]> git.ipfire.org Git - thirdparty/linux.git/blame - lib/maple_tree.c
Merge tag 'mm-hotfixes-stable-2025-07-11-16-16' of git://git.kernel.org/pub/scm/linux...
[thirdparty/linux.git] / lib / maple_tree.c
CommitLineData
54a611b6
LH
1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * Maple Tree implementation
4 * Copyright (c) 2018-2022 Oracle Corporation
5 * Authors: Liam R. Howlett <Liam.Howlett@oracle.com>
6 * Matthew Wilcox <willy@infradead.org>
fd32e4e9
PZ
7 * Copyright (c) 2023 ByteDance
8 * Author: Peng Zhang <zhangpeng.00@bytedance.com>
54a611b6
LH
9 */
10
11/*
12 * DOC: Interesting implementation details of the Maple Tree
13 *
14 * Each node type has a number of slots for entries and a number of slots for
15 * pivots. In the case of dense nodes, the pivots are implied by the position
16 * and are simply the slot index + the minimum of the node.
17 *
18 * In regular B-Tree terms, pivots are called keys. The term pivot is used to
d5f6057c
RD
19 * indicate that the tree is specifying ranges. Pivots may appear in the
20 * subtree with an entry attached to the value whereas keys are unique to a
54a611b6
LH
21 * specific position of a B-tree. Pivot values are inclusive of the slot with
22 * the same index.
23 *
24 *
25 * The following illustrates the layout of a range64 nodes slots and pivots.
26 *
27 *
28 * Slots -> | 0 | 1 | 2 | ... | 12 | 13 | 14 | 15 |
29 * ┬ ┬ ┬ ┬ ┬ ┬ ┬ ┬ ┬
30 * │ │ │ │ │ │ │ │ └─ Implied maximum
31 * │ │ │ │ │ │ │ └─ Pivot 14
32 * │ │ │ │ │ │ └─ Pivot 13
33 * │ │ │ │ │ └─ Pivot 12
34 * │ │ │ │ └─ Pivot 11
35 * │ │ │ └─ Pivot 2
36 * │ │ └─ Pivot 1
37 * │ └─ Pivot 0
38 * └─ Implied minimum
39 *
40 * Slot contents:
41 * Internal (non-leaf) nodes contain pointers to other nodes.
42 * Leaf nodes contain entries.
43 *
44 * The location of interest is often referred to as an offset. All offsets have
45 * a slot, but the last offset has an implied pivot from the node above (or
46 * UINT_MAX for the root node.
47 *
48 * Ranges complicate certain write activities. When modifying any of
49 * the B-tree variants, it is known that one entry will either be added or
50 * deleted. When modifying the Maple Tree, one store operation may overwrite
51 * the entire data set, or one half of the tree, or the middle half of the tree.
52 *
53 */
54
55
56#include <linux/maple_tree.h>
57#include <linux/xarray.h>
58#include <linux/types.h>
59#include <linux/export.h>
60#include <linux/slab.h>
61#include <linux/limits.h>
62#include <asm/barrier.h>
63
64#define CREATE_TRACE_POINTS
65#include <trace/events/maple_tree.h>
66
b314e215
LS
67/*
68 * Kernel pointer hashing renders much of the maple tree dump useless as tagged
69 * pointers get hashed to arbitrary values.
70 *
71 * If CONFIG_DEBUG_VM_MAPLE_TREE is set we are in a debug mode where it is
72 * permissible to bypass this. Otherwise remain cautious and retain the hashing.
73 *
74 * Userland doesn't know about %px so also use %p there.
75 */
76#if defined(__KERNEL__) && defined(CONFIG_DEBUG_VM_MAPLE_TREE)
77#define PTR_FMT "%px"
78#else
79#define PTR_FMT "%p"
80#endif
81
54a611b6
LH
82#define MA_ROOT_PARENT 1
83
84/*
85 * Maple state flags
86 * * MA_STATE_BULK - Bulk insert mode
87 * * MA_STATE_REBALANCE - Indicate a rebalance during bulk insert
88 * * MA_STATE_PREALLOC - Preallocated nodes, WARN_ON allocation
89 */
90#define MA_STATE_BULK 1
91#define MA_STATE_REBALANCE 2
92#define MA_STATE_PREALLOC 4
93
94#define ma_parent_ptr(x) ((struct maple_pnode *)(x))
4ffc2ee2 95#define mas_tree_parent(x) ((unsigned long)(x->tree) | MA_ROOT_PARENT)
54a611b6
LH
96#define ma_mnode_ptr(x) ((struct maple_node *)(x))
97#define ma_enode_ptr(x) ((struct maple_enode *)(x))
98static struct kmem_cache *maple_node_cache;
99
100#ifdef CONFIG_DEBUG_MAPLE_TREE
101static const unsigned long mt_max[] = {
102 [maple_dense] = MAPLE_NODE_SLOTS,
103 [maple_leaf_64] = ULONG_MAX,
104 [maple_range_64] = ULONG_MAX,
105 [maple_arange_64] = ULONG_MAX,
106};
107#define mt_node_max(x) mt_max[mte_node_type(x)]
108#endif
109
110static const unsigned char mt_slots[] = {
111 [maple_dense] = MAPLE_NODE_SLOTS,
112 [maple_leaf_64] = MAPLE_RANGE64_SLOTS,
113 [maple_range_64] = MAPLE_RANGE64_SLOTS,
114 [maple_arange_64] = MAPLE_ARANGE64_SLOTS,
115};
116#define mt_slot_count(x) mt_slots[mte_node_type(x)]
117
118static const unsigned char mt_pivots[] = {
119 [maple_dense] = 0,
120 [maple_leaf_64] = MAPLE_RANGE64_SLOTS - 1,
121 [maple_range_64] = MAPLE_RANGE64_SLOTS - 1,
122 [maple_arange_64] = MAPLE_ARANGE64_SLOTS - 1,
123};
124#define mt_pivot_count(x) mt_pivots[mte_node_type(x)]
125
126static const unsigned char mt_min_slots[] = {
127 [maple_dense] = MAPLE_NODE_SLOTS / 2,
128 [maple_leaf_64] = (MAPLE_RANGE64_SLOTS / 2) - 2,
129 [maple_range_64] = (MAPLE_RANGE64_SLOTS / 2) - 2,
130 [maple_arange_64] = (MAPLE_ARANGE64_SLOTS / 2) - 1,
131};
132#define mt_min_slot_count(x) mt_min_slots[mte_node_type(x)]
133
134#define MAPLE_BIG_NODE_SLOTS (MAPLE_RANGE64_SLOTS * 2 + 2)
135#define MAPLE_BIG_NODE_GAPS (MAPLE_ARANGE64_SLOTS * 2 + 1)
136
137struct maple_big_node {
54a611b6
LH
138 unsigned long pivot[MAPLE_BIG_NODE_SLOTS - 1];
139 union {
140 struct maple_enode *slot[MAPLE_BIG_NODE_SLOTS];
141 struct {
142 unsigned long padding[MAPLE_BIG_NODE_GAPS];
143 unsigned long gap[MAPLE_BIG_NODE_GAPS];
144 };
145 };
146 unsigned char b_end;
147 enum maple_type type;
148};
149
150/*
151 * The maple_subtree_state is used to build a tree to replace a segment of an
152 * existing tree in a more atomic way. Any walkers of the older tree will hit a
153 * dead node and restart on updates.
154 */
155struct maple_subtree_state {
156 struct ma_state *orig_l; /* Original left side of subtree */
157 struct ma_state *orig_r; /* Original right side of subtree */
158 struct ma_state *l; /* New left side of subtree */
159 struct ma_state *m; /* New middle of subtree (rare) */
160 struct ma_state *r; /* New right side of subtree */
161 struct ma_topiary *free; /* nodes to be freed */
162 struct ma_topiary *destroy; /* Nodes to be destroyed (walked and freed) */
163 struct maple_big_node *bn;
164};
165
44081c77
AB
166#ifdef CONFIG_KASAN_STACK
167/* Prevent mas_wr_bnode() from exceeding the stack frame limit */
168#define noinline_for_kasan noinline_for_stack
169#else
170#define noinline_for_kasan inline
171#endif
172
54a611b6
LH
173/* Functions */
174static inline struct maple_node *mt_alloc_one(gfp_t gfp)
175{
541e06b7 176 return kmem_cache_alloc(maple_node_cache, gfp);
54a611b6
LH
177}
178
179static inline int mt_alloc_bulk(gfp_t gfp, size_t size, void **nodes)
180{
541e06b7 181 return kmem_cache_alloc_bulk(maple_node_cache, gfp, size, nodes);
54a611b6
LH
182}
183
4f2267b5
PZ
184static inline void mt_free_one(struct maple_node *node)
185{
186 kmem_cache_free(maple_node_cache, node);
187}
188
54a611b6
LH
189static inline void mt_free_bulk(size_t size, void __rcu **nodes)
190{
191 kmem_cache_free_bulk(maple_node_cache, size, (void **)nodes);
192}
193
194static void mt_free_rcu(struct rcu_head *head)
195{
196 struct maple_node *node = container_of(head, struct maple_node, rcu);
197
198 kmem_cache_free(maple_node_cache, node);
199}
200
201/*
202 * ma_free_rcu() - Use rcu callback to free a maple node
203 * @node: The node to free
204 *
205 * The maple tree uses the parent pointer to indicate this node is no longer in
206 * use and will be freed.
207 */
208static void ma_free_rcu(struct maple_node *node)
209{
c13af03d 210 WARN_ON(node->parent != ma_parent_ptr(node));
54a611b6
LH
211 call_rcu(&node->rcu, mt_free_rcu);
212}
213
f9d3a963 214static void mt_set_height(struct maple_tree *mt, unsigned char height)
54a611b6 215{
f9d3a963 216 unsigned int new_flags = mt->ma_flags;
54a611b6
LH
217
218 new_flags &= ~MT_FLAGS_HEIGHT_MASK;
f9d3a963
SK
219 MT_BUG_ON(mt, height > MAPLE_HEIGHT_MAX);
220 new_flags |= height << MT_FLAGS_HEIGHT_OFFSET;
221 mt->ma_flags = new_flags;
54a611b6
LH
222}
223
224static unsigned int mas_mt_height(struct ma_state *mas)
225{
226 return mt_height(mas->tree);
227}
228
4f2267b5
PZ
229static inline unsigned int mt_attr(struct maple_tree *mt)
230{
231 return mt->ma_flags & ~MT_FLAGS_HEIGHT_MASK;
232}
233
271f61a8
LH
234static __always_inline enum maple_type mte_node_type(
235 const struct maple_enode *entry)
54a611b6
LH
236{
237 return ((unsigned long)entry >> MAPLE_NODE_TYPE_SHIFT) &
238 MAPLE_NODE_TYPE_MASK;
239}
240
271f61a8 241static __always_inline bool ma_is_dense(const enum maple_type type)
54a611b6
LH
242{
243 return type < maple_leaf_64;
244}
245
271f61a8 246static __always_inline bool ma_is_leaf(const enum maple_type type)
54a611b6
LH
247{
248 return type < maple_range_64;
249}
250
271f61a8 251static __always_inline bool mte_is_leaf(const struct maple_enode *entry)
54a611b6
LH
252{
253 return ma_is_leaf(mte_node_type(entry));
254}
255
256/*
257 * We also reserve values with the bottom two bits set to '10' which are
258 * below 4096
259 */
271f61a8 260static __always_inline bool mt_is_reserved(const void *entry)
54a611b6
LH
261{
262 return ((unsigned long)entry < MAPLE_RESERVED_RANGE) &&
263 xa_is_internal(entry);
264}
265
067311d3 266static __always_inline void mas_set_err(struct ma_state *mas, long err)
54a611b6
LH
267{
268 mas->node = MA_ERROR(err);
067311d3 269 mas->status = ma_error;
54a611b6
LH
270}
271
067311d3 272static __always_inline bool mas_is_ptr(const struct ma_state *mas)
54a611b6 273{
067311d3 274 return mas->status == ma_root;
54a611b6
LH
275}
276
067311d3 277static __always_inline bool mas_is_start(const struct ma_state *mas)
54a611b6 278{
067311d3 279 return mas->status == ma_start;
54a611b6
LH
280}
281
067311d3 282static __always_inline bool mas_is_none(const struct ma_state *mas)
54a611b6 283{
067311d3 284 return mas->status == ma_none;
54a611b6
LH
285}
286
067311d3 287static __always_inline bool mas_is_paused(const struct ma_state *mas)
a8091f03 288{
067311d3 289 return mas->status == ma_pause;
a8091f03
LH
290}
291
067311d3 292static __always_inline bool mas_is_overflow(struct ma_state *mas)
a8091f03 293{
067311d3
LH
294 return mas->status == ma_overflow;
295}
a8091f03 296
067311d3
LH
297static inline bool mas_is_underflow(struct ma_state *mas)
298{
299 return mas->status == ma_underflow;
a8091f03
LH
300}
301
271f61a8
LH
302static __always_inline struct maple_node *mte_to_node(
303 const struct maple_enode *entry)
54a611b6
LH
304{
305 return (struct maple_node *)((unsigned long)entry & ~MAPLE_NODE_MASK);
306}
307
308/*
309 * mte_to_mat() - Convert a maple encoded node to a maple topiary node.
310 * @entry: The maple encoded node
311 *
312 * Return: a maple topiary pointer
313 */
314static inline struct maple_topiary *mte_to_mat(const struct maple_enode *entry)
315{
316 return (struct maple_topiary *)
317 ((unsigned long)entry & ~MAPLE_NODE_MASK);
318}
319
320/*
321 * mas_mn() - Get the maple state node.
322 * @mas: The maple state
323 *
324 * Return: the maple node (not encoded - bare pointer).
325 */
326static inline struct maple_node *mas_mn(const struct ma_state *mas)
327{
328 return mte_to_node(mas->node);
329}
330
331/*
332 * mte_set_node_dead() - Set a maple encoded node as dead.
333 * @mn: The maple encoded node.
334 */
335static inline void mte_set_node_dead(struct maple_enode *mn)
336{
337 mte_to_node(mn)->parent = ma_parent_ptr(mte_to_node(mn));
338 smp_wmb(); /* Needed for RCU */
339}
340
341/* Bit 1 indicates the root is a node */
342#define MAPLE_ROOT_NODE 0x02
343/* maple_type stored bit 3-6 */
344#define MAPLE_ENODE_TYPE_SHIFT 0x03
345/* Bit 2 means a NULL somewhere below */
346#define MAPLE_ENODE_NULL 0x04
347
348static inline struct maple_enode *mt_mk_node(const struct maple_node *node,
349 enum maple_type type)
350{
351 return (void *)((unsigned long)node |
352 (type << MAPLE_ENODE_TYPE_SHIFT) | MAPLE_ENODE_NULL);
353}
354
355static inline void *mte_mk_root(const struct maple_enode *node)
356{
357 return (void *)((unsigned long)node | MAPLE_ROOT_NODE);
358}
359
360static inline void *mte_safe_root(const struct maple_enode *node)
361{
362 return (void *)((unsigned long)node & ~MAPLE_ROOT_NODE);
363}
364
1930c6ad 365static inline void __maybe_unused *mte_set_full(const struct maple_enode *node)
54a611b6 366{
6e7ba8b5 367 return (void *)((unsigned long)node & ~MAPLE_ENODE_NULL);
54a611b6
LH
368}
369
1930c6ad 370static inline void __maybe_unused *mte_clear_full(const struct maple_enode *node)
54a611b6 371{
6e7ba8b5
LH
372 return (void *)((unsigned long)node | MAPLE_ENODE_NULL);
373}
374
1930c6ad 375static inline bool __maybe_unused mte_has_null(const struct maple_enode *node)
6e7ba8b5
LH
376{
377 return (unsigned long)node & MAPLE_ENODE_NULL;
54a611b6
LH
378}
379
271f61a8 380static __always_inline bool ma_is_root(struct maple_node *node)
54a611b6
LH
381{
382 return ((unsigned long)node->parent & MA_ROOT_PARENT);
383}
384
271f61a8 385static __always_inline bool mte_is_root(const struct maple_enode *node)
54a611b6
LH
386{
387 return ma_is_root(mte_to_node(node));
388}
389
390static inline bool mas_is_root_limits(const struct ma_state *mas)
391{
392 return !mas->min && mas->max == ULONG_MAX;
393}
394
271f61a8 395static __always_inline bool mt_is_alloc(struct maple_tree *mt)
54a611b6
LH
396{
397 return (mt->ma_flags & MT_FLAGS_ALLOC_RANGE);
398}
399
400/*
401 * The Parent Pointer
402 * Excluding root, the parent pointer is 256B aligned like all other tree nodes.
403 * When storing a 32 or 64 bit values, the offset can fit into 5 bits. The 16
404 * bit values need an extra bit to store the offset. This extra bit comes from
405 * a reuse of the last bit in the node type. This is possible by using bit 1 to
406 * indicate if bit 2 is part of the type or the slot.
407 *
408 * Note types:
409 * 0x??1 = Root
410 * 0x?00 = 16 bit nodes
411 * 0x010 = 32 bit nodes
412 * 0x110 = 64 bit nodes
413 *
414 * Slot size and alignment
415 * 0b??1 : Root
416 * 0b?00 : 16 bit values, type in 0-1, slot in 2-7
417 * 0b010 : 32 bit values, type in 0-2, slot in 3-7
418 * 0b110 : 64 bit values, type in 0-2, slot in 3-7
419 */
420
421#define MAPLE_PARENT_ROOT 0x01
422
423#define MAPLE_PARENT_SLOT_SHIFT 0x03
424#define MAPLE_PARENT_SLOT_MASK 0xF8
425
426#define MAPLE_PARENT_16B_SLOT_SHIFT 0x02
427#define MAPLE_PARENT_16B_SLOT_MASK 0xFC
428
429#define MAPLE_PARENT_RANGE64 0x06
430#define MAPLE_PARENT_RANGE32 0x04
431#define MAPLE_PARENT_NOT_RANGE16 0x02
432
433/*
434 * mte_parent_shift() - Get the parent shift for the slot storage.
435 * @parent: The parent pointer cast as an unsigned long
436 * Return: The shift into that pointer to the star to of the slot
437 */
438static inline unsigned long mte_parent_shift(unsigned long parent)
439{
440 /* Note bit 1 == 0 means 16B */
441 if (likely(parent & MAPLE_PARENT_NOT_RANGE16))
442 return MAPLE_PARENT_SLOT_SHIFT;
443
444 return MAPLE_PARENT_16B_SLOT_SHIFT;
445}
446
447/*
448 * mte_parent_slot_mask() - Get the slot mask for the parent.
449 * @parent: The parent pointer cast as an unsigned long.
450 * Return: The slot mask for that parent.
451 */
452static inline unsigned long mte_parent_slot_mask(unsigned long parent)
453{
454 /* Note bit 1 == 0 means 16B */
455 if (likely(parent & MAPLE_PARENT_NOT_RANGE16))
456 return MAPLE_PARENT_SLOT_MASK;
457
458 return MAPLE_PARENT_16B_SLOT_MASK;
459}
460
461/*
afc754c6 462 * mas_parent_type() - Return the maple_type of the parent from the stored
54a611b6
LH
463 * parent type.
464 * @mas: The maple state
afc754c6 465 * @enode: The maple_enode to extract the parent's enum
54a611b6
LH
466 * Return: The node->parent maple_type
467 */
468static inline
afc754c6 469enum maple_type mas_parent_type(struct ma_state *mas, struct maple_enode *enode)
54a611b6
LH
470{
471 unsigned long p_type;
472
afc754c6
LH
473 p_type = (unsigned long)mte_to_node(enode)->parent;
474 if (WARN_ON(p_type & MAPLE_PARENT_ROOT))
475 return 0;
54a611b6
LH
476
477 p_type &= MAPLE_NODE_MASK;
afc754c6 478 p_type &= ~mte_parent_slot_mask(p_type);
54a611b6
LH
479 switch (p_type) {
480 case MAPLE_PARENT_RANGE64: /* or MAPLE_PARENT_ARANGE64 */
afc754c6 481 if (mt_is_alloc(mas->tree))
54a611b6
LH
482 return maple_arange_64;
483 return maple_range_64;
484 }
485
486 return 0;
487}
488
54a611b6 489/*
bf96715e 490 * mas_set_parent() - Set the parent node and encode the slot
96ae4c90 491 * @mas: The maple state
54a611b6
LH
492 * @enode: The encoded maple node.
493 * @parent: The encoded maple node that is the parent of @enode.
494 * @slot: The slot that @enode resides in @parent.
495 *
496 * Slot number is encoded in the enode->parent bit 3-6 or 2-6, depending on the
497 * parent type.
498 */
499static inline
bf96715e
LH
500void mas_set_parent(struct ma_state *mas, struct maple_enode *enode,
501 const struct maple_enode *parent, unsigned char slot)
54a611b6 502{
831978e3 503 unsigned long val = (unsigned long)parent;
54a611b6
LH
504 unsigned long shift;
505 unsigned long type;
506 enum maple_type p_type = mte_node_type(parent);
507
bf96715e
LH
508 MAS_BUG_ON(mas, p_type == maple_dense);
509 MAS_BUG_ON(mas, p_type == maple_leaf_64);
54a611b6
LH
510
511 switch (p_type) {
512 case maple_range_64:
513 case maple_arange_64:
514 shift = MAPLE_PARENT_SLOT_SHIFT;
515 type = MAPLE_PARENT_RANGE64;
516 break;
517 default:
518 case maple_dense:
519 case maple_leaf_64:
520 shift = type = 0;
521 break;
522 }
523
524 val &= ~MAPLE_NODE_MASK; /* Clear all node metadata in parent */
525 val |= (slot << shift) | type;
526 mte_to_node(enode)->parent = ma_parent_ptr(val);
527}
528
529/*
530 * mte_parent_slot() - get the parent slot of @enode.
531 * @enode: The encoded maple node.
532 *
533 * Return: The slot in the parent node where @enode resides.
534 */
271f61a8
LH
535static __always_inline
536unsigned int mte_parent_slot(const struct maple_enode *enode)
54a611b6 537{
831978e3 538 unsigned long val = (unsigned long)mte_to_node(enode)->parent;
54a611b6 539
271f61a8 540 if (unlikely(val & MA_ROOT_PARENT))
54a611b6
LH
541 return 0;
542
543 /*
544 * Okay to use MAPLE_PARENT_16B_SLOT_MASK as the last bit will be lost
545 * by shift if the parent shift is MAPLE_PARENT_SLOT_SHIFT
546 */
547 return (val & MAPLE_PARENT_16B_SLOT_MASK) >> mte_parent_shift(val);
548}
549
550/*
551 * mte_parent() - Get the parent of @node.
96ae4c90 552 * @enode: The encoded maple node.
54a611b6
LH
553 *
554 * Return: The parent maple node.
555 */
271f61a8
LH
556static __always_inline
557struct maple_node *mte_parent(const struct maple_enode *enode)
54a611b6
LH
558{
559 return (void *)((unsigned long)
560 (mte_to_node(enode)->parent) & ~MAPLE_NODE_MASK);
561}
562
563/*
564 * ma_dead_node() - check if the @enode is dead.
565 * @enode: The encoded maple node
566 *
567 * Return: true if dead, false otherwise.
568 */
271f61a8 569static __always_inline bool ma_dead_node(const struct maple_node *node)
54a611b6 570{
0a2b18d9 571 struct maple_node *parent;
54a611b6 572
0a2b18d9
LH
573 /* Do not reorder reads from the node prior to the parent check */
574 smp_rmb();
575 parent = (void *)((unsigned long) node->parent & ~MAPLE_NODE_MASK);
54a611b6
LH
576 return (parent == node);
577}
39d0bd86 578
54a611b6
LH
579/*
580 * mte_dead_node() - check if the @enode is dead.
581 * @enode: The encoded maple node
582 *
583 * Return: true if dead, false otherwise.
584 */
271f61a8 585static __always_inline bool mte_dead_node(const struct maple_enode *enode)
54a611b6 586{
6fbea852 587 struct maple_node *node;
54a611b6
LH
588
589 node = mte_to_node(enode);
6fbea852 590 return ma_dead_node(node);
54a611b6
LH
591}
592
593/*
594 * mas_allocated() - Get the number of nodes allocated in a maple state.
595 * @mas: The maple state
596 *
597 * The ma_state alloc member is overloaded to hold a pointer to the first
598 * allocated node or to the number of requested nodes to allocate. If bit 0 is
599 * set, then the alloc contains the number of requested nodes. If there is an
600 * allocated node, then the total allocated nodes is in that node.
601 *
602 * Return: The total number of nodes allocated
603 */
604static inline unsigned long mas_allocated(const struct ma_state *mas)
605{
606 if (!mas->alloc || ((unsigned long)mas->alloc & 0x1))
607 return 0;
608
609 return mas->alloc->total;
610}
611
612/*
613 * mas_set_alloc_req() - Set the requested number of allocations.
614 * @mas: the maple state
615 * @count: the number of allocations.
616 *
617 * The requested number of allocations is either in the first allocated node,
618 * located in @mas->alloc->request_count, or directly in @mas->alloc if there is
619 * no allocated node. Set the request either in the node or do the necessary
620 * encoding to store in @mas->alloc directly.
621 */
622static inline void mas_set_alloc_req(struct ma_state *mas, unsigned long count)
623{
624 if (!mas->alloc || ((unsigned long)mas->alloc & 0x1)) {
625 if (!count)
626 mas->alloc = NULL;
627 else
628 mas->alloc = (struct maple_alloc *)(((count) << 1U) | 1U);
629 return;
630 }
631
632 mas->alloc->request_count = count;
633}
634
635/*
636 * mas_alloc_req() - get the requested number of allocations.
637 * @mas: The maple state
638 *
639 * The alloc count is either stored directly in @mas, or in
640 * @mas->alloc->request_count if there is at least one node allocated. Decode
641 * the request count if it's stored directly in @mas->alloc.
642 *
643 * Return: The allocation request count.
644 */
645static inline unsigned int mas_alloc_req(const struct ma_state *mas)
646{
647 if ((unsigned long)mas->alloc & 0x1)
648 return (unsigned long)(mas->alloc) >> 1;
649 else if (mas->alloc)
650 return mas->alloc->request_count;
651 return 0;
652}
653
654/*
655 * ma_pivots() - Get a pointer to the maple node pivots.
96ae4c90
WY
656 * @node: the maple node
657 * @type: the node type
54a611b6 658 *
39d0bd86
LH
659 * In the event of a dead node, this array may be %NULL
660 *
54a611b6
LH
661 * Return: A pointer to the maple node pivots
662 */
663static inline unsigned long *ma_pivots(struct maple_node *node,
664 enum maple_type type)
665{
666 switch (type) {
667 case maple_arange_64:
668 return node->ma64.pivot;
669 case maple_range_64:
670 case maple_leaf_64:
671 return node->mr64.pivot;
672 case maple_dense:
673 return NULL;
674 }
675 return NULL;
676}
677
678/*
679 * ma_gaps() - Get a pointer to the maple node gaps.
96ae4c90
WY
680 * @node: the maple node
681 * @type: the node type
54a611b6
LH
682 *
683 * Return: A pointer to the maple node gaps
684 */
685static inline unsigned long *ma_gaps(struct maple_node *node,
686 enum maple_type type)
687{
688 switch (type) {
689 case maple_arange_64:
690 return node->ma64.gap;
691 case maple_range_64:
692 case maple_leaf_64:
693 case maple_dense:
694 return NULL;
695 }
696 return NULL;
697}
698
54a611b6
LH
699/*
700 * mas_safe_pivot() - get the pivot at @piv or mas->max.
701 * @mas: The maple state
702 * @pivots: The pointer to the maple node pivots
703 * @piv: The pivot to fetch
704 * @type: The maple node type
705 *
706 * Return: The pivot at @piv within the limit of the @pivots array, @mas->max
707 * otherwise.
708 */
271f61a8 709static __always_inline unsigned long
54a611b6
LH
710mas_safe_pivot(const struct ma_state *mas, unsigned long *pivots,
711 unsigned char piv, enum maple_type type)
712{
713 if (piv >= mt_pivots[type])
714 return mas->max;
715
716 return pivots[piv];
717}
718
719/*
720 * mas_safe_min() - Return the minimum for a given offset.
721 * @mas: The maple state
722 * @pivots: The pointer to the maple node pivots
723 * @offset: The offset into the pivot array
724 *
725 * Return: The minimum range value that is contained in @offset.
726 */
727static inline unsigned long
728mas_safe_min(struct ma_state *mas, unsigned long *pivots, unsigned char offset)
729{
730 if (likely(offset))
731 return pivots[offset - 1] + 1;
732
733 return mas->min;
734}
735
54a611b6
LH
736/*
737 * mte_set_pivot() - Set a pivot to a value in an encoded maple node.
738 * @mn: The encoded maple node
739 * @piv: The pivot offset
740 * @val: The value of the pivot
741 */
742static inline void mte_set_pivot(struct maple_enode *mn, unsigned char piv,
743 unsigned long val)
744{
745 struct maple_node *node = mte_to_node(mn);
746 enum maple_type type = mte_node_type(mn);
747
748 BUG_ON(piv >= mt_pivots[type]);
749 switch (type) {
54a611b6
LH
750 case maple_range_64:
751 case maple_leaf_64:
752 node->mr64.pivot[piv] = val;
753 break;
754 case maple_arange_64:
755 node->ma64.pivot[piv] = val;
756 break;
757 case maple_dense:
758 break;
759 }
760
761}
762
763/*
764 * ma_slots() - Get a pointer to the maple node slots.
765 * @mn: The maple node
766 * @mt: The maple node type
767 *
768 * Return: A pointer to the maple node slots
769 */
770static inline void __rcu **ma_slots(struct maple_node *mn, enum maple_type mt)
771{
772 switch (mt) {
54a611b6
LH
773 case maple_arange_64:
774 return mn->ma64.slot;
775 case maple_range_64:
776 case maple_leaf_64:
777 return mn->mr64.slot;
778 case maple_dense:
779 return mn->slot;
780 }
37a8ab24
LH
781
782 return NULL;
54a611b6
LH
783}
784
19a462f0
LH
785static inline bool mt_write_locked(const struct maple_tree *mt)
786{
787 return mt_external_lock(mt) ? mt_write_lock_is_held(mt) :
788 lockdep_is_held(&mt->ma_lock);
789}
790
271f61a8 791static __always_inline bool mt_locked(const struct maple_tree *mt)
54a611b6
LH
792{
793 return mt_external_lock(mt) ? mt_lock_is_held(mt) :
794 lockdep_is_held(&mt->ma_lock);
795}
796
271f61a8 797static __always_inline void *mt_slot(const struct maple_tree *mt,
54a611b6
LH
798 void __rcu **slots, unsigned char offset)
799{
800 return rcu_dereference_check(slots[offset], mt_locked(mt));
801}
802
271f61a8
LH
803static __always_inline void *mt_slot_locked(struct maple_tree *mt,
804 void __rcu **slots, unsigned char offset)
790e1fa8 805{
19a462f0 806 return rcu_dereference_protected(slots[offset], mt_write_locked(mt));
790e1fa8 807}
54a611b6
LH
808/*
809 * mas_slot_locked() - Get the slot value when holding the maple tree lock.
810 * @mas: The maple state
811 * @slots: The pointer to the slots
812 * @offset: The offset into the slots array to fetch
813 *
814 * Return: The entry stored in @slots at the @offset.
815 */
271f61a8
LH
816static __always_inline void *mas_slot_locked(struct ma_state *mas,
817 void __rcu **slots, unsigned char offset)
54a611b6 818{
790e1fa8 819 return mt_slot_locked(mas->tree, slots, offset);
54a611b6
LH
820}
821
822/*
823 * mas_slot() - Get the slot value when not holding the maple tree lock.
824 * @mas: The maple state
825 * @slots: The pointer to the slots
826 * @offset: The offset into the slots array to fetch
827 *
828 * Return: The entry stored in @slots at the @offset
829 */
271f61a8
LH
830static __always_inline void *mas_slot(struct ma_state *mas, void __rcu **slots,
831 unsigned char offset)
54a611b6
LH
832{
833 return mt_slot(mas->tree, slots, offset);
834}
835
836/*
837 * mas_root() - Get the maple tree root.
838 * @mas: The maple state.
839 *
840 * Return: The pointer to the root of the tree
841 */
271f61a8 842static __always_inline void *mas_root(struct ma_state *mas)
54a611b6
LH
843{
844 return rcu_dereference_check(mas->tree->ma_root, mt_locked(mas->tree));
845}
846
847static inline void *mt_root_locked(struct maple_tree *mt)
848{
19a462f0 849 return rcu_dereference_protected(mt->ma_root, mt_write_locked(mt));
54a611b6
LH
850}
851
852/*
853 * mas_root_locked() - Get the maple tree root when holding the maple tree lock.
854 * @mas: The maple state.
855 *
856 * Return: The pointer to the root of the tree
857 */
858static inline void *mas_root_locked(struct ma_state *mas)
859{
860 return mt_root_locked(mas->tree);
861}
862
863static inline struct maple_metadata *ma_meta(struct maple_node *mn,
864 enum maple_type mt)
865{
866 switch (mt) {
867 case maple_arange_64:
868 return &mn->ma64.meta;
869 default:
870 return &mn->mr64.meta;
871 }
872}
873
874/*
875 * ma_set_meta() - Set the metadata information of a node.
876 * @mn: The maple node
877 * @mt: The maple node type
878 * @offset: The offset of the highest sub-gap in this node.
879 * @end: The end of the data in this node.
880 */
881static inline void ma_set_meta(struct maple_node *mn, enum maple_type mt,
882 unsigned char offset, unsigned char end)
883{
884 struct maple_metadata *meta = ma_meta(mn, mt);
885
886 meta->gap = offset;
887 meta->end = end;
888}
889
2e5b4921 890/*
790e1fa8
LH
891 * mt_clear_meta() - clear the metadata information of a node, if it exists
892 * @mt: The maple tree
2e5b4921 893 * @mn: The maple node
790e1fa8 894 * @type: The maple node type
2e5b4921 895 */
790e1fa8
LH
896static inline void mt_clear_meta(struct maple_tree *mt, struct maple_node *mn,
897 enum maple_type type)
2e5b4921
LH
898{
899 struct maple_metadata *meta;
900 unsigned long *pivots;
901 void __rcu **slots;
902 void *next;
903
790e1fa8 904 switch (type) {
2e5b4921
LH
905 case maple_range_64:
906 pivots = mn->mr64.pivot;
907 if (unlikely(pivots[MAPLE_RANGE64_SLOTS - 2])) {
908 slots = mn->mr64.slot;
790e1fa8
LH
909 next = mt_slot_locked(mt, slots,
910 MAPLE_RANGE64_SLOTS - 1);
911 if (unlikely((mte_to_node(next) &&
912 mte_node_type(next))))
913 return; /* no metadata, could be node */
2e5b4921
LH
914 }
915 fallthrough;
916 case maple_arange_64:
790e1fa8 917 meta = ma_meta(mn, type);
2e5b4921
LH
918 break;
919 default:
920 return;
921 }
922
923 meta->gap = 0;
924 meta->end = 0;
925}
926
54a611b6
LH
927/*
928 * ma_meta_end() - Get the data end of a node from the metadata
929 * @mn: The maple node
930 * @mt: The maple node type
931 */
932static inline unsigned char ma_meta_end(struct maple_node *mn,
933 enum maple_type mt)
934{
935 struct maple_metadata *meta = ma_meta(mn, mt);
936
937 return meta->end;
938}
939
940/*
941 * ma_meta_gap() - Get the largest gap location of a node from the metadata
942 * @mn: The maple node
54a611b6 943 */
c5e94121 944static inline unsigned char ma_meta_gap(struct maple_node *mn)
54a611b6 945{
54a611b6
LH
946 return mn->ma64.meta.gap;
947}
948
949/*
950 * ma_set_meta_gap() - Set the largest gap location in a nodes metadata
951 * @mn: The maple node
96ae4c90 952 * @mt: The maple node type
54a611b6
LH
953 * @offset: The location of the largest gap.
954 */
955static inline void ma_set_meta_gap(struct maple_node *mn, enum maple_type mt,
956 unsigned char offset)
957{
958
959 struct maple_metadata *meta = ma_meta(mn, mt);
960
961 meta->gap = offset;
962}
963
964/*
965 * mat_add() - Add a @dead_enode to the ma_topiary of a list of dead nodes.
96ae4c90
WY
966 * @mat: the ma_topiary, a linked list of dead nodes.
967 * @dead_enode: the node to be marked as dead and added to the tail of the list
54a611b6
LH
968 *
969 * Add the @dead_enode to the linked list in @mat.
970 */
971static inline void mat_add(struct ma_topiary *mat,
972 struct maple_enode *dead_enode)
973{
974 mte_set_node_dead(dead_enode);
975 mte_to_mat(dead_enode)->next = NULL;
976 if (!mat->tail) {
977 mat->tail = mat->head = dead_enode;
978 return;
979 }
980
981 mte_to_mat(mat->tail)->next = dead_enode;
982 mat->tail = dead_enode;
983}
984
530f745c
LH
985static void mt_free_walk(struct rcu_head *head);
986static void mt_destroy_walk(struct maple_enode *enode, struct maple_tree *mt,
987 bool free);
54a611b6
LH
988/*
989 * mas_mat_destroy() - Free all nodes and subtrees in a dead list.
96ae4c90
WY
990 * @mas: the maple state
991 * @mat: the ma_topiary linked list of dead nodes to free.
54a611b6
LH
992 *
993 * Destroy walk a dead list.
994 */
995static void mas_mat_destroy(struct ma_state *mas, struct ma_topiary *mat)
996{
997 struct maple_enode *next;
530f745c
LH
998 struct maple_node *node;
999 bool in_rcu = mt_in_rcu(mas->tree);
54a611b6
LH
1000
1001 while (mat->head) {
1002 next = mte_to_mat(mat->head)->next;
530f745c
LH
1003 node = mte_to_node(mat->head);
1004 mt_destroy_walk(mat->head, mas->tree, !in_rcu);
1005 if (in_rcu)
1006 call_rcu(&node->rcu, mt_free_walk);
54a611b6
LH
1007 mat->head = next;
1008 }
1009}
1010/*
1011 * mas_descend() - Descend into the slot stored in the ma_state.
96ae4c90 1012 * @mas: the maple state.
54a611b6
LH
1013 *
1014 * Note: Not RCU safe, only use in write side or debug code.
1015 */
1016static inline void mas_descend(struct ma_state *mas)
1017{
1018 enum maple_type type;
1019 unsigned long *pivots;
1020 struct maple_node *node;
1021 void __rcu **slots;
1022
1023 node = mas_mn(mas);
1024 type = mte_node_type(mas->node);
1025 pivots = ma_pivots(node, type);
1026 slots = ma_slots(node, type);
1027
1028 if (mas->offset)
1029 mas->min = pivots[mas->offset - 1] + 1;
1030 mas->max = mas_safe_pivot(mas, pivots, mas->offset, type);
1031 mas->node = mas_slot(mas, slots, mas->offset);
1032}
1033
1034/*
1035 * mte_set_gap() - Set a maple node gap.
1036 * @mn: The encoded maple node
1037 * @gap: The offset of the gap to set
1038 * @val: The gap value
1039 */
1040static inline void mte_set_gap(const struct maple_enode *mn,
1041 unsigned char gap, unsigned long val)
1042{
1043 switch (mte_node_type(mn)) {
1044 default:
1045 break;
1046 case maple_arange_64:
1047 mte_to_node(mn)->ma64.gap[gap] = val;
1048 break;
1049 }
1050}
1051
1052/*
1053 * mas_ascend() - Walk up a level of the tree.
1054 * @mas: The maple state
1055 *
1056 * Sets the @mas->max and @mas->min to the correct values when walking up. This
1057 * may cause several levels of walking up to find the correct min and max.
1058 * May find a dead node which will cause a premature return.
1059 * Return: 1 on dead node, 0 otherwise
1060 */
1061static int mas_ascend(struct ma_state *mas)
1062{
1063 struct maple_enode *p_enode; /* parent enode. */
1064 struct maple_enode *a_enode; /* ancestor enode. */
1065 struct maple_node *a_node; /* ancestor node. */
1066 struct maple_node *p_node; /* parent node. */
1067 unsigned char a_slot;
1068 enum maple_type a_type;
1069 unsigned long min, max;
1070 unsigned long *pivots;
54a611b6
LH
1071 bool set_max = false, set_min = false;
1072
1073 a_node = mas_mn(mas);
1074 if (ma_is_root(a_node)) {
1075 mas->offset = 0;
1076 return 0;
1077 }
1078
1079 p_node = mte_parent(mas->node);
1080 if (unlikely(a_node == p_node))
1081 return 1;
633769c9 1082
afc754c6 1083 a_type = mas_parent_type(mas, mas->node);
633769c9 1084 mas->offset = mte_parent_slot(mas->node);
54a611b6
LH
1085 a_enode = mt_mk_node(p_node, a_type);
1086
1087 /* Check to make sure all parent information is still accurate */
1088 if (p_node != mte_parent(mas->node))
1089 return 1;
1090
1091 mas->node = a_enode;
54a611b6
LH
1092
1093 if (mte_is_root(a_enode)) {
1094 mas->max = ULONG_MAX;
1095 mas->min = 0;
1096 return 0;
1097 }
1098
3f05fcde
PZ
1099 min = 0;
1100 max = ULONG_MAX;
1101 if (!mas->offset) {
1102 min = mas->min;
633769c9 1103 set_min = true;
3f05fcde 1104 }
633769c9
LH
1105
1106 if (mas->max == ULONG_MAX)
1107 set_max = true;
1108
54a611b6
LH
1109 do {
1110 p_enode = a_enode;
afc754c6 1111 a_type = mas_parent_type(mas, p_enode);
54a611b6
LH
1112 a_node = mte_parent(p_enode);
1113 a_slot = mte_parent_slot(p_enode);
54a611b6 1114 a_enode = mt_mk_node(a_node, a_type);
39d0bd86
LH
1115 pivots = ma_pivots(a_node, a_type);
1116
1117 if (unlikely(ma_dead_node(a_node)))
1118 return 1;
54a611b6
LH
1119
1120 if (!set_min && a_slot) {
1121 set_min = true;
1122 min = pivots[a_slot - 1] + 1;
1123 }
1124
1125 if (!set_max && a_slot < mt_pivots[a_type]) {
1126 set_max = true;
1127 max = pivots[a_slot];
1128 }
1129
1130 if (unlikely(ma_dead_node(a_node)))
1131 return 1;
1132
1133 if (unlikely(ma_is_root(a_node)))
1134 break;
1135
1136 } while (!set_min || !set_max);
1137
1138 mas->max = max;
1139 mas->min = min;
1140 return 0;
1141}
1142
1143/*
1144 * mas_pop_node() - Get a previously allocated maple node from the maple state.
1145 * @mas: The maple state
1146 *
1147 * Return: A pointer to a maple node.
1148 */
1149static inline struct maple_node *mas_pop_node(struct ma_state *mas)
1150{
1151 struct maple_alloc *ret, *node = mas->alloc;
1152 unsigned long total = mas_allocated(mas);
541e06b7 1153 unsigned int req = mas_alloc_req(mas);
54a611b6
LH
1154
1155 /* nothing or a request pending. */
541e06b7 1156 if (WARN_ON(!total))
54a611b6
LH
1157 return NULL;
1158
1159 if (total == 1) {
1160 /* single allocation in this ma_state */
1161 mas->alloc = NULL;
1162 ret = node;
1163 goto single_node;
1164 }
1165
541e06b7 1166 if (node->node_count == 1) {
54a611b6
LH
1167 /* Single allocation in this node. */
1168 mas->alloc = node->slot[0];
54a611b6
LH
1169 mas->alloc->total = node->total - 1;
1170 ret = node;
1171 goto new_head;
1172 }
54a611b6 1173 node->total--;
541e06b7
LH
1174 ret = node->slot[--node->node_count];
1175 node->slot[node->node_count] = NULL;
54a611b6
LH
1176
1177single_node:
1178new_head:
541e06b7
LH
1179 if (req) {
1180 req++;
1181 mas_set_alloc_req(mas, req);
54a611b6 1182 }
541e06b7
LH
1183
1184 memset(ret, 0, sizeof(*ret));
54a611b6
LH
1185 return (struct maple_node *)ret;
1186}
1187
1188/*
1189 * mas_push_node() - Push a node back on the maple state allocation.
1190 * @mas: The maple state
1191 * @used: The used maple node
1192 *
1193 * Stores the maple node back into @mas->alloc for reuse. Updates allocated and
1194 * requested node count as necessary.
1195 */
1196static inline void mas_push_node(struct ma_state *mas, struct maple_node *used)
1197{
1198 struct maple_alloc *reuse = (struct maple_alloc *)used;
1199 struct maple_alloc *head = mas->alloc;
1200 unsigned long count;
1201 unsigned int requested = mas_alloc_req(mas);
1202
54a611b6
LH
1203 count = mas_allocated(mas);
1204
541e06b7
LH
1205 reuse->request_count = 0;
1206 reuse->node_count = 0;
908378a3
WY
1207 if (count) {
1208 if (head->node_count < MAPLE_ALLOC_SLOTS) {
1209 head->slot[head->node_count++] = reuse;
1210 head->total++;
1211 goto done;
1212 }
54a611b6 1213 reuse->slot[0] = head;
541e06b7 1214 reuse->node_count = 1;
54a611b6
LH
1215 }
1216
908378a3 1217 reuse->total = count + 1;
54a611b6
LH
1218 mas->alloc = reuse;
1219done:
1220 if (requested > 1)
1221 mas_set_alloc_req(mas, requested - 1);
1222}
1223
1224/*
1225 * mas_alloc_nodes() - Allocate nodes into a maple state
1226 * @mas: The maple state
1227 * @gfp: The GFP Flags
1228 */
1229static inline void mas_alloc_nodes(struct ma_state *mas, gfp_t gfp)
1230{
1231 struct maple_alloc *node;
54a611b6 1232 unsigned long allocated = mas_allocated(mas);
54a611b6
LH
1233 unsigned int requested = mas_alloc_req(mas);
1234 unsigned int count;
1235 void **slots = NULL;
1236 unsigned int max_req = 0;
1237
1238 if (!requested)
1239 return;
1240
1241 mas_set_alloc_req(mas, 0);
1242 if (mas->mas_flags & MA_STATE_PREALLOC) {
1243 if (allocated)
1244 return;
1245 WARN_ON(!allocated);
1246 }
1247
541e06b7 1248 if (!allocated || mas->alloc->node_count == MAPLE_ALLOC_SLOTS) {
54a611b6
LH
1249 node = (struct maple_alloc *)mt_alloc_one(gfp);
1250 if (!node)
1251 goto nomem_one;
1252
541e06b7 1253 if (allocated) {
54a611b6 1254 node->slot[0] = mas->alloc;
541e06b7
LH
1255 node->node_count = 1;
1256 } else {
1257 node->node_count = 0;
1258 }
54a611b6 1259
54a611b6 1260 mas->alloc = node;
541e06b7 1261 node->total = ++allocated;
e852cb1d 1262 node->request_count = 0;
54a611b6
LH
1263 requested--;
1264 }
1265
1266 node = mas->alloc;
1267 while (requested) {
1f5f12ec
PZ
1268 max_req = MAPLE_ALLOC_SLOTS - node->node_count;
1269 slots = (void **)&node->slot[node->node_count];
54a611b6
LH
1270 max_req = min(requested, max_req);
1271 count = mt_alloc_bulk(gfp, max_req, slots);
1272 if (!count)
1273 goto nomem_bulk;
1274
1f5f12ec
PZ
1275 if (node->node_count == 0) {
1276 node->slot[0]->node_count = 0;
1277 node->slot[0]->request_count = 0;
1278 }
1279
54a611b6 1280 node->node_count += count;
541e06b7 1281 allocated += count;
5b2100f7
JL
1282 /* find a non-full node*/
1283 do {
1284 node = node->slot[0];
1285 } while (unlikely(node->node_count == MAPLE_ALLOC_SLOTS));
54a611b6
LH
1286 requested -= count;
1287 }
541e06b7 1288 mas->alloc->total = allocated;
54a611b6
LH
1289 return;
1290
1291nomem_bulk:
1292 /* Clean up potential freed allocations on bulk failure */
1293 memset(slots, 0, max_req * sizeof(unsigned long));
4223dd93 1294 mas->alloc->total = allocated;
54a611b6
LH
1295nomem_one:
1296 mas_set_alloc_req(mas, requested);
54a611b6 1297 mas_set_err(mas, -ENOMEM);
54a611b6
LH
1298}
1299
1300/*
1301 * mas_free() - Free an encoded maple node
1302 * @mas: The maple state
1303 * @used: The encoded maple node to free.
1304 *
1305 * Uses rcu free if necessary, pushes @used back on the maple state allocations
1306 * otherwise.
1307 */
1308static inline void mas_free(struct ma_state *mas, struct maple_enode *used)
1309{
1310 struct maple_node *tmp = mte_to_node(used);
1311
1312 if (mt_in_rcu(mas->tree))
1313 ma_free_rcu(tmp);
1314 else
1315 mas_push_node(mas, tmp);
1316}
1317
1318/*
e755c43e
SK
1319 * mas_node_count_gfp() - Check if enough nodes are allocated and request more
1320 * if there is not enough nodes.
54a611b6
LH
1321 * @mas: The maple state
1322 * @count: The number of nodes needed
1323 * @gfp: the gfp flags
1324 */
1325static void mas_node_count_gfp(struct ma_state *mas, int count, gfp_t gfp)
1326{
1327 unsigned long allocated = mas_allocated(mas);
1328
1329 if (allocated < count) {
1330 mas_set_alloc_req(mas, count - allocated);
1331 mas_alloc_nodes(mas, gfp);
1332 }
1333}
1334
1335/*
1336 * mas_node_count() - Check if enough nodes are allocated and request more if
1337 * there is not enough nodes.
1338 * @mas: The maple state
1339 * @count: The number of nodes needed
1340 *
1341 * Note: Uses GFP_NOWAIT | __GFP_NOWARN for gfp flags.
1342 */
1343static void mas_node_count(struct ma_state *mas, int count)
1344{
1345 return mas_node_count_gfp(mas, count, GFP_NOWAIT | __GFP_NOWARN);
1346}
1347
1348/*
1349 * mas_start() - Sets up maple state for operations.
1350 * @mas: The maple state.
1351 *
67254c7d 1352 * If mas->status == ma_start, then set the min, max and depth to
54a611b6
LH
1353 * defaults.
1354 *
1355 * Return:
067311d3
LH
1356 * - If mas->node is an error or not mas_start, return NULL.
1357 * - If it's an empty tree: NULL & mas->status == ma_none
7a0529d0 1358 * - If it's a single entry: The entry & mas->status == ma_root
c64d6615 1359 * - If it's a tree: NULL & mas->status == ma_active
54a611b6
LH
1360 */
1361static inline struct maple_enode *mas_start(struct ma_state *mas)
1362{
1363 if (likely(mas_is_start(mas))) {
1364 struct maple_enode *root;
1365
54a611b6
LH
1366 mas->min = 0;
1367 mas->max = ULONG_MAX;
54a611b6 1368
a7b92d59 1369retry:
d0411860 1370 mas->depth = 0;
54a611b6
LH
1371 root = mas_root(mas);
1372 /* Tree with nodes */
1373 if (likely(xa_is_node(root))) {
f9d3a963 1374 mas->depth = 0;
067311d3 1375 mas->status = ma_active;
54a611b6 1376 mas->node = mte_safe_root(root);
46b34584 1377 mas->offset = 0;
a7b92d59
LH
1378 if (mte_dead_node(mas->node))
1379 goto retry;
1380
54a611b6
LH
1381 return NULL;
1382 }
1383
5d659bbb 1384 mas->node = NULL;
54a611b6
LH
1385 /* empty tree */
1386 if (unlikely(!root)) {
067311d3 1387 mas->status = ma_none;
54a611b6
LH
1388 mas->offset = MAPLE_NODE_SLOTS;
1389 return NULL;
1390 }
1391
1392 /* Single entry tree */
067311d3 1393 mas->status = ma_root;
54a611b6
LH
1394 mas->offset = MAPLE_NODE_SLOTS;
1395
1396 /* Single entry tree. */
1397 if (mas->index > 0)
1398 return NULL;
1399
1400 return root;
1401 }
1402
1403 return NULL;
1404}
1405
1406/*
1407 * ma_data_end() - Find the end of the data in a node.
1408 * @node: The maple node
1409 * @type: The maple node type
1410 * @pivots: The array of pivots in the node
1411 * @max: The maximum value in the node
1412 *
1413 * Uses metadata to find the end of the data when possible.
1414 * Return: The zero indexed last slot with data (may be null).
1415 */
271f61a8
LH
1416static __always_inline unsigned char ma_data_end(struct maple_node *node,
1417 enum maple_type type, unsigned long *pivots, unsigned long max)
54a611b6
LH
1418{
1419 unsigned char offset;
1420
39d0bd86
LH
1421 if (!pivots)
1422 return 0;
1423
54a611b6
LH
1424 if (type == maple_arange_64)
1425 return ma_meta_end(node, type);
1426
1427 offset = mt_pivots[type] - 1;
1428 if (likely(!pivots[offset]))
1429 return ma_meta_end(node, type);
1430
1431 if (likely(pivots[offset] == max))
1432 return offset;
1433
1434 return mt_pivots[type];
1435}
1436
1437/*
1438 * mas_data_end() - Find the end of the data (slot).
1439 * @mas: the maple state
1440 *
1441 * This method is optimized to check the metadata of a node if the node type
1442 * supports data end metadata.
1443 *
1444 * Return: The zero indexed last slot with data (may be null).
1445 */
1446static inline unsigned char mas_data_end(struct ma_state *mas)
1447{
1448 enum maple_type type;
1449 struct maple_node *node;
1450 unsigned char offset;
1451 unsigned long *pivots;
1452
1453 type = mte_node_type(mas->node);
1454 node = mas_mn(mas);
1455 if (type == maple_arange_64)
1456 return ma_meta_end(node, type);
1457
1458 pivots = ma_pivots(node, type);
39d0bd86
LH
1459 if (unlikely(ma_dead_node(node)))
1460 return 0;
1461
54a611b6
LH
1462 offset = mt_pivots[type] - 1;
1463 if (likely(!pivots[offset]))
1464 return ma_meta_end(node, type);
1465
1466 if (likely(pivots[offset] == mas->max))
1467 return offset;
1468
1469 return mt_pivots[type];
1470}
1471
1472/*
1473 * mas_leaf_max_gap() - Returns the largest gap in a leaf node
96ae4c90 1474 * @mas: the maple state
54a611b6
LH
1475 *
1476 * Return: The maximum gap in the leaf.
1477 */
1478static unsigned long mas_leaf_max_gap(struct ma_state *mas)
1479{
1480 enum maple_type mt;
1481 unsigned long pstart, gap, max_gap;
1482 struct maple_node *mn;
1483 unsigned long *pivots;
1484 void __rcu **slots;
1485 unsigned char i;
1486 unsigned char max_piv;
1487
1488 mt = mte_node_type(mas->node);
1489 mn = mas_mn(mas);
1490 slots = ma_slots(mn, mt);
1491 max_gap = 0;
1492 if (unlikely(ma_is_dense(mt))) {
1493 gap = 0;
1494 for (i = 0; i < mt_slots[mt]; i++) {
1495 if (slots[i]) {
1496 if (gap > max_gap)
1497 max_gap = gap;
1498 gap = 0;
1499 } else {
1500 gap++;
1501 }
1502 }
1503 if (gap > max_gap)
1504 max_gap = gap;
1505 return max_gap;
1506 }
1507
1508 /*
1509 * Check the first implied pivot optimizes the loop below and slot 1 may
1510 * be skipped if there is a gap in slot 0.
1511 */
1512 pivots = ma_pivots(mn, mt);
1513 if (likely(!slots[0])) {
1514 max_gap = pivots[0] - mas->min + 1;
1515 i = 2;
1516 } else {
1517 i = 1;
1518 }
1519
1520 /* reduce max_piv as the special case is checked before the loop */
1521 max_piv = ma_data_end(mn, mt, pivots, mas->max) - 1;
1522 /*
1523 * Check end implied pivot which can only be a gap on the right most
1524 * node.
1525 */
1526 if (unlikely(mas->max == ULONG_MAX) && !slots[max_piv + 1]) {
1527 gap = ULONG_MAX - pivots[max_piv];
1528 if (gap > max_gap)
1529 max_gap = gap;
7e552dcd
PZ
1530
1531 if (max_gap > pivots[max_piv] - mas->min)
1532 return max_gap;
54a611b6
LH
1533 }
1534
1535 for (; i <= max_piv; i++) {
1536 /* data == no gap. */
1537 if (likely(slots[i]))
1538 continue;
1539
1540 pstart = pivots[i - 1];
1541 gap = pivots[i] - pstart;
1542 if (gap > max_gap)
1543 max_gap = gap;
1544
1545 /* There cannot be two gaps in a row. */
1546 i++;
1547 }
1548 return max_gap;
1549}
1550
1551/*
1552 * ma_max_gap() - Get the maximum gap in a maple node (non-leaf)
1553 * @node: The maple node
1554 * @gaps: The pointer to the gaps
1555 * @mt: The maple node type
96ae4c90 1556 * @off: Pointer to store the offset location of the gap.
54a611b6
LH
1557 *
1558 * Uses the metadata data end to scan backwards across set gaps.
1559 *
1560 * Return: The maximum gap value
1561 */
1562static inline unsigned long
1563ma_max_gap(struct maple_node *node, unsigned long *gaps, enum maple_type mt,
1564 unsigned char *off)
1565{
1566 unsigned char offset, i;
1567 unsigned long max_gap = 0;
1568
1569 i = offset = ma_meta_end(node, mt);
1570 do {
1571 if (gaps[i] > max_gap) {
1572 max_gap = gaps[i];
1573 offset = i;
1574 }
1575 } while (i--);
1576
1577 *off = offset;
1578 return max_gap;
1579}
1580
1581/*
1582 * mas_max_gap() - find the largest gap in a non-leaf node and set the slot.
1583 * @mas: The maple state.
1584 *
54a611b6
LH
1585 * Return: The gap value.
1586 */
1587static inline unsigned long mas_max_gap(struct ma_state *mas)
1588{
1589 unsigned long *gaps;
1590 unsigned char offset;
1591 enum maple_type mt;
1592 struct maple_node *node;
1593
1594 mt = mte_node_type(mas->node);
1595 if (ma_is_leaf(mt))
1596 return mas_leaf_max_gap(mas);
1597
1598 node = mas_mn(mas);
bec1b51e 1599 MAS_BUG_ON(mas, mt != maple_arange_64);
c5e94121 1600 offset = ma_meta_gap(node);
54a611b6
LH
1601 gaps = ma_gaps(node, mt);
1602 return gaps[offset];
1603}
1604
1605/*
1606 * mas_parent_gap() - Set the parent gap and any gaps above, as needed
1607 * @mas: The maple state
1608 * @offset: The gap offset in the parent to set
1609 * @new: The new gap value.
1610 *
1611 * Set the parent gap then continue to set the gap upwards, using the metadata
1612 * of the parent to see if it is necessary to check the node above.
1613 */
1614static inline void mas_parent_gap(struct ma_state *mas, unsigned char offset,
1615 unsigned long new)
1616{
1617 unsigned long meta_gap = 0;
1618 struct maple_node *pnode;
1619 struct maple_enode *penode;
1620 unsigned long *pgaps;
1621 unsigned char meta_offset;
1622 enum maple_type pmt;
1623
1624 pnode = mte_parent(mas->node);
afc754c6 1625 pmt = mas_parent_type(mas, mas->node);
54a611b6
LH
1626 penode = mt_mk_node(pnode, pmt);
1627 pgaps = ma_gaps(pnode, pmt);
1628
1629ascend:
bec1b51e 1630 MAS_BUG_ON(mas, pmt != maple_arange_64);
c5e94121 1631 meta_offset = ma_meta_gap(pnode);
d695c30a 1632 meta_gap = pgaps[meta_offset];
54a611b6
LH
1633
1634 pgaps[offset] = new;
1635
1636 if (meta_gap == new)
1637 return;
1638
1639 if (offset != meta_offset) {
1640 if (meta_gap > new)
1641 return;
1642
1643 ma_set_meta_gap(pnode, pmt, offset);
1644 } else if (new < meta_gap) {
54a611b6
LH
1645 new = ma_max_gap(pnode, pgaps, pmt, &meta_offset);
1646 ma_set_meta_gap(pnode, pmt, meta_offset);
1647 }
1648
1649 if (ma_is_root(pnode))
1650 return;
1651
1652 /* Go to the parent node. */
1653 pnode = mte_parent(penode);
afc754c6 1654 pmt = mas_parent_type(mas, penode);
54a611b6
LH
1655 pgaps = ma_gaps(pnode, pmt);
1656 offset = mte_parent_slot(penode);
1657 penode = mt_mk_node(pnode, pmt);
1658 goto ascend;
1659}
1660
1661/*
1662 * mas_update_gap() - Update a nodes gaps and propagate up if necessary.
96ae4c90 1663 * @mas: the maple state.
54a611b6
LH
1664 */
1665static inline void mas_update_gap(struct ma_state *mas)
1666{
1667 unsigned char pslot;
1668 unsigned long p_gap;
1669 unsigned long max_gap;
1670
1671 if (!mt_is_alloc(mas->tree))
1672 return;
1673
1674 if (mte_is_root(mas->node))
1675 return;
1676
1677 max_gap = mas_max_gap(mas);
1678
1679 pslot = mte_parent_slot(mas->node);
1680 p_gap = ma_gaps(mte_parent(mas->node),
afc754c6 1681 mas_parent_type(mas, mas->node))[pslot];
54a611b6
LH
1682
1683 if (p_gap != max_gap)
1684 mas_parent_gap(mas, pslot, max_gap);
1685}
1686
1687/*
1688 * mas_adopt_children() - Set the parent pointer of all nodes in @parent to
1689 * @parent with the slot encoded.
96ae4c90
WY
1690 * @mas: the maple state (for the tree)
1691 * @parent: the maple encoded node containing the children.
54a611b6
LH
1692 */
1693static inline void mas_adopt_children(struct ma_state *mas,
1694 struct maple_enode *parent)
1695{
1696 enum maple_type type = mte_node_type(parent);
068bafca 1697 struct maple_node *node = mte_to_node(parent);
54a611b6
LH
1698 void __rcu **slots = ma_slots(node, type);
1699 unsigned long *pivots = ma_pivots(node, type);
1700 struct maple_enode *child;
1701 unsigned char offset;
1702
1703 offset = ma_data_end(node, type, pivots, mas->max);
1704 do {
1705 child = mas_slot_locked(mas, slots, offset);
bf96715e 1706 mas_set_parent(mas, child, parent, offset);
54a611b6
LH
1707 } while (offset--);
1708}
1709
1710/*
1238f6a2
LH
1711 * mas_put_in_tree() - Put a new node in the tree, smp_wmb(), and mark the old
1712 * node as dead.
96ae4c90
WY
1713 * @mas: the maple state with the new node
1714 * @old_enode: The old maple encoded node to replace.
f9d3a963 1715 * @new_height: if we are inserting a root node, update the height of the tree
54a611b6 1716 */
1238f6a2 1717static inline void mas_put_in_tree(struct ma_state *mas,
f9d3a963 1718 struct maple_enode *old_enode, char new_height)
14c4b5ab 1719 __must_hold(mas->tree->ma_lock)
54a611b6 1720{
1238f6a2
LH
1721 unsigned char offset;
1722 void __rcu **slots;
54a611b6
LH
1723
1724 if (mte_is_root(mas->node)) {
4ffc2ee2 1725 mas_mn(mas)->parent = ma_parent_ptr(mas_tree_parent(mas));
54a611b6 1726 rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node));
f9d3a963 1727 mt_set_height(mas->tree, new_height);
54a611b6 1728 } else {
1238f6a2
LH
1729
1730 offset = mte_parent_slot(mas->node);
1731 slots = ma_slots(mte_parent(mas->node),
1732 mas_parent_type(mas, mas->node));
54a611b6
LH
1733 rcu_assign_pointer(slots[offset], mas->node);
1734 }
1735
1238f6a2 1736 mte_set_node_dead(old_enode);
54a611b6
LH
1737}
1738
72bcf4aa
LH
1739/*
1740 * mas_replace_node() - Replace a node by putting it in the tree, marking it
1741 * dead, and freeing it.
1742 * the parent encoding to locate the maple node in the tree.
96ae4c90
WY
1743 * @mas: the ma_state with @mas->node pointing to the new node.
1744 * @old_enode: The old maple encoded node.
f9d3a963 1745 * @new_height: The new height of the tree as a result of the operation
72bcf4aa
LH
1746 */
1747static inline void mas_replace_node(struct ma_state *mas,
f9d3a963 1748 struct maple_enode *old_enode, unsigned char new_height)
72bcf4aa
LH
1749 __must_hold(mas->tree->ma_lock)
1750{
f9d3a963 1751 mas_put_in_tree(mas, old_enode, new_height);
72bcf4aa
LH
1752 mas_free(mas, old_enode);
1753}
1754
54a611b6 1755/*
530f745c
LH
1756 * mas_find_child() - Find a child who has the parent @mas->node.
1757 * @mas: the maple state with the parent.
54a611b6
LH
1758 * @child: the maple state to store the child.
1759 */
530f745c 1760static inline bool mas_find_child(struct ma_state *mas, struct ma_state *child)
14c4b5ab 1761 __must_hold(mas->tree->ma_lock)
54a611b6
LH
1762{
1763 enum maple_type mt;
1764 unsigned char offset;
1765 unsigned char end;
1766 unsigned long *pivots;
1767 struct maple_enode *entry;
1768 struct maple_node *node;
1769 void __rcu **slots;
1770
1771 mt = mte_node_type(mas->node);
1772 node = mas_mn(mas);
1773 slots = ma_slots(node, mt);
1774 pivots = ma_pivots(node, mt);
1775 end = ma_data_end(node, mt, pivots, mas->max);
1776 for (offset = mas->offset; offset <= end; offset++) {
1777 entry = mas_slot_locked(mas, slots, offset);
1778 if (mte_parent(entry) == node) {
1779 *child = *mas;
1780 mas->offset = offset + 1;
1781 child->offset = offset;
1782 mas_descend(child);
1783 child->offset = 0;
1784 return true;
1785 }
1786 }
1787 return false;
1788}
1789
1790/*
1791 * mab_shift_right() - Shift the data in mab right. Note, does not clean out the
1792 * old data or set b_node->b_end.
1793 * @b_node: the maple_big_node
1794 * @shift: the shift count
1795 */
1796static inline void mab_shift_right(struct maple_big_node *b_node,
1797 unsigned char shift)
1798{
1799 unsigned long size = b_node->b_end * sizeof(unsigned long);
1800
1801 memmove(b_node->pivot + shift, b_node->pivot, size);
1802 memmove(b_node->slot + shift, b_node->slot, size);
1803 if (b_node->type == maple_arange_64)
1804 memmove(b_node->gap + shift, b_node->gap, size);
1805}
1806
1807/*
1808 * mab_middle_node() - Check if a middle node is needed (unlikely)
1809 * @b_node: the maple_big_node that contains the data.
54a611b6
LH
1810 * @split: the potential split location
1811 * @slot_count: the size that can be stored in a single node being considered.
1812 *
1813 * Return: true if a middle node is required.
1814 */
1815static inline bool mab_middle_node(struct maple_big_node *b_node, int split,
1816 unsigned char slot_count)
1817{
1818 unsigned char size = b_node->b_end;
1819
1820 if (size >= 2 * slot_count)
1821 return true;
1822
1823 if (!b_node->slot[split] && (size >= 2 * slot_count - 1))
1824 return true;
1825
1826 return false;
1827}
1828
1829/*
1830 * mab_no_null_split() - ensure the split doesn't fall on a NULL
1831 * @b_node: the maple_big_node with the data
1832 * @split: the suggested split location
1833 * @slot_count: the number of slots in the node being considered.
1834 *
1835 * Return: the split location.
1836 */
1837static inline int mab_no_null_split(struct maple_big_node *b_node,
1838 unsigned char split, unsigned char slot_count)
1839{
1840 if (!b_node->slot[split]) {
1841 /*
1842 * If the split is less than the max slot && the right side will
1843 * still be sufficient, then increment the split on NULL.
1844 */
1845 if ((split < slot_count - 1) &&
1846 (b_node->b_end - split) > (mt_min_slots[b_node->type]))
1847 split++;
1848 else
1849 split--;
1850 }
1851 return split;
1852}
1853
1854/*
1855 * mab_calc_split() - Calculate the split location and if there needs to be two
1856 * splits.
96ae4c90 1857 * @mas: The maple state
54a611b6
LH
1858 * @bn: The maple_big_node with the data
1859 * @mid_split: The second split, if required. 0 otherwise.
1860 *
1861 * Return: The first split location. The middle split is set in @mid_split.
1862 */
1863static inline int mab_calc_split(struct ma_state *mas,
4f6a6bed 1864 struct maple_big_node *bn, unsigned char *mid_split)
54a611b6
LH
1865{
1866 unsigned char b_end = bn->b_end;
1867 int split = b_end / 2; /* Assume equal split. */
4f6a6bed 1868 unsigned char slot_count = mt_slots[bn->type];
54a611b6
LH
1869
1870 /*
1871 * To support gap tracking, all NULL entries are kept together and a node cannot
1872 * end on a NULL entry, with the exception of the left-most leaf. The
1873 * limitation means that the split of a node must be checked for this condition
1874 * and be able to put more data in one direction or the other.
1875 */
1876 if (unlikely((mas->mas_flags & MA_STATE_BULK))) {
1877 *mid_split = 0;
1878 split = b_end - mt_min_slots[bn->type];
1879
1880 if (!ma_is_leaf(bn->type))
1881 return split;
1882
1883 mas->mas_flags |= MA_STATE_REBALANCE;
1884 if (!bn->slot[split])
1885 split--;
1886 return split;
1887 }
1888
1889 /*
1890 * Although extremely rare, it is possible to enter what is known as the 3-way
1891 * split scenario. The 3-way split comes about by means of a store of a range
1892 * that overwrites the end and beginning of two full nodes. The result is a set
1893 * of entries that cannot be stored in 2 nodes. Sometimes, these two nodes can
1894 * also be located in different parent nodes which are also full. This can
1895 * carry upwards all the way to the root in the worst case.
1896 */
1897 if (unlikely(mab_middle_node(bn, split, slot_count))) {
1898 split = b_end / 3;
1899 *mid_split = split * 2;
1900 } else {
54a611b6 1901 *mid_split = 0;
54a611b6
LH
1902 }
1903
1904 /* Avoid ending a node on a NULL entry */
1905 split = mab_no_null_split(bn, split, slot_count);
54a611b6 1906
e11cb683
VY
1907 if (unlikely(*mid_split))
1908 *mid_split = mab_no_null_split(bn, *mid_split, slot_count);
54a611b6
LH
1909
1910 return split;
1911}
1912
1913/*
1914 * mas_mab_cp() - Copy data from a maple state inclusively to a maple_big_node
1915 * and set @b_node->b_end to the next free slot.
1916 * @mas: The maple state
1917 * @mas_start: The starting slot to copy
1918 * @mas_end: The end slot to copy (inclusively)
1919 * @b_node: The maple_big_node to place the data
1920 * @mab_start: The starting location in maple_big_node to store the data.
1921 */
1922static inline void mas_mab_cp(struct ma_state *mas, unsigned char mas_start,
1923 unsigned char mas_end, struct maple_big_node *b_node,
1924 unsigned char mab_start)
1925{
1926 enum maple_type mt;
1927 struct maple_node *node;
1928 void __rcu **slots;
1929 unsigned long *pivots, *gaps;
1930 int i = mas_start, j = mab_start;
1931 unsigned char piv_end;
1932
1933 node = mas_mn(mas);
1934 mt = mte_node_type(mas->node);
1935 pivots = ma_pivots(node, mt);
1936 if (!i) {
1937 b_node->pivot[j] = pivots[i++];
1938 if (unlikely(i > mas_end))
1939 goto complete;
1940 j++;
1941 }
1942
1943 piv_end = min(mas_end, mt_pivots[mt]);
1944 for (; i < piv_end; i++, j++) {
1945 b_node->pivot[j] = pivots[i];
1946 if (unlikely(!b_node->pivot[j]))
1c148069 1947 goto complete;
54a611b6
LH
1948
1949 if (unlikely(mas->max == b_node->pivot[j]))
1950 goto complete;
1951 }
1952
8c7904a8 1953 b_node->pivot[j] = mas_safe_pivot(mas, pivots, i, mt);
54a611b6
LH
1954
1955complete:
1956 b_node->b_end = ++j;
1957 j -= mab_start;
1958 slots = ma_slots(node, mt);
1959 memcpy(b_node->slot + mab_start, slots + mas_start, sizeof(void *) * j);
1960 if (!ma_is_leaf(mt) && mt_is_alloc(mas->tree)) {
1961 gaps = ma_gaps(node, mt);
1962 memcpy(b_node->gap + mab_start, gaps + mas_start,
1963 sizeof(unsigned long) * j);
1964 }
1965}
1966
1967/*
1968 * mas_leaf_set_meta() - Set the metadata of a leaf if possible.
54a611b6 1969 * @node: The maple node
54a611b6 1970 * @mt: The maple type
330018fe 1971 * @end: The node end
54a611b6 1972 */
330018fe 1973static inline void mas_leaf_set_meta(struct maple_node *node,
54a611b6
LH
1974 enum maple_type mt, unsigned char end)
1975{
54a611b6
LH
1976 if (end < mt_slots[mt] - 1)
1977 ma_set_meta(node, mt, 0, end);
1978}
1979
1980/*
1981 * mab_mas_cp() - Copy data from maple_big_node to a maple encoded node.
1982 * @b_node: the maple_big_node that has the data
1983 * @mab_start: the start location in @b_node.
1984 * @mab_end: The end location in @b_node (inclusively)
1985 * @mas: The maple state with the maple encoded node.
1986 */
1987static inline void mab_mas_cp(struct maple_big_node *b_node,
1988 unsigned char mab_start, unsigned char mab_end,
1989 struct ma_state *mas, bool new_max)
1990{
1991 int i, j = 0;
1992 enum maple_type mt = mte_node_type(mas->node);
1993 struct maple_node *node = mte_to_node(mas->node);
1994 void __rcu **slots = ma_slots(node, mt);
1995 unsigned long *pivots = ma_pivots(node, mt);
1996 unsigned long *gaps = NULL;
1997 unsigned char end;
1998
1999 if (mab_end - mab_start > mt_pivots[mt])
2000 mab_end--;
2001
2002 if (!pivots[mt_pivots[mt] - 1])
2003 slots[mt_pivots[mt]] = NULL;
2004
2005 i = mab_start;
2006 do {
2007 pivots[j++] = b_node->pivot[i++];
2008 } while (i <= mab_end && likely(b_node->pivot[i]));
2009
2010 memcpy(slots, b_node->slot + mab_start,
2011 sizeof(void *) * (i - mab_start));
2012
2013 if (new_max)
2014 mas->max = b_node->pivot[i - 1];
2015
2016 end = j - 1;
2017 if (likely(!ma_is_leaf(mt) && mt_is_alloc(mas->tree))) {
2018 unsigned long max_gap = 0;
d695c30a 2019 unsigned char offset = 0;
54a611b6
LH
2020
2021 gaps = ma_gaps(node, mt);
2022 do {
2023 gaps[--j] = b_node->gap[--i];
2024 if (gaps[j] > max_gap) {
2025 offset = j;
2026 max_gap = gaps[j];
2027 }
2028 } while (j);
2029
2030 ma_set_meta(node, mt, offset, end);
2031 } else {
330018fe 2032 mas_leaf_set_meta(node, mt, end);
54a611b6
LH
2033 }
2034}
2035
54a611b6
LH
2036/*
2037 * mas_bulk_rebalance() - Rebalance the end of a tree after a bulk insert.
2038 * @mas: The maple state
2039 * @end: The maple node end
2040 * @mt: The maple node type
2041 */
2042static inline void mas_bulk_rebalance(struct ma_state *mas, unsigned char end,
2043 enum maple_type mt)
2044{
2045 if (!(mas->mas_flags & MA_STATE_BULK))
2046 return;
2047
2048 if (mte_is_root(mas->node))
2049 return;
2050
2051 if (end > mt_min_slots[mt]) {
2052 mas->mas_flags &= ~MA_STATE_REBALANCE;
2053 return;
2054 }
2055}
2056
2057/*
2058 * mas_store_b_node() - Store an @entry into the b_node while also copying the
2059 * data from a maple encoded node.
2060 * @wr_mas: the maple write state
2061 * @b_node: the maple_big_node to fill with data
2062 * @offset_end: the offset to end copying
2063 *
2064 * Return: The actual end of the data stored in @b_node
2065 */
44081c77 2066static noinline_for_kasan void mas_store_b_node(struct ma_wr_state *wr_mas,
54a611b6
LH
2067 struct maple_big_node *b_node, unsigned char offset_end)
2068{
2069 unsigned char slot;
2070 unsigned char b_end;
2071 /* Possible underflow of piv will wrap back to 0 before use. */
2072 unsigned long piv;
2073 struct ma_state *mas = wr_mas->mas;
2074
2075 b_node->type = wr_mas->type;
2076 b_end = 0;
2077 slot = mas->offset;
2078 if (slot) {
2079 /* Copy start data up to insert. */
2080 mas_mab_cp(mas, 0, slot - 1, b_node, 0);
2081 b_end = b_node->b_end;
2082 piv = b_node->pivot[b_end - 1];
2083 } else
2084 piv = mas->min - 1;
2085
2086 if (piv + 1 < mas->index) {
2087 /* Handle range starting after old range */
2088 b_node->slot[b_end] = wr_mas->content;
2089 if (!wr_mas->content)
2090 b_node->gap[b_end] = mas->index - 1 - piv;
2091 b_node->pivot[b_end++] = mas->index - 1;
2092 }
2093
2094 /* Store the new entry. */
2095 mas->offset = b_end;
2096 b_node->slot[b_end] = wr_mas->entry;
2097 b_node->pivot[b_end] = mas->last;
2098
2099 /* Appended. */
2100 if (mas->last >= mas->max)
2101 goto b_end;
2102
2103 /* Handle new range ending before old range ends */
29b2681f 2104 piv = mas_safe_pivot(mas, wr_mas->pivots, offset_end, wr_mas->type);
54a611b6
LH
2105 if (piv > mas->last) {
2106 if (piv == ULONG_MAX)
2107 mas_bulk_rebalance(mas, b_node->b_end, wr_mas->type);
2108
2109 if (offset_end != slot)
2110 wr_mas->content = mas_slot_locked(mas, wr_mas->slots,
2111 offset_end);
2112
2113 b_node->slot[++b_end] = wr_mas->content;
2114 if (!wr_mas->content)
2115 b_node->gap[b_end] = piv - mas->last + 1;
2116 b_node->pivot[b_end] = piv;
2117 }
2118
2119 slot = offset_end + 1;
0de56e38 2120 if (slot > mas->end)
54a611b6
LH
2121 goto b_end;
2122
2123 /* Copy end data to the end of the node. */
0de56e38 2124 mas_mab_cp(mas, slot, mas->end + 1, b_node, ++b_end);
54a611b6
LH
2125 b_node->b_end--;
2126 return;
2127
2128b_end:
2129 b_node->b_end = b_end;
2130}
2131
2132/*
2133 * mas_prev_sibling() - Find the previous node with the same parent.
2134 * @mas: the maple state
2135 *
2136 * Return: True if there is a previous sibling, false otherwise.
2137 */
2138static inline bool mas_prev_sibling(struct ma_state *mas)
2139{
2140 unsigned int p_slot = mte_parent_slot(mas->node);
2141
0cc8d68a 2142 /* For root node, p_slot is set to 0 by mte_parent_slot(). */
54a611b6
LH
2143 if (!p_slot)
2144 return false;
2145
2146 mas_ascend(mas);
2147 mas->offset = p_slot - 1;
2148 mas_descend(mas);
2149 return true;
2150}
2151
2152/*
2153 * mas_next_sibling() - Find the next node with the same parent.
2154 * @mas: the maple state
2155 *
2156 * Return: true if there is a next sibling, false otherwise.
2157 */
2158static inline bool mas_next_sibling(struct ma_state *mas)
2159{
2160 MA_STATE(parent, mas->tree, mas->index, mas->last);
2161
2162 if (mte_is_root(mas->node))
2163 return false;
2164
2165 parent = *mas;
2166 mas_ascend(&parent);
2167 parent.offset = mte_parent_slot(mas->node) + 1;
2168 if (parent.offset > mas_data_end(&parent))
2169 return false;
2170
2171 *mas = parent;
2172 mas_descend(mas);
2173 return true;
2174}
2175
2176/*
96ae4c90
WY
2177 * mas_node_or_none() - Set the enode and state.
2178 * @mas: the maple state
54a611b6
LH
2179 * @enode: The encoded maple node.
2180 *
067311d3 2181 * Set the node to the enode and the status.
54a611b6 2182 */
067311d3
LH
2183static inline void mas_node_or_none(struct ma_state *mas,
2184 struct maple_enode *enode)
54a611b6 2185{
067311d3
LH
2186 if (enode) {
2187 mas->node = enode;
2188 mas->status = ma_active;
2189 } else {
2190 mas->node = NULL;
2191 mas->status = ma_none;
2192 }
54a611b6
LH
2193}
2194
2195/*
2196 * mas_wr_node_walk() - Find the correct offset for the index in the @mas.
bea07fd6
LS
2197 * If @mas->index cannot be found within the containing
2198 * node, we traverse to the last entry in the node.
54a611b6
LH
2199 * @wr_mas: The maple write state
2200 *
2201 * Uses mas_slot_locked() and does not need to worry about dead nodes.
2202 */
2203static inline void mas_wr_node_walk(struct ma_wr_state *wr_mas)
2204{
2205 struct ma_state *mas = wr_mas->mas;
97f7e094 2206 unsigned char count, offset;
54a611b6
LH
2207
2208 if (unlikely(ma_is_dense(wr_mas->type))) {
2209 wr_mas->r_max = wr_mas->r_min = mas->index;
2210 mas->offset = mas->index = mas->min;
2211 return;
2212 }
2213
2214 wr_mas->node = mas_mn(wr_mas->mas);
2215 wr_mas->pivots = ma_pivots(wr_mas->node, wr_mas->type);
0de56e38
LH
2216 count = mas->end = ma_data_end(wr_mas->node, wr_mas->type,
2217 wr_mas->pivots, mas->max);
54a611b6 2218 offset = mas->offset;
54a611b6 2219
97f7e094
PZ
2220 while (offset < count && mas->index > wr_mas->pivots[offset])
2221 offset++;
54a611b6 2222
97f7e094
PZ
2223 wr_mas->r_max = offset < count ? wr_mas->pivots[offset] : mas->max;
2224 wr_mas->r_min = mas_safe_min(mas, wr_mas->pivots, offset);
54a611b6
LH
2225 wr_mas->offset_end = mas->offset = offset;
2226}
2227
54a611b6
LH
2228/*
2229 * mast_rebalance_next() - Rebalance against the next node
2230 * @mast: The maple subtree state
54a611b6
LH
2231 */
2232static inline void mast_rebalance_next(struct maple_subtree_state *mast)
2233{
2234 unsigned char b_end = mast->bn->b_end;
2235
2236 mas_mab_cp(mast->orig_r, 0, mt_slot_count(mast->orig_r->node),
2237 mast->bn, b_end);
2238 mast->orig_r->last = mast->orig_r->max;
2239}
2240
2241/*
2242 * mast_rebalance_prev() - Rebalance against the previous node
2243 * @mast: The maple subtree state
54a611b6
LH
2244 */
2245static inline void mast_rebalance_prev(struct maple_subtree_state *mast)
2246{
2247 unsigned char end = mas_data_end(mast->orig_l) + 1;
2248 unsigned char b_end = mast->bn->b_end;
2249
2250 mab_shift_right(mast->bn, end);
2251 mas_mab_cp(mast->orig_l, 0, end - 1, mast->bn, 0);
2252 mast->l->min = mast->orig_l->min;
2253 mast->orig_l->index = mast->orig_l->min;
2254 mast->bn->b_end = end + b_end;
2255 mast->l->offset += end;
2256}
2257
2258/*
2259 * mast_spanning_rebalance() - Rebalance nodes with nearest neighbour favouring
2260 * the node to the right. Checking the nodes to the right then the left at each
530f745c 2261 * level upwards until root is reached.
54a611b6
LH
2262 * Data is copied into the @mast->bn.
2263 * @mast: The maple_subtree_state.
2264 */
2265static inline
2266bool mast_spanning_rebalance(struct maple_subtree_state *mast)
2267{
2268 struct ma_state r_tmp = *mast->orig_r;
2269 struct ma_state l_tmp = *mast->orig_l;
54a611b6
LH
2270 unsigned char depth = 0;
2271
54a611b6
LH
2272 do {
2273 mas_ascend(mast->orig_r);
2274 mas_ascend(mast->orig_l);
2275 depth++;
54a611b6 2276 if (mast->orig_r->offset < mas_data_end(mast->orig_r)) {
54a611b6
LH
2277 mast->orig_r->offset++;
2278 do {
2279 mas_descend(mast->orig_r);
2280 mast->orig_r->offset = 0;
530f745c 2281 } while (--depth);
54a611b6
LH
2282
2283 mast_rebalance_next(mast);
54a611b6
LH
2284 *mast->orig_l = l_tmp;
2285 return true;
54a611b6 2286 } else if (mast->orig_l->offset != 0) {
54a611b6
LH
2287 mast->orig_l->offset--;
2288 do {
2289 mas_descend(mast->orig_l);
2290 mast->orig_l->offset =
2291 mas_data_end(mast->orig_l);
530f745c 2292 } while (--depth);
54a611b6
LH
2293
2294 mast_rebalance_prev(mast);
54a611b6
LH
2295 *mast->orig_r = r_tmp;
2296 return true;
2297 }
2298 } while (!mte_is_root(mast->orig_r->node));
2299
2300 *mast->orig_r = r_tmp;
2301 *mast->orig_l = l_tmp;
2302 return false;
2303}
2304
2305/*
530f745c 2306 * mast_ascend() - Ascend the original left and right maple states.
54a611b6
LH
2307 * @mast: the maple subtree state.
2308 *
530f745c
LH
2309 * Ascend the original left and right sides. Set the offsets to point to the
2310 * data already in the new tree (@mast->l and @mast->r).
54a611b6 2311 */
530f745c 2312static inline void mast_ascend(struct maple_subtree_state *mast)
54a611b6
LH
2313{
2314 MA_WR_STATE(wr_mas, mast->orig_r, NULL);
54a611b6
LH
2315 mas_ascend(mast->orig_l);
2316 mas_ascend(mast->orig_r);
54a611b6
LH
2317
2318 mast->orig_r->offset = 0;
2319 mast->orig_r->index = mast->r->max;
2320 /* last should be larger than or equal to index */
2321 if (mast->orig_r->last < mast->orig_r->index)
2322 mast->orig_r->last = mast->orig_r->index;
530f745c 2323
54a611b6
LH
2324 wr_mas.type = mte_node_type(mast->orig_r->node);
2325 mas_wr_node_walk(&wr_mas);
2326 /* Set up the left side of things */
2327 mast->orig_l->offset = 0;
2328 mast->orig_l->index = mast->l->min;
2329 wr_mas.mas = mast->orig_l;
2330 wr_mas.type = mte_node_type(mast->orig_l->node);
2331 mas_wr_node_walk(&wr_mas);
2332
2333 mast->bn->type = wr_mas.type;
2334}
2335
2336/*
2337 * mas_new_ma_node() - Create and return a new maple node. Helper function.
2338 * @mas: the maple state with the allocations.
2339 * @b_node: the maple_big_node with the type encoding.
2340 *
2341 * Use the node type from the maple_big_node to allocate a new node from the
2342 * ma_state. This function exists mainly for code readability.
2343 *
2344 * Return: A new maple encoded node
2345 */
2346static inline struct maple_enode
2347*mas_new_ma_node(struct ma_state *mas, struct maple_big_node *b_node)
2348{
2349 return mt_mk_node(ma_mnode_ptr(mas_pop_node(mas)), b_node->type);
2350}
2351
2352/*
2353 * mas_mab_to_node() - Set up right and middle nodes
2354 *
2355 * @mas: the maple state that contains the allocations.
2356 * @b_node: the node which contains the data.
2357 * @left: The pointer which will have the left node
2358 * @right: The pointer which may have the right node
2359 * @middle: the pointer which may have the middle node (rare)
2360 * @mid_split: the split location for the middle node
2361 *
2362 * Return: the split of left.
2363 */
2364static inline unsigned char mas_mab_to_node(struct ma_state *mas,
2365 struct maple_big_node *b_node, struct maple_enode **left,
2366 struct maple_enode **right, struct maple_enode **middle,
4f6a6bed 2367 unsigned char *mid_split)
54a611b6
LH
2368{
2369 unsigned char split = 0;
2370 unsigned char slot_count = mt_slots[b_node->type];
2371
2372 *left = mas_new_ma_node(mas, b_node);
2373 *right = NULL;
2374 *middle = NULL;
2375 *mid_split = 0;
2376
2377 if (b_node->b_end < slot_count) {
2378 split = b_node->b_end;
2379 } else {
4f6a6bed 2380 split = mab_calc_split(mas, b_node, mid_split);
54a611b6
LH
2381 *right = mas_new_ma_node(mas, b_node);
2382 }
2383
2384 if (*mid_split)
2385 *middle = mas_new_ma_node(mas, b_node);
2386
2387 return split;
2388
2389}
2390
2391/*
2392 * mab_set_b_end() - Add entry to b_node at b_node->b_end and increment the end
2393 * pointer.
96ae4c90
WY
2394 * @b_node: the big node to add the entry
2395 * @mas: the maple state to get the pivot (mas->max)
2396 * @entry: the entry to add, if NULL nothing happens.
54a611b6
LH
2397 */
2398static inline void mab_set_b_end(struct maple_big_node *b_node,
2399 struct ma_state *mas,
2400 void *entry)
2401{
2402 if (!entry)
2403 return;
2404
2405 b_node->slot[b_node->b_end] = entry;
2406 if (mt_is_alloc(mas->tree))
2407 b_node->gap[b_node->b_end] = mas_max_gap(mas);
2408 b_node->pivot[b_node->b_end++] = mas->max;
2409}
2410
2411/*
2412 * mas_set_split_parent() - combine_then_separate helper function. Sets the parent
2413 * of @mas->node to either @left or @right, depending on @slot and @split
2414 *
96ae4c90
WY
2415 * @mas: the maple state with the node that needs a parent
2416 * @left: possible parent 1
2417 * @right: possible parent 2
2418 * @slot: the slot the mas->node was placed
2419 * @split: the split location between @left and @right
54a611b6
LH
2420 */
2421static inline void mas_set_split_parent(struct ma_state *mas,
2422 struct maple_enode *left,
2423 struct maple_enode *right,
2424 unsigned char *slot, unsigned char split)
2425{
2426 if (mas_is_none(mas))
2427 return;
2428
2429 if ((*slot) <= split)
bf96715e 2430 mas_set_parent(mas, mas->node, left, *slot);
54a611b6 2431 else if (right)
bf96715e 2432 mas_set_parent(mas, mas->node, right, (*slot) - split - 1);
54a611b6
LH
2433
2434 (*slot)++;
2435}
2436
2437/*
2438 * mte_mid_split_check() - Check if the next node passes the mid-split
96ae4c90
WY
2439 * @l: Pointer to left encoded maple node.
2440 * @m: Pointer to middle encoded maple node.
2441 * @r: Pointer to right encoded maple node.
54a611b6 2442 * @slot: The offset
96ae4c90 2443 * @split: The split location.
54a611b6
LH
2444 * @mid_split: The middle split.
2445 */
2446static inline void mte_mid_split_check(struct maple_enode **l,
2447 struct maple_enode **r,
2448 struct maple_enode *right,
2449 unsigned char slot,
2450 unsigned char *split,
2451 unsigned char mid_split)
2452{
2453 if (*r == right)
2454 return;
2455
2456 if (slot < mid_split)
2457 return;
2458
2459 *l = *r;
2460 *r = right;
2461 *split = mid_split;
2462}
2463
2464/*
2465 * mast_set_split_parents() - Helper function to set three nodes parents. Slot
2466 * is taken from @mast->l.
96ae4c90
WY
2467 * @mast: the maple subtree state
2468 * @left: the left node
2469 * @right: the right node
2470 * @split: the split location.
54a611b6
LH
2471 */
2472static inline void mast_set_split_parents(struct maple_subtree_state *mast,
2473 struct maple_enode *left,
2474 struct maple_enode *middle,
2475 struct maple_enode *right,
2476 unsigned char split,
2477 unsigned char mid_split)
2478{
2479 unsigned char slot;
2480 struct maple_enode *l = left;
2481 struct maple_enode *r = right;
2482
2483 if (mas_is_none(mast->l))
2484 return;
2485
2486 if (middle)
2487 r = middle;
2488
2489 slot = mast->l->offset;
2490
2491 mte_mid_split_check(&l, &r, right, slot, &split, mid_split);
2492 mas_set_split_parent(mast->l, l, r, &slot, split);
2493
2494 mte_mid_split_check(&l, &r, right, slot, &split, mid_split);
2495 mas_set_split_parent(mast->m, l, r, &slot, split);
2496
2497 mte_mid_split_check(&l, &r, right, slot, &split, mid_split);
2498 mas_set_split_parent(mast->r, l, r, &slot, split);
2499}
2500
2501/*
d5f6057c 2502 * mas_topiary_node() - Dispose of a single node
530f745c 2503 * @mas: The maple state for pushing nodes
530f745c 2504 * @in_rcu: If the tree is in rcu mode
54a611b6 2505 *
530f745c 2506 * The node will either be RCU freed or pushed back on the maple state.
54a611b6 2507 */
530f745c 2508static inline void mas_topiary_node(struct ma_state *mas,
067311d3 2509 struct ma_state *tmp_mas, bool in_rcu)
54a611b6 2510{
530f745c 2511 struct maple_node *tmp;
067311d3 2512 struct maple_enode *enode;
1238f6a2 2513
067311d3 2514 if (mas_is_none(tmp_mas))
530f745c 2515 return;
1238f6a2 2516
067311d3 2517 enode = tmp_mas->node;
530f745c
LH
2518 tmp = mte_to_node(enode);
2519 mte_set_node_dead(enode);
2520 if (in_rcu)
2521 ma_free_rcu(tmp);
2522 else
2523 mas_push_node(mas, tmp);
2524}
54a611b6 2525
530f745c
LH
2526/*
2527 * mas_topiary_replace() - Replace the data with new data, then repair the
2528 * parent links within the new tree. Iterate over the dead sub-tree and collect
2529 * the dead subtrees and topiary the nodes that are no longer of use.
2530 *
2531 * The new tree will have up to three children with the correct parent. Keep
2532 * track of the new entries as they need to be followed to find the next level
2533 * of new entries.
2534 *
2535 * The old tree will have up to three children with the old parent. Keep track
2536 * of the old entries as they may have more nodes below replaced. Nodes within
2537 * [index, last] are dead subtrees, others need to be freed and followed.
2538 *
2539 * @mas: The maple state pointing at the new data
2540 * @old_enode: The maple encoded node being replaced
f9d3a963 2541 * @new_height: The new height of the tree as a result of the operation
530f745c
LH
2542 *
2543 */
2544static inline void mas_topiary_replace(struct ma_state *mas,
f9d3a963 2545 struct maple_enode *old_enode, unsigned char new_height)
530f745c
LH
2546{
2547 struct ma_state tmp[3], tmp_next[3];
2548 MA_TOPIARY(subtrees, mas->tree);
2549 bool in_rcu;
2550 int i, n;
2551
2552 /* Place data in tree & then mark node as old */
f9d3a963 2553 mas_put_in_tree(mas, old_enode, new_height);
54a611b6 2554
530f745c
LH
2555 /* Update the parent pointers in the tree */
2556 tmp[0] = *mas;
2557 tmp[0].offset = 0;
067311d3
LH
2558 tmp[1].status = ma_none;
2559 tmp[2].status = ma_none;
530f745c
LH
2560 while (!mte_is_leaf(tmp[0].node)) {
2561 n = 0;
2562 for (i = 0; i < 3; i++) {
2563 if (mas_is_none(&tmp[i]))
2564 continue;
54a611b6 2565
530f745c
LH
2566 while (n < 3) {
2567 if (!mas_find_child(&tmp[i], &tmp_next[n]))
2568 break;
2569 n++;
2570 }
54a611b6 2571
530f745c
LH
2572 mas_adopt_children(&tmp[i], tmp[i].node);
2573 }
54a611b6 2574
530f745c
LH
2575 if (MAS_WARN_ON(mas, n == 0))
2576 break;
54a611b6 2577
530f745c 2578 while (n < 3)
067311d3 2579 tmp_next[n++].status = ma_none;
530f745c
LH
2580
2581 for (i = 0; i < 3; i++)
2582 tmp[i] = tmp_next[i];
2583 }
2584
2585 /* Collect the old nodes that need to be discarded */
2586 if (mte_is_leaf(old_enode))
2587 return mas_free(mas, old_enode);
2588
2589 tmp[0] = *mas;
2590 tmp[0].offset = 0;
2591 tmp[0].node = old_enode;
067311d3
LH
2592 tmp[1].status = ma_none;
2593 tmp[2].status = ma_none;
530f745c
LH
2594 in_rcu = mt_in_rcu(mas->tree);
2595 do {
2596 n = 0;
2597 for (i = 0; i < 3; i++) {
2598 if (mas_is_none(&tmp[i]))
2599 continue;
2600
2601 while (n < 3) {
2602 if (!mas_find_child(&tmp[i], &tmp_next[n]))
2603 break;
2604
2605 if ((tmp_next[n].min >= tmp_next->index) &&
2606 (tmp_next[n].max <= tmp_next->last)) {
2607 mat_add(&subtrees, tmp_next[n].node);
067311d3 2608 tmp_next[n].status = ma_none;
530f745c
LH
2609 } else {
2610 n++;
2611 }
2612 }
2613 }
2614
2615 if (MAS_WARN_ON(mas, n == 0))
2616 break;
2617
2618 while (n < 3)
067311d3 2619 tmp_next[n++].status = ma_none;
530f745c
LH
2620
2621 for (i = 0; i < 3; i++) {
067311d3 2622 mas_topiary_node(mas, &tmp[i], in_rcu);
530f745c
LH
2623 tmp[i] = tmp_next[i];
2624 }
2625 } while (!mte_is_leaf(tmp[0].node));
2626
2627 for (i = 0; i < 3; i++)
067311d3 2628 mas_topiary_node(mas, &tmp[i], in_rcu);
530f745c
LH
2629
2630 mas_mat_destroy(mas, &subtrees);
54a611b6
LH
2631}
2632
2633/*
530f745c 2634 * mas_wmb_replace() - Write memory barrier and replace
54a611b6 2635 * @mas: The maple state
96ae4c90 2636 * @old_enode: The old maple encoded node that is being replaced.
f9d3a963 2637 * @new_height: The new height of the tree as a result of the operation
530f745c
LH
2638 *
2639 * Updates gap as necessary.
54a611b6 2640 */
530f745c 2641static inline void mas_wmb_replace(struct ma_state *mas,
f9d3a963 2642 struct maple_enode *old_enode, unsigned char new_height)
54a611b6 2643{
530f745c 2644 /* Insert the new data in the tree */
f9d3a963 2645 mas_topiary_replace(mas, old_enode, new_height);
530f745c
LH
2646
2647 if (mte_is_leaf(mas->node))
2648 return;
2649
2650 mas_update_gap(mas);
54a611b6
LH
2651}
2652
2653/*
2654 * mast_cp_to_nodes() - Copy data out to nodes.
2655 * @mast: The maple subtree state
2656 * @left: The left encoded maple node
2657 * @middle: The middle encoded maple node
2658 * @right: The right encoded maple node
2659 * @split: The location to split between left and (middle ? middle : right)
2660 * @mid_split: The location to split between middle and right.
2661 */
2662static inline void mast_cp_to_nodes(struct maple_subtree_state *mast,
2663 struct maple_enode *left, struct maple_enode *middle,
2664 struct maple_enode *right, unsigned char split, unsigned char mid_split)
2665{
2666 bool new_lmax = true;
2667
067311d3
LH
2668 mas_node_or_none(mast->l, left);
2669 mas_node_or_none(mast->m, middle);
2670 mas_node_or_none(mast->r, right);
54a611b6
LH
2671
2672 mast->l->min = mast->orig_l->min;
2673 if (split == mast->bn->b_end) {
2674 mast->l->max = mast->orig_r->max;
2675 new_lmax = false;
2676 }
2677
2678 mab_mas_cp(mast->bn, 0, split, mast->l, new_lmax);
2679
2680 if (middle) {
2681 mab_mas_cp(mast->bn, 1 + split, mid_split, mast->m, true);
2682 mast->m->min = mast->bn->pivot[split] + 1;
2683 split = mid_split;
2684 }
2685
2686 mast->r->max = mast->orig_r->max;
2687 if (right) {
2688 mab_mas_cp(mast->bn, 1 + split, mast->bn->b_end, mast->r, false);
2689 mast->r->min = mast->bn->pivot[split] + 1;
2690 }
2691}
2692
2693/*
2694 * mast_combine_cp_left - Copy in the original left side of the tree into the
2695 * combined data set in the maple subtree state big node.
2696 * @mast: The maple subtree state
2697 */
2698static inline void mast_combine_cp_left(struct maple_subtree_state *mast)
2699{
2700 unsigned char l_slot = mast->orig_l->offset;
2701
2702 if (!l_slot)
2703 return;
2704
2705 mas_mab_cp(mast->orig_l, 0, l_slot - 1, mast->bn, 0);
2706}
2707
2708/*
2709 * mast_combine_cp_right: Copy in the original right side of the tree into the
2710 * combined data set in the maple subtree state big node.
2711 * @mast: The maple subtree state
2712 */
2713static inline void mast_combine_cp_right(struct maple_subtree_state *mast)
2714{
2715 if (mast->bn->pivot[mast->bn->b_end - 1] >= mast->orig_r->max)
2716 return;
2717
2718 mas_mab_cp(mast->orig_r, mast->orig_r->offset + 1,
2719 mt_slot_count(mast->orig_r->node), mast->bn,
2720 mast->bn->b_end);
2721 mast->orig_r->last = mast->orig_r->max;
2722}
2723
2724/*
2725 * mast_sufficient: Check if the maple subtree state has enough data in the big
2726 * node to create at least one sufficient node
2727 * @mast: the maple subtree state
2728 */
2729static inline bool mast_sufficient(struct maple_subtree_state *mast)
2730{
2731 if (mast->bn->b_end > mt_min_slot_count(mast->orig_l->node))
2732 return true;
2733
2734 return false;
2735}
2736
2737/*
2738 * mast_overflow: Check if there is too much data in the subtree state for a
2739 * single node.
2740 * @mast: The maple subtree state
2741 */
2742static inline bool mast_overflow(struct maple_subtree_state *mast)
2743{
271152a9 2744 if (mast->bn->b_end > mt_slot_count(mast->orig_l->node))
54a611b6
LH
2745 return true;
2746
2747 return false;
2748}
2749
2750static inline void *mtree_range_walk(struct ma_state *mas)
2751{
2752 unsigned long *pivots;
2753 unsigned char offset;
2754 struct maple_node *node;
2755 struct maple_enode *next, *last;
2756 enum maple_type type;
2757 void __rcu **slots;
2758 unsigned char end;
2759 unsigned long max, min;
2760 unsigned long prev_max, prev_min;
2761
1b9c9183
LB
2762 next = mas->node;
2763 min = mas->min;
54a611b6
LH
2764 max = mas->max;
2765 do {
54a611b6
LH
2766 last = next;
2767 node = mte_to_node(next);
2768 type = mte_node_type(next);
2769 pivots = ma_pivots(node, type);
2770 end = ma_data_end(node, type, pivots, max);
a3c63c8c
LH
2771 prev_min = min;
2772 prev_max = max;
2773 if (pivots[0] >= mas->index) {
2774 offset = 0;
2775 max = pivots[0];
54a611b6
LH
2776 goto next;
2777 }
2778
a3c63c8c
LH
2779 offset = 1;
2780 while (offset < end) {
2781 if (pivots[offset] >= mas->index) {
2782 max = pivots[offset];
2783 break;
2784 }
54a611b6 2785 offset++;
a3c63c8c 2786 }
54a611b6 2787
54a611b6 2788 min = pivots[offset - 1] + 1;
54a611b6
LH
2789next:
2790 slots = ma_slots(node, type);
2791 next = mt_slot(mas->tree, slots, offset);
2792 if (unlikely(ma_dead_node(node)))
2793 goto dead_node;
2794 } while (!ma_is_leaf(type));
2795
31c532a8 2796 mas->end = end;
54a611b6
LH
2797 mas->offset = offset;
2798 mas->index = min;
2799 mas->last = max;
2800 mas->min = prev_min;
2801 mas->max = prev_max;
2802 mas->node = last;
831978e3 2803 return (void *)next;
54a611b6
LH
2804
2805dead_node:
2806 mas_reset(mas);
2807 return NULL;
2808}
2809
2810/*
2811 * mas_spanning_rebalance() - Rebalance across two nodes which may not be peers.
2812 * @mas: The starting maple state
2813 * @mast: The maple_subtree_state, keeps track of 4 maple states.
2814 * @count: The estimated count of iterations needed.
2815 *
2816 * Follow the tree upwards from @l_mas and @r_mas for @count, or until the root
2817 * is hit. First @b_node is split into two entries which are inserted into the
2818 * next iteration of the loop. @b_node is returned populated with the final
2819 * iteration. @mas is used to obtain allocations. orig_l_mas keeps track of the
2820 * nodes that will remain active by using orig_l_mas->index and orig_l_mas->last
2821 * to account of what has been copied into the new sub-tree. The update of
2822 * orig_l_mas->last is used in mas_consume to find the slots that will need to
2823 * be either freed or destroyed. orig_l_mas->depth keeps track of the height of
2824 * the new sub-tree in case the sub-tree becomes the full tree.
54a611b6 2825 */
ed4dfd9a 2826static void mas_spanning_rebalance(struct ma_state *mas,
54a611b6
LH
2827 struct maple_subtree_state *mast, unsigned char count)
2828{
2829 unsigned char split, mid_split;
2830 unsigned char slot = 0;
f9d3a963 2831 unsigned char new_height = 0; /* used if node is a new root */
54a611b6 2832 struct maple_enode *left = NULL, *middle = NULL, *right = NULL;
530f745c 2833 struct maple_enode *old_enode;
54a611b6
LH
2834
2835 MA_STATE(l_mas, mas->tree, mas->index, mas->index);
2836 MA_STATE(r_mas, mas->tree, mas->index, mas->last);
2837 MA_STATE(m_mas, mas->tree, mas->index, mas->index);
54a611b6
LH
2838
2839 /*
2840 * The tree needs to be rebalanced and leaves need to be kept at the same level.
2841 * Rebalancing is done by use of the ``struct maple_topiary``.
2842 */
2843 mast->l = &l_mas;
2844 mast->m = &m_mas;
2845 mast->r = &r_mas;
067311d3 2846 l_mas.status = r_mas.status = m_mas.status = ma_none;
0abb964a
LH
2847
2848 /* Check if this is not root and has sufficient data. */
2849 if (((mast->orig_l->min != 0) || (mast->orig_r->max != ULONG_MAX)) &&
54a611b6
LH
2850 unlikely(mast->bn->b_end <= mt_min_slots[mast->bn->type]))
2851 mast_spanning_rebalance(mast);
2852
54a611b6
LH
2853 /*
2854 * Each level of the tree is examined and balanced, pushing data to the left or
2855 * right, or rebalancing against left or right nodes is employed to avoid
2856 * rippling up the tree to limit the amount of churn. Once a new sub-section of
2857 * the tree is created, there may be a mix of new and old nodes. The old nodes
2858 * will have the incorrect parent pointers and currently be in two trees: the
2859 * original tree and the partially new tree. To remedy the parent pointers in
2860 * the old tree, the new data is swapped into the active tree and a walk down
2861 * the tree is performed and the parent pointers are updated.
530f745c 2862 * See mas_topiary_replace() for more information.
54a611b6
LH
2863 */
2864 while (count--) {
2865 mast->bn->b_end--;
2866 mast->bn->type = mte_node_type(mast->orig_l->node);
2867 split = mas_mab_to_node(mas, mast->bn, &left, &right, &middle,
4f6a6bed 2868 &mid_split);
54a611b6
LH
2869 mast_set_split_parents(mast, left, middle, right, split,
2870 mid_split);
2871 mast_cp_to_nodes(mast, left, middle, right, split, mid_split);
f9d3a963 2872 new_height++;
54a611b6
LH
2873
2874 /*
2875 * Copy data from next level in the tree to mast->bn from next
2876 * iteration
2877 */
2878 memset(mast->bn, 0, sizeof(struct maple_big_node));
2879 mast->bn->type = mte_node_type(left);
54a611b6
LH
2880
2881 /* Root already stored in l->node. */
2882 if (mas_is_root_limits(mast->l))
2883 goto new_root;
2884
530f745c 2885 mast_ascend(mast);
54a611b6
LH
2886 mast_combine_cp_left(mast);
2887 l_mas.offset = mast->bn->b_end;
2888 mab_set_b_end(mast->bn, &l_mas, left);
2889 mab_set_b_end(mast->bn, &m_mas, middle);
2890 mab_set_b_end(mast->bn, &r_mas, right);
2891
2892 /* Copy anything necessary out of the right node. */
2893 mast_combine_cp_right(mast);
54a611b6
LH
2894 mast->orig_l->last = mast->orig_l->max;
2895
300a5b4f
SK
2896 if (mast_sufficient(mast)) {
2897 if (mast_overflow(mast))
2898 continue;
2899
2900 if (mast->orig_l->node == mast->orig_r->node) {
2901 /*
2902 * The data in b_node should be stored in one
2903 * node and in the tree
2904 */
2905 slot = mast->l->offset;
2906 break;
2907 }
54a611b6 2908
54a611b6 2909 continue;
300a5b4f 2910 }
54a611b6
LH
2911
2912 /* May be a new root stored in mast->bn */
2913 if (mas_is_root_limits(mast->orig_l))
2914 break;
2915
2916 mast_spanning_rebalance(mast);
2917
2918 /* rebalancing from other nodes may require another loop. */
2919 if (!count)
2920 count++;
2921 }
2922
2923 l_mas.node = mt_mk_node(ma_mnode_ptr(mas_pop_node(mas)),
2924 mte_node_type(mast->orig_l->node));
f9d3a963 2925
54a611b6 2926 mab_mas_cp(mast->bn, 0, mt_slots[mast->bn->type] - 1, &l_mas, true);
f9d3a963 2927 new_height++;
bf96715e 2928 mas_set_parent(mas, left, l_mas.node, slot);
54a611b6 2929 if (middle)
bf96715e 2930 mas_set_parent(mas, middle, l_mas.node, ++slot);
54a611b6
LH
2931
2932 if (right)
bf96715e 2933 mas_set_parent(mas, right, l_mas.node, ++slot);
54a611b6
LH
2934
2935 if (mas_is_root_limits(mast->l)) {
2936new_root:
530f745c
LH
2937 mas_mn(mast->l)->parent = ma_parent_ptr(mas_tree_parent(mas));
2938 while (!mte_is_root(mast->orig_l->node))
2939 mast_ascend(mast);
54a611b6
LH
2940 } else {
2941 mas_mn(&l_mas)->parent = mas_mn(mast->orig_l)->parent;
2942 }
2943
530f745c
LH
2944 old_enode = mast->orig_l->node;
2945 mas->depth = l_mas.depth;
2946 mas->node = l_mas.node;
2947 mas->min = l_mas.min;
2948 mas->max = l_mas.max;
2949 mas->offset = l_mas.offset;
f9d3a963 2950 mas_wmb_replace(mas, old_enode, new_height);
54a611b6 2951 mtree_range_walk(mas);
ed4dfd9a 2952 return;
54a611b6
LH
2953}
2954
2955/*
2956 * mas_rebalance() - Rebalance a given node.
2957 * @mas: The maple state
2958 * @b_node: The big maple node.
2959 *
2960 * Rebalance two nodes into a single node or two new nodes that are sufficient.
2961 * Continue upwards until tree is sufficient.
54a611b6 2962 */
ed4dfd9a 2963static inline void mas_rebalance(struct ma_state *mas,
54a611b6
LH
2964 struct maple_big_node *b_node)
2965{
2966 char empty_count = mas_mt_height(mas);
2967 struct maple_subtree_state mast;
2968 unsigned char shift, b_end = ++b_node->b_end;
2969
2970 MA_STATE(l_mas, mas->tree, mas->index, mas->last);
2971 MA_STATE(r_mas, mas->tree, mas->index, mas->last);
2972
2973 trace_ma_op(__func__, mas);
2974
2975 /*
2976 * Rebalancing occurs if a node is insufficient. Data is rebalanced
2977 * against the node to the right if it exists, otherwise the node to the
2978 * left of this node is rebalanced against this node. If rebalancing
2979 * causes just one node to be produced instead of two, then the parent
2980 * is also examined and rebalanced if it is insufficient. Every level
2981 * tries to combine the data in the same way. If one node contains the
2982 * entire range of the tree, then that node is used as a new root node.
2983 */
54a611b6
LH
2984
2985 mast.orig_l = &l_mas;
2986 mast.orig_r = &r_mas;
2987 mast.bn = b_node;
2988 mast.bn->type = mte_node_type(mas->node);
2989
2990 l_mas = r_mas = *mas;
2991
2992 if (mas_next_sibling(&r_mas)) {
2993 mas_mab_cp(&r_mas, 0, mt_slot_count(r_mas.node), b_node, b_end);
2994 r_mas.last = r_mas.index = r_mas.max;
2995 } else {
2996 mas_prev_sibling(&l_mas);
2997 shift = mas_data_end(&l_mas) + 1;
2998 mab_shift_right(b_node, shift);
2999 mas->offset += shift;
3000 mas_mab_cp(&l_mas, 0, shift - 1, b_node, 0);
3001 b_node->b_end = shift + b_end;
3002 l_mas.index = l_mas.last = l_mas.min;
3003 }
3004
3005 return mas_spanning_rebalance(mas, &mast, empty_count);
3006}
3007
3008/*
3009 * mas_destroy_rebalance() - Rebalance left-most node while destroying the maple
3010 * state.
3011 * @mas: The maple state
3012 * @end: The end of the left-most node.
3013 *
3014 * During a mass-insert event (such as forking), it may be necessary to
3015 * rebalance the left-most node when it is not sufficient.
3016 */
3017static inline void mas_destroy_rebalance(struct ma_state *mas, unsigned char end)
3018{
3019 enum maple_type mt = mte_node_type(mas->node);
3020 struct maple_node reuse, *newnode, *parent, *new_left, *left, *node;
72bcf4aa 3021 struct maple_enode *eparent, *old_eparent;
54a611b6
LH
3022 unsigned char offset, tmp, split = mt_slots[mt] / 2;
3023 void __rcu **l_slots, **slots;
3024 unsigned long *l_pivs, *pivs, gap;
3025 bool in_rcu = mt_in_rcu(mas->tree);
f9d3a963 3026 unsigned char new_height = mas_mt_height(mas);
54a611b6
LH
3027
3028 MA_STATE(l_mas, mas->tree, mas->index, mas->last);
3029
3030 l_mas = *mas;
3031 mas_prev_sibling(&l_mas);
3032
3033 /* set up node. */
3034 if (in_rcu) {
54a611b6
LH
3035 newnode = mas_pop_node(mas);
3036 } else {
3037 newnode = &reuse;
3038 }
3039
3040 node = mas_mn(mas);
3041 newnode->parent = node->parent;
3042 slots = ma_slots(newnode, mt);
3043 pivs = ma_pivots(newnode, mt);
3044 left = mas_mn(&l_mas);
3045 l_slots = ma_slots(left, mt);
3046 l_pivs = ma_pivots(left, mt);
3047 if (!l_slots[split])
3048 split++;
3049 tmp = mas_data_end(&l_mas) - split;
3050
3051 memcpy(slots, l_slots + split + 1, sizeof(void *) * tmp);
3052 memcpy(pivs, l_pivs + split + 1, sizeof(unsigned long) * tmp);
3053 pivs[tmp] = l_mas.max;
3054 memcpy(slots + tmp, ma_slots(node, mt), sizeof(void *) * end);
3055 memcpy(pivs + tmp, ma_pivots(node, mt), sizeof(unsigned long) * end);
3056
3057 l_mas.max = l_pivs[split];
3058 mas->min = l_mas.max + 1;
72bcf4aa 3059 old_eparent = mt_mk_node(mte_parent(l_mas.node),
afc754c6 3060 mas_parent_type(&l_mas, l_mas.node));
54a611b6
LH
3061 tmp += end;
3062 if (!in_rcu) {
3063 unsigned char max_p = mt_pivots[mt];
3064 unsigned char max_s = mt_slots[mt];
3065
3066 if (tmp < max_p)
3067 memset(pivs + tmp, 0,
fb20e99a 3068 sizeof(unsigned long) * (max_p - tmp));
54a611b6
LH
3069
3070 if (tmp < mt_slots[mt])
3071 memset(slots + tmp, 0, sizeof(void *) * (max_s - tmp));
3072
3073 memcpy(node, newnode, sizeof(struct maple_node));
3074 ma_set_meta(node, mt, 0, tmp - 1);
72bcf4aa 3075 mte_set_pivot(old_eparent, mte_parent_slot(l_mas.node),
54a611b6
LH
3076 l_pivs[split]);
3077
3078 /* Remove data from l_pivs. */
3079 tmp = split + 1;
3080 memset(l_pivs + tmp, 0, sizeof(unsigned long) * (max_p - tmp));
3081 memset(l_slots + tmp, 0, sizeof(void *) * (max_s - tmp));
3082 ma_set_meta(left, mt, 0, split);
72bcf4aa 3083 eparent = old_eparent;
54a611b6
LH
3084
3085 goto done;
3086 }
3087
3088 /* RCU requires replacing both l_mas, mas, and parent. */
3089 mas->node = mt_mk_node(newnode, mt);
3090 ma_set_meta(newnode, mt, 0, tmp);
3091
3092 new_left = mas_pop_node(mas);
3093 new_left->parent = left->parent;
3094 mt = mte_node_type(l_mas.node);
3095 slots = ma_slots(new_left, mt);
3096 pivs = ma_pivots(new_left, mt);
3097 memcpy(slots, l_slots, sizeof(void *) * split);
3098 memcpy(pivs, l_pivs, sizeof(unsigned long) * split);
3099 ma_set_meta(new_left, mt, 0, split);
3100 l_mas.node = mt_mk_node(new_left, mt);
3101
3102 /* replace parent. */
3103 offset = mte_parent_slot(mas->node);
afc754c6 3104 mt = mas_parent_type(&l_mas, l_mas.node);
54a611b6
LH
3105 parent = mas_pop_node(mas);
3106 slots = ma_slots(parent, mt);
3107 pivs = ma_pivots(parent, mt);
72bcf4aa 3108 memcpy(parent, mte_to_node(old_eparent), sizeof(struct maple_node));
54a611b6
LH
3109 rcu_assign_pointer(slots[offset], mas->node);
3110 rcu_assign_pointer(slots[offset - 1], l_mas.node);
3111 pivs[offset - 1] = l_mas.max;
3112 eparent = mt_mk_node(parent, mt);
3113done:
3114 gap = mas_leaf_max_gap(mas);
3115 mte_set_gap(eparent, mte_parent_slot(mas->node), gap);
3116 gap = mas_leaf_max_gap(&l_mas);
3117 mte_set_gap(eparent, mte_parent_slot(l_mas.node), gap);
3118 mas_ascend(mas);
3119
72bcf4aa 3120 if (in_rcu) {
f9d3a963 3121 mas_replace_node(mas, old_eparent, new_height);
72bcf4aa
LH
3122 mas_adopt_children(mas, mas->node);
3123 }
54a611b6
LH
3124
3125 mas_update_gap(mas);
3126}
3127
3128/*
3129 * mas_split_final_node() - Split the final node in a subtree operation.
3130 * @mast: the maple subtree state
3131 * @mas: The maple state
54a611b6 3132 */
d9d9bd97 3133static inline void mas_split_final_node(struct maple_subtree_state *mast,
f9d3a963 3134 struct ma_state *mas)
54a611b6
LH
3135{
3136 struct maple_enode *ancestor;
3137
3138 if (mte_is_root(mas->node)) {
3139 if (mt_is_alloc(mas->tree))
3140 mast->bn->type = maple_arange_64;
3141 else
3142 mast->bn->type = maple_range_64;
54a611b6
LH
3143 }
3144 /*
3145 * Only a single node is used here, could be root.
3146 * The Big_node data should just fit in a single node.
3147 */
3148 ancestor = mas_new_ma_node(mas, mast->bn);
bf96715e
LH
3149 mas_set_parent(mas, mast->l->node, ancestor, mast->l->offset);
3150 mas_set_parent(mas, mast->r->node, ancestor, mast->r->offset);
54a611b6
LH
3151 mte_to_node(ancestor)->parent = mas_mn(mas)->parent;
3152
3153 mast->l->node = ancestor;
3154 mab_mas_cp(mast->bn, 0, mt_slots[mast->bn->type] - 1, mast->l, true);
3155 mas->offset = mast->bn->b_end - 1;
54a611b6
LH
3156}
3157
3158/*
3159 * mast_fill_bnode() - Copy data into the big node in the subtree state
3160 * @mast: The maple subtree state
3161 * @mas: the maple state
3162 * @skip: The number of entries to skip for new nodes insertion.
3163 */
3164static inline void mast_fill_bnode(struct maple_subtree_state *mast,
3165 struct ma_state *mas,
3166 unsigned char skip)
3167{
3168 bool cp = true;
54a611b6
LH
3169 unsigned char split;
3170
5059aa63 3171 memset(mast->bn, 0, sizeof(struct maple_big_node));
54a611b6
LH
3172
3173 if (mte_is_root(mas->node)) {
3174 cp = false;
3175 } else {
3176 mas_ascend(mas);
54a611b6
LH
3177 mas->offset = mte_parent_slot(mas->node);
3178 }
3179
3180 if (cp && mast->l->offset)
3181 mas_mab_cp(mas, 0, mast->l->offset - 1, mast->bn, 0);
3182
3183 split = mast->bn->b_end;
3184 mab_set_b_end(mast->bn, mast->l, mast->l->node);
3185 mast->r->offset = mast->bn->b_end;
3186 mab_set_b_end(mast->bn, mast->r, mast->r->node);
3187 if (mast->bn->pivot[mast->bn->b_end - 1] == mas->max)
3188 cp = false;
3189
3190 if (cp)
3191 mas_mab_cp(mas, split + skip, mt_slot_count(mas->node) - 1,
3192 mast->bn, mast->bn->b_end);
3193
3194 mast->bn->b_end--;
3195 mast->bn->type = mte_node_type(mas->node);
3196}
3197
3198/*
3199 * mast_split_data() - Split the data in the subtree state big node into regular
3200 * nodes.
3201 * @mast: The maple subtree state
3202 * @mas: The maple state
3203 * @split: The location to split the big node
3204 */
3205static inline void mast_split_data(struct maple_subtree_state *mast,
3206 struct ma_state *mas, unsigned char split)
3207{
3208 unsigned char p_slot;
3209
3210 mab_mas_cp(mast->bn, 0, split, mast->l, true);
3211 mte_set_pivot(mast->r->node, 0, mast->r->max);
3212 mab_mas_cp(mast->bn, split + 1, mast->bn->b_end, mast->r, false);
3213 mast->l->offset = mte_parent_slot(mas->node);
3214 mast->l->max = mast->bn->pivot[split];
3215 mast->r->min = mast->l->max + 1;
3216 if (mte_is_leaf(mas->node))
3217 return;
3218
3219 p_slot = mast->orig_l->offset;
3220 mas_set_split_parent(mast->orig_l, mast->l->node, mast->r->node,
3221 &p_slot, split);
3222 mas_set_split_parent(mast->orig_r, mast->l->node, mast->r->node,
3223 &p_slot, split);
3224}
3225
3226/*
3227 * mas_push_data() - Instead of splitting a node, it is beneficial to push the
3228 * data to the right or left node if there is room.
3229 * @mas: The maple state
54a611b6
LH
3230 * @mast: The maple subtree state
3231 * @left: Push left or not.
3232 *
3233 * Keeping the height of the tree low means faster lookups.
3234 *
3235 * Return: True if pushed, false otherwise.
3236 */
f9d3a963
SK
3237static inline bool mas_push_data(struct ma_state *mas,
3238 struct maple_subtree_state *mast, bool left)
54a611b6
LH
3239{
3240 unsigned char slot_total = mast->bn->b_end;
3241 unsigned char end, space, split;
3242
3243 MA_STATE(tmp_mas, mas->tree, mas->index, mas->last);
3244 tmp_mas = *mas;
3245 tmp_mas.depth = mast->l->depth;
3246
3247 if (left && !mas_prev_sibling(&tmp_mas))
3248 return false;
3249 else if (!left && !mas_next_sibling(&tmp_mas))
3250 return false;
3251
3252 end = mas_data_end(&tmp_mas);
3253 slot_total += end;
3254 space = 2 * mt_slot_count(mas->node) - 2;
3255 /* -2 instead of -1 to ensure there isn't a triple split */
3256 if (ma_is_leaf(mast->bn->type))
3257 space--;
3258
3259 if (mas->max == ULONG_MAX)
3260 space--;
3261
3262 if (slot_total >= space)
3263 return false;
3264
3265 /* Get the data; Fill mast->bn */
3266 mast->bn->b_end++;
3267 if (left) {
3268 mab_shift_right(mast->bn, end + 1);
3269 mas_mab_cp(&tmp_mas, 0, end, mast->bn, 0);
3270 mast->bn->b_end = slot_total + 1;
3271 } else {
3272 mas_mab_cp(&tmp_mas, 0, end, mast->bn, mast->bn->b_end);
3273 }
3274
3275 /* Configure mast for splitting of mast->bn */
3276 split = mt_slots[mast->bn->type] - 2;
3277 if (left) {
3278 /* Switch mas to prev node */
54a611b6
LH
3279 *mas = tmp_mas;
3280 /* Start using mast->l for the left side. */
3281 tmp_mas.node = mast->l->node;
3282 *mast->l = tmp_mas;
3283 } else {
54a611b6
LH
3284 tmp_mas.node = mast->r->node;
3285 *mast->r = tmp_mas;
3286 split = slot_total - split;
3287 }
3288 split = mab_no_null_split(mast->bn, split, mt_slots[mast->bn->type]);
3289 /* Update parent slot for split calculation. */
3290 if (left)
3291 mast->orig_l->offset += end + 1;
3292
3293 mast_split_data(mast, mas, split);
3294 mast_fill_bnode(mast, mas, 2);
f9d3a963 3295 mas_split_final_node(mast, mas);
54a611b6
LH
3296 return true;
3297}
3298
3299/*
3300 * mas_split() - Split data that is too big for one node into two.
3301 * @mas: The maple state
3302 * @b_node: The maple big node
54a611b6 3303 */
ed4dfd9a 3304static void mas_split(struct ma_state *mas, struct maple_big_node *b_node)
54a611b6 3305{
54a611b6
LH
3306 struct maple_subtree_state mast;
3307 int height = 0;
f9d3a963 3308 unsigned int orig_height = mas_mt_height(mas);
54a611b6 3309 unsigned char mid_split, split = 0;
530f745c 3310 struct maple_enode *old;
54a611b6
LH
3311
3312 /*
3313 * Splitting is handled differently from any other B-tree; the Maple
3314 * Tree splits upwards. Splitting up means that the split operation
3315 * occurs when the walk of the tree hits the leaves and not on the way
3316 * down. The reason for splitting up is that it is impossible to know
3317 * how much space will be needed until the leaf is (or leaves are)
3318 * reached. Since overwriting data is allowed and a range could
3319 * overwrite more than one range or result in changing one entry into 3
3320 * entries, it is impossible to know if a split is required until the
3321 * data is examined.
3322 *
3323 * Splitting is a balancing act between keeping allocations to a minimum
3324 * and avoiding a 'jitter' event where a tree is expanded to make room
3325 * for an entry followed by a contraction when the entry is removed. To
3326 * accomplish the balance, there are empty slots remaining in both left
3327 * and right nodes after a split.
3328 */
3329 MA_STATE(l_mas, mas->tree, mas->index, mas->last);
3330 MA_STATE(r_mas, mas->tree, mas->index, mas->last);
3331 MA_STATE(prev_l_mas, mas->tree, mas->index, mas->last);
3332 MA_STATE(prev_r_mas, mas->tree, mas->index, mas->last);
54a611b6
LH
3333
3334 trace_ma_op(__func__, mas);
54a611b6
LH
3335
3336 mast.l = &l_mas;
3337 mast.r = &r_mas;
3338 mast.orig_l = &prev_l_mas;
3339 mast.orig_r = &prev_r_mas;
54a611b6
LH
3340 mast.bn = b_node;
3341
f9d3a963 3342 while (height++ <= orig_height) {
54a611b6 3343 if (mt_slots[b_node->type] > b_node->b_end) {
f9d3a963 3344 mas_split_final_node(&mast, mas);
54a611b6
LH
3345 break;
3346 }
3347
3348 l_mas = r_mas = *mas;
3349 l_mas.node = mas_new_ma_node(mas, b_node);
3350 r_mas.node = mas_new_ma_node(mas, b_node);
3351 /*
3352 * Another way that 'jitter' is avoided is to terminate a split up early if the
3353 * left or right node has space to spare. This is referred to as "pushing left"
3354 * or "pushing right" and is similar to the B* tree, except the nodes left or
3355 * right can rarely be reused due to RCU, but the ripple upwards is halted which
3356 * is a significant savings.
3357 */
3358 /* Try to push left. */
f9d3a963
SK
3359 if (mas_push_data(mas, &mast, true)) {
3360 height++;
54a611b6 3361 break;
f9d3a963 3362 }
54a611b6 3363 /* Try to push right. */
f9d3a963
SK
3364 if (mas_push_data(mas, &mast, false)) {
3365 height++;
54a611b6 3366 break;
f9d3a963 3367 }
54a611b6 3368
4f6a6bed 3369 split = mab_calc_split(mas, b_node, &mid_split);
54a611b6
LH
3370 mast_split_data(&mast, mas, split);
3371 /*
3372 * Usually correct, mab_mas_cp in the above call overwrites
3373 * r->max.
3374 */
3375 mast.r->max = mas->max;
3376 mast_fill_bnode(&mast, mas, 1);
3377 prev_l_mas = *mast.l;
3378 prev_r_mas = *mast.r;
3379 }
3380
3381 /* Set the original node as dead */
530f745c 3382 old = mas->node;
54a611b6 3383 mas->node = l_mas.node;
f9d3a963 3384 mas_wmb_replace(mas, old, height);
54a611b6 3385 mtree_range_walk(mas);
ed4dfd9a 3386 return;
54a611b6
LH
3387}
3388
3389/*
3390 * mas_commit_b_node() - Commit the big node into the tree.
3391 * @wr_mas: The maple write state
3392 * @b_node: The maple big node
54a611b6 3393 */
ed4dfd9a 3394static noinline_for_kasan void mas_commit_b_node(struct ma_wr_state *wr_mas,
62c7b2b9 3395 struct maple_big_node *b_node)
54a611b6 3396{
62c7b2b9 3397 enum store_type type = wr_mas->mas->store_type;
54a611b6 3398
62c7b2b9 3399 WARN_ON_ONCE(type != wr_rebalance && type != wr_split_store);
54a611b6 3400
62c7b2b9
SK
3401 if (type == wr_rebalance)
3402 return mas_rebalance(wr_mas->mas, b_node);
54a611b6 3403
62c7b2b9 3404 return mas_split(wr_mas->mas, b_node);
54a611b6
LH
3405}
3406
3407/*
3408 * mas_root_expand() - Expand a root to a node
3409 * @mas: The maple state
3410 * @entry: The entry to store into the tree
3411 */
cefbcf20 3412static inline void mas_root_expand(struct ma_state *mas, void *entry)
54a611b6
LH
3413{
3414 void *contents = mas_root_locked(mas);
3415 enum maple_type type = maple_leaf_64;
3416 struct maple_node *node;
3417 void __rcu **slots;
3418 unsigned long *pivots;
3419 int slot = 0;
3420
54a611b6
LH
3421 node = mas_pop_node(mas);
3422 pivots = ma_pivots(node, type);
3423 slots = ma_slots(node, type);
4ffc2ee2 3424 node->parent = ma_parent_ptr(mas_tree_parent(mas));
54a611b6 3425 mas->node = mt_mk_node(node, type);
067311d3 3426 mas->status = ma_active;
54a611b6
LH
3427
3428 if (mas->index) {
3429 if (contents) {
3430 rcu_assign_pointer(slots[slot], contents);
3431 if (likely(mas->index > 1))
3432 slot++;
3433 }
3434 pivots[slot++] = mas->index - 1;
3435 }
3436
3437 rcu_assign_pointer(slots[slot], entry);
3438 mas->offset = slot;
3439 pivots[slot] = mas->last;
3440 if (mas->last != ULONG_MAX)
3c769fd8
PZ
3441 pivots[++slot] = ULONG_MAX;
3442
f9d3a963 3443 mt_set_height(mas->tree, 1);
c45ea315 3444 ma_set_meta(node, maple_leaf_64, 0, slot);
54a611b6
LH
3445 /* swap the new root into the tree */
3446 rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node));
cefbcf20 3447 return;
54a611b6
LH
3448}
3449
0ea120b2
WY
3450/*
3451 * mas_store_root() - Storing value into root.
3452 * @mas: The maple state
3453 * @entry: The entry to store.
3454 *
3455 * There is no root node now and we are storing a value into the root - this
3456 * function either assigns the pointer or expands into a node.
3457 */
54a611b6
LH
3458static inline void mas_store_root(struct ma_state *mas, void *entry)
3459{
0ea120b2
WY
3460 if (!entry) {
3461 if (!mas->index)
3462 rcu_assign_pointer(mas->tree->ma_root, NULL);
3463 } else if (likely((mas->last != 0) || (mas->index != 0)))
54a611b6
LH
3464 mas_root_expand(mas, entry);
3465 else if (((unsigned long) (entry) & 3) == 2)
3466 mas_root_expand(mas, entry);
3467 else {
3468 rcu_assign_pointer(mas->tree->ma_root, entry);
067311d3 3469 mas->status = ma_start;
54a611b6
LH
3470 }
3471}
3472
3473/*
3474 * mas_is_span_wr() - Check if the write needs to be treated as a write that
3475 * spans the node.
96ae4c90 3476 * @wr_mas: The maple write state
54a611b6
LH
3477 *
3478 * Spanning writes are writes that start in one node and end in another OR if
3479 * the write of a %NULL will cause the node to end with a %NULL.
3480 *
3481 * Return: True if this is a spanning write, false otherwise.
3482 */
3483static bool mas_is_span_wr(struct ma_wr_state *wr_mas)
3484{
bc147f0f 3485 unsigned long max = wr_mas->r_max;
54a611b6 3486 unsigned long last = wr_mas->mas->last;
54a611b6
LH
3487 enum maple_type type = wr_mas->type;
3488 void *entry = wr_mas->entry;
3489
bc147f0f
PZ
3490 /* Contained in this pivot, fast path */
3491 if (last < max)
54a611b6
LH
3492 return false;
3493
bc147f0f
PZ
3494 if (ma_is_leaf(type)) {
3495 max = wr_mas->mas->max;
54a611b6
LH
3496 if (last < max)
3497 return false;
bc147f0f 3498 }
54a611b6 3499
bc147f0f 3500 if (last == max) {
54a611b6 3501 /*
bc147f0f
PZ
3502 * The last entry of leaf node cannot be NULL unless it is the
3503 * rightmost node (writing ULONG_MAX), otherwise it spans slots.
54a611b6 3504 */
bc147f0f 3505 if (entry || last == ULONG_MAX)
54a611b6
LH
3506 return false;
3507 }
3508
bc147f0f 3509 trace_ma_write(__func__, wr_mas->mas, wr_mas->r_max, entry);
54a611b6
LH
3510 return true;
3511}
3512
3513static inline void mas_wr_walk_descend(struct ma_wr_state *wr_mas)
3514{
54a611b6
LH
3515 wr_mas->type = mte_node_type(wr_mas->mas->node);
3516 mas_wr_node_walk(wr_mas);
3517 wr_mas->slots = ma_slots(wr_mas->node, wr_mas->type);
3518}
3519
3520static inline void mas_wr_walk_traverse(struct ma_wr_state *wr_mas)
3521{
3522 wr_mas->mas->max = wr_mas->r_max;
3523 wr_mas->mas->min = wr_mas->r_min;
3524 wr_mas->mas->node = wr_mas->content;
3525 wr_mas->mas->offset = 0;
9bbba563 3526 wr_mas->mas->depth++;
54a611b6
LH
3527}
3528/*
3529 * mas_wr_walk() - Walk the tree for a write.
3530 * @wr_mas: The maple write state
3531 *
3532 * Uses mas_slot_locked() and does not need to worry about dead nodes.
3533 *
3534 * Return: True if it's contained in a node, false on spanning write.
3535 */
3536static bool mas_wr_walk(struct ma_wr_state *wr_mas)
3537{
3538 struct ma_state *mas = wr_mas->mas;
3539
3540 while (true) {
3541 mas_wr_walk_descend(wr_mas);
3542 if (unlikely(mas_is_span_wr(wr_mas)))
3543 return false;
3544
3545 wr_mas->content = mas_slot_locked(mas, wr_mas->slots,
3546 mas->offset);
3547 if (ma_is_leaf(wr_mas->type))
3548 return true;
3549
ad88fc17
SK
3550 if (mas->end < mt_slots[wr_mas->type] - 1)
3551 wr_mas->vacant_height = mas->depth + 1;
3552
271152a9
SK
3553 if (ma_is_root(mas_mn(mas))) {
3554 /* root needs more than 2 entries to be sufficient + 1 */
3555 if (mas->end > 2)
3556 wr_mas->sufficient_height = 1;
3557 } else if (mas->end > mt_min_slots[wr_mas->type] + 1)
3558 wr_mas->sufficient_height = mas->depth + 1;
3559
54a611b6
LH
3560 mas_wr_walk_traverse(wr_mas);
3561 }
3562
3563 return true;
3564}
3565
bea07fd6 3566static void mas_wr_walk_index(struct ma_wr_state *wr_mas)
54a611b6
LH
3567{
3568 struct ma_state *mas = wr_mas->mas;
3569
3570 while (true) {
3571 mas_wr_walk_descend(wr_mas);
3572 wr_mas->content = mas_slot_locked(mas, wr_mas->slots,
3573 mas->offset);
3574 if (ma_is_leaf(wr_mas->type))
bea07fd6 3575 return;
54a611b6 3576 mas_wr_walk_traverse(wr_mas);
54a611b6 3577 }
54a611b6
LH
3578}
3579/*
3580 * mas_extend_spanning_null() - Extend a store of a %NULL to include surrounding %NULLs.
3581 * @l_wr_mas: The left maple write state
3582 * @r_wr_mas: The right maple write state
3583 */
3584static inline void mas_extend_spanning_null(struct ma_wr_state *l_wr_mas,
3585 struct ma_wr_state *r_wr_mas)
3586{
3587 struct ma_state *r_mas = r_wr_mas->mas;
3588 struct ma_state *l_mas = l_wr_mas->mas;
3589 unsigned char l_slot;
3590
3591 l_slot = l_mas->offset;
3592 if (!l_wr_mas->content)
3593 l_mas->index = l_wr_mas->r_min;
3594
3595 if ((l_mas->index == l_wr_mas->r_min) &&
3596 (l_slot &&
3597 !mas_slot_locked(l_mas, l_wr_mas->slots, l_slot - 1))) {
3598 if (l_slot > 1)
3599 l_mas->index = l_wr_mas->pivots[l_slot - 2] + 1;
3600 else
3601 l_mas->index = l_mas->min;
3602
3603 l_mas->offset = l_slot - 1;
3604 }
3605
3606 if (!r_wr_mas->content) {
3607 if (r_mas->last < r_wr_mas->r_max)
3608 r_mas->last = r_wr_mas->r_max;
3609 r_mas->offset++;
3610 } else if ((r_mas->last == r_wr_mas->r_max) &&
3611 (r_mas->last < r_mas->max) &&
3612 !mas_slot_locked(r_mas, r_wr_mas->slots, r_mas->offset + 1)) {
3613 r_mas->last = mas_safe_pivot(r_mas, r_wr_mas->pivots,
3614 r_wr_mas->type, r_mas->offset + 1);
3615 r_mas->offset++;
3616 }
3617}
3618
3619static inline void *mas_state_walk(struct ma_state *mas)
3620{
3621 void *entry;
3622
3623 entry = mas_start(mas);
3624 if (mas_is_none(mas))
3625 return NULL;
3626
3627 if (mas_is_ptr(mas))
3628 return entry;
3629
3630 return mtree_range_walk(mas);
3631}
3632
3633/*
3634 * mtree_lookup_walk() - Internal quick lookup that does not keep maple state up
3635 * to date.
3636 *
3637 * @mas: The maple state.
3638 *
3639 * Note: Leaves mas in undesirable state.
3640 * Return: The entry for @mas->index or %NULL on dead node.
3641 */
3642static inline void *mtree_lookup_walk(struct ma_state *mas)
3643{
3644 unsigned long *pivots;
3645 unsigned char offset;
3646 struct maple_node *node;
3647 struct maple_enode *next;
3648 enum maple_type type;
3649 void __rcu **slots;
3650 unsigned char end;
54a611b6
LH
3651
3652 next = mas->node;
54a611b6 3653 do {
54a611b6
LH
3654 node = mte_to_node(next);
3655 type = mte_node_type(next);
3656 pivots = ma_pivots(node, type);
24662dec
LH
3657 end = mt_pivots[type];
3658 offset = 0;
54a611b6 3659 do {
24662dec 3660 if (pivots[offset] >= mas->index)
ec07967d 3661 break;
ec07967d 3662 } while (++offset < end);
54a611b6 3663
54a611b6
LH
3664 slots = ma_slots(node, type);
3665 next = mt_slot(mas->tree, slots, offset);
3666 if (unlikely(ma_dead_node(node)))
3667 goto dead_node;
3668 } while (!ma_is_leaf(type));
3669
831978e3 3670 return (void *)next;
54a611b6
LH
3671
3672dead_node:
3673 mas_reset(mas);
3674 return NULL;
3675}
3676
530f745c 3677static void mte_destroy_walk(struct maple_enode *, struct maple_tree *);
54a611b6
LH
3678/*
3679 * mas_new_root() - Create a new root node that only contains the entry passed
3680 * in.
3681 * @mas: The maple state
3682 * @entry: The entry to store.
3683 *
3684 * Only valid when the index == 0 and the last == ULONG_MAX
54a611b6 3685 */
ed4dfd9a 3686static inline void mas_new_root(struct ma_state *mas, void *entry)
54a611b6
LH
3687{
3688 struct maple_enode *root = mas_root_locked(mas);
3689 enum maple_type type = maple_leaf_64;
3690 struct maple_node *node;
3691 void __rcu **slots;
3692 unsigned long *pivots;
3693
8c836f17
WY
3694 WARN_ON_ONCE(mas->index || mas->last != ULONG_MAX);
3695
3696 if (!entry) {
f9d3a963 3697 mt_set_height(mas->tree, 0);
54a611b6 3698 rcu_assign_pointer(mas->tree->ma_root, entry);
067311d3 3699 mas->status = ma_start;
54a611b6
LH
3700 goto done;
3701 }
3702
54a611b6
LH
3703 node = mas_pop_node(mas);
3704 pivots = ma_pivots(node, type);
3705 slots = ma_slots(node, type);
4ffc2ee2 3706 node->parent = ma_parent_ptr(mas_tree_parent(mas));
54a611b6 3707 mas->node = mt_mk_node(node, type);
067311d3 3708 mas->status = ma_active;
54a611b6
LH
3709 rcu_assign_pointer(slots[0], entry);
3710 pivots[0] = mas->last;
f9d3a963 3711 mt_set_height(mas->tree, 1);
54a611b6
LH
3712 rcu_assign_pointer(mas->tree->ma_root, mte_mk_root(mas->node));
3713
3714done:
3715 if (xa_is_node(root))
3716 mte_destroy_walk(root, mas->tree);
3717
ed4dfd9a 3718 return;
54a611b6
LH
3719}
3720/*
3721 * mas_wr_spanning_store() - Create a subtree with the store operation completed
3722 * and new nodes where necessary, then place the sub-tree in the actual tree.
3723 * Note that mas is expected to point to the node which caused the store to
3724 * span.
3725 * @wr_mas: The maple write state
54a611b6 3726 */
ed4dfd9a 3727static noinline void mas_wr_spanning_store(struct ma_wr_state *wr_mas)
54a611b6
LH
3728{
3729 struct maple_subtree_state mast;
3730 struct maple_big_node b_node;
3731 struct ma_state *mas;
3732 unsigned char height;
3733
3734 /* Left and Right side of spanning store */
3735 MA_STATE(l_mas, NULL, 0, 0);
3736 MA_STATE(r_mas, NULL, 0, 0);
54a611b6
LH
3737 MA_WR_STATE(r_wr_mas, &r_mas, wr_mas->entry);
3738 MA_WR_STATE(l_wr_mas, &l_mas, wr_mas->entry);
3739
3740 /*
3741 * A store operation that spans multiple nodes is called a spanning
3742 * store and is handled early in the store call stack by the function
3743 * mas_is_span_wr(). When a spanning store is identified, the maple
3744 * state is duplicated. The first maple state walks the left tree path
3745 * to ``index``, the duplicate walks the right tree path to ``last``.
3746 * The data in the two nodes are combined into a single node, two nodes,
3747 * or possibly three nodes (see the 3-way split above). A ``NULL``
3748 * written to the last entry of a node is considered a spanning store as
3749 * a rebalance is required for the operation to complete and an overflow
3750 * of data may happen.
3751 */
3752 mas = wr_mas->mas;
3753 trace_ma_op(__func__, mas);
3754
3755 if (unlikely(!mas->index && mas->last == ULONG_MAX))
3756 return mas_new_root(mas, wr_mas->entry);
3757 /*
3758 * Node rebalancing may occur due to this store, so there may be three new
3759 * entries per level plus a new root.
3760 */
3761 height = mas_mt_height(mas);
54a611b6
LH
3762
3763 /*
3764 * Set up right side. Need to get to the next offset after the spanning
3765 * store to ensure it's not NULL and to combine both the next node and
3766 * the node with the start together.
3767 */
3768 r_mas = *mas;
3769 /* Avoid overflow, walk to next slot in the tree. */
3770 if (r_mas.last + 1)
3771 r_mas.last++;
3772
3773 r_mas.index = r_mas.last;
3774 mas_wr_walk_index(&r_wr_mas);
3775 r_mas.last = r_mas.index = mas->last;
3776
3777 /* Set up left side. */
3778 l_mas = *mas;
3779 mas_wr_walk_index(&l_wr_mas);
3780
3781 if (!wr_mas->entry) {
3782 mas_extend_spanning_null(&l_wr_mas, &r_wr_mas);
3783 mas->offset = l_mas.offset;
3784 mas->index = l_mas.index;
3785 mas->last = l_mas.last = r_mas.last;
3786 }
3787
3788 /* expanding NULLs may make this cover the entire range */
3789 if (!l_mas.index && r_mas.last == ULONG_MAX) {
3790 mas_set_range(mas, 0, ULONG_MAX);
3791 return mas_new_root(mas, wr_mas->entry);
3792 }
3793
3794 memset(&b_node, 0, sizeof(struct maple_big_node));
3795 /* Copy l_mas and store the value in b_node. */
0de56e38 3796 mas_store_b_node(&l_wr_mas, &b_node, l_mas.end);
bea07fd6
LS
3797 /* Copy r_mas into b_node if there is anything to copy. */
3798 if (r_mas.max > r_mas.last)
0de56e38 3799 mas_mab_cp(&r_mas, r_mas.offset, r_mas.end,
54a611b6
LH
3800 &b_node, b_node.b_end + 1);
3801 else
3802 b_node.b_end++;
3803
3804 /* Stop spanning searches by searching for just index. */
3805 l_mas.index = l_mas.last = mas->index;
3806
3807 mast.bn = &b_node;
3808 mast.orig_l = &l_mas;
3809 mast.orig_r = &r_mas;
3810 /* Combine l_mas and r_mas and split them up evenly again. */
3811 return mas_spanning_rebalance(mas, &mast, height + 1);
3812}
3813
3814/*
3815 * mas_wr_node_store() - Attempt to store the value in a node
3816 * @wr_mas: The maple write state
3817 *
3818 * Attempts to reuse the node, but may allocate.
54a611b6 3819 */
ed4dfd9a 3820static inline void mas_wr_node_store(struct ma_wr_state *wr_mas,
7a03ae39 3821 unsigned char new_end)
54a611b6
LH
3822{
3823 struct ma_state *mas = wr_mas->mas;
3824 void __rcu **dst_slots;
3825 unsigned long *dst_pivots;
7a03ae39 3826 unsigned char dst_offset, offset_end = wr_mas->offset_end;
54a611b6 3827 struct maple_node reuse, *newnode;
7a03ae39 3828 unsigned char copy_size, node_pivots = mt_pivots[wr_mas->type];
54a611b6 3829 bool in_rcu = mt_in_rcu(mas->tree);
f9d3a963 3830 unsigned char height = mas_mt_height(mas);
54a611b6 3831
7a03ae39
PZ
3832 if (mas->last == wr_mas->end_piv)
3833 offset_end++; /* don't copy this offset */
3834 else if (unlikely(wr_mas->r_max == ULONG_MAX))
0de56e38 3835 mas_bulk_rebalance(mas, mas->end, wr_mas->type);
7a03ae39 3836
54a611b6
LH
3837 /* set up node. */
3838 if (in_rcu) {
54a611b6
LH
3839 newnode = mas_pop_node(mas);
3840 } else {
3841 memset(&reuse, 0, sizeof(struct maple_node));
3842 newnode = &reuse;
3843 }
3844
3845 newnode->parent = mas_mn(mas)->parent;
3846 dst_pivots = ma_pivots(newnode, wr_mas->type);
3847 dst_slots = ma_slots(newnode, wr_mas->type);
3848 /* Copy from start to insert point */
7a03ae39
PZ
3849 memcpy(dst_pivots, wr_mas->pivots, sizeof(unsigned long) * mas->offset);
3850 memcpy(dst_slots, wr_mas->slots, sizeof(void *) * mas->offset);
54a611b6
LH
3851
3852 /* Handle insert of new range starting after old range */
3853 if (wr_mas->r_min < mas->index) {
7a03ae39
PZ
3854 rcu_assign_pointer(dst_slots[mas->offset], wr_mas->content);
3855 dst_pivots[mas->offset++] = mas->index - 1;
54a611b6
LH
3856 }
3857
3858 /* Store the new entry and range end. */
7a03ae39
PZ
3859 if (mas->offset < node_pivots)
3860 dst_pivots[mas->offset] = mas->last;
3861 rcu_assign_pointer(dst_slots[mas->offset], wr_mas->entry);
54a611b6
LH
3862
3863 /*
3864 * this range wrote to the end of the node or it overwrote the rest of
3865 * the data
3866 */
0de56e38 3867 if (offset_end > mas->end)
54a611b6 3868 goto done;
54a611b6 3869
7a03ae39 3870 dst_offset = mas->offset + 1;
54a611b6 3871 /* Copy to the end of node if necessary. */
0de56e38 3872 copy_size = mas->end - offset_end + 1;
7a03ae39 3873 memcpy(dst_slots + dst_offset, wr_mas->slots + offset_end,
54a611b6 3874 sizeof(void *) * copy_size);
7a03ae39
PZ
3875 memcpy(dst_pivots + dst_offset, wr_mas->pivots + offset_end,
3876 sizeof(unsigned long) * (copy_size - 1));
54a611b6 3877
7a03ae39 3878 if (new_end < node_pivots)
54a611b6
LH
3879 dst_pivots[new_end] = mas->max;
3880
3881done:
330018fe 3882 mas_leaf_set_meta(newnode, maple_leaf_64, new_end);
54a611b6 3883 if (in_rcu) {
72bcf4aa
LH
3884 struct maple_enode *old_enode = mas->node;
3885
54a611b6 3886 mas->node = mt_mk_node(newnode, wr_mas->type);
f9d3a963 3887 mas_replace_node(mas, old_enode, height);
54a611b6
LH
3888 } else {
3889 memcpy(wr_mas->node, newnode, sizeof(struct maple_node));
3890 }
3891 trace_ma_write(__func__, mas, 0, wr_mas->entry);
3892 mas_update_gap(mas);
31c532a8 3893 mas->end = new_end;
ed4dfd9a 3894 return;
54a611b6
LH
3895}
3896
3897/*
3898 * mas_wr_slot_store: Attempt to store a value in a slot.
3899 * @wr_mas: the maple write state
54a611b6 3900 */
ed4dfd9a 3901static inline void mas_wr_slot_store(struct ma_wr_state *wr_mas)
54a611b6
LH
3902{
3903 struct ma_state *mas = wr_mas->mas;
54a611b6 3904 unsigned char offset = mas->offset;
64891ba3 3905 void __rcu **slots = wr_mas->slots;
e6d1ffd6 3906 bool gap = false;
54a611b6 3907
64891ba3
PZ
3908 gap |= !mt_slot_locked(mas->tree, slots, offset);
3909 gap |= !mt_slot_locked(mas->tree, slots, offset + 1);
54a611b6 3910
64891ba3
PZ
3911 if (wr_mas->offset_end - offset == 1) {
3912 if (mas->index == wr_mas->r_min) {
3913 /* Overwriting the range and a part of the next one */
3914 rcu_assign_pointer(slots[offset], wr_mas->entry);
3915 wr_mas->pivots[offset] = mas->last;
3916 } else {
3917 /* Overwriting a part of the range and the next one */
3918 rcu_assign_pointer(slots[offset + 1], wr_mas->entry);
3919 wr_mas->pivots[offset] = mas->index - 1;
3920 mas->offset++; /* Keep mas accurate. */
3921 }
38dc8f49
WY
3922 } else {
3923 WARN_ON_ONCE(mt_in_rcu(mas->tree));
64891ba3
PZ
3924 /*
3925 * Expand the range, only partially overwriting the previous and
3926 * next ranges
3927 */
3928 gap |= !mt_slot_locked(mas->tree, slots, offset + 2);
3929 rcu_assign_pointer(slots[offset + 1], wr_mas->entry);
e6d1ffd6 3930 wr_mas->pivots[offset] = mas->index - 1;
64891ba3 3931 wr_mas->pivots[offset + 1] = mas->last;
e6d1ffd6 3932 mas->offset++; /* Keep mas accurate. */
54a611b6
LH
3933 }
3934
54a611b6 3935 trace_ma_write(__func__, mas, 0, wr_mas->entry);
e6d1ffd6
PZ
3936 /*
3937 * Only update gap when the new entry is empty or there is an empty
3938 * entry in the original two ranges.
3939 */
3940 if (!wr_mas->entry || gap)
3941 mas_update_gap(mas);
3942
ed4dfd9a 3943 return;
54a611b6
LH
3944}
3945
54a611b6
LH
3946static inline void mas_wr_extend_null(struct ma_wr_state *wr_mas)
3947{
3948 struct ma_state *mas = wr_mas->mas;
3949
8c995a63
PZ
3950 if (!wr_mas->slots[wr_mas->offset_end]) {
3951 /* If this one is null, the next and prev are not */
54a611b6 3952 mas->last = wr_mas->end_piv;
8c995a63
PZ
3953 } else {
3954 /* Check next slot(s) if we are overwriting the end */
3955 if ((mas->last == wr_mas->end_piv) &&
0de56e38 3956 (mas->end != wr_mas->offset_end) &&
8c995a63
PZ
3957 !wr_mas->slots[wr_mas->offset_end + 1]) {
3958 wr_mas->offset_end++;
0de56e38 3959 if (wr_mas->offset_end == mas->end)
8c995a63
PZ
3960 mas->last = mas->max;
3961 else
3962 mas->last = wr_mas->pivots[wr_mas->offset_end];
3963 wr_mas->end_piv = mas->last;
3964 }
54a611b6
LH
3965 }
3966
3967 if (!wr_mas->content) {
3968 /* If this one is null, the next and prev are not */
3969 mas->index = wr_mas->r_min;
3970 } else {
3971 /* Check prev slot if we are overwriting the start */
3972 if (mas->index == wr_mas->r_min && mas->offset &&
3973 !wr_mas->slots[mas->offset - 1]) {
3974 mas->offset--;
3975 wr_mas->r_min = mas->index =
3976 mas_safe_min(mas, wr_mas->pivots, mas->offset);
3977 wr_mas->r_max = wr_mas->pivots[mas->offset];
3978 }
3979 }
3980}
3981
a7496ad5
LH
3982static inline void mas_wr_end_piv(struct ma_wr_state *wr_mas)
3983{
0de56e38 3984 while ((wr_mas->offset_end < wr_mas->mas->end) &&
a7496ad5
LH
3985 (wr_mas->mas->last > wr_mas->pivots[wr_mas->offset_end]))
3986 wr_mas->offset_end++;
3987
0de56e38 3988 if (wr_mas->offset_end < wr_mas->mas->end)
a7496ad5
LH
3989 wr_mas->end_piv = wr_mas->pivots[wr_mas->offset_end];
3990 else
3991 wr_mas->end_piv = wr_mas->mas->max;
a7496ad5
LH
3992}
3993
c6fc9e4a
PZ
3994static inline unsigned char mas_wr_new_end(struct ma_wr_state *wr_mas)
3995{
3996 struct ma_state *mas = wr_mas->mas;
0de56e38 3997 unsigned char new_end = mas->end + 2;
c6fc9e4a
PZ
3998
3999 new_end -= wr_mas->offset_end - mas->offset;
4000 if (wr_mas->r_min == mas->index)
4001 new_end--;
4002
4003 if (wr_mas->end_piv == mas->last)
4004 new_end--;
4005
4006 return new_end;
4007}
4008
2e1da329
PZ
4009/*
4010 * mas_wr_append: Attempt to append
4011 * @wr_mas: the maple write state
432af5c9 4012 * @new_end: The end of the node after the modification
2e1da329 4013 *
cfeb6ae8
LH
4014 * This is currently unsafe in rcu mode since the end of the node may be cached
4015 * by readers while the node contents may be updated which could result in
4016 * inaccurate information.
2e1da329 4017 */
ed4dfd9a 4018static inline void mas_wr_append(struct ma_wr_state *wr_mas,
432af5c9 4019 unsigned char new_end)
54a611b6 4020{
add60ea5 4021 struct ma_state *mas = wr_mas->mas;
432af5c9 4022 void __rcu **slots;
add60ea5 4023 unsigned char end = mas->end;
432af5c9
LH
4024
4025 if (new_end < mt_pivots[wr_mas->type]) {
2e1da329 4026 wr_mas->pivots[new_end] = wr_mas->pivots[end];
432af5c9 4027 ma_set_meta(wr_mas->node, wr_mas->type, 0, new_end);
2e1da329 4028 }
54a611b6 4029
432af5c9
LH
4030 slots = wr_mas->slots;
4031 if (new_end == end + 1) {
23e9dde0
PZ
4032 if (mas->last == wr_mas->r_max) {
4033 /* Append to end of range */
432af5c9 4034 rcu_assign_pointer(slots[new_end], wr_mas->entry);
23e9dde0
PZ
4035 wr_mas->pivots[end] = mas->index - 1;
4036 mas->offset = new_end;
4037 } else {
4038 /* Append to start of range */
432af5c9 4039 rcu_assign_pointer(slots[new_end], wr_mas->content);
23e9dde0 4040 wr_mas->pivots[end] = mas->last;
432af5c9 4041 rcu_assign_pointer(slots[end], wr_mas->entry);
23e9dde0 4042 }
2e1da329 4043 } else {
23e9dde0 4044 /* Append to the range without touching any boundaries. */
432af5c9 4045 rcu_assign_pointer(slots[new_end], wr_mas->content);
23e9dde0 4046 wr_mas->pivots[end + 1] = mas->last;
432af5c9 4047 rcu_assign_pointer(slots[end + 1], wr_mas->entry);
23e9dde0
PZ
4048 wr_mas->pivots[end] = mas->index - 1;
4049 mas->offset = end + 1;
54a611b6
LH
4050 }
4051
2e1da329
PZ
4052 if (!wr_mas->content || !wr_mas->entry)
4053 mas_update_gap(mas);
4054
31c532a8 4055 mas->end = new_end;
432af5c9 4056 trace_ma_write(__func__, mas, new_end, wr_mas->entry);
ed4dfd9a 4057 return;
54a611b6
LH
4058}
4059
4060/*
4061 * mas_wr_bnode() - Slow path for a modification.
4062 * @wr_mas: The write maple state
4063 *
4064 * This is where split, rebalance end up.
4065 */
4066static void mas_wr_bnode(struct ma_wr_state *wr_mas)
4067{
4068 struct maple_big_node b_node;
4069
4070 trace_ma_write(__func__, wr_mas->mas, 0, wr_mas->entry);
4071 memset(&b_node, 0, sizeof(struct maple_big_node));
4072 mas_store_b_node(wr_mas, &b_node, wr_mas->offset_end);
62c7b2b9 4073 mas_commit_b_node(wr_mas, &b_node);
54a611b6
LH
4074}
4075
54a611b6
LH
4076/*
4077 * mas_wr_store_entry() - Internal call to store a value
96ae4c90 4078 * @wr_mas: The maple write state
54a611b6 4079 */
739820a6 4080static inline void mas_wr_store_entry(struct ma_wr_state *wr_mas)
54a611b6 4081{
54a611b6 4082 struct ma_state *mas = wr_mas->mas;
580fcbd6 4083 unsigned char new_end = mas_wr_new_end(wr_mas);
54a611b6 4084
580fcbd6 4085 switch (mas->store_type) {
580fcbd6 4086 case wr_exact_fit:
54a611b6
LH
4087 rcu_assign_pointer(wr_mas->slots[mas->offset], wr_mas->entry);
4088 if (!!wr_mas->entry ^ !!wr_mas->content)
4089 mas_update_gap(mas);
580fcbd6
SK
4090 break;
4091 case wr_append:
4092 mas_wr_append(wr_mas, new_end);
4093 break;
4094 case wr_slot_store:
4095 mas_wr_slot_store(wr_mas);
4096 break;
4097 case wr_node_store:
4098 mas_wr_node_store(wr_mas, new_end);
4099 break;
4100 case wr_spanning_store:
54a611b6 4101 mas_wr_spanning_store(wr_mas);
580fcbd6
SK
4102 break;
4103 case wr_split_store:
4104 case wr_rebalance:
4105 mas_wr_bnode(wr_mas);
4106 break;
2a6ed1b4
SK
4107 case wr_new_root:
4108 mas_new_root(mas, wr_mas->entry);
4109 break;
4110 case wr_store_root:
4111 mas_store_root(mas, wr_mas->entry);
4112 break;
4113 case wr_invalid:
4114 MT_BUG_ON(mas->tree, 1);
54a611b6
LH
4115 }
4116
580fcbd6 4117 return;
54a611b6
LH
4118}
4119
580fcbd6 4120static inline void mas_wr_prealloc_setup(struct ma_wr_state *wr_mas)
3cc6f42a 4121{
580fcbd6
SK
4122 struct ma_state *mas = wr_mas->mas;
4123
4124 if (!mas_is_active(mas)) {
4125 if (mas_is_start(mas))
4126 goto set_content;
3cc6f42a 4127
580fcbd6 4128 if (unlikely(mas_is_paused(mas)))
3cc6f42a
SK
4129 goto reset;
4130
580fcbd6 4131 if (unlikely(mas_is_none(mas)))
3cc6f42a
SK
4132 goto reset;
4133
580fcbd6 4134 if (unlikely(mas_is_overflow(mas)))
3cc6f42a
SK
4135 goto reset;
4136
580fcbd6 4137 if (unlikely(mas_is_underflow(mas)))
3cc6f42a 4138 goto reset;
54a611b6
LH
4139 }
4140
c6fc9e4a 4141 /*
3cc6f42a
SK
4142 * A less strict version of mas_is_span_wr() where we allow spanning
4143 * writes within this node. This is to stop partial walks in
4144 * mas_prealloc() from being reset.
c6fc9e4a 4145 */
580fcbd6 4146 if (mas->last > mas->max)
3cc6f42a 4147 goto reset;
54a611b6 4148
3cc6f42a 4149 if (wr_mas->entry)
580fcbd6 4150 goto set_content;
7a03ae39 4151
580fcbd6 4152 if (mte_is_leaf(mas->node) && mas->last == mas->max)
3cc6f42a 4153 goto reset;
54a611b6 4154
580fcbd6 4155 goto set_content;
54a611b6 4156
3cc6f42a 4157reset:
580fcbd6
SK
4158 mas_reset(mas);
4159set_content:
3cc6f42a 4160 wr_mas->content = mas_start(mas);
54a611b6
LH
4161}
4162
5d659bbb
SK
4163/**
4164 * mas_prealloc_calc() - Calculate number of nodes needed for a
4165 * given store oepration
28092a65 4166 * @wr_mas: The maple write state
5d659bbb 4167 * @entry: The entry to store into the tree
54a611b6 4168 *
5d659bbb 4169 * Return: Number of nodes required for preallocation.
54a611b6 4170 */
28092a65 4171static inline int mas_prealloc_calc(struct ma_wr_state *wr_mas, void *entry)
5d659bbb 4172{
28092a65 4173 struct ma_state *mas = wr_mas->mas;
ad88fc17
SK
4174 unsigned char height = mas_mt_height(mas);
4175 int ret = height * 3 + 1;
4176 unsigned char delta = height - wr_mas->vacant_height;
5d659bbb
SK
4177
4178 switch (mas->store_type) {
2a6ed1b4
SK
4179 case wr_exact_fit:
4180 case wr_append:
4181 case wr_slot_store:
4182 ret = 0;
5d659bbb
SK
4183 break;
4184 case wr_spanning_store:
271152a9
SK
4185 if (wr_mas->sufficient_height < wr_mas->vacant_height)
4186 ret = (height - wr_mas->sufficient_height) * 3 + 1;
4187 else
4188 ret = delta * 3 + 1;
5d659bbb
SK
4189 break;
4190 case wr_split_store:
ad88fc17 4191 ret = delta * 2 + 1;
5d659bbb
SK
4192 break;
4193 case wr_rebalance:
271152a9
SK
4194 if (wr_mas->sufficient_height < wr_mas->vacant_height)
4195 ret = (height - wr_mas->sufficient_height) * 2 + 1;
4196 else
4197 ret = delta * 2 + 1;
5d659bbb
SK
4198 break;
4199 case wr_node_store:
4200 ret = mt_in_rcu(mas->tree) ? 1 : 0;
4201 break;
2a6ed1b4
SK
4202 case wr_new_root:
4203 ret = 1;
4204 break;
4205 case wr_store_root:
4206 if (likely((mas->last != 0) || (mas->index != 0)))
4207 ret = 1;
4208 else if (((unsigned long) (entry) & 3) == 2)
4209 ret = 1;
4210 else
4211 ret = 0;
4212 break;
4213 case wr_invalid:
4214 WARN_ON_ONCE(1);
5d659bbb
SK
4215 }
4216
4217 return ret;
4218}
4219
4220/*
f0c99037 4221 * mas_wr_store_type() - Determine the store type for a given
5d659bbb
SK
4222 * store operation.
4223 * @wr_mas: The maple write state
f0c99037
SK
4224 *
4225 * Return: the type of store needed for the operation
5d659bbb 4226 */
f0c99037 4227static inline enum store_type mas_wr_store_type(struct ma_wr_state *wr_mas)
54a611b6
LH
4228{
4229 struct ma_state *mas = wr_mas->mas;
5d659bbb 4230 unsigned char new_end;
54a611b6 4231
f0c99037
SK
4232 if (unlikely(mas_is_none(mas) || mas_is_ptr(mas)))
4233 return wr_store_root;
54a611b6 4234
f0c99037
SK
4235 if (unlikely(!mas_wr_walk(wr_mas)))
4236 return wr_spanning_store;
54a611b6
LH
4237
4238 /* At this point, we are at the leaf node that needs to be altered. */
54a611b6 4239 mas_wr_end_piv(wr_mas);
5d659bbb
SK
4240 if (!wr_mas->entry)
4241 mas_wr_extend_null(wr_mas);
4242
f0c99037
SK
4243 if ((wr_mas->r_min == mas->index) && (wr_mas->r_max == mas->last))
4244 return wr_exact_fit;
5d659bbb 4245
f0c99037
SK
4246 if (unlikely(!mas->index && mas->last == ULONG_MAX))
4247 return wr_new_root;
5d659bbb 4248
61e9df70 4249 new_end = mas_wr_new_end(wr_mas);
5d659bbb
SK
4250 /* Potential spanning rebalance collapsing a node */
4251 if (new_end < mt_min_slots[wr_mas->type]) {
f0c99037
SK
4252 if (!mte_is_root(mas->node) && !(mas->mas_flags & MA_STATE_BULK))
4253 return wr_rebalance;
4254 return wr_node_store;
5d659bbb
SK
4255 }
4256
f0c99037
SK
4257 if (new_end >= mt_slots[wr_mas->type])
4258 return wr_split_store;
5d659bbb 4259
f0c99037
SK
4260 if (!mt_in_rcu(mas->tree) && (mas->offset == mas->end))
4261 return wr_append;
5d659bbb
SK
4262
4263 if ((new_end == mas->end) && (!mt_in_rcu(mas->tree) ||
f0c99037
SK
4264 (wr_mas->offset_end - mas->offset == 1)))
4265 return wr_slot_store;
5d659bbb 4266
f0c99037 4267 return wr_node_store;
5d659bbb
SK
4268}
4269
4270/**
4271 * mas_wr_preallocate() - Preallocate enough nodes for a store operation
4272 * @wr_mas: The maple write state
4273 * @entry: The entry that will be stored
4274 *
4275 */
4276static inline void mas_wr_preallocate(struct ma_wr_state *wr_mas, void *entry)
4277{
5d659bbb
SK
4278 int request;
4279
4280 mas_wr_prealloc_setup(wr_mas);
28092a65
SK
4281 wr_mas->mas->store_type = mas_wr_store_type(wr_mas);
4282 request = mas_prealloc_calc(wr_mas, entry);
5d659bbb
SK
4283 if (!request)
4284 return;
4285
28092a65 4286 mas_node_count(wr_mas->mas, request);
54a611b6
LH
4287}
4288
4289/**
4290 * mas_insert() - Internal call to insert a value
4291 * @mas: The maple state
4292 * @entry: The entry to store
4293 *
4294 * Return: %NULL or the contents that already exists at the requested index
4295 * otherwise. The maple state needs to be checked for error conditions.
4296 */
4297static inline void *mas_insert(struct ma_state *mas, void *entry)
4298{
4299 MA_WR_STATE(wr_mas, mas, entry);
4300
4301 /*
4302 * Inserting a new range inserts either 0, 1, or 2 pivots within the
4303 * tree. If the insert fits exactly into an existing gap with a value
4304 * of NULL, then the slot only needs to be written with the new value.
4305 * If the range being inserted is adjacent to another range, then only a
4306 * single pivot needs to be inserted (as well as writing the entry). If
4307 * the new range is within a gap but does not touch any other ranges,
4308 * then two pivots need to be inserted: the start - 1, and the end. As
4309 * usual, the entry must be written. Most operations require a new node
4310 * to be allocated and replace an existing node to ensure RCU safety,
4311 * when in RCU mode. The exception to requiring a newly allocated node
4312 * is when inserting at the end of a node (appending). When done
4313 * carefully, appending can reuse the node in place.
4314 */
4315 wr_mas.content = mas_start(mas);
4316 if (wr_mas.content)
4317 goto exists;
4318
1fd7c4f3
SK
4319 mas_wr_preallocate(&wr_mas, entry);
4320 if (mas_is_err(mas))
54a611b6 4321 return NULL;
54a611b6
LH
4322
4323 /* spanning writes always overwrite something */
1fd7c4f3 4324 if (mas->store_type == wr_spanning_store)
54a611b6
LH
4325 goto exists;
4326
4327 /* At this point, we are at the leaf node that needs to be altered. */
1fd7c4f3
SK
4328 if (mas->store_type != wr_new_root && mas->store_type != wr_store_root) {
4329 wr_mas.offset_end = mas->offset;
4330 wr_mas.end_piv = wr_mas.r_max;
54a611b6 4331
1fd7c4f3
SK
4332 if (wr_mas.content || (mas->last > wr_mas.r_max))
4333 goto exists;
4334 }
54a611b6 4335
1fd7c4f3 4336 mas_wr_store_entry(&wr_mas);
54a611b6
LH
4337 return wr_mas.content;
4338
4339exists:
4340 mas_set_err(mas, -EEXIST);
4341 return wr_mas.content;
4342
4343}
4344
9b6713cc
CL
4345/**
4346 * mas_alloc_cyclic() - Internal call to find somewhere to store an entry
4347 * @mas: The maple state.
4348 * @startp: Pointer to ID.
4349 * @range_lo: Lower bound of range to search.
4350 * @range_hi: Upper bound of range to search.
4351 * @entry: The entry to store.
4352 * @next: Pointer to next ID to allocate.
4353 * @gfp: The GFP_FLAGS to use for allocations.
4354 *
4355 * Return: 0 if the allocation succeeded without wrapping, 1 if the
4356 * allocation succeeded after wrapping, or -EBUSY if there are no
4357 * free entries.
4358 */
4359int mas_alloc_cyclic(struct ma_state *mas, unsigned long *startp,
4360 void *entry, unsigned long range_lo, unsigned long range_hi,
4361 unsigned long *next, gfp_t gfp)
4362{
4363 unsigned long min = range_lo;
4364 int ret = 0;
4365
4366 range_lo = max(min, *next);
4367 ret = mas_empty_area(mas, range_lo, range_hi, 1);
4368 if ((mas->tree->ma_flags & MT_FLAGS_ALLOC_WRAPPED) && ret == 0) {
4369 mas->tree->ma_flags &= ~MT_FLAGS_ALLOC_WRAPPED;
4370 ret = 1;
4371 }
4372 if (ret < 0 && range_lo > min) {
1fd8bc7c 4373 mas_reset(mas);
9b6713cc
CL
4374 ret = mas_empty_area(mas, min, range_hi, 1);
4375 if (ret == 0)
4376 ret = 1;
4377 }
4378 if (ret < 0)
4379 return ret;
4380
4381 do {
4382 mas_insert(mas, entry);
4383 } while (mas_nomem(mas, gfp));
4384 if (mas_is_err(mas))
4385 return xa_err(mas->node);
4386
4387 *startp = mas->index;
4388 *next = *startp + 1;
4389 if (*next == 0)
4390 mas->tree->ma_flags |= MT_FLAGS_ALLOC_WRAPPED;
4391
3cd9e92e 4392 mas_destroy(mas);
9b6713cc
CL
4393 return ret;
4394}
4395EXPORT_SYMBOL(mas_alloc_cyclic);
4396
271f61a8 4397static __always_inline void mas_rewalk(struct ma_state *mas, unsigned long index)
de6e386c
LH
4398{
4399retry:
4400 mas_set(mas, index);
4401 mas_state_walk(mas);
4402 if (mas_is_start(mas))
4403 goto retry;
4404}
4405
271f61a8 4406static __always_inline bool mas_rewalk_if_dead(struct ma_state *mas,
de6e386c
LH
4407 struct maple_node *node, const unsigned long index)
4408{
4409 if (unlikely(ma_dead_node(node))) {
4410 mas_rewalk(mas, index);
4411 return true;
4412 }
4413 return false;
4414}
4415
54a611b6
LH
4416/*
4417 * mas_prev_node() - Find the prev non-null entry at the same level in the
067311d3
LH
4418 * tree. The prev value will be mas->node[mas->offset] or the status will be
4419 * ma_none.
54a611b6
LH
4420 * @mas: The maple state
4421 * @min: The lower limit to search
4422 *
067311d3
LH
4423 * The prev node value will be mas->node[mas->offset] or the status will be
4424 * ma_none.
54a611b6
LH
4425 * Return: 1 if the node is dead, 0 otherwise.
4426 */
271f61a8 4427static int mas_prev_node(struct ma_state *mas, unsigned long min)
54a611b6
LH
4428{
4429 enum maple_type mt;
4430 int offset, level;
4431 void __rcu **slots;
4432 struct maple_node *node;
54a611b6 4433 unsigned long *pivots;
dd9a8513 4434 unsigned long max;
54a611b6 4435
dd9a8513
LH
4436 node = mas_mn(mas);
4437 if (!mas->min)
4438 goto no_entry;
4439
4440 max = mas->min - 1;
4441 if (max < min)
4442 goto no_entry;
54a611b6
LH
4443
4444 level = 0;
4445 do {
54a611b6
LH
4446 if (ma_is_root(node))
4447 goto no_entry;
4448
4449 /* Walk up. */
4450 if (unlikely(mas_ascend(mas)))
4451 return 1;
4452 offset = mas->offset;
4453 level++;
dd9a8513 4454 node = mas_mn(mas);
54a611b6
LH
4455 } while (!offset);
4456
4457 offset--;
4458 mt = mte_node_type(mas->node);
54a611b6
LH
4459 while (level > 1) {
4460 level--;
dd9a8513
LH
4461 slots = ma_slots(node, mt);
4462 mas->node = mas_slot(mas, slots, offset);
54a611b6
LH
4463 if (unlikely(ma_dead_node(node)))
4464 return 1;
4465
54a611b6
LH
4466 mt = mte_node_type(mas->node);
4467 node = mas_mn(mas);
54a611b6 4468 pivots = ma_pivots(node, mt);
dd9a8513 4469 offset = ma_data_end(node, mt, pivots, max);
39d0bd86
LH
4470 if (unlikely(ma_dead_node(node)))
4471 return 1;
54a611b6
LH
4472 }
4473
dd9a8513 4474 slots = ma_slots(node, mt);
54a611b6 4475 mas->node = mas_slot(mas, slots, offset);
dd9a8513 4476 pivots = ma_pivots(node, mt);
54a611b6
LH
4477 if (unlikely(ma_dead_node(node)))
4478 return 1;
4479
dd9a8513
LH
4480 if (likely(offset))
4481 mas->min = pivots[offset - 1] + 1;
4482 mas->max = max;
54a611b6
LH
4483 mas->offset = mas_data_end(mas);
4484 if (unlikely(mte_dead_node(mas->node)))
4485 return 1;
4486
31c532a8 4487 mas->end = mas->offset;
54a611b6
LH
4488 return 0;
4489
54a611b6
LH
4490no_entry:
4491 if (unlikely(ma_dead_node(node)))
4492 return 1;
4493
067311d3 4494 mas->status = ma_underflow;
54a611b6
LH
4495 return 0;
4496}
4497
dd9a8513
LH
4498/*
4499 * mas_prev_slot() - Get the entry in the previous slot
4500 *
4501 * @mas: The maple state
96ae4c90 4502 * @min: The minimum starting range
a8091f03 4503 * @empty: Can be empty
dd9a8513
LH
4504 *
4505 * Return: The entry in the previous slot which is possibly NULL
4506 */
067311d3 4507static void *mas_prev_slot(struct ma_state *mas, unsigned long min, bool empty)
dd9a8513
LH
4508{
4509 void *entry;
4510 void __rcu **slots;
4511 unsigned long pivot;
4512 enum maple_type type;
4513 unsigned long *pivots;
4514 struct maple_node *node;
4515 unsigned long save_point = mas->index;
4516
4517retry:
4518 node = mas_mn(mas);
4519 type = mte_node_type(mas->node);
4520 pivots = ma_pivots(node, type);
4521 if (unlikely(mas_rewalk_if_dead(mas, node, save_point)))
4522 goto retry;
4523
dd9a8513
LH
4524 if (mas->min <= min) {
4525 pivot = mas_safe_min(mas, pivots, mas->offset);
4526
4527 if (unlikely(mas_rewalk_if_dead(mas, node, save_point)))
4528 goto retry;
4529
4530 if (pivot <= min)
a8091f03 4531 goto underflow;
dd9a8513
LH
4532 }
4533
a8091f03 4534again:
dd9a8513
LH
4535 if (likely(mas->offset)) {
4536 mas->offset--;
4537 mas->last = mas->index - 1;
4538 mas->index = mas_safe_min(mas, pivots, mas->offset);
4539 } else {
067311d3
LH
4540 if (mas->index <= min)
4541 goto underflow;
4542
dd9a8513
LH
4543 if (mas_prev_node(mas, min)) {
4544 mas_rewalk(mas, save_point);
4545 goto retry;
4546 }
4547
067311d3
LH
4548 if (WARN_ON_ONCE(mas_is_underflow(mas)))
4549 return NULL;
dd9a8513
LH
4550
4551 mas->last = mas->max;
4552 node = mas_mn(mas);
4553 type = mte_node_type(mas->node);
4554 pivots = ma_pivots(node, type);
4555 mas->index = pivots[mas->offset - 1] + 1;
4556 }
4557
4558 slots = ma_slots(node, type);
4559 entry = mas_slot(mas, slots, mas->offset);
4560 if (unlikely(mas_rewalk_if_dead(mas, node, save_point)))
4561 goto retry;
4562
067311d3 4563
dd9a8513
LH
4564 if (likely(entry))
4565 return entry;
4566
a8091f03 4567 if (!empty) {
067311d3
LH
4568 if (mas->index <= min) {
4569 mas->status = ma_underflow;
4570 return NULL;
4571 }
a8091f03 4572
dd9a8513 4573 goto again;
a8091f03 4574 }
dd9a8513
LH
4575
4576 return entry;
a8091f03
LH
4577
4578underflow:
067311d3 4579 mas->status = ma_underflow;
a8091f03 4580 return NULL;
dd9a8513
LH
4581}
4582
54a611b6
LH
4583/*
4584 * mas_next_node() - Get the next node at the same level in the tree.
4585 * @mas: The maple state
96ae4c90 4586 * @node: The maple node
54a611b6
LH
4587 * @max: The maximum pivot value to check.
4588 *
067311d3
LH
4589 * The next value will be mas->node[mas->offset] or the status will have
4590 * overflowed.
54a611b6
LH
4591 * Return: 1 on dead node, 0 otherwise.
4592 */
271f61a8
LH
4593static int mas_next_node(struct ma_state *mas, struct maple_node *node,
4594 unsigned long max)
54a611b6 4595{
fff4a58c 4596 unsigned long min;
54a611b6
LH
4597 unsigned long *pivots;
4598 struct maple_enode *enode;
e9c52d89 4599 struct maple_node *tmp;
54a611b6 4600 int level = 0;
39d0bd86 4601 unsigned char node_end;
54a611b6
LH
4602 enum maple_type mt;
4603 void __rcu **slots;
4604
4605 if (mas->max >= max)
067311d3 4606 goto overflow;
54a611b6 4607
fff4a58c 4608 min = mas->max + 1;
54a611b6
LH
4609 level = 0;
4610 do {
4611 if (ma_is_root(node))
067311d3 4612 goto overflow;
54a611b6 4613
fff4a58c 4614 /* Walk up. */
54a611b6
LH
4615 if (unlikely(mas_ascend(mas)))
4616 return 1;
4617
54a611b6
LH
4618 level++;
4619 node = mas_mn(mas);
4620 mt = mte_node_type(mas->node);
4621 pivots = ma_pivots(node, mt);
39d0bd86
LH
4622 node_end = ma_data_end(node, mt, pivots, mas->max);
4623 if (unlikely(ma_dead_node(node)))
4624 return 1;
4625
fff4a58c 4626 } while (unlikely(mas->offset == node_end));
54a611b6
LH
4627
4628 slots = ma_slots(node, mt);
fff4a58c
LH
4629 mas->offset++;
4630 enode = mas_slot(mas, slots, mas->offset);
4631 if (unlikely(ma_dead_node(node)))
4632 return 1;
54a611b6 4633
fff4a58c
LH
4634 if (level > 1)
4635 mas->offset = 0;
4636
4637 while (unlikely(level > 1)) {
54a611b6 4638 level--;
fff4a58c 4639 mas->node = enode;
54a611b6
LH
4640 node = mas_mn(mas);
4641 mt = mte_node_type(mas->node);
4642 slots = ma_slots(node, mt);
fff4a58c 4643 enode = mas_slot(mas, slots, 0);
39d0bd86
LH
4644 if (unlikely(ma_dead_node(node)))
4645 return 1;
54a611b6
LH
4646 }
4647
fff4a58c
LH
4648 if (!mas->offset)
4649 pivots = ma_pivots(node, mt);
4650
4651 mas->max = mas_safe_pivot(mas, pivots, mas->offset, mt);
e9c52d89
LH
4652 tmp = mte_to_node(enode);
4653 mt = mte_node_type(enode);
4654 pivots = ma_pivots(tmp, mt);
4655 mas->end = ma_data_end(tmp, mt, pivots, mas->max);
54a611b6
LH
4656 if (unlikely(ma_dead_node(node)))
4657 return 1;
4658
4659 mas->node = enode;
4660 mas->min = min;
54a611b6
LH
4661 return 0;
4662
067311d3 4663overflow:
54a611b6
LH
4664 if (unlikely(ma_dead_node(node)))
4665 return 1;
4666
067311d3 4667 mas->status = ma_overflow;
54a611b6
LH
4668 return 0;
4669}
4670
4671/*
fff4a58c 4672 * mas_next_slot() - Get the entry in the next slot
54a611b6 4673 *
fff4a58c
LH
4674 * @mas: The maple state
4675 * @max: The maximum starting range
4676 * @empty: Can be empty
54a611b6 4677 *
fff4a58c 4678 * Return: The entry in the next slot which is possibly NULL
54a611b6 4679 */
067311d3 4680static void *mas_next_slot(struct ma_state *mas, unsigned long max, bool empty)
54a611b6 4681{
54a611b6 4682 void __rcu **slots;
fff4a58c
LH
4683 unsigned long *pivots;
4684 unsigned long pivot;
4685 enum maple_type type;
4686 struct maple_node *node;
fff4a58c 4687 unsigned long save_point = mas->last;
54a611b6
LH
4688 void *entry;
4689
fff4a58c
LH
4690retry:
4691 node = mas_mn(mas);
4692 type = mte_node_type(mas->node);
39d0bd86 4693 pivots = ma_pivots(node, type);
fff4a58c
LH
4694 if (unlikely(mas_rewalk_if_dead(mas, node, save_point)))
4695 goto retry;
54a611b6 4696
fff4a58c 4697 if (mas->max >= max) {
e9c52d89 4698 if (likely(mas->offset < mas->end))
fff4a58c
LH
4699 pivot = pivots[mas->offset];
4700 else
067311d3 4701 pivot = mas->max;
54a611b6 4702
fff4a58c
LH
4703 if (unlikely(mas_rewalk_if_dead(mas, node, save_point)))
4704 goto retry;
54a611b6 4705
067311d3
LH
4706 if (pivot >= max) { /* Was at the limit, next will extend beyond */
4707 mas->status = ma_overflow;
4708 return NULL;
4709 }
fff4a58c 4710 }
54a611b6 4711
e9c52d89 4712 if (likely(mas->offset < mas->end)) {
fff4a58c 4713 mas->index = pivots[mas->offset] + 1;
a8091f03 4714again:
fff4a58c 4715 mas->offset++;
e9c52d89 4716 if (likely(mas->offset < mas->end))
fff4a58c
LH
4717 mas->last = pivots[mas->offset];
4718 else
4719 mas->last = mas->max;
4720 } else {
067311d3
LH
4721 if (mas->last >= max) {
4722 mas->status = ma_overflow;
4723 return NULL;
4724 }
4725
fff4a58c
LH
4726 if (mas_next_node(mas, node, max)) {
4727 mas_rewalk(mas, save_point);
4728 goto retry;
4729 }
4730
067311d3 4731 if (WARN_ON_ONCE(mas_is_overflow(mas)))
ca80f610
LH
4732 return NULL;
4733
fff4a58c
LH
4734 mas->offset = 0;
4735 mas->index = mas->min;
4736 node = mas_mn(mas);
4737 type = mte_node_type(mas->node);
4738 pivots = ma_pivots(node, type);
4739 mas->last = pivots[0];
54a611b6
LH
4740 }
4741
fff4a58c
LH
4742 slots = ma_slots(node, type);
4743 entry = mt_slot(mas->tree, slots, mas->offset);
4744 if (unlikely(mas_rewalk_if_dead(mas, node, save_point)))
4745 goto retry;
54a611b6 4746
fff4a58c
LH
4747 if (entry)
4748 return entry;
54a611b6 4749
067311d3 4750
fff4a58c 4751 if (!empty) {
067311d3
LH
4752 if (mas->last >= max) {
4753 mas->status = ma_overflow;
4754 return NULL;
4755 }
a8091f03
LH
4756
4757 mas->index = mas->last + 1;
fff4a58c
LH
4758 goto again;
4759 }
4760
4761 return entry;
54a611b6
LH
4762}
4763
54a611b6
LH
4764/*
4765 * mas_rev_awalk() - Internal function. Reverse allocation walk. Find the
4766 * highest gap address of a given size in a given node and descend.
4767 * @mas: The maple state
4768 * @size: The needed size.
4769 *
4770 * Return: True if found in a leaf, false otherwise.
4771 *
4772 */
fad8e429
LH
4773static bool mas_rev_awalk(struct ma_state *mas, unsigned long size,
4774 unsigned long *gap_min, unsigned long *gap_max)
54a611b6
LH
4775{
4776 enum maple_type type = mte_node_type(mas->node);
4777 struct maple_node *node = mas_mn(mas);
4778 unsigned long *pivots, *gaps;
4779 void __rcu **slots;
4780 unsigned long gap = 0;
7327e811 4781 unsigned long max, min;
54a611b6
LH
4782 unsigned char offset;
4783
4784 if (unlikely(mas_is_err(mas)))
4785 return true;
4786
4787 if (ma_is_dense(type)) {
4788 /* dense nodes. */
4789 mas->offset = (unsigned char)(mas->index - mas->min);
4790 return true;
4791 }
4792
4793 pivots = ma_pivots(node, type);
4794 slots = ma_slots(node, type);
4795 gaps = ma_gaps(node, type);
4796 offset = mas->offset;
4797 min = mas_safe_min(mas, pivots, offset);
4798 /* Skip out of bounds. */
4799 while (mas->last < min)
4800 min = mas_safe_min(mas, pivots, --offset);
4801
4802 max = mas_safe_pivot(mas, pivots, offset, type);
7327e811 4803 while (mas->index <= max) {
54a611b6
LH
4804 gap = 0;
4805 if (gaps)
4806 gap = gaps[offset];
4807 else if (!mas_slot(mas, slots, offset))
4808 gap = max - min + 1;
4809
4810 if (gap) {
4811 if ((size <= gap) && (size <= mas->last - min + 1))
4812 break;
4813
4814 if (!gaps) {
4815 /* Skip the next slot, it cannot be a gap. */
4816 if (offset < 2)
4817 goto ascend;
4818
4819 offset -= 2;
4820 max = pivots[offset];
4821 min = mas_safe_min(mas, pivots, offset);
4822 continue;
4823 }
4824 }
4825
4826 if (!offset)
4827 goto ascend;
4828
4829 offset--;
4830 max = min - 1;
4831 min = mas_safe_min(mas, pivots, offset);
4832 }
4833
7327e811
LH
4834 if (unlikely((mas->index > max) || (size - 1 > max - mas->index)))
4835 goto no_space;
54a611b6
LH
4836
4837 if (unlikely(ma_is_leaf(type))) {
4838 mas->offset = offset;
fad8e429
LH
4839 *gap_min = min;
4840 *gap_max = min + gap - 1;
54a611b6
LH
4841 return true;
4842 }
4843
4844 /* descend, only happens under lock. */
4845 mas->node = mas_slot(mas, slots, offset);
4846 mas->min = min;
4847 mas->max = max;
4848 mas->offset = mas_data_end(mas);
4849 return false;
4850
4851ascend:
7327e811
LH
4852 if (!mte_is_root(mas->node))
4853 return false;
54a611b6 4854
7327e811
LH
4855no_space:
4856 mas_set_err(mas, -EBUSY);
54a611b6
LH
4857 return false;
4858}
4859
4860static inline bool mas_anode_descend(struct ma_state *mas, unsigned long size)
4861{
4862 enum maple_type type = mte_node_type(mas->node);
4863 unsigned long pivot, min, gap = 0;
06e8fd99
LH
4864 unsigned char offset, data_end;
4865 unsigned long *gaps, *pivots;
4866 void __rcu **slots;
4867 struct maple_node *node;
54a611b6
LH
4868 bool found = false;
4869
4870 if (ma_is_dense(type)) {
4871 mas->offset = (unsigned char)(mas->index - mas->min);
4872 return true;
4873 }
4874
06e8fd99
LH
4875 node = mas_mn(mas);
4876 pivots = ma_pivots(node, type);
4877 slots = ma_slots(node, type);
4878 gaps = ma_gaps(node, type);
54a611b6 4879 offset = mas->offset;
54a611b6 4880 min = mas_safe_min(mas, pivots, offset);
06e8fd99
LH
4881 data_end = ma_data_end(node, type, pivots, mas->max);
4882 for (; offset <= data_end; offset++) {
29b2681f 4883 pivot = mas_safe_pivot(mas, pivots, offset, type);
54a611b6
LH
4884
4885 /* Not within lower bounds */
4886 if (mas->index > pivot)
4887 goto next_slot;
4888
4889 if (gaps)
4890 gap = gaps[offset];
4891 else if (!mas_slot(mas, slots, offset))
4892 gap = min(pivot, mas->last) - max(mas->index, min) + 1;
4893 else
4894 goto next_slot;
4895
4896 if (gap >= size) {
4897 if (ma_is_leaf(type)) {
4898 found = true;
f5bd4187 4899 break;
54a611b6 4900 }
5f8db8d4
WY
4901
4902 mas->node = mas_slot(mas, slots, offset);
4903 mas->min = min;
4904 mas->max = pivot;
4905 offset = 0;
4906 break;
54a611b6
LH
4907 }
4908next_slot:
4909 min = pivot + 1;
4910 if (mas->last <= pivot) {
4911 mas_set_err(mas, -EBUSY);
4912 return true;
4913 }
4914 }
4915
54a611b6
LH
4916 mas->offset = offset;
4917 return found;
4918}
4919
4920/**
4921 * mas_walk() - Search for @mas->index in the tree.
4922 * @mas: The maple state.
4923 *
4924 * mas->index and mas->last will be set to the range if there is a value. If
067311d3 4925 * mas->status is ma_none, reset to ma_start
54a611b6
LH
4926 *
4927 * Return: the entry at the location or %NULL.
4928 */
4929void *mas_walk(struct ma_state *mas)
4930{
4931 void *entry;
4932
a8091f03 4933 if (!mas_is_active(mas) || !mas_is_start(mas))
067311d3 4934 mas->status = ma_start;
54a611b6
LH
4935retry:
4936 entry = mas_state_walk(mas);
6b23a290 4937 if (mas_is_start(mas)) {
54a611b6 4938 goto retry;
6b23a290
LH
4939 } else if (mas_is_none(mas)) {
4940 mas->index = 0;
4941 mas->last = ULONG_MAX;
4942 } else if (mas_is_ptr(mas)) {
54a611b6
LH
4943 if (!mas->index) {
4944 mas->last = 0;
6b23a290 4945 return entry;
54a611b6 4946 }
54a611b6 4947
6b23a290 4948 mas->index = 1;
54a611b6 4949 mas->last = ULONG_MAX;
067311d3 4950 mas->status = ma_none;
6b23a290 4951 return NULL;
54a611b6
LH
4952 }
4953
4954 return entry;
4955}
120b1162 4956EXPORT_SYMBOL_GPL(mas_walk);
54a611b6
LH
4957
4958static inline bool mas_rewind_node(struct ma_state *mas)
4959{
4960 unsigned char slot;
4961
4962 do {
4963 if (mte_is_root(mas->node)) {
4964 slot = mas->offset;
4965 if (!slot)
4966 return false;
4967 } else {
4968 mas_ascend(mas);
4969 slot = mas->offset;
4970 }
4971 } while (!slot);
4972
4973 mas->offset = --slot;
4974 return true;
4975}
4976
4977/*
4978 * mas_skip_node() - Internal function. Skip over a node.
4979 * @mas: The maple state.
4980 *
4981 * Return: true if there is another node, false otherwise.
4982 */
4983static inline bool mas_skip_node(struct ma_state *mas)
4984{
0fa99fdf
LH
4985 if (mas_is_err(mas))
4986 return false;
54a611b6 4987
54a611b6
LH
4988 do {
4989 if (mte_is_root(mas->node)) {
0fa99fdf 4990 if (mas->offset >= mas_data_end(mas)) {
54a611b6
LH
4991 mas_set_err(mas, -EBUSY);
4992 return false;
4993 }
4994 } else {
4995 mas_ascend(mas);
54a611b6 4996 }
0fa99fdf 4997 } while (mas->offset >= mas_data_end(mas));
54a611b6 4998
0fa99fdf 4999 mas->offset++;
54a611b6
LH
5000 return true;
5001}
5002
5003/*
5004 * mas_awalk() - Allocation walk. Search from low address to high, for a gap of
5005 * @size
5006 * @mas: The maple state
5007 * @size: The size of the gap required
5008 *
5009 * Search between @mas->index and @mas->last for a gap of @size.
5010 */
5011static inline void mas_awalk(struct ma_state *mas, unsigned long size)
5012{
5013 struct maple_enode *last = NULL;
5014
5015 /*
5016 * There are 4 options:
5017 * go to child (descend)
5018 * go back to parent (ascend)
f2760364
WY
5019 * no gap found. (return, error == -EBUSY)
5020 * found the gap. (return)
54a611b6
LH
5021 */
5022 while (!mas_is_err(mas) && !mas_anode_descend(mas, size)) {
5023 if (last == mas->node)
5024 mas_skip_node(mas);
5025 else
5026 last = mas->node;
5027 }
5028}
5029
54a611b6
LH
5030/*
5031 * mas_sparse_area() - Internal function. Return upper or lower limit when
5032 * searching for a gap in an empty tree.
5033 * @mas: The maple state
5034 * @min: the minimum range
5035 * @max: The maximum range
5036 * @size: The size of the gap
5037 * @fwd: Searching forward or back
5038 */
29ad6bb3 5039static inline int mas_sparse_area(struct ma_state *mas, unsigned long min,
54a611b6
LH
5040 unsigned long max, unsigned long size, bool fwd)
5041{
29ad6bb3
PZ
5042 if (!unlikely(mas_is_none(mas)) && min == 0) {
5043 min++;
5044 /*
5045 * At this time, min is increased, we need to recheck whether
5046 * the size is satisfied.
5047 */
5048 if (min > max || max - min + 1 < size)
5049 return -EBUSY;
5050 }
54a611b6
LH
5051 /* mas_is_ptr */
5052
54a611b6 5053 if (fwd) {
29ad6bb3
PZ
5054 mas->index = min;
5055 mas->last = min + size - 1;
5056 } else {
5057 mas->last = max;
5058 mas->index = max - size + 1;
54a611b6 5059 }
29ad6bb3 5060 return 0;
54a611b6
LH
5061}
5062
5063/*
5064 * mas_empty_area() - Get the lowest address within the range that is
5065 * sufficient for the size requested.
5066 * @mas: The maple state
5067 * @min: The lowest value of the range
5068 * @max: The highest value of the range
5069 * @size: The size needed
5070 */
5071int mas_empty_area(struct ma_state *mas, unsigned long min,
5072 unsigned long max, unsigned long size)
5073{
5074 unsigned char offset;
5075 unsigned long *pivots;
5076 enum maple_type mt;
0de56e38 5077 struct maple_node *node;
54a611b6 5078
ba997212
LH
5079 if (min > max)
5080 return -EINVAL;
5081
5082 if (size == 0 || max - min < size - 1)
fad8e429
LH
5083 return -EINVAL;
5084
54a611b6
LH
5085 if (mas_is_start(mas))
5086 mas_start(mas);
5087 else if (mas->offset >= 2)
5088 mas->offset -= 2;
5089 else if (!mas_skip_node(mas))
5090 return -EBUSY;
5091
5092 /* Empty set */
29ad6bb3
PZ
5093 if (mas_is_none(mas) || mas_is_ptr(mas))
5094 return mas_sparse_area(mas, min, max, size, true);
54a611b6
LH
5095
5096 /* The start of the window can only be within these values */
5097 mas->index = min;
5098 mas->last = max;
5099 mas_awalk(mas, size);
5100
5101 if (unlikely(mas_is_err(mas)))
5102 return xa_err(mas->node);
5103
5104 offset = mas->offset;
0de56e38 5105 node = mas_mn(mas);
54a611b6 5106 mt = mte_node_type(mas->node);
0de56e38 5107 pivots = ma_pivots(node, mt);
0257d990
PZ
5108 min = mas_safe_min(mas, pivots, offset);
5109 if (mas->index < min)
5110 mas->index = min;
54a611b6 5111 mas->last = mas->index + size - 1;
0de56e38 5112 mas->end = ma_data_end(node, mt, pivots, mas->max);
54a611b6
LH
5113 return 0;
5114}
120b1162 5115EXPORT_SYMBOL_GPL(mas_empty_area);
54a611b6
LH
5116
5117/*
5118 * mas_empty_area_rev() - Get the highest address within the range that is
5119 * sufficient for the size requested.
5120 * @mas: The maple state
5121 * @min: The lowest value of the range
5122 * @max: The highest value of the range
5123 * @size: The size needed
5124 */
5125int mas_empty_area_rev(struct ma_state *mas, unsigned long min,
5126 unsigned long max, unsigned long size)
5127{
5128 struct maple_enode *last = mas->node;
5129
ba997212
LH
5130 if (min > max)
5131 return -EINVAL;
5132
5133 if (size == 0 || max - min < size - 1)
fad8e429
LH
5134 return -EINVAL;
5135
955a923d 5136 if (mas_is_start(mas))
54a611b6 5137 mas_start(mas);
955a923d 5138 else if ((mas->offset < 2) && (!mas_rewind_node(mas)))
54a611b6 5139 return -EBUSY;
54a611b6 5140
955a923d 5141 if (unlikely(mas_is_none(mas) || mas_is_ptr(mas)))
29ad6bb3 5142 return mas_sparse_area(mas, min, max, size, false);
955a923d
LH
5143 else if (mas->offset >= 2)
5144 mas->offset -= 2;
5145 else
5146 mas->offset = mas_data_end(mas);
5147
54a611b6
LH
5148
5149 /* The start of the window can only be within these values. */
5150 mas->index = min;
5151 mas->last = max;
5152
fad8e429 5153 while (!mas_rev_awalk(mas, size, &min, &max)) {
54a611b6
LH
5154 if (last == mas->node) {
5155 if (!mas_rewind_node(mas))
5156 return -EBUSY;
5157 } else {
5158 last = mas->node;
5159 }
5160 }
5161
5162 if (mas_is_err(mas))
5163 return xa_err(mas->node);
5164
5165 if (unlikely(mas->offset == MAPLE_NODE_SLOTS))
5166 return -EBUSY;
5167
54a611b6 5168 /* Trim the upper limit to the max. */
ba997212 5169 if (max < mas->last)
fad8e429 5170 mas->last = max;
54a611b6
LH
5171
5172 mas->index = mas->last - size + 1;
31c532a8 5173 mas->end = mas_data_end(mas);
54a611b6
LH
5174 return 0;
5175}
120b1162 5176EXPORT_SYMBOL_GPL(mas_empty_area_rev);
54a611b6 5177
54a611b6 5178/*
790e1fa8 5179 * mte_dead_leaves() - Mark all leaves of a node as dead.
96ae4c90
WY
5180 * @enode: the encoded node
5181 * @mt: the maple tree
54a611b6
LH
5182 * @slots: Pointer to the slot array
5183 *
5184 * Must hold the write lock.
5185 *
5186 * Return: The number of leaves marked as dead.
5187 */
5188static inline
790e1fa8
LH
5189unsigned char mte_dead_leaves(struct maple_enode *enode, struct maple_tree *mt,
5190 void __rcu **slots)
54a611b6
LH
5191{
5192 struct maple_node *node;
5193 enum maple_type type;
5194 void *entry;
5195 int offset;
5196
790e1fa8
LH
5197 for (offset = 0; offset < mt_slot_count(enode); offset++) {
5198 entry = mt_slot(mt, slots, offset);
54a611b6
LH
5199 type = mte_node_type(entry);
5200 node = mte_to_node(entry);
5201 /* Use both node and type to catch LE & BE metadata */
5202 if (!node || !type)
5203 break;
5204
5205 mte_set_node_dead(entry);
54a611b6
LH
5206 node->type = type;
5207 rcu_assign_pointer(slots[offset], node);
5208 }
5209
5210 return offset;
5211}
5212
790e1fa8
LH
5213/**
5214 * mte_dead_walk() - Walk down a dead tree to just before the leaves
5215 * @enode: The maple encoded node
5216 * @offset: The starting offset
5217 *
5218 * Note: This can only be used from the RCU callback context.
5219 */
5220static void __rcu **mte_dead_walk(struct maple_enode **enode, unsigned char offset)
54a611b6
LH
5221{
5222 struct maple_node *node, *next;
5223 void __rcu **slots = NULL;
5224
790e1fa8 5225 next = mte_to_node(*enode);
54a611b6 5226 do {
790e1fa8
LH
5227 *enode = ma_enode_ptr(next);
5228 node = mte_to_node(*enode);
54a611b6 5229 slots = ma_slots(node, node->type);
790e1fa8
LH
5230 next = rcu_dereference_protected(slots[offset],
5231 lock_is_held(&rcu_callback_map));
54a611b6
LH
5232 offset = 0;
5233 } while (!ma_is_leaf(next->type));
5234
5235 return slots;
5236}
5237
790e1fa8
LH
5238/**
5239 * mt_free_walk() - Walk & free a tree in the RCU callback context
5240 * @head: The RCU head that's within the node.
5241 *
5242 * Note: This can only be used from the RCU callback context.
5243 */
54a611b6
LH
5244static void mt_free_walk(struct rcu_head *head)
5245{
5246 void __rcu **slots;
5247 struct maple_node *node, *start;
790e1fa8 5248 struct maple_enode *enode;
54a611b6
LH
5249 unsigned char offset;
5250 enum maple_type type;
54a611b6
LH
5251
5252 node = container_of(head, struct maple_node, rcu);
5253
5254 if (ma_is_leaf(node->type))
5255 goto free_leaf;
5256
54a611b6 5257 start = node;
790e1fa8
LH
5258 enode = mt_mk_node(node, node->type);
5259 slots = mte_dead_walk(&enode, 0);
5260 node = mte_to_node(enode);
54a611b6
LH
5261 do {
5262 mt_free_bulk(node->slot_len, slots);
5263 offset = node->parent_slot + 1;
790e1fa8
LH
5264 enode = node->piv_parent;
5265 if (mte_to_node(enode) == node)
5266 goto free_leaf;
5267
5268 type = mte_node_type(enode);
5269 slots = ma_slots(mte_to_node(enode), type);
5270 if ((offset < mt_slots[type]) &&
5271 rcu_dereference_protected(slots[offset],
5272 lock_is_held(&rcu_callback_map)))
5273 slots = mte_dead_walk(&enode, offset);
5274 node = mte_to_node(enode);
54a611b6
LH
5275 } while ((node != start) || (node->slot_len < offset));
5276
5277 slots = ma_slots(node, node->type);
5278 mt_free_bulk(node->slot_len, slots);
5279
54a611b6
LH
5280free_leaf:
5281 mt_free_rcu(&node->rcu);
5282}
5283
790e1fa8
LH
5284static inline void __rcu **mte_destroy_descend(struct maple_enode **enode,
5285 struct maple_tree *mt, struct maple_enode *prev, unsigned char offset)
54a611b6
LH
5286{
5287 struct maple_node *node;
790e1fa8 5288 struct maple_enode *next = *enode;
54a611b6 5289 void __rcu **slots = NULL;
790e1fa8
LH
5290 enum maple_type type;
5291 unsigned char next_offset = 0;
54a611b6
LH
5292
5293 do {
790e1fa8
LH
5294 *enode = next;
5295 node = mte_to_node(*enode);
5296 type = mte_node_type(*enode);
5297 slots = ma_slots(node, type);
5298 next = mt_slot_locked(mt, slots, next_offset);
54a611b6 5299 if ((mte_dead_node(next)))
790e1fa8 5300 next = mt_slot_locked(mt, slots, ++next_offset);
54a611b6 5301
790e1fa8
LH
5302 mte_set_node_dead(*enode);
5303 node->type = type;
54a611b6
LH
5304 node->piv_parent = prev;
5305 node->parent_slot = offset;
790e1fa8
LH
5306 offset = next_offset;
5307 next_offset = 0;
5308 prev = *enode;
54a611b6
LH
5309 } while (!mte_is_leaf(next));
5310
5311 return slots;
5312}
5313
790e1fa8 5314static void mt_destroy_walk(struct maple_enode *enode, struct maple_tree *mt,
54a611b6
LH
5315 bool free)
5316{
5317 void __rcu **slots;
5318 struct maple_node *node = mte_to_node(enode);
5319 struct maple_enode *start;
54a611b6 5320
2e5b4921 5321 if (mte_is_leaf(enode)) {
ea9b77f9 5322 mte_set_node_dead(enode);
2e5b4921 5323 node->type = mte_node_type(enode);
54a611b6 5324 goto free_leaf;
2e5b4921 5325 }
54a611b6 5326
2e5b4921 5327 start = enode;
790e1fa8
LH
5328 slots = mte_destroy_descend(&enode, mt, start, 0);
5329 node = mte_to_node(enode); // Updated in the above call.
54a611b6
LH
5330 do {
5331 enum maple_type type;
5332 unsigned char offset;
5333 struct maple_enode *parent, *tmp;
5334
790e1fa8 5335 node->slot_len = mte_dead_leaves(enode, mt, slots);
54a611b6
LH
5336 if (free)
5337 mt_free_bulk(node->slot_len, slots);
5338 offset = node->parent_slot + 1;
790e1fa8
LH
5339 enode = node->piv_parent;
5340 if (mte_to_node(enode) == node)
5341 goto free_leaf;
54a611b6 5342
790e1fa8
LH
5343 type = mte_node_type(enode);
5344 slots = ma_slots(mte_to_node(enode), type);
54a611b6
LH
5345 if (offset >= mt_slots[type])
5346 goto next;
5347
790e1fa8 5348 tmp = mt_slot_locked(mt, slots, offset);
54a611b6 5349 if (mte_node_type(tmp) && mte_to_node(tmp)) {
790e1fa8
LH
5350 parent = enode;
5351 enode = tmp;
5352 slots = mte_destroy_descend(&enode, mt, parent, offset);
54a611b6
LH
5353 }
5354next:
790e1fa8
LH
5355 node = mte_to_node(enode);
5356 } while (start != enode);
54a611b6 5357
790e1fa8
LH
5358 node = mte_to_node(enode);
5359 node->slot_len = mte_dead_leaves(enode, mt, slots);
54a611b6
LH
5360 if (free)
5361 mt_free_bulk(node->slot_len, slots);
5362
54a611b6
LH
5363free_leaf:
5364 if (free)
5365 mt_free_rcu(&node->rcu);
2e5b4921 5366 else
790e1fa8 5367 mt_clear_meta(mt, node, node->type);
54a611b6
LH
5368}
5369
5370/*
5371 * mte_destroy_walk() - Free a tree or sub-tree.
f942b0f0
VY
5372 * @enode: the encoded maple node (maple_enode) to start
5373 * @mt: the tree to free - needed for node types.
54a611b6
LH
5374 *
5375 * Must hold the write lock.
5376 */
5377static inline void mte_destroy_walk(struct maple_enode *enode,
5378 struct maple_tree *mt)
5379{
5380 struct maple_node *node = mte_to_node(enode);
5381
5382 if (mt_in_rcu(mt)) {
790e1fa8 5383 mt_destroy_walk(enode, mt, false);
54a611b6
LH
5384 call_rcu(&node->rcu, mt_free_walk);
5385 } else {
790e1fa8 5386 mt_destroy_walk(enode, mt, true);
54a611b6
LH
5387 }
5388}
54a611b6
LH
5389/* Interface */
5390
5391/**
5392 * mas_store() - Store an @entry.
5393 * @mas: The maple state.
5394 * @entry: The entry to store.
5395 *
5396 * The @mas->index and @mas->last is used to set the range for the @entry.
54a611b6
LH
5397 *
5398 * Return: the first entry between mas->index and mas->last or %NULL.
5399 */
5400void *mas_store(struct ma_state *mas, void *entry)
5401{
4037d44f 5402 int request;
54a611b6
LH
5403 MA_WR_STATE(wr_mas, mas, entry);
5404
5405 trace_ma_write(__func__, mas, 0, entry);
5406#ifdef CONFIG_DEBUG_MAPLE_TREE
e6d6792a 5407 if (MAS_WARN_ON(mas, mas->index > mas->last))
b314e215
LS
5408 pr_err("Error %lX > %lX " PTR_FMT "\n", mas->index, mas->last,
5409 entry);
e6d6792a 5410
54a611b6
LH
5411 if (mas->index > mas->last) {
5412 mas_set_err(mas, -EINVAL);
5413 return NULL;
5414 }
5415
5416#endif
5417
5418 /*
5419 * Storing is the same operation as insert with the added caveat that it
5420 * can overwrite entries. Although this seems simple enough, one may
5421 * want to examine what happens if a single store operation was to
5422 * overwrite multiple entries within a self-balancing B-Tree.
5423 */
580fcbd6 5424 mas_wr_prealloc_setup(&wr_mas);
f0c99037 5425 mas->store_type = mas_wr_store_type(&wr_mas);
4037d44f
SK
5426 if (mas->mas_flags & MA_STATE_PREALLOC) {
5427 mas_wr_store_entry(&wr_mas);
5428 MAS_WR_BUG_ON(&wr_mas, mas_is_err(mas));
5429 return wr_mas.content;
5430 }
5431
28092a65 5432 request = mas_prealloc_calc(&wr_mas, entry);
4037d44f
SK
5433 if (!request)
5434 goto store;
5435
5436 mas_node_count(mas, request);
5437 if (mas_is_err(mas))
5438 return NULL;
5439
5440store:
54a611b6 5441 mas_wr_store_entry(&wr_mas);
4037d44f 5442 mas_destroy(mas);
54a611b6
LH
5443 return wr_mas.content;
5444}
120b1162 5445EXPORT_SYMBOL_GPL(mas_store);
54a611b6
LH
5446
5447/**
5448 * mas_store_gfp() - Store a value into the tree.
5449 * @mas: The maple state
5450 * @entry: The entry to store
5451 * @gfp: The GFP_FLAGS to use for allocations if necessary.
5452 *
5453 * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not
5454 * be allocated.
5455 */
5456int mas_store_gfp(struct ma_state *mas, void *entry, gfp_t gfp)
5457{
e1b8b883
SK
5458 unsigned long index = mas->index;
5459 unsigned long last = mas->last;
54a611b6 5460 MA_WR_STATE(wr_mas, mas, entry);
3cd9e92e 5461 int ret = 0;
54a611b6 5462
54a611b6 5463retry:
3cd9e92e 5464 mas_wr_preallocate(&wr_mas, entry);
e1b8b883
SK
5465 if (unlikely(mas_nomem(mas, gfp))) {
5466 if (!entry)
5467 __mas_set_range(mas, index, last);
54a611b6 5468 goto retry;
e1b8b883 5469 }
54a611b6 5470
3cd9e92e
SK
5471 if (mas_is_err(mas)) {
5472 ret = xa_err(mas->node);
5473 goto out;
5474 }
54a611b6 5475
3cd9e92e
SK
5476 mas_wr_store_entry(&wr_mas);
5477out:
5478 mas_destroy(mas);
5479 return ret;
54a611b6 5480}
120b1162 5481EXPORT_SYMBOL_GPL(mas_store_gfp);
54a611b6
LH
5482
5483/**
5484 * mas_store_prealloc() - Store a value into the tree using memory
5485 * preallocated in the maple state.
5486 * @mas: The maple state
5487 * @entry: The entry to store.
5488 */
5489void mas_store_prealloc(struct ma_state *mas, void *entry)
5490{
5491 MA_WR_STATE(wr_mas, mas, entry);
5492
c27e6183
SK
5493 if (mas->store_type == wr_store_root) {
5494 mas_wr_prealloc_setup(&wr_mas);
5495 goto store;
5496 }
5497
5498 mas_wr_walk_descend(&wr_mas);
5499 if (mas->store_type != wr_spanning_store) {
5500 /* set wr_mas->content to current slot */
5501 wr_mas.content = mas_slot_locked(mas, wr_mas.slots, mas->offset);
5502 mas_wr_end_piv(&wr_mas);
5503 }
5504
5505store:
54a611b6
LH
5506 trace_ma_write(__func__, mas, 0, entry);
5507 mas_wr_store_entry(&wr_mas);
1c414c6a 5508 MAS_WR_BUG_ON(&wr_mas, mas_is_err(mas));
54a611b6
LH
5509 mas_destroy(mas);
5510}
120b1162 5511EXPORT_SYMBOL_GPL(mas_store_prealloc);
54a611b6
LH
5512
5513/**
5514 * mas_preallocate() - Preallocate enough nodes for a store operation
5515 * @mas: The maple state
da089254 5516 * @entry: The entry that will be stored
54a611b6
LH
5517 * @gfp: The GFP_FLAGS to use for allocations.
5518 *
5519 * Return: 0 on success, -ENOMEM if memory could not be allocated.
5520 */
da089254 5521int mas_preallocate(struct ma_state *mas, void *entry, gfp_t gfp)
54a611b6 5522{
17983dc6 5523 MA_WR_STATE(wr_mas, mas, entry);
5d659bbb
SK
5524 int ret = 0;
5525 int request;
4249f13c 5526
19138a2c 5527 mas_wr_prealloc_setup(&wr_mas);
f0c99037 5528 mas->store_type = mas_wr_store_type(&wr_mas);
28092a65 5529 request = mas_prealloc_calc(&wr_mas, entry);
5d659bbb 5530 if (!request)
fba46a5d 5531 goto set_flag;
4249f13c 5532
fba46a5d 5533 mas->mas_flags &= ~MA_STATE_PREALLOC;
5d659bbb
SK
5534 mas_node_count_gfp(mas, request, gfp);
5535 if (mas_is_err(mas)) {
5536 mas_set_alloc_req(mas, 0);
5537 ret = xa_err(mas->node);
5538 mas_destroy(mas);
5539 mas_reset(mas);
5540 return ret;
17983dc6
LH
5541 }
5542
fba46a5d 5543set_flag:
54a611b6 5544 mas->mas_flags |= MA_STATE_PREALLOC;
54a611b6
LH
5545 return ret;
5546}
5c63a7c3 5547EXPORT_SYMBOL_GPL(mas_preallocate);
54a611b6
LH
5548
5549/*
5550 * mas_destroy() - destroy a maple state.
5551 * @mas: The maple state
5552 *
5553 * Upon completion, check the left-most node and rebalance against the node to
5554 * the right if necessary. Frees any allocated nodes associated with this maple
5555 * state.
5556 */
5557void mas_destroy(struct ma_state *mas)
5558{
5559 struct maple_alloc *node;
541e06b7 5560 unsigned long total;
54a611b6
LH
5561
5562 /*
5563 * When using mas_for_each() to insert an expected number of elements,
5564 * it is possible that the number inserted is less than the expected
5565 * number. To fix an invalid final node, a check is performed here to
5566 * rebalance the previous node with the final node.
5567 */
5568 if (mas->mas_flags & MA_STATE_REBALANCE) {
5569 unsigned char end;
5d659bbb
SK
5570 if (mas_is_err(mas))
5571 mas_reset(mas);
23e734ec 5572 mas_start(mas);
54a611b6 5573 mtree_range_walk(mas);
1f41ef12 5574 end = mas->end + 1;
54a611b6
LH
5575 if (end < mt_min_slot_count(mas->node) - 1)
5576 mas_destroy_rebalance(mas, end);
5577
5578 mas->mas_flags &= ~MA_STATE_REBALANCE;
5579 }
5580 mas->mas_flags &= ~(MA_STATE_BULK|MA_STATE_PREALLOC);
5581
541e06b7
LH
5582 total = mas_allocated(mas);
5583 while (total) {
54a611b6
LH
5584 node = mas->alloc;
5585 mas->alloc = node->slot[0];
541e06b7
LH
5586 if (node->node_count > 1) {
5587 size_t count = node->node_count - 1;
5588
5589 mt_free_bulk(count, (void __rcu **)&node->slot[1]);
5590 total -= count;
5591 }
4f2267b5 5592 mt_free_one(ma_mnode_ptr(node));
541e06b7 5593 total--;
54a611b6 5594 }
541e06b7 5595
54a611b6
LH
5596 mas->alloc = NULL;
5597}
120b1162 5598EXPORT_SYMBOL_GPL(mas_destroy);
54a611b6
LH
5599
5600/*
5601 * mas_expected_entries() - Set the expected number of entries that will be inserted.
5602 * @mas: The maple state
5603 * @nr_entries: The number of expected entries.
5604 *
5605 * This will attempt to pre-allocate enough nodes to store the expected number
5606 * of entries. The allocations will occur using the bulk allocator interface
5607 * for speed. Please call mas_destroy() on the @mas after inserting the entries
5608 * to ensure any unused nodes are freed.
5609 *
5610 * Return: 0 on success, -ENOMEM if memory could not be allocated.
5611 */
5612int mas_expected_entries(struct ma_state *mas, unsigned long nr_entries)
5613{
5614 int nonleaf_cap = MAPLE_ARANGE64_SLOTS - 2;
5615 struct maple_enode *enode = mas->node;
5616 int nr_nodes;
5617 int ret;
5618
5619 /*
5620 * Sometimes it is necessary to duplicate a tree to a new tree, such as
5621 * forking a process and duplicating the VMAs from one tree to a new
5622 * tree. When such a situation arises, it is known that the new tree is
5623 * not going to be used until the entire tree is populated. For
5624 * performance reasons, it is best to use a bulk load with RCU disabled.
5625 * This allows for optimistic splitting that favours the left and reuse
5626 * of nodes during the operation.
5627 */
5628
5629 /* Optimize splitting for bulk insert in-order */
5630 mas->mas_flags |= MA_STATE_BULK;
5631
5632 /*
5633 * Avoid overflow, assume a gap between each entry and a trailing null.
5634 * If this is wrong, it just means allocation can happen during
5635 * insertion of entries.
5636 */
5637 nr_nodes = max(nr_entries, nr_entries * 2 + 1);
5638 if (!mt_is_alloc(mas->tree))
5639 nonleaf_cap = MAPLE_RANGE64_SLOTS - 2;
5640
5641 /* Leaves; reduce slots to keep space for expansion */
5642 nr_nodes = DIV_ROUND_UP(nr_nodes, MAPLE_RANGE64_SLOTS - 2);
5643 /* Internal nodes */
5644 nr_nodes += DIV_ROUND_UP(nr_nodes, nonleaf_cap);
5645 /* Add working room for split (2 nodes) + new parents */
099d7439 5646 mas_node_count_gfp(mas, nr_nodes + 3, GFP_KERNEL);
54a611b6
LH
5647
5648 /* Detect if allocations run out */
5649 mas->mas_flags |= MA_STATE_PREALLOC;
5650
5651 if (!mas_is_err(mas))
5652 return 0;
5653
5654 ret = xa_err(mas->node);
5655 mas->node = enode;
5656 mas_destroy(mas);
5657 return ret;
5658
5659}
120b1162 5660EXPORT_SYMBOL_GPL(mas_expected_entries);
54a611b6 5661
271f61a8 5662static bool mas_next_setup(struct ma_state *mas, unsigned long max,
6169b553 5663 void **entry)
54a611b6 5664{
ca80f610
LH
5665 bool was_none = mas_is_none(mas);
5666
a8091f03 5667 if (unlikely(mas->last >= max)) {
067311d3 5668 mas->status = ma_overflow;
a8091f03
LH
5669 return true;
5670 }
5671
067311d3
LH
5672 switch (mas->status) {
5673 case ma_active:
a8091f03 5674 return false;
067311d3
LH
5675 case ma_none:
5676 fallthrough;
5677 case ma_pause:
5678 mas->status = ma_start;
5679 fallthrough;
5680 case ma_start:
5681 mas_walk(mas); /* Retries on dead nodes handled by mas_walk */
5682 break;
5683 case ma_overflow:
a8091f03 5684 /* Overflowed before, but the max changed */
067311d3
LH
5685 mas->status = ma_active;
5686 break;
5687 case ma_underflow:
5688 /* The user expects the mas to be one before where it is */
5689 mas->status = ma_active;
a8091f03
LH
5690 *entry = mas_walk(mas);
5691 if (*entry)
5692 return true;
067311d3
LH
5693 break;
5694 case ma_root:
5695 break;
5696 case ma_error:
5697 return true;
a8091f03 5698 }
54a611b6 5699
067311d3
LH
5700 if (likely(mas_is_active(mas))) /* Fast path */
5701 return false;
54a611b6
LH
5702
5703 if (mas_is_ptr(mas)) {
6169b553 5704 *entry = NULL;
ca80f610
LH
5705 if (was_none && mas->index == 0) {
5706 mas->index = mas->last = 0;
6169b553 5707 return true;
54a611b6 5708 }
ca80f610
LH
5709 mas->index = 1;
5710 mas->last = ULONG_MAX;
067311d3 5711 mas->status = ma_none;
6169b553 5712 return true;
54a611b6
LH
5713 }
5714
6169b553
LH
5715 if (mas_is_none(mas))
5716 return true;
a8091f03 5717
6169b553
LH
5718 return false;
5719}
5720
5721/**
5722 * mas_next() - Get the next entry.
5723 * @mas: The maple state
5724 * @max: The maximum index to check.
5725 *
5726 * Returns the next entry after @mas->index.
5727 * Must hold rcu_read_lock or the write lock.
5728 * Can return the zero entry.
5729 *
5730 * Return: The next entry or %NULL
5731 */
5732void *mas_next(struct ma_state *mas, unsigned long max)
5733{
5734 void *entry = NULL;
5735
5736 if (mas_next_setup(mas, max, &entry))
5737 return entry;
5738
5739 /* Retries on dead nodes handled by mas_next_slot */
067311d3 5740 return mas_next_slot(mas, max, false);
54a611b6
LH
5741}
5742EXPORT_SYMBOL_GPL(mas_next);
5743
6169b553
LH
5744/**
5745 * mas_next_range() - Advance the maple state to the next range
5746 * @mas: The maple state
5747 * @max: The maximum index to check.
5748 *
5749 * Sets @mas->index and @mas->last to the range.
5750 * Must hold rcu_read_lock or the write lock.
5751 * Can return the zero entry.
5752 *
5753 * Return: The next entry or %NULL
5754 */
5755void *mas_next_range(struct ma_state *mas, unsigned long max)
5756{
5757 void *entry = NULL;
5758
5759 if (mas_next_setup(mas, max, &entry))
5760 return entry;
5761
5762 /* Retries on dead nodes handled by mas_next_slot */
067311d3 5763 return mas_next_slot(mas, max, true);
6169b553
LH
5764}
5765EXPORT_SYMBOL_GPL(mas_next_range);
5766
54a611b6
LH
5767/**
5768 * mt_next() - get the next value in the maple tree
5769 * @mt: The maple tree
5770 * @index: The start index
5771 * @max: The maximum index to check
5772 *
fad9c80e
TG
5773 * Takes RCU read lock internally to protect the search, which does not
5774 * protect the returned pointer after dropping RCU read lock.
5775 * See also: Documentation/core-api/maple_tree.rst
5776 *
5777 * Return: The entry higher than @index or %NULL if nothing is found.
54a611b6
LH
5778 */
5779void *mt_next(struct maple_tree *mt, unsigned long index, unsigned long max)
5780{
5781 void *entry = NULL;
5782 MA_STATE(mas, mt, index, index);
5783
5784 rcu_read_lock();
5785 entry = mas_next(&mas, max);
5786 rcu_read_unlock();
5787 return entry;
5788}
5789EXPORT_SYMBOL_GPL(mt_next);
5790
271f61a8 5791static bool mas_prev_setup(struct ma_state *mas, unsigned long min, void **entry)
54a611b6 5792{
a8091f03 5793 if (unlikely(mas->index <= min)) {
067311d3 5794 mas->status = ma_underflow;
a8091f03
LH
5795 return true;
5796 }
54a611b6 5797
067311d3
LH
5798 switch (mas->status) {
5799 case ma_active:
a8091f03 5800 return false;
067311d3
LH
5801 case ma_start:
5802 break;
5803 case ma_none:
5804 fallthrough;
5805 case ma_pause:
5806 mas->status = ma_start;
5807 break;
5808 case ma_underflow:
5809 /* underflowed before but the min changed */
5810 mas->status = ma_active;
5811 break;
5812 case ma_overflow:
5813 /* User expects mas to be one after where it is */
5814 mas->status = ma_active;
a8091f03
LH
5815 *entry = mas_walk(mas);
5816 if (*entry)
5817 return true;
067311d3
LH
5818 break;
5819 case ma_root:
5820 break;
5821 case ma_error:
5822 return true;
54a611b6
LH
5823 }
5824
a8091f03
LH
5825 if (mas_is_start(mas))
5826 mas_walk(mas);
5827
39193685 5828 if (unlikely(mas_is_ptr(mas))) {
067311d3
LH
5829 if (!mas->index) {
5830 mas->status = ma_none;
5831 return true;
5832 }
54a611b6 5833 mas->index = mas->last = 0;
6b9e93e0
LH
5834 *entry = mas_root(mas);
5835 return true;
39193685
LH
5836 }
5837
5838 if (mas_is_none(mas)) {
5839 if (mas->index) {
5840 /* Walked to out-of-range pointer? */
5841 mas->index = mas->last = 0;
067311d3 5842 mas->status = ma_root;
6b9e93e0
LH
5843 *entry = mas_root(mas);
5844 return true;
39193685 5845 }
6b9e93e0 5846 return true;
54a611b6 5847 }
6b9e93e0
LH
5848
5849 return false;
6b9e93e0
LH
5850}
5851
5852/**
5853 * mas_prev() - Get the previous entry
5854 * @mas: The maple state
5855 * @min: The minimum value to check.
5856 *
5857 * Must hold rcu_read_lock or the write lock.
067311d3 5858 * Will reset mas to ma_start if the status is ma_none. Will stop on not
6b9e93e0
LH
5859 * searchable nodes.
5860 *
5861 * Return: the previous value or %NULL.
5862 */
5863void *mas_prev(struct ma_state *mas, unsigned long min)
5864{
5865 void *entry = NULL;
5866
5867 if (mas_prev_setup(mas, min, &entry))
5868 return entry;
5869
067311d3 5870 return mas_prev_slot(mas, min, false);
54a611b6
LH
5871}
5872EXPORT_SYMBOL_GPL(mas_prev);
5873
6b9e93e0
LH
5874/**
5875 * mas_prev_range() - Advance to the previous range
5876 * @mas: The maple state
5877 * @min: The minimum value to check.
5878 *
5879 * Sets @mas->index and @mas->last to the range.
5880 * Must hold rcu_read_lock or the write lock.
067311d3 5881 * Will reset mas to ma_start if the node is ma_none. Will stop on not
6b9e93e0
LH
5882 * searchable nodes.
5883 *
5884 * Return: the previous value or %NULL.
5885 */
5886void *mas_prev_range(struct ma_state *mas, unsigned long min)
5887{
5888 void *entry = NULL;
5889
5890 if (mas_prev_setup(mas, min, &entry))
5891 return entry;
5892
067311d3 5893 return mas_prev_slot(mas, min, true);
6b9e93e0
LH
5894}
5895EXPORT_SYMBOL_GPL(mas_prev_range);
5896
54a611b6
LH
5897/**
5898 * mt_prev() - get the previous value in the maple tree
5899 * @mt: The maple tree
5900 * @index: The start index
5901 * @min: The minimum index to check
5902 *
fad9c80e
TG
5903 * Takes RCU read lock internally to protect the search, which does not
5904 * protect the returned pointer after dropping RCU read lock.
5905 * See also: Documentation/core-api/maple_tree.rst
5906 *
5907 * Return: The entry before @index or %NULL if nothing is found.
54a611b6
LH
5908 */
5909void *mt_prev(struct maple_tree *mt, unsigned long index, unsigned long min)
5910{
5911 void *entry = NULL;
5912 MA_STATE(mas, mt, index, index);
5913
5914 rcu_read_lock();
5915 entry = mas_prev(&mas, min);
5916 rcu_read_unlock();
5917 return entry;
5918}
5919EXPORT_SYMBOL_GPL(mt_prev);
5920
5921/**
5922 * mas_pause() - Pause a mas_find/mas_for_each to drop the lock.
5923 * @mas: The maple state to pause
5924 *
5925 * Some users need to pause a walk and drop the lock they're holding in
5926 * order to yield to a higher priority thread or carry out an operation
5927 * on an entry. Those users should call this function before they drop
5928 * the lock. It resets the @mas to be suitable for the next iteration
5929 * of the loop after the user has reacquired the lock. If most entries
5930 * found during a walk require you to call mas_pause(), the mt_for_each()
5931 * iterator may be more appropriate.
5932 *
5933 */
5934void mas_pause(struct ma_state *mas)
5935{
067311d3
LH
5936 mas->status = ma_pause;
5937 mas->node = NULL;
54a611b6
LH
5938}
5939EXPORT_SYMBOL_GPL(mas_pause);
5940
5941/**
6169b553 5942 * mas_find_setup() - Internal function to set up mas_find*().
54a611b6 5943 * @mas: The maple state
6169b553
LH
5944 * @max: The maximum index
5945 * @entry: Pointer to the entry
54a611b6 5946 *
6169b553 5947 * Returns: True if entry is the answer, false otherwise.
54a611b6 5948 */
271f61a8 5949static __always_inline bool mas_find_setup(struct ma_state *mas, unsigned long max, void **entry)
54a611b6 5950{
067311d3
LH
5951 switch (mas->status) {
5952 case ma_active:
a8091f03
LH
5953 if (mas->last < max)
5954 return false;
a8091f03 5955 return true;
067311d3
LH
5956 case ma_start:
5957 break;
5958 case ma_pause:
ca80f610 5959 if (unlikely(mas->last >= max))
6169b553 5960 return true;
ca80f610 5961
a8091f03 5962 mas->index = ++mas->last;
067311d3
LH
5963 mas->status = ma_start;
5964 break;
5965 case ma_none:
ca80f610 5966 if (unlikely(mas->last >= max))
6169b553 5967 return true;
ca80f610 5968
a8091f03 5969 mas->index = mas->last;
067311d3
LH
5970 mas->status = ma_start;
5971 break;
5972 case ma_underflow:
5973 /* mas is pointing at entry before unable to go lower */
5974 if (unlikely(mas->index >= max)) {
5975 mas->status = ma_overflow;
a8091f03
LH
5976 return true;
5977 }
17dc622c 5978
067311d3
LH
5979 mas->status = ma_active;
5980 *entry = mas_walk(mas);
5981 if (*entry)
5982 return true;
5983 break;
5984 case ma_overflow:
5985 if (unlikely(mas->last >= max))
5986 return true;
5987
5988 mas->status = ma_active;
5989 *entry = mas_walk(mas);
5990 if (*entry)
5991 return true;
5992 break;
5993 case ma_root:
5994 break;
5995 case ma_error:
5996 return true;
a8091f03
LH
5997 }
5998
5999 if (mas_is_start(mas)) {
54a611b6 6000 /* First run or continue */
54a611b6 6001 if (mas->index > max)
6169b553 6002 return true;
54a611b6 6003
6169b553
LH
6004 *entry = mas_walk(mas);
6005 if (*entry)
6006 return true;
ca80f610 6007
54a611b6
LH
6008 }
6009
9a40d45c
LH
6010 if (unlikely(mas_is_ptr(mas)))
6011 goto ptr_out_of_range;
ca80f610 6012
9a40d45c 6013 if (unlikely(mas_is_none(mas)))
6169b553 6014 return true;
ca80f610
LH
6015
6016 if (mas->index == max)
6169b553 6017 return true;
54a611b6 6018
6169b553 6019 return false;
ca80f610
LH
6020
6021ptr_out_of_range:
067311d3 6022 mas->status = ma_none;
ca80f610
LH
6023 mas->index = 1;
6024 mas->last = ULONG_MAX;
6169b553
LH
6025 return true;
6026}
6027
6028/**
6029 * mas_find() - On the first call, find the entry at or after mas->index up to
6030 * %max. Otherwise, find the entry after mas->index.
6031 * @mas: The maple state
6032 * @max: The maximum value to check.
6033 *
6034 * Must hold rcu_read_lock or the write lock.
6035 * If an entry exists, last and index are updated accordingly.
067311d3 6036 * May set @mas->status to ma_overflow.
6169b553
LH
6037 *
6038 * Return: The entry or %NULL.
6039 */
6040void *mas_find(struct ma_state *mas, unsigned long max)
6041{
6042 void *entry = NULL;
6043
6044 if (mas_find_setup(mas, max, &entry))
6045 return entry;
6046
6047 /* Retries on dead nodes handled by mas_next_slot */
067311d3
LH
6048 entry = mas_next_slot(mas, max, false);
6049 /* Ignore overflow */
6050 mas->status = ma_active;
6051 return entry;
54a611b6 6052}
120b1162 6053EXPORT_SYMBOL_GPL(mas_find);
54a611b6 6054
6169b553
LH
6055/**
6056 * mas_find_range() - On the first call, find the entry at or after
6057 * mas->index up to %max. Otherwise, advance to the next slot mas->index.
6058 * @mas: The maple state
6059 * @max: The maximum value to check.
6060 *
6061 * Must hold rcu_read_lock or the write lock.
6062 * If an entry exists, last and index are updated accordingly.
067311d3 6063 * May set @mas->status to ma_overflow.
6169b553
LH
6064 *
6065 * Return: The entry or %NULL.
6066 */
6067void *mas_find_range(struct ma_state *mas, unsigned long max)
6068{
a8091f03 6069 void *entry = NULL;
6169b553
LH
6070
6071 if (mas_find_setup(mas, max, &entry))
6072 return entry;
6073
6074 /* Retries on dead nodes handled by mas_next_slot */
067311d3 6075 return mas_next_slot(mas, max, true);
6169b553
LH
6076}
6077EXPORT_SYMBOL_GPL(mas_find_range);
6078
54a611b6 6079/**
6b9e93e0 6080 * mas_find_rev_setup() - Internal function to set up mas_find_*_rev()
54a611b6 6081 * @mas: The maple state
6b9e93e0
LH
6082 * @min: The minimum index
6083 * @entry: Pointer to the entry
54a611b6 6084 *
6b9e93e0 6085 * Returns: True if entry is the answer, false otherwise.
54a611b6 6086 */
271f61a8 6087static bool mas_find_rev_setup(struct ma_state *mas, unsigned long min,
6b9e93e0 6088 void **entry)
54a611b6 6089{
39193685 6090
067311d3
LH
6091 switch (mas->status) {
6092 case ma_active:
6093 goto active;
6094 case ma_start:
6095 break;
6096 case ma_pause:
39193685 6097 if (unlikely(mas->index <= min)) {
067311d3 6098 mas->status = ma_underflow;
6b9e93e0 6099 return true;
54a611b6 6100 }
54a611b6 6101 mas->last = --mas->index;
067311d3
LH
6102 mas->status = ma_start;
6103 break;
6104 case ma_none:
a8091f03
LH
6105 if (mas->index <= min)
6106 goto none;
6107
6108 mas->last = mas->index;
067311d3
LH
6109 mas->status = ma_start;
6110 break;
6111 case ma_overflow: /* user expects the mas to be one after where it is */
6112 if (unlikely(mas->index <= min)) {
6113 mas->status = ma_underflow;
a8091f03
LH
6114 return true;
6115 }
6116
067311d3
LH
6117 mas->status = ma_active;
6118 break;
6119 case ma_underflow: /* user expects the mas to be one before where it is */
6120 if (unlikely(mas->index <= min))
6121 return true;
6122
6123 mas->status = ma_active;
6124 break;
6125 case ma_root:
6126 break;
6127 case ma_error:
6128 return true;
54a611b6
LH
6129 }
6130
a8091f03 6131 if (mas_is_start(mas)) {
54a611b6 6132 /* First run or continue */
54a611b6 6133 if (mas->index < min)
6b9e93e0 6134 return true;
54a611b6 6135
6b9e93e0
LH
6136 *entry = mas_walk(mas);
6137 if (*entry)
6138 return true;
54a611b6
LH
6139 }
6140
9a40d45c
LH
6141 if (unlikely(mas_is_ptr(mas)))
6142 goto none;
39193685 6143
9a40d45c
LH
6144 if (unlikely(mas_is_none(mas))) {
6145 /*
6146 * Walked to the location, and there was nothing so the previous
6147 * location is 0.
6148 */
6149 mas->last = mas->index = 0;
6150 mas->status = ma_root;
6151 *entry = mas_root(mas);
6152 return true;
39193685 6153 }
54a611b6 6154
067311d3 6155active:
54a611b6 6156 if (mas->index < min)
6b9e93e0 6157 return true;
54a611b6 6158
6b9e93e0 6159 return false;
39193685
LH
6160
6161none:
067311d3 6162 mas->status = ma_none;
6b9e93e0
LH
6163 return true;
6164}
6165
6166/**
6167 * mas_find_rev: On the first call, find the first non-null entry at or below
6168 * mas->index down to %min. Otherwise find the first non-null entry below
6169 * mas->index down to %min.
6170 * @mas: The maple state
6171 * @min: The minimum value to check.
6172 *
6173 * Must hold rcu_read_lock or the write lock.
6174 * If an entry exists, last and index are updated accordingly.
067311d3 6175 * May set @mas->status to ma_underflow.
6b9e93e0
LH
6176 *
6177 * Return: The entry or %NULL.
6178 */
6179void *mas_find_rev(struct ma_state *mas, unsigned long min)
6180{
a8091f03 6181 void *entry = NULL;
6b9e93e0
LH
6182
6183 if (mas_find_rev_setup(mas, min, &entry))
6184 return entry;
6185
6186 /* Retries on dead nodes handled by mas_prev_slot */
067311d3 6187 return mas_prev_slot(mas, min, false);
6b9e93e0 6188
54a611b6 6189}
120b1162 6190EXPORT_SYMBOL_GPL(mas_find_rev);
54a611b6 6191
6b9e93e0
LH
6192/**
6193 * mas_find_range_rev: On the first call, find the first non-null entry at or
6194 * below mas->index down to %min. Otherwise advance to the previous slot after
6195 * mas->index down to %min.
6196 * @mas: The maple state
6197 * @min: The minimum value to check.
6198 *
6199 * Must hold rcu_read_lock or the write lock.
6200 * If an entry exists, last and index are updated accordingly.
067311d3 6201 * May set @mas->status to ma_underflow.
6b9e93e0
LH
6202 *
6203 * Return: The entry or %NULL.
6204 */
6205void *mas_find_range_rev(struct ma_state *mas, unsigned long min)
6206{
a8091f03 6207 void *entry = NULL;
6b9e93e0
LH
6208
6209 if (mas_find_rev_setup(mas, min, &entry))
6210 return entry;
6211
6212 /* Retries on dead nodes handled by mas_prev_slot */
067311d3 6213 return mas_prev_slot(mas, min, true);
6b9e93e0
LH
6214}
6215EXPORT_SYMBOL_GPL(mas_find_range_rev);
6216
54a611b6
LH
6217/**
6218 * mas_erase() - Find the range in which index resides and erase the entire
6219 * range.
6220 * @mas: The maple state
6221 *
6222 * Must hold the write lock.
6223 * Searches for @mas->index, sets @mas->index and @mas->last to the range and
6224 * erases that range.
6225 *
6226 * Return: the entry that was erased or %NULL, @mas->index and @mas->last are updated.
6227 */
6228void *mas_erase(struct ma_state *mas)
6229{
6230 void *entry;
e1b8b883 6231 unsigned long index = mas->index;
54a611b6
LH
6232 MA_WR_STATE(wr_mas, mas, NULL);
6233
f7a59018 6234 if (!mas_is_active(mas) || !mas_is_start(mas))
067311d3 6235 mas->status = ma_start;
54a611b6 6236
e1b8b883 6237write_retry:
54a611b6
LH
6238 entry = mas_state_walk(mas);
6239 if (!entry)
6240 return NULL;
6241
54a611b6
LH
6242 /* Must reset to ensure spanning writes of last slot are detected */
6243 mas_reset(mas);
7e093834 6244 mas_wr_preallocate(&wr_mas, NULL);
e1b8b883
SK
6245 if (mas_nomem(mas, GFP_KERNEL)) {
6246 /* in case the range of entry changed when unlocked */
6247 mas->index = mas->last = index;
54a611b6 6248 goto write_retry;
e1b8b883 6249 }
54a611b6 6250
7e093834
SK
6251 if (mas_is_err(mas))
6252 goto out;
6253
6254 mas_wr_store_entry(&wr_mas);
6255out:
3cd9e92e 6256 mas_destroy(mas);
54a611b6
LH
6257 return entry;
6258}
6259EXPORT_SYMBOL_GPL(mas_erase);
6260
6261/**
6262 * mas_nomem() - Check if there was an error allocating and do the allocation
6263 * if necessary If there are allocations, then free them.
6264 * @mas: The maple state
6265 * @gfp: The GFP_FLAGS to use for allocations
6266 * Return: true on allocation, false otherwise.
6267 */
6268bool mas_nomem(struct ma_state *mas, gfp_t gfp)
14c4b5ab 6269 __must_hold(mas->tree->ma_lock)
54a611b6 6270{
3cd9e92e 6271 if (likely(mas->node != MA_ERROR(-ENOMEM)))
54a611b6 6272 return false;
54a611b6
LH
6273
6274 if (gfpflags_allow_blocking(gfp) && !mt_external_lock(mas->tree)) {
6275 mtree_unlock(mas->tree);
6276 mas_alloc_nodes(mas, gfp);
6277 mtree_lock(mas->tree);
6278 } else {
6279 mas_alloc_nodes(mas, gfp);
6280 }
6281
6282 if (!mas_allocated(mas))
6283 return false;
6284
067311d3 6285 mas->status = ma_start;
54a611b6
LH
6286 return true;
6287}
6288
6289void __init maple_tree_init(void)
6290{
6291 maple_node_cache = kmem_cache_create("maple_node",
6292 sizeof(struct maple_node), sizeof(struct maple_node),
6293 SLAB_PANIC, NULL);
6294}
6295
6296/**
6297 * mtree_load() - Load a value stored in a maple tree
6298 * @mt: The maple tree
6299 * @index: The index to load
6300 *
6301 * Return: the entry or %NULL
6302 */
6303void *mtree_load(struct maple_tree *mt, unsigned long index)
6304{
6305 MA_STATE(mas, mt, index, index);
6306 void *entry;
6307
6308 trace_ma_read(__func__, &mas);
6309 rcu_read_lock();
6310retry:
6311 entry = mas_start(&mas);
6312 if (unlikely(mas_is_none(&mas)))
6313 goto unlock;
6314
6315 if (unlikely(mas_is_ptr(&mas))) {
6316 if (index)
6317 entry = NULL;
6318
6319 goto unlock;
6320 }
6321
6322 entry = mtree_lookup_walk(&mas);
6323 if (!entry && unlikely(mas_is_start(&mas)))
6324 goto retry;
6325unlock:
6326 rcu_read_unlock();
6327 if (xa_is_zero(entry))
6328 return NULL;
6329
6330 return entry;
6331}
6332EXPORT_SYMBOL(mtree_load);
6333
6334/**
6335 * mtree_store_range() - Store an entry at a given range.
6336 * @mt: The maple tree
6337 * @index: The start of the range
6338 * @last: The end of the range
6339 * @entry: The entry to store
6340 * @gfp: The GFP_FLAGS to use for allocations
6341 *
6342 * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not
6343 * be allocated.
6344 */
6345int mtree_store_range(struct maple_tree *mt, unsigned long index,
6346 unsigned long last, void *entry, gfp_t gfp)
6347{
6348 MA_STATE(mas, mt, index, last);
3cd9e92e 6349 int ret = 0;
54a611b6
LH
6350
6351 trace_ma_write(__func__, &mas, 0, entry);
6352 if (WARN_ON_ONCE(xa_is_advanced(entry)))
6353 return -EINVAL;
6354
6355 if (index > last)
6356 return -EINVAL;
6357
6358 mtree_lock(mt);
85db8f24 6359 ret = mas_store_gfp(&mas, entry, gfp);
54a611b6 6360 mtree_unlock(mt);
54a611b6 6361
3cd9e92e 6362 return ret;
54a611b6
LH
6363}
6364EXPORT_SYMBOL(mtree_store_range);
6365
6366/**
6367 * mtree_store() - Store an entry at a given index.
6368 * @mt: The maple tree
6369 * @index: The index to store the value
6370 * @entry: The entry to store
6371 * @gfp: The GFP_FLAGS to use for allocations
6372 *
6373 * Return: 0 on success, -EINVAL on invalid request, -ENOMEM if memory could not
6374 * be allocated.
6375 */
6376int mtree_store(struct maple_tree *mt, unsigned long index, void *entry,
6377 gfp_t gfp)
6378{
6379 return mtree_store_range(mt, index, index, entry, gfp);
6380}
6381EXPORT_SYMBOL(mtree_store);
6382
6383/**
4445e582 6384 * mtree_insert_range() - Insert an entry at a given range if there is no value.
54a611b6
LH
6385 * @mt: The maple tree
6386 * @first: The start of the range
6387 * @last: The end of the range
6388 * @entry: The entry to store
6389 * @gfp: The GFP_FLAGS to use for allocations.
6390 *
6391 * Return: 0 on success, -EEXISTS if the range is occupied, -EINVAL on invalid
6392 * request, -ENOMEM if memory could not be allocated.
6393 */
6394int mtree_insert_range(struct maple_tree *mt, unsigned long first,
6395 unsigned long last, void *entry, gfp_t gfp)
6396{
6397 MA_STATE(ms, mt, first, last);
3cd9e92e 6398 int ret = 0;
54a611b6
LH
6399
6400 if (WARN_ON_ONCE(xa_is_advanced(entry)))
6401 return -EINVAL;
6402
6403 if (first > last)
6404 return -EINVAL;
6405
6406 mtree_lock(mt);
6407retry:
6408 mas_insert(&ms, entry);
6409 if (mas_nomem(&ms, gfp))
6410 goto retry;
6411
6412 mtree_unlock(mt);
6413 if (mas_is_err(&ms))
3cd9e92e 6414 ret = xa_err(ms.node);
54a611b6 6415
3cd9e92e
SK
6416 mas_destroy(&ms);
6417 return ret;
54a611b6
LH
6418}
6419EXPORT_SYMBOL(mtree_insert_range);
6420
6421/**
4445e582 6422 * mtree_insert() - Insert an entry at a given index if there is no value.
54a611b6
LH
6423 * @mt: The maple tree
6424 * @index : The index to store the value
6425 * @entry: The entry to store
4ae6944d 6426 * @gfp: The GFP_FLAGS to use for allocations.
54a611b6
LH
6427 *
6428 * Return: 0 on success, -EEXISTS if the range is occupied, -EINVAL on invalid
6429 * request, -ENOMEM if memory could not be allocated.
6430 */
6431int mtree_insert(struct maple_tree *mt, unsigned long index, void *entry,
6432 gfp_t gfp)
6433{
6434 return mtree_insert_range(mt, index, index, entry, gfp);
6435}
6436EXPORT_SYMBOL(mtree_insert);
6437
6438int mtree_alloc_range(struct maple_tree *mt, unsigned long *startp,
6439 void *entry, unsigned long size, unsigned long min,
6440 unsigned long max, gfp_t gfp)
6441{
6442 int ret = 0;
6443
52371677 6444 MA_STATE(mas, mt, 0, 0);
54a611b6
LH
6445 if (!mt_is_alloc(mt))
6446 return -EINVAL;
6447
6448 if (WARN_ON_ONCE(mt_is_reserved(entry)))
6449 return -EINVAL;
6450
54a611b6
LH
6451 mtree_lock(mt);
6452retry:
52371677
PZ
6453 ret = mas_empty_area(&mas, min, max, size);
6454 if (ret)
6455 goto unlock;
6456
6457 mas_insert(&mas, entry);
6458 /*
6459 * mas_nomem() may release the lock, causing the allocated area
6460 * to be unavailable, so try to allocate a free area again.
6461 */
54a611b6
LH
6462 if (mas_nomem(&mas, gfp))
6463 goto retry;
6464
52371677
PZ
6465 if (mas_is_err(&mas))
6466 ret = xa_err(mas.node);
6467 else
6468 *startp = mas.index;
6469
6470unlock:
54a611b6 6471 mtree_unlock(mt);
3cd9e92e 6472 mas_destroy(&mas);
54a611b6
LH
6473 return ret;
6474}
6475EXPORT_SYMBOL(mtree_alloc_range);
6476
9b6713cc
CL
6477/**
6478 * mtree_alloc_cyclic() - Find somewhere to store this entry in the tree.
6479 * @mt: The maple tree.
6480 * @startp: Pointer to ID.
6481 * @range_lo: Lower bound of range to search.
6482 * @range_hi: Upper bound of range to search.
6483 * @entry: The entry to store.
6484 * @next: Pointer to next ID to allocate.
6485 * @gfp: The GFP_FLAGS to use for allocations.
6486 *
6487 * Finds an empty entry in @mt after @next, stores the new index into
6488 * the @id pointer, stores the entry at that index, then updates @next.
6489 *
6490 * @mt must be initialized with the MT_FLAGS_ALLOC_RANGE flag.
6491 *
6492 * Context: Any context. Takes and releases the mt.lock. May sleep if
6493 * the @gfp flags permit.
6494 *
6495 * Return: 0 if the allocation succeeded without wrapping, 1 if the
6496 * allocation succeeded after wrapping, -ENOMEM if memory could not be
6497 * allocated, -EINVAL if @mt cannot be used, or -EBUSY if there are no
6498 * free entries.
6499 */
6500int mtree_alloc_cyclic(struct maple_tree *mt, unsigned long *startp,
6501 void *entry, unsigned long range_lo, unsigned long range_hi,
6502 unsigned long *next, gfp_t gfp)
6503{
6504 int ret;
6505
6506 MA_STATE(mas, mt, 0, 0);
6507
6508 if (!mt_is_alloc(mt))
6509 return -EINVAL;
6510 if (WARN_ON_ONCE(mt_is_reserved(entry)))
6511 return -EINVAL;
6512 mtree_lock(mt);
6513 ret = mas_alloc_cyclic(&mas, startp, entry, range_lo, range_hi,
6514 next, gfp);
6515 mtree_unlock(mt);
6516 return ret;
6517}
6518EXPORT_SYMBOL(mtree_alloc_cyclic);
6519
54a611b6
LH
6520int mtree_alloc_rrange(struct maple_tree *mt, unsigned long *startp,
6521 void *entry, unsigned long size, unsigned long min,
6522 unsigned long max, gfp_t gfp)
6523{
6524 int ret = 0;
6525
52371677 6526 MA_STATE(mas, mt, 0, 0);
54a611b6
LH
6527 if (!mt_is_alloc(mt))
6528 return -EINVAL;
6529
6530 if (WARN_ON_ONCE(mt_is_reserved(entry)))
6531 return -EINVAL;
6532
54a611b6
LH
6533 mtree_lock(mt);
6534retry:
52371677
PZ
6535 ret = mas_empty_area_rev(&mas, min, max, size);
6536 if (ret)
6537 goto unlock;
6538
6539 mas_insert(&mas, entry);
6540 /*
6541 * mas_nomem() may release the lock, causing the allocated area
6542 * to be unavailable, so try to allocate a free area again.
6543 */
54a611b6
LH
6544 if (mas_nomem(&mas, gfp))
6545 goto retry;
6546
52371677
PZ
6547 if (mas_is_err(&mas))
6548 ret = xa_err(mas.node);
6549 else
6550 *startp = mas.index;
6551
6552unlock:
54a611b6 6553 mtree_unlock(mt);
3cd9e92e 6554 mas_destroy(&mas);
54a611b6
LH
6555 return ret;
6556}
6557EXPORT_SYMBOL(mtree_alloc_rrange);
6558
6559/**
6560 * mtree_erase() - Find an index and erase the entire range.
6561 * @mt: The maple tree
6562 * @index: The index to erase
6563 *
6564 * Erasing is the same as a walk to an entry then a store of a NULL to that
6565 * ENTIRE range. In fact, it is implemented as such using the advanced API.
6566 *
6567 * Return: The entry stored at the @index or %NULL
6568 */
6569void *mtree_erase(struct maple_tree *mt, unsigned long index)
6570{
6571 void *entry = NULL;
6572
6573 MA_STATE(mas, mt, index, index);
6574 trace_ma_op(__func__, &mas);
6575
6576 mtree_lock(mt);
6577 entry = mas_erase(&mas);
6578 mtree_unlock(mt);
6579
6580 return entry;
6581}
6582EXPORT_SYMBOL(mtree_erase);
6583
fd32e4e9
PZ
6584/*
6585 * mas_dup_free() - Free an incomplete duplication of a tree.
6586 * @mas: The maple state of a incomplete tree.
6587 *
6588 * The parameter @mas->node passed in indicates that the allocation failed on
6589 * this node. This function frees all nodes starting from @mas->node in the
6590 * reverse order of mas_dup_build(). There is no need to hold the source tree
6591 * lock at this time.
6592 */
6593static void mas_dup_free(struct ma_state *mas)
6594{
6595 struct maple_node *node;
6596 enum maple_type type;
6597 void __rcu **slots;
6598 unsigned char count, i;
6599
6600 /* Maybe the first node allocation failed. */
6601 if (mas_is_none(mas))
6602 return;
6603
6604 while (!mte_is_root(mas->node)) {
6605 mas_ascend(mas);
6606 if (mas->offset) {
6607 mas->offset--;
6608 do {
6609 mas_descend(mas);
6610 mas->offset = mas_data_end(mas);
6611 } while (!mte_is_leaf(mas->node));
6612
6613 mas_ascend(mas);
6614 }
6615
6616 node = mte_to_node(mas->node);
6617 type = mte_node_type(mas->node);
6618 slots = ma_slots(node, type);
6619 count = mas_data_end(mas) + 1;
6620 for (i = 0; i < count; i++)
6621 ((unsigned long *)slots)[i] &= ~MAPLE_NODE_MASK;
6622 mt_free_bulk(count, slots);
6623 }
6624
6625 node = mte_to_node(mas->node);
6626 mt_free_one(node);
6627}
6628
6629/*
6630 * mas_copy_node() - Copy a maple node and replace the parent.
6631 * @mas: The maple state of source tree.
6632 * @new_mas: The maple state of new tree.
6633 * @parent: The parent of the new node.
6634 *
6635 * Copy @mas->node to @new_mas->node, set @parent to be the parent of
6636 * @new_mas->node. If memory allocation fails, @mas is set to -ENOMEM.
6637 */
6638static inline void mas_copy_node(struct ma_state *mas, struct ma_state *new_mas,
6639 struct maple_pnode *parent)
6640{
6641 struct maple_node *node = mte_to_node(mas->node);
6642 struct maple_node *new_node = mte_to_node(new_mas->node);
6643 unsigned long val;
6644
6645 /* Copy the node completely. */
6646 memcpy(new_node, node, sizeof(struct maple_node));
6647 /* Update the parent node pointer. */
6648 val = (unsigned long)node->parent & MAPLE_NODE_MASK;
6649 new_node->parent = ma_parent_ptr(val | (unsigned long)parent);
6650}
6651
6652/*
6653 * mas_dup_alloc() - Allocate child nodes for a maple node.
6654 * @mas: The maple state of source tree.
6655 * @new_mas: The maple state of new tree.
6656 * @gfp: The GFP_FLAGS to use for allocations.
6657 *
6658 * This function allocates child nodes for @new_mas->node during the duplication
6659 * process. If memory allocation fails, @mas is set to -ENOMEM.
6660 */
6661static inline void mas_dup_alloc(struct ma_state *mas, struct ma_state *new_mas,
6662 gfp_t gfp)
6663{
6664 struct maple_node *node = mte_to_node(mas->node);
6665 struct maple_node *new_node = mte_to_node(new_mas->node);
6666 enum maple_type type;
6667 unsigned char request, count, i;
6668 void __rcu **slots;
6669 void __rcu **new_slots;
6670 unsigned long val;
6671
6672 /* Allocate memory for child nodes. */
6673 type = mte_node_type(mas->node);
6674 new_slots = ma_slots(new_node, type);
6675 request = mas_data_end(mas) + 1;
6676 count = mt_alloc_bulk(gfp, request, (void **)new_slots);
6677 if (unlikely(count < request)) {
6678 memset(new_slots, 0, request * sizeof(void *));
6679 mas_set_err(mas, -ENOMEM);
6680 return;
6681 }
6682
6683 /* Restore node type information in slots. */
6684 slots = ma_slots(node, type);
6685 for (i = 0; i < count; i++) {
6686 val = (unsigned long)mt_slot_locked(mas->tree, slots, i);
6687 val &= MAPLE_NODE_MASK;
6688 ((unsigned long *)new_slots)[i] |= val;
6689 }
6690}
6691
6692/*
6693 * mas_dup_build() - Build a new maple tree from a source tree
6694 * @mas: The maple state of source tree, need to be in MAS_START state.
6695 * @new_mas: The maple state of new tree, need to be in MAS_START state.
6696 * @gfp: The GFP_FLAGS to use for allocations.
6697 *
6698 * This function builds a new tree in DFS preorder. If the memory allocation
6699 * fails, the error code -ENOMEM will be set in @mas, and @new_mas points to the
6700 * last node. mas_dup_free() will free the incomplete duplication of a tree.
6701 *
6702 * Note that the attributes of the two trees need to be exactly the same, and the
6703 * new tree needs to be empty, otherwise -EINVAL will be set in @mas.
6704 */
6705static inline void mas_dup_build(struct ma_state *mas, struct ma_state *new_mas,
6706 gfp_t gfp)
6707{
6708 struct maple_node *node;
6709 struct maple_pnode *parent = NULL;
6710 struct maple_enode *root;
6711 enum maple_type type;
6712
6713 if (unlikely(mt_attr(mas->tree) != mt_attr(new_mas->tree)) ||
6714 unlikely(!mtree_empty(new_mas->tree))) {
6715 mas_set_err(mas, -EINVAL);
6716 return;
6717 }
6718
6719 root = mas_start(mas);
6720 if (mas_is_ptr(mas) || mas_is_none(mas))
6721 goto set_new_tree;
6722
6723 node = mt_alloc_one(gfp);
6724 if (!node) {
067311d3 6725 new_mas->status = ma_none;
fd32e4e9
PZ
6726 mas_set_err(mas, -ENOMEM);
6727 return;
6728 }
6729
6730 type = mte_node_type(mas->node);
6731 root = mt_mk_node(node, type);
6732 new_mas->node = root;
6733 new_mas->min = 0;
6734 new_mas->max = ULONG_MAX;
6735 root = mte_mk_root(root);
6736 while (1) {
6737 mas_copy_node(mas, new_mas, parent);
6738 if (!mte_is_leaf(mas->node)) {
6739 /* Only allocate child nodes for non-leaf nodes. */
6740 mas_dup_alloc(mas, new_mas, gfp);
6741 if (unlikely(mas_is_err(mas)))
6742 return;
6743 } else {
6744 /*
6745 * This is the last leaf node and duplication is
6746 * completed.
6747 */
6748 if (mas->max == ULONG_MAX)
6749 goto done;
6750
6751 /* This is not the last leaf node and needs to go up. */
6752 do {
6753 mas_ascend(mas);
6754 mas_ascend(new_mas);
6755 } while (mas->offset == mas_data_end(mas));
6756
6757 /* Move to the next subtree. */
6758 mas->offset++;
6759 new_mas->offset++;
6760 }
6761
6762 mas_descend(mas);
6763 parent = ma_parent_ptr(mte_to_node(new_mas->node));
6764 mas_descend(new_mas);
6765 mas->offset = 0;
6766 new_mas->offset = 0;
6767 }
6768done:
6769 /* Specially handle the parent of the root node. */
6770 mte_to_node(root)->parent = ma_parent_ptr(mas_tree_parent(new_mas));
6771set_new_tree:
6772 /* Make them the same height */
6773 new_mas->tree->ma_flags = mas->tree->ma_flags;
6774 rcu_assign_pointer(new_mas->tree->ma_root, root);
6775}
6776
6777/**
6778 * __mt_dup(): Duplicate an entire maple tree
6779 * @mt: The source maple tree
6780 * @new: The new maple tree
6781 * @gfp: The GFP_FLAGS to use for allocations
6782 *
6783 * This function duplicates a maple tree in Depth-First Search (DFS) pre-order
6784 * traversal. It uses memcpy() to copy nodes in the source tree and allocate
6785 * new child nodes in non-leaf nodes. The new node is exactly the same as the
6786 * source node except for all the addresses stored in it. It will be faster than
6787 * traversing all elements in the source tree and inserting them one by one into
6788 * the new tree.
6789 * The user needs to ensure that the attributes of the source tree and the new
6790 * tree are the same, and the new tree needs to be an empty tree, otherwise
6791 * -EINVAL will be returned.
6792 * Note that the user needs to manually lock the source tree and the new tree.
6793 *
6794 * Return: 0 on success, -ENOMEM if memory could not be allocated, -EINVAL If
6795 * the attributes of the two trees are different or the new tree is not an empty
6796 * tree.
6797 */
6798int __mt_dup(struct maple_tree *mt, struct maple_tree *new, gfp_t gfp)
6799{
6800 int ret = 0;
6801 MA_STATE(mas, mt, 0, 0);
6802 MA_STATE(new_mas, new, 0, 0);
6803
6804 mas_dup_build(&mas, &new_mas, gfp);
6805 if (unlikely(mas_is_err(&mas))) {
6806 ret = xa_err(mas.node);
6807 if (ret == -ENOMEM)
6808 mas_dup_free(&new_mas);
6809 }
6810
6811 return ret;
6812}
6813EXPORT_SYMBOL(__mt_dup);
6814
6815/**
6816 * mtree_dup(): Duplicate an entire maple tree
6817 * @mt: The source maple tree
6818 * @new: The new maple tree
6819 * @gfp: The GFP_FLAGS to use for allocations
6820 *
6821 * This function duplicates a maple tree in Depth-First Search (DFS) pre-order
6822 * traversal. It uses memcpy() to copy nodes in the source tree and allocate
6823 * new child nodes in non-leaf nodes. The new node is exactly the same as the
6824 * source node except for all the addresses stored in it. It will be faster than
6825 * traversing all elements in the source tree and inserting them one by one into
6826 * the new tree.
6827 * The user needs to ensure that the attributes of the source tree and the new
6828 * tree are the same, and the new tree needs to be an empty tree, otherwise
6829 * -EINVAL will be returned.
6830 *
6831 * Return: 0 on success, -ENOMEM if memory could not be allocated, -EINVAL If
6832 * the attributes of the two trees are different or the new tree is not an empty
6833 * tree.
6834 */
6835int mtree_dup(struct maple_tree *mt, struct maple_tree *new, gfp_t gfp)
6836{
6837 int ret = 0;
6838 MA_STATE(mas, mt, 0, 0);
6839 MA_STATE(new_mas, new, 0, 0);
6840
6841 mas_lock(&new_mas);
6842 mas_lock_nested(&mas, SINGLE_DEPTH_NESTING);
6843 mas_dup_build(&mas, &new_mas, gfp);
6844 mas_unlock(&mas);
6845 if (unlikely(mas_is_err(&mas))) {
6846 ret = xa_err(mas.node);
6847 if (ret == -ENOMEM)
6848 mas_dup_free(&new_mas);
6849 }
6850
6851 mas_unlock(&new_mas);
6852 return ret;
6853}
6854EXPORT_SYMBOL(mtree_dup);
6855
54a611b6
LH
6856/**
6857 * __mt_destroy() - Walk and free all nodes of a locked maple tree.
6858 * @mt: The maple tree
6859 *
6860 * Note: Does not handle locking.
6861 */
6862void __mt_destroy(struct maple_tree *mt)
6863{
6864 void *root = mt_root_locked(mt);
6865
6866 rcu_assign_pointer(mt->ma_root, NULL);
6867 if (xa_is_node(root))
6868 mte_destroy_walk(root, mt);
6869
8e50d32c 6870 mt->ma_flags = mt_attr(mt);
54a611b6
LH
6871}
6872EXPORT_SYMBOL_GPL(__mt_destroy);
6873
6874/**
6875 * mtree_destroy() - Destroy a maple tree
6876 * @mt: The maple tree
6877 *
6878 * Frees all resources used by the tree. Handles locking.
6879 */
6880void mtree_destroy(struct maple_tree *mt)
6881{
6882 mtree_lock(mt);
6883 __mt_destroy(mt);
6884 mtree_unlock(mt);
6885}
6886EXPORT_SYMBOL(mtree_destroy);
6887
6888/**
6889 * mt_find() - Search from the start up until an entry is found.
6890 * @mt: The maple tree
6891 * @index: Pointer which contains the start location of the search
fad9c80e
TG
6892 * @max: The maximum value of the search range
6893 *
6894 * Takes RCU read lock internally to protect the search, which does not
6895 * protect the returned pointer after dropping RCU read lock.
6896 * See also: Documentation/core-api/maple_tree.rst
54a611b6 6897 *
fad9c80e
TG
6898 * In case that an entry is found @index is updated to point to the next
6899 * possible entry independent whether the found entry is occupying a
6900 * single index or a range if indices.
54a611b6
LH
6901 *
6902 * Return: The entry at or after the @index or %NULL
6903 */
6904void *mt_find(struct maple_tree *mt, unsigned long *index, unsigned long max)
6905{
6906 MA_STATE(mas, mt, *index, *index);
6907 void *entry;
6908#ifdef CONFIG_DEBUG_MAPLE_TREE
6909 unsigned long copy = *index;
6910#endif
6911
6912 trace_ma_read(__func__, &mas);
6913
6914 if ((*index) > max)
6915 return NULL;
6916
6917 rcu_read_lock();
6918retry:
6919 entry = mas_state_walk(&mas);
6920 if (mas_is_start(&mas))
6921 goto retry;
6922
6923 if (unlikely(xa_is_zero(entry)))
6924 entry = NULL;
6925
6926 if (entry)
6927 goto unlock;
6928
9a40d45c 6929 while (mas_is_active(&mas) && (mas.last < max)) {
002ebb92 6930 entry = mas_next_slot(&mas, max, false);
54a611b6
LH
6931 if (likely(entry && !xa_is_zero(entry)))
6932 break;
6933 }
6934
6935 if (unlikely(xa_is_zero(entry)))
6936 entry = NULL;
6937unlock:
6938 rcu_read_unlock();
6939 if (likely(entry)) {
6940 *index = mas.last + 1;
6941#ifdef CONFIG_DEBUG_MAPLE_TREE
e6d6792a 6942 if (MT_WARN_ON(mt, (*index) && ((*index) <= copy)))
54a611b6
LH
6943 pr_err("index not increased! %lx <= %lx\n",
6944 *index, copy);
54a611b6
LH
6945#endif
6946 }
6947
6948 return entry;
6949}
6950EXPORT_SYMBOL(mt_find);
6951
6952/**
6953 * mt_find_after() - Search from the start up until an entry is found.
6954 * @mt: The maple tree
6955 * @index: Pointer which contains the start location of the search
6956 * @max: The maximum value to check
6957 *
fad9c80e
TG
6958 * Same as mt_find() except that it checks @index for 0 before
6959 * searching. If @index == 0, the search is aborted. This covers a wrap
6960 * around of @index to 0 in an iterator loop.
54a611b6
LH
6961 *
6962 * Return: The entry at or after the @index or %NULL
6963 */
6964void *mt_find_after(struct maple_tree *mt, unsigned long *index,
6965 unsigned long max)
6966{
6967 if (!(*index))
6968 return NULL;
6969
6970 return mt_find(mt, index, max);
6971}
6972EXPORT_SYMBOL(mt_find_after);
6973
6974#ifdef CONFIG_DEBUG_MAPLE_TREE
6975atomic_t maple_tree_tests_run;
6976EXPORT_SYMBOL_GPL(maple_tree_tests_run);
6977atomic_t maple_tree_tests_passed;
6978EXPORT_SYMBOL_GPL(maple_tree_tests_passed);
6979
6980#ifndef __KERNEL__
6981extern void kmem_cache_set_non_kernel(struct kmem_cache *, unsigned int);
6982void mt_set_non_kernel(unsigned int val)
6983{
6984 kmem_cache_set_non_kernel(maple_node_cache, val);
6985}
6986
617f8e4d
SK
6987extern void kmem_cache_set_callback(struct kmem_cache *cachep,
6988 void (*callback)(void *));
6989void mt_set_callback(void (*callback)(void *))
6990{
6991 kmem_cache_set_callback(maple_node_cache, callback);
6992}
6993
6994extern void kmem_cache_set_private(struct kmem_cache *cachep, void *private);
6995void mt_set_private(void *private)
6996{
6997 kmem_cache_set_private(maple_node_cache, private);
6998}
6999
54a611b6
LH
7000extern unsigned long kmem_cache_get_alloc(struct kmem_cache *);
7001unsigned long mt_get_alloc_size(void)
7002{
7003 return kmem_cache_get_alloc(maple_node_cache);
7004}
7005
7006extern void kmem_cache_zero_nr_tallocated(struct kmem_cache *);
7007void mt_zero_nr_tallocated(void)
7008{
7009 kmem_cache_zero_nr_tallocated(maple_node_cache);
7010}
7011
7012extern unsigned int kmem_cache_nr_tallocated(struct kmem_cache *);
7013unsigned int mt_nr_tallocated(void)
7014{
7015 return kmem_cache_nr_tallocated(maple_node_cache);
7016}
7017
7018extern unsigned int kmem_cache_nr_allocated(struct kmem_cache *);
7019unsigned int mt_nr_allocated(void)
7020{
7021 return kmem_cache_nr_allocated(maple_node_cache);
7022}
7023
120b1162
LH
7024void mt_cache_shrink(void)
7025{
7026}
7027#else
7028/*
7029 * mt_cache_shrink() - For testing, don't use this.
7030 *
7031 * Certain testcases can trigger an OOM when combined with other memory
7032 * debugging configuration options. This function is used to reduce the
7033 * possibility of an out of memory even due to kmem_cache objects remaining
7034 * around for longer than usual.
7035 */
7036void mt_cache_shrink(void)
7037{
7038 kmem_cache_shrink(maple_node_cache);
7039
7040}
7041EXPORT_SYMBOL_GPL(mt_cache_shrink);
7042
7043#endif /* not defined __KERNEL__ */
54a611b6
LH
7044/*
7045 * mas_get_slot() - Get the entry in the maple state node stored at @offset.
7046 * @mas: The maple state
7047 * @offset: The offset into the slot array to fetch.
7048 *
7049 * Return: The entry stored at @offset.
7050 */
7051static inline struct maple_enode *mas_get_slot(struct ma_state *mas,
7052 unsigned char offset)
7053{
7054 return mas_slot(mas, ma_slots(mas_mn(mas), mte_node_type(mas->node)),
7055 offset);
7056}
7057
54a611b6
LH
7058/* Depth first search, post-order */
7059static void mas_dfs_postorder(struct ma_state *mas, unsigned long max)
7060{
7061
067311d3 7062 struct maple_enode *p, *mn = mas->node;
54a611b6
LH
7063 unsigned long p_min, p_max;
7064
7065 mas_next_node(mas, mas_mn(mas), max);
067311d3 7066 if (!mas_is_overflow(mas))
54a611b6
LH
7067 return;
7068
7069 if (mte_is_root(mn))
7070 return;
7071
7072 mas->node = mn;
7073 mas_ascend(mas);
c3eb787e 7074 do {
54a611b6
LH
7075 p = mas->node;
7076 p_min = mas->min;
7077 p_max = mas->max;
7078 mas_prev_node(mas, 0);
067311d3 7079 } while (!mas_is_underflow(mas));
54a611b6
LH
7080
7081 mas->node = p;
7082 mas->max = p_max;
7083 mas->min = p_min;
7084}
7085
7086/* Tree validations */
7087static void mt_dump_node(const struct maple_tree *mt, void *entry,
89f499f3
LH
7088 unsigned long min, unsigned long max, unsigned int depth,
7089 enum mt_dump_format format);
54a611b6 7090static void mt_dump_range(unsigned long min, unsigned long max,
89f499f3 7091 unsigned int depth, enum mt_dump_format format)
54a611b6
LH
7092{
7093 static const char spaces[] = " ";
7094
89f499f3
LH
7095 switch(format) {
7096 case mt_dump_hex:
7097 if (min == max)
7098 pr_info("%.*s%lx: ", depth * 2, spaces, min);
7099 else
7100 pr_info("%.*s%lx-%lx: ", depth * 2, spaces, min, max);
7101 break;
89f499f3
LH
7102 case mt_dump_dec:
7103 if (min == max)
7104 pr_info("%.*s%lu: ", depth * 2, spaces, min);
7105 else
7106 pr_info("%.*s%lu-%lu: ", depth * 2, spaces, min, max);
7107 }
54a611b6
LH
7108}
7109
7110static void mt_dump_entry(void *entry, unsigned long min, unsigned long max,
89f499f3 7111 unsigned int depth, enum mt_dump_format format)
54a611b6 7112{
89f499f3 7113 mt_dump_range(min, max, depth, format);
54a611b6
LH
7114
7115 if (xa_is_value(entry))
b314e215
LS
7116 pr_cont("value %ld (0x%lx) [" PTR_FMT "]\n", xa_to_value(entry),
7117 xa_to_value(entry), entry);
54a611b6
LH
7118 else if (xa_is_zero(entry))
7119 pr_cont("zero (%ld)\n", xa_to_internal(entry));
7120 else if (mt_is_reserved(entry))
b314e215 7121 pr_cont("UNKNOWN ENTRY (" PTR_FMT ")\n", entry);
54a611b6 7122 else
b314e215 7123 pr_cont(PTR_FMT "\n", entry);
54a611b6
LH
7124}
7125
7126static void mt_dump_range64(const struct maple_tree *mt, void *entry,
89f499f3
LH
7127 unsigned long min, unsigned long max, unsigned int depth,
7128 enum mt_dump_format format)
54a611b6
LH
7129{
7130 struct maple_range_64 *node = &mte_to_node(entry)->mr64;
7131 bool leaf = mte_is_leaf(entry);
7132 unsigned long first = min;
7133 int i;
7134
7135 pr_cont(" contents: ");
89f499f3
LH
7136 for (i = 0; i < MAPLE_RANGE64_SLOTS - 1; i++) {
7137 switch(format) {
7138 case mt_dump_hex:
b314e215 7139 pr_cont(PTR_FMT " %lX ", node->slot[i], node->pivot[i]);
89f499f3 7140 break;
89f499f3 7141 case mt_dump_dec:
b314e215 7142 pr_cont(PTR_FMT " %lu ", node->slot[i], node->pivot[i]);
89f499f3
LH
7143 }
7144 }
b314e215 7145 pr_cont(PTR_FMT "\n", node->slot[i]);
54a611b6
LH
7146 for (i = 0; i < MAPLE_RANGE64_SLOTS; i++) {
7147 unsigned long last = max;
7148
7149 if (i < (MAPLE_RANGE64_SLOTS - 1))
7150 last = node->pivot[i];
bd592703 7151 else if (!node->slot[i] && max != mt_node_max(entry))
54a611b6
LH
7152 break;
7153 if (last == 0 && i > 0)
7154 break;
7155 if (leaf)
7156 mt_dump_entry(mt_slot(mt, node->slot, i),
89f499f3 7157 first, last, depth + 1, format);
54a611b6
LH
7158 else if (node->slot[i])
7159 mt_dump_node(mt, mt_slot(mt, node->slot, i),
89f499f3 7160 first, last, depth + 1, format);
54a611b6
LH
7161
7162 if (last == max)
7163 break;
7164 if (last > max) {
89f499f3
LH
7165 switch(format) {
7166 case mt_dump_hex:
b314e215 7167 pr_err("node " PTR_FMT " last (%lx) > max (%lx) at pivot %d!\n",
54a611b6 7168 node, last, max, i);
89f499f3 7169 break;
89f499f3 7170 case mt_dump_dec:
b314e215 7171 pr_err("node " PTR_FMT " last (%lu) > max (%lu) at pivot %d!\n",
89f499f3
LH
7172 node, last, max, i);
7173 }
54a611b6
LH
7174 }
7175 first = last + 1;
7176 }
7177}
7178
7179static void mt_dump_arange64(const struct maple_tree *mt, void *entry,
89f499f3
LH
7180 unsigned long min, unsigned long max, unsigned int depth,
7181 enum mt_dump_format format)
54a611b6
LH
7182{
7183 struct maple_arange_64 *node = &mte_to_node(entry)->ma64;
54a611b6
LH
7184 unsigned long first = min;
7185 int i;
7186
7187 pr_cont(" contents: ");
83d97f62
LH
7188 for (i = 0; i < MAPLE_ARANGE64_SLOTS; i++) {
7189 switch (format) {
7190 case mt_dump_hex:
7191 pr_cont("%lx ", node->gap[i]);
7192 break;
83d97f62
LH
7193 case mt_dump_dec:
7194 pr_cont("%lu ", node->gap[i]);
7195 }
7196 }
54a611b6 7197 pr_cont("| %02X %02X| ", node->meta.end, node->meta.gap);
83d97f62
LH
7198 for (i = 0; i < MAPLE_ARANGE64_SLOTS - 1; i++) {
7199 switch (format) {
7200 case mt_dump_hex:
b314e215 7201 pr_cont(PTR_FMT " %lX ", node->slot[i], node->pivot[i]);
83d97f62 7202 break;
83d97f62 7203 case mt_dump_dec:
b314e215 7204 pr_cont(PTR_FMT " %lu ", node->slot[i], node->pivot[i]);
83d97f62
LH
7205 }
7206 }
b314e215 7207 pr_cont(PTR_FMT "\n", node->slot[i]);
54a611b6
LH
7208 for (i = 0; i < MAPLE_ARANGE64_SLOTS; i++) {
7209 unsigned long last = max;
7210
7211 if (i < (MAPLE_ARANGE64_SLOTS - 1))
7212 last = node->pivot[i];
7213 else if (!node->slot[i])
7214 break;
7215 if (last == 0 && i > 0)
7216 break;
81528310 7217 if (node->slot[i])
54a611b6 7218 mt_dump_node(mt, mt_slot(mt, node->slot, i),
89f499f3 7219 first, last, depth + 1, format);
54a611b6
LH
7220
7221 if (last == max)
7222 break;
7223 if (last > max) {
21a449be
WY
7224 switch(format) {
7225 case mt_dump_hex:
b314e215 7226 pr_err("node " PTR_FMT " last (%lx) > max (%lx) at pivot %d!\n",
54a611b6 7227 node, last, max, i);
21a449be
WY
7228 break;
7229 case mt_dump_dec:
b314e215 7230 pr_err("node " PTR_FMT " last (%lu) > max (%lu) at pivot %d!\n",
21a449be
WY
7231 node, last, max, i);
7232 }
54a611b6
LH
7233 }
7234 first = last + 1;
7235 }
7236}
7237
7238static void mt_dump_node(const struct maple_tree *mt, void *entry,
89f499f3
LH
7239 unsigned long min, unsigned long max, unsigned int depth,
7240 enum mt_dump_format format)
54a611b6
LH
7241{
7242 struct maple_node *node = mte_to_node(entry);
7243 unsigned int type = mte_node_type(entry);
7244 unsigned int i;
7245
89f499f3 7246 mt_dump_range(min, max, depth, format);
54a611b6 7247
b314e215
LS
7248 pr_cont("node " PTR_FMT " depth %d type %d parent " PTR_FMT, node,
7249 depth, type, node ? node->parent : NULL);
54a611b6
LH
7250 switch (type) {
7251 case maple_dense:
7252 pr_cont("\n");
7253 for (i = 0; i < MAPLE_NODE_SLOTS; i++) {
7254 if (min + i > max)
7255 pr_cont("OUT OF RANGE: ");
7256 mt_dump_entry(mt_slot(mt, node->slot, i),
89f499f3 7257 min + i, min + i, depth, format);
54a611b6
LH
7258 }
7259 break;
7260 case maple_leaf_64:
7261 case maple_range_64:
89f499f3 7262 mt_dump_range64(mt, entry, min, max, depth, format);
54a611b6
LH
7263 break;
7264 case maple_arange_64:
89f499f3 7265 mt_dump_arange64(mt, entry, min, max, depth, format);
54a611b6
LH
7266 break;
7267
7268 default:
7269 pr_cont(" UNKNOWN TYPE\n");
7270 }
7271}
7272
89f499f3 7273void mt_dump(const struct maple_tree *mt, enum mt_dump_format format)
54a611b6
LH
7274{
7275 void *entry = rcu_dereference_check(mt->ma_root, mt_locked(mt));
7276
b314e215 7277 pr_info("maple_tree(" PTR_FMT ") flags %X, height %u root " PTR_FMT "\n",
54a611b6 7278 mt, mt->ma_flags, mt_height(mt), entry);
04dafdd2 7279 if (xa_is_node(entry))
89f499f3 7280 mt_dump_node(mt, entry, 0, mt_node_max(entry), 0, format);
04dafdd2
WY
7281 else if (entry)
7282 mt_dump_entry(entry, 0, 0, 0, format);
7283 else
7284 pr_info("(empty)\n");
54a611b6 7285}
120b1162 7286EXPORT_SYMBOL_GPL(mt_dump);
54a611b6
LH
7287
7288/*
7289 * Calculate the maximum gap in a node and check if that's what is reported in
7290 * the parent (unless root).
7291 */
7292static void mas_validate_gaps(struct ma_state *mas)
7293{
7294 struct maple_enode *mte = mas->node;
f8e5eac8
PZ
7295 struct maple_node *p_mn, *node = mte_to_node(mte);
7296 enum maple_type mt = mte_node_type(mas->node);
54a611b6
LH
7297 unsigned long gap = 0, max_gap = 0;
7298 unsigned long p_end, p_start = mas->min;
f8e5eac8 7299 unsigned char p_slot, offset;
54a611b6 7300 unsigned long *gaps = NULL;
f8e5eac8
PZ
7301 unsigned long *pivots = ma_pivots(node, mt);
7302 unsigned int i;
54a611b6 7303
f8e5eac8 7304 if (ma_is_dense(mt)) {
54a611b6
LH
7305 for (i = 0; i < mt_slot_count(mte); i++) {
7306 if (mas_get_slot(mas, i)) {
7307 if (gap > max_gap)
7308 max_gap = gap;
7309 gap = 0;
7310 continue;
7311 }
7312 gap++;
7313 }
7314 goto counted;
7315 }
7316
f8e5eac8 7317 gaps = ma_gaps(node, mt);
54a611b6 7318 for (i = 0; i < mt_slot_count(mte); i++) {
29b2681f 7319 p_end = mas_safe_pivot(mas, pivots, i, mt);
54a611b6
LH
7320
7321 if (!gaps) {
f8e5eac8
PZ
7322 if (!mas_get_slot(mas, i))
7323 gap = p_end - p_start + 1;
54a611b6
LH
7324 } else {
7325 void *entry = mas_get_slot(mas, i);
7326
7327 gap = gaps[i];
f8e5eac8
PZ
7328 MT_BUG_ON(mas->tree, !entry);
7329
7330 if (gap > p_end - p_start + 1) {
b314e215 7331 pr_err(PTR_FMT "[%u] %lu >= %lu - %lu + 1 (%lu)\n",
f8e5eac8
PZ
7332 mas_mn(mas), i, gap, p_end, p_start,
7333 p_end - p_start + 1);
7334 MT_BUG_ON(mas->tree, gap > p_end - p_start + 1);
54a611b6
LH
7335 }
7336 }
7337
7338 if (gap > max_gap)
7339 max_gap = gap;
f8e5eac8 7340
54a611b6
LH
7341 p_start = p_end + 1;
7342 if (p_end >= mas->max)
7343 break;
7344 }
7345
7346counted:
f8e5eac8 7347 if (mt == maple_arange_64) {
2e783f0c 7348 MT_BUG_ON(mas->tree, !gaps);
c5e94121 7349 offset = ma_meta_gap(node);
f8e5eac8 7350 if (offset > i) {
b314e215 7351 pr_err("gap offset " PTR_FMT "[%u] is invalid\n", node, offset);
f8e5eac8
PZ
7352 MT_BUG_ON(mas->tree, 1);
7353 }
7354
7355 if (gaps[offset] != max_gap) {
b314e215 7356 pr_err("gap " PTR_FMT "[%u] is not the largest gap %lu\n",
f8e5eac8
PZ
7357 node, offset, max_gap);
7358 MT_BUG_ON(mas->tree, 1);
7359 }
7360
f8e5eac8
PZ
7361 for (i++ ; i < mt_slot_count(mte); i++) {
7362 if (gaps[i] != 0) {
b314e215 7363 pr_err("gap " PTR_FMT "[%u] beyond node limit != 0\n",
f8e5eac8
PZ
7364 node, i);
7365 MT_BUG_ON(mas->tree, 1);
7366 }
7367 }
7368 }
7369
54a611b6
LH
7370 if (mte_is_root(mte))
7371 return;
7372
7373 p_slot = mte_parent_slot(mas->node);
7374 p_mn = mte_parent(mte);
7375 MT_BUG_ON(mas->tree, max_gap > mas->max);
afc754c6 7376 if (ma_gaps(p_mn, mas_parent_type(mas, mte))[p_slot] != max_gap) {
b314e215 7377 pr_err("gap " PTR_FMT "[%u] != %lu\n", p_mn, p_slot, max_gap);
89f499f3 7378 mt_dump(mas->tree, mt_dump_hex);
f8e5eac8 7379 MT_BUG_ON(mas->tree, 1);
54a611b6 7380 }
54a611b6
LH
7381}
7382
7383static void mas_validate_parent_slot(struct ma_state *mas)
7384{
7385 struct maple_node *parent;
7386 struct maple_enode *node;
afc754c6
LH
7387 enum maple_type p_type;
7388 unsigned char p_slot;
54a611b6
LH
7389 void __rcu **slots;
7390 int i;
7391
7392 if (mte_is_root(mas->node))
7393 return;
7394
afc754c6
LH
7395 p_slot = mte_parent_slot(mas->node);
7396 p_type = mas_parent_type(mas, mas->node);
54a611b6
LH
7397 parent = mte_parent(mas->node);
7398 slots = ma_slots(parent, p_type);
7399 MT_BUG_ON(mas->tree, mas_mn(mas) == parent);
7400
7401 /* Check prev/next parent slot for duplicate node entry */
7402
7403 for (i = 0; i < mt_slots[p_type]; i++) {
7404 node = mas_slot(mas, slots, i);
7405 if (i == p_slot) {
7406 if (node != mas->node)
b314e215 7407 pr_err("parent " PTR_FMT "[%u] does not have " PTR_FMT "\n",
54a611b6
LH
7408 parent, i, mas_mn(mas));
7409 MT_BUG_ON(mas->tree, node != mas->node);
7410 } else if (node == mas->node) {
b314e215 7411 pr_err("Invalid child " PTR_FMT " at parent " PTR_FMT "[%u] p_slot %u\n",
54a611b6
LH
7412 mas_mn(mas), parent, i, p_slot);
7413 MT_BUG_ON(mas->tree, node == mas->node);
7414 }
7415 }
7416}
7417
7418static void mas_validate_child_slot(struct ma_state *mas)
7419{
7420 enum maple_type type = mte_node_type(mas->node);
7421 void __rcu **slots = ma_slots(mte_to_node(mas->node), type);
7422 unsigned long *pivots = ma_pivots(mte_to_node(mas->node), type);
7423 struct maple_enode *child;
7424 unsigned char i;
7425
7426 if (mte_is_leaf(mas->node))
7427 return;
7428
7429 for (i = 0; i < mt_slots[type]; i++) {
7430 child = mas_slot(mas, slots, i);
54a611b6 7431
e93fda5a 7432 if (!child) {
b314e215 7433 pr_err("Non-leaf node lacks child at " PTR_FMT "[%u]\n",
e93fda5a
PZ
7434 mas_mn(mas), i);
7435 MT_BUG_ON(mas->tree, 1);
7436 }
54a611b6
LH
7437
7438 if (mte_parent_slot(child) != i) {
b314e215 7439 pr_err("Slot error at " PTR_FMT "[%u]: child " PTR_FMT " has pslot %u\n",
54a611b6
LH
7440 mas_mn(mas), i, mte_to_node(child),
7441 mte_parent_slot(child));
7442 MT_BUG_ON(mas->tree, 1);
7443 }
7444
7445 if (mte_parent(child) != mte_to_node(mas->node)) {
b314e215 7446 pr_err("child " PTR_FMT " has parent " PTR_FMT " not " PTR_FMT "\n",
54a611b6
LH
7447 mte_to_node(child), mte_parent(child),
7448 mte_to_node(mas->node));
7449 MT_BUG_ON(mas->tree, 1);
7450 }
e93fda5a
PZ
7451
7452 if (i < mt_pivots[type] && pivots[i] == mas->max)
7453 break;
54a611b6
LH
7454 }
7455}
7456
7457/*
33af39d0
PZ
7458 * Validate all pivots are within mas->min and mas->max, check metadata ends
7459 * where the maximum ends and ensure there is no slots or pivots set outside of
7460 * the end of the data.
54a611b6
LH
7461 */
7462static void mas_validate_limits(struct ma_state *mas)
7463{
7464 int i;
7465 unsigned long prev_piv = 0;
7466 enum maple_type type = mte_node_type(mas->node);
7467 void __rcu **slots = ma_slots(mte_to_node(mas->node), type);
7468 unsigned long *pivots = ma_pivots(mas_mn(mas), type);
7469
54a611b6
LH
7470 for (i = 0; i < mt_slots[type]; i++) {
7471 unsigned long piv;
7472
7473 piv = mas_safe_pivot(mas, pivots, i, type);
7474
33af39d0 7475 if (!piv && (i != 0)) {
b314e215 7476 pr_err("Missing node limit pivot at " PTR_FMT "[%u]",
33af39d0
PZ
7477 mas_mn(mas), i);
7478 MAS_WARN_ON(mas, 1);
54a611b6
LH
7479 }
7480
7481 if (prev_piv > piv) {
b314e215 7482 pr_err(PTR_FMT "[%u] piv %lu < prev_piv %lu\n",
54a611b6 7483 mas_mn(mas), i, piv, prev_piv);
e6d6792a 7484 MAS_WARN_ON(mas, piv < prev_piv);
54a611b6
LH
7485 }
7486
7487 if (piv < mas->min) {
b314e215 7488 pr_err(PTR_FMT "[%u] %lu < %lu\n", mas_mn(mas), i,
54a611b6 7489 piv, mas->min);
e6d6792a 7490 MAS_WARN_ON(mas, piv < mas->min);
54a611b6
LH
7491 }
7492 if (piv > mas->max) {
b314e215 7493 pr_err(PTR_FMT "[%u] %lu > %lu\n", mas_mn(mas), i,
54a611b6 7494 piv, mas->max);
e6d6792a 7495 MAS_WARN_ON(mas, piv > mas->max);
54a611b6
LH
7496 }
7497 prev_piv = piv;
7498 if (piv == mas->max)
7499 break;
7500 }
33af39d0
PZ
7501
7502 if (mas_data_end(mas) != i) {
b314e215 7503 pr_err("node" PTR_FMT ": data_end %u != the last slot offset %u\n",
33af39d0
PZ
7504 mas_mn(mas), mas_data_end(mas), i);
7505 MT_BUG_ON(mas->tree, 1);
7506 }
7507
54a611b6
LH
7508 for (i += 1; i < mt_slots[type]; i++) {
7509 void *entry = mas_slot(mas, slots, i);
7510
7511 if (entry && (i != mt_slots[type] - 1)) {
b314e215
LS
7512 pr_err(PTR_FMT "[%u] should not have entry " PTR_FMT "\n",
7513 mas_mn(mas), i, entry);
54a611b6
LH
7514 MT_BUG_ON(mas->tree, entry != NULL);
7515 }
7516
7517 if (i < mt_pivots[type]) {
7518 unsigned long piv = pivots[i];
7519
7520 if (!piv)
7521 continue;
7522
b314e215 7523 pr_err(PTR_FMT "[%u] should not have piv %lu\n",
54a611b6 7524 mas_mn(mas), i, piv);
e6d6792a 7525 MAS_WARN_ON(mas, i < mt_pivots[type] - 1);
54a611b6
LH
7526 }
7527 }
7528}
7529
7530static void mt_validate_nulls(struct maple_tree *mt)
7531{
7532 void *entry, *last = (void *)1;
7533 unsigned char offset = 0;
7534 void __rcu **slots;
7535 MA_STATE(mas, mt, 0, 0);
7536
7537 mas_start(&mas);
067311d3 7538 if (mas_is_none(&mas) || (mas_is_ptr(&mas)))
54a611b6
LH
7539 return;
7540
7541 while (!mte_is_leaf(mas.node))
7542 mas_descend(&mas);
7543
7544 slots = ma_slots(mte_to_node(mas.node), mte_node_type(mas.node));
7545 do {
7546 entry = mas_slot(&mas, slots, offset);
7547 if (!last && !entry) {
b314e215 7548 pr_err("Sequential nulls end at " PTR_FMT "[%u]\n",
54a611b6
LH
7549 mas_mn(&mas), offset);
7550 }
7551 MT_BUG_ON(mt, !last && !entry);
7552 last = entry;
7553 if (offset == mas_data_end(&mas)) {
7554 mas_next_node(&mas, mas_mn(&mas), ULONG_MAX);
067311d3 7555 if (mas_is_overflow(&mas))
54a611b6
LH
7556 return;
7557 offset = 0;
7558 slots = ma_slots(mte_to_node(mas.node),
7559 mte_node_type(mas.node));
7560 } else {
7561 offset++;
7562 }
7563
067311d3 7564 } while (!mas_is_overflow(&mas));
54a611b6
LH
7565}
7566
7567/*
7568 * validate a maple tree by checking:
7569 * 1. The limits (pivots are within mas->min to mas->max)
7570 * 2. The gap is correctly set in the parents
7571 */
7572void mt_validate(struct maple_tree *mt)
f806de88 7573 __must_hold(mas->tree->ma_lock)
54a611b6
LH
7574{
7575 unsigned char end;
7576
7577 MA_STATE(mas, mt, 0, 0);
54a611b6 7578 mas_start(&mas);
9a40d45c 7579 if (!mas_is_active(&mas))
f806de88 7580 return;
54a611b6 7581
a489539e
PZ
7582 while (!mte_is_leaf(mas.node))
7583 mas_descend(&mas);
7584
067311d3 7585 while (!mas_is_overflow(&mas)) {
e6d6792a 7586 MAS_WARN_ON(&mas, mte_dead_node(mas.node));
a489539e
PZ
7587 end = mas_data_end(&mas);
7588 if (MAS_WARN_ON(&mas, (end < mt_min_slot_count(mas.node)) &&
7318f95b 7589 (!mte_is_root(mas.node)))) {
b314e215
LS
7590 pr_err("Invalid size %u of " PTR_FMT "\n",
7591 end, mas_mn(&mas));
54a611b6 7592 }
a489539e 7593
54a611b6 7594 mas_validate_parent_slot(&mas);
54a611b6 7595 mas_validate_limits(&mas);
a489539e 7596 mas_validate_child_slot(&mas);
54a611b6
LH
7597 if (mt_is_alloc(mt))
7598 mas_validate_gaps(&mas);
7599 mas_dfs_postorder(&mas, ULONG_MAX);
7600 }
7601 mt_validate_nulls(mt);
54a611b6 7602}
120b1162 7603EXPORT_SYMBOL_GPL(mt_validate);
54a611b6 7604
f0a1f866
LH
7605void mas_dump(const struct ma_state *mas)
7606{
b314e215
LS
7607 pr_err("MAS: tree=" PTR_FMT " enode=" PTR_FMT " ",
7608 mas->tree, mas->node);
067311d3
LH
7609 switch (mas->status) {
7610 case ma_active:
7611 pr_err("(ma_active)");
7612 break;
7613 case ma_none:
7614 pr_err("(ma_none)");
7615 break;
7616 case ma_root:
7617 pr_err("(ma_root)");
7618 break;
7619 case ma_start:
7620 pr_err("(ma_start) ");
7621 break;
7622 case ma_pause:
7623 pr_err("(ma_pause) ");
7624 break;
7625 case ma_overflow:
7626 pr_err("(ma_overflow) ");
7627 break;
7628 case ma_underflow:
7629 pr_err("(ma_underflow) ");
7630 break;
7631 case ma_error:
7632 pr_err("(ma_error) ");
7633 break;
7634 }
7635
23e217a8
SK
7636 pr_err("Store Type: ");
7637 switch (mas->store_type) {
7638 case wr_invalid:
7639 pr_err("invalid store type\n");
7640 break;
7641 case wr_new_root:
7642 pr_err("new_root\n");
7643 break;
7644 case wr_store_root:
7645 pr_err("store_root\n");
7646 break;
7647 case wr_exact_fit:
7648 pr_err("exact_fit\n");
7649 break;
7650 case wr_split_store:
7651 pr_err("split_store\n");
7652 break;
7653 case wr_slot_store:
7654 pr_err("slot_store\n");
7655 break;
7656 case wr_append:
7657 pr_err("append\n");
7658 break;
7659 case wr_node_store:
7660 pr_err("node_store\n");
7661 break;
7662 case wr_spanning_store:
7663 pr_err("spanning_store\n");
7664 break;
7665 case wr_rebalance:
7666 pr_err("rebalance\n");
7667 break;
7668 }
7669
067311d3
LH
7670 pr_err("[%u/%u] index=%lx last=%lx\n", mas->offset, mas->end,
7671 mas->index, mas->last);
b314e215 7672 pr_err(" min=%lx max=%lx alloc=" PTR_FMT ", depth=%u, flags=%x\n",
f0a1f866
LH
7673 mas->min, mas->max, mas->alloc, mas->depth, mas->mas_flags);
7674 if (mas->index > mas->last)
7675 pr_err("Check index & last\n");
7676}
7677EXPORT_SYMBOL_GPL(mas_dump);
7678
7679void mas_wr_dump(const struct ma_wr_state *wr_mas)
7680{
b314e215 7681 pr_err("WR_MAS: node=" PTR_FMT " r_min=%lx r_max=%lx\n",
f0a1f866
LH
7682 wr_mas->node, wr_mas->r_min, wr_mas->r_max);
7683 pr_err(" type=%u off_end=%u, node_end=%u, end_piv=%lx\n",
0de56e38 7684 wr_mas->type, wr_mas->offset_end, wr_mas->mas->end,
f0a1f866
LH
7685 wr_mas->end_piv);
7686}
7687EXPORT_SYMBOL_GPL(mas_wr_dump);
7688
54a611b6 7689#endif /* CONFIG_DEBUG_MAPLE_TREE */