]> git.ipfire.org Git - thirdparty/squid.git/blame - lib/GNUregex.c
Initial import of libcompat code
[thirdparty/squid.git] / lib / GNUregex.c
CommitLineData
836c3244 1/*
cc192b50 2 * $Id: GNUregex.c,v 1.22 2007/12/14 23:11:44 amosjeffries Exp $
836c3244 3 */
4
090089c4 5/* Extended regular expression matching and search library,
b8d8561b 6 * version 0.12.
7 * (Implements POSIX draft P10003.2/D11.2, except for
8 * internationalization features.)
26ac0430 9 *
b8d8561b 10 * Copyright (C) 1993 Free Software Foundation, Inc.
26ac0430 11 *
b8d8561b 12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
26ac0430 16 *
b8d8561b 17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
26ac0430 21 *
b8d8561b 22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, write to the Free Software
cbdec147 24 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111, USA. */
090089c4 25
26/* AIX requires this to be the first thing in the file. */
27#if defined (_AIX) && !defined (REGEX_MALLOC)
b8d8561b 28#pragma alloca
090089c4 29#endif
30
6637e3a5 31#ifndef _GNU_SOURCE
32#define _GNU_SOURCE 1
33#endif
090089c4 34
090089c4 35#include "config.h"
090089c4 36
1cf7b8fa 37#if !HAVE_ALLOCA
38#define REGEX_MALLOC 1
39#endif
40
090089c4 41/* We used to test for `BSTRING' here, but only GCC and Emacs define
b8d8561b 42 * `BSTRING', as far as I know, and neither of them use this code. */
090089c4 43#if HAVE_STRING_H || STDC_HEADERS
44#include <string.h>
090089c4 45#else
46#include <strings.h>
47#endif
48
49#ifdef STDC_HEADERS
50#include <stdlib.h>
51#else
b8d8561b 52char *malloc();
53char *realloc();
090089c4 54#endif
55
56
57/* Define the syntax stuff for \<, \>, etc. */
58
59/* This must be nonzero for the wordchar and notwordchar pattern
b8d8561b 60 * commands in re_match_2. */
61#ifndef Sword
090089c4 62#define Sword 1
63#endif
64
65#ifdef SYNTAX_TABLE
66
67extern char *re_syntax_table;
68
69#else /* not SYNTAX_TABLE */
70
71/* How many characters in the character set. */
72#define CHAR_SET_SIZE 256
73
74static char re_syntax_table[CHAR_SET_SIZE];
75
76static void
862bc6c0 77init_syntax_once(void)
090089c4 78{
b8d8561b 79 register int c;
80 static int done = 0;
090089c4 81
b8d8561b 82 if (done)
26ac0430 83 return;
090089c4 84
25347664 85 memset(re_syntax_table, 0, sizeof re_syntax_table);
090089c4 86
b8d8561b 87 for (c = 'a'; c <= 'z'; c++)
26ac0430 88 re_syntax_table[c] = Sword;
090089c4 89
b8d8561b 90 for (c = 'A'; c <= 'Z'; c++)
26ac0430 91 re_syntax_table[c] = Sword;
090089c4 92
b8d8561b 93 for (c = '0'; c <= '9'; c++)
26ac0430 94 re_syntax_table[c] = Sword;
090089c4 95
b8d8561b 96 re_syntax_table['_'] = Sword;
090089c4 97
b8d8561b 98 done = 1;
090089c4 99}
100
101#endif /* not SYNTAX_TABLE */
102
103#define SYNTAX(c) re_syntax_table[c]
104
090089c4 105\f
106/* Get the interface, including the syntax bits. */
107#include "GNUregex.h"
108
35516333 109/* Compile a fastmap for the compiled pattern in BUFFER; used to
110 * accelerate searches. Return 0 if successful and -2 if was an
111 * internal error. */
112static int re_compile_fastmap _RE_ARGS((struct re_pattern_buffer * buffer));
113
114
115/* Search in the string STRING (with length LENGTH) for the pattern
116 * compiled into BUFFER. Start searching at position START, for RANGE
117 * characters. Return the starting position of the match, -1 for no
118 * match, or -2 for an internal error. Also return register
119 * information in REGS (if REGS and BUFFER->no_sub are nonzero). */
120static int re_search
26ac0430
AJ
121_RE_ARGS((struct re_pattern_buffer * buffer, const char *string,
122 int length, int start, int range, struct re_registers * regs));
35516333 123
124
125/* Like `re_search', but search in the concatenation of STRING1 and
126 * STRING2. Also, stop searching at index START + STOP. */
127static int re_search_2
26ac0430
AJ
128_RE_ARGS((struct re_pattern_buffer * buffer, const char *string1,
129 int length1, const char *string2, int length2,
130 int start, int range, struct re_registers * regs, int stop));
35516333 131
132
133/* Like `re_search_2', but return how many characters in STRING the regexp
134 * in BUFFER matched, starting at position START. */
135static int re_match_2
26ac0430
AJ
136_RE_ARGS((struct re_pattern_buffer * buffer, const char *string1,
137 int length1, const char *string2, int length2,
138 int start, struct re_registers * regs, int stop));
35516333 139
140
090089c4 141/* isalpha etc. are used for the character classes. */
142#include <ctype.h>
143
144#ifndef isascii
145#define isascii(c) 1
146#endif
147
148#ifdef isblank
ec451a0f 149#define ISBLANK(c) (isascii ((unsigned char)c) && isblank ((unsigned char)c))
090089c4 150#else
151#define ISBLANK(c) ((c) == ' ' || (c) == '\t')
152#endif
153#ifdef isgraph
ec451a0f 154#define ISGRAPH(c) (isascii ((unsigned char)c) && isgraph ((unsigned char)c))
090089c4 155#else
ec451a0f 156#define ISGRAPH(c) (isascii ((unsigned char)c) && isprint ((unsigned char)c) && !isspace ((unsigned char)c))
090089c4 157#endif
158
ec451a0f 159#define ISPRINT(c) (isascii ((unsigned char)c) && isprint ((unsigned char)c))
160#define ISDIGIT(c) (isascii ((unsigned char)c) && isdigit ((unsigned char)c))
161#define ISALNUM(c) (isascii ((unsigned char)c) && isalnum ((unsigned char)c))
162#define ISALPHA(c) (isascii ((unsigned char)c) && isalpha ((unsigned char)c))
163#define ISCNTRL(c) (isascii ((unsigned char)c) && iscntrl ((unsigned char)c))
164#define ISLOWER(c) (isascii ((unsigned char)c) && islower ((unsigned char)c))
165#define ISPUNCT(c) (isascii ((unsigned char)c) && ispunct ((unsigned char)c))
166#define ISSPACE(c) (isascii ((unsigned char)c) && isspace ((unsigned char)c))
167#define ISUPPER(c) (isascii ((unsigned char)c) && isupper ((unsigned char)c))
168#define ISXDIGIT(c) (isascii ((unsigned char)c) && isxdigit ((unsigned char)c))
090089c4 169
170#ifndef NULL
171#define NULL 0
172#endif
173
174/* We remove any previous definition of `SIGN_EXTEND_CHAR',
b8d8561b 175 * since ours (we hope) works properly with all combinations of
176 * machines, compilers, `char' and `unsigned char' argument types.
177 * (Per Bothner suggested the basic approach.) */
090089c4 178#undef SIGN_EXTEND_CHAR
24382924 179#ifdef __STDC__
090089c4 180#define SIGN_EXTEND_CHAR(c) ((signed char) (c))
b8d8561b 181#else /* not __STDC__ */
090089c4 182/* As in Harbison and Steele. */
183#define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
184#endif
185\f
186/* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we
b8d8561b 187 * use `alloca' instead of `malloc'. This is because using malloc in
188 * re_search* or re_match* could cause memory leaks when C-g is used in
189 * Emacs; also, malloc is slower and causes storage fragmentation. On
26ac0430
AJ
190 * the other hand, malloc is more portable, and easier to debug.
191 *
b8d8561b 192 * Because we sometimes use alloca, some routines have to be macros,
193 * not functions -- `alloca'-allocated space disappears at the end of the
194 * function it is called in. */
090089c4 195
196#ifdef REGEX_MALLOC
197
198#define REGEX_ALLOCATE malloc
199#define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
200
201#else /* not REGEX_MALLOC */
202
203/* Emacs already defines alloca, sometimes. */
204#ifndef alloca
205
206/* Make alloca work the best possible way. */
207#ifdef __GNUC__
208#define alloca __builtin_alloca
209#else /* not __GNUC__ */
210#if HAVE_ALLOCA_H
211#include <alloca.h>
212#else /* not __GNUC__ or HAVE_ALLOCA_H */
b8d8561b 213#ifndef _AIX /* Already did AIX, up at the top. */
214char *alloca();
090089c4 215#endif /* not _AIX */
b8d8561b 216#endif /* not HAVE_ALLOCA_H */
090089c4 217#endif /* not __GNUC__ */
218
219#endif /* not alloca */
220
221#define REGEX_ALLOCATE alloca
222
223/* Assumes a `char *destination' variable. */
224#define REGEX_REALLOCATE(source, osize, nsize) \
225 (destination = (char *) alloca (nsize), \
25347664 226 xmemcpy (destination, source, osize), \
090089c4 227 destination)
228
229#endif /* not REGEX_MALLOC */
230
231
232/* True if `size1' is non-NULL and PTR is pointing anywhere inside
b8d8561b 233 * `string1' or just past its end. This works if PTR is NULL, which is
234 * a good thing. */
090089c4 235#define FIRST_STRING_P(ptr) \
236 (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
237
238/* (Re)Allocate N items of type T using malloc, or fail. */
239#define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
240#define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
241#define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
242
b8d8561b 243#define BYTEWIDTH 8 /* In bits. */
090089c4 244
245#define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
246
247#define MAX(a, b) ((a) > (b) ? (a) : (b))
248#define MIN(a, b) ((a) < (b) ? (a) : (b))
249
cc192b50 250#if !defined(__MINGW32__) /* MinGW defines boolean */
090089c4 251typedef char boolean;
cc192b50 252#endif
090089c4 253#define false 0
254#define true 1
255\f
256/* These are the command codes that appear in compiled regular
b8d8561b 257 * expressions. Some opcodes are followed by argument bytes. A
258 * command code can specify any interpretation whatsoever for its
259 * arguments. Zero bytes may appear in the compiled regular expression.
26ac0430 260 *
b8d8561b 261 * The value of `exactn' is needed in search.c (search_buffer) in Emacs.
262 * So regex.h defines a symbol `RE_EXACTN_VALUE' to be 1; the value of
263 * `exactn' we use here must also be 1. */
264
265typedef enum {
266 no_op = 0,
267
268 /* Followed by one byte giving n, then by n literal bytes. */
269 exactn = 1,
270
271 /* Matches any (more or less) character. */
272 anychar,
273
274 /* Matches any one char belonging to specified set. First
275 * following byte is number of bitmap bytes. Then come bytes
276 * for a bitmap saying which chars are in. Bits in each byte
277 * are ordered low-bit-first. A character is in the set if its
278 * bit is 1. A character too large to have a bit in the map is
279 * automatically not in the set. */
280 charset,
281
282 /* Same parameters as charset, but match any character that is
283 * not one of those specified. */
284 charset_not,
285
286 /* Start remembering the text that is matched, for storing in a
287 * register. Followed by one byte with the register number, in
288 * the range 0 to one less than the pattern buffer's re_nsub
289 * field. Then followed by one byte with the number of groups
290 * inner to this one. (This last has to be part of the
291 * start_memory only because we need it in the on_failure_jump
292 * of re_match_2.) */
293 start_memory,
294
295 /* Stop remembering the text that is matched and store it in a
296 * memory register. Followed by one byte with the register
297 * number, in the range 0 to one less than `re_nsub' in the
298 * pattern buffer, and one byte with the number of inner groups,
299 * just like `start_memory'. (We need the number of inner
300 * groups here because we don't have any easy way of finding the
301 * corresponding start_memory when we're at a stop_memory.) */
302 stop_memory,
303
304 /* Match a duplicate of something remembered. Followed by one
305 * byte containing the register number. */
306 duplicate,
307
308 /* Fail unless at beginning of line. */
309 begline,
310
311 /* Fail unless at end of line. */
312 endline,
313
35516333 314 /* Succeeds if or at beginning of string to be matched. */
b8d8561b 315 begbuf,
316
317 /* Analogously, for end of buffer/string. */
318 endbuf,
319
320 /* Followed by two byte relative address to which to jump. */
321 jump,
322
323 /* Same as jump, but marks the end of an alternative. */
324 jump_past_alt,
325
326 /* Followed by two-byte relative address of place to resume at
327 * in case of failure. */
328 on_failure_jump,
329
330 /* Like on_failure_jump, but pushes a placeholder instead of the
331 * current string position when executed. */
332 on_failure_keep_string_jump,
333
334 /* Throw away latest failure point and then jump to following
335 * two-byte relative address. */
336 pop_failure_jump,
337
338 /* Change to pop_failure_jump if know won't have to backtrack to
339 * match; otherwise change to jump. This is used to jump
340 * back to the beginning of a repeat. If what follows this jump
341 * clearly won't match what the repeat does, such that we can be
342 * sure that there is no use backtracking out of repetitions
343 * already matched, then we change it to a pop_failure_jump.
344 * Followed by two-byte address. */
345 maybe_pop_jump,
346
347 /* Jump to following two-byte address, and push a dummy failure
348 * point. This failure point will be thrown away if an attempt
349 * is made to use it for a failure. A `+' construct makes this
350 * before the first repeat. Also used as an intermediary kind
351 * of jump when compiling an alternative. */
352 dummy_failure_jump,
353
354 /* Push a dummy failure point and continue. Used at the end of
355 * alternatives. */
356 push_dummy_failure,
357
358 /* Followed by two-byte relative address and two-byte number n.
359 * After matching N times, jump to the address upon failure. */
360 succeed_n,
361
362 /* Followed by two-byte relative address, and two-byte number n.
363 * Jump to the address N times, then fail. */
364 jump_n,
365
366 /* Set the following two-byte relative address to the
367 * subsequent two-byte number. The address *includes* the two
368 * bytes of number. */
369 set_number_at,
370
371 wordchar, /* Matches any word-constituent character. */
372 notwordchar, /* Matches any char that is not a word-constituent. */
373
374 wordbeg, /* Succeeds if at word beginning. */
375 wordend, /* Succeeds if at word end. */
376
377 wordbound, /* Succeeds if at a word boundary. */
378 notwordbound /* Succeeds if not at a word boundary. */
090089c4 379
090089c4 380} re_opcode_t;
381\f
382/* Common operations on the compiled pattern. */
383
384/* Store NUMBER in two contiguous bytes starting at DESTINATION. */
385
386#define STORE_NUMBER(destination, number) \
387 do { \
388 (destination)[0] = (number) & 0377; \
389 (destination)[1] = (number) >> 8; \
390 } while (0)
391
392/* Same as STORE_NUMBER, except increment DESTINATION to
b8d8561b 393 * the byte after where the number is stored. Therefore, DESTINATION
394 * must be an lvalue. */
090089c4 395
396#define STORE_NUMBER_AND_INCR(destination, number) \
397 do { \
398 STORE_NUMBER (destination, number); \
399 (destination) += 2; \
400 } while (0)
401
402/* Put into DESTINATION a number stored in two contiguous bytes starting
b8d8561b 403 * at SOURCE. */
090089c4 404
405#define EXTRACT_NUMBER(destination, source) \
406 do { \
407 (destination) = *(source) & 0377; \
408 (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8; \
409 } while (0)
410
411#ifdef DEBUG
412static void
b8d8561b 413extract_number(dest, source)
26ac0430
AJ
414int *dest;
415unsigned char *source;
090089c4 416{
b8d8561b 417 int temp = SIGN_EXTEND_CHAR(*(source + 1));
418 *dest = *source & 0377;
419 *dest += temp << 8;
090089c4 420}
421
b8d8561b 422#ifndef EXTRACT_MACROS /* To debug the macros. */
090089c4 423#undef EXTRACT_NUMBER
424#define EXTRACT_NUMBER(dest, src) extract_number (&dest, src)
425#endif /* not EXTRACT_MACROS */
426
427#endif /* DEBUG */
428
429/* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
b8d8561b 430 * SOURCE must be an lvalue. */
090089c4 431
432#define EXTRACT_NUMBER_AND_INCR(destination, source) \
433 do { \
434 EXTRACT_NUMBER (destination, source); \
435 (source) += 2; \
436 } while (0)
437
438#ifdef DEBUG
439static void
b8d8561b 440extract_number_and_incr(destination, source)
26ac0430
AJ
441int *destination;
442unsigned char **source;
b8d8561b 443{
444 extract_number(destination, *source);
445 *source += 2;
090089c4 446}
447
448#ifndef EXTRACT_MACROS
449#undef EXTRACT_NUMBER_AND_INCR
450#define EXTRACT_NUMBER_AND_INCR(dest, src) \
451 extract_number_and_incr (&dest, &src)
452#endif /* not EXTRACT_MACROS */
453
454#endif /* DEBUG */
455\f
456/* If DEBUG is defined, Regex prints many voluminous messages about what
b8d8561b 457 * it is doing (if the variable `debug' is nonzero). If linked with the
458 * main program in `iregex.c', you can enter patterns and strings
459 * interactively. And if linked with the main program in `main.c' and
460 * the other test files, you can run the already-written tests. */
090089c4 461
462#ifdef DEBUG
463
464/* We use standard I/O for debugging. */
465#include <stdio.h>
466
467/* It is useful to test things that ``must'' be true when debugging. */
468#include <assert.h>
469
470static int debug = 0;
471
472#define DEBUG_STATEMENT(e) e
473#define DEBUG_PRINT1(x) if (debug) printf (x)
474#define DEBUG_PRINT2(x1, x2) if (debug) printf (x1, x2)
475#define DEBUG_PRINT3(x1, x2, x3) if (debug) printf (x1, x2, x3)
476#define DEBUG_PRINT4(x1, x2, x3, x4) if (debug) printf (x1, x2, x3, x4)
477#define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \
478 if (debug) print_partial_compiled_pattern (s, e)
479#define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \
480 if (debug) print_double_string (w, s1, sz1, s2, sz2)
481
482
b8d8561b 483extern void printchar();
090089c4 484
485/* Print the fastmap in human-readable form. */
486
487void
b8d8561b 488print_fastmap(fastmap)
26ac0430 489char *fastmap;
090089c4 490{
b8d8561b 491 unsigned was_a_range = 0;
492 unsigned i = 0;
493
494 while (i < (1 << BYTEWIDTH)) {
26ac0430
AJ
495 if (fastmap[i++]) {
496 was_a_range = 0;
497 printchar(i - 1);
498 while (i < (1 << BYTEWIDTH) && fastmap[i]) {
499 was_a_range = 1;
500 i++;
501 }
502 if (was_a_range) {
503 printf("-");
504 printchar(i - 1);
505 }
506 }
090089c4 507 }
b8d8561b 508 putchar('\n');
090089c4 509}
510
511
512/* Print a compiled pattern string in human-readable form, starting at
b8d8561b 513 * the START pointer into it and ending just before the pointer END. */
090089c4 514
515void
b8d8561b 516print_partial_compiled_pattern(start, end)
26ac0430
AJ
517unsigned char *start;
518unsigned char *end;
090089c4 519{
b8d8561b 520 int mcnt, mcnt2;
521 unsigned char *p = start;
522 unsigned char *pend = end;
523
524 if (start == NULL) {
26ac0430
AJ
525 printf("(null)\n");
526 return;
090089c4 527 }
b8d8561b 528 /* Loop over pattern commands. */
529 while (p < pend) {
26ac0430
AJ
530 switch ((re_opcode_t) * p++) {
531 case no_op:
532 printf("/no_op");
533 break;
534
535 case exactn:
536 mcnt = *p++;
537 printf("/exactn/%d", mcnt);
538 do {
539 putchar('/');
540 printchar(*p++);
541 } while (--mcnt);
542 break;
543
544 case start_memory:
545 mcnt = *p++;
546 printf("/start_memory/%d/%d", mcnt, *p++);
547 break;
548
549 case stop_memory:
550 mcnt = *p++;
551 printf("/stop_memory/%d/%d", mcnt, *p++);
552 break;
553
554 case duplicate:
555 printf("/duplicate/%d", *p++);
556 break;
557
558 case anychar:
559 printf("/anychar");
560 break;
561
562 case charset:
563 case charset_not: {
564 register int c;
565
566 printf("/charset%s",
567 (re_opcode_t) * (p - 1) == charset_not ? "_not" : "");
568
569 assert(p + *p < pend);
570
571 for (c = 0; c < *p; c++) {
572 unsigned bit;
573 unsigned char map_byte = p[1 + c];
574
575 putchar('/');
576
577 for (bit = 0; bit < BYTEWIDTH; bit++)
578 if (map_byte & (1 << bit))
579 printchar(c * BYTEWIDTH + bit);
580 }
581 p += 1 + *p;
582 break;
583 }
584
585 case begline:
586 printf("/begline");
587 break;
588
589 case endline:
590 printf("/endline");
591 break;
592
593 case on_failure_jump:
594 extract_number_and_incr(&mcnt, &p);
595 printf("/on_failure_jump/0/%d", mcnt);
596 break;
597
598 case on_failure_keep_string_jump:
599 extract_number_and_incr(&mcnt, &p);
600 printf("/on_failure_keep_string_jump/0/%d", mcnt);
601 break;
602
603 case dummy_failure_jump:
604 extract_number_and_incr(&mcnt, &p);
605 printf("/dummy_failure_jump/0/%d", mcnt);
606 break;
607
608 case push_dummy_failure:
609 printf("/push_dummy_failure");
610 break;
611
612 case maybe_pop_jump:
613 extract_number_and_incr(&mcnt, &p);
614 printf("/maybe_pop_jump/0/%d", mcnt);
615 break;
616
617 case pop_failure_jump:
618 extract_number_and_incr(&mcnt, &p);
619 printf("/pop_failure_jump/0/%d", mcnt);
620 break;
621
622 case jump_past_alt:
623 extract_number_and_incr(&mcnt, &p);
624 printf("/jump_past_alt/0/%d", mcnt);
625 break;
626
627 case jump:
628 extract_number_and_incr(&mcnt, &p);
629 printf("/jump/0/%d", mcnt);
630 break;
631
632 case succeed_n:
633 extract_number_and_incr(&mcnt, &p);
634 extract_number_and_incr(&mcnt2, &p);
635 printf("/succeed_n/0/%d/0/%d", mcnt, mcnt2);
636 break;
637
638 case jump_n:
639 extract_number_and_incr(&mcnt, &p);
640 extract_number_and_incr(&mcnt2, &p);
641 printf("/jump_n/0/%d/0/%d", mcnt, mcnt2);
642 break;
643
644 case set_number_at:
645 extract_number_and_incr(&mcnt, &p);
646 extract_number_and_incr(&mcnt2, &p);
647 printf("/set_number_at/0/%d/0/%d", mcnt, mcnt2);
648 break;
649
650 case wordbound:
651 printf("/wordbound");
652 break;
653
654 case notwordbound:
655 printf("/notwordbound");
656 break;
657
658 case wordbeg:
659 printf("/wordbeg");
660 break;
661
662 case wordend:
663 printf("/wordend");
664
665 case wordchar:
666 printf("/wordchar");
667 break;
668
669 case notwordchar:
670 printf("/notwordchar");
671 break;
672
673 case begbuf:
674 printf("/begbuf");
675 break;
676
677 case endbuf:
678 printf("/endbuf");
679 break;
680
681 default:
682 printf("?%d", *(p - 1));
683 }
090089c4 684 }
b8d8561b 685 printf("/\n");
090089c4 686}
687
688
689void
b8d8561b 690print_compiled_pattern(bufp)
26ac0430 691struct re_pattern_buffer *bufp;
090089c4 692{
b8d8561b 693 unsigned char *buffer = bufp->buffer;
090089c4 694
b8d8561b 695 print_partial_compiled_pattern(buffer, buffer + bufp->used);
696 printf("%d bytes used/%d bytes allocated.\n", bufp->used, bufp->allocated);
090089c4 697
b8d8561b 698 if (bufp->fastmap_accurate && bufp->fastmap) {
26ac0430
AJ
699 printf("fastmap: ");
700 print_fastmap(bufp->fastmap);
090089c4 701 }
b8d8561b 702 printf("re_nsub: %d\t", bufp->re_nsub);
703 printf("regs_alloc: %d\t", bufp->regs_allocated);
704 printf("can_be_null: %d\t", bufp->can_be_null);
705 printf("newline_anchor: %d\n", bufp->newline_anchor);
706 printf("no_sub: %d\t", bufp->no_sub);
707 printf("not_bol: %d\t", bufp->not_bol);
708 printf("not_eol: %d\t", bufp->not_eol);
709 printf("syntax: %d\n", bufp->syntax);
710 /* Perhaps we should print the translate table? */
090089c4 711}
712
713
714void
b8d8561b 715print_double_string(where, string1, size1, string2, size2)
26ac0430
AJ
716const char *where;
717const char *string1;
718const char *string2;
719int size1;
720int size2;
090089c4 721{
b8d8561b 722 unsigned this_char;
723
724 if (where == NULL)
26ac0430 725 printf("(null)");
b8d8561b 726 else {
26ac0430
AJ
727 if (FIRST_STRING_P(where)) {
728 for (this_char = where - string1; this_char < size1; this_char++)
729 printchar(string1[this_char]);
730
731 where = string2;
732 }
733 for (this_char = where - string2; this_char < size2; this_char++)
734 printchar(string2[this_char]);
090089c4 735 }
736}
737
738#else /* not DEBUG */
739
740#undef assert
741#define assert(e)
742
743#define DEBUG_STATEMENT(e)
744#define DEBUG_PRINT1(x)
745#define DEBUG_PRINT2(x1, x2)
746#define DEBUG_PRINT3(x1, x2, x3)
747#define DEBUG_PRINT4(x1, x2, x3, x4)
748#define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
749#define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
750
751#endif /* not DEBUG */
752\f
090089c4 753/* This table gives an error message for each of the error codes listed
b8d8561b 754 * in regex.h. Obviously the order here has to be same as there. */
090089c4 755
26ac0430
AJ
756static const char *re_error_msg[] = {NULL, /* REG_NOERROR */
757 "No match", /* REG_NOMATCH */
758 "Invalid regular expression", /* REG_BADPAT */
759 "Invalid collation character", /* REG_ECOLLATE */
760 "Invalid character class name", /* REG_ECTYPE */
761 "Trailing backslash", /* REG_EESCAPE */
762 "Invalid back reference", /* REG_ESUBREG */
763 "Unmatched [ or [^", /* REG_EBRACK */
764 "Unmatched ( or \\(", /* REG_EPAREN */
765 "Unmatched \\{", /* REG_EBRACE */
766 "Invalid content of \\{\\}", /* REG_BADBR */
767 "Invalid range end", /* REG_ERANGE */
768 "Memory exhausted", /* REG_ESPACE */
769 "Invalid preceding regular expression", /* REG_BADRPT */
770 "Premature end of regular expression", /* REG_EEND */
771 "Regular expression too big", /* REG_ESIZE */
772 "Unmatched ) or \\)", /* REG_ERPAREN */
773 };
090089c4 774\f
775/* Subroutine declarations and macros for regex_compile. */
776
26ac0430 777/* Fetch the next character in the uncompiled pattern---translating it
b8d8561b 778 * if necessary. Also cast from a signed character in the constant
779 * string passed to us by the user to an unsigned char that we can use
780 * as an array index (in, e.g., `translate'). */
090089c4 781#define PATFETCH(c) \
782 do {if (p == pend) return REG_EEND; \
783 c = (unsigned char) *p++; \
784 if (translate) c = translate[c]; \
785 } while (0)
786
787/* Fetch the next character in the uncompiled pattern, with no
b8d8561b 788 * translation. */
090089c4 789#define PATFETCH_RAW(c) \
790 do {if (p == pend) return REG_EEND; \
791 c = (unsigned char) *p++; \
792 } while (0)
793
794/* Go backwards one character in the pattern. */
795#define PATUNFETCH p--
796
797
798/* If `translate' is non-null, return translate[D], else just D. We
b8d8561b 799 * cast the subscript to translate because some data is declared as
800 * `char *', to avoid warnings when a string constant is passed. But
801 * when we use a character as a subscript we must make it unsigned. */
090089c4 802#define TRANSLATE(d) (translate ? translate[(unsigned char) (d)] : (d))
803
804
805/* Macros for outputting the compiled pattern into `buffer'. */
806
807/* If the buffer isn't allocated when it comes in, use this. */
808#define INIT_BUF_SIZE 32
809
810/* Make sure we have at least N more bytes of space in buffer. */
811#define GET_BUFFER_SPACE(n) \
812 while (b - bufp->buffer + (n) > bufp->allocated) \
813 EXTEND_BUFFER ()
814
815/* Make sure we have one more byte of buffer space and then add C to it. */
816#define BUF_PUSH(c) \
817 do { \
818 GET_BUFFER_SPACE (1); \
819 *b++ = (unsigned char) (c); \
820 } while (0)
821
822
823/* Ensure we have two more bytes of buffer space and then append C1 and C2. */
824#define BUF_PUSH_2(c1, c2) \
825 do { \
826 GET_BUFFER_SPACE (2); \
827 *b++ = (unsigned char) (c1); \
828 *b++ = (unsigned char) (c2); \
829 } while (0)
830
831
832/* As with BUF_PUSH_2, except for three bytes. */
833#define BUF_PUSH_3(c1, c2, c3) \
834 do { \
835 GET_BUFFER_SPACE (3); \
836 *b++ = (unsigned char) (c1); \
837 *b++ = (unsigned char) (c2); \
838 *b++ = (unsigned char) (c3); \
839 } while (0)
840
841
842/* Store a jump with opcode OP at LOC to location TO. We store a
b8d8561b 843 * relative address offset by the three bytes the jump itself occupies. */
090089c4 844#define STORE_JUMP(op, loc, to) \
845 store_op1 (op, loc, (to) - (loc) - 3)
846
847/* Likewise, for a two-argument jump. */
848#define STORE_JUMP2(op, loc, to, arg) \
849 store_op2 (op, loc, (to) - (loc) - 3, arg)
850
851/* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */
852#define INSERT_JUMP(op, loc, to) \
853 insert_op1 (op, loc, (to) - (loc) - 3, b)
854
855/* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */
856#define INSERT_JUMP2(op, loc, to, arg) \
857 insert_op2 (op, loc, (to) - (loc) - 3, arg, b)
858
859
860/* This is not an arbitrary limit: the arguments which represent offsets
b8d8561b 861 * into the pattern are two bytes long. So if 2^16 bytes turns out to
862 * be too small, many things would have to change. */
090089c4 863#define MAX_BUF_SIZE (1L << 16)
864
865
866/* Extend the buffer by twice its current size via realloc and
b8d8561b 867 * reset the pointers that pointed into the old block to point to the
868 * correct places in the new one. If extending the buffer results in it
869 * being larger than MAX_BUF_SIZE, then flag memory exhausted. */
090089c4 870#define EXTEND_BUFFER() \
871 do { \
872 unsigned char *old_buffer = bufp->buffer; \
873 if (bufp->allocated == MAX_BUF_SIZE) \
874 return REG_ESIZE; \
875 bufp->allocated <<= 1; \
876 if (bufp->allocated > MAX_BUF_SIZE) \
877 bufp->allocated = MAX_BUF_SIZE; \
878 bufp->buffer = (unsigned char *) realloc (bufp->buffer, bufp->allocated);\
879 if (bufp->buffer == NULL) \
880 return REG_ESPACE; \
881 /* If the buffer moved, move all the pointers into it. */ \
882 if (old_buffer != bufp->buffer) \
883 { \
884 b = (b - old_buffer) + bufp->buffer; \
885 begalt = (begalt - old_buffer) + bufp->buffer; \
886 if (fixup_alt_jump) \
887 fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer;\
888 if (laststart) \
889 laststart = (laststart - old_buffer) + bufp->buffer; \
890 if (pending_exact) \
891 pending_exact = (pending_exact - old_buffer) + bufp->buffer; \
892 } \
893 } while (0)
894
895
896/* Since we have one byte reserved for the register number argument to
b8d8561b 897 * {start,stop}_memory, the maximum number of groups we can report
898 * things about is what fits in that byte. */
090089c4 899#define MAX_REGNUM 255
900
901/* But patterns can have more than `MAX_REGNUM' registers. We just
b8d8561b 902 * ignore the excess. */
090089c4 903typedef unsigned regnum_t;
904
905
906/* Macros for the compile stack. */
907
908/* Since offsets can go either forwards or backwards, this type needs to
b8d8561b 909 * be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */
090089c4 910typedef int pattern_offset_t;
911
b8d8561b 912typedef struct {
913 pattern_offset_t begalt_offset;
914 pattern_offset_t fixup_alt_jump;
915 pattern_offset_t inner_group_offset;
916 pattern_offset_t laststart_offset;
917 regnum_t regnum;
090089c4 918} compile_stack_elt_t;
919
920
b8d8561b 921typedef struct {
922 compile_stack_elt_t *stack;
923 unsigned size;
924 unsigned avail; /* Offset of next open position. */
090089c4 925} compile_stack_type;
926
862bc6c0 927static void store_op1(re_opcode_t op, unsigned char *loc, int arg);
928static void store_op2( re_opcode_t op, unsigned char *loc, int arg1, int arg2);
929static void insert_op1(re_opcode_t op, unsigned char *loc, int arg, unsigned char *end);
930static void insert_op2(re_opcode_t op, unsigned char *loc, int arg1, int arg2, unsigned char *end);
931static boolean at_begline_loc_p(const char * pattern, const char *p, reg_syntax_t syntax);
932static boolean at_endline_loc_p(const char *p, const char *pend, int syntax);
933static boolean group_in_compile_stack(compile_stack_type compile_stack, regnum_t regnum);
934static reg_errcode_t compile_range(const char **p_ptr, const char *pend, char *translate, reg_syntax_t syntax, unsigned char *b);
090089c4 935
936#define INIT_COMPILE_STACK_SIZE 32
937
938#define COMPILE_STACK_EMPTY (compile_stack.avail == 0)
939#define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size)
940
941/* The next available element. */
942#define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
943
944
945/* Set the bit for character C in a list. */
946#define SET_LIST_BIT(c) \
947 (b[((unsigned char) (c)) / BYTEWIDTH] \
948 |= 1 << (((unsigned char) c) % BYTEWIDTH))
949
950
951/* Get the next unsigned number in the uncompiled pattern. */
952#define GET_UNSIGNED_NUMBER(num) \
953 { if (p != pend) \
954 { \
955 PATFETCH (c); \
956 while (ISDIGIT (c)) \
957 { \
958 if (num < 0) \
959 num = 0; \
960 num = num * 10 + c - '0'; \
961 if (p == pend) \
962 break; \
963 PATFETCH (c); \
964 } \
965 } \
b8d8561b 966 }
090089c4 967
b8d8561b 968#define CHAR_CLASS_MAX_LENGTH 6 /* Namely, `xdigit'. */
090089c4 969
970#define IS_CHAR_CLASS(string) \
971 (STREQ (string, "alpha") || STREQ (string, "upper") \
972 || STREQ (string, "lower") || STREQ (string, "digit") \
973 || STREQ (string, "alnum") || STREQ (string, "xdigit") \
974 || STREQ (string, "space") || STREQ (string, "print") \
975 || STREQ (string, "punct") || STREQ (string, "graph") \
976 || STREQ (string, "cntrl") || STREQ (string, "blank"))
977\f
978/* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
b8d8561b 979 * Returns one of error codes defined in `regex.h', or zero for success.
26ac0430 980 *
b8d8561b 981 * Assumes the `allocated' (and perhaps `buffer') and `translate'
982 * fields are set in BUFP on entry.
26ac0430 983 *
b8d8561b 984 * If it succeeds, results are put in BUFP (if it returns an error, the
985 * contents of BUFP are undefined):
986 * `buffer' is the compiled pattern;
987 * `syntax' is set to SYNTAX;
988 * `used' is set to the length of the compiled pattern;
989 * `fastmap_accurate' is zero;
990 * `re_nsub' is the number of subexpressions in PATTERN;
991 * `not_bol' and `not_eol' are zero;
26ac0430 992 *
b8d8561b 993 * The `fastmap' and `newline_anchor' fields are neither
994 * examined nor set. */
090089c4 995
996static reg_errcode_t
862bc6c0 997regex_compile(const char *pattern, int size, reg_syntax_t syntax, struct re_pattern_buffer *bufp)
090089c4 998{
b8d8561b 999 /* We fetch characters from PATTERN here. Even though PATTERN is
1000 * `char *' (i.e., signed), we declare these variables as unsigned, so
1001 * they can be reliably used as array indices. */
1002 register unsigned char c, c1;
1003
1004 /* A random tempory spot in PATTERN. */
1005 const char *p1;
1006
1007 /* Points to the end of the buffer, where we should append. */
1008 register unsigned char *b;
1009
1010 /* Keeps track of unclosed groups. */
1011 compile_stack_type compile_stack;
1012
1013 /* Points to the current (ending) position in the pattern. */
1014 const char *p = pattern;
1015 const char *pend = pattern + size;
1016
1017 /* How to translate the characters in the pattern. */
1018 char *translate = bufp->translate;
1019
1020 /* Address of the count-byte of the most recently inserted `exactn'
1021 * command. This makes it possible to tell if a new exact-match
1022 * character can be added to that command or if the character requires
1023 * a new `exactn' command. */
1024 unsigned char *pending_exact = 0;
1025
1026 /* Address of start of the most recently finished expression.
1027 * This tells, e.g., postfix * where to find the start of its
1028 * operand. Reset at the beginning of groups and alternatives. */
1029 unsigned char *laststart = 0;
1030
1031 /* Address of beginning of regexp, or inside of last group. */
1032 unsigned char *begalt;
1033
1034 /* Place in the uncompiled pattern (i.e., the {) to
1035 * which to go back if the interval is invalid. */
1036 const char *beg_interval;
1037
1038 /* Address of the place where a forward jump should go to the end of
1039 * the containing expression. Each alternative of an `or' -- except the
1040 * last -- ends with a forward jump of this sort. */
1041 unsigned char *fixup_alt_jump = 0;
1042
1043 /* Counts open-groups as they are encountered. Remembered for the
1044 * matching close-group on the compile stack, so the same register
1045 * number is put in the stop_memory as the start_memory. */
1046 regnum_t regnum = 0;
090089c4 1047
1048#ifdef DEBUG
b8d8561b 1049 DEBUG_PRINT1("\nCompiling pattern: ");
1050 if (debug) {
26ac0430 1051 unsigned debug_count;
b8d8561b 1052
26ac0430
AJ
1053 for (debug_count = 0; debug_count < size; debug_count++)
1054 printchar(pattern[debug_count]);
1055 putchar('\n');
090089c4 1056 }
1057#endif /* DEBUG */
1058
b8d8561b 1059 /* Initialize the compile stack. */
1060 compile_stack.stack = TALLOC(INIT_COMPILE_STACK_SIZE, compile_stack_elt_t);
1061 if (compile_stack.stack == NULL)
26ac0430 1062 return REG_ESPACE;
090089c4 1063
b8d8561b 1064 compile_stack.size = INIT_COMPILE_STACK_SIZE;
1065 compile_stack.avail = 0;
090089c4 1066
b8d8561b 1067 /* Initialize the pattern buffer. */
1068 bufp->syntax = syntax;
1069 bufp->fastmap_accurate = 0;
1070 bufp->not_bol = bufp->not_eol = 0;
090089c4 1071
b8d8561b 1072 /* Set `used' to zero, so that if we return an error, the pattern
1073 * printer (for debugging) will think there's no pattern. We reset it
1074 * at the end. */
1075 bufp->used = 0;
1076
1077 /* Always count groups, whether or not bufp->no_sub is set. */
1078 bufp->re_nsub = 0;
090089c4 1079
35516333 1080#if !defined (SYNTAX_TABLE)
b8d8561b 1081 /* Initialize the syntax table. */
1082 init_syntax_once();
090089c4 1083#endif
1084
b8d8561b 1085 if (bufp->allocated == 0) {
26ac0430 1086 if (bufp->buffer) { /* If zero allocated, but buffer is non-null, try to realloc
b8d8561b 1087 * enough space. This loses if buffer's address is bogus, but
1088 * that is the user's responsibility. */
26ac0430
AJ
1089 RETALLOC(bufp->buffer, INIT_BUF_SIZE, unsigned char);
1090 } else { /* Caller did not allocate a buffer. Do it for them. */
1091 bufp->buffer = TALLOC(INIT_BUF_SIZE, unsigned char);
1092 }
1093 if (!bufp->buffer)
1094 return REG_ESPACE;
1095
1096 bufp->allocated = INIT_BUF_SIZE;
090089c4 1097 }
b8d8561b 1098 begalt = b = bufp->buffer;
090089c4 1099
b8d8561b 1100 /* Loop through the uncompiled pattern until we're at the end. */
1101 while (p != pend) {
26ac0430
AJ
1102 PATFETCH(c);
1103
1104 switch (c) {
1105 case '^': {
1106 if ( /* If at start of pattern, it's an operator. */
1107 p == pattern + 1
1108 /* If context independent, it's an operator. */
1109 || syntax & RE_CONTEXT_INDEP_ANCHORS
1110 /* Otherwise, depends on what's come before. */
1111 || at_begline_loc_p(pattern, p, syntax))
1112 BUF_PUSH(begline);
1113 else
1114 goto normal_char;
1115 }
1116 break;
1117
1118
1119 case '$': {
1120 if ( /* If at end of pattern, it's an operator. */
1121 p == pend
1122 /* If context independent, it's an operator. */
1123 || syntax & RE_CONTEXT_INDEP_ANCHORS
1124 /* Otherwise, depends on what's next. */
1125 || at_endline_loc_p(p, pend, syntax))
1126 BUF_PUSH(endline);
1127 else
1128 goto normal_char;
1129 }
1130 break;
1131
1132
1133 case '+':
1134 case '?':
1135 if ((syntax & RE_BK_PLUS_QM)
1136 || (syntax & RE_LIMITED_OPS))
1137 goto normal_char;
1138handle_plus:
1139 case '*':
1140 /* If there is no previous pattern... */
1141 if (!laststart) {
1142 if (syntax & RE_CONTEXT_INVALID_OPS)
1143 return REG_BADRPT;
1144 else if (!(syntax & RE_CONTEXT_INDEP_OPS))
1145 goto normal_char;
1146 } {
1147 /* Are we optimizing this jump? */
1148 boolean keep_string_p = false;
1149
1150 /* 1 means zero (many) matches is allowed. */
1151 char zero_times_ok = 0, many_times_ok = 0;
1152
1153 /* If there is a sequence of repetition chars, collapse it
1154 * down to just one (the right one). We can't combine
1155 * interval operators with these because of, e.g., `a{2}*',
1156 * which should only match an even number of `a's. */
1157
1158 for (;;) {
1159 zero_times_ok |= c != '+';
1160 many_times_ok |= c != '?';
1161
1162 if (p == pend)
1163 break;
1164
1165 PATFETCH(c);
1166
1167 if (c == '*'
1168 || (!(syntax & RE_BK_PLUS_QM) && (c == '+' || c == '?')));
1169
1170 else if (syntax & RE_BK_PLUS_QM && c == '\\') {
1171 if (p == pend)
1172 return REG_EESCAPE;
1173
1174 PATFETCH(c1);
1175 if (!(c1 == '+' || c1 == '?')) {
1176 PATUNFETCH;
1177 PATUNFETCH;
1178 break;
1179 }
1180 c = c1;
1181 } else {
1182 PATUNFETCH;
1183 break;
1184 }
1185
1186 /* If we get here, we found another repeat character. */
1187 }
1188
1189 /* Star, etc. applied to an empty pattern is equivalent
1190 * to an empty pattern. */
1191 if (!laststart)
1192 break;
1193
1194 /* Now we know whether or not zero matches is allowed
1195 * and also whether or not two or more matches is allowed. */
1196 if (many_times_ok) { /* More than one repetition is allowed, so put in at the
b8d8561b 1197 * end a backward relative jump from `b' to before the next
1198 * jump we're going to put in below (which jumps from
26ac0430
AJ
1199 * laststart to after this jump).
1200 *
b8d8561b 1201 * But if we are at the `*' in the exact sequence `.*\n',
1202 * insert an unconditional jump backwards to the .,
1203 * instead of the beginning of the loop. This way we only
1204 * push a failure point once, instead of every time
1205 * through the loop. */
26ac0430
AJ
1206 assert(p - 1 > pattern);
1207
1208 /* Allocate the space for the jump. */
1209 GET_BUFFER_SPACE(3);
1210
1211 /* We know we are not at the first character of the pattern,
1212 * because laststart was nonzero. And we've already
1213 * incremented `p', by the way, to be the character after
1214 * the `*'. Do we have to do something analogous here
1215 * for null bytes, because of RE_DOT_NOT_NULL? */
1216 if (TRANSLATE(*(p - 2)) == TRANSLATE('.')
1217 && zero_times_ok
1218 && p < pend && TRANSLATE(*p) == TRANSLATE('\n')
1219 && !(syntax & RE_DOT_NEWLINE)) { /* We have .*\n. */
1220 STORE_JUMP(jump, b, laststart);
1221 keep_string_p = true;
1222 } else
1223 /* Anything else. */
1224 STORE_JUMP(maybe_pop_jump, b, laststart - 3);
1225
1226 /* We've added more stuff to the buffer. */
1227 b += 3;
1228 }
1229 /* On failure, jump from laststart to b + 3, which will be the
1230 * end of the buffer after this jump is inserted. */
1231 GET_BUFFER_SPACE(3);
1232 INSERT_JUMP(keep_string_p ? on_failure_keep_string_jump
1233 : on_failure_jump,
1234 laststart, b + 3);
1235 pending_exact = 0;
1236 b += 3;
1237
1238 if (!zero_times_ok) {
1239 /* At least one repetition is required, so insert a
1240 * `dummy_failure_jump' before the initial
1241 * `on_failure_jump' instruction of the loop. This
1242 * effects a skip over that instruction the first time
1243 * we hit that loop. */
1244 GET_BUFFER_SPACE(3);
1245 INSERT_JUMP(dummy_failure_jump, laststart, laststart + 6);
1246 b += 3;
1247 }
1248 }
1249 break;
1250
1251
1252 case '.':
1253 laststart = b;
1254 BUF_PUSH(anychar);
1255 break;
1256
1257
1258 case '[': {
1259 boolean had_char_class = false;
1260
1261 if (p == pend)
1262 return REG_EBRACK;
1263
1264 /* Ensure that we have enough space to push a charset: the
1265 * opcode, the length count, and the bitset; 34 bytes in all. */
1266 GET_BUFFER_SPACE(34);
1267
1268 laststart = b;
1269
1270 /* We test `*p == '^' twice, instead of using an if
1271 * statement, so we only need one BUF_PUSH. */
1272 BUF_PUSH(*p == '^' ? charset_not : charset);
1273 if (*p == '^')
1274 p++;
1275
1276 /* Remember the first position in the bracket expression. */
1277 p1 = p;
1278
1279 /* Push the number of bytes in the bitmap. */
1280 BUF_PUSH((1 << BYTEWIDTH) / BYTEWIDTH);
1281
1282 /* Clear the whole map. */
1283 memset(b, 0, (1 << BYTEWIDTH) / BYTEWIDTH);
1284
1285 /* charset_not matches newline according to a syntax bit. */
1286 if ((re_opcode_t) b[-2] == charset_not
1287 && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
1288 SET_LIST_BIT('\n');
1289
1290 /* Read in characters and ranges, setting map bits. */
1291 for (;;) {
1292 if (p == pend)
1293 return REG_EBRACK;
1294
1295 PATFETCH(c);
1296
1297 /* \ might escape characters inside [...] and [^...]. */
1298 if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\') {
1299 if (p == pend)
1300 return REG_EESCAPE;
1301
1302 PATFETCH(c1);
1303 SET_LIST_BIT(c1);
1304 continue;
1305 }
1306 /* Could be the end of the bracket expression. If it's
1307 * not (i.e., when the bracket expression is `[]' so
1308 * far), the ']' character bit gets set way below. */
1309 if (c == ']' && p != p1 + 1)
1310 break;
1311
1312 /* Look ahead to see if it's a range when the last thing
1313 * was a character class. */
1314 if (had_char_class && c == '-' && *p != ']')
1315 return REG_ERANGE;
1316
1317 /* Look ahead to see if it's a range when the last thing
1318 * was a character: if this is a hyphen not at the
1319 * beginning or the end of a list, then it's the range
1320 * operator. */
1321 if (c == '-'
1322 && !(p - 2 >= pattern && p[-2] == '[')
1323 && !(p - 3 >= pattern && p[-3] == '[' && p[-2] == '^')
1324 && *p != ']') {
1325 reg_errcode_t ret
1326 = compile_range(&p, pend, translate, syntax, b);
1327 if (ret != REG_NOERROR)
1328 return ret;
1329 } else if (p[0] == '-' && p[1] != ']') { /* This handles ranges made up of characters only. */
1330 reg_errcode_t ret;
1331
1332 /* Move past the `-'. */
1333 PATFETCH(c1);
1334
1335 ret = compile_range(&p, pend, translate, syntax, b);
1336 if (ret != REG_NOERROR)
1337 return ret;
1338 }
1339 /* See if we're at the beginning of a possible character
1340 * class. */
1341
1342 else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == ':') { /* Leave room for the null. */
1343 char str[CHAR_CLASS_MAX_LENGTH + 1];
1344
1345 PATFETCH(c);
1346 c1 = 0;
1347
1348 /* If pattern is `[[:'. */
1349 if (p == pend)
1350 return REG_EBRACK;
1351
1352 for (;;) {
1353 PATFETCH(c);
1354 if (c == ':' || c == ']' || p == pend
1355 || c1 == CHAR_CLASS_MAX_LENGTH)
1356 break;
1357 str[c1++] = c;
1358 }
1359 str[c1] = '\0';
1360
1361 /* If isn't a word bracketed by `[:' and:`]':
1362 * undo the ending character, the letters, and leave
1363 * the leading `:' and `[' (but set bits for them). */
1364 if (c == ':' && *p == ']') {
1365 int ch;
1366 boolean is_alnum = STREQ(str, "alnum");
1367 boolean is_alpha = STREQ(str, "alpha");
1368 boolean is_blank = STREQ(str, "blank");
1369 boolean is_cntrl = STREQ(str, "cntrl");
1370 boolean is_digit = STREQ(str, "digit");
1371 boolean is_graph = STREQ(str, "graph");
1372 boolean is_lower = STREQ(str, "lower");
1373 boolean is_print = STREQ(str, "print");
1374 boolean is_punct = STREQ(str, "punct");
1375 boolean is_space = STREQ(str, "space");
1376 boolean is_upper = STREQ(str, "upper");
1377 boolean is_xdigit = STREQ(str, "xdigit");
1378
1379 if (!IS_CHAR_CLASS(str))
1380 return REG_ECTYPE;
1381
1382 /* Throw away the ] at the end of the character
1383 * class. */
1384 PATFETCH(c);
1385
1386 if (p == pend)
1387 return REG_EBRACK;
1388
1389 for (ch = 0; ch < 1 << BYTEWIDTH; ch++) {
1390 if ((is_alnum && ISALNUM(ch))
1391 || (is_alpha && ISALPHA(ch))
1392 || (is_blank && ISBLANK(ch))
1393 || (is_cntrl && ISCNTRL(ch))
1394 || (is_digit && ISDIGIT(ch))
1395 || (is_graph && ISGRAPH(ch))
1396 || (is_lower && ISLOWER(ch))
1397 || (is_print && ISPRINT(ch))
1398 || (is_punct && ISPUNCT(ch))
1399 || (is_space && ISSPACE(ch))
1400 || (is_upper && ISUPPER(ch))
1401 || (is_xdigit && ISXDIGIT(ch)))
1402 SET_LIST_BIT(ch);
1403 }
1404 had_char_class = true;
1405 } else {
1406 c1++;
1407 while (c1--)
1408 PATUNFETCH;
1409 SET_LIST_BIT('[');
1410 SET_LIST_BIT(':');
1411 had_char_class = false;
1412 }
1413 } else {
1414 had_char_class = false;
1415 SET_LIST_BIT(c);
1416 }
1417 }
1418
1419 /* Discard any (non)matching list bytes that are all 0 at the
1420 * end of the map. Decrease the map-length byte too. */
1421 while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
1422 b[-1]--;
1423 b += b[-1];
1424 }
1425 break;
1426
1427
1428 case '(':
1429 if (syntax & RE_NO_BK_PARENS)
1430 goto handle_open;
1431 else
1432 goto normal_char;
1433
1434
1435 case ')':
1436 if (syntax & RE_NO_BK_PARENS)
1437 goto handle_close;
1438 else
1439 goto normal_char;
1440
1441
1442 case '\n':
1443 if (syntax & RE_NEWLINE_ALT)
1444 goto handle_alt;
1445 else
1446 goto normal_char;
1447
1448
1449 case '|':
1450 if (syntax & RE_NO_BK_VBAR)
1451 goto handle_alt;
1452 else
1453 goto normal_char;
1454
1455
1456 case '{':
1457 if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES)
1458 goto handle_interval;
1459 else
1460 goto normal_char;
1461
1462
1463 case '\\':
1464 if (p == pend)
1465 return REG_EESCAPE;
1466
1467 /* Do not translate the character after the \, so that we can
1468 * distinguish, e.g., \B from \b, even if we normally would
1469 * translate, e.g., B to b. */
1470 PATFETCH_RAW(c);
1471
1472 switch (c) {
1473 case '(':
1474 if (syntax & RE_NO_BK_PARENS)
1475 goto normal_backslash;
1476
1477handle_open:
1478 bufp->re_nsub++;
1479 regnum++;
1480
1481 if (COMPILE_STACK_FULL) {
1482 RETALLOC(compile_stack.stack, compile_stack.size << 1,
1483 compile_stack_elt_t);
1484 if (compile_stack.stack == NULL)
1485 return REG_ESPACE;
1486
1487 compile_stack.size <<= 1;
1488 }
1489 /* These are the values to restore when we hit end of this
1490 * group. They are all relative offsets, so that if the
1491 * whole pattern moves because of realloc, they will still
1492 * be valid. */
1493 COMPILE_STACK_TOP.begalt_offset = begalt - bufp->buffer;
1494 COMPILE_STACK_TOP.fixup_alt_jump
1495 = fixup_alt_jump ? fixup_alt_jump - bufp->buffer + 1 : 0;
1496 COMPILE_STACK_TOP.laststart_offset = b - bufp->buffer;
1497 COMPILE_STACK_TOP.regnum = regnum;
1498
1499 /* We will eventually replace the 0 with the number of
1500 * groups inner to this one. But do not push a
1501 * start_memory for groups beyond the last one we can
1502 * represent in the compiled pattern. */
1503 if (regnum <= MAX_REGNUM) {
1504 COMPILE_STACK_TOP.inner_group_offset = b - bufp->buffer + 2;
1505 BUF_PUSH_3(start_memory, regnum, 0);
1506 }
1507 compile_stack.avail++;
1508
1509 fixup_alt_jump = 0;
1510 laststart = 0;
1511 begalt = b;
1512 /* If we've reached MAX_REGNUM groups, then this open
1513 * won't actually generate any code, so we'll have to
1514 * clear pending_exact explicitly. */
1515 pending_exact = 0;
1516 break;
1517
1518
1519 case ')':
1520 if (syntax & RE_NO_BK_PARENS)
1521 goto normal_backslash;
1522
1523 if (COMPILE_STACK_EMPTY) {
1524 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
1525 goto normal_backslash;
1526 else
1527 return REG_ERPAREN;
1528 }
1529handle_close:
1530 if (fixup_alt_jump) { /* Push a dummy failure point at the end of the
b8d8561b 1531 * alternative for a possible future
1532 * `pop_failure_jump' to pop. See comments at
1533 * `push_dummy_failure' in `re_match_2'. */
26ac0430
AJ
1534 BUF_PUSH(push_dummy_failure);
1535
1536 /* We allocated space for this jump when we assigned
1537 * to `fixup_alt_jump', in the `handle_alt' case below. */
1538 STORE_JUMP(jump_past_alt, fixup_alt_jump, b - 1);
1539 }
1540 /* See similar code for backslashed left paren above. */
1541 if (COMPILE_STACK_EMPTY) {
1542 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
1543 goto normal_char;
1544 else
1545 return REG_ERPAREN;
1546 }
1547 /* Since we just checked for an empty stack above, this
1548 * ``can't happen''. */
1549 assert(compile_stack.avail != 0);
1550 {
1551 /* We don't just want to restore into `regnum', because
1552 * later groups should continue to be numbered higher,
1553 * as in `(ab)c(de)' -- the second group is #2. */
1554 regnum_t this_group_regnum;
1555
1556 compile_stack.avail--;
1557 begalt = bufp->buffer + COMPILE_STACK_TOP.begalt_offset;
1558 fixup_alt_jump
1559 = COMPILE_STACK_TOP.fixup_alt_jump
1560 ? bufp->buffer + COMPILE_STACK_TOP.fixup_alt_jump - 1
1561 : 0;
1562 laststart = bufp->buffer + COMPILE_STACK_TOP.laststart_offset;
1563 this_group_regnum = COMPILE_STACK_TOP.regnum;
1564 /* If we've reached MAX_REGNUM groups, then this open
1565 * won't actually generate any code, so we'll have to
1566 * clear pending_exact explicitly. */
1567 pending_exact = 0;
1568
1569 /* We're at the end of the group, so now we know how many
1570 * groups were inside this one. */
1571 if (this_group_regnum <= MAX_REGNUM) {
1572 unsigned char *inner_group_loc
1573 = bufp->buffer + COMPILE_STACK_TOP.inner_group_offset;
1574
1575 *inner_group_loc = regnum - this_group_regnum;
1576 BUF_PUSH_3(stop_memory, this_group_regnum,
1577 regnum - this_group_regnum);
1578 }
1579 }
1580 break;
1581
1582
1583 case '|': /* `\|'. */
1584 if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR)
1585 goto normal_backslash;
1586handle_alt:
1587 if (syntax & RE_LIMITED_OPS)
1588 goto normal_char;
1589
1590 /* Insert before the previous alternative a jump which
1591 * jumps to this alternative if the former fails. */
1592 GET_BUFFER_SPACE(3);
1593 INSERT_JUMP(on_failure_jump, begalt, b + 6);
1594 pending_exact = 0;
1595 b += 3;
1596
1597 /* The alternative before this one has a jump after it
1598 * which gets executed if it gets matched. Adjust that
1599 * jump so it will jump to this alternative's analogous
1600 * jump (put in below, which in turn will jump to the next
1601 * (if any) alternative's such jump, etc.). The last such
1602 * jump jumps to the correct final destination. A picture:
1603 * _____ _____
1604 * | | | |
1605 * | v | v
1606 * a | b | c
1607 *
1608 * If we are at `b', then fixup_alt_jump right now points to a
1609 * three-byte space after `a'. We'll put in the jump, set
1610 * fixup_alt_jump to right after `b', and leave behind three
1611 * bytes which we'll fill in when we get to after `c'. */
1612
1613 if (fixup_alt_jump)
1614 STORE_JUMP(jump_past_alt, fixup_alt_jump, b);
1615
1616 /* Mark and leave space for a jump after this alternative,
1617 * to be filled in later either by next alternative or
1618 * when know we're at the end of a series of alternatives. */
1619 fixup_alt_jump = b;
1620 GET_BUFFER_SPACE(3);
1621 b += 3;
1622
1623 laststart = 0;
1624 begalt = b;
1625 break;
1626
1627
1628 case '{':
1629 /* If \{ is a literal. */
1630 if (!(syntax & RE_INTERVALS)
1631 /* If we're at `\{' and it's not the open-interval
1632 * operator. */
1633 || ((syntax & RE_INTERVALS) && (syntax & RE_NO_BK_BRACES))
1634 || (p - 2 == pattern && p == pend))
1635 goto normal_backslash;
1636
1637handle_interval: {
1638 /* If got here, then the syntax allows intervals. */
1639
1640 /* At least (most) this many matches must be made. */
1641 int lower_bound = -1, upper_bound = -1;
1642
1643 beg_interval = p - 1;
1644
1645 if (p == pend) {
1646 if (syntax & RE_NO_BK_BRACES)
1647 goto unfetch_interval;
1648 else
1649 return REG_EBRACE;
1650 }
1651 GET_UNSIGNED_NUMBER(lower_bound);
1652
1653 if (c == ',') {
1654 GET_UNSIGNED_NUMBER(upper_bound);
1655 if (upper_bound < 0)
1656 upper_bound = RE_DUP_MAX;
1657 } else
1658 /* Interval such as `{1}' => match exactly once. */
1659 upper_bound = lower_bound;
1660
1661 if (lower_bound < 0 || upper_bound > RE_DUP_MAX
1662 || lower_bound > upper_bound) {
1663 if (syntax & RE_NO_BK_BRACES)
1664 goto unfetch_interval;
1665 else
1666 return REG_BADBR;
1667 }
1668 if (!(syntax & RE_NO_BK_BRACES)) {
1669 if (c != '\\')
1670 return REG_EBRACE;
1671
1672 PATFETCH(c);
1673 }
1674 if (c != '}') {
1675 if (syntax & RE_NO_BK_BRACES)
1676 goto unfetch_interval;
1677 else
1678 return REG_BADBR;
1679 }
1680 /* We just parsed a valid interval. */
1681
1682 /* If it's invalid to have no preceding re. */
1683 if (!laststart) {
1684 if (syntax & RE_CONTEXT_INVALID_OPS)
1685 return REG_BADRPT;
1686 else if (syntax & RE_CONTEXT_INDEP_OPS)
1687 laststart = b;
1688 else
1689 goto unfetch_interval;
1690 }
1691 /* If the upper bound is zero, don't want to succeed at
1692 * all; jump from `laststart' to `b + 3', which will be
1693 * the end of the buffer after we insert the jump. */
1694 if (upper_bound == 0) {
1695 GET_BUFFER_SPACE(3);
1696 INSERT_JUMP(jump, laststart, b + 3);
1697 b += 3;
1698 }
1699 /* Otherwise, we have a nontrivial interval. When
1700 * we're all done, the pattern will look like:
1701 * set_number_at <jump count> <upper bound>
1702 * set_number_at <succeed_n count> <lower bound>
1703 * succeed_n <after jump addr> <succed_n count>
1704 * <body of loop>
1705 * jump_n <succeed_n addr> <jump count>
1706 * (The upper bound and `jump_n' are omitted if
1707 * `upper_bound' is 1, though.) */
1708 else { /* If the upper bound is > 1, we need to insert
b8d8561b 1709 * more at the end of the loop. */
26ac0430
AJ
1710 unsigned nbytes = 10 + (upper_bound > 1) * 10;
1711
1712 GET_BUFFER_SPACE(nbytes);
1713
1714 /* Initialize lower bound of the `succeed_n', even
1715 * though it will be set during matching by its
1716 * attendant `set_number_at' (inserted next),
1717 * because `re_compile_fastmap' needs to know.
1718 * Jump to the `jump_n' we might insert below. */
1719 INSERT_JUMP2(succeed_n, laststart,
1720 b + 5 + (upper_bound > 1) * 5,
1721 lower_bound);
1722 b += 5;
1723
1724 /* Code to initialize the lower bound. Insert
1725 * before the `succeed_n'. The `5' is the last two
1726 * bytes of this `set_number_at', plus 3 bytes of
1727 * the following `succeed_n'. */
1728 insert_op2(set_number_at, laststart, 5, lower_bound, b);
1729 b += 5;
1730
1731 if (upper_bound > 1) { /* More than one repetition is allowed, so
b8d8561b 1732 * append a backward jump to the `succeed_n'
1733 * that starts this interval.
26ac0430 1734 *
b8d8561b 1735 * When we've reached this during matching,
1736 * we'll have matched the interval once, so
1737 * jump back only `upper_bound - 1' times. */
26ac0430
AJ
1738 STORE_JUMP2(jump_n, b, laststart + 5,
1739 upper_bound - 1);
1740 b += 5;
1741
1742 /* The location we want to set is the second
1743 * parameter of the `jump_n'; that is `b-2' as
1744 * an absolute address. `laststart' will be
1745 * the `set_number_at' we're about to insert;
1746 * `laststart+3' the number to set, the source
1747 * for the relative address. But we are
1748 * inserting into the middle of the pattern --
1749 * so everything is getting moved up by 5.
1750 * Conclusion: (b - 2) - (laststart + 3) + 5,
1751 * i.e., b - laststart.
1752 *
1753 * We insert this at the beginning of the loop
1754 * so that if we fail during matching, we'll
1755 * reinitialize the bounds. */
1756 insert_op2(set_number_at, laststart, b - laststart,
1757 upper_bound - 1, b);
1758 b += 5;
1759 }
1760 }
1761 pending_exact = 0;
1762 beg_interval = NULL;
1763 }
1764 break;
1765
1766unfetch_interval:
1767 /* If an invalid interval, match the characters as literals. */
1768 assert(beg_interval);
1769 p = beg_interval;
1770 beg_interval = NULL;
1771
1772 /* normal_char and normal_backslash need `c'. */
1773 PATFETCH(c);
1774
1775 if (!(syntax & RE_NO_BK_BRACES)) {
1776 if (p > pattern && p[-1] == '\\')
1777 goto normal_backslash;
1778 }
1779 goto normal_char;
1780
1781
1782 case 'w':
1783 laststart = b;
1784 BUF_PUSH(wordchar);
1785 break;
1786
1787
1788 case 'W':
1789 laststart = b;
1790 BUF_PUSH(notwordchar);
1791 break;
1792
1793
1794 case '<':
1795 BUF_PUSH(wordbeg);
1796 break;
1797
1798 case '>':
1799 BUF_PUSH(wordend);
1800 break;
1801
1802 case 'b':
1803 BUF_PUSH(wordbound);
1804 break;
1805
1806 case 'B':
1807 BUF_PUSH(notwordbound);
1808 break;
1809
1810 case '`':
1811 BUF_PUSH(begbuf);
1812 break;
1813
1814 case '\'':
1815 BUF_PUSH(endbuf);
1816 break;
1817
1818 case '1':
1819 case '2':
1820 case '3':
1821 case '4':
1822 case '5':
1823 case '6':
1824 case '7':
1825 case '8':
1826 case '9':
1827 if (syntax & RE_NO_BK_REFS)
1828 goto normal_char;
1829
1830 c1 = c - '0';
1831
1832 if (c1 > regnum)
1833 return REG_ESUBREG;
1834
1835 /* Can't back reference to a subexpression if inside of it. */
1836 if (group_in_compile_stack(compile_stack, c1))
1837 goto normal_char;
1838
1839 laststart = b;
1840 BUF_PUSH_2(duplicate, c1);
1841 break;
1842
1843
1844 case '+':
1845 case '?':
1846 if (syntax & RE_BK_PLUS_QM)
1847 goto handle_plus;
1848 else
1849 goto normal_backslash;
1850
1851 default:
1852normal_backslash:
1853 /* You might think it would be useful for \ to mean
1854 * not to translate; but if we don't translate it
1855 * it will never match anything. */
1856 c = TRANSLATE(c);
1857 goto normal_char;
1858 }
1859 break;
1860
1861
1862 default:
1863 /* Expects the character in `c'. */
1864normal_char:
1865 /* If no exactn currently being built. */
1866 if (!pending_exact
1867
1868 /* If last exactn not at current position. */
1869 || pending_exact + *pending_exact + 1 != b
1870
1871 /* We have only one byte following the exactn for the count. */
1872 || *pending_exact == (1 << BYTEWIDTH) - 1
1873
1874 /* If followed by a repetition operator. */
1875 || *p == '*' || *p == '^'
1876 || ((syntax & RE_BK_PLUS_QM)
1877 ? *p == '\\' && (p[1] == '+' || p[1] == '?')
1878 : (*p == '+' || *p == '?'))
1879 || ((syntax & RE_INTERVALS)
1880 && ((syntax & RE_NO_BK_BRACES)
1881 ? *p == '{'
1882 : (p[0] == '\\' && p[1] == '{')))) {
1883 /* Start building a new exactn. */
1884
1885 laststart = b;
1886
1887 BUF_PUSH_2(exactn, 0);
1888 pending_exact = b - 1;
1889 }
1890 BUF_PUSH(c);
1891 (*pending_exact)++;
1892 break;
1893 } /* switch (c) */
b8d8561b 1894 } /* while p != pend */
1895
1896
1897 /* Through the pattern now. */
1898
1899 if (fixup_alt_jump)
26ac0430 1900 STORE_JUMP(jump_past_alt, fixup_alt_jump, b);
b8d8561b 1901
1902 if (!COMPILE_STACK_EMPTY)
26ac0430 1903 return REG_EPAREN;
b8d8561b 1904
1905 free(compile_stack.stack);
1906
1907 /* We have succeeded; set the length of the buffer. */
1908 bufp->used = b - bufp->buffer;
090089c4 1909
1910#ifdef DEBUG
b8d8561b 1911 if (debug) {
26ac0430
AJ
1912 DEBUG_PRINT1("\nCompiled pattern: ");
1913 print_compiled_pattern(bufp);
090089c4 1914 }
1915#endif /* DEBUG */
1916
b8d8561b 1917 return REG_NOERROR;
1918} /* regex_compile */
090089c4 1919\f
1920/* Subroutines for `regex_compile'. */
1921
1922/* Store OP at LOC followed by two-byte integer parameter ARG. */
1923
08bc07d0 1924void store_op1(re_opcode_t op, unsigned char *loc, int arg)
090089c4 1925{
b8d8561b 1926 *loc = (unsigned char) op;
1927 STORE_NUMBER(loc + 1, arg);
090089c4 1928}
1929
1930
1931/* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */
1932
08bc07d0 1933void
1934store_op2( re_opcode_t op, unsigned char *loc, int arg1, int arg2)
090089c4 1935{
b8d8561b 1936 *loc = (unsigned char) op;
1937 STORE_NUMBER(loc + 1, arg1);
1938 STORE_NUMBER(loc + 3, arg2);
090089c4 1939}
1940
1941
1942/* Copy the bytes from LOC to END to open up three bytes of space at LOC
b8d8561b 1943 * for OP followed by two-byte integer parameter ARG. */
090089c4 1944
08bc07d0 1945void
1946insert_op1(re_opcode_t op, unsigned char *loc, int arg, unsigned char *end)
090089c4 1947{
b8d8561b 1948 register unsigned char *pfrom = end;
1949 register unsigned char *pto = end + 3;
1950
1951 while (pfrom != loc)
26ac0430 1952 *--pto = *--pfrom;
090089c4 1953
b8d8561b 1954 store_op1(op, loc, arg);
090089c4 1955}
1956
1957
1958/* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */
1959
08bc07d0 1960void
1961insert_op2(re_opcode_t op, unsigned char *loc, int arg1, int arg2, unsigned char *end)
090089c4 1962{
b8d8561b 1963 register unsigned char *pfrom = end;
1964 register unsigned char *pto = end + 5;
090089c4 1965
b8d8561b 1966 while (pfrom != loc)
26ac0430 1967 *--pto = *--pfrom;
b8d8561b 1968
1969 store_op2(op, loc, arg1, arg2);
090089c4 1970}
1971
1972
1973/* P points to just after a ^ in PATTERN. Return true if that ^ comes
b8d8561b 1974 * after an alternative or a begin-subexpression. We assume there is at
1975 * least one character before the ^. */
090089c4 1976
08bc07d0 1977boolean
1978at_begline_loc_p(const char * pattern, const char *p, reg_syntax_t syntax)
090089c4 1979{
b8d8561b 1980 const char *prev = p - 2;
1981 boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\';
1982
1983 return
26ac0430
AJ
1984 /* After a subexpression? */
1985 (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash))
1986 /* After an alternative? */
1987 || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash));
090089c4 1988}
1989
1990
1991/* The dual of at_begline_loc_p. This one is for $. We assume there is
b8d8561b 1992 * at least one character after the $, i.e., `P < PEND'. */
090089c4 1993
08bc07d0 1994boolean
1995at_endline_loc_p(const char *p, const char *pend, int syntax)
090089c4 1996{
b8d8561b 1997 const char *next = p;
1998 boolean next_backslash = *next == '\\';
1999 const char *next_next = p + 1 < pend ? p + 1 : NULL;
2000
2001 return
26ac0430
AJ
2002 /* Before a subexpression? */
2003 (syntax & RE_NO_BK_PARENS ? *next == ')'
2004 : next_backslash && next_next && *next_next == ')')
2005 /* Before an alternative? */
2006 || (syntax & RE_NO_BK_VBAR ? *next == '|'
2007 : next_backslash && next_next && *next_next == '|');
090089c4 2008}
2009
2010
26ac0430 2011/* Returns true if REGNUM is in one of COMPILE_STACK's elements and
b8d8561b 2012 * false if it's not. */
090089c4 2013
08bc07d0 2014boolean
2015group_in_compile_stack(compile_stack_type compile_stack, regnum_t regnum)
090089c4 2016{
b8d8561b 2017 int this_element;
090089c4 2018
b8d8561b 2019 for (this_element = compile_stack.avail - 1;
26ac0430
AJ
2020 this_element >= 0;
2021 this_element--)
2022 if (compile_stack.stack[this_element].regnum == regnum)
2023 return true;
090089c4 2024
b8d8561b 2025 return false;
090089c4 2026}
2027
2028
2029/* Read the ending character of a range (in a bracket expression) from the
b8d8561b 2030 * uncompiled pattern *P_PTR (which ends at PEND). We assume the
2031 * starting character is in `P[-2]'. (`P[-1]' is the character `-'.)
2032 * Then we set the translation of all bits between the starting and
2033 * ending characters (inclusive) in the compiled pattern B.
26ac0430 2034 *
b8d8561b 2035 * Return an error code.
26ac0430 2036 *
b8d8561b 2037 * We use these short variable names so we can use the same macros as
2038 * `regex_compile' itself. */
090089c4 2039
08bc07d0 2040reg_errcode_t
2041compile_range(const char **p_ptr, const char *pend, char *translate, reg_syntax_t syntax, unsigned char *b)
090089c4 2042{
b8d8561b 2043 unsigned this_char;
2044
2045 const char *p = *p_ptr;
2046 int range_start, range_end;
2047
2048 if (p == pend)
26ac0430 2049 return REG_ERANGE;
b8d8561b 2050
2051 /* Even though the pattern is a signed `char *', we need to fetch
2052 * with unsigned char *'s; if the high bit of the pattern character
2053 * is set, the range endpoints will be negative if we fetch using a
2054 * signed char *.
26ac0430
AJ
2055 *
2056 * We also want to fetch the endpoints without translating them; the
b8d8561b 2057 * appropriate translation is done in the bit-setting loop below. */
2058 range_start = ((unsigned char *) p)[-2];
2059 range_end = ((unsigned char *) p)[0];
2060
2061 /* Have to increment the pointer into the pattern string, so the
2062 * caller isn't still at the ending character. */
2063 (*p_ptr)++;
2064
2065 /* If the start is after the end, the range is empty. */
2066 if (range_start > range_end)
26ac0430 2067 return syntax & RE_NO_EMPTY_RANGES ? REG_ERANGE : REG_NOERROR;
b8d8561b 2068
2069 /* Here we see why `this_char' has to be larger than an `unsigned
2070 * char' -- the range is inclusive, so if `range_end' == 0xff
2071 * (assuming 8-bit characters), we would otherwise go into an infinite
2072 * loop, since all characters <= 0xff. */
2073 for (this_char = range_start; this_char <= range_end; this_char++) {
26ac0430 2074 SET_LIST_BIT(TRANSLATE(this_char));
090089c4 2075 }
b8d8561b 2076
2077 return REG_NOERROR;
090089c4 2078}
2079\f
2080/* Failure stack declarations and macros; both re_compile_fastmap and
b8d8561b 2081 * re_match_2 use a failure stack. These have to be macros because of
2082 * REGEX_ALLOCATE. */
2083
090089c4 2084
2085/* Number of failure points for which to initially allocate space
b8d8561b 2086 * when matching. If this number is exceeded, we allocate more
2087 * space, so it is not a hard limit. */
090089c4 2088#ifndef INIT_FAILURE_ALLOC
2089#define INIT_FAILURE_ALLOC 5
2090#endif
2091
2092/* Roughly the maximum number of failure points on the stack. Would be
b8d8561b 2093 * exactly that if always used MAX_FAILURE_SPACE each time we failed.
2094 * This is a variable only so users of regex can assign to it; we never
2095 * change it ourselves. */
090089c4 2096int re_max_failures = 2000;
2097
2098typedef const unsigned char *fail_stack_elt_t;
2099
b8d8561b 2100typedef struct {
2101 fail_stack_elt_t *stack;
2102 unsigned size;
2103 unsigned avail; /* Offset of next open position. */
090089c4 2104} fail_stack_type;
2105
2106#define FAIL_STACK_EMPTY() (fail_stack.avail == 0)
2107#define FAIL_STACK_PTR_EMPTY() (fail_stack_ptr->avail == 0)
2108#define FAIL_STACK_FULL() (fail_stack.avail == fail_stack.size)
2109#define FAIL_STACK_TOP() (fail_stack.stack[fail_stack.avail])
2110
2111
2112/* Initialize `fail_stack'. Do `return -2' if the alloc fails. */
2113
2114#define INIT_FAIL_STACK() \
2115 do { \
2116 fail_stack.stack = (fail_stack_elt_t *) \
2117 REGEX_ALLOCATE (INIT_FAILURE_ALLOC * sizeof (fail_stack_elt_t)); \
2118 \
2119 if (fail_stack.stack == NULL) \
2120 return -2; \
2121 \
2122 fail_stack.size = INIT_FAILURE_ALLOC; \
2123 fail_stack.avail = 0; \
2124 } while (0)
2125
2126
2127/* Double the size of FAIL_STACK, up to approximately `re_max_failures' items.
26ac0430 2128 *
b8d8561b 2129 * Return 1 if succeeds, and 0 if either ran out of memory
26ac0430
AJ
2130 * allocating space for it or it was already too large.
2131 *
b8d8561b 2132 * REGEX_REALLOCATE requires `destination' be declared. */
090089c4 2133
2134#define DOUBLE_FAIL_STACK(fail_stack) \
2135 ((fail_stack).size > re_max_failures * MAX_FAILURE_ITEMS \
2136 ? 0 \
2137 : ((fail_stack).stack = (fail_stack_elt_t *) \
2138 REGEX_REALLOCATE ((fail_stack).stack, \
2139 (fail_stack).size * sizeof (fail_stack_elt_t), \
2140 ((fail_stack).size << 1) * sizeof (fail_stack_elt_t)), \
2141 \
2142 (fail_stack).stack == NULL \
2143 ? 0 \
2144 : ((fail_stack).size <<= 1, \
2145 1)))
2146
2147
26ac0430
AJ
2148/* Push PATTERN_OP on FAIL_STACK.
2149 *
b8d8561b 2150 * Return 1 if was able to do so and 0 if ran out of memory allocating
2151 * space to do so. */
090089c4 2152#define PUSH_PATTERN_OP(pattern_op, fail_stack) \
2153 ((FAIL_STACK_FULL () \
2154 && !DOUBLE_FAIL_STACK (fail_stack)) \
2155 ? 0 \
2156 : ((fail_stack).stack[(fail_stack).avail++] = pattern_op, \
2157 1))
2158
2159/* This pushes an item onto the failure stack. Must be a four-byte
b8d8561b 2160 * value. Assumes the variable `fail_stack'. Probably should only
2161 * be called from within `PUSH_FAILURE_POINT'. */
090089c4 2162#define PUSH_FAILURE_ITEM(item) \
2163 fail_stack.stack[fail_stack.avail++] = (fail_stack_elt_t) item
2164
2165/* The complement operation. Assumes `fail_stack' is nonempty. */
2166#define POP_FAILURE_ITEM() fail_stack.stack[--fail_stack.avail]
2167
2168/* Used to omit pushing failure point id's when we're not debugging. */
2169#ifdef DEBUG
2170#define DEBUG_PUSH PUSH_FAILURE_ITEM
2171#define DEBUG_POP(item_addr) *(item_addr) = POP_FAILURE_ITEM ()
2172#else
2173#define DEBUG_PUSH(item)
2174#define DEBUG_POP(item_addr)
2175#endif
2176
2177
2178/* Push the information about the state we will need
26ac0430
AJ
2179 * if we ever fail back to it.
2180 *
b8d8561b 2181 * Requires variables fail_stack, regstart, regend, reg_info, and
2182 * num_regs be declared. DOUBLE_FAIL_STACK requires `destination' be
2183 * declared.
26ac0430 2184 *
b8d8561b 2185 * Does `return FAILURE_CODE' if runs out of memory. */
090089c4 2186
2187#define PUSH_FAILURE_POINT(pattern_place, string_place, failure_code) \
2188 do { \
2189 char *destination; \
2190 /* Must be int, so when we don't save any registers, the arithmetic \
2191 of 0 + -1 isn't done as unsigned. */ \
2192 int this_reg; \
2193 \
2194 DEBUG_STATEMENT (failure_id++); \
2195 DEBUG_STATEMENT (nfailure_points_pushed++); \
2196 DEBUG_PRINT2 ("\nPUSH_FAILURE_POINT #%u:\n", failure_id); \
2197 DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail);\
2198 DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\
2199 \
2200 DEBUG_PRINT2 (" slots needed: %d\n", NUM_FAILURE_ITEMS); \
2201 DEBUG_PRINT2 (" available: %d\n", REMAINING_AVAIL_SLOTS); \
2202 \
2203 /* Ensure we have enough space allocated for what we will push. */ \
2204 while (REMAINING_AVAIL_SLOTS < NUM_FAILURE_ITEMS) \
2205 { \
2206 if (!DOUBLE_FAIL_STACK (fail_stack)) \
2207 return failure_code; \
2208 \
2209 DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", \
2210 (fail_stack).size); \
2211 DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\
2212 } \
2213 \
2214 /* Push the info, starting with the registers. */ \
2215 DEBUG_PRINT1 ("\n"); \
2216 \
2217 for (this_reg = lowest_active_reg; this_reg <= highest_active_reg; \
2218 this_reg++) \
2219 { \
2220 DEBUG_PRINT2 (" Pushing reg: %d\n", this_reg); \
2221 DEBUG_STATEMENT (num_regs_pushed++); \
2222 \
2223 DEBUG_PRINT2 (" start: 0x%x\n", regstart[this_reg]); \
2224 PUSH_FAILURE_ITEM (regstart[this_reg]); \
2225 \
2226 DEBUG_PRINT2 (" end: 0x%x\n", regend[this_reg]); \
2227 PUSH_FAILURE_ITEM (regend[this_reg]); \
2228 \
2229 DEBUG_PRINT2 (" info: 0x%x\n ", reg_info[this_reg]); \
2230 DEBUG_PRINT2 (" match_null=%d", \
2231 REG_MATCH_NULL_STRING_P (reg_info[this_reg])); \
2232 DEBUG_PRINT2 (" active=%d", IS_ACTIVE (reg_info[this_reg])); \
2233 DEBUG_PRINT2 (" matched_something=%d", \
2234 MATCHED_SOMETHING (reg_info[this_reg])); \
2235 DEBUG_PRINT2 (" ever_matched=%d", \
2236 EVER_MATCHED_SOMETHING (reg_info[this_reg])); \
2237 DEBUG_PRINT1 ("\n"); \
2238 PUSH_FAILURE_ITEM (reg_info[this_reg].word); \
2239 } \
2240 \
2241 DEBUG_PRINT2 (" Pushing low active reg: %d\n", lowest_active_reg);\
2242 PUSH_FAILURE_ITEM (lowest_active_reg); \
2243 \
2244 DEBUG_PRINT2 (" Pushing high active reg: %d\n", highest_active_reg);\
2245 PUSH_FAILURE_ITEM (highest_active_reg); \
2246 \
2247 DEBUG_PRINT2 (" Pushing pattern 0x%x: ", pattern_place); \
2248 DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern_place, pend); \
2249 PUSH_FAILURE_ITEM (pattern_place); \
2250 \
2251 DEBUG_PRINT2 (" Pushing string 0x%x: `", string_place); \
2252 DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, \
2253 size2); \
2254 DEBUG_PRINT1 ("'\n"); \
2255 PUSH_FAILURE_ITEM (string_place); \
2256 \
2257 DEBUG_PRINT2 (" Pushing failure id: %u\n", failure_id); \
2258 DEBUG_PUSH (failure_id); \
2259 } while (0)
2260
2261/* This is the number of items that are pushed and popped on the stack
b8d8561b 2262 * for each register. */
090089c4 2263#define NUM_REG_ITEMS 3
2264
2265/* Individual items aside from the registers. */
2266#ifdef DEBUG
b8d8561b 2267#define NUM_NONREG_ITEMS 5 /* Includes failure point id. */
090089c4 2268#else
2269#define NUM_NONREG_ITEMS 4
2270#endif
2271
2272/* We push at most this many items on the stack. */
2273#define MAX_FAILURE_ITEMS ((num_regs - 1) * NUM_REG_ITEMS + NUM_NONREG_ITEMS)
2274
2275/* We actually push this many items. */
2276#define NUM_FAILURE_ITEMS \
2277 ((highest_active_reg - lowest_active_reg + 1) * NUM_REG_ITEMS \
2278 + NUM_NONREG_ITEMS)
2279
2280/* How many items can still be added to the stack without overflowing it. */
2281#define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
2282
2283
2284/* Pops what PUSH_FAIL_STACK pushes.
26ac0430 2285 *
b8d8561b 2286 * We restore into the parameters, all of which should be lvalues:
2287 * STR -- the saved data position.
2288 * PAT -- the saved pattern position.
2289 * LOW_REG, HIGH_REG -- the highest and lowest active registers.
2290 * REGSTART, REGEND -- arrays of string positions.
2291 * REG_INFO -- array of information about each subexpression.
26ac0430 2292 *
b8d8561b 2293 * Also assumes the variables `fail_stack' and (if debugging), `bufp',
2294 * `pend', `string1', `size1', `string2', and `size2'. */
090089c4 2295
2296#define POP_FAILURE_POINT(str, pat, low_reg, high_reg, regstart, regend, reg_info)\
2297{ \
2298 DEBUG_STATEMENT (fail_stack_elt_t failure_id;) \
2299 int this_reg; \
2300 const unsigned char *string_temp; \
2301 \
2302 assert (!FAIL_STACK_EMPTY ()); \
2303 \
2304 /* Remove failure points and point to how many regs pushed. */ \
2305 DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \
2306 DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \
2307 DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \
2308 \
2309 assert (fail_stack.avail >= NUM_NONREG_ITEMS); \
2310 \
2311 DEBUG_POP (&failure_id); \
2312 DEBUG_PRINT2 (" Popping failure id: %u\n", failure_id); \
2313 \
2314 /* If the saved string location is NULL, it came from an \
2315 on_failure_keep_string_jump opcode, and we want to throw away the \
2316 saved NULL, thus retaining our current position in the string. */ \
2317 string_temp = POP_FAILURE_ITEM (); \
2318 if (string_temp != NULL) \
2319 str = (const char *) string_temp; \
2320 \
2321 DEBUG_PRINT2 (" Popping string 0x%x: `", str); \
2322 DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \
2323 DEBUG_PRINT1 ("'\n"); \
2324 \
2325 pat = (unsigned char *) POP_FAILURE_ITEM (); \
2326 DEBUG_PRINT2 (" Popping pattern 0x%x: ", pat); \
2327 DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \
2328 \
2329 /* Restore register info. */ \
30a4f2a8 2330 high_reg = (unsigned long) POP_FAILURE_ITEM (); \
090089c4 2331 DEBUG_PRINT2 (" Popping high active reg: %d\n", high_reg); \
2332 \
30a4f2a8 2333 low_reg = (unsigned long) POP_FAILURE_ITEM (); \
090089c4 2334 DEBUG_PRINT2 (" Popping low active reg: %d\n", low_reg); \
2335 \
2336 for (this_reg = high_reg; this_reg >= low_reg; this_reg--) \
2337 { \
2338 DEBUG_PRINT2 (" Popping reg: %d\n", this_reg); \
2339 \
2340 reg_info[this_reg].word = POP_FAILURE_ITEM (); \
2341 DEBUG_PRINT2 (" info: 0x%x\n", reg_info[this_reg]); \
2342 \
2343 regend[this_reg] = (const char *) POP_FAILURE_ITEM (); \
2344 DEBUG_PRINT2 (" end: 0x%x\n", regend[this_reg]); \
2345 \
2346 regstart[this_reg] = (const char *) POP_FAILURE_ITEM (); \
2347 DEBUG_PRINT2 (" start: 0x%x\n", regstart[this_reg]); \
2348 } \
2349 \
2350 DEBUG_STATEMENT (nfailure_points_popped++); \
b8d8561b 2351} /* POP_FAILURE_POINT */
090089c4 2352\f
2353/* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
b8d8561b 2354 * BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible
2355 * characters can start a string that matches the pattern. This fastmap
2356 * is used by re_search to skip quickly over impossible starting points.
26ac0430 2357 *
b8d8561b 2358 * The caller must supply the address of a (1 << BYTEWIDTH)-byte data
2359 * area as BUFP->fastmap.
26ac0430 2360 *
b8d8561b 2361 * We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
2362 * the pattern buffer.
26ac0430 2363 *
b8d8561b 2364 * Returns 0 if we succeed, -2 if an internal error. */
090089c4 2365
2366int
b8d8561b 2367re_compile_fastmap(bufp)
26ac0430 2368struct re_pattern_buffer *bufp;
090089c4 2369{
b8d8561b 2370 int j, k;
2371 fail_stack_type fail_stack;
090089c4 2372#ifndef REGEX_MALLOC
b8d8561b 2373 char *destination;
090089c4 2374#endif
b8d8561b 2375 /* We don't push any register information onto the failure stack. */
2376 unsigned num_regs = 0;
2377
2378 register char *fastmap = bufp->fastmap;
2379 unsigned char *pattern = bufp->buffer;
2380 unsigned long size = bufp->used;
2381 const unsigned char *p = pattern;
2382 register unsigned char *pend = pattern + size;
2383
2384 /* Assume that each path through the pattern can be null until
2385 * proven otherwise. We set this false at the bottom of switch
2386 * statement, to which we get only if a particular path doesn't
2387 * match the empty string. */
2388 boolean path_can_be_null = true;
2389
2390 /* We aren't doing a `succeed_n' to begin with. */
2391 boolean succeed_n_p = false;
2392
2393 assert(fastmap != NULL && p != NULL);
2394
2395 INIT_FAIL_STACK();
0e473d70 2396 memset(fastmap, 0, 1 << BYTEWIDTH); /* Assume nothing's valid. */
b8d8561b 2397 bufp->fastmap_accurate = 1; /* It will be when we're done. */
2398 bufp->can_be_null = 0;
2399
2400 while (p != pend || !FAIL_STACK_EMPTY()) {
26ac0430
AJ
2401 if (p == pend) {
2402 bufp->can_be_null |= path_can_be_null;
b8d8561b 2403
26ac0430
AJ
2404 /* Reset for next path. */
2405 path_can_be_null = true;
b8d8561b 2406
26ac0430
AJ
2407 p = fail_stack.stack[--fail_stack.avail];
2408 }
2409 /* We should never be about to go beyond the end of the pattern. */
2410 assert(p < pend);
090089c4 2411
090089c4 2412#ifdef SWITCH_ENUM_BUG
26ac0430 2413 switch ((int) ((re_opcode_t) * p++))
090089c4 2414#else
26ac0430 2415 switch ((re_opcode_t) * p++)
090089c4 2416#endif
26ac0430
AJ
2417 {
2418
2419 /* I guess the idea here is to simply not bother with a fastmap
2420 * if a backreference is used, since it's too hard to figure out
2421 * the fastmap for the corresponding group. Setting
2422 * `can_be_null' stops `re_search_2' from using the fastmap, so
2423 * that is all we do. */
2424 case duplicate:
2425 bufp->can_be_null = 1;
2426 return 0;
2427
2428
2429 /* Following are the cases which match a character. These end
2430 * with `break'. */
090089c4 2431
26ac0430
AJ
2432 case exactn:
2433 fastmap[p[1]] = 1;
2434 break;
2435
2436
2437 case charset:
2438 for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
2439 if (p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH)))
2440 fastmap[j] = 1;
2441 break;
2442
2443
2444 case charset_not:
2445 /* Chars beyond end of map must be allowed. */
2446 for (j = *p * BYTEWIDTH; j < (1 << BYTEWIDTH); j++)
2447 fastmap[j] = 1;
2448
2449 for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
2450 if (!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))))
2451 fastmap[j] = 1;
2452 break;
2453
2454
2455 case wordchar:
2456 for (j = 0; j < (1 << BYTEWIDTH); j++)
2457 if (SYNTAX(j) == Sword)
2458 fastmap[j] = 1;
2459 break;
2460
2461
2462 case notwordchar:
2463 for (j = 0; j < (1 << BYTEWIDTH); j++)
2464 if (SYNTAX(j) != Sword)
2465 fastmap[j] = 1;
2466 break;
2467
2468
2469 case anychar:
2470 /* `.' matches anything ... */
2471 for (j = 0; j < (1 << BYTEWIDTH); j++)
2472 fastmap[j] = 1;
2473
2474 /* ... except perhaps newline. */
2475 if (!(bufp->syntax & RE_DOT_NEWLINE))
2476 fastmap['\n'] = 0;
2477
2478 /* Return if we have already set `can_be_null'; if we have,
2479 * then the fastmap is irrelevant. Something's wrong here. */
2480 else if (bufp->can_be_null)
2481 return 0;
2482
2483 /* Otherwise, have to check alternative paths. */
2484 break;
2485
2486
2487 case no_op:
2488 case begline:
2489 case endline:
2490 case begbuf:
2491 case endbuf:
2492 case wordbound:
2493 case notwordbound:
2494 case wordbeg:
2495 case wordend:
2496 case push_dummy_failure:
2497 continue;
2498
2499
2500 case jump_n:
2501 case pop_failure_jump:
2502 case maybe_pop_jump:
2503 case jump:
2504 case jump_past_alt:
2505 case dummy_failure_jump:
2506 EXTRACT_NUMBER_AND_INCR(j, p);
2507 p += j;
2508 if (j > 0)
2509 continue;
2510
2511 /* Jump backward implies we just went through the body of a
2512 * loop and matched nothing. Opcode jumped to should be
2513 * `on_failure_jump' or `succeed_n'. Just treat it like an
2514 * ordinary jump. For a * loop, it has pushed its failure
2515 * point already; if so, discard that as redundant. */
2516 if ((re_opcode_t) * p != on_failure_jump
2517 && (re_opcode_t) * p != succeed_n)
2518 continue;
2519
2520 p++;
2521 EXTRACT_NUMBER_AND_INCR(j, p);
2522 p += j;
2523
2524 /* If what's on the stack is where we are now, pop it. */
2525 if (!FAIL_STACK_EMPTY()
2526 && fail_stack.stack[fail_stack.avail - 1] == p)
2527 fail_stack.avail--;
2528
2529 continue;
2530
2531
2532 case on_failure_jump:
2533 case on_failure_keep_string_jump:
2534handle_on_failure_jump:
2535 EXTRACT_NUMBER_AND_INCR(j, p);
2536
2537 /* For some patterns, e.g., `(a?)?', `p+j' here points to the
2538 * end of the pattern. We don't want to push such a point,
2539 * since when we restore it above, entering the switch will
2540 * increment `p' past the end of the pattern. We don't need
2541 * to push such a point since we obviously won't find any more
2542 * fastmap entries beyond `pend'. Such a pattern can match
2543 * the null string, though. */
2544 if (p + j < pend) {
2545 if (!PUSH_PATTERN_OP(p + j, fail_stack))
2546 return -2;
2547 } else
2548 bufp->can_be_null = 1;
2549
2550 if (succeed_n_p) {
2551 EXTRACT_NUMBER_AND_INCR(k, p); /* Skip the n. */
2552 succeed_n_p = false;
2553 }
2554 continue;
2555
2556
2557 case succeed_n:
2558 /* Get to the number of times to succeed. */
2559 p += 2;
2560
2561 /* Increment p past the n for when k != 0. */
2562 EXTRACT_NUMBER_AND_INCR(k, p);
2563 if (k == 0) {
2564 p -= 4;
2565 succeed_n_p = true; /* Spaghetti code alert. */
2566 goto handle_on_failure_jump;
2567 }
2568 continue;
2569
2570
2571 case set_number_at:
2572 p += 4;
2573 continue;
2574
2575
2576 case start_memory:
2577 case stop_memory:
2578 p += 2;
2579 continue;
2580
2581
2582 default:
2583 abort(); /* We have listed all the cases. */
2584 } /* switch *p++ */
2585
2586 /* Getting here means we have found the possible starting
2587 * characters for one path of the pattern -- and that the empty
2588 * string does not match. We need not follow this path further.
2589 * Instead, look at the next alternative (remembered on the
2590 * stack), or quit if no more. The test at the top of the loop
2591 * does these things. */
2592 path_can_be_null = false;
2593 p = pend;
b8d8561b 2594 } /* while p */
2595
2596 /* Set `can_be_null' for the last path (also the first path, if the
2597 * pattern is empty). */
2598 bufp->can_be_null |= path_can_be_null;
2599 return 0;
2600} /* re_compile_fastmap */
090089c4 2601\f
090089c4 2602/* Searching routines. */
2603
2604/* Like re_search_2, below, but only one string is specified, and
b8d8561b 2605 * doesn't let you say where to stop matching. */
090089c4 2606
35516333 2607static int
b8d8561b 2608re_search(bufp, string, size, startpos, range, regs)
26ac0430
AJ
2609struct re_pattern_buffer *bufp;
2610const char *string;
2611int size, startpos, range;
2612struct re_registers *regs;
090089c4 2613{
b8d8561b 2614 return re_search_2(bufp, NULL, 0, string, size, startpos, range,
26ac0430 2615 regs, size);
090089c4 2616}
2617
2618
2619/* Using the compiled pattern in BUFP->buffer, first tries to match the
b8d8561b 2620 * virtual concatenation of STRING1 and STRING2, starting first at index
2621 * STARTPOS, then at STARTPOS + 1, and so on.
26ac0430 2622 *
b8d8561b 2623 * STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
26ac0430 2624 *
b8d8561b 2625 * RANGE is how far to scan while trying to match. RANGE = 0 means try
2626 * only at STARTPOS; in general, the last start tried is STARTPOS +
2627 * RANGE.
26ac0430 2628 *
b8d8561b 2629 * In REGS, return the indices of the virtual concatenation of STRING1
2630 * and STRING2 that matched the entire BUFP->buffer and its contained
2631 * subexpressions.
26ac0430 2632 *
b8d8561b 2633 * Do not consider matching one past the index STOP in the virtual
2634 * concatenation of STRING1 and STRING2.
26ac0430 2635 *
b8d8561b 2636 * We return either the position in the strings at which the match was
2637 * found, -1 if no match, or -2 if error (such as failure
2638 * stack overflow). */
090089c4 2639
35516333 2640static int
b8d8561b 2641re_search_2(bufp, string1, size1, string2, size2, startpos, range, regs, stop)
26ac0430
AJ
2642struct re_pattern_buffer *bufp;
2643const char *string1, *string2;
2644int size1, size2;
2645int startpos;
2646int range;
2647struct re_registers *regs;
2648int stop;
090089c4 2649{
b8d8561b 2650 int val;
2651 register char *fastmap = bufp->fastmap;
2652 register char *translate = bufp->translate;
2653 int total_size = size1 + size2;
2654 int endpos = startpos + range;
2655
2656 /* Check for out-of-range STARTPOS. */
2657 if (startpos < 0 || startpos > total_size)
26ac0430 2658 return -1;
090089c4 2659
b8d8561b 2660 /* Fix up RANGE if it might eventually take us outside
2661 * the virtual concatenation of STRING1 and STRING2. */
2662 if (endpos < -1)
26ac0430 2663 range = -1 - startpos;
b8d8561b 2664 else if (endpos > total_size)
26ac0430 2665 range = total_size - startpos;
b8d8561b 2666
2667 /* If the search isn't to be a backwards one, don't waste time in a
2668 * search for a pattern that must be anchored. */
2669 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == begbuf && range > 0) {
26ac0430
AJ
2670 if (startpos > 0)
2671 return -1;
2672 else
2673 range = 1;
b8d8561b 2674 }
2675 /* Update the fastmap now if not correct already. */
2676 if (fastmap && !bufp->fastmap_accurate)
26ac0430
AJ
2677 if (re_compile_fastmap(bufp) == -2)
2678 return -2;
b8d8561b 2679
2680 /* Loop through the string, looking for a place to start matching. */
2681 for (;;) {
26ac0430
AJ
2682 /* If a fastmap is supplied, skip quickly over characters that
2683 * cannot be the start of a match. If the pattern can match the
2684 * null string, however, we don't need to skip characters; we want
2685 * the first null string. */
2686 if (fastmap && startpos < total_size && !bufp->can_be_null) {
2687 if (range > 0) { /* Searching forwards. */
2688 register const char *d;
2689 register int lim = 0;
2690 int irange = range;
2691
2692 if (startpos < size1 && startpos + range >= size1)
2693 lim = range - (size1 - startpos);
2694
2695 d = (startpos >= size1 ? string2 - size1 : string1) + startpos;
2696
2697 /* Written out as an if-else to avoid testing `translate'
2698 * inside the loop. */
2699 if (translate)
2700 while (range > lim
2701 && !fastmap[(unsigned char)
2702 translate[(unsigned char) *d++]])
2703 range--;
2704 else
2705 while (range > lim && !fastmap[(unsigned char) *d++])
2706 range--;
2707
2708 startpos += irange - range;
2709 } else { /* Searching backwards. */
2710 register char c = (size1 == 0 || startpos >= size1
2711 ? string2[startpos - size1]
2712 : string1[startpos]);
2713
2714 if (!fastmap[(unsigned char) TRANSLATE(c)])
2715 goto advance;
2716 }
2717 }
2718 /* If can't match the null string, and that's all we have left, fail. */
2719 if (range >= 0 && startpos == total_size && fastmap
2720 && !bufp->can_be_null)
2721 return -1;
2722
2723 val = re_match_2(bufp, string1, size1, string2, size2,
2724 startpos, regs, stop);
2725 if (val >= 0)
2726 return startpos;
2727
2728 if (val == -2)
2729 return -2;
2730
2731advance:
2732 if (!range)
2733 break;
2734 else if (range > 0) {
2735 range--;
2736 startpos++;
2737 } else {
2738 range++;
2739 startpos--;
2740 }
090089c4 2741 }
b8d8561b 2742 return -1;
2743} /* re_search_2 */
090089c4 2744\f
2745/* Declarations and macros for re_match_2. */
2746
090089c4 2747/* Structure for per-register (a.k.a. per-group) information.
b8d8561b 2748 * This must not be longer than one word, because we push this value
2749 * onto the failure stack. Other register information, such as the
2750 * starting and ending positions (which are addresses), and the list of
2751 * inner groups (which is a bits list) are maintained in separate
26ac0430
AJ
2752 * variables.
2753 *
b8d8561b 2754 * We are making a (strictly speaking) nonportable assumption here: that
2755 * the compiler will pack our bit fields into something that fits into
2756 * the type of `word', i.e., is something that fits into one item on the
2757 * failure stack. */
2758typedef union {
2759 fail_stack_elt_t word;
2760 struct {
26ac0430
AJ
2761 /* This field is one if this group can match the empty string,
2762 * zero if not. If not yet determined, `MATCH_NULL_UNSET_VALUE'. */
090089c4 2763#define MATCH_NULL_UNSET_VALUE 3
26ac0430
AJ
2764 unsigned match_null_string_p:2;
2765 unsigned is_active:1;
2766 unsigned matched_something:1;
2767 unsigned ever_matched_something:1;
b8d8561b 2768 } bits;
090089c4 2769} register_info_type;
08bc07d0 2770static boolean alt_match_null_string_p(unsigned char *p, unsigned char *end, register_info_type *reg_info);
2771static boolean common_op_match_null_string_p( unsigned char **p, unsigned char *end, register_info_type *reg_info);
2772static int bcmp_translate(unsigned char const *s1, unsigned char const *s2, register int len, char *translate);
862bc6c0 2773static boolean group_match_null_string_p(unsigned char **p, unsigned char *end, register_info_type *reg_info);
090089c4 2774
2775#define REG_MATCH_NULL_STRING_P(R) ((R).bits.match_null_string_p)
2776#define IS_ACTIVE(R) ((R).bits.is_active)
2777#define MATCHED_SOMETHING(R) ((R).bits.matched_something)
2778#define EVER_MATCHED_SOMETHING(R) ((R).bits.ever_matched_something)
2779
2780
2781/* Call this when have matched a real character; it sets `matched' flags
b8d8561b 2782 * for the subexpressions which we are currently inside. Also records
2783 * that those subexprs have matched. */
090089c4 2784#define SET_REGS_MATCHED() \
2785 do \
2786 { \
2787 unsigned r; \
2788 for (r = lowest_active_reg; r <= highest_active_reg; r++) \
2789 { \
2790 MATCHED_SOMETHING (reg_info[r]) \
2791 = EVER_MATCHED_SOMETHING (reg_info[r]) \
2792 = 1; \
2793 } \
2794 } \
2795 while (0)
2796
2797
2798/* This converts PTR, a pointer into one of the search strings `string1'
b8d8561b 2799 * and `string2' into an offset from the beginning of that string. */
090089c4 2800#define POINTER_TO_OFFSET(ptr) \
2801 (FIRST_STRING_P (ptr) ? (ptr) - string1 : (ptr) - string2 + size1)
2802
2803/* Registers are set to a sentinel when they haven't yet matched. */
2804#define REG_UNSET_VALUE ((char *) -1)
2805#define REG_UNSET(e) ((e) == REG_UNSET_VALUE)
2806
2807
2808/* Macros for dealing with the split strings in re_match_2. */
2809
2810#define MATCHING_IN_FIRST_STRING (dend == end_match_1)
2811
2812/* Call before fetching a character with *d. This switches over to
b8d8561b 2813 * string2 if necessary. */
090089c4 2814#define PREFETCH() \
2815 while (d == dend) \
2816 { \
2817 /* End of string2 => fail. */ \
2818 if (dend == end_match_2) \
2819 goto fail; \
2820 /* End of string1 => advance to string2. */ \
2821 d = string2; \
2822 dend = end_match_2; \
2823 }
2824
2825
2826/* Test if at very beginning or at very end of the virtual concatenation
b8d8561b 2827 * of `string1' and `string2'. If only one string, it's `string2'. */
090089c4 2828#define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
b8d8561b 2829#define AT_STRINGS_END(d) ((d) == end2)
090089c4 2830
2831
2832/* Test if D points to a character which is word-constituent. We have
b8d8561b 2833 * two special cases to check for: if past the end of string1, look at
2834 * the first character in string2; and if before the beginning of
2835 * string2, look at the last character in string1. */
090089c4 2836#define WORDCHAR_P(d) \
2837 (SYNTAX ((d) == end1 ? *string2 \
2838 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \
2839 == Sword)
2840
2841/* Test if the character before D and the one at D differ with respect
b8d8561b 2842 * to being word-constituent. */
090089c4 2843#define AT_WORD_BOUNDARY(d) \
2844 (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \
2845 || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
2846
2847
2848/* Free everything we malloc. */
2849#ifdef REGEX_MALLOC
2850#define FREE_VAR(var) if (var) free (var); var = NULL
2851#define FREE_VARIABLES() \
2852 do { \
2853 FREE_VAR (fail_stack.stack); \
2854 FREE_VAR (regstart); \
2855 FREE_VAR (regend); \
2856 FREE_VAR (old_regstart); \
2857 FREE_VAR (old_regend); \
2858 FREE_VAR (best_regstart); \
2859 FREE_VAR (best_regend); \
2860 FREE_VAR (reg_info); \
2861 FREE_VAR (reg_dummy); \
2862 FREE_VAR (reg_info_dummy); \
2863 } while (0)
2864#else /* not REGEX_MALLOC */
2865/* Some MIPS systems (at least) want this to free alloca'd storage. */
2866#define FREE_VARIABLES() alloca (0)
2867#endif /* not REGEX_MALLOC */
2868
2869
2870/* These values must meet several constraints. They must not be valid
b8d8561b 2871 * register values; since we have a limit of 255 registers (because
2872 * we use only one byte in the pattern for the register number), we can
2873 * use numbers larger than 255. They must differ by 1, because of
2874 * NUM_FAILURE_ITEMS above. And the value for the lowest register must
2875 * be larger than the value for the highest register, so we do not try
2876 * to actually save any registers when none are active. */
090089c4 2877#define NO_HIGHEST_ACTIVE_REG (1 << BYTEWIDTH)
2878#define NO_LOWEST_ACTIVE_REG (NO_HIGHEST_ACTIVE_REG + 1)
2879\f
2880/* Matching routines. */
2881
090089c4 2882/* re_match_2 matches the compiled pattern in BUFP against the
b8d8561b 2883 * the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
2884 * and SIZE2, respectively). We start matching at POS, and stop
2885 * matching at STOP.
26ac0430 2886 *
b8d8561b 2887 * If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
2888 * store offsets for the substring each group matched in REGS. See the
2889 * documentation for exactly how many groups we fill.
26ac0430 2890 *
b8d8561b 2891 * We return -1 if no match, -2 if an internal error (such as the
2892 * failure stack overflowing). Otherwise, we return the length of the
2893 * matched substring. */
090089c4 2894
2895int
b8d8561b 2896re_match_2(bufp, string1, size1, string2, size2, pos, regs, stop)
26ac0430
AJ
2897struct re_pattern_buffer *bufp;
2898const char *string1, *string2;
2899int size1, size2;
2900int pos;
2901struct re_registers *regs;
2902int stop;
090089c4 2903{
b8d8561b 2904 /* General temporaries. */
2905 int mcnt;
2906 unsigned char *p1;
2907
2908 /* Just past the end of the corresponding string. */
2909 const char *end1, *end2;
2910
2911 /* Pointers into string1 and string2, just past the last characters in
2912 * each to consider matching. */
2913 const char *end_match_1, *end_match_2;
2914
2915 /* Where we are in the data, and the end of the current string. */
2916 const char *d, *dend;
2917
2918 /* Where we are in the pattern, and the end of the pattern. */
2919 unsigned char *p = bufp->buffer;
2920 register unsigned char *pend = p + bufp->used;
2921
2922 /* We use this to map every character in the string. */
2923 char *translate = bufp->translate;
2924
2925 /* Failure point stack. Each place that can handle a failure further
2926 * down the line pushes a failure point on this stack. It consists of
2927 * restart, regend, and reg_info for all registers corresponding to
2928 * the subexpressions we're currently inside, plus the number of such
2929 * registers, and, finally, two char *'s. The first char * is where
2930 * to resume scanning the pattern; the second one is where to resume
2931 * scanning the strings. If the latter is zero, the failure point is
2932 * a ``dummy''; if a failure happens and the failure point is a dummy,
2933 * it gets discarded and the next next one is tried. */
2934 fail_stack_type fail_stack;
090089c4 2935#ifdef DEBUG
b8d8561b 2936 static unsigned failure_id = 0;
2937 unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0;
090089c4 2938#endif
2939
b8d8561b 2940 /* We fill all the registers internally, independent of what we
2941 * return, for use in backreferences. The number here includes
2942 * an element for register zero. */
2943 unsigned num_regs = bufp->re_nsub + 1;
2944
2945 /* The currently active registers. */
2946 unsigned long lowest_active_reg = NO_LOWEST_ACTIVE_REG;
2947 unsigned long highest_active_reg = NO_HIGHEST_ACTIVE_REG;
2948
2949 /* Information on the contents of registers. These are pointers into
2950 * the input strings; they record just what was matched (on this
2951 * attempt) by a subexpression part of the pattern, that is, the
2952 * regnum-th regstart pointer points to where in the pattern we began
2953 * matching and the regnum-th regend points to right after where we
2954 * stopped matching the regnum-th subexpression. (The zeroth register
2955 * keeps track of what the whole pattern matches.) */
2956 const char **regstart = NULL, **regend = NULL;
2957
2958 /* If a group that's operated upon by a repetition operator fails to
2959 * match anything, then the register for its start will need to be
2960 * restored because it will have been set to wherever in the string we
2961 * are when we last see its open-group operator. Similarly for a
2962 * register's end. */
2963 const char **old_regstart = NULL, **old_regend = NULL;
2964
2965 /* The is_active field of reg_info helps us keep track of which (possibly
2966 * nested) subexpressions we are currently in. The matched_something
2967 * field of reg_info[reg_num] helps us tell whether or not we have
2968 * matched any of the pattern so far this time through the reg_num-th
2969 * subexpression. These two fields get reset each time through any
2970 * loop their register is in. */
2971 register_info_type *reg_info = NULL;
2972
2973 /* The following record the register info as found in the above
26ac0430 2974 * variables when we find a match better than any we've seen before.
b8d8561b 2975 * This happens as we backtrack through the failure points, which in
2976 * turn happens only if we have not yet matched the entire string. */
2977 unsigned best_regs_set = false;
2978 const char **best_regstart = NULL, **best_regend = NULL;
2979
2980 /* Logically, this is `best_regend[0]'. But we don't want to have to
2981 * allocate space for that if we're not allocating space for anything
2982 * else (see below). Also, we never need info about register 0 for
2983 * any of the other register vectors, and it seems rather a kludge to
2984 * treat `best_regend' differently than the rest. So we keep track of
2985 * the end of the best match so far in a separate variable. We
2986 * initialize this to NULL so that when we backtrack the first time
2987 * and need to test it, it's not garbage. */
2988 const char *match_end = NULL;
2989
2990 /* Used when we pop values we don't care about. */
2991 const char **reg_dummy = NULL;
2992 register_info_type *reg_info_dummy = NULL;
090089c4 2993
2994#ifdef DEBUG
b8d8561b 2995 /* Counts the total number of registers pushed. */
2996 unsigned num_regs_pushed = 0;
090089c4 2997#endif
2998
b8d8561b 2999 DEBUG_PRINT1("\n\nEntering re_match_2.\n");
3000
3001 INIT_FAIL_STACK();
3002
3003 /* Do not bother to initialize all the register variables if there are
3004 * no groups in the pattern, as it takes a fair amount of time. If
3005 * there are groups, we include space for register 0 (the whole
3006 * pattern), even though we never use it, since it simplifies the
3007 * array indexing. We should fix this. */
3008 if (bufp->re_nsub) {
26ac0430
AJ
3009 regstart = REGEX_TALLOC(num_regs, const char *);
3010 regend = REGEX_TALLOC(num_regs, const char *);
3011 old_regstart = REGEX_TALLOC(num_regs, const char *);
3012 old_regend = REGEX_TALLOC(num_regs, const char *);
3013 best_regstart = REGEX_TALLOC(num_regs, const char *);
3014 best_regend = REGEX_TALLOC(num_regs, const char *);
3015 reg_info = REGEX_TALLOC(num_regs, register_info_type);
3016 reg_dummy = REGEX_TALLOC(num_regs, const char *);
3017 reg_info_dummy = REGEX_TALLOC(num_regs, register_info_type);
3018
3019 if (!(regstart && regend && old_regstart && old_regend && reg_info
3020 && best_regstart && best_regend && reg_dummy && reg_info_dummy)) {
3021 FREE_VARIABLES();
3022 return -2;
3023 }
090089c4 3024 }
3025#ifdef REGEX_MALLOC
b8d8561b 3026 else {
26ac0430
AJ
3027 /* We must initialize all our variables to NULL, so that
3028 * `FREE_VARIABLES' doesn't try to free them. */
3029 regstart = regend = old_regstart = old_regend = best_regstart
3030 = best_regend = reg_dummy = NULL;
3031 reg_info = reg_info_dummy = (register_info_type *) NULL;
090089c4 3032 }
3033#endif /* REGEX_MALLOC */
3034
b8d8561b 3035 /* The starting position is bogus. */
3036 if (pos < 0 || pos > size1 + size2) {
26ac0430
AJ
3037 FREE_VARIABLES();
3038 return -1;
090089c4 3039 }
b8d8561b 3040 /* Initialize subexpression text positions to -1 to mark ones that no
3041 * start_memory/stop_memory has been seen for. Also initialize the
3042 * register information struct. */
3043 for (mcnt = 1; mcnt < num_regs; mcnt++) {
26ac0430
AJ
3044 regstart[mcnt] = regend[mcnt]
3045 = old_regstart[mcnt] = old_regend[mcnt] = REG_UNSET_VALUE;
b8d8561b 3046
26ac0430
AJ
3047 REG_MATCH_NULL_STRING_P(reg_info[mcnt]) = MATCH_NULL_UNSET_VALUE;
3048 IS_ACTIVE(reg_info[mcnt]) = 0;
3049 MATCHED_SOMETHING(reg_info[mcnt]) = 0;
3050 EVER_MATCHED_SOMETHING(reg_info[mcnt]) = 0;
090089c4 3051 }
b8d8561b 3052
3053 /* We move `string1' into `string2' if the latter's empty -- but not if
3054 * `string1' is null. */
3055 if (size2 == 0 && string1 != NULL) {
26ac0430
AJ
3056 string2 = string1;
3057 size2 = size1;
3058 string1 = 0;
3059 size1 = 0;
090089c4 3060 }
b8d8561b 3061 end1 = string1 + size1;
3062 end2 = string2 + size2;
3063
3064 /* Compute where to stop matching, within the two strings. */
3065 if (stop <= size1) {
26ac0430
AJ
3066 end_match_1 = string1 + stop;
3067 end_match_2 = string2;
b8d8561b 3068 } else {
26ac0430
AJ
3069 end_match_1 = end1;
3070 end_match_2 = string2 + stop - size1;
090089c4 3071 }
3072
26ac0430 3073 /* `p' scans through the pattern as `d' scans through the data.
b8d8561b 3074 * `dend' is the end of the input string that `d' points within. `d'
3075 * is advanced into the following input string whenever necessary, but
3076 * this happens before fetching; therefore, at the beginning of the
3077 * loop, `d' can be pointing at the end of a string, but it cannot
3078 * equal `string2'. */
3079 if (size1 > 0 && pos <= size1) {
26ac0430
AJ
3080 d = string1 + pos;
3081 dend = end_match_1;
b8d8561b 3082 } else {
26ac0430
AJ
3083 d = string2 + pos - size1;
3084 dend = end_match_2;
090089c4 3085 }
3086
b8d8561b 3087 DEBUG_PRINT1("The compiled pattern is: ");
3088 DEBUG_PRINT_COMPILED_PATTERN(bufp, p, pend);
3089 DEBUG_PRINT1("The string to match is: `");
3090 DEBUG_PRINT_DOUBLE_STRING(d, string1, size1, string2, size2);
3091 DEBUG_PRINT1("'\n");
3092
3093 /* This loops over pattern commands. It exits by returning from the
3094 * function if the match is complete, or it drops through if the match
3095 * fails at this starting point in the input data. */
3096 for (;;) {
26ac0430
AJ
3097 DEBUG_PRINT2("\n0x%x: ", p);
3098
3099 if (p == pend) { /* End of pattern means we might have succeeded. */
3100 DEBUG_PRINT1("end of pattern ... ");
3101
3102 /* If we haven't matched the entire string, and we want the
3103 * longest match, try backtracking. */
3104 if (d != end_match_2) {
3105 DEBUG_PRINT1("backtracking.\n");
3106
3107 if (!FAIL_STACK_EMPTY()) { /* More failure points to try. */
3108 boolean same_str_p = (FIRST_STRING_P(match_end)
3109 == MATCHING_IN_FIRST_STRING);
3110
3111 /* If exceeds best match so far, save it. */
3112 if (!best_regs_set
3113 || (same_str_p && d > match_end)
3114 || (!same_str_p && !MATCHING_IN_FIRST_STRING)) {
3115 best_regs_set = true;
3116 match_end = d;
3117
3118 DEBUG_PRINT1("\nSAVING match as best so far.\n");
3119
3120 for (mcnt = 1; mcnt < num_regs; mcnt++) {
3121 best_regstart[mcnt] = regstart[mcnt];
3122 best_regend[mcnt] = regend[mcnt];
3123 }
3124 }
3125 goto fail;
3126 }
3127 /* If no failure points, don't restore garbage. */
3128 else if (best_regs_set) {
3129restore_best_regs:
3130 /* Restore best match. It may happen that `dend ==
3131 * end_match_1' while the restored d is in string2.
3132 * For example, the pattern `x.*y.*z' against the
3133 * strings `x-' and `y-z-', if the two strings are
3134 * not consecutive in memory. */
3135 DEBUG_PRINT1("Restoring best registers.\n");
3136
3137 d = match_end;
3138 dend = ((d >= string1 && d <= end1)
3139 ? end_match_1 : end_match_2);
3140
3141 for (mcnt = 1; mcnt < num_regs; mcnt++) {
3142 regstart[mcnt] = best_regstart[mcnt];
3143 regend[mcnt] = best_regend[mcnt];
3144 }
3145 }
3146 } /* d != end_match_2 */
3147 DEBUG_PRINT1("Accepting match.\n");
3148
3149 /* If caller wants register contents data back, do it. */
3150 if (regs && !bufp->no_sub) {
3151 /* Have the register data arrays been allocated? */
3152 if (bufp->regs_allocated == REGS_UNALLOCATED) { /* No. So allocate them with malloc. We need one
b8d8561b 3153 * extra element beyond `num_regs' for the `-1' marker
3154 * GNU code uses. */
26ac0430
AJ
3155 regs->num_regs = MAX(RE_NREGS, num_regs + 1);
3156 regs->start = TALLOC(regs->num_regs, regoff_t);
3157 regs->end = TALLOC(regs->num_regs, regoff_t);
3158 if (regs->start == NULL || regs->end == NULL)
3159 return -2;
3160 bufp->regs_allocated = REGS_REALLOCATE;
3161 } else if (bufp->regs_allocated == REGS_REALLOCATE) { /* Yes. If we need more elements than were already
b8d8561b 3162 * allocated, reallocate them. If we need fewer, just
3163 * leave it alone. */
26ac0430
AJ
3164 if (regs->num_regs < num_regs + 1) {
3165 regs->num_regs = num_regs + 1;
3166 RETALLOC(regs->start, regs->num_regs, regoff_t);
3167 RETALLOC(regs->end, regs->num_regs, regoff_t);
3168 if (regs->start == NULL || regs->end == NULL)
3169 return -2;
3170 }
3171 } else
3172 assert(bufp->regs_allocated == REGS_FIXED);
3173
3174 /* Convert the pointer data in `regstart' and `regend' to
3175 * indices. Register zero has to be set differently,
3176 * since we haven't kept track of any info for it. */
3177 if (regs->num_regs > 0) {
3178 regs->start[0] = pos;
3179 regs->end[0] = (MATCHING_IN_FIRST_STRING ? d - string1
3180 : d - string2 + size1);
3181 }
3182 /* Go through the first `min (num_regs, regs->num_regs)'
3183 * registers, since that is all we initialized. */
3184 for (mcnt = 1; mcnt < MIN(num_regs, regs->num_regs); mcnt++) {
3185 if (REG_UNSET(regstart[mcnt]) || REG_UNSET(regend[mcnt]))
3186 regs->start[mcnt] = regs->end[mcnt] = -1;
3187 else {
3188 regs->start[mcnt] = POINTER_TO_OFFSET(regstart[mcnt]);
3189 regs->end[mcnt] = POINTER_TO_OFFSET(regend[mcnt]);
3190 }
3191 }
3192
3193 /* If the regs structure we return has more elements than
3194 * were in the pattern, set the extra elements to -1. If
3195 * we (re)allocated the registers, this is the case,
3196 * because we always allocate enough to have at least one
3197 * -1 at the end. */
3198 for (mcnt = num_regs; mcnt < regs->num_regs; mcnt++)
3199 regs->start[mcnt] = regs->end[mcnt] = -1;
3200 } /* regs && !bufp->no_sub */
3201 FREE_VARIABLES();
3202 DEBUG_PRINT4("%u failure points pushed, %u popped (%u remain).\n",
3203 nfailure_points_pushed, nfailure_points_popped,
3204 nfailure_points_pushed - nfailure_points_popped);
3205 DEBUG_PRINT2("%u registers pushed.\n", num_regs_pushed);
3206
3207 mcnt = d - pos - (MATCHING_IN_FIRST_STRING
3208 ? string1
3209 : string2 - size1);
3210
3211 DEBUG_PRINT2("Returning %d from re_match_2.\n", mcnt);
3212
3213 return mcnt;
3214 }
3215 /* Otherwise match next pattern command. */
090089c4 3216#ifdef SWITCH_ENUM_BUG
26ac0430 3217 switch ((int) ((re_opcode_t) * p++))
090089c4 3218#else
26ac0430 3219 switch ((re_opcode_t) * p++)
090089c4 3220#endif
26ac0430
AJ
3221 {
3222 /* Ignore these. Used to ignore the n of succeed_n's which
3223 * currently have n == 0. */
3224 case no_op:
3225 DEBUG_PRINT1("EXECUTING no_op.\n");
3226 break;
3227
3228
3229 /* Match the next n pattern characters exactly. The following
3230 * byte in the pattern defines n, and the n bytes after that
3231 * are the characters to match. */
3232 case exactn:
3233 mcnt = *p++;
3234 DEBUG_PRINT2("EXECUTING exactn %d.\n", mcnt);
3235
3236 /* This is written out as an if-else so we don't waste time
3237 * testing `translate' inside the loop. */
3238 if (translate) {
3239 do {
3240 PREFETCH();
3241 if (translate[(unsigned char) *d++] != (char) *p++)
3242 goto fail;
3243 } while (--mcnt);
3244 } else {
3245 do {
3246 PREFETCH();
3247 if (*d++ != (char) *p++)
3248 goto fail;
3249 } while (--mcnt);
3250 }
3251 SET_REGS_MATCHED();
3252 break;
3253
3254
3255 /* Match any character except possibly a newline or a null. */
3256 case anychar:
3257 DEBUG_PRINT1("EXECUTING anychar.\n");
3258
3259 PREFETCH();
3260
3261 if ((!(bufp->syntax & RE_DOT_NEWLINE) && TRANSLATE(*d) == '\n')
3262 || (bufp->syntax & RE_DOT_NOT_NULL && TRANSLATE(*d) == '\000'))
3263 goto fail;
3264
3265 SET_REGS_MATCHED();
3266 DEBUG_PRINT2(" Matched `%d'.\n", *d);
3267 d++;
3268 break;
3269
3270
3271 case charset:
3272 case charset_not: {
3273 register unsigned char c;
3274 boolean not = (re_opcode_t) * (p - 1) == charset_not;
3275
3276 DEBUG_PRINT2("EXECUTING charset%s.\n", not ? "_not" : "");
3277
3278 PREFETCH();
3279 c = TRANSLATE(*d); /* The character to match. */
3280
3281 /* Cast to `unsigned' instead of `unsigned char' in case the
3282 * bit list is a full 32 bytes long. */
3283 if (c < (unsigned) (*p * BYTEWIDTH)
3284 && p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
3285 not = !not;
3286
3287 p += 1 + *p;
3288
3289 if (!not)
3290 goto fail;
3291
3292 SET_REGS_MATCHED();
3293 d++;
3294 break;
3295 }
3296
3297
3298 /* The beginning of a group is represented by start_memory.
3299 * The arguments are the register number in the next byte, and the
3300 * number of groups inner to this one in the next. The text
3301 * matched within the group is recorded (in the internal
3302 * registers data structure) under the register number. */
3303 case start_memory:
3304 DEBUG_PRINT3("EXECUTING start_memory %d (%d):\n", *p, p[1]);
3305
3306 /* Find out if this group can match the empty string. */
3307 p1 = p; /* To send to group_match_null_string_p. */
3308
3309 if (REG_MATCH_NULL_STRING_P(reg_info[*p]) == MATCH_NULL_UNSET_VALUE)
3310 REG_MATCH_NULL_STRING_P(reg_info[*p])
3311 = group_match_null_string_p(&p1, pend, reg_info);
3312
3313 /* Save the position in the string where we were the last time
3314 * we were at this open-group operator in case the group is
3315 * operated upon by a repetition operator, e.g., with `(a*)*b'
3316 * against `ab'; then we want to ignore where we are now in
3317 * the string in case this attempt to match fails. */
3318 old_regstart[*p] = REG_MATCH_NULL_STRING_P(reg_info[*p])
3319 ? REG_UNSET(regstart[*p]) ? d : regstart[*p]
3320 : regstart[*p];
3321 DEBUG_PRINT2(" old_regstart: %d\n",
3322 POINTER_TO_OFFSET(old_regstart[*p]));
3323
3324 regstart[*p] = d;
3325 DEBUG_PRINT2(" regstart: %d\n", POINTER_TO_OFFSET(regstart[*p]));
3326
3327 IS_ACTIVE(reg_info[*p]) = 1;
3328 MATCHED_SOMETHING(reg_info[*p]) = 0;
3329
3330 /* This is the new highest active register. */
3331 highest_active_reg = *p;
3332
3333 /* If nothing was active before, this is the new lowest active
3334 * register. */
3335 if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
3336 lowest_active_reg = *p;
3337
3338 /* Move past the register number and inner group count. */
3339 p += 2;
3340 break;
3341
3342
3343 /* The stop_memory opcode represents the end of a group. Its
3344 * arguments are the same as start_memory's: the register
3345 * number, and the number of inner groups. */
3346 case stop_memory:
3347 DEBUG_PRINT3("EXECUTING stop_memory %d (%d):\n", *p, p[1]);
3348
3349 /* We need to save the string position the last time we were at
3350 * this close-group operator in case the group is operated
3351 * upon by a repetition operator, e.g., with `((a*)*(b*)*)*'
3352 * against `aba'; then we want to ignore where we are now in
3353 * the string in case this attempt to match fails. */
3354 old_regend[*p] = REG_MATCH_NULL_STRING_P(reg_info[*p])
3355 ? REG_UNSET(regend[*p]) ? d : regend[*p]
3356 : regend[*p];
3357 DEBUG_PRINT2(" old_regend: %d\n",
3358 POINTER_TO_OFFSET(old_regend[*p]));
3359
3360 regend[*p] = d;
3361 DEBUG_PRINT2(" regend: %d\n", POINTER_TO_OFFSET(regend[*p]));
3362
3363 /* This register isn't active anymore. */
3364 IS_ACTIVE(reg_info[*p]) = 0;
3365
3366 /* If this was the only register active, nothing is active
3367 * anymore. */
3368 if (lowest_active_reg == highest_active_reg) {
3369 lowest_active_reg = NO_LOWEST_ACTIVE_REG;
3370 highest_active_reg = NO_HIGHEST_ACTIVE_REG;
3371 } else { /* We must scan for the new highest active register, since
b8d8561b 3372 * it isn't necessarily one less than now: consider
3373 * (a(b)c(d(e)f)g). When group 3 ends, after the f), the
3374 * new highest active register is 1. */
26ac0430
AJ
3375 unsigned char r = *p - 1;
3376 while (r > 0 && !IS_ACTIVE(reg_info[r]))
3377 r--;
3378
3379 /* If we end up at register zero, that means that we saved
3380 * the registers as the result of an `on_failure_jump', not
3381 * a `start_memory', and we jumped to past the innermost
3382 * `stop_memory'. For example, in ((.)*) we save
3383 * registers 1 and 2 as a result of the *, but when we pop
3384 * back to the second ), we are at the stop_memory 1.
3385 * Thus, nothing is active. */
3386 if (r == 0) {
3387 lowest_active_reg = NO_LOWEST_ACTIVE_REG;
3388 highest_active_reg = NO_HIGHEST_ACTIVE_REG;
3389 } else
3390 highest_active_reg = r;
3391 }
3392
3393 /* If just failed to match something this time around with a
3394 * group that's operated on by a repetition operator, try to
3395 * force exit from the ``loop'', and restore the register
3396 * information for this group that we had before trying this
3397 * last match. */
3398 if ((!MATCHED_SOMETHING(reg_info[*p])
3399 || (re_opcode_t) p[-3] == start_memory)
3400 && (p + 2) < pend) {
3401 boolean is_a_jump_n = false;
3402
3403 p1 = p + 2;
3404 mcnt = 0;
3405 switch ((re_opcode_t) * p1++) {
3406 case jump_n:
3407 is_a_jump_n = true;
3408 case pop_failure_jump:
3409 case maybe_pop_jump:
3410 case jump:
3411 case dummy_failure_jump:
3412 EXTRACT_NUMBER_AND_INCR(mcnt, p1);
3413 if (is_a_jump_n)
3414 p1 += 2;
3415 break;
3416
3417 default:
3418 /* do nothing */
3419 ;
3420 }
3421 p1 += mcnt;
3422
3423 /* If the next operation is a jump backwards in the pattern
3424 * to an on_failure_jump right before the start_memory
3425 * corresponding to this stop_memory, exit from the loop
3426 * by forcing a failure after pushing on the stack the
3427 * on_failure_jump's jump in the pattern, and d. */
3428 if (mcnt < 0 && (re_opcode_t) * p1 == on_failure_jump
3429 && (re_opcode_t) p1[3] == start_memory && p1[4] == *p) {
3430 /* If this group ever matched anything, then restore
3431 * what its registers were before trying this last
3432 * failed match, e.g., with `(a*)*b' against `ab' for
3433 * regstart[1], and, e.g., with `((a*)*(b*)*)*'
3434 * against `aba' for regend[3].
3435 *
3436 * Also restore the registers for inner groups for,
3437 * e.g., `((a*)(b*))*' against `aba' (register 3 would
3438 * otherwise get trashed). */
3439
3440 if (EVER_MATCHED_SOMETHING(reg_info[*p])) {
3441 unsigned r;
3442
3443 EVER_MATCHED_SOMETHING(reg_info[*p]) = 0;
3444
3445 /* Restore this and inner groups' (if any) registers. */
3446 for (r = *p; r < *p + *(p + 1); r++) {
3447 regstart[r] = old_regstart[r];
3448
3449 /* xx why this test? */
3450 if ((long) old_regend[r] >= (long) regstart[r])
3451 regend[r] = old_regend[r];
3452 }
3453 }
3454 p1++;
3455 EXTRACT_NUMBER_AND_INCR(mcnt, p1);
3456 PUSH_FAILURE_POINT(p1 + mcnt, d, -2);
3457
3458 goto fail;
3459 }
3460 }
3461 /* Move past the register number and the inner group count. */
3462 p += 2;
3463 break;
3464
3465
3466 /* \<digit> has been turned into a `duplicate' command which is
3467 * followed by the numeric value of <digit> as the register number. */
3468 case duplicate: {
3469 register const char *d2, *dend2;
3470 int regno = *p++; /* Get which register to match against. */
3471 DEBUG_PRINT2("EXECUTING duplicate %d.\n", regno);
3472
3473 /* Can't back reference a group which we've never matched. */
3474 if (REG_UNSET(regstart[regno]) || REG_UNSET(regend[regno]))
3475 goto fail;
3476
3477 /* Where in input to try to start matching. */
3478 d2 = regstart[regno];
3479
3480 /* Where to stop matching; if both the place to start and
3481 * the place to stop matching are in the same string, then
3482 * set to the place to stop, otherwise, for now have to use
3483 * the end of the first string. */
3484
3485 dend2 = ((FIRST_STRING_P(regstart[regno])
3486 == FIRST_STRING_P(regend[regno]))
3487 ? regend[regno] : end_match_1);
3488 for (;;) {
3489 /* If necessary, advance to next segment in register
3490 * contents. */
3491 while (d2 == dend2) {
3492 if (dend2 == end_match_2)
3493 break;
3494 if (dend2 == regend[regno])
3495 break;
3496
3497 /* End of string1 => advance to string2. */
3498 d2 = string2;
3499 dend2 = regend[regno];
3500 }
3501 /* At end of register contents => success */
3502 if (d2 == dend2)
3503 break;
3504
3505 /* If necessary, advance to next segment in data. */
3506 PREFETCH();
3507
3508 /* How many characters left in this segment to match. */
3509 mcnt = dend - d;
3510
3511 /* Want how many consecutive characters we can match in
3512 * one shot, so, if necessary, adjust the count. */
3513 if (mcnt > dend2 - d2)
3514 mcnt = dend2 - d2;
3515
3516 /* Compare that many; failure if mismatch, else move
3517 * past them. */
3518 if (translate
3519 ? bcmp_translate((unsigned char *)d, (unsigned char *)d2, mcnt, translate)
3520 : memcmp(d, d2, mcnt))
3521 goto fail;
3522 d += mcnt, d2 += mcnt;
3523 }
3524 }
3525 break;
3526
3527
3528 /* begline matches the empty string at the beginning of the string
3529 * (unless `not_bol' is set in `bufp'), and, if
3530 * `newline_anchor' is set, after newlines. */
3531 case begline:
3532 DEBUG_PRINT1("EXECUTING begline.\n");
3533
3534 if (AT_STRINGS_BEG(d)) {
3535 if (!bufp->not_bol)
3536 break;
3537 } else if (d[-1] == '\n' && bufp->newline_anchor) {
3538 break;
3539 }
3540 /* In all other cases, we fail. */
3541 goto fail;
3542
3543
3544 /* endline is the dual of begline. */
3545 case endline:
3546 DEBUG_PRINT1("EXECUTING endline.\n");
3547
3548 if (AT_STRINGS_END(d)) {
3549 if (!bufp->not_eol)
3550 break;
3551 }
3552 /* We have to ``prefetch'' the next character. */
3553 else if ((d == end1 ? *string2 : *d) == '\n'
3554 && bufp->newline_anchor) {
3555 break;
3556 }
3557 goto fail;
3558
3559
3560 /* Match at the very beginning of the data. */
3561 case begbuf:
3562 DEBUG_PRINT1("EXECUTING begbuf.\n");
3563 if (AT_STRINGS_BEG(d))
3564 break;
3565 goto fail;
3566
3567
3568 /* Match at the very end of the data. */
3569 case endbuf:
3570 DEBUG_PRINT1("EXECUTING endbuf.\n");
3571 if (AT_STRINGS_END(d))
3572 break;
3573 goto fail;
3574
3575
3576 /* on_failure_keep_string_jump is used to optimize `.*\n'. It
3577 * pushes NULL as the value for the string on the stack. Then
3578 * `pop_failure_point' will keep the current value for the
3579 * string, instead of restoring it. To see why, consider
3580 * matching `foo\nbar' against `.*\n'. The .* matches the foo;
3581 * then the . fails against the \n. But the next thing we want
3582 * to do is match the \n against the \n; if we restored the
3583 * string value, we would be back at the foo.
3584 *
3585 * Because this is used only in specific cases, we don't need to
3586 * check all the things that `on_failure_jump' does, to make
3587 * sure the right things get saved on the stack. Hence we don't
3588 * share its code. The only reason to push anything on the
3589 * stack at all is that otherwise we would have to change
3590 * `anychar's code to do something besides goto fail in this
3591 * case; that seems worse than this. */
3592 case on_failure_keep_string_jump:
3593 DEBUG_PRINT1("EXECUTING on_failure_keep_string_jump");
3594
3595 EXTRACT_NUMBER_AND_INCR(mcnt, p);
3596 DEBUG_PRINT3(" %d (to 0x%x):\n", mcnt, p + mcnt);
3597
3598 PUSH_FAILURE_POINT(p + mcnt, NULL, -2);
3599 break;
3600
3601
3602 /* Uses of on_failure_jump:
3603 *
3604 * Each alternative starts with an on_failure_jump that points
3605 * to the beginning of the next alternative. Each alternative
3606 * except the last ends with a jump that in effect jumps past
3607 * the rest of the alternatives. (They really jump to the
3608 * ending jump of the following alternative, because tensioning
3609 * these jumps is a hassle.)
3610 *
3611 * Repeats start with an on_failure_jump that points past both
3612 * the repetition text and either the following jump or
3613 * pop_failure_jump back to this on_failure_jump. */
3614 case on_failure_jump:
3615on_failure:
3616 DEBUG_PRINT1("EXECUTING on_failure_jump");
3617
3618 EXTRACT_NUMBER_AND_INCR(mcnt, p);
3619 DEBUG_PRINT3(" %d (to 0x%x)", mcnt, p + mcnt);
3620
3621 /* If this on_failure_jump comes right before a group (i.e.,
3622 * the original * applied to a group), save the information
3623 * for that group and all inner ones, so that if we fail back
3624 * to this point, the group's information will be correct.
3625 * For example, in \(a*\)*\1, we need the preceding group,
3626 * and in \(\(a*\)b*\)\2, we need the inner group. */
3627
3628 /* We can't use `p' to check ahead because we push
3629 * a failure point to `p + mcnt' after we do this. */
3630 p1 = p;
3631
3632 /* We need to skip no_op's before we look for the
3633 * start_memory in case this on_failure_jump is happening as
3634 * the result of a completed succeed_n, as in \(a\)\{1,3\}b\1
3635 * against aba. */
3636 while (p1 < pend && (re_opcode_t) * p1 == no_op)
3637 p1++;
3638
3639 if (p1 < pend && (re_opcode_t) * p1 == start_memory) {
3640 /* We have a new highest active register now. This will
3641 * get reset at the start_memory we are about to get to,
3642 * but we will have saved all the registers relevant to
3643 * this repetition op, as described above. */
3644 highest_active_reg = *(p1 + 1) + *(p1 + 2);
3645 if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
3646 lowest_active_reg = *(p1 + 1);
3647 }
3648 DEBUG_PRINT1(":\n");
3649 PUSH_FAILURE_POINT(p + mcnt, d, -2);
3650 break;
3651
3652
3653 /* A smart repeat ends with `maybe_pop_jump'.
3654 * We change it to either `pop_failure_jump' or `jump'. */
3655 case maybe_pop_jump:
3656 EXTRACT_NUMBER_AND_INCR(mcnt, p);
3657 DEBUG_PRINT2("EXECUTING maybe_pop_jump %d.\n", mcnt);
3658 {
3659 register unsigned char *p2 = p;
3660
3661 /* Compare the beginning of the repeat with what in the
3662 * pattern follows its end. If we can establish that there
3663 * is nothing that they would both match, i.e., that we
3664 * would have to backtrack because of (as in, e.g., `a*a')
3665 * then we can change to pop_failure_jump, because we'll
3666 * never have to backtrack.
3667 *
3668 * This is not true in the case of alternatives: in
3669 * `(a|ab)*' we do need to backtrack to the `ab' alternative
3670 * (e.g., if the string was `ab'). But instead of trying to
3671 * detect that here, the alternative has put on a dummy
3672 * failure point which is what we will end up popping. */
3673
3674 /* Skip over open/close-group commands. */
3675 while (p2 + 2 < pend
3676 && ((re_opcode_t) * p2 == stop_memory
3677 || (re_opcode_t) * p2 == start_memory))
3678 p2 += 3; /* Skip over args, too. */
3679
3680 /* If we're at the end of the pattern, we can change. */
3681 if (p2 == pend) {
3682 /* Consider what happens when matching ":\(.*\)"
3683 * against ":/". I don't really understand this code
3684 * yet. */
3685 p[-3] = (unsigned char) pop_failure_jump;
3686 DEBUG_PRINT1
3687 (" End of pattern: change to `pop_failure_jump'.\n");
3688 } else if ((re_opcode_t) * p2 == exactn
3689 || (bufp->newline_anchor && (re_opcode_t) * p2 == endline)) {
3690 register unsigned char c
3691 = *p2 == (unsigned char) endline ? '\n' : p2[2];
3692 p1 = p + mcnt;
3693
3694 /* p1[0] ... p1[2] are the `on_failure_jump' corresponding
3695 * to the `maybe_finalize_jump' of this case. Examine what
3696 * follows. */
3697 if ((re_opcode_t) p1[3] == exactn && p1[5] != c) {
3698 p[-3] = (unsigned char) pop_failure_jump;
3699 DEBUG_PRINT3(" %c != %c => pop_failure_jump.\n",
3700 c, p1[5]);
3701 } else if ((re_opcode_t) p1[3] == charset
3702 || (re_opcode_t) p1[3] == charset_not) {
3703 int not = (re_opcode_t) p1[3] == charset_not;
3704
3705 if (c < (unsigned char) (p1[4] * BYTEWIDTH)
3706 && p1[5 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
3707 not = !not;
3708
3709 /* `not' is equal to 1 if c would match, which means
3710 * that we can't change to pop_failure_jump. */
3711 if (!not) {
3712 p[-3] = (unsigned char) pop_failure_jump;
3713 DEBUG_PRINT1(" No match => pop_failure_jump.\n");
3714 }
3715 }
3716 }
3717 }
3718 p -= 2; /* Point at relative address again. */
3719 if ((re_opcode_t) p[-1] != pop_failure_jump) {
3720 p[-1] = (unsigned char) jump;
3721 DEBUG_PRINT1(" Match => jump.\n");
3722 goto unconditional_jump;
3723 }
3724 /* Note fall through. */
3725
3726
3727 /* The end of a simple repeat has a pop_failure_jump back to
3728 * its matching on_failure_jump, where the latter will push a
3729 * failure point. The pop_failure_jump takes off failure
3730 * points put on by this pop_failure_jump's matching
3731 * on_failure_jump; we got through the pattern to here from the
3732 * matching on_failure_jump, so didn't fail. */
3733 case pop_failure_jump: {
3734 /* We need to pass separate storage for the lowest and
3735 * highest registers, even though we don't care about the
3736 * actual values. Otherwise, we will restore only one
3737 * register from the stack, since lowest will == highest in
3738 * `pop_failure_point'. */
3739 unsigned long dummy_low_reg, dummy_high_reg;
3740 unsigned char *pdummy;
3741 const char *sdummy;
3742
3743 DEBUG_PRINT1("EXECUTING pop_failure_jump.\n");
3744 POP_FAILURE_POINT(sdummy, pdummy,
3745 dummy_low_reg, dummy_high_reg,
3746 reg_dummy, reg_dummy, reg_info_dummy);
3747 }
3748 /* Note fall through. */
3749
3750
3751 /* Unconditionally jump (without popping any failure points). */
3752 case jump:
3753unconditional_jump:
3754 EXTRACT_NUMBER_AND_INCR(mcnt, p); /* Get the amount to jump. */
3755 DEBUG_PRINT2("EXECUTING jump %d ", mcnt);
3756 p += mcnt; /* Do the jump. */
3757 DEBUG_PRINT2("(to 0x%x).\n", p);
3758 break;
3759
3760
3761 /* We need this opcode so we can detect where alternatives end
3762 * in `group_match_null_string_p' et al. */
3763 case jump_past_alt:
3764 DEBUG_PRINT1("EXECUTING jump_past_alt.\n");
3765 goto unconditional_jump;
3766
3767
3768 /* Normally, the on_failure_jump pushes a failure point, which
3769 * then gets popped at pop_failure_jump. We will end up at
3770 * pop_failure_jump, also, and with a pattern of, say, `a+', we
3771 * are skipping over the on_failure_jump, so we have to push
3772 * something meaningless for pop_failure_jump to pop. */
3773 case dummy_failure_jump:
3774 DEBUG_PRINT1("EXECUTING dummy_failure_jump.\n");
3775 /* It doesn't matter what we push for the string here. What
3776 * the code at `fail' tests is the value for the pattern. */
3777 PUSH_FAILURE_POINT(0, 0, -2);
3778 goto unconditional_jump;
3779
3780
3781 /* At the end of an alternative, we need to push a dummy failure
3782 * point in case we are followed by a `pop_failure_jump', because
3783 * we don't want the failure point for the alternative to be
3784 * popped. For example, matching `(a|ab)*' against `aab'
3785 * requires that we match the `ab' alternative. */
3786 case push_dummy_failure:
3787 DEBUG_PRINT1("EXECUTING push_dummy_failure.\n");
3788 /* See comments just above at `dummy_failure_jump' about the
3789 * two zeroes. */
3790 PUSH_FAILURE_POINT(0, 0, -2);
3791 break;
3792
3793 /* Have to succeed matching what follows at least n times.
3794 * After that, handle like `on_failure_jump'. */
3795 case succeed_n:
3796 EXTRACT_NUMBER(mcnt, p + 2);
3797 DEBUG_PRINT2("EXECUTING succeed_n %d.\n", mcnt);
3798
3799 assert(mcnt >= 0);
3800 /* Originally, this is how many times we HAVE to succeed. */
3801 if (mcnt > 0) {
3802 mcnt--;
3803 p += 2;
3804 STORE_NUMBER_AND_INCR(p, mcnt);
3805 DEBUG_PRINT3(" Setting 0x%x to %d.\n", p, mcnt);
3806 } else if (mcnt == 0) {
3807 DEBUG_PRINT2(" Setting two bytes from 0x%x to no_op.\n", p + 2);
3808 p[2] = (unsigned char) no_op;
3809 p[3] = (unsigned char) no_op;
3810 goto on_failure;
3811 }
3812 break;
3813
3814 case jump_n:
3815 EXTRACT_NUMBER(mcnt, p + 2);
3816 DEBUG_PRINT2("EXECUTING jump_n %d.\n", mcnt);
3817
3818 /* Originally, this is how many times we CAN jump. */
3819 if (mcnt) {
3820 mcnt--;
3821 STORE_NUMBER(p + 2, mcnt);
3822 goto unconditional_jump;
3823 }
3824 /* If don't have to jump any more, skip over the rest of command. */
3825 else
3826 p += 4;
3827 break;
3828
3829 case set_number_at: {
3830 DEBUG_PRINT1("EXECUTING set_number_at.\n");
3831
3832 EXTRACT_NUMBER_AND_INCR(mcnt, p);
3833 p1 = p + mcnt;
3834 EXTRACT_NUMBER_AND_INCR(mcnt, p);
3835 DEBUG_PRINT3(" Setting 0x%x to %d.\n", p1, mcnt);
3836 STORE_NUMBER(p1, mcnt);
3837 break;
3838 }
3839
3840 case wordbound:
3841 DEBUG_PRINT1("EXECUTING wordbound.\n");
3842 if (AT_WORD_BOUNDARY(d))
3843 break;
3844 goto fail;
3845
3846 case notwordbound:
3847 DEBUG_PRINT1("EXECUTING notwordbound.\n");
3848 if (AT_WORD_BOUNDARY(d))
3849 goto fail;
3850 break;
3851
3852 case wordbeg:
3853 DEBUG_PRINT1("EXECUTING wordbeg.\n");
3854 if (WORDCHAR_P(d) && (AT_STRINGS_BEG(d) || !WORDCHAR_P(d - 1)))
3855 break;
3856 goto fail;
3857
3858 case wordend:
3859 DEBUG_PRINT1("EXECUTING wordend.\n");
3860 if (!AT_STRINGS_BEG(d) && WORDCHAR_P(d - 1)
3861 && (!WORDCHAR_P(d) || AT_STRINGS_END(d)))
3862 break;
3863 goto fail;
3864
3865 case wordchar:
3866 DEBUG_PRINT1("EXECUTING non-Emacs wordchar.\n");
3867 PREFETCH();
3868 if (!WORDCHAR_P(d))
3869 goto fail;
3870 SET_REGS_MATCHED();
3871 d++;
3872 break;
3873
3874 case notwordchar:
3875 DEBUG_PRINT1("EXECUTING non-Emacs notwordchar.\n");
3876 PREFETCH();
3877 if (WORDCHAR_P(d))
3878 goto fail;
3879 SET_REGS_MATCHED();
3880 d++;
3881 break;
3882
3883 default:
3884 abort();
3885 }
3886 continue; /* Successfully executed one pattern command; keep going. */
3887
3888
3889 /* We goto here if a matching operation fails. */
3890fail:
3891 if (!FAIL_STACK_EMPTY()) { /* A restart point is known. Restore to that state. */
3892 DEBUG_PRINT1("\nFAIL:\n");
3893 POP_FAILURE_POINT(d, p,
3894 lowest_active_reg, highest_active_reg,
3895 regstart, regend, reg_info);
3896
3897 /* If this failure point is a dummy, try the next one. */
3898 if (!p)
3899 goto fail;
3900
3901 /* If we failed to the end of the pattern, don't examine *p. */
3902 assert(p <= pend);
3903 if (p < pend) {
3904 boolean is_a_jump_n = false;
3905
3906 /* If failed to a backwards jump that's part of a repetition
3907 * loop, need to pop this failure point and use the next one. */
3908 switch ((re_opcode_t) * p) {
3909 case jump_n:
3910 is_a_jump_n = true;
3911 case maybe_pop_jump:
3912 case pop_failure_jump:
3913 case jump:
3914 p1 = p + 1;
3915 EXTRACT_NUMBER_AND_INCR(mcnt, p1);
3916 p1 += mcnt;
3917
3918 if ((is_a_jump_n && (re_opcode_t) * p1 == succeed_n)
3919 || (!is_a_jump_n
3920 && (re_opcode_t) * p1 == on_failure_jump))
3921 goto fail;
3922 break;
3923 default:
3924 /* do nothing */
3925 ;
3926 }
3927 }
3928 if (d >= string1 && d <= end1)
3929 dend = end_match_1;
3930 } else
3931 break; /* Matching at this starting point really fails. */
b8d8561b 3932 } /* for (;;) */
090089c4 3933
b8d8561b 3934 if (best_regs_set)
26ac0430 3935 goto restore_best_regs;
090089c4 3936
b8d8561b 3937 FREE_VARIABLES();
090089c4 3938
b8d8561b 3939 return -1; /* Failure to match. */
3940} /* re_match_2 */
090089c4 3941\f
3942/* Subroutine definitions for re_match_2. */
090089c4 3943
3944/* We are passed P pointing to a register number after a start_memory.
26ac0430 3945 *
b8d8561b 3946 * Return true if the pattern up to the corresponding stop_memory can
3947 * match the empty string, and false otherwise.
26ac0430 3948 *
b8d8561b 3949 * If we find the matching stop_memory, sets P to point to one past its number.
3950 * Otherwise, sets P to an undefined byte less than or equal to END.
26ac0430 3951 *
b8d8561b 3952 * We don't handle duplicates properly (yet). */
090089c4 3953
08bc07d0 3954boolean
3955group_match_null_string_p(unsigned char **p, unsigned char *end, register_info_type *reg_info)
090089c4 3956{
b8d8561b 3957 int mcnt;
3958 /* Point to after the args to the start_memory. */
3959 unsigned char *p1 = *p + 2;
3960
3961 while (p1 < end) {
26ac0430
AJ
3962 /* Skip over opcodes that can match nothing, and return true or
3963 * false, as appropriate, when we get to one that can't, or to the
3964 * matching stop_memory. */
3965
3966 switch ((re_opcode_t) * p1) {
3967 /* Could be either a loop or a series of alternatives. */
3968 case on_failure_jump:
3969 p1++;
3970 EXTRACT_NUMBER_AND_INCR(mcnt, p1);
3971
3972 /* If the next operation is not a jump backwards in the
3973 * pattern. */
3974
3975 if (mcnt >= 0) {
3976 /* Go through the on_failure_jumps of the alternatives,
3977 * seeing if any of the alternatives cannot match nothing.
3978 * The last alternative starts with only a jump,
3979 * whereas the rest start with on_failure_jump and end
3980 * with a jump, e.g., here is the pattern for `a|b|c':
3981 *
3982 * /on_failure_jump/0/6/exactn/1/a/jump_past_alt/0/6
3983 * /on_failure_jump/0/6/exactn/1/b/jump_past_alt/0/3
3984 * /exactn/1/c
3985 *
3986 * So, we have to first go through the first (n-1)
3987 * alternatives and then deal with the last one separately. */
3988
3989
3990 /* Deal with the first (n-1) alternatives, which start
3991 * with an on_failure_jump (see above) that jumps to right
3992 * past a jump_past_alt. */
3993
3994 while ((re_opcode_t) p1[mcnt - 3] == jump_past_alt) {
3995 /* `mcnt' holds how many bytes long the alternative
3996 * is, including the ending `jump_past_alt' and
3997 * its number. */
3998
3999 if (!alt_match_null_string_p(p1, p1 + mcnt - 3,
4000 reg_info))
4001 return false;
4002
4003 /* Move to right after this alternative, including the
4004 * jump_past_alt. */
4005 p1 += mcnt;
4006
4007 /* Break if it's the beginning of an n-th alternative
4008 * that doesn't begin with an on_failure_jump. */
4009 if ((re_opcode_t) * p1 != on_failure_jump)
4010 break;
4011
4012 /* Still have to check that it's not an n-th
4013 * alternative that starts with an on_failure_jump. */
4014 p1++;
4015 EXTRACT_NUMBER_AND_INCR(mcnt, p1);
4016 if ((re_opcode_t) p1[mcnt - 3] != jump_past_alt) {
4017 /* Get to the beginning of the n-th alternative. */
4018 p1 -= 3;
4019 break;
4020 }
4021 }
4022
4023 /* Deal with the last alternative: go back and get number
4024 * of the `jump_past_alt' just before it. `mcnt' contains
4025 * the length of the alternative. */
4026 EXTRACT_NUMBER(mcnt, p1 - 2);
4027
4028 if (!alt_match_null_string_p(p1, p1 + mcnt, reg_info))
4029 return false;
4030
4031 p1 += mcnt; /* Get past the n-th alternative. */
4032 } /* if mcnt > 0 */
4033 break;
4034
4035
4036 case stop_memory:
4037 assert(p1[1] == **p);
4038 *p = p1 + 2;
4039 return true;
4040
4041
4042 default:
4043 if (!common_op_match_null_string_p(&p1, end, reg_info))
4044 return false;
4045 }
b8d8561b 4046 } /* while p1 < end */
4047
4048 return false;
4049} /* group_match_null_string_p */
090089c4 4050
4051
4052/* Similar to group_match_null_string_p, but doesn't deal with alternatives:
b8d8561b 4053 * It expects P to be the first byte of a single alternative and END one
4054 * byte past the last. The alternative can contain groups. */
4055
08bc07d0 4056boolean
4057alt_match_null_string_p(unsigned char *p, unsigned char *end, register_info_type *reg_info)
090089c4 4058{
b8d8561b 4059 int mcnt;
4060 unsigned char *p1 = p;
4061
4062 while (p1 < end) {
26ac0430
AJ
4063 /* Skip over opcodes that can match nothing, and break when we get
4064 * to one that can't. */
4065
4066 switch ((re_opcode_t) * p1) {
4067 /* It's a loop. */
4068 case on_failure_jump:
4069 p1++;
4070 EXTRACT_NUMBER_AND_INCR(mcnt, p1);
4071 p1 += mcnt;
4072 break;
4073
4074 default:
4075 if (!common_op_match_null_string_p(&p1, end, reg_info))
4076 return false;
4077 }
b8d8561b 4078 } /* while p1 < end */
4079
4080 return true;
4081} /* alt_match_null_string_p */
090089c4 4082
4083
4084/* Deals with the ops common to group_match_null_string_p and
26ac0430
AJ
4085 * alt_match_null_string_p.
4086 *
b8d8561b 4087 * Sets P to one after the op and its arguments, if any. */
090089c4 4088
08bc07d0 4089boolean
4090common_op_match_null_string_p( unsigned char **p, unsigned char *end, register_info_type *reg_info)
090089c4 4091{
b8d8561b 4092 int mcnt;
4093 boolean ret;
4094 int reg_no;
4095 unsigned char *p1 = *p;
090089c4 4096
b8d8561b 4097 switch ((re_opcode_t) * p1++) {
090089c4 4098 case no_op:
4099 case begline:
4100 case endline:
4101 case begbuf:
4102 case endbuf:
4103 case wordbeg:
4104 case wordend:
4105 case wordbound:
4106 case notwordbound:
26ac0430 4107 break;
090089c4 4108
4109 case start_memory:
26ac0430
AJ
4110 reg_no = *p1;
4111 assert(reg_no > 0 && reg_no <= MAX_REGNUM);
4112 ret = group_match_null_string_p(&p1, end, reg_info);
b8d8561b 4113
26ac0430
AJ
4114 /* Have to set this here in case we're checking a group which
4115 * contains a group and a back reference to it. */
b8d8561b 4116
26ac0430
AJ
4117 if (REG_MATCH_NULL_STRING_P(reg_info[reg_no]) == MATCH_NULL_UNSET_VALUE)
4118 REG_MATCH_NULL_STRING_P(reg_info[reg_no]) = ret;
b8d8561b 4119
26ac0430
AJ
4120 if (!ret)
4121 return false;
4122 break;
b8d8561b 4123
26ac0430 4124 /* If this is an optimized succeed_n for zero times, make the jump. */
090089c4 4125 case jump:
26ac0430
AJ
4126 EXTRACT_NUMBER_AND_INCR(mcnt, p1);
4127 if (mcnt >= 0)
4128 p1 += mcnt;
4129 else
4130 return false;
4131 break;
090089c4 4132
4133 case succeed_n:
26ac0430
AJ
4134 /* Get to the number of times to succeed. */
4135 p1 += 2;
4136 EXTRACT_NUMBER_AND_INCR(mcnt, p1);
4137
4138 if (mcnt == 0) {
4139 p1 -= 4;
4140 EXTRACT_NUMBER_AND_INCR(mcnt, p1);
4141 p1 += mcnt;
4142 } else
4143 return false;
4144 break;
b8d8561b 4145
4146 case duplicate:
26ac0430
AJ
4147 if (!REG_MATCH_NULL_STRING_P(reg_info[*p1]))
4148 return false;
4149 break;
090089c4 4150
4151 case set_number_at:
26ac0430 4152 p1 += 4;
090089c4 4153
4154 default:
26ac0430
AJ
4155 /* All other opcodes mean we cannot match the empty string. */
4156 return false;
b8d8561b 4157 }
090089c4 4158
b8d8561b 4159 *p = p1;
4160 return true;
4161} /* common_op_match_null_string_p */
090089c4 4162
4163
4164/* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
b8d8561b 4165 * bytes; nonzero otherwise. */
4166
08bc07d0 4167int
4168bcmp_translate(unsigned char const *s1, unsigned char const*s2, register int len, char *translate)
090089c4 4169{
08bc07d0 4170 register unsigned char const *p1 = s1, *p2 = s2;
b8d8561b 4171 while (len) {
26ac0430
AJ
4172 if (translate[*p1++] != translate[*p2++])
4173 return 1;
4174 len--;
090089c4 4175 }
b8d8561b 4176 return 0;
090089c4 4177}
4178\f
4179/* Entry points for GNU code. */
4180
090089c4 4181\f
35516333 4182/* POSIX.2 functions */
090089c4 4183
4184/* regcomp takes a regular expression as a string and compiles it.
26ac0430 4185 *
b8d8561b 4186 * PREG is a regex_t *. We do not expect any fields to be initialized,
4187 * since POSIX says we shouldn't. Thus, we set
26ac0430 4188 *
b8d8561b 4189 * `buffer' to the compiled pattern;
4190 * `used' to the length of the compiled pattern;
4191 * `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
4192 * REG_EXTENDED bit in CFLAGS is set; otherwise, to
4193 * RE_SYNTAX_POSIX_BASIC;
4194 * `newline_anchor' to REG_NEWLINE being set in CFLAGS;
4195 * `fastmap' and `fastmap_accurate' to zero;
4196 * `re_nsub' to the number of subexpressions in PATTERN.
26ac0430 4197 *
b8d8561b 4198 * PATTERN is the address of the pattern string.
26ac0430 4199 *
b8d8561b 4200 * CFLAGS is a series of bits which affect compilation.
26ac0430 4201 *
b8d8561b 4202 * If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
4203 * use POSIX basic syntax.
26ac0430 4204 *
b8d8561b 4205 * If REG_NEWLINE is set, then . and [^...] don't match newline.
4206 * Also, regexec will try a match beginning after every newline.
26ac0430 4207 *
b8d8561b 4208 * If REG_ICASE is set, then we considers upper- and lowercase
4209 * versions of letters to be equivalent when matching.
26ac0430 4210 *
b8d8561b 4211 * If REG_NOSUB is set, then when PREG is passed to regexec, that
4212 * routine will report only success or failure, and nothing about the
4213 * registers.
26ac0430 4214 *
b8d8561b 4215 * It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for
4216 * the return codes and their meanings.) */
090089c4 4217
4218int
b8d8561b 4219regcomp(preg, pattern, cflags)
26ac0430
AJ
4220regex_t *preg;
4221const char *pattern;
4222int cflags;
090089c4 4223{
b8d8561b 4224 reg_errcode_t ret;
4225 unsigned syntax
090089c4 4226 = (cflags & REG_EXTENDED) ?
26ac0430 4227 RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC;
b8d8561b 4228
4229 /* regex_compile will allocate the space for the compiled pattern. */
4230 preg->buffer = 0;
4231 preg->allocated = 0;
4232
4233 /* Don't bother to use a fastmap when searching. This simplifies the
4234 * REG_NEWLINE case: if we used a fastmap, we'd have to put all the
4235 * characters after newlines into the fastmap. This way, we just try
4236 * every character. */
4237 preg->fastmap = 0;
4238
4239 if (cflags & REG_ICASE) {
26ac0430 4240 unsigned i;
b8d8561b 4241
26ac0430
AJ
4242 preg->translate = (char *) malloc(CHAR_SET_SIZE);
4243 if (preg->translate == NULL)
4244 return (int) REG_ESPACE;
b8d8561b 4245
26ac0430
AJ
4246 /* Map uppercase characters to corresponding lowercase ones. */
4247 for (i = 0; i < CHAR_SET_SIZE; i++)
4248 preg->translate[i] = ISUPPER(i) ? tolower(i) : i;
b8d8561b 4249 } else
26ac0430 4250 preg->translate = NULL;
b8d8561b 4251
4252 /* If REG_NEWLINE is set, newlines are treated differently. */
4253 if (cflags & REG_NEWLINE) { /* REG_NEWLINE implies neither . nor [^...] match newline. */
26ac0430
AJ
4254 syntax &= ~RE_DOT_NEWLINE;
4255 syntax |= RE_HAT_LISTS_NOT_NEWLINE;
4256 /* It also changes the matching behavior. */
4257 preg->newline_anchor = 1;
b8d8561b 4258 } else
26ac0430 4259 preg->newline_anchor = 0;
b8d8561b 4260
4261 preg->no_sub = !!(cflags & REG_NOSUB);
4262
26ac0430 4263 /* POSIX says a null character in the pattern terminates it, so we
b8d8561b 4264 * can use strlen here in compiling the pattern. */
4265 ret = regex_compile(pattern, strlen(pattern), syntax, preg);
4266
4267 /* POSIX doesn't distinguish between an unmatched open-group and an
4268 * unmatched close-group: both are REG_EPAREN. */
4269 if (ret == REG_ERPAREN)
26ac0430 4270 ret = REG_EPAREN;
b8d8561b 4271
4272 return (int) ret;
090089c4 4273}
4274
4275
4276/* regexec searches for a given pattern, specified by PREG, in the
b8d8561b 4277 * string STRING.
26ac0430 4278 *
b8d8561b 4279 * If NMATCH is zero or REG_NOSUB was set in the cflags argument to
4280 * `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
4281 * least NMATCH elements, and we set them to the offsets of the
4282 * corresponding matched substrings.
26ac0430 4283 *
b8d8561b 4284 * EFLAGS specifies `execution flags' which affect matching: if
4285 * REG_NOTBOL is set, then ^ does not match at the beginning of the
4286 * string; if REG_NOTEOL is set, then $ does not match at the end.
26ac0430 4287 *
b8d8561b 4288 * We return 0 if we find a match and REG_NOMATCH if not. */
090089c4 4289
4290int
b8d8561b 4291regexec(preg, string, nmatch, pmatch, eflags)
26ac0430
AJ
4292const regex_t *preg;
4293const char *string;
4294size_t nmatch;
4295regmatch_t pmatch[];
4296int eflags;
090089c4 4297{
b8d8561b 4298 int ret;
4299 struct re_registers regs;
4300 regex_t private_preg;
4301 int len = strlen(string);
4302 boolean want_reg_info = !preg->no_sub && nmatch > 0;
4303
4304 private_preg = *preg;
4305
4306 private_preg.not_bol = !!(eflags & REG_NOTBOL);
4307 private_preg.not_eol = !!(eflags & REG_NOTEOL);
4308
4309 /* The user has told us exactly how many registers to return
4310 * information about, via `nmatch'. We have to pass that on to the
4311 * matching routines. */
4312 private_preg.regs_allocated = REGS_FIXED;
4313
4314 if (want_reg_info) {
26ac0430
AJ
4315 regs.num_regs = nmatch;
4316 regs.start = TALLOC(nmatch, regoff_t);
4317 regs.end = TALLOC(nmatch, regoff_t);
4318 if (regs.start == NULL || regs.end == NULL)
4319 return (int) REG_NOMATCH;
090089c4 4320 }
b8d8561b 4321 /* Perform the searching operation. */
4322 ret = re_search(&private_preg, string, len,
26ac0430
AJ
4323 /* start: */ 0, /* range: */ len,
4324 want_reg_info ? &regs : (struct re_registers *) 0);
b8d8561b 4325
4326 /* Copy the register information to the POSIX structure. */
4327 if (want_reg_info) {
26ac0430
AJ
4328 if (ret >= 0) {
4329 unsigned r;
4330
4331 for (r = 0; r < nmatch; r++) {
4332 pmatch[r].rm_so = regs.start[r];
4333 pmatch[r].rm_eo = regs.end[r];
4334 }
4335 }
4336 /* If we needed the temporary register info, free the space now. */
4337 free(regs.start);
4338 free(regs.end);
090089c4 4339 }
b8d8561b 4340 /* We want zero return to mean success, unlike `re_search'. */
4341 return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH;
090089c4 4342}
4343
4344
4345/* Returns a message corresponding to an error code, ERRCODE, returned
b8d8561b 4346 * from either regcomp or regexec. We don't use PREG here. */
090089c4 4347
4348size_t
90a9dd4d 4349regerror(int errcode, const regex_t *preg, char *errbuf, size_t errbuf_size)
090089c4 4350{
b8d8561b 4351 const char *msg;
4352 size_t msg_size;
4353
4354 if (errcode < 0
26ac0430
AJ
4355 || errcode >= (sizeof(re_error_msg) / sizeof(re_error_msg[0])))
4356 /* Only error codes returned by the rest of the code should be passed
4357 * to this routine. If we are given anything else, or if other regex
4358 * code generates an invalid error code, then the program has a bug.
4359 * Dump core so we can fix it. */
4360 abort();
b8d8561b 4361
4362 msg = re_error_msg[errcode];
4363
4364 /* POSIX doesn't require that we do anything in this case, but why
4365 * not be nice. */
4366 if (!msg)
26ac0430 4367 msg = "Success";
b8d8561b 4368
4369 msg_size = strlen(msg) + 1; /* Includes the null. */
4370
4371 if (errbuf_size != 0) {
26ac0430
AJ
4372 if (msg_size > errbuf_size) {
4373 strncpy(errbuf, msg, errbuf_size - 1);
4374 errbuf[errbuf_size - 1] = 0;
4375 } else
4376 strcpy(errbuf, msg);
090089c4 4377 }
b8d8561b 4378 return msg_size;
090089c4 4379}
4380
4381
4382/* Free dynamically allocated space used by PREG. */
4383
4384void
b8d8561b 4385regfree(preg)
26ac0430 4386regex_t *preg;
090089c4 4387{
b8d8561b 4388 if (preg->buffer != NULL)
26ac0430 4389 free(preg->buffer);
b8d8561b 4390 preg->buffer = NULL;
4391
4392 preg->allocated = 0;
4393 preg->used = 0;
4394
4395 if (preg->fastmap != NULL)
26ac0430 4396 free(preg->fastmap);
b8d8561b 4397 preg->fastmap = NULL;
4398 preg->fastmap_accurate = 0;
4399
4400 if (preg->translate != NULL)
26ac0430 4401 free(preg->translate);
b8d8561b 4402 preg->translate = NULL;
090089c4 4403}
090089c4 4404\f
4405/*
b8d8561b 4406 * Local variables:
4407 * make-backup-files: t
4408 * version-control: t
4409 * trim-versions-without-asking: nil
4410 * End:
4411 */