]> git.ipfire.org Git - thirdparty/linux.git/blame - lib/maple_tree.c
mm: no need to export mm_kobj
[thirdparty/linux.git] / lib / maple_tree.c
CommitLineData
54a611b6
LH
1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * Maple Tree implementation
4 * Copyright (c) 2018-2022 Oracle Corporation
5 * Authors: Liam R. Howlett <Liam.Howlett@oracle.com>
6 * Matthew Wilcox <willy@infradead.org>
7 */
8
9/*
10 * DOC: Interesting implementation details of the Maple Tree
11 *
12 * Each node type has a number of slots for entries and a number of slots for
13 * pivots. In the case of dense nodes, the pivots are implied by the position
14 * and are simply the slot index + the minimum of the node.
15 *
16 * In regular B-Tree terms, pivots are called keys. The term pivot is used to
17 * indicate that the tree is specifying ranges, Pivots may appear in the
18 * subtree with an entry attached to the value where as keys are unique to a
19 * specific position of a B-tree. Pivot values are inclusive of the slot with
20 * the same index.
21 *
22 *
23 * The following illustrates the layout of a range64 nodes slots and pivots.
24 *
25 *
26 * Slots -> | 0 | 1 | 2 | ... | 12 | 13 | 14 | 15 |
27 * ┬ ┬ ┬ ┬ ┬ ┬ ┬ ┬ ┬
28 * │ │ │ │ │ │ │ │ └─ Implied maximum
29 * │ │ │ │ │ │ │ └─ Pivot 14
30 * │ │ │ │ │ │ └─ Pivot 13
31 * │ │ │ │ │ └─ Pivot 12
32 * │ │ │ │ └─ Pivot 11
33 * │ │ │ └─ Pivot 2
34 * │ │ └─ Pivot 1
35 * │ └─ Pivot 0
36 * └─ Implied minimum
37 *
38 * Slot contents:
39 * Internal (non-leaf) nodes contain pointers to other nodes.
40 * Leaf nodes contain entries.
41 *
42 * The location of interest is often referred to as an offset. All offsets have
43 * a slot, but the last offset has an implied pivot from the node above (or
44 * UINT_MAX for the root node.
45 *
46 * Ranges complicate certain write activities. When modifying any of
47 * the B-tree variants, it is known that one entry will either be added or
48 * deleted. When modifying the Maple Tree, one store operation may overwrite
49 * the entire data set, or one half of the tree, or the middle half of the tree.
50 *
51 */
52
53
54#include <linux/maple_tree.h>
55#include <linux/xarray.h>
56#include <linux/types.h>
57#include <linux/export.h>
58#include <linux/slab.h>
59#include <linux/limits.h>
60#include <asm/barrier.h>
61
62#define CREATE_TRACE_POINTS
63#include <trace/events/maple_tree.h>
64
65#define MA_ROOT_PARENT 1
66
67/*
68 * Maple state flags
69 * * MA_STATE_BULK - Bulk insert mode
70 * * MA_STATE_REBALANCE - Indicate a rebalance during bulk insert
71 * * MA_STATE_PREALLOC - Preallocated nodes, WARN_ON allocation
72 */
73#define MA_STATE_BULK 1
74#define MA_STATE_REBALANCE 2
75#define MA_STATE_PREALLOC 4
76
77#define ma_parent_ptr(x) ((struct maple_pnode *)(x))
78#define ma_mnode_ptr(x) ((struct maple_node *)(x))
79#define ma_enode_ptr(x) ((struct maple_enode *)(x))
80static struct kmem_cache *maple_node_cache;
81
82#ifdef CONFIG_DEBUG_MAPLE_TREE
83static const unsigned long mt_max[] = {
84 [maple_dense] = MAPLE_NODE_SLOTS,
85 [maple_leaf_64] = ULONG_MAX,
86 [maple_range_64] = ULONG_MAX,
87 [maple_arange_64] = ULONG_MAX,
88};
89#define mt_node_max(x) mt_max[mte_node_type(x)]
90#endif
91
92static const unsigned char mt_slots[] = {
93 [maple_dense] = MAPLE_NODE_SLOTS,
94 [maple_leaf_64] = MAPLE_RANGE64_SLOTS,
95 [maple_range_64] = MAPLE_RANGE64_SLOTS,
96 [maple_arange_64] = MAPLE_ARANGE64_SLOTS,
97};
98#define mt_slot_count(x) mt_slots[mte_node_type(x)]
99
100static const unsigned char mt_pivots[] = {
101 [maple_dense] = 0,
102 [maple_leaf_64] = MAPLE_RANGE64_SLOTS - 1,
103 [maple_range_64] = MAPLE_RANGE64_SLOTS - 1,
104 [maple_arange_64] = MAPLE_ARANGE64_SLOTS - 1,
105};
106#define mt_pivot_count(x) mt_pivots[mte_node_type(x)]
107
108static const unsigned char mt_min_slots[] = {
109 [maple_dense] = MAPLE_NODE_SLOTS / 2,
110 [maple_leaf_64] = (MAPLE_RANGE64_SLOTS / 2) - 2,
111 [maple_range_64] = (MAPLE_RANGE64_SLOTS / 2) - 2,
112 [maple_arange_64] = (MAPLE_ARANGE64_SLOTS / 2) - 1,
113};
114#define mt_min_slot_count(x) mt_min_slots[mte_node_type(x)]
115
116#define MAPLE_BIG_NODE_SLOTS (MAPLE_RANGE64_SLOTS * 2 + 2)
117#define MAPLE_BIG_NODE_GAPS (MAPLE_ARANGE64_SLOTS * 2 + 1)
118
119struct maple_big_node {
120 struct maple_pnode *parent;
121 unsigned long pivot[MAPLE_BIG_NODE_SLOTS - 1];
122 union {
123 struct maple_enode *slot[MAPLE_BIG_NODE_SLOTS];
124 struct {
125 unsigned long padding[MAPLE_BIG_NODE_GAPS];
126 unsigned long gap[MAPLE_BIG_NODE_GAPS];
127 };
128 };
129 unsigned char b_end;
130 enum maple_type type;
131};
132
133/*
134 * The maple_subtree_state is used to build a tree to replace a segment of an
135 * existing tree in a more atomic way. Any walkers of the older tree will hit a
136 * dead node and restart on updates.
137 */
138struct maple_subtree_state {
139 struct ma_state *orig_l; /* Original left side of subtree */
140 struct ma_state *orig_r; /* Original right side of subtree */
141 struct ma_state *l; /* New left side of subtree */
142 struct ma_state *m; /* New middle of subtree (rare) */
143 struct ma_state *r; /* New right side of subtree */
144 struct ma_topiary *free; /* nodes to be freed */
145 struct ma_topiary *destroy; /* Nodes to be destroyed (walked and freed) */
146 struct maple_big_node *bn;
147};
148
44081c77
AB
149#ifdef CONFIG_KASAN_STACK
150/* Prevent mas_wr_bnode() from exceeding the stack frame limit */
151#define noinline_for_kasan noinline_for_stack
152#else
153#define noinline_for_kasan inline
154#endif
155
54a611b6
LH
156/* Functions */
157static inline struct maple_node *mt_alloc_one(gfp_t gfp)
158{
541e06b7 159 return kmem_cache_alloc(maple_node_cache, gfp);
54a611b6
LH
160}
161
162static inline int mt_alloc_bulk(gfp_t gfp, size_t size, void **nodes)
163{
541e06b7 164 return kmem_cache_alloc_bulk(maple_node_cache, gfp, size, nodes);
54a611b6
LH
165}
166
167static inline void mt_free_bulk(size_t size, void __rcu **nodes)
168{
169 kmem_cache_free_bulk(maple_node_cache, size, (void **)nodes);
170}
171
172static void mt_free_rcu(struct rcu_head *head)
173{
174 struct maple_node *node = container_of(head, struct maple_node, rcu);
175
176 kmem_cache_free(maple_node_cache, node);
177}
178
179/*
180 * ma_free_rcu() - Use rcu callback to free a maple node
181 * @node: The node to free
182 *
183 * The maple tree uses the parent pointer to indicate this node is no longer in
184 * use and will be freed.
185 */
186static void ma_free_rcu(struct maple_node *node)
187{
c13af03d 188 WARN_ON(node->parent != ma_parent_ptr(node));
54a611b6
LH
189 call_rcu(&node->rcu, mt_free_rcu);
190}
191
54a611b6
LH
192static void mas_set_height(struct ma_state *mas)
193{
194 unsigned int new_flags = mas->tree->ma_flags;
195
196 new_flags &= ~MT_FLAGS_HEIGHT_MASK;
5950ada9 197 MAS_BUG_ON(mas, mas->depth > MAPLE_HEIGHT_MAX);
54a611b6
LH
198 new_flags |= mas->depth << MT_FLAGS_HEIGHT_OFFSET;
199 mas->tree->ma_flags = new_flags;
200}
201
202static unsigned int mas_mt_height(struct ma_state *mas)
203{
204 return mt_height(mas->tree);
205}
206
207static inline enum maple_type mte_node_type(const struct maple_enode *entry)
208{
209 return ((unsigned long)entry >> MAPLE_NODE_TYPE_SHIFT) &
210 MAPLE_NODE_TYPE_MASK;
211}
212
213static inline bool ma_is_dense(const enum maple_type type)
214{
215 return type < maple_leaf_64;
216}
217
218static inline bool ma_is_leaf(const enum maple_type type)
219{
220 return type < maple_range_64;
221}
222
223static inline bool mte_is_leaf(const struct maple_enode *entry)
224{
225 return ma_is_leaf(mte_node_type(entry));
226}
227
228/*
229 * We also reserve values with the bottom two bits set to '10' which are
230 * below 4096
231 */
232static inline bool mt_is_reserved(const void *entry)
233{
234 return ((unsigned long)entry < MAPLE_RESERVED_RANGE) &&
235 xa_is_internal(entry);
236}
237
238static inline void mas_set_err(struct ma_state *mas, long err)
239{
240 mas->node = MA_ERROR(err);
241}
242
f0a1f866 243static inline bool mas_is_ptr(const struct ma_state *mas)
54a611b6
LH
244{
245 return mas->node == MAS_ROOT;
246}
247
f0a1f866 248static inline bool mas_is_start(const struct ma_state *mas)
54a611b6
LH
249{
250 return mas->node == MAS_START;
251}
252
253bool mas_is_err(struct ma_state *mas)
254{
255 return xa_is_err(mas->node);
256}
257
258static inline bool mas_searchable(struct ma_state *mas)
259{
260 if (mas_is_none(mas))
261 return false;
262
263 if (mas_is_ptr(mas))
264 return false;
265
266 return true;
267}
268
269static inline struct maple_node *mte_to_node(const struct maple_enode *entry)
270{
271 return (struct maple_node *)((unsigned long)entry & ~MAPLE_NODE_MASK);
272}
273
274/*
275 * mte_to_mat() - Convert a maple encoded node to a maple topiary node.
276 * @entry: The maple encoded node
277 *
278 * Return: a maple topiary pointer
279 */
280static inline struct maple_topiary *mte_to_mat(const struct maple_enode *entry)
281{
282 return (struct maple_topiary *)
283 ((unsigned long)entry & ~MAPLE_NODE_MASK);
284}
285
286/*
287 * mas_mn() - Get the maple state node.
288 * @mas: The maple state
289 *
290 * Return: the maple node (not encoded - bare pointer).
291 */
292static inline struct maple_node *mas_mn(const struct ma_state *mas)
293{
294 return mte_to_node(mas->node);
295}
296
297/*
298 * mte_set_node_dead() - Set a maple encoded node as dead.
299 * @mn: The maple encoded node.
300 */
301static inline void mte_set_node_dead(struct maple_enode *mn)
302{
303 mte_to_node(mn)->parent = ma_parent_ptr(mte_to_node(mn));
304 smp_wmb(); /* Needed for RCU */
305}
306
307/* Bit 1 indicates the root is a node */
308#define MAPLE_ROOT_NODE 0x02
309/* maple_type stored bit 3-6 */
310#define MAPLE_ENODE_TYPE_SHIFT 0x03
311/* Bit 2 means a NULL somewhere below */
312#define MAPLE_ENODE_NULL 0x04
313
314static inline struct maple_enode *mt_mk_node(const struct maple_node *node,
315 enum maple_type type)
316{
317 return (void *)((unsigned long)node |
318 (type << MAPLE_ENODE_TYPE_SHIFT) | MAPLE_ENODE_NULL);
319}
320
321static inline void *mte_mk_root(const struct maple_enode *node)
322{
323 return (void *)((unsigned long)node | MAPLE_ROOT_NODE);
324}
325
326static inline void *mte_safe_root(const struct maple_enode *node)
327{
328 return (void *)((unsigned long)node & ~MAPLE_ROOT_NODE);
329}
330
6e7ba8b5 331static inline void *mte_set_full(const struct maple_enode *node)
54a611b6 332{
6e7ba8b5 333 return (void *)((unsigned long)node & ~MAPLE_ENODE_NULL);
54a611b6
LH
334}
335
6e7ba8b5 336static inline void *mte_clear_full(const struct maple_enode *node)
54a611b6 337{
6e7ba8b5
LH
338 return (void *)((unsigned long)node | MAPLE_ENODE_NULL);
339}
340
341static inline bool mte_has_null(const struct maple_enode *node)
342{
343 return (unsigned long)node & MAPLE_ENODE_NULL;
54a611b6
LH
344}
345
346static inline bool ma_is_root(struct maple_node *node)
347{
348 return ((unsigned long)node->parent & MA_ROOT_PARENT);
349}
350
351static inline bool mte_is_root(const struct maple_enode *node)
352{
353 return ma_is_root(mte_to_node(node));
354}
355
356static inline bool mas_is_root_limits(const struct ma_state *mas)
357{
358 return !mas->min && mas->max == ULONG_MAX;
359}
360
361static inline bool mt_is_alloc(struct maple_tree *mt)
362{
363 return (mt->ma_flags & MT_FLAGS_ALLOC_RANGE);
364}
365
366/*
367 * The Parent Pointer
368 * Excluding root, the parent pointer is 256B aligned like all other tree nodes.
369 * When storing a 32 or 64 bit values, the offset can fit into 5 bits. The 16
370 * bit values need an extra bit to store the offset. This extra bit comes from
371 * a reuse of the last bit in the node type. This is possible by using bit 1 to
372 * indicate if bit 2 is part of the type or the slot.
373 *
374 * Note types:
375 * 0x??1 = Root
376 * 0x?00 = 16 bit nodes
377 * 0x010 = 32 bit nodes
378 * 0x110 = 64 bit nodes
379 *
380 * Slot size and alignment
381 * 0b??1 : Root
382 * 0b?00 : 16 bit values, type in 0-1, slot in 2-7
383 * 0b010 : 32 bit values, type in 0-2, slot in 3-7
384 * 0b110 : 64 bit values, type in 0-2, slot in 3-7
385 */
386
387#define MAPLE_PARENT_ROOT 0x01
388
389#define MAPLE_PARENT_SLOT_SHIFT 0x03
390#define MAPLE_PARENT_SLOT_MASK 0xF8
391
392#define MAPLE_PARENT_16B_SLOT_SHIFT 0x02
393#define MAPLE_PARENT_16B_SLOT_MASK 0xFC
394
395#define MAPLE_PARENT_RANGE64 0x06
396#define MAPLE_PARENT_RANGE32 0x04
397#define MAPLE_PARENT_NOT_RANGE16 0x02
398
399/*
400 * mte_parent_shift() - Get the parent shift for the slot storage.
401 * @parent: The parent pointer cast as an unsigned long
402 * Return: The shift into that pointer to the star to of the slot
403 */
404static inline unsigned long mte_parent_shift(unsigned long parent)
405{
406 /* Note bit 1 == 0 means 16B */
407 if (likely(parent & MAPLE_PARENT_NOT_RANGE16))
408 return MAPLE_PARENT_SLOT_SHIFT;
409
410 return MAPLE_PARENT_16B_SLOT_SHIFT;
411}
412
413/*
414 * mte_parent_slot_mask() - Get the slot mask for the parent.
415 * @parent: The parent pointer cast as an unsigned long.
416 * Return: The slot mask for that parent.
417 */
418static inline unsigned long mte_parent_slot_mask(unsigned long parent)
419{
420 /* Note bit 1 == 0 means 16B */
421 if (likely(parent & MAPLE_PARENT_NOT_RANGE16))
422 return MAPLE_PARENT_SLOT_MASK;
423
424 return MAPLE_PARENT_16B_SLOT_MASK;
425}
426
427/*
afc754c6 428 * mas_parent_type() - Return the maple_type of the parent from the stored
54a611b6
LH
429 * parent type.
430 * @mas: The maple state
afc754c6 431 * @enode: The maple_enode to extract the parent's enum
54a611b6
LH
432 * Return: The node->parent maple_type
433 */
434static inline
afc754c6 435enum maple_type mas_parent_type(struct ma_state *mas, struct maple_enode *enode)
54a611b6
LH
436{
437 unsigned long p_type;
438
afc754c6
LH
439 p_type = (unsigned long)mte_to_node(enode)->parent;
440 if (WARN_ON(p_type & MAPLE_PARENT_ROOT))
441 return 0;
54a611b6
LH
442
443 p_type &= MAPLE_NODE_MASK;
afc754c6 444 p_type &= ~mte_parent_slot_mask(p_type);
54a611b6
LH
445 switch (p_type) {
446 case MAPLE_PARENT_RANGE64: /* or MAPLE_PARENT_ARANGE64 */
afc754c6 447 if (mt_is_alloc(mas->tree))
54a611b6
LH
448 return maple_arange_64;
449 return maple_range_64;
450 }
451
452 return 0;
453}
454
54a611b6 455/*
bf96715e 456 * mas_set_parent() - Set the parent node and encode the slot
54a611b6
LH
457 * @enode: The encoded maple node.
458 * @parent: The encoded maple node that is the parent of @enode.
459 * @slot: The slot that @enode resides in @parent.
460 *
461 * Slot number is encoded in the enode->parent bit 3-6 or 2-6, depending on the
462 * parent type.
463 */
464static inline
bf96715e
LH
465void mas_set_parent(struct ma_state *mas, struct maple_enode *enode,
466 const struct maple_enode *parent, unsigned char slot)
54a611b6 467{
831978e3 468 unsigned long val = (unsigned long)parent;
54a611b6
LH
469 unsigned long shift;
470 unsigned long type;
471 enum maple_type p_type = mte_node_type(parent);
472
bf96715e
LH
473 MAS_BUG_ON(mas, p_type == maple_dense);
474 MAS_BUG_ON(mas, p_type == maple_leaf_64);
54a611b6
LH
475
476 switch (p_type) {
477 case maple_range_64:
478 case maple_arange_64:
479 shift = MAPLE_PARENT_SLOT_SHIFT;
480 type = MAPLE_PARENT_RANGE64;
481 break;
482 default:
483 case maple_dense:
484 case maple_leaf_64:
485 shift = type = 0;
486 break;
487 }
488
489 val &= ~MAPLE_NODE_MASK; /* Clear all node metadata in parent */
490 val |= (slot << shift) | type;
491 mte_to_node(enode)->parent = ma_parent_ptr(val);
492}
493
494/*
495 * mte_parent_slot() - get the parent slot of @enode.
496 * @enode: The encoded maple node.
497 *
498 * Return: The slot in the parent node where @enode resides.
499 */
500static inline unsigned int mte_parent_slot(const struct maple_enode *enode)
501{
831978e3 502 unsigned long val = (unsigned long)mte_to_node(enode)->parent;
54a611b6 503
84fd3e1e 504 if (val & MA_ROOT_PARENT)
54a611b6
LH
505 return 0;
506
507 /*
508 * Okay to use MAPLE_PARENT_16B_SLOT_MASK as the last bit will be lost
509 * by shift if the parent shift is MAPLE_PARENT_SLOT_SHIFT
510 */
511 return (val & MAPLE_PARENT_16B_SLOT_MASK) >> mte_parent_shift(val);
512}
513
514/*
515 * mte_parent() - Get the parent of @node.
516 * @node: The encoded maple node.
517 *
518 * Return: The parent maple node.
519 */
520static inline struct maple_node *mte_parent(const struct maple_enode *enode)
521{
522 return (void *)((unsigned long)
523 (mte_to_node(enode)->parent) & ~MAPLE_NODE_MASK);
524}
525
526/*
527 * ma_dead_node() - check if the @enode is dead.
528 * @enode: The encoded maple node
529 *
530 * Return: true if dead, false otherwise.
531 */
532static inline bool ma_dead_node(const struct maple_node *node)
533{
0a2b18d9 534 struct maple_node *parent;
54a611b6 535
0a2b18d9
LH
536 /* Do not reorder reads from the node prior to the parent check */
537 smp_rmb();
538 parent = (void *)((unsigned long) node->parent & ~MAPLE_NODE_MASK);
54a611b6
LH
539 return (parent == node);
540}
39d0bd86 541
54a611b6
LH
542/*
543 * mte_dead_node() - check if the @enode is dead.
544 * @enode: The encoded maple node
545 *
546 * Return: true if dead, false otherwise.
547 */
548static inline bool mte_dead_node(const struct maple_enode *enode)
549{
550 struct maple_node *parent, *node;
551
552 node = mte_to_node(enode);
0a2b18d9
LH
553 /* Do not reorder reads from the node prior to the parent check */
554 smp_rmb();
54a611b6
LH
555 parent = mte_parent(enode);
556 return (parent == node);
557}
558
559/*
560 * mas_allocated() - Get the number of nodes allocated in a maple state.
561 * @mas: The maple state
562 *
563 * The ma_state alloc member is overloaded to hold a pointer to the first
564 * allocated node or to the number of requested nodes to allocate. If bit 0 is
565 * set, then the alloc contains the number of requested nodes. If there is an
566 * allocated node, then the total allocated nodes is in that node.
567 *
568 * Return: The total number of nodes allocated
569 */
570static inline unsigned long mas_allocated(const struct ma_state *mas)
571{
572 if (!mas->alloc || ((unsigned long)mas->alloc & 0x1))
573 return 0;
574
575 return mas->alloc->total;
576}
577
578/*
579 * mas_set_alloc_req() - Set the requested number of allocations.
580 * @mas: the maple state
581 * @count: the number of allocations.
582 *
583 * The requested number of allocations is either in the first allocated node,
584 * located in @mas->alloc->request_count, or directly in @mas->alloc if there is
585 * no allocated node. Set the request either in the node or do the necessary
586 * encoding to store in @mas->alloc directly.
587 */
588static inline void mas_set_alloc_req(struct ma_state *mas, unsigned long count)
589{
590 if (!mas->alloc || ((unsigned long)mas->alloc & 0x1)) {
591 if (!count)
592 mas->alloc = NULL;
593 else
594 mas->alloc = (struct maple_alloc *)(((count) << 1U) | 1U);
595 return;
596 }
597
598 mas->alloc->request_count = count;
599}
600
601/*
602 * mas_alloc_req() - get the requested number of allocations.
603 * @mas: The maple state
604 *
605 * The alloc count is either stored directly in @mas, or in
606 * @mas->alloc->request_count if there is at least one node allocated. Decode
607 * the request count if it's stored directly in @mas->alloc.
608 *
609 * Return: The allocation request count.
610 */
611static inline unsigned int mas_alloc_req(const struct ma_state *mas)
612{
613 if ((unsigned long)mas->alloc & 0x1)
614 return (unsigned long)(mas->alloc) >> 1;
615 else if (mas->alloc)
616 return mas->alloc->request_count;
617 return 0;
618}
619
620/*
621 * ma_pivots() - Get a pointer to the maple node pivots.
622 * @node - the maple node
623 * @type - the node type
624 *
39d0bd86
LH
625 * In the event of a dead node, this array may be %NULL
626 *
54a611b6
LH
627 * Return: A pointer to the maple node pivots
628 */
629static inline unsigned long *ma_pivots(struct maple_node *node,
630 enum maple_type type)
631{
632 switch (type) {
633 case maple_arange_64:
634 return node->ma64.pivot;
635 case maple_range_64:
636 case maple_leaf_64:
637 return node->mr64.pivot;
638 case maple_dense:
639 return NULL;
640 }
641 return NULL;
642}
643
644/*
645 * ma_gaps() - Get a pointer to the maple node gaps.
646 * @node - the maple node
647 * @type - the node type
648 *
649 * Return: A pointer to the maple node gaps
650 */
651static inline unsigned long *ma_gaps(struct maple_node *node,
652 enum maple_type type)
653{
654 switch (type) {
655 case maple_arange_64:
656 return node->ma64.gap;
657 case maple_range_64:
658 case maple_leaf_64:
659 case maple_dense:
660 return NULL;
661 }
662 return NULL;
663}
664
665/*
acd4de60
LH
666 * mas_pivot() - Get the pivot at @piv of the maple encoded node.
667 * @mas: The maple state.
54a611b6
LH
668 * @piv: The pivot.
669 *
670 * Return: the pivot at @piv of @mn.
671 */
acd4de60 672static inline unsigned long mas_pivot(struct ma_state *mas, unsigned char piv)
54a611b6 673{
acd4de60
LH
674 struct maple_node *node = mas_mn(mas);
675 enum maple_type type = mte_node_type(mas->node);
54a611b6 676
acd4de60
LH
677 if (MAS_WARN_ON(mas, piv >= mt_pivots[type])) {
678 mas_set_err(mas, -EIO);
54a611b6
LH
679 return 0;
680 }
acd4de60 681
ab6ef70a 682 switch (type) {
54a611b6
LH
683 case maple_arange_64:
684 return node->ma64.pivot[piv];
685 case maple_range_64:
686 case maple_leaf_64:
687 return node->mr64.pivot[piv];
688 case maple_dense:
689 return 0;
690 }
691 return 0;
692}
693
694/*
695 * mas_safe_pivot() - get the pivot at @piv or mas->max.
696 * @mas: The maple state
697 * @pivots: The pointer to the maple node pivots
698 * @piv: The pivot to fetch
699 * @type: The maple node type
700 *
701 * Return: The pivot at @piv within the limit of the @pivots array, @mas->max
702 * otherwise.
703 */
704static inline unsigned long
705mas_safe_pivot(const struct ma_state *mas, unsigned long *pivots,
706 unsigned char piv, enum maple_type type)
707{
708 if (piv >= mt_pivots[type])
709 return mas->max;
710
711 return pivots[piv];
712}
713
714/*
715 * mas_safe_min() - Return the minimum for a given offset.
716 * @mas: The maple state
717 * @pivots: The pointer to the maple node pivots
718 * @offset: The offset into the pivot array
719 *
720 * Return: The minimum range value that is contained in @offset.
721 */
722static inline unsigned long
723mas_safe_min(struct ma_state *mas, unsigned long *pivots, unsigned char offset)
724{
725 if (likely(offset))
726 return pivots[offset - 1] + 1;
727
728 return mas->min;
729}
730
54a611b6
LH
731/*
732 * mte_set_pivot() - Set a pivot to a value in an encoded maple node.
733 * @mn: The encoded maple node
734 * @piv: The pivot offset
735 * @val: The value of the pivot
736 */
737static inline void mte_set_pivot(struct maple_enode *mn, unsigned char piv,
738 unsigned long val)
739{
740 struct maple_node *node = mte_to_node(mn);
741 enum maple_type type = mte_node_type(mn);
742
743 BUG_ON(piv >= mt_pivots[type]);
744 switch (type) {
745 default:
746 case maple_range_64:
747 case maple_leaf_64:
748 node->mr64.pivot[piv] = val;
749 break;
750 case maple_arange_64:
751 node->ma64.pivot[piv] = val;
752 break;
753 case maple_dense:
754 break;
755 }
756
757}
758
759/*
760 * ma_slots() - Get a pointer to the maple node slots.
761 * @mn: The maple node
762 * @mt: The maple node type
763 *
764 * Return: A pointer to the maple node slots
765 */
766static inline void __rcu **ma_slots(struct maple_node *mn, enum maple_type mt)
767{
768 switch (mt) {
769 default:
770 case maple_arange_64:
771 return mn->ma64.slot;
772 case maple_range_64:
773 case maple_leaf_64:
774 return mn->mr64.slot;
775 case maple_dense:
776 return mn->slot;
777 }
778}
779
19a462f0
LH
780static inline bool mt_write_locked(const struct maple_tree *mt)
781{
782 return mt_external_lock(mt) ? mt_write_lock_is_held(mt) :
783 lockdep_is_held(&mt->ma_lock);
784}
785
54a611b6
LH
786static inline bool mt_locked(const struct maple_tree *mt)
787{
788 return mt_external_lock(mt) ? mt_lock_is_held(mt) :
789 lockdep_is_held(&mt->ma_lock);
790}
791
792static inline void *mt_slot(const struct maple_tree *mt,
793 void __rcu **slots, unsigned char offset)
794{
795 return rcu_dereference_check(slots[offset], mt_locked(mt));
796}
797
790e1fa8
LH
798static inline void *mt_slot_locked(struct maple_tree *mt, void __rcu **slots,
799 unsigned char offset)
800{
19a462f0 801 return rcu_dereference_protected(slots[offset], mt_write_locked(mt));
790e1fa8 802}
54a611b6
LH
803/*
804 * mas_slot_locked() - Get the slot value when holding the maple tree lock.
805 * @mas: The maple state
806 * @slots: The pointer to the slots
807 * @offset: The offset into the slots array to fetch
808 *
809 * Return: The entry stored in @slots at the @offset.
810 */
811static inline void *mas_slot_locked(struct ma_state *mas, void __rcu **slots,
812 unsigned char offset)
813{
790e1fa8 814 return mt_slot_locked(mas->tree, slots, offset);
54a611b6
LH
815}
816
817/*
818 * mas_slot() - Get the slot value when not holding the maple tree lock.
819 * @mas: The maple state
820 * @slots: The pointer to the slots
821 * @offset: The offset into the slots array to fetch
822 *
823 * Return: The entry stored in @slots at the @offset
824 */
825static inline void *mas_slot(struct ma_state *mas, void __rcu **slots,
826 unsigned char offset)
827{
828 return mt_slot(mas->tree, slots, offset);
829}
830
831/*
832 * mas_root() - Get the maple tree root.
833 * @mas: The maple state.
834 *
835 * Return: The pointer to the root of the tree
836 */
837static inline void *mas_root(struct ma_state *mas)
838{
839 return rcu_dereference_check(mas->tree->ma_root, mt_locked(mas->tree));
840}
841
842static inline void *mt_root_locked(struct maple_tree *mt)
843{
19a462f0 844 return rcu_dereference_protected(mt->ma_root, mt_write_locked(mt));
54a611b6
LH
845}
846
847/*
848 * mas_root_locked() - Get the maple tree root when holding the maple tree lock.
849 * @mas: The maple state.
850 *
851 * Return: The pointer to the root of the tree
852 */
853static inline void *mas_root_locked(struct ma_state *mas)
854{
855 return mt_root_locked(mas->tree);
856}
857
858static inline struct maple_metadata *ma_meta(struct maple_node *mn,
859 enum maple_type mt)
860{
861 switch (mt) {
862 case maple_arange_64:
863 return &mn->ma64.meta;
864 default:
865 return &mn->mr64.meta;
866 }
867}
868
869/*
870 * ma_set_meta() - Set the metadata information of a node.
871 * @mn: The maple node
872 * @mt: The maple node type
873 * @offset: The offset of the highest sub-gap in this node.
874 * @end: The end of the data in this node.
875 */
876static inline void ma_set_meta(struct maple_node *mn, enum maple_type mt,
877 unsigned char offset, unsigned char end)
878{
879 struct maple_metadata *meta = ma_meta(mn, mt);
880
881 meta->gap = offset;
882 meta->end = end;
883}
884
2e5b4921 885/*
790e1fa8
LH
886 * mt_clear_meta() - clear the metadata information of a node, if it exists
887 * @mt: The maple tree
2e5b4921 888 * @mn: The maple node
790e1fa8 889 * @type: The maple node type
2e5b4921
LH
890 * @offset: The offset of the highest sub-gap in this node.
891 * @end: The end of the data in this node.
892 */
790e1fa8
LH
893static inline void mt_clear_meta(struct maple_tree *mt, struct maple_node *mn,
894 enum maple_type type)
2e5b4921
LH
895{
896 struct maple_metadata *meta;
897 unsigned long *pivots;
898 void __rcu **slots;
899 void *next;
900
790e1fa8 901 switch (type) {
2e5b4921
LH
902 case maple_range_64:
903 pivots = mn->mr64.pivot;
904 if (unlikely(pivots[MAPLE_RANGE64_SLOTS - 2])) {
905 slots = mn->mr64.slot;
790e1fa8
LH
906 next = mt_slot_locked(mt, slots,
907 MAPLE_RANGE64_SLOTS - 1);
908 if (unlikely((mte_to_node(next) &&
909 mte_node_type(next))))
910 return; /* no metadata, could be node */
2e5b4921
LH
911 }
912 fallthrough;
913 case maple_arange_64:
790e1fa8 914 meta = ma_meta(mn, type);
2e5b4921
LH
915 break;
916 default:
917 return;
918 }
919
920 meta->gap = 0;
921 meta->end = 0;
922}
923
54a611b6
LH
924/*
925 * ma_meta_end() - Get the data end of a node from the metadata
926 * @mn: The maple node
927 * @mt: The maple node type
928 */
929static inline unsigned char ma_meta_end(struct maple_node *mn,
930 enum maple_type mt)
931{
932 struct maple_metadata *meta = ma_meta(mn, mt);
933
934 return meta->end;
935}
936
937/*
938 * ma_meta_gap() - Get the largest gap location of a node from the metadata
939 * @mn: The maple node
940 * @mt: The maple node type
941 */
942static inline unsigned char ma_meta_gap(struct maple_node *mn,
943 enum maple_type mt)
944{
54a611b6
LH
945 return mn->ma64.meta.gap;
946}
947
948/*
949 * ma_set_meta_gap() - Set the largest gap location in a nodes metadata
950 * @mn: The maple node
951 * @mn: The maple node type
952 * @offset: The location of the largest gap.
953 */
954static inline void ma_set_meta_gap(struct maple_node *mn, enum maple_type mt,
955 unsigned char offset)
956{
957
958 struct maple_metadata *meta = ma_meta(mn, mt);
959
960 meta->gap = offset;
961}
962
963/*
964 * mat_add() - Add a @dead_enode to the ma_topiary of a list of dead nodes.
965 * @mat - the ma_topiary, a linked list of dead nodes.
966 * @dead_enode - the node to be marked as dead and added to the tail of the list
967 *
968 * Add the @dead_enode to the linked list in @mat.
969 */
970static inline void mat_add(struct ma_topiary *mat,
971 struct maple_enode *dead_enode)
972{
973 mte_set_node_dead(dead_enode);
974 mte_to_mat(dead_enode)->next = NULL;
975 if (!mat->tail) {
976 mat->tail = mat->head = dead_enode;
977 return;
978 }
979
980 mte_to_mat(mat->tail)->next = dead_enode;
981 mat->tail = dead_enode;
982}
983
984static void mte_destroy_walk(struct maple_enode *, struct maple_tree *);
985static inline void mas_free(struct ma_state *mas, struct maple_enode *used);
986
987/*
988 * mas_mat_free() - Free all nodes in a dead list.
989 * @mas - the maple state
990 * @mat - the ma_topiary linked list of dead nodes to free.
991 *
992 * Free walk a dead list.
993 */
994static void mas_mat_free(struct ma_state *mas, struct ma_topiary *mat)
995{
996 struct maple_enode *next;
997
998 while (mat->head) {
999 next = mte_to_mat(mat->head)->next;
1000 mas_free(mas, mat->head);
1001 mat->head = next;
1002 }
1003}
1004
1005/*
1006 * mas_mat_destroy() - Free all nodes and subtrees in a dead list.
1007 * @mas - the maple state
1008 * @mat - the ma_topiary linked list of dead nodes to free.
1009 *
1010 * Destroy walk a dead list.
1011 */
1012static void mas_mat_destroy(struct ma_state *mas, struct ma_topiary *mat)
1013{
1014 struct maple_enode *next;
1015
1016 while (mat->head) {
1017 next = mte_to_mat(mat->head)->next;
1018 mte_destroy_walk(mat->head, mat->mtree);
1019 mat->head = next;
1020 }
1021}
1022/*
1023 * mas_descend() - Descend into the slot stored in the ma_state.
1024 * @mas - the maple state.
1025 *
1026 * Note: Not RCU safe, only use in write side or debug code.
1027 */
1028static inline void mas_descend(struct ma_state *mas)
1029{
1030 enum maple_type type;
1031 unsigned long *pivots;
1032 struct maple_node *node;
1033 void __rcu **slots;
1034
1035 node = mas_mn(mas);
1036 type = mte_node_type(mas->node);
1037 pivots = ma_pivots(node, type);
1038 slots = ma_slots(node, type);
1039
1040 if (mas->offset)
1041 mas->min = pivots[mas->offset - 1] + 1;
1042 mas->max = mas_safe_pivot(mas, pivots, mas->offset, type);
1043 mas->node = mas_slot(mas, slots, mas->offset);
1044}
1045
1046/*
1047 * mte_set_gap() - Set a maple node gap.
1048 * @mn: The encoded maple node
1049 * @gap: The offset of the gap to set
1050 * @val: The gap value
1051 */
1052static inline void mte_set_gap(const struct maple_enode *mn,
1053 unsigned char gap, unsigned long val)
1054{
1055 switch (mte_node_type(mn)) {
1056 default:
1057 break;
1058 case maple_arange_64:
1059 mte_to_node(mn)->ma64.gap[gap] = val;
1060 break;
1061 }
1062}
1063
1064/*
1065 * mas_ascend() - Walk up a level of the tree.
1066 * @mas: The maple state
1067 *
1068 * Sets the @mas->max and @mas->min to the correct values when walking up. This
1069 * may cause several levels of walking up to find the correct min and max.
1070 * May find a dead node which will cause a premature return.
1071 * Return: 1 on dead node, 0 otherwise
1072 */
1073static int mas_ascend(struct ma_state *mas)
1074{
1075 struct maple_enode *p_enode; /* parent enode. */
1076 struct maple_enode *a_enode; /* ancestor enode. */
1077 struct maple_node *a_node; /* ancestor node. */
1078 struct maple_node *p_node; /* parent node. */
1079 unsigned char a_slot;
1080 enum maple_type a_type;
1081 unsigned long min, max;
1082 unsigned long *pivots;
54a611b6
LH
1083 bool set_max = false, set_min = false;
1084
1085 a_node = mas_mn(mas);
1086 if (ma_is_root(a_node)) {
1087 mas->offset = 0;
1088 return 0;
1089 }
1090
1091 p_node = mte_parent(mas->node);
1092 if (unlikely(a_node == p_node))
1093 return 1;
633769c9 1094
afc754c6 1095 a_type = mas_parent_type(mas, mas->node);
633769c9 1096 mas->offset = mte_parent_slot(mas->node);
54a611b6
LH
1097 a_enode = mt_mk_node(p_node, a_type);
1098
1099 /* Check to make sure all parent information is still accurate */
1100 if (p_node != mte_parent(mas->node))
1101 return 1;
1102
1103 mas->node = a_enode;
54a611b6
LH
1104
1105 if (mte_is_root(a_enode)) {
1106 mas->max = ULONG_MAX;
1107 mas->min = 0;
1108 return 0;
1109 }
1110
633769c9
LH
1111 if (!mas->min)
1112 set_min = true;
1113
1114 if (mas->max == ULONG_MAX)
1115 set_max = true;
1116
54a611b6
LH
1117 min = 0;
1118 max = ULONG_MAX;
1119 do {
1120 p_enode = a_enode;
afc754c6 1121 a_type = mas_parent_type(mas, p_enode);
54a611b6
LH
1122 a_node = mte_parent(p_enode);
1123 a_slot = mte_parent_slot(p_enode);
54a611b6 1124 a_enode = mt_mk_node(a_node, a_type);
39d0bd86
LH
1125 pivots = ma_pivots(a_node, a_type);
1126
1127 if (unlikely(ma_dead_node(a_node)))
1128 return 1;
54a611b6
LH
1129
1130 if (!set_min && a_slot) {
1131 set_min = true;
1132 min = pivots[a_slot - 1] + 1;
1133 }
1134
1135 if (!set_max && a_slot < mt_pivots[a_type]) {
1136 set_max = true;
1137 max = pivots[a_slot];
1138 }
1139
1140 if (unlikely(ma_dead_node(a_node)))
1141 return 1;
1142
1143 if (unlikely(ma_is_root(a_node)))
1144 break;
1145
1146 } while (!set_min || !set_max);
1147
1148 mas->max = max;
1149 mas->min = min;
1150 return 0;
1151}
1152
1153/*
1154 * mas_pop_node() - Get a previously allocated maple node from the maple state.
1155 * @mas: The maple state
1156 *
1157 * Return: A pointer to a maple node.
1158 */
1159static inline struct maple_node *mas_pop_node(struct ma_state *mas)
1160{
1161 struct maple_alloc *ret, *node = mas->alloc;
1162 unsigned long total = mas_allocated(mas);
541e06b7 1163 unsigned int req = mas_alloc_req(mas);
54a611b6
LH
1164
1165 /* nothing or a request pending. */
541e06b7 1166 if (WARN_ON(!total))
54a611b6
LH
1167 return NULL;
1168
1169 if (total == 1) {
1170 /* single allocation in this ma_state */
1171 mas->alloc = NULL;
1172 ret = node;
1173 goto single_node;
1174 }
1175
541e06b7 1176 if (node->node_count == 1) {
54a611b6
LH
1177 /* Single allocation in this node. */
1178 mas->alloc = node->slot[0];
54a611b6
LH
1179 mas->alloc->total = node->total - 1;
1180 ret = node;
1181 goto new_head;
1182 }
54a611b6 1183 node->total--;
541e06b7
LH
1184 ret = node->slot[--node->node_count];
1185 node->slot[node->node_count] = NULL;
54a611b6
LH
1186
1187single_node:
1188new_head:
541e06b7
LH
1189 if (req) {
1190 req++;
1191 mas_set_alloc_req(mas, req);
54a611b6 1192 }
541e06b7
LH
1193
1194 memset(ret, 0, sizeof(*ret));
54a611b6
LH
1195 return (struct maple_node *)ret;
1196}
1197
1198/*
1199 * mas_push_node() - Push a node back on the maple state allocation.
1200 * @mas: The maple state
1201 * @used: The used maple node
1202 *
1203 * Stores the maple node back into @mas->alloc for reuse. Updates allocated and
1204 * requested node count as necessary.
1205 */
1206static inline void mas_push_node(struct ma_state *mas, struct maple_node *used)
1207{
1208 struct maple_alloc *reuse = (struct maple_alloc *)used;
1209 struct maple_alloc *head = mas->alloc;
1210 unsigned long count;
1211 unsigned int requested = mas_alloc_req(mas);
1212
54a611b6
LH
1213 count = mas_allocated(mas);
1214
541e06b7
LH
1215 reuse->request_count = 0;
1216 reuse->node_count = 0;
1217 if (count && (head->node_count < MAPLE_ALLOC_SLOTS)) {
1218 head->slot[head->node_count++] = reuse;
54a611b6
LH
1219 head->total++;
1220 goto done;
1221 }
1222
1223 reuse->total = 1;
1224 if ((head) && !((unsigned long)head & 0x1)) {
54a611b6 1225 reuse->slot[0] = head;
541e06b7 1226 reuse->node_count = 1;
54a611b6
LH
1227 reuse->total += head->total;
1228 }
1229
1230 mas->alloc = reuse;
1231done:
1232 if (requested > 1)
1233 mas_set_alloc_req(mas, requested - 1);
1234}
1235
1236/*
1237 * mas_alloc_nodes() - Allocate nodes into a maple state
1238 * @mas: The maple state
1239 * @gfp: The GFP Flags
1240 */
1241static inline void mas_alloc_nodes(struct ma_state *mas, gfp_t gfp)
1242{
1243 struct maple_alloc *node;
54a611b6 1244 unsigned long allocated = mas_allocated(mas);
54a611b6
LH
1245 unsigned int requested = mas_alloc_req(mas);
1246 unsigned int count;
1247 void **slots = NULL;
1248 unsigned int max_req = 0;
1249
1250 if (!requested)
1251 return;
1252
1253 mas_set_alloc_req(mas, 0);
1254 if (mas->mas_flags & MA_STATE_PREALLOC) {
1255 if (allocated)
1256 return;
1257 WARN_ON(!allocated);
1258 }
1259
541e06b7 1260 if (!allocated || mas->alloc->node_count == MAPLE_ALLOC_SLOTS) {
54a611b6
LH
1261 node = (struct maple_alloc *)mt_alloc_one(gfp);
1262 if (!node)
1263 goto nomem_one;
1264
541e06b7 1265 if (allocated) {
54a611b6 1266 node->slot[0] = mas->alloc;
541e06b7
LH
1267 node->node_count = 1;
1268 } else {
1269 node->node_count = 0;
1270 }
54a611b6 1271
54a611b6 1272 mas->alloc = node;
541e06b7 1273 node->total = ++allocated;
54a611b6
LH
1274 requested--;
1275 }
1276
1277 node = mas->alloc;
541e06b7 1278 node->request_count = 0;
54a611b6 1279 while (requested) {
1f5f12ec
PZ
1280 max_req = MAPLE_ALLOC_SLOTS - node->node_count;
1281 slots = (void **)&node->slot[node->node_count];
54a611b6
LH
1282 max_req = min(requested, max_req);
1283 count = mt_alloc_bulk(gfp, max_req, slots);
1284 if (!count)
1285 goto nomem_bulk;
1286
1f5f12ec
PZ
1287 if (node->node_count == 0) {
1288 node->slot[0]->node_count = 0;
1289 node->slot[0]->request_count = 0;
1290 }
1291
54a611b6 1292 node->node_count += count;
541e06b7 1293 allocated += count;
c61b3a2b 1294 node = node->slot[0];
54a611b6
LH
1295 requested -= count;
1296 }
541e06b7 1297 mas->alloc->total = allocated;
54a611b6
LH
1298 return;
1299
1300nomem_bulk:
1301 /* Clean up potential freed allocations on bulk failure */
1302 memset(slots, 0, max_req * sizeof(unsigned long));
1303nomem_one:
1304 mas_set_alloc_req(mas, requested);
1305 if (mas->alloc && !(((unsigned long)mas->alloc & 0x1)))
541e06b7 1306 mas->alloc->total = allocated;
54a611b6 1307 mas_set_err(mas, -ENOMEM);
54a611b6
LH
1308}
1309
1310/*
1311 * mas_free() - Free an encoded maple node
1312 * @mas: The maple state
1313 * @used: The encoded maple node to free.
1314 *
1315 * Uses rcu free if necessary, pushes @used back on the maple state allocations
1316 * otherwise.
1317 */
1318static inline void mas_free(struct ma_state *mas, struct maple_enode *used)
1319{
1320 struct maple_node *tmp = mte_to_node(used);
1321
1322 if (mt_in_rcu(mas->tree))
1323 ma_free_rcu(tmp);
1324 else
1325 mas_push_node(mas, tmp);
1326}
1327
1328/*
1329 * mas_node_count() - Check if enough nodes are allocated and request more if
1330 * there is not enough nodes.
1331 * @mas: The maple state
1332 * @count: The number of nodes needed
1333 * @gfp: the gfp flags
1334 */
1335static void mas_node_count_gfp(struct ma_state *mas, int count, gfp_t gfp)
1336{
1337 unsigned long allocated = mas_allocated(mas);
1338
1339 if (allocated < count) {
1340 mas_set_alloc_req(mas, count - allocated);
1341 mas_alloc_nodes(mas, gfp);
1342 }
1343}
1344
1345/*
1346 * mas_node_count() - Check if enough nodes are allocated and request more if
1347 * there is not enough nodes.
1348 * @mas: The maple state
1349 * @count: The number of nodes needed
1350 *
1351 * Note: Uses GFP_NOWAIT | __GFP_NOWARN for gfp flags.
1352 */
1353static void mas_node_count(struct ma_state *mas, int count)
1354{
1355 return mas_node_count_gfp(mas, count, GFP_NOWAIT | __GFP_NOWARN);
1356}
1357
1358/*
1359 * mas_start() - Sets up maple state for operations.
1360 * @mas: The maple state.
1361 *
46b34584 1362 * If mas->node == MAS_START, then set the min, max and depth to
54a611b6
LH
1363 * defaults.
1364 *
1365 * Return:
1366 * - If mas->node is an error or not MAS_START, return NULL.
1367 * - If it's an empty tree: NULL & mas->node == MAS_NONE
1368 * - If it's a single entry: The entry & mas->node == MAS_ROOT
1369 * - If it's a tree: NULL & mas->node == safe root node.
1370 */
1371static inline struct maple_enode *mas_start(struct ma_state *mas)
1372{
1373 if (likely(mas_is_start(mas))) {
1374 struct maple_enode *root;
1375
54a611b6
LH
1376 mas->min = 0;
1377 mas->max = ULONG_MAX;
54a611b6 1378
a7b92d59 1379retry:
d0411860 1380 mas->depth = 0;
54a611b6
LH
1381 root = mas_root(mas);
1382 /* Tree with nodes */
1383 if (likely(xa_is_node(root))) {
9bbba563 1384 mas->depth = 1;
54a611b6 1385 mas->node = mte_safe_root(root);
46b34584 1386 mas->offset = 0;
a7b92d59
LH
1387 if (mte_dead_node(mas->node))
1388 goto retry;
1389
54a611b6
LH
1390 return NULL;
1391 }
1392
1393 /* empty tree */
1394 if (unlikely(!root)) {
46b34584 1395 mas->node = MAS_NONE;
54a611b6
LH
1396 mas->offset = MAPLE_NODE_SLOTS;
1397 return NULL;
1398 }
1399
1400 /* Single entry tree */
1401 mas->node = MAS_ROOT;
1402 mas->offset = MAPLE_NODE_SLOTS;
1403
1404 /* Single entry tree. */
1405 if (mas->index > 0)
1406 return NULL;
1407
1408 return root;
1409 }
1410
1411 return NULL;
1412}
1413
1414/*
1415 * ma_data_end() - Find the end of the data in a node.
1416 * @node: The maple node
1417 * @type: The maple node type
1418 * @pivots: The array of pivots in the node
1419 * @max: The maximum value in the node
1420 *
1421 * Uses metadata to find the end of the data when possible.
1422 * Return: The zero indexed last slot with data (may be null).
1423 */
1424static inline unsigned char ma_data_end(struct maple_node *node,
1425 enum maple_type type,
1426 unsigned long *pivots,
1427 unsigned long max)
1428{
1429 unsigned char offset;
1430
39d0bd86
LH
1431 if (!pivots)
1432 return 0;
1433
54a611b6
LH
1434 if (type == maple_arange_64)
1435 return ma_meta_end(node, type);
1436
1437 offset = mt_pivots[type] - 1;
1438 if (likely(!pivots[offset]))
1439 return ma_meta_end(node, type);
1440
1441 if (likely(pivots[offset] == max))
1442 return offset;
1443
1444 return mt_pivots[type];
1445}
1446
1447/*
1448 * mas_data_end() - Find the end of the data (slot).
1449 * @mas: the maple state
1450 *
1451 * This method is optimized to check the metadata of a node if the node type
1452 * supports data end metadata.
1453 *
1454 * Return: The zero indexed last slot with data (may be null).
1455 */
1456static inline unsigned char mas_data_end(struct ma_state *mas)
1457{
1458 enum maple_type type;
1459 struct maple_node *node;
1460 unsigned char offset;
1461 unsigned long *pivots;
1462
1463 type = mte_node_type(mas->node);
1464 node = mas_mn(mas);
1465 if (type == maple_arange_64)
1466 return ma_meta_end(node, type);
1467
1468 pivots = ma_pivots(node, type);
39d0bd86
LH
1469 if (unlikely(ma_dead_node(node)))
1470 return 0;
1471
54a611b6
LH
1472 offset = mt_pivots[type] - 1;
1473 if (likely(!pivots[offset]))
1474 return ma_meta_end(node, type);
1475
1476 if (likely(pivots[offset] == mas->max))
1477 return offset;
1478
1479 return mt_pivots[type];
1480}
1481
1482/*
1483 * mas_leaf_max_gap() - Returns the largest gap in a leaf node
1484 * @mas - the maple state
1485 *
1486 * Return: The maximum gap in the leaf.
1487 */
1488static unsigned long mas_leaf_max_gap(struct ma_state *mas)
1489{
1490 enum maple_type mt;
1491 unsigned long pstart, gap, max_gap;
1492 struct maple_node *mn;
1493 unsigned long *pivots;
1494 void __rcu **slots;
1495 unsigned char i;
1496 unsigned char max_piv;
1497
1498 mt = mte_node_type(mas->node);
1499 mn = mas_mn(mas);
1500 slots = ma_slots(mn, mt);
1501 max_gap = 0;
1502 if (unlikely(ma_is_dense(mt))) {
1503 gap = 0;
1504 for (i = 0; i < mt_slots[mt]; i++) {
1505 if (slots[i]) {
1506 if (gap > max_gap)
1507 max_gap = gap;
1508 gap = 0;
1509 } else {
1510 gap++;
1511 }
1512 }
1513 if (gap > max_gap)
1514 max_gap = gap;
1515 return max_gap;
1516 }
1517
1518 /*
1519 * Check the first implied pivot optimizes the loop below and slot 1 may
1520 * be skipped if there is a gap in slot 0.
1521 */
1522 pivots = ma_pivots(mn, mt);
1523 if (likely(!slots[0])) {
1524 max_gap = pivots[0] - mas->min + 1;
1525 i = 2;
1526 } else {
1527 i = 1;
1528 }
1529
1530 /* reduce max_piv as the special case is checked before the loop */
1531 max_piv = ma_data_end(mn, mt, pivots, mas->max) - 1;
1532 /*
1533 * Check end implied pivot which can only be a gap on the right most
1534 * node.
1535 */
1536 if (unlikely(mas->max == ULONG_MAX) && !slots[max_piv + 1]) {
1537 gap = ULONG_MAX - pivots[max_piv];
1538 if (gap > max_gap)
1539 max_gap = gap;
1540 }
1541
1542 for (; i <= max_piv; i++) {
1543 /* data == no gap. */
1544 if (likely(slots[i]))
1545 continue;
1546
1547 pstart = pivots[i - 1];
1548 gap = pivots[i] - pstart;
1549 if (gap > max_gap)
1550 max_gap = gap;
1551
1552 /* There cannot be two gaps in a row. */
1553 i++;
1554 }
1555 return max_gap;
1556}
1557
1558/*
1559 * ma_max_gap() - Get the maximum gap in a maple node (non-leaf)
1560 * @node: The maple node
1561 * @gaps: The pointer to the gaps
1562 * @mt: The maple node type
1563 * @*off: Pointer to store the offset location of the gap.
1564 *
1565 * Uses the metadata data end to scan backwards across set gaps.
1566 *
1567 * Return: The maximum gap value
1568 */
1569static inline unsigned long
1570ma_max_gap(struct maple_node *node, unsigned long *gaps, enum maple_type mt,
1571 unsigned char *off)
1572{
1573 unsigned char offset, i;
1574 unsigned long max_gap = 0;
1575
1576 i = offset = ma_meta_end(node, mt);
1577 do {
1578 if (gaps[i] > max_gap) {
1579 max_gap = gaps[i];
1580 offset = i;
1581 }
1582 } while (i--);
1583
1584 *off = offset;
1585 return max_gap;
1586}
1587
1588/*
1589 * mas_max_gap() - find the largest gap in a non-leaf node and set the slot.
1590 * @mas: The maple state.
1591 *
54a611b6
LH
1592 * Return: The gap value.
1593 */
1594static inline unsigned long mas_max_gap(struct ma_state *mas)
1595{
1596 unsigned long *gaps;
1597 unsigned char offset;
1598 enum maple_type mt;
1599 struct maple_node *node;
1600
1601 mt = mte_node_type(mas->node);
1602 if (ma_is_leaf(mt))
1603 return mas_leaf_max_gap(mas);
1604
1605 node = mas_mn(mas);
bec1b51e 1606 MAS_BUG_ON(mas, mt != maple_arange_64);
54a611b6 1607 offset = ma_meta_gap(node, mt);
54a611b6
LH
1608 gaps = ma_gaps(node, mt);
1609 return gaps[offset];
1610}
1611
1612/*
1613 * mas_parent_gap() - Set the parent gap and any gaps above, as needed
1614 * @mas: The maple state
1615 * @offset: The gap offset in the parent to set
1616 * @new: The new gap value.
1617 *
1618 * Set the parent gap then continue to set the gap upwards, using the metadata
1619 * of the parent to see if it is necessary to check the node above.
1620 */
1621static inline void mas_parent_gap(struct ma_state *mas, unsigned char offset,
1622 unsigned long new)
1623{
1624 unsigned long meta_gap = 0;
1625 struct maple_node *pnode;
1626 struct maple_enode *penode;
1627 unsigned long *pgaps;
1628 unsigned char meta_offset;
1629 enum maple_type pmt;
1630
1631 pnode = mte_parent(mas->node);
afc754c6 1632 pmt = mas_parent_type(mas, mas->node);
54a611b6
LH
1633 penode = mt_mk_node(pnode, pmt);
1634 pgaps = ma_gaps(pnode, pmt);
1635
1636ascend:
bec1b51e 1637 MAS_BUG_ON(mas, pmt != maple_arange_64);
54a611b6 1638 meta_offset = ma_meta_gap(pnode, pmt);
d695c30a 1639 meta_gap = pgaps[meta_offset];
54a611b6
LH
1640
1641 pgaps[offset] = new;
1642
1643 if (meta_gap == new)
1644 return;
1645
1646 if (offset != meta_offset) {
1647 if (meta_gap > new)
1648 return;
1649
1650 ma_set_meta_gap(pnode, pmt, offset);
1651 } else if (new < meta_gap) {
54a611b6
LH
1652 new = ma_max_gap(pnode, pgaps, pmt, &meta_offset);
1653 ma_set_meta_gap(pnode, pmt, meta_offset);
1654 }
1655
1656 if (ma_is_root(pnode))
1657 return;
1658
1659 /* Go to the parent node. */
1660 pnode = mte_parent(penode);
afc754c6 1661 pmt = mas_parent_type(mas, penode);
54a611b6
LH
1662 pgaps = ma_gaps(pnode, pmt);
1663 offset = mte_parent_slot(penode);
1664 penode = mt_mk_node(pnode, pmt);
1665 goto ascend;
1666}
1667
1668/*
1669 * mas_update_gap() - Update a nodes gaps and propagate up if necessary.
1670 * @mas - the maple state.
1671 */
1672static inline void mas_update_gap(struct ma_state *mas)
1673{
1674 unsigned char pslot;
1675 unsigned long p_gap;
1676 unsigned long max_gap;
1677
1678 if (!mt_is_alloc(mas->tree))
1679 return;
1680
1681 if (mte_is_root(mas->node))
1682 return;
1683
1684 max_gap = mas_max_gap(mas);
1685
1686 pslot = mte_parent_slot(mas->node);
1687 p_gap = ma_gaps(mte_parent(mas->node),
afc754c6 1688 mas_parent_type(mas, mas->node))[pslot];
54a611b6
LH
1689
1690 if (p_gap != max_gap)
1691 mas_parent_gap(mas, pslot, max_gap);
1692}
1693
1694/*
1695 * mas_adopt_children() - Set the parent pointer of all nodes in @parent to
1696 * @parent with the slot encoded.
1697 * @mas - the maple state (for the tree)
1698 * @parent - the maple encoded node containing the children.
1699 */
1700static inline void mas_adopt_children(struct ma_state *mas,
1701 struct maple_enode *parent)
1702{
1703 enum maple_type type = mte_node_type(parent);
1704 struct maple_node *node = mas_mn(mas);
1705 void __rcu **slots = ma_slots(node, type);
1706 unsigned long *pivots = ma_pivots(node, type);
1707 struct maple_enode *child;
1708 unsigned char offset;
1709
1710 offset = ma_data_end(node, type, pivots, mas->max);
1711 do {
1712 child = mas_slot_locked(mas, slots, offset);
bf96715e 1713 mas_set_parent(mas, child, parent, offset);
54a611b6
LH
1714 } while (offset--);
1715}
1716
1717/*
1718 * mas_replace() - Replace a maple node in the tree with mas->node. Uses the
1719 * parent encoding to locate the maple node in the tree.
1720 * @mas - the ma_state to use for operations.
1721 * @advanced - boolean to adopt the child nodes and free the old node (false) or
1722 * leave the node (true) and handle the adoption and free elsewhere.
1723 */
1724static inline void mas_replace(struct ma_state *mas, bool advanced)
14c4b5ab 1725 __must_hold(mas->tree->ma_lock)
54a611b6
LH
1726{
1727 struct maple_node *mn = mas_mn(mas);
1728 struct maple_enode *old_enode;
1729 unsigned char offset = 0;
1730 void __rcu **slots = NULL;
1731
1732 if (ma_is_root(mn)) {
1733 old_enode = mas_root_locked(mas);
1734 } else {
1735 offset = mte_parent_slot(mas->node);
1736 slots = ma_slots(mte_parent(mas->node),
afc754c6 1737 mas_parent_type(mas, mas->node));
54a611b6
LH
1738 old_enode = mas_slot_locked(mas, slots, offset);
1739 }
1740
1741 if (!advanced && !mte_is_leaf(mas->node))
1742 mas_adopt_children(mas, mas->node);
1743
1744 if (mte_is_root(mas->node)) {
1745 mn->parent = ma_parent_ptr(
1746 ((unsigned long)mas->tree | MA_ROOT_PARENT));
1747 rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node));
1748 mas_set_height(mas);
1749 } else {
1750 rcu_assign_pointer(slots[offset], mas->node);
1751 }
1752
c13af03d
LH
1753 if (!advanced) {
1754 mte_set_node_dead(old_enode);
54a611b6 1755 mas_free(mas, old_enode);
c13af03d 1756 }
54a611b6
LH
1757}
1758
1759/*
1760 * mas_new_child() - Find the new child of a node.
1761 * @mas: the maple state
1762 * @child: the maple state to store the child.
1763 */
1764static inline bool mas_new_child(struct ma_state *mas, struct ma_state *child)
14c4b5ab 1765 __must_hold(mas->tree->ma_lock)
54a611b6
LH
1766{
1767 enum maple_type mt;
1768 unsigned char offset;
1769 unsigned char end;
1770 unsigned long *pivots;
1771 struct maple_enode *entry;
1772 struct maple_node *node;
1773 void __rcu **slots;
1774
1775 mt = mte_node_type(mas->node);
1776 node = mas_mn(mas);
1777 slots = ma_slots(node, mt);
1778 pivots = ma_pivots(node, mt);
1779 end = ma_data_end(node, mt, pivots, mas->max);
1780 for (offset = mas->offset; offset <= end; offset++) {
1781 entry = mas_slot_locked(mas, slots, offset);
1782 if (mte_parent(entry) == node) {
1783 *child = *mas;
1784 mas->offset = offset + 1;
1785 child->offset = offset;
1786 mas_descend(child);
1787 child->offset = 0;
1788 return true;
1789 }
1790 }
1791 return false;
1792}
1793
1794/*
1795 * mab_shift_right() - Shift the data in mab right. Note, does not clean out the
1796 * old data or set b_node->b_end.
1797 * @b_node: the maple_big_node
1798 * @shift: the shift count
1799 */
1800static inline void mab_shift_right(struct maple_big_node *b_node,
1801 unsigned char shift)
1802{
1803 unsigned long size = b_node->b_end * sizeof(unsigned long);
1804
1805 memmove(b_node->pivot + shift, b_node->pivot, size);
1806 memmove(b_node->slot + shift, b_node->slot, size);
1807 if (b_node->type == maple_arange_64)
1808 memmove(b_node->gap + shift, b_node->gap, size);
1809}
1810
1811/*
1812 * mab_middle_node() - Check if a middle node is needed (unlikely)
1813 * @b_node: the maple_big_node that contains the data.
1814 * @size: the amount of data in the b_node
1815 * @split: the potential split location
1816 * @slot_count: the size that can be stored in a single node being considered.
1817 *
1818 * Return: true if a middle node is required.
1819 */
1820static inline bool mab_middle_node(struct maple_big_node *b_node, int split,
1821 unsigned char slot_count)
1822{
1823 unsigned char size = b_node->b_end;
1824
1825 if (size >= 2 * slot_count)
1826 return true;
1827
1828 if (!b_node->slot[split] && (size >= 2 * slot_count - 1))
1829 return true;
1830
1831 return false;
1832}
1833
1834/*
1835 * mab_no_null_split() - ensure the split doesn't fall on a NULL
1836 * @b_node: the maple_big_node with the data
1837 * @split: the suggested split location
1838 * @slot_count: the number of slots in the node being considered.
1839 *
1840 * Return: the split location.
1841 */
1842static inline int mab_no_null_split(struct maple_big_node *b_node,
1843 unsigned char split, unsigned char slot_count)
1844{
1845 if (!b_node->slot[split]) {
1846 /*
1847 * If the split is less than the max slot && the right side will
1848 * still be sufficient, then increment the split on NULL.
1849 */
1850 if ((split < slot_count - 1) &&
1851 (b_node->b_end - split) > (mt_min_slots[b_node->type]))
1852 split++;
1853 else
1854 split--;
1855 }
1856 return split;
1857}
1858
1859/*
1860 * mab_calc_split() - Calculate the split location and if there needs to be two
1861 * splits.
1862 * @bn: The maple_big_node with the data
1863 * @mid_split: The second split, if required. 0 otherwise.
1864 *
1865 * Return: The first split location. The middle split is set in @mid_split.
1866 */
1867static inline int mab_calc_split(struct ma_state *mas,
1868 struct maple_big_node *bn, unsigned char *mid_split, unsigned long min)
1869{
1870 unsigned char b_end = bn->b_end;
1871 int split = b_end / 2; /* Assume equal split. */
1872 unsigned char slot_min, slot_count = mt_slots[bn->type];
1873
1874 /*
1875 * To support gap tracking, all NULL entries are kept together and a node cannot
1876 * end on a NULL entry, with the exception of the left-most leaf. The
1877 * limitation means that the split of a node must be checked for this condition
1878 * and be able to put more data in one direction or the other.
1879 */
1880 if (unlikely((mas->mas_flags & MA_STATE_BULK))) {
1881 *mid_split = 0;
1882 split = b_end - mt_min_slots[bn->type];
1883
1884 if (!ma_is_leaf(bn->type))
1885 return split;
1886
1887 mas->mas_flags |= MA_STATE_REBALANCE;
1888 if (!bn->slot[split])
1889 split--;
1890 return split;
1891 }
1892
1893 /*
1894 * Although extremely rare, it is possible to enter what is known as the 3-way
1895 * split scenario. The 3-way split comes about by means of a store of a range
1896 * that overwrites the end and beginning of two full nodes. The result is a set
1897 * of entries that cannot be stored in 2 nodes. Sometimes, these two nodes can
1898 * also be located in different parent nodes which are also full. This can
1899 * carry upwards all the way to the root in the worst case.
1900 */
1901 if (unlikely(mab_middle_node(bn, split, slot_count))) {
1902 split = b_end / 3;
1903 *mid_split = split * 2;
1904 } else {
1905 slot_min = mt_min_slots[bn->type];
1906
1907 *mid_split = 0;
1908 /*
1909 * Avoid having a range less than the slot count unless it
1910 * causes one node to be deficient.
1911 * NOTE: mt_min_slots is 1 based, b_end and split are zero.
1912 */
5729e06c
LH
1913 while ((split < slot_count - 1) &&
1914 ((bn->pivot[split] - min) < slot_count - 1) &&
1915 (b_end - split > slot_min))
54a611b6
LH
1916 split++;
1917 }
1918
1919 /* Avoid ending a node on a NULL entry */
1920 split = mab_no_null_split(bn, split, slot_count);
54a611b6 1921
e11cb683
VY
1922 if (unlikely(*mid_split))
1923 *mid_split = mab_no_null_split(bn, *mid_split, slot_count);
54a611b6
LH
1924
1925 return split;
1926}
1927
1928/*
1929 * mas_mab_cp() - Copy data from a maple state inclusively to a maple_big_node
1930 * and set @b_node->b_end to the next free slot.
1931 * @mas: The maple state
1932 * @mas_start: The starting slot to copy
1933 * @mas_end: The end slot to copy (inclusively)
1934 * @b_node: The maple_big_node to place the data
1935 * @mab_start: The starting location in maple_big_node to store the data.
1936 */
1937static inline void mas_mab_cp(struct ma_state *mas, unsigned char mas_start,
1938 unsigned char mas_end, struct maple_big_node *b_node,
1939 unsigned char mab_start)
1940{
1941 enum maple_type mt;
1942 struct maple_node *node;
1943 void __rcu **slots;
1944 unsigned long *pivots, *gaps;
1945 int i = mas_start, j = mab_start;
1946 unsigned char piv_end;
1947
1948 node = mas_mn(mas);
1949 mt = mte_node_type(mas->node);
1950 pivots = ma_pivots(node, mt);
1951 if (!i) {
1952 b_node->pivot[j] = pivots[i++];
1953 if (unlikely(i > mas_end))
1954 goto complete;
1955 j++;
1956 }
1957
1958 piv_end = min(mas_end, mt_pivots[mt]);
1959 for (; i < piv_end; i++, j++) {
1960 b_node->pivot[j] = pivots[i];
1961 if (unlikely(!b_node->pivot[j]))
1962 break;
1963
1964 if (unlikely(mas->max == b_node->pivot[j]))
1965 goto complete;
1966 }
1967
1968 if (likely(i <= mas_end))
1969 b_node->pivot[j] = mas_safe_pivot(mas, pivots, i, mt);
1970
1971complete:
1972 b_node->b_end = ++j;
1973 j -= mab_start;
1974 slots = ma_slots(node, mt);
1975 memcpy(b_node->slot + mab_start, slots + mas_start, sizeof(void *) * j);
1976 if (!ma_is_leaf(mt) && mt_is_alloc(mas->tree)) {
1977 gaps = ma_gaps(node, mt);
1978 memcpy(b_node->gap + mab_start, gaps + mas_start,
1979 sizeof(unsigned long) * j);
1980 }
1981}
1982
1983/*
1984 * mas_leaf_set_meta() - Set the metadata of a leaf if possible.
1985 * @mas: The maple state
1986 * @node: The maple node
1987 * @pivots: pointer to the maple node pivots
1988 * @mt: The maple type
1989 * @end: The assumed end
1990 *
1991 * Note, end may be incremented within this function but not modified at the
1992 * source. This is fine since the metadata is the last thing to be stored in a
1993 * node during a write.
1994 */
1995static inline void mas_leaf_set_meta(struct ma_state *mas,
1996 struct maple_node *node, unsigned long *pivots,
1997 enum maple_type mt, unsigned char end)
1998{
1999 /* There is no room for metadata already */
2000 if (mt_pivots[mt] <= end)
2001 return;
2002
2003 if (pivots[end] && pivots[end] < mas->max)
2004 end++;
2005
2006 if (end < mt_slots[mt] - 1)
2007 ma_set_meta(node, mt, 0, end);
2008}
2009
2010/*
2011 * mab_mas_cp() - Copy data from maple_big_node to a maple encoded node.
2012 * @b_node: the maple_big_node that has the data
2013 * @mab_start: the start location in @b_node.
2014 * @mab_end: The end location in @b_node (inclusively)
2015 * @mas: The maple state with the maple encoded node.
2016 */
2017static inline void mab_mas_cp(struct maple_big_node *b_node,
2018 unsigned char mab_start, unsigned char mab_end,
2019 struct ma_state *mas, bool new_max)
2020{
2021 int i, j = 0;
2022 enum maple_type mt = mte_node_type(mas->node);
2023 struct maple_node *node = mte_to_node(mas->node);
2024 void __rcu **slots = ma_slots(node, mt);
2025 unsigned long *pivots = ma_pivots(node, mt);
2026 unsigned long *gaps = NULL;
2027 unsigned char end;
2028
2029 if (mab_end - mab_start > mt_pivots[mt])
2030 mab_end--;
2031
2032 if (!pivots[mt_pivots[mt] - 1])
2033 slots[mt_pivots[mt]] = NULL;
2034
2035 i = mab_start;
2036 do {
2037 pivots[j++] = b_node->pivot[i++];
2038 } while (i <= mab_end && likely(b_node->pivot[i]));
2039
2040 memcpy(slots, b_node->slot + mab_start,
2041 sizeof(void *) * (i - mab_start));
2042
2043 if (new_max)
2044 mas->max = b_node->pivot[i - 1];
2045
2046 end = j - 1;
2047 if (likely(!ma_is_leaf(mt) && mt_is_alloc(mas->tree))) {
2048 unsigned long max_gap = 0;
d695c30a 2049 unsigned char offset = 0;
54a611b6
LH
2050
2051 gaps = ma_gaps(node, mt);
2052 do {
2053 gaps[--j] = b_node->gap[--i];
2054 if (gaps[j] > max_gap) {
2055 offset = j;
2056 max_gap = gaps[j];
2057 }
2058 } while (j);
2059
2060 ma_set_meta(node, mt, offset, end);
2061 } else {
2062 mas_leaf_set_meta(mas, node, pivots, mt, end);
2063 }
2064}
2065
2066/*
2067 * mas_descend_adopt() - Descend through a sub-tree and adopt children.
2068 * @mas: the maple state with the maple encoded node of the sub-tree.
2069 *
2070 * Descend through a sub-tree and adopt children who do not have the correct
2071 * parents set. Follow the parents which have the correct parents as they are
2072 * the new entries which need to be followed to find other incorrectly set
2073 * parents.
2074 */
2075static inline void mas_descend_adopt(struct ma_state *mas)
2076{
2077 struct ma_state list[3], next[3];
2078 int i, n;
2079
2080 /*
2081 * At each level there may be up to 3 correct parent pointers which indicates
2082 * the new nodes which need to be walked to find any new nodes at a lower level.
2083 */
2084
2085 for (i = 0; i < 3; i++) {
2086 list[i] = *mas;
2087 list[i].offset = 0;
2088 next[i].offset = 0;
2089 }
2090 next[0] = *mas;
2091
2092 while (!mte_is_leaf(list[0].node)) {
2093 n = 0;
2094 for (i = 0; i < 3; i++) {
2095 if (mas_is_none(&list[i]))
2096 continue;
2097
2098 if (i && list[i-1].node == list[i].node)
2099 continue;
2100
2101 while ((n < 3) && (mas_new_child(&list[i], &next[n])))
2102 n++;
2103
2104 mas_adopt_children(&list[i], list[i].node);
2105 }
2106
2107 while (n < 3)
2108 next[n++].node = MAS_NONE;
2109
2110 /* descend by setting the list to the children */
2111 for (i = 0; i < 3; i++)
2112 list[i] = next[i];
2113 }
2114}
2115
2116/*
2117 * mas_bulk_rebalance() - Rebalance the end of a tree after a bulk insert.
2118 * @mas: The maple state
2119 * @end: The maple node end
2120 * @mt: The maple node type
2121 */
2122static inline void mas_bulk_rebalance(struct ma_state *mas, unsigned char end,
2123 enum maple_type mt)
2124{
2125 if (!(mas->mas_flags & MA_STATE_BULK))
2126 return;
2127
2128 if (mte_is_root(mas->node))
2129 return;
2130
2131 if (end > mt_min_slots[mt]) {
2132 mas->mas_flags &= ~MA_STATE_REBALANCE;
2133 return;
2134 }
2135}
2136
2137/*
2138 * mas_store_b_node() - Store an @entry into the b_node while also copying the
2139 * data from a maple encoded node.
2140 * @wr_mas: the maple write state
2141 * @b_node: the maple_big_node to fill with data
2142 * @offset_end: the offset to end copying
2143 *
2144 * Return: The actual end of the data stored in @b_node
2145 */
44081c77 2146static noinline_for_kasan void mas_store_b_node(struct ma_wr_state *wr_mas,
54a611b6
LH
2147 struct maple_big_node *b_node, unsigned char offset_end)
2148{
2149 unsigned char slot;
2150 unsigned char b_end;
2151 /* Possible underflow of piv will wrap back to 0 before use. */
2152 unsigned long piv;
2153 struct ma_state *mas = wr_mas->mas;
2154
2155 b_node->type = wr_mas->type;
2156 b_end = 0;
2157 slot = mas->offset;
2158 if (slot) {
2159 /* Copy start data up to insert. */
2160 mas_mab_cp(mas, 0, slot - 1, b_node, 0);
2161 b_end = b_node->b_end;
2162 piv = b_node->pivot[b_end - 1];
2163 } else
2164 piv = mas->min - 1;
2165
2166 if (piv + 1 < mas->index) {
2167 /* Handle range starting after old range */
2168 b_node->slot[b_end] = wr_mas->content;
2169 if (!wr_mas->content)
2170 b_node->gap[b_end] = mas->index - 1 - piv;
2171 b_node->pivot[b_end++] = mas->index - 1;
2172 }
2173
2174 /* Store the new entry. */
2175 mas->offset = b_end;
2176 b_node->slot[b_end] = wr_mas->entry;
2177 b_node->pivot[b_end] = mas->last;
2178
2179 /* Appended. */
2180 if (mas->last >= mas->max)
2181 goto b_end;
2182
2183 /* Handle new range ending before old range ends */
29b2681f 2184 piv = mas_safe_pivot(mas, wr_mas->pivots, offset_end, wr_mas->type);
54a611b6
LH
2185 if (piv > mas->last) {
2186 if (piv == ULONG_MAX)
2187 mas_bulk_rebalance(mas, b_node->b_end, wr_mas->type);
2188
2189 if (offset_end != slot)
2190 wr_mas->content = mas_slot_locked(mas, wr_mas->slots,
2191 offset_end);
2192
2193 b_node->slot[++b_end] = wr_mas->content;
2194 if (!wr_mas->content)
2195 b_node->gap[b_end] = piv - mas->last + 1;
2196 b_node->pivot[b_end] = piv;
2197 }
2198
2199 slot = offset_end + 1;
2200 if (slot > wr_mas->node_end)
2201 goto b_end;
2202
2203 /* Copy end data to the end of the node. */
2204 mas_mab_cp(mas, slot, wr_mas->node_end + 1, b_node, ++b_end);
2205 b_node->b_end--;
2206 return;
2207
2208b_end:
2209 b_node->b_end = b_end;
2210}
2211
2212/*
2213 * mas_prev_sibling() - Find the previous node with the same parent.
2214 * @mas: the maple state
2215 *
2216 * Return: True if there is a previous sibling, false otherwise.
2217 */
2218static inline bool mas_prev_sibling(struct ma_state *mas)
2219{
2220 unsigned int p_slot = mte_parent_slot(mas->node);
2221
2222 if (mte_is_root(mas->node))
2223 return false;
2224
2225 if (!p_slot)
2226 return false;
2227
2228 mas_ascend(mas);
2229 mas->offset = p_slot - 1;
2230 mas_descend(mas);
2231 return true;
2232}
2233
2234/*
2235 * mas_next_sibling() - Find the next node with the same parent.
2236 * @mas: the maple state
2237 *
2238 * Return: true if there is a next sibling, false otherwise.
2239 */
2240static inline bool mas_next_sibling(struct ma_state *mas)
2241{
2242 MA_STATE(parent, mas->tree, mas->index, mas->last);
2243
2244 if (mte_is_root(mas->node))
2245 return false;
2246
2247 parent = *mas;
2248 mas_ascend(&parent);
2249 parent.offset = mte_parent_slot(mas->node) + 1;
2250 if (parent.offset > mas_data_end(&parent))
2251 return false;
2252
2253 *mas = parent;
2254 mas_descend(mas);
2255 return true;
2256}
2257
2258/*
2259 * mte_node_or_node() - Return the encoded node or MAS_NONE.
2260 * @enode: The encoded maple node.
2261 *
2262 * Shorthand to avoid setting %NULLs in the tree or maple_subtree_state.
2263 *
2264 * Return: @enode or MAS_NONE
2265 */
2266static inline struct maple_enode *mte_node_or_none(struct maple_enode *enode)
2267{
2268 if (enode)
2269 return enode;
2270
2271 return ma_enode_ptr(MAS_NONE);
2272}
2273
2274/*
2275 * mas_wr_node_walk() - Find the correct offset for the index in the @mas.
2276 * @wr_mas: The maple write state
2277 *
2278 * Uses mas_slot_locked() and does not need to worry about dead nodes.
2279 */
2280static inline void mas_wr_node_walk(struct ma_wr_state *wr_mas)
2281{
2282 struct ma_state *mas = wr_mas->mas;
97f7e094 2283 unsigned char count, offset;
54a611b6
LH
2284
2285 if (unlikely(ma_is_dense(wr_mas->type))) {
2286 wr_mas->r_max = wr_mas->r_min = mas->index;
2287 mas->offset = mas->index = mas->min;
2288 return;
2289 }
2290
2291 wr_mas->node = mas_mn(wr_mas->mas);
2292 wr_mas->pivots = ma_pivots(wr_mas->node, wr_mas->type);
2293 count = wr_mas->node_end = ma_data_end(wr_mas->node, wr_mas->type,
2294 wr_mas->pivots, mas->max);
2295 offset = mas->offset;
54a611b6 2296
97f7e094
PZ
2297 while (offset < count && mas->index > wr_mas->pivots[offset])
2298 offset++;
54a611b6 2299
97f7e094
PZ
2300 wr_mas->r_max = offset < count ? wr_mas->pivots[offset] : mas->max;
2301 wr_mas->r_min = mas_safe_min(mas, wr_mas->pivots, offset);
54a611b6
LH
2302 wr_mas->offset_end = mas->offset = offset;
2303}
2304
2305/*
2306 * mas_topiary_range() - Add a range of slots to the topiary.
2307 * @mas: The maple state
2308 * @destroy: The topiary to add the slots (usually destroy)
2309 * @start: The starting slot inclusively
2310 * @end: The end slot inclusively
2311 */
2312static inline void mas_topiary_range(struct ma_state *mas,
2313 struct ma_topiary *destroy, unsigned char start, unsigned char end)
2314{
2315 void __rcu **slots;
2316 unsigned char offset;
2317
4bbd1748
LH
2318 MAS_BUG_ON(mas, mte_is_leaf(mas->node));
2319
54a611b6
LH
2320 slots = ma_slots(mas_mn(mas), mte_node_type(mas->node));
2321 for (offset = start; offset <= end; offset++) {
2322 struct maple_enode *enode = mas_slot_locked(mas, slots, offset);
2323
2324 if (mte_dead_node(enode))
2325 continue;
2326
2327 mat_add(destroy, enode);
2328 }
2329}
2330
2331/*
2332 * mast_topiary() - Add the portions of the tree to the removal list; either to
2333 * be freed or discarded (destroy walk).
2334 * @mast: The maple_subtree_state.
2335 */
2336static inline void mast_topiary(struct maple_subtree_state *mast)
2337{
2338 MA_WR_STATE(wr_mas, mast->orig_l, NULL);
2339 unsigned char r_start, r_end;
2340 unsigned char l_start, l_end;
2341 void __rcu **l_slots, **r_slots;
2342
2343 wr_mas.type = mte_node_type(mast->orig_l->node);
2344 mast->orig_l->index = mast->orig_l->last;
2345 mas_wr_node_walk(&wr_mas);
2346 l_start = mast->orig_l->offset + 1;
2347 l_end = mas_data_end(mast->orig_l);
2348 r_start = 0;
2349 r_end = mast->orig_r->offset;
2350
2351 if (r_end)
2352 r_end--;
2353
2354 l_slots = ma_slots(mas_mn(mast->orig_l),
2355 mte_node_type(mast->orig_l->node));
2356
2357 r_slots = ma_slots(mas_mn(mast->orig_r),
2358 mte_node_type(mast->orig_r->node));
2359
2360 if ((l_start < l_end) &&
2361 mte_dead_node(mas_slot_locked(mast->orig_l, l_slots, l_start))) {
2362 l_start++;
2363 }
2364
2365 if (mte_dead_node(mas_slot_locked(mast->orig_r, r_slots, r_end))) {
2366 if (r_end)
2367 r_end--;
2368 }
2369
2370 if ((l_start > r_end) && (mast->orig_l->node == mast->orig_r->node))
2371 return;
2372
2373 /* At the node where left and right sides meet, add the parts between */
2374 if (mast->orig_l->node == mast->orig_r->node) {
2375 return mas_topiary_range(mast->orig_l, mast->destroy,
2376 l_start, r_end);
2377 }
2378
2379 /* mast->orig_r is different and consumed. */
2380 if (mte_is_leaf(mast->orig_r->node))
2381 return;
2382
2383 if (mte_dead_node(mas_slot_locked(mast->orig_l, l_slots, l_end)))
2384 l_end--;
2385
2386
2387 if (l_start <= l_end)
2388 mas_topiary_range(mast->orig_l, mast->destroy, l_start, l_end);
2389
2390 if (mte_dead_node(mas_slot_locked(mast->orig_r, r_slots, r_start)))
2391 r_start++;
2392
2393 if (r_start <= r_end)
2394 mas_topiary_range(mast->orig_r, mast->destroy, 0, r_end);
2395}
2396
2397/*
2398 * mast_rebalance_next() - Rebalance against the next node
2399 * @mast: The maple subtree state
2400 * @old_r: The encoded maple node to the right (next node).
2401 */
2402static inline void mast_rebalance_next(struct maple_subtree_state *mast)
2403{
2404 unsigned char b_end = mast->bn->b_end;
2405
2406 mas_mab_cp(mast->orig_r, 0, mt_slot_count(mast->orig_r->node),
2407 mast->bn, b_end);
2408 mast->orig_r->last = mast->orig_r->max;
2409}
2410
2411/*
2412 * mast_rebalance_prev() - Rebalance against the previous node
2413 * @mast: The maple subtree state
2414 * @old_l: The encoded maple node to the left (previous node)
2415 */
2416static inline void mast_rebalance_prev(struct maple_subtree_state *mast)
2417{
2418 unsigned char end = mas_data_end(mast->orig_l) + 1;
2419 unsigned char b_end = mast->bn->b_end;
2420
2421 mab_shift_right(mast->bn, end);
2422 mas_mab_cp(mast->orig_l, 0, end - 1, mast->bn, 0);
2423 mast->l->min = mast->orig_l->min;
2424 mast->orig_l->index = mast->orig_l->min;
2425 mast->bn->b_end = end + b_end;
2426 mast->l->offset += end;
2427}
2428
2429/*
2430 * mast_spanning_rebalance() - Rebalance nodes with nearest neighbour favouring
2431 * the node to the right. Checking the nodes to the right then the left at each
2432 * level upwards until root is reached. Free and destroy as needed.
2433 * Data is copied into the @mast->bn.
2434 * @mast: The maple_subtree_state.
2435 */
2436static inline
2437bool mast_spanning_rebalance(struct maple_subtree_state *mast)
2438{
2439 struct ma_state r_tmp = *mast->orig_r;
2440 struct ma_state l_tmp = *mast->orig_l;
2441 struct maple_enode *ancestor = NULL;
2442 unsigned char start, end;
2443 unsigned char depth = 0;
2444
2445 r_tmp = *mast->orig_r;
2446 l_tmp = *mast->orig_l;
2447 do {
2448 mas_ascend(mast->orig_r);
2449 mas_ascend(mast->orig_l);
2450 depth++;
2451 if (!ancestor &&
2452 (mast->orig_r->node == mast->orig_l->node)) {
2453 ancestor = mast->orig_r->node;
2454 end = mast->orig_r->offset - 1;
2455 start = mast->orig_l->offset + 1;
2456 }
2457
2458 if (mast->orig_r->offset < mas_data_end(mast->orig_r)) {
2459 if (!ancestor) {
2460 ancestor = mast->orig_r->node;
2461 start = 0;
2462 }
2463
2464 mast->orig_r->offset++;
2465 do {
2466 mas_descend(mast->orig_r);
2467 mast->orig_r->offset = 0;
2468 depth--;
2469 } while (depth);
2470
2471 mast_rebalance_next(mast);
2472 do {
2473 unsigned char l_off = 0;
2474 struct maple_enode *child = r_tmp.node;
2475
2476 mas_ascend(&r_tmp);
2477 if (ancestor == r_tmp.node)
2478 l_off = start;
2479
2480 if (r_tmp.offset)
2481 r_tmp.offset--;
2482
2483 if (l_off < r_tmp.offset)
2484 mas_topiary_range(&r_tmp, mast->destroy,
2485 l_off, r_tmp.offset);
2486
2487 if (l_tmp.node != child)
2488 mat_add(mast->free, child);
2489
2490 } while (r_tmp.node != ancestor);
2491
2492 *mast->orig_l = l_tmp;
2493 return true;
2494
2495 } else if (mast->orig_l->offset != 0) {
2496 if (!ancestor) {
2497 ancestor = mast->orig_l->node;
2498 end = mas_data_end(mast->orig_l);
2499 }
2500
2501 mast->orig_l->offset--;
2502 do {
2503 mas_descend(mast->orig_l);
2504 mast->orig_l->offset =
2505 mas_data_end(mast->orig_l);
2506 depth--;
2507 } while (depth);
2508
2509 mast_rebalance_prev(mast);
2510 do {
2511 unsigned char r_off;
2512 struct maple_enode *child = l_tmp.node;
2513
2514 mas_ascend(&l_tmp);
2515 if (ancestor == l_tmp.node)
2516 r_off = end;
2517 else
2518 r_off = mas_data_end(&l_tmp);
2519
2520 if (l_tmp.offset < r_off)
2521 l_tmp.offset++;
2522
2523 if (l_tmp.offset < r_off)
2524 mas_topiary_range(&l_tmp, mast->destroy,
2525 l_tmp.offset, r_off);
2526
2527 if (r_tmp.node != child)
2528 mat_add(mast->free, child);
2529
2530 } while (l_tmp.node != ancestor);
2531
2532 *mast->orig_r = r_tmp;
2533 return true;
2534 }
2535 } while (!mte_is_root(mast->orig_r->node));
2536
2537 *mast->orig_r = r_tmp;
2538 *mast->orig_l = l_tmp;
2539 return false;
2540}
2541
2542/*
2543 * mast_ascend_free() - Add current original maple state nodes to the free list
2544 * and ascend.
2545 * @mast: the maple subtree state.
2546 *
2547 * Ascend the original left and right sides and add the previous nodes to the
2548 * free list. Set the slots to point to the correct location in the new nodes.
2549 */
2550static inline void
2551mast_ascend_free(struct maple_subtree_state *mast)
2552{
2553 MA_WR_STATE(wr_mas, mast->orig_r, NULL);
2554 struct maple_enode *left = mast->orig_l->node;
2555 struct maple_enode *right = mast->orig_r->node;
2556
2557 mas_ascend(mast->orig_l);
2558 mas_ascend(mast->orig_r);
2559 mat_add(mast->free, left);
2560
2561 if (left != right)
2562 mat_add(mast->free, right);
2563
2564 mast->orig_r->offset = 0;
2565 mast->orig_r->index = mast->r->max;
2566 /* last should be larger than or equal to index */
2567 if (mast->orig_r->last < mast->orig_r->index)
2568 mast->orig_r->last = mast->orig_r->index;
2569 /*
2570 * The node may not contain the value so set slot to ensure all
2571 * of the nodes contents are freed or destroyed.
2572 */
2573 wr_mas.type = mte_node_type(mast->orig_r->node);
2574 mas_wr_node_walk(&wr_mas);
2575 /* Set up the left side of things */
2576 mast->orig_l->offset = 0;
2577 mast->orig_l->index = mast->l->min;
2578 wr_mas.mas = mast->orig_l;
2579 wr_mas.type = mte_node_type(mast->orig_l->node);
2580 mas_wr_node_walk(&wr_mas);
2581
2582 mast->bn->type = wr_mas.type;
2583}
2584
2585/*
2586 * mas_new_ma_node() - Create and return a new maple node. Helper function.
2587 * @mas: the maple state with the allocations.
2588 * @b_node: the maple_big_node with the type encoding.
2589 *
2590 * Use the node type from the maple_big_node to allocate a new node from the
2591 * ma_state. This function exists mainly for code readability.
2592 *
2593 * Return: A new maple encoded node
2594 */
2595static inline struct maple_enode
2596*mas_new_ma_node(struct ma_state *mas, struct maple_big_node *b_node)
2597{
2598 return mt_mk_node(ma_mnode_ptr(mas_pop_node(mas)), b_node->type);
2599}
2600
2601/*
2602 * mas_mab_to_node() - Set up right and middle nodes
2603 *
2604 * @mas: the maple state that contains the allocations.
2605 * @b_node: the node which contains the data.
2606 * @left: The pointer which will have the left node
2607 * @right: The pointer which may have the right node
2608 * @middle: the pointer which may have the middle node (rare)
2609 * @mid_split: the split location for the middle node
2610 *
2611 * Return: the split of left.
2612 */
2613static inline unsigned char mas_mab_to_node(struct ma_state *mas,
2614 struct maple_big_node *b_node, struct maple_enode **left,
2615 struct maple_enode **right, struct maple_enode **middle,
2616 unsigned char *mid_split, unsigned long min)
2617{
2618 unsigned char split = 0;
2619 unsigned char slot_count = mt_slots[b_node->type];
2620
2621 *left = mas_new_ma_node(mas, b_node);
2622 *right = NULL;
2623 *middle = NULL;
2624 *mid_split = 0;
2625
2626 if (b_node->b_end < slot_count) {
2627 split = b_node->b_end;
2628 } else {
2629 split = mab_calc_split(mas, b_node, mid_split, min);
2630 *right = mas_new_ma_node(mas, b_node);
2631 }
2632
2633 if (*mid_split)
2634 *middle = mas_new_ma_node(mas, b_node);
2635
2636 return split;
2637
2638}
2639
2640/*
2641 * mab_set_b_end() - Add entry to b_node at b_node->b_end and increment the end
2642 * pointer.
2643 * @b_node - the big node to add the entry
2644 * @mas - the maple state to get the pivot (mas->max)
2645 * @entry - the entry to add, if NULL nothing happens.
2646 */
2647static inline void mab_set_b_end(struct maple_big_node *b_node,
2648 struct ma_state *mas,
2649 void *entry)
2650{
2651 if (!entry)
2652 return;
2653
2654 b_node->slot[b_node->b_end] = entry;
2655 if (mt_is_alloc(mas->tree))
2656 b_node->gap[b_node->b_end] = mas_max_gap(mas);
2657 b_node->pivot[b_node->b_end++] = mas->max;
2658}
2659
2660/*
2661 * mas_set_split_parent() - combine_then_separate helper function. Sets the parent
2662 * of @mas->node to either @left or @right, depending on @slot and @split
2663 *
2664 * @mas - the maple state with the node that needs a parent
2665 * @left - possible parent 1
2666 * @right - possible parent 2
2667 * @slot - the slot the mas->node was placed
2668 * @split - the split location between @left and @right
2669 */
2670static inline void mas_set_split_parent(struct ma_state *mas,
2671 struct maple_enode *left,
2672 struct maple_enode *right,
2673 unsigned char *slot, unsigned char split)
2674{
2675 if (mas_is_none(mas))
2676 return;
2677
2678 if ((*slot) <= split)
bf96715e 2679 mas_set_parent(mas, mas->node, left, *slot);
54a611b6 2680 else if (right)
bf96715e 2681 mas_set_parent(mas, mas->node, right, (*slot) - split - 1);
54a611b6
LH
2682
2683 (*slot)++;
2684}
2685
2686/*
2687 * mte_mid_split_check() - Check if the next node passes the mid-split
2688 * @**l: Pointer to left encoded maple node.
2689 * @**m: Pointer to middle encoded maple node.
2690 * @**r: Pointer to right encoded maple node.
2691 * @slot: The offset
2692 * @*split: The split location.
2693 * @mid_split: The middle split.
2694 */
2695static inline void mte_mid_split_check(struct maple_enode **l,
2696 struct maple_enode **r,
2697 struct maple_enode *right,
2698 unsigned char slot,
2699 unsigned char *split,
2700 unsigned char mid_split)
2701{
2702 if (*r == right)
2703 return;
2704
2705 if (slot < mid_split)
2706 return;
2707
2708 *l = *r;
2709 *r = right;
2710 *split = mid_split;
2711}
2712
2713/*
2714 * mast_set_split_parents() - Helper function to set three nodes parents. Slot
2715 * is taken from @mast->l.
2716 * @mast - the maple subtree state
2717 * @left - the left node
2718 * @right - the right node
2719 * @split - the split location.
2720 */
2721static inline void mast_set_split_parents(struct maple_subtree_state *mast,
2722 struct maple_enode *left,
2723 struct maple_enode *middle,
2724 struct maple_enode *right,
2725 unsigned char split,
2726 unsigned char mid_split)
2727{
2728 unsigned char slot;
2729 struct maple_enode *l = left;
2730 struct maple_enode *r = right;
2731
2732 if (mas_is_none(mast->l))
2733 return;
2734
2735 if (middle)
2736 r = middle;
2737
2738 slot = mast->l->offset;
2739
2740 mte_mid_split_check(&l, &r, right, slot, &split, mid_split);
2741 mas_set_split_parent(mast->l, l, r, &slot, split);
2742
2743 mte_mid_split_check(&l, &r, right, slot, &split, mid_split);
2744 mas_set_split_parent(mast->m, l, r, &slot, split);
2745
2746 mte_mid_split_check(&l, &r, right, slot, &split, mid_split);
2747 mas_set_split_parent(mast->r, l, r, &slot, split);
2748}
2749
2750/*
2751 * mas_wmb_replace() - Write memory barrier and replace
2752 * @mas: The maple state
2753 * @free: the maple topiary list of nodes to free
2754 * @destroy: The maple topiary list of nodes to destroy (walk and free)
2755 *
2756 * Updates gap as necessary.
2757 */
2758static inline void mas_wmb_replace(struct ma_state *mas,
2759 struct ma_topiary *free,
2760 struct ma_topiary *destroy)
2761{
2762 /* All nodes must see old data as dead prior to replacing that data */
2763 smp_wmb(); /* Needed for RCU */
2764
2765 /* Insert the new data in the tree */
2766 mas_replace(mas, true);
2767
2768 if (!mte_is_leaf(mas->node))
2769 mas_descend_adopt(mas);
2770
2771 mas_mat_free(mas, free);
2772
2773 if (destroy)
2774 mas_mat_destroy(mas, destroy);
2775
2776 if (mte_is_leaf(mas->node))
2777 return;
2778
2779 mas_update_gap(mas);
2780}
2781
2782/*
2783 * mast_new_root() - Set a new tree root during subtree creation
2784 * @mast: The maple subtree state
2785 * @mas: The maple state
2786 */
2787static inline void mast_new_root(struct maple_subtree_state *mast,
2788 struct ma_state *mas)
2789{
2790 mas_mn(mast->l)->parent =
2791 ma_parent_ptr(((unsigned long)mas->tree | MA_ROOT_PARENT));
2792 if (!mte_dead_node(mast->orig_l->node) &&
2793 !mte_is_root(mast->orig_l->node)) {
2794 do {
2795 mast_ascend_free(mast);
2796 mast_topiary(mast);
2797 } while (!mte_is_root(mast->orig_l->node));
2798 }
2799 if ((mast->orig_l->node != mas->node) &&
2800 (mast->l->depth > mas_mt_height(mas))) {
2801 mat_add(mast->free, mas->node);
2802 }
2803}
2804
2805/*
2806 * mast_cp_to_nodes() - Copy data out to nodes.
2807 * @mast: The maple subtree state
2808 * @left: The left encoded maple node
2809 * @middle: The middle encoded maple node
2810 * @right: The right encoded maple node
2811 * @split: The location to split between left and (middle ? middle : right)
2812 * @mid_split: The location to split between middle and right.
2813 */
2814static inline void mast_cp_to_nodes(struct maple_subtree_state *mast,
2815 struct maple_enode *left, struct maple_enode *middle,
2816 struct maple_enode *right, unsigned char split, unsigned char mid_split)
2817{
2818 bool new_lmax = true;
2819
2820 mast->l->node = mte_node_or_none(left);
2821 mast->m->node = mte_node_or_none(middle);
2822 mast->r->node = mte_node_or_none(right);
2823
2824 mast->l->min = mast->orig_l->min;
2825 if (split == mast->bn->b_end) {
2826 mast->l->max = mast->orig_r->max;
2827 new_lmax = false;
2828 }
2829
2830 mab_mas_cp(mast->bn, 0, split, mast->l, new_lmax);
2831
2832 if (middle) {
2833 mab_mas_cp(mast->bn, 1 + split, mid_split, mast->m, true);
2834 mast->m->min = mast->bn->pivot[split] + 1;
2835 split = mid_split;
2836 }
2837
2838 mast->r->max = mast->orig_r->max;
2839 if (right) {
2840 mab_mas_cp(mast->bn, 1 + split, mast->bn->b_end, mast->r, false);
2841 mast->r->min = mast->bn->pivot[split] + 1;
2842 }
2843}
2844
2845/*
2846 * mast_combine_cp_left - Copy in the original left side of the tree into the
2847 * combined data set in the maple subtree state big node.
2848 * @mast: The maple subtree state
2849 */
2850static inline void mast_combine_cp_left(struct maple_subtree_state *mast)
2851{
2852 unsigned char l_slot = mast->orig_l->offset;
2853
2854 if (!l_slot)
2855 return;
2856
2857 mas_mab_cp(mast->orig_l, 0, l_slot - 1, mast->bn, 0);
2858}
2859
2860/*
2861 * mast_combine_cp_right: Copy in the original right side of the tree into the
2862 * combined data set in the maple subtree state big node.
2863 * @mast: The maple subtree state
2864 */
2865static inline void mast_combine_cp_right(struct maple_subtree_state *mast)
2866{
2867 if (mast->bn->pivot[mast->bn->b_end - 1] >= mast->orig_r->max)
2868 return;
2869
2870 mas_mab_cp(mast->orig_r, mast->orig_r->offset + 1,
2871 mt_slot_count(mast->orig_r->node), mast->bn,
2872 mast->bn->b_end);
2873 mast->orig_r->last = mast->orig_r->max;
2874}
2875
2876/*
2877 * mast_sufficient: Check if the maple subtree state has enough data in the big
2878 * node to create at least one sufficient node
2879 * @mast: the maple subtree state
2880 */
2881static inline bool mast_sufficient(struct maple_subtree_state *mast)
2882{
2883 if (mast->bn->b_end > mt_min_slot_count(mast->orig_l->node))
2884 return true;
2885
2886 return false;
2887}
2888
2889/*
2890 * mast_overflow: Check if there is too much data in the subtree state for a
2891 * single node.
2892 * @mast: The maple subtree state
2893 */
2894static inline bool mast_overflow(struct maple_subtree_state *mast)
2895{
2896 if (mast->bn->b_end >= mt_slot_count(mast->orig_l->node))
2897 return true;
2898
2899 return false;
2900}
2901
2902static inline void *mtree_range_walk(struct ma_state *mas)
2903{
2904 unsigned long *pivots;
2905 unsigned char offset;
2906 struct maple_node *node;
2907 struct maple_enode *next, *last;
2908 enum maple_type type;
2909 void __rcu **slots;
2910 unsigned char end;
2911 unsigned long max, min;
2912 unsigned long prev_max, prev_min;
2913
1b9c9183
LB
2914 next = mas->node;
2915 min = mas->min;
54a611b6
LH
2916 max = mas->max;
2917 do {
2918 offset = 0;
2919 last = next;
2920 node = mte_to_node(next);
2921 type = mte_node_type(next);
2922 pivots = ma_pivots(node, type);
2923 end = ma_data_end(node, type, pivots, max);
2924 if (unlikely(ma_dead_node(node)))
2925 goto dead_node;
2926
2927 if (pivots[offset] >= mas->index) {
2928 prev_max = max;
2929 prev_min = min;
2930 max = pivots[offset];
2931 goto next;
2932 }
2933
2934 do {
2935 offset++;
2936 } while ((offset < end) && (pivots[offset] < mas->index));
2937
2938 prev_min = min;
2939 min = pivots[offset - 1] + 1;
2940 prev_max = max;
2941 if (likely(offset < end && pivots[offset]))
2942 max = pivots[offset];
2943
2944next:
2945 slots = ma_slots(node, type);
2946 next = mt_slot(mas->tree, slots, offset);
2947 if (unlikely(ma_dead_node(node)))
2948 goto dead_node;
2949 } while (!ma_is_leaf(type));
2950
2951 mas->offset = offset;
2952 mas->index = min;
2953 mas->last = max;
2954 mas->min = prev_min;
2955 mas->max = prev_max;
2956 mas->node = last;
831978e3 2957 return (void *)next;
54a611b6
LH
2958
2959dead_node:
2960 mas_reset(mas);
2961 return NULL;
2962}
2963
2964/*
2965 * mas_spanning_rebalance() - Rebalance across two nodes which may not be peers.
2966 * @mas: The starting maple state
2967 * @mast: The maple_subtree_state, keeps track of 4 maple states.
2968 * @count: The estimated count of iterations needed.
2969 *
2970 * Follow the tree upwards from @l_mas and @r_mas for @count, or until the root
2971 * is hit. First @b_node is split into two entries which are inserted into the
2972 * next iteration of the loop. @b_node is returned populated with the final
2973 * iteration. @mas is used to obtain allocations. orig_l_mas keeps track of the
2974 * nodes that will remain active by using orig_l_mas->index and orig_l_mas->last
2975 * to account of what has been copied into the new sub-tree. The update of
2976 * orig_l_mas->last is used in mas_consume to find the slots that will need to
2977 * be either freed or destroyed. orig_l_mas->depth keeps track of the height of
2978 * the new sub-tree in case the sub-tree becomes the full tree.
2979 *
2980 * Return: the number of elements in b_node during the last loop.
2981 */
2982static int mas_spanning_rebalance(struct ma_state *mas,
2983 struct maple_subtree_state *mast, unsigned char count)
2984{
2985 unsigned char split, mid_split;
2986 unsigned char slot = 0;
2987 struct maple_enode *left = NULL, *middle = NULL, *right = NULL;
2988
2989 MA_STATE(l_mas, mas->tree, mas->index, mas->index);
2990 MA_STATE(r_mas, mas->tree, mas->index, mas->last);
2991 MA_STATE(m_mas, mas->tree, mas->index, mas->index);
2992 MA_TOPIARY(free, mas->tree);
2993 MA_TOPIARY(destroy, mas->tree);
2994
2995 /*
2996 * The tree needs to be rebalanced and leaves need to be kept at the same level.
2997 * Rebalancing is done by use of the ``struct maple_topiary``.
2998 */
2999 mast->l = &l_mas;
3000 mast->m = &m_mas;
3001 mast->r = &r_mas;
3002 mast->free = &free;
3003 mast->destroy = &destroy;
3004 l_mas.node = r_mas.node = m_mas.node = MAS_NONE;
0abb964a
LH
3005
3006 /* Check if this is not root and has sufficient data. */
3007 if (((mast->orig_l->min != 0) || (mast->orig_r->max != ULONG_MAX)) &&
54a611b6
LH
3008 unlikely(mast->bn->b_end <= mt_min_slots[mast->bn->type]))
3009 mast_spanning_rebalance(mast);
3010
3011 mast->orig_l->depth = 0;
3012
3013 /*
3014 * Each level of the tree is examined and balanced, pushing data to the left or
3015 * right, or rebalancing against left or right nodes is employed to avoid
3016 * rippling up the tree to limit the amount of churn. Once a new sub-section of
3017 * the tree is created, there may be a mix of new and old nodes. The old nodes
3018 * will have the incorrect parent pointers and currently be in two trees: the
3019 * original tree and the partially new tree. To remedy the parent pointers in
3020 * the old tree, the new data is swapped into the active tree and a walk down
3021 * the tree is performed and the parent pointers are updated.
3022 * See mas_descend_adopt() for more information..
3023 */
3024 while (count--) {
3025 mast->bn->b_end--;
3026 mast->bn->type = mte_node_type(mast->orig_l->node);
3027 split = mas_mab_to_node(mas, mast->bn, &left, &right, &middle,
3028 &mid_split, mast->orig_l->min);
3029 mast_set_split_parents(mast, left, middle, right, split,
3030 mid_split);
3031 mast_cp_to_nodes(mast, left, middle, right, split, mid_split);
3032
3033 /*
3034 * Copy data from next level in the tree to mast->bn from next
3035 * iteration
3036 */
3037 memset(mast->bn, 0, sizeof(struct maple_big_node));
3038 mast->bn->type = mte_node_type(left);
3039 mast->orig_l->depth++;
3040
3041 /* Root already stored in l->node. */
3042 if (mas_is_root_limits(mast->l))
3043 goto new_root;
3044
3045 mast_ascend_free(mast);
3046 mast_combine_cp_left(mast);
3047 l_mas.offset = mast->bn->b_end;
3048 mab_set_b_end(mast->bn, &l_mas, left);
3049 mab_set_b_end(mast->bn, &m_mas, middle);
3050 mab_set_b_end(mast->bn, &r_mas, right);
3051
3052 /* Copy anything necessary out of the right node. */
3053 mast_combine_cp_right(mast);
3054 mast_topiary(mast);
3055 mast->orig_l->last = mast->orig_l->max;
3056
3057 if (mast_sufficient(mast))
3058 continue;
3059
3060 if (mast_overflow(mast))
3061 continue;
3062
3063 /* May be a new root stored in mast->bn */
3064 if (mas_is_root_limits(mast->orig_l))
3065 break;
3066
3067 mast_spanning_rebalance(mast);
3068
3069 /* rebalancing from other nodes may require another loop. */
3070 if (!count)
3071 count++;
3072 }
3073
3074 l_mas.node = mt_mk_node(ma_mnode_ptr(mas_pop_node(mas)),
3075 mte_node_type(mast->orig_l->node));
3076 mast->orig_l->depth++;
3077 mab_mas_cp(mast->bn, 0, mt_slots[mast->bn->type] - 1, &l_mas, true);
bf96715e 3078 mas_set_parent(mas, left, l_mas.node, slot);
54a611b6 3079 if (middle)
bf96715e 3080 mas_set_parent(mas, middle, l_mas.node, ++slot);
54a611b6
LH
3081
3082 if (right)
bf96715e 3083 mas_set_parent(mas, right, l_mas.node, ++slot);
54a611b6
LH
3084
3085 if (mas_is_root_limits(mast->l)) {
3086new_root:
3087 mast_new_root(mast, mas);
3088 } else {
3089 mas_mn(&l_mas)->parent = mas_mn(mast->orig_l)->parent;
3090 }
3091
3092 if (!mte_dead_node(mast->orig_l->node))
3093 mat_add(&free, mast->orig_l->node);
3094
3095 mas->depth = mast->orig_l->depth;
3096 *mast->orig_l = l_mas;
3097 mte_set_node_dead(mas->node);
3098
3099 /* Set up mas for insertion. */
3100 mast->orig_l->depth = mas->depth;
3101 mast->orig_l->alloc = mas->alloc;
3102 *mas = *mast->orig_l;
3103 mas_wmb_replace(mas, &free, &destroy);
3104 mtree_range_walk(mas);
3105 return mast->bn->b_end;
3106}
3107
3108/*
3109 * mas_rebalance() - Rebalance a given node.
3110 * @mas: The maple state
3111 * @b_node: The big maple node.
3112 *
3113 * Rebalance two nodes into a single node or two new nodes that are sufficient.
3114 * Continue upwards until tree is sufficient.
3115 *
3116 * Return: the number of elements in b_node during the last loop.
3117 */
3118static inline int mas_rebalance(struct ma_state *mas,
3119 struct maple_big_node *b_node)
3120{
3121 char empty_count = mas_mt_height(mas);
3122 struct maple_subtree_state mast;
3123 unsigned char shift, b_end = ++b_node->b_end;
3124
3125 MA_STATE(l_mas, mas->tree, mas->index, mas->last);
3126 MA_STATE(r_mas, mas->tree, mas->index, mas->last);
3127
3128 trace_ma_op(__func__, mas);
3129
3130 /*
3131 * Rebalancing occurs if a node is insufficient. Data is rebalanced
3132 * against the node to the right if it exists, otherwise the node to the
3133 * left of this node is rebalanced against this node. If rebalancing
3134 * causes just one node to be produced instead of two, then the parent
3135 * is also examined and rebalanced if it is insufficient. Every level
3136 * tries to combine the data in the same way. If one node contains the
3137 * entire range of the tree, then that node is used as a new root node.
3138 */
c108df76 3139 mas_node_count(mas, empty_count * 2 - 1);
54a611b6
LH
3140 if (mas_is_err(mas))
3141 return 0;
3142
3143 mast.orig_l = &l_mas;
3144 mast.orig_r = &r_mas;
3145 mast.bn = b_node;
3146 mast.bn->type = mte_node_type(mas->node);
3147
3148 l_mas = r_mas = *mas;
3149
3150 if (mas_next_sibling(&r_mas)) {
3151 mas_mab_cp(&r_mas, 0, mt_slot_count(r_mas.node), b_node, b_end);
3152 r_mas.last = r_mas.index = r_mas.max;
3153 } else {
3154 mas_prev_sibling(&l_mas);
3155 shift = mas_data_end(&l_mas) + 1;
3156 mab_shift_right(b_node, shift);
3157 mas->offset += shift;
3158 mas_mab_cp(&l_mas, 0, shift - 1, b_node, 0);
3159 b_node->b_end = shift + b_end;
3160 l_mas.index = l_mas.last = l_mas.min;
3161 }
3162
3163 return mas_spanning_rebalance(mas, &mast, empty_count);
3164}
3165
3166/*
3167 * mas_destroy_rebalance() - Rebalance left-most node while destroying the maple
3168 * state.
3169 * @mas: The maple state
3170 * @end: The end of the left-most node.
3171 *
3172 * During a mass-insert event (such as forking), it may be necessary to
3173 * rebalance the left-most node when it is not sufficient.
3174 */
3175static inline void mas_destroy_rebalance(struct ma_state *mas, unsigned char end)
3176{
3177 enum maple_type mt = mte_node_type(mas->node);
3178 struct maple_node reuse, *newnode, *parent, *new_left, *left, *node;
3179 struct maple_enode *eparent;
3180 unsigned char offset, tmp, split = mt_slots[mt] / 2;
3181 void __rcu **l_slots, **slots;
3182 unsigned long *l_pivs, *pivs, gap;
3183 bool in_rcu = mt_in_rcu(mas->tree);
3184
3185 MA_STATE(l_mas, mas->tree, mas->index, mas->last);
3186
3187 l_mas = *mas;
3188 mas_prev_sibling(&l_mas);
3189
3190 /* set up node. */
3191 if (in_rcu) {
3192 /* Allocate for both left and right as well as parent. */
3193 mas_node_count(mas, 3);
3194 if (mas_is_err(mas))
3195 return;
3196
3197 newnode = mas_pop_node(mas);
3198 } else {
3199 newnode = &reuse;
3200 }
3201
3202 node = mas_mn(mas);
3203 newnode->parent = node->parent;
3204 slots = ma_slots(newnode, mt);
3205 pivs = ma_pivots(newnode, mt);
3206 left = mas_mn(&l_mas);
3207 l_slots = ma_slots(left, mt);
3208 l_pivs = ma_pivots(left, mt);
3209 if (!l_slots[split])
3210 split++;
3211 tmp = mas_data_end(&l_mas) - split;
3212
3213 memcpy(slots, l_slots + split + 1, sizeof(void *) * tmp);
3214 memcpy(pivs, l_pivs + split + 1, sizeof(unsigned long) * tmp);
3215 pivs[tmp] = l_mas.max;
3216 memcpy(slots + tmp, ma_slots(node, mt), sizeof(void *) * end);
3217 memcpy(pivs + tmp, ma_pivots(node, mt), sizeof(unsigned long) * end);
3218
3219 l_mas.max = l_pivs[split];
3220 mas->min = l_mas.max + 1;
3221 eparent = mt_mk_node(mte_parent(l_mas.node),
afc754c6 3222 mas_parent_type(&l_mas, l_mas.node));
54a611b6
LH
3223 tmp += end;
3224 if (!in_rcu) {
3225 unsigned char max_p = mt_pivots[mt];
3226 unsigned char max_s = mt_slots[mt];
3227
3228 if (tmp < max_p)
3229 memset(pivs + tmp, 0,
fb20e99a 3230 sizeof(unsigned long) * (max_p - tmp));
54a611b6
LH
3231
3232 if (tmp < mt_slots[mt])
3233 memset(slots + tmp, 0, sizeof(void *) * (max_s - tmp));
3234
3235 memcpy(node, newnode, sizeof(struct maple_node));
3236 ma_set_meta(node, mt, 0, tmp - 1);
3237 mte_set_pivot(eparent, mte_parent_slot(l_mas.node),
3238 l_pivs[split]);
3239
3240 /* Remove data from l_pivs. */
3241 tmp = split + 1;
3242 memset(l_pivs + tmp, 0, sizeof(unsigned long) * (max_p - tmp));
3243 memset(l_slots + tmp, 0, sizeof(void *) * (max_s - tmp));
3244 ma_set_meta(left, mt, 0, split);
3245
3246 goto done;
3247 }
3248
3249 /* RCU requires replacing both l_mas, mas, and parent. */
3250 mas->node = mt_mk_node(newnode, mt);
3251 ma_set_meta(newnode, mt, 0, tmp);
3252
3253 new_left = mas_pop_node(mas);
3254 new_left->parent = left->parent;
3255 mt = mte_node_type(l_mas.node);
3256 slots = ma_slots(new_left, mt);
3257 pivs = ma_pivots(new_left, mt);
3258 memcpy(slots, l_slots, sizeof(void *) * split);
3259 memcpy(pivs, l_pivs, sizeof(unsigned long) * split);
3260 ma_set_meta(new_left, mt, 0, split);
3261 l_mas.node = mt_mk_node(new_left, mt);
3262
3263 /* replace parent. */
3264 offset = mte_parent_slot(mas->node);
afc754c6 3265 mt = mas_parent_type(&l_mas, l_mas.node);
54a611b6
LH
3266 parent = mas_pop_node(mas);
3267 slots = ma_slots(parent, mt);
3268 pivs = ma_pivots(parent, mt);
3269 memcpy(parent, mte_to_node(eparent), sizeof(struct maple_node));
3270 rcu_assign_pointer(slots[offset], mas->node);
3271 rcu_assign_pointer(slots[offset - 1], l_mas.node);
3272 pivs[offset - 1] = l_mas.max;
3273 eparent = mt_mk_node(parent, mt);
3274done:
3275 gap = mas_leaf_max_gap(mas);
3276 mte_set_gap(eparent, mte_parent_slot(mas->node), gap);
3277 gap = mas_leaf_max_gap(&l_mas);
3278 mte_set_gap(eparent, mte_parent_slot(l_mas.node), gap);
3279 mas_ascend(mas);
3280
3281 if (in_rcu)
3282 mas_replace(mas, false);
3283
3284 mas_update_gap(mas);
3285}
3286
3287/*
3288 * mas_split_final_node() - Split the final node in a subtree operation.
3289 * @mast: the maple subtree state
3290 * @mas: The maple state
3291 * @height: The height of the tree in case it's a new root.
3292 */
3293static inline bool mas_split_final_node(struct maple_subtree_state *mast,
3294 struct ma_state *mas, int height)
3295{
3296 struct maple_enode *ancestor;
3297
3298 if (mte_is_root(mas->node)) {
3299 if (mt_is_alloc(mas->tree))
3300 mast->bn->type = maple_arange_64;
3301 else
3302 mast->bn->type = maple_range_64;
3303 mas->depth = height;
3304 }
3305 /*
3306 * Only a single node is used here, could be root.
3307 * The Big_node data should just fit in a single node.
3308 */
3309 ancestor = mas_new_ma_node(mas, mast->bn);
bf96715e
LH
3310 mas_set_parent(mas, mast->l->node, ancestor, mast->l->offset);
3311 mas_set_parent(mas, mast->r->node, ancestor, mast->r->offset);
54a611b6
LH
3312 mte_to_node(ancestor)->parent = mas_mn(mas)->parent;
3313
3314 mast->l->node = ancestor;
3315 mab_mas_cp(mast->bn, 0, mt_slots[mast->bn->type] - 1, mast->l, true);
3316 mas->offset = mast->bn->b_end - 1;
3317 return true;
3318}
3319
3320/*
3321 * mast_fill_bnode() - Copy data into the big node in the subtree state
3322 * @mast: The maple subtree state
3323 * @mas: the maple state
3324 * @skip: The number of entries to skip for new nodes insertion.
3325 */
3326static inline void mast_fill_bnode(struct maple_subtree_state *mast,
3327 struct ma_state *mas,
3328 unsigned char skip)
3329{
3330 bool cp = true;
3331 struct maple_enode *old = mas->node;
3332 unsigned char split;
3333
3334 memset(mast->bn->gap, 0, sizeof(unsigned long) * ARRAY_SIZE(mast->bn->gap));
3335 memset(mast->bn->slot, 0, sizeof(unsigned long) * ARRAY_SIZE(mast->bn->slot));
3336 memset(mast->bn->pivot, 0, sizeof(unsigned long) * ARRAY_SIZE(mast->bn->pivot));
3337 mast->bn->b_end = 0;
3338
3339 if (mte_is_root(mas->node)) {
3340 cp = false;
3341 } else {
3342 mas_ascend(mas);
3343 mat_add(mast->free, old);
3344 mas->offset = mte_parent_slot(mas->node);
3345 }
3346
3347 if (cp && mast->l->offset)
3348 mas_mab_cp(mas, 0, mast->l->offset - 1, mast->bn, 0);
3349
3350 split = mast->bn->b_end;
3351 mab_set_b_end(mast->bn, mast->l, mast->l->node);
3352 mast->r->offset = mast->bn->b_end;
3353 mab_set_b_end(mast->bn, mast->r, mast->r->node);
3354 if (mast->bn->pivot[mast->bn->b_end - 1] == mas->max)
3355 cp = false;
3356
3357 if (cp)
3358 mas_mab_cp(mas, split + skip, mt_slot_count(mas->node) - 1,
3359 mast->bn, mast->bn->b_end);
3360
3361 mast->bn->b_end--;
3362 mast->bn->type = mte_node_type(mas->node);
3363}
3364
3365/*
3366 * mast_split_data() - Split the data in the subtree state big node into regular
3367 * nodes.
3368 * @mast: The maple subtree state
3369 * @mas: The maple state
3370 * @split: The location to split the big node
3371 */
3372static inline void mast_split_data(struct maple_subtree_state *mast,
3373 struct ma_state *mas, unsigned char split)
3374{
3375 unsigned char p_slot;
3376
3377 mab_mas_cp(mast->bn, 0, split, mast->l, true);
3378 mte_set_pivot(mast->r->node, 0, mast->r->max);
3379 mab_mas_cp(mast->bn, split + 1, mast->bn->b_end, mast->r, false);
3380 mast->l->offset = mte_parent_slot(mas->node);
3381 mast->l->max = mast->bn->pivot[split];
3382 mast->r->min = mast->l->max + 1;
3383 if (mte_is_leaf(mas->node))
3384 return;
3385
3386 p_slot = mast->orig_l->offset;
3387 mas_set_split_parent(mast->orig_l, mast->l->node, mast->r->node,
3388 &p_slot, split);
3389 mas_set_split_parent(mast->orig_r, mast->l->node, mast->r->node,
3390 &p_slot, split);
3391}
3392
3393/*
3394 * mas_push_data() - Instead of splitting a node, it is beneficial to push the
3395 * data to the right or left node if there is room.
3396 * @mas: The maple state
3397 * @height: The current height of the maple state
3398 * @mast: The maple subtree state
3399 * @left: Push left or not.
3400 *
3401 * Keeping the height of the tree low means faster lookups.
3402 *
3403 * Return: True if pushed, false otherwise.
3404 */
3405static inline bool mas_push_data(struct ma_state *mas, int height,
3406 struct maple_subtree_state *mast, bool left)
3407{
3408 unsigned char slot_total = mast->bn->b_end;
3409 unsigned char end, space, split;
3410
3411 MA_STATE(tmp_mas, mas->tree, mas->index, mas->last);
3412 tmp_mas = *mas;
3413 tmp_mas.depth = mast->l->depth;
3414
3415 if (left && !mas_prev_sibling(&tmp_mas))
3416 return false;
3417 else if (!left && !mas_next_sibling(&tmp_mas))
3418 return false;
3419
3420 end = mas_data_end(&tmp_mas);
3421 slot_total += end;
3422 space = 2 * mt_slot_count(mas->node) - 2;
3423 /* -2 instead of -1 to ensure there isn't a triple split */
3424 if (ma_is_leaf(mast->bn->type))
3425 space--;
3426
3427 if (mas->max == ULONG_MAX)
3428 space--;
3429
3430 if (slot_total >= space)
3431 return false;
3432
3433 /* Get the data; Fill mast->bn */
3434 mast->bn->b_end++;
3435 if (left) {
3436 mab_shift_right(mast->bn, end + 1);
3437 mas_mab_cp(&tmp_mas, 0, end, mast->bn, 0);
3438 mast->bn->b_end = slot_total + 1;
3439 } else {
3440 mas_mab_cp(&tmp_mas, 0, end, mast->bn, mast->bn->b_end);
3441 }
3442
3443 /* Configure mast for splitting of mast->bn */
3444 split = mt_slots[mast->bn->type] - 2;
3445 if (left) {
3446 /* Switch mas to prev node */
3447 mat_add(mast->free, mas->node);
3448 *mas = tmp_mas;
3449 /* Start using mast->l for the left side. */
3450 tmp_mas.node = mast->l->node;
3451 *mast->l = tmp_mas;
3452 } else {
3453 mat_add(mast->free, tmp_mas.node);
3454 tmp_mas.node = mast->r->node;
3455 *mast->r = tmp_mas;
3456 split = slot_total - split;
3457 }
3458 split = mab_no_null_split(mast->bn, split, mt_slots[mast->bn->type]);
3459 /* Update parent slot for split calculation. */
3460 if (left)
3461 mast->orig_l->offset += end + 1;
3462
3463 mast_split_data(mast, mas, split);
3464 mast_fill_bnode(mast, mas, 2);
3465 mas_split_final_node(mast, mas, height + 1);
3466 return true;
3467}
3468
3469/*
3470 * mas_split() - Split data that is too big for one node into two.
3471 * @mas: The maple state
3472 * @b_node: The maple big node
3473 * Return: 1 on success, 0 on failure.
3474 */
3475static int mas_split(struct ma_state *mas, struct maple_big_node *b_node)
3476{
54a611b6
LH
3477 struct maple_subtree_state mast;
3478 int height = 0;
3479 unsigned char mid_split, split = 0;
3480
3481 /*
3482 * Splitting is handled differently from any other B-tree; the Maple
3483 * Tree splits upwards. Splitting up means that the split operation
3484 * occurs when the walk of the tree hits the leaves and not on the way
3485 * down. The reason for splitting up is that it is impossible to know
3486 * how much space will be needed until the leaf is (or leaves are)
3487 * reached. Since overwriting data is allowed and a range could
3488 * overwrite more than one range or result in changing one entry into 3
3489 * entries, it is impossible to know if a split is required until the
3490 * data is examined.
3491 *
3492 * Splitting is a balancing act between keeping allocations to a minimum
3493 * and avoiding a 'jitter' event where a tree is expanded to make room
3494 * for an entry followed by a contraction when the entry is removed. To
3495 * accomplish the balance, there are empty slots remaining in both left
3496 * and right nodes after a split.
3497 */
3498 MA_STATE(l_mas, mas->tree, mas->index, mas->last);
3499 MA_STATE(r_mas, mas->tree, mas->index, mas->last);
3500 MA_STATE(prev_l_mas, mas->tree, mas->index, mas->last);
3501 MA_STATE(prev_r_mas, mas->tree, mas->index, mas->last);
3502 MA_TOPIARY(mat, mas->tree);
3503
3504 trace_ma_op(__func__, mas);
3505 mas->depth = mas_mt_height(mas);
3506 /* Allocation failures will happen early. */
3507 mas_node_count(mas, 1 + mas->depth * 2);
3508 if (mas_is_err(mas))
3509 return 0;
3510
3511 mast.l = &l_mas;
3512 mast.r = &r_mas;
3513 mast.orig_l = &prev_l_mas;
3514 mast.orig_r = &prev_r_mas;
3515 mast.free = &mat;
3516 mast.bn = b_node;
3517
3518 while (height++ <= mas->depth) {
3519 if (mt_slots[b_node->type] > b_node->b_end) {
3520 mas_split_final_node(&mast, mas, height);
3521 break;
3522 }
3523
3524 l_mas = r_mas = *mas;
3525 l_mas.node = mas_new_ma_node(mas, b_node);
3526 r_mas.node = mas_new_ma_node(mas, b_node);
3527 /*
3528 * Another way that 'jitter' is avoided is to terminate a split up early if the
3529 * left or right node has space to spare. This is referred to as "pushing left"
3530 * or "pushing right" and is similar to the B* tree, except the nodes left or
3531 * right can rarely be reused due to RCU, but the ripple upwards is halted which
3532 * is a significant savings.
3533 */
3534 /* Try to push left. */
3535 if (mas_push_data(mas, height, &mast, true))
3536 break;
3537
3538 /* Try to push right. */
3539 if (mas_push_data(mas, height, &mast, false))
3540 break;
3541
3542 split = mab_calc_split(mas, b_node, &mid_split, prev_l_mas.min);
3543 mast_split_data(&mast, mas, split);
3544 /*
3545 * Usually correct, mab_mas_cp in the above call overwrites
3546 * r->max.
3547 */
3548 mast.r->max = mas->max;
3549 mast_fill_bnode(&mast, mas, 1);
3550 prev_l_mas = *mast.l;
3551 prev_r_mas = *mast.r;
3552 }
3553
3554 /* Set the original node as dead */
3555 mat_add(mast.free, mas->node);
3556 mas->node = l_mas.node;
3557 mas_wmb_replace(mas, mast.free, NULL);
3558 mtree_range_walk(mas);
3559 return 1;
3560}
3561
3562/*
3563 * mas_reuse_node() - Reuse the node to store the data.
3564 * @wr_mas: The maple write state
3565 * @bn: The maple big node
3566 * @end: The end of the data.
3567 *
3568 * Will always return false in RCU mode.
3569 *
3570 * Return: True if node was reused, false otherwise.
3571 */
3572static inline bool mas_reuse_node(struct ma_wr_state *wr_mas,
3573 struct maple_big_node *bn, unsigned char end)
3574{
3575 /* Need to be rcu safe. */
3576 if (mt_in_rcu(wr_mas->mas->tree))
3577 return false;
3578
3579 if (end > bn->b_end) {
3580 int clear = mt_slots[wr_mas->type] - bn->b_end;
3581
3582 memset(wr_mas->slots + bn->b_end, 0, sizeof(void *) * clear--);
3583 memset(wr_mas->pivots + bn->b_end, 0, sizeof(void *) * clear);
3584 }
3585 mab_mas_cp(bn, 0, bn->b_end, wr_mas->mas, false);
3586 return true;
3587}
3588
3589/*
3590 * mas_commit_b_node() - Commit the big node into the tree.
3591 * @wr_mas: The maple write state
3592 * @b_node: The maple big node
3593 * @end: The end of the data.
3594 */
44081c77 3595static noinline_for_kasan int mas_commit_b_node(struct ma_wr_state *wr_mas,
54a611b6
LH
3596 struct maple_big_node *b_node, unsigned char end)
3597{
3598 struct maple_node *node;
3599 unsigned char b_end = b_node->b_end;
3600 enum maple_type b_type = b_node->type;
3601
3602 if ((b_end < mt_min_slots[b_type]) &&
3603 (!mte_is_root(wr_mas->mas->node)) &&
3604 (mas_mt_height(wr_mas->mas) > 1))
3605 return mas_rebalance(wr_mas->mas, b_node);
3606
3607 if (b_end >= mt_slots[b_type])
3608 return mas_split(wr_mas->mas, b_node);
3609
3610 if (mas_reuse_node(wr_mas, b_node, end))
3611 goto reuse_node;
3612
3613 mas_node_count(wr_mas->mas, 1);
3614 if (mas_is_err(wr_mas->mas))
3615 return 0;
3616
3617 node = mas_pop_node(wr_mas->mas);
3618 node->parent = mas_mn(wr_mas->mas)->parent;
3619 wr_mas->mas->node = mt_mk_node(node, b_type);
7dc5ba62 3620 mab_mas_cp(b_node, 0, b_end, wr_mas->mas, false);
54a611b6
LH
3621 mas_replace(wr_mas->mas, false);
3622reuse_node:
3623 mas_update_gap(wr_mas->mas);
3624 return 1;
3625}
3626
3627/*
3628 * mas_root_expand() - Expand a root to a node
3629 * @mas: The maple state
3630 * @entry: The entry to store into the tree
3631 */
3632static inline int mas_root_expand(struct ma_state *mas, void *entry)
3633{
3634 void *contents = mas_root_locked(mas);
3635 enum maple_type type = maple_leaf_64;
3636 struct maple_node *node;
3637 void __rcu **slots;
3638 unsigned long *pivots;
3639 int slot = 0;
3640
3641 mas_node_count(mas, 1);
3642 if (unlikely(mas_is_err(mas)))
3643 return 0;
3644
3645 node = mas_pop_node(mas);
3646 pivots = ma_pivots(node, type);
3647 slots = ma_slots(node, type);
3648 node->parent = ma_parent_ptr(
3649 ((unsigned long)mas->tree | MA_ROOT_PARENT));
3650 mas->node = mt_mk_node(node, type);
3651
3652 if (mas->index) {
3653 if (contents) {
3654 rcu_assign_pointer(slots[slot], contents);
3655 if (likely(mas->index > 1))
3656 slot++;
3657 }
3658 pivots[slot++] = mas->index - 1;
3659 }
3660
3661 rcu_assign_pointer(slots[slot], entry);
3662 mas->offset = slot;
3663 pivots[slot] = mas->last;
3664 if (mas->last != ULONG_MAX)
3c769fd8
PZ
3665 pivots[++slot] = ULONG_MAX;
3666
54a611b6
LH
3667 mas->depth = 1;
3668 mas_set_height(mas);
c45ea315 3669 ma_set_meta(node, maple_leaf_64, 0, slot);
54a611b6
LH
3670 /* swap the new root into the tree */
3671 rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node));
54a611b6
LH
3672 return slot;
3673}
3674
3675static inline void mas_store_root(struct ma_state *mas, void *entry)
3676{
3677 if (likely((mas->last != 0) || (mas->index != 0)))
3678 mas_root_expand(mas, entry);
3679 else if (((unsigned long) (entry) & 3) == 2)
3680 mas_root_expand(mas, entry);
3681 else {
3682 rcu_assign_pointer(mas->tree->ma_root, entry);
3683 mas->node = MAS_START;
3684 }
3685}
3686
3687/*
3688 * mas_is_span_wr() - Check if the write needs to be treated as a write that
3689 * spans the node.
3690 * @mas: The maple state
3691 * @piv: The pivot value being written
3692 * @type: The maple node type
3693 * @entry: The data to write
3694 *
3695 * Spanning writes are writes that start in one node and end in another OR if
3696 * the write of a %NULL will cause the node to end with a %NULL.
3697 *
3698 * Return: True if this is a spanning write, false otherwise.
3699 */
3700static bool mas_is_span_wr(struct ma_wr_state *wr_mas)
3701{
bc147f0f 3702 unsigned long max = wr_mas->r_max;
54a611b6 3703 unsigned long last = wr_mas->mas->last;
54a611b6
LH
3704 enum maple_type type = wr_mas->type;
3705 void *entry = wr_mas->entry;
3706
bc147f0f
PZ
3707 /* Contained in this pivot, fast path */
3708 if (last < max)
54a611b6
LH
3709 return false;
3710
bc147f0f
PZ
3711 if (ma_is_leaf(type)) {
3712 max = wr_mas->mas->max;
54a611b6
LH
3713 if (last < max)
3714 return false;
bc147f0f 3715 }
54a611b6 3716
bc147f0f 3717 if (last == max) {
54a611b6 3718 /*
bc147f0f
PZ
3719 * The last entry of leaf node cannot be NULL unless it is the
3720 * rightmost node (writing ULONG_MAX), otherwise it spans slots.
54a611b6 3721 */
bc147f0f 3722 if (entry || last == ULONG_MAX)
54a611b6
LH
3723 return false;
3724 }
3725
bc147f0f 3726 trace_ma_write(__func__, wr_mas->mas, wr_mas->r_max, entry);
54a611b6
LH
3727 return true;
3728}
3729
3730static inline void mas_wr_walk_descend(struct ma_wr_state *wr_mas)
3731{
54a611b6
LH
3732 wr_mas->type = mte_node_type(wr_mas->mas->node);
3733 mas_wr_node_walk(wr_mas);
3734 wr_mas->slots = ma_slots(wr_mas->node, wr_mas->type);
3735}
3736
3737static inline void mas_wr_walk_traverse(struct ma_wr_state *wr_mas)
3738{
3739 wr_mas->mas->max = wr_mas->r_max;
3740 wr_mas->mas->min = wr_mas->r_min;
3741 wr_mas->mas->node = wr_mas->content;
3742 wr_mas->mas->offset = 0;
9bbba563 3743 wr_mas->mas->depth++;
54a611b6
LH
3744}
3745/*
3746 * mas_wr_walk() - Walk the tree for a write.
3747 * @wr_mas: The maple write state
3748 *
3749 * Uses mas_slot_locked() and does not need to worry about dead nodes.
3750 *
3751 * Return: True if it's contained in a node, false on spanning write.
3752 */
3753static bool mas_wr_walk(struct ma_wr_state *wr_mas)
3754{
3755 struct ma_state *mas = wr_mas->mas;
3756
3757 while (true) {
3758 mas_wr_walk_descend(wr_mas);
3759 if (unlikely(mas_is_span_wr(wr_mas)))
3760 return false;
3761
3762 wr_mas->content = mas_slot_locked(mas, wr_mas->slots,
3763 mas->offset);
3764 if (ma_is_leaf(wr_mas->type))
3765 return true;
3766
3767 mas_wr_walk_traverse(wr_mas);
3768 }
3769
3770 return true;
3771}
3772
3773static bool mas_wr_walk_index(struct ma_wr_state *wr_mas)
3774{
3775 struct ma_state *mas = wr_mas->mas;
3776
3777 while (true) {
3778 mas_wr_walk_descend(wr_mas);
3779 wr_mas->content = mas_slot_locked(mas, wr_mas->slots,
3780 mas->offset);
3781 if (ma_is_leaf(wr_mas->type))
3782 return true;
3783 mas_wr_walk_traverse(wr_mas);
3784
3785 }
3786 return true;
3787}
3788/*
3789 * mas_extend_spanning_null() - Extend a store of a %NULL to include surrounding %NULLs.
3790 * @l_wr_mas: The left maple write state
3791 * @r_wr_mas: The right maple write state
3792 */
3793static inline void mas_extend_spanning_null(struct ma_wr_state *l_wr_mas,
3794 struct ma_wr_state *r_wr_mas)
3795{
3796 struct ma_state *r_mas = r_wr_mas->mas;
3797 struct ma_state *l_mas = l_wr_mas->mas;
3798 unsigned char l_slot;
3799
3800 l_slot = l_mas->offset;
3801 if (!l_wr_mas->content)
3802 l_mas->index = l_wr_mas->r_min;
3803
3804 if ((l_mas->index == l_wr_mas->r_min) &&
3805 (l_slot &&
3806 !mas_slot_locked(l_mas, l_wr_mas->slots, l_slot - 1))) {
3807 if (l_slot > 1)
3808 l_mas->index = l_wr_mas->pivots[l_slot - 2] + 1;
3809 else
3810 l_mas->index = l_mas->min;
3811
3812 l_mas->offset = l_slot - 1;
3813 }
3814
3815 if (!r_wr_mas->content) {
3816 if (r_mas->last < r_wr_mas->r_max)
3817 r_mas->last = r_wr_mas->r_max;
3818 r_mas->offset++;
3819 } else if ((r_mas->last == r_wr_mas->r_max) &&
3820 (r_mas->last < r_mas->max) &&
3821 !mas_slot_locked(r_mas, r_wr_mas->slots, r_mas->offset + 1)) {
3822 r_mas->last = mas_safe_pivot(r_mas, r_wr_mas->pivots,
3823 r_wr_mas->type, r_mas->offset + 1);
3824 r_mas->offset++;
3825 }
3826}
3827
3828static inline void *mas_state_walk(struct ma_state *mas)
3829{
3830 void *entry;
3831
3832 entry = mas_start(mas);
3833 if (mas_is_none(mas))
3834 return NULL;
3835
3836 if (mas_is_ptr(mas))
3837 return entry;
3838
3839 return mtree_range_walk(mas);
3840}
3841
3842/*
3843 * mtree_lookup_walk() - Internal quick lookup that does not keep maple state up
3844 * to date.
3845 *
3846 * @mas: The maple state.
3847 *
3848 * Note: Leaves mas in undesirable state.
3849 * Return: The entry for @mas->index or %NULL on dead node.
3850 */
3851static inline void *mtree_lookup_walk(struct ma_state *mas)
3852{
3853 unsigned long *pivots;
3854 unsigned char offset;
3855 struct maple_node *node;
3856 struct maple_enode *next;
3857 enum maple_type type;
3858 void __rcu **slots;
3859 unsigned char end;
3860 unsigned long max;
3861
3862 next = mas->node;
3863 max = ULONG_MAX;
3864 do {
3865 offset = 0;
3866 node = mte_to_node(next);
3867 type = mte_node_type(next);
3868 pivots = ma_pivots(node, type);
3869 end = ma_data_end(node, type, pivots, max);
3870 if (unlikely(ma_dead_node(node)))
3871 goto dead_node;
54a611b6 3872 do {
ec07967d
PZ
3873 if (pivots[offset] >= mas->index) {
3874 max = pivots[offset];
3875 break;
3876 }
3877 } while (++offset < end);
54a611b6 3878
54a611b6
LH
3879 slots = ma_slots(node, type);
3880 next = mt_slot(mas->tree, slots, offset);
3881 if (unlikely(ma_dead_node(node)))
3882 goto dead_node;
3883 } while (!ma_is_leaf(type));
3884
831978e3 3885 return (void *)next;
54a611b6
LH
3886
3887dead_node:
3888 mas_reset(mas);
3889 return NULL;
3890}
3891
3892/*
3893 * mas_new_root() - Create a new root node that only contains the entry passed
3894 * in.
3895 * @mas: The maple state
3896 * @entry: The entry to store.
3897 *
3898 * Only valid when the index == 0 and the last == ULONG_MAX
3899 *
3900 * Return 0 on error, 1 on success.
3901 */
3902static inline int mas_new_root(struct ma_state *mas, void *entry)
3903{
3904 struct maple_enode *root = mas_root_locked(mas);
3905 enum maple_type type = maple_leaf_64;
3906 struct maple_node *node;
3907 void __rcu **slots;
3908 unsigned long *pivots;
3909
3910 if (!entry && !mas->index && mas->last == ULONG_MAX) {
3911 mas->depth = 0;
3912 mas_set_height(mas);
3913 rcu_assign_pointer(mas->tree->ma_root, entry);
3914 mas->node = MAS_START;
3915 goto done;
3916 }
3917
3918 mas_node_count(mas, 1);
3919 if (mas_is_err(mas))
3920 return 0;
3921
3922 node = mas_pop_node(mas);
3923 pivots = ma_pivots(node, type);
3924 slots = ma_slots(node, type);
3925 node->parent = ma_parent_ptr(
3926 ((unsigned long)mas->tree | MA_ROOT_PARENT));
3927 mas->node = mt_mk_node(node, type);
3928 rcu_assign_pointer(slots[0], entry);
3929 pivots[0] = mas->last;
3930 mas->depth = 1;
3931 mas_set_height(mas);
3932 rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node));
3933
3934done:
3935 if (xa_is_node(root))
3936 mte_destroy_walk(root, mas->tree);
3937
3938 return 1;
3939}
3940/*
3941 * mas_wr_spanning_store() - Create a subtree with the store operation completed
3942 * and new nodes where necessary, then place the sub-tree in the actual tree.
3943 * Note that mas is expected to point to the node which caused the store to
3944 * span.
3945 * @wr_mas: The maple write state
3946 *
3947 * Return: 0 on error, positive on success.
3948 */
3949static inline int mas_wr_spanning_store(struct ma_wr_state *wr_mas)
3950{
3951 struct maple_subtree_state mast;
3952 struct maple_big_node b_node;
3953 struct ma_state *mas;
3954 unsigned char height;
3955
3956 /* Left and Right side of spanning store */
3957 MA_STATE(l_mas, NULL, 0, 0);
3958 MA_STATE(r_mas, NULL, 0, 0);
3959
3960 MA_WR_STATE(r_wr_mas, &r_mas, wr_mas->entry);
3961 MA_WR_STATE(l_wr_mas, &l_mas, wr_mas->entry);
3962
3963 /*
3964 * A store operation that spans multiple nodes is called a spanning
3965 * store and is handled early in the store call stack by the function
3966 * mas_is_span_wr(). When a spanning store is identified, the maple
3967 * state is duplicated. The first maple state walks the left tree path
3968 * to ``index``, the duplicate walks the right tree path to ``last``.
3969 * The data in the two nodes are combined into a single node, two nodes,
3970 * or possibly three nodes (see the 3-way split above). A ``NULL``
3971 * written to the last entry of a node is considered a spanning store as
3972 * a rebalance is required for the operation to complete and an overflow
3973 * of data may happen.
3974 */
3975 mas = wr_mas->mas;
3976 trace_ma_op(__func__, mas);
3977
3978 if (unlikely(!mas->index && mas->last == ULONG_MAX))
3979 return mas_new_root(mas, wr_mas->entry);
3980 /*
3981 * Node rebalancing may occur due to this store, so there may be three new
3982 * entries per level plus a new root.
3983 */
3984 height = mas_mt_height(mas);
3985 mas_node_count(mas, 1 + height * 3);
3986 if (mas_is_err(mas))
3987 return 0;
3988
3989 /*
3990 * Set up right side. Need to get to the next offset after the spanning
3991 * store to ensure it's not NULL and to combine both the next node and
3992 * the node with the start together.
3993 */
3994 r_mas = *mas;
3995 /* Avoid overflow, walk to next slot in the tree. */
3996 if (r_mas.last + 1)
3997 r_mas.last++;
3998
3999 r_mas.index = r_mas.last;
4000 mas_wr_walk_index(&r_wr_mas);
4001 r_mas.last = r_mas.index = mas->last;
4002
4003 /* Set up left side. */
4004 l_mas = *mas;
4005 mas_wr_walk_index(&l_wr_mas);
4006
4007 if (!wr_mas->entry) {
4008 mas_extend_spanning_null(&l_wr_mas, &r_wr_mas);
4009 mas->offset = l_mas.offset;
4010 mas->index = l_mas.index;
4011 mas->last = l_mas.last = r_mas.last;
4012 }
4013
4014 /* expanding NULLs may make this cover the entire range */
4015 if (!l_mas.index && r_mas.last == ULONG_MAX) {
4016 mas_set_range(mas, 0, ULONG_MAX);
4017 return mas_new_root(mas, wr_mas->entry);
4018 }
4019
4020 memset(&b_node, 0, sizeof(struct maple_big_node));
4021 /* Copy l_mas and store the value in b_node. */
4022 mas_store_b_node(&l_wr_mas, &b_node, l_wr_mas.node_end);
4023 /* Copy r_mas into b_node. */
4024 if (r_mas.offset <= r_wr_mas.node_end)
4025 mas_mab_cp(&r_mas, r_mas.offset, r_wr_mas.node_end,
4026 &b_node, b_node.b_end + 1);
4027 else
4028 b_node.b_end++;
4029
4030 /* Stop spanning searches by searching for just index. */
4031 l_mas.index = l_mas.last = mas->index;
4032
4033 mast.bn = &b_node;
4034 mast.orig_l = &l_mas;
4035 mast.orig_r = &r_mas;
4036 /* Combine l_mas and r_mas and split them up evenly again. */
4037 return mas_spanning_rebalance(mas, &mast, height + 1);
4038}
4039
4040/*
4041 * mas_wr_node_store() - Attempt to store the value in a node
4042 * @wr_mas: The maple write state
4043 *
4044 * Attempts to reuse the node, but may allocate.
4045 *
4046 * Return: True if stored, false otherwise
4047 */
7a03ae39
PZ
4048static inline bool mas_wr_node_store(struct ma_wr_state *wr_mas,
4049 unsigned char new_end)
54a611b6
LH
4050{
4051 struct ma_state *mas = wr_mas->mas;
4052 void __rcu **dst_slots;
4053 unsigned long *dst_pivots;
7a03ae39 4054 unsigned char dst_offset, offset_end = wr_mas->offset_end;
54a611b6 4055 struct maple_node reuse, *newnode;
7a03ae39 4056 unsigned char copy_size, node_pivots = mt_pivots[wr_mas->type];
54a611b6
LH
4057 bool in_rcu = mt_in_rcu(mas->tree);
4058
7a03ae39 4059 /* Check if there is enough data. The room is enough. */
54a611b6
LH
4060 if (!mte_is_root(mas->node) && (new_end <= mt_min_slots[wr_mas->type]) &&
4061 !(mas->mas_flags & MA_STATE_BULK))
4062 return false;
4063
7a03ae39
PZ
4064 if (mas->last == wr_mas->end_piv)
4065 offset_end++; /* don't copy this offset */
4066 else if (unlikely(wr_mas->r_max == ULONG_MAX))
4067 mas_bulk_rebalance(mas, wr_mas->node_end, wr_mas->type);
4068
54a611b6
LH
4069 /* set up node. */
4070 if (in_rcu) {
4071 mas_node_count(mas, 1);
4072 if (mas_is_err(mas))
4073 return false;
4074
4075 newnode = mas_pop_node(mas);
4076 } else {
4077 memset(&reuse, 0, sizeof(struct maple_node));
4078 newnode = &reuse;
4079 }
4080
4081 newnode->parent = mas_mn(mas)->parent;
4082 dst_pivots = ma_pivots(newnode, wr_mas->type);
4083 dst_slots = ma_slots(newnode, wr_mas->type);
4084 /* Copy from start to insert point */
7a03ae39
PZ
4085 memcpy(dst_pivots, wr_mas->pivots, sizeof(unsigned long) * mas->offset);
4086 memcpy(dst_slots, wr_mas->slots, sizeof(void *) * mas->offset);
54a611b6
LH
4087
4088 /* Handle insert of new range starting after old range */
4089 if (wr_mas->r_min < mas->index) {
7a03ae39
PZ
4090 rcu_assign_pointer(dst_slots[mas->offset], wr_mas->content);
4091 dst_pivots[mas->offset++] = mas->index - 1;
54a611b6
LH
4092 }
4093
4094 /* Store the new entry and range end. */
7a03ae39
PZ
4095 if (mas->offset < node_pivots)
4096 dst_pivots[mas->offset] = mas->last;
4097 rcu_assign_pointer(dst_slots[mas->offset], wr_mas->entry);
54a611b6
LH
4098
4099 /*
4100 * this range wrote to the end of the node or it overwrote the rest of
4101 * the data
4102 */
7a03ae39 4103 if (offset_end > wr_mas->node_end)
54a611b6 4104 goto done;
54a611b6 4105
7a03ae39 4106 dst_offset = mas->offset + 1;
54a611b6 4107 /* Copy to the end of node if necessary. */
7a03ae39
PZ
4108 copy_size = wr_mas->node_end - offset_end + 1;
4109 memcpy(dst_slots + dst_offset, wr_mas->slots + offset_end,
54a611b6 4110 sizeof(void *) * copy_size);
7a03ae39
PZ
4111 memcpy(dst_pivots + dst_offset, wr_mas->pivots + offset_end,
4112 sizeof(unsigned long) * (copy_size - 1));
54a611b6 4113
7a03ae39 4114 if (new_end < node_pivots)
54a611b6
LH
4115 dst_pivots[new_end] = mas->max;
4116
4117done:
4118 mas_leaf_set_meta(mas, newnode, dst_pivots, maple_leaf_64, new_end);
4119 if (in_rcu) {
c13af03d 4120 mte_set_node_dead(mas->node);
54a611b6
LH
4121 mas->node = mt_mk_node(newnode, wr_mas->type);
4122 mas_replace(mas, false);
4123 } else {
4124 memcpy(wr_mas->node, newnode, sizeof(struct maple_node));
4125 }
4126 trace_ma_write(__func__, mas, 0, wr_mas->entry);
4127 mas_update_gap(mas);
4128 return true;
4129}
4130
4131/*
4132 * mas_wr_slot_store: Attempt to store a value in a slot.
4133 * @wr_mas: the maple write state
4134 *
4135 * Return: True if stored, false otherwise
4136 */
4137static inline bool mas_wr_slot_store(struct ma_wr_state *wr_mas)
4138{
4139 struct ma_state *mas = wr_mas->mas;
54a611b6 4140 unsigned char offset = mas->offset;
64891ba3 4141 void __rcu **slots = wr_mas->slots;
e6d1ffd6 4142 bool gap = false;
54a611b6 4143
64891ba3
PZ
4144 gap |= !mt_slot_locked(mas->tree, slots, offset);
4145 gap |= !mt_slot_locked(mas->tree, slots, offset + 1);
54a611b6 4146
64891ba3
PZ
4147 if (wr_mas->offset_end - offset == 1) {
4148 if (mas->index == wr_mas->r_min) {
4149 /* Overwriting the range and a part of the next one */
4150 rcu_assign_pointer(slots[offset], wr_mas->entry);
4151 wr_mas->pivots[offset] = mas->last;
4152 } else {
4153 /* Overwriting a part of the range and the next one */
4154 rcu_assign_pointer(slots[offset + 1], wr_mas->entry);
4155 wr_mas->pivots[offset] = mas->index - 1;
4156 mas->offset++; /* Keep mas accurate. */
4157 }
4158 } else if (!mt_in_rcu(mas->tree)) {
4159 /*
4160 * Expand the range, only partially overwriting the previous and
4161 * next ranges
4162 */
4163 gap |= !mt_slot_locked(mas->tree, slots, offset + 2);
4164 rcu_assign_pointer(slots[offset + 1], wr_mas->entry);
e6d1ffd6 4165 wr_mas->pivots[offset] = mas->index - 1;
64891ba3 4166 wr_mas->pivots[offset + 1] = mas->last;
e6d1ffd6 4167 mas->offset++; /* Keep mas accurate. */
64891ba3
PZ
4168 } else {
4169 return false;
54a611b6
LH
4170 }
4171
54a611b6 4172 trace_ma_write(__func__, mas, 0, wr_mas->entry);
e6d1ffd6
PZ
4173 /*
4174 * Only update gap when the new entry is empty or there is an empty
4175 * entry in the original two ranges.
4176 */
4177 if (!wr_mas->entry || gap)
4178 mas_update_gap(mas);
4179
54a611b6
LH
4180 return true;
4181}
4182
54a611b6
LH
4183static inline void mas_wr_extend_null(struct ma_wr_state *wr_mas)
4184{
4185 struct ma_state *mas = wr_mas->mas;
4186
8c995a63
PZ
4187 if (!wr_mas->slots[wr_mas->offset_end]) {
4188 /* If this one is null, the next and prev are not */
54a611b6 4189 mas->last = wr_mas->end_piv;
8c995a63
PZ
4190 } else {
4191 /* Check next slot(s) if we are overwriting the end */
4192 if ((mas->last == wr_mas->end_piv) &&
4193 (wr_mas->node_end != wr_mas->offset_end) &&
4194 !wr_mas->slots[wr_mas->offset_end + 1]) {
4195 wr_mas->offset_end++;
4196 if (wr_mas->offset_end == wr_mas->node_end)
4197 mas->last = mas->max;
4198 else
4199 mas->last = wr_mas->pivots[wr_mas->offset_end];
4200 wr_mas->end_piv = mas->last;
4201 }
54a611b6
LH
4202 }
4203
4204 if (!wr_mas->content) {
4205 /* If this one is null, the next and prev are not */
4206 mas->index = wr_mas->r_min;
4207 } else {
4208 /* Check prev slot if we are overwriting the start */
4209 if (mas->index == wr_mas->r_min && mas->offset &&
4210 !wr_mas->slots[mas->offset - 1]) {
4211 mas->offset--;
4212 wr_mas->r_min = mas->index =
4213 mas_safe_min(mas, wr_mas->pivots, mas->offset);
4214 wr_mas->r_max = wr_mas->pivots[mas->offset];
4215 }
4216 }
4217}
4218
a7496ad5
LH
4219static inline void mas_wr_end_piv(struct ma_wr_state *wr_mas)
4220{
4221 while ((wr_mas->offset_end < wr_mas->node_end) &&
4222 (wr_mas->mas->last > wr_mas->pivots[wr_mas->offset_end]))
4223 wr_mas->offset_end++;
4224
4225 if (wr_mas->offset_end < wr_mas->node_end)
4226 wr_mas->end_piv = wr_mas->pivots[wr_mas->offset_end];
4227 else
4228 wr_mas->end_piv = wr_mas->mas->max;
4229
4230 if (!wr_mas->entry)
4231 mas_wr_extend_null(wr_mas);
4232}
4233
c6fc9e4a
PZ
4234static inline unsigned char mas_wr_new_end(struct ma_wr_state *wr_mas)
4235{
4236 struct ma_state *mas = wr_mas->mas;
4237 unsigned char new_end = wr_mas->node_end + 2;
4238
4239 new_end -= wr_mas->offset_end - mas->offset;
4240 if (wr_mas->r_min == mas->index)
4241 new_end--;
4242
4243 if (wr_mas->end_piv == mas->last)
4244 new_end--;
4245
4246 return new_end;
4247}
4248
2e1da329
PZ
4249/*
4250 * mas_wr_append: Attempt to append
4251 * @wr_mas: the maple write state
4252 *
4253 * Return: True if appended, false otherwise
4254 */
23e9dde0
PZ
4255static inline bool mas_wr_append(struct ma_wr_state *wr_mas,
4256 unsigned char new_end)
54a611b6
LH
4257{
4258 unsigned char end = wr_mas->node_end;
54a611b6
LH
4259 struct ma_state *mas = wr_mas->mas;
4260 unsigned char node_pivots = mt_pivots[wr_mas->type];
4261
2e1da329
PZ
4262 if (mas->offset != wr_mas->node_end)
4263 return false;
54a611b6 4264
2e1da329
PZ
4265 if (new_end < node_pivots) {
4266 wr_mas->pivots[new_end] = wr_mas->pivots[end];
4267 ma_set_meta(wr_mas->node, maple_leaf_64, 0, new_end);
4268 }
54a611b6 4269
23e9dde0
PZ
4270 if (new_end == wr_mas->node_end + 1) {
4271 if (mas->last == wr_mas->r_max) {
4272 /* Append to end of range */
4273 rcu_assign_pointer(wr_mas->slots[new_end],
4274 wr_mas->entry);
4275 wr_mas->pivots[end] = mas->index - 1;
4276 mas->offset = new_end;
4277 } else {
4278 /* Append to start of range */
4279 rcu_assign_pointer(wr_mas->slots[new_end],
4280 wr_mas->content);
4281 wr_mas->pivots[end] = mas->last;
4282 rcu_assign_pointer(wr_mas->slots[end], wr_mas->entry);
4283 }
2e1da329 4284 } else {
23e9dde0 4285 /* Append to the range without touching any boundaries. */
54a611b6 4286 rcu_assign_pointer(wr_mas->slots[new_end], wr_mas->content);
23e9dde0
PZ
4287 wr_mas->pivots[end + 1] = mas->last;
4288 rcu_assign_pointer(wr_mas->slots[end + 1], wr_mas->entry);
4289 wr_mas->pivots[end] = mas->index - 1;
4290 mas->offset = end + 1;
54a611b6
LH
4291 }
4292
2e1da329
PZ
4293 if (!wr_mas->content || !wr_mas->entry)
4294 mas_update_gap(mas);
4295
4296 return true;
54a611b6
LH
4297}
4298
4299/*
4300 * mas_wr_bnode() - Slow path for a modification.
4301 * @wr_mas: The write maple state
4302 *
4303 * This is where split, rebalance end up.
4304 */
4305static void mas_wr_bnode(struct ma_wr_state *wr_mas)
4306{
4307 struct maple_big_node b_node;
4308
4309 trace_ma_write(__func__, wr_mas->mas, 0, wr_mas->entry);
4310 memset(&b_node, 0, sizeof(struct maple_big_node));
4311 mas_store_b_node(wr_mas, &b_node, wr_mas->offset_end);
4312 mas_commit_b_node(wr_mas, &b_node, wr_mas->node_end);
4313}
4314
4315static inline void mas_wr_modify(struct ma_wr_state *wr_mas)
4316{
54a611b6 4317 struct ma_state *mas = wr_mas->mas;
c6fc9e4a 4318 unsigned char new_end;
54a611b6
LH
4319
4320 /* Direct replacement */
4321 if (wr_mas->r_min == mas->index && wr_mas->r_max == mas->last) {
4322 rcu_assign_pointer(wr_mas->slots[mas->offset], wr_mas->entry);
4323 if (!!wr_mas->entry ^ !!wr_mas->content)
4324 mas_update_gap(mas);
4325 return;
4326 }
4327
c6fc9e4a
PZ
4328 /*
4329 * new_end exceeds the size of the maple node and cannot enter the fast
4330 * path.
4331 */
4332 new_end = mas_wr_new_end(wr_mas);
4333 if (new_end >= mt_slots[wr_mas->type])
54a611b6
LH
4334 goto slow_path;
4335
2e1da329 4336 /* Attempt to append */
23e9dde0 4337 if (mas_wr_append(wr_mas, new_end))
54a611b6 4338 return;
54a611b6 4339
e6d1ffd6 4340 if (new_end == wr_mas->node_end && mas_wr_slot_store(wr_mas))
54a611b6 4341 return;
7a03ae39
PZ
4342
4343 if (mas_wr_node_store(wr_mas, new_end))
54a611b6
LH
4344 return;
4345
4346 if (mas_is_err(mas))
4347 return;
4348
4349slow_path:
4350 mas_wr_bnode(wr_mas);
4351}
4352
4353/*
4354 * mas_wr_store_entry() - Internal call to store a value
4355 * @mas: The maple state
4356 * @entry: The entry to store.
4357 *
4358 * Return: The contents that was stored at the index.
4359 */
4360static inline void *mas_wr_store_entry(struct ma_wr_state *wr_mas)
4361{
4362 struct ma_state *mas = wr_mas->mas;
4363
4364 wr_mas->content = mas_start(mas);
4365 if (mas_is_none(mas) || mas_is_ptr(mas)) {
4366 mas_store_root(mas, wr_mas->entry);
4367 return wr_mas->content;
4368 }
4369
4370 if (unlikely(!mas_wr_walk(wr_mas))) {
4371 mas_wr_spanning_store(wr_mas);
4372 return wr_mas->content;
4373 }
4374
4375 /* At this point, we are at the leaf node that needs to be altered. */
54a611b6 4376 mas_wr_end_piv(wr_mas);
54a611b6
LH
4377 /* New root for a single pointer */
4378 if (unlikely(!mas->index && mas->last == ULONG_MAX)) {
4379 mas_new_root(mas, wr_mas->entry);
4380 return wr_mas->content;
4381 }
4382
4383 mas_wr_modify(wr_mas);
4384 return wr_mas->content;
4385}
4386
4387/**
4388 * mas_insert() - Internal call to insert a value
4389 * @mas: The maple state
4390 * @entry: The entry to store
4391 *
4392 * Return: %NULL or the contents that already exists at the requested index
4393 * otherwise. The maple state needs to be checked for error conditions.
4394 */
4395static inline void *mas_insert(struct ma_state *mas, void *entry)
4396{
4397 MA_WR_STATE(wr_mas, mas, entry);
4398
4399 /*
4400 * Inserting a new range inserts either 0, 1, or 2 pivots within the
4401 * tree. If the insert fits exactly into an existing gap with a value
4402 * of NULL, then the slot only needs to be written with the new value.
4403 * If the range being inserted is adjacent to another range, then only a
4404 * single pivot needs to be inserted (as well as writing the entry). If
4405 * the new range is within a gap but does not touch any other ranges,
4406 * then two pivots need to be inserted: the start - 1, and the end. As
4407 * usual, the entry must be written. Most operations require a new node
4408 * to be allocated and replace an existing node to ensure RCU safety,
4409 * when in RCU mode. The exception to requiring a newly allocated node
4410 * is when inserting at the end of a node (appending). When done
4411 * carefully, appending can reuse the node in place.
4412 */
4413 wr_mas.content = mas_start(mas);
4414 if (wr_mas.content)
4415 goto exists;
4416
4417 if (mas_is_none(mas) || mas_is_ptr(mas)) {
4418 mas_store_root(mas, entry);
4419 return NULL;
4420 }
4421
4422 /* spanning writes always overwrite something */
4423 if (!mas_wr_walk(&wr_mas))
4424 goto exists;
4425
4426 /* At this point, we are at the leaf node that needs to be altered. */
4427 wr_mas.offset_end = mas->offset;
4428 wr_mas.end_piv = wr_mas.r_max;
4429
4430 if (wr_mas.content || (mas->last > wr_mas.r_max))
4431 goto exists;
4432
4433 if (!entry)
4434 return NULL;
4435
4436 mas_wr_modify(&wr_mas);
4437 return wr_mas.content;
4438
4439exists:
4440 mas_set_err(mas, -EEXIST);
4441 return wr_mas.content;
4442
4443}
4444
de6e386c
LH
4445static inline void mas_rewalk(struct ma_state *mas, unsigned long index)
4446{
4447retry:
4448 mas_set(mas, index);
4449 mas_state_walk(mas);
4450 if (mas_is_start(mas))
4451 goto retry;
4452}
4453
4454static inline bool mas_rewalk_if_dead(struct ma_state *mas,
4455 struct maple_node *node, const unsigned long index)
4456{
4457 if (unlikely(ma_dead_node(node))) {
4458 mas_rewalk(mas, index);
4459 return true;
4460 }
4461 return false;
4462}
4463
54a611b6
LH
4464/*
4465 * mas_prev_node() - Find the prev non-null entry at the same level in the
4466 * tree. The prev value will be mas->node[mas->offset] or MAS_NONE.
4467 * @mas: The maple state
4468 * @min: The lower limit to search
4469 *
4470 * The prev node value will be mas->node[mas->offset] or MAS_NONE.
4471 * Return: 1 if the node is dead, 0 otherwise.
4472 */
4473static inline int mas_prev_node(struct ma_state *mas, unsigned long min)
4474{
4475 enum maple_type mt;
4476 int offset, level;
4477 void __rcu **slots;
4478 struct maple_node *node;
54a611b6 4479 unsigned long *pivots;
dd9a8513 4480 unsigned long max;
54a611b6 4481
dd9a8513
LH
4482 node = mas_mn(mas);
4483 if (!mas->min)
4484 goto no_entry;
4485
4486 max = mas->min - 1;
4487 if (max < min)
4488 goto no_entry;
54a611b6
LH
4489
4490 level = 0;
4491 do {
54a611b6
LH
4492 if (ma_is_root(node))
4493 goto no_entry;
4494
4495 /* Walk up. */
4496 if (unlikely(mas_ascend(mas)))
4497 return 1;
4498 offset = mas->offset;
4499 level++;
dd9a8513 4500 node = mas_mn(mas);
54a611b6
LH
4501 } while (!offset);
4502
4503 offset--;
4504 mt = mte_node_type(mas->node);
54a611b6
LH
4505 while (level > 1) {
4506 level--;
dd9a8513
LH
4507 slots = ma_slots(node, mt);
4508 mas->node = mas_slot(mas, slots, offset);
54a611b6
LH
4509 if (unlikely(ma_dead_node(node)))
4510 return 1;
4511
54a611b6
LH
4512 mt = mte_node_type(mas->node);
4513 node = mas_mn(mas);
54a611b6 4514 pivots = ma_pivots(node, mt);
dd9a8513 4515 offset = ma_data_end(node, mt, pivots, max);
39d0bd86
LH
4516 if (unlikely(ma_dead_node(node)))
4517 return 1;
54a611b6
LH
4518 }
4519
dd9a8513 4520 slots = ma_slots(node, mt);
54a611b6 4521 mas->node = mas_slot(mas, slots, offset);
dd9a8513 4522 pivots = ma_pivots(node, mt);
54a611b6
LH
4523 if (unlikely(ma_dead_node(node)))
4524 return 1;
4525
dd9a8513
LH
4526 if (likely(offset))
4527 mas->min = pivots[offset - 1] + 1;
4528 mas->max = max;
54a611b6
LH
4529 mas->offset = mas_data_end(mas);
4530 if (unlikely(mte_dead_node(mas->node)))
4531 return 1;
4532
4533 return 0;
4534
54a611b6
LH
4535no_entry:
4536 if (unlikely(ma_dead_node(node)))
4537 return 1;
4538
4539 mas->node = MAS_NONE;
4540 return 0;
4541}
4542
dd9a8513
LH
4543/*
4544 * mas_prev_slot() - Get the entry in the previous slot
4545 *
4546 * @mas: The maple state
4547 * @max: The minimum starting range
4548 *
4549 * Return: The entry in the previous slot which is possibly NULL
4550 */
4551static void *mas_prev_slot(struct ma_state *mas, unsigned long min, bool empty)
4552{
4553 void *entry;
4554 void __rcu **slots;
4555 unsigned long pivot;
4556 enum maple_type type;
4557 unsigned long *pivots;
4558 struct maple_node *node;
4559 unsigned long save_point = mas->index;
4560
4561retry:
4562 node = mas_mn(mas);
4563 type = mte_node_type(mas->node);
4564 pivots = ma_pivots(node, type);
4565 if (unlikely(mas_rewalk_if_dead(mas, node, save_point)))
4566 goto retry;
4567
4568again:
4569 if (mas->min <= min) {
4570 pivot = mas_safe_min(mas, pivots, mas->offset);
4571
4572 if (unlikely(mas_rewalk_if_dead(mas, node, save_point)))
4573 goto retry;
4574
4575 if (pivot <= min)
4576 return NULL;
4577 }
4578
4579 if (likely(mas->offset)) {
4580 mas->offset--;
4581 mas->last = mas->index - 1;
4582 mas->index = mas_safe_min(mas, pivots, mas->offset);
4583 } else {
4584 if (mas_prev_node(mas, min)) {
4585 mas_rewalk(mas, save_point);
4586 goto retry;
4587 }
4588
4589 if (mas_is_none(mas))
4590 return NULL;
4591
4592 mas->last = mas->max;
4593 node = mas_mn(mas);
4594 type = mte_node_type(mas->node);
4595 pivots = ma_pivots(node, type);
4596 mas->index = pivots[mas->offset - 1] + 1;
4597 }
4598
4599 slots = ma_slots(node, type);
4600 entry = mas_slot(mas, slots, mas->offset);
4601 if (unlikely(mas_rewalk_if_dead(mas, node, save_point)))
4602 goto retry;
4603
4604 if (likely(entry))
4605 return entry;
4606
4607 if (!empty)
4608 goto again;
4609
4610 return entry;
4611}
4612
54a611b6
LH
4613/*
4614 * mas_next_node() - Get the next node at the same level in the tree.
4615 * @mas: The maple state
4616 * @max: The maximum pivot value to check.
4617 *
4618 * The next value will be mas->node[mas->offset] or MAS_NONE.
4619 * Return: 1 on dead node, 0 otherwise.
4620 */
4621static inline int mas_next_node(struct ma_state *mas, struct maple_node *node,
4622 unsigned long max)
4623{
fff4a58c 4624 unsigned long min;
54a611b6
LH
4625 unsigned long *pivots;
4626 struct maple_enode *enode;
4627 int level = 0;
39d0bd86 4628 unsigned char node_end;
54a611b6
LH
4629 enum maple_type mt;
4630 void __rcu **slots;
4631
4632 if (mas->max >= max)
4633 goto no_entry;
4634
fff4a58c 4635 min = mas->max + 1;
54a611b6
LH
4636 level = 0;
4637 do {
4638 if (ma_is_root(node))
4639 goto no_entry;
4640
fff4a58c 4641 /* Walk up. */
54a611b6
LH
4642 if (unlikely(mas_ascend(mas)))
4643 return 1;
4644
54a611b6
LH
4645 level++;
4646 node = mas_mn(mas);
4647 mt = mte_node_type(mas->node);
4648 pivots = ma_pivots(node, mt);
39d0bd86
LH
4649 node_end = ma_data_end(node, mt, pivots, mas->max);
4650 if (unlikely(ma_dead_node(node)))
4651 return 1;
4652
fff4a58c 4653 } while (unlikely(mas->offset == node_end));
54a611b6
LH
4654
4655 slots = ma_slots(node, mt);
fff4a58c
LH
4656 mas->offset++;
4657 enode = mas_slot(mas, slots, mas->offset);
4658 if (unlikely(ma_dead_node(node)))
4659 return 1;
54a611b6 4660
fff4a58c
LH
4661 if (level > 1)
4662 mas->offset = 0;
4663
4664 while (unlikely(level > 1)) {
54a611b6 4665 level--;
fff4a58c 4666 mas->node = enode;
54a611b6
LH
4667 node = mas_mn(mas);
4668 mt = mte_node_type(mas->node);
4669 slots = ma_slots(node, mt);
fff4a58c 4670 enode = mas_slot(mas, slots, 0);
39d0bd86
LH
4671 if (unlikely(ma_dead_node(node)))
4672 return 1;
54a611b6
LH
4673 }
4674
fff4a58c
LH
4675 if (!mas->offset)
4676 pivots = ma_pivots(node, mt);
4677
4678 mas->max = mas_safe_pivot(mas, pivots, mas->offset, mt);
54a611b6
LH
4679 if (unlikely(ma_dead_node(node)))
4680 return 1;
4681
4682 mas->node = enode;
4683 mas->min = min;
54a611b6
LH
4684 return 0;
4685
4686no_entry:
4687 if (unlikely(ma_dead_node(node)))
4688 return 1;
4689
4690 mas->node = MAS_NONE;
4691 return 0;
4692}
4693
4694/*
fff4a58c 4695 * mas_next_slot() - Get the entry in the next slot
54a611b6 4696 *
fff4a58c
LH
4697 * @mas: The maple state
4698 * @max: The maximum starting range
4699 * @empty: Can be empty
54a611b6 4700 *
fff4a58c 4701 * Return: The entry in the next slot which is possibly NULL
54a611b6 4702 */
fff4a58c 4703static void *mas_next_slot(struct ma_state *mas, unsigned long max, bool empty)
54a611b6 4704{
54a611b6 4705 void __rcu **slots;
fff4a58c
LH
4706 unsigned long *pivots;
4707 unsigned long pivot;
4708 enum maple_type type;
4709 struct maple_node *node;
4710 unsigned char data_end;
4711 unsigned long save_point = mas->last;
54a611b6
LH
4712 void *entry;
4713
fff4a58c
LH
4714retry:
4715 node = mas_mn(mas);
4716 type = mte_node_type(mas->node);
39d0bd86 4717 pivots = ma_pivots(node, type);
fff4a58c
LH
4718 data_end = ma_data_end(node, type, pivots, mas->max);
4719 if (unlikely(mas_rewalk_if_dead(mas, node, save_point)))
4720 goto retry;
54a611b6 4721
fff4a58c
LH
4722again:
4723 if (mas->max >= max) {
4724 if (likely(mas->offset < data_end))
4725 pivot = pivots[mas->offset];
4726 else
4727 return NULL; /* must be mas->max */
54a611b6 4728
fff4a58c
LH
4729 if (unlikely(mas_rewalk_if_dead(mas, node, save_point)))
4730 goto retry;
54a611b6
LH
4731
4732 if (pivot >= max)
4733 return NULL;
fff4a58c 4734 }
54a611b6 4735
fff4a58c
LH
4736 if (likely(mas->offset < data_end)) {
4737 mas->index = pivots[mas->offset] + 1;
4738 mas->offset++;
4739 if (likely(mas->offset < data_end))
4740 mas->last = pivots[mas->offset];
4741 else
4742 mas->last = mas->max;
4743 } else {
4744 if (mas_next_node(mas, node, max)) {
4745 mas_rewalk(mas, save_point);
4746 goto retry;
4747 }
4748
4749 if (mas_is_none(mas))
ca80f610
LH
4750 return NULL;
4751
fff4a58c
LH
4752 mas->offset = 0;
4753 mas->index = mas->min;
4754 node = mas_mn(mas);
4755 type = mte_node_type(mas->node);
4756 pivots = ma_pivots(node, type);
4757 mas->last = pivots[0];
54a611b6
LH
4758 }
4759
fff4a58c
LH
4760 slots = ma_slots(node, type);
4761 entry = mt_slot(mas->tree, slots, mas->offset);
4762 if (unlikely(mas_rewalk_if_dead(mas, node, save_point)))
4763 goto retry;
54a611b6 4764
fff4a58c
LH
4765 if (entry)
4766 return entry;
54a611b6 4767
fff4a58c
LH
4768 if (!empty) {
4769 if (!mas->offset)
4770 data_end = 2;
4771 goto again;
4772 }
4773
4774 return entry;
54a611b6
LH
4775}
4776
4777/*
4778 * mas_next_entry() - Internal function to get the next entry.
4779 * @mas: The maple state
4780 * @limit: The maximum range start.
4781 *
4782 * Set the @mas->node to the next entry and the range_start to
4783 * the beginning value for the entry. Does not check beyond @limit.
4784 * Sets @mas->index and @mas->last to the limit if it is hit.
4785 * Restarts on dead nodes.
4786 *
4787 * Return: the next entry or %NULL.
4788 */
4789static inline void *mas_next_entry(struct ma_state *mas, unsigned long limit)
4790{
ca80f610 4791 if (mas->last >= limit)
50e81c82 4792 return NULL;
ca80f610 4793
6169b553 4794 return mas_next_slot(mas, limit, false);
54a611b6
LH
4795}
4796
54a611b6
LH
4797/*
4798 * mas_rev_awalk() - Internal function. Reverse allocation walk. Find the
4799 * highest gap address of a given size in a given node and descend.
4800 * @mas: The maple state
4801 * @size: The needed size.
4802 *
4803 * Return: True if found in a leaf, false otherwise.
4804 *
4805 */
fad8e429
LH
4806static bool mas_rev_awalk(struct ma_state *mas, unsigned long size,
4807 unsigned long *gap_min, unsigned long *gap_max)
54a611b6
LH
4808{
4809 enum maple_type type = mte_node_type(mas->node);
4810 struct maple_node *node = mas_mn(mas);
4811 unsigned long *pivots, *gaps;
4812 void __rcu **slots;
4813 unsigned long gap = 0;
7327e811 4814 unsigned long max, min;
54a611b6
LH
4815 unsigned char offset;
4816
4817 if (unlikely(mas_is_err(mas)))
4818 return true;
4819
4820 if (ma_is_dense(type)) {
4821 /* dense nodes. */
4822 mas->offset = (unsigned char)(mas->index - mas->min);
4823 return true;
4824 }
4825
4826 pivots = ma_pivots(node, type);
4827 slots = ma_slots(node, type);
4828 gaps = ma_gaps(node, type);
4829 offset = mas->offset;
4830 min = mas_safe_min(mas, pivots, offset);
4831 /* Skip out of bounds. */
4832 while (mas->last < min)
4833 min = mas_safe_min(mas, pivots, --offset);
4834
4835 max = mas_safe_pivot(mas, pivots, offset, type);
7327e811 4836 while (mas->index <= max) {
54a611b6
LH
4837 gap = 0;
4838 if (gaps)
4839 gap = gaps[offset];
4840 else if (!mas_slot(mas, slots, offset))
4841 gap = max - min + 1;
4842
4843 if (gap) {
4844 if ((size <= gap) && (size <= mas->last - min + 1))
4845 break;
4846
4847 if (!gaps) {
4848 /* Skip the next slot, it cannot be a gap. */
4849 if (offset < 2)
4850 goto ascend;
4851
4852 offset -= 2;
4853 max = pivots[offset];
4854 min = mas_safe_min(mas, pivots, offset);
4855 continue;
4856 }
4857 }
4858
4859 if (!offset)
4860 goto ascend;
4861
4862 offset--;
4863 max = min - 1;
4864 min = mas_safe_min(mas, pivots, offset);
4865 }
4866
7327e811
LH
4867 if (unlikely((mas->index > max) || (size - 1 > max - mas->index)))
4868 goto no_space;
54a611b6
LH
4869
4870 if (unlikely(ma_is_leaf(type))) {
4871 mas->offset = offset;
fad8e429
LH
4872 *gap_min = min;
4873 *gap_max = min + gap - 1;
54a611b6
LH
4874 return true;
4875 }
4876
4877 /* descend, only happens under lock. */
4878 mas->node = mas_slot(mas, slots, offset);
4879 mas->min = min;
4880 mas->max = max;
4881 mas->offset = mas_data_end(mas);
4882 return false;
4883
4884ascend:
7327e811
LH
4885 if (!mte_is_root(mas->node))
4886 return false;
54a611b6 4887
7327e811
LH
4888no_space:
4889 mas_set_err(mas, -EBUSY);
54a611b6
LH
4890 return false;
4891}
4892
4893static inline bool mas_anode_descend(struct ma_state *mas, unsigned long size)
4894{
4895 enum maple_type type = mte_node_type(mas->node);
4896 unsigned long pivot, min, gap = 0;
06e8fd99
LH
4897 unsigned char offset, data_end;
4898 unsigned long *gaps, *pivots;
4899 void __rcu **slots;
4900 struct maple_node *node;
54a611b6
LH
4901 bool found = false;
4902
4903 if (ma_is_dense(type)) {
4904 mas->offset = (unsigned char)(mas->index - mas->min);
4905 return true;
4906 }
4907
06e8fd99
LH
4908 node = mas_mn(mas);
4909 pivots = ma_pivots(node, type);
4910 slots = ma_slots(node, type);
4911 gaps = ma_gaps(node, type);
54a611b6 4912 offset = mas->offset;
54a611b6 4913 min = mas_safe_min(mas, pivots, offset);
06e8fd99
LH
4914 data_end = ma_data_end(node, type, pivots, mas->max);
4915 for (; offset <= data_end; offset++) {
29b2681f 4916 pivot = mas_safe_pivot(mas, pivots, offset, type);
54a611b6
LH
4917
4918 /* Not within lower bounds */
4919 if (mas->index > pivot)
4920 goto next_slot;
4921
4922 if (gaps)
4923 gap = gaps[offset];
4924 else if (!mas_slot(mas, slots, offset))
4925 gap = min(pivot, mas->last) - max(mas->index, min) + 1;
4926 else
4927 goto next_slot;
4928
4929 if (gap >= size) {
4930 if (ma_is_leaf(type)) {
4931 found = true;
4932 goto done;
4933 }
4934 if (mas->index <= pivot) {
4935 mas->node = mas_slot(mas, slots, offset);
4936 mas->min = min;
4937 mas->max = pivot;
4938 offset = 0;
54a611b6
LH
4939 break;
4940 }
4941 }
4942next_slot:
4943 min = pivot + 1;
4944 if (mas->last <= pivot) {
4945 mas_set_err(mas, -EBUSY);
4946 return true;
4947 }
4948 }
4949
4950 if (mte_is_root(mas->node))
4951 found = true;
4952done:
4953 mas->offset = offset;
4954 return found;
4955}
4956
4957/**
4958 * mas_walk() - Search for @mas->index in the tree.
4959 * @mas: The maple state.
4960 *
4961 * mas->index and mas->last will be set to the range if there is a value. If
4962 * mas->node is MAS_NONE, reset to MAS_START.
4963 *
4964 * Return: the entry at the location or %NULL.
4965 */
4966void *mas_walk(struct ma_state *mas)
4967{
4968 void *entry;
4969
6b23a290
LH
4970 if (mas_is_none(mas) || mas_is_paused(mas) || mas_is_ptr(mas))
4971 mas->node = MAS_START;
54a611b6
LH
4972retry:
4973 entry = mas_state_walk(mas);
6b23a290 4974 if (mas_is_start(mas)) {
54a611b6 4975 goto retry;
6b23a290
LH
4976 } else if (mas_is_none(mas)) {
4977 mas->index = 0;
4978 mas->last = ULONG_MAX;
4979 } else if (mas_is_ptr(mas)) {
54a611b6
LH
4980 if (!mas->index) {
4981 mas->last = 0;
6b23a290 4982 return entry;
54a611b6 4983 }
54a611b6 4984
6b23a290 4985 mas->index = 1;
54a611b6 4986 mas->last = ULONG_MAX;
6b23a290
LH
4987 mas->node = MAS_NONE;
4988 return NULL;
54a611b6
LH
4989 }
4990
4991 return entry;
4992}
120b1162 4993EXPORT_SYMBOL_GPL(mas_walk);
54a611b6
LH
4994
4995static inline bool mas_rewind_node(struct ma_state *mas)
4996{
4997 unsigned char slot;
4998
4999 do {
5000 if (mte_is_root(mas->node)) {
5001 slot = mas->offset;
5002 if (!slot)
5003 return false;
5004 } else {
5005 mas_ascend(mas);
5006 slot = mas->offset;
5007 }
5008 } while (!slot);
5009
5010 mas->offset = --slot;
5011 return true;
5012}
5013
5014/*
5015 * mas_skip_node() - Internal function. Skip over a node.
5016 * @mas: The maple state.
5017 *
5018 * Return: true if there is another node, false otherwise.
5019 */
5020static inline bool mas_skip_node(struct ma_state *mas)
5021{
0fa99fdf
LH
5022 if (mas_is_err(mas))
5023 return false;
54a611b6 5024
54a611b6
LH
5025 do {
5026 if (mte_is_root(mas->node)) {
0fa99fdf 5027 if (mas->offset >= mas_data_end(mas)) {
54a611b6
LH
5028 mas_set_err(mas, -EBUSY);
5029 return false;
5030 }
5031 } else {
5032 mas_ascend(mas);
54a611b6 5033 }
0fa99fdf 5034 } while (mas->offset >= mas_data_end(mas));
54a611b6 5035
0fa99fdf 5036 mas->offset++;
54a611b6
LH
5037 return true;
5038}
5039
5040/*
5041 * mas_awalk() - Allocation walk. Search from low address to high, for a gap of
5042 * @size
5043 * @mas: The maple state
5044 * @size: The size of the gap required
5045 *
5046 * Search between @mas->index and @mas->last for a gap of @size.
5047 */
5048static inline void mas_awalk(struct ma_state *mas, unsigned long size)
5049{
5050 struct maple_enode *last = NULL;
5051
5052 /*
5053 * There are 4 options:
5054 * go to child (descend)
5055 * go back to parent (ascend)
5056 * no gap found. (return, slot == MAPLE_NODE_SLOTS)
5057 * found the gap. (return, slot != MAPLE_NODE_SLOTS)
5058 */
5059 while (!mas_is_err(mas) && !mas_anode_descend(mas, size)) {
5060 if (last == mas->node)
5061 mas_skip_node(mas);
5062 else
5063 last = mas->node;
5064 }
5065}
5066
54a611b6
LH
5067/*
5068 * mas_sparse_area() - Internal function. Return upper or lower limit when
5069 * searching for a gap in an empty tree.
5070 * @mas: The maple state
5071 * @min: the minimum range
5072 * @max: The maximum range
5073 * @size: The size of the gap
5074 * @fwd: Searching forward or back
5075 */
29ad6bb3 5076static inline int mas_sparse_area(struct ma_state *mas, unsigned long min,
54a611b6
LH
5077 unsigned long max, unsigned long size, bool fwd)
5078{
29ad6bb3
PZ
5079 if (!unlikely(mas_is_none(mas)) && min == 0) {
5080 min++;
5081 /*
5082 * At this time, min is increased, we need to recheck whether
5083 * the size is satisfied.
5084 */
5085 if (min > max || max - min + 1 < size)
5086 return -EBUSY;
5087 }
54a611b6
LH
5088 /* mas_is_ptr */
5089
54a611b6 5090 if (fwd) {
29ad6bb3
PZ
5091 mas->index = min;
5092 mas->last = min + size - 1;
5093 } else {
5094 mas->last = max;
5095 mas->index = max - size + 1;
54a611b6 5096 }
29ad6bb3 5097 return 0;
54a611b6
LH
5098}
5099
5100/*
5101 * mas_empty_area() - Get the lowest address within the range that is
5102 * sufficient for the size requested.
5103 * @mas: The maple state
5104 * @min: The lowest value of the range
5105 * @max: The highest value of the range
5106 * @size: The size needed
5107 */
5108int mas_empty_area(struct ma_state *mas, unsigned long min,
5109 unsigned long max, unsigned long size)
5110{
5111 unsigned char offset;
5112 unsigned long *pivots;
5113 enum maple_type mt;
5114
ba997212
LH
5115 if (min > max)
5116 return -EINVAL;
5117
5118 if (size == 0 || max - min < size - 1)
fad8e429
LH
5119 return -EINVAL;
5120
54a611b6
LH
5121 if (mas_is_start(mas))
5122 mas_start(mas);
5123 else if (mas->offset >= 2)
5124 mas->offset -= 2;
5125 else if (!mas_skip_node(mas))
5126 return -EBUSY;
5127
5128 /* Empty set */
29ad6bb3
PZ
5129 if (mas_is_none(mas) || mas_is_ptr(mas))
5130 return mas_sparse_area(mas, min, max, size, true);
54a611b6
LH
5131
5132 /* The start of the window can only be within these values */
5133 mas->index = min;
5134 mas->last = max;
5135 mas_awalk(mas, size);
5136
5137 if (unlikely(mas_is_err(mas)))
5138 return xa_err(mas->node);
5139
5140 offset = mas->offset;
5141 if (unlikely(offset == MAPLE_NODE_SLOTS))
5142 return -EBUSY;
5143
5144 mt = mte_node_type(mas->node);
5145 pivots = ma_pivots(mas_mn(mas), mt);
0257d990
PZ
5146 min = mas_safe_min(mas, pivots, offset);
5147 if (mas->index < min)
5148 mas->index = min;
54a611b6
LH
5149 mas->last = mas->index + size - 1;
5150 return 0;
5151}
120b1162 5152EXPORT_SYMBOL_GPL(mas_empty_area);
54a611b6
LH
5153
5154/*
5155 * mas_empty_area_rev() - Get the highest address within the range that is
5156 * sufficient for the size requested.
5157 * @mas: The maple state
5158 * @min: The lowest value of the range
5159 * @max: The highest value of the range
5160 * @size: The size needed
5161 */
5162int mas_empty_area_rev(struct ma_state *mas, unsigned long min,
5163 unsigned long max, unsigned long size)
5164{
5165 struct maple_enode *last = mas->node;
5166
ba997212
LH
5167 if (min > max)
5168 return -EINVAL;
5169
5170 if (size == 0 || max - min < size - 1)
fad8e429
LH
5171 return -EINVAL;
5172
54a611b6
LH
5173 if (mas_is_start(mas)) {
5174 mas_start(mas);
5175 mas->offset = mas_data_end(mas);
5176 } else if (mas->offset >= 2) {
5177 mas->offset -= 2;
5178 } else if (!mas_rewind_node(mas)) {
5179 return -EBUSY;
5180 }
5181
5182 /* Empty set. */
29ad6bb3
PZ
5183 if (mas_is_none(mas) || mas_is_ptr(mas))
5184 return mas_sparse_area(mas, min, max, size, false);
54a611b6
LH
5185
5186 /* The start of the window can only be within these values. */
5187 mas->index = min;
5188 mas->last = max;
5189
fad8e429 5190 while (!mas_rev_awalk(mas, size, &min, &max)) {
54a611b6
LH
5191 if (last == mas->node) {
5192 if (!mas_rewind_node(mas))
5193 return -EBUSY;
5194 } else {
5195 last = mas->node;
5196 }
5197 }
5198
5199 if (mas_is_err(mas))
5200 return xa_err(mas->node);
5201
5202 if (unlikely(mas->offset == MAPLE_NODE_SLOTS))
5203 return -EBUSY;
5204
54a611b6 5205 /* Trim the upper limit to the max. */
ba997212 5206 if (max < mas->last)
fad8e429 5207 mas->last = max;
54a611b6
LH
5208
5209 mas->index = mas->last - size + 1;
5210 return 0;
5211}
120b1162 5212EXPORT_SYMBOL_GPL(mas_empty_area_rev);
54a611b6 5213
54a611b6 5214/*
790e1fa8 5215 * mte_dead_leaves() - Mark all leaves of a node as dead.
54a611b6
LH
5216 * @mas: The maple state
5217 * @slots: Pointer to the slot array
2e5b4921 5218 * @type: The maple node type
54a611b6
LH
5219 *
5220 * Must hold the write lock.
5221 *
5222 * Return: The number of leaves marked as dead.
5223 */
5224static inline
790e1fa8
LH
5225unsigned char mte_dead_leaves(struct maple_enode *enode, struct maple_tree *mt,
5226 void __rcu **slots)
54a611b6
LH
5227{
5228 struct maple_node *node;
5229 enum maple_type type;
5230 void *entry;
5231 int offset;
5232
790e1fa8
LH
5233 for (offset = 0; offset < mt_slot_count(enode); offset++) {
5234 entry = mt_slot(mt, slots, offset);
54a611b6
LH
5235 type = mte_node_type(entry);
5236 node = mte_to_node(entry);
5237 /* Use both node and type to catch LE & BE metadata */
5238 if (!node || !type)
5239 break;
5240
5241 mte_set_node_dead(entry);
54a611b6
LH
5242 node->type = type;
5243 rcu_assign_pointer(slots[offset], node);
5244 }
5245
5246 return offset;
5247}
5248
790e1fa8
LH
5249/**
5250 * mte_dead_walk() - Walk down a dead tree to just before the leaves
5251 * @enode: The maple encoded node
5252 * @offset: The starting offset
5253 *
5254 * Note: This can only be used from the RCU callback context.
5255 */
5256static void __rcu **mte_dead_walk(struct maple_enode **enode, unsigned char offset)
54a611b6
LH
5257{
5258 struct maple_node *node, *next;
5259 void __rcu **slots = NULL;
5260
790e1fa8 5261 next = mte_to_node(*enode);
54a611b6 5262 do {
790e1fa8
LH
5263 *enode = ma_enode_ptr(next);
5264 node = mte_to_node(*enode);
54a611b6 5265 slots = ma_slots(node, node->type);
790e1fa8
LH
5266 next = rcu_dereference_protected(slots[offset],
5267 lock_is_held(&rcu_callback_map));
54a611b6
LH
5268 offset = 0;
5269 } while (!ma_is_leaf(next->type));
5270
5271 return slots;
5272}
5273
790e1fa8
LH
5274/**
5275 * mt_free_walk() - Walk & free a tree in the RCU callback context
5276 * @head: The RCU head that's within the node.
5277 *
5278 * Note: This can only be used from the RCU callback context.
5279 */
54a611b6
LH
5280static void mt_free_walk(struct rcu_head *head)
5281{
5282 void __rcu **slots;
5283 struct maple_node *node, *start;
790e1fa8 5284 struct maple_enode *enode;
54a611b6
LH
5285 unsigned char offset;
5286 enum maple_type type;
54a611b6
LH
5287
5288 node = container_of(head, struct maple_node, rcu);
5289
5290 if (ma_is_leaf(node->type))
5291 goto free_leaf;
5292
54a611b6 5293 start = node;
790e1fa8
LH
5294 enode = mt_mk_node(node, node->type);
5295 slots = mte_dead_walk(&enode, 0);
5296 node = mte_to_node(enode);
54a611b6
LH
5297 do {
5298 mt_free_bulk(node->slot_len, slots);
5299 offset = node->parent_slot + 1;
790e1fa8
LH
5300 enode = node->piv_parent;
5301 if (mte_to_node(enode) == node)
5302 goto free_leaf;
5303
5304 type = mte_node_type(enode);
5305 slots = ma_slots(mte_to_node(enode), type);
5306 if ((offset < mt_slots[type]) &&
5307 rcu_dereference_protected(slots[offset],
5308 lock_is_held(&rcu_callback_map)))
5309 slots = mte_dead_walk(&enode, offset);
5310 node = mte_to_node(enode);
54a611b6
LH
5311 } while ((node != start) || (node->slot_len < offset));
5312
5313 slots = ma_slots(node, node->type);
5314 mt_free_bulk(node->slot_len, slots);
5315
54a611b6
LH
5316free_leaf:
5317 mt_free_rcu(&node->rcu);
5318}
5319
790e1fa8
LH
5320static inline void __rcu **mte_destroy_descend(struct maple_enode **enode,
5321 struct maple_tree *mt, struct maple_enode *prev, unsigned char offset)
54a611b6
LH
5322{
5323 struct maple_node *node;
790e1fa8 5324 struct maple_enode *next = *enode;
54a611b6 5325 void __rcu **slots = NULL;
790e1fa8
LH
5326 enum maple_type type;
5327 unsigned char next_offset = 0;
54a611b6
LH
5328
5329 do {
790e1fa8
LH
5330 *enode = next;
5331 node = mte_to_node(*enode);
5332 type = mte_node_type(*enode);
5333 slots = ma_slots(node, type);
5334 next = mt_slot_locked(mt, slots, next_offset);
54a611b6 5335 if ((mte_dead_node(next)))
790e1fa8 5336 next = mt_slot_locked(mt, slots, ++next_offset);
54a611b6 5337
790e1fa8
LH
5338 mte_set_node_dead(*enode);
5339 node->type = type;
54a611b6
LH
5340 node->piv_parent = prev;
5341 node->parent_slot = offset;
790e1fa8
LH
5342 offset = next_offset;
5343 next_offset = 0;
5344 prev = *enode;
54a611b6
LH
5345 } while (!mte_is_leaf(next));
5346
5347 return slots;
5348}
5349
790e1fa8 5350static void mt_destroy_walk(struct maple_enode *enode, struct maple_tree *mt,
54a611b6
LH
5351 bool free)
5352{
5353 void __rcu **slots;
5354 struct maple_node *node = mte_to_node(enode);
5355 struct maple_enode *start;
54a611b6 5356
2e5b4921
LH
5357 if (mte_is_leaf(enode)) {
5358 node->type = mte_node_type(enode);
54a611b6 5359 goto free_leaf;
2e5b4921 5360 }
54a611b6 5361
2e5b4921 5362 start = enode;
790e1fa8
LH
5363 slots = mte_destroy_descend(&enode, mt, start, 0);
5364 node = mte_to_node(enode); // Updated in the above call.
54a611b6
LH
5365 do {
5366 enum maple_type type;
5367 unsigned char offset;
5368 struct maple_enode *parent, *tmp;
5369
790e1fa8 5370 node->slot_len = mte_dead_leaves(enode, mt, slots);
54a611b6
LH
5371 if (free)
5372 mt_free_bulk(node->slot_len, slots);
5373 offset = node->parent_slot + 1;
790e1fa8
LH
5374 enode = node->piv_parent;
5375 if (mte_to_node(enode) == node)
5376 goto free_leaf;
54a611b6 5377
790e1fa8
LH
5378 type = mte_node_type(enode);
5379 slots = ma_slots(mte_to_node(enode), type);
54a611b6
LH
5380 if (offset >= mt_slots[type])
5381 goto next;
5382
790e1fa8 5383 tmp = mt_slot_locked(mt, slots, offset);
54a611b6 5384 if (mte_node_type(tmp) && mte_to_node(tmp)) {
790e1fa8
LH
5385 parent = enode;
5386 enode = tmp;
5387 slots = mte_destroy_descend(&enode, mt, parent, offset);
54a611b6
LH
5388 }
5389next:
790e1fa8
LH
5390 node = mte_to_node(enode);
5391 } while (start != enode);
54a611b6 5392
790e1fa8
LH
5393 node = mte_to_node(enode);
5394 node->slot_len = mte_dead_leaves(enode, mt, slots);
54a611b6
LH
5395 if (free)
5396 mt_free_bulk(node->slot_len, slots);
5397
54a611b6
LH
5398free_leaf:
5399 if (free)
5400 mt_free_rcu(&node->rcu);
2e5b4921 5401 else
790e1fa8 5402 mt_clear_meta(mt, node, node->type);
54a611b6
LH
5403}
5404
5405/*
5406 * mte_destroy_walk() - Free a tree or sub-tree.
f942b0f0
VY
5407 * @enode: the encoded maple node (maple_enode) to start
5408 * @mt: the tree to free - needed for node types.
54a611b6
LH
5409 *
5410 * Must hold the write lock.
5411 */
5412static inline void mte_destroy_walk(struct maple_enode *enode,
5413 struct maple_tree *mt)
5414{
5415 struct maple_node *node = mte_to_node(enode);
5416
5417 if (mt_in_rcu(mt)) {
790e1fa8 5418 mt_destroy_walk(enode, mt, false);
54a611b6
LH
5419 call_rcu(&node->rcu, mt_free_walk);
5420 } else {
790e1fa8 5421 mt_destroy_walk(enode, mt, true);
54a611b6
LH
5422 }
5423}
5424
5425static void mas_wr_store_setup(struct ma_wr_state *wr_mas)
5426{
fec29364
LH
5427 if (mas_is_start(wr_mas->mas))
5428 return;
5429
1202700c 5430 if (unlikely(mas_is_paused(wr_mas->mas)))
fec29364 5431 goto reset;
1202700c 5432
fec29364
LH
5433 if (unlikely(mas_is_none(wr_mas->mas)))
5434 goto reset;
5435
5436 /*
5437 * A less strict version of mas_is_span_wr() where we allow spanning
5438 * writes within this node. This is to stop partial walks in
5439 * mas_prealloc() from being reset.
5440 */
5441 if (wr_mas->mas->last > wr_mas->mas->max)
5442 goto reset;
5443
5444 if (wr_mas->entry)
5445 return;
5446
5447 if (mte_is_leaf(wr_mas->mas->node) &&
5448 wr_mas->mas->last == wr_mas->mas->max)
5449 goto reset;
5450
5451 return;
5452
5453reset:
5454 mas_reset(wr_mas->mas);
54a611b6
LH
5455}
5456
5457/* Interface */
5458
5459/**
5460 * mas_store() - Store an @entry.
5461 * @mas: The maple state.
5462 * @entry: The entry to store.
5463 *
5464 * The @mas->index and @mas->last is used to set the range for the @entry.
5465 * Note: The @mas should have pre-allocated entries to ensure there is memory to
5466 * store the entry. Please see mas_expected_entries()/mas_destroy() for more details.
5467 *
5468 * Return: the first entry between mas->index and mas->last or %NULL.
5469 */
5470void *mas_store(struct ma_state *mas, void *entry)
5471{
5472 MA_WR_STATE(wr_mas, mas, entry);
5473
5474 trace_ma_write(__func__, mas, 0, entry);
5475#ifdef CONFIG_DEBUG_MAPLE_TREE
e6d6792a 5476 if (MAS_WARN_ON(mas, mas->index > mas->last))
89f499f3 5477 pr_err("Error %lX > %lX %p\n", mas->index, mas->last, entry);
e6d6792a 5478
54a611b6
LH
5479 if (mas->index > mas->last) {
5480 mas_set_err(mas, -EINVAL);
5481 return NULL;
5482 }
5483
5484#endif
5485
5486 /*
5487 * Storing is the same operation as insert with the added caveat that it
5488 * can overwrite entries. Although this seems simple enough, one may
5489 * want to examine what happens if a single store operation was to
5490 * overwrite multiple entries within a self-balancing B-Tree.
5491 */
5492 mas_wr_store_setup(&wr_mas);
5493 mas_wr_store_entry(&wr_mas);
5494 return wr_mas.content;
5495}
120b1162 5496EXPORT_SYMBOL_GPL(mas_store);
54a611b6
LH
5497
5498/**
5499 * mas_store_gfp() - Store a value into the tree.
5500 * @mas: The maple state
5501 * @entry: The entry to store
5502 * @gfp: The GFP_FLAGS to use for allocations if necessary.
5503 *
5504 * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not
5505 * be allocated.
5506 */
5507int mas_store_gfp(struct ma_state *mas, void *entry, gfp_t gfp)
5508{
5509 MA_WR_STATE(wr_mas, mas, entry);
5510
5511 mas_wr_store_setup(&wr_mas);
5512 trace_ma_write(__func__, mas, 0, entry);
5513retry:
5514 mas_wr_store_entry(&wr_mas);
5515 if (unlikely(mas_nomem(mas, gfp)))
5516 goto retry;
5517
5518 if (unlikely(mas_is_err(mas)))
5519 return xa_err(mas->node);
5520
5521 return 0;
5522}
120b1162 5523EXPORT_SYMBOL_GPL(mas_store_gfp);
54a611b6
LH
5524
5525/**
5526 * mas_store_prealloc() - Store a value into the tree using memory
5527 * preallocated in the maple state.
5528 * @mas: The maple state
5529 * @entry: The entry to store.
5530 */
5531void mas_store_prealloc(struct ma_state *mas, void *entry)
5532{
5533 MA_WR_STATE(wr_mas, mas, entry);
5534
5535 mas_wr_store_setup(&wr_mas);
5536 trace_ma_write(__func__, mas, 0, entry);
5537 mas_wr_store_entry(&wr_mas);
1c414c6a 5538 MAS_WR_BUG_ON(&wr_mas, mas_is_err(mas));
54a611b6
LH
5539 mas_destroy(mas);
5540}
120b1162 5541EXPORT_SYMBOL_GPL(mas_store_prealloc);
54a611b6
LH
5542
5543/**
5544 * mas_preallocate() - Preallocate enough nodes for a store operation
5545 * @mas: The maple state
da089254 5546 * @entry: The entry that will be stored
54a611b6
LH
5547 * @gfp: The GFP_FLAGS to use for allocations.
5548 *
5549 * Return: 0 on success, -ENOMEM if memory could not be allocated.
5550 */
da089254 5551int mas_preallocate(struct ma_state *mas, void *entry, gfp_t gfp)
54a611b6 5552{
17983dc6
LH
5553 MA_WR_STATE(wr_mas, mas, entry);
5554 unsigned char node_size;
5555 int request = 1;
54a611b6
LH
5556 int ret;
5557
17983dc6
LH
5558
5559 if (unlikely(!mas->index && mas->last == ULONG_MAX))
5560 goto ask_now;
5561
5562 mas_wr_store_setup(&wr_mas);
5563 wr_mas.content = mas_start(mas);
5564 /* Root expand */
5565 if (unlikely(mas_is_none(mas) || mas_is_ptr(mas)))
5566 goto ask_now;
5567
5568 if (unlikely(!mas_wr_walk(&wr_mas))) {
5569 /* Spanning store, use worst case for now */
5570 request = 1 + mas_mt_height(mas) * 3;
5571 goto ask_now;
5572 }
5573
5574 /* At this point, we are at the leaf node that needs to be altered. */
5575 /* Exact fit, no nodes needed. */
5576 if (wr_mas.r_min == mas->index && wr_mas.r_max == mas->last)
5577 return 0;
5578
5579 mas_wr_end_piv(&wr_mas);
5580 node_size = mas_wr_new_end(&wr_mas);
5581 if (node_size >= mt_slots[wr_mas.type]) {
5582 /* Split, worst case for now. */
5583 request = 1 + mas_mt_height(mas) * 2;
5584 goto ask_now;
5585 }
5586
5587 /* New root needs a singe node */
5588 if (unlikely(mte_is_root(mas->node)))
5589 goto ask_now;
5590
5591 /* Potential spanning rebalance collapsing a node, use worst-case */
5592 if (node_size - 1 <= mt_min_slots[wr_mas.type])
5593 request = mas_mt_height(mas) * 2 - 1;
5594
5595 /* node store, slot store needs one node */
5596ask_now:
5597 mas_node_count_gfp(mas, request, gfp);
54a611b6
LH
5598 mas->mas_flags |= MA_STATE_PREALLOC;
5599 if (likely(!mas_is_err(mas)))
5600 return 0;
5601
5602 mas_set_alloc_req(mas, 0);
5603 ret = xa_err(mas->node);
5604 mas_reset(mas);
5605 mas_destroy(mas);
5606 mas_reset(mas);
5607 return ret;
5608}
5c63a7c3 5609EXPORT_SYMBOL_GPL(mas_preallocate);
54a611b6
LH
5610
5611/*
5612 * mas_destroy() - destroy a maple state.
5613 * @mas: The maple state
5614 *
5615 * Upon completion, check the left-most node and rebalance against the node to
5616 * the right if necessary. Frees any allocated nodes associated with this maple
5617 * state.
5618 */
5619void mas_destroy(struct ma_state *mas)
5620{
5621 struct maple_alloc *node;
541e06b7 5622 unsigned long total;
54a611b6
LH
5623
5624 /*
5625 * When using mas_for_each() to insert an expected number of elements,
5626 * it is possible that the number inserted is less than the expected
5627 * number. To fix an invalid final node, a check is performed here to
5628 * rebalance the previous node with the final node.
5629 */
5630 if (mas->mas_flags & MA_STATE_REBALANCE) {
5631 unsigned char end;
5632
23e734ec 5633 mas_start(mas);
54a611b6
LH
5634 mtree_range_walk(mas);
5635 end = mas_data_end(mas) + 1;
5636 if (end < mt_min_slot_count(mas->node) - 1)
5637 mas_destroy_rebalance(mas, end);
5638
5639 mas->mas_flags &= ~MA_STATE_REBALANCE;
5640 }
5641 mas->mas_flags &= ~(MA_STATE_BULK|MA_STATE_PREALLOC);
5642
541e06b7
LH
5643 total = mas_allocated(mas);
5644 while (total) {
54a611b6
LH
5645 node = mas->alloc;
5646 mas->alloc = node->slot[0];
541e06b7
LH
5647 if (node->node_count > 1) {
5648 size_t count = node->node_count - 1;
5649
5650 mt_free_bulk(count, (void __rcu **)&node->slot[1]);
5651 total -= count;
5652 }
54a611b6 5653 kmem_cache_free(maple_node_cache, node);
541e06b7 5654 total--;
54a611b6 5655 }
541e06b7 5656
54a611b6
LH
5657 mas->alloc = NULL;
5658}
120b1162 5659EXPORT_SYMBOL_GPL(mas_destroy);
54a611b6
LH
5660
5661/*
5662 * mas_expected_entries() - Set the expected number of entries that will be inserted.
5663 * @mas: The maple state
5664 * @nr_entries: The number of expected entries.
5665 *
5666 * This will attempt to pre-allocate enough nodes to store the expected number
5667 * of entries. The allocations will occur using the bulk allocator interface
5668 * for speed. Please call mas_destroy() on the @mas after inserting the entries
5669 * to ensure any unused nodes are freed.
5670 *
5671 * Return: 0 on success, -ENOMEM if memory could not be allocated.
5672 */
5673int mas_expected_entries(struct ma_state *mas, unsigned long nr_entries)
5674{
5675 int nonleaf_cap = MAPLE_ARANGE64_SLOTS - 2;
5676 struct maple_enode *enode = mas->node;
5677 int nr_nodes;
5678 int ret;
5679
5680 /*
5681 * Sometimes it is necessary to duplicate a tree to a new tree, such as
5682 * forking a process and duplicating the VMAs from one tree to a new
5683 * tree. When such a situation arises, it is known that the new tree is
5684 * not going to be used until the entire tree is populated. For
5685 * performance reasons, it is best to use a bulk load with RCU disabled.
5686 * This allows for optimistic splitting that favours the left and reuse
5687 * of nodes during the operation.
5688 */
5689
5690 /* Optimize splitting for bulk insert in-order */
5691 mas->mas_flags |= MA_STATE_BULK;
5692
5693 /*
5694 * Avoid overflow, assume a gap between each entry and a trailing null.
5695 * If this is wrong, it just means allocation can happen during
5696 * insertion of entries.
5697 */
5698 nr_nodes = max(nr_entries, nr_entries * 2 + 1);
5699 if (!mt_is_alloc(mas->tree))
5700 nonleaf_cap = MAPLE_RANGE64_SLOTS - 2;
5701
5702 /* Leaves; reduce slots to keep space for expansion */
5703 nr_nodes = DIV_ROUND_UP(nr_nodes, MAPLE_RANGE64_SLOTS - 2);
5704 /* Internal nodes */
5705 nr_nodes += DIV_ROUND_UP(nr_nodes, nonleaf_cap);
5706 /* Add working room for split (2 nodes) + new parents */
5707 mas_node_count(mas, nr_nodes + 3);
5708
5709 /* Detect if allocations run out */
5710 mas->mas_flags |= MA_STATE_PREALLOC;
5711
5712 if (!mas_is_err(mas))
5713 return 0;
5714
5715 ret = xa_err(mas->node);
5716 mas->node = enode;
5717 mas_destroy(mas);
5718 return ret;
5719
5720}
120b1162 5721EXPORT_SYMBOL_GPL(mas_expected_entries);
54a611b6 5722
6169b553
LH
5723static inline bool mas_next_setup(struct ma_state *mas, unsigned long max,
5724 void **entry)
54a611b6 5725{
ca80f610
LH
5726 bool was_none = mas_is_none(mas);
5727
54a611b6
LH
5728 if (mas_is_none(mas) || mas_is_paused(mas))
5729 mas->node = MAS_START;
5730
5731 if (mas_is_start(mas))
6169b553 5732 *entry = mas_walk(mas); /* Retries on dead nodes handled by mas_walk */
54a611b6
LH
5733
5734 if (mas_is_ptr(mas)) {
6169b553 5735 *entry = NULL;
ca80f610
LH
5736 if (was_none && mas->index == 0) {
5737 mas->index = mas->last = 0;
6169b553 5738 return true;
54a611b6 5739 }
ca80f610
LH
5740 mas->index = 1;
5741 mas->last = ULONG_MAX;
5742 mas->node = MAS_NONE;
6169b553 5743 return true;
54a611b6
LH
5744 }
5745
6169b553
LH
5746 if (mas_is_none(mas))
5747 return true;
5748 return false;
5749}
5750
5751/**
5752 * mas_next() - Get the next entry.
5753 * @mas: The maple state
5754 * @max: The maximum index to check.
5755 *
5756 * Returns the next entry after @mas->index.
5757 * Must hold rcu_read_lock or the write lock.
5758 * Can return the zero entry.
5759 *
5760 * Return: The next entry or %NULL
5761 */
5762void *mas_next(struct ma_state *mas, unsigned long max)
5763{
5764 void *entry = NULL;
5765
5766 if (mas_next_setup(mas, max, &entry))
5767 return entry;
5768
5769 /* Retries on dead nodes handled by mas_next_slot */
5770 return mas_next_slot(mas, max, false);
54a611b6
LH
5771}
5772EXPORT_SYMBOL_GPL(mas_next);
5773
6169b553
LH
5774/**
5775 * mas_next_range() - Advance the maple state to the next range
5776 * @mas: The maple state
5777 * @max: The maximum index to check.
5778 *
5779 * Sets @mas->index and @mas->last to the range.
5780 * Must hold rcu_read_lock or the write lock.
5781 * Can return the zero entry.
5782 *
5783 * Return: The next entry or %NULL
5784 */
5785void *mas_next_range(struct ma_state *mas, unsigned long max)
5786{
5787 void *entry = NULL;
5788
5789 if (mas_next_setup(mas, max, &entry))
5790 return entry;
5791
5792 /* Retries on dead nodes handled by mas_next_slot */
5793 return mas_next_slot(mas, max, true);
5794}
5795EXPORT_SYMBOL_GPL(mas_next_range);
5796
54a611b6
LH
5797/**
5798 * mt_next() - get the next value in the maple tree
5799 * @mt: The maple tree
5800 * @index: The start index
5801 * @max: The maximum index to check
5802 *
fad9c80e
TG
5803 * Takes RCU read lock internally to protect the search, which does not
5804 * protect the returned pointer after dropping RCU read lock.
5805 * See also: Documentation/core-api/maple_tree.rst
5806 *
5807 * Return: The entry higher than @index or %NULL if nothing is found.
54a611b6
LH
5808 */
5809void *mt_next(struct maple_tree *mt, unsigned long index, unsigned long max)
5810{
5811 void *entry = NULL;
5812 MA_STATE(mas, mt, index, index);
5813
5814 rcu_read_lock();
5815 entry = mas_next(&mas, max);
5816 rcu_read_unlock();
5817 return entry;
5818}
5819EXPORT_SYMBOL_GPL(mt_next);
5820
6b9e93e0
LH
5821static inline bool mas_prev_setup(struct ma_state *mas, unsigned long min,
5822 void **entry)
54a611b6 5823{
39193685
LH
5824 if (mas->index <= min)
5825 goto none;
54a611b6
LH
5826
5827 if (mas_is_none(mas) || mas_is_paused(mas))
5828 mas->node = MAS_START;
5829
5830 if (mas_is_start(mas)) {
5831 mas_walk(mas);
5832 if (!mas->index)
39193685 5833 goto none;
54a611b6
LH
5834 }
5835
39193685
LH
5836 if (unlikely(mas_is_ptr(mas))) {
5837 if (!mas->index)
5838 goto none;
54a611b6 5839 mas->index = mas->last = 0;
6b9e93e0
LH
5840 *entry = mas_root(mas);
5841 return true;
39193685
LH
5842 }
5843
5844 if (mas_is_none(mas)) {
5845 if (mas->index) {
5846 /* Walked to out-of-range pointer? */
5847 mas->index = mas->last = 0;
5848 mas->node = MAS_ROOT;
6b9e93e0
LH
5849 *entry = mas_root(mas);
5850 return true;
39193685 5851 }
6b9e93e0 5852 return true;
54a611b6 5853 }
6b9e93e0
LH
5854
5855 return false;
39193685
LH
5856
5857none:
5858 mas->node = MAS_NONE;
6b9e93e0
LH
5859 return true;
5860}
5861
5862/**
5863 * mas_prev() - Get the previous entry
5864 * @mas: The maple state
5865 * @min: The minimum value to check.
5866 *
5867 * Must hold rcu_read_lock or the write lock.
5868 * Will reset mas to MAS_START if the node is MAS_NONE. Will stop on not
5869 * searchable nodes.
5870 *
5871 * Return: the previous value or %NULL.
5872 */
5873void *mas_prev(struct ma_state *mas, unsigned long min)
5874{
5875 void *entry = NULL;
5876
5877 if (mas_prev_setup(mas, min, &entry))
5878 return entry;
5879
5880 return mas_prev_slot(mas, min, false);
54a611b6
LH
5881}
5882EXPORT_SYMBOL_GPL(mas_prev);
5883
6b9e93e0
LH
5884/**
5885 * mas_prev_range() - Advance to the previous range
5886 * @mas: The maple state
5887 * @min: The minimum value to check.
5888 *
5889 * Sets @mas->index and @mas->last to the range.
5890 * Must hold rcu_read_lock or the write lock.
5891 * Will reset mas to MAS_START if the node is MAS_NONE. Will stop on not
5892 * searchable nodes.
5893 *
5894 * Return: the previous value or %NULL.
5895 */
5896void *mas_prev_range(struct ma_state *mas, unsigned long min)
5897{
5898 void *entry = NULL;
5899
5900 if (mas_prev_setup(mas, min, &entry))
5901 return entry;
5902
5903 return mas_prev_slot(mas, min, true);
5904}
5905EXPORT_SYMBOL_GPL(mas_prev_range);
5906
54a611b6
LH
5907/**
5908 * mt_prev() - get the previous value in the maple tree
5909 * @mt: The maple tree
5910 * @index: The start index
5911 * @min: The minimum index to check
5912 *
fad9c80e
TG
5913 * Takes RCU read lock internally to protect the search, which does not
5914 * protect the returned pointer after dropping RCU read lock.
5915 * See also: Documentation/core-api/maple_tree.rst
5916 *
5917 * Return: The entry before @index or %NULL if nothing is found.
54a611b6
LH
5918 */
5919void *mt_prev(struct maple_tree *mt, unsigned long index, unsigned long min)
5920{
5921 void *entry = NULL;
5922 MA_STATE(mas, mt, index, index);
5923
5924 rcu_read_lock();
5925 entry = mas_prev(&mas, min);
5926 rcu_read_unlock();
5927 return entry;
5928}
5929EXPORT_SYMBOL_GPL(mt_prev);
5930
5931/**
5932 * mas_pause() - Pause a mas_find/mas_for_each to drop the lock.
5933 * @mas: The maple state to pause
5934 *
5935 * Some users need to pause a walk and drop the lock they're holding in
5936 * order to yield to a higher priority thread or carry out an operation
5937 * on an entry. Those users should call this function before they drop
5938 * the lock. It resets the @mas to be suitable for the next iteration
5939 * of the loop after the user has reacquired the lock. If most entries
5940 * found during a walk require you to call mas_pause(), the mt_for_each()
5941 * iterator may be more appropriate.
5942 *
5943 */
5944void mas_pause(struct ma_state *mas)
5945{
5946 mas->node = MAS_PAUSE;
5947}
5948EXPORT_SYMBOL_GPL(mas_pause);
5949
5950/**
6169b553 5951 * mas_find_setup() - Internal function to set up mas_find*().
54a611b6 5952 * @mas: The maple state
6169b553
LH
5953 * @max: The maximum index
5954 * @entry: Pointer to the entry
54a611b6 5955 *
6169b553 5956 * Returns: True if entry is the answer, false otherwise.
54a611b6 5957 */
6169b553
LH
5958static inline bool mas_find_setup(struct ma_state *mas, unsigned long max,
5959 void **entry)
54a611b6 5960{
6169b553
LH
5961 *entry = NULL;
5962
ca80f610
LH
5963 if (unlikely(mas_is_none(mas))) {
5964 if (unlikely(mas->last >= max))
6169b553 5965 return true;
ca80f610
LH
5966
5967 mas->index = mas->last;
5968 mas->node = MAS_START;
6169b553 5969 } else if (unlikely(mas_is_paused(mas))) {
ca80f610 5970 if (unlikely(mas->last >= max))
6169b553 5971 return true;
ca80f610 5972
54a611b6
LH
5973 mas->node = MAS_START;
5974 mas->index = ++mas->last;
6169b553 5975 } else if (unlikely(mas_is_ptr(mas)))
ca80f610 5976 goto ptr_out_of_range;
17dc622c 5977
54a611b6
LH
5978 if (unlikely(mas_is_start(mas))) {
5979 /* First run or continue */
54a611b6 5980 if (mas->index > max)
6169b553 5981 return true;
54a611b6 5982
6169b553
LH
5983 *entry = mas_walk(mas);
5984 if (*entry)
5985 return true;
ca80f610 5986
54a611b6
LH
5987 }
5988
ca80f610
LH
5989 if (unlikely(!mas_searchable(mas))) {
5990 if (unlikely(mas_is_ptr(mas)))
5991 goto ptr_out_of_range;
5992
6169b553 5993 return true;
ca80f610
LH
5994 }
5995
5996 if (mas->index == max)
6169b553 5997 return true;
54a611b6 5998
6169b553 5999 return false;
ca80f610
LH
6000
6001ptr_out_of_range:
6002 mas->node = MAS_NONE;
6003 mas->index = 1;
6004 mas->last = ULONG_MAX;
6169b553
LH
6005 return true;
6006}
6007
6008/**
6009 * mas_find() - On the first call, find the entry at or after mas->index up to
6010 * %max. Otherwise, find the entry after mas->index.
6011 * @mas: The maple state
6012 * @max: The maximum value to check.
6013 *
6014 * Must hold rcu_read_lock or the write lock.
6015 * If an entry exists, last and index are updated accordingly.
6016 * May set @mas->node to MAS_NONE.
6017 *
6018 * Return: The entry or %NULL.
6019 */
6020void *mas_find(struct ma_state *mas, unsigned long max)
6021{
6022 void *entry = NULL;
6023
6024 if (mas_find_setup(mas, max, &entry))
6025 return entry;
6026
6027 /* Retries on dead nodes handled by mas_next_slot */
6028 return mas_next_slot(mas, max, false);
54a611b6 6029}
120b1162 6030EXPORT_SYMBOL_GPL(mas_find);
54a611b6 6031
6169b553
LH
6032/**
6033 * mas_find_range() - On the first call, find the entry at or after
6034 * mas->index up to %max. Otherwise, advance to the next slot mas->index.
6035 * @mas: The maple state
6036 * @max: The maximum value to check.
6037 *
6038 * Must hold rcu_read_lock or the write lock.
6039 * If an entry exists, last and index are updated accordingly.
6040 * May set @mas->node to MAS_NONE.
6041 *
6042 * Return: The entry or %NULL.
6043 */
6044void *mas_find_range(struct ma_state *mas, unsigned long max)
6045{
6046 void *entry;
6047
6048 if (mas_find_setup(mas, max, &entry))
6049 return entry;
6050
6051 /* Retries on dead nodes handled by mas_next_slot */
6052 return mas_next_slot(mas, max, true);
6053}
6054EXPORT_SYMBOL_GPL(mas_find_range);
6055
54a611b6 6056/**
6b9e93e0 6057 * mas_find_rev_setup() - Internal function to set up mas_find_*_rev()
54a611b6 6058 * @mas: The maple state
6b9e93e0
LH
6059 * @min: The minimum index
6060 * @entry: Pointer to the entry
54a611b6 6061 *
6b9e93e0 6062 * Returns: True if entry is the answer, false otherwise.
54a611b6 6063 */
6b9e93e0
LH
6064static inline bool mas_find_rev_setup(struct ma_state *mas, unsigned long min,
6065 void **entry)
54a611b6 6066{
6b9e93e0
LH
6067 *entry = NULL;
6068
39193685
LH
6069 if (unlikely(mas_is_none(mas))) {
6070 if (mas->index <= min)
6071 goto none;
6072
6073 mas->last = mas->index;
6074 mas->node = MAS_START;
6075 }
6076
54a611b6 6077 if (unlikely(mas_is_paused(mas))) {
39193685 6078 if (unlikely(mas->index <= min)) {
54a611b6 6079 mas->node = MAS_NONE;
6b9e93e0 6080 return true;
54a611b6
LH
6081 }
6082 mas->node = MAS_START;
6083 mas->last = --mas->index;
6084 }
6085
6086 if (unlikely(mas_is_start(mas))) {
6087 /* First run or continue */
54a611b6 6088 if (mas->index < min)
6b9e93e0 6089 return true;
54a611b6 6090
6b9e93e0
LH
6091 *entry = mas_walk(mas);
6092 if (*entry)
6093 return true;
54a611b6
LH
6094 }
6095
39193685
LH
6096 if (unlikely(!mas_searchable(mas))) {
6097 if (mas_is_ptr(mas))
6098 goto none;
6099
6100 if (mas_is_none(mas)) {
6101 /*
6102 * Walked to the location, and there was nothing so the
6103 * previous location is 0.
6104 */
6105 mas->last = mas->index = 0;
6106 mas->node = MAS_ROOT;
6b9e93e0
LH
6107 *entry = mas_root(mas);
6108 return true;
39193685
LH
6109 }
6110 }
54a611b6
LH
6111
6112 if (mas->index < min)
6b9e93e0 6113 return true;
54a611b6 6114
6b9e93e0 6115 return false;
39193685
LH
6116
6117none:
6118 mas->node = MAS_NONE;
6b9e93e0
LH
6119 return true;
6120}
6121
6122/**
6123 * mas_find_rev: On the first call, find the first non-null entry at or below
6124 * mas->index down to %min. Otherwise find the first non-null entry below
6125 * mas->index down to %min.
6126 * @mas: The maple state
6127 * @min: The minimum value to check.
6128 *
6129 * Must hold rcu_read_lock or the write lock.
6130 * If an entry exists, last and index are updated accordingly.
6131 * May set @mas->node to MAS_NONE.
6132 *
6133 * Return: The entry or %NULL.
6134 */
6135void *mas_find_rev(struct ma_state *mas, unsigned long min)
6136{
6137 void *entry;
6138
6139 if (mas_find_rev_setup(mas, min, &entry))
6140 return entry;
6141
6142 /* Retries on dead nodes handled by mas_prev_slot */
6143 return mas_prev_slot(mas, min, false);
6144
54a611b6 6145}
120b1162 6146EXPORT_SYMBOL_GPL(mas_find_rev);
54a611b6 6147
6b9e93e0
LH
6148/**
6149 * mas_find_range_rev: On the first call, find the first non-null entry at or
6150 * below mas->index down to %min. Otherwise advance to the previous slot after
6151 * mas->index down to %min.
6152 * @mas: The maple state
6153 * @min: The minimum value to check.
6154 *
6155 * Must hold rcu_read_lock or the write lock.
6156 * If an entry exists, last and index are updated accordingly.
6157 * May set @mas->node to MAS_NONE.
6158 *
6159 * Return: The entry or %NULL.
6160 */
6161void *mas_find_range_rev(struct ma_state *mas, unsigned long min)
6162{
6163 void *entry;
6164
6165 if (mas_find_rev_setup(mas, min, &entry))
6166 return entry;
6167
6168 /* Retries on dead nodes handled by mas_prev_slot */
6169 return mas_prev_slot(mas, min, true);
6170}
6171EXPORT_SYMBOL_GPL(mas_find_range_rev);
6172
54a611b6
LH
6173/**
6174 * mas_erase() - Find the range in which index resides and erase the entire
6175 * range.
6176 * @mas: The maple state
6177 *
6178 * Must hold the write lock.
6179 * Searches for @mas->index, sets @mas->index and @mas->last to the range and
6180 * erases that range.
6181 *
6182 * Return: the entry that was erased or %NULL, @mas->index and @mas->last are updated.
6183 */
6184void *mas_erase(struct ma_state *mas)
6185{
6186 void *entry;
6187 MA_WR_STATE(wr_mas, mas, NULL);
6188
6189 if (mas_is_none(mas) || mas_is_paused(mas))
6190 mas->node = MAS_START;
6191
6192 /* Retry unnecessary when holding the write lock. */
6193 entry = mas_state_walk(mas);
6194 if (!entry)
6195 return NULL;
6196
6197write_retry:
6198 /* Must reset to ensure spanning writes of last slot are detected */
6199 mas_reset(mas);
6200 mas_wr_store_setup(&wr_mas);
6201 mas_wr_store_entry(&wr_mas);
6202 if (mas_nomem(mas, GFP_KERNEL))
6203 goto write_retry;
6204
6205 return entry;
6206}
6207EXPORT_SYMBOL_GPL(mas_erase);
6208
6209/**
6210 * mas_nomem() - Check if there was an error allocating and do the allocation
6211 * if necessary If there are allocations, then free them.
6212 * @mas: The maple state
6213 * @gfp: The GFP_FLAGS to use for allocations
6214 * Return: true on allocation, false otherwise.
6215 */
6216bool mas_nomem(struct ma_state *mas, gfp_t gfp)
14c4b5ab 6217 __must_hold(mas->tree->ma_lock)
54a611b6
LH
6218{
6219 if (likely(mas->node != MA_ERROR(-ENOMEM))) {
6220 mas_destroy(mas);
6221 return false;
6222 }
6223
6224 if (gfpflags_allow_blocking(gfp) && !mt_external_lock(mas->tree)) {
6225 mtree_unlock(mas->tree);
6226 mas_alloc_nodes(mas, gfp);
6227 mtree_lock(mas->tree);
6228 } else {
6229 mas_alloc_nodes(mas, gfp);
6230 }
6231
6232 if (!mas_allocated(mas))
6233 return false;
6234
6235 mas->node = MAS_START;
6236 return true;
6237}
6238
6239void __init maple_tree_init(void)
6240{
6241 maple_node_cache = kmem_cache_create("maple_node",
6242 sizeof(struct maple_node), sizeof(struct maple_node),
6243 SLAB_PANIC, NULL);
6244}
6245
6246/**
6247 * mtree_load() - Load a value stored in a maple tree
6248 * @mt: The maple tree
6249 * @index: The index to load
6250 *
6251 * Return: the entry or %NULL
6252 */
6253void *mtree_load(struct maple_tree *mt, unsigned long index)
6254{
6255 MA_STATE(mas, mt, index, index);
6256 void *entry;
6257
6258 trace_ma_read(__func__, &mas);
6259 rcu_read_lock();
6260retry:
6261 entry = mas_start(&mas);
6262 if (unlikely(mas_is_none(&mas)))
6263 goto unlock;
6264
6265 if (unlikely(mas_is_ptr(&mas))) {
6266 if (index)
6267 entry = NULL;
6268
6269 goto unlock;
6270 }
6271
6272 entry = mtree_lookup_walk(&mas);
6273 if (!entry && unlikely(mas_is_start(&mas)))
6274 goto retry;
6275unlock:
6276 rcu_read_unlock();
6277 if (xa_is_zero(entry))
6278 return NULL;
6279
6280 return entry;
6281}
6282EXPORT_SYMBOL(mtree_load);
6283
6284/**
6285 * mtree_store_range() - Store an entry at a given range.
6286 * @mt: The maple tree
6287 * @index: The start of the range
6288 * @last: The end of the range
6289 * @entry: The entry to store
6290 * @gfp: The GFP_FLAGS to use for allocations
6291 *
6292 * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not
6293 * be allocated.
6294 */
6295int mtree_store_range(struct maple_tree *mt, unsigned long index,
6296 unsigned long last, void *entry, gfp_t gfp)
6297{
6298 MA_STATE(mas, mt, index, last);
6299 MA_WR_STATE(wr_mas, &mas, entry);
6300
6301 trace_ma_write(__func__, &mas, 0, entry);
6302 if (WARN_ON_ONCE(xa_is_advanced(entry)))
6303 return -EINVAL;
6304
6305 if (index > last)
6306 return -EINVAL;
6307
6308 mtree_lock(mt);
6309retry:
6310 mas_wr_store_entry(&wr_mas);
6311 if (mas_nomem(&mas, gfp))
6312 goto retry;
6313
6314 mtree_unlock(mt);
6315 if (mas_is_err(&mas))
6316 return xa_err(mas.node);
6317
6318 return 0;
6319}
6320EXPORT_SYMBOL(mtree_store_range);
6321
6322/**
6323 * mtree_store() - Store an entry at a given index.
6324 * @mt: The maple tree
6325 * @index: The index to store the value
6326 * @entry: The entry to store
6327 * @gfp: The GFP_FLAGS to use for allocations
6328 *
6329 * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not
6330 * be allocated.
6331 */
6332int mtree_store(struct maple_tree *mt, unsigned long index, void *entry,
6333 gfp_t gfp)
6334{
6335 return mtree_store_range(mt, index, index, entry, gfp);
6336}
6337EXPORT_SYMBOL(mtree_store);
6338
6339/**
4445e582 6340 * mtree_insert_range() - Insert an entry at a given range if there is no value.
54a611b6
LH
6341 * @mt: The maple tree
6342 * @first: The start of the range
6343 * @last: The end of the range
6344 * @entry: The entry to store
6345 * @gfp: The GFP_FLAGS to use for allocations.
6346 *
6347 * Return: 0 on success, -EEXISTS if the range is occupied, -EINVAL on invalid
6348 * request, -ENOMEM if memory could not be allocated.
6349 */
6350int mtree_insert_range(struct maple_tree *mt, unsigned long first,
6351 unsigned long last, void *entry, gfp_t gfp)
6352{
6353 MA_STATE(ms, mt, first, last);
6354
6355 if (WARN_ON_ONCE(xa_is_advanced(entry)))
6356 return -EINVAL;
6357
6358 if (first > last)
6359 return -EINVAL;
6360
6361 mtree_lock(mt);
6362retry:
6363 mas_insert(&ms, entry);
6364 if (mas_nomem(&ms, gfp))
6365 goto retry;
6366
6367 mtree_unlock(mt);
6368 if (mas_is_err(&ms))
6369 return xa_err(ms.node);
6370
6371 return 0;
6372}
6373EXPORT_SYMBOL(mtree_insert_range);
6374
6375/**
4445e582 6376 * mtree_insert() - Insert an entry at a given index if there is no value.
54a611b6
LH
6377 * @mt: The maple tree
6378 * @index : The index to store the value
6379 * @entry: The entry to store
4ae6944d 6380 * @gfp: The GFP_FLAGS to use for allocations.
54a611b6
LH
6381 *
6382 * Return: 0 on success, -EEXISTS if the range is occupied, -EINVAL on invalid
6383 * request, -ENOMEM if memory could not be allocated.
6384 */
6385int mtree_insert(struct maple_tree *mt, unsigned long index, void *entry,
6386 gfp_t gfp)
6387{
6388 return mtree_insert_range(mt, index, index, entry, gfp);
6389}
6390EXPORT_SYMBOL(mtree_insert);
6391
6392int mtree_alloc_range(struct maple_tree *mt, unsigned long *startp,
6393 void *entry, unsigned long size, unsigned long min,
6394 unsigned long max, gfp_t gfp)
6395{
6396 int ret = 0;
6397
52371677 6398 MA_STATE(mas, mt, 0, 0);
54a611b6
LH
6399 if (!mt_is_alloc(mt))
6400 return -EINVAL;
6401
6402 if (WARN_ON_ONCE(mt_is_reserved(entry)))
6403 return -EINVAL;
6404
54a611b6
LH
6405 mtree_lock(mt);
6406retry:
52371677
PZ
6407 ret = mas_empty_area(&mas, min, max, size);
6408 if (ret)
6409 goto unlock;
6410
6411 mas_insert(&mas, entry);
6412 /*
6413 * mas_nomem() may release the lock, causing the allocated area
6414 * to be unavailable, so try to allocate a free area again.
6415 */
54a611b6
LH
6416 if (mas_nomem(&mas, gfp))
6417 goto retry;
6418
52371677
PZ
6419 if (mas_is_err(&mas))
6420 ret = xa_err(mas.node);
6421 else
6422 *startp = mas.index;
6423
6424unlock:
54a611b6
LH
6425 mtree_unlock(mt);
6426 return ret;
6427}
6428EXPORT_SYMBOL(mtree_alloc_range);
6429
6430int mtree_alloc_rrange(struct maple_tree *mt, unsigned long *startp,
6431 void *entry, unsigned long size, unsigned long min,
6432 unsigned long max, gfp_t gfp)
6433{
6434 int ret = 0;
6435
52371677 6436 MA_STATE(mas, mt, 0, 0);
54a611b6
LH
6437 if (!mt_is_alloc(mt))
6438 return -EINVAL;
6439
6440 if (WARN_ON_ONCE(mt_is_reserved(entry)))
6441 return -EINVAL;
6442
54a611b6
LH
6443 mtree_lock(mt);
6444retry:
52371677
PZ
6445 ret = mas_empty_area_rev(&mas, min, max, size);
6446 if (ret)
6447 goto unlock;
6448
6449 mas_insert(&mas, entry);
6450 /*
6451 * mas_nomem() may release the lock, causing the allocated area
6452 * to be unavailable, so try to allocate a free area again.
6453 */
54a611b6
LH
6454 if (mas_nomem(&mas, gfp))
6455 goto retry;
6456
52371677
PZ
6457 if (mas_is_err(&mas))
6458 ret = xa_err(mas.node);
6459 else
6460 *startp = mas.index;
6461
6462unlock:
54a611b6
LH
6463 mtree_unlock(mt);
6464 return ret;
6465}
6466EXPORT_SYMBOL(mtree_alloc_rrange);
6467
6468/**
6469 * mtree_erase() - Find an index and erase the entire range.
6470 * @mt: The maple tree
6471 * @index: The index to erase
6472 *
6473 * Erasing is the same as a walk to an entry then a store of a NULL to that
6474 * ENTIRE range. In fact, it is implemented as such using the advanced API.
6475 *
6476 * Return: The entry stored at the @index or %NULL
6477 */
6478void *mtree_erase(struct maple_tree *mt, unsigned long index)
6479{
6480 void *entry = NULL;
6481
6482 MA_STATE(mas, mt, index, index);
6483 trace_ma_op(__func__, &mas);
6484
6485 mtree_lock(mt);
6486 entry = mas_erase(&mas);
6487 mtree_unlock(mt);
6488
6489 return entry;
6490}
6491EXPORT_SYMBOL(mtree_erase);
6492
6493/**
6494 * __mt_destroy() - Walk and free all nodes of a locked maple tree.
6495 * @mt: The maple tree
6496 *
6497 * Note: Does not handle locking.
6498 */
6499void __mt_destroy(struct maple_tree *mt)
6500{
6501 void *root = mt_root_locked(mt);
6502
6503 rcu_assign_pointer(mt->ma_root, NULL);
6504 if (xa_is_node(root))
6505 mte_destroy_walk(root, mt);
6506
6507 mt->ma_flags = 0;
6508}
6509EXPORT_SYMBOL_GPL(__mt_destroy);
6510
6511/**
6512 * mtree_destroy() - Destroy a maple tree
6513 * @mt: The maple tree
6514 *
6515 * Frees all resources used by the tree. Handles locking.
6516 */
6517void mtree_destroy(struct maple_tree *mt)
6518{
6519 mtree_lock(mt);
6520 __mt_destroy(mt);
6521 mtree_unlock(mt);
6522}
6523EXPORT_SYMBOL(mtree_destroy);
6524
6525/**
6526 * mt_find() - Search from the start up until an entry is found.
6527 * @mt: The maple tree
6528 * @index: Pointer which contains the start location of the search
fad9c80e
TG
6529 * @max: The maximum value of the search range
6530 *
6531 * Takes RCU read lock internally to protect the search, which does not
6532 * protect the returned pointer after dropping RCU read lock.
6533 * See also: Documentation/core-api/maple_tree.rst
54a611b6 6534 *
fad9c80e
TG
6535 * In case that an entry is found @index is updated to point to the next
6536 * possible entry independent whether the found entry is occupying a
6537 * single index or a range if indices.
54a611b6
LH
6538 *
6539 * Return: The entry at or after the @index or %NULL
6540 */
6541void *mt_find(struct maple_tree *mt, unsigned long *index, unsigned long max)
6542{
6543 MA_STATE(mas, mt, *index, *index);
6544 void *entry;
6545#ifdef CONFIG_DEBUG_MAPLE_TREE
6546 unsigned long copy = *index;
6547#endif
6548
6549 trace_ma_read(__func__, &mas);
6550
6551 if ((*index) > max)
6552 return NULL;
6553
6554 rcu_read_lock();
6555retry:
6556 entry = mas_state_walk(&mas);
6557 if (mas_is_start(&mas))
6558 goto retry;
6559
6560 if (unlikely(xa_is_zero(entry)))
6561 entry = NULL;
6562
6563 if (entry)
6564 goto unlock;
6565
ca80f610 6566 while (mas_searchable(&mas) && (mas.last < max)) {
54a611b6
LH
6567 entry = mas_next_entry(&mas, max);
6568 if (likely(entry && !xa_is_zero(entry)))
6569 break;
6570 }
6571
6572 if (unlikely(xa_is_zero(entry)))
6573 entry = NULL;
6574unlock:
6575 rcu_read_unlock();
6576 if (likely(entry)) {
6577 *index = mas.last + 1;
6578#ifdef CONFIG_DEBUG_MAPLE_TREE
e6d6792a 6579 if (MT_WARN_ON(mt, (*index) && ((*index) <= copy)))
54a611b6
LH
6580 pr_err("index not increased! %lx <= %lx\n",
6581 *index, copy);
54a611b6
LH
6582#endif
6583 }
6584
6585 return entry;
6586}
6587EXPORT_SYMBOL(mt_find);
6588
6589/**
6590 * mt_find_after() - Search from the start up until an entry is found.
6591 * @mt: The maple tree
6592 * @index: Pointer which contains the start location of the search
6593 * @max: The maximum value to check
6594 *
fad9c80e
TG
6595 * Same as mt_find() except that it checks @index for 0 before
6596 * searching. If @index == 0, the search is aborted. This covers a wrap
6597 * around of @index to 0 in an iterator loop.
54a611b6
LH
6598 *
6599 * Return: The entry at or after the @index or %NULL
6600 */
6601void *mt_find_after(struct maple_tree *mt, unsigned long *index,
6602 unsigned long max)
6603{
6604 if (!(*index))
6605 return NULL;
6606
6607 return mt_find(mt, index, max);
6608}
6609EXPORT_SYMBOL(mt_find_after);
6610
6611#ifdef CONFIG_DEBUG_MAPLE_TREE
6612atomic_t maple_tree_tests_run;
6613EXPORT_SYMBOL_GPL(maple_tree_tests_run);
6614atomic_t maple_tree_tests_passed;
6615EXPORT_SYMBOL_GPL(maple_tree_tests_passed);
6616
6617#ifndef __KERNEL__
6618extern void kmem_cache_set_non_kernel(struct kmem_cache *, unsigned int);
6619void mt_set_non_kernel(unsigned int val)
6620{
6621 kmem_cache_set_non_kernel(maple_node_cache, val);
6622}
6623
6624extern unsigned long kmem_cache_get_alloc(struct kmem_cache *);
6625unsigned long mt_get_alloc_size(void)
6626{
6627 return kmem_cache_get_alloc(maple_node_cache);
6628}
6629
6630extern void kmem_cache_zero_nr_tallocated(struct kmem_cache *);
6631void mt_zero_nr_tallocated(void)
6632{
6633 kmem_cache_zero_nr_tallocated(maple_node_cache);
6634}
6635
6636extern unsigned int kmem_cache_nr_tallocated(struct kmem_cache *);
6637unsigned int mt_nr_tallocated(void)
6638{
6639 return kmem_cache_nr_tallocated(maple_node_cache);
6640}
6641
6642extern unsigned int kmem_cache_nr_allocated(struct kmem_cache *);
6643unsigned int mt_nr_allocated(void)
6644{
6645 return kmem_cache_nr_allocated(maple_node_cache);
6646}
6647
6648/*
6649 * mas_dead_node() - Check if the maple state is pointing to a dead node.
6650 * @mas: The maple state
6651 * @index: The index to restore in @mas.
6652 *
6653 * Used in test code.
6654 * Return: 1 if @mas has been reset to MAS_START, 0 otherwise.
6655 */
6656static inline int mas_dead_node(struct ma_state *mas, unsigned long index)
6657{
6658 if (unlikely(!mas_searchable(mas) || mas_is_start(mas)))
6659 return 0;
6660
6661 if (likely(!mte_dead_node(mas->node)))
6662 return 0;
6663
6664 mas_rewalk(mas, index);
6665 return 1;
6666}
54a611b6 6667
120b1162
LH
6668void mt_cache_shrink(void)
6669{
6670}
6671#else
6672/*
6673 * mt_cache_shrink() - For testing, don't use this.
6674 *
6675 * Certain testcases can trigger an OOM when combined with other memory
6676 * debugging configuration options. This function is used to reduce the
6677 * possibility of an out of memory even due to kmem_cache objects remaining
6678 * around for longer than usual.
6679 */
6680void mt_cache_shrink(void)
6681{
6682 kmem_cache_shrink(maple_node_cache);
6683
6684}
6685EXPORT_SYMBOL_GPL(mt_cache_shrink);
6686
6687#endif /* not defined __KERNEL__ */
54a611b6
LH
6688/*
6689 * mas_get_slot() - Get the entry in the maple state node stored at @offset.
6690 * @mas: The maple state
6691 * @offset: The offset into the slot array to fetch.
6692 *
6693 * Return: The entry stored at @offset.
6694 */
6695static inline struct maple_enode *mas_get_slot(struct ma_state *mas,
6696 unsigned char offset)
6697{
6698 return mas_slot(mas, ma_slots(mas_mn(mas), mte_node_type(mas->node)),
6699 offset);
6700}
6701
54a611b6
LH
6702/* Depth first search, post-order */
6703static void mas_dfs_postorder(struct ma_state *mas, unsigned long max)
6704{
6705
6706 struct maple_enode *p = MAS_NONE, *mn = mas->node;
6707 unsigned long p_min, p_max;
6708
6709 mas_next_node(mas, mas_mn(mas), max);
6710 if (!mas_is_none(mas))
6711 return;
6712
6713 if (mte_is_root(mn))
6714 return;
6715
6716 mas->node = mn;
6717 mas_ascend(mas);
c3eb787e 6718 do {
54a611b6
LH
6719 p = mas->node;
6720 p_min = mas->min;
6721 p_max = mas->max;
6722 mas_prev_node(mas, 0);
c3eb787e 6723 } while (!mas_is_none(mas));
54a611b6
LH
6724
6725 mas->node = p;
6726 mas->max = p_max;
6727 mas->min = p_min;
6728}
6729
6730/* Tree validations */
6731static void mt_dump_node(const struct maple_tree *mt, void *entry,
89f499f3
LH
6732 unsigned long min, unsigned long max, unsigned int depth,
6733 enum mt_dump_format format);
54a611b6 6734static void mt_dump_range(unsigned long min, unsigned long max,
89f499f3 6735 unsigned int depth, enum mt_dump_format format)
54a611b6
LH
6736{
6737 static const char spaces[] = " ";
6738
89f499f3
LH
6739 switch(format) {
6740 case mt_dump_hex:
6741 if (min == max)
6742 pr_info("%.*s%lx: ", depth * 2, spaces, min);
6743 else
6744 pr_info("%.*s%lx-%lx: ", depth * 2, spaces, min, max);
6745 break;
6746 default:
6747 case mt_dump_dec:
6748 if (min == max)
6749 pr_info("%.*s%lu: ", depth * 2, spaces, min);
6750 else
6751 pr_info("%.*s%lu-%lu: ", depth * 2, spaces, min, max);
6752 }
54a611b6
LH
6753}
6754
6755static void mt_dump_entry(void *entry, unsigned long min, unsigned long max,
89f499f3 6756 unsigned int depth, enum mt_dump_format format)
54a611b6 6757{
89f499f3 6758 mt_dump_range(min, max, depth, format);
54a611b6
LH
6759
6760 if (xa_is_value(entry))
6761 pr_cont("value %ld (0x%lx) [%p]\n", xa_to_value(entry),
6762 xa_to_value(entry), entry);
6763 else if (xa_is_zero(entry))
6764 pr_cont("zero (%ld)\n", xa_to_internal(entry));
6765 else if (mt_is_reserved(entry))
6766 pr_cont("UNKNOWN ENTRY (%p)\n", entry);
6767 else
6768 pr_cont("%p\n", entry);
6769}
6770
6771static void mt_dump_range64(const struct maple_tree *mt, void *entry,
89f499f3
LH
6772 unsigned long min, unsigned long max, unsigned int depth,
6773 enum mt_dump_format format)
54a611b6
LH
6774{
6775 struct maple_range_64 *node = &mte_to_node(entry)->mr64;
6776 bool leaf = mte_is_leaf(entry);
6777 unsigned long first = min;
6778 int i;
6779
6780 pr_cont(" contents: ");
89f499f3
LH
6781 for (i = 0; i < MAPLE_RANGE64_SLOTS - 1; i++) {
6782 switch(format) {
6783 case mt_dump_hex:
6784 pr_cont("%p %lX ", node->slot[i], node->pivot[i]);
6785 break;
6786 default:
6787 case mt_dump_dec:
6788 pr_cont("%p %lu ", node->slot[i], node->pivot[i]);
6789 }
6790 }
54a611b6
LH
6791 pr_cont("%p\n", node->slot[i]);
6792 for (i = 0; i < MAPLE_RANGE64_SLOTS; i++) {
6793 unsigned long last = max;
6794
6795 if (i < (MAPLE_RANGE64_SLOTS - 1))
6796 last = node->pivot[i];
bd592703 6797 else if (!node->slot[i] && max != mt_node_max(entry))
54a611b6
LH
6798 break;
6799 if (last == 0 && i > 0)
6800 break;
6801 if (leaf)
6802 mt_dump_entry(mt_slot(mt, node->slot, i),
89f499f3 6803 first, last, depth + 1, format);
54a611b6
LH
6804 else if (node->slot[i])
6805 mt_dump_node(mt, mt_slot(mt, node->slot, i),
89f499f3 6806 first, last, depth + 1, format);
54a611b6
LH
6807
6808 if (last == max)
6809 break;
6810 if (last > max) {
89f499f3
LH
6811 switch(format) {
6812 case mt_dump_hex:
6813 pr_err("node %p last (%lx) > max (%lx) at pivot %d!\n",
54a611b6 6814 node, last, max, i);
89f499f3
LH
6815 break;
6816 default:
6817 case mt_dump_dec:
6818 pr_err("node %p last (%lu) > max (%lu) at pivot %d!\n",
6819 node, last, max, i);
6820 }
54a611b6
LH
6821 }
6822 first = last + 1;
6823 }
6824}
6825
6826static void mt_dump_arange64(const struct maple_tree *mt, void *entry,
89f499f3
LH
6827 unsigned long min, unsigned long max, unsigned int depth,
6828 enum mt_dump_format format)
54a611b6
LH
6829{
6830 struct maple_arange_64 *node = &mte_to_node(entry)->ma64;
6831 bool leaf = mte_is_leaf(entry);
6832 unsigned long first = min;
6833 int i;
6834
6835 pr_cont(" contents: ");
6836 for (i = 0; i < MAPLE_ARANGE64_SLOTS; i++)
6837 pr_cont("%lu ", node->gap[i]);
6838 pr_cont("| %02X %02X| ", node->meta.end, node->meta.gap);
6839 for (i = 0; i < MAPLE_ARANGE64_SLOTS - 1; i++)
6840 pr_cont("%p %lu ", node->slot[i], node->pivot[i]);
6841 pr_cont("%p\n", node->slot[i]);
6842 for (i = 0; i < MAPLE_ARANGE64_SLOTS; i++) {
6843 unsigned long last = max;
6844
6845 if (i < (MAPLE_ARANGE64_SLOTS - 1))
6846 last = node->pivot[i];
6847 else if (!node->slot[i])
6848 break;
6849 if (last == 0 && i > 0)
6850 break;
6851 if (leaf)
6852 mt_dump_entry(mt_slot(mt, node->slot, i),
89f499f3 6853 first, last, depth + 1, format);
54a611b6
LH
6854 else if (node->slot[i])
6855 mt_dump_node(mt, mt_slot(mt, node->slot, i),
89f499f3 6856 first, last, depth + 1, format);
54a611b6
LH
6857
6858 if (last == max)
6859 break;
6860 if (last > max) {
6861 pr_err("node %p last (%lu) > max (%lu) at pivot %d!\n",
6862 node, last, max, i);
6863 break;
6864 }
6865 first = last + 1;
6866 }
6867}
6868
6869static void mt_dump_node(const struct maple_tree *mt, void *entry,
89f499f3
LH
6870 unsigned long min, unsigned long max, unsigned int depth,
6871 enum mt_dump_format format)
54a611b6
LH
6872{
6873 struct maple_node *node = mte_to_node(entry);
6874 unsigned int type = mte_node_type(entry);
6875 unsigned int i;
6876
89f499f3 6877 mt_dump_range(min, max, depth, format);
54a611b6
LH
6878
6879 pr_cont("node %p depth %d type %d parent %p", node, depth, type,
6880 node ? node->parent : NULL);
6881 switch (type) {
6882 case maple_dense:
6883 pr_cont("\n");
6884 for (i = 0; i < MAPLE_NODE_SLOTS; i++) {
6885 if (min + i > max)
6886 pr_cont("OUT OF RANGE: ");
6887 mt_dump_entry(mt_slot(mt, node->slot, i),
89f499f3 6888 min + i, min + i, depth, format);
54a611b6
LH
6889 }
6890 break;
6891 case maple_leaf_64:
6892 case maple_range_64:
89f499f3 6893 mt_dump_range64(mt, entry, min, max, depth, format);
54a611b6
LH
6894 break;
6895 case maple_arange_64:
89f499f3 6896 mt_dump_arange64(mt, entry, min, max, depth, format);
54a611b6
LH
6897 break;
6898
6899 default:
6900 pr_cont(" UNKNOWN TYPE\n");
6901 }
6902}
6903
89f499f3 6904void mt_dump(const struct maple_tree *mt, enum mt_dump_format format)
54a611b6
LH
6905{
6906 void *entry = rcu_dereference_check(mt->ma_root, mt_locked(mt));
6907
6908 pr_info("maple_tree(%p) flags %X, height %u root %p\n",
6909 mt, mt->ma_flags, mt_height(mt), entry);
6910 if (!xa_is_node(entry))
89f499f3 6911 mt_dump_entry(entry, 0, 0, 0, format);
54a611b6 6912 else if (entry)
89f499f3 6913 mt_dump_node(mt, entry, 0, mt_node_max(entry), 0, format);
54a611b6 6914}
120b1162 6915EXPORT_SYMBOL_GPL(mt_dump);
54a611b6
LH
6916
6917/*
6918 * Calculate the maximum gap in a node and check if that's what is reported in
6919 * the parent (unless root).
6920 */
6921static void mas_validate_gaps(struct ma_state *mas)
6922{
6923 struct maple_enode *mte = mas->node;
f8e5eac8
PZ
6924 struct maple_node *p_mn, *node = mte_to_node(mte);
6925 enum maple_type mt = mte_node_type(mas->node);
54a611b6
LH
6926 unsigned long gap = 0, max_gap = 0;
6927 unsigned long p_end, p_start = mas->min;
f8e5eac8 6928 unsigned char p_slot, offset;
54a611b6 6929 unsigned long *gaps = NULL;
f8e5eac8
PZ
6930 unsigned long *pivots = ma_pivots(node, mt);
6931 unsigned int i;
54a611b6 6932
f8e5eac8 6933 if (ma_is_dense(mt)) {
54a611b6
LH
6934 for (i = 0; i < mt_slot_count(mte); i++) {
6935 if (mas_get_slot(mas, i)) {
6936 if (gap > max_gap)
6937 max_gap = gap;
6938 gap = 0;
6939 continue;
6940 }
6941 gap++;
6942 }
6943 goto counted;
6944 }
6945
f8e5eac8 6946 gaps = ma_gaps(node, mt);
54a611b6 6947 for (i = 0; i < mt_slot_count(mte); i++) {
29b2681f 6948 p_end = mas_safe_pivot(mas, pivots, i, mt);
54a611b6
LH
6949
6950 if (!gaps) {
f8e5eac8
PZ
6951 if (!mas_get_slot(mas, i))
6952 gap = p_end - p_start + 1;
54a611b6
LH
6953 } else {
6954 void *entry = mas_get_slot(mas, i);
6955
6956 gap = gaps[i];
f8e5eac8
PZ
6957 MT_BUG_ON(mas->tree, !entry);
6958
6959 if (gap > p_end - p_start + 1) {
6960 pr_err("%p[%u] %lu >= %lu - %lu + 1 (%lu)\n",
6961 mas_mn(mas), i, gap, p_end, p_start,
6962 p_end - p_start + 1);
6963 MT_BUG_ON(mas->tree, gap > p_end - p_start + 1);
54a611b6
LH
6964 }
6965 }
6966
6967 if (gap > max_gap)
6968 max_gap = gap;
f8e5eac8 6969
54a611b6
LH
6970 p_start = p_end + 1;
6971 if (p_end >= mas->max)
6972 break;
6973 }
6974
6975counted:
f8e5eac8
PZ
6976 if (mt == maple_arange_64) {
6977 offset = ma_meta_gap(node, mt);
6978 if (offset > i) {
6979 pr_err("gap offset %p[%u] is invalid\n", node, offset);
6980 MT_BUG_ON(mas->tree, 1);
6981 }
6982
6983 if (gaps[offset] != max_gap) {
6984 pr_err("gap %p[%u] is not the largest gap %lu\n",
6985 node, offset, max_gap);
6986 MT_BUG_ON(mas->tree, 1);
6987 }
6988
6989 MT_BUG_ON(mas->tree, !gaps);
6990 for (i++ ; i < mt_slot_count(mte); i++) {
6991 if (gaps[i] != 0) {
6992 pr_err("gap %p[%u] beyond node limit != 0\n",
6993 node, i);
6994 MT_BUG_ON(mas->tree, 1);
6995 }
6996 }
6997 }
6998
54a611b6
LH
6999 if (mte_is_root(mte))
7000 return;
7001
7002 p_slot = mte_parent_slot(mas->node);
7003 p_mn = mte_parent(mte);
7004 MT_BUG_ON(mas->tree, max_gap > mas->max);
afc754c6 7005 if (ma_gaps(p_mn, mas_parent_type(mas, mte))[p_slot] != max_gap) {
54a611b6 7006 pr_err("gap %p[%u] != %lu\n", p_mn, p_slot, max_gap);
89f499f3 7007 mt_dump(mas->tree, mt_dump_hex);
f8e5eac8 7008 MT_BUG_ON(mas->tree, 1);
54a611b6 7009 }
54a611b6
LH
7010}
7011
7012static void mas_validate_parent_slot(struct ma_state *mas)
7013{
7014 struct maple_node *parent;
7015 struct maple_enode *node;
afc754c6
LH
7016 enum maple_type p_type;
7017 unsigned char p_slot;
54a611b6
LH
7018 void __rcu **slots;
7019 int i;
7020
7021 if (mte_is_root(mas->node))
7022 return;
7023
afc754c6
LH
7024 p_slot = mte_parent_slot(mas->node);
7025 p_type = mas_parent_type(mas, mas->node);
54a611b6
LH
7026 parent = mte_parent(mas->node);
7027 slots = ma_slots(parent, p_type);
7028 MT_BUG_ON(mas->tree, mas_mn(mas) == parent);
7029
7030 /* Check prev/next parent slot for duplicate node entry */
7031
7032 for (i = 0; i < mt_slots[p_type]; i++) {
7033 node = mas_slot(mas, slots, i);
7034 if (i == p_slot) {
7035 if (node != mas->node)
7036 pr_err("parent %p[%u] does not have %p\n",
7037 parent, i, mas_mn(mas));
7038 MT_BUG_ON(mas->tree, node != mas->node);
7039 } else if (node == mas->node) {
7040 pr_err("Invalid child %p at parent %p[%u] p_slot %u\n",
7041 mas_mn(mas), parent, i, p_slot);
7042 MT_BUG_ON(mas->tree, node == mas->node);
7043 }
7044 }
7045}
7046
7047static void mas_validate_child_slot(struct ma_state *mas)
7048{
7049 enum maple_type type = mte_node_type(mas->node);
7050 void __rcu **slots = ma_slots(mte_to_node(mas->node), type);
7051 unsigned long *pivots = ma_pivots(mte_to_node(mas->node), type);
7052 struct maple_enode *child;
7053 unsigned char i;
7054
7055 if (mte_is_leaf(mas->node))
7056 return;
7057
7058 for (i = 0; i < mt_slots[type]; i++) {
7059 child = mas_slot(mas, slots, i);
54a611b6 7060
e93fda5a
PZ
7061 if (!child) {
7062 pr_err("Non-leaf node lacks child at %p[%u]\n",
7063 mas_mn(mas), i);
7064 MT_BUG_ON(mas->tree, 1);
7065 }
54a611b6
LH
7066
7067 if (mte_parent_slot(child) != i) {
7068 pr_err("Slot error at %p[%u]: child %p has pslot %u\n",
7069 mas_mn(mas), i, mte_to_node(child),
7070 mte_parent_slot(child));
7071 MT_BUG_ON(mas->tree, 1);
7072 }
7073
7074 if (mte_parent(child) != mte_to_node(mas->node)) {
7075 pr_err("child %p has parent %p not %p\n",
7076 mte_to_node(child), mte_parent(child),
7077 mte_to_node(mas->node));
7078 MT_BUG_ON(mas->tree, 1);
7079 }
e93fda5a
PZ
7080
7081 if (i < mt_pivots[type] && pivots[i] == mas->max)
7082 break;
54a611b6
LH
7083 }
7084}
7085
7086/*
33af39d0
PZ
7087 * Validate all pivots are within mas->min and mas->max, check metadata ends
7088 * where the maximum ends and ensure there is no slots or pivots set outside of
7089 * the end of the data.
54a611b6
LH
7090 */
7091static void mas_validate_limits(struct ma_state *mas)
7092{
7093 int i;
7094 unsigned long prev_piv = 0;
7095 enum maple_type type = mte_node_type(mas->node);
7096 void __rcu **slots = ma_slots(mte_to_node(mas->node), type);
7097 unsigned long *pivots = ma_pivots(mas_mn(mas), type);
7098
54a611b6
LH
7099 for (i = 0; i < mt_slots[type]; i++) {
7100 unsigned long piv;
7101
7102 piv = mas_safe_pivot(mas, pivots, i, type);
7103
33af39d0
PZ
7104 if (!piv && (i != 0)) {
7105 pr_err("Missing node limit pivot at %p[%u]",
7106 mas_mn(mas), i);
7107 MAS_WARN_ON(mas, 1);
54a611b6
LH
7108 }
7109
7110 if (prev_piv > piv) {
7111 pr_err("%p[%u] piv %lu < prev_piv %lu\n",
7112 mas_mn(mas), i, piv, prev_piv);
e6d6792a 7113 MAS_WARN_ON(mas, piv < prev_piv);
54a611b6
LH
7114 }
7115
7116 if (piv < mas->min) {
7117 pr_err("%p[%u] %lu < %lu\n", mas_mn(mas), i,
7118 piv, mas->min);
e6d6792a 7119 MAS_WARN_ON(mas, piv < mas->min);
54a611b6
LH
7120 }
7121 if (piv > mas->max) {
7122 pr_err("%p[%u] %lu > %lu\n", mas_mn(mas), i,
7123 piv, mas->max);
e6d6792a 7124 MAS_WARN_ON(mas, piv > mas->max);
54a611b6
LH
7125 }
7126 prev_piv = piv;
7127 if (piv == mas->max)
7128 break;
7129 }
33af39d0
PZ
7130
7131 if (mas_data_end(mas) != i) {
7132 pr_err("node%p: data_end %u != the last slot offset %u\n",
7133 mas_mn(mas), mas_data_end(mas), i);
7134 MT_BUG_ON(mas->tree, 1);
7135 }
7136
54a611b6
LH
7137 for (i += 1; i < mt_slots[type]; i++) {
7138 void *entry = mas_slot(mas, slots, i);
7139
7140 if (entry && (i != mt_slots[type] - 1)) {
7141 pr_err("%p[%u] should not have entry %p\n", mas_mn(mas),
7142 i, entry);
7143 MT_BUG_ON(mas->tree, entry != NULL);
7144 }
7145
7146 if (i < mt_pivots[type]) {
7147 unsigned long piv = pivots[i];
7148
7149 if (!piv)
7150 continue;
7151
7152 pr_err("%p[%u] should not have piv %lu\n",
7153 mas_mn(mas), i, piv);
e6d6792a 7154 MAS_WARN_ON(mas, i < mt_pivots[type] - 1);
54a611b6
LH
7155 }
7156 }
7157}
7158
7159static void mt_validate_nulls(struct maple_tree *mt)
7160{
7161 void *entry, *last = (void *)1;
7162 unsigned char offset = 0;
7163 void __rcu **slots;
7164 MA_STATE(mas, mt, 0, 0);
7165
7166 mas_start(&mas);
7167 if (mas_is_none(&mas) || (mas.node == MAS_ROOT))
7168 return;
7169
7170 while (!mte_is_leaf(mas.node))
7171 mas_descend(&mas);
7172
7173 slots = ma_slots(mte_to_node(mas.node), mte_node_type(mas.node));
7174 do {
7175 entry = mas_slot(&mas, slots, offset);
7176 if (!last && !entry) {
7177 pr_err("Sequential nulls end at %p[%u]\n",
7178 mas_mn(&mas), offset);
7179 }
7180 MT_BUG_ON(mt, !last && !entry);
7181 last = entry;
7182 if (offset == mas_data_end(&mas)) {
7183 mas_next_node(&mas, mas_mn(&mas), ULONG_MAX);
7184 if (mas_is_none(&mas))
7185 return;
7186 offset = 0;
7187 slots = ma_slots(mte_to_node(mas.node),
7188 mte_node_type(mas.node));
7189 } else {
7190 offset++;
7191 }
7192
7193 } while (!mas_is_none(&mas));
7194}
7195
7196/*
7197 * validate a maple tree by checking:
7198 * 1. The limits (pivots are within mas->min to mas->max)
7199 * 2. The gap is correctly set in the parents
7200 */
7201void mt_validate(struct maple_tree *mt)
7202{
7203 unsigned char end;
7204
7205 MA_STATE(mas, mt, 0, 0);
7206 rcu_read_lock();
7207 mas_start(&mas);
7208 if (!mas_searchable(&mas))
7209 goto done;
7210
a489539e
PZ
7211 while (!mte_is_leaf(mas.node))
7212 mas_descend(&mas);
7213
54a611b6 7214 while (!mas_is_none(&mas)) {
e6d6792a 7215 MAS_WARN_ON(&mas, mte_dead_node(mas.node));
a489539e
PZ
7216 end = mas_data_end(&mas);
7217 if (MAS_WARN_ON(&mas, (end < mt_min_slot_count(mas.node)) &&
7218 (mas.max != ULONG_MAX))) {
7219 pr_err("Invalid size %u of %p\n", end, mas_mn(&mas));
54a611b6 7220 }
a489539e 7221
54a611b6 7222 mas_validate_parent_slot(&mas);
54a611b6 7223 mas_validate_limits(&mas);
a489539e 7224 mas_validate_child_slot(&mas);
54a611b6
LH
7225 if (mt_is_alloc(mt))
7226 mas_validate_gaps(&mas);
7227 mas_dfs_postorder(&mas, ULONG_MAX);
7228 }
7229 mt_validate_nulls(mt);
7230done:
7231 rcu_read_unlock();
7232
7233}
120b1162 7234EXPORT_SYMBOL_GPL(mt_validate);
54a611b6 7235
f0a1f866
LH
7236void mas_dump(const struct ma_state *mas)
7237{
7238 pr_err("MAS: tree=%p enode=%p ", mas->tree, mas->node);
7239 if (mas_is_none(mas))
7240 pr_err("(MAS_NONE) ");
7241 else if (mas_is_ptr(mas))
7242 pr_err("(MAS_ROOT) ");
7243 else if (mas_is_start(mas))
7244 pr_err("(MAS_START) ");
7245 else if (mas_is_paused(mas))
7246 pr_err("(MAS_PAUSED) ");
7247
7248 pr_err("[%u] index=%lx last=%lx\n", mas->offset, mas->index, mas->last);
7249 pr_err(" min=%lx max=%lx alloc=%p, depth=%u, flags=%x\n",
7250 mas->min, mas->max, mas->alloc, mas->depth, mas->mas_flags);
7251 if (mas->index > mas->last)
7252 pr_err("Check index & last\n");
7253}
7254EXPORT_SYMBOL_GPL(mas_dump);
7255
7256void mas_wr_dump(const struct ma_wr_state *wr_mas)
7257{
7258 pr_err("WR_MAS: node=%p r_min=%lx r_max=%lx\n",
7259 wr_mas->node, wr_mas->r_min, wr_mas->r_max);
7260 pr_err(" type=%u off_end=%u, node_end=%u, end_piv=%lx\n",
7261 wr_mas->type, wr_mas->offset_end, wr_mas->node_end,
7262 wr_mas->end_piv);
7263}
7264EXPORT_SYMBOL_GPL(mas_wr_dump);
7265
54a611b6 7266#endif /* CONFIG_DEBUG_MAPLE_TREE */