]> git.ipfire.org Git - thirdparty/kernel/stable.git/blame - lib/radix-tree.c
xarray: Add XArray marks
[thirdparty/kernel/stable.git] / lib / radix-tree.c
CommitLineData
1da177e4
LT
1/*
2 * Copyright (C) 2001 Momchil Velikov
3 * Portions Copyright (C) 2001 Christoph Hellwig
cde53535 4 * Copyright (C) 2005 SGI, Christoph Lameter
7cf9c2c7 5 * Copyright (C) 2006 Nick Piggin
78c1d784 6 * Copyright (C) 2012 Konstantin Khlebnikov
6b053b8e
MW
7 * Copyright (C) 2016 Intel, Matthew Wilcox
8 * Copyright (C) 2016 Intel, Ross Zwisler
1da177e4
LT
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License as
12 * published by the Free Software Foundation; either version 2, or (at
13 * your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23 */
24
0a835c4f
MW
25#include <linux/bitmap.h>
26#include <linux/bitops.h>
460488c5 27#include <linux/bug.h>
e157b555 28#include <linux/cpu.h>
1da177e4 29#include <linux/errno.h>
0a835c4f
MW
30#include <linux/export.h>
31#include <linux/idr.h>
1da177e4
LT
32#include <linux/init.h>
33#include <linux/kernel.h>
0a835c4f 34#include <linux/kmemleak.h>
1da177e4 35#include <linux/percpu.h>
0a835c4f
MW
36#include <linux/preempt.h> /* in_interrupt() */
37#include <linux/radix-tree.h>
38#include <linux/rcupdate.h>
1da177e4 39#include <linux/slab.h>
1da177e4 40#include <linux/string.h>
02c02bf1 41#include <linux/xarray.h>
1da177e4
LT
42
43
c78c66d1
KS
44/* Number of nodes in fully populated tree of given height */
45static unsigned long height_to_maxnodes[RADIX_TREE_MAX_PATH + 1] __read_mostly;
46
1da177e4
LT
47/*
48 * Radix tree node cache.
49 */
e18b890b 50static struct kmem_cache *radix_tree_node_cachep;
1da177e4 51
55368052
NP
52/*
53 * The radix tree is variable-height, so an insert operation not only has
54 * to build the branch to its corresponding item, it also has to build the
55 * branch to existing items if the size has to be increased (by
56 * radix_tree_extend).
57 *
58 * The worst case is a zero height tree with just a single item at index 0,
59 * and then inserting an item at index ULONG_MAX. This requires 2 new branches
60 * of RADIX_TREE_MAX_PATH size to be created, with only the root node shared.
61 * Hence:
62 */
63#define RADIX_TREE_PRELOAD_SIZE (RADIX_TREE_MAX_PATH * 2 - 1)
64
0a835c4f
MW
65/*
66 * The IDR does not have to be as high as the radix tree since it uses
67 * signed integers, not unsigned longs.
68 */
69#define IDR_INDEX_BITS (8 /* CHAR_BIT */ * sizeof(int) - 1)
70#define IDR_MAX_PATH (DIV_ROUND_UP(IDR_INDEX_BITS, \
71 RADIX_TREE_MAP_SHIFT))
72#define IDR_PRELOAD_SIZE (IDR_MAX_PATH * 2 - 1)
73
7ad3d4d8
MW
74/*
75 * The IDA is even shorter since it uses a bitmap at the last level.
76 */
77#define IDA_INDEX_BITS (8 * sizeof(int) - 1 - ilog2(IDA_BITMAP_BITS))
78#define IDA_MAX_PATH (DIV_ROUND_UP(IDA_INDEX_BITS, \
79 RADIX_TREE_MAP_SHIFT))
80#define IDA_PRELOAD_SIZE (IDA_MAX_PATH * 2 - 1)
81
1da177e4
LT
82/*
83 * Per-cpu pool of preloaded nodes
84 */
85struct radix_tree_preload {
2fcd9005 86 unsigned nr;
1293d5c5 87 /* nodes->parent points to next preallocated node */
9d2a8da0 88 struct radix_tree_node *nodes;
1da177e4 89};
8cef7d57 90static DEFINE_PER_CPU(struct radix_tree_preload, radix_tree_preloads) = { 0, };
1da177e4 91
148deab2
MW
92static inline struct radix_tree_node *entry_to_node(void *ptr)
93{
94 return (void *)((unsigned long)ptr & ~RADIX_TREE_INTERNAL_NODE);
95}
96
a4db4dce 97static inline void *node_to_entry(void *ptr)
27d20fdd 98{
30ff46cc 99 return (void *)((unsigned long)ptr | RADIX_TREE_INTERNAL_NODE);
27d20fdd
NP
100}
101
02c02bf1 102#define RADIX_TREE_RETRY XA_RETRY_ENTRY
db050f29 103
d7b62727
MW
104static inline unsigned long
105get_slot_offset(const struct radix_tree_node *parent, void __rcu **slot)
db050f29 106{
76f070b4 107 return parent ? slot - parent->slots : 0;
db050f29
MW
108}
109
35534c86 110static unsigned int radix_tree_descend(const struct radix_tree_node *parent,
9e85d811 111 struct radix_tree_node **nodep, unsigned long index)
db050f29 112{
9e85d811 113 unsigned int offset = (index >> parent->shift) & RADIX_TREE_MAP_MASK;
d7b62727 114 void __rcu **entry = rcu_dereference_raw(parent->slots[offset]);
db050f29 115
02c02bf1
MW
116 if (xa_is_sibling(entry)) {
117 offset = xa_to_sibling(entry);
118 entry = rcu_dereference_raw(parent->slots[offset]);
db050f29 119 }
db050f29
MW
120
121 *nodep = (void *)entry;
122 return offset;
123}
124
35534c86 125static inline gfp_t root_gfp_mask(const struct radix_tree_root *root)
612d6c19 126{
f8d5d0cc 127 return root->xa_flags & (__GFP_BITS_MASK & ~GFP_ZONEMASK);
612d6c19
NP
128}
129
643b52b9
NP
130static inline void tag_set(struct radix_tree_node *node, unsigned int tag,
131 int offset)
132{
133 __set_bit(offset, node->tags[tag]);
134}
135
136static inline void tag_clear(struct radix_tree_node *node, unsigned int tag,
137 int offset)
138{
139 __clear_bit(offset, node->tags[tag]);
140}
141
35534c86 142static inline int tag_get(const struct radix_tree_node *node, unsigned int tag,
643b52b9
NP
143 int offset)
144{
145 return test_bit(offset, node->tags[tag]);
146}
147
35534c86 148static inline void root_tag_set(struct radix_tree_root *root, unsigned tag)
643b52b9 149{
f8d5d0cc 150 root->xa_flags |= (__force gfp_t)(1 << (tag + ROOT_TAG_SHIFT));
643b52b9
NP
151}
152
2fcd9005 153static inline void root_tag_clear(struct radix_tree_root *root, unsigned tag)
643b52b9 154{
f8d5d0cc 155 root->xa_flags &= (__force gfp_t)~(1 << (tag + ROOT_TAG_SHIFT));
643b52b9
NP
156}
157
158static inline void root_tag_clear_all(struct radix_tree_root *root)
159{
f8d5d0cc 160 root->xa_flags &= (__force gfp_t)((1 << ROOT_TAG_SHIFT) - 1);
643b52b9
NP
161}
162
35534c86 163static inline int root_tag_get(const struct radix_tree_root *root, unsigned tag)
643b52b9 164{
f8d5d0cc 165 return (__force int)root->xa_flags & (1 << (tag + ROOT_TAG_SHIFT));
643b52b9
NP
166}
167
35534c86 168static inline unsigned root_tags_get(const struct radix_tree_root *root)
643b52b9 169{
f8d5d0cc 170 return (__force unsigned)root->xa_flags >> ROOT_TAG_SHIFT;
643b52b9
NP
171}
172
0a835c4f 173static inline bool is_idr(const struct radix_tree_root *root)
7b60e9ad 174{
f8d5d0cc 175 return !!(root->xa_flags & ROOT_IS_IDR);
7b60e9ad
MW
176}
177
643b52b9
NP
178/*
179 * Returns 1 if any slot in the node has this tag set.
180 * Otherwise returns 0.
181 */
35534c86
MW
182static inline int any_tag_set(const struct radix_tree_node *node,
183 unsigned int tag)
643b52b9 184{
2fcd9005 185 unsigned idx;
643b52b9
NP
186 for (idx = 0; idx < RADIX_TREE_TAG_LONGS; idx++) {
187 if (node->tags[tag][idx])
188 return 1;
189 }
190 return 0;
191}
78c1d784 192
0a835c4f
MW
193static inline void all_tag_set(struct radix_tree_node *node, unsigned int tag)
194{
195 bitmap_fill(node->tags[tag], RADIX_TREE_MAP_SIZE);
196}
197
78c1d784
KK
198/**
199 * radix_tree_find_next_bit - find the next set bit in a memory region
200 *
201 * @addr: The address to base the search on
202 * @size: The bitmap size in bits
203 * @offset: The bitnumber to start searching at
204 *
205 * Unrollable variant of find_next_bit() for constant size arrays.
206 * Tail bits starting from size to roundup(size, BITS_PER_LONG) must be zero.
207 * Returns next bit offset, or size if nothing found.
208 */
209static __always_inline unsigned long
bc412fca
MW
210radix_tree_find_next_bit(struct radix_tree_node *node, unsigned int tag,
211 unsigned long offset)
78c1d784 212{
bc412fca 213 const unsigned long *addr = node->tags[tag];
78c1d784 214
bc412fca 215 if (offset < RADIX_TREE_MAP_SIZE) {
78c1d784
KK
216 unsigned long tmp;
217
218 addr += offset / BITS_PER_LONG;
219 tmp = *addr >> (offset % BITS_PER_LONG);
220 if (tmp)
221 return __ffs(tmp) + offset;
222 offset = (offset + BITS_PER_LONG) & ~(BITS_PER_LONG - 1);
bc412fca 223 while (offset < RADIX_TREE_MAP_SIZE) {
78c1d784
KK
224 tmp = *++addr;
225 if (tmp)
226 return __ffs(tmp) + offset;
227 offset += BITS_PER_LONG;
228 }
229 }
bc412fca 230 return RADIX_TREE_MAP_SIZE;
78c1d784
KK
231}
232
268f42de
MW
233static unsigned int iter_offset(const struct radix_tree_iter *iter)
234{
235 return (iter->index >> iter_shift(iter)) & RADIX_TREE_MAP_MASK;
236}
237
218ed750
MW
238/*
239 * The maximum index which can be stored in a radix tree
240 */
241static inline unsigned long shift_maxindex(unsigned int shift)
242{
243 return (RADIX_TREE_MAP_SIZE << shift) - 1;
244}
245
35534c86 246static inline unsigned long node_maxindex(const struct radix_tree_node *node)
218ed750
MW
247{
248 return shift_maxindex(node->shift);
249}
250
0a835c4f
MW
251static unsigned long next_index(unsigned long index,
252 const struct radix_tree_node *node,
253 unsigned long offset)
254{
255 return (index & ~node_maxindex(node)) + (offset << node->shift);
256}
257
0796c583 258#ifndef __KERNEL__
0a835c4f
MW
259static void dump_ida_node(void *entry, unsigned long index)
260{
261 unsigned long i;
262
263 if (!entry)
264 return;
265
266 if (radix_tree_is_internal_node(entry)) {
267 struct radix_tree_node *node = entry_to_node(entry);
268
269 pr_debug("ida node: %p offset %d indices %lu-%lu parent %p free %lx shift %d count %d\n",
270 node, node->offset, index * IDA_BITMAP_BITS,
271 ((index | node_maxindex(node)) + 1) *
272 IDA_BITMAP_BITS - 1,
273 node->parent, node->tags[0][0], node->shift,
274 node->count);
275 for (i = 0; i < RADIX_TREE_MAP_SIZE; i++)
276 dump_ida_node(node->slots[i],
277 index | (i << node->shift));
3159f943 278 } else if (xa_is_value(entry)) {
d37cacc5
MW
279 pr_debug("ida excp: %p offset %d indices %lu-%lu data %lx\n",
280 entry, (int)(index & RADIX_TREE_MAP_MASK),
281 index * IDA_BITMAP_BITS,
3159f943
MW
282 index * IDA_BITMAP_BITS + BITS_PER_XA_VALUE,
283 xa_to_value(entry));
0a835c4f
MW
284 } else {
285 struct ida_bitmap *bitmap = entry;
286
287 pr_debug("ida btmp: %p offset %d indices %lu-%lu data", bitmap,
288 (int)(index & RADIX_TREE_MAP_MASK),
289 index * IDA_BITMAP_BITS,
290 (index + 1) * IDA_BITMAP_BITS - 1);
291 for (i = 0; i < IDA_BITMAP_LONGS; i++)
292 pr_cont(" %lx", bitmap->bitmap[i]);
293 pr_cont("\n");
294 }
295}
296
297static void ida_dump(struct ida *ida)
298{
299 struct radix_tree_root *root = &ida->ida_rt;
f8d5d0cc
MW
300 pr_debug("ida: %p node %p free %d\n", ida, root->xa_head,
301 root->xa_flags >> ROOT_TAG_SHIFT);
302 dump_ida_node(root->xa_head, 0);
0a835c4f 303}
7cf19af4
MW
304#endif
305
1da177e4
LT
306/*
307 * This assumes that the caller has performed appropriate preallocation, and
308 * that the caller has pinned this thread of control to the current CPU.
309 */
310static struct radix_tree_node *
0a835c4f 311radix_tree_node_alloc(gfp_t gfp_mask, struct radix_tree_node *parent,
d58275bc 312 struct radix_tree_root *root,
e8de4340 313 unsigned int shift, unsigned int offset,
01959dfe 314 unsigned int count, unsigned int nr_values)
1da177e4 315{
e2848a0e 316 struct radix_tree_node *ret = NULL;
1da177e4 317
5e4c0d97 318 /*
2fcd9005
MW
319 * Preload code isn't irq safe and it doesn't make sense to use
320 * preloading during an interrupt anyway as all the allocations have
321 * to be atomic. So just do normal allocation when in interrupt.
5e4c0d97 322 */
d0164adc 323 if (!gfpflags_allow_blocking(gfp_mask) && !in_interrupt()) {
1da177e4
LT
324 struct radix_tree_preload *rtp;
325
58e698af
VD
326 /*
327 * Even if the caller has preloaded, try to allocate from the
05eb6e72
VD
328 * cache first for the new node to get accounted to the memory
329 * cgroup.
58e698af
VD
330 */
331 ret = kmem_cache_alloc(radix_tree_node_cachep,
05eb6e72 332 gfp_mask | __GFP_NOWARN);
58e698af
VD
333 if (ret)
334 goto out;
335
e2848a0e
NP
336 /*
337 * Provided the caller has preloaded here, we will always
338 * succeed in getting a node here (and never reach
339 * kmem_cache_alloc)
340 */
7c8e0181 341 rtp = this_cpu_ptr(&radix_tree_preloads);
1da177e4 342 if (rtp->nr) {
9d2a8da0 343 ret = rtp->nodes;
1293d5c5 344 rtp->nodes = ret->parent;
1da177e4
LT
345 rtp->nr--;
346 }
ce80b067
CM
347 /*
348 * Update the allocation stack trace as this is more useful
349 * for debugging.
350 */
351 kmemleak_update_trace(ret);
58e698af 352 goto out;
1da177e4 353 }
05eb6e72 354 ret = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
58e698af 355out:
b194d16c 356 BUG_ON(radix_tree_is_internal_node(ret));
e8de4340 357 if (ret) {
e8de4340
MW
358 ret->shift = shift;
359 ret->offset = offset;
360 ret->count = count;
01959dfe 361 ret->nr_values = nr_values;
d58275bc 362 ret->parent = parent;
01959dfe 363 ret->array = root;
e8de4340 364 }
1da177e4
LT
365 return ret;
366}
367
7cf9c2c7
NP
368static void radix_tree_node_rcu_free(struct rcu_head *head)
369{
370 struct radix_tree_node *node =
371 container_of(head, struct radix_tree_node, rcu_head);
643b52b9
NP
372
373 /*
175542f5
MW
374 * Must only free zeroed nodes into the slab. We can be left with
375 * non-NULL entries by radix_tree_free_nodes, so clear the entries
376 * and tags here.
643b52b9 377 */
175542f5
MW
378 memset(node->slots, 0, sizeof(node->slots));
379 memset(node->tags, 0, sizeof(node->tags));
91d9c05a 380 INIT_LIST_HEAD(&node->private_list);
643b52b9 381
7cf9c2c7
NP
382 kmem_cache_free(radix_tree_node_cachep, node);
383}
384
1da177e4
LT
385static inline void
386radix_tree_node_free(struct radix_tree_node *node)
387{
7cf9c2c7 388 call_rcu(&node->rcu_head, radix_tree_node_rcu_free);
1da177e4
LT
389}
390
391/*
392 * Load up this CPU's radix_tree_node buffer with sufficient objects to
393 * ensure that the addition of a single element in the tree cannot fail. On
394 * success, return zero, with preemption disabled. On error, return -ENOMEM
395 * with preemption not disabled.
b34df792
DH
396 *
397 * To make use of this facility, the radix tree must be initialised without
d0164adc 398 * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE().
1da177e4 399 */
bc9ae224 400static __must_check int __radix_tree_preload(gfp_t gfp_mask, unsigned nr)
1da177e4
LT
401{
402 struct radix_tree_preload *rtp;
403 struct radix_tree_node *node;
404 int ret = -ENOMEM;
405
05eb6e72
VD
406 /*
407 * Nodes preloaded by one cgroup can be be used by another cgroup, so
408 * they should never be accounted to any particular memory cgroup.
409 */
410 gfp_mask &= ~__GFP_ACCOUNT;
411
1da177e4 412 preempt_disable();
7c8e0181 413 rtp = this_cpu_ptr(&radix_tree_preloads);
c78c66d1 414 while (rtp->nr < nr) {
1da177e4 415 preempt_enable();
488514d1 416 node = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
1da177e4
LT
417 if (node == NULL)
418 goto out;
419 preempt_disable();
7c8e0181 420 rtp = this_cpu_ptr(&radix_tree_preloads);
c78c66d1 421 if (rtp->nr < nr) {
1293d5c5 422 node->parent = rtp->nodes;
9d2a8da0
KS
423 rtp->nodes = node;
424 rtp->nr++;
425 } else {
1da177e4 426 kmem_cache_free(radix_tree_node_cachep, node);
9d2a8da0 427 }
1da177e4
LT
428 }
429 ret = 0;
430out:
431 return ret;
432}
5e4c0d97
JK
433
434/*
435 * Load up this CPU's radix_tree_node buffer with sufficient objects to
436 * ensure that the addition of a single element in the tree cannot fail. On
437 * success, return zero, with preemption disabled. On error, return -ENOMEM
438 * with preemption not disabled.
439 *
440 * To make use of this facility, the radix tree must be initialised without
d0164adc 441 * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE().
5e4c0d97
JK
442 */
443int radix_tree_preload(gfp_t gfp_mask)
444{
445 /* Warn on non-sensical use... */
d0164adc 446 WARN_ON_ONCE(!gfpflags_allow_blocking(gfp_mask));
c78c66d1 447 return __radix_tree_preload(gfp_mask, RADIX_TREE_PRELOAD_SIZE);
5e4c0d97 448}
d7f0923d 449EXPORT_SYMBOL(radix_tree_preload);
1da177e4 450
5e4c0d97
JK
451/*
452 * The same as above function, except we don't guarantee preloading happens.
453 * We do it, if we decide it helps. On success, return zero with preemption
454 * disabled. On error, return -ENOMEM with preemption not disabled.
455 */
456int radix_tree_maybe_preload(gfp_t gfp_mask)
457{
d0164adc 458 if (gfpflags_allow_blocking(gfp_mask))
c78c66d1 459 return __radix_tree_preload(gfp_mask, RADIX_TREE_PRELOAD_SIZE);
5e4c0d97
JK
460 /* Preloading doesn't help anything with this gfp mask, skip it */
461 preempt_disable();
462 return 0;
463}
464EXPORT_SYMBOL(radix_tree_maybe_preload);
465
2791653a
MW
466#ifdef CONFIG_RADIX_TREE_MULTIORDER
467/*
468 * Preload with enough objects to ensure that we can split a single entry
469 * of order @old_order into many entries of size @new_order
470 */
471int radix_tree_split_preload(unsigned int old_order, unsigned int new_order,
472 gfp_t gfp_mask)
473{
474 unsigned top = 1 << (old_order % RADIX_TREE_MAP_SHIFT);
475 unsigned layers = (old_order / RADIX_TREE_MAP_SHIFT) -
476 (new_order / RADIX_TREE_MAP_SHIFT);
477 unsigned nr = 0;
478
479 WARN_ON_ONCE(!gfpflags_allow_blocking(gfp_mask));
480 BUG_ON(new_order >= old_order);
481
482 while (layers--)
483 nr = nr * RADIX_TREE_MAP_SIZE + 1;
484 return __radix_tree_preload(gfp_mask, top * nr);
485}
486#endif
487
c78c66d1
KS
488/*
489 * The same as function above, but preload number of nodes required to insert
490 * (1 << order) continuous naturally-aligned elements.
491 */
492int radix_tree_maybe_preload_order(gfp_t gfp_mask, int order)
493{
494 unsigned long nr_subtrees;
495 int nr_nodes, subtree_height;
496
497 /* Preloading doesn't help anything with this gfp mask, skip it */
498 if (!gfpflags_allow_blocking(gfp_mask)) {
499 preempt_disable();
500 return 0;
501 }
502
503 /*
504 * Calculate number and height of fully populated subtrees it takes to
505 * store (1 << order) elements.
506 */
507 nr_subtrees = 1 << order;
508 for (subtree_height = 0; nr_subtrees > RADIX_TREE_MAP_SIZE;
509 subtree_height++)
510 nr_subtrees >>= RADIX_TREE_MAP_SHIFT;
511
512 /*
513 * The worst case is zero height tree with a single item at index 0 and
514 * then inserting items starting at ULONG_MAX - (1 << order).
515 *
516 * This requires RADIX_TREE_MAX_PATH nodes to build branch from root to
517 * 0-index item.
518 */
519 nr_nodes = RADIX_TREE_MAX_PATH;
520
521 /* Plus branch to fully populated subtrees. */
522 nr_nodes += RADIX_TREE_MAX_PATH - subtree_height;
523
524 /* Root node is shared. */
525 nr_nodes--;
526
527 /* Plus nodes required to build subtrees. */
528 nr_nodes += nr_subtrees * height_to_maxnodes[subtree_height];
529
530 return __radix_tree_preload(gfp_mask, nr_nodes);
531}
532
35534c86 533static unsigned radix_tree_load_root(const struct radix_tree_root *root,
1456a439
MW
534 struct radix_tree_node **nodep, unsigned long *maxindex)
535{
f8d5d0cc 536 struct radix_tree_node *node = rcu_dereference_raw(root->xa_head);
1456a439
MW
537
538 *nodep = node;
539
b194d16c 540 if (likely(radix_tree_is_internal_node(node))) {
4dd6c098 541 node = entry_to_node(node);
1456a439 542 *maxindex = node_maxindex(node);
c12e51b0 543 return node->shift + RADIX_TREE_MAP_SHIFT;
1456a439
MW
544 }
545
546 *maxindex = 0;
547 return 0;
548}
549
1da177e4
LT
550/*
551 * Extend a radix tree so it can store key @index.
552 */
0a835c4f 553static int radix_tree_extend(struct radix_tree_root *root, gfp_t gfp,
d0891265 554 unsigned long index, unsigned int shift)
1da177e4 555{
d7b62727 556 void *entry;
d0891265 557 unsigned int maxshift;
1da177e4
LT
558 int tag;
559
d0891265
MW
560 /* Figure out what the shift should be. */
561 maxshift = shift;
562 while (index > shift_maxindex(maxshift))
563 maxshift += RADIX_TREE_MAP_SHIFT;
1da177e4 564
f8d5d0cc 565 entry = rcu_dereference_raw(root->xa_head);
d7b62727 566 if (!entry && (!is_idr(root) || root_tag_get(root, IDR_FREE)))
1da177e4 567 goto out;
1da177e4 568
1da177e4 569 do {
0a835c4f 570 struct radix_tree_node *node = radix_tree_node_alloc(gfp, NULL,
d58275bc 571 root, shift, 0, 1, 0);
2fcd9005 572 if (!node)
1da177e4
LT
573 return -ENOMEM;
574
0a835c4f
MW
575 if (is_idr(root)) {
576 all_tag_set(node, IDR_FREE);
577 if (!root_tag_get(root, IDR_FREE)) {
578 tag_clear(node, IDR_FREE, 0);
579 root_tag_set(root, IDR_FREE);
580 }
581 } else {
582 /* Propagate the aggregated tag info to the new child */
583 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
584 if (root_tag_get(root, tag))
585 tag_set(node, tag, 0);
586 }
1da177e4
LT
587 }
588
d0891265 589 BUG_ON(shift > BITS_PER_LONG);
d7b62727
MW
590 if (radix_tree_is_internal_node(entry)) {
591 entry_to_node(entry)->parent = node;
3159f943 592 } else if (xa_is_value(entry)) {
01959dfe
MW
593 /* Moving a value entry root->xa_head to a node */
594 node->nr_values = 1;
f7942430 595 }
d7b62727
MW
596 /*
597 * entry was already in the radix tree, so we do not need
598 * rcu_assign_pointer here
599 */
600 node->slots[0] = (void __rcu *)entry;
601 entry = node_to_entry(node);
f8d5d0cc 602 rcu_assign_pointer(root->xa_head, entry);
d0891265 603 shift += RADIX_TREE_MAP_SHIFT;
d0891265 604 } while (shift <= maxshift);
1da177e4 605out:
d0891265 606 return maxshift + RADIX_TREE_MAP_SHIFT;
1da177e4
LT
607}
608
f4b109c6
JW
609/**
610 * radix_tree_shrink - shrink radix tree to minimum height
611 * @root radix tree root
612 */
0ac398ef 613static inline bool radix_tree_shrink(struct radix_tree_root *root,
c7df8ad2 614 radix_tree_update_node_t update_node)
f4b109c6 615{
0ac398ef
MW
616 bool shrunk = false;
617
f4b109c6 618 for (;;) {
f8d5d0cc 619 struct radix_tree_node *node = rcu_dereference_raw(root->xa_head);
f4b109c6
JW
620 struct radix_tree_node *child;
621
622 if (!radix_tree_is_internal_node(node))
623 break;
624 node = entry_to_node(node);
625
626 /*
627 * The candidate node has more than one child, or its child
628 * is not at the leftmost slot, or the child is a multiorder
629 * entry, we cannot shrink.
630 */
631 if (node->count != 1)
632 break;
12320d0f 633 child = rcu_dereference_raw(node->slots[0]);
f4b109c6
JW
634 if (!child)
635 break;
636 if (!radix_tree_is_internal_node(child) && node->shift)
637 break;
638
66ee620f
MW
639 /*
640 * For an IDR, we must not shrink entry 0 into the root in
641 * case somebody calls idr_replace() with a pointer that
642 * appears to be an internal entry
643 */
644 if (!node->shift && is_idr(root))
645 break;
646
f4b109c6
JW
647 if (radix_tree_is_internal_node(child))
648 entry_to_node(child)->parent = NULL;
649
650 /*
651 * We don't need rcu_assign_pointer(), since we are simply
652 * moving the node from one part of the tree to another: if it
653 * was safe to dereference the old pointer to it
654 * (node->slots[0]), it will be safe to dereference the new
f8d5d0cc 655 * one (root->xa_head) as far as dependent read barriers go.
f4b109c6 656 */
f8d5d0cc 657 root->xa_head = (void __rcu *)child;
0a835c4f
MW
658 if (is_idr(root) && !tag_get(node, IDR_FREE, 0))
659 root_tag_clear(root, IDR_FREE);
f4b109c6
JW
660
661 /*
662 * We have a dilemma here. The node's slot[0] must not be
663 * NULLed in case there are concurrent lookups expecting to
664 * find the item. However if this was a bottom-level node,
665 * then it may be subject to the slot pointer being visible
666 * to callers dereferencing it. If item corresponding to
667 * slot[0] is subsequently deleted, these callers would expect
668 * their slot to become empty sooner or later.
669 *
670 * For example, lockless pagecache will look up a slot, deref
671 * the page pointer, and if the page has 0 refcount it means it
672 * was concurrently deleted from pagecache so try the deref
673 * again. Fortunately there is already a requirement for logic
674 * to retry the entire slot lookup -- the indirect pointer
675 * problem (replacing direct root node with an indirect pointer
676 * also results in a stale slot). So tag the slot as indirect
677 * to force callers to retry.
678 */
4d693d08
JW
679 node->count = 0;
680 if (!radix_tree_is_internal_node(child)) {
d7b62727 681 node->slots[0] = (void __rcu *)RADIX_TREE_RETRY;
4d693d08 682 if (update_node)
c7df8ad2 683 update_node(node);
4d693d08 684 }
f4b109c6 685
ea07b862 686 WARN_ON_ONCE(!list_empty(&node->private_list));
f4b109c6 687 radix_tree_node_free(node);
0ac398ef 688 shrunk = true;
f4b109c6 689 }
0ac398ef
MW
690
691 return shrunk;
f4b109c6
JW
692}
693
0ac398ef 694static bool delete_node(struct radix_tree_root *root,
4d693d08 695 struct radix_tree_node *node,
c7df8ad2 696 radix_tree_update_node_t update_node)
f4b109c6 697{
0ac398ef
MW
698 bool deleted = false;
699
f4b109c6
JW
700 do {
701 struct radix_tree_node *parent;
702
703 if (node->count) {
12320d0f 704 if (node_to_entry(node) ==
f8d5d0cc
MW
705 rcu_dereference_raw(root->xa_head))
706 deleted |= radix_tree_shrink(root, update_node);
0ac398ef 707 return deleted;
f4b109c6
JW
708 }
709
710 parent = node->parent;
711 if (parent) {
712 parent->slots[node->offset] = NULL;
713 parent->count--;
714 } else {
0a835c4f
MW
715 /*
716 * Shouldn't the tags already have all been cleared
717 * by the caller?
718 */
719 if (!is_idr(root))
720 root_tag_clear_all(root);
f8d5d0cc 721 root->xa_head = NULL;
f4b109c6
JW
722 }
723
ea07b862 724 WARN_ON_ONCE(!list_empty(&node->private_list));
f4b109c6 725 radix_tree_node_free(node);
0ac398ef 726 deleted = true;
f4b109c6
JW
727
728 node = parent;
729 } while (node);
0ac398ef
MW
730
731 return deleted;
f4b109c6
JW
732}
733
1da177e4 734/**
139e5616 735 * __radix_tree_create - create a slot in a radix tree
1da177e4
LT
736 * @root: radix tree root
737 * @index: index key
e6145236 738 * @order: index occupies 2^order aligned slots
139e5616
JW
739 * @nodep: returns node
740 * @slotp: returns slot
1da177e4 741 *
139e5616
JW
742 * Create, if necessary, and return the node and slot for an item
743 * at position @index in the radix tree @root.
744 *
745 * Until there is more than one item in the tree, no nodes are
f8d5d0cc 746 * allocated and @root->xa_head is used as a direct slot instead of
139e5616
JW
747 * pointing to a node, in which case *@nodep will be NULL.
748 *
749 * Returns -ENOMEM, or 0 for success.
1da177e4 750 */
139e5616 751int __radix_tree_create(struct radix_tree_root *root, unsigned long index,
e6145236 752 unsigned order, struct radix_tree_node **nodep,
d7b62727 753 void __rcu ***slotp)
1da177e4 754{
89148aa4 755 struct radix_tree_node *node = NULL, *child;
f8d5d0cc 756 void __rcu **slot = (void __rcu **)&root->xa_head;
49ea6ebc 757 unsigned long maxindex;
89148aa4 758 unsigned int shift, offset = 0;
49ea6ebc 759 unsigned long max = index | ((1UL << order) - 1);
0a835c4f 760 gfp_t gfp = root_gfp_mask(root);
49ea6ebc 761
89148aa4 762 shift = radix_tree_load_root(root, &child, &maxindex);
1da177e4
LT
763
764 /* Make sure the tree is high enough. */
175542f5
MW
765 if (order > 0 && max == ((1UL << order) - 1))
766 max++;
49ea6ebc 767 if (max > maxindex) {
0a835c4f 768 int error = radix_tree_extend(root, gfp, max, shift);
49ea6ebc 769 if (error < 0)
1da177e4 770 return error;
49ea6ebc 771 shift = error;
f8d5d0cc 772 child = rcu_dereference_raw(root->xa_head);
1da177e4
LT
773 }
774
e6145236 775 while (shift > order) {
c12e51b0 776 shift -= RADIX_TREE_MAP_SHIFT;
89148aa4 777 if (child == NULL) {
1da177e4 778 /* Have to add a child node. */
d58275bc 779 child = radix_tree_node_alloc(gfp, node, root, shift,
e8de4340 780 offset, 0, 0);
89148aa4 781 if (!child)
1da177e4 782 return -ENOMEM;
89148aa4
MW
783 rcu_assign_pointer(*slot, node_to_entry(child));
784 if (node)
1da177e4 785 node->count++;
89148aa4 786 } else if (!radix_tree_is_internal_node(child))
e6145236 787 break;
1da177e4
LT
788
789 /* Go a level down */
89148aa4 790 node = entry_to_node(child);
9e85d811 791 offset = radix_tree_descend(node, &child, index);
89148aa4 792 slot = &node->slots[offset];
e6145236
MW
793 }
794
175542f5
MW
795 if (nodep)
796 *nodep = node;
797 if (slotp)
798 *slotp = slot;
799 return 0;
800}
801
175542f5
MW
802/*
803 * Free any nodes below this node. The tree is presumed to not need
804 * shrinking, and any user data in the tree is presumed to not need a
805 * destructor called on it. If we need to add a destructor, we can
806 * add that functionality later. Note that we may not clear tags or
807 * slots from the tree as an RCU walker may still have a pointer into
808 * this subtree. We could replace the entries with RADIX_TREE_RETRY,
809 * but we'll still have to clear those in rcu_free.
810 */
811static void radix_tree_free_nodes(struct radix_tree_node *node)
812{
813 unsigned offset = 0;
814 struct radix_tree_node *child = entry_to_node(node);
815
816 for (;;) {
12320d0f 817 void *entry = rcu_dereference_raw(child->slots[offset]);
02c02bf1 818 if (xa_is_node(entry) && child->shift) {
175542f5
MW
819 child = entry_to_node(entry);
820 offset = 0;
821 continue;
822 }
823 offset++;
824 while (offset == RADIX_TREE_MAP_SIZE) {
825 struct radix_tree_node *old = child;
826 offset = child->offset + 1;
827 child = child->parent;
dd040b6f 828 WARN_ON_ONCE(!list_empty(&old->private_list));
175542f5
MW
829 radix_tree_node_free(old);
830 if (old == entry_to_node(node))
831 return;
832 }
833 }
834}
835
0a835c4f 836#ifdef CONFIG_RADIX_TREE_MULTIORDER
d7b62727
MW
837static inline int insert_entries(struct radix_tree_node *node,
838 void __rcu **slot, void *item, unsigned order, bool replace)
175542f5 839{
02c02bf1 840 void *sibling;
175542f5
MW
841 unsigned i, n, tag, offset, tags = 0;
842
843 if (node) {
e157b555
MW
844 if (order > node->shift)
845 n = 1 << (order - node->shift);
846 else
847 n = 1;
175542f5
MW
848 offset = get_slot_offset(node, slot);
849 } else {
850 n = 1;
851 offset = 0;
852 }
853
854 if (n > 1) {
e6145236 855 offset = offset & ~(n - 1);
89148aa4 856 slot = &node->slots[offset];
175542f5 857 }
02c02bf1 858 sibling = xa_mk_sibling(offset);
175542f5
MW
859
860 for (i = 0; i < n; i++) {
861 if (slot[i]) {
862 if (replace) {
863 node->count--;
864 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
865 if (tag_get(node, tag, offset + i))
866 tags |= 1 << tag;
867 } else
e6145236
MW
868 return -EEXIST;
869 }
175542f5 870 }
e6145236 871
175542f5 872 for (i = 0; i < n; i++) {
12320d0f 873 struct radix_tree_node *old = rcu_dereference_raw(slot[i]);
175542f5 874 if (i) {
02c02bf1 875 rcu_assign_pointer(slot[i], sibling);
175542f5
MW
876 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
877 if (tags & (1 << tag))
878 tag_clear(node, tag, offset + i);
879 } else {
880 rcu_assign_pointer(slot[i], item);
881 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
882 if (tags & (1 << tag))
883 tag_set(node, tag, offset);
e6145236 884 }
02c02bf1 885 if (xa_is_node(old))
175542f5 886 radix_tree_free_nodes(old);
3159f943 887 if (xa_is_value(old))
01959dfe 888 node->nr_values--;
612d6c19 889 }
175542f5
MW
890 if (node) {
891 node->count += n;
3159f943 892 if (xa_is_value(item))
01959dfe 893 node->nr_values += n;
175542f5
MW
894 }
895 return n;
139e5616 896}
175542f5 897#else
d7b62727
MW
898static inline int insert_entries(struct radix_tree_node *node,
899 void __rcu **slot, void *item, unsigned order, bool replace)
175542f5
MW
900{
901 if (*slot)
902 return -EEXIST;
903 rcu_assign_pointer(*slot, item);
904 if (node) {
905 node->count++;
3159f943 906 if (xa_is_value(item))
01959dfe 907 node->nr_values++;
175542f5
MW
908 }
909 return 1;
910}
911#endif
139e5616
JW
912
913/**
e6145236 914 * __radix_tree_insert - insert into a radix tree
139e5616
JW
915 * @root: radix tree root
916 * @index: index key
e6145236 917 * @order: key covers the 2^order indices around index
139e5616
JW
918 * @item: item to insert
919 *
920 * Insert an item into the radix tree at position @index.
921 */
e6145236
MW
922int __radix_tree_insert(struct radix_tree_root *root, unsigned long index,
923 unsigned order, void *item)
139e5616
JW
924{
925 struct radix_tree_node *node;
d7b62727 926 void __rcu **slot;
139e5616
JW
927 int error;
928
b194d16c 929 BUG_ON(radix_tree_is_internal_node(item));
139e5616 930
e6145236 931 error = __radix_tree_create(root, index, order, &node, &slot);
139e5616
JW
932 if (error)
933 return error;
175542f5
MW
934
935 error = insert_entries(node, slot, item, order, false);
936 if (error < 0)
937 return error;
201b6264 938
612d6c19 939 if (node) {
7b60e9ad 940 unsigned offset = get_slot_offset(node, slot);
7b60e9ad
MW
941 BUG_ON(tag_get(node, 0, offset));
942 BUG_ON(tag_get(node, 1, offset));
943 BUG_ON(tag_get(node, 2, offset));
612d6c19 944 } else {
7b60e9ad 945 BUG_ON(root_tags_get(root));
612d6c19 946 }
1da177e4 947
1da177e4
LT
948 return 0;
949}
e6145236 950EXPORT_SYMBOL(__radix_tree_insert);
1da177e4 951
139e5616
JW
952/**
953 * __radix_tree_lookup - lookup an item in a radix tree
954 * @root: radix tree root
955 * @index: index key
956 * @nodep: returns node
957 * @slotp: returns slot
958 *
959 * Lookup and return the item at position @index in the radix
960 * tree @root.
961 *
962 * Until there is more than one item in the tree, no nodes are
f8d5d0cc 963 * allocated and @root->xa_head is used as a direct slot instead of
139e5616 964 * pointing to a node, in which case *@nodep will be NULL.
7cf9c2c7 965 */
35534c86
MW
966void *__radix_tree_lookup(const struct radix_tree_root *root,
967 unsigned long index, struct radix_tree_node **nodep,
d7b62727 968 void __rcu ***slotp)
1da177e4 969{
139e5616 970 struct radix_tree_node *node, *parent;
85829954 971 unsigned long maxindex;
d7b62727 972 void __rcu **slot;
612d6c19 973
85829954
MW
974 restart:
975 parent = NULL;
f8d5d0cc 976 slot = (void __rcu **)&root->xa_head;
9e85d811 977 radix_tree_load_root(root, &node, &maxindex);
85829954 978 if (index > maxindex)
1da177e4
LT
979 return NULL;
980
b194d16c 981 while (radix_tree_is_internal_node(node)) {
85829954 982 unsigned offset;
1da177e4 983
85829954
MW
984 if (node == RADIX_TREE_RETRY)
985 goto restart;
4dd6c098 986 parent = entry_to_node(node);
9e85d811 987 offset = radix_tree_descend(parent, &node, index);
85829954 988 slot = parent->slots + offset;
66ee620f
MW
989 if (parent->shift == 0)
990 break;
85829954 991 }
1da177e4 992
139e5616
JW
993 if (nodep)
994 *nodep = parent;
995 if (slotp)
996 *slotp = slot;
997 return node;
b72b71c6
HS
998}
999
1000/**
1001 * radix_tree_lookup_slot - lookup a slot in a radix tree
1002 * @root: radix tree root
1003 * @index: index key
1004 *
1005 * Returns: the slot corresponding to the position @index in the
1006 * radix tree @root. This is useful for update-if-exists operations.
1007 *
1008 * This function can be called under rcu_read_lock iff the slot is not
1009 * modified by radix_tree_replace_slot, otherwise it must be called
1010 * exclusive from other writers. Any dereference of the slot must be done
1011 * using radix_tree_deref_slot.
1012 */
d7b62727 1013void __rcu **radix_tree_lookup_slot(const struct radix_tree_root *root,
35534c86 1014 unsigned long index)
b72b71c6 1015{
d7b62727 1016 void __rcu **slot;
139e5616
JW
1017
1018 if (!__radix_tree_lookup(root, index, NULL, &slot))
1019 return NULL;
1020 return slot;
a4331366 1021}
a4331366
HR
1022EXPORT_SYMBOL(radix_tree_lookup_slot);
1023
1024/**
1025 * radix_tree_lookup - perform lookup operation on a radix tree
1026 * @root: radix tree root
1027 * @index: index key
1028 *
1029 * Lookup the item at the position @index in the radix tree @root.
7cf9c2c7
NP
1030 *
1031 * This function can be called under rcu_read_lock, however the caller
1032 * must manage lifetimes of leaf nodes (eg. RCU may also be used to free
1033 * them safely). No RCU barriers are required to access or modify the
1034 * returned item, however.
a4331366 1035 */
35534c86 1036void *radix_tree_lookup(const struct radix_tree_root *root, unsigned long index)
a4331366 1037{
139e5616 1038 return __radix_tree_lookup(root, index, NULL, NULL);
1da177e4
LT
1039}
1040EXPORT_SYMBOL(radix_tree_lookup);
1041
0a835c4f 1042static inline void replace_sibling_entries(struct radix_tree_node *node,
01959dfe 1043 void __rcu **slot, int count, int values)
a90eb3a2 1044{
a90eb3a2 1045#ifdef CONFIG_RADIX_TREE_MULTIORDER
02c02bf1
MW
1046 unsigned offset = get_slot_offset(node, slot);
1047 void *ptr = xa_mk_sibling(offset);
a90eb3a2 1048
02c02bf1 1049 while (++offset < RADIX_TREE_MAP_SIZE) {
12320d0f 1050 if (rcu_dereference_raw(node->slots[offset]) != ptr)
a90eb3a2 1051 break;
0a835c4f
MW
1052 if (count < 0) {
1053 node->slots[offset] = NULL;
1054 node->count--;
1055 }
01959dfe 1056 node->nr_values += values;
a90eb3a2
MW
1057 }
1058#endif
a90eb3a2
MW
1059}
1060
d7b62727 1061static void replace_slot(void __rcu **slot, void *item,
01959dfe 1062 struct radix_tree_node *node, int count, int values)
f7942430 1063{
01959dfe 1064 if (node && (count || values)) {
f4b109c6 1065 node->count += count;
01959dfe
MW
1066 node->nr_values += values;
1067 replace_sibling_entries(node, slot, count, values);
f4b109c6 1068 }
f7942430
JW
1069
1070 rcu_assign_pointer(*slot, item);
1071}
1072
0a835c4f
MW
1073static bool node_tag_get(const struct radix_tree_root *root,
1074 const struct radix_tree_node *node,
1075 unsigned int tag, unsigned int offset)
a90eb3a2 1076{
0a835c4f
MW
1077 if (node)
1078 return tag_get(node, tag, offset);
1079 return root_tag_get(root, tag);
1080}
a90eb3a2 1081
0a835c4f
MW
1082/*
1083 * IDR users want to be able to store NULL in the tree, so if the slot isn't
1084 * free, don't adjust the count, even if it's transitioning between NULL and
1085 * non-NULL. For the IDA, we mark slots as being IDR_FREE while they still
1086 * have empty bits, but it only stores NULL in slots when they're being
1087 * deleted.
1088 */
1089static int calculate_count(struct radix_tree_root *root,
d7b62727 1090 struct radix_tree_node *node, void __rcu **slot,
0a835c4f
MW
1091 void *item, void *old)
1092{
1093 if (is_idr(root)) {
1094 unsigned offset = get_slot_offset(node, slot);
1095 bool free = node_tag_get(root, node, IDR_FREE, offset);
1096 if (!free)
1097 return 0;
1098 if (!old)
1099 return 1;
a90eb3a2 1100 }
0a835c4f 1101 return !!item - !!old;
a90eb3a2
MW
1102}
1103
6d75f366
JW
1104/**
1105 * __radix_tree_replace - replace item in a slot
4d693d08
JW
1106 * @root: radix tree root
1107 * @node: pointer to tree node
1108 * @slot: pointer to slot in @node
1109 * @item: new item to store in the slot.
1110 * @update_node: callback for changing leaf nodes
6d75f366
JW
1111 *
1112 * For use with __radix_tree_lookup(). Caller must hold tree write locked
1113 * across slot lookup and replacement.
1114 */
1115void __radix_tree_replace(struct radix_tree_root *root,
1116 struct radix_tree_node *node,
d7b62727 1117 void __rcu **slot, void *item,
c7df8ad2 1118 radix_tree_update_node_t update_node)
6d75f366 1119{
0a835c4f 1120 void *old = rcu_dereference_raw(*slot);
01959dfe 1121 int values = !!xa_is_value(item) - !!xa_is_value(old);
0a835c4f
MW
1122 int count = calculate_count(root, node, slot, item, old);
1123
6d75f366 1124 /*
01959dfe 1125 * This function supports replacing value entries and
f4b109c6 1126 * deleting entries, but that needs accounting against the
f8d5d0cc 1127 * node unless the slot is root->xa_head.
6d75f366 1128 */
f8d5d0cc 1129 WARN_ON_ONCE(!node && (slot != (void __rcu **)&root->xa_head) &&
01959dfe
MW
1130 (count || values));
1131 replace_slot(slot, item, node, count, values);
f4b109c6 1132
4d693d08
JW
1133 if (!node)
1134 return;
1135
1136 if (update_node)
c7df8ad2 1137 update_node(node);
4d693d08 1138
c7df8ad2 1139 delete_node(root, node, update_node);
6d75f366
JW
1140}
1141
1142/**
1143 * radix_tree_replace_slot - replace item in a slot
1144 * @root: radix tree root
1145 * @slot: pointer to slot
1146 * @item: new item to store in the slot.
1147 *
1148 * For use with radix_tree_lookup_slot(), radix_tree_gang_lookup_slot(),
1149 * radix_tree_gang_lookup_tag_slot(). Caller must hold tree write locked
1150 * across slot lookup and replacement.
1151 *
1152 * NOTE: This cannot be used to switch between non-entries (empty slots),
01959dfe 1153 * regular entries, and value entries, as that requires accounting
f4b109c6 1154 * inside the radix tree node. When switching from one type of entry or
e157b555
MW
1155 * deleting, use __radix_tree_lookup() and __radix_tree_replace() or
1156 * radix_tree_iter_replace().
6d75f366
JW
1157 */
1158void radix_tree_replace_slot(struct radix_tree_root *root,
d7b62727 1159 void __rcu **slot, void *item)
6d75f366 1160{
c7df8ad2 1161 __radix_tree_replace(root, NULL, slot, item, NULL);
6d75f366 1162}
10257d71 1163EXPORT_SYMBOL(radix_tree_replace_slot);
6d75f366 1164
e157b555
MW
1165/**
1166 * radix_tree_iter_replace - replace item in a slot
1167 * @root: radix tree root
1168 * @slot: pointer to slot
1169 * @item: new item to store in the slot.
1170 *
1171 * For use with radix_tree_split() and radix_tree_for_each_slot().
1172 * Caller must hold tree write locked across split and replacement.
1173 */
1174void radix_tree_iter_replace(struct radix_tree_root *root,
d7b62727
MW
1175 const struct radix_tree_iter *iter,
1176 void __rcu **slot, void *item)
e157b555 1177{
c7df8ad2 1178 __radix_tree_replace(root, iter->node, slot, item, NULL);
e157b555
MW
1179}
1180
175542f5
MW
1181#ifdef CONFIG_RADIX_TREE_MULTIORDER
1182/**
1183 * radix_tree_join - replace multiple entries with one multiorder entry
1184 * @root: radix tree root
1185 * @index: an index inside the new entry
1186 * @order: order of the new entry
1187 * @item: new entry
1188 *
1189 * Call this function to replace several entries with one larger entry.
1190 * The existing entries are presumed to not need freeing as a result of
1191 * this call.
1192 *
1193 * The replacement entry will have all the tags set on it that were set
1194 * on any of the entries it is replacing.
1195 */
1196int radix_tree_join(struct radix_tree_root *root, unsigned long index,
1197 unsigned order, void *item)
1198{
1199 struct radix_tree_node *node;
d7b62727 1200 void __rcu **slot;
175542f5
MW
1201 int error;
1202
1203 BUG_ON(radix_tree_is_internal_node(item));
1204
1205 error = __radix_tree_create(root, index, order, &node, &slot);
1206 if (!error)
1207 error = insert_entries(node, slot, item, order, true);
1208 if (error > 0)
1209 error = 0;
1210
1211 return error;
1212}
e157b555
MW
1213
1214/**
1215 * radix_tree_split - Split an entry into smaller entries
1216 * @root: radix tree root
1217 * @index: An index within the large entry
1218 * @order: Order of new entries
1219 *
1220 * Call this function as the first step in replacing a multiorder entry
1221 * with several entries of lower order. After this function returns,
1222 * loop over the relevant portion of the tree using radix_tree_for_each_slot()
1223 * and call radix_tree_iter_replace() to set up each new entry.
1224 *
1225 * The tags from this entry are replicated to all the new entries.
1226 *
1227 * The radix tree should be locked against modification during the entire
1228 * replacement operation. Lock-free lookups will see RADIX_TREE_RETRY which
1229 * should prompt RCU walkers to restart the lookup from the root.
1230 */
1231int radix_tree_split(struct radix_tree_root *root, unsigned long index,
1232 unsigned order)
1233{
1234 struct radix_tree_node *parent, *node, *child;
d7b62727 1235 void __rcu **slot;
e157b555
MW
1236 unsigned int offset, end;
1237 unsigned n, tag, tags = 0;
0a835c4f 1238 gfp_t gfp = root_gfp_mask(root);
e157b555
MW
1239
1240 if (!__radix_tree_lookup(root, index, &parent, &slot))
1241 return -ENOENT;
1242 if (!parent)
1243 return -ENOENT;
1244
1245 offset = get_slot_offset(parent, slot);
1246
1247 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
1248 if (tag_get(parent, tag, offset))
1249 tags |= 1 << tag;
1250
1251 for (end = offset + 1; end < RADIX_TREE_MAP_SIZE; end++) {
02c02bf1 1252 if (!xa_is_sibling(rcu_dereference_raw(parent->slots[end])))
e157b555
MW
1253 break;
1254 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
1255 if (tags & (1 << tag))
1256 tag_set(parent, tag, end);
1257 /* rcu_assign_pointer ensures tags are set before RETRY */
1258 rcu_assign_pointer(parent->slots[end], RADIX_TREE_RETRY);
1259 }
1260 rcu_assign_pointer(parent->slots[offset], RADIX_TREE_RETRY);
01959dfe 1261 parent->nr_values -= (end - offset);
e157b555
MW
1262
1263 if (order == parent->shift)
1264 return 0;
1265 if (order > parent->shift) {
1266 while (offset < end)
1267 offset += insert_entries(parent, &parent->slots[offset],
1268 RADIX_TREE_RETRY, order, true);
1269 return 0;
1270 }
1271
1272 node = parent;
1273
1274 for (;;) {
1275 if (node->shift > order) {
d58275bc 1276 child = radix_tree_node_alloc(gfp, node, root,
e8de4340
MW
1277 node->shift - RADIX_TREE_MAP_SHIFT,
1278 offset, 0, 0);
e157b555
MW
1279 if (!child)
1280 goto nomem;
e157b555
MW
1281 if (node != parent) {
1282 node->count++;
12320d0f
MW
1283 rcu_assign_pointer(node->slots[offset],
1284 node_to_entry(child));
e157b555
MW
1285 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
1286 if (tags & (1 << tag))
1287 tag_set(node, tag, offset);
1288 }
1289
1290 node = child;
1291 offset = 0;
1292 continue;
1293 }
1294
1295 n = insert_entries(node, &node->slots[offset],
1296 RADIX_TREE_RETRY, order, false);
1297 BUG_ON(n > RADIX_TREE_MAP_SIZE);
1298
1299 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
1300 if (tags & (1 << tag))
1301 tag_set(node, tag, offset);
1302 offset += n;
1303
1304 while (offset == RADIX_TREE_MAP_SIZE) {
1305 if (node == parent)
1306 break;
1307 offset = node->offset;
1308 child = node;
1309 node = node->parent;
1310 rcu_assign_pointer(node->slots[offset],
1311 node_to_entry(child));
1312 offset++;
1313 }
1314 if ((node == parent) && (offset == end))
1315 return 0;
1316 }
1317
1318 nomem:
1319 /* Shouldn't happen; did user forget to preload? */
1320 /* TODO: free all the allocated nodes */
1321 WARN_ON(1);
1322 return -ENOMEM;
1323}
175542f5
MW
1324#endif
1325
30b888ba
MW
1326static void node_tag_set(struct radix_tree_root *root,
1327 struct radix_tree_node *node,
1328 unsigned int tag, unsigned int offset)
1329{
1330 while (node) {
1331 if (tag_get(node, tag, offset))
1332 return;
1333 tag_set(node, tag, offset);
1334 offset = node->offset;
1335 node = node->parent;
1336 }
1337
1338 if (!root_tag_get(root, tag))
1339 root_tag_set(root, tag);
1340}
1341
1da177e4
LT
1342/**
1343 * radix_tree_tag_set - set a tag on a radix tree node
1344 * @root: radix tree root
1345 * @index: index key
2fcd9005 1346 * @tag: tag index
1da177e4 1347 *
daff89f3
JC
1348 * Set the search tag (which must be < RADIX_TREE_MAX_TAGS)
1349 * corresponding to @index in the radix tree. From
1da177e4
LT
1350 * the root all the way down to the leaf node.
1351 *
2fcd9005 1352 * Returns the address of the tagged item. Setting a tag on a not-present
1da177e4
LT
1353 * item is a bug.
1354 */
1355void *radix_tree_tag_set(struct radix_tree_root *root,
daff89f3 1356 unsigned long index, unsigned int tag)
1da177e4 1357{
fb969909
RZ
1358 struct radix_tree_node *node, *parent;
1359 unsigned long maxindex;
1da177e4 1360
9e85d811 1361 radix_tree_load_root(root, &node, &maxindex);
fb969909 1362 BUG_ON(index > maxindex);
1da177e4 1363
b194d16c 1364 while (radix_tree_is_internal_node(node)) {
fb969909 1365 unsigned offset;
1da177e4 1366
4dd6c098 1367 parent = entry_to_node(node);
9e85d811 1368 offset = radix_tree_descend(parent, &node, index);
fb969909
RZ
1369 BUG_ON(!node);
1370
1371 if (!tag_get(parent, tag, offset))
1372 tag_set(parent, tag, offset);
1da177e4
LT
1373 }
1374
612d6c19 1375 /* set the root's tag bit */
fb969909 1376 if (!root_tag_get(root, tag))
612d6c19
NP
1377 root_tag_set(root, tag);
1378
fb969909 1379 return node;
1da177e4
LT
1380}
1381EXPORT_SYMBOL(radix_tree_tag_set);
1382
30b888ba
MW
1383/**
1384 * radix_tree_iter_tag_set - set a tag on the current iterator entry
1385 * @root: radix tree root
1386 * @iter: iterator state
1387 * @tag: tag to set
1388 */
1389void radix_tree_iter_tag_set(struct radix_tree_root *root,
1390 const struct radix_tree_iter *iter, unsigned int tag)
1391{
1392 node_tag_set(root, iter->node, tag, iter_offset(iter));
1393}
1394
d604c324
MW
1395static void node_tag_clear(struct radix_tree_root *root,
1396 struct radix_tree_node *node,
1397 unsigned int tag, unsigned int offset)
1398{
1399 while (node) {
1400 if (!tag_get(node, tag, offset))
1401 return;
1402 tag_clear(node, tag, offset);
1403 if (any_tag_set(node, tag))
1404 return;
1405
1406 offset = node->offset;
1407 node = node->parent;
1408 }
1409
1410 /* clear the root's tag bit */
1411 if (root_tag_get(root, tag))
1412 root_tag_clear(root, tag);
1413}
1414
1da177e4
LT
1415/**
1416 * radix_tree_tag_clear - clear a tag on a radix tree node
1417 * @root: radix tree root
1418 * @index: index key
2fcd9005 1419 * @tag: tag index
1da177e4 1420 *
daff89f3 1421 * Clear the search tag (which must be < RADIX_TREE_MAX_TAGS)
2fcd9005
MW
1422 * corresponding to @index in the radix tree. If this causes
1423 * the leaf node to have no tags set then clear the tag in the
1da177e4
LT
1424 * next-to-leaf node, etc.
1425 *
1426 * Returns the address of the tagged item on success, else NULL. ie:
1427 * has the same return value and semantics as radix_tree_lookup().
1428 */
1429void *radix_tree_tag_clear(struct radix_tree_root *root,
daff89f3 1430 unsigned long index, unsigned int tag)
1da177e4 1431{
00f47b58
RZ
1432 struct radix_tree_node *node, *parent;
1433 unsigned long maxindex;
e2bdb933 1434 int uninitialized_var(offset);
1da177e4 1435
9e85d811 1436 radix_tree_load_root(root, &node, &maxindex);
00f47b58
RZ
1437 if (index > maxindex)
1438 return NULL;
1da177e4 1439
00f47b58 1440 parent = NULL;
1da177e4 1441
b194d16c 1442 while (radix_tree_is_internal_node(node)) {
4dd6c098 1443 parent = entry_to_node(node);
9e85d811 1444 offset = radix_tree_descend(parent, &node, index);
1da177e4
LT
1445 }
1446
d604c324
MW
1447 if (node)
1448 node_tag_clear(root, parent, tag, offset);
1da177e4 1449
00f47b58 1450 return node;
1da177e4
LT
1451}
1452EXPORT_SYMBOL(radix_tree_tag_clear);
1453
30b888ba
MW
1454/**
1455 * radix_tree_iter_tag_clear - clear a tag on the current iterator entry
1456 * @root: radix tree root
1457 * @iter: iterator state
1458 * @tag: tag to clear
1459 */
1460void radix_tree_iter_tag_clear(struct radix_tree_root *root,
1461 const struct radix_tree_iter *iter, unsigned int tag)
1462{
1463 node_tag_clear(root, iter->node, tag, iter_offset(iter));
1464}
1465
1da177e4 1466/**
32605a18
MT
1467 * radix_tree_tag_get - get a tag on a radix tree node
1468 * @root: radix tree root
1469 * @index: index key
2fcd9005 1470 * @tag: tag index (< RADIX_TREE_MAX_TAGS)
1da177e4 1471 *
32605a18 1472 * Return values:
1da177e4 1473 *
612d6c19
NP
1474 * 0: tag not present or not set
1475 * 1: tag set
ce82653d
DH
1476 *
1477 * Note that the return value of this function may not be relied on, even if
1478 * the RCU lock is held, unless tag modification and node deletion are excluded
1479 * from concurrency.
1da177e4 1480 */
35534c86 1481int radix_tree_tag_get(const struct radix_tree_root *root,
daff89f3 1482 unsigned long index, unsigned int tag)
1da177e4 1483{
4589ba6d
RZ
1484 struct radix_tree_node *node, *parent;
1485 unsigned long maxindex;
1da177e4 1486
612d6c19
NP
1487 if (!root_tag_get(root, tag))
1488 return 0;
1489
9e85d811 1490 radix_tree_load_root(root, &node, &maxindex);
4589ba6d
RZ
1491 if (index > maxindex)
1492 return 0;
7cf9c2c7 1493
b194d16c 1494 while (radix_tree_is_internal_node(node)) {
9e85d811 1495 unsigned offset;
1da177e4 1496
4dd6c098 1497 parent = entry_to_node(node);
9e85d811 1498 offset = radix_tree_descend(parent, &node, index);
1da177e4 1499
4589ba6d 1500 if (!tag_get(parent, tag, offset))
3fa36acb 1501 return 0;
4589ba6d
RZ
1502 if (node == RADIX_TREE_RETRY)
1503 break;
1da177e4 1504 }
4589ba6d
RZ
1505
1506 return 1;
1da177e4
LT
1507}
1508EXPORT_SYMBOL(radix_tree_tag_get);
1da177e4 1509
21ef5339
RZ
1510static inline void __set_iter_shift(struct radix_tree_iter *iter,
1511 unsigned int shift)
1512{
1513#ifdef CONFIG_RADIX_TREE_MULTIORDER
1514 iter->shift = shift;
1515#endif
1516}
1517
148deab2
MW
1518/* Construct iter->tags bit-mask from node->tags[tag] array */
1519static void set_iter_tags(struct radix_tree_iter *iter,
1520 struct radix_tree_node *node, unsigned offset,
1521 unsigned tag)
1522{
1523 unsigned tag_long = offset / BITS_PER_LONG;
1524 unsigned tag_bit = offset % BITS_PER_LONG;
1525
0a835c4f
MW
1526 if (!node) {
1527 iter->tags = 1;
1528 return;
1529 }
1530
148deab2
MW
1531 iter->tags = node->tags[tag][tag_long] >> tag_bit;
1532
1533 /* This never happens if RADIX_TREE_TAG_LONGS == 1 */
1534 if (tag_long < RADIX_TREE_TAG_LONGS - 1) {
1535 /* Pick tags from next element */
1536 if (tag_bit)
1537 iter->tags |= node->tags[tag][tag_long + 1] <<
1538 (BITS_PER_LONG - tag_bit);
1539 /* Clip chunk size, here only BITS_PER_LONG tags */
1540 iter->next_index = __radix_tree_iter_add(iter, BITS_PER_LONG);
1541 }
1542}
1543
1544#ifdef CONFIG_RADIX_TREE_MULTIORDER
d7b62727
MW
1545static void __rcu **skip_siblings(struct radix_tree_node **nodep,
1546 void __rcu **slot, struct radix_tree_iter *iter)
148deab2 1547{
148deab2
MW
1548 while (iter->index < iter->next_index) {
1549 *nodep = rcu_dereference_raw(*slot);
02c02bf1 1550 if (*nodep && !xa_is_sibling(*nodep))
148deab2
MW
1551 return slot;
1552 slot++;
1553 iter->index = __radix_tree_iter_add(iter, 1);
1554 iter->tags >>= 1;
1555 }
1556
1557 *nodep = NULL;
1558 return NULL;
1559}
1560
d7b62727
MW
1561void __rcu **__radix_tree_next_slot(void __rcu **slot,
1562 struct radix_tree_iter *iter, unsigned flags)
148deab2
MW
1563{
1564 unsigned tag = flags & RADIX_TREE_ITER_TAG_MASK;
9f418224 1565 struct radix_tree_node *node;
148deab2
MW
1566
1567 slot = skip_siblings(&node, slot, iter);
1568
1569 while (radix_tree_is_internal_node(node)) {
1570 unsigned offset;
1571 unsigned long next_index;
1572
1573 if (node == RADIX_TREE_RETRY)
1574 return slot;
1575 node = entry_to_node(node);
268f42de 1576 iter->node = node;
148deab2
MW
1577 iter->shift = node->shift;
1578
1579 if (flags & RADIX_TREE_ITER_TAGGED) {
1580 offset = radix_tree_find_next_bit(node, tag, 0);
1581 if (offset == RADIX_TREE_MAP_SIZE)
1582 return NULL;
1583 slot = &node->slots[offset];
1584 iter->index = __radix_tree_iter_add(iter, offset);
1585 set_iter_tags(iter, node, offset, tag);
1586 node = rcu_dereference_raw(*slot);
1587 } else {
1588 offset = 0;
1589 slot = &node->slots[0];
1590 for (;;) {
1591 node = rcu_dereference_raw(*slot);
1592 if (node)
1593 break;
1594 slot++;
1595 offset++;
1596 if (offset == RADIX_TREE_MAP_SIZE)
1597 return NULL;
1598 }
1599 iter->index = __radix_tree_iter_add(iter, offset);
1600 }
1601 if ((flags & RADIX_TREE_ITER_CONTIG) && (offset > 0))
1602 goto none;
1603 next_index = (iter->index | shift_maxindex(iter->shift)) + 1;
1604 if (next_index < iter->next_index)
1605 iter->next_index = next_index;
1606 }
1607
1608 return slot;
1609 none:
1610 iter->next_index = 0;
1611 return NULL;
1612}
1613EXPORT_SYMBOL(__radix_tree_next_slot);
1614#else
d7b62727
MW
1615static void __rcu **skip_siblings(struct radix_tree_node **nodep,
1616 void __rcu **slot, struct radix_tree_iter *iter)
148deab2
MW
1617{
1618 return slot;
1619}
1620#endif
1621
d7b62727
MW
1622void __rcu **radix_tree_iter_resume(void __rcu **slot,
1623 struct radix_tree_iter *iter)
148deab2
MW
1624{
1625 struct radix_tree_node *node;
1626
1627 slot++;
1628 iter->index = __radix_tree_iter_add(iter, 1);
148deab2
MW
1629 skip_siblings(&node, slot, iter);
1630 iter->next_index = iter->index;
1631 iter->tags = 0;
1632 return NULL;
1633}
1634EXPORT_SYMBOL(radix_tree_iter_resume);
1635
78c1d784
KK
1636/**
1637 * radix_tree_next_chunk - find next chunk of slots for iteration
1638 *
1639 * @root: radix tree root
1640 * @iter: iterator state
1641 * @flags: RADIX_TREE_ITER_* flags and tag index
1642 * Returns: pointer to chunk first slot, or NULL if iteration is over
1643 */
d7b62727 1644void __rcu **radix_tree_next_chunk(const struct radix_tree_root *root,
78c1d784
KK
1645 struct radix_tree_iter *iter, unsigned flags)
1646{
9e85d811 1647 unsigned tag = flags & RADIX_TREE_ITER_TAG_MASK;
8c1244de 1648 struct radix_tree_node *node, *child;
21ef5339 1649 unsigned long index, offset, maxindex;
78c1d784
KK
1650
1651 if ((flags & RADIX_TREE_ITER_TAGGED) && !root_tag_get(root, tag))
1652 return NULL;
1653
1654 /*
1655 * Catch next_index overflow after ~0UL. iter->index never overflows
1656 * during iterating; it can be zero only at the beginning.
1657 * And we cannot overflow iter->next_index in a single step,
1658 * because RADIX_TREE_MAP_SHIFT < BITS_PER_LONG.
fffaee36
KK
1659 *
1660 * This condition also used by radix_tree_next_slot() to stop
91b9677c 1661 * contiguous iterating, and forbid switching to the next chunk.
78c1d784
KK
1662 */
1663 index = iter->next_index;
1664 if (!index && iter->index)
1665 return NULL;
1666
21ef5339 1667 restart:
9e85d811 1668 radix_tree_load_root(root, &child, &maxindex);
21ef5339
RZ
1669 if (index > maxindex)
1670 return NULL;
8c1244de
MW
1671 if (!child)
1672 return NULL;
21ef5339 1673
8c1244de 1674 if (!radix_tree_is_internal_node(child)) {
78c1d784 1675 /* Single-slot tree */
21ef5339
RZ
1676 iter->index = index;
1677 iter->next_index = maxindex + 1;
78c1d784 1678 iter->tags = 1;
268f42de 1679 iter->node = NULL;
8c1244de 1680 __set_iter_shift(iter, 0);
f8d5d0cc 1681 return (void __rcu **)&root->xa_head;
8c1244de 1682 }
21ef5339 1683
8c1244de
MW
1684 do {
1685 node = entry_to_node(child);
9e85d811 1686 offset = radix_tree_descend(node, &child, index);
21ef5339 1687
78c1d784 1688 if ((flags & RADIX_TREE_ITER_TAGGED) ?
8c1244de 1689 !tag_get(node, tag, offset) : !child) {
78c1d784
KK
1690 /* Hole detected */
1691 if (flags & RADIX_TREE_ITER_CONTIG)
1692 return NULL;
1693
1694 if (flags & RADIX_TREE_ITER_TAGGED)
bc412fca 1695 offset = radix_tree_find_next_bit(node, tag,
78c1d784
KK
1696 offset + 1);
1697 else
1698 while (++offset < RADIX_TREE_MAP_SIZE) {
12320d0f
MW
1699 void *slot = rcu_dereference_raw(
1700 node->slots[offset]);
02c02bf1 1701 if (xa_is_sibling(slot))
21ef5339
RZ
1702 continue;
1703 if (slot)
78c1d784
KK
1704 break;
1705 }
8c1244de 1706 index &= ~node_maxindex(node);
9e85d811 1707 index += offset << node->shift;
78c1d784
KK
1708 /* Overflow after ~0UL */
1709 if (!index)
1710 return NULL;
1711 if (offset == RADIX_TREE_MAP_SIZE)
1712 goto restart;
8c1244de 1713 child = rcu_dereference_raw(node->slots[offset]);
78c1d784
KK
1714 }
1715
e157b555 1716 if (!child)
78c1d784 1717 goto restart;
e157b555
MW
1718 if (child == RADIX_TREE_RETRY)
1719 break;
66ee620f 1720 } while (node->shift && radix_tree_is_internal_node(child));
78c1d784
KK
1721
1722 /* Update the iterator state */
8c1244de
MW
1723 iter->index = (index &~ node_maxindex(node)) | (offset << node->shift);
1724 iter->next_index = (index | node_maxindex(node)) + 1;
268f42de 1725 iter->node = node;
9e85d811 1726 __set_iter_shift(iter, node->shift);
78c1d784 1727
148deab2
MW
1728 if (flags & RADIX_TREE_ITER_TAGGED)
1729 set_iter_tags(iter, node, offset, tag);
78c1d784
KK
1730
1731 return node->slots + offset;
1732}
1733EXPORT_SYMBOL(radix_tree_next_chunk);
1734
1da177e4
LT
1735/**
1736 * radix_tree_gang_lookup - perform multiple lookup on a radix tree
1737 * @root: radix tree root
1738 * @results: where the results of the lookup are placed
1739 * @first_index: start the lookup from this key
1740 * @max_items: place up to this many items at *results
1741 *
1742 * Performs an index-ascending scan of the tree for present items. Places
1743 * them at *@results and returns the number of items which were placed at
1744 * *@results.
1745 *
1746 * The implementation is naive.
7cf9c2c7
NP
1747 *
1748 * Like radix_tree_lookup, radix_tree_gang_lookup may be called under
1749 * rcu_read_lock. In this case, rather than the returned results being
2fcd9005
MW
1750 * an atomic snapshot of the tree at a single point in time, the
1751 * semantics of an RCU protected gang lookup are as though multiple
1752 * radix_tree_lookups have been issued in individual locks, and results
1753 * stored in 'results'.
1da177e4
LT
1754 */
1755unsigned int
35534c86 1756radix_tree_gang_lookup(const struct radix_tree_root *root, void **results,
1da177e4
LT
1757 unsigned long first_index, unsigned int max_items)
1758{
cebbd29e 1759 struct radix_tree_iter iter;
d7b62727 1760 void __rcu **slot;
cebbd29e 1761 unsigned int ret = 0;
7cf9c2c7 1762
cebbd29e 1763 if (unlikely(!max_items))
7cf9c2c7 1764 return 0;
1da177e4 1765
cebbd29e 1766 radix_tree_for_each_slot(slot, root, &iter, first_index) {
46437f9a 1767 results[ret] = rcu_dereference_raw(*slot);
cebbd29e
KK
1768 if (!results[ret])
1769 continue;
b194d16c 1770 if (radix_tree_is_internal_node(results[ret])) {
46437f9a
MW
1771 slot = radix_tree_iter_retry(&iter);
1772 continue;
1773 }
cebbd29e 1774 if (++ret == max_items)
1da177e4 1775 break;
1da177e4 1776 }
7cf9c2c7 1777
1da177e4
LT
1778 return ret;
1779}
1780EXPORT_SYMBOL(radix_tree_gang_lookup);
1781
47feff2c
NP
1782/**
1783 * radix_tree_gang_lookup_slot - perform multiple slot lookup on radix tree
1784 * @root: radix tree root
1785 * @results: where the results of the lookup are placed
6328650b 1786 * @indices: where their indices should be placed (but usually NULL)
47feff2c
NP
1787 * @first_index: start the lookup from this key
1788 * @max_items: place up to this many items at *results
1789 *
1790 * Performs an index-ascending scan of the tree for present items. Places
1791 * their slots at *@results and returns the number of items which were
1792 * placed at *@results.
1793 *
1794 * The implementation is naive.
1795 *
1796 * Like radix_tree_gang_lookup as far as RCU and locking goes. Slots must
1797 * be dereferenced with radix_tree_deref_slot, and if using only RCU
1798 * protection, radix_tree_deref_slot may fail requiring a retry.
1799 */
1800unsigned int
35534c86 1801radix_tree_gang_lookup_slot(const struct radix_tree_root *root,
d7b62727 1802 void __rcu ***results, unsigned long *indices,
47feff2c
NP
1803 unsigned long first_index, unsigned int max_items)
1804{
cebbd29e 1805 struct radix_tree_iter iter;
d7b62727 1806 void __rcu **slot;
cebbd29e 1807 unsigned int ret = 0;
47feff2c 1808
cebbd29e 1809 if (unlikely(!max_items))
47feff2c
NP
1810 return 0;
1811
cebbd29e
KK
1812 radix_tree_for_each_slot(slot, root, &iter, first_index) {
1813 results[ret] = slot;
6328650b 1814 if (indices)
cebbd29e
KK
1815 indices[ret] = iter.index;
1816 if (++ret == max_items)
47feff2c 1817 break;
47feff2c
NP
1818 }
1819
1820 return ret;
1821}
1822EXPORT_SYMBOL(radix_tree_gang_lookup_slot);
1823
1da177e4
LT
1824/**
1825 * radix_tree_gang_lookup_tag - perform multiple lookup on a radix tree
1826 * based on a tag
1827 * @root: radix tree root
1828 * @results: where the results of the lookup are placed
1829 * @first_index: start the lookup from this key
1830 * @max_items: place up to this many items at *results
daff89f3 1831 * @tag: the tag index (< RADIX_TREE_MAX_TAGS)
1da177e4
LT
1832 *
1833 * Performs an index-ascending scan of the tree for present items which
1834 * have the tag indexed by @tag set. Places the items at *@results and
1835 * returns the number of items which were placed at *@results.
1836 */
1837unsigned int
35534c86 1838radix_tree_gang_lookup_tag(const struct radix_tree_root *root, void **results,
daff89f3
JC
1839 unsigned long first_index, unsigned int max_items,
1840 unsigned int tag)
1da177e4 1841{
cebbd29e 1842 struct radix_tree_iter iter;
d7b62727 1843 void __rcu **slot;
cebbd29e 1844 unsigned int ret = 0;
612d6c19 1845
cebbd29e 1846 if (unlikely(!max_items))
7cf9c2c7
NP
1847 return 0;
1848
cebbd29e 1849 radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) {
46437f9a 1850 results[ret] = rcu_dereference_raw(*slot);
cebbd29e
KK
1851 if (!results[ret])
1852 continue;
b194d16c 1853 if (radix_tree_is_internal_node(results[ret])) {
46437f9a
MW
1854 slot = radix_tree_iter_retry(&iter);
1855 continue;
1856 }
cebbd29e 1857 if (++ret == max_items)
1da177e4 1858 break;
1da177e4 1859 }
7cf9c2c7 1860
1da177e4
LT
1861 return ret;
1862}
1863EXPORT_SYMBOL(radix_tree_gang_lookup_tag);
1864
47feff2c
NP
1865/**
1866 * radix_tree_gang_lookup_tag_slot - perform multiple slot lookup on a
1867 * radix tree based on a tag
1868 * @root: radix tree root
1869 * @results: where the results of the lookup are placed
1870 * @first_index: start the lookup from this key
1871 * @max_items: place up to this many items at *results
1872 * @tag: the tag index (< RADIX_TREE_MAX_TAGS)
1873 *
1874 * Performs an index-ascending scan of the tree for present items which
1875 * have the tag indexed by @tag set. Places the slots at *@results and
1876 * returns the number of slots which were placed at *@results.
1877 */
1878unsigned int
35534c86 1879radix_tree_gang_lookup_tag_slot(const struct radix_tree_root *root,
d7b62727 1880 void __rcu ***results, unsigned long first_index,
35534c86 1881 unsigned int max_items, unsigned int tag)
47feff2c 1882{
cebbd29e 1883 struct radix_tree_iter iter;
d7b62727 1884 void __rcu **slot;
cebbd29e 1885 unsigned int ret = 0;
47feff2c 1886
cebbd29e 1887 if (unlikely(!max_items))
47feff2c
NP
1888 return 0;
1889
cebbd29e
KK
1890 radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) {
1891 results[ret] = slot;
1892 if (++ret == max_items)
47feff2c 1893 break;
47feff2c
NP
1894 }
1895
1896 return ret;
1897}
1898EXPORT_SYMBOL(radix_tree_gang_lookup_tag_slot);
1899
139e5616
JW
1900/**
1901 * __radix_tree_delete_node - try to free node after clearing a slot
1902 * @root: radix tree root
139e5616 1903 * @node: node containing @index
ea07b862 1904 * @update_node: callback for changing leaf nodes
139e5616
JW
1905 *
1906 * After clearing the slot at @index in @node from radix tree
1907 * rooted at @root, call this function to attempt freeing the
1908 * node and shrinking the tree.
139e5616 1909 */
14b46879 1910void __radix_tree_delete_node(struct radix_tree_root *root,
ea07b862 1911 struct radix_tree_node *node,
c7df8ad2 1912 radix_tree_update_node_t update_node)
139e5616 1913{
c7df8ad2 1914 delete_node(root, node, update_node);
139e5616
JW
1915}
1916
0ac398ef 1917static bool __radix_tree_delete(struct radix_tree_root *root,
d7b62727 1918 struct radix_tree_node *node, void __rcu **slot)
0ac398ef 1919{
0a835c4f 1920 void *old = rcu_dereference_raw(*slot);
01959dfe 1921 int values = xa_is_value(old) ? -1 : 0;
0ac398ef
MW
1922 unsigned offset = get_slot_offset(node, slot);
1923 int tag;
1924
0a835c4f
MW
1925 if (is_idr(root))
1926 node_tag_set(root, node, IDR_FREE, offset);
1927 else
1928 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
1929 node_tag_clear(root, node, tag, offset);
0ac398ef 1930
01959dfe 1931 replace_slot(slot, NULL, node, -1, values);
c7df8ad2 1932 return node && delete_node(root, node, NULL);
0ac398ef
MW
1933}
1934
1da177e4 1935/**
0ac398ef
MW
1936 * radix_tree_iter_delete - delete the entry at this iterator position
1937 * @root: radix tree root
1938 * @iter: iterator state
1939 * @slot: pointer to slot
1da177e4 1940 *
0ac398ef
MW
1941 * Delete the entry at the position currently pointed to by the iterator.
1942 * This may result in the current node being freed; if it is, the iterator
1943 * is advanced so that it will not reference the freed memory. This
1944 * function may be called without any locking if there are no other threads
1945 * which can access this tree.
1946 */
1947void radix_tree_iter_delete(struct radix_tree_root *root,
d7b62727 1948 struct radix_tree_iter *iter, void __rcu **slot)
0ac398ef
MW
1949{
1950 if (__radix_tree_delete(root, iter->node, slot))
1951 iter->index = iter->next_index;
1952}
d1b48c1e 1953EXPORT_SYMBOL(radix_tree_iter_delete);
0ac398ef
MW
1954
1955/**
1956 * radix_tree_delete_item - delete an item from a radix tree
1957 * @root: radix tree root
1958 * @index: index key
1959 * @item: expected item
1da177e4 1960 *
0ac398ef 1961 * Remove @item at @index from the radix tree rooted at @root.
1da177e4 1962 *
0ac398ef
MW
1963 * Return: the deleted entry, or %NULL if it was not present
1964 * or the entry at the given @index was not @item.
1da177e4 1965 */
53c59f26
JW
1966void *radix_tree_delete_item(struct radix_tree_root *root,
1967 unsigned long index, void *item)
1da177e4 1968{
0a835c4f 1969 struct radix_tree_node *node = NULL;
7a4deea1 1970 void __rcu **slot = NULL;
139e5616 1971 void *entry;
1da177e4 1972
139e5616 1973 entry = __radix_tree_lookup(root, index, &node, &slot);
7a4deea1
MW
1974 if (!slot)
1975 return NULL;
0a835c4f
MW
1976 if (!entry && (!is_idr(root) || node_tag_get(root, node, IDR_FREE,
1977 get_slot_offset(node, slot))))
139e5616 1978 return NULL;
1da177e4 1979
139e5616
JW
1980 if (item && entry != item)
1981 return NULL;
1982
0ac398ef 1983 __radix_tree_delete(root, node, slot);
612d6c19 1984
139e5616 1985 return entry;
1da177e4 1986}
53c59f26
JW
1987EXPORT_SYMBOL(radix_tree_delete_item);
1988
1989/**
0ac398ef
MW
1990 * radix_tree_delete - delete an entry from a radix tree
1991 * @root: radix tree root
1992 * @index: index key
53c59f26 1993 *
0ac398ef 1994 * Remove the entry at @index from the radix tree rooted at @root.
53c59f26 1995 *
0ac398ef 1996 * Return: The deleted entry, or %NULL if it was not present.
53c59f26
JW
1997 */
1998void *radix_tree_delete(struct radix_tree_root *root, unsigned long index)
1999{
2000 return radix_tree_delete_item(root, index, NULL);
2001}
1da177e4
LT
2002EXPORT_SYMBOL(radix_tree_delete);
2003
d3798ae8
JW
2004void radix_tree_clear_tags(struct radix_tree_root *root,
2005 struct radix_tree_node *node,
d7b62727 2006 void __rcu **slot)
d604c324 2007{
d604c324
MW
2008 if (node) {
2009 unsigned int tag, offset = get_slot_offset(node, slot);
2010 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
2011 node_tag_clear(root, node, tag, offset);
2012 } else {
0a835c4f 2013 root_tag_clear_all(root);
d604c324 2014 }
d604c324
MW
2015}
2016
1da177e4
LT
2017/**
2018 * radix_tree_tagged - test whether any items in the tree are tagged
2019 * @root: radix tree root
2020 * @tag: tag to test
2021 */
35534c86 2022int radix_tree_tagged(const struct radix_tree_root *root, unsigned int tag)
1da177e4 2023{
612d6c19 2024 return root_tag_get(root, tag);
1da177e4
LT
2025}
2026EXPORT_SYMBOL(radix_tree_tagged);
2027
0a835c4f
MW
2028/**
2029 * idr_preload - preload for idr_alloc()
2030 * @gfp_mask: allocation mask to use for preloading
2031 *
2032 * Preallocate memory to use for the next call to idr_alloc(). This function
2033 * returns with preemption disabled. It will be enabled by idr_preload_end().
2034 */
2035void idr_preload(gfp_t gfp_mask)
2036{
bc9ae224
ED
2037 if (__radix_tree_preload(gfp_mask, IDR_PRELOAD_SIZE))
2038 preempt_disable();
0a835c4f
MW
2039}
2040EXPORT_SYMBOL(idr_preload);
2041
7ad3d4d8
MW
2042int ida_pre_get(struct ida *ida, gfp_t gfp)
2043{
7ad3d4d8
MW
2044 /*
2045 * The IDA API has no preload_end() equivalent. Instead,
2046 * ida_get_new() can return -EAGAIN, prompting the caller
2047 * to return to the ida_pre_get() step.
2048 */
bc9ae224
ED
2049 if (!__radix_tree_preload(gfp, IDA_PRELOAD_SIZE))
2050 preempt_enable();
7ad3d4d8
MW
2051
2052 if (!this_cpu_read(ida_bitmap)) {
b1a8a7a7 2053 struct ida_bitmap *bitmap = kzalloc(sizeof(*bitmap), gfp);
7ad3d4d8
MW
2054 if (!bitmap)
2055 return 0;
4ecd9542
MW
2056 if (this_cpu_cmpxchg(ida_bitmap, NULL, bitmap))
2057 kfree(bitmap);
7ad3d4d8
MW
2058 }
2059
2060 return 1;
2061}
7ad3d4d8 2062
460488c5 2063void __rcu **idr_get_free(struct radix_tree_root *root,
388f79fd
CM
2064 struct radix_tree_iter *iter, gfp_t gfp,
2065 unsigned long max)
0a835c4f
MW
2066{
2067 struct radix_tree_node *node = NULL, *child;
f8d5d0cc 2068 void __rcu **slot = (void __rcu **)&root->xa_head;
0a835c4f 2069 unsigned long maxindex, start = iter->next_index;
0a835c4f
MW
2070 unsigned int shift, offset = 0;
2071
2072 grow:
2073 shift = radix_tree_load_root(root, &child, &maxindex);
2074 if (!radix_tree_tagged(root, IDR_FREE))
2075 start = max(start, maxindex + 1);
2076 if (start > max)
2077 return ERR_PTR(-ENOSPC);
2078
2079 if (start > maxindex) {
2080 int error = radix_tree_extend(root, gfp, start, shift);
2081 if (error < 0)
2082 return ERR_PTR(error);
2083 shift = error;
f8d5d0cc 2084 child = rcu_dereference_raw(root->xa_head);
0a835c4f 2085 }
66ee620f
MW
2086 if (start == 0 && shift == 0)
2087 shift = RADIX_TREE_MAP_SHIFT;
0a835c4f
MW
2088
2089 while (shift) {
2090 shift -= RADIX_TREE_MAP_SHIFT;
2091 if (child == NULL) {
2092 /* Have to add a child node. */
d58275bc
MW
2093 child = radix_tree_node_alloc(gfp, node, root, shift,
2094 offset, 0, 0);
0a835c4f
MW
2095 if (!child)
2096 return ERR_PTR(-ENOMEM);
2097 all_tag_set(child, IDR_FREE);
2098 rcu_assign_pointer(*slot, node_to_entry(child));
2099 if (node)
2100 node->count++;
2101 } else if (!radix_tree_is_internal_node(child))
2102 break;
2103
2104 node = entry_to_node(child);
2105 offset = radix_tree_descend(node, &child, start);
2106 if (!tag_get(node, IDR_FREE, offset)) {
2107 offset = radix_tree_find_next_bit(node, IDR_FREE,
2108 offset + 1);
2109 start = next_index(start, node, offset);
2110 if (start > max)
2111 return ERR_PTR(-ENOSPC);
2112 while (offset == RADIX_TREE_MAP_SIZE) {
2113 offset = node->offset + 1;
2114 node = node->parent;
2115 if (!node)
2116 goto grow;
2117 shift = node->shift;
2118 }
2119 child = rcu_dereference_raw(node->slots[offset]);
2120 }
2121 slot = &node->slots[offset];
2122 }
2123
2124 iter->index = start;
2125 if (node)
2126 iter->next_index = 1 + min(max, (start | node_maxindex(node)));
2127 else
2128 iter->next_index = 1;
2129 iter->node = node;
2130 __set_iter_shift(iter, shift);
2131 set_iter_tags(iter, node, offset, IDR_FREE);
2132
2133 return slot;
2134}
2135
2136/**
2137 * idr_destroy - release all internal memory from an IDR
2138 * @idr: idr handle
2139 *
2140 * After this function is called, the IDR is empty, and may be reused or
2141 * the data structure containing it may be freed.
2142 *
2143 * A typical clean-up sequence for objects stored in an idr tree will use
2144 * idr_for_each() to free all objects, if necessary, then idr_destroy() to
2145 * free the memory used to keep track of those objects.
2146 */
2147void idr_destroy(struct idr *idr)
2148{
f8d5d0cc 2149 struct radix_tree_node *node = rcu_dereference_raw(idr->idr_rt.xa_head);
0a835c4f
MW
2150 if (radix_tree_is_internal_node(node))
2151 radix_tree_free_nodes(node);
f8d5d0cc 2152 idr->idr_rt.xa_head = NULL;
0a835c4f
MW
2153 root_tag_set(&idr->idr_rt, IDR_FREE);
2154}
2155EXPORT_SYMBOL(idr_destroy);
2156
1da177e4 2157static void
449dd698 2158radix_tree_node_ctor(void *arg)
1da177e4 2159{
449dd698
JW
2160 struct radix_tree_node *node = arg;
2161
2162 memset(node, 0, sizeof(*node));
2163 INIT_LIST_HEAD(&node->private_list);
1da177e4
LT
2164}
2165
c78c66d1
KS
2166static __init unsigned long __maxindex(unsigned int height)
2167{
2168 unsigned int width = height * RADIX_TREE_MAP_SHIFT;
2169 int shift = RADIX_TREE_INDEX_BITS - width;
2170
2171 if (shift < 0)
2172 return ~0UL;
2173 if (shift >= BITS_PER_LONG)
2174 return 0UL;
2175 return ~0UL >> shift;
2176}
2177
2178static __init void radix_tree_init_maxnodes(void)
2179{
2180 unsigned long height_to_maxindex[RADIX_TREE_MAX_PATH + 1];
2181 unsigned int i, j;
2182
2183 for (i = 0; i < ARRAY_SIZE(height_to_maxindex); i++)
2184 height_to_maxindex[i] = __maxindex(i);
2185 for (i = 0; i < ARRAY_SIZE(height_to_maxnodes); i++) {
2186 for (j = i; j > 0; j--)
2187 height_to_maxnodes[i] += height_to_maxindex[j - 1] + 1;
2188 }
2189}
2190
d544abd5 2191static int radix_tree_cpu_dead(unsigned int cpu)
1da177e4 2192{
2fcd9005
MW
2193 struct radix_tree_preload *rtp;
2194 struct radix_tree_node *node;
2195
2196 /* Free per-cpu pool of preloaded nodes */
d544abd5
SAS
2197 rtp = &per_cpu(radix_tree_preloads, cpu);
2198 while (rtp->nr) {
2199 node = rtp->nodes;
1293d5c5 2200 rtp->nodes = node->parent;
d544abd5
SAS
2201 kmem_cache_free(radix_tree_node_cachep, node);
2202 rtp->nr--;
2fcd9005 2203 }
7ad3d4d8
MW
2204 kfree(per_cpu(ida_bitmap, cpu));
2205 per_cpu(ida_bitmap, cpu) = NULL;
d544abd5 2206 return 0;
1da177e4 2207}
1da177e4
LT
2208
2209void __init radix_tree_init(void)
2210{
d544abd5 2211 int ret;
7e784422
MH
2212
2213 BUILD_BUG_ON(RADIX_TREE_MAX_TAGS + __GFP_BITS_SHIFT > 32);
fa290cda 2214 BUILD_BUG_ON(ROOT_IS_IDR & ~GFP_ZONEMASK);
02c02bf1 2215 BUILD_BUG_ON(XA_CHUNK_SIZE > 255);
1da177e4
LT
2216 radix_tree_node_cachep = kmem_cache_create("radix_tree_node",
2217 sizeof(struct radix_tree_node), 0,
488514d1
CL
2218 SLAB_PANIC | SLAB_RECLAIM_ACCOUNT,
2219 radix_tree_node_ctor);
c78c66d1 2220 radix_tree_init_maxnodes();
d544abd5
SAS
2221 ret = cpuhp_setup_state_nocalls(CPUHP_RADIX_DEAD, "lib/radix:dead",
2222 NULL, radix_tree_cpu_dead);
2223 WARN_ON(ret < 0);
1da177e4 2224}