]> git.ipfire.org Git - people/ms/u-boot.git/blame - lib/rsa/rsa-verify.c
Implement generalised RSA public exponents for verified boot
[people/ms/u-boot.git] / lib / rsa / rsa-verify.c
CommitLineData
19c402af
SG
1/*
2 * Copyright (c) 2013, Google Inc.
3 *
1a459660 4 * SPDX-License-Identifier: GPL-2.0+
19c402af
SG
5 */
6
29a23f9d 7#ifndef USE_HOSTCC
19c402af
SG
8#include <common.h>
9#include <fdtdec.h>
29a23f9d 10#include <asm/types.h>
19c402af
SG
11#include <asm/byteorder.h>
12#include <asm/errno.h>
29a23f9d 13#include <asm/types.h>
19c402af 14#include <asm/unaligned.h>
29a23f9d
HS
15#else
16#include "fdt_host.h"
17#include "mkimage.h"
18#include <fdt_support.h>
19#endif
2b9912e6
JH
20#include <u-boot/rsa.h>
21#include <u-boot/sha1.h>
22#include <u-boot/sha256.h>
19c402af 23
19c402af
SG
24#define UINT64_MULT32(v, multby) (((uint64_t)(v)) * ((uint32_t)(multby)))
25
29a23f9d
HS
26#define get_unaligned_be32(a) fdt32_to_cpu(*(uint32_t *)a)
27#define put_unaligned_be32(a, b) (*(uint32_t *)(b) = cpu_to_fdt32(a))
28
e0f2f155
MW
29/* Default public exponent for backward compatibility */
30#define RSA_DEFAULT_PUBEXP 65537
31
19c402af
SG
32/**
33 * subtract_modulus() - subtract modulus from the given value
34 *
35 * @key: Key containing modulus to subtract
36 * @num: Number to subtract modulus from, as little endian word array
37 */
38static void subtract_modulus(const struct rsa_public_key *key, uint32_t num[])
39{
40 int64_t acc = 0;
41 uint i;
42
43 for (i = 0; i < key->len; i++) {
44 acc += (uint64_t)num[i] - key->modulus[i];
45 num[i] = (uint32_t)acc;
46 acc >>= 32;
47 }
48}
49
50/**
51 * greater_equal_modulus() - check if a value is >= modulus
52 *
53 * @key: Key containing modulus to check
54 * @num: Number to check against modulus, as little endian word array
55 * @return 0 if num < modulus, 1 if num >= modulus
56 */
57static int greater_equal_modulus(const struct rsa_public_key *key,
58 uint32_t num[])
59{
60 uint32_t i;
61
62 for (i = key->len - 1; i >= 0; i--) {
63 if (num[i] < key->modulus[i])
64 return 0;
65 if (num[i] > key->modulus[i])
66 return 1;
67 }
68
69 return 1; /* equal */
70}
71
72/**
73 * montgomery_mul_add_step() - Perform montgomery multiply-add step
74 *
75 * Operation: montgomery result[] += a * b[] / n0inv % modulus
76 *
77 * @key: RSA key
78 * @result: Place to put result, as little endian word array
79 * @a: Multiplier
80 * @b: Multiplicand, as little endian word array
81 */
82static void montgomery_mul_add_step(const struct rsa_public_key *key,
83 uint32_t result[], const uint32_t a, const uint32_t b[])
84{
85 uint64_t acc_a, acc_b;
86 uint32_t d0;
87 uint i;
88
89 acc_a = (uint64_t)a * b[0] + result[0];
90 d0 = (uint32_t)acc_a * key->n0inv;
91 acc_b = (uint64_t)d0 * key->modulus[0] + (uint32_t)acc_a;
92 for (i = 1; i < key->len; i++) {
93 acc_a = (acc_a >> 32) + (uint64_t)a * b[i] + result[i];
94 acc_b = (acc_b >> 32) + (uint64_t)d0 * key->modulus[i] +
95 (uint32_t)acc_a;
96 result[i - 1] = (uint32_t)acc_b;
97 }
98
99 acc_a = (acc_a >> 32) + (acc_b >> 32);
100
101 result[i - 1] = (uint32_t)acc_a;
102
103 if (acc_a >> 32)
104 subtract_modulus(key, result);
105}
106
107/**
108 * montgomery_mul() - Perform montgomery mutitply
109 *
110 * Operation: montgomery result[] = a[] * b[] / n0inv % modulus
111 *
112 * @key: RSA key
113 * @result: Place to put result, as little endian word array
114 * @a: Multiplier, as little endian word array
115 * @b: Multiplicand, as little endian word array
116 */
117static void montgomery_mul(const struct rsa_public_key *key,
118 uint32_t result[], uint32_t a[], const uint32_t b[])
119{
120 uint i;
121
122 for (i = 0; i < key->len; ++i)
123 result[i] = 0;
124 for (i = 0; i < key->len; ++i)
125 montgomery_mul_add_step(key, result, a[i], b);
126}
127
e0f2f155
MW
128/**
129 * num_pub_exponent_bits() - Number of bits in the public exponent
130 *
131 * @key: RSA key
132 * @num_bits: Storage for the number of public exponent bits
133 */
134static int num_public_exponent_bits(const struct rsa_public_key *key,
135 int *num_bits)
136{
137 uint64_t exponent;
138 int exponent_bits;
139 const uint max_bits = (sizeof(exponent) * 8);
140
141 exponent = key->exponent;
142 exponent_bits = 0;
143
144 if (!exponent) {
145 *num_bits = exponent_bits;
146 return 0;
147 }
148
149 for (exponent_bits = 1; exponent_bits < max_bits + 1; ++exponent_bits)
150 if (!(exponent >>= 1)) {
151 *num_bits = exponent_bits;
152 return 0;
153 }
154
155 return -EINVAL;
156}
157
158/**
159 * is_public_exponent_bit_set() - Check if a bit in the public exponent is set
160 *
161 * @key: RSA key
162 * @pos: The bit position to check
163 */
164static int is_public_exponent_bit_set(const struct rsa_public_key *key,
165 int pos)
166{
167 return key->exponent & (1ULL << pos);
168}
169
19c402af
SG
170/**
171 * pow_mod() - in-place public exponentiation
172 *
173 * @key: RSA key
174 * @inout: Big-endian word array containing value and result
175 */
176static int pow_mod(const struct rsa_public_key *key, uint32_t *inout)
177{
178 uint32_t *result, *ptr;
179 uint i;
e0f2f155 180 int j, k;
19c402af
SG
181
182 /* Sanity check for stack size - key->len is in 32-bit words */
183 if (key->len > RSA_MAX_KEY_BITS / 32) {
184 debug("RSA key words %u exceeds maximum %d\n", key->len,
185 RSA_MAX_KEY_BITS / 32);
186 return -EINVAL;
187 }
188
189 uint32_t val[key->len], acc[key->len], tmp[key->len];
e0f2f155 190 uint32_t a_scaled[key->len];
19c402af
SG
191 result = tmp; /* Re-use location. */
192
193 /* Convert from big endian byte array to little endian word array. */
194 for (i = 0, ptr = inout + key->len - 1; i < key->len; i++, ptr--)
195 val[i] = get_unaligned_be32(ptr);
196
e0f2f155
MW
197 if (0 != num_public_exponent_bits(key, &k))
198 return -EINVAL;
199
200 if (k < 2) {
201 debug("Public exponent is too short (%d bits, minimum 2)\n",
202 k);
203 return -EINVAL;
204 }
205
206 if (!is_public_exponent_bit_set(key, 0)) {
207 debug("LSB of RSA public exponent must be set.\n");
208 return -EINVAL;
19c402af 209 }
e0f2f155
MW
210
211 /* the bit at e[k-1] is 1 by definition, so start with: C := M */
212 montgomery_mul(key, acc, val, key->rr); /* acc = a * RR / R mod n */
213 /* retain scaled version for intermediate use */
214 memcpy(a_scaled, acc, key->len * sizeof(a_scaled[0]));
215
216 for (j = k - 2; j > 0; --j) {
217 montgomery_mul(key, tmp, acc, acc); /* tmp = acc^2 / R mod n */
218
219 if (is_public_exponent_bit_set(key, j)) {
220 /* acc = tmp * val / R mod n */
221 montgomery_mul(key, acc, tmp, a_scaled);
222 } else {
223 /* e[j] == 0, copy tmp back to acc for next operation */
224 memcpy(acc, tmp, key->len * sizeof(acc[0]));
225 }
226 }
227
228 /* the bit at e[0] is always 1 */
229 montgomery_mul(key, tmp, acc, acc); /* tmp = acc^2 / R mod n */
230 montgomery_mul(key, acc, tmp, val); /* acc = tmp * a / R mod M */
231 memcpy(result, acc, key->len * sizeof(result[0]));
19c402af
SG
232
233 /* Make sure result < mod; result is at most 1x mod too large. */
234 if (greater_equal_modulus(key, result))
235 subtract_modulus(key, result);
236
237 /* Convert to bigendian byte array */
238 for (i = key->len - 1, ptr = inout; (int)i >= 0; i--, ptr++)
239 put_unaligned_be32(result[i], ptr);
19c402af
SG
240 return 0;
241}
242
243static int rsa_verify_key(const struct rsa_public_key *key, const uint8_t *sig,
646257d1
HS
244 const uint32_t sig_len, const uint8_t *hash,
245 struct checksum_algo *algo)
19c402af
SG
246{
247 const uint8_t *padding;
248 int pad_len;
249 int ret;
250
646257d1 251 if (!key || !sig || !hash || !algo)
19c402af
SG
252 return -EIO;
253
254 if (sig_len != (key->len * sizeof(uint32_t))) {
255 debug("Signature is of incorrect length %d\n", sig_len);
256 return -EINVAL;
257 }
258
646257d1
HS
259 debug("Checksum algorithm: %s", algo->name);
260
19c402af
SG
261 /* Sanity check for stack size */
262 if (sig_len > RSA_MAX_SIG_BITS / 8) {
263 debug("Signature length %u exceeds maximum %d\n", sig_len,
264 RSA_MAX_SIG_BITS / 8);
265 return -EINVAL;
266 }
267
268 uint32_t buf[sig_len / sizeof(uint32_t)];
269
270 memcpy(buf, sig, sig_len);
271
272 ret = pow_mod(key, buf);
273 if (ret)
274 return ret;
275
646257d1 276 padding = algo->rsa_padding;
db1b5f3d 277 pad_len = algo->pad_len - algo->checksum_len;
19c402af
SG
278
279 /* Check pkcs1.5 padding bytes. */
280 if (memcmp(buf, padding, pad_len)) {
281 debug("In RSAVerify(): Padding check failed!\n");
282 return -EINVAL;
283 }
284
285 /* Check hash. */
286 if (memcmp((uint8_t *)buf + pad_len, hash, sig_len - pad_len)) {
287 debug("In RSAVerify(): Hash check failed!\n");
288 return -EACCES;
289 }
290
291 return 0;
292}
293
294static void rsa_convert_big_endian(uint32_t *dst, const uint32_t *src, int len)
295{
296 int i;
297
298 for (i = 0; i < len; i++)
299 dst[i] = fdt32_to_cpu(src[len - 1 - i]);
300}
301
302static int rsa_verify_with_keynode(struct image_sign_info *info,
303 const void *hash, uint8_t *sig, uint sig_len, int node)
304{
305 const void *blob = info->fdt_blob;
306 struct rsa_public_key key;
307 const void *modulus, *rr;
e0f2f155
MW
308 const uint64_t *public_exponent;
309 int length;
19c402af
SG
310 int ret;
311
312 if (node < 0) {
313 debug("%s: Skipping invalid node", __func__);
314 return -EBADF;
315 }
316 if (!fdt_getprop(blob, node, "rsa,n0-inverse", NULL)) {
317 debug("%s: Missing rsa,n0-inverse", __func__);
318 return -EFAULT;
319 }
320 key.len = fdtdec_get_int(blob, node, "rsa,num-bits", 0);
321 key.n0inv = fdtdec_get_int(blob, node, "rsa,n0-inverse", 0);
e0f2f155
MW
322 public_exponent = fdt_getprop(blob, node, "rsa,exponent", &length);
323 if (!public_exponent || length < sizeof(*public_exponent))
324 key.exponent = RSA_DEFAULT_PUBEXP;
325 else
326 key.exponent = fdt64_to_cpu(*public_exponent);
19c402af
SG
327 modulus = fdt_getprop(blob, node, "rsa,modulus", NULL);
328 rr = fdt_getprop(blob, node, "rsa,r-squared", NULL);
329 if (!key.len || !modulus || !rr) {
330 debug("%s: Missing RSA key info", __func__);
331 return -EFAULT;
332 }
333
334 /* Sanity check for stack size */
335 if (key.len > RSA_MAX_KEY_BITS || key.len < RSA_MIN_KEY_BITS) {
336 debug("RSA key bits %u outside allowed range %d..%d\n",
337 key.len, RSA_MIN_KEY_BITS, RSA_MAX_KEY_BITS);
338 return -EFAULT;
339 }
340 key.len /= sizeof(uint32_t) * 8;
341 uint32_t key1[key.len], key2[key.len];
342
343 key.modulus = key1;
344 key.rr = key2;
345 rsa_convert_big_endian(key.modulus, modulus, key.len);
346 rsa_convert_big_endian(key.rr, rr, key.len);
347 if (!key.modulus || !key.rr) {
348 debug("%s: Out of memory", __func__);
349 return -ENOMEM;
350 }
351
352 debug("key length %d\n", key.len);
646257d1 353 ret = rsa_verify_key(&key, sig, sig_len, hash, info->algo->checksum);
19c402af
SG
354 if (ret) {
355 printf("%s: RSA failed to verify: %d\n", __func__, ret);
356 return ret;
357 }
358
359 return 0;
360}
361
362int rsa_verify(struct image_sign_info *info,
363 const struct image_region region[], int region_count,
364 uint8_t *sig, uint sig_len)
365{
366 const void *blob = info->fdt_blob;
646257d1 367 /* Reserve memory for maximum checksum-length */
db1b5f3d 368 uint8_t hash[info->algo->checksum->pad_len];
19c402af
SG
369 int ndepth, noffset;
370 int sig_node, node;
371 char name[100];
646257d1
HS
372 int ret;
373
374 /*
375 * Verify that the checksum-length does not exceed the
376 * rsa-signature-length
377 */
db1b5f3d
HS
378 if (info->algo->checksum->checksum_len >
379 info->algo->checksum->pad_len) {
380 debug("%s: invlaid checksum-algorithm %s for %s\n",
381 __func__, info->algo->checksum->name, info->algo->name);
646257d1
HS
382 return -EINVAL;
383 }
19c402af
SG
384
385 sig_node = fdt_subnode_offset(blob, 0, FIT_SIG_NODENAME);
386 if (sig_node < 0) {
387 debug("%s: No signature node found\n", __func__);
388 return -ENOENT;
389 }
390
646257d1
HS
391 /* Calculate checksum with checksum-algorithm */
392 info->algo->checksum->calculate(region, region_count, hash);
19c402af
SG
393
394 /* See if we must use a particular key */
395 if (info->required_keynode != -1) {
396 ret = rsa_verify_with_keynode(info, hash, sig, sig_len,
397 info->required_keynode);
398 if (!ret)
399 return ret;
400 }
401
402 /* Look for a key that matches our hint */
403 snprintf(name, sizeof(name), "key-%s", info->keyname);
404 node = fdt_subnode_offset(blob, sig_node, name);
405 ret = rsa_verify_with_keynode(info, hash, sig, sig_len, node);
406 if (!ret)
407 return ret;
408
409 /* No luck, so try each of the keys in turn */
410 for (ndepth = 0, noffset = fdt_next_node(info->fit, sig_node, &ndepth);
411 (noffset >= 0) && (ndepth > 0);
412 noffset = fdt_next_node(info->fit, noffset, &ndepth)) {
413 if (ndepth == 1 && noffset != node) {
414 ret = rsa_verify_with_keynode(info, hash, sig, sig_len,
415 noffset);
416 if (!ret)
417 break;
418 }
419 }
420
421 return ret;
422}