]> git.ipfire.org Git - thirdparty/qemu.git/blame - linux-user/elfload.c
target/rx: TCG helpers
[thirdparty/qemu.git] / linux-user / elfload.c
CommitLineData
31e31b8a 1/* This is the Linux kernel elf-loading code, ported into user space */
d39594e9 2#include "qemu/osdep.h"
edf8e2af 3#include <sys/param.h>
31e31b8a 4
edf8e2af 5#include <sys/resource.h>
30ab9ef2 6#include <sys/shm.h>
31e31b8a 7
3ef693a0 8#include "qemu.h"
76cad711 9#include "disas/disas.h"
f348b6d1 10#include "qemu/path.h"
dc5e9ac7 11#include "qemu/queue.h"
c6a2377f 12#include "qemu/guest-random.h"
6fd59449 13#include "qemu/units.h"
31e31b8a 14
e58ffeb3 15#ifdef _ARCH_PPC64
a6cc84f4 16#undef ARCH_DLINFO
17#undef ELF_PLATFORM
18#undef ELF_HWCAP
ad6919dc 19#undef ELF_HWCAP2
a6cc84f4 20#undef ELF_CLASS
21#undef ELF_DATA
22#undef ELF_ARCH
23#endif
24
edf8e2af
MW
25#define ELF_OSABI ELFOSABI_SYSV
26
cb33da57
BS
27/* from personality.h */
28
29/*
30 * Flags for bug emulation.
31 *
32 * These occupy the top three bytes.
33 */
34enum {
d97ef72e
RH
35 ADDR_NO_RANDOMIZE = 0x0040000, /* disable randomization of VA space */
36 FDPIC_FUNCPTRS = 0x0080000, /* userspace function ptrs point to
37 descriptors (signal handling) */
38 MMAP_PAGE_ZERO = 0x0100000,
39 ADDR_COMPAT_LAYOUT = 0x0200000,
40 READ_IMPLIES_EXEC = 0x0400000,
41 ADDR_LIMIT_32BIT = 0x0800000,
42 SHORT_INODE = 0x1000000,
43 WHOLE_SECONDS = 0x2000000,
44 STICKY_TIMEOUTS = 0x4000000,
45 ADDR_LIMIT_3GB = 0x8000000,
cb33da57
BS
46};
47
48/*
49 * Personality types.
50 *
51 * These go in the low byte. Avoid using the top bit, it will
52 * conflict with error returns.
53 */
54enum {
d97ef72e
RH
55 PER_LINUX = 0x0000,
56 PER_LINUX_32BIT = 0x0000 | ADDR_LIMIT_32BIT,
57 PER_LINUX_FDPIC = 0x0000 | FDPIC_FUNCPTRS,
58 PER_SVR4 = 0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
59 PER_SVR3 = 0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
60 PER_SCOSVR3 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE,
61 PER_OSR5 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
62 PER_WYSEV386 = 0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
63 PER_ISCR4 = 0x0005 | STICKY_TIMEOUTS,
64 PER_BSD = 0x0006,
65 PER_SUNOS = 0x0006 | STICKY_TIMEOUTS,
66 PER_XENIX = 0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
67 PER_LINUX32 = 0x0008,
68 PER_LINUX32_3GB = 0x0008 | ADDR_LIMIT_3GB,
69 PER_IRIX32 = 0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
70 PER_IRIXN32 = 0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
71 PER_IRIX64 = 0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
72 PER_RISCOS = 0x000c,
73 PER_SOLARIS = 0x000d | STICKY_TIMEOUTS,
74 PER_UW7 = 0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
75 PER_OSF4 = 0x000f, /* OSF/1 v4 */
76 PER_HPUX = 0x0010,
77 PER_MASK = 0x00ff,
cb33da57
BS
78};
79
80/*
81 * Return the base personality without flags.
82 */
d97ef72e 83#define personality(pers) (pers & PER_MASK)
cb33da57 84
3cb10cfa
CL
85int info_is_fdpic(struct image_info *info)
86{
87 return info->personality == PER_LINUX_FDPIC;
88}
89
83fb7adf
FB
90/* this flag is uneffective under linux too, should be deleted */
91#ifndef MAP_DENYWRITE
92#define MAP_DENYWRITE 0
93#endif
94
95/* should probably go in elf.h */
96#ifndef ELIBBAD
97#define ELIBBAD 80
98#endif
99
28490231
RH
100#ifdef TARGET_WORDS_BIGENDIAN
101#define ELF_DATA ELFDATA2MSB
102#else
103#define ELF_DATA ELFDATA2LSB
104#endif
105
a29f998d 106#ifdef TARGET_ABI_MIPSN32
918fc54c
PB
107typedef abi_ullong target_elf_greg_t;
108#define tswapreg(ptr) tswap64(ptr)
a29f998d
PB
109#else
110typedef abi_ulong target_elf_greg_t;
111#define tswapreg(ptr) tswapal(ptr)
112#endif
113
21e807fa 114#ifdef USE_UID16
1ddd592f
PB
115typedef abi_ushort target_uid_t;
116typedef abi_ushort target_gid_t;
21e807fa 117#else
f8fd4fc4
PB
118typedef abi_uint target_uid_t;
119typedef abi_uint target_gid_t;
21e807fa 120#endif
f8fd4fc4 121typedef abi_int target_pid_t;
21e807fa 122
30ac07d4
FB
123#ifdef TARGET_I386
124
15338fd7
FB
125#define ELF_PLATFORM get_elf_platform()
126
127static const char *get_elf_platform(void)
128{
129 static char elf_platform[] = "i386";
a2247f8e 130 int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL);
15338fd7
FB
131 if (family > 6)
132 family = 6;
133 if (family >= 3)
134 elf_platform[1] = '0' + family;
135 return elf_platform;
136}
137
138#define ELF_HWCAP get_elf_hwcap()
139
140static uint32_t get_elf_hwcap(void)
141{
a2247f8e
AF
142 X86CPU *cpu = X86_CPU(thread_cpu);
143
144 return cpu->env.features[FEAT_1_EDX];
15338fd7
FB
145}
146
84409ddb
JM
147#ifdef TARGET_X86_64
148#define ELF_START_MMAP 0x2aaaaab000ULL
84409ddb
JM
149
150#define ELF_CLASS ELFCLASS64
84409ddb
JM
151#define ELF_ARCH EM_X86_64
152
153static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
154{
155 regs->rax = 0;
156 regs->rsp = infop->start_stack;
157 regs->rip = infop->entry;
158}
159
9edc5d79 160#define ELF_NREG 27
c227f099 161typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
9edc5d79
MW
162
163/*
164 * Note that ELF_NREG should be 29 as there should be place for
165 * TRAPNO and ERR "registers" as well but linux doesn't dump
166 * those.
167 *
168 * See linux kernel: arch/x86/include/asm/elf.h
169 */
05390248 170static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
9edc5d79
MW
171{
172 (*regs)[0] = env->regs[15];
173 (*regs)[1] = env->regs[14];
174 (*regs)[2] = env->regs[13];
175 (*regs)[3] = env->regs[12];
176 (*regs)[4] = env->regs[R_EBP];
177 (*regs)[5] = env->regs[R_EBX];
178 (*regs)[6] = env->regs[11];
179 (*regs)[7] = env->regs[10];
180 (*regs)[8] = env->regs[9];
181 (*regs)[9] = env->regs[8];
182 (*regs)[10] = env->regs[R_EAX];
183 (*regs)[11] = env->regs[R_ECX];
184 (*regs)[12] = env->regs[R_EDX];
185 (*regs)[13] = env->regs[R_ESI];
186 (*regs)[14] = env->regs[R_EDI];
187 (*regs)[15] = env->regs[R_EAX]; /* XXX */
188 (*regs)[16] = env->eip;
189 (*regs)[17] = env->segs[R_CS].selector & 0xffff;
190 (*regs)[18] = env->eflags;
191 (*regs)[19] = env->regs[R_ESP];
192 (*regs)[20] = env->segs[R_SS].selector & 0xffff;
193 (*regs)[21] = env->segs[R_FS].selector & 0xffff;
194 (*regs)[22] = env->segs[R_GS].selector & 0xffff;
195 (*regs)[23] = env->segs[R_DS].selector & 0xffff;
196 (*regs)[24] = env->segs[R_ES].selector & 0xffff;
197 (*regs)[25] = env->segs[R_FS].selector & 0xffff;
198 (*regs)[26] = env->segs[R_GS].selector & 0xffff;
199}
200
84409ddb
JM
201#else
202
30ac07d4
FB
203#define ELF_START_MMAP 0x80000000
204
30ac07d4
FB
205/*
206 * This is used to ensure we don't load something for the wrong architecture.
207 */
208#define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
209
210/*
211 * These are used to set parameters in the core dumps.
212 */
d97ef72e 213#define ELF_CLASS ELFCLASS32
d97ef72e 214#define ELF_ARCH EM_386
30ac07d4 215
d97ef72e
RH
216static inline void init_thread(struct target_pt_regs *regs,
217 struct image_info *infop)
b346ff46
FB
218{
219 regs->esp = infop->start_stack;
220 regs->eip = infop->entry;
e5fe0c52
PB
221
222 /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
223 starts %edx contains a pointer to a function which might be
224 registered using `atexit'. This provides a mean for the
225 dynamic linker to call DT_FINI functions for shared libraries
226 that have been loaded before the code runs.
227
228 A value of 0 tells we have no such handler. */
229 regs->edx = 0;
b346ff46 230}
9edc5d79 231
9edc5d79 232#define ELF_NREG 17
c227f099 233typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
9edc5d79
MW
234
235/*
236 * Note that ELF_NREG should be 19 as there should be place for
237 * TRAPNO and ERR "registers" as well but linux doesn't dump
238 * those.
239 *
240 * See linux kernel: arch/x86/include/asm/elf.h
241 */
05390248 242static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
9edc5d79
MW
243{
244 (*regs)[0] = env->regs[R_EBX];
245 (*regs)[1] = env->regs[R_ECX];
246 (*regs)[2] = env->regs[R_EDX];
247 (*regs)[3] = env->regs[R_ESI];
248 (*regs)[4] = env->regs[R_EDI];
249 (*regs)[5] = env->regs[R_EBP];
250 (*regs)[6] = env->regs[R_EAX];
251 (*regs)[7] = env->segs[R_DS].selector & 0xffff;
252 (*regs)[8] = env->segs[R_ES].selector & 0xffff;
253 (*regs)[9] = env->segs[R_FS].selector & 0xffff;
254 (*regs)[10] = env->segs[R_GS].selector & 0xffff;
255 (*regs)[11] = env->regs[R_EAX]; /* XXX */
256 (*regs)[12] = env->eip;
257 (*regs)[13] = env->segs[R_CS].selector & 0xffff;
258 (*regs)[14] = env->eflags;
259 (*regs)[15] = env->regs[R_ESP];
260 (*regs)[16] = env->segs[R_SS].selector & 0xffff;
261}
84409ddb 262#endif
b346ff46 263
9edc5d79 264#define USE_ELF_CORE_DUMP
d97ef72e 265#define ELF_EXEC_PAGESIZE 4096
b346ff46
FB
266
267#endif
268
269#ifdef TARGET_ARM
270
24e76ff0
PM
271#ifndef TARGET_AARCH64
272/* 32 bit ARM definitions */
273
b346ff46
FB
274#define ELF_START_MMAP 0x80000000
275
b597c3f7 276#define ELF_ARCH EM_ARM
d97ef72e 277#define ELF_CLASS ELFCLASS32
b346ff46 278
d97ef72e
RH
279static inline void init_thread(struct target_pt_regs *regs,
280 struct image_info *infop)
b346ff46 281{
992f48a0 282 abi_long stack = infop->start_stack;
b346ff46 283 memset(regs, 0, sizeof(*regs));
99033cae 284
167e4cdc
PM
285 regs->uregs[16] = ARM_CPU_MODE_USR;
286 if (infop->entry & 1) {
287 regs->uregs[16] |= CPSR_T;
288 }
289 regs->uregs[15] = infop->entry & 0xfffffffe;
290 regs->uregs[13] = infop->start_stack;
2f619698 291 /* FIXME - what to for failure of get_user()? */
167e4cdc
PM
292 get_user_ual(regs->uregs[2], stack + 8); /* envp */
293 get_user_ual(regs->uregs[1], stack + 4); /* envp */
a1516e92 294 /* XXX: it seems that r0 is zeroed after ! */
167e4cdc 295 regs->uregs[0] = 0;
e5fe0c52 296 /* For uClinux PIC binaries. */
863cf0b7 297 /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
167e4cdc 298 regs->uregs[10] = infop->start_data;
3cb10cfa
CL
299
300 /* Support ARM FDPIC. */
301 if (info_is_fdpic(infop)) {
302 /* As described in the ABI document, r7 points to the loadmap info
303 * prepared by the kernel. If an interpreter is needed, r8 points
304 * to the interpreter loadmap and r9 points to the interpreter
305 * PT_DYNAMIC info. If no interpreter is needed, r8 is zero, and
306 * r9 points to the main program PT_DYNAMIC info.
307 */
308 regs->uregs[7] = infop->loadmap_addr;
309 if (infop->interpreter_loadmap_addr) {
310 /* Executable is dynamically loaded. */
311 regs->uregs[8] = infop->interpreter_loadmap_addr;
312 regs->uregs[9] = infop->interpreter_pt_dynamic_addr;
313 } else {
314 regs->uregs[8] = 0;
315 regs->uregs[9] = infop->pt_dynamic_addr;
316 }
317 }
b346ff46
FB
318}
319
edf8e2af 320#define ELF_NREG 18
c227f099 321typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
edf8e2af 322
05390248 323static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env)
edf8e2af 324{
86cd7b2d
PB
325 (*regs)[0] = tswapreg(env->regs[0]);
326 (*regs)[1] = tswapreg(env->regs[1]);
327 (*regs)[2] = tswapreg(env->regs[2]);
328 (*regs)[3] = tswapreg(env->regs[3]);
329 (*regs)[4] = tswapreg(env->regs[4]);
330 (*regs)[5] = tswapreg(env->regs[5]);
331 (*regs)[6] = tswapreg(env->regs[6]);
332 (*regs)[7] = tswapreg(env->regs[7]);
333 (*regs)[8] = tswapreg(env->regs[8]);
334 (*regs)[9] = tswapreg(env->regs[9]);
335 (*regs)[10] = tswapreg(env->regs[10]);
336 (*regs)[11] = tswapreg(env->regs[11]);
337 (*regs)[12] = tswapreg(env->regs[12]);
338 (*regs)[13] = tswapreg(env->regs[13]);
339 (*regs)[14] = tswapreg(env->regs[14]);
340 (*regs)[15] = tswapreg(env->regs[15]);
341
342 (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env));
343 (*regs)[17] = tswapreg(env->regs[0]); /* XXX */
edf8e2af
MW
344}
345
30ac07d4 346#define USE_ELF_CORE_DUMP
d97ef72e 347#define ELF_EXEC_PAGESIZE 4096
30ac07d4 348
afce2927
FB
349enum
350{
d97ef72e
RH
351 ARM_HWCAP_ARM_SWP = 1 << 0,
352 ARM_HWCAP_ARM_HALF = 1 << 1,
353 ARM_HWCAP_ARM_THUMB = 1 << 2,
354 ARM_HWCAP_ARM_26BIT = 1 << 3,
355 ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
356 ARM_HWCAP_ARM_FPA = 1 << 5,
357 ARM_HWCAP_ARM_VFP = 1 << 6,
358 ARM_HWCAP_ARM_EDSP = 1 << 7,
359 ARM_HWCAP_ARM_JAVA = 1 << 8,
360 ARM_HWCAP_ARM_IWMMXT = 1 << 9,
43ce393e
PM
361 ARM_HWCAP_ARM_CRUNCH = 1 << 10,
362 ARM_HWCAP_ARM_THUMBEE = 1 << 11,
363 ARM_HWCAP_ARM_NEON = 1 << 12,
364 ARM_HWCAP_ARM_VFPv3 = 1 << 13,
365 ARM_HWCAP_ARM_VFPv3D16 = 1 << 14,
24682654
PM
366 ARM_HWCAP_ARM_TLS = 1 << 15,
367 ARM_HWCAP_ARM_VFPv4 = 1 << 16,
368 ARM_HWCAP_ARM_IDIVA = 1 << 17,
369 ARM_HWCAP_ARM_IDIVT = 1 << 18,
370 ARM_HWCAP_ARM_VFPD32 = 1 << 19,
371 ARM_HWCAP_ARM_LPAE = 1 << 20,
372 ARM_HWCAP_ARM_EVTSTRM = 1 << 21,
afce2927
FB
373};
374
ad6919dc
PM
375enum {
376 ARM_HWCAP2_ARM_AES = 1 << 0,
377 ARM_HWCAP2_ARM_PMULL = 1 << 1,
378 ARM_HWCAP2_ARM_SHA1 = 1 << 2,
379 ARM_HWCAP2_ARM_SHA2 = 1 << 3,
380 ARM_HWCAP2_ARM_CRC32 = 1 << 4,
381};
382
6b1275ff
PM
383/* The commpage only exists for 32 bit kernels */
384
806d1021
MI
385/* Return 1 if the proposed guest space is suitable for the guest.
386 * Return 0 if the proposed guest space isn't suitable, but another
387 * address space should be tried.
388 * Return -1 if there is no way the proposed guest space can be
389 * valid regardless of the base.
390 * The guest code may leave a page mapped and populate it if the
391 * address is suitable.
392 */
c3637eaf
LS
393static int init_guest_commpage(unsigned long guest_base,
394 unsigned long guest_size)
97cc7560
DDAG
395{
396 unsigned long real_start, test_page_addr;
397
398 /* We need to check that we can force a fault on access to the
399 * commpage at 0xffff0fxx
400 */
401 test_page_addr = guest_base + (0xffff0f00 & qemu_host_page_mask);
806d1021
MI
402
403 /* If the commpage lies within the already allocated guest space,
404 * then there is no way we can allocate it.
955e304f
LS
405 *
406 * You may be thinking that that this check is redundant because
407 * we already validated the guest size against MAX_RESERVED_VA;
408 * but if qemu_host_page_mask is unusually large, then
409 * test_page_addr may be lower.
806d1021
MI
410 */
411 if (test_page_addr >= guest_base
e568f9df 412 && test_page_addr < (guest_base + guest_size)) {
806d1021
MI
413 return -1;
414 }
415
97cc7560
DDAG
416 /* Note it needs to be writeable to let us initialise it */
417 real_start = (unsigned long)
418 mmap((void *)test_page_addr, qemu_host_page_size,
419 PROT_READ | PROT_WRITE,
420 MAP_ANONYMOUS | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
421
422 /* If we can't map it then try another address */
423 if (real_start == -1ul) {
424 return 0;
425 }
426
427 if (real_start != test_page_addr) {
428 /* OS didn't put the page where we asked - unmap and reject */
429 munmap((void *)real_start, qemu_host_page_size);
430 return 0;
431 }
432
433 /* Leave the page mapped
434 * Populate it (mmap should have left it all 0'd)
435 */
436
437 /* Kernel helper versions */
438 __put_user(5, (uint32_t *)g2h(0xffff0ffcul));
439
440 /* Now it's populated make it RO */
441 if (mprotect((void *)test_page_addr, qemu_host_page_size, PROT_READ)) {
442 perror("Protecting guest commpage");
443 exit(-1);
444 }
445
446 return 1; /* All good */
447}
adf050b1
BC
448
449#define ELF_HWCAP get_elf_hwcap()
ad6919dc 450#define ELF_HWCAP2 get_elf_hwcap2()
adf050b1
BC
451
452static uint32_t get_elf_hwcap(void)
453{
a2247f8e 454 ARMCPU *cpu = ARM_CPU(thread_cpu);
adf050b1
BC
455 uint32_t hwcaps = 0;
456
457 hwcaps |= ARM_HWCAP_ARM_SWP;
458 hwcaps |= ARM_HWCAP_ARM_HALF;
459 hwcaps |= ARM_HWCAP_ARM_THUMB;
460 hwcaps |= ARM_HWCAP_ARM_FAST_MULT;
adf050b1
BC
461
462 /* probe for the extra features */
463#define GET_FEATURE(feat, hwcap) \
a2247f8e 464 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
962fcbf2
RH
465
466#define GET_FEATURE_ID(feat, hwcap) \
467 do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
468
24682654
PM
469 /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */
470 GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP);
adf050b1
BC
471 GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT);
472 GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE);
473 GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON);
24682654 474 GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS);
bfa8a370 475 GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE);
873b73c0
PM
476 GET_FEATURE_ID(aa32_arm_div, ARM_HWCAP_ARM_IDIVA);
477 GET_FEATURE_ID(aa32_thumb_div, ARM_HWCAP_ARM_IDIVT);
bfa8a370
RH
478 GET_FEATURE_ID(aa32_vfp, ARM_HWCAP_ARM_VFP);
479
480 if (cpu_isar_feature(aa32_fpsp_v3, cpu) ||
481 cpu_isar_feature(aa32_fpdp_v3, cpu)) {
482 hwcaps |= ARM_HWCAP_ARM_VFPv3;
483 if (cpu_isar_feature(aa32_simd_r32, cpu)) {
484 hwcaps |= ARM_HWCAP_ARM_VFPD32;
485 } else {
486 hwcaps |= ARM_HWCAP_ARM_VFPv3D16;
487 }
488 }
489 GET_FEATURE_ID(aa32_simdfmac, ARM_HWCAP_ARM_VFPv4);
adf050b1
BC
490
491 return hwcaps;
492}
afce2927 493
ad6919dc
PM
494static uint32_t get_elf_hwcap2(void)
495{
496 ARMCPU *cpu = ARM_CPU(thread_cpu);
497 uint32_t hwcaps = 0;
498
962fcbf2
RH
499 GET_FEATURE_ID(aa32_aes, ARM_HWCAP2_ARM_AES);
500 GET_FEATURE_ID(aa32_pmull, ARM_HWCAP2_ARM_PMULL);
501 GET_FEATURE_ID(aa32_sha1, ARM_HWCAP2_ARM_SHA1);
502 GET_FEATURE_ID(aa32_sha2, ARM_HWCAP2_ARM_SHA2);
503 GET_FEATURE_ID(aa32_crc32, ARM_HWCAP2_ARM_CRC32);
ad6919dc
PM
504 return hwcaps;
505}
506
507#undef GET_FEATURE
962fcbf2 508#undef GET_FEATURE_ID
ad6919dc 509
13ec4ec3
RH
510#define ELF_PLATFORM get_elf_platform()
511
512static const char *get_elf_platform(void)
513{
514 CPUARMState *env = thread_cpu->env_ptr;
515
516#ifdef TARGET_WORDS_BIGENDIAN
517# define END "b"
518#else
519# define END "l"
520#endif
521
522 if (arm_feature(env, ARM_FEATURE_V8)) {
523 return "v8" END;
524 } else if (arm_feature(env, ARM_FEATURE_V7)) {
525 if (arm_feature(env, ARM_FEATURE_M)) {
526 return "v7m" END;
527 } else {
528 return "v7" END;
529 }
530 } else if (arm_feature(env, ARM_FEATURE_V6)) {
531 return "v6" END;
532 } else if (arm_feature(env, ARM_FEATURE_V5)) {
533 return "v5" END;
534 } else {
535 return "v4" END;
536 }
537
538#undef END
539}
540
24e76ff0
PM
541#else
542/* 64 bit ARM definitions */
543#define ELF_START_MMAP 0x80000000
544
b597c3f7 545#define ELF_ARCH EM_AARCH64
24e76ff0 546#define ELF_CLASS ELFCLASS64
e20e3ec9
RH
547#ifdef TARGET_WORDS_BIGENDIAN
548# define ELF_PLATFORM "aarch64_be"
549#else
550# define ELF_PLATFORM "aarch64"
551#endif
24e76ff0
PM
552
553static inline void init_thread(struct target_pt_regs *regs,
554 struct image_info *infop)
555{
556 abi_long stack = infop->start_stack;
557 memset(regs, 0, sizeof(*regs));
558
559 regs->pc = infop->entry & ~0x3ULL;
560 regs->sp = stack;
561}
562
563#define ELF_NREG 34
564typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
565
566static void elf_core_copy_regs(target_elf_gregset_t *regs,
567 const CPUARMState *env)
568{
569 int i;
570
571 for (i = 0; i < 32; i++) {
572 (*regs)[i] = tswapreg(env->xregs[i]);
573 }
574 (*regs)[32] = tswapreg(env->pc);
575 (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env));
576}
577
578#define USE_ELF_CORE_DUMP
579#define ELF_EXEC_PAGESIZE 4096
580
581enum {
582 ARM_HWCAP_A64_FP = 1 << 0,
583 ARM_HWCAP_A64_ASIMD = 1 << 1,
584 ARM_HWCAP_A64_EVTSTRM = 1 << 2,
585 ARM_HWCAP_A64_AES = 1 << 3,
586 ARM_HWCAP_A64_PMULL = 1 << 4,
587 ARM_HWCAP_A64_SHA1 = 1 << 5,
588 ARM_HWCAP_A64_SHA2 = 1 << 6,
589 ARM_HWCAP_A64_CRC32 = 1 << 7,
955f56d4
AB
590 ARM_HWCAP_A64_ATOMICS = 1 << 8,
591 ARM_HWCAP_A64_FPHP = 1 << 9,
592 ARM_HWCAP_A64_ASIMDHP = 1 << 10,
593 ARM_HWCAP_A64_CPUID = 1 << 11,
594 ARM_HWCAP_A64_ASIMDRDM = 1 << 12,
595 ARM_HWCAP_A64_JSCVT = 1 << 13,
596 ARM_HWCAP_A64_FCMA = 1 << 14,
597 ARM_HWCAP_A64_LRCPC = 1 << 15,
598 ARM_HWCAP_A64_DCPOP = 1 << 16,
599 ARM_HWCAP_A64_SHA3 = 1 << 17,
600 ARM_HWCAP_A64_SM3 = 1 << 18,
601 ARM_HWCAP_A64_SM4 = 1 << 19,
602 ARM_HWCAP_A64_ASIMDDP = 1 << 20,
603 ARM_HWCAP_A64_SHA512 = 1 << 21,
604 ARM_HWCAP_A64_SVE = 1 << 22,
0083a1fa
RH
605 ARM_HWCAP_A64_ASIMDFHM = 1 << 23,
606 ARM_HWCAP_A64_DIT = 1 << 24,
607 ARM_HWCAP_A64_USCAT = 1 << 25,
608 ARM_HWCAP_A64_ILRCPC = 1 << 26,
609 ARM_HWCAP_A64_FLAGM = 1 << 27,
610 ARM_HWCAP_A64_SSBS = 1 << 28,
611 ARM_HWCAP_A64_SB = 1 << 29,
612 ARM_HWCAP_A64_PACA = 1 << 30,
613 ARM_HWCAP_A64_PACG = 1UL << 31,
2041df4a
RH
614
615 ARM_HWCAP2_A64_DCPODP = 1 << 0,
616 ARM_HWCAP2_A64_SVE2 = 1 << 1,
617 ARM_HWCAP2_A64_SVEAES = 1 << 2,
618 ARM_HWCAP2_A64_SVEPMULL = 1 << 3,
619 ARM_HWCAP2_A64_SVEBITPERM = 1 << 4,
620 ARM_HWCAP2_A64_SVESHA3 = 1 << 5,
621 ARM_HWCAP2_A64_SVESM4 = 1 << 6,
622 ARM_HWCAP2_A64_FLAGM2 = 1 << 7,
623 ARM_HWCAP2_A64_FRINT = 1 << 8,
24e76ff0
PM
624};
625
2041df4a
RH
626#define ELF_HWCAP get_elf_hwcap()
627#define ELF_HWCAP2 get_elf_hwcap2()
628
629#define GET_FEATURE_ID(feat, hwcap) \
630 do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
24e76ff0
PM
631
632static uint32_t get_elf_hwcap(void)
633{
634 ARMCPU *cpu = ARM_CPU(thread_cpu);
635 uint32_t hwcaps = 0;
636
637 hwcaps |= ARM_HWCAP_A64_FP;
638 hwcaps |= ARM_HWCAP_A64_ASIMD;
37020ff1 639 hwcaps |= ARM_HWCAP_A64_CPUID;
24e76ff0
PM
640
641 /* probe for the extra features */
962fcbf2
RH
642
643 GET_FEATURE_ID(aa64_aes, ARM_HWCAP_A64_AES);
644 GET_FEATURE_ID(aa64_pmull, ARM_HWCAP_A64_PMULL);
645 GET_FEATURE_ID(aa64_sha1, ARM_HWCAP_A64_SHA1);
646 GET_FEATURE_ID(aa64_sha256, ARM_HWCAP_A64_SHA2);
647 GET_FEATURE_ID(aa64_sha512, ARM_HWCAP_A64_SHA512);
648 GET_FEATURE_ID(aa64_crc32, ARM_HWCAP_A64_CRC32);
649 GET_FEATURE_ID(aa64_sha3, ARM_HWCAP_A64_SHA3);
650 GET_FEATURE_ID(aa64_sm3, ARM_HWCAP_A64_SM3);
651 GET_FEATURE_ID(aa64_sm4, ARM_HWCAP_A64_SM4);
5763190f 652 GET_FEATURE_ID(aa64_fp16, ARM_HWCAP_A64_FPHP | ARM_HWCAP_A64_ASIMDHP);
962fcbf2
RH
653 GET_FEATURE_ID(aa64_atomics, ARM_HWCAP_A64_ATOMICS);
654 GET_FEATURE_ID(aa64_rdm, ARM_HWCAP_A64_ASIMDRDM);
655 GET_FEATURE_ID(aa64_dp, ARM_HWCAP_A64_ASIMDDP);
656 GET_FEATURE_ID(aa64_fcma, ARM_HWCAP_A64_FCMA);
cd208a1c 657 GET_FEATURE_ID(aa64_sve, ARM_HWCAP_A64_SVE);
29d26ab2 658 GET_FEATURE_ID(aa64_pauth, ARM_HWCAP_A64_PACA | ARM_HWCAP_A64_PACG);
1c9af3a9
RH
659 GET_FEATURE_ID(aa64_fhm, ARM_HWCAP_A64_ASIMDFHM);
660 GET_FEATURE_ID(aa64_jscvt, ARM_HWCAP_A64_JSCVT);
9888bd1e 661 GET_FEATURE_ID(aa64_sb, ARM_HWCAP_A64_SB);
b89d9c98 662 GET_FEATURE_ID(aa64_condm_4, ARM_HWCAP_A64_FLAGM);
0d57b499 663 GET_FEATURE_ID(aa64_dcpop, ARM_HWCAP_A64_DCPOP);
2677cf9f 664 GET_FEATURE_ID(aa64_rcpc_8_3, ARM_HWCAP_A64_LRCPC);
a1229109 665 GET_FEATURE_ID(aa64_rcpc_8_4, ARM_HWCAP_A64_ILRCPC);
962fcbf2 666
2041df4a
RH
667 return hwcaps;
668}
669
670static uint32_t get_elf_hwcap2(void)
671{
672 ARMCPU *cpu = ARM_CPU(thread_cpu);
673 uint32_t hwcaps = 0;
674
0d57b499 675 GET_FEATURE_ID(aa64_dcpodp, ARM_HWCAP2_A64_DCPODP);
2041df4a
RH
676 GET_FEATURE_ID(aa64_condm_5, ARM_HWCAP2_A64_FLAGM2);
677 GET_FEATURE_ID(aa64_frint, ARM_HWCAP2_A64_FRINT);
24e76ff0
PM
678
679 return hwcaps;
680}
681
2041df4a
RH
682#undef GET_FEATURE_ID
683
24e76ff0
PM
684#endif /* not TARGET_AARCH64 */
685#endif /* TARGET_ARM */
30ac07d4 686
853d6f7a 687#ifdef TARGET_SPARC
a315a145 688#ifdef TARGET_SPARC64
853d6f7a
FB
689
690#define ELF_START_MMAP 0x80000000
cf973e46
AT
691#define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
692 | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9)
992f48a0 693#ifndef TARGET_ABI32
cb33da57 694#define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
992f48a0
BS
695#else
696#define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
697#endif
853d6f7a 698
a315a145 699#define ELF_CLASS ELFCLASS64
5ef54116
FB
700#define ELF_ARCH EM_SPARCV9
701
d97ef72e 702#define STACK_BIAS 2047
a315a145 703
d97ef72e
RH
704static inline void init_thread(struct target_pt_regs *regs,
705 struct image_info *infop)
a315a145 706{
992f48a0 707#ifndef TARGET_ABI32
a315a145 708 regs->tstate = 0;
992f48a0 709#endif
a315a145
FB
710 regs->pc = infop->entry;
711 regs->npc = regs->pc + 4;
712 regs->y = 0;
992f48a0
BS
713#ifdef TARGET_ABI32
714 regs->u_regs[14] = infop->start_stack - 16 * 4;
715#else
cb33da57
BS
716 if (personality(infop->personality) == PER_LINUX32)
717 regs->u_regs[14] = infop->start_stack - 16 * 4;
718 else
719 regs->u_regs[14] = infop->start_stack - 16 * 8 - STACK_BIAS;
992f48a0 720#endif
a315a145
FB
721}
722
723#else
724#define ELF_START_MMAP 0x80000000
cf973e46
AT
725#define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
726 | HWCAP_SPARC_MULDIV)
a315a145 727
853d6f7a 728#define ELF_CLASS ELFCLASS32
853d6f7a
FB
729#define ELF_ARCH EM_SPARC
730
d97ef72e
RH
731static inline void init_thread(struct target_pt_regs *regs,
732 struct image_info *infop)
853d6f7a 733{
f5155289
FB
734 regs->psr = 0;
735 regs->pc = infop->entry;
736 regs->npc = regs->pc + 4;
737 regs->y = 0;
738 regs->u_regs[14] = infop->start_stack - 16 * 4;
853d6f7a
FB
739}
740
a315a145 741#endif
853d6f7a
FB
742#endif
743
67867308
FB
744#ifdef TARGET_PPC
745
4ecd4d16 746#define ELF_MACHINE PPC_ELF_MACHINE
67867308
FB
747#define ELF_START_MMAP 0x80000000
748
e85e7c6e 749#if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
84409ddb
JM
750
751#define elf_check_arch(x) ( (x) == EM_PPC64 )
752
d97ef72e 753#define ELF_CLASS ELFCLASS64
84409ddb
JM
754
755#else
756
d97ef72e 757#define ELF_CLASS ELFCLASS32
84409ddb
JM
758
759#endif
760
d97ef72e 761#define ELF_ARCH EM_PPC
67867308 762
df84e4f3
NF
763/* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
764 See arch/powerpc/include/asm/cputable.h. */
765enum {
3efa9a67 766 QEMU_PPC_FEATURE_32 = 0x80000000,
767 QEMU_PPC_FEATURE_64 = 0x40000000,
768 QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
769 QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
770 QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
771 QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
772 QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
773 QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
774 QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
775 QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
776 QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
777 QEMU_PPC_FEATURE_NO_TB = 0x00100000,
778 QEMU_PPC_FEATURE_POWER4 = 0x00080000,
779 QEMU_PPC_FEATURE_POWER5 = 0x00040000,
780 QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
781 QEMU_PPC_FEATURE_CELL = 0x00010000,
782 QEMU_PPC_FEATURE_BOOKE = 0x00008000,
783 QEMU_PPC_FEATURE_SMT = 0x00004000,
784 QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
785 QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
786 QEMU_PPC_FEATURE_PA6T = 0x00000800,
787 QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
788 QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
789 QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
790 QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
791 QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
792
793 QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
794 QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
a60438dd
TM
795
796 /* Feature definitions in AT_HWCAP2. */
797 QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */
798 QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */
799 QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */
800 QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */
801 QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */
802 QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */
24c373ec
LV
803 QEMU_PPC_FEATURE2_VEC_CRYPTO = 0x02000000,
804 QEMU_PPC_FEATURE2_HTM_NOSC = 0x01000000,
be0c46d4 805 QEMU_PPC_FEATURE2_ARCH_3_00 = 0x00800000, /* ISA 3.00 */
24c373ec
LV
806 QEMU_PPC_FEATURE2_HAS_IEEE128 = 0x00400000, /* VSX IEEE Bin Float 128-bit */
807 QEMU_PPC_FEATURE2_DARN = 0x00200000, /* darn random number insn */
808 QEMU_PPC_FEATURE2_SCV = 0x00100000, /* scv syscall */
809 QEMU_PPC_FEATURE2_HTM_NO_SUSPEND = 0x00080000, /* TM w/o suspended state */
df84e4f3
NF
810};
811
812#define ELF_HWCAP get_elf_hwcap()
813
814static uint32_t get_elf_hwcap(void)
815{
a2247f8e 816 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
df84e4f3
NF
817 uint32_t features = 0;
818
819 /* We don't have to be terribly complete here; the high points are
820 Altivec/FP/SPE support. Anything else is just a bonus. */
d97ef72e 821#define GET_FEATURE(flag, feature) \
a2247f8e 822 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
58eb5308
MW
823#define GET_FEATURE2(flags, feature) \
824 do { \
825 if ((cpu->env.insns_flags2 & flags) == flags) { \
826 features |= feature; \
827 } \
828 } while (0)
3efa9a67 829 GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
830 GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
831 GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
832 GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
833 GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
834 GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
835 GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
836 GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
0e019746
TM
837 GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP);
838 GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX);
839 GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 |
840 PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206),
841 QEMU_PPC_FEATURE_ARCH_2_06);
df84e4f3 842#undef GET_FEATURE
0e019746 843#undef GET_FEATURE2
df84e4f3
NF
844
845 return features;
846}
847
a60438dd
TM
848#define ELF_HWCAP2 get_elf_hwcap2()
849
850static uint32_t get_elf_hwcap2(void)
851{
852 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
853 uint32_t features = 0;
854
855#define GET_FEATURE(flag, feature) \
856 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
857#define GET_FEATURE2(flag, feature) \
858 do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
859
860 GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL);
861 GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR);
862 GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 |
24c373ec
LV
863 PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07 |
864 QEMU_PPC_FEATURE2_VEC_CRYPTO);
865 GET_FEATURE2(PPC2_ISA300, QEMU_PPC_FEATURE2_ARCH_3_00 |
866 QEMU_PPC_FEATURE2_DARN);
a60438dd
TM
867
868#undef GET_FEATURE
869#undef GET_FEATURE2
870
871 return features;
872}
873
f5155289
FB
874/*
875 * The requirements here are:
876 * - keep the final alignment of sp (sp & 0xf)
877 * - make sure the 32-bit value at the first 16 byte aligned position of
878 * AUXV is greater than 16 for glibc compatibility.
879 * AT_IGNOREPPC is used for that.
880 * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
881 * even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
882 */
0bccf03d 883#define DLINFO_ARCH_ITEMS 5
d97ef72e
RH
884#define ARCH_DLINFO \
885 do { \
623e250a 886 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); \
d97ef72e 887 /* \
82991bed
PM
888 * Handle glibc compatibility: these magic entries must \
889 * be at the lowest addresses in the final auxv. \
d97ef72e
RH
890 */ \
891 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
892 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
82991bed
PM
893 NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \
894 NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \
895 NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \
d97ef72e 896 } while (0)
f5155289 897
67867308
FB
898static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
899{
67867308 900 _regs->gpr[1] = infop->start_stack;
e85e7c6e 901#if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
d90b94cd 902 if (get_ppc64_abi(infop) < 2) {
2ccf97ec
PM
903 uint64_t val;
904 get_user_u64(val, infop->entry + 8);
905 _regs->gpr[2] = val + infop->load_bias;
906 get_user_u64(val, infop->entry);
907 infop->entry = val + infop->load_bias;
d90b94cd
DK
908 } else {
909 _regs->gpr[12] = infop->entry; /* r12 set to global entry address */
910 }
84409ddb 911#endif
67867308
FB
912 _regs->nip = infop->entry;
913}
914
e2f3e741
NF
915/* See linux kernel: arch/powerpc/include/asm/elf.h. */
916#define ELF_NREG 48
917typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
918
05390248 919static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env)
e2f3e741
NF
920{
921 int i;
922 target_ulong ccr = 0;
923
924 for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
86cd7b2d 925 (*regs)[i] = tswapreg(env->gpr[i]);
e2f3e741
NF
926 }
927
86cd7b2d
PB
928 (*regs)[32] = tswapreg(env->nip);
929 (*regs)[33] = tswapreg(env->msr);
930 (*regs)[35] = tswapreg(env->ctr);
931 (*regs)[36] = tswapreg(env->lr);
932 (*regs)[37] = tswapreg(env->xer);
e2f3e741
NF
933
934 for (i = 0; i < ARRAY_SIZE(env->crf); i++) {
935 ccr |= env->crf[i] << (32 - ((i + 1) * 4));
936 }
86cd7b2d 937 (*regs)[38] = tswapreg(ccr);
e2f3e741
NF
938}
939
940#define USE_ELF_CORE_DUMP
d97ef72e 941#define ELF_EXEC_PAGESIZE 4096
67867308
FB
942
943#endif
944
048f6b4d
FB
945#ifdef TARGET_MIPS
946
947#define ELF_START_MMAP 0x80000000
948
388bb21a
TS
949#ifdef TARGET_MIPS64
950#define ELF_CLASS ELFCLASS64
951#else
048f6b4d 952#define ELF_CLASS ELFCLASS32
388bb21a 953#endif
048f6b4d
FB
954#define ELF_ARCH EM_MIPS
955
f72541f3
AM
956#define elf_check_arch(x) ((x) == EM_MIPS || (x) == EM_NANOMIPS)
957
d97ef72e
RH
958static inline void init_thread(struct target_pt_regs *regs,
959 struct image_info *infop)
048f6b4d 960{
623a930e 961 regs->cp0_status = 2 << CP0St_KSU;
048f6b4d
FB
962 regs->cp0_epc = infop->entry;
963 regs->regs[29] = infop->start_stack;
964}
965
51e52606
NF
966/* See linux kernel: arch/mips/include/asm/elf.h. */
967#define ELF_NREG 45
968typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
969
970/* See linux kernel: arch/mips/include/asm/reg.h. */
971enum {
972#ifdef TARGET_MIPS64
973 TARGET_EF_R0 = 0,
974#else
975 TARGET_EF_R0 = 6,
976#endif
977 TARGET_EF_R26 = TARGET_EF_R0 + 26,
978 TARGET_EF_R27 = TARGET_EF_R0 + 27,
979 TARGET_EF_LO = TARGET_EF_R0 + 32,
980 TARGET_EF_HI = TARGET_EF_R0 + 33,
981 TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34,
982 TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35,
983 TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36,
984 TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37
985};
986
987/* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
05390248 988static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env)
51e52606
NF
989{
990 int i;
991
992 for (i = 0; i < TARGET_EF_R0; i++) {
993 (*regs)[i] = 0;
994 }
995 (*regs)[TARGET_EF_R0] = 0;
996
997 for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) {
a29f998d 998 (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]);
51e52606
NF
999 }
1000
1001 (*regs)[TARGET_EF_R26] = 0;
1002 (*regs)[TARGET_EF_R27] = 0;
a29f998d
PB
1003 (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]);
1004 (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]);
1005 (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC);
1006 (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr);
1007 (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status);
1008 (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause);
51e52606
NF
1009}
1010
1011#define USE_ELF_CORE_DUMP
388bb21a
TS
1012#define ELF_EXEC_PAGESIZE 4096
1013
46a1ee4f
JC
1014/* See arch/mips/include/uapi/asm/hwcap.h. */
1015enum {
1016 HWCAP_MIPS_R6 = (1 << 0),
1017 HWCAP_MIPS_MSA = (1 << 1),
1018};
1019
1020#define ELF_HWCAP get_elf_hwcap()
1021
1022static uint32_t get_elf_hwcap(void)
1023{
1024 MIPSCPU *cpu = MIPS_CPU(thread_cpu);
1025 uint32_t hwcaps = 0;
1026
1027#define GET_FEATURE(flag, hwcap) \
1028 do { if (cpu->env.insn_flags & (flag)) { hwcaps |= hwcap; } } while (0)
1029
1030 GET_FEATURE(ISA_MIPS32R6 | ISA_MIPS64R6, HWCAP_MIPS_R6);
1031 GET_FEATURE(ASE_MSA, HWCAP_MIPS_MSA);
1032
1033#undef GET_FEATURE
1034
1035 return hwcaps;
1036}
1037
048f6b4d
FB
1038#endif /* TARGET_MIPS */
1039
b779e29e
EI
1040#ifdef TARGET_MICROBLAZE
1041
1042#define ELF_START_MMAP 0x80000000
1043
0d5d4699 1044#define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
b779e29e
EI
1045
1046#define ELF_CLASS ELFCLASS32
0d5d4699 1047#define ELF_ARCH EM_MICROBLAZE
b779e29e 1048
d97ef72e
RH
1049static inline void init_thread(struct target_pt_regs *regs,
1050 struct image_info *infop)
b779e29e
EI
1051{
1052 regs->pc = infop->entry;
1053 regs->r1 = infop->start_stack;
1054
1055}
1056
b779e29e
EI
1057#define ELF_EXEC_PAGESIZE 4096
1058
e4cbd44d
EI
1059#define USE_ELF_CORE_DUMP
1060#define ELF_NREG 38
1061typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1062
1063/* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
05390248 1064static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env)
e4cbd44d
EI
1065{
1066 int i, pos = 0;
1067
1068 for (i = 0; i < 32; i++) {
86cd7b2d 1069 (*regs)[pos++] = tswapreg(env->regs[i]);
e4cbd44d
EI
1070 }
1071
1072 for (i = 0; i < 6; i++) {
86cd7b2d 1073 (*regs)[pos++] = tswapreg(env->sregs[i]);
e4cbd44d
EI
1074 }
1075}
1076
b779e29e
EI
1077#endif /* TARGET_MICROBLAZE */
1078
a0a839b6
MV
1079#ifdef TARGET_NIOS2
1080
1081#define ELF_START_MMAP 0x80000000
1082
1083#define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2)
1084
1085#define ELF_CLASS ELFCLASS32
1086#define ELF_ARCH EM_ALTERA_NIOS2
1087
1088static void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1089{
1090 regs->ea = infop->entry;
1091 regs->sp = infop->start_stack;
1092 regs->estatus = 0x3;
1093}
1094
1095#define ELF_EXEC_PAGESIZE 4096
1096
1097#define USE_ELF_CORE_DUMP
1098#define ELF_NREG 49
1099typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1100
1101/* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
1102static void elf_core_copy_regs(target_elf_gregset_t *regs,
1103 const CPUNios2State *env)
1104{
1105 int i;
1106
1107 (*regs)[0] = -1;
1108 for (i = 1; i < 8; i++) /* r0-r7 */
1109 (*regs)[i] = tswapreg(env->regs[i + 7]);
1110
1111 for (i = 8; i < 16; i++) /* r8-r15 */
1112 (*regs)[i] = tswapreg(env->regs[i - 8]);
1113
1114 for (i = 16; i < 24; i++) /* r16-r23 */
1115 (*regs)[i] = tswapreg(env->regs[i + 7]);
1116 (*regs)[24] = -1; /* R_ET */
1117 (*regs)[25] = -1; /* R_BT */
1118 (*regs)[26] = tswapreg(env->regs[R_GP]);
1119 (*regs)[27] = tswapreg(env->regs[R_SP]);
1120 (*regs)[28] = tswapreg(env->regs[R_FP]);
1121 (*regs)[29] = tswapreg(env->regs[R_EA]);
1122 (*regs)[30] = -1; /* R_SSTATUS */
1123 (*regs)[31] = tswapreg(env->regs[R_RA]);
1124
1125 (*regs)[32] = tswapreg(env->regs[R_PC]);
1126
1127 (*regs)[33] = -1; /* R_STATUS */
1128 (*regs)[34] = tswapreg(env->regs[CR_ESTATUS]);
1129
1130 for (i = 35; i < 49; i++) /* ... */
1131 (*regs)[i] = -1;
1132}
1133
1134#endif /* TARGET_NIOS2 */
1135
d962783e
JL
1136#ifdef TARGET_OPENRISC
1137
1138#define ELF_START_MMAP 0x08000000
1139
d962783e
JL
1140#define ELF_ARCH EM_OPENRISC
1141#define ELF_CLASS ELFCLASS32
1142#define ELF_DATA ELFDATA2MSB
1143
1144static inline void init_thread(struct target_pt_regs *regs,
1145 struct image_info *infop)
1146{
1147 regs->pc = infop->entry;
1148 regs->gpr[1] = infop->start_stack;
1149}
1150
1151#define USE_ELF_CORE_DUMP
1152#define ELF_EXEC_PAGESIZE 8192
1153
1154/* See linux kernel arch/openrisc/include/asm/elf.h. */
1155#define ELF_NREG 34 /* gprs and pc, sr */
1156typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1157
1158static void elf_core_copy_regs(target_elf_gregset_t *regs,
1159 const CPUOpenRISCState *env)
1160{
1161 int i;
1162
1163 for (i = 0; i < 32; i++) {
d89e71e8 1164 (*regs)[i] = tswapreg(cpu_get_gpr(env, i));
d962783e 1165 }
86cd7b2d 1166 (*regs)[32] = tswapreg(env->pc);
84775c43 1167 (*regs)[33] = tswapreg(cpu_get_sr(env));
d962783e
JL
1168}
1169#define ELF_HWCAP 0
1170#define ELF_PLATFORM NULL
1171
1172#endif /* TARGET_OPENRISC */
1173
fdf9b3e8
FB
1174#ifdef TARGET_SH4
1175
1176#define ELF_START_MMAP 0x80000000
1177
fdf9b3e8 1178#define ELF_CLASS ELFCLASS32
fdf9b3e8
FB
1179#define ELF_ARCH EM_SH
1180
d97ef72e
RH
1181static inline void init_thread(struct target_pt_regs *regs,
1182 struct image_info *infop)
fdf9b3e8 1183{
d97ef72e
RH
1184 /* Check other registers XXXXX */
1185 regs->pc = infop->entry;
1186 regs->regs[15] = infop->start_stack;
fdf9b3e8
FB
1187}
1188
7631c97e
NF
1189/* See linux kernel: arch/sh/include/asm/elf.h. */
1190#define ELF_NREG 23
1191typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1192
1193/* See linux kernel: arch/sh/include/asm/ptrace.h. */
1194enum {
1195 TARGET_REG_PC = 16,
1196 TARGET_REG_PR = 17,
1197 TARGET_REG_SR = 18,
1198 TARGET_REG_GBR = 19,
1199 TARGET_REG_MACH = 20,
1200 TARGET_REG_MACL = 21,
1201 TARGET_REG_SYSCALL = 22
1202};
1203
d97ef72e 1204static inline void elf_core_copy_regs(target_elf_gregset_t *regs,
05390248 1205 const CPUSH4State *env)
7631c97e
NF
1206{
1207 int i;
1208
1209 for (i = 0; i < 16; i++) {
72cd500b 1210 (*regs)[i] = tswapreg(env->gregs[i]);
7631c97e
NF
1211 }
1212
86cd7b2d
PB
1213 (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1214 (*regs)[TARGET_REG_PR] = tswapreg(env->pr);
1215 (*regs)[TARGET_REG_SR] = tswapreg(env->sr);
1216 (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr);
1217 (*regs)[TARGET_REG_MACH] = tswapreg(env->mach);
1218 (*regs)[TARGET_REG_MACL] = tswapreg(env->macl);
7631c97e
NF
1219 (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */
1220}
1221
1222#define USE_ELF_CORE_DUMP
fdf9b3e8
FB
1223#define ELF_EXEC_PAGESIZE 4096
1224
e42fd944
RH
1225enum {
1226 SH_CPU_HAS_FPU = 0x0001, /* Hardware FPU support */
1227 SH_CPU_HAS_P2_FLUSH_BUG = 0x0002, /* Need to flush the cache in P2 area */
1228 SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */
1229 SH_CPU_HAS_DSP = 0x0008, /* SH-DSP: DSP support */
1230 SH_CPU_HAS_PERF_COUNTER = 0x0010, /* Hardware performance counters */
1231 SH_CPU_HAS_PTEA = 0x0020, /* PTEA register */
1232 SH_CPU_HAS_LLSC = 0x0040, /* movli.l/movco.l */
1233 SH_CPU_HAS_L2_CACHE = 0x0080, /* Secondary cache / URAM */
1234 SH_CPU_HAS_OP32 = 0x0100, /* 32-bit instruction support */
1235 SH_CPU_HAS_PTEAEX = 0x0200, /* PTE ASID Extension support */
1236};
1237
1238#define ELF_HWCAP get_elf_hwcap()
1239
1240static uint32_t get_elf_hwcap(void)
1241{
1242 SuperHCPU *cpu = SUPERH_CPU(thread_cpu);
1243 uint32_t hwcap = 0;
1244
1245 hwcap |= SH_CPU_HAS_FPU;
1246
1247 if (cpu->env.features & SH_FEATURE_SH4A) {
1248 hwcap |= SH_CPU_HAS_LLSC;
1249 }
1250
1251 return hwcap;
1252}
1253
fdf9b3e8
FB
1254#endif
1255
48733d19
TS
1256#ifdef TARGET_CRIS
1257
1258#define ELF_START_MMAP 0x80000000
1259
48733d19 1260#define ELF_CLASS ELFCLASS32
48733d19
TS
1261#define ELF_ARCH EM_CRIS
1262
d97ef72e
RH
1263static inline void init_thread(struct target_pt_regs *regs,
1264 struct image_info *infop)
48733d19 1265{
d97ef72e 1266 regs->erp = infop->entry;
48733d19
TS
1267}
1268
48733d19
TS
1269#define ELF_EXEC_PAGESIZE 8192
1270
1271#endif
1272
e6e5906b
PB
1273#ifdef TARGET_M68K
1274
1275#define ELF_START_MMAP 0x80000000
1276
d97ef72e 1277#define ELF_CLASS ELFCLASS32
d97ef72e 1278#define ELF_ARCH EM_68K
e6e5906b
PB
1279
1280/* ??? Does this need to do anything?
d97ef72e 1281 #define ELF_PLAT_INIT(_r) */
e6e5906b 1282
d97ef72e
RH
1283static inline void init_thread(struct target_pt_regs *regs,
1284 struct image_info *infop)
e6e5906b
PB
1285{
1286 regs->usp = infop->start_stack;
1287 regs->sr = 0;
1288 regs->pc = infop->entry;
1289}
1290
7a93cc55
NF
1291/* See linux kernel: arch/m68k/include/asm/elf.h. */
1292#define ELF_NREG 20
1293typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1294
05390248 1295static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env)
7a93cc55 1296{
86cd7b2d
PB
1297 (*regs)[0] = tswapreg(env->dregs[1]);
1298 (*regs)[1] = tswapreg(env->dregs[2]);
1299 (*regs)[2] = tswapreg(env->dregs[3]);
1300 (*regs)[3] = tswapreg(env->dregs[4]);
1301 (*regs)[4] = tswapreg(env->dregs[5]);
1302 (*regs)[5] = tswapreg(env->dregs[6]);
1303 (*regs)[6] = tswapreg(env->dregs[7]);
1304 (*regs)[7] = tswapreg(env->aregs[0]);
1305 (*regs)[8] = tswapreg(env->aregs[1]);
1306 (*regs)[9] = tswapreg(env->aregs[2]);
1307 (*regs)[10] = tswapreg(env->aregs[3]);
1308 (*regs)[11] = tswapreg(env->aregs[4]);
1309 (*regs)[12] = tswapreg(env->aregs[5]);
1310 (*regs)[13] = tswapreg(env->aregs[6]);
1311 (*regs)[14] = tswapreg(env->dregs[0]);
1312 (*regs)[15] = tswapreg(env->aregs[7]);
1313 (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */
1314 (*regs)[17] = tswapreg(env->sr);
1315 (*regs)[18] = tswapreg(env->pc);
7a93cc55
NF
1316 (*regs)[19] = 0; /* FIXME: regs->format | regs->vector */
1317}
1318
1319#define USE_ELF_CORE_DUMP
d97ef72e 1320#define ELF_EXEC_PAGESIZE 8192
e6e5906b
PB
1321
1322#endif
1323
7a3148a9
JM
1324#ifdef TARGET_ALPHA
1325
1326#define ELF_START_MMAP (0x30000000000ULL)
1327
7a3148a9 1328#define ELF_CLASS ELFCLASS64
7a3148a9
JM
1329#define ELF_ARCH EM_ALPHA
1330
d97ef72e
RH
1331static inline void init_thread(struct target_pt_regs *regs,
1332 struct image_info *infop)
7a3148a9
JM
1333{
1334 regs->pc = infop->entry;
1335 regs->ps = 8;
1336 regs->usp = infop->start_stack;
7a3148a9
JM
1337}
1338
7a3148a9
JM
1339#define ELF_EXEC_PAGESIZE 8192
1340
1341#endif /* TARGET_ALPHA */
1342
a4c075f1
UH
1343#ifdef TARGET_S390X
1344
1345#define ELF_START_MMAP (0x20000000000ULL)
1346
a4c075f1
UH
1347#define ELF_CLASS ELFCLASS64
1348#define ELF_DATA ELFDATA2MSB
1349#define ELF_ARCH EM_S390
1350
6d88baf1
DH
1351#include "elf.h"
1352
1353#define ELF_HWCAP get_elf_hwcap()
1354
1355#define GET_FEATURE(_feat, _hwcap) \
1356 do { if (s390_has_feat(_feat)) { hwcap |= _hwcap; } } while (0)
1357
1358static uint32_t get_elf_hwcap(void)
1359{
1360 /*
1361 * Let's assume we always have esan3 and zarch.
1362 * 31-bit processes can use 64-bit registers (high gprs).
1363 */
1364 uint32_t hwcap = HWCAP_S390_ESAN3 | HWCAP_S390_ZARCH | HWCAP_S390_HIGH_GPRS;
1365
1366 GET_FEATURE(S390_FEAT_STFLE, HWCAP_S390_STFLE);
1367 GET_FEATURE(S390_FEAT_MSA, HWCAP_S390_MSA);
1368 GET_FEATURE(S390_FEAT_LONG_DISPLACEMENT, HWCAP_S390_LDISP);
1369 GET_FEATURE(S390_FEAT_EXTENDED_IMMEDIATE, HWCAP_S390_EIMM);
1370 if (s390_has_feat(S390_FEAT_EXTENDED_TRANSLATION_3) &&
1371 s390_has_feat(S390_FEAT_ETF3_ENH)) {
1372 hwcap |= HWCAP_S390_ETF3EH;
1373 }
1374 GET_FEATURE(S390_FEAT_VECTOR, HWCAP_S390_VXRS);
1375
1376 return hwcap;
1377}
1378
a4c075f1
UH
1379static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1380{
1381 regs->psw.addr = infop->entry;
1382 regs->psw.mask = PSW_MASK_64 | PSW_MASK_32;
1383 regs->gprs[15] = infop->start_stack;
1384}
1385
1386#endif /* TARGET_S390X */
1387
b16189b2
CG
1388#ifdef TARGET_TILEGX
1389
1390/* 42 bits real used address, a half for user mode */
1391#define ELF_START_MMAP (0x00000020000000000ULL)
1392
1393#define elf_check_arch(x) ((x) == EM_TILEGX)
1394
1395#define ELF_CLASS ELFCLASS64
1396#define ELF_DATA ELFDATA2LSB
1397#define ELF_ARCH EM_TILEGX
1398
1399static inline void init_thread(struct target_pt_regs *regs,
1400 struct image_info *infop)
1401{
1402 regs->pc = infop->entry;
1403 regs->sp = infop->start_stack;
1404
1405}
1406
1407#define ELF_EXEC_PAGESIZE 65536 /* TILE-Gx page size is 64KB */
1408
1409#endif /* TARGET_TILEGX */
1410
47ae93cd
MC
1411#ifdef TARGET_RISCV
1412
1413#define ELF_START_MMAP 0x80000000
1414#define ELF_ARCH EM_RISCV
1415
1416#ifdef TARGET_RISCV32
1417#define ELF_CLASS ELFCLASS32
1418#else
1419#define ELF_CLASS ELFCLASS64
1420#endif
1421
1422static inline void init_thread(struct target_pt_regs *regs,
1423 struct image_info *infop)
1424{
1425 regs->sepc = infop->entry;
1426 regs->sp = infop->start_stack;
1427}
1428
1429#define ELF_EXEC_PAGESIZE 4096
1430
1431#endif /* TARGET_RISCV */
1432
7c248bcd
RH
1433#ifdef TARGET_HPPA
1434
1435#define ELF_START_MMAP 0x80000000
1436#define ELF_CLASS ELFCLASS32
1437#define ELF_ARCH EM_PARISC
1438#define ELF_PLATFORM "PARISC"
1439#define STACK_GROWS_DOWN 0
1440#define STACK_ALIGNMENT 64
1441
1442static inline void init_thread(struct target_pt_regs *regs,
1443 struct image_info *infop)
1444{
1445 regs->iaoq[0] = infop->entry;
1446 regs->iaoq[1] = infop->entry + 4;
1447 regs->gr[23] = 0;
1448 regs->gr[24] = infop->arg_start;
1449 regs->gr[25] = (infop->arg_end - infop->arg_start) / sizeof(abi_ulong);
1450 /* The top-of-stack contains a linkage buffer. */
1451 regs->gr[30] = infop->start_stack + 64;
1452 regs->gr[31] = infop->entry;
1453}
1454
1455#endif /* TARGET_HPPA */
1456
ba7651fb
MF
1457#ifdef TARGET_XTENSA
1458
1459#define ELF_START_MMAP 0x20000000
1460
1461#define ELF_CLASS ELFCLASS32
1462#define ELF_ARCH EM_XTENSA
1463
1464static inline void init_thread(struct target_pt_regs *regs,
1465 struct image_info *infop)
1466{
1467 regs->windowbase = 0;
1468 regs->windowstart = 1;
1469 regs->areg[1] = infop->start_stack;
1470 regs->pc = infop->entry;
1471}
1472
1473/* See linux kernel: arch/xtensa/include/asm/elf.h. */
1474#define ELF_NREG 128
1475typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1476
1477enum {
1478 TARGET_REG_PC,
1479 TARGET_REG_PS,
1480 TARGET_REG_LBEG,
1481 TARGET_REG_LEND,
1482 TARGET_REG_LCOUNT,
1483 TARGET_REG_SAR,
1484 TARGET_REG_WINDOWSTART,
1485 TARGET_REG_WINDOWBASE,
1486 TARGET_REG_THREADPTR,
1487 TARGET_REG_AR0 = 64,
1488};
1489
1490static void elf_core_copy_regs(target_elf_gregset_t *regs,
1491 const CPUXtensaState *env)
1492{
1493 unsigned i;
1494
1495 (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1496 (*regs)[TARGET_REG_PS] = tswapreg(env->sregs[PS] & ~PS_EXCM);
1497 (*regs)[TARGET_REG_LBEG] = tswapreg(env->sregs[LBEG]);
1498 (*regs)[TARGET_REG_LEND] = tswapreg(env->sregs[LEND]);
1499 (*regs)[TARGET_REG_LCOUNT] = tswapreg(env->sregs[LCOUNT]);
1500 (*regs)[TARGET_REG_SAR] = tswapreg(env->sregs[SAR]);
1501 (*regs)[TARGET_REG_WINDOWSTART] = tswapreg(env->sregs[WINDOW_START]);
1502 (*regs)[TARGET_REG_WINDOWBASE] = tswapreg(env->sregs[WINDOW_BASE]);
1503 (*regs)[TARGET_REG_THREADPTR] = tswapreg(env->uregs[THREADPTR]);
1504 xtensa_sync_phys_from_window((CPUXtensaState *)env);
1505 for (i = 0; i < env->config->nareg; ++i) {
1506 (*regs)[TARGET_REG_AR0 + i] = tswapreg(env->phys_regs[i]);
1507 }
1508}
1509
1510#define USE_ELF_CORE_DUMP
1511#define ELF_EXEC_PAGESIZE 4096
1512
1513#endif /* TARGET_XTENSA */
1514
15338fd7
FB
1515#ifndef ELF_PLATFORM
1516#define ELF_PLATFORM (NULL)
1517#endif
1518
75be901c
PC
1519#ifndef ELF_MACHINE
1520#define ELF_MACHINE ELF_ARCH
1521#endif
1522
d276a604
PC
1523#ifndef elf_check_arch
1524#define elf_check_arch(x) ((x) == ELF_ARCH)
1525#endif
1526
15338fd7
FB
1527#ifndef ELF_HWCAP
1528#define ELF_HWCAP 0
1529#endif
1530
7c4ee5bc
RH
1531#ifndef STACK_GROWS_DOWN
1532#define STACK_GROWS_DOWN 1
1533#endif
1534
1535#ifndef STACK_ALIGNMENT
1536#define STACK_ALIGNMENT 16
1537#endif
1538
992f48a0 1539#ifdef TARGET_ABI32
cb33da57 1540#undef ELF_CLASS
992f48a0 1541#define ELF_CLASS ELFCLASS32
cb33da57
BS
1542#undef bswaptls
1543#define bswaptls(ptr) bswap32s(ptr)
1544#endif
1545
31e31b8a 1546#include "elf.h"
09bfb054 1547
09bfb054
FB
1548struct exec
1549{
d97ef72e
RH
1550 unsigned int a_info; /* Use macros N_MAGIC, etc for access */
1551 unsigned int a_text; /* length of text, in bytes */
1552 unsigned int a_data; /* length of data, in bytes */
1553 unsigned int a_bss; /* length of uninitialized data area, in bytes */
1554 unsigned int a_syms; /* length of symbol table data in file, in bytes */
1555 unsigned int a_entry; /* start address */
1556 unsigned int a_trsize; /* length of relocation info for text, in bytes */
1557 unsigned int a_drsize; /* length of relocation info for data, in bytes */
09bfb054
FB
1558};
1559
1560
1561#define N_MAGIC(exec) ((exec).a_info & 0xffff)
1562#define OMAGIC 0407
1563#define NMAGIC 0410
1564#define ZMAGIC 0413
1565#define QMAGIC 0314
1566
31e31b8a 1567/* Necessary parameters */
94894ff2
SB
1568#define TARGET_ELF_EXEC_PAGESIZE \
1569 (((eppnt->p_align & ~qemu_host_page_mask) != 0) ? \
1570 TARGET_PAGE_SIZE : MAX(qemu_host_page_size, TARGET_PAGE_SIZE))
1571#define TARGET_ELF_PAGELENGTH(_v) ROUND_UP((_v), TARGET_ELF_EXEC_PAGESIZE)
79cb1f1d
YK
1572#define TARGET_ELF_PAGESTART(_v) ((_v) & \
1573 ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1))
54936004 1574#define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1))
31e31b8a 1575
444cd5c3 1576#define DLINFO_ITEMS 15
31e31b8a 1577
09bfb054
FB
1578static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
1579{
d97ef72e 1580 memcpy(to, from, n);
09bfb054 1581}
d691f669 1582
31e31b8a 1583#ifdef BSWAP_NEEDED
92a31b1f 1584static void bswap_ehdr(struct elfhdr *ehdr)
31e31b8a 1585{
d97ef72e
RH
1586 bswap16s(&ehdr->e_type); /* Object file type */
1587 bswap16s(&ehdr->e_machine); /* Architecture */
1588 bswap32s(&ehdr->e_version); /* Object file version */
1589 bswaptls(&ehdr->e_entry); /* Entry point virtual address */
1590 bswaptls(&ehdr->e_phoff); /* Program header table file offset */
1591 bswaptls(&ehdr->e_shoff); /* Section header table file offset */
1592 bswap32s(&ehdr->e_flags); /* Processor-specific flags */
1593 bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */
1594 bswap16s(&ehdr->e_phentsize); /* Program header table entry size */
1595 bswap16s(&ehdr->e_phnum); /* Program header table entry count */
1596 bswap16s(&ehdr->e_shentsize); /* Section header table entry size */
1597 bswap16s(&ehdr->e_shnum); /* Section header table entry count */
1598 bswap16s(&ehdr->e_shstrndx); /* Section header string table index */
31e31b8a
FB
1599}
1600
991f8f0c 1601static void bswap_phdr(struct elf_phdr *phdr, int phnum)
31e31b8a 1602{
991f8f0c
RH
1603 int i;
1604 for (i = 0; i < phnum; ++i, ++phdr) {
1605 bswap32s(&phdr->p_type); /* Segment type */
1606 bswap32s(&phdr->p_flags); /* Segment flags */
1607 bswaptls(&phdr->p_offset); /* Segment file offset */
1608 bswaptls(&phdr->p_vaddr); /* Segment virtual address */
1609 bswaptls(&phdr->p_paddr); /* Segment physical address */
1610 bswaptls(&phdr->p_filesz); /* Segment size in file */
1611 bswaptls(&phdr->p_memsz); /* Segment size in memory */
1612 bswaptls(&phdr->p_align); /* Segment alignment */
1613 }
31e31b8a 1614}
689f936f 1615
991f8f0c 1616static void bswap_shdr(struct elf_shdr *shdr, int shnum)
689f936f 1617{
991f8f0c
RH
1618 int i;
1619 for (i = 0; i < shnum; ++i, ++shdr) {
1620 bswap32s(&shdr->sh_name);
1621 bswap32s(&shdr->sh_type);
1622 bswaptls(&shdr->sh_flags);
1623 bswaptls(&shdr->sh_addr);
1624 bswaptls(&shdr->sh_offset);
1625 bswaptls(&shdr->sh_size);
1626 bswap32s(&shdr->sh_link);
1627 bswap32s(&shdr->sh_info);
1628 bswaptls(&shdr->sh_addralign);
1629 bswaptls(&shdr->sh_entsize);
1630 }
689f936f
FB
1631}
1632
7a3148a9 1633static void bswap_sym(struct elf_sym *sym)
689f936f
FB
1634{
1635 bswap32s(&sym->st_name);
7a3148a9
JM
1636 bswaptls(&sym->st_value);
1637 bswaptls(&sym->st_size);
689f936f
FB
1638 bswap16s(&sym->st_shndx);
1639}
5dd0db52
SM
1640
1641#ifdef TARGET_MIPS
1642static void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags)
1643{
1644 bswap16s(&abiflags->version);
1645 bswap32s(&abiflags->ases);
1646 bswap32s(&abiflags->isa_ext);
1647 bswap32s(&abiflags->flags1);
1648 bswap32s(&abiflags->flags2);
1649}
1650#endif
991f8f0c
RH
1651#else
1652static inline void bswap_ehdr(struct elfhdr *ehdr) { }
1653static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { }
1654static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { }
1655static inline void bswap_sym(struct elf_sym *sym) { }
5dd0db52
SM
1656#ifdef TARGET_MIPS
1657static inline void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) { }
1658#endif
31e31b8a
FB
1659#endif
1660
edf8e2af 1661#ifdef USE_ELF_CORE_DUMP
9349b4f9 1662static int elf_core_dump(int, const CPUArchState *);
edf8e2af 1663#endif /* USE_ELF_CORE_DUMP */
682674b8 1664static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias);
edf8e2af 1665
9058abdd
RH
1666/* Verify the portions of EHDR within E_IDENT for the target.
1667 This can be performed before bswapping the entire header. */
1668static bool elf_check_ident(struct elfhdr *ehdr)
1669{
1670 return (ehdr->e_ident[EI_MAG0] == ELFMAG0
1671 && ehdr->e_ident[EI_MAG1] == ELFMAG1
1672 && ehdr->e_ident[EI_MAG2] == ELFMAG2
1673 && ehdr->e_ident[EI_MAG3] == ELFMAG3
1674 && ehdr->e_ident[EI_CLASS] == ELF_CLASS
1675 && ehdr->e_ident[EI_DATA] == ELF_DATA
1676 && ehdr->e_ident[EI_VERSION] == EV_CURRENT);
1677}
1678
1679/* Verify the portions of EHDR outside of E_IDENT for the target.
1680 This has to wait until after bswapping the header. */
1681static bool elf_check_ehdr(struct elfhdr *ehdr)
1682{
1683 return (elf_check_arch(ehdr->e_machine)
1684 && ehdr->e_ehsize == sizeof(struct elfhdr)
1685 && ehdr->e_phentsize == sizeof(struct elf_phdr)
9058abdd
RH
1686 && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN));
1687}
1688
31e31b8a 1689/*
e5fe0c52 1690 * 'copy_elf_strings()' copies argument/envelope strings from user
31e31b8a
FB
1691 * memory to free pages in kernel mem. These are in a format ready
1692 * to be put directly into the top of new user memory.
1693 *
1694 */
59baae9a
SB
1695static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch,
1696 abi_ulong p, abi_ulong stack_limit)
31e31b8a 1697{
59baae9a 1698 char *tmp;
7c4ee5bc 1699 int len, i;
59baae9a 1700 abi_ulong top = p;
31e31b8a
FB
1701
1702 if (!p) {
d97ef72e 1703 return 0; /* bullet-proofing */
31e31b8a 1704 }
59baae9a 1705
7c4ee5bc
RH
1706 if (STACK_GROWS_DOWN) {
1707 int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1;
1708 for (i = argc - 1; i >= 0; --i) {
1709 tmp = argv[i];
1710 if (!tmp) {
1711 fprintf(stderr, "VFS: argc is wrong");
1712 exit(-1);
1713 }
1714 len = strlen(tmp) + 1;
1715 tmp += len;
59baae9a 1716
7c4ee5bc
RH
1717 if (len > (p - stack_limit)) {
1718 return 0;
1719 }
1720 while (len) {
1721 int bytes_to_copy = (len > offset) ? offset : len;
1722 tmp -= bytes_to_copy;
1723 p -= bytes_to_copy;
1724 offset -= bytes_to_copy;
1725 len -= bytes_to_copy;
1726
1727 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy);
1728
1729 if (offset == 0) {
1730 memcpy_to_target(p, scratch, top - p);
1731 top = p;
1732 offset = TARGET_PAGE_SIZE;
1733 }
1734 }
d97ef72e 1735 }
7c4ee5bc
RH
1736 if (p != top) {
1737 memcpy_to_target(p, scratch + offset, top - p);
d97ef72e 1738 }
7c4ee5bc
RH
1739 } else {
1740 int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE);
1741 for (i = 0; i < argc; ++i) {
1742 tmp = argv[i];
1743 if (!tmp) {
1744 fprintf(stderr, "VFS: argc is wrong");
1745 exit(-1);
1746 }
1747 len = strlen(tmp) + 1;
1748 if (len > (stack_limit - p)) {
1749 return 0;
1750 }
1751 while (len) {
1752 int bytes_to_copy = (len > remaining) ? remaining : len;
1753
1754 memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy);
1755
1756 tmp += bytes_to_copy;
1757 remaining -= bytes_to_copy;
1758 p += bytes_to_copy;
1759 len -= bytes_to_copy;
1760
1761 if (remaining == 0) {
1762 memcpy_to_target(top, scratch, p - top);
1763 top = p;
1764 remaining = TARGET_PAGE_SIZE;
1765 }
d97ef72e
RH
1766 }
1767 }
7c4ee5bc
RH
1768 if (p != top) {
1769 memcpy_to_target(top, scratch, p - top);
1770 }
59baae9a
SB
1771 }
1772
31e31b8a
FB
1773 return p;
1774}
1775
59baae9a
SB
1776/* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of
1777 * argument/environment space. Newer kernels (>2.6.33) allow more,
1778 * dependent on stack size, but guarantee at least 32 pages for
1779 * backwards compatibility.
1780 */
1781#define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE)
1782
1783static abi_ulong setup_arg_pages(struct linux_binprm *bprm,
992f48a0 1784 struct image_info *info)
53a5960a 1785{
59baae9a 1786 abi_ulong size, error, guard;
31e31b8a 1787
703e0e89 1788 size = guest_stack_size;
59baae9a
SB
1789 if (size < STACK_LOWER_LIMIT) {
1790 size = STACK_LOWER_LIMIT;
60dcbcb5
RH
1791 }
1792 guard = TARGET_PAGE_SIZE;
1793 if (guard < qemu_real_host_page_size) {
1794 guard = qemu_real_host_page_size;
1795 }
1796
1797 error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE,
1798 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
09bfb054 1799 if (error == -1) {
60dcbcb5 1800 perror("mmap stack");
09bfb054
FB
1801 exit(-1);
1802 }
31e31b8a 1803
60dcbcb5 1804 /* We reserve one extra page at the top of the stack as guard. */
7c4ee5bc
RH
1805 if (STACK_GROWS_DOWN) {
1806 target_mprotect(error, guard, PROT_NONE);
1807 info->stack_limit = error + guard;
1808 return info->stack_limit + size - sizeof(void *);
1809 } else {
1810 target_mprotect(error + size, guard, PROT_NONE);
1811 info->stack_limit = error + size;
1812 return error;
1813 }
31e31b8a
FB
1814}
1815
cf129f3a
RH
1816/* Map and zero the bss. We need to explicitly zero any fractional pages
1817 after the data section (i.e. bss). */
1818static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot)
31e31b8a 1819{
cf129f3a
RH
1820 uintptr_t host_start, host_map_start, host_end;
1821
1822 last_bss = TARGET_PAGE_ALIGN(last_bss);
1823
1824 /* ??? There is confusion between qemu_real_host_page_size and
1825 qemu_host_page_size here and elsewhere in target_mmap, which
1826 may lead to the end of the data section mapping from the file
1827 not being mapped. At least there was an explicit test and
1828 comment for that here, suggesting that "the file size must
1829 be known". The comment probably pre-dates the introduction
1830 of the fstat system call in target_mmap which does in fact
1831 find out the size. What isn't clear is if the workaround
1832 here is still actually needed. For now, continue with it,
1833 but merge it with the "normal" mmap that would allocate the bss. */
1834
1835 host_start = (uintptr_t) g2h(elf_bss);
1836 host_end = (uintptr_t) g2h(last_bss);
0c2d70c4 1837 host_map_start = REAL_HOST_PAGE_ALIGN(host_start);
cf129f3a
RH
1838
1839 if (host_map_start < host_end) {
1840 void *p = mmap((void *)host_map_start, host_end - host_map_start,
1841 prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1842 if (p == MAP_FAILED) {
1843 perror("cannot mmap brk");
1844 exit(-1);
853d6f7a 1845 }
f46e9a0b 1846 }
853d6f7a 1847
f46e9a0b
TM
1848 /* Ensure that the bss page(s) are valid */
1849 if ((page_get_flags(last_bss-1) & prot) != prot) {
1850 page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot | PAGE_VALID);
cf129f3a 1851 }
31e31b8a 1852
cf129f3a
RH
1853 if (host_start < host_map_start) {
1854 memset((void *)host_start, 0, host_map_start - host_start);
1855 }
1856}
53a5960a 1857
cf58affe
CL
1858#ifdef TARGET_ARM
1859static int elf_is_fdpic(struct elfhdr *exec)
1860{
1861 return exec->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC;
1862}
1863#else
a99856cd
CL
1864/* Default implementation, always false. */
1865static int elf_is_fdpic(struct elfhdr *exec)
1866{
1867 return 0;
1868}
cf58affe 1869#endif
a99856cd 1870
1af02e83
MF
1871static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp)
1872{
1873 uint16_t n;
1874 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs;
1875
1876 /* elf32_fdpic_loadseg */
1877 n = info->nsegs;
1878 while (n--) {
1879 sp -= 12;
1880 put_user_u32(loadsegs[n].addr, sp+0);
1881 put_user_u32(loadsegs[n].p_vaddr, sp+4);
1882 put_user_u32(loadsegs[n].p_memsz, sp+8);
1883 }
1884
1885 /* elf32_fdpic_loadmap */
1886 sp -= 4;
1887 put_user_u16(0, sp+0); /* version */
1888 put_user_u16(info->nsegs, sp+2); /* nsegs */
1889
1890 info->personality = PER_LINUX_FDPIC;
1891 info->loadmap_addr = sp;
1892
1893 return sp;
1894}
1af02e83 1895
992f48a0 1896static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
8e62a717
RH
1897 struct elfhdr *exec,
1898 struct image_info *info,
1899 struct image_info *interp_info)
31e31b8a 1900{
d97ef72e 1901 abi_ulong sp;
7c4ee5bc 1902 abi_ulong u_argc, u_argv, u_envp, u_auxv;
d97ef72e 1903 int size;
14322bad
LA
1904 int i;
1905 abi_ulong u_rand_bytes;
1906 uint8_t k_rand_bytes[16];
d97ef72e
RH
1907 abi_ulong u_platform;
1908 const char *k_platform;
1909 const int n = sizeof(elf_addr_t);
1910
1911 sp = p;
1af02e83 1912
1af02e83
MF
1913 /* Needs to be before we load the env/argc/... */
1914 if (elf_is_fdpic(exec)) {
1915 /* Need 4 byte alignment for these structs */
1916 sp &= ~3;
1917 sp = loader_build_fdpic_loadmap(info, sp);
1918 info->other_info = interp_info;
1919 if (interp_info) {
1920 interp_info->other_info = info;
1921 sp = loader_build_fdpic_loadmap(interp_info, sp);
3cb10cfa
CL
1922 info->interpreter_loadmap_addr = interp_info->loadmap_addr;
1923 info->interpreter_pt_dynamic_addr = interp_info->pt_dynamic_addr;
1924 } else {
1925 info->interpreter_loadmap_addr = 0;
1926 info->interpreter_pt_dynamic_addr = 0;
1af02e83
MF
1927 }
1928 }
1af02e83 1929
d97ef72e
RH
1930 u_platform = 0;
1931 k_platform = ELF_PLATFORM;
1932 if (k_platform) {
1933 size_t len = strlen(k_platform) + 1;
7c4ee5bc
RH
1934 if (STACK_GROWS_DOWN) {
1935 sp -= (len + n - 1) & ~(n - 1);
1936 u_platform = sp;
1937 /* FIXME - check return value of memcpy_to_target() for failure */
1938 memcpy_to_target(sp, k_platform, len);
1939 } else {
1940 memcpy_to_target(sp, k_platform, len);
1941 u_platform = sp;
1942 sp += len + 1;
1943 }
1944 }
1945
1946 /* Provide 16 byte alignment for the PRNG, and basic alignment for
1947 * the argv and envp pointers.
1948 */
1949 if (STACK_GROWS_DOWN) {
1950 sp = QEMU_ALIGN_DOWN(sp, 16);
1951 } else {
1952 sp = QEMU_ALIGN_UP(sp, 16);
d97ef72e 1953 }
14322bad
LA
1954
1955 /*
c6a2377f 1956 * Generate 16 random bytes for userspace PRNG seeding.
14322bad 1957 */
c6a2377f 1958 qemu_guest_getrandom_nofail(k_rand_bytes, sizeof(k_rand_bytes));
7c4ee5bc
RH
1959 if (STACK_GROWS_DOWN) {
1960 sp -= 16;
1961 u_rand_bytes = sp;
1962 /* FIXME - check return value of memcpy_to_target() for failure */
1963 memcpy_to_target(sp, k_rand_bytes, 16);
1964 } else {
1965 memcpy_to_target(sp, k_rand_bytes, 16);
1966 u_rand_bytes = sp;
1967 sp += 16;
1968 }
14322bad 1969
d97ef72e
RH
1970 size = (DLINFO_ITEMS + 1) * 2;
1971 if (k_platform)
1972 size += 2;
f5155289 1973#ifdef DLINFO_ARCH_ITEMS
d97ef72e 1974 size += DLINFO_ARCH_ITEMS * 2;
ad6919dc
PM
1975#endif
1976#ifdef ELF_HWCAP2
1977 size += 2;
f5155289 1978#endif
f516511e
PM
1979 info->auxv_len = size * n;
1980
d97ef72e 1981 size += envc + argc + 2;
b9329d4b 1982 size += 1; /* argc itself */
d97ef72e 1983 size *= n;
7c4ee5bc
RH
1984
1985 /* Allocate space and finalize stack alignment for entry now. */
1986 if (STACK_GROWS_DOWN) {
1987 u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT);
1988 sp = u_argc;
1989 } else {
1990 u_argc = sp;
1991 sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT);
1992 }
1993
1994 u_argv = u_argc + n;
1995 u_envp = u_argv + (argc + 1) * n;
1996 u_auxv = u_envp + (envc + 1) * n;
1997 info->saved_auxv = u_auxv;
1998 info->arg_start = u_argv;
1999 info->arg_end = u_argv + argc * n;
d97ef72e
RH
2000
2001 /* This is correct because Linux defines
2002 * elf_addr_t as Elf32_Off / Elf64_Off
2003 */
2004#define NEW_AUX_ENT(id, val) do { \
7c4ee5bc
RH
2005 put_user_ual(id, u_auxv); u_auxv += n; \
2006 put_user_ual(val, u_auxv); u_auxv += n; \
d97ef72e
RH
2007 } while(0)
2008
82991bed
PM
2009#ifdef ARCH_DLINFO
2010 /*
2011 * ARCH_DLINFO must come first so platform specific code can enforce
2012 * special alignment requirements on the AUXV if necessary (eg. PPC).
2013 */
2014 ARCH_DLINFO;
2015#endif
f516511e
PM
2016 /* There must be exactly DLINFO_ITEMS entries here, or the assert
2017 * on info->auxv_len will trigger.
2018 */
8e62a717 2019 NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff));
d97ef72e
RH
2020 NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
2021 NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
33143c44
LV
2022 if ((info->alignment & ~qemu_host_page_mask) != 0) {
2023 /* Target doesn't support host page size alignment */
2024 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE));
2025 } else {
2026 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE,
2027 qemu_host_page_size)));
2028 }
8e62a717 2029 NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0));
d97ef72e 2030 NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
8e62a717 2031 NEW_AUX_ENT(AT_ENTRY, info->entry);
d97ef72e
RH
2032 NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
2033 NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
2034 NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
2035 NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
2036 NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
2037 NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
14322bad 2038 NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes);
444cd5c3 2039 NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE));
14322bad 2040
ad6919dc
PM
2041#ifdef ELF_HWCAP2
2042 NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2);
2043#endif
2044
7c4ee5bc 2045 if (u_platform) {
d97ef72e 2046 NEW_AUX_ENT(AT_PLATFORM, u_platform);
7c4ee5bc 2047 }
7c4ee5bc 2048 NEW_AUX_ENT (AT_NULL, 0);
f5155289
FB
2049#undef NEW_AUX_ENT
2050
f516511e
PM
2051 /* Check that our initial calculation of the auxv length matches how much
2052 * we actually put into it.
2053 */
2054 assert(info->auxv_len == u_auxv - info->saved_auxv);
7c4ee5bc
RH
2055
2056 put_user_ual(argc, u_argc);
2057
2058 p = info->arg_strings;
2059 for (i = 0; i < argc; ++i) {
2060 put_user_ual(p, u_argv);
2061 u_argv += n;
2062 p += target_strlen(p) + 1;
2063 }
2064 put_user_ual(0, u_argv);
2065
2066 p = info->env_strings;
2067 for (i = 0; i < envc; ++i) {
2068 put_user_ual(p, u_envp);
2069 u_envp += n;
2070 p += target_strlen(p) + 1;
2071 }
2072 put_user_ual(0, u_envp);
edf8e2af 2073
d97ef72e 2074 return sp;
31e31b8a
FB
2075}
2076
dce10401
MI
2077unsigned long init_guest_space(unsigned long host_start,
2078 unsigned long host_size,
2079 unsigned long guest_start,
2080 bool fixed)
2081{
30ab9ef2
RH
2082 /* In order to use host shmat, we must be able to honor SHMLBA. */
2083 unsigned long align = MAX(SHMLBA, qemu_host_page_size);
293f2060 2084 unsigned long current_start, aligned_start;
dce10401
MI
2085 int flags;
2086
2087 assert(host_start || host_size);
2088
2089 /* If just a starting address is given, then just verify that
2090 * address. */
2091 if (host_start && !host_size) {
8756e136 2092#if defined(TARGET_ARM) && !defined(TARGET_AARCH64)
c3637eaf 2093 if (init_guest_commpage(host_start, host_size) != 1) {
dce10401
MI
2094 return (unsigned long)-1;
2095 }
8756e136
LS
2096#endif
2097 return host_start;
dce10401
MI
2098 }
2099
2100 /* Setup the initial flags and start address. */
30ab9ef2 2101 current_start = host_start & -align;
dce10401
MI
2102 flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
2103 if (fixed) {
2104 flags |= MAP_FIXED;
2105 }
2106
2107 /* Otherwise, a non-zero size region of memory needs to be mapped
2108 * and validated. */
2a53535a
LS
2109
2110#if defined(TARGET_ARM) && !defined(TARGET_AARCH64)
2111 /* On 32-bit ARM, we need to map not just the usable memory, but
2112 * also the commpage. Try to find a suitable place by allocating
2113 * a big chunk for all of it. If host_start, then the naive
2114 * strategy probably does good enough.
2115 */
2116 if (!host_start) {
2117 unsigned long guest_full_size, host_full_size, real_start;
2118
2119 guest_full_size =
2120 (0xffff0f00 & qemu_host_page_mask) + qemu_host_page_size;
2121 host_full_size = guest_full_size - guest_start;
2122 real_start = (unsigned long)
2123 mmap(NULL, host_full_size, PROT_NONE, flags, -1, 0);
2124 if (real_start == (unsigned long)-1) {
2125 if (host_size < host_full_size - qemu_host_page_size) {
2126 /* We failed to map a continous segment, but we're
2127 * allowed to have a gap between the usable memory and
2128 * the commpage where other things can be mapped.
2129 * This sparseness gives us more flexibility to find
2130 * an address range.
2131 */
2132 goto naive;
2133 }
2134 return (unsigned long)-1;
2135 }
2136 munmap((void *)real_start, host_full_size);
30ab9ef2
RH
2137 if (real_start & (align - 1)) {
2138 /* The same thing again, but with extra
2a53535a
LS
2139 * so that we can shift around alignment.
2140 */
2141 unsigned long real_size = host_full_size + qemu_host_page_size;
2142 real_start = (unsigned long)
2143 mmap(NULL, real_size, PROT_NONE, flags, -1, 0);
2144 if (real_start == (unsigned long)-1) {
2145 if (host_size < host_full_size - qemu_host_page_size) {
2146 goto naive;
2147 }
2148 return (unsigned long)-1;
2149 }
2150 munmap((void *)real_start, real_size);
30ab9ef2 2151 real_start = ROUND_UP(real_start, align);
2a53535a
LS
2152 }
2153 current_start = real_start;
2154 }
2155 naive:
2156#endif
2157
dce10401 2158 while (1) {
293f2060
LS
2159 unsigned long real_start, real_size, aligned_size;
2160 aligned_size = real_size = host_size;
806d1021 2161
dce10401
MI
2162 /* Do not use mmap_find_vma here because that is limited to the
2163 * guest address space. We are going to make the
2164 * guest address space fit whatever we're given.
2165 */
2166 real_start = (unsigned long)
2167 mmap((void *)current_start, host_size, PROT_NONE, flags, -1, 0);
2168 if (real_start == (unsigned long)-1) {
2169 return (unsigned long)-1;
2170 }
2171
aac362e4
LS
2172 /* Check to see if the address is valid. */
2173 if (host_start && real_start != current_start) {
2174 goto try_again;
2175 }
2176
806d1021 2177 /* Ensure the address is properly aligned. */
30ab9ef2 2178 if (real_start & (align - 1)) {
293f2060
LS
2179 /* Ideally, we adjust like
2180 *
2181 * pages: [ ][ ][ ][ ][ ]
2182 * old: [ real ]
2183 * [ aligned ]
2184 * new: [ real ]
2185 * [ aligned ]
2186 *
2187 * But if there is something else mapped right after it,
2188 * then obviously it won't have room to grow, and the
2189 * kernel will put the new larger real someplace else with
2190 * unknown alignment (if we made it to here, then
2191 * fixed=false). Which is why we grow real by a full page
2192 * size, instead of by part of one; so that even if we get
2193 * moved, we can still guarantee alignment. But this does
2194 * mean that there is a padding of < 1 page both before
2195 * and after the aligned range; the "after" could could
2196 * cause problems for ARM emulation where it could butt in
2197 * to where we need to put the commpage.
2198 */
806d1021 2199 munmap((void *)real_start, host_size);
91c8bdb1 2200 real_size = aligned_size + align;
806d1021
MI
2201 real_start = (unsigned long)
2202 mmap((void *)real_start, real_size, PROT_NONE, flags, -1, 0);
2203 if (real_start == (unsigned long)-1) {
2204 return (unsigned long)-1;
2205 }
30ab9ef2 2206 aligned_start = ROUND_UP(real_start, align);
293f2060
LS
2207 } else {
2208 aligned_start = real_start;
806d1021
MI
2209 }
2210
8756e136 2211#if defined(TARGET_ARM) && !defined(TARGET_AARCH64)
7ad75eea
LS
2212 /* On 32-bit ARM, we need to also be able to map the commpage. */
2213 int valid = init_guest_commpage(aligned_start - guest_start,
2214 aligned_size + guest_start);
2215 if (valid == -1) {
2216 munmap((void *)real_start, real_size);
2217 return (unsigned long)-1;
2218 } else if (valid == 0) {
2219 goto try_again;
dce10401 2220 }
7ad75eea
LS
2221#endif
2222
2223 /* If nothing has said `return -1` or `goto try_again` yet,
2224 * then the address we have is good.
2225 */
2226 break;
dce10401 2227
7ad75eea 2228 try_again:
dce10401
MI
2229 /* That address didn't work. Unmap and try a different one.
2230 * The address the host picked because is typically right at
2231 * the top of the host address space and leaves the guest with
2232 * no usable address space. Resort to a linear search. We
2233 * already compensated for mmap_min_addr, so this should not
2234 * happen often. Probably means we got unlucky and host
2235 * address space randomization put a shared library somewhere
2236 * inconvenient.
8c17d862
LS
2237 *
2238 * This is probably a good strategy if host_start, but is
2239 * probably a bad strategy if not, which means we got here
2240 * because of trouble with ARM commpage setup.
dce10401 2241 */
293f2060 2242 munmap((void *)real_start, real_size);
30ab9ef2 2243 current_start += align;
dce10401
MI
2244 if (host_start == current_start) {
2245 /* Theoretically possible if host doesn't have any suitably
2246 * aligned areas. Normally the first mmap will fail.
2247 */
2248 return (unsigned long)-1;
2249 }
2250 }
2251
13829020 2252 qemu_log_mask(CPU_LOG_PAGE, "Reserved 0x%lx bytes of guest address space\n", host_size);
806d1021 2253
293f2060 2254 return aligned_start;
dce10401
MI
2255}
2256
f3ed1f5d
PM
2257static void probe_guest_base(const char *image_name,
2258 abi_ulong loaddr, abi_ulong hiaddr)
2259{
2260 /* Probe for a suitable guest base address, if the user has not set
2261 * it explicitly, and set guest_base appropriately.
2262 * In case of error we will print a suitable message and exit.
2263 */
f3ed1f5d
PM
2264 const char *errmsg;
2265 if (!have_guest_base && !reserved_va) {
2266 unsigned long host_start, real_start, host_size;
2267
2268 /* Round addresses to page boundaries. */
2269 loaddr &= qemu_host_page_mask;
2270 hiaddr = HOST_PAGE_ALIGN(hiaddr);
2271
2272 if (loaddr < mmap_min_addr) {
2273 host_start = HOST_PAGE_ALIGN(mmap_min_addr);
2274 } else {
2275 host_start = loaddr;
2276 if (host_start != loaddr) {
2277 errmsg = "Address overflow loading ELF binary";
2278 goto exit_errmsg;
2279 }
2280 }
2281 host_size = hiaddr - loaddr;
dce10401
MI
2282
2283 /* Setup the initial guest memory space with ranges gleaned from
2284 * the ELF image that is being loaded.
2285 */
2286 real_start = init_guest_space(host_start, host_size, loaddr, false);
2287 if (real_start == (unsigned long)-1) {
2288 errmsg = "Unable to find space for application";
2289 goto exit_errmsg;
f3ed1f5d 2290 }
dce10401
MI
2291 guest_base = real_start - loaddr;
2292
13829020
PB
2293 qemu_log_mask(CPU_LOG_PAGE, "Relocating guest address space from 0x"
2294 TARGET_ABI_FMT_lx " to 0x%lx\n",
2295 loaddr, real_start);
f3ed1f5d
PM
2296 }
2297 return;
2298
f3ed1f5d
PM
2299exit_errmsg:
2300 fprintf(stderr, "%s: %s\n", image_name, errmsg);
2301 exit(-1);
f3ed1f5d
PM
2302}
2303
2304
8e62a717 2305/* Load an ELF image into the address space.
31e31b8a 2306
8e62a717
RH
2307 IMAGE_NAME is the filename of the image, to use in error messages.
2308 IMAGE_FD is the open file descriptor for the image.
2309
2310 BPRM_BUF is a copy of the beginning of the file; this of course
2311 contains the elf file header at offset 0. It is assumed that this
2312 buffer is sufficiently aligned to present no problems to the host
2313 in accessing data at aligned offsets within the buffer.
2314
2315 On return: INFO values will be filled in, as necessary or available. */
2316
2317static void load_elf_image(const char *image_name, int image_fd,
bf858897 2318 struct image_info *info, char **pinterp_name,
8e62a717 2319 char bprm_buf[BPRM_BUF_SIZE])
31e31b8a 2320{
8e62a717
RH
2321 struct elfhdr *ehdr = (struct elfhdr *)bprm_buf;
2322 struct elf_phdr *phdr;
2323 abi_ulong load_addr, load_bias, loaddr, hiaddr, error;
2324 int i, retval;
2325 const char *errmsg;
5fafdf24 2326
8e62a717
RH
2327 /* First of all, some simple consistency checks */
2328 errmsg = "Invalid ELF image for this architecture";
2329 if (!elf_check_ident(ehdr)) {
2330 goto exit_errmsg;
2331 }
2332 bswap_ehdr(ehdr);
2333 if (!elf_check_ehdr(ehdr)) {
2334 goto exit_errmsg;
d97ef72e 2335 }
5fafdf24 2336
8e62a717
RH
2337 i = ehdr->e_phnum * sizeof(struct elf_phdr);
2338 if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) {
2339 phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff);
9955ffac 2340 } else {
8e62a717
RH
2341 phdr = (struct elf_phdr *) alloca(i);
2342 retval = pread(image_fd, phdr, i, ehdr->e_phoff);
9955ffac 2343 if (retval != i) {
8e62a717 2344 goto exit_read;
9955ffac 2345 }
d97ef72e 2346 }
8e62a717 2347 bswap_phdr(phdr, ehdr->e_phnum);
09bfb054 2348
1af02e83
MF
2349 info->nsegs = 0;
2350 info->pt_dynamic_addr = 0;
1af02e83 2351
98c1076c
AB
2352 mmap_lock();
2353
682674b8
RH
2354 /* Find the maximum size of the image and allocate an appropriate
2355 amount of memory to handle that. */
2356 loaddr = -1, hiaddr = 0;
33143c44 2357 info->alignment = 0;
8e62a717
RH
2358 for (i = 0; i < ehdr->e_phnum; ++i) {
2359 if (phdr[i].p_type == PT_LOAD) {
a93934fe 2360 abi_ulong a = phdr[i].p_vaddr - phdr[i].p_offset;
682674b8
RH
2361 if (a < loaddr) {
2362 loaddr = a;
2363 }
ccf661f8 2364 a = phdr[i].p_vaddr + phdr[i].p_memsz;
682674b8
RH
2365 if (a > hiaddr) {
2366 hiaddr = a;
2367 }
1af02e83 2368 ++info->nsegs;
33143c44 2369 info->alignment |= phdr[i].p_align;
682674b8
RH
2370 }
2371 }
2372
6fd59449
RH
2373 if (pinterp_name != NULL) {
2374 /*
2375 * This is the main executable.
2376 *
2377 * Reserve extra space for brk.
2378 * We hold on to this space while placing the interpreter
2379 * and the stack, lest they be placed immediately after
2380 * the data segment and block allocation from the brk.
2381 *
2382 * 16MB is chosen as "large enough" without being so large
2383 * as to allow the result to not fit with a 32-bit guest on
2384 * a 32-bit host.
2385 */
2386 info->reserve_brk = 16 * MiB;
2387 hiaddr += info->reserve_brk;
2388
2389 if (ehdr->e_type == ET_EXEC) {
2390 /*
2391 * Make sure that the low address does not conflict with
2392 * MMAP_MIN_ADDR or the QEMU application itself.
2393 */
2394 probe_guest_base(image_name, loaddr, hiaddr);
d97ef72e 2395 }
6fd59449
RH
2396 }
2397
2398 /*
2399 * Reserve address space for all of this.
2400 *
2401 * In the case of ET_EXEC, we supply MAP_FIXED so that we get
2402 * exactly the address range that is required.
2403 *
2404 * Otherwise this is ET_DYN, and we are searching for a location
2405 * that can hold the memory space required. If the image is
2406 * pre-linked, LOADDR will be non-zero, and the kernel should
2407 * honor that address if it happens to be free.
2408 *
2409 * In both cases, we will overwrite pages in this range with mappings
2410 * from the executable.
2411 */
2412 load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE,
2413 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE |
2414 (ehdr->e_type == ET_EXEC ? MAP_FIXED : 0),
2415 -1, 0);
2416 if (load_addr == -1) {
2417 goto exit_perror;
d97ef72e 2418 }
682674b8 2419 load_bias = load_addr - loaddr;
d97ef72e 2420
a99856cd 2421 if (elf_is_fdpic(ehdr)) {
1af02e83 2422 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs =
7267c094 2423 g_malloc(sizeof(*loadsegs) * info->nsegs);
1af02e83
MF
2424
2425 for (i = 0; i < ehdr->e_phnum; ++i) {
2426 switch (phdr[i].p_type) {
2427 case PT_DYNAMIC:
2428 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias;
2429 break;
2430 case PT_LOAD:
2431 loadsegs->addr = phdr[i].p_vaddr + load_bias;
2432 loadsegs->p_vaddr = phdr[i].p_vaddr;
2433 loadsegs->p_memsz = phdr[i].p_memsz;
2434 ++loadsegs;
2435 break;
2436 }
2437 }
2438 }
1af02e83 2439
8e62a717 2440 info->load_bias = load_bias;
dc12567a
JK
2441 info->code_offset = load_bias;
2442 info->data_offset = load_bias;
8e62a717
RH
2443 info->load_addr = load_addr;
2444 info->entry = ehdr->e_entry + load_bias;
2445 info->start_code = -1;
2446 info->end_code = 0;
2447 info->start_data = -1;
2448 info->end_data = 0;
2449 info->brk = 0;
d8fd2954 2450 info->elf_flags = ehdr->e_flags;
8e62a717
RH
2451
2452 for (i = 0; i < ehdr->e_phnum; i++) {
2453 struct elf_phdr *eppnt = phdr + i;
d97ef72e 2454 if (eppnt->p_type == PT_LOAD) {
94894ff2 2455 abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em, vaddr_len;
d97ef72e 2456 int elf_prot = 0;
d97ef72e
RH
2457
2458 if (eppnt->p_flags & PF_R) elf_prot = PROT_READ;
2459 if (eppnt->p_flags & PF_W) elf_prot |= PROT_WRITE;
2460 if (eppnt->p_flags & PF_X) elf_prot |= PROT_EXEC;
d97ef72e 2461
682674b8
RH
2462 vaddr = load_bias + eppnt->p_vaddr;
2463 vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr);
2464 vaddr_ps = TARGET_ELF_PAGESTART(vaddr);
94894ff2 2465 vaddr_len = TARGET_ELF_PAGELENGTH(eppnt->p_filesz + vaddr_po);
682674b8 2466
d87146bc
GM
2467 /*
2468 * Some segments may be completely empty without any backing file
2469 * segment, in that case just let zero_bss allocate an empty buffer
2470 * for it.
2471 */
2472 if (eppnt->p_filesz != 0) {
2473 error = target_mmap(vaddr_ps, vaddr_len, elf_prot,
2474 MAP_PRIVATE | MAP_FIXED,
2475 image_fd, eppnt->p_offset - vaddr_po);
2476
2477 if (error == -1) {
2478 goto exit_perror;
2479 }
09bfb054 2480 }
09bfb054 2481
682674b8
RH
2482 vaddr_ef = vaddr + eppnt->p_filesz;
2483 vaddr_em = vaddr + eppnt->p_memsz;
31e31b8a 2484
cf129f3a 2485 /* If the load segment requests extra zeros (e.g. bss), map it. */
682674b8
RH
2486 if (vaddr_ef < vaddr_em) {
2487 zero_bss(vaddr_ef, vaddr_em, elf_prot);
cf129f3a 2488 }
8e62a717
RH
2489
2490 /* Find the full program boundaries. */
2491 if (elf_prot & PROT_EXEC) {
2492 if (vaddr < info->start_code) {
2493 info->start_code = vaddr;
2494 }
2495 if (vaddr_ef > info->end_code) {
2496 info->end_code = vaddr_ef;
2497 }
2498 }
2499 if (elf_prot & PROT_WRITE) {
2500 if (vaddr < info->start_data) {
2501 info->start_data = vaddr;
2502 }
2503 if (vaddr_ef > info->end_data) {
2504 info->end_data = vaddr_ef;
2505 }
2506 if (vaddr_em > info->brk) {
2507 info->brk = vaddr_em;
2508 }
2509 }
bf858897
RH
2510 } else if (eppnt->p_type == PT_INTERP && pinterp_name) {
2511 char *interp_name;
2512
2513 if (*pinterp_name) {
2514 errmsg = "Multiple PT_INTERP entries";
2515 goto exit_errmsg;
2516 }
2517 interp_name = malloc(eppnt->p_filesz);
2518 if (!interp_name) {
2519 goto exit_perror;
2520 }
2521
2522 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
2523 memcpy(interp_name, bprm_buf + eppnt->p_offset,
2524 eppnt->p_filesz);
2525 } else {
2526 retval = pread(image_fd, interp_name, eppnt->p_filesz,
2527 eppnt->p_offset);
2528 if (retval != eppnt->p_filesz) {
2529 goto exit_perror;
2530 }
2531 }
2532 if (interp_name[eppnt->p_filesz - 1] != 0) {
2533 errmsg = "Invalid PT_INTERP entry";
2534 goto exit_errmsg;
2535 }
2536 *pinterp_name = interp_name;
5dd0db52
SM
2537#ifdef TARGET_MIPS
2538 } else if (eppnt->p_type == PT_MIPS_ABIFLAGS) {
2539 Mips_elf_abiflags_v0 abiflags;
2540 if (eppnt->p_filesz < sizeof(Mips_elf_abiflags_v0)) {
2541 errmsg = "Invalid PT_MIPS_ABIFLAGS entry";
2542 goto exit_errmsg;
2543 }
2544 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
2545 memcpy(&abiflags, bprm_buf + eppnt->p_offset,
2546 sizeof(Mips_elf_abiflags_v0));
2547 } else {
2548 retval = pread(image_fd, &abiflags, sizeof(Mips_elf_abiflags_v0),
2549 eppnt->p_offset);
2550 if (retval != sizeof(Mips_elf_abiflags_v0)) {
2551 goto exit_perror;
2552 }
2553 }
2554 bswap_mips_abiflags(&abiflags);
c94cb6c9 2555 info->fp_abi = abiflags.fp_abi;
5dd0db52 2556#endif
d97ef72e 2557 }
682674b8 2558 }
5fafdf24 2559
8e62a717
RH
2560 if (info->end_data == 0) {
2561 info->start_data = info->end_code;
2562 info->end_data = info->end_code;
2563 info->brk = info->end_code;
2564 }
2565
682674b8 2566 if (qemu_log_enabled()) {
8e62a717 2567 load_symbols(ehdr, image_fd, load_bias);
682674b8 2568 }
31e31b8a 2569
98c1076c
AB
2570 mmap_unlock();
2571
8e62a717
RH
2572 close(image_fd);
2573 return;
2574
2575 exit_read:
2576 if (retval >= 0) {
2577 errmsg = "Incomplete read of file header";
2578 goto exit_errmsg;
2579 }
2580 exit_perror:
2581 errmsg = strerror(errno);
2582 exit_errmsg:
2583 fprintf(stderr, "%s: %s\n", image_name, errmsg);
2584 exit(-1);
2585}
2586
2587static void load_elf_interp(const char *filename, struct image_info *info,
2588 char bprm_buf[BPRM_BUF_SIZE])
2589{
2590 int fd, retval;
2591
2592 fd = open(path(filename), O_RDONLY);
2593 if (fd < 0) {
2594 goto exit_perror;
2595 }
31e31b8a 2596
8e62a717
RH
2597 retval = read(fd, bprm_buf, BPRM_BUF_SIZE);
2598 if (retval < 0) {
2599 goto exit_perror;
2600 }
2601 if (retval < BPRM_BUF_SIZE) {
2602 memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval);
2603 }
2604
bf858897 2605 load_elf_image(filename, fd, info, NULL, bprm_buf);
8e62a717
RH
2606 return;
2607
2608 exit_perror:
2609 fprintf(stderr, "%s: %s\n", filename, strerror(errno));
2610 exit(-1);
31e31b8a
FB
2611}
2612
49918a75
PB
2613static int symfind(const void *s0, const void *s1)
2614{
c7c530cd 2615 target_ulong addr = *(target_ulong *)s0;
49918a75
PB
2616 struct elf_sym *sym = (struct elf_sym *)s1;
2617 int result = 0;
c7c530cd 2618 if (addr < sym->st_value) {
49918a75 2619 result = -1;
c7c530cd 2620 } else if (addr >= sym->st_value + sym->st_size) {
49918a75
PB
2621 result = 1;
2622 }
2623 return result;
2624}
2625
2626static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr)
2627{
2628#if ELF_CLASS == ELFCLASS32
2629 struct elf_sym *syms = s->disas_symtab.elf32;
2630#else
2631 struct elf_sym *syms = s->disas_symtab.elf64;
2632#endif
2633
2634 // binary search
49918a75
PB
2635 struct elf_sym *sym;
2636
c7c530cd 2637 sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind);
7cba04f6 2638 if (sym != NULL) {
49918a75
PB
2639 return s->disas_strtab + sym->st_name;
2640 }
2641
2642 return "";
2643}
2644
2645/* FIXME: This should use elf_ops.h */
2646static int symcmp(const void *s0, const void *s1)
2647{
2648 struct elf_sym *sym0 = (struct elf_sym *)s0;
2649 struct elf_sym *sym1 = (struct elf_sym *)s1;
2650 return (sym0->st_value < sym1->st_value)
2651 ? -1
2652 : ((sym0->st_value > sym1->st_value) ? 1 : 0);
2653}
2654
689f936f 2655/* Best attempt to load symbols from this ELF object. */
682674b8 2656static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias)
689f936f 2657{
682674b8 2658 int i, shnum, nsyms, sym_idx = 0, str_idx = 0;
1e06262d 2659 uint64_t segsz;
682674b8 2660 struct elf_shdr *shdr;
b9475279
CV
2661 char *strings = NULL;
2662 struct syminfo *s = NULL;
2663 struct elf_sym *new_syms, *syms = NULL;
689f936f 2664
682674b8
RH
2665 shnum = hdr->e_shnum;
2666 i = shnum * sizeof(struct elf_shdr);
2667 shdr = (struct elf_shdr *)alloca(i);
2668 if (pread(fd, shdr, i, hdr->e_shoff) != i) {
2669 return;
2670 }
2671
2672 bswap_shdr(shdr, shnum);
2673 for (i = 0; i < shnum; ++i) {
2674 if (shdr[i].sh_type == SHT_SYMTAB) {
2675 sym_idx = i;
2676 str_idx = shdr[i].sh_link;
49918a75
PB
2677 goto found;
2678 }
689f936f 2679 }
682674b8
RH
2680
2681 /* There will be no symbol table if the file was stripped. */
2682 return;
689f936f
FB
2683
2684 found:
682674b8 2685 /* Now know where the strtab and symtab are. Snarf them. */
0ef9ea29 2686 s = g_try_new(struct syminfo, 1);
682674b8 2687 if (!s) {
b9475279 2688 goto give_up;
682674b8 2689 }
5fafdf24 2690
1e06262d
PM
2691 segsz = shdr[str_idx].sh_size;
2692 s->disas_strtab = strings = g_try_malloc(segsz);
2693 if (!strings ||
2694 pread(fd, strings, segsz, shdr[str_idx].sh_offset) != segsz) {
b9475279 2695 goto give_up;
682674b8 2696 }
49918a75 2697
1e06262d
PM
2698 segsz = shdr[sym_idx].sh_size;
2699 syms = g_try_malloc(segsz);
2700 if (!syms || pread(fd, syms, segsz, shdr[sym_idx].sh_offset) != segsz) {
b9475279 2701 goto give_up;
682674b8 2702 }
31e31b8a 2703
1e06262d
PM
2704 if (segsz / sizeof(struct elf_sym) > INT_MAX) {
2705 /* Implausibly large symbol table: give up rather than ploughing
2706 * on with the number of symbols calculation overflowing
2707 */
2708 goto give_up;
2709 }
2710 nsyms = segsz / sizeof(struct elf_sym);
682674b8 2711 for (i = 0; i < nsyms; ) {
49918a75 2712 bswap_sym(syms + i);
682674b8
RH
2713 /* Throw away entries which we do not need. */
2714 if (syms[i].st_shndx == SHN_UNDEF
2715 || syms[i].st_shndx >= SHN_LORESERVE
2716 || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
2717 if (i < --nsyms) {
49918a75
PB
2718 syms[i] = syms[nsyms];
2719 }
682674b8 2720 } else {
49918a75 2721#if defined(TARGET_ARM) || defined (TARGET_MIPS)
682674b8
RH
2722 /* The bottom address bit marks a Thumb or MIPS16 symbol. */
2723 syms[i].st_value &= ~(target_ulong)1;
0774bed1 2724#endif
682674b8
RH
2725 syms[i].st_value += load_bias;
2726 i++;
2727 }
0774bed1 2728 }
49918a75 2729
b9475279
CV
2730 /* No "useful" symbol. */
2731 if (nsyms == 0) {
2732 goto give_up;
2733 }
2734
5d5c9930
RH
2735 /* Attempt to free the storage associated with the local symbols
2736 that we threw away. Whether or not this has any effect on the
2737 memory allocation depends on the malloc implementation and how
2738 many symbols we managed to discard. */
0ef9ea29 2739 new_syms = g_try_renew(struct elf_sym, syms, nsyms);
8d79de6e 2740 if (new_syms == NULL) {
b9475279 2741 goto give_up;
5d5c9930 2742 }
8d79de6e 2743 syms = new_syms;
5d5c9930 2744
49918a75 2745 qsort(syms, nsyms, sizeof(*syms), symcmp);
689f936f 2746
49918a75
PB
2747 s->disas_num_syms = nsyms;
2748#if ELF_CLASS == ELFCLASS32
2749 s->disas_symtab.elf32 = syms;
49918a75
PB
2750#else
2751 s->disas_symtab.elf64 = syms;
49918a75 2752#endif
682674b8 2753 s->lookup_symbol = lookup_symbolxx;
e80cfcfc
FB
2754 s->next = syminfos;
2755 syminfos = s;
b9475279
CV
2756
2757 return;
2758
2759give_up:
0ef9ea29
PM
2760 g_free(s);
2761 g_free(strings);
2762 g_free(syms);
689f936f 2763}
31e31b8a 2764
768fe76e
YS
2765uint32_t get_elf_eflags(int fd)
2766{
2767 struct elfhdr ehdr;
2768 off_t offset;
2769 int ret;
2770
2771 /* Read ELF header */
2772 offset = lseek(fd, 0, SEEK_SET);
2773 if (offset == (off_t) -1) {
2774 return 0;
2775 }
2776 ret = read(fd, &ehdr, sizeof(ehdr));
2777 if (ret < sizeof(ehdr)) {
2778 return 0;
2779 }
2780 offset = lseek(fd, offset, SEEK_SET);
2781 if (offset == (off_t) -1) {
2782 return 0;
2783 }
2784
2785 /* Check ELF signature */
2786 if (!elf_check_ident(&ehdr)) {
2787 return 0;
2788 }
2789
2790 /* check header */
2791 bswap_ehdr(&ehdr);
2792 if (!elf_check_ehdr(&ehdr)) {
2793 return 0;
2794 }
2795
2796 /* return architecture id */
2797 return ehdr.e_flags;
2798}
2799
f0116c54 2800int load_elf_binary(struct linux_binprm *bprm, struct image_info *info)
31e31b8a 2801{
8e62a717 2802 struct image_info interp_info;
31e31b8a 2803 struct elfhdr elf_ex;
8e62a717 2804 char *elf_interpreter = NULL;
59baae9a 2805 char *scratch;
31e31b8a 2806
abcac736
DS
2807 memset(&interp_info, 0, sizeof(interp_info));
2808#ifdef TARGET_MIPS
2809 interp_info.fp_abi = MIPS_ABI_FP_UNKNOWN;
2810#endif
2811
bf858897 2812 info->start_mmap = (abi_ulong)ELF_START_MMAP;
bf858897
RH
2813
2814 load_elf_image(bprm->filename, bprm->fd, info,
2815 &elf_interpreter, bprm->buf);
31e31b8a 2816
bf858897
RH
2817 /* ??? We need a copy of the elf header for passing to create_elf_tables.
2818 If we do nothing, we'll have overwritten this when we re-use bprm->buf
2819 when we load the interpreter. */
2820 elf_ex = *(struct elfhdr *)bprm->buf;
31e31b8a 2821
59baae9a
SB
2822 /* Do this so that we can load the interpreter, if need be. We will
2823 change some of these later */
2824 bprm->p = setup_arg_pages(bprm, info);
2825
2826 scratch = g_new0(char, TARGET_PAGE_SIZE);
7c4ee5bc
RH
2827 if (STACK_GROWS_DOWN) {
2828 bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
2829 bprm->p, info->stack_limit);
2830 info->file_string = bprm->p;
2831 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
2832 bprm->p, info->stack_limit);
2833 info->env_strings = bprm->p;
2834 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
2835 bprm->p, info->stack_limit);
2836 info->arg_strings = bprm->p;
2837 } else {
2838 info->arg_strings = bprm->p;
2839 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
2840 bprm->p, info->stack_limit);
2841 info->env_strings = bprm->p;
2842 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
2843 bprm->p, info->stack_limit);
2844 info->file_string = bprm->p;
2845 bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
2846 bprm->p, info->stack_limit);
2847 }
2848
59baae9a
SB
2849 g_free(scratch);
2850
e5fe0c52 2851 if (!bprm->p) {
bf858897
RH
2852 fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG));
2853 exit(-1);
379f6698 2854 }
379f6698 2855
8e62a717
RH
2856 if (elf_interpreter) {
2857 load_elf_interp(elf_interpreter, &interp_info, bprm->buf);
31e31b8a 2858
8e62a717
RH
2859 /* If the program interpreter is one of these two, then assume
2860 an iBCS2 image. Otherwise assume a native linux image. */
2861
2862 if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0
2863 || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) {
2864 info->personality = PER_SVR4;
31e31b8a 2865
8e62a717
RH
2866 /* Why this, you ask??? Well SVr4 maps page 0 as read-only,
2867 and some applications "depend" upon this behavior. Since
2868 we do not have the power to recompile these, we emulate
2869 the SVr4 behavior. Sigh. */
2870 target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC,
68754b44 2871 MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
8e62a717 2872 }
c94cb6c9
SM
2873#ifdef TARGET_MIPS
2874 info->interp_fp_abi = interp_info.fp_abi;
2875#endif
31e31b8a
FB
2876 }
2877
8e62a717
RH
2878 bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex,
2879 info, (elf_interpreter ? &interp_info : NULL));
2880 info->start_stack = bprm->p;
2881
2882 /* If we have an interpreter, set that as the program's entry point.
8e78064e 2883 Copy the load_bias as well, to help PPC64 interpret the entry
8e62a717
RH
2884 point as a function descriptor. Do this after creating elf tables
2885 so that we copy the original program entry point into the AUXV. */
2886 if (elf_interpreter) {
8e78064e 2887 info->load_bias = interp_info.load_bias;
8e62a717 2888 info->entry = interp_info.entry;
bf858897 2889 free(elf_interpreter);
8e62a717 2890 }
31e31b8a 2891
edf8e2af
MW
2892#ifdef USE_ELF_CORE_DUMP
2893 bprm->core_dump = &elf_core_dump;
2894#endif
2895
6fd59449
RH
2896 /*
2897 * If we reserved extra space for brk, release it now.
2898 * The implementation of do_brk in syscalls.c expects to be able
2899 * to mmap pages in this space.
2900 */
2901 if (info->reserve_brk) {
2902 abi_ulong start_brk = HOST_PAGE_ALIGN(info->brk);
2903 abi_ulong end_brk = HOST_PAGE_ALIGN(info->brk + info->reserve_brk);
2904 target_munmap(start_brk, end_brk - start_brk);
2905 }
2906
31e31b8a
FB
2907 return 0;
2908}
2909
edf8e2af 2910#ifdef USE_ELF_CORE_DUMP
edf8e2af
MW
2911/*
2912 * Definitions to generate Intel SVR4-like core files.
a2547a13 2913 * These mostly have the same names as the SVR4 types with "target_elf_"
edf8e2af
MW
2914 * tacked on the front to prevent clashes with linux definitions,
2915 * and the typedef forms have been avoided. This is mostly like
2916 * the SVR4 structure, but more Linuxy, with things that Linux does
2917 * not support and which gdb doesn't really use excluded.
2918 *
2919 * Fields we don't dump (their contents is zero) in linux-user qemu
2920 * are marked with XXX.
2921 *
2922 * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
2923 *
2924 * Porting ELF coredump for target is (quite) simple process. First you
dd0a3651 2925 * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
edf8e2af
MW
2926 * the target resides):
2927 *
2928 * #define USE_ELF_CORE_DUMP
2929 *
2930 * Next you define type of register set used for dumping. ELF specification
2931 * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
2932 *
c227f099 2933 * typedef <target_regtype> target_elf_greg_t;
edf8e2af 2934 * #define ELF_NREG <number of registers>
c227f099 2935 * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
edf8e2af 2936 *
edf8e2af
MW
2937 * Last step is to implement target specific function that copies registers
2938 * from given cpu into just specified register set. Prototype is:
2939 *
c227f099 2940 * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
9349b4f9 2941 * const CPUArchState *env);
edf8e2af
MW
2942 *
2943 * Parameters:
2944 * regs - copy register values into here (allocated and zeroed by caller)
2945 * env - copy registers from here
2946 *
2947 * Example for ARM target is provided in this file.
2948 */
2949
2950/* An ELF note in memory */
2951struct memelfnote {
2952 const char *name;
2953 size_t namesz;
2954 size_t namesz_rounded;
2955 int type;
2956 size_t datasz;
80f5ce75 2957 size_t datasz_rounded;
edf8e2af
MW
2958 void *data;
2959 size_t notesz;
2960};
2961
a2547a13 2962struct target_elf_siginfo {
f8fd4fc4
PB
2963 abi_int si_signo; /* signal number */
2964 abi_int si_code; /* extra code */
2965 abi_int si_errno; /* errno */
edf8e2af
MW
2966};
2967
a2547a13
LD
2968struct target_elf_prstatus {
2969 struct target_elf_siginfo pr_info; /* Info associated with signal */
1ddd592f 2970 abi_short pr_cursig; /* Current signal */
ca98ac83
PB
2971 abi_ulong pr_sigpend; /* XXX */
2972 abi_ulong pr_sighold; /* XXX */
c227f099
AL
2973 target_pid_t pr_pid;
2974 target_pid_t pr_ppid;
2975 target_pid_t pr_pgrp;
2976 target_pid_t pr_sid;
edf8e2af
MW
2977 struct target_timeval pr_utime; /* XXX User time */
2978 struct target_timeval pr_stime; /* XXX System time */
2979 struct target_timeval pr_cutime; /* XXX Cumulative user time */
2980 struct target_timeval pr_cstime; /* XXX Cumulative system time */
c227f099 2981 target_elf_gregset_t pr_reg; /* GP registers */
f8fd4fc4 2982 abi_int pr_fpvalid; /* XXX */
edf8e2af
MW
2983};
2984
2985#define ELF_PRARGSZ (80) /* Number of chars for args */
2986
a2547a13 2987struct target_elf_prpsinfo {
edf8e2af
MW
2988 char pr_state; /* numeric process state */
2989 char pr_sname; /* char for pr_state */
2990 char pr_zomb; /* zombie */
2991 char pr_nice; /* nice val */
ca98ac83 2992 abi_ulong pr_flag; /* flags */
c227f099
AL
2993 target_uid_t pr_uid;
2994 target_gid_t pr_gid;
2995 target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
edf8e2af 2996 /* Lots missing */
d7eb2b92 2997 char pr_fname[16] QEMU_NONSTRING; /* filename of executable */
edf8e2af
MW
2998 char pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
2999};
3000
3001/* Here is the structure in which status of each thread is captured. */
3002struct elf_thread_status {
72cf2d4f 3003 QTAILQ_ENTRY(elf_thread_status) ets_link;
a2547a13 3004 struct target_elf_prstatus prstatus; /* NT_PRSTATUS */
edf8e2af
MW
3005#if 0
3006 elf_fpregset_t fpu; /* NT_PRFPREG */
3007 struct task_struct *thread;
3008 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */
3009#endif
3010 struct memelfnote notes[1];
3011 int num_notes;
3012};
3013
3014struct elf_note_info {
3015 struct memelfnote *notes;
a2547a13
LD
3016 struct target_elf_prstatus *prstatus; /* NT_PRSTATUS */
3017 struct target_elf_prpsinfo *psinfo; /* NT_PRPSINFO */
edf8e2af 3018
b58deb34 3019 QTAILQ_HEAD(, elf_thread_status) thread_list;
edf8e2af
MW
3020#if 0
3021 /*
3022 * Current version of ELF coredump doesn't support
3023 * dumping fp regs etc.
3024 */
3025 elf_fpregset_t *fpu;
3026 elf_fpxregset_t *xfpu;
3027 int thread_status_size;
3028#endif
3029 int notes_size;
3030 int numnote;
3031};
3032
3033struct vm_area_struct {
1a1c4db9
MI
3034 target_ulong vma_start; /* start vaddr of memory region */
3035 target_ulong vma_end; /* end vaddr of memory region */
3036 abi_ulong vma_flags; /* protection etc. flags for the region */
72cf2d4f 3037 QTAILQ_ENTRY(vm_area_struct) vma_link;
edf8e2af
MW
3038};
3039
3040struct mm_struct {
72cf2d4f 3041 QTAILQ_HEAD(, vm_area_struct) mm_mmap;
edf8e2af
MW
3042 int mm_count; /* number of mappings */
3043};
3044
3045static struct mm_struct *vma_init(void);
3046static void vma_delete(struct mm_struct *);
1a1c4db9
MI
3047static int vma_add_mapping(struct mm_struct *, target_ulong,
3048 target_ulong, abi_ulong);
edf8e2af
MW
3049static int vma_get_mapping_count(const struct mm_struct *);
3050static struct vm_area_struct *vma_first(const struct mm_struct *);
3051static struct vm_area_struct *vma_next(struct vm_area_struct *);
3052static abi_ulong vma_dump_size(const struct vm_area_struct *);
1a1c4db9 3053static int vma_walker(void *priv, target_ulong start, target_ulong end,
d97ef72e 3054 unsigned long flags);
edf8e2af
MW
3055
3056static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t);
3057static void fill_note(struct memelfnote *, const char *, int,
d97ef72e 3058 unsigned int, void *);
a2547a13
LD
3059static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int);
3060static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *);
edf8e2af
MW
3061static void fill_auxv_note(struct memelfnote *, const TaskState *);
3062static void fill_elf_note_phdr(struct elf_phdr *, int, off_t);
3063static size_t note_size(const struct memelfnote *);
3064static void free_note_info(struct elf_note_info *);
9349b4f9
AF
3065static int fill_note_info(struct elf_note_info *, long, const CPUArchState *);
3066static void fill_thread_info(struct elf_note_info *, const CPUArchState *);
edf8e2af
MW
3067static int core_dump_filename(const TaskState *, char *, size_t);
3068
3069static int dump_write(int, const void *, size_t);
3070static int write_note(struct memelfnote *, int);
3071static int write_note_info(struct elf_note_info *, int);
3072
3073#ifdef BSWAP_NEEDED
a2547a13 3074static void bswap_prstatus(struct target_elf_prstatus *prstatus)
edf8e2af 3075{
ca98ac83
PB
3076 prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo);
3077 prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code);
3078 prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno);
edf8e2af 3079 prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
ca98ac83
PB
3080 prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend);
3081 prstatus->pr_sighold = tswapal(prstatus->pr_sighold);
edf8e2af
MW
3082 prstatus->pr_pid = tswap32(prstatus->pr_pid);
3083 prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
3084 prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
3085 prstatus->pr_sid = tswap32(prstatus->pr_sid);
3086 /* cpu times are not filled, so we skip them */
3087 /* regs should be in correct format already */
3088 prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
3089}
3090
a2547a13 3091static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
edf8e2af 3092{
ca98ac83 3093 psinfo->pr_flag = tswapal(psinfo->pr_flag);
edf8e2af
MW
3094 psinfo->pr_uid = tswap16(psinfo->pr_uid);
3095 psinfo->pr_gid = tswap16(psinfo->pr_gid);
3096 psinfo->pr_pid = tswap32(psinfo->pr_pid);
3097 psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
3098 psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
3099 psinfo->pr_sid = tswap32(psinfo->pr_sid);
3100}
991f8f0c
RH
3101
3102static void bswap_note(struct elf_note *en)
3103{
3104 bswap32s(&en->n_namesz);
3105 bswap32s(&en->n_descsz);
3106 bswap32s(&en->n_type);
3107}
3108#else
3109static inline void bswap_prstatus(struct target_elf_prstatus *p) { }
3110static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {}
3111static inline void bswap_note(struct elf_note *en) { }
edf8e2af
MW
3112#endif /* BSWAP_NEEDED */
3113
3114/*
3115 * Minimal support for linux memory regions. These are needed
3116 * when we are finding out what memory exactly belongs to
3117 * emulated process. No locks needed here, as long as
3118 * thread that received the signal is stopped.
3119 */
3120
3121static struct mm_struct *vma_init(void)
3122{
3123 struct mm_struct *mm;
3124
7267c094 3125 if ((mm = g_malloc(sizeof (*mm))) == NULL)
edf8e2af
MW
3126 return (NULL);
3127
3128 mm->mm_count = 0;
72cf2d4f 3129 QTAILQ_INIT(&mm->mm_mmap);
edf8e2af
MW
3130
3131 return (mm);
3132}
3133
3134static void vma_delete(struct mm_struct *mm)
3135{
3136 struct vm_area_struct *vma;
3137
3138 while ((vma = vma_first(mm)) != NULL) {
72cf2d4f 3139 QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link);
7267c094 3140 g_free(vma);
edf8e2af 3141 }
7267c094 3142 g_free(mm);
edf8e2af
MW
3143}
3144
1a1c4db9
MI
3145static int vma_add_mapping(struct mm_struct *mm, target_ulong start,
3146 target_ulong end, abi_ulong flags)
edf8e2af
MW
3147{
3148 struct vm_area_struct *vma;
3149
7267c094 3150 if ((vma = g_malloc0(sizeof (*vma))) == NULL)
edf8e2af
MW
3151 return (-1);
3152
3153 vma->vma_start = start;
3154 vma->vma_end = end;
3155 vma->vma_flags = flags;
3156
72cf2d4f 3157 QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link);
edf8e2af
MW
3158 mm->mm_count++;
3159
3160 return (0);
3161}
3162
3163static struct vm_area_struct *vma_first(const struct mm_struct *mm)
3164{
72cf2d4f 3165 return (QTAILQ_FIRST(&mm->mm_mmap));
edf8e2af
MW
3166}
3167
3168static struct vm_area_struct *vma_next(struct vm_area_struct *vma)
3169{
72cf2d4f 3170 return (QTAILQ_NEXT(vma, vma_link));
edf8e2af
MW
3171}
3172
3173static int vma_get_mapping_count(const struct mm_struct *mm)
3174{
3175 return (mm->mm_count);
3176}
3177
3178/*
3179 * Calculate file (dump) size of given memory region.
3180 */
3181static abi_ulong vma_dump_size(const struct vm_area_struct *vma)
3182{
3183 /* if we cannot even read the first page, skip it */
3184 if (!access_ok(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE))
3185 return (0);
3186
3187 /*
3188 * Usually we don't dump executable pages as they contain
3189 * non-writable code that debugger can read directly from
3190 * target library etc. However, thread stacks are marked
3191 * also executable so we read in first page of given region
3192 * and check whether it contains elf header. If there is
3193 * no elf header, we dump it.
3194 */
3195 if (vma->vma_flags & PROT_EXEC) {
3196 char page[TARGET_PAGE_SIZE];
3197
3198 copy_from_user(page, vma->vma_start, sizeof (page));
3199 if ((page[EI_MAG0] == ELFMAG0) &&
3200 (page[EI_MAG1] == ELFMAG1) &&
3201 (page[EI_MAG2] == ELFMAG2) &&
3202 (page[EI_MAG3] == ELFMAG3)) {
3203 /*
3204 * Mappings are possibly from ELF binary. Don't dump
3205 * them.
3206 */
3207 return (0);
3208 }
3209 }
3210
3211 return (vma->vma_end - vma->vma_start);
3212}
3213
1a1c4db9 3214static int vma_walker(void *priv, target_ulong start, target_ulong end,
d97ef72e 3215 unsigned long flags)
edf8e2af
MW
3216{
3217 struct mm_struct *mm = (struct mm_struct *)priv;
3218
edf8e2af
MW
3219 vma_add_mapping(mm, start, end, flags);
3220 return (0);
3221}
3222
3223static void fill_note(struct memelfnote *note, const char *name, int type,
d97ef72e 3224 unsigned int sz, void *data)
edf8e2af
MW
3225{
3226 unsigned int namesz;
3227
3228 namesz = strlen(name) + 1;
3229 note->name = name;
3230 note->namesz = namesz;
3231 note->namesz_rounded = roundup(namesz, sizeof (int32_t));
3232 note->type = type;
80f5ce75
LV
3233 note->datasz = sz;
3234 note->datasz_rounded = roundup(sz, sizeof (int32_t));
3235
edf8e2af
MW
3236 note->data = data;
3237
3238 /*
3239 * We calculate rounded up note size here as specified by
3240 * ELF document.
3241 */
3242 note->notesz = sizeof (struct elf_note) +
80f5ce75 3243 note->namesz_rounded + note->datasz_rounded;
edf8e2af
MW
3244}
3245
3246static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
d97ef72e 3247 uint32_t flags)
edf8e2af
MW
3248{
3249 (void) memset(elf, 0, sizeof(*elf));
3250
3251 (void) memcpy(elf->e_ident, ELFMAG, SELFMAG);
3252 elf->e_ident[EI_CLASS] = ELF_CLASS;
3253 elf->e_ident[EI_DATA] = ELF_DATA;
3254 elf->e_ident[EI_VERSION] = EV_CURRENT;
3255 elf->e_ident[EI_OSABI] = ELF_OSABI;
3256
3257 elf->e_type = ET_CORE;
3258 elf->e_machine = machine;
3259 elf->e_version = EV_CURRENT;
3260 elf->e_phoff = sizeof(struct elfhdr);
3261 elf->e_flags = flags;
3262 elf->e_ehsize = sizeof(struct elfhdr);
3263 elf->e_phentsize = sizeof(struct elf_phdr);
3264 elf->e_phnum = segs;
3265
edf8e2af 3266 bswap_ehdr(elf);
edf8e2af
MW
3267}
3268
3269static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset)
3270{
3271 phdr->p_type = PT_NOTE;
3272 phdr->p_offset = offset;
3273 phdr->p_vaddr = 0;
3274 phdr->p_paddr = 0;
3275 phdr->p_filesz = sz;
3276 phdr->p_memsz = 0;
3277 phdr->p_flags = 0;
3278 phdr->p_align = 0;
3279
991f8f0c 3280 bswap_phdr(phdr, 1);
edf8e2af
MW
3281}
3282
3283static size_t note_size(const struct memelfnote *note)
3284{
3285 return (note->notesz);
3286}
3287
a2547a13 3288static void fill_prstatus(struct target_elf_prstatus *prstatus,
d97ef72e 3289 const TaskState *ts, int signr)
edf8e2af
MW
3290{
3291 (void) memset(prstatus, 0, sizeof (*prstatus));
3292 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
3293 prstatus->pr_pid = ts->ts_tid;
3294 prstatus->pr_ppid = getppid();
3295 prstatus->pr_pgrp = getpgrp();
3296 prstatus->pr_sid = getsid(0);
3297
edf8e2af 3298 bswap_prstatus(prstatus);
edf8e2af
MW
3299}
3300
a2547a13 3301static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts)
edf8e2af 3302{
900cfbca 3303 char *base_filename;
edf8e2af
MW
3304 unsigned int i, len;
3305
3306 (void) memset(psinfo, 0, sizeof (*psinfo));
3307
3308 len = ts->info->arg_end - ts->info->arg_start;
3309 if (len >= ELF_PRARGSZ)
3310 len = ELF_PRARGSZ - 1;
3311 if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_start, len))
3312 return -EFAULT;
3313 for (i = 0; i < len; i++)
3314 if (psinfo->pr_psargs[i] == 0)
3315 psinfo->pr_psargs[i] = ' ';
3316 psinfo->pr_psargs[len] = 0;
3317
3318 psinfo->pr_pid = getpid();
3319 psinfo->pr_ppid = getppid();
3320 psinfo->pr_pgrp = getpgrp();
3321 psinfo->pr_sid = getsid(0);
3322 psinfo->pr_uid = getuid();
3323 psinfo->pr_gid = getgid();
3324
900cfbca
JM
3325 base_filename = g_path_get_basename(ts->bprm->filename);
3326 /*
3327 * Using strncpy here is fine: at max-length,
3328 * this field is not NUL-terminated.
3329 */
edf8e2af 3330 (void) strncpy(psinfo->pr_fname, base_filename,
d97ef72e 3331 sizeof(psinfo->pr_fname));
edf8e2af 3332
900cfbca 3333 g_free(base_filename);
edf8e2af 3334 bswap_psinfo(psinfo);
edf8e2af
MW
3335 return (0);
3336}
3337
3338static void fill_auxv_note(struct memelfnote *note, const TaskState *ts)
3339{
3340 elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv;
3341 elf_addr_t orig_auxv = auxv;
edf8e2af 3342 void *ptr;
125b0f55 3343 int len = ts->info->auxv_len;
edf8e2af
MW
3344
3345 /*
3346 * Auxiliary vector is stored in target process stack. It contains
3347 * {type, value} pairs that we need to dump into note. This is not
3348 * strictly necessary but we do it here for sake of completeness.
3349 */
3350
edf8e2af
MW
3351 /* read in whole auxv vector and copy it to memelfnote */
3352 ptr = lock_user(VERIFY_READ, orig_auxv, len, 0);
3353 if (ptr != NULL) {
3354 fill_note(note, "CORE", NT_AUXV, len, ptr);
3355 unlock_user(ptr, auxv, len);
3356 }
3357}
3358
3359/*
3360 * Constructs name of coredump file. We have following convention
3361 * for the name:
3362 * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
3363 *
3364 * Returns 0 in case of success, -1 otherwise (errno is set).
3365 */
3366static int core_dump_filename(const TaskState *ts, char *buf,
d97ef72e 3367 size_t bufsize)
edf8e2af
MW
3368{
3369 char timestamp[64];
edf8e2af
MW
3370 char *base_filename = NULL;
3371 struct timeval tv;
3372 struct tm tm;
3373
3374 assert(bufsize >= PATH_MAX);
3375
3376 if (gettimeofday(&tv, NULL) < 0) {
3377 (void) fprintf(stderr, "unable to get current timestamp: %s",
d97ef72e 3378 strerror(errno));
edf8e2af
MW
3379 return (-1);
3380 }
3381
b8da57fa 3382 base_filename = g_path_get_basename(ts->bprm->filename);
edf8e2af 3383 (void) strftime(timestamp, sizeof (timestamp), "%Y%m%d-%H%M%S",
d97ef72e 3384 localtime_r(&tv.tv_sec, &tm));
edf8e2af 3385 (void) snprintf(buf, bufsize, "qemu_%s_%s_%d.core",
d97ef72e 3386 base_filename, timestamp, (int)getpid());
b8da57fa 3387 g_free(base_filename);
edf8e2af
MW
3388
3389 return (0);
3390}
3391
3392static int dump_write(int fd, const void *ptr, size_t size)
3393{
3394 const char *bufp = (const char *)ptr;
3395 ssize_t bytes_written, bytes_left;
3396 struct rlimit dumpsize;
3397 off_t pos;
3398
3399 bytes_written = 0;
3400 getrlimit(RLIMIT_CORE, &dumpsize);
3401 if ((pos = lseek(fd, 0, SEEK_CUR))==-1) {
3402 if (errno == ESPIPE) { /* not a seekable stream */
3403 bytes_left = size;
3404 } else {
3405 return pos;
3406 }
3407 } else {
3408 if (dumpsize.rlim_cur <= pos) {
3409 return -1;
3410 } else if (dumpsize.rlim_cur == RLIM_INFINITY) {
3411 bytes_left = size;
3412 } else {
3413 size_t limit_left=dumpsize.rlim_cur - pos;
3414 bytes_left = limit_left >= size ? size : limit_left ;
3415 }
3416 }
3417
3418 /*
3419 * In normal conditions, single write(2) should do but
3420 * in case of socket etc. this mechanism is more portable.
3421 */
3422 do {
3423 bytes_written = write(fd, bufp, bytes_left);
3424 if (bytes_written < 0) {
3425 if (errno == EINTR)
3426 continue;
3427 return (-1);
3428 } else if (bytes_written == 0) { /* eof */
3429 return (-1);
3430 }
3431 bufp += bytes_written;
3432 bytes_left -= bytes_written;
3433 } while (bytes_left > 0);
3434
3435 return (0);
3436}
3437
3438static int write_note(struct memelfnote *men, int fd)
3439{
3440 struct elf_note en;
3441
3442 en.n_namesz = men->namesz;
3443 en.n_type = men->type;
3444 en.n_descsz = men->datasz;
3445
edf8e2af 3446 bswap_note(&en);
edf8e2af
MW
3447
3448 if (dump_write(fd, &en, sizeof(en)) != 0)
3449 return (-1);
3450 if (dump_write(fd, men->name, men->namesz_rounded) != 0)
3451 return (-1);
80f5ce75 3452 if (dump_write(fd, men->data, men->datasz_rounded) != 0)
edf8e2af
MW
3453 return (-1);
3454
3455 return (0);
3456}
3457
9349b4f9 3458static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env)
edf8e2af 3459{
29a0af61 3460 CPUState *cpu = env_cpu((CPUArchState *)env);
0429a971 3461 TaskState *ts = (TaskState *)cpu->opaque;
edf8e2af
MW
3462 struct elf_thread_status *ets;
3463
7267c094 3464 ets = g_malloc0(sizeof (*ets));
edf8e2af
MW
3465 ets->num_notes = 1; /* only prstatus is dumped */
3466 fill_prstatus(&ets->prstatus, ts, 0);
3467 elf_core_copy_regs(&ets->prstatus.pr_reg, env);
3468 fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus),
d97ef72e 3469 &ets->prstatus);
edf8e2af 3470
72cf2d4f 3471 QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link);
edf8e2af
MW
3472
3473 info->notes_size += note_size(&ets->notes[0]);
3474}
3475
6afafa86
PM
3476static void init_note_info(struct elf_note_info *info)
3477{
3478 /* Initialize the elf_note_info structure so that it is at
3479 * least safe to call free_note_info() on it. Must be
3480 * called before calling fill_note_info().
3481 */
3482 memset(info, 0, sizeof (*info));
3483 QTAILQ_INIT(&info->thread_list);
3484}
3485
edf8e2af 3486static int fill_note_info(struct elf_note_info *info,
9349b4f9 3487 long signr, const CPUArchState *env)
edf8e2af
MW
3488{
3489#define NUMNOTES 3
29a0af61 3490 CPUState *cpu = env_cpu((CPUArchState *)env);
0429a971 3491 TaskState *ts = (TaskState *)cpu->opaque;
edf8e2af
MW
3492 int i;
3493
c78d65e8 3494 info->notes = g_new0(struct memelfnote, NUMNOTES);
edf8e2af
MW
3495 if (info->notes == NULL)
3496 return (-ENOMEM);
7267c094 3497 info->prstatus = g_malloc0(sizeof (*info->prstatus));
edf8e2af
MW
3498 if (info->prstatus == NULL)
3499 return (-ENOMEM);
7267c094 3500 info->psinfo = g_malloc0(sizeof (*info->psinfo));
edf8e2af
MW
3501 if (info->prstatus == NULL)
3502 return (-ENOMEM);
3503
3504 /*
3505 * First fill in status (and registers) of current thread
3506 * including process info & aux vector.
3507 */
3508 fill_prstatus(info->prstatus, ts, signr);
3509 elf_core_copy_regs(&info->prstatus->pr_reg, env);
3510 fill_note(&info->notes[0], "CORE", NT_PRSTATUS,
d97ef72e 3511 sizeof (*info->prstatus), info->prstatus);
edf8e2af
MW
3512 fill_psinfo(info->psinfo, ts);
3513 fill_note(&info->notes[1], "CORE", NT_PRPSINFO,
d97ef72e 3514 sizeof (*info->psinfo), info->psinfo);
edf8e2af
MW
3515 fill_auxv_note(&info->notes[2], ts);
3516 info->numnote = 3;
3517
3518 info->notes_size = 0;
3519 for (i = 0; i < info->numnote; i++)
3520 info->notes_size += note_size(&info->notes[i]);
3521
3522 /* read and fill status of all threads */
3523 cpu_list_lock();
bdc44640 3524 CPU_FOREACH(cpu) {
a2247f8e 3525 if (cpu == thread_cpu) {
edf8e2af 3526 continue;
182735ef
AF
3527 }
3528 fill_thread_info(info, (CPUArchState *)cpu->env_ptr);
edf8e2af
MW
3529 }
3530 cpu_list_unlock();
3531
3532 return (0);
3533}
3534
3535static void free_note_info(struct elf_note_info *info)
3536{
3537 struct elf_thread_status *ets;
3538
72cf2d4f
BS
3539 while (!QTAILQ_EMPTY(&info->thread_list)) {
3540 ets = QTAILQ_FIRST(&info->thread_list);
3541 QTAILQ_REMOVE(&info->thread_list, ets, ets_link);
7267c094 3542 g_free(ets);
edf8e2af
MW
3543 }
3544
7267c094
AL
3545 g_free(info->prstatus);
3546 g_free(info->psinfo);
3547 g_free(info->notes);
edf8e2af
MW
3548}
3549
3550static int write_note_info(struct elf_note_info *info, int fd)
3551{
3552 struct elf_thread_status *ets;
3553 int i, error = 0;
3554
3555 /* write prstatus, psinfo and auxv for current thread */
3556 for (i = 0; i < info->numnote; i++)
3557 if ((error = write_note(&info->notes[i], fd)) != 0)
3558 return (error);
3559
3560 /* write prstatus for each thread */
52a53afe 3561 QTAILQ_FOREACH(ets, &info->thread_list, ets_link) {
edf8e2af
MW
3562 if ((error = write_note(&ets->notes[0], fd)) != 0)
3563 return (error);
3564 }
3565
3566 return (0);
3567}
3568
3569/*
3570 * Write out ELF coredump.
3571 *
3572 * See documentation of ELF object file format in:
3573 * http://www.caldera.com/developers/devspecs/gabi41.pdf
3574 *
3575 * Coredump format in linux is following:
3576 *
3577 * 0 +----------------------+ \
3578 * | ELF header | ET_CORE |
3579 * +----------------------+ |
3580 * | ELF program headers | |--- headers
3581 * | - NOTE section | |
3582 * | - PT_LOAD sections | |
3583 * +----------------------+ /
3584 * | NOTEs: |
3585 * | - NT_PRSTATUS |
3586 * | - NT_PRSINFO |
3587 * | - NT_AUXV |
3588 * +----------------------+ <-- aligned to target page
3589 * | Process memory dump |
3590 * : :
3591 * . .
3592 * : :
3593 * | |
3594 * +----------------------+
3595 *
3596 * NT_PRSTATUS -> struct elf_prstatus (per thread)
3597 * NT_PRSINFO -> struct elf_prpsinfo
3598 * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
3599 *
3600 * Format follows System V format as close as possible. Current
3601 * version limitations are as follows:
3602 * - no floating point registers are dumped
3603 *
3604 * Function returns 0 in case of success, negative errno otherwise.
3605 *
3606 * TODO: make this work also during runtime: it should be
3607 * possible to force coredump from running process and then
3608 * continue processing. For example qemu could set up SIGUSR2
3609 * handler (provided that target process haven't registered
3610 * handler for that) that does the dump when signal is received.
3611 */
9349b4f9 3612static int elf_core_dump(int signr, const CPUArchState *env)
edf8e2af 3613{
29a0af61 3614 const CPUState *cpu = env_cpu((CPUArchState *)env);
0429a971 3615 const TaskState *ts = (const TaskState *)cpu->opaque;
edf8e2af
MW
3616 struct vm_area_struct *vma = NULL;
3617 char corefile[PATH_MAX];
3618 struct elf_note_info info;
3619 struct elfhdr elf;
3620 struct elf_phdr phdr;
3621 struct rlimit dumpsize;
3622 struct mm_struct *mm = NULL;
3623 off_t offset = 0, data_offset = 0;
3624 int segs = 0;
3625 int fd = -1;
3626
6afafa86
PM
3627 init_note_info(&info);
3628
edf8e2af
MW
3629 errno = 0;
3630 getrlimit(RLIMIT_CORE, &dumpsize);
3631 if (dumpsize.rlim_cur == 0)
d97ef72e 3632 return 0;
edf8e2af
MW
3633
3634 if (core_dump_filename(ts, corefile, sizeof (corefile)) < 0)
3635 return (-errno);
3636
3637 if ((fd = open(corefile, O_WRONLY | O_CREAT,
d97ef72e 3638 S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0)
edf8e2af
MW
3639 return (-errno);
3640
3641 /*
3642 * Walk through target process memory mappings and
3643 * set up structure containing this information. After
3644 * this point vma_xxx functions can be used.
3645 */
3646 if ((mm = vma_init()) == NULL)
3647 goto out;
3648
3649 walk_memory_regions(mm, vma_walker);
3650 segs = vma_get_mapping_count(mm);
3651
3652 /*
3653 * Construct valid coredump ELF header. We also
3654 * add one more segment for notes.
3655 */
3656 fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0);
3657 if (dump_write(fd, &elf, sizeof (elf)) != 0)
3658 goto out;
3659
b6af0975 3660 /* fill in the in-memory version of notes */
edf8e2af
MW
3661 if (fill_note_info(&info, signr, env) < 0)
3662 goto out;
3663
3664 offset += sizeof (elf); /* elf header */
3665 offset += (segs + 1) * sizeof (struct elf_phdr); /* program headers */
3666
3667 /* write out notes program header */
3668 fill_elf_note_phdr(&phdr, info.notes_size, offset);
3669
3670 offset += info.notes_size;
3671 if (dump_write(fd, &phdr, sizeof (phdr)) != 0)
3672 goto out;
3673
3674 /*
3675 * ELF specification wants data to start at page boundary so
3676 * we align it here.
3677 */
80f5ce75 3678 data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE);
edf8e2af
MW
3679
3680 /*
3681 * Write program headers for memory regions mapped in
3682 * the target process.
3683 */
3684 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
3685 (void) memset(&phdr, 0, sizeof (phdr));
3686
3687 phdr.p_type = PT_LOAD;
3688 phdr.p_offset = offset;
3689 phdr.p_vaddr = vma->vma_start;
3690 phdr.p_paddr = 0;
3691 phdr.p_filesz = vma_dump_size(vma);
3692 offset += phdr.p_filesz;
3693 phdr.p_memsz = vma->vma_end - vma->vma_start;
3694 phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0;
3695 if (vma->vma_flags & PROT_WRITE)
3696 phdr.p_flags |= PF_W;
3697 if (vma->vma_flags & PROT_EXEC)
3698 phdr.p_flags |= PF_X;
3699 phdr.p_align = ELF_EXEC_PAGESIZE;
3700
80f5ce75 3701 bswap_phdr(&phdr, 1);
772034b6
PM
3702 if (dump_write(fd, &phdr, sizeof(phdr)) != 0) {
3703 goto out;
3704 }
edf8e2af
MW
3705 }
3706
3707 /*
3708 * Next we write notes just after program headers. No
3709 * alignment needed here.
3710 */
3711 if (write_note_info(&info, fd) < 0)
3712 goto out;
3713
3714 /* align data to page boundary */
edf8e2af
MW
3715 if (lseek(fd, data_offset, SEEK_SET) != data_offset)
3716 goto out;
3717
3718 /*
3719 * Finally we can dump process memory into corefile as well.
3720 */
3721 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
3722 abi_ulong addr;
3723 abi_ulong end;
3724
3725 end = vma->vma_start + vma_dump_size(vma);
3726
3727 for (addr = vma->vma_start; addr < end;
d97ef72e 3728 addr += TARGET_PAGE_SIZE) {
edf8e2af
MW
3729 char page[TARGET_PAGE_SIZE];
3730 int error;
3731
3732 /*
3733 * Read in page from target process memory and
3734 * write it to coredump file.
3735 */
3736 error = copy_from_user(page, addr, sizeof (page));
3737 if (error != 0) {
49995e17 3738 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n",
d97ef72e 3739 addr);
edf8e2af
MW
3740 errno = -error;
3741 goto out;
3742 }
3743 if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0)
3744 goto out;
3745 }
3746 }
3747
d97ef72e 3748 out:
edf8e2af
MW
3749 free_note_info(&info);
3750 if (mm != NULL)
3751 vma_delete(mm);
3752 (void) close(fd);
3753
3754 if (errno != 0)
3755 return (-errno);
3756 return (0);
3757}
edf8e2af
MW
3758#endif /* USE_ELF_CORE_DUMP */
3759
e5fe0c52
PB
3760void do_init_thread(struct target_pt_regs *regs, struct image_info *infop)
3761{
3762 init_thread(regs, infop);
3763}