]> git.ipfire.org Git - thirdparty/qemu.git/blame - linux-user/elfload.c
linux-user: Add ELF_PLATFORM for arm
[thirdparty/qemu.git] / linux-user / elfload.c
CommitLineData
31e31b8a 1/* This is the Linux kernel elf-loading code, ported into user space */
d39594e9 2#include "qemu/osdep.h"
edf8e2af 3#include <sys/param.h>
31e31b8a 4
edf8e2af 5#include <sys/resource.h>
31e31b8a 6
3ef693a0 7#include "qemu.h"
76cad711 8#include "disas/disas.h"
f348b6d1 9#include "qemu/path.h"
31e31b8a 10
e58ffeb3 11#ifdef _ARCH_PPC64
a6cc84f4 12#undef ARCH_DLINFO
13#undef ELF_PLATFORM
14#undef ELF_HWCAP
ad6919dc 15#undef ELF_HWCAP2
a6cc84f4 16#undef ELF_CLASS
17#undef ELF_DATA
18#undef ELF_ARCH
19#endif
20
edf8e2af
MW
21#define ELF_OSABI ELFOSABI_SYSV
22
cb33da57
BS
23/* from personality.h */
24
25/*
26 * Flags for bug emulation.
27 *
28 * These occupy the top three bytes.
29 */
30enum {
d97ef72e
RH
31 ADDR_NO_RANDOMIZE = 0x0040000, /* disable randomization of VA space */
32 FDPIC_FUNCPTRS = 0x0080000, /* userspace function ptrs point to
33 descriptors (signal handling) */
34 MMAP_PAGE_ZERO = 0x0100000,
35 ADDR_COMPAT_LAYOUT = 0x0200000,
36 READ_IMPLIES_EXEC = 0x0400000,
37 ADDR_LIMIT_32BIT = 0x0800000,
38 SHORT_INODE = 0x1000000,
39 WHOLE_SECONDS = 0x2000000,
40 STICKY_TIMEOUTS = 0x4000000,
41 ADDR_LIMIT_3GB = 0x8000000,
cb33da57
BS
42};
43
44/*
45 * Personality types.
46 *
47 * These go in the low byte. Avoid using the top bit, it will
48 * conflict with error returns.
49 */
50enum {
d97ef72e
RH
51 PER_LINUX = 0x0000,
52 PER_LINUX_32BIT = 0x0000 | ADDR_LIMIT_32BIT,
53 PER_LINUX_FDPIC = 0x0000 | FDPIC_FUNCPTRS,
54 PER_SVR4 = 0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
55 PER_SVR3 = 0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
56 PER_SCOSVR3 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE,
57 PER_OSR5 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
58 PER_WYSEV386 = 0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
59 PER_ISCR4 = 0x0005 | STICKY_TIMEOUTS,
60 PER_BSD = 0x0006,
61 PER_SUNOS = 0x0006 | STICKY_TIMEOUTS,
62 PER_XENIX = 0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
63 PER_LINUX32 = 0x0008,
64 PER_LINUX32_3GB = 0x0008 | ADDR_LIMIT_3GB,
65 PER_IRIX32 = 0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
66 PER_IRIXN32 = 0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
67 PER_IRIX64 = 0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
68 PER_RISCOS = 0x000c,
69 PER_SOLARIS = 0x000d | STICKY_TIMEOUTS,
70 PER_UW7 = 0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
71 PER_OSF4 = 0x000f, /* OSF/1 v4 */
72 PER_HPUX = 0x0010,
73 PER_MASK = 0x00ff,
cb33da57
BS
74};
75
76/*
77 * Return the base personality without flags.
78 */
d97ef72e 79#define personality(pers) (pers & PER_MASK)
cb33da57 80
3cb10cfa
CL
81int info_is_fdpic(struct image_info *info)
82{
83 return info->personality == PER_LINUX_FDPIC;
84}
85
83fb7adf
FB
86/* this flag is uneffective under linux too, should be deleted */
87#ifndef MAP_DENYWRITE
88#define MAP_DENYWRITE 0
89#endif
90
91/* should probably go in elf.h */
92#ifndef ELIBBAD
93#define ELIBBAD 80
94#endif
95
28490231
RH
96#ifdef TARGET_WORDS_BIGENDIAN
97#define ELF_DATA ELFDATA2MSB
98#else
99#define ELF_DATA ELFDATA2LSB
100#endif
101
a29f998d 102#ifdef TARGET_ABI_MIPSN32
918fc54c
PB
103typedef abi_ullong target_elf_greg_t;
104#define tswapreg(ptr) tswap64(ptr)
a29f998d
PB
105#else
106typedef abi_ulong target_elf_greg_t;
107#define tswapreg(ptr) tswapal(ptr)
108#endif
109
21e807fa 110#ifdef USE_UID16
1ddd592f
PB
111typedef abi_ushort target_uid_t;
112typedef abi_ushort target_gid_t;
21e807fa 113#else
f8fd4fc4
PB
114typedef abi_uint target_uid_t;
115typedef abi_uint target_gid_t;
21e807fa 116#endif
f8fd4fc4 117typedef abi_int target_pid_t;
21e807fa 118
30ac07d4
FB
119#ifdef TARGET_I386
120
15338fd7
FB
121#define ELF_PLATFORM get_elf_platform()
122
123static const char *get_elf_platform(void)
124{
125 static char elf_platform[] = "i386";
a2247f8e 126 int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL);
15338fd7
FB
127 if (family > 6)
128 family = 6;
129 if (family >= 3)
130 elf_platform[1] = '0' + family;
131 return elf_platform;
132}
133
134#define ELF_HWCAP get_elf_hwcap()
135
136static uint32_t get_elf_hwcap(void)
137{
a2247f8e
AF
138 X86CPU *cpu = X86_CPU(thread_cpu);
139
140 return cpu->env.features[FEAT_1_EDX];
15338fd7
FB
141}
142
84409ddb
JM
143#ifdef TARGET_X86_64
144#define ELF_START_MMAP 0x2aaaaab000ULL
84409ddb
JM
145
146#define ELF_CLASS ELFCLASS64
84409ddb
JM
147#define ELF_ARCH EM_X86_64
148
149static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
150{
151 regs->rax = 0;
152 regs->rsp = infop->start_stack;
153 regs->rip = infop->entry;
154}
155
9edc5d79 156#define ELF_NREG 27
c227f099 157typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
9edc5d79
MW
158
159/*
160 * Note that ELF_NREG should be 29 as there should be place for
161 * TRAPNO and ERR "registers" as well but linux doesn't dump
162 * those.
163 *
164 * See linux kernel: arch/x86/include/asm/elf.h
165 */
05390248 166static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
9edc5d79
MW
167{
168 (*regs)[0] = env->regs[15];
169 (*regs)[1] = env->regs[14];
170 (*regs)[2] = env->regs[13];
171 (*regs)[3] = env->regs[12];
172 (*regs)[4] = env->regs[R_EBP];
173 (*regs)[5] = env->regs[R_EBX];
174 (*regs)[6] = env->regs[11];
175 (*regs)[7] = env->regs[10];
176 (*regs)[8] = env->regs[9];
177 (*regs)[9] = env->regs[8];
178 (*regs)[10] = env->regs[R_EAX];
179 (*regs)[11] = env->regs[R_ECX];
180 (*regs)[12] = env->regs[R_EDX];
181 (*regs)[13] = env->regs[R_ESI];
182 (*regs)[14] = env->regs[R_EDI];
183 (*regs)[15] = env->regs[R_EAX]; /* XXX */
184 (*regs)[16] = env->eip;
185 (*regs)[17] = env->segs[R_CS].selector & 0xffff;
186 (*regs)[18] = env->eflags;
187 (*regs)[19] = env->regs[R_ESP];
188 (*regs)[20] = env->segs[R_SS].selector & 0xffff;
189 (*regs)[21] = env->segs[R_FS].selector & 0xffff;
190 (*regs)[22] = env->segs[R_GS].selector & 0xffff;
191 (*regs)[23] = env->segs[R_DS].selector & 0xffff;
192 (*regs)[24] = env->segs[R_ES].selector & 0xffff;
193 (*regs)[25] = env->segs[R_FS].selector & 0xffff;
194 (*regs)[26] = env->segs[R_GS].selector & 0xffff;
195}
196
84409ddb
JM
197#else
198
30ac07d4
FB
199#define ELF_START_MMAP 0x80000000
200
30ac07d4
FB
201/*
202 * This is used to ensure we don't load something for the wrong architecture.
203 */
204#define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
205
206/*
207 * These are used to set parameters in the core dumps.
208 */
d97ef72e 209#define ELF_CLASS ELFCLASS32
d97ef72e 210#define ELF_ARCH EM_386
30ac07d4 211
d97ef72e
RH
212static inline void init_thread(struct target_pt_regs *regs,
213 struct image_info *infop)
b346ff46
FB
214{
215 regs->esp = infop->start_stack;
216 regs->eip = infop->entry;
e5fe0c52
PB
217
218 /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
219 starts %edx contains a pointer to a function which might be
220 registered using `atexit'. This provides a mean for the
221 dynamic linker to call DT_FINI functions for shared libraries
222 that have been loaded before the code runs.
223
224 A value of 0 tells we have no such handler. */
225 regs->edx = 0;
b346ff46 226}
9edc5d79 227
9edc5d79 228#define ELF_NREG 17
c227f099 229typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
9edc5d79
MW
230
231/*
232 * Note that ELF_NREG should be 19 as there should be place for
233 * TRAPNO and ERR "registers" as well but linux doesn't dump
234 * those.
235 *
236 * See linux kernel: arch/x86/include/asm/elf.h
237 */
05390248 238static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
9edc5d79
MW
239{
240 (*regs)[0] = env->regs[R_EBX];
241 (*regs)[1] = env->regs[R_ECX];
242 (*regs)[2] = env->regs[R_EDX];
243 (*regs)[3] = env->regs[R_ESI];
244 (*regs)[4] = env->regs[R_EDI];
245 (*regs)[5] = env->regs[R_EBP];
246 (*regs)[6] = env->regs[R_EAX];
247 (*regs)[7] = env->segs[R_DS].selector & 0xffff;
248 (*regs)[8] = env->segs[R_ES].selector & 0xffff;
249 (*regs)[9] = env->segs[R_FS].selector & 0xffff;
250 (*regs)[10] = env->segs[R_GS].selector & 0xffff;
251 (*regs)[11] = env->regs[R_EAX]; /* XXX */
252 (*regs)[12] = env->eip;
253 (*regs)[13] = env->segs[R_CS].selector & 0xffff;
254 (*regs)[14] = env->eflags;
255 (*regs)[15] = env->regs[R_ESP];
256 (*regs)[16] = env->segs[R_SS].selector & 0xffff;
257}
84409ddb 258#endif
b346ff46 259
9edc5d79 260#define USE_ELF_CORE_DUMP
d97ef72e 261#define ELF_EXEC_PAGESIZE 4096
b346ff46
FB
262
263#endif
264
265#ifdef TARGET_ARM
266
24e76ff0
PM
267#ifndef TARGET_AARCH64
268/* 32 bit ARM definitions */
269
b346ff46
FB
270#define ELF_START_MMAP 0x80000000
271
b597c3f7 272#define ELF_ARCH EM_ARM
d97ef72e 273#define ELF_CLASS ELFCLASS32
b346ff46 274
d97ef72e
RH
275static inline void init_thread(struct target_pt_regs *regs,
276 struct image_info *infop)
b346ff46 277{
992f48a0 278 abi_long stack = infop->start_stack;
b346ff46 279 memset(regs, 0, sizeof(*regs));
99033cae 280
167e4cdc
PM
281 regs->uregs[16] = ARM_CPU_MODE_USR;
282 if (infop->entry & 1) {
283 regs->uregs[16] |= CPSR_T;
284 }
285 regs->uregs[15] = infop->entry & 0xfffffffe;
286 regs->uregs[13] = infop->start_stack;
2f619698 287 /* FIXME - what to for failure of get_user()? */
167e4cdc
PM
288 get_user_ual(regs->uregs[2], stack + 8); /* envp */
289 get_user_ual(regs->uregs[1], stack + 4); /* envp */
a1516e92 290 /* XXX: it seems that r0 is zeroed after ! */
167e4cdc 291 regs->uregs[0] = 0;
e5fe0c52 292 /* For uClinux PIC binaries. */
863cf0b7 293 /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
167e4cdc 294 regs->uregs[10] = infop->start_data;
3cb10cfa
CL
295
296 /* Support ARM FDPIC. */
297 if (info_is_fdpic(infop)) {
298 /* As described in the ABI document, r7 points to the loadmap info
299 * prepared by the kernel. If an interpreter is needed, r8 points
300 * to the interpreter loadmap and r9 points to the interpreter
301 * PT_DYNAMIC info. If no interpreter is needed, r8 is zero, and
302 * r9 points to the main program PT_DYNAMIC info.
303 */
304 regs->uregs[7] = infop->loadmap_addr;
305 if (infop->interpreter_loadmap_addr) {
306 /* Executable is dynamically loaded. */
307 regs->uregs[8] = infop->interpreter_loadmap_addr;
308 regs->uregs[9] = infop->interpreter_pt_dynamic_addr;
309 } else {
310 regs->uregs[8] = 0;
311 regs->uregs[9] = infop->pt_dynamic_addr;
312 }
313 }
b346ff46
FB
314}
315
edf8e2af 316#define ELF_NREG 18
c227f099 317typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
edf8e2af 318
05390248 319static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env)
edf8e2af 320{
86cd7b2d
PB
321 (*regs)[0] = tswapreg(env->regs[0]);
322 (*regs)[1] = tswapreg(env->regs[1]);
323 (*regs)[2] = tswapreg(env->regs[2]);
324 (*regs)[3] = tswapreg(env->regs[3]);
325 (*regs)[4] = tswapreg(env->regs[4]);
326 (*regs)[5] = tswapreg(env->regs[5]);
327 (*regs)[6] = tswapreg(env->regs[6]);
328 (*regs)[7] = tswapreg(env->regs[7]);
329 (*regs)[8] = tswapreg(env->regs[8]);
330 (*regs)[9] = tswapreg(env->regs[9]);
331 (*regs)[10] = tswapreg(env->regs[10]);
332 (*regs)[11] = tswapreg(env->regs[11]);
333 (*regs)[12] = tswapreg(env->regs[12]);
334 (*regs)[13] = tswapreg(env->regs[13]);
335 (*regs)[14] = tswapreg(env->regs[14]);
336 (*regs)[15] = tswapreg(env->regs[15]);
337
338 (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env));
339 (*regs)[17] = tswapreg(env->regs[0]); /* XXX */
edf8e2af
MW
340}
341
30ac07d4 342#define USE_ELF_CORE_DUMP
d97ef72e 343#define ELF_EXEC_PAGESIZE 4096
30ac07d4 344
afce2927
FB
345enum
346{
d97ef72e
RH
347 ARM_HWCAP_ARM_SWP = 1 << 0,
348 ARM_HWCAP_ARM_HALF = 1 << 1,
349 ARM_HWCAP_ARM_THUMB = 1 << 2,
350 ARM_HWCAP_ARM_26BIT = 1 << 3,
351 ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
352 ARM_HWCAP_ARM_FPA = 1 << 5,
353 ARM_HWCAP_ARM_VFP = 1 << 6,
354 ARM_HWCAP_ARM_EDSP = 1 << 7,
355 ARM_HWCAP_ARM_JAVA = 1 << 8,
356 ARM_HWCAP_ARM_IWMMXT = 1 << 9,
43ce393e
PM
357 ARM_HWCAP_ARM_CRUNCH = 1 << 10,
358 ARM_HWCAP_ARM_THUMBEE = 1 << 11,
359 ARM_HWCAP_ARM_NEON = 1 << 12,
360 ARM_HWCAP_ARM_VFPv3 = 1 << 13,
361 ARM_HWCAP_ARM_VFPv3D16 = 1 << 14,
24682654
PM
362 ARM_HWCAP_ARM_TLS = 1 << 15,
363 ARM_HWCAP_ARM_VFPv4 = 1 << 16,
364 ARM_HWCAP_ARM_IDIVA = 1 << 17,
365 ARM_HWCAP_ARM_IDIVT = 1 << 18,
366 ARM_HWCAP_ARM_VFPD32 = 1 << 19,
367 ARM_HWCAP_ARM_LPAE = 1 << 20,
368 ARM_HWCAP_ARM_EVTSTRM = 1 << 21,
afce2927
FB
369};
370
ad6919dc
PM
371enum {
372 ARM_HWCAP2_ARM_AES = 1 << 0,
373 ARM_HWCAP2_ARM_PMULL = 1 << 1,
374 ARM_HWCAP2_ARM_SHA1 = 1 << 2,
375 ARM_HWCAP2_ARM_SHA2 = 1 << 3,
376 ARM_HWCAP2_ARM_CRC32 = 1 << 4,
377};
378
6b1275ff
PM
379/* The commpage only exists for 32 bit kernels */
380
806d1021
MI
381/* Return 1 if the proposed guest space is suitable for the guest.
382 * Return 0 if the proposed guest space isn't suitable, but another
383 * address space should be tried.
384 * Return -1 if there is no way the proposed guest space can be
385 * valid regardless of the base.
386 * The guest code may leave a page mapped and populate it if the
387 * address is suitable.
388 */
c3637eaf
LS
389static int init_guest_commpage(unsigned long guest_base,
390 unsigned long guest_size)
97cc7560
DDAG
391{
392 unsigned long real_start, test_page_addr;
393
394 /* We need to check that we can force a fault on access to the
395 * commpage at 0xffff0fxx
396 */
397 test_page_addr = guest_base + (0xffff0f00 & qemu_host_page_mask);
806d1021
MI
398
399 /* If the commpage lies within the already allocated guest space,
400 * then there is no way we can allocate it.
955e304f
LS
401 *
402 * You may be thinking that that this check is redundant because
403 * we already validated the guest size against MAX_RESERVED_VA;
404 * but if qemu_host_page_mask is unusually large, then
405 * test_page_addr may be lower.
806d1021
MI
406 */
407 if (test_page_addr >= guest_base
e568f9df 408 && test_page_addr < (guest_base + guest_size)) {
806d1021
MI
409 return -1;
410 }
411
97cc7560
DDAG
412 /* Note it needs to be writeable to let us initialise it */
413 real_start = (unsigned long)
414 mmap((void *)test_page_addr, qemu_host_page_size,
415 PROT_READ | PROT_WRITE,
416 MAP_ANONYMOUS | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
417
418 /* If we can't map it then try another address */
419 if (real_start == -1ul) {
420 return 0;
421 }
422
423 if (real_start != test_page_addr) {
424 /* OS didn't put the page where we asked - unmap and reject */
425 munmap((void *)real_start, qemu_host_page_size);
426 return 0;
427 }
428
429 /* Leave the page mapped
430 * Populate it (mmap should have left it all 0'd)
431 */
432
433 /* Kernel helper versions */
434 __put_user(5, (uint32_t *)g2h(0xffff0ffcul));
435
436 /* Now it's populated make it RO */
437 if (mprotect((void *)test_page_addr, qemu_host_page_size, PROT_READ)) {
438 perror("Protecting guest commpage");
439 exit(-1);
440 }
441
442 return 1; /* All good */
443}
adf050b1
BC
444
445#define ELF_HWCAP get_elf_hwcap()
ad6919dc 446#define ELF_HWCAP2 get_elf_hwcap2()
adf050b1
BC
447
448static uint32_t get_elf_hwcap(void)
449{
a2247f8e 450 ARMCPU *cpu = ARM_CPU(thread_cpu);
adf050b1
BC
451 uint32_t hwcaps = 0;
452
453 hwcaps |= ARM_HWCAP_ARM_SWP;
454 hwcaps |= ARM_HWCAP_ARM_HALF;
455 hwcaps |= ARM_HWCAP_ARM_THUMB;
456 hwcaps |= ARM_HWCAP_ARM_FAST_MULT;
adf050b1
BC
457
458 /* probe for the extra features */
459#define GET_FEATURE(feat, hwcap) \
a2247f8e 460 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
962fcbf2
RH
461
462#define GET_FEATURE_ID(feat, hwcap) \
463 do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
464
24682654
PM
465 /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */
466 GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP);
adf050b1
BC
467 GET_FEATURE(ARM_FEATURE_VFP, ARM_HWCAP_ARM_VFP);
468 GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT);
469 GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE);
470 GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON);
471 GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPv3);
24682654
PM
472 GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS);
473 GET_FEATURE(ARM_FEATURE_VFP4, ARM_HWCAP_ARM_VFPv4);
7e0cf8b4
RH
474 GET_FEATURE_ID(arm_div, ARM_HWCAP_ARM_IDIVA);
475 GET_FEATURE_ID(thumb_div, ARM_HWCAP_ARM_IDIVT);
24682654
PM
476 /* All QEMU's VFPv3 CPUs have 32 registers, see VFP_DREG in translate.c.
477 * Note that the ARM_HWCAP_ARM_VFPv3D16 bit is always the inverse of
478 * ARM_HWCAP_ARM_VFPD32 (and so always clear for QEMU); it is unrelated
479 * to our VFP_FP16 feature bit.
480 */
481 GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPD32);
482 GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE);
adf050b1
BC
483
484 return hwcaps;
485}
afce2927 486
ad6919dc
PM
487static uint32_t get_elf_hwcap2(void)
488{
489 ARMCPU *cpu = ARM_CPU(thread_cpu);
490 uint32_t hwcaps = 0;
491
962fcbf2
RH
492 GET_FEATURE_ID(aa32_aes, ARM_HWCAP2_ARM_AES);
493 GET_FEATURE_ID(aa32_pmull, ARM_HWCAP2_ARM_PMULL);
494 GET_FEATURE_ID(aa32_sha1, ARM_HWCAP2_ARM_SHA1);
495 GET_FEATURE_ID(aa32_sha2, ARM_HWCAP2_ARM_SHA2);
496 GET_FEATURE_ID(aa32_crc32, ARM_HWCAP2_ARM_CRC32);
ad6919dc
PM
497 return hwcaps;
498}
499
500#undef GET_FEATURE
962fcbf2 501#undef GET_FEATURE_ID
ad6919dc 502
13ec4ec3
RH
503#define ELF_PLATFORM get_elf_platform()
504
505static const char *get_elf_platform(void)
506{
507 CPUARMState *env = thread_cpu->env_ptr;
508
509#ifdef TARGET_WORDS_BIGENDIAN
510# define END "b"
511#else
512# define END "l"
513#endif
514
515 if (arm_feature(env, ARM_FEATURE_V8)) {
516 return "v8" END;
517 } else if (arm_feature(env, ARM_FEATURE_V7)) {
518 if (arm_feature(env, ARM_FEATURE_M)) {
519 return "v7m" END;
520 } else {
521 return "v7" END;
522 }
523 } else if (arm_feature(env, ARM_FEATURE_V6)) {
524 return "v6" END;
525 } else if (arm_feature(env, ARM_FEATURE_V5)) {
526 return "v5" END;
527 } else {
528 return "v4" END;
529 }
530
531#undef END
532}
533
24e76ff0
PM
534#else
535/* 64 bit ARM definitions */
536#define ELF_START_MMAP 0x80000000
537
b597c3f7 538#define ELF_ARCH EM_AARCH64
24e76ff0
PM
539#define ELF_CLASS ELFCLASS64
540#define ELF_PLATFORM "aarch64"
541
542static inline void init_thread(struct target_pt_regs *regs,
543 struct image_info *infop)
544{
545 abi_long stack = infop->start_stack;
546 memset(regs, 0, sizeof(*regs));
547
548 regs->pc = infop->entry & ~0x3ULL;
549 regs->sp = stack;
550}
551
552#define ELF_NREG 34
553typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
554
555static void elf_core_copy_regs(target_elf_gregset_t *regs,
556 const CPUARMState *env)
557{
558 int i;
559
560 for (i = 0; i < 32; i++) {
561 (*regs)[i] = tswapreg(env->xregs[i]);
562 }
563 (*regs)[32] = tswapreg(env->pc);
564 (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env));
565}
566
567#define USE_ELF_CORE_DUMP
568#define ELF_EXEC_PAGESIZE 4096
569
570enum {
571 ARM_HWCAP_A64_FP = 1 << 0,
572 ARM_HWCAP_A64_ASIMD = 1 << 1,
573 ARM_HWCAP_A64_EVTSTRM = 1 << 2,
574 ARM_HWCAP_A64_AES = 1 << 3,
575 ARM_HWCAP_A64_PMULL = 1 << 4,
576 ARM_HWCAP_A64_SHA1 = 1 << 5,
577 ARM_HWCAP_A64_SHA2 = 1 << 6,
578 ARM_HWCAP_A64_CRC32 = 1 << 7,
955f56d4
AB
579 ARM_HWCAP_A64_ATOMICS = 1 << 8,
580 ARM_HWCAP_A64_FPHP = 1 << 9,
581 ARM_HWCAP_A64_ASIMDHP = 1 << 10,
582 ARM_HWCAP_A64_CPUID = 1 << 11,
583 ARM_HWCAP_A64_ASIMDRDM = 1 << 12,
584 ARM_HWCAP_A64_JSCVT = 1 << 13,
585 ARM_HWCAP_A64_FCMA = 1 << 14,
586 ARM_HWCAP_A64_LRCPC = 1 << 15,
587 ARM_HWCAP_A64_DCPOP = 1 << 16,
588 ARM_HWCAP_A64_SHA3 = 1 << 17,
589 ARM_HWCAP_A64_SM3 = 1 << 18,
590 ARM_HWCAP_A64_SM4 = 1 << 19,
591 ARM_HWCAP_A64_ASIMDDP = 1 << 20,
592 ARM_HWCAP_A64_SHA512 = 1 << 21,
593 ARM_HWCAP_A64_SVE = 1 << 22,
0083a1fa
RH
594 ARM_HWCAP_A64_ASIMDFHM = 1 << 23,
595 ARM_HWCAP_A64_DIT = 1 << 24,
596 ARM_HWCAP_A64_USCAT = 1 << 25,
597 ARM_HWCAP_A64_ILRCPC = 1 << 26,
598 ARM_HWCAP_A64_FLAGM = 1 << 27,
599 ARM_HWCAP_A64_SSBS = 1 << 28,
600 ARM_HWCAP_A64_SB = 1 << 29,
601 ARM_HWCAP_A64_PACA = 1 << 30,
602 ARM_HWCAP_A64_PACG = 1UL << 31,
24e76ff0
PM
603};
604
605#define ELF_HWCAP get_elf_hwcap()
606
607static uint32_t get_elf_hwcap(void)
608{
609 ARMCPU *cpu = ARM_CPU(thread_cpu);
610 uint32_t hwcaps = 0;
611
612 hwcaps |= ARM_HWCAP_A64_FP;
613 hwcaps |= ARM_HWCAP_A64_ASIMD;
37020ff1 614 hwcaps |= ARM_HWCAP_A64_CPUID;
24e76ff0
PM
615
616 /* probe for the extra features */
962fcbf2
RH
617#define GET_FEATURE_ID(feat, hwcap) \
618 do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
619
620 GET_FEATURE_ID(aa64_aes, ARM_HWCAP_A64_AES);
621 GET_FEATURE_ID(aa64_pmull, ARM_HWCAP_A64_PMULL);
622 GET_FEATURE_ID(aa64_sha1, ARM_HWCAP_A64_SHA1);
623 GET_FEATURE_ID(aa64_sha256, ARM_HWCAP_A64_SHA2);
624 GET_FEATURE_ID(aa64_sha512, ARM_HWCAP_A64_SHA512);
625 GET_FEATURE_ID(aa64_crc32, ARM_HWCAP_A64_CRC32);
626 GET_FEATURE_ID(aa64_sha3, ARM_HWCAP_A64_SHA3);
627 GET_FEATURE_ID(aa64_sm3, ARM_HWCAP_A64_SM3);
628 GET_FEATURE_ID(aa64_sm4, ARM_HWCAP_A64_SM4);
5763190f 629 GET_FEATURE_ID(aa64_fp16, ARM_HWCAP_A64_FPHP | ARM_HWCAP_A64_ASIMDHP);
962fcbf2
RH
630 GET_FEATURE_ID(aa64_atomics, ARM_HWCAP_A64_ATOMICS);
631 GET_FEATURE_ID(aa64_rdm, ARM_HWCAP_A64_ASIMDRDM);
632 GET_FEATURE_ID(aa64_dp, ARM_HWCAP_A64_ASIMDDP);
633 GET_FEATURE_ID(aa64_fcma, ARM_HWCAP_A64_FCMA);
cd208a1c 634 GET_FEATURE_ID(aa64_sve, ARM_HWCAP_A64_SVE);
29d26ab2 635 GET_FEATURE_ID(aa64_pauth, ARM_HWCAP_A64_PACA | ARM_HWCAP_A64_PACG);
1c9af3a9
RH
636 GET_FEATURE_ID(aa64_fhm, ARM_HWCAP_A64_ASIMDFHM);
637 GET_FEATURE_ID(aa64_jscvt, ARM_HWCAP_A64_JSCVT);
9888bd1e 638 GET_FEATURE_ID(aa64_sb, ARM_HWCAP_A64_SB);
b89d9c98 639 GET_FEATURE_ID(aa64_condm_4, ARM_HWCAP_A64_FLAGM);
962fcbf2 640
962fcbf2 641#undef GET_FEATURE_ID
24e76ff0
PM
642
643 return hwcaps;
644}
645
646#endif /* not TARGET_AARCH64 */
647#endif /* TARGET_ARM */
30ac07d4 648
853d6f7a 649#ifdef TARGET_SPARC
a315a145 650#ifdef TARGET_SPARC64
853d6f7a
FB
651
652#define ELF_START_MMAP 0x80000000
cf973e46
AT
653#define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
654 | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9)
992f48a0 655#ifndef TARGET_ABI32
cb33da57 656#define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
992f48a0
BS
657#else
658#define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
659#endif
853d6f7a 660
a315a145 661#define ELF_CLASS ELFCLASS64
5ef54116
FB
662#define ELF_ARCH EM_SPARCV9
663
d97ef72e 664#define STACK_BIAS 2047
a315a145 665
d97ef72e
RH
666static inline void init_thread(struct target_pt_regs *regs,
667 struct image_info *infop)
a315a145 668{
992f48a0 669#ifndef TARGET_ABI32
a315a145 670 regs->tstate = 0;
992f48a0 671#endif
a315a145
FB
672 regs->pc = infop->entry;
673 regs->npc = regs->pc + 4;
674 regs->y = 0;
992f48a0
BS
675#ifdef TARGET_ABI32
676 regs->u_regs[14] = infop->start_stack - 16 * 4;
677#else
cb33da57
BS
678 if (personality(infop->personality) == PER_LINUX32)
679 regs->u_regs[14] = infop->start_stack - 16 * 4;
680 else
681 regs->u_regs[14] = infop->start_stack - 16 * 8 - STACK_BIAS;
992f48a0 682#endif
a315a145
FB
683}
684
685#else
686#define ELF_START_MMAP 0x80000000
cf973e46
AT
687#define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
688 | HWCAP_SPARC_MULDIV)
a315a145 689
853d6f7a 690#define ELF_CLASS ELFCLASS32
853d6f7a
FB
691#define ELF_ARCH EM_SPARC
692
d97ef72e
RH
693static inline void init_thread(struct target_pt_regs *regs,
694 struct image_info *infop)
853d6f7a 695{
f5155289
FB
696 regs->psr = 0;
697 regs->pc = infop->entry;
698 regs->npc = regs->pc + 4;
699 regs->y = 0;
700 regs->u_regs[14] = infop->start_stack - 16 * 4;
853d6f7a
FB
701}
702
a315a145 703#endif
853d6f7a
FB
704#endif
705
67867308
FB
706#ifdef TARGET_PPC
707
4ecd4d16 708#define ELF_MACHINE PPC_ELF_MACHINE
67867308
FB
709#define ELF_START_MMAP 0x80000000
710
e85e7c6e 711#if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
84409ddb
JM
712
713#define elf_check_arch(x) ( (x) == EM_PPC64 )
714
d97ef72e 715#define ELF_CLASS ELFCLASS64
84409ddb
JM
716
717#else
718
d97ef72e 719#define ELF_CLASS ELFCLASS32
84409ddb
JM
720
721#endif
722
d97ef72e 723#define ELF_ARCH EM_PPC
67867308 724
df84e4f3
NF
725/* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
726 See arch/powerpc/include/asm/cputable.h. */
727enum {
3efa9a67 728 QEMU_PPC_FEATURE_32 = 0x80000000,
729 QEMU_PPC_FEATURE_64 = 0x40000000,
730 QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
731 QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
732 QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
733 QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
734 QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
735 QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
736 QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
737 QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
738 QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
739 QEMU_PPC_FEATURE_NO_TB = 0x00100000,
740 QEMU_PPC_FEATURE_POWER4 = 0x00080000,
741 QEMU_PPC_FEATURE_POWER5 = 0x00040000,
742 QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
743 QEMU_PPC_FEATURE_CELL = 0x00010000,
744 QEMU_PPC_FEATURE_BOOKE = 0x00008000,
745 QEMU_PPC_FEATURE_SMT = 0x00004000,
746 QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
747 QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
748 QEMU_PPC_FEATURE_PA6T = 0x00000800,
749 QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
750 QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
751 QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
752 QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
753 QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
754
755 QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
756 QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
a60438dd
TM
757
758 /* Feature definitions in AT_HWCAP2. */
759 QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */
760 QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */
761 QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */
762 QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */
763 QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */
764 QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */
be0c46d4 765 QEMU_PPC_FEATURE2_ARCH_3_00 = 0x00800000, /* ISA 3.00 */
df84e4f3
NF
766};
767
768#define ELF_HWCAP get_elf_hwcap()
769
770static uint32_t get_elf_hwcap(void)
771{
a2247f8e 772 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
df84e4f3
NF
773 uint32_t features = 0;
774
775 /* We don't have to be terribly complete here; the high points are
776 Altivec/FP/SPE support. Anything else is just a bonus. */
d97ef72e 777#define GET_FEATURE(flag, feature) \
a2247f8e 778 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
58eb5308
MW
779#define GET_FEATURE2(flags, feature) \
780 do { \
781 if ((cpu->env.insns_flags2 & flags) == flags) { \
782 features |= feature; \
783 } \
784 } while (0)
3efa9a67 785 GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
786 GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
787 GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
788 GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
789 GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
790 GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
791 GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
792 GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
0e019746
TM
793 GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP);
794 GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX);
795 GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 |
796 PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206),
797 QEMU_PPC_FEATURE_ARCH_2_06);
df84e4f3 798#undef GET_FEATURE
0e019746 799#undef GET_FEATURE2
df84e4f3
NF
800
801 return features;
802}
803
a60438dd
TM
804#define ELF_HWCAP2 get_elf_hwcap2()
805
806static uint32_t get_elf_hwcap2(void)
807{
808 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
809 uint32_t features = 0;
810
811#define GET_FEATURE(flag, feature) \
812 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
813#define GET_FEATURE2(flag, feature) \
814 do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
815
816 GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL);
817 GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR);
818 GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 |
819 PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07);
be0c46d4 820 GET_FEATURE2(PPC2_ISA300, QEMU_PPC_FEATURE2_ARCH_3_00);
a60438dd
TM
821
822#undef GET_FEATURE
823#undef GET_FEATURE2
824
825 return features;
826}
827
f5155289
FB
828/*
829 * The requirements here are:
830 * - keep the final alignment of sp (sp & 0xf)
831 * - make sure the 32-bit value at the first 16 byte aligned position of
832 * AUXV is greater than 16 for glibc compatibility.
833 * AT_IGNOREPPC is used for that.
834 * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
835 * even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
836 */
0bccf03d 837#define DLINFO_ARCH_ITEMS 5
d97ef72e
RH
838#define ARCH_DLINFO \
839 do { \
623e250a 840 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); \
d97ef72e 841 /* \
82991bed
PM
842 * Handle glibc compatibility: these magic entries must \
843 * be at the lowest addresses in the final auxv. \
d97ef72e
RH
844 */ \
845 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
846 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
82991bed
PM
847 NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \
848 NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \
849 NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \
d97ef72e 850 } while (0)
f5155289 851
67867308
FB
852static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
853{
67867308 854 _regs->gpr[1] = infop->start_stack;
e85e7c6e 855#if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
d90b94cd 856 if (get_ppc64_abi(infop) < 2) {
2ccf97ec
PM
857 uint64_t val;
858 get_user_u64(val, infop->entry + 8);
859 _regs->gpr[2] = val + infop->load_bias;
860 get_user_u64(val, infop->entry);
861 infop->entry = val + infop->load_bias;
d90b94cd
DK
862 } else {
863 _regs->gpr[12] = infop->entry; /* r12 set to global entry address */
864 }
84409ddb 865#endif
67867308
FB
866 _regs->nip = infop->entry;
867}
868
e2f3e741
NF
869/* See linux kernel: arch/powerpc/include/asm/elf.h. */
870#define ELF_NREG 48
871typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
872
05390248 873static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env)
e2f3e741
NF
874{
875 int i;
876 target_ulong ccr = 0;
877
878 for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
86cd7b2d 879 (*regs)[i] = tswapreg(env->gpr[i]);
e2f3e741
NF
880 }
881
86cd7b2d
PB
882 (*regs)[32] = tswapreg(env->nip);
883 (*regs)[33] = tswapreg(env->msr);
884 (*regs)[35] = tswapreg(env->ctr);
885 (*regs)[36] = tswapreg(env->lr);
886 (*regs)[37] = tswapreg(env->xer);
e2f3e741
NF
887
888 for (i = 0; i < ARRAY_SIZE(env->crf); i++) {
889 ccr |= env->crf[i] << (32 - ((i + 1) * 4));
890 }
86cd7b2d 891 (*regs)[38] = tswapreg(ccr);
e2f3e741
NF
892}
893
894#define USE_ELF_CORE_DUMP
d97ef72e 895#define ELF_EXEC_PAGESIZE 4096
67867308
FB
896
897#endif
898
048f6b4d
FB
899#ifdef TARGET_MIPS
900
901#define ELF_START_MMAP 0x80000000
902
388bb21a
TS
903#ifdef TARGET_MIPS64
904#define ELF_CLASS ELFCLASS64
905#else
048f6b4d 906#define ELF_CLASS ELFCLASS32
388bb21a 907#endif
048f6b4d
FB
908#define ELF_ARCH EM_MIPS
909
f72541f3
AM
910#define elf_check_arch(x) ((x) == EM_MIPS || (x) == EM_NANOMIPS)
911
d97ef72e
RH
912static inline void init_thread(struct target_pt_regs *regs,
913 struct image_info *infop)
048f6b4d 914{
623a930e 915 regs->cp0_status = 2 << CP0St_KSU;
048f6b4d
FB
916 regs->cp0_epc = infop->entry;
917 regs->regs[29] = infop->start_stack;
918}
919
51e52606
NF
920/* See linux kernel: arch/mips/include/asm/elf.h. */
921#define ELF_NREG 45
922typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
923
924/* See linux kernel: arch/mips/include/asm/reg.h. */
925enum {
926#ifdef TARGET_MIPS64
927 TARGET_EF_R0 = 0,
928#else
929 TARGET_EF_R0 = 6,
930#endif
931 TARGET_EF_R26 = TARGET_EF_R0 + 26,
932 TARGET_EF_R27 = TARGET_EF_R0 + 27,
933 TARGET_EF_LO = TARGET_EF_R0 + 32,
934 TARGET_EF_HI = TARGET_EF_R0 + 33,
935 TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34,
936 TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35,
937 TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36,
938 TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37
939};
940
941/* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
05390248 942static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env)
51e52606
NF
943{
944 int i;
945
946 for (i = 0; i < TARGET_EF_R0; i++) {
947 (*regs)[i] = 0;
948 }
949 (*regs)[TARGET_EF_R0] = 0;
950
951 for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) {
a29f998d 952 (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]);
51e52606
NF
953 }
954
955 (*regs)[TARGET_EF_R26] = 0;
956 (*regs)[TARGET_EF_R27] = 0;
a29f998d
PB
957 (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]);
958 (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]);
959 (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC);
960 (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr);
961 (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status);
962 (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause);
51e52606
NF
963}
964
965#define USE_ELF_CORE_DUMP
388bb21a
TS
966#define ELF_EXEC_PAGESIZE 4096
967
46a1ee4f
JC
968/* See arch/mips/include/uapi/asm/hwcap.h. */
969enum {
970 HWCAP_MIPS_R6 = (1 << 0),
971 HWCAP_MIPS_MSA = (1 << 1),
972};
973
974#define ELF_HWCAP get_elf_hwcap()
975
976static uint32_t get_elf_hwcap(void)
977{
978 MIPSCPU *cpu = MIPS_CPU(thread_cpu);
979 uint32_t hwcaps = 0;
980
981#define GET_FEATURE(flag, hwcap) \
982 do { if (cpu->env.insn_flags & (flag)) { hwcaps |= hwcap; } } while (0)
983
984 GET_FEATURE(ISA_MIPS32R6 | ISA_MIPS64R6, HWCAP_MIPS_R6);
985 GET_FEATURE(ASE_MSA, HWCAP_MIPS_MSA);
986
987#undef GET_FEATURE
988
989 return hwcaps;
990}
991
048f6b4d
FB
992#endif /* TARGET_MIPS */
993
b779e29e
EI
994#ifdef TARGET_MICROBLAZE
995
996#define ELF_START_MMAP 0x80000000
997
0d5d4699 998#define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
b779e29e
EI
999
1000#define ELF_CLASS ELFCLASS32
0d5d4699 1001#define ELF_ARCH EM_MICROBLAZE
b779e29e 1002
d97ef72e
RH
1003static inline void init_thread(struct target_pt_regs *regs,
1004 struct image_info *infop)
b779e29e
EI
1005{
1006 regs->pc = infop->entry;
1007 regs->r1 = infop->start_stack;
1008
1009}
1010
b779e29e
EI
1011#define ELF_EXEC_PAGESIZE 4096
1012
e4cbd44d
EI
1013#define USE_ELF_CORE_DUMP
1014#define ELF_NREG 38
1015typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1016
1017/* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
05390248 1018static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env)
e4cbd44d
EI
1019{
1020 int i, pos = 0;
1021
1022 for (i = 0; i < 32; i++) {
86cd7b2d 1023 (*regs)[pos++] = tswapreg(env->regs[i]);
e4cbd44d
EI
1024 }
1025
1026 for (i = 0; i < 6; i++) {
86cd7b2d 1027 (*regs)[pos++] = tswapreg(env->sregs[i]);
e4cbd44d
EI
1028 }
1029}
1030
b779e29e
EI
1031#endif /* TARGET_MICROBLAZE */
1032
a0a839b6
MV
1033#ifdef TARGET_NIOS2
1034
1035#define ELF_START_MMAP 0x80000000
1036
1037#define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2)
1038
1039#define ELF_CLASS ELFCLASS32
1040#define ELF_ARCH EM_ALTERA_NIOS2
1041
1042static void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1043{
1044 regs->ea = infop->entry;
1045 regs->sp = infop->start_stack;
1046 regs->estatus = 0x3;
1047}
1048
1049#define ELF_EXEC_PAGESIZE 4096
1050
1051#define USE_ELF_CORE_DUMP
1052#define ELF_NREG 49
1053typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1054
1055/* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
1056static void elf_core_copy_regs(target_elf_gregset_t *regs,
1057 const CPUNios2State *env)
1058{
1059 int i;
1060
1061 (*regs)[0] = -1;
1062 for (i = 1; i < 8; i++) /* r0-r7 */
1063 (*regs)[i] = tswapreg(env->regs[i + 7]);
1064
1065 for (i = 8; i < 16; i++) /* r8-r15 */
1066 (*regs)[i] = tswapreg(env->regs[i - 8]);
1067
1068 for (i = 16; i < 24; i++) /* r16-r23 */
1069 (*regs)[i] = tswapreg(env->regs[i + 7]);
1070 (*regs)[24] = -1; /* R_ET */
1071 (*regs)[25] = -1; /* R_BT */
1072 (*regs)[26] = tswapreg(env->regs[R_GP]);
1073 (*regs)[27] = tswapreg(env->regs[R_SP]);
1074 (*regs)[28] = tswapreg(env->regs[R_FP]);
1075 (*regs)[29] = tswapreg(env->regs[R_EA]);
1076 (*regs)[30] = -1; /* R_SSTATUS */
1077 (*regs)[31] = tswapreg(env->regs[R_RA]);
1078
1079 (*regs)[32] = tswapreg(env->regs[R_PC]);
1080
1081 (*regs)[33] = -1; /* R_STATUS */
1082 (*regs)[34] = tswapreg(env->regs[CR_ESTATUS]);
1083
1084 for (i = 35; i < 49; i++) /* ... */
1085 (*regs)[i] = -1;
1086}
1087
1088#endif /* TARGET_NIOS2 */
1089
d962783e
JL
1090#ifdef TARGET_OPENRISC
1091
1092#define ELF_START_MMAP 0x08000000
1093
d962783e
JL
1094#define ELF_ARCH EM_OPENRISC
1095#define ELF_CLASS ELFCLASS32
1096#define ELF_DATA ELFDATA2MSB
1097
1098static inline void init_thread(struct target_pt_regs *regs,
1099 struct image_info *infop)
1100{
1101 regs->pc = infop->entry;
1102 regs->gpr[1] = infop->start_stack;
1103}
1104
1105#define USE_ELF_CORE_DUMP
1106#define ELF_EXEC_PAGESIZE 8192
1107
1108/* See linux kernel arch/openrisc/include/asm/elf.h. */
1109#define ELF_NREG 34 /* gprs and pc, sr */
1110typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1111
1112static void elf_core_copy_regs(target_elf_gregset_t *regs,
1113 const CPUOpenRISCState *env)
1114{
1115 int i;
1116
1117 for (i = 0; i < 32; i++) {
d89e71e8 1118 (*regs)[i] = tswapreg(cpu_get_gpr(env, i));
d962783e 1119 }
86cd7b2d 1120 (*regs)[32] = tswapreg(env->pc);
84775c43 1121 (*regs)[33] = tswapreg(cpu_get_sr(env));
d962783e
JL
1122}
1123#define ELF_HWCAP 0
1124#define ELF_PLATFORM NULL
1125
1126#endif /* TARGET_OPENRISC */
1127
fdf9b3e8
FB
1128#ifdef TARGET_SH4
1129
1130#define ELF_START_MMAP 0x80000000
1131
fdf9b3e8 1132#define ELF_CLASS ELFCLASS32
fdf9b3e8
FB
1133#define ELF_ARCH EM_SH
1134
d97ef72e
RH
1135static inline void init_thread(struct target_pt_regs *regs,
1136 struct image_info *infop)
fdf9b3e8 1137{
d97ef72e
RH
1138 /* Check other registers XXXXX */
1139 regs->pc = infop->entry;
1140 regs->regs[15] = infop->start_stack;
fdf9b3e8
FB
1141}
1142
7631c97e
NF
1143/* See linux kernel: arch/sh/include/asm/elf.h. */
1144#define ELF_NREG 23
1145typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1146
1147/* See linux kernel: arch/sh/include/asm/ptrace.h. */
1148enum {
1149 TARGET_REG_PC = 16,
1150 TARGET_REG_PR = 17,
1151 TARGET_REG_SR = 18,
1152 TARGET_REG_GBR = 19,
1153 TARGET_REG_MACH = 20,
1154 TARGET_REG_MACL = 21,
1155 TARGET_REG_SYSCALL = 22
1156};
1157
d97ef72e 1158static inline void elf_core_copy_regs(target_elf_gregset_t *regs,
05390248 1159 const CPUSH4State *env)
7631c97e
NF
1160{
1161 int i;
1162
1163 for (i = 0; i < 16; i++) {
72cd500b 1164 (*regs)[i] = tswapreg(env->gregs[i]);
7631c97e
NF
1165 }
1166
86cd7b2d
PB
1167 (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1168 (*regs)[TARGET_REG_PR] = tswapreg(env->pr);
1169 (*regs)[TARGET_REG_SR] = tswapreg(env->sr);
1170 (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr);
1171 (*regs)[TARGET_REG_MACH] = tswapreg(env->mach);
1172 (*regs)[TARGET_REG_MACL] = tswapreg(env->macl);
7631c97e
NF
1173 (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */
1174}
1175
1176#define USE_ELF_CORE_DUMP
fdf9b3e8
FB
1177#define ELF_EXEC_PAGESIZE 4096
1178
e42fd944
RH
1179enum {
1180 SH_CPU_HAS_FPU = 0x0001, /* Hardware FPU support */
1181 SH_CPU_HAS_P2_FLUSH_BUG = 0x0002, /* Need to flush the cache in P2 area */
1182 SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */
1183 SH_CPU_HAS_DSP = 0x0008, /* SH-DSP: DSP support */
1184 SH_CPU_HAS_PERF_COUNTER = 0x0010, /* Hardware performance counters */
1185 SH_CPU_HAS_PTEA = 0x0020, /* PTEA register */
1186 SH_CPU_HAS_LLSC = 0x0040, /* movli.l/movco.l */
1187 SH_CPU_HAS_L2_CACHE = 0x0080, /* Secondary cache / URAM */
1188 SH_CPU_HAS_OP32 = 0x0100, /* 32-bit instruction support */
1189 SH_CPU_HAS_PTEAEX = 0x0200, /* PTE ASID Extension support */
1190};
1191
1192#define ELF_HWCAP get_elf_hwcap()
1193
1194static uint32_t get_elf_hwcap(void)
1195{
1196 SuperHCPU *cpu = SUPERH_CPU(thread_cpu);
1197 uint32_t hwcap = 0;
1198
1199 hwcap |= SH_CPU_HAS_FPU;
1200
1201 if (cpu->env.features & SH_FEATURE_SH4A) {
1202 hwcap |= SH_CPU_HAS_LLSC;
1203 }
1204
1205 return hwcap;
1206}
1207
fdf9b3e8
FB
1208#endif
1209
48733d19
TS
1210#ifdef TARGET_CRIS
1211
1212#define ELF_START_MMAP 0x80000000
1213
48733d19 1214#define ELF_CLASS ELFCLASS32
48733d19
TS
1215#define ELF_ARCH EM_CRIS
1216
d97ef72e
RH
1217static inline void init_thread(struct target_pt_regs *regs,
1218 struct image_info *infop)
48733d19 1219{
d97ef72e 1220 regs->erp = infop->entry;
48733d19
TS
1221}
1222
48733d19
TS
1223#define ELF_EXEC_PAGESIZE 8192
1224
1225#endif
1226
e6e5906b
PB
1227#ifdef TARGET_M68K
1228
1229#define ELF_START_MMAP 0x80000000
1230
d97ef72e 1231#define ELF_CLASS ELFCLASS32
d97ef72e 1232#define ELF_ARCH EM_68K
e6e5906b
PB
1233
1234/* ??? Does this need to do anything?
d97ef72e 1235 #define ELF_PLAT_INIT(_r) */
e6e5906b 1236
d97ef72e
RH
1237static inline void init_thread(struct target_pt_regs *regs,
1238 struct image_info *infop)
e6e5906b
PB
1239{
1240 regs->usp = infop->start_stack;
1241 regs->sr = 0;
1242 regs->pc = infop->entry;
1243}
1244
7a93cc55
NF
1245/* See linux kernel: arch/m68k/include/asm/elf.h. */
1246#define ELF_NREG 20
1247typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1248
05390248 1249static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env)
7a93cc55 1250{
86cd7b2d
PB
1251 (*regs)[0] = tswapreg(env->dregs[1]);
1252 (*regs)[1] = tswapreg(env->dregs[2]);
1253 (*regs)[2] = tswapreg(env->dregs[3]);
1254 (*regs)[3] = tswapreg(env->dregs[4]);
1255 (*regs)[4] = tswapreg(env->dregs[5]);
1256 (*regs)[5] = tswapreg(env->dregs[6]);
1257 (*regs)[6] = tswapreg(env->dregs[7]);
1258 (*regs)[7] = tswapreg(env->aregs[0]);
1259 (*regs)[8] = tswapreg(env->aregs[1]);
1260 (*regs)[9] = tswapreg(env->aregs[2]);
1261 (*regs)[10] = tswapreg(env->aregs[3]);
1262 (*regs)[11] = tswapreg(env->aregs[4]);
1263 (*regs)[12] = tswapreg(env->aregs[5]);
1264 (*regs)[13] = tswapreg(env->aregs[6]);
1265 (*regs)[14] = tswapreg(env->dregs[0]);
1266 (*regs)[15] = tswapreg(env->aregs[7]);
1267 (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */
1268 (*regs)[17] = tswapreg(env->sr);
1269 (*regs)[18] = tswapreg(env->pc);
7a93cc55
NF
1270 (*regs)[19] = 0; /* FIXME: regs->format | regs->vector */
1271}
1272
1273#define USE_ELF_CORE_DUMP
d97ef72e 1274#define ELF_EXEC_PAGESIZE 8192
e6e5906b
PB
1275
1276#endif
1277
7a3148a9
JM
1278#ifdef TARGET_ALPHA
1279
1280#define ELF_START_MMAP (0x30000000000ULL)
1281
7a3148a9 1282#define ELF_CLASS ELFCLASS64
7a3148a9
JM
1283#define ELF_ARCH EM_ALPHA
1284
d97ef72e
RH
1285static inline void init_thread(struct target_pt_regs *regs,
1286 struct image_info *infop)
7a3148a9
JM
1287{
1288 regs->pc = infop->entry;
1289 regs->ps = 8;
1290 regs->usp = infop->start_stack;
7a3148a9
JM
1291}
1292
7a3148a9
JM
1293#define ELF_EXEC_PAGESIZE 8192
1294
1295#endif /* TARGET_ALPHA */
1296
a4c075f1
UH
1297#ifdef TARGET_S390X
1298
1299#define ELF_START_MMAP (0x20000000000ULL)
1300
a4c075f1
UH
1301#define ELF_CLASS ELFCLASS64
1302#define ELF_DATA ELFDATA2MSB
1303#define ELF_ARCH EM_S390
1304
1305static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1306{
1307 regs->psw.addr = infop->entry;
1308 regs->psw.mask = PSW_MASK_64 | PSW_MASK_32;
1309 regs->gprs[15] = infop->start_stack;
1310}
1311
1312#endif /* TARGET_S390X */
1313
b16189b2
CG
1314#ifdef TARGET_TILEGX
1315
1316/* 42 bits real used address, a half for user mode */
1317#define ELF_START_MMAP (0x00000020000000000ULL)
1318
1319#define elf_check_arch(x) ((x) == EM_TILEGX)
1320
1321#define ELF_CLASS ELFCLASS64
1322#define ELF_DATA ELFDATA2LSB
1323#define ELF_ARCH EM_TILEGX
1324
1325static inline void init_thread(struct target_pt_regs *regs,
1326 struct image_info *infop)
1327{
1328 regs->pc = infop->entry;
1329 regs->sp = infop->start_stack;
1330
1331}
1332
1333#define ELF_EXEC_PAGESIZE 65536 /* TILE-Gx page size is 64KB */
1334
1335#endif /* TARGET_TILEGX */
1336
47ae93cd
MC
1337#ifdef TARGET_RISCV
1338
1339#define ELF_START_MMAP 0x80000000
1340#define ELF_ARCH EM_RISCV
1341
1342#ifdef TARGET_RISCV32
1343#define ELF_CLASS ELFCLASS32
1344#else
1345#define ELF_CLASS ELFCLASS64
1346#endif
1347
1348static inline void init_thread(struct target_pt_regs *regs,
1349 struct image_info *infop)
1350{
1351 regs->sepc = infop->entry;
1352 regs->sp = infop->start_stack;
1353}
1354
1355#define ELF_EXEC_PAGESIZE 4096
1356
1357#endif /* TARGET_RISCV */
1358
7c248bcd
RH
1359#ifdef TARGET_HPPA
1360
1361#define ELF_START_MMAP 0x80000000
1362#define ELF_CLASS ELFCLASS32
1363#define ELF_ARCH EM_PARISC
1364#define ELF_PLATFORM "PARISC"
1365#define STACK_GROWS_DOWN 0
1366#define STACK_ALIGNMENT 64
1367
1368static inline void init_thread(struct target_pt_regs *regs,
1369 struct image_info *infop)
1370{
1371 regs->iaoq[0] = infop->entry;
1372 regs->iaoq[1] = infop->entry + 4;
1373 regs->gr[23] = 0;
1374 regs->gr[24] = infop->arg_start;
1375 regs->gr[25] = (infop->arg_end - infop->arg_start) / sizeof(abi_ulong);
1376 /* The top-of-stack contains a linkage buffer. */
1377 regs->gr[30] = infop->start_stack + 64;
1378 regs->gr[31] = infop->entry;
1379}
1380
1381#endif /* TARGET_HPPA */
1382
ba7651fb
MF
1383#ifdef TARGET_XTENSA
1384
1385#define ELF_START_MMAP 0x20000000
1386
1387#define ELF_CLASS ELFCLASS32
1388#define ELF_ARCH EM_XTENSA
1389
1390static inline void init_thread(struct target_pt_regs *regs,
1391 struct image_info *infop)
1392{
1393 regs->windowbase = 0;
1394 regs->windowstart = 1;
1395 regs->areg[1] = infop->start_stack;
1396 regs->pc = infop->entry;
1397}
1398
1399/* See linux kernel: arch/xtensa/include/asm/elf.h. */
1400#define ELF_NREG 128
1401typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1402
1403enum {
1404 TARGET_REG_PC,
1405 TARGET_REG_PS,
1406 TARGET_REG_LBEG,
1407 TARGET_REG_LEND,
1408 TARGET_REG_LCOUNT,
1409 TARGET_REG_SAR,
1410 TARGET_REG_WINDOWSTART,
1411 TARGET_REG_WINDOWBASE,
1412 TARGET_REG_THREADPTR,
1413 TARGET_REG_AR0 = 64,
1414};
1415
1416static void elf_core_copy_regs(target_elf_gregset_t *regs,
1417 const CPUXtensaState *env)
1418{
1419 unsigned i;
1420
1421 (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1422 (*regs)[TARGET_REG_PS] = tswapreg(env->sregs[PS] & ~PS_EXCM);
1423 (*regs)[TARGET_REG_LBEG] = tswapreg(env->sregs[LBEG]);
1424 (*regs)[TARGET_REG_LEND] = tswapreg(env->sregs[LEND]);
1425 (*regs)[TARGET_REG_LCOUNT] = tswapreg(env->sregs[LCOUNT]);
1426 (*regs)[TARGET_REG_SAR] = tswapreg(env->sregs[SAR]);
1427 (*regs)[TARGET_REG_WINDOWSTART] = tswapreg(env->sregs[WINDOW_START]);
1428 (*regs)[TARGET_REG_WINDOWBASE] = tswapreg(env->sregs[WINDOW_BASE]);
1429 (*regs)[TARGET_REG_THREADPTR] = tswapreg(env->uregs[THREADPTR]);
1430 xtensa_sync_phys_from_window((CPUXtensaState *)env);
1431 for (i = 0; i < env->config->nareg; ++i) {
1432 (*regs)[TARGET_REG_AR0 + i] = tswapreg(env->phys_regs[i]);
1433 }
1434}
1435
1436#define USE_ELF_CORE_DUMP
1437#define ELF_EXEC_PAGESIZE 4096
1438
1439#endif /* TARGET_XTENSA */
1440
15338fd7
FB
1441#ifndef ELF_PLATFORM
1442#define ELF_PLATFORM (NULL)
1443#endif
1444
75be901c
PC
1445#ifndef ELF_MACHINE
1446#define ELF_MACHINE ELF_ARCH
1447#endif
1448
d276a604
PC
1449#ifndef elf_check_arch
1450#define elf_check_arch(x) ((x) == ELF_ARCH)
1451#endif
1452
15338fd7
FB
1453#ifndef ELF_HWCAP
1454#define ELF_HWCAP 0
1455#endif
1456
7c4ee5bc
RH
1457#ifndef STACK_GROWS_DOWN
1458#define STACK_GROWS_DOWN 1
1459#endif
1460
1461#ifndef STACK_ALIGNMENT
1462#define STACK_ALIGNMENT 16
1463#endif
1464
992f48a0 1465#ifdef TARGET_ABI32
cb33da57 1466#undef ELF_CLASS
992f48a0 1467#define ELF_CLASS ELFCLASS32
cb33da57
BS
1468#undef bswaptls
1469#define bswaptls(ptr) bswap32s(ptr)
1470#endif
1471
31e31b8a 1472#include "elf.h"
09bfb054 1473
09bfb054
FB
1474struct exec
1475{
d97ef72e
RH
1476 unsigned int a_info; /* Use macros N_MAGIC, etc for access */
1477 unsigned int a_text; /* length of text, in bytes */
1478 unsigned int a_data; /* length of data, in bytes */
1479 unsigned int a_bss; /* length of uninitialized data area, in bytes */
1480 unsigned int a_syms; /* length of symbol table data in file, in bytes */
1481 unsigned int a_entry; /* start address */
1482 unsigned int a_trsize; /* length of relocation info for text, in bytes */
1483 unsigned int a_drsize; /* length of relocation info for data, in bytes */
09bfb054
FB
1484};
1485
1486
1487#define N_MAGIC(exec) ((exec).a_info & 0xffff)
1488#define OMAGIC 0407
1489#define NMAGIC 0410
1490#define ZMAGIC 0413
1491#define QMAGIC 0314
1492
31e31b8a 1493/* Necessary parameters */
94894ff2
SB
1494#define TARGET_ELF_EXEC_PAGESIZE \
1495 (((eppnt->p_align & ~qemu_host_page_mask) != 0) ? \
1496 TARGET_PAGE_SIZE : MAX(qemu_host_page_size, TARGET_PAGE_SIZE))
1497#define TARGET_ELF_PAGELENGTH(_v) ROUND_UP((_v), TARGET_ELF_EXEC_PAGESIZE)
79cb1f1d
YK
1498#define TARGET_ELF_PAGESTART(_v) ((_v) & \
1499 ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1))
54936004 1500#define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1))
31e31b8a 1501
444cd5c3 1502#define DLINFO_ITEMS 15
31e31b8a 1503
09bfb054
FB
1504static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
1505{
d97ef72e 1506 memcpy(to, from, n);
09bfb054 1507}
d691f669 1508
31e31b8a 1509#ifdef BSWAP_NEEDED
92a31b1f 1510static void bswap_ehdr(struct elfhdr *ehdr)
31e31b8a 1511{
d97ef72e
RH
1512 bswap16s(&ehdr->e_type); /* Object file type */
1513 bswap16s(&ehdr->e_machine); /* Architecture */
1514 bswap32s(&ehdr->e_version); /* Object file version */
1515 bswaptls(&ehdr->e_entry); /* Entry point virtual address */
1516 bswaptls(&ehdr->e_phoff); /* Program header table file offset */
1517 bswaptls(&ehdr->e_shoff); /* Section header table file offset */
1518 bswap32s(&ehdr->e_flags); /* Processor-specific flags */
1519 bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */
1520 bswap16s(&ehdr->e_phentsize); /* Program header table entry size */
1521 bswap16s(&ehdr->e_phnum); /* Program header table entry count */
1522 bswap16s(&ehdr->e_shentsize); /* Section header table entry size */
1523 bswap16s(&ehdr->e_shnum); /* Section header table entry count */
1524 bswap16s(&ehdr->e_shstrndx); /* Section header string table index */
31e31b8a
FB
1525}
1526
991f8f0c 1527static void bswap_phdr(struct elf_phdr *phdr, int phnum)
31e31b8a 1528{
991f8f0c
RH
1529 int i;
1530 for (i = 0; i < phnum; ++i, ++phdr) {
1531 bswap32s(&phdr->p_type); /* Segment type */
1532 bswap32s(&phdr->p_flags); /* Segment flags */
1533 bswaptls(&phdr->p_offset); /* Segment file offset */
1534 bswaptls(&phdr->p_vaddr); /* Segment virtual address */
1535 bswaptls(&phdr->p_paddr); /* Segment physical address */
1536 bswaptls(&phdr->p_filesz); /* Segment size in file */
1537 bswaptls(&phdr->p_memsz); /* Segment size in memory */
1538 bswaptls(&phdr->p_align); /* Segment alignment */
1539 }
31e31b8a 1540}
689f936f 1541
991f8f0c 1542static void bswap_shdr(struct elf_shdr *shdr, int shnum)
689f936f 1543{
991f8f0c
RH
1544 int i;
1545 for (i = 0; i < shnum; ++i, ++shdr) {
1546 bswap32s(&shdr->sh_name);
1547 bswap32s(&shdr->sh_type);
1548 bswaptls(&shdr->sh_flags);
1549 bswaptls(&shdr->sh_addr);
1550 bswaptls(&shdr->sh_offset);
1551 bswaptls(&shdr->sh_size);
1552 bswap32s(&shdr->sh_link);
1553 bswap32s(&shdr->sh_info);
1554 bswaptls(&shdr->sh_addralign);
1555 bswaptls(&shdr->sh_entsize);
1556 }
689f936f
FB
1557}
1558
7a3148a9 1559static void bswap_sym(struct elf_sym *sym)
689f936f
FB
1560{
1561 bswap32s(&sym->st_name);
7a3148a9
JM
1562 bswaptls(&sym->st_value);
1563 bswaptls(&sym->st_size);
689f936f
FB
1564 bswap16s(&sym->st_shndx);
1565}
5dd0db52
SM
1566
1567#ifdef TARGET_MIPS
1568static void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags)
1569{
1570 bswap16s(&abiflags->version);
1571 bswap32s(&abiflags->ases);
1572 bswap32s(&abiflags->isa_ext);
1573 bswap32s(&abiflags->flags1);
1574 bswap32s(&abiflags->flags2);
1575}
1576#endif
991f8f0c
RH
1577#else
1578static inline void bswap_ehdr(struct elfhdr *ehdr) { }
1579static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { }
1580static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { }
1581static inline void bswap_sym(struct elf_sym *sym) { }
5dd0db52
SM
1582#ifdef TARGET_MIPS
1583static inline void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) { }
1584#endif
31e31b8a
FB
1585#endif
1586
edf8e2af 1587#ifdef USE_ELF_CORE_DUMP
9349b4f9 1588static int elf_core_dump(int, const CPUArchState *);
edf8e2af 1589#endif /* USE_ELF_CORE_DUMP */
682674b8 1590static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias);
edf8e2af 1591
9058abdd
RH
1592/* Verify the portions of EHDR within E_IDENT for the target.
1593 This can be performed before bswapping the entire header. */
1594static bool elf_check_ident(struct elfhdr *ehdr)
1595{
1596 return (ehdr->e_ident[EI_MAG0] == ELFMAG0
1597 && ehdr->e_ident[EI_MAG1] == ELFMAG1
1598 && ehdr->e_ident[EI_MAG2] == ELFMAG2
1599 && ehdr->e_ident[EI_MAG3] == ELFMAG3
1600 && ehdr->e_ident[EI_CLASS] == ELF_CLASS
1601 && ehdr->e_ident[EI_DATA] == ELF_DATA
1602 && ehdr->e_ident[EI_VERSION] == EV_CURRENT);
1603}
1604
1605/* Verify the portions of EHDR outside of E_IDENT for the target.
1606 This has to wait until after bswapping the header. */
1607static bool elf_check_ehdr(struct elfhdr *ehdr)
1608{
1609 return (elf_check_arch(ehdr->e_machine)
1610 && ehdr->e_ehsize == sizeof(struct elfhdr)
1611 && ehdr->e_phentsize == sizeof(struct elf_phdr)
9058abdd
RH
1612 && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN));
1613}
1614
31e31b8a 1615/*
e5fe0c52 1616 * 'copy_elf_strings()' copies argument/envelope strings from user
31e31b8a
FB
1617 * memory to free pages in kernel mem. These are in a format ready
1618 * to be put directly into the top of new user memory.
1619 *
1620 */
59baae9a
SB
1621static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch,
1622 abi_ulong p, abi_ulong stack_limit)
31e31b8a 1623{
59baae9a 1624 char *tmp;
7c4ee5bc 1625 int len, i;
59baae9a 1626 abi_ulong top = p;
31e31b8a
FB
1627
1628 if (!p) {
d97ef72e 1629 return 0; /* bullet-proofing */
31e31b8a 1630 }
59baae9a 1631
7c4ee5bc
RH
1632 if (STACK_GROWS_DOWN) {
1633 int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1;
1634 for (i = argc - 1; i >= 0; --i) {
1635 tmp = argv[i];
1636 if (!tmp) {
1637 fprintf(stderr, "VFS: argc is wrong");
1638 exit(-1);
1639 }
1640 len = strlen(tmp) + 1;
1641 tmp += len;
59baae9a 1642
7c4ee5bc
RH
1643 if (len > (p - stack_limit)) {
1644 return 0;
1645 }
1646 while (len) {
1647 int bytes_to_copy = (len > offset) ? offset : len;
1648 tmp -= bytes_to_copy;
1649 p -= bytes_to_copy;
1650 offset -= bytes_to_copy;
1651 len -= bytes_to_copy;
1652
1653 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy);
1654
1655 if (offset == 0) {
1656 memcpy_to_target(p, scratch, top - p);
1657 top = p;
1658 offset = TARGET_PAGE_SIZE;
1659 }
1660 }
d97ef72e 1661 }
7c4ee5bc
RH
1662 if (p != top) {
1663 memcpy_to_target(p, scratch + offset, top - p);
d97ef72e 1664 }
7c4ee5bc
RH
1665 } else {
1666 int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE);
1667 for (i = 0; i < argc; ++i) {
1668 tmp = argv[i];
1669 if (!tmp) {
1670 fprintf(stderr, "VFS: argc is wrong");
1671 exit(-1);
1672 }
1673 len = strlen(tmp) + 1;
1674 if (len > (stack_limit - p)) {
1675 return 0;
1676 }
1677 while (len) {
1678 int bytes_to_copy = (len > remaining) ? remaining : len;
1679
1680 memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy);
1681
1682 tmp += bytes_to_copy;
1683 remaining -= bytes_to_copy;
1684 p += bytes_to_copy;
1685 len -= bytes_to_copy;
1686
1687 if (remaining == 0) {
1688 memcpy_to_target(top, scratch, p - top);
1689 top = p;
1690 remaining = TARGET_PAGE_SIZE;
1691 }
d97ef72e
RH
1692 }
1693 }
7c4ee5bc
RH
1694 if (p != top) {
1695 memcpy_to_target(top, scratch, p - top);
1696 }
59baae9a
SB
1697 }
1698
31e31b8a
FB
1699 return p;
1700}
1701
59baae9a
SB
1702/* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of
1703 * argument/environment space. Newer kernels (>2.6.33) allow more,
1704 * dependent on stack size, but guarantee at least 32 pages for
1705 * backwards compatibility.
1706 */
1707#define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE)
1708
1709static abi_ulong setup_arg_pages(struct linux_binprm *bprm,
992f48a0 1710 struct image_info *info)
53a5960a 1711{
59baae9a 1712 abi_ulong size, error, guard;
31e31b8a 1713
703e0e89 1714 size = guest_stack_size;
59baae9a
SB
1715 if (size < STACK_LOWER_LIMIT) {
1716 size = STACK_LOWER_LIMIT;
60dcbcb5
RH
1717 }
1718 guard = TARGET_PAGE_SIZE;
1719 if (guard < qemu_real_host_page_size) {
1720 guard = qemu_real_host_page_size;
1721 }
1722
1723 error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE,
1724 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
09bfb054 1725 if (error == -1) {
60dcbcb5 1726 perror("mmap stack");
09bfb054
FB
1727 exit(-1);
1728 }
31e31b8a 1729
60dcbcb5 1730 /* We reserve one extra page at the top of the stack as guard. */
7c4ee5bc
RH
1731 if (STACK_GROWS_DOWN) {
1732 target_mprotect(error, guard, PROT_NONE);
1733 info->stack_limit = error + guard;
1734 return info->stack_limit + size - sizeof(void *);
1735 } else {
1736 target_mprotect(error + size, guard, PROT_NONE);
1737 info->stack_limit = error + size;
1738 return error;
1739 }
31e31b8a
FB
1740}
1741
cf129f3a
RH
1742/* Map and zero the bss. We need to explicitly zero any fractional pages
1743 after the data section (i.e. bss). */
1744static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot)
31e31b8a 1745{
cf129f3a
RH
1746 uintptr_t host_start, host_map_start, host_end;
1747
1748 last_bss = TARGET_PAGE_ALIGN(last_bss);
1749
1750 /* ??? There is confusion between qemu_real_host_page_size and
1751 qemu_host_page_size here and elsewhere in target_mmap, which
1752 may lead to the end of the data section mapping from the file
1753 not being mapped. At least there was an explicit test and
1754 comment for that here, suggesting that "the file size must
1755 be known". The comment probably pre-dates the introduction
1756 of the fstat system call in target_mmap which does in fact
1757 find out the size. What isn't clear is if the workaround
1758 here is still actually needed. For now, continue with it,
1759 but merge it with the "normal" mmap that would allocate the bss. */
1760
1761 host_start = (uintptr_t) g2h(elf_bss);
1762 host_end = (uintptr_t) g2h(last_bss);
0c2d70c4 1763 host_map_start = REAL_HOST_PAGE_ALIGN(host_start);
cf129f3a
RH
1764
1765 if (host_map_start < host_end) {
1766 void *p = mmap((void *)host_map_start, host_end - host_map_start,
1767 prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1768 if (p == MAP_FAILED) {
1769 perror("cannot mmap brk");
1770 exit(-1);
853d6f7a 1771 }
f46e9a0b 1772 }
853d6f7a 1773
f46e9a0b
TM
1774 /* Ensure that the bss page(s) are valid */
1775 if ((page_get_flags(last_bss-1) & prot) != prot) {
1776 page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot | PAGE_VALID);
cf129f3a 1777 }
31e31b8a 1778
cf129f3a
RH
1779 if (host_start < host_map_start) {
1780 memset((void *)host_start, 0, host_map_start - host_start);
1781 }
1782}
53a5960a 1783
cf58affe
CL
1784#ifdef TARGET_ARM
1785static int elf_is_fdpic(struct elfhdr *exec)
1786{
1787 return exec->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC;
1788}
1789#else
a99856cd
CL
1790/* Default implementation, always false. */
1791static int elf_is_fdpic(struct elfhdr *exec)
1792{
1793 return 0;
1794}
cf58affe 1795#endif
a99856cd 1796
1af02e83
MF
1797static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp)
1798{
1799 uint16_t n;
1800 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs;
1801
1802 /* elf32_fdpic_loadseg */
1803 n = info->nsegs;
1804 while (n--) {
1805 sp -= 12;
1806 put_user_u32(loadsegs[n].addr, sp+0);
1807 put_user_u32(loadsegs[n].p_vaddr, sp+4);
1808 put_user_u32(loadsegs[n].p_memsz, sp+8);
1809 }
1810
1811 /* elf32_fdpic_loadmap */
1812 sp -= 4;
1813 put_user_u16(0, sp+0); /* version */
1814 put_user_u16(info->nsegs, sp+2); /* nsegs */
1815
1816 info->personality = PER_LINUX_FDPIC;
1817 info->loadmap_addr = sp;
1818
1819 return sp;
1820}
1af02e83 1821
992f48a0 1822static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
8e62a717
RH
1823 struct elfhdr *exec,
1824 struct image_info *info,
1825 struct image_info *interp_info)
31e31b8a 1826{
d97ef72e 1827 abi_ulong sp;
7c4ee5bc 1828 abi_ulong u_argc, u_argv, u_envp, u_auxv;
d97ef72e 1829 int size;
14322bad
LA
1830 int i;
1831 abi_ulong u_rand_bytes;
1832 uint8_t k_rand_bytes[16];
d97ef72e
RH
1833 abi_ulong u_platform;
1834 const char *k_platform;
1835 const int n = sizeof(elf_addr_t);
1836
1837 sp = p;
1af02e83 1838
1af02e83
MF
1839 /* Needs to be before we load the env/argc/... */
1840 if (elf_is_fdpic(exec)) {
1841 /* Need 4 byte alignment for these structs */
1842 sp &= ~3;
1843 sp = loader_build_fdpic_loadmap(info, sp);
1844 info->other_info = interp_info;
1845 if (interp_info) {
1846 interp_info->other_info = info;
1847 sp = loader_build_fdpic_loadmap(interp_info, sp);
3cb10cfa
CL
1848 info->interpreter_loadmap_addr = interp_info->loadmap_addr;
1849 info->interpreter_pt_dynamic_addr = interp_info->pt_dynamic_addr;
1850 } else {
1851 info->interpreter_loadmap_addr = 0;
1852 info->interpreter_pt_dynamic_addr = 0;
1af02e83
MF
1853 }
1854 }
1af02e83 1855
d97ef72e
RH
1856 u_platform = 0;
1857 k_platform = ELF_PLATFORM;
1858 if (k_platform) {
1859 size_t len = strlen(k_platform) + 1;
7c4ee5bc
RH
1860 if (STACK_GROWS_DOWN) {
1861 sp -= (len + n - 1) & ~(n - 1);
1862 u_platform = sp;
1863 /* FIXME - check return value of memcpy_to_target() for failure */
1864 memcpy_to_target(sp, k_platform, len);
1865 } else {
1866 memcpy_to_target(sp, k_platform, len);
1867 u_platform = sp;
1868 sp += len + 1;
1869 }
1870 }
1871
1872 /* Provide 16 byte alignment for the PRNG, and basic alignment for
1873 * the argv and envp pointers.
1874 */
1875 if (STACK_GROWS_DOWN) {
1876 sp = QEMU_ALIGN_DOWN(sp, 16);
1877 } else {
1878 sp = QEMU_ALIGN_UP(sp, 16);
d97ef72e 1879 }
14322bad
LA
1880
1881 /*
1882 * Generate 16 random bytes for userspace PRNG seeding (not
1883 * cryptically secure but it's not the aim of QEMU).
1884 */
14322bad
LA
1885 for (i = 0; i < 16; i++) {
1886 k_rand_bytes[i] = rand();
1887 }
7c4ee5bc
RH
1888 if (STACK_GROWS_DOWN) {
1889 sp -= 16;
1890 u_rand_bytes = sp;
1891 /* FIXME - check return value of memcpy_to_target() for failure */
1892 memcpy_to_target(sp, k_rand_bytes, 16);
1893 } else {
1894 memcpy_to_target(sp, k_rand_bytes, 16);
1895 u_rand_bytes = sp;
1896 sp += 16;
1897 }
14322bad 1898
d97ef72e
RH
1899 size = (DLINFO_ITEMS + 1) * 2;
1900 if (k_platform)
1901 size += 2;
f5155289 1902#ifdef DLINFO_ARCH_ITEMS
d97ef72e 1903 size += DLINFO_ARCH_ITEMS * 2;
ad6919dc
PM
1904#endif
1905#ifdef ELF_HWCAP2
1906 size += 2;
f5155289 1907#endif
f516511e
PM
1908 info->auxv_len = size * n;
1909
d97ef72e 1910 size += envc + argc + 2;
b9329d4b 1911 size += 1; /* argc itself */
d97ef72e 1912 size *= n;
7c4ee5bc
RH
1913
1914 /* Allocate space and finalize stack alignment for entry now. */
1915 if (STACK_GROWS_DOWN) {
1916 u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT);
1917 sp = u_argc;
1918 } else {
1919 u_argc = sp;
1920 sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT);
1921 }
1922
1923 u_argv = u_argc + n;
1924 u_envp = u_argv + (argc + 1) * n;
1925 u_auxv = u_envp + (envc + 1) * n;
1926 info->saved_auxv = u_auxv;
1927 info->arg_start = u_argv;
1928 info->arg_end = u_argv + argc * n;
d97ef72e
RH
1929
1930 /* This is correct because Linux defines
1931 * elf_addr_t as Elf32_Off / Elf64_Off
1932 */
1933#define NEW_AUX_ENT(id, val) do { \
7c4ee5bc
RH
1934 put_user_ual(id, u_auxv); u_auxv += n; \
1935 put_user_ual(val, u_auxv); u_auxv += n; \
d97ef72e
RH
1936 } while(0)
1937
82991bed
PM
1938#ifdef ARCH_DLINFO
1939 /*
1940 * ARCH_DLINFO must come first so platform specific code can enforce
1941 * special alignment requirements on the AUXV if necessary (eg. PPC).
1942 */
1943 ARCH_DLINFO;
1944#endif
f516511e
PM
1945 /* There must be exactly DLINFO_ITEMS entries here, or the assert
1946 * on info->auxv_len will trigger.
1947 */
8e62a717 1948 NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff));
d97ef72e
RH
1949 NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
1950 NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
33143c44
LV
1951 if ((info->alignment & ~qemu_host_page_mask) != 0) {
1952 /* Target doesn't support host page size alignment */
1953 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE));
1954 } else {
1955 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE,
1956 qemu_host_page_size)));
1957 }
8e62a717 1958 NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0));
d97ef72e 1959 NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
8e62a717 1960 NEW_AUX_ENT(AT_ENTRY, info->entry);
d97ef72e
RH
1961 NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
1962 NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
1963 NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
1964 NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
1965 NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
1966 NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
14322bad 1967 NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes);
444cd5c3 1968 NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE));
14322bad 1969
ad6919dc
PM
1970#ifdef ELF_HWCAP2
1971 NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2);
1972#endif
1973
7c4ee5bc 1974 if (u_platform) {
d97ef72e 1975 NEW_AUX_ENT(AT_PLATFORM, u_platform);
7c4ee5bc 1976 }
7c4ee5bc 1977 NEW_AUX_ENT (AT_NULL, 0);
f5155289
FB
1978#undef NEW_AUX_ENT
1979
f516511e
PM
1980 /* Check that our initial calculation of the auxv length matches how much
1981 * we actually put into it.
1982 */
1983 assert(info->auxv_len == u_auxv - info->saved_auxv);
7c4ee5bc
RH
1984
1985 put_user_ual(argc, u_argc);
1986
1987 p = info->arg_strings;
1988 for (i = 0; i < argc; ++i) {
1989 put_user_ual(p, u_argv);
1990 u_argv += n;
1991 p += target_strlen(p) + 1;
1992 }
1993 put_user_ual(0, u_argv);
1994
1995 p = info->env_strings;
1996 for (i = 0; i < envc; ++i) {
1997 put_user_ual(p, u_envp);
1998 u_envp += n;
1999 p += target_strlen(p) + 1;
2000 }
2001 put_user_ual(0, u_envp);
edf8e2af 2002
d97ef72e 2003 return sp;
31e31b8a
FB
2004}
2005
dce10401
MI
2006unsigned long init_guest_space(unsigned long host_start,
2007 unsigned long host_size,
2008 unsigned long guest_start,
2009 bool fixed)
2010{
293f2060 2011 unsigned long current_start, aligned_start;
dce10401
MI
2012 int flags;
2013
2014 assert(host_start || host_size);
2015
2016 /* If just a starting address is given, then just verify that
2017 * address. */
2018 if (host_start && !host_size) {
8756e136 2019#if defined(TARGET_ARM) && !defined(TARGET_AARCH64)
c3637eaf 2020 if (init_guest_commpage(host_start, host_size) != 1) {
dce10401
MI
2021 return (unsigned long)-1;
2022 }
8756e136
LS
2023#endif
2024 return host_start;
dce10401
MI
2025 }
2026
2027 /* Setup the initial flags and start address. */
2028 current_start = host_start & qemu_host_page_mask;
2029 flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
2030 if (fixed) {
2031 flags |= MAP_FIXED;
2032 }
2033
2034 /* Otherwise, a non-zero size region of memory needs to be mapped
2035 * and validated. */
2a53535a
LS
2036
2037#if defined(TARGET_ARM) && !defined(TARGET_AARCH64)
2038 /* On 32-bit ARM, we need to map not just the usable memory, but
2039 * also the commpage. Try to find a suitable place by allocating
2040 * a big chunk for all of it. If host_start, then the naive
2041 * strategy probably does good enough.
2042 */
2043 if (!host_start) {
2044 unsigned long guest_full_size, host_full_size, real_start;
2045
2046 guest_full_size =
2047 (0xffff0f00 & qemu_host_page_mask) + qemu_host_page_size;
2048 host_full_size = guest_full_size - guest_start;
2049 real_start = (unsigned long)
2050 mmap(NULL, host_full_size, PROT_NONE, flags, -1, 0);
2051 if (real_start == (unsigned long)-1) {
2052 if (host_size < host_full_size - qemu_host_page_size) {
2053 /* We failed to map a continous segment, but we're
2054 * allowed to have a gap between the usable memory and
2055 * the commpage where other things can be mapped.
2056 * This sparseness gives us more flexibility to find
2057 * an address range.
2058 */
2059 goto naive;
2060 }
2061 return (unsigned long)-1;
2062 }
2063 munmap((void *)real_start, host_full_size);
2064 if (real_start & ~qemu_host_page_mask) {
2065 /* The same thing again, but with an extra qemu_host_page_size
2066 * so that we can shift around alignment.
2067 */
2068 unsigned long real_size = host_full_size + qemu_host_page_size;
2069 real_start = (unsigned long)
2070 mmap(NULL, real_size, PROT_NONE, flags, -1, 0);
2071 if (real_start == (unsigned long)-1) {
2072 if (host_size < host_full_size - qemu_host_page_size) {
2073 goto naive;
2074 }
2075 return (unsigned long)-1;
2076 }
2077 munmap((void *)real_start, real_size);
2078 real_start = HOST_PAGE_ALIGN(real_start);
2079 }
2080 current_start = real_start;
2081 }
2082 naive:
2083#endif
2084
dce10401 2085 while (1) {
293f2060
LS
2086 unsigned long real_start, real_size, aligned_size;
2087 aligned_size = real_size = host_size;
806d1021 2088
dce10401
MI
2089 /* Do not use mmap_find_vma here because that is limited to the
2090 * guest address space. We are going to make the
2091 * guest address space fit whatever we're given.
2092 */
2093 real_start = (unsigned long)
2094 mmap((void *)current_start, host_size, PROT_NONE, flags, -1, 0);
2095 if (real_start == (unsigned long)-1) {
2096 return (unsigned long)-1;
2097 }
2098
aac362e4
LS
2099 /* Check to see if the address is valid. */
2100 if (host_start && real_start != current_start) {
2101 goto try_again;
2102 }
2103
806d1021
MI
2104 /* Ensure the address is properly aligned. */
2105 if (real_start & ~qemu_host_page_mask) {
293f2060
LS
2106 /* Ideally, we adjust like
2107 *
2108 * pages: [ ][ ][ ][ ][ ]
2109 * old: [ real ]
2110 * [ aligned ]
2111 * new: [ real ]
2112 * [ aligned ]
2113 *
2114 * But if there is something else mapped right after it,
2115 * then obviously it won't have room to grow, and the
2116 * kernel will put the new larger real someplace else with
2117 * unknown alignment (if we made it to here, then
2118 * fixed=false). Which is why we grow real by a full page
2119 * size, instead of by part of one; so that even if we get
2120 * moved, we can still guarantee alignment. But this does
2121 * mean that there is a padding of < 1 page both before
2122 * and after the aligned range; the "after" could could
2123 * cause problems for ARM emulation where it could butt in
2124 * to where we need to put the commpage.
2125 */
806d1021 2126 munmap((void *)real_start, host_size);
293f2060 2127 real_size = aligned_size + qemu_host_page_size;
806d1021
MI
2128 real_start = (unsigned long)
2129 mmap((void *)real_start, real_size, PROT_NONE, flags, -1, 0);
2130 if (real_start == (unsigned long)-1) {
2131 return (unsigned long)-1;
2132 }
293f2060
LS
2133 aligned_start = HOST_PAGE_ALIGN(real_start);
2134 } else {
2135 aligned_start = real_start;
806d1021
MI
2136 }
2137
8756e136 2138#if defined(TARGET_ARM) && !defined(TARGET_AARCH64)
7ad75eea
LS
2139 /* On 32-bit ARM, we need to also be able to map the commpage. */
2140 int valid = init_guest_commpage(aligned_start - guest_start,
2141 aligned_size + guest_start);
2142 if (valid == -1) {
2143 munmap((void *)real_start, real_size);
2144 return (unsigned long)-1;
2145 } else if (valid == 0) {
2146 goto try_again;
dce10401 2147 }
7ad75eea
LS
2148#endif
2149
2150 /* If nothing has said `return -1` or `goto try_again` yet,
2151 * then the address we have is good.
2152 */
2153 break;
dce10401 2154
7ad75eea 2155 try_again:
dce10401
MI
2156 /* That address didn't work. Unmap and try a different one.
2157 * The address the host picked because is typically right at
2158 * the top of the host address space and leaves the guest with
2159 * no usable address space. Resort to a linear search. We
2160 * already compensated for mmap_min_addr, so this should not
2161 * happen often. Probably means we got unlucky and host
2162 * address space randomization put a shared library somewhere
2163 * inconvenient.
8c17d862
LS
2164 *
2165 * This is probably a good strategy if host_start, but is
2166 * probably a bad strategy if not, which means we got here
2167 * because of trouble with ARM commpage setup.
dce10401 2168 */
293f2060 2169 munmap((void *)real_start, real_size);
dce10401
MI
2170 current_start += qemu_host_page_size;
2171 if (host_start == current_start) {
2172 /* Theoretically possible if host doesn't have any suitably
2173 * aligned areas. Normally the first mmap will fail.
2174 */
2175 return (unsigned long)-1;
2176 }
2177 }
2178
13829020 2179 qemu_log_mask(CPU_LOG_PAGE, "Reserved 0x%lx bytes of guest address space\n", host_size);
806d1021 2180
293f2060 2181 return aligned_start;
dce10401
MI
2182}
2183
f3ed1f5d
PM
2184static void probe_guest_base(const char *image_name,
2185 abi_ulong loaddr, abi_ulong hiaddr)
2186{
2187 /* Probe for a suitable guest base address, if the user has not set
2188 * it explicitly, and set guest_base appropriately.
2189 * In case of error we will print a suitable message and exit.
2190 */
f3ed1f5d
PM
2191 const char *errmsg;
2192 if (!have_guest_base && !reserved_va) {
2193 unsigned long host_start, real_start, host_size;
2194
2195 /* Round addresses to page boundaries. */
2196 loaddr &= qemu_host_page_mask;
2197 hiaddr = HOST_PAGE_ALIGN(hiaddr);
2198
2199 if (loaddr < mmap_min_addr) {
2200 host_start = HOST_PAGE_ALIGN(mmap_min_addr);
2201 } else {
2202 host_start = loaddr;
2203 if (host_start != loaddr) {
2204 errmsg = "Address overflow loading ELF binary";
2205 goto exit_errmsg;
2206 }
2207 }
2208 host_size = hiaddr - loaddr;
dce10401
MI
2209
2210 /* Setup the initial guest memory space with ranges gleaned from
2211 * the ELF image that is being loaded.
2212 */
2213 real_start = init_guest_space(host_start, host_size, loaddr, false);
2214 if (real_start == (unsigned long)-1) {
2215 errmsg = "Unable to find space for application";
2216 goto exit_errmsg;
f3ed1f5d 2217 }
dce10401
MI
2218 guest_base = real_start - loaddr;
2219
13829020
PB
2220 qemu_log_mask(CPU_LOG_PAGE, "Relocating guest address space from 0x"
2221 TARGET_ABI_FMT_lx " to 0x%lx\n",
2222 loaddr, real_start);
f3ed1f5d
PM
2223 }
2224 return;
2225
f3ed1f5d
PM
2226exit_errmsg:
2227 fprintf(stderr, "%s: %s\n", image_name, errmsg);
2228 exit(-1);
f3ed1f5d
PM
2229}
2230
2231
8e62a717 2232/* Load an ELF image into the address space.
31e31b8a 2233
8e62a717
RH
2234 IMAGE_NAME is the filename of the image, to use in error messages.
2235 IMAGE_FD is the open file descriptor for the image.
2236
2237 BPRM_BUF is a copy of the beginning of the file; this of course
2238 contains the elf file header at offset 0. It is assumed that this
2239 buffer is sufficiently aligned to present no problems to the host
2240 in accessing data at aligned offsets within the buffer.
2241
2242 On return: INFO values will be filled in, as necessary or available. */
2243
2244static void load_elf_image(const char *image_name, int image_fd,
bf858897 2245 struct image_info *info, char **pinterp_name,
8e62a717 2246 char bprm_buf[BPRM_BUF_SIZE])
31e31b8a 2247{
8e62a717
RH
2248 struct elfhdr *ehdr = (struct elfhdr *)bprm_buf;
2249 struct elf_phdr *phdr;
2250 abi_ulong load_addr, load_bias, loaddr, hiaddr, error;
2251 int i, retval;
2252 const char *errmsg;
5fafdf24 2253
8e62a717
RH
2254 /* First of all, some simple consistency checks */
2255 errmsg = "Invalid ELF image for this architecture";
2256 if (!elf_check_ident(ehdr)) {
2257 goto exit_errmsg;
2258 }
2259 bswap_ehdr(ehdr);
2260 if (!elf_check_ehdr(ehdr)) {
2261 goto exit_errmsg;
d97ef72e 2262 }
5fafdf24 2263
8e62a717
RH
2264 i = ehdr->e_phnum * sizeof(struct elf_phdr);
2265 if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) {
2266 phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff);
9955ffac 2267 } else {
8e62a717
RH
2268 phdr = (struct elf_phdr *) alloca(i);
2269 retval = pread(image_fd, phdr, i, ehdr->e_phoff);
9955ffac 2270 if (retval != i) {
8e62a717 2271 goto exit_read;
9955ffac 2272 }
d97ef72e 2273 }
8e62a717 2274 bswap_phdr(phdr, ehdr->e_phnum);
09bfb054 2275
1af02e83
MF
2276 info->nsegs = 0;
2277 info->pt_dynamic_addr = 0;
1af02e83 2278
98c1076c
AB
2279 mmap_lock();
2280
682674b8
RH
2281 /* Find the maximum size of the image and allocate an appropriate
2282 amount of memory to handle that. */
2283 loaddr = -1, hiaddr = 0;
33143c44 2284 info->alignment = 0;
8e62a717
RH
2285 for (i = 0; i < ehdr->e_phnum; ++i) {
2286 if (phdr[i].p_type == PT_LOAD) {
a93934fe 2287 abi_ulong a = phdr[i].p_vaddr - phdr[i].p_offset;
682674b8
RH
2288 if (a < loaddr) {
2289 loaddr = a;
2290 }
ccf661f8 2291 a = phdr[i].p_vaddr + phdr[i].p_memsz;
682674b8
RH
2292 if (a > hiaddr) {
2293 hiaddr = a;
2294 }
1af02e83 2295 ++info->nsegs;
33143c44 2296 info->alignment |= phdr[i].p_align;
682674b8
RH
2297 }
2298 }
2299
2300 load_addr = loaddr;
8e62a717 2301 if (ehdr->e_type == ET_DYN) {
682674b8
RH
2302 /* The image indicates that it can be loaded anywhere. Find a
2303 location that can hold the memory space required. If the
2304 image is pre-linked, LOADDR will be non-zero. Since we do
2305 not supply MAP_FIXED here we'll use that address if and
2306 only if it remains available. */
2307 load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE,
2308 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE,
2309 -1, 0);
2310 if (load_addr == -1) {
8e62a717 2311 goto exit_perror;
d97ef72e 2312 }
bf858897
RH
2313 } else if (pinterp_name != NULL) {
2314 /* This is the main executable. Make sure that the low
2315 address does not conflict with MMAP_MIN_ADDR or the
2316 QEMU application itself. */
f3ed1f5d 2317 probe_guest_base(image_name, loaddr, hiaddr);
d97ef72e 2318 }
682674b8 2319 load_bias = load_addr - loaddr;
d97ef72e 2320
a99856cd 2321 if (elf_is_fdpic(ehdr)) {
1af02e83 2322 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs =
7267c094 2323 g_malloc(sizeof(*loadsegs) * info->nsegs);
1af02e83
MF
2324
2325 for (i = 0; i < ehdr->e_phnum; ++i) {
2326 switch (phdr[i].p_type) {
2327 case PT_DYNAMIC:
2328 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias;
2329 break;
2330 case PT_LOAD:
2331 loadsegs->addr = phdr[i].p_vaddr + load_bias;
2332 loadsegs->p_vaddr = phdr[i].p_vaddr;
2333 loadsegs->p_memsz = phdr[i].p_memsz;
2334 ++loadsegs;
2335 break;
2336 }
2337 }
2338 }
1af02e83 2339
8e62a717
RH
2340 info->load_bias = load_bias;
2341 info->load_addr = load_addr;
2342 info->entry = ehdr->e_entry + load_bias;
2343 info->start_code = -1;
2344 info->end_code = 0;
2345 info->start_data = -1;
2346 info->end_data = 0;
2347 info->brk = 0;
d8fd2954 2348 info->elf_flags = ehdr->e_flags;
8e62a717
RH
2349
2350 for (i = 0; i < ehdr->e_phnum; i++) {
2351 struct elf_phdr *eppnt = phdr + i;
d97ef72e 2352 if (eppnt->p_type == PT_LOAD) {
94894ff2 2353 abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em, vaddr_len;
d97ef72e 2354 int elf_prot = 0;
d97ef72e
RH
2355
2356 if (eppnt->p_flags & PF_R) elf_prot = PROT_READ;
2357 if (eppnt->p_flags & PF_W) elf_prot |= PROT_WRITE;
2358 if (eppnt->p_flags & PF_X) elf_prot |= PROT_EXEC;
d97ef72e 2359
682674b8
RH
2360 vaddr = load_bias + eppnt->p_vaddr;
2361 vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr);
2362 vaddr_ps = TARGET_ELF_PAGESTART(vaddr);
94894ff2 2363 vaddr_len = TARGET_ELF_PAGELENGTH(eppnt->p_filesz + vaddr_po);
682674b8 2364
94894ff2 2365 error = target_mmap(vaddr_ps, vaddr_len,
682674b8 2366 elf_prot, MAP_PRIVATE | MAP_FIXED,
8e62a717 2367 image_fd, eppnt->p_offset - vaddr_po);
09bfb054 2368 if (error == -1) {
8e62a717 2369 goto exit_perror;
09bfb054 2370 }
09bfb054 2371
682674b8
RH
2372 vaddr_ef = vaddr + eppnt->p_filesz;
2373 vaddr_em = vaddr + eppnt->p_memsz;
31e31b8a 2374
cf129f3a 2375 /* If the load segment requests extra zeros (e.g. bss), map it. */
682674b8
RH
2376 if (vaddr_ef < vaddr_em) {
2377 zero_bss(vaddr_ef, vaddr_em, elf_prot);
cf129f3a 2378 }
8e62a717
RH
2379
2380 /* Find the full program boundaries. */
2381 if (elf_prot & PROT_EXEC) {
2382 if (vaddr < info->start_code) {
2383 info->start_code = vaddr;
2384 }
2385 if (vaddr_ef > info->end_code) {
2386 info->end_code = vaddr_ef;
2387 }
2388 }
2389 if (elf_prot & PROT_WRITE) {
2390 if (vaddr < info->start_data) {
2391 info->start_data = vaddr;
2392 }
2393 if (vaddr_ef > info->end_data) {
2394 info->end_data = vaddr_ef;
2395 }
2396 if (vaddr_em > info->brk) {
2397 info->brk = vaddr_em;
2398 }
2399 }
bf858897
RH
2400 } else if (eppnt->p_type == PT_INTERP && pinterp_name) {
2401 char *interp_name;
2402
2403 if (*pinterp_name) {
2404 errmsg = "Multiple PT_INTERP entries";
2405 goto exit_errmsg;
2406 }
2407 interp_name = malloc(eppnt->p_filesz);
2408 if (!interp_name) {
2409 goto exit_perror;
2410 }
2411
2412 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
2413 memcpy(interp_name, bprm_buf + eppnt->p_offset,
2414 eppnt->p_filesz);
2415 } else {
2416 retval = pread(image_fd, interp_name, eppnt->p_filesz,
2417 eppnt->p_offset);
2418 if (retval != eppnt->p_filesz) {
2419 goto exit_perror;
2420 }
2421 }
2422 if (interp_name[eppnt->p_filesz - 1] != 0) {
2423 errmsg = "Invalid PT_INTERP entry";
2424 goto exit_errmsg;
2425 }
2426 *pinterp_name = interp_name;
5dd0db52
SM
2427#ifdef TARGET_MIPS
2428 } else if (eppnt->p_type == PT_MIPS_ABIFLAGS) {
2429 Mips_elf_abiflags_v0 abiflags;
2430 if (eppnt->p_filesz < sizeof(Mips_elf_abiflags_v0)) {
2431 errmsg = "Invalid PT_MIPS_ABIFLAGS entry";
2432 goto exit_errmsg;
2433 }
2434 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
2435 memcpy(&abiflags, bprm_buf + eppnt->p_offset,
2436 sizeof(Mips_elf_abiflags_v0));
2437 } else {
2438 retval = pread(image_fd, &abiflags, sizeof(Mips_elf_abiflags_v0),
2439 eppnt->p_offset);
2440 if (retval != sizeof(Mips_elf_abiflags_v0)) {
2441 goto exit_perror;
2442 }
2443 }
2444 bswap_mips_abiflags(&abiflags);
c94cb6c9 2445 info->fp_abi = abiflags.fp_abi;
5dd0db52 2446#endif
d97ef72e 2447 }
682674b8 2448 }
5fafdf24 2449
8e62a717
RH
2450 if (info->end_data == 0) {
2451 info->start_data = info->end_code;
2452 info->end_data = info->end_code;
2453 info->brk = info->end_code;
2454 }
2455
682674b8 2456 if (qemu_log_enabled()) {
8e62a717 2457 load_symbols(ehdr, image_fd, load_bias);
682674b8 2458 }
31e31b8a 2459
98c1076c
AB
2460 mmap_unlock();
2461
8e62a717
RH
2462 close(image_fd);
2463 return;
2464
2465 exit_read:
2466 if (retval >= 0) {
2467 errmsg = "Incomplete read of file header";
2468 goto exit_errmsg;
2469 }
2470 exit_perror:
2471 errmsg = strerror(errno);
2472 exit_errmsg:
2473 fprintf(stderr, "%s: %s\n", image_name, errmsg);
2474 exit(-1);
2475}
2476
2477static void load_elf_interp(const char *filename, struct image_info *info,
2478 char bprm_buf[BPRM_BUF_SIZE])
2479{
2480 int fd, retval;
2481
2482 fd = open(path(filename), O_RDONLY);
2483 if (fd < 0) {
2484 goto exit_perror;
2485 }
31e31b8a 2486
8e62a717
RH
2487 retval = read(fd, bprm_buf, BPRM_BUF_SIZE);
2488 if (retval < 0) {
2489 goto exit_perror;
2490 }
2491 if (retval < BPRM_BUF_SIZE) {
2492 memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval);
2493 }
2494
bf858897 2495 load_elf_image(filename, fd, info, NULL, bprm_buf);
8e62a717
RH
2496 return;
2497
2498 exit_perror:
2499 fprintf(stderr, "%s: %s\n", filename, strerror(errno));
2500 exit(-1);
31e31b8a
FB
2501}
2502
49918a75
PB
2503static int symfind(const void *s0, const void *s1)
2504{
c7c530cd 2505 target_ulong addr = *(target_ulong *)s0;
49918a75
PB
2506 struct elf_sym *sym = (struct elf_sym *)s1;
2507 int result = 0;
c7c530cd 2508 if (addr < sym->st_value) {
49918a75 2509 result = -1;
c7c530cd 2510 } else if (addr >= sym->st_value + sym->st_size) {
49918a75
PB
2511 result = 1;
2512 }
2513 return result;
2514}
2515
2516static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr)
2517{
2518#if ELF_CLASS == ELFCLASS32
2519 struct elf_sym *syms = s->disas_symtab.elf32;
2520#else
2521 struct elf_sym *syms = s->disas_symtab.elf64;
2522#endif
2523
2524 // binary search
49918a75
PB
2525 struct elf_sym *sym;
2526
c7c530cd 2527 sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind);
7cba04f6 2528 if (sym != NULL) {
49918a75
PB
2529 return s->disas_strtab + sym->st_name;
2530 }
2531
2532 return "";
2533}
2534
2535/* FIXME: This should use elf_ops.h */
2536static int symcmp(const void *s0, const void *s1)
2537{
2538 struct elf_sym *sym0 = (struct elf_sym *)s0;
2539 struct elf_sym *sym1 = (struct elf_sym *)s1;
2540 return (sym0->st_value < sym1->st_value)
2541 ? -1
2542 : ((sym0->st_value > sym1->st_value) ? 1 : 0);
2543}
2544
689f936f 2545/* Best attempt to load symbols from this ELF object. */
682674b8 2546static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias)
689f936f 2547{
682674b8 2548 int i, shnum, nsyms, sym_idx = 0, str_idx = 0;
1e06262d 2549 uint64_t segsz;
682674b8 2550 struct elf_shdr *shdr;
b9475279
CV
2551 char *strings = NULL;
2552 struct syminfo *s = NULL;
2553 struct elf_sym *new_syms, *syms = NULL;
689f936f 2554
682674b8
RH
2555 shnum = hdr->e_shnum;
2556 i = shnum * sizeof(struct elf_shdr);
2557 shdr = (struct elf_shdr *)alloca(i);
2558 if (pread(fd, shdr, i, hdr->e_shoff) != i) {
2559 return;
2560 }
2561
2562 bswap_shdr(shdr, shnum);
2563 for (i = 0; i < shnum; ++i) {
2564 if (shdr[i].sh_type == SHT_SYMTAB) {
2565 sym_idx = i;
2566 str_idx = shdr[i].sh_link;
49918a75
PB
2567 goto found;
2568 }
689f936f 2569 }
682674b8
RH
2570
2571 /* There will be no symbol table if the file was stripped. */
2572 return;
689f936f
FB
2573
2574 found:
682674b8 2575 /* Now know where the strtab and symtab are. Snarf them. */
0ef9ea29 2576 s = g_try_new(struct syminfo, 1);
682674b8 2577 if (!s) {
b9475279 2578 goto give_up;
682674b8 2579 }
5fafdf24 2580
1e06262d
PM
2581 segsz = shdr[str_idx].sh_size;
2582 s->disas_strtab = strings = g_try_malloc(segsz);
2583 if (!strings ||
2584 pread(fd, strings, segsz, shdr[str_idx].sh_offset) != segsz) {
b9475279 2585 goto give_up;
682674b8 2586 }
49918a75 2587
1e06262d
PM
2588 segsz = shdr[sym_idx].sh_size;
2589 syms = g_try_malloc(segsz);
2590 if (!syms || pread(fd, syms, segsz, shdr[sym_idx].sh_offset) != segsz) {
b9475279 2591 goto give_up;
682674b8 2592 }
31e31b8a 2593
1e06262d
PM
2594 if (segsz / sizeof(struct elf_sym) > INT_MAX) {
2595 /* Implausibly large symbol table: give up rather than ploughing
2596 * on with the number of symbols calculation overflowing
2597 */
2598 goto give_up;
2599 }
2600 nsyms = segsz / sizeof(struct elf_sym);
682674b8 2601 for (i = 0; i < nsyms; ) {
49918a75 2602 bswap_sym(syms + i);
682674b8
RH
2603 /* Throw away entries which we do not need. */
2604 if (syms[i].st_shndx == SHN_UNDEF
2605 || syms[i].st_shndx >= SHN_LORESERVE
2606 || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
2607 if (i < --nsyms) {
49918a75
PB
2608 syms[i] = syms[nsyms];
2609 }
682674b8 2610 } else {
49918a75 2611#if defined(TARGET_ARM) || defined (TARGET_MIPS)
682674b8
RH
2612 /* The bottom address bit marks a Thumb or MIPS16 symbol. */
2613 syms[i].st_value &= ~(target_ulong)1;
0774bed1 2614#endif
682674b8
RH
2615 syms[i].st_value += load_bias;
2616 i++;
2617 }
0774bed1 2618 }
49918a75 2619
b9475279
CV
2620 /* No "useful" symbol. */
2621 if (nsyms == 0) {
2622 goto give_up;
2623 }
2624
5d5c9930
RH
2625 /* Attempt to free the storage associated with the local symbols
2626 that we threw away. Whether or not this has any effect on the
2627 memory allocation depends on the malloc implementation and how
2628 many symbols we managed to discard. */
0ef9ea29 2629 new_syms = g_try_renew(struct elf_sym, syms, nsyms);
8d79de6e 2630 if (new_syms == NULL) {
b9475279 2631 goto give_up;
5d5c9930 2632 }
8d79de6e 2633 syms = new_syms;
5d5c9930 2634
49918a75 2635 qsort(syms, nsyms, sizeof(*syms), symcmp);
689f936f 2636
49918a75
PB
2637 s->disas_num_syms = nsyms;
2638#if ELF_CLASS == ELFCLASS32
2639 s->disas_symtab.elf32 = syms;
49918a75
PB
2640#else
2641 s->disas_symtab.elf64 = syms;
49918a75 2642#endif
682674b8 2643 s->lookup_symbol = lookup_symbolxx;
e80cfcfc
FB
2644 s->next = syminfos;
2645 syminfos = s;
b9475279
CV
2646
2647 return;
2648
2649give_up:
0ef9ea29
PM
2650 g_free(s);
2651 g_free(strings);
2652 g_free(syms);
689f936f 2653}
31e31b8a 2654
768fe76e
YS
2655uint32_t get_elf_eflags(int fd)
2656{
2657 struct elfhdr ehdr;
2658 off_t offset;
2659 int ret;
2660
2661 /* Read ELF header */
2662 offset = lseek(fd, 0, SEEK_SET);
2663 if (offset == (off_t) -1) {
2664 return 0;
2665 }
2666 ret = read(fd, &ehdr, sizeof(ehdr));
2667 if (ret < sizeof(ehdr)) {
2668 return 0;
2669 }
2670 offset = lseek(fd, offset, SEEK_SET);
2671 if (offset == (off_t) -1) {
2672 return 0;
2673 }
2674
2675 /* Check ELF signature */
2676 if (!elf_check_ident(&ehdr)) {
2677 return 0;
2678 }
2679
2680 /* check header */
2681 bswap_ehdr(&ehdr);
2682 if (!elf_check_ehdr(&ehdr)) {
2683 return 0;
2684 }
2685
2686 /* return architecture id */
2687 return ehdr.e_flags;
2688}
2689
f0116c54 2690int load_elf_binary(struct linux_binprm *bprm, struct image_info *info)
31e31b8a 2691{
8e62a717 2692 struct image_info interp_info;
31e31b8a 2693 struct elfhdr elf_ex;
8e62a717 2694 char *elf_interpreter = NULL;
59baae9a 2695 char *scratch;
31e31b8a 2696
bf858897 2697 info->start_mmap = (abi_ulong)ELF_START_MMAP;
bf858897
RH
2698
2699 load_elf_image(bprm->filename, bprm->fd, info,
2700 &elf_interpreter, bprm->buf);
31e31b8a 2701
bf858897
RH
2702 /* ??? We need a copy of the elf header for passing to create_elf_tables.
2703 If we do nothing, we'll have overwritten this when we re-use bprm->buf
2704 when we load the interpreter. */
2705 elf_ex = *(struct elfhdr *)bprm->buf;
31e31b8a 2706
59baae9a
SB
2707 /* Do this so that we can load the interpreter, if need be. We will
2708 change some of these later */
2709 bprm->p = setup_arg_pages(bprm, info);
2710
2711 scratch = g_new0(char, TARGET_PAGE_SIZE);
7c4ee5bc
RH
2712 if (STACK_GROWS_DOWN) {
2713 bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
2714 bprm->p, info->stack_limit);
2715 info->file_string = bprm->p;
2716 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
2717 bprm->p, info->stack_limit);
2718 info->env_strings = bprm->p;
2719 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
2720 bprm->p, info->stack_limit);
2721 info->arg_strings = bprm->p;
2722 } else {
2723 info->arg_strings = bprm->p;
2724 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
2725 bprm->p, info->stack_limit);
2726 info->env_strings = bprm->p;
2727 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
2728 bprm->p, info->stack_limit);
2729 info->file_string = bprm->p;
2730 bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
2731 bprm->p, info->stack_limit);
2732 }
2733
59baae9a
SB
2734 g_free(scratch);
2735
e5fe0c52 2736 if (!bprm->p) {
bf858897
RH
2737 fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG));
2738 exit(-1);
379f6698 2739 }
379f6698 2740
8e62a717
RH
2741 if (elf_interpreter) {
2742 load_elf_interp(elf_interpreter, &interp_info, bprm->buf);
31e31b8a 2743
8e62a717
RH
2744 /* If the program interpreter is one of these two, then assume
2745 an iBCS2 image. Otherwise assume a native linux image. */
2746
2747 if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0
2748 || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) {
2749 info->personality = PER_SVR4;
31e31b8a 2750
8e62a717
RH
2751 /* Why this, you ask??? Well SVr4 maps page 0 as read-only,
2752 and some applications "depend" upon this behavior. Since
2753 we do not have the power to recompile these, we emulate
2754 the SVr4 behavior. Sigh. */
2755 target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC,
68754b44 2756 MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
8e62a717 2757 }
c94cb6c9
SM
2758#ifdef TARGET_MIPS
2759 info->interp_fp_abi = interp_info.fp_abi;
2760#endif
31e31b8a
FB
2761 }
2762
8e62a717
RH
2763 bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex,
2764 info, (elf_interpreter ? &interp_info : NULL));
2765 info->start_stack = bprm->p;
2766
2767 /* If we have an interpreter, set that as the program's entry point.
8e78064e 2768 Copy the load_bias as well, to help PPC64 interpret the entry
8e62a717
RH
2769 point as a function descriptor. Do this after creating elf tables
2770 so that we copy the original program entry point into the AUXV. */
2771 if (elf_interpreter) {
8e78064e 2772 info->load_bias = interp_info.load_bias;
8e62a717 2773 info->entry = interp_info.entry;
bf858897 2774 free(elf_interpreter);
8e62a717 2775 }
31e31b8a 2776
edf8e2af
MW
2777#ifdef USE_ELF_CORE_DUMP
2778 bprm->core_dump = &elf_core_dump;
2779#endif
2780
31e31b8a
FB
2781 return 0;
2782}
2783
edf8e2af 2784#ifdef USE_ELF_CORE_DUMP
edf8e2af
MW
2785/*
2786 * Definitions to generate Intel SVR4-like core files.
a2547a13 2787 * These mostly have the same names as the SVR4 types with "target_elf_"
edf8e2af
MW
2788 * tacked on the front to prevent clashes with linux definitions,
2789 * and the typedef forms have been avoided. This is mostly like
2790 * the SVR4 structure, but more Linuxy, with things that Linux does
2791 * not support and which gdb doesn't really use excluded.
2792 *
2793 * Fields we don't dump (their contents is zero) in linux-user qemu
2794 * are marked with XXX.
2795 *
2796 * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
2797 *
2798 * Porting ELF coredump for target is (quite) simple process. First you
dd0a3651 2799 * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
edf8e2af
MW
2800 * the target resides):
2801 *
2802 * #define USE_ELF_CORE_DUMP
2803 *
2804 * Next you define type of register set used for dumping. ELF specification
2805 * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
2806 *
c227f099 2807 * typedef <target_regtype> target_elf_greg_t;
edf8e2af 2808 * #define ELF_NREG <number of registers>
c227f099 2809 * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
edf8e2af 2810 *
edf8e2af
MW
2811 * Last step is to implement target specific function that copies registers
2812 * from given cpu into just specified register set. Prototype is:
2813 *
c227f099 2814 * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
9349b4f9 2815 * const CPUArchState *env);
edf8e2af
MW
2816 *
2817 * Parameters:
2818 * regs - copy register values into here (allocated and zeroed by caller)
2819 * env - copy registers from here
2820 *
2821 * Example for ARM target is provided in this file.
2822 */
2823
2824/* An ELF note in memory */
2825struct memelfnote {
2826 const char *name;
2827 size_t namesz;
2828 size_t namesz_rounded;
2829 int type;
2830 size_t datasz;
80f5ce75 2831 size_t datasz_rounded;
edf8e2af
MW
2832 void *data;
2833 size_t notesz;
2834};
2835
a2547a13 2836struct target_elf_siginfo {
f8fd4fc4
PB
2837 abi_int si_signo; /* signal number */
2838 abi_int si_code; /* extra code */
2839 abi_int si_errno; /* errno */
edf8e2af
MW
2840};
2841
a2547a13
LD
2842struct target_elf_prstatus {
2843 struct target_elf_siginfo pr_info; /* Info associated with signal */
1ddd592f 2844 abi_short pr_cursig; /* Current signal */
ca98ac83
PB
2845 abi_ulong pr_sigpend; /* XXX */
2846 abi_ulong pr_sighold; /* XXX */
c227f099
AL
2847 target_pid_t pr_pid;
2848 target_pid_t pr_ppid;
2849 target_pid_t pr_pgrp;
2850 target_pid_t pr_sid;
edf8e2af
MW
2851 struct target_timeval pr_utime; /* XXX User time */
2852 struct target_timeval pr_stime; /* XXX System time */
2853 struct target_timeval pr_cutime; /* XXX Cumulative user time */
2854 struct target_timeval pr_cstime; /* XXX Cumulative system time */
c227f099 2855 target_elf_gregset_t pr_reg; /* GP registers */
f8fd4fc4 2856 abi_int pr_fpvalid; /* XXX */
edf8e2af
MW
2857};
2858
2859#define ELF_PRARGSZ (80) /* Number of chars for args */
2860
a2547a13 2861struct target_elf_prpsinfo {
edf8e2af
MW
2862 char pr_state; /* numeric process state */
2863 char pr_sname; /* char for pr_state */
2864 char pr_zomb; /* zombie */
2865 char pr_nice; /* nice val */
ca98ac83 2866 abi_ulong pr_flag; /* flags */
c227f099
AL
2867 target_uid_t pr_uid;
2868 target_gid_t pr_gid;
2869 target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
edf8e2af
MW
2870 /* Lots missing */
2871 char pr_fname[16]; /* filename of executable */
2872 char pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
2873};
2874
2875/* Here is the structure in which status of each thread is captured. */
2876struct elf_thread_status {
72cf2d4f 2877 QTAILQ_ENTRY(elf_thread_status) ets_link;
a2547a13 2878 struct target_elf_prstatus prstatus; /* NT_PRSTATUS */
edf8e2af
MW
2879#if 0
2880 elf_fpregset_t fpu; /* NT_PRFPREG */
2881 struct task_struct *thread;
2882 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */
2883#endif
2884 struct memelfnote notes[1];
2885 int num_notes;
2886};
2887
2888struct elf_note_info {
2889 struct memelfnote *notes;
a2547a13
LD
2890 struct target_elf_prstatus *prstatus; /* NT_PRSTATUS */
2891 struct target_elf_prpsinfo *psinfo; /* NT_PRPSINFO */
edf8e2af 2892
b58deb34 2893 QTAILQ_HEAD(, elf_thread_status) thread_list;
edf8e2af
MW
2894#if 0
2895 /*
2896 * Current version of ELF coredump doesn't support
2897 * dumping fp regs etc.
2898 */
2899 elf_fpregset_t *fpu;
2900 elf_fpxregset_t *xfpu;
2901 int thread_status_size;
2902#endif
2903 int notes_size;
2904 int numnote;
2905};
2906
2907struct vm_area_struct {
1a1c4db9
MI
2908 target_ulong vma_start; /* start vaddr of memory region */
2909 target_ulong vma_end; /* end vaddr of memory region */
2910 abi_ulong vma_flags; /* protection etc. flags for the region */
72cf2d4f 2911 QTAILQ_ENTRY(vm_area_struct) vma_link;
edf8e2af
MW
2912};
2913
2914struct mm_struct {
72cf2d4f 2915 QTAILQ_HEAD(, vm_area_struct) mm_mmap;
edf8e2af
MW
2916 int mm_count; /* number of mappings */
2917};
2918
2919static struct mm_struct *vma_init(void);
2920static void vma_delete(struct mm_struct *);
1a1c4db9
MI
2921static int vma_add_mapping(struct mm_struct *, target_ulong,
2922 target_ulong, abi_ulong);
edf8e2af
MW
2923static int vma_get_mapping_count(const struct mm_struct *);
2924static struct vm_area_struct *vma_first(const struct mm_struct *);
2925static struct vm_area_struct *vma_next(struct vm_area_struct *);
2926static abi_ulong vma_dump_size(const struct vm_area_struct *);
1a1c4db9 2927static int vma_walker(void *priv, target_ulong start, target_ulong end,
d97ef72e 2928 unsigned long flags);
edf8e2af
MW
2929
2930static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t);
2931static void fill_note(struct memelfnote *, const char *, int,
d97ef72e 2932 unsigned int, void *);
a2547a13
LD
2933static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int);
2934static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *);
edf8e2af
MW
2935static void fill_auxv_note(struct memelfnote *, const TaskState *);
2936static void fill_elf_note_phdr(struct elf_phdr *, int, off_t);
2937static size_t note_size(const struct memelfnote *);
2938static void free_note_info(struct elf_note_info *);
9349b4f9
AF
2939static int fill_note_info(struct elf_note_info *, long, const CPUArchState *);
2940static void fill_thread_info(struct elf_note_info *, const CPUArchState *);
edf8e2af
MW
2941static int core_dump_filename(const TaskState *, char *, size_t);
2942
2943static int dump_write(int, const void *, size_t);
2944static int write_note(struct memelfnote *, int);
2945static int write_note_info(struct elf_note_info *, int);
2946
2947#ifdef BSWAP_NEEDED
a2547a13 2948static void bswap_prstatus(struct target_elf_prstatus *prstatus)
edf8e2af 2949{
ca98ac83
PB
2950 prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo);
2951 prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code);
2952 prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno);
edf8e2af 2953 prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
ca98ac83
PB
2954 prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend);
2955 prstatus->pr_sighold = tswapal(prstatus->pr_sighold);
edf8e2af
MW
2956 prstatus->pr_pid = tswap32(prstatus->pr_pid);
2957 prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
2958 prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
2959 prstatus->pr_sid = tswap32(prstatus->pr_sid);
2960 /* cpu times are not filled, so we skip them */
2961 /* regs should be in correct format already */
2962 prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
2963}
2964
a2547a13 2965static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
edf8e2af 2966{
ca98ac83 2967 psinfo->pr_flag = tswapal(psinfo->pr_flag);
edf8e2af
MW
2968 psinfo->pr_uid = tswap16(psinfo->pr_uid);
2969 psinfo->pr_gid = tswap16(psinfo->pr_gid);
2970 psinfo->pr_pid = tswap32(psinfo->pr_pid);
2971 psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
2972 psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
2973 psinfo->pr_sid = tswap32(psinfo->pr_sid);
2974}
991f8f0c
RH
2975
2976static void bswap_note(struct elf_note *en)
2977{
2978 bswap32s(&en->n_namesz);
2979 bswap32s(&en->n_descsz);
2980 bswap32s(&en->n_type);
2981}
2982#else
2983static inline void bswap_prstatus(struct target_elf_prstatus *p) { }
2984static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {}
2985static inline void bswap_note(struct elf_note *en) { }
edf8e2af
MW
2986#endif /* BSWAP_NEEDED */
2987
2988/*
2989 * Minimal support for linux memory regions. These are needed
2990 * when we are finding out what memory exactly belongs to
2991 * emulated process. No locks needed here, as long as
2992 * thread that received the signal is stopped.
2993 */
2994
2995static struct mm_struct *vma_init(void)
2996{
2997 struct mm_struct *mm;
2998
7267c094 2999 if ((mm = g_malloc(sizeof (*mm))) == NULL)
edf8e2af
MW
3000 return (NULL);
3001
3002 mm->mm_count = 0;
72cf2d4f 3003 QTAILQ_INIT(&mm->mm_mmap);
edf8e2af
MW
3004
3005 return (mm);
3006}
3007
3008static void vma_delete(struct mm_struct *mm)
3009{
3010 struct vm_area_struct *vma;
3011
3012 while ((vma = vma_first(mm)) != NULL) {
72cf2d4f 3013 QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link);
7267c094 3014 g_free(vma);
edf8e2af 3015 }
7267c094 3016 g_free(mm);
edf8e2af
MW
3017}
3018
1a1c4db9
MI
3019static int vma_add_mapping(struct mm_struct *mm, target_ulong start,
3020 target_ulong end, abi_ulong flags)
edf8e2af
MW
3021{
3022 struct vm_area_struct *vma;
3023
7267c094 3024 if ((vma = g_malloc0(sizeof (*vma))) == NULL)
edf8e2af
MW
3025 return (-1);
3026
3027 vma->vma_start = start;
3028 vma->vma_end = end;
3029 vma->vma_flags = flags;
3030
72cf2d4f 3031 QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link);
edf8e2af
MW
3032 mm->mm_count++;
3033
3034 return (0);
3035}
3036
3037static struct vm_area_struct *vma_first(const struct mm_struct *mm)
3038{
72cf2d4f 3039 return (QTAILQ_FIRST(&mm->mm_mmap));
edf8e2af
MW
3040}
3041
3042static struct vm_area_struct *vma_next(struct vm_area_struct *vma)
3043{
72cf2d4f 3044 return (QTAILQ_NEXT(vma, vma_link));
edf8e2af
MW
3045}
3046
3047static int vma_get_mapping_count(const struct mm_struct *mm)
3048{
3049 return (mm->mm_count);
3050}
3051
3052/*
3053 * Calculate file (dump) size of given memory region.
3054 */
3055static abi_ulong vma_dump_size(const struct vm_area_struct *vma)
3056{
3057 /* if we cannot even read the first page, skip it */
3058 if (!access_ok(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE))
3059 return (0);
3060
3061 /*
3062 * Usually we don't dump executable pages as they contain
3063 * non-writable code that debugger can read directly from
3064 * target library etc. However, thread stacks are marked
3065 * also executable so we read in first page of given region
3066 * and check whether it contains elf header. If there is
3067 * no elf header, we dump it.
3068 */
3069 if (vma->vma_flags & PROT_EXEC) {
3070 char page[TARGET_PAGE_SIZE];
3071
3072 copy_from_user(page, vma->vma_start, sizeof (page));
3073 if ((page[EI_MAG0] == ELFMAG0) &&
3074 (page[EI_MAG1] == ELFMAG1) &&
3075 (page[EI_MAG2] == ELFMAG2) &&
3076 (page[EI_MAG3] == ELFMAG3)) {
3077 /*
3078 * Mappings are possibly from ELF binary. Don't dump
3079 * them.
3080 */
3081 return (0);
3082 }
3083 }
3084
3085 return (vma->vma_end - vma->vma_start);
3086}
3087
1a1c4db9 3088static int vma_walker(void *priv, target_ulong start, target_ulong end,
d97ef72e 3089 unsigned long flags)
edf8e2af
MW
3090{
3091 struct mm_struct *mm = (struct mm_struct *)priv;
3092
edf8e2af
MW
3093 vma_add_mapping(mm, start, end, flags);
3094 return (0);
3095}
3096
3097static void fill_note(struct memelfnote *note, const char *name, int type,
d97ef72e 3098 unsigned int sz, void *data)
edf8e2af
MW
3099{
3100 unsigned int namesz;
3101
3102 namesz = strlen(name) + 1;
3103 note->name = name;
3104 note->namesz = namesz;
3105 note->namesz_rounded = roundup(namesz, sizeof (int32_t));
3106 note->type = type;
80f5ce75
LV
3107 note->datasz = sz;
3108 note->datasz_rounded = roundup(sz, sizeof (int32_t));
3109
edf8e2af
MW
3110 note->data = data;
3111
3112 /*
3113 * We calculate rounded up note size here as specified by
3114 * ELF document.
3115 */
3116 note->notesz = sizeof (struct elf_note) +
80f5ce75 3117 note->namesz_rounded + note->datasz_rounded;
edf8e2af
MW
3118}
3119
3120static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
d97ef72e 3121 uint32_t flags)
edf8e2af
MW
3122{
3123 (void) memset(elf, 0, sizeof(*elf));
3124
3125 (void) memcpy(elf->e_ident, ELFMAG, SELFMAG);
3126 elf->e_ident[EI_CLASS] = ELF_CLASS;
3127 elf->e_ident[EI_DATA] = ELF_DATA;
3128 elf->e_ident[EI_VERSION] = EV_CURRENT;
3129 elf->e_ident[EI_OSABI] = ELF_OSABI;
3130
3131 elf->e_type = ET_CORE;
3132 elf->e_machine = machine;
3133 elf->e_version = EV_CURRENT;
3134 elf->e_phoff = sizeof(struct elfhdr);
3135 elf->e_flags = flags;
3136 elf->e_ehsize = sizeof(struct elfhdr);
3137 elf->e_phentsize = sizeof(struct elf_phdr);
3138 elf->e_phnum = segs;
3139
edf8e2af 3140 bswap_ehdr(elf);
edf8e2af
MW
3141}
3142
3143static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset)
3144{
3145 phdr->p_type = PT_NOTE;
3146 phdr->p_offset = offset;
3147 phdr->p_vaddr = 0;
3148 phdr->p_paddr = 0;
3149 phdr->p_filesz = sz;
3150 phdr->p_memsz = 0;
3151 phdr->p_flags = 0;
3152 phdr->p_align = 0;
3153
991f8f0c 3154 bswap_phdr(phdr, 1);
edf8e2af
MW
3155}
3156
3157static size_t note_size(const struct memelfnote *note)
3158{
3159 return (note->notesz);
3160}
3161
a2547a13 3162static void fill_prstatus(struct target_elf_prstatus *prstatus,
d97ef72e 3163 const TaskState *ts, int signr)
edf8e2af
MW
3164{
3165 (void) memset(prstatus, 0, sizeof (*prstatus));
3166 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
3167 prstatus->pr_pid = ts->ts_tid;
3168 prstatus->pr_ppid = getppid();
3169 prstatus->pr_pgrp = getpgrp();
3170 prstatus->pr_sid = getsid(0);
3171
edf8e2af 3172 bswap_prstatus(prstatus);
edf8e2af
MW
3173}
3174
a2547a13 3175static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts)
edf8e2af 3176{
900cfbca 3177 char *base_filename;
edf8e2af
MW
3178 unsigned int i, len;
3179
3180 (void) memset(psinfo, 0, sizeof (*psinfo));
3181
3182 len = ts->info->arg_end - ts->info->arg_start;
3183 if (len >= ELF_PRARGSZ)
3184 len = ELF_PRARGSZ - 1;
3185 if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_start, len))
3186 return -EFAULT;
3187 for (i = 0; i < len; i++)
3188 if (psinfo->pr_psargs[i] == 0)
3189 psinfo->pr_psargs[i] = ' ';
3190 psinfo->pr_psargs[len] = 0;
3191
3192 psinfo->pr_pid = getpid();
3193 psinfo->pr_ppid = getppid();
3194 psinfo->pr_pgrp = getpgrp();
3195 psinfo->pr_sid = getsid(0);
3196 psinfo->pr_uid = getuid();
3197 psinfo->pr_gid = getgid();
3198
900cfbca
JM
3199 base_filename = g_path_get_basename(ts->bprm->filename);
3200 /*
3201 * Using strncpy here is fine: at max-length,
3202 * this field is not NUL-terminated.
3203 */
edf8e2af 3204 (void) strncpy(psinfo->pr_fname, base_filename,
d97ef72e 3205 sizeof(psinfo->pr_fname));
edf8e2af 3206
900cfbca 3207 g_free(base_filename);
edf8e2af 3208 bswap_psinfo(psinfo);
edf8e2af
MW
3209 return (0);
3210}
3211
3212static void fill_auxv_note(struct memelfnote *note, const TaskState *ts)
3213{
3214 elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv;
3215 elf_addr_t orig_auxv = auxv;
edf8e2af 3216 void *ptr;
125b0f55 3217 int len = ts->info->auxv_len;
edf8e2af
MW
3218
3219 /*
3220 * Auxiliary vector is stored in target process stack. It contains
3221 * {type, value} pairs that we need to dump into note. This is not
3222 * strictly necessary but we do it here for sake of completeness.
3223 */
3224
edf8e2af
MW
3225 /* read in whole auxv vector and copy it to memelfnote */
3226 ptr = lock_user(VERIFY_READ, orig_auxv, len, 0);
3227 if (ptr != NULL) {
3228 fill_note(note, "CORE", NT_AUXV, len, ptr);
3229 unlock_user(ptr, auxv, len);
3230 }
3231}
3232
3233/*
3234 * Constructs name of coredump file. We have following convention
3235 * for the name:
3236 * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
3237 *
3238 * Returns 0 in case of success, -1 otherwise (errno is set).
3239 */
3240static int core_dump_filename(const TaskState *ts, char *buf,
d97ef72e 3241 size_t bufsize)
edf8e2af
MW
3242{
3243 char timestamp[64];
edf8e2af
MW
3244 char *base_filename = NULL;
3245 struct timeval tv;
3246 struct tm tm;
3247
3248 assert(bufsize >= PATH_MAX);
3249
3250 if (gettimeofday(&tv, NULL) < 0) {
3251 (void) fprintf(stderr, "unable to get current timestamp: %s",
d97ef72e 3252 strerror(errno));
edf8e2af
MW
3253 return (-1);
3254 }
3255
b8da57fa 3256 base_filename = g_path_get_basename(ts->bprm->filename);
edf8e2af 3257 (void) strftime(timestamp, sizeof (timestamp), "%Y%m%d-%H%M%S",
d97ef72e 3258 localtime_r(&tv.tv_sec, &tm));
edf8e2af 3259 (void) snprintf(buf, bufsize, "qemu_%s_%s_%d.core",
d97ef72e 3260 base_filename, timestamp, (int)getpid());
b8da57fa 3261 g_free(base_filename);
edf8e2af
MW
3262
3263 return (0);
3264}
3265
3266static int dump_write(int fd, const void *ptr, size_t size)
3267{
3268 const char *bufp = (const char *)ptr;
3269 ssize_t bytes_written, bytes_left;
3270 struct rlimit dumpsize;
3271 off_t pos;
3272
3273 bytes_written = 0;
3274 getrlimit(RLIMIT_CORE, &dumpsize);
3275 if ((pos = lseek(fd, 0, SEEK_CUR))==-1) {
3276 if (errno == ESPIPE) { /* not a seekable stream */
3277 bytes_left = size;
3278 } else {
3279 return pos;
3280 }
3281 } else {
3282 if (dumpsize.rlim_cur <= pos) {
3283 return -1;
3284 } else if (dumpsize.rlim_cur == RLIM_INFINITY) {
3285 bytes_left = size;
3286 } else {
3287 size_t limit_left=dumpsize.rlim_cur - pos;
3288 bytes_left = limit_left >= size ? size : limit_left ;
3289 }
3290 }
3291
3292 /*
3293 * In normal conditions, single write(2) should do but
3294 * in case of socket etc. this mechanism is more portable.
3295 */
3296 do {
3297 bytes_written = write(fd, bufp, bytes_left);
3298 if (bytes_written < 0) {
3299 if (errno == EINTR)
3300 continue;
3301 return (-1);
3302 } else if (bytes_written == 0) { /* eof */
3303 return (-1);
3304 }
3305 bufp += bytes_written;
3306 bytes_left -= bytes_written;
3307 } while (bytes_left > 0);
3308
3309 return (0);
3310}
3311
3312static int write_note(struct memelfnote *men, int fd)
3313{
3314 struct elf_note en;
3315
3316 en.n_namesz = men->namesz;
3317 en.n_type = men->type;
3318 en.n_descsz = men->datasz;
3319
edf8e2af 3320 bswap_note(&en);
edf8e2af
MW
3321
3322 if (dump_write(fd, &en, sizeof(en)) != 0)
3323 return (-1);
3324 if (dump_write(fd, men->name, men->namesz_rounded) != 0)
3325 return (-1);
80f5ce75 3326 if (dump_write(fd, men->data, men->datasz_rounded) != 0)
edf8e2af
MW
3327 return (-1);
3328
3329 return (0);
3330}
3331
9349b4f9 3332static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env)
edf8e2af 3333{
0429a971
AF
3334 CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
3335 TaskState *ts = (TaskState *)cpu->opaque;
edf8e2af
MW
3336 struct elf_thread_status *ets;
3337
7267c094 3338 ets = g_malloc0(sizeof (*ets));
edf8e2af
MW
3339 ets->num_notes = 1; /* only prstatus is dumped */
3340 fill_prstatus(&ets->prstatus, ts, 0);
3341 elf_core_copy_regs(&ets->prstatus.pr_reg, env);
3342 fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus),
d97ef72e 3343 &ets->prstatus);
edf8e2af 3344
72cf2d4f 3345 QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link);
edf8e2af
MW
3346
3347 info->notes_size += note_size(&ets->notes[0]);
3348}
3349
6afafa86
PM
3350static void init_note_info(struct elf_note_info *info)
3351{
3352 /* Initialize the elf_note_info structure so that it is at
3353 * least safe to call free_note_info() on it. Must be
3354 * called before calling fill_note_info().
3355 */
3356 memset(info, 0, sizeof (*info));
3357 QTAILQ_INIT(&info->thread_list);
3358}
3359
edf8e2af 3360static int fill_note_info(struct elf_note_info *info,
9349b4f9 3361 long signr, const CPUArchState *env)
edf8e2af
MW
3362{
3363#define NUMNOTES 3
0429a971
AF
3364 CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
3365 TaskState *ts = (TaskState *)cpu->opaque;
edf8e2af
MW
3366 int i;
3367
c78d65e8 3368 info->notes = g_new0(struct memelfnote, NUMNOTES);
edf8e2af
MW
3369 if (info->notes == NULL)
3370 return (-ENOMEM);
7267c094 3371 info->prstatus = g_malloc0(sizeof (*info->prstatus));
edf8e2af
MW
3372 if (info->prstatus == NULL)
3373 return (-ENOMEM);
7267c094 3374 info->psinfo = g_malloc0(sizeof (*info->psinfo));
edf8e2af
MW
3375 if (info->prstatus == NULL)
3376 return (-ENOMEM);
3377
3378 /*
3379 * First fill in status (and registers) of current thread
3380 * including process info & aux vector.
3381 */
3382 fill_prstatus(info->prstatus, ts, signr);
3383 elf_core_copy_regs(&info->prstatus->pr_reg, env);
3384 fill_note(&info->notes[0], "CORE", NT_PRSTATUS,
d97ef72e 3385 sizeof (*info->prstatus), info->prstatus);
edf8e2af
MW
3386 fill_psinfo(info->psinfo, ts);
3387 fill_note(&info->notes[1], "CORE", NT_PRPSINFO,
d97ef72e 3388 sizeof (*info->psinfo), info->psinfo);
edf8e2af
MW
3389 fill_auxv_note(&info->notes[2], ts);
3390 info->numnote = 3;
3391
3392 info->notes_size = 0;
3393 for (i = 0; i < info->numnote; i++)
3394 info->notes_size += note_size(&info->notes[i]);
3395
3396 /* read and fill status of all threads */
3397 cpu_list_lock();
bdc44640 3398 CPU_FOREACH(cpu) {
a2247f8e 3399 if (cpu == thread_cpu) {
edf8e2af 3400 continue;
182735ef
AF
3401 }
3402 fill_thread_info(info, (CPUArchState *)cpu->env_ptr);
edf8e2af
MW
3403 }
3404 cpu_list_unlock();
3405
3406 return (0);
3407}
3408
3409static void free_note_info(struct elf_note_info *info)
3410{
3411 struct elf_thread_status *ets;
3412
72cf2d4f
BS
3413 while (!QTAILQ_EMPTY(&info->thread_list)) {
3414 ets = QTAILQ_FIRST(&info->thread_list);
3415 QTAILQ_REMOVE(&info->thread_list, ets, ets_link);
7267c094 3416 g_free(ets);
edf8e2af
MW
3417 }
3418
7267c094
AL
3419 g_free(info->prstatus);
3420 g_free(info->psinfo);
3421 g_free(info->notes);
edf8e2af
MW
3422}
3423
3424static int write_note_info(struct elf_note_info *info, int fd)
3425{
3426 struct elf_thread_status *ets;
3427 int i, error = 0;
3428
3429 /* write prstatus, psinfo and auxv for current thread */
3430 for (i = 0; i < info->numnote; i++)
3431 if ((error = write_note(&info->notes[i], fd)) != 0)
3432 return (error);
3433
3434 /* write prstatus for each thread */
52a53afe 3435 QTAILQ_FOREACH(ets, &info->thread_list, ets_link) {
edf8e2af
MW
3436 if ((error = write_note(&ets->notes[0], fd)) != 0)
3437 return (error);
3438 }
3439
3440 return (0);
3441}
3442
3443/*
3444 * Write out ELF coredump.
3445 *
3446 * See documentation of ELF object file format in:
3447 * http://www.caldera.com/developers/devspecs/gabi41.pdf
3448 *
3449 * Coredump format in linux is following:
3450 *
3451 * 0 +----------------------+ \
3452 * | ELF header | ET_CORE |
3453 * +----------------------+ |
3454 * | ELF program headers | |--- headers
3455 * | - NOTE section | |
3456 * | - PT_LOAD sections | |
3457 * +----------------------+ /
3458 * | NOTEs: |
3459 * | - NT_PRSTATUS |
3460 * | - NT_PRSINFO |
3461 * | - NT_AUXV |
3462 * +----------------------+ <-- aligned to target page
3463 * | Process memory dump |
3464 * : :
3465 * . .
3466 * : :
3467 * | |
3468 * +----------------------+
3469 *
3470 * NT_PRSTATUS -> struct elf_prstatus (per thread)
3471 * NT_PRSINFO -> struct elf_prpsinfo
3472 * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
3473 *
3474 * Format follows System V format as close as possible. Current
3475 * version limitations are as follows:
3476 * - no floating point registers are dumped
3477 *
3478 * Function returns 0 in case of success, negative errno otherwise.
3479 *
3480 * TODO: make this work also during runtime: it should be
3481 * possible to force coredump from running process and then
3482 * continue processing. For example qemu could set up SIGUSR2
3483 * handler (provided that target process haven't registered
3484 * handler for that) that does the dump when signal is received.
3485 */
9349b4f9 3486static int elf_core_dump(int signr, const CPUArchState *env)
edf8e2af 3487{
0429a971
AF
3488 const CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
3489 const TaskState *ts = (const TaskState *)cpu->opaque;
edf8e2af
MW
3490 struct vm_area_struct *vma = NULL;
3491 char corefile[PATH_MAX];
3492 struct elf_note_info info;
3493 struct elfhdr elf;
3494 struct elf_phdr phdr;
3495 struct rlimit dumpsize;
3496 struct mm_struct *mm = NULL;
3497 off_t offset = 0, data_offset = 0;
3498 int segs = 0;
3499 int fd = -1;
3500
6afafa86
PM
3501 init_note_info(&info);
3502
edf8e2af
MW
3503 errno = 0;
3504 getrlimit(RLIMIT_CORE, &dumpsize);
3505 if (dumpsize.rlim_cur == 0)
d97ef72e 3506 return 0;
edf8e2af
MW
3507
3508 if (core_dump_filename(ts, corefile, sizeof (corefile)) < 0)
3509 return (-errno);
3510
3511 if ((fd = open(corefile, O_WRONLY | O_CREAT,
d97ef72e 3512 S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0)
edf8e2af
MW
3513 return (-errno);
3514
3515 /*
3516 * Walk through target process memory mappings and
3517 * set up structure containing this information. After
3518 * this point vma_xxx functions can be used.
3519 */
3520 if ((mm = vma_init()) == NULL)
3521 goto out;
3522
3523 walk_memory_regions(mm, vma_walker);
3524 segs = vma_get_mapping_count(mm);
3525
3526 /*
3527 * Construct valid coredump ELF header. We also
3528 * add one more segment for notes.
3529 */
3530 fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0);
3531 if (dump_write(fd, &elf, sizeof (elf)) != 0)
3532 goto out;
3533
b6af0975 3534 /* fill in the in-memory version of notes */
edf8e2af
MW
3535 if (fill_note_info(&info, signr, env) < 0)
3536 goto out;
3537
3538 offset += sizeof (elf); /* elf header */
3539 offset += (segs + 1) * sizeof (struct elf_phdr); /* program headers */
3540
3541 /* write out notes program header */
3542 fill_elf_note_phdr(&phdr, info.notes_size, offset);
3543
3544 offset += info.notes_size;
3545 if (dump_write(fd, &phdr, sizeof (phdr)) != 0)
3546 goto out;
3547
3548 /*
3549 * ELF specification wants data to start at page boundary so
3550 * we align it here.
3551 */
80f5ce75 3552 data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE);
edf8e2af
MW
3553
3554 /*
3555 * Write program headers for memory regions mapped in
3556 * the target process.
3557 */
3558 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
3559 (void) memset(&phdr, 0, sizeof (phdr));
3560
3561 phdr.p_type = PT_LOAD;
3562 phdr.p_offset = offset;
3563 phdr.p_vaddr = vma->vma_start;
3564 phdr.p_paddr = 0;
3565 phdr.p_filesz = vma_dump_size(vma);
3566 offset += phdr.p_filesz;
3567 phdr.p_memsz = vma->vma_end - vma->vma_start;
3568 phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0;
3569 if (vma->vma_flags & PROT_WRITE)
3570 phdr.p_flags |= PF_W;
3571 if (vma->vma_flags & PROT_EXEC)
3572 phdr.p_flags |= PF_X;
3573 phdr.p_align = ELF_EXEC_PAGESIZE;
3574
80f5ce75 3575 bswap_phdr(&phdr, 1);
772034b6
PM
3576 if (dump_write(fd, &phdr, sizeof(phdr)) != 0) {
3577 goto out;
3578 }
edf8e2af
MW
3579 }
3580
3581 /*
3582 * Next we write notes just after program headers. No
3583 * alignment needed here.
3584 */
3585 if (write_note_info(&info, fd) < 0)
3586 goto out;
3587
3588 /* align data to page boundary */
edf8e2af
MW
3589 if (lseek(fd, data_offset, SEEK_SET) != data_offset)
3590 goto out;
3591
3592 /*
3593 * Finally we can dump process memory into corefile as well.
3594 */
3595 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
3596 abi_ulong addr;
3597 abi_ulong end;
3598
3599 end = vma->vma_start + vma_dump_size(vma);
3600
3601 for (addr = vma->vma_start; addr < end;
d97ef72e 3602 addr += TARGET_PAGE_SIZE) {
edf8e2af
MW
3603 char page[TARGET_PAGE_SIZE];
3604 int error;
3605
3606 /*
3607 * Read in page from target process memory and
3608 * write it to coredump file.
3609 */
3610 error = copy_from_user(page, addr, sizeof (page));
3611 if (error != 0) {
49995e17 3612 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n",
d97ef72e 3613 addr);
edf8e2af
MW
3614 errno = -error;
3615 goto out;
3616 }
3617 if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0)
3618 goto out;
3619 }
3620 }
3621
d97ef72e 3622 out:
edf8e2af
MW
3623 free_note_info(&info);
3624 if (mm != NULL)
3625 vma_delete(mm);
3626 (void) close(fd);
3627
3628 if (errno != 0)
3629 return (-errno);
3630 return (0);
3631}
edf8e2af
MW
3632#endif /* USE_ELF_CORE_DUMP */
3633
e5fe0c52
PB
3634void do_init_thread(struct target_pt_regs *regs, struct image_info *infop)
3635{
3636 init_thread(regs, infop);
3637}