]>
Commit | Line | Data |
---|---|---|
22d87333 JS |
1 | /* |
2 | * Based on: Jonker, R., & Volgenant, A. (1987). <i>A shortest augmenting path | |
3 | * algorithm for dense and sparse linear assignment problems</i>. Computing, | |
4 | * 38(4), 325-340. | |
5 | */ | |
6 | #include "cache.h" | |
7 | #include "linear-assignment.h" | |
8 | ||
9 | #define COST(column, row) cost[(column) + column_count * (row)] | |
10 | ||
11 | /* | |
12 | * The parameter `cost` is the cost matrix: the cost to assign column j to row | |
13 | * i is `cost[j + column_count * i]. | |
14 | */ | |
15 | void compute_assignment(int column_count, int row_count, int *cost, | |
16 | int *column2row, int *row2column) | |
17 | { | |
18 | int *v, *d; | |
19 | int *free_row, free_count = 0, saved_free_count, *pred, *col; | |
20 | int i, j, phase; | |
21 | ||
e467a90c TG |
22 | if (column_count < 2) { |
23 | memset(column2row, 0, sizeof(int) * column_count); | |
24 | memset(row2column, 0, sizeof(int) * row_count); | |
25 | return; | |
26 | } | |
27 | ||
22d87333 JS |
28 | memset(column2row, -1, sizeof(int) * column_count); |
29 | memset(row2column, -1, sizeof(int) * row_count); | |
30 | ALLOC_ARRAY(v, column_count); | |
31 | ||
32 | /* column reduction */ | |
33 | for (j = column_count - 1; j >= 0; j--) { | |
34 | int i1 = 0; | |
35 | ||
36 | for (i = 1; i < row_count; i++) | |
37 | if (COST(j, i1) > COST(j, i)) | |
38 | i1 = i; | |
39 | v[j] = COST(j, i1); | |
40 | if (row2column[i1] == -1) { | |
41 | /* row i1 unassigned */ | |
42 | row2column[i1] = j; | |
43 | column2row[j] = i1; | |
44 | } else { | |
45 | if (row2column[i1] >= 0) | |
46 | row2column[i1] = -2 - row2column[i1]; | |
47 | column2row[j] = -1; | |
48 | } | |
49 | } | |
50 | ||
51 | /* reduction transfer */ | |
52 | ALLOC_ARRAY(free_row, row_count); | |
53 | for (i = 0; i < row_count; i++) { | |
54 | int j1 = row2column[i]; | |
55 | if (j1 == -1) | |
56 | free_row[free_count++] = i; | |
57 | else if (j1 < -1) | |
58 | row2column[i] = -2 - j1; | |
59 | else { | |
60 | int min = COST(!j1, i) - v[!j1]; | |
61 | for (j = 1; j < column_count; j++) | |
62 | if (j != j1 && min > COST(j, i) - v[j]) | |
63 | min = COST(j, i) - v[j]; | |
64 | v[j1] -= min; | |
65 | } | |
66 | } | |
67 | ||
68 | if (free_count == | |
69 | (column_count < row_count ? row_count - column_count : 0)) { | |
70 | free(v); | |
71 | free(free_row); | |
72 | return; | |
73 | } | |
74 | ||
75 | /* augmenting row reduction */ | |
76 | for (phase = 0; phase < 2; phase++) { | |
77 | int k = 0; | |
78 | ||
79 | saved_free_count = free_count; | |
80 | free_count = 0; | |
81 | while (k < saved_free_count) { | |
82 | int u1, u2; | |
83 | int j1 = 0, j2, i0; | |
84 | ||
85 | i = free_row[k++]; | |
86 | u1 = COST(j1, i) - v[j1]; | |
87 | j2 = -1; | |
88 | u2 = INT_MAX; | |
89 | for (j = 1; j < column_count; j++) { | |
90 | int c = COST(j, i) - v[j]; | |
91 | if (u2 > c) { | |
92 | if (u1 < c) { | |
93 | u2 = c; | |
94 | j2 = j; | |
95 | } else { | |
96 | u2 = u1; | |
97 | u1 = c; | |
98 | j2 = j1; | |
99 | j1 = j; | |
100 | } | |
101 | } | |
102 | } | |
103 | if (j2 < 0) { | |
104 | j2 = j1; | |
105 | u2 = u1; | |
106 | } | |
107 | ||
108 | i0 = column2row[j1]; | |
109 | if (u1 < u2) | |
110 | v[j1] -= u2 - u1; | |
111 | else if (i0 >= 0) { | |
112 | j1 = j2; | |
113 | i0 = column2row[j1]; | |
114 | } | |
115 | ||
116 | if (i0 >= 0) { | |
117 | if (u1 < u2) | |
118 | free_row[--k] = i0; | |
119 | else | |
120 | free_row[free_count++] = i0; | |
121 | } | |
122 | row2column[i] = j1; | |
123 | column2row[j1] = i; | |
124 | } | |
125 | } | |
126 | ||
127 | /* augmentation */ | |
128 | saved_free_count = free_count; | |
129 | ALLOC_ARRAY(d, column_count); | |
130 | ALLOC_ARRAY(pred, column_count); | |
131 | ALLOC_ARRAY(col, column_count); | |
132 | for (free_count = 0; free_count < saved_free_count; free_count++) { | |
133 | int i1 = free_row[free_count], low = 0, up = 0, last, k; | |
134 | int min, c, u1; | |
135 | ||
136 | for (j = 0; j < column_count; j++) { | |
137 | d[j] = COST(j, i1) - v[j]; | |
138 | pred[j] = i1; | |
139 | col[j] = j; | |
140 | } | |
141 | ||
142 | j = -1; | |
143 | do { | |
144 | last = low; | |
145 | min = d[col[up++]]; | |
146 | for (k = up; k < column_count; k++) { | |
147 | j = col[k]; | |
148 | c = d[j]; | |
149 | if (c <= min) { | |
150 | if (c < min) { | |
151 | up = low; | |
152 | min = c; | |
153 | } | |
154 | col[k] = col[up]; | |
155 | col[up++] = j; | |
156 | } | |
157 | } | |
158 | for (k = low; k < up; k++) | |
159 | if (column2row[col[k]] == -1) | |
160 | goto update; | |
161 | ||
162 | /* scan a row */ | |
163 | do { | |
164 | int j1 = col[low++]; | |
165 | ||
166 | i = column2row[j1]; | |
167 | u1 = COST(j1, i) - v[j1] - min; | |
168 | for (k = up; k < column_count; k++) { | |
169 | j = col[k]; | |
170 | c = COST(j, i) - v[j] - u1; | |
171 | if (c < d[j]) { | |
172 | d[j] = c; | |
173 | pred[j] = i; | |
174 | if (c == min) { | |
175 | if (column2row[j] == -1) | |
176 | goto update; | |
177 | col[k] = col[up]; | |
178 | col[up++] = j; | |
179 | } | |
180 | } | |
181 | } | |
182 | } while (low != up); | |
183 | } while (low == up); | |
184 | ||
185 | update: | |
186 | /* updating of the column pieces */ | |
187 | for (k = 0; k < last; k++) { | |
188 | int j1 = col[k]; | |
189 | v[j1] += d[j1] - min; | |
190 | } | |
191 | ||
192 | /* augmentation */ | |
193 | do { | |
194 | if (j < 0) | |
195 | BUG("negative j: %d", j); | |
196 | i = pred[j]; | |
197 | column2row[j] = i; | |
198 | SWAP(j, row2column[i]); | |
199 | } while (i1 != i); | |
200 | } | |
201 | ||
202 | free(col); | |
203 | free(pred); | |
204 | free(d); | |
205 | free(v); | |
206 | free(free_row); | |
207 | } |