]> git.ipfire.org Git - thirdparty/linux.git/blame - lib/maple_tree.c
maple_tree: add __init and __exit to test module
[thirdparty/linux.git] / lib / maple_tree.c
CommitLineData
54a611b6
LH
1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * Maple Tree implementation
4 * Copyright (c) 2018-2022 Oracle Corporation
5 * Authors: Liam R. Howlett <Liam.Howlett@oracle.com>
6 * Matthew Wilcox <willy@infradead.org>
7 */
8
9/*
10 * DOC: Interesting implementation details of the Maple Tree
11 *
12 * Each node type has a number of slots for entries and a number of slots for
13 * pivots. In the case of dense nodes, the pivots are implied by the position
14 * and are simply the slot index + the minimum of the node.
15 *
16 * In regular B-Tree terms, pivots are called keys. The term pivot is used to
17 * indicate that the tree is specifying ranges, Pivots may appear in the
18 * subtree with an entry attached to the value where as keys are unique to a
19 * specific position of a B-tree. Pivot values are inclusive of the slot with
20 * the same index.
21 *
22 *
23 * The following illustrates the layout of a range64 nodes slots and pivots.
24 *
25 *
26 * Slots -> | 0 | 1 | 2 | ... | 12 | 13 | 14 | 15 |
27 * ┬ ┬ ┬ ┬ ┬ ┬ ┬ ┬ ┬
28 * │ │ │ │ │ │ │ │ └─ Implied maximum
29 * │ │ │ │ │ │ │ └─ Pivot 14
30 * │ │ │ │ │ │ └─ Pivot 13
31 * │ │ │ │ │ └─ Pivot 12
32 * │ │ │ │ └─ Pivot 11
33 * │ │ │ └─ Pivot 2
34 * │ │ └─ Pivot 1
35 * │ └─ Pivot 0
36 * └─ Implied minimum
37 *
38 * Slot contents:
39 * Internal (non-leaf) nodes contain pointers to other nodes.
40 * Leaf nodes contain entries.
41 *
42 * The location of interest is often referred to as an offset. All offsets have
43 * a slot, but the last offset has an implied pivot from the node above (or
44 * UINT_MAX for the root node.
45 *
46 * Ranges complicate certain write activities. When modifying any of
47 * the B-tree variants, it is known that one entry will either be added or
48 * deleted. When modifying the Maple Tree, one store operation may overwrite
49 * the entire data set, or one half of the tree, or the middle half of the tree.
50 *
51 */
52
53
54#include <linux/maple_tree.h>
55#include <linux/xarray.h>
56#include <linux/types.h>
57#include <linux/export.h>
58#include <linux/slab.h>
59#include <linux/limits.h>
60#include <asm/barrier.h>
61
62#define CREATE_TRACE_POINTS
63#include <trace/events/maple_tree.h>
64
65#define MA_ROOT_PARENT 1
66
67/*
68 * Maple state flags
69 * * MA_STATE_BULK - Bulk insert mode
70 * * MA_STATE_REBALANCE - Indicate a rebalance during bulk insert
71 * * MA_STATE_PREALLOC - Preallocated nodes, WARN_ON allocation
72 */
73#define MA_STATE_BULK 1
74#define MA_STATE_REBALANCE 2
75#define MA_STATE_PREALLOC 4
76
77#define ma_parent_ptr(x) ((struct maple_pnode *)(x))
78#define ma_mnode_ptr(x) ((struct maple_node *)(x))
79#define ma_enode_ptr(x) ((struct maple_enode *)(x))
80static struct kmem_cache *maple_node_cache;
81
82#ifdef CONFIG_DEBUG_MAPLE_TREE
83static const unsigned long mt_max[] = {
84 [maple_dense] = MAPLE_NODE_SLOTS,
85 [maple_leaf_64] = ULONG_MAX,
86 [maple_range_64] = ULONG_MAX,
87 [maple_arange_64] = ULONG_MAX,
88};
89#define mt_node_max(x) mt_max[mte_node_type(x)]
90#endif
91
92static const unsigned char mt_slots[] = {
93 [maple_dense] = MAPLE_NODE_SLOTS,
94 [maple_leaf_64] = MAPLE_RANGE64_SLOTS,
95 [maple_range_64] = MAPLE_RANGE64_SLOTS,
96 [maple_arange_64] = MAPLE_ARANGE64_SLOTS,
97};
98#define mt_slot_count(x) mt_slots[mte_node_type(x)]
99
100static const unsigned char mt_pivots[] = {
101 [maple_dense] = 0,
102 [maple_leaf_64] = MAPLE_RANGE64_SLOTS - 1,
103 [maple_range_64] = MAPLE_RANGE64_SLOTS - 1,
104 [maple_arange_64] = MAPLE_ARANGE64_SLOTS - 1,
105};
106#define mt_pivot_count(x) mt_pivots[mte_node_type(x)]
107
108static const unsigned char mt_min_slots[] = {
109 [maple_dense] = MAPLE_NODE_SLOTS / 2,
110 [maple_leaf_64] = (MAPLE_RANGE64_SLOTS / 2) - 2,
111 [maple_range_64] = (MAPLE_RANGE64_SLOTS / 2) - 2,
112 [maple_arange_64] = (MAPLE_ARANGE64_SLOTS / 2) - 1,
113};
114#define mt_min_slot_count(x) mt_min_slots[mte_node_type(x)]
115
116#define MAPLE_BIG_NODE_SLOTS (MAPLE_RANGE64_SLOTS * 2 + 2)
117#define MAPLE_BIG_NODE_GAPS (MAPLE_ARANGE64_SLOTS * 2 + 1)
118
119struct maple_big_node {
120 struct maple_pnode *parent;
121 unsigned long pivot[MAPLE_BIG_NODE_SLOTS - 1];
122 union {
123 struct maple_enode *slot[MAPLE_BIG_NODE_SLOTS];
124 struct {
125 unsigned long padding[MAPLE_BIG_NODE_GAPS];
126 unsigned long gap[MAPLE_BIG_NODE_GAPS];
127 };
128 };
129 unsigned char b_end;
130 enum maple_type type;
131};
132
133/*
134 * The maple_subtree_state is used to build a tree to replace a segment of an
135 * existing tree in a more atomic way. Any walkers of the older tree will hit a
136 * dead node and restart on updates.
137 */
138struct maple_subtree_state {
139 struct ma_state *orig_l; /* Original left side of subtree */
140 struct ma_state *orig_r; /* Original right side of subtree */
141 struct ma_state *l; /* New left side of subtree */
142 struct ma_state *m; /* New middle of subtree (rare) */
143 struct ma_state *r; /* New right side of subtree */
144 struct ma_topiary *free; /* nodes to be freed */
145 struct ma_topiary *destroy; /* Nodes to be destroyed (walked and freed) */
146 struct maple_big_node *bn;
147};
148
44081c77
AB
149#ifdef CONFIG_KASAN_STACK
150/* Prevent mas_wr_bnode() from exceeding the stack frame limit */
151#define noinline_for_kasan noinline_for_stack
152#else
153#define noinline_for_kasan inline
154#endif
155
54a611b6
LH
156/* Functions */
157static inline struct maple_node *mt_alloc_one(gfp_t gfp)
158{
541e06b7 159 return kmem_cache_alloc(maple_node_cache, gfp);
54a611b6
LH
160}
161
162static inline int mt_alloc_bulk(gfp_t gfp, size_t size, void **nodes)
163{
541e06b7 164 return kmem_cache_alloc_bulk(maple_node_cache, gfp, size, nodes);
54a611b6
LH
165}
166
167static inline void mt_free_bulk(size_t size, void __rcu **nodes)
168{
169 kmem_cache_free_bulk(maple_node_cache, size, (void **)nodes);
170}
171
172static void mt_free_rcu(struct rcu_head *head)
173{
174 struct maple_node *node = container_of(head, struct maple_node, rcu);
175
176 kmem_cache_free(maple_node_cache, node);
177}
178
179/*
180 * ma_free_rcu() - Use rcu callback to free a maple node
181 * @node: The node to free
182 *
183 * The maple tree uses the parent pointer to indicate this node is no longer in
184 * use and will be freed.
185 */
186static void ma_free_rcu(struct maple_node *node)
187{
c13af03d 188 WARN_ON(node->parent != ma_parent_ptr(node));
54a611b6
LH
189 call_rcu(&node->rcu, mt_free_rcu);
190}
191
54a611b6
LH
192static void mas_set_height(struct ma_state *mas)
193{
194 unsigned int new_flags = mas->tree->ma_flags;
195
196 new_flags &= ~MT_FLAGS_HEIGHT_MASK;
5950ada9 197 MAS_BUG_ON(mas, mas->depth > MAPLE_HEIGHT_MAX);
54a611b6
LH
198 new_flags |= mas->depth << MT_FLAGS_HEIGHT_OFFSET;
199 mas->tree->ma_flags = new_flags;
200}
201
202static unsigned int mas_mt_height(struct ma_state *mas)
203{
204 return mt_height(mas->tree);
205}
206
207static inline enum maple_type mte_node_type(const struct maple_enode *entry)
208{
209 return ((unsigned long)entry >> MAPLE_NODE_TYPE_SHIFT) &
210 MAPLE_NODE_TYPE_MASK;
211}
212
213static inline bool ma_is_dense(const enum maple_type type)
214{
215 return type < maple_leaf_64;
216}
217
218static inline bool ma_is_leaf(const enum maple_type type)
219{
220 return type < maple_range_64;
221}
222
223static inline bool mte_is_leaf(const struct maple_enode *entry)
224{
225 return ma_is_leaf(mte_node_type(entry));
226}
227
228/*
229 * We also reserve values with the bottom two bits set to '10' which are
230 * below 4096
231 */
232static inline bool mt_is_reserved(const void *entry)
233{
234 return ((unsigned long)entry < MAPLE_RESERVED_RANGE) &&
235 xa_is_internal(entry);
236}
237
238static inline void mas_set_err(struct ma_state *mas, long err)
239{
240 mas->node = MA_ERROR(err);
241}
242
f0a1f866 243static inline bool mas_is_ptr(const struct ma_state *mas)
54a611b6
LH
244{
245 return mas->node == MAS_ROOT;
246}
247
f0a1f866 248static inline bool mas_is_start(const struct ma_state *mas)
54a611b6
LH
249{
250 return mas->node == MAS_START;
251}
252
253bool mas_is_err(struct ma_state *mas)
254{
255 return xa_is_err(mas->node);
256}
257
258static inline bool mas_searchable(struct ma_state *mas)
259{
260 if (mas_is_none(mas))
261 return false;
262
263 if (mas_is_ptr(mas))
264 return false;
265
266 return true;
267}
268
269static inline struct maple_node *mte_to_node(const struct maple_enode *entry)
270{
271 return (struct maple_node *)((unsigned long)entry & ~MAPLE_NODE_MASK);
272}
273
274/*
275 * mte_to_mat() - Convert a maple encoded node to a maple topiary node.
276 * @entry: The maple encoded node
277 *
278 * Return: a maple topiary pointer
279 */
280static inline struct maple_topiary *mte_to_mat(const struct maple_enode *entry)
281{
282 return (struct maple_topiary *)
283 ((unsigned long)entry & ~MAPLE_NODE_MASK);
284}
285
286/*
287 * mas_mn() - Get the maple state node.
288 * @mas: The maple state
289 *
290 * Return: the maple node (not encoded - bare pointer).
291 */
292static inline struct maple_node *mas_mn(const struct ma_state *mas)
293{
294 return mte_to_node(mas->node);
295}
296
297/*
298 * mte_set_node_dead() - Set a maple encoded node as dead.
299 * @mn: The maple encoded node.
300 */
301static inline void mte_set_node_dead(struct maple_enode *mn)
302{
303 mte_to_node(mn)->parent = ma_parent_ptr(mte_to_node(mn));
304 smp_wmb(); /* Needed for RCU */
305}
306
307/* Bit 1 indicates the root is a node */
308#define MAPLE_ROOT_NODE 0x02
309/* maple_type stored bit 3-6 */
310#define MAPLE_ENODE_TYPE_SHIFT 0x03
311/* Bit 2 means a NULL somewhere below */
312#define MAPLE_ENODE_NULL 0x04
313
314static inline struct maple_enode *mt_mk_node(const struct maple_node *node,
315 enum maple_type type)
316{
317 return (void *)((unsigned long)node |
318 (type << MAPLE_ENODE_TYPE_SHIFT) | MAPLE_ENODE_NULL);
319}
320
321static inline void *mte_mk_root(const struct maple_enode *node)
322{
323 return (void *)((unsigned long)node | MAPLE_ROOT_NODE);
324}
325
326static inline void *mte_safe_root(const struct maple_enode *node)
327{
328 return (void *)((unsigned long)node & ~MAPLE_ROOT_NODE);
329}
330
6e7ba8b5 331static inline void *mte_set_full(const struct maple_enode *node)
54a611b6 332{
6e7ba8b5 333 return (void *)((unsigned long)node & ~MAPLE_ENODE_NULL);
54a611b6
LH
334}
335
6e7ba8b5 336static inline void *mte_clear_full(const struct maple_enode *node)
54a611b6 337{
6e7ba8b5
LH
338 return (void *)((unsigned long)node | MAPLE_ENODE_NULL);
339}
340
341static inline bool mte_has_null(const struct maple_enode *node)
342{
343 return (unsigned long)node & MAPLE_ENODE_NULL;
54a611b6
LH
344}
345
346static inline bool ma_is_root(struct maple_node *node)
347{
348 return ((unsigned long)node->parent & MA_ROOT_PARENT);
349}
350
351static inline bool mte_is_root(const struct maple_enode *node)
352{
353 return ma_is_root(mte_to_node(node));
354}
355
356static inline bool mas_is_root_limits(const struct ma_state *mas)
357{
358 return !mas->min && mas->max == ULONG_MAX;
359}
360
361static inline bool mt_is_alloc(struct maple_tree *mt)
362{
363 return (mt->ma_flags & MT_FLAGS_ALLOC_RANGE);
364}
365
366/*
367 * The Parent Pointer
368 * Excluding root, the parent pointer is 256B aligned like all other tree nodes.
369 * When storing a 32 or 64 bit values, the offset can fit into 5 bits. The 16
370 * bit values need an extra bit to store the offset. This extra bit comes from
371 * a reuse of the last bit in the node type. This is possible by using bit 1 to
372 * indicate if bit 2 is part of the type or the slot.
373 *
374 * Note types:
375 * 0x??1 = Root
376 * 0x?00 = 16 bit nodes
377 * 0x010 = 32 bit nodes
378 * 0x110 = 64 bit nodes
379 *
380 * Slot size and alignment
381 * 0b??1 : Root
382 * 0b?00 : 16 bit values, type in 0-1, slot in 2-7
383 * 0b010 : 32 bit values, type in 0-2, slot in 3-7
384 * 0b110 : 64 bit values, type in 0-2, slot in 3-7
385 */
386
387#define MAPLE_PARENT_ROOT 0x01
388
389#define MAPLE_PARENT_SLOT_SHIFT 0x03
390#define MAPLE_PARENT_SLOT_MASK 0xF8
391
392#define MAPLE_PARENT_16B_SLOT_SHIFT 0x02
393#define MAPLE_PARENT_16B_SLOT_MASK 0xFC
394
395#define MAPLE_PARENT_RANGE64 0x06
396#define MAPLE_PARENT_RANGE32 0x04
397#define MAPLE_PARENT_NOT_RANGE16 0x02
398
399/*
400 * mte_parent_shift() - Get the parent shift for the slot storage.
401 * @parent: The parent pointer cast as an unsigned long
402 * Return: The shift into that pointer to the star to of the slot
403 */
404static inline unsigned long mte_parent_shift(unsigned long parent)
405{
406 /* Note bit 1 == 0 means 16B */
407 if (likely(parent & MAPLE_PARENT_NOT_RANGE16))
408 return MAPLE_PARENT_SLOT_SHIFT;
409
410 return MAPLE_PARENT_16B_SLOT_SHIFT;
411}
412
413/*
414 * mte_parent_slot_mask() - Get the slot mask for the parent.
415 * @parent: The parent pointer cast as an unsigned long.
416 * Return: The slot mask for that parent.
417 */
418static inline unsigned long mte_parent_slot_mask(unsigned long parent)
419{
420 /* Note bit 1 == 0 means 16B */
421 if (likely(parent & MAPLE_PARENT_NOT_RANGE16))
422 return MAPLE_PARENT_SLOT_MASK;
423
424 return MAPLE_PARENT_16B_SLOT_MASK;
425}
426
427/*
afc754c6 428 * mas_parent_type() - Return the maple_type of the parent from the stored
54a611b6
LH
429 * parent type.
430 * @mas: The maple state
afc754c6 431 * @enode: The maple_enode to extract the parent's enum
54a611b6
LH
432 * Return: The node->parent maple_type
433 */
434static inline
afc754c6 435enum maple_type mas_parent_type(struct ma_state *mas, struct maple_enode *enode)
54a611b6
LH
436{
437 unsigned long p_type;
438
afc754c6
LH
439 p_type = (unsigned long)mte_to_node(enode)->parent;
440 if (WARN_ON(p_type & MAPLE_PARENT_ROOT))
441 return 0;
54a611b6
LH
442
443 p_type &= MAPLE_NODE_MASK;
afc754c6 444 p_type &= ~mte_parent_slot_mask(p_type);
54a611b6
LH
445 switch (p_type) {
446 case MAPLE_PARENT_RANGE64: /* or MAPLE_PARENT_ARANGE64 */
afc754c6 447 if (mt_is_alloc(mas->tree))
54a611b6
LH
448 return maple_arange_64;
449 return maple_range_64;
450 }
451
452 return 0;
453}
454
54a611b6 455/*
bf96715e 456 * mas_set_parent() - Set the parent node and encode the slot
54a611b6
LH
457 * @enode: The encoded maple node.
458 * @parent: The encoded maple node that is the parent of @enode.
459 * @slot: The slot that @enode resides in @parent.
460 *
461 * Slot number is encoded in the enode->parent bit 3-6 or 2-6, depending on the
462 * parent type.
463 */
464static inline
bf96715e
LH
465void mas_set_parent(struct ma_state *mas, struct maple_enode *enode,
466 const struct maple_enode *parent, unsigned char slot)
54a611b6 467{
831978e3 468 unsigned long val = (unsigned long)parent;
54a611b6
LH
469 unsigned long shift;
470 unsigned long type;
471 enum maple_type p_type = mte_node_type(parent);
472
bf96715e
LH
473 MAS_BUG_ON(mas, p_type == maple_dense);
474 MAS_BUG_ON(mas, p_type == maple_leaf_64);
54a611b6
LH
475
476 switch (p_type) {
477 case maple_range_64:
478 case maple_arange_64:
479 shift = MAPLE_PARENT_SLOT_SHIFT;
480 type = MAPLE_PARENT_RANGE64;
481 break;
482 default:
483 case maple_dense:
484 case maple_leaf_64:
485 shift = type = 0;
486 break;
487 }
488
489 val &= ~MAPLE_NODE_MASK; /* Clear all node metadata in parent */
490 val |= (slot << shift) | type;
491 mte_to_node(enode)->parent = ma_parent_ptr(val);
492}
493
494/*
495 * mte_parent_slot() - get the parent slot of @enode.
496 * @enode: The encoded maple node.
497 *
498 * Return: The slot in the parent node where @enode resides.
499 */
500static inline unsigned int mte_parent_slot(const struct maple_enode *enode)
501{
831978e3 502 unsigned long val = (unsigned long)mte_to_node(enode)->parent;
54a611b6 503
84fd3e1e 504 if (val & MA_ROOT_PARENT)
54a611b6
LH
505 return 0;
506
507 /*
508 * Okay to use MAPLE_PARENT_16B_SLOT_MASK as the last bit will be lost
509 * by shift if the parent shift is MAPLE_PARENT_SLOT_SHIFT
510 */
511 return (val & MAPLE_PARENT_16B_SLOT_MASK) >> mte_parent_shift(val);
512}
513
514/*
515 * mte_parent() - Get the parent of @node.
516 * @node: The encoded maple node.
517 *
518 * Return: The parent maple node.
519 */
520static inline struct maple_node *mte_parent(const struct maple_enode *enode)
521{
522 return (void *)((unsigned long)
523 (mte_to_node(enode)->parent) & ~MAPLE_NODE_MASK);
524}
525
526/*
527 * ma_dead_node() - check if the @enode is dead.
528 * @enode: The encoded maple node
529 *
530 * Return: true if dead, false otherwise.
531 */
532static inline bool ma_dead_node(const struct maple_node *node)
533{
0a2b18d9 534 struct maple_node *parent;
54a611b6 535
0a2b18d9
LH
536 /* Do not reorder reads from the node prior to the parent check */
537 smp_rmb();
538 parent = (void *)((unsigned long) node->parent & ~MAPLE_NODE_MASK);
54a611b6
LH
539 return (parent == node);
540}
39d0bd86 541
54a611b6
LH
542/*
543 * mte_dead_node() - check if the @enode is dead.
544 * @enode: The encoded maple node
545 *
546 * Return: true if dead, false otherwise.
547 */
548static inline bool mte_dead_node(const struct maple_enode *enode)
549{
550 struct maple_node *parent, *node;
551
552 node = mte_to_node(enode);
0a2b18d9
LH
553 /* Do not reorder reads from the node prior to the parent check */
554 smp_rmb();
54a611b6
LH
555 parent = mte_parent(enode);
556 return (parent == node);
557}
558
559/*
560 * mas_allocated() - Get the number of nodes allocated in a maple state.
561 * @mas: The maple state
562 *
563 * The ma_state alloc member is overloaded to hold a pointer to the first
564 * allocated node or to the number of requested nodes to allocate. If bit 0 is
565 * set, then the alloc contains the number of requested nodes. If there is an
566 * allocated node, then the total allocated nodes is in that node.
567 *
568 * Return: The total number of nodes allocated
569 */
570static inline unsigned long mas_allocated(const struct ma_state *mas)
571{
572 if (!mas->alloc || ((unsigned long)mas->alloc & 0x1))
573 return 0;
574
575 return mas->alloc->total;
576}
577
578/*
579 * mas_set_alloc_req() - Set the requested number of allocations.
580 * @mas: the maple state
581 * @count: the number of allocations.
582 *
583 * The requested number of allocations is either in the first allocated node,
584 * located in @mas->alloc->request_count, or directly in @mas->alloc if there is
585 * no allocated node. Set the request either in the node or do the necessary
586 * encoding to store in @mas->alloc directly.
587 */
588static inline void mas_set_alloc_req(struct ma_state *mas, unsigned long count)
589{
590 if (!mas->alloc || ((unsigned long)mas->alloc & 0x1)) {
591 if (!count)
592 mas->alloc = NULL;
593 else
594 mas->alloc = (struct maple_alloc *)(((count) << 1U) | 1U);
595 return;
596 }
597
598 mas->alloc->request_count = count;
599}
600
601/*
602 * mas_alloc_req() - get the requested number of allocations.
603 * @mas: The maple state
604 *
605 * The alloc count is either stored directly in @mas, or in
606 * @mas->alloc->request_count if there is at least one node allocated. Decode
607 * the request count if it's stored directly in @mas->alloc.
608 *
609 * Return: The allocation request count.
610 */
611static inline unsigned int mas_alloc_req(const struct ma_state *mas)
612{
613 if ((unsigned long)mas->alloc & 0x1)
614 return (unsigned long)(mas->alloc) >> 1;
615 else if (mas->alloc)
616 return mas->alloc->request_count;
617 return 0;
618}
619
620/*
621 * ma_pivots() - Get a pointer to the maple node pivots.
622 * @node - the maple node
623 * @type - the node type
624 *
39d0bd86
LH
625 * In the event of a dead node, this array may be %NULL
626 *
54a611b6
LH
627 * Return: A pointer to the maple node pivots
628 */
629static inline unsigned long *ma_pivots(struct maple_node *node,
630 enum maple_type type)
631{
632 switch (type) {
633 case maple_arange_64:
634 return node->ma64.pivot;
635 case maple_range_64:
636 case maple_leaf_64:
637 return node->mr64.pivot;
638 case maple_dense:
639 return NULL;
640 }
641 return NULL;
642}
643
644/*
645 * ma_gaps() - Get a pointer to the maple node gaps.
646 * @node - the maple node
647 * @type - the node type
648 *
649 * Return: A pointer to the maple node gaps
650 */
651static inline unsigned long *ma_gaps(struct maple_node *node,
652 enum maple_type type)
653{
654 switch (type) {
655 case maple_arange_64:
656 return node->ma64.gap;
657 case maple_range_64:
658 case maple_leaf_64:
659 case maple_dense:
660 return NULL;
661 }
662 return NULL;
663}
664
665/*
acd4de60
LH
666 * mas_pivot() - Get the pivot at @piv of the maple encoded node.
667 * @mas: The maple state.
54a611b6
LH
668 * @piv: The pivot.
669 *
670 * Return: the pivot at @piv of @mn.
671 */
acd4de60 672static inline unsigned long mas_pivot(struct ma_state *mas, unsigned char piv)
54a611b6 673{
acd4de60
LH
674 struct maple_node *node = mas_mn(mas);
675 enum maple_type type = mte_node_type(mas->node);
54a611b6 676
acd4de60
LH
677 if (MAS_WARN_ON(mas, piv >= mt_pivots[type])) {
678 mas_set_err(mas, -EIO);
54a611b6
LH
679 return 0;
680 }
acd4de60 681
ab6ef70a 682 switch (type) {
54a611b6
LH
683 case maple_arange_64:
684 return node->ma64.pivot[piv];
685 case maple_range_64:
686 case maple_leaf_64:
687 return node->mr64.pivot[piv];
688 case maple_dense:
689 return 0;
690 }
691 return 0;
692}
693
694/*
695 * mas_safe_pivot() - get the pivot at @piv or mas->max.
696 * @mas: The maple state
697 * @pivots: The pointer to the maple node pivots
698 * @piv: The pivot to fetch
699 * @type: The maple node type
700 *
701 * Return: The pivot at @piv within the limit of the @pivots array, @mas->max
702 * otherwise.
703 */
704static inline unsigned long
705mas_safe_pivot(const struct ma_state *mas, unsigned long *pivots,
706 unsigned char piv, enum maple_type type)
707{
708 if (piv >= mt_pivots[type])
709 return mas->max;
710
711 return pivots[piv];
712}
713
714/*
715 * mas_safe_min() - Return the minimum for a given offset.
716 * @mas: The maple state
717 * @pivots: The pointer to the maple node pivots
718 * @offset: The offset into the pivot array
719 *
720 * Return: The minimum range value that is contained in @offset.
721 */
722static inline unsigned long
723mas_safe_min(struct ma_state *mas, unsigned long *pivots, unsigned char offset)
724{
725 if (likely(offset))
726 return pivots[offset - 1] + 1;
727
728 return mas->min;
729}
730
731/*
732 * mas_logical_pivot() - Get the logical pivot of a given offset.
733 * @mas: The maple state
734 * @pivots: The pointer to the maple node pivots
735 * @offset: The offset into the pivot array
736 * @type: The maple node type
737 *
738 * When there is no value at a pivot (beyond the end of the data), then the
739 * pivot is actually @mas->max.
740 *
741 * Return: the logical pivot of a given @offset.
742 */
743static inline unsigned long
744mas_logical_pivot(struct ma_state *mas, unsigned long *pivots,
745 unsigned char offset, enum maple_type type)
746{
747 unsigned long lpiv = mas_safe_pivot(mas, pivots, offset, type);
748
749 if (likely(lpiv))
750 return lpiv;
751
752 if (likely(offset))
753 return mas->max;
754
755 return lpiv;
756}
757
758/*
759 * mte_set_pivot() - Set a pivot to a value in an encoded maple node.
760 * @mn: The encoded maple node
761 * @piv: The pivot offset
762 * @val: The value of the pivot
763 */
764static inline void mte_set_pivot(struct maple_enode *mn, unsigned char piv,
765 unsigned long val)
766{
767 struct maple_node *node = mte_to_node(mn);
768 enum maple_type type = mte_node_type(mn);
769
770 BUG_ON(piv >= mt_pivots[type]);
771 switch (type) {
772 default:
773 case maple_range_64:
774 case maple_leaf_64:
775 node->mr64.pivot[piv] = val;
776 break;
777 case maple_arange_64:
778 node->ma64.pivot[piv] = val;
779 break;
780 case maple_dense:
781 break;
782 }
783
784}
785
786/*
787 * ma_slots() - Get a pointer to the maple node slots.
788 * @mn: The maple node
789 * @mt: The maple node type
790 *
791 * Return: A pointer to the maple node slots
792 */
793static inline void __rcu **ma_slots(struct maple_node *mn, enum maple_type mt)
794{
795 switch (mt) {
796 default:
797 case maple_arange_64:
798 return mn->ma64.slot;
799 case maple_range_64:
800 case maple_leaf_64:
801 return mn->mr64.slot;
802 case maple_dense:
803 return mn->slot;
804 }
805}
806
807static inline bool mt_locked(const struct maple_tree *mt)
808{
809 return mt_external_lock(mt) ? mt_lock_is_held(mt) :
810 lockdep_is_held(&mt->ma_lock);
811}
812
813static inline void *mt_slot(const struct maple_tree *mt,
814 void __rcu **slots, unsigned char offset)
815{
816 return rcu_dereference_check(slots[offset], mt_locked(mt));
817}
818
790e1fa8
LH
819static inline void *mt_slot_locked(struct maple_tree *mt, void __rcu **slots,
820 unsigned char offset)
821{
822 return rcu_dereference_protected(slots[offset], mt_locked(mt));
823}
54a611b6
LH
824/*
825 * mas_slot_locked() - Get the slot value when holding the maple tree lock.
826 * @mas: The maple state
827 * @slots: The pointer to the slots
828 * @offset: The offset into the slots array to fetch
829 *
830 * Return: The entry stored in @slots at the @offset.
831 */
832static inline void *mas_slot_locked(struct ma_state *mas, void __rcu **slots,
833 unsigned char offset)
834{
790e1fa8 835 return mt_slot_locked(mas->tree, slots, offset);
54a611b6
LH
836}
837
838/*
839 * mas_slot() - Get the slot value when not holding the maple tree lock.
840 * @mas: The maple state
841 * @slots: The pointer to the slots
842 * @offset: The offset into the slots array to fetch
843 *
844 * Return: The entry stored in @slots at the @offset
845 */
846static inline void *mas_slot(struct ma_state *mas, void __rcu **slots,
847 unsigned char offset)
848{
849 return mt_slot(mas->tree, slots, offset);
850}
851
852/*
853 * mas_root() - Get the maple tree root.
854 * @mas: The maple state.
855 *
856 * Return: The pointer to the root of the tree
857 */
858static inline void *mas_root(struct ma_state *mas)
859{
860 return rcu_dereference_check(mas->tree->ma_root, mt_locked(mas->tree));
861}
862
863static inline void *mt_root_locked(struct maple_tree *mt)
864{
865 return rcu_dereference_protected(mt->ma_root, mt_locked(mt));
866}
867
868/*
869 * mas_root_locked() - Get the maple tree root when holding the maple tree lock.
870 * @mas: The maple state.
871 *
872 * Return: The pointer to the root of the tree
873 */
874static inline void *mas_root_locked(struct ma_state *mas)
875{
876 return mt_root_locked(mas->tree);
877}
878
879static inline struct maple_metadata *ma_meta(struct maple_node *mn,
880 enum maple_type mt)
881{
882 switch (mt) {
883 case maple_arange_64:
884 return &mn->ma64.meta;
885 default:
886 return &mn->mr64.meta;
887 }
888}
889
890/*
891 * ma_set_meta() - Set the metadata information of a node.
892 * @mn: The maple node
893 * @mt: The maple node type
894 * @offset: The offset of the highest sub-gap in this node.
895 * @end: The end of the data in this node.
896 */
897static inline void ma_set_meta(struct maple_node *mn, enum maple_type mt,
898 unsigned char offset, unsigned char end)
899{
900 struct maple_metadata *meta = ma_meta(mn, mt);
901
902 meta->gap = offset;
903 meta->end = end;
904}
905
2e5b4921 906/*
790e1fa8
LH
907 * mt_clear_meta() - clear the metadata information of a node, if it exists
908 * @mt: The maple tree
2e5b4921 909 * @mn: The maple node
790e1fa8 910 * @type: The maple node type
2e5b4921
LH
911 * @offset: The offset of the highest sub-gap in this node.
912 * @end: The end of the data in this node.
913 */
790e1fa8
LH
914static inline void mt_clear_meta(struct maple_tree *mt, struct maple_node *mn,
915 enum maple_type type)
2e5b4921
LH
916{
917 struct maple_metadata *meta;
918 unsigned long *pivots;
919 void __rcu **slots;
920 void *next;
921
790e1fa8 922 switch (type) {
2e5b4921
LH
923 case maple_range_64:
924 pivots = mn->mr64.pivot;
925 if (unlikely(pivots[MAPLE_RANGE64_SLOTS - 2])) {
926 slots = mn->mr64.slot;
790e1fa8
LH
927 next = mt_slot_locked(mt, slots,
928 MAPLE_RANGE64_SLOTS - 1);
929 if (unlikely((mte_to_node(next) &&
930 mte_node_type(next))))
931 return; /* no metadata, could be node */
2e5b4921
LH
932 }
933 fallthrough;
934 case maple_arange_64:
790e1fa8 935 meta = ma_meta(mn, type);
2e5b4921
LH
936 break;
937 default:
938 return;
939 }
940
941 meta->gap = 0;
942 meta->end = 0;
943}
944
54a611b6
LH
945/*
946 * ma_meta_end() - Get the data end of a node from the metadata
947 * @mn: The maple node
948 * @mt: The maple node type
949 */
950static inline unsigned char ma_meta_end(struct maple_node *mn,
951 enum maple_type mt)
952{
953 struct maple_metadata *meta = ma_meta(mn, mt);
954
955 return meta->end;
956}
957
958/*
959 * ma_meta_gap() - Get the largest gap location of a node from the metadata
960 * @mn: The maple node
961 * @mt: The maple node type
962 */
963static inline unsigned char ma_meta_gap(struct maple_node *mn,
964 enum maple_type mt)
965{
54a611b6
LH
966 return mn->ma64.meta.gap;
967}
968
969/*
970 * ma_set_meta_gap() - Set the largest gap location in a nodes metadata
971 * @mn: The maple node
972 * @mn: The maple node type
973 * @offset: The location of the largest gap.
974 */
975static inline void ma_set_meta_gap(struct maple_node *mn, enum maple_type mt,
976 unsigned char offset)
977{
978
979 struct maple_metadata *meta = ma_meta(mn, mt);
980
981 meta->gap = offset;
982}
983
984/*
985 * mat_add() - Add a @dead_enode to the ma_topiary of a list of dead nodes.
986 * @mat - the ma_topiary, a linked list of dead nodes.
987 * @dead_enode - the node to be marked as dead and added to the tail of the list
988 *
989 * Add the @dead_enode to the linked list in @mat.
990 */
991static inline void mat_add(struct ma_topiary *mat,
992 struct maple_enode *dead_enode)
993{
994 mte_set_node_dead(dead_enode);
995 mte_to_mat(dead_enode)->next = NULL;
996 if (!mat->tail) {
997 mat->tail = mat->head = dead_enode;
998 return;
999 }
1000
1001 mte_to_mat(mat->tail)->next = dead_enode;
1002 mat->tail = dead_enode;
1003}
1004
1005static void mte_destroy_walk(struct maple_enode *, struct maple_tree *);
1006static inline void mas_free(struct ma_state *mas, struct maple_enode *used);
1007
1008/*
1009 * mas_mat_free() - Free all nodes in a dead list.
1010 * @mas - the maple state
1011 * @mat - the ma_topiary linked list of dead nodes to free.
1012 *
1013 * Free walk a dead list.
1014 */
1015static void mas_mat_free(struct ma_state *mas, struct ma_topiary *mat)
1016{
1017 struct maple_enode *next;
1018
1019 while (mat->head) {
1020 next = mte_to_mat(mat->head)->next;
1021 mas_free(mas, mat->head);
1022 mat->head = next;
1023 }
1024}
1025
1026/*
1027 * mas_mat_destroy() - Free all nodes and subtrees in a dead list.
1028 * @mas - the maple state
1029 * @mat - the ma_topiary linked list of dead nodes to free.
1030 *
1031 * Destroy walk a dead list.
1032 */
1033static void mas_mat_destroy(struct ma_state *mas, struct ma_topiary *mat)
1034{
1035 struct maple_enode *next;
1036
1037 while (mat->head) {
1038 next = mte_to_mat(mat->head)->next;
1039 mte_destroy_walk(mat->head, mat->mtree);
1040 mat->head = next;
1041 }
1042}
1043/*
1044 * mas_descend() - Descend into the slot stored in the ma_state.
1045 * @mas - the maple state.
1046 *
1047 * Note: Not RCU safe, only use in write side or debug code.
1048 */
1049static inline void mas_descend(struct ma_state *mas)
1050{
1051 enum maple_type type;
1052 unsigned long *pivots;
1053 struct maple_node *node;
1054 void __rcu **slots;
1055
1056 node = mas_mn(mas);
1057 type = mte_node_type(mas->node);
1058 pivots = ma_pivots(node, type);
1059 slots = ma_slots(node, type);
1060
1061 if (mas->offset)
1062 mas->min = pivots[mas->offset - 1] + 1;
1063 mas->max = mas_safe_pivot(mas, pivots, mas->offset, type);
1064 mas->node = mas_slot(mas, slots, mas->offset);
1065}
1066
1067/*
1068 * mte_set_gap() - Set a maple node gap.
1069 * @mn: The encoded maple node
1070 * @gap: The offset of the gap to set
1071 * @val: The gap value
1072 */
1073static inline void mte_set_gap(const struct maple_enode *mn,
1074 unsigned char gap, unsigned long val)
1075{
1076 switch (mte_node_type(mn)) {
1077 default:
1078 break;
1079 case maple_arange_64:
1080 mte_to_node(mn)->ma64.gap[gap] = val;
1081 break;
1082 }
1083}
1084
1085/*
1086 * mas_ascend() - Walk up a level of the tree.
1087 * @mas: The maple state
1088 *
1089 * Sets the @mas->max and @mas->min to the correct values when walking up. This
1090 * may cause several levels of walking up to find the correct min and max.
1091 * May find a dead node which will cause a premature return.
1092 * Return: 1 on dead node, 0 otherwise
1093 */
1094static int mas_ascend(struct ma_state *mas)
1095{
1096 struct maple_enode *p_enode; /* parent enode. */
1097 struct maple_enode *a_enode; /* ancestor enode. */
1098 struct maple_node *a_node; /* ancestor node. */
1099 struct maple_node *p_node; /* parent node. */
1100 unsigned char a_slot;
1101 enum maple_type a_type;
1102 unsigned long min, max;
1103 unsigned long *pivots;
54a611b6
LH
1104 bool set_max = false, set_min = false;
1105
1106 a_node = mas_mn(mas);
1107 if (ma_is_root(a_node)) {
1108 mas->offset = 0;
1109 return 0;
1110 }
1111
1112 p_node = mte_parent(mas->node);
1113 if (unlikely(a_node == p_node))
1114 return 1;
633769c9 1115
afc754c6 1116 a_type = mas_parent_type(mas, mas->node);
633769c9 1117 mas->offset = mte_parent_slot(mas->node);
54a611b6
LH
1118 a_enode = mt_mk_node(p_node, a_type);
1119
1120 /* Check to make sure all parent information is still accurate */
1121 if (p_node != mte_parent(mas->node))
1122 return 1;
1123
1124 mas->node = a_enode;
54a611b6
LH
1125
1126 if (mte_is_root(a_enode)) {
1127 mas->max = ULONG_MAX;
1128 mas->min = 0;
1129 return 0;
1130 }
1131
633769c9
LH
1132 if (!mas->min)
1133 set_min = true;
1134
1135 if (mas->max == ULONG_MAX)
1136 set_max = true;
1137
54a611b6
LH
1138 min = 0;
1139 max = ULONG_MAX;
1140 do {
1141 p_enode = a_enode;
afc754c6 1142 a_type = mas_parent_type(mas, p_enode);
54a611b6
LH
1143 a_node = mte_parent(p_enode);
1144 a_slot = mte_parent_slot(p_enode);
54a611b6 1145 a_enode = mt_mk_node(a_node, a_type);
39d0bd86
LH
1146 pivots = ma_pivots(a_node, a_type);
1147
1148 if (unlikely(ma_dead_node(a_node)))
1149 return 1;
54a611b6
LH
1150
1151 if (!set_min && a_slot) {
1152 set_min = true;
1153 min = pivots[a_slot - 1] + 1;
1154 }
1155
1156 if (!set_max && a_slot < mt_pivots[a_type]) {
1157 set_max = true;
1158 max = pivots[a_slot];
1159 }
1160
1161 if (unlikely(ma_dead_node(a_node)))
1162 return 1;
1163
1164 if (unlikely(ma_is_root(a_node)))
1165 break;
1166
1167 } while (!set_min || !set_max);
1168
1169 mas->max = max;
1170 mas->min = min;
1171 return 0;
1172}
1173
1174/*
1175 * mas_pop_node() - Get a previously allocated maple node from the maple state.
1176 * @mas: The maple state
1177 *
1178 * Return: A pointer to a maple node.
1179 */
1180static inline struct maple_node *mas_pop_node(struct ma_state *mas)
1181{
1182 struct maple_alloc *ret, *node = mas->alloc;
1183 unsigned long total = mas_allocated(mas);
541e06b7 1184 unsigned int req = mas_alloc_req(mas);
54a611b6
LH
1185
1186 /* nothing or a request pending. */
541e06b7 1187 if (WARN_ON(!total))
54a611b6
LH
1188 return NULL;
1189
1190 if (total == 1) {
1191 /* single allocation in this ma_state */
1192 mas->alloc = NULL;
1193 ret = node;
1194 goto single_node;
1195 }
1196
541e06b7 1197 if (node->node_count == 1) {
54a611b6
LH
1198 /* Single allocation in this node. */
1199 mas->alloc = node->slot[0];
54a611b6
LH
1200 mas->alloc->total = node->total - 1;
1201 ret = node;
1202 goto new_head;
1203 }
54a611b6 1204 node->total--;
541e06b7
LH
1205 ret = node->slot[--node->node_count];
1206 node->slot[node->node_count] = NULL;
54a611b6
LH
1207
1208single_node:
1209new_head:
541e06b7
LH
1210 if (req) {
1211 req++;
1212 mas_set_alloc_req(mas, req);
54a611b6 1213 }
541e06b7
LH
1214
1215 memset(ret, 0, sizeof(*ret));
54a611b6
LH
1216 return (struct maple_node *)ret;
1217}
1218
1219/*
1220 * mas_push_node() - Push a node back on the maple state allocation.
1221 * @mas: The maple state
1222 * @used: The used maple node
1223 *
1224 * Stores the maple node back into @mas->alloc for reuse. Updates allocated and
1225 * requested node count as necessary.
1226 */
1227static inline void mas_push_node(struct ma_state *mas, struct maple_node *used)
1228{
1229 struct maple_alloc *reuse = (struct maple_alloc *)used;
1230 struct maple_alloc *head = mas->alloc;
1231 unsigned long count;
1232 unsigned int requested = mas_alloc_req(mas);
1233
54a611b6
LH
1234 count = mas_allocated(mas);
1235
541e06b7
LH
1236 reuse->request_count = 0;
1237 reuse->node_count = 0;
1238 if (count && (head->node_count < MAPLE_ALLOC_SLOTS)) {
1239 head->slot[head->node_count++] = reuse;
54a611b6
LH
1240 head->total++;
1241 goto done;
1242 }
1243
1244 reuse->total = 1;
1245 if ((head) && !((unsigned long)head & 0x1)) {
54a611b6 1246 reuse->slot[0] = head;
541e06b7 1247 reuse->node_count = 1;
54a611b6
LH
1248 reuse->total += head->total;
1249 }
1250
1251 mas->alloc = reuse;
1252done:
1253 if (requested > 1)
1254 mas_set_alloc_req(mas, requested - 1);
1255}
1256
1257/*
1258 * mas_alloc_nodes() - Allocate nodes into a maple state
1259 * @mas: The maple state
1260 * @gfp: The GFP Flags
1261 */
1262static inline void mas_alloc_nodes(struct ma_state *mas, gfp_t gfp)
1263{
1264 struct maple_alloc *node;
54a611b6 1265 unsigned long allocated = mas_allocated(mas);
54a611b6
LH
1266 unsigned int requested = mas_alloc_req(mas);
1267 unsigned int count;
1268 void **slots = NULL;
1269 unsigned int max_req = 0;
1270
1271 if (!requested)
1272 return;
1273
1274 mas_set_alloc_req(mas, 0);
1275 if (mas->mas_flags & MA_STATE_PREALLOC) {
1276 if (allocated)
1277 return;
1278 WARN_ON(!allocated);
1279 }
1280
541e06b7 1281 if (!allocated || mas->alloc->node_count == MAPLE_ALLOC_SLOTS) {
54a611b6
LH
1282 node = (struct maple_alloc *)mt_alloc_one(gfp);
1283 if (!node)
1284 goto nomem_one;
1285
541e06b7 1286 if (allocated) {
54a611b6 1287 node->slot[0] = mas->alloc;
541e06b7
LH
1288 node->node_count = 1;
1289 } else {
1290 node->node_count = 0;
1291 }
54a611b6 1292
54a611b6 1293 mas->alloc = node;
541e06b7 1294 node->total = ++allocated;
54a611b6
LH
1295 requested--;
1296 }
1297
1298 node = mas->alloc;
541e06b7 1299 node->request_count = 0;
54a611b6 1300 while (requested) {
1f5f12ec
PZ
1301 max_req = MAPLE_ALLOC_SLOTS - node->node_count;
1302 slots = (void **)&node->slot[node->node_count];
54a611b6
LH
1303 max_req = min(requested, max_req);
1304 count = mt_alloc_bulk(gfp, max_req, slots);
1305 if (!count)
1306 goto nomem_bulk;
1307
1f5f12ec
PZ
1308 if (node->node_count == 0) {
1309 node->slot[0]->node_count = 0;
1310 node->slot[0]->request_count = 0;
1311 }
1312
54a611b6 1313 node->node_count += count;
541e06b7 1314 allocated += count;
c61b3a2b 1315 node = node->slot[0];
54a611b6
LH
1316 requested -= count;
1317 }
541e06b7 1318 mas->alloc->total = allocated;
54a611b6
LH
1319 return;
1320
1321nomem_bulk:
1322 /* Clean up potential freed allocations on bulk failure */
1323 memset(slots, 0, max_req * sizeof(unsigned long));
1324nomem_one:
1325 mas_set_alloc_req(mas, requested);
1326 if (mas->alloc && !(((unsigned long)mas->alloc & 0x1)))
541e06b7 1327 mas->alloc->total = allocated;
54a611b6 1328 mas_set_err(mas, -ENOMEM);
54a611b6
LH
1329}
1330
1331/*
1332 * mas_free() - Free an encoded maple node
1333 * @mas: The maple state
1334 * @used: The encoded maple node to free.
1335 *
1336 * Uses rcu free if necessary, pushes @used back on the maple state allocations
1337 * otherwise.
1338 */
1339static inline void mas_free(struct ma_state *mas, struct maple_enode *used)
1340{
1341 struct maple_node *tmp = mte_to_node(used);
1342
1343 if (mt_in_rcu(mas->tree))
1344 ma_free_rcu(tmp);
1345 else
1346 mas_push_node(mas, tmp);
1347}
1348
1349/*
1350 * mas_node_count() - Check if enough nodes are allocated and request more if
1351 * there is not enough nodes.
1352 * @mas: The maple state
1353 * @count: The number of nodes needed
1354 * @gfp: the gfp flags
1355 */
1356static void mas_node_count_gfp(struct ma_state *mas, int count, gfp_t gfp)
1357{
1358 unsigned long allocated = mas_allocated(mas);
1359
1360 if (allocated < count) {
1361 mas_set_alloc_req(mas, count - allocated);
1362 mas_alloc_nodes(mas, gfp);
1363 }
1364}
1365
1366/*
1367 * mas_node_count() - Check if enough nodes are allocated and request more if
1368 * there is not enough nodes.
1369 * @mas: The maple state
1370 * @count: The number of nodes needed
1371 *
1372 * Note: Uses GFP_NOWAIT | __GFP_NOWARN for gfp flags.
1373 */
1374static void mas_node_count(struct ma_state *mas, int count)
1375{
1376 return mas_node_count_gfp(mas, count, GFP_NOWAIT | __GFP_NOWARN);
1377}
1378
1379/*
1380 * mas_start() - Sets up maple state for operations.
1381 * @mas: The maple state.
1382 *
46b34584 1383 * If mas->node == MAS_START, then set the min, max and depth to
54a611b6
LH
1384 * defaults.
1385 *
1386 * Return:
1387 * - If mas->node is an error or not MAS_START, return NULL.
1388 * - If it's an empty tree: NULL & mas->node == MAS_NONE
1389 * - If it's a single entry: The entry & mas->node == MAS_ROOT
1390 * - If it's a tree: NULL & mas->node == safe root node.
1391 */
1392static inline struct maple_enode *mas_start(struct ma_state *mas)
1393{
1394 if (likely(mas_is_start(mas))) {
1395 struct maple_enode *root;
1396
54a611b6
LH
1397 mas->min = 0;
1398 mas->max = ULONG_MAX;
1399 mas->depth = 0;
54a611b6 1400
a7b92d59 1401retry:
54a611b6
LH
1402 root = mas_root(mas);
1403 /* Tree with nodes */
1404 if (likely(xa_is_node(root))) {
9bbba563 1405 mas->depth = 1;
54a611b6 1406 mas->node = mte_safe_root(root);
46b34584 1407 mas->offset = 0;
a7b92d59
LH
1408 if (mte_dead_node(mas->node))
1409 goto retry;
1410
54a611b6
LH
1411 return NULL;
1412 }
1413
1414 /* empty tree */
1415 if (unlikely(!root)) {
46b34584 1416 mas->node = MAS_NONE;
54a611b6
LH
1417 mas->offset = MAPLE_NODE_SLOTS;
1418 return NULL;
1419 }
1420
1421 /* Single entry tree */
1422 mas->node = MAS_ROOT;
1423 mas->offset = MAPLE_NODE_SLOTS;
1424
1425 /* Single entry tree. */
1426 if (mas->index > 0)
1427 return NULL;
1428
1429 return root;
1430 }
1431
1432 return NULL;
1433}
1434
1435/*
1436 * ma_data_end() - Find the end of the data in a node.
1437 * @node: The maple node
1438 * @type: The maple node type
1439 * @pivots: The array of pivots in the node
1440 * @max: The maximum value in the node
1441 *
1442 * Uses metadata to find the end of the data when possible.
1443 * Return: The zero indexed last slot with data (may be null).
1444 */
1445static inline unsigned char ma_data_end(struct maple_node *node,
1446 enum maple_type type,
1447 unsigned long *pivots,
1448 unsigned long max)
1449{
1450 unsigned char offset;
1451
39d0bd86
LH
1452 if (!pivots)
1453 return 0;
1454
54a611b6
LH
1455 if (type == maple_arange_64)
1456 return ma_meta_end(node, type);
1457
1458 offset = mt_pivots[type] - 1;
1459 if (likely(!pivots[offset]))
1460 return ma_meta_end(node, type);
1461
1462 if (likely(pivots[offset] == max))
1463 return offset;
1464
1465 return mt_pivots[type];
1466}
1467
1468/*
1469 * mas_data_end() - Find the end of the data (slot).
1470 * @mas: the maple state
1471 *
1472 * This method is optimized to check the metadata of a node if the node type
1473 * supports data end metadata.
1474 *
1475 * Return: The zero indexed last slot with data (may be null).
1476 */
1477static inline unsigned char mas_data_end(struct ma_state *mas)
1478{
1479 enum maple_type type;
1480 struct maple_node *node;
1481 unsigned char offset;
1482 unsigned long *pivots;
1483
1484 type = mte_node_type(mas->node);
1485 node = mas_mn(mas);
1486 if (type == maple_arange_64)
1487 return ma_meta_end(node, type);
1488
1489 pivots = ma_pivots(node, type);
39d0bd86
LH
1490 if (unlikely(ma_dead_node(node)))
1491 return 0;
1492
54a611b6
LH
1493 offset = mt_pivots[type] - 1;
1494 if (likely(!pivots[offset]))
1495 return ma_meta_end(node, type);
1496
1497 if (likely(pivots[offset] == mas->max))
1498 return offset;
1499
1500 return mt_pivots[type];
1501}
1502
1503/*
1504 * mas_leaf_max_gap() - Returns the largest gap in a leaf node
1505 * @mas - the maple state
1506 *
1507 * Return: The maximum gap in the leaf.
1508 */
1509static unsigned long mas_leaf_max_gap(struct ma_state *mas)
1510{
1511 enum maple_type mt;
1512 unsigned long pstart, gap, max_gap;
1513 struct maple_node *mn;
1514 unsigned long *pivots;
1515 void __rcu **slots;
1516 unsigned char i;
1517 unsigned char max_piv;
1518
1519 mt = mte_node_type(mas->node);
1520 mn = mas_mn(mas);
1521 slots = ma_slots(mn, mt);
1522 max_gap = 0;
1523 if (unlikely(ma_is_dense(mt))) {
1524 gap = 0;
1525 for (i = 0; i < mt_slots[mt]; i++) {
1526 if (slots[i]) {
1527 if (gap > max_gap)
1528 max_gap = gap;
1529 gap = 0;
1530 } else {
1531 gap++;
1532 }
1533 }
1534 if (gap > max_gap)
1535 max_gap = gap;
1536 return max_gap;
1537 }
1538
1539 /*
1540 * Check the first implied pivot optimizes the loop below and slot 1 may
1541 * be skipped if there is a gap in slot 0.
1542 */
1543 pivots = ma_pivots(mn, mt);
1544 if (likely(!slots[0])) {
1545 max_gap = pivots[0] - mas->min + 1;
1546 i = 2;
1547 } else {
1548 i = 1;
1549 }
1550
1551 /* reduce max_piv as the special case is checked before the loop */
1552 max_piv = ma_data_end(mn, mt, pivots, mas->max) - 1;
1553 /*
1554 * Check end implied pivot which can only be a gap on the right most
1555 * node.
1556 */
1557 if (unlikely(mas->max == ULONG_MAX) && !slots[max_piv + 1]) {
1558 gap = ULONG_MAX - pivots[max_piv];
1559 if (gap > max_gap)
1560 max_gap = gap;
1561 }
1562
1563 for (; i <= max_piv; i++) {
1564 /* data == no gap. */
1565 if (likely(slots[i]))
1566 continue;
1567
1568 pstart = pivots[i - 1];
1569 gap = pivots[i] - pstart;
1570 if (gap > max_gap)
1571 max_gap = gap;
1572
1573 /* There cannot be two gaps in a row. */
1574 i++;
1575 }
1576 return max_gap;
1577}
1578
1579/*
1580 * ma_max_gap() - Get the maximum gap in a maple node (non-leaf)
1581 * @node: The maple node
1582 * @gaps: The pointer to the gaps
1583 * @mt: The maple node type
1584 * @*off: Pointer to store the offset location of the gap.
1585 *
1586 * Uses the metadata data end to scan backwards across set gaps.
1587 *
1588 * Return: The maximum gap value
1589 */
1590static inline unsigned long
1591ma_max_gap(struct maple_node *node, unsigned long *gaps, enum maple_type mt,
1592 unsigned char *off)
1593{
1594 unsigned char offset, i;
1595 unsigned long max_gap = 0;
1596
1597 i = offset = ma_meta_end(node, mt);
1598 do {
1599 if (gaps[i] > max_gap) {
1600 max_gap = gaps[i];
1601 offset = i;
1602 }
1603 } while (i--);
1604
1605 *off = offset;
1606 return max_gap;
1607}
1608
1609/*
1610 * mas_max_gap() - find the largest gap in a non-leaf node and set the slot.
1611 * @mas: The maple state.
1612 *
1613 * If the metadata gap is set to MAPLE_ARANGE64_META_MAX, there is no gap.
1614 *
1615 * Return: The gap value.
1616 */
1617static inline unsigned long mas_max_gap(struct ma_state *mas)
1618{
1619 unsigned long *gaps;
1620 unsigned char offset;
1621 enum maple_type mt;
1622 struct maple_node *node;
1623
1624 mt = mte_node_type(mas->node);
1625 if (ma_is_leaf(mt))
1626 return mas_leaf_max_gap(mas);
1627
1628 node = mas_mn(mas);
bec1b51e 1629 MAS_BUG_ON(mas, mt != maple_arange_64);
54a611b6
LH
1630 offset = ma_meta_gap(node, mt);
1631 if (offset == MAPLE_ARANGE64_META_MAX)
1632 return 0;
1633
1634 gaps = ma_gaps(node, mt);
1635 return gaps[offset];
1636}
1637
1638/*
1639 * mas_parent_gap() - Set the parent gap and any gaps above, as needed
1640 * @mas: The maple state
1641 * @offset: The gap offset in the parent to set
1642 * @new: The new gap value.
1643 *
1644 * Set the parent gap then continue to set the gap upwards, using the metadata
1645 * of the parent to see if it is necessary to check the node above.
1646 */
1647static inline void mas_parent_gap(struct ma_state *mas, unsigned char offset,
1648 unsigned long new)
1649{
1650 unsigned long meta_gap = 0;
1651 struct maple_node *pnode;
1652 struct maple_enode *penode;
1653 unsigned long *pgaps;
1654 unsigned char meta_offset;
1655 enum maple_type pmt;
1656
1657 pnode = mte_parent(mas->node);
afc754c6 1658 pmt = mas_parent_type(mas, mas->node);
54a611b6
LH
1659 penode = mt_mk_node(pnode, pmt);
1660 pgaps = ma_gaps(pnode, pmt);
1661
1662ascend:
bec1b51e 1663 MAS_BUG_ON(mas, pmt != maple_arange_64);
54a611b6
LH
1664 meta_offset = ma_meta_gap(pnode, pmt);
1665 if (meta_offset == MAPLE_ARANGE64_META_MAX)
1666 meta_gap = 0;
1667 else
1668 meta_gap = pgaps[meta_offset];
1669
1670 pgaps[offset] = new;
1671
1672 if (meta_gap == new)
1673 return;
1674
1675 if (offset != meta_offset) {
1676 if (meta_gap > new)
1677 return;
1678
1679 ma_set_meta_gap(pnode, pmt, offset);
1680 } else if (new < meta_gap) {
1681 meta_offset = 15;
1682 new = ma_max_gap(pnode, pgaps, pmt, &meta_offset);
1683 ma_set_meta_gap(pnode, pmt, meta_offset);
1684 }
1685
1686 if (ma_is_root(pnode))
1687 return;
1688
1689 /* Go to the parent node. */
1690 pnode = mte_parent(penode);
afc754c6 1691 pmt = mas_parent_type(mas, penode);
54a611b6
LH
1692 pgaps = ma_gaps(pnode, pmt);
1693 offset = mte_parent_slot(penode);
1694 penode = mt_mk_node(pnode, pmt);
1695 goto ascend;
1696}
1697
1698/*
1699 * mas_update_gap() - Update a nodes gaps and propagate up if necessary.
1700 * @mas - the maple state.
1701 */
1702static inline void mas_update_gap(struct ma_state *mas)
1703{
1704 unsigned char pslot;
1705 unsigned long p_gap;
1706 unsigned long max_gap;
1707
1708 if (!mt_is_alloc(mas->tree))
1709 return;
1710
1711 if (mte_is_root(mas->node))
1712 return;
1713
1714 max_gap = mas_max_gap(mas);
1715
1716 pslot = mte_parent_slot(mas->node);
1717 p_gap = ma_gaps(mte_parent(mas->node),
afc754c6 1718 mas_parent_type(mas, mas->node))[pslot];
54a611b6
LH
1719
1720 if (p_gap != max_gap)
1721 mas_parent_gap(mas, pslot, max_gap);
1722}
1723
1724/*
1725 * mas_adopt_children() - Set the parent pointer of all nodes in @parent to
1726 * @parent with the slot encoded.
1727 * @mas - the maple state (for the tree)
1728 * @parent - the maple encoded node containing the children.
1729 */
1730static inline void mas_adopt_children(struct ma_state *mas,
1731 struct maple_enode *parent)
1732{
1733 enum maple_type type = mte_node_type(parent);
1734 struct maple_node *node = mas_mn(mas);
1735 void __rcu **slots = ma_slots(node, type);
1736 unsigned long *pivots = ma_pivots(node, type);
1737 struct maple_enode *child;
1738 unsigned char offset;
1739
1740 offset = ma_data_end(node, type, pivots, mas->max);
1741 do {
1742 child = mas_slot_locked(mas, slots, offset);
bf96715e 1743 mas_set_parent(mas, child, parent, offset);
54a611b6
LH
1744 } while (offset--);
1745}
1746
1747/*
1748 * mas_replace() - Replace a maple node in the tree with mas->node. Uses the
1749 * parent encoding to locate the maple node in the tree.
1750 * @mas - the ma_state to use for operations.
1751 * @advanced - boolean to adopt the child nodes and free the old node (false) or
1752 * leave the node (true) and handle the adoption and free elsewhere.
1753 */
1754static inline void mas_replace(struct ma_state *mas, bool advanced)
1755 __must_hold(mas->tree->lock)
1756{
1757 struct maple_node *mn = mas_mn(mas);
1758 struct maple_enode *old_enode;
1759 unsigned char offset = 0;
1760 void __rcu **slots = NULL;
1761
1762 if (ma_is_root(mn)) {
1763 old_enode = mas_root_locked(mas);
1764 } else {
1765 offset = mte_parent_slot(mas->node);
1766 slots = ma_slots(mte_parent(mas->node),
afc754c6 1767 mas_parent_type(mas, mas->node));
54a611b6
LH
1768 old_enode = mas_slot_locked(mas, slots, offset);
1769 }
1770
1771 if (!advanced && !mte_is_leaf(mas->node))
1772 mas_adopt_children(mas, mas->node);
1773
1774 if (mte_is_root(mas->node)) {
1775 mn->parent = ma_parent_ptr(
1776 ((unsigned long)mas->tree | MA_ROOT_PARENT));
1777 rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node));
1778 mas_set_height(mas);
1779 } else {
1780 rcu_assign_pointer(slots[offset], mas->node);
1781 }
1782
c13af03d
LH
1783 if (!advanced) {
1784 mte_set_node_dead(old_enode);
54a611b6 1785 mas_free(mas, old_enode);
c13af03d 1786 }
54a611b6
LH
1787}
1788
1789/*
1790 * mas_new_child() - Find the new child of a node.
1791 * @mas: the maple state
1792 * @child: the maple state to store the child.
1793 */
1794static inline bool mas_new_child(struct ma_state *mas, struct ma_state *child)
1795 __must_hold(mas->tree->lock)
1796{
1797 enum maple_type mt;
1798 unsigned char offset;
1799 unsigned char end;
1800 unsigned long *pivots;
1801 struct maple_enode *entry;
1802 struct maple_node *node;
1803 void __rcu **slots;
1804
1805 mt = mte_node_type(mas->node);
1806 node = mas_mn(mas);
1807 slots = ma_slots(node, mt);
1808 pivots = ma_pivots(node, mt);
1809 end = ma_data_end(node, mt, pivots, mas->max);
1810 for (offset = mas->offset; offset <= end; offset++) {
1811 entry = mas_slot_locked(mas, slots, offset);
1812 if (mte_parent(entry) == node) {
1813 *child = *mas;
1814 mas->offset = offset + 1;
1815 child->offset = offset;
1816 mas_descend(child);
1817 child->offset = 0;
1818 return true;
1819 }
1820 }
1821 return false;
1822}
1823
1824/*
1825 * mab_shift_right() - Shift the data in mab right. Note, does not clean out the
1826 * old data or set b_node->b_end.
1827 * @b_node: the maple_big_node
1828 * @shift: the shift count
1829 */
1830static inline void mab_shift_right(struct maple_big_node *b_node,
1831 unsigned char shift)
1832{
1833 unsigned long size = b_node->b_end * sizeof(unsigned long);
1834
1835 memmove(b_node->pivot + shift, b_node->pivot, size);
1836 memmove(b_node->slot + shift, b_node->slot, size);
1837 if (b_node->type == maple_arange_64)
1838 memmove(b_node->gap + shift, b_node->gap, size);
1839}
1840
1841/*
1842 * mab_middle_node() - Check if a middle node is needed (unlikely)
1843 * @b_node: the maple_big_node that contains the data.
1844 * @size: the amount of data in the b_node
1845 * @split: the potential split location
1846 * @slot_count: the size that can be stored in a single node being considered.
1847 *
1848 * Return: true if a middle node is required.
1849 */
1850static inline bool mab_middle_node(struct maple_big_node *b_node, int split,
1851 unsigned char slot_count)
1852{
1853 unsigned char size = b_node->b_end;
1854
1855 if (size >= 2 * slot_count)
1856 return true;
1857
1858 if (!b_node->slot[split] && (size >= 2 * slot_count - 1))
1859 return true;
1860
1861 return false;
1862}
1863
1864/*
1865 * mab_no_null_split() - ensure the split doesn't fall on a NULL
1866 * @b_node: the maple_big_node with the data
1867 * @split: the suggested split location
1868 * @slot_count: the number of slots in the node being considered.
1869 *
1870 * Return: the split location.
1871 */
1872static inline int mab_no_null_split(struct maple_big_node *b_node,
1873 unsigned char split, unsigned char slot_count)
1874{
1875 if (!b_node->slot[split]) {
1876 /*
1877 * If the split is less than the max slot && the right side will
1878 * still be sufficient, then increment the split on NULL.
1879 */
1880 if ((split < slot_count - 1) &&
1881 (b_node->b_end - split) > (mt_min_slots[b_node->type]))
1882 split++;
1883 else
1884 split--;
1885 }
1886 return split;
1887}
1888
1889/*
1890 * mab_calc_split() - Calculate the split location and if there needs to be two
1891 * splits.
1892 * @bn: The maple_big_node with the data
1893 * @mid_split: The second split, if required. 0 otherwise.
1894 *
1895 * Return: The first split location. The middle split is set in @mid_split.
1896 */
1897static inline int mab_calc_split(struct ma_state *mas,
1898 struct maple_big_node *bn, unsigned char *mid_split, unsigned long min)
1899{
1900 unsigned char b_end = bn->b_end;
1901 int split = b_end / 2; /* Assume equal split. */
1902 unsigned char slot_min, slot_count = mt_slots[bn->type];
1903
1904 /*
1905 * To support gap tracking, all NULL entries are kept together and a node cannot
1906 * end on a NULL entry, with the exception of the left-most leaf. The
1907 * limitation means that the split of a node must be checked for this condition
1908 * and be able to put more data in one direction or the other.
1909 */
1910 if (unlikely((mas->mas_flags & MA_STATE_BULK))) {
1911 *mid_split = 0;
1912 split = b_end - mt_min_slots[bn->type];
1913
1914 if (!ma_is_leaf(bn->type))
1915 return split;
1916
1917 mas->mas_flags |= MA_STATE_REBALANCE;
1918 if (!bn->slot[split])
1919 split--;
1920 return split;
1921 }
1922
1923 /*
1924 * Although extremely rare, it is possible to enter what is known as the 3-way
1925 * split scenario. The 3-way split comes about by means of a store of a range
1926 * that overwrites the end and beginning of two full nodes. The result is a set
1927 * of entries that cannot be stored in 2 nodes. Sometimes, these two nodes can
1928 * also be located in different parent nodes which are also full. This can
1929 * carry upwards all the way to the root in the worst case.
1930 */
1931 if (unlikely(mab_middle_node(bn, split, slot_count))) {
1932 split = b_end / 3;
1933 *mid_split = split * 2;
1934 } else {
1935 slot_min = mt_min_slots[bn->type];
1936
1937 *mid_split = 0;
1938 /*
1939 * Avoid having a range less than the slot count unless it
1940 * causes one node to be deficient.
1941 * NOTE: mt_min_slots is 1 based, b_end and split are zero.
1942 */
5729e06c
LH
1943 while ((split < slot_count - 1) &&
1944 ((bn->pivot[split] - min) < slot_count - 1) &&
1945 (b_end - split > slot_min))
54a611b6
LH
1946 split++;
1947 }
1948
1949 /* Avoid ending a node on a NULL entry */
1950 split = mab_no_null_split(bn, split, slot_count);
54a611b6 1951
e11cb683
VY
1952 if (unlikely(*mid_split))
1953 *mid_split = mab_no_null_split(bn, *mid_split, slot_count);
54a611b6
LH
1954
1955 return split;
1956}
1957
1958/*
1959 * mas_mab_cp() - Copy data from a maple state inclusively to a maple_big_node
1960 * and set @b_node->b_end to the next free slot.
1961 * @mas: The maple state
1962 * @mas_start: The starting slot to copy
1963 * @mas_end: The end slot to copy (inclusively)
1964 * @b_node: The maple_big_node to place the data
1965 * @mab_start: The starting location in maple_big_node to store the data.
1966 */
1967static inline void mas_mab_cp(struct ma_state *mas, unsigned char mas_start,
1968 unsigned char mas_end, struct maple_big_node *b_node,
1969 unsigned char mab_start)
1970{
1971 enum maple_type mt;
1972 struct maple_node *node;
1973 void __rcu **slots;
1974 unsigned long *pivots, *gaps;
1975 int i = mas_start, j = mab_start;
1976 unsigned char piv_end;
1977
1978 node = mas_mn(mas);
1979 mt = mte_node_type(mas->node);
1980 pivots = ma_pivots(node, mt);
1981 if (!i) {
1982 b_node->pivot[j] = pivots[i++];
1983 if (unlikely(i > mas_end))
1984 goto complete;
1985 j++;
1986 }
1987
1988 piv_end = min(mas_end, mt_pivots[mt]);
1989 for (; i < piv_end; i++, j++) {
1990 b_node->pivot[j] = pivots[i];
1991 if (unlikely(!b_node->pivot[j]))
1992 break;
1993
1994 if (unlikely(mas->max == b_node->pivot[j]))
1995 goto complete;
1996 }
1997
1998 if (likely(i <= mas_end))
1999 b_node->pivot[j] = mas_safe_pivot(mas, pivots, i, mt);
2000
2001complete:
2002 b_node->b_end = ++j;
2003 j -= mab_start;
2004 slots = ma_slots(node, mt);
2005 memcpy(b_node->slot + mab_start, slots + mas_start, sizeof(void *) * j);
2006 if (!ma_is_leaf(mt) && mt_is_alloc(mas->tree)) {
2007 gaps = ma_gaps(node, mt);
2008 memcpy(b_node->gap + mab_start, gaps + mas_start,
2009 sizeof(unsigned long) * j);
2010 }
2011}
2012
2013/*
2014 * mas_leaf_set_meta() - Set the metadata of a leaf if possible.
2015 * @mas: The maple state
2016 * @node: The maple node
2017 * @pivots: pointer to the maple node pivots
2018 * @mt: The maple type
2019 * @end: The assumed end
2020 *
2021 * Note, end may be incremented within this function but not modified at the
2022 * source. This is fine since the metadata is the last thing to be stored in a
2023 * node during a write.
2024 */
2025static inline void mas_leaf_set_meta(struct ma_state *mas,
2026 struct maple_node *node, unsigned long *pivots,
2027 enum maple_type mt, unsigned char end)
2028{
2029 /* There is no room for metadata already */
2030 if (mt_pivots[mt] <= end)
2031 return;
2032
2033 if (pivots[end] && pivots[end] < mas->max)
2034 end++;
2035
2036 if (end < mt_slots[mt] - 1)
2037 ma_set_meta(node, mt, 0, end);
2038}
2039
2040/*
2041 * mab_mas_cp() - Copy data from maple_big_node to a maple encoded node.
2042 * @b_node: the maple_big_node that has the data
2043 * @mab_start: the start location in @b_node.
2044 * @mab_end: The end location in @b_node (inclusively)
2045 * @mas: The maple state with the maple encoded node.
2046 */
2047static inline void mab_mas_cp(struct maple_big_node *b_node,
2048 unsigned char mab_start, unsigned char mab_end,
2049 struct ma_state *mas, bool new_max)
2050{
2051 int i, j = 0;
2052 enum maple_type mt = mte_node_type(mas->node);
2053 struct maple_node *node = mte_to_node(mas->node);
2054 void __rcu **slots = ma_slots(node, mt);
2055 unsigned long *pivots = ma_pivots(node, mt);
2056 unsigned long *gaps = NULL;
2057 unsigned char end;
2058
2059 if (mab_end - mab_start > mt_pivots[mt])
2060 mab_end--;
2061
2062 if (!pivots[mt_pivots[mt] - 1])
2063 slots[mt_pivots[mt]] = NULL;
2064
2065 i = mab_start;
2066 do {
2067 pivots[j++] = b_node->pivot[i++];
2068 } while (i <= mab_end && likely(b_node->pivot[i]));
2069
2070 memcpy(slots, b_node->slot + mab_start,
2071 sizeof(void *) * (i - mab_start));
2072
2073 if (new_max)
2074 mas->max = b_node->pivot[i - 1];
2075
2076 end = j - 1;
2077 if (likely(!ma_is_leaf(mt) && mt_is_alloc(mas->tree))) {
2078 unsigned long max_gap = 0;
2079 unsigned char offset = 15;
2080
2081 gaps = ma_gaps(node, mt);
2082 do {
2083 gaps[--j] = b_node->gap[--i];
2084 if (gaps[j] > max_gap) {
2085 offset = j;
2086 max_gap = gaps[j];
2087 }
2088 } while (j);
2089
2090 ma_set_meta(node, mt, offset, end);
2091 } else {
2092 mas_leaf_set_meta(mas, node, pivots, mt, end);
2093 }
2094}
2095
2096/*
2097 * mas_descend_adopt() - Descend through a sub-tree and adopt children.
2098 * @mas: the maple state with the maple encoded node of the sub-tree.
2099 *
2100 * Descend through a sub-tree and adopt children who do not have the correct
2101 * parents set. Follow the parents which have the correct parents as they are
2102 * the new entries which need to be followed to find other incorrectly set
2103 * parents.
2104 */
2105static inline void mas_descend_adopt(struct ma_state *mas)
2106{
2107 struct ma_state list[3], next[3];
2108 int i, n;
2109
2110 /*
2111 * At each level there may be up to 3 correct parent pointers which indicates
2112 * the new nodes which need to be walked to find any new nodes at a lower level.
2113 */
2114
2115 for (i = 0; i < 3; i++) {
2116 list[i] = *mas;
2117 list[i].offset = 0;
2118 next[i].offset = 0;
2119 }
2120 next[0] = *mas;
2121
2122 while (!mte_is_leaf(list[0].node)) {
2123 n = 0;
2124 for (i = 0; i < 3; i++) {
2125 if (mas_is_none(&list[i]))
2126 continue;
2127
2128 if (i && list[i-1].node == list[i].node)
2129 continue;
2130
2131 while ((n < 3) && (mas_new_child(&list[i], &next[n])))
2132 n++;
2133
2134 mas_adopt_children(&list[i], list[i].node);
2135 }
2136
2137 while (n < 3)
2138 next[n++].node = MAS_NONE;
2139
2140 /* descend by setting the list to the children */
2141 for (i = 0; i < 3; i++)
2142 list[i] = next[i];
2143 }
2144}
2145
2146/*
2147 * mas_bulk_rebalance() - Rebalance the end of a tree after a bulk insert.
2148 * @mas: The maple state
2149 * @end: The maple node end
2150 * @mt: The maple node type
2151 */
2152static inline void mas_bulk_rebalance(struct ma_state *mas, unsigned char end,
2153 enum maple_type mt)
2154{
2155 if (!(mas->mas_flags & MA_STATE_BULK))
2156 return;
2157
2158 if (mte_is_root(mas->node))
2159 return;
2160
2161 if (end > mt_min_slots[mt]) {
2162 mas->mas_flags &= ~MA_STATE_REBALANCE;
2163 return;
2164 }
2165}
2166
2167/*
2168 * mas_store_b_node() - Store an @entry into the b_node while also copying the
2169 * data from a maple encoded node.
2170 * @wr_mas: the maple write state
2171 * @b_node: the maple_big_node to fill with data
2172 * @offset_end: the offset to end copying
2173 *
2174 * Return: The actual end of the data stored in @b_node
2175 */
44081c77 2176static noinline_for_kasan void mas_store_b_node(struct ma_wr_state *wr_mas,
54a611b6
LH
2177 struct maple_big_node *b_node, unsigned char offset_end)
2178{
2179 unsigned char slot;
2180 unsigned char b_end;
2181 /* Possible underflow of piv will wrap back to 0 before use. */
2182 unsigned long piv;
2183 struct ma_state *mas = wr_mas->mas;
2184
2185 b_node->type = wr_mas->type;
2186 b_end = 0;
2187 slot = mas->offset;
2188 if (slot) {
2189 /* Copy start data up to insert. */
2190 mas_mab_cp(mas, 0, slot - 1, b_node, 0);
2191 b_end = b_node->b_end;
2192 piv = b_node->pivot[b_end - 1];
2193 } else
2194 piv = mas->min - 1;
2195
2196 if (piv + 1 < mas->index) {
2197 /* Handle range starting after old range */
2198 b_node->slot[b_end] = wr_mas->content;
2199 if (!wr_mas->content)
2200 b_node->gap[b_end] = mas->index - 1 - piv;
2201 b_node->pivot[b_end++] = mas->index - 1;
2202 }
2203
2204 /* Store the new entry. */
2205 mas->offset = b_end;
2206 b_node->slot[b_end] = wr_mas->entry;
2207 b_node->pivot[b_end] = mas->last;
2208
2209 /* Appended. */
2210 if (mas->last >= mas->max)
2211 goto b_end;
2212
2213 /* Handle new range ending before old range ends */
2214 piv = mas_logical_pivot(mas, wr_mas->pivots, offset_end, wr_mas->type);
2215 if (piv > mas->last) {
2216 if (piv == ULONG_MAX)
2217 mas_bulk_rebalance(mas, b_node->b_end, wr_mas->type);
2218
2219 if (offset_end != slot)
2220 wr_mas->content = mas_slot_locked(mas, wr_mas->slots,
2221 offset_end);
2222
2223 b_node->slot[++b_end] = wr_mas->content;
2224 if (!wr_mas->content)
2225 b_node->gap[b_end] = piv - mas->last + 1;
2226 b_node->pivot[b_end] = piv;
2227 }
2228
2229 slot = offset_end + 1;
2230 if (slot > wr_mas->node_end)
2231 goto b_end;
2232
2233 /* Copy end data to the end of the node. */
2234 mas_mab_cp(mas, slot, wr_mas->node_end + 1, b_node, ++b_end);
2235 b_node->b_end--;
2236 return;
2237
2238b_end:
2239 b_node->b_end = b_end;
2240}
2241
2242/*
2243 * mas_prev_sibling() - Find the previous node with the same parent.
2244 * @mas: the maple state
2245 *
2246 * Return: True if there is a previous sibling, false otherwise.
2247 */
2248static inline bool mas_prev_sibling(struct ma_state *mas)
2249{
2250 unsigned int p_slot = mte_parent_slot(mas->node);
2251
2252 if (mte_is_root(mas->node))
2253 return false;
2254
2255 if (!p_slot)
2256 return false;
2257
2258 mas_ascend(mas);
2259 mas->offset = p_slot - 1;
2260 mas_descend(mas);
2261 return true;
2262}
2263
2264/*
2265 * mas_next_sibling() - Find the next node with the same parent.
2266 * @mas: the maple state
2267 *
2268 * Return: true if there is a next sibling, false otherwise.
2269 */
2270static inline bool mas_next_sibling(struct ma_state *mas)
2271{
2272 MA_STATE(parent, mas->tree, mas->index, mas->last);
2273
2274 if (mte_is_root(mas->node))
2275 return false;
2276
2277 parent = *mas;
2278 mas_ascend(&parent);
2279 parent.offset = mte_parent_slot(mas->node) + 1;
2280 if (parent.offset > mas_data_end(&parent))
2281 return false;
2282
2283 *mas = parent;
2284 mas_descend(mas);
2285 return true;
2286}
2287
2288/*
2289 * mte_node_or_node() - Return the encoded node or MAS_NONE.
2290 * @enode: The encoded maple node.
2291 *
2292 * Shorthand to avoid setting %NULLs in the tree or maple_subtree_state.
2293 *
2294 * Return: @enode or MAS_NONE
2295 */
2296static inline struct maple_enode *mte_node_or_none(struct maple_enode *enode)
2297{
2298 if (enode)
2299 return enode;
2300
2301 return ma_enode_ptr(MAS_NONE);
2302}
2303
2304/*
2305 * mas_wr_node_walk() - Find the correct offset for the index in the @mas.
2306 * @wr_mas: The maple write state
2307 *
2308 * Uses mas_slot_locked() and does not need to worry about dead nodes.
2309 */
2310static inline void mas_wr_node_walk(struct ma_wr_state *wr_mas)
2311{
2312 struct ma_state *mas = wr_mas->mas;
97f7e094 2313 unsigned char count, offset;
54a611b6
LH
2314
2315 if (unlikely(ma_is_dense(wr_mas->type))) {
2316 wr_mas->r_max = wr_mas->r_min = mas->index;
2317 mas->offset = mas->index = mas->min;
2318 return;
2319 }
2320
2321 wr_mas->node = mas_mn(wr_mas->mas);
2322 wr_mas->pivots = ma_pivots(wr_mas->node, wr_mas->type);
2323 count = wr_mas->node_end = ma_data_end(wr_mas->node, wr_mas->type,
2324 wr_mas->pivots, mas->max);
2325 offset = mas->offset;
54a611b6 2326
97f7e094
PZ
2327 while (offset < count && mas->index > wr_mas->pivots[offset])
2328 offset++;
54a611b6 2329
97f7e094
PZ
2330 wr_mas->r_max = offset < count ? wr_mas->pivots[offset] : mas->max;
2331 wr_mas->r_min = mas_safe_min(mas, wr_mas->pivots, offset);
54a611b6
LH
2332 wr_mas->offset_end = mas->offset = offset;
2333}
2334
2335/*
2336 * mas_topiary_range() - Add a range of slots to the topiary.
2337 * @mas: The maple state
2338 * @destroy: The topiary to add the slots (usually destroy)
2339 * @start: The starting slot inclusively
2340 * @end: The end slot inclusively
2341 */
2342static inline void mas_topiary_range(struct ma_state *mas,
2343 struct ma_topiary *destroy, unsigned char start, unsigned char end)
2344{
2345 void __rcu **slots;
2346 unsigned char offset;
2347
4bbd1748
LH
2348 MAS_BUG_ON(mas, mte_is_leaf(mas->node));
2349
54a611b6
LH
2350 slots = ma_slots(mas_mn(mas), mte_node_type(mas->node));
2351 for (offset = start; offset <= end; offset++) {
2352 struct maple_enode *enode = mas_slot_locked(mas, slots, offset);
2353
2354 if (mte_dead_node(enode))
2355 continue;
2356
2357 mat_add(destroy, enode);
2358 }
2359}
2360
2361/*
2362 * mast_topiary() - Add the portions of the tree to the removal list; either to
2363 * be freed or discarded (destroy walk).
2364 * @mast: The maple_subtree_state.
2365 */
2366static inline void mast_topiary(struct maple_subtree_state *mast)
2367{
2368 MA_WR_STATE(wr_mas, mast->orig_l, NULL);
2369 unsigned char r_start, r_end;
2370 unsigned char l_start, l_end;
2371 void __rcu **l_slots, **r_slots;
2372
2373 wr_mas.type = mte_node_type(mast->orig_l->node);
2374 mast->orig_l->index = mast->orig_l->last;
2375 mas_wr_node_walk(&wr_mas);
2376 l_start = mast->orig_l->offset + 1;
2377 l_end = mas_data_end(mast->orig_l);
2378 r_start = 0;
2379 r_end = mast->orig_r->offset;
2380
2381 if (r_end)
2382 r_end--;
2383
2384 l_slots = ma_slots(mas_mn(mast->orig_l),
2385 mte_node_type(mast->orig_l->node));
2386
2387 r_slots = ma_slots(mas_mn(mast->orig_r),
2388 mte_node_type(mast->orig_r->node));
2389
2390 if ((l_start < l_end) &&
2391 mte_dead_node(mas_slot_locked(mast->orig_l, l_slots, l_start))) {
2392 l_start++;
2393 }
2394
2395 if (mte_dead_node(mas_slot_locked(mast->orig_r, r_slots, r_end))) {
2396 if (r_end)
2397 r_end--;
2398 }
2399
2400 if ((l_start > r_end) && (mast->orig_l->node == mast->orig_r->node))
2401 return;
2402
2403 /* At the node where left and right sides meet, add the parts between */
2404 if (mast->orig_l->node == mast->orig_r->node) {
2405 return mas_topiary_range(mast->orig_l, mast->destroy,
2406 l_start, r_end);
2407 }
2408
2409 /* mast->orig_r is different and consumed. */
2410 if (mte_is_leaf(mast->orig_r->node))
2411 return;
2412
2413 if (mte_dead_node(mas_slot_locked(mast->orig_l, l_slots, l_end)))
2414 l_end--;
2415
2416
2417 if (l_start <= l_end)
2418 mas_topiary_range(mast->orig_l, mast->destroy, l_start, l_end);
2419
2420 if (mte_dead_node(mas_slot_locked(mast->orig_r, r_slots, r_start)))
2421 r_start++;
2422
2423 if (r_start <= r_end)
2424 mas_topiary_range(mast->orig_r, mast->destroy, 0, r_end);
2425}
2426
2427/*
2428 * mast_rebalance_next() - Rebalance against the next node
2429 * @mast: The maple subtree state
2430 * @old_r: The encoded maple node to the right (next node).
2431 */
2432static inline void mast_rebalance_next(struct maple_subtree_state *mast)
2433{
2434 unsigned char b_end = mast->bn->b_end;
2435
2436 mas_mab_cp(mast->orig_r, 0, mt_slot_count(mast->orig_r->node),
2437 mast->bn, b_end);
2438 mast->orig_r->last = mast->orig_r->max;
2439}
2440
2441/*
2442 * mast_rebalance_prev() - Rebalance against the previous node
2443 * @mast: The maple subtree state
2444 * @old_l: The encoded maple node to the left (previous node)
2445 */
2446static inline void mast_rebalance_prev(struct maple_subtree_state *mast)
2447{
2448 unsigned char end = mas_data_end(mast->orig_l) + 1;
2449 unsigned char b_end = mast->bn->b_end;
2450
2451 mab_shift_right(mast->bn, end);
2452 mas_mab_cp(mast->orig_l, 0, end - 1, mast->bn, 0);
2453 mast->l->min = mast->orig_l->min;
2454 mast->orig_l->index = mast->orig_l->min;
2455 mast->bn->b_end = end + b_end;
2456 mast->l->offset += end;
2457}
2458
2459/*
2460 * mast_spanning_rebalance() - Rebalance nodes with nearest neighbour favouring
2461 * the node to the right. Checking the nodes to the right then the left at each
2462 * level upwards until root is reached. Free and destroy as needed.
2463 * Data is copied into the @mast->bn.
2464 * @mast: The maple_subtree_state.
2465 */
2466static inline
2467bool mast_spanning_rebalance(struct maple_subtree_state *mast)
2468{
2469 struct ma_state r_tmp = *mast->orig_r;
2470 struct ma_state l_tmp = *mast->orig_l;
2471 struct maple_enode *ancestor = NULL;
2472 unsigned char start, end;
2473 unsigned char depth = 0;
2474
2475 r_tmp = *mast->orig_r;
2476 l_tmp = *mast->orig_l;
2477 do {
2478 mas_ascend(mast->orig_r);
2479 mas_ascend(mast->orig_l);
2480 depth++;
2481 if (!ancestor &&
2482 (mast->orig_r->node == mast->orig_l->node)) {
2483 ancestor = mast->orig_r->node;
2484 end = mast->orig_r->offset - 1;
2485 start = mast->orig_l->offset + 1;
2486 }
2487
2488 if (mast->orig_r->offset < mas_data_end(mast->orig_r)) {
2489 if (!ancestor) {
2490 ancestor = mast->orig_r->node;
2491 start = 0;
2492 }
2493
2494 mast->orig_r->offset++;
2495 do {
2496 mas_descend(mast->orig_r);
2497 mast->orig_r->offset = 0;
2498 depth--;
2499 } while (depth);
2500
2501 mast_rebalance_next(mast);
2502 do {
2503 unsigned char l_off = 0;
2504 struct maple_enode *child = r_tmp.node;
2505
2506 mas_ascend(&r_tmp);
2507 if (ancestor == r_tmp.node)
2508 l_off = start;
2509
2510 if (r_tmp.offset)
2511 r_tmp.offset--;
2512
2513 if (l_off < r_tmp.offset)
2514 mas_topiary_range(&r_tmp, mast->destroy,
2515 l_off, r_tmp.offset);
2516
2517 if (l_tmp.node != child)
2518 mat_add(mast->free, child);
2519
2520 } while (r_tmp.node != ancestor);
2521
2522 *mast->orig_l = l_tmp;
2523 return true;
2524
2525 } else if (mast->orig_l->offset != 0) {
2526 if (!ancestor) {
2527 ancestor = mast->orig_l->node;
2528 end = mas_data_end(mast->orig_l);
2529 }
2530
2531 mast->orig_l->offset--;
2532 do {
2533 mas_descend(mast->orig_l);
2534 mast->orig_l->offset =
2535 mas_data_end(mast->orig_l);
2536 depth--;
2537 } while (depth);
2538
2539 mast_rebalance_prev(mast);
2540 do {
2541 unsigned char r_off;
2542 struct maple_enode *child = l_tmp.node;
2543
2544 mas_ascend(&l_tmp);
2545 if (ancestor == l_tmp.node)
2546 r_off = end;
2547 else
2548 r_off = mas_data_end(&l_tmp);
2549
2550 if (l_tmp.offset < r_off)
2551 l_tmp.offset++;
2552
2553 if (l_tmp.offset < r_off)
2554 mas_topiary_range(&l_tmp, mast->destroy,
2555 l_tmp.offset, r_off);
2556
2557 if (r_tmp.node != child)
2558 mat_add(mast->free, child);
2559
2560 } while (l_tmp.node != ancestor);
2561
2562 *mast->orig_r = r_tmp;
2563 return true;
2564 }
2565 } while (!mte_is_root(mast->orig_r->node));
2566
2567 *mast->orig_r = r_tmp;
2568 *mast->orig_l = l_tmp;
2569 return false;
2570}
2571
2572/*
2573 * mast_ascend_free() - Add current original maple state nodes to the free list
2574 * and ascend.
2575 * @mast: the maple subtree state.
2576 *
2577 * Ascend the original left and right sides and add the previous nodes to the
2578 * free list. Set the slots to point to the correct location in the new nodes.
2579 */
2580static inline void
2581mast_ascend_free(struct maple_subtree_state *mast)
2582{
2583 MA_WR_STATE(wr_mas, mast->orig_r, NULL);
2584 struct maple_enode *left = mast->orig_l->node;
2585 struct maple_enode *right = mast->orig_r->node;
2586
2587 mas_ascend(mast->orig_l);
2588 mas_ascend(mast->orig_r);
2589 mat_add(mast->free, left);
2590
2591 if (left != right)
2592 mat_add(mast->free, right);
2593
2594 mast->orig_r->offset = 0;
2595 mast->orig_r->index = mast->r->max;
2596 /* last should be larger than or equal to index */
2597 if (mast->orig_r->last < mast->orig_r->index)
2598 mast->orig_r->last = mast->orig_r->index;
2599 /*
2600 * The node may not contain the value so set slot to ensure all
2601 * of the nodes contents are freed or destroyed.
2602 */
2603 wr_mas.type = mte_node_type(mast->orig_r->node);
2604 mas_wr_node_walk(&wr_mas);
2605 /* Set up the left side of things */
2606 mast->orig_l->offset = 0;
2607 mast->orig_l->index = mast->l->min;
2608 wr_mas.mas = mast->orig_l;
2609 wr_mas.type = mte_node_type(mast->orig_l->node);
2610 mas_wr_node_walk(&wr_mas);
2611
2612 mast->bn->type = wr_mas.type;
2613}
2614
2615/*
2616 * mas_new_ma_node() - Create and return a new maple node. Helper function.
2617 * @mas: the maple state with the allocations.
2618 * @b_node: the maple_big_node with the type encoding.
2619 *
2620 * Use the node type from the maple_big_node to allocate a new node from the
2621 * ma_state. This function exists mainly for code readability.
2622 *
2623 * Return: A new maple encoded node
2624 */
2625static inline struct maple_enode
2626*mas_new_ma_node(struct ma_state *mas, struct maple_big_node *b_node)
2627{
2628 return mt_mk_node(ma_mnode_ptr(mas_pop_node(mas)), b_node->type);
2629}
2630
2631/*
2632 * mas_mab_to_node() - Set up right and middle nodes
2633 *
2634 * @mas: the maple state that contains the allocations.
2635 * @b_node: the node which contains the data.
2636 * @left: The pointer which will have the left node
2637 * @right: The pointer which may have the right node
2638 * @middle: the pointer which may have the middle node (rare)
2639 * @mid_split: the split location for the middle node
2640 *
2641 * Return: the split of left.
2642 */
2643static inline unsigned char mas_mab_to_node(struct ma_state *mas,
2644 struct maple_big_node *b_node, struct maple_enode **left,
2645 struct maple_enode **right, struct maple_enode **middle,
2646 unsigned char *mid_split, unsigned long min)
2647{
2648 unsigned char split = 0;
2649 unsigned char slot_count = mt_slots[b_node->type];
2650
2651 *left = mas_new_ma_node(mas, b_node);
2652 *right = NULL;
2653 *middle = NULL;
2654 *mid_split = 0;
2655
2656 if (b_node->b_end < slot_count) {
2657 split = b_node->b_end;
2658 } else {
2659 split = mab_calc_split(mas, b_node, mid_split, min);
2660 *right = mas_new_ma_node(mas, b_node);
2661 }
2662
2663 if (*mid_split)
2664 *middle = mas_new_ma_node(mas, b_node);
2665
2666 return split;
2667
2668}
2669
2670/*
2671 * mab_set_b_end() - Add entry to b_node at b_node->b_end and increment the end
2672 * pointer.
2673 * @b_node - the big node to add the entry
2674 * @mas - the maple state to get the pivot (mas->max)
2675 * @entry - the entry to add, if NULL nothing happens.
2676 */
2677static inline void mab_set_b_end(struct maple_big_node *b_node,
2678 struct ma_state *mas,
2679 void *entry)
2680{
2681 if (!entry)
2682 return;
2683
2684 b_node->slot[b_node->b_end] = entry;
2685 if (mt_is_alloc(mas->tree))
2686 b_node->gap[b_node->b_end] = mas_max_gap(mas);
2687 b_node->pivot[b_node->b_end++] = mas->max;
2688}
2689
2690/*
2691 * mas_set_split_parent() - combine_then_separate helper function. Sets the parent
2692 * of @mas->node to either @left or @right, depending on @slot and @split
2693 *
2694 * @mas - the maple state with the node that needs a parent
2695 * @left - possible parent 1
2696 * @right - possible parent 2
2697 * @slot - the slot the mas->node was placed
2698 * @split - the split location between @left and @right
2699 */
2700static inline void mas_set_split_parent(struct ma_state *mas,
2701 struct maple_enode *left,
2702 struct maple_enode *right,
2703 unsigned char *slot, unsigned char split)
2704{
2705 if (mas_is_none(mas))
2706 return;
2707
2708 if ((*slot) <= split)
bf96715e 2709 mas_set_parent(mas, mas->node, left, *slot);
54a611b6 2710 else if (right)
bf96715e 2711 mas_set_parent(mas, mas->node, right, (*slot) - split - 1);
54a611b6
LH
2712
2713 (*slot)++;
2714}
2715
2716/*
2717 * mte_mid_split_check() - Check if the next node passes the mid-split
2718 * @**l: Pointer to left encoded maple node.
2719 * @**m: Pointer to middle encoded maple node.
2720 * @**r: Pointer to right encoded maple node.
2721 * @slot: The offset
2722 * @*split: The split location.
2723 * @mid_split: The middle split.
2724 */
2725static inline void mte_mid_split_check(struct maple_enode **l,
2726 struct maple_enode **r,
2727 struct maple_enode *right,
2728 unsigned char slot,
2729 unsigned char *split,
2730 unsigned char mid_split)
2731{
2732 if (*r == right)
2733 return;
2734
2735 if (slot < mid_split)
2736 return;
2737
2738 *l = *r;
2739 *r = right;
2740 *split = mid_split;
2741}
2742
2743/*
2744 * mast_set_split_parents() - Helper function to set three nodes parents. Slot
2745 * is taken from @mast->l.
2746 * @mast - the maple subtree state
2747 * @left - the left node
2748 * @right - the right node
2749 * @split - the split location.
2750 */
2751static inline void mast_set_split_parents(struct maple_subtree_state *mast,
2752 struct maple_enode *left,
2753 struct maple_enode *middle,
2754 struct maple_enode *right,
2755 unsigned char split,
2756 unsigned char mid_split)
2757{
2758 unsigned char slot;
2759 struct maple_enode *l = left;
2760 struct maple_enode *r = right;
2761
2762 if (mas_is_none(mast->l))
2763 return;
2764
2765 if (middle)
2766 r = middle;
2767
2768 slot = mast->l->offset;
2769
2770 mte_mid_split_check(&l, &r, right, slot, &split, mid_split);
2771 mas_set_split_parent(mast->l, l, r, &slot, split);
2772
2773 mte_mid_split_check(&l, &r, right, slot, &split, mid_split);
2774 mas_set_split_parent(mast->m, l, r, &slot, split);
2775
2776 mte_mid_split_check(&l, &r, right, slot, &split, mid_split);
2777 mas_set_split_parent(mast->r, l, r, &slot, split);
2778}
2779
2780/*
2781 * mas_wmb_replace() - Write memory barrier and replace
2782 * @mas: The maple state
2783 * @free: the maple topiary list of nodes to free
2784 * @destroy: The maple topiary list of nodes to destroy (walk and free)
2785 *
2786 * Updates gap as necessary.
2787 */
2788static inline void mas_wmb_replace(struct ma_state *mas,
2789 struct ma_topiary *free,
2790 struct ma_topiary *destroy)
2791{
2792 /* All nodes must see old data as dead prior to replacing that data */
2793 smp_wmb(); /* Needed for RCU */
2794
2795 /* Insert the new data in the tree */
2796 mas_replace(mas, true);
2797
2798 if (!mte_is_leaf(mas->node))
2799 mas_descend_adopt(mas);
2800
2801 mas_mat_free(mas, free);
2802
2803 if (destroy)
2804 mas_mat_destroy(mas, destroy);
2805
2806 if (mte_is_leaf(mas->node))
2807 return;
2808
2809 mas_update_gap(mas);
2810}
2811
2812/*
2813 * mast_new_root() - Set a new tree root during subtree creation
2814 * @mast: The maple subtree state
2815 * @mas: The maple state
2816 */
2817static inline void mast_new_root(struct maple_subtree_state *mast,
2818 struct ma_state *mas)
2819{
2820 mas_mn(mast->l)->parent =
2821 ma_parent_ptr(((unsigned long)mas->tree | MA_ROOT_PARENT));
2822 if (!mte_dead_node(mast->orig_l->node) &&
2823 !mte_is_root(mast->orig_l->node)) {
2824 do {
2825 mast_ascend_free(mast);
2826 mast_topiary(mast);
2827 } while (!mte_is_root(mast->orig_l->node));
2828 }
2829 if ((mast->orig_l->node != mas->node) &&
2830 (mast->l->depth > mas_mt_height(mas))) {
2831 mat_add(mast->free, mas->node);
2832 }
2833}
2834
2835/*
2836 * mast_cp_to_nodes() - Copy data out to nodes.
2837 * @mast: The maple subtree state
2838 * @left: The left encoded maple node
2839 * @middle: The middle encoded maple node
2840 * @right: The right encoded maple node
2841 * @split: The location to split between left and (middle ? middle : right)
2842 * @mid_split: The location to split between middle and right.
2843 */
2844static inline void mast_cp_to_nodes(struct maple_subtree_state *mast,
2845 struct maple_enode *left, struct maple_enode *middle,
2846 struct maple_enode *right, unsigned char split, unsigned char mid_split)
2847{
2848 bool new_lmax = true;
2849
2850 mast->l->node = mte_node_or_none(left);
2851 mast->m->node = mte_node_or_none(middle);
2852 mast->r->node = mte_node_or_none(right);
2853
2854 mast->l->min = mast->orig_l->min;
2855 if (split == mast->bn->b_end) {
2856 mast->l->max = mast->orig_r->max;
2857 new_lmax = false;
2858 }
2859
2860 mab_mas_cp(mast->bn, 0, split, mast->l, new_lmax);
2861
2862 if (middle) {
2863 mab_mas_cp(mast->bn, 1 + split, mid_split, mast->m, true);
2864 mast->m->min = mast->bn->pivot[split] + 1;
2865 split = mid_split;
2866 }
2867
2868 mast->r->max = mast->orig_r->max;
2869 if (right) {
2870 mab_mas_cp(mast->bn, 1 + split, mast->bn->b_end, mast->r, false);
2871 mast->r->min = mast->bn->pivot[split] + 1;
2872 }
2873}
2874
2875/*
2876 * mast_combine_cp_left - Copy in the original left side of the tree into the
2877 * combined data set in the maple subtree state big node.
2878 * @mast: The maple subtree state
2879 */
2880static inline void mast_combine_cp_left(struct maple_subtree_state *mast)
2881{
2882 unsigned char l_slot = mast->orig_l->offset;
2883
2884 if (!l_slot)
2885 return;
2886
2887 mas_mab_cp(mast->orig_l, 0, l_slot - 1, mast->bn, 0);
2888}
2889
2890/*
2891 * mast_combine_cp_right: Copy in the original right side of the tree into the
2892 * combined data set in the maple subtree state big node.
2893 * @mast: The maple subtree state
2894 */
2895static inline void mast_combine_cp_right(struct maple_subtree_state *mast)
2896{
2897 if (mast->bn->pivot[mast->bn->b_end - 1] >= mast->orig_r->max)
2898 return;
2899
2900 mas_mab_cp(mast->orig_r, mast->orig_r->offset + 1,
2901 mt_slot_count(mast->orig_r->node), mast->bn,
2902 mast->bn->b_end);
2903 mast->orig_r->last = mast->orig_r->max;
2904}
2905
2906/*
2907 * mast_sufficient: Check if the maple subtree state has enough data in the big
2908 * node to create at least one sufficient node
2909 * @mast: the maple subtree state
2910 */
2911static inline bool mast_sufficient(struct maple_subtree_state *mast)
2912{
2913 if (mast->bn->b_end > mt_min_slot_count(mast->orig_l->node))
2914 return true;
2915
2916 return false;
2917}
2918
2919/*
2920 * mast_overflow: Check if there is too much data in the subtree state for a
2921 * single node.
2922 * @mast: The maple subtree state
2923 */
2924static inline bool mast_overflow(struct maple_subtree_state *mast)
2925{
2926 if (mast->bn->b_end >= mt_slot_count(mast->orig_l->node))
2927 return true;
2928
2929 return false;
2930}
2931
2932static inline void *mtree_range_walk(struct ma_state *mas)
2933{
2934 unsigned long *pivots;
2935 unsigned char offset;
2936 struct maple_node *node;
2937 struct maple_enode *next, *last;
2938 enum maple_type type;
2939 void __rcu **slots;
2940 unsigned char end;
2941 unsigned long max, min;
2942 unsigned long prev_max, prev_min;
2943
1b9c9183
LB
2944 next = mas->node;
2945 min = mas->min;
54a611b6
LH
2946 max = mas->max;
2947 do {
2948 offset = 0;
2949 last = next;
2950 node = mte_to_node(next);
2951 type = mte_node_type(next);
2952 pivots = ma_pivots(node, type);
2953 end = ma_data_end(node, type, pivots, max);
2954 if (unlikely(ma_dead_node(node)))
2955 goto dead_node;
2956
2957 if (pivots[offset] >= mas->index) {
2958 prev_max = max;
2959 prev_min = min;
2960 max = pivots[offset];
2961 goto next;
2962 }
2963
2964 do {
2965 offset++;
2966 } while ((offset < end) && (pivots[offset] < mas->index));
2967
2968 prev_min = min;
2969 min = pivots[offset - 1] + 1;
2970 prev_max = max;
2971 if (likely(offset < end && pivots[offset]))
2972 max = pivots[offset];
2973
2974next:
2975 slots = ma_slots(node, type);
2976 next = mt_slot(mas->tree, slots, offset);
2977 if (unlikely(ma_dead_node(node)))
2978 goto dead_node;
2979 } while (!ma_is_leaf(type));
2980
2981 mas->offset = offset;
2982 mas->index = min;
2983 mas->last = max;
2984 mas->min = prev_min;
2985 mas->max = prev_max;
2986 mas->node = last;
831978e3 2987 return (void *)next;
54a611b6
LH
2988
2989dead_node:
2990 mas_reset(mas);
2991 return NULL;
2992}
2993
2994/*
2995 * mas_spanning_rebalance() - Rebalance across two nodes which may not be peers.
2996 * @mas: The starting maple state
2997 * @mast: The maple_subtree_state, keeps track of 4 maple states.
2998 * @count: The estimated count of iterations needed.
2999 *
3000 * Follow the tree upwards from @l_mas and @r_mas for @count, or until the root
3001 * is hit. First @b_node is split into two entries which are inserted into the
3002 * next iteration of the loop. @b_node is returned populated with the final
3003 * iteration. @mas is used to obtain allocations. orig_l_mas keeps track of the
3004 * nodes that will remain active by using orig_l_mas->index and orig_l_mas->last
3005 * to account of what has been copied into the new sub-tree. The update of
3006 * orig_l_mas->last is used in mas_consume to find the slots that will need to
3007 * be either freed or destroyed. orig_l_mas->depth keeps track of the height of
3008 * the new sub-tree in case the sub-tree becomes the full tree.
3009 *
3010 * Return: the number of elements in b_node during the last loop.
3011 */
3012static int mas_spanning_rebalance(struct ma_state *mas,
3013 struct maple_subtree_state *mast, unsigned char count)
3014{
3015 unsigned char split, mid_split;
3016 unsigned char slot = 0;
3017 struct maple_enode *left = NULL, *middle = NULL, *right = NULL;
3018
3019 MA_STATE(l_mas, mas->tree, mas->index, mas->index);
3020 MA_STATE(r_mas, mas->tree, mas->index, mas->last);
3021 MA_STATE(m_mas, mas->tree, mas->index, mas->index);
3022 MA_TOPIARY(free, mas->tree);
3023 MA_TOPIARY(destroy, mas->tree);
3024
3025 /*
3026 * The tree needs to be rebalanced and leaves need to be kept at the same level.
3027 * Rebalancing is done by use of the ``struct maple_topiary``.
3028 */
3029 mast->l = &l_mas;
3030 mast->m = &m_mas;
3031 mast->r = &r_mas;
3032 mast->free = &free;
3033 mast->destroy = &destroy;
3034 l_mas.node = r_mas.node = m_mas.node = MAS_NONE;
0abb964a
LH
3035
3036 /* Check if this is not root and has sufficient data. */
3037 if (((mast->orig_l->min != 0) || (mast->orig_r->max != ULONG_MAX)) &&
54a611b6
LH
3038 unlikely(mast->bn->b_end <= mt_min_slots[mast->bn->type]))
3039 mast_spanning_rebalance(mast);
3040
3041 mast->orig_l->depth = 0;
3042
3043 /*
3044 * Each level of the tree is examined and balanced, pushing data to the left or
3045 * right, or rebalancing against left or right nodes is employed to avoid
3046 * rippling up the tree to limit the amount of churn. Once a new sub-section of
3047 * the tree is created, there may be a mix of new and old nodes. The old nodes
3048 * will have the incorrect parent pointers and currently be in two trees: the
3049 * original tree and the partially new tree. To remedy the parent pointers in
3050 * the old tree, the new data is swapped into the active tree and a walk down
3051 * the tree is performed and the parent pointers are updated.
3052 * See mas_descend_adopt() for more information..
3053 */
3054 while (count--) {
3055 mast->bn->b_end--;
3056 mast->bn->type = mte_node_type(mast->orig_l->node);
3057 split = mas_mab_to_node(mas, mast->bn, &left, &right, &middle,
3058 &mid_split, mast->orig_l->min);
3059 mast_set_split_parents(mast, left, middle, right, split,
3060 mid_split);
3061 mast_cp_to_nodes(mast, left, middle, right, split, mid_split);
3062
3063 /*
3064 * Copy data from next level in the tree to mast->bn from next
3065 * iteration
3066 */
3067 memset(mast->bn, 0, sizeof(struct maple_big_node));
3068 mast->bn->type = mte_node_type(left);
3069 mast->orig_l->depth++;
3070
3071 /* Root already stored in l->node. */
3072 if (mas_is_root_limits(mast->l))
3073 goto new_root;
3074
3075 mast_ascend_free(mast);
3076 mast_combine_cp_left(mast);
3077 l_mas.offset = mast->bn->b_end;
3078 mab_set_b_end(mast->bn, &l_mas, left);
3079 mab_set_b_end(mast->bn, &m_mas, middle);
3080 mab_set_b_end(mast->bn, &r_mas, right);
3081
3082 /* Copy anything necessary out of the right node. */
3083 mast_combine_cp_right(mast);
3084 mast_topiary(mast);
3085 mast->orig_l->last = mast->orig_l->max;
3086
3087 if (mast_sufficient(mast))
3088 continue;
3089
3090 if (mast_overflow(mast))
3091 continue;
3092
3093 /* May be a new root stored in mast->bn */
3094 if (mas_is_root_limits(mast->orig_l))
3095 break;
3096
3097 mast_spanning_rebalance(mast);
3098
3099 /* rebalancing from other nodes may require another loop. */
3100 if (!count)
3101 count++;
3102 }
3103
3104 l_mas.node = mt_mk_node(ma_mnode_ptr(mas_pop_node(mas)),
3105 mte_node_type(mast->orig_l->node));
3106 mast->orig_l->depth++;
3107 mab_mas_cp(mast->bn, 0, mt_slots[mast->bn->type] - 1, &l_mas, true);
bf96715e 3108 mas_set_parent(mas, left, l_mas.node, slot);
54a611b6 3109 if (middle)
bf96715e 3110 mas_set_parent(mas, middle, l_mas.node, ++slot);
54a611b6
LH
3111
3112 if (right)
bf96715e 3113 mas_set_parent(mas, right, l_mas.node, ++slot);
54a611b6
LH
3114
3115 if (mas_is_root_limits(mast->l)) {
3116new_root:
3117 mast_new_root(mast, mas);
3118 } else {
3119 mas_mn(&l_mas)->parent = mas_mn(mast->orig_l)->parent;
3120 }
3121
3122 if (!mte_dead_node(mast->orig_l->node))
3123 mat_add(&free, mast->orig_l->node);
3124
3125 mas->depth = mast->orig_l->depth;
3126 *mast->orig_l = l_mas;
3127 mte_set_node_dead(mas->node);
3128
3129 /* Set up mas for insertion. */
3130 mast->orig_l->depth = mas->depth;
3131 mast->orig_l->alloc = mas->alloc;
3132 *mas = *mast->orig_l;
3133 mas_wmb_replace(mas, &free, &destroy);
3134 mtree_range_walk(mas);
3135 return mast->bn->b_end;
3136}
3137
3138/*
3139 * mas_rebalance() - Rebalance a given node.
3140 * @mas: The maple state
3141 * @b_node: The big maple node.
3142 *
3143 * Rebalance two nodes into a single node or two new nodes that are sufficient.
3144 * Continue upwards until tree is sufficient.
3145 *
3146 * Return: the number of elements in b_node during the last loop.
3147 */
3148static inline int mas_rebalance(struct ma_state *mas,
3149 struct maple_big_node *b_node)
3150{
3151 char empty_count = mas_mt_height(mas);
3152 struct maple_subtree_state mast;
3153 unsigned char shift, b_end = ++b_node->b_end;
3154
3155 MA_STATE(l_mas, mas->tree, mas->index, mas->last);
3156 MA_STATE(r_mas, mas->tree, mas->index, mas->last);
3157
3158 trace_ma_op(__func__, mas);
3159
3160 /*
3161 * Rebalancing occurs if a node is insufficient. Data is rebalanced
3162 * against the node to the right if it exists, otherwise the node to the
3163 * left of this node is rebalanced against this node. If rebalancing
3164 * causes just one node to be produced instead of two, then the parent
3165 * is also examined and rebalanced if it is insufficient. Every level
3166 * tries to combine the data in the same way. If one node contains the
3167 * entire range of the tree, then that node is used as a new root node.
3168 */
3169 mas_node_count(mas, 1 + empty_count * 3);
3170 if (mas_is_err(mas))
3171 return 0;
3172
3173 mast.orig_l = &l_mas;
3174 mast.orig_r = &r_mas;
3175 mast.bn = b_node;
3176 mast.bn->type = mte_node_type(mas->node);
3177
3178 l_mas = r_mas = *mas;
3179
3180 if (mas_next_sibling(&r_mas)) {
3181 mas_mab_cp(&r_mas, 0, mt_slot_count(r_mas.node), b_node, b_end);
3182 r_mas.last = r_mas.index = r_mas.max;
3183 } else {
3184 mas_prev_sibling(&l_mas);
3185 shift = mas_data_end(&l_mas) + 1;
3186 mab_shift_right(b_node, shift);
3187 mas->offset += shift;
3188 mas_mab_cp(&l_mas, 0, shift - 1, b_node, 0);
3189 b_node->b_end = shift + b_end;
3190 l_mas.index = l_mas.last = l_mas.min;
3191 }
3192
3193 return mas_spanning_rebalance(mas, &mast, empty_count);
3194}
3195
3196/*
3197 * mas_destroy_rebalance() - Rebalance left-most node while destroying the maple
3198 * state.
3199 * @mas: The maple state
3200 * @end: The end of the left-most node.
3201 *
3202 * During a mass-insert event (such as forking), it may be necessary to
3203 * rebalance the left-most node when it is not sufficient.
3204 */
3205static inline void mas_destroy_rebalance(struct ma_state *mas, unsigned char end)
3206{
3207 enum maple_type mt = mte_node_type(mas->node);
3208 struct maple_node reuse, *newnode, *parent, *new_left, *left, *node;
3209 struct maple_enode *eparent;
3210 unsigned char offset, tmp, split = mt_slots[mt] / 2;
3211 void __rcu **l_slots, **slots;
3212 unsigned long *l_pivs, *pivs, gap;
3213 bool in_rcu = mt_in_rcu(mas->tree);
3214
3215 MA_STATE(l_mas, mas->tree, mas->index, mas->last);
3216
3217 l_mas = *mas;
3218 mas_prev_sibling(&l_mas);
3219
3220 /* set up node. */
3221 if (in_rcu) {
3222 /* Allocate for both left and right as well as parent. */
3223 mas_node_count(mas, 3);
3224 if (mas_is_err(mas))
3225 return;
3226
3227 newnode = mas_pop_node(mas);
3228 } else {
3229 newnode = &reuse;
3230 }
3231
3232 node = mas_mn(mas);
3233 newnode->parent = node->parent;
3234 slots = ma_slots(newnode, mt);
3235 pivs = ma_pivots(newnode, mt);
3236 left = mas_mn(&l_mas);
3237 l_slots = ma_slots(left, mt);
3238 l_pivs = ma_pivots(left, mt);
3239 if (!l_slots[split])
3240 split++;
3241 tmp = mas_data_end(&l_mas) - split;
3242
3243 memcpy(slots, l_slots + split + 1, sizeof(void *) * tmp);
3244 memcpy(pivs, l_pivs + split + 1, sizeof(unsigned long) * tmp);
3245 pivs[tmp] = l_mas.max;
3246 memcpy(slots + tmp, ma_slots(node, mt), sizeof(void *) * end);
3247 memcpy(pivs + tmp, ma_pivots(node, mt), sizeof(unsigned long) * end);
3248
3249 l_mas.max = l_pivs[split];
3250 mas->min = l_mas.max + 1;
3251 eparent = mt_mk_node(mte_parent(l_mas.node),
afc754c6 3252 mas_parent_type(&l_mas, l_mas.node));
54a611b6
LH
3253 tmp += end;
3254 if (!in_rcu) {
3255 unsigned char max_p = mt_pivots[mt];
3256 unsigned char max_s = mt_slots[mt];
3257
3258 if (tmp < max_p)
3259 memset(pivs + tmp, 0,
fb20e99a 3260 sizeof(unsigned long) * (max_p - tmp));
54a611b6
LH
3261
3262 if (tmp < mt_slots[mt])
3263 memset(slots + tmp, 0, sizeof(void *) * (max_s - tmp));
3264
3265 memcpy(node, newnode, sizeof(struct maple_node));
3266 ma_set_meta(node, mt, 0, tmp - 1);
3267 mte_set_pivot(eparent, mte_parent_slot(l_mas.node),
3268 l_pivs[split]);
3269
3270 /* Remove data from l_pivs. */
3271 tmp = split + 1;
3272 memset(l_pivs + tmp, 0, sizeof(unsigned long) * (max_p - tmp));
3273 memset(l_slots + tmp, 0, sizeof(void *) * (max_s - tmp));
3274 ma_set_meta(left, mt, 0, split);
3275
3276 goto done;
3277 }
3278
3279 /* RCU requires replacing both l_mas, mas, and parent. */
3280 mas->node = mt_mk_node(newnode, mt);
3281 ma_set_meta(newnode, mt, 0, tmp);
3282
3283 new_left = mas_pop_node(mas);
3284 new_left->parent = left->parent;
3285 mt = mte_node_type(l_mas.node);
3286 slots = ma_slots(new_left, mt);
3287 pivs = ma_pivots(new_left, mt);
3288 memcpy(slots, l_slots, sizeof(void *) * split);
3289 memcpy(pivs, l_pivs, sizeof(unsigned long) * split);
3290 ma_set_meta(new_left, mt, 0, split);
3291 l_mas.node = mt_mk_node(new_left, mt);
3292
3293 /* replace parent. */
3294 offset = mte_parent_slot(mas->node);
afc754c6 3295 mt = mas_parent_type(&l_mas, l_mas.node);
54a611b6
LH
3296 parent = mas_pop_node(mas);
3297 slots = ma_slots(parent, mt);
3298 pivs = ma_pivots(parent, mt);
3299 memcpy(parent, mte_to_node(eparent), sizeof(struct maple_node));
3300 rcu_assign_pointer(slots[offset], mas->node);
3301 rcu_assign_pointer(slots[offset - 1], l_mas.node);
3302 pivs[offset - 1] = l_mas.max;
3303 eparent = mt_mk_node(parent, mt);
3304done:
3305 gap = mas_leaf_max_gap(mas);
3306 mte_set_gap(eparent, mte_parent_slot(mas->node), gap);
3307 gap = mas_leaf_max_gap(&l_mas);
3308 mte_set_gap(eparent, mte_parent_slot(l_mas.node), gap);
3309 mas_ascend(mas);
3310
3311 if (in_rcu)
3312 mas_replace(mas, false);
3313
3314 mas_update_gap(mas);
3315}
3316
3317/*
3318 * mas_split_final_node() - Split the final node in a subtree operation.
3319 * @mast: the maple subtree state
3320 * @mas: The maple state
3321 * @height: The height of the tree in case it's a new root.
3322 */
3323static inline bool mas_split_final_node(struct maple_subtree_state *mast,
3324 struct ma_state *mas, int height)
3325{
3326 struct maple_enode *ancestor;
3327
3328 if (mte_is_root(mas->node)) {
3329 if (mt_is_alloc(mas->tree))
3330 mast->bn->type = maple_arange_64;
3331 else
3332 mast->bn->type = maple_range_64;
3333 mas->depth = height;
3334 }
3335 /*
3336 * Only a single node is used here, could be root.
3337 * The Big_node data should just fit in a single node.
3338 */
3339 ancestor = mas_new_ma_node(mas, mast->bn);
bf96715e
LH
3340 mas_set_parent(mas, mast->l->node, ancestor, mast->l->offset);
3341 mas_set_parent(mas, mast->r->node, ancestor, mast->r->offset);
54a611b6
LH
3342 mte_to_node(ancestor)->parent = mas_mn(mas)->parent;
3343
3344 mast->l->node = ancestor;
3345 mab_mas_cp(mast->bn, 0, mt_slots[mast->bn->type] - 1, mast->l, true);
3346 mas->offset = mast->bn->b_end - 1;
3347 return true;
3348}
3349
3350/*
3351 * mast_fill_bnode() - Copy data into the big node in the subtree state
3352 * @mast: The maple subtree state
3353 * @mas: the maple state
3354 * @skip: The number of entries to skip for new nodes insertion.
3355 */
3356static inline void mast_fill_bnode(struct maple_subtree_state *mast,
3357 struct ma_state *mas,
3358 unsigned char skip)
3359{
3360 bool cp = true;
3361 struct maple_enode *old = mas->node;
3362 unsigned char split;
3363
3364 memset(mast->bn->gap, 0, sizeof(unsigned long) * ARRAY_SIZE(mast->bn->gap));
3365 memset(mast->bn->slot, 0, sizeof(unsigned long) * ARRAY_SIZE(mast->bn->slot));
3366 memset(mast->bn->pivot, 0, sizeof(unsigned long) * ARRAY_SIZE(mast->bn->pivot));
3367 mast->bn->b_end = 0;
3368
3369 if (mte_is_root(mas->node)) {
3370 cp = false;
3371 } else {
3372 mas_ascend(mas);
3373 mat_add(mast->free, old);
3374 mas->offset = mte_parent_slot(mas->node);
3375 }
3376
3377 if (cp && mast->l->offset)
3378 mas_mab_cp(mas, 0, mast->l->offset - 1, mast->bn, 0);
3379
3380 split = mast->bn->b_end;
3381 mab_set_b_end(mast->bn, mast->l, mast->l->node);
3382 mast->r->offset = mast->bn->b_end;
3383 mab_set_b_end(mast->bn, mast->r, mast->r->node);
3384 if (mast->bn->pivot[mast->bn->b_end - 1] == mas->max)
3385 cp = false;
3386
3387 if (cp)
3388 mas_mab_cp(mas, split + skip, mt_slot_count(mas->node) - 1,
3389 mast->bn, mast->bn->b_end);
3390
3391 mast->bn->b_end--;
3392 mast->bn->type = mte_node_type(mas->node);
3393}
3394
3395/*
3396 * mast_split_data() - Split the data in the subtree state big node into regular
3397 * nodes.
3398 * @mast: The maple subtree state
3399 * @mas: The maple state
3400 * @split: The location to split the big node
3401 */
3402static inline void mast_split_data(struct maple_subtree_state *mast,
3403 struct ma_state *mas, unsigned char split)
3404{
3405 unsigned char p_slot;
3406
3407 mab_mas_cp(mast->bn, 0, split, mast->l, true);
3408 mte_set_pivot(mast->r->node, 0, mast->r->max);
3409 mab_mas_cp(mast->bn, split + 1, mast->bn->b_end, mast->r, false);
3410 mast->l->offset = mte_parent_slot(mas->node);
3411 mast->l->max = mast->bn->pivot[split];
3412 mast->r->min = mast->l->max + 1;
3413 if (mte_is_leaf(mas->node))
3414 return;
3415
3416 p_slot = mast->orig_l->offset;
3417 mas_set_split_parent(mast->orig_l, mast->l->node, mast->r->node,
3418 &p_slot, split);
3419 mas_set_split_parent(mast->orig_r, mast->l->node, mast->r->node,
3420 &p_slot, split);
3421}
3422
3423/*
3424 * mas_push_data() - Instead of splitting a node, it is beneficial to push the
3425 * data to the right or left node if there is room.
3426 * @mas: The maple state
3427 * @height: The current height of the maple state
3428 * @mast: The maple subtree state
3429 * @left: Push left or not.
3430 *
3431 * Keeping the height of the tree low means faster lookups.
3432 *
3433 * Return: True if pushed, false otherwise.
3434 */
3435static inline bool mas_push_data(struct ma_state *mas, int height,
3436 struct maple_subtree_state *mast, bool left)
3437{
3438 unsigned char slot_total = mast->bn->b_end;
3439 unsigned char end, space, split;
3440
3441 MA_STATE(tmp_mas, mas->tree, mas->index, mas->last);
3442 tmp_mas = *mas;
3443 tmp_mas.depth = mast->l->depth;
3444
3445 if (left && !mas_prev_sibling(&tmp_mas))
3446 return false;
3447 else if (!left && !mas_next_sibling(&tmp_mas))
3448 return false;
3449
3450 end = mas_data_end(&tmp_mas);
3451 slot_total += end;
3452 space = 2 * mt_slot_count(mas->node) - 2;
3453 /* -2 instead of -1 to ensure there isn't a triple split */
3454 if (ma_is_leaf(mast->bn->type))
3455 space--;
3456
3457 if (mas->max == ULONG_MAX)
3458 space--;
3459
3460 if (slot_total >= space)
3461 return false;
3462
3463 /* Get the data; Fill mast->bn */
3464 mast->bn->b_end++;
3465 if (left) {
3466 mab_shift_right(mast->bn, end + 1);
3467 mas_mab_cp(&tmp_mas, 0, end, mast->bn, 0);
3468 mast->bn->b_end = slot_total + 1;
3469 } else {
3470 mas_mab_cp(&tmp_mas, 0, end, mast->bn, mast->bn->b_end);
3471 }
3472
3473 /* Configure mast for splitting of mast->bn */
3474 split = mt_slots[mast->bn->type] - 2;
3475 if (left) {
3476 /* Switch mas to prev node */
3477 mat_add(mast->free, mas->node);
3478 *mas = tmp_mas;
3479 /* Start using mast->l for the left side. */
3480 tmp_mas.node = mast->l->node;
3481 *mast->l = tmp_mas;
3482 } else {
3483 mat_add(mast->free, tmp_mas.node);
3484 tmp_mas.node = mast->r->node;
3485 *mast->r = tmp_mas;
3486 split = slot_total - split;
3487 }
3488 split = mab_no_null_split(mast->bn, split, mt_slots[mast->bn->type]);
3489 /* Update parent slot for split calculation. */
3490 if (left)
3491 mast->orig_l->offset += end + 1;
3492
3493 mast_split_data(mast, mas, split);
3494 mast_fill_bnode(mast, mas, 2);
3495 mas_split_final_node(mast, mas, height + 1);
3496 return true;
3497}
3498
3499/*
3500 * mas_split() - Split data that is too big for one node into two.
3501 * @mas: The maple state
3502 * @b_node: The maple big node
3503 * Return: 1 on success, 0 on failure.
3504 */
3505static int mas_split(struct ma_state *mas, struct maple_big_node *b_node)
3506{
54a611b6
LH
3507 struct maple_subtree_state mast;
3508 int height = 0;
3509 unsigned char mid_split, split = 0;
3510
3511 /*
3512 * Splitting is handled differently from any other B-tree; the Maple
3513 * Tree splits upwards. Splitting up means that the split operation
3514 * occurs when the walk of the tree hits the leaves and not on the way
3515 * down. The reason for splitting up is that it is impossible to know
3516 * how much space will be needed until the leaf is (or leaves are)
3517 * reached. Since overwriting data is allowed and a range could
3518 * overwrite more than one range or result in changing one entry into 3
3519 * entries, it is impossible to know if a split is required until the
3520 * data is examined.
3521 *
3522 * Splitting is a balancing act between keeping allocations to a minimum
3523 * and avoiding a 'jitter' event where a tree is expanded to make room
3524 * for an entry followed by a contraction when the entry is removed. To
3525 * accomplish the balance, there are empty slots remaining in both left
3526 * and right nodes after a split.
3527 */
3528 MA_STATE(l_mas, mas->tree, mas->index, mas->last);
3529 MA_STATE(r_mas, mas->tree, mas->index, mas->last);
3530 MA_STATE(prev_l_mas, mas->tree, mas->index, mas->last);
3531 MA_STATE(prev_r_mas, mas->tree, mas->index, mas->last);
3532 MA_TOPIARY(mat, mas->tree);
3533
3534 trace_ma_op(__func__, mas);
3535 mas->depth = mas_mt_height(mas);
3536 /* Allocation failures will happen early. */
3537 mas_node_count(mas, 1 + mas->depth * 2);
3538 if (mas_is_err(mas))
3539 return 0;
3540
3541 mast.l = &l_mas;
3542 mast.r = &r_mas;
3543 mast.orig_l = &prev_l_mas;
3544 mast.orig_r = &prev_r_mas;
3545 mast.free = &mat;
3546 mast.bn = b_node;
3547
3548 while (height++ <= mas->depth) {
3549 if (mt_slots[b_node->type] > b_node->b_end) {
3550 mas_split_final_node(&mast, mas, height);
3551 break;
3552 }
3553
3554 l_mas = r_mas = *mas;
3555 l_mas.node = mas_new_ma_node(mas, b_node);
3556 r_mas.node = mas_new_ma_node(mas, b_node);
3557 /*
3558 * Another way that 'jitter' is avoided is to terminate a split up early if the
3559 * left or right node has space to spare. This is referred to as "pushing left"
3560 * or "pushing right" and is similar to the B* tree, except the nodes left or
3561 * right can rarely be reused due to RCU, but the ripple upwards is halted which
3562 * is a significant savings.
3563 */
3564 /* Try to push left. */
3565 if (mas_push_data(mas, height, &mast, true))
3566 break;
3567
3568 /* Try to push right. */
3569 if (mas_push_data(mas, height, &mast, false))
3570 break;
3571
3572 split = mab_calc_split(mas, b_node, &mid_split, prev_l_mas.min);
3573 mast_split_data(&mast, mas, split);
3574 /*
3575 * Usually correct, mab_mas_cp in the above call overwrites
3576 * r->max.
3577 */
3578 mast.r->max = mas->max;
3579 mast_fill_bnode(&mast, mas, 1);
3580 prev_l_mas = *mast.l;
3581 prev_r_mas = *mast.r;
3582 }
3583
3584 /* Set the original node as dead */
3585 mat_add(mast.free, mas->node);
3586 mas->node = l_mas.node;
3587 mas_wmb_replace(mas, mast.free, NULL);
3588 mtree_range_walk(mas);
3589 return 1;
3590}
3591
3592/*
3593 * mas_reuse_node() - Reuse the node to store the data.
3594 * @wr_mas: The maple write state
3595 * @bn: The maple big node
3596 * @end: The end of the data.
3597 *
3598 * Will always return false in RCU mode.
3599 *
3600 * Return: True if node was reused, false otherwise.
3601 */
3602static inline bool mas_reuse_node(struct ma_wr_state *wr_mas,
3603 struct maple_big_node *bn, unsigned char end)
3604{
3605 /* Need to be rcu safe. */
3606 if (mt_in_rcu(wr_mas->mas->tree))
3607 return false;
3608
3609 if (end > bn->b_end) {
3610 int clear = mt_slots[wr_mas->type] - bn->b_end;
3611
3612 memset(wr_mas->slots + bn->b_end, 0, sizeof(void *) * clear--);
3613 memset(wr_mas->pivots + bn->b_end, 0, sizeof(void *) * clear);
3614 }
3615 mab_mas_cp(bn, 0, bn->b_end, wr_mas->mas, false);
3616 return true;
3617}
3618
3619/*
3620 * mas_commit_b_node() - Commit the big node into the tree.
3621 * @wr_mas: The maple write state
3622 * @b_node: The maple big node
3623 * @end: The end of the data.
3624 */
44081c77 3625static noinline_for_kasan int mas_commit_b_node(struct ma_wr_state *wr_mas,
54a611b6
LH
3626 struct maple_big_node *b_node, unsigned char end)
3627{
3628 struct maple_node *node;
3629 unsigned char b_end = b_node->b_end;
3630 enum maple_type b_type = b_node->type;
3631
3632 if ((b_end < mt_min_slots[b_type]) &&
3633 (!mte_is_root(wr_mas->mas->node)) &&
3634 (mas_mt_height(wr_mas->mas) > 1))
3635 return mas_rebalance(wr_mas->mas, b_node);
3636
3637 if (b_end >= mt_slots[b_type])
3638 return mas_split(wr_mas->mas, b_node);
3639
3640 if (mas_reuse_node(wr_mas, b_node, end))
3641 goto reuse_node;
3642
3643 mas_node_count(wr_mas->mas, 1);
3644 if (mas_is_err(wr_mas->mas))
3645 return 0;
3646
3647 node = mas_pop_node(wr_mas->mas);
3648 node->parent = mas_mn(wr_mas->mas)->parent;
3649 wr_mas->mas->node = mt_mk_node(node, b_type);
7dc5ba62 3650 mab_mas_cp(b_node, 0, b_end, wr_mas->mas, false);
54a611b6
LH
3651 mas_replace(wr_mas->mas, false);
3652reuse_node:
3653 mas_update_gap(wr_mas->mas);
3654 return 1;
3655}
3656
3657/*
3658 * mas_root_expand() - Expand a root to a node
3659 * @mas: The maple state
3660 * @entry: The entry to store into the tree
3661 */
3662static inline int mas_root_expand(struct ma_state *mas, void *entry)
3663{
3664 void *contents = mas_root_locked(mas);
3665 enum maple_type type = maple_leaf_64;
3666 struct maple_node *node;
3667 void __rcu **slots;
3668 unsigned long *pivots;
3669 int slot = 0;
3670
3671 mas_node_count(mas, 1);
3672 if (unlikely(mas_is_err(mas)))
3673 return 0;
3674
3675 node = mas_pop_node(mas);
3676 pivots = ma_pivots(node, type);
3677 slots = ma_slots(node, type);
3678 node->parent = ma_parent_ptr(
3679 ((unsigned long)mas->tree | MA_ROOT_PARENT));
3680 mas->node = mt_mk_node(node, type);
3681
3682 if (mas->index) {
3683 if (contents) {
3684 rcu_assign_pointer(slots[slot], contents);
3685 if (likely(mas->index > 1))
3686 slot++;
3687 }
3688 pivots[slot++] = mas->index - 1;
3689 }
3690
3691 rcu_assign_pointer(slots[slot], entry);
3692 mas->offset = slot;
3693 pivots[slot] = mas->last;
3694 if (mas->last != ULONG_MAX)
3695 slot++;
3696 mas->depth = 1;
3697 mas_set_height(mas);
c45ea315 3698 ma_set_meta(node, maple_leaf_64, 0, slot);
54a611b6
LH
3699 /* swap the new root into the tree */
3700 rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node));
54a611b6
LH
3701 return slot;
3702}
3703
3704static inline void mas_store_root(struct ma_state *mas, void *entry)
3705{
3706 if (likely((mas->last != 0) || (mas->index != 0)))
3707 mas_root_expand(mas, entry);
3708 else if (((unsigned long) (entry) & 3) == 2)
3709 mas_root_expand(mas, entry);
3710 else {
3711 rcu_assign_pointer(mas->tree->ma_root, entry);
3712 mas->node = MAS_START;
3713 }
3714}
3715
3716/*
3717 * mas_is_span_wr() - Check if the write needs to be treated as a write that
3718 * spans the node.
3719 * @mas: The maple state
3720 * @piv: The pivot value being written
3721 * @type: The maple node type
3722 * @entry: The data to write
3723 *
3724 * Spanning writes are writes that start in one node and end in another OR if
3725 * the write of a %NULL will cause the node to end with a %NULL.
3726 *
3727 * Return: True if this is a spanning write, false otherwise.
3728 */
3729static bool mas_is_span_wr(struct ma_wr_state *wr_mas)
3730{
3731 unsigned long max;
3732 unsigned long last = wr_mas->mas->last;
3733 unsigned long piv = wr_mas->r_max;
3734 enum maple_type type = wr_mas->type;
3735 void *entry = wr_mas->entry;
3736
3737 /* Contained in this pivot */
3738 if (piv > last)
3739 return false;
3740
3741 max = wr_mas->mas->max;
3742 if (unlikely(ma_is_leaf(type))) {
3743 /* Fits in the node, but may span slots. */
3744 if (last < max)
3745 return false;
3746
3747 /* Writes to the end of the node but not null. */
3748 if ((last == max) && entry)
3749 return false;
3750
3751 /*
3752 * Writing ULONG_MAX is not a spanning write regardless of the
3753 * value being written as long as the range fits in the node.
3754 */
3755 if ((last == ULONG_MAX) && (last == max))
3756 return false;
3757 } else if (piv == last) {
3758 if (entry)
3759 return false;
3760
3761 /* Detect spanning store wr walk */
3762 if (last == ULONG_MAX)
3763 return false;
3764 }
3765
3766 trace_ma_write(__func__, wr_mas->mas, piv, entry);
3767
3768 return true;
3769}
3770
3771static inline void mas_wr_walk_descend(struct ma_wr_state *wr_mas)
3772{
54a611b6
LH
3773 wr_mas->type = mte_node_type(wr_mas->mas->node);
3774 mas_wr_node_walk(wr_mas);
3775 wr_mas->slots = ma_slots(wr_mas->node, wr_mas->type);
3776}
3777
3778static inline void mas_wr_walk_traverse(struct ma_wr_state *wr_mas)
3779{
3780 wr_mas->mas->max = wr_mas->r_max;
3781 wr_mas->mas->min = wr_mas->r_min;
3782 wr_mas->mas->node = wr_mas->content;
3783 wr_mas->mas->offset = 0;
9bbba563 3784 wr_mas->mas->depth++;
54a611b6
LH
3785}
3786/*
3787 * mas_wr_walk() - Walk the tree for a write.
3788 * @wr_mas: The maple write state
3789 *
3790 * Uses mas_slot_locked() and does not need to worry about dead nodes.
3791 *
3792 * Return: True if it's contained in a node, false on spanning write.
3793 */
3794static bool mas_wr_walk(struct ma_wr_state *wr_mas)
3795{
3796 struct ma_state *mas = wr_mas->mas;
3797
3798 while (true) {
3799 mas_wr_walk_descend(wr_mas);
3800 if (unlikely(mas_is_span_wr(wr_mas)))
3801 return false;
3802
3803 wr_mas->content = mas_slot_locked(mas, wr_mas->slots,
3804 mas->offset);
3805 if (ma_is_leaf(wr_mas->type))
3806 return true;
3807
3808 mas_wr_walk_traverse(wr_mas);
3809 }
3810
3811 return true;
3812}
3813
3814static bool mas_wr_walk_index(struct ma_wr_state *wr_mas)
3815{
3816 struct ma_state *mas = wr_mas->mas;
3817
3818 while (true) {
3819 mas_wr_walk_descend(wr_mas);
3820 wr_mas->content = mas_slot_locked(mas, wr_mas->slots,
3821 mas->offset);
3822 if (ma_is_leaf(wr_mas->type))
3823 return true;
3824 mas_wr_walk_traverse(wr_mas);
3825
3826 }
3827 return true;
3828}
3829/*
3830 * mas_extend_spanning_null() - Extend a store of a %NULL to include surrounding %NULLs.
3831 * @l_wr_mas: The left maple write state
3832 * @r_wr_mas: The right maple write state
3833 */
3834static inline void mas_extend_spanning_null(struct ma_wr_state *l_wr_mas,
3835 struct ma_wr_state *r_wr_mas)
3836{
3837 struct ma_state *r_mas = r_wr_mas->mas;
3838 struct ma_state *l_mas = l_wr_mas->mas;
3839 unsigned char l_slot;
3840
3841 l_slot = l_mas->offset;
3842 if (!l_wr_mas->content)
3843 l_mas->index = l_wr_mas->r_min;
3844
3845 if ((l_mas->index == l_wr_mas->r_min) &&
3846 (l_slot &&
3847 !mas_slot_locked(l_mas, l_wr_mas->slots, l_slot - 1))) {
3848 if (l_slot > 1)
3849 l_mas->index = l_wr_mas->pivots[l_slot - 2] + 1;
3850 else
3851 l_mas->index = l_mas->min;
3852
3853 l_mas->offset = l_slot - 1;
3854 }
3855
3856 if (!r_wr_mas->content) {
3857 if (r_mas->last < r_wr_mas->r_max)
3858 r_mas->last = r_wr_mas->r_max;
3859 r_mas->offset++;
3860 } else if ((r_mas->last == r_wr_mas->r_max) &&
3861 (r_mas->last < r_mas->max) &&
3862 !mas_slot_locked(r_mas, r_wr_mas->slots, r_mas->offset + 1)) {
3863 r_mas->last = mas_safe_pivot(r_mas, r_wr_mas->pivots,
3864 r_wr_mas->type, r_mas->offset + 1);
3865 r_mas->offset++;
3866 }
3867}
3868
3869static inline void *mas_state_walk(struct ma_state *mas)
3870{
3871 void *entry;
3872
3873 entry = mas_start(mas);
3874 if (mas_is_none(mas))
3875 return NULL;
3876
3877 if (mas_is_ptr(mas))
3878 return entry;
3879
3880 return mtree_range_walk(mas);
3881}
3882
3883/*
3884 * mtree_lookup_walk() - Internal quick lookup that does not keep maple state up
3885 * to date.
3886 *
3887 * @mas: The maple state.
3888 *
3889 * Note: Leaves mas in undesirable state.
3890 * Return: The entry for @mas->index or %NULL on dead node.
3891 */
3892static inline void *mtree_lookup_walk(struct ma_state *mas)
3893{
3894 unsigned long *pivots;
3895 unsigned char offset;
3896 struct maple_node *node;
3897 struct maple_enode *next;
3898 enum maple_type type;
3899 void __rcu **slots;
3900 unsigned char end;
3901 unsigned long max;
3902
3903 next = mas->node;
3904 max = ULONG_MAX;
3905 do {
3906 offset = 0;
3907 node = mte_to_node(next);
3908 type = mte_node_type(next);
3909 pivots = ma_pivots(node, type);
3910 end = ma_data_end(node, type, pivots, max);
3911 if (unlikely(ma_dead_node(node)))
3912 goto dead_node;
54a611b6 3913 do {
ec07967d
PZ
3914 if (pivots[offset] >= mas->index) {
3915 max = pivots[offset];
3916 break;
3917 }
3918 } while (++offset < end);
54a611b6 3919
54a611b6
LH
3920 slots = ma_slots(node, type);
3921 next = mt_slot(mas->tree, slots, offset);
3922 if (unlikely(ma_dead_node(node)))
3923 goto dead_node;
3924 } while (!ma_is_leaf(type));
3925
831978e3 3926 return (void *)next;
54a611b6
LH
3927
3928dead_node:
3929 mas_reset(mas);
3930 return NULL;
3931}
3932
3933/*
3934 * mas_new_root() - Create a new root node that only contains the entry passed
3935 * in.
3936 * @mas: The maple state
3937 * @entry: The entry to store.
3938 *
3939 * Only valid when the index == 0 and the last == ULONG_MAX
3940 *
3941 * Return 0 on error, 1 on success.
3942 */
3943static inline int mas_new_root(struct ma_state *mas, void *entry)
3944{
3945 struct maple_enode *root = mas_root_locked(mas);
3946 enum maple_type type = maple_leaf_64;
3947 struct maple_node *node;
3948 void __rcu **slots;
3949 unsigned long *pivots;
3950
3951 if (!entry && !mas->index && mas->last == ULONG_MAX) {
3952 mas->depth = 0;
3953 mas_set_height(mas);
3954 rcu_assign_pointer(mas->tree->ma_root, entry);
3955 mas->node = MAS_START;
3956 goto done;
3957 }
3958
3959 mas_node_count(mas, 1);
3960 if (mas_is_err(mas))
3961 return 0;
3962
3963 node = mas_pop_node(mas);
3964 pivots = ma_pivots(node, type);
3965 slots = ma_slots(node, type);
3966 node->parent = ma_parent_ptr(
3967 ((unsigned long)mas->tree | MA_ROOT_PARENT));
3968 mas->node = mt_mk_node(node, type);
3969 rcu_assign_pointer(slots[0], entry);
3970 pivots[0] = mas->last;
3971 mas->depth = 1;
3972 mas_set_height(mas);
3973 rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node));
3974
3975done:
3976 if (xa_is_node(root))
3977 mte_destroy_walk(root, mas->tree);
3978
3979 return 1;
3980}
3981/*
3982 * mas_wr_spanning_store() - Create a subtree with the store operation completed
3983 * and new nodes where necessary, then place the sub-tree in the actual tree.
3984 * Note that mas is expected to point to the node which caused the store to
3985 * span.
3986 * @wr_mas: The maple write state
3987 *
3988 * Return: 0 on error, positive on success.
3989 */
3990static inline int mas_wr_spanning_store(struct ma_wr_state *wr_mas)
3991{
3992 struct maple_subtree_state mast;
3993 struct maple_big_node b_node;
3994 struct ma_state *mas;
3995 unsigned char height;
3996
3997 /* Left and Right side of spanning store */
3998 MA_STATE(l_mas, NULL, 0, 0);
3999 MA_STATE(r_mas, NULL, 0, 0);
4000
4001 MA_WR_STATE(r_wr_mas, &r_mas, wr_mas->entry);
4002 MA_WR_STATE(l_wr_mas, &l_mas, wr_mas->entry);
4003
4004 /*
4005 * A store operation that spans multiple nodes is called a spanning
4006 * store and is handled early in the store call stack by the function
4007 * mas_is_span_wr(). When a spanning store is identified, the maple
4008 * state is duplicated. The first maple state walks the left tree path
4009 * to ``index``, the duplicate walks the right tree path to ``last``.
4010 * The data in the two nodes are combined into a single node, two nodes,
4011 * or possibly three nodes (see the 3-way split above). A ``NULL``
4012 * written to the last entry of a node is considered a spanning store as
4013 * a rebalance is required for the operation to complete and an overflow
4014 * of data may happen.
4015 */
4016 mas = wr_mas->mas;
4017 trace_ma_op(__func__, mas);
4018
4019 if (unlikely(!mas->index && mas->last == ULONG_MAX))
4020 return mas_new_root(mas, wr_mas->entry);
4021 /*
4022 * Node rebalancing may occur due to this store, so there may be three new
4023 * entries per level plus a new root.
4024 */
4025 height = mas_mt_height(mas);
4026 mas_node_count(mas, 1 + height * 3);
4027 if (mas_is_err(mas))
4028 return 0;
4029
4030 /*
4031 * Set up right side. Need to get to the next offset after the spanning
4032 * store to ensure it's not NULL and to combine both the next node and
4033 * the node with the start together.
4034 */
4035 r_mas = *mas;
4036 /* Avoid overflow, walk to next slot in the tree. */
4037 if (r_mas.last + 1)
4038 r_mas.last++;
4039
4040 r_mas.index = r_mas.last;
4041 mas_wr_walk_index(&r_wr_mas);
4042 r_mas.last = r_mas.index = mas->last;
4043
4044 /* Set up left side. */
4045 l_mas = *mas;
4046 mas_wr_walk_index(&l_wr_mas);
4047
4048 if (!wr_mas->entry) {
4049 mas_extend_spanning_null(&l_wr_mas, &r_wr_mas);
4050 mas->offset = l_mas.offset;
4051 mas->index = l_mas.index;
4052 mas->last = l_mas.last = r_mas.last;
4053 }
4054
4055 /* expanding NULLs may make this cover the entire range */
4056 if (!l_mas.index && r_mas.last == ULONG_MAX) {
4057 mas_set_range(mas, 0, ULONG_MAX);
4058 return mas_new_root(mas, wr_mas->entry);
4059 }
4060
4061 memset(&b_node, 0, sizeof(struct maple_big_node));
4062 /* Copy l_mas and store the value in b_node. */
4063 mas_store_b_node(&l_wr_mas, &b_node, l_wr_mas.node_end);
4064 /* Copy r_mas into b_node. */
4065 if (r_mas.offset <= r_wr_mas.node_end)
4066 mas_mab_cp(&r_mas, r_mas.offset, r_wr_mas.node_end,
4067 &b_node, b_node.b_end + 1);
4068 else
4069 b_node.b_end++;
4070
4071 /* Stop spanning searches by searching for just index. */
4072 l_mas.index = l_mas.last = mas->index;
4073
4074 mast.bn = &b_node;
4075 mast.orig_l = &l_mas;
4076 mast.orig_r = &r_mas;
4077 /* Combine l_mas and r_mas and split them up evenly again. */
4078 return mas_spanning_rebalance(mas, &mast, height + 1);
4079}
4080
4081/*
4082 * mas_wr_node_store() - Attempt to store the value in a node
4083 * @wr_mas: The maple write state
4084 *
4085 * Attempts to reuse the node, but may allocate.
4086 *
4087 * Return: True if stored, false otherwise
4088 */
4089static inline bool mas_wr_node_store(struct ma_wr_state *wr_mas)
4090{
4091 struct ma_state *mas = wr_mas->mas;
4092 void __rcu **dst_slots;
4093 unsigned long *dst_pivots;
4094 unsigned char dst_offset;
4095 unsigned char new_end = wr_mas->node_end;
4096 unsigned char offset;
4097 unsigned char node_slots = mt_slots[wr_mas->type];
4098 struct maple_node reuse, *newnode;
4099 unsigned char copy_size, max_piv = mt_pivots[wr_mas->type];
4100 bool in_rcu = mt_in_rcu(mas->tree);
4101
4102 offset = mas->offset;
4103 if (mas->last == wr_mas->r_max) {
4104 /* runs right to the end of the node */
4105 if (mas->last == mas->max)
4106 new_end = offset;
4107 /* don't copy this offset */
4108 wr_mas->offset_end++;
4109 } else if (mas->last < wr_mas->r_max) {
4110 /* new range ends in this range */
4111 if (unlikely(wr_mas->r_max == ULONG_MAX))
4112 mas_bulk_rebalance(mas, wr_mas->node_end, wr_mas->type);
4113
4114 new_end++;
4115 } else {
4116 if (wr_mas->end_piv == mas->last)
4117 wr_mas->offset_end++;
4118
4119 new_end -= wr_mas->offset_end - offset - 1;
4120 }
4121
4122 /* new range starts within a range */
4123 if (wr_mas->r_min < mas->index)
4124 new_end++;
4125
4126 /* Not enough room */
4127 if (new_end >= node_slots)
4128 return false;
4129
4130 /* Not enough data. */
4131 if (!mte_is_root(mas->node) && (new_end <= mt_min_slots[wr_mas->type]) &&
4132 !(mas->mas_flags & MA_STATE_BULK))
4133 return false;
4134
4135 /* set up node. */
4136 if (in_rcu) {
4137 mas_node_count(mas, 1);
4138 if (mas_is_err(mas))
4139 return false;
4140
4141 newnode = mas_pop_node(mas);
4142 } else {
4143 memset(&reuse, 0, sizeof(struct maple_node));
4144 newnode = &reuse;
4145 }
4146
4147 newnode->parent = mas_mn(mas)->parent;
4148 dst_pivots = ma_pivots(newnode, wr_mas->type);
4149 dst_slots = ma_slots(newnode, wr_mas->type);
4150 /* Copy from start to insert point */
4151 memcpy(dst_pivots, wr_mas->pivots, sizeof(unsigned long) * (offset + 1));
4152 memcpy(dst_slots, wr_mas->slots, sizeof(void *) * (offset + 1));
4153 dst_offset = offset;
4154
4155 /* Handle insert of new range starting after old range */
4156 if (wr_mas->r_min < mas->index) {
4157 mas->offset++;
4158 rcu_assign_pointer(dst_slots[dst_offset], wr_mas->content);
4159 dst_pivots[dst_offset++] = mas->index - 1;
4160 }
4161
4162 /* Store the new entry and range end. */
4163 if (dst_offset < max_piv)
4164 dst_pivots[dst_offset] = mas->last;
4165 mas->offset = dst_offset;
4166 rcu_assign_pointer(dst_slots[dst_offset], wr_mas->entry);
4167
4168 /*
4169 * this range wrote to the end of the node or it overwrote the rest of
4170 * the data
4171 */
4172 if (wr_mas->offset_end > wr_mas->node_end || mas->last >= mas->max) {
4173 new_end = dst_offset;
4174 goto done;
4175 }
4176
4177 dst_offset++;
4178 /* Copy to the end of node if necessary. */
4179 copy_size = wr_mas->node_end - wr_mas->offset_end + 1;
4180 memcpy(dst_slots + dst_offset, wr_mas->slots + wr_mas->offset_end,
4181 sizeof(void *) * copy_size);
4182 if (dst_offset < max_piv) {
4183 if (copy_size > max_piv - dst_offset)
4184 copy_size = max_piv - dst_offset;
4185
4186 memcpy(dst_pivots + dst_offset,
4187 wr_mas->pivots + wr_mas->offset_end,
4188 sizeof(unsigned long) * copy_size);
4189 }
4190
4191 if ((wr_mas->node_end == node_slots - 1) && (new_end < node_slots - 1))
4192 dst_pivots[new_end] = mas->max;
4193
4194done:
4195 mas_leaf_set_meta(mas, newnode, dst_pivots, maple_leaf_64, new_end);
4196 if (in_rcu) {
c13af03d 4197 mte_set_node_dead(mas->node);
54a611b6
LH
4198 mas->node = mt_mk_node(newnode, wr_mas->type);
4199 mas_replace(mas, false);
4200 } else {
4201 memcpy(wr_mas->node, newnode, sizeof(struct maple_node));
4202 }
4203 trace_ma_write(__func__, mas, 0, wr_mas->entry);
4204 mas_update_gap(mas);
4205 return true;
4206}
4207
4208/*
4209 * mas_wr_slot_store: Attempt to store a value in a slot.
4210 * @wr_mas: the maple write state
4211 *
4212 * Return: True if stored, false otherwise
4213 */
4214static inline bool mas_wr_slot_store(struct ma_wr_state *wr_mas)
4215{
4216 struct ma_state *mas = wr_mas->mas;
4217 unsigned long lmax; /* Logical max. */
4218 unsigned char offset = mas->offset;
4219
4220 if ((wr_mas->r_max > mas->last) && ((wr_mas->r_min != mas->index) ||
4221 (offset != wr_mas->node_end)))
4222 return false;
4223
4224 if (offset == wr_mas->node_end - 1)
4225 lmax = mas->max;
4226 else
4227 lmax = wr_mas->pivots[offset + 1];
4228
4229 /* going to overwrite too many slots. */
4230 if (lmax < mas->last)
4231 return false;
4232
4233 if (wr_mas->r_min == mas->index) {
4234 /* overwriting two or more ranges with one. */
4235 if (lmax == mas->last)
4236 return false;
4237
4238 /* Overwriting all of offset and a portion of offset + 1. */
4239 rcu_assign_pointer(wr_mas->slots[offset], wr_mas->entry);
4240 wr_mas->pivots[offset] = mas->last;
4241 goto done;
4242 }
4243
4244 /* Doesn't end on the next range end. */
4245 if (lmax != mas->last)
4246 return false;
4247
4248 /* Overwriting a portion of offset and all of offset + 1 */
4249 if ((offset + 1 < mt_pivots[wr_mas->type]) &&
4250 (wr_mas->entry || wr_mas->pivots[offset + 1]))
4251 wr_mas->pivots[offset + 1] = mas->last;
4252
4253 rcu_assign_pointer(wr_mas->slots[offset + 1], wr_mas->entry);
4254 wr_mas->pivots[offset] = mas->index - 1;
4255 mas->offset++; /* Keep mas accurate. */
4256
4257done:
4258 trace_ma_write(__func__, mas, 0, wr_mas->entry);
4259 mas_update_gap(mas);
4260 return true;
4261}
4262
4263static inline void mas_wr_end_piv(struct ma_wr_state *wr_mas)
4264{
cd00dd25
PZ
4265 while ((wr_mas->offset_end < wr_mas->node_end) &&
4266 (wr_mas->mas->last > wr_mas->pivots[wr_mas->offset_end]))
4267 wr_mas->offset_end++;
54a611b6 4268
cd00dd25
PZ
4269 if (wr_mas->offset_end < wr_mas->node_end)
4270 wr_mas->end_piv = wr_mas->pivots[wr_mas->offset_end];
4271 else
54a611b6
LH
4272 wr_mas->end_piv = wr_mas->mas->max;
4273}
4274
4275static inline void mas_wr_extend_null(struct ma_wr_state *wr_mas)
4276{
4277 struct ma_state *mas = wr_mas->mas;
4278
4279 if (mas->last < wr_mas->end_piv && !wr_mas->slots[wr_mas->offset_end])
4280 mas->last = wr_mas->end_piv;
4281
4282 /* Check next slot(s) if we are overwriting the end */
4283 if ((mas->last == wr_mas->end_piv) &&
4284 (wr_mas->node_end != wr_mas->offset_end) &&
4285 !wr_mas->slots[wr_mas->offset_end + 1]) {
4286 wr_mas->offset_end++;
4287 if (wr_mas->offset_end == wr_mas->node_end)
4288 mas->last = mas->max;
4289 else
4290 mas->last = wr_mas->pivots[wr_mas->offset_end];
4291 wr_mas->end_piv = mas->last;
4292 }
4293
4294 if (!wr_mas->content) {
4295 /* If this one is null, the next and prev are not */
4296 mas->index = wr_mas->r_min;
4297 } else {
4298 /* Check prev slot if we are overwriting the start */
4299 if (mas->index == wr_mas->r_min && mas->offset &&
4300 !wr_mas->slots[mas->offset - 1]) {
4301 mas->offset--;
4302 wr_mas->r_min = mas->index =
4303 mas_safe_min(mas, wr_mas->pivots, mas->offset);
4304 wr_mas->r_max = wr_mas->pivots[mas->offset];
4305 }
4306 }
4307}
4308
4309static inline bool mas_wr_append(struct ma_wr_state *wr_mas)
4310{
4311 unsigned char end = wr_mas->node_end;
4312 unsigned char new_end = end + 1;
4313 struct ma_state *mas = wr_mas->mas;
4314 unsigned char node_pivots = mt_pivots[wr_mas->type];
4315
4316 if ((mas->index != wr_mas->r_min) && (mas->last == wr_mas->r_max)) {
4317 if (new_end < node_pivots)
4318 wr_mas->pivots[new_end] = wr_mas->pivots[end];
4319
4320 if (new_end < node_pivots)
4321 ma_set_meta(wr_mas->node, maple_leaf_64, 0, new_end);
4322
4323 rcu_assign_pointer(wr_mas->slots[new_end], wr_mas->entry);
4324 mas->offset = new_end;
4325 wr_mas->pivots[end] = mas->index - 1;
4326
4327 return true;
4328 }
4329
4330 if ((mas->index == wr_mas->r_min) && (mas->last < wr_mas->r_max)) {
4331 if (new_end < node_pivots)
4332 wr_mas->pivots[new_end] = wr_mas->pivots[end];
4333
4334 rcu_assign_pointer(wr_mas->slots[new_end], wr_mas->content);
4335 if (new_end < node_pivots)
4336 ma_set_meta(wr_mas->node, maple_leaf_64, 0, new_end);
4337
4338 wr_mas->pivots[end] = mas->last;
4339 rcu_assign_pointer(wr_mas->slots[end], wr_mas->entry);
4340 return true;
4341 }
4342
4343 return false;
4344}
4345
4346/*
4347 * mas_wr_bnode() - Slow path for a modification.
4348 * @wr_mas: The write maple state
4349 *
4350 * This is where split, rebalance end up.
4351 */
4352static void mas_wr_bnode(struct ma_wr_state *wr_mas)
4353{
4354 struct maple_big_node b_node;
4355
4356 trace_ma_write(__func__, wr_mas->mas, 0, wr_mas->entry);
4357 memset(&b_node, 0, sizeof(struct maple_big_node));
4358 mas_store_b_node(wr_mas, &b_node, wr_mas->offset_end);
4359 mas_commit_b_node(wr_mas, &b_node, wr_mas->node_end);
4360}
4361
4362static inline void mas_wr_modify(struct ma_wr_state *wr_mas)
4363{
4364 unsigned char node_slots;
4365 unsigned char node_size;
4366 struct ma_state *mas = wr_mas->mas;
4367
4368 /* Direct replacement */
4369 if (wr_mas->r_min == mas->index && wr_mas->r_max == mas->last) {
4370 rcu_assign_pointer(wr_mas->slots[mas->offset], wr_mas->entry);
4371 if (!!wr_mas->entry ^ !!wr_mas->content)
4372 mas_update_gap(mas);
4373 return;
4374 }
4375
4376 /* Attempt to append */
4377 node_slots = mt_slots[wr_mas->type];
4378 node_size = wr_mas->node_end - wr_mas->offset_end + mas->offset + 2;
4379 if (mas->max == ULONG_MAX)
4380 node_size++;
4381
4382 /* slot and node store will not fit, go to the slow path */
4383 if (unlikely(node_size >= node_slots))
4384 goto slow_path;
4385
4386 if (wr_mas->entry && (wr_mas->node_end < node_slots - 1) &&
4387 (mas->offset == wr_mas->node_end) && mas_wr_append(wr_mas)) {
4388 if (!wr_mas->content || !wr_mas->entry)
4389 mas_update_gap(mas);
4390 return;
4391 }
4392
4393 if ((wr_mas->offset_end - mas->offset <= 1) && mas_wr_slot_store(wr_mas))
4394 return;
4395 else if (mas_wr_node_store(wr_mas))
4396 return;
4397
4398 if (mas_is_err(mas))
4399 return;
4400
4401slow_path:
4402 mas_wr_bnode(wr_mas);
4403}
4404
4405/*
4406 * mas_wr_store_entry() - Internal call to store a value
4407 * @mas: The maple state
4408 * @entry: The entry to store.
4409 *
4410 * Return: The contents that was stored at the index.
4411 */
4412static inline void *mas_wr_store_entry(struct ma_wr_state *wr_mas)
4413{
4414 struct ma_state *mas = wr_mas->mas;
4415
4416 wr_mas->content = mas_start(mas);
4417 if (mas_is_none(mas) || mas_is_ptr(mas)) {
4418 mas_store_root(mas, wr_mas->entry);
4419 return wr_mas->content;
4420 }
4421
4422 if (unlikely(!mas_wr_walk(wr_mas))) {
4423 mas_wr_spanning_store(wr_mas);
4424 return wr_mas->content;
4425 }
4426
4427 /* At this point, we are at the leaf node that needs to be altered. */
54a611b6
LH
4428 mas_wr_end_piv(wr_mas);
4429
4430 if (!wr_mas->entry)
4431 mas_wr_extend_null(wr_mas);
4432
4433 /* New root for a single pointer */
4434 if (unlikely(!mas->index && mas->last == ULONG_MAX)) {
4435 mas_new_root(mas, wr_mas->entry);
4436 return wr_mas->content;
4437 }
4438
4439 mas_wr_modify(wr_mas);
4440 return wr_mas->content;
4441}
4442
4443/**
4444 * mas_insert() - Internal call to insert a value
4445 * @mas: The maple state
4446 * @entry: The entry to store
4447 *
4448 * Return: %NULL or the contents that already exists at the requested index
4449 * otherwise. The maple state needs to be checked for error conditions.
4450 */
4451static inline void *mas_insert(struct ma_state *mas, void *entry)
4452{
4453 MA_WR_STATE(wr_mas, mas, entry);
4454
4455 /*
4456 * Inserting a new range inserts either 0, 1, or 2 pivots within the
4457 * tree. If the insert fits exactly into an existing gap with a value
4458 * of NULL, then the slot only needs to be written with the new value.
4459 * If the range being inserted is adjacent to another range, then only a
4460 * single pivot needs to be inserted (as well as writing the entry). If
4461 * the new range is within a gap but does not touch any other ranges,
4462 * then two pivots need to be inserted: the start - 1, and the end. As
4463 * usual, the entry must be written. Most operations require a new node
4464 * to be allocated and replace an existing node to ensure RCU safety,
4465 * when in RCU mode. The exception to requiring a newly allocated node
4466 * is when inserting at the end of a node (appending). When done
4467 * carefully, appending can reuse the node in place.
4468 */
4469 wr_mas.content = mas_start(mas);
4470 if (wr_mas.content)
4471 goto exists;
4472
4473 if (mas_is_none(mas) || mas_is_ptr(mas)) {
4474 mas_store_root(mas, entry);
4475 return NULL;
4476 }
4477
4478 /* spanning writes always overwrite something */
4479 if (!mas_wr_walk(&wr_mas))
4480 goto exists;
4481
4482 /* At this point, we are at the leaf node that needs to be altered. */
4483 wr_mas.offset_end = mas->offset;
4484 wr_mas.end_piv = wr_mas.r_max;
4485
4486 if (wr_mas.content || (mas->last > wr_mas.r_max))
4487 goto exists;
4488
4489 if (!entry)
4490 return NULL;
4491
4492 mas_wr_modify(&wr_mas);
4493 return wr_mas.content;
4494
4495exists:
4496 mas_set_err(mas, -EEXIST);
4497 return wr_mas.content;
4498
4499}
4500
4501/*
4502 * mas_prev_node() - Find the prev non-null entry at the same level in the
4503 * tree. The prev value will be mas->node[mas->offset] or MAS_NONE.
4504 * @mas: The maple state
4505 * @min: The lower limit to search
4506 *
4507 * The prev node value will be mas->node[mas->offset] or MAS_NONE.
4508 * Return: 1 if the node is dead, 0 otherwise.
4509 */
4510static inline int mas_prev_node(struct ma_state *mas, unsigned long min)
4511{
4512 enum maple_type mt;
4513 int offset, level;
4514 void __rcu **slots;
4515 struct maple_node *node;
4516 struct maple_enode *enode;
4517 unsigned long *pivots;
4518
4519 if (mas_is_none(mas))
4520 return 0;
4521
4522 level = 0;
4523 do {
4524 node = mas_mn(mas);
4525 if (ma_is_root(node))
4526 goto no_entry;
4527
4528 /* Walk up. */
4529 if (unlikely(mas_ascend(mas)))
4530 return 1;
4531 offset = mas->offset;
4532 level++;
4533 } while (!offset);
4534
4535 offset--;
4536 mt = mte_node_type(mas->node);
4537 node = mas_mn(mas);
4538 slots = ma_slots(node, mt);
4539 pivots = ma_pivots(node, mt);
39d0bd86
LH
4540 if (unlikely(ma_dead_node(node)))
4541 return 1;
4542
54a611b6
LH
4543 mas->max = pivots[offset];
4544 if (offset)
4545 mas->min = pivots[offset - 1] + 1;
4546 if (unlikely(ma_dead_node(node)))
4547 return 1;
4548
4549 if (mas->max < min)
4550 goto no_entry_min;
4551
4552 while (level > 1) {
4553 level--;
4554 enode = mas_slot(mas, slots, offset);
4555 if (unlikely(ma_dead_node(node)))
4556 return 1;
4557
4558 mas->node = enode;
4559 mt = mte_node_type(mas->node);
4560 node = mas_mn(mas);
4561 slots = ma_slots(node, mt);
4562 pivots = ma_pivots(node, mt);
4563 offset = ma_data_end(node, mt, pivots, mas->max);
39d0bd86
LH
4564 if (unlikely(ma_dead_node(node)))
4565 return 1;
4566
54a611b6
LH
4567 if (offset)
4568 mas->min = pivots[offset - 1] + 1;
4569
4570 if (offset < mt_pivots[mt])
4571 mas->max = pivots[offset];
4572
4573 if (mas->max < min)
4574 goto no_entry;
4575 }
4576
4577 mas->node = mas_slot(mas, slots, offset);
4578 if (unlikely(ma_dead_node(node)))
4579 return 1;
4580
4581 mas->offset = mas_data_end(mas);
4582 if (unlikely(mte_dead_node(mas->node)))
4583 return 1;
4584
4585 return 0;
4586
4587no_entry_min:
4588 mas->offset = offset;
4589 if (offset)
4590 mas->min = pivots[offset - 1] + 1;
4591no_entry:
4592 if (unlikely(ma_dead_node(node)))
4593 return 1;
4594
4595 mas->node = MAS_NONE;
4596 return 0;
4597}
4598
4599/*
4600 * mas_next_node() - Get the next node at the same level in the tree.
4601 * @mas: The maple state
4602 * @max: The maximum pivot value to check.
4603 *
4604 * The next value will be mas->node[mas->offset] or MAS_NONE.
4605 * Return: 1 on dead node, 0 otherwise.
4606 */
4607static inline int mas_next_node(struct ma_state *mas, struct maple_node *node,
4608 unsigned long max)
4609{
4610 unsigned long min, pivot;
4611 unsigned long *pivots;
4612 struct maple_enode *enode;
4613 int level = 0;
4614 unsigned char offset;
39d0bd86 4615 unsigned char node_end;
54a611b6
LH
4616 enum maple_type mt;
4617 void __rcu **slots;
4618
4619 if (mas->max >= max)
4620 goto no_entry;
4621
4622 level = 0;
4623 do {
4624 if (ma_is_root(node))
4625 goto no_entry;
4626
4627 min = mas->max + 1;
4628 if (min > max)
4629 goto no_entry;
4630
4631 if (unlikely(mas_ascend(mas)))
4632 return 1;
4633
4634 offset = mas->offset;
4635 level++;
4636 node = mas_mn(mas);
4637 mt = mte_node_type(mas->node);
4638 pivots = ma_pivots(node, mt);
39d0bd86
LH
4639 node_end = ma_data_end(node, mt, pivots, mas->max);
4640 if (unlikely(ma_dead_node(node)))
4641 return 1;
4642
4643 } while (unlikely(offset == node_end));
54a611b6
LH
4644
4645 slots = ma_slots(node, mt);
4646 pivot = mas_safe_pivot(mas, pivots, ++offset, mt);
4647 while (unlikely(level > 1)) {
4648 /* Descend, if necessary */
4649 enode = mas_slot(mas, slots, offset);
4650 if (unlikely(ma_dead_node(node)))
4651 return 1;
4652
4653 mas->node = enode;
4654 level--;
4655 node = mas_mn(mas);
4656 mt = mte_node_type(mas->node);
4657 slots = ma_slots(node, mt);
4658 pivots = ma_pivots(node, mt);
39d0bd86
LH
4659 if (unlikely(ma_dead_node(node)))
4660 return 1;
4661
54a611b6
LH
4662 offset = 0;
4663 pivot = pivots[0];
4664 }
4665
4666 enode = mas_slot(mas, slots, offset);
4667 if (unlikely(ma_dead_node(node)))
4668 return 1;
4669
4670 mas->node = enode;
4671 mas->min = min;
4672 mas->max = pivot;
4673 return 0;
4674
4675no_entry:
4676 if (unlikely(ma_dead_node(node)))
4677 return 1;
4678
4679 mas->node = MAS_NONE;
4680 return 0;
4681}
4682
4683/*
4684 * mas_next_nentry() - Get the next node entry
4685 * @mas: The maple state
4686 * @max: The maximum value to check
4687 * @*range_start: Pointer to store the start of the range.
4688 *
4689 * Sets @mas->offset to the offset of the next node entry, @mas->last to the
4690 * pivot of the entry.
4691 *
4692 * Return: The next entry, %NULL otherwise
4693 */
4694static inline void *mas_next_nentry(struct ma_state *mas,
4695 struct maple_node *node, unsigned long max, enum maple_type type)
4696{
4697 unsigned char count;
4698 unsigned long pivot;
4699 unsigned long *pivots;
4700 void __rcu **slots;
4701 void *entry;
4702
4703 if (mas->last == mas->max) {
4704 mas->index = mas->max;
4705 return NULL;
4706 }
4707
54a611b6 4708 slots = ma_slots(node, type);
39d0bd86 4709 pivots = ma_pivots(node, type);
65be6f05 4710 count = ma_data_end(node, type, pivots, mas->max);
39d0bd86
LH
4711 if (unlikely(ma_dead_node(node)))
4712 return NULL;
4713
4714 mas->index = mas_safe_min(mas, pivots, mas->offset);
4715 if (unlikely(ma_dead_node(node)))
54a611b6
LH
4716 return NULL;
4717
4718 if (mas->index > max)
4719 return NULL;
4720
54a611b6
LH
4721 if (mas->offset > count)
4722 return NULL;
4723
4724 while (mas->offset < count) {
4725 pivot = pivots[mas->offset];
4726 entry = mas_slot(mas, slots, mas->offset);
4727 if (ma_dead_node(node))
4728 return NULL;
4729
4730 if (entry)
4731 goto found;
4732
4733 if (pivot >= max)
4734 return NULL;
4735
4736 mas->index = pivot + 1;
4737 mas->offset++;
4738 }
4739
4740 if (mas->index > mas->max) {
4741 mas->index = mas->last;
4742 return NULL;
4743 }
4744
4745 pivot = mas_safe_pivot(mas, pivots, mas->offset, type);
4746 entry = mas_slot(mas, slots, mas->offset);
4747 if (ma_dead_node(node))
4748 return NULL;
4749
4750 if (!pivot)
4751 return NULL;
4752
4753 if (!entry)
4754 return NULL;
4755
4756found:
4757 mas->last = pivot;
4758 return entry;
4759}
4760
4761static inline void mas_rewalk(struct ma_state *mas, unsigned long index)
4762{
54a611b6
LH
4763retry:
4764 mas_set(mas, index);
4765 mas_state_walk(mas);
4766 if (mas_is_start(mas))
4767 goto retry;
54a611b6
LH
4768}
4769
4770/*
4771 * mas_next_entry() - Internal function to get the next entry.
4772 * @mas: The maple state
4773 * @limit: The maximum range start.
4774 *
4775 * Set the @mas->node to the next entry and the range_start to
4776 * the beginning value for the entry. Does not check beyond @limit.
4777 * Sets @mas->index and @mas->last to the limit if it is hit.
4778 * Restarts on dead nodes.
4779 *
4780 * Return: the next entry or %NULL.
4781 */
4782static inline void *mas_next_entry(struct ma_state *mas, unsigned long limit)
4783{
4784 void *entry = NULL;
4785 struct maple_enode *prev_node;
4786 struct maple_node *node;
4787 unsigned char offset;
4788 unsigned long last;
4789 enum maple_type mt;
4790
50e81c82
LH
4791 if (mas->index > limit) {
4792 mas->index = mas->last = limit;
4793 mas_pause(mas);
4794 return NULL;
4795 }
54a611b6
LH
4796 last = mas->last;
4797retry:
4798 offset = mas->offset;
4799 prev_node = mas->node;
4800 node = mas_mn(mas);
4801 mt = mte_node_type(mas->node);
4802 mas->offset++;
4803 if (unlikely(mas->offset >= mt_slots[mt])) {
4804 mas->offset = mt_slots[mt] - 1;
4805 goto next_node;
4806 }
4807
4808 while (!mas_is_none(mas)) {
4809 entry = mas_next_nentry(mas, node, limit, mt);
4810 if (unlikely(ma_dead_node(node))) {
4811 mas_rewalk(mas, last);
4812 goto retry;
4813 }
4814
4815 if (likely(entry))
4816 return entry;
4817
4818 if (unlikely((mas->index > limit)))
4819 break;
4820
4821next_node:
4822 prev_node = mas->node;
4823 offset = mas->offset;
4824 if (unlikely(mas_next_node(mas, node, limit))) {
4825 mas_rewalk(mas, last);
4826 goto retry;
4827 }
4828 mas->offset = 0;
4829 node = mas_mn(mas);
4830 mt = mte_node_type(mas->node);
4831 }
4832
4833 mas->index = mas->last = limit;
4834 mas->offset = offset;
4835 mas->node = prev_node;
4836 return NULL;
4837}
4838
4839/*
4840 * mas_prev_nentry() - Get the previous node entry.
4841 * @mas: The maple state.
4842 * @limit: The lower limit to check for a value.
4843 *
4844 * Return: the entry, %NULL otherwise.
4845 */
4846static inline void *mas_prev_nentry(struct ma_state *mas, unsigned long limit,
4847 unsigned long index)
4848{
4849 unsigned long pivot, min;
4850 unsigned char offset;
4851 struct maple_node *mn;
4852 enum maple_type mt;
4853 unsigned long *pivots;
4854 void __rcu **slots;
4855 void *entry;
4856
4857retry:
4858 if (!mas->offset)
4859 return NULL;
4860
4861 mn = mas_mn(mas);
4862 mt = mte_node_type(mas->node);
4863 offset = mas->offset - 1;
4864 if (offset >= mt_slots[mt])
4865 offset = mt_slots[mt] - 1;
4866
4867 slots = ma_slots(mn, mt);
4868 pivots = ma_pivots(mn, mt);
39d0bd86
LH
4869 if (unlikely(ma_dead_node(mn))) {
4870 mas_rewalk(mas, index);
4871 goto retry;
4872 }
4873
54a611b6
LH
4874 if (offset == mt_pivots[mt])
4875 pivot = mas->max;
4876 else
4877 pivot = pivots[offset];
4878
4879 if (unlikely(ma_dead_node(mn))) {
4880 mas_rewalk(mas, index);
4881 goto retry;
4882 }
4883
4884 while (offset && ((!mas_slot(mas, slots, offset) && pivot >= limit) ||
4885 !pivot))
4886 pivot = pivots[--offset];
4887
4888 min = mas_safe_min(mas, pivots, offset);
4889 entry = mas_slot(mas, slots, offset);
4890 if (unlikely(ma_dead_node(mn))) {
4891 mas_rewalk(mas, index);
4892 goto retry;
4893 }
4894
4895 if (likely(entry)) {
4896 mas->offset = offset;
4897 mas->last = pivot;
4898 mas->index = min;
4899 }
4900 return entry;
4901}
4902
4903static inline void *mas_prev_entry(struct ma_state *mas, unsigned long min)
4904{
4905 void *entry;
4906
50e81c82
LH
4907 if (mas->index < min) {
4908 mas->index = mas->last = min;
17dc622c 4909 mas->node = MAS_NONE;
50e81c82
LH
4910 return NULL;
4911 }
54a611b6
LH
4912retry:
4913 while (likely(!mas_is_none(mas))) {
4914 entry = mas_prev_nentry(mas, min, mas->index);
4915 if (unlikely(mas->last < min))
4916 goto not_found;
4917
4918 if (likely(entry))
4919 return entry;
4920
4921 if (unlikely(mas_prev_node(mas, min))) {
4922 mas_rewalk(mas, mas->index);
4923 goto retry;
4924 }
4925
4926 mas->offset++;
4927 }
4928
4929 mas->offset--;
4930not_found:
4931 mas->index = mas->last = min;
4932 return NULL;
4933}
4934
4935/*
4936 * mas_rev_awalk() - Internal function. Reverse allocation walk. Find the
4937 * highest gap address of a given size in a given node and descend.
4938 * @mas: The maple state
4939 * @size: The needed size.
4940 *
4941 * Return: True if found in a leaf, false otherwise.
4942 *
4943 */
fad8e429
LH
4944static bool mas_rev_awalk(struct ma_state *mas, unsigned long size,
4945 unsigned long *gap_min, unsigned long *gap_max)
54a611b6
LH
4946{
4947 enum maple_type type = mte_node_type(mas->node);
4948 struct maple_node *node = mas_mn(mas);
4949 unsigned long *pivots, *gaps;
4950 void __rcu **slots;
4951 unsigned long gap = 0;
7327e811 4952 unsigned long max, min;
54a611b6
LH
4953 unsigned char offset;
4954
4955 if (unlikely(mas_is_err(mas)))
4956 return true;
4957
4958 if (ma_is_dense(type)) {
4959 /* dense nodes. */
4960 mas->offset = (unsigned char)(mas->index - mas->min);
4961 return true;
4962 }
4963
4964 pivots = ma_pivots(node, type);
4965 slots = ma_slots(node, type);
4966 gaps = ma_gaps(node, type);
4967 offset = mas->offset;
4968 min = mas_safe_min(mas, pivots, offset);
4969 /* Skip out of bounds. */
4970 while (mas->last < min)
4971 min = mas_safe_min(mas, pivots, --offset);
4972
4973 max = mas_safe_pivot(mas, pivots, offset, type);
7327e811 4974 while (mas->index <= max) {
54a611b6
LH
4975 gap = 0;
4976 if (gaps)
4977 gap = gaps[offset];
4978 else if (!mas_slot(mas, slots, offset))
4979 gap = max - min + 1;
4980
4981 if (gap) {
4982 if ((size <= gap) && (size <= mas->last - min + 1))
4983 break;
4984
4985 if (!gaps) {
4986 /* Skip the next slot, it cannot be a gap. */
4987 if (offset < 2)
4988 goto ascend;
4989
4990 offset -= 2;
4991 max = pivots[offset];
4992 min = mas_safe_min(mas, pivots, offset);
4993 continue;
4994 }
4995 }
4996
4997 if (!offset)
4998 goto ascend;
4999
5000 offset--;
5001 max = min - 1;
5002 min = mas_safe_min(mas, pivots, offset);
5003 }
5004
7327e811
LH
5005 if (unlikely((mas->index > max) || (size - 1 > max - mas->index)))
5006 goto no_space;
54a611b6
LH
5007
5008 if (unlikely(ma_is_leaf(type))) {
5009 mas->offset = offset;
fad8e429
LH
5010 *gap_min = min;
5011 *gap_max = min + gap - 1;
54a611b6
LH
5012 return true;
5013 }
5014
5015 /* descend, only happens under lock. */
5016 mas->node = mas_slot(mas, slots, offset);
5017 mas->min = min;
5018 mas->max = max;
5019 mas->offset = mas_data_end(mas);
5020 return false;
5021
5022ascend:
7327e811
LH
5023 if (!mte_is_root(mas->node))
5024 return false;
54a611b6 5025
7327e811
LH
5026no_space:
5027 mas_set_err(mas, -EBUSY);
54a611b6
LH
5028 return false;
5029}
5030
5031static inline bool mas_anode_descend(struct ma_state *mas, unsigned long size)
5032{
5033 enum maple_type type = mte_node_type(mas->node);
5034 unsigned long pivot, min, gap = 0;
06e8fd99
LH
5035 unsigned char offset, data_end;
5036 unsigned long *gaps, *pivots;
5037 void __rcu **slots;
5038 struct maple_node *node;
54a611b6
LH
5039 bool found = false;
5040
5041 if (ma_is_dense(type)) {
5042 mas->offset = (unsigned char)(mas->index - mas->min);
5043 return true;
5044 }
5045
06e8fd99
LH
5046 node = mas_mn(mas);
5047 pivots = ma_pivots(node, type);
5048 slots = ma_slots(node, type);
5049 gaps = ma_gaps(node, type);
54a611b6 5050 offset = mas->offset;
54a611b6 5051 min = mas_safe_min(mas, pivots, offset);
06e8fd99
LH
5052 data_end = ma_data_end(node, type, pivots, mas->max);
5053 for (; offset <= data_end; offset++) {
5054 pivot = mas_logical_pivot(mas, pivots, offset, type);
54a611b6
LH
5055
5056 /* Not within lower bounds */
5057 if (mas->index > pivot)
5058 goto next_slot;
5059
5060 if (gaps)
5061 gap = gaps[offset];
5062 else if (!mas_slot(mas, slots, offset))
5063 gap = min(pivot, mas->last) - max(mas->index, min) + 1;
5064 else
5065 goto next_slot;
5066
5067 if (gap >= size) {
5068 if (ma_is_leaf(type)) {
5069 found = true;
5070 goto done;
5071 }
5072 if (mas->index <= pivot) {
5073 mas->node = mas_slot(mas, slots, offset);
5074 mas->min = min;
5075 mas->max = pivot;
5076 offset = 0;
54a611b6
LH
5077 break;
5078 }
5079 }
5080next_slot:
5081 min = pivot + 1;
5082 if (mas->last <= pivot) {
5083 mas_set_err(mas, -EBUSY);
5084 return true;
5085 }
5086 }
5087
5088 if (mte_is_root(mas->node))
5089 found = true;
5090done:
5091 mas->offset = offset;
5092 return found;
5093}
5094
5095/**
5096 * mas_walk() - Search for @mas->index in the tree.
5097 * @mas: The maple state.
5098 *
5099 * mas->index and mas->last will be set to the range if there is a value. If
5100 * mas->node is MAS_NONE, reset to MAS_START.
5101 *
5102 * Return: the entry at the location or %NULL.
5103 */
5104void *mas_walk(struct ma_state *mas)
5105{
5106 void *entry;
5107
5108retry:
5109 entry = mas_state_walk(mas);
5110 if (mas_is_start(mas))
5111 goto retry;
5112
5113 if (mas_is_ptr(mas)) {
5114 if (!mas->index) {
5115 mas->last = 0;
5116 } else {
5117 mas->index = 1;
5118 mas->last = ULONG_MAX;
5119 }
5120 return entry;
5121 }
5122
5123 if (mas_is_none(mas)) {
5124 mas->index = 0;
5125 mas->last = ULONG_MAX;
5126 }
5127
5128 return entry;
5129}
120b1162 5130EXPORT_SYMBOL_GPL(mas_walk);
54a611b6
LH
5131
5132static inline bool mas_rewind_node(struct ma_state *mas)
5133{
5134 unsigned char slot;
5135
5136 do {
5137 if (mte_is_root(mas->node)) {
5138 slot = mas->offset;
5139 if (!slot)
5140 return false;
5141 } else {
5142 mas_ascend(mas);
5143 slot = mas->offset;
5144 }
5145 } while (!slot);
5146
5147 mas->offset = --slot;
5148 return true;
5149}
5150
5151/*
5152 * mas_skip_node() - Internal function. Skip over a node.
5153 * @mas: The maple state.
5154 *
5155 * Return: true if there is another node, false otherwise.
5156 */
5157static inline bool mas_skip_node(struct ma_state *mas)
5158{
0fa99fdf
LH
5159 if (mas_is_err(mas))
5160 return false;
54a611b6 5161
54a611b6
LH
5162 do {
5163 if (mte_is_root(mas->node)) {
0fa99fdf 5164 if (mas->offset >= mas_data_end(mas)) {
54a611b6
LH
5165 mas_set_err(mas, -EBUSY);
5166 return false;
5167 }
5168 } else {
5169 mas_ascend(mas);
54a611b6 5170 }
0fa99fdf 5171 } while (mas->offset >= mas_data_end(mas));
54a611b6 5172
0fa99fdf 5173 mas->offset++;
54a611b6
LH
5174 return true;
5175}
5176
5177/*
5178 * mas_awalk() - Allocation walk. Search from low address to high, for a gap of
5179 * @size
5180 * @mas: The maple state
5181 * @size: The size of the gap required
5182 *
5183 * Search between @mas->index and @mas->last for a gap of @size.
5184 */
5185static inline void mas_awalk(struct ma_state *mas, unsigned long size)
5186{
5187 struct maple_enode *last = NULL;
5188
5189 /*
5190 * There are 4 options:
5191 * go to child (descend)
5192 * go back to parent (ascend)
5193 * no gap found. (return, slot == MAPLE_NODE_SLOTS)
5194 * found the gap. (return, slot != MAPLE_NODE_SLOTS)
5195 */
5196 while (!mas_is_err(mas) && !mas_anode_descend(mas, size)) {
5197 if (last == mas->node)
5198 mas_skip_node(mas);
5199 else
5200 last = mas->node;
5201 }
5202}
5203
5204/*
5205 * mas_fill_gap() - Fill a located gap with @entry.
5206 * @mas: The maple state
5207 * @entry: The value to store
5208 * @slot: The offset into the node to store the @entry
5209 * @size: The size of the entry
5210 * @index: The start location
5211 */
5212static inline void mas_fill_gap(struct ma_state *mas, void *entry,
5213 unsigned char slot, unsigned long size, unsigned long *index)
5214{
5215 MA_WR_STATE(wr_mas, mas, entry);
5216 unsigned char pslot = mte_parent_slot(mas->node);
5217 struct maple_enode *mn = mas->node;
5218 unsigned long *pivots;
5219 enum maple_type ptype;
5220 /*
5221 * mas->index is the start address for the search
5222 * which may no longer be needed.
5223 * mas->last is the end address for the search
5224 */
5225
5226 *index = mas->index;
5227 mas->last = mas->index + size - 1;
5228
5229 /*
5230 * It is possible that using mas->max and mas->min to correctly
5231 * calculate the index and last will cause an issue in the gap
5232 * calculation, so fix the ma_state here
5233 */
5234 mas_ascend(mas);
5235 ptype = mte_node_type(mas->node);
5236 pivots = ma_pivots(mas_mn(mas), ptype);
5237 mas->max = mas_safe_pivot(mas, pivots, pslot, ptype);
5238 mas->min = mas_safe_min(mas, pivots, pslot);
5239 mas->node = mn;
5240 mas->offset = slot;
5241 mas_wr_store_entry(&wr_mas);
5242}
5243
5244/*
5245 * mas_sparse_area() - Internal function. Return upper or lower limit when
5246 * searching for a gap in an empty tree.
5247 * @mas: The maple state
5248 * @min: the minimum range
5249 * @max: The maximum range
5250 * @size: The size of the gap
5251 * @fwd: Searching forward or back
5252 */
29ad6bb3 5253static inline int mas_sparse_area(struct ma_state *mas, unsigned long min,
54a611b6
LH
5254 unsigned long max, unsigned long size, bool fwd)
5255{
29ad6bb3
PZ
5256 if (!unlikely(mas_is_none(mas)) && min == 0) {
5257 min++;
5258 /*
5259 * At this time, min is increased, we need to recheck whether
5260 * the size is satisfied.
5261 */
5262 if (min > max || max - min + 1 < size)
5263 return -EBUSY;
5264 }
54a611b6
LH
5265 /* mas_is_ptr */
5266
54a611b6 5267 if (fwd) {
29ad6bb3
PZ
5268 mas->index = min;
5269 mas->last = min + size - 1;
5270 } else {
5271 mas->last = max;
5272 mas->index = max - size + 1;
54a611b6 5273 }
29ad6bb3 5274 return 0;
54a611b6
LH
5275}
5276
5277/*
5278 * mas_empty_area() - Get the lowest address within the range that is
5279 * sufficient for the size requested.
5280 * @mas: The maple state
5281 * @min: The lowest value of the range
5282 * @max: The highest value of the range
5283 * @size: The size needed
5284 */
5285int mas_empty_area(struct ma_state *mas, unsigned long min,
5286 unsigned long max, unsigned long size)
5287{
5288 unsigned char offset;
5289 unsigned long *pivots;
5290 enum maple_type mt;
5291
fad8e429
LH
5292 if (min >= max)
5293 return -EINVAL;
5294
54a611b6
LH
5295 if (mas_is_start(mas))
5296 mas_start(mas);
5297 else if (mas->offset >= 2)
5298 mas->offset -= 2;
5299 else if (!mas_skip_node(mas))
5300 return -EBUSY;
5301
5302 /* Empty set */
29ad6bb3
PZ
5303 if (mas_is_none(mas) || mas_is_ptr(mas))
5304 return mas_sparse_area(mas, min, max, size, true);
54a611b6
LH
5305
5306 /* The start of the window can only be within these values */
5307 mas->index = min;
5308 mas->last = max;
5309 mas_awalk(mas, size);
5310
5311 if (unlikely(mas_is_err(mas)))
5312 return xa_err(mas->node);
5313
5314 offset = mas->offset;
5315 if (unlikely(offset == MAPLE_NODE_SLOTS))
5316 return -EBUSY;
5317
5318 mt = mte_node_type(mas->node);
5319 pivots = ma_pivots(mas_mn(mas), mt);
0257d990
PZ
5320 min = mas_safe_min(mas, pivots, offset);
5321 if (mas->index < min)
5322 mas->index = min;
54a611b6
LH
5323 mas->last = mas->index + size - 1;
5324 return 0;
5325}
120b1162 5326EXPORT_SYMBOL_GPL(mas_empty_area);
54a611b6
LH
5327
5328/*
5329 * mas_empty_area_rev() - Get the highest address within the range that is
5330 * sufficient for the size requested.
5331 * @mas: The maple state
5332 * @min: The lowest value of the range
5333 * @max: The highest value of the range
5334 * @size: The size needed
5335 */
5336int mas_empty_area_rev(struct ma_state *mas, unsigned long min,
5337 unsigned long max, unsigned long size)
5338{
5339 struct maple_enode *last = mas->node;
5340
fad8e429
LH
5341 if (min >= max)
5342 return -EINVAL;
5343
54a611b6
LH
5344 if (mas_is_start(mas)) {
5345 mas_start(mas);
5346 mas->offset = mas_data_end(mas);
5347 } else if (mas->offset >= 2) {
5348 mas->offset -= 2;
5349 } else if (!mas_rewind_node(mas)) {
5350 return -EBUSY;
5351 }
5352
5353 /* Empty set. */
29ad6bb3
PZ
5354 if (mas_is_none(mas) || mas_is_ptr(mas))
5355 return mas_sparse_area(mas, min, max, size, false);
54a611b6
LH
5356
5357 /* The start of the window can only be within these values. */
5358 mas->index = min;
5359 mas->last = max;
5360
fad8e429 5361 while (!mas_rev_awalk(mas, size, &min, &max)) {
54a611b6
LH
5362 if (last == mas->node) {
5363 if (!mas_rewind_node(mas))
5364 return -EBUSY;
5365 } else {
5366 last = mas->node;
5367 }
5368 }
5369
5370 if (mas_is_err(mas))
5371 return xa_err(mas->node);
5372
5373 if (unlikely(mas->offset == MAPLE_NODE_SLOTS))
5374 return -EBUSY;
5375
54a611b6 5376 /* Trim the upper limit to the max. */
fad8e429
LH
5377 if (max <= mas->last)
5378 mas->last = max;
54a611b6
LH
5379
5380 mas->index = mas->last - size + 1;
5381 return 0;
5382}
120b1162 5383EXPORT_SYMBOL_GPL(mas_empty_area_rev);
54a611b6
LH
5384
5385static inline int mas_alloc(struct ma_state *mas, void *entry,
5386 unsigned long size, unsigned long *index)
5387{
5388 unsigned long min;
5389
5390 mas_start(mas);
5391 if (mas_is_none(mas) || mas_is_ptr(mas)) {
5392 mas_root_expand(mas, entry);
5393 if (mas_is_err(mas))
5394 return xa_err(mas->node);
5395
5396 if (!mas->index)
acd4de60
LH
5397 return mas_pivot(mas, 0);
5398 return mas_pivot(mas, 1);
54a611b6
LH
5399 }
5400
5401 /* Must be walking a tree. */
5402 mas_awalk(mas, size);
5403 if (mas_is_err(mas))
5404 return xa_err(mas->node);
5405
5406 if (mas->offset == MAPLE_NODE_SLOTS)
5407 goto no_gap;
5408
5409 /*
5410 * At this point, mas->node points to the right node and we have an
5411 * offset that has a sufficient gap.
5412 */
5413 min = mas->min;
5414 if (mas->offset)
acd4de60
LH
5415 min = mas_pivot(mas, mas->offset - 1) + 1;
5416
5417 if (mas_is_err(mas))
5418 return xa_err(mas->node);
54a611b6
LH
5419
5420 if (mas->index < min)
5421 mas->index = min;
5422
5423 mas_fill_gap(mas, entry, mas->offset, size, index);
5424 return 0;
5425
5426no_gap:
5427 return -EBUSY;
5428}
5429
5430static inline int mas_rev_alloc(struct ma_state *mas, unsigned long min,
5431 unsigned long max, void *entry,
5432 unsigned long size, unsigned long *index)
5433{
5434 int ret = 0;
5435
5436 ret = mas_empty_area_rev(mas, min, max, size);
5437 if (ret)
5438 return ret;
5439
5440 if (mas_is_err(mas))
5441 return xa_err(mas->node);
5442
5443 if (mas->offset == MAPLE_NODE_SLOTS)
5444 goto no_gap;
5445
5446 mas_fill_gap(mas, entry, mas->offset, size, index);
5447 return 0;
5448
5449no_gap:
5450 return -EBUSY;
5451}
5452
5453/*
790e1fa8 5454 * mte_dead_leaves() - Mark all leaves of a node as dead.
54a611b6
LH
5455 * @mas: The maple state
5456 * @slots: Pointer to the slot array
2e5b4921 5457 * @type: The maple node type
54a611b6
LH
5458 *
5459 * Must hold the write lock.
5460 *
5461 * Return: The number of leaves marked as dead.
5462 */
5463static inline
790e1fa8
LH
5464unsigned char mte_dead_leaves(struct maple_enode *enode, struct maple_tree *mt,
5465 void __rcu **slots)
54a611b6
LH
5466{
5467 struct maple_node *node;
5468 enum maple_type type;
5469 void *entry;
5470 int offset;
5471
790e1fa8
LH
5472 for (offset = 0; offset < mt_slot_count(enode); offset++) {
5473 entry = mt_slot(mt, slots, offset);
54a611b6
LH
5474 type = mte_node_type(entry);
5475 node = mte_to_node(entry);
5476 /* Use both node and type to catch LE & BE metadata */
5477 if (!node || !type)
5478 break;
5479
5480 mte_set_node_dead(entry);
54a611b6
LH
5481 node->type = type;
5482 rcu_assign_pointer(slots[offset], node);
5483 }
5484
5485 return offset;
5486}
5487
790e1fa8
LH
5488/**
5489 * mte_dead_walk() - Walk down a dead tree to just before the leaves
5490 * @enode: The maple encoded node
5491 * @offset: The starting offset
5492 *
5493 * Note: This can only be used from the RCU callback context.
5494 */
5495static void __rcu **mte_dead_walk(struct maple_enode **enode, unsigned char offset)
54a611b6
LH
5496{
5497 struct maple_node *node, *next;
5498 void __rcu **slots = NULL;
5499
790e1fa8 5500 next = mte_to_node(*enode);
54a611b6 5501 do {
790e1fa8
LH
5502 *enode = ma_enode_ptr(next);
5503 node = mte_to_node(*enode);
54a611b6 5504 slots = ma_slots(node, node->type);
790e1fa8
LH
5505 next = rcu_dereference_protected(slots[offset],
5506 lock_is_held(&rcu_callback_map));
54a611b6
LH
5507 offset = 0;
5508 } while (!ma_is_leaf(next->type));
5509
5510 return slots;
5511}
5512
790e1fa8
LH
5513/**
5514 * mt_free_walk() - Walk & free a tree in the RCU callback context
5515 * @head: The RCU head that's within the node.
5516 *
5517 * Note: This can only be used from the RCU callback context.
5518 */
54a611b6
LH
5519static void mt_free_walk(struct rcu_head *head)
5520{
5521 void __rcu **slots;
5522 struct maple_node *node, *start;
790e1fa8 5523 struct maple_enode *enode;
54a611b6
LH
5524 unsigned char offset;
5525 enum maple_type type;
54a611b6
LH
5526
5527 node = container_of(head, struct maple_node, rcu);
5528
5529 if (ma_is_leaf(node->type))
5530 goto free_leaf;
5531
54a611b6 5532 start = node;
790e1fa8
LH
5533 enode = mt_mk_node(node, node->type);
5534 slots = mte_dead_walk(&enode, 0);
5535 node = mte_to_node(enode);
54a611b6
LH
5536 do {
5537 mt_free_bulk(node->slot_len, slots);
5538 offset = node->parent_slot + 1;
790e1fa8
LH
5539 enode = node->piv_parent;
5540 if (mte_to_node(enode) == node)
5541 goto free_leaf;
5542
5543 type = mte_node_type(enode);
5544 slots = ma_slots(mte_to_node(enode), type);
5545 if ((offset < mt_slots[type]) &&
5546 rcu_dereference_protected(slots[offset],
5547 lock_is_held(&rcu_callback_map)))
5548 slots = mte_dead_walk(&enode, offset);
5549 node = mte_to_node(enode);
54a611b6
LH
5550 } while ((node != start) || (node->slot_len < offset));
5551
5552 slots = ma_slots(node, node->type);
5553 mt_free_bulk(node->slot_len, slots);
5554
54a611b6
LH
5555free_leaf:
5556 mt_free_rcu(&node->rcu);
5557}
5558
790e1fa8
LH
5559static inline void __rcu **mte_destroy_descend(struct maple_enode **enode,
5560 struct maple_tree *mt, struct maple_enode *prev, unsigned char offset)
54a611b6
LH
5561{
5562 struct maple_node *node;
790e1fa8 5563 struct maple_enode *next = *enode;
54a611b6 5564 void __rcu **slots = NULL;
790e1fa8
LH
5565 enum maple_type type;
5566 unsigned char next_offset = 0;
54a611b6
LH
5567
5568 do {
790e1fa8
LH
5569 *enode = next;
5570 node = mte_to_node(*enode);
5571 type = mte_node_type(*enode);
5572 slots = ma_slots(node, type);
5573 next = mt_slot_locked(mt, slots, next_offset);
54a611b6 5574 if ((mte_dead_node(next)))
790e1fa8 5575 next = mt_slot_locked(mt, slots, ++next_offset);
54a611b6 5576
790e1fa8
LH
5577 mte_set_node_dead(*enode);
5578 node->type = type;
54a611b6
LH
5579 node->piv_parent = prev;
5580 node->parent_slot = offset;
790e1fa8
LH
5581 offset = next_offset;
5582 next_offset = 0;
5583 prev = *enode;
54a611b6
LH
5584 } while (!mte_is_leaf(next));
5585
5586 return slots;
5587}
5588
790e1fa8 5589static void mt_destroy_walk(struct maple_enode *enode, struct maple_tree *mt,
54a611b6
LH
5590 bool free)
5591{
5592 void __rcu **slots;
5593 struct maple_node *node = mte_to_node(enode);
5594 struct maple_enode *start;
54a611b6 5595
2e5b4921
LH
5596 if (mte_is_leaf(enode)) {
5597 node->type = mte_node_type(enode);
54a611b6 5598 goto free_leaf;
2e5b4921 5599 }
54a611b6 5600
2e5b4921 5601 start = enode;
790e1fa8
LH
5602 slots = mte_destroy_descend(&enode, mt, start, 0);
5603 node = mte_to_node(enode); // Updated in the above call.
54a611b6
LH
5604 do {
5605 enum maple_type type;
5606 unsigned char offset;
5607 struct maple_enode *parent, *tmp;
5608
790e1fa8 5609 node->slot_len = mte_dead_leaves(enode, mt, slots);
54a611b6
LH
5610 if (free)
5611 mt_free_bulk(node->slot_len, slots);
5612 offset = node->parent_slot + 1;
790e1fa8
LH
5613 enode = node->piv_parent;
5614 if (mte_to_node(enode) == node)
5615 goto free_leaf;
54a611b6 5616
790e1fa8
LH
5617 type = mte_node_type(enode);
5618 slots = ma_slots(mte_to_node(enode), type);
54a611b6
LH
5619 if (offset >= mt_slots[type])
5620 goto next;
5621
790e1fa8 5622 tmp = mt_slot_locked(mt, slots, offset);
54a611b6 5623 if (mte_node_type(tmp) && mte_to_node(tmp)) {
790e1fa8
LH
5624 parent = enode;
5625 enode = tmp;
5626 slots = mte_destroy_descend(&enode, mt, parent, offset);
54a611b6
LH
5627 }
5628next:
790e1fa8
LH
5629 node = mte_to_node(enode);
5630 } while (start != enode);
54a611b6 5631
790e1fa8
LH
5632 node = mte_to_node(enode);
5633 node->slot_len = mte_dead_leaves(enode, mt, slots);
54a611b6
LH
5634 if (free)
5635 mt_free_bulk(node->slot_len, slots);
5636
54a611b6
LH
5637free_leaf:
5638 if (free)
5639 mt_free_rcu(&node->rcu);
2e5b4921 5640 else
790e1fa8 5641 mt_clear_meta(mt, node, node->type);
54a611b6
LH
5642}
5643
5644/*
5645 * mte_destroy_walk() - Free a tree or sub-tree.
f942b0f0
VY
5646 * @enode: the encoded maple node (maple_enode) to start
5647 * @mt: the tree to free - needed for node types.
54a611b6
LH
5648 *
5649 * Must hold the write lock.
5650 */
5651static inline void mte_destroy_walk(struct maple_enode *enode,
5652 struct maple_tree *mt)
5653{
5654 struct maple_node *node = mte_to_node(enode);
5655
5656 if (mt_in_rcu(mt)) {
790e1fa8 5657 mt_destroy_walk(enode, mt, false);
54a611b6
LH
5658 call_rcu(&node->rcu, mt_free_walk);
5659 } else {
790e1fa8 5660 mt_destroy_walk(enode, mt, true);
54a611b6
LH
5661 }
5662}
5663
5664static void mas_wr_store_setup(struct ma_wr_state *wr_mas)
5665{
1202700c
LH
5666 if (unlikely(mas_is_paused(wr_mas->mas)))
5667 mas_reset(wr_mas->mas);
5668
54a611b6
LH
5669 if (!mas_is_start(wr_mas->mas)) {
5670 if (mas_is_none(wr_mas->mas)) {
5671 mas_reset(wr_mas->mas);
5672 } else {
5673 wr_mas->r_max = wr_mas->mas->max;
5674 wr_mas->type = mte_node_type(wr_mas->mas->node);
5675 if (mas_is_span_wr(wr_mas))
5676 mas_reset(wr_mas->mas);
5677 }
5678 }
54a611b6
LH
5679}
5680
5681/* Interface */
5682
5683/**
5684 * mas_store() - Store an @entry.
5685 * @mas: The maple state.
5686 * @entry: The entry to store.
5687 *
5688 * The @mas->index and @mas->last is used to set the range for the @entry.
5689 * Note: The @mas should have pre-allocated entries to ensure there is memory to
5690 * store the entry. Please see mas_expected_entries()/mas_destroy() for more details.
5691 *
5692 * Return: the first entry between mas->index and mas->last or %NULL.
5693 */
5694void *mas_store(struct ma_state *mas, void *entry)
5695{
5696 MA_WR_STATE(wr_mas, mas, entry);
5697
5698 trace_ma_write(__func__, mas, 0, entry);
5699#ifdef CONFIG_DEBUG_MAPLE_TREE
e6d6792a 5700 if (MAS_WARN_ON(mas, mas->index > mas->last))
89f499f3 5701 pr_err("Error %lX > %lX %p\n", mas->index, mas->last, entry);
e6d6792a 5702
54a611b6
LH
5703 if (mas->index > mas->last) {
5704 mas_set_err(mas, -EINVAL);
5705 return NULL;
5706 }
5707
5708#endif
5709
5710 /*
5711 * Storing is the same operation as insert with the added caveat that it
5712 * can overwrite entries. Although this seems simple enough, one may
5713 * want to examine what happens if a single store operation was to
5714 * overwrite multiple entries within a self-balancing B-Tree.
5715 */
5716 mas_wr_store_setup(&wr_mas);
5717 mas_wr_store_entry(&wr_mas);
5718 return wr_mas.content;
5719}
120b1162 5720EXPORT_SYMBOL_GPL(mas_store);
54a611b6
LH
5721
5722/**
5723 * mas_store_gfp() - Store a value into the tree.
5724 * @mas: The maple state
5725 * @entry: The entry to store
5726 * @gfp: The GFP_FLAGS to use for allocations if necessary.
5727 *
5728 * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not
5729 * be allocated.
5730 */
5731int mas_store_gfp(struct ma_state *mas, void *entry, gfp_t gfp)
5732{
5733 MA_WR_STATE(wr_mas, mas, entry);
5734
5735 mas_wr_store_setup(&wr_mas);
5736 trace_ma_write(__func__, mas, 0, entry);
5737retry:
5738 mas_wr_store_entry(&wr_mas);
5739 if (unlikely(mas_nomem(mas, gfp)))
5740 goto retry;
5741
5742 if (unlikely(mas_is_err(mas)))
5743 return xa_err(mas->node);
5744
5745 return 0;
5746}
120b1162 5747EXPORT_SYMBOL_GPL(mas_store_gfp);
54a611b6
LH
5748
5749/**
5750 * mas_store_prealloc() - Store a value into the tree using memory
5751 * preallocated in the maple state.
5752 * @mas: The maple state
5753 * @entry: The entry to store.
5754 */
5755void mas_store_prealloc(struct ma_state *mas, void *entry)
5756{
5757 MA_WR_STATE(wr_mas, mas, entry);
5758
5759 mas_wr_store_setup(&wr_mas);
5760 trace_ma_write(__func__, mas, 0, entry);
5761 mas_wr_store_entry(&wr_mas);
1c414c6a 5762 MAS_WR_BUG_ON(&wr_mas, mas_is_err(mas));
54a611b6
LH
5763 mas_destroy(mas);
5764}
120b1162 5765EXPORT_SYMBOL_GPL(mas_store_prealloc);
54a611b6
LH
5766
5767/**
5768 * mas_preallocate() - Preallocate enough nodes for a store operation
5769 * @mas: The maple state
54a611b6
LH
5770 * @gfp: The GFP_FLAGS to use for allocations.
5771 *
5772 * Return: 0 on success, -ENOMEM if memory could not be allocated.
5773 */
c5d5546e 5774int mas_preallocate(struct ma_state *mas, gfp_t gfp)
54a611b6
LH
5775{
5776 int ret;
5777
5778 mas_node_count_gfp(mas, 1 + mas_mt_height(mas) * 3, gfp);
5779 mas->mas_flags |= MA_STATE_PREALLOC;
5780 if (likely(!mas_is_err(mas)))
5781 return 0;
5782
5783 mas_set_alloc_req(mas, 0);
5784 ret = xa_err(mas->node);
5785 mas_reset(mas);
5786 mas_destroy(mas);
5787 mas_reset(mas);
5788 return ret;
5789}
5c63a7c3 5790EXPORT_SYMBOL_GPL(mas_preallocate);
54a611b6
LH
5791
5792/*
5793 * mas_destroy() - destroy a maple state.
5794 * @mas: The maple state
5795 *
5796 * Upon completion, check the left-most node and rebalance against the node to
5797 * the right if necessary. Frees any allocated nodes associated with this maple
5798 * state.
5799 */
5800void mas_destroy(struct ma_state *mas)
5801{
5802 struct maple_alloc *node;
541e06b7 5803 unsigned long total;
54a611b6
LH
5804
5805 /*
5806 * When using mas_for_each() to insert an expected number of elements,
5807 * it is possible that the number inserted is less than the expected
5808 * number. To fix an invalid final node, a check is performed here to
5809 * rebalance the previous node with the final node.
5810 */
5811 if (mas->mas_flags & MA_STATE_REBALANCE) {
5812 unsigned char end;
5813
5814 if (mas_is_start(mas))
5815 mas_start(mas);
5816
5817 mtree_range_walk(mas);
5818 end = mas_data_end(mas) + 1;
5819 if (end < mt_min_slot_count(mas->node) - 1)
5820 mas_destroy_rebalance(mas, end);
5821
5822 mas->mas_flags &= ~MA_STATE_REBALANCE;
5823 }
5824 mas->mas_flags &= ~(MA_STATE_BULK|MA_STATE_PREALLOC);
5825
541e06b7
LH
5826 total = mas_allocated(mas);
5827 while (total) {
54a611b6
LH
5828 node = mas->alloc;
5829 mas->alloc = node->slot[0];
541e06b7
LH
5830 if (node->node_count > 1) {
5831 size_t count = node->node_count - 1;
5832
5833 mt_free_bulk(count, (void __rcu **)&node->slot[1]);
5834 total -= count;
5835 }
54a611b6 5836 kmem_cache_free(maple_node_cache, node);
541e06b7 5837 total--;
54a611b6 5838 }
541e06b7 5839
54a611b6
LH
5840 mas->alloc = NULL;
5841}
120b1162 5842EXPORT_SYMBOL_GPL(mas_destroy);
54a611b6
LH
5843
5844/*
5845 * mas_expected_entries() - Set the expected number of entries that will be inserted.
5846 * @mas: The maple state
5847 * @nr_entries: The number of expected entries.
5848 *
5849 * This will attempt to pre-allocate enough nodes to store the expected number
5850 * of entries. The allocations will occur using the bulk allocator interface
5851 * for speed. Please call mas_destroy() on the @mas after inserting the entries
5852 * to ensure any unused nodes are freed.
5853 *
5854 * Return: 0 on success, -ENOMEM if memory could not be allocated.
5855 */
5856int mas_expected_entries(struct ma_state *mas, unsigned long nr_entries)
5857{
5858 int nonleaf_cap = MAPLE_ARANGE64_SLOTS - 2;
5859 struct maple_enode *enode = mas->node;
5860 int nr_nodes;
5861 int ret;
5862
5863 /*
5864 * Sometimes it is necessary to duplicate a tree to a new tree, such as
5865 * forking a process and duplicating the VMAs from one tree to a new
5866 * tree. When such a situation arises, it is known that the new tree is
5867 * not going to be used until the entire tree is populated. For
5868 * performance reasons, it is best to use a bulk load with RCU disabled.
5869 * This allows for optimistic splitting that favours the left and reuse
5870 * of nodes during the operation.
5871 */
5872
5873 /* Optimize splitting for bulk insert in-order */
5874 mas->mas_flags |= MA_STATE_BULK;
5875
5876 /*
5877 * Avoid overflow, assume a gap between each entry and a trailing null.
5878 * If this is wrong, it just means allocation can happen during
5879 * insertion of entries.
5880 */
5881 nr_nodes = max(nr_entries, nr_entries * 2 + 1);
5882 if (!mt_is_alloc(mas->tree))
5883 nonleaf_cap = MAPLE_RANGE64_SLOTS - 2;
5884
5885 /* Leaves; reduce slots to keep space for expansion */
5886 nr_nodes = DIV_ROUND_UP(nr_nodes, MAPLE_RANGE64_SLOTS - 2);
5887 /* Internal nodes */
5888 nr_nodes += DIV_ROUND_UP(nr_nodes, nonleaf_cap);
5889 /* Add working room for split (2 nodes) + new parents */
5890 mas_node_count(mas, nr_nodes + 3);
5891
5892 /* Detect if allocations run out */
5893 mas->mas_flags |= MA_STATE_PREALLOC;
5894
5895 if (!mas_is_err(mas))
5896 return 0;
5897
5898 ret = xa_err(mas->node);
5899 mas->node = enode;
5900 mas_destroy(mas);
5901 return ret;
5902
5903}
120b1162 5904EXPORT_SYMBOL_GPL(mas_expected_entries);
54a611b6
LH
5905
5906/**
5907 * mas_next() - Get the next entry.
5908 * @mas: The maple state
5909 * @max: The maximum index to check.
5910 *
5911 * Returns the next entry after @mas->index.
5912 * Must hold rcu_read_lock or the write lock.
5913 * Can return the zero entry.
5914 *
5915 * Return: The next entry or %NULL
5916 */
5917void *mas_next(struct ma_state *mas, unsigned long max)
5918{
5919 if (mas_is_none(mas) || mas_is_paused(mas))
5920 mas->node = MAS_START;
5921
5922 if (mas_is_start(mas))
5923 mas_walk(mas); /* Retries on dead nodes handled by mas_walk */
5924
5925 if (mas_is_ptr(mas)) {
5926 if (!mas->index) {
5927 mas->index = 1;
5928 mas->last = ULONG_MAX;
5929 }
5930 return NULL;
5931 }
5932
5933 if (mas->last == ULONG_MAX)
5934 return NULL;
5935
5936 /* Retries on dead nodes handled by mas_next_entry */
5937 return mas_next_entry(mas, max);
5938}
5939EXPORT_SYMBOL_GPL(mas_next);
5940
5941/**
5942 * mt_next() - get the next value in the maple tree
5943 * @mt: The maple tree
5944 * @index: The start index
5945 * @max: The maximum index to check
5946 *
5947 * Return: The entry at @index or higher, or %NULL if nothing is found.
5948 */
5949void *mt_next(struct maple_tree *mt, unsigned long index, unsigned long max)
5950{
5951 void *entry = NULL;
5952 MA_STATE(mas, mt, index, index);
5953
5954 rcu_read_lock();
5955 entry = mas_next(&mas, max);
5956 rcu_read_unlock();
5957 return entry;
5958}
5959EXPORT_SYMBOL_GPL(mt_next);
5960
5961/**
5962 * mas_prev() - Get the previous entry
5963 * @mas: The maple state
5964 * @min: The minimum value to check.
5965 *
5966 * Must hold rcu_read_lock or the write lock.
5967 * Will reset mas to MAS_START if the node is MAS_NONE. Will stop on not
5968 * searchable nodes.
5969 *
5970 * Return: the previous value or %NULL.
5971 */
5972void *mas_prev(struct ma_state *mas, unsigned long min)
5973{
5974 if (!mas->index) {
5975 /* Nothing comes before 0 */
5976 mas->last = 0;
17dc622c 5977 mas->node = MAS_NONE;
54a611b6
LH
5978 return NULL;
5979 }
5980
5981 if (unlikely(mas_is_ptr(mas)))
5982 return NULL;
5983
5984 if (mas_is_none(mas) || mas_is_paused(mas))
5985 mas->node = MAS_START;
5986
5987 if (mas_is_start(mas)) {
5988 mas_walk(mas);
5989 if (!mas->index)
5990 return NULL;
5991 }
5992
5993 if (mas_is_ptr(mas)) {
5994 if (!mas->index) {
5995 mas->last = 0;
5996 return NULL;
5997 }
5998
5999 mas->index = mas->last = 0;
6000 return mas_root_locked(mas);
6001 }
6002 return mas_prev_entry(mas, min);
6003}
6004EXPORT_SYMBOL_GPL(mas_prev);
6005
6006/**
6007 * mt_prev() - get the previous value in the maple tree
6008 * @mt: The maple tree
6009 * @index: The start index
6010 * @min: The minimum index to check
6011 *
6012 * Return: The entry at @index or lower, or %NULL if nothing is found.
6013 */
6014void *mt_prev(struct maple_tree *mt, unsigned long index, unsigned long min)
6015{
6016 void *entry = NULL;
6017 MA_STATE(mas, mt, index, index);
6018
6019 rcu_read_lock();
6020 entry = mas_prev(&mas, min);
6021 rcu_read_unlock();
6022 return entry;
6023}
6024EXPORT_SYMBOL_GPL(mt_prev);
6025
6026/**
6027 * mas_pause() - Pause a mas_find/mas_for_each to drop the lock.
6028 * @mas: The maple state to pause
6029 *
6030 * Some users need to pause a walk and drop the lock they're holding in
6031 * order to yield to a higher priority thread or carry out an operation
6032 * on an entry. Those users should call this function before they drop
6033 * the lock. It resets the @mas to be suitable for the next iteration
6034 * of the loop after the user has reacquired the lock. If most entries
6035 * found during a walk require you to call mas_pause(), the mt_for_each()
6036 * iterator may be more appropriate.
6037 *
6038 */
6039void mas_pause(struct ma_state *mas)
6040{
6041 mas->node = MAS_PAUSE;
6042}
6043EXPORT_SYMBOL_GPL(mas_pause);
6044
6045/**
6046 * mas_find() - On the first call, find the entry at or after mas->index up to
6047 * %max. Otherwise, find the entry after mas->index.
6048 * @mas: The maple state
6049 * @max: The maximum value to check.
6050 *
6051 * Must hold rcu_read_lock or the write lock.
6052 * If an entry exists, last and index are updated accordingly.
6053 * May set @mas->node to MAS_NONE.
6054 *
6055 * Return: The entry or %NULL.
6056 */
6057void *mas_find(struct ma_state *mas, unsigned long max)
6058{
6059 if (unlikely(mas_is_paused(mas))) {
6060 if (unlikely(mas->last == ULONG_MAX)) {
6061 mas->node = MAS_NONE;
6062 return NULL;
6063 }
6064 mas->node = MAS_START;
6065 mas->index = ++mas->last;
6066 }
6067
17dc622c
LH
6068 if (unlikely(mas_is_none(mas)))
6069 mas->node = MAS_START;
6070
54a611b6
LH
6071 if (unlikely(mas_is_start(mas))) {
6072 /* First run or continue */
6073 void *entry;
6074
6075 if (mas->index > max)
6076 return NULL;
6077
6078 entry = mas_walk(mas);
6079 if (entry)
6080 return entry;
6081 }
6082
6083 if (unlikely(!mas_searchable(mas)))
6084 return NULL;
6085
6086 /* Retries on dead nodes handled by mas_next_entry */
6087 return mas_next_entry(mas, max);
6088}
120b1162 6089EXPORT_SYMBOL_GPL(mas_find);
54a611b6
LH
6090
6091/**
6092 * mas_find_rev: On the first call, find the first non-null entry at or below
6093 * mas->index down to %min. Otherwise find the first non-null entry below
6094 * mas->index down to %min.
6095 * @mas: The maple state
6096 * @min: The minimum value to check.
6097 *
6098 * Must hold rcu_read_lock or the write lock.
6099 * If an entry exists, last and index are updated accordingly.
6100 * May set @mas->node to MAS_NONE.
6101 *
6102 * Return: The entry or %NULL.
6103 */
6104void *mas_find_rev(struct ma_state *mas, unsigned long min)
6105{
6106 if (unlikely(mas_is_paused(mas))) {
6107 if (unlikely(mas->last == ULONG_MAX)) {
6108 mas->node = MAS_NONE;
6109 return NULL;
6110 }
6111 mas->node = MAS_START;
6112 mas->last = --mas->index;
6113 }
6114
6115 if (unlikely(mas_is_start(mas))) {
6116 /* First run or continue */
6117 void *entry;
6118
6119 if (mas->index < min)
6120 return NULL;
6121
6122 entry = mas_walk(mas);
6123 if (entry)
6124 return entry;
6125 }
6126
6127 if (unlikely(!mas_searchable(mas)))
6128 return NULL;
6129
6130 if (mas->index < min)
6131 return NULL;
6132
d98c86b9 6133 /* Retries on dead nodes handled by mas_prev_entry */
54a611b6
LH
6134 return mas_prev_entry(mas, min);
6135}
120b1162 6136EXPORT_SYMBOL_GPL(mas_find_rev);
54a611b6
LH
6137
6138/**
6139 * mas_erase() - Find the range in which index resides and erase the entire
6140 * range.
6141 * @mas: The maple state
6142 *
6143 * Must hold the write lock.
6144 * Searches for @mas->index, sets @mas->index and @mas->last to the range and
6145 * erases that range.
6146 *
6147 * Return: the entry that was erased or %NULL, @mas->index and @mas->last are updated.
6148 */
6149void *mas_erase(struct ma_state *mas)
6150{
6151 void *entry;
6152 MA_WR_STATE(wr_mas, mas, NULL);
6153
6154 if (mas_is_none(mas) || mas_is_paused(mas))
6155 mas->node = MAS_START;
6156
6157 /* Retry unnecessary when holding the write lock. */
6158 entry = mas_state_walk(mas);
6159 if (!entry)
6160 return NULL;
6161
6162write_retry:
6163 /* Must reset to ensure spanning writes of last slot are detected */
6164 mas_reset(mas);
6165 mas_wr_store_setup(&wr_mas);
6166 mas_wr_store_entry(&wr_mas);
6167 if (mas_nomem(mas, GFP_KERNEL))
6168 goto write_retry;
6169
6170 return entry;
6171}
6172EXPORT_SYMBOL_GPL(mas_erase);
6173
6174/**
6175 * mas_nomem() - Check if there was an error allocating and do the allocation
6176 * if necessary If there are allocations, then free them.
6177 * @mas: The maple state
6178 * @gfp: The GFP_FLAGS to use for allocations
6179 * Return: true on allocation, false otherwise.
6180 */
6181bool mas_nomem(struct ma_state *mas, gfp_t gfp)
6182 __must_hold(mas->tree->lock)
6183{
6184 if (likely(mas->node != MA_ERROR(-ENOMEM))) {
6185 mas_destroy(mas);
6186 return false;
6187 }
6188
6189 if (gfpflags_allow_blocking(gfp) && !mt_external_lock(mas->tree)) {
6190 mtree_unlock(mas->tree);
6191 mas_alloc_nodes(mas, gfp);
6192 mtree_lock(mas->tree);
6193 } else {
6194 mas_alloc_nodes(mas, gfp);
6195 }
6196
6197 if (!mas_allocated(mas))
6198 return false;
6199
6200 mas->node = MAS_START;
6201 return true;
6202}
6203
6204void __init maple_tree_init(void)
6205{
6206 maple_node_cache = kmem_cache_create("maple_node",
6207 sizeof(struct maple_node), sizeof(struct maple_node),
6208 SLAB_PANIC, NULL);
6209}
6210
6211/**
6212 * mtree_load() - Load a value stored in a maple tree
6213 * @mt: The maple tree
6214 * @index: The index to load
6215 *
6216 * Return: the entry or %NULL
6217 */
6218void *mtree_load(struct maple_tree *mt, unsigned long index)
6219{
6220 MA_STATE(mas, mt, index, index);
6221 void *entry;
6222
6223 trace_ma_read(__func__, &mas);
6224 rcu_read_lock();
6225retry:
6226 entry = mas_start(&mas);
6227 if (unlikely(mas_is_none(&mas)))
6228 goto unlock;
6229
6230 if (unlikely(mas_is_ptr(&mas))) {
6231 if (index)
6232 entry = NULL;
6233
6234 goto unlock;
6235 }
6236
6237 entry = mtree_lookup_walk(&mas);
6238 if (!entry && unlikely(mas_is_start(&mas)))
6239 goto retry;
6240unlock:
6241 rcu_read_unlock();
6242 if (xa_is_zero(entry))
6243 return NULL;
6244
6245 return entry;
6246}
6247EXPORT_SYMBOL(mtree_load);
6248
6249/**
6250 * mtree_store_range() - Store an entry at a given range.
6251 * @mt: The maple tree
6252 * @index: The start of the range
6253 * @last: The end of the range
6254 * @entry: The entry to store
6255 * @gfp: The GFP_FLAGS to use for allocations
6256 *
6257 * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not
6258 * be allocated.
6259 */
6260int mtree_store_range(struct maple_tree *mt, unsigned long index,
6261 unsigned long last, void *entry, gfp_t gfp)
6262{
6263 MA_STATE(mas, mt, index, last);
6264 MA_WR_STATE(wr_mas, &mas, entry);
6265
6266 trace_ma_write(__func__, &mas, 0, entry);
6267 if (WARN_ON_ONCE(xa_is_advanced(entry)))
6268 return -EINVAL;
6269
6270 if (index > last)
6271 return -EINVAL;
6272
6273 mtree_lock(mt);
6274retry:
6275 mas_wr_store_entry(&wr_mas);
6276 if (mas_nomem(&mas, gfp))
6277 goto retry;
6278
6279 mtree_unlock(mt);
6280 if (mas_is_err(&mas))
6281 return xa_err(mas.node);
6282
6283 return 0;
6284}
6285EXPORT_SYMBOL(mtree_store_range);
6286
6287/**
6288 * mtree_store() - Store an entry at a given index.
6289 * @mt: The maple tree
6290 * @index: The index to store the value
6291 * @entry: The entry to store
6292 * @gfp: The GFP_FLAGS to use for allocations
6293 *
6294 * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not
6295 * be allocated.
6296 */
6297int mtree_store(struct maple_tree *mt, unsigned long index, void *entry,
6298 gfp_t gfp)
6299{
6300 return mtree_store_range(mt, index, index, entry, gfp);
6301}
6302EXPORT_SYMBOL(mtree_store);
6303
6304/**
6305 * mtree_insert_range() - Insert an entry at a give range if there is no value.
6306 * @mt: The maple tree
6307 * @first: The start of the range
6308 * @last: The end of the range
6309 * @entry: The entry to store
6310 * @gfp: The GFP_FLAGS to use for allocations.
6311 *
6312 * Return: 0 on success, -EEXISTS if the range is occupied, -EINVAL on invalid
6313 * request, -ENOMEM if memory could not be allocated.
6314 */
6315int mtree_insert_range(struct maple_tree *mt, unsigned long first,
6316 unsigned long last, void *entry, gfp_t gfp)
6317{
6318 MA_STATE(ms, mt, first, last);
6319
6320 if (WARN_ON_ONCE(xa_is_advanced(entry)))
6321 return -EINVAL;
6322
6323 if (first > last)
6324 return -EINVAL;
6325
6326 mtree_lock(mt);
6327retry:
6328 mas_insert(&ms, entry);
6329 if (mas_nomem(&ms, gfp))
6330 goto retry;
6331
6332 mtree_unlock(mt);
6333 if (mas_is_err(&ms))
6334 return xa_err(ms.node);
6335
6336 return 0;
6337}
6338EXPORT_SYMBOL(mtree_insert_range);
6339
6340/**
6341 * mtree_insert() - Insert an entry at a give index if there is no value.
6342 * @mt: The maple tree
6343 * @index : The index to store the value
6344 * @entry: The entry to store
6345 * @gfp: The FGP_FLAGS to use for allocations.
6346 *
6347 * Return: 0 on success, -EEXISTS if the range is occupied, -EINVAL on invalid
6348 * request, -ENOMEM if memory could not be allocated.
6349 */
6350int mtree_insert(struct maple_tree *mt, unsigned long index, void *entry,
6351 gfp_t gfp)
6352{
6353 return mtree_insert_range(mt, index, index, entry, gfp);
6354}
6355EXPORT_SYMBOL(mtree_insert);
6356
6357int mtree_alloc_range(struct maple_tree *mt, unsigned long *startp,
6358 void *entry, unsigned long size, unsigned long min,
6359 unsigned long max, gfp_t gfp)
6360{
6361 int ret = 0;
6362
6363 MA_STATE(mas, mt, min, max - size);
6364 if (!mt_is_alloc(mt))
6365 return -EINVAL;
6366
6367 if (WARN_ON_ONCE(mt_is_reserved(entry)))
6368 return -EINVAL;
6369
6370 if (min > max)
6371 return -EINVAL;
6372
6373 if (max < size)
6374 return -EINVAL;
6375
6376 if (!size)
6377 return -EINVAL;
6378
6379 mtree_lock(mt);
6380retry:
6381 mas.offset = 0;
6382 mas.index = min;
6383 mas.last = max - size;
6384 ret = mas_alloc(&mas, entry, size, startp);
6385 if (mas_nomem(&mas, gfp))
6386 goto retry;
6387
6388 mtree_unlock(mt);
6389 return ret;
6390}
6391EXPORT_SYMBOL(mtree_alloc_range);
6392
6393int mtree_alloc_rrange(struct maple_tree *mt, unsigned long *startp,
6394 void *entry, unsigned long size, unsigned long min,
6395 unsigned long max, gfp_t gfp)
6396{
6397 int ret = 0;
6398
6399 MA_STATE(mas, mt, min, max - size);
6400 if (!mt_is_alloc(mt))
6401 return -EINVAL;
6402
6403 if (WARN_ON_ONCE(mt_is_reserved(entry)))
6404 return -EINVAL;
6405
6406 if (min >= max)
6407 return -EINVAL;
6408
6409 if (max < size - 1)
6410 return -EINVAL;
6411
6412 if (!size)
6413 return -EINVAL;
6414
6415 mtree_lock(mt);
6416retry:
6417 ret = mas_rev_alloc(&mas, min, max, entry, size, startp);
6418 if (mas_nomem(&mas, gfp))
6419 goto retry;
6420
6421 mtree_unlock(mt);
6422 return ret;
6423}
6424EXPORT_SYMBOL(mtree_alloc_rrange);
6425
6426/**
6427 * mtree_erase() - Find an index and erase the entire range.
6428 * @mt: The maple tree
6429 * @index: The index to erase
6430 *
6431 * Erasing is the same as a walk to an entry then a store of a NULL to that
6432 * ENTIRE range. In fact, it is implemented as such using the advanced API.
6433 *
6434 * Return: The entry stored at the @index or %NULL
6435 */
6436void *mtree_erase(struct maple_tree *mt, unsigned long index)
6437{
6438 void *entry = NULL;
6439
6440 MA_STATE(mas, mt, index, index);
6441 trace_ma_op(__func__, &mas);
6442
6443 mtree_lock(mt);
6444 entry = mas_erase(&mas);
6445 mtree_unlock(mt);
6446
6447 return entry;
6448}
6449EXPORT_SYMBOL(mtree_erase);
6450
6451/**
6452 * __mt_destroy() - Walk and free all nodes of a locked maple tree.
6453 * @mt: The maple tree
6454 *
6455 * Note: Does not handle locking.
6456 */
6457void __mt_destroy(struct maple_tree *mt)
6458{
6459 void *root = mt_root_locked(mt);
6460
6461 rcu_assign_pointer(mt->ma_root, NULL);
6462 if (xa_is_node(root))
6463 mte_destroy_walk(root, mt);
6464
6465 mt->ma_flags = 0;
6466}
6467EXPORT_SYMBOL_GPL(__mt_destroy);
6468
6469/**
6470 * mtree_destroy() - Destroy a maple tree
6471 * @mt: The maple tree
6472 *
6473 * Frees all resources used by the tree. Handles locking.
6474 */
6475void mtree_destroy(struct maple_tree *mt)
6476{
6477 mtree_lock(mt);
6478 __mt_destroy(mt);
6479 mtree_unlock(mt);
6480}
6481EXPORT_SYMBOL(mtree_destroy);
6482
6483/**
6484 * mt_find() - Search from the start up until an entry is found.
6485 * @mt: The maple tree
6486 * @index: Pointer which contains the start location of the search
6487 * @max: The maximum value to check
6488 *
6489 * Handles locking. @index will be incremented to one beyond the range.
6490 *
6491 * Return: The entry at or after the @index or %NULL
6492 */
6493void *mt_find(struct maple_tree *mt, unsigned long *index, unsigned long max)
6494{
6495 MA_STATE(mas, mt, *index, *index);
6496 void *entry;
6497#ifdef CONFIG_DEBUG_MAPLE_TREE
6498 unsigned long copy = *index;
6499#endif
6500
6501 trace_ma_read(__func__, &mas);
6502
6503 if ((*index) > max)
6504 return NULL;
6505
6506 rcu_read_lock();
6507retry:
6508 entry = mas_state_walk(&mas);
6509 if (mas_is_start(&mas))
6510 goto retry;
6511
6512 if (unlikely(xa_is_zero(entry)))
6513 entry = NULL;
6514
6515 if (entry)
6516 goto unlock;
6517
6518 while (mas_searchable(&mas) && (mas.index < max)) {
6519 entry = mas_next_entry(&mas, max);
6520 if (likely(entry && !xa_is_zero(entry)))
6521 break;
6522 }
6523
6524 if (unlikely(xa_is_zero(entry)))
6525 entry = NULL;
6526unlock:
6527 rcu_read_unlock();
6528 if (likely(entry)) {
6529 *index = mas.last + 1;
6530#ifdef CONFIG_DEBUG_MAPLE_TREE
e6d6792a 6531 if (MT_WARN_ON(mt, (*index) && ((*index) <= copy)))
54a611b6
LH
6532 pr_err("index not increased! %lx <= %lx\n",
6533 *index, copy);
54a611b6
LH
6534#endif
6535 }
6536
6537 return entry;
6538}
6539EXPORT_SYMBOL(mt_find);
6540
6541/**
6542 * mt_find_after() - Search from the start up until an entry is found.
6543 * @mt: The maple tree
6544 * @index: Pointer which contains the start location of the search
6545 * @max: The maximum value to check
6546 *
6547 * Handles locking, detects wrapping on index == 0
6548 *
6549 * Return: The entry at or after the @index or %NULL
6550 */
6551void *mt_find_after(struct maple_tree *mt, unsigned long *index,
6552 unsigned long max)
6553{
6554 if (!(*index))
6555 return NULL;
6556
6557 return mt_find(mt, index, max);
6558}
6559EXPORT_SYMBOL(mt_find_after);
6560
6561#ifdef CONFIG_DEBUG_MAPLE_TREE
6562atomic_t maple_tree_tests_run;
6563EXPORT_SYMBOL_GPL(maple_tree_tests_run);
6564atomic_t maple_tree_tests_passed;
6565EXPORT_SYMBOL_GPL(maple_tree_tests_passed);
6566
6567#ifndef __KERNEL__
6568extern void kmem_cache_set_non_kernel(struct kmem_cache *, unsigned int);
6569void mt_set_non_kernel(unsigned int val)
6570{
6571 kmem_cache_set_non_kernel(maple_node_cache, val);
6572}
6573
6574extern unsigned long kmem_cache_get_alloc(struct kmem_cache *);
6575unsigned long mt_get_alloc_size(void)
6576{
6577 return kmem_cache_get_alloc(maple_node_cache);
6578}
6579
6580extern void kmem_cache_zero_nr_tallocated(struct kmem_cache *);
6581void mt_zero_nr_tallocated(void)
6582{
6583 kmem_cache_zero_nr_tallocated(maple_node_cache);
6584}
6585
6586extern unsigned int kmem_cache_nr_tallocated(struct kmem_cache *);
6587unsigned int mt_nr_tallocated(void)
6588{
6589 return kmem_cache_nr_tallocated(maple_node_cache);
6590}
6591
6592extern unsigned int kmem_cache_nr_allocated(struct kmem_cache *);
6593unsigned int mt_nr_allocated(void)
6594{
6595 return kmem_cache_nr_allocated(maple_node_cache);
6596}
6597
6598/*
6599 * mas_dead_node() - Check if the maple state is pointing to a dead node.
6600 * @mas: The maple state
6601 * @index: The index to restore in @mas.
6602 *
6603 * Used in test code.
6604 * Return: 1 if @mas has been reset to MAS_START, 0 otherwise.
6605 */
6606static inline int mas_dead_node(struct ma_state *mas, unsigned long index)
6607{
6608 if (unlikely(!mas_searchable(mas) || mas_is_start(mas)))
6609 return 0;
6610
6611 if (likely(!mte_dead_node(mas->node)))
6612 return 0;
6613
6614 mas_rewalk(mas, index);
6615 return 1;
6616}
54a611b6 6617
120b1162
LH
6618void mt_cache_shrink(void)
6619{
6620}
6621#else
6622/*
6623 * mt_cache_shrink() - For testing, don't use this.
6624 *
6625 * Certain testcases can trigger an OOM when combined with other memory
6626 * debugging configuration options. This function is used to reduce the
6627 * possibility of an out of memory even due to kmem_cache objects remaining
6628 * around for longer than usual.
6629 */
6630void mt_cache_shrink(void)
6631{
6632 kmem_cache_shrink(maple_node_cache);
6633
6634}
6635EXPORT_SYMBOL_GPL(mt_cache_shrink);
6636
6637#endif /* not defined __KERNEL__ */
54a611b6
LH
6638/*
6639 * mas_get_slot() - Get the entry in the maple state node stored at @offset.
6640 * @mas: The maple state
6641 * @offset: The offset into the slot array to fetch.
6642 *
6643 * Return: The entry stored at @offset.
6644 */
6645static inline struct maple_enode *mas_get_slot(struct ma_state *mas,
6646 unsigned char offset)
6647{
6648 return mas_slot(mas, ma_slots(mas_mn(mas), mte_node_type(mas->node)),
6649 offset);
6650}
6651
6652
6653/*
6654 * mas_first_entry() - Go the first leaf and find the first entry.
6655 * @mas: the maple state.
6656 * @limit: the maximum index to check.
6657 * @*r_start: Pointer to set to the range start.
6658 *
6659 * Sets mas->offset to the offset of the entry, r_start to the range minimum.
6660 *
6661 * Return: The first entry or MAS_NONE.
6662 */
6663static inline void *mas_first_entry(struct ma_state *mas, struct maple_node *mn,
6664 unsigned long limit, enum maple_type mt)
6665
6666{
6667 unsigned long max;
6668 unsigned long *pivots;
6669 void __rcu **slots;
6670 void *entry = NULL;
6671
6672 mas->index = mas->min;
6673 if (mas->index > limit)
6674 goto none;
6675
6676 max = mas->max;
6677 mas->offset = 0;
6678 while (likely(!ma_is_leaf(mt))) {
e6d6792a 6679 MAS_WARN_ON(mas, mte_dead_node(mas->node));
54a611b6 6680 slots = ma_slots(mn, mt);
54a611b6 6681 entry = mas_slot(mas, slots, 0);
39d0bd86 6682 pivots = ma_pivots(mn, mt);
54a611b6
LH
6683 if (unlikely(ma_dead_node(mn)))
6684 return NULL;
39d0bd86 6685 max = pivots[0];
54a611b6
LH
6686 mas->node = entry;
6687 mn = mas_mn(mas);
6688 mt = mte_node_type(mas->node);
6689 }
e6d6792a 6690 MAS_WARN_ON(mas, mte_dead_node(mas->node));
54a611b6
LH
6691
6692 mas->max = max;
6693 slots = ma_slots(mn, mt);
6694 entry = mas_slot(mas, slots, 0);
6695 if (unlikely(ma_dead_node(mn)))
6696 return NULL;
6697
6698 /* Slot 0 or 1 must be set */
6699 if (mas->index > limit)
6700 goto none;
6701
6702 if (likely(entry))
6703 return entry;
6704
54a611b6
LH
6705 mas->offset = 1;
6706 entry = mas_slot(mas, slots, 1);
39d0bd86 6707 pivots = ma_pivots(mn, mt);
54a611b6
LH
6708 if (unlikely(ma_dead_node(mn)))
6709 return NULL;
6710
39d0bd86 6711 mas->index = pivots[0] + 1;
54a611b6
LH
6712 if (mas->index > limit)
6713 goto none;
6714
6715 if (likely(entry))
6716 return entry;
6717
6718none:
6719 if (likely(!ma_dead_node(mn)))
6720 mas->node = MAS_NONE;
6721 return NULL;
6722}
6723
6724/* Depth first search, post-order */
6725static void mas_dfs_postorder(struct ma_state *mas, unsigned long max)
6726{
6727
6728 struct maple_enode *p = MAS_NONE, *mn = mas->node;
6729 unsigned long p_min, p_max;
6730
6731 mas_next_node(mas, mas_mn(mas), max);
6732 if (!mas_is_none(mas))
6733 return;
6734
6735 if (mte_is_root(mn))
6736 return;
6737
6738 mas->node = mn;
6739 mas_ascend(mas);
c3eb787e 6740 do {
54a611b6
LH
6741 p = mas->node;
6742 p_min = mas->min;
6743 p_max = mas->max;
6744 mas_prev_node(mas, 0);
c3eb787e 6745 } while (!mas_is_none(mas));
54a611b6
LH
6746
6747 mas->node = p;
6748 mas->max = p_max;
6749 mas->min = p_min;
6750}
6751
6752/* Tree validations */
6753static void mt_dump_node(const struct maple_tree *mt, void *entry,
89f499f3
LH
6754 unsigned long min, unsigned long max, unsigned int depth,
6755 enum mt_dump_format format);
54a611b6 6756static void mt_dump_range(unsigned long min, unsigned long max,
89f499f3 6757 unsigned int depth, enum mt_dump_format format)
54a611b6
LH
6758{
6759 static const char spaces[] = " ";
6760
89f499f3
LH
6761 switch(format) {
6762 case mt_dump_hex:
6763 if (min == max)
6764 pr_info("%.*s%lx: ", depth * 2, spaces, min);
6765 else
6766 pr_info("%.*s%lx-%lx: ", depth * 2, spaces, min, max);
6767 break;
6768 default:
6769 case mt_dump_dec:
6770 if (min == max)
6771 pr_info("%.*s%lu: ", depth * 2, spaces, min);
6772 else
6773 pr_info("%.*s%lu-%lu: ", depth * 2, spaces, min, max);
6774 }
54a611b6
LH
6775}
6776
6777static void mt_dump_entry(void *entry, unsigned long min, unsigned long max,
89f499f3 6778 unsigned int depth, enum mt_dump_format format)
54a611b6 6779{
89f499f3 6780 mt_dump_range(min, max, depth, format);
54a611b6
LH
6781
6782 if (xa_is_value(entry))
6783 pr_cont("value %ld (0x%lx) [%p]\n", xa_to_value(entry),
6784 xa_to_value(entry), entry);
6785 else if (xa_is_zero(entry))
6786 pr_cont("zero (%ld)\n", xa_to_internal(entry));
6787 else if (mt_is_reserved(entry))
6788 pr_cont("UNKNOWN ENTRY (%p)\n", entry);
6789 else
6790 pr_cont("%p\n", entry);
6791}
6792
6793static void mt_dump_range64(const struct maple_tree *mt, void *entry,
89f499f3
LH
6794 unsigned long min, unsigned long max, unsigned int depth,
6795 enum mt_dump_format format)
54a611b6
LH
6796{
6797 struct maple_range_64 *node = &mte_to_node(entry)->mr64;
6798 bool leaf = mte_is_leaf(entry);
6799 unsigned long first = min;
6800 int i;
6801
6802 pr_cont(" contents: ");
89f499f3
LH
6803 for (i = 0; i < MAPLE_RANGE64_SLOTS - 1; i++) {
6804 switch(format) {
6805 case mt_dump_hex:
6806 pr_cont("%p %lX ", node->slot[i], node->pivot[i]);
6807 break;
6808 default:
6809 case mt_dump_dec:
6810 pr_cont("%p %lu ", node->slot[i], node->pivot[i]);
6811 }
6812 }
54a611b6
LH
6813 pr_cont("%p\n", node->slot[i]);
6814 for (i = 0; i < MAPLE_RANGE64_SLOTS; i++) {
6815 unsigned long last = max;
6816
6817 if (i < (MAPLE_RANGE64_SLOTS - 1))
6818 last = node->pivot[i];
bd592703 6819 else if (!node->slot[i] && max != mt_node_max(entry))
54a611b6
LH
6820 break;
6821 if (last == 0 && i > 0)
6822 break;
6823 if (leaf)
6824 mt_dump_entry(mt_slot(mt, node->slot, i),
89f499f3 6825 first, last, depth + 1, format);
54a611b6
LH
6826 else if (node->slot[i])
6827 mt_dump_node(mt, mt_slot(mt, node->slot, i),
89f499f3 6828 first, last, depth + 1, format);
54a611b6
LH
6829
6830 if (last == max)
6831 break;
6832 if (last > max) {
89f499f3
LH
6833 switch(format) {
6834 case mt_dump_hex:
6835 pr_err("node %p last (%lx) > max (%lx) at pivot %d!\n",
54a611b6 6836 node, last, max, i);
89f499f3
LH
6837 break;
6838 default:
6839 case mt_dump_dec:
6840 pr_err("node %p last (%lu) > max (%lu) at pivot %d!\n",
6841 node, last, max, i);
6842 }
54a611b6
LH
6843 }
6844 first = last + 1;
6845 }
6846}
6847
6848static void mt_dump_arange64(const struct maple_tree *mt, void *entry,
89f499f3
LH
6849 unsigned long min, unsigned long max, unsigned int depth,
6850 enum mt_dump_format format)
54a611b6
LH
6851{
6852 struct maple_arange_64 *node = &mte_to_node(entry)->ma64;
6853 bool leaf = mte_is_leaf(entry);
6854 unsigned long first = min;
6855 int i;
6856
6857 pr_cont(" contents: ");
6858 for (i = 0; i < MAPLE_ARANGE64_SLOTS; i++)
6859 pr_cont("%lu ", node->gap[i]);
6860 pr_cont("| %02X %02X| ", node->meta.end, node->meta.gap);
6861 for (i = 0; i < MAPLE_ARANGE64_SLOTS - 1; i++)
6862 pr_cont("%p %lu ", node->slot[i], node->pivot[i]);
6863 pr_cont("%p\n", node->slot[i]);
6864 for (i = 0; i < MAPLE_ARANGE64_SLOTS; i++) {
6865 unsigned long last = max;
6866
6867 if (i < (MAPLE_ARANGE64_SLOTS - 1))
6868 last = node->pivot[i];
6869 else if (!node->slot[i])
6870 break;
6871 if (last == 0 && i > 0)
6872 break;
6873 if (leaf)
6874 mt_dump_entry(mt_slot(mt, node->slot, i),
89f499f3 6875 first, last, depth + 1, format);
54a611b6
LH
6876 else if (node->slot[i])
6877 mt_dump_node(mt, mt_slot(mt, node->slot, i),
89f499f3 6878 first, last, depth + 1, format);
54a611b6
LH
6879
6880 if (last == max)
6881 break;
6882 if (last > max) {
6883 pr_err("node %p last (%lu) > max (%lu) at pivot %d!\n",
6884 node, last, max, i);
6885 break;
6886 }
6887 first = last + 1;
6888 }
6889}
6890
6891static void mt_dump_node(const struct maple_tree *mt, void *entry,
89f499f3
LH
6892 unsigned long min, unsigned long max, unsigned int depth,
6893 enum mt_dump_format format)
54a611b6
LH
6894{
6895 struct maple_node *node = mte_to_node(entry);
6896 unsigned int type = mte_node_type(entry);
6897 unsigned int i;
6898
89f499f3 6899 mt_dump_range(min, max, depth, format);
54a611b6
LH
6900
6901 pr_cont("node %p depth %d type %d parent %p", node, depth, type,
6902 node ? node->parent : NULL);
6903 switch (type) {
6904 case maple_dense:
6905 pr_cont("\n");
6906 for (i = 0; i < MAPLE_NODE_SLOTS; i++) {
6907 if (min + i > max)
6908 pr_cont("OUT OF RANGE: ");
6909 mt_dump_entry(mt_slot(mt, node->slot, i),
89f499f3 6910 min + i, min + i, depth, format);
54a611b6
LH
6911 }
6912 break;
6913 case maple_leaf_64:
6914 case maple_range_64:
89f499f3 6915 mt_dump_range64(mt, entry, min, max, depth, format);
54a611b6
LH
6916 break;
6917 case maple_arange_64:
89f499f3 6918 mt_dump_arange64(mt, entry, min, max, depth, format);
54a611b6
LH
6919 break;
6920
6921 default:
6922 pr_cont(" UNKNOWN TYPE\n");
6923 }
6924}
6925
89f499f3 6926void mt_dump(const struct maple_tree *mt, enum mt_dump_format format)
54a611b6
LH
6927{
6928 void *entry = rcu_dereference_check(mt->ma_root, mt_locked(mt));
6929
6930 pr_info("maple_tree(%p) flags %X, height %u root %p\n",
6931 mt, mt->ma_flags, mt_height(mt), entry);
6932 if (!xa_is_node(entry))
89f499f3 6933 mt_dump_entry(entry, 0, 0, 0, format);
54a611b6 6934 else if (entry)
89f499f3 6935 mt_dump_node(mt, entry, 0, mt_node_max(entry), 0, format);
54a611b6 6936}
120b1162 6937EXPORT_SYMBOL_GPL(mt_dump);
54a611b6
LH
6938
6939/*
6940 * Calculate the maximum gap in a node and check if that's what is reported in
6941 * the parent (unless root).
6942 */
6943static void mas_validate_gaps(struct ma_state *mas)
6944{
6945 struct maple_enode *mte = mas->node;
6946 struct maple_node *p_mn;
6947 unsigned long gap = 0, max_gap = 0;
6948 unsigned long p_end, p_start = mas->min;
6949 unsigned char p_slot;
6950 unsigned long *gaps = NULL;
6951 unsigned long *pivots = ma_pivots(mte_to_node(mte), mte_node_type(mte));
6952 int i;
6953
6954 if (ma_is_dense(mte_node_type(mte))) {
6955 for (i = 0; i < mt_slot_count(mte); i++) {
6956 if (mas_get_slot(mas, i)) {
6957 if (gap > max_gap)
6958 max_gap = gap;
6959 gap = 0;
6960 continue;
6961 }
6962 gap++;
6963 }
6964 goto counted;
6965 }
6966
6967 gaps = ma_gaps(mte_to_node(mte), mte_node_type(mte));
6968 for (i = 0; i < mt_slot_count(mte); i++) {
6969 p_end = mas_logical_pivot(mas, pivots, i, mte_node_type(mte));
6970
6971 if (!gaps) {
6972 if (mas_get_slot(mas, i)) {
6973 gap = 0;
6974 goto not_empty;
6975 }
6976
6977 gap += p_end - p_start + 1;
6978 } else {
6979 void *entry = mas_get_slot(mas, i);
6980
6981 gap = gaps[i];
6982 if (!entry) {
6983 if (gap != p_end - p_start + 1) {
6984 pr_err("%p[%u] -> %p %lu != %lu - %lu + 1\n",
6985 mas_mn(mas), i,
6986 mas_get_slot(mas, i), gap,
6987 p_end, p_start);
89f499f3 6988 mt_dump(mas->tree, mt_dump_hex);
54a611b6
LH
6989
6990 MT_BUG_ON(mas->tree,
6991 gap != p_end - p_start + 1);
6992 }
6993 } else {
6994 if (gap > p_end - p_start + 1) {
6995 pr_err("%p[%u] %lu >= %lu - %lu + 1 (%lu)\n",
6996 mas_mn(mas), i, gap, p_end, p_start,
6997 p_end - p_start + 1);
6998 MT_BUG_ON(mas->tree,
6999 gap > p_end - p_start + 1);
7000 }
7001 }
7002 }
7003
7004 if (gap > max_gap)
7005 max_gap = gap;
7006not_empty:
7007 p_start = p_end + 1;
7008 if (p_end >= mas->max)
7009 break;
7010 }
7011
7012counted:
7013 if (mte_is_root(mte))
7014 return;
7015
7016 p_slot = mte_parent_slot(mas->node);
7017 p_mn = mte_parent(mte);
7018 MT_BUG_ON(mas->tree, max_gap > mas->max);
afc754c6 7019 if (ma_gaps(p_mn, mas_parent_type(mas, mte))[p_slot] != max_gap) {
54a611b6 7020 pr_err("gap %p[%u] != %lu\n", p_mn, p_slot, max_gap);
89f499f3 7021 mt_dump(mas->tree, mt_dump_hex);
54a611b6
LH
7022 }
7023
7024 MT_BUG_ON(mas->tree,
afc754c6 7025 ma_gaps(p_mn, mas_parent_type(mas, mte))[p_slot] != max_gap);
54a611b6
LH
7026}
7027
7028static void mas_validate_parent_slot(struct ma_state *mas)
7029{
7030 struct maple_node *parent;
7031 struct maple_enode *node;
afc754c6
LH
7032 enum maple_type p_type;
7033 unsigned char p_slot;
54a611b6
LH
7034 void __rcu **slots;
7035 int i;
7036
7037 if (mte_is_root(mas->node))
7038 return;
7039
afc754c6
LH
7040 p_slot = mte_parent_slot(mas->node);
7041 p_type = mas_parent_type(mas, mas->node);
54a611b6
LH
7042 parent = mte_parent(mas->node);
7043 slots = ma_slots(parent, p_type);
7044 MT_BUG_ON(mas->tree, mas_mn(mas) == parent);
7045
7046 /* Check prev/next parent slot for duplicate node entry */
7047
7048 for (i = 0; i < mt_slots[p_type]; i++) {
7049 node = mas_slot(mas, slots, i);
7050 if (i == p_slot) {
7051 if (node != mas->node)
7052 pr_err("parent %p[%u] does not have %p\n",
7053 parent, i, mas_mn(mas));
7054 MT_BUG_ON(mas->tree, node != mas->node);
7055 } else if (node == mas->node) {
7056 pr_err("Invalid child %p at parent %p[%u] p_slot %u\n",
7057 mas_mn(mas), parent, i, p_slot);
7058 MT_BUG_ON(mas->tree, node == mas->node);
7059 }
7060 }
7061}
7062
7063static void mas_validate_child_slot(struct ma_state *mas)
7064{
7065 enum maple_type type = mte_node_type(mas->node);
7066 void __rcu **slots = ma_slots(mte_to_node(mas->node), type);
7067 unsigned long *pivots = ma_pivots(mte_to_node(mas->node), type);
7068 struct maple_enode *child;
7069 unsigned char i;
7070
7071 if (mte_is_leaf(mas->node))
7072 return;
7073
7074 for (i = 0; i < mt_slots[type]; i++) {
7075 child = mas_slot(mas, slots, i);
7076 if (!pivots[i] || pivots[i] == mas->max)
7077 break;
7078
7079 if (!child)
7080 break;
7081
7082 if (mte_parent_slot(child) != i) {
7083 pr_err("Slot error at %p[%u]: child %p has pslot %u\n",
7084 mas_mn(mas), i, mte_to_node(child),
7085 mte_parent_slot(child));
7086 MT_BUG_ON(mas->tree, 1);
7087 }
7088
7089 if (mte_parent(child) != mte_to_node(mas->node)) {
7090 pr_err("child %p has parent %p not %p\n",
7091 mte_to_node(child), mte_parent(child),
7092 mte_to_node(mas->node));
7093 MT_BUG_ON(mas->tree, 1);
7094 }
7095 }
7096}
7097
7098/*
7099 * Validate all pivots are within mas->min and mas->max.
7100 */
7101static void mas_validate_limits(struct ma_state *mas)
7102{
7103 int i;
7104 unsigned long prev_piv = 0;
7105 enum maple_type type = mte_node_type(mas->node);
7106 void __rcu **slots = ma_slots(mte_to_node(mas->node), type);
7107 unsigned long *pivots = ma_pivots(mas_mn(mas), type);
7108
7109 /* all limits are fine here. */
7110 if (mte_is_root(mas->node))
7111 return;
7112
7113 for (i = 0; i < mt_slots[type]; i++) {
7114 unsigned long piv;
7115
7116 piv = mas_safe_pivot(mas, pivots, i, type);
7117
7118 if (!piv && (i != 0))
7119 break;
7120
7121 if (!mte_is_leaf(mas->node)) {
7122 void *entry = mas_slot(mas, slots, i);
7123
7124 if (!entry)
7125 pr_err("%p[%u] cannot be null\n",
7126 mas_mn(mas), i);
7127
7128 MT_BUG_ON(mas->tree, !entry);
7129 }
7130
7131 if (prev_piv > piv) {
7132 pr_err("%p[%u] piv %lu < prev_piv %lu\n",
7133 mas_mn(mas), i, piv, prev_piv);
e6d6792a 7134 MAS_WARN_ON(mas, piv < prev_piv);
54a611b6
LH
7135 }
7136
7137 if (piv < mas->min) {
7138 pr_err("%p[%u] %lu < %lu\n", mas_mn(mas), i,
7139 piv, mas->min);
e6d6792a 7140 MAS_WARN_ON(mas, piv < mas->min);
54a611b6
LH
7141 }
7142 if (piv > mas->max) {
7143 pr_err("%p[%u] %lu > %lu\n", mas_mn(mas), i,
7144 piv, mas->max);
e6d6792a 7145 MAS_WARN_ON(mas, piv > mas->max);
54a611b6
LH
7146 }
7147 prev_piv = piv;
7148 if (piv == mas->max)
7149 break;
7150 }
7151 for (i += 1; i < mt_slots[type]; i++) {
7152 void *entry = mas_slot(mas, slots, i);
7153
7154 if (entry && (i != mt_slots[type] - 1)) {
7155 pr_err("%p[%u] should not have entry %p\n", mas_mn(mas),
7156 i, entry);
7157 MT_BUG_ON(mas->tree, entry != NULL);
7158 }
7159
7160 if (i < mt_pivots[type]) {
7161 unsigned long piv = pivots[i];
7162
7163 if (!piv)
7164 continue;
7165
7166 pr_err("%p[%u] should not have piv %lu\n",
7167 mas_mn(mas), i, piv);
e6d6792a 7168 MAS_WARN_ON(mas, i < mt_pivots[type] - 1);
54a611b6
LH
7169 }
7170 }
7171}
7172
7173static void mt_validate_nulls(struct maple_tree *mt)
7174{
7175 void *entry, *last = (void *)1;
7176 unsigned char offset = 0;
7177 void __rcu **slots;
7178 MA_STATE(mas, mt, 0, 0);
7179
7180 mas_start(&mas);
7181 if (mas_is_none(&mas) || (mas.node == MAS_ROOT))
7182 return;
7183
7184 while (!mte_is_leaf(mas.node))
7185 mas_descend(&mas);
7186
7187 slots = ma_slots(mte_to_node(mas.node), mte_node_type(mas.node));
7188 do {
7189 entry = mas_slot(&mas, slots, offset);
7190 if (!last && !entry) {
7191 pr_err("Sequential nulls end at %p[%u]\n",
7192 mas_mn(&mas), offset);
7193 }
7194 MT_BUG_ON(mt, !last && !entry);
7195 last = entry;
7196 if (offset == mas_data_end(&mas)) {
7197 mas_next_node(&mas, mas_mn(&mas), ULONG_MAX);
7198 if (mas_is_none(&mas))
7199 return;
7200 offset = 0;
7201 slots = ma_slots(mte_to_node(mas.node),
7202 mte_node_type(mas.node));
7203 } else {
7204 offset++;
7205 }
7206
7207 } while (!mas_is_none(&mas));
7208}
7209
7210/*
7211 * validate a maple tree by checking:
7212 * 1. The limits (pivots are within mas->min to mas->max)
7213 * 2. The gap is correctly set in the parents
7214 */
7215void mt_validate(struct maple_tree *mt)
7216{
7217 unsigned char end;
7218
7219 MA_STATE(mas, mt, 0, 0);
7220 rcu_read_lock();
7221 mas_start(&mas);
7222 if (!mas_searchable(&mas))
7223 goto done;
7224
7225 mas_first_entry(&mas, mas_mn(&mas), ULONG_MAX, mte_node_type(mas.node));
7226 while (!mas_is_none(&mas)) {
e6d6792a 7227 MAS_WARN_ON(&mas, mte_dead_node(mas.node));
54a611b6
LH
7228 if (!mte_is_root(mas.node)) {
7229 end = mas_data_end(&mas);
e6d6792a
LH
7230 if (MAS_WARN_ON(&mas,
7231 (end < mt_min_slot_count(mas.node)) &&
7232 (mas.max != ULONG_MAX))) {
54a611b6 7233 pr_err("Invalid size %u of %p\n", end,
e6d6792a 7234 mas_mn(&mas));
54a611b6 7235 }
54a611b6
LH
7236 }
7237 mas_validate_parent_slot(&mas);
7238 mas_validate_child_slot(&mas);
7239 mas_validate_limits(&mas);
7240 if (mt_is_alloc(mt))
7241 mas_validate_gaps(&mas);
7242 mas_dfs_postorder(&mas, ULONG_MAX);
7243 }
7244 mt_validate_nulls(mt);
7245done:
7246 rcu_read_unlock();
7247
7248}
120b1162 7249EXPORT_SYMBOL_GPL(mt_validate);
54a611b6 7250
f0a1f866
LH
7251void mas_dump(const struct ma_state *mas)
7252{
7253 pr_err("MAS: tree=%p enode=%p ", mas->tree, mas->node);
7254 if (mas_is_none(mas))
7255 pr_err("(MAS_NONE) ");
7256 else if (mas_is_ptr(mas))
7257 pr_err("(MAS_ROOT) ");
7258 else if (mas_is_start(mas))
7259 pr_err("(MAS_START) ");
7260 else if (mas_is_paused(mas))
7261 pr_err("(MAS_PAUSED) ");
7262
7263 pr_err("[%u] index=%lx last=%lx\n", mas->offset, mas->index, mas->last);
7264 pr_err(" min=%lx max=%lx alloc=%p, depth=%u, flags=%x\n",
7265 mas->min, mas->max, mas->alloc, mas->depth, mas->mas_flags);
7266 if (mas->index > mas->last)
7267 pr_err("Check index & last\n");
7268}
7269EXPORT_SYMBOL_GPL(mas_dump);
7270
7271void mas_wr_dump(const struct ma_wr_state *wr_mas)
7272{
7273 pr_err("WR_MAS: node=%p r_min=%lx r_max=%lx\n",
7274 wr_mas->node, wr_mas->r_min, wr_mas->r_max);
7275 pr_err(" type=%u off_end=%u, node_end=%u, end_piv=%lx\n",
7276 wr_mas->type, wr_mas->offset_end, wr_mas->node_end,
7277 wr_mas->end_piv);
7278}
7279EXPORT_SYMBOL_GPL(mas_wr_dump);
7280
54a611b6 7281#endif /* CONFIG_DEBUG_MAPLE_TREE */