]> git.ipfire.org Git - thirdparty/linux.git/blame - lib/radix-tree.c
shmem: Convert shmem_add_to_page_cache to XArray
[thirdparty/linux.git] / lib / radix-tree.c
CommitLineData
1da177e4
LT
1/*
2 * Copyright (C) 2001 Momchil Velikov
3 * Portions Copyright (C) 2001 Christoph Hellwig
cde53535 4 * Copyright (C) 2005 SGI, Christoph Lameter
7cf9c2c7 5 * Copyright (C) 2006 Nick Piggin
78c1d784 6 * Copyright (C) 2012 Konstantin Khlebnikov
6b053b8e
MW
7 * Copyright (C) 2016 Intel, Matthew Wilcox
8 * Copyright (C) 2016 Intel, Ross Zwisler
1da177e4
LT
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License as
12 * published by the Free Software Foundation; either version 2, or (at
13 * your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23 */
24
0a835c4f
MW
25#include <linux/bitmap.h>
26#include <linux/bitops.h>
460488c5 27#include <linux/bug.h>
e157b555 28#include <linux/cpu.h>
1da177e4 29#include <linux/errno.h>
0a835c4f
MW
30#include <linux/export.h>
31#include <linux/idr.h>
1da177e4
LT
32#include <linux/init.h>
33#include <linux/kernel.h>
0a835c4f 34#include <linux/kmemleak.h>
1da177e4 35#include <linux/percpu.h>
0a835c4f
MW
36#include <linux/preempt.h> /* in_interrupt() */
37#include <linux/radix-tree.h>
38#include <linux/rcupdate.h>
1da177e4 39#include <linux/slab.h>
1da177e4 40#include <linux/string.h>
02c02bf1 41#include <linux/xarray.h>
1da177e4
LT
42
43
c78c66d1
KS
44/* Number of nodes in fully populated tree of given height */
45static unsigned long height_to_maxnodes[RADIX_TREE_MAX_PATH + 1] __read_mostly;
46
1da177e4
LT
47/*
48 * Radix tree node cache.
49 */
58d6ea30 50struct kmem_cache *radix_tree_node_cachep;
1da177e4 51
55368052
NP
52/*
53 * The radix tree is variable-height, so an insert operation not only has
54 * to build the branch to its corresponding item, it also has to build the
55 * branch to existing items if the size has to be increased (by
56 * radix_tree_extend).
57 *
58 * The worst case is a zero height tree with just a single item at index 0,
59 * and then inserting an item at index ULONG_MAX. This requires 2 new branches
60 * of RADIX_TREE_MAX_PATH size to be created, with only the root node shared.
61 * Hence:
62 */
63#define RADIX_TREE_PRELOAD_SIZE (RADIX_TREE_MAX_PATH * 2 - 1)
64
0a835c4f
MW
65/*
66 * The IDR does not have to be as high as the radix tree since it uses
67 * signed integers, not unsigned longs.
68 */
69#define IDR_INDEX_BITS (8 /* CHAR_BIT */ * sizeof(int) - 1)
70#define IDR_MAX_PATH (DIV_ROUND_UP(IDR_INDEX_BITS, \
71 RADIX_TREE_MAP_SHIFT))
72#define IDR_PRELOAD_SIZE (IDR_MAX_PATH * 2 - 1)
73
7ad3d4d8
MW
74/*
75 * The IDA is even shorter since it uses a bitmap at the last level.
76 */
77#define IDA_INDEX_BITS (8 * sizeof(int) - 1 - ilog2(IDA_BITMAP_BITS))
78#define IDA_MAX_PATH (DIV_ROUND_UP(IDA_INDEX_BITS, \
79 RADIX_TREE_MAP_SHIFT))
80#define IDA_PRELOAD_SIZE (IDA_MAX_PATH * 2 - 1)
81
1da177e4
LT
82/*
83 * Per-cpu pool of preloaded nodes
84 */
85struct radix_tree_preload {
2fcd9005 86 unsigned nr;
1293d5c5 87 /* nodes->parent points to next preallocated node */
9d2a8da0 88 struct radix_tree_node *nodes;
1da177e4 89};
8cef7d57 90static DEFINE_PER_CPU(struct radix_tree_preload, radix_tree_preloads) = { 0, };
1da177e4 91
148deab2
MW
92static inline struct radix_tree_node *entry_to_node(void *ptr)
93{
94 return (void *)((unsigned long)ptr & ~RADIX_TREE_INTERNAL_NODE);
95}
96
a4db4dce 97static inline void *node_to_entry(void *ptr)
27d20fdd 98{
30ff46cc 99 return (void *)((unsigned long)ptr | RADIX_TREE_INTERNAL_NODE);
27d20fdd
NP
100}
101
02c02bf1 102#define RADIX_TREE_RETRY XA_RETRY_ENTRY
db050f29 103
d7b62727
MW
104static inline unsigned long
105get_slot_offset(const struct radix_tree_node *parent, void __rcu **slot)
db050f29 106{
76f070b4 107 return parent ? slot - parent->slots : 0;
db050f29
MW
108}
109
35534c86 110static unsigned int radix_tree_descend(const struct radix_tree_node *parent,
9e85d811 111 struct radix_tree_node **nodep, unsigned long index)
db050f29 112{
9e85d811 113 unsigned int offset = (index >> parent->shift) & RADIX_TREE_MAP_MASK;
d7b62727 114 void __rcu **entry = rcu_dereference_raw(parent->slots[offset]);
db050f29 115
02c02bf1
MW
116 if (xa_is_sibling(entry)) {
117 offset = xa_to_sibling(entry);
118 entry = rcu_dereference_raw(parent->slots[offset]);
db050f29 119 }
db050f29
MW
120
121 *nodep = (void *)entry;
122 return offset;
123}
124
35534c86 125static inline gfp_t root_gfp_mask(const struct radix_tree_root *root)
612d6c19 126{
f8d5d0cc 127 return root->xa_flags & (__GFP_BITS_MASK & ~GFP_ZONEMASK);
612d6c19
NP
128}
129
643b52b9
NP
130static inline void tag_set(struct radix_tree_node *node, unsigned int tag,
131 int offset)
132{
133 __set_bit(offset, node->tags[tag]);
134}
135
136static inline void tag_clear(struct radix_tree_node *node, unsigned int tag,
137 int offset)
138{
139 __clear_bit(offset, node->tags[tag]);
140}
141
35534c86 142static inline int tag_get(const struct radix_tree_node *node, unsigned int tag,
643b52b9
NP
143 int offset)
144{
145 return test_bit(offset, node->tags[tag]);
146}
147
35534c86 148static inline void root_tag_set(struct radix_tree_root *root, unsigned tag)
643b52b9 149{
f8d5d0cc 150 root->xa_flags |= (__force gfp_t)(1 << (tag + ROOT_TAG_SHIFT));
643b52b9
NP
151}
152
2fcd9005 153static inline void root_tag_clear(struct radix_tree_root *root, unsigned tag)
643b52b9 154{
f8d5d0cc 155 root->xa_flags &= (__force gfp_t)~(1 << (tag + ROOT_TAG_SHIFT));
643b52b9
NP
156}
157
158static inline void root_tag_clear_all(struct radix_tree_root *root)
159{
f8d5d0cc 160 root->xa_flags &= (__force gfp_t)((1 << ROOT_TAG_SHIFT) - 1);
643b52b9
NP
161}
162
35534c86 163static inline int root_tag_get(const struct radix_tree_root *root, unsigned tag)
643b52b9 164{
f8d5d0cc 165 return (__force int)root->xa_flags & (1 << (tag + ROOT_TAG_SHIFT));
643b52b9
NP
166}
167
35534c86 168static inline unsigned root_tags_get(const struct radix_tree_root *root)
643b52b9 169{
f8d5d0cc 170 return (__force unsigned)root->xa_flags >> ROOT_TAG_SHIFT;
643b52b9
NP
171}
172
0a835c4f 173static inline bool is_idr(const struct radix_tree_root *root)
7b60e9ad 174{
f8d5d0cc 175 return !!(root->xa_flags & ROOT_IS_IDR);
7b60e9ad
MW
176}
177
643b52b9
NP
178/*
179 * Returns 1 if any slot in the node has this tag set.
180 * Otherwise returns 0.
181 */
35534c86
MW
182static inline int any_tag_set(const struct radix_tree_node *node,
183 unsigned int tag)
643b52b9 184{
2fcd9005 185 unsigned idx;
643b52b9
NP
186 for (idx = 0; idx < RADIX_TREE_TAG_LONGS; idx++) {
187 if (node->tags[tag][idx])
188 return 1;
189 }
190 return 0;
191}
78c1d784 192
0a835c4f
MW
193static inline void all_tag_set(struct radix_tree_node *node, unsigned int tag)
194{
195 bitmap_fill(node->tags[tag], RADIX_TREE_MAP_SIZE);
196}
197
78c1d784
KK
198/**
199 * radix_tree_find_next_bit - find the next set bit in a memory region
200 *
201 * @addr: The address to base the search on
202 * @size: The bitmap size in bits
203 * @offset: The bitnumber to start searching at
204 *
205 * Unrollable variant of find_next_bit() for constant size arrays.
206 * Tail bits starting from size to roundup(size, BITS_PER_LONG) must be zero.
207 * Returns next bit offset, or size if nothing found.
208 */
209static __always_inline unsigned long
bc412fca
MW
210radix_tree_find_next_bit(struct radix_tree_node *node, unsigned int tag,
211 unsigned long offset)
78c1d784 212{
bc412fca 213 const unsigned long *addr = node->tags[tag];
78c1d784 214
bc412fca 215 if (offset < RADIX_TREE_MAP_SIZE) {
78c1d784
KK
216 unsigned long tmp;
217
218 addr += offset / BITS_PER_LONG;
219 tmp = *addr >> (offset % BITS_PER_LONG);
220 if (tmp)
221 return __ffs(tmp) + offset;
222 offset = (offset + BITS_PER_LONG) & ~(BITS_PER_LONG - 1);
bc412fca 223 while (offset < RADIX_TREE_MAP_SIZE) {
78c1d784
KK
224 tmp = *++addr;
225 if (tmp)
226 return __ffs(tmp) + offset;
227 offset += BITS_PER_LONG;
228 }
229 }
bc412fca 230 return RADIX_TREE_MAP_SIZE;
78c1d784
KK
231}
232
268f42de
MW
233static unsigned int iter_offset(const struct radix_tree_iter *iter)
234{
235 return (iter->index >> iter_shift(iter)) & RADIX_TREE_MAP_MASK;
236}
237
218ed750
MW
238/*
239 * The maximum index which can be stored in a radix tree
240 */
241static inline unsigned long shift_maxindex(unsigned int shift)
242{
243 return (RADIX_TREE_MAP_SIZE << shift) - 1;
244}
245
35534c86 246static inline unsigned long node_maxindex(const struct radix_tree_node *node)
218ed750
MW
247{
248 return shift_maxindex(node->shift);
249}
250
0a835c4f
MW
251static unsigned long next_index(unsigned long index,
252 const struct radix_tree_node *node,
253 unsigned long offset)
254{
255 return (index & ~node_maxindex(node)) + (offset << node->shift);
256}
257
1da177e4
LT
258/*
259 * This assumes that the caller has performed appropriate preallocation, and
260 * that the caller has pinned this thread of control to the current CPU.
261 */
262static struct radix_tree_node *
0a835c4f 263radix_tree_node_alloc(gfp_t gfp_mask, struct radix_tree_node *parent,
d58275bc 264 struct radix_tree_root *root,
e8de4340 265 unsigned int shift, unsigned int offset,
01959dfe 266 unsigned int count, unsigned int nr_values)
1da177e4 267{
e2848a0e 268 struct radix_tree_node *ret = NULL;
1da177e4 269
5e4c0d97 270 /*
2fcd9005
MW
271 * Preload code isn't irq safe and it doesn't make sense to use
272 * preloading during an interrupt anyway as all the allocations have
273 * to be atomic. So just do normal allocation when in interrupt.
5e4c0d97 274 */
d0164adc 275 if (!gfpflags_allow_blocking(gfp_mask) && !in_interrupt()) {
1da177e4
LT
276 struct radix_tree_preload *rtp;
277
58e698af
VD
278 /*
279 * Even if the caller has preloaded, try to allocate from the
05eb6e72
VD
280 * cache first for the new node to get accounted to the memory
281 * cgroup.
58e698af
VD
282 */
283 ret = kmem_cache_alloc(radix_tree_node_cachep,
05eb6e72 284 gfp_mask | __GFP_NOWARN);
58e698af
VD
285 if (ret)
286 goto out;
287
e2848a0e
NP
288 /*
289 * Provided the caller has preloaded here, we will always
290 * succeed in getting a node here (and never reach
291 * kmem_cache_alloc)
292 */
7c8e0181 293 rtp = this_cpu_ptr(&radix_tree_preloads);
1da177e4 294 if (rtp->nr) {
9d2a8da0 295 ret = rtp->nodes;
1293d5c5 296 rtp->nodes = ret->parent;
1da177e4
LT
297 rtp->nr--;
298 }
ce80b067
CM
299 /*
300 * Update the allocation stack trace as this is more useful
301 * for debugging.
302 */
303 kmemleak_update_trace(ret);
58e698af 304 goto out;
1da177e4 305 }
05eb6e72 306 ret = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
58e698af 307out:
b194d16c 308 BUG_ON(radix_tree_is_internal_node(ret));
e8de4340 309 if (ret) {
e8de4340
MW
310 ret->shift = shift;
311 ret->offset = offset;
312 ret->count = count;
01959dfe 313 ret->nr_values = nr_values;
d58275bc 314 ret->parent = parent;
01959dfe 315 ret->array = root;
e8de4340 316 }
1da177e4
LT
317 return ret;
318}
319
58d6ea30 320void radix_tree_node_rcu_free(struct rcu_head *head)
7cf9c2c7
NP
321{
322 struct radix_tree_node *node =
323 container_of(head, struct radix_tree_node, rcu_head);
643b52b9
NP
324
325 /*
175542f5
MW
326 * Must only free zeroed nodes into the slab. We can be left with
327 * non-NULL entries by radix_tree_free_nodes, so clear the entries
328 * and tags here.
643b52b9 329 */
175542f5
MW
330 memset(node->slots, 0, sizeof(node->slots));
331 memset(node->tags, 0, sizeof(node->tags));
91d9c05a 332 INIT_LIST_HEAD(&node->private_list);
643b52b9 333
7cf9c2c7
NP
334 kmem_cache_free(radix_tree_node_cachep, node);
335}
336
1da177e4
LT
337static inline void
338radix_tree_node_free(struct radix_tree_node *node)
339{
7cf9c2c7 340 call_rcu(&node->rcu_head, radix_tree_node_rcu_free);
1da177e4
LT
341}
342
343/*
344 * Load up this CPU's radix_tree_node buffer with sufficient objects to
345 * ensure that the addition of a single element in the tree cannot fail. On
346 * success, return zero, with preemption disabled. On error, return -ENOMEM
347 * with preemption not disabled.
b34df792
DH
348 *
349 * To make use of this facility, the radix tree must be initialised without
d0164adc 350 * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE().
1da177e4 351 */
bc9ae224 352static __must_check int __radix_tree_preload(gfp_t gfp_mask, unsigned nr)
1da177e4
LT
353{
354 struct radix_tree_preload *rtp;
355 struct radix_tree_node *node;
356 int ret = -ENOMEM;
357
05eb6e72
VD
358 /*
359 * Nodes preloaded by one cgroup can be be used by another cgroup, so
360 * they should never be accounted to any particular memory cgroup.
361 */
362 gfp_mask &= ~__GFP_ACCOUNT;
363
1da177e4 364 preempt_disable();
7c8e0181 365 rtp = this_cpu_ptr(&radix_tree_preloads);
c78c66d1 366 while (rtp->nr < nr) {
1da177e4 367 preempt_enable();
488514d1 368 node = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
1da177e4
LT
369 if (node == NULL)
370 goto out;
371 preempt_disable();
7c8e0181 372 rtp = this_cpu_ptr(&radix_tree_preloads);
c78c66d1 373 if (rtp->nr < nr) {
1293d5c5 374 node->parent = rtp->nodes;
9d2a8da0
KS
375 rtp->nodes = node;
376 rtp->nr++;
377 } else {
1da177e4 378 kmem_cache_free(radix_tree_node_cachep, node);
9d2a8da0 379 }
1da177e4
LT
380 }
381 ret = 0;
382out:
383 return ret;
384}
5e4c0d97
JK
385
386/*
387 * Load up this CPU's radix_tree_node buffer with sufficient objects to
388 * ensure that the addition of a single element in the tree cannot fail. On
389 * success, return zero, with preemption disabled. On error, return -ENOMEM
390 * with preemption not disabled.
391 *
392 * To make use of this facility, the radix tree must be initialised without
d0164adc 393 * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE().
5e4c0d97
JK
394 */
395int radix_tree_preload(gfp_t gfp_mask)
396{
397 /* Warn on non-sensical use... */
d0164adc 398 WARN_ON_ONCE(!gfpflags_allow_blocking(gfp_mask));
c78c66d1 399 return __radix_tree_preload(gfp_mask, RADIX_TREE_PRELOAD_SIZE);
5e4c0d97 400}
d7f0923d 401EXPORT_SYMBOL(radix_tree_preload);
1da177e4 402
5e4c0d97
JK
403/*
404 * The same as above function, except we don't guarantee preloading happens.
405 * We do it, if we decide it helps. On success, return zero with preemption
406 * disabled. On error, return -ENOMEM with preemption not disabled.
407 */
408int radix_tree_maybe_preload(gfp_t gfp_mask)
409{
d0164adc 410 if (gfpflags_allow_blocking(gfp_mask))
c78c66d1 411 return __radix_tree_preload(gfp_mask, RADIX_TREE_PRELOAD_SIZE);
5e4c0d97
JK
412 /* Preloading doesn't help anything with this gfp mask, skip it */
413 preempt_disable();
414 return 0;
415}
416EXPORT_SYMBOL(radix_tree_maybe_preload);
417
2791653a
MW
418#ifdef CONFIG_RADIX_TREE_MULTIORDER
419/*
420 * Preload with enough objects to ensure that we can split a single entry
421 * of order @old_order into many entries of size @new_order
422 */
423int radix_tree_split_preload(unsigned int old_order, unsigned int new_order,
424 gfp_t gfp_mask)
425{
426 unsigned top = 1 << (old_order % RADIX_TREE_MAP_SHIFT);
427 unsigned layers = (old_order / RADIX_TREE_MAP_SHIFT) -
428 (new_order / RADIX_TREE_MAP_SHIFT);
429 unsigned nr = 0;
430
431 WARN_ON_ONCE(!gfpflags_allow_blocking(gfp_mask));
432 BUG_ON(new_order >= old_order);
433
434 while (layers--)
435 nr = nr * RADIX_TREE_MAP_SIZE + 1;
436 return __radix_tree_preload(gfp_mask, top * nr);
437}
438#endif
439
c78c66d1
KS
440/*
441 * The same as function above, but preload number of nodes required to insert
442 * (1 << order) continuous naturally-aligned elements.
443 */
444int radix_tree_maybe_preload_order(gfp_t gfp_mask, int order)
445{
446 unsigned long nr_subtrees;
447 int nr_nodes, subtree_height;
448
449 /* Preloading doesn't help anything with this gfp mask, skip it */
450 if (!gfpflags_allow_blocking(gfp_mask)) {
451 preempt_disable();
452 return 0;
453 }
454
455 /*
456 * Calculate number and height of fully populated subtrees it takes to
457 * store (1 << order) elements.
458 */
459 nr_subtrees = 1 << order;
460 for (subtree_height = 0; nr_subtrees > RADIX_TREE_MAP_SIZE;
461 subtree_height++)
462 nr_subtrees >>= RADIX_TREE_MAP_SHIFT;
463
464 /*
465 * The worst case is zero height tree with a single item at index 0 and
466 * then inserting items starting at ULONG_MAX - (1 << order).
467 *
468 * This requires RADIX_TREE_MAX_PATH nodes to build branch from root to
469 * 0-index item.
470 */
471 nr_nodes = RADIX_TREE_MAX_PATH;
472
473 /* Plus branch to fully populated subtrees. */
474 nr_nodes += RADIX_TREE_MAX_PATH - subtree_height;
475
476 /* Root node is shared. */
477 nr_nodes--;
478
479 /* Plus nodes required to build subtrees. */
480 nr_nodes += nr_subtrees * height_to_maxnodes[subtree_height];
481
482 return __radix_tree_preload(gfp_mask, nr_nodes);
483}
484
35534c86 485static unsigned radix_tree_load_root(const struct radix_tree_root *root,
1456a439
MW
486 struct radix_tree_node **nodep, unsigned long *maxindex)
487{
f8d5d0cc 488 struct radix_tree_node *node = rcu_dereference_raw(root->xa_head);
1456a439
MW
489
490 *nodep = node;
491
b194d16c 492 if (likely(radix_tree_is_internal_node(node))) {
4dd6c098 493 node = entry_to_node(node);
1456a439 494 *maxindex = node_maxindex(node);
c12e51b0 495 return node->shift + RADIX_TREE_MAP_SHIFT;
1456a439
MW
496 }
497
498 *maxindex = 0;
499 return 0;
500}
501
1da177e4
LT
502/*
503 * Extend a radix tree so it can store key @index.
504 */
0a835c4f 505static int radix_tree_extend(struct radix_tree_root *root, gfp_t gfp,
d0891265 506 unsigned long index, unsigned int shift)
1da177e4 507{
d7b62727 508 void *entry;
d0891265 509 unsigned int maxshift;
1da177e4
LT
510 int tag;
511
d0891265
MW
512 /* Figure out what the shift should be. */
513 maxshift = shift;
514 while (index > shift_maxindex(maxshift))
515 maxshift += RADIX_TREE_MAP_SHIFT;
1da177e4 516
f8d5d0cc 517 entry = rcu_dereference_raw(root->xa_head);
d7b62727 518 if (!entry && (!is_idr(root) || root_tag_get(root, IDR_FREE)))
1da177e4 519 goto out;
1da177e4 520
1da177e4 521 do {
0a835c4f 522 struct radix_tree_node *node = radix_tree_node_alloc(gfp, NULL,
d58275bc 523 root, shift, 0, 1, 0);
2fcd9005 524 if (!node)
1da177e4
LT
525 return -ENOMEM;
526
0a835c4f
MW
527 if (is_idr(root)) {
528 all_tag_set(node, IDR_FREE);
529 if (!root_tag_get(root, IDR_FREE)) {
530 tag_clear(node, IDR_FREE, 0);
531 root_tag_set(root, IDR_FREE);
532 }
533 } else {
534 /* Propagate the aggregated tag info to the new child */
535 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
536 if (root_tag_get(root, tag))
537 tag_set(node, tag, 0);
538 }
1da177e4
LT
539 }
540
d0891265 541 BUG_ON(shift > BITS_PER_LONG);
d7b62727
MW
542 if (radix_tree_is_internal_node(entry)) {
543 entry_to_node(entry)->parent = node;
3159f943 544 } else if (xa_is_value(entry)) {
01959dfe
MW
545 /* Moving a value entry root->xa_head to a node */
546 node->nr_values = 1;
f7942430 547 }
d7b62727
MW
548 /*
549 * entry was already in the radix tree, so we do not need
550 * rcu_assign_pointer here
551 */
552 node->slots[0] = (void __rcu *)entry;
553 entry = node_to_entry(node);
f8d5d0cc 554 rcu_assign_pointer(root->xa_head, entry);
d0891265 555 shift += RADIX_TREE_MAP_SHIFT;
d0891265 556 } while (shift <= maxshift);
1da177e4 557out:
d0891265 558 return maxshift + RADIX_TREE_MAP_SHIFT;
1da177e4
LT
559}
560
f4b109c6
JW
561/**
562 * radix_tree_shrink - shrink radix tree to minimum height
563 * @root radix tree root
564 */
0ac398ef 565static inline bool radix_tree_shrink(struct radix_tree_root *root,
c7df8ad2 566 radix_tree_update_node_t update_node)
f4b109c6 567{
0ac398ef
MW
568 bool shrunk = false;
569
f4b109c6 570 for (;;) {
f8d5d0cc 571 struct radix_tree_node *node = rcu_dereference_raw(root->xa_head);
f4b109c6
JW
572 struct radix_tree_node *child;
573
574 if (!radix_tree_is_internal_node(node))
575 break;
576 node = entry_to_node(node);
577
578 /*
579 * The candidate node has more than one child, or its child
580 * is not at the leftmost slot, or the child is a multiorder
581 * entry, we cannot shrink.
582 */
583 if (node->count != 1)
584 break;
12320d0f 585 child = rcu_dereference_raw(node->slots[0]);
f4b109c6
JW
586 if (!child)
587 break;
588 if (!radix_tree_is_internal_node(child) && node->shift)
589 break;
590
66ee620f
MW
591 /*
592 * For an IDR, we must not shrink entry 0 into the root in
593 * case somebody calls idr_replace() with a pointer that
594 * appears to be an internal entry
595 */
596 if (!node->shift && is_idr(root))
597 break;
598
f4b109c6
JW
599 if (radix_tree_is_internal_node(child))
600 entry_to_node(child)->parent = NULL;
601
602 /*
603 * We don't need rcu_assign_pointer(), since we are simply
604 * moving the node from one part of the tree to another: if it
605 * was safe to dereference the old pointer to it
606 * (node->slots[0]), it will be safe to dereference the new
f8d5d0cc 607 * one (root->xa_head) as far as dependent read barriers go.
f4b109c6 608 */
f8d5d0cc 609 root->xa_head = (void __rcu *)child;
0a835c4f
MW
610 if (is_idr(root) && !tag_get(node, IDR_FREE, 0))
611 root_tag_clear(root, IDR_FREE);
f4b109c6
JW
612
613 /*
614 * We have a dilemma here. The node's slot[0] must not be
615 * NULLed in case there are concurrent lookups expecting to
616 * find the item. However if this was a bottom-level node,
617 * then it may be subject to the slot pointer being visible
618 * to callers dereferencing it. If item corresponding to
619 * slot[0] is subsequently deleted, these callers would expect
620 * their slot to become empty sooner or later.
621 *
622 * For example, lockless pagecache will look up a slot, deref
623 * the page pointer, and if the page has 0 refcount it means it
624 * was concurrently deleted from pagecache so try the deref
625 * again. Fortunately there is already a requirement for logic
626 * to retry the entire slot lookup -- the indirect pointer
627 * problem (replacing direct root node with an indirect pointer
628 * also results in a stale slot). So tag the slot as indirect
629 * to force callers to retry.
630 */
4d693d08
JW
631 node->count = 0;
632 if (!radix_tree_is_internal_node(child)) {
d7b62727 633 node->slots[0] = (void __rcu *)RADIX_TREE_RETRY;
4d693d08 634 if (update_node)
c7df8ad2 635 update_node(node);
4d693d08 636 }
f4b109c6 637
ea07b862 638 WARN_ON_ONCE(!list_empty(&node->private_list));
f4b109c6 639 radix_tree_node_free(node);
0ac398ef 640 shrunk = true;
f4b109c6 641 }
0ac398ef
MW
642
643 return shrunk;
f4b109c6
JW
644}
645
0ac398ef 646static bool delete_node(struct radix_tree_root *root,
4d693d08 647 struct radix_tree_node *node,
c7df8ad2 648 radix_tree_update_node_t update_node)
f4b109c6 649{
0ac398ef
MW
650 bool deleted = false;
651
f4b109c6
JW
652 do {
653 struct radix_tree_node *parent;
654
655 if (node->count) {
12320d0f 656 if (node_to_entry(node) ==
f8d5d0cc
MW
657 rcu_dereference_raw(root->xa_head))
658 deleted |= radix_tree_shrink(root, update_node);
0ac398ef 659 return deleted;
f4b109c6
JW
660 }
661
662 parent = node->parent;
663 if (parent) {
664 parent->slots[node->offset] = NULL;
665 parent->count--;
666 } else {
0a835c4f
MW
667 /*
668 * Shouldn't the tags already have all been cleared
669 * by the caller?
670 */
671 if (!is_idr(root))
672 root_tag_clear_all(root);
f8d5d0cc 673 root->xa_head = NULL;
f4b109c6
JW
674 }
675
ea07b862 676 WARN_ON_ONCE(!list_empty(&node->private_list));
f4b109c6 677 radix_tree_node_free(node);
0ac398ef 678 deleted = true;
f4b109c6
JW
679
680 node = parent;
681 } while (node);
0ac398ef
MW
682
683 return deleted;
f4b109c6
JW
684}
685
1da177e4 686/**
139e5616 687 * __radix_tree_create - create a slot in a radix tree
1da177e4
LT
688 * @root: radix tree root
689 * @index: index key
e6145236 690 * @order: index occupies 2^order aligned slots
139e5616
JW
691 * @nodep: returns node
692 * @slotp: returns slot
1da177e4 693 *
139e5616
JW
694 * Create, if necessary, and return the node and slot for an item
695 * at position @index in the radix tree @root.
696 *
697 * Until there is more than one item in the tree, no nodes are
f8d5d0cc 698 * allocated and @root->xa_head is used as a direct slot instead of
139e5616
JW
699 * pointing to a node, in which case *@nodep will be NULL.
700 *
701 * Returns -ENOMEM, or 0 for success.
1da177e4 702 */
74d60958
MW
703static int __radix_tree_create(struct radix_tree_root *root,
704 unsigned long index, unsigned order,
705 struct radix_tree_node **nodep, void __rcu ***slotp)
1da177e4 706{
89148aa4 707 struct radix_tree_node *node = NULL, *child;
f8d5d0cc 708 void __rcu **slot = (void __rcu **)&root->xa_head;
49ea6ebc 709 unsigned long maxindex;
89148aa4 710 unsigned int shift, offset = 0;
49ea6ebc 711 unsigned long max = index | ((1UL << order) - 1);
0a835c4f 712 gfp_t gfp = root_gfp_mask(root);
49ea6ebc 713
89148aa4 714 shift = radix_tree_load_root(root, &child, &maxindex);
1da177e4
LT
715
716 /* Make sure the tree is high enough. */
175542f5
MW
717 if (order > 0 && max == ((1UL << order) - 1))
718 max++;
49ea6ebc 719 if (max > maxindex) {
0a835c4f 720 int error = radix_tree_extend(root, gfp, max, shift);
49ea6ebc 721 if (error < 0)
1da177e4 722 return error;
49ea6ebc 723 shift = error;
f8d5d0cc 724 child = rcu_dereference_raw(root->xa_head);
1da177e4
LT
725 }
726
e6145236 727 while (shift > order) {
c12e51b0 728 shift -= RADIX_TREE_MAP_SHIFT;
89148aa4 729 if (child == NULL) {
1da177e4 730 /* Have to add a child node. */
d58275bc 731 child = radix_tree_node_alloc(gfp, node, root, shift,
e8de4340 732 offset, 0, 0);
89148aa4 733 if (!child)
1da177e4 734 return -ENOMEM;
89148aa4
MW
735 rcu_assign_pointer(*slot, node_to_entry(child));
736 if (node)
1da177e4 737 node->count++;
89148aa4 738 } else if (!radix_tree_is_internal_node(child))
e6145236 739 break;
1da177e4
LT
740
741 /* Go a level down */
89148aa4 742 node = entry_to_node(child);
9e85d811 743 offset = radix_tree_descend(node, &child, index);
89148aa4 744 slot = &node->slots[offset];
e6145236
MW
745 }
746
175542f5
MW
747 if (nodep)
748 *nodep = node;
749 if (slotp)
750 *slotp = slot;
751 return 0;
752}
753
175542f5
MW
754/*
755 * Free any nodes below this node. The tree is presumed to not need
756 * shrinking, and any user data in the tree is presumed to not need a
757 * destructor called on it. If we need to add a destructor, we can
758 * add that functionality later. Note that we may not clear tags or
759 * slots from the tree as an RCU walker may still have a pointer into
760 * this subtree. We could replace the entries with RADIX_TREE_RETRY,
761 * but we'll still have to clear those in rcu_free.
762 */
763static void radix_tree_free_nodes(struct radix_tree_node *node)
764{
765 unsigned offset = 0;
766 struct radix_tree_node *child = entry_to_node(node);
767
768 for (;;) {
12320d0f 769 void *entry = rcu_dereference_raw(child->slots[offset]);
02c02bf1 770 if (xa_is_node(entry) && child->shift) {
175542f5
MW
771 child = entry_to_node(entry);
772 offset = 0;
773 continue;
774 }
775 offset++;
776 while (offset == RADIX_TREE_MAP_SIZE) {
777 struct radix_tree_node *old = child;
778 offset = child->offset + 1;
779 child = child->parent;
dd040b6f 780 WARN_ON_ONCE(!list_empty(&old->private_list));
175542f5
MW
781 radix_tree_node_free(old);
782 if (old == entry_to_node(node))
783 return;
784 }
785 }
786}
787
0a835c4f 788#ifdef CONFIG_RADIX_TREE_MULTIORDER
d7b62727
MW
789static inline int insert_entries(struct radix_tree_node *node,
790 void __rcu **slot, void *item, unsigned order, bool replace)
175542f5 791{
02c02bf1 792 void *sibling;
175542f5
MW
793 unsigned i, n, tag, offset, tags = 0;
794
795 if (node) {
e157b555
MW
796 if (order > node->shift)
797 n = 1 << (order - node->shift);
798 else
799 n = 1;
175542f5
MW
800 offset = get_slot_offset(node, slot);
801 } else {
802 n = 1;
803 offset = 0;
804 }
805
806 if (n > 1) {
e6145236 807 offset = offset & ~(n - 1);
89148aa4 808 slot = &node->slots[offset];
175542f5 809 }
02c02bf1 810 sibling = xa_mk_sibling(offset);
175542f5
MW
811
812 for (i = 0; i < n; i++) {
813 if (slot[i]) {
814 if (replace) {
815 node->count--;
816 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
817 if (tag_get(node, tag, offset + i))
818 tags |= 1 << tag;
819 } else
e6145236
MW
820 return -EEXIST;
821 }
175542f5 822 }
e6145236 823
175542f5 824 for (i = 0; i < n; i++) {
12320d0f 825 struct radix_tree_node *old = rcu_dereference_raw(slot[i]);
175542f5 826 if (i) {
02c02bf1 827 rcu_assign_pointer(slot[i], sibling);
175542f5
MW
828 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
829 if (tags & (1 << tag))
830 tag_clear(node, tag, offset + i);
831 } else {
832 rcu_assign_pointer(slot[i], item);
833 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
834 if (tags & (1 << tag))
835 tag_set(node, tag, offset);
e6145236 836 }
02c02bf1 837 if (xa_is_node(old))
175542f5 838 radix_tree_free_nodes(old);
3159f943 839 if (xa_is_value(old))
01959dfe 840 node->nr_values--;
612d6c19 841 }
175542f5
MW
842 if (node) {
843 node->count += n;
3159f943 844 if (xa_is_value(item))
01959dfe 845 node->nr_values += n;
175542f5
MW
846 }
847 return n;
139e5616 848}
175542f5 849#else
d7b62727
MW
850static inline int insert_entries(struct radix_tree_node *node,
851 void __rcu **slot, void *item, unsigned order, bool replace)
175542f5
MW
852{
853 if (*slot)
854 return -EEXIST;
855 rcu_assign_pointer(*slot, item);
856 if (node) {
857 node->count++;
3159f943 858 if (xa_is_value(item))
01959dfe 859 node->nr_values++;
175542f5
MW
860 }
861 return 1;
862}
863#endif
139e5616
JW
864
865/**
e6145236 866 * __radix_tree_insert - insert into a radix tree
139e5616
JW
867 * @root: radix tree root
868 * @index: index key
e6145236 869 * @order: key covers the 2^order indices around index
139e5616
JW
870 * @item: item to insert
871 *
872 * Insert an item into the radix tree at position @index.
873 */
e6145236
MW
874int __radix_tree_insert(struct radix_tree_root *root, unsigned long index,
875 unsigned order, void *item)
139e5616
JW
876{
877 struct radix_tree_node *node;
d7b62727 878 void __rcu **slot;
139e5616
JW
879 int error;
880
b194d16c 881 BUG_ON(radix_tree_is_internal_node(item));
139e5616 882
e6145236 883 error = __radix_tree_create(root, index, order, &node, &slot);
139e5616
JW
884 if (error)
885 return error;
175542f5
MW
886
887 error = insert_entries(node, slot, item, order, false);
888 if (error < 0)
889 return error;
201b6264 890
612d6c19 891 if (node) {
7b60e9ad 892 unsigned offset = get_slot_offset(node, slot);
7b60e9ad
MW
893 BUG_ON(tag_get(node, 0, offset));
894 BUG_ON(tag_get(node, 1, offset));
895 BUG_ON(tag_get(node, 2, offset));
612d6c19 896 } else {
7b60e9ad 897 BUG_ON(root_tags_get(root));
612d6c19 898 }
1da177e4 899
1da177e4
LT
900 return 0;
901}
e6145236 902EXPORT_SYMBOL(__radix_tree_insert);
1da177e4 903
139e5616
JW
904/**
905 * __radix_tree_lookup - lookup an item in a radix tree
906 * @root: radix tree root
907 * @index: index key
908 * @nodep: returns node
909 * @slotp: returns slot
910 *
911 * Lookup and return the item at position @index in the radix
912 * tree @root.
913 *
914 * Until there is more than one item in the tree, no nodes are
f8d5d0cc 915 * allocated and @root->xa_head is used as a direct slot instead of
139e5616 916 * pointing to a node, in which case *@nodep will be NULL.
7cf9c2c7 917 */
35534c86
MW
918void *__radix_tree_lookup(const struct radix_tree_root *root,
919 unsigned long index, struct radix_tree_node **nodep,
d7b62727 920 void __rcu ***slotp)
1da177e4 921{
139e5616 922 struct radix_tree_node *node, *parent;
85829954 923 unsigned long maxindex;
d7b62727 924 void __rcu **slot;
612d6c19 925
85829954
MW
926 restart:
927 parent = NULL;
f8d5d0cc 928 slot = (void __rcu **)&root->xa_head;
9e85d811 929 radix_tree_load_root(root, &node, &maxindex);
85829954 930 if (index > maxindex)
1da177e4
LT
931 return NULL;
932
b194d16c 933 while (radix_tree_is_internal_node(node)) {
85829954 934 unsigned offset;
1da177e4 935
85829954
MW
936 if (node == RADIX_TREE_RETRY)
937 goto restart;
4dd6c098 938 parent = entry_to_node(node);
9e85d811 939 offset = radix_tree_descend(parent, &node, index);
85829954 940 slot = parent->slots + offset;
66ee620f
MW
941 if (parent->shift == 0)
942 break;
85829954 943 }
1da177e4 944
139e5616
JW
945 if (nodep)
946 *nodep = parent;
947 if (slotp)
948 *slotp = slot;
949 return node;
b72b71c6
HS
950}
951
952/**
953 * radix_tree_lookup_slot - lookup a slot in a radix tree
954 * @root: radix tree root
955 * @index: index key
956 *
957 * Returns: the slot corresponding to the position @index in the
958 * radix tree @root. This is useful for update-if-exists operations.
959 *
960 * This function can be called under rcu_read_lock iff the slot is not
961 * modified by radix_tree_replace_slot, otherwise it must be called
962 * exclusive from other writers. Any dereference of the slot must be done
963 * using radix_tree_deref_slot.
964 */
d7b62727 965void __rcu **radix_tree_lookup_slot(const struct radix_tree_root *root,
35534c86 966 unsigned long index)
b72b71c6 967{
d7b62727 968 void __rcu **slot;
139e5616
JW
969
970 if (!__radix_tree_lookup(root, index, NULL, &slot))
971 return NULL;
972 return slot;
a4331366 973}
a4331366
HR
974EXPORT_SYMBOL(radix_tree_lookup_slot);
975
976/**
977 * radix_tree_lookup - perform lookup operation on a radix tree
978 * @root: radix tree root
979 * @index: index key
980 *
981 * Lookup the item at the position @index in the radix tree @root.
7cf9c2c7
NP
982 *
983 * This function can be called under rcu_read_lock, however the caller
984 * must manage lifetimes of leaf nodes (eg. RCU may also be used to free
985 * them safely). No RCU barriers are required to access or modify the
986 * returned item, however.
a4331366 987 */
35534c86 988void *radix_tree_lookup(const struct radix_tree_root *root, unsigned long index)
a4331366 989{
139e5616 990 return __radix_tree_lookup(root, index, NULL, NULL);
1da177e4
LT
991}
992EXPORT_SYMBOL(radix_tree_lookup);
993
0a835c4f 994static inline void replace_sibling_entries(struct radix_tree_node *node,
01959dfe 995 void __rcu **slot, int count, int values)
a90eb3a2 996{
a90eb3a2 997#ifdef CONFIG_RADIX_TREE_MULTIORDER
02c02bf1
MW
998 unsigned offset = get_slot_offset(node, slot);
999 void *ptr = xa_mk_sibling(offset);
a90eb3a2 1000
02c02bf1 1001 while (++offset < RADIX_TREE_MAP_SIZE) {
12320d0f 1002 if (rcu_dereference_raw(node->slots[offset]) != ptr)
a90eb3a2 1003 break;
0a835c4f
MW
1004 if (count < 0) {
1005 node->slots[offset] = NULL;
1006 node->count--;
1007 }
01959dfe 1008 node->nr_values += values;
a90eb3a2
MW
1009 }
1010#endif
a90eb3a2
MW
1011}
1012
d7b62727 1013static void replace_slot(void __rcu **slot, void *item,
01959dfe 1014 struct radix_tree_node *node, int count, int values)
f7942430 1015{
01959dfe 1016 if (node && (count || values)) {
f4b109c6 1017 node->count += count;
01959dfe
MW
1018 node->nr_values += values;
1019 replace_sibling_entries(node, slot, count, values);
f4b109c6 1020 }
f7942430
JW
1021
1022 rcu_assign_pointer(*slot, item);
1023}
1024
0a835c4f
MW
1025static bool node_tag_get(const struct radix_tree_root *root,
1026 const struct radix_tree_node *node,
1027 unsigned int tag, unsigned int offset)
a90eb3a2 1028{
0a835c4f
MW
1029 if (node)
1030 return tag_get(node, tag, offset);
1031 return root_tag_get(root, tag);
1032}
a90eb3a2 1033
0a835c4f
MW
1034/*
1035 * IDR users want to be able to store NULL in the tree, so if the slot isn't
1036 * free, don't adjust the count, even if it's transitioning between NULL and
1037 * non-NULL. For the IDA, we mark slots as being IDR_FREE while they still
1038 * have empty bits, but it only stores NULL in slots when they're being
1039 * deleted.
1040 */
1041static int calculate_count(struct radix_tree_root *root,
d7b62727 1042 struct radix_tree_node *node, void __rcu **slot,
0a835c4f
MW
1043 void *item, void *old)
1044{
1045 if (is_idr(root)) {
1046 unsigned offset = get_slot_offset(node, slot);
1047 bool free = node_tag_get(root, node, IDR_FREE, offset);
1048 if (!free)
1049 return 0;
1050 if (!old)
1051 return 1;
a90eb3a2 1052 }
0a835c4f 1053 return !!item - !!old;
a90eb3a2
MW
1054}
1055
6d75f366
JW
1056/**
1057 * __radix_tree_replace - replace item in a slot
4d693d08
JW
1058 * @root: radix tree root
1059 * @node: pointer to tree node
1060 * @slot: pointer to slot in @node
1061 * @item: new item to store in the slot.
1062 * @update_node: callback for changing leaf nodes
6d75f366
JW
1063 *
1064 * For use with __radix_tree_lookup(). Caller must hold tree write locked
1065 * across slot lookup and replacement.
1066 */
1067void __radix_tree_replace(struct radix_tree_root *root,
1068 struct radix_tree_node *node,
d7b62727 1069 void __rcu **slot, void *item,
c7df8ad2 1070 radix_tree_update_node_t update_node)
6d75f366 1071{
0a835c4f 1072 void *old = rcu_dereference_raw(*slot);
01959dfe 1073 int values = !!xa_is_value(item) - !!xa_is_value(old);
0a835c4f
MW
1074 int count = calculate_count(root, node, slot, item, old);
1075
6d75f366 1076 /*
01959dfe 1077 * This function supports replacing value entries and
f4b109c6 1078 * deleting entries, but that needs accounting against the
f8d5d0cc 1079 * node unless the slot is root->xa_head.
6d75f366 1080 */
f8d5d0cc 1081 WARN_ON_ONCE(!node && (slot != (void __rcu **)&root->xa_head) &&
01959dfe
MW
1082 (count || values));
1083 replace_slot(slot, item, node, count, values);
f4b109c6 1084
4d693d08
JW
1085 if (!node)
1086 return;
1087
1088 if (update_node)
c7df8ad2 1089 update_node(node);
4d693d08 1090
c7df8ad2 1091 delete_node(root, node, update_node);
6d75f366
JW
1092}
1093
1094/**
1095 * radix_tree_replace_slot - replace item in a slot
1096 * @root: radix tree root
1097 * @slot: pointer to slot
1098 * @item: new item to store in the slot.
1099 *
1100 * For use with radix_tree_lookup_slot(), radix_tree_gang_lookup_slot(),
1101 * radix_tree_gang_lookup_tag_slot(). Caller must hold tree write locked
1102 * across slot lookup and replacement.
1103 *
1104 * NOTE: This cannot be used to switch between non-entries (empty slots),
01959dfe 1105 * regular entries, and value entries, as that requires accounting
f4b109c6 1106 * inside the radix tree node. When switching from one type of entry or
e157b555
MW
1107 * deleting, use __radix_tree_lookup() and __radix_tree_replace() or
1108 * radix_tree_iter_replace().
6d75f366
JW
1109 */
1110void radix_tree_replace_slot(struct radix_tree_root *root,
d7b62727 1111 void __rcu **slot, void *item)
6d75f366 1112{
c7df8ad2 1113 __radix_tree_replace(root, NULL, slot, item, NULL);
6d75f366 1114}
10257d71 1115EXPORT_SYMBOL(radix_tree_replace_slot);
6d75f366 1116
e157b555
MW
1117/**
1118 * radix_tree_iter_replace - replace item in a slot
1119 * @root: radix tree root
1120 * @slot: pointer to slot
1121 * @item: new item to store in the slot.
1122 *
1123 * For use with radix_tree_split() and radix_tree_for_each_slot().
1124 * Caller must hold tree write locked across split and replacement.
1125 */
1126void radix_tree_iter_replace(struct radix_tree_root *root,
d7b62727
MW
1127 const struct radix_tree_iter *iter,
1128 void __rcu **slot, void *item)
e157b555 1129{
c7df8ad2 1130 __radix_tree_replace(root, iter->node, slot, item, NULL);
e157b555
MW
1131}
1132
175542f5
MW
1133#ifdef CONFIG_RADIX_TREE_MULTIORDER
1134/**
1135 * radix_tree_join - replace multiple entries with one multiorder entry
1136 * @root: radix tree root
1137 * @index: an index inside the new entry
1138 * @order: order of the new entry
1139 * @item: new entry
1140 *
1141 * Call this function to replace several entries with one larger entry.
1142 * The existing entries are presumed to not need freeing as a result of
1143 * this call.
1144 *
1145 * The replacement entry will have all the tags set on it that were set
1146 * on any of the entries it is replacing.
1147 */
1148int radix_tree_join(struct radix_tree_root *root, unsigned long index,
1149 unsigned order, void *item)
1150{
1151 struct radix_tree_node *node;
d7b62727 1152 void __rcu **slot;
175542f5
MW
1153 int error;
1154
1155 BUG_ON(radix_tree_is_internal_node(item));
1156
1157 error = __radix_tree_create(root, index, order, &node, &slot);
1158 if (!error)
1159 error = insert_entries(node, slot, item, order, true);
1160 if (error > 0)
1161 error = 0;
1162
1163 return error;
1164}
e157b555
MW
1165
1166/**
1167 * radix_tree_split - Split an entry into smaller entries
1168 * @root: radix tree root
1169 * @index: An index within the large entry
1170 * @order: Order of new entries
1171 *
1172 * Call this function as the first step in replacing a multiorder entry
1173 * with several entries of lower order. After this function returns,
1174 * loop over the relevant portion of the tree using radix_tree_for_each_slot()
1175 * and call radix_tree_iter_replace() to set up each new entry.
1176 *
1177 * The tags from this entry are replicated to all the new entries.
1178 *
1179 * The radix tree should be locked against modification during the entire
1180 * replacement operation. Lock-free lookups will see RADIX_TREE_RETRY which
1181 * should prompt RCU walkers to restart the lookup from the root.
1182 */
1183int radix_tree_split(struct radix_tree_root *root, unsigned long index,
1184 unsigned order)
1185{
1186 struct radix_tree_node *parent, *node, *child;
d7b62727 1187 void __rcu **slot;
e157b555
MW
1188 unsigned int offset, end;
1189 unsigned n, tag, tags = 0;
0a835c4f 1190 gfp_t gfp = root_gfp_mask(root);
e157b555
MW
1191
1192 if (!__radix_tree_lookup(root, index, &parent, &slot))
1193 return -ENOENT;
1194 if (!parent)
1195 return -ENOENT;
1196
1197 offset = get_slot_offset(parent, slot);
1198
1199 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
1200 if (tag_get(parent, tag, offset))
1201 tags |= 1 << tag;
1202
1203 for (end = offset + 1; end < RADIX_TREE_MAP_SIZE; end++) {
02c02bf1 1204 if (!xa_is_sibling(rcu_dereference_raw(parent->slots[end])))
e157b555
MW
1205 break;
1206 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
1207 if (tags & (1 << tag))
1208 tag_set(parent, tag, end);
1209 /* rcu_assign_pointer ensures tags are set before RETRY */
1210 rcu_assign_pointer(parent->slots[end], RADIX_TREE_RETRY);
1211 }
1212 rcu_assign_pointer(parent->slots[offset], RADIX_TREE_RETRY);
01959dfe 1213 parent->nr_values -= (end - offset);
e157b555
MW
1214
1215 if (order == parent->shift)
1216 return 0;
1217 if (order > parent->shift) {
1218 while (offset < end)
1219 offset += insert_entries(parent, &parent->slots[offset],
1220 RADIX_TREE_RETRY, order, true);
1221 return 0;
1222 }
1223
1224 node = parent;
1225
1226 for (;;) {
1227 if (node->shift > order) {
d58275bc 1228 child = radix_tree_node_alloc(gfp, node, root,
e8de4340
MW
1229 node->shift - RADIX_TREE_MAP_SHIFT,
1230 offset, 0, 0);
e157b555
MW
1231 if (!child)
1232 goto nomem;
e157b555
MW
1233 if (node != parent) {
1234 node->count++;
12320d0f
MW
1235 rcu_assign_pointer(node->slots[offset],
1236 node_to_entry(child));
e157b555
MW
1237 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
1238 if (tags & (1 << tag))
1239 tag_set(node, tag, offset);
1240 }
1241
1242 node = child;
1243 offset = 0;
1244 continue;
1245 }
1246
1247 n = insert_entries(node, &node->slots[offset],
1248 RADIX_TREE_RETRY, order, false);
1249 BUG_ON(n > RADIX_TREE_MAP_SIZE);
1250
1251 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
1252 if (tags & (1 << tag))
1253 tag_set(node, tag, offset);
1254 offset += n;
1255
1256 while (offset == RADIX_TREE_MAP_SIZE) {
1257 if (node == parent)
1258 break;
1259 offset = node->offset;
1260 child = node;
1261 node = node->parent;
1262 rcu_assign_pointer(node->slots[offset],
1263 node_to_entry(child));
1264 offset++;
1265 }
1266 if ((node == parent) && (offset == end))
1267 return 0;
1268 }
1269
1270 nomem:
1271 /* Shouldn't happen; did user forget to preload? */
1272 /* TODO: free all the allocated nodes */
1273 WARN_ON(1);
1274 return -ENOMEM;
1275}
175542f5
MW
1276#endif
1277
30b888ba
MW
1278static void node_tag_set(struct radix_tree_root *root,
1279 struct radix_tree_node *node,
1280 unsigned int tag, unsigned int offset)
1281{
1282 while (node) {
1283 if (tag_get(node, tag, offset))
1284 return;
1285 tag_set(node, tag, offset);
1286 offset = node->offset;
1287 node = node->parent;
1288 }
1289
1290 if (!root_tag_get(root, tag))
1291 root_tag_set(root, tag);
1292}
1293
1da177e4
LT
1294/**
1295 * radix_tree_tag_set - set a tag on a radix tree node
1296 * @root: radix tree root
1297 * @index: index key
2fcd9005 1298 * @tag: tag index
1da177e4 1299 *
daff89f3
JC
1300 * Set the search tag (which must be < RADIX_TREE_MAX_TAGS)
1301 * corresponding to @index in the radix tree. From
1da177e4
LT
1302 * the root all the way down to the leaf node.
1303 *
2fcd9005 1304 * Returns the address of the tagged item. Setting a tag on a not-present
1da177e4
LT
1305 * item is a bug.
1306 */
1307void *radix_tree_tag_set(struct radix_tree_root *root,
daff89f3 1308 unsigned long index, unsigned int tag)
1da177e4 1309{
fb969909
RZ
1310 struct radix_tree_node *node, *parent;
1311 unsigned long maxindex;
1da177e4 1312
9e85d811 1313 radix_tree_load_root(root, &node, &maxindex);
fb969909 1314 BUG_ON(index > maxindex);
1da177e4 1315
b194d16c 1316 while (radix_tree_is_internal_node(node)) {
fb969909 1317 unsigned offset;
1da177e4 1318
4dd6c098 1319 parent = entry_to_node(node);
9e85d811 1320 offset = radix_tree_descend(parent, &node, index);
fb969909
RZ
1321 BUG_ON(!node);
1322
1323 if (!tag_get(parent, tag, offset))
1324 tag_set(parent, tag, offset);
1da177e4
LT
1325 }
1326
612d6c19 1327 /* set the root's tag bit */
fb969909 1328 if (!root_tag_get(root, tag))
612d6c19
NP
1329 root_tag_set(root, tag);
1330
fb969909 1331 return node;
1da177e4
LT
1332}
1333EXPORT_SYMBOL(radix_tree_tag_set);
1334
30b888ba
MW
1335/**
1336 * radix_tree_iter_tag_set - set a tag on the current iterator entry
1337 * @root: radix tree root
1338 * @iter: iterator state
1339 * @tag: tag to set
1340 */
1341void radix_tree_iter_tag_set(struct radix_tree_root *root,
1342 const struct radix_tree_iter *iter, unsigned int tag)
1343{
1344 node_tag_set(root, iter->node, tag, iter_offset(iter));
1345}
1346
d604c324
MW
1347static void node_tag_clear(struct radix_tree_root *root,
1348 struct radix_tree_node *node,
1349 unsigned int tag, unsigned int offset)
1350{
1351 while (node) {
1352 if (!tag_get(node, tag, offset))
1353 return;
1354 tag_clear(node, tag, offset);
1355 if (any_tag_set(node, tag))
1356 return;
1357
1358 offset = node->offset;
1359 node = node->parent;
1360 }
1361
1362 /* clear the root's tag bit */
1363 if (root_tag_get(root, tag))
1364 root_tag_clear(root, tag);
1365}
1366
1da177e4
LT
1367/**
1368 * radix_tree_tag_clear - clear a tag on a radix tree node
1369 * @root: radix tree root
1370 * @index: index key
2fcd9005 1371 * @tag: tag index
1da177e4 1372 *
daff89f3 1373 * Clear the search tag (which must be < RADIX_TREE_MAX_TAGS)
2fcd9005
MW
1374 * corresponding to @index in the radix tree. If this causes
1375 * the leaf node to have no tags set then clear the tag in the
1da177e4
LT
1376 * next-to-leaf node, etc.
1377 *
1378 * Returns the address of the tagged item on success, else NULL. ie:
1379 * has the same return value and semantics as radix_tree_lookup().
1380 */
1381void *radix_tree_tag_clear(struct radix_tree_root *root,
daff89f3 1382 unsigned long index, unsigned int tag)
1da177e4 1383{
00f47b58
RZ
1384 struct radix_tree_node *node, *parent;
1385 unsigned long maxindex;
e2bdb933 1386 int uninitialized_var(offset);
1da177e4 1387
9e85d811 1388 radix_tree_load_root(root, &node, &maxindex);
00f47b58
RZ
1389 if (index > maxindex)
1390 return NULL;
1da177e4 1391
00f47b58 1392 parent = NULL;
1da177e4 1393
b194d16c 1394 while (radix_tree_is_internal_node(node)) {
4dd6c098 1395 parent = entry_to_node(node);
9e85d811 1396 offset = radix_tree_descend(parent, &node, index);
1da177e4
LT
1397 }
1398
d604c324
MW
1399 if (node)
1400 node_tag_clear(root, parent, tag, offset);
1da177e4 1401
00f47b58 1402 return node;
1da177e4
LT
1403}
1404EXPORT_SYMBOL(radix_tree_tag_clear);
1405
30b888ba
MW
1406/**
1407 * radix_tree_iter_tag_clear - clear a tag on the current iterator entry
1408 * @root: radix tree root
1409 * @iter: iterator state
1410 * @tag: tag to clear
1411 */
1412void radix_tree_iter_tag_clear(struct radix_tree_root *root,
1413 const struct radix_tree_iter *iter, unsigned int tag)
1414{
1415 node_tag_clear(root, iter->node, tag, iter_offset(iter));
1416}
1417
1da177e4 1418/**
32605a18
MT
1419 * radix_tree_tag_get - get a tag on a radix tree node
1420 * @root: radix tree root
1421 * @index: index key
2fcd9005 1422 * @tag: tag index (< RADIX_TREE_MAX_TAGS)
1da177e4 1423 *
32605a18 1424 * Return values:
1da177e4 1425 *
612d6c19
NP
1426 * 0: tag not present or not set
1427 * 1: tag set
ce82653d
DH
1428 *
1429 * Note that the return value of this function may not be relied on, even if
1430 * the RCU lock is held, unless tag modification and node deletion are excluded
1431 * from concurrency.
1da177e4 1432 */
35534c86 1433int radix_tree_tag_get(const struct radix_tree_root *root,
daff89f3 1434 unsigned long index, unsigned int tag)
1da177e4 1435{
4589ba6d
RZ
1436 struct radix_tree_node *node, *parent;
1437 unsigned long maxindex;
1da177e4 1438
612d6c19
NP
1439 if (!root_tag_get(root, tag))
1440 return 0;
1441
9e85d811 1442 radix_tree_load_root(root, &node, &maxindex);
4589ba6d
RZ
1443 if (index > maxindex)
1444 return 0;
7cf9c2c7 1445
b194d16c 1446 while (radix_tree_is_internal_node(node)) {
9e85d811 1447 unsigned offset;
1da177e4 1448
4dd6c098 1449 parent = entry_to_node(node);
9e85d811 1450 offset = radix_tree_descend(parent, &node, index);
1da177e4 1451
4589ba6d 1452 if (!tag_get(parent, tag, offset))
3fa36acb 1453 return 0;
4589ba6d
RZ
1454 if (node == RADIX_TREE_RETRY)
1455 break;
1da177e4 1456 }
4589ba6d
RZ
1457
1458 return 1;
1da177e4
LT
1459}
1460EXPORT_SYMBOL(radix_tree_tag_get);
1da177e4 1461
21ef5339
RZ
1462static inline void __set_iter_shift(struct radix_tree_iter *iter,
1463 unsigned int shift)
1464{
1465#ifdef CONFIG_RADIX_TREE_MULTIORDER
1466 iter->shift = shift;
1467#endif
1468}
1469
148deab2
MW
1470/* Construct iter->tags bit-mask from node->tags[tag] array */
1471static void set_iter_tags(struct radix_tree_iter *iter,
1472 struct radix_tree_node *node, unsigned offset,
1473 unsigned tag)
1474{
1475 unsigned tag_long = offset / BITS_PER_LONG;
1476 unsigned tag_bit = offset % BITS_PER_LONG;
1477
0a835c4f
MW
1478 if (!node) {
1479 iter->tags = 1;
1480 return;
1481 }
1482
148deab2
MW
1483 iter->tags = node->tags[tag][tag_long] >> tag_bit;
1484
1485 /* This never happens if RADIX_TREE_TAG_LONGS == 1 */
1486 if (tag_long < RADIX_TREE_TAG_LONGS - 1) {
1487 /* Pick tags from next element */
1488 if (tag_bit)
1489 iter->tags |= node->tags[tag][tag_long + 1] <<
1490 (BITS_PER_LONG - tag_bit);
1491 /* Clip chunk size, here only BITS_PER_LONG tags */
1492 iter->next_index = __radix_tree_iter_add(iter, BITS_PER_LONG);
1493 }
1494}
1495
1496#ifdef CONFIG_RADIX_TREE_MULTIORDER
d7b62727
MW
1497static void __rcu **skip_siblings(struct radix_tree_node **nodep,
1498 void __rcu **slot, struct radix_tree_iter *iter)
148deab2 1499{
148deab2
MW
1500 while (iter->index < iter->next_index) {
1501 *nodep = rcu_dereference_raw(*slot);
02c02bf1 1502 if (*nodep && !xa_is_sibling(*nodep))
148deab2
MW
1503 return slot;
1504 slot++;
1505 iter->index = __radix_tree_iter_add(iter, 1);
1506 iter->tags >>= 1;
1507 }
1508
1509 *nodep = NULL;
1510 return NULL;
1511}
1512
d7b62727
MW
1513void __rcu **__radix_tree_next_slot(void __rcu **slot,
1514 struct radix_tree_iter *iter, unsigned flags)
148deab2
MW
1515{
1516 unsigned tag = flags & RADIX_TREE_ITER_TAG_MASK;
9f418224 1517 struct radix_tree_node *node;
148deab2
MW
1518
1519 slot = skip_siblings(&node, slot, iter);
1520
1521 while (radix_tree_is_internal_node(node)) {
1522 unsigned offset;
1523 unsigned long next_index;
1524
1525 if (node == RADIX_TREE_RETRY)
1526 return slot;
1527 node = entry_to_node(node);
268f42de 1528 iter->node = node;
148deab2
MW
1529 iter->shift = node->shift;
1530
1531 if (flags & RADIX_TREE_ITER_TAGGED) {
1532 offset = radix_tree_find_next_bit(node, tag, 0);
1533 if (offset == RADIX_TREE_MAP_SIZE)
1534 return NULL;
1535 slot = &node->slots[offset];
1536 iter->index = __radix_tree_iter_add(iter, offset);
1537 set_iter_tags(iter, node, offset, tag);
1538 node = rcu_dereference_raw(*slot);
1539 } else {
1540 offset = 0;
1541 slot = &node->slots[0];
1542 for (;;) {
1543 node = rcu_dereference_raw(*slot);
1544 if (node)
1545 break;
1546 slot++;
1547 offset++;
1548 if (offset == RADIX_TREE_MAP_SIZE)
1549 return NULL;
1550 }
1551 iter->index = __radix_tree_iter_add(iter, offset);
1552 }
1553 if ((flags & RADIX_TREE_ITER_CONTIG) && (offset > 0))
1554 goto none;
1555 next_index = (iter->index | shift_maxindex(iter->shift)) + 1;
1556 if (next_index < iter->next_index)
1557 iter->next_index = next_index;
1558 }
1559
1560 return slot;
1561 none:
1562 iter->next_index = 0;
1563 return NULL;
1564}
1565EXPORT_SYMBOL(__radix_tree_next_slot);
1566#else
d7b62727
MW
1567static void __rcu **skip_siblings(struct radix_tree_node **nodep,
1568 void __rcu **slot, struct radix_tree_iter *iter)
148deab2
MW
1569{
1570 return slot;
1571}
1572#endif
1573
d7b62727
MW
1574void __rcu **radix_tree_iter_resume(void __rcu **slot,
1575 struct radix_tree_iter *iter)
148deab2
MW
1576{
1577 struct radix_tree_node *node;
1578
1579 slot++;
1580 iter->index = __radix_tree_iter_add(iter, 1);
148deab2
MW
1581 skip_siblings(&node, slot, iter);
1582 iter->next_index = iter->index;
1583 iter->tags = 0;
1584 return NULL;
1585}
1586EXPORT_SYMBOL(radix_tree_iter_resume);
1587
78c1d784
KK
1588/**
1589 * radix_tree_next_chunk - find next chunk of slots for iteration
1590 *
1591 * @root: radix tree root
1592 * @iter: iterator state
1593 * @flags: RADIX_TREE_ITER_* flags and tag index
1594 * Returns: pointer to chunk first slot, or NULL if iteration is over
1595 */
d7b62727 1596void __rcu **radix_tree_next_chunk(const struct radix_tree_root *root,
78c1d784
KK
1597 struct radix_tree_iter *iter, unsigned flags)
1598{
9e85d811 1599 unsigned tag = flags & RADIX_TREE_ITER_TAG_MASK;
8c1244de 1600 struct radix_tree_node *node, *child;
21ef5339 1601 unsigned long index, offset, maxindex;
78c1d784
KK
1602
1603 if ((flags & RADIX_TREE_ITER_TAGGED) && !root_tag_get(root, tag))
1604 return NULL;
1605
1606 /*
1607 * Catch next_index overflow after ~0UL. iter->index never overflows
1608 * during iterating; it can be zero only at the beginning.
1609 * And we cannot overflow iter->next_index in a single step,
1610 * because RADIX_TREE_MAP_SHIFT < BITS_PER_LONG.
fffaee36
KK
1611 *
1612 * This condition also used by radix_tree_next_slot() to stop
91b9677c 1613 * contiguous iterating, and forbid switching to the next chunk.
78c1d784
KK
1614 */
1615 index = iter->next_index;
1616 if (!index && iter->index)
1617 return NULL;
1618
21ef5339 1619 restart:
9e85d811 1620 radix_tree_load_root(root, &child, &maxindex);
21ef5339
RZ
1621 if (index > maxindex)
1622 return NULL;
8c1244de
MW
1623 if (!child)
1624 return NULL;
21ef5339 1625
8c1244de 1626 if (!radix_tree_is_internal_node(child)) {
78c1d784 1627 /* Single-slot tree */
21ef5339
RZ
1628 iter->index = index;
1629 iter->next_index = maxindex + 1;
78c1d784 1630 iter->tags = 1;
268f42de 1631 iter->node = NULL;
8c1244de 1632 __set_iter_shift(iter, 0);
f8d5d0cc 1633 return (void __rcu **)&root->xa_head;
8c1244de 1634 }
21ef5339 1635
8c1244de
MW
1636 do {
1637 node = entry_to_node(child);
9e85d811 1638 offset = radix_tree_descend(node, &child, index);
21ef5339 1639
78c1d784 1640 if ((flags & RADIX_TREE_ITER_TAGGED) ?
8c1244de 1641 !tag_get(node, tag, offset) : !child) {
78c1d784
KK
1642 /* Hole detected */
1643 if (flags & RADIX_TREE_ITER_CONTIG)
1644 return NULL;
1645
1646 if (flags & RADIX_TREE_ITER_TAGGED)
bc412fca 1647 offset = radix_tree_find_next_bit(node, tag,
78c1d784
KK
1648 offset + 1);
1649 else
1650 while (++offset < RADIX_TREE_MAP_SIZE) {
12320d0f
MW
1651 void *slot = rcu_dereference_raw(
1652 node->slots[offset]);
02c02bf1 1653 if (xa_is_sibling(slot))
21ef5339
RZ
1654 continue;
1655 if (slot)
78c1d784
KK
1656 break;
1657 }
8c1244de 1658 index &= ~node_maxindex(node);
9e85d811 1659 index += offset << node->shift;
78c1d784
KK
1660 /* Overflow after ~0UL */
1661 if (!index)
1662 return NULL;
1663 if (offset == RADIX_TREE_MAP_SIZE)
1664 goto restart;
8c1244de 1665 child = rcu_dereference_raw(node->slots[offset]);
78c1d784
KK
1666 }
1667
e157b555 1668 if (!child)
78c1d784 1669 goto restart;
e157b555
MW
1670 if (child == RADIX_TREE_RETRY)
1671 break;
66ee620f 1672 } while (node->shift && radix_tree_is_internal_node(child));
78c1d784
KK
1673
1674 /* Update the iterator state */
8c1244de
MW
1675 iter->index = (index &~ node_maxindex(node)) | (offset << node->shift);
1676 iter->next_index = (index | node_maxindex(node)) + 1;
268f42de 1677 iter->node = node;
9e85d811 1678 __set_iter_shift(iter, node->shift);
78c1d784 1679
148deab2
MW
1680 if (flags & RADIX_TREE_ITER_TAGGED)
1681 set_iter_tags(iter, node, offset, tag);
78c1d784
KK
1682
1683 return node->slots + offset;
1684}
1685EXPORT_SYMBOL(radix_tree_next_chunk);
1686
1da177e4
LT
1687/**
1688 * radix_tree_gang_lookup - perform multiple lookup on a radix tree
1689 * @root: radix tree root
1690 * @results: where the results of the lookup are placed
1691 * @first_index: start the lookup from this key
1692 * @max_items: place up to this many items at *results
1693 *
1694 * Performs an index-ascending scan of the tree for present items. Places
1695 * them at *@results and returns the number of items which were placed at
1696 * *@results.
1697 *
1698 * The implementation is naive.
7cf9c2c7
NP
1699 *
1700 * Like radix_tree_lookup, radix_tree_gang_lookup may be called under
1701 * rcu_read_lock. In this case, rather than the returned results being
2fcd9005
MW
1702 * an atomic snapshot of the tree at a single point in time, the
1703 * semantics of an RCU protected gang lookup are as though multiple
1704 * radix_tree_lookups have been issued in individual locks, and results
1705 * stored in 'results'.
1da177e4
LT
1706 */
1707unsigned int
35534c86 1708radix_tree_gang_lookup(const struct radix_tree_root *root, void **results,
1da177e4
LT
1709 unsigned long first_index, unsigned int max_items)
1710{
cebbd29e 1711 struct radix_tree_iter iter;
d7b62727 1712 void __rcu **slot;
cebbd29e 1713 unsigned int ret = 0;
7cf9c2c7 1714
cebbd29e 1715 if (unlikely(!max_items))
7cf9c2c7 1716 return 0;
1da177e4 1717
cebbd29e 1718 radix_tree_for_each_slot(slot, root, &iter, first_index) {
46437f9a 1719 results[ret] = rcu_dereference_raw(*slot);
cebbd29e
KK
1720 if (!results[ret])
1721 continue;
b194d16c 1722 if (radix_tree_is_internal_node(results[ret])) {
46437f9a
MW
1723 slot = radix_tree_iter_retry(&iter);
1724 continue;
1725 }
cebbd29e 1726 if (++ret == max_items)
1da177e4 1727 break;
1da177e4 1728 }
7cf9c2c7 1729
1da177e4
LT
1730 return ret;
1731}
1732EXPORT_SYMBOL(radix_tree_gang_lookup);
1733
47feff2c
NP
1734/**
1735 * radix_tree_gang_lookup_slot - perform multiple slot lookup on radix tree
1736 * @root: radix tree root
1737 * @results: where the results of the lookup are placed
6328650b 1738 * @indices: where their indices should be placed (but usually NULL)
47feff2c
NP
1739 * @first_index: start the lookup from this key
1740 * @max_items: place up to this many items at *results
1741 *
1742 * Performs an index-ascending scan of the tree for present items. Places
1743 * their slots at *@results and returns the number of items which were
1744 * placed at *@results.
1745 *
1746 * The implementation is naive.
1747 *
1748 * Like radix_tree_gang_lookup as far as RCU and locking goes. Slots must
1749 * be dereferenced with radix_tree_deref_slot, and if using only RCU
1750 * protection, radix_tree_deref_slot may fail requiring a retry.
1751 */
1752unsigned int
35534c86 1753radix_tree_gang_lookup_slot(const struct radix_tree_root *root,
d7b62727 1754 void __rcu ***results, unsigned long *indices,
47feff2c
NP
1755 unsigned long first_index, unsigned int max_items)
1756{
cebbd29e 1757 struct radix_tree_iter iter;
d7b62727 1758 void __rcu **slot;
cebbd29e 1759 unsigned int ret = 0;
47feff2c 1760
cebbd29e 1761 if (unlikely(!max_items))
47feff2c
NP
1762 return 0;
1763
cebbd29e
KK
1764 radix_tree_for_each_slot(slot, root, &iter, first_index) {
1765 results[ret] = slot;
6328650b 1766 if (indices)
cebbd29e
KK
1767 indices[ret] = iter.index;
1768 if (++ret == max_items)
47feff2c 1769 break;
47feff2c
NP
1770 }
1771
1772 return ret;
1773}
1774EXPORT_SYMBOL(radix_tree_gang_lookup_slot);
1775
1da177e4
LT
1776/**
1777 * radix_tree_gang_lookup_tag - perform multiple lookup on a radix tree
1778 * based on a tag
1779 * @root: radix tree root
1780 * @results: where the results of the lookup are placed
1781 * @first_index: start the lookup from this key
1782 * @max_items: place up to this many items at *results
daff89f3 1783 * @tag: the tag index (< RADIX_TREE_MAX_TAGS)
1da177e4
LT
1784 *
1785 * Performs an index-ascending scan of the tree for present items which
1786 * have the tag indexed by @tag set. Places the items at *@results and
1787 * returns the number of items which were placed at *@results.
1788 */
1789unsigned int
35534c86 1790radix_tree_gang_lookup_tag(const struct radix_tree_root *root, void **results,
daff89f3
JC
1791 unsigned long first_index, unsigned int max_items,
1792 unsigned int tag)
1da177e4 1793{
cebbd29e 1794 struct radix_tree_iter iter;
d7b62727 1795 void __rcu **slot;
cebbd29e 1796 unsigned int ret = 0;
612d6c19 1797
cebbd29e 1798 if (unlikely(!max_items))
7cf9c2c7
NP
1799 return 0;
1800
cebbd29e 1801 radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) {
46437f9a 1802 results[ret] = rcu_dereference_raw(*slot);
cebbd29e
KK
1803 if (!results[ret])
1804 continue;
b194d16c 1805 if (radix_tree_is_internal_node(results[ret])) {
46437f9a
MW
1806 slot = radix_tree_iter_retry(&iter);
1807 continue;
1808 }
cebbd29e 1809 if (++ret == max_items)
1da177e4 1810 break;
1da177e4 1811 }
7cf9c2c7 1812
1da177e4
LT
1813 return ret;
1814}
1815EXPORT_SYMBOL(radix_tree_gang_lookup_tag);
1816
47feff2c
NP
1817/**
1818 * radix_tree_gang_lookup_tag_slot - perform multiple slot lookup on a
1819 * radix tree based on a tag
1820 * @root: radix tree root
1821 * @results: where the results of the lookup are placed
1822 * @first_index: start the lookup from this key
1823 * @max_items: place up to this many items at *results
1824 * @tag: the tag index (< RADIX_TREE_MAX_TAGS)
1825 *
1826 * Performs an index-ascending scan of the tree for present items which
1827 * have the tag indexed by @tag set. Places the slots at *@results and
1828 * returns the number of slots which were placed at *@results.
1829 */
1830unsigned int
35534c86 1831radix_tree_gang_lookup_tag_slot(const struct radix_tree_root *root,
d7b62727 1832 void __rcu ***results, unsigned long first_index,
35534c86 1833 unsigned int max_items, unsigned int tag)
47feff2c 1834{
cebbd29e 1835 struct radix_tree_iter iter;
d7b62727 1836 void __rcu **slot;
cebbd29e 1837 unsigned int ret = 0;
47feff2c 1838
cebbd29e 1839 if (unlikely(!max_items))
47feff2c
NP
1840 return 0;
1841
cebbd29e
KK
1842 radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) {
1843 results[ret] = slot;
1844 if (++ret == max_items)
47feff2c 1845 break;
47feff2c
NP
1846 }
1847
1848 return ret;
1849}
1850EXPORT_SYMBOL(radix_tree_gang_lookup_tag_slot);
1851
139e5616
JW
1852/**
1853 * __radix_tree_delete_node - try to free node after clearing a slot
1854 * @root: radix tree root
139e5616 1855 * @node: node containing @index
ea07b862 1856 * @update_node: callback for changing leaf nodes
139e5616
JW
1857 *
1858 * After clearing the slot at @index in @node from radix tree
1859 * rooted at @root, call this function to attempt freeing the
1860 * node and shrinking the tree.
139e5616 1861 */
14b46879 1862void __radix_tree_delete_node(struct radix_tree_root *root,
ea07b862 1863 struct radix_tree_node *node,
c7df8ad2 1864 radix_tree_update_node_t update_node)
139e5616 1865{
c7df8ad2 1866 delete_node(root, node, update_node);
139e5616
JW
1867}
1868
0ac398ef 1869static bool __radix_tree_delete(struct radix_tree_root *root,
d7b62727 1870 struct radix_tree_node *node, void __rcu **slot)
0ac398ef 1871{
0a835c4f 1872 void *old = rcu_dereference_raw(*slot);
01959dfe 1873 int values = xa_is_value(old) ? -1 : 0;
0ac398ef
MW
1874 unsigned offset = get_slot_offset(node, slot);
1875 int tag;
1876
0a835c4f
MW
1877 if (is_idr(root))
1878 node_tag_set(root, node, IDR_FREE, offset);
1879 else
1880 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
1881 node_tag_clear(root, node, tag, offset);
0ac398ef 1882
01959dfe 1883 replace_slot(slot, NULL, node, -1, values);
c7df8ad2 1884 return node && delete_node(root, node, NULL);
0ac398ef
MW
1885}
1886
1da177e4 1887/**
0ac398ef
MW
1888 * radix_tree_iter_delete - delete the entry at this iterator position
1889 * @root: radix tree root
1890 * @iter: iterator state
1891 * @slot: pointer to slot
1da177e4 1892 *
0ac398ef
MW
1893 * Delete the entry at the position currently pointed to by the iterator.
1894 * This may result in the current node being freed; if it is, the iterator
1895 * is advanced so that it will not reference the freed memory. This
1896 * function may be called without any locking if there are no other threads
1897 * which can access this tree.
1898 */
1899void radix_tree_iter_delete(struct radix_tree_root *root,
d7b62727 1900 struct radix_tree_iter *iter, void __rcu **slot)
0ac398ef
MW
1901{
1902 if (__radix_tree_delete(root, iter->node, slot))
1903 iter->index = iter->next_index;
1904}
d1b48c1e 1905EXPORT_SYMBOL(radix_tree_iter_delete);
0ac398ef
MW
1906
1907/**
1908 * radix_tree_delete_item - delete an item from a radix tree
1909 * @root: radix tree root
1910 * @index: index key
1911 * @item: expected item
1da177e4 1912 *
0ac398ef 1913 * Remove @item at @index from the radix tree rooted at @root.
1da177e4 1914 *
0ac398ef
MW
1915 * Return: the deleted entry, or %NULL if it was not present
1916 * or the entry at the given @index was not @item.
1da177e4 1917 */
53c59f26
JW
1918void *radix_tree_delete_item(struct radix_tree_root *root,
1919 unsigned long index, void *item)
1da177e4 1920{
0a835c4f 1921 struct radix_tree_node *node = NULL;
7a4deea1 1922 void __rcu **slot = NULL;
139e5616 1923 void *entry;
1da177e4 1924
139e5616 1925 entry = __radix_tree_lookup(root, index, &node, &slot);
7a4deea1
MW
1926 if (!slot)
1927 return NULL;
0a835c4f
MW
1928 if (!entry && (!is_idr(root) || node_tag_get(root, node, IDR_FREE,
1929 get_slot_offset(node, slot))))
139e5616 1930 return NULL;
1da177e4 1931
139e5616
JW
1932 if (item && entry != item)
1933 return NULL;
1934
0ac398ef 1935 __radix_tree_delete(root, node, slot);
612d6c19 1936
139e5616 1937 return entry;
1da177e4 1938}
53c59f26
JW
1939EXPORT_SYMBOL(radix_tree_delete_item);
1940
1941/**
0ac398ef
MW
1942 * radix_tree_delete - delete an entry from a radix tree
1943 * @root: radix tree root
1944 * @index: index key
53c59f26 1945 *
0ac398ef 1946 * Remove the entry at @index from the radix tree rooted at @root.
53c59f26 1947 *
0ac398ef 1948 * Return: The deleted entry, or %NULL if it was not present.
53c59f26
JW
1949 */
1950void *radix_tree_delete(struct radix_tree_root *root, unsigned long index)
1951{
1952 return radix_tree_delete_item(root, index, NULL);
1953}
1da177e4
LT
1954EXPORT_SYMBOL(radix_tree_delete);
1955
d3798ae8
JW
1956void radix_tree_clear_tags(struct radix_tree_root *root,
1957 struct radix_tree_node *node,
d7b62727 1958 void __rcu **slot)
d604c324 1959{
d604c324
MW
1960 if (node) {
1961 unsigned int tag, offset = get_slot_offset(node, slot);
1962 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
1963 node_tag_clear(root, node, tag, offset);
1964 } else {
0a835c4f 1965 root_tag_clear_all(root);
d604c324 1966 }
d604c324
MW
1967}
1968
1da177e4
LT
1969/**
1970 * radix_tree_tagged - test whether any items in the tree are tagged
1971 * @root: radix tree root
1972 * @tag: tag to test
1973 */
35534c86 1974int radix_tree_tagged(const struct radix_tree_root *root, unsigned int tag)
1da177e4 1975{
612d6c19 1976 return root_tag_get(root, tag);
1da177e4
LT
1977}
1978EXPORT_SYMBOL(radix_tree_tagged);
1979
0a835c4f
MW
1980/**
1981 * idr_preload - preload for idr_alloc()
1982 * @gfp_mask: allocation mask to use for preloading
1983 *
1984 * Preallocate memory to use for the next call to idr_alloc(). This function
1985 * returns with preemption disabled. It will be enabled by idr_preload_end().
1986 */
1987void idr_preload(gfp_t gfp_mask)
1988{
bc9ae224
ED
1989 if (__radix_tree_preload(gfp_mask, IDR_PRELOAD_SIZE))
1990 preempt_disable();
0a835c4f
MW
1991}
1992EXPORT_SYMBOL(idr_preload);
1993
460488c5 1994void __rcu **idr_get_free(struct radix_tree_root *root,
388f79fd
CM
1995 struct radix_tree_iter *iter, gfp_t gfp,
1996 unsigned long max)
0a835c4f
MW
1997{
1998 struct radix_tree_node *node = NULL, *child;
f8d5d0cc 1999 void __rcu **slot = (void __rcu **)&root->xa_head;
0a835c4f 2000 unsigned long maxindex, start = iter->next_index;
0a835c4f
MW
2001 unsigned int shift, offset = 0;
2002
2003 grow:
2004 shift = radix_tree_load_root(root, &child, &maxindex);
2005 if (!radix_tree_tagged(root, IDR_FREE))
2006 start = max(start, maxindex + 1);
2007 if (start > max)
2008 return ERR_PTR(-ENOSPC);
2009
2010 if (start > maxindex) {
2011 int error = radix_tree_extend(root, gfp, start, shift);
2012 if (error < 0)
2013 return ERR_PTR(error);
2014 shift = error;
f8d5d0cc 2015 child = rcu_dereference_raw(root->xa_head);
0a835c4f 2016 }
66ee620f
MW
2017 if (start == 0 && shift == 0)
2018 shift = RADIX_TREE_MAP_SHIFT;
0a835c4f
MW
2019
2020 while (shift) {
2021 shift -= RADIX_TREE_MAP_SHIFT;
2022 if (child == NULL) {
2023 /* Have to add a child node. */
d58275bc
MW
2024 child = radix_tree_node_alloc(gfp, node, root, shift,
2025 offset, 0, 0);
0a835c4f
MW
2026 if (!child)
2027 return ERR_PTR(-ENOMEM);
2028 all_tag_set(child, IDR_FREE);
2029 rcu_assign_pointer(*slot, node_to_entry(child));
2030 if (node)
2031 node->count++;
2032 } else if (!radix_tree_is_internal_node(child))
2033 break;
2034
2035 node = entry_to_node(child);
2036 offset = radix_tree_descend(node, &child, start);
2037 if (!tag_get(node, IDR_FREE, offset)) {
2038 offset = radix_tree_find_next_bit(node, IDR_FREE,
2039 offset + 1);
2040 start = next_index(start, node, offset);
2041 if (start > max)
2042 return ERR_PTR(-ENOSPC);
2043 while (offset == RADIX_TREE_MAP_SIZE) {
2044 offset = node->offset + 1;
2045 node = node->parent;
2046 if (!node)
2047 goto grow;
2048 shift = node->shift;
2049 }
2050 child = rcu_dereference_raw(node->slots[offset]);
2051 }
2052 slot = &node->slots[offset];
2053 }
2054
2055 iter->index = start;
2056 if (node)
2057 iter->next_index = 1 + min(max, (start | node_maxindex(node)));
2058 else
2059 iter->next_index = 1;
2060 iter->node = node;
2061 __set_iter_shift(iter, shift);
2062 set_iter_tags(iter, node, offset, IDR_FREE);
2063
2064 return slot;
2065}
2066
2067/**
2068 * idr_destroy - release all internal memory from an IDR
2069 * @idr: idr handle
2070 *
2071 * After this function is called, the IDR is empty, and may be reused or
2072 * the data structure containing it may be freed.
2073 *
2074 * A typical clean-up sequence for objects stored in an idr tree will use
2075 * idr_for_each() to free all objects, if necessary, then idr_destroy() to
2076 * free the memory used to keep track of those objects.
2077 */
2078void idr_destroy(struct idr *idr)
2079{
f8d5d0cc 2080 struct radix_tree_node *node = rcu_dereference_raw(idr->idr_rt.xa_head);
0a835c4f
MW
2081 if (radix_tree_is_internal_node(node))
2082 radix_tree_free_nodes(node);
f8d5d0cc 2083 idr->idr_rt.xa_head = NULL;
0a835c4f
MW
2084 root_tag_set(&idr->idr_rt, IDR_FREE);
2085}
2086EXPORT_SYMBOL(idr_destroy);
2087
1da177e4 2088static void
449dd698 2089radix_tree_node_ctor(void *arg)
1da177e4 2090{
449dd698
JW
2091 struct radix_tree_node *node = arg;
2092
2093 memset(node, 0, sizeof(*node));
2094 INIT_LIST_HEAD(&node->private_list);
1da177e4
LT
2095}
2096
c78c66d1
KS
2097static __init unsigned long __maxindex(unsigned int height)
2098{
2099 unsigned int width = height * RADIX_TREE_MAP_SHIFT;
2100 int shift = RADIX_TREE_INDEX_BITS - width;
2101
2102 if (shift < 0)
2103 return ~0UL;
2104 if (shift >= BITS_PER_LONG)
2105 return 0UL;
2106 return ~0UL >> shift;
2107}
2108
2109static __init void radix_tree_init_maxnodes(void)
2110{
2111 unsigned long height_to_maxindex[RADIX_TREE_MAX_PATH + 1];
2112 unsigned int i, j;
2113
2114 for (i = 0; i < ARRAY_SIZE(height_to_maxindex); i++)
2115 height_to_maxindex[i] = __maxindex(i);
2116 for (i = 0; i < ARRAY_SIZE(height_to_maxnodes); i++) {
2117 for (j = i; j > 0; j--)
2118 height_to_maxnodes[i] += height_to_maxindex[j - 1] + 1;
2119 }
2120}
2121
d544abd5 2122static int radix_tree_cpu_dead(unsigned int cpu)
1da177e4 2123{
2fcd9005
MW
2124 struct radix_tree_preload *rtp;
2125 struct radix_tree_node *node;
2126
2127 /* Free per-cpu pool of preloaded nodes */
d544abd5
SAS
2128 rtp = &per_cpu(radix_tree_preloads, cpu);
2129 while (rtp->nr) {
2130 node = rtp->nodes;
1293d5c5 2131 rtp->nodes = node->parent;
d544abd5
SAS
2132 kmem_cache_free(radix_tree_node_cachep, node);
2133 rtp->nr--;
2fcd9005 2134 }
d544abd5 2135 return 0;
1da177e4 2136}
1da177e4
LT
2137
2138void __init radix_tree_init(void)
2139{
d544abd5 2140 int ret;
7e784422
MH
2141
2142 BUILD_BUG_ON(RADIX_TREE_MAX_TAGS + __GFP_BITS_SHIFT > 32);
fa290cda 2143 BUILD_BUG_ON(ROOT_IS_IDR & ~GFP_ZONEMASK);
02c02bf1 2144 BUILD_BUG_ON(XA_CHUNK_SIZE > 255);
1da177e4
LT
2145 radix_tree_node_cachep = kmem_cache_create("radix_tree_node",
2146 sizeof(struct radix_tree_node), 0,
488514d1
CL
2147 SLAB_PANIC | SLAB_RECLAIM_ACCOUNT,
2148 radix_tree_node_ctor);
c78c66d1 2149 radix_tree_init_maxnodes();
d544abd5
SAS
2150 ret = cpuhp_setup_state_nocalls(CPUHP_RADIX_DEAD, "lib/radix:dead",
2151 NULL, radix_tree_cpu_dead);
2152 WARN_ON(ret < 0);
1da177e4 2153}