
1104 * following lock operations are safe.
1105 */
1106 spin_lock_irq(&pwq->pool->lock);
1107 put_pwq(pwq);
1108 spin_unlock_irq(&pwq->pool->lock);
1109 }
1110}
1111
112202d9 1112static void pwq_activate_delayed_work(struct work_struct *work)
bf4ede01 1113{
112202d9 1114 struct pool_workqueue *pwq = get_work_pwq(work);
bf4ede01
TH
1115
1116 trace_workqueue_activate_work(work);
82607adc
TH
1117 if (list_empty(&pwq->pool->worklist))
1118 pwq->pool->watchdog_ts = jiffies;
112202d9 1119 move_linked_works(work, &pwq->pool->worklist, NULL);
bf4ede01 1120 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
112202d9 1121 pwq->nr_active++;
bf4ede01
TH
1122}
1123
112202d9 1124static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
3aa62497 1125{
112202d9 1126 struct work_struct *work = list_first_entry(&pwq->delayed_works,
3aa62497
LJ
1127 struct work_struct, entry);
1128
112202d9 1129 pwq_activate_delayed_work(work);
3aa62497
LJ
1130}
1131
bf4ede01 1132/**
112202d9
TH
1133 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1134 * @pwq: pwq of interest
bf4ede01 1135 * @color: color of work which left the queue
bf4ede01
TH
1136 *
1137 * A work either has completed or is removed from pending queue,
112202d9 1138 * decrement nr_in_flight of its pwq and handle workqueue flushing.
bf4ede01
TH
1139 *
1140 * CONTEXT:
d565ed63 1141 * spin_lock_irq(pool->lock).
bf4ede01 1142 */
112202d9 1143static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
bf4ede01 1144{
8864b4e5 1145 /* uncolored work items don't participate in flushing or nr_active */
bf4ede01 1146 if (color == WORK_NO_COLOR)
8864b4e5 1147 goto out_put;
bf4ede01 1148
112202d9 1149 pwq->nr_in_flight[color]--;
bf4ede01 1150
112202d9
TH
1151 pwq->nr_active--;
1152 if (!list_empty(&pwq->delayed_works)) {
b3f9f405 1153 /* one down, submit a delayed one */
112202d9
TH
1154 if (pwq->nr_active < pwq->max_active)
1155 pwq_activate_first_delayed(pwq);
bf4ede01
TH
1156 }
1157
1158 /* is flush in progress and are we at the flushing tip? */
112202d9 1159 if (likely(pwq->flush_color != color))
8864b4e5 1160 goto out_put;
bf4ede01
TH
1161
1162 /* are there still in-flight works? */
112202d9 1163 if (pwq->nr_in_flight[color])
8864b4e5 1164 goto out_put;
bf4ede01 1165
112202d9
TH
1166 /* this pwq is done, clear flush_color */
1167 pwq->flush_color = -1;
bf4ede01
TH
1168
1169 /*
112202d9 1170 * If this was the last pwq, wake up the first flusher. It
bf4ede01
TH
1171 * will handle the rest.
1172 */
112202d9
TH
1173 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1174 complete(&pwq->wq->first_flusher->done);
8864b4e5
TH
1175out_put:
1176 put_pwq(pwq);
bf4ede01
TH
1177}
1178
36e227d2 1179/**
bbb68dfa 1180 * try_to_grab_pending - steal work item from worklist and disable irq
36e227d2
TH
1181 * @work: work item to steal
1182 * @is_dwork: @work is a delayed_work
bbb68dfa 1183 * @flags: place to store irq state
36e227d2
TH
1184 *
1185 * Try to grab PENDING bit of @work. This function can handle @work in any
d185af30 1186 * stable state - idle, on timer or on worklist.
36e227d2 1187 *
d185af30 1188 * Return:
36e227d2
TH
1189 * 1 if @work was pending and we successfully stole PENDING
1190 * 0 if @work was idle and we claimed PENDING
1191 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
bbb68dfa
TH
1192 * -ENOENT if someone else is canceling @work, this state may persist
1193 * for arbitrarily long
36e227d2 1194 *
d185af30 1195 * Note:
bbb68dfa 1196 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
e0aecdd8
TH
1197 * interrupted while holding PENDING and @work off queue, irq must be
1198 * disabled on entry. This, combined with delayed_work->timer being
1199 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
bbb68dfa
TH
1200 *
1201 * On successful return, >= 0, irq is disabled and the caller is
1202 * responsible for releasing it using local_irq_restore(*@flags).
1203 *
e0aecdd8 1204 * This function is safe to call from any context including IRQ handler.
bf4ede01 1205 */
bbb68dfa
TH
1206static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1207 unsigned long *flags)
bf4ede01 1208{
d565ed63 1209 struct worker_pool *pool;
112202d9 1210 struct pool_workqueue *pwq;
bf4ede01 1211
bbb68dfa
TH
1212 local_irq_save(*flags);
1213
36e227d2
TH
1214 /* try to steal the timer if it exists */
1215 if (is_dwork) {
1216 struct delayed_work *dwork = to_delayed_work(work);
1217
e0aecdd8
TH
1218 /*
1219 * dwork->timer is irqsafe. If del_timer() fails, it's
1220 * guaranteed that the timer is not queued anywhere and not
1221 * running on the local CPU.
1222 */
36e227d2
TH
1223 if (likely(del_timer(&dwork->timer)))
1224 return 1;
1225 }
1226
1227 /* try to claim PENDING the normal way */
bf4ede01
TH
1228 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1229 return 0;
1230
1231 /*
1232 * The queueing is in progress, or it is already queued. Try to
1233 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1234 */
d565ed63
TH
1235 pool = get_work_pool(work);
1236 if (!pool)
bbb68dfa 1237 goto fail;
bf4ede01 1238
d565ed63 1239 spin_lock(&pool->lock);
0b3dae68 1240 /*
112202d9
TH
1241 * work->data is guaranteed to point to pwq only while the work
1242 * item is queued on pwq->wq, and both updating work->data to point
1243 * to pwq on queueing and to pool on dequeueing are done under
1244 * pwq->pool->lock. This in turn guarantees that, if work->data
1245 * points to pwq which is associated with a locked pool, the work
0b3dae68
LJ
1246 * item is currently queued on that pool.
1247 */
112202d9
TH
1248 pwq = get_work_pwq(work);
1249 if (pwq && pwq->pool == pool) {
16062836
TH
1250 debug_work_deactivate(work);
1251
1252 /*
1253 * A delayed work item cannot be grabbed directly because
1254 * it might have linked NO_COLOR work items which, if left
112202d9 1255 * on the delayed_list, will confuse pwq->nr_active
16062836
TH
1256 * management later on and cause stall. Make sure the work
1257 * item is activated before grabbing.
1258 */
1259 if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
112202d9 1260 pwq_activate_delayed_work(work);
16062836
TH
1261
1262 list_del_init(&work->entry);
9c34a704 1263 pwq_dec_nr_in_flight(pwq, get_work_color(work));
16062836 1264
112202d9 1265 /* work->data points to pwq iff queued, point to pool */
16062836
TH
1266 set_work_pool_and_keep_pending(work, pool->id);
1267
1268 spin_unlock(&pool->lock);
1269 return 1;
bf4ede01 1270 }
d565ed63 1271 spin_unlock(&pool->lock);
bbb68dfa
TH
1272fail:
1273 local_irq_restore(*flags);
1274 if (work_is_canceling(work))
1275 return -ENOENT;
1276 cpu_relax();
36e227d2 1277 return -EAGAIN;
bf4ede01
TH
1278}
1279
4690c4ab 1280/**
706026c2 1281 * insert_work - insert a work into a pool
112202d9 1282 * @pwq: pwq @work belongs to
4690c4ab
TH
1283 * @work: work to insert
1284 * @head: insertion point
1285 * @extra_flags: extra WORK_STRUCT_* flags to set
1286 *
112202d9 1287 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
706026c2 1288 * work_struct flags.
4690c4ab
TH
1289 *
1290 * CONTEXT:
d565ed63 1291 * spin_lock_irq(pool->lock).
4690c4ab 1292 */
112202d9
TH
1293static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1294 struct list_head *head, unsigned int extra_flags)
b89deed3 1295{
112202d9 1296 struct worker_pool *pool = pwq->pool;
e22bee78 1297
4690c4ab 1298 /* we own @work, set data and link */
112202d9 1299 set_work_pwq(work, pwq, extra_flags);
1a4d9b0a 1300 list_add_tail(&work->entry, head);
8864b4e5 1301 get_pwq(pwq);
e22bee78
TH
1302
1303 /*
c5aa87bb
TH
1304 * Ensure either wq_worker_sleeping() sees the above
1305 * list_add_tail() or we see zero nr_running to avoid workers lying
1306 * around lazily while there are works to be processed.
e22bee78
TH
1307 */
1308 smp_mb();
1309
63d95a91
TH
1310 if (__need_more_worker(pool))
1311 wake_up_worker(pool);
b89deed3
ON
1312}
1313
c8efcc25
TH
1314/*
1315 * Test whether @work is being queued from another work executing on the
8d03ecfe 1316 * same workqueue.
c8efcc25
TH
1317 */
1318static bool is_chained_work(struct workqueue_struct *wq)
1319{
8d03ecfe
TH
1320 struct worker *worker;
1321
1322 worker = current_wq_worker();
1323 /*
1324 * Return %true iff I'm a worker execuing a work item on @wq. If
1325 * I'm @worker, it's safe to dereference it without locking.
1326 */
112202d9 1327 return worker && worker->current_pwq->wq == wq;
c8efcc25
TH
1328}
1329
ef557180
MG
1330/*
1331 * When queueing an unbound work item to a wq, prefer local CPU if allowed
1332 * by wq_unbound_cpumask. Otherwise, round robin among the allowed ones to
1333 * avoid perturbing sensitive tasks.
1334 */
1335static int wq_select_unbound_cpu(int cpu)
1336{
f303fccb 1337 static bool printed_dbg_warning;
ef557180
MG
1338 int new_cpu;
1339
f303fccb
TH
1340 if (likely(!wq_debug_force_rr_cpu)) {
1341 if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
1342 return cpu;
1343 } else if (!printed_dbg_warning) {
1344 pr_warn("workqueue: round-robin CPU selection forced, expect performance impact\n");
1345 printed_dbg_warning = true;
1346 }
1347
ef557180
MG
1348 if (cpumask_empty(wq_unbound_cpumask))
1349 return cpu;
1350
1351 new_cpu = __this_cpu_read(wq_rr_cpu_last);
1352 new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
1353 if (unlikely(new_cpu >= nr_cpu_ids)) {
1354 new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
1355 if (unlikely(new_cpu >= nr_cpu_ids))
1356 return cpu;
1357 }
1358 __this_cpu_write(wq_rr_cpu_last, new_cpu);
1359
1360 return new_cpu;
1361}
1362
d84ff051 1363static void __queue_work(int cpu, struct workqueue_struct *wq,
1da177e4
LT
1364 struct work_struct *work)
1365{
112202d9 1366 struct pool_workqueue *pwq;
c9178087 1367 struct worker_pool *last_pool;
1e19ffc6 1368 struct list_head *worklist;
8a2e8e5d 1369 unsigned int work_flags;
b75cac93 1370 unsigned int req_cpu = cpu;
8930caba
TH
1371
1372 /*
1373 * While a work item is PENDING && off queue, a task trying to
1374 * steal the PENDING will busy-loop waiting for it to either get
1375 * queued or lose PENDING. Grabbing PENDING and queueing should
1376 * happen with IRQ disabled.
1377 */
8e8eb730 1378 lockdep_assert_irqs_disabled();
1da177e4 1379
dc186ad7 1380 debug_work_activate(work);
1e19ffc6 1381
9ef28a73 1382 /* if draining, only works from the same workqueue are allowed */
618b01eb 1383 if (unlikely(wq->flags & __WQ_DRAINING) &&
c8efcc25 1384 WARN_ON_ONCE(!is_chained_work(wq)))
e41e704b 1385 return;
9e8cd2f5 1386retry:
df2d5ae4 1387 if (req_cpu == WORK_CPU_UNBOUND)
ef557180 1388 cpu = wq_select_unbound_cpu(raw_smp_processor_id());
df2d5ae4 1389
c9178087 1390 /* pwq which will be used unless @work is executing elsewhere */
df2d5ae4 1391 if (!(wq->flags & WQ_UNBOUND))
7fb98ea7 1392 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
df2d5ae4
TH
1393 else
1394 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
dbf2576e 1395
c9178087
TH
1396 /*
1397 * If @work was previously on a different pool, it might still be
1398 * running there, in which case the work needs to be queued on that
1399 * pool to guarantee non-reentrancy.
1400 */
1401 last_pool = get_work_pool(work);
1402 if (last_pool && last_pool != pwq->pool) {
1403 struct worker *worker;
18aa9eff 1404
c9178087 1405 spin_lock(&last_pool->lock);
18aa9eff 1406
c9178087 1407 worker = find_worker_executing_work(last_pool, work);
18aa9eff 1408
c9178087
TH
1409 if (worker && worker->current_pwq->wq == wq) {
1410 pwq = worker->current_pwq;
8930caba 1411 } else {
c9178087
TH
1412 /* meh... not running there, queue here */
1413 spin_unlock(&last_pool->lock);
112202d9 1414 spin_lock(&pwq->pool->lock);
8930caba 1415 }
f3421797 1416 } else {
112202d9 1417 spin_lock(&pwq->pool->lock);
502ca9d8
TH
1418 }
1419
9e8cd2f5
TH
1420 /*
1421 * pwq is determined and locked. For unbound pools, we could have
1422 * raced with pwq release and it could already be dead. If its
1423 * refcnt is zero, repeat pwq selection. Note that pwqs never die
df2d5ae4
TH
1424 * without another pwq replacing it in the numa_pwq_tbl or while
1425 * work items are executing on it, so the retrying is guaranteed to
9e8cd2f5
TH
1426 * make forward-progress.
1427 */
1428 if (unlikely(!pwq->refcnt)) {
1429 if (wq->flags & WQ_UNBOUND) {
1430 spin_unlock(&pwq->pool->lock);
1431 cpu_relax();
1432 goto retry;
1433 }
1434 /* oops */
1435 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1436 wq->name, cpu);
1437 }
1438
112202d9
TH
1439 /* pwq determined, queue */
1440 trace_workqueue_queue_work(req_cpu, pwq, work);
502ca9d8 1441
f5b2552b 1442 if (WARN_ON(!list_empty(&work->entry))) {
112202d9 1443 spin_unlock(&pwq->pool->lock);
f5b2552b
DC
1444 return;
1445 }
1e19ffc6 1446
112202d9
TH
1447 pwq->nr_in_flight[pwq->work_color]++;
1448 work_flags = work_color_to_flags(pwq->work_color);
1e19ffc6 1449
112202d9 1450 if (likely(pwq->nr_active < pwq->max_active)) {
cdadf009 1451 trace_workqueue_activate_work(work);
112202d9
TH
1452 pwq->nr_active++;
1453 worklist = &pwq->pool->worklist;
82607adc
TH
1454 if (list_empty(worklist))
1455 pwq->pool->watchdog_ts = jiffies;
8a2e8e5d
TH
1456 } else {
1457 work_flags |= WORK_STRUCT_DELAYED;
112202d9 1458 worklist = &pwq->delayed_works;
8a2e8e5d 1459 }
1e19ffc6 1460
112202d9 1461 insert_work(pwq, work, worklist, work_flags);
1e19ffc6 1462
112202d9 1463 spin_unlock(&pwq->pool->lock);
1da177e4
LT
1464}
1465
0fcb78c2 1466/**
c1a220e7
ZR
1467 * queue_work_on - queue work on specific cpu
1468 * @cpu: CPU number to execute work on
0fcb78c2
REB
1469 * @wq: workqueue to use
1470 * @work: work to queue
1471 *
c1a220e7
ZR
1472 * We queue the work to a specific CPU, the caller must ensure it
1473 * can't go away.
d185af30
YB
1474 *
1475 * Return: %false if @work was already on a queue, %true otherwise.
1da177e4 1476 */
d4283e93
TH
1477bool queue_work_on(int cpu, struct workqueue_struct *wq,
1478 struct work_struct *work)
1da177e4 1479{
d4283e93 1480 bool ret = false;
8930caba 1481 unsigned long flags;
ef1ca236 1482
8930caba 1483 local_irq_save(flags);
c1a220e7 1484
22df02bb 1485 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
4690c4ab 1486 __queue_work(cpu, wq, work);
d4283e93 1487 ret = true;
c1a220e7 1488 }
ef1ca236 1489
8930caba 1490 local_irq_restore(flags);
1da177e4
LT
1491 return ret;
1492}
ad7b1f84 1493EXPORT_SYMBOL(queue_work_on);
1da177e4 1494
8c20feb6 1495void delayed_work_timer_fn(struct timer_list *t)
1da177e4 1496{
8c20feb6 1497 struct delayed_work *dwork = from_timer(dwork, t, timer);
1da177e4 1498
e0aecdd8 1499 /* should have been called from irqsafe timer with irq already off */
60c057bc 1500 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
1da177e4 1501}
1438ade5 1502EXPORT_SYMBOL(delayed_work_timer_fn);
1da177e4 1503
7beb2edf
TH
1504static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1505 struct delayed_work *dwork, unsigned long delay)
1da177e4 1506{
7beb2edf
TH
1507 struct timer_list *timer = &dwork->timer;
1508 struct work_struct *work = &dwork->work;
7beb2edf 1509
637fdbae 1510 WARN_ON_ONCE(!wq);
841b86f3 1511 WARN_ON_ONCE(timer->function != delayed_work_timer_fn);
fc4b514f
TH
1512 WARN_ON_ONCE(timer_pending(timer));
1513 WARN_ON_ONCE(!list_empty(&work->entry));
7beb2edf 1514
8852aac2
TH
1515 /*
1516 * If @delay is 0, queue @dwork->work immediately. This is for
1517 * both optimization and correctness. The earliest @timer can
1518 * expire is on the closest next tick and delayed_work users depend
1519 * on that there's no such delay when @delay is 0.
1520 */
1521 if (!delay) {
1522 __queue_work(cpu, wq, &dwork->work);
1523 return;
1524 }
1525
60c057bc 1526 dwork->wq = wq;
1265057f 1527 dwork->cpu = cpu;
7beb2edf
TH
1528 timer->expires = jiffies + delay;
1529
041bd12e
TH
1530 if (unlikely(cpu != WORK_CPU_UNBOUND))
1531 add_timer_on(timer, cpu);
1532 else
1533 add_timer(timer);
1da177e4
LT
1534}
1535
0fcb78c2
REB
1536/**
1537 * queue_delayed_work_on - queue work on specific CPU after delay
1538 * @cpu: CPU number to execute work on
1539 * @wq: workqueue to use
af9997e4 1540 * @dwork: work to queue
0fcb78c2
REB
1541 * @delay: number of jiffies to wait before queueing
1542 *
d185af30 1543 * Return: %false if @work was already on a queue, %true otherwise. If
715f1300
TH
1544 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1545 * execution.
0fcb78c2 1546 */
d4283e93
TH
1547bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1548 struct delayed_work *dwork, unsigned long delay)
7a6bc1cd 1549{
52bad64d 1550 struct work_struct *work = &dwork->work;
d4283e93 1551 bool ret = false;
8930caba 1552 unsigned long flags;
7a6bc1cd 1553
8930caba
TH
1554 /* read the comment in __queue_work() */
1555 local_irq_save(flags);
7a6bc1cd 1556
22df02bb 1557 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
7beb2edf 1558 __queue_delayed_work(cpu, wq, dwork, delay);
d4283e93 1559 ret = true;
7a6bc1cd 1560 }
8a3e77cc 1561
8930caba 1562 local_irq_restore(flags);
7a6bc1cd
VP
1563 return ret;
1564}
ad7b1f84 1565EXPORT_SYMBOL(queue_delayed_work_on);
c7fc77f7 1566
8376fe22
TH
1567/**
1568 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1569 * @cpu: CPU number to execute work on
1570 * @wq: workqueue to use
1571 * @dwork: work to queue
1572 * @delay: number of jiffies to wait before queueing
1573 *
1574 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1575 * modify @dwork's timer so that it expires after @delay. If @delay is
1576 * zero, @work is guaranteed to be scheduled immediately regardless of its
1577 * current state.
1578 *
d185af30 1579 * Return: %false if @dwork was idle and queued, %true if @dwork was
8376fe22
TH
1580 * pending and its timer was modified.
1581 *
e0aecdd8 1582 * This function is safe to call from any context including IRQ handler.
8376fe22
TH
1583 * See try_to_grab_pending() for details.
1584 */
1585bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1586 struct delayed_work *dwork, unsigned long delay)
1587{
1588 unsigned long flags;
1589 int ret;
c7fc77f7 1590
8376fe22
TH
1591 do {
1592 ret = try_to_grab_pending(&dwork->work, true, &flags);
1593 } while (unlikely(ret == -EAGAIN));
63bc0362 1594
8376fe22
TH
1595 if (likely(ret >= 0)) {
1596 __queue_delayed_work(cpu, wq, dwork, delay);
1597 local_irq_restore(flags);
7a6bc1cd 1598 }
8376fe22
TH
1599
1600 /* -ENOENT from try_to_grab_pending() becomes %true */
7a6bc1cd
VP
1601 return ret;
1602}
8376fe22
TH
1603EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1604
05f0fe6b
TH
1605static void rcu_work_rcufn(struct rcu_head *rcu)
1606{
1607 struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu);
1608
1609 /* read the comment in __queue_work() */
1610 local_irq_disable();
1611 __queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work);
1612 local_irq_enable();
1613}
1614
1615/**
1616 * queue_rcu_work - queue work after a RCU grace period
1617 * @wq: workqueue to use
1618 * @rwork: work to queue
1619 *
1620 * Return: %false if @rwork was already pending, %true otherwise. Note
1621 * that a full RCU grace period is guaranteed only after a %true return.
1622 * While @rwork is guarnateed to be executed after a %false return, the
1623 * execution may happen before a full RCU grace period has passed.
1624 */
1625bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork)
1626{
1627 struct work_struct *work = &rwork->work;
1628
1629 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1630 rwork->wq = wq;
1631 call_rcu(&rwork->rcu, rcu_work_rcufn);
1632 return true;
1633 }
1634
1635 return false;
1636}
1637EXPORT_SYMBOL(queue_rcu_work);
1638
c8e55f36
TH
1639/**
1640 * worker_enter_idle - enter idle state
1641 * @worker: worker which is entering idle state
1642 *
1643 * @worker is entering idle state. Update stats and idle timer if
1644 * necessary.
1645 *
1646 * LOCKING:
d565ed63 1647 * spin_lock_irq(pool->lock).
c8e55f36
TH
1648 */
1649static void worker_enter_idle(struct worker *worker)
1da177e4 1650{
bd7bdd43 1651 struct worker_pool *pool = worker->pool;
c8e55f36 1652
6183c009
TH
1653 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1654 WARN_ON_ONCE(!list_empty(&worker->entry) &&
1655 (worker->hentry.next || worker->hentry.pprev)))
1656 return;
c8e55f36 1657
051e1850 1658 /* can't use worker_set_flags(), also called from create_worker() */
cb444766 1659 worker->flags |= WORKER_IDLE;
bd7bdd43 1660 pool->nr_idle++;
e22bee78 1661 worker->last_active = jiffies;
c8e55f36
TH
1662
1663 /* idle_list is LIFO */
bd7bdd43 1664 list_add(&worker->entry, &pool->idle_list);
db7bccf4 1665
628c78e7
TH
1666 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1667 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
cb444766 1668
544ecf31 1669 /*
e8b3f8db 1670 * Sanity check nr_running. Because unbind_workers() releases
d565ed63 1671 * pool->lock between setting %WORKER_UNBOUND and zapping
628c78e7
TH
1672 * nr_running, the warning may trigger spuriously. Check iff
1673 * unbind is not in progress.
544ecf31 1674 */
24647570 1675 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
bd7bdd43 1676 pool->nr_workers == pool->nr_idle &&
e19e397a 1677 atomic_read(&pool->nr_running));
c8e55f36
TH
1678}
1679
1680/**
1681 * worker_leave_idle - leave idle state
1682 * @worker: worker which is leaving idle state
1683 *
1684 * @worker is leaving idle state. Update stats.
1685 *
1686 * LOCKING:
d565ed63 1687 * spin_lock_irq(pool->lock).
c8e55f36
TH
1688 */
1689static void worker_leave_idle(struct worker *worker)
1690{
bd7bdd43 1691 struct worker_pool *pool = worker->pool;
c8e55f36 1692
6183c009
TH
1693 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1694 return;
d302f017 1695 worker_clr_flags(worker, WORKER_IDLE);
bd7bdd43 1696 pool->nr_idle--;
c8e55f36
TH
1697 list_del_init(&worker->entry);
1698}
1699
f7537df5 1700static struct worker *alloc_worker(int node)
c34056a3
TH
1701{
1702 struct worker *worker;
1703
f7537df5 1704 worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
c8e55f36
TH
1705 if (worker) {
1706 INIT_LIST_HEAD(&worker->entry);
affee4b2 1707 INIT_LIST_HEAD(&worker->scheduled);
da028469 1708 INIT_LIST_HEAD(&worker->node);
e22bee78
TH
1709 /* on creation a worker is in !idle && prep state */
1710 worker->flags = WORKER_PREP;
c8e55f36 1711 }
c34056a3
TH
1712 return worker;
1713}
1714
4736cbf7
LJ
1715/**
1716 * worker_attach_to_pool() - attach a worker to a pool
1717 * @worker: worker to be attached
1718 * @pool: the target pool
1719 *
1720 * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and
1721 * cpu-binding of @worker are kept coordinated with the pool across
1722 * cpu-[un]hotplugs.
1723 */
1724static void worker_attach_to_pool(struct worker *worker,
1725 struct worker_pool *pool)
1726{
1258fae7 1727 mutex_lock(&wq_pool_attach_mutex);
4736cbf7
LJ
1728
1729 /*
1730 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
1731 * online CPUs. It'll be re-applied when any of the CPUs come up.
1732 */
1733 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1734
1735 /*
1258fae7
TH
1736 * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains
1737 * stable across this function. See the comments above the flag
1738 * definition for details.
4736cbf7
LJ
1739 */
1740 if (pool->flags & POOL_DISASSOCIATED)
1741 worker->flags |= WORKER_UNBOUND;
1742
1743 list_add_tail(&worker->node, &pool->workers);
a2d812a2 1744 worker->pool = pool;
4736cbf7 1745
1258fae7 1746 mutex_unlock(&wq_pool_attach_mutex);
4736cbf7
LJ
1747}
1748
60f5a4bc
LJ
1749/**
1750 * worker_detach_from_pool() - detach a worker from its pool
1751 * @worker: worker which is attached to its pool
60f5a4bc 1752 *
4736cbf7
LJ
1753 * Undo the attaching which had been done in worker_attach_to_pool(). The
1754 * caller worker shouldn't access to the pool after detached except it has
1755 * other reference to the pool.
60f5a4bc 1756 */
a2d812a2 1757static void worker_detach_from_pool(struct worker *worker)
60f5a4bc 1758{
a2d812a2 1759 struct worker_pool *pool = worker->pool;
60f5a4bc
LJ
1760 struct completion *detach_completion = NULL;
1761
1258fae7 1762 mutex_lock(&wq_pool_attach_mutex);
a2d812a2 1763
da028469 1764 list_del(&worker->node);
a2d812a2
TH
1765 worker->pool = NULL;
1766
da028469 1767 if (list_empty(&pool->workers))
60f5a4bc 1768 detach_completion = pool->detach_completion;
1258fae7 1769 mutex_unlock(&wq_pool_attach_mutex);
60f5a4bc 1770
b62c0751
LJ
1771 /* clear leftover flags without pool->lock after it is detached */
1772 worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
1773
60f5a4bc
LJ
1774 if (detach_completion)
1775 complete(detach_completion);
1776}
1777
c34056a3
TH
1778/**
1779 * create_worker - create a new workqueue worker
63d95a91 1780 * @pool: pool the new worker will belong to
c34056a3 1781 *
051e1850 1782 * Create and start a new worker which is attached to @pool.
c34056a3
TH
1783 *
1784 * CONTEXT:
1785 * Might sleep. Does GFP_KERNEL allocations.
1786 *
d185af30 1787 * Return:
c34056a3
TH
1788 * Pointer to the newly created worker.
1789 */
bc2ae0f5 1790static struct worker *create_worker(struct worker_pool *pool)
c34056a3 1791{
c34056a3 1792 struct worker *worker = NULL;
f3421797 1793 int id = -1;
e3c916a4 1794 char id_buf[16];
c34056a3 1795
7cda9aae
LJ
1796 /* ID is needed to determine kthread name */
1797 id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL);
822d8405
TH
1798 if (id < 0)
1799 goto fail;
c34056a3 1800
f7537df5 1801 worker = alloc_worker(pool->node);
c34056a3
TH
1802 if (!worker)
1803 goto fail;
1804
c34056a3
TH
1805 worker->id = id;
1806
29c91e99 1807 if (pool->cpu >= 0)
e3c916a4
TH
1808 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1809 pool->attrs->nice < 0 ? "H" : "");
f3421797 1810 else
e3c916a4
TH
1811 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1812
f3f90ad4 1813 worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
e3c916a4 1814 "kworker/%s", id_buf);
c34056a3
TH
1815 if (IS_ERR(worker->task))
1816 goto fail;
1817
91151228 1818 set_user_nice(worker->task, pool->attrs->nice);
25834c73 1819 kthread_bind_mask(worker->task, pool->attrs->cpumask);
91151228 1820
da028469 1821 /* successful, attach the worker to the pool */
4736cbf7 1822 worker_attach_to_pool(worker, pool);
822d8405 1823
051e1850
LJ
1824 /* start the newly created worker */
1825 spin_lock_irq(&pool->lock);
1826 worker->pool->nr_workers++;
1827 worker_enter_idle(worker);
1828 wake_up_process(worker->task);
1829 spin_unlock_irq(&pool->lock);
1830
c34056a3 1831 return worker;
822d8405 1832
c34056a3 1833fail:
9625ab17 1834 if (id >= 0)
7cda9aae 1835 ida_simple_remove(&pool->worker_ida, id);
c34056a3
TH
1836 kfree(worker);
1837 return NULL;
1838}
1839
c34056a3
TH
1840/**
1841 * destroy_worker - destroy a workqueue worker
1842 * @worker: worker to be destroyed
1843 *
73eb7fe7
LJ
1844 * Destroy @worker and adjust @pool stats accordingly. The worker should
1845 * be idle.
c8e55f36
TH
1846 *
1847 * CONTEXT:
60f5a4bc 1848 * spin_lock_irq(pool->lock).
c34056a3
TH
1849 */
1850static void destroy_worker(struct worker *worker)
1851{
bd7bdd43 1852 struct worker_pool *pool = worker->pool;
c34056a3 1853
cd549687
TH
1854 lockdep_assert_held(&pool->lock);
1855
c34056a3 1856 /* sanity check frenzy */
6183c009 1857 if (WARN_ON(worker->current_work) ||
73eb7fe7
LJ
1858 WARN_ON(!list_empty(&worker->scheduled)) ||
1859 WARN_ON(!(worker->flags & WORKER_IDLE)))
6183c009 1860 return;
c34056a3 1861
73eb7fe7
LJ
1862 pool->nr_workers--;
1863 pool->nr_idle--;
5bdfff96 1864
c8e55f36 1865 list_del_init(&worker->entry);
cb444766 1866 worker->flags |= WORKER_DIE;
60f5a4bc 1867 wake_up_process(worker->task);
c34056a3
TH
1868}
1869
32a6c723 1870static void idle_worker_timeout(struct timer_list *t)
e22bee78 1871{
32a6c723 1872 struct worker_pool *pool = from_timer(pool, t, idle_timer);
e22bee78 1873
d565ed63 1874 spin_lock_irq(&pool->lock);
e22bee78 1875
3347fc9f 1876 while (too_many_workers(pool)) {
e22bee78
TH
1877 struct worker *worker;
1878 unsigned long expires;
1879
1880 /* idle_list is kept in LIFO order, check the last one */
63d95a91 1881 worker = list_entry(pool->idle_list.prev, struct worker, entry);
e22bee78
TH
1882 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1883
3347fc9f 1884 if (time_before(jiffies, expires)) {
63d95a91 1885 mod_timer(&pool->idle_timer, expires);
3347fc9f 1886 break;
d5abe669 1887 }
3347fc9f
LJ
1888
1889 destroy_worker(worker);
e22bee78
TH
1890 }
1891
d565ed63 1892 spin_unlock_irq(&pool->lock);
e22bee78 1893}
d5abe669 1894
493a1724 1895static void send_mayday(struct work_struct *work)
e22bee78 1896{
112202d9
TH
1897 struct pool_workqueue *pwq = get_work_pwq(work);
1898 struct workqueue_struct *wq = pwq->wq;
493a1724 1899
2e109a28 1900 lockdep_assert_held(&wq_mayday_lock);
e22bee78 1901
493008a8 1902 if (!wq->rescuer)
493a1724 1903 return;
e22bee78
TH
1904
1905 /* mayday mayday mayday */
493a1724 1906 if (list_empty(&pwq->mayday_node)) {
77668c8b
LJ
1907 /*
1908 * If @pwq is for an unbound wq, its base ref may be put at
1909 * any time due to an attribute change. Pin @pwq until the
1910 * rescuer is done with it.
1911 */
1912 get_pwq(pwq);
493a1724 1913 list_add_tail(&pwq->mayday_node, &wq->maydays);
e22bee78 1914 wake_up_process(wq->rescuer->task);
493a1724 1915 }
e22bee78
TH
1916}
1917
32a6c723 1918static void pool_mayday_timeout(struct timer_list *t)
e22bee78 1919{
32a6c723 1920 struct worker_pool *pool = from_timer(pool, t, mayday_timer);
e22bee78
TH
1921 struct work_struct *work;
1922
b2d82909
TH
1923 spin_lock_irq(&pool->lock);
1924 spin_lock(&wq_mayday_lock); /* for wq->maydays */
e22bee78 1925
63d95a91 1926 if (need_to_create_worker(pool)) {
e22bee78
TH
1927 /*
1928 * We've been trying to create a new worker but
1929 * haven't been successful. We might be hitting an
1930 * allocation deadlock. Send distress signals to
1931 * rescuers.
1932 */
63d95a91 1933 list_for_each_entry(work, &pool->worklist, entry)
e22bee78 1934 send_mayday(work);
1da177e4 1935 }
e22bee78 1936
b2d82909
TH
1937 spin_unlock(&wq_mayday_lock);
1938 spin_unlock_irq(&pool->lock);
e22bee78 1939
63d95a91 1940 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1da177e4
LT
1941}
1942
e22bee78
TH
1943/**
1944 * maybe_create_worker - create a new worker if necessary
63d95a91 1945 * @pool: pool to create a new worker for
e22bee78 1946 *
63d95a91 1947 * Create a new worker for @pool if necessary. @pool is guaranteed to
e22bee78
TH
1948 * have at least one idle worker on return from this function. If
1949 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
63d95a91 1950 * sent to all rescuers with works scheduled on @pool to resolve
e22bee78
TH
1951 * possible allocation deadlock.
1952 *
c5aa87bb
TH
1953 * On return, need_to_create_worker() is guaranteed to be %false and
1954 * may_start_working() %true.
e22bee78
TH
1955 *
1956 * LOCKING:
d565ed63 1957 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
1958 * multiple times. Does GFP_KERNEL allocations. Called only from
1959 * manager.
e22bee78 1960 */
29187a9e 1961static void maybe_create_worker(struct worker_pool *pool)
d565ed63
TH
1962__releases(&pool->lock)
1963__acquires(&pool->lock)
1da177e4 1964{
e22bee78 1965restart:
d565ed63 1966 spin_unlock_irq(&pool->lock);
9f9c2364 1967
e22bee78 1968 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
63d95a91 1969 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
e22bee78
TH
1970
1971 while (true) {
051e1850 1972 if (create_worker(pool) || !need_to_create_worker(pool))
e22bee78 1973 break;
1da177e4 1974
e212f361 1975 schedule_timeout_interruptible(CREATE_COOLDOWN);
9f9c2364 1976
63d95a91 1977 if (!need_to_create_worker(pool))
e22bee78
TH
1978 break;
1979 }
1980
63d95a91 1981 del_timer_sync(&pool->mayday_timer);
d565ed63 1982 spin_lock_irq(&pool->lock);
051e1850
LJ
1983 /*
1984 * This is necessary even after a new worker was just successfully
1985 * created as @pool->lock was dropped and the new worker might have
1986 * already become busy.
1987 */
63d95a91 1988 if (need_to_create_worker(pool))
e22bee78 1989 goto restart;
e22bee78
TH
1990}
1991
73f53c4a 1992/**
e22bee78
TH
1993 * manage_workers - manage worker pool
1994 * @worker: self
73f53c4a 1995 *
706026c2 1996 * Assume the manager role and manage the worker pool @worker belongs
e22bee78 1997 * to. At any given time, there can be only zero or one manager per
706026c2 1998 * pool. The exclusion is handled automatically by this function.
e22bee78
TH
1999 *
2000 * The caller can safely start processing works on false return. On
2001 * true return, it's guaranteed that need_to_create_worker() is false
2002 * and may_start_working() is true.
73f53c4a
TH
2003 *
2004 * CONTEXT:
d565ed63 2005 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
2006 * multiple times. Does GFP_KERNEL allocations.
2007 *
d185af30 2008 * Return:
29187a9e
TH
2009 * %false if the pool doesn't need management and the caller can safely
2010 * start processing works, %true if management function was performed and
2011 * the conditions that the caller verified before calling the function may
2012 * no longer be true.
73f53c4a 2013 */
e22bee78 2014static bool manage_workers(struct worker *worker)
73f53c4a 2015{
63d95a91 2016 struct worker_pool *pool = worker->pool;
73f53c4a 2017
692b4825 2018 if (pool->flags & POOL_MANAGER_ACTIVE)
29187a9e 2019 return false;
692b4825
TH
2020
2021 pool->flags |= POOL_MANAGER_ACTIVE;
2607d7a6 2022 pool->manager = worker;
1e19ffc6 2023
29187a9e 2024 maybe_create_worker(pool);
e22bee78 2025
2607d7a6 2026 pool->manager = NULL;
692b4825
TH
2027 pool->flags &= ~POOL_MANAGER_ACTIVE;
2028 wake_up(&wq_manager_wait);
29187a9e 2029 return true;
73f53c4a
TH
2030}
2031
a62428c0
TH
2032/**
2033 * process_one_work - process single work
c34056a3 2034 * @worker: self
a62428c0
TH
2035 * @work: work to process
2036 *
2037 * Process @work. This function contains all the logics necessary to
2038 * process a single work including synchronization against and
2039 * interaction with other workers on the same cpu, queueing and
2040 * flushing. As long as context requirement is met, any worker can
2041 * call this function to process a work.
2042 *
2043 * CONTEXT:
d565ed63 2044 * spin_lock_irq(pool->lock) which is released and regrabbed.
a62428c0 2045 */
c34056a3 2046static void process_one_work(struct worker *worker, struct work_struct *work)
d565ed63
TH
2047__releases(&pool->lock)
2048__acquires(&pool->lock)
a62428c0 2049{
112202d9 2050 struct pool_workqueue *pwq = get_work_pwq(work);
bd7bdd43 2051 struct worker_pool *pool = worker->pool;
112202d9 2052 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
73f53c4a 2053 int work_color;
7e11629d 2054 struct worker *collision;
a62428c0
TH
2055#ifdef CONFIG_LOCKDEP
2056 /*
2057 * It is permissible to free the struct work_struct from
2058 * inside the function that is called from it, this we need to
2059 * take into account for lockdep too. To avoid bogus "held
2060 * lock freed" warnings as well as problems when looking into
2061 * work->lockdep_map, make a copy and use that here.
2062 */
4d82a1de
PZ
2063 struct lockdep_map lockdep_map;
2064
2065 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
a62428c0 2066#endif
807407c0 2067 /* ensure we're on the correct CPU */
85327af6 2068 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
ec22ca5e 2069 raw_smp_processor_id() != pool->cpu);
25511a47 2070
7e11629d
TH
2071 /*
2072 * A single work shouldn't be executed concurrently by
2073 * multiple workers on a single cpu. Check whether anyone is
2074 * already processing the work. If so, defer the work to the
2075 * currently executing one.
2076 */
c9e7cf27 2077 collision = find_worker_executing_work(pool, work);
7e11629d
TH
2078 if (unlikely(collision)) {
2079 move_linked_works(work, &collision->scheduled, NULL);
2080 return;
2081 }
2082
8930caba 2083 /* claim and dequeue */
a62428c0 2084 debug_work_deactivate(work);
c9e7cf27 2085 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
c34056a3 2086 worker->current_work = work;
a2c1c57b 2087 worker->current_func = work->func;
112202d9 2088 worker->current_pwq = pwq;
73f53c4a 2089 work_color = get_work_color(work);
7a22ad75 2090
8bf89593
TH
2091 /*
2092 * Record wq name for cmdline and debug reporting, may get
2093 * overridden through set_worker_desc().
2094 */
2095 strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN);
2096
a62428c0
TH
2097 list_del_init(&work->entry);
2098
fb0e7beb 2099 /*
228f1d00
LJ
2100 * CPU intensive works don't participate in concurrency management.
2101 * They're the scheduler's responsibility. This takes @worker out
2102 * of concurrency management and the next code block will chain
2103 * execution of the pending work items.
fb0e7beb
TH
2104 */
2105 if (unlikely(cpu_intensive))
228f1d00 2106 worker_set_flags(worker, WORKER_CPU_INTENSIVE);
fb0e7beb 2107
974271c4 2108 /*
a489a03e
LJ
2109 * Wake up another worker if necessary. The condition is always
2110 * false for normal per-cpu workers since nr_running would always
2111 * be >= 1 at this point. This is used to chain execution of the
2112 * pending work items for WORKER_NOT_RUNNING workers such as the
228f1d00 2113 * UNBOUND and CPU_INTENSIVE ones.
974271c4 2114 */
a489a03e 2115 if (need_more_worker(pool))
63d95a91 2116 wake_up_worker(pool);
974271c4 2117
8930caba 2118 /*
7c3eed5c 2119 * Record the last pool and clear PENDING which should be the last
d565ed63 2120 * update to @work. Also, do this inside @pool->lock so that
23657bb1
TH
2121 * PENDING and queued state changes happen together while IRQ is
2122 * disabled.
8930caba 2123 */
7c3eed5c 2124 set_work_pool_and_clear_pending(work, pool->id);
a62428c0 2125
d565ed63 2126 spin_unlock_irq(&pool->lock);
a62428c0 2127
a1d14934 2128 lock_map_acquire(&pwq->wq->lockdep_map);
a62428c0 2129 lock_map_acquire(&lockdep_map);
e6f3faa7 2130 /*
f52be570
PZ
2131 * Strictly speaking we should mark the invariant state without holding
2132 * any locks, that is, before these two lock_map_acquire()'s.
e6f3faa7
PZ
2133 *
2134 * However, that would result in:
2135 *
2136 * A(W1)
2137 * WFC(C)
2138 * A(W1)
2139 * C(C)
2140 *
2141 * Which would create W1->C->W1 dependencies, even though there is no
2142 * actual deadlock possible. There are two solutions, using a
2143 * read-recursive acquire on the work(queue) 'locks', but this will then
f52be570 2144 * hit the lockdep limitation on recursive locks, or simply discard
e6f3faa7
PZ
2145 * these locks.
2146 *
2147 * AFAICT there is no possible deadlock scenario between the
2148 * flush_work() and complete() primitives (except for single-threaded
2149 * workqueues), so hiding them isn't a problem.
2150 */
f52be570 2151 lockdep_invariant_state(true);
e36c886a 2152 trace_workqueue_execute_start(work);
a2c1c57b 2153 worker->current_func(work);
e36c886a
AV
2154 /*
2155 * While we must be careful to not use "work" after this, the trace
2156 * point will only record its address.
2157 */
2158 trace_workqueue_execute_end(work);
a62428c0 2159 lock_map_release(&lockdep_map);
112202d9 2160 lock_map_release(&pwq->wq->lockdep_map);
a62428c0
TH
2161
2162 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
044c782c
VI
2163 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2164 " last function: %pf\n",
a2c1c57b
TH
2165 current->comm, preempt_count(), task_pid_nr(current),
2166 worker->current_func);
a62428c0
TH
2167 debug_show_held_locks(current);
2168 dump_stack();
2169 }
2170
b22ce278
TH
2171 /*
2172 * The following prevents a kworker from hogging CPU on !PREEMPT
2173 * kernels, where a requeueing work item waiting for something to
2174 * happen could deadlock with stop_machine as such work item could
2175 * indefinitely requeue itself while all other CPUs are trapped in
789cbbec
JL
2176 * stop_machine. At the same time, report a quiescent RCU state so
2177 * the same condition doesn't freeze RCU.
b22ce278 2178 */
a7e6425e 2179 cond_resched();
b22ce278 2180
d565ed63 2181 spin_lock_irq(&pool->lock);
a62428c0 2182
fb0e7beb
TH
2183 /* clear cpu intensive status */
2184 if (unlikely(cpu_intensive))
2185 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2186
a62428c0 2187 /* we're done with it, release */
42f8570f 2188 hash_del(&worker->hentry);
c34056a3 2189 worker->current_work = NULL;
a2c1c57b 2190 worker->current_func = NULL;
112202d9
TH
2191 worker->current_pwq = NULL;
2192 pwq_dec_nr_in_flight(pwq, work_color);
a62428c0
TH
2193}
2194
affee4b2
TH
2195/**
2196 * process_scheduled_works - process scheduled works
2197 * @worker: self
2198 *
2199 * Process all scheduled works. Please note that the scheduled list
2200 * may change while processing a work, so this function repeatedly
2201 * fetches a work from the top and executes it.
2202 *
2203 * CONTEXT:
d565ed63 2204 * spin_lock_irq(pool->lock) which may be released and regrabbed
affee4b2
TH
2205 * multiple times.
2206 */
2207static void process_scheduled_works(struct worker *worker)
1da177e4 2208{
affee4b2
TH
2209 while (!list_empty(&worker->scheduled)) {
2210 struct work_struct *work = list_first_entry(&worker->scheduled,
1da177e4 2211 struct work_struct, entry);
c34056a3 2212 process_one_work(worker, work);
1da177e4 2213 }
1da177e4
LT
2214}
2215
197f6acc
TH
2216static void set_pf_worker(bool val)
2217{
2218 mutex_lock(&wq_pool_attach_mutex);
2219 if (val)
2220 current->flags |= PF_WQ_WORKER;
2221 else
2222 current->flags &= ~PF_WQ_WORKER;
2223 mutex_unlock(&wq_pool_attach_mutex);
2224}
2225
4690c4ab
TH
2226/**
2227 * worker_thread - the worker thread function
c34056a3 2228 * @__worker: self
4690c4ab 2229 *
c5aa87bb
TH
2230 * The worker thread function. All workers belong to a worker_pool -
2231 * either a per-cpu one or dynamic unbound one. These workers process all
2232 * work items regardless of their specific target workqueue. The only
2233 * exception is work items which belong to workqueues with a rescuer which
2234 * will be explained in rescuer_thread().
d185af30
YB
2235 *
2236 * Return: 0
4690c4ab 2237 */
c34056a3 2238static int worker_thread(void *__worker)
1da177e4 2239{
c34056a3 2240 struct worker *worker = __worker;
bd7bdd43 2241 struct worker_pool *pool = worker->pool;
1da177e4 2242
e22bee78 2243 /* tell the scheduler that this is a workqueue worker */
197f6acc 2244 set_pf_worker(true);
c8e55f36 2245woke_up:
d565ed63 2246 spin_lock_irq(&pool->lock);
1da177e4 2247
a9ab775b
TH
2248 /* am I supposed to die? */
2249 if (unlikely(worker->flags & WORKER_DIE)) {
d565ed63 2250 spin_unlock_irq(&pool->lock);
a9ab775b 2251 WARN_ON_ONCE(!list_empty(&worker->entry));
197f6acc 2252 set_pf_worker(false);
60f5a4bc
LJ
2253
2254 set_task_comm(worker->task, "kworker/dying");
7cda9aae 2255 ida_simple_remove(&pool->worker_ida, worker->id);
a2d812a2 2256 worker_detach_from_pool(worker);
60f5a4bc 2257 kfree(worker);
a9ab775b 2258 return 0;
c8e55f36 2259 }
affee4b2 2260
c8e55f36 2261 worker_leave_idle(worker);
db7bccf4 2262recheck:
e22bee78 2263 /* no more worker necessary? */
63d95a91 2264 if (!need_more_worker(pool))
e22bee78
TH
2265 goto sleep;
2266
2267 /* do we need to manage? */
63d95a91 2268 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
e22bee78
TH
2269 goto recheck;
2270
c8e55f36
TH
2271 /*
2272 * ->scheduled list can only be filled while a worker is
2273 * preparing to process a work or actually processing it.
2274 * Make sure nobody diddled with it while I was sleeping.
2275 */
6183c009 2276 WARN_ON_ONCE(!list_empty(&worker->scheduled));
c8e55f36 2277
e22bee78 2278 /*
a9ab775b
TH
2279 * Finish PREP stage. We're guaranteed to have at least one idle
2280 * worker or that someone else has already assumed the manager
2281 * role. This is where @worker starts participating in concurrency
2282 * management if applicable and concurrency management is restored
2283 * after being rebound. See rebind_workers() for details.
e22bee78 2284 */
a9ab775b 2285 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
e22bee78
TH
2286
2287 do {
c8e55f36 2288 struct work_struct *work =
bd7bdd43 2289 list_first_entry(&pool->worklist,
c8e55f36
TH
2290 struct work_struct, entry);
2291
82607adc
TH
2292 pool->watchdog_ts = jiffies;
2293
c8e55f36
TH
2294 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2295 /* optimization path, not strictly necessary */
2296 process_one_work(worker, work);
2297 if (unlikely(!list_empty(&worker->scheduled)))
affee4b2 2298 process_scheduled_works(worker);
c8e55f36
TH
2299 } else {
2300 move_linked_works(work, &worker->scheduled, NULL);
2301 process_scheduled_works(worker);
affee4b2 2302 }
63d95a91 2303 } while (keep_working(pool));
e22bee78 2304
228f1d00 2305 worker_set_flags(worker, WORKER_PREP);
d313dd85 2306sleep:
c8e55f36 2307 /*
d565ed63
TH
2308 * pool->lock is held and there's no work to process and no need to
2309 * manage, sleep. Workers are woken up only while holding
2310 * pool->lock or from local cpu, so setting the current state
2311 * before releasing pool->lock is enough to prevent losing any
2312 * event.
c8e55f36
TH
2313 */
2314 worker_enter_idle(worker);
c5a94a61 2315 __set_current_state(TASK_IDLE);
d565ed63 2316 spin_unlock_irq(&pool->lock);
c8e55f36
TH
2317 schedule();
2318 goto woke_up;
1da177e4
LT
2319}
2320
e22bee78
TH
2321/**
2322 * rescuer_thread - the rescuer thread function
111c225a 2323 * @__rescuer: self
e22bee78
TH
2324 *
2325 * Workqueue rescuer thread function. There's one rescuer for each
493008a8 2326 * workqueue which has WQ_MEM_RECLAIM set.
e22bee78 2327 *
706026c2 2328 * Regular work processing on a pool may block trying to create a new
e22bee78
TH
2329 * worker which uses GFP_KERNEL allocation which has slight chance of
2330 * developing into deadlock if some works currently on the same queue
2331 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2332 * the problem rescuer solves.
2333 *
706026c2
TH
2334 * When such condition is possible, the pool summons rescuers of all
2335 * workqueues which have works queued on the pool and let them process
e22bee78
TH
2336 * those works so that forward progress can be guaranteed.
2337 *
2338 * This should happen rarely.
d185af30
YB
2339 *
2340 * Return: 0
e22bee78 2341 */
111c225a 2342static int rescuer_thread(void *__rescuer)
e22bee78 2343{
111c225a
TH
2344 struct worker *rescuer = __rescuer;
2345 struct workqueue_struct *wq = rescuer->rescue_wq;
e22bee78 2346 struct list_head *scheduled = &rescuer->scheduled;
4d595b86 2347 bool should_stop;
e22bee78
TH
2348
2349 set_user_nice(current, RESCUER_NICE_LEVEL);
111c225a
TH
2350
2351 /*
2352 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
2353 * doesn't participate in concurrency management.
2354 */
197f6acc 2355 set_pf_worker(true);
e22bee78 2356repeat:
c5a94a61 2357 set_current_state(TASK_IDLE);
e22bee78 2358
4d595b86
LJ
2359 /*
2360 * By the time the rescuer is requested to stop, the workqueue
2361 * shouldn't have any work pending, but @wq->maydays may still have
2362 * pwq(s) queued. This can happen by non-rescuer workers consuming
2363 * all the work items before the rescuer got to them. Go through
2364 * @wq->maydays processing before acting on should_stop so that the
2365 * list is always empty on exit.
2366 */
2367 should_stop = kthread_should_stop();
e22bee78 2368
493a1724 2369 /* see whether any pwq is asking for help */
2e109a28 2370 spin_lock_irq(&wq_mayday_lock);
493a1724
TH
2371
2372 while (!list_empty(&wq->maydays)) {
2373 struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2374 struct pool_workqueue, mayday_node);
112202d9 2375 struct worker_pool *pool = pwq->pool;
e22bee78 2376 struct work_struct *work, *n;
82607adc 2377 bool first = true;
e22bee78
TH
2378
2379 __set_current_state(TASK_RUNNING);
493a1724
TH
2380 list_del_init(&pwq->mayday_node);
2381
2e109a28 2382 spin_unlock_irq(&wq_mayday_lock);
e22bee78 2383
51697d39
LJ
2384 worker_attach_to_pool(rescuer, pool);
2385
2386 spin_lock_irq(&pool->lock);
e22bee78
TH
2387
2388 /*
2389 * Slurp in all works issued via this workqueue and
2390 * process'em.
2391 */
0479c8c5 2392 WARN_ON_ONCE(!list_empty(scheduled));
82607adc
TH
2393 list_for_each_entry_safe(work, n, &pool->worklist, entry) {
2394 if (get_work_pwq(work) == pwq) {
2395 if (first)
2396 pool->watchdog_ts = jiffies;
e22bee78 2397 move_linked_works(work, scheduled, &n);
82607adc
TH
2398 }
2399 first = false;
2400 }
e22bee78 2401
008847f6
N
2402 if (!list_empty(scheduled)) {
2403 process_scheduled_works(rescuer);
2404
2405 /*
2406 * The above execution of rescued work items could
2407 * have created more to rescue through
2408 * pwq_activate_first_delayed() or chained
2409 * queueing. Let's put @pwq back on mayday list so
2410 * that such back-to-back work items, which may be
2411 * being used to relieve memory pressure, don't
2412 * incur MAYDAY_INTERVAL delay inbetween.
2413 */
2414 if (need_to_create_worker(pool)) {
2415 spin_lock(&wq_mayday_lock);
2416 get_pwq(pwq);
2417 list_move_tail(&pwq->mayday_node, &wq->maydays);
2418 spin_unlock(&wq_mayday_lock);
2419 }
2420 }
7576958a 2421
77668c8b
LJ
2422 /*
2423 * Put the reference grabbed by send_mayday(). @pool won't
13b1d625 2424 * go away while we're still attached to it.
77668c8b
LJ
2425 */
2426 put_pwq(pwq);
2427
7576958a 2428 /*
d8ca83e6 2429 * Leave this pool. If need_more_worker() is %true, notify a
7576958a
TH
2430 * regular worker; otherwise, we end up with 0 concurrency
2431 * and stalling the execution.
2432 */
d8ca83e6 2433 if (need_more_worker(pool))
63d95a91 2434 wake_up_worker(pool);
7576958a 2435
13b1d625
LJ
2436 spin_unlock_irq(&pool->lock);
2437
a2d812a2 2438 worker_detach_from_pool(rescuer);
13b1d625
LJ
2439
2440 spin_lock_irq(&wq_mayday_lock);
e22bee78
TH
2441 }
2442
2e109a28 2443 spin_unlock_irq(&wq_mayday_lock);
493a1724 2444
4d595b86
LJ
2445 if (should_stop) {
2446 __set_current_state(TASK_RUNNING);
197f6acc 2447 set_pf_worker(false);
4d595b86
LJ
2448 return 0;
2449 }
2450
111c225a
TH
2451 /* rescuers should never participate in concurrency management */
2452 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
e22bee78
TH
2453 schedule();
2454 goto repeat;
1da177e4
LT
2455}
2456
fca839c0
TH
2457/**
2458 * check_flush_dependency - check for flush dependency sanity
2459 * @target_wq: workqueue being flushed
2460 * @target_work: work item being flushed (NULL for workqueue flushes)
2461 *
2462 * %current is trying to flush the whole @target_wq or @target_work on it.
2463 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
2464 * reclaiming memory or running on a workqueue which doesn't have
2465 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
2466 * a deadlock.
2467 */
2468static void check_flush_dependency(struct workqueue_struct *target_wq,
2469 struct work_struct *target_work)
2470{
2471 work_func_t target_func = target_work ? target_work->func : NULL;
2472 struct worker *worker;
2473
2474 if (target_wq->flags & WQ_MEM_RECLAIM)
2475 return;
2476
2477 worker = current_wq_worker();
2478
2479 WARN_ONCE(current->flags & PF_MEMALLOC,
2480 "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%pf",
2481 current->pid, current->comm, target_wq->name, target_func);
23d11a58
TH
2482 WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
2483 (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
fca839c0
TH
2484 "workqueue: WQ_MEM_RECLAIM %s:%pf is flushing !WQ_MEM_RECLAIM %s:%pf",
2485 worker->current_pwq->wq->name, worker->current_func,
2486 target_wq->name, target_func);
2487}
2488
fc2e4d70
ON
2489struct wq_barrier {
2490 struct work_struct work;
2491 struct completion done;
2607d7a6 2492 struct task_struct *task; /* purely informational */
fc2e4d70
ON
2493};
2494
2495static void wq_barrier_func(struct work_struct *work)
2496{
2497 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2498 complete(&barr->done);
2499}
2500
4690c4ab
TH
2501/**
2502 * insert_wq_barrier - insert a barrier work
112202d9 2503 * @pwq: pwq to insert barrier into
4690c4ab 2504 * @barr: wq_barrier to insert
affee4b2
TH
2505 * @target: target work to attach @barr to
2506 * @worker: worker currently executing @target, NULL if @target is not executing
4690c4ab 2507 *
affee4b2
TH
2508 * @barr is linked to @target such that @barr is completed only after
2509 * @target finishes execution. Please note that the ordering
2510 * guarantee is observed only with respect to @target and on the local
2511 * cpu.
2512 *
2513 * Currently, a queued barrier can't be canceled. This is because
2514 * try_to_grab_pending() can't determine whether the work to be
2515 * grabbed is at the head of the queue and thus can't clear LINKED
2516 * flag of the previous work while there must be a valid next work
2517 * after a work with LINKED flag set.
2518 *
2519 * Note that when @worker is non-NULL, @target may be modified
112202d9 2520 * underneath us, so we can't reliably determine pwq from @target.
4690c4ab
TH
2521 *
2522 * CONTEXT:
d565ed63 2523 * spin_lock_irq(pool->lock).
4690c4ab 2524 */
112202d9 2525static void insert_wq_barrier(struct pool_workqueue *pwq,
affee4b2
TH
2526 struct wq_barrier *barr,
2527 struct work_struct *target, struct worker *worker)
fc2e4d70 2528{
affee4b2
TH
2529 struct list_head *head;
2530 unsigned int linked = 0;
2531
dc186ad7 2532 /*
d565ed63 2533 * debugobject calls are safe here even with pool->lock locked
dc186ad7
TG
2534 * as we know for sure that this will not trigger any of the
2535 * checks and call back into the fixup functions where we
2536 * might deadlock.
2537 */
ca1cab37 2538 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
22df02bb 2539 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
52fa5bc5 2540
fd1a5b04
BP
2541 init_completion_map(&barr->done, &target->lockdep_map);
2542
2607d7a6 2543 barr->task = current;
83c22520 2544
affee4b2
TH
2545 /*
2546 * If @target is currently being executed, schedule the
2547 * barrier to the worker; otherwise, put it after @target.
2548 */
2549 if (worker)
2550 head = worker->scheduled.next;
2551 else {
2552 unsigned long *bits = work_data_bits(target);
2553
2554 head = target->entry.next;
2555 /* there can already be other linked works, inherit and set */
2556 linked = *bits & WORK_STRUCT_LINKED;
2557 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2558 }
2559
dc186ad7 2560 debug_work_activate(&barr->work);
112202d9 2561 insert_work(pwq, &barr->work, head,
affee4b2 2562 work_color_to_flags(WORK_NO_COLOR) | linked);
fc2e4d70
ON
2563}
2564
73f53c4a 2565/**
112202d9 2566 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
73f53c4a
TH
2567 * @wq: workqueue being flushed
2568 * @flush_color: new flush color, < 0 for no-op
2569 * @work_color: new work color, < 0 for no-op
2570 *
112202d9 2571 * Prepare pwqs for workqueue flushing.
73f53c4a 2572 *
112202d9
TH
2573 * If @flush_color is non-negative, flush_color on all pwqs should be
2574 * -1. If no pwq has in-flight commands at the specified color, all
2575 * pwq->flush_color's stay at -1 and %false is returned. If any pwq
2576 * has in flight commands, its pwq->flush_color is set to
2577 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
73f53c4a
TH
2578 * wakeup logic is armed and %true is returned.
2579 *
2580 * The caller should have initialized @wq->first_flusher prior to
2581 * calling this function with non-negative @flush_color. If
2582 * @flush_color is negative, no flush color update is done and %false
2583 * is returned.
2584 *
112202d9 2585 * If @work_color is non-negative, all pwqs should have the same
73f53c4a
TH
2586 * work_color which is previous to @work_color and all will be
2587 * advanced to @work_color.
2588 *
2589 * CONTEXT:
3c25a55d 2590 * mutex_lock(wq->mutex).
73f53c4a 2591 *
d185af30 2592 * Return:
73f53c4a
TH
2593 * %true if @flush_color >= 0 and there's something to flush. %false
2594 * otherwise.
2595 */
112202d9 2596static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
73f53c4a 2597 int flush_color, int work_color)
1da177e4 2598{
73f53c4a 2599 bool wait = false;
49e3cf44 2600 struct pool_workqueue *pwq;
1da177e4 2601
73f53c4a 2602 if (flush_color >= 0) {
6183c009 2603 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
112202d9 2604 atomic_set(&wq->nr_pwqs_to_flush, 1);
1da177e4 2605 }
2355b70f 2606
49e3cf44 2607 for_each_pwq(pwq, wq) {
112202d9 2608 struct worker_pool *pool = pwq->pool;
fc2e4d70 2609
b09f4fd3 2610 spin_lock_irq(&pool->lock);
83c22520 2611
73f53c4a 2612 if (flush_color >= 0) {
6183c009 2613 WARN_ON_ONCE(pwq->flush_color != -1);
fc2e4d70 2614
112202d9
TH
2615 if (pwq->nr_in_flight[flush_color]) {
2616 pwq->flush_color = flush_color;
2617 atomic_inc(&wq->nr_pwqs_to_flush);
73f53c4a
TH
2618 wait = true;
2619 }
2620 }
1da177e4 2621
73f53c4a 2622 if (work_color >= 0) {
6183c009 2623 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
112202d9 2624 pwq->work_color = work_color;
73f53c4a 2625 }
1da177e4 2626
b09f4fd3 2627 spin_unlock_irq(&pool->lock);
1da177e4 2628 }
2355b70f 2629
112202d9 2630 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
73f53c4a 2631 complete(&wq->first_flusher->done);
14441960 2632
73f53c4a 2633 return wait;
1da177e4
LT
2634}
2635
0fcb78c2 2636/**
1da177e4 2637 * flush_workqueue - ensure that any scheduled work has run to completion.
0fcb78c2 2638 * @wq: workqueue to flush
1da177e4 2639 *
c5aa87bb
TH
2640 * This function sleeps until all work items which were queued on entry
2641 * have finished execution, but it is not livelocked by new incoming ones.
1da177e4 2642 */
7ad5b3a5 2643void flush_workqueue(struct workqueue_struct *wq)
1da177e4 2644{
73f53c4a
TH
2645 struct wq_flusher this_flusher = {
2646 .list = LIST_HEAD_INIT(this_flusher.list),
2647 .flush_color = -1,
fd1a5b04 2648 .done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map),
73f53c4a
TH
2649 };
2650 int next_color;
1da177e4 2651
3347fa09
TH
2652 if (WARN_ON(!wq_online))
2653 return;
2654
87915adc
JB
2655 lock_map_acquire(&wq->lockdep_map);
2656 lock_map_release(&wq->lockdep_map);
2657
3c25a55d 2658 mutex_lock(&wq->mutex);
73f53c4a
TH
2659
2660 /*
2661 * Start-to-wait phase
2662 */
2663 next_color = work_next_color(wq->work_color);
2664
2665 if (next_color != wq->flush_color) {
2666 /*
2667 * Color space is not full. The current work_color
2668 * becomes our flush_color and work_color is advanced
2669 * by one.
2670 */
6183c009 2671 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
73f53c4a
TH
2672 this_flusher.flush_color = wq->work_color;
2673 wq->work_color = next_color;
2674
2675 if (!wq->first_flusher) {
2676 /* no flush in progress, become the first flusher */
6183c009 2677 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
73f53c4a
TH
2678
2679 wq->first_flusher = &this_flusher;
2680
112202d9 2681 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
73f53c4a
TH
2682 wq->work_color)) {
2683 /* nothing to flush, done */
2684 wq->flush_color = next_color;
2685 wq->first_flusher = NULL;
2686 goto out_unlock;
2687 }
2688 } else {
2689 /* wait in queue */
6183c009 2690 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
73f53c4a 2691 list_add_tail(&this_flusher.list, &wq->flusher_queue);
112202d9 2692 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
73f53c4a
TH
2693 }
2694 } else {
2695 /*
2696 * Oops, color space is full, wait on overflow queue.
2697 * The next flush completion will assign us
2698 * flush_color and transfer to flusher_queue.
2699 */
2700 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2701 }
2702
fca839c0
TH
2703 check_flush_dependency(wq, NULL);
2704
3c25a55d 2705 mutex_unlock(&wq->mutex);
73f53c4a
TH
2706
2707 wait_for_completion(&this_flusher.done);
2708
2709 /*
2710 * Wake-up-and-cascade phase
2711 *
2712 * First flushers are responsible for cascading flushes and
2713 * handling overflow. Non-first flushers can simply return.
2714 */
2715 if (wq->first_flusher != &this_flusher)
2716 return;
2717
3c25a55d 2718 mutex_lock(&wq->mutex);
73f53c4a 2719
4ce48b37
TH
2720 /* we might have raced, check again with mutex held */
2721 if (wq->first_flusher != &this_flusher)
2722 goto out_unlock;
2723
73f53c4a
TH
2724 wq->first_flusher = NULL;
2725
6183c009
TH
2726 WARN_ON_ONCE(!list_empty(&this_flusher.list));
2727 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
73f53c4a
TH
2728
2729 while (true) {
2730 struct wq_flusher *next, *tmp;
2731
2732 /* complete all the flushers sharing the current flush color */
2733 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2734 if (next->flush_color != wq->flush_color)
2735 break;
2736 list_del_init(&next->list);
2737 complete(&next->done);
2738 }
2739
6183c009
TH
2740 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2741 wq->flush_color != work_next_color(wq->work_color));
73f53c4a
TH
2742
2743 /* this flush_color is finished, advance by one */
2744 wq->flush_color = work_next_color(wq->flush_color);
2745
2746 /* one color has been freed, handle overflow queue */
2747 if (!list_empty(&wq->flusher_overflow)) {
2748 /*
2749 * Assign the same color to all overflowed
2750 * flushers, advance work_color and append to
2751 * flusher_queue. This is the start-to-wait
2752 * phase for these overflowed flushers.
2753 */
2754 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2755 tmp->flush_color = wq->work_color;
2756
2757 wq->work_color = work_next_color(wq->work_color);
2758
2759 list_splice_tail_init(&wq->flusher_overflow,
2760 &wq->flusher_queue);
112202d9 2761 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
73f53c4a
TH
2762 }
2763
2764 if (list_empty(&wq->flusher_queue)) {
6183c009 2765 WARN_ON_ONCE(wq->flush_color != wq->work_color);
73f53c4a
TH
2766 break;
2767 }
2768
2769 /*
2770 * Need to flush more colors. Make the next flusher
112202d9 2771 * the new first flusher and arm pwqs.
73f53c4a 2772 */
6183c009
TH
2773 WARN_ON_ONCE(wq->flush_color == wq->work_color);
2774 WARN_ON_ONCE(wq->flush_color != next->flush_color);
73f53c4a
TH
2775
2776 list_del_init(&next->list);
2777 wq->first_flusher = next;
2778
112202d9 2779 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
73f53c4a
TH
2780 break;
2781
2782 /*
2783 * Meh... this color is already done, clear first
2784 * flusher and repeat cascading.
2785 */
2786 wq->first_flusher = NULL;
2787 }
2788
2789out_unlock:
3c25a55d 2790 mutex_unlock(&wq->mutex);
1da177e4 2791}
1dadafa8 2792EXPORT_SYMBOL(flush_workqueue);
1da177e4 2793
9c5a2ba7
TH
2794/**
2795 * drain_workqueue - drain a workqueue
2796 * @wq: workqueue to drain
2797 *
2798 * Wait until the workqueue becomes empty. While draining is in progress,
2799 * only chain queueing is allowed. IOW, only currently pending or running
2800 * work items on @wq can queue further work items on it. @wq is flushed
b749b1b6 2801 * repeatedly until it becomes empty. The number of flushing is determined
9c5a2ba7
TH
2802 * by the depth of chaining and should be relatively short. Whine if it
2803 * takes too long.
2804 */
2805void drain_workqueue(struct workqueue_struct *wq)
2806{
2807 unsigned int flush_cnt = 0;
49e3cf44 2808 struct pool_workqueue *pwq;
9c5a2ba7
TH
2809
2810 /*
2811 * __queue_work() needs to test whether there are drainers, is much
2812 * hotter than drain_workqueue() and already looks at @wq->flags.
618b01eb 2813 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
9c5a2ba7 2814 */
87fc741e 2815 mutex_lock(&wq->mutex);
9c5a2ba7 2816 if (!wq->nr_drainers++)
618b01eb 2817 wq->flags |= __WQ_DRAINING;
87fc741e 2818 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
2819reflush:
2820 flush_workqueue(wq);
2821
b09f4fd3 2822 mutex_lock(&wq->mutex);
76af4d93 2823
49e3cf44 2824 for_each_pwq(pwq, wq) {
fa2563e4 2825 bool drained;
9c5a2ba7 2826
b09f4fd3 2827 spin_lock_irq(&pwq->pool->lock);
112202d9 2828 drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
b09f4fd3 2829 spin_unlock_irq(&pwq->pool->lock);
fa2563e4
TT
2830
2831 if (drained)
9c5a2ba7
TH
2832 continue;
2833
2834 if (++flush_cnt == 10 ||
2835 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
c5aa87bb 2836 pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
044c782c 2837 wq->name, flush_cnt);
76af4d93 2838
b09f4fd3 2839 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
2840 goto reflush;
2841 }
2842
9c5a2ba7 2843 if (!--wq->nr_drainers)
618b01eb 2844 wq->flags &= ~__WQ_DRAINING;
87fc741e 2845 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
2846}
2847EXPORT_SYMBOL_GPL(drain_workqueue);
2848
d6e89786
JB
2849static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
2850 bool from_cancel)
db700897 2851{
affee4b2 2852 struct worker *worker = NULL;
c9e7cf27 2853 struct worker_pool *pool;
112202d9 2854 struct pool_workqueue *pwq;
db700897
ON
2855
2856 might_sleep();
fa1b54e6
TH
2857
2858 local_irq_disable();
c9e7cf27 2859 pool = get_work_pool(work);
fa1b54e6
TH
2860 if (!pool) {
2861 local_irq_enable();
baf59022 2862 return false;
fa1b54e6 2863 }
db700897 2864
fa1b54e6 2865 spin_lock(&pool->lock);
0b3dae68 2866 /* see the comment in try_to_grab_pending() with the same code */
112202d9
TH
2867 pwq = get_work_pwq(work);
2868 if (pwq) {
2869 if (unlikely(pwq->pool != pool))
4690c4ab 2870 goto already_gone;
606a5020 2871 } else {
c9e7cf27 2872 worker = find_worker_executing_work(pool, work);
affee4b2 2873 if (!worker)
4690c4ab 2874 goto already_gone;
112202d9 2875 pwq = worker->current_pwq;
606a5020 2876 }
db700897 2877
fca839c0
TH
2878 check_flush_dependency(pwq->wq, work);
2879
112202d9 2880 insert_wq_barrier(pwq, barr, work, worker);
d565ed63 2881 spin_unlock_irq(&pool->lock);
7a22ad75 2882
e159489b 2883 /*
a1d14934
PZ
2884 * Force a lock recursion deadlock when using flush_work() inside a
2885 * single-threaded or rescuer equipped workqueue.
2886 *
2887 * For single threaded workqueues the deadlock happens when the work
2888 * is after the work issuing the flush_work(). For rescuer equipped
2889 * workqueues the deadlock happens when the rescuer stalls, blocking
2890 * forward progress.
e159489b 2891 */
d6e89786
JB
2892 if (!from_cancel &&
2893 (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)) {
112202d9 2894 lock_map_acquire(&pwq->wq->lockdep_map);
a1d14934
PZ
2895 lock_map_release(&pwq->wq->lockdep_map);
2896 }
e159489b 2897
401a8d04 2898 return true;
4690c4ab 2899already_gone:
d565ed63 2900 spin_unlock_irq(&pool->lock);
401a8d04 2901 return false;
db700897 2902}
baf59022 2903
d6e89786
JB
2904static bool __flush_work(struct work_struct *work, bool from_cancel)
2905{
2906 struct wq_barrier barr;
2907
2908 if (WARN_ON(!wq_online))
2909 return false;
2910
4d43d395
TH
2911 if (WARN_ON(!work->func))
2912 return false;
2913
87915adc
JB
2914 if (!from_cancel) {
2915 lock_map_acquire(&work->lockdep_map);
2916 lock_map_release(&work->lockdep_map);
2917 }
2918
d6e89786
JB
2919 if (start_flush_work(work, &barr, from_cancel)) {
2920 wait_for_completion(&barr.done);
2921 destroy_work_on_stack(&barr.work);
2922 return true;
2923 } else {
2924 return false;
2925 }
2926}
2927
baf59022
TH
2928/**
2929 * flush_work - wait for a work to finish executing the last queueing instance
2930 * @work: the work to flush
2931 *
606a5020
TH
2932 * Wait until @work has finished execution. @work is guaranteed to be idle
2933 * on return if it hasn't been requeued since flush started.
baf59022 2934 *
d185af30 2935 * Return:
baf59022
TH
2936 * %true if flush_work() waited for the work to finish execution,
2937 * %false if it was already idle.
2938 */
2939bool flush_work(struct work_struct *work)
2940{
d6e89786 2941 return __flush_work(work, false);
6e84d644 2942}
606a5020 2943EXPORT_SYMBOL_GPL(flush_work);
6e84d644 2944
8603e1b3 2945struct cwt_wait {
ac6424b9 2946 wait_queue_entry_t wait;
8603e1b3
TH
2947 struct work_struct *work;
2948};
2949
ac6424b9 2950static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
8603e1b3
TH
2951{
2952 struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
2953
2954 if (cwait->work != key)
2955 return 0;
2956 return autoremove_wake_function(wait, mode, sync, key);
2957}
2958
36e227d2 2959static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
1f1f642e 2960{
8603e1b3 2961 static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
bbb68dfa 2962 unsigned long flags;
1f1f642e
ON
2963 int ret;
2964
2965 do {
bbb68dfa
TH
2966 ret = try_to_grab_pending(work, is_dwork, &flags);
2967 /*
8603e1b3
TH
2968 * If someone else is already canceling, wait for it to
2969 * finish. flush_work() doesn't work for PREEMPT_NONE
2970 * because we may get scheduled between @work's completion
2971 * and the other canceling task resuming and clearing
2972 * CANCELING - flush_work() will return false immediately
2973 * as @work is no longer busy, try_to_grab_pending() will
2974 * return -ENOENT as @work is still being canceled and the
2975 * other canceling task won't be able to clear CANCELING as
2976 * we're hogging the CPU.
2977 *
2978 * Let's wait for completion using a waitqueue. As this
2979 * may lead to the thundering herd problem, use a custom
2980 * wake function which matches @work along with exclusive
2981 * wait and wakeup.
bbb68dfa 2982 */
8603e1b3
TH
2983 if (unlikely(ret == -ENOENT)) {
2984 struct cwt_wait cwait;
2985
2986 init_wait(&cwait.wait);
2987 cwait.wait.func = cwt_wakefn;
2988 cwait.work = work;
2989
2990 prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
2991 TASK_UNINTERRUPTIBLE);
2992 if (work_is_canceling(work))
2993 schedule();
2994 finish_wait(&cancel_waitq, &cwait.wait);
2995 }
1f1f642e
ON
2996 } while (unlikely(ret < 0));
2997
bbb68dfa
TH
2998 /* tell other tasks trying to grab @work to back off */
2999 mark_work_canceling(work);
3000 local_irq_restore(flags);
3001
3347fa09
TH
3002 /*
3003 * This allows canceling during early boot. We know that @work
3004 * isn't executing.
3005 */
3006 if (wq_online)
d6e89786 3007 __flush_work(work, true);
3347fa09 3008
7a22ad75 3009 clear_work_data(work);
8603e1b3
TH
3010
3011 /*
3012 * Paired with prepare_to_wait() above so that either
3013 * waitqueue_active() is visible here or !work_is_canceling() is
3014 * visible there.
3015 */
3016 smp_mb();
3017 if (waitqueue_active(&cancel_waitq))
3018 __wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
3019
1f1f642e
ON
3020 return ret;
3021}
3022
6e84d644 3023/**
401a8d04
TH
3024 * cancel_work_sync - cancel a work and wait for it to finish
3025 * @work: the work to cancel
6e84d644 3026 *
401a8d04
TH
3027 * Cancel @work and wait for its execution to finish. This function
3028 * can be used even if the work re-queues itself or migrates to
3029 * another workqueue. On return from this function, @work is
3030 * guaranteed to be not pending or executing on any CPU.
1f1f642e 3031 *
401a8d04
TH
3032 * cancel_work_sync(&delayed_work->work) must not be used for
3033 * delayed_work's. Use cancel_delayed_work_sync() instead.
6e84d644 3034 *
401a8d04 3035 * The caller must ensure that the workqueue on which @work was last
6e84d644 3036 * queued can't be destroyed before this function returns.
401a8d04 3037 *
d185af30 3038 * Return:
401a8d04 3039 * %true if @work was pending, %false otherwise.
6e84d644 3040 */
401a8d04 3041bool cancel_work_sync(struct work_struct *work)
6e84d644 3042{
36e227d2 3043 return __cancel_work_timer(work, false);
b89deed3 3044}
28e53bdd 3045EXPORT_SYMBOL_GPL(cancel_work_sync);
b89deed3 3046
6e84d644 3047/**
401a8d04
TH
3048 * flush_delayed_work - wait for a dwork to finish executing the last queueing
3049 * @dwork: the delayed work to flush
6e84d644 3050 *
401a8d04
TH
3051 * Delayed timer is cancelled and the pending work is queued for
3052 * immediate execution. Like flush_work(), this function only
3053 * considers the last queueing instance of @dwork.
1f1f642e 3054 *
d185af30 3055 * Return:
401a8d04
TH
3056 * %true if flush_work() waited for the work to finish execution,
3057 * %false if it was already idle.
6e84d644 3058 */
401a8d04
TH
3059bool flush_delayed_work(struct delayed_work *dwork)
3060{
8930caba 3061 local_irq_disable();
401a8d04 3062 if (del_timer_sync(&dwork->timer))
60c057bc 3063 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
8930caba 3064 local_irq_enable();
401a8d04
TH
3065 return flush_work(&dwork->work);
3066}
3067EXPORT_SYMBOL(flush_delayed_work);
3068
05f0fe6b
TH
3069/**
3070 * flush_rcu_work - wait for a rwork to finish executing the last queueing
3071 * @rwork: the rcu work to flush
3072 *
3073 * Return:
3074 * %true if flush_rcu_work() waited for the work to finish execution,
3075 * %false if it was already idle.
3076 */
3077bool flush_rcu_work(struct rcu_work *rwork)
3078{
3079 if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) {
3080 rcu_barrier();
3081 flush_work(&rwork->work);
3082 return true;
3083 } else {
3084 return flush_work(&rwork->work);
3085 }
3086}
3087EXPORT_SYMBOL(flush_rcu_work);
3088
f72b8792
JA
3089static bool __cancel_work(struct work_struct *work, bool is_dwork)
3090{
3091 unsigned long flags;
3092 int ret;
3093
3094 do {
3095 ret = try_to_grab_pending(work, is_dwork, &flags);
3096 } while (unlikely(ret == -EAGAIN));
3097
3098 if (unlikely(ret < 0))
3099 return false;
3100
3101 set_work_pool_and_clear_pending(work, get_work_pool_id(work));
3102 local_irq_restore(flags);
3103 return ret;
3104}
3105
09383498 3106/**
57b30ae7
TH
3107 * cancel_delayed_work - cancel a delayed work
3108 * @dwork: delayed_work to cancel
09383498 3109 *
d185af30
YB
3110 * Kill off a pending delayed_work.
3111 *
3112 * Return: %true if @dwork was pending and canceled; %false if it wasn't
3113 * pending.
3114 *
3115 * Note:
3116 * The work callback function may still be running on return, unless
3117 * it returns %true and the work doesn't re-arm itself. Explicitly flush or
3118 * use cancel_delayed_work_sync() to wait on it.
09383498 3119 *
57b30ae7 3120 * This function is safe to call from any context including IRQ handler.
09383498 3121 */
57b30ae7 3122bool cancel_delayed_work(struct delayed_work *dwork)
09383498 3123{
f72b8792 3124 return __cancel_work(&dwork->work, true);
09383498 3125}
57b30ae7 3126EXPORT_SYMBOL(cancel_delayed_work);
09383498 3127
401a8d04
TH
3128/**
3129 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
3130 * @dwork: the delayed work cancel
3131 *
3132 * This is cancel_work_sync() for delayed works.
3133 *
d185af30 3134 * Return:
401a8d04
TH
3135 * %true if @dwork was pending, %false otherwise.
3136 */
3137bool cancel_delayed_work_sync(struct delayed_work *dwork)
6e84d644 3138{
36e227d2 3139 return __cancel_work_timer(&dwork->work, true);
6e84d644 3140}
f5a421a4 3141EXPORT_SYMBOL(cancel_delayed_work_sync);
1da177e4 3142
b6136773 3143/**
31ddd871 3144 * schedule_on_each_cpu - execute a function synchronously on each online CPU
b6136773 3145 * @func: the function to call
b6136773 3146 *
31ddd871
TH
3147 * schedule_on_each_cpu() executes @func on each online CPU using the
3148 * system workqueue and blocks until all CPUs have completed.
b6136773 3149 * schedule_on_each_cpu() is very slow.
31ddd871 3150 *
d185af30 3151 * Return:
31ddd871 3152 * 0 on success, -errno on failure.
b6136773 3153 */
65f27f38 3154int schedule_on_each_cpu(work_func_t func)
15316ba8
CL
3155{
3156 int cpu;
38f51568 3157 struct work_struct __percpu *works;
15316ba8 3158
b6136773
AM
3159 works = alloc_percpu(struct work_struct);
3160 if (!works)
15316ba8 3161 return -ENOMEM;
b6136773 3162
93981800
TH
3163 get_online_cpus();
3164
15316ba8 3165 for_each_online_cpu(cpu) {
9bfb1839
IM
3166 struct work_struct *work = per_cpu_ptr(works, cpu);
3167
3168 INIT_WORK(work, func);
b71ab8c2 3169 schedule_work_on(cpu, work);
65a64464 3170 }
93981800
TH
3171
3172 for_each_online_cpu(cpu)
3173 flush_work(per_cpu_ptr(works, cpu));
3174
95402b38 3175 put_online_cpus();
b6136773 3176 free_percpu(works);
15316ba8
CL
3177 return 0;
3178}
3179
1fa44eca
JB
3180/**
3181 * execute_in_process_context - reliably execute the routine with user context
3182 * @fn: the function to execute
1fa44eca
JB
3183 * @ew: guaranteed storage for the execute work structure (must
3184 * be available when the work executes)
3185 *
3186 * Executes the function immediately if process context is available,
3187 * otherwise schedules the function for delayed execution.
3188 *
d185af30 3189 * Return: 0 - function was executed
1fa44eca
JB
3190 * 1 - function was scheduled for execution
3191 */
65f27f38 3192int execute_in_process_context(work_func_t fn, struct execute_work *ew)
1fa44eca
JB
3193{
3194 if (!in_interrupt()) {
65f27f38 3195 fn(&ew->work);
1fa44eca
JB
3196 return 0;
3197 }
3198
65f27f38 3199 INIT_WORK(&ew->work, fn);
1fa44eca
JB
3200 schedule_work(&ew->work);
3201
3202 return 1;
3203}
3204EXPORT_SYMBOL_GPL(execute_in_process_context);
3205
6ba94429
FW
3206/**
3207 * free_workqueue_attrs - free a workqueue_attrs
3208 * @attrs: workqueue_attrs to free
226223ab 3209 *
6ba94429 3210 * Undo alloc_workqueue_attrs().
226223ab 3211 */
6ba94429 3212void free_workqueue_attrs(struct workqueue_attrs *attrs)
226223ab 3213{
6ba94429
FW
3214 if (attrs) {
3215 free_cpumask_var(attrs->cpumask);
3216 kfree(attrs);
3217 }
226223ab
TH
3218}
3219
6ba94429
FW
3220/**
3221 * alloc_workqueue_attrs - allocate a workqueue_attrs
3222 * @gfp_mask: allocation mask to use
3223 *
3224 * Allocate a new workqueue_attrs, initialize with default settings and
3225 * return it.
3226 *
3227 * Return: The allocated new workqueue_attr on success. %NULL on failure.
3228 */
3229struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
226223ab 3230{
6ba94429 3231 struct workqueue_attrs *attrs;
226223ab 3232
6ba94429
FW
3233 attrs = kzalloc(sizeof(*attrs), gfp_mask);
3234 if (!attrs)
3235 goto fail;
3236 if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
3237 goto fail;
3238
3239 cpumask_copy(attrs->cpumask, cpu_possible_mask);
3240 return attrs;
3241fail:
3242 free_workqueue_attrs(attrs);
3243 return NULL;
226223ab
TH
3244}
3245
6ba94429
FW
3246static void copy_workqueue_attrs(struct workqueue_attrs *to,
3247 const struct workqueue_attrs *from)
226223ab 3248{
6ba94429
FW
3249 to->nice = from->nice;
3250 cpumask_copy(to->cpumask, from->cpumask);
3251 /*
3252 * Unlike hash and equality test, this function doesn't ignore
3253 * ->no_numa as it is used for both pool and wq attrs. Instead,
3254 * get_unbound_pool() explicitly clears ->no_numa after copying.
3255 */
3256 to->no_numa = from->no_numa;
226223ab
TH
3257}
3258
6ba94429
FW
3259/* hash value of the content of @attr */
3260static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
226223ab 3261{
6ba94429 3262 u32 hash = 0;
226223ab 3263
6ba94429
FW
3264 hash = jhash_1word(attrs->nice, hash);
3265 hash = jhash(cpumask_bits(attrs->cpumask),
3266 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3267 return hash;
226223ab 3268}
226223ab 3269
6ba94429
FW
3270/* content equality test */
3271static bool wqattrs_equal(const struct workqueue_attrs *a,
3272 const struct workqueue_attrs *b)
226223ab 3273{
6ba94429
FW
3274 if (a->nice != b->nice)
3275 return false;
3276 if (!cpumask_equal(a->cpumask, b->cpumask))
3277 return false;
3278 return true;
226223ab
TH
3279}
3280
6ba94429
FW
3281/**
3282 * init_worker_pool - initialize a newly zalloc'd worker_pool
3283 * @pool: worker_pool to initialize
3284 *
402dd89d 3285 * Initialize a newly zalloc'd @pool. It also allocates @pool->attrs.
6ba94429
FW
3286 *
3287 * Return: 0 on success, -errno on failure. Even on failure, all fields
3288 * inside @pool proper are initialized and put_unbound_pool() can be called
3289 * on @pool safely to release it.
3290 */
3291static int init_worker_pool(struct worker_pool *pool)
226223ab 3292{
6ba94429
FW
3293 spin_lock_init(&pool->lock);
3294 pool->id = -1;
3295 pool->cpu = -1;
3296 pool->node = NUMA_NO_NODE;
3297 pool->flags |= POOL_DISASSOCIATED;
82607adc 3298 pool->watchdog_ts = jiffies;
6ba94429
FW
3299 INIT_LIST_HEAD(&pool->worklist);
3300 INIT_LIST_HEAD(&pool->idle_list);
3301 hash_init(pool->busy_hash);
226223ab 3302
32a6c723 3303 timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE);
226223ab 3304
32a6c723 3305 timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0);
226223ab 3306
6ba94429 3307 INIT_LIST_HEAD(&pool->workers);
226223ab 3308
6ba94429
FW
3309 ida_init(&pool->worker_ida);
3310 INIT_HLIST_NODE(&pool->hash_node);
3311 pool->refcnt = 1;
226223ab 3312
6ba94429
FW
3313 /* shouldn't fail above this point */
3314 pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
3315 if (!pool->attrs)
3316 return -ENOMEM;
3317 return 0;
226223ab
TH
3318}
3319
6ba94429 3320static void rcu_free_wq(struct rcu_head *rcu)
226223ab 3321{
6ba94429
FW
3322 struct workqueue_struct *wq =
3323 container_of(rcu, struct workqueue_struct, rcu);
226223ab 3324
6ba94429
FW
3325 if (!(wq->flags & WQ_UNBOUND))
3326 free_percpu(wq->cpu_pwqs);
226223ab 3327 else
6ba94429 3328 free_workqueue_attrs(wq->unbound_attrs);
226223ab 3329
6ba94429
FW
3330 kfree(wq->rescuer);
3331 kfree(wq);
226223ab
TH
3332}
3333
6ba94429 3334static void rcu_free_pool(struct rcu_head *rcu)
226223ab 3335{
6ba94429 3336 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
226223ab 3337
6ba94429
FW
3338 ida_destroy(&pool->worker_ida);
3339 free_workqueue_attrs(pool->attrs);
3340 kfree(pool);
226223ab
TH
3341}
3342
6ba94429
FW
3343/**
3344 * put_unbound_pool - put a worker_pool
3345 * @pool: worker_pool to put
3346 *
3347 * Put @pool. If its refcnt reaches zero, it gets destroyed in sched-RCU
3348 * safe manner. get_unbound_pool() calls this function on its failure path
3349 * and this function should be able to release pools which went through,
3350 * successfully or not, init_worker_pool().
3351 *
3352 * Should be called with wq_pool_mutex held.
3353 */
3354static void put_unbound_pool(struct worker_pool *pool)
226223ab 3355{
6ba94429
FW
3356 DECLARE_COMPLETION_ONSTACK(detach_completion);
3357 struct worker *worker;
226223ab 3358
6ba94429 3359 lockdep_assert_held(&wq_pool_mutex);
226223ab 3360
6ba94429
FW
3361 if (--pool->refcnt)
3362 return;
226223ab 3363
6ba94429
FW
3364 /* sanity checks */
3365 if (WARN_ON(!(pool->cpu < 0)) ||
3366 WARN_ON(!list_empty(&pool->worklist)))
3367 return;
226223ab 3368
6ba94429
FW
3369 /* release id and unhash */
3370 if (pool->id >= 0)
3371 idr_remove(&worker_pool_idr, pool->id);
3372 hash_del(&pool->hash_node);
d55262c4 3373
6ba94429 3374 /*
692b4825
TH
3375 * Become the manager and destroy all workers. This prevents
3376 * @pool's workers from blocking on attach_mutex. We're the last
3377 * manager and @pool gets freed with the flag set.
6ba94429 3378 */
6ba94429 3379 spin_lock_irq(&pool->lock);
692b4825
TH
3380 wait_event_lock_irq(wq_manager_wait,
3381 !(pool->flags & POOL_MANAGER_ACTIVE), pool->lock);
3382 pool->flags |= POOL_MANAGER_ACTIVE;
3383
6ba94429
FW
3384 while ((worker = first_idle_worker(pool)))
3385 destroy_worker(worker);
3386 WARN_ON(pool->nr_workers || pool->nr_idle);
3387 spin_unlock_irq(&pool->lock);
d55262c4 3388
1258fae7 3389 mutex_lock(&wq_pool_attach_mutex);
6ba94429
FW
3390 if (!list_empty(&pool->workers))
3391 pool->detach_completion = &detach_completion;
1258fae7 3392 mutex_unlock(&wq_pool_attach_mutex);
226223ab 3393
6ba94429
FW
3394 if (pool->detach_completion)
3395 wait_for_completion(pool->detach_completion);
226223ab 3396
6ba94429
FW
3397 /* shut down the timers */
3398 del_timer_sync(&pool->idle_timer);
3399 del_timer_sync(&pool->mayday_timer);
226223ab 3400
6ba94429 3401 /* sched-RCU protected to allow dereferences from get_work_pool() */
25b00775 3402 call_rcu(&pool->rcu, rcu_free_pool);
226223ab
TH
3403}
3404
3405/**
6ba94429
FW
3406 * get_unbound_pool - get a worker_pool with the specified attributes
3407 * @attrs: the attributes of the worker_pool to get
226223ab 3408 *
6ba94429
FW
3409 * Obtain a worker_pool which has the same attributes as @attrs, bump the
3410 * reference count and return it. If there already is a matching
3411 * worker_pool, it will be used; otherwise, this function attempts to
3412 * create a new one.
226223ab 3413 *
6ba94429 3414 * Should be called with wq_pool_mutex held.
226223ab 3415 *
6ba94429
FW
3416 * Return: On success, a worker_pool with the same attributes as @attrs.
3417 * On failure, %NULL.
226223ab 3418 */
6ba94429 3419static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
226223ab 3420{
6ba94429
FW
3421 u32 hash = wqattrs_hash(attrs);
3422 struct worker_pool *pool;
3423 int node;
e2273584 3424 int target_node = NUMA_NO_NODE;
226223ab 3425
6ba94429 3426 lockdep_assert_held(&wq_pool_mutex);
226223ab 3427
6ba94429
FW
3428 /* do we already have a matching pool? */
3429 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3430 if (wqattrs_equal(pool->attrs, attrs)) {
3431 pool->refcnt++;
3432 return pool;
3433 }
3434 }
226223ab 3435
e2273584
XP
3436 /* if cpumask is contained inside a NUMA node, we belong to that node */
3437 if (wq_numa_enabled) {
3438 for_each_node(node) {
3439 if (cpumask_subset(attrs->cpumask,
3440 wq_numa_possible_cpumask[node])) {
3441 target_node = node;
3442 break;
3443 }
3444 }
3445 }
3446
6ba94429 3447 /* nope, create a new one */
e2273584 3448 pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node);
6ba94429
FW
3449 if (!pool || init_worker_pool(pool) < 0)
3450 goto fail;
3451
3452 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */
3453 copy_workqueue_attrs(pool->attrs, attrs);
e2273584 3454 pool->node = target_node;
226223ab
TH
3455
3456 /*
6ba94429
FW
3457 * no_numa isn't a worker_pool attribute, always clear it. See
3458 * 'struct workqueue_attrs' comments for detail.
226223ab 3459 */
6ba94429 3460 pool->attrs->no_numa = false;
226223ab 3461
6ba94429
FW
3462 if (worker_pool_assign_id(pool) < 0)
3463 goto fail;
226223ab 3464
6ba94429 3465 /* create and start the initial worker */
3347fa09 3466 if (wq_online && !create_worker(pool))
6ba94429 3467 goto fail;
226223ab 3468
6ba94429
FW
3469 /* install */
3470 hash_add(unbound_pool_hash, &pool->hash_node, hash);
226223ab 3471
6ba94429
FW
3472 return pool;
3473fail:
3474 if (pool)
3475 put_unbound_pool(pool);
3476 return NULL;
226223ab 3477}
226223ab 3478
6ba94429 3479static void rcu_free_pwq(struct rcu_head *rcu)
7a4e344c 3480{
6ba94429
FW
3481 kmem_cache_free(pwq_cache,
3482 container_of(rcu, struct pool_workqueue, rcu));
7a4e344c
TH
3483}
3484
6ba94429
FW
3485/*
3486 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3487 * and needs to be destroyed.
7a4e344c 3488 */
6ba94429 3489static void pwq_unbound_release_workfn(struct work_struct *work)
7a4e344c 3490{
6ba94429
FW
3491 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3492 unbound_release_work);
3493 struct workqueue_struct *wq = pwq->wq;
3494 struct worker_pool *pool = pwq->pool;
3495 bool is_last;
7a4e344c 3496
6ba94429
FW
3497 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3498 return;
7a4e344c 3499
6ba94429
FW
3500 mutex_lock(&wq->mutex);
3501 list_del_rcu(&pwq->pwqs_node);
3502 is_last = list_empty(&wq->pwqs);
3503 mutex_unlock(&wq->mutex);
3504
3505 mutex_lock(&wq_pool_mutex);
3506 put_unbound_pool(pool);
3507 mutex_unlock(&wq_pool_mutex);
3508
25b00775 3509 call_rcu(&pwq->rcu, rcu_free_pwq);
7a4e344c 3510
2865a8fb 3511 /*
6ba94429
FW
3512 * If we're the last pwq going away, @wq is already dead and no one
3513 * is gonna access it anymore. Schedule RCU free.
2865a8fb 3514 */
6ba94429 3515 if (is_last)
25b00775 3516 call_rcu(&wq->rcu, rcu_free_wq);
29c91e99
TH
3517}
3518
7a4e344c 3519/**
6ba94429
FW
3520 * pwq_adjust_max_active - update a pwq's max_active to the current setting
3521 * @pwq: target pool_workqueue
d185af30 3522 *
6ba94429
FW
3523 * If @pwq isn't freezing, set @pwq->max_active to the associated
3524 * workqueue's saved_max_active and activate delayed work items
3525 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero.
7a4e344c 3526 */
6ba94429 3527static void pwq_adjust_max_active(struct pool_workqueue *pwq)
4e1a1f9a 3528{
6ba94429
FW
3529 struct workqueue_struct *wq = pwq->wq;
3530 bool freezable = wq->flags & WQ_FREEZABLE;
3347fa09 3531 unsigned long flags;
4e1a1f9a 3532
6ba94429
FW
3533 /* for @wq->saved_max_active */
3534 lockdep_assert_held(&wq->mutex);
4e1a1f9a 3535
6ba94429
FW
3536 /* fast exit for non-freezable wqs */
3537 if (!freezable && pwq->max_active == wq->saved_max_active)
3538 return;
7a4e344c 3539
3347fa09
TH
3540 /* this function can be called during early boot w/ irq disabled */
3541 spin_lock_irqsave(&pwq->pool->lock, flags);
29c91e99 3542
6ba94429
FW
3543 /*
3544 * During [un]freezing, the caller is responsible for ensuring that
3545 * this function is called at least once after @workqueue_freezing
3546 * is updated and visible.
3547 */
3548 if (!freezable || !workqueue_freezing) {
3549 pwq->max_active = wq->saved_max_active;
4e1a1f9a 3550
6ba94429
FW
3551 while (!list_empty(&pwq->delayed_works) &&
3552 pwq->nr_active < pwq->max_active)
3553 pwq_activate_first_delayed(pwq);
e2dca7ad 3554
6ba94429
FW
3555 /*
3556 * Need to kick a worker after thawed or an unbound wq's
3557 * max_active is bumped. It's a slow path. Do it always.
3558 */
3559 wake_up_worker(pwq->pool);
3560 } else {
3561 pwq->max_active = 0;
3562 }
e2dca7ad 3563
3347fa09 3564 spin_unlock_irqrestore(&pwq->pool->lock, flags);
e2dca7ad
TH
3565}
3566
6ba94429
FW
3567/* initialize newly alloced @pwq which is associated with @wq and @pool */
3568static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3569 struct worker_pool *pool)
29c91e99 3570{
6ba94429 3571 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
29c91e99 3572
6ba94429
FW
3573 memset(pwq, 0, sizeof(*pwq));
3574
3575 pwq->pool = pool;
3576 pwq->wq = wq;
3577 pwq->flush_color = -1;
3578 pwq->refcnt = 1;
3579 INIT_LIST_HEAD(&pwq->delayed_works);
3580 INIT_LIST_HEAD(&pwq->pwqs_node);
3581 INIT_LIST_HEAD(&pwq->mayday_node);
3582 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
29c91e99
TH
3583}
3584
6ba94429
FW
3585/* sync @pwq with the current state of its associated wq and link it */
3586static void link_pwq(struct pool_workqueue *pwq)
29c91e99 3587{
6ba94429 3588 struct workqueue_struct *wq = pwq->wq;
29c91e99 3589
6ba94429 3590 lockdep_assert_held(&wq->mutex);
a892cacc 3591
6ba94429
FW
3592 /* may be called multiple times, ignore if already linked */
3593 if (!list_empty(&pwq->pwqs_node))
29c91e99 3594 return;
29c91e99 3595
6ba94429
FW
3596 /* set the matching work_color */
3597 pwq->work_color = wq->work_color;
29c91e99 3598
6ba94429
FW
3599 /* sync max_active to the current setting */
3600 pwq_adjust_max_active(pwq);
29c91e99 3601
6ba94429
FW
3602 /* link in @pwq */
3603 list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3604}
29c91e99 3605
6ba94429
FW
3606/* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3607static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3608 const struct workqueue_attrs *attrs)
3609{
3610 struct worker_pool *pool;
3611 struct pool_workqueue *pwq;
60f5a4bc 3612
6ba94429 3613 lockdep_assert_held(&wq_pool_mutex);
60f5a4bc 3614
6ba94429
FW
3615 pool = get_unbound_pool(attrs);
3616 if (!pool)
3617 return NULL;
60f5a4bc 3618
6ba94429
FW
3619 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3620 if (!pwq) {
3621 put_unbound_pool(pool);
3622 return NULL;
3623 }
29c91e99 3624
6ba94429
FW
3625 init_pwq(pwq, wq, pool);
3626 return pwq;
3627}
29c91e99 3628
29c91e99 3629/**
30186c6f 3630 * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node
042f7df1 3631 * @attrs: the wq_attrs of the default pwq of the target workqueue
6ba94429
FW
3632 * @node: the target NUMA node
3633 * @cpu_going_down: if >= 0, the CPU to consider as offline
3634 * @cpumask: outarg, the resulting cpumask
29c91e99 3635 *
6ba94429
FW
3636 * Calculate the cpumask a workqueue with @attrs should use on @node. If
3637 * @cpu_going_down is >= 0, that cpu is considered offline during
3638 * calculation. The result is stored in @cpumask.
a892cacc 3639 *
6ba94429
FW
3640 * If NUMA affinity is not enabled, @attrs->cpumask is always used. If
3641 * enabled and @node has online CPUs requested by @attrs, the returned
3642 * cpumask is the intersection of the possible CPUs of @node and
3643 * @attrs->cpumask.
d185af30 3644 *
6ba94429
FW
3645 * The caller is responsible for ensuring that the cpumask of @node stays
3646 * stable.
3647 *
3648 * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3649 * %false if equal.
29c91e99 3650 */
6ba94429
FW
3651static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3652 int cpu_going_down, cpumask_t *cpumask)
29c91e99 3653{
6ba94429
FW
3654 if (!wq_numa_enabled || attrs->no_numa)
3655 goto use_dfl;
29c91e99 3656
6ba94429
FW
3657 /* does @node have any online CPUs @attrs wants? */
3658 cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3659 if (cpu_going_down >= 0)
3660 cpumask_clear_cpu(cpu_going_down, cpumask);
29c91e99 3661
6ba94429
FW
3662 if (cpumask_empty(cpumask))
3663 goto use_dfl;
4c16bd32
TH
3664
3665 /* yeap, return possible CPUs in @node that @attrs wants */
3666 cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
1ad0f0a7
MB
3667
3668 if (cpumask_empty(cpumask)) {
3669 pr_warn_once("WARNING: workqueue cpumask: online intersect > "
3670 "possible intersect\n");
3671 return false;
3672 }
3673
4c16bd32
TH
3674 return !cpumask_equal(cpumask, attrs->cpumask);
3675
3676use_dfl:
3677 cpumask_copy(cpumask, attrs->cpumask);
3678 return false;
3679}
3680
1befcf30
TH
3681/* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
3682static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3683 int node,
3684 struct pool_workqueue *pwq)
3685{
3686 struct pool_workqueue *old_pwq;
3687
5b95e1af 3688 lockdep_assert_held(&wq_pool_mutex);
1befcf30
TH
3689 lockdep_assert_held(&wq->mutex);
3690
3691 /* link_pwq() can handle duplicate calls */
3692 link_pwq(pwq);
3693
3694 old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3695 rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3696 return old_pwq;
3697}
3698
2d5f0764
LJ
3699/* context to store the prepared attrs & pwqs before applying */
3700struct apply_wqattrs_ctx {
3701 struct workqueue_struct *wq; /* target workqueue */
3702 struct workqueue_attrs *attrs; /* attrs to apply */
042f7df1 3703 struct list_head list; /* queued for batching commit */
2d5f0764
LJ
3704 struct pool_workqueue *dfl_pwq;
3705 struct pool_workqueue *pwq_tbl[];
3706};
3707
3708/* free the resources after success or abort */
3709static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
3710{
3711 if (ctx) {
3712 int node;
3713
3714 for_each_node(node)
3715 put_pwq_unlocked(ctx->pwq_tbl[node]);
3716 put_pwq_unlocked(ctx->dfl_pwq);
3717
3718 free_workqueue_attrs(ctx->attrs);
3719
3720 kfree(ctx);
3721 }
3722}
3723
3724/* allocate the attrs and pwqs for later installation */
3725static struct apply_wqattrs_ctx *
3726apply_wqattrs_prepare(struct workqueue_struct *wq,
3727 const struct workqueue_attrs *attrs)
9e8cd2f5 3728{
2d5f0764 3729 struct apply_wqattrs_ctx *ctx;
4c16bd32 3730 struct workqueue_attrs *new_attrs, *tmp_attrs;
2d5f0764 3731 int node;
9e8cd2f5 3732
2d5f0764 3733 lockdep_assert_held(&wq_pool_mutex);
9e8cd2f5 3734
acafe7e3 3735 ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_node_ids), GFP_KERNEL);
8719dcea 3736
13e2e556 3737 new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
4c16bd32 3738 tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
2d5f0764
LJ
3739 if (!ctx || !new_attrs || !tmp_attrs)
3740 goto out_free;
13e2e556 3741
042f7df1
LJ
3742 /*
3743 * Calculate the attrs of the default pwq.
3744 * If the user configured cpumask doesn't overlap with the
3745 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask.
3746 */
13e2e556 3747 copy_workqueue_attrs(new_attrs, attrs);
b05a7928 3748 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask);
042f7df1
LJ
3749 if (unlikely(cpumask_empty(new_attrs->cpumask)))
3750 cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask);
13e2e556 3751
4c16bd32
TH
3752 /*
3753 * We may create multiple pwqs with differing cpumasks. Make a
3754 * copy of @new_attrs which will be modified and used to obtain
3755 * pools.
3756 */
3757 copy_workqueue_attrs(tmp_attrs, new_attrs);
3758
4c16bd32
TH
3759 /*
3760 * If something goes wrong during CPU up/down, we'll fall back to
3761 * the default pwq covering whole @attrs->cpumask. Always create
3762 * it even if we don't use it immediately.
3763 */
2d5f0764
LJ
3764 ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3765 if (!ctx->dfl_pwq)
3766 goto out_free;
4c16bd32
TH
3767
3768 for_each_node(node) {
042f7df1 3769 if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) {
2d5f0764
LJ
3770 ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
3771 if (!ctx->pwq_tbl[node])
3772 goto out_free;
4c16bd32 3773 } else {
2d5f0764
LJ
3774 ctx->dfl_pwq->refcnt++;
3775 ctx->pwq_tbl[node] = ctx->dfl_pwq;
4c16bd32
TH
3776 }
3777 }
3778
042f7df1
LJ
3779 /* save the user configured attrs and sanitize it. */
3780 copy_workqueue_attrs(new_attrs, attrs);
3781 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
2d5f0764 3782 ctx->attrs = new_attrs;
042f7df1 3783
2d5f0764
LJ
3784 ctx->wq = wq;
3785 free_workqueue_attrs(tmp_attrs);
3786 return ctx;
3787
3788out_free:
3789 free_workqueue_attrs(tmp_attrs);
3790 free_workqueue_attrs(new_attrs);
3791 apply_wqattrs_cleanup(ctx);
3792 return NULL;
3793}
3794
3795/* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
3796static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
3797{
3798 int node;
9e8cd2f5 3799
4c16bd32 3800 /* all pwqs have been created successfully, let's install'em */
2d5f0764 3801 mutex_lock(&ctx->wq->mutex);
a892cacc 3802
2d5f0764 3803 copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
4c16bd32
TH
3804
3805 /* save the previous pwq and install the new one */
f147f29e 3806 for_each_node(node)
2d5f0764
LJ
3807 ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node,
3808 ctx->pwq_tbl[node]);
4c16bd32
TH
3809
3810 /* @dfl_pwq might not have been used, ensure it's linked */
2d5f0764
LJ
3811 link_pwq(ctx->dfl_pwq);
3812 swap(ctx->wq->dfl_pwq, ctx->dfl_pwq);
f147f29e 3813
2d5f0764
LJ
3814 mutex_unlock(&ctx->wq->mutex);
3815}
9e8cd2f5 3816
a0111cf6
LJ
3817static void apply_wqattrs_lock(void)
3818{
3819 /* CPUs should stay stable across pwq creations and installations */
3820 get_online_cpus();
3821 mutex_lock(&wq_pool_mutex);
3822}
3823
3824static void apply_wqattrs_unlock(void)
3825{
3826 mutex_unlock(&wq_pool_mutex);
3827 put_online_cpus();
3828}
3829
3830static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
3831 const struct workqueue_attrs *attrs)
2d5f0764
LJ
3832{
3833 struct apply_wqattrs_ctx *ctx;
4c16bd32 3834
2d5f0764
LJ
3835 /* only unbound workqueues can change attributes */
3836 if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
3837 return -EINVAL;
13e2e556 3838
2d5f0764 3839 /* creating multiple pwqs breaks ordering guarantee */
0a94efb5
TH
3840 if (!list_empty(&wq->pwqs)) {
3841 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
3842 return -EINVAL;
3843
3844 wq->flags &= ~__WQ_ORDERED;
3845 }
2d5f0764 3846
2d5f0764 3847 ctx = apply_wqattrs_prepare(wq, attrs);
6201171e 3848 if (!ctx)
3849 return -ENOMEM;
2d5f0764
LJ
3850
3851 /* the ctx has been prepared successfully, let's commit it */
6201171e 3852 apply_wqattrs_commit(ctx);
2d5f0764
LJ
3853 apply_wqattrs_cleanup(ctx);
3854
6201171e 3855 return 0;
9e8cd2f5
TH
3856}
3857
a0111cf6
LJ
3858/**
3859 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
3860 * @wq: the target workqueue
3861 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
3862 *
3863 * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA
3864 * machines, this function maps a separate pwq to each NUMA node with
3865 * possibles CPUs in @attrs->cpumask so that work items are affine to the
3866 * NUMA node it was issued on. Older pwqs are released as in-flight work
3867 * items finish. Note that a work item which repeatedly requeues itself
3868 * back-to-back will stay on its current pwq.
3869 *
3870 * Performs GFP_KERNEL allocations.
3871 *
3872 * Return: 0 on success and -errno on failure.
3873 */
3874int apply_workqueue_attrs(struct workqueue_struct *wq,
3875 const struct workqueue_attrs *attrs)
3876{
3877 int ret;
3878
3879 apply_wqattrs_lock();
3880 ret = apply_workqueue_attrs_locked(wq, attrs);
3881 apply_wqattrs_unlock();
3882
3883 return ret;
3884}
6106c0f8 3885EXPORT_SYMBOL_GPL(apply_workqueue_attrs);
a0111cf6 3886
4c16bd32
TH
3887/**
3888 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
3889 * @wq: the target workqueue
3890 * @cpu: the CPU coming up or going down
3891 * @online: whether @cpu is coming up or going down
3892 *
3893 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
3894 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of
3895 * @wq accordingly.
3896 *
3897 * If NUMA affinity can't be adjusted due to memory allocation failure, it
3898 * falls back to @wq->dfl_pwq which may not be optimal but is always
3899 * correct.
3900 *
3901 * Note that when the last allowed CPU of a NUMA node goes offline for a
3902 * workqueue with a cpumask spanning multiple nodes, the workers which were
3903 * already executing the work items for the workqueue will lose their CPU
3904 * affinity and may execute on any CPU. This is similar to how per-cpu
3905 * workqueues behave on CPU_DOWN. If a workqueue user wants strict
3906 * affinity, it's the user's responsibility to flush the work item from
3907 * CPU_DOWN_PREPARE.
3908 */
3909static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
3910 bool online)
3911{
3912 int node = cpu_to_node(cpu);
3913 int cpu_off = online ? -1 : cpu;
3914 struct pool_workqueue *old_pwq = NULL, *pwq;
3915 struct workqueue_attrs *target_attrs;
3916 cpumask_t *cpumask;
3917
3918 lockdep_assert_held(&wq_pool_mutex);
3919
f7142ed4
LJ
3920 if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) ||
3921 wq->unbound_attrs->no_numa)
4c16bd32
TH
3922 return;
3923
3924 /*
3925 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
3926 * Let's use a preallocated one. The following buf is protected by
3927 * CPU hotplug exclusion.
3928 */
3929 target_attrs = wq_update_unbound_numa_attrs_buf;
3930 cpumask = target_attrs->cpumask;
3931
4c16bd32
TH
3932 copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
3933 pwq = unbound_pwq_by_node(wq, node);
3934
3935 /*
3936 * Let's determine what needs to be done. If the target cpumask is
042f7df1
LJ
3937 * different from the default pwq's, we need to compare it to @pwq's
3938 * and create a new one if they don't match. If the target cpumask
3939 * equals the default pwq's, the default pwq should be used.
4c16bd32 3940 */
042f7df1 3941 if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) {
4c16bd32 3942 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
f7142ed4 3943 return;
4c16bd32 3944 } else {
534a3fbb 3945 goto use_dfl_pwq;
4c16bd32
TH
3946 }
3947
4c16bd32
TH
3948 /* create a new pwq */
3949 pwq = alloc_unbound_pwq(wq, target_attrs);
3950 if (!pwq) {
2d916033
FF
3951 pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
3952 wq->name);
77f300b1 3953 goto use_dfl_pwq;
4c16bd32
TH
3954 }
3955
f7142ed4 3956 /* Install the new pwq. */
4c16bd32
TH
3957 mutex_lock(&wq->mutex);
3958 old_pwq = numa_pwq_tbl_install(wq, node, pwq);
3959 goto out_unlock;
3960
3961use_dfl_pwq:
f7142ed4 3962 mutex_lock(&wq->mutex);
4c16bd32
TH
3963 spin_lock_irq(&wq->dfl_pwq->pool->lock);
3964 get_pwq(wq->dfl_pwq);
3965 spin_unlock_irq(&wq->dfl_pwq->pool->lock);
3966 old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
3967out_unlock:
3968 mutex_unlock(&wq->mutex);
3969 put_pwq_unlocked(old_pwq);
3970}
3971
30cdf249 3972static int alloc_and_link_pwqs(struct workqueue_struct *wq)
0f900049 3973{
49e3cf44 3974 bool highpri = wq->flags & WQ_HIGHPRI;
8a2b7538 3975 int cpu, ret;
30cdf249
TH
3976
3977 if (!(wq->flags & WQ_UNBOUND)) {
420c0ddb
TH
3978 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
3979 if (!wq->cpu_pwqs)
30cdf249
TH
3980 return -ENOMEM;
3981
3982 for_each_possible_cpu(cpu) {
7fb98ea7
TH
3983 struct pool_workqueue *pwq =
3984 per_cpu_ptr(wq->cpu_pwqs, cpu);
7a62c2c8 3985 struct worker_pool *cpu_pools =
f02ae73a 3986 per_cpu(cpu_worker_pools, cpu);
f3421797 3987
f147f29e
TH
3988 init_pwq(pwq, wq, &cpu_pools[highpri]);
3989
3990 mutex_lock(&wq->mutex);
1befcf30 3991 link_pwq(pwq);
f147f29e 3992 mutex_unlock(&wq->mutex);
30cdf249 3993 }
9e8cd2f5 3994 return 0;
8a2b7538
TH
3995 } else if (wq->flags & __WQ_ORDERED) {
3996 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
3997 /* there should only be single pwq for ordering guarantee */
3998 WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
3999 wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
4000 "ordering guarantee broken for workqueue %s\n", wq->name);
4001 return ret;
30cdf249 4002 } else {
9e8cd2f5 4003 return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
30cdf249 4004 }
0f900049
TH
4005}
4006
f3421797
TH
4007static int wq_clamp_max_active(int max_active, unsigned int flags,
4008 const char *name)
b71ab8c2 4009{
f3421797
TH
4010 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
4011
4012 if (max_active < 1 || max_active > lim)
044c782c
VI
4013 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
4014 max_active, name, 1, lim);
b71ab8c2 4015
f3421797 4016 return clamp_val(max_active, 1, lim);
b71ab8c2
TH
4017}
4018
983c7515
TH
4019/*
4020 * Workqueues which may be used during memory reclaim should have a rescuer
4021 * to guarantee forward progress.
4022 */
4023static int init_rescuer(struct workqueue_struct *wq)
4024{
4025 struct worker *rescuer;
4026 int ret;
4027
4028 if (!(wq->flags & WQ_MEM_RECLAIM))
4029 return 0;
4030
4031 rescuer = alloc_worker(NUMA_NO_NODE);
4032 if (!rescuer)
4033 return -ENOMEM;
4034
4035 rescuer->rescue_wq = wq;
4036 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", wq->name);
4037 ret = PTR_ERR_OR_ZERO(rescuer->task);
4038 if (ret) {
4039 kfree(rescuer);
4040 return ret;
4041 }
4042
4043 wq->rescuer = rescuer;
4044 kthread_bind_mask(rescuer->task, cpu_possible_mask);
4045 wake_up_process(rescuer->task);
4046
4047 return 0;
4048}
4049
b196be89 4050struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
d320c038
TH
4051 unsigned int flags,
4052 int max_active,
4053 struct lock_class_key *key,
b196be89 4054 const char *lock_name, ...)
1da177e4 4055{
df2d5ae4 4056 size_t tbl_size = 0;
ecf6881f 4057 va_list args;
1da177e4 4058 struct workqueue_struct *wq;
49e3cf44 4059 struct pool_workqueue *pwq;
b196be89 4060
5c0338c6
TH
4061 /*
4062 * Unbound && max_active == 1 used to imply ordered, which is no
4063 * longer the case on NUMA machines due to per-node pools. While
4064 * alloc_ordered_workqueue() is the right way to create an ordered
4065 * workqueue, keep the previous behavior to avoid subtle breakages
4066 * on NUMA.
4067 */
4068 if ((flags & WQ_UNBOUND) && max_active == 1)
4069 flags |= __WQ_ORDERED;
4070
cee22a15
VK
4071 /* see the comment above the definition of WQ_POWER_EFFICIENT */
4072 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
4073 flags |= WQ_UNBOUND;
4074
ecf6881f 4075 /* allocate wq and format name */
df2d5ae4 4076 if (flags & WQ_UNBOUND)
ddcb57e2 4077 tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]);
df2d5ae4
TH
4078
4079 wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
b196be89 4080 if (!wq)
d2c1d404 4081 return NULL;
b196be89 4082
6029a918
TH
4083 if (flags & WQ_UNBOUND) {
4084 wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
4085 if (!wq->unbound_attrs)
4086 goto err_free_wq;
4087 }
4088
ecf6881f
TH
4089 va_start(args, lock_name);
4090 vsnprintf(wq->name, sizeof(wq->name), fmt, args);
b196be89 4091 va_end(args);
1da177e4 4092
d320c038 4093 max_active = max_active ?: WQ_DFL_ACTIVE;
b196be89 4094 max_active = wq_clamp_max_active(max_active, flags, wq->name);
3af24433 4095
b196be89 4096 /* init wq */
97e37d7b 4097 wq->flags = flags;
a0a1a5fd 4098 wq->saved_max_active = max_active;
3c25a55d 4099 mutex_init(&wq->mutex);
112202d9 4100 atomic_set(&wq->nr_pwqs_to_flush, 0);
30cdf249 4101 INIT_LIST_HEAD(&wq->pwqs);
73f53c4a
TH
4102 INIT_LIST_HEAD(&wq->flusher_queue);
4103 INIT_LIST_HEAD(&wq->flusher_overflow);
493a1724 4104 INIT_LIST_HEAD(&wq->maydays);
502ca9d8 4105
eb13ba87 4106 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
cce1a165 4107 INIT_LIST_HEAD(&wq->list);
3af24433 4108
30cdf249 4109 if (alloc_and_link_pwqs(wq) < 0)
d2c1d404 4110 goto err_free_wq;
1537663f 4111
40c17f75 4112 if (wq_online && init_rescuer(wq) < 0)
983c7515 4113 goto err_destroy;
3af24433 4114
226223ab
TH
4115 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
4116 goto err_destroy;
4117
a0a1a5fd 4118 /*
68e13a67
LJ
4119 * wq_pool_mutex protects global freeze state and workqueues list.
4120 * Grab it, adjust max_active and add the new @wq to workqueues
4121 * list.
a0a1a5fd 4122 */
68e13a67 4123 mutex_lock(&wq_pool_mutex);
a0a1a5fd 4124
a357fc03 4125 mutex_lock(&wq->mutex);
699ce097
TH
4126 for_each_pwq(pwq, wq)
4127 pwq_adjust_max_active(pwq);
a357fc03 4128 mutex_unlock(&wq->mutex);
a0a1a5fd 4129
e2dca7ad 4130 list_add_tail_rcu(&wq->list, &workqueues);
a0a1a5fd 4131
68e13a67 4132 mutex_unlock(&wq_pool_mutex);
1537663f 4133
3af24433 4134 return wq;
d2c1d404
TH
4135
4136err_free_wq:
6029a918 4137 free_workqueue_attrs(wq->unbound_attrs);
d2c1d404
TH
4138 kfree(wq);
4139 return NULL;
4140err_destroy:
4141 destroy_workqueue(wq);
4690c4ab 4142 return NULL;
3af24433 4143}
d320c038 4144EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
1da177e4 4145
3af24433
ON
4146/**
4147 * destroy_workqueue - safely terminate a workqueue
4148 * @wq: target workqueue
4149 *
4150 * Safely destroy a workqueue. All work currently pending will be done first.
4151 */
4152void destroy_workqueue(struct workqueue_struct *wq)
4153{
49e3cf44 4154 struct pool_workqueue *pwq;
4c16bd32 4155 int node;
3af24433 4156
9c5a2ba7
TH
4157 /* drain it before proceeding with destruction */
4158 drain_workqueue(wq);
c8efcc25 4159
6183c009 4160 /* sanity checks */
b09f4fd3 4161 mutex_lock(&wq->mutex);
49e3cf44 4162 for_each_pwq(pwq, wq) {
6183c009
TH
4163 int i;
4164
76af4d93
TH
4165 for (i = 0; i < WORK_NR_COLORS; i++) {
4166 if (WARN_ON(pwq->nr_in_flight[i])) {
b09f4fd3 4167 mutex_unlock(&wq->mutex);
fa07fb6a 4168 show_workqueue_state();
6183c009 4169 return;
76af4d93
TH
4170 }
4171 }
4172
5c529597 4173 if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
8864b4e5 4174 WARN_ON(pwq->nr_active) ||
76af4d93 4175 WARN_ON(!list_empty(&pwq->delayed_works))) {
b09f4fd3 4176 mutex_unlock(&wq->mutex);
fa07fb6a 4177 show_workqueue_state();
6183c009 4178 return;
76af4d93 4179 }
6183c009 4180 }
b09f4fd3 4181 mutex_unlock(&wq->mutex);
6183c009 4182
a0a1a5fd
TH
4183 /*
4184 * wq list is used to freeze wq, remove from list after
4185 * flushing is complete in case freeze races us.
4186 */
68e13a67 4187 mutex_lock(&wq_pool_mutex);
e2dca7ad 4188 list_del_rcu(&wq->list);
68e13a67 4189 mutex_unlock(&wq_pool_mutex);
3af24433 4190
226223ab
TH
4191 workqueue_sysfs_unregister(wq);
4192
e2dca7ad 4193 if (wq->rescuer)
e22bee78 4194 kthread_stop(wq->rescuer->task);
e22bee78 4195
8864b4e5
TH
4196 if (!(wq->flags & WQ_UNBOUND)) {
4197 /*
4198 * The base ref is never dropped on per-cpu pwqs. Directly
e2dca7ad 4199 * schedule RCU free.
8864b4e5 4200 */
25b00775 4201 call_rcu(&wq->rcu, rcu_free_wq);
8864b4e5
TH
4202 } else {
4203 /*
4204 * We're the sole accessor of @wq at this point. Directly
4c16bd32
TH
4205 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4206 * @wq will be freed when the last pwq is released.
8864b4e5 4207 */
4c16bd32
TH
4208 for_each_node(node) {
4209 pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4210 RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4211 put_pwq_unlocked(pwq);
4212 }
4213
4214 /*
4215 * Put dfl_pwq. @wq may be freed any time after dfl_pwq is
4216 * put. Don't access it afterwards.
4217 */
4218 pwq = wq->dfl_pwq;
4219 wq->dfl_pwq = NULL;
dce90d47 4220 put_pwq_unlocked(pwq);
29c91e99 4221 }
3af24433
ON
4222}
4223EXPORT_SYMBOL_GPL(destroy_workqueue);
4224
dcd989cb
TH
4225/**
4226 * workqueue_set_max_active - adjust max_active of a workqueue
4227 * @wq: target workqueue
4228 * @max_active: new max_active value.
4229 *
4230 * Set max_active of @wq to @max_active.
4231 *
4232 * CONTEXT:
4233 * Don't call from IRQ context.
4234 */
4235void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4236{
49e3cf44 4237 struct pool_workqueue *pwq;
dcd989cb 4238
8719dcea 4239 /* disallow meddling with max_active for ordered workqueues */
0a94efb5 4240 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
8719dcea
TH
4241 return;
4242
f3421797 4243 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
dcd989cb 4244
a357fc03 4245 mutex_lock(&wq->mutex);
dcd989cb 4246
0a94efb5 4247 wq->flags &= ~__WQ_ORDERED;
dcd989cb
TH
4248 wq->saved_max_active = max_active;
4249
699ce097
TH
4250 for_each_pwq(pwq, wq)
4251 pwq_adjust_max_active(pwq);
93981800 4252
a357fc03 4253 mutex_unlock(&wq->mutex);
15316ba8 4254}
dcd989cb 4255EXPORT_SYMBOL_GPL(workqueue_set_max_active);
15316ba8 4256
27d4ee03
LW
4257/**
4258 * current_work - retrieve %current task's work struct
4259 *
4260 * Determine if %current task is a workqueue worker and what it's working on.
4261 * Useful to find out the context that the %current task is running in.
4262 *
4263 * Return: work struct if %current task is a workqueue worker, %NULL otherwise.
4264 */
4265struct work_struct *current_work(void)
4266{
4267 struct worker *worker = current_wq_worker();
4268
4269 return worker ? worker->current_work : NULL;
4270}
4271EXPORT_SYMBOL(current_work);
4272
e6267616
TH
4273/**
4274 * current_is_workqueue_rescuer - is %current workqueue rescuer?
4275 *
4276 * Determine whether %current is a workqueue rescuer. Can be used from
4277 * work functions to determine whether it's being run off the rescuer task.
d185af30
YB
4278 *
4279 * Return: %true if %current is a workqueue rescuer. %false otherwise.
e6267616
TH
4280 */
4281bool current_is_workqueue_rescuer(void)
4282{
4283 struct worker *worker = current_wq_worker();
4284
6a092dfd 4285 return worker && worker->rescue_wq;
e6267616
TH
4286}
4287
eef6a7d5 4288/**
dcd989cb
TH
4289 * workqueue_congested - test whether a workqueue is congested
4290 * @cpu: CPU in question
4291 * @wq: target workqueue
eef6a7d5 4292 *
dcd989cb
TH
4293 * Test whether @wq's cpu workqueue for @cpu is congested. There is
4294 * no synchronization around this function and the test result is
4295 * unreliable and only useful as advisory hints or for debugging.
eef6a7d5 4296 *
d3251859
TH
4297 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4298 * Note that both per-cpu and unbound workqueues may be associated with
4299 * multiple pool_workqueues which have separate congested states. A
4300 * workqueue being congested on one CPU doesn't mean the workqueue is also
4301 * contested on other CPUs / NUMA nodes.
4302 *
d185af30 4303 * Return:
dcd989cb 4304 * %true if congested, %false otherwise.
eef6a7d5 4305 */
d84ff051 4306bool workqueue_congested(int cpu, struct workqueue_struct *wq)
1da177e4 4307{
7fb98ea7 4308 struct pool_workqueue *pwq;
76af4d93
TH
4309 bool ret;
4310
88109453 4311 rcu_read_lock_sched();
7fb98ea7 4312
d3251859
TH
4313 if (cpu == WORK_CPU_UNBOUND)
4314 cpu = smp_processor_id();
4315
7fb98ea7
TH
4316 if (!(wq->flags & WQ_UNBOUND))
4317 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4318 else
df2d5ae4 4319 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
dcd989cb 4320
76af4d93 4321 ret = !list_empty(&pwq->delayed_works);
88109453 4322 rcu_read_unlock_sched();
76af4d93
TH
4323
4324 return ret;
1da177e4 4325}
dcd989cb 4326EXPORT_SYMBOL_GPL(workqueue_congested);
1da177e4 4327
dcd989cb
TH
4328/**
4329 * work_busy - test whether a work is currently pending or running
4330 * @work: the work to be tested
4331 *
4332 * Test whether @work is currently pending or running. There is no
4333 * synchronization around this function and the test result is
4334 * unreliable and only useful as advisory hints or for debugging.
dcd989cb 4335 *
d185af30 4336 * Return:
dcd989cb
TH
4337 * OR'd bitmask of WORK_BUSY_* bits.
4338 */
4339unsigned int work_busy(struct work_struct *work)
1da177e4 4340{
fa1b54e6 4341 struct worker_pool *pool;
dcd989cb
TH
4342 unsigned long flags;
4343 unsigned int ret = 0;
1da177e4 4344
dcd989cb
TH
4345 if (work_pending(work))
4346 ret |= WORK_BUSY_PENDING;
1da177e4 4347
fa1b54e6
TH
4348 local_irq_save(flags);
4349 pool = get_work_pool(work);
038366c5 4350 if (pool) {
fa1b54e6 4351 spin_lock(&pool->lock);
038366c5
LJ
4352 if (find_worker_executing_work(pool, work))
4353 ret |= WORK_BUSY_RUNNING;
fa1b54e6 4354 spin_unlock(&pool->lock);
038366c5 4355 }
fa1b54e6 4356 local_irq_restore(flags);
1da177e4 4357
dcd989cb 4358 return ret;
1da177e4 4359}
dcd989cb 4360EXPORT_SYMBOL_GPL(work_busy);
1da177e4 4361
3d1cb205
TH
4362/**
4363 * set_worker_desc - set description for the current work item
4364 * @fmt: printf-style format string
4365 * @...: arguments for the format string
4366 *
4367 * This function can be called by a running work function to describe what
4368 * the work item is about. If the worker task gets dumped, this
4369 * information will be printed out together to help debugging. The
4370 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4371 */
4372void set_worker_desc(const char *fmt, ...)
4373{
4374 struct worker *worker = current_wq_worker();
4375 va_list args;
4376
4377 if (worker) {
4378 va_start(args, fmt);
4379 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4380 va_end(args);
3d1cb205
TH
4381 }
4382}
5c750d58 4383EXPORT_SYMBOL_GPL(set_worker_desc);
3d1cb205
TH
4384
4385/**
4386 * print_worker_info - print out worker information and description
4387 * @log_lvl: the log level to use when printing
4388 * @task: target task
4389 *
4390 * If @task is a worker and currently executing a work item, print out the
4391 * name of the workqueue being serviced and worker description set with
4392 * set_worker_desc() by the currently executing work item.
4393 *
4394 * This function can be safely called on any task as long as the
4395 * task_struct itself is accessible. While safe, this function isn't
4396 * synchronized and may print out mixups or garbages of limited length.
4397 */
4398void print_worker_info(const char *log_lvl, struct task_struct *task)
4399{
4400 work_func_t *fn = NULL;
4401 char name[WQ_NAME_LEN] = { };
4402 char desc[WORKER_DESC_LEN] = { };
4403 struct pool_workqueue *pwq = NULL;
4404 struct workqueue_struct *wq = NULL;
3d1cb205
TH
4405 struct worker *worker;
4406
4407 if (!(task->flags & PF_WQ_WORKER))
4408 return;
4409
4410 /*
4411 * This function is called without any synchronization and @task
4412 * could be in any state. Be careful with dereferences.
4413 */
e700591a 4414 worker = kthread_probe_data(task);
3d1cb205
TH
4415
4416 /*
8bf89593
TH
4417 * Carefully copy the associated workqueue's workfn, name and desc.
4418 * Keep the original last '\0' in case the original is garbage.
3d1cb205
TH
4419 */
4420 probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
4421 probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
4422 probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
4423 probe_kernel_read(name, wq->name, sizeof(name) - 1);
8bf89593 4424 probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);
3d1cb205
TH
4425
4426 if (fn || name[0] || desc[0]) {
4427 printk("%sWorkqueue: %s %pf", log_lvl, name, fn);
8bf89593 4428 if (strcmp(name, desc))
3d1cb205
TH
4429 pr_cont(" (%s)", desc);
4430 pr_cont("\n");
4431 }
4432}
4433
3494fc30
TH
4434static void pr_cont_pool_info(struct worker_pool *pool)
4435{
4436 pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
4437 if (pool->node != NUMA_NO_NODE)
4438 pr_cont(" node=%d", pool->node);
4439 pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
4440}
4441
4442static void pr_cont_work(bool comma, struct work_struct *work)
4443{
4444 if (work->func == wq_barrier_func) {
4445 struct wq_barrier *barr;
4446
4447 barr = container_of(work, struct wq_barrier, work);
4448
4449 pr_cont("%s BAR(%d)", comma ? "," : "",
4450 task_pid_nr(barr->task));
4451 } else {
4452 pr_cont("%s %pf", comma ? "," : "", work->func);
4453 }
4454}
4455
4456static void show_pwq(struct pool_workqueue *pwq)
4457{
4458 struct worker_pool *pool = pwq->pool;
4459 struct work_struct *work;
4460 struct worker *worker;
4461 bool has_in_flight = false, has_pending = false;
4462 int bkt;
4463
4464 pr_info(" pwq %d:", pool->id);
4465 pr_cont_pool_info(pool);
4466
4467 pr_cont(" active=%d/%d%s\n", pwq->nr_active, pwq->max_active,
4468 !list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
4469
4470 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4471 if (worker->current_pwq == pwq) {
4472 has_in_flight = true;
4473 break;
4474 }
4475 }
4476 if (has_in_flight) {
4477 bool comma = false;
4478
4479 pr_info(" in-flight:");
4480 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4481 if (worker->current_pwq != pwq)
4482 continue;
4483
4484 pr_cont("%s %d%s:%pf", comma ? "," : "",
4485 task_pid_nr(worker->task),
4486 worker == pwq->wq->rescuer ? "(RESCUER)" : "",
4487 worker->current_func);
4488 list_for_each_entry(work, &worker->scheduled, entry)
4489 pr_cont_work(false, work);
4490 comma = true;
4491 }
4492 pr_cont("\n");
4493 }
4494
4495 list_for_each_entry(work, &pool->worklist, entry) {
4496 if (get_work_pwq(work) == pwq) {
4497 has_pending = true;
4498 break;
4499 }
4500 }
4501 if (has_pending) {
4502 bool comma = false;
4503
4504 pr_info(" pending:");
4505 list_for_each_entry(work, &pool->worklist, entry) {
4506 if (get_work_pwq(work) != pwq)
4507 continue;
4508
4509 pr_cont_work(comma, work);
4510 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4511 }
4512 pr_cont("\n");
4513 }
4514
4515 if (!list_empty(&pwq->delayed_works)) {
4516 bool comma = false;
4517
4518 pr_info(" delayed:");
4519 list_for_each_entry(work, &pwq->delayed_works, entry) {
4520 pr_cont_work(comma, work);
4521 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4522 }
4523 pr_cont("\n");
4524 }
4525}
4526
4527/**
4528 * show_workqueue_state - dump workqueue state
4529 *
7b776af6
RL
4530 * Called from a sysrq handler or try_to_freeze_tasks() and prints out
4531 * all busy workqueues and pools.
3494fc30
TH
4532 */
4533void show_workqueue_state(void)
4534{
4535 struct workqueue_struct *wq;
4536 struct worker_pool *pool;
4537 unsigned long flags;
4538 int pi;
4539
4540 rcu_read_lock_sched();
4541
4542 pr_info("Showing busy workqueues and worker pools:\n");
4543
4544 list_for_each_entry_rcu(wq, &workqueues, list) {
4545 struct pool_workqueue *pwq;
4546 bool idle = true;
4547
4548 for_each_pwq(pwq, wq) {
4549 if (pwq->nr_active || !list_empty(&pwq->delayed_works)) {
4550 idle = false;
4551 break;
4552 }
4553 }
4554 if (idle)
4555 continue;
4556
4557 pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
4558
4559 for_each_pwq(pwq, wq) {
4560 spin_lock_irqsave(&pwq->pool->lock, flags);
4561 if (pwq->nr_active || !list_empty(&pwq->delayed_works))
4562 show_pwq(pwq);
4563 spin_unlock_irqrestore(&pwq->pool->lock, flags);
62635ea8
SS
4564 /*
4565 * We could be printing a lot from atomic context, e.g.
4566 * sysrq-t -> show_workqueue_state(). Avoid triggering
4567 * hard lockup.
4568 */
4569 touch_nmi_watchdog();
3494fc30
TH
4570 }
4571 }
4572
4573 for_each_pool(pool, pi) {
4574 struct worker *worker;
4575 bool first = true;
4576
4577 spin_lock_irqsave(&pool->lock, flags);
4578 if (pool->nr_workers == pool->nr_idle)
4579 goto next_pool;
4580
4581 pr_info("pool %d:", pool->id);
4582 pr_cont_pool_info(pool);
82607adc
TH
4583 pr_cont(" hung=%us workers=%d",
4584 jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000,
4585 pool->nr_workers);
3494fc30
TH
4586 if (pool->manager)
4587 pr_cont(" manager: %d",
4588 task_pid_nr(pool->manager->task));
4589 list_for_each_entry(worker, &pool->idle_list, entry) {
4590 pr_cont(" %s%d", first ? "idle: " : "",
4591 task_pid_nr(worker->task));
4592 first = false;
4593 }
4594 pr_cont("\n");
4595 next_pool:
4596 spin_unlock_irqrestore(&pool->lock, flags);
62635ea8
SS
4597 /*
4598 * We could be printing a lot from atomic context, e.g.
4599 * sysrq-t -> show_workqueue_state(). Avoid triggering
4600 * hard lockup.
4601 */
4602 touch_nmi_watchdog();
3494fc30
TH
4603 }
4604
4605 rcu_read_unlock_sched();
4606}
4607
6b59808b
TH
4608/* used to show worker information through /proc/PID/{comm,stat,status} */
4609void wq_worker_comm(char *buf, size_t size, struct task_struct *task)
4610{
6b59808b
TH
4611 int off;
4612
4613 /* always show the actual comm */
4614 off = strscpy(buf, task->comm, size);
4615 if (off < 0)
4616 return;
4617
197f6acc 4618 /* stabilize PF_WQ_WORKER and worker pool association */
6b59808b
TH
4619 mutex_lock(&wq_pool_attach_mutex);
4620
197f6acc
TH
4621 if (task->flags & PF_WQ_WORKER) {
4622 struct worker *worker = kthread_data(task);
4623 struct worker_pool *pool = worker->pool;
6b59808b 4624
197f6acc
TH
4625 if (pool) {
4626 spin_lock_irq(&pool->lock);
4627 /*
4628 * ->desc tracks information (wq name or
4629 * set_worker_desc()) for the latest execution. If
4630 * current, prepend '+', otherwise '-'.
4631 */
4632 if (worker->desc[0] != '\0') {
4633 if (worker->current_work)
4634 scnprintf(buf + off, size - off, "+%s",
4635 worker->desc);
4636 else
4637 scnprintf(buf + off, size - off, "-%s",
4638 worker->desc);
4639 }
4640 spin_unlock_irq(&pool->lock);
6b59808b 4641 }
6b59808b
TH
4642 }
4643
4644 mutex_unlock(&wq_pool_attach_mutex);
4645}
4646
66448bc2
MM
4647#ifdef CONFIG_SMP
4648
db7bccf4
TH
4649/*
4650 * CPU hotplug.
4651 *
e22bee78 4652 * There are two challenges in supporting CPU hotplug. Firstly, there
112202d9 4653 * are a lot of assumptions on strong associations among work, pwq and
706026c2 4654 * pool which make migrating pending and scheduled works very
e22bee78 4655 * difficult to implement without impacting hot paths. Secondly,
94cf58bb 4656 * worker pools serve mix of short, long and very long running works making
e22bee78
TH
4657 * blocked draining impractical.
4658 *
24647570 4659 * This is solved by allowing the pools to be disassociated from the CPU
628c78e7
TH
4660 * running as an unbound one and allowing it to be reattached later if the
4661 * cpu comes back online.
db7bccf4 4662 */
1da177e4 4663
e8b3f8db 4664static void unbind_workers(int cpu)
3af24433 4665{
4ce62e9e 4666 struct worker_pool *pool;
db7bccf4 4667 struct worker *worker;
3af24433 4668
f02ae73a 4669 for_each_cpu_worker_pool(pool, cpu) {
1258fae7 4670 mutex_lock(&wq_pool_attach_mutex);
94cf58bb 4671 spin_lock_irq(&pool->lock);
3af24433 4672
94cf58bb 4673 /*
92f9c5c4 4674 * We've blocked all attach/detach operations. Make all workers
94cf58bb
TH
4675 * unbound and set DISASSOCIATED. Before this, all workers
4676 * except for the ones which are still executing works from
4677 * before the last CPU down must be on the cpu. After
4678 * this, they may become diasporas.
4679 */
da028469 4680 for_each_pool_worker(worker, pool)
c9e7cf27 4681 worker->flags |= WORKER_UNBOUND;
06ba38a9 4682
24647570 4683 pool->flags |= POOL_DISASSOCIATED;
f2d5a0ee 4684
94cf58bb 4685 spin_unlock_irq(&pool->lock);
1258fae7 4686 mutex_unlock(&wq_pool_attach_mutex);
628c78e7 4687
eb283428
LJ
4688 /*
4689 * Call schedule() so that we cross rq->lock and thus can
4690 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4691 * This is necessary as scheduler callbacks may be invoked
4692 * from other cpus.
4693 */
4694 schedule();
06ba38a9 4695
eb283428
LJ
4696 /*
4697 * Sched callbacks are disabled now. Zap nr_running.
4698 * After this, nr_running stays zero and need_more_worker()
4699 * and keep_working() are always true as long as the
4700 * worklist is not empty. This pool now behaves as an
4701 * unbound (in terms of concurrency management) pool which
4702 * are served by workers tied to the pool.
4703 */
e19e397a 4704 atomic_set(&pool->nr_running, 0);
eb283428
LJ
4705
4706 /*
4707 * With concurrency management just turned off, a busy
4708 * worker blocking could lead to lengthy stalls. Kick off
4709 * unbound chain execution of currently pending work items.
4710 */
4711 spin_lock_irq(&pool->lock);
4712 wake_up_worker(pool);
4713 spin_unlock_irq(&pool->lock);
4714 }
3af24433 4715}
3af24433 4716
bd7c089e
TH
4717/**
4718 * rebind_workers - rebind all workers of a pool to the associated CPU
4719 * @pool: pool of interest
4720 *
a9ab775b 4721 * @pool->cpu is coming online. Rebind all workers to the CPU.
bd7c089e
TH
4722 */
4723static void rebind_workers(struct worker_pool *pool)
4724{
a9ab775b 4725 struct worker *worker;
bd7c089e 4726
1258fae7 4727 lockdep_assert_held(&wq_pool_attach_mutex);
bd7c089e 4728
a9ab775b
TH
4729 /*
4730 * Restore CPU affinity of all workers. As all idle workers should
4731 * be on the run-queue of the associated CPU before any local
402dd89d 4732 * wake-ups for concurrency management happen, restore CPU affinity
a9ab775b
TH
4733 * of all workers first and then clear UNBOUND. As we're called
4734 * from CPU_ONLINE, the following shouldn't fail.
4735 */
da028469 4736 for_each_pool_worker(worker, pool)
a9ab775b
TH
4737 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4738 pool->attrs->cpumask) < 0);
bd7c089e 4739
a9ab775b 4740 spin_lock_irq(&pool->lock);
f7c17d26 4741
3de5e884 4742 pool->flags &= ~POOL_DISASSOCIATED;
bd7c089e 4743
da028469 4744 for_each_pool_worker(worker, pool) {
a9ab775b 4745 unsigned int worker_flags = worker->flags;
bd7c089e
TH
4746
4747 /*
a9ab775b
TH
4748 * A bound idle worker should actually be on the runqueue
4749 * of the associated CPU for local wake-ups targeting it to
4750 * work. Kick all idle workers so that they migrate to the
4751 * associated CPU. Doing this in the same loop as
4752 * replacing UNBOUND with REBOUND is safe as no worker will
4753 * be bound before @pool->lock is released.
bd7c089e 4754 */
a9ab775b
TH
4755 if (worker_flags & WORKER_IDLE)
4756 wake_up_process(worker->task);
bd7c089e 4757
a9ab775b
TH
4758 /*
4759 * We want to clear UNBOUND but can't directly call
4760 * worker_clr_flags() or adjust nr_running. Atomically
4761 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
4762 * @worker will clear REBOUND using worker_clr_flags() when
4763 * it initiates the next execution cycle thus restoring
4764 * concurrency management. Note that when or whether
4765 * @worker clears REBOUND doesn't affect correctness.
4766 *
c95491ed 4767 * WRITE_ONCE() is necessary because @worker->flags may be
a9ab775b
TH
4768 * tested without holding any lock in
4769 * wq_worker_waking_up(). Without it, NOT_RUNNING test may
4770 * fail incorrectly leading to premature concurrency
4771 * management operations.
4772 */
4773 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
4774 worker_flags |= WORKER_REBOUND;
4775 worker_flags &= ~WORKER_UNBOUND;
c95491ed 4776 WRITE_ONCE(worker->flags, worker_flags);
bd7c089e 4777 }
a9ab775b
TH
4778
4779 spin_unlock_irq(&pool->lock);
bd7c089e
TH
4780}
4781
7dbc725e
TH
4782/**
4783 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
4784 * @pool: unbound pool of interest
4785 * @cpu: the CPU which is coming up
4786 *
4787 * An unbound pool may end up with a cpumask which doesn't have any online
4788 * CPUs. When a worker of such pool get scheduled, the scheduler resets
4789 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any
4790 * online CPU before, cpus_allowed of all its workers should be restored.
4791 */
4792static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
4793{
4794 static cpumask_t cpumask;
4795 struct worker *worker;
7dbc725e 4796
1258fae7 4797 lockdep_assert_held(&wq_pool_attach_mutex);
7dbc725e
TH
4798
4799 /* is @cpu allowed for @pool? */
4800 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
4801 return;
4802
7dbc725e 4803 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
7dbc725e
TH
4804
4805 /* as we're called from CPU_ONLINE, the following shouldn't fail */
da028469 4806 for_each_pool_worker(worker, pool)
d945b5e9 4807 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0);
7dbc725e
TH
4808}
4809
7ee681b2
TG
4810int workqueue_prepare_cpu(unsigned int cpu)
4811{
4812 struct worker_pool *pool;
4813
4814 for_each_cpu_worker_pool(pool, cpu) {
4815 if (pool->nr_workers)
4816 continue;
4817 if (!create_worker(pool))
4818 return -ENOMEM;
4819 }
4820 return 0;
4821}
4822
4823int workqueue_online_cpu(unsigned int cpu)
3af24433 4824{
4ce62e9e 4825 struct worker_pool *pool;
4c16bd32 4826 struct workqueue_struct *wq;
7dbc725e 4827 int pi;
3ce63377 4828
7ee681b2 4829 mutex_lock(&wq_pool_mutex);
7dbc725e 4830
7ee681b2 4831 for_each_pool(pool, pi) {
1258fae7 4832 mutex_lock(&wq_pool_attach_mutex);
94cf58bb 4833
7ee681b2
TG
4834 if (pool->cpu == cpu)
4835 rebind_workers(pool);
4836 else if (pool->cpu < 0)
4837 restore_unbound_workers_cpumask(pool, cpu);
94cf58bb 4838
1258fae7 4839 mutex_unlock(&wq_pool_attach_mutex);
7ee681b2 4840 }
6ba94429 4841
7ee681b2
TG
4842 /* update NUMA affinity of unbound workqueues */
4843 list_for_each_entry(wq, &workqueues, list)
4844 wq_update_unbound_numa(wq, cpu, true);
6ba94429 4845
7ee681b2
TG
4846 mutex_unlock(&wq_pool_mutex);
4847 return 0;
6ba94429
FW
4848}
4849
7ee681b2 4850int workqueue_offline_cpu(unsigned int cpu)
6ba94429 4851{
6ba94429
FW
4852 struct workqueue_struct *wq;
4853
7ee681b2 4854 /* unbinding per-cpu workers should happen on the local CPU */
e8b3f8db
LJ
4855 if (WARN_ON(cpu != smp_processor_id()))
4856 return -1;
4857
4858 unbind_workers(cpu);
7ee681b2
TG
4859
4860 /* update NUMA affinity of unbound workqueues */
4861 mutex_lock(&wq_pool_mutex);
4862 list_for_each_entry(wq, &workqueues, list)
4863 wq_update_unbound_numa(wq, cpu, false);
4864 mutex_unlock(&wq_pool_mutex);
4865
7ee681b2 4866 return 0;
6ba94429
FW
4867}
4868
6ba94429
FW
4869struct work_for_cpu {
4870 struct work_struct work;
4871 long (*fn)(void *);
4872 void *arg;
4873 long ret;
4874};
4875
4876static void work_for_cpu_fn(struct work_struct *work)
4877{
4878 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
4879
4880 wfc->ret = wfc->fn(wfc->arg);
4881}
4882
4883/**
22aceb31 4884 * work_on_cpu - run a function in thread context on a particular cpu
6ba94429
FW
4885 * @cpu: the cpu to run on
4886 * @fn: the function to run
4887 * @arg: the function arg
4888 *
4889 * It is up to the caller to ensure that the cpu doesn't go offline.
4890 * The caller must not hold any locks which would prevent @fn from completing.
4891 *
4892 * Return: The value @fn returns.
4893 */
4894long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
4895{
4896 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
4897
4898 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
4899 schedule_work_on(cpu, &wfc.work);
4900 flush_work(&wfc.work);
4901 destroy_work_on_stack(&wfc.work);
4902 return wfc.ret;
4903}
4904EXPORT_SYMBOL_GPL(work_on_cpu);
0e8d6a93
TG
4905
4906/**
4907 * work_on_cpu_safe - run a function in thread context on a particular cpu
4908 * @cpu: the cpu to run on
4909 * @fn: the function to run
4910 * @arg: the function argument
4911 *
4912 * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold
4913 * any locks which would prevent @fn from completing.
4914 *
4915 * Return: The value @fn returns.
4916 */
4917long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg)
4918{
4919 long ret = -ENODEV;
4920
4921 get_online_cpus();
4922 if (cpu_online(cpu))
4923 ret = work_on_cpu(cpu, fn, arg);
4924 put_online_cpus();
4925 return ret;
4926}
4927EXPORT_SYMBOL_GPL(work_on_cpu_safe);
6ba94429
FW
4928#endif /* CONFIG_SMP */
4929
4930#ifdef CONFIG_FREEZER
4931
4932/**
4933 * freeze_workqueues_begin - begin freezing workqueues
4934 *
4935 * Start freezing workqueues. After this function returns, all freezable
4936 * workqueues will queue new works to their delayed_works list instead of
4937 * pool->worklist.
4938 *
4939 * CONTEXT:
4940 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4941 */
4942void freeze_workqueues_begin(void)
4943{
4944 struct workqueue_struct *wq;
4945 struct pool_workqueue *pwq;
4946
4947 mutex_lock(&wq_pool_mutex);
4948
4949 WARN_ON_ONCE(workqueue_freezing);
4950 workqueue_freezing = true;
4951
4952 list_for_each_entry(wq, &workqueues, list) {
4953 mutex_lock(&wq->mutex);
4954 for_each_pwq(pwq, wq)
4955 pwq_adjust_max_active(pwq);
4956 mutex_unlock(&wq->mutex);
4957 }
4958
4959 mutex_unlock(&wq_pool_mutex);
4960}
4961
4962/**
4963 * freeze_workqueues_busy - are freezable workqueues still busy?
4964 *
4965 * Check whether freezing is complete. This function must be called
4966 * between freeze_workqueues_begin() and thaw_workqueues().
4967 *
4968 * CONTEXT:
4969 * Grabs and releases wq_pool_mutex.
4970 *
4971 * Return:
4972 * %true if some freezable workqueues are still busy. %false if freezing
4973 * is complete.
4974 */
4975bool freeze_workqueues_busy(void)
4976{
4977 bool busy = false;
4978 struct workqueue_struct *wq;
4979 struct pool_workqueue *pwq;
4980
4981 mutex_lock(&wq_pool_mutex);
4982
4983 WARN_ON_ONCE(!workqueue_freezing);
4984
4985 list_for_each_entry(wq, &workqueues, list) {
4986 if (!(wq->flags & WQ_FREEZABLE))
4987 continue;
4988 /*
4989 * nr_active is monotonically decreasing. It's safe
4990 * to peek without lock.
4991 */
4992 rcu_read_lock_sched();
4993 for_each_pwq(pwq, wq) {
4994 WARN_ON_ONCE(pwq->nr_active < 0);
4995 if (pwq->nr_active) {
4996 busy = true;
4997 rcu_read_unlock_sched();
4998 goto out_unlock;
4999 }
5000 }
5001 rcu_read_unlock_sched();
5002 }
5003out_unlock:
5004 mutex_unlock(&wq_pool_mutex);
5005 return busy;
5006}
5007
5008/**
5009 * thaw_workqueues - thaw workqueues
5010 *
5011 * Thaw workqueues. Normal queueing is restored and all collected
5012 * frozen works are transferred to their respective pool worklists.
5013 *
5014 * CONTEXT:
5015 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5016 */
5017void thaw_workqueues(void)
5018{
5019 struct workqueue_struct *wq;
5020 struct pool_workqueue *pwq;
5021
5022 mutex_lock(&wq_pool_mutex);
5023
5024 if (!workqueue_freezing)
5025 goto out_unlock;
5026
5027 workqueue_freezing = false;
5028
5029 /* restore max_active and repopulate worklist */
5030 list_for_each_entry(wq, &workqueues, list) {
5031 mutex_lock(&wq->mutex);
5032 for_each_pwq(pwq, wq)
5033 pwq_adjust_max_active(pwq);
5034 mutex_unlock(&wq->mutex);
5035 }
5036
5037out_unlock:
5038 mutex_unlock(&wq_pool_mutex);
5039}
5040#endif /* CONFIG_FREEZER */
5041
042f7df1
LJ
5042static int workqueue_apply_unbound_cpumask(void)
5043{
5044 LIST_HEAD(ctxs);
5045 int ret = 0;
5046 struct workqueue_struct *wq;
5047 struct apply_wqattrs_ctx *ctx, *n;
5048
5049 lockdep_assert_held(&wq_pool_mutex);
5050
5051 list_for_each_entry(wq, &workqueues, list) {
5052 if (!(wq->flags & WQ_UNBOUND))
5053 continue;
5054 /* creating multiple pwqs breaks ordering guarantee */
5055 if (wq->flags & __WQ_ORDERED)
5056 continue;
5057
5058 ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs);
5059 if (!ctx) {
5060 ret = -ENOMEM;
5061 break;
5062 }
5063
5064 list_add_tail(&ctx->list, &ctxs);
5065 }
5066
5067 list_for_each_entry_safe(ctx, n, &ctxs, list) {
5068 if (!ret)
5069 apply_wqattrs_commit(ctx);
5070 apply_wqattrs_cleanup(ctx);
5071 }
5072
5073 return ret;
5074}
5075
5076/**
5077 * workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
5078 * @cpumask: the cpumask to set
5079 *
5080 * The low-level workqueues cpumask is a global cpumask that limits
5081 * the affinity of all unbound workqueues. This function check the @cpumask
5082 * and apply it to all unbound workqueues and updates all pwqs of them.
5083 *
5084 * Retun: 0 - Success
5085 * -EINVAL - Invalid @cpumask
5086 * -ENOMEM - Failed to allocate memory for attrs or pwqs.
5087 */
5088int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
5089{
5090 int ret = -EINVAL;
5091 cpumask_var_t saved_cpumask;
5092
5093 if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL))
5094 return -ENOMEM;
5095
c98a9805
TS
5096 /*
5097 * Not excluding isolated cpus on purpose.
5098 * If the user wishes to include them, we allow that.
5099 */
042f7df1
LJ
5100 cpumask_and(cpumask, cpumask, cpu_possible_mask);
5101 if (!cpumask_empty(cpumask)) {
a0111cf6 5102 apply_wqattrs_lock();
042f7df1
LJ
5103
5104 /* save the old wq_unbound_cpumask. */
5105 cpumask_copy(saved_cpumask, wq_unbound_cpumask);
5106
5107 /* update wq_unbound_cpumask at first and apply it to wqs. */
5108 cpumask_copy(wq_unbound_cpumask, cpumask);
5109 ret = workqueue_apply_unbound_cpumask();
5110
5111 /* restore the wq_unbound_cpumask when failed. */
5112 if (ret < 0)
5113 cpumask_copy(wq_unbound_cpumask, saved_cpumask);
5114
a0111cf6 5115 apply_wqattrs_unlock();
042f7df1 5116 }
042f7df1
LJ
5117
5118 free_cpumask_var(saved_cpumask);
5119 return ret;
5120}
5121
6ba94429
FW
5122#ifdef CONFIG_SYSFS
5123/*
5124 * Workqueues with WQ_SYSFS flag set is visible to userland via
5125 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the
5126 * following attributes.
5127 *
5128 * per_cpu RO bool : whether the workqueue is per-cpu or unbound
5129 * max_active RW int : maximum number of in-flight work items
5130 *
5131 * Unbound workqueues have the following extra attributes.
5132 *
9a19b463 5133 * pool_ids RO int : the associated pool IDs for each node
6ba94429
FW
5134 * nice RW int : nice value of the workers
5135 * cpumask RW mask : bitmask of allowed CPUs for the workers
9a19b463 5136 * numa RW bool : whether enable NUMA affinity
6ba94429
FW
5137 */
5138struct wq_device {
5139 struct workqueue_struct *wq;
5140 struct device dev;
5141};
5142
5143static struct workqueue_struct *dev_to_wq(struct device *dev)
5144{
5145 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5146
5147 return wq_dev->wq;
5148}
5149
5150static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
5151 char *buf)
5152{
5153 struct workqueue_struct *wq = dev_to_wq(dev);
5154
5155 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
5156}
5157static DEVICE_ATTR_RO(per_cpu);
5158
5159static ssize_t max_active_show(struct device *dev,
5160 struct device_attribute *attr, char *buf)
5161{
5162 struct workqueue_struct *wq = dev_to_wq(dev);
5163
5164 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
5165}
5166
5167static ssize_t max_active_store(struct device *dev,
5168 struct device_attribute *attr, const char *buf,
5169 size_t count)
5170{
5171 struct workqueue_struct *wq = dev_to_wq(dev);
5172 int val;
5173
5174 if (sscanf(buf, "%d", &val) != 1 || val <= 0)
5175 return -EINVAL;
5176
5177 workqueue_set_max_active(wq, val);
5178 return count;
5179}
5180static DEVICE_ATTR_RW(max_active);
5181
5182static struct attribute *wq_sysfs_attrs[] = {
5183 &dev_attr_per_cpu.attr,
5184 &dev_attr_max_active.attr,
5185 NULL,
5186};
5187ATTRIBUTE_GROUPS(wq_sysfs);
5188
5189static ssize_t wq_pool_ids_show(struct device *dev,
5190 struct device_attribute *attr, char *buf)
5191{
5192 struct workqueue_struct *wq = dev_to_wq(dev);
5193 const char *delim = "";
5194 int node, written = 0;
5195
5196 rcu_read_lock_sched();
5197 for_each_node(node) {
5198 written += scnprintf(buf + written, PAGE_SIZE - written,
5199 "%s%d:%d", delim, node,
5200 unbound_pwq_by_node(wq, node)->pool->id);
5201 delim = " ";
5202 }
5203 written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
5204 rcu_read_unlock_sched();
5205
5206 return written;
5207}
5208
5209static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
5210 char *buf)
5211{
5212 struct workqueue_struct *wq = dev_to_wq(dev);
5213 int written;
5214
5215 mutex_lock(&wq->mutex);
5216 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
5217 mutex_unlock(&wq->mutex);
5218
5219 return written;
5220}
5221
5222/* prepare workqueue_attrs for sysfs store operations */
5223static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
5224{
5225 struct workqueue_attrs *attrs;
5226
899a94fe
LJ
5227 lockdep_assert_held(&wq_pool_mutex);
5228
6ba94429
FW
5229 attrs = alloc_workqueue_attrs(GFP_KERNEL);
5230 if (!attrs)
5231 return NULL;
5232
6ba94429 5233 copy_workqueue_attrs(attrs, wq->unbound_attrs);
6ba94429
FW
5234 return attrs;
5235}
5236
5237static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
5238 const char *buf, size_t count)
5239{
5240 struct workqueue_struct *wq = dev_to_wq(dev);
5241 struct workqueue_attrs *attrs;
d4d3e257
LJ
5242 int ret = -ENOMEM;
5243
5244 apply_wqattrs_lock();
6ba94429
FW
5245
5246 attrs = wq_sysfs_prep_attrs(wq);
5247 if (!attrs)
d4d3e257 5248 goto out_unlock;
6ba94429
FW
5249
5250 if (sscanf(buf, "%d", &attrs->nice) == 1 &&
5251 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
d4d3e257 5252 ret = apply_workqueue_attrs_locked(wq, attrs);
6ba94429
FW
5253 else
5254 ret = -EINVAL;
5255
d4d3e257
LJ
5256out_unlock:
5257 apply_wqattrs_unlock();
6ba94429
FW
5258 free_workqueue_attrs(attrs);
5259 return ret ?: count;
5260}
5261
5262static ssize_t wq_cpumask_show(struct device *dev,
5263 struct device_attribute *attr, char *buf)
5264{
5265 struct workqueue_struct *wq = dev_to_wq(dev);
5266 int written;
5267
5268 mutex_lock(&wq->mutex);
5269 written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5270 cpumask_pr_args(wq->unbound_attrs->cpumask));
5271 mutex_unlock(&wq->mutex);
5272 return written;
5273}
5274
5275static ssize_t wq_cpumask_store(struct device *dev,
5276 struct device_attribute *attr,
5277 const char *buf, size_t count)
5278{
5279 struct workqueue_struct *wq = dev_to_wq(dev);
5280 struct workqueue_attrs *attrs;
d4d3e257
LJ
5281 int ret = -ENOMEM;
5282
5283 apply_wqattrs_lock();
6ba94429
FW
5284
5285 attrs = wq_sysfs_prep_attrs(wq);
5286 if (!attrs)
d4d3e257 5287 goto out_unlock;
6ba94429
FW
5288
5289 ret = cpumask_parse(buf, attrs->cpumask);
5290 if (!ret)
d4d3e257 5291 ret = apply_workqueue_attrs_locked(wq, attrs);
6ba94429 5292
d4d3e257
LJ
5293out_unlock:
5294 apply_wqattrs_unlock();
6ba94429
FW
5295 free_workqueue_attrs(attrs);
5296 return ret ?: count;
5297}
5298
5299static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
5300 char *buf)
5301{
5302 struct workqueue_struct *wq = dev_to_wq(dev);
5303 int written;
7dbc725e 5304
6ba94429
FW
5305 mutex_lock(&wq->mutex);
5306 written = scnprintf(buf, PAGE_SIZE, "%d\n",
5307 !wq->unbound_attrs->no_numa);
5308 mutex_unlock(&wq->mutex);
4c16bd32 5309
6ba94429 5310 return written;
65758202
TH
5311}
5312
6ba94429
FW
5313static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
5314 const char *buf, size_t count)
65758202 5315{
6ba94429
FW
5316 struct workqueue_struct *wq = dev_to_wq(dev);
5317 struct workqueue_attrs *attrs;
d4d3e257
LJ
5318 int v, ret = -ENOMEM;
5319
5320 apply_wqattrs_lock();
4c16bd32 5321
6ba94429
FW
5322 attrs = wq_sysfs_prep_attrs(wq);
5323 if (!attrs)
d4d3e257 5324 goto out_unlock;
4c16bd32 5325
6ba94429
FW
5326 ret = -EINVAL;
5327 if (sscanf(buf, "%d", &v) == 1) {
5328 attrs->no_numa = !v;
d4d3e257 5329 ret = apply_workqueue_attrs_locked(wq, attrs);
65758202 5330 }
6ba94429 5331
d4d3e257
LJ
5332out_unlock:
5333 apply_wqattrs_unlock();
6ba94429
FW
5334 free_workqueue_attrs(attrs);
5335 return ret ?: count;
65758202
TH
5336}
5337
6ba94429
FW
5338static struct device_attribute wq_sysfs_unbound_attrs[] = {
5339 __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
5340 __ATTR(nice, 0644, wq_nice_show, wq_nice_store),
5341 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
5342 __ATTR(numa, 0644, wq_numa_show, wq_numa_store),
5343 __ATTR_NULL,
5344};
8ccad40d 5345
6ba94429
FW
5346static struct bus_type wq_subsys = {
5347 .name = "workqueue",
5348 .dev_groups = wq_sysfs_groups,
2d3854a3
RR
5349};
5350
b05a7928
FW
5351static ssize_t wq_unbound_cpumask_show(struct device *dev,
5352 struct device_attribute *attr, char *buf)
5353{
5354 int written;
5355
042f7df1 5356 mutex_lock(&wq_pool_mutex);
b05a7928
FW
5357 written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5358 cpumask_pr_args(wq_unbound_cpumask));
042f7df1 5359 mutex_unlock(&wq_pool_mutex);
b05a7928
FW
5360
5361 return written;
5362}
5363
042f7df1
LJ
5364static ssize_t wq_unbound_cpumask_store(struct device *dev,
5365 struct device_attribute *attr, const char *buf, size_t count)
5366{
5367 cpumask_var_t cpumask;
5368 int ret;
5369
5370 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
5371 return -ENOMEM;
5372
5373 ret = cpumask_parse(buf, cpumask);
5374 if (!ret)
5375 ret = workqueue_set_unbound_cpumask(cpumask);
5376
5377 free_cpumask_var(cpumask);
5378 return ret ? ret : count;
5379}
5380
b05a7928 5381static struct device_attribute wq_sysfs_cpumask_attr =
042f7df1
LJ
5382 __ATTR(cpumask, 0644, wq_unbound_cpumask_show,
5383 wq_unbound_cpumask_store);
b05a7928 5384
6ba94429 5385static int __init wq_sysfs_init(void)
2d3854a3 5386{
b05a7928
FW
5387 int err;
5388
5389 err = subsys_virtual_register(&wq_subsys, NULL);
5390 if (err)
5391 return err;
5392
5393 return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr);
2d3854a3 5394}
6ba94429 5395core_initcall(wq_sysfs_init);
2d3854a3 5396
6ba94429 5397static void wq_device_release(struct device *dev)
2d3854a3 5398{
6ba94429 5399 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
6b44003e 5400
6ba94429 5401 kfree(wq_dev);
2d3854a3 5402}
a0a1a5fd
TH
5403
5404/**
6ba94429
FW
5405 * workqueue_sysfs_register - make a workqueue visible in sysfs
5406 * @wq: the workqueue to register
a0a1a5fd 5407 *
6ba94429
FW
5408 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
5409 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
5410 * which is the preferred method.
a0a1a5fd 5411 *
6ba94429
FW
5412 * Workqueue user should use this function directly iff it wants to apply
5413 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
5414 * apply_workqueue_attrs() may race against userland updating the
5415 * attributes.
5416 *
5417 * Return: 0 on success, -errno on failure.
a0a1a5fd 5418 */
6ba94429 5419int workqueue_sysfs_register(struct workqueue_struct *wq)
a0a1a5fd 5420{
6ba94429
FW
5421 struct wq_device *wq_dev;
5422 int ret;
a0a1a5fd 5423
6ba94429 5424 /*
402dd89d 5425 * Adjusting max_active or creating new pwqs by applying
6ba94429
FW
5426 * attributes breaks ordering guarantee. Disallow exposing ordered
5427 * workqueues.
5428 */
0a94efb5 5429 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
6ba94429 5430 return -EINVAL;
a0a1a5fd 5431
6ba94429
FW
5432 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
5433 if (!wq_dev)
5434 return -ENOMEM;
5bcab335 5435
6ba94429
FW
5436 wq_dev->wq = wq;
5437 wq_dev->dev.bus = &wq_subsys;
6ba94429 5438 wq_dev->dev.release = wq_device_release;
23217b44 5439 dev_set_name(&wq_dev->dev, "%s", wq->name);
a0a1a5fd 5440
6ba94429
FW
5441 /*
5442 * unbound_attrs are created separately. Suppress uevent until
5443 * everything is ready.
5444 */
5445 dev_set_uevent_suppress(&wq_dev->dev, true);
a0a1a5fd 5446
6ba94429
FW
5447 ret = device_register(&wq_dev->dev);
5448 if (ret) {
537f4146 5449 put_device(&wq_dev->dev);
6ba94429
FW
5450 wq->wq_dev = NULL;
5451 return ret;
5452 }
a0a1a5fd 5453
6ba94429
FW
5454 if (wq->flags & WQ_UNBOUND) {
5455 struct device_attribute *attr;
a0a1a5fd 5456
6ba94429
FW
5457 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
5458 ret = device_create_file(&wq_dev->dev, attr);
5459 if (ret) {
5460 device_unregister(&wq_dev->dev);
5461 wq->wq_dev = NULL;
5462 return ret;
a0a1a5fd
TH
5463 }
5464 }
5465 }
6ba94429
FW
5466
5467 dev_set_uevent_suppress(&wq_dev->dev, false);
5468 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
5469 return 0;
a0a1a5fd
TH
5470}
5471
5472/**
6ba94429
FW
5473 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
5474 * @wq: the workqueue to unregister
a0a1a5fd 5475 *
6ba94429 5476 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
a0a1a5fd 5477 */
6ba94429 5478static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
a0a1a5fd 5479{
6ba94429 5480 struct wq_device *wq_dev = wq->wq_dev;
8b03ae3c 5481
6ba94429
FW
5482 if (!wq->wq_dev)
5483 return;
a0a1a5fd 5484
6ba94429
FW
5485 wq->wq_dev = NULL;
5486 device_unregister(&wq_dev->dev);
a0a1a5fd 5487}
6ba94429
FW
5488#else /* CONFIG_SYSFS */
5489static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { }
5490#endif /* CONFIG_SYSFS */
a0a1a5fd 5491
82607adc
TH
5492/*
5493 * Workqueue watchdog.
5494 *
5495 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
5496 * flush dependency, a concurrency managed work item which stays RUNNING
5497 * indefinitely. Workqueue stalls can be very difficult to debug as the
5498 * usual warning mechanisms don't trigger and internal workqueue state is
5499 * largely opaque.
5500 *
5501 * Workqueue watchdog monitors all worker pools periodically and dumps
5502 * state if some pools failed to make forward progress for a while where
5503 * forward progress is defined as the first item on ->worklist changing.
5504 *
5505 * This mechanism is controlled through the kernel parameter
5506 * "workqueue.watchdog_thresh" which can be updated at runtime through the
5507 * corresponding sysfs parameter file.
5508 */
5509#ifdef CONFIG_WQ_WATCHDOG
5510
82607adc 5511static unsigned long wq_watchdog_thresh = 30;
5cd79d6a 5512static struct timer_list wq_watchdog_timer;
82607adc
TH
5513
5514static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
5515static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
5516
5517static void wq_watchdog_reset_touched(void)
5518{
5519 int cpu;
5520
5521 wq_watchdog_touched = jiffies;
5522 for_each_possible_cpu(cpu)
5523 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5524}
5525
5cd79d6a 5526static void wq_watchdog_timer_fn(struct timer_list *unused)
82607adc
TH
5527{
5528 unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
5529 bool lockup_detected = false;
5530 struct worker_pool *pool;
5531 int pi;
5532
5533 if (!thresh)
5534 return;
5535
5536 rcu_read_lock();
5537
5538 for_each_pool(pool, pi) {
5539 unsigned long pool_ts, touched, ts;
5540
5541 if (list_empty(&pool->worklist))
5542 continue;
5543
5544 /* get the latest of pool and touched timestamps */
5545 pool_ts = READ_ONCE(pool->watchdog_ts);
5546 touched = READ_ONCE(wq_watchdog_touched);
5547
5548 if (time_after(pool_ts, touched))
5549 ts = pool_ts;
5550 else
5551 ts = touched;
5552
5553 if (pool->cpu >= 0) {
5554 unsigned long cpu_touched =
5555 READ_ONCE(per_cpu(wq_watchdog_touched_cpu,
5556 pool->cpu));
5557 if (time_after(cpu_touched, ts))
5558 ts = cpu_touched;
5559 }
5560
5561 /* did we stall? */
5562 if (time_after(jiffies, ts + thresh)) {
5563 lockup_detected = true;
5564 pr_emerg("BUG: workqueue lockup - pool");
5565 pr_cont_pool_info(pool);
5566 pr_cont(" stuck for %us!\n",
5567 jiffies_to_msecs(jiffies - pool_ts) / 1000);
5568 }
5569 }
5570
5571 rcu_read_unlock();
5572
5573 if (lockup_detected)
5574 show_workqueue_state();
5575
5576 wq_watchdog_reset_touched();
5577 mod_timer(&wq_watchdog_timer, jiffies + thresh);
5578}
5579
cb9d7fd5 5580notrace void wq_watchdog_touch(int cpu)
82607adc
TH
5581{
5582 if (cpu >= 0)
5583 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5584 else
5585 wq_watchdog_touched = jiffies;
5586}
5587
5588static void wq_watchdog_set_thresh(unsigned long thresh)
5589{
5590 wq_watchdog_thresh = 0;
5591 del_timer_sync(&wq_watchdog_timer);
5592
5593 if (thresh) {
5594 wq_watchdog_thresh = thresh;
5595 wq_watchdog_reset_touched();
5596 mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
5597 }
5598}
5599
5600static int wq_watchdog_param_set_thresh(const char *val,
5601 const struct kernel_param *kp)
5602{
5603 unsigned long thresh;
5604 int ret;
5605
5606 ret = kstrtoul(val, 0, &thresh);
5607 if (ret)
5608 return ret;
5609
5610 if (system_wq)
5611 wq_watchdog_set_thresh(thresh);
5612 else
5613 wq_watchdog_thresh = thresh;
5614
5615 return 0;
5616}
5617
5618static const struct kernel_param_ops wq_watchdog_thresh_ops = {
5619 .set = wq_watchdog_param_set_thresh,
5620 .get = param_get_ulong,
5621};
5622
5623module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
5624 0644);
5625
5626static void wq_watchdog_init(void)
5627{
5cd79d6a 5628 timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE);
82607adc
TH
5629 wq_watchdog_set_thresh(wq_watchdog_thresh);
5630}
5631
5632#else /* CONFIG_WQ_WATCHDOG */
5633
5634static inline void wq_watchdog_init(void) { }
5635
5636#endif /* CONFIG_WQ_WATCHDOG */
5637
bce90380
TH
5638static void __init wq_numa_init(void)
5639{
5640 cpumask_var_t *tbl;
5641 int node, cpu;
5642
bce90380
TH
5643 if (num_possible_nodes() <= 1)
5644 return;
5645
d55262c4
TH
5646 if (wq_disable_numa) {
5647 pr_info("workqueue: NUMA affinity support disabled\n");
5648 return;
5649 }
5650
4c16bd32
TH
5651 wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
5652 BUG_ON(!wq_update_unbound_numa_attrs_buf);
5653
bce90380
TH
5654 /*
5655 * We want masks of possible CPUs of each node which isn't readily
5656 * available. Build one from cpu_to_node() which should have been
5657 * fully initialized by now.
5658 */
6396bb22 5659 tbl = kcalloc(nr_node_ids, sizeof(tbl[0]), GFP_KERNEL);
bce90380
TH
5660 BUG_ON(!tbl);
5661
5662 for_each_node(node)
5a6024f1 5663 BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
1be0c25d 5664 node_online(node) ? node : NUMA_NO_NODE));
bce90380
TH
5665
5666 for_each_possible_cpu(cpu) {
5667 node = cpu_to_node(cpu);
5668 if (WARN_ON(node == NUMA_NO_NODE)) {
5669 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
5670 /* happens iff arch is bonkers, let's just proceed */
5671 return;
5672 }
5673 cpumask_set_cpu(cpu, tbl[node]);
5674 }
5675
5676 wq_numa_possible_cpumask = tbl;
5677 wq_numa_enabled = true;
5678}
5679
3347fa09
TH
5680/**
5681 * workqueue_init_early - early init for workqueue subsystem
5682 *
5683 * This is the first half of two-staged workqueue subsystem initialization
5684 * and invoked as soon as the bare basics - memory allocation, cpumasks and
5685 * idr are up. It sets up all the data structures and system workqueues
5686 * and allows early boot code to create workqueues and queue/cancel work
5687 * items. Actual work item execution starts only after kthreads can be
5688 * created and scheduled right before early initcalls.
5689 */
5690int __init workqueue_init_early(void)
1da177e4 5691{
7a4e344c 5692 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
1bda3f80 5693 int hk_flags = HK_FLAG_DOMAIN | HK_FLAG_WQ;
7a4e344c 5694 int i, cpu;
c34056a3 5695
e904e6c2
TH
5696 WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
5697
b05a7928 5698 BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
1bda3f80 5699 cpumask_copy(wq_unbound_cpumask, housekeeping_cpumask(hk_flags));
b05a7928 5700
e904e6c2
TH
5701 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
5702
706026c2 5703 /* initialize CPU pools */
29c91e99 5704 for_each_possible_cpu(cpu) {
4ce62e9e 5705 struct worker_pool *pool;
8b03ae3c 5706
7a4e344c 5707 i = 0;
f02ae73a 5708 for_each_cpu_worker_pool(pool, cpu) {
7a4e344c 5709 BUG_ON(init_worker_pool(pool));
ec22ca5e 5710 pool->cpu = cpu;
29c91e99 5711 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
7a4e344c 5712 pool->attrs->nice = std_nice[i++];
f3f90ad4 5713 pool->node = cpu_to_node(cpu);
7a4e344c 5714
9daf9e67 5715 /* alloc pool ID */
68e13a67 5716 mutex_lock(&wq_pool_mutex);
9daf9e67 5717 BUG_ON(worker_pool_assign_id(pool));
68e13a67 5718 mutex_unlock(&wq_pool_mutex);
4ce62e9e 5719 }
8b03ae3c
TH
5720 }
5721
8a2b7538 5722 /* create default unbound and ordered wq attrs */
29c91e99
TH
5723 for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
5724 struct workqueue_attrs *attrs;
5725
5726 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
29c91e99 5727 attrs->nice = std_nice[i];
29c91e99 5728 unbound_std_wq_attrs[i] = attrs;
8a2b7538
TH
5729
5730 /*
5731 * An ordered wq should have only one pwq as ordering is
5732 * guaranteed by max_active which is enforced by pwqs.
5733 * Turn off NUMA so that dfl_pwq is used for all nodes.
5734 */
5735 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5736 attrs->nice = std_nice[i];
5737 attrs->no_numa = true;
5738 ordered_wq_attrs[i] = attrs;
29c91e99
TH
5739 }
5740
d320c038 5741 system_wq = alloc_workqueue("events", 0, 0);
1aabe902 5742 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
d320c038 5743 system_long_wq = alloc_workqueue("events_long", 0, 0);
f3421797
TH
5744 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
5745 WQ_UNBOUND_MAX_ACTIVE);
24d51add
TH
5746 system_freezable_wq = alloc_workqueue("events_freezable",
5747 WQ_FREEZABLE, 0);
0668106c
VK
5748 system_power_efficient_wq = alloc_workqueue("events_power_efficient",
5749 WQ_POWER_EFFICIENT, 0);
5750 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
5751 WQ_FREEZABLE | WQ_POWER_EFFICIENT,
5752 0);
1aabe902 5753 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
0668106c
VK
5754 !system_unbound_wq || !system_freezable_wq ||
5755 !system_power_efficient_wq ||
5756 !system_freezable_power_efficient_wq);
82607adc 5757
3347fa09
TH
5758 return 0;
5759}
5760
5761/**
5762 * workqueue_init - bring workqueue subsystem fully online
5763 *
5764 * This is the latter half of two-staged workqueue subsystem initialization
5765 * and invoked as soon as kthreads can be created and scheduled.
5766 * Workqueues have been created and work items queued on them, but there
5767 * are no kworkers executing the work items yet. Populate the worker pools
5768 * with the initial workers and enable future kworker creations.
5769 */
5770int __init workqueue_init(void)
5771{
2186d9f9 5772 struct workqueue_struct *wq;
3347fa09
TH
5773 struct worker_pool *pool;
5774 int cpu, bkt;
5775
2186d9f9
TH
5776 /*
5777 * It'd be simpler to initialize NUMA in workqueue_init_early() but
5778 * CPU to node mapping may not be available that early on some
5779 * archs such as power and arm64. As per-cpu pools created
5780 * previously could be missing node hint and unbound pools NUMA
5781 * affinity, fix them up.
40c17f75
TH
5782 *
5783 * Also, while iterating workqueues, create rescuers if requested.
2186d9f9
TH
5784 */
5785 wq_numa_init();
5786
5787 mutex_lock(&wq_pool_mutex);
5788
5789 for_each_possible_cpu(cpu) {
5790 for_each_cpu_worker_pool(pool, cpu) {
5791 pool->node = cpu_to_node(cpu);
5792 }
5793 }
5794
40c17f75 5795 list_for_each_entry(wq, &workqueues, list) {
2186d9f9 5796 wq_update_unbound_numa(wq, smp_processor_id(), true);
40c17f75
TH
5797 WARN(init_rescuer(wq),
5798 "workqueue: failed to create early rescuer for %s",
5799 wq->name);
5800 }
2186d9f9
TH
5801
5802 mutex_unlock(&wq_pool_mutex);
5803
3347fa09
TH
5804 /* create the initial workers */
5805 for_each_online_cpu(cpu) {
5806 for_each_cpu_worker_pool(pool, cpu) {
5807 pool->flags &= ~POOL_DISASSOCIATED;
5808 BUG_ON(!create_worker(pool));
5809 }
5810 }
5811
5812 hash_for_each(unbound_pool_hash, bkt, pool, hash_node)
5813 BUG_ON(!create_worker(pool));
5814
5815 wq_online = true;
82607adc
TH
5816 wq_watchdog_init();
5817
6ee0578b 5818 return 0;
1da177e4 5819}