]> git.ipfire.org Git - thirdparty/linux.git/blame - mm/compaction.c
mm/compaction: fix misbehaviors of fast_find_migrateblock()
[thirdparty/linux.git] / mm / compaction.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
748446bb
MG
2/*
3 * linux/mm/compaction.c
4 *
5 * Memory compaction for the reduction of external fragmentation. Note that
6 * this heavily depends upon page migration to do all the real heavy
7 * lifting
8 *
9 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
10 */
698b1b30 11#include <linux/cpu.h>
748446bb
MG
12#include <linux/swap.h>
13#include <linux/migrate.h>
14#include <linux/compaction.h>
15#include <linux/mm_inline.h>
174cd4b1 16#include <linux/sched/signal.h>
748446bb 17#include <linux/backing-dev.h>
76ab0f53 18#include <linux/sysctl.h>
ed4a6d7f 19#include <linux/sysfs.h>
194159fb 20#include <linux/page-isolation.h>
b8c73fc2 21#include <linux/kasan.h>
698b1b30
VB
22#include <linux/kthread.h>
23#include <linux/freezer.h>
83358ece 24#include <linux/page_owner.h>
eb414681 25#include <linux/psi.h>
748446bb
MG
26#include "internal.h"
27
010fc29a
MK
28#ifdef CONFIG_COMPACTION
29static inline void count_compact_event(enum vm_event_item item)
30{
31 count_vm_event(item);
32}
33
34static inline void count_compact_events(enum vm_event_item item, long delta)
35{
36 count_vm_events(item, delta);
37}
38#else
39#define count_compact_event(item) do { } while (0)
40#define count_compact_events(item, delta) do { } while (0)
41#endif
42
ff9543fd
MN
43#if defined CONFIG_COMPACTION || defined CONFIG_CMA
44
b7aba698
MG
45#define CREATE_TRACE_POINTS
46#include <trace/events/compaction.h>
47
06b6640a
VB
48#define block_start_pfn(pfn, order) round_down(pfn, 1UL << (order))
49#define block_end_pfn(pfn, order) ALIGN((pfn) + 1, 1UL << (order))
50#define pageblock_start_pfn(pfn) block_start_pfn(pfn, pageblock_order)
51#define pageblock_end_pfn(pfn) block_end_pfn(pfn, pageblock_order)
52
facdaa91
NG
53/*
54 * Fragmentation score check interval for proactive compaction purposes.
55 */
d34c0a75 56static const unsigned int HPAGE_FRAG_CHECK_INTERVAL_MSEC = 500;
facdaa91
NG
57
58/*
59 * Page order with-respect-to which proactive compaction
60 * calculates external fragmentation, which is used as
61 * the "fragmentation score" of a node/zone.
62 */
63#if defined CONFIG_TRANSPARENT_HUGEPAGE
64#define COMPACTION_HPAGE_ORDER HPAGE_PMD_ORDER
25788738 65#elif defined CONFIG_HUGETLBFS
facdaa91
NG
66#define COMPACTION_HPAGE_ORDER HUGETLB_PAGE_ORDER
67#else
68#define COMPACTION_HPAGE_ORDER (PMD_SHIFT - PAGE_SHIFT)
69#endif
70
748446bb
MG
71static unsigned long release_freepages(struct list_head *freelist)
72{
73 struct page *page, *next;
6bace090 74 unsigned long high_pfn = 0;
748446bb
MG
75
76 list_for_each_entry_safe(page, next, freelist, lru) {
6bace090 77 unsigned long pfn = page_to_pfn(page);
748446bb
MG
78 list_del(&page->lru);
79 __free_page(page);
6bace090
VB
80 if (pfn > high_pfn)
81 high_pfn = pfn;
748446bb
MG
82 }
83
6bace090 84 return high_pfn;
748446bb
MG
85}
86
4469ab98 87static void split_map_pages(struct list_head *list)
ff9543fd 88{
66c64223
JK
89 unsigned int i, order, nr_pages;
90 struct page *page, *next;
91 LIST_HEAD(tmp_list);
92
93 list_for_each_entry_safe(page, next, list, lru) {
94 list_del(&page->lru);
95
96 order = page_private(page);
97 nr_pages = 1 << order;
66c64223 98
46f24fd8 99 post_alloc_hook(page, order, __GFP_MOVABLE);
66c64223
JK
100 if (order)
101 split_page(page, order);
ff9543fd 102
66c64223
JK
103 for (i = 0; i < nr_pages; i++) {
104 list_add(&page->lru, &tmp_list);
105 page++;
106 }
ff9543fd 107 }
66c64223
JK
108
109 list_splice(&tmp_list, list);
ff9543fd
MN
110}
111
bb13ffeb 112#ifdef CONFIG_COMPACTION
24e2716f 113
bda807d4
MK
114int PageMovable(struct page *page)
115{
116 struct address_space *mapping;
117
118 VM_BUG_ON_PAGE(!PageLocked(page), page);
119 if (!__PageMovable(page))
120 return 0;
121
122 mapping = page_mapping(page);
123 if (mapping && mapping->a_ops && mapping->a_ops->isolate_page)
124 return 1;
125
126 return 0;
127}
128EXPORT_SYMBOL(PageMovable);
129
130void __SetPageMovable(struct page *page, struct address_space *mapping)
131{
132 VM_BUG_ON_PAGE(!PageLocked(page), page);
133 VM_BUG_ON_PAGE((unsigned long)mapping & PAGE_MAPPING_MOVABLE, page);
134 page->mapping = (void *)((unsigned long)mapping | PAGE_MAPPING_MOVABLE);
135}
136EXPORT_SYMBOL(__SetPageMovable);
137
138void __ClearPageMovable(struct page *page)
139{
bda807d4
MK
140 VM_BUG_ON_PAGE(!PageMovable(page), page);
141 /*
142 * Clear registered address_space val with keeping PAGE_MAPPING_MOVABLE
143 * flag so that VM can catch up released page by driver after isolation.
144 * With it, VM migration doesn't try to put it back.
145 */
146 page->mapping = (void *)((unsigned long)page->mapping &
147 PAGE_MAPPING_MOVABLE);
148}
149EXPORT_SYMBOL(__ClearPageMovable);
150
24e2716f
JK
151/* Do not skip compaction more than 64 times */
152#define COMPACT_MAX_DEFER_SHIFT 6
153
154/*
155 * Compaction is deferred when compaction fails to result in a page
860b3272 156 * allocation success. 1 << compact_defer_shift, compactions are skipped up
24e2716f
JK
157 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
158 */
2271b016 159static void defer_compaction(struct zone *zone, int order)
24e2716f
JK
160{
161 zone->compact_considered = 0;
162 zone->compact_defer_shift++;
163
164 if (order < zone->compact_order_failed)
165 zone->compact_order_failed = order;
166
167 if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
168 zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
169
170 trace_mm_compaction_defer_compaction(zone, order);
171}
172
173/* Returns true if compaction should be skipped this time */
2271b016 174static bool compaction_deferred(struct zone *zone, int order)
24e2716f
JK
175{
176 unsigned long defer_limit = 1UL << zone->compact_defer_shift;
177
178 if (order < zone->compact_order_failed)
179 return false;
180
181 /* Avoid possible overflow */
62b35fe0 182 if (++zone->compact_considered >= defer_limit) {
24e2716f 183 zone->compact_considered = defer_limit;
24e2716f 184 return false;
62b35fe0 185 }
24e2716f
JK
186
187 trace_mm_compaction_deferred(zone, order);
188
189 return true;
190}
191
192/*
193 * Update defer tracking counters after successful compaction of given order,
194 * which means an allocation either succeeded (alloc_success == true) or is
195 * expected to succeed.
196 */
197void compaction_defer_reset(struct zone *zone, int order,
198 bool alloc_success)
199{
200 if (alloc_success) {
201 zone->compact_considered = 0;
202 zone->compact_defer_shift = 0;
203 }
204 if (order >= zone->compact_order_failed)
205 zone->compact_order_failed = order + 1;
206
207 trace_mm_compaction_defer_reset(zone, order);
208}
209
210/* Returns true if restarting compaction after many failures */
2271b016 211static bool compaction_restarting(struct zone *zone, int order)
24e2716f
JK
212{
213 if (order < zone->compact_order_failed)
214 return false;
215
216 return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
217 zone->compact_considered >= 1UL << zone->compact_defer_shift;
218}
219
bb13ffeb
MG
220/* Returns true if the pageblock should be scanned for pages to isolate. */
221static inline bool isolation_suitable(struct compact_control *cc,
222 struct page *page)
223{
224 if (cc->ignore_skip_hint)
225 return true;
226
227 return !get_pageblock_skip(page);
228}
229
02333641
VB
230static void reset_cached_positions(struct zone *zone)
231{
232 zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
233 zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
623446e4 234 zone->compact_cached_free_pfn =
06b6640a 235 pageblock_start_pfn(zone_end_pfn(zone) - 1);
02333641
VB
236}
237
21dc7e02 238/*
2271b016 239 * Compound pages of >= pageblock_order should consistently be skipped until
b527cfe5
VB
240 * released. It is always pointless to compact pages of such order (if they are
241 * migratable), and the pageblocks they occupy cannot contain any free pages.
21dc7e02 242 */
b527cfe5 243static bool pageblock_skip_persistent(struct page *page)
21dc7e02 244{
b527cfe5 245 if (!PageCompound(page))
21dc7e02 246 return false;
b527cfe5
VB
247
248 page = compound_head(page);
249
250 if (compound_order(page) >= pageblock_order)
251 return true;
252
253 return false;
21dc7e02
DR
254}
255
e332f741
MG
256static bool
257__reset_isolation_pfn(struct zone *zone, unsigned long pfn, bool check_source,
258 bool check_target)
259{
260 struct page *page = pfn_to_online_page(pfn);
6b0868c8 261 struct page *block_page;
e332f741
MG
262 struct page *end_page;
263 unsigned long block_pfn;
264
265 if (!page)
266 return false;
267 if (zone != page_zone(page))
268 return false;
269 if (pageblock_skip_persistent(page))
270 return false;
271
272 /*
273 * If skip is already cleared do no further checking once the
274 * restart points have been set.
275 */
276 if (check_source && check_target && !get_pageblock_skip(page))
277 return true;
278
279 /*
280 * If clearing skip for the target scanner, do not select a
281 * non-movable pageblock as the starting point.
282 */
283 if (!check_source && check_target &&
284 get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
285 return false;
286
6b0868c8
MG
287 /* Ensure the start of the pageblock or zone is online and valid */
288 block_pfn = pageblock_start_pfn(pfn);
a2e9a5af
VB
289 block_pfn = max(block_pfn, zone->zone_start_pfn);
290 block_page = pfn_to_online_page(block_pfn);
6b0868c8
MG
291 if (block_page) {
292 page = block_page;
293 pfn = block_pfn;
294 }
295
296 /* Ensure the end of the pageblock or zone is online and valid */
a2e9a5af 297 block_pfn = pageblock_end_pfn(pfn) - 1;
6b0868c8
MG
298 block_pfn = min(block_pfn, zone_end_pfn(zone) - 1);
299 end_page = pfn_to_online_page(block_pfn);
300 if (!end_page)
301 return false;
302
e332f741
MG
303 /*
304 * Only clear the hint if a sample indicates there is either a
305 * free page or an LRU page in the block. One or other condition
306 * is necessary for the block to be a migration source/target.
307 */
e332f741
MG
308 do {
309 if (pfn_valid_within(pfn)) {
310 if (check_source && PageLRU(page)) {
311 clear_pageblock_skip(page);
312 return true;
313 }
314
315 if (check_target && PageBuddy(page)) {
316 clear_pageblock_skip(page);
317 return true;
318 }
319 }
320
321 page += (1 << PAGE_ALLOC_COSTLY_ORDER);
322 pfn += (1 << PAGE_ALLOC_COSTLY_ORDER);
a2e9a5af 323 } while (page <= end_page);
e332f741
MG
324
325 return false;
326}
327
bb13ffeb
MG
328/*
329 * This function is called to clear all cached information on pageblocks that
330 * should be skipped for page isolation when the migrate and free page scanner
331 * meet.
332 */
62997027 333static void __reset_isolation_suitable(struct zone *zone)
bb13ffeb 334{
e332f741 335 unsigned long migrate_pfn = zone->zone_start_pfn;
6b0868c8 336 unsigned long free_pfn = zone_end_pfn(zone) - 1;
e332f741
MG
337 unsigned long reset_migrate = free_pfn;
338 unsigned long reset_free = migrate_pfn;
339 bool source_set = false;
340 bool free_set = false;
341
342 if (!zone->compact_blockskip_flush)
343 return;
bb13ffeb 344
62997027 345 zone->compact_blockskip_flush = false;
bb13ffeb 346
e332f741
MG
347 /*
348 * Walk the zone and update pageblock skip information. Source looks
349 * for PageLRU while target looks for PageBuddy. When the scanner
350 * is found, both PageBuddy and PageLRU are checked as the pageblock
351 * is suitable as both source and target.
352 */
353 for (; migrate_pfn < free_pfn; migrate_pfn += pageblock_nr_pages,
354 free_pfn -= pageblock_nr_pages) {
bb13ffeb
MG
355 cond_resched();
356
e332f741
MG
357 /* Update the migrate PFN */
358 if (__reset_isolation_pfn(zone, migrate_pfn, true, source_set) &&
359 migrate_pfn < reset_migrate) {
360 source_set = true;
361 reset_migrate = migrate_pfn;
362 zone->compact_init_migrate_pfn = reset_migrate;
363 zone->compact_cached_migrate_pfn[0] = reset_migrate;
364 zone->compact_cached_migrate_pfn[1] = reset_migrate;
365 }
bb13ffeb 366
e332f741
MG
367 /* Update the free PFN */
368 if (__reset_isolation_pfn(zone, free_pfn, free_set, true) &&
369 free_pfn > reset_free) {
370 free_set = true;
371 reset_free = free_pfn;
372 zone->compact_init_free_pfn = reset_free;
373 zone->compact_cached_free_pfn = reset_free;
374 }
bb13ffeb 375 }
02333641 376
e332f741
MG
377 /* Leave no distance if no suitable block was reset */
378 if (reset_migrate >= reset_free) {
379 zone->compact_cached_migrate_pfn[0] = migrate_pfn;
380 zone->compact_cached_migrate_pfn[1] = migrate_pfn;
381 zone->compact_cached_free_pfn = free_pfn;
382 }
bb13ffeb
MG
383}
384
62997027
MG
385void reset_isolation_suitable(pg_data_t *pgdat)
386{
387 int zoneid;
388
389 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
390 struct zone *zone = &pgdat->node_zones[zoneid];
391 if (!populated_zone(zone))
392 continue;
393
394 /* Only flush if a full compaction finished recently */
395 if (zone->compact_blockskip_flush)
396 __reset_isolation_suitable(zone);
397 }
398}
399
e380bebe
MG
400/*
401 * Sets the pageblock skip bit if it was clear. Note that this is a hint as
402 * locks are not required for read/writers. Returns true if it was already set.
403 */
404static bool test_and_set_skip(struct compact_control *cc, struct page *page,
405 unsigned long pfn)
406{
407 bool skip;
408
409 /* Do no update if skip hint is being ignored */
410 if (cc->ignore_skip_hint)
411 return false;
412
413 if (!IS_ALIGNED(pfn, pageblock_nr_pages))
414 return false;
415
416 skip = get_pageblock_skip(page);
417 if (!skip && !cc->no_set_skip_hint)
418 set_pageblock_skip(page);
419
420 return skip;
421}
422
423static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
424{
425 struct zone *zone = cc->zone;
426
427 pfn = pageblock_end_pfn(pfn);
428
429 /* Set for isolation rather than compaction */
430 if (cc->no_set_skip_hint)
431 return;
432
433 if (pfn > zone->compact_cached_migrate_pfn[0])
434 zone->compact_cached_migrate_pfn[0] = pfn;
435 if (cc->mode != MIGRATE_ASYNC &&
436 pfn > zone->compact_cached_migrate_pfn[1])
437 zone->compact_cached_migrate_pfn[1] = pfn;
438}
439
bb13ffeb
MG
440/*
441 * If no pages were isolated then mark this pageblock to be skipped in the
62997027 442 * future. The information is later cleared by __reset_isolation_suitable().
bb13ffeb 443 */
c89511ab 444static void update_pageblock_skip(struct compact_control *cc,
d097a6f6 445 struct page *page, unsigned long pfn)
bb13ffeb 446{
c89511ab 447 struct zone *zone = cc->zone;
6815bf3f 448
2583d671 449 if (cc->no_set_skip_hint)
6815bf3f
JK
450 return;
451
bb13ffeb
MG
452 if (!page)
453 return;
454
edc2ca61 455 set_pageblock_skip(page);
c89511ab 456
35979ef3 457 /* Update where async and sync compaction should restart */
e380bebe
MG
458 if (pfn < zone->compact_cached_free_pfn)
459 zone->compact_cached_free_pfn = pfn;
bb13ffeb
MG
460}
461#else
462static inline bool isolation_suitable(struct compact_control *cc,
463 struct page *page)
464{
465 return true;
466}
467
b527cfe5 468static inline bool pageblock_skip_persistent(struct page *page)
21dc7e02
DR
469{
470 return false;
471}
472
473static inline void update_pageblock_skip(struct compact_control *cc,
d097a6f6 474 struct page *page, unsigned long pfn)
bb13ffeb
MG
475{
476}
e380bebe
MG
477
478static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
479{
480}
481
482static bool test_and_set_skip(struct compact_control *cc, struct page *page,
483 unsigned long pfn)
484{
485 return false;
486}
bb13ffeb
MG
487#endif /* CONFIG_COMPACTION */
488
8b44d279
VB
489/*
490 * Compaction requires the taking of some coarse locks that are potentially
cb2dcaf0
MG
491 * very heavily contended. For async compaction, trylock and record if the
492 * lock is contended. The lock will still be acquired but compaction will
493 * abort when the current block is finished regardless of success rate.
494 * Sync compaction acquires the lock.
8b44d279 495 *
cb2dcaf0 496 * Always returns true which makes it easier to track lock state in callers.
8b44d279 497 */
cb2dcaf0 498static bool compact_lock_irqsave(spinlock_t *lock, unsigned long *flags,
8b44d279 499 struct compact_control *cc)
77337ede 500 __acquires(lock)
2a1402aa 501{
cb2dcaf0
MG
502 /* Track if the lock is contended in async mode */
503 if (cc->mode == MIGRATE_ASYNC && !cc->contended) {
504 if (spin_trylock_irqsave(lock, *flags))
505 return true;
506
507 cc->contended = true;
8b44d279 508 }
1f9efdef 509
cb2dcaf0 510 spin_lock_irqsave(lock, *flags);
8b44d279 511 return true;
2a1402aa
MG
512}
513
c67fe375
MG
514/*
515 * Compaction requires the taking of some coarse locks that are potentially
8b44d279
VB
516 * very heavily contended. The lock should be periodically unlocked to avoid
517 * having disabled IRQs for a long time, even when there is nobody waiting on
518 * the lock. It might also be that allowing the IRQs will result in
519 * need_resched() becoming true. If scheduling is needed, async compaction
520 * aborts. Sync compaction schedules.
521 * Either compaction type will also abort if a fatal signal is pending.
522 * In either case if the lock was locked, it is dropped and not regained.
c67fe375 523 *
8b44d279
VB
524 * Returns true if compaction should abort due to fatal signal pending, or
525 * async compaction due to need_resched()
526 * Returns false when compaction can continue (sync compaction might have
527 * scheduled)
c67fe375 528 */
8b44d279
VB
529static bool compact_unlock_should_abort(spinlock_t *lock,
530 unsigned long flags, bool *locked, struct compact_control *cc)
c67fe375 531{
8b44d279
VB
532 if (*locked) {
533 spin_unlock_irqrestore(lock, flags);
534 *locked = false;
535 }
1f9efdef 536
8b44d279 537 if (fatal_signal_pending(current)) {
c3486f53 538 cc->contended = true;
8b44d279
VB
539 return true;
540 }
c67fe375 541
cf66f070 542 cond_resched();
be976572
VB
543
544 return false;
545}
546
85aa125f 547/*
9e4be470
JM
548 * Isolate free pages onto a private freelist. If @strict is true, will abort
549 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
550 * (even though it may still end up isolating some pages).
85aa125f 551 */
f40d1e42 552static unsigned long isolate_freepages_block(struct compact_control *cc,
e14c720e 553 unsigned long *start_pfn,
85aa125f
MN
554 unsigned long end_pfn,
555 struct list_head *freelist,
4fca9730 556 unsigned int stride,
85aa125f 557 bool strict)
748446bb 558{
b7aba698 559 int nr_scanned = 0, total_isolated = 0;
d097a6f6 560 struct page *cursor;
b8b2d825 561 unsigned long flags = 0;
f40d1e42 562 bool locked = false;
e14c720e 563 unsigned long blockpfn = *start_pfn;
66c64223 564 unsigned int order;
748446bb 565
4fca9730
MG
566 /* Strict mode is for isolation, speed is secondary */
567 if (strict)
568 stride = 1;
569
748446bb
MG
570 cursor = pfn_to_page(blockpfn);
571
f40d1e42 572 /* Isolate free pages. */
4fca9730 573 for (; blockpfn < end_pfn; blockpfn += stride, cursor += stride) {
66c64223 574 int isolated;
748446bb
MG
575 struct page *page = cursor;
576
8b44d279
VB
577 /*
578 * Periodically drop the lock (if held) regardless of its
579 * contention, to give chance to IRQs. Abort if fatal signal
580 * pending or async compaction detects need_resched()
581 */
582 if (!(blockpfn % SWAP_CLUSTER_MAX)
583 && compact_unlock_should_abort(&cc->zone->lock, flags,
584 &locked, cc))
585 break;
586
b7aba698 587 nr_scanned++;
f40d1e42 588 if (!pfn_valid_within(blockpfn))
2af120bc
LA
589 goto isolate_fail;
590
9fcd6d2e
VB
591 /*
592 * For compound pages such as THP and hugetlbfs, we can save
593 * potentially a lot of iterations if we skip them at once.
594 * The check is racy, but we can consider only valid values
595 * and the only danger is skipping too much.
596 */
597 if (PageCompound(page)) {
21dc7e02
DR
598 const unsigned int order = compound_order(page);
599
d3c85bad 600 if (likely(order < MAX_ORDER)) {
21dc7e02
DR
601 blockpfn += (1UL << order) - 1;
602 cursor += (1UL << order) - 1;
9fcd6d2e 603 }
9fcd6d2e
VB
604 goto isolate_fail;
605 }
606
f40d1e42 607 if (!PageBuddy(page))
2af120bc 608 goto isolate_fail;
f40d1e42
MG
609
610 /*
69b7189f
VB
611 * If we already hold the lock, we can skip some rechecking.
612 * Note that if we hold the lock now, checked_pageblock was
613 * already set in some previous iteration (or strict is true),
614 * so it is correct to skip the suitable migration target
615 * recheck as well.
f40d1e42 616 */
69b7189f 617 if (!locked) {
cb2dcaf0 618 locked = compact_lock_irqsave(&cc->zone->lock,
8b44d279 619 &flags, cc);
f40d1e42 620
69b7189f
VB
621 /* Recheck this is a buddy page under lock */
622 if (!PageBuddy(page))
623 goto isolate_fail;
624 }
748446bb 625
66c64223 626 /* Found a free page, will break it into order-0 pages */
ab130f91 627 order = buddy_order(page);
66c64223 628 isolated = __isolate_free_page(page, order);
a4f04f2c
DR
629 if (!isolated)
630 break;
66c64223 631 set_page_private(page, order);
a4f04f2c 632
748446bb 633 total_isolated += isolated;
a4f04f2c 634 cc->nr_freepages += isolated;
66c64223
JK
635 list_add_tail(&page->lru, freelist);
636
a4f04f2c
DR
637 if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
638 blockpfn += isolated;
639 break;
748446bb 640 }
a4f04f2c
DR
641 /* Advance to the end of split page */
642 blockpfn += isolated - 1;
643 cursor += isolated - 1;
644 continue;
2af120bc
LA
645
646isolate_fail:
647 if (strict)
648 break;
649 else
650 continue;
651
748446bb
MG
652 }
653
a4f04f2c
DR
654 if (locked)
655 spin_unlock_irqrestore(&cc->zone->lock, flags);
656
9fcd6d2e
VB
657 /*
658 * There is a tiny chance that we have read bogus compound_order(),
659 * so be careful to not go outside of the pageblock.
660 */
661 if (unlikely(blockpfn > end_pfn))
662 blockpfn = end_pfn;
663
e34d85f0
JK
664 trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
665 nr_scanned, total_isolated);
666
e14c720e
VB
667 /* Record how far we have got within the block */
668 *start_pfn = blockpfn;
669
f40d1e42
MG
670 /*
671 * If strict isolation is requested by CMA then check that all the
672 * pages requested were isolated. If there were any failures, 0 is
673 * returned and CMA will fail.
674 */
2af120bc 675 if (strict && blockpfn < end_pfn)
f40d1e42
MG
676 total_isolated = 0;
677
7f354a54 678 cc->total_free_scanned += nr_scanned;
397487db 679 if (total_isolated)
010fc29a 680 count_compact_events(COMPACTISOLATED, total_isolated);
748446bb
MG
681 return total_isolated;
682}
683
85aa125f
MN
684/**
685 * isolate_freepages_range() - isolate free pages.
e8b098fc 686 * @cc: Compaction control structure.
85aa125f
MN
687 * @start_pfn: The first PFN to start isolating.
688 * @end_pfn: The one-past-last PFN.
689 *
690 * Non-free pages, invalid PFNs, or zone boundaries within the
691 * [start_pfn, end_pfn) range are considered errors, cause function to
692 * undo its actions and return zero.
693 *
694 * Otherwise, function returns one-past-the-last PFN of isolated page
695 * (which may be greater then end_pfn if end fell in a middle of
696 * a free page).
697 */
ff9543fd 698unsigned long
bb13ffeb
MG
699isolate_freepages_range(struct compact_control *cc,
700 unsigned long start_pfn, unsigned long end_pfn)
85aa125f 701{
e1409c32 702 unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
85aa125f
MN
703 LIST_HEAD(freelist);
704
7d49d886 705 pfn = start_pfn;
06b6640a 706 block_start_pfn = pageblock_start_pfn(pfn);
e1409c32
JK
707 if (block_start_pfn < cc->zone->zone_start_pfn)
708 block_start_pfn = cc->zone->zone_start_pfn;
06b6640a 709 block_end_pfn = pageblock_end_pfn(pfn);
7d49d886
VB
710
711 for (; pfn < end_pfn; pfn += isolated,
e1409c32 712 block_start_pfn = block_end_pfn,
7d49d886 713 block_end_pfn += pageblock_nr_pages) {
e14c720e
VB
714 /* Protect pfn from changing by isolate_freepages_block */
715 unsigned long isolate_start_pfn = pfn;
85aa125f 716
85aa125f
MN
717 block_end_pfn = min(block_end_pfn, end_pfn);
718
58420016
JK
719 /*
720 * pfn could pass the block_end_pfn if isolated freepage
721 * is more than pageblock order. In this case, we adjust
722 * scanning range to right one.
723 */
724 if (pfn >= block_end_pfn) {
06b6640a
VB
725 block_start_pfn = pageblock_start_pfn(pfn);
726 block_end_pfn = pageblock_end_pfn(pfn);
58420016
JK
727 block_end_pfn = min(block_end_pfn, end_pfn);
728 }
729
e1409c32
JK
730 if (!pageblock_pfn_to_page(block_start_pfn,
731 block_end_pfn, cc->zone))
7d49d886
VB
732 break;
733
e14c720e 734 isolated = isolate_freepages_block(cc, &isolate_start_pfn,
4fca9730 735 block_end_pfn, &freelist, 0, true);
85aa125f
MN
736
737 /*
738 * In strict mode, isolate_freepages_block() returns 0 if
739 * there are any holes in the block (ie. invalid PFNs or
740 * non-free pages).
741 */
742 if (!isolated)
743 break;
744
745 /*
746 * If we managed to isolate pages, it is always (1 << n) *
747 * pageblock_nr_pages for some non-negative n. (Max order
748 * page may span two pageblocks).
749 */
750 }
751
66c64223 752 /* __isolate_free_page() does not map the pages */
4469ab98 753 split_map_pages(&freelist);
85aa125f
MN
754
755 if (pfn < end_pfn) {
756 /* Loop terminated early, cleanup. */
757 release_freepages(&freelist);
758 return 0;
759 }
760
761 /* We don't use freelists for anything. */
762 return pfn;
763}
764
748446bb 765/* Similar to reclaim, but different enough that they don't share logic */
5f438eee 766static bool too_many_isolated(pg_data_t *pgdat)
748446bb 767{
bc693045 768 unsigned long active, inactive, isolated;
748446bb 769
5f438eee
AR
770 inactive = node_page_state(pgdat, NR_INACTIVE_FILE) +
771 node_page_state(pgdat, NR_INACTIVE_ANON);
772 active = node_page_state(pgdat, NR_ACTIVE_FILE) +
773 node_page_state(pgdat, NR_ACTIVE_ANON);
774 isolated = node_page_state(pgdat, NR_ISOLATED_FILE) +
775 node_page_state(pgdat, NR_ISOLATED_ANON);
748446bb 776
bc693045 777 return isolated > (inactive + active) / 2;
748446bb
MG
778}
779
2fe86e00 780/**
edc2ca61
VB
781 * isolate_migratepages_block() - isolate all migrate-able pages within
782 * a single pageblock
2fe86e00 783 * @cc: Compaction control structure.
edc2ca61
VB
784 * @low_pfn: The first PFN to isolate
785 * @end_pfn: The one-past-the-last PFN to isolate, within same pageblock
786 * @isolate_mode: Isolation mode to be used.
2fe86e00
MN
787 *
788 * Isolate all pages that can be migrated from the range specified by
edc2ca61
VB
789 * [low_pfn, end_pfn). The range is expected to be within same pageblock.
790 * Returns zero if there is a fatal signal pending, otherwise PFN of the
791 * first page that was not scanned (which may be both less, equal to or more
792 * than end_pfn).
2fe86e00 793 *
edc2ca61
VB
794 * The pages are isolated on cc->migratepages list (not required to be empty),
795 * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field
796 * is neither read nor updated.
748446bb 797 */
edc2ca61
VB
798static unsigned long
799isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
800 unsigned long end_pfn, isolate_mode_t isolate_mode)
748446bb 801{
5f438eee 802 pg_data_t *pgdat = cc->zone->zone_pgdat;
b7aba698 803 unsigned long nr_scanned = 0, nr_isolated = 0;
fa9add64 804 struct lruvec *lruvec;
b8b2d825 805 unsigned long flags = 0;
6168d0da 806 struct lruvec *locked = NULL;
bb13ffeb 807 struct page *page = NULL, *valid_page = NULL;
e34d85f0 808 unsigned long start_pfn = low_pfn;
fdd048e1
VB
809 bool skip_on_failure = false;
810 unsigned long next_skip_pfn = 0;
e380bebe 811 bool skip_updated = false;
748446bb 812
748446bb
MG
813 /*
814 * Ensure that there are not too many pages isolated from the LRU
815 * list by either parallel reclaimers or compaction. If there are,
816 * delay for some time until fewer pages are isolated
817 */
5f438eee 818 while (unlikely(too_many_isolated(pgdat))) {
d20bdd57
ZY
819 /* stop isolation if there are still pages not migrated */
820 if (cc->nr_migratepages)
821 return 0;
822
f9e35b3b 823 /* async migration should just abort */
e0b9daeb 824 if (cc->mode == MIGRATE_ASYNC)
2fe86e00 825 return 0;
f9e35b3b 826
748446bb
MG
827 congestion_wait(BLK_RW_ASYNC, HZ/10);
828
829 if (fatal_signal_pending(current))
2fe86e00 830 return 0;
748446bb
MG
831 }
832
cf66f070 833 cond_resched();
aeef4b83 834
fdd048e1
VB
835 if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
836 skip_on_failure = true;
837 next_skip_pfn = block_end_pfn(low_pfn, cc->order);
838 }
839
748446bb 840 /* Time to isolate some pages for migration */
748446bb 841 for (; low_pfn < end_pfn; low_pfn++) {
29c0dde8 842
fdd048e1
VB
843 if (skip_on_failure && low_pfn >= next_skip_pfn) {
844 /*
845 * We have isolated all migration candidates in the
846 * previous order-aligned block, and did not skip it due
847 * to failure. We should migrate the pages now and
848 * hopefully succeed compaction.
849 */
850 if (nr_isolated)
851 break;
852
853 /*
854 * We failed to isolate in the previous order-aligned
855 * block. Set the new boundary to the end of the
856 * current block. Note we can't simply increase
857 * next_skip_pfn by 1 << order, as low_pfn might have
858 * been incremented by a higher number due to skipping
859 * a compound or a high-order buddy page in the
860 * previous loop iteration.
861 */
862 next_skip_pfn = block_end_pfn(low_pfn, cc->order);
863 }
864
8b44d279
VB
865 /*
866 * Periodically drop the lock (if held) regardless of its
670105a2
MG
867 * contention, to give chance to IRQs. Abort completely if
868 * a fatal signal is pending.
8b44d279 869 */
6168d0da
AS
870 if (!(low_pfn % SWAP_CLUSTER_MAX)) {
871 if (locked) {
872 unlock_page_lruvec_irqrestore(locked, flags);
873 locked = NULL;
874 }
875
876 if (fatal_signal_pending(current)) {
877 cc->contended = true;
878
879 low_pfn = 0;
880 goto fatal_pending;
881 }
882
883 cond_resched();
670105a2 884 }
c67fe375 885
748446bb 886 if (!pfn_valid_within(low_pfn))
fdd048e1 887 goto isolate_fail;
b7aba698 888 nr_scanned++;
748446bb 889
748446bb 890 page = pfn_to_page(low_pfn);
dc908600 891
e380bebe
MG
892 /*
893 * Check if the pageblock has already been marked skipped.
894 * Only the aligned PFN is checked as the caller isolates
895 * COMPACT_CLUSTER_MAX at a time so the second call must
896 * not falsely conclude that the block should be skipped.
897 */
898 if (!valid_page && IS_ALIGNED(low_pfn, pageblock_nr_pages)) {
899 if (!cc->ignore_skip_hint && get_pageblock_skip(page)) {
900 low_pfn = end_pfn;
9df41314 901 page = NULL;
e380bebe
MG
902 goto isolate_abort;
903 }
bb13ffeb 904 valid_page = page;
e380bebe 905 }
bb13ffeb 906
6c14466c 907 /*
99c0fd5e
VB
908 * Skip if free. We read page order here without zone lock
909 * which is generally unsafe, but the race window is small and
910 * the worst thing that can happen is that we skip some
911 * potential isolation targets.
6c14466c 912 */
99c0fd5e 913 if (PageBuddy(page)) {
ab130f91 914 unsigned long freepage_order = buddy_order_unsafe(page);
99c0fd5e
VB
915
916 /*
917 * Without lock, we cannot be sure that what we got is
918 * a valid page order. Consider only values in the
919 * valid order range to prevent low_pfn overflow.
920 */
921 if (freepage_order > 0 && freepage_order < MAX_ORDER)
922 low_pfn += (1UL << freepage_order) - 1;
748446bb 923 continue;
99c0fd5e 924 }
748446bb 925
bc835011 926 /*
29c0dde8 927 * Regardless of being on LRU, compound pages such as THP and
1da2f328
RR
928 * hugetlbfs are not to be compacted unless we are attempting
929 * an allocation much larger than the huge page size (eg CMA).
930 * We can potentially save a lot of iterations if we skip them
931 * at once. The check is racy, but we can consider only valid
932 * values and the only danger is skipping too much.
bc835011 933 */
1da2f328 934 if (PageCompound(page) && !cc->alloc_contig) {
21dc7e02 935 const unsigned int order = compound_order(page);
edc2ca61 936
d3c85bad 937 if (likely(order < MAX_ORDER))
21dc7e02 938 low_pfn += (1UL << order) - 1;
fdd048e1 939 goto isolate_fail;
2a1402aa
MG
940 }
941
bda807d4
MK
942 /*
943 * Check may be lockless but that's ok as we recheck later.
944 * It's possible to migrate LRU and non-lru movable pages.
945 * Skip any other type of page
946 */
947 if (!PageLRU(page)) {
bda807d4
MK
948 /*
949 * __PageMovable can return false positive so we need
950 * to verify it under page_lock.
951 */
952 if (unlikely(__PageMovable(page)) &&
953 !PageIsolated(page)) {
954 if (locked) {
6168d0da
AS
955 unlock_page_lruvec_irqrestore(locked, flags);
956 locked = NULL;
bda807d4
MK
957 }
958
9e5bcd61 959 if (!isolate_movable_page(page, isolate_mode))
bda807d4
MK
960 goto isolate_success;
961 }
962
fdd048e1 963 goto isolate_fail;
bda807d4 964 }
29c0dde8 965
119d6d59
DR
966 /*
967 * Migration will fail if an anonymous page is pinned in memory,
968 * so avoid taking lru_lock and isolating it unnecessarily in an
969 * admittedly racy check.
970 */
971 if (!page_mapping(page) &&
972 page_count(page) > page_mapcount(page))
fdd048e1 973 goto isolate_fail;
119d6d59 974
73e64c51
MH
975 /*
976 * Only allow to migrate anonymous pages in GFP_NOFS context
977 * because those do not depend on fs locks.
978 */
979 if (!(cc->gfp_mask & __GFP_FS) && page_mapping(page))
980 goto isolate_fail;
981
9df41314
AS
982 /*
983 * Be careful not to clear PageLRU until after we're
984 * sure the page is not being freed elsewhere -- the
985 * page release code relies on it.
986 */
987 if (unlikely(!get_page_unless_zero(page)))
988 goto isolate_fail;
989
c2135f7c 990 if (!__isolate_lru_page_prepare(page, isolate_mode))
9df41314
AS
991 goto isolate_fail_put;
992
993 /* Try isolate the page */
994 if (!TestClearPageLRU(page))
995 goto isolate_fail_put;
996
6168d0da
AS
997 lruvec = mem_cgroup_page_lruvec(page, pgdat);
998
69b7189f 999 /* If we already hold the lock, we can skip some rechecking */
6168d0da
AS
1000 if (lruvec != locked) {
1001 if (locked)
1002 unlock_page_lruvec_irqrestore(locked, flags);
1003
1004 compact_lock_irqsave(&lruvec->lru_lock, &flags, cc);
1005 locked = lruvec;
6168d0da
AS
1006
1007 lruvec_memcg_debug(lruvec, page);
e380bebe 1008
e380bebe
MG
1009 /* Try get exclusive access under lock */
1010 if (!skip_updated) {
1011 skip_updated = true;
1012 if (test_and_set_skip(cc, page, low_pfn))
1013 goto isolate_abort;
1014 }
2a1402aa 1015
29c0dde8
VB
1016 /*
1017 * Page become compound since the non-locked check,
1018 * and it's on LRU. It can only be a THP so the order
1019 * is safe to read and it's 0 for tail pages.
1020 */
1da2f328 1021 if (unlikely(PageCompound(page) && !cc->alloc_contig)) {
d8c6546b 1022 low_pfn += compound_nr(page) - 1;
9df41314
AS
1023 SetPageLRU(page);
1024 goto isolate_fail_put;
69b7189f 1025 }
d99fd5fe 1026 }
fa9add64 1027
1da2f328
RR
1028 /* The whole page is taken off the LRU; skip the tail pages. */
1029 if (PageCompound(page))
1030 low_pfn += compound_nr(page) - 1;
bc835011 1031
748446bb 1032 /* Successfully isolated */
46ae6b2c 1033 del_page_from_lru_list(page, lruvec);
1da2f328 1034 mod_node_page_state(page_pgdat(page),
9de4f22a 1035 NR_ISOLATED_ANON + page_is_file_lru(page),
6c357848 1036 thp_nr_pages(page));
b6c75016
JK
1037
1038isolate_success:
fdd048e1 1039 list_add(&page->lru, &cc->migratepages);
38935861
ZY
1040 cc->nr_migratepages += compound_nr(page);
1041 nr_isolated += compound_nr(page);
748446bb 1042
804d3121
MG
1043 /*
1044 * Avoid isolating too much unless this block is being
cb2dcaf0
MG
1045 * rescanned (e.g. dirty/writeback pages, parallel allocation)
1046 * or a lock is contended. For contention, isolate quickly to
1047 * potentially remove one source of contention.
804d3121 1048 */
38935861 1049 if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX &&
cb2dcaf0 1050 !cc->rescan && !cc->contended) {
31b8384a 1051 ++low_pfn;
748446bb 1052 break;
31b8384a 1053 }
fdd048e1
VB
1054
1055 continue;
9df41314
AS
1056
1057isolate_fail_put:
1058 /* Avoid potential deadlock in freeing page under lru_lock */
1059 if (locked) {
6168d0da
AS
1060 unlock_page_lruvec_irqrestore(locked, flags);
1061 locked = NULL;
9df41314
AS
1062 }
1063 put_page(page);
1064
fdd048e1
VB
1065isolate_fail:
1066 if (!skip_on_failure)
1067 continue;
1068
1069 /*
1070 * We have isolated some pages, but then failed. Release them
1071 * instead of migrating, as we cannot form the cc->order buddy
1072 * page anyway.
1073 */
1074 if (nr_isolated) {
1075 if (locked) {
6168d0da
AS
1076 unlock_page_lruvec_irqrestore(locked, flags);
1077 locked = NULL;
fdd048e1 1078 }
fdd048e1
VB
1079 putback_movable_pages(&cc->migratepages);
1080 cc->nr_migratepages = 0;
fdd048e1
VB
1081 nr_isolated = 0;
1082 }
1083
1084 if (low_pfn < next_skip_pfn) {
1085 low_pfn = next_skip_pfn - 1;
1086 /*
1087 * The check near the loop beginning would have updated
1088 * next_skip_pfn too, but this is a bit simpler.
1089 */
1090 next_skip_pfn += 1UL << cc->order;
1091 }
748446bb
MG
1092 }
1093
99c0fd5e
VB
1094 /*
1095 * The PageBuddy() check could have potentially brought us outside
1096 * the range to be scanned.
1097 */
1098 if (unlikely(low_pfn > end_pfn))
1099 low_pfn = end_pfn;
1100
9df41314
AS
1101 page = NULL;
1102
e380bebe 1103isolate_abort:
c67fe375 1104 if (locked)
6168d0da 1105 unlock_page_lruvec_irqrestore(locked, flags);
9df41314
AS
1106 if (page) {
1107 SetPageLRU(page);
1108 put_page(page);
1109 }
748446bb 1110
50b5b094 1111 /*
804d3121
MG
1112 * Updated the cached scanner pfn once the pageblock has been scanned
1113 * Pages will either be migrated in which case there is no point
1114 * scanning in the near future or migration failed in which case the
1115 * failure reason may persist. The block is marked for skipping if
1116 * there were no pages isolated in the block or if the block is
1117 * rescanned twice in a row.
50b5b094 1118 */
804d3121 1119 if (low_pfn == end_pfn && (!nr_isolated || cc->rescan)) {
e380bebe
MG
1120 if (valid_page && !skip_updated)
1121 set_pageblock_skip(valid_page);
1122 update_cached_migrate(cc, low_pfn);
1123 }
bb13ffeb 1124
e34d85f0
JK
1125 trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
1126 nr_scanned, nr_isolated);
b7aba698 1127
670105a2 1128fatal_pending:
7f354a54 1129 cc->total_migrate_scanned += nr_scanned;
397487db 1130 if (nr_isolated)
010fc29a 1131 count_compact_events(COMPACTISOLATED, nr_isolated);
397487db 1132
2fe86e00
MN
1133 return low_pfn;
1134}
1135
edc2ca61
VB
1136/**
1137 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
1138 * @cc: Compaction control structure.
1139 * @start_pfn: The first PFN to start isolating.
1140 * @end_pfn: The one-past-last PFN.
1141 *
1142 * Returns zero if isolation fails fatally due to e.g. pending signal.
1143 * Otherwise, function returns one-past-the-last PFN of isolated page
1144 * (which may be greater than end_pfn if end fell in a middle of a THP page).
1145 */
1146unsigned long
1147isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
1148 unsigned long end_pfn)
1149{
e1409c32 1150 unsigned long pfn, block_start_pfn, block_end_pfn;
edc2ca61
VB
1151
1152 /* Scan block by block. First and last block may be incomplete */
1153 pfn = start_pfn;
06b6640a 1154 block_start_pfn = pageblock_start_pfn(pfn);
e1409c32
JK
1155 if (block_start_pfn < cc->zone->zone_start_pfn)
1156 block_start_pfn = cc->zone->zone_start_pfn;
06b6640a 1157 block_end_pfn = pageblock_end_pfn(pfn);
edc2ca61
VB
1158
1159 for (; pfn < end_pfn; pfn = block_end_pfn,
e1409c32 1160 block_start_pfn = block_end_pfn,
edc2ca61
VB
1161 block_end_pfn += pageblock_nr_pages) {
1162
1163 block_end_pfn = min(block_end_pfn, end_pfn);
1164
e1409c32
JK
1165 if (!pageblock_pfn_to_page(block_start_pfn,
1166 block_end_pfn, cc->zone))
edc2ca61
VB
1167 continue;
1168
1169 pfn = isolate_migratepages_block(cc, pfn, block_end_pfn,
1170 ISOLATE_UNEVICTABLE);
1171
14af4a5e 1172 if (!pfn)
edc2ca61 1173 break;
6ea41c0c 1174
38935861 1175 if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX)
6ea41c0c 1176 break;
edc2ca61 1177 }
edc2ca61
VB
1178
1179 return pfn;
1180}
1181
ff9543fd
MN
1182#endif /* CONFIG_COMPACTION || CONFIG_CMA */
1183#ifdef CONFIG_COMPACTION
018e9a49 1184
b682debd
VB
1185static bool suitable_migration_source(struct compact_control *cc,
1186 struct page *page)
1187{
282722b0
VB
1188 int block_mt;
1189
9bebefd5
MG
1190 if (pageblock_skip_persistent(page))
1191 return false;
1192
282722b0 1193 if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction)
b682debd
VB
1194 return true;
1195
282722b0
VB
1196 block_mt = get_pageblock_migratetype(page);
1197
1198 if (cc->migratetype == MIGRATE_MOVABLE)
1199 return is_migrate_movable(block_mt);
1200 else
1201 return block_mt == cc->migratetype;
b682debd
VB
1202}
1203
018e9a49 1204/* Returns true if the page is within a block suitable for migration to */
9f7e3387
VB
1205static bool suitable_migration_target(struct compact_control *cc,
1206 struct page *page)
018e9a49
AM
1207{
1208 /* If the page is a large free page, then disallow migration */
1209 if (PageBuddy(page)) {
1210 /*
1211 * We are checking page_order without zone->lock taken. But
1212 * the only small danger is that we skip a potentially suitable
1213 * pageblock, so it's not worth to check order for valid range.
1214 */
ab130f91 1215 if (buddy_order_unsafe(page) >= pageblock_order)
018e9a49
AM
1216 return false;
1217 }
1218
1ef36db2
YX
1219 if (cc->ignore_block_suitable)
1220 return true;
1221
018e9a49 1222 /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
b682debd 1223 if (is_migrate_movable(get_pageblock_migratetype(page)))
018e9a49
AM
1224 return true;
1225
1226 /* Otherwise skip the block */
1227 return false;
1228}
1229
70b44595
MG
1230static inline unsigned int
1231freelist_scan_limit(struct compact_control *cc)
1232{
dd7ef7bd
QC
1233 unsigned short shift = BITS_PER_LONG - 1;
1234
1235 return (COMPACT_CLUSTER_MAX >> min(shift, cc->fast_search_fail)) + 1;
70b44595
MG
1236}
1237
f2849aa0
VB
1238/*
1239 * Test whether the free scanner has reached the same or lower pageblock than
1240 * the migration scanner, and compaction should thus terminate.
1241 */
1242static inline bool compact_scanners_met(struct compact_control *cc)
1243{
1244 return (cc->free_pfn >> pageblock_order)
1245 <= (cc->migrate_pfn >> pageblock_order);
1246}
1247
5a811889
MG
1248/*
1249 * Used when scanning for a suitable migration target which scans freelists
1250 * in reverse. Reorders the list such as the unscanned pages are scanned
1251 * first on the next iteration of the free scanner
1252 */
1253static void
1254move_freelist_head(struct list_head *freelist, struct page *freepage)
1255{
1256 LIST_HEAD(sublist);
1257
1258 if (!list_is_last(freelist, &freepage->lru)) {
1259 list_cut_before(&sublist, freelist, &freepage->lru);
1260 if (!list_empty(&sublist))
1261 list_splice_tail(&sublist, freelist);
1262 }
1263}
1264
1265/*
1266 * Similar to move_freelist_head except used by the migration scanner
1267 * when scanning forward. It's possible for these list operations to
1268 * move against each other if they search the free list exactly in
1269 * lockstep.
1270 */
70b44595
MG
1271static void
1272move_freelist_tail(struct list_head *freelist, struct page *freepage)
1273{
1274 LIST_HEAD(sublist);
1275
1276 if (!list_is_first(freelist, &freepage->lru)) {
1277 list_cut_position(&sublist, freelist, &freepage->lru);
1278 if (!list_empty(&sublist))
1279 list_splice_tail(&sublist, freelist);
1280 }
1281}
1282
5a811889
MG
1283static void
1284fast_isolate_around(struct compact_control *cc, unsigned long pfn, unsigned long nr_isolated)
1285{
1286 unsigned long start_pfn, end_pfn;
1287 struct page *page = pfn_to_page(pfn);
1288
1289 /* Do not search around if there are enough pages already */
1290 if (cc->nr_freepages >= cc->nr_migratepages)
1291 return;
1292
1293 /* Minimise scanning during async compaction */
1294 if (cc->direct_compaction && cc->mode == MIGRATE_ASYNC)
1295 return;
1296
1297 /* Pageblock boundaries */
1298 start_pfn = pageblock_start_pfn(pfn);
60fce36a 1299 end_pfn = min(pageblock_end_pfn(pfn), zone_end_pfn(cc->zone)) - 1;
5a811889
MG
1300
1301 /* Scan before */
1302 if (start_pfn != pfn) {
4fca9730 1303 isolate_freepages_block(cc, &start_pfn, pfn, &cc->freepages, 1, false);
5a811889
MG
1304 if (cc->nr_freepages >= cc->nr_migratepages)
1305 return;
1306 }
1307
1308 /* Scan after */
1309 start_pfn = pfn + nr_isolated;
60fce36a 1310 if (start_pfn < end_pfn)
4fca9730 1311 isolate_freepages_block(cc, &start_pfn, end_pfn, &cc->freepages, 1, false);
5a811889
MG
1312
1313 /* Skip this pageblock in the future as it's full or nearly full */
1314 if (cc->nr_freepages < cc->nr_migratepages)
1315 set_pageblock_skip(page);
1316}
1317
dbe2d4e4
MG
1318/* Search orders in round-robin fashion */
1319static int next_search_order(struct compact_control *cc, int order)
1320{
1321 order--;
1322 if (order < 0)
1323 order = cc->order - 1;
1324
1325 /* Search wrapped around? */
1326 if (order == cc->search_order) {
1327 cc->search_order--;
1328 if (cc->search_order < 0)
1329 cc->search_order = cc->order - 1;
1330 return -1;
1331 }
1332
1333 return order;
1334}
1335
5a811889
MG
1336static unsigned long
1337fast_isolate_freepages(struct compact_control *cc)
1338{
1339 unsigned int limit = min(1U, freelist_scan_limit(cc) >> 1);
1340 unsigned int nr_scanned = 0;
74e21484 1341 unsigned long low_pfn, min_pfn, highest = 0;
5a811889
MG
1342 unsigned long nr_isolated = 0;
1343 unsigned long distance;
1344 struct page *page = NULL;
1345 bool scan_start = false;
1346 int order;
1347
1348 /* Full compaction passes in a negative order */
1349 if (cc->order <= 0)
1350 return cc->free_pfn;
1351
1352 /*
1353 * If starting the scan, use a deeper search and use the highest
1354 * PFN found if a suitable one is not found.
1355 */
e332f741 1356 if (cc->free_pfn >= cc->zone->compact_init_free_pfn) {
5a811889
MG
1357 limit = pageblock_nr_pages >> 1;
1358 scan_start = true;
1359 }
1360
1361 /*
1362 * Preferred point is in the top quarter of the scan space but take
1363 * a pfn from the top half if the search is problematic.
1364 */
1365 distance = (cc->free_pfn - cc->migrate_pfn);
1366 low_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 2));
1367 min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1));
1368
1369 if (WARN_ON_ONCE(min_pfn > low_pfn))
1370 low_pfn = min_pfn;
1371
dbe2d4e4
MG
1372 /*
1373 * Search starts from the last successful isolation order or the next
1374 * order to search after a previous failure
1375 */
1376 cc->search_order = min_t(unsigned int, cc->order - 1, cc->search_order);
1377
1378 for (order = cc->search_order;
1379 !page && order >= 0;
1380 order = next_search_order(cc, order)) {
5a811889
MG
1381 struct free_area *area = &cc->zone->free_area[order];
1382 struct list_head *freelist;
1383 struct page *freepage;
1384 unsigned long flags;
1385 unsigned int order_scanned = 0;
74e21484 1386 unsigned long high_pfn = 0;
5a811889
MG
1387
1388 if (!area->nr_free)
1389 continue;
1390
1391 spin_lock_irqsave(&cc->zone->lock, flags);
1392 freelist = &area->free_list[MIGRATE_MOVABLE];
1393 list_for_each_entry_reverse(freepage, freelist, lru) {
1394 unsigned long pfn;
1395
1396 order_scanned++;
1397 nr_scanned++;
1398 pfn = page_to_pfn(freepage);
1399
1400 if (pfn >= highest)
1401 highest = pageblock_start_pfn(pfn);
1402
1403 if (pfn >= low_pfn) {
1404 cc->fast_search_fail = 0;
dbe2d4e4 1405 cc->search_order = order;
5a811889
MG
1406 page = freepage;
1407 break;
1408 }
1409
1410 if (pfn >= min_pfn && pfn > high_pfn) {
1411 high_pfn = pfn;
1412
1413 /* Shorten the scan if a candidate is found */
1414 limit >>= 1;
1415 }
1416
1417 if (order_scanned >= limit)
1418 break;
1419 }
1420
1421 /* Use a minimum pfn if a preferred one was not found */
1422 if (!page && high_pfn) {
1423 page = pfn_to_page(high_pfn);
1424
1425 /* Update freepage for the list reorder below */
1426 freepage = page;
1427 }
1428
1429 /* Reorder to so a future search skips recent pages */
1430 move_freelist_head(freelist, freepage);
1431
1432 /* Isolate the page if available */
1433 if (page) {
1434 if (__isolate_free_page(page, order)) {
1435 set_page_private(page, order);
1436 nr_isolated = 1 << order;
1437 cc->nr_freepages += nr_isolated;
1438 list_add_tail(&page->lru, &cc->freepages);
1439 count_compact_events(COMPACTISOLATED, nr_isolated);
1440 } else {
1441 /* If isolation fails, abort the search */
5b56d996 1442 order = cc->search_order + 1;
5a811889
MG
1443 page = NULL;
1444 }
1445 }
1446
1447 spin_unlock_irqrestore(&cc->zone->lock, flags);
1448
1449 /*
1450 * Smaller scan on next order so the total scan ig related
1451 * to freelist_scan_limit.
1452 */
1453 if (order_scanned >= limit)
1454 limit = min(1U, limit >> 1);
1455 }
1456
1457 if (!page) {
1458 cc->fast_search_fail++;
1459 if (scan_start) {
1460 /*
1461 * Use the highest PFN found above min. If one was
f3867755 1462 * not found, be pessimistic for direct compaction
5a811889
MG
1463 * and use the min mark.
1464 */
1465 if (highest) {
1466 page = pfn_to_page(highest);
1467 cc->free_pfn = highest;
1468 } else {
e577c8b6 1469 if (cc->direct_compaction && pfn_valid(min_pfn)) {
73a6e474
BH
1470 page = pageblock_pfn_to_page(min_pfn,
1471 pageblock_end_pfn(min_pfn),
1472 cc->zone);
5a811889
MG
1473 cc->free_pfn = min_pfn;
1474 }
1475 }
1476 }
1477 }
1478
d097a6f6
MG
1479 if (highest && highest >= cc->zone->compact_cached_free_pfn) {
1480 highest -= pageblock_nr_pages;
5a811889 1481 cc->zone->compact_cached_free_pfn = highest;
d097a6f6 1482 }
5a811889
MG
1483
1484 cc->total_free_scanned += nr_scanned;
1485 if (!page)
1486 return cc->free_pfn;
1487
1488 low_pfn = page_to_pfn(page);
1489 fast_isolate_around(cc, low_pfn, nr_isolated);
1490 return low_pfn;
1491}
1492
2fe86e00 1493/*
ff9543fd
MN
1494 * Based on information in the current compact_control, find blocks
1495 * suitable for isolating free pages from and then isolate them.
2fe86e00 1496 */
edc2ca61 1497static void isolate_freepages(struct compact_control *cc)
2fe86e00 1498{
edc2ca61 1499 struct zone *zone = cc->zone;
ff9543fd 1500 struct page *page;
c96b9e50 1501 unsigned long block_start_pfn; /* start of current pageblock */
e14c720e 1502 unsigned long isolate_start_pfn; /* exact pfn we start at */
c96b9e50
VB
1503 unsigned long block_end_pfn; /* end of current pageblock */
1504 unsigned long low_pfn; /* lowest pfn scanner is able to scan */
ff9543fd 1505 struct list_head *freelist = &cc->freepages;
4fca9730 1506 unsigned int stride;
2fe86e00 1507
5a811889
MG
1508 /* Try a small search of the free lists for a candidate */
1509 isolate_start_pfn = fast_isolate_freepages(cc);
1510 if (cc->nr_freepages)
1511 goto splitmap;
1512
ff9543fd
MN
1513 /*
1514 * Initialise the free scanner. The starting point is where we last
49e068f0 1515 * successfully isolated from, zone-cached value, or the end of the
e14c720e
VB
1516 * zone when isolating for the first time. For looping we also need
1517 * this pfn aligned down to the pageblock boundary, because we do
c96b9e50
VB
1518 * block_start_pfn -= pageblock_nr_pages in the for loop.
1519 * For ending point, take care when isolating in last pageblock of a
a1c1dbeb 1520 * zone which ends in the middle of a pageblock.
49e068f0
VB
1521 * The low boundary is the end of the pageblock the migration scanner
1522 * is using.
ff9543fd 1523 */
e14c720e 1524 isolate_start_pfn = cc->free_pfn;
5a811889 1525 block_start_pfn = pageblock_start_pfn(isolate_start_pfn);
c96b9e50
VB
1526 block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
1527 zone_end_pfn(zone));
06b6640a 1528 low_pfn = pageblock_end_pfn(cc->migrate_pfn);
4fca9730 1529 stride = cc->mode == MIGRATE_ASYNC ? COMPACT_CLUSTER_MAX : 1;
2fe86e00 1530
ff9543fd
MN
1531 /*
1532 * Isolate free pages until enough are available to migrate the
1533 * pages on cc->migratepages. We stop searching if the migrate
1534 * and free page scanners meet or enough free pages are isolated.
1535 */
f5f61a32 1536 for (; block_start_pfn >= low_pfn;
c96b9e50 1537 block_end_pfn = block_start_pfn,
e14c720e
VB
1538 block_start_pfn -= pageblock_nr_pages,
1539 isolate_start_pfn = block_start_pfn) {
4fca9730
MG
1540 unsigned long nr_isolated;
1541
f6ea3adb
DR
1542 /*
1543 * This can iterate a massively long zone without finding any
cb810ad2 1544 * suitable migration targets, so periodically check resched.
f6ea3adb 1545 */
cb810ad2 1546 if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages)))
cf66f070 1547 cond_resched();
f6ea3adb 1548
7d49d886
VB
1549 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1550 zone);
1551 if (!page)
ff9543fd
MN
1552 continue;
1553
1554 /* Check the block is suitable for migration */
9f7e3387 1555 if (!suitable_migration_target(cc, page))
ff9543fd 1556 continue;
68e3e926 1557
bb13ffeb
MG
1558 /* If isolation recently failed, do not retry */
1559 if (!isolation_suitable(cc, page))
1560 continue;
1561
e14c720e 1562 /* Found a block suitable for isolating free pages from. */
4fca9730
MG
1563 nr_isolated = isolate_freepages_block(cc, &isolate_start_pfn,
1564 block_end_pfn, freelist, stride, false);
ff9543fd 1565
d097a6f6
MG
1566 /* Update the skip hint if the full pageblock was scanned */
1567 if (isolate_start_pfn == block_end_pfn)
1568 update_pageblock_skip(cc, page, block_start_pfn);
1569
cb2dcaf0
MG
1570 /* Are enough freepages isolated? */
1571 if (cc->nr_freepages >= cc->nr_migratepages) {
a46cbf3b
DR
1572 if (isolate_start_pfn >= block_end_pfn) {
1573 /*
1574 * Restart at previous pageblock if more
1575 * freepages can be isolated next time.
1576 */
f5f61a32
VB
1577 isolate_start_pfn =
1578 block_start_pfn - pageblock_nr_pages;
a46cbf3b 1579 }
be976572 1580 break;
a46cbf3b 1581 } else if (isolate_start_pfn < block_end_pfn) {
f5f61a32 1582 /*
a46cbf3b
DR
1583 * If isolation failed early, do not continue
1584 * needlessly.
f5f61a32 1585 */
a46cbf3b 1586 break;
f5f61a32 1587 }
4fca9730
MG
1588
1589 /* Adjust stride depending on isolation */
1590 if (nr_isolated) {
1591 stride = 1;
1592 continue;
1593 }
1594 stride = min_t(unsigned int, COMPACT_CLUSTER_MAX, stride << 1);
ff9543fd
MN
1595 }
1596
7ed695e0 1597 /*
f5f61a32
VB
1598 * Record where the free scanner will restart next time. Either we
1599 * broke from the loop and set isolate_start_pfn based on the last
1600 * call to isolate_freepages_block(), or we met the migration scanner
1601 * and the loop terminated due to isolate_start_pfn < low_pfn
7ed695e0 1602 */
f5f61a32 1603 cc->free_pfn = isolate_start_pfn;
5a811889
MG
1604
1605splitmap:
1606 /* __isolate_free_page() does not map the pages */
1607 split_map_pages(freelist);
748446bb
MG
1608}
1609
1610/*
1611 * This is a migrate-callback that "allocates" freepages by taking pages
1612 * from the isolated freelists in the block we are migrating to.
1613 */
1614static struct page *compaction_alloc(struct page *migratepage,
666feb21 1615 unsigned long data)
748446bb
MG
1616{
1617 struct compact_control *cc = (struct compact_control *)data;
1618 struct page *freepage;
1619
748446bb 1620 if (list_empty(&cc->freepages)) {
cb2dcaf0 1621 isolate_freepages(cc);
748446bb
MG
1622
1623 if (list_empty(&cc->freepages))
1624 return NULL;
1625 }
1626
1627 freepage = list_entry(cc->freepages.next, struct page, lru);
1628 list_del(&freepage->lru);
1629 cc->nr_freepages--;
1630
1631 return freepage;
1632}
1633
1634/*
d53aea3d
DR
1635 * This is a migrate-callback that "frees" freepages back to the isolated
1636 * freelist. All pages on the freelist are from the same zone, so there is no
1637 * special handling needed for NUMA.
1638 */
1639static void compaction_free(struct page *page, unsigned long data)
1640{
1641 struct compact_control *cc = (struct compact_control *)data;
1642
1643 list_add(&page->lru, &cc->freepages);
1644 cc->nr_freepages++;
1645}
1646
ff9543fd
MN
1647/* possible outcome of isolate_migratepages */
1648typedef enum {
1649 ISOLATE_ABORT, /* Abort compaction now */
1650 ISOLATE_NONE, /* No pages isolated, continue scanning */
1651 ISOLATE_SUCCESS, /* Pages isolated, migrate */
1652} isolate_migrate_t;
1653
5bbe3547
EM
1654/*
1655 * Allow userspace to control policy on scanning the unevictable LRU for
1656 * compactable pages.
1657 */
6923aa0d
SAS
1658#ifdef CONFIG_PREEMPT_RT
1659int sysctl_compact_unevictable_allowed __read_mostly = 0;
1660#else
5bbe3547 1661int sysctl_compact_unevictable_allowed __read_mostly = 1;
6923aa0d 1662#endif
5bbe3547 1663
70b44595
MG
1664static inline void
1665update_fast_start_pfn(struct compact_control *cc, unsigned long pfn)
1666{
1667 if (cc->fast_start_pfn == ULONG_MAX)
1668 return;
1669
1670 if (!cc->fast_start_pfn)
1671 cc->fast_start_pfn = pfn;
1672
1673 cc->fast_start_pfn = min(cc->fast_start_pfn, pfn);
1674}
1675
1676static inline unsigned long
1677reinit_migrate_pfn(struct compact_control *cc)
1678{
1679 if (!cc->fast_start_pfn || cc->fast_start_pfn == ULONG_MAX)
1680 return cc->migrate_pfn;
1681
1682 cc->migrate_pfn = cc->fast_start_pfn;
1683 cc->fast_start_pfn = ULONG_MAX;
1684
1685 return cc->migrate_pfn;
1686}
1687
1688/*
1689 * Briefly search the free lists for a migration source that already has
1690 * some free pages to reduce the number of pages that need migration
1691 * before a pageblock is free.
1692 */
1693static unsigned long fast_find_migrateblock(struct compact_control *cc)
1694{
1695 unsigned int limit = freelist_scan_limit(cc);
1696 unsigned int nr_scanned = 0;
1697 unsigned long distance;
1698 unsigned long pfn = cc->migrate_pfn;
1699 unsigned long high_pfn;
1700 int order;
15d28d0d 1701 bool found_block = false;
70b44595
MG
1702
1703 /* Skip hints are relied on to avoid repeats on the fast search */
1704 if (cc->ignore_skip_hint)
1705 return pfn;
1706
1707 /*
1708 * If the migrate_pfn is not at the start of a zone or the start
1709 * of a pageblock then assume this is a continuation of a previous
1710 * scan restarted due to COMPACT_CLUSTER_MAX.
1711 */
1712 if (pfn != cc->zone->zone_start_pfn && pfn != pageblock_start_pfn(pfn))
1713 return pfn;
1714
1715 /*
1716 * For smaller orders, just linearly scan as the number of pages
1717 * to migrate should be relatively small and does not necessarily
1718 * justify freeing up a large block for a small allocation.
1719 */
1720 if (cc->order <= PAGE_ALLOC_COSTLY_ORDER)
1721 return pfn;
1722
1723 /*
1724 * Only allow kcompactd and direct requests for movable pages to
1725 * quickly clear out a MOVABLE pageblock for allocation. This
1726 * reduces the risk that a large movable pageblock is freed for
1727 * an unmovable/reclaimable small allocation.
1728 */
1729 if (cc->direct_compaction && cc->migratetype != MIGRATE_MOVABLE)
1730 return pfn;
1731
1732 /*
1733 * When starting the migration scanner, pick any pageblock within the
1734 * first half of the search space. Otherwise try and pick a pageblock
1735 * within the first eighth to reduce the chances that a migration
1736 * target later becomes a source.
1737 */
1738 distance = (cc->free_pfn - cc->migrate_pfn) >> 1;
1739 if (cc->migrate_pfn != cc->zone->zone_start_pfn)
1740 distance >>= 2;
1741 high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance);
1742
1743 for (order = cc->order - 1;
15d28d0d 1744 order >= PAGE_ALLOC_COSTLY_ORDER && !found_block && nr_scanned < limit;
70b44595
MG
1745 order--) {
1746 struct free_area *area = &cc->zone->free_area[order];
1747 struct list_head *freelist;
1748 unsigned long flags;
1749 struct page *freepage;
1750
1751 if (!area->nr_free)
1752 continue;
1753
1754 spin_lock_irqsave(&cc->zone->lock, flags);
1755 freelist = &area->free_list[MIGRATE_MOVABLE];
1756 list_for_each_entry(freepage, freelist, lru) {
1757 unsigned long free_pfn;
1758
15d28d0d
WY
1759 if (nr_scanned++ >= limit) {
1760 move_freelist_tail(freelist, freepage);
1761 break;
1762 }
1763
70b44595
MG
1764 free_pfn = page_to_pfn(freepage);
1765 if (free_pfn < high_pfn) {
70b44595
MG
1766 /*
1767 * Avoid if skipped recently. Ideally it would
1768 * move to the tail but even safe iteration of
1769 * the list assumes an entry is deleted, not
1770 * reordered.
1771 */
15d28d0d 1772 if (get_pageblock_skip(freepage))
70b44595 1773 continue;
70b44595
MG
1774
1775 /* Reorder to so a future search skips recent pages */
1776 move_freelist_tail(freelist, freepage);
1777
e380bebe 1778 update_fast_start_pfn(cc, free_pfn);
70b44595
MG
1779 pfn = pageblock_start_pfn(free_pfn);
1780 cc->fast_search_fail = 0;
15d28d0d 1781 found_block = true;
70b44595
MG
1782 set_pageblock_skip(freepage);
1783 break;
1784 }
70b44595
MG
1785 }
1786 spin_unlock_irqrestore(&cc->zone->lock, flags);
1787 }
1788
1789 cc->total_migrate_scanned += nr_scanned;
1790
1791 /*
1792 * If fast scanning failed then use a cached entry for a page block
1793 * that had free pages as the basis for starting a linear scan.
1794 */
15d28d0d
WY
1795 if (!found_block) {
1796 cc->fast_search_fail++;
70b44595 1797 pfn = reinit_migrate_pfn(cc);
15d28d0d 1798 }
70b44595
MG
1799 return pfn;
1800}
1801
ff9543fd 1802/*
edc2ca61
VB
1803 * Isolate all pages that can be migrated from the first suitable block,
1804 * starting at the block pointed to by the migrate scanner pfn within
1805 * compact_control.
ff9543fd 1806 */
32aaf055 1807static isolate_migrate_t isolate_migratepages(struct compact_control *cc)
ff9543fd 1808{
e1409c32
JK
1809 unsigned long block_start_pfn;
1810 unsigned long block_end_pfn;
1811 unsigned long low_pfn;
edc2ca61
VB
1812 struct page *page;
1813 const isolate_mode_t isolate_mode =
5bbe3547 1814 (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1d2047fe 1815 (cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
70b44595 1816 bool fast_find_block;
ff9543fd 1817
edc2ca61
VB
1818 /*
1819 * Start at where we last stopped, or beginning of the zone as
70b44595
MG
1820 * initialized by compact_zone(). The first failure will use
1821 * the lowest PFN as the starting point for linear scanning.
edc2ca61 1822 */
70b44595 1823 low_pfn = fast_find_migrateblock(cc);
06b6640a 1824 block_start_pfn = pageblock_start_pfn(low_pfn);
32aaf055
PL
1825 if (block_start_pfn < cc->zone->zone_start_pfn)
1826 block_start_pfn = cc->zone->zone_start_pfn;
ff9543fd 1827
70b44595
MG
1828 /*
1829 * fast_find_migrateblock marks a pageblock skipped so to avoid
1830 * the isolation_suitable check below, check whether the fast
1831 * search was successful.
1832 */
1833 fast_find_block = low_pfn != cc->migrate_pfn && !cc->fast_search_fail;
1834
ff9543fd 1835 /* Only scan within a pageblock boundary */
06b6640a 1836 block_end_pfn = pageblock_end_pfn(low_pfn);
ff9543fd 1837
edc2ca61
VB
1838 /*
1839 * Iterate over whole pageblocks until we find the first suitable.
1840 * Do not cross the free scanner.
1841 */
e1409c32 1842 for (; block_end_pfn <= cc->free_pfn;
70b44595 1843 fast_find_block = false,
e1409c32
JK
1844 low_pfn = block_end_pfn,
1845 block_start_pfn = block_end_pfn,
1846 block_end_pfn += pageblock_nr_pages) {
ff9543fd 1847
edc2ca61
VB
1848 /*
1849 * This can potentially iterate a massively long zone with
1850 * many pageblocks unsuitable, so periodically check if we
cb810ad2 1851 * need to schedule.
edc2ca61 1852 */
cb810ad2 1853 if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages)))
cf66f070 1854 cond_resched();
ff9543fd 1855
32aaf055
PL
1856 page = pageblock_pfn_to_page(block_start_pfn,
1857 block_end_pfn, cc->zone);
7d49d886 1858 if (!page)
edc2ca61
VB
1859 continue;
1860
e380bebe
MG
1861 /*
1862 * If isolation recently failed, do not retry. Only check the
1863 * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock
1864 * to be visited multiple times. Assume skip was checked
1865 * before making it "skip" so other compaction instances do
1866 * not scan the same block.
1867 */
1868 if (IS_ALIGNED(low_pfn, pageblock_nr_pages) &&
1869 !fast_find_block && !isolation_suitable(cc, page))
edc2ca61
VB
1870 continue;
1871
1872 /*
9bebefd5
MG
1873 * For async compaction, also only scan in MOVABLE blocks
1874 * without huge pages. Async compaction is optimistic to see
1875 * if the minimum amount of work satisfies the allocation.
1876 * The cached PFN is updated as it's possible that all
1877 * remaining blocks between source and target are unsuitable
1878 * and the compaction scanners fail to meet.
edc2ca61 1879 */
9bebefd5
MG
1880 if (!suitable_migration_source(cc, page)) {
1881 update_cached_migrate(cc, block_end_pfn);
edc2ca61 1882 continue;
9bebefd5 1883 }
edc2ca61
VB
1884
1885 /* Perform the isolation */
e1409c32
JK
1886 low_pfn = isolate_migratepages_block(cc, low_pfn,
1887 block_end_pfn, isolate_mode);
edc2ca61 1888
cb2dcaf0 1889 if (!low_pfn)
edc2ca61
VB
1890 return ISOLATE_ABORT;
1891
1892 /*
1893 * Either we isolated something and proceed with migration. Or
1894 * we failed and compact_zone should decide if we should
1895 * continue or not.
1896 */
1897 break;
1898 }
1899
f2849aa0
VB
1900 /* Record where migration scanner will be restarted. */
1901 cc->migrate_pfn = low_pfn;
ff9543fd 1902
edc2ca61 1903 return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
ff9543fd
MN
1904}
1905
21c527a3
YB
1906/*
1907 * order == -1 is expected when compacting via
1908 * /proc/sys/vm/compact_memory
1909 */
1910static inline bool is_via_compact_memory(int order)
1911{
1912 return order == -1;
1913}
1914
facdaa91
NG
1915static bool kswapd_is_running(pg_data_t *pgdat)
1916{
1917 return pgdat->kswapd && (pgdat->kswapd->state == TASK_RUNNING);
1918}
1919
1920/*
1921 * A zone's fragmentation score is the external fragmentation wrt to the
40d7e203
CTR
1922 * COMPACTION_HPAGE_ORDER. It returns a value in the range [0, 100].
1923 */
1924static unsigned int fragmentation_score_zone(struct zone *zone)
1925{
1926 return extfrag_for_order(zone, COMPACTION_HPAGE_ORDER);
1927}
1928
1929/*
1930 * A weighted zone's fragmentation score is the external fragmentation
1931 * wrt to the COMPACTION_HPAGE_ORDER scaled by the zone's size. It
1932 * returns a value in the range [0, 100].
facdaa91
NG
1933 *
1934 * The scaling factor ensures that proactive compaction focuses on larger
1935 * zones like ZONE_NORMAL, rather than smaller, specialized zones like
1936 * ZONE_DMA32. For smaller zones, the score value remains close to zero,
1937 * and thus never exceeds the high threshold for proactive compaction.
1938 */
40d7e203 1939static unsigned int fragmentation_score_zone_weighted(struct zone *zone)
facdaa91
NG
1940{
1941 unsigned long score;
1942
40d7e203 1943 score = zone->present_pages * fragmentation_score_zone(zone);
facdaa91
NG
1944 return div64_ul(score, zone->zone_pgdat->node_present_pages + 1);
1945}
1946
1947/*
1948 * The per-node proactive (background) compaction process is started by its
1949 * corresponding kcompactd thread when the node's fragmentation score
1950 * exceeds the high threshold. The compaction process remains active till
1951 * the node's score falls below the low threshold, or one of the back-off
1952 * conditions is met.
1953 */
d34c0a75 1954static unsigned int fragmentation_score_node(pg_data_t *pgdat)
facdaa91 1955{
d34c0a75 1956 unsigned int score = 0;
facdaa91
NG
1957 int zoneid;
1958
1959 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
1960 struct zone *zone;
1961
1962 zone = &pgdat->node_zones[zoneid];
40d7e203 1963 score += fragmentation_score_zone_weighted(zone);
facdaa91
NG
1964 }
1965
1966 return score;
1967}
1968
d34c0a75 1969static unsigned int fragmentation_score_wmark(pg_data_t *pgdat, bool low)
facdaa91 1970{
d34c0a75 1971 unsigned int wmark_low;
facdaa91
NG
1972
1973 /*
1974 * Cap the low watermak to avoid excessive compaction
1975 * activity in case a user sets the proactivess tunable
1976 * close to 100 (maximum).
1977 */
d34c0a75
NG
1978 wmark_low = max(100U - sysctl_compaction_proactiveness, 5U);
1979 return low ? wmark_low : min(wmark_low + 10, 100U);
facdaa91
NG
1980}
1981
1982static bool should_proactive_compact_node(pg_data_t *pgdat)
1983{
1984 int wmark_high;
1985
1986 if (!sysctl_compaction_proactiveness || kswapd_is_running(pgdat))
1987 return false;
1988
1989 wmark_high = fragmentation_score_wmark(pgdat, false);
1990 return fragmentation_score_node(pgdat) > wmark_high;
1991}
1992
40cacbcb 1993static enum compact_result __compact_finished(struct compact_control *cc)
748446bb 1994{
8fb74b9f 1995 unsigned int order;
d39773a0 1996 const int migratetype = cc->migratetype;
cb2dcaf0 1997 int ret;
748446bb 1998
753341a4 1999 /* Compaction run completes if the migrate and free scanner meet */
f2849aa0 2000 if (compact_scanners_met(cc)) {
55b7c4c9 2001 /* Let the next compaction start anew. */
40cacbcb 2002 reset_cached_positions(cc->zone);
55b7c4c9 2003
62997027
MG
2004 /*
2005 * Mark that the PG_migrate_skip information should be cleared
accf6242 2006 * by kswapd when it goes to sleep. kcompactd does not set the
62997027
MG
2007 * flag itself as the decision to be clear should be directly
2008 * based on an allocation request.
2009 */
accf6242 2010 if (cc->direct_compaction)
40cacbcb 2011 cc->zone->compact_blockskip_flush = true;
62997027 2012
c8f7de0b
MH
2013 if (cc->whole_zone)
2014 return COMPACT_COMPLETE;
2015 else
2016 return COMPACT_PARTIAL_SKIPPED;
bb13ffeb 2017 }
748446bb 2018
facdaa91
NG
2019 if (cc->proactive_compaction) {
2020 int score, wmark_low;
2021 pg_data_t *pgdat;
2022
2023 pgdat = cc->zone->zone_pgdat;
2024 if (kswapd_is_running(pgdat))
2025 return COMPACT_PARTIAL_SKIPPED;
2026
2027 score = fragmentation_score_zone(cc->zone);
2028 wmark_low = fragmentation_score_wmark(pgdat, true);
2029
2030 if (score > wmark_low)
2031 ret = COMPACT_CONTINUE;
2032 else
2033 ret = COMPACT_SUCCESS;
2034
2035 goto out;
2036 }
2037
21c527a3 2038 if (is_via_compact_memory(cc->order))
56de7263
MG
2039 return COMPACT_CONTINUE;
2040
efe771c7
MG
2041 /*
2042 * Always finish scanning a pageblock to reduce the possibility of
2043 * fallbacks in the future. This is particularly important when
2044 * migration source is unmovable/reclaimable but it's not worth
2045 * special casing.
2046 */
2047 if (!IS_ALIGNED(cc->migrate_pfn, pageblock_nr_pages))
2048 return COMPACT_CONTINUE;
baf6a9a1 2049
56de7263 2050 /* Direct compactor: Is a suitable page free? */
cb2dcaf0 2051 ret = COMPACT_NO_SUITABLE_PAGE;
8fb74b9f 2052 for (order = cc->order; order < MAX_ORDER; order++) {
40cacbcb 2053 struct free_area *area = &cc->zone->free_area[order];
2149cdae 2054 bool can_steal;
8fb74b9f
MG
2055
2056 /* Job done if page is free of the right migratetype */
b03641af 2057 if (!free_area_empty(area, migratetype))
cf378319 2058 return COMPACT_SUCCESS;
8fb74b9f 2059
2149cdae
JK
2060#ifdef CONFIG_CMA
2061 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
2062 if (migratetype == MIGRATE_MOVABLE &&
b03641af 2063 !free_area_empty(area, MIGRATE_CMA))
cf378319 2064 return COMPACT_SUCCESS;
2149cdae
JK
2065#endif
2066 /*
2067 * Job done if allocation would steal freepages from
2068 * other migratetype buddy lists.
2069 */
2070 if (find_suitable_fallback(area, order, migratetype,
baf6a9a1
VB
2071 true, &can_steal) != -1) {
2072
2073 /* movable pages are OK in any pageblock */
2074 if (migratetype == MIGRATE_MOVABLE)
2075 return COMPACT_SUCCESS;
2076
2077 /*
2078 * We are stealing for a non-movable allocation. Make
2079 * sure we finish compacting the current pageblock
2080 * first so it is as free as possible and we won't
2081 * have to steal another one soon. This only applies
2082 * to sync compaction, as async compaction operates
2083 * on pageblocks of the same migratetype.
2084 */
2085 if (cc->mode == MIGRATE_ASYNC ||
2086 IS_ALIGNED(cc->migrate_pfn,
2087 pageblock_nr_pages)) {
2088 return COMPACT_SUCCESS;
2089 }
2090
cb2dcaf0
MG
2091 ret = COMPACT_CONTINUE;
2092 break;
baf6a9a1 2093 }
56de7263
MG
2094 }
2095
facdaa91 2096out:
cb2dcaf0
MG
2097 if (cc->contended || fatal_signal_pending(current))
2098 ret = COMPACT_CONTENDED;
2099
2100 return ret;
837d026d
JK
2101}
2102
40cacbcb 2103static enum compact_result compact_finished(struct compact_control *cc)
837d026d
JK
2104{
2105 int ret;
2106
40cacbcb
MG
2107 ret = __compact_finished(cc);
2108 trace_mm_compaction_finished(cc->zone, cc->order, ret);
837d026d
JK
2109 if (ret == COMPACT_NO_SUITABLE_PAGE)
2110 ret = COMPACT_CONTINUE;
2111
2112 return ret;
748446bb
MG
2113}
2114
ea7ab982 2115static enum compact_result __compaction_suitable(struct zone *zone, int order,
c603844b 2116 unsigned int alloc_flags,
97a225e6 2117 int highest_zoneidx,
86a294a8 2118 unsigned long wmark_target)
3e7d3449 2119{
3e7d3449
MG
2120 unsigned long watermark;
2121
21c527a3 2122 if (is_via_compact_memory(order))
3957c776
MH
2123 return COMPACT_CONTINUE;
2124
a9214443 2125 watermark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
ebff3980
VB
2126 /*
2127 * If watermarks for high-order allocation are already met, there
2128 * should be no need for compaction at all.
2129 */
97a225e6 2130 if (zone_watermark_ok(zone, order, watermark, highest_zoneidx,
ebff3980 2131 alloc_flags))
cf378319 2132 return COMPACT_SUCCESS;
ebff3980 2133
3e7d3449 2134 /*
9861a62c 2135 * Watermarks for order-0 must be met for compaction to be able to
984fdba6
VB
2136 * isolate free pages for migration targets. This means that the
2137 * watermark and alloc_flags have to match, or be more pessimistic than
2138 * the check in __isolate_free_page(). We don't use the direct
2139 * compactor's alloc_flags, as they are not relevant for freepage
97a225e6
JK
2140 * isolation. We however do use the direct compactor's highest_zoneidx
2141 * to skip over zones where lowmem reserves would prevent allocation
2142 * even if compaction succeeds.
8348faf9
VB
2143 * For costly orders, we require low watermark instead of min for
2144 * compaction to proceed to increase its chances.
d883c6cf
JK
2145 * ALLOC_CMA is used, as pages in CMA pageblocks are considered
2146 * suitable migration targets
3e7d3449 2147 */
8348faf9
VB
2148 watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ?
2149 low_wmark_pages(zone) : min_wmark_pages(zone);
2150 watermark += compact_gap(order);
97a225e6 2151 if (!__zone_watermark_ok(zone, 0, watermark, highest_zoneidx,
d883c6cf 2152 ALLOC_CMA, wmark_target))
3e7d3449
MG
2153 return COMPACT_SKIPPED;
2154
cc5c9f09
VB
2155 return COMPACT_CONTINUE;
2156}
2157
2b1a20c3
HS
2158/*
2159 * compaction_suitable: Is this suitable to run compaction on this zone now?
2160 * Returns
2161 * COMPACT_SKIPPED - If there are too few free pages for compaction
2162 * COMPACT_SUCCESS - If the allocation would succeed without compaction
2163 * COMPACT_CONTINUE - If compaction should run now
2164 */
cc5c9f09
VB
2165enum compact_result compaction_suitable(struct zone *zone, int order,
2166 unsigned int alloc_flags,
97a225e6 2167 int highest_zoneidx)
cc5c9f09
VB
2168{
2169 enum compact_result ret;
2170 int fragindex;
2171
97a225e6 2172 ret = __compaction_suitable(zone, order, alloc_flags, highest_zoneidx,
cc5c9f09 2173 zone_page_state(zone, NR_FREE_PAGES));
3e7d3449
MG
2174 /*
2175 * fragmentation index determines if allocation failures are due to
2176 * low memory or external fragmentation
2177 *
ebff3980
VB
2178 * index of -1000 would imply allocations might succeed depending on
2179 * watermarks, but we already failed the high-order watermark check
3e7d3449
MG
2180 * index towards 0 implies failure is due to lack of memory
2181 * index towards 1000 implies failure is due to fragmentation
2182 *
20311420
VB
2183 * Only compact if a failure would be due to fragmentation. Also
2184 * ignore fragindex for non-costly orders where the alternative to
2185 * a successful reclaim/compaction is OOM. Fragindex and the
2186 * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
2187 * excessive compaction for costly orders, but it should not be at the
2188 * expense of system stability.
3e7d3449 2189 */
20311420 2190 if (ret == COMPACT_CONTINUE && (order > PAGE_ALLOC_COSTLY_ORDER)) {
cc5c9f09
VB
2191 fragindex = fragmentation_index(zone, order);
2192 if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
2193 ret = COMPACT_NOT_SUITABLE_ZONE;
2194 }
837d026d 2195
837d026d
JK
2196 trace_mm_compaction_suitable(zone, order, ret);
2197 if (ret == COMPACT_NOT_SUITABLE_ZONE)
2198 ret = COMPACT_SKIPPED;
2199
2200 return ret;
2201}
2202
86a294a8
MH
2203bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
2204 int alloc_flags)
2205{
2206 struct zone *zone;
2207 struct zoneref *z;
2208
2209 /*
2210 * Make sure at least one zone would pass __compaction_suitable if we continue
2211 * retrying the reclaim.
2212 */
97a225e6
JK
2213 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2214 ac->highest_zoneidx, ac->nodemask) {
86a294a8
MH
2215 unsigned long available;
2216 enum compact_result compact_result;
2217
2218 /*
2219 * Do not consider all the reclaimable memory because we do not
2220 * want to trash just for a single high order allocation which
2221 * is even not guaranteed to appear even if __compaction_suitable
2222 * is happy about the watermark check.
2223 */
5a1c84b4 2224 available = zone_reclaimable_pages(zone) / order;
86a294a8
MH
2225 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
2226 compact_result = __compaction_suitable(zone, order, alloc_flags,
97a225e6 2227 ac->highest_zoneidx, available);
cc5c9f09 2228 if (compact_result != COMPACT_SKIPPED)
86a294a8
MH
2229 return true;
2230 }
2231
2232 return false;
2233}
2234
5e1f0f09
MG
2235static enum compact_result
2236compact_zone(struct compact_control *cc, struct capture_control *capc)
748446bb 2237{
ea7ab982 2238 enum compact_result ret;
40cacbcb
MG
2239 unsigned long start_pfn = cc->zone->zone_start_pfn;
2240 unsigned long end_pfn = zone_end_pfn(cc->zone);
566e54e1 2241 unsigned long last_migrated_pfn;
e0b9daeb 2242 const bool sync = cc->mode != MIGRATE_ASYNC;
8854c55f 2243 bool update_cached;
748446bb 2244
a94b5252
YS
2245 /*
2246 * These counters track activities during zone compaction. Initialize
2247 * them before compacting a new zone.
2248 */
2249 cc->total_migrate_scanned = 0;
2250 cc->total_free_scanned = 0;
2251 cc->nr_migratepages = 0;
2252 cc->nr_freepages = 0;
2253 INIT_LIST_HEAD(&cc->freepages);
2254 INIT_LIST_HEAD(&cc->migratepages);
2255
01c0bfe0 2256 cc->migratetype = gfp_migratetype(cc->gfp_mask);
40cacbcb 2257 ret = compaction_suitable(cc->zone, cc->order, cc->alloc_flags,
97a225e6 2258 cc->highest_zoneidx);
c46649de 2259 /* Compaction is likely to fail */
cf378319 2260 if (ret == COMPACT_SUCCESS || ret == COMPACT_SKIPPED)
3e7d3449 2261 return ret;
c46649de
MH
2262
2263 /* huh, compaction_suitable is returning something unexpected */
2264 VM_BUG_ON(ret != COMPACT_CONTINUE);
3e7d3449 2265
d3132e4b
VB
2266 /*
2267 * Clear pageblock skip if there were failures recently and compaction
accf6242 2268 * is about to be retried after being deferred.
d3132e4b 2269 */
40cacbcb
MG
2270 if (compaction_restarting(cc->zone, cc->order))
2271 __reset_isolation_suitable(cc->zone);
d3132e4b 2272
c89511ab
MG
2273 /*
2274 * Setup to move all movable pages to the end of the zone. Used cached
06ed2998
VB
2275 * information on where the scanners should start (unless we explicitly
2276 * want to compact the whole zone), but check that it is initialised
2277 * by ensuring the values are within zone boundaries.
c89511ab 2278 */
70b44595 2279 cc->fast_start_pfn = 0;
06ed2998 2280 if (cc->whole_zone) {
c89511ab 2281 cc->migrate_pfn = start_pfn;
06ed2998
VB
2282 cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2283 } else {
40cacbcb
MG
2284 cc->migrate_pfn = cc->zone->compact_cached_migrate_pfn[sync];
2285 cc->free_pfn = cc->zone->compact_cached_free_pfn;
06ed2998
VB
2286 if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
2287 cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
40cacbcb 2288 cc->zone->compact_cached_free_pfn = cc->free_pfn;
06ed2998
VB
2289 }
2290 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
2291 cc->migrate_pfn = start_pfn;
40cacbcb
MG
2292 cc->zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
2293 cc->zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
06ed2998 2294 }
c8f7de0b 2295
e332f741 2296 if (cc->migrate_pfn <= cc->zone->compact_init_migrate_pfn)
06ed2998
VB
2297 cc->whole_zone = true;
2298 }
c8f7de0b 2299
566e54e1 2300 last_migrated_pfn = 0;
748446bb 2301
8854c55f
MG
2302 /*
2303 * Migrate has separate cached PFNs for ASYNC and SYNC* migration on
2304 * the basis that some migrations will fail in ASYNC mode. However,
2305 * if the cached PFNs match and pageblocks are skipped due to having
2306 * no isolation candidates, then the sync state does not matter.
2307 * Until a pageblock with isolation candidates is found, keep the
2308 * cached PFNs in sync to avoid revisiting the same blocks.
2309 */
2310 update_cached = !sync &&
2311 cc->zone->compact_cached_migrate_pfn[0] == cc->zone->compact_cached_migrate_pfn[1];
2312
16c4a097
JK
2313 trace_mm_compaction_begin(start_pfn, cc->migrate_pfn,
2314 cc->free_pfn, end_pfn, sync);
0eb927c0 2315
748446bb
MG
2316 migrate_prep_local();
2317
40cacbcb 2318 while ((ret = compact_finished(cc)) == COMPACT_CONTINUE) {
9d502c1c 2319 int err;
19d3cf9d 2320 unsigned long iteration_start_pfn = cc->migrate_pfn;
748446bb 2321
804d3121
MG
2322 /*
2323 * Avoid multiple rescans which can happen if a page cannot be
2324 * isolated (dirty/writeback in async mode) or if the migrated
2325 * pages are being allocated before the pageblock is cleared.
2326 * The first rescan will capture the entire pageblock for
2327 * migration. If it fails, it'll be marked skip and scanning
2328 * will proceed as normal.
2329 */
2330 cc->rescan = false;
2331 if (pageblock_start_pfn(last_migrated_pfn) ==
19d3cf9d 2332 pageblock_start_pfn(iteration_start_pfn)) {
804d3121
MG
2333 cc->rescan = true;
2334 }
2335
32aaf055 2336 switch (isolate_migratepages(cc)) {
f9e35b3b 2337 case ISOLATE_ABORT:
2d1e1041 2338 ret = COMPACT_CONTENDED;
5733c7d1 2339 putback_movable_pages(&cc->migratepages);
e64c5237 2340 cc->nr_migratepages = 0;
f9e35b3b
MG
2341 goto out;
2342 case ISOLATE_NONE:
8854c55f
MG
2343 if (update_cached) {
2344 cc->zone->compact_cached_migrate_pfn[1] =
2345 cc->zone->compact_cached_migrate_pfn[0];
2346 }
2347
fdaf7f5c
VB
2348 /*
2349 * We haven't isolated and migrated anything, but
2350 * there might still be unflushed migrations from
2351 * previous cc->order aligned block.
2352 */
2353 goto check_drain;
f9e35b3b 2354 case ISOLATE_SUCCESS:
8854c55f 2355 update_cached = false;
19d3cf9d 2356 last_migrated_pfn = iteration_start_pfn;
f9e35b3b 2357 }
748446bb 2358
d53aea3d 2359 err = migrate_pages(&cc->migratepages, compaction_alloc,
e0b9daeb 2360 compaction_free, (unsigned long)cc, cc->mode,
7b2a2d4a 2361 MR_COMPACTION);
748446bb 2362
f8c9301f
VB
2363 trace_mm_compaction_migratepages(cc->nr_migratepages, err,
2364 &cc->migratepages);
748446bb 2365
f8c9301f
VB
2366 /* All pages were either migrated or will be released */
2367 cc->nr_migratepages = 0;
9d502c1c 2368 if (err) {
5733c7d1 2369 putback_movable_pages(&cc->migratepages);
7ed695e0
VB
2370 /*
2371 * migrate_pages() may return -ENOMEM when scanners meet
2372 * and we want compact_finished() to detect it
2373 */
f2849aa0 2374 if (err == -ENOMEM && !compact_scanners_met(cc)) {
2d1e1041 2375 ret = COMPACT_CONTENDED;
4bf2bba3
DR
2376 goto out;
2377 }
fdd048e1
VB
2378 /*
2379 * We failed to migrate at least one page in the current
2380 * order-aligned block, so skip the rest of it.
2381 */
2382 if (cc->direct_compaction &&
2383 (cc->mode == MIGRATE_ASYNC)) {
2384 cc->migrate_pfn = block_end_pfn(
2385 cc->migrate_pfn - 1, cc->order);
2386 /* Draining pcplists is useless in this case */
566e54e1 2387 last_migrated_pfn = 0;
fdd048e1 2388 }
748446bb 2389 }
fdaf7f5c 2390
fdaf7f5c
VB
2391check_drain:
2392 /*
2393 * Has the migration scanner moved away from the previous
2394 * cc->order aligned block where we migrated from? If yes,
2395 * flush the pages that were freed, so that they can merge and
2396 * compact_finished() can detect immediately if allocation
2397 * would succeed.
2398 */
566e54e1 2399 if (cc->order > 0 && last_migrated_pfn) {
fdaf7f5c 2400 unsigned long current_block_start =
06b6640a 2401 block_start_pfn(cc->migrate_pfn, cc->order);
fdaf7f5c 2402
566e54e1 2403 if (last_migrated_pfn < current_block_start) {
b01b2141 2404 lru_add_drain_cpu_zone(cc->zone);
fdaf7f5c 2405 /* No more flushing until we migrate again */
566e54e1 2406 last_migrated_pfn = 0;
fdaf7f5c
VB
2407 }
2408 }
2409
5e1f0f09
MG
2410 /* Stop if a page has been captured */
2411 if (capc && capc->page) {
2412 ret = COMPACT_SUCCESS;
2413 break;
2414 }
748446bb
MG
2415 }
2416
f9e35b3b 2417out:
6bace090
VB
2418 /*
2419 * Release free pages and update where the free scanner should restart,
2420 * so we don't leave any returned pages behind in the next attempt.
2421 */
2422 if (cc->nr_freepages > 0) {
2423 unsigned long free_pfn = release_freepages(&cc->freepages);
2424
2425 cc->nr_freepages = 0;
2426 VM_BUG_ON(free_pfn == 0);
2427 /* The cached pfn is always the first in a pageblock */
06b6640a 2428 free_pfn = pageblock_start_pfn(free_pfn);
6bace090
VB
2429 /*
2430 * Only go back, not forward. The cached pfn might have been
2431 * already reset to zone end in compact_finished()
2432 */
40cacbcb
MG
2433 if (free_pfn > cc->zone->compact_cached_free_pfn)
2434 cc->zone->compact_cached_free_pfn = free_pfn;
6bace090 2435 }
748446bb 2436
7f354a54
DR
2437 count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned);
2438 count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned);
2439
16c4a097
JK
2440 trace_mm_compaction_end(start_pfn, cc->migrate_pfn,
2441 cc->free_pfn, end_pfn, sync, ret);
0eb927c0 2442
748446bb
MG
2443 return ret;
2444}
76ab0f53 2445
ea7ab982 2446static enum compact_result compact_zone_order(struct zone *zone, int order,
c3486f53 2447 gfp_t gfp_mask, enum compact_priority prio,
97a225e6 2448 unsigned int alloc_flags, int highest_zoneidx,
5e1f0f09 2449 struct page **capture)
56de7263 2450{
ea7ab982 2451 enum compact_result ret;
56de7263 2452 struct compact_control cc = {
56de7263 2453 .order = order,
dbe2d4e4 2454 .search_order = order,
6d7ce559 2455 .gfp_mask = gfp_mask,
56de7263 2456 .zone = zone,
a5508cd8
VB
2457 .mode = (prio == COMPACT_PRIO_ASYNC) ?
2458 MIGRATE_ASYNC : MIGRATE_SYNC_LIGHT,
ebff3980 2459 .alloc_flags = alloc_flags,
97a225e6 2460 .highest_zoneidx = highest_zoneidx,
accf6242 2461 .direct_compaction = true,
a8e025e5 2462 .whole_zone = (prio == MIN_COMPACT_PRIORITY),
9f7e3387
VB
2463 .ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY),
2464 .ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY)
56de7263 2465 };
5e1f0f09
MG
2466 struct capture_control capc = {
2467 .cc = &cc,
2468 .page = NULL,
2469 };
2470
b9e20f0d
VB
2471 /*
2472 * Make sure the structs are really initialized before we expose the
2473 * capture control, in case we are interrupted and the interrupt handler
2474 * frees a page.
2475 */
2476 barrier();
2477 WRITE_ONCE(current->capture_control, &capc);
56de7263 2478
5e1f0f09 2479 ret = compact_zone(&cc, &capc);
e64c5237
SL
2480
2481 VM_BUG_ON(!list_empty(&cc.freepages));
2482 VM_BUG_ON(!list_empty(&cc.migratepages));
2483
b9e20f0d
VB
2484 /*
2485 * Make sure we hide capture control first before we read the captured
2486 * page pointer, otherwise an interrupt could free and capture a page
2487 * and we would leak it.
2488 */
2489 WRITE_ONCE(current->capture_control, NULL);
2490 *capture = READ_ONCE(capc.page);
5e1f0f09 2491
e64c5237 2492 return ret;
56de7263
MG
2493}
2494
5e771905
MG
2495int sysctl_extfrag_threshold = 500;
2496
56de7263
MG
2497/**
2498 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
56de7263 2499 * @gfp_mask: The GFP mask of the current allocation
1a6d53a1
VB
2500 * @order: The order of the current allocation
2501 * @alloc_flags: The allocation flags of the current allocation
2502 * @ac: The context of current allocation
112d2d29 2503 * @prio: Determines how hard direct compaction should try to succeed
6467552c 2504 * @capture: Pointer to free page created by compaction will be stored here
56de7263
MG
2505 *
2506 * This is the main entry point for direct page compaction.
2507 */
ea7ab982 2508enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
c603844b 2509 unsigned int alloc_flags, const struct alloc_context *ac,
5e1f0f09 2510 enum compact_priority prio, struct page **capture)
56de7263 2511{
56de7263 2512 int may_perform_io = gfp_mask & __GFP_IO;
56de7263
MG
2513 struct zoneref *z;
2514 struct zone *zone;
1d4746d3 2515 enum compact_result rc = COMPACT_SKIPPED;
56de7263 2516
73e64c51
MH
2517 /*
2518 * Check if the GFP flags allow compaction - GFP_NOIO is really
2519 * tricky context because the migration might require IO
2520 */
2521 if (!may_perform_io)
53853e2d 2522 return COMPACT_SKIPPED;
56de7263 2523
a5508cd8 2524 trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
837d026d 2525
56de7263 2526 /* Compact each zone in the list */
97a225e6
JK
2527 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2528 ac->highest_zoneidx, ac->nodemask) {
ea7ab982 2529 enum compact_result status;
56de7263 2530
a8e025e5
VB
2531 if (prio > MIN_COMPACT_PRIORITY
2532 && compaction_deferred(zone, order)) {
1d4746d3 2533 rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
53853e2d 2534 continue;
1d4746d3 2535 }
53853e2d 2536
a5508cd8 2537 status = compact_zone_order(zone, order, gfp_mask, prio,
97a225e6 2538 alloc_flags, ac->highest_zoneidx, capture);
56de7263
MG
2539 rc = max(status, rc);
2540
7ceb009a
VB
2541 /* The allocation should succeed, stop compacting */
2542 if (status == COMPACT_SUCCESS) {
53853e2d
VB
2543 /*
2544 * We think the allocation will succeed in this zone,
2545 * but it is not certain, hence the false. The caller
2546 * will repeat this with true if allocation indeed
2547 * succeeds in this zone.
2548 */
2549 compaction_defer_reset(zone, order, false);
1f9efdef 2550
c3486f53 2551 break;
1f9efdef
VB
2552 }
2553
a5508cd8 2554 if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
c3486f53 2555 status == COMPACT_PARTIAL_SKIPPED))
53853e2d
VB
2556 /*
2557 * We think that allocation won't succeed in this zone
2558 * so we defer compaction there. If it ends up
2559 * succeeding after all, it will be reset.
2560 */
2561 defer_compaction(zone, order);
1f9efdef
VB
2562
2563 /*
2564 * We might have stopped compacting due to need_resched() in
2565 * async compaction, or due to a fatal signal detected. In that
c3486f53 2566 * case do not try further zones
1f9efdef 2567 */
c3486f53
VB
2568 if ((prio == COMPACT_PRIO_ASYNC && need_resched())
2569 || fatal_signal_pending(current))
2570 break;
56de7263
MG
2571 }
2572
2573 return rc;
2574}
2575
facdaa91
NG
2576/*
2577 * Compact all zones within a node till each zone's fragmentation score
2578 * reaches within proactive compaction thresholds (as determined by the
2579 * proactiveness tunable).
2580 *
2581 * It is possible that the function returns before reaching score targets
2582 * due to various back-off conditions, such as, contention on per-node or
2583 * per-zone locks.
2584 */
2585static void proactive_compact_node(pg_data_t *pgdat)
2586{
2587 int zoneid;
2588 struct zone *zone;
2589 struct compact_control cc = {
2590 .order = -1,
2591 .mode = MIGRATE_SYNC_LIGHT,
2592 .ignore_skip_hint = true,
2593 .whole_zone = true,
2594 .gfp_mask = GFP_KERNEL,
2595 .proactive_compaction = true,
2596 };
2597
2598 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2599 zone = &pgdat->node_zones[zoneid];
2600 if (!populated_zone(zone))
2601 continue;
2602
2603 cc.zone = zone;
2604
2605 compact_zone(&cc, NULL);
2606
2607 VM_BUG_ON(!list_empty(&cc.freepages));
2608 VM_BUG_ON(!list_empty(&cc.migratepages));
2609 }
2610}
56de7263 2611
76ab0f53 2612/* Compact all zones within a node */
791cae96 2613static void compact_node(int nid)
76ab0f53 2614{
791cae96 2615 pg_data_t *pgdat = NODE_DATA(nid);
76ab0f53 2616 int zoneid;
76ab0f53 2617 struct zone *zone;
791cae96
VB
2618 struct compact_control cc = {
2619 .order = -1,
2620 .mode = MIGRATE_SYNC,
2621 .ignore_skip_hint = true,
2622 .whole_zone = true,
73e64c51 2623 .gfp_mask = GFP_KERNEL,
791cae96
VB
2624 };
2625
76ab0f53 2626
76ab0f53 2627 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
76ab0f53
MG
2628
2629 zone = &pgdat->node_zones[zoneid];
2630 if (!populated_zone(zone))
2631 continue;
2632
791cae96 2633 cc.zone = zone;
76ab0f53 2634
5e1f0f09 2635 compact_zone(&cc, NULL);
75469345 2636
791cae96
VB
2637 VM_BUG_ON(!list_empty(&cc.freepages));
2638 VM_BUG_ON(!list_empty(&cc.migratepages));
76ab0f53 2639 }
76ab0f53
MG
2640}
2641
2642/* Compact all nodes in the system */
7964c06d 2643static void compact_nodes(void)
76ab0f53
MG
2644{
2645 int nid;
2646
8575ec29
HD
2647 /* Flush pending updates to the LRU lists */
2648 lru_add_drain_all();
2649
76ab0f53
MG
2650 for_each_online_node(nid)
2651 compact_node(nid);
76ab0f53
MG
2652}
2653
2654/* The written value is actually unused, all memory is compacted */
2655int sysctl_compact_memory;
2656
facdaa91
NG
2657/*
2658 * Tunable for proactive compaction. It determines how
2659 * aggressively the kernel should compact memory in the
2660 * background. It takes values in the range [0, 100].
2661 */
d34c0a75 2662unsigned int __read_mostly sysctl_compaction_proactiveness = 20;
facdaa91 2663
fec4eb2c
YB
2664/*
2665 * This is the entry point for compacting all nodes via
2666 * /proc/sys/vm/compact_memory
2667 */
76ab0f53 2668int sysctl_compaction_handler(struct ctl_table *table, int write,
32927393 2669 void *buffer, size_t *length, loff_t *ppos)
76ab0f53
MG
2670{
2671 if (write)
7964c06d 2672 compact_nodes();
76ab0f53
MG
2673
2674 return 0;
2675}
ed4a6d7f
MG
2676
2677#if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
74e77fb9 2678static ssize_t sysfs_compact_node(struct device *dev,
10fbcf4c 2679 struct device_attribute *attr,
ed4a6d7f
MG
2680 const char *buf, size_t count)
2681{
8575ec29
HD
2682 int nid = dev->id;
2683
2684 if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
2685 /* Flush pending updates to the LRU lists */
2686 lru_add_drain_all();
2687
2688 compact_node(nid);
2689 }
ed4a6d7f
MG
2690
2691 return count;
2692}
0825a6f9 2693static DEVICE_ATTR(compact, 0200, NULL, sysfs_compact_node);
ed4a6d7f
MG
2694
2695int compaction_register_node(struct node *node)
2696{
10fbcf4c 2697 return device_create_file(&node->dev, &dev_attr_compact);
ed4a6d7f
MG
2698}
2699
2700void compaction_unregister_node(struct node *node)
2701{
10fbcf4c 2702 return device_remove_file(&node->dev, &dev_attr_compact);
ed4a6d7f
MG
2703}
2704#endif /* CONFIG_SYSFS && CONFIG_NUMA */
ff9543fd 2705
698b1b30
VB
2706static inline bool kcompactd_work_requested(pg_data_t *pgdat)
2707{
172400c6 2708 return pgdat->kcompactd_max_order > 0 || kthread_should_stop();
698b1b30
VB
2709}
2710
2711static bool kcompactd_node_suitable(pg_data_t *pgdat)
2712{
2713 int zoneid;
2714 struct zone *zone;
97a225e6 2715 enum zone_type highest_zoneidx = pgdat->kcompactd_highest_zoneidx;
698b1b30 2716
97a225e6 2717 for (zoneid = 0; zoneid <= highest_zoneidx; zoneid++) {
698b1b30
VB
2718 zone = &pgdat->node_zones[zoneid];
2719
2720 if (!populated_zone(zone))
2721 continue;
2722
2723 if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0,
97a225e6 2724 highest_zoneidx) == COMPACT_CONTINUE)
698b1b30
VB
2725 return true;
2726 }
2727
2728 return false;
2729}
2730
2731static void kcompactd_do_work(pg_data_t *pgdat)
2732{
2733 /*
2734 * With no special task, compact all zones so that a page of requested
2735 * order is allocatable.
2736 */
2737 int zoneid;
2738 struct zone *zone;
2739 struct compact_control cc = {
2740 .order = pgdat->kcompactd_max_order,
dbe2d4e4 2741 .search_order = pgdat->kcompactd_max_order,
97a225e6 2742 .highest_zoneidx = pgdat->kcompactd_highest_zoneidx,
698b1b30 2743 .mode = MIGRATE_SYNC_LIGHT,
a0647dc9 2744 .ignore_skip_hint = false,
73e64c51 2745 .gfp_mask = GFP_KERNEL,
698b1b30 2746 };
698b1b30 2747 trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
97a225e6 2748 cc.highest_zoneidx);
7f354a54 2749 count_compact_event(KCOMPACTD_WAKE);
698b1b30 2750
97a225e6 2751 for (zoneid = 0; zoneid <= cc.highest_zoneidx; zoneid++) {
698b1b30
VB
2752 int status;
2753
2754 zone = &pgdat->node_zones[zoneid];
2755 if (!populated_zone(zone))
2756 continue;
2757
2758 if (compaction_deferred(zone, cc.order))
2759 continue;
2760
2761 if (compaction_suitable(zone, cc.order, 0, zoneid) !=
2762 COMPACT_CONTINUE)
2763 continue;
2764
172400c6
VB
2765 if (kthread_should_stop())
2766 return;
a94b5252
YS
2767
2768 cc.zone = zone;
5e1f0f09 2769 status = compact_zone(&cc, NULL);
698b1b30 2770
7ceb009a 2771 if (status == COMPACT_SUCCESS) {
698b1b30 2772 compaction_defer_reset(zone, cc.order, false);
c8f7de0b 2773 } else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
bc3106b2
DR
2774 /*
2775 * Buddy pages may become stranded on pcps that could
2776 * otherwise coalesce on the zone's free area for
2777 * order >= cc.order. This is ratelimited by the
2778 * upcoming deferral.
2779 */
2780 drain_all_pages(zone);
2781
698b1b30
VB
2782 /*
2783 * We use sync migration mode here, so we defer like
2784 * sync direct compaction does.
2785 */
2786 defer_compaction(zone, cc.order);
2787 }
2788
7f354a54
DR
2789 count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
2790 cc.total_migrate_scanned);
2791 count_compact_events(KCOMPACTD_FREE_SCANNED,
2792 cc.total_free_scanned);
2793
698b1b30
VB
2794 VM_BUG_ON(!list_empty(&cc.freepages));
2795 VM_BUG_ON(!list_empty(&cc.migratepages));
2796 }
2797
2798 /*
2799 * Regardless of success, we are done until woken up next. But remember
97a225e6
JK
2800 * the requested order/highest_zoneidx in case it was higher/tighter
2801 * than our current ones
698b1b30
VB
2802 */
2803 if (pgdat->kcompactd_max_order <= cc.order)
2804 pgdat->kcompactd_max_order = 0;
97a225e6
JK
2805 if (pgdat->kcompactd_highest_zoneidx >= cc.highest_zoneidx)
2806 pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
698b1b30
VB
2807}
2808
97a225e6 2809void wakeup_kcompactd(pg_data_t *pgdat, int order, int highest_zoneidx)
698b1b30
VB
2810{
2811 if (!order)
2812 return;
2813
2814 if (pgdat->kcompactd_max_order < order)
2815 pgdat->kcompactd_max_order = order;
2816
97a225e6
JK
2817 if (pgdat->kcompactd_highest_zoneidx > highest_zoneidx)
2818 pgdat->kcompactd_highest_zoneidx = highest_zoneidx;
698b1b30 2819
6818600f
DB
2820 /*
2821 * Pairs with implicit barrier in wait_event_freezable()
2822 * such that wakeups are not missed.
2823 */
2824 if (!wq_has_sleeper(&pgdat->kcompactd_wait))
698b1b30
VB
2825 return;
2826
2827 if (!kcompactd_node_suitable(pgdat))
2828 return;
2829
2830 trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
97a225e6 2831 highest_zoneidx);
698b1b30
VB
2832 wake_up_interruptible(&pgdat->kcompactd_wait);
2833}
2834
2835/*
2836 * The background compaction daemon, started as a kernel thread
2837 * from the init process.
2838 */
2839static int kcompactd(void *p)
2840{
2841 pg_data_t *pgdat = (pg_data_t*)p;
2842 struct task_struct *tsk = current;
facdaa91 2843 unsigned int proactive_defer = 0;
698b1b30
VB
2844
2845 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2846
2847 if (!cpumask_empty(cpumask))
2848 set_cpus_allowed_ptr(tsk, cpumask);
2849
2850 set_freezable();
2851
2852 pgdat->kcompactd_max_order = 0;
97a225e6 2853 pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
698b1b30
VB
2854
2855 while (!kthread_should_stop()) {
eb414681
JW
2856 unsigned long pflags;
2857
698b1b30 2858 trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
facdaa91
NG
2859 if (wait_event_freezable_timeout(pgdat->kcompactd_wait,
2860 kcompactd_work_requested(pgdat),
2861 msecs_to_jiffies(HPAGE_FRAG_CHECK_INTERVAL_MSEC))) {
2862
2863 psi_memstall_enter(&pflags);
2864 kcompactd_do_work(pgdat);
2865 psi_memstall_leave(&pflags);
2866 continue;
2867 }
698b1b30 2868
facdaa91
NG
2869 /* kcompactd wait timeout */
2870 if (should_proactive_compact_node(pgdat)) {
2871 unsigned int prev_score, score;
2872
2873 if (proactive_defer) {
2874 proactive_defer--;
2875 continue;
2876 }
2877 prev_score = fragmentation_score_node(pgdat);
2878 proactive_compact_node(pgdat);
2879 score = fragmentation_score_node(pgdat);
2880 /*
2881 * Defer proactive compaction if the fragmentation
2882 * score did not go down i.e. no progress made.
2883 */
2884 proactive_defer = score < prev_score ?
2885 0 : 1 << COMPACT_MAX_DEFER_SHIFT;
2886 }
698b1b30
VB
2887 }
2888
2889 return 0;
2890}
2891
2892/*
2893 * This kcompactd start function will be called by init and node-hot-add.
2894 * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
2895 */
2896int kcompactd_run(int nid)
2897{
2898 pg_data_t *pgdat = NODE_DATA(nid);
2899 int ret = 0;
2900
2901 if (pgdat->kcompactd)
2902 return 0;
2903
2904 pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
2905 if (IS_ERR(pgdat->kcompactd)) {
2906 pr_err("Failed to start kcompactd on node %d\n", nid);
2907 ret = PTR_ERR(pgdat->kcompactd);
2908 pgdat->kcompactd = NULL;
2909 }
2910 return ret;
2911}
2912
2913/*
2914 * Called by memory hotplug when all memory in a node is offlined. Caller must
2915 * hold mem_hotplug_begin/end().
2916 */
2917void kcompactd_stop(int nid)
2918{
2919 struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
2920
2921 if (kcompactd) {
2922 kthread_stop(kcompactd);
2923 NODE_DATA(nid)->kcompactd = NULL;
2924 }
2925}
2926
2927/*
2928 * It's optimal to keep kcompactd on the same CPUs as their memory, but
2929 * not required for correctness. So if the last cpu in a node goes
2930 * away, we get changed to run anywhere: as the first one comes back,
2931 * restore their cpu bindings.
2932 */
e46b1db2 2933static int kcompactd_cpu_online(unsigned int cpu)
698b1b30
VB
2934{
2935 int nid;
2936
e46b1db2
AMG
2937 for_each_node_state(nid, N_MEMORY) {
2938 pg_data_t *pgdat = NODE_DATA(nid);
2939 const struct cpumask *mask;
698b1b30 2940
e46b1db2 2941 mask = cpumask_of_node(pgdat->node_id);
698b1b30 2942
e46b1db2
AMG
2943 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2944 /* One of our CPUs online: restore mask */
2945 set_cpus_allowed_ptr(pgdat->kcompactd, mask);
698b1b30 2946 }
e46b1db2 2947 return 0;
698b1b30
VB
2948}
2949
2950static int __init kcompactd_init(void)
2951{
2952 int nid;
e46b1db2
AMG
2953 int ret;
2954
2955 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
2956 "mm/compaction:online",
2957 kcompactd_cpu_online, NULL);
2958 if (ret < 0) {
2959 pr_err("kcompactd: failed to register hotplug callbacks.\n");
2960 return ret;
2961 }
698b1b30
VB
2962
2963 for_each_node_state(nid, N_MEMORY)
2964 kcompactd_run(nid);
698b1b30
VB
2965 return 0;
2966}
2967subsys_initcall(kcompactd_init)
2968
ff9543fd 2969#endif /* CONFIG_COMPACTION */