]> git.ipfire.org Git - thirdparty/linux.git/blame - lib/rbtree.c
rbtree: optimize root-check during rebalancing loop
[thirdparty/linux.git] / lib / rbtree.c
CommitLineData
1da177e4
LT
1/*
2 Red Black Trees
3 (C) 1999 Andrea Arcangeli <andrea@suse.de>
4 (C) 2002 David Woodhouse <dwmw2@infradead.org>
46b6135a
ML
5 (C) 2012 Michel Lespinasse <walken@google.com>
6
1da177e4
LT
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20
21 linux/lib/rbtree.c
22*/
23
9c079add 24#include <linux/rbtree_augmented.h>
8bc3bcc9 25#include <linux/export.h>
1da177e4 26
5bc9188a
ML
27/*
28 * red-black trees properties: http://en.wikipedia.org/wiki/Rbtree
29 *
30 * 1) A node is either red or black
31 * 2) The root is black
32 * 3) All leaves (NULL) are black
33 * 4) Both children of every red node are black
34 * 5) Every simple path from root to leaves contains the same number
35 * of black nodes.
36 *
37 * 4 and 5 give the O(log n) guarantee, since 4 implies you cannot have two
38 * consecutive red nodes in a path and every red node is therefore followed by
39 * a black. So if B is the number of black nodes on every simple path (as per
40 * 5), then the longest possible path due to 4 is 2B.
41 *
42 * We shall indicate color with case, where black nodes are uppercase and red
6280d235
ML
43 * nodes will be lowercase. Unknown color nodes shall be drawn as red within
44 * parentheses and have some accompanying text comment.
5bc9188a
ML
45 */
46
d72da4a4
PZ
47/*
48 * Notes on lockless lookups:
49 *
50 * All stores to the tree structure (rb_left and rb_right) must be done using
51 * WRITE_ONCE(). And we must not inadvertently cause (temporary) loops in the
52 * tree structure as seen in program order.
53 *
54 * These two requirements will allow lockless iteration of the tree -- not
55 * correct iteration mind you, tree rotations are not atomic so a lookup might
56 * miss entire subtrees.
57 *
58 * But they do guarantee that any such traversal will only see valid elements
59 * and that it will indeed complete -- does not get stuck in a loop.
60 *
61 * It also guarantees that if the lookup returns an element it is the 'correct'
62 * one. But not returning an element does _NOT_ mean it's not present.
63 *
64 * NOTE:
65 *
66 * Stores to __rb_parent_color are not important for simple lookups so those
67 * are left undone as of now. Nor did I check for loops involving parent
68 * pointers.
69 */
70
46b6135a
ML
71static inline void rb_set_black(struct rb_node *rb)
72{
73 rb->__rb_parent_color |= RB_BLACK;
74}
75
5bc9188a
ML
76static inline struct rb_node *rb_red_parent(struct rb_node *red)
77{
78 return (struct rb_node *)red->__rb_parent_color;
79}
80
5bc9188a
ML
81/*
82 * Helper function for rotations:
83 * - old's parent and color get assigned to new
84 * - old gets assigned new as a parent and 'color' as a color.
85 */
86static inline void
87__rb_rotate_set_parents(struct rb_node *old, struct rb_node *new,
88 struct rb_root *root, int color)
89{
90 struct rb_node *parent = rb_parent(old);
91 new->__rb_parent_color = old->__rb_parent_color;
92 rb_set_parent_color(old, new, color);
7abc704a 93 __rb_change_child(old, new, parent, root);
5bc9188a
ML
94}
95
14b94af0
ML
96static __always_inline void
97__rb_insert(struct rb_node *node, struct rb_root *root,
cd9e61ed 98 bool newleft, struct rb_node **leftmost,
14b94af0 99 void (*augment_rotate)(struct rb_node *old, struct rb_node *new))
1da177e4 100{
5bc9188a 101 struct rb_node *parent = rb_red_parent(node), *gparent, *tmp;
1da177e4 102
cd9e61ed
DB
103 if (newleft)
104 *leftmost = node;
105
6d58452d
ML
106 while (true) {
107 /*
2aadf7fc 108 * Loop invariant: node is red.
6d58452d 109 */
2aadf7fc
DB
110 if (unlikely(!parent)) {
111 /*
112 * The inserted node is root. Either this is the
113 * first node, or we recursed at Case 1 below and
114 * are no longer violating 4).
115 */
5bc9188a 116 rb_set_parent_color(node, NULL, RB_BLACK);
6d58452d 117 break;
2aadf7fc
DB
118 }
119
120 /*
121 * If there is a black parent, we are done.
122 * Otherwise, take some corrective action as,
123 * per 4), we don't want a red root or two
124 * consecutive red nodes.
125 */
126 if(rb_is_black(parent))
6d58452d
ML
127 break;
128
5bc9188a
ML
129 gparent = rb_red_parent(parent);
130
59633abf
ML
131 tmp = gparent->rb_right;
132 if (parent != tmp) { /* parent == gparent->rb_left */
5bc9188a
ML
133 if (tmp && rb_is_red(tmp)) {
134 /*
135 * Case 1 - color flips
136 *
137 * G g
138 * / \ / \
139 * p u --> P U
140 * / /
1b9c53e8 141 * n n
5bc9188a
ML
142 *
143 * However, since g's parent might be red, and
144 * 4) does not allow this, we need to recurse
145 * at g.
146 */
147 rb_set_parent_color(tmp, gparent, RB_BLACK);
148 rb_set_parent_color(parent, gparent, RB_BLACK);
149 node = gparent;
150 parent = rb_parent(node);
151 rb_set_parent_color(node, parent, RB_RED);
152 continue;
1da177e4
LT
153 }
154
59633abf
ML
155 tmp = parent->rb_right;
156 if (node == tmp) {
5bc9188a
ML
157 /*
158 * Case 2 - left rotate at parent
159 *
160 * G G
161 * / \ / \
162 * p U --> n U
163 * \ /
164 * n p
165 *
166 * This still leaves us in violation of 4), the
167 * continuation into Case 3 will fix that.
168 */
d72da4a4
PZ
169 tmp = node->rb_left;
170 WRITE_ONCE(parent->rb_right, tmp);
171 WRITE_ONCE(node->rb_left, parent);
5bc9188a
ML
172 if (tmp)
173 rb_set_parent_color(tmp, parent,
174 RB_BLACK);
175 rb_set_parent_color(parent, node, RB_RED);
14b94af0 176 augment_rotate(parent, node);
1da177e4 177 parent = node;
59633abf 178 tmp = node->rb_right;
1da177e4
LT
179 }
180
5bc9188a
ML
181 /*
182 * Case 3 - right rotate at gparent
183 *
184 * G P
185 * / \ / \
186 * p U --> n g
187 * / \
188 * n U
189 */
d72da4a4
PZ
190 WRITE_ONCE(gparent->rb_left, tmp); /* == parent->rb_right */
191 WRITE_ONCE(parent->rb_right, gparent);
5bc9188a
ML
192 if (tmp)
193 rb_set_parent_color(tmp, gparent, RB_BLACK);
194 __rb_rotate_set_parents(gparent, parent, root, RB_RED);
14b94af0 195 augment_rotate(gparent, parent);
1f052865 196 break;
1da177e4 197 } else {
5bc9188a
ML
198 tmp = gparent->rb_left;
199 if (tmp && rb_is_red(tmp)) {
200 /* Case 1 - color flips */
201 rb_set_parent_color(tmp, gparent, RB_BLACK);
202 rb_set_parent_color(parent, gparent, RB_BLACK);
203 node = gparent;
204 parent = rb_parent(node);
205 rb_set_parent_color(node, parent, RB_RED);
206 continue;
1da177e4
LT
207 }
208
59633abf
ML
209 tmp = parent->rb_left;
210 if (node == tmp) {
5bc9188a 211 /* Case 2 - right rotate at parent */
d72da4a4
PZ
212 tmp = node->rb_right;
213 WRITE_ONCE(parent->rb_left, tmp);
214 WRITE_ONCE(node->rb_right, parent);
5bc9188a
ML
215 if (tmp)
216 rb_set_parent_color(tmp, parent,
217 RB_BLACK);
218 rb_set_parent_color(parent, node, RB_RED);
14b94af0 219 augment_rotate(parent, node);
1da177e4 220 parent = node;
59633abf 221 tmp = node->rb_left;
1da177e4
LT
222 }
223
5bc9188a 224 /* Case 3 - left rotate at gparent */
d72da4a4
PZ
225 WRITE_ONCE(gparent->rb_right, tmp); /* == parent->rb_left */
226 WRITE_ONCE(parent->rb_left, gparent);
5bc9188a
ML
227 if (tmp)
228 rb_set_parent_color(tmp, gparent, RB_BLACK);
229 __rb_rotate_set_parents(gparent, parent, root, RB_RED);
14b94af0 230 augment_rotate(gparent, parent);
1f052865 231 break;
1da177e4
LT
232 }
233 }
1da177e4 234}
1da177e4 235
3cb7a563
ML
236/*
237 * Inline version for rb_erase() use - we want to be able to inline
238 * and eliminate the dummy_rotate callback there
239 */
240static __always_inline void
241____rb_erase_color(struct rb_node *parent, struct rb_root *root,
9c079add 242 void (*augment_rotate)(struct rb_node *old, struct rb_node *new))
1da177e4 243{
46b6135a 244 struct rb_node *node = NULL, *sibling, *tmp1, *tmp2;
1da177e4 245
d6ff1273
ML
246 while (true) {
247 /*
46b6135a
ML
248 * Loop invariants:
249 * - node is black (or NULL on first iteration)
250 * - node is not the root (parent is not NULL)
251 * - All leaf paths going through parent and node have a
252 * black node count that is 1 lower than other leaf paths.
d6ff1273 253 */
59633abf
ML
254 sibling = parent->rb_right;
255 if (node != sibling) { /* node == parent->rb_left */
6280d235
ML
256 if (rb_is_red(sibling)) {
257 /*
258 * Case 1 - left rotate at parent
259 *
260 * P S
261 * / \ / \
262 * N s --> p Sr
263 * / \ / \
264 * Sl Sr N Sl
265 */
d72da4a4
PZ
266 tmp1 = sibling->rb_left;
267 WRITE_ONCE(parent->rb_right, tmp1);
268 WRITE_ONCE(sibling->rb_left, parent);
6280d235
ML
269 rb_set_parent_color(tmp1, parent, RB_BLACK);
270 __rb_rotate_set_parents(parent, sibling, root,
271 RB_RED);
9c079add 272 augment_rotate(parent, sibling);
6280d235 273 sibling = tmp1;
1da177e4 274 }
6280d235
ML
275 tmp1 = sibling->rb_right;
276 if (!tmp1 || rb_is_black(tmp1)) {
277 tmp2 = sibling->rb_left;
278 if (!tmp2 || rb_is_black(tmp2)) {
279 /*
280 * Case 2 - sibling color flip
281 * (p could be either color here)
282 *
283 * (p) (p)
284 * / \ / \
285 * N S --> N s
286 * / \ / \
287 * Sl Sr Sl Sr
288 *
46b6135a
ML
289 * This leaves us violating 5) which
290 * can be fixed by flipping p to black
291 * if it was red, or by recursing at p.
292 * p is red when coming from Case 1.
6280d235
ML
293 */
294 rb_set_parent_color(sibling, parent,
295 RB_RED);
46b6135a
ML
296 if (rb_is_red(parent))
297 rb_set_black(parent);
298 else {
299 node = parent;
300 parent = rb_parent(node);
301 if (parent)
302 continue;
303 }
304 break;
1da177e4 305 }
6280d235
ML
306 /*
307 * Case 3 - right rotate at sibling
308 * (p could be either color here)
309 *
310 * (p) (p)
311 * / \ / \
ce093a04 312 * N S --> N sl
6280d235 313 * / \ \
ce093a04 314 * sl Sr S
6280d235
ML
315 * \
316 * Sr
ce093a04
JC
317 *
318 * Note: p might be red, and then both
319 * p and sl are red after rotation(which
320 * breaks property 4). This is fixed in
321 * Case 4 (in __rb_rotate_set_parents()
322 * which set sl the color of p
323 * and set p RB_BLACK)
324 *
325 * (p) (sl)
326 * / \ / \
327 * N sl --> P S
328 * \ / \
329 * S N Sr
330 * \
331 * Sr
6280d235 332 */
d72da4a4
PZ
333 tmp1 = tmp2->rb_right;
334 WRITE_ONCE(sibling->rb_left, tmp1);
335 WRITE_ONCE(tmp2->rb_right, sibling);
336 WRITE_ONCE(parent->rb_right, tmp2);
6280d235
ML
337 if (tmp1)
338 rb_set_parent_color(tmp1, sibling,
339 RB_BLACK);
9c079add 340 augment_rotate(sibling, tmp2);
6280d235
ML
341 tmp1 = sibling;
342 sibling = tmp2;
1da177e4 343 }
6280d235
ML
344 /*
345 * Case 4 - left rotate at parent + color flips
346 * (p and sl could be either color here.
347 * After rotation, p becomes black, s acquires
348 * p's color, and sl keeps its color)
349 *
350 * (p) (s)
351 * / \ / \
352 * N S --> P Sr
353 * / \ / \
354 * (sl) sr N (sl)
355 */
d72da4a4
PZ
356 tmp2 = sibling->rb_left;
357 WRITE_ONCE(parent->rb_right, tmp2);
358 WRITE_ONCE(sibling->rb_left, parent);
6280d235
ML
359 rb_set_parent_color(tmp1, sibling, RB_BLACK);
360 if (tmp2)
361 rb_set_parent(tmp2, parent);
362 __rb_rotate_set_parents(parent, sibling, root,
363 RB_BLACK);
9c079add 364 augment_rotate(parent, sibling);
e125d147 365 break;
d6ff1273 366 } else {
6280d235
ML
367 sibling = parent->rb_left;
368 if (rb_is_red(sibling)) {
369 /* Case 1 - right rotate at parent */
d72da4a4
PZ
370 tmp1 = sibling->rb_right;
371 WRITE_ONCE(parent->rb_left, tmp1);
372 WRITE_ONCE(sibling->rb_right, parent);
6280d235
ML
373 rb_set_parent_color(tmp1, parent, RB_BLACK);
374 __rb_rotate_set_parents(parent, sibling, root,
375 RB_RED);
9c079add 376 augment_rotate(parent, sibling);
6280d235 377 sibling = tmp1;
1da177e4 378 }
6280d235
ML
379 tmp1 = sibling->rb_left;
380 if (!tmp1 || rb_is_black(tmp1)) {
381 tmp2 = sibling->rb_right;
382 if (!tmp2 || rb_is_black(tmp2)) {
383 /* Case 2 - sibling color flip */
384 rb_set_parent_color(sibling, parent,
385 RB_RED);
46b6135a
ML
386 if (rb_is_red(parent))
387 rb_set_black(parent);
388 else {
389 node = parent;
390 parent = rb_parent(node);
391 if (parent)
392 continue;
393 }
394 break;
1da177e4 395 }
ce093a04 396 /* Case 3 - left rotate at sibling */
d72da4a4
PZ
397 tmp1 = tmp2->rb_left;
398 WRITE_ONCE(sibling->rb_right, tmp1);
399 WRITE_ONCE(tmp2->rb_left, sibling);
400 WRITE_ONCE(parent->rb_left, tmp2);
6280d235
ML
401 if (tmp1)
402 rb_set_parent_color(tmp1, sibling,
403 RB_BLACK);
9c079add 404 augment_rotate(sibling, tmp2);
6280d235
ML
405 tmp1 = sibling;
406 sibling = tmp2;
1da177e4 407 }
ce093a04 408 /* Case 4 - right rotate at parent + color flips */
d72da4a4
PZ
409 tmp2 = sibling->rb_right;
410 WRITE_ONCE(parent->rb_left, tmp2);
411 WRITE_ONCE(sibling->rb_right, parent);
6280d235
ML
412 rb_set_parent_color(tmp1, sibling, RB_BLACK);
413 if (tmp2)
414 rb_set_parent(tmp2, parent);
415 __rb_rotate_set_parents(parent, sibling, root,
416 RB_BLACK);
9c079add 417 augment_rotate(parent, sibling);
e125d147 418 break;
1da177e4
LT
419 }
420 }
1da177e4 421}
3cb7a563
ML
422
423/* Non-inline version for rb_erase_augmented() use */
424void __rb_erase_color(struct rb_node *parent, struct rb_root *root,
425 void (*augment_rotate)(struct rb_node *old, struct rb_node *new))
426{
427 ____rb_erase_color(parent, root, augment_rotate);
428}
9c079add 429EXPORT_SYMBOL(__rb_erase_color);
14b94af0
ML
430
431/*
432 * Non-augmented rbtree manipulation functions.
433 *
434 * We use dummy augmented callbacks here, and have the compiler optimize them
435 * out of the rb_insert_color() and rb_erase() function definitions.
436 */
437
438static inline void dummy_propagate(struct rb_node *node, struct rb_node *stop) {}
439static inline void dummy_copy(struct rb_node *old, struct rb_node *new) {}
440static inline void dummy_rotate(struct rb_node *old, struct rb_node *new) {}
441
442static const struct rb_augment_callbacks dummy_callbacks = {
f231aebf
KC
443 .propagate = dummy_propagate,
444 .copy = dummy_copy,
445 .rotate = dummy_rotate
14b94af0
ML
446};
447
448void rb_insert_color(struct rb_node *node, struct rb_root *root)
449{
cd9e61ed 450 __rb_insert(node, root, false, NULL, dummy_rotate);
14b94af0
ML
451}
452EXPORT_SYMBOL(rb_insert_color);
453
454void rb_erase(struct rb_node *node, struct rb_root *root)
455{
3cb7a563 456 struct rb_node *rebalance;
cd9e61ed
DB
457 rebalance = __rb_erase_augmented(node, root,
458 NULL, &dummy_callbacks);
3cb7a563
ML
459 if (rebalance)
460 ____rb_erase_color(rebalance, root, dummy_rotate);
1da177e4
LT
461}
462EXPORT_SYMBOL(rb_erase);
463
cd9e61ed
DB
464void rb_insert_color_cached(struct rb_node *node,
465 struct rb_root_cached *root, bool leftmost)
466{
467 __rb_insert(node, &root->rb_root, leftmost,
468 &root->rb_leftmost, dummy_rotate);
469}
470EXPORT_SYMBOL(rb_insert_color_cached);
471
472void rb_erase_cached(struct rb_node *node, struct rb_root_cached *root)
473{
474 struct rb_node *rebalance;
475 rebalance = __rb_erase_augmented(node, &root->rb_root,
476 &root->rb_leftmost, &dummy_callbacks);
477 if (rebalance)
478 ____rb_erase_color(rebalance, &root->rb_root, dummy_rotate);
479}
480EXPORT_SYMBOL(rb_erase_cached);
481
14b94af0
ML
482/*
483 * Augmented rbtree manipulation functions.
484 *
485 * This instantiates the same __always_inline functions as in the non-augmented
486 * case, but this time with user-defined callbacks.
487 */
488
489void __rb_insert_augmented(struct rb_node *node, struct rb_root *root,
cd9e61ed 490 bool newleft, struct rb_node **leftmost,
14b94af0
ML
491 void (*augment_rotate)(struct rb_node *old, struct rb_node *new))
492{
cd9e61ed 493 __rb_insert(node, root, newleft, leftmost, augment_rotate);
14b94af0
ML
494}
495EXPORT_SYMBOL(__rb_insert_augmented);
496
1da177e4
LT
497/*
498 * This function returns the first node (in sort order) of the tree.
499 */
f4b477c4 500struct rb_node *rb_first(const struct rb_root *root)
1da177e4
LT
501{
502 struct rb_node *n;
503
504 n = root->rb_node;
505 if (!n)
506 return NULL;
507 while (n->rb_left)
508 n = n->rb_left;
509 return n;
510}
511EXPORT_SYMBOL(rb_first);
512
f4b477c4 513struct rb_node *rb_last(const struct rb_root *root)
1da177e4
LT
514{
515 struct rb_node *n;
516
517 n = root->rb_node;
518 if (!n)
519 return NULL;
520 while (n->rb_right)
521 n = n->rb_right;
522 return n;
523}
524EXPORT_SYMBOL(rb_last);
525
f4b477c4 526struct rb_node *rb_next(const struct rb_node *node)
1da177e4 527{
55a98102
DW
528 struct rb_node *parent;
529
4c199a93 530 if (RB_EMPTY_NODE(node))
10fd48f2
JA
531 return NULL;
532
7ce6ff9e
ML
533 /*
534 * If we have a right-hand child, go down and then left as far
535 * as we can.
536 */
1da177e4 537 if (node->rb_right) {
cd9e61ed 538 node = node->rb_right;
1da177e4
LT
539 while (node->rb_left)
540 node=node->rb_left;
f4b477c4 541 return (struct rb_node *)node;
1da177e4
LT
542 }
543
7ce6ff9e
ML
544 /*
545 * No right-hand children. Everything down and left is smaller than us,
546 * so any 'next' node must be in the general direction of our parent.
547 * Go up the tree; any time the ancestor is a right-hand child of its
548 * parent, keep going up. First time it's a left-hand child of its
549 * parent, said parent is our 'next' node.
550 */
55a98102
DW
551 while ((parent = rb_parent(node)) && node == parent->rb_right)
552 node = parent;
1da177e4 553
55a98102 554 return parent;
1da177e4
LT
555}
556EXPORT_SYMBOL(rb_next);
557
f4b477c4 558struct rb_node *rb_prev(const struct rb_node *node)
1da177e4 559{
55a98102
DW
560 struct rb_node *parent;
561
4c199a93 562 if (RB_EMPTY_NODE(node))
10fd48f2
JA
563 return NULL;
564
7ce6ff9e
ML
565 /*
566 * If we have a left-hand child, go down and then right as far
567 * as we can.
568 */
1da177e4 569 if (node->rb_left) {
cd9e61ed 570 node = node->rb_left;
1da177e4
LT
571 while (node->rb_right)
572 node=node->rb_right;
f4b477c4 573 return (struct rb_node *)node;
1da177e4
LT
574 }
575
7ce6ff9e
ML
576 /*
577 * No left-hand children. Go up till we find an ancestor which
578 * is a right-hand child of its parent.
579 */
55a98102
DW
580 while ((parent = rb_parent(node)) && node == parent->rb_left)
581 node = parent;
1da177e4 582
55a98102 583 return parent;
1da177e4
LT
584}
585EXPORT_SYMBOL(rb_prev);
586
587void rb_replace_node(struct rb_node *victim, struct rb_node *new,
588 struct rb_root *root)
589{
55a98102 590 struct rb_node *parent = rb_parent(victim);
1da177e4 591
c1adf200
DH
592 /* Copy the pointers/colour from the victim to the replacement */
593 *new = *victim;
594
1da177e4 595 /* Set the surrounding nodes to point to the replacement */
1da177e4 596 if (victim->rb_left)
55a98102 597 rb_set_parent(victim->rb_left, new);
1da177e4 598 if (victim->rb_right)
55a98102 599 rb_set_parent(victim->rb_right, new);
c1adf200
DH
600 __rb_change_child(victim, new, parent, root);
601}
602EXPORT_SYMBOL(rb_replace_node);
603
604void rb_replace_node_rcu(struct rb_node *victim, struct rb_node *new,
605 struct rb_root *root)
606{
607 struct rb_node *parent = rb_parent(victim);
1da177e4
LT
608
609 /* Copy the pointers/colour from the victim to the replacement */
610 *new = *victim;
c1adf200
DH
611
612 /* Set the surrounding nodes to point to the replacement */
613 if (victim->rb_left)
614 rb_set_parent(victim->rb_left, new);
615 if (victim->rb_right)
616 rb_set_parent(victim->rb_right, new);
617
618 /* Set the parent's pointer to the new node last after an RCU barrier
619 * so that the pointers onwards are seen to be set correctly when doing
620 * an RCU walk over the tree.
621 */
622 __rb_change_child_rcu(victim, new, parent, root);
1da177e4 623}
c1adf200 624EXPORT_SYMBOL(rb_replace_node_rcu);
9dee5c51
CS
625
626static struct rb_node *rb_left_deepest_node(const struct rb_node *node)
627{
628 for (;;) {
629 if (node->rb_left)
630 node = node->rb_left;
631 else if (node->rb_right)
632 node = node->rb_right;
633 else
634 return (struct rb_node *)node;
635 }
636}
637
638struct rb_node *rb_next_postorder(const struct rb_node *node)
639{
640 const struct rb_node *parent;
641 if (!node)
642 return NULL;
643 parent = rb_parent(node);
644
645 /* If we're sitting on node, we've already seen our children */
646 if (parent && node == parent->rb_left && parent->rb_right) {
647 /* If we are the parent's left node, go to the parent's right
648 * node then all the way down to the left */
649 return rb_left_deepest_node(parent->rb_right);
650 } else
651 /* Otherwise we are the parent's right node, and the parent
652 * should be next */
653 return (struct rb_node *)parent;
654}
655EXPORT_SYMBOL(rb_next_postorder);
656
657struct rb_node *rb_first_postorder(const struct rb_root *root)
658{
659 if (!root->rb_node)
660 return NULL;
661
662 return rb_left_deepest_node(root->rb_node);
663}
664EXPORT_SYMBOL(rb_first_postorder);