]> git.ipfire.org Git - thirdparty/linux.git/blame - kernel/workqueue.c
workqueue/lockdep: 'Fix' flush_work() annotation
[thirdparty/linux.git] / kernel / workqueue.c
CommitLineData
1da177e4 1/*
c54fce6e 2 * kernel/workqueue.c - generic async execution with shared worker pool
1da177e4 3 *
c54fce6e 4 * Copyright (C) 2002 Ingo Molnar
1da177e4 5 *
c54fce6e
TH
6 * Derived from the taskqueue/keventd code by:
7 * David Woodhouse <dwmw2@infradead.org>
8 * Andrew Morton
9 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
10 * Theodore Ts'o <tytso@mit.edu>
1da177e4 11 *
c54fce6e 12 * Made to use alloc_percpu by Christoph Lameter.
1da177e4 13 *
c54fce6e
TH
14 * Copyright (C) 2010 SUSE Linux Products GmbH
15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
89ada679 16 *
c54fce6e
TH
17 * This is the generic async execution mechanism. Work items as are
18 * executed in process context. The worker pool is shared and
b11895c4
L
19 * automatically managed. There are two worker pools for each CPU (one for
20 * normal work items and the other for high priority ones) and some extra
21 * pools for workqueues which are not bound to any specific CPU - the
22 * number of these backing pools is dynamic.
c54fce6e
TH
23 *
24 * Please read Documentation/workqueue.txt for details.
1da177e4
LT
25 */
26
9984de1a 27#include <linux/export.h>
1da177e4
LT
28#include <linux/kernel.h>
29#include <linux/sched.h>
30#include <linux/init.h>
31#include <linux/signal.h>
32#include <linux/completion.h>
33#include <linux/workqueue.h>
34#include <linux/slab.h>
35#include <linux/cpu.h>
36#include <linux/notifier.h>
37#include <linux/kthread.h>
1fa44eca 38#include <linux/hardirq.h>
46934023 39#include <linux/mempolicy.h>
341a5958 40#include <linux/freezer.h>
d5abe669
PZ
41#include <linux/kallsyms.h>
42#include <linux/debug_locks.h>
4e6045f1 43#include <linux/lockdep.h>
c34056a3 44#include <linux/idr.h>
29c91e99 45#include <linux/jhash.h>
42f8570f 46#include <linux/hashtable.h>
76af4d93 47#include <linux/rculist.h>
bce90380 48#include <linux/nodemask.h>
4c16bd32 49#include <linux/moduleparam.h>
3d1cb205 50#include <linux/uaccess.h>
e22bee78 51
ea138446 52#include "workqueue_internal.h"
1da177e4 53
c8e55f36 54enum {
24647570
TH
55 /*
56 * worker_pool flags
bc2ae0f5 57 *
24647570 58 * A bound pool is either associated or disassociated with its CPU.
bc2ae0f5
TH
59 * While associated (!DISASSOCIATED), all workers are bound to the
60 * CPU and none has %WORKER_UNBOUND set and concurrency management
61 * is in effect.
62 *
63 * While DISASSOCIATED, the cpu may be offline and all workers have
64 * %WORKER_UNBOUND set and concurrency management disabled, and may
24647570 65 * be executing on any CPU. The pool behaves as an unbound one.
bc2ae0f5 66 *
bc3a1afc 67 * Note that DISASSOCIATED should be flipped only while holding
92f9c5c4 68 * attach_mutex to avoid changing binding state while
4736cbf7 69 * worker_attach_to_pool() is in progress.
bc2ae0f5 70 */
24647570 71 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
db7bccf4 72
c8e55f36 73 /* worker flags */
c8e55f36
TH
74 WORKER_DIE = 1 << 1, /* die die die */
75 WORKER_IDLE = 1 << 2, /* is idle */
e22bee78 76 WORKER_PREP = 1 << 3, /* preparing to run works */
fb0e7beb 77 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
f3421797 78 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
a9ab775b 79 WORKER_REBOUND = 1 << 8, /* worker was rebound */
e22bee78 80
a9ab775b
TH
81 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE |
82 WORKER_UNBOUND | WORKER_REBOUND,
db7bccf4 83
e34cdddb 84 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
4ce62e9e 85
29c91e99 86 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */
c8e55f36 87 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
db7bccf4 88
e22bee78
TH
89 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
90 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
91
3233cdbd
TH
92 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
93 /* call for help after 10ms
94 (min two ticks) */
e22bee78
TH
95 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
96 CREATE_COOLDOWN = HZ, /* time to breath after fail */
e22bee78
TH
97
98 /*
99 * Rescue workers are used only on emergencies and shared by
8698a745 100 * all cpus. Give MIN_NICE.
e22bee78 101 */
8698a745
DY
102 RESCUER_NICE_LEVEL = MIN_NICE,
103 HIGHPRI_NICE_LEVEL = MIN_NICE,
ecf6881f
TH
104
105 WQ_NAME_LEN = 24,
c8e55f36 106};
1da177e4
LT
107
108/*
4690c4ab
TH
109 * Structure fields follow one of the following exclusion rules.
110 *
e41e704b
TH
111 * I: Modifiable by initialization/destruction paths and read-only for
112 * everyone else.
4690c4ab 113 *
e22bee78
TH
114 * P: Preemption protected. Disabling preemption is enough and should
115 * only be modified and accessed from the local cpu.
116 *
d565ed63 117 * L: pool->lock protected. Access with pool->lock held.
4690c4ab 118 *
d565ed63
TH
119 * X: During normal operation, modification requires pool->lock and should
120 * be done only from local cpu. Either disabling preemption on local
121 * cpu or grabbing pool->lock is enough for read access. If
122 * POOL_DISASSOCIATED is set, it's identical to L.
e22bee78 123 *
92f9c5c4 124 * A: pool->attach_mutex protected.
822d8405 125 *
68e13a67 126 * PL: wq_pool_mutex protected.
5bcab335 127 *
68e13a67 128 * PR: wq_pool_mutex protected for writes. Sched-RCU protected for reads.
76af4d93 129 *
5b95e1af
LJ
130 * PW: wq_pool_mutex and wq->mutex protected for writes. Either for reads.
131 *
132 * PWR: wq_pool_mutex and wq->mutex protected for writes. Either or
133 * sched-RCU for reads.
134 *
3c25a55d
LJ
135 * WQ: wq->mutex protected.
136 *
b5927605 137 * WR: wq->mutex protected for writes. Sched-RCU protected for reads.
2e109a28
TH
138 *
139 * MD: wq_mayday_lock protected.
1da177e4 140 */
1da177e4 141
2eaebdb3 142/* struct worker is defined in workqueue_internal.h */
c34056a3 143
bd7bdd43 144struct worker_pool {
d565ed63 145 spinlock_t lock; /* the pool lock */
d84ff051 146 int cpu; /* I: the associated cpu */
f3f90ad4 147 int node; /* I: the associated node ID */
9daf9e67 148 int id; /* I: pool ID */
11ebea50 149 unsigned int flags; /* X: flags */
bd7bdd43 150
82607adc
TH
151 unsigned long watchdog_ts; /* L: watchdog timestamp */
152
bd7bdd43
TH
153 struct list_head worklist; /* L: list of pending works */
154 int nr_workers; /* L: total number of workers */
ea1abd61
LJ
155
156 /* nr_idle includes the ones off idle_list for rebinding */
bd7bdd43
TH
157 int nr_idle; /* L: currently idle ones */
158
159 struct list_head idle_list; /* X: list of idle workers */
160 struct timer_list idle_timer; /* L: worker idle timeout */
161 struct timer_list mayday_timer; /* L: SOS timer for workers */
162
c5aa87bb 163 /* a workers is either on busy_hash or idle_list, or the manager */
c9e7cf27
TH
164 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
165 /* L: hash of busy workers */
166
bc3a1afc 167 /* see manage_workers() for details on the two manager mutexes */
34a06bd6 168 struct mutex manager_arb; /* manager arbitration */
2607d7a6 169 struct worker *manager; /* L: purely informational */
92f9c5c4
LJ
170 struct mutex attach_mutex; /* attach/detach exclusion */
171 struct list_head workers; /* A: attached workers */
60f5a4bc 172 struct completion *detach_completion; /* all workers detached */
e19e397a 173
7cda9aae 174 struct ida worker_ida; /* worker IDs for task name */
e19e397a 175
7a4e344c 176 struct workqueue_attrs *attrs; /* I: worker attributes */
68e13a67
LJ
177 struct hlist_node hash_node; /* PL: unbound_pool_hash node */
178 int refcnt; /* PL: refcnt for unbound pools */
7a4e344c 179
e19e397a
TH
180 /*
181 * The current concurrency level. As it's likely to be accessed
182 * from other CPUs during try_to_wake_up(), put it in a separate
183 * cacheline.
184 */
185 atomic_t nr_running ____cacheline_aligned_in_smp;
29c91e99
TH
186
187 /*
188 * Destruction of pool is sched-RCU protected to allow dereferences
189 * from get_work_pool().
190 */
191 struct rcu_head rcu;
8b03ae3c
TH
192} ____cacheline_aligned_in_smp;
193
1da177e4 194/*
112202d9
TH
195 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS
196 * of work_struct->data are used for flags and the remaining high bits
197 * point to the pwq; thus, pwqs need to be aligned at two's power of the
198 * number of flag bits.
1da177e4 199 */
112202d9 200struct pool_workqueue {
bd7bdd43 201 struct worker_pool *pool; /* I: the associated pool */
4690c4ab 202 struct workqueue_struct *wq; /* I: the owning workqueue */
73f53c4a
TH
203 int work_color; /* L: current color */
204 int flush_color; /* L: flushing color */
8864b4e5 205 int refcnt; /* L: reference count */
73f53c4a
TH
206 int nr_in_flight[WORK_NR_COLORS];
207 /* L: nr of in_flight works */
1e19ffc6 208 int nr_active; /* L: nr of active works */
a0a1a5fd 209 int max_active; /* L: max active works */
1e19ffc6 210 struct list_head delayed_works; /* L: delayed works */
3c25a55d 211 struct list_head pwqs_node; /* WR: node on wq->pwqs */
2e109a28 212 struct list_head mayday_node; /* MD: node on wq->maydays */
8864b4e5
TH
213
214 /*
215 * Release of unbound pwq is punted to system_wq. See put_pwq()
216 * and pwq_unbound_release_workfn() for details. pool_workqueue
217 * itself is also sched-RCU protected so that the first pwq can be
b09f4fd3 218 * determined without grabbing wq->mutex.
8864b4e5
TH
219 */
220 struct work_struct unbound_release_work;
221 struct rcu_head rcu;
e904e6c2 222} __aligned(1 << WORK_STRUCT_FLAG_BITS);
1da177e4 223
73f53c4a
TH
224/*
225 * Structure used to wait for workqueue flush.
226 */
227struct wq_flusher {
3c25a55d
LJ
228 struct list_head list; /* WQ: list of flushers */
229 int flush_color; /* WQ: flush color waiting for */
73f53c4a
TH
230 struct completion done; /* flush completion */
231};
232
226223ab
TH
233struct wq_device;
234
1da177e4 235/*
c5aa87bb
TH
236 * The externally visible workqueue. It relays the issued work items to
237 * the appropriate worker_pool through its pool_workqueues.
1da177e4
LT
238 */
239struct workqueue_struct {
3c25a55d 240 struct list_head pwqs; /* WR: all pwqs of this wq */
e2dca7ad 241 struct list_head list; /* PR: list of all workqueues */
73f53c4a 242
3c25a55d
LJ
243 struct mutex mutex; /* protects this wq */
244 int work_color; /* WQ: current work color */
245 int flush_color; /* WQ: current flush color */
112202d9 246 atomic_t nr_pwqs_to_flush; /* flush in progress */
3c25a55d
LJ
247 struct wq_flusher *first_flusher; /* WQ: first flusher */
248 struct list_head flusher_queue; /* WQ: flush waiters */
249 struct list_head flusher_overflow; /* WQ: flush overflow list */
73f53c4a 250
2e109a28 251 struct list_head maydays; /* MD: pwqs requesting rescue */
e22bee78
TH
252 struct worker *rescuer; /* I: rescue worker */
253
87fc741e 254 int nr_drainers; /* WQ: drain in progress */
a357fc03 255 int saved_max_active; /* WQ: saved pwq max_active */
226223ab 256
5b95e1af
LJ
257 struct workqueue_attrs *unbound_attrs; /* PW: only for unbound wqs */
258 struct pool_workqueue *dfl_pwq; /* PW: only for unbound wqs */
6029a918 259
226223ab
TH
260#ifdef CONFIG_SYSFS
261 struct wq_device *wq_dev; /* I: for sysfs interface */
262#endif
4e6045f1 263#ifdef CONFIG_LOCKDEP
4690c4ab 264 struct lockdep_map lockdep_map;
4e6045f1 265#endif
ecf6881f 266 char name[WQ_NAME_LEN]; /* I: workqueue name */
2728fd2f 267
e2dca7ad
TH
268 /*
269 * Destruction of workqueue_struct is sched-RCU protected to allow
270 * walking the workqueues list without grabbing wq_pool_mutex.
271 * This is used to dump all workqueues from sysrq.
272 */
273 struct rcu_head rcu;
274
2728fd2f
TH
275 /* hot fields used during command issue, aligned to cacheline */
276 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */
277 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
5b95e1af 278 struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */
1da177e4
LT
279};
280
e904e6c2
TH
281static struct kmem_cache *pwq_cache;
282
bce90380
TH
283static cpumask_var_t *wq_numa_possible_cpumask;
284 /* possible CPUs of each node */
285
d55262c4
TH
286static bool wq_disable_numa;
287module_param_named(disable_numa, wq_disable_numa, bool, 0444);
288
cee22a15 289/* see the comment above the definition of WQ_POWER_EFFICIENT */
552f530c 290static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
cee22a15
VK
291module_param_named(power_efficient, wq_power_efficient, bool, 0444);
292
863b710b 293static bool wq_online; /* can kworkers be created yet? */
3347fa09 294
bce90380
TH
295static bool wq_numa_enabled; /* unbound NUMA affinity enabled */
296
4c16bd32
TH
297/* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
298static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
299
68e13a67 300static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */
2e109a28 301static DEFINE_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */
5bcab335 302
e2dca7ad 303static LIST_HEAD(workqueues); /* PR: list of all workqueues */
68e13a67 304static bool workqueue_freezing; /* PL: have wqs started freezing? */
7d19c5ce 305
ef557180
MG
306/* PL: allowable cpus for unbound wqs and work items */
307static cpumask_var_t wq_unbound_cpumask;
308
309/* CPU where unbound work was last round robin scheduled from this CPU */
310static DEFINE_PER_CPU(int, wq_rr_cpu_last);
b05a7928 311
f303fccb
TH
312/*
313 * Local execution of unbound work items is no longer guaranteed. The
314 * following always forces round-robin CPU selection on unbound work items
315 * to uncover usages which depend on it.
316 */
317#ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
318static bool wq_debug_force_rr_cpu = true;
319#else
320static bool wq_debug_force_rr_cpu = false;
321#endif
322module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
323
7d19c5ce 324/* the per-cpu worker pools */
25528213 325static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools);
7d19c5ce 326
68e13a67 327static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */
7d19c5ce 328
68e13a67 329/* PL: hash of all unbound pools keyed by pool->attrs */
29c91e99
TH
330static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
331
c5aa87bb 332/* I: attributes used when instantiating standard unbound pools on demand */
29c91e99
TH
333static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
334
8a2b7538
TH
335/* I: attributes used when instantiating ordered pools on demand */
336static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
337
d320c038 338struct workqueue_struct *system_wq __read_mostly;
ad7b1f84 339EXPORT_SYMBOL(system_wq);
044c782c 340struct workqueue_struct *system_highpri_wq __read_mostly;
1aabe902 341EXPORT_SYMBOL_GPL(system_highpri_wq);
044c782c 342struct workqueue_struct *system_long_wq __read_mostly;
d320c038 343EXPORT_SYMBOL_GPL(system_long_wq);
044c782c 344struct workqueue_struct *system_unbound_wq __read_mostly;
f3421797 345EXPORT_SYMBOL_GPL(system_unbound_wq);
044c782c 346struct workqueue_struct *system_freezable_wq __read_mostly;
24d51add 347EXPORT_SYMBOL_GPL(system_freezable_wq);
0668106c
VK
348struct workqueue_struct *system_power_efficient_wq __read_mostly;
349EXPORT_SYMBOL_GPL(system_power_efficient_wq);
350struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
351EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
d320c038 352
7d19c5ce 353static int worker_thread(void *__worker);
6ba94429 354static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
7d19c5ce 355
97bd2347
TH
356#define CREATE_TRACE_POINTS
357#include <trace/events/workqueue.h>
358
68e13a67 359#define assert_rcu_or_pool_mutex() \
f78f5b90
PM
360 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \
361 !lockdep_is_held(&wq_pool_mutex), \
362 "sched RCU or wq_pool_mutex should be held")
5bcab335 363
b09f4fd3 364#define assert_rcu_or_wq_mutex(wq) \
f78f5b90
PM
365 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \
366 !lockdep_is_held(&wq->mutex), \
367 "sched RCU or wq->mutex should be held")
76af4d93 368
5b95e1af 369#define assert_rcu_or_wq_mutex_or_pool_mutex(wq) \
f78f5b90
PM
370 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \
371 !lockdep_is_held(&wq->mutex) && \
372 !lockdep_is_held(&wq_pool_mutex), \
373 "sched RCU, wq->mutex or wq_pool_mutex should be held")
5b95e1af 374
f02ae73a
TH
375#define for_each_cpu_worker_pool(pool, cpu) \
376 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \
377 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
7a62c2c8 378 (pool)++)
4ce62e9e 379
17116969
TH
380/**
381 * for_each_pool - iterate through all worker_pools in the system
382 * @pool: iteration cursor
611c92a0 383 * @pi: integer used for iteration
fa1b54e6 384 *
68e13a67
LJ
385 * This must be called either with wq_pool_mutex held or sched RCU read
386 * locked. If the pool needs to be used beyond the locking in effect, the
387 * caller is responsible for guaranteeing that the pool stays online.
fa1b54e6
TH
388 *
389 * The if/else clause exists only for the lockdep assertion and can be
390 * ignored.
17116969 391 */
611c92a0
TH
392#define for_each_pool(pool, pi) \
393 idr_for_each_entry(&worker_pool_idr, pool, pi) \
68e13a67 394 if (({ assert_rcu_or_pool_mutex(); false; })) { } \
fa1b54e6 395 else
17116969 396
822d8405
TH
397/**
398 * for_each_pool_worker - iterate through all workers of a worker_pool
399 * @worker: iteration cursor
822d8405
TH
400 * @pool: worker_pool to iterate workers of
401 *
92f9c5c4 402 * This must be called with @pool->attach_mutex.
822d8405
TH
403 *
404 * The if/else clause exists only for the lockdep assertion and can be
405 * ignored.
406 */
da028469
LJ
407#define for_each_pool_worker(worker, pool) \
408 list_for_each_entry((worker), &(pool)->workers, node) \
92f9c5c4 409 if (({ lockdep_assert_held(&pool->attach_mutex); false; })) { } \
822d8405
TH
410 else
411
49e3cf44
TH
412/**
413 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
414 * @pwq: iteration cursor
415 * @wq: the target workqueue
76af4d93 416 *
b09f4fd3 417 * This must be called either with wq->mutex held or sched RCU read locked.
794b18bc
TH
418 * If the pwq needs to be used beyond the locking in effect, the caller is
419 * responsible for guaranteeing that the pwq stays online.
76af4d93
TH
420 *
421 * The if/else clause exists only for the lockdep assertion and can be
422 * ignored.
49e3cf44
TH
423 */
424#define for_each_pwq(pwq, wq) \
76af4d93 425 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node) \
b09f4fd3 426 if (({ assert_rcu_or_wq_mutex(wq); false; })) { } \
76af4d93 427 else
f3421797 428
dc186ad7
TG
429#ifdef CONFIG_DEBUG_OBJECTS_WORK
430
431static struct debug_obj_descr work_debug_descr;
432
99777288
SG
433static void *work_debug_hint(void *addr)
434{
435 return ((struct work_struct *) addr)->func;
436}
437
b9fdac7f
CD
438static bool work_is_static_object(void *addr)
439{
440 struct work_struct *work = addr;
441
442 return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work));
443}
444
dc186ad7
TG
445/*
446 * fixup_init is called when:
447 * - an active object is initialized
448 */
02a982a6 449static bool work_fixup_init(void *addr, enum debug_obj_state state)
dc186ad7
TG
450{
451 struct work_struct *work = addr;
452
453 switch (state) {
454 case ODEBUG_STATE_ACTIVE:
455 cancel_work_sync(work);
456 debug_object_init(work, &work_debug_descr);
02a982a6 457 return true;
dc186ad7 458 default:
02a982a6 459 return false;
dc186ad7
TG
460 }
461}
462
dc186ad7
TG
463/*
464 * fixup_free is called when:
465 * - an active object is freed
466 */
02a982a6 467static bool work_fixup_free(void *addr, enum debug_obj_state state)
dc186ad7
TG
468{
469 struct work_struct *work = addr;
470
471 switch (state) {
472 case ODEBUG_STATE_ACTIVE:
473 cancel_work_sync(work);
474 debug_object_free(work, &work_debug_descr);
02a982a6 475 return true;
dc186ad7 476 default:
02a982a6 477 return false;
dc186ad7
TG
478 }
479}
480
481static struct debug_obj_descr work_debug_descr = {
482 .name = "work_struct",
99777288 483 .debug_hint = work_debug_hint,
b9fdac7f 484 .is_static_object = work_is_static_object,
dc186ad7 485 .fixup_init = work_fixup_init,
dc186ad7
TG
486 .fixup_free = work_fixup_free,
487};
488
489static inline void debug_work_activate(struct work_struct *work)
490{
491 debug_object_activate(work, &work_debug_descr);
492}
493
494static inline void debug_work_deactivate(struct work_struct *work)
495{
496 debug_object_deactivate(work, &work_debug_descr);
497}
498
499void __init_work(struct work_struct *work, int onstack)
500{
501 if (onstack)
502 debug_object_init_on_stack(work, &work_debug_descr);
503 else
504 debug_object_init(work, &work_debug_descr);
505}
506EXPORT_SYMBOL_GPL(__init_work);
507
508void destroy_work_on_stack(struct work_struct *work)
509{
510 debug_object_free(work, &work_debug_descr);
511}
512EXPORT_SYMBOL_GPL(destroy_work_on_stack);
513
ea2e64f2
TG
514void destroy_delayed_work_on_stack(struct delayed_work *work)
515{
516 destroy_timer_on_stack(&work->timer);
517 debug_object_free(&work->work, &work_debug_descr);
518}
519EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
520
dc186ad7
TG
521#else
522static inline void debug_work_activate(struct work_struct *work) { }
523static inline void debug_work_deactivate(struct work_struct *work) { }
524#endif
525
4e8b22bd
LB
526/**
527 * worker_pool_assign_id - allocate ID and assing it to @pool
528 * @pool: the pool pointer of interest
529 *
530 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
531 * successfully, -errno on failure.
532 */
9daf9e67
TH
533static int worker_pool_assign_id(struct worker_pool *pool)
534{
535 int ret;
536
68e13a67 537 lockdep_assert_held(&wq_pool_mutex);
5bcab335 538
4e8b22bd
LB
539 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
540 GFP_KERNEL);
229641a6 541 if (ret >= 0) {
e68035fb 542 pool->id = ret;
229641a6
TH
543 return 0;
544 }
fa1b54e6 545 return ret;
7c3eed5c
TH
546}
547
df2d5ae4
TH
548/**
549 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
550 * @wq: the target workqueue
551 * @node: the node ID
552 *
5b95e1af
LJ
553 * This must be called with any of wq_pool_mutex, wq->mutex or sched RCU
554 * read locked.
df2d5ae4
TH
555 * If the pwq needs to be used beyond the locking in effect, the caller is
556 * responsible for guaranteeing that the pwq stays online.
d185af30
YB
557 *
558 * Return: The unbound pool_workqueue for @node.
df2d5ae4
TH
559 */
560static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
561 int node)
562{
5b95e1af 563 assert_rcu_or_wq_mutex_or_pool_mutex(wq);
d6e022f1
TH
564
565 /*
566 * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a
567 * delayed item is pending. The plan is to keep CPU -> NODE
568 * mapping valid and stable across CPU on/offlines. Once that
569 * happens, this workaround can be removed.
570 */
571 if (unlikely(node == NUMA_NO_NODE))
572 return wq->dfl_pwq;
573
df2d5ae4
TH
574 return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
575}
576
73f53c4a
TH
577static unsigned int work_color_to_flags(int color)
578{
579 return color << WORK_STRUCT_COLOR_SHIFT;
580}
581
582static int get_work_color(struct work_struct *work)
583{
584 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
585 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
586}
587
588static int work_next_color(int color)
589{
590 return (color + 1) % WORK_NR_COLORS;
591}
1da177e4 592
14441960 593/*
112202d9
TH
594 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
595 * contain the pointer to the queued pwq. Once execution starts, the flag
7c3eed5c 596 * is cleared and the high bits contain OFFQ flags and pool ID.
7a22ad75 597 *
112202d9
TH
598 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
599 * and clear_work_data() can be used to set the pwq, pool or clear
bbb68dfa
TH
600 * work->data. These functions should only be called while the work is
601 * owned - ie. while the PENDING bit is set.
7a22ad75 602 *
112202d9 603 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
7c3eed5c 604 * corresponding to a work. Pool is available once the work has been
112202d9 605 * queued anywhere after initialization until it is sync canceled. pwq is
7c3eed5c 606 * available only while the work item is queued.
7a22ad75 607 *
bbb68dfa
TH
608 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
609 * canceled. While being canceled, a work item may have its PENDING set
610 * but stay off timer and worklist for arbitrarily long and nobody should
611 * try to steal the PENDING bit.
14441960 612 */
7a22ad75
TH
613static inline void set_work_data(struct work_struct *work, unsigned long data,
614 unsigned long flags)
365970a1 615{
6183c009 616 WARN_ON_ONCE(!work_pending(work));
7a22ad75
TH
617 atomic_long_set(&work->data, data | flags | work_static(work));
618}
365970a1 619
112202d9 620static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
7a22ad75
TH
621 unsigned long extra_flags)
622{
112202d9
TH
623 set_work_data(work, (unsigned long)pwq,
624 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
365970a1
DH
625}
626
4468a00f
LJ
627static void set_work_pool_and_keep_pending(struct work_struct *work,
628 int pool_id)
629{
630 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
631 WORK_STRUCT_PENDING);
632}
633
7c3eed5c
TH
634static void set_work_pool_and_clear_pending(struct work_struct *work,
635 int pool_id)
7a22ad75 636{
23657bb1
TH
637 /*
638 * The following wmb is paired with the implied mb in
639 * test_and_set_bit(PENDING) and ensures all updates to @work made
640 * here are visible to and precede any updates by the next PENDING
641 * owner.
642 */
643 smp_wmb();
7c3eed5c 644 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
346c09f8
RP
645 /*
646 * The following mb guarantees that previous clear of a PENDING bit
647 * will not be reordered with any speculative LOADS or STORES from
648 * work->current_func, which is executed afterwards. This possible
649 * reordering can lead to a missed execution on attempt to qeueue
650 * the same @work. E.g. consider this case:
651 *
652 * CPU#0 CPU#1
653 * ---------------------------- --------------------------------
654 *
655 * 1 STORE event_indicated
656 * 2 queue_work_on() {
657 * 3 test_and_set_bit(PENDING)
658 * 4 } set_..._and_clear_pending() {
659 * 5 set_work_data() # clear bit
660 * 6 smp_mb()
661 * 7 work->current_func() {
662 * 8 LOAD event_indicated
663 * }
664 *
665 * Without an explicit full barrier speculative LOAD on line 8 can
666 * be executed before CPU#0 does STORE on line 1. If that happens,
667 * CPU#0 observes the PENDING bit is still set and new execution of
668 * a @work is not queued in a hope, that CPU#1 will eventually
669 * finish the queued @work. Meanwhile CPU#1 does not see
670 * event_indicated is set, because speculative LOAD was executed
671 * before actual STORE.
672 */
673 smp_mb();
7a22ad75 674}
f756d5e2 675
7a22ad75 676static void clear_work_data(struct work_struct *work)
1da177e4 677{
7c3eed5c
TH
678 smp_wmb(); /* see set_work_pool_and_clear_pending() */
679 set_work_data(work, WORK_STRUCT_NO_POOL, 0);
1da177e4
LT
680}
681
112202d9 682static struct pool_workqueue *get_work_pwq(struct work_struct *work)
b1f4ec17 683{
e120153d 684 unsigned long data = atomic_long_read(&work->data);
7a22ad75 685
112202d9 686 if (data & WORK_STRUCT_PWQ)
e120153d
TH
687 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
688 else
689 return NULL;
4d707b9f
ON
690}
691
7c3eed5c
TH
692/**
693 * get_work_pool - return the worker_pool a given work was associated with
694 * @work: the work item of interest
695 *
68e13a67
LJ
696 * Pools are created and destroyed under wq_pool_mutex, and allows read
697 * access under sched-RCU read lock. As such, this function should be
698 * called under wq_pool_mutex or with preemption disabled.
fa1b54e6
TH
699 *
700 * All fields of the returned pool are accessible as long as the above
701 * mentioned locking is in effect. If the returned pool needs to be used
702 * beyond the critical section, the caller is responsible for ensuring the
703 * returned pool is and stays online.
d185af30
YB
704 *
705 * Return: The worker_pool @work was last associated with. %NULL if none.
7c3eed5c
TH
706 */
707static struct worker_pool *get_work_pool(struct work_struct *work)
365970a1 708{
e120153d 709 unsigned long data = atomic_long_read(&work->data);
7c3eed5c 710 int pool_id;
7a22ad75 711
68e13a67 712 assert_rcu_or_pool_mutex();
fa1b54e6 713
112202d9
TH
714 if (data & WORK_STRUCT_PWQ)
715 return ((struct pool_workqueue *)
7c3eed5c 716 (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
7a22ad75 717
7c3eed5c
TH
718 pool_id = data >> WORK_OFFQ_POOL_SHIFT;
719 if (pool_id == WORK_OFFQ_POOL_NONE)
7a22ad75
TH
720 return NULL;
721
fa1b54e6 722 return idr_find(&worker_pool_idr, pool_id);
7c3eed5c
TH
723}
724
725/**
726 * get_work_pool_id - return the worker pool ID a given work is associated with
727 * @work: the work item of interest
728 *
d185af30 729 * Return: The worker_pool ID @work was last associated with.
7c3eed5c
TH
730 * %WORK_OFFQ_POOL_NONE if none.
731 */
732static int get_work_pool_id(struct work_struct *work)
733{
54d5b7d0
LJ
734 unsigned long data = atomic_long_read(&work->data);
735
112202d9
TH
736 if (data & WORK_STRUCT_PWQ)
737 return ((struct pool_workqueue *)
54d5b7d0 738 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
7c3eed5c 739
54d5b7d0 740 return data >> WORK_OFFQ_POOL_SHIFT;
7c3eed5c
TH
741}
742
bbb68dfa
TH
743static void mark_work_canceling(struct work_struct *work)
744{
7c3eed5c 745 unsigned long pool_id = get_work_pool_id(work);
bbb68dfa 746
7c3eed5c
TH
747 pool_id <<= WORK_OFFQ_POOL_SHIFT;
748 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
bbb68dfa
TH
749}
750
751static bool work_is_canceling(struct work_struct *work)
752{
753 unsigned long data = atomic_long_read(&work->data);
754
112202d9 755 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
bbb68dfa
TH
756}
757
e22bee78 758/*
3270476a
TH
759 * Policy functions. These define the policies on how the global worker
760 * pools are managed. Unless noted otherwise, these functions assume that
d565ed63 761 * they're being called with pool->lock held.
e22bee78
TH
762 */
763
63d95a91 764static bool __need_more_worker(struct worker_pool *pool)
a848e3b6 765{
e19e397a 766 return !atomic_read(&pool->nr_running);
a848e3b6
ON
767}
768
4594bf15 769/*
e22bee78
TH
770 * Need to wake up a worker? Called from anything but currently
771 * running workers.
974271c4
TH
772 *
773 * Note that, because unbound workers never contribute to nr_running, this
706026c2 774 * function will always return %true for unbound pools as long as the
974271c4 775 * worklist isn't empty.
4594bf15 776 */
63d95a91 777static bool need_more_worker(struct worker_pool *pool)
365970a1 778{
63d95a91 779 return !list_empty(&pool->worklist) && __need_more_worker(pool);
e22bee78 780}
4594bf15 781
e22bee78 782/* Can I start working? Called from busy but !running workers. */
63d95a91 783static bool may_start_working(struct worker_pool *pool)
e22bee78 784{
63d95a91 785 return pool->nr_idle;
e22bee78
TH
786}
787
788/* Do I need to keep working? Called from currently running workers. */
63d95a91 789static bool keep_working(struct worker_pool *pool)
e22bee78 790{
e19e397a
TH
791 return !list_empty(&pool->worklist) &&
792 atomic_read(&pool->nr_running) <= 1;
e22bee78
TH
793}
794
795/* Do we need a new worker? Called from manager. */
63d95a91 796static bool need_to_create_worker(struct worker_pool *pool)
e22bee78 797{
63d95a91 798 return need_more_worker(pool) && !may_start_working(pool);
e22bee78 799}
365970a1 800
e22bee78 801/* Do we have too many workers and should some go away? */
63d95a91 802static bool too_many_workers(struct worker_pool *pool)
e22bee78 803{
34a06bd6 804 bool managing = mutex_is_locked(&pool->manager_arb);
63d95a91
TH
805 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
806 int nr_busy = pool->nr_workers - nr_idle;
e22bee78
TH
807
808 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
365970a1
DH
809}
810
4d707b9f 811/*
e22bee78
TH
812 * Wake up functions.
813 */
814
1037de36
LJ
815/* Return the first idle worker. Safe with preemption disabled */
816static struct worker *first_idle_worker(struct worker_pool *pool)
7e11629d 817{
63d95a91 818 if (unlikely(list_empty(&pool->idle_list)))
7e11629d
TH
819 return NULL;
820
63d95a91 821 return list_first_entry(&pool->idle_list, struct worker, entry);
7e11629d
TH
822}
823
824/**
825 * wake_up_worker - wake up an idle worker
63d95a91 826 * @pool: worker pool to wake worker from
7e11629d 827 *
63d95a91 828 * Wake up the first idle worker of @pool.
7e11629d
TH
829 *
830 * CONTEXT:
d565ed63 831 * spin_lock_irq(pool->lock).
7e11629d 832 */
63d95a91 833static void wake_up_worker(struct worker_pool *pool)
7e11629d 834{
1037de36 835 struct worker *worker = first_idle_worker(pool);
7e11629d
TH
836
837 if (likely(worker))
838 wake_up_process(worker->task);
839}
840
d302f017 841/**
e22bee78
TH
842 * wq_worker_waking_up - a worker is waking up
843 * @task: task waking up
844 * @cpu: CPU @task is waking up to
845 *
846 * This function is called during try_to_wake_up() when a worker is
847 * being awoken.
848 *
849 * CONTEXT:
850 * spin_lock_irq(rq->lock)
851 */
d84ff051 852void wq_worker_waking_up(struct task_struct *task, int cpu)
e22bee78
TH
853{
854 struct worker *worker = kthread_data(task);
855
36576000 856 if (!(worker->flags & WORKER_NOT_RUNNING)) {
ec22ca5e 857 WARN_ON_ONCE(worker->pool->cpu != cpu);
e19e397a 858 atomic_inc(&worker->pool->nr_running);
36576000 859 }
e22bee78
TH
860}
861
862/**
863 * wq_worker_sleeping - a worker is going to sleep
864 * @task: task going to sleep
e22bee78
TH
865 *
866 * This function is called during schedule() when a busy worker is
867 * going to sleep. Worker on the same cpu can be woken up by
868 * returning pointer to its task.
869 *
870 * CONTEXT:
871 * spin_lock_irq(rq->lock)
872 *
d185af30 873 * Return:
e22bee78
TH
874 * Worker task on @cpu to wake up, %NULL if none.
875 */
9b7f6597 876struct task_struct *wq_worker_sleeping(struct task_struct *task)
e22bee78
TH
877{
878 struct worker *worker = kthread_data(task), *to_wakeup = NULL;
111c225a 879 struct worker_pool *pool;
e22bee78 880
111c225a
TH
881 /*
882 * Rescuers, which may not have all the fields set up like normal
883 * workers, also reach here, let's not access anything before
884 * checking NOT_RUNNING.
885 */
2d64672e 886 if (worker->flags & WORKER_NOT_RUNNING)
e22bee78
TH
887 return NULL;
888
111c225a 889 pool = worker->pool;
111c225a 890
e22bee78 891 /* this can only happen on the local cpu */
9b7f6597 892 if (WARN_ON_ONCE(pool->cpu != raw_smp_processor_id()))
6183c009 893 return NULL;
e22bee78
TH
894
895 /*
896 * The counterpart of the following dec_and_test, implied mb,
897 * worklist not empty test sequence is in insert_work().
898 * Please read comment there.
899 *
628c78e7
TH
900 * NOT_RUNNING is clear. This means that we're bound to and
901 * running on the local cpu w/ rq lock held and preemption
902 * disabled, which in turn means that none else could be
d565ed63 903 * manipulating idle_list, so dereferencing idle_list without pool
628c78e7 904 * lock is safe.
e22bee78 905 */
e19e397a
TH
906 if (atomic_dec_and_test(&pool->nr_running) &&
907 !list_empty(&pool->worklist))
1037de36 908 to_wakeup = first_idle_worker(pool);
e22bee78
TH
909 return to_wakeup ? to_wakeup->task : NULL;
910}
911
912/**
913 * worker_set_flags - set worker flags and adjust nr_running accordingly
cb444766 914 * @worker: self
d302f017 915 * @flags: flags to set
d302f017 916 *
228f1d00 917 * Set @flags in @worker->flags and adjust nr_running accordingly.
d302f017 918 *
cb444766 919 * CONTEXT:
d565ed63 920 * spin_lock_irq(pool->lock)
d302f017 921 */
228f1d00 922static inline void worker_set_flags(struct worker *worker, unsigned int flags)
d302f017 923{
bd7bdd43 924 struct worker_pool *pool = worker->pool;
e22bee78 925
cb444766
TH
926 WARN_ON_ONCE(worker->task != current);
927
228f1d00 928 /* If transitioning into NOT_RUNNING, adjust nr_running. */
e22bee78
TH
929 if ((flags & WORKER_NOT_RUNNING) &&
930 !(worker->flags & WORKER_NOT_RUNNING)) {
228f1d00 931 atomic_dec(&pool->nr_running);
e22bee78
TH
932 }
933
d302f017
TH
934 worker->flags |= flags;
935}
936
937/**
e22bee78 938 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
cb444766 939 * @worker: self
d302f017
TH
940 * @flags: flags to clear
941 *
e22bee78 942 * Clear @flags in @worker->flags and adjust nr_running accordingly.
d302f017 943 *
cb444766 944 * CONTEXT:
d565ed63 945 * spin_lock_irq(pool->lock)
d302f017
TH
946 */
947static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
948{
63d95a91 949 struct worker_pool *pool = worker->pool;
e22bee78
TH
950 unsigned int oflags = worker->flags;
951
cb444766
TH
952 WARN_ON_ONCE(worker->task != current);
953
d302f017 954 worker->flags &= ~flags;
e22bee78 955
42c025f3
TH
956 /*
957 * If transitioning out of NOT_RUNNING, increment nr_running. Note
958 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
959 * of multiple flags, not a single flag.
960 */
e22bee78
TH
961 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
962 if (!(worker->flags & WORKER_NOT_RUNNING))
e19e397a 963 atomic_inc(&pool->nr_running);
d302f017
TH
964}
965
8cca0eea
TH
966/**
967 * find_worker_executing_work - find worker which is executing a work
c9e7cf27 968 * @pool: pool of interest
8cca0eea
TH
969 * @work: work to find worker for
970 *
c9e7cf27
TH
971 * Find a worker which is executing @work on @pool by searching
972 * @pool->busy_hash which is keyed by the address of @work. For a worker
a2c1c57b
TH
973 * to match, its current execution should match the address of @work and
974 * its work function. This is to avoid unwanted dependency between
975 * unrelated work executions through a work item being recycled while still
976 * being executed.
977 *
978 * This is a bit tricky. A work item may be freed once its execution
979 * starts and nothing prevents the freed area from being recycled for
980 * another work item. If the same work item address ends up being reused
981 * before the original execution finishes, workqueue will identify the
982 * recycled work item as currently executing and make it wait until the
983 * current execution finishes, introducing an unwanted dependency.
984 *
c5aa87bb
TH
985 * This function checks the work item address and work function to avoid
986 * false positives. Note that this isn't complete as one may construct a
987 * work function which can introduce dependency onto itself through a
988 * recycled work item. Well, if somebody wants to shoot oneself in the
989 * foot that badly, there's only so much we can do, and if such deadlock
990 * actually occurs, it should be easy to locate the culprit work function.
8cca0eea
TH
991 *
992 * CONTEXT:
d565ed63 993 * spin_lock_irq(pool->lock).
8cca0eea 994 *
d185af30
YB
995 * Return:
996 * Pointer to worker which is executing @work if found, %NULL
8cca0eea 997 * otherwise.
4d707b9f 998 */
c9e7cf27 999static struct worker *find_worker_executing_work(struct worker_pool *pool,
8cca0eea 1000 struct work_struct *work)
4d707b9f 1001{
42f8570f 1002 struct worker *worker;
42f8570f 1003
b67bfe0d 1004 hash_for_each_possible(pool->busy_hash, worker, hentry,
a2c1c57b
TH
1005 (unsigned long)work)
1006 if (worker->current_work == work &&
1007 worker->current_func == work->func)
42f8570f
SL
1008 return worker;
1009
1010 return NULL;
4d707b9f
ON
1011}
1012
bf4ede01
TH
1013/**
1014 * move_linked_works - move linked works to a list
1015 * @work: start of series of works to be scheduled
1016 * @head: target list to append @work to
402dd89d 1017 * @nextp: out parameter for nested worklist walking
bf4ede01
TH
1018 *
1019 * Schedule linked works starting from @work to @head. Work series to
1020 * be scheduled starts at @work and includes any consecutive work with
1021 * WORK_STRUCT_LINKED set in its predecessor.
1022 *
1023 * If @nextp is not NULL, it's updated to point to the next work of
1024 * the last scheduled work. This allows move_linked_works() to be
1025 * nested inside outer list_for_each_entry_safe().
1026 *
1027 * CONTEXT:
d565ed63 1028 * spin_lock_irq(pool->lock).
bf4ede01
TH
1029 */
1030static void move_linked_works(struct work_struct *work, struct list_head *head,
1031 struct work_struct **nextp)
1032{
1033 struct work_struct *n;
1034
1035 /*
1036 * Linked worklist will always end before the end of the list,
1037 * use NULL for list head.
1038 */
1039 list_for_each_entry_safe_from(work, n, NULL, entry) {
1040 list_move_tail(&work->entry, head);
1041 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1042 break;
1043 }
1044
1045 /*
1046 * If we're already inside safe list traversal and have moved
1047 * multiple works to the scheduled queue, the next position
1048 * needs to be updated.
1049 */
1050 if (nextp)
1051 *nextp = n;
1052}
1053
8864b4e5
TH
1054/**
1055 * get_pwq - get an extra reference on the specified pool_workqueue
1056 * @pwq: pool_workqueue to get
1057 *
1058 * Obtain an extra reference on @pwq. The caller should guarantee that
1059 * @pwq has positive refcnt and be holding the matching pool->lock.
1060 */
1061static void get_pwq(struct pool_workqueue *pwq)
1062{
1063 lockdep_assert_held(&pwq->pool->lock);
1064 WARN_ON_ONCE(pwq->refcnt <= 0);
1065 pwq->refcnt++;
1066}
1067
1068/**
1069 * put_pwq - put a pool_workqueue reference
1070 * @pwq: pool_workqueue to put
1071 *
1072 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its
1073 * destruction. The caller should be holding the matching pool->lock.
1074 */
1075static void put_pwq(struct pool_workqueue *pwq)
1076{
1077 lockdep_assert_held(&pwq->pool->lock);
1078 if (likely(--pwq->refcnt))
1079 return;
1080 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1081 return;
1082 /*
1083 * @pwq can't be released under pool->lock, bounce to
1084 * pwq_unbound_release_workfn(). This never recurses on the same
1085 * pool->lock as this path is taken only for unbound workqueues and
1086 * the release work item is scheduled on a per-cpu workqueue. To
1087 * avoid lockdep warning, unbound pool->locks are given lockdep
1088 * subclass of 1 in get_unbound_pool().
1089 */
1090 schedule_work(&pwq->unbound_release_work);
1091}
1092
dce90d47
TH
1093/**
1094 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1095 * @pwq: pool_workqueue to put (can be %NULL)
1096 *
1097 * put_pwq() with locking. This function also allows %NULL @pwq.
1098 */
1099static void put_pwq_unlocked(struct pool_workqueue *pwq)
1100{
1101 if (pwq) {
1102 /*
1103 * As both pwqs and pools are sched-RCU protected, the
1104 * following lock operations are safe.
1105 */
1106 spin_lock_irq(&pwq->pool->lock);
1107 put_pwq(pwq);
1108 spin_unlock_irq(&pwq->pool->lock);
1109 }
1110}
1111
112202d9 1112static void pwq_activate_delayed_work(struct work_struct *work)
bf4ede01 1113{
112202d9 1114 struct pool_workqueue *pwq = get_work_pwq(work);
bf4ede01
TH
1115
1116 trace_workqueue_activate_work(work);
82607adc
TH
1117 if (list_empty(&pwq->pool->worklist))
1118 pwq->pool->watchdog_ts = jiffies;
112202d9 1119 move_linked_works(work, &pwq->pool->worklist, NULL);
bf4ede01 1120 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
112202d9 1121 pwq->nr_active++;
bf4ede01
TH
1122}
1123
112202d9 1124static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
3aa62497 1125{
112202d9 1126 struct work_struct *work = list_first_entry(&pwq->delayed_works,
3aa62497
LJ
1127 struct work_struct, entry);
1128
112202d9 1129 pwq_activate_delayed_work(work);
3aa62497
LJ
1130}
1131
bf4ede01 1132/**
112202d9
TH
1133 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1134 * @pwq: pwq of interest
bf4ede01 1135 * @color: color of work which left the queue
bf4ede01
TH
1136 *
1137 * A work either has completed or is removed from pending queue,
112202d9 1138 * decrement nr_in_flight of its pwq and handle workqueue flushing.
bf4ede01
TH
1139 *
1140 * CONTEXT:
d565ed63 1141 * spin_lock_irq(pool->lock).
bf4ede01 1142 */
112202d9 1143static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
bf4ede01 1144{
8864b4e5 1145 /* uncolored work items don't participate in flushing or nr_active */
bf4ede01 1146 if (color == WORK_NO_COLOR)
8864b4e5 1147 goto out_put;
bf4ede01 1148
112202d9 1149 pwq->nr_in_flight[color]--;
bf4ede01 1150
112202d9
TH
1151 pwq->nr_active--;
1152 if (!list_empty(&pwq->delayed_works)) {
b3f9f405 1153 /* one down, submit a delayed one */
112202d9
TH
1154 if (pwq->nr_active < pwq->max_active)
1155 pwq_activate_first_delayed(pwq);
bf4ede01
TH
1156 }
1157
1158 /* is flush in progress and are we at the flushing tip? */
112202d9 1159 if (likely(pwq->flush_color != color))
8864b4e5 1160 goto out_put;
bf4ede01
TH
1161
1162 /* are there still in-flight works? */
112202d9 1163 if (pwq->nr_in_flight[color])
8864b4e5 1164 goto out_put;
bf4ede01 1165
112202d9
TH
1166 /* this pwq is done, clear flush_color */
1167 pwq->flush_color = -1;
bf4ede01
TH
1168
1169 /*
112202d9 1170 * If this was the last pwq, wake up the first flusher. It
bf4ede01
TH
1171 * will handle the rest.
1172 */
112202d9
TH
1173 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1174 complete(&pwq->wq->first_flusher->done);
8864b4e5
TH
1175out_put:
1176 put_pwq(pwq);
bf4ede01
TH
1177}
1178
36e227d2 1179/**
bbb68dfa 1180 * try_to_grab_pending - steal work item from worklist and disable irq
36e227d2
TH
1181 * @work: work item to steal
1182 * @is_dwork: @work is a delayed_work
bbb68dfa 1183 * @flags: place to store irq state
36e227d2
TH
1184 *
1185 * Try to grab PENDING bit of @work. This function can handle @work in any
d185af30 1186 * stable state - idle, on timer or on worklist.
36e227d2 1187 *
d185af30 1188 * Return:
36e227d2
TH
1189 * 1 if @work was pending and we successfully stole PENDING
1190 * 0 if @work was idle and we claimed PENDING
1191 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
bbb68dfa
TH
1192 * -ENOENT if someone else is canceling @work, this state may persist
1193 * for arbitrarily long
36e227d2 1194 *
d185af30 1195 * Note:
bbb68dfa 1196 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
e0aecdd8
TH
1197 * interrupted while holding PENDING and @work off queue, irq must be
1198 * disabled on entry. This, combined with delayed_work->timer being
1199 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
bbb68dfa
TH
1200 *
1201 * On successful return, >= 0, irq is disabled and the caller is
1202 * responsible for releasing it using local_irq_restore(*@flags).
1203 *
e0aecdd8 1204 * This function is safe to call from any context including IRQ handler.
bf4ede01 1205 */
bbb68dfa
TH
1206static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1207 unsigned long *flags)
bf4ede01 1208{
d565ed63 1209 struct worker_pool *pool;
112202d9 1210 struct pool_workqueue *pwq;
bf4ede01 1211
bbb68dfa
TH
1212 local_irq_save(*flags);
1213
36e227d2
TH
1214 /* try to steal the timer if it exists */
1215 if (is_dwork) {
1216 struct delayed_work *dwork = to_delayed_work(work);
1217
e0aecdd8
TH
1218 /*
1219 * dwork->timer is irqsafe. If del_timer() fails, it's
1220 * guaranteed that the timer is not queued anywhere and not
1221 * running on the local CPU.
1222 */
36e227d2
TH
1223 if (likely(del_timer(&dwork->timer)))
1224 return 1;
1225 }
1226
1227 /* try to claim PENDING the normal way */
bf4ede01
TH
1228 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1229 return 0;
1230
1231 /*
1232 * The queueing is in progress, or it is already queued. Try to
1233 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1234 */
d565ed63
TH
1235 pool = get_work_pool(work);
1236 if (!pool)
bbb68dfa 1237 goto fail;
bf4ede01 1238
d565ed63 1239 spin_lock(&pool->lock);
0b3dae68 1240 /*
112202d9
TH
1241 * work->data is guaranteed to point to pwq only while the work
1242 * item is queued on pwq->wq, and both updating work->data to point
1243 * to pwq on queueing and to pool on dequeueing are done under
1244 * pwq->pool->lock. This in turn guarantees that, if work->data
1245 * points to pwq which is associated with a locked pool, the work
0b3dae68
LJ
1246 * item is currently queued on that pool.
1247 */
112202d9
TH
1248 pwq = get_work_pwq(work);
1249 if (pwq && pwq->pool == pool) {
16062836
TH
1250 debug_work_deactivate(work);
1251
1252 /*
1253 * A delayed work item cannot be grabbed directly because
1254 * it might have linked NO_COLOR work items which, if left
112202d9 1255 * on the delayed_list, will confuse pwq->nr_active
16062836
TH
1256 * management later on and cause stall. Make sure the work
1257 * item is activated before grabbing.
1258 */
1259 if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
112202d9 1260 pwq_activate_delayed_work(work);
16062836
TH
1261
1262 list_del_init(&work->entry);
9c34a704 1263 pwq_dec_nr_in_flight(pwq, get_work_color(work));
16062836 1264
112202d9 1265 /* work->data points to pwq iff queued, point to pool */
16062836
TH
1266 set_work_pool_and_keep_pending(work, pool->id);
1267
1268 spin_unlock(&pool->lock);
1269 return 1;
bf4ede01 1270 }
d565ed63 1271 spin_unlock(&pool->lock);
bbb68dfa
TH
1272fail:
1273 local_irq_restore(*flags);
1274 if (work_is_canceling(work))
1275 return -ENOENT;
1276 cpu_relax();
36e227d2 1277 return -EAGAIN;
bf4ede01
TH
1278}
1279
4690c4ab 1280/**
706026c2 1281 * insert_work - insert a work into a pool
112202d9 1282 * @pwq: pwq @work belongs to
4690c4ab
TH
1283 * @work: work to insert
1284 * @head: insertion point
1285 * @extra_flags: extra WORK_STRUCT_* flags to set
1286 *
112202d9 1287 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
706026c2 1288 * work_struct flags.
4690c4ab
TH
1289 *
1290 * CONTEXT:
d565ed63 1291 * spin_lock_irq(pool->lock).
4690c4ab 1292 */
112202d9
TH
1293static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1294 struct list_head *head, unsigned int extra_flags)
b89deed3 1295{
112202d9 1296 struct worker_pool *pool = pwq->pool;
e22bee78 1297
4690c4ab 1298 /* we own @work, set data and link */
112202d9 1299 set_work_pwq(work, pwq, extra_flags);
1a4d9b0a 1300 list_add_tail(&work->entry, head);
8864b4e5 1301 get_pwq(pwq);
e22bee78
TH
1302
1303 /*
c5aa87bb
TH
1304 * Ensure either wq_worker_sleeping() sees the above
1305 * list_add_tail() or we see zero nr_running to avoid workers lying
1306 * around lazily while there are works to be processed.
e22bee78
TH
1307 */
1308 smp_mb();
1309
63d95a91
TH
1310 if (__need_more_worker(pool))
1311 wake_up_worker(pool);
b89deed3
ON
1312}
1313
c8efcc25
TH
1314/*
1315 * Test whether @work is being queued from another work executing on the
8d03ecfe 1316 * same workqueue.
c8efcc25
TH
1317 */
1318static bool is_chained_work(struct workqueue_struct *wq)
1319{
8d03ecfe
TH
1320 struct worker *worker;
1321
1322 worker = current_wq_worker();
1323 /*
1324 * Return %true iff I'm a worker execuing a work item on @wq. If
1325 * I'm @worker, it's safe to dereference it without locking.
1326 */
112202d9 1327 return worker && worker->current_pwq->wq == wq;
c8efcc25
TH
1328}
1329
ef557180
MG
1330/*
1331 * When queueing an unbound work item to a wq, prefer local CPU if allowed
1332 * by wq_unbound_cpumask. Otherwise, round robin among the allowed ones to
1333 * avoid perturbing sensitive tasks.
1334 */
1335static int wq_select_unbound_cpu(int cpu)
1336{
f303fccb 1337 static bool printed_dbg_warning;
ef557180
MG
1338 int new_cpu;
1339
f303fccb
TH
1340 if (likely(!wq_debug_force_rr_cpu)) {
1341 if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
1342 return cpu;
1343 } else if (!printed_dbg_warning) {
1344 pr_warn("workqueue: round-robin CPU selection forced, expect performance impact\n");
1345 printed_dbg_warning = true;
1346 }
1347
ef557180
MG
1348 if (cpumask_empty(wq_unbound_cpumask))
1349 return cpu;
1350
1351 new_cpu = __this_cpu_read(wq_rr_cpu_last);
1352 new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
1353 if (unlikely(new_cpu >= nr_cpu_ids)) {
1354 new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
1355 if (unlikely(new_cpu >= nr_cpu_ids))
1356 return cpu;
1357 }
1358 __this_cpu_write(wq_rr_cpu_last, new_cpu);
1359
1360 return new_cpu;
1361}
1362
d84ff051 1363static void __queue_work(int cpu, struct workqueue_struct *wq,
1da177e4
LT
1364 struct work_struct *work)
1365{
112202d9 1366 struct pool_workqueue *pwq;
c9178087 1367 struct worker_pool *last_pool;
1e19ffc6 1368 struct list_head *worklist;
8a2e8e5d 1369 unsigned int work_flags;
b75cac93 1370 unsigned int req_cpu = cpu;
8930caba
TH
1371
1372 /*
1373 * While a work item is PENDING && off queue, a task trying to
1374 * steal the PENDING will busy-loop waiting for it to either get
1375 * queued or lose PENDING. Grabbing PENDING and queueing should
1376 * happen with IRQ disabled.
1377 */
1378 WARN_ON_ONCE(!irqs_disabled());
1da177e4 1379
dc186ad7 1380 debug_work_activate(work);
1e19ffc6 1381
9ef28a73 1382 /* if draining, only works from the same workqueue are allowed */
618b01eb 1383 if (unlikely(wq->flags & __WQ_DRAINING) &&
c8efcc25 1384 WARN_ON_ONCE(!is_chained_work(wq)))
e41e704b 1385 return;
9e8cd2f5 1386retry:
df2d5ae4 1387 if (req_cpu == WORK_CPU_UNBOUND)
ef557180 1388 cpu = wq_select_unbound_cpu(raw_smp_processor_id());
df2d5ae4 1389
c9178087 1390 /* pwq which will be used unless @work is executing elsewhere */
df2d5ae4 1391 if (!(wq->flags & WQ_UNBOUND))
7fb98ea7 1392 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
df2d5ae4
TH
1393 else
1394 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
dbf2576e 1395
c9178087
TH
1396 /*
1397 * If @work was previously on a different pool, it might still be
1398 * running there, in which case the work needs to be queued on that
1399 * pool to guarantee non-reentrancy.
1400 */
1401 last_pool = get_work_pool(work);
1402 if (last_pool && last_pool != pwq->pool) {
1403 struct worker *worker;
18aa9eff 1404
c9178087 1405 spin_lock(&last_pool->lock);
18aa9eff 1406
c9178087 1407 worker = find_worker_executing_work(last_pool, work);
18aa9eff 1408
c9178087
TH
1409 if (worker && worker->current_pwq->wq == wq) {
1410 pwq = worker->current_pwq;
8930caba 1411 } else {
c9178087
TH
1412 /* meh... not running there, queue here */
1413 spin_unlock(&last_pool->lock);
112202d9 1414 spin_lock(&pwq->pool->lock);
8930caba 1415 }
f3421797 1416 } else {
112202d9 1417 spin_lock(&pwq->pool->lock);
502ca9d8
TH
1418 }
1419
9e8cd2f5
TH
1420 /*
1421 * pwq is determined and locked. For unbound pools, we could have
1422 * raced with pwq release and it could already be dead. If its
1423 * refcnt is zero, repeat pwq selection. Note that pwqs never die
df2d5ae4
TH
1424 * without another pwq replacing it in the numa_pwq_tbl or while
1425 * work items are executing on it, so the retrying is guaranteed to
9e8cd2f5
TH
1426 * make forward-progress.
1427 */
1428 if (unlikely(!pwq->refcnt)) {
1429 if (wq->flags & WQ_UNBOUND) {
1430 spin_unlock(&pwq->pool->lock);
1431 cpu_relax();
1432 goto retry;
1433 }
1434 /* oops */
1435 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1436 wq->name, cpu);
1437 }
1438
112202d9
TH
1439 /* pwq determined, queue */
1440 trace_workqueue_queue_work(req_cpu, pwq, work);
502ca9d8 1441
f5b2552b 1442 if (WARN_ON(!list_empty(&work->entry))) {
112202d9 1443 spin_unlock(&pwq->pool->lock);
f5b2552b
DC
1444 return;
1445 }
1e19ffc6 1446
112202d9
TH
1447 pwq->nr_in_flight[pwq->work_color]++;
1448 work_flags = work_color_to_flags(pwq->work_color);
1e19ffc6 1449
112202d9 1450 if (likely(pwq->nr_active < pwq->max_active)) {
cdadf009 1451 trace_workqueue_activate_work(work);
112202d9
TH
1452 pwq->nr_active++;
1453 worklist = &pwq->pool->worklist;
82607adc
TH
1454 if (list_empty(worklist))
1455 pwq->pool->watchdog_ts = jiffies;
8a2e8e5d
TH
1456 } else {
1457 work_flags |= WORK_STRUCT_DELAYED;
112202d9 1458 worklist = &pwq->delayed_works;
8a2e8e5d 1459 }
1e19ffc6 1460
112202d9 1461 insert_work(pwq, work, worklist, work_flags);
1e19ffc6 1462
112202d9 1463 spin_unlock(&pwq->pool->lock);
1da177e4
LT
1464}
1465
0fcb78c2 1466/**
c1a220e7
ZR
1467 * queue_work_on - queue work on specific cpu
1468 * @cpu: CPU number to execute work on
0fcb78c2
REB
1469 * @wq: workqueue to use
1470 * @work: work to queue
1471 *
c1a220e7
ZR
1472 * We queue the work to a specific CPU, the caller must ensure it
1473 * can't go away.
d185af30
YB
1474 *
1475 * Return: %false if @work was already on a queue, %true otherwise.
1da177e4 1476 */
d4283e93
TH
1477bool queue_work_on(int cpu, struct workqueue_struct *wq,
1478 struct work_struct *work)
1da177e4 1479{
d4283e93 1480 bool ret = false;
8930caba 1481 unsigned long flags;
ef1ca236 1482
8930caba 1483 local_irq_save(flags);
c1a220e7 1484
22df02bb 1485 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
4690c4ab 1486 __queue_work(cpu, wq, work);
d4283e93 1487 ret = true;
c1a220e7 1488 }
ef1ca236 1489
8930caba 1490 local_irq_restore(flags);
1da177e4
LT
1491 return ret;
1492}
ad7b1f84 1493EXPORT_SYMBOL(queue_work_on);
1da177e4 1494
d8e794df 1495void delayed_work_timer_fn(unsigned long __data)
1da177e4 1496{
52bad64d 1497 struct delayed_work *dwork = (struct delayed_work *)__data;
1da177e4 1498
e0aecdd8 1499 /* should have been called from irqsafe timer with irq already off */
60c057bc 1500 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
1da177e4 1501}
1438ade5 1502EXPORT_SYMBOL(delayed_work_timer_fn);
1da177e4 1503
7beb2edf
TH
1504static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1505 struct delayed_work *dwork, unsigned long delay)
1da177e4 1506{
7beb2edf
TH
1507 struct timer_list *timer = &dwork->timer;
1508 struct work_struct *work = &dwork->work;
7beb2edf 1509
637fdbae 1510 WARN_ON_ONCE(!wq);
7beb2edf
TH
1511 WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
1512 timer->data != (unsigned long)dwork);
fc4b514f
TH
1513 WARN_ON_ONCE(timer_pending(timer));
1514 WARN_ON_ONCE(!list_empty(&work->entry));
7beb2edf 1515
8852aac2
TH
1516 /*
1517 * If @delay is 0, queue @dwork->work immediately. This is for
1518 * both optimization and correctness. The earliest @timer can
1519 * expire is on the closest next tick and delayed_work users depend
1520 * on that there's no such delay when @delay is 0.
1521 */
1522 if (!delay) {
1523 __queue_work(cpu, wq, &dwork->work);
1524 return;
1525 }
1526
60c057bc 1527 dwork->wq = wq;
1265057f 1528 dwork->cpu = cpu;
7beb2edf
TH
1529 timer->expires = jiffies + delay;
1530
041bd12e
TH
1531 if (unlikely(cpu != WORK_CPU_UNBOUND))
1532 add_timer_on(timer, cpu);
1533 else
1534 add_timer(timer);
1da177e4
LT
1535}
1536
0fcb78c2
REB
1537/**
1538 * queue_delayed_work_on - queue work on specific CPU after delay
1539 * @cpu: CPU number to execute work on
1540 * @wq: workqueue to use
af9997e4 1541 * @dwork: work to queue
0fcb78c2
REB
1542 * @delay: number of jiffies to wait before queueing
1543 *
d185af30 1544 * Return: %false if @work was already on a queue, %true otherwise. If
715f1300
TH
1545 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1546 * execution.
0fcb78c2 1547 */
d4283e93
TH
1548bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1549 struct delayed_work *dwork, unsigned long delay)
7a6bc1cd 1550{
52bad64d 1551 struct work_struct *work = &dwork->work;
d4283e93 1552 bool ret = false;
8930caba 1553 unsigned long flags;
7a6bc1cd 1554
8930caba
TH
1555 /* read the comment in __queue_work() */
1556 local_irq_save(flags);
7a6bc1cd 1557
22df02bb 1558 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
7beb2edf 1559 __queue_delayed_work(cpu, wq, dwork, delay);
d4283e93 1560 ret = true;
7a6bc1cd 1561 }
8a3e77cc 1562
8930caba 1563 local_irq_restore(flags);
7a6bc1cd
VP
1564 return ret;
1565}
ad7b1f84 1566EXPORT_SYMBOL(queue_delayed_work_on);
c7fc77f7 1567
8376fe22
TH
1568/**
1569 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1570 * @cpu: CPU number to execute work on
1571 * @wq: workqueue to use
1572 * @dwork: work to queue
1573 * @delay: number of jiffies to wait before queueing
1574 *
1575 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1576 * modify @dwork's timer so that it expires after @delay. If @delay is
1577 * zero, @work is guaranteed to be scheduled immediately regardless of its
1578 * current state.
1579 *
d185af30 1580 * Return: %false if @dwork was idle and queued, %true if @dwork was
8376fe22
TH
1581 * pending and its timer was modified.
1582 *
e0aecdd8 1583 * This function is safe to call from any context including IRQ handler.
8376fe22
TH
1584 * See try_to_grab_pending() for details.
1585 */
1586bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1587 struct delayed_work *dwork, unsigned long delay)
1588{
1589 unsigned long flags;
1590 int ret;
c7fc77f7 1591
8376fe22
TH
1592 do {
1593 ret = try_to_grab_pending(&dwork->work, true, &flags);
1594 } while (unlikely(ret == -EAGAIN));
63bc0362 1595
8376fe22
TH
1596 if (likely(ret >= 0)) {
1597 __queue_delayed_work(cpu, wq, dwork, delay);
1598 local_irq_restore(flags);
7a6bc1cd 1599 }
8376fe22
TH
1600
1601 /* -ENOENT from try_to_grab_pending() becomes %true */
7a6bc1cd
VP
1602 return ret;
1603}
8376fe22
TH
1604EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1605
c8e55f36
TH
1606/**
1607 * worker_enter_idle - enter idle state
1608 * @worker: worker which is entering idle state
1609 *
1610 * @worker is entering idle state. Update stats and idle timer if
1611 * necessary.
1612 *
1613 * LOCKING:
d565ed63 1614 * spin_lock_irq(pool->lock).
c8e55f36
TH
1615 */
1616static void worker_enter_idle(struct worker *worker)
1da177e4 1617{
bd7bdd43 1618 struct worker_pool *pool = worker->pool;
c8e55f36 1619
6183c009
TH
1620 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1621 WARN_ON_ONCE(!list_empty(&worker->entry) &&
1622 (worker->hentry.next || worker->hentry.pprev)))
1623 return;
c8e55f36 1624
051e1850 1625 /* can't use worker_set_flags(), also called from create_worker() */
cb444766 1626 worker->flags |= WORKER_IDLE;
bd7bdd43 1627 pool->nr_idle++;
e22bee78 1628 worker->last_active = jiffies;
c8e55f36
TH
1629
1630 /* idle_list is LIFO */
bd7bdd43 1631 list_add(&worker->entry, &pool->idle_list);
db7bccf4 1632
628c78e7
TH
1633 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1634 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
cb444766 1635
544ecf31 1636 /*
706026c2 1637 * Sanity check nr_running. Because wq_unbind_fn() releases
d565ed63 1638 * pool->lock between setting %WORKER_UNBOUND and zapping
628c78e7
TH
1639 * nr_running, the warning may trigger spuriously. Check iff
1640 * unbind is not in progress.
544ecf31 1641 */
24647570 1642 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
bd7bdd43 1643 pool->nr_workers == pool->nr_idle &&
e19e397a 1644 atomic_read(&pool->nr_running));
c8e55f36
TH
1645}
1646
1647/**
1648 * worker_leave_idle - leave idle state
1649 * @worker: worker which is leaving idle state
1650 *
1651 * @worker is leaving idle state. Update stats.
1652 *
1653 * LOCKING:
d565ed63 1654 * spin_lock_irq(pool->lock).
c8e55f36
TH
1655 */
1656static void worker_leave_idle(struct worker *worker)
1657{
bd7bdd43 1658 struct worker_pool *pool = worker->pool;
c8e55f36 1659
6183c009
TH
1660 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1661 return;
d302f017 1662 worker_clr_flags(worker, WORKER_IDLE);
bd7bdd43 1663 pool->nr_idle--;
c8e55f36
TH
1664 list_del_init(&worker->entry);
1665}
1666
f7537df5 1667static struct worker *alloc_worker(int node)
c34056a3
TH
1668{
1669 struct worker *worker;
1670
f7537df5 1671 worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
c8e55f36
TH
1672 if (worker) {
1673 INIT_LIST_HEAD(&worker->entry);
affee4b2 1674 INIT_LIST_HEAD(&worker->scheduled);
da028469 1675 INIT_LIST_HEAD(&worker->node);
e22bee78
TH
1676 /* on creation a worker is in !idle && prep state */
1677 worker->flags = WORKER_PREP;
c8e55f36 1678 }
c34056a3
TH
1679 return worker;
1680}
1681
4736cbf7
LJ
1682/**
1683 * worker_attach_to_pool() - attach a worker to a pool
1684 * @worker: worker to be attached
1685 * @pool: the target pool
1686 *
1687 * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and
1688 * cpu-binding of @worker are kept coordinated with the pool across
1689 * cpu-[un]hotplugs.
1690 */
1691static void worker_attach_to_pool(struct worker *worker,
1692 struct worker_pool *pool)
1693{
1694 mutex_lock(&pool->attach_mutex);
1695
1696 /*
1697 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
1698 * online CPUs. It'll be re-applied when any of the CPUs come up.
1699 */
1700 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1701
1702 /*
1703 * The pool->attach_mutex ensures %POOL_DISASSOCIATED remains
1704 * stable across this function. See the comments above the
1705 * flag definition for details.
1706 */
1707 if (pool->flags & POOL_DISASSOCIATED)
1708 worker->flags |= WORKER_UNBOUND;
1709
1710 list_add_tail(&worker->node, &pool->workers);
1711
1712 mutex_unlock(&pool->attach_mutex);
1713}
1714
60f5a4bc
LJ
1715/**
1716 * worker_detach_from_pool() - detach a worker from its pool
1717 * @worker: worker which is attached to its pool
1718 * @pool: the pool @worker is attached to
1719 *
4736cbf7
LJ
1720 * Undo the attaching which had been done in worker_attach_to_pool(). The
1721 * caller worker shouldn't access to the pool after detached except it has
1722 * other reference to the pool.
60f5a4bc
LJ
1723 */
1724static void worker_detach_from_pool(struct worker *worker,
1725 struct worker_pool *pool)
1726{
1727 struct completion *detach_completion = NULL;
1728
92f9c5c4 1729 mutex_lock(&pool->attach_mutex);
da028469
LJ
1730 list_del(&worker->node);
1731 if (list_empty(&pool->workers))
60f5a4bc 1732 detach_completion = pool->detach_completion;
92f9c5c4 1733 mutex_unlock(&pool->attach_mutex);
60f5a4bc 1734
b62c0751
LJ
1735 /* clear leftover flags without pool->lock after it is detached */
1736 worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
1737
60f5a4bc
LJ
1738 if (detach_completion)
1739 complete(detach_completion);
1740}
1741
c34056a3
TH
1742/**
1743 * create_worker - create a new workqueue worker
63d95a91 1744 * @pool: pool the new worker will belong to
c34056a3 1745 *
051e1850 1746 * Create and start a new worker which is attached to @pool.
c34056a3
TH
1747 *
1748 * CONTEXT:
1749 * Might sleep. Does GFP_KERNEL allocations.
1750 *
d185af30 1751 * Return:
c34056a3
TH
1752 * Pointer to the newly created worker.
1753 */
bc2ae0f5 1754static struct worker *create_worker(struct worker_pool *pool)
c34056a3 1755{
c34056a3 1756 struct worker *worker = NULL;
f3421797 1757 int id = -1;
e3c916a4 1758 char id_buf[16];
c34056a3 1759
7cda9aae
LJ
1760 /* ID is needed to determine kthread name */
1761 id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL);
822d8405
TH
1762 if (id < 0)
1763 goto fail;
c34056a3 1764
f7537df5 1765 worker = alloc_worker(pool->node);
c34056a3
TH
1766 if (!worker)
1767 goto fail;
1768
bd7bdd43 1769 worker->pool = pool;
c34056a3
TH
1770 worker->id = id;
1771
29c91e99 1772 if (pool->cpu >= 0)
e3c916a4
TH
1773 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1774 pool->attrs->nice < 0 ? "H" : "");
f3421797 1775 else
e3c916a4
TH
1776 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1777
f3f90ad4 1778 worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
e3c916a4 1779 "kworker/%s", id_buf);
c34056a3
TH
1780 if (IS_ERR(worker->task))
1781 goto fail;
1782
91151228 1783 set_user_nice(worker->task, pool->attrs->nice);
25834c73 1784 kthread_bind_mask(worker->task, pool->attrs->cpumask);
91151228 1785
da028469 1786 /* successful, attach the worker to the pool */
4736cbf7 1787 worker_attach_to_pool(worker, pool);
822d8405 1788
051e1850
LJ
1789 /* start the newly created worker */
1790 spin_lock_irq(&pool->lock);
1791 worker->pool->nr_workers++;
1792 worker_enter_idle(worker);
1793 wake_up_process(worker->task);
1794 spin_unlock_irq(&pool->lock);
1795
c34056a3 1796 return worker;
822d8405 1797
c34056a3 1798fail:
9625ab17 1799 if (id >= 0)
7cda9aae 1800 ida_simple_remove(&pool->worker_ida, id);
c34056a3
TH
1801 kfree(worker);
1802 return NULL;
1803}
1804
c34056a3
TH
1805/**
1806 * destroy_worker - destroy a workqueue worker
1807 * @worker: worker to be destroyed
1808 *
73eb7fe7
LJ
1809 * Destroy @worker and adjust @pool stats accordingly. The worker should
1810 * be idle.
c8e55f36
TH
1811 *
1812 * CONTEXT:
60f5a4bc 1813 * spin_lock_irq(pool->lock).
c34056a3
TH
1814 */
1815static void destroy_worker(struct worker *worker)
1816{
bd7bdd43 1817 struct worker_pool *pool = worker->pool;
c34056a3 1818
cd549687
TH
1819 lockdep_assert_held(&pool->lock);
1820
c34056a3 1821 /* sanity check frenzy */
6183c009 1822 if (WARN_ON(worker->current_work) ||
73eb7fe7
LJ
1823 WARN_ON(!list_empty(&worker->scheduled)) ||
1824 WARN_ON(!(worker->flags & WORKER_IDLE)))
6183c009 1825 return;
c34056a3 1826
73eb7fe7
LJ
1827 pool->nr_workers--;
1828 pool->nr_idle--;
5bdfff96 1829
c8e55f36 1830 list_del_init(&worker->entry);
cb444766 1831 worker->flags |= WORKER_DIE;
60f5a4bc 1832 wake_up_process(worker->task);
c34056a3
TH
1833}
1834
63d95a91 1835static void idle_worker_timeout(unsigned long __pool)
e22bee78 1836{
63d95a91 1837 struct worker_pool *pool = (void *)__pool;
e22bee78 1838
d565ed63 1839 spin_lock_irq(&pool->lock);
e22bee78 1840
3347fc9f 1841 while (too_many_workers(pool)) {
e22bee78
TH
1842 struct worker *worker;
1843 unsigned long expires;
1844
1845 /* idle_list is kept in LIFO order, check the last one */
63d95a91 1846 worker = list_entry(pool->idle_list.prev, struct worker, entry);
e22bee78
TH
1847 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1848
3347fc9f 1849 if (time_before(jiffies, expires)) {
63d95a91 1850 mod_timer(&pool->idle_timer, expires);
3347fc9f 1851 break;
d5abe669 1852 }
3347fc9f
LJ
1853
1854 destroy_worker(worker);
e22bee78
TH
1855 }
1856
d565ed63 1857 spin_unlock_irq(&pool->lock);
e22bee78 1858}
d5abe669 1859
493a1724 1860static void send_mayday(struct work_struct *work)
e22bee78 1861{
112202d9
TH
1862 struct pool_workqueue *pwq = get_work_pwq(work);
1863 struct workqueue_struct *wq = pwq->wq;
493a1724 1864
2e109a28 1865 lockdep_assert_held(&wq_mayday_lock);
e22bee78 1866
493008a8 1867 if (!wq->rescuer)
493a1724 1868 return;
e22bee78
TH
1869
1870 /* mayday mayday mayday */
493a1724 1871 if (list_empty(&pwq->mayday_node)) {
77668c8b
LJ
1872 /*
1873 * If @pwq is for an unbound wq, its base ref may be put at
1874 * any time due to an attribute change. Pin @pwq until the
1875 * rescuer is done with it.
1876 */
1877 get_pwq(pwq);
493a1724 1878 list_add_tail(&pwq->mayday_node, &wq->maydays);
e22bee78 1879 wake_up_process(wq->rescuer->task);
493a1724 1880 }
e22bee78
TH
1881}
1882
706026c2 1883static void pool_mayday_timeout(unsigned long __pool)
e22bee78 1884{
63d95a91 1885 struct worker_pool *pool = (void *)__pool;
e22bee78
TH
1886 struct work_struct *work;
1887
b2d82909
TH
1888 spin_lock_irq(&pool->lock);
1889 spin_lock(&wq_mayday_lock); /* for wq->maydays */
e22bee78 1890
63d95a91 1891 if (need_to_create_worker(pool)) {
e22bee78
TH
1892 /*
1893 * We've been trying to create a new worker but
1894 * haven't been successful. We might be hitting an
1895 * allocation deadlock. Send distress signals to
1896 * rescuers.
1897 */
63d95a91 1898 list_for_each_entry(work, &pool->worklist, entry)
e22bee78 1899 send_mayday(work);
1da177e4 1900 }
e22bee78 1901
b2d82909
TH
1902 spin_unlock(&wq_mayday_lock);
1903 spin_unlock_irq(&pool->lock);
e22bee78 1904
63d95a91 1905 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1da177e4
LT
1906}
1907
e22bee78
TH
1908/**
1909 * maybe_create_worker - create a new worker if necessary
63d95a91 1910 * @pool: pool to create a new worker for
e22bee78 1911 *
63d95a91 1912 * Create a new worker for @pool if necessary. @pool is guaranteed to
e22bee78
TH
1913 * have at least one idle worker on return from this function. If
1914 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
63d95a91 1915 * sent to all rescuers with works scheduled on @pool to resolve
e22bee78
TH
1916 * possible allocation deadlock.
1917 *
c5aa87bb
TH
1918 * On return, need_to_create_worker() is guaranteed to be %false and
1919 * may_start_working() %true.
e22bee78
TH
1920 *
1921 * LOCKING:
d565ed63 1922 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
1923 * multiple times. Does GFP_KERNEL allocations. Called only from
1924 * manager.
e22bee78 1925 */
29187a9e 1926static void maybe_create_worker(struct worker_pool *pool)
d565ed63
TH
1927__releases(&pool->lock)
1928__acquires(&pool->lock)
1da177e4 1929{
e22bee78 1930restart:
d565ed63 1931 spin_unlock_irq(&pool->lock);
9f9c2364 1932
e22bee78 1933 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
63d95a91 1934 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
e22bee78
TH
1935
1936 while (true) {
051e1850 1937 if (create_worker(pool) || !need_to_create_worker(pool))
e22bee78 1938 break;
1da177e4 1939
e212f361 1940 schedule_timeout_interruptible(CREATE_COOLDOWN);
9f9c2364 1941
63d95a91 1942 if (!need_to_create_worker(pool))
e22bee78
TH
1943 break;
1944 }
1945
63d95a91 1946 del_timer_sync(&pool->mayday_timer);
d565ed63 1947 spin_lock_irq(&pool->lock);
051e1850
LJ
1948 /*
1949 * This is necessary even after a new worker was just successfully
1950 * created as @pool->lock was dropped and the new worker might have
1951 * already become busy.
1952 */
63d95a91 1953 if (need_to_create_worker(pool))
e22bee78 1954 goto restart;
e22bee78
TH
1955}
1956
73f53c4a 1957/**
e22bee78
TH
1958 * manage_workers - manage worker pool
1959 * @worker: self
73f53c4a 1960 *
706026c2 1961 * Assume the manager role and manage the worker pool @worker belongs
e22bee78 1962 * to. At any given time, there can be only zero or one manager per
706026c2 1963 * pool. The exclusion is handled automatically by this function.
e22bee78
TH
1964 *
1965 * The caller can safely start processing works on false return. On
1966 * true return, it's guaranteed that need_to_create_worker() is false
1967 * and may_start_working() is true.
73f53c4a
TH
1968 *
1969 * CONTEXT:
d565ed63 1970 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
1971 * multiple times. Does GFP_KERNEL allocations.
1972 *
d185af30 1973 * Return:
29187a9e
TH
1974 * %false if the pool doesn't need management and the caller can safely
1975 * start processing works, %true if management function was performed and
1976 * the conditions that the caller verified before calling the function may
1977 * no longer be true.
73f53c4a 1978 */
e22bee78 1979static bool manage_workers(struct worker *worker)
73f53c4a 1980{
63d95a91 1981 struct worker_pool *pool = worker->pool;
73f53c4a 1982
bc3a1afc 1983 /*
bc3a1afc
TH
1984 * Anyone who successfully grabs manager_arb wins the arbitration
1985 * and becomes the manager. mutex_trylock() on pool->manager_arb
1986 * failure while holding pool->lock reliably indicates that someone
1987 * else is managing the pool and the worker which failed trylock
1988 * can proceed to executing work items. This means that anyone
1989 * grabbing manager_arb is responsible for actually performing
1990 * manager duties. If manager_arb is grabbed and released without
1991 * actual management, the pool may stall indefinitely.
bc3a1afc 1992 */
34a06bd6 1993 if (!mutex_trylock(&pool->manager_arb))
29187a9e 1994 return false;
2607d7a6 1995 pool->manager = worker;
1e19ffc6 1996
29187a9e 1997 maybe_create_worker(pool);
e22bee78 1998
2607d7a6 1999 pool->manager = NULL;
34a06bd6 2000 mutex_unlock(&pool->manager_arb);
29187a9e 2001 return true;
73f53c4a
TH
2002}
2003
a62428c0
TH
2004/**
2005 * process_one_work - process single work
c34056a3 2006 * @worker: self
a62428c0
TH
2007 * @work: work to process
2008 *
2009 * Process @work. This function contains all the logics necessary to
2010 * process a single work including synchronization against and
2011 * interaction with other workers on the same cpu, queueing and
2012 * flushing. As long as context requirement is met, any worker can
2013 * call this function to process a work.
2014 *
2015 * CONTEXT:
d565ed63 2016 * spin_lock_irq(pool->lock) which is released and regrabbed.
a62428c0 2017 */
c34056a3 2018static void process_one_work(struct worker *worker, struct work_struct *work)
d565ed63
TH
2019__releases(&pool->lock)
2020__acquires(&pool->lock)
a62428c0 2021{
112202d9 2022 struct pool_workqueue *pwq = get_work_pwq(work);
bd7bdd43 2023 struct worker_pool *pool = worker->pool;
112202d9 2024 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
73f53c4a 2025 int work_color;
7e11629d 2026 struct worker *collision;
a62428c0
TH
2027#ifdef CONFIG_LOCKDEP
2028 /*
2029 * It is permissible to free the struct work_struct from
2030 * inside the function that is called from it, this we need to
2031 * take into account for lockdep too. To avoid bogus "held
2032 * lock freed" warnings as well as problems when looking into
2033 * work->lockdep_map, make a copy and use that here.
2034 */
4d82a1de
PZ
2035 struct lockdep_map lockdep_map;
2036
2037 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
a62428c0 2038#endif
807407c0 2039 /* ensure we're on the correct CPU */
85327af6 2040 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
ec22ca5e 2041 raw_smp_processor_id() != pool->cpu);
25511a47 2042
7e11629d
TH
2043 /*
2044 * A single work shouldn't be executed concurrently by
2045 * multiple workers on a single cpu. Check whether anyone is
2046 * already processing the work. If so, defer the work to the
2047 * currently executing one.
2048 */
c9e7cf27 2049 collision = find_worker_executing_work(pool, work);
7e11629d
TH
2050 if (unlikely(collision)) {
2051 move_linked_works(work, &collision->scheduled, NULL);
2052 return;
2053 }
2054
8930caba 2055 /* claim and dequeue */
a62428c0 2056 debug_work_deactivate(work);
c9e7cf27 2057 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
c34056a3 2058 worker->current_work = work;
a2c1c57b 2059 worker->current_func = work->func;
112202d9 2060 worker->current_pwq = pwq;
73f53c4a 2061 work_color = get_work_color(work);
7a22ad75 2062
a62428c0
TH
2063 list_del_init(&work->entry);
2064
fb0e7beb 2065 /*
228f1d00
LJ
2066 * CPU intensive works don't participate in concurrency management.
2067 * They're the scheduler's responsibility. This takes @worker out
2068 * of concurrency management and the next code block will chain
2069 * execution of the pending work items.
fb0e7beb
TH
2070 */
2071 if (unlikely(cpu_intensive))
228f1d00 2072 worker_set_flags(worker, WORKER_CPU_INTENSIVE);
fb0e7beb 2073
974271c4 2074 /*
a489a03e
LJ
2075 * Wake up another worker if necessary. The condition is always
2076 * false for normal per-cpu workers since nr_running would always
2077 * be >= 1 at this point. This is used to chain execution of the
2078 * pending work items for WORKER_NOT_RUNNING workers such as the
228f1d00 2079 * UNBOUND and CPU_INTENSIVE ones.
974271c4 2080 */
a489a03e 2081 if (need_more_worker(pool))
63d95a91 2082 wake_up_worker(pool);
974271c4 2083
8930caba 2084 /*
7c3eed5c 2085 * Record the last pool and clear PENDING which should be the last
d565ed63 2086 * update to @work. Also, do this inside @pool->lock so that
23657bb1
TH
2087 * PENDING and queued state changes happen together while IRQ is
2088 * disabled.
8930caba 2089 */
7c3eed5c 2090 set_work_pool_and_clear_pending(work, pool->id);
a62428c0 2091
d565ed63 2092 spin_unlock_irq(&pool->lock);
a62428c0 2093
a1d14934 2094 lock_map_acquire(&pwq->wq->lockdep_map);
a62428c0 2095 lock_map_acquire(&lockdep_map);
b09be676 2096 crossrelease_hist_start(XHLOCK_PROC);
e36c886a 2097 trace_workqueue_execute_start(work);
a2c1c57b 2098 worker->current_func(work);
e36c886a
AV
2099 /*
2100 * While we must be careful to not use "work" after this, the trace
2101 * point will only record its address.
2102 */
2103 trace_workqueue_execute_end(work);
b09be676 2104 crossrelease_hist_end(XHLOCK_PROC);
a62428c0 2105 lock_map_release(&lockdep_map);
112202d9 2106 lock_map_release(&pwq->wq->lockdep_map);
a62428c0
TH
2107
2108 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
044c782c
VI
2109 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2110 " last function: %pf\n",
a2c1c57b
TH
2111 current->comm, preempt_count(), task_pid_nr(current),
2112 worker->current_func);
a62428c0
TH
2113 debug_show_held_locks(current);
2114 dump_stack();
2115 }
2116
b22ce278
TH
2117 /*
2118 * The following prevents a kworker from hogging CPU on !PREEMPT
2119 * kernels, where a requeueing work item waiting for something to
2120 * happen could deadlock with stop_machine as such work item could
2121 * indefinitely requeue itself while all other CPUs are trapped in
789cbbec
JL
2122 * stop_machine. At the same time, report a quiescent RCU state so
2123 * the same condition doesn't freeze RCU.
b22ce278 2124 */
3e28e377 2125 cond_resched_rcu_qs();
b22ce278 2126
d565ed63 2127 spin_lock_irq(&pool->lock);
a62428c0 2128
fb0e7beb
TH
2129 /* clear cpu intensive status */
2130 if (unlikely(cpu_intensive))
2131 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2132
a62428c0 2133 /* we're done with it, release */
42f8570f 2134 hash_del(&worker->hentry);
c34056a3 2135 worker->current_work = NULL;
a2c1c57b 2136 worker->current_func = NULL;
112202d9 2137 worker->current_pwq = NULL;
3d1cb205 2138 worker->desc_valid = false;
112202d9 2139 pwq_dec_nr_in_flight(pwq, work_color);
a62428c0
TH
2140}
2141
affee4b2
TH
2142/**
2143 * process_scheduled_works - process scheduled works
2144 * @worker: self
2145 *
2146 * Process all scheduled works. Please note that the scheduled list
2147 * may change while processing a work, so this function repeatedly
2148 * fetches a work from the top and executes it.
2149 *
2150 * CONTEXT:
d565ed63 2151 * spin_lock_irq(pool->lock) which may be released and regrabbed
affee4b2
TH
2152 * multiple times.
2153 */
2154static void process_scheduled_works(struct worker *worker)
1da177e4 2155{
affee4b2
TH
2156 while (!list_empty(&worker->scheduled)) {
2157 struct work_struct *work = list_first_entry(&worker->scheduled,
1da177e4 2158 struct work_struct, entry);
c34056a3 2159 process_one_work(worker, work);
1da177e4 2160 }
1da177e4
LT
2161}
2162
4690c4ab
TH
2163/**
2164 * worker_thread - the worker thread function
c34056a3 2165 * @__worker: self
4690c4ab 2166 *
c5aa87bb
TH
2167 * The worker thread function. All workers belong to a worker_pool -
2168 * either a per-cpu one or dynamic unbound one. These workers process all
2169 * work items regardless of their specific target workqueue. The only
2170 * exception is work items which belong to workqueues with a rescuer which
2171 * will be explained in rescuer_thread().
d185af30
YB
2172 *
2173 * Return: 0
4690c4ab 2174 */
c34056a3 2175static int worker_thread(void *__worker)
1da177e4 2176{
c34056a3 2177 struct worker *worker = __worker;
bd7bdd43 2178 struct worker_pool *pool = worker->pool;
1da177e4 2179
e22bee78
TH
2180 /* tell the scheduler that this is a workqueue worker */
2181 worker->task->flags |= PF_WQ_WORKER;
c8e55f36 2182woke_up:
d565ed63 2183 spin_lock_irq(&pool->lock);
1da177e4 2184
a9ab775b
TH
2185 /* am I supposed to die? */
2186 if (unlikely(worker->flags & WORKER_DIE)) {
d565ed63 2187 spin_unlock_irq(&pool->lock);
a9ab775b
TH
2188 WARN_ON_ONCE(!list_empty(&worker->entry));
2189 worker->task->flags &= ~PF_WQ_WORKER;
60f5a4bc
LJ
2190
2191 set_task_comm(worker->task, "kworker/dying");
7cda9aae 2192 ida_simple_remove(&pool->worker_ida, worker->id);
60f5a4bc
LJ
2193 worker_detach_from_pool(worker, pool);
2194 kfree(worker);
a9ab775b 2195 return 0;
c8e55f36 2196 }
affee4b2 2197
c8e55f36 2198 worker_leave_idle(worker);
db7bccf4 2199recheck:
e22bee78 2200 /* no more worker necessary? */
63d95a91 2201 if (!need_more_worker(pool))
e22bee78
TH
2202 goto sleep;
2203
2204 /* do we need to manage? */
63d95a91 2205 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
e22bee78
TH
2206 goto recheck;
2207
c8e55f36
TH
2208 /*
2209 * ->scheduled list can only be filled while a worker is
2210 * preparing to process a work or actually processing it.
2211 * Make sure nobody diddled with it while I was sleeping.
2212 */
6183c009 2213 WARN_ON_ONCE(!list_empty(&worker->scheduled));
c8e55f36 2214
e22bee78 2215 /*
a9ab775b
TH
2216 * Finish PREP stage. We're guaranteed to have at least one idle
2217 * worker or that someone else has already assumed the manager
2218 * role. This is where @worker starts participating in concurrency
2219 * management if applicable and concurrency management is restored
2220 * after being rebound. See rebind_workers() for details.
e22bee78 2221 */
a9ab775b 2222 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
e22bee78
TH
2223
2224 do {
c8e55f36 2225 struct work_struct *work =
bd7bdd43 2226 list_first_entry(&pool->worklist,
c8e55f36
TH
2227 struct work_struct, entry);
2228
82607adc
TH
2229 pool->watchdog_ts = jiffies;
2230
c8e55f36
TH
2231 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2232 /* optimization path, not strictly necessary */
2233 process_one_work(worker, work);
2234 if (unlikely(!list_empty(&worker->scheduled)))
affee4b2 2235 process_scheduled_works(worker);
c8e55f36
TH
2236 } else {
2237 move_linked_works(work, &worker->scheduled, NULL);
2238 process_scheduled_works(worker);
affee4b2 2239 }
63d95a91 2240 } while (keep_working(pool));
e22bee78 2241
228f1d00 2242 worker_set_flags(worker, WORKER_PREP);
d313dd85 2243sleep:
c8e55f36 2244 /*
d565ed63
TH
2245 * pool->lock is held and there's no work to process and no need to
2246 * manage, sleep. Workers are woken up only while holding
2247 * pool->lock or from local cpu, so setting the current state
2248 * before releasing pool->lock is enough to prevent losing any
2249 * event.
c8e55f36
TH
2250 */
2251 worker_enter_idle(worker);
2252 __set_current_state(TASK_INTERRUPTIBLE);
d565ed63 2253 spin_unlock_irq(&pool->lock);
c8e55f36
TH
2254 schedule();
2255 goto woke_up;
1da177e4
LT
2256}
2257
e22bee78
TH
2258/**
2259 * rescuer_thread - the rescuer thread function
111c225a 2260 * @__rescuer: self
e22bee78
TH
2261 *
2262 * Workqueue rescuer thread function. There's one rescuer for each
493008a8 2263 * workqueue which has WQ_MEM_RECLAIM set.
e22bee78 2264 *
706026c2 2265 * Regular work processing on a pool may block trying to create a new
e22bee78
TH
2266 * worker which uses GFP_KERNEL allocation which has slight chance of
2267 * developing into deadlock if some works currently on the same queue
2268 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2269 * the problem rescuer solves.
2270 *
706026c2
TH
2271 * When such condition is possible, the pool summons rescuers of all
2272 * workqueues which have works queued on the pool and let them process
e22bee78
TH
2273 * those works so that forward progress can be guaranteed.
2274 *
2275 * This should happen rarely.
d185af30
YB
2276 *
2277 * Return: 0
e22bee78 2278 */
111c225a 2279static int rescuer_thread(void *__rescuer)
e22bee78 2280{
111c225a
TH
2281 struct worker *rescuer = __rescuer;
2282 struct workqueue_struct *wq = rescuer->rescue_wq;
e22bee78 2283 struct list_head *scheduled = &rescuer->scheduled;
4d595b86 2284 bool should_stop;
e22bee78
TH
2285
2286 set_user_nice(current, RESCUER_NICE_LEVEL);
111c225a
TH
2287
2288 /*
2289 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
2290 * doesn't participate in concurrency management.
2291 */
2292 rescuer->task->flags |= PF_WQ_WORKER;
e22bee78
TH
2293repeat:
2294 set_current_state(TASK_INTERRUPTIBLE);
2295
4d595b86
LJ
2296 /*
2297 * By the time the rescuer is requested to stop, the workqueue
2298 * shouldn't have any work pending, but @wq->maydays may still have
2299 * pwq(s) queued. This can happen by non-rescuer workers consuming
2300 * all the work items before the rescuer got to them. Go through
2301 * @wq->maydays processing before acting on should_stop so that the
2302 * list is always empty on exit.
2303 */
2304 should_stop = kthread_should_stop();
e22bee78 2305
493a1724 2306 /* see whether any pwq is asking for help */
2e109a28 2307 spin_lock_irq(&wq_mayday_lock);
493a1724
TH
2308
2309 while (!list_empty(&wq->maydays)) {
2310 struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2311 struct pool_workqueue, mayday_node);
112202d9 2312 struct worker_pool *pool = pwq->pool;
e22bee78 2313 struct work_struct *work, *n;
82607adc 2314 bool first = true;
e22bee78
TH
2315
2316 __set_current_state(TASK_RUNNING);
493a1724
TH
2317 list_del_init(&pwq->mayday_node);
2318
2e109a28 2319 spin_unlock_irq(&wq_mayday_lock);
e22bee78 2320
51697d39
LJ
2321 worker_attach_to_pool(rescuer, pool);
2322
2323 spin_lock_irq(&pool->lock);
b3104104 2324 rescuer->pool = pool;
e22bee78
TH
2325
2326 /*
2327 * Slurp in all works issued via this workqueue and
2328 * process'em.
2329 */
0479c8c5 2330 WARN_ON_ONCE(!list_empty(scheduled));
82607adc
TH
2331 list_for_each_entry_safe(work, n, &pool->worklist, entry) {
2332 if (get_work_pwq(work) == pwq) {
2333 if (first)
2334 pool->watchdog_ts = jiffies;
e22bee78 2335 move_linked_works(work, scheduled, &n);
82607adc
TH
2336 }
2337 first = false;
2338 }
e22bee78 2339
008847f6
N
2340 if (!list_empty(scheduled)) {
2341 process_scheduled_works(rescuer);
2342
2343 /*
2344 * The above execution of rescued work items could
2345 * have created more to rescue through
2346 * pwq_activate_first_delayed() or chained
2347 * queueing. Let's put @pwq back on mayday list so
2348 * that such back-to-back work items, which may be
2349 * being used to relieve memory pressure, don't
2350 * incur MAYDAY_INTERVAL delay inbetween.
2351 */
2352 if (need_to_create_worker(pool)) {
2353 spin_lock(&wq_mayday_lock);
2354 get_pwq(pwq);
2355 list_move_tail(&pwq->mayday_node, &wq->maydays);
2356 spin_unlock(&wq_mayday_lock);
2357 }
2358 }
7576958a 2359
77668c8b
LJ
2360 /*
2361 * Put the reference grabbed by send_mayday(). @pool won't
13b1d625 2362 * go away while we're still attached to it.
77668c8b
LJ
2363 */
2364 put_pwq(pwq);
2365
7576958a 2366 /*
d8ca83e6 2367 * Leave this pool. If need_more_worker() is %true, notify a
7576958a
TH
2368 * regular worker; otherwise, we end up with 0 concurrency
2369 * and stalling the execution.
2370 */
d8ca83e6 2371 if (need_more_worker(pool))
63d95a91 2372 wake_up_worker(pool);
7576958a 2373
b3104104 2374 rescuer->pool = NULL;
13b1d625
LJ
2375 spin_unlock_irq(&pool->lock);
2376
2377 worker_detach_from_pool(rescuer, pool);
2378
2379 spin_lock_irq(&wq_mayday_lock);
e22bee78
TH
2380 }
2381
2e109a28 2382 spin_unlock_irq(&wq_mayday_lock);
493a1724 2383
4d595b86
LJ
2384 if (should_stop) {
2385 __set_current_state(TASK_RUNNING);
2386 rescuer->task->flags &= ~PF_WQ_WORKER;
2387 return 0;
2388 }
2389
111c225a
TH
2390 /* rescuers should never participate in concurrency management */
2391 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
e22bee78
TH
2392 schedule();
2393 goto repeat;
1da177e4
LT
2394}
2395
fca839c0
TH
2396/**
2397 * check_flush_dependency - check for flush dependency sanity
2398 * @target_wq: workqueue being flushed
2399 * @target_work: work item being flushed (NULL for workqueue flushes)
2400 *
2401 * %current is trying to flush the whole @target_wq or @target_work on it.
2402 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
2403 * reclaiming memory or running on a workqueue which doesn't have
2404 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
2405 * a deadlock.
2406 */
2407static void check_flush_dependency(struct workqueue_struct *target_wq,
2408 struct work_struct *target_work)
2409{
2410 work_func_t target_func = target_work ? target_work->func : NULL;
2411 struct worker *worker;
2412
2413 if (target_wq->flags & WQ_MEM_RECLAIM)
2414 return;
2415
2416 worker = current_wq_worker();
2417
2418 WARN_ONCE(current->flags & PF_MEMALLOC,
2419 "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%pf",
2420 current->pid, current->comm, target_wq->name, target_func);
23d11a58
TH
2421 WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
2422 (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
fca839c0
TH
2423 "workqueue: WQ_MEM_RECLAIM %s:%pf is flushing !WQ_MEM_RECLAIM %s:%pf",
2424 worker->current_pwq->wq->name, worker->current_func,
2425 target_wq->name, target_func);
2426}
2427
fc2e4d70
ON
2428struct wq_barrier {
2429 struct work_struct work;
2430 struct completion done;
2607d7a6 2431 struct task_struct *task; /* purely informational */
fc2e4d70
ON
2432};
2433
2434static void wq_barrier_func(struct work_struct *work)
2435{
2436 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2437 complete(&barr->done);
2438}
2439
4690c4ab
TH
2440/**
2441 * insert_wq_barrier - insert a barrier work
112202d9 2442 * @pwq: pwq to insert barrier into
4690c4ab 2443 * @barr: wq_barrier to insert
affee4b2
TH
2444 * @target: target work to attach @barr to
2445 * @worker: worker currently executing @target, NULL if @target is not executing
4690c4ab 2446 *
affee4b2
TH
2447 * @barr is linked to @target such that @barr is completed only after
2448 * @target finishes execution. Please note that the ordering
2449 * guarantee is observed only with respect to @target and on the local
2450 * cpu.
2451 *
2452 * Currently, a queued barrier can't be canceled. This is because
2453 * try_to_grab_pending() can't determine whether the work to be
2454 * grabbed is at the head of the queue and thus can't clear LINKED
2455 * flag of the previous work while there must be a valid next work
2456 * after a work with LINKED flag set.
2457 *
2458 * Note that when @worker is non-NULL, @target may be modified
112202d9 2459 * underneath us, so we can't reliably determine pwq from @target.
4690c4ab
TH
2460 *
2461 * CONTEXT:
d565ed63 2462 * spin_lock_irq(pool->lock).
4690c4ab 2463 */
112202d9 2464static void insert_wq_barrier(struct pool_workqueue *pwq,
affee4b2
TH
2465 struct wq_barrier *barr,
2466 struct work_struct *target, struct worker *worker)
fc2e4d70 2467{
affee4b2
TH
2468 struct list_head *head;
2469 unsigned int linked = 0;
2470
dc186ad7 2471 /*
d565ed63 2472 * debugobject calls are safe here even with pool->lock locked
dc186ad7
TG
2473 * as we know for sure that this will not trigger any of the
2474 * checks and call back into the fixup functions where we
2475 * might deadlock.
2476 */
ca1cab37 2477 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
22df02bb 2478 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
52fa5bc5
BF
2479
2480 /*
2481 * Explicitly init the crosslock for wq_barrier::done, make its lock
2482 * key a subkey of the corresponding work. As a result we won't
2483 * build a dependency between wq_barrier::done and unrelated work.
2484 */
2485 lockdep_init_map_crosslock((struct lockdep_map *)&barr->done.map,
2486 "(complete)wq_barr::done",
2487 target->lockdep_map.key, 1);
2488 __init_completion(&barr->done);
2607d7a6 2489 barr->task = current;
83c22520 2490
affee4b2
TH
2491 /*
2492 * If @target is currently being executed, schedule the
2493 * barrier to the worker; otherwise, put it after @target.
2494 */
2495 if (worker)
2496 head = worker->scheduled.next;
2497 else {
2498 unsigned long *bits = work_data_bits(target);
2499
2500 head = target->entry.next;
2501 /* there can already be other linked works, inherit and set */
2502 linked = *bits & WORK_STRUCT_LINKED;
2503 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2504 }
2505
dc186ad7 2506 debug_work_activate(&barr->work);
112202d9 2507 insert_work(pwq, &barr->work, head,
affee4b2 2508 work_color_to_flags(WORK_NO_COLOR) | linked);
fc2e4d70
ON
2509}
2510
73f53c4a 2511/**
112202d9 2512 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
73f53c4a
TH
2513 * @wq: workqueue being flushed
2514 * @flush_color: new flush color, < 0 for no-op
2515 * @work_color: new work color, < 0 for no-op
2516 *
112202d9 2517 * Prepare pwqs for workqueue flushing.
73f53c4a 2518 *
112202d9
TH
2519 * If @flush_color is non-negative, flush_color on all pwqs should be
2520 * -1. If no pwq has in-flight commands at the specified color, all
2521 * pwq->flush_color's stay at -1 and %false is returned. If any pwq
2522 * has in flight commands, its pwq->flush_color is set to
2523 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
73f53c4a
TH
2524 * wakeup logic is armed and %true is returned.
2525 *
2526 * The caller should have initialized @wq->first_flusher prior to
2527 * calling this function with non-negative @flush_color. If
2528 * @flush_color is negative, no flush color update is done and %false
2529 * is returned.
2530 *
112202d9 2531 * If @work_color is non-negative, all pwqs should have the same
73f53c4a
TH
2532 * work_color which is previous to @work_color and all will be
2533 * advanced to @work_color.
2534 *
2535 * CONTEXT:
3c25a55d 2536 * mutex_lock(wq->mutex).
73f53c4a 2537 *
d185af30 2538 * Return:
73f53c4a
TH
2539 * %true if @flush_color >= 0 and there's something to flush. %false
2540 * otherwise.
2541 */
112202d9 2542static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
73f53c4a 2543 int flush_color, int work_color)
1da177e4 2544{
73f53c4a 2545 bool wait = false;
49e3cf44 2546 struct pool_workqueue *pwq;
1da177e4 2547
73f53c4a 2548 if (flush_color >= 0) {
6183c009 2549 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
112202d9 2550 atomic_set(&wq->nr_pwqs_to_flush, 1);
1da177e4 2551 }
2355b70f 2552
49e3cf44 2553 for_each_pwq(pwq, wq) {
112202d9 2554 struct worker_pool *pool = pwq->pool;
fc2e4d70 2555
b09f4fd3 2556 spin_lock_irq(&pool->lock);
83c22520 2557
73f53c4a 2558 if (flush_color >= 0) {
6183c009 2559 WARN_ON_ONCE(pwq->flush_color != -1);
fc2e4d70 2560
112202d9
TH
2561 if (pwq->nr_in_flight[flush_color]) {
2562 pwq->flush_color = flush_color;
2563 atomic_inc(&wq->nr_pwqs_to_flush);
73f53c4a
TH
2564 wait = true;
2565 }
2566 }
1da177e4 2567
73f53c4a 2568 if (work_color >= 0) {
6183c009 2569 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
112202d9 2570 pwq->work_color = work_color;
73f53c4a 2571 }
1da177e4 2572
b09f4fd3 2573 spin_unlock_irq(&pool->lock);
1da177e4 2574 }
2355b70f 2575
112202d9 2576 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
73f53c4a 2577 complete(&wq->first_flusher->done);
14441960 2578
73f53c4a 2579 return wait;
1da177e4
LT
2580}
2581
0fcb78c2 2582/**
1da177e4 2583 * flush_workqueue - ensure that any scheduled work has run to completion.
0fcb78c2 2584 * @wq: workqueue to flush
1da177e4 2585 *
c5aa87bb
TH
2586 * This function sleeps until all work items which were queued on entry
2587 * have finished execution, but it is not livelocked by new incoming ones.
1da177e4 2588 */
7ad5b3a5 2589void flush_workqueue(struct workqueue_struct *wq)
1da177e4 2590{
73f53c4a
TH
2591 struct wq_flusher this_flusher = {
2592 .list = LIST_HEAD_INIT(this_flusher.list),
2593 .flush_color = -1,
2594 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2595 };
2596 int next_color;
1da177e4 2597
3347fa09
TH
2598 if (WARN_ON(!wq_online))
2599 return;
2600
3295f0ef
IM
2601 lock_map_acquire(&wq->lockdep_map);
2602 lock_map_release(&wq->lockdep_map);
73f53c4a 2603
3c25a55d 2604 mutex_lock(&wq->mutex);
73f53c4a
TH
2605
2606 /*
2607 * Start-to-wait phase
2608 */
2609 next_color = work_next_color(wq->work_color);
2610
2611 if (next_color != wq->flush_color) {
2612 /*
2613 * Color space is not full. The current work_color
2614 * becomes our flush_color and work_color is advanced
2615 * by one.
2616 */
6183c009 2617 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
73f53c4a
TH
2618 this_flusher.flush_color = wq->work_color;
2619 wq->work_color = next_color;
2620
2621 if (!wq->first_flusher) {
2622 /* no flush in progress, become the first flusher */
6183c009 2623 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
73f53c4a
TH
2624
2625 wq->first_flusher = &this_flusher;
2626
112202d9 2627 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
73f53c4a
TH
2628 wq->work_color)) {
2629 /* nothing to flush, done */
2630 wq->flush_color = next_color;
2631 wq->first_flusher = NULL;
2632 goto out_unlock;
2633 }
2634 } else {
2635 /* wait in queue */
6183c009 2636 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
73f53c4a 2637 list_add_tail(&this_flusher.list, &wq->flusher_queue);
112202d9 2638 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
73f53c4a
TH
2639 }
2640 } else {
2641 /*
2642 * Oops, color space is full, wait on overflow queue.
2643 * The next flush completion will assign us
2644 * flush_color and transfer to flusher_queue.
2645 */
2646 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2647 }
2648
fca839c0
TH
2649 check_flush_dependency(wq, NULL);
2650
3c25a55d 2651 mutex_unlock(&wq->mutex);
73f53c4a
TH
2652
2653 wait_for_completion(&this_flusher.done);
2654
2655 /*
2656 * Wake-up-and-cascade phase
2657 *
2658 * First flushers are responsible for cascading flushes and
2659 * handling overflow. Non-first flushers can simply return.
2660 */
2661 if (wq->first_flusher != &this_flusher)
2662 return;
2663
3c25a55d 2664 mutex_lock(&wq->mutex);
73f53c4a 2665
4ce48b37
TH
2666 /* we might have raced, check again with mutex held */
2667 if (wq->first_flusher != &this_flusher)
2668 goto out_unlock;
2669
73f53c4a
TH
2670 wq->first_flusher = NULL;
2671
6183c009
TH
2672 WARN_ON_ONCE(!list_empty(&this_flusher.list));
2673 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
73f53c4a
TH
2674
2675 while (true) {
2676 struct wq_flusher *next, *tmp;
2677
2678 /* complete all the flushers sharing the current flush color */
2679 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2680 if (next->flush_color != wq->flush_color)
2681 break;
2682 list_del_init(&next->list);
2683 complete(&next->done);
2684 }
2685
6183c009
TH
2686 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2687 wq->flush_color != work_next_color(wq->work_color));
73f53c4a
TH
2688
2689 /* this flush_color is finished, advance by one */
2690 wq->flush_color = work_next_color(wq->flush_color);
2691
2692 /* one color has been freed, handle overflow queue */
2693 if (!list_empty(&wq->flusher_overflow)) {
2694 /*
2695 * Assign the same color to all overflowed
2696 * flushers, advance work_color and append to
2697 * flusher_queue. This is the start-to-wait
2698 * phase for these overflowed flushers.
2699 */
2700 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2701 tmp->flush_color = wq->work_color;
2702
2703 wq->work_color = work_next_color(wq->work_color);
2704
2705 list_splice_tail_init(&wq->flusher_overflow,
2706 &wq->flusher_queue);
112202d9 2707 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
73f53c4a
TH
2708 }
2709
2710 if (list_empty(&wq->flusher_queue)) {
6183c009 2711 WARN_ON_ONCE(wq->flush_color != wq->work_color);
73f53c4a
TH
2712 break;
2713 }
2714
2715 /*
2716 * Need to flush more colors. Make the next flusher
112202d9 2717 * the new first flusher and arm pwqs.
73f53c4a 2718 */
6183c009
TH
2719 WARN_ON_ONCE(wq->flush_color == wq->work_color);
2720 WARN_ON_ONCE(wq->flush_color != next->flush_color);
73f53c4a
TH
2721
2722 list_del_init(&next->list);
2723 wq->first_flusher = next;
2724
112202d9 2725 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
73f53c4a
TH
2726 break;
2727
2728 /*
2729 * Meh... this color is already done, clear first
2730 * flusher and repeat cascading.
2731 */
2732 wq->first_flusher = NULL;
2733 }
2734
2735out_unlock:
3c25a55d 2736 mutex_unlock(&wq->mutex);
1da177e4 2737}
1dadafa8 2738EXPORT_SYMBOL(flush_workqueue);
1da177e4 2739
9c5a2ba7
TH
2740/**
2741 * drain_workqueue - drain a workqueue
2742 * @wq: workqueue to drain
2743 *
2744 * Wait until the workqueue becomes empty. While draining is in progress,
2745 * only chain queueing is allowed. IOW, only currently pending or running
2746 * work items on @wq can queue further work items on it. @wq is flushed
b749b1b6 2747 * repeatedly until it becomes empty. The number of flushing is determined
9c5a2ba7
TH
2748 * by the depth of chaining and should be relatively short. Whine if it
2749 * takes too long.
2750 */
2751void drain_workqueue(struct workqueue_struct *wq)
2752{
2753 unsigned int flush_cnt = 0;
49e3cf44 2754 struct pool_workqueue *pwq;
9c5a2ba7
TH
2755
2756 /*
2757 * __queue_work() needs to test whether there are drainers, is much
2758 * hotter than drain_workqueue() and already looks at @wq->flags.
618b01eb 2759 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
9c5a2ba7 2760 */
87fc741e 2761 mutex_lock(&wq->mutex);
9c5a2ba7 2762 if (!wq->nr_drainers++)
618b01eb 2763 wq->flags |= __WQ_DRAINING;
87fc741e 2764 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
2765reflush:
2766 flush_workqueue(wq);
2767
b09f4fd3 2768 mutex_lock(&wq->mutex);
76af4d93 2769
49e3cf44 2770 for_each_pwq(pwq, wq) {
fa2563e4 2771 bool drained;
9c5a2ba7 2772
b09f4fd3 2773 spin_lock_irq(&pwq->pool->lock);
112202d9 2774 drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
b09f4fd3 2775 spin_unlock_irq(&pwq->pool->lock);
fa2563e4
TT
2776
2777 if (drained)
9c5a2ba7
TH
2778 continue;
2779
2780 if (++flush_cnt == 10 ||
2781 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
c5aa87bb 2782 pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
044c782c 2783 wq->name, flush_cnt);
76af4d93 2784
b09f4fd3 2785 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
2786 goto reflush;
2787 }
2788
9c5a2ba7 2789 if (!--wq->nr_drainers)
618b01eb 2790 wq->flags &= ~__WQ_DRAINING;
87fc741e 2791 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
2792}
2793EXPORT_SYMBOL_GPL(drain_workqueue);
2794
606a5020 2795static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
db700897 2796{
affee4b2 2797 struct worker *worker = NULL;
c9e7cf27 2798 struct worker_pool *pool;
112202d9 2799 struct pool_workqueue *pwq;
db700897
ON
2800
2801 might_sleep();
fa1b54e6
TH
2802
2803 local_irq_disable();
c9e7cf27 2804 pool = get_work_pool(work);
fa1b54e6
TH
2805 if (!pool) {
2806 local_irq_enable();
baf59022 2807 return false;
fa1b54e6 2808 }
db700897 2809
fa1b54e6 2810 spin_lock(&pool->lock);
0b3dae68 2811 /* see the comment in try_to_grab_pending() with the same code */
112202d9
TH
2812 pwq = get_work_pwq(work);
2813 if (pwq) {
2814 if (unlikely(pwq->pool != pool))
4690c4ab 2815 goto already_gone;
606a5020 2816 } else {
c9e7cf27 2817 worker = find_worker_executing_work(pool, work);
affee4b2 2818 if (!worker)
4690c4ab 2819 goto already_gone;
112202d9 2820 pwq = worker->current_pwq;
606a5020 2821 }
db700897 2822
fca839c0
TH
2823 check_flush_dependency(pwq->wq, work);
2824
112202d9 2825 insert_wq_barrier(pwq, barr, work, worker);
d565ed63 2826 spin_unlock_irq(&pool->lock);
7a22ad75 2827
e159489b 2828 /*
a1d14934
PZ
2829 * Force a lock recursion deadlock when using flush_work() inside a
2830 * single-threaded or rescuer equipped workqueue.
2831 *
2832 * For single threaded workqueues the deadlock happens when the work
2833 * is after the work issuing the flush_work(). For rescuer equipped
2834 * workqueues the deadlock happens when the rescuer stalls, blocking
2835 * forward progress.
e159489b 2836 */
a1d14934 2837 if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer) {
112202d9 2838 lock_map_acquire(&pwq->wq->lockdep_map);
a1d14934
PZ
2839 lock_map_release(&pwq->wq->lockdep_map);
2840 }
e159489b 2841
401a8d04 2842 return true;
4690c4ab 2843already_gone:
d565ed63 2844 spin_unlock_irq(&pool->lock);
401a8d04 2845 return false;
db700897 2846}
baf59022
TH
2847
2848/**
2849 * flush_work - wait for a work to finish executing the last queueing instance
2850 * @work: the work to flush
2851 *
606a5020
TH
2852 * Wait until @work has finished execution. @work is guaranteed to be idle
2853 * on return if it hasn't been requeued since flush started.
baf59022 2854 *
d185af30 2855 * Return:
baf59022
TH
2856 * %true if flush_work() waited for the work to finish execution,
2857 * %false if it was already idle.
2858 */
2859bool flush_work(struct work_struct *work)
2860{
12997d1a
BH
2861 struct wq_barrier barr;
2862
3347fa09
TH
2863 if (WARN_ON(!wq_online))
2864 return false;
2865
0976dfc1
SB
2866 lock_map_acquire(&work->lockdep_map);
2867 lock_map_release(&work->lockdep_map);
2868
12997d1a
BH
2869 if (start_flush_work(work, &barr)) {
2870 wait_for_completion(&barr.done);
2871 destroy_work_on_stack(&barr.work);
2872 return true;
2873 } else {
2874 return false;
2875 }
6e84d644 2876}
606a5020 2877EXPORT_SYMBOL_GPL(flush_work);
6e84d644 2878
8603e1b3 2879struct cwt_wait {
ac6424b9 2880 wait_queue_entry_t wait;
8603e1b3
TH
2881 struct work_struct *work;
2882};
2883
ac6424b9 2884static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
8603e1b3
TH
2885{
2886 struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
2887
2888 if (cwait->work != key)
2889 return 0;
2890 return autoremove_wake_function(wait, mode, sync, key);
2891}
2892
36e227d2 2893static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
1f1f642e 2894{
8603e1b3 2895 static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
bbb68dfa 2896 unsigned long flags;
1f1f642e
ON
2897 int ret;
2898
2899 do {
bbb68dfa
TH
2900 ret = try_to_grab_pending(work, is_dwork, &flags);
2901 /*
8603e1b3
TH
2902 * If someone else is already canceling, wait for it to
2903 * finish. flush_work() doesn't work for PREEMPT_NONE
2904 * because we may get scheduled between @work's completion
2905 * and the other canceling task resuming and clearing
2906 * CANCELING - flush_work() will return false immediately
2907 * as @work is no longer busy, try_to_grab_pending() will
2908 * return -ENOENT as @work is still being canceled and the
2909 * other canceling task won't be able to clear CANCELING as
2910 * we're hogging the CPU.
2911 *
2912 * Let's wait for completion using a waitqueue. As this
2913 * may lead to the thundering herd problem, use a custom
2914 * wake function which matches @work along with exclusive
2915 * wait and wakeup.
bbb68dfa 2916 */
8603e1b3
TH
2917 if (unlikely(ret == -ENOENT)) {
2918 struct cwt_wait cwait;
2919
2920 init_wait(&cwait.wait);
2921 cwait.wait.func = cwt_wakefn;
2922 cwait.work = work;
2923
2924 prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
2925 TASK_UNINTERRUPTIBLE);
2926 if (work_is_canceling(work))
2927 schedule();
2928 finish_wait(&cancel_waitq, &cwait.wait);
2929 }
1f1f642e
ON
2930 } while (unlikely(ret < 0));
2931
bbb68dfa
TH
2932 /* tell other tasks trying to grab @work to back off */
2933 mark_work_canceling(work);
2934 local_irq_restore(flags);
2935
3347fa09
TH
2936 /*
2937 * This allows canceling during early boot. We know that @work
2938 * isn't executing.
2939 */
2940 if (wq_online)
2941 flush_work(work);
2942
7a22ad75 2943 clear_work_data(work);
8603e1b3
TH
2944
2945 /*
2946 * Paired with prepare_to_wait() above so that either
2947 * waitqueue_active() is visible here or !work_is_canceling() is
2948 * visible there.
2949 */
2950 smp_mb();
2951 if (waitqueue_active(&cancel_waitq))
2952 __wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
2953
1f1f642e
ON
2954 return ret;
2955}
2956
6e84d644 2957/**
401a8d04
TH
2958 * cancel_work_sync - cancel a work and wait for it to finish
2959 * @work: the work to cancel
6e84d644 2960 *
401a8d04
TH
2961 * Cancel @work and wait for its execution to finish. This function
2962 * can be used even if the work re-queues itself or migrates to
2963 * another workqueue. On return from this function, @work is
2964 * guaranteed to be not pending or executing on any CPU.
1f1f642e 2965 *
401a8d04
TH
2966 * cancel_work_sync(&delayed_work->work) must not be used for
2967 * delayed_work's. Use cancel_delayed_work_sync() instead.
6e84d644 2968 *
401a8d04 2969 * The caller must ensure that the workqueue on which @work was last
6e84d644 2970 * queued can't be destroyed before this function returns.
401a8d04 2971 *
d185af30 2972 * Return:
401a8d04 2973 * %true if @work was pending, %false otherwise.
6e84d644 2974 */
401a8d04 2975bool cancel_work_sync(struct work_struct *work)
6e84d644 2976{
36e227d2 2977 return __cancel_work_timer(work, false);
b89deed3 2978}
28e53bdd 2979EXPORT_SYMBOL_GPL(cancel_work_sync);
b89deed3 2980
6e84d644 2981/**
401a8d04
TH
2982 * flush_delayed_work - wait for a dwork to finish executing the last queueing
2983 * @dwork: the delayed work to flush
6e84d644 2984 *
401a8d04
TH
2985 * Delayed timer is cancelled and the pending work is queued for
2986 * immediate execution. Like flush_work(), this function only
2987 * considers the last queueing instance of @dwork.
1f1f642e 2988 *
d185af30 2989 * Return:
401a8d04
TH
2990 * %true if flush_work() waited for the work to finish execution,
2991 * %false if it was already idle.
6e84d644 2992 */
401a8d04
TH
2993bool flush_delayed_work(struct delayed_work *dwork)
2994{
8930caba 2995 local_irq_disable();
401a8d04 2996 if (del_timer_sync(&dwork->timer))
60c057bc 2997 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
8930caba 2998 local_irq_enable();
401a8d04
TH
2999 return flush_work(&dwork->work);
3000}
3001EXPORT_SYMBOL(flush_delayed_work);
3002
f72b8792
JA
3003static bool __cancel_work(struct work_struct *work, bool is_dwork)
3004{
3005 unsigned long flags;
3006 int ret;
3007
3008 do {
3009 ret = try_to_grab_pending(work, is_dwork, &flags);
3010 } while (unlikely(ret == -EAGAIN));
3011
3012 if (unlikely(ret < 0))
3013 return false;
3014
3015 set_work_pool_and_clear_pending(work, get_work_pool_id(work));
3016 local_irq_restore(flags);
3017 return ret;
3018}
3019
3020/*
3021 * See cancel_delayed_work()
3022 */
3023bool cancel_work(struct work_struct *work)
3024{
3025 return __cancel_work(work, false);
3026}
3027
09383498 3028/**
57b30ae7
TH
3029 * cancel_delayed_work - cancel a delayed work
3030 * @dwork: delayed_work to cancel
09383498 3031 *
d185af30
YB
3032 * Kill off a pending delayed_work.
3033 *
3034 * Return: %true if @dwork was pending and canceled; %false if it wasn't
3035 * pending.
3036 *
3037 * Note:
3038 * The work callback function may still be running on return, unless
3039 * it returns %true and the work doesn't re-arm itself. Explicitly flush or
3040 * use cancel_delayed_work_sync() to wait on it.
09383498 3041 *
57b30ae7 3042 * This function is safe to call from any context including IRQ handler.
09383498 3043 */
57b30ae7 3044bool cancel_delayed_work(struct delayed_work *dwork)
09383498 3045{
f72b8792 3046 return __cancel_work(&dwork->work, true);
09383498 3047}
57b30ae7 3048EXPORT_SYMBOL(cancel_delayed_work);
09383498 3049
401a8d04
TH
3050/**
3051 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
3052 * @dwork: the delayed work cancel
3053 *
3054 * This is cancel_work_sync() for delayed works.
3055 *
d185af30 3056 * Return:
401a8d04
TH
3057 * %true if @dwork was pending, %false otherwise.
3058 */
3059bool cancel_delayed_work_sync(struct delayed_work *dwork)
6e84d644 3060{
36e227d2 3061 return __cancel_work_timer(&dwork->work, true);
6e84d644 3062}
f5a421a4 3063EXPORT_SYMBOL(cancel_delayed_work_sync);
1da177e4 3064
b6136773 3065/**
31ddd871 3066 * schedule_on_each_cpu - execute a function synchronously on each online CPU
b6136773 3067 * @func: the function to call
b6136773 3068 *
31ddd871
TH
3069 * schedule_on_each_cpu() executes @func on each online CPU using the
3070 * system workqueue and blocks until all CPUs have completed.
b6136773 3071 * schedule_on_each_cpu() is very slow.
31ddd871 3072 *
d185af30 3073 * Return:
31ddd871 3074 * 0 on success, -errno on failure.
b6136773 3075 */
65f27f38 3076int schedule_on_each_cpu(work_func_t func)
15316ba8
CL
3077{
3078 int cpu;
38f51568 3079 struct work_struct __percpu *works;
15316ba8 3080
b6136773
AM
3081 works = alloc_percpu(struct work_struct);
3082 if (!works)
15316ba8 3083 return -ENOMEM;
b6136773 3084
93981800
TH
3085 get_online_cpus();
3086
15316ba8 3087 for_each_online_cpu(cpu) {
9bfb1839
IM
3088 struct work_struct *work = per_cpu_ptr(works, cpu);
3089
3090 INIT_WORK(work, func);
b71ab8c2 3091 schedule_work_on(cpu, work);
65a64464 3092 }
93981800
TH
3093
3094 for_each_online_cpu(cpu)
3095 flush_work(per_cpu_ptr(works, cpu));
3096
95402b38 3097 put_online_cpus();
b6136773 3098 free_percpu(works);
15316ba8
CL
3099 return 0;
3100}
3101
1fa44eca
JB
3102/**
3103 * execute_in_process_context - reliably execute the routine with user context
3104 * @fn: the function to execute
1fa44eca
JB
3105 * @ew: guaranteed storage for the execute work structure (must
3106 * be available when the work executes)
3107 *
3108 * Executes the function immediately if process context is available,
3109 * otherwise schedules the function for delayed execution.
3110 *
d185af30 3111 * Return: 0 - function was executed
1fa44eca
JB
3112 * 1 - function was scheduled for execution
3113 */
65f27f38 3114int execute_in_process_context(work_func_t fn, struct execute_work *ew)
1fa44eca
JB
3115{
3116 if (!in_interrupt()) {
65f27f38 3117 fn(&ew->work);
1fa44eca
JB
3118 return 0;
3119 }
3120
65f27f38 3121 INIT_WORK(&ew->work, fn);
1fa44eca
JB
3122 schedule_work(&ew->work);
3123
3124 return 1;
3125}
3126EXPORT_SYMBOL_GPL(execute_in_process_context);
3127
6ba94429
FW
3128/**
3129 * free_workqueue_attrs - free a workqueue_attrs
3130 * @attrs: workqueue_attrs to free
226223ab 3131 *
6ba94429 3132 * Undo alloc_workqueue_attrs().
226223ab 3133 */
6ba94429 3134void free_workqueue_attrs(struct workqueue_attrs *attrs)
226223ab 3135{
6ba94429
FW
3136 if (attrs) {
3137 free_cpumask_var(attrs->cpumask);
3138 kfree(attrs);
3139 }
226223ab
TH
3140}
3141
6ba94429
FW
3142/**
3143 * alloc_workqueue_attrs - allocate a workqueue_attrs
3144 * @gfp_mask: allocation mask to use
3145 *
3146 * Allocate a new workqueue_attrs, initialize with default settings and
3147 * return it.
3148 *
3149 * Return: The allocated new workqueue_attr on success. %NULL on failure.
3150 */
3151struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
226223ab 3152{
6ba94429 3153 struct workqueue_attrs *attrs;
226223ab 3154
6ba94429
FW
3155 attrs = kzalloc(sizeof(*attrs), gfp_mask);
3156 if (!attrs)
3157 goto fail;
3158 if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
3159 goto fail;
3160
3161 cpumask_copy(attrs->cpumask, cpu_possible_mask);
3162 return attrs;
3163fail:
3164 free_workqueue_attrs(attrs);
3165 return NULL;
226223ab
TH
3166}
3167
6ba94429
FW
3168static void copy_workqueue_attrs(struct workqueue_attrs *to,
3169 const struct workqueue_attrs *from)
226223ab 3170{
6ba94429
FW
3171 to->nice = from->nice;
3172 cpumask_copy(to->cpumask, from->cpumask);
3173 /*
3174 * Unlike hash and equality test, this function doesn't ignore
3175 * ->no_numa as it is used for both pool and wq attrs. Instead,
3176 * get_unbound_pool() explicitly clears ->no_numa after copying.
3177 */
3178 to->no_numa = from->no_numa;
226223ab
TH
3179}
3180
6ba94429
FW
3181/* hash value of the content of @attr */
3182static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
226223ab 3183{
6ba94429 3184 u32 hash = 0;
226223ab 3185
6ba94429
FW
3186 hash = jhash_1word(attrs->nice, hash);
3187 hash = jhash(cpumask_bits(attrs->cpumask),
3188 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3189 return hash;
226223ab 3190}
226223ab 3191
6ba94429
FW
3192/* content equality test */
3193static bool wqattrs_equal(const struct workqueue_attrs *a,
3194 const struct workqueue_attrs *b)
226223ab 3195{
6ba94429
FW
3196 if (a->nice != b->nice)
3197 return false;
3198 if (!cpumask_equal(a->cpumask, b->cpumask))
3199 return false;
3200 return true;
226223ab
TH
3201}
3202
6ba94429
FW
3203/**
3204 * init_worker_pool - initialize a newly zalloc'd worker_pool
3205 * @pool: worker_pool to initialize
3206 *
402dd89d 3207 * Initialize a newly zalloc'd @pool. It also allocates @pool->attrs.
6ba94429
FW
3208 *
3209 * Return: 0 on success, -errno on failure. Even on failure, all fields
3210 * inside @pool proper are initialized and put_unbound_pool() can be called
3211 * on @pool safely to release it.
3212 */
3213static int init_worker_pool(struct worker_pool *pool)
226223ab 3214{
6ba94429
FW
3215 spin_lock_init(&pool->lock);
3216 pool->id = -1;
3217 pool->cpu = -1;
3218 pool->node = NUMA_NO_NODE;
3219 pool->flags |= POOL_DISASSOCIATED;
82607adc 3220 pool->watchdog_ts = jiffies;
6ba94429
FW
3221 INIT_LIST_HEAD(&pool->worklist);
3222 INIT_LIST_HEAD(&pool->idle_list);
3223 hash_init(pool->busy_hash);
226223ab 3224
c30fb26b
GT
3225 setup_deferrable_timer(&pool->idle_timer, idle_worker_timeout,
3226 (unsigned long)pool);
226223ab 3227
6ba94429
FW
3228 setup_timer(&pool->mayday_timer, pool_mayday_timeout,
3229 (unsigned long)pool);
226223ab 3230
6ba94429
FW
3231 mutex_init(&pool->manager_arb);
3232 mutex_init(&pool->attach_mutex);
3233 INIT_LIST_HEAD(&pool->workers);
226223ab 3234
6ba94429
FW
3235 ida_init(&pool->worker_ida);
3236 INIT_HLIST_NODE(&pool->hash_node);
3237 pool->refcnt = 1;
226223ab 3238
6ba94429
FW
3239 /* shouldn't fail above this point */
3240 pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
3241 if (!pool->attrs)
3242 return -ENOMEM;
3243 return 0;
226223ab
TH
3244}
3245
6ba94429 3246static void rcu_free_wq(struct rcu_head *rcu)
226223ab 3247{
6ba94429
FW
3248 struct workqueue_struct *wq =
3249 container_of(rcu, struct workqueue_struct, rcu);
226223ab 3250
6ba94429
FW
3251 if (!(wq->flags & WQ_UNBOUND))
3252 free_percpu(wq->cpu_pwqs);
226223ab 3253 else
6ba94429 3254 free_workqueue_attrs(wq->unbound_attrs);
226223ab 3255
6ba94429
FW
3256 kfree(wq->rescuer);
3257 kfree(wq);
226223ab
TH
3258}
3259
6ba94429 3260static void rcu_free_pool(struct rcu_head *rcu)
226223ab 3261{
6ba94429 3262 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
226223ab 3263
6ba94429
FW
3264 ida_destroy(&pool->worker_ida);
3265 free_workqueue_attrs(pool->attrs);
3266 kfree(pool);
226223ab
TH
3267}
3268
6ba94429
FW
3269/**
3270 * put_unbound_pool - put a worker_pool
3271 * @pool: worker_pool to put
3272 *
3273 * Put @pool. If its refcnt reaches zero, it gets destroyed in sched-RCU
3274 * safe manner. get_unbound_pool() calls this function on its failure path
3275 * and this function should be able to release pools which went through,
3276 * successfully or not, init_worker_pool().
3277 *
3278 * Should be called with wq_pool_mutex held.
3279 */
3280static void put_unbound_pool(struct worker_pool *pool)
226223ab 3281{
6ba94429
FW
3282 DECLARE_COMPLETION_ONSTACK(detach_completion);
3283 struct worker *worker;
226223ab 3284
6ba94429 3285 lockdep_assert_held(&wq_pool_mutex);
226223ab 3286
6ba94429
FW
3287 if (--pool->refcnt)
3288 return;
226223ab 3289
6ba94429
FW
3290 /* sanity checks */
3291 if (WARN_ON(!(pool->cpu < 0)) ||
3292 WARN_ON(!list_empty(&pool->worklist)))
3293 return;
226223ab 3294
6ba94429
FW
3295 /* release id and unhash */
3296 if (pool->id >= 0)
3297 idr_remove(&worker_pool_idr, pool->id);
3298 hash_del(&pool->hash_node);
d55262c4 3299
6ba94429
FW
3300 /*
3301 * Become the manager and destroy all workers. Grabbing
3302 * manager_arb prevents @pool's workers from blocking on
3303 * attach_mutex.
3304 */
3305 mutex_lock(&pool->manager_arb);
d55262c4 3306
6ba94429
FW
3307 spin_lock_irq(&pool->lock);
3308 while ((worker = first_idle_worker(pool)))
3309 destroy_worker(worker);
3310 WARN_ON(pool->nr_workers || pool->nr_idle);
3311 spin_unlock_irq(&pool->lock);
d55262c4 3312
6ba94429
FW
3313 mutex_lock(&pool->attach_mutex);
3314 if (!list_empty(&pool->workers))
3315 pool->detach_completion = &detach_completion;
3316 mutex_unlock(&pool->attach_mutex);
226223ab 3317
6ba94429
FW
3318 if (pool->detach_completion)
3319 wait_for_completion(pool->detach_completion);
226223ab 3320
6ba94429 3321 mutex_unlock(&pool->manager_arb);
226223ab 3322
6ba94429
FW
3323 /* shut down the timers */
3324 del_timer_sync(&pool->idle_timer);
3325 del_timer_sync(&pool->mayday_timer);
226223ab 3326
6ba94429
FW
3327 /* sched-RCU protected to allow dereferences from get_work_pool() */
3328 call_rcu_sched(&pool->rcu, rcu_free_pool);
226223ab
TH
3329}
3330
3331/**
6ba94429
FW
3332 * get_unbound_pool - get a worker_pool with the specified attributes
3333 * @attrs: the attributes of the worker_pool to get
226223ab 3334 *
6ba94429
FW
3335 * Obtain a worker_pool which has the same attributes as @attrs, bump the
3336 * reference count and return it. If there already is a matching
3337 * worker_pool, it will be used; otherwise, this function attempts to
3338 * create a new one.
226223ab 3339 *
6ba94429 3340 * Should be called with wq_pool_mutex held.
226223ab 3341 *
6ba94429
FW
3342 * Return: On success, a worker_pool with the same attributes as @attrs.
3343 * On failure, %NULL.
226223ab 3344 */
6ba94429 3345static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
226223ab 3346{
6ba94429
FW
3347 u32 hash = wqattrs_hash(attrs);
3348 struct worker_pool *pool;
3349 int node;
e2273584 3350 int target_node = NUMA_NO_NODE;
226223ab 3351
6ba94429 3352 lockdep_assert_held(&wq_pool_mutex);
226223ab 3353
6ba94429
FW
3354 /* do we already have a matching pool? */
3355 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3356 if (wqattrs_equal(pool->attrs, attrs)) {
3357 pool->refcnt++;
3358 return pool;
3359 }
3360 }
226223ab 3361
e2273584
XP
3362 /* if cpumask is contained inside a NUMA node, we belong to that node */
3363 if (wq_numa_enabled) {
3364 for_each_node(node) {
3365 if (cpumask_subset(attrs->cpumask,
3366 wq_numa_possible_cpumask[node])) {
3367 target_node = node;
3368 break;
3369 }
3370 }
3371 }
3372
6ba94429 3373 /* nope, create a new one */
e2273584 3374 pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node);
6ba94429
FW
3375 if (!pool || init_worker_pool(pool) < 0)
3376 goto fail;
3377
3378 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */
3379 copy_workqueue_attrs(pool->attrs, attrs);
e2273584 3380 pool->node = target_node;
226223ab
TH
3381
3382 /*
6ba94429
FW
3383 * no_numa isn't a worker_pool attribute, always clear it. See
3384 * 'struct workqueue_attrs' comments for detail.
226223ab 3385 */
6ba94429 3386 pool->attrs->no_numa = false;
226223ab 3387
6ba94429
FW
3388 if (worker_pool_assign_id(pool) < 0)
3389 goto fail;
226223ab 3390
6ba94429 3391 /* create and start the initial worker */
3347fa09 3392 if (wq_online && !create_worker(pool))
6ba94429 3393 goto fail;
226223ab 3394
6ba94429
FW
3395 /* install */
3396 hash_add(unbound_pool_hash, &pool->hash_node, hash);
226223ab 3397
6ba94429
FW
3398 return pool;
3399fail:
3400 if (pool)
3401 put_unbound_pool(pool);
3402 return NULL;
226223ab 3403}
226223ab 3404
6ba94429 3405static void rcu_free_pwq(struct rcu_head *rcu)
7a4e344c 3406{
6ba94429
FW
3407 kmem_cache_free(pwq_cache,
3408 container_of(rcu, struct pool_workqueue, rcu));
7a4e344c
TH
3409}
3410
6ba94429
FW
3411/*
3412 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3413 * and needs to be destroyed.
7a4e344c 3414 */
6ba94429 3415static void pwq_unbound_release_workfn(struct work_struct *work)
7a4e344c 3416{
6ba94429
FW
3417 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3418 unbound_release_work);
3419 struct workqueue_struct *wq = pwq->wq;
3420 struct worker_pool *pool = pwq->pool;
3421 bool is_last;
7a4e344c 3422
6ba94429
FW
3423 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3424 return;
7a4e344c 3425
6ba94429
FW
3426 mutex_lock(&wq->mutex);
3427 list_del_rcu(&pwq->pwqs_node);
3428 is_last = list_empty(&wq->pwqs);
3429 mutex_unlock(&wq->mutex);
3430
3431 mutex_lock(&wq_pool_mutex);
3432 put_unbound_pool(pool);
3433 mutex_unlock(&wq_pool_mutex);
3434
3435 call_rcu_sched(&pwq->rcu, rcu_free_pwq);
7a4e344c 3436
2865a8fb 3437 /*
6ba94429
FW
3438 * If we're the last pwq going away, @wq is already dead and no one
3439 * is gonna access it anymore. Schedule RCU free.
2865a8fb 3440 */
6ba94429
FW
3441 if (is_last)
3442 call_rcu_sched(&wq->rcu, rcu_free_wq);
29c91e99
TH
3443}
3444
7a4e344c 3445/**
6ba94429
FW
3446 * pwq_adjust_max_active - update a pwq's max_active to the current setting
3447 * @pwq: target pool_workqueue
d185af30 3448 *
6ba94429
FW
3449 * If @pwq isn't freezing, set @pwq->max_active to the associated
3450 * workqueue's saved_max_active and activate delayed work items
3451 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero.
7a4e344c 3452 */
6ba94429 3453static void pwq_adjust_max_active(struct pool_workqueue *pwq)
4e1a1f9a 3454{
6ba94429
FW
3455 struct workqueue_struct *wq = pwq->wq;
3456 bool freezable = wq->flags & WQ_FREEZABLE;
3347fa09 3457 unsigned long flags;
4e1a1f9a 3458
6ba94429
FW
3459 /* for @wq->saved_max_active */
3460 lockdep_assert_held(&wq->mutex);
4e1a1f9a 3461
6ba94429
FW
3462 /* fast exit for non-freezable wqs */
3463 if (!freezable && pwq->max_active == wq->saved_max_active)
3464 return;
7a4e344c 3465
3347fa09
TH
3466 /* this function can be called during early boot w/ irq disabled */
3467 spin_lock_irqsave(&pwq->pool->lock, flags);
29c91e99 3468
6ba94429
FW
3469 /*
3470 * During [un]freezing, the caller is responsible for ensuring that
3471 * this function is called at least once after @workqueue_freezing
3472 * is updated and visible.
3473 */
3474 if (!freezable || !workqueue_freezing) {
3475 pwq->max_active = wq->saved_max_active;
4e1a1f9a 3476
6ba94429
FW
3477 while (!list_empty(&pwq->delayed_works) &&
3478 pwq->nr_active < pwq->max_active)
3479 pwq_activate_first_delayed(pwq);
e2dca7ad 3480
6ba94429
FW
3481 /*
3482 * Need to kick a worker after thawed or an unbound wq's
3483 * max_active is bumped. It's a slow path. Do it always.
3484 */
3485 wake_up_worker(pwq->pool);
3486 } else {
3487 pwq->max_active = 0;
3488 }
e2dca7ad 3489
3347fa09 3490 spin_unlock_irqrestore(&pwq->pool->lock, flags);
e2dca7ad
TH
3491}
3492
6ba94429
FW
3493/* initialize newly alloced @pwq which is associated with @wq and @pool */
3494static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3495 struct worker_pool *pool)
29c91e99 3496{
6ba94429 3497 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
29c91e99 3498
6ba94429
FW
3499 memset(pwq, 0, sizeof(*pwq));
3500
3501 pwq->pool = pool;
3502 pwq->wq = wq;
3503 pwq->flush_color = -1;
3504 pwq->refcnt = 1;
3505 INIT_LIST_HEAD(&pwq->delayed_works);
3506 INIT_LIST_HEAD(&pwq->pwqs_node);
3507 INIT_LIST_HEAD(&pwq->mayday_node);
3508 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
29c91e99
TH
3509}
3510
6ba94429
FW
3511/* sync @pwq with the current state of its associated wq and link it */
3512static void link_pwq(struct pool_workqueue *pwq)
29c91e99 3513{
6ba94429 3514 struct workqueue_struct *wq = pwq->wq;
29c91e99 3515
6ba94429 3516 lockdep_assert_held(&wq->mutex);
a892cacc 3517
6ba94429
FW
3518 /* may be called multiple times, ignore if already linked */
3519 if (!list_empty(&pwq->pwqs_node))
29c91e99 3520 return;
29c91e99 3521
6ba94429
FW
3522 /* set the matching work_color */
3523 pwq->work_color = wq->work_color;
29c91e99 3524
6ba94429
FW
3525 /* sync max_active to the current setting */
3526 pwq_adjust_max_active(pwq);
29c91e99 3527
6ba94429
FW
3528 /* link in @pwq */
3529 list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3530}
29c91e99 3531
6ba94429
FW
3532/* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3533static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3534 const struct workqueue_attrs *attrs)
3535{
3536 struct worker_pool *pool;
3537 struct pool_workqueue *pwq;
60f5a4bc 3538
6ba94429 3539 lockdep_assert_held(&wq_pool_mutex);
60f5a4bc 3540
6ba94429
FW
3541 pool = get_unbound_pool(attrs);
3542 if (!pool)
3543 return NULL;
60f5a4bc 3544
6ba94429
FW
3545 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3546 if (!pwq) {
3547 put_unbound_pool(pool);
3548 return NULL;
3549 }
29c91e99 3550
6ba94429
FW
3551 init_pwq(pwq, wq, pool);
3552 return pwq;
3553}
29c91e99 3554
29c91e99 3555/**
30186c6f 3556 * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node
042f7df1 3557 * @attrs: the wq_attrs of the default pwq of the target workqueue
6ba94429
FW
3558 * @node: the target NUMA node
3559 * @cpu_going_down: if >= 0, the CPU to consider as offline
3560 * @cpumask: outarg, the resulting cpumask
29c91e99 3561 *
6ba94429
FW
3562 * Calculate the cpumask a workqueue with @attrs should use on @node. If
3563 * @cpu_going_down is >= 0, that cpu is considered offline during
3564 * calculation. The result is stored in @cpumask.
a892cacc 3565 *
6ba94429
FW
3566 * If NUMA affinity is not enabled, @attrs->cpumask is always used. If
3567 * enabled and @node has online CPUs requested by @attrs, the returned
3568 * cpumask is the intersection of the possible CPUs of @node and
3569 * @attrs->cpumask.
d185af30 3570 *
6ba94429
FW
3571 * The caller is responsible for ensuring that the cpumask of @node stays
3572 * stable.
3573 *
3574 * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3575 * %false if equal.
29c91e99 3576 */
6ba94429
FW
3577static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3578 int cpu_going_down, cpumask_t *cpumask)
29c91e99 3579{
6ba94429
FW
3580 if (!wq_numa_enabled || attrs->no_numa)
3581 goto use_dfl;
29c91e99 3582
6ba94429
FW
3583 /* does @node have any online CPUs @attrs wants? */
3584 cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3585 if (cpu_going_down >= 0)
3586 cpumask_clear_cpu(cpu_going_down, cpumask);
29c91e99 3587
6ba94429
FW
3588 if (cpumask_empty(cpumask))
3589 goto use_dfl;
4c16bd32
TH
3590
3591 /* yeap, return possible CPUs in @node that @attrs wants */
3592 cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
1ad0f0a7
MB
3593
3594 if (cpumask_empty(cpumask)) {
3595 pr_warn_once("WARNING: workqueue cpumask: online intersect > "
3596 "possible intersect\n");
3597 return false;
3598 }
3599
4c16bd32
TH
3600 return !cpumask_equal(cpumask, attrs->cpumask);
3601
3602use_dfl:
3603 cpumask_copy(cpumask, attrs->cpumask);
3604 return false;
3605}
3606
1befcf30
TH
3607/* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
3608static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3609 int node,
3610 struct pool_workqueue *pwq)
3611{
3612 struct pool_workqueue *old_pwq;
3613
5b95e1af 3614 lockdep_assert_held(&wq_pool_mutex);
1befcf30
TH
3615 lockdep_assert_held(&wq->mutex);
3616
3617 /* link_pwq() can handle duplicate calls */
3618 link_pwq(pwq);
3619
3620 old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3621 rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3622 return old_pwq;
3623}
3624
2d5f0764
LJ
3625/* context to store the prepared attrs & pwqs before applying */
3626struct apply_wqattrs_ctx {
3627 struct workqueue_struct *wq; /* target workqueue */
3628 struct workqueue_attrs *attrs; /* attrs to apply */
042f7df1 3629 struct list_head list; /* queued for batching commit */
2d5f0764
LJ
3630 struct pool_workqueue *dfl_pwq;
3631 struct pool_workqueue *pwq_tbl[];
3632};
3633
3634/* free the resources after success or abort */
3635static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
3636{
3637 if (ctx) {
3638 int node;
3639
3640 for_each_node(node)
3641 put_pwq_unlocked(ctx->pwq_tbl[node]);
3642 put_pwq_unlocked(ctx->dfl_pwq);
3643
3644 free_workqueue_attrs(ctx->attrs);
3645
3646 kfree(ctx);
3647 }
3648}
3649
3650/* allocate the attrs and pwqs for later installation */
3651static struct apply_wqattrs_ctx *
3652apply_wqattrs_prepare(struct workqueue_struct *wq,
3653 const struct workqueue_attrs *attrs)
9e8cd2f5 3654{
2d5f0764 3655 struct apply_wqattrs_ctx *ctx;
4c16bd32 3656 struct workqueue_attrs *new_attrs, *tmp_attrs;
2d5f0764 3657 int node;
9e8cd2f5 3658
2d5f0764 3659 lockdep_assert_held(&wq_pool_mutex);
9e8cd2f5 3660
2d5f0764
LJ
3661 ctx = kzalloc(sizeof(*ctx) + nr_node_ids * sizeof(ctx->pwq_tbl[0]),
3662 GFP_KERNEL);
8719dcea 3663
13e2e556 3664 new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
4c16bd32 3665 tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
2d5f0764
LJ
3666 if (!ctx || !new_attrs || !tmp_attrs)
3667 goto out_free;
13e2e556 3668
042f7df1
LJ
3669 /*
3670 * Calculate the attrs of the default pwq.
3671 * If the user configured cpumask doesn't overlap with the
3672 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask.
3673 */
13e2e556 3674 copy_workqueue_attrs(new_attrs, attrs);
b05a7928 3675 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask);
042f7df1
LJ
3676 if (unlikely(cpumask_empty(new_attrs->cpumask)))
3677 cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask);
13e2e556 3678
4c16bd32
TH
3679 /*
3680 * We may create multiple pwqs with differing cpumasks. Make a
3681 * copy of @new_attrs which will be modified and used to obtain
3682 * pools.
3683 */
3684 copy_workqueue_attrs(tmp_attrs, new_attrs);
3685
4c16bd32
TH
3686 /*
3687 * If something goes wrong during CPU up/down, we'll fall back to
3688 * the default pwq covering whole @attrs->cpumask. Always create
3689 * it even if we don't use it immediately.
3690 */
2d5f0764
LJ
3691 ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3692 if (!ctx->dfl_pwq)
3693 goto out_free;
4c16bd32
TH
3694
3695 for_each_node(node) {
042f7df1 3696 if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) {
2d5f0764
LJ
3697 ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
3698 if (!ctx->pwq_tbl[node])
3699 goto out_free;
4c16bd32 3700 } else {
2d5f0764
LJ
3701 ctx->dfl_pwq->refcnt++;
3702 ctx->pwq_tbl[node] = ctx->dfl_pwq;
4c16bd32
TH
3703 }
3704 }
3705
042f7df1
LJ
3706 /* save the user configured attrs and sanitize it. */
3707 copy_workqueue_attrs(new_attrs, attrs);
3708 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
2d5f0764 3709 ctx->attrs = new_attrs;
042f7df1 3710
2d5f0764
LJ
3711 ctx->wq = wq;
3712 free_workqueue_attrs(tmp_attrs);
3713 return ctx;
3714
3715out_free:
3716 free_workqueue_attrs(tmp_attrs);
3717 free_workqueue_attrs(new_attrs);
3718 apply_wqattrs_cleanup(ctx);
3719 return NULL;
3720}
3721
3722/* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
3723static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
3724{
3725 int node;
9e8cd2f5 3726
4c16bd32 3727 /* all pwqs have been created successfully, let's install'em */
2d5f0764 3728 mutex_lock(&ctx->wq->mutex);
a892cacc 3729
2d5f0764 3730 copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
4c16bd32
TH
3731
3732 /* save the previous pwq and install the new one */
f147f29e 3733 for_each_node(node)
2d5f0764
LJ
3734 ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node,
3735 ctx->pwq_tbl[node]);
4c16bd32
TH
3736
3737 /* @dfl_pwq might not have been used, ensure it's linked */
2d5f0764
LJ
3738 link_pwq(ctx->dfl_pwq);
3739 swap(ctx->wq->dfl_pwq, ctx->dfl_pwq);
f147f29e 3740
2d5f0764
LJ
3741 mutex_unlock(&ctx->wq->mutex);
3742}
9e8cd2f5 3743
a0111cf6
LJ
3744static void apply_wqattrs_lock(void)
3745{
3746 /* CPUs should stay stable across pwq creations and installations */
3747 get_online_cpus();
3748 mutex_lock(&wq_pool_mutex);
3749}
3750
3751static void apply_wqattrs_unlock(void)
3752{
3753 mutex_unlock(&wq_pool_mutex);
3754 put_online_cpus();
3755}
3756
3757static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
3758 const struct workqueue_attrs *attrs)
2d5f0764
LJ
3759{
3760 struct apply_wqattrs_ctx *ctx;
4c16bd32 3761
2d5f0764
LJ
3762 /* only unbound workqueues can change attributes */
3763 if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
3764 return -EINVAL;
13e2e556 3765
2d5f0764 3766 /* creating multiple pwqs breaks ordering guarantee */
0a94efb5
TH
3767 if (!list_empty(&wq->pwqs)) {
3768 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
3769 return -EINVAL;
3770
3771 wq->flags &= ~__WQ_ORDERED;
3772 }
2d5f0764 3773
2d5f0764 3774 ctx = apply_wqattrs_prepare(wq, attrs);
6201171e 3775 if (!ctx)
3776 return -ENOMEM;
2d5f0764
LJ
3777
3778 /* the ctx has been prepared successfully, let's commit it */
6201171e 3779 apply_wqattrs_commit(ctx);
2d5f0764
LJ
3780 apply_wqattrs_cleanup(ctx);
3781
6201171e 3782 return 0;
9e8cd2f5
TH
3783}
3784
a0111cf6
LJ
3785/**
3786 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
3787 * @wq: the target workqueue
3788 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
3789 *
3790 * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA
3791 * machines, this function maps a separate pwq to each NUMA node with
3792 * possibles CPUs in @attrs->cpumask so that work items are affine to the
3793 * NUMA node it was issued on. Older pwqs are released as in-flight work
3794 * items finish. Note that a work item which repeatedly requeues itself
3795 * back-to-back will stay on its current pwq.
3796 *
3797 * Performs GFP_KERNEL allocations.
3798 *
3799 * Return: 0 on success and -errno on failure.
3800 */
3801int apply_workqueue_attrs(struct workqueue_struct *wq,
3802 const struct workqueue_attrs *attrs)
3803{
3804 int ret;
3805
3806 apply_wqattrs_lock();
3807 ret = apply_workqueue_attrs_locked(wq, attrs);
3808 apply_wqattrs_unlock();
3809
3810 return ret;
3811}
3812
4c16bd32
TH
3813/**
3814 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
3815 * @wq: the target workqueue
3816 * @cpu: the CPU coming up or going down
3817 * @online: whether @cpu is coming up or going down
3818 *
3819 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
3820 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of
3821 * @wq accordingly.
3822 *
3823 * If NUMA affinity can't be adjusted due to memory allocation failure, it
3824 * falls back to @wq->dfl_pwq which may not be optimal but is always
3825 * correct.
3826 *
3827 * Note that when the last allowed CPU of a NUMA node goes offline for a
3828 * workqueue with a cpumask spanning multiple nodes, the workers which were
3829 * already executing the work items for the workqueue will lose their CPU
3830 * affinity and may execute on any CPU. This is similar to how per-cpu
3831 * workqueues behave on CPU_DOWN. If a workqueue user wants strict
3832 * affinity, it's the user's responsibility to flush the work item from
3833 * CPU_DOWN_PREPARE.
3834 */
3835static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
3836 bool online)
3837{
3838 int node = cpu_to_node(cpu);
3839 int cpu_off = online ? -1 : cpu;
3840 struct pool_workqueue *old_pwq = NULL, *pwq;
3841 struct workqueue_attrs *target_attrs;
3842 cpumask_t *cpumask;
3843
3844 lockdep_assert_held(&wq_pool_mutex);
3845
f7142ed4
LJ
3846 if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) ||
3847 wq->unbound_attrs->no_numa)
4c16bd32
TH
3848 return;
3849
3850 /*
3851 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
3852 * Let's use a preallocated one. The following buf is protected by
3853 * CPU hotplug exclusion.
3854 */
3855 target_attrs = wq_update_unbound_numa_attrs_buf;
3856 cpumask = target_attrs->cpumask;
3857
4c16bd32
TH
3858 copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
3859 pwq = unbound_pwq_by_node(wq, node);
3860
3861 /*
3862 * Let's determine what needs to be done. If the target cpumask is
042f7df1
LJ
3863 * different from the default pwq's, we need to compare it to @pwq's
3864 * and create a new one if they don't match. If the target cpumask
3865 * equals the default pwq's, the default pwq should be used.
4c16bd32 3866 */
042f7df1 3867 if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) {
4c16bd32 3868 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
f7142ed4 3869 return;
4c16bd32 3870 } else {
534a3fbb 3871 goto use_dfl_pwq;
4c16bd32
TH
3872 }
3873
4c16bd32
TH
3874 /* create a new pwq */
3875 pwq = alloc_unbound_pwq(wq, target_attrs);
3876 if (!pwq) {
2d916033
FF
3877 pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
3878 wq->name);
77f300b1 3879 goto use_dfl_pwq;
4c16bd32
TH
3880 }
3881
f7142ed4 3882 /* Install the new pwq. */
4c16bd32
TH
3883 mutex_lock(&wq->mutex);
3884 old_pwq = numa_pwq_tbl_install(wq, node, pwq);
3885 goto out_unlock;
3886
3887use_dfl_pwq:
f7142ed4 3888 mutex_lock(&wq->mutex);
4c16bd32
TH
3889 spin_lock_irq(&wq->dfl_pwq->pool->lock);
3890 get_pwq(wq->dfl_pwq);
3891 spin_unlock_irq(&wq->dfl_pwq->pool->lock);
3892 old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
3893out_unlock:
3894 mutex_unlock(&wq->mutex);
3895 put_pwq_unlocked(old_pwq);
3896}
3897
30cdf249 3898static int alloc_and_link_pwqs(struct workqueue_struct *wq)
0f900049 3899{
49e3cf44 3900 bool highpri = wq->flags & WQ_HIGHPRI;
8a2b7538 3901 int cpu, ret;
30cdf249
TH
3902
3903 if (!(wq->flags & WQ_UNBOUND)) {
420c0ddb
TH
3904 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
3905 if (!wq->cpu_pwqs)
30cdf249
TH
3906 return -ENOMEM;
3907
3908 for_each_possible_cpu(cpu) {
7fb98ea7
TH
3909 struct pool_workqueue *pwq =
3910 per_cpu_ptr(wq->cpu_pwqs, cpu);
7a62c2c8 3911 struct worker_pool *cpu_pools =
f02ae73a 3912 per_cpu(cpu_worker_pools, cpu);
f3421797 3913
f147f29e
TH
3914 init_pwq(pwq, wq, &cpu_pools[highpri]);
3915
3916 mutex_lock(&wq->mutex);
1befcf30 3917 link_pwq(pwq);
f147f29e 3918 mutex_unlock(&wq->mutex);
30cdf249 3919 }
9e8cd2f5 3920 return 0;
8a2b7538
TH
3921 } else if (wq->flags & __WQ_ORDERED) {
3922 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
3923 /* there should only be single pwq for ordering guarantee */
3924 WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
3925 wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
3926 "ordering guarantee broken for workqueue %s\n", wq->name);
3927 return ret;
30cdf249 3928 } else {
9e8cd2f5 3929 return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
30cdf249 3930 }
0f900049
TH
3931}
3932
f3421797
TH
3933static int wq_clamp_max_active(int max_active, unsigned int flags,
3934 const char *name)
b71ab8c2 3935{
f3421797
TH
3936 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
3937
3938 if (max_active < 1 || max_active > lim)
044c782c
VI
3939 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
3940 max_active, name, 1, lim);
b71ab8c2 3941
f3421797 3942 return clamp_val(max_active, 1, lim);
b71ab8c2
TH
3943}
3944
b196be89 3945struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
d320c038
TH
3946 unsigned int flags,
3947 int max_active,
3948 struct lock_class_key *key,
b196be89 3949 const char *lock_name, ...)
1da177e4 3950{
df2d5ae4 3951 size_t tbl_size = 0;
ecf6881f 3952 va_list args;
1da177e4 3953 struct workqueue_struct *wq;
49e3cf44 3954 struct pool_workqueue *pwq;
b196be89 3955
5c0338c6
TH
3956 /*
3957 * Unbound && max_active == 1 used to imply ordered, which is no
3958 * longer the case on NUMA machines due to per-node pools. While
3959 * alloc_ordered_workqueue() is the right way to create an ordered
3960 * workqueue, keep the previous behavior to avoid subtle breakages
3961 * on NUMA.
3962 */
3963 if ((flags & WQ_UNBOUND) && max_active == 1)
3964 flags |= __WQ_ORDERED;
3965
cee22a15
VK
3966 /* see the comment above the definition of WQ_POWER_EFFICIENT */
3967 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
3968 flags |= WQ_UNBOUND;
3969
ecf6881f 3970 /* allocate wq and format name */
df2d5ae4 3971 if (flags & WQ_UNBOUND)
ddcb57e2 3972 tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]);
df2d5ae4
TH
3973
3974 wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
b196be89 3975 if (!wq)
d2c1d404 3976 return NULL;
b196be89 3977
6029a918
TH
3978 if (flags & WQ_UNBOUND) {
3979 wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3980 if (!wq->unbound_attrs)
3981 goto err_free_wq;
3982 }
3983
ecf6881f
TH
3984 va_start(args, lock_name);
3985 vsnprintf(wq->name, sizeof(wq->name), fmt, args);
b196be89 3986 va_end(args);
1da177e4 3987
d320c038 3988 max_active = max_active ?: WQ_DFL_ACTIVE;
b196be89 3989 max_active = wq_clamp_max_active(max_active, flags, wq->name);
3af24433 3990
b196be89 3991 /* init wq */
97e37d7b 3992 wq->flags = flags;
a0a1a5fd 3993 wq->saved_max_active = max_active;
3c25a55d 3994 mutex_init(&wq->mutex);
112202d9 3995 atomic_set(&wq->nr_pwqs_to_flush, 0);
30cdf249 3996 INIT_LIST_HEAD(&wq->pwqs);
73f53c4a
TH
3997 INIT_LIST_HEAD(&wq->flusher_queue);
3998 INIT_LIST_HEAD(&wq->flusher_overflow);
493a1724 3999 INIT_LIST_HEAD(&wq->maydays);
502ca9d8 4000
eb13ba87 4001 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
cce1a165 4002 INIT_LIST_HEAD(&wq->list);
3af24433 4003
30cdf249 4004 if (alloc_and_link_pwqs(wq) < 0)
d2c1d404 4005 goto err_free_wq;
1537663f 4006
493008a8
TH
4007 /*
4008 * Workqueues which may be used during memory reclaim should
4009 * have a rescuer to guarantee forward progress.
4010 */
4011 if (flags & WQ_MEM_RECLAIM) {
e22bee78
TH
4012 struct worker *rescuer;
4013
f7537df5 4014 rescuer = alloc_worker(NUMA_NO_NODE);
e22bee78 4015 if (!rescuer)
d2c1d404 4016 goto err_destroy;
e22bee78 4017
111c225a
TH
4018 rescuer->rescue_wq = wq;
4019 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
b196be89 4020 wq->name);
d2c1d404
TH
4021 if (IS_ERR(rescuer->task)) {
4022 kfree(rescuer);
4023 goto err_destroy;
4024 }
e22bee78 4025
d2c1d404 4026 wq->rescuer = rescuer;
25834c73 4027 kthread_bind_mask(rescuer->task, cpu_possible_mask);
e22bee78 4028 wake_up_process(rescuer->task);
3af24433
ON
4029 }
4030
226223ab
TH
4031 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
4032 goto err_destroy;
4033
a0a1a5fd 4034 /*
68e13a67
LJ
4035 * wq_pool_mutex protects global freeze state and workqueues list.
4036 * Grab it, adjust max_active and add the new @wq to workqueues
4037 * list.
a0a1a5fd 4038 */
68e13a67 4039 mutex_lock(&wq_pool_mutex);
a0a1a5fd 4040
a357fc03 4041 mutex_lock(&wq->mutex);
699ce097
TH
4042 for_each_pwq(pwq, wq)
4043 pwq_adjust_max_active(pwq);
a357fc03 4044 mutex_unlock(&wq->mutex);
a0a1a5fd 4045
e2dca7ad 4046 list_add_tail_rcu(&wq->list, &workqueues);
a0a1a5fd 4047
68e13a67 4048 mutex_unlock(&wq_pool_mutex);
1537663f 4049
3af24433 4050 return wq;
d2c1d404
TH
4051
4052err_free_wq:
6029a918 4053 free_workqueue_attrs(wq->unbound_attrs);
d2c1d404
TH
4054 kfree(wq);
4055 return NULL;
4056err_destroy:
4057 destroy_workqueue(wq);
4690c4ab 4058 return NULL;
3af24433 4059}
d320c038 4060EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
1da177e4 4061
3af24433
ON
4062/**
4063 * destroy_workqueue - safely terminate a workqueue
4064 * @wq: target workqueue
4065 *
4066 * Safely destroy a workqueue. All work currently pending will be done first.
4067 */
4068void destroy_workqueue(struct workqueue_struct *wq)
4069{
49e3cf44 4070 struct pool_workqueue *pwq;
4c16bd32 4071 int node;
3af24433 4072
9c5a2ba7
TH
4073 /* drain it before proceeding with destruction */
4074 drain_workqueue(wq);
c8efcc25 4075
6183c009 4076 /* sanity checks */
b09f4fd3 4077 mutex_lock(&wq->mutex);
49e3cf44 4078 for_each_pwq(pwq, wq) {
6183c009
TH
4079 int i;
4080
76af4d93
TH
4081 for (i = 0; i < WORK_NR_COLORS; i++) {
4082 if (WARN_ON(pwq->nr_in_flight[i])) {
b09f4fd3 4083 mutex_unlock(&wq->mutex);
fa07fb6a 4084 show_workqueue_state();
6183c009 4085 return;
76af4d93
TH
4086 }
4087 }
4088
5c529597 4089 if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
8864b4e5 4090 WARN_ON(pwq->nr_active) ||
76af4d93 4091 WARN_ON(!list_empty(&pwq->delayed_works))) {
b09f4fd3 4092 mutex_unlock(&wq->mutex);
fa07fb6a 4093 show_workqueue_state();
6183c009 4094 return;
76af4d93 4095 }
6183c009 4096 }
b09f4fd3 4097 mutex_unlock(&wq->mutex);
6183c009 4098
a0a1a5fd
TH
4099 /*
4100 * wq list is used to freeze wq, remove from list after
4101 * flushing is complete in case freeze races us.
4102 */
68e13a67 4103 mutex_lock(&wq_pool_mutex);
e2dca7ad 4104 list_del_rcu(&wq->list);
68e13a67 4105 mutex_unlock(&wq_pool_mutex);
3af24433 4106
226223ab
TH
4107 workqueue_sysfs_unregister(wq);
4108
e2dca7ad 4109 if (wq->rescuer)
e22bee78 4110 kthread_stop(wq->rescuer->task);
e22bee78 4111
8864b4e5
TH
4112 if (!(wq->flags & WQ_UNBOUND)) {
4113 /*
4114 * The base ref is never dropped on per-cpu pwqs. Directly
e2dca7ad 4115 * schedule RCU free.
8864b4e5 4116 */
e2dca7ad 4117 call_rcu_sched(&wq->rcu, rcu_free_wq);
8864b4e5
TH
4118 } else {
4119 /*
4120 * We're the sole accessor of @wq at this point. Directly
4c16bd32
TH
4121 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4122 * @wq will be freed when the last pwq is released.
8864b4e5 4123 */
4c16bd32
TH
4124 for_each_node(node) {
4125 pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4126 RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4127 put_pwq_unlocked(pwq);
4128 }
4129
4130 /*
4131 * Put dfl_pwq. @wq may be freed any time after dfl_pwq is
4132 * put. Don't access it afterwards.
4133 */
4134 pwq = wq->dfl_pwq;
4135 wq->dfl_pwq = NULL;
dce90d47 4136 put_pwq_unlocked(pwq);
29c91e99 4137 }
3af24433
ON
4138}
4139EXPORT_SYMBOL_GPL(destroy_workqueue);
4140
dcd989cb
TH
4141/**
4142 * workqueue_set_max_active - adjust max_active of a workqueue
4143 * @wq: target workqueue
4144 * @max_active: new max_active value.
4145 *
4146 * Set max_active of @wq to @max_active.
4147 *
4148 * CONTEXT:
4149 * Don't call from IRQ context.
4150 */
4151void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4152{
49e3cf44 4153 struct pool_workqueue *pwq;
dcd989cb 4154
8719dcea 4155 /* disallow meddling with max_active for ordered workqueues */
0a94efb5 4156 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
8719dcea
TH
4157 return;
4158
f3421797 4159 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
dcd989cb 4160
a357fc03 4161 mutex_lock(&wq->mutex);
dcd989cb 4162
0a94efb5 4163 wq->flags &= ~__WQ_ORDERED;
dcd989cb
TH
4164 wq->saved_max_active = max_active;
4165
699ce097
TH
4166 for_each_pwq(pwq, wq)
4167 pwq_adjust_max_active(pwq);
93981800 4168
a357fc03 4169 mutex_unlock(&wq->mutex);
15316ba8 4170}
dcd989cb 4171EXPORT_SYMBOL_GPL(workqueue_set_max_active);
15316ba8 4172
e6267616
TH
4173/**
4174 * current_is_workqueue_rescuer - is %current workqueue rescuer?
4175 *
4176 * Determine whether %current is a workqueue rescuer. Can be used from
4177 * work functions to determine whether it's being run off the rescuer task.
d185af30
YB
4178 *
4179 * Return: %true if %current is a workqueue rescuer. %false otherwise.
e6267616
TH
4180 */
4181bool current_is_workqueue_rescuer(void)
4182{
4183 struct worker *worker = current_wq_worker();
4184
6a092dfd 4185 return worker && worker->rescue_wq;
e6267616
TH
4186}
4187
eef6a7d5 4188/**
dcd989cb
TH
4189 * workqueue_congested - test whether a workqueue is congested
4190 * @cpu: CPU in question
4191 * @wq: target workqueue
eef6a7d5 4192 *
dcd989cb
TH
4193 * Test whether @wq's cpu workqueue for @cpu is congested. There is
4194 * no synchronization around this function and the test result is
4195 * unreliable and only useful as advisory hints or for debugging.
eef6a7d5 4196 *
d3251859
TH
4197 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4198 * Note that both per-cpu and unbound workqueues may be associated with
4199 * multiple pool_workqueues which have separate congested states. A
4200 * workqueue being congested on one CPU doesn't mean the workqueue is also
4201 * contested on other CPUs / NUMA nodes.
4202 *
d185af30 4203 * Return:
dcd989cb 4204 * %true if congested, %false otherwise.
eef6a7d5 4205 */
d84ff051 4206bool workqueue_congested(int cpu, struct workqueue_struct *wq)
1da177e4 4207{
7fb98ea7 4208 struct pool_workqueue *pwq;
76af4d93
TH
4209 bool ret;
4210
88109453 4211 rcu_read_lock_sched();
7fb98ea7 4212
d3251859
TH
4213 if (cpu == WORK_CPU_UNBOUND)
4214 cpu = smp_processor_id();
4215
7fb98ea7
TH
4216 if (!(wq->flags & WQ_UNBOUND))
4217 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4218 else
df2d5ae4 4219 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
dcd989cb 4220
76af4d93 4221 ret = !list_empty(&pwq->delayed_works);
88109453 4222 rcu_read_unlock_sched();
76af4d93
TH
4223
4224 return ret;
1da177e4 4225}
dcd989cb 4226EXPORT_SYMBOL_GPL(workqueue_congested);
1da177e4 4227
dcd989cb
TH
4228/**
4229 * work_busy - test whether a work is currently pending or running
4230 * @work: the work to be tested
4231 *
4232 * Test whether @work is currently pending or running. There is no
4233 * synchronization around this function and the test result is
4234 * unreliable and only useful as advisory hints or for debugging.
dcd989cb 4235 *
d185af30 4236 * Return:
dcd989cb
TH
4237 * OR'd bitmask of WORK_BUSY_* bits.
4238 */
4239unsigned int work_busy(struct work_struct *work)
1da177e4 4240{
fa1b54e6 4241 struct worker_pool *pool;
dcd989cb
TH
4242 unsigned long flags;
4243 unsigned int ret = 0;
1da177e4 4244
dcd989cb
TH
4245 if (work_pending(work))
4246 ret |= WORK_BUSY_PENDING;
1da177e4 4247
fa1b54e6
TH
4248 local_irq_save(flags);
4249 pool = get_work_pool(work);
038366c5 4250 if (pool) {
fa1b54e6 4251 spin_lock(&pool->lock);
038366c5
LJ
4252 if (find_worker_executing_work(pool, work))
4253 ret |= WORK_BUSY_RUNNING;
fa1b54e6 4254 spin_unlock(&pool->lock);
038366c5 4255 }
fa1b54e6 4256 local_irq_restore(flags);
1da177e4 4257
dcd989cb 4258 return ret;
1da177e4 4259}
dcd989cb 4260EXPORT_SYMBOL_GPL(work_busy);
1da177e4 4261
3d1cb205
TH
4262/**
4263 * set_worker_desc - set description for the current work item
4264 * @fmt: printf-style format string
4265 * @...: arguments for the format string
4266 *
4267 * This function can be called by a running work function to describe what
4268 * the work item is about. If the worker task gets dumped, this
4269 * information will be printed out together to help debugging. The
4270 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4271 */
4272void set_worker_desc(const char *fmt, ...)
4273{
4274 struct worker *worker = current_wq_worker();
4275 va_list args;
4276
4277 if (worker) {
4278 va_start(args, fmt);
4279 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4280 va_end(args);
4281 worker->desc_valid = true;
4282 }
4283}
4284
4285/**
4286 * print_worker_info - print out worker information and description
4287 * @log_lvl: the log level to use when printing
4288 * @task: target task
4289 *
4290 * If @task is a worker and currently executing a work item, print out the
4291 * name of the workqueue being serviced and worker description set with
4292 * set_worker_desc() by the currently executing work item.
4293 *
4294 * This function can be safely called on any task as long as the
4295 * task_struct itself is accessible. While safe, this function isn't
4296 * synchronized and may print out mixups or garbages of limited length.
4297 */
4298void print_worker_info(const char *log_lvl, struct task_struct *task)
4299{
4300 work_func_t *fn = NULL;
4301 char name[WQ_NAME_LEN] = { };
4302 char desc[WORKER_DESC_LEN] = { };
4303 struct pool_workqueue *pwq = NULL;
4304 struct workqueue_struct *wq = NULL;
4305 bool desc_valid = false;
4306 struct worker *worker;
4307
4308 if (!(task->flags & PF_WQ_WORKER))
4309 return;
4310
4311 /*
4312 * This function is called without any synchronization and @task
4313 * could be in any state. Be careful with dereferences.
4314 */
e700591a 4315 worker = kthread_probe_data(task);
3d1cb205
TH
4316
4317 /*
4318 * Carefully copy the associated workqueue's workfn and name. Keep
4319 * the original last '\0' in case the original contains garbage.
4320 */
4321 probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
4322 probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
4323 probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
4324 probe_kernel_read(name, wq->name, sizeof(name) - 1);
4325
4326 /* copy worker description */
4327 probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid));
4328 if (desc_valid)
4329 probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);
4330
4331 if (fn || name[0] || desc[0]) {
4332 printk("%sWorkqueue: %s %pf", log_lvl, name, fn);
4333 if (desc[0])
4334 pr_cont(" (%s)", desc);
4335 pr_cont("\n");
4336 }
4337}
4338
3494fc30
TH
4339static void pr_cont_pool_info(struct worker_pool *pool)
4340{
4341 pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
4342 if (pool->node != NUMA_NO_NODE)
4343 pr_cont(" node=%d", pool->node);
4344 pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
4345}
4346
4347static void pr_cont_work(bool comma, struct work_struct *work)
4348{
4349 if (work->func == wq_barrier_func) {
4350 struct wq_barrier *barr;
4351
4352 barr = container_of(work, struct wq_barrier, work);
4353
4354 pr_cont("%s BAR(%d)", comma ? "," : "",
4355 task_pid_nr(barr->task));
4356 } else {
4357 pr_cont("%s %pf", comma ? "," : "", work->func);
4358 }
4359}
4360
4361static void show_pwq(struct pool_workqueue *pwq)
4362{
4363 struct worker_pool *pool = pwq->pool;
4364 struct work_struct *work;
4365 struct worker *worker;
4366 bool has_in_flight = false, has_pending = false;
4367 int bkt;
4368
4369 pr_info(" pwq %d:", pool->id);
4370 pr_cont_pool_info(pool);
4371
4372 pr_cont(" active=%d/%d%s\n", pwq->nr_active, pwq->max_active,
4373 !list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
4374
4375 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4376 if (worker->current_pwq == pwq) {
4377 has_in_flight = true;
4378 break;
4379 }
4380 }
4381 if (has_in_flight) {
4382 bool comma = false;
4383
4384 pr_info(" in-flight:");
4385 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4386 if (worker->current_pwq != pwq)
4387 continue;
4388
4389 pr_cont("%s %d%s:%pf", comma ? "," : "",
4390 task_pid_nr(worker->task),
4391 worker == pwq->wq->rescuer ? "(RESCUER)" : "",
4392 worker->current_func);
4393 list_for_each_entry(work, &worker->scheduled, entry)
4394 pr_cont_work(false, work);
4395 comma = true;
4396 }
4397 pr_cont("\n");
4398 }
4399
4400 list_for_each_entry(work, &pool->worklist, entry) {
4401 if (get_work_pwq(work) == pwq) {
4402 has_pending = true;
4403 break;
4404 }
4405 }
4406 if (has_pending) {
4407 bool comma = false;
4408
4409 pr_info(" pending:");
4410 list_for_each_entry(work, &pool->worklist, entry) {
4411 if (get_work_pwq(work) != pwq)
4412 continue;
4413
4414 pr_cont_work(comma, work);
4415 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4416 }
4417 pr_cont("\n");
4418 }
4419
4420 if (!list_empty(&pwq->delayed_works)) {
4421 bool comma = false;
4422
4423 pr_info(" delayed:");
4424 list_for_each_entry(work, &pwq->delayed_works, entry) {
4425 pr_cont_work(comma, work);
4426 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4427 }
4428 pr_cont("\n");
4429 }
4430}
4431
4432/**
4433 * show_workqueue_state - dump workqueue state
4434 *
7b776af6
RL
4435 * Called from a sysrq handler or try_to_freeze_tasks() and prints out
4436 * all busy workqueues and pools.
3494fc30
TH
4437 */
4438void show_workqueue_state(void)
4439{
4440 struct workqueue_struct *wq;
4441 struct worker_pool *pool;
4442 unsigned long flags;
4443 int pi;
4444
4445 rcu_read_lock_sched();
4446
4447 pr_info("Showing busy workqueues and worker pools:\n");
4448
4449 list_for_each_entry_rcu(wq, &workqueues, list) {
4450 struct pool_workqueue *pwq;
4451 bool idle = true;
4452
4453 for_each_pwq(pwq, wq) {
4454 if (pwq->nr_active || !list_empty(&pwq->delayed_works)) {
4455 idle = false;
4456 break;
4457 }
4458 }
4459 if (idle)
4460 continue;
4461
4462 pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
4463
4464 for_each_pwq(pwq, wq) {
4465 spin_lock_irqsave(&pwq->pool->lock, flags);
4466 if (pwq->nr_active || !list_empty(&pwq->delayed_works))
4467 show_pwq(pwq);
4468 spin_unlock_irqrestore(&pwq->pool->lock, flags);
4469 }
4470 }
4471
4472 for_each_pool(pool, pi) {
4473 struct worker *worker;
4474 bool first = true;
4475
4476 spin_lock_irqsave(&pool->lock, flags);
4477 if (pool->nr_workers == pool->nr_idle)
4478 goto next_pool;
4479
4480 pr_info("pool %d:", pool->id);
4481 pr_cont_pool_info(pool);
82607adc
TH
4482 pr_cont(" hung=%us workers=%d",
4483 jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000,
4484 pool->nr_workers);
3494fc30
TH
4485 if (pool->manager)
4486 pr_cont(" manager: %d",
4487 task_pid_nr(pool->manager->task));
4488 list_for_each_entry(worker, &pool->idle_list, entry) {
4489 pr_cont(" %s%d", first ? "idle: " : "",
4490 task_pid_nr(worker->task));
4491 first = false;
4492 }
4493 pr_cont("\n");
4494 next_pool:
4495 spin_unlock_irqrestore(&pool->lock, flags);
4496 }
4497
4498 rcu_read_unlock_sched();
4499}
4500
db7bccf4
TH
4501/*
4502 * CPU hotplug.
4503 *
e22bee78 4504 * There are two challenges in supporting CPU hotplug. Firstly, there
112202d9 4505 * are a lot of assumptions on strong associations among work, pwq and
706026c2 4506 * pool which make migrating pending and scheduled works very
e22bee78 4507 * difficult to implement without impacting hot paths. Secondly,
94cf58bb 4508 * worker pools serve mix of short, long and very long running works making
e22bee78
TH
4509 * blocked draining impractical.
4510 *
24647570 4511 * This is solved by allowing the pools to be disassociated from the CPU
628c78e7
TH
4512 * running as an unbound one and allowing it to be reattached later if the
4513 * cpu comes back online.
db7bccf4 4514 */
1da177e4 4515
706026c2 4516static void wq_unbind_fn(struct work_struct *work)
3af24433 4517{
38db41d9 4518 int cpu = smp_processor_id();
4ce62e9e 4519 struct worker_pool *pool;
db7bccf4 4520 struct worker *worker;
3af24433 4521
f02ae73a 4522 for_each_cpu_worker_pool(pool, cpu) {
92f9c5c4 4523 mutex_lock(&pool->attach_mutex);
94cf58bb 4524 spin_lock_irq(&pool->lock);
3af24433 4525
94cf58bb 4526 /*
92f9c5c4 4527 * We've blocked all attach/detach operations. Make all workers
94cf58bb
TH
4528 * unbound and set DISASSOCIATED. Before this, all workers
4529 * except for the ones which are still executing works from
4530 * before the last CPU down must be on the cpu. After
4531 * this, they may become diasporas.
4532 */
da028469 4533 for_each_pool_worker(worker, pool)
c9e7cf27 4534 worker->flags |= WORKER_UNBOUND;
06ba38a9 4535
24647570 4536 pool->flags |= POOL_DISASSOCIATED;
f2d5a0ee 4537
94cf58bb 4538 spin_unlock_irq(&pool->lock);
92f9c5c4 4539 mutex_unlock(&pool->attach_mutex);
628c78e7 4540
eb283428
LJ
4541 /*
4542 * Call schedule() so that we cross rq->lock and thus can
4543 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4544 * This is necessary as scheduler callbacks may be invoked
4545 * from other cpus.
4546 */
4547 schedule();
06ba38a9 4548
eb283428
LJ
4549 /*
4550 * Sched callbacks are disabled now. Zap nr_running.
4551 * After this, nr_running stays zero and need_more_worker()
4552 * and keep_working() are always true as long as the
4553 * worklist is not empty. This pool now behaves as an
4554 * unbound (in terms of concurrency management) pool which
4555 * are served by workers tied to the pool.
4556 */
e19e397a 4557 atomic_set(&pool->nr_running, 0);
eb283428
LJ
4558
4559 /*
4560 * With concurrency management just turned off, a busy
4561 * worker blocking could lead to lengthy stalls. Kick off
4562 * unbound chain execution of currently pending work items.
4563 */
4564 spin_lock_irq(&pool->lock);
4565 wake_up_worker(pool);
4566 spin_unlock_irq(&pool->lock);
4567 }
3af24433 4568}
3af24433 4569
bd7c089e
TH
4570/**
4571 * rebind_workers - rebind all workers of a pool to the associated CPU
4572 * @pool: pool of interest
4573 *
a9ab775b 4574 * @pool->cpu is coming online. Rebind all workers to the CPU.
bd7c089e
TH
4575 */
4576static void rebind_workers(struct worker_pool *pool)
4577{
a9ab775b 4578 struct worker *worker;
bd7c089e 4579
92f9c5c4 4580 lockdep_assert_held(&pool->attach_mutex);
bd7c089e 4581
a9ab775b
TH
4582 /*
4583 * Restore CPU affinity of all workers. As all idle workers should
4584 * be on the run-queue of the associated CPU before any local
402dd89d 4585 * wake-ups for concurrency management happen, restore CPU affinity
a9ab775b
TH
4586 * of all workers first and then clear UNBOUND. As we're called
4587 * from CPU_ONLINE, the following shouldn't fail.
4588 */
da028469 4589 for_each_pool_worker(worker, pool)
a9ab775b
TH
4590 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4591 pool->attrs->cpumask) < 0);
bd7c089e 4592
a9ab775b 4593 spin_lock_irq(&pool->lock);
f7c17d26
WL
4594
4595 /*
4596 * XXX: CPU hotplug notifiers are weird and can call DOWN_FAILED
4597 * w/o preceding DOWN_PREPARE. Work around it. CPU hotplug is
4598 * being reworked and this can go away in time.
4599 */
4600 if (!(pool->flags & POOL_DISASSOCIATED)) {
4601 spin_unlock_irq(&pool->lock);
4602 return;
4603 }
4604
3de5e884 4605 pool->flags &= ~POOL_DISASSOCIATED;
bd7c089e 4606
da028469 4607 for_each_pool_worker(worker, pool) {
a9ab775b 4608 unsigned int worker_flags = worker->flags;
bd7c089e
TH
4609
4610 /*
a9ab775b
TH
4611 * A bound idle worker should actually be on the runqueue
4612 * of the associated CPU for local wake-ups targeting it to
4613 * work. Kick all idle workers so that they migrate to the
4614 * associated CPU. Doing this in the same loop as
4615 * replacing UNBOUND with REBOUND is safe as no worker will
4616 * be bound before @pool->lock is released.
bd7c089e 4617 */
a9ab775b
TH
4618 if (worker_flags & WORKER_IDLE)
4619 wake_up_process(worker->task);
bd7c089e 4620
a9ab775b
TH
4621 /*
4622 * We want to clear UNBOUND but can't directly call
4623 * worker_clr_flags() or adjust nr_running. Atomically
4624 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
4625 * @worker will clear REBOUND using worker_clr_flags() when
4626 * it initiates the next execution cycle thus restoring
4627 * concurrency management. Note that when or whether
4628 * @worker clears REBOUND doesn't affect correctness.
4629 *
4630 * ACCESS_ONCE() is necessary because @worker->flags may be
4631 * tested without holding any lock in
4632 * wq_worker_waking_up(). Without it, NOT_RUNNING test may
4633 * fail incorrectly leading to premature concurrency
4634 * management operations.
4635 */
4636 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
4637 worker_flags |= WORKER_REBOUND;
4638 worker_flags &= ~WORKER_UNBOUND;
4639 ACCESS_ONCE(worker->flags) = worker_flags;
bd7c089e 4640 }
a9ab775b
TH
4641
4642 spin_unlock_irq(&pool->lock);
bd7c089e
TH
4643}
4644
7dbc725e
TH
4645/**
4646 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
4647 * @pool: unbound pool of interest
4648 * @cpu: the CPU which is coming up
4649 *
4650 * An unbound pool may end up with a cpumask which doesn't have any online
4651 * CPUs. When a worker of such pool get scheduled, the scheduler resets
4652 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any
4653 * online CPU before, cpus_allowed of all its workers should be restored.
4654 */
4655static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
4656{
4657 static cpumask_t cpumask;
4658 struct worker *worker;
7dbc725e 4659
92f9c5c4 4660 lockdep_assert_held(&pool->attach_mutex);
7dbc725e
TH
4661
4662 /* is @cpu allowed for @pool? */
4663 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
4664 return;
4665
7dbc725e 4666 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
7dbc725e
TH
4667
4668 /* as we're called from CPU_ONLINE, the following shouldn't fail */
da028469 4669 for_each_pool_worker(worker, pool)
d945b5e9 4670 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0);
7dbc725e
TH
4671}
4672
7ee681b2
TG
4673int workqueue_prepare_cpu(unsigned int cpu)
4674{
4675 struct worker_pool *pool;
4676
4677 for_each_cpu_worker_pool(pool, cpu) {
4678 if (pool->nr_workers)
4679 continue;
4680 if (!create_worker(pool))
4681 return -ENOMEM;
4682 }
4683 return 0;
4684}
4685
4686int workqueue_online_cpu(unsigned int cpu)
3af24433 4687{
4ce62e9e 4688 struct worker_pool *pool;
4c16bd32 4689 struct workqueue_struct *wq;
7dbc725e 4690 int pi;
3ce63377 4691
7ee681b2 4692 mutex_lock(&wq_pool_mutex);
7dbc725e 4693
7ee681b2
TG
4694 for_each_pool(pool, pi) {
4695 mutex_lock(&pool->attach_mutex);
94cf58bb 4696
7ee681b2
TG
4697 if (pool->cpu == cpu)
4698 rebind_workers(pool);
4699 else if (pool->cpu < 0)
4700 restore_unbound_workers_cpumask(pool, cpu);
94cf58bb 4701
7ee681b2
TG
4702 mutex_unlock(&pool->attach_mutex);
4703 }
6ba94429 4704
7ee681b2
TG
4705 /* update NUMA affinity of unbound workqueues */
4706 list_for_each_entry(wq, &workqueues, list)
4707 wq_update_unbound_numa(wq, cpu, true);
6ba94429 4708
7ee681b2
TG
4709 mutex_unlock(&wq_pool_mutex);
4710 return 0;
6ba94429
FW
4711}
4712
7ee681b2 4713int workqueue_offline_cpu(unsigned int cpu)
6ba94429 4714{
6ba94429
FW
4715 struct work_struct unbind_work;
4716 struct workqueue_struct *wq;
4717
7ee681b2
TG
4718 /* unbinding per-cpu workers should happen on the local CPU */
4719 INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
4720 queue_work_on(cpu, system_highpri_wq, &unbind_work);
4721
4722 /* update NUMA affinity of unbound workqueues */
4723 mutex_lock(&wq_pool_mutex);
4724 list_for_each_entry(wq, &workqueues, list)
4725 wq_update_unbound_numa(wq, cpu, false);
4726 mutex_unlock(&wq_pool_mutex);
4727
4728 /* wait for per-cpu unbinding to finish */
4729 flush_work(&unbind_work);
4730 destroy_work_on_stack(&unbind_work);
4731 return 0;
6ba94429
FW
4732}
4733
4734#ifdef CONFIG_SMP
4735
4736struct work_for_cpu {
4737 struct work_struct work;
4738 long (*fn)(void *);
4739 void *arg;
4740 long ret;
4741};
4742
4743static void work_for_cpu_fn(struct work_struct *work)
4744{
4745 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
4746
4747 wfc->ret = wfc->fn(wfc->arg);
4748}
4749
4750/**
22aceb31 4751 * work_on_cpu - run a function in thread context on a particular cpu
6ba94429
FW
4752 * @cpu: the cpu to run on
4753 * @fn: the function to run
4754 * @arg: the function arg
4755 *
4756 * It is up to the caller to ensure that the cpu doesn't go offline.
4757 * The caller must not hold any locks which would prevent @fn from completing.
4758 *
4759 * Return: The value @fn returns.
4760 */
4761long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
4762{
4763 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
4764
4765 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
4766 schedule_work_on(cpu, &wfc.work);
4767 flush_work(&wfc.work);
4768 destroy_work_on_stack(&wfc.work);
4769 return wfc.ret;
4770}
4771EXPORT_SYMBOL_GPL(work_on_cpu);
0e8d6a93
TG
4772
4773/**
4774 * work_on_cpu_safe - run a function in thread context on a particular cpu
4775 * @cpu: the cpu to run on
4776 * @fn: the function to run
4777 * @arg: the function argument
4778 *
4779 * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold
4780 * any locks which would prevent @fn from completing.
4781 *
4782 * Return: The value @fn returns.
4783 */
4784long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg)
4785{
4786 long ret = -ENODEV;
4787
4788 get_online_cpus();
4789 if (cpu_online(cpu))
4790 ret = work_on_cpu(cpu, fn, arg);
4791 put_online_cpus();
4792 return ret;
4793}
4794EXPORT_SYMBOL_GPL(work_on_cpu_safe);
6ba94429
FW
4795#endif /* CONFIG_SMP */
4796
4797#ifdef CONFIG_FREEZER
4798
4799/**
4800 * freeze_workqueues_begin - begin freezing workqueues
4801 *
4802 * Start freezing workqueues. After this function returns, all freezable
4803 * workqueues will queue new works to their delayed_works list instead of
4804 * pool->worklist.
4805 *
4806 * CONTEXT:
4807 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4808 */
4809void freeze_workqueues_begin(void)
4810{
4811 struct workqueue_struct *wq;
4812 struct pool_workqueue *pwq;
4813
4814 mutex_lock(&wq_pool_mutex);
4815
4816 WARN_ON_ONCE(workqueue_freezing);
4817 workqueue_freezing = true;
4818
4819 list_for_each_entry(wq, &workqueues, list) {
4820 mutex_lock(&wq->mutex);
4821 for_each_pwq(pwq, wq)
4822 pwq_adjust_max_active(pwq);
4823 mutex_unlock(&wq->mutex);
4824 }
4825
4826 mutex_unlock(&wq_pool_mutex);
4827}
4828
4829/**
4830 * freeze_workqueues_busy - are freezable workqueues still busy?
4831 *
4832 * Check whether freezing is complete. This function must be called
4833 * between freeze_workqueues_begin() and thaw_workqueues().
4834 *
4835 * CONTEXT:
4836 * Grabs and releases wq_pool_mutex.
4837 *
4838 * Return:
4839 * %true if some freezable workqueues are still busy. %false if freezing
4840 * is complete.
4841 */
4842bool freeze_workqueues_busy(void)
4843{
4844 bool busy = false;
4845 struct workqueue_struct *wq;
4846 struct pool_workqueue *pwq;
4847
4848 mutex_lock(&wq_pool_mutex);
4849
4850 WARN_ON_ONCE(!workqueue_freezing);
4851
4852 list_for_each_entry(wq, &workqueues, list) {
4853 if (!(wq->flags & WQ_FREEZABLE))
4854 continue;
4855 /*
4856 * nr_active is monotonically decreasing. It's safe
4857 * to peek without lock.
4858 */
4859 rcu_read_lock_sched();
4860 for_each_pwq(pwq, wq) {
4861 WARN_ON_ONCE(pwq->nr_active < 0);
4862 if (pwq->nr_active) {
4863 busy = true;
4864 rcu_read_unlock_sched();
4865 goto out_unlock;
4866 }
4867 }
4868 rcu_read_unlock_sched();
4869 }
4870out_unlock:
4871 mutex_unlock(&wq_pool_mutex);
4872 return busy;
4873}
4874
4875/**
4876 * thaw_workqueues - thaw workqueues
4877 *
4878 * Thaw workqueues. Normal queueing is restored and all collected
4879 * frozen works are transferred to their respective pool worklists.
4880 *
4881 * CONTEXT:
4882 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4883 */
4884void thaw_workqueues(void)
4885{
4886 struct workqueue_struct *wq;
4887 struct pool_workqueue *pwq;
4888
4889 mutex_lock(&wq_pool_mutex);
4890
4891 if (!workqueue_freezing)
4892 goto out_unlock;
4893
4894 workqueue_freezing = false;
4895
4896 /* restore max_active and repopulate worklist */
4897 list_for_each_entry(wq, &workqueues, list) {
4898 mutex_lock(&wq->mutex);
4899 for_each_pwq(pwq, wq)
4900 pwq_adjust_max_active(pwq);
4901 mutex_unlock(&wq->mutex);
4902 }
4903
4904out_unlock:
4905 mutex_unlock(&wq_pool_mutex);
4906}
4907#endif /* CONFIG_FREEZER */
4908
042f7df1
LJ
4909static int workqueue_apply_unbound_cpumask(void)
4910{
4911 LIST_HEAD(ctxs);
4912 int ret = 0;
4913 struct workqueue_struct *wq;
4914 struct apply_wqattrs_ctx *ctx, *n;
4915
4916 lockdep_assert_held(&wq_pool_mutex);
4917
4918 list_for_each_entry(wq, &workqueues, list) {
4919 if (!(wq->flags & WQ_UNBOUND))
4920 continue;
4921 /* creating multiple pwqs breaks ordering guarantee */
4922 if (wq->flags & __WQ_ORDERED)
4923 continue;
4924
4925 ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs);
4926 if (!ctx) {
4927 ret = -ENOMEM;
4928 break;
4929 }
4930
4931 list_add_tail(&ctx->list, &ctxs);
4932 }
4933
4934 list_for_each_entry_safe(ctx, n, &ctxs, list) {
4935 if (!ret)
4936 apply_wqattrs_commit(ctx);
4937 apply_wqattrs_cleanup(ctx);
4938 }
4939
4940 return ret;
4941}
4942
4943/**
4944 * workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
4945 * @cpumask: the cpumask to set
4946 *
4947 * The low-level workqueues cpumask is a global cpumask that limits
4948 * the affinity of all unbound workqueues. This function check the @cpumask
4949 * and apply it to all unbound workqueues and updates all pwqs of them.
4950 *
4951 * Retun: 0 - Success
4952 * -EINVAL - Invalid @cpumask
4953 * -ENOMEM - Failed to allocate memory for attrs or pwqs.
4954 */
4955int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
4956{
4957 int ret = -EINVAL;
4958 cpumask_var_t saved_cpumask;
4959
4960 if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL))
4961 return -ENOMEM;
4962
042f7df1
LJ
4963 cpumask_and(cpumask, cpumask, cpu_possible_mask);
4964 if (!cpumask_empty(cpumask)) {
a0111cf6 4965 apply_wqattrs_lock();
042f7df1
LJ
4966
4967 /* save the old wq_unbound_cpumask. */
4968 cpumask_copy(saved_cpumask, wq_unbound_cpumask);
4969
4970 /* update wq_unbound_cpumask at first and apply it to wqs. */
4971 cpumask_copy(wq_unbound_cpumask, cpumask);
4972 ret = workqueue_apply_unbound_cpumask();
4973
4974 /* restore the wq_unbound_cpumask when failed. */
4975 if (ret < 0)
4976 cpumask_copy(wq_unbound_cpumask, saved_cpumask);
4977
a0111cf6 4978 apply_wqattrs_unlock();
042f7df1 4979 }
042f7df1
LJ
4980
4981 free_cpumask_var(saved_cpumask);
4982 return ret;
4983}
4984
6ba94429
FW
4985#ifdef CONFIG_SYSFS
4986/*
4987 * Workqueues with WQ_SYSFS flag set is visible to userland via
4988 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the
4989 * following attributes.
4990 *
4991 * per_cpu RO bool : whether the workqueue is per-cpu or unbound
4992 * max_active RW int : maximum number of in-flight work items
4993 *
4994 * Unbound workqueues have the following extra attributes.
4995 *
4996 * id RO int : the associated pool ID
4997 * nice RW int : nice value of the workers
4998 * cpumask RW mask : bitmask of allowed CPUs for the workers
4999 */
5000struct wq_device {
5001 struct workqueue_struct *wq;
5002 struct device dev;
5003};
5004
5005static struct workqueue_struct *dev_to_wq(struct device *dev)
5006{
5007 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5008
5009 return wq_dev->wq;
5010}
5011
5012static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
5013 char *buf)
5014{
5015 struct workqueue_struct *wq = dev_to_wq(dev);
5016
5017 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
5018}
5019static DEVICE_ATTR_RO(per_cpu);
5020
5021static ssize_t max_active_show(struct device *dev,
5022 struct device_attribute *attr, char *buf)
5023{
5024 struct workqueue_struct *wq = dev_to_wq(dev);
5025
5026 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
5027}
5028
5029static ssize_t max_active_store(struct device *dev,
5030 struct device_attribute *attr, const char *buf,
5031 size_t count)
5032{
5033 struct workqueue_struct *wq = dev_to_wq(dev);
5034 int val;
5035
5036 if (sscanf(buf, "%d", &val) != 1 || val <= 0)
5037 return -EINVAL;
5038
5039 workqueue_set_max_active(wq, val);
5040 return count;
5041}
5042static DEVICE_ATTR_RW(max_active);
5043
5044static struct attribute *wq_sysfs_attrs[] = {
5045 &dev_attr_per_cpu.attr,
5046 &dev_attr_max_active.attr,
5047 NULL,
5048};
5049ATTRIBUTE_GROUPS(wq_sysfs);
5050
5051static ssize_t wq_pool_ids_show(struct device *dev,
5052 struct device_attribute *attr, char *buf)
5053{
5054 struct workqueue_struct *wq = dev_to_wq(dev);
5055 const char *delim = "";
5056 int node, written = 0;
5057
5058 rcu_read_lock_sched();
5059 for_each_node(node) {
5060 written += scnprintf(buf + written, PAGE_SIZE - written,
5061 "%s%d:%d", delim, node,
5062 unbound_pwq_by_node(wq, node)->pool->id);
5063 delim = " ";
5064 }
5065 written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
5066 rcu_read_unlock_sched();
5067
5068 return written;
5069}
5070
5071static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
5072 char *buf)
5073{
5074 struct workqueue_struct *wq = dev_to_wq(dev);
5075 int written;
5076
5077 mutex_lock(&wq->mutex);
5078 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
5079 mutex_unlock(&wq->mutex);
5080
5081 return written;
5082}
5083
5084/* prepare workqueue_attrs for sysfs store operations */
5085static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
5086{
5087 struct workqueue_attrs *attrs;
5088
899a94fe
LJ
5089 lockdep_assert_held(&wq_pool_mutex);
5090
6ba94429
FW
5091 attrs = alloc_workqueue_attrs(GFP_KERNEL);
5092 if (!attrs)
5093 return NULL;
5094
6ba94429 5095 copy_workqueue_attrs(attrs, wq->unbound_attrs);
6ba94429
FW
5096 return attrs;
5097}
5098
5099static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
5100 const char *buf, size_t count)
5101{
5102 struct workqueue_struct *wq = dev_to_wq(dev);
5103 struct workqueue_attrs *attrs;
d4d3e257
LJ
5104 int ret = -ENOMEM;
5105
5106 apply_wqattrs_lock();
6ba94429
FW
5107
5108 attrs = wq_sysfs_prep_attrs(wq);
5109 if (!attrs)
d4d3e257 5110 goto out_unlock;
6ba94429
FW
5111
5112 if (sscanf(buf, "%d", &attrs->nice) == 1 &&
5113 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
d4d3e257 5114 ret = apply_workqueue_attrs_locked(wq, attrs);
6ba94429
FW
5115 else
5116 ret = -EINVAL;
5117
d4d3e257
LJ
5118out_unlock:
5119 apply_wqattrs_unlock();
6ba94429
FW
5120 free_workqueue_attrs(attrs);
5121 return ret ?: count;
5122}
5123
5124static ssize_t wq_cpumask_show(struct device *dev,
5125 struct device_attribute *attr, char *buf)
5126{
5127 struct workqueue_struct *wq = dev_to_wq(dev);
5128 int written;
5129
5130 mutex_lock(&wq->mutex);
5131 written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5132 cpumask_pr_args(wq->unbound_attrs->cpumask));
5133 mutex_unlock(&wq->mutex);
5134 return written;
5135}
5136
5137static ssize_t wq_cpumask_store(struct device *dev,
5138 struct device_attribute *attr,
5139 const char *buf, size_t count)
5140{
5141 struct workqueue_struct *wq = dev_to_wq(dev);
5142 struct workqueue_attrs *attrs;
d4d3e257
LJ
5143 int ret = -ENOMEM;
5144
5145 apply_wqattrs_lock();
6ba94429
FW
5146
5147 attrs = wq_sysfs_prep_attrs(wq);
5148 if (!attrs)
d4d3e257 5149 goto out_unlock;
6ba94429
FW
5150
5151 ret = cpumask_parse(buf, attrs->cpumask);
5152 if (!ret)
d4d3e257 5153 ret = apply_workqueue_attrs_locked(wq, attrs);
6ba94429 5154
d4d3e257
LJ
5155out_unlock:
5156 apply_wqattrs_unlock();
6ba94429
FW
5157 free_workqueue_attrs(attrs);
5158 return ret ?: count;
5159}
5160
5161static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
5162 char *buf)
5163{
5164 struct workqueue_struct *wq = dev_to_wq(dev);
5165 int written;
7dbc725e 5166
6ba94429
FW
5167 mutex_lock(&wq->mutex);
5168 written = scnprintf(buf, PAGE_SIZE, "%d\n",
5169 !wq->unbound_attrs->no_numa);
5170 mutex_unlock(&wq->mutex);
4c16bd32 5171
6ba94429 5172 return written;
65758202
TH
5173}
5174
6ba94429
FW
5175static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
5176 const char *buf, size_t count)
65758202 5177{
6ba94429
FW
5178 struct workqueue_struct *wq = dev_to_wq(dev);
5179 struct workqueue_attrs *attrs;
d4d3e257
LJ
5180 int v, ret = -ENOMEM;
5181
5182 apply_wqattrs_lock();
4c16bd32 5183
6ba94429
FW
5184 attrs = wq_sysfs_prep_attrs(wq);
5185 if (!attrs)
d4d3e257 5186 goto out_unlock;
4c16bd32 5187
6ba94429
FW
5188 ret = -EINVAL;
5189 if (sscanf(buf, "%d", &v) == 1) {
5190 attrs->no_numa = !v;
d4d3e257 5191 ret = apply_workqueue_attrs_locked(wq, attrs);
65758202 5192 }
6ba94429 5193
d4d3e257
LJ
5194out_unlock:
5195 apply_wqattrs_unlock();
6ba94429
FW
5196 free_workqueue_attrs(attrs);
5197 return ret ?: count;
65758202
TH
5198}
5199
6ba94429
FW
5200static struct device_attribute wq_sysfs_unbound_attrs[] = {
5201 __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
5202 __ATTR(nice, 0644, wq_nice_show, wq_nice_store),
5203 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
5204 __ATTR(numa, 0644, wq_numa_show, wq_numa_store),
5205 __ATTR_NULL,
5206};
8ccad40d 5207
6ba94429
FW
5208static struct bus_type wq_subsys = {
5209 .name = "workqueue",
5210 .dev_groups = wq_sysfs_groups,
2d3854a3
RR
5211};
5212
b05a7928
FW
5213static ssize_t wq_unbound_cpumask_show(struct device *dev,
5214 struct device_attribute *attr, char *buf)
5215{
5216 int written;
5217
042f7df1 5218 mutex_lock(&wq_pool_mutex);
b05a7928
FW
5219 written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5220 cpumask_pr_args(wq_unbound_cpumask));
042f7df1 5221 mutex_unlock(&wq_pool_mutex);
b05a7928
FW
5222
5223 return written;
5224}
5225
042f7df1
LJ
5226static ssize_t wq_unbound_cpumask_store(struct device *dev,
5227 struct device_attribute *attr, const char *buf, size_t count)
5228{
5229 cpumask_var_t cpumask;
5230 int ret;
5231
5232 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
5233 return -ENOMEM;
5234
5235 ret = cpumask_parse(buf, cpumask);
5236 if (!ret)
5237 ret = workqueue_set_unbound_cpumask(cpumask);
5238
5239 free_cpumask_var(cpumask);
5240 return ret ? ret : count;
5241}
5242
b05a7928 5243static struct device_attribute wq_sysfs_cpumask_attr =
042f7df1
LJ
5244 __ATTR(cpumask, 0644, wq_unbound_cpumask_show,
5245 wq_unbound_cpumask_store);
b05a7928 5246
6ba94429 5247static int __init wq_sysfs_init(void)
2d3854a3 5248{
b05a7928
FW
5249 int err;
5250
5251 err = subsys_virtual_register(&wq_subsys, NULL);
5252 if (err)
5253 return err;
5254
5255 return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr);
2d3854a3 5256}
6ba94429 5257core_initcall(wq_sysfs_init);
2d3854a3 5258
6ba94429 5259static void wq_device_release(struct device *dev)
2d3854a3 5260{
6ba94429 5261 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
6b44003e 5262
6ba94429 5263 kfree(wq_dev);
2d3854a3 5264}
a0a1a5fd
TH
5265
5266/**
6ba94429
FW
5267 * workqueue_sysfs_register - make a workqueue visible in sysfs
5268 * @wq: the workqueue to register
a0a1a5fd 5269 *
6ba94429
FW
5270 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
5271 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
5272 * which is the preferred method.
a0a1a5fd 5273 *
6ba94429
FW
5274 * Workqueue user should use this function directly iff it wants to apply
5275 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
5276 * apply_workqueue_attrs() may race against userland updating the
5277 * attributes.
5278 *
5279 * Return: 0 on success, -errno on failure.
a0a1a5fd 5280 */
6ba94429 5281int workqueue_sysfs_register(struct workqueue_struct *wq)
a0a1a5fd 5282{
6ba94429
FW
5283 struct wq_device *wq_dev;
5284 int ret;
a0a1a5fd 5285
6ba94429 5286 /*
402dd89d 5287 * Adjusting max_active or creating new pwqs by applying
6ba94429
FW
5288 * attributes breaks ordering guarantee. Disallow exposing ordered
5289 * workqueues.
5290 */
0a94efb5 5291 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
6ba94429 5292 return -EINVAL;
a0a1a5fd 5293
6ba94429
FW
5294 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
5295 if (!wq_dev)
5296 return -ENOMEM;
5bcab335 5297
6ba94429
FW
5298 wq_dev->wq = wq;
5299 wq_dev->dev.bus = &wq_subsys;
6ba94429 5300 wq_dev->dev.release = wq_device_release;
23217b44 5301 dev_set_name(&wq_dev->dev, "%s", wq->name);
a0a1a5fd 5302
6ba94429
FW
5303 /*
5304 * unbound_attrs are created separately. Suppress uevent until
5305 * everything is ready.
5306 */
5307 dev_set_uevent_suppress(&wq_dev->dev, true);
a0a1a5fd 5308
6ba94429
FW
5309 ret = device_register(&wq_dev->dev);
5310 if (ret) {
5311 kfree(wq_dev);
5312 wq->wq_dev = NULL;
5313 return ret;
5314 }
a0a1a5fd 5315
6ba94429
FW
5316 if (wq->flags & WQ_UNBOUND) {
5317 struct device_attribute *attr;
a0a1a5fd 5318
6ba94429
FW
5319 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
5320 ret = device_create_file(&wq_dev->dev, attr);
5321 if (ret) {
5322 device_unregister(&wq_dev->dev);
5323 wq->wq_dev = NULL;
5324 return ret;
a0a1a5fd
TH
5325 }
5326 }
5327 }
6ba94429
FW
5328
5329 dev_set_uevent_suppress(&wq_dev->dev, false);
5330 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
5331 return 0;
a0a1a5fd
TH
5332}
5333
5334/**
6ba94429
FW
5335 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
5336 * @wq: the workqueue to unregister
a0a1a5fd 5337 *
6ba94429 5338 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
a0a1a5fd 5339 */
6ba94429 5340static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
a0a1a5fd 5341{
6ba94429 5342 struct wq_device *wq_dev = wq->wq_dev;
8b03ae3c 5343
6ba94429
FW
5344 if (!wq->wq_dev)
5345 return;
a0a1a5fd 5346
6ba94429
FW
5347 wq->wq_dev = NULL;
5348 device_unregister(&wq_dev->dev);
a0a1a5fd 5349}
6ba94429
FW
5350#else /* CONFIG_SYSFS */
5351static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { }
5352#endif /* CONFIG_SYSFS */
a0a1a5fd 5353
82607adc
TH
5354/*
5355 * Workqueue watchdog.
5356 *
5357 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
5358 * flush dependency, a concurrency managed work item which stays RUNNING
5359 * indefinitely. Workqueue stalls can be very difficult to debug as the
5360 * usual warning mechanisms don't trigger and internal workqueue state is
5361 * largely opaque.
5362 *
5363 * Workqueue watchdog monitors all worker pools periodically and dumps
5364 * state if some pools failed to make forward progress for a while where
5365 * forward progress is defined as the first item on ->worklist changing.
5366 *
5367 * This mechanism is controlled through the kernel parameter
5368 * "workqueue.watchdog_thresh" which can be updated at runtime through the
5369 * corresponding sysfs parameter file.
5370 */
5371#ifdef CONFIG_WQ_WATCHDOG
5372
5373static void wq_watchdog_timer_fn(unsigned long data);
5374
5375static unsigned long wq_watchdog_thresh = 30;
5376static struct timer_list wq_watchdog_timer =
5377 TIMER_DEFERRED_INITIALIZER(wq_watchdog_timer_fn, 0, 0);
5378
5379static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
5380static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
5381
5382static void wq_watchdog_reset_touched(void)
5383{
5384 int cpu;
5385
5386 wq_watchdog_touched = jiffies;
5387 for_each_possible_cpu(cpu)
5388 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5389}
5390
5391static void wq_watchdog_timer_fn(unsigned long data)
5392{
5393 unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
5394 bool lockup_detected = false;
5395 struct worker_pool *pool;
5396 int pi;
5397
5398 if (!thresh)
5399 return;
5400
5401 rcu_read_lock();
5402
5403 for_each_pool(pool, pi) {
5404 unsigned long pool_ts, touched, ts;
5405
5406 if (list_empty(&pool->worklist))
5407 continue;
5408
5409 /* get the latest of pool and touched timestamps */
5410 pool_ts = READ_ONCE(pool->watchdog_ts);
5411 touched = READ_ONCE(wq_watchdog_touched);
5412
5413 if (time_after(pool_ts, touched))
5414 ts = pool_ts;
5415 else
5416 ts = touched;
5417
5418 if (pool->cpu >= 0) {
5419 unsigned long cpu_touched =
5420 READ_ONCE(per_cpu(wq_watchdog_touched_cpu,
5421 pool->cpu));
5422 if (time_after(cpu_touched, ts))
5423 ts = cpu_touched;
5424 }
5425
5426 /* did we stall? */
5427 if (time_after(jiffies, ts + thresh)) {
5428 lockup_detected = true;
5429 pr_emerg("BUG: workqueue lockup - pool");
5430 pr_cont_pool_info(pool);
5431 pr_cont(" stuck for %us!\n",
5432 jiffies_to_msecs(jiffies - pool_ts) / 1000);
5433 }
5434 }
5435
5436 rcu_read_unlock();
5437
5438 if (lockup_detected)
5439 show_workqueue_state();
5440
5441 wq_watchdog_reset_touched();
5442 mod_timer(&wq_watchdog_timer, jiffies + thresh);
5443}
5444
5445void wq_watchdog_touch(int cpu)
5446{
5447 if (cpu >= 0)
5448 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5449 else
5450 wq_watchdog_touched = jiffies;
5451}
5452
5453static void wq_watchdog_set_thresh(unsigned long thresh)
5454{
5455 wq_watchdog_thresh = 0;
5456 del_timer_sync(&wq_watchdog_timer);
5457
5458 if (thresh) {
5459 wq_watchdog_thresh = thresh;
5460 wq_watchdog_reset_touched();
5461 mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
5462 }
5463}
5464
5465static int wq_watchdog_param_set_thresh(const char *val,
5466 const struct kernel_param *kp)
5467{
5468 unsigned long thresh;
5469 int ret;
5470
5471 ret = kstrtoul(val, 0, &thresh);
5472 if (ret)
5473 return ret;
5474
5475 if (system_wq)
5476 wq_watchdog_set_thresh(thresh);
5477 else
5478 wq_watchdog_thresh = thresh;
5479
5480 return 0;
5481}
5482
5483static const struct kernel_param_ops wq_watchdog_thresh_ops = {
5484 .set = wq_watchdog_param_set_thresh,
5485 .get = param_get_ulong,
5486};
5487
5488module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
5489 0644);
5490
5491static void wq_watchdog_init(void)
5492{
5493 wq_watchdog_set_thresh(wq_watchdog_thresh);
5494}
5495
5496#else /* CONFIG_WQ_WATCHDOG */
5497
5498static inline void wq_watchdog_init(void) { }
5499
5500#endif /* CONFIG_WQ_WATCHDOG */
5501
bce90380
TH
5502static void __init wq_numa_init(void)
5503{
5504 cpumask_var_t *tbl;
5505 int node, cpu;
5506
bce90380
TH
5507 if (num_possible_nodes() <= 1)
5508 return;
5509
d55262c4
TH
5510 if (wq_disable_numa) {
5511 pr_info("workqueue: NUMA affinity support disabled\n");
5512 return;
5513 }
5514
4c16bd32
TH
5515 wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
5516 BUG_ON(!wq_update_unbound_numa_attrs_buf);
5517
bce90380
TH
5518 /*
5519 * We want masks of possible CPUs of each node which isn't readily
5520 * available. Build one from cpu_to_node() which should have been
5521 * fully initialized by now.
5522 */
ddcb57e2 5523 tbl = kzalloc(nr_node_ids * sizeof(tbl[0]), GFP_KERNEL);
bce90380
TH
5524 BUG_ON(!tbl);
5525
5526 for_each_node(node)
5a6024f1 5527 BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
1be0c25d 5528 node_online(node) ? node : NUMA_NO_NODE));
bce90380
TH
5529
5530 for_each_possible_cpu(cpu) {
5531 node = cpu_to_node(cpu);
5532 if (WARN_ON(node == NUMA_NO_NODE)) {
5533 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
5534 /* happens iff arch is bonkers, let's just proceed */
5535 return;
5536 }
5537 cpumask_set_cpu(cpu, tbl[node]);
5538 }
5539
5540 wq_numa_possible_cpumask = tbl;
5541 wq_numa_enabled = true;
5542}
5543
3347fa09
TH
5544/**
5545 * workqueue_init_early - early init for workqueue subsystem
5546 *
5547 * This is the first half of two-staged workqueue subsystem initialization
5548 * and invoked as soon as the bare basics - memory allocation, cpumasks and
5549 * idr are up. It sets up all the data structures and system workqueues
5550 * and allows early boot code to create workqueues and queue/cancel work
5551 * items. Actual work item execution starts only after kthreads can be
5552 * created and scheduled right before early initcalls.
5553 */
5554int __init workqueue_init_early(void)
1da177e4 5555{
7a4e344c
TH
5556 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
5557 int i, cpu;
c34056a3 5558
e904e6c2
TH
5559 WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
5560
b05a7928
FW
5561 BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
5562 cpumask_copy(wq_unbound_cpumask, cpu_possible_mask);
5563
e904e6c2
TH
5564 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
5565
706026c2 5566 /* initialize CPU pools */
29c91e99 5567 for_each_possible_cpu(cpu) {
4ce62e9e 5568 struct worker_pool *pool;
8b03ae3c 5569
7a4e344c 5570 i = 0;
f02ae73a 5571 for_each_cpu_worker_pool(pool, cpu) {
7a4e344c 5572 BUG_ON(init_worker_pool(pool));
ec22ca5e 5573 pool->cpu = cpu;
29c91e99 5574 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
7a4e344c 5575 pool->attrs->nice = std_nice[i++];
f3f90ad4 5576 pool->node = cpu_to_node(cpu);
7a4e344c 5577
9daf9e67 5578 /* alloc pool ID */
68e13a67 5579 mutex_lock(&wq_pool_mutex);
9daf9e67 5580 BUG_ON(worker_pool_assign_id(pool));
68e13a67 5581 mutex_unlock(&wq_pool_mutex);
4ce62e9e 5582 }
8b03ae3c
TH
5583 }
5584
8a2b7538 5585 /* create default unbound and ordered wq attrs */
29c91e99
TH
5586 for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
5587 struct workqueue_attrs *attrs;
5588
5589 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
29c91e99 5590 attrs->nice = std_nice[i];
29c91e99 5591 unbound_std_wq_attrs[i] = attrs;
8a2b7538
TH
5592
5593 /*
5594 * An ordered wq should have only one pwq as ordering is
5595 * guaranteed by max_active which is enforced by pwqs.
5596 * Turn off NUMA so that dfl_pwq is used for all nodes.
5597 */
5598 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5599 attrs->nice = std_nice[i];
5600 attrs->no_numa = true;
5601 ordered_wq_attrs[i] = attrs;
29c91e99
TH
5602 }
5603
d320c038 5604 system_wq = alloc_workqueue("events", 0, 0);
1aabe902 5605 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
d320c038 5606 system_long_wq = alloc_workqueue("events_long", 0, 0);
f3421797
TH
5607 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
5608 WQ_UNBOUND_MAX_ACTIVE);
24d51add
TH
5609 system_freezable_wq = alloc_workqueue("events_freezable",
5610 WQ_FREEZABLE, 0);
0668106c
VK
5611 system_power_efficient_wq = alloc_workqueue("events_power_efficient",
5612 WQ_POWER_EFFICIENT, 0);
5613 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
5614 WQ_FREEZABLE | WQ_POWER_EFFICIENT,
5615 0);
1aabe902 5616 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
0668106c
VK
5617 !system_unbound_wq || !system_freezable_wq ||
5618 !system_power_efficient_wq ||
5619 !system_freezable_power_efficient_wq);
82607adc 5620
3347fa09
TH
5621 return 0;
5622}
5623
5624/**
5625 * workqueue_init - bring workqueue subsystem fully online
5626 *
5627 * This is the latter half of two-staged workqueue subsystem initialization
5628 * and invoked as soon as kthreads can be created and scheduled.
5629 * Workqueues have been created and work items queued on them, but there
5630 * are no kworkers executing the work items yet. Populate the worker pools
5631 * with the initial workers and enable future kworker creations.
5632 */
5633int __init workqueue_init(void)
5634{
2186d9f9 5635 struct workqueue_struct *wq;
3347fa09
TH
5636 struct worker_pool *pool;
5637 int cpu, bkt;
5638
2186d9f9
TH
5639 /*
5640 * It'd be simpler to initialize NUMA in workqueue_init_early() but
5641 * CPU to node mapping may not be available that early on some
5642 * archs such as power and arm64. As per-cpu pools created
5643 * previously could be missing node hint and unbound pools NUMA
5644 * affinity, fix them up.
5645 */
5646 wq_numa_init();
5647
5648 mutex_lock(&wq_pool_mutex);
5649
5650 for_each_possible_cpu(cpu) {
5651 for_each_cpu_worker_pool(pool, cpu) {
5652 pool->node = cpu_to_node(cpu);
5653 }
5654 }
5655
5656 list_for_each_entry(wq, &workqueues, list)
5657 wq_update_unbound_numa(wq, smp_processor_id(), true);
5658
5659 mutex_unlock(&wq_pool_mutex);
5660
3347fa09
TH
5661 /* create the initial workers */
5662 for_each_online_cpu(cpu) {
5663 for_each_cpu_worker_pool(pool, cpu) {
5664 pool->flags &= ~POOL_DISASSOCIATED;
5665 BUG_ON(!create_worker(pool));
5666 }
5667 }
5668
5669 hash_for_each(unbound_pool_hash, bkt, pool, hash_node)
5670 BUG_ON(!create_worker(pool));
5671
5672 wq_online = true;
82607adc
TH
5673 wq_watchdog_init();
5674
6ee0578b 5675 return 0;
1da177e4 5676}