]> git.ipfire.org Git - thirdparty/qemu.git/blame - linux-user/elfload.c
xtensa: avoid "naked" qemu_log
[thirdparty/qemu.git] / linux-user / elfload.c
CommitLineData
31e31b8a 1/* This is the Linux kernel elf-loading code, ported into user space */
edf8e2af
MW
2#include <sys/time.h>
3#include <sys/param.h>
31e31b8a
FB
4
5#include <stdio.h>
6#include <sys/types.h>
7#include <fcntl.h>
31e31b8a
FB
8#include <errno.h>
9#include <unistd.h>
10#include <sys/mman.h>
edf8e2af 11#include <sys/resource.h>
31e31b8a
FB
12#include <stdlib.h>
13#include <string.h>
edf8e2af 14#include <time.h>
31e31b8a 15
3ef693a0 16#include "qemu.h"
76cad711 17#include "disas/disas.h"
31e31b8a 18
e58ffeb3 19#ifdef _ARCH_PPC64
a6cc84f4 20#undef ARCH_DLINFO
21#undef ELF_PLATFORM
22#undef ELF_HWCAP
ad6919dc 23#undef ELF_HWCAP2
a6cc84f4 24#undef ELF_CLASS
25#undef ELF_DATA
26#undef ELF_ARCH
27#endif
28
edf8e2af
MW
29#define ELF_OSABI ELFOSABI_SYSV
30
cb33da57
BS
31/* from personality.h */
32
33/*
34 * Flags for bug emulation.
35 *
36 * These occupy the top three bytes.
37 */
38enum {
d97ef72e
RH
39 ADDR_NO_RANDOMIZE = 0x0040000, /* disable randomization of VA space */
40 FDPIC_FUNCPTRS = 0x0080000, /* userspace function ptrs point to
41 descriptors (signal handling) */
42 MMAP_PAGE_ZERO = 0x0100000,
43 ADDR_COMPAT_LAYOUT = 0x0200000,
44 READ_IMPLIES_EXEC = 0x0400000,
45 ADDR_LIMIT_32BIT = 0x0800000,
46 SHORT_INODE = 0x1000000,
47 WHOLE_SECONDS = 0x2000000,
48 STICKY_TIMEOUTS = 0x4000000,
49 ADDR_LIMIT_3GB = 0x8000000,
cb33da57
BS
50};
51
52/*
53 * Personality types.
54 *
55 * These go in the low byte. Avoid using the top bit, it will
56 * conflict with error returns.
57 */
58enum {
d97ef72e
RH
59 PER_LINUX = 0x0000,
60 PER_LINUX_32BIT = 0x0000 | ADDR_LIMIT_32BIT,
61 PER_LINUX_FDPIC = 0x0000 | FDPIC_FUNCPTRS,
62 PER_SVR4 = 0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
63 PER_SVR3 = 0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
64 PER_SCOSVR3 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE,
65 PER_OSR5 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
66 PER_WYSEV386 = 0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
67 PER_ISCR4 = 0x0005 | STICKY_TIMEOUTS,
68 PER_BSD = 0x0006,
69 PER_SUNOS = 0x0006 | STICKY_TIMEOUTS,
70 PER_XENIX = 0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
71 PER_LINUX32 = 0x0008,
72 PER_LINUX32_3GB = 0x0008 | ADDR_LIMIT_3GB,
73 PER_IRIX32 = 0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
74 PER_IRIXN32 = 0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
75 PER_IRIX64 = 0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
76 PER_RISCOS = 0x000c,
77 PER_SOLARIS = 0x000d | STICKY_TIMEOUTS,
78 PER_UW7 = 0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
79 PER_OSF4 = 0x000f, /* OSF/1 v4 */
80 PER_HPUX = 0x0010,
81 PER_MASK = 0x00ff,
cb33da57
BS
82};
83
84/*
85 * Return the base personality without flags.
86 */
d97ef72e 87#define personality(pers) (pers & PER_MASK)
cb33da57 88
83fb7adf
FB
89/* this flag is uneffective under linux too, should be deleted */
90#ifndef MAP_DENYWRITE
91#define MAP_DENYWRITE 0
92#endif
93
94/* should probably go in elf.h */
95#ifndef ELIBBAD
96#define ELIBBAD 80
97#endif
98
28490231
RH
99#ifdef TARGET_WORDS_BIGENDIAN
100#define ELF_DATA ELFDATA2MSB
101#else
102#define ELF_DATA ELFDATA2LSB
103#endif
104
a29f998d 105#ifdef TARGET_ABI_MIPSN32
918fc54c
PB
106typedef abi_ullong target_elf_greg_t;
107#define tswapreg(ptr) tswap64(ptr)
a29f998d
PB
108#else
109typedef abi_ulong target_elf_greg_t;
110#define tswapreg(ptr) tswapal(ptr)
111#endif
112
21e807fa 113#ifdef USE_UID16
1ddd592f
PB
114typedef abi_ushort target_uid_t;
115typedef abi_ushort target_gid_t;
21e807fa 116#else
f8fd4fc4
PB
117typedef abi_uint target_uid_t;
118typedef abi_uint target_gid_t;
21e807fa 119#endif
f8fd4fc4 120typedef abi_int target_pid_t;
21e807fa 121
30ac07d4
FB
122#ifdef TARGET_I386
123
15338fd7
FB
124#define ELF_PLATFORM get_elf_platform()
125
126static const char *get_elf_platform(void)
127{
128 static char elf_platform[] = "i386";
a2247f8e 129 int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL);
15338fd7
FB
130 if (family > 6)
131 family = 6;
132 if (family >= 3)
133 elf_platform[1] = '0' + family;
134 return elf_platform;
135}
136
137#define ELF_HWCAP get_elf_hwcap()
138
139static uint32_t get_elf_hwcap(void)
140{
a2247f8e
AF
141 X86CPU *cpu = X86_CPU(thread_cpu);
142
143 return cpu->env.features[FEAT_1_EDX];
15338fd7
FB
144}
145
84409ddb
JM
146#ifdef TARGET_X86_64
147#define ELF_START_MMAP 0x2aaaaab000ULL
84409ddb
JM
148
149#define ELF_CLASS ELFCLASS64
84409ddb
JM
150#define ELF_ARCH EM_X86_64
151
152static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
153{
154 regs->rax = 0;
155 regs->rsp = infop->start_stack;
156 regs->rip = infop->entry;
157}
158
9edc5d79 159#define ELF_NREG 27
c227f099 160typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
9edc5d79
MW
161
162/*
163 * Note that ELF_NREG should be 29 as there should be place for
164 * TRAPNO and ERR "registers" as well but linux doesn't dump
165 * those.
166 *
167 * See linux kernel: arch/x86/include/asm/elf.h
168 */
05390248 169static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
9edc5d79
MW
170{
171 (*regs)[0] = env->regs[15];
172 (*regs)[1] = env->regs[14];
173 (*regs)[2] = env->regs[13];
174 (*regs)[3] = env->regs[12];
175 (*regs)[4] = env->regs[R_EBP];
176 (*regs)[5] = env->regs[R_EBX];
177 (*regs)[6] = env->regs[11];
178 (*regs)[7] = env->regs[10];
179 (*regs)[8] = env->regs[9];
180 (*regs)[9] = env->regs[8];
181 (*regs)[10] = env->regs[R_EAX];
182 (*regs)[11] = env->regs[R_ECX];
183 (*regs)[12] = env->regs[R_EDX];
184 (*regs)[13] = env->regs[R_ESI];
185 (*regs)[14] = env->regs[R_EDI];
186 (*regs)[15] = env->regs[R_EAX]; /* XXX */
187 (*regs)[16] = env->eip;
188 (*regs)[17] = env->segs[R_CS].selector & 0xffff;
189 (*regs)[18] = env->eflags;
190 (*regs)[19] = env->regs[R_ESP];
191 (*regs)[20] = env->segs[R_SS].selector & 0xffff;
192 (*regs)[21] = env->segs[R_FS].selector & 0xffff;
193 (*regs)[22] = env->segs[R_GS].selector & 0xffff;
194 (*regs)[23] = env->segs[R_DS].selector & 0xffff;
195 (*regs)[24] = env->segs[R_ES].selector & 0xffff;
196 (*regs)[25] = env->segs[R_FS].selector & 0xffff;
197 (*regs)[26] = env->segs[R_GS].selector & 0xffff;
198}
199
84409ddb
JM
200#else
201
30ac07d4
FB
202#define ELF_START_MMAP 0x80000000
203
30ac07d4
FB
204/*
205 * This is used to ensure we don't load something for the wrong architecture.
206 */
207#define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
208
209/*
210 * These are used to set parameters in the core dumps.
211 */
d97ef72e 212#define ELF_CLASS ELFCLASS32
d97ef72e 213#define ELF_ARCH EM_386
30ac07d4 214
d97ef72e
RH
215static inline void init_thread(struct target_pt_regs *regs,
216 struct image_info *infop)
b346ff46
FB
217{
218 regs->esp = infop->start_stack;
219 regs->eip = infop->entry;
e5fe0c52
PB
220
221 /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
222 starts %edx contains a pointer to a function which might be
223 registered using `atexit'. This provides a mean for the
224 dynamic linker to call DT_FINI functions for shared libraries
225 that have been loaded before the code runs.
226
227 A value of 0 tells we have no such handler. */
228 regs->edx = 0;
b346ff46 229}
9edc5d79 230
9edc5d79 231#define ELF_NREG 17
c227f099 232typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
9edc5d79
MW
233
234/*
235 * Note that ELF_NREG should be 19 as there should be place for
236 * TRAPNO and ERR "registers" as well but linux doesn't dump
237 * those.
238 *
239 * See linux kernel: arch/x86/include/asm/elf.h
240 */
05390248 241static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
9edc5d79
MW
242{
243 (*regs)[0] = env->regs[R_EBX];
244 (*regs)[1] = env->regs[R_ECX];
245 (*regs)[2] = env->regs[R_EDX];
246 (*regs)[3] = env->regs[R_ESI];
247 (*regs)[4] = env->regs[R_EDI];
248 (*regs)[5] = env->regs[R_EBP];
249 (*regs)[6] = env->regs[R_EAX];
250 (*regs)[7] = env->segs[R_DS].selector & 0xffff;
251 (*regs)[8] = env->segs[R_ES].selector & 0xffff;
252 (*regs)[9] = env->segs[R_FS].selector & 0xffff;
253 (*regs)[10] = env->segs[R_GS].selector & 0xffff;
254 (*regs)[11] = env->regs[R_EAX]; /* XXX */
255 (*regs)[12] = env->eip;
256 (*regs)[13] = env->segs[R_CS].selector & 0xffff;
257 (*regs)[14] = env->eflags;
258 (*regs)[15] = env->regs[R_ESP];
259 (*regs)[16] = env->segs[R_SS].selector & 0xffff;
260}
84409ddb 261#endif
b346ff46 262
9edc5d79 263#define USE_ELF_CORE_DUMP
d97ef72e 264#define ELF_EXEC_PAGESIZE 4096
b346ff46
FB
265
266#endif
267
268#ifdef TARGET_ARM
269
24e76ff0
PM
270#ifndef TARGET_AARCH64
271/* 32 bit ARM definitions */
272
b346ff46
FB
273#define ELF_START_MMAP 0x80000000
274
b597c3f7 275#define ELF_ARCH EM_ARM
d97ef72e 276#define ELF_CLASS ELFCLASS32
b346ff46 277
d97ef72e
RH
278static inline void init_thread(struct target_pt_regs *regs,
279 struct image_info *infop)
b346ff46 280{
992f48a0 281 abi_long stack = infop->start_stack;
b346ff46 282 memset(regs, 0, sizeof(*regs));
99033cae 283
b346ff46 284 regs->ARM_cpsr = 0x10;
0240ded8 285 if (infop->entry & 1)
d97ef72e 286 regs->ARM_cpsr |= CPSR_T;
0240ded8 287 regs->ARM_pc = infop->entry & 0xfffffffe;
b346ff46 288 regs->ARM_sp = infop->start_stack;
2f619698
FB
289 /* FIXME - what to for failure of get_user()? */
290 get_user_ual(regs->ARM_r2, stack + 8); /* envp */
291 get_user_ual(regs->ARM_r1, stack + 4); /* envp */
a1516e92 292 /* XXX: it seems that r0 is zeroed after ! */
e5fe0c52
PB
293 regs->ARM_r0 = 0;
294 /* For uClinux PIC binaries. */
863cf0b7 295 /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
e5fe0c52 296 regs->ARM_r10 = infop->start_data;
b346ff46
FB
297}
298
edf8e2af 299#define ELF_NREG 18
c227f099 300typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
edf8e2af 301
05390248 302static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env)
edf8e2af 303{
86cd7b2d
PB
304 (*regs)[0] = tswapreg(env->regs[0]);
305 (*regs)[1] = tswapreg(env->regs[1]);
306 (*regs)[2] = tswapreg(env->regs[2]);
307 (*regs)[3] = tswapreg(env->regs[3]);
308 (*regs)[4] = tswapreg(env->regs[4]);
309 (*regs)[5] = tswapreg(env->regs[5]);
310 (*regs)[6] = tswapreg(env->regs[6]);
311 (*regs)[7] = tswapreg(env->regs[7]);
312 (*regs)[8] = tswapreg(env->regs[8]);
313 (*regs)[9] = tswapreg(env->regs[9]);
314 (*regs)[10] = tswapreg(env->regs[10]);
315 (*regs)[11] = tswapreg(env->regs[11]);
316 (*regs)[12] = tswapreg(env->regs[12]);
317 (*regs)[13] = tswapreg(env->regs[13]);
318 (*regs)[14] = tswapreg(env->regs[14]);
319 (*regs)[15] = tswapreg(env->regs[15]);
320
321 (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env));
322 (*regs)[17] = tswapreg(env->regs[0]); /* XXX */
edf8e2af
MW
323}
324
30ac07d4 325#define USE_ELF_CORE_DUMP
d97ef72e 326#define ELF_EXEC_PAGESIZE 4096
30ac07d4 327
afce2927
FB
328enum
329{
d97ef72e
RH
330 ARM_HWCAP_ARM_SWP = 1 << 0,
331 ARM_HWCAP_ARM_HALF = 1 << 1,
332 ARM_HWCAP_ARM_THUMB = 1 << 2,
333 ARM_HWCAP_ARM_26BIT = 1 << 3,
334 ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
335 ARM_HWCAP_ARM_FPA = 1 << 5,
336 ARM_HWCAP_ARM_VFP = 1 << 6,
337 ARM_HWCAP_ARM_EDSP = 1 << 7,
338 ARM_HWCAP_ARM_JAVA = 1 << 8,
339 ARM_HWCAP_ARM_IWMMXT = 1 << 9,
43ce393e
PM
340 ARM_HWCAP_ARM_CRUNCH = 1 << 10,
341 ARM_HWCAP_ARM_THUMBEE = 1 << 11,
342 ARM_HWCAP_ARM_NEON = 1 << 12,
343 ARM_HWCAP_ARM_VFPv3 = 1 << 13,
344 ARM_HWCAP_ARM_VFPv3D16 = 1 << 14,
24682654
PM
345 ARM_HWCAP_ARM_TLS = 1 << 15,
346 ARM_HWCAP_ARM_VFPv4 = 1 << 16,
347 ARM_HWCAP_ARM_IDIVA = 1 << 17,
348 ARM_HWCAP_ARM_IDIVT = 1 << 18,
349 ARM_HWCAP_ARM_VFPD32 = 1 << 19,
350 ARM_HWCAP_ARM_LPAE = 1 << 20,
351 ARM_HWCAP_ARM_EVTSTRM = 1 << 21,
afce2927
FB
352};
353
ad6919dc
PM
354enum {
355 ARM_HWCAP2_ARM_AES = 1 << 0,
356 ARM_HWCAP2_ARM_PMULL = 1 << 1,
357 ARM_HWCAP2_ARM_SHA1 = 1 << 2,
358 ARM_HWCAP2_ARM_SHA2 = 1 << 3,
359 ARM_HWCAP2_ARM_CRC32 = 1 << 4,
360};
361
6b1275ff
PM
362/* The commpage only exists for 32 bit kernels */
363
806d1021
MI
364#define TARGET_HAS_VALIDATE_GUEST_SPACE
365/* Return 1 if the proposed guest space is suitable for the guest.
366 * Return 0 if the proposed guest space isn't suitable, but another
367 * address space should be tried.
368 * Return -1 if there is no way the proposed guest space can be
369 * valid regardless of the base.
370 * The guest code may leave a page mapped and populate it if the
371 * address is suitable.
372 */
373static int validate_guest_space(unsigned long guest_base,
374 unsigned long guest_size)
97cc7560
DDAG
375{
376 unsigned long real_start, test_page_addr;
377
378 /* We need to check that we can force a fault on access to the
379 * commpage at 0xffff0fxx
380 */
381 test_page_addr = guest_base + (0xffff0f00 & qemu_host_page_mask);
806d1021
MI
382
383 /* If the commpage lies within the already allocated guest space,
384 * then there is no way we can allocate it.
385 */
386 if (test_page_addr >= guest_base
387 && test_page_addr <= (guest_base + guest_size)) {
388 return -1;
389 }
390
97cc7560
DDAG
391 /* Note it needs to be writeable to let us initialise it */
392 real_start = (unsigned long)
393 mmap((void *)test_page_addr, qemu_host_page_size,
394 PROT_READ | PROT_WRITE,
395 MAP_ANONYMOUS | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
396
397 /* If we can't map it then try another address */
398 if (real_start == -1ul) {
399 return 0;
400 }
401
402 if (real_start != test_page_addr) {
403 /* OS didn't put the page where we asked - unmap and reject */
404 munmap((void *)real_start, qemu_host_page_size);
405 return 0;
406 }
407
408 /* Leave the page mapped
409 * Populate it (mmap should have left it all 0'd)
410 */
411
412 /* Kernel helper versions */
413 __put_user(5, (uint32_t *)g2h(0xffff0ffcul));
414
415 /* Now it's populated make it RO */
416 if (mprotect((void *)test_page_addr, qemu_host_page_size, PROT_READ)) {
417 perror("Protecting guest commpage");
418 exit(-1);
419 }
420
421 return 1; /* All good */
422}
adf050b1
BC
423
424#define ELF_HWCAP get_elf_hwcap()
ad6919dc 425#define ELF_HWCAP2 get_elf_hwcap2()
adf050b1
BC
426
427static uint32_t get_elf_hwcap(void)
428{
a2247f8e 429 ARMCPU *cpu = ARM_CPU(thread_cpu);
adf050b1
BC
430 uint32_t hwcaps = 0;
431
432 hwcaps |= ARM_HWCAP_ARM_SWP;
433 hwcaps |= ARM_HWCAP_ARM_HALF;
434 hwcaps |= ARM_HWCAP_ARM_THUMB;
435 hwcaps |= ARM_HWCAP_ARM_FAST_MULT;
adf050b1
BC
436
437 /* probe for the extra features */
438#define GET_FEATURE(feat, hwcap) \
a2247f8e 439 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
24682654
PM
440 /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */
441 GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP);
adf050b1
BC
442 GET_FEATURE(ARM_FEATURE_VFP, ARM_HWCAP_ARM_VFP);
443 GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT);
444 GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE);
445 GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON);
446 GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPv3);
24682654
PM
447 GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS);
448 GET_FEATURE(ARM_FEATURE_VFP4, ARM_HWCAP_ARM_VFPv4);
449 GET_FEATURE(ARM_FEATURE_ARM_DIV, ARM_HWCAP_ARM_IDIVA);
450 GET_FEATURE(ARM_FEATURE_THUMB_DIV, ARM_HWCAP_ARM_IDIVT);
451 /* All QEMU's VFPv3 CPUs have 32 registers, see VFP_DREG in translate.c.
452 * Note that the ARM_HWCAP_ARM_VFPv3D16 bit is always the inverse of
453 * ARM_HWCAP_ARM_VFPD32 (and so always clear for QEMU); it is unrelated
454 * to our VFP_FP16 feature bit.
455 */
456 GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPD32);
457 GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE);
adf050b1
BC
458
459 return hwcaps;
460}
afce2927 461
ad6919dc
PM
462static uint32_t get_elf_hwcap2(void)
463{
464 ARMCPU *cpu = ARM_CPU(thread_cpu);
465 uint32_t hwcaps = 0;
466
467 GET_FEATURE(ARM_FEATURE_V8_AES, ARM_HWCAP2_ARM_AES);
4e624eda 468 GET_FEATURE(ARM_FEATURE_V8_PMULL, ARM_HWCAP2_ARM_PMULL);
f1ecb913
AB
469 GET_FEATURE(ARM_FEATURE_V8_SHA1, ARM_HWCAP2_ARM_SHA1);
470 GET_FEATURE(ARM_FEATURE_V8_SHA256, ARM_HWCAP2_ARM_SHA2);
ad6919dc
PM
471 GET_FEATURE(ARM_FEATURE_CRC, ARM_HWCAP2_ARM_CRC32);
472 return hwcaps;
473}
474
475#undef GET_FEATURE
476
24e76ff0
PM
477#else
478/* 64 bit ARM definitions */
479#define ELF_START_MMAP 0x80000000
480
b597c3f7 481#define ELF_ARCH EM_AARCH64
24e76ff0
PM
482#define ELF_CLASS ELFCLASS64
483#define ELF_PLATFORM "aarch64"
484
485static inline void init_thread(struct target_pt_regs *regs,
486 struct image_info *infop)
487{
488 abi_long stack = infop->start_stack;
489 memset(regs, 0, sizeof(*regs));
490
491 regs->pc = infop->entry & ~0x3ULL;
492 regs->sp = stack;
493}
494
495#define ELF_NREG 34
496typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
497
498static void elf_core_copy_regs(target_elf_gregset_t *regs,
499 const CPUARMState *env)
500{
501 int i;
502
503 for (i = 0; i < 32; i++) {
504 (*regs)[i] = tswapreg(env->xregs[i]);
505 }
506 (*regs)[32] = tswapreg(env->pc);
507 (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env));
508}
509
510#define USE_ELF_CORE_DUMP
511#define ELF_EXEC_PAGESIZE 4096
512
513enum {
514 ARM_HWCAP_A64_FP = 1 << 0,
515 ARM_HWCAP_A64_ASIMD = 1 << 1,
516 ARM_HWCAP_A64_EVTSTRM = 1 << 2,
517 ARM_HWCAP_A64_AES = 1 << 3,
518 ARM_HWCAP_A64_PMULL = 1 << 4,
519 ARM_HWCAP_A64_SHA1 = 1 << 5,
520 ARM_HWCAP_A64_SHA2 = 1 << 6,
521 ARM_HWCAP_A64_CRC32 = 1 << 7,
522};
523
524#define ELF_HWCAP get_elf_hwcap()
525
526static uint32_t get_elf_hwcap(void)
527{
528 ARMCPU *cpu = ARM_CPU(thread_cpu);
529 uint32_t hwcaps = 0;
530
531 hwcaps |= ARM_HWCAP_A64_FP;
532 hwcaps |= ARM_HWCAP_A64_ASIMD;
533
534 /* probe for the extra features */
535#define GET_FEATURE(feat, hwcap) \
536 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
5acc765c 537 GET_FEATURE(ARM_FEATURE_V8_AES, ARM_HWCAP_A64_AES);
411bdc78 538 GET_FEATURE(ARM_FEATURE_V8_PMULL, ARM_HWCAP_A64_PMULL);
f6fe04d5
PM
539 GET_FEATURE(ARM_FEATURE_V8_SHA1, ARM_HWCAP_A64_SHA1);
540 GET_FEATURE(ARM_FEATURE_V8_SHA256, ARM_HWCAP_A64_SHA2);
130f2e7d 541 GET_FEATURE(ARM_FEATURE_CRC, ARM_HWCAP_A64_CRC32);
24e76ff0
PM
542#undef GET_FEATURE
543
544 return hwcaps;
545}
546
547#endif /* not TARGET_AARCH64 */
548#endif /* TARGET_ARM */
30ac07d4 549
d2fbca94
GX
550#ifdef TARGET_UNICORE32
551
552#define ELF_START_MMAP 0x80000000
553
d2fbca94
GX
554#define ELF_CLASS ELFCLASS32
555#define ELF_DATA ELFDATA2LSB
556#define ELF_ARCH EM_UNICORE32
557
558static inline void init_thread(struct target_pt_regs *regs,
559 struct image_info *infop)
560{
561 abi_long stack = infop->start_stack;
562 memset(regs, 0, sizeof(*regs));
563 regs->UC32_REG_asr = 0x10;
564 regs->UC32_REG_pc = infop->entry & 0xfffffffe;
565 regs->UC32_REG_sp = infop->start_stack;
566 /* FIXME - what to for failure of get_user()? */
567 get_user_ual(regs->UC32_REG_02, stack + 8); /* envp */
568 get_user_ual(regs->UC32_REG_01, stack + 4); /* envp */
569 /* XXX: it seems that r0 is zeroed after ! */
570 regs->UC32_REG_00 = 0;
571}
572
573#define ELF_NREG 34
574typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
575
05390248 576static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUUniCore32State *env)
d2fbca94
GX
577{
578 (*regs)[0] = env->regs[0];
579 (*regs)[1] = env->regs[1];
580 (*regs)[2] = env->regs[2];
581 (*regs)[3] = env->regs[3];
582 (*regs)[4] = env->regs[4];
583 (*regs)[5] = env->regs[5];
584 (*regs)[6] = env->regs[6];
585 (*regs)[7] = env->regs[7];
586 (*regs)[8] = env->regs[8];
587 (*regs)[9] = env->regs[9];
588 (*regs)[10] = env->regs[10];
589 (*regs)[11] = env->regs[11];
590 (*regs)[12] = env->regs[12];
591 (*regs)[13] = env->regs[13];
592 (*regs)[14] = env->regs[14];
593 (*regs)[15] = env->regs[15];
594 (*regs)[16] = env->regs[16];
595 (*regs)[17] = env->regs[17];
596 (*regs)[18] = env->regs[18];
597 (*regs)[19] = env->regs[19];
598 (*regs)[20] = env->regs[20];
599 (*regs)[21] = env->regs[21];
600 (*regs)[22] = env->regs[22];
601 (*regs)[23] = env->regs[23];
602 (*regs)[24] = env->regs[24];
603 (*regs)[25] = env->regs[25];
604 (*regs)[26] = env->regs[26];
605 (*regs)[27] = env->regs[27];
606 (*regs)[28] = env->regs[28];
607 (*regs)[29] = env->regs[29];
608 (*regs)[30] = env->regs[30];
609 (*regs)[31] = env->regs[31];
610
05390248 611 (*regs)[32] = cpu_asr_read((CPUUniCore32State *)env);
d2fbca94
GX
612 (*regs)[33] = env->regs[0]; /* XXX */
613}
614
615#define USE_ELF_CORE_DUMP
616#define ELF_EXEC_PAGESIZE 4096
617
618#define ELF_HWCAP (UC32_HWCAP_CMOV | UC32_HWCAP_UCF64)
619
620#endif
621
853d6f7a 622#ifdef TARGET_SPARC
a315a145 623#ifdef TARGET_SPARC64
853d6f7a
FB
624
625#define ELF_START_MMAP 0x80000000
cf973e46
AT
626#define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
627 | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9)
992f48a0 628#ifndef TARGET_ABI32
cb33da57 629#define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
992f48a0
BS
630#else
631#define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
632#endif
853d6f7a 633
a315a145 634#define ELF_CLASS ELFCLASS64
5ef54116
FB
635#define ELF_ARCH EM_SPARCV9
636
d97ef72e 637#define STACK_BIAS 2047
a315a145 638
d97ef72e
RH
639static inline void init_thread(struct target_pt_regs *regs,
640 struct image_info *infop)
a315a145 641{
992f48a0 642#ifndef TARGET_ABI32
a315a145 643 regs->tstate = 0;
992f48a0 644#endif
a315a145
FB
645 regs->pc = infop->entry;
646 regs->npc = regs->pc + 4;
647 regs->y = 0;
992f48a0
BS
648#ifdef TARGET_ABI32
649 regs->u_regs[14] = infop->start_stack - 16 * 4;
650#else
cb33da57
BS
651 if (personality(infop->personality) == PER_LINUX32)
652 regs->u_regs[14] = infop->start_stack - 16 * 4;
653 else
654 regs->u_regs[14] = infop->start_stack - 16 * 8 - STACK_BIAS;
992f48a0 655#endif
a315a145
FB
656}
657
658#else
659#define ELF_START_MMAP 0x80000000
cf973e46
AT
660#define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
661 | HWCAP_SPARC_MULDIV)
a315a145 662
853d6f7a 663#define ELF_CLASS ELFCLASS32
853d6f7a
FB
664#define ELF_ARCH EM_SPARC
665
d97ef72e
RH
666static inline void init_thread(struct target_pt_regs *regs,
667 struct image_info *infop)
853d6f7a 668{
f5155289
FB
669 regs->psr = 0;
670 regs->pc = infop->entry;
671 regs->npc = regs->pc + 4;
672 regs->y = 0;
673 regs->u_regs[14] = infop->start_stack - 16 * 4;
853d6f7a
FB
674}
675
a315a145 676#endif
853d6f7a
FB
677#endif
678
67867308
FB
679#ifdef TARGET_PPC
680
4ecd4d16 681#define ELF_MACHINE PPC_ELF_MACHINE
67867308
FB
682#define ELF_START_MMAP 0x80000000
683
e85e7c6e 684#if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
84409ddb
JM
685
686#define elf_check_arch(x) ( (x) == EM_PPC64 )
687
d97ef72e 688#define ELF_CLASS ELFCLASS64
84409ddb
JM
689
690#else
691
d97ef72e 692#define ELF_CLASS ELFCLASS32
84409ddb
JM
693
694#endif
695
d97ef72e 696#define ELF_ARCH EM_PPC
67867308 697
df84e4f3
NF
698/* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
699 See arch/powerpc/include/asm/cputable.h. */
700enum {
3efa9a67 701 QEMU_PPC_FEATURE_32 = 0x80000000,
702 QEMU_PPC_FEATURE_64 = 0x40000000,
703 QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
704 QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
705 QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
706 QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
707 QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
708 QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
709 QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
710 QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
711 QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
712 QEMU_PPC_FEATURE_NO_TB = 0x00100000,
713 QEMU_PPC_FEATURE_POWER4 = 0x00080000,
714 QEMU_PPC_FEATURE_POWER5 = 0x00040000,
715 QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
716 QEMU_PPC_FEATURE_CELL = 0x00010000,
717 QEMU_PPC_FEATURE_BOOKE = 0x00008000,
718 QEMU_PPC_FEATURE_SMT = 0x00004000,
719 QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
720 QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
721 QEMU_PPC_FEATURE_PA6T = 0x00000800,
722 QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
723 QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
724 QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
725 QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
726 QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
727
728 QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
729 QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
a60438dd
TM
730
731 /* Feature definitions in AT_HWCAP2. */
732 QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */
733 QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */
734 QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */
735 QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */
736 QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */
737 QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */
df84e4f3
NF
738};
739
740#define ELF_HWCAP get_elf_hwcap()
741
742static uint32_t get_elf_hwcap(void)
743{
a2247f8e 744 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
df84e4f3
NF
745 uint32_t features = 0;
746
747 /* We don't have to be terribly complete here; the high points are
748 Altivec/FP/SPE support. Anything else is just a bonus. */
d97ef72e 749#define GET_FEATURE(flag, feature) \
a2247f8e 750 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
0e019746
TM
751#define GET_FEATURE2(flag, feature) \
752 do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
3efa9a67 753 GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
754 GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
755 GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
756 GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
757 GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
758 GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
759 GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
760 GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
0e019746
TM
761 GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP);
762 GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX);
763 GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 |
764 PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206),
765 QEMU_PPC_FEATURE_ARCH_2_06);
df84e4f3 766#undef GET_FEATURE
0e019746 767#undef GET_FEATURE2
df84e4f3
NF
768
769 return features;
770}
771
a60438dd
TM
772#define ELF_HWCAP2 get_elf_hwcap2()
773
774static uint32_t get_elf_hwcap2(void)
775{
776 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
777 uint32_t features = 0;
778
779#define GET_FEATURE(flag, feature) \
780 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
781#define GET_FEATURE2(flag, feature) \
782 do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
783
784 GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL);
785 GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR);
786 GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 |
787 PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07);
788
789#undef GET_FEATURE
790#undef GET_FEATURE2
791
792 return features;
793}
794
f5155289
FB
795/*
796 * The requirements here are:
797 * - keep the final alignment of sp (sp & 0xf)
798 * - make sure the 32-bit value at the first 16 byte aligned position of
799 * AUXV is greater than 16 for glibc compatibility.
800 * AT_IGNOREPPC is used for that.
801 * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
802 * even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
803 */
0bccf03d 804#define DLINFO_ARCH_ITEMS 5
d97ef72e
RH
805#define ARCH_DLINFO \
806 do { \
623e250a
TM
807 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); \
808 NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \
809 NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \
d97ef72e
RH
810 NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \
811 /* \
812 * Now handle glibc compatibility. \
813 */ \
814 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
815 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
816 } while (0)
f5155289 817
67867308
FB
818static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
819{
67867308 820 _regs->gpr[1] = infop->start_stack;
e85e7c6e 821#if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
d90b94cd 822 if (get_ppc64_abi(infop) < 2) {
2ccf97ec
PM
823 uint64_t val;
824 get_user_u64(val, infop->entry + 8);
825 _regs->gpr[2] = val + infop->load_bias;
826 get_user_u64(val, infop->entry);
827 infop->entry = val + infop->load_bias;
d90b94cd
DK
828 } else {
829 _regs->gpr[12] = infop->entry; /* r12 set to global entry address */
830 }
84409ddb 831#endif
67867308
FB
832 _regs->nip = infop->entry;
833}
834
e2f3e741
NF
835/* See linux kernel: arch/powerpc/include/asm/elf.h. */
836#define ELF_NREG 48
837typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
838
05390248 839static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env)
e2f3e741
NF
840{
841 int i;
842 target_ulong ccr = 0;
843
844 for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
86cd7b2d 845 (*regs)[i] = tswapreg(env->gpr[i]);
e2f3e741
NF
846 }
847
86cd7b2d
PB
848 (*regs)[32] = tswapreg(env->nip);
849 (*regs)[33] = tswapreg(env->msr);
850 (*regs)[35] = tswapreg(env->ctr);
851 (*regs)[36] = tswapreg(env->lr);
852 (*regs)[37] = tswapreg(env->xer);
e2f3e741
NF
853
854 for (i = 0; i < ARRAY_SIZE(env->crf); i++) {
855 ccr |= env->crf[i] << (32 - ((i + 1) * 4));
856 }
86cd7b2d 857 (*regs)[38] = tswapreg(ccr);
e2f3e741
NF
858}
859
860#define USE_ELF_CORE_DUMP
d97ef72e 861#define ELF_EXEC_PAGESIZE 4096
67867308
FB
862
863#endif
864
048f6b4d
FB
865#ifdef TARGET_MIPS
866
867#define ELF_START_MMAP 0x80000000
868
388bb21a
TS
869#ifdef TARGET_MIPS64
870#define ELF_CLASS ELFCLASS64
871#else
048f6b4d 872#define ELF_CLASS ELFCLASS32
388bb21a 873#endif
048f6b4d
FB
874#define ELF_ARCH EM_MIPS
875
d97ef72e
RH
876static inline void init_thread(struct target_pt_regs *regs,
877 struct image_info *infop)
048f6b4d 878{
623a930e 879 regs->cp0_status = 2 << CP0St_KSU;
048f6b4d
FB
880 regs->cp0_epc = infop->entry;
881 regs->regs[29] = infop->start_stack;
882}
883
51e52606
NF
884/* See linux kernel: arch/mips/include/asm/elf.h. */
885#define ELF_NREG 45
886typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
887
888/* See linux kernel: arch/mips/include/asm/reg.h. */
889enum {
890#ifdef TARGET_MIPS64
891 TARGET_EF_R0 = 0,
892#else
893 TARGET_EF_R0 = 6,
894#endif
895 TARGET_EF_R26 = TARGET_EF_R0 + 26,
896 TARGET_EF_R27 = TARGET_EF_R0 + 27,
897 TARGET_EF_LO = TARGET_EF_R0 + 32,
898 TARGET_EF_HI = TARGET_EF_R0 + 33,
899 TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34,
900 TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35,
901 TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36,
902 TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37
903};
904
905/* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
05390248 906static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env)
51e52606
NF
907{
908 int i;
909
910 for (i = 0; i < TARGET_EF_R0; i++) {
911 (*regs)[i] = 0;
912 }
913 (*regs)[TARGET_EF_R0] = 0;
914
915 for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) {
a29f998d 916 (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]);
51e52606
NF
917 }
918
919 (*regs)[TARGET_EF_R26] = 0;
920 (*regs)[TARGET_EF_R27] = 0;
a29f998d
PB
921 (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]);
922 (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]);
923 (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC);
924 (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr);
925 (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status);
926 (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause);
51e52606
NF
927}
928
929#define USE_ELF_CORE_DUMP
388bb21a
TS
930#define ELF_EXEC_PAGESIZE 4096
931
048f6b4d
FB
932#endif /* TARGET_MIPS */
933
b779e29e
EI
934#ifdef TARGET_MICROBLAZE
935
936#define ELF_START_MMAP 0x80000000
937
0d5d4699 938#define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
b779e29e
EI
939
940#define ELF_CLASS ELFCLASS32
0d5d4699 941#define ELF_ARCH EM_MICROBLAZE
b779e29e 942
d97ef72e
RH
943static inline void init_thread(struct target_pt_regs *regs,
944 struct image_info *infop)
b779e29e
EI
945{
946 regs->pc = infop->entry;
947 regs->r1 = infop->start_stack;
948
949}
950
b779e29e
EI
951#define ELF_EXEC_PAGESIZE 4096
952
e4cbd44d
EI
953#define USE_ELF_CORE_DUMP
954#define ELF_NREG 38
955typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
956
957/* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
05390248 958static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env)
e4cbd44d
EI
959{
960 int i, pos = 0;
961
962 for (i = 0; i < 32; i++) {
86cd7b2d 963 (*regs)[pos++] = tswapreg(env->regs[i]);
e4cbd44d
EI
964 }
965
966 for (i = 0; i < 6; i++) {
86cd7b2d 967 (*regs)[pos++] = tswapreg(env->sregs[i]);
e4cbd44d
EI
968 }
969}
970
b779e29e
EI
971#endif /* TARGET_MICROBLAZE */
972
d962783e
JL
973#ifdef TARGET_OPENRISC
974
975#define ELF_START_MMAP 0x08000000
976
d962783e
JL
977#define ELF_ARCH EM_OPENRISC
978#define ELF_CLASS ELFCLASS32
979#define ELF_DATA ELFDATA2MSB
980
981static inline void init_thread(struct target_pt_regs *regs,
982 struct image_info *infop)
983{
984 regs->pc = infop->entry;
985 regs->gpr[1] = infop->start_stack;
986}
987
988#define USE_ELF_CORE_DUMP
989#define ELF_EXEC_PAGESIZE 8192
990
991/* See linux kernel arch/openrisc/include/asm/elf.h. */
992#define ELF_NREG 34 /* gprs and pc, sr */
993typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
994
995static void elf_core_copy_regs(target_elf_gregset_t *regs,
996 const CPUOpenRISCState *env)
997{
998 int i;
999
1000 for (i = 0; i < 32; i++) {
86cd7b2d 1001 (*regs)[i] = tswapreg(env->gpr[i]);
d962783e
JL
1002 }
1003
86cd7b2d
PB
1004 (*regs)[32] = tswapreg(env->pc);
1005 (*regs)[33] = tswapreg(env->sr);
d962783e
JL
1006}
1007#define ELF_HWCAP 0
1008#define ELF_PLATFORM NULL
1009
1010#endif /* TARGET_OPENRISC */
1011
fdf9b3e8
FB
1012#ifdef TARGET_SH4
1013
1014#define ELF_START_MMAP 0x80000000
1015
fdf9b3e8 1016#define ELF_CLASS ELFCLASS32
fdf9b3e8
FB
1017#define ELF_ARCH EM_SH
1018
d97ef72e
RH
1019static inline void init_thread(struct target_pt_regs *regs,
1020 struct image_info *infop)
fdf9b3e8 1021{
d97ef72e
RH
1022 /* Check other registers XXXXX */
1023 regs->pc = infop->entry;
1024 regs->regs[15] = infop->start_stack;
fdf9b3e8
FB
1025}
1026
7631c97e
NF
1027/* See linux kernel: arch/sh/include/asm/elf.h. */
1028#define ELF_NREG 23
1029typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1030
1031/* See linux kernel: arch/sh/include/asm/ptrace.h. */
1032enum {
1033 TARGET_REG_PC = 16,
1034 TARGET_REG_PR = 17,
1035 TARGET_REG_SR = 18,
1036 TARGET_REG_GBR = 19,
1037 TARGET_REG_MACH = 20,
1038 TARGET_REG_MACL = 21,
1039 TARGET_REG_SYSCALL = 22
1040};
1041
d97ef72e 1042static inline void elf_core_copy_regs(target_elf_gregset_t *regs,
05390248 1043 const CPUSH4State *env)
7631c97e
NF
1044{
1045 int i;
1046
1047 for (i = 0; i < 16; i++) {
86cd7b2d 1048 (*regs[i]) = tswapreg(env->gregs[i]);
7631c97e
NF
1049 }
1050
86cd7b2d
PB
1051 (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1052 (*regs)[TARGET_REG_PR] = tswapreg(env->pr);
1053 (*regs)[TARGET_REG_SR] = tswapreg(env->sr);
1054 (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr);
1055 (*regs)[TARGET_REG_MACH] = tswapreg(env->mach);
1056 (*regs)[TARGET_REG_MACL] = tswapreg(env->macl);
7631c97e
NF
1057 (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */
1058}
1059
1060#define USE_ELF_CORE_DUMP
fdf9b3e8
FB
1061#define ELF_EXEC_PAGESIZE 4096
1062
e42fd944
RH
1063enum {
1064 SH_CPU_HAS_FPU = 0x0001, /* Hardware FPU support */
1065 SH_CPU_HAS_P2_FLUSH_BUG = 0x0002, /* Need to flush the cache in P2 area */
1066 SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */
1067 SH_CPU_HAS_DSP = 0x0008, /* SH-DSP: DSP support */
1068 SH_CPU_HAS_PERF_COUNTER = 0x0010, /* Hardware performance counters */
1069 SH_CPU_HAS_PTEA = 0x0020, /* PTEA register */
1070 SH_CPU_HAS_LLSC = 0x0040, /* movli.l/movco.l */
1071 SH_CPU_HAS_L2_CACHE = 0x0080, /* Secondary cache / URAM */
1072 SH_CPU_HAS_OP32 = 0x0100, /* 32-bit instruction support */
1073 SH_CPU_HAS_PTEAEX = 0x0200, /* PTE ASID Extension support */
1074};
1075
1076#define ELF_HWCAP get_elf_hwcap()
1077
1078static uint32_t get_elf_hwcap(void)
1079{
1080 SuperHCPU *cpu = SUPERH_CPU(thread_cpu);
1081 uint32_t hwcap = 0;
1082
1083 hwcap |= SH_CPU_HAS_FPU;
1084
1085 if (cpu->env.features & SH_FEATURE_SH4A) {
1086 hwcap |= SH_CPU_HAS_LLSC;
1087 }
1088
1089 return hwcap;
1090}
1091
fdf9b3e8
FB
1092#endif
1093
48733d19
TS
1094#ifdef TARGET_CRIS
1095
1096#define ELF_START_MMAP 0x80000000
1097
48733d19 1098#define ELF_CLASS ELFCLASS32
48733d19
TS
1099#define ELF_ARCH EM_CRIS
1100
d97ef72e
RH
1101static inline void init_thread(struct target_pt_regs *regs,
1102 struct image_info *infop)
48733d19 1103{
d97ef72e 1104 regs->erp = infop->entry;
48733d19
TS
1105}
1106
48733d19
TS
1107#define ELF_EXEC_PAGESIZE 8192
1108
1109#endif
1110
e6e5906b
PB
1111#ifdef TARGET_M68K
1112
1113#define ELF_START_MMAP 0x80000000
1114
d97ef72e 1115#define ELF_CLASS ELFCLASS32
d97ef72e 1116#define ELF_ARCH EM_68K
e6e5906b
PB
1117
1118/* ??? Does this need to do anything?
d97ef72e 1119 #define ELF_PLAT_INIT(_r) */
e6e5906b 1120
d97ef72e
RH
1121static inline void init_thread(struct target_pt_regs *regs,
1122 struct image_info *infop)
e6e5906b
PB
1123{
1124 regs->usp = infop->start_stack;
1125 regs->sr = 0;
1126 regs->pc = infop->entry;
1127}
1128
7a93cc55
NF
1129/* See linux kernel: arch/m68k/include/asm/elf.h. */
1130#define ELF_NREG 20
1131typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1132
05390248 1133static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env)
7a93cc55 1134{
86cd7b2d
PB
1135 (*regs)[0] = tswapreg(env->dregs[1]);
1136 (*regs)[1] = tswapreg(env->dregs[2]);
1137 (*regs)[2] = tswapreg(env->dregs[3]);
1138 (*regs)[3] = tswapreg(env->dregs[4]);
1139 (*regs)[4] = tswapreg(env->dregs[5]);
1140 (*regs)[5] = tswapreg(env->dregs[6]);
1141 (*regs)[6] = tswapreg(env->dregs[7]);
1142 (*regs)[7] = tswapreg(env->aregs[0]);
1143 (*regs)[8] = tswapreg(env->aregs[1]);
1144 (*regs)[9] = tswapreg(env->aregs[2]);
1145 (*regs)[10] = tswapreg(env->aregs[3]);
1146 (*regs)[11] = tswapreg(env->aregs[4]);
1147 (*regs)[12] = tswapreg(env->aregs[5]);
1148 (*regs)[13] = tswapreg(env->aregs[6]);
1149 (*regs)[14] = tswapreg(env->dregs[0]);
1150 (*regs)[15] = tswapreg(env->aregs[7]);
1151 (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */
1152 (*regs)[17] = tswapreg(env->sr);
1153 (*regs)[18] = tswapreg(env->pc);
7a93cc55
NF
1154 (*regs)[19] = 0; /* FIXME: regs->format | regs->vector */
1155}
1156
1157#define USE_ELF_CORE_DUMP
d97ef72e 1158#define ELF_EXEC_PAGESIZE 8192
e6e5906b
PB
1159
1160#endif
1161
7a3148a9
JM
1162#ifdef TARGET_ALPHA
1163
1164#define ELF_START_MMAP (0x30000000000ULL)
1165
7a3148a9 1166#define ELF_CLASS ELFCLASS64
7a3148a9
JM
1167#define ELF_ARCH EM_ALPHA
1168
d97ef72e
RH
1169static inline void init_thread(struct target_pt_regs *regs,
1170 struct image_info *infop)
7a3148a9
JM
1171{
1172 regs->pc = infop->entry;
1173 regs->ps = 8;
1174 regs->usp = infop->start_stack;
7a3148a9
JM
1175}
1176
7a3148a9
JM
1177#define ELF_EXEC_PAGESIZE 8192
1178
1179#endif /* TARGET_ALPHA */
1180
a4c075f1
UH
1181#ifdef TARGET_S390X
1182
1183#define ELF_START_MMAP (0x20000000000ULL)
1184
a4c075f1
UH
1185#define ELF_CLASS ELFCLASS64
1186#define ELF_DATA ELFDATA2MSB
1187#define ELF_ARCH EM_S390
1188
1189static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1190{
1191 regs->psw.addr = infop->entry;
1192 regs->psw.mask = PSW_MASK_64 | PSW_MASK_32;
1193 regs->gprs[15] = infop->start_stack;
1194}
1195
1196#endif /* TARGET_S390X */
1197
b16189b2
CG
1198#ifdef TARGET_TILEGX
1199
1200/* 42 bits real used address, a half for user mode */
1201#define ELF_START_MMAP (0x00000020000000000ULL)
1202
1203#define elf_check_arch(x) ((x) == EM_TILEGX)
1204
1205#define ELF_CLASS ELFCLASS64
1206#define ELF_DATA ELFDATA2LSB
1207#define ELF_ARCH EM_TILEGX
1208
1209static inline void init_thread(struct target_pt_regs *regs,
1210 struct image_info *infop)
1211{
1212 regs->pc = infop->entry;
1213 regs->sp = infop->start_stack;
1214
1215}
1216
1217#define ELF_EXEC_PAGESIZE 65536 /* TILE-Gx page size is 64KB */
1218
1219#endif /* TARGET_TILEGX */
1220
15338fd7
FB
1221#ifndef ELF_PLATFORM
1222#define ELF_PLATFORM (NULL)
1223#endif
1224
75be901c
PC
1225#ifndef ELF_MACHINE
1226#define ELF_MACHINE ELF_ARCH
1227#endif
1228
d276a604
PC
1229#ifndef elf_check_arch
1230#define elf_check_arch(x) ((x) == ELF_ARCH)
1231#endif
1232
15338fd7
FB
1233#ifndef ELF_HWCAP
1234#define ELF_HWCAP 0
1235#endif
1236
992f48a0 1237#ifdef TARGET_ABI32
cb33da57 1238#undef ELF_CLASS
992f48a0 1239#define ELF_CLASS ELFCLASS32
cb33da57
BS
1240#undef bswaptls
1241#define bswaptls(ptr) bswap32s(ptr)
1242#endif
1243
31e31b8a 1244#include "elf.h"
09bfb054 1245
09bfb054
FB
1246struct exec
1247{
d97ef72e
RH
1248 unsigned int a_info; /* Use macros N_MAGIC, etc for access */
1249 unsigned int a_text; /* length of text, in bytes */
1250 unsigned int a_data; /* length of data, in bytes */
1251 unsigned int a_bss; /* length of uninitialized data area, in bytes */
1252 unsigned int a_syms; /* length of symbol table data in file, in bytes */
1253 unsigned int a_entry; /* start address */
1254 unsigned int a_trsize; /* length of relocation info for text, in bytes */
1255 unsigned int a_drsize; /* length of relocation info for data, in bytes */
09bfb054
FB
1256};
1257
1258
1259#define N_MAGIC(exec) ((exec).a_info & 0xffff)
1260#define OMAGIC 0407
1261#define NMAGIC 0410
1262#define ZMAGIC 0413
1263#define QMAGIC 0314
1264
31e31b8a 1265/* Necessary parameters */
54936004 1266#define TARGET_ELF_EXEC_PAGESIZE TARGET_PAGE_SIZE
79cb1f1d
YK
1267#define TARGET_ELF_PAGESTART(_v) ((_v) & \
1268 ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1))
54936004 1269#define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1))
31e31b8a 1270
ad1c7e0f 1271#define DLINFO_ITEMS 14
31e31b8a 1272
09bfb054
FB
1273static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
1274{
d97ef72e 1275 memcpy(to, from, n);
09bfb054 1276}
d691f669 1277
31e31b8a 1278#ifdef BSWAP_NEEDED
92a31b1f 1279static void bswap_ehdr(struct elfhdr *ehdr)
31e31b8a 1280{
d97ef72e
RH
1281 bswap16s(&ehdr->e_type); /* Object file type */
1282 bswap16s(&ehdr->e_machine); /* Architecture */
1283 bswap32s(&ehdr->e_version); /* Object file version */
1284 bswaptls(&ehdr->e_entry); /* Entry point virtual address */
1285 bswaptls(&ehdr->e_phoff); /* Program header table file offset */
1286 bswaptls(&ehdr->e_shoff); /* Section header table file offset */
1287 bswap32s(&ehdr->e_flags); /* Processor-specific flags */
1288 bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */
1289 bswap16s(&ehdr->e_phentsize); /* Program header table entry size */
1290 bswap16s(&ehdr->e_phnum); /* Program header table entry count */
1291 bswap16s(&ehdr->e_shentsize); /* Section header table entry size */
1292 bswap16s(&ehdr->e_shnum); /* Section header table entry count */
1293 bswap16s(&ehdr->e_shstrndx); /* Section header string table index */
31e31b8a
FB
1294}
1295
991f8f0c 1296static void bswap_phdr(struct elf_phdr *phdr, int phnum)
31e31b8a 1297{
991f8f0c
RH
1298 int i;
1299 for (i = 0; i < phnum; ++i, ++phdr) {
1300 bswap32s(&phdr->p_type); /* Segment type */
1301 bswap32s(&phdr->p_flags); /* Segment flags */
1302 bswaptls(&phdr->p_offset); /* Segment file offset */
1303 bswaptls(&phdr->p_vaddr); /* Segment virtual address */
1304 bswaptls(&phdr->p_paddr); /* Segment physical address */
1305 bswaptls(&phdr->p_filesz); /* Segment size in file */
1306 bswaptls(&phdr->p_memsz); /* Segment size in memory */
1307 bswaptls(&phdr->p_align); /* Segment alignment */
1308 }
31e31b8a 1309}
689f936f 1310
991f8f0c 1311static void bswap_shdr(struct elf_shdr *shdr, int shnum)
689f936f 1312{
991f8f0c
RH
1313 int i;
1314 for (i = 0; i < shnum; ++i, ++shdr) {
1315 bswap32s(&shdr->sh_name);
1316 bswap32s(&shdr->sh_type);
1317 bswaptls(&shdr->sh_flags);
1318 bswaptls(&shdr->sh_addr);
1319 bswaptls(&shdr->sh_offset);
1320 bswaptls(&shdr->sh_size);
1321 bswap32s(&shdr->sh_link);
1322 bswap32s(&shdr->sh_info);
1323 bswaptls(&shdr->sh_addralign);
1324 bswaptls(&shdr->sh_entsize);
1325 }
689f936f
FB
1326}
1327
7a3148a9 1328static void bswap_sym(struct elf_sym *sym)
689f936f
FB
1329{
1330 bswap32s(&sym->st_name);
7a3148a9
JM
1331 bswaptls(&sym->st_value);
1332 bswaptls(&sym->st_size);
689f936f
FB
1333 bswap16s(&sym->st_shndx);
1334}
991f8f0c
RH
1335#else
1336static inline void bswap_ehdr(struct elfhdr *ehdr) { }
1337static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { }
1338static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { }
1339static inline void bswap_sym(struct elf_sym *sym) { }
31e31b8a
FB
1340#endif
1341
edf8e2af 1342#ifdef USE_ELF_CORE_DUMP
9349b4f9 1343static int elf_core_dump(int, const CPUArchState *);
edf8e2af 1344#endif /* USE_ELF_CORE_DUMP */
682674b8 1345static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias);
edf8e2af 1346
9058abdd
RH
1347/* Verify the portions of EHDR within E_IDENT for the target.
1348 This can be performed before bswapping the entire header. */
1349static bool elf_check_ident(struct elfhdr *ehdr)
1350{
1351 return (ehdr->e_ident[EI_MAG0] == ELFMAG0
1352 && ehdr->e_ident[EI_MAG1] == ELFMAG1
1353 && ehdr->e_ident[EI_MAG2] == ELFMAG2
1354 && ehdr->e_ident[EI_MAG3] == ELFMAG3
1355 && ehdr->e_ident[EI_CLASS] == ELF_CLASS
1356 && ehdr->e_ident[EI_DATA] == ELF_DATA
1357 && ehdr->e_ident[EI_VERSION] == EV_CURRENT);
1358}
1359
1360/* Verify the portions of EHDR outside of E_IDENT for the target.
1361 This has to wait until after bswapping the header. */
1362static bool elf_check_ehdr(struct elfhdr *ehdr)
1363{
1364 return (elf_check_arch(ehdr->e_machine)
1365 && ehdr->e_ehsize == sizeof(struct elfhdr)
1366 && ehdr->e_phentsize == sizeof(struct elf_phdr)
9058abdd
RH
1367 && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN));
1368}
1369
31e31b8a 1370/*
e5fe0c52 1371 * 'copy_elf_strings()' copies argument/envelope strings from user
31e31b8a
FB
1372 * memory to free pages in kernel mem. These are in a format ready
1373 * to be put directly into the top of new user memory.
1374 *
1375 */
59baae9a
SB
1376static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch,
1377 abi_ulong p, abi_ulong stack_limit)
31e31b8a 1378{
59baae9a
SB
1379 char *tmp;
1380 int len, offset;
1381 abi_ulong top = p;
31e31b8a
FB
1382
1383 if (!p) {
d97ef72e 1384 return 0; /* bullet-proofing */
31e31b8a 1385 }
59baae9a
SB
1386
1387 offset = ((p - 1) % TARGET_PAGE_SIZE) + 1;
1388
31e31b8a 1389 while (argc-- > 0) {
edf779ff
FB
1390 tmp = argv[argc];
1391 if (!tmp) {
d97ef72e
RH
1392 fprintf(stderr, "VFS: argc is wrong");
1393 exit(-1);
1394 }
59baae9a
SB
1395 len = strlen(tmp) + 1;
1396 tmp += len;
1397
1398 if (len > (p - stack_limit)) {
d97ef72e
RH
1399 return 0;
1400 }
1401 while (len) {
59baae9a
SB
1402 int bytes_to_copy = (len > offset) ? offset : len;
1403 tmp -= bytes_to_copy;
1404 p -= bytes_to_copy;
1405 offset -= bytes_to_copy;
1406 len -= bytes_to_copy;
1407
1408 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy);
1409
1410 if (offset == 0) {
1411 memcpy_to_target(p, scratch, top - p);
1412 top = p;
1413 offset = TARGET_PAGE_SIZE;
d97ef72e
RH
1414 }
1415 }
31e31b8a 1416 }
59baae9a
SB
1417 if (offset) {
1418 memcpy_to_target(p, scratch + offset, top - p);
1419 }
1420
31e31b8a
FB
1421 return p;
1422}
1423
59baae9a
SB
1424/* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of
1425 * argument/environment space. Newer kernels (>2.6.33) allow more,
1426 * dependent on stack size, but guarantee at least 32 pages for
1427 * backwards compatibility.
1428 */
1429#define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE)
1430
1431static abi_ulong setup_arg_pages(struct linux_binprm *bprm,
992f48a0 1432 struct image_info *info)
53a5960a 1433{
59baae9a 1434 abi_ulong size, error, guard;
31e31b8a 1435
703e0e89 1436 size = guest_stack_size;
59baae9a
SB
1437 if (size < STACK_LOWER_LIMIT) {
1438 size = STACK_LOWER_LIMIT;
60dcbcb5
RH
1439 }
1440 guard = TARGET_PAGE_SIZE;
1441 if (guard < qemu_real_host_page_size) {
1442 guard = qemu_real_host_page_size;
1443 }
1444
1445 error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE,
1446 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
09bfb054 1447 if (error == -1) {
60dcbcb5 1448 perror("mmap stack");
09bfb054
FB
1449 exit(-1);
1450 }
31e31b8a 1451
60dcbcb5
RH
1452 /* We reserve one extra page at the top of the stack as guard. */
1453 target_mprotect(error, guard, PROT_NONE);
1454
1455 info->stack_limit = error + guard;
59baae9a
SB
1456
1457 return info->stack_limit + size - sizeof(void *);
31e31b8a
FB
1458}
1459
cf129f3a
RH
1460/* Map and zero the bss. We need to explicitly zero any fractional pages
1461 after the data section (i.e. bss). */
1462static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot)
31e31b8a 1463{
cf129f3a
RH
1464 uintptr_t host_start, host_map_start, host_end;
1465
1466 last_bss = TARGET_PAGE_ALIGN(last_bss);
1467
1468 /* ??? There is confusion between qemu_real_host_page_size and
1469 qemu_host_page_size here and elsewhere in target_mmap, which
1470 may lead to the end of the data section mapping from the file
1471 not being mapped. At least there was an explicit test and
1472 comment for that here, suggesting that "the file size must
1473 be known". The comment probably pre-dates the introduction
1474 of the fstat system call in target_mmap which does in fact
1475 find out the size. What isn't clear is if the workaround
1476 here is still actually needed. For now, continue with it,
1477 but merge it with the "normal" mmap that would allocate the bss. */
1478
1479 host_start = (uintptr_t) g2h(elf_bss);
1480 host_end = (uintptr_t) g2h(last_bss);
0c2d70c4 1481 host_map_start = REAL_HOST_PAGE_ALIGN(host_start);
cf129f3a
RH
1482
1483 if (host_map_start < host_end) {
1484 void *p = mmap((void *)host_map_start, host_end - host_map_start,
1485 prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1486 if (p == MAP_FAILED) {
1487 perror("cannot mmap brk");
1488 exit(-1);
853d6f7a 1489 }
f46e9a0b 1490 }
853d6f7a 1491
f46e9a0b
TM
1492 /* Ensure that the bss page(s) are valid */
1493 if ((page_get_flags(last_bss-1) & prot) != prot) {
1494 page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot | PAGE_VALID);
cf129f3a 1495 }
31e31b8a 1496
cf129f3a
RH
1497 if (host_start < host_map_start) {
1498 memset((void *)host_start, 0, host_map_start - host_start);
1499 }
1500}
53a5960a 1501
1af02e83
MF
1502#ifdef CONFIG_USE_FDPIC
1503static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp)
1504{
1505 uint16_t n;
1506 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs;
1507
1508 /* elf32_fdpic_loadseg */
1509 n = info->nsegs;
1510 while (n--) {
1511 sp -= 12;
1512 put_user_u32(loadsegs[n].addr, sp+0);
1513 put_user_u32(loadsegs[n].p_vaddr, sp+4);
1514 put_user_u32(loadsegs[n].p_memsz, sp+8);
1515 }
1516
1517 /* elf32_fdpic_loadmap */
1518 sp -= 4;
1519 put_user_u16(0, sp+0); /* version */
1520 put_user_u16(info->nsegs, sp+2); /* nsegs */
1521
1522 info->personality = PER_LINUX_FDPIC;
1523 info->loadmap_addr = sp;
1524
1525 return sp;
1526}
1527#endif
1528
992f48a0 1529static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
8e62a717
RH
1530 struct elfhdr *exec,
1531 struct image_info *info,
1532 struct image_info *interp_info)
31e31b8a 1533{
d97ef72e 1534 abi_ulong sp;
125b0f55 1535 abi_ulong sp_auxv;
d97ef72e 1536 int size;
14322bad
LA
1537 int i;
1538 abi_ulong u_rand_bytes;
1539 uint8_t k_rand_bytes[16];
d97ef72e
RH
1540 abi_ulong u_platform;
1541 const char *k_platform;
1542 const int n = sizeof(elf_addr_t);
1543
1544 sp = p;
1af02e83
MF
1545
1546#ifdef CONFIG_USE_FDPIC
1547 /* Needs to be before we load the env/argc/... */
1548 if (elf_is_fdpic(exec)) {
1549 /* Need 4 byte alignment for these structs */
1550 sp &= ~3;
1551 sp = loader_build_fdpic_loadmap(info, sp);
1552 info->other_info = interp_info;
1553 if (interp_info) {
1554 interp_info->other_info = info;
1555 sp = loader_build_fdpic_loadmap(interp_info, sp);
1556 }
1557 }
1558#endif
1559
d97ef72e
RH
1560 u_platform = 0;
1561 k_platform = ELF_PLATFORM;
1562 if (k_platform) {
1563 size_t len = strlen(k_platform) + 1;
1564 sp -= (len + n - 1) & ~(n - 1);
1565 u_platform = sp;
1566 /* FIXME - check return value of memcpy_to_target() for failure */
1567 memcpy_to_target(sp, k_platform, len);
1568 }
14322bad
LA
1569
1570 /*
1571 * Generate 16 random bytes for userspace PRNG seeding (not
1572 * cryptically secure but it's not the aim of QEMU).
1573 */
14322bad
LA
1574 for (i = 0; i < 16; i++) {
1575 k_rand_bytes[i] = rand();
1576 }
1577 sp -= 16;
1578 u_rand_bytes = sp;
1579 /* FIXME - check return value of memcpy_to_target() for failure */
1580 memcpy_to_target(sp, k_rand_bytes, 16);
1581
d97ef72e
RH
1582 /*
1583 * Force 16 byte _final_ alignment here for generality.
1584 */
1585 sp = sp &~ (abi_ulong)15;
1586 size = (DLINFO_ITEMS + 1) * 2;
1587 if (k_platform)
1588 size += 2;
f5155289 1589#ifdef DLINFO_ARCH_ITEMS
d97ef72e 1590 size += DLINFO_ARCH_ITEMS * 2;
ad6919dc
PM
1591#endif
1592#ifdef ELF_HWCAP2
1593 size += 2;
f5155289 1594#endif
d97ef72e 1595 size += envc + argc + 2;
b9329d4b 1596 size += 1; /* argc itself */
d97ef72e
RH
1597 size *= n;
1598 if (size & 15)
1599 sp -= 16 - (size & 15);
1600
1601 /* This is correct because Linux defines
1602 * elf_addr_t as Elf32_Off / Elf64_Off
1603 */
1604#define NEW_AUX_ENT(id, val) do { \
1605 sp -= n; put_user_ual(val, sp); \
1606 sp -= n; put_user_ual(id, sp); \
1607 } while(0)
1608
125b0f55 1609 sp_auxv = sp;
d97ef72e
RH
1610 NEW_AUX_ENT (AT_NULL, 0);
1611
1612 /* There must be exactly DLINFO_ITEMS entries here. */
8e62a717 1613 NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff));
d97ef72e
RH
1614 NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
1615 NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
a70daba3 1616 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE, getpagesize())));
8e62a717 1617 NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0));
d97ef72e 1618 NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
8e62a717 1619 NEW_AUX_ENT(AT_ENTRY, info->entry);
d97ef72e
RH
1620 NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
1621 NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
1622 NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
1623 NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
1624 NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
1625 NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
14322bad
LA
1626 NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes);
1627
ad6919dc
PM
1628#ifdef ELF_HWCAP2
1629 NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2);
1630#endif
1631
d97ef72e
RH
1632 if (k_platform)
1633 NEW_AUX_ENT(AT_PLATFORM, u_platform);
f5155289 1634#ifdef ARCH_DLINFO
d97ef72e
RH
1635 /*
1636 * ARCH_DLINFO must come last so platform specific code can enforce
1637 * special alignment requirements on the AUXV if necessary (eg. PPC).
1638 */
1639 ARCH_DLINFO;
f5155289
FB
1640#endif
1641#undef NEW_AUX_ENT
1642
d97ef72e 1643 info->saved_auxv = sp;
125b0f55 1644 info->auxv_len = sp_auxv - sp;
edf8e2af 1645
b9329d4b 1646 sp = loader_build_argptr(envc, argc, sp, p, 0);
8c0f0a60
JH
1647 /* Check the right amount of stack was allocated for auxvec, envp & argv. */
1648 assert(sp_auxv - sp == size);
d97ef72e 1649 return sp;
31e31b8a
FB
1650}
1651
806d1021 1652#ifndef TARGET_HAS_VALIDATE_GUEST_SPACE
97cc7560 1653/* If the guest doesn't have a validation function just agree */
806d1021
MI
1654static int validate_guest_space(unsigned long guest_base,
1655 unsigned long guest_size)
97cc7560
DDAG
1656{
1657 return 1;
1658}
1659#endif
1660
dce10401
MI
1661unsigned long init_guest_space(unsigned long host_start,
1662 unsigned long host_size,
1663 unsigned long guest_start,
1664 bool fixed)
1665{
1666 unsigned long current_start, real_start;
1667 int flags;
1668
1669 assert(host_start || host_size);
1670
1671 /* If just a starting address is given, then just verify that
1672 * address. */
1673 if (host_start && !host_size) {
806d1021 1674 if (validate_guest_space(host_start, host_size) == 1) {
dce10401
MI
1675 return host_start;
1676 } else {
1677 return (unsigned long)-1;
1678 }
1679 }
1680
1681 /* Setup the initial flags and start address. */
1682 current_start = host_start & qemu_host_page_mask;
1683 flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
1684 if (fixed) {
1685 flags |= MAP_FIXED;
1686 }
1687
1688 /* Otherwise, a non-zero size region of memory needs to be mapped
1689 * and validated. */
1690 while (1) {
806d1021
MI
1691 unsigned long real_size = host_size;
1692
dce10401
MI
1693 /* Do not use mmap_find_vma here because that is limited to the
1694 * guest address space. We are going to make the
1695 * guest address space fit whatever we're given.
1696 */
1697 real_start = (unsigned long)
1698 mmap((void *)current_start, host_size, PROT_NONE, flags, -1, 0);
1699 if (real_start == (unsigned long)-1) {
1700 return (unsigned long)-1;
1701 }
1702
806d1021
MI
1703 /* Ensure the address is properly aligned. */
1704 if (real_start & ~qemu_host_page_mask) {
1705 munmap((void *)real_start, host_size);
1706 real_size = host_size + qemu_host_page_size;
1707 real_start = (unsigned long)
1708 mmap((void *)real_start, real_size, PROT_NONE, flags, -1, 0);
1709 if (real_start == (unsigned long)-1) {
1710 return (unsigned long)-1;
1711 }
1712 real_start = HOST_PAGE_ALIGN(real_start);
1713 }
1714
1715 /* Check to see if the address is valid. */
1716 if (!host_start || real_start == current_start) {
1717 int valid = validate_guest_space(real_start - guest_start,
1718 real_size);
1719 if (valid == 1) {
1720 break;
1721 } else if (valid == -1) {
1722 return (unsigned long)-1;
1723 }
1724 /* valid == 0, so try again. */
dce10401
MI
1725 }
1726
1727 /* That address didn't work. Unmap and try a different one.
1728 * The address the host picked because is typically right at
1729 * the top of the host address space and leaves the guest with
1730 * no usable address space. Resort to a linear search. We
1731 * already compensated for mmap_min_addr, so this should not
1732 * happen often. Probably means we got unlucky and host
1733 * address space randomization put a shared library somewhere
1734 * inconvenient.
1735 */
1736 munmap((void *)real_start, host_size);
1737 current_start += qemu_host_page_size;
1738 if (host_start == current_start) {
1739 /* Theoretically possible if host doesn't have any suitably
1740 * aligned areas. Normally the first mmap will fail.
1741 */
1742 return (unsigned long)-1;
1743 }
1744 }
1745
806d1021
MI
1746 qemu_log("Reserved 0x%lx bytes of guest address space\n", host_size);
1747
dce10401
MI
1748 return real_start;
1749}
1750
f3ed1f5d
PM
1751static void probe_guest_base(const char *image_name,
1752 abi_ulong loaddr, abi_ulong hiaddr)
1753{
1754 /* Probe for a suitable guest base address, if the user has not set
1755 * it explicitly, and set guest_base appropriately.
1756 * In case of error we will print a suitable message and exit.
1757 */
f3ed1f5d
PM
1758 const char *errmsg;
1759 if (!have_guest_base && !reserved_va) {
1760 unsigned long host_start, real_start, host_size;
1761
1762 /* Round addresses to page boundaries. */
1763 loaddr &= qemu_host_page_mask;
1764 hiaddr = HOST_PAGE_ALIGN(hiaddr);
1765
1766 if (loaddr < mmap_min_addr) {
1767 host_start = HOST_PAGE_ALIGN(mmap_min_addr);
1768 } else {
1769 host_start = loaddr;
1770 if (host_start != loaddr) {
1771 errmsg = "Address overflow loading ELF binary";
1772 goto exit_errmsg;
1773 }
1774 }
1775 host_size = hiaddr - loaddr;
dce10401
MI
1776
1777 /* Setup the initial guest memory space with ranges gleaned from
1778 * the ELF image that is being loaded.
1779 */
1780 real_start = init_guest_space(host_start, host_size, loaddr, false);
1781 if (real_start == (unsigned long)-1) {
1782 errmsg = "Unable to find space for application";
1783 goto exit_errmsg;
f3ed1f5d 1784 }
dce10401
MI
1785 guest_base = real_start - loaddr;
1786
f3ed1f5d
PM
1787 qemu_log("Relocating guest address space from 0x"
1788 TARGET_ABI_FMT_lx " to 0x%lx\n",
1789 loaddr, real_start);
f3ed1f5d
PM
1790 }
1791 return;
1792
f3ed1f5d
PM
1793exit_errmsg:
1794 fprintf(stderr, "%s: %s\n", image_name, errmsg);
1795 exit(-1);
f3ed1f5d
PM
1796}
1797
1798
8e62a717 1799/* Load an ELF image into the address space.
31e31b8a 1800
8e62a717
RH
1801 IMAGE_NAME is the filename of the image, to use in error messages.
1802 IMAGE_FD is the open file descriptor for the image.
1803
1804 BPRM_BUF is a copy of the beginning of the file; this of course
1805 contains the elf file header at offset 0. It is assumed that this
1806 buffer is sufficiently aligned to present no problems to the host
1807 in accessing data at aligned offsets within the buffer.
1808
1809 On return: INFO values will be filled in, as necessary or available. */
1810
1811static void load_elf_image(const char *image_name, int image_fd,
bf858897 1812 struct image_info *info, char **pinterp_name,
8e62a717 1813 char bprm_buf[BPRM_BUF_SIZE])
31e31b8a 1814{
8e62a717
RH
1815 struct elfhdr *ehdr = (struct elfhdr *)bprm_buf;
1816 struct elf_phdr *phdr;
1817 abi_ulong load_addr, load_bias, loaddr, hiaddr, error;
1818 int i, retval;
1819 const char *errmsg;
5fafdf24 1820
8e62a717
RH
1821 /* First of all, some simple consistency checks */
1822 errmsg = "Invalid ELF image for this architecture";
1823 if (!elf_check_ident(ehdr)) {
1824 goto exit_errmsg;
1825 }
1826 bswap_ehdr(ehdr);
1827 if (!elf_check_ehdr(ehdr)) {
1828 goto exit_errmsg;
d97ef72e 1829 }
5fafdf24 1830
8e62a717
RH
1831 i = ehdr->e_phnum * sizeof(struct elf_phdr);
1832 if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) {
1833 phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff);
9955ffac 1834 } else {
8e62a717
RH
1835 phdr = (struct elf_phdr *) alloca(i);
1836 retval = pread(image_fd, phdr, i, ehdr->e_phoff);
9955ffac 1837 if (retval != i) {
8e62a717 1838 goto exit_read;
9955ffac 1839 }
d97ef72e 1840 }
8e62a717 1841 bswap_phdr(phdr, ehdr->e_phnum);
09bfb054 1842
1af02e83
MF
1843#ifdef CONFIG_USE_FDPIC
1844 info->nsegs = 0;
1845 info->pt_dynamic_addr = 0;
1846#endif
1847
682674b8
RH
1848 /* Find the maximum size of the image and allocate an appropriate
1849 amount of memory to handle that. */
1850 loaddr = -1, hiaddr = 0;
8e62a717
RH
1851 for (i = 0; i < ehdr->e_phnum; ++i) {
1852 if (phdr[i].p_type == PT_LOAD) {
a93934fe 1853 abi_ulong a = phdr[i].p_vaddr - phdr[i].p_offset;
682674b8
RH
1854 if (a < loaddr) {
1855 loaddr = a;
1856 }
ccf661f8 1857 a = phdr[i].p_vaddr + phdr[i].p_memsz;
682674b8
RH
1858 if (a > hiaddr) {
1859 hiaddr = a;
1860 }
1af02e83
MF
1861#ifdef CONFIG_USE_FDPIC
1862 ++info->nsegs;
1863#endif
682674b8
RH
1864 }
1865 }
1866
1867 load_addr = loaddr;
8e62a717 1868 if (ehdr->e_type == ET_DYN) {
682674b8
RH
1869 /* The image indicates that it can be loaded anywhere. Find a
1870 location that can hold the memory space required. If the
1871 image is pre-linked, LOADDR will be non-zero. Since we do
1872 not supply MAP_FIXED here we'll use that address if and
1873 only if it remains available. */
1874 load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE,
1875 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE,
1876 -1, 0);
1877 if (load_addr == -1) {
8e62a717 1878 goto exit_perror;
d97ef72e 1879 }
bf858897
RH
1880 } else if (pinterp_name != NULL) {
1881 /* This is the main executable. Make sure that the low
1882 address does not conflict with MMAP_MIN_ADDR or the
1883 QEMU application itself. */
f3ed1f5d 1884 probe_guest_base(image_name, loaddr, hiaddr);
d97ef72e 1885 }
682674b8 1886 load_bias = load_addr - loaddr;
d97ef72e 1887
1af02e83
MF
1888#ifdef CONFIG_USE_FDPIC
1889 {
1890 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs =
7267c094 1891 g_malloc(sizeof(*loadsegs) * info->nsegs);
1af02e83
MF
1892
1893 for (i = 0; i < ehdr->e_phnum; ++i) {
1894 switch (phdr[i].p_type) {
1895 case PT_DYNAMIC:
1896 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias;
1897 break;
1898 case PT_LOAD:
1899 loadsegs->addr = phdr[i].p_vaddr + load_bias;
1900 loadsegs->p_vaddr = phdr[i].p_vaddr;
1901 loadsegs->p_memsz = phdr[i].p_memsz;
1902 ++loadsegs;
1903 break;
1904 }
1905 }
1906 }
1907#endif
1908
8e62a717
RH
1909 info->load_bias = load_bias;
1910 info->load_addr = load_addr;
1911 info->entry = ehdr->e_entry + load_bias;
1912 info->start_code = -1;
1913 info->end_code = 0;
1914 info->start_data = -1;
1915 info->end_data = 0;
1916 info->brk = 0;
d8fd2954 1917 info->elf_flags = ehdr->e_flags;
8e62a717
RH
1918
1919 for (i = 0; i < ehdr->e_phnum; i++) {
1920 struct elf_phdr *eppnt = phdr + i;
d97ef72e 1921 if (eppnt->p_type == PT_LOAD) {
682674b8 1922 abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em;
d97ef72e 1923 int elf_prot = 0;
d97ef72e
RH
1924
1925 if (eppnt->p_flags & PF_R) elf_prot = PROT_READ;
1926 if (eppnt->p_flags & PF_W) elf_prot |= PROT_WRITE;
1927 if (eppnt->p_flags & PF_X) elf_prot |= PROT_EXEC;
d97ef72e 1928
682674b8
RH
1929 vaddr = load_bias + eppnt->p_vaddr;
1930 vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr);
1931 vaddr_ps = TARGET_ELF_PAGESTART(vaddr);
1932
1933 error = target_mmap(vaddr_ps, eppnt->p_filesz + vaddr_po,
1934 elf_prot, MAP_PRIVATE | MAP_FIXED,
8e62a717 1935 image_fd, eppnt->p_offset - vaddr_po);
09bfb054 1936 if (error == -1) {
8e62a717 1937 goto exit_perror;
09bfb054 1938 }
09bfb054 1939
682674b8
RH
1940 vaddr_ef = vaddr + eppnt->p_filesz;
1941 vaddr_em = vaddr + eppnt->p_memsz;
31e31b8a 1942
cf129f3a 1943 /* If the load segment requests extra zeros (e.g. bss), map it. */
682674b8
RH
1944 if (vaddr_ef < vaddr_em) {
1945 zero_bss(vaddr_ef, vaddr_em, elf_prot);
cf129f3a 1946 }
8e62a717
RH
1947
1948 /* Find the full program boundaries. */
1949 if (elf_prot & PROT_EXEC) {
1950 if (vaddr < info->start_code) {
1951 info->start_code = vaddr;
1952 }
1953 if (vaddr_ef > info->end_code) {
1954 info->end_code = vaddr_ef;
1955 }
1956 }
1957 if (elf_prot & PROT_WRITE) {
1958 if (vaddr < info->start_data) {
1959 info->start_data = vaddr;
1960 }
1961 if (vaddr_ef > info->end_data) {
1962 info->end_data = vaddr_ef;
1963 }
1964 if (vaddr_em > info->brk) {
1965 info->brk = vaddr_em;
1966 }
1967 }
bf858897
RH
1968 } else if (eppnt->p_type == PT_INTERP && pinterp_name) {
1969 char *interp_name;
1970
1971 if (*pinterp_name) {
1972 errmsg = "Multiple PT_INTERP entries";
1973 goto exit_errmsg;
1974 }
1975 interp_name = malloc(eppnt->p_filesz);
1976 if (!interp_name) {
1977 goto exit_perror;
1978 }
1979
1980 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
1981 memcpy(interp_name, bprm_buf + eppnt->p_offset,
1982 eppnt->p_filesz);
1983 } else {
1984 retval = pread(image_fd, interp_name, eppnt->p_filesz,
1985 eppnt->p_offset);
1986 if (retval != eppnt->p_filesz) {
1987 goto exit_perror;
1988 }
1989 }
1990 if (interp_name[eppnt->p_filesz - 1] != 0) {
1991 errmsg = "Invalid PT_INTERP entry";
1992 goto exit_errmsg;
1993 }
1994 *pinterp_name = interp_name;
d97ef72e 1995 }
682674b8 1996 }
5fafdf24 1997
8e62a717
RH
1998 if (info->end_data == 0) {
1999 info->start_data = info->end_code;
2000 info->end_data = info->end_code;
2001 info->brk = info->end_code;
2002 }
2003
682674b8 2004 if (qemu_log_enabled()) {
8e62a717 2005 load_symbols(ehdr, image_fd, load_bias);
682674b8 2006 }
31e31b8a 2007
8e62a717
RH
2008 close(image_fd);
2009 return;
2010
2011 exit_read:
2012 if (retval >= 0) {
2013 errmsg = "Incomplete read of file header";
2014 goto exit_errmsg;
2015 }
2016 exit_perror:
2017 errmsg = strerror(errno);
2018 exit_errmsg:
2019 fprintf(stderr, "%s: %s\n", image_name, errmsg);
2020 exit(-1);
2021}
2022
2023static void load_elf_interp(const char *filename, struct image_info *info,
2024 char bprm_buf[BPRM_BUF_SIZE])
2025{
2026 int fd, retval;
2027
2028 fd = open(path(filename), O_RDONLY);
2029 if (fd < 0) {
2030 goto exit_perror;
2031 }
31e31b8a 2032
8e62a717
RH
2033 retval = read(fd, bprm_buf, BPRM_BUF_SIZE);
2034 if (retval < 0) {
2035 goto exit_perror;
2036 }
2037 if (retval < BPRM_BUF_SIZE) {
2038 memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval);
2039 }
2040
bf858897 2041 load_elf_image(filename, fd, info, NULL, bprm_buf);
8e62a717
RH
2042 return;
2043
2044 exit_perror:
2045 fprintf(stderr, "%s: %s\n", filename, strerror(errno));
2046 exit(-1);
31e31b8a
FB
2047}
2048
49918a75
PB
2049static int symfind(const void *s0, const void *s1)
2050{
c7c530cd 2051 target_ulong addr = *(target_ulong *)s0;
49918a75
PB
2052 struct elf_sym *sym = (struct elf_sym *)s1;
2053 int result = 0;
c7c530cd 2054 if (addr < sym->st_value) {
49918a75 2055 result = -1;
c7c530cd 2056 } else if (addr >= sym->st_value + sym->st_size) {
49918a75
PB
2057 result = 1;
2058 }
2059 return result;
2060}
2061
2062static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr)
2063{
2064#if ELF_CLASS == ELFCLASS32
2065 struct elf_sym *syms = s->disas_symtab.elf32;
2066#else
2067 struct elf_sym *syms = s->disas_symtab.elf64;
2068#endif
2069
2070 // binary search
49918a75
PB
2071 struct elf_sym *sym;
2072
c7c530cd 2073 sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind);
7cba04f6 2074 if (sym != NULL) {
49918a75
PB
2075 return s->disas_strtab + sym->st_name;
2076 }
2077
2078 return "";
2079}
2080
2081/* FIXME: This should use elf_ops.h */
2082static int symcmp(const void *s0, const void *s1)
2083{
2084 struct elf_sym *sym0 = (struct elf_sym *)s0;
2085 struct elf_sym *sym1 = (struct elf_sym *)s1;
2086 return (sym0->st_value < sym1->st_value)
2087 ? -1
2088 : ((sym0->st_value > sym1->st_value) ? 1 : 0);
2089}
2090
689f936f 2091/* Best attempt to load symbols from this ELF object. */
682674b8 2092static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias)
689f936f 2093{
682674b8
RH
2094 int i, shnum, nsyms, sym_idx = 0, str_idx = 0;
2095 struct elf_shdr *shdr;
b9475279
CV
2096 char *strings = NULL;
2097 struct syminfo *s = NULL;
2098 struct elf_sym *new_syms, *syms = NULL;
689f936f 2099
682674b8
RH
2100 shnum = hdr->e_shnum;
2101 i = shnum * sizeof(struct elf_shdr);
2102 shdr = (struct elf_shdr *)alloca(i);
2103 if (pread(fd, shdr, i, hdr->e_shoff) != i) {
2104 return;
2105 }
2106
2107 bswap_shdr(shdr, shnum);
2108 for (i = 0; i < shnum; ++i) {
2109 if (shdr[i].sh_type == SHT_SYMTAB) {
2110 sym_idx = i;
2111 str_idx = shdr[i].sh_link;
49918a75
PB
2112 goto found;
2113 }
689f936f 2114 }
682674b8
RH
2115
2116 /* There will be no symbol table if the file was stripped. */
2117 return;
689f936f
FB
2118
2119 found:
682674b8 2120 /* Now know where the strtab and symtab are. Snarf them. */
e80cfcfc 2121 s = malloc(sizeof(*s));
682674b8 2122 if (!s) {
b9475279 2123 goto give_up;
682674b8 2124 }
5fafdf24 2125
682674b8
RH
2126 i = shdr[str_idx].sh_size;
2127 s->disas_strtab = strings = malloc(i);
2128 if (!strings || pread(fd, strings, i, shdr[str_idx].sh_offset) != i) {
b9475279 2129 goto give_up;
682674b8 2130 }
49918a75 2131
682674b8
RH
2132 i = shdr[sym_idx].sh_size;
2133 syms = malloc(i);
2134 if (!syms || pread(fd, syms, i, shdr[sym_idx].sh_offset) != i) {
b9475279 2135 goto give_up;
682674b8 2136 }
31e31b8a 2137
682674b8
RH
2138 nsyms = i / sizeof(struct elf_sym);
2139 for (i = 0; i < nsyms; ) {
49918a75 2140 bswap_sym(syms + i);
682674b8
RH
2141 /* Throw away entries which we do not need. */
2142 if (syms[i].st_shndx == SHN_UNDEF
2143 || syms[i].st_shndx >= SHN_LORESERVE
2144 || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
2145 if (i < --nsyms) {
49918a75
PB
2146 syms[i] = syms[nsyms];
2147 }
682674b8 2148 } else {
49918a75 2149#if defined(TARGET_ARM) || defined (TARGET_MIPS)
682674b8
RH
2150 /* The bottom address bit marks a Thumb or MIPS16 symbol. */
2151 syms[i].st_value &= ~(target_ulong)1;
0774bed1 2152#endif
682674b8
RH
2153 syms[i].st_value += load_bias;
2154 i++;
2155 }
0774bed1 2156 }
49918a75 2157
b9475279
CV
2158 /* No "useful" symbol. */
2159 if (nsyms == 0) {
2160 goto give_up;
2161 }
2162
5d5c9930
RH
2163 /* Attempt to free the storage associated with the local symbols
2164 that we threw away. Whether or not this has any effect on the
2165 memory allocation depends on the malloc implementation and how
2166 many symbols we managed to discard. */
8d79de6e
SW
2167 new_syms = realloc(syms, nsyms * sizeof(*syms));
2168 if (new_syms == NULL) {
b9475279 2169 goto give_up;
5d5c9930 2170 }
8d79de6e 2171 syms = new_syms;
5d5c9930 2172
49918a75 2173 qsort(syms, nsyms, sizeof(*syms), symcmp);
689f936f 2174
49918a75
PB
2175 s->disas_num_syms = nsyms;
2176#if ELF_CLASS == ELFCLASS32
2177 s->disas_symtab.elf32 = syms;
49918a75
PB
2178#else
2179 s->disas_symtab.elf64 = syms;
49918a75 2180#endif
682674b8 2181 s->lookup_symbol = lookup_symbolxx;
e80cfcfc
FB
2182 s->next = syminfos;
2183 syminfos = s;
b9475279
CV
2184
2185 return;
2186
2187give_up:
2188 free(s);
2189 free(strings);
2190 free(syms);
689f936f 2191}
31e31b8a 2192
f0116c54 2193int load_elf_binary(struct linux_binprm *bprm, struct image_info *info)
31e31b8a 2194{
8e62a717 2195 struct image_info interp_info;
31e31b8a 2196 struct elfhdr elf_ex;
8e62a717 2197 char *elf_interpreter = NULL;
59baae9a 2198 char *scratch;
31e31b8a 2199
bf858897 2200 info->start_mmap = (abi_ulong)ELF_START_MMAP;
bf858897
RH
2201
2202 load_elf_image(bprm->filename, bprm->fd, info,
2203 &elf_interpreter, bprm->buf);
31e31b8a 2204
bf858897
RH
2205 /* ??? We need a copy of the elf header for passing to create_elf_tables.
2206 If we do nothing, we'll have overwritten this when we re-use bprm->buf
2207 when we load the interpreter. */
2208 elf_ex = *(struct elfhdr *)bprm->buf;
31e31b8a 2209
59baae9a
SB
2210 /* Do this so that we can load the interpreter, if need be. We will
2211 change some of these later */
2212 bprm->p = setup_arg_pages(bprm, info);
2213
2214 scratch = g_new0(char, TARGET_PAGE_SIZE);
2215 bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
2216 bprm->p, info->stack_limit);
2217 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
2218 bprm->p, info->stack_limit);
2219 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
2220 bprm->p, info->stack_limit);
2221 g_free(scratch);
2222
e5fe0c52 2223 if (!bprm->p) {
bf858897
RH
2224 fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG));
2225 exit(-1);
379f6698 2226 }
379f6698 2227
8e62a717
RH
2228 if (elf_interpreter) {
2229 load_elf_interp(elf_interpreter, &interp_info, bprm->buf);
31e31b8a 2230
8e62a717
RH
2231 /* If the program interpreter is one of these two, then assume
2232 an iBCS2 image. Otherwise assume a native linux image. */
2233
2234 if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0
2235 || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) {
2236 info->personality = PER_SVR4;
31e31b8a 2237
8e62a717
RH
2238 /* Why this, you ask??? Well SVr4 maps page 0 as read-only,
2239 and some applications "depend" upon this behavior. Since
2240 we do not have the power to recompile these, we emulate
2241 the SVr4 behavior. Sigh. */
2242 target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC,
2243 MAP_FIXED | MAP_PRIVATE, -1, 0);
2244 }
31e31b8a
FB
2245 }
2246
8e62a717
RH
2247 bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex,
2248 info, (elf_interpreter ? &interp_info : NULL));
2249 info->start_stack = bprm->p;
2250
2251 /* If we have an interpreter, set that as the program's entry point.
8e78064e 2252 Copy the load_bias as well, to help PPC64 interpret the entry
8e62a717
RH
2253 point as a function descriptor. Do this after creating elf tables
2254 so that we copy the original program entry point into the AUXV. */
2255 if (elf_interpreter) {
8e78064e 2256 info->load_bias = interp_info.load_bias;
8e62a717 2257 info->entry = interp_info.entry;
bf858897 2258 free(elf_interpreter);
8e62a717 2259 }
31e31b8a 2260
edf8e2af
MW
2261#ifdef USE_ELF_CORE_DUMP
2262 bprm->core_dump = &elf_core_dump;
2263#endif
2264
31e31b8a
FB
2265 return 0;
2266}
2267
edf8e2af 2268#ifdef USE_ELF_CORE_DUMP
edf8e2af
MW
2269/*
2270 * Definitions to generate Intel SVR4-like core files.
a2547a13 2271 * These mostly have the same names as the SVR4 types with "target_elf_"
edf8e2af
MW
2272 * tacked on the front to prevent clashes with linux definitions,
2273 * and the typedef forms have been avoided. This is mostly like
2274 * the SVR4 structure, but more Linuxy, with things that Linux does
2275 * not support and which gdb doesn't really use excluded.
2276 *
2277 * Fields we don't dump (their contents is zero) in linux-user qemu
2278 * are marked with XXX.
2279 *
2280 * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
2281 *
2282 * Porting ELF coredump for target is (quite) simple process. First you
dd0a3651 2283 * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
edf8e2af
MW
2284 * the target resides):
2285 *
2286 * #define USE_ELF_CORE_DUMP
2287 *
2288 * Next you define type of register set used for dumping. ELF specification
2289 * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
2290 *
c227f099 2291 * typedef <target_regtype> target_elf_greg_t;
edf8e2af 2292 * #define ELF_NREG <number of registers>
c227f099 2293 * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
edf8e2af 2294 *
edf8e2af
MW
2295 * Last step is to implement target specific function that copies registers
2296 * from given cpu into just specified register set. Prototype is:
2297 *
c227f099 2298 * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
9349b4f9 2299 * const CPUArchState *env);
edf8e2af
MW
2300 *
2301 * Parameters:
2302 * regs - copy register values into here (allocated and zeroed by caller)
2303 * env - copy registers from here
2304 *
2305 * Example for ARM target is provided in this file.
2306 */
2307
2308/* An ELF note in memory */
2309struct memelfnote {
2310 const char *name;
2311 size_t namesz;
2312 size_t namesz_rounded;
2313 int type;
2314 size_t datasz;
80f5ce75 2315 size_t datasz_rounded;
edf8e2af
MW
2316 void *data;
2317 size_t notesz;
2318};
2319
a2547a13 2320struct target_elf_siginfo {
f8fd4fc4
PB
2321 abi_int si_signo; /* signal number */
2322 abi_int si_code; /* extra code */
2323 abi_int si_errno; /* errno */
edf8e2af
MW
2324};
2325
a2547a13
LD
2326struct target_elf_prstatus {
2327 struct target_elf_siginfo pr_info; /* Info associated with signal */
1ddd592f 2328 abi_short pr_cursig; /* Current signal */
ca98ac83
PB
2329 abi_ulong pr_sigpend; /* XXX */
2330 abi_ulong pr_sighold; /* XXX */
c227f099
AL
2331 target_pid_t pr_pid;
2332 target_pid_t pr_ppid;
2333 target_pid_t pr_pgrp;
2334 target_pid_t pr_sid;
edf8e2af
MW
2335 struct target_timeval pr_utime; /* XXX User time */
2336 struct target_timeval pr_stime; /* XXX System time */
2337 struct target_timeval pr_cutime; /* XXX Cumulative user time */
2338 struct target_timeval pr_cstime; /* XXX Cumulative system time */
c227f099 2339 target_elf_gregset_t pr_reg; /* GP registers */
f8fd4fc4 2340 abi_int pr_fpvalid; /* XXX */
edf8e2af
MW
2341};
2342
2343#define ELF_PRARGSZ (80) /* Number of chars for args */
2344
a2547a13 2345struct target_elf_prpsinfo {
edf8e2af
MW
2346 char pr_state; /* numeric process state */
2347 char pr_sname; /* char for pr_state */
2348 char pr_zomb; /* zombie */
2349 char pr_nice; /* nice val */
ca98ac83 2350 abi_ulong pr_flag; /* flags */
c227f099
AL
2351 target_uid_t pr_uid;
2352 target_gid_t pr_gid;
2353 target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
edf8e2af
MW
2354 /* Lots missing */
2355 char pr_fname[16]; /* filename of executable */
2356 char pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
2357};
2358
2359/* Here is the structure in which status of each thread is captured. */
2360struct elf_thread_status {
72cf2d4f 2361 QTAILQ_ENTRY(elf_thread_status) ets_link;
a2547a13 2362 struct target_elf_prstatus prstatus; /* NT_PRSTATUS */
edf8e2af
MW
2363#if 0
2364 elf_fpregset_t fpu; /* NT_PRFPREG */
2365 struct task_struct *thread;
2366 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */
2367#endif
2368 struct memelfnote notes[1];
2369 int num_notes;
2370};
2371
2372struct elf_note_info {
2373 struct memelfnote *notes;
a2547a13
LD
2374 struct target_elf_prstatus *prstatus; /* NT_PRSTATUS */
2375 struct target_elf_prpsinfo *psinfo; /* NT_PRPSINFO */
edf8e2af 2376
72cf2d4f 2377 QTAILQ_HEAD(thread_list_head, elf_thread_status) thread_list;
edf8e2af
MW
2378#if 0
2379 /*
2380 * Current version of ELF coredump doesn't support
2381 * dumping fp regs etc.
2382 */
2383 elf_fpregset_t *fpu;
2384 elf_fpxregset_t *xfpu;
2385 int thread_status_size;
2386#endif
2387 int notes_size;
2388 int numnote;
2389};
2390
2391struct vm_area_struct {
1a1c4db9
MI
2392 target_ulong vma_start; /* start vaddr of memory region */
2393 target_ulong vma_end; /* end vaddr of memory region */
2394 abi_ulong vma_flags; /* protection etc. flags for the region */
72cf2d4f 2395 QTAILQ_ENTRY(vm_area_struct) vma_link;
edf8e2af
MW
2396};
2397
2398struct mm_struct {
72cf2d4f 2399 QTAILQ_HEAD(, vm_area_struct) mm_mmap;
edf8e2af
MW
2400 int mm_count; /* number of mappings */
2401};
2402
2403static struct mm_struct *vma_init(void);
2404static void vma_delete(struct mm_struct *);
1a1c4db9
MI
2405static int vma_add_mapping(struct mm_struct *, target_ulong,
2406 target_ulong, abi_ulong);
edf8e2af
MW
2407static int vma_get_mapping_count(const struct mm_struct *);
2408static struct vm_area_struct *vma_first(const struct mm_struct *);
2409static struct vm_area_struct *vma_next(struct vm_area_struct *);
2410static abi_ulong vma_dump_size(const struct vm_area_struct *);
1a1c4db9 2411static int vma_walker(void *priv, target_ulong start, target_ulong end,
d97ef72e 2412 unsigned long flags);
edf8e2af
MW
2413
2414static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t);
2415static void fill_note(struct memelfnote *, const char *, int,
d97ef72e 2416 unsigned int, void *);
a2547a13
LD
2417static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int);
2418static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *);
edf8e2af
MW
2419static void fill_auxv_note(struct memelfnote *, const TaskState *);
2420static void fill_elf_note_phdr(struct elf_phdr *, int, off_t);
2421static size_t note_size(const struct memelfnote *);
2422static void free_note_info(struct elf_note_info *);
9349b4f9
AF
2423static int fill_note_info(struct elf_note_info *, long, const CPUArchState *);
2424static void fill_thread_info(struct elf_note_info *, const CPUArchState *);
edf8e2af
MW
2425static int core_dump_filename(const TaskState *, char *, size_t);
2426
2427static int dump_write(int, const void *, size_t);
2428static int write_note(struct memelfnote *, int);
2429static int write_note_info(struct elf_note_info *, int);
2430
2431#ifdef BSWAP_NEEDED
a2547a13 2432static void bswap_prstatus(struct target_elf_prstatus *prstatus)
edf8e2af 2433{
ca98ac83
PB
2434 prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo);
2435 prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code);
2436 prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno);
edf8e2af 2437 prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
ca98ac83
PB
2438 prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend);
2439 prstatus->pr_sighold = tswapal(prstatus->pr_sighold);
edf8e2af
MW
2440 prstatus->pr_pid = tswap32(prstatus->pr_pid);
2441 prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
2442 prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
2443 prstatus->pr_sid = tswap32(prstatus->pr_sid);
2444 /* cpu times are not filled, so we skip them */
2445 /* regs should be in correct format already */
2446 prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
2447}
2448
a2547a13 2449static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
edf8e2af 2450{
ca98ac83 2451 psinfo->pr_flag = tswapal(psinfo->pr_flag);
edf8e2af
MW
2452 psinfo->pr_uid = tswap16(psinfo->pr_uid);
2453 psinfo->pr_gid = tswap16(psinfo->pr_gid);
2454 psinfo->pr_pid = tswap32(psinfo->pr_pid);
2455 psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
2456 psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
2457 psinfo->pr_sid = tswap32(psinfo->pr_sid);
2458}
991f8f0c
RH
2459
2460static void bswap_note(struct elf_note *en)
2461{
2462 bswap32s(&en->n_namesz);
2463 bswap32s(&en->n_descsz);
2464 bswap32s(&en->n_type);
2465}
2466#else
2467static inline void bswap_prstatus(struct target_elf_prstatus *p) { }
2468static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {}
2469static inline void bswap_note(struct elf_note *en) { }
edf8e2af
MW
2470#endif /* BSWAP_NEEDED */
2471
2472/*
2473 * Minimal support for linux memory regions. These are needed
2474 * when we are finding out what memory exactly belongs to
2475 * emulated process. No locks needed here, as long as
2476 * thread that received the signal is stopped.
2477 */
2478
2479static struct mm_struct *vma_init(void)
2480{
2481 struct mm_struct *mm;
2482
7267c094 2483 if ((mm = g_malloc(sizeof (*mm))) == NULL)
edf8e2af
MW
2484 return (NULL);
2485
2486 mm->mm_count = 0;
72cf2d4f 2487 QTAILQ_INIT(&mm->mm_mmap);
edf8e2af
MW
2488
2489 return (mm);
2490}
2491
2492static void vma_delete(struct mm_struct *mm)
2493{
2494 struct vm_area_struct *vma;
2495
2496 while ((vma = vma_first(mm)) != NULL) {
72cf2d4f 2497 QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link);
7267c094 2498 g_free(vma);
edf8e2af 2499 }
7267c094 2500 g_free(mm);
edf8e2af
MW
2501}
2502
1a1c4db9
MI
2503static int vma_add_mapping(struct mm_struct *mm, target_ulong start,
2504 target_ulong end, abi_ulong flags)
edf8e2af
MW
2505{
2506 struct vm_area_struct *vma;
2507
7267c094 2508 if ((vma = g_malloc0(sizeof (*vma))) == NULL)
edf8e2af
MW
2509 return (-1);
2510
2511 vma->vma_start = start;
2512 vma->vma_end = end;
2513 vma->vma_flags = flags;
2514
72cf2d4f 2515 QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link);
edf8e2af
MW
2516 mm->mm_count++;
2517
2518 return (0);
2519}
2520
2521static struct vm_area_struct *vma_first(const struct mm_struct *mm)
2522{
72cf2d4f 2523 return (QTAILQ_FIRST(&mm->mm_mmap));
edf8e2af
MW
2524}
2525
2526static struct vm_area_struct *vma_next(struct vm_area_struct *vma)
2527{
72cf2d4f 2528 return (QTAILQ_NEXT(vma, vma_link));
edf8e2af
MW
2529}
2530
2531static int vma_get_mapping_count(const struct mm_struct *mm)
2532{
2533 return (mm->mm_count);
2534}
2535
2536/*
2537 * Calculate file (dump) size of given memory region.
2538 */
2539static abi_ulong vma_dump_size(const struct vm_area_struct *vma)
2540{
2541 /* if we cannot even read the first page, skip it */
2542 if (!access_ok(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE))
2543 return (0);
2544
2545 /*
2546 * Usually we don't dump executable pages as they contain
2547 * non-writable code that debugger can read directly from
2548 * target library etc. However, thread stacks are marked
2549 * also executable so we read in first page of given region
2550 * and check whether it contains elf header. If there is
2551 * no elf header, we dump it.
2552 */
2553 if (vma->vma_flags & PROT_EXEC) {
2554 char page[TARGET_PAGE_SIZE];
2555
2556 copy_from_user(page, vma->vma_start, sizeof (page));
2557 if ((page[EI_MAG0] == ELFMAG0) &&
2558 (page[EI_MAG1] == ELFMAG1) &&
2559 (page[EI_MAG2] == ELFMAG2) &&
2560 (page[EI_MAG3] == ELFMAG3)) {
2561 /*
2562 * Mappings are possibly from ELF binary. Don't dump
2563 * them.
2564 */
2565 return (0);
2566 }
2567 }
2568
2569 return (vma->vma_end - vma->vma_start);
2570}
2571
1a1c4db9 2572static int vma_walker(void *priv, target_ulong start, target_ulong end,
d97ef72e 2573 unsigned long flags)
edf8e2af
MW
2574{
2575 struct mm_struct *mm = (struct mm_struct *)priv;
2576
edf8e2af
MW
2577 vma_add_mapping(mm, start, end, flags);
2578 return (0);
2579}
2580
2581static void fill_note(struct memelfnote *note, const char *name, int type,
d97ef72e 2582 unsigned int sz, void *data)
edf8e2af
MW
2583{
2584 unsigned int namesz;
2585
2586 namesz = strlen(name) + 1;
2587 note->name = name;
2588 note->namesz = namesz;
2589 note->namesz_rounded = roundup(namesz, sizeof (int32_t));
2590 note->type = type;
80f5ce75
LV
2591 note->datasz = sz;
2592 note->datasz_rounded = roundup(sz, sizeof (int32_t));
2593
edf8e2af
MW
2594 note->data = data;
2595
2596 /*
2597 * We calculate rounded up note size here as specified by
2598 * ELF document.
2599 */
2600 note->notesz = sizeof (struct elf_note) +
80f5ce75 2601 note->namesz_rounded + note->datasz_rounded;
edf8e2af
MW
2602}
2603
2604static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
d97ef72e 2605 uint32_t flags)
edf8e2af
MW
2606{
2607 (void) memset(elf, 0, sizeof(*elf));
2608
2609 (void) memcpy(elf->e_ident, ELFMAG, SELFMAG);
2610 elf->e_ident[EI_CLASS] = ELF_CLASS;
2611 elf->e_ident[EI_DATA] = ELF_DATA;
2612 elf->e_ident[EI_VERSION] = EV_CURRENT;
2613 elf->e_ident[EI_OSABI] = ELF_OSABI;
2614
2615 elf->e_type = ET_CORE;
2616 elf->e_machine = machine;
2617 elf->e_version = EV_CURRENT;
2618 elf->e_phoff = sizeof(struct elfhdr);
2619 elf->e_flags = flags;
2620 elf->e_ehsize = sizeof(struct elfhdr);
2621 elf->e_phentsize = sizeof(struct elf_phdr);
2622 elf->e_phnum = segs;
2623
edf8e2af 2624 bswap_ehdr(elf);
edf8e2af
MW
2625}
2626
2627static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset)
2628{
2629 phdr->p_type = PT_NOTE;
2630 phdr->p_offset = offset;
2631 phdr->p_vaddr = 0;
2632 phdr->p_paddr = 0;
2633 phdr->p_filesz = sz;
2634 phdr->p_memsz = 0;
2635 phdr->p_flags = 0;
2636 phdr->p_align = 0;
2637
991f8f0c 2638 bswap_phdr(phdr, 1);
edf8e2af
MW
2639}
2640
2641static size_t note_size(const struct memelfnote *note)
2642{
2643 return (note->notesz);
2644}
2645
a2547a13 2646static void fill_prstatus(struct target_elf_prstatus *prstatus,
d97ef72e 2647 const TaskState *ts, int signr)
edf8e2af
MW
2648{
2649 (void) memset(prstatus, 0, sizeof (*prstatus));
2650 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
2651 prstatus->pr_pid = ts->ts_tid;
2652 prstatus->pr_ppid = getppid();
2653 prstatus->pr_pgrp = getpgrp();
2654 prstatus->pr_sid = getsid(0);
2655
edf8e2af 2656 bswap_prstatus(prstatus);
edf8e2af
MW
2657}
2658
a2547a13 2659static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts)
edf8e2af 2660{
900cfbca 2661 char *base_filename;
edf8e2af
MW
2662 unsigned int i, len;
2663
2664 (void) memset(psinfo, 0, sizeof (*psinfo));
2665
2666 len = ts->info->arg_end - ts->info->arg_start;
2667 if (len >= ELF_PRARGSZ)
2668 len = ELF_PRARGSZ - 1;
2669 if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_start, len))
2670 return -EFAULT;
2671 for (i = 0; i < len; i++)
2672 if (psinfo->pr_psargs[i] == 0)
2673 psinfo->pr_psargs[i] = ' ';
2674 psinfo->pr_psargs[len] = 0;
2675
2676 psinfo->pr_pid = getpid();
2677 psinfo->pr_ppid = getppid();
2678 psinfo->pr_pgrp = getpgrp();
2679 psinfo->pr_sid = getsid(0);
2680 psinfo->pr_uid = getuid();
2681 psinfo->pr_gid = getgid();
2682
900cfbca
JM
2683 base_filename = g_path_get_basename(ts->bprm->filename);
2684 /*
2685 * Using strncpy here is fine: at max-length,
2686 * this field is not NUL-terminated.
2687 */
edf8e2af 2688 (void) strncpy(psinfo->pr_fname, base_filename,
d97ef72e 2689 sizeof(psinfo->pr_fname));
edf8e2af 2690
900cfbca 2691 g_free(base_filename);
edf8e2af 2692 bswap_psinfo(psinfo);
edf8e2af
MW
2693 return (0);
2694}
2695
2696static void fill_auxv_note(struct memelfnote *note, const TaskState *ts)
2697{
2698 elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv;
2699 elf_addr_t orig_auxv = auxv;
edf8e2af 2700 void *ptr;
125b0f55 2701 int len = ts->info->auxv_len;
edf8e2af
MW
2702
2703 /*
2704 * Auxiliary vector is stored in target process stack. It contains
2705 * {type, value} pairs that we need to dump into note. This is not
2706 * strictly necessary but we do it here for sake of completeness.
2707 */
2708
edf8e2af
MW
2709 /* read in whole auxv vector and copy it to memelfnote */
2710 ptr = lock_user(VERIFY_READ, orig_auxv, len, 0);
2711 if (ptr != NULL) {
2712 fill_note(note, "CORE", NT_AUXV, len, ptr);
2713 unlock_user(ptr, auxv, len);
2714 }
2715}
2716
2717/*
2718 * Constructs name of coredump file. We have following convention
2719 * for the name:
2720 * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
2721 *
2722 * Returns 0 in case of success, -1 otherwise (errno is set).
2723 */
2724static int core_dump_filename(const TaskState *ts, char *buf,
d97ef72e 2725 size_t bufsize)
edf8e2af
MW
2726{
2727 char timestamp[64];
2728 char *filename = NULL;
2729 char *base_filename = NULL;
2730 struct timeval tv;
2731 struct tm tm;
2732
2733 assert(bufsize >= PATH_MAX);
2734
2735 if (gettimeofday(&tv, NULL) < 0) {
2736 (void) fprintf(stderr, "unable to get current timestamp: %s",
d97ef72e 2737 strerror(errno));
edf8e2af
MW
2738 return (-1);
2739 }
2740
2741 filename = strdup(ts->bprm->filename);
2742 base_filename = strdup(basename(filename));
2743 (void) strftime(timestamp, sizeof (timestamp), "%Y%m%d-%H%M%S",
d97ef72e 2744 localtime_r(&tv.tv_sec, &tm));
edf8e2af 2745 (void) snprintf(buf, bufsize, "qemu_%s_%s_%d.core",
d97ef72e 2746 base_filename, timestamp, (int)getpid());
edf8e2af
MW
2747 free(base_filename);
2748 free(filename);
2749
2750 return (0);
2751}
2752
2753static int dump_write(int fd, const void *ptr, size_t size)
2754{
2755 const char *bufp = (const char *)ptr;
2756 ssize_t bytes_written, bytes_left;
2757 struct rlimit dumpsize;
2758 off_t pos;
2759
2760 bytes_written = 0;
2761 getrlimit(RLIMIT_CORE, &dumpsize);
2762 if ((pos = lseek(fd, 0, SEEK_CUR))==-1) {
2763 if (errno == ESPIPE) { /* not a seekable stream */
2764 bytes_left = size;
2765 } else {
2766 return pos;
2767 }
2768 } else {
2769 if (dumpsize.rlim_cur <= pos) {
2770 return -1;
2771 } else if (dumpsize.rlim_cur == RLIM_INFINITY) {
2772 bytes_left = size;
2773 } else {
2774 size_t limit_left=dumpsize.rlim_cur - pos;
2775 bytes_left = limit_left >= size ? size : limit_left ;
2776 }
2777 }
2778
2779 /*
2780 * In normal conditions, single write(2) should do but
2781 * in case of socket etc. this mechanism is more portable.
2782 */
2783 do {
2784 bytes_written = write(fd, bufp, bytes_left);
2785 if (bytes_written < 0) {
2786 if (errno == EINTR)
2787 continue;
2788 return (-1);
2789 } else if (bytes_written == 0) { /* eof */
2790 return (-1);
2791 }
2792 bufp += bytes_written;
2793 bytes_left -= bytes_written;
2794 } while (bytes_left > 0);
2795
2796 return (0);
2797}
2798
2799static int write_note(struct memelfnote *men, int fd)
2800{
2801 struct elf_note en;
2802
2803 en.n_namesz = men->namesz;
2804 en.n_type = men->type;
2805 en.n_descsz = men->datasz;
2806
edf8e2af 2807 bswap_note(&en);
edf8e2af
MW
2808
2809 if (dump_write(fd, &en, sizeof(en)) != 0)
2810 return (-1);
2811 if (dump_write(fd, men->name, men->namesz_rounded) != 0)
2812 return (-1);
80f5ce75 2813 if (dump_write(fd, men->data, men->datasz_rounded) != 0)
edf8e2af
MW
2814 return (-1);
2815
2816 return (0);
2817}
2818
9349b4f9 2819static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env)
edf8e2af 2820{
0429a971
AF
2821 CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
2822 TaskState *ts = (TaskState *)cpu->opaque;
edf8e2af
MW
2823 struct elf_thread_status *ets;
2824
7267c094 2825 ets = g_malloc0(sizeof (*ets));
edf8e2af
MW
2826 ets->num_notes = 1; /* only prstatus is dumped */
2827 fill_prstatus(&ets->prstatus, ts, 0);
2828 elf_core_copy_regs(&ets->prstatus.pr_reg, env);
2829 fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus),
d97ef72e 2830 &ets->prstatus);
edf8e2af 2831
72cf2d4f 2832 QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link);
edf8e2af
MW
2833
2834 info->notes_size += note_size(&ets->notes[0]);
2835}
2836
6afafa86
PM
2837static void init_note_info(struct elf_note_info *info)
2838{
2839 /* Initialize the elf_note_info structure so that it is at
2840 * least safe to call free_note_info() on it. Must be
2841 * called before calling fill_note_info().
2842 */
2843 memset(info, 0, sizeof (*info));
2844 QTAILQ_INIT(&info->thread_list);
2845}
2846
edf8e2af 2847static int fill_note_info(struct elf_note_info *info,
9349b4f9 2848 long signr, const CPUArchState *env)
edf8e2af
MW
2849{
2850#define NUMNOTES 3
0429a971
AF
2851 CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
2852 TaskState *ts = (TaskState *)cpu->opaque;
edf8e2af
MW
2853 int i;
2854
c78d65e8 2855 info->notes = g_new0(struct memelfnote, NUMNOTES);
edf8e2af
MW
2856 if (info->notes == NULL)
2857 return (-ENOMEM);
7267c094 2858 info->prstatus = g_malloc0(sizeof (*info->prstatus));
edf8e2af
MW
2859 if (info->prstatus == NULL)
2860 return (-ENOMEM);
7267c094 2861 info->psinfo = g_malloc0(sizeof (*info->psinfo));
edf8e2af
MW
2862 if (info->prstatus == NULL)
2863 return (-ENOMEM);
2864
2865 /*
2866 * First fill in status (and registers) of current thread
2867 * including process info & aux vector.
2868 */
2869 fill_prstatus(info->prstatus, ts, signr);
2870 elf_core_copy_regs(&info->prstatus->pr_reg, env);
2871 fill_note(&info->notes[0], "CORE", NT_PRSTATUS,
d97ef72e 2872 sizeof (*info->prstatus), info->prstatus);
edf8e2af
MW
2873 fill_psinfo(info->psinfo, ts);
2874 fill_note(&info->notes[1], "CORE", NT_PRPSINFO,
d97ef72e 2875 sizeof (*info->psinfo), info->psinfo);
edf8e2af
MW
2876 fill_auxv_note(&info->notes[2], ts);
2877 info->numnote = 3;
2878
2879 info->notes_size = 0;
2880 for (i = 0; i < info->numnote; i++)
2881 info->notes_size += note_size(&info->notes[i]);
2882
2883 /* read and fill status of all threads */
2884 cpu_list_lock();
bdc44640 2885 CPU_FOREACH(cpu) {
a2247f8e 2886 if (cpu == thread_cpu) {
edf8e2af 2887 continue;
182735ef
AF
2888 }
2889 fill_thread_info(info, (CPUArchState *)cpu->env_ptr);
edf8e2af
MW
2890 }
2891 cpu_list_unlock();
2892
2893 return (0);
2894}
2895
2896static void free_note_info(struct elf_note_info *info)
2897{
2898 struct elf_thread_status *ets;
2899
72cf2d4f
BS
2900 while (!QTAILQ_EMPTY(&info->thread_list)) {
2901 ets = QTAILQ_FIRST(&info->thread_list);
2902 QTAILQ_REMOVE(&info->thread_list, ets, ets_link);
7267c094 2903 g_free(ets);
edf8e2af
MW
2904 }
2905
7267c094
AL
2906 g_free(info->prstatus);
2907 g_free(info->psinfo);
2908 g_free(info->notes);
edf8e2af
MW
2909}
2910
2911static int write_note_info(struct elf_note_info *info, int fd)
2912{
2913 struct elf_thread_status *ets;
2914 int i, error = 0;
2915
2916 /* write prstatus, psinfo and auxv for current thread */
2917 for (i = 0; i < info->numnote; i++)
2918 if ((error = write_note(&info->notes[i], fd)) != 0)
2919 return (error);
2920
2921 /* write prstatus for each thread */
52a53afe 2922 QTAILQ_FOREACH(ets, &info->thread_list, ets_link) {
edf8e2af
MW
2923 if ((error = write_note(&ets->notes[0], fd)) != 0)
2924 return (error);
2925 }
2926
2927 return (0);
2928}
2929
2930/*
2931 * Write out ELF coredump.
2932 *
2933 * See documentation of ELF object file format in:
2934 * http://www.caldera.com/developers/devspecs/gabi41.pdf
2935 *
2936 * Coredump format in linux is following:
2937 *
2938 * 0 +----------------------+ \
2939 * | ELF header | ET_CORE |
2940 * +----------------------+ |
2941 * | ELF program headers | |--- headers
2942 * | - NOTE section | |
2943 * | - PT_LOAD sections | |
2944 * +----------------------+ /
2945 * | NOTEs: |
2946 * | - NT_PRSTATUS |
2947 * | - NT_PRSINFO |
2948 * | - NT_AUXV |
2949 * +----------------------+ <-- aligned to target page
2950 * | Process memory dump |
2951 * : :
2952 * . .
2953 * : :
2954 * | |
2955 * +----------------------+
2956 *
2957 * NT_PRSTATUS -> struct elf_prstatus (per thread)
2958 * NT_PRSINFO -> struct elf_prpsinfo
2959 * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
2960 *
2961 * Format follows System V format as close as possible. Current
2962 * version limitations are as follows:
2963 * - no floating point registers are dumped
2964 *
2965 * Function returns 0 in case of success, negative errno otherwise.
2966 *
2967 * TODO: make this work also during runtime: it should be
2968 * possible to force coredump from running process and then
2969 * continue processing. For example qemu could set up SIGUSR2
2970 * handler (provided that target process haven't registered
2971 * handler for that) that does the dump when signal is received.
2972 */
9349b4f9 2973static int elf_core_dump(int signr, const CPUArchState *env)
edf8e2af 2974{
0429a971
AF
2975 const CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
2976 const TaskState *ts = (const TaskState *)cpu->opaque;
edf8e2af
MW
2977 struct vm_area_struct *vma = NULL;
2978 char corefile[PATH_MAX];
2979 struct elf_note_info info;
2980 struct elfhdr elf;
2981 struct elf_phdr phdr;
2982 struct rlimit dumpsize;
2983 struct mm_struct *mm = NULL;
2984 off_t offset = 0, data_offset = 0;
2985 int segs = 0;
2986 int fd = -1;
2987
6afafa86
PM
2988 init_note_info(&info);
2989
edf8e2af
MW
2990 errno = 0;
2991 getrlimit(RLIMIT_CORE, &dumpsize);
2992 if (dumpsize.rlim_cur == 0)
d97ef72e 2993 return 0;
edf8e2af
MW
2994
2995 if (core_dump_filename(ts, corefile, sizeof (corefile)) < 0)
2996 return (-errno);
2997
2998 if ((fd = open(corefile, O_WRONLY | O_CREAT,
d97ef72e 2999 S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0)
edf8e2af
MW
3000 return (-errno);
3001
3002 /*
3003 * Walk through target process memory mappings and
3004 * set up structure containing this information. After
3005 * this point vma_xxx functions can be used.
3006 */
3007 if ((mm = vma_init()) == NULL)
3008 goto out;
3009
3010 walk_memory_regions(mm, vma_walker);
3011 segs = vma_get_mapping_count(mm);
3012
3013 /*
3014 * Construct valid coredump ELF header. We also
3015 * add one more segment for notes.
3016 */
3017 fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0);
3018 if (dump_write(fd, &elf, sizeof (elf)) != 0)
3019 goto out;
3020
b6af0975 3021 /* fill in the in-memory version of notes */
edf8e2af
MW
3022 if (fill_note_info(&info, signr, env) < 0)
3023 goto out;
3024
3025 offset += sizeof (elf); /* elf header */
3026 offset += (segs + 1) * sizeof (struct elf_phdr); /* program headers */
3027
3028 /* write out notes program header */
3029 fill_elf_note_phdr(&phdr, info.notes_size, offset);
3030
3031 offset += info.notes_size;
3032 if (dump_write(fd, &phdr, sizeof (phdr)) != 0)
3033 goto out;
3034
3035 /*
3036 * ELF specification wants data to start at page boundary so
3037 * we align it here.
3038 */
80f5ce75 3039 data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE);
edf8e2af
MW
3040
3041 /*
3042 * Write program headers for memory regions mapped in
3043 * the target process.
3044 */
3045 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
3046 (void) memset(&phdr, 0, sizeof (phdr));
3047
3048 phdr.p_type = PT_LOAD;
3049 phdr.p_offset = offset;
3050 phdr.p_vaddr = vma->vma_start;
3051 phdr.p_paddr = 0;
3052 phdr.p_filesz = vma_dump_size(vma);
3053 offset += phdr.p_filesz;
3054 phdr.p_memsz = vma->vma_end - vma->vma_start;
3055 phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0;
3056 if (vma->vma_flags & PROT_WRITE)
3057 phdr.p_flags |= PF_W;
3058 if (vma->vma_flags & PROT_EXEC)
3059 phdr.p_flags |= PF_X;
3060 phdr.p_align = ELF_EXEC_PAGESIZE;
3061
80f5ce75 3062 bswap_phdr(&phdr, 1);
edf8e2af
MW
3063 dump_write(fd, &phdr, sizeof (phdr));
3064 }
3065
3066 /*
3067 * Next we write notes just after program headers. No
3068 * alignment needed here.
3069 */
3070 if (write_note_info(&info, fd) < 0)
3071 goto out;
3072
3073 /* align data to page boundary */
edf8e2af
MW
3074 if (lseek(fd, data_offset, SEEK_SET) != data_offset)
3075 goto out;
3076
3077 /*
3078 * Finally we can dump process memory into corefile as well.
3079 */
3080 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
3081 abi_ulong addr;
3082 abi_ulong end;
3083
3084 end = vma->vma_start + vma_dump_size(vma);
3085
3086 for (addr = vma->vma_start; addr < end;
d97ef72e 3087 addr += TARGET_PAGE_SIZE) {
edf8e2af
MW
3088 char page[TARGET_PAGE_SIZE];
3089 int error;
3090
3091 /*
3092 * Read in page from target process memory and
3093 * write it to coredump file.
3094 */
3095 error = copy_from_user(page, addr, sizeof (page));
3096 if (error != 0) {
49995e17 3097 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n",
d97ef72e 3098 addr);
edf8e2af
MW
3099 errno = -error;
3100 goto out;
3101 }
3102 if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0)
3103 goto out;
3104 }
3105 }
3106
d97ef72e 3107 out:
edf8e2af
MW
3108 free_note_info(&info);
3109 if (mm != NULL)
3110 vma_delete(mm);
3111 (void) close(fd);
3112
3113 if (errno != 0)
3114 return (-errno);
3115 return (0);
3116}
edf8e2af
MW
3117#endif /* USE_ELF_CORE_DUMP */
3118
e5fe0c52
PB
3119void do_init_thread(struct target_pt_regs *regs, struct image_info *infop)
3120{
3121 init_thread(regs, infop);
3122}