]> git.ipfire.org Git - thirdparty/linux.git/blame - lib/xarray.c
XArray: Fix xa_find_after with multi-index entries
[thirdparty/linux.git] / lib / xarray.c
CommitLineData
f8d5d0cc
MW
1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * XArray implementation
4 * Copyright (c) 2017 Microsoft Corporation
5 * Author: Matthew Wilcox <willy@infradead.org>
6 */
7
9b89a035 8#include <linux/bitmap.h>
f8d5d0cc 9#include <linux/export.h>
58d6ea30
MW
10#include <linux/list.h>
11#include <linux/slab.h>
f8d5d0cc
MW
12#include <linux/xarray.h>
13
14/*
15 * Coding conventions in this file:
16 *
17 * @xa is used to refer to the entire xarray.
18 * @xas is the 'xarray operation state'. It may be either a pointer to
19 * an xa_state, or an xa_state stored on the stack. This is an unfortunate
20 * ambiguity.
21 * @index is the index of the entry being operated on
22 * @mark is an xa_mark_t; a small number indicating one of the mark bits.
23 * @node refers to an xa_node; usually the primary one being operated on by
24 * this function.
25 * @offset is the index into the slots array inside an xa_node.
26 * @parent refers to the @xa_node closer to the head than @node.
27 * @entry refers to something stored in a slot in the xarray
28 */
29
58d6ea30
MW
30static inline unsigned int xa_lock_type(const struct xarray *xa)
31{
32 return (__force unsigned int)xa->xa_flags & 3;
33}
34
35static inline void xas_lock_type(struct xa_state *xas, unsigned int lock_type)
36{
37 if (lock_type == XA_LOCK_IRQ)
38 xas_lock_irq(xas);
39 else if (lock_type == XA_LOCK_BH)
40 xas_lock_bh(xas);
41 else
42 xas_lock(xas);
43}
44
45static inline void xas_unlock_type(struct xa_state *xas, unsigned int lock_type)
46{
47 if (lock_type == XA_LOCK_IRQ)
48 xas_unlock_irq(xas);
49 else if (lock_type == XA_LOCK_BH)
50 xas_unlock_bh(xas);
51 else
52 xas_unlock(xas);
53}
54
371c752d
MW
55static inline bool xa_track_free(const struct xarray *xa)
56{
57 return xa->xa_flags & XA_FLAGS_TRACK_FREE;
58}
59
3ccaf57a
MW
60static inline bool xa_zero_busy(const struct xarray *xa)
61{
62 return xa->xa_flags & XA_FLAGS_ZERO_BUSY;
63}
64
9b89a035
MW
65static inline void xa_mark_set(struct xarray *xa, xa_mark_t mark)
66{
67 if (!(xa->xa_flags & XA_FLAGS_MARK(mark)))
68 xa->xa_flags |= XA_FLAGS_MARK(mark);
69}
70
71static inline void xa_mark_clear(struct xarray *xa, xa_mark_t mark)
72{
73 if (xa->xa_flags & XA_FLAGS_MARK(mark))
74 xa->xa_flags &= ~(XA_FLAGS_MARK(mark));
75}
76
77static inline unsigned long *node_marks(struct xa_node *node, xa_mark_t mark)
78{
79 return node->marks[(__force unsigned)mark];
80}
81
82static inline bool node_get_mark(struct xa_node *node,
83 unsigned int offset, xa_mark_t mark)
84{
85 return test_bit(offset, node_marks(node, mark));
86}
87
88/* returns true if the bit was set */
89static inline bool node_set_mark(struct xa_node *node, unsigned int offset,
90 xa_mark_t mark)
91{
92 return __test_and_set_bit(offset, node_marks(node, mark));
93}
94
95/* returns true if the bit was set */
96static inline bool node_clear_mark(struct xa_node *node, unsigned int offset,
97 xa_mark_t mark)
98{
99 return __test_and_clear_bit(offset, node_marks(node, mark));
100}
101
102static inline bool node_any_mark(struct xa_node *node, xa_mark_t mark)
103{
104 return !bitmap_empty(node_marks(node, mark), XA_CHUNK_SIZE);
105}
106
371c752d
MW
107static inline void node_mark_all(struct xa_node *node, xa_mark_t mark)
108{
109 bitmap_fill(node_marks(node, mark), XA_CHUNK_SIZE);
110}
111
58d6ea30
MW
112#define mark_inc(mark) do { \
113 mark = (__force xa_mark_t)((__force unsigned)(mark) + 1); \
114} while (0)
115
116/*
117 * xas_squash_marks() - Merge all marks to the first entry
118 * @xas: Array operation state.
119 *
120 * Set a mark on the first entry if any entry has it set. Clear marks on
121 * all sibling entries.
122 */
123static void xas_squash_marks(const struct xa_state *xas)
124{
125 unsigned int mark = 0;
126 unsigned int limit = xas->xa_offset + xas->xa_sibs + 1;
127
128 if (!xas->xa_sibs)
129 return;
130
131 do {
132 unsigned long *marks = xas->xa_node->marks[mark];
133 if (find_next_bit(marks, limit, xas->xa_offset + 1) == limit)
134 continue;
135 __set_bit(xas->xa_offset, marks);
136 bitmap_clear(marks, xas->xa_offset + 1, xas->xa_sibs);
137 } while (mark++ != (__force unsigned)XA_MARK_MAX);
138}
139
ad3d6c72
MW
140/* extracts the offset within this node from the index */
141static unsigned int get_offset(unsigned long index, struct xa_node *node)
142{
143 return (index >> node->shift) & XA_CHUNK_MASK;
144}
145
b803b428
MW
146static void xas_set_offset(struct xa_state *xas)
147{
148 xas->xa_offset = get_offset(xas->xa_index, xas->xa_node);
149}
150
ad3d6c72
MW
151/* move the index either forwards (find) or backwards (sibling slot) */
152static void xas_move_index(struct xa_state *xas, unsigned long offset)
153{
154 unsigned int shift = xas->xa_node->shift;
155 xas->xa_index &= ~XA_CHUNK_MASK << shift;
156 xas->xa_index += offset << shift;
157}
158
b803b428
MW
159static void xas_advance(struct xa_state *xas)
160{
161 xas->xa_offset++;
162 xas_move_index(xas, xas->xa_offset);
163}
164
ad3d6c72
MW
165static void *set_bounds(struct xa_state *xas)
166{
167 xas->xa_node = XAS_BOUNDS;
168 return NULL;
169}
170
171/*
172 * Starts a walk. If the @xas is already valid, we assume that it's on
173 * the right path and just return where we've got to. If we're in an
174 * error state, return NULL. If the index is outside the current scope
175 * of the xarray, return NULL without changing @xas->xa_node. Otherwise
176 * set @xas->xa_node to NULL and return the current head of the array.
177 */
178static void *xas_start(struct xa_state *xas)
179{
180 void *entry;
181
182 if (xas_valid(xas))
183 return xas_reload(xas);
184 if (xas_error(xas))
185 return NULL;
186
187 entry = xa_head(xas->xa);
188 if (!xa_is_node(entry)) {
189 if (xas->xa_index)
190 return set_bounds(xas);
191 } else {
192 if ((xas->xa_index >> xa_to_node(entry)->shift) > XA_CHUNK_MASK)
193 return set_bounds(xas);
194 }
195
196 xas->xa_node = NULL;
197 return entry;
198}
199
200static void *xas_descend(struct xa_state *xas, struct xa_node *node)
201{
202 unsigned int offset = get_offset(xas->xa_index, node);
203 void *entry = xa_entry(xas->xa, node, offset);
204
205 xas->xa_node = node;
206 if (xa_is_sibling(entry)) {
207 offset = xa_to_sibling(entry);
208 entry = xa_entry(xas->xa, node, offset);
209 }
210
211 xas->xa_offset = offset;
212 return entry;
213}
214
215/**
216 * xas_load() - Load an entry from the XArray (advanced).
217 * @xas: XArray operation state.
218 *
219 * Usually walks the @xas to the appropriate state to load the entry
220 * stored at xa_index. However, it will do nothing and return %NULL if
221 * @xas is in an error state. xas_load() will never expand the tree.
222 *
223 * If the xa_state is set up to operate on a multi-index entry, xas_load()
224 * may return %NULL or an internal entry, even if there are entries
225 * present within the range specified by @xas.
226 *
227 * Context: Any context. The caller should hold the xa_lock or the RCU lock.
228 * Return: Usually an entry in the XArray, but see description for exceptions.
229 */
230void *xas_load(struct xa_state *xas)
231{
232 void *entry = xas_start(xas);
233
234 while (xa_is_node(entry)) {
235 struct xa_node *node = xa_to_node(entry);
236
237 if (xas->xa_shift > node->shift)
238 break;
239 entry = xas_descend(xas, node);
76b4e529
MW
240 if (node->shift == 0)
241 break;
ad3d6c72
MW
242 }
243 return entry;
244}
245EXPORT_SYMBOL_GPL(xas_load);
246
58d6ea30
MW
247/* Move the radix tree node cache here */
248extern struct kmem_cache *radix_tree_node_cachep;
249extern void radix_tree_node_rcu_free(struct rcu_head *head);
250
251#define XA_RCU_FREE ((struct xarray *)1)
252
253static void xa_node_free(struct xa_node *node)
254{
255 XA_NODE_BUG_ON(node, !list_empty(&node->private_list));
256 node->array = XA_RCU_FREE;
257 call_rcu(&node->rcu_head, radix_tree_node_rcu_free);
258}
259
260/*
261 * xas_destroy() - Free any resources allocated during the XArray operation.
262 * @xas: XArray operation state.
263 *
264 * This function is now internal-only.
265 */
266static void xas_destroy(struct xa_state *xas)
267{
268 struct xa_node *node = xas->xa_alloc;
269
270 if (!node)
271 return;
272 XA_NODE_BUG_ON(node, !list_empty(&node->private_list));
273 kmem_cache_free(radix_tree_node_cachep, node);
274 xas->xa_alloc = NULL;
275}
276
277/**
278 * xas_nomem() - Allocate memory if needed.
279 * @xas: XArray operation state.
280 * @gfp: Memory allocation flags.
281 *
282 * If we need to add new nodes to the XArray, we try to allocate memory
283 * with GFP_NOWAIT while holding the lock, which will usually succeed.
284 * If it fails, @xas is flagged as needing memory to continue. The caller
285 * should drop the lock and call xas_nomem(). If xas_nomem() succeeds,
286 * the caller should retry the operation.
287 *
288 * Forward progress is guaranteed as one node is allocated here and
289 * stored in the xa_state where it will be found by xas_alloc(). More
290 * nodes will likely be found in the slab allocator, but we do not tie
291 * them up here.
292 *
293 * Return: true if memory was needed, and was successfully allocated.
294 */
295bool xas_nomem(struct xa_state *xas, gfp_t gfp)
296{
297 if (xas->xa_node != XA_ERROR(-ENOMEM)) {
298 xas_destroy(xas);
299 return false;
300 }
7b785645
JW
301 if (xas->xa->xa_flags & XA_FLAGS_ACCOUNT)
302 gfp |= __GFP_ACCOUNT;
58d6ea30
MW
303 xas->xa_alloc = kmem_cache_alloc(radix_tree_node_cachep, gfp);
304 if (!xas->xa_alloc)
305 return false;
306 XA_NODE_BUG_ON(xas->xa_alloc, !list_empty(&xas->xa_alloc->private_list));
307 xas->xa_node = XAS_RESTART;
308 return true;
309}
310EXPORT_SYMBOL_GPL(xas_nomem);
311
312/*
313 * __xas_nomem() - Drop locks and allocate memory if needed.
314 * @xas: XArray operation state.
315 * @gfp: Memory allocation flags.
316 *
317 * Internal variant of xas_nomem().
318 *
319 * Return: true if memory was needed, and was successfully allocated.
320 */
321static bool __xas_nomem(struct xa_state *xas, gfp_t gfp)
322 __must_hold(xas->xa->xa_lock)
323{
324 unsigned int lock_type = xa_lock_type(xas->xa);
325
326 if (xas->xa_node != XA_ERROR(-ENOMEM)) {
327 xas_destroy(xas);
328 return false;
329 }
7b785645
JW
330 if (xas->xa->xa_flags & XA_FLAGS_ACCOUNT)
331 gfp |= __GFP_ACCOUNT;
58d6ea30
MW
332 if (gfpflags_allow_blocking(gfp)) {
333 xas_unlock_type(xas, lock_type);
334 xas->xa_alloc = kmem_cache_alloc(radix_tree_node_cachep, gfp);
335 xas_lock_type(xas, lock_type);
336 } else {
337 xas->xa_alloc = kmem_cache_alloc(radix_tree_node_cachep, gfp);
338 }
339 if (!xas->xa_alloc)
340 return false;
341 XA_NODE_BUG_ON(xas->xa_alloc, !list_empty(&xas->xa_alloc->private_list));
342 xas->xa_node = XAS_RESTART;
343 return true;
344}
345
346static void xas_update(struct xa_state *xas, struct xa_node *node)
347{
348 if (xas->xa_update)
349 xas->xa_update(node);
350 else
351 XA_NODE_BUG_ON(node, !list_empty(&node->private_list));
352}
353
354static void *xas_alloc(struct xa_state *xas, unsigned int shift)
355{
356 struct xa_node *parent = xas->xa_node;
357 struct xa_node *node = xas->xa_alloc;
358
359 if (xas_invalid(xas))
360 return NULL;
361
362 if (node) {
363 xas->xa_alloc = NULL;
364 } else {
7b785645
JW
365 gfp_t gfp = GFP_NOWAIT | __GFP_NOWARN;
366
367 if (xas->xa->xa_flags & XA_FLAGS_ACCOUNT)
368 gfp |= __GFP_ACCOUNT;
369
370 node = kmem_cache_alloc(radix_tree_node_cachep, gfp);
58d6ea30
MW
371 if (!node) {
372 xas_set_err(xas, -ENOMEM);
373 return NULL;
374 }
375 }
376
377 if (parent) {
378 node->offset = xas->xa_offset;
379 parent->count++;
380 XA_NODE_BUG_ON(node, parent->count > XA_CHUNK_SIZE);
381 xas_update(xas, parent);
382 }
383 XA_NODE_BUG_ON(node, shift > BITS_PER_LONG);
384 XA_NODE_BUG_ON(node, !list_empty(&node->private_list));
385 node->shift = shift;
386 node->count = 0;
387 node->nr_values = 0;
388 RCU_INIT_POINTER(node->parent, xas->xa_node);
389 node->array = xas->xa;
390
391 return node;
392}
393
0e9446c3
MW
394#ifdef CONFIG_XARRAY_MULTI
395/* Returns the number of indices covered by a given xa_state */
396static unsigned long xas_size(const struct xa_state *xas)
397{
398 return (xas->xa_sibs + 1UL) << xas->xa_shift;
399}
400#endif
401
58d6ea30
MW
402/*
403 * Use this to calculate the maximum index that will need to be created
404 * in order to add the entry described by @xas. Because we cannot store a
405 * multiple-index entry at index 0, the calculation is a little more complex
406 * than you might expect.
407 */
408static unsigned long xas_max(struct xa_state *xas)
409{
410 unsigned long max = xas->xa_index;
411
412#ifdef CONFIG_XARRAY_MULTI
413 if (xas->xa_shift || xas->xa_sibs) {
0e9446c3 414 unsigned long mask = xas_size(xas) - 1;
58d6ea30
MW
415 max |= mask;
416 if (mask == max)
417 max++;
418 }
419#endif
420
421 return max;
422}
423
424/* The maximum index that can be contained in the array without expanding it */
425static unsigned long max_index(void *entry)
426{
427 if (!xa_is_node(entry))
428 return 0;
429 return (XA_CHUNK_SIZE << xa_to_node(entry)->shift) - 1;
430}
431
432static void xas_shrink(struct xa_state *xas)
433{
434 struct xarray *xa = xas->xa;
435 struct xa_node *node = xas->xa_node;
436
437 for (;;) {
438 void *entry;
439
440 XA_NODE_BUG_ON(node, node->count > XA_CHUNK_SIZE);
441 if (node->count != 1)
442 break;
443 entry = xa_entry_locked(xa, node, 0);
444 if (!entry)
445 break;
446 if (!xa_is_node(entry) && node->shift)
447 break;
3ccaf57a
MW
448 if (xa_is_zero(entry) && xa_zero_busy(xa))
449 entry = NULL;
58d6ea30
MW
450 xas->xa_node = XAS_BOUNDS;
451
452 RCU_INIT_POINTER(xa->xa_head, entry);
371c752d
MW
453 if (xa_track_free(xa) && !node_get_mark(node, 0, XA_FREE_MARK))
454 xa_mark_clear(xa, XA_FREE_MARK);
58d6ea30
MW
455
456 node->count = 0;
457 node->nr_values = 0;
458 if (!xa_is_node(entry))
459 RCU_INIT_POINTER(node->slots[0], XA_RETRY_ENTRY);
460 xas_update(xas, node);
461 xa_node_free(node);
462 if (!xa_is_node(entry))
463 break;
464 node = xa_to_node(entry);
465 node->parent = NULL;
466 }
467}
468
469/*
470 * xas_delete_node() - Attempt to delete an xa_node
471 * @xas: Array operation state.
472 *
473 * Attempts to delete the @xas->xa_node. This will fail if xa->node has
474 * a non-zero reference count.
475 */
476static void xas_delete_node(struct xa_state *xas)
477{
478 struct xa_node *node = xas->xa_node;
479
480 for (;;) {
481 struct xa_node *parent;
482
483 XA_NODE_BUG_ON(node, node->count > XA_CHUNK_SIZE);
484 if (node->count)
485 break;
486
487 parent = xa_parent_locked(xas->xa, node);
488 xas->xa_node = parent;
489 xas->xa_offset = node->offset;
490 xa_node_free(node);
491
492 if (!parent) {
493 xas->xa->xa_head = NULL;
494 xas->xa_node = XAS_BOUNDS;
495 return;
496 }
497
498 parent->slots[xas->xa_offset] = NULL;
499 parent->count--;
500 XA_NODE_BUG_ON(parent, parent->count > XA_CHUNK_SIZE);
501 node = parent;
502 xas_update(xas, node);
503 }
504
505 if (!node->parent)
506 xas_shrink(xas);
507}
508
509/**
510 * xas_free_nodes() - Free this node and all nodes that it references
511 * @xas: Array operation state.
512 * @top: Node to free
513 *
514 * This node has been removed from the tree. We must now free it and all
515 * of its subnodes. There may be RCU walkers with references into the tree,
516 * so we must replace all entries with retry markers.
517 */
518static void xas_free_nodes(struct xa_state *xas, struct xa_node *top)
519{
520 unsigned int offset = 0;
521 struct xa_node *node = top;
522
523 for (;;) {
524 void *entry = xa_entry_locked(xas->xa, node, offset);
525
76b4e529 526 if (node->shift && xa_is_node(entry)) {
58d6ea30
MW
527 node = xa_to_node(entry);
528 offset = 0;
529 continue;
530 }
531 if (entry)
532 RCU_INIT_POINTER(node->slots[offset], XA_RETRY_ENTRY);
533 offset++;
534 while (offset == XA_CHUNK_SIZE) {
535 struct xa_node *parent;
536
537 parent = xa_parent_locked(xas->xa, node);
538 offset = node->offset + 1;
539 node->count = 0;
540 node->nr_values = 0;
541 xas_update(xas, node);
542 xa_node_free(node);
543 if (node == top)
544 return;
545 node = parent;
546 }
547 }
548}
549
550/*
551 * xas_expand adds nodes to the head of the tree until it has reached
552 * sufficient height to be able to contain @xas->xa_index
553 */
554static int xas_expand(struct xa_state *xas, void *head)
555{
556 struct xarray *xa = xas->xa;
557 struct xa_node *node = NULL;
558 unsigned int shift = 0;
559 unsigned long max = xas_max(xas);
560
561 if (!head) {
562 if (max == 0)
563 return 0;
564 while ((max >> shift) >= XA_CHUNK_SIZE)
565 shift += XA_CHUNK_SHIFT;
566 return shift + XA_CHUNK_SHIFT;
567 } else if (xa_is_node(head)) {
568 node = xa_to_node(head);
569 shift = node->shift + XA_CHUNK_SHIFT;
570 }
571 xas->xa_node = NULL;
572
573 while (max > max_index(head)) {
574 xa_mark_t mark = 0;
575
576 XA_NODE_BUG_ON(node, shift > BITS_PER_LONG);
577 node = xas_alloc(xas, shift);
578 if (!node)
579 return -ENOMEM;
580
581 node->count = 1;
582 if (xa_is_value(head))
583 node->nr_values = 1;
584 RCU_INIT_POINTER(node->slots[0], head);
585
586 /* Propagate the aggregated mark info to the new child */
587 for (;;) {
371c752d
MW
588 if (xa_track_free(xa) && mark == XA_FREE_MARK) {
589 node_mark_all(node, XA_FREE_MARK);
590 if (!xa_marked(xa, XA_FREE_MARK)) {
591 node_clear_mark(node, 0, XA_FREE_MARK);
592 xa_mark_set(xa, XA_FREE_MARK);
593 }
594 } else if (xa_marked(xa, mark)) {
58d6ea30 595 node_set_mark(node, 0, mark);
371c752d 596 }
58d6ea30
MW
597 if (mark == XA_MARK_MAX)
598 break;
599 mark_inc(mark);
600 }
601
602 /*
603 * Now that the new node is fully initialised, we can add
604 * it to the tree
605 */
606 if (xa_is_node(head)) {
607 xa_to_node(head)->offset = 0;
608 rcu_assign_pointer(xa_to_node(head)->parent, node);
609 }
610 head = xa_mk_node(node);
611 rcu_assign_pointer(xa->xa_head, head);
612 xas_update(xas, node);
613
614 shift += XA_CHUNK_SHIFT;
615 }
616
617 xas->xa_node = node;
618 return shift;
619}
620
621/*
622 * xas_create() - Create a slot to store an entry in.
623 * @xas: XArray operation state.
76b4e529 624 * @allow_root: %true if we can store the entry in the root directly
58d6ea30
MW
625 *
626 * Most users will not need to call this function directly, as it is called
627 * by xas_store(). It is useful for doing conditional store operations
628 * (see the xa_cmpxchg() implementation for an example).
629 *
630 * Return: If the slot already existed, returns the contents of this slot.
804dfaf0
MW
631 * If the slot was newly created, returns %NULL. If it failed to create the
632 * slot, returns %NULL and indicates the error in @xas.
58d6ea30 633 */
76b4e529 634static void *xas_create(struct xa_state *xas, bool allow_root)
58d6ea30
MW
635{
636 struct xarray *xa = xas->xa;
637 void *entry;
638 void __rcu **slot;
639 struct xa_node *node = xas->xa_node;
640 int shift;
641 unsigned int order = xas->xa_shift;
642
643 if (xas_top(node)) {
644 entry = xa_head_locked(xa);
645 xas->xa_node = NULL;
3ccaf57a
MW
646 if (!entry && xa_zero_busy(xa))
647 entry = XA_ZERO_ENTRY;
58d6ea30
MW
648 shift = xas_expand(xas, entry);
649 if (shift < 0)
650 return NULL;
76b4e529
MW
651 if (!shift && !allow_root)
652 shift = XA_CHUNK_SHIFT;
58d6ea30
MW
653 entry = xa_head_locked(xa);
654 slot = &xa->xa_head;
655 } else if (xas_error(xas)) {
656 return NULL;
657 } else if (node) {
658 unsigned int offset = xas->xa_offset;
659
660 shift = node->shift;
661 entry = xa_entry_locked(xa, node, offset);
662 slot = &node->slots[offset];
663 } else {
664 shift = 0;
665 entry = xa_head_locked(xa);
666 slot = &xa->xa_head;
667 }
668
669 while (shift > order) {
670 shift -= XA_CHUNK_SHIFT;
671 if (!entry) {
672 node = xas_alloc(xas, shift);
673 if (!node)
674 break;
371c752d
MW
675 if (xa_track_free(xa))
676 node_mark_all(node, XA_FREE_MARK);
58d6ea30
MW
677 rcu_assign_pointer(*slot, xa_mk_node(node));
678 } else if (xa_is_node(entry)) {
679 node = xa_to_node(entry);
680 } else {
681 break;
682 }
683 entry = xas_descend(xas, node);
684 slot = &node->slots[xas->xa_offset];
685 }
686
687 return entry;
688}
689
2264f513
MW
690/**
691 * xas_create_range() - Ensure that stores to this range will succeed
692 * @xas: XArray operation state.
693 *
694 * Creates all of the slots in the range covered by @xas. Sets @xas to
695 * create single-index entries and positions it at the beginning of the
696 * range. This is for the benefit of users which have not yet been
697 * converted to use multi-index entries.
698 */
699void xas_create_range(struct xa_state *xas)
700{
701 unsigned long index = xas->xa_index;
702 unsigned char shift = xas->xa_shift;
703 unsigned char sibs = xas->xa_sibs;
704
705 xas->xa_index |= ((sibs + 1) << shift) - 1;
706 if (xas_is_node(xas) && xas->xa_node->shift == xas->xa_shift)
707 xas->xa_offset |= sibs;
708 xas->xa_shift = 0;
709 xas->xa_sibs = 0;
710
711 for (;;) {
76b4e529 712 xas_create(xas, true);
2264f513
MW
713 if (xas_error(xas))
714 goto restore;
715 if (xas->xa_index <= (index | XA_CHUNK_MASK))
716 goto success;
717 xas->xa_index -= XA_CHUNK_SIZE;
718
719 for (;;) {
720 struct xa_node *node = xas->xa_node;
721 xas->xa_node = xa_parent_locked(xas->xa, node);
722 xas->xa_offset = node->offset - 1;
723 if (node->offset != 0)
724 break;
725 }
726 }
727
728restore:
729 xas->xa_shift = shift;
730 xas->xa_sibs = sibs;
731 xas->xa_index = index;
732 return;
733success:
734 xas->xa_index = index;
735 if (xas->xa_node)
736 xas_set_offset(xas);
737}
738EXPORT_SYMBOL_GPL(xas_create_range);
739
58d6ea30
MW
740static void update_node(struct xa_state *xas, struct xa_node *node,
741 int count, int values)
742{
743 if (!node || (!count && !values))
744 return;
745
746 node->count += count;
747 node->nr_values += values;
748 XA_NODE_BUG_ON(node, node->count > XA_CHUNK_SIZE);
749 XA_NODE_BUG_ON(node, node->nr_values > XA_CHUNK_SIZE);
750 xas_update(xas, node);
751 if (count < 0)
752 xas_delete_node(xas);
753}
754
755/**
756 * xas_store() - Store this entry in the XArray.
757 * @xas: XArray operation state.
758 * @entry: New entry.
759 *
760 * If @xas is operating on a multi-index entry, the entry returned by this
761 * function is essentially meaningless (it may be an internal entry or it
762 * may be %NULL, even if there are non-NULL entries at some of the indices
763 * covered by the range). This is not a problem for any current users,
764 * and can be changed if needed.
765 *
766 * Return: The old entry at this index.
767 */
768void *xas_store(struct xa_state *xas, void *entry)
769{
770 struct xa_node *node;
771 void __rcu **slot = &xas->xa->xa_head;
772 unsigned int offset, max;
773 int count = 0;
774 int values = 0;
775 void *first, *next;
776 bool value = xa_is_value(entry);
777
4a5c8d89
MW
778 if (entry) {
779 bool allow_root = !xa_is_node(entry) && !xa_is_zero(entry);
780 first = xas_create(xas, allow_root);
781 } else {
58d6ea30 782 first = xas_load(xas);
4a5c8d89 783 }
58d6ea30
MW
784
785 if (xas_invalid(xas))
786 return first;
787 node = xas->xa_node;
788 if (node && (xas->xa_shift < node->shift))
789 xas->xa_sibs = 0;
790 if ((first == entry) && !xas->xa_sibs)
791 return first;
792
793 next = first;
794 offset = xas->xa_offset;
795 max = xas->xa_offset + xas->xa_sibs;
796 if (node) {
797 slot = &node->slots[offset];
798 if (xas->xa_sibs)
799 xas_squash_marks(xas);
800 }
801 if (!entry)
802 xas_init_marks(xas);
803
804 for (;;) {
805 /*
806 * Must clear the marks before setting the entry to NULL,
807 * otherwise xas_for_each_marked may find a NULL entry and
808 * stop early. rcu_assign_pointer contains a release barrier
809 * so the mark clearing will appear to happen before the
810 * entry is set to NULL.
811 */
812 rcu_assign_pointer(*slot, entry);
2fbe967b 813 if (xa_is_node(next) && (!node || node->shift))
58d6ea30
MW
814 xas_free_nodes(xas, xa_to_node(next));
815 if (!node)
816 break;
817 count += !next - !entry;
818 values += !xa_is_value(first) - !value;
819 if (entry) {
820 if (offset == max)
821 break;
822 if (!xa_is_sibling(entry))
823 entry = xa_mk_sibling(xas->xa_offset);
824 } else {
825 if (offset == XA_CHUNK_MASK)
826 break;
827 }
828 next = xa_entry_locked(xas->xa, node, ++offset);
829 if (!xa_is_sibling(next)) {
830 if (!entry && (offset > max))
831 break;
832 first = next;
833 }
834 slot++;
835 }
836
837 update_node(xas, node, count, values);
838 return first;
839}
840EXPORT_SYMBOL_GPL(xas_store);
841
9b89a035
MW
842/**
843 * xas_get_mark() - Returns the state of this mark.
844 * @xas: XArray operation state.
845 * @mark: Mark number.
846 *
847 * Return: true if the mark is set, false if the mark is clear or @xas
848 * is in an error state.
849 */
850bool xas_get_mark(const struct xa_state *xas, xa_mark_t mark)
851{
852 if (xas_invalid(xas))
853 return false;
854 if (!xas->xa_node)
855 return xa_marked(xas->xa, mark);
856 return node_get_mark(xas->xa_node, xas->xa_offset, mark);
857}
858EXPORT_SYMBOL_GPL(xas_get_mark);
859
860/**
861 * xas_set_mark() - Sets the mark on this entry and its parents.
862 * @xas: XArray operation state.
863 * @mark: Mark number.
864 *
865 * Sets the specified mark on this entry, and walks up the tree setting it
866 * on all the ancestor entries. Does nothing if @xas has not been walked to
867 * an entry, or is in an error state.
868 */
869void xas_set_mark(const struct xa_state *xas, xa_mark_t mark)
870{
871 struct xa_node *node = xas->xa_node;
872 unsigned int offset = xas->xa_offset;
873
874 if (xas_invalid(xas))
875 return;
876
877 while (node) {
878 if (node_set_mark(node, offset, mark))
879 return;
880 offset = node->offset;
881 node = xa_parent_locked(xas->xa, node);
882 }
883
884 if (!xa_marked(xas->xa, mark))
885 xa_mark_set(xas->xa, mark);
886}
887EXPORT_SYMBOL_GPL(xas_set_mark);
888
889/**
890 * xas_clear_mark() - Clears the mark on this entry and its parents.
891 * @xas: XArray operation state.
892 * @mark: Mark number.
893 *
894 * Clears the specified mark on this entry, and walks back to the head
895 * attempting to clear it on all the ancestor entries. Does nothing if
896 * @xas has not been walked to an entry, or is in an error state.
897 */
898void xas_clear_mark(const struct xa_state *xas, xa_mark_t mark)
899{
900 struct xa_node *node = xas->xa_node;
901 unsigned int offset = xas->xa_offset;
902
903 if (xas_invalid(xas))
904 return;
905
906 while (node) {
907 if (!node_clear_mark(node, offset, mark))
908 return;
909 if (node_any_mark(node, mark))
910 return;
911
912 offset = node->offset;
913 node = xa_parent_locked(xas->xa, node);
914 }
915
916 if (xa_marked(xas->xa, mark))
917 xa_mark_clear(xas->xa, mark);
918}
919EXPORT_SYMBOL_GPL(xas_clear_mark);
920
58d6ea30
MW
921/**
922 * xas_init_marks() - Initialise all marks for the entry
923 * @xas: Array operations state.
924 *
925 * Initialise all marks for the entry specified by @xas. If we're tracking
926 * free entries with a mark, we need to set it on all entries. All other
927 * marks are cleared.
928 *
929 * This implementation is not as efficient as it could be; we may walk
930 * up the tree multiple times.
931 */
932void xas_init_marks(const struct xa_state *xas)
933{
934 xa_mark_t mark = 0;
935
936 for (;;) {
371c752d
MW
937 if (xa_track_free(xas->xa) && mark == XA_FREE_MARK)
938 xas_set_mark(xas, mark);
939 else
940 xas_clear_mark(xas, mark);
58d6ea30
MW
941 if (mark == XA_MARK_MAX)
942 break;
943 mark_inc(mark);
944 }
945}
946EXPORT_SYMBOL_GPL(xas_init_marks);
947
b803b428
MW
948/**
949 * xas_pause() - Pause a walk to drop a lock.
950 * @xas: XArray operation state.
951 *
952 * Some users need to pause a walk and drop the lock they're holding in
953 * order to yield to a higher priority thread or carry out an operation
954 * on an entry. Those users should call this function before they drop
955 * the lock. It resets the @xas to be suitable for the next iteration
956 * of the loop after the user has reacquired the lock. If most entries
957 * found during a walk require you to call xas_pause(), the xa_for_each()
958 * iterator may be more appropriate.
959 *
960 * Note that xas_pause() only works for forward iteration. If a user needs
961 * to pause a reverse iteration, we will need a xas_pause_rev().
962 */
963void xas_pause(struct xa_state *xas)
964{
965 struct xa_node *node = xas->xa_node;
966
967 if (xas_invalid(xas))
968 return;
969
82a22311 970 xas->xa_node = XAS_RESTART;
b803b428
MW
971 if (node) {
972 unsigned int offset = xas->xa_offset;
973 while (++offset < XA_CHUNK_SIZE) {
974 if (!xa_is_sibling(xa_entry(xas->xa, node, offset)))
975 break;
976 }
977 xas->xa_index += (offset - xas->xa_offset) << node->shift;
82a22311
MWO
978 if (xas->xa_index == 0)
979 xas->xa_node = XAS_BOUNDS;
b803b428
MW
980 } else {
981 xas->xa_index++;
982 }
b803b428
MW
983}
984EXPORT_SYMBOL_GPL(xas_pause);
985
64d3e9a9
MW
986/*
987 * __xas_prev() - Find the previous entry in the XArray.
988 * @xas: XArray operation state.
989 *
990 * Helper function for xas_prev() which handles all the complex cases
991 * out of line.
992 */
993void *__xas_prev(struct xa_state *xas)
994{
995 void *entry;
996
997 if (!xas_frozen(xas->xa_node))
998 xas->xa_index--;
91abab83
MWO
999 if (!xas->xa_node)
1000 return set_bounds(xas);
64d3e9a9
MW
1001 if (xas_not_node(xas->xa_node))
1002 return xas_load(xas);
1003
1004 if (xas->xa_offset != get_offset(xas->xa_index, xas->xa_node))
1005 xas->xa_offset--;
1006
1007 while (xas->xa_offset == 255) {
1008 xas->xa_offset = xas->xa_node->offset - 1;
1009 xas->xa_node = xa_parent(xas->xa, xas->xa_node);
1010 if (!xas->xa_node)
1011 return set_bounds(xas);
1012 }
1013
1014 for (;;) {
1015 entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset);
1016 if (!xa_is_node(entry))
1017 return entry;
1018
1019 xas->xa_node = xa_to_node(entry);
1020 xas_set_offset(xas);
1021 }
1022}
1023EXPORT_SYMBOL_GPL(__xas_prev);
1024
1025/*
1026 * __xas_next() - Find the next entry in the XArray.
1027 * @xas: XArray operation state.
1028 *
1029 * Helper function for xas_next() which handles all the complex cases
1030 * out of line.
1031 */
1032void *__xas_next(struct xa_state *xas)
1033{
1034 void *entry;
1035
1036 if (!xas_frozen(xas->xa_node))
1037 xas->xa_index++;
91abab83
MWO
1038 if (!xas->xa_node)
1039 return set_bounds(xas);
64d3e9a9
MW
1040 if (xas_not_node(xas->xa_node))
1041 return xas_load(xas);
1042
1043 if (xas->xa_offset != get_offset(xas->xa_index, xas->xa_node))
1044 xas->xa_offset++;
1045
1046 while (xas->xa_offset == XA_CHUNK_SIZE) {
1047 xas->xa_offset = xas->xa_node->offset + 1;
1048 xas->xa_node = xa_parent(xas->xa, xas->xa_node);
1049 if (!xas->xa_node)
1050 return set_bounds(xas);
1051 }
1052
1053 for (;;) {
1054 entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset);
1055 if (!xa_is_node(entry))
1056 return entry;
1057
1058 xas->xa_node = xa_to_node(entry);
1059 xas_set_offset(xas);
1060 }
1061}
1062EXPORT_SYMBOL_GPL(__xas_next);
1063
b803b428
MW
1064/**
1065 * xas_find() - Find the next present entry in the XArray.
1066 * @xas: XArray operation state.
1067 * @max: Highest index to return.
1068 *
1069 * If the @xas has not yet been walked to an entry, return the entry
1070 * which has an index >= xas.xa_index. If it has been walked, the entry
1071 * currently being pointed at has been processed, and so we move to the
1072 * next entry.
1073 *
1074 * If no entry is found and the array is smaller than @max, the iterator
1075 * is set to the smallest index not yet in the array. This allows @xas
1076 * to be immediately passed to xas_store().
1077 *
1078 * Return: The entry, if found, otherwise %NULL.
1079 */
1080void *xas_find(struct xa_state *xas, unsigned long max)
1081{
1082 void *entry;
1083
82a22311 1084 if (xas_error(xas) || xas->xa_node == XAS_BOUNDS)
b803b428
MW
1085 return NULL;
1086
1087 if (!xas->xa_node) {
1088 xas->xa_index = 1;
1089 return set_bounds(xas);
82a22311 1090 } else if (xas->xa_node == XAS_RESTART) {
b803b428
MW
1091 entry = xas_load(xas);
1092 if (entry || xas_not_node(xas->xa_node))
1093 return entry;
1094 } else if (!xas->xa_node->shift &&
1095 xas->xa_offset != (xas->xa_index & XA_CHUNK_MASK)) {
1096 xas->xa_offset = ((xas->xa_index - 1) & XA_CHUNK_MASK) + 1;
1097 }
1098
1099 xas_advance(xas);
1100
1101 while (xas->xa_node && (xas->xa_index <= max)) {
1102 if (unlikely(xas->xa_offset == XA_CHUNK_SIZE)) {
1103 xas->xa_offset = xas->xa_node->offset + 1;
1104 xas->xa_node = xa_parent(xas->xa, xas->xa_node);
1105 continue;
1106 }
1107
1108 entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset);
1109 if (xa_is_node(entry)) {
1110 xas->xa_node = xa_to_node(entry);
1111 xas->xa_offset = 0;
1112 continue;
1113 }
1114 if (entry && !xa_is_sibling(entry))
1115 return entry;
1116
1117 xas_advance(xas);
1118 }
1119
1120 if (!xas->xa_node)
1121 xas->xa_node = XAS_BOUNDS;
1122 return NULL;
1123}
1124EXPORT_SYMBOL_GPL(xas_find);
1125
1126/**
1127 * xas_find_marked() - Find the next marked entry in the XArray.
1128 * @xas: XArray operation state.
1129 * @max: Highest index to return.
1130 * @mark: Mark number to search for.
1131 *
1132 * If the @xas has not yet been walked to an entry, return the marked entry
1133 * which has an index >= xas.xa_index. If it has been walked, the entry
1134 * currently being pointed at has been processed, and so we return the
1135 * first marked entry with an index > xas.xa_index.
1136 *
1137 * If no marked entry is found and the array is smaller than @max, @xas is
1138 * set to the bounds state and xas->xa_index is set to the smallest index
1139 * not yet in the array. This allows @xas to be immediately passed to
1140 * xas_store().
1141 *
1142 * If no entry is found before @max is reached, @xas is set to the restart
1143 * state.
1144 *
1145 * Return: The entry, if found, otherwise %NULL.
1146 */
1147void *xas_find_marked(struct xa_state *xas, unsigned long max, xa_mark_t mark)
1148{
1149 bool advance = true;
1150 unsigned int offset;
1151 void *entry;
1152
1153 if (xas_error(xas))
1154 return NULL;
1155
1156 if (!xas->xa_node) {
1157 xas->xa_index = 1;
1158 goto out;
1159 } else if (xas_top(xas->xa_node)) {
1160 advance = false;
1161 entry = xa_head(xas->xa);
1162 xas->xa_node = NULL;
1163 if (xas->xa_index > max_index(entry))
48483614 1164 goto out;
b803b428
MW
1165 if (!xa_is_node(entry)) {
1166 if (xa_marked(xas->xa, mark))
1167 return entry;
1168 xas->xa_index = 1;
1169 goto out;
1170 }
1171 xas->xa_node = xa_to_node(entry);
1172 xas->xa_offset = xas->xa_index >> xas->xa_node->shift;
1173 }
1174
1175 while (xas->xa_index <= max) {
1176 if (unlikely(xas->xa_offset == XA_CHUNK_SIZE)) {
1177 xas->xa_offset = xas->xa_node->offset + 1;
1178 xas->xa_node = xa_parent(xas->xa, xas->xa_node);
1179 if (!xas->xa_node)
1180 break;
1181 advance = false;
1182 continue;
1183 }
1184
1185 if (!advance) {
1186 entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset);
1187 if (xa_is_sibling(entry)) {
1188 xas->xa_offset = xa_to_sibling(entry);
1189 xas_move_index(xas, xas->xa_offset);
1190 }
1191 }
1192
1193 offset = xas_find_chunk(xas, advance, mark);
1194 if (offset > xas->xa_offset) {
1195 advance = false;
1196 xas_move_index(xas, offset);
1197 /* Mind the wrap */
1198 if ((xas->xa_index - 1) >= max)
1199 goto max;
1200 xas->xa_offset = offset;
1201 if (offset == XA_CHUNK_SIZE)
1202 continue;
1203 }
1204
1205 entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset);
1206 if (!xa_is_node(entry))
1207 return entry;
1208 xas->xa_node = xa_to_node(entry);
1209 xas_set_offset(xas);
1210 }
1211
1212out:
48483614 1213 if (xas->xa_index > max)
b803b428 1214 goto max;
48483614 1215 return set_bounds(xas);
b803b428
MW
1216max:
1217 xas->xa_node = XAS_RESTART;
1218 return NULL;
1219}
1220EXPORT_SYMBOL_GPL(xas_find_marked);
1221
4e99d4e9
MW
1222/**
1223 * xas_find_conflict() - Find the next present entry in a range.
1224 * @xas: XArray operation state.
1225 *
1226 * The @xas describes both a range and a position within that range.
1227 *
1228 * Context: Any context. Expects xa_lock to be held.
1229 * Return: The next entry in the range covered by @xas or %NULL.
1230 */
1231void *xas_find_conflict(struct xa_state *xas)
1232{
1233 void *curr;
1234
1235 if (xas_error(xas))
1236 return NULL;
1237
1238 if (!xas->xa_node)
1239 return NULL;
1240
1241 if (xas_top(xas->xa_node)) {
1242 curr = xas_start(xas);
1243 if (!curr)
1244 return NULL;
1245 while (xa_is_node(curr)) {
1246 struct xa_node *node = xa_to_node(curr);
1247 curr = xas_descend(xas, node);
1248 }
1249 if (curr)
1250 return curr;
1251 }
1252
1253 if (xas->xa_node->shift > xas->xa_shift)
1254 return NULL;
1255
1256 for (;;) {
1257 if (xas->xa_node->shift == xas->xa_shift) {
1258 if ((xas->xa_offset & xas->xa_sibs) == xas->xa_sibs)
1259 break;
1260 } else if (xas->xa_offset == XA_CHUNK_MASK) {
1261 xas->xa_offset = xas->xa_node->offset;
1262 xas->xa_node = xa_parent_locked(xas->xa, xas->xa_node);
1263 if (!xas->xa_node)
1264 break;
1265 continue;
1266 }
1267 curr = xa_entry_locked(xas->xa, xas->xa_node, ++xas->xa_offset);
1268 if (xa_is_sibling(curr))
1269 continue;
1270 while (xa_is_node(curr)) {
1271 xas->xa_node = xa_to_node(curr);
1272 xas->xa_offset = 0;
1273 curr = xa_entry_locked(xas->xa, xas->xa_node, 0);
1274 }
1275 if (curr)
1276 return curr;
1277 }
1278 xas->xa_offset -= xas->xa_sibs;
1279 return NULL;
1280}
1281EXPORT_SYMBOL_GPL(xas_find_conflict);
1282
ad3d6c72
MW
1283/**
1284 * xa_load() - Load an entry from an XArray.
1285 * @xa: XArray.
1286 * @index: index into array.
1287 *
1288 * Context: Any context. Takes and releases the RCU lock.
1289 * Return: The entry at @index in @xa.
1290 */
1291void *xa_load(struct xarray *xa, unsigned long index)
1292{
1293 XA_STATE(xas, xa, index);
1294 void *entry;
1295
1296 rcu_read_lock();
1297 do {
1298 entry = xas_load(&xas);
9f14d4f1
MW
1299 if (xa_is_zero(entry))
1300 entry = NULL;
ad3d6c72
MW
1301 } while (xas_retry(&xas, entry));
1302 rcu_read_unlock();
1303
1304 return entry;
1305}
1306EXPORT_SYMBOL(xa_load);
1307
58d6ea30
MW
1308static void *xas_result(struct xa_state *xas, void *curr)
1309{
9f14d4f1
MW
1310 if (xa_is_zero(curr))
1311 return NULL;
58d6ea30
MW
1312 if (xas_error(xas))
1313 curr = xas->xa_node;
1314 return curr;
1315}
1316
1317/**
1318 * __xa_erase() - Erase this entry from the XArray while locked.
1319 * @xa: XArray.
1320 * @index: Index into array.
1321 *
809ab937
MW
1322 * After this function returns, loading from @index will return %NULL.
1323 * If the index is part of a multi-index entry, all indices will be erased
1324 * and none of the entries will be part of a multi-index entry.
58d6ea30 1325 *
809ab937
MW
1326 * Context: Any context. Expects xa_lock to be held on entry.
1327 * Return: The entry which used to be at this index.
58d6ea30
MW
1328 */
1329void *__xa_erase(struct xarray *xa, unsigned long index)
1330{
1331 XA_STATE(xas, xa, index);
1332 return xas_result(&xas, xas_store(&xas, NULL));
1333}
9ee5a3b7 1334EXPORT_SYMBOL(__xa_erase);
58d6ea30 1335
9c16bb88
MW
1336/**
1337 * xa_erase() - Erase this entry from the XArray.
1338 * @xa: XArray.
1339 * @index: Index of entry.
1340 *
809ab937
MW
1341 * After this function returns, loading from @index will return %NULL.
1342 * If the index is part of a multi-index entry, all indices will be erased
1343 * and none of the entries will be part of a multi-index entry.
9c16bb88
MW
1344 *
1345 * Context: Any context. Takes and releases the xa_lock.
1346 * Return: The entry which used to be at this index.
1347 */
1348void *xa_erase(struct xarray *xa, unsigned long index)
1349{
1350 void *entry;
1351
1352 xa_lock(xa);
1353 entry = __xa_erase(xa, index);
1354 xa_unlock(xa);
1355
1356 return entry;
1357}
1358EXPORT_SYMBOL(xa_erase);
1359
58d6ea30 1360/**
611f3186 1361 * __xa_store() - Store this entry in the XArray.
58d6ea30
MW
1362 * @xa: XArray.
1363 * @index: Index into array.
1364 * @entry: New entry.
1365 * @gfp: Memory allocation flags.
1366 *
611f3186
MW
1367 * You must already be holding the xa_lock when calling this function.
1368 * It will drop the lock if needed to allocate memory, and then reacquire
1369 * it afterwards.
58d6ea30 1370 *
611f3186
MW
1371 * Context: Any context. Expects xa_lock to be held on entry. May
1372 * release and reacquire xa_lock if @gfp flags permit.
1373 * Return: The old entry at this index or xa_err() if an error happened.
58d6ea30 1374 */
611f3186 1375void *__xa_store(struct xarray *xa, unsigned long index, void *entry, gfp_t gfp)
58d6ea30
MW
1376{
1377 XA_STATE(xas, xa, index);
1378 void *curr;
1379
76b4e529 1380 if (WARN_ON_ONCE(xa_is_advanced(entry)))
58d6ea30 1381 return XA_ERROR(-EINVAL);
d9c48043
MW
1382 if (xa_track_free(xa) && !entry)
1383 entry = XA_ZERO_ENTRY;
58d6ea30
MW
1384
1385 do {
58d6ea30 1386 curr = xas_store(&xas, entry);
d9c48043 1387 if (xa_track_free(xa))
371c752d 1388 xas_clear_mark(&xas, XA_FREE_MARK);
611f3186 1389 } while (__xas_nomem(&xas, gfp));
58d6ea30
MW
1390
1391 return xas_result(&xas, curr);
1392}
611f3186 1393EXPORT_SYMBOL(__xa_store);
58d6ea30
MW
1394
1395/**
611f3186 1396 * xa_store() - Store this entry in the XArray.
58d6ea30
MW
1397 * @xa: XArray.
1398 * @index: Index into array.
1399 * @entry: New entry.
1400 * @gfp: Memory allocation flags.
1401 *
611f3186
MW
1402 * After this function returns, loads from this index will return @entry.
1403 * Storing into an existing multislot entry updates the entry of every index.
1404 * The marks associated with @index are unaffected unless @entry is %NULL.
58d6ea30 1405 *
611f3186
MW
1406 * Context: Any context. Takes and releases the xa_lock.
1407 * May sleep if the @gfp flags permit.
1408 * Return: The old entry at this index on success, xa_err(-EINVAL) if @entry
1409 * cannot be stored in an XArray, or xa_err(-ENOMEM) if memory allocation
1410 * failed.
58d6ea30 1411 */
611f3186 1412void *xa_store(struct xarray *xa, unsigned long index, void *entry, gfp_t gfp)
58d6ea30 1413{
58d6ea30
MW
1414 void *curr;
1415
611f3186
MW
1416 xa_lock(xa);
1417 curr = __xa_store(xa, index, entry, gfp);
1418 xa_unlock(xa);
58d6ea30 1419
611f3186 1420 return curr;
58d6ea30 1421}
611f3186 1422EXPORT_SYMBOL(xa_store);
58d6ea30 1423
41aec91f
MW
1424/**
1425 * __xa_cmpxchg() - Store this entry in the XArray.
1426 * @xa: XArray.
1427 * @index: Index into array.
1428 * @old: Old value to test against.
1429 * @entry: New entry.
1430 * @gfp: Memory allocation flags.
1431 *
1432 * You must already be holding the xa_lock when calling this function.
1433 * It will drop the lock if needed to allocate memory, and then reacquire
1434 * it afterwards.
1435 *
1436 * Context: Any context. Expects xa_lock to be held on entry. May
1437 * release and reacquire xa_lock if @gfp flags permit.
1438 * Return: The old entry at this index or xa_err() if an error happened.
1439 */
1440void *__xa_cmpxchg(struct xarray *xa, unsigned long index,
1441 void *old, void *entry, gfp_t gfp)
1442{
1443 XA_STATE(xas, xa, index);
1444 void *curr;
1445
76b4e529 1446 if (WARN_ON_ONCE(xa_is_advanced(entry)))
41aec91f
MW
1447 return XA_ERROR(-EINVAL);
1448
1449 do {
1450 curr = xas_load(&xas);
371c752d 1451 if (curr == old) {
41aec91f 1452 xas_store(&xas, entry);
b38f6c50 1453 if (xa_track_free(xa) && entry && !curr)
371c752d
MW
1454 xas_clear_mark(&xas, XA_FREE_MARK);
1455 }
41aec91f
MW
1456 } while (__xas_nomem(&xas, gfp));
1457
1458 return xas_result(&xas, curr);
1459}
1460EXPORT_SYMBOL(__xa_cmpxchg);
1461
b0606fed
MW
1462/**
1463 * __xa_insert() - Store this entry in the XArray if no entry is present.
1464 * @xa: XArray.
1465 * @index: Index into array.
1466 * @entry: New entry.
1467 * @gfp: Memory allocation flags.
1468 *
1469 * Inserting a NULL entry will store a reserved entry (like xa_reserve())
1470 * if no entry is present. Inserting will fail if a reserved entry is
1471 * present, even though loading from this index will return NULL.
1472 *
1473 * Context: Any context. Expects xa_lock to be held on entry. May
1474 * release and reacquire xa_lock if @gfp flags permit.
fd9dc93e 1475 * Return: 0 if the store succeeded. -EBUSY if another entry was present.
b0606fed
MW
1476 * -ENOMEM if memory could not be allocated.
1477 */
1478int __xa_insert(struct xarray *xa, unsigned long index, void *entry, gfp_t gfp)
1479{
1480 XA_STATE(xas, xa, index);
1481 void *curr;
1482
1483 if (WARN_ON_ONCE(xa_is_advanced(entry)))
1484 return -EINVAL;
1485 if (!entry)
1486 entry = XA_ZERO_ENTRY;
1487
1488 do {
1489 curr = xas_load(&xas);
1490 if (!curr) {
1491 xas_store(&xas, entry);
1492 if (xa_track_free(xa))
1493 xas_clear_mark(&xas, XA_FREE_MARK);
1494 } else {
fd9dc93e 1495 xas_set_err(&xas, -EBUSY);
b0606fed
MW
1496 }
1497 } while (__xas_nomem(&xas, gfp));
1498
1499 return xas_error(&xas);
1500}
1501EXPORT_SYMBOL(__xa_insert);
1502
0e9446c3
MW
1503#ifdef CONFIG_XARRAY_MULTI
1504static void xas_set_range(struct xa_state *xas, unsigned long first,
1505 unsigned long last)
1506{
1507 unsigned int shift = 0;
1508 unsigned long sibs = last - first;
1509 unsigned int offset = XA_CHUNK_MASK;
1510
1511 xas_set(xas, first);
1512
1513 while ((first & XA_CHUNK_MASK) == 0) {
1514 if (sibs < XA_CHUNK_MASK)
1515 break;
1516 if ((sibs == XA_CHUNK_MASK) && (offset < XA_CHUNK_MASK))
1517 break;
1518 shift += XA_CHUNK_SHIFT;
1519 if (offset == XA_CHUNK_MASK)
1520 offset = sibs & XA_CHUNK_MASK;
1521 sibs >>= XA_CHUNK_SHIFT;
1522 first >>= XA_CHUNK_SHIFT;
1523 }
1524
1525 offset = first & XA_CHUNK_MASK;
1526 if (offset + sibs > XA_CHUNK_MASK)
1527 sibs = XA_CHUNK_MASK - offset;
1528 if ((((first + sibs + 1) << shift) - 1) > last)
1529 sibs -= 1;
1530
1531 xas->xa_shift = shift;
1532 xas->xa_sibs = sibs;
1533}
1534
1535/**
1536 * xa_store_range() - Store this entry at a range of indices in the XArray.
1537 * @xa: XArray.
1538 * @first: First index to affect.
1539 * @last: Last index to affect.
1540 * @entry: New entry.
1541 * @gfp: Memory allocation flags.
1542 *
1543 * After this function returns, loads from any index between @first and @last,
1544 * inclusive will return @entry.
1545 * Storing into an existing multislot entry updates the entry of every index.
1546 * The marks associated with @index are unaffected unless @entry is %NULL.
1547 *
1548 * Context: Process context. Takes and releases the xa_lock. May sleep
1549 * if the @gfp flags permit.
1550 * Return: %NULL on success, xa_err(-EINVAL) if @entry cannot be stored in
1551 * an XArray, or xa_err(-ENOMEM) if memory allocation failed.
1552 */
1553void *xa_store_range(struct xarray *xa, unsigned long first,
1554 unsigned long last, void *entry, gfp_t gfp)
1555{
1556 XA_STATE(xas, xa, 0);
1557
1558 if (WARN_ON_ONCE(xa_is_internal(entry)))
1559 return XA_ERROR(-EINVAL);
1560 if (last < first)
1561 return XA_ERROR(-EINVAL);
1562
1563 do {
1564 xas_lock(&xas);
1565 if (entry) {
44a4a66b
MW
1566 unsigned int order = BITS_PER_LONG;
1567 if (last + 1)
1568 order = __ffs(last + 1);
0e9446c3 1569 xas_set_order(&xas, last, order);
76b4e529 1570 xas_create(&xas, true);
0e9446c3
MW
1571 if (xas_error(&xas))
1572 goto unlock;
1573 }
1574 do {
1575 xas_set_range(&xas, first, last);
1576 xas_store(&xas, entry);
1577 if (xas_error(&xas))
1578 goto unlock;
1579 first += xas_size(&xas);
1580 } while (first <= last);
1581unlock:
1582 xas_unlock(&xas);
1583 } while (xas_nomem(&xas, gfp));
1584
1585 return xas_result(&xas, NULL);
1586}
1587EXPORT_SYMBOL(xa_store_range);
1588#endif /* CONFIG_XARRAY_MULTI */
1589
371c752d
MW
1590/**
1591 * __xa_alloc() - Find somewhere to store this entry in the XArray.
1592 * @xa: XArray.
1593 * @id: Pointer to ID.
a3e4d3f9 1594 * @limit: Range for allocated ID.
371c752d
MW
1595 * @entry: New entry.
1596 * @gfp: Memory allocation flags.
1597 *
a3e4d3f9
MW
1598 * Finds an empty entry in @xa between @limit.min and @limit.max,
1599 * stores the index into the @id pointer, then stores the entry at
1600 * that index. A concurrent lookup will not see an uninitialised @id.
371c752d
MW
1601 *
1602 * Context: Any context. Expects xa_lock to be held on entry. May
1603 * release and reacquire xa_lock if @gfp flags permit.
a3e4d3f9
MW
1604 * Return: 0 on success, -ENOMEM if memory could not be allocated or
1605 * -EBUSY if there are no free entries in @limit.
371c752d 1606 */
a3e4d3f9
MW
1607int __xa_alloc(struct xarray *xa, u32 *id, void *entry,
1608 struct xa_limit limit, gfp_t gfp)
371c752d
MW
1609{
1610 XA_STATE(xas, xa, 0);
371c752d 1611
76b4e529 1612 if (WARN_ON_ONCE(xa_is_advanced(entry)))
371c752d
MW
1613 return -EINVAL;
1614 if (WARN_ON_ONCE(!xa_track_free(xa)))
1615 return -EINVAL;
1616
1617 if (!entry)
1618 entry = XA_ZERO_ENTRY;
1619
1620 do {
a3e4d3f9
MW
1621 xas.xa_index = limit.min;
1622 xas_find_marked(&xas, limit.max, XA_FREE_MARK);
371c752d 1623 if (xas.xa_node == XAS_RESTART)
a3e4d3f9
MW
1624 xas_set_err(&xas, -EBUSY);
1625 else
1626 *id = xas.xa_index;
371c752d
MW
1627 xas_store(&xas, entry);
1628 xas_clear_mark(&xas, XA_FREE_MARK);
1629 } while (__xas_nomem(&xas, gfp));
1630
a3e4d3f9 1631 return xas_error(&xas);
371c752d
MW
1632}
1633EXPORT_SYMBOL(__xa_alloc);
1634
2fa044e5
MW
1635/**
1636 * __xa_alloc_cyclic() - Find somewhere to store this entry in the XArray.
1637 * @xa: XArray.
1638 * @id: Pointer to ID.
1639 * @entry: New entry.
1640 * @limit: Range of allocated ID.
1641 * @next: Pointer to next ID to allocate.
1642 * @gfp: Memory allocation flags.
1643 *
1644 * Finds an empty entry in @xa between @limit.min and @limit.max,
1645 * stores the index into the @id pointer, then stores the entry at
1646 * that index. A concurrent lookup will not see an uninitialised @id.
1647 * The search for an empty entry will start at @next and will wrap
1648 * around if necessary.
1649 *
1650 * Context: Any context. Expects xa_lock to be held on entry. May
1651 * release and reacquire xa_lock if @gfp flags permit.
1652 * Return: 0 if the allocation succeeded without wrapping. 1 if the
1653 * allocation succeeded after wrapping, -ENOMEM if memory could not be
1654 * allocated or -EBUSY if there are no free entries in @limit.
1655 */
1656int __xa_alloc_cyclic(struct xarray *xa, u32 *id, void *entry,
1657 struct xa_limit limit, u32 *next, gfp_t gfp)
1658{
1659 u32 min = limit.min;
1660 int ret;
1661
1662 limit.min = max(min, *next);
1663 ret = __xa_alloc(xa, id, entry, limit, gfp);
1664 if ((xa->xa_flags & XA_FLAGS_ALLOC_WRAPPED) && ret == 0) {
1665 xa->xa_flags &= ~XA_FLAGS_ALLOC_WRAPPED;
1666 ret = 1;
1667 }
1668
1669 if (ret < 0 && limit.min > min) {
1670 limit.min = min;
1671 ret = __xa_alloc(xa, id, entry, limit, gfp);
1672 if (ret == 0)
1673 ret = 1;
1674 }
1675
1676 if (ret >= 0) {
1677 *next = *id + 1;
1678 if (*next == 0)
1679 xa->xa_flags |= XA_FLAGS_ALLOC_WRAPPED;
1680 }
1681 return ret;
1682}
1683EXPORT_SYMBOL(__xa_alloc_cyclic);
1684
9b89a035
MW
1685/**
1686 * __xa_set_mark() - Set this mark on this entry while locked.
1687 * @xa: XArray.
1688 * @index: Index of entry.
1689 * @mark: Mark number.
1690 *
804dfaf0 1691 * Attempting to set a mark on a %NULL entry does not succeed.
9b89a035
MW
1692 *
1693 * Context: Any context. Expects xa_lock to be held on entry.
1694 */
1695void __xa_set_mark(struct xarray *xa, unsigned long index, xa_mark_t mark)
1696{
1697 XA_STATE(xas, xa, index);
1698 void *entry = xas_load(&xas);
1699
1700 if (entry)
1701 xas_set_mark(&xas, mark);
1702}
9ee5a3b7 1703EXPORT_SYMBOL(__xa_set_mark);
9b89a035
MW
1704
1705/**
1706 * __xa_clear_mark() - Clear this mark on this entry while locked.
1707 * @xa: XArray.
1708 * @index: Index of entry.
1709 * @mark: Mark number.
1710 *
1711 * Context: Any context. Expects xa_lock to be held on entry.
1712 */
1713void __xa_clear_mark(struct xarray *xa, unsigned long index, xa_mark_t mark)
1714{
1715 XA_STATE(xas, xa, index);
1716 void *entry = xas_load(&xas);
1717
1718 if (entry)
1719 xas_clear_mark(&xas, mark);
1720}
9ee5a3b7 1721EXPORT_SYMBOL(__xa_clear_mark);
9b89a035
MW
1722
1723/**
1724 * xa_get_mark() - Inquire whether this mark is set on this entry.
1725 * @xa: XArray.
1726 * @index: Index of entry.
1727 * @mark: Mark number.
1728 *
1729 * This function uses the RCU read lock, so the result may be out of date
1730 * by the time it returns. If you need the result to be stable, use a lock.
1731 *
1732 * Context: Any context. Takes and releases the RCU lock.
1733 * Return: True if the entry at @index has this mark set, false if it doesn't.
1734 */
1735bool xa_get_mark(struct xarray *xa, unsigned long index, xa_mark_t mark)
1736{
1737 XA_STATE(xas, xa, index);
1738 void *entry;
1739
1740 rcu_read_lock();
1741 entry = xas_start(&xas);
1742 while (xas_get_mark(&xas, mark)) {
1743 if (!xa_is_node(entry))
1744 goto found;
1745 entry = xas_descend(&xas, xa_to_node(entry));
1746 }
1747 rcu_read_unlock();
1748 return false;
1749 found:
1750 rcu_read_unlock();
1751 return true;
1752}
1753EXPORT_SYMBOL(xa_get_mark);
1754
1755/**
1756 * xa_set_mark() - Set this mark on this entry.
1757 * @xa: XArray.
1758 * @index: Index of entry.
1759 * @mark: Mark number.
1760 *
804dfaf0 1761 * Attempting to set a mark on a %NULL entry does not succeed.
9b89a035
MW
1762 *
1763 * Context: Process context. Takes and releases the xa_lock.
1764 */
1765void xa_set_mark(struct xarray *xa, unsigned long index, xa_mark_t mark)
1766{
1767 xa_lock(xa);
1768 __xa_set_mark(xa, index, mark);
1769 xa_unlock(xa);
1770}
1771EXPORT_SYMBOL(xa_set_mark);
1772
1773/**
1774 * xa_clear_mark() - Clear this mark on this entry.
1775 * @xa: XArray.
1776 * @index: Index of entry.
1777 * @mark: Mark number.
1778 *
1779 * Clearing a mark always succeeds.
1780 *
1781 * Context: Process context. Takes and releases the xa_lock.
1782 */
1783void xa_clear_mark(struct xarray *xa, unsigned long index, xa_mark_t mark)
1784{
1785 xa_lock(xa);
1786 __xa_clear_mark(xa, index, mark);
1787 xa_unlock(xa);
1788}
1789EXPORT_SYMBOL(xa_clear_mark);
1790
b803b428
MW
1791/**
1792 * xa_find() - Search the XArray for an entry.
1793 * @xa: XArray.
1794 * @indexp: Pointer to an index.
1795 * @max: Maximum index to search to.
1796 * @filter: Selection criterion.
1797 *
1798 * Finds the entry in @xa which matches the @filter, and has the lowest
1799 * index that is at least @indexp and no more than @max.
1800 * If an entry is found, @indexp is updated to be the index of the entry.
1801 * This function is protected by the RCU read lock, so it may not find
1802 * entries which are being simultaneously added. It will not return an
1803 * %XA_RETRY_ENTRY; if you need to see retry entries, use xas_find().
1804 *
1805 * Context: Any context. Takes and releases the RCU lock.
1806 * Return: The entry, if found, otherwise %NULL.
1807 */
1808void *xa_find(struct xarray *xa, unsigned long *indexp,
1809 unsigned long max, xa_mark_t filter)
1810{
1811 XA_STATE(xas, xa, *indexp);
1812 void *entry;
1813
1814 rcu_read_lock();
1815 do {
1816 if ((__force unsigned int)filter < XA_MAX_MARKS)
1817 entry = xas_find_marked(&xas, max, filter);
1818 else
1819 entry = xas_find(&xas, max);
1820 } while (xas_retry(&xas, entry));
1821 rcu_read_unlock();
1822
1823 if (entry)
1824 *indexp = xas.xa_index;
1825 return entry;
1826}
1827EXPORT_SYMBOL(xa_find);
1828
19c30f4d
MWO
1829static bool xas_sibling(struct xa_state *xas)
1830{
1831 struct xa_node *node = xas->xa_node;
1832 unsigned long mask;
1833
1834 if (!node)
1835 return false;
1836 mask = (XA_CHUNK_SIZE << node->shift) - 1;
1837 return (xas->xa_index & mask) > (xas->xa_offset << node->shift);
1838}
1839
b803b428
MW
1840/**
1841 * xa_find_after() - Search the XArray for a present entry.
1842 * @xa: XArray.
1843 * @indexp: Pointer to an index.
1844 * @max: Maximum index to search to.
1845 * @filter: Selection criterion.
1846 *
1847 * Finds the entry in @xa which matches the @filter and has the lowest
1848 * index that is above @indexp and no more than @max.
1849 * If an entry is found, @indexp is updated to be the index of the entry.
1850 * This function is protected by the RCU read lock, so it may miss entries
1851 * which are being simultaneously added. It will not return an
1852 * %XA_RETRY_ENTRY; if you need to see retry entries, use xas_find().
1853 *
1854 * Context: Any context. Takes and releases the RCU lock.
1855 * Return: The pointer, if found, otherwise %NULL.
1856 */
1857void *xa_find_after(struct xarray *xa, unsigned long *indexp,
1858 unsigned long max, xa_mark_t filter)
1859{
1860 XA_STATE(xas, xa, *indexp + 1);
1861 void *entry;
1862
430f24f9
MWO
1863 if (xas.xa_index == 0)
1864 return NULL;
1865
b803b428
MW
1866 rcu_read_lock();
1867 for (;;) {
1868 if ((__force unsigned int)filter < XA_MAX_MARKS)
1869 entry = xas_find_marked(&xas, max, filter);
1870 else
1871 entry = xas_find(&xas, max);
8229706e
MW
1872 if (xas.xa_node == XAS_BOUNDS)
1873 break;
19c30f4d
MWO
1874 if (xas_sibling(&xas))
1875 continue;
b803b428
MW
1876 if (!xas_retry(&xas, entry))
1877 break;
1878 }
1879 rcu_read_unlock();
1880
1881 if (entry)
1882 *indexp = xas.xa_index;
1883 return entry;
1884}
1885EXPORT_SYMBOL(xa_find_after);
1886
80a0a1a9
MW
1887static unsigned int xas_extract_present(struct xa_state *xas, void **dst,
1888 unsigned long max, unsigned int n)
1889{
1890 void *entry;
1891 unsigned int i = 0;
1892
1893 rcu_read_lock();
1894 xas_for_each(xas, entry, max) {
1895 if (xas_retry(xas, entry))
1896 continue;
1897 dst[i++] = entry;
1898 if (i == n)
1899 break;
1900 }
1901 rcu_read_unlock();
1902
1903 return i;
1904}
1905
1906static unsigned int xas_extract_marked(struct xa_state *xas, void **dst,
1907 unsigned long max, unsigned int n, xa_mark_t mark)
1908{
1909 void *entry;
1910 unsigned int i = 0;
1911
1912 rcu_read_lock();
1913 xas_for_each_marked(xas, entry, max, mark) {
1914 if (xas_retry(xas, entry))
1915 continue;
1916 dst[i++] = entry;
1917 if (i == n)
1918 break;
1919 }
1920 rcu_read_unlock();
1921
1922 return i;
1923}
1924
1925/**
1926 * xa_extract() - Copy selected entries from the XArray into a normal array.
1927 * @xa: The source XArray to copy from.
1928 * @dst: The buffer to copy entries into.
1929 * @start: The first index in the XArray eligible to be selected.
1930 * @max: The last index in the XArray eligible to be selected.
1931 * @n: The maximum number of entries to copy.
1932 * @filter: Selection criterion.
1933 *
1934 * Copies up to @n entries that match @filter from the XArray. The
1935 * copied entries will have indices between @start and @max, inclusive.
1936 *
1937 * The @filter may be an XArray mark value, in which case entries which are
1938 * marked with that mark will be copied. It may also be %XA_PRESENT, in
804dfaf0 1939 * which case all entries which are not %NULL will be copied.
80a0a1a9
MW
1940 *
1941 * The entries returned may not represent a snapshot of the XArray at a
1942 * moment in time. For example, if another thread stores to index 5, then
1943 * index 10, calling xa_extract() may return the old contents of index 5
1944 * and the new contents of index 10. Indices not modified while this
1945 * function is running will not be skipped.
1946 *
1947 * If you need stronger guarantees, holding the xa_lock across calls to this
1948 * function will prevent concurrent modification.
1949 *
1950 * Context: Any context. Takes and releases the RCU lock.
1951 * Return: The number of entries copied.
1952 */
1953unsigned int xa_extract(struct xarray *xa, void **dst, unsigned long start,
1954 unsigned long max, unsigned int n, xa_mark_t filter)
1955{
1956 XA_STATE(xas, xa, start);
1957
1958 if (!n)
1959 return 0;
1960
1961 if ((__force unsigned int)filter < XA_MAX_MARKS)
1962 return xas_extract_marked(&xas, dst, max, n, filter);
1963 return xas_extract_present(&xas, dst, max, n);
1964}
1965EXPORT_SYMBOL(xa_extract);
1966
687149fc
MW
1967/**
1968 * xa_destroy() - Free all internal data structures.
1969 * @xa: XArray.
1970 *
1971 * After calling this function, the XArray is empty and has freed all memory
1972 * allocated for its internal data structures. You are responsible for
1973 * freeing the objects referenced by the XArray.
1974 *
1975 * Context: Any context. Takes and releases the xa_lock, interrupt-safe.
1976 */
1977void xa_destroy(struct xarray *xa)
1978{
1979 XA_STATE(xas, xa, 0);
1980 unsigned long flags;
1981 void *entry;
1982
1983 xas.xa_node = NULL;
1984 xas_lock_irqsave(&xas, flags);
1985 entry = xa_head_locked(xa);
1986 RCU_INIT_POINTER(xa->xa_head, NULL);
1987 xas_init_marks(&xas);
3ccaf57a
MW
1988 if (xa_zero_busy(xa))
1989 xa_mark_clear(xa, XA_FREE_MARK);
687149fc
MW
1990 /* lockdep checks we're still holding the lock in xas_free_nodes() */
1991 if (xa_is_node(entry))
1992 xas_free_nodes(&xas, xa_to_node(entry));
1993 xas_unlock_irqrestore(&xas, flags);
1994}
1995EXPORT_SYMBOL(xa_destroy);
1996
ad3d6c72
MW
1997#ifdef XA_DEBUG
1998void xa_dump_node(const struct xa_node *node)
1999{
2000 unsigned i, j;
2001
2002 if (!node)
2003 return;
2004 if ((unsigned long)node & 3) {
2005 pr_cont("node %px\n", node);
2006 return;
2007 }
2008
2009 pr_cont("node %px %s %d parent %px shift %d count %d values %d "
2010 "array %px list %px %px marks",
2011 node, node->parent ? "offset" : "max", node->offset,
2012 node->parent, node->shift, node->count, node->nr_values,
2013 node->array, node->private_list.prev, node->private_list.next);
2014 for (i = 0; i < XA_MAX_MARKS; i++)
2015 for (j = 0; j < XA_MARK_LONGS; j++)
2016 pr_cont(" %lx", node->marks[i][j]);
2017 pr_cont("\n");
2018}
2019
2020void xa_dump_index(unsigned long index, unsigned int shift)
2021{
2022 if (!shift)
2023 pr_info("%lu: ", index);
2024 else if (shift >= BITS_PER_LONG)
2025 pr_info("0-%lu: ", ~0UL);
2026 else
2027 pr_info("%lu-%lu: ", index, index | ((1UL << shift) - 1));
2028}
2029
2030void xa_dump_entry(const void *entry, unsigned long index, unsigned long shift)
2031{
2032 if (!entry)
2033 return;
2034
2035 xa_dump_index(index, shift);
2036
2037 if (xa_is_node(entry)) {
2038 if (shift == 0) {
2039 pr_cont("%px\n", entry);
2040 } else {
2041 unsigned long i;
2042 struct xa_node *node = xa_to_node(entry);
2043 xa_dump_node(node);
2044 for (i = 0; i < XA_CHUNK_SIZE; i++)
2045 xa_dump_entry(node->slots[i],
2046 index + (i << node->shift), node->shift);
2047 }
2048 } else if (xa_is_value(entry))
2049 pr_cont("value %ld (0x%lx) [%px]\n", xa_to_value(entry),
2050 xa_to_value(entry), entry);
2051 else if (!xa_is_internal(entry))
2052 pr_cont("%px\n", entry);
2053 else if (xa_is_retry(entry))
2054 pr_cont("retry (%ld)\n", xa_to_internal(entry));
2055 else if (xa_is_sibling(entry))
2056 pr_cont("sibling (slot %ld)\n", xa_to_sibling(entry));
9f14d4f1
MW
2057 else if (xa_is_zero(entry))
2058 pr_cont("zero (%ld)\n", xa_to_internal(entry));
ad3d6c72
MW
2059 else
2060 pr_cont("UNKNOWN ENTRY (%px)\n", entry);
2061}
2062
2063void xa_dump(const struct xarray *xa)
2064{
2065 void *entry = xa->xa_head;
2066 unsigned int shift = 0;
2067
2068 pr_info("xarray: %px head %px flags %x marks %d %d %d\n", xa, entry,
9b89a035
MW
2069 xa->xa_flags, xa_marked(xa, XA_MARK_0),
2070 xa_marked(xa, XA_MARK_1), xa_marked(xa, XA_MARK_2));
ad3d6c72
MW
2071 if (xa_is_node(entry))
2072 shift = xa_to_node(entry)->shift + XA_CHUNK_SHIFT;
2073 xa_dump_entry(entry, 0, shift);
2074}
2075#endif